QUT

Queensland University of Technology
Brisbane Australia

This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Conforti, Raffaele, Dumas, Marlon, Garcia-Bariuelos, Luciano, & La Rosa,
Marcello

(2015)

BPMN Miner: Automated Discovery of BPMN Process Models with Hier-
archical Structure.

This file was downloaded from: http://eprints.qut.edu.au/83646/

© Copyright 2015 [please consult the authors]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://core.ac.uk/display/33499879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Conforti,_Raffaele.html
http://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
http://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
http://eprints.qut.edu.au/83646/

BPMN Miner: Automated Discovery of
BPMN Process Models with Hierarchical Structure

Raffaele Conforti?, Marlon Dumas®, Luciano Garcia-Bafiuelos?, Marcello La Rosa®®

¢ Queensland University of Technology, Australia
b University of Tartu, Estonia
¢ NICTA Queensland Lab, Australia

Abstract

Existing techniques for automated discovery of process models from event logs gen-
erally produce flat process models. Thus, they fail to exploit the notion of subprocess
as well as error handling and repetition constructs provided by contemporary process
modeling notations, such as the Business Process Model and Notation (BPMN). This
paper presents a technique for automated discovery of hierarchical BPMN models con-
taining interrupting and non-interrupting boundary events and activity markers. The
technique employs functional and inclusion dependency discovery techniques in order
to elicit a process-subprocess hierarchy from the event log. Given this hierarchy and the
projected logs associated to each node in the hierarchy, parent process and subprocess
models are then discovered using existing techniques for flat process model discovery.
Finally, the resulting models and logs are heuristically analyzed in order to identify
boundary events and markers. By employing approximate dependency discovery tech-
niques, it is possible to filter out noise in the event log arising for example from data
entry errors or missing events. A validation with one synthetic and two real-life logs
shows that process models derived by the proposed technique are more accurate and
less complex than those derived with flat process discovery techniques. Meanwhile,
a validation on a family of synthetically generated logs shows that the technique is
resilient to varying levels of noise.

Key words: Process Mining, Automated Process Discovery, BPMN

1. Introduction

Process mining is a family of techniques to extract knowledge of business pro-
cesses from event logs [1]. It encompasses, among others, techniques for automated
discovery of process models. A range of such techniques exist that strike various trade-
offs between accuracy and understandability of discovered models. However, the bulk
of these techniques generate flat process models. When contextualized to the stan-
dard Business Process Model and Notation (BPMN), they produce flat BPMN models

Email addresses: raffaele.conforti@qut.edu.au (Raffacle Conforti),
marlon.dumasQ@ut.ee (Marlon Dumas), luciano.garcia@ut .ee (Luciano Garcia-Bafiuelos),
m.larosa@qut.edu.au (Marcello La Rosa)

Preprint submitted to Information Systems March 31, 2015

consisting purely of tasks and gateways. In doing so, they fail to exploit BPMN’s con-
structs for hierarchical modeling, most notably subprocesses and associated markers
and boundary events.

To fill the gap, this paper presents an automated process discovery technique —
namely BPMN Miner — that generates BPMN models with subprocesses, interrupting
and non-interrupting boundary events, event subprocesses, and loop and multi-instance
activity markers. An example of a BPMN model discovered by BPMN Miner is shown
at the top of Figure 1. At the bottom is shown a flat BPMN model obtained from the
Petri net discovered from the same log using the InductiveMiner plugin of the ProM
framework [2].

PMNDiagram

Figure 1: BPMN model obtained with and without applying the proposed technique on a synthetic log of an
order-to-cash process (using InductiveMiner to generate flat models).

The technique takes as input a set of event records, each including a timestamp,
an event type (indicating the task that generated the event), and a set of attribute-value
pairs. Such logs can be extracted from appropriately instrumented information sys-
tems [1]. For example, we validated the technique using logs with these characteristics
from an insurance claims system and a grant management system, while [3] discusses
a log with similar characteristics from an Enterprise Resource Planning (ERP) system.

The proposal exploits three key ideas to address the problem of identifying sub-
processes and hierarchical relations: (i) that the set of events of an event type can be
seen as a relational table; (ii) that event types sharing a common primary key are likely
to belong to the same (sub-)process; and (iii) that foreign keys between event types

are indicators of process-subprocess relations. Accordingly, the proposed technique
employs existing functional and inclusion dependency discovery techniques in order
to cluster event types into groups corresponding to parent processes and subprocesses.
Given the resulting process hierarchy, the technique splits the log into parent process
logs and subprocess logs and applies existing process model discovery techniques to
each log so as to produce a flat model for each node in the hierarchy. Finally, the re-
sulting models and logs are analyzed heuristically to identify boundary events, event
subprocesses and markers.

