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Introduction

The origin of continued fractions as we know them today is a source of debate among histori-
ans. Many claim that continued fractions were developed in the last decades of the 16th century
by the Italian mathematicians Raphael Bombelli and Pietro Cataldi, while others believe
that the theory of continued fractions began one century later with William Brouncker and
John Wallis. Some historians even claim that the Euclidean algorithm marks the birth of
continued fraction theory and date this theory back to the 3rd century B.C. with Euclid [3].

Regardless of its origins, continued fractions have played a central role in the development
of many mathematical theories and, even today, are still a very active line of research. In the
present dissertation, I shall de�ne continued fractions, deduce their main properties, and ex-
plain their contribution to two �elds of mathematics: complex analysis andnumber theory.

In chapter 1 of this dissertation, I focus on the computation of continued fractions and
the main transformations that allow us to work with them.

In chapter 2, I work with continued fractions with coe�cients in the complex numbers.
I start by setting the foundations of the theory of convergence and then apply these results
to de�ne meromorphic functions as continued fractions. In order to do so, I link the theory
of continued fractions with the theory of formal power series and a relation is established
between Padé approximants and a particular kind of continued fractions known as regular
C-fractions. The chapter �nishes with the analysis of the associated C-fractions of a useful
family of functions known as hypergeometric functions.

In chapter 3, the applications of simple continued fractions (a special case of contin-
ued fractions with integer coe�cients) to many areas of number theory are shown. An
equivalence is de�ned between real numbers and simple continued fractions and, based on
this equivalence, one can study how well irrational numbers can be approximated by ratio-
nal numbers. Afterwards, I study the correspondence between periodic simple continued

fractions and quadratic irrationalities and lastly, I apply the theory of simple continued
fractions to �nd the solutions of Pell’s equation. Based on this, I discuss the computation of
fundamental units in real quadratic �elds.

I hope that this dissertation helps the reader understand some of the most important ad-
vances of continued fractions throughout history. However, I would like to remark that there
are many areas in which continued fractions had an impact that I have read about and, due to
the limitation on the number of pages, I did not have the chance to include.

https://arxiv.org/search/?searchtype=msc_class&query=11A55&abstracts=show&size=50&order=
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For example, although not limited to, dynamical systems [12], the geometry of num-

bers [21] or hyperbolic geometry [37].

Unlike many other mathematical concepts that are abstract and hard to grasp, the nature
of continued fractions is algorithmic, which makes them easier to understand and apply to
concrete examples. This makes them approachable, in the sense that a strong background in
mathematics is not needed to understand and follow many of the proofs in this dissertation.
Nevertheless, I would not like the reader to mistakenly think that the theory of continued frac-
tions is “simple” or basic. That is why I have added to this dissertation sections about open
problems and lines of research that I hope can help the reader to understand that most of
the problems that involve continued fractions are hard despite their easy formulation.

Another aspect that I hope this dissertation shows is the huge impact that computer sci-
ence has in the study of continued fractions nowadays. In that regard, some programming
languages like Mathematica have implemented functions and routines to work with contin-
ued fractions both numerically and symbolically [44]. However, while I was working with
Mathematica, I found that the few functions it provided me with were insu�cient to study
all necessary computations with continued fractions. That is why I have developed a fully

functional Mathematica package for continued fractions with more than 30 functions that
allow the reader to reproduce most of the computations that I present in this dissertation.

The appendix A provides an organised sample of this package that can be reviewed
while reading the dissertation. In this package, two ways of working with continued fractions
have been coded: the usual standard, in which continued fractions are de�ned by the lists

of their coe�cients, and another one in which the coe�cients are given to the functions as
pure functions. The �rst ones are specially designed for numerical computation, while
the second ones (which can be identi�ed because they have a K at the end of their names) are
designed for symbolic computations.

Appendices B and C follow the trend of most books on continued fractions of displaying
and collecting information through �gures and tables. These could have never been elabo-
rated (quickly) if it were not for the functions that I coded in the package.

As a last comment, I would like to highlight the fact that this dissertation has speci�cally
been written to be read in electronic format. The text in red provides hyperlinks that con-
nect the di�erent parts of the dissertation to allow the reader to go back and forth to check
references, equations, code, �gures, tables...

Notation

In terms of notation, we will use R to represent a (commutative) integral domain, Q to rep-
resent its quotient �eld, and F to represent a �eld. We will use N to represent the natural
numbers (including zero) and N+ to represent all positive integers.

https://github.com/AlvaroGohe/Continued-fractions-in-Mathematica


1 Properties and computationmethods
for continued fractions

1.1 Introduction

1.1.1 Continued fractions

LetR be an integral domain and Q its quotient �eld.
De�nition 1.1. A linear fractional transformation or aMöbius transformation onR

is a mapping τ : Q → Q of the form:

τ(w) =
aw + b

cw + d
(1.1)

with a, b, c, d ∈ R and ad − bc a unit. The representation of τ is not unique, as we can always
multiply the numerator and the denominator by any unit of Rwithout changing the transforma-
tion. Nevertheless, we will consider all these equivalent transformations the same. We will denote
the set of all linear fractional transformations with coe�cients inR byMR.

De�nition 1.2. A continued fraction is a triple
{
{an}∞n=1, {bn}∞n=0, {Sn}∞n=0

}
where

{an}∞n=1 and {bn}∞n=0 are sequences of elements of R and {Sn}∞n=0 is the sequence inMR de�ned
in the following way:

Sn = s0 ◦ s1 ◦ s2 ◦ . . . sn
s0(w) = w + b0 sk(w) =

ak
w + bk

for k ∈ N+

An intuitive idea of the concept of a continued fraction is described by this notation:

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
. . .

We will use the following notation to represent abstract continued fractions:

b0 +
∞

K
n=1

(an
bn

)
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Inside the text, these will be typed as K(an
bn

). The letter K comes from Kettenbruch, which is
continued fraction in German. This was the notation used in the classical text of Perron [32].

For concrete examples, we will use the following notation, developed by Pringsheim:

b0 +
a1

b1
+

a2

b2
+ · · ·+ an

bn
+ · · ·

I have chosen these conventions, but I also acknowledge that many other di�erent ones
have been used throughout history to represent continued fractions [4, Section 1.4.].

The concept of a �nite or terminating continued fraction arises from the following analo-
gous de�nition:
De�nition 1.3. A terminating continued fraction is a triple of �nite sequences{
{an}Nn=1, {bn}Nn=0, {Sn}Nn=0

}
as described before.

I will represent these continued fractions with any of these two notations:

b0 +
N

K
n=1

(an
bn

)
b0 +

a1

b1
+

a2

b2
+ · · ·+ aN

bN

To a continued fraction, one may associate the following main elements:
De�nition 1.4. The approximants or convergents of a continued fraction are the elements

wn = Sn(0).

The linear fractional transformations are identi�ed with the projective linear group PGL(2,R)
via the identi�cation:

τ(w) =
aw + b

cw + d
⇔ Mτ =

(
a b
c d

)
where composition of transformations corresponds to matrix multiplication.

De�nition 1.5. We will call the elements pn, qn of the second column of the matrix:

Sn =

(
1 b0

0 1

)(
0 a1

1 b1

)(
0 a2

1 b2

)
. . .

(
0 an
1 bn

)
:=

(
pn−1 pn
qn−1 qn

)
respectively the n-th partial numerator pn and the n-th partial denominator qn of the con-
tinued fraction K(an

bn
). By convention, p−1 = 1, p0 = b0, q−1 = 0 and q0 = 1.

With this de�nition, it is easy to see that we have wn = pn
qn

for n ∈ N.
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1.1.2 Basic properties

Proposition 1.1. A continued fraction K(an
bn

) satis�es the following properties:

1. The recurrence relations: {
pn = bnpn−1 + anpn−2

qn = bnqn−1 + anqn−2

(1.2)

2. The determinant formulas:

∆n = pn−1qn − pnqn−1 =
n∏
k=1

(−ak) (1.3)

bn∆n−1 = pn−2qn − pnqn−2 = bn

n−1∏
k=1

(−ak) (1.4)

3. The Euler-Minding formula:

wn = b0 −
n∑
k=1

∆k

qkqk−1

(1.5)

Proof.

• (1.2) is deduced from the de�nition of matrix multiplication.
• (1.3) is deduced from the fact that ∆n = det(Sn) and that the determinant of a product

is the product of the determinants. By de�nition, ∆0 = 1.
• (1.4) follows from

pn−2qn − pnqn−2 =

∣∣∣∣pn−2 pn
qn−2 qn

∣∣∣∣ (1.2)
=

∣∣∣∣pn−2 bnpn−1 + anpn−2

qn−2 bnqn−1 + anqn−2

∣∣∣∣ = bn

∣∣∣∣pn−2 pn−1

qn−2 qn−1

∣∣∣∣ = bn∆n−1.

• (1.5) can be proven by induction, since w0 = b0 and

wn − wn−1 =
pnqn−1 − pn−1qn

qnqn−1

(1.3)
= − ∆n

qnqn−1

.

Theorem 1.1. Two sequences of R {pn}∞n=0 and {qn}∞n=0 are the partial numerators and
denominators of some continued fraction K(an

bn
) if and only if ∆n 6= 0 for n ∈ N+, ∆n−1|∆n,

∆n−1|(pn−2qn − qn−2pn) for n ≥ 2 and q0 = 1. Then K(an
bn

) is uniquely determined by
a1 = −∆1

an = − ∆n

∆n−1

for n ≥ 2


b0 = p0, b1 = q1

bn =
pn−2qn − qn−2pn

∆n−1

for n ≥ 2
(1.6)

Proof. Let {pn}∞n=0 and {qn}∞n=0 be given. Then the elements an and bn must be solutions of
the system of linear equations de�ned by (1.2). This system has a solution in Q if and only if
∆n 6= 0 for n ≥ 1 and q0 = 1 and this solution is unique. Solving the equations, we get that
the {an}∞n=1 and {bn}∞n=0 must be as in (1.6) and our hypothesis guarantees that all the an and
bn belong toR.
The procedure to compute the {an}∞n=1 and {bn}∞n=1 has been coded in (A.1.1).
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1.2 Transformations of continued fractions

1.2.1 Equivalence relation on continued fractions

De�nition 1.6. Two continued fractions K(an
bn

) and K( cn
dn

) are said to be equivalent if they
have the same sequences of approximants {wn}∞n=0 and {w̃n}∞n=0 or, equivalently, if for all n ∈ N,
pnq̃n − p̃nqn = 0.

This idea was introduced by Seidel, who also proved the following result:
Theorem 1.2. K(an

bn
) is equivalent to K( cn

dn
) (both with coe�cients inR) if and only if there

is a sequence of elements of Q, {zn}∞n=0 with z0 = 1, zn 6= 0 for all n ∈ N such that

cn = zn−1znan dn = znbn

Proof. K(an
bn

) ∼ K( cn
dn

) if and only if there exist numbers zk 6= 0 such that

p̃n = pn

n∏
k=0

zk q̃n = qn

n∏
k=0

zk

Since q0 = q̃0 = 1, it is clear that z0 = 1. The expressions for cn and dn are obtained from
theorem 1.1.

This result is fundamental for proving the equivalence of certain kinds of complex contin-
ued fractions. We will analyse the following examples:

• LetK(an
bn

) such that b1|a1 and (bn−1bn)|an for alln ∈ N+ and let {zn}∞n=0 be the sequence:

z0 = 1 zn =
1

bn

Then, K(an
bn

) ∼ K( cn
1

), a continued fraction with partial denominators all equal to 1,
other than d0, which would be equal to b0 (A.1.2). The expression for cn would be:

c1 =
a1

b1

cn =
an

bn−1bn
(1.7)

• Let K(an
bn

) such that (
∏n

k=1 a2k)|b2n and (
∏n

k=1 a2k−1)|b2n−1 for n ∈ N+ and let {zn}∞n=0

be the following sequence:

z0 = 1 z1 =
1

a1

z2m =
a1a3 . . . a2m−1

a2a4 . . . a2m

z2m+1 =
a2a4 . . . a2m

a1a3 . . . a2m+1

Then, K(an
bn

) ∼ K( 1
dn

), a continued fraction with partial numerators all equal to 1 (A.1.3)
and the dn can be obtained by the expression:

d0 = b0 dn = bn

n∏
k=1

a
(−1)n+1−k

k (1.8)
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1.2.2 Euler’s identity

Let {cn}∞n=n=0 be a sequence of elements ofR with cn−1|cn for all n ∈ N+ and let fn be

fn =
n∑
k=0

ck

If we set pn = fn and qn = 1 for all n ∈ N, by theorem 1.1, we know that there exist sequences
{an}∞n=1 and {bn}∞n=0 such that the approximants of K(an

bn
) are fn. Applying that theorem, we

get that they are given by the formula:a1 = c1

an = − cn
cn−1

for n ≥ 2

b0 = c0, b1 = 1

bn = 1 +
cn
cn−1

for n ≥ 2

Now, de�ning the following sequence {ρn}∞n=0:

ρ0 = c0 ρ1 = c1 ρn =
cn
cn−1

we have

c0 = ρ0 cn =
n∏
j=1

ρj

and we get the following identity:

Proposition 1.2 (Euler’s identity). (A.1.4) For any sequence {ρn}Nn=0 with ρn 6= 0 for all
n ∈ {1, . . . , N}, we have

ρ0 +
N∑
k=1

( k∏
j=1

ρj
)

= ρ0 +
ρ1

1
+
−ρ2

1 + ρ2
+ · · ·+ −ρN

1 + ρN
(1.9)

Wherever this makes sense (for example, in topological �elds), this identity remains true
if we let N →∞.

One of the main uses of Euler’s identity is that it allows us to understand power series as
continued fractions. For example, let us consider in C, the exponential series ez =

∑∞
k=0

zk

k!
.

Then, letting ck = zk

k!
, we get that ρn = z

n
, so we can express ez as a continued fraction:

ez = 1 +
z
1

+
− z

2

1 + z
2

+
− z

3

1 + z
3

+ · · · = 1 +
z
1

+
−z

1 + z
+
−z

2 + z
+
−2z
3 + z

+ · · ·

This is a small preview of chapter 2, where we will explore methods to represent complex
functions as continued fractions in ways that ensure us a better convergence than the power
series we initially start from.
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1.2.3 Contractions and extensions of continued fractions

De�nition 1.7. We say that K( cn
dn

) is a contraction of K(an
bn

) if its approximants w̃n are a
subsequence of the approximants wn of K(an

bn
). In this case, we say that K(an

bn
) is an extension

of K( cn
dn

).

We will focus on the following two cases of contraction:
De�nition 1.8. An even part of K(an

bn
) is a contraction whose approximants are w̃n = w2n.

It is the canonical even part (A.1.5) if p̃n = p2n and q̃n = q2n for all n ∈ N.

Theorem1.3. K(an
bn

) has an even part if and only if b2n 6= 0 for all n ∈ N+. If b2n−2|(a2n−1b2n)
for n ≥ 2, it has a canonical even part that is given by K( cn

dn
) where

c1 = a1b2

cn = −a2n−2a2n−1b2n

b2n−2

for n ≥ 2


d0 = b0, d1 = a2 + b1b2

dn = a2n + b2n−1b2n +
a2n−1b2n

b2n−2

for n ≥ 2

Proof. It is a standard application of theorem 1.1, as we can see in the book of Lorentzen and
Waadeland [28, Theorem 2.19.].

De�nition 1.9. An odd part of K(an
bn

) is a contraction with approximants w̃n = w2n+1. An
odd part is the canonical odd part (A.1.6) if p̃n = p2n+1 and q̃n = q2n+1 for all n ∈ N+.

Theorem 1.4. K(an
bn

) has an odd part if and only if b2n+1 6= 0 for all n ∈ N+. If b1|a1 and
b2n−1|(a2nb2n+1) for all n ≥ 2, it has a canonical odd part that is then given by K( cn

dn
) where

c2 = −a3a4b1b5

b3

cn = −a2n−1a2nb2n+1

b2n−1

for n 6= 2


d0 = b0 +

a1

b1

, d1 = a3b1 + b1b2b3 + a2b3

dn = a2n+1 + b2nb2n+1 +
a2nb2n+1

b2n−1

for n ≥ 2

Proof. Again, it is a standard application of theorem 1.1.

If instead of contractions, we want to study extensions, the following theorem is useful:
Theorem 1.5. Let K(an

bn
) be a continued fraction, let k ∈ N+ and let r ∈ Q such that

rqk, rqk+1 ∈ R, (pk−1 − qk−1r)|(pk − qkr) and wk−1 6= r 6= wk. Then, there exists a continued
fraction K( cn

dn
) whose approximants w̃n are

w̃n =


wn for n < k

r for n = k

wn−1 for n > k

Proof. Once again, it can be proved with theorem 1.1. The expressions of the partial numer-
ators and denominators can be checked in the implementation of this function (A.1.7).

This theorem shows how a single element of Q can be inserted in the sequence of ap-
proximants of a continued fraction and, by doing this repeatedly, it is possible to insert any
denumerable set of elements in the sequence.
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1.3 Computation of continued fractions

1.3.1 Algorithms for the computation of continued fractions

There are three ways of computing the approximants of continued fractions, each of which
has di�erent advantages and disadvantages.

1. The forward recurrence algorithm (A.2.1) consists of using the recurrence relation
(1.2) to compute pn and qn.

2. Euler-Minding summation (A.2.2) consists of computing qn by the recurrence rela-
tion and then �nding wn by means of the following expression deduced from the Euler-
Minding formula:

wn = wn−1 −
∆n

qnqn−1

3. The backward recurrence algorithm (A.2.3) consists of initialising the variable ln to
zero and then computing the lk going backwards by setting

lk−1 :=
ak

bk + lk

At the end of the process, the nth approximant would be wn = b0 + l0.
The �rst two algorithms have complexity O(n), whereas the third has complexity O(n2).

However, the backward recurrence algorithm is used in most cases over the �rst two algo-
rithms because it is more stable numerically [28, Subsection 1.1.3.].

1.3.2 The Bauer-Muir transformation

Once we work in a �eld F and we introduce a notion of convergence, we can identify a con-
tinued fraction with the value it converges to. Hence, it is useful to develop transformations
that change the value of the approximants without changing the limit. The following trans-
formation is an example of this:
De�nition 1.10. The Bauer-Muir transformation (A.1.8) of a continued fraction K(an

bn
)

with respect to a sequence {gn}∞n=0 from F is the continued fraction K( cn
dn

) whose partial numer-
ators p̃n and denominators q̃n are given by

p̃0 = g0 + b0 q̃0 = 1

p̃n = pn−1gn + pn q̃n = qn−1gn + qn for n ∈ N+

Theorem 1.6. The Bauer-Muir transformation of K(an
bn

) with respect to a sequence {gn}∞n=0

exists if and only if

λn : = an − gn−1(bn + gn) 6= 0 for n ∈ N+.

If it exists, it is given by d0 + K( cn
dn

) where
c1 = λ1

cn = an−1
λn
λn−1

for n ≥ 2


d0 = g0 + b0, d1 = g1 + b1

dn = gn + bn − gn−2
λn
λn−1

for n ≥ 2
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Proof. This is an application of theorem 1.1, where in this case:

∆̃n = p̃n−1q̃n − p̃nq̃n−1

= (pn−2gn + pn−1)(qn−1gn + qn)− (pn−1gn + pn)(qn−2gn + qn−1)

= −(pn−2qn−1 − pn−1qn−2)(an − gn−1bn − gn−1gn).

The �rst factor is non zero by the determinant formula (1.3), and the second one is equal
to λn. Thus, ∆̃n 6= 0 and as we are in a �eld, all the conditions of theorem 1.1 are satis�ed and
so, the transformation exist and it is given by those cn and dn.

The Bauer-Muir transformation is particularly useful if K(an
bn

) and its transformation con-
verge to the same value. This is the case for continued fractions with real positive coe�cients
and positive gn, as shown by Perron [33, p. 27].

In the book of Lorentzen and Waadeland two applications of this transformation are de-
scribed: for carrying out stable computations in C [28, Example 17.] and for expressing con-
tinued fractions as solutions of functional equations [28, Example 18.]. A survey of this trans-
formation has also been written by Jacobsen [19].

1.4 Generalisations of continued fractions
The multiple uses of continued fractions in all �elds of mathematics have encouraged the
development of generalisations of continued fractions [9] where the coe�cients are in more
“exotic” rings than the ones we are going to work with in the next two chapters. These gener-
alisations of continued fractions are out of the scope of this dissertation, but to mention some
of them, there exist generalisations where the partial numerators and denominators are:

• Continued fractions themselves and multivariate expressions [10].
• Vectors in Cn [7].
• Square matrices in a �eld [16].
• Elements of a Banach space [11].

All these generalisations arise from the same motivation: since continued fraction have
useful properties in rings such as C or Z, by working with generalisations we would expect
that some of these properties will still hold in those more exotic rings.

The main drawback with most of these multidimensional and multivariate generalisations
is that they are very complex due to the fact that the lack of commutativity causes problems.

These generalisations have allowed mathematicians to tackle problems such as the multi-

variate Padé approximation [8] or simultaneous Diophantine approximation, whose
simpler versions we will address in the following chapters.



2 Continued fractions in complex
analysis

In this section, we will assume thatR = C and so, Q is also C.

2.1 Convergence

We giveC the usual Euclidean topology and study various notions of convergence of continued
fractions with complex coe�cients.

De�nition 2.1. A continued fractionK(an
bn

)with coe�cients inC converges in the classical
sense to a value z ∈ Ĉ if limn→∞wn = z.

2.1.1 Examples of continued fractions

• 1 + K∞

n=1

(1

1

)
= 1 +

1
1

+
1
1

+
1
1

+ . . .

