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Thermodynamic optimization 
subsumed in stability phenomena
J. Gonzalez‑Ayala1*, A. Medina1,2, J. M. M. Roco1,2 & A. Calvo Hernández1,2

In the present paper the possibility of an energetic self-optimization as a consequence of 
thermodynamic stability is addressed. This feature is analyzed in a low dissipation refrigerator 
working in an optimized trade-off regime (the so-called Omega function). The relaxation after a 
perturbation around the stable point indicates that stability is linked to trajectories in which the 
thermodynamic performance is improved. Furthermore, a limited control over the system is analyzed 
through consecutive external random perturbations. The statistics over many cycles corroborates the 
preference for a better thermodynamic performance. Endoreversible and irreversible behaviors play 
a relevant role in the relaxation trajectories (as well as in the statistical performance of many cycles 
experiencing random perturbations). A multi-objective optimization reveals that the well-known 
endoreversible limit works as an attractor of the system evolution coinciding with the Pareto front, 
which represents the best energetic compromise among efficiency, entropy generation, cooling 
power, input power and the Omega function. Meanwhile, near the stable state, performance and 
stability are dominated by an irreversible behavior.

Thermodynamic optimization is a response to requirements on energy production and its efficient use. Rang-
ing from technological devices to the most basic biological energetic mechanisms the search for a compromise 
between producing fast with reduced losses in the process have settled the road in the energy conversion race. 
From an anthropological point of view, the need to satisfy an energetic demand with the minimum impact to 
the environment is key. In this context, operation regimes for energy converters have been studied historically 
passing from maximum efficiency paradigm to maximum power and compromise criteria in between, but always 
relying on our capacity to provide stable and controlled operation environments. On the other hand, in the 
biological realm, evolutionary and adaptation mechanisms, with clear energetic implications, try to guarantee 
survival under a wide variety of needs and variable circumstances. Although we may be far from synthesizing 
these mechanisms to simple ones, we have reasons enough to link a wide variety of phenomena with issues aris-
ing from energy constraints.

Due to its broad conceptual scope and applicability, thermodynamics has been widely applied in all areas 
of science through key concepts such as thermal equilibrium, heat fluxes or entropy generation. However, a 
formalization for the study of non-equilibrium processes is still under development and the proposal, study and 
optimization of non-equilibrium heat devices are issues in constant evolution. Especially relevant is the energetic 
optimization of heat devices, either heat engines (HE) or refrigerators (RE). And key aspects in the optimization 
of energy converters related with the second law of thermodynamics are the entropy generation and the thermal 
efficiency/power output for HE’s or coefficient of performance/cooling rate for RE’s1–5.

Significant efforts have been devoted to study the linkage between different heat device models by means of 
their performance at certain operation regimes with minimum model-dependent characteristics. Most of them 
have been focused in the context of HE, nonetheless, a unified outlook of general properties for any kind of 
energy converters is highly desirable.

Beyond the maximum power or maximum cooling rate operation regimes, the practical requirement of a 
better and sustainable use of energy have resulted in the proposal of trade-off figures of merit, involving compro-
mises among maximum power/cooling rate, minimum entropy generation and maximum efficiency/coefficient 
of performance (COP), including exergetic and thermo-economic merit functions6–8.

In particular, the so-called low-dissipation (LD) model allows for a quite straightforward thermodynamic 
interpretation in the analysis of unified heat devices9–15. This model is suitable for exploring general irrevers-
ible behaviors not linked with particularities of the heat transfer mechanisms. It could be understood as a first 
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irreversible deviation from a Carnot HE (RE) and displays the capability of obtaining upper and lower bounds for 
the efficiency (COP) for several operation regimes without specifying heat transfer mechanisms, but focusing on 
the symmetries in the dissipation and in the contact times with the hot and cold reservoirs13,14, and optimization 
under fixed cooling power are being subject of research due to its practical relevance16,17. Its wide applicabil-
ity allows its mapping onto a variety of irreversible models, such as the minimally nonlinear irreversible heat 
engine, a heat engine with weighted thermal fluxes, the endoreversible/irreversible Carnot-like heat engine and 
in stochastic heat engines2,12,18–24 with special emphasis in small-scale refrigerators25–33. Experimental data have 
validated this model, as it is the case of an optical trap performing a micrometric Stirling heat engine34 and a 
Brownian Carnot cycle35 as well as for macroscopic setups36.

Despite the advances in optimization, there is a specific unsolved issue: the systematic treatment of the influ-
ence of lack of control37. There are open questions regarding the role of constancy (fluctuations in the energetic 
output records)38–40, which could be ultimately related to power fluctuations with large efficiencies38,39 or the 
enhancement of energy converters performance due to fluctuations from small scale and quantum nature as 
recently proposed41–43. Major differences have been recently reported for quasistatic and steady state HE models 
operating close to the reversible efficiency39. Issues such as the Carnot efficiency at finite power and efficiency 
at maximum power have been widely analyzed to account for control of parameters and engine layouts, though 
key differences have been reported depending on time constraints among other factors38,39, hinting for a relation 
between reversibility and the amplitude of fluctuations.

A complementary study to the optimization of operation regimes is the analysis of their operation regime 
stability, that is, if operation variables have fixed values, they remain close to those values even when external 
stressors generate small perturbations on them, generating a time-periodic steady-state. In general, energetic 
landscapes are responsible for stability criteria such as it occurs in first order phase transition, partially respon-
sible for structural composition of matter. In particular, regarding operation design, in every natural energy 
conversion mechanism the problem of variability of the device surroundings somehow has been solved, even 
under large variation on the operation conditions, such is the case of photosynthesis, to name one, with a large 
variability in solar radiance and temperature in time. Thus, stability must be involved somehow with operability, 
even more if we consider evolution as stochastic in nature.