In order to handle “noise” in the log arising from data quality issues (e.g. data entry
errors or incompleteness) or from infrequent behavior, the proposed technique employs
approximate dependency discovery techniques, followed by a series of filters designed
to remove noise at the lowest possible level of granularity.

The technique has been validated on real-life and synthetic logs. The validation
shows that, when combined with existing flat process discovery methods, the technique
produces more accurate and less complex models than the corresponding flat models.
Moreover, a validation on a family of synthetically generated logs demonstrates the
resilience of the proposed technique to varying levels of noise.

The paper is a revised and extended version of a previous conference paper [4].
With respect to the conference version, the main reported extension is the ability to
filter out noise in the log that may otherwise prevent the discovery of the process hi-
erarchy, as well as the corresponding validation of the enhanced technique on noisy
logs. Other ancillary extensions include a re-implementation of the prototype tool with
optimizations leading to gains in execution times, as well as a release of the extended
prototype both as a plugin in the ProM framework and as a standalone tool.

The paper is structured as follows. Section 2 discusses techniques for automated
process discovery. Section 3 outlines the subprocess identification procedure for the
case of perfect logs (no noise) while Section 4 extends this latter technique with the
ability to filter out noise. Next, Section 5 presents heuristics to identify boundary
events, event subprocesses and markers. Section 6 then presents the implementation
of the proposed techniques while Sections 7 and 8 discuss the validation on noise-free
and noisy logs respectively. Finally, Section 9 discusses threats to validity of the study
while Section 10 concludes and discusses future work.

2. Background and Related Work

This section provides an overview of techniques for discovery of flat and hierar-
chical process models, and criteria for evaluation of such techniques used later in the

paper.

2.1. Automated discovery of flat process models

Various techniques for discovering flat process models from event logs have been
proposed [1]. The a-algorithm [5] infers ordering relations between pairs of events
in the log (direct follows, causality, conflict and concurrency), from which it con-
structs a Petri net. The o-algorithm is sensitive to noise (e.g. incorrect or missing
event records) and infrequent behavior, and cannot handle complex routing constructs.
Weijters et al. [6] propose the Heuristics Miner, which extracts not only dependencies
but also the frequency of each dependency. These data are used to construct a graph

of events, where edges are added based on frequency heuristics. Types of splits and
joins in the event graph are determined based on the frequency of events associated
with those splits and joins. This information can be used to convert the output of the
Heuristics Miner into a Petri net. The Heuristics Miner is robust to noise due to the
use of frequency thresholds. Van der Werf et al. [7] propose a discovery method where
relations observed in the logs are translated to an Integer Linear Programming (ILP)
problem. Finally, the InductiveMiner [2] aims at discovering Petri nets that are as
block-structured as possible and can reproduce all traces in the log.

Only few techniques discover process models in high-level languages such as
BPMN or Event-Driven Process Chains (EPCs). ProM’s Heuristics Miner can pro-
duce flat EPCs from Heuristic nets, by applying transformation rules similar to those
used when transforming a Heuristic net to a Petri net. A similar idea is implemented in
the Fodina Heuristics Miner [8], which produces flat BPMN models. Apart from these,
the bulk of process discovery methods produce Petri nets. Favre et al. [9] characterize
a family of (free-choice) Petri nets that can be bidirectionally transformed into BPMN
models. By leveraging this transformation, it is possible to produce flat BPMN models
from discovery techniques that produce (free-choice) Petri nets.

Automated process discovery techniques can be evaluated along four dimensions:
fitness (recall), appropriateness (precision), generalization and complexity [1]. Fit-
ness measures to what extent the traces in a log can be parsed by a model. Several
fitness measures have been proposed. For example, alignment-based fitness [10] mea-
sures the alignment of events in a trace with activities in the closest execution of the
model, while the continuous parsing measure counts the number of missing activations
when replaying traces against a heuristic net. Improved Continuous Semantics (ICS)
fitness [11] optimizes the continuous parsing measure by trading off correctness for
performance.