Its approximants are wn = Fn+1

Fn
where Fn is the nth Fibonacci number de�ned by the

recurrence relation given by F0 = F1 = 1 and Fn = Fn−1 + Fn−2.

It is well known that the continued fraction converges to limn→∞wn = 1+
√

5
2

, the
golden ratio φ.

• 2 + K∞

n=1

(−1

2

)
= 2 +

−1
2

+
−1
2

+
−1
2

+ . . .

Its approximants are wn = n+2
n+1

, therefore, its continued fraction converges to 1.

• 2
1

+
1
1

+
−1
1

+
2
1

+
1
1

+
−1
1

+ . . .

Its approximants are wn = 0 if n ≡ 0 mod 3, wn = 2n

2n+1−3
if n ≡ 1 mod 3 and

wn = 2n

2n+1−2
if n ≡ 1 mod 2. Therefore, limn→∞wn does not exist and the continued

fraction does not converge in the classical sense.



12 continued fractions

2.1.2 General convergence

It is worth noting that there is an additional notion of convergence for continued fractions
called general convergence [18, 28]. It arises from the fact that when we work with Möbius
transformations in the complex plane, there is another naturally arising metric which has some
advantages over the Euclidean metric:
De�nition 2.2. We de�ne the chordal metric (A.3.1) in the extended complex plane Ĉ from

the Euclidean metric in the following way:

m(z1, z2) :=



2|z1 − z2|√
1 + |z1|2

√
1 + |z2|2

for z1, z2 ∈ C

2√
1 + |z1|2

for z1 ∈ C, z2 =∞

0 for z1 = z2 =∞

(2.1)

This metric has several advantages over the Euclidean metric such as:

• It is a boundedmetric, since m(z1, z2) < 2 for all z1, z2 ∈ Ĉ. This is because this metric
is, in essence, the Euclidean distance between the mapped points in the stereographic
projection.

• Ĉ is compact under this metric.
• The chordal metric and the Euclidean metric are equivalent on C, which means that

whenever we are working on C both notions of convergence of sequences are the same,
that is, zn → ẑ ∈ Ĉ if and only if m(zn, ẑ)→ 0.

• If τn → τ ∈ MC, then the convergence is uniform with respect to the chordal metric.
Furthermore, the chordal metric de�nes a metric inMC in the following way:

σ(τ1, τ2) := sup
z∈Ĉ

m(τ1(z), τ2(z))

De�nition 2.3. A continued fraction converges generally to a value z ∈ Ĉ if and only if
there exist two sequences {vn}∞n=0 and {cn}∞n=0 such that

lim inf
n→∞

m(vn, cn) > 0 and lim
n→∞

Sn(vn) = lim
n→∞

Sn(cn) = z (2.2)

The value z can be shown to be unique and hence this is well-de�ned. Classical convergence
implies general convergence. This can be seen by taking the sequences {vn}∞n=0 and {cn}∞n=0,
with vn = 0 and cn =∞ for all n ∈ N, as

lim inf
n→∞

m(0,∞) = 2 and z = lim
n→∞

Sn(0) = lim
n→∞

Sn−1(0) = lim
n→∞

Sn(∞)

Nevertheless, general convergence does not imply classical convergence. The last contin-
ued fraction in the previous section is an example of this. We saw that it does not converge in
the classical sense, but it can be seen that it converges in the general sense, as shown by Cuyt
et al. [9, Example 1.2.1.]. This example shows how for every sequence {vn}∞n=0 bounded away
from −1, 0 and∞, Sn(vn) converges to 1

2
and so, it makes sense to assign this value to that

continued fraction.
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2.1.3 Convergence criteria

As it often happens in discussing convergence, there is no infallible trick which allows us to
analyse the convergence of every single continued fraction. However, there are certain criteria
which are useful to work with, as they allow us to transform the problem of convergence of
continued fractions into the problem of convergence of in�nite series, which is more familiar.

De�nition 2.4. We say that a sequence {cn}∞n=0 converges absolutely if

∞∑
n=1

|cn − cn−1| <∞

I advise the reader to be careful with this de�nition. This notion of absolute convergence is
a stronger notion of convergence for sequences that is well suited for continued fractions and is
of course not the concept of absolute convergence of the series

∑
cn, rather of its di�erences.

Absolute convergence implies convergence to a �nite value, since the convergence of the
series implies that the telescopic sum

∑∞
n=1(cn − cn−1) converges and so,

lim
n→∞

cn = c0 +
∞∑
n=1

(cn − cn−1).

De�nition 2.5. We say that a continued fraction converges absolutely if its sequence of
approximants converges absolutely.

Theorem 2.1 (Stern-Stolz criterion). If
∑∞

n=1 |bn| converges, then the continued fraction
K( 1

bn
) diverges, for m = {0, 1} the sequences {p2n+m}∞n=0 and {q2n+m}∞n=0 converge absolutely

to �nite values Pm and Qm respectively, and

P1Q0 − P0Q1 = 1 (2.3)

Proof. We shall give a classical proof of this theorem. Let
∑
|bn| < ∞. Now, {pn}∞n=0 and

{qn}∞n=0 are solutions of the recurrence relation:

xn = bnxn−1 + xn−2.

We want to prove that for all n, there exists a constant λ such that:

|xn| ≤ λ

n∏
k=1

(1 + |bk|).

To prove this, we apply induction. For the base case, it su�ces to take λ > max{x−1, x0}.
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Let the previous statement be true for everym < n. For every solution {xn}∞n=0 of this relation,

|xn|
(1.2)
≤ |bn||xn−1|+ |xn−2|

≤ |bn||xn−1|+ (1 + |bn−1|)|xn−2|

≤ λ|bn|
n−1∏
k=1

(1 + |bk|) + λ(1 + |bn−1|)
n−2∏
k=1

(1 + |bk|)

≤ λ
n∏
k=1

(1 + |bk|)

Since
∏n

k=1(1+|bk|) converges if and only if
∑n

k=1 |bn| converges, this means that {pn}∞n=0 and
{qn}∞n=0 are bounded under our conditions. This bound implies that the two series

∑
|bnpn−1|

and
∑
|bnqn−1| converge. Since solutions {xn}∞n=0 satisfy xn = bnxn−1 +xn−2, this means that∑

|pn − pn−2| <∞ and
∑
|qn − qn−2| <∞.

In other words, {p2n}∞n=1, {p2n+1}∞n=1, {q2n}∞n=1 and {q2n+1}∞n=1 converge absolutely to
�nite valuesP0, P1,Q0 andQ1. The identity (2.3) follows from taking the limit in the formula:

p2n−1q2n − p2nq2n−1
(1.2)
= (−1)2n = 1.

Finally, the divergence of K( 1
bn

), is deduced from the fact that

lim
n→∞

w2n = lim
n→∞

p2n

q2n

=
P0

Q0

lim
n→∞

w2n+1 = lim
n→∞

p2n+1

q2n+1

=
P1

Q1

and P1

Q1
− P0

Q0
= 1
Q0Q1

6= 0 as Q0 and Q1 are bounded.

As classical convergence only depends on the value of the approximants, for any continued
fractionK(an

bn
), it is always possible to apply the transformation (1.7) such thatK(an

bn
) ∼ K( 1

dn
).

Thus, the Stern-Stolz criterion can be conditioned to the divergence of the following series:
De�nition 2.6. We de�ne the Stern-Stolz series of K(an

bn
) as the series:

S :=
∞∑
n=1

|dn| =
∞∑
n=1

|bn
n∏
k=1

a
(−1)n+1−k

k | (2.4)

The study of the divergence of this series (A.3.2) is, in general, di�cult. Nevertheless, the
following proposition gives us some equivalent criteria:
Proposition 2.1. The Stern-Stolz series of K(an

bn
) diverges if any of the following two condi-

tions hold:

(i)
∞∑
n=2

√∣∣∣bn−1bn
an

∣∣∣ =∞ (2.5)

(ii) lim inf
n→∞

∣∣∣ an
bn−1bn

∣∣∣ <∞ (2.6)
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Proof. (i) It is clear that under the transformation (1.8), this criteria is equivalent to proving
that

∞∑
n=2

√
|dn−1dn| =∞ ⇒

∞∑
n=1

|dn|

This is true because of the arithmetic-geometric mean inequality, as

∑
n=1

|dn| ≥
∑
n=2

1
2
(|dn−1|+ |dn|) ≥

∞∑
n=2

√
|dn−1dn|.

(ii) If the inferior limit of the sequence
{∣∣ an

bn−1bn

∣∣}∞
n=2

is a �nite number r, there is an
in�nite subsequence of �nite numbers which are bounded below by r. Hence, there is a sub-
sequence of �nite numbers all greater than 1

r
in
{∣∣ bn−1bn

an

∣∣} and so, (2.5) diverges.

The Stern-Stolz criterion gives us conditions for the divergence of classical approximants.
It would be interesting to see if there are conditions for the convergence of K(an

bn
). The fol-

lowing theorem, which is due to Lane and Wall [25], gives a very practical answer:
Theorem2.2 (Lane-Wall characterization). LetK(an

bn
) a continued fractions with approx-

imants {wn}∞n=0. If both the even and odd part of K(an
bn

) are absolutely convergent, then K(an
bn

)
converges if and only if its Stern-Stolz series diverges

∞∑
n=1

|bn
n∏
k=1

a
(−1)n+1−k

k | =∞ (2.7)

Proof. The proof of this statement is not specially complicated but it has been done in a very
general setting which would be too long to include in this dissertation [25]. A simpler, less
rigorous adaptation of this proof is also available [28, Theorem 3.3.].
Remark 2.1. The condition of absolute convergence of the odd and even part is necessary,
regular convergence is not enough. Wall proved this and gave an example of it [43].

2.1.4 The parabola theorem

Probably, the most important theorem regarding convergence of continued fractions is the
parabola theorem. Many proofs have been given of this theorem, some more analytical,
others more geometrical. I will give a modern one [28, Theorem 3.43.], for which we will �rst
need to explain the following concept:
De�nition 2.7. A sequence {Vn}∞n=0 of sets Vn ⊂ Ĉ is a sequence of value sets for K(an

bn
) if

and only if

sn(Vn) =
an

bn + Vn
⊆ Vn−1 for n ∈ N+ (2.8)

The reason why value sets are important is because if we consider for n ∈ N+ the sets
Kn := Sn(Vn), then Kn = Sn−1(sn(Vn)) ⊆ Sn−1(Vn−1) = Kn−1, which implies that

Sn(wn) ∈ Kn ⊆ · · · ⊆ V0 for wn ∈ Vn.
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In the case where the Vn are non-empty, closed sets; theKn are non-empty and closed as well,
which implies that the limit set:

K := lim
n→∞

Kn =
∞⋂
n=1

Kn

exists (and it is non-empty and closed). If we de�ne diam(K) := sup{|v − w| : v, w ∈ K}
then it is easy to see that if diam(K) = 0 then,K consists of a single point z ∈ C and if 0 ∈ Vn
for all n ∈ N, then, K(an

bn
) converges to z in the classical sense.

We also need the following lemma:
Lemma 2.1. Let Tn := τ1 ◦ τ2 ◦ . . . τn for all n ∈ N+ where all τn ∈MC map the unit disk D
into a subset of itself, and assume there exists a sequence {vn}∞n=1 ⊂ Ĉ such that

lim inf
n→∞

∣∣|vn| − 1
∣∣ > 0 and lim inf

n→∞

∣∣|τn(vn)| − 1
∣∣ > 0.

If diam(
⋂∞
n=1 Tn(D)) 6= 0 , then for every v ∈ D, {Tn(v)}∞n=1 converges absolutely to the same

constant γ ∈ D.
Proof. A slightly more general version of this lemma and its proof can be found in the book
of Lorentzen and Waadeland [28, Lemma 3.8].

Now we can proceed with the theorem.
Theorem 2.3 (Parabola Theorem). Let α ∈ (−π

2
, π

2
) and let Pα be the parabolic region

given by

Pα := {z ∈ C : |z| − Re(ze−2αi) ≤ 1
2

cos2(α)}

Let K(an
bn

) ∼ K( cn
1

) be a continued fraction such that {cn}∞n=0 ⊆ Pα. Then the even and
odd parts of the continued fractionK(an

bn
) converge absolutely. Hence, by theorem 2.2, K(an

bn
) con-

verges if and only if its Stern-Stolz series (2.6) diverges.

The approximants {wn}∞n=0 of K(an
bn

) are in the half plane

Vα := {w ∈ C : Re(we−αi) ≥ −1/2 cos(α)} ∪ {∞}.

and, if it converges, it does to a value in the closure of Vα.

The regions Pα and Vα for some values of α are shown in appendix (B.1).

The boundary of Pα is a parabola with its focus at the origin, its axis of symmetry along
the line rα ≡ {z ∈ C : z = te2αi, t ∈ R}, its vertex at zα = −1

4
e2αi cos2(α) and its directrix at

dα ≡ {z ∈ C : z = −1
2
e2αi cos2(α) + te(2α+π/2)i, t ∈ R}.

The boundary of Vα is the line ∂Vα ≡ {z ∈ C : z = −1
2

+ te(α+π/2)i, t ∈ R}.
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Proof. In order to prove this theorem, we will �rst have to prove that {Vα}∞n=0 is a sequence
of value sets if and only if cn ∈ Pα for every n ∈ N+. In order to do this, let us see what is the
necessary condition for sn(Vα) = cn

1+Vα
⊆ Vα to hold.

As sn is a Möbius transformation, we know that it maps lines to either circumferences or
lines. It is easy to see that sn maps ∂Vα to a circumference, as sn satis�es s−1

n (∞) = −1 and
−1 /∈ ∂Vα for any α ∈ (−π

2
, π

2
), so∞ /∈ sn(∂Vα). Furthermore, either by performing some

computations or by applying the result from Lorentzen and Waadeland [28, Theorem 3.6], it
can be seen that sn(Vα) is a closed disk with centre γα,n and radius ρα,n, where

γα,n =
cne
−αi

cos(α)
, ρα,n =

|cn|
cos(α)

.

The disk sn(Vα) is contained in Vα if and only if γα,n is
in sn(Vα) and the distance from γα,n to ∂Vα is less or
equal than ρα,n.

Let ζα,n be the closest point of ∂Vα from γα,n. Then,

ζα,n = γα,n − (1
2

cos(α) + Re(γα,ne
−αi))eαi.

Let δα,n = γα,n − ζα,n. From the diagram in the right
we see that γα,n ∈ sn(Vα) if and only if e−αiδα,n ≥ 0.
The distance from γα,n to ∂Vα is

|δα,n| = 1
2

cos(α) + Re(γα,ne
−αi).

Thus, a su�cient (and, in fact, necessary)
condition for sn(Vα) ⊆ Vα is that

|δα,n| ≥ ρα,n ⇔ 1
2

cos(α) + Re
(cne−2αi

cos(α)

)
≥ |cn|

cos(α)

Multiplying by cos(α), which is always positive, we see that this is equivalent to cn ∈ Pα.
Let K( cn

1
) be a continued fraction with cn ∈ Pα. As∞ /∈ S1(Vα), the sets Kn := Sn(Vα) are

bounded disks andKn ⊆ Kn−1 for all n ∈ N+. LetK =
⋂∞
n=1Kn. If diam(K) = 0, as 0 ∈ Vα,

from what we have explained before, we deduce that K(an
bn

) converges and by theorem 2.2, the
Stern-Stolz series must diverge, so the parabola theorem holds.

For the case diam(K) > 0, we will use lemma 2.1 to prove the absolute convergence of
the odd and even parts of K(an

bn
). To do so, we �rst need to �nd a series of transformations

that map the unit disk into a subset of itself. As we already know that sn(Vα) ⊆ Vα we can
use this information by considering the Möbius transformation

ϕ(w) :=
−1 + eiα cos(α)− w

1 + w

which maps the closed unit disk D onto Vα. It satis�es ϕ(∞) = −1 and ϕ(−1) =∞.
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Let us now consider the Möbius transformation:

τn : = ϕ−1 ◦ s2n−1 ◦ s2n ◦ ϕ for n ∈ N+.

Then, τn(D) = ϕ−1 ◦ s2n−1 ◦ s2n(Vα) ⊆ ϕ−1 ◦ s2n−1(Vα) ⊆ ϕ−1(Vα) = D. If we consider
the sequence {vn}∞n=1 with vn = ∞ for all n ∈ N+ it can easily be seen that for vn = ∞,
τn(∞) = ϕ−1 ◦ s2n−1 ◦ sn(−1) = ϕ−1 ◦ sn−1(∞) = ϕ−1(0) = −1 + eαi cos(α), hence,
|τn(∞)| = |(−1 + cos2(α)) + sin(α) cos(α)i| = |sin(α)||− sin(α) + cos(α)i| = |sinα| < 1.

Let Tn = τ1 ◦ · · · ◦ τn. As Tn = ϕ−1 ◦ Sn ◦ ϕ, diam(
⋂∞
n=1 Tn(D)) = diam(ϕ−1(K)) > 0

and from lemma 2.1, it follows that for every v ∈ D, {Tn(v)}∞n=1 converges absolutely to the
same constant γ ∈ D so, in particular, if we set λ = τn(∞), as |λ| < 1 we have that

∞∑
n=2

|Tn(λ)− Tn−1(λ)| <∞.

Moreover, Tn(λ) = ϕ−1 ◦ S2n ◦ ϕ(λ) = ϕ−1(w2n) where we recall that ϕ−1 is a �xed Möbius
transformation with pole at z = −1 and since wn ∈ Kn ⊂ Vα for all n ∈ N+, {wn}∞n=1 is
bounded away from −1 and so, the even part of K(an

bn
) converges absolutely to ϕ(λ).

Similarly, by considering τn = ϕ−1 ◦ s2n ◦ s2n+1 ◦ϕ and repeating the same reasoning, we
deduce that the odd part of K(an

bn
) also converges absolutely.

There are several aspects that make the parabola theorem one of the best among the con-
vergence theorems. For instance, it has been proven by Lorentzen [27, Theorem 2.] that if you
enlarge the set Pα you immediately lose the property that the continued fraction K( cn

1
) with

coe�cients in that set converges if and only if the Stern-Stolz series diverges.

2.1.5 Other convergence theorems

There are two theorems of convergence that must be mentioned because of their historical
importance that can easily be deduced from the parabola theorem in the case where α = 0:
Corollary 2.1 (Seidel-Stern theorem). Let K(an

bn
) ∼ K( 1

dn
). If all coe�cients dn are real,

strictly positive numbers, the even and odd parts are absolutely convergent and so, the con-
vergence on K(an

bn
) is conditioned to the divergence of the Stern-Stolz series [20, Theorem

4.4.1].
Proof. If all dn > 0, K( 1

dn
) ∼ K( cn

1
) with cn being the inverse of a positive real number,

hence a positive number (this is by equation (1.7)). As all positive numbers are in P0, we can
apply the parabola theorem and �nish.

Corollary 2.2 (Worpitzsky’s theorem). Let |cn| ≤ 1
4

for all n ∈ N. Then K( cn
1

) converges
[20, Corollary 4.36.B].
Proof. It is easy to see that all the cn are inP0 and also, lim infn→∞|cn| <∞ so, by proposition
2.1, the Stern-Stolz series diverges and the result follows from the parabola theorem.
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2.2 Functions defined as continued fractions in C
As we have de�ned most of the concepts in the continued fraction theory for rings, there is
no problem to work abstractly with continued fractions whose coe�cients are in the ring of
meromorphic functions. We will have to be careful though when making sense of these frac-
tions as meromorphic functions, as convergence is not guaranteed.

We will represent these fractions with the notation K(an(z)
bn(z)

). Its nth partial numerator will
be represented as pn(z), thenth partial denominator as qn(z) and thenth approximant aswn(z).

The most common examples of these fractions in the literature are the following:
De�nition 2.8. AC-fraction (where the C stands for corresponding) is a continued fraction

of the form:

a0 +
∞

K
n=1

(anzαn
1

)
= a0 +

a1z
α1

1
+

a2z
α2

1
+

a3z
α3

1
+ . . . (2.9)

where the ak ∈ C are all di�erent from zero except possibly for a0, and αk are positive integers.
If all αk = 1, we say that it is a regular C-fraction.

A special case of C-fractions is the following:
De�nition 2.9. A S-fraction (or a Stieltjes continued fraction) is a regular C-fraction such

that ak > 0 for all k ∈ N+.

We will see that these kinds of functions are incredibly useful, as many functions can be
expressed by expansions of this form. Furthermore, they are also closely related to Stieltjes

moment theory [18, Section 12.9.], which is relevant in measure theory.

Now that we have showcased some of the possible continued fractions that can be used
to represent meromorphic functions, we can now proceed to explain the theory behind these
representations.

2.2.1 Formal power series

The representation of the function is closely linked to its expansion as a formal power series.
De�nition 2.10. A series L(z) is a formal power series at z = a ∈ C if and only if it is of

the form

L(z) =
∞∑
k=m

ck(z − a)k, where ck ∈ C and cm 6= 0 for k,m ∈ Z, (2.10)

or L(z) = 0.

Under the operations of addition and multiplication, the set La of all formal power series
at z = a is a �eld over C.
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De�nition 2.11. For every L(z) ∈ La, its order λ(L) is de�ned as:

λ(L) =

{
m if L(z) is as in equation (2.10)
∞ if L(z) = 0

(2.11)

If λ(L) ≥ 0, we say that L is a formal Taylor series.
The order function satis�es that, for every pair of formal power series L1(z) and L2(z) in La,

λ(L1 ± L2) ≥ min{λ(L1), λ(L2)}, (2.12)
λ(L1 ± L2) = min{λ(L1), λ(L2)} if λ(L1) 6= λ(L2), (2.13)
λ(L1L2) = λ(L1) + λ(L2), (2.14)
λ(L1/L2) = λ(L1)− λ(L2) if L2 6= 0 (2.15)

Remark 2.2. With these properties it is easy to prove that if we consider the norm de�ned as
‖L‖ = 2−λ(L), La is what is called a normed �eld. This notion is very important, as it de�nes
a notion of convergence in more abstract rings such as the �eld of formal power series over a
�nite �eld or the p-adic numbers [26].