Recently, it has been shown that a HE in an stationary state undergoing small perturbations of the energy 
exchanges with the surroundings obeys dynamical equations of the optimization time-variables. In that case, 
trajectories towards stationary state are not arbitrary and exhibit an optimization mechanism for the most rel-
evant thermodynamic functions44–46. In view of this analysis, there is a promising way to incorporate stability as 
a new ingredient in the optimization of heat devices with new features appealing for a better understanding of a 
thermodynamic self-improvement stemming from stability. In this way, trade-off based figures of merit, beyond 
practical design and economical reasons, would arise as natural responses, with evolutionary mechanisms and 
adaptability to the environment47–51. In the same way, mechanisms stemming from thermodynamics to induce 
an operation state have been explored for stochastic and deterministic models52,53.

This connection has been previously addressed for HE’s45,46, the aim of this paper is to extend that study for 
the by far less known cooling systems, reinforcing the vision of a general behavior of HE’s and RE’s. The first goal 
of this paper will be to present a detailed study on fluctuations of the main energetic properties (as COP, entropy 
generation, cooling power, and work input) for a LD-RE around a trade-off steady state and to analyze how these 
magnitudes evolve around the stable point. To achieve this objective two possible dynamics for the perturbation 
of the system around the stable point are considered introducing two different sets of control parameters and 
two different stability configurations (a stable point inside a basin of attraction and an isolated stable point). The 
second goal is to deepen in the analysis of limited control along the cyclic process by introducing consecutive 
random perturbations during one cycle time and through many cycles. The evolution of the generated stochastic 
trajectories and their statistical behavior points out to the existence of a well-defined trend driven by the energetic 
improvement of the system.

The model and the � regime
The LD model is a first-order irreversible deviation from a Carnot cycle, where irreversibilities are introduced 
only in the coupling between the working fluid and the hot and cold reservoirs at temperatures Tc and Th , 
respectively9. The adiabatic processes are considered as instantaneous. The time dependent character of the model 
is introduced by means of the so-called irreversible coefficients �c and �h for each isothermal process, divided 
by the time these processes last, tc and th , respectively. The fact that the baseline cycle is the Carnot one (whose 
efficiency does not depend on the working substance) when extending the reversible cycle to the irreversible 
framework allows for a structure independent description, where the specific properties of the working fluid are 
not relevant, and one can focus on the operation variables to optimize.

The  input  and output  heats  for  a  re f r igerator  are  Qc = Tc�S[1−�c/(�S tc)] and 
Qh = Th�S[−1−�h/(�S th)] , where �S is the entropy change at the cold isotherm of the baseline reversible 
Carnot cycle. These expressions allow to decompose the heat exchange in a reversible component, T�S , and 
an additional irreversible contribution proportional to the inverse of time. The mentioned irreversible coef-
ficients �c and �h depend on the internal dynamics of the working fluid and thus, they are attached to intrinsic 
properties that for the purposes of optimization of the operation regime can be considered as constant. The 
total entropy change in the thermodynamic universe is given by �Stot = �c/tc +�h/th , so that {tc , th} → ∞ 
(or {�c ,�h} → 0 ) the reversible performance is recovered. The main energetic quantities are the refrigerator 
coefficient of performance, COP ε = −Qc/(Qh + Qc) , the cooling power, R = Qc/(tc + th) and the power input 
Pin = W/(tc + th) = −(Qh + Qc)/(tc + th).
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The � function was proposed for a generic heat device as a trade-off figure of merit between the maximum 
useful energy and the unavoidable useful energy losses for a given energy input. For a RE, it is defined as the 
compromise between maximum cooling rate, R = Qc/t , and lost cooling rate for a fixed power input, Pin . Then, 
the � function is14

where εC = τ/(1− τ) is the COP of the Carnot cycle and τ ≡ Tc/Th . Upper and lower bounds are obtained in 
the limits �c → 0 and �h → 0 , respectively

In the symmetric case �c = �h
14,

The optimization of this function can be achieved equivalently using two different sets of time variables. In one 
case the total time and one partial contact time are used, allowing to reproduce behaviors typical from endor-
eversible and irreversible devices. In the other case the two partial contact times are considered. Different but 
complementary dynamical equations for the stability of this operation regime are obtained in each case. In the 
next section the first option is analyzed.

On time constraints, multi‑objective optimization and stability
A fruitful representation of the system is achieved by using the operation total time and one partial contact time. 
This choice of optimization variables allows to recover endoreversible and irreversible behaviors which are tightly 
related with the multi-objective optimization of the RE, as will be shown later and it happens in the case of LD-
HE’s45,46. With this purpose the dimensionless variables, �̃c ≡ �c/�T , α ≡ tc/(tc + th) , t̃ ≡ �S (tc + th)/�T , 
with �T = �h +�c that account for the system size are considered. From these definitions it is possible to work 
with dimensionless input and output (cooling power) heat fluxes11,

A total entropy production, scaled with the size of the baseline Carnot cycle, can be obtained 
σ̃ ≡ �Stot/(̃t�S) = [�̃c/α + (1− �̃c)/(1− α)]/̃t2 . And from Eq. (4), the input power, P̃in = − ˙̃Qc − ˙̃Qh ; the 
COP, ε = R̃/P̃in and �̃ ≡ (2ε − εC)P̃in can be calculated.

The optimization variables are α and t̃  , meanwhile τ and �̃c are fixed parameters, referring to external 
operation conditions and intrinsic material properties, respectively. The values of α and t̃  that maximize � are:

A common feature in a variety of irreversible models is the appearance of loop-like power-efficiency parametric 
curves in heat engines and χ–ε curves for refrigerators. This has been considered as a characteristic signature of 
irreversibility. However, the so-called endoreversible model54 consisting of a reversible Carnot engine irreversibly 
coupled to external heat reservoirs exhibits parabolic behaviors on those curves. In previous works it was shown 
that by fixing the value of α or t̃  in the low dissipation model, it is possible to recover those types of behaviors. 
In the first case α = αM� while t̃  can take values from 0 to ∞ (allowing to recover the reversible limit when 
t̃ → ∞ ). For the latter t̃ = t̃M� and α takes values from 0 to 1 (this fixes the irreversibility of the system, since 
the reversible limit cannot be achieved). These two behaviors are discussed in detail in13, as part of a unified 
phenomenology for HE’s and RE’s and will become relevant in the present analysis of the stability-optimization 
relation. Some insights on the role of irreversible and endoreversible behaviors in the stability and optimization 
are also discussed for HE’s in45.