Appropriateness (herein called precision) measures the additional behavior allowed
by a discovered model not found in the log. A model with low precision is one that
parses a proportionally large number of traces that are not in the log. Precision can
be measured in different ways. Negative event precision [12] works by artificially
introducing inexistent (negative) events to enhance the log so that it contains both real
(positive) and fake (negative) traces. Precision is defined in terms of the number of
negative traces parsed by the model. Alternatively, ETC [13] works by generating a
prefix automaton from the log and replaying each trace against the process model and
the automaton simultaneously. ETC precision is defined in terms of the additional
behavior (“escaping” edges) allowed by the model and not by the automaton.

Generalization captures how well the discovered model generalizes the behavior
found in the log. For example, if a model discovered using 90% of traces in the log can
parse the remaining 10% of traces in the logs, the model generalizes well the log.

Finally, process model complexity can be measured in terms of size (number of
nodes and/or edges) or using structural complexity metrics proposed in the litera-
ture [14]. Empirical studies [14, 15, 16] have shown that, in addition to size, the
following structural complexity metrics are correlated with understandability and error-
proneness:

e Avg. Connector Degree (ACD): avg. number of nodes a connector is connected
to.

o Control-Flow Complexity (CFC): sum of all connectors weighted by their poten-

tial combinations of states after a split.
e Coefficient of Network Connectivity (CNC): ratio between arcs and nodes.

e Density: ratio between the actual number of arcs and the maximum possible
number of arcs in any model with the same number of nodes.

An extensive experimental evaluation [17] of automated process discovery tech-
niques has shown that the Heuristics Miner provides the most accurate results, where
accuracy is computed as the tradeoff between precision and recall (measured by means
of F-score). Further, this method scales up to large real-life logs. The ILP miner
achieves high recall — at the expense of a penalty on precision — but it does not scale to
large logs due to memory requirements.

Moreover, these automated process discovery techniques present a substantial drop
in accuracy when dealing with logs containing infrequent process behaviour. This
problem, despite relevant, in not addressed in this work. In the context of this work
noise is caused by data quality issues (e.g. data entry errors). We proposed an algo-
rithm, capable of filtering out noise in the form of infrequent process behaviour, in a
separate work [?].

2.2. Automated discovery of hierarchical process models

Although the bulk of automated process discovery techniques produce flat models,
one exception is the two-phase mining approach [18], which discovers process models
decomposed into sub-processes, each subprocess corresponding to a recurrent motif
observed in the traces. The two-phase approach starts by applying pattern detection
techniques on the event log in order to uncover tandem arrays (corresponding to loops)
and maximal repeats (maximal common subsequence of activities across process in-
stances). The idea is that occurrences of these patterns correspond to “footprints™ left
in the log by the presence of a subprocess. Once patterns are identified, their signifi-
cance is measured based on their frequency. The most significant patterns are selected
for subprocess extraction. For each selected pattern, all occurrences are extracted to
produce subprocess logs. Each occurrence is then replaced by an abstract activity,
which corresponds to a subprocess invocation in the parent process. This procedure
leads to one parent process log and a separate log per subprocess. A process model can
then be discovered separately for the parent process and for each subprocess. The pro-
cedure can be repeated recursively to produce process-subprocess hierarchies of longer
depth.

A shortcoming of the two-phase approach is that it cannot identify subprocesses
with (interrupting) boundary events, as these events cause the subprocess execution to
be interrupted and thus the subprocess instance traces do not show up neither as tan-
dem arrays nor maximal repeats. Secondly, in case multiple subprocess instances are
executed in parallel, the two-phase approach mixes together in the same subprocess
trace, events of multiple subprocess instances spawned by a given parent process in-
stance. For example, if a parent process instance spawns three subprocess instances
with traces t| = [a1,by,c1,d1], ta = [az,c2,b2], and 13 = [a3, b3, c3], the two-phase ap-
proach may put all events of #1, #, and #3 in the same trace, e.g. [a;,a2,b1,c1,a3,¢2,. . .].
When the resulting subprocess traces are given as input to a process discovery algo-
rithm, the output is a model where almost every task has a self-loop and concurrency

is confused with loops. For example, given a log of a grant management system in-
troduced later, the two-phase approach combined with Heuristics Miner produces the
subprocess model depicted in Figure 2(a), whereas the subprocess model discovered
using the Heuristics Miner after segregating the subprocess instances is depicted in
Figure 2(b).

(a) Two-phase mining approach (b) Two-phase mining with manual subprocess
instance separation

Figure 2: Sample subprocess model discovered using the two-phase mining approach.