Let f(z) be a function meromorphic at z = a. We will denote by Λa(f)(z) the Laurent
expansion in a deleted neighbourhood of a.

De�nition 2.12. Let {fn(z)}∞n=0 be a sequence of meromorphic functions at z = a, L(z)
a formal power series at z = a, and vn := λ(L − Λa(fn)). Then, we say that the sequence
{fn(z)}∞n=0 corresponds to L(z) if and only if limn→∞ vn =∞.

The integer vn is known as the order of correspondence of fn(z) to L(z) and the condi-
tion vn := λ(L− Λa(fn)) is sometimes written as

L(z)− Λ0(fn)(z) = O((z − a)vn). (2.16)

Remark 2.3. Without any loss of generality this last de�nition can be generalised to the case
z =∞ by de�ning the formal power series as

L(z) =
∞∑
k=m

c−k(z − a)−k, where c−k ∈ C and c−m 6= 0 for k,m ∈ Z (2.17)

and for all L ∈ L∞, its order as

λ(L) =

{
m if L(z) is as in equation (2.17).
∞ if L(z) = 0,

(2.18)

De�nition 2.13. A continued fractionK(an(z)
bn(z)

) corresponds to a formal power seriesL(z) at
z = a if all of its approximants wn(z) are meromorphic at z = a and if the sequence {wn(z)}∞n=0

corresponds to L(z).
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Theorem 2.4. Let {fn}∞n=0 be a sequence of functions meromorphic at z = a. Then:

1. There exists a formal power series at z = a such that {fn}∞n=0 corresponds at z = a if and
only if for kn := λ(Λa(fn+1 − fn)), we have that

lim
n→∞

kn =∞. (2.19)

2. If equation (2.19) holds, then the formal power series L(z) to which {fn}∞n=0 corresponds is
uniquely determined.

3. If {kn}∞n=0 tends monotonically to∞, then kn = vn for all n ∈ N+.

Proof. This theorem can be proven by working with the previously de�ned properties of λ
and the norm de�ned in the remark 2.2. The complete proof can be found in the book of Jones
and Thron [20, Theorem 5.1.].

The reason why I started this section de�ning di�erent kinds of continued fractions will
now become apparent, as we will be able to set a correspondence between formal Taylor series
at z = 0 and C-continued fractions [9, Theorem 2.4.1.].

Theorem 2.5. There is the following one-to-one correspondence between the set of all C-
fractions (2.9), including terminating C-fractions, and the set of formal Taylor series at z = 0.

1. Every C-fraction corresponds to a unique formal Taylor series L(z) at z = 0 and the order
of correspondence of the nth approximant wn(z) is

vn =
n+1∑
k=1

αk. (2.20)

2. Let L(z) be a given formal Taylor series at z = 0 with L(0) = c0. Then, either there exists
a C-fraction corresponding to L(z) at z = 0, or for some n ∈ N, there exists a terminating
C-fraction:

wn(z) = c0 +
n

K
m=1

(amzαm
1

)
(2.21)

such that L(z) = Λ0(wn)(z).

3. If f(z) is a rational function holomorphic at z = 0 and if L(z) = Λ0(wn)(z) is the Taylor
series expansion of f(z) about z = 0, then there exists a terminating C-fraction wn(z) of
the form (2.21) such that L(z) = Λ0(wn)(z).

Proof. The proof simply involves matching the expressions of both Taylor series with the
help of theorem 2.4. For more details, I again refer to Jones and Thron [20, Corollary 5.3.].

The reason why this concept of correspondence of series and continued fractions is useful
is because the correspondence gives us a good insight on the convergence of continued frac-
tions, as we will now see.
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2.2.2 Uniform convergence

Let D ⊆ C be a domain, that is, an open and connected subset of C.
De�nition 2.14. A sequence {fn}∞n=0 of meromorphic functions in a domain D is said to

converge uniformly on a compact subset K ⊂ D if and only if:

• There exists a NK ∈ N such that for all n ≥ NK , fn(z) is holomorphic in some domain
containing K .

• For every ε > 0, there exists a Nε > NK such that

sup
z∈K
|fn+m(z)− fn(z)| < ε for all n ≥ Nε and allm ∈ N (2.22)

A continued fraction is said to converge uniformly on a compact subsetK ⊆ D if and only
if {wn(z)}∞n=0 satis�es the conditions from above.

De�nition 2.15. A sequence {fn}∞n=0 of functions meromorphic in a domain D is said to be
uniformly bounded on a compact set K of D if and only if there exist NK and a bound BK

such that

sup
z∈K
|fn(z)| ≤ BK n ≥ NK (2.23)

Theorem 2.6. Let K(an(z)
bn(z)

) correspond to a formal Taylor series L(z) at z = 0 and let D
be a domain which also contains z = 0. Then, the continued fraction converges uniformly to a
holomorphic function f(z) on any compact subset ofD if and only if the sequence of approximants
of K(an(z)

bn(z)
) is uniformly bounded on every compact subset K of D. The series L(z) is then the

formal Taylor series at z = 0 of f(z).

Proof. This theorem is deduced by working with the formal Taylor series in the domain D
and applying a classical result in the theory of complex analysis known as the Stieltjes-Vitali
theorem. The full proof is in [20, Theorems 5.11-5.13].

This theorem shows how correspondence (between holomorphic functions and continued
fractions) alone does not imply convergence. Nevertheless, whenever there is an additional
boundedness property, both lead to convergence. This is the reason why this theorem has
been used repeatedly to �nd convergence criteria for many families of continued fractions.

Furthermore, theorem 2.6 shows that if D contains the disk where L(z) converges, the
continued fraction provides an analytic continuation of f(z) in D.

The next section will give an insight on how to �nd the continued fraction representation
of certain kinds of functions.
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2.3 Padé approximants

Let f(z) be a formal Taylor series at z = 0. For simplicity, from now on, we will denote by
f(z) both the formal Taylor series Λ0(f) and its limit function f when it exists. Let pm,n(z)
and qm,n(z) be polynomials of degree at most m and n respectively with qm,n(z) non-zero.

De�nition 2.16. The (m,n) Padé approximant at z = 0 of f(z) is the quotient

rm,n(z) =
pm,n(z)

qm,n(z)

satisfying

f(z)qm,n(z)− pm,n(z) = O(zm+n+1). (2.24)

When m = 0, for example, r0,n(z) = p0,n(z) is the sum of the �rst n terms of the Taylor
expansion of f(z).

Proposition 2.2. The Padé approximant of f(z) always exists and it is uniquely determined
(that is, for a �xed f(z) there is a unique Padé approximant).

Proof. Existence:

Let f(z) =
∑n+m

k=0 λkz
k + O(zn+m+1), pm,n(z) =

∑m
k=0 µkz

k and qm,n(z) =
∑n

k=0 νkz
k

with λk, µk, νk ∈ C for all possible k. By the de�nition of the multiplication of polynomials,
the solutions of f(z)qm,n(z)− pm,n(z) = O(zm+n+1) arise from the solution of the following
linear systems in the unknowns µk and νk:

λ0ν0 = µ0

λ1ν0 + λ0ν1 = µ1

...
λmν0 + λm−1ν1 + · · ·+ λ0νm = µm

λm+1ν0 + λmν1 + · · ·+ λm−n+1νn = 0

λm+2ν0 + λm+1ν1 + · · ·+ λm−n+2νn = 0

...
λm+nν0 + λm+n−1ν1 + · · ·+ λmνn = 0

(2.25)
The linear system on the right has n equations but n+1 unknowns, so it must have a least one
solution (ν0, ν1, . . . , νm) besides the trivial one. By solving the system on the left we obtain
the values of the (µ0, µ1, . . . , µm) and we have found two polynomials pm,n(z) and qm,n(z), so
rm,n(z) is a solution.

Uniqueness:

Let pm,n(z) and qm,n(z) be another solution of (2.25), so f(z)qm,n(z)−pm,n(z) = O(zm+n+1).
Then, {

f(z)qm,n(z)qm,n(z)− pm,n(z)qm,n(z) = O(zm+n+1)

f(z)qm,n(z)qm,n(z)− pm,n(z)qm,n(z) = O(zm+n+1)
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So, by subtracting the right hand sides of both equalities, we get that

s(z) := pm,n(z)qm,n(z)− pm,n(z)qm,n(z) = O(zm+n+1)

and, as s(z) is a polynomial of degree at most m + n, we deduce that s(z) = 0. Thus, we get
that pm,n(z)

qm,n(z)
= pm,n(z)

qm,n(z)
= rm,n(z), as we wanted to see.

Historically the Padé approximants of a function f(z) are represented in a table known as
the Padé table:

r0,0(z) r0,1(z) r0,1(z) r0,3(z) · · ·
r1,0(z) r1,1(z) r1,2(z) r1,3(z) · · ·
r2,0(z) r2,1(z) r2,2(z) r2,3(z) · · ·
r3,0(z) r3,1(z) r3,2(z) r3,3(z) · · ·

... ... ... ... . . .
In section C.1, I have computed the Padé table for the exponential function.

The standard way of representing this table is writing the rm,n(z) as irreducible fractions
where the denominators qm,n(0) = 1. This is always possible, as the rm,n(z) are holomorphic
at z = 0, so they cannot have any poles at z = 0, so qm,n(0) 6= 0.

From now, on, I will denote by pm,n(z) and qm,n(z) the relatively prime polynomials such
that rm,n(z) = pm,n(z)

qm,n(z)
and qm,n(0) = 1. It is worth noting, though, that these pm,n(z) and

qm,n(z) do not necessarily have to verify equation (2.24), but there must always be a polyno-
mial such that when multiplied by pm,n(z) and qm,n(z), those verify (2.24).

The Padé tables have an interesting structure that will now be stated.

Proposition 2.3. Suppose that a rational function r(z) = p(z)
q(z)

where p(z) and q(z) are rela-
tively prime polynomials of degrees m and n, occurs at some place in the Padé table of f(z).
Then, the set of all places in the Padé table where r(z) occurs is a square block and if

λ(qf − p) = m+ n+ r + 1,

then r ≥ 0 and the square block consists of the (r+1)2 places with coordinates (m+ i,m+ j)
where i, j ∈ {0, . . . , r}. The case r = ∞ is also possible and in this case q(z)f(z) − p(z) is
the zero polynomial, hence, f(z) = r(z).
Proof. The proof is available in Gragg’s survey article [15, Theorem 3.2.].

To illustrate these square blocks in a concrete example, they have been marked for the
Padé table of the function f(z) = x2−1

x2+1
in C.2.

De�nition 2.17. A (m,n) Padé approximant is said to be normal if the degrees of pm,n(z)
and qm,n(z) are exactlym and n respectively and λ(qm,nf − pm,n) = m+ n+ 1.

The formal power series f(z) and its Padé table are also said to be normal if every Padé ap-
proximant is normal.
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There are many reasons why normal Padé approximants are important. One of them is
that if rm,n(z) is normal, then rm,n(z) is a solution of the Hermite interpolation problem,
that is, λ(f − Λ0(rm,n)) = m + n + 1 (this is trivial by the de�nition of normal and the fact
that qm,n(0) 6= 1). This is generally not true for regular Padé approximants of f(z).

As another interesting fact, it can also be seen that a rational function is a normal Padé
approximant of f(z) if and only if it occurs in exactly one place in the Padé table of f(z).

Let f(z) =
∑∞

k=0 λkz
k. I will denote by Tmn the determinant of the following Toeplitz

matrix1:

Tmn =

∣∣∣∣∣∣∣∣∣
λm λm−1 · · · λm−n+1

λm+1 λm · · · λm−n+2
... ... . . . ...

λm+n−1 λm+n−2 · · · λm

∣∣∣∣∣∣∣∣∣ (2.26)

The complete characterisation of normal approximants is given by the following theorem:

Proposition 2.4. The (m,n) Padé approximant of f(z) is normal if and only if the determi-
nants Tmn , Tmn−1, Tm+1

n and Tm+1
n+1 are all non-zero. Therefore f(z) and its Padé table are normal

if and only if Tmn 6= 0 for all m,n ∈ N. In particular, each Tm1 = λm must be non-zero.
Proof. The proof of this can also be found in Gragg’s article [15, Corollary 2.].

The reason why we introduced this notion of normal Padé approximants is because there
is a connection between the C-fractions and the elements of the "staircase" sequence of the
Padé table:

r0,0(z)

r1,0(z) r1,1(z)

r2,1(z) r2,2(z)

r3,2(z)
. . .
. . .

Theorem 2.7. Let f(z) =
∑∞

k=0 λkz
k be a Taylor series such that the Padé approximants of

the staircase sequence {r0,0(z), r1,0(z), r1,1(z), . . . } are all normal. Then, there exists a regular
C-fraction

a0 +
∞

K
n=1

(anz
1

)
whose approximants satisfy w2n = rn,n and w2n+1 = rn+1,n.

Proof. For the �rst part, let us de�ne the sequences {pn(z)}∞n=0 and {qn(z)}∞n=0 by

p2n(z) := pn,n(z) p2n+1(z) := pn+1,n(z)

q2n(z) := qn,n(z) q2n+1(z) := qn+1,n(z)

1This is, a matrix in which each descending diagonal from left to right is constant
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Let

∆2n(z)
(1.3)
= pn,n−1(z)qn,n(z)− pn,n(z)qn,n−1(z) for all n ∈ N+

∆2n+1(z)
(1.3)
= pn,n(z)qn+1,n(z)− pn+1,n(z)qn,n(z) for all n ∈ N.

As all the approximants of the staircase are normal, we know that rn,n(z) 6= rn+1,n(z) and
also rn,n(z) 6= rn+1,n(z), so ∆k 6= 0 for all k ∈ N+ and by theorem 1.1, there exists {an(z)}∞n=1

and {bn(z)}∞n=1 in the �eld of rational functions with coe�cients in C such that K(an(z)
bn(z)

) has
as partial numerators and denominators {pn(z)}∞n=0 and {qn(z)}∞n=0.

These {an(z)}∞n=1 and {bn(z)}∞n=1 are given by a1(z) = λ1z, b0(z) = λ0, b1(z) = 1 and

a2n(z) = − ∆2n(z)

∆2n−1(z)
a2n+1(z) = −∆2n+1(z)

∆2n(z)

b2n(z) =
pn−1,n−1(z)qn,n(z)− pn,n(z)qn−1,n−1(z)

∆2n−1(z)
b2n+1(z) =

pn,n−1(z)qn+1,n − pn+1,n(z)qn,n−1

∆2n(z)

for n ∈ N+.

Let us now see what the ∆2n are like. Since all the approximants of the staircase are normal,
we know that λ(f − Λ0(rn,n−1)) = 2n and λ(f − Λ0(rn,n)) = 2n+ 1, so

λ(∆2n) = λ((rn,n−1 − rn,n)qn,n−1qn,n)

(2.14)
= λ(rn,n−1 − rn,n) + λ(qn,n−1) + λ(qn,n−1)

(2.13)
= min{2n, 2n+ 1}+ 0 + 0 = 2n.

where the orders of qn,n and qn,n−1 are both zero as qn,n(0) 6= 0 and qn,n−1(0) 6= 0.

Therefore, since ∆2n(z) is a polynomial of degree 2n and it also has order 2n, we infer that
∆2n(z) = µ2nz

2n with µ2n ∈ C. Repeating this same reasoning without barely any changes,
it can be proven that

∆2n+1(z) = µ2n+1z
2n+1, with µ2n+1 ∈ C/{0}

pn−1,n−1(z)qn,n(z)− pn,n(z)qn−1,n−1(z) = ν2n−1z
2n−1, with ν2n−1 ∈ C/{0}

pn,n−1(z)qn+1,n − pn+1,n(z)qn,n−1 = ν2nz
2n, with ν2n ∈ C/{0}

Furthermore, by setting γk = − µk
µk−1

and δk = νk−1

µk−1
for all k ≥ 2, it is easy to see that

an(z) = γnz, bn(z) = δn for n ≥ 2. Finally, if we consider a0 = λ0, a1 = λ1, a2 = γ2
δ2

and
an = γn

δn−1δn
, by (1.7), we get that the continued fraction

a0 +
∞

K
n=1

(anz
1

)
satis�es w2n = rn,n(z) and w2n+1 = rn+1,n.



2. continued fractions in complex analysis 27

Remark 2.4. Theorem 2.7 is constructive, so it gives us a way to compute the coe�cients of
the regular C-fraction of a normal function (A.3.3). However, it is worth noting that this is
a very ine�cient way to perform this computation and that there is an algorithm called the
qd-algorithm (where qd stands for quotient-di�erence) that allows us to compute them much
faster. This and other algorithms are described in Henrici’s book [18, Chapter 12].

This close relationship between Padé tables and continued fractions make it possible to
apply the convergence theory of one of them to obtain results for the other. The most complete
results about the convergence of regular C-fractions is the following:
Theorem 2.8. Let a0 + K(anz

1
) be a regular C-fraction such that limn→∞ an = a 6= ∞ and

let R0 = C and Ra = {z ∈ C : −π < arg(az + 1
4
) < π} if a 6= 0. Then, for all a ∈ C:

(i) a0 + K(anz
1

) converges to a meromorphic function f(z) in Ra.

(ii) The convergence is uniform on every compact subset K ⊆ Ra which contains no poles of
f(z).

(iii) f(z) is holomorphic in z = 0 and f(0) = a0.

Proof. This proof of this theorem is a direct application of theorem 2.6 where D = Rα. It
was found by the mathematician Van Vleck in 1904 [20, Theorems 5.14-5.15].

This theorem illustrates in a concrete way how useful continued fractions are for repre-
senting meromorphic functions, as I commented in theorem 2.6 - they provide analytic con-
tinuations outside their disks of convergence.

2.3.1 Hypergeometric functions

We have seen that normal Taylor series can be represented as regular C-fractions, but in most
cases, the procedure is computationally complex and it does not give an expression for the
general term of the coe�cients.

In that regard, the family of hypergeometric functions is a family of power series that, in
some cases, have very simple continued fraction representations, and this can be used to �nd
beautiful formulas for some of the most famous constants in mathematics.

Besides this, they appear naturally as solutions of a certain di�erential equation called the
hypergeometric di�erential equation that it is very important in the study of di�erential
equations of second order with three singular points (that is, three points where the functions
that are the coe�cients of the equation diverge) [18, Section 9.9.].

De�nition 2.18. For n ∈ N, we de�ne the Pochhammer symbol (a)n as:

(a)0 := 1, (a)n :=
n−1∏
k=0

(a+ k) (2.27)
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In particular, for m ∈ N+, (m)n = (m+n−1)!
(m−1)!

.

De�nition 2.19. Let a, b, c ∈ C with c non-zero and not a negative integer.
The hypergeometric function or Gauss hypergeometric function 2F1(a, b; c; z) is the ana-
lytic function whose power series expansion is

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
= 1 +

ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · (2.28)

If a and b are either zero or a negative integer, it is easy to see that from a certain term
on, the series is identically zero, so the hypergeometric function 2F1(a, b; c; z) is a polynomial,
converging for all z ∈ C. Otherwise, it can be seen through the ratio test that the radius of
convergence of 2F1(a, b; c; z) is 1.

Remark 2.5. There is a broader family of series called the generalised hypergeometric

functions

pFq

[a1, a2, . . . , ap
b1, b2, . . . , bq

; z
]

=
∞∑
n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

zn

n!
(2.29)

Whenever the bn are non-zero and not negative integers, and p ≤ q + 1, these series de�ne
complex analytic functions. The Gauss hypergeometric functions would be the case where
p = 2 and q = 1.

There are many identities concerning hypergeometric series, but there are two in particular
that we can use to construct continued fractions. These identities can be established from the
equation (2.28) if we compare the power series of both sides term by term.

2F1(a, b; c; z) = 2F1(a, b+ 1; c+ 1; z)− a(c−b)
c(c+1)

z 2F1(a+ 1, b+ 1; c+ 2; z)

2F1(a, b+ 1; c+ 1; z) = 2F1(a+ 1, b+ 1; c+ 2; z)− (b+1)(c−a+1)
(c+1)(c+2)

z 2F1(a+ 1, b+ 2; c+ 3; z)

Thus, if there are no zeros in the denominators, we have:

2F1(a, b; c; z)

2F1(a, b+ 1; c+ 1; z)
= 1 +

−a(c−b)
c(c+1)

z

2F1(a,b+1;c+1;z)

2F1(a+1,b+1;c+2;z)

(2.30)

2F1(a, b+ 1; c+ 1; z)

2F1(a+ 1, b+ 1; c+ 2; z)
= 1 +

− (b+1)(c−a+1)
(c+1)(c+2)

z

2F1(a+1,b+1;c+2;z)

2F1(a+1,b+2;c+3;z)

(2.31)

The denominator on the right hand side of the equation (2.30) equals the left hand side
of the equation (2.31). In addition, the denominator of the right hand side of (2.31) can be
interpreted as the left hand side of (2.30) by replacing a by a+ 1, b by b+ 1 and c by c+ 2.
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Therefore, we have that,

2F1(a, b; c; z)

2F1(a, b+ 1; c+ 1; z)
= 1 +

a1z

2
F1(a, b+ 1; c+ 1; z)

2F1(a+ 1, b+ 1; c+ 2; z)

= 1 +
a1z

1 +
a2z

2
F1(a+ 1, b+ 1; c+ 2; z)

2F1(a+ 1, b+ 2; c+ 3; z)

= 1 +
a1z
1

+
a2z
1

+
a3z
1

+ · · ·

with

a2n−1 = − (a+ n)(c− b+ n)

(c+ 2n)(c+ 2n+ 1)
for n ∈ N and a2n = − (b+ n)(c− a+ n)

(c+ 2n− 1)(c+ 2n)
for n ∈ N+

(2.32)
This continued fraction is called Gauss’s continued fraction. The following theorem de-
scribes this kind of continued fractions [20, Theorem 6.1.].