Since the relaxation dynamics will be linked to an optimization process, a multi-objective optimization will 
be presented below.

The best energetic compromise.  It would be highly desirable to maximize the coefficient of perfor-
mance, cooling power and simultaneously minimize entropy production and power input. However, no con-
figurations can be found that fulfill all these requirements. It is common to search, instead, for the so-called 
Pareto front, which gives the best performance when one is looking to optimize simultaneously several objective 
functions55.

In this treatment two complementary outputs will be pursued: the location of the Pareto front, and second, 
the location of these points in the phase space (the Pareto optimal set) to compare them with the time constraints 
and the stability nullcline which will be discussed in in “Consecutive random perturbations” section.

The usual concept of dominance is used: in order to build the Pareto set a vector v = (v1, . . . , vn) dominates 
another one w = (w1, . . . ,wn) if and only if vi ≥ wi ∀ i ∈ {1, . . . , n} (if one in looking for a maximum, ≤ for a 
minimum) and there is at least one j such that vj > wj . In other words, the improvement of any function will 
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degrade some others. Here the vector is formed by the COP, � , P̃in , R̃ and σ̃ . The algorithm introduced here is a 
modification of the one introduced in45,46, and is as follows: 

1.	 In the phase space ( α, t̃  ), the region of physical relevance is defined ( ε > 0 and R > 0).
2.	 A random set of points in the phase space is obtained and the thermodynamic functions are evaluated 

(energetic space).
3.	 The set of non-dominated points in the energetic space is obtained, giving a provisional Pareto front.
4.	 From the corresponding Pareto optimal set (phase space) a convex region is defined and extended in order 

to cover a larger region for searching new points in the Pareto front. Details on the definition of the extended 
region are given below.

5.	 From the new region a new set of random points is proposed and a new set of non-dominated points in the 
energetic space is obtained.

In the present analysis, the Kullback–Leibler divergence (KLD)56 is calculated between the distribution of points 
of the ith and the i − 1 th iterations. The radii to extend the search region in the phase space decreases with the 
KLD value. When this relative entropy is very small, there is no information gain in iterating more times, then, 
the search for new points in the Pareto optimal set stops.

In Fig. 1a the Pareto front is shown using as objective function σ̃ (minimization), ε , �̃ and R̃ (maximization). 
The consideration of more functions, such as P̃in does not contribute to obtain new points. For a LD-HE it was 
found that the Pareto front was remarkably close to the endoreversible limit. In this case the match is higher. 
Thus, this limit offers the best energetic compromise. The corresponding points in the phase space are depicted 
in Fig. 1b, along with the boundary of the physical region of interest (where the efficiency and the cooling power 
are positive).

Stability dynamics.  The problem of stability is frequently tackled through a first order equations sys-
tem. By means of a linearization about the stable point, in many cases the resulting dynamics has the form 
f (y) = −dy/dt ≡ −ẏ , being y the dynamical variable and t the dynamical time. This is the kind of dynamical 
equation describe the stability of RC electrical circuit, overdamped spring, or any stable point in a potential well, 
V(y), near its minimum ( y∗ = 0 ) and where ẏ = −dV/dy.

which is the well-known approximation to a harmonic oscillator. This is the kind of dynamics appearing in 
colloidal particles undergoing micrometric Carnot and Stirling heat engines through optical traps, that experi-
mentally validated the low dissipation model34,35.

Below, it will be shown that if the operation regime of a time-periodic heat device has a steady state (an 
equilibrium point specified through the operation variables), for sufficiently small perturbations, it is expected 
that the (probably yet unknown) dynamics of the system can be expressed as a first order system. By means of 
a Taylor expansion of energetic functions (in this case Q̃c and �̃ ) around the steady state, a generic first order 
system can be transformed to a dynamical equation linking the operation variables and the energetic functions, 
allowing to effectively associate variations on the operation regime to fluctuations on the heat fluxes between the 
system and the heat reservoirs. In this way external perturbations can be linked to variations of the operation 

(6)V(y) = V(0)+
dV

dy

∣∣∣∣
0

y +
1

2

d2V

dy2

∣∣∣∣
0

y2 + O (y3) ≈
k

2
y2 + V(0),

Figure 1.   (a) The Pareto front (cyan points) matches the endoreversible limit (parabolic dashed line). For 
completeness, the irreversible limit is also depicted (loop-like curve). (b) The Pareto optimal set is shown 
(cyan points). The constraints α = αM� (horizontal line) and t̃ = t̃M� (vertical dashed line) are shown. The 
representative values τ = 3/5 and �̃c = 1/2 have been considered.
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times (affecting energy fluxes). Notice that these perturbations come from external sources, and are not linked 
to the internal dynamics, already accounted by the coefficients �̃c and �̃h.

As mentioned above, let us focus only on external perturbations on the operation regime (and for extension, to 
the variables that define such regime). The starting point is to assume that the system has an equilibrium point at 
the operation regime. With no further information regarding the specific energy transport, t̃  and α are assumed 
to follow, within the first order scheme57, a typical (and the simplest) relation for an autonomous system in one 
dimension given by a dynamical equation Ẏ = −A Y  , where Y =

(
α − αM�, t̃ − t̃M�

)
 . The dynamical time, t 

has no dimensions and has a characteristic timescale that will be chosen later and A ∈ M2×2.
The natural energy flux associated to the time variable α would be Q̃c (variations of α will produce changes in 

the input heat). Meanwhile �̃ , a global energetic function will be linked to variations on the total time t̃  . Analo-
gous results are obtained if another global function is chosen, such as the so-called χ function (the equivalent 
to power output for heat engines13).