Another related technique [19] discovers Petri nets with cancellation regions. A
cancellation region is a set P of places, where a given cancellation transition may fire,
such that this transition firing leads to the removal of all tokens in P. The output is a
reset net: a Petri net with reset arcs that remove tokens from their input place if any
token is present. Cancellation regions are akin to BPMN subprocesses with interrupt-
ing events. However, generating BPMN models with subprocesses from reset nets is
impossible in the general case, as cancellation regions may have arbitrary topologies,
whereas BPMN subprocesses have a block-structured topology. Moreover, the reset
nets produced by [19] may contain non-free-choice constructs that cannot be mapped
to BPMN [9]. Finally, the technique in [19] does not scale up to logs with hundreds or
thousands of traces due to the fact that it relies on analysis of the full state space.

Other techniques for discovering hierarchical collections of process models,
e.g. [20], are geared towards discovering processes at different levels of generaliza-
tion. They produce process hierarchies where a parent-child relation indicates that
the child process is a more detailed version of the parent process (i.e. specialization
relations). This body of work is orthogonal to ours, as we seek to discover part-of
(parent-subprocess) relations.

The SMD technique [21] discovers hierarchies of process models related via spe-
cialization but also part-of relations. However, SMD only extracts subprocesses that
occur in identical or almost identical form in two different specializations of a process.

Another related work is that of Popova et al. [22], which discovers process models
decomposed into artifacts, where an artifact corresponds to the lifecycle of a business
object in the process (e.g. a purchase order or invoice). This technique identifies ar-
tifacts in the event log by means of functional dependency and inclusion dependency
discovery techniques. In this paper, we take this idea as starting point and adapt it to
identify process hierarchies and then apply heuristics to identify boundary events and
markers.

3. Identifying Subprocesses

In this section we outline a technique to extract a hierarchy of process models from
a noise-free event log consisting of a set of traces. Each trace is a sequence of events,

where an event consists of an event type, a timestamp and a number of attribute-value
pairs. Formally:

Definition 1 (Event (record)). Let {A;,...,A,} be a set of attribute names and
{Dy,...,Dy} a set of attribute domains where D; is the set of possible values of A;
for1 <i<n.Anevente= (et,T,v,...,v;) consists of

1. et € X is the event type to which e belongs, where X is the set of all event types
2. T € Qs the event timestamp, where Q is the set of all timestamps,

3. forall 1 <i<kv;=(A;,d;) is an attribute-value pair where A; is an attribute
name and d; € D; is an attribute value.

Definition 2 (LLog). A trace tr = ey ...e, is a sequence of events sorted by timestamp.
A log L is a set of traces. The set of events Ey, of L is the union of events in all traces of
L.

The proposed technique is designed to identify logs of subprocesses such that:

1. There is an attribute (or combination of attributes) that uniquely identifies the
trace of the subprocess to which each event belongs. In other words, all events
in a trace of a discovered subprocess share the same value for the attribute(s)
in question. Moreover, in this section we assume that in every given trace of
a (sub-)process, there is at most one occurrence of an event of any given event
type. This latter assumption is lifted in Section 4.

2. In every subprocess instance trace, there is at least one event of a certain type
with an attribute or combination thereof uniquely identifying the parent process
instance . In this section we further assume that other all events in the trace of a
given sub-process refer to the same parent process instance via said attribute or
combination of attributes. This latter assumption is lifted in Section 4.

These conditions match the notions of key (condition 1) and foreign key (condi-
tion 2) in relational databases. Thus, we use relational algebra concepts [23]. A table
T CDj X...x D, is arelation over domains D; and has a schema .# (T) = (Ay,...,Ap)
defining for each column 1 < i < m an attribute name A;. The domain of an attribute
may contain a “null” value L. The set of timestamps Q does not contain L. For a given
tuple t = (dy,...,dy) € T and column 1 <i < m, we write t.A; to refer to d;. Given
atuple t = (dy,...,dyn) € T and a set of attributes {A;,,...,A; } € #(T), we define
tAi,..., Ayl = (t.A;,...,t.A;) Given a table T, a key of 7' is a minimal set of at-
tributes {Ki,...K;} such that Vr,t' € Tt[K;,...K;] #'[Ki,...K]] (no duplicate values
on the key). A primary key is a key of a table designated as such. Finally, a foreign key
linking table 7; to 7> is a pair of sets of attributes ({FKi,...,FK;},{PKi,...,PK;})
such that {FK;,...,FK;} C ./(T1), {PKi,...,PK;} is primary key of 7> and Vt €
T3t € T t[FK,,...,FK;] ={'[PKy,...,PK;]. The latter condition is an inclusion de-
pendency.