Theorem 2.9. Let {an}∞n=0 be de�ned as in (2.32). Then:
1. The regular C-fraction 1+K(anz

1
) converges to a function f(z) meromorphic in the domain

D = {z ∈ C : 0 < arg(z − 1) < 2π}, which is C cut along the real axis from 1 to +∞.

2. The convergence is uniform on every compact subset ofD which contains no poles of f(z).

3. For all z such that |z| < 1, f(z) = F (a,b; c; z)
F (a,b+1; c+1; z)

and hence f(z) provides the analytic
continuation of this quotient of hypergeometric functions in D.

Proof. It is easy to check that limn→∞ an = −1
4
. Thus, this theorem can be deduced from

theorem 2.8, where the D in this theorem corresponds to R-1/4 as
R-1/4 = {z ∈ C : −π < arg(−1

4
z + 1

4
) < π}

= {z ∈ C : −π < arg(−z + 1) < π}
= {z ∈ C : −π < arg(z − 1)− π < π} = D

Gauss’s continued fraction is particularly used for the case b = 0, as 2F1(a, 0; c; z) = 1, so
we have that

2F1(a, 1; c+ 1; z) =
1
1

+
a1z
1

+
a2z
1

+
a3z
1

+ · · ·

where

a2n−1 = − (a+ n)(c+ n)

(c+ 2n)(c+ 2n+ 1)
for n ∈ N and a2n = − n(c− a+ n)

(c+ 2n− 1)(c+ 2n)
for n ∈ N+

(2.33)
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Let us now see some examples of functions of this kind:

• The general binomial

(z + 1)α = 2F1(−α, 1; 1;−z)

=
1
1

+
(−α)z

1
+

1(1 + α)z
2

+
1(1− α)z

3
+

2(2 + α)z
4

+
2(2− α)z

5
+ · · ·

where α ∈ C and α /∈ Z.

The last equality corresponds to performing a transformation as in theorem 1.2 with
z1 = 1 and zn = n − 1 for n ≥ 2. This continued fraction represents a single-valued
branch of the analytic function (z + 1)α in the cut complex plane along the real axis
from −1 to −∞. This is signi�cantly better than the Taylor series of (z + 1)α, whose
radius of convergence is 1.

• The natural logarithm

log(z + 1) = z 2F1(1, 1; 2;−z)

=
z
1

+
12z
2

+
12z
3

+
22z
4

+
22z
5

+
32z
6

+ · · ·

where the last equality corresponds to performing a transformation as in theorem 1.2
with zn = n.

This regular C-fraction represents the principal value of the logarithm2 of z + 1 and
converges in the cut complex plane along the real axis from −1 to −∞.

• The arctangent function

arctan(z) = z 2F1(1
2
, 1; 3

2
;−z2)

=
z
1

+
12z2

3
+

22z2

5
+

32z2

7
+

42z2

9
+

52z2

11
+ · · ·

where the last equality corresponds to performing a transformation as in theorem 1.2
with zn = 2n− 1.

This continued fraction converges and represents a single-valued branch of the analytic
function arctan in the cut z-plane that has cuts along the imaginary axis from i to +i∞
and from −i to −i∞ (this set is the preimage of D by the function −z2).

This contrasts with the Taylor series expansion of arctan(z) at z = 0, which only con-
verges for |z| ≤ 1 except for z = ±i.

2The principal value of the logarithm is the logarithm whose imaginary part lies in (−π, π]. It is often
written as Log(z).
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The convergence of the C-fractions is faster than the Taylor series expansion. For example,
in order to get a smaller error than the approximation of π

4
= arctan(1) that we get with 8

terms of the continued fraction, we would need 261199 terms of the Taylor series expansion.

There are many other examples of functions that can be represented with Gauss’s contin-
ued fractions such as

arcsin(z)√
1− z2

=
z 2F1(1

2
, 1

2
; 3

2
; z2)

2F1(1
2
,−1

2
; 3

2
; z2)

or
∫ z

0

tpdt

tq + 1
=
zp+1

q
2F1(p+1

q
, 1; p+q+1

q
;−zq)

with p, q ∈ N.

This last integral converges in the domain D = {z ∈ C : −π < arg(zq + 1) < π},
and it makes sense in that domain, as f(t) = tp

tq+1
is continuous and has an antiderivative

on D, therefore, by the path-independence theorem, all contour integrals
∫

Γ
f(t) dt are

independent of the path Γ, and so, they only depend on the endpoints. This integral is a general
case that includes log(z + 1) and arctan(z) as the cases where p = 0, q = 1, 2 respectively.

2.4 Open problems and lines of research

In this dissertation, I have focused on the family of C-fractions, but there are many other
families of continued fractions that have di�erent uses:

• Thiele type continued fractions are a very important tool in the theory of interpola-
tion with complex numbers [4, p. 65-74].

• P-fractions (where the P stands for principal part) play a similar role to C-fractions
in representing formal Laurent series f(z), and their approximants are also elements of
the Padé table of f(z) [4, Corollary 2.8.].

• T-fractions, M-fractions, g-fractions, PC-fractions... all of them are involved in the
representation and acceleration of convergence of some analytic functions [4, 9, 20].

The complex continued fractions also play a very important role in the study of general hy-
pergeometric functions pFq, as analogous expressions to Gauss’s continued fraction are
known for many other values of p and q in addition to p = 2, q = 1. This gives us a way to
e�ciently compute functions such as the gamma function or the complementary error

function erfc(z) that naturally appear in many �elds such as physics, statistics and di�eren-
tial equations. These expressions can be found alongside many others in [28, Appendix A.]

Furthermore, if we want an even more general setting, there are q-hypergeometric se-

ries that also generate interesting continued fractions. These have allowed mathematicians
to prove some of the results that Ramanujan wrote in his famous notebooks and that involve
modular functions represented as continued fractions [34].
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As an example of a di�erent area where complex continued fractions naturally appear,
I would like to highlight that there is a relation between complex continued fractions and
para-odd rational functions, a sort of rational function that is involved in the study of sta-
ble polynomials, which are those whose zeros all have a negative real part. This theory is
explained in [20, Section 7.4.] and the results derived from them have multiple applications in
the study of mechanical and electrical systems.

2.5 A bridge between analysis and number theory
In this dissertation we study the applications of continued fractions to both complex analysis
and number theory. Despite the fact that it seems that these are two completely di�erent �elds
that do not have anything in common, there is a link that we will now present.

We said that general hypergeometric functions had analogous expressions to Gauss’s con-
tinued fraction. Let us analyze the particular case 0F1(; c; z) with c ∈ C not a negative integer.
These are sometimes known as con�uent hypergeometric functions ψ. They satisfy

0F1(; c; z) = 0F1(; c+ 1; z) + 1
c(c+1)

z 0F1(; c+ 2; z)

so reasoning as in the case 2F1, it can be proven that the equality

0F1(; c; z)

0F1(; c+ 1; z)
= 1 +

∞

K
n=1

(anz
1

)
with an =

1

(c+ n− 1)(c+ n)

holds for every z ∈ C by theorem 2.8, as the sequence of an tends to zero. Therefore, in
particular,

z coth(z) =
0F1(; 1

2
; z

2

4
)

0F1(; 3
2
; z

2

4
)

= 1 +
z2

3
+

z2

5
+

z2

7
+ · · ·

= 1 +
2z2

6
+

4z2

10
+

4z2

14
+ · · ·

Letting z = 1 in the �rst line and z = 1
2

in the second line, we end up with the equalities:

e2 + 1

e2 − 1
= coth(1) = 1 +

∞

K
n=1

( 1

2n+ 1

) e+ 1

e− 1
= coth(1

2
) = 2 +

∞

K
n=1

( 1

4n+ 2

)
In the next chapter we will see that these continued fraction representations of e2+1

e2−1
and e+1

e−1

are more special than other representations in the sense that they give us additional informa-
tion of the nature of these numbers as irrational numbers.



3 Simple continued fractions in number
theory

3.1 Simple continued fractions

De�nition 3.1. A simple continued fraction is a continued fraction with ai = 1, b0 ∈ Z
and bi ∈ N+ for all i ∈ N+.

This is the standard type of continued fraction used in number theory. We will represent
the simple continued fractions with the notation [b0, b1, b2, . . . ]. If we work with terminating
continued fractions, we will represent them by [b0, b1, . . . , bN ].

3.1.1 Examples of simple continued fractions

1. [1, 2, 3] is 10
7

.

2. As we had previously seen, [1, 1, 1, 1, . . . ] converges to φ.

3. [1, 3, 5, 7, 9, . . . ] converges to e2+1
e2−1

and [2, 6, 10, 14, 18, . . . ] to e+1
e−1

by section 2.5.

4. [2, 1, 2, 1, 1, 4, 1, . . . , 1, 2n, 1, . . . ] can be proven to converge to e [42, Theorem 5.25.].

We will later see that every simple continued fraction converges, and that every real number
can be represented uniquely by a simple continued fraction.

3.1.2 Properties of simple continued fractions

Proposition 3.1. For this kind of fraction we have that:
1. The recurrence relations become:{

pn = bnpn−1 + pn−2

qn = bnqn−1 + qn−2

(3.1)

2. The determinant formulas become:

pnqn−1 − pn−1qn = (−1)n−1 ⇒ pn
qn
− pn−1

qn−1

=
(−1)n−1

qn−1qn
(3.2)

pnqn−2 − pn−2qn = (−1)n bn ⇒ pn
qn
− pn−2

qn−2

=
(−1)n bn
qnqn−2

(3.3)
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Proposition 3.2. For all n ∈ N, pn
qn

is always an irreducible fraction.
Proof. Let n ∈ N and d = gcd(pn, qn). As d | pn and d | qn, d | (pnqn−1 − pn−1qn) and so,
d | (−1)n and pn

qn
is irreducible.

Remark 3.1. As bn ≥ 1 for n > 0, equation (1.2) gives us the following bound on the growth
of partial numerators and denominators of simple continued fractions: pn ≥ Fn and qn ≥ Fn−1

where Fk is the kth Fibonacci number, as described in section 2.1.1.

3.2 Unique representation of real numbers

3.2.1 Convergence of simple continued fractions

Theorem 3.1. Every simple continued fraction converges to a real number `. Furthermore, if
{wn}∞n=0 is the sequence of its approximants, we have that

w0 ≤ w2 ≤ w4 ≤ · · · → `← · · · ≤ w5 ≤ w3 ≤ w1 (3.4)

Proof. As all the bn > 0 for all n ∈ N+, it is easy to see that w0 is the smallest approximant
and w1 is the greatest approximant.

For in�nite simple continued fractions, by (3.3), w2k − w2k−2 > 0 and w2k+1 − w2k−1 < 0
for k > 0. As the sequence {w2k}∞k=0 is monotonically increasing and bounded from above,
it converges. Similarly, the sequence {w2k+1}∞k=0 is monotonically decreasing and bounded
from below, so it also converges. As limn→∞ qn = ∞, by (3.1), limn→∞(wn − wn−1) = 0 and
the limits of both sequences match.

Alternatively, the convergence can also be inferred from the Seidel-Stern theorem (2.1).

3.2.2 The Euclidean algorithm

The computation of the continued fraction expansion of a rational number is related to the
Euclidean algorithm, a process that is used in general for the computation of the greatest
common divisor of elements of an Euclidean ring. This computation is done in the following
way:

Let a
b

be a rational number. If it were negative, we can express it as a
b

= ba
b
c + c

d
where

c
d

is positive, and proceed from there. If it is positive, there are two options. If a < b, the
fraction is smaller than zero and so, we set b0 = 0 and start by dividing b by a. If it is greater,
we start by dividing a by b. After doing this division, we take the divisor and we divide it by
the remainder of this division. We iterate this process -dividing the divisor by the remainder-
until we get a division in which the remainder is zero (this eventually happens due to the fact
that in the division algorithm the divisor is always greater than the remainder).

At the end of the process, the quotients of the division in each step are the coe�cients of
the continued fraction. Therefore, by means of this algorithm (A.4.1), every rational number
can be represented as a terminating simple continued fraction.
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For example, for the fraction 67
24

, the process would be the one
shown at the right and hence, we would get that

67
24

= [2, 1, 3, 1, 4].

The reason why this works is because if we call D1 the dividend,
d1 the divisor, c1 the quotient and r1 the remainder, we have that
dk = Dk+1, rk = dk+1 and so:

a
b

= D1

d1
= c1 + r1

d1
d1
r1

= D2

d2
= c2 + r2

d2...
dN−1

rN−1
= DN

dN
= cN

⇒

a

b
= c1 +

1

c2 +
1

. . . +
1

cN

Remark 3.2. With a few changes, this procedure can be adapted for any Euclidean ring R
to represent elements of its quotient �eld as simple continued fractions (understanding in
this case that simple continued fractions are continued fractions with ai = 1 and bi ∈ R).
For example, it works for computing the simple continued fraction expansions of elements of
F(x) (A.4.2) (the ring of rational functions over F in the indeterminate x) and Q(i) (A.4.1) (the
quotient ring of the Gaussian integers).

3.2.3 Representation of rational numbers as simple continued fractions

There is an equivalence between terminating simple continued fractions and rational numbers:

Theorem 3.2. A real number can be represented by a terminating simple continued fraction
if and only if it is a rational number.

Proof. ⇒ As the coe�cients of simple continued fractions are integers, so are all the partial
numerators and denominators, including the N th ones. Therefore, the value of the contin-
ued fraction, which is the N th approximant, is the quotient of two integers, hence, a rational
number.
⇐ This is a consequence of the application of the Euclidean algorithm.

Remark 3.3. This representation is not necessarily unique, as we always have:

[b0, b1, . . . , bn] = [b0, b1, . . . , bn − 1, 1] (3.5)

However, if we �x the condition that the last term of the continued fraction cannot be
1, then, the representation of every rational number as a �nite simple continued fraction is
unique.

Remark 3.4. This is generally not true for general continued fractions, as we have shown in
our second example of a general continued fraction.
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3.2.4 Representation of irrational numbers as simple continued fractions

Theorem 3.3. Every irrational number can be uniquely expressed as an in�nite simple con-
tinued fraction.

Proof. Uniqueness

We are going to prove this in a constructive way. Let ξ be a real number and let us suppose
that [b0, b1, b2, . . . ] is its representation as a simple continued fraction. We are going to prove
that this representation is the only possible one.

As b0 and b1 are the �rst coe�cients of the simple continued fraction representation, we
have that:

b0 < ξ < b0 +
1

b1

.

The inequalities are strict as ξ is irrational. As b1 ≥ 1, 1
b1
≤ 1, we infer that b0 = bξc so it is

uniquely determined. It is clear that if we set ξ1 = 1
ξ−b0 , which is also an irrational number,

then ξ1 = [b1, b2, b3, . . . ], and from the previous reasoning, we infer that b1 = bξ1c, so it is
uniquely determined as well.

By setting ξn = 1
ξn−1−bn−1

repeatedly, we get that bn = bξnc and so, the uniqueness of the
coe�cients of the simple continued fraction is proven.

This algorithm is known as the simple continued fraction algorithm (A.4.3) and the
quantities ξn are called the nth

complete quotients of ξ.

Existence

Let ξ be an irrational number. By applying the simple continued fraction algorithm on ξ,
we get a simple continued fraction [b0, b1, b2, . . . ]. Let us check that this continued fraction
indeed converges to ξ. To do so, we are going to �rst prove the following lemma:
Lemma 3.1. With the same notation as before, we have the following:

ξ =
ξn+1pn + pn−1

ξn+1qn + qn−1

∀n ∈ N (3.6)

Proof. Let us prove it by induction on n. For n = 0,

ξ = b0 +
1

ξ1

=
ξ1b0 + 1

ξ1

=
ξ1p0 + p−1

ξ1q0 + q−1

Let us suppose our statement is true for every k ≤ n− 1 and let us prove it for k = n.

ξ =
ξnpn−1 + pn−2

ξnqn−1 + qn−2

=
(bn + 1

ξn+1
)pn−1 + pn−2

(bn + 1
ξn+1

)qn−1 + qn−2

=
ξn+1(bnpn−1 + pn−2) + pn−1

ξn+1(bnqn−1 + qn−2) + qn−1

(3.1)
=
ξn+1pn + pn−1

ξn+1qn + qn−1
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Now, with the help of this lemma, we get:

ξ − pn
qn

=
pn−1qn − pnqn−1

qn(ξn+1qn + qn−1)
=

(−1)n

qn(ξn+1qn + qn−1)
(3.7)

As ξn+1 > bn+1, we have that:∣∣∣∣ξ − pn
qn

∣∣∣∣ < 1

qn(bn+1qn + qn−1)
=

1

qnqn+1

(3.8)

and so, as n tends to in�nity, qn also tends to in�nity, and, therefore, ξ = [b0, b1, b2, . . . ].

Remark 3.5. Even though the simple continued fraction expansion for some irrational num-
bers such as e or φ is known, for most of irrational constants no expressions of the general term
of its simple continued fraction are known. This is the case for π, whose simple continued frac-
tion begins with [3, 7, 15, 1, 292, 1, . . . ] (sequence A001203 of OEIS) or the Euler-Mascheroni

constant γ, which we do not even know if it is irrational, but whose continued fraction begins
with [0, 1, 1, 2, 1, 2, . . . ] (sequence A002852 of OEIS).

3.3 Diophantine approximation

3.3.1 Best rational approximation

At the start of this section, I commented that the simple continued fractions were an important
tool in number theory, and the main reason why this is the case is because of how they can be
used to obtain precise rational approximations of real numbers. The theory of approximation
of real numbers by rational numbers is known as Diophantine approximation.

Proposition 3.3. For every irrational number ξ we have the following properties:

1. For every n ∈ N, 1

qnqn+2

<

∣∣∣∣ξ − pn
qn

∣∣∣∣ < 1

qnqn+1

.

2. For every n ∈ N, |ξqn+1 − pn+1| < |ξqn − pn| and therefore,
∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣ < ∣∣∣∣ξ − pn
qn

∣∣∣∣.
3. For every n ∈ N and k < qn+1 such that h

k
6= pn
qn

, we have that |ξk − h| > |ξqn − pn|.

4. For every n ∈ N+ and k ≤ qn such that h
k
6= pn
qn

, we have that
∣∣∣∣ξ − h

k

∣∣∣∣ > ∣∣∣∣ξ − pn
qn

∣∣∣∣.
This last one can be expressed by saying that pn

qn
are the best rational approximations of ξ.

Proof. 1. The upper bound was proven in the proof of theorem 3.3. For the lower bound, we
consider equation (3.7). As ξn+1 < 1+ bn+1, we know that ξn+1qn+qn−1 < qn+ bn+1qn+qn−1

so, ξn+1qn + qn−1 < qn + qn+1 ≤ qn + bn+2 qn+1 = qn+2 and hence,∣∣∣∣ξ − pn
qn

∣∣∣∣ > 1

qnqn+2

.

http://oeis.org/A001203
https://oeis.org/A002852
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2. By 1, we know that∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣ < 1

qn+1qn+2

and 1

qnqn+2

<

∣∣∣∣ξ − pn
qn

∣∣∣∣.
.

Multiplying those inequalities by qn+1 and qn respectively, we get that:

|ξqn+1 − pn+1| <
1

qn+2

< |ξqn − pn|,

and so, as qn ≥ qn+1 for n ∈ N∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣ < 1

qn+1

|ξqn − pn| ≤
∣∣∣∣ξ − pn

qn

∣∣∣∣.
3. Let n ∈ N and k < qn+1 such that h

k
6= pn

qn
. In order to prove that |ξk − h| > |ξqn − pn|,

we are �rst going to express ξk− h as a linear combination of ξqn− pn and ξqn+1− pn+1 and
work from there.

Let ξk−h = α(ξqn− pn) +β(ξqn+1− pn+1). Then, α and β are the solutions of the linear
system: {

k = α qn + β qn+1

h = α pn + β pn+1

Using Cramer’s rule and the fact that pnqn−1 − pn−1qn = (−1)n−1, we get that

α = (−1)n (k pn+1 − h qn+1)

β = (−1)n+1 (k pn − h qn)

It is clear that α, β ∈ Z. As h
k
6= pn

qn
, β 6= 0 and as pn+1

qn+1
is irreducible and k < qn+1, we

know that h
k
6= pn+1

qn+1
, so α 6= 0.

Furthermore, α and β must have di�erent signs because if that were not the case,
k = α qn + β qn+1 would imply that k > qn and that would contradict our hypothesis.

What’s more, as odd approximants of the continued fraction of ξ are greater than ξ and
even approximants are smaller than ξ, we get that ξ − pn

qn
and ξ − pn+1

qn+1
always have di�erent

signs and therefore, so do ξqn−pn and ξqn+1−pn+1. Hence, α(ξqn−pn) and β(ξqn+1−pn+1)
have the same sign and so,

|ξk − h| = |α(ξqn − pn)|+ |β(ξqn+1 − pn+1)| > |α||ξqn − pn| ≥ |ξqn − pn|.

4. If n ∈ N+ and we have k ≤ qn such that h
k
6= pn

qn
, as k ≤ qn < qn+1, it satis�es the

hypothesis of 3 and we have:∣∣∣∣ξ − h

k

∣∣∣∣ > 1

k
|ξqn − pn| ≥

∣∣∣∣ξ − pn
qn

∣∣∣∣
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Remark 3.6. The fact that approximants give best rational approximations has been known
for thousands of years and it has been used by civilisations such as Greece, Egypt, Babylo-
nia, India and China. For example, a procedure called anthypharesis based on the Euclidean
algorithm was used by Archimedes to �nd the rational approximation 22

7
for π [3, Section 1.1.].