From a first order expansion of ˙̃Qc and �̃ around the steady state ( Y = 0 ) one obtains

with J the Jacobian matrix

Then, Ẏ = −A Y  can be written as

where A = −
[
C 0

0 D

]
J ; C and D are positive constants determining the response speed to perturbations from 

the steady state that we will refer as the restitution strength45. Their values may depend on multiple characteristics, 
but usually the system size is the most important. Because large systems are more likely to respond slowly to 
perturbations on the control variables than small systems, the larger the system the smaller the values of C and 
D. From a dynamical perspective, their inverse values set a characteristic time scale, so that large values of C and 
D correspond to large restitution strength and short characteristic times. In the forthcoming analyses, results 
are referred to this time scale.

Notice that the dynamical Eqs. (9) and (10) are not known a priori, but they are a mathematical require-
ment from stability relying, of course, on the assumption that the operation regime has a steady state. There are 
however, plausible arguments to think this is the case for several systems, since natural energy converters have 
displayed robustness, the capability to maintain and change operation regimes under stress in the operation 
conditions62.

In the linear approximation, the local stability of the above-given steady state is determined by the Jacobian 
matrix in Eq. (8) which by definition, in the M � regime

The determinant of J is  zero as well  as one eigenvalue; the other one is given by 
�1 = C ∂

˙̃Qc/∂α

∣∣∣
M�

= C τ �̃c/
(
αM� t̃M�

)2 , leading to a relaxation time ( t1 = �
−1
1 )

The relaxation time, t1 (which refers to the variable α ), and the operation time, t̃M� , are linked, being the 
first indication that the two phenomena are related. In the stability of a cyclic process one would require that 
t1 ≤ t̃M� , leading to the constraint

Beyond the linear approximation presented above, the system of equations given by Eqs. (9) and (10) can be 
numerically solved. This dynamic, as in the case of HE’s, produce stability basins, see Fig. 2. Trajectories inside 
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the stability basin will arrive to the stationary state, the rest will diverge to a non-desirable state of infinite opera-
tion time and null cooling power. Even when the constraint provided by Eq. (12) does not involve D, it affects 
the stability basin shape which depends additionally on τ and �̃c . Figure 2 shows the influence of the dissipation 
coefficient ( ̃�c ) on the basin of attraction for the complete solution obtained by solving numerically Eqs. (9) and 
(10) for given initial conditions/states (state after a perturbation). In Fig. 2a some representative trajectories for 
three dissipation symmetries, �̃c = {0.05, 0.5, 0.95} , are depicted in the phase space. All the trajectories evolve 
in such a way that the variable t̃  does not decrease. This is intuitively understood as this variable is related to 
the irreversibility of the system. In Fig. 2b, some trajectories are depicted over the �̃–ε–σ̃ surface. Notice that 
for symmetric dissipation, �̃c = 1/2 , the basin of attraction is less constraint and accepts larger perturbations.

Figure 3 shows the influence of the relation between the magnitudes of C and D in the basin of attraction. 
Trajectories in the phase space after a perturbation for three cases: D = {1, C, 3/2C} are presented. In the first 
row of Fig. 3 the line integral convolution plot of Eqs. (9) and (10) is depicted. In the second row of Fig. 3 some 
representative computed trajectories are shown with initial conditions corresponding to values of α → {0, 1}.

As can be seen in Fig. 4 for the representative case D = C (for C  = D the results are similar) the endorevers-
ible and irreversible limits have meaningful information regarding the performance of the refrigerator. The COP, 
cooling power, and entropy generation behaviors show that the trajectories tend to approach the endoreversible 
limit, which represents the better energetic compromise. After arriving to the endoreversible limit, the trajectories 
orbit around the stable state, however, those inside the stability basin display the smallest drawback in both ε–σ̃ 
and those outside have the largest decay in the energetic efficiency and increment on entropy.

A characteristic of trajectories inside the basin of attraction is that the approaching to the endoreversible 
limit occurs with t̃ < t̃M� ; then, in the arrival to the stable state their orbits are bounded by the irreversible limit 
(yellow curve) which is tangent to the basin of attraction in the steady state. Similar features were reported in 
the case of HE’s. From this analysis it can be said that the endoreversible limit represents an attractor involved 
in an energetic self-improvement of the system and the irreversible limit bounds the basin of attraction. Both 
behaviors are relevant in the stability and thermodynamic improvement for both HE’s and RE’s.

Consecutive random perturbations.  It is interesting to analyze the case where there is a lack of control 
in the optimization variables. Fluctuations on these time-variables will lead to variations on the heat fluxes 
and thus fluctuations around the steady state are expected. Since the internal dynamical nature of the system is 
already accounted through the macroscopic description given by the low-dissipation model, the source of these 
fluctuations for the problem at hand comes from outside the system.

For the analysis of these fluctuations the system at M � conditions will undergo consecutive random per-
turbations along one cycle. To this purpose a cycle time will be divided by N equal sub-intervals of length �t . 
The final state after one cycle is computed by solving the stochastic differential equation based on the proposed 
dynamic Eqs. (9) and (10), using a normally-distributed random variable as an additive white noise. Here, two 
independent stochastic variables ξ1 and ξ2 in the α– t̃  directions follow a 2-dimensional Gaussian distribution:

(14)fξ (̃tc , t̃h) =
γ

2 π αM� t̃M�
e
−γ

[(
α

αM�

)2
+
(

t̃

t̃M�

)2]

,

Figure 2.   Some representative trajectories given by solving numerically Eqs. (9) and (10). The symmetry 
in the dissipation coefficient �̃c affects the shape of the basin of attraction. In (a) three cases are depicted: 
�̃c = {0.05, 0.5, 0.95} , the symmetric case exhibits the largest stability basin. In (b) some trajectories are 
mapped into the energetic surface with τ = 3/5 . The red curves indicate trajectories inside the basin of 
attraction; dashed (red and blue online) curves denote those trajectories with initial conditions α → 0 and in 
continuous lines (red and blue) those with initial conditions α → 1.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14305  | https://doi.org/10.1038/s41598-020-71130-7

www.nature.com/scientificreports/

A representative case, γ = 2/�t2 ≈ 2× 10−8 is considered; thus, the standard deviations are 
σt̃ = t̃M��t/

