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Abstract  Hermite-Hadamard type inequalities related 
to convex functions are widely being studied in functional 
analysis. Researchers have refined the convex functions as 
quasi-convex, h-convex, log-convex, m-convex, 
(α,m)-convex and many more. Subsequently, the 
Hermite-Hadamard type inequalities have been obtained 
for these refined convex functions. In this paper, we firstly 
review the Hermite-Hadamard type inequality for both 
convex functions and log-convex functions. Then, the 
definition of composite convex function and the 
Hermite-Hadamard type inequalities for composite 
convex functions are also reviewed. Motivated by these 
works, we then make some refinement to obtain the 
definition of composite log-convex functions, namely 
composite-ϕ−1 log-convex function. Some examples 
related to this definition such as GG-convexity and 
HG-convexity are given. We also define k-composite
log-convexity and k-composite-ϕ−1 log-convexity. We 
then prove a lemma and obtain some Hermite-Hadamard 
type inequalities for composite log-convex functions. Two 
corollaries are also proved using the theorem obtained; the 
first one by applying the exponential function and the 
second one by applying the properties of k-composite
log-convexity. Also, an application for GG-convex 
functions is given. In this application, we compare the 
inequalities obtained from this paper with the inequalities 
obtained in the previous studies. The inequalities can be 
applied in calculating geometric means in statistics and 
other fields. 

Keywords  Convex Functions, Hermite-Hadamard 
Inequalities, Composite Log-Convex Functions, 
GG-Convex 

1. Introduction
Let 

 
be a convex function on J with 

,c d J∈  such that c d< . Then 

1 ( ) ( )( )
2 2

ψ ψψ ψ τ τ+ +  ≤ ≤  −  ∫
dc d c dd

d c
c

     (1) 

is known as the Hermite-Hadamard inequality. 
Let [ ][ , ] ( ), ( )ϕ ϕ ϕ→c d c d  be continuous, strictly

increasing and differentiable on ( , )c d . 

Dragomir and Mond [1] refined the Hermite-Hadamard 

inequality in (1) for log-convex functions. The result 

obtained is as follows: 

Let ( ): [ , ] 0,ψ → ∞c d  be a log-convex function, then 
the inequality 

1 ln ( ) ln ( )ln ln ( )
2 2

ψ ψψ ψ τ τ+ +  ≤ ≤  −  ∫
dc d c dd

d c
c

  (2) 

is known as an inequality of Hermite-Hadamard type for 
log-convex functions. 

The definition of composite convex function was given 
by Dragomir [2]. The definition is stated below: 

Definition 1. A function  is composite-ϕ−1 
convex on the interval [ ],c d  if the composite convex 
function  is convex on 
[ ]( ), ( )ϕ ϕc d . 

Let be a composite-ϕ−1 convex function 
on [c,d], then 
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( )( ) ( ) ( ) ( )1 1 11 1ψ ϕ γ α γβ γ ψ ϕ α γψ ϕ β− − −− + ≤ − +     (3) 

holds for any [ ], ( ), ( )α β ϕ ϕ∈ c d  and [0,1]γ ∈ . It can 
also be seen that this is equivalent to 

( )( ) ( )1 1 ( ) ( ) 1 ( ) ( )ψ ϕ γ ϕ γϕ γ ψ γψ− − + ≤ − + m n m n  (4) 

for any , [ , ]m n c d∈  and [0,1]γ ∈ . 
Dragomir [2] also introduced the concept of 

k-composite convexity by assuming that : [ , ]ψ →c d I , 
where I is a real number interval and  is 
continuous and strictly increasing on I. 

Definition 2. : [ , ]ψ →c d I  is said to be k-composite 
convex on [ ],c d  if the composite function ψk  is 
convex on [ ],c d . 

Since [ ]: [ , ] ( ), ( )ϕ ϕ ϕ→c d c d is continuous, strictly 
increasing and differentiable on ( , ),c d with 

: [ , ]ψ →c d I , where I is an interval of real numbers and 
 is a continuous function on I that is strictly 

increasing on I, Dragomir [2] also considered: 

Definition 3. A function : [ , ]ψ →c d I  is 

k-composite-ϕ−1 convex on [ ],c d , if 1ψ ϕ− k  is 

convex on [ ]( ), ( )ϕ ϕc d . 

Clearly, the above definition is equivalent to the 
condition 

( )( )
( ) ( ) ( ) ( ) ( )

1 1 ( ) ( )

1

ψ ϕ γ ϕ γϕ

γ ψ γ ψ

− − +

≤ − +

 

 

k m n

k m k n
     (5) 

for any , [ , ]m n c d∈  and [0,1]γ ∈ . 
The Hermite-Hadamard inequality for composite-ϕ−1 

convex function has already been proved by Dragomir [2]. 
The result is given below. 