3.3.2 Hurwitz’s theorem

The closeness at which irrational numbers can be approximated by rational numbers is given
by the following theorem:
Theorem 3.4 (Hurwitz’s theorem). Let ξ be an irrational number. Then, there exist in-

�nitely many di�erent rational numbers p
q
such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1√
5q2

(3.9)

Using the theory of continued fractions we are going to prove an even more general result:

Theorem 3.5. Let ξ be an irrational number and let {pn}∞n=0 and {qn}∞n=0 be its sequences of
partial numerators and denominators. Then, at least one out of every three consecutive approxi-
mants satisfy

0 <

∣∣∣∣ξ − pn
qn

∣∣∣∣ < 1√
5q2
n

Proof. Let n ∈ N+ and let us suppose that

1√
5q2
n−1

≤
∣∣∣∣ξ − pn−1

qn−1

∣∣∣∣, 1√
5q2
n

≤
∣∣∣∣ξ − pn

qn

∣∣∣∣, 1√
5q2
n+1

≤
∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣.
In the proof of proposition 3.3, we saw that ξ − pn−1

qn−1
and ξ − pn

qn
have di�erent signs, so

ξ − pn−1

qn−1
and pn

qn
− ξ have the same sign. Therefore, by adding the �rst two inequalities, we

have that:

1√
5q2
n−1

+
1√
5q2
n

≤
∣∣∣∣pnqn − ξ

∣∣∣∣+

∣∣∣∣ξ − pn−1

qn−1

∣∣∣∣ =

∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ =
1

qn−1qn

and so, multiplying by
√

5q2
n−1q

2
n both sides we get q2

n−1 + q2
n ≤
√

5qn−1qn. By the same rea-
soning, q2

n + q2
n+1 ≤

√
5qnqn+1.

If we substitute qn+1 via the relation (3.2), add both inequalities and move everything to
the left side of the equation, we get:

2q2
n−1 + (2bn − 2

√
5)qn−1qn + (b2

n −
√

5bn + 2)q2
n ≤ 0,

which can also be rewritten by completing the squares as:

q2
n−1 + (

√
5bn − 3)q2

n + (qn−1 + (bn −
√

5)qn)2 ≤ 0.
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If bn > 1, then the left hand side would be the sum of three positive numbers and we would
arrive at a contradiction, so bn must be equal to one.

Nevertheless, if bn = 1, we then have that

2q2
n−1 + (2− 2

√
5)qn−1qn + (3−

√
5)q2

n ≤ 0

1

3 +
√

5
((1 +

√
5)qn−1 − 2qn)2 ≤ 0

This can only be possible if (1 +
√

5)qn−1 − 2qn = 0, i.e., qn
qn−1

= 1+
√

5
2

= φ. As we know
that φ is an irrational number (its simple continued fraction expansion is in�nite) and qn−1

and qn are integers, we arrive at a contradiction. Therefore, for some k ∈ {n− 1, n, n+ 1},

0 <

∣∣∣∣ξ − pk
qk

∣∣∣∣ < 1√
5q2
k

.

Remark 3.7. Hurwitz’s theorem does not hold for any rational number. Let h
k

be a rational
number in reduced form, i.e. h and k are coprimes. Then for all p

q
6= h

k
,∣∣∣∣hk − p

q

∣∣∣∣ =
|hq − pk|

qk
≥ 1

qk
=⇒

∣∣∣∣hk − p

q

∣∣∣∣ > 1

q2
if q > k.

This shows that irrational numbers are characterised by how well they can be approxi-
mated by rationals. This property can be used to prove that numbers de�ned from in�nite
series such as e are irrational, as we can see in Varona Malumbre’s book [42, Theorem 4.8.].

Once we have seen Hurwitz’s theorem, it would be interesting to ask ourselves, is this the
best we can do? Is there any M ∈ R greater than

√
5 such that for any irrational number ξ,

we could �nd in�nite rational numbers p
q

that satisfy this inequality?

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

Mq2
. (3.10)

The answer is no, as we will now see.
Theorem 3.6. Let φ = 1+

√
5

2
. Then, there is noM >

√
5 such that there are in�nitely many

rational numbers satisfying:

0 <

∣∣∣∣φ− p

q

∣∣∣∣ < 1

Mq2
. (3.11)

Proof. We will later give a proof of this from the continued fraction expansion of φ.

3.3.3 The Lagrange spectrum

Now that we have seen Hurwitz’s theorem, let us ask ourselves a di�erent question that it is
related to it. Given a �xed irrational number ξ, is there a valueM(ξ) such that forM ≤M(ξ),
equation (3.10) holds for an in�nite number of rationals but for M > M(ξ) it only holds for a
�nite number of rationals?
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This problem was �rst studied by Lagrange, and leads to the following de�nition:

De�nition 3.2. Let ξ be an irrational number. The Lagrange constant of ξ is:

M(ξ) = sup{λ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

(λ− ε)q2
has in�nitely many solutions p, q ∈ N, ∀ε > 0}

= lim sup
q→∞

1

q|ξq − p|
.

By Hurwitz’s theorem, we know that M(ξ) is at least
√

5 for any irrational. While re-
searching the possible values of the Lagrange constant of irrational numbers, Hurwitz found
that if M(ξ) 6=

√
5, then M(ξ) ≥

√
8 and thus, Lagrange constants were never found in the

interval (
√

5,
√

8). This motivated the following de�nition:

De�nition 3.3. The Lagrange spectrum is the set of possible values of the Lagrange con-
stant, i.e.

L = {M(ξ) : ξ ∈ R/Q}

Remark 3.8. It is not easy to see the role that the ε plays in de�nition 3.2, but it is necessary
for the two notions that we have given of M(ξ) to be equivalent. In 2017 it was proven that
there are a class of numbers called not attainable numbers consisting of the numbers ξ such
that |ξ − p

q
| < 1

M(ξ)q2
does not have in�nitely many solutions [14]. The M(ξ) for which ξ is

not attainable receive the name of not admissible numbers and they are closely related to
the topological structure of the spectrum.

In the study of the Lagrange spectrum, numerous connections with number theory prob-
lems were found, out of which, it is imperative that I mention the following:

In 1880, Andrey Markov found the following equation while studying the minimum of
certain binary quadratic forms f(x, y) = ax2 + 2bxy + cy2:

u2 + v2 + w2 = 3uvw (3.12)

which is now known as Markov’s equation . The solutions u ∈ N of that equation for which
there exists v, w ∈ N with u ≥ v ≥ w are known as Markov numbers. The �rst ones (they
are in�nite) are 1, 2, 5, 13, 29... (sequence A002559 in OEIS).

After deeply studying the equation, he realised that, whenever (u, v, w) was a solution of
the equation, so were (u, v, w), (u, v, w) and (u, v, w) with

u = 3vw − u v = 3wu− v w = 3uv − w

and this process could be used to �nd all the solutions from the most basic one. This has been
illustrated in appendix B.2.

https://oeis.org/A002559
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In 1921, Oskar Perron proved that if u is a Markov number and we take

αu =
1

2u

(√
9u2 − 4 + u+

2v

w

)
, then M(αu) =

√
9u2 − 4

u
. (3.13)

What’s more, if M ∈ L and M < 3, then M = M(αu) for some Markov number. This
implies that, as αu grows to in�nity,M(αu) gathers around 3 and it can be easily seen that 3 is
an accumulation point of the Lagrange spectrum (and, in fact, it is the smallest accumulation
point [6]). The �rst 40 Markov numbers and their corresponding αu and M(αu) can be found
in table C.3.

For values greater than 3, the structure of the Lagrange spectrum becomes way more com-
plicated. As a brief summary, I remark that it is a closed set with fractal dimension, as it
is linked to the Cantor sets de�ned by a dynamical operator called the Gauss map [30].
Furthermore, it contains the half line [cF ,+∞) known as Hall’s ray, where the constant
cF = 4 + 253589820+283798

√
462

491993569
is called Freiman’s constant.

In some references, the Lagrange spectrum is also called the Markov spectrum, but we
have decided not to used this term, as the Markov spectrum makes reference to a di�erent
set that contains the Lagrange spectrum [13]. The relation between the Markov and Lagrange
spectrum shows that the theory of Diophantine approximation is closely related to the rich
theory of quadratic forms.

There is an unexpected result by Perron which links both the theory of continued fractions
with the study of the Lagrange spectrum.
Theorem 3.7. Let ξ = [b0, b1, b2, . . . ] an irrational number. Then,

M(ξ) = lim sup
n→∞

(
[bn+1, bn+2, bn+3, . . . ] + [0, bn, bn−1, . . . , b1, b0]

)
.

Proof. As the approximants of ξ are all the best rational approximations of ξ by the proposi-
tion 3.3 part 3, we infer that

M(ξ) = lim sup
q→∞

1

q|ξq − p|
= lim sup

n→∞

1

qn|ξqn − pn|
.

From equation (3.7), we know that∣∣∣∣ξ − pn
qn

∣∣∣∣ =
1

qn(ξn+1qn + qn−1)
,

so

M(ξ) = lim sup
n→∞

1

qn|ξqn − pn|
= lim sup

n→∞

(
ξn+1 +

qn−1

qn

)
.
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We have already seen that ξn+1 = [bn+1, bn+2, bn+3, . . . ]. Furthermore, we know that

qn−1

qn
=

1

bnqn−1 + qn−2

qn−1

=
1

bn +
qn−2

qn−1

=
1

bn +
1

bn−1 +
qn−3

qn−2

=
1

bn +
1

bn−1 +
1

. . . +
1

b0

Therefore, qn−1

qn
= [0, bn, bn−1, . . . , b1, b0] and we �nish.

With this theorem we can prove theorem 3.6. As φ = [1, 1, 1, 1, . . . ], by this last theorem,

M(φ) = lim sup
n→∞

([1, 1, 1, . . . ] + [0, 1, 1, . . . , 1]) = φ+ (φ− 1) =
√

5.

3.3.4 Equivalent real numbers

There is an equivalence relation on the real numbers which is closely related to both simple
continued fractions and other sub�elds of number theory.
De�nition 3.4. Two real numbers µ and ξ are equivalent if there exists α, β, γ, δ ∈ Z such

that

ξ =
αµ+ β

γµ+ δ
with αδ − βγ = ±1. (3.14)

It is easy to see that this is an equivalence relation as it veri�es the re�exive, symmetric
and transitive properties. This is a consequence of the identi�cation ofMZ with PGL(2,Z)
and the fact that, as the latter is a group, it has an identity (re�exive), every element has an
inverse (symmetric) and it is closed by multiplication (transitive).

Proposition 3.4. The rational numbers form an equivalence class under this relation.
Proof. We are �rst going to see that every rational number is equivalent to 0. Let p

q
be a

rational number in reduced form. Then, by Bézout’s lemma, there exist x, y ∈ Z such that
px+ qy = gcd(p, q) = 1. Therefore,

p

q
=

y 0 + p

−x 0 + q
=
α 0 + β

γ 0 + δ
.

with αδ − βγ = yq − p(−x) = 1 and so, all rational number are in the same class. It is trivial
to see that if a number is equivalent to a rational, then it must be rational, so we �nish.

Before we study the relation between this equivalence relation and simple continued frac-
tion, let us introduce this lemma that will be used later on.
Lemma 3.2. Let x = αζ+β

γζ+δ
. If ζ > 1, γ > δ > 0 and αδ − βγ = ±1, then β

δ
and α

γ
are

consecutive approximants of x.
Proof. The proof is not complicated but it does not add anything to our knowledge of con-
tinued fractions, so I prefer to omit it. It can be found in both Hardy’s and Keng’s books
[17, Theorem 172; 22, Theorem 5.2.].
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Now we have all the tools to prove the following result:
Theorem 3.8. Two irrational numbers µ and ξ are equivalent under relation (3.14) if and

only if their simple continued fraction expansions match from some term on, i.e. if

µ = [a0, a1, a2, . . . ], ξ = [b0, b1, b2, . . . ],

then µ ∼ ξ if and only if ak+m = bn+m for some k, n ∈ N and for allm ∈ N.

Proof. ⇐ Let µ = [a0, a1, . . . , ak−1, c0, c1, . . . ], let ξ = [b0, b1, . . . , bn−1, c0, c1, . . . ] and let
{p̃n}∞n=0, {q̃n}∞n=0, {pn}∞n=0, {qn}∞n=0 be their partial numerators and denominators.

Let ω = [c0, c1, c2, . . . ]. From the proof of theorem 3.3, we know that ω = µk = ξn and by
lemma 3.1, we then get:

µ =
ωp̃k−1 + p̃k−2

ωq̃k−1 + q̃k−2

ξ =
ωpn−1 + pn−2

ωqn−1 + qn−2

As p̃k−1q̃k−2−p̃k−2q̃k−1 = (−1)k−2 and pn−1qn−2−pn−2qn−1 = (−1)n−2, µ ∼ ω and ξ ∼ ω,
so µ ∼ ξ.

⇒ Let µ ∼ ξ, so µ =
αξ + β

γξ + δ
.

Let us assume that γξ + δ > 0 (if this is not the case, we can multiply both the numerator
and denominator by −1). Again, by lemma 3.1,

ξ =
ξn+1pn + pn−1

ξn+1qn + qn−1

∀n ∈ N

Hence,

µ =
αnξn+1 + βn
γnξn+1 + δn

with


αn = αpn + βqn

βn = αpn−1 + βqn−1

γn = γpn + δqn

δn = γpn−1 + δqn−1

and αnδn − βnγn = (αδ − βγ)(pnqn−1 − pn−1qn) = (−1)n−1.

By equation (3.7) we know that

pn = ξqn −
εn
qn

with εn =
(−1)nqn−1

ξn+1qn + qn−1

and |εn| < 1
qn+1
≤ 1 for all n ∈ N. Therefore,

γn = (γξ + δ)qn −
γεn
qn

δn = (γξ + δ)qn−1 −
γεn−1

qn−1

As γξ + δ > 0, qn > qn−1 > 0, and limn→∞ qn = ∞; for some m ∈ N, for all m ≥ n , we
have that γm > δm > 0 and, by lemma 3.2, we then have βm

δm
= pk−1

qk−1
and αm

γm
= pk

qk
for some

k ∈ N. Therefore, we have ξm+1 = µk+1 and so, the tails of the continued fraction expansion
of ξ and µ match.
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Corollary 3.1. Let µ and ξ two equivalent irrational numbers. Then M(µ) = M(ξ).
Proof. If µ ∼ ξ, then they must have the same continued fraction expansion from a point on,
and so, the same Lagrange constant by theorem 3.7.

3.3.5 Liouville’s work on algebraic numbers

To �nish this section on Diophantine approximation, it is important to mention some of the
most important results about how well real numbers can be approximated by rational numbers
and how this relates to whether they are algebraic or trascendental. This gives rise to a whole
sub�eld in number theory known as transcendental number theory, whose main results I
will now highlight.

Theorem 3.9 (Liouville’s theorem). If α ∈ R is algebraic of order n ≥ 1, then there exists
a constant C(α) > 0 such that, for any rational number p

q
with α 6= p

q
,∣∣∣∣α− p

q

∣∣∣∣ > C(α)

qn
(3.15)

Proof. The proof can be found in Varona Malumbres’ book [42, Theorem 4.10.].

This theorem has important applications. Firstly, for the case n = 1, it tells us that rational
numbers are badly approximated by other rationals as we saw in remark 3.7. It also implies
the two following results:
Corollary 3.2. If α ∈ R is algebraic of order n ≥ 2, for every ε > 0 and every C > 0, the
inequality

0 <

∣∣∣∣α− p

q

∣∣∣∣ < C

qn+ε
, (3.16)

has a �nite number of solutions.
Proof. This is because for every ε > 0 and every C > 0, there is a q0 such that C < C(α)qε0,
and so, for all q ≥ q0, |α− p

q
| > C

qn+ε
.

Corollary 3.3 (Transcendence criterion). Let α ∈ R and let us suppose that there is a constant
K(α) > 0 such that for all m ∈ N, the inequality

0 <

∣∣∣∣α− p

q

∣∣∣∣< K(α)

qm
, (3.17)

has a solution p
q

with q ≥ 2. Then, α is transcendental.
Proof. Let α be such that equation (3.17) holds. If α were not transcendental, it would be
algebraic of a certain order n and, by Liouville’s theorem, there would exist C(α) > 0 such
that for all p

q
if α 6= p

q
the equation (3.15) would hold. If p

q
also satis�ed equation (3.17), then

C(α)q−n < K(α)qm, so

qm−n <
K(α)

C(α)
.



46 continued fractions

Let us focus on the m ≥ n. As q ≥ 2, we know that 2m−n < K(α)
C(α)

from which we deduce that

m < n+ log2

(
K(α)

C(α)

)
and we arrive at a contradiction.

This last criterion allows us to construct and test transcendental numbers and it allowed
Liouville in 1844 to give the �rst explicit examples of transcendental numbers. The numbers
that satisfy this transcendence criteria are known as Liouville numbers.

These are two examples of families of Liouville numbers:

• If a ∈ N, a ≥ 2, the number α =
∑∞

n=1 a
−n! is transcendental [42, Corollary 4.14.]. For

a = 10, α is known as Liouville’s constant.

• If b ∈ N, b ≥ 2, the number β = K∞

n=1

( 1

bn!

)
is transcendental [17, Theorem 192.].

In 1874, Georg Cantor added more contributions to the theory of transcendental numbers
with his study of the cardinality of real numbers. He proved that R was uncountable and the
set of algebraic numbers was countable, from which it is deduced that almost all real numbers
are transcendental [42, Section 6.4.1.].

Furthermore, thanks to the development of measure theory in the early 20th century, math-
ematicians were able to prove results such as that the set of Liouville numbers form a dense
subset of the set of real numbers or that their Lebesgue measure is equal to zero.

In the study of how well real numbers can be approximated by rational numbers, the fol-
lowing de�nition arises naturally:
De�nition 3.5. For a real number α, its irrationality measure or Liouville-Roth con-

stant is de�ned as

µ(α) = sup{λ > 0 : 0 <

∣∣∣∣α− p

q

∣∣∣∣< 1

qλ
has in�nitely many solutions}

= inf{λ > 0 : 0 <

∣∣∣∣α− p

q

∣∣∣∣< 1

qλ
has a �nite number of solutions}

For rational numbers, we know that µ(p
q
) = 1 and for irrational numbers, µ(α) ≥ 2. For

algebraic numbers of order n, we have seen that Liouville’s theorem implies that µ(α) ≤ n.
Many mathematicians tried to improve this bound:

• Thue proved in 1909 that µ(α) ≤ 1 + n
2
.

• Siegel proved in 1921 that µ(α) < 2
√
n.

• Gelfond and Dyson proved in 1921 that µ(α) <
√

2n.

The attempts to improve this bound �nished in 1955 when Roth showed that all algebraic
numbers had µ(α) = 2. The proof won him a Fields medal in 1958.
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As a matter of fact, almost all real numbers have irrationality measure 2. For example, it
can be proven that µ(e) = 2 [42]. However, not all reals have irrationality measure 2: besides
Liouville numbers, that are considered to have irrationality measure∞, we can construct real
numbers with any possible irrationality measure µ ∈ [2,∞) by choosing any a > 1 and
taking:

αa =
∞

K
n=1

( 1

ba(µ−1)nc

)
. Then, µ(αa) = µ [5].

The continued fraction expansion plays a central role in the study of the transcendence
of numbers, as there are formulas that allow us to use these expansions to compute the irra-
tionality measure and other quanti�ers of transcendence. Some of them can be found in the
article of Sondow [38, Theorem 1.].

3.4 Periodic simple continued fractions

De�nition 3.6. A simple (non-terminating) continued fraction [b0, b1, . . . ] is periodic if
there exist integers k ≥ 0 and m ≥ 1 such that bn+m = bn for all n ≥ k. We will represent
these periodic fractions with the notation [b0, . . . , bk−1, bk, bk+1, . . . , bk+m−1]. The number m is
called the period of the fraction. If k = 0, then we say that the continued fraction is purely
periodic.

3.4.1 Examples of periodic simple continued fractions

• The golden ratio φ = [1] is purely periodic.

• From
√

2 − 1 = (
√

2−1)(
√

2+1)√
2+1

= 1√
2+1

= 1
2+(
√

2−1)
, we deduce that

√
2 − 1 = [0, 2] and

so,
√

2 = [1, 2].

These two examples have in common that both are algebraic numbers of degree 2 or
quadratic irrationals. That is, both are solutions of irreducible quadratic equations in Z[x]
(x2 − x− 1 = 0 and x2 − 2 = 0 respectively). This is not a coincidence, as we will now see.

Theorem 3.10 (Lagrange). Every periodic simple continued fraction represents a quadratic
irrationality. Conversely, the simple continued fraction representation of any real quadratic irra-
tionality is periodic.

Proof. For the �rst part, let θ = [b0, b1, . . . , bm−1] be a purely periodic continued fraction.
Then,

θ
(3.6)
=
θmpm + pm−1

θmqm + qm−1

=
θpm + pm−1

θqm + qm−1

so θ satis�es qmθ2 + (qm−1 − pm)θ − pm−1 = 0. If θ = [b0, . . . , bk−1, bk, bk+1, . . . , bk+m−1],
θk is purely periodic, hence quadratic irrational and, by rationalizing the expression given by
lemma 3.1, we conclude that θ must be quadratic irrational as well.