√
2 ≈ 8.4× 10−4 t̃M� and σα = αM��t/

√
2 ≈ 8.4× 10−4αM� . By using the Euler–Maruyama 

method58 the points in the phase space are calculated iterating

where (α1, t̃1) = (αM�, t̃M�) ; �t is 10−4 th of a cycle period t̃M� , the response case C = D is studied. The ener-
getic functions and the position in the phase space are averaged in each cycle. Then, it will be assumed that after 
each cycle-time the system evolves or it is driven to its time-periodic steady state, without any information from 
past cycles. This procedure is repeated for 105 trajectories. We have checked that this number of trajectories gives 
a good convergent statistics according to the relative entropy measured by Kullback–Leibler divergence56 (see 

(15)t̃i+1 =C
( ˙̃Qc

(
αM�, t̃M�

)
− ˙̃Qc

(
αi , t̃i

))
�t + ξ1

√
�t + t̃i ,

(16)αi+1 =D
(
�̃(αM�, t̃M�) − �̃(αi , t̃i)

)
�t + ξ2

√
�t + αi ,

Figure 3.   Dynamics given by solving Eqs. (9) and (10) with given initial conditions. In all cases 
C = 2(2− τ)/(τ (1− τ)) and three cases for D are depicted: in column (a) D = 1 , in (b) D = C , in (c) 
D = 3/2C ; with τ = 3/5 and �̃c = 1/2 . In the first row, the line integral convolution plot, simulating 
streamlines of fixed arc length over a set of random conditions. For the second raw, continuous (dashed) lines 
start at α → 1 ( α → 0 ). Red curves are located inside the basin of stability. The endoreversible limit is denoted 
by a vertical (purple) line and the irreversible limit by a horizontal (yellow) line.

Figure 4.   Dynamic evolution of R̃ , ε and σ̃ from the solution of Eqs. (9) and (10) with given initial conditions 
for the case C = D = 2(2− τ)/(τ (1− τ)) ; with τ = 3/5 and �̃c = 1/2 . Similar behaviors are obtained for 
other values of C, D, τ and �̃c . Continuous lines start at α → 1 , dashed lines at α → 0 . Red curves correspond to 
those located inside the basin of stability; purple curve to the endoreversible limit (arrows indicate the direction 
of increasing t̃  ) and the yellow curve to the irreversible limit (arrows indicate the direction of increasing α).
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“A.1”), meaning that adding more trajectories do not offer further information and that the statistical descrip-
tion is conclusive.

Figure 5a shows the final states in the phase space after each cycle: in green the points that ended inside the 
basin of attraction and in blue those that ended outside. For this kind of dynamics there exists a nullcline given 
by the curve t̃(α) for which α̇ = 0 (see the returning point in the α direction in trajectories evolving from large 
values of α in Fig. 5). The consequences of this is that α evolves slowly around this curve. Note in Fig. 5a the 
relevant influence of the nullcline on the final point locations, which are agglomerated around it. The number 
of points inside the attraction basin is slightly larger than outside. After each cycle is completed, the arithmetic 
mean of each thermodynamic function is calculated. Points inside the basin of attraction tend to have shorter 
contact times with the cold reservoir and also shorter total operation times, while the opposite occurs for the 
points outside the basin of attraction. The Pareto front is depicted to compare the locus of the final states with 
the best thermodynamic compromise. The mean values obtained for all trajectories are depicted in Fig. 5b as 
horizontal lines. In Fig. 5c the corresponding probability distribution functions for �̃ , ε , and σ̃ show the distinc-
tive behavior for points inside and outside the stability region.

In Fig. 6a, the final states after each cycle are displayed in the �̃–*ε–σ̃ space. The endoreversible limit estab-
lishes an upper bound for all these trajectories and below the energetic configurations are located around the 

Figure 5.   In (a) the final states after 105 cycles, each with 104 perturbations. In blue the points 
corresponding to states outside the stable region and in green points inside the stable region. There are 
slightly more points inside the stability region. The perturbations in this case allow for larger perturbations: 
{σα , σt̃} = {αM� �t/

√
2, t̃M� �t/

√
2} ; the relaxation time considered is t1 = t̃M�/2 and C = D , τ = 2/3 , 

�̃c = 1/2 . In (b) the mean values of the energetic properties obtained for each cycle. The mean values for all 
trajectories are depicted as horizontal lines. In (c) the probability distribution function for the same energetic 
functions. For computing this, the size of the bins, or intervals, is such that the range of values of every function 
is distributed in 

√
105 (square root of the number of trajectories) equal intervals.

Figure 6.   In (a) �̃ , ε and σ̃ are evaluated in the final states of each 105 trajectories. The averages of these points 
are labeled as “B” in subfigure (c). In (b) the averaged values of �̃ , ε and σ̃ along each trajectory (cycle) are 
displayed and the average of these states correspond to the points label with “A” in subfigure (c). In (c) the 
mentioned averaged thermodynamic functions are presented to stress their closeness to the irreversible limit 
given by the orange loop-like curve and the upper bound fixed by the endoreversible condition (purple curve).
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irreversible limit. In Fig. 6b the averaged states over each stochastic trajectory/cycle are presented. Finally, in 
Fig. 6c the label “A” indicates the averaged energetic states for the mean values, and the label “B” the average of the 
final states, both points show that the performance of many cycles is very closed to that of the irreversible limit.