Given the above, we seek to split a log into sub-logs based on process instance
identifiers (keys) and references from subprocess to parent process instances (foreign
keys). This is achieved by: (i) splitting the event types observed in the logs into clusters

Event / Compute Event | Compute Event | Project Log | Discover | Process
Hierarchy

o Type Clusters Type Cluster over Event Models from Model
° / * | | Type Clusters | Projected Logs | Hierarchy

Figure 3: Procedure to extract a process model hierarchy from an event log.

based on keys; (ii) linking these clusters hierarchically via foreign keys; (iii) extracting
one sub-log per node in the hierarchy; and (iv) deriving a process hierarchy mirroring
the cluster hierarchy (Figure 3). Below we outline each step in turn.

Compute event type clusters. We start by splitting the event types appearing in the log
into clusters such that all event types in a cluster (seen as tables consisting of event
records) share a common key K. The intuition of the technique is that the key K shared
by all event types in a cluster is an identifying attribute for all events in a subprocess.
In other words, the set of instances of event types in a cluster that have a given value for
K (e.g. K =v for a fixed v), will form one trace of the (sub-)process in question. For
example, in an order-to-cash process, all event types that have POID (Purchase Order
Identifier) as primary key, will form the event type cluster corresponding to the root
process. A given trace of this root process will consist of instances of event types in
this cluster that share a given POID value (e.g. all events with POID = 122 for a trace).
Meanwhile, event types that share LIID (Line Item Identifier) as primary key will form
the event type cluster corresponding to a subprocess dealing with individual line items
(say a “Handle Line Item” subprocess). A trace of this subprocess will consist of events
of a trace of the parent process that share a given value of LIID (e.g. LIID = “122-3").!
To find keys of an event type e, we build a table consisting of all events of type et.
The columns are attributes appearing in the attribute-value pairs of events of type ez.

Definition 3 (Event type table). Let et be an event type and {ey,...,e,} the set of
events of type et in log L, i.e. e; = (et,T;,vi,...,vi,) where v, = (Aj,d;;) and A; is
an attribute for e;. The event type table for et in L is a table ET C (DyU{Ll}) x
... X (D U{L}) with schema .#(ET) = (Ay,...,Ay) s.t. there exists an entry t =
(dy,...,dn) € ET iff there exists an event e € ET where e = (et,T,(A1,d1), ..., (Ak,di))
s.t.di e DiU{L}.

Events of a type et may have different attributes. Thus, the schema of the event
type table consists of the union of all attributes that appear in events of this type in the
log. Therefore there may be null values for some attributes of some events.

For each event type table, we seek to identify its key(s), meaning the attributes that
may identify to which process instance a given event belongs to. To detect keys in event
type tables, we use the TANE [24] algorithm for discovery of functional dependencies
from tables. This algorithm finds all candidate keys, including composite keys. Given
that an event type may have multiple keys, we need to select a primary one. Two
options are available. The first is based on user input: The user is given the set of
candidate keys discovered for each event type and designates one as primary — and in
doing so chooses the subprocesses to be extracted. Alternatively, for full automation,

Tt may happen alternatively that the key of the “Handle Line Item” subprocess is (POID, LIID).

the lexicographically smallest candidate key of an event type is selected as the primary
key pk(ET), which may lead to event types not being grouped the way a user would
have done so.

All event tables sharing a common primary key are grouped into an event type
cluster. In other words, an event type cluster ETC is a maximal set of event types
ETC ={ET,...,ETi} such that pk(ET\) = pk(ET,) = pk(ET}).

Compute event type cluster hierarchy. We now seek to relate pairs of event clusters
via foreign keys. The idea is that if an event type E7> has a foreign key pointing to a
primary key of ETj, every instance of an event type in E7; can be uniquely related to
one instance of each event type in ETj, in the same way that every subprocess instance
can be uniquely related to one parent process instance.

We use the well-known SPIDER algorithm [25] to discover inclusion dependencies
across event type tables. SPIDER identifies all inclusion dependencies between a set of
tables, while we specifically seek dependencies corresponding to foreign keys relating
one event type cluster to another. Thus we only retain dependencies involving the
primary key of an event type table in a cluster corresponding to a parent process, and
attributes in tables of a second cluster corresponding to a subprocess. The output is a
set of candidate parent process-subprocess relations as follows.