48 continued fractions

For the second part, let ξ be the root of an irreducible polynomial αx2+βx+γ with integer
coe�cients and α 6= 0. If we substitute ξ in the equation αξ2 + βξ + γ = 0, by the equality
(3.6), for any n ∈ N+ we get the equation

αnξ
2
n + βnξn + γn = 0

where 
αn = αp2

n−1 + βpn−1qn−1 + γq2
n−1

βn = 2αpn−1pn−2 + β(pn−1qn−2 + pn−2qn−1) + 2γqn−1qn−2

γn = αp2
n−2 + βpn−2qn−2 + γq2

n−2

and it can be seen that αn−1 = γn and β2
n − 4αnγn = β2 − αγ for all n ∈ N+ [42].

Now, from equation (3.8), we get that

pn−1 = ξqn−1 +
εn
qn−1

for some εn such that |εn| < 1. If we substitute pn−1 in the expression of αn and use that
αξ2 + βξ + γ = 0, we get:

αn = α
(
ξqn−1 +

εn
qn−1

)2

+ β
(
ξqn−1 +

εn
qn−1

)
qn−1 + γq2

n−1

= (αξ2 + βξ + γ)q2
n−1 + 2αεnξ + α

ε2n
q2
n−1

+ βεn

= 2αεnξ + α
ε2n
q2
n−1

+ βεn.

Therefore, |αn| ≤ 2|αξ|+ |α|+ |β| and so, the αn are bounded for all n ∈ N+. From what we
saw before, the γn and the βn are also bounded (as γn = αn−1 and β2

n−4αnγn = β2−αγ). Thus,
as αn, βn and γn are bounded integers, there is a �nite number of possible triples {αn, βn, γn}
and so, a �nite number of possible polynomials αnx2+βnx+γn and a �nite number of possible
solutions ξn such that αnξ2

n + βnξn + γn = 0.

Hence, for some n,m ∈ N+, we deduce that ξn = ξn+m and so, by theorem 3.3, they must
have the same continued fraction expansion [bn, bn+1, bn+2, . . . ] = [bn+m, bn+m+1, bn+m+2, . . . ]
and from this we deduce that ξ is periodic.

Remark 3.9. The table C.4 represents the periodic expansion of the square root of the �rst 80
natural numbers. As we can see, the period of the numbers follows interesting patterns that
have been widely studied.

Remark 3.10. The fact that a real quadratic irrationality has a periodic continued fraction
implies that it has �nite complete quotients. These can be computed with the function (A.4.4)
and be used to calculate the Lagrange constant of that quadratic irrationality (A.4.5).

It would also be interesting to analyse what conditions quadratic irrationals need to satisfy
in order to have a purely periodic continued fraction expansion. The answer to this question
is known to have been given in Galois’ �rst article in 1828, though the result was implicit in
the earlier work of Lagrange.
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Theorem 3.11 (Galois). A purely periodic simple continued fraction represents a quadratic
irrationality ξ if and only if its algebraic conjugate ξ satis�es −1 < ξ < 0. In that case ξ = − 1

µ

where µ is the valued of the continued fraction you get when you reverse the period.

Proof. Niven, Zuckerman and Montgomery proved this theorem in a clever way by express-
ing any purely periodic ξ as the solution of a quadratic equation f(x) and showing that f(−1)
and f(0) have di�erent signs [31, Theorem 7.20.].

Corollary 3.4. Let n be a natural number that is not a perfect square. Then, the simple con-
tinued fraction of

√
d is of the form:

√
d = [b0, b1, b2, . . . , bn−1, 2b0 ]

where b1, b2, . . . , bn−1 is a palindromic expression, that is, bk = bn−k for all k ≤ n.
Proof. Let us consider ξ = b0 +

√
d = b

√
dc +

√
d, so the �rst term of the simple con-

tinued fraction expansion of ξ is 2b0. Then, it is easy to see that −1 < ξ < 0, so, by the-
orem 3.11, ξ is a purely periodic simple continued fraction ξ = [2b0, b1, . . . , bn−1] and so,√
d = [b0, b1, . . . , bn−1, 2b0].

Furthermore, ξ = b
√
dc −

√
d = − 1

µ
where µ is the valued of the continued fraction that

you get when you reverse the period, so
√
d− b

√
dc = 1

µ
= [0, bn−1, . . . , 2b0].

Thus,
√
d =
√
d− b

√
dc+ b

√
dc = [b0, bn−1, . . . , 2b0] and comparing this expression with

the one we had obtained before, we �nish.

3.5 Pell’s equation
This is the name given to the Diophantine equation

x2 − dy2 = 1, (3.18)

where d is an integer and not a perfect square1.

There are several references to this equation scattered throughout the history of number
theory. Interestingly enough, even though mathematicians such as Archimedes, Fermat and
Euler studied this equation, the one after whom the equation is named, Pell, did not. In the
17th century, Euler mistakenly credited Pell with some results involving this equation that
were due to Lord Brouncker. Despite Euler’s mistake, Pell’s name remains associated to this
equation ever since then [3, Section 2.4.].

There is an interesting connection between the solutions of this equation and the simple
continued fraction expansion of

√
d that we will know see. Let us begin by considering the

more general equation

x2 − dy2 = l where 0 < |l| <
√
d.

1Otherwise, x2 − dy2 = (x−
√
dy)(x+

√
dy) = 1 and the only possible solutions would be the trivial ones

(x, y) = (1, 0) and (x, y) = (−1, 0)
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3.5.1 Solutions of Pell’s equation by continued fractions

This equation is closely related to the continued fraction expansion of
√
d as we will now see:

Lemma 3.3. Let ξ =
√
d. Then, for all n ∈ N, the ξn take the form

ξn =

√
d+ Pn
Qn

(3.19)

where Pn and Qn are integers such that P 2
n ≡ d mod Qn.

Proof. We will prove it by induction on n. For the case n = 1, we have that

ξ1 =
1√

d− b
√
dc

=

√
d+ b

√
dc

d− b
√
dc2

,

so the result holds for p1 = b
√
dc and Q1 = d− b

√
dc2.

Let us assume that the induction hypothesis is true. As ξn−1 = bn−1 + 1
ξn

, in order to prove
the result, we have to �nd Pn, Qn ∈ N such that

√
d+ Pn−1

Qn−1

= bn−1 +
Qn√
d+ Pn

.

This is equivalent to the system of equations:{
d+ Pn−1Pn = bn−1Qn−1Pn +Qn−1Qn

Pn−1 + Pn = bn−1Qn−1

(1′)=(1)−Pn(2)

⇐=======⇒
(2′)=(2)

{
d− P 2

n = Qn−1Qn

Pn−1 + Pn = bn−1Qn−1

The system on the right can easily be solved by �rst �nding Pn from the second equation
and then using it to �nd Qn in the �rst equation. As this �rst equation implies that P 2

n ≡ d
mod Qn, we �nish.

Now we can give the main result:
Theorem 3.12. The equation x2 − dy2 = (−1)nQn is always soluble.

Proof. We know from lemma 3.1 that
√
d =

ξnpn−1 + pn−2

ξnqn−1 + qn−2

(3.19)
=

(
√
d+ Pn)pn−1 +Qnpn−2

(
√
d+ Pn)qn−1 +Qnqn−2

=
pn−1

√
d+ (Pnpn−1 +Qnpn−2)

qn−1

√
d+ (Pnqn−1 +Qnqn−2)

,

so,

1 =
pn−1

√
d+ (Pnpn−1 +Qnpn−2)

(Pnqn−1 +Qnqn−2)
√
d+ dqn−1

.

As
√
d is an irrational number, we know that the following equations must hold:

pn−1 = Pnqn−1 +Qnqn−2, dqn−1 = Pnpn−1 +Qnpn−2.

Multiplying by pn−1 the �rst equation and subtracting qn−1 times the second one, we get:

p2
n−1 − dq2

n−1 = Qn(qn−2pn−1 − pn−2qn−1)
(3.2)
= (−1)n−2Qn = (−1)nQn.
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Remark 3.11. From Keng’s book, it can be deduced that if l 6= (−1)nQnm
2 where m ∈ Z

and |l|<
√
d, then the equation x2 − dy2 = l has no solution. This is a consequence2 of the

following result [22, Theorem 7.3.] for the case ξ =
√
d:

Proposition 3.5. If p
q

satis�es that |p2 − ξ2q2| < ξ, then p
q

is an approximant of ξ.

Furthermore, in Keng’s book a method is described to transform x2 − dy2 = l for any
l ∈ N+ into a Pell’s equation where |l| <

√
d [22, Section 11.5.].

Remark 3.12. The table C.5 contains the possible values of (−1)nQn for d ≤ 80.

Corollary 3.5. Let m be the period of the continued fraction expansion of
√
d. Let n > 1 and

p2
n−1 − dq2

n−1 = (−1)nQn. Then, p2
n−1+km − dq2

n−1+km = (−1)n+kmQn+km for all k ∈ N.
Proof. This follows from the previous theorem and the fact that ξn = ξn+km so,

√
d+ Pn−1

Qn−1

=

√
d+ Pn−1+km

Qn−1+km

.

Let us now focus on the original Pell’s equation (3.18).
Theorem 3.13. Pell’s equation x2 − dy2 = 1 has a non-trivial solution for every integer d

that is not a perfect square. Furthermore, if n is the smallest integer such that (−1)nQn = 1, all
the solutions of x2 − dy2 = 1 are given by

x+
√
dy = ±(pn−1 +

√
dqn−1)s, with s ∈ Z. (3.20)

Proof. Let l = (−1)nQn for some n ∈ N+. Then, by corollary 3.5, the equation x2 − dy2 = l
has in�nitely many solutions. If we consider the classes of x mod |l| and y mod |l|, we can
partition this set of solutions into l2 classes, in which there must be at least one class with at
least two solutions. Therefore, there exist (x1, y1), (x2, y2) such that

x2
1 − dy2

1 = x2 − dy2
2 = l, x1 ≡ x2 mod |l|, y1 ≡ y2 mod |l|.

It is easy to see that if we set

x =
x1x2 − dy1y2

l
, y =

x1y2 − y1x2

l
,

these are both integers, (x, y) 6= (±1, 0) and

x2 − dy2 =
(x1x2 − dy1y2

l

)2

− d
(x1y2 − y1x2

l

)2

=
(x2

1 − dy2
1)(x2 − dy2

2)

l2
= 1.

From proposition 3.5 we infer that x
y

= pn−1

qn−1
is an approximant of

√
d, so 1 = (−1)kQk for

some k ∈ N. Let us now prove that for the smallest n ∈ N such that 1 = (−1)kQk, we generate
all solutions of the equation.

2The m in the condition comes from the fact that if x2 − dy2 = l has a solution, a trivial solution of
x2 − dy2 = lm2 is (mx,my).
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Let ε = pn +
√
dqn > 1. As ±(pn +

√
dqn)−1 = ±(pn −

√
dqn), it su�ces to prove that all

positive solutions of x2− dy2 = 1 are given by x+
√
dy = εs (where s > 0). Let (x, y) be one

of those positive solutions, so x+
√
y > 1. Then, for some s > 0:

εs ≤ x+
√
dy < εs+1 ⇒ 1 ≤ ε−s(x+

√
dy) < ε.

It is easy to see that ε−s(x +
√
dy) = x0 +

√
dy0 for some integers (x0, y0) and that

x2
0 − dy2

0 = 1, as (x0 +
√
dy0)−1 = εs(x −

√
dy) = x0 − dy0. To �nish the proof, it su�ces

to prove that (x0, y0) = (1, 0), as this would imply that x +
√
dy = εs for some s > 0. Let us

suppose that 1 < x0 +
√
dy0 < ε. Then, 0 < ε−1 < x0 +

√
dy0 < 1, so we have:

2x0 = (x0 +
√
dy0) + (x0 −

√
dy0) > 1 + ε−1 > 0

2
√
dy0 = (x0 +

√
dy0)− (x0 −

√
dy0) > 1− 1 > 0

We know that 1 < x0 +
√
dy0 < pn−1 +

√
dqn−1. As x0 =

√
1 + dy2

0 and we also know
that pn−1 =

√
1 + dq2

n−1, so we get that 1 <
√

1 + dy2
0 +
√
dy0 <

√
1 + dq2

n−1 +
√
dqn−1.

The function fd(t) =
√

1 + dt2 +
√
dt is continuous and monotonically increasing for

t > 0, so we infer that 0 < y0 < qn−1. As x2
0 − dy2

0 = p2
n−1 − dqn−1, and x0 > 0, we also get

that 0 < x0 < pn−1. By proposition 3.5, x0
y0

must be a convergent of
√
d, and we arrive at a

contradiction as we had taken the smallest n such that pn−1 +dqn−1 = 1, but the denominator
of the convergent y0 is less than qn−1.

Remark 3.13. In the table C.6, I have displayed the smallest solutions of x2 − dy2 = 1 for
d < 132 with the help of the function A.4.6. It is very interesting to see how di�erent values
of d give solutions of such di�erence of scale. This same phenomenon can be appreciated in
much more detail in �gure B.3, where the y of the smallest solution have been plotted for every
d < 10000. We can observe how large the size of the solution is compared to the value of d,
to the point that for the largest y the size is comparable to the function 100

√
d.

This gives us some perspective on the reason why mathematicians in the past were unable
to solve Pell’s equation for some values of d; for example, the smallest integer solution of
x2− 9959y2 = 1 has an order of magnitude of 10208, making it impossible to �nd without the
help of a theory as the one given by continued fractions, and a computer.

Remark 3.14. We have seen in the previous theorem that x2−dy2 = 1 always has a solution.
However, this is not the case for the equation x2 − dy2 = −1. It is easy to see that for d = 3,
we have that x2 − 3y2 ≡ x2 + y2 ≡ 3 mod 4, but x2 and y2 can only be equivalent to either
0 or 1 mod 4. Therefore, the equation x2 − 3y2 = −1 does not have a solution.

In fact, it can be proven that a su�cient and necessary condition for x2−dy2 = −1 to have
solutions is that the continued fraction expansion of

√
d has an odd period. As a downside,

we do not know any infallible criterion yet to determine if the square root of a number has an
odd period without computing its continued fraction expansion [39, Exercise 6.7.5.].
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3.5.2 Connections of Pell’s equation with the theory of quadratic fields

Pell’s equation appears naturally in a multitude of problems of Diophantine analysis, out of
which perhaps one of the �rst was Archimedes’ cattle problem, a problem from 251 B.C.
which involves computing the number of cattle in a herd from a given set of restrictions [41].

But, what really made this equation relevant in number theory were its applications to the
theory of quadratic �elds and, more speci�cally, to the study of the fundamental units of the
ring of integers of those �elds.

De�nition 3.7. A quadratic �eld is a �eld of the form:

Q(
√
d) = {a+ b

√
d : a, b ∈ Q}

where d ∈ Z is not a perfect square. When d < 0, Q(
√
d) is called imaginary and when d > 0,

Q(
√
d) is said to be real. AsQ(

√
d) ∼= Q(

√
d′), if and only if d = k2d′ for some k ∈ Z, we often

assume that d is square-free, that is, that d is equal to the product of di�erent primes.

De�nition 3.8. Let α ∈ Q(
√
d). The conjugate of α = a+ b

√
d is de�ned as α = a− b

√
d,

its trace is de�ned as Trα = α + α = 2a and its norm is de�ned as Nα = αα = a2 − db2.

De�nition 3.9. The ring of integers of Q(
√
d) is

Od = {α ∈ Q(
√
d) : α2 − tα + n = 0 for some t, n ∈ Z}

= {α ∈ Q(
√
d) : Trα,Nα ∈ Z}

Proposition 3.6. The norm has the following properties:

1. N(αβ) = N(α)N(β) for all α, β ∈ Q(
√
d).

2. An element ε ∈ Od is a unit of the ring of integers if and only if N(ε) = ±1.

Proof. For the �rst one, if α = a1 + a2

√
d and β = b1 + b2

√
d, we therefore have that

αβ = (a1b1 + da2b2) + (a2b1 + a1b2)
√
d, so

N(αβ) = (a1b1 + da2b2)2 − d(a2b1 + a1b2)2 = (a2
1 + da2

2)(b2
1 + db2

2) = N(α)N(β)

The second one can easily be deduced from the fact that by 1,N is a group homomorphism
between Od and Z (with respect to the product), and so, N(α−1) = N(α)−1. Thus, N maps
the units of Od to the units of Z, so N(ε) = ±1 for all units of Od.

Theorem 3.14. Let d ∈ Z be square-free.
The ring of integers in Q(

√
d) is Od = Z[δ0] = Z + δ0Z where δ0 is:

δ0 =

{√
d for d ≡ 2, 3 mod 4

1+
√
d

2
for d ≡ 1 mod 4

(3.21)

Proof. It can be found in Trifkovic’s book [39, Theorem 4.2.2.].
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De�nition 3.10. The fundamental unit of Od is a unit εd ∈ Od satisfying the following
conditions:

• For any unit ε ∈ Od, ε = ±εkd for some k ∈ Z.
• εd > 1.

Theorem 3.15. The fundamental unit of Od can be computed by the means of the simple
continued fraction expansion of

√
d.

Proof. I will only prove the case where d ≡ 2, 3 mod 4. However, it is worth noting that for
the case d ≡ 1 mod 4, the way of computing the fundamental unit is also by computing a sim-
ple continued fraction expansion: instead of computing the expansion of

√
d, it is necessary to

compute the expansion of δ0. This method is described in Trifkovic’s book [39, Theorem 6.7.4.]
and it proves the general case of how the simple continued fraction expansion of a quadratic
irrational δ may be used to compute the fundamental unit of a ring of the form Z[δ].

Let us now proceed to prove the case where d ≡ 2, 3 mod 4. By proposition 3.6, we know
that N(εd) = ±1 so, if εd = x + y

√
d, then x, y ∈ Z must be a solution of one of these Pell’s

equations:

x2 − dy2 = −1 x2 − dy2 = 1

Let us suppose that for this d there are no solutions to the �rst equation. Then, all units must
have norm 1 and, by theorem 3.13, if n is the smallest integer such that (−1)Qn = 1, then
εd = pn−1 +

√
dqn−1 is the fundamental unit of Od.

Now let us suppose that there exists x0, y0 ∈ N such that N(ε0) = N(x0 +
√
dy0) = −1.

By theorem 3.13, once again, if n is the smallest integer such that (−1)Qn = 1, then every
unit of norm 1 is ±εk1 with k ∈ N, ε1 = pn−1 +

√
dqn−1. Let m ∈ N such that εm1 < ε0 < εm+1

1

and let εd = ε0ε
−m
1 . We claim that εd is the fundamental unit ofOd. It is easy to see that εd > 1

andN(εd) = −1, so the only thing left to prove is that for any unit ε, ε = ±εkd for some k ∈ Z.

It is clear that ε2d = ε1, because N(ε2d) = 1 and 1 < ε2d < ε21. Without any loss of generality,
let ε > 0 a unit. If N(ε) = 1, ε = εk1 = ε2kd for some k ∈ Z and if N(ε) = −1, N(ε εd) = 1 and
so, ε = ε2k−1

d for some k ∈ Z as we wanted to prove.

Furthermore, by proposition 3.5, it is easy to see that if εd = x+
√
dy, then x/y has to be

an approximant of
√
d and, in fact, it is easy to prove that (x, y) = (pn−1, qn−1) where n ∈ N+

is the smallest such that (−1)nQn = −1.

Remark 3.15. In a similar fashion to remark 3.13, I have displayed in the table C.7 the fun-
damental unit of Q(

√
d) for the �rst 60 non-square integers. Once again, di�erent values of

d give completely di�erent solutions in terms of size. However, in �gure B.4, we can see that
the size of the fundamental units is much smaller than the size of the smallest solution of
x2 − dy2 = 1, as the �rst is comparable to 10

√
d. This is because fundamental units do not

necessarily have to be solutions of x2 − dy2 = 1, they can also be solutions of x2 − dy2 = −1
and also, if d ≡ 1 mod 4, the x and y can be half integers.
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3.6 Open problems and lines of research
To close this dissertation, I will address some of the topics of research in number theory in
which continued fractions are involved:

The e�orts to �nd general expressions of the continued fractions of famous constants have
not worn down. The focus nowadays [23, 24] is mainly on:

• Hurwitz continued fractions, which are periodic continued fraction of the kind:

[b0, . . . , br−1, f1(k), . . . , fs(k)]∞k=h = [b0, . . . , f1(h), . . . , fs(h), f1(h+1), . . . , fs(h+1), . . . ]

for certain r, s, h ∈ N, where f1(k), . . . , fs(k) are polynomials in k with rational coe�-
cients. The continued fractions of e2+1

e2−1
, e+1
e−1

and e are of this kind.

• Tasoev continued fractions, which are periodic continued fraction of the kind:

[b0, . . . , br−1, g1(k), . . . , gs(k)]∞k=h = [b0, . . . , g1(h), . . . , gs(h), g1(h+1), . . . , gs(h+1), . . . ]

for certain r, s, h ∈ N, where g1(k), . . . , gs(k) are exponentials in k with rational coef-
�cients.

An ongoing problem in number theory is the search for bounds for the irrationalitymea-

sure of famous constants [5]. Since Apèry used the fact that µ(ζ(3)) > 1, to prove the irra-
tionality of the constant named after him [40], multiple papers have been written on that topic.
One of the latest results has been a prominent paper by Zeilberger and Zudilin that claims that
the irrationality measure of π is at most 7.103205334137 . . . [45]. In particular, the study of
the irrationality measure of π is linked to many other open problems, such as the convergence
of the generalised Flint Hill series Su,v =

∑∞
n=1

1
nu|sin(n)|v , which has been proven to con-

verge if µ(π) < 1 + u
v

[1].

Another �eld of research are the simple continued fractions with coe�cients in F[x]. With
a few changes, some of the theorems that we have proven in this chapter can be adapted to
this new setup in order to study topics such as purely periodic polynomial continued frac-

tions, rational approximation in F[x] and Pell’s polynomial equation [2, 26, 29].