This part of the analysis points out to a key role of time constraints in the obtaining of endoreversible and 
irreversible behaviors and their implications on the overall thermodynamic performance when the operation 
regime is stochastically perturbed. Many works have been reported on the endoreversible limit and its valid-
ity range. The stochastic results here obtained from induced perturbations on a steady state give new insights 
about the status and true nature of this endoreversible limit: it behaves as an attractor of the overall dynamics 
and describes the best compromise between the most relevant energetic functions, while the irreversible limit 
distinguishes trajectories inside or outside the stability basin and under perturbations it describes the statisti-
cal irreversible behavior induced over the system. These results are reproduced for different random variables 
distributions and C, D combinations.

Relaxation velocities and self‑optimization
A second pair of time-variables can be used to study the optimization and stability of the LD RE. The optimiza-
tion analysis is analogous to that of the previous Section, but the dynamics involved in the stability is different 
and as it will be shown below, the operation regime is described through a global stable state. This will provide 
a complementary vision of the linking between optimization and stability.

By introducing the dimensionless variables t̃c = tc �S/�h , t̃h = th �S/�h , the input and output heats are 
Q̃c = Qc/(Th�S) , Q̃h = Qh/(Th�S) , respectively, and � = �c/�h (taking under consideration the system size). 
The heat exchanges per cycle can be written as

in this way, the total entropy change of the thermodynamic universe per cycle is �̃Stot = (̃t−1
h +� t̃−1

c  ) and 
the entropy production σ̃ = �̃Stot/(̃tc + t̃h) . The information related to the internal dynamics is accounted 
by � . Together with τ , it will remain as a fixed parameter. Due to the normalizing definitions the fluxes 
R̃ ≡ Q̃c/(̃tc + t̃h) , P̃in , σ̃ and �̃ differ from the functions appearing in the previous section by a factor (1+�) . 
The optimization of � is achieved through the partial contact times t̃c and t̃h:

The same upper and lower bounds for εM� appearing in Eqs. (2) and (3) are obtained for � → 0 and � → ∞ , 
respectively.

The best energetic compromise.  The same method to obtain the Pareto front (see in “The best ener-
getic compromise” section) is used for this set of variables. The resulting Pareto front is depicted in Fig. 7a and 
coincides with that appearing in Fig. 1a with a scale factor (1+�) . The Pareto optimal set is shown in Fig. 7b. 
The endoreversible and irreversible behaviors stemming from the time constraints are plotted in this pair of 
variables, see Fig. 7b.

As mentioned before, the two pairs of time variables discussed in the previous section and in this one are 
equivalent, the Pareto front, as well as the Pareto optimal set can be mapped from one system into the other and 

(17)Q̃c = τ −
τ �

t̃c
; Q̃h = −1−

1

t̃h
,

(18)t̃M�
h =

2

(1− τ)

(
1+

√
�(2− τ)

)
; t̃M�

c =
√
�(2− τ) t̃M�

h .

Figure 7.   (a) The Pareto front (cyan points) matches the endoreversible limit (parabolic dashed line). The 
term 1+� is the scale factor between the two normalized � s (compare with Fig. 1a). For completeness, the 
irreversible limit is also depicted (loop-like curve). (b) The Pareto optimal set is shown (cyan points). The 
irreversible limit and irreversible limits are shown. The representative values τ = 3/5 and � = 1 have been 
considered.
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the exact results are obtained. Now, the dynamic equations for the second set of variables will be introduced, 
but one must notice that in the previous section the quantities that is tried to be fixed are energy fluxes, which 
is specially relevant in irreversible stationary processes. In this case, on the other hand, the stability is described 
in terms of a fixed energy (see below). For that reason, both dynamics are not equivalent.

Stability dynamics.  Now, time variables are associated to heat exchanges between the system and the sur-
roundings. It is then plausible to model the external perturbations on the operation regime as variations on the 
input and output heat, affecting engine operation time. For this analysis τ and � , which are intrinsic properties 
of the system, will remain fixed. Each heat only depends on the associated partial contact time, i. e., Q̃c = Q̃c (̃tc) 
and Q̃h = Q̃h(̃th) [see Eq. (17)], then, variations on the contact times can be effectively linked to variations on the 
corresponding input/output heats. The matrix formulation given in the previous section can now be addressed 
as a first-order one-dimensional uncoupled system57. The autonomous equations for the dynamics now are

Additionally, a first order expansion of Q̃c and Q̃h around the steady state gives

By combining Eqs. (19)–(21), it is possible to provide a dynamics linking the contact times with variations in 
the input/output heats as follows

where A and B are positive constants, giving the restitution strength. Their values may depend on multiple 
characteristics, but usually the system size is the most important of them: the larger the system the smaller the 
values of A and B. From a dynamical perspective, the inverse values of A and B set a characteristic time scale. In 
the forthcoming analyses, all the results are referred to this time scale.

In a linear approximation the local stability of this steady state is determined by the eigenvalues, �1 and �2 , 
and eigenvectors of the Jacobian matrix:

and since both �1 and �2 are real and negative, the operation regime steady state is stable. Relaxation times are 
defined as t1 ≡ −1/�1 and t2 ≡ −1/�2 , and by using Eqs. (18) and (23) they are given by

From the above equations it is easy to check that relaxation is dominated by t1 (linked to t̃c ). This is more notice-
able for small values of τ and large values of � , that is, when the dissipation coefficient at the cold reservoir is 
larger. By defining the total operation time t̃M�

tot ≡ t̃M�
h + t̃M�

c  , that from Eq. (18) is given by

the operation time can be compared with the total relaxation time, defined by trelax ≡ t1 + t2,

Since it is desirable that the system returns to the steady state within a cycle period trelax ≤ t̃M�
tot  , A and B should 

fulfill the following condition

Beyond the linear approximation, the system given by Eq.  (22) can be solved numerically. Figure  8 
shows the stream plot of the dynamics, which exhibits a stable point. Level curves for the dynamical velocity 
vdyn ≡

√
(dt̃c/dt)2 + (dt̃h/dt)2 = const are depicted. Notice that the velocity of relaxation is different in each 
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quadrant. In this case the constraint t1 = t2 is used. Shorter relaxations are achieved for t̃c < t̃M�
c  and t̃h < t̃M�

h  , 
for other constraints, such as A = B this qualitative behavior holds, but the asymmetry between relaxation times 
will affect these contours. On the other hand, the Pareto optimal set, which do not depend on the restitution 
dynamics is depicted as a reference. The points in the Pareto optimal set with larger contact times (slower opera-
tion time) are closer to the minimum entropy generation state, meanwhile those with smaller contact times 
(faster operation time) are closer to the maximum R regime. One remarkable feature is that it appears a region 
where transition between velocity contours are more separated, meaning that restitution takes longer compared 
with changes in operation time. On the other hand, for another region transitions are faster. The largest restitu-
tion times are exhibited when only one partial time is perturbed. This will have consequences in the statistics of 
consecutive perturbations, as will be shown in next subsection.