Definition 4 (Candidate process-subprocess relation between clusters). Given a
log L, and two event type clusters ETCy and ETC», a tuple (ETCy,Z ,ETC,,) is a
candidate parent-subprocess relation if and only if:

1. &= pk(ETCl) and VET, € ETC,,3dET, € ETC, ZETz[y] - ET][@] where
ETi[P] is the relational algebra projection of ET| over attributes in & and
similar for ET;[.Z). In other words, ETC| and ETC; are related, if every table
in ETCy has an inclusion dependency to the primary key of a table in ETC so
that every tuple in ETC} is related to a tuple in ETC.

2. Vtr € LVey € tr: ey.et € ETCy = Jej € tr: ej.et € ETCy Nei[P] = ey F| A
(1.7 < e2.1Vey =). This condition ensures that the direction of the relation
is from the parent process to the subprocess by exploiting the fact that the first
event of a subprocess instance must be preceded by at least one event of the
parent process instance, or the first event of a subprocess is also the first event
of the parent process instance.

The candidate process-subprocess relations between clusters induces a directed
acyclic graph. We extract a directed minimum spanning forest of this graph by ex-
tracting a directed minimum spanning tree from each weakly connected component of
the graph. We turn the forest into a tree by merging all root clusters in the forest into
a single root cluster. This leads us to a hierarchy of event clusters. The root cluster in
this hierarchy consists of event types of the root process. The children of the root are
event type clusters of second-level (sub-)processes, and so on.

Project logs over event type clusters. We now seek to produce a set of logs related hier-
archically so that each log corresponds to a process in the envisaged process hierarchy.
The log hierarchy will reflect one by one the event cluster hierarchy, meaning that each
event type cluster is mapped to log. Thus, all we have to do is to define a function that
maps each event type cluster to a log. This function is called log projection.

Given an event type cluster ETC, we project the log on this cluster by abstracting
every trace in such a way that all events that are not instances of types in ETC are
deleted, and markers are introduced to denote the first and last event of the log of a
child cluster of ET'C. Each of these child clusters corresponds to a subprocess and thus
the markers denote the start and the end of a subprocess invocation.

Definition 5 (Projection of a trace over an event type cluster). Given a log L =
{try,...try}, an event cluster ETC, the set of children cluster of ETC children(ETC) =
{ETC),...ETC,}, and v a value of the key of the event cluster ETC, the projection of
Lover ETC, is the log Lgrc, = {tr},...tr;,} where tr)_is the log obtained by replacing
every event containing the key value v in try that is also first event of a trace in the
projected child log Lgtc; by an identical event but with type Startgrc, (start of cluster
ETC;), replacing every event containing the key value v in try that is also last event
of a trace in the projected child log Lgrc, by an identical event but with type Endgrc,
(end of cluster ETC;), and then removing from try all other events not containing the
key value v or of a type not in ETC.

This recursive definition has a fix-point because the relation between clusters is a
tree. We can thus first compute the projection of logs over the leaves of this tree and
then move upwards in the tree to compute projected logs of parent trace clusters.

Generate process model hierarchy. Given the hierarchy of projected logs, we generate
a hierarchy of process models isomorphic to the hierarchy of logs, by applying a pro-
cess discovery algorithm to each log. For this step we can use any process discovery
method that produces a flat process model (e.g. the Heuristics Miner). In the case of a
process with subprocesses, the resulting process model will contain tasks correspond-
ing to the subprocess start and end markers introduced in Definition 5.

Complexity. The complexity of the first step of the procedure is determined by that of
TANE, which is in the size of the relation times a factor exponential on the number of
attributes [24]. This translates to O(|EL|-2¢) where a is the number of attributes and
|EL| is the number of events in the log. The second step’s complexity is dominated by
that of SPIDER, which is O(a-mlogm) where m is the maximum number of distinct val-
ues of any attribute [25]. If we upper-bound m by |Ey |, this becomes O(a- |EL|log|EL|).
In this step, we also determine the direction of each primary-foreign key dependency.
This requires one pass through the log for each discovered dependency, thus a com-
plexity in O(|EL|- k) where k is the number of discovered dependencies. If we define
N as the number of event type clusters, k < N2, this complexity becomes O(|EL|-N?).
The third step requires one pass through the log for each event type cluster, hence
O(|EL| - N), which is dominated by the previous step’s complexity. The final step is
that of process discovery. The complexity here depends on the chosen process dis-
covery method and we thus leave it out of this analysis. Hence, the complexity of
subprocess identification is O(|EL| 2%+ a - |EL|log|EL| + |EL