As for the Lagrange spectrum, there are two main lines of research:
On the one hand, there is the study of the relation between the Lagrange and Markov spec-

tra, which is not fully known yet. The last articles on the topic indicate that in order to crack
this problem, techniques from both dynamical systems and geometry are needed [30].
On the other hand, mathematicians are becoming more and more interested in studying the
structure of the Lagrange spectrum for simple continued fractions with coe�cients in

other rings. Regarding this topic, I refer to Asmus L. Schmidt, who has done signi�cant
work on computing the limit points of the Lagrange spectrum in �elds such as Q(i

√
2) [36]

or Q(i
√

11) [35].
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A Code

A.1 Transformations of continued fractions

A.1.1 Continued fraction from its convergents

FromConvergents::usage="FromConvergents[n_,listP_,listQ_] takes as
parameters two lists of length at least n+1 and computes the lists of
coefficients of the continued fraction whose partial numerators and

denominators are the arguments of the function. If the lists P and Q
satisfy P[[i-1]]Q[[i]]-P[[i]]Q[[i-1]] for some i<n+2, it will return
ComplexInfinity as part of the lists of coefficients."

FromConvergents[n_,listP_,listQ_]:=
Module[{P=listP, Q=listQ,A={-listP[[1]]listQ[[2]]+listP[[2]]listQ[[1]]},

B={listP[[1]],listQ[[2]]}},(*We initialize the variables*)
If[Length[P]<(n+1)||Length[Q]<(n+1),Message[WrongLength::error,n+1,n+1];

Return[]]; (*Error message*)
A=Join[A,Table[-(P[[i]]Q[[i+1]]-P[[i+1]]Q[[i]])/(P[[i-1]]Q[[i]]

-P[[i]]Q[[i-1]]),{i,2,n}]]; (*We apply the formulas*)
B=Join[B,Table[(P[[i-1]]Q[[i+1]]-P[[i+1]]Q[[i-1]])/(P[[i-1]]Q[[i]]

-P[[i]]Q[[i-1]]),{i,2,n}]];
{A,B} (*We return lists A and B*)]

FromConvergentsK::usage="FromConvergentsK[P_,Q_] takes as parameters two
pure functions and it returns two functions that describe the

coefficients of the continued fraction whose partial numerators and
denominators are P and Q."

FromConvergentsK[P_,Q_]:={Function[n,If[n==1,-P[0] Q[1]+P[1]Q[0],
-(P[n-1]Q[n]-P[n]Q[n-1])/(P[n-2]Q[n-1]-P[n-1]Q[n-2])]],

Function[n,If[n==1,Q[1],(P[n-2]Q[n]-P[n]Q[n-2])/(P[n-2]Q[n-1]
-P[n-1]Q[n-2])]]}(*The definition of pure functions inside a module

is done through the Function command*)
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A.1.2 Transformation to continued fraction with partial denominator 1

OnesDown::usage="OnesDown[n_,listA_,listB_] receives as parameters two
lists of length n and n+1 with the coefficients of a continued
fraction and returns the partial numerators of the equivalent
continued fraction such that all the partial denominators are 1.";

OnesDown[n_,listA_,listB_]:=
Module[{A=listA, B=listB,C={listA[[1]]/listB[[2]]}},
If[Length[A]<n||Length[B]<(n+1),Message[WrongLength::error,n,n+1];

Return[]];(*Error message*)
C=Join[C,Table[A[[i]]/(B[[i]]B[[i+1]]),{i,2,n}]]] (*This is the

transform*)

OnesDownK::usage="OnesDownK[A_,B_] receives as parameters two pure
functions that describe the coefficients of a continued fraction and
returns a pure function with the partial numerators of the equivalent
continued fraction such that all the partial denominators are 1.";

OnesDownK[A_,B_]:=Function[n,If[n==1,A[n]/B[n],A[n]/(B [n-1]B[n])]]

A.1.3 Transformation to continued fraction with partial numerator 1

OnesUp::usage="OnesUp[n_,listA_,listB_] receives as parameters two lists
of length n and n+1 with the coefficients of a continued fraction

and returns the partial denominators of the equivalent continued
fraction such that all the partial numerators are 1.";

OnesUp[n_,listA_,listB_]:=
Module[{A=listA, B=listB, Z={1,1/listA[[1]]},D={listB[[1]]}},
If[Length[A]<n||Length[B]<(n+1),Message[WrongLength::error,n,n+1];

Return[]];(*Error message*)
Z=Join[Z,Table[If[EvenQ[i],Product[A[[2j-1]]/A[[2j]],{j,1,i/2}],

Product[A[[2j]]/A[[2j+1]],{j,1,(i-1)/2}]/A[[1]]],{i,2,n}]];
D=Join[D,Table[Z[[i+1]]B[[i+1]],{i,1,n}]] (*To define this, we treat

differently the case when i is odd from when it is even*)]

OnesUpK::usage="OnesUpK[A_,B_] receives as parameters two pure functions
that describe the coefficients of a continued fraction and returns a
pure function with the partial denominators of the equivalent

continued fraction such that all the partial numerators are 1.";

OnesUpK[A_,B_]:=Function[n,B[n]Product[A[k]^(-1)^(n-k+1),{k,1,n}]]
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A.1.4 Transformation from sum to continued fraction

SumToCF::usage="SumToCF[F_] takes the pure function F that determines
the general term of a series and returns the expression of the
coefficients of the continued fraction whose convergents are the
partial sums of that series, via Euler’s identity."

SumToCF[F_]:={Function[n,If[n==1,F[1],-F[n]/F[n-1]]],
Function[n,If[n==1,1,1+F[n]/F[n-1]]]}

A.1.5 Canonical even part of a continued fraction

CanonicalEvenPart::usage="CanonicalEvenPart[n_,listA_,listB_] takes as
parameters two lists of length at least 2n and 2n+1 that are the
coefficients of a continued fraction and computes the lists of the
first n coefficients of its canonical even part.";

CanonicalEvenPart[n_,listA_,listB_]:=
Module[{A=listA,B=listB,C={listA[[1]]listB[[3]]},

D={listB[[1]],listA[[2]]+listB[[2]]listB[[3]]}},(*We initialize the
lists C and D*)

If[Length[A]<2n||Length[B]<(2n+1),Message[WrongLength::error,2n,2n+1];
Return[]];(*Error message*)

C=Join[C,Table[-A[[2i-2]]A[[2i-1]]B[[2i+1]]/B[[2i-1]],{i,2,n}]];
D=Join[D,Table[A[[2i]]+B[[2i]]B[[2i+1]]+A[[2i-1]]B[[2i+1]]/B[[2i-1]],

{i,2,n}]];{C,D}]

CanonicalEvenPartK::usage="CanonicalEvenPartK[A_,B_] takes as parameters
two pure functions that are the coefficients of a continued fraction
and returns the coefficients of its canonical even part (as pure

functions).";

CanonicalEvenPartK[A_,B_]:={Function[n,If[n==1,A[1]B[2],
(A[2n-2]A[2n-1]B[2n])/B[2n-2]]],

Function[n,If[n==1,A[2]+B[1]B[2],A[2n]+B[2n-1]B[2n]+
(A[2n-1]B[2n])/B[2n-2]]]}
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A.1.6 Canonical odd part of a continued fraction

CanonicalOddPart::usage="CanonicalOddPart[n_,listA_,listB_] takes as
parameters two lists of length at least 2n+1 and 2n+2 that are the
coefficients of a continued fraction and computes the lists of the
first n coefficients of its canonical odd part.";

CanonicalOddPart[n_,listA_,listB_]:=(*You need lists of length 2n+1 and
2n+2*)

Module[{A=listA,B=listB,C={-listA[[1]]listA[[2]]listB[[4]]/listB[[2]],
-listA[[3]]listA[[4]]listB[[6]]listB[[2]]/listB[[4]]},
D={listB[[1]]+listA[[1]]/listB[[2]],listA[[3]]listB[[2]]+
listB[[2]]listB[[3]]listB[[4]]+listA[[2]]listB[[4]]}},
(*We initialize the lists C and D*)

If[Length[A]<(2n+1)||Length[B]<(2n+2),Message[WrongLength::error,2n+1,
2n+2];Return[]];(*Error message*)

C=Join[C,Table[-A[[2i-1]]A[[2i]]B[[2i+2]]/B[[2i]],{i,3,n}]];
D=Join[D,Table[A[[2i+1]]+B[[2i+1]]B[[2i+2]]+A[[2i]]B[[2i+2]]/B[[2i]],

{i,2,n}]];{C,D}]

CanonicalOddPartK::usage="CanonicalOddPartK[A_,B_] takes as parameters
two pure functions that are the coefficients of a continued fraction
and returns the coefficients of its canonical odd part (as pure
functions).";

CanonicalOddPartK[A_,B_]:={Function[n,If[n==2,-A[3]A[4]B[1]B[5]/B[3],
-A[2n-1]A[2n]B[2n+1]/B[2n-1]]],

Function[n,If[n==0,B[0]+A[1]/B[1],If[n==1,A[3]B[1]+B[1]B[2]B[3]
+A[2]B[3],A[2n+1]+B[2n]B[2n+1]+A[2n]B[2n+1]/B[2n-1]]]]}

A.1.7 Extension of a continued fraction by an element

Extend::usage="Extend[r_,p_,n_,listA_,listB_] takes two lists of length
at least n and n+1 that are the coefficients of a continued fraction
and returns the coefficients of the continued fraction whose
approximants are the same until the position p, where the approximant
is the element r, and after that the k+1-th approximant is the k-th

of the original continued fraction.";

Extend[r_, p_,n_,listA_,listB_]:=Module[{A=listA,B=listB, ND=PartialND[p
,listA,listB],rho,C,D},

If[Length[A]<n||Length[B]<(n+1),Message[WrongLength::error,n,n+1];
Return[]];(*First error message*)

If[p>n,Message[WrongPosition::error,p,n];Return[]]; (*Second error
message*)

rho=(ND[[1,p+1]]-ND[[2,p+1]]*r)/(ND[[1,p]]-ND[[2,p]]*r);
C=Table[Which[i<=p,A[[i]],i==p+1,rho,i==p+2,-A[[p+1]]/rho,i>=p+3,

A[[i-1]]],{i,1,n+1}];
D=Table[Which[i<=p,B[[i]],i==p+1,B[[p+1]]-rho,i==p+2,1,i==p+3,B[[p+2]]

+A[[p+1]]/rho,i>=p+4,B[[i-1]]],{i,1,n+2}];
{C,D}]
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A.1.8 Bauer-Muir transformation

BauerMuir::usage="BauerMuir[n_,listA_,listB_,listG_] takes as parameters
three lists of lengths n, n+1 and n+1 with the coefficients of a

continued fraction and the coefficients for the Bauer-Muir
transformation and returns a list with the coefficients of the
transformed continued fraction.";

BauerMuir[n_,listA_,listB_,listG_]:=
Module[{A=listA,B=listB,G=listG,L,C={listA[[1]]-listG[[1]](listB[[2]]

+listG[[2]])},D={listB[[1]]+listG[[1]],listB[[2]]listG[[2]]}},(*We
set the first and the first two elements of C and D respectively*)

If[Length[A]<n||Length[B]<(n+1)||Length[G]<(n+1),
Message[WrongLength2::error,n,n+1,n+1];Return[]];(*Error message*)

L=Table[A[[i]]-G[[i]](B[[i+1]]+G[[i+1]]),{i,1,n}]; (*Creates a list with
the lambdas*)

C=Join[C,Table[A[[i-1]]*L[[i]]/L[[i-1]],{i,2,n}]];
D=Join[D,Table[B[[i+1]]+G[[i+1]]-G[[i-1]]*L[[i]]/L[[i-1]],{i,2,n}]];(*

Applies the definition of th Bauer-Muir transformation*)
{C,D}]

BauerMuirK::usage=" BauerMuirK[A_,B_,G_] takes as parameters three pure
functions that describe the coefficients of a continued fraction and
the coefficients for the Bauer-Muir transformation and returns a list
with two pure functions that describe the coefficients of the

transformed continued fraction.";

BauerMuirK[A_,B_,G_]:={Function[n,If[n==1,A[1]-G[0](B[1]+G[1]),
A[n-1]*(A[n]-G[n-1](B[n]+G[n]))/(A[n-1]-G[n-2](B[n-1]+G[n-1]))]],

Function[n,If[n<2,B[n]+G[n],B[n]+G[n]-G[n-2]*(A[n]-G[n-1](B[n]+G[n]))
*1/(A[n-1]-G[n-2](B[n-1]+G[n-1]))]]}(*It has the same implementation
as the version for lists ith the exception of the indices of the
functions that change due to the fact that in Mathematica the lists
begin with 1 and our coefficients begin with 0*)



64 continued fractions

A.2 Evaluation of continued fractions

A.2.1 Forward recurrence algorithm

ForwardRecurrence::usage="ForwardRecurrence[n_, listA_, listB_] takes as
parameters two lists of length at least n and n+1 and computes the n

-th approximant via the forward recurrence method."

ForwardRecurrence[n_,listA_,listB_]:=
Module[{A=Prepend[listA,1],B=listB,P={listB[[1]],listB[[2]]listB[[1]]

+listA[[1]]},Q={1,listB[[2]]}},(*Initialization of variables*)
If[Length[A]<(n+1)||Length[B]<(n+1),Message[WrongLength::error,n,n+1];

Return[]];(*Error message*)
For[i=3,i<=n+1,i++,AppendTo[P,B[[i]]P[[i-1]]+A[[i]]P[[i-2]]];

AppendTo[Q,B[[i]]Q[[i-1]]+A[[i]]Q[[i-2]]]];(*Sequential updating of
the lists of partial numerators and denominators*)

Last[P/Q](*Returns n-th approximant*)]

A.2.2 Euler-Minding algorithm

EulerMinding::usage="EulerMinding[n_, listA_, listB_] takes as
parameters two lists of length at least n and n+1 and computes the n-
th approximant via the Euler-Minding method."

EulerMinding[n_,listA_,listB_]:=
Module[{A=Prepend[listA,1],B=listB,Q={1,listB[[2]]},W={listB[[1]]},

det=1},(*Initialization of variables*)
If[Length[A]<(n+1)||Length[B]<(n+1),Message[WrongLength::error,n,n+1];

Return[]];(*Error message*)
For[i=3,i<=n+1,i++,AppendTo[Q,B[[i]]Q[[i-1]]+A[[i]]Q[[i-2]]]];(*We first

create a list of the partial denominators*)
For[i=2,i<=n+1,i++,det=det*(-A[[i]]); AppendTo[W,W[[i-1]]

-(det)/(Q[[i]]Q[[i-1]])]];(*From that, we compute the approximants
using Euler Minding’s formula*) Last[W]]

A.2.3 Backward recurrence algorithm

BackwardRecurrence::usage="BackwardRecurrence[n_, listA_, listB_] takes
as parameters two lists of length at least n and n+1 and computes the
n-th approximant via the backward recurrence method."

BackwardRecurrence[n_,listA_,listB_]:=
Module[{A=Prepend[listA,1],B=listB,L={0}},
If[Length[A]<(n+1)||Length[B]<(n+1),Message[WrongLength::error,n,n+1];

Return[]];(*Error message*)
For[i=n+1,i>1,i--,L=A[[i]]/(B[[i]]+L)]; (*We create a list backwards by

applying sequentially the iteration L*)
First[L+B[[1]]]]
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A.3 Continued fractions in the complex numbers

A.3.1 Chordal distance

ChordalD::usage="ChordalD[z1_,z2_] takes as parameters two complex
numbers and returns its distance according to the chordal metric.";

ChordalD[z1_,z2_]:=Which[z1==Infinity&&z2==Infinity,0,z1==Infinity,
2/Sqrt[1+Norm[z2]^2],z2==Infinity,2/Sqrt[1+Norm[z1]^2],True,
2Norm[z1-z2]/(Sqrt[1+Norm[z1]^2]*Sqrt[1+Norm[z2]^2])]

A.3.2 Convergence of the Stern-Stolz series of a continued fraction

SternStolz::usage="SternStolz[A_,B_] takes as parameters two pure
functions that describe the coefficients of a continued fraction and
returns the conditions under which the Stern-Stolz series of that
continued fraction converges. True means the Stern-Stolz series
converges so, the continued fraction diverges; whereas False means
that the Stern-Stolz series diverge, and this may or may not imply
the convergence of the continued fraction.";

SternStolz[A_,B_]:=Simplify[
SumConvergence[Abs[B[2 n]Product[A[2k-1]/A[2k],{k,1,n}]],n]&&
SumConvergence[Abs[B[2n+1]/A[1]Product[A[2k]/A[2k+1],{k,1,n}]],n]]
(*For this function, we divide into even and odd parts to make the

study of the convergence of the series easier for Mathematica.*)

A.3.3 Representation of a function as a regular C-fraction

CFraction::usage="CFraction[n_,Fx_,x_] takes a natural number n and a
expression defining a function Fx of x and returns a list with the n
first terms of the regular C-fraction equivalent to Fx. It will
likely fail if it is not given a normal function."

CFraction[n_,Fx_,x_]:=Module[{k,pade1,pade2,pade,cf,a0=Fx/.{x->0}},
pade1=Table[PadeApproximant[Fx,{x,0,{k,k}}],{k,0,Ceiling[(n+1)/2]}];

(*Computes the terms in the diagonal of the Pade table*)
If[a0==0,pade1[[1]]=0]; (*The function PadeApproximant fails to return

the approximant (0,0) if this is zero, so we have implemented this
case separatedly*)

pade2=Table[PadeApproximant[Fx,{x,0,{k+1,k}}],{k,0,Floor[(n+1)/2]}];
(*Computes the terms under the diagonal*)

pade=Table[If[OddQ[k],pade1[[(k+1)/2]],pade2[[k/2]]],{k,1,n+1}]; (*Join
both to form the staircase sequence*)

cf=Simplify[FromConvergents[n,Numerator[pade],Denominator[pade]]];
Prepend[OnesDown[n,cf[[1]],cf[[2]]],a0] (*Uses FromConvergents to get

the continued fraction and OnesDown to get the partial denominators
equal 1*)]
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A.4 Simple continued fractions and number theory

A.4.1 Euclidean algorithm to represent simple continued fractions

EuclideanSCF::usage="EuclideanSCF[rat_] takes as argument a rational
number (or a quotient between two Gaussian integers) and returns a
list of the coefficients of the simple continued fraction expansion
in the natural numbers (or in Gaussian integers) through the
Euclidean algorithm. The reason why this algorithm works for Gaussian
integers is that the functions Quotient and Mod are programmed to

work with them"

EuclideanSCF[rat_]:=Module[{num=Numerator[Simplify[rat]],den=Denominator
[Simplify[rat]],k,Q={}}, (*The following piece of code implements the
Euclidean algorithm. The variable k is a dummy variable used to

store and upgrade the values of num and den after every iteration*)
While[den!=0,

AppendTo[Q,Quotient[num,den]];k=Mod[num,den];num=den;
den=k]; Q (*This is the list with the coefficients*)]

A.4.2 Euclidean algorithm for simple continued fractions with polynomial
coe�icients

EuclideanSCFPolynomial::usage="EuclideanSCF[rat_,x_,mod_] takes as
argument a rational function over x (a quotient of two polynomials
over x) and returns a list of the coefficients of the simple
continued fraction expansion (polynomials) through the Euclidean
algorithm. The third argument is an optional one that allows us to
work with polynomials with coefficients in Zn by adding the option:
Modulus->n"

EuclideanSCFPolynomial[rat_,x_]:=Module[{num=Numerator[Simplify[rat]],
den=Denominator[Simplify[rat]],r,Q={}},

While[Exponent[den,x]!=-Infinity,AppendTo[Q,
PolynomialQuotient[num,den,x]];(*As polynomial=0 does not have a

logical value, if we used den!=0 the code would not work, that is
why we use Exponent[den,x]!=-Infinity, as 0 is the only polynomial
with degree -Infinity (according to Mathematica)*)

r=PolynomialRemainder[num,den,x];num=den;den=r];
Q (*The rest of the implementation is the same as EuclideanSCF, with the

only difference that PolynomialQuotient and PolynomialReminder are
used instead of Quotient and Mod*)]

EuclideanSCFPolynomial[rat_,x_,mod_]:=Module[
{num=Numerator[Simplify[rat]],den=Denominator[Simplify[rat]],r,Q={}},

While[Exponent[den,x]!=-Infinity,AppendTo[Q,
PolynomialQuotient[num,den,x,mod]];

r=PolynomialRemainder[num,den,x,mod];num=den;den=r]; (*This includes the
option to work in finite fields*)

Q]
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A.4.3 Simple continued fraction algorithm

SCFAlgorithm[real_,n_]:=Module[{B={},r=real},(*This piece of code
computes the complete quotients r and stores their integer parts in
the list B*)

For[i=0,i<=n,i++,B=AppendTo[B,Floor[r]];r=1/(r-B[[i+1]])]; B]

A.4.4 Complete quotients of a quadratic irrational

CompleteQuotients::usage="CompleteQuotients[r_] takes a quadratic
irrational as an argument and returns a finite list with all the
possible complete quotients of r. The complete quotients that are
found inside the inner brackets are those which repeat periodically.
If it is given something different from a quadratic irrational, it
will return a error message instead."