In Fig. 9a the line integral convolution plot of the dynamic equations (22) over a random distribution of 
initial conditions is depicted, simulating streamlines of fixed arc length; darker shaded regions indicates smaller 
velocities.

Figure 9b shows some representative trajectories with initial conditions at the border of the depicted region 
(initial state after a perturbation). Trajectories in each quadrant, labeled as I–IV are represented with different 
colors to emphasize differences in the energetic planes plotted in Fig. 9c–f. Trajectories in each quadrant evolve 
in a slightly different way, but this fact yields noticeable energetic repercussions. Of special relevance are regions 
I and III (colored in green and blue, respectively).

Figure 9c shows the trajectories in the �̃Stot–ε–� surface. It is observed that trajectories in quadrants II and 
IV present large variations in the COP and entropy change before arriving to the stable state. This last feature 
could be considered as a non-desirable behavior. On the other hand, a kind of “benefit” in quadrants I and III 
is obtained since trajectories in these regions produce the best compromise between a given cooling power and 
the COP (larger values of ε for given R̃ ) and the entropy change (the less entropy changes for a given R̃ ) at the 
same time. These features are detailed in the 2D-plots of Fig. 9d–f showing that the trajectories in quadrants I 
(green) and III (blue) evolve directly towards the stable point in a very narrow region, meanwhile trajectories 
in quadrants II (red) and IV (yellow) present sudden changes of direction before arriving to the steady state.

The consequences of the dynamics on the system energetic properties could imply the use of a disadvantage, 
such as limited control, as a self-optimization mechanism throughout a biased control focused mostly in per-
turbations towards quadrants II and IV, to favor perturbations with both t̃c > t̃M�

c  and t̃h > t̃M�
h  or t̃c < t̃M�

c  
and t̃h < t̃M�

h .
One could be interested not only in one perturbation but a series of them affecting the performance of one 

cycle. The influence of continuous random perturbations over a cycle will be addressed below in order to get 
more insights about this issue.

Consecutive random perturbations.  To analyze the effect of the dynamics in random perturbations a 
cycle time will be divided by N equal sub-intervals of length �t . The final state after continuous perturbations 
along one cycle is computed by solving the stochastic differential equation based on the proposed dynamic equa-
tions (22), using a normally-distributed random variable as an additive white noise. Here, the two independent 
stochastic variables ξ1 and ξ2 in the t̃c and t̃h directions follow a 2-dimensional Gaussian distribution. By using 
the Euler-Maruyama method58 phase space points are calculated iterating for the N steps
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Figure 8.   Stream plot of the dynamics given by Eq. (22) for the case where t1 = t2 . Level curves of constant 
velocities ( 

√
(dt̃c/dt)2 + (dt̃h/dt)

2 = const ) are displayed to show not only the patterns over time, but also 
how rapidly the velocity changes as the system heads towards the steady state. In both cases the fastest velocity 
transitions occur in the region where t̃c,h < t̃

M�
c,h

.
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The stochastic variables {ξ1, ξ2} follow the distribution

where γ = 100 , the standard deviation σt̃c,h is t̃M�
c,h /10 . The initial state is (̃tc1 , t̃h1) = (̃tM�

c , t̃M�
h ) ; �t is tM�

tot /104 
(25), so that after 104 steps one cycle time is covered. The constants A = 4× 10(2− τ)/(τ (1− τ)) and 
B = 4× 10/(1− τ) are used, so trelax = tM�

tot /10 [see Eq. (27)] along with the condition t1 = t2 , so the dynam-
ics is almost the same in the t̃c,h directions. After one cycle has ended, the system attains the time-periodic steady 
state and starts another random trajectory without any information regarding previous cycles. This is repeated for 
5× 104 trajectories/cycles. The statistical convergence has been tested using the Kullback–Leibler divergence56 
of the system energetic distributions [see equation (“A.2”)]. The results are shown in Fig. 10.

In Fig. 10a the final states for each trajectory are depicted; colors indicate the quadrant of the system average 
position. The geometric centers of the points in each quadrant are displayed (see stars). The Pareto optimal set 
is shown as well. Notice that average behavior of the system is displaced towards the region of slow relaxation, 
following the direction of the Pareto front at which entropy change is minimized. By looking at the number 
of trajectories averaged in each region a trend is found: around 30.066% of the trajectories stayed in region I, 
20.374% in region III and 49.56% almost equally distributed in regions II and IV, as it is emphasized in the close 
caption of Fig. 10a.