Theorem 4. Let [ ]: [ , ] ( ), ( )ϕ ϕ ϕ→c d c d  be a 
continuous strictly increasing and differentiable on 
( , )c d . If  is composite-ϕ−1 convex on 
[ ],c d , then 

( )

( ) ( )

( ) ( )

( ) ( )1
2

(2 ) ( ) ( )1
2

(1 ) ( ) (1 ) ( )11
2

1
( ) ( )
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 

′≤
−

− ≤ − + + −  
+

≤

∫






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c d

c d

c d

d dcd c

c d d

c d

  (6) 

for any [0,1]γ ∈ . 

Dragomir [3] then refined the concept of composite 
convex function and obtained the definition of composite 
h-convex function. Furthermore, the Hermite-Hadamard 
inequalities for composite h-convex function were 
obtained. 

Recently, Kashuri et al. [4] defined composite preinvex 
functions and k-composite preinvex functions. They 
obtained some Ostrowski inequalities for these functions. 

2. Composite Log-Convex Functions 
In this paper, we extend the definition above to define 

composite log-convex functions as follows. 

Definition 5. A function ( ): [ , ] 0,ψ → ∞c d  is said to 

be composite-ϕ−1 log-convex on [ ],c d  if 

[ ] ( )1 : ( ), ( ) 0,ψ ϕ ϕ ϕ− → ∞ c d  is log convex on [ ]( ), ( )ϕ ϕc d . 

If ( ): [ , ] 0,ψ → ∞c d  is composite-ϕ−1 log-convex on 

[ ],c d , then we have 

( )( )
( ) ( ) ( )

1ln 1

1 11 ln ln .

ψ ϕ γ α γβ

γ ψ ϕ α γ ψ ϕ β

− − +

− −   ≤ − +      



 

  (7) 

On the other hand, the above inequality is equivalent to 

( )( )

( ) ( )

1 1

11 1

ψ ϕ γ α γβ

γ γ
ψ ϕ α ψ ϕ β

− − +

−− −   ≤       



 

      (8) 

for any [ ], ( ), ( )α β ϕ ϕ∈ c d  and [0,1]γ ∈ . 

Note that the above inequality is also equivalent to 

( )( ) [ ] [ ]11 1 ( ) ( ) ( ) ( ) .γ γψ ϕ γ ϕ γϕ ψ ψ−− − + ≤ m n m n  (9) 

From Definition 5, suppose that ( ) ln ,ϕ =n n  
( )[ , ] 0,n c d∈ ⊂ ∞ then condition (9) becomes 

( ) [ ] [ ]11 ( ) ( )γ γγ γψ ψ ψ−− ≤m n m n       (10) 

for any , [ , ]m n c d∈  and [0,1]γ ∈ , which is GG-convex 
as considered in [5]. 

By letting 1( ) ,ϕ = −n n then condition (9) becomes 

[ ] [ ]1( ) ( )
(1 )

γ γψ ψ ψ
γ γ

  −≤ − + 

nm m n
n m    (11) 
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for any , [ , ]m n c d∈  and [0,1]γ ∈ , which is HG-convex 
as considered in [5]. 

Next, we extend the concept of k-composite convexity 
from Definition 2 to define k-composite log-convexity as 
follows: 

Definition 6. A function ( ): [ , ] 0,ψ → ∞c d  is said to be 
k-composite log-convex on [ ],c d , if lnψk  is convex 
on [ ],c d . 

Hence, the concept of k-composite-ϕ−1 log-convexity is 
also introduced. 

Definition 7. A function ( ): [ , ] 0,ψ → ∞c d  is said to 

be k-composite-ϕ−1 log-convex on [ ],c d , if 1lnψ ϕ− k  

is convex on [ ]( ), ( )ϕ ϕc d . 
The above definition can also be illustrated by the 

following inequality: 

( )( )
( ) ( ) ( ) ( ) ( )

1ln 1 ( ) ( )

1 ln ln

ψ ϕ γ ϕ γϕ

γ ψ γ ψ

− − +

≤ − +

 

 

k m n

k m k n
   (12) 

for any , [ , ]m n c d∈  and [0,1]γ ∈ . 
Let k be strictly increasing on ( )0,∞ , then the 

inequality (12) is equivalent to  

 
( )( )
( ) ( ) ( ) ( ) ( )

1ln 1 ( ) ( )

1 1 ln ln
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

 

m n

k k m k n
 (13) 

for any , [ , ]m n c d∈  and [0,1]γ ∈ . 

3. Some Refinements 
In this section, we obtain the Hermite-Hadamard 

inequalities for composite-ϕ−1 log-convex function using 
the definitions which have been given in the previous 
section. Before the desired inequalities could be obtained, 
we state and prove the following lemma: 
Lemma 8. Let ( ): [ , ] 0,ψ → ∞c d  be a log-convex 
function on [ ],c d . Then 
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+
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∫
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  (14) 

for any [0,1]γ ∈ . 

Proof. Consider the Hermite-Hadamard inequality for 

log-convex function (2) and apply it on [ ], (1 )c c dγ γ− + , 
where [0,1]γ ∈ . Then, we obtain 

( )
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The above inequality is equivalent to 

( )

( )
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.
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We repeat the same process, but this time on interval 
[ ](1 ) ,c d dγ γ− +  with [0,1]γ ∈  to obtain 

( )

( )

( ) ( ) ( )

(1 ) (1 )1 ln
2
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  (16) 

The second and third inequality in (14) are obtained by 
adding up (15) and (16). As the log-convexity property 
holds, then the following inequality is obtained: 
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Thus, we have proved the first inequality in (14). The 
fourth inequality can be obtained by log-convexity 
property.  

Theorem 9. Suppose that [ ]: [ , ] ( ), ( )ϕ ϕ ϕ→c d c d  is a 
continuous strictly increasing function and differentiable 
on [ ], .c d  Suppose also that ( ): [ , ] 0,ψ → ∞c d  is 
composite-ϕ−1 log-convex on [ ],c d , then 
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for any [0,1]γ ∈ . 

Proof. From inequality (14), we have for 
[ ], ( ), ( )α β ϕ ϕ∈ c d  and [0,1]γ ∈  that 
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If we take ( )α ϕ= c  and ( )β ϕ= d , then we get 
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By using the change of variable ( )1 ,ϕ τ− = u [ ],u c d∈  
we have ( ),τ ϕ= u ( )τ ϕ′=d u du  and 

( )( ) 1ln ln ( ) ( )
( )

ϕ
ψ ϕ τ τ ψ ϕ

ϕ
− ′=∫ ∫

d dd u u duc c
 

and by (19), we get the result as in (17). 
Corollary 10. Let [ ]: [ , ] ( ), ( )ϕ ϕ ϕ→c d c d  be a 

continuous strictly increasing function that is 
differentiable on ( , )c d . If ( ): [ , ] 0,ψ → ∞c d  is 
composite-ϕ−1 log-convex on [ ],c d , then 
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for any [0,1]γ ∈ . 

This result is obvious by applying the exponential 
function to each side of the inequality in (17). 

Corollary 11. Let [ ]: [ , ] ( ), ( )ϕ ϕ ϕ→c d c d  be a 
continuous strictly increasing function and differentiable 
on ( , )c d  and  is a continuous function on 

( )0, .∞  If ( ): [ , ] 0,ψ → ∞c d  is k-composite-ϕ−1 log-convex 

on [ ],c d , then 
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for any [0,1]γ ∈ . 

Proof. From (17), we have 
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for any [0,1]γ ∈ . 

Taking 1−k  into (22), we get the desired result as in 
(21). 
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4. Application for GG-Convex 
Function 

If we take ( ) ln ,ϕ =n n  ( )[ , ] 0,∈ ⊂ ∞n c d , then 

( ): [ , ] 0,ψ → ∞c d  is GG-convex on [ ],c d  with 
 ( ) ln .=k n n  By making use of Corollary 

11, we obtain 

( )

( )

2 1 1 1

1 ln ( )exp
ln

1 1( ) ( )

( ) ( )

γ γ γ γ γ γψ ψ ψ

ψ

γ γ γ γψ ψ ψ
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   
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 
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∫
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  (23) 

for any [0,1]γ ∈ . This result can be compared to the 
inequalities obtained in [1], [6] and [7]. 

For further discussion, the result obtained in this section 
can also be compared to the inequalities of 
Hermite-Hadamard type related to GG-convex functions 
as obtained in [8-10]. 

5. Conclusions 
The definition of composite convex function can be 

refined for some other functions, such as h-convex 
function, log-convex function and (α,m)-convex function. 
Composite h-convex function was defined by Dragomir 
[3], composite log-convex function is defined in this paper 
and composite (α,m)-convex function can be explored in 
future research. 

The defined functions are used to refine the 
Hermite-Hadamard inequalities. The results obtained are 
related to GG-convexity, which can be applied in 
calculating the geometric means, especially in the field of 
statistics. 
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