CompleteQuotients[r_]:=Module[{q,l,period,lperiod,list={},x,rep},
If[!QuadraticIrrationalQ[r],Message[NotAQuadraticIrrational::error];

Return[]]; (*Error message*)
q=ContinuedFraction[r]; (*Stores the continued fraction expansion of r*)
period=Last[q]; (*Stores the periodic part of that expansion*)
l=Length[q]-1;
lperiod=Length[period];x=q;
For[i=1,i<=l-1,i++,AppendTo[list,Delete[x,1]];x=Last[list]]; (*This loop

produces a list where the elements are the result of removing the
first digits of the continued fraction expansion of r (this
corresponds to the definition of complete quotients)*)

rep=Table[{RotateLeft[period,n]},{n,0,lperiod-1}]; (*This produces a
list in which we find all the possible cyclic permutations of the
periodic part of the expansion. This corresponds to the expansion of
all the complete quotients that repeat periodically*)

list=FromContinuedFraction/@list;
rep=FromContinuedFraction/@rep; (*These past two lines generate the real

numbers associated to the lists that we have created*)
Join[list,{rep}] (*The union of these lists (the second one inside

brackets) give us our desired list as a result*)]
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A.4.5 Lagrange constant of a quadratic irrationality

LagrangeConstant::usage= "LagrangeConstant[r_] takes a quadratic
irrational as an argument and returns its Lagrange constant. If it is
given something different from a quadratic irrational, it will

return a error message instead."

LagrangeConstant[r_]:=Module[{q,period,rep,lperiod,repinv}, (*To compute
this, we will use the formula that calculates it from the continued

fraction expansion*)
If[!QuadraticIrrationalQ[r],Message[NotAQuadraticIrrational::error];

Return[]]; (*Error message*)
q=ContinuedFraction[Abs[r]];(*Stores the continued fraction expansion of

the absolute value of r. The absolute value is necessary for the
function to be able to deal with negative numbers*)

period=Last[q]; (*Stores the periodic part of that expansion*)
lperiod=Length[period];
rep=Table[{RotateLeft[period,n]},{n,0,lperiod-1}]; (*This produces a

list of the expansions of all complete quotients that repeat
periodically [b_n,b_n+1,...]*)

repinv=Reverse[rep,3];
repinv=Prepend[0]/@repinv ; (*This reverses the previous list and adds a

zero before it, so we get the possible limits when n->Infinity of
[0,b_n,...,b_1,b_0]*)

rep=FromContinuedFraction/@rep;
repinv=FromContinuedFraction/@repinv;(*We transform the continued

fractions into real numbers*)
Max[Simplify[rep+repinv]] (*The Lagrange constant is the greatest

element in the list that results when we add the elements of the
lists rep and repinv*)]

A.4.6 Smallest solution of x2 − dy2 = 1

SmallestPellSolution1::usage="SmallerPellSolution1[d] takes a non-square
integer and returns the list {x,y}, where x and y are the smallest

positive solutions of x^2-dy^2=1.";

SmallestPellSolution1[d_]:=Module[{rd,q,period,k=0,n=0,u},
If[IntegerQ[Sqrt[d]],Message[NonSquareInteger::error];Return[]]; (*Error

message*)
q= ContinuedFraction[Sqrt[d]];
If[Floor[Sqrt[d]]^2-d==1,u={Floor[Sqrt[d]],1},period=Last[q]; (*If the

0-th approximant is the solution, it stops*)
While[k!=1,k=(-1)^(n+1) Denominator[FromContinuedFraction[{period}]];

period=RotateLeft[period,1];n=n+1];
u=NumeratorDenominator[FromContinuedFraction[ContinuedFraction[Sqrt[d],

n]]]](*If not, it rotates the period until the (-1)^(n+1)Q_(n+1)=1
and it returns the n-th partial numerator and n-th partial
denominators which are the smallest solutions*)]
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A.4.7 Values of (−1)nQn for
√
d

PellsPossibilities::usage="PellsPossibilities[d_] takes a non-square
integer and returns a list of all possible values of the form (-1)^n
Q_n for which Pell’s equation x^2-dy^2=(-1)^n Q_n has integer
solutions. If it is given something different than an integer that is
not a perfect square, it will return a error message instead.";

PellsPossibilities[d_]:=Module[{sq=Sqrt[d],period,lperiod,rep,rep2},
If[IntegerQ[Sqrt[d]],Message[NonSquareInteger::error];Return[]]; (*Error

message*)
period=Last[ContinuedFraction[sq]];
lperiod=Length[period];
rep=Table[{RotateLeft[period,i]},{i,0,lperiod-1}]; (*This produces a

list of the expansions of all complete quotients of sqrt(d) that
repeat periodically *)

rep=FromContinuedFraction/@rep; (*We transform the continued fractions
into real numbers*)

rep2=Join[rep,rep];
Sort[DeleteDuplicates[Table[(-1)^k*Denominator[rep2[[k]]], {k,1,2lperiod

}]]] (*As some continued fraction expansions have a periodic part of
odd length, to compute all possibles (-1)^n Q_n, we need to iterate
twice the length of the period. After that, we return the solutions
sorted and without duplicates*)]

A.4.8 Graph of the n-th first solutions to Markov’s equation

MarkovSolutions::usage="MarkovSolutions[n_] generates n triples of
solutions to Markov’s equation from the initial triple {1,2,5}.";

MarkovSolutions[n_]:=Module[{list={{1,2,5}}},For[i=2,i<=n,i++,
AppendTo[list,If[EvenQ[i],{list[[Floor[i/2],1]],list[[Floor[i/2],3]],
3*list[[Floor[i/2],1]]*list[[Floor[i/2],3]]-list[[Floor[i/2],2]],
{list[[Floor[i/2],2]],list[[Floor[i/2],3]],3*list[[Floor[i/2],2]]*
list[[Floor[i/2],3]]-list[[Floor[i/2],1]]}]]];list]

MarkovGraph::usage="MarkovGraph[n_,fontColor_,fontSize_,edgeColor_,
ratio_] generates a graph with n triples of solutions to Markov’s
equation with the set colour of font for the numbers, that size of
font, that color of edges and that aspect ratio";

WhitePanel[label_]:=Panel[label,Background->White,FrameMargins->-2]
(*This is an auxiliary function to add a white panel under the numbers

of the graph so it looks better*)
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MarkovGraph[n_,fontColor_,fontSize_,edgeColor_,ratio_]:=Module[
{M=MarkovSolutions[n-2],G},(*We write MarkovSolutions[n-2], because

the two solutions {1,1,1},{1,1,2} will be added later*)
If[n<3,Message[MarkovGraphError::error];Return[]];
G=Graph[Join[{{1,1,1}\[UndirectedEdge]{1,1,2},

{1,1,2}\[UndirectedEdge]{1,2,5}},
Table[M[[i]]\[UndirectedEdge]M[[2i]],{i,1,Floor[(n-2)/2]}],
Table[M[[i]]\[UndirectedEdge]M[[2i+1]],{i,1,Floor[(n-3)/2]}]],
(*We create the graph by joining the triples*)
VertexLabels->{"Name",Placed[Automatic,Center,WhitePanel]},
VertexSize->Tiny,
GraphLayout->{"LayeredEmbedding","Orientation"->Left},
VertexLabelStyle->Directive[fontColor,fontSize],
VertexStyle->White, EdgeStyle->edgeColor, AspectRatio->ratio]
(*We set up the vertices labels and the rest of stylistic options*)]



B Figures

B.1 Regions of convergence of the parabola theorem for
multiple values of α
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B.2 First solutions of Markov’s equation

{1, 1, 1}{1, 1, 2}

{1, 2, 5}

{1, 5, 13}

{1, 13, 34}

{2, 5, 29}

{2, 29, 169}

{1, 34, 89}

{5, 13, 194}

{5, 194, 2897}

{2, 169, 985}

{5, 29, 433}

{5, 433, 6466}

{1, 89, 233}

{13, 34, 1325}
{13, 1325, 51641}

{5, 2897, 43261}

{13, 194, 7561}
{13, 7561, 294685}

{2, 985, 5741}

{29, 169, 14701}
{29, 14701, 1 278818}

{5, 6466, 96557}

{29, 433, 37666}
{29, 37666, 3 276509}

{34, 89, 9077}

{34, 1325, 135137}

{194, 2897, 1686049}

{194, 7561, 4400489}

{169, 985, 499393}

{169, 14701, 7 453378}

{433, 6466, 8399329}

{433, 37666, 48928105}
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B.3 Size of y of the smallest solution of x2 − dy2 = 1

B.4 Size of the fundamental unit of Q(
√
d)





C Tables

C.1 Padé table of ez

1
1

−z + 1

1
z2

2
− z + 1

1

− z3

6
+ z2

2
− z + 1

· · ·

z + 1
z
2

+ 1

− z
2

+ 1

z
3

+ 1
z2

6
− 2z

3
+ 1

z
4

+ 1

− z3

24
+ z2

4
− 3z

4
+ 1

· · ·

z2

2
+ z + 1

z2

6
+ 2z

3
+ 1

− z
3

+ 1

z2

12
+ z

2
+ 1

z2

12
− z

2
+ 1

z2

20
+ 2z

5
+ 1

− z3

60
+ 3z2

20
− 3z

5
+ 1

· · ·

z3

6
+ z2

2
+ z + 1

z3

24
+ z2

4
+ 3z

4
+ 1

− z
4

+ 1

z3

60
+ 3z2

20
+ 3z

5
+ 1

z2

20
− 2z

5
+ 1

z3

120
+ z2

10
+ z

2
+ 1

− z3

120
+ z2

10
− z

2
+ 1

· · ·

... ... ... ... . . .

C.2 Padé table of z2−1
z2+1

−1 −1
−1

2z2 + 1

−1

2z2 + 1
· · ·

−1 −1
−1

2z2 + 1

−1

2z2 + 1
· · ·

2z2 − 1 2z2 − 1
z2 − 1

z2 + 1

z2 − 1

z2 + 1
· · ·

2z2 − 1 2z2 − 1
z2 − 1

z2 + 1

z2 − 1

z2 + 1
· · ·

... ... ... ... . . .
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C.3 First 40 Markov numbers and their associated points
of the Lagrange spectrum

u αu M(αu) u αu M(αu)

1 3+
√

5
2

√
5 9077 154398+17

√
741527357

308618

√
741527357

9077

2 1 +
√

2 2
√

2 10946 4827+
√

67395890
5473

2
√

67395890
5473

5 9+
√

221
10

√
221
5

14701 426667+29
√

1945074605
852658

√
1945074605

14701

13 23+
√

1517
26

√
1517
13

28657 50549+
√

7391012837
57314

√
7391012837

28657

29 34+
√

7565
58

√
7565
29

33461 39202+
√

10076746685
66922

√
10076746685

33461

34 15+5
√

26
17

10
√

26
17

37666 554659+29
√

31921370
546157

10
√

31921370
18833

89 157+
√

71285
178

√
71285
89

43261 222099+5
√

16843627085
432610

√
16843627085

43261

169 198+
√

257045
338

√
257045
169

51641 673983+65
√

960045437
1342666

5
√

960045437
51641

194 249+5
√

21170
485

2
√

21170
97

62210 1384289+89
√

2176922306
2768345

2
√

2176922306
31105

233 411+
√

488597
466

√
488597
233

75025 132339+
√

50658755621
150050

√
50658755621

75025

433 2223+5
√

1687397
4330

√
1687397

433
96557 495717+5

√
83909288237

965570

√
83909288237

96557

610 269+
√

209306
305

2
√

209306
305

135137 2298654+17
√

164358078917
4594658

√
164358078917

135137

985 1154+
√

8732021
1970

√
8732021

985
195025 228486+

√
342312755621

390050

√
342312755621

195025

1325 17293+13
√

15800621
34450

√
15800621

1325
196418 86617+

√
21701267282

98209
2
√

21701267282
98209

1597 2817+
√

22953677
3194

√
22953677

1597
294685 3846027+13

√
781553243021

7661810

√
781553243021

294685

2897 14873+5
√

75533477
28970

√
75533477

2897
426389 99349857+233

√
1636268213885

198697274

√
1636268213885

426389

4181 7375+
√

157326845
8362

√
157326845

4181
499393 84399387+169

√
2244540316037

168794834

√
2244540316037

499393

5741 6726+5
√

11865269
11482

5
√

11865269
5741

514229 907065+
√

2379883179965
1028458

√
2379883179965

514229

6466 8299+25
√

940706
16165

10
√

940706
3233

646018 829153+5
√

234753331682
1615045

2
√

234753331682
323009

7561 98681+13
√

514518485
196586

√
514518485

7561
925765 15747082+17

√
7713367517021

31476010

√
7713367517021

925765
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C.4 Continued fraction expansion of the first 80 square
roots

√
d Continued fraction

√
d Continued fraction

√
2 1 , 2

√
43 6 , 1, 1, 3, 1, 5, 1, 3, 1, 1, 12√

3 1 , 1, 2
√

44 6 , 1, 1, 1, 2, 1, 1, 1, 12√
5 2 , 4

√
45 6 , 1, 2, 2, 2, 1, 12√

6 2 , 2, 4
√

46 6 , 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12√
7 2 , 1, 1, 1, 4

√
47 6 , 1, 5, 1, 12√

8 2 , 1, 4
√

48 6 , 1, 12√
10 3 , 6

√
50 7 , 14√

11 3 , 3, 6
√

51 7 , 7, 14√
12 3 , 2, 6

√
52 7 , 4, 1, 2, 1, 4, 14√

13 3 , 1, 1, 1, 1, 6
√

53 7 , 3, 1, 1, 3, 14√
14 3 , 1, 2, 1, 6

√
54 7 , 2, 1, 6, 1, 2, 14√

15 3 , 1, 6
√

55 7 , 2, 2, 2, 14√
17 4 , 8

√
56 7 , 2, 14√

18 4 , 4, 8
√

57 7 , 1, 1, 4, 1, 1, 14√
19 4 , 2, 1, 3, 1, 2, 8

√
58 7 , 1, 1, 1, 1, 1, 1, 14√

20 4 , 2, 8
√

59 7 , 1, 2, 7, 2, 1, 14√
21 4 , 1, 1, 2, 1, 1, 8

√
60 7 , 1, 2, 1, 14√

22 4 , 1, 2, 4, 2, 1, 8
√

61 7 , 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14√
23 4 , 1, 3, 1, 8

√
62 7 , 1, 6, 1, 14√

24 4 , 1, 8
√

63 7 , 1, 14√
26 5 , 10

√
65 8 , 16√

27 5 , 5, 10
√

66 8 , 8, 16√
28 5 , 3, 2, 3, 10

√
67 8 , 5, 2, 1, 1, 7, 1, 1, 2, 5, 16√

29 5 , 2, 1, 1, 2, 10
√

68 8 , 4, 16√
30 5 , 2, 10

√
69 8 , 3, 3, 1, 4, 1, 3, 3, 16√

31 5 , 1, 1, 3, 5, 3, 1, 1, 10
√

70 8 , 2, 1, 2, 1, 2, 16√
32 5 , 1, 1, 1, 10

√
71 8 , 2, 2, 1, 7, 1, 2, 2, 16√

33 5 , 1, 2, 1, 10
√

72 8 , 2, 16√
34 5 , 1, 4, 1, 10

√
73 8 , 1, 1, 5, 5, 1, 1, 16√

35 5 , 1, 10
√

74 8 , 1, 1, 1, 1, 16√
37 6 , 12

√
75 8 , 1, 1, 1, 16√

38 6 , 6, 12
√

76 8 , 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16√
39 6 , 4, 12

√
77 8 , 1, 3, 2, 3, 1, 16√

40 6 , 3, 12
√

78 8 , 1, 4, 1, 16√
41 6 , 2, 2, 12

√
79 8 , 1, 7, 1, 16√

42 6 , 2, 12
√

80 8 , 1, 16
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C.5 Possible values of (−1)nQn for the first 80 non square
integers

d (−1)nQn d (−1)nQn

2 −1, 1 43 −7,−3,−2, 1, 6, 9
3 −2, 1 44 −7,−4, 1, 2, 5
5 −1, 1 45 −5,−3, 1, 4
6 −2, 1 46 −10,−7,−5, 1, 2, 3, 6
7 −3, 1, 2 47 −11, 1, 2
8 −2, 1 48 −6, 1
10 −1, 1 50 −1, 1
11 −2, 1 51 −2, 1
12 −3, 1 52 −3,−2, 1, 9
13 −4,−3,−1, 1, 3, 4 53 −7,−4,−1, 1, 4, 7
14 −5, 1, 2 54 −5,−2, 1, 3
15 −6, 1 55 −6, 1, 5
17 −1, 1 56 −7, 1
18 −2, 1 57 −8,−3, 1, 7
19 −3,−2, 1, 5 58 −9,−7,−6,−1, 1, 6, 7, 9
20 −2, 1 59 −10,−2, 1, 5
21 −5,−3, 1, 4 60 −11, 1, 2
22 −6,−2, 1, 3 61 −12,−9,−5,−4,−3,−1, 1, 3, 4, 5, 9, 12
23 −7, 1, 2 62 −13, 1, 2
24 −4, 1 63 −14, 1
26 −1, 1 65 −1, 1
27 −2, 1 66 −2, 1
28 −3, 1, 2 67 −7,−3,−2, 1, 6, 9
29 −5,−4,−1, 1, 4, 5 68 −2, 1
30 −5, 1 69 −11,−5, 1, 3, 4
31 −6,−3, 1, 2, 5 70 −6,−5, 1, 9
32 −7, 1, 2 71 −11,−7, 1, 2, 5
33 −8, 1, 3 72 −4, 1
34 −9, 1, 2 73 −9,−8,−3,−1, 1, 3, 8, 9
35 −10, 1 74 −10,−7,−1, 1, 7, 10
37 −1, 1 75 −11, 1, 6
38 −2, 1 76 −6,−4,−3, 1, 2, 5, 9
39 −3, 1 77 −13,−7, 1, 4
40 −2, 1 78 −14, 1, 3
41 −5,−1, 1, 5 79 −15, 1, 2
42 −6, 1 80 −4, 1
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C.6 Smallest solutions to Pell’s equation x2 − dy2 = 1

d x y d x y d x y

2 3 2 47 48 7 90 19 2
3 2 1 48 7 1 91 1574 165
5 9 4 50 99 14 92 1151 120
6 5 2 51 50 7 93 12151 1260
7 8 3 52 649 90 94 2143295 221064
8 3 1 53 66249 9100 95 39 4
10 19 6 54 485 66 96 49 5
11 10 3 55 89 12 97 62809633 6377352
12 7 2 56 15 2 98 99 10
13 649 180 57 151 20 99 10 1
14 15 4 58 19603 2574 101 201 20
15 4 1 59 530 69 102 101 10
17 33 8 60 31 4 103 227528 22419
18 17 4 61 1766319049 226153980 104 51 5
19 170 39 62 63 8 105 41 4
20 9 2 63 8 1 106 32080051 3115890
21 55 12 65 129 16 107 962 93
22 197 42 66 65 8 108 1351 130
23 24 5 67 48842 5967 109 158070671986249 15140424455100
24 5 1 68 33 4 110 21 2
26 51 10 69 7775 936 111 295 28
27 26 5 70 251 30 112 127 12
28 127 24 71 3480 413 113 1204353 113296
29 9801 1820 72 17 2 114 1025 96
30 11 2 73 2281249 267000 115 1126 105
31 1520 273 74 3699 430 116 9801 910
32 17 3 75 26 3 117 649 60
33 23 4 76 57799 6630 118 306917 28254
34 35 6 77 351 40 119 120 11
35 6 1 78 53 6 120 11 1
37 73 12 79 80 9 122 243 22
38 37 6 80 9 1 123 122 11
39 25 4 82 163 18 124 4620799 414960
40 19 3 83 82 9 125 930249 83204
41 2049 320 84 55 6 126 449 40
42 13 2 85 285769 30996 127 4730624 419775
43 3482 531 86 10405 1122 128 577 51
44 199 30 87 28 3 129 16855 1484
45 161 24 88 197 21 130 6499 570
46 24335 3588 89 500001 53000 131 10610 927
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C.7 Fundamental units for the first 60 square free integers

d Fundamental unit of Q(
√
d) d Fundamental unit of Q(

√
d)

2 1 +
√

2 51 50 + 7
√

51

3 2 +
√

3 53 1
2

(
7 +
√

53
)

5 1
2

(
1 +
√

5
)

55 89 + 12
√

55

6 5 + 2
√

6 57 151 + 20
√

57

7 8 + 3
√

7 58 99 + 13
√

58

10 3 +
√

10 59 530 + 69
√

59

11 10 + 3
√

11 61 1
2

(
39 + 5

√
61
)

13 1
2

(
3 +
√

13
)

62 63 + 8
√

62

14 15 + 4
√

14 65 8 +
√

65

15 4 +
√

15 66 65 + 8
√

66

17 4 +
√

17 67 48842 + 5967
√

67

19 170 + 39
√

19 69 1
2

(
25 + 3

√
69
)

21 1
2

(
5 +
√

21
)

70 251 + 30
√

70

22 197 + 42
√

22 71 3480 + 413
√

71

23 24 + 5
√

23 73 1068 + 125
√

73

26 5 +
√

26 74 43 + 5
√

74

29 1
2

(
5 +
√

29
)

77 1
2

(
9 +
√

77
)

30 11 + 2
√

30 78 53 + 6
√

78

31 1520 + 273
√

31 79 80 + 9
√

79

33 23 + 4
√

33 82 9 +
√

82

34 35 + 6
√

34 83 82 + 9
√

83

35 6 +
√

35 85 1
2

(
9 +
√

85
)

37 6 +
√

37 86 10405 + 1122
√

86

38 37 + 6
√

38 87 28 + 3
√

87

39 25 + 4
√

39 89 500 + 53
√

89

41 32 + 5
√

41 91 1574 + 165
√

91

42 13 + 2
√

42 93 1
2

(
29 + 3

√
93
)

43 3482 + 531
√

43 94 2143295 + 221064
√

94

46 24335 + 3588
√

46 95 39 + 4
√

95

47 48 + 7
√

47 97 5604 + 569
√

97
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