The mean values for the thermodynamic functions in each cycle are depicted in Fig. 10b–c for the energetic 
space involving �̃Stot , ε , �̃ and R̃ . The color representation is maintained. Points in region I have the best perfor-
mance involving entropy production and efficiency, meanwhile trajectories in region III (region of fast relaxa-
tions) maintain closer to the steady state. In regions II and IV the energetic functions fluctuate very close to the 
steady state. From the above discussion the stability dynamics favors an energetic behavior where efficiency and 
entropy changes are improved at the cost of decreasing cooling power.
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Figure 9.   (a) Line integral convolution plot of the dynamic equations (22), simulating streamlines over random 
conditions. (b) Trajectories towards relaxation in the phase space. (c) Trajectories in the ε–*�̃–σ̃ surface. (d–f) 
2D-plots for the entropy generation, cooling power and COP. In all cases � = 1 , τ = 3/5 and A and B are 
chosen to fulfill that t1 = t2 and trelax = t̃M�

tot .
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Concluding remarks and perspectives
The local stability of the Maximum Omega regime has been analyzed for the low dissipation refrigerator under 
two complementary dynamics. One with perturbations on one heat flux and the Omega function and another 
one with perturbations on the input/output heats. For each one an equivalent pair of time variables, which suit-
able describe the system and provide analogous optimizations reveal different features linking optimization with 
self-optimization. The restitution forces are modeled by means of dynamic equations stemming from requiring 
a steady state and small deviations of the input/output heat and fluxes.

On the one hand, a dynamic with a basin of attraction is obtained, along with a nullcline which outside the 
attraction basin, leads the system to a non-physical region. The analysis of relaxation trajectories indicates that 
relaxation paths evolve in such a way that the thermodynamic performance of the system is improved. The system 
moves directly to the endoreversible limit due to the restitution dynamics. This endoreversible limit coincides 
with the Pareto front, which represents the best energetic compromise between all the relevant thermodynamic 
functions. Thus, the restitution dynamics induces an optimization process. For the case of many perturbations 
along one cycle the stability dynamics constitutes an irreversible mechanism, characterizing points inside and 
outside the stability basin.

On the other hand, for the second dynamics (and 2nd pair of variables), a global steady state is obtained 
and an analysis of relaxation velocities is presented. Fast and slow relaxations are obtained and together with 
the Pareto front (and the endoreversible limit) have an influence in describing the case of many perturbations. 
When the system moves to a worse energetic state, it improves due to the restitution dynamics in a fast manner, 
meanwhile if the system is perturbed to a better state, it evolves slowly to the steady state. This will produce a 
small departure in the average behavior of the system to a more optimum state regarding entropy generation 
and larger efficiency (COP).

The improvement due to perturbations on the steady state is related with the phenomenon of antifragility, 
in which a system exhibits an improvement under stress62. This could be of particular interest in medicine and 
biological systems. The extension of the low dissipation model to chemical engines10 could also provide a path 
to test properties such as antifragility in biochemical processes.

The analysis here presented for RE’s has been reported for low dissipation heat engines as well45, 46, reinforcing 
the idea of a universal energetic characterization of heat devices as they are perturbed externally. Remarkably, 
the analyses of refrigeration systems are nowadays increasing its relevance since their coupling with other energy 
converters from different nature are being under study as an strategy for solving the problem of energy storage 
and heat recovery59,60. The study on a setup with fixed cooling power would be of interest, since in many applica-
tions the objective of refrigeration is to maintain this quantity as steady as possible.

Ideally, cyclic processes should be able to operate in a time-periodic steady state, one can make the idealization 
that the starting and ending points are well defined and analyze this as a unitary process. In reality, the switching 
between, aerobial respiration (linked to energetic trade-off functions) and anaerobial respiration (maximum 
power61), to name an example, as well as the transient states in between in the changing of regime are beyond the 
simplified description of the present model. But it is precisely in the connection with this unknown mechanisms, 
where adaptation and robustness play a major role. So far, the results presented here for the self-optimization cor-
respond to an emergent phenomenon (theoretically) that should be tested in specific structure dependent models.

The results presented in the present paper could open the window to the joint analysis of stability and optimi-
zation of coupled energy conversion systems with different purposes (heat engines, refrigerators, and heat pumps) 
and with different size scales, focusing on improving the strategies of production (aiming for a sustainability) and 

Figure 10.   (a) Ending points of 5× 104 trajectories. In the inset box a close caption of the geometric centers 
of all the trajectories in each quadrant is displayed. Starts denote the geometric centers of the points in each 
quadrant according to Fig. 9b; (b) Averaged values of �S , ε and �̃ , and (c) averaged values of �S , ε and R̃ . The 
representative values τ = 3/5 and � = 1 are used, but for other values the behavior is similar.
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seize on energy. Possible applications of these results might involve colloidal particles constrained in an optical 
trap, describing Carnot or Stirling cycles. The equivalence between low dissipation model, irreversible Cur-
zon–Ahlborn engine and Otto and Brayton engines might also allow for applications on solar energy heat devices.

Additionally, this study could open new perspectives to analyze possible self-optimization or organization 
mechanism in specific systems and could be useful to understand non-revealed properties of non-equilibrium 
systems and their energetic bounds.

A Statistical convergence: Kullback–Leibler divergence
A.1 Dynamics involving Q

c
 and �.  The Kullback–Leibler divergence, DKL allows to test statistical con-

vergence. The value of DKL gives a measure of how distant are two distributions. If DKL = 0 , the information 
stemming from both distributions is the same. This is a relevant issue to demonstrate that the obtained trend is 
not due to the lack of additional data.

From the averaged cooling power R̃ is computed of 105 trajectories, the interval between the largest and small-
est R̃ values is divided by 

√
N  (rounded to the upper next integer63) equal intervals, or bins, in this way, the same 

partition is used for the to compute the discrete probability distributions of the first k-thousand trajectories, 
ρk are obtained, and the DKL is calculated comparing ρk−1 with ρk . The entropy divergence, DKL,k is given by

giving a measure of how much information is gained by adding more trajectories. In Fig. 11, it is is shown that 
from 4× 104 trajectories the statistical behavior does not vary significantly and adding trajectories will not 
provide much further information.

A.2 Dynamics involving Q
c
 and Q

h
.  Analogously, the averaged R̃ values are considered for 5× 105 tra-

jectories. The resulting DKL,k values are shown in Fig. 12 for N = 105 trajectories, showing that from 6× 104 
trajectories the statistical behavior does not vary significantly and adding more trajectories will not give much 
further information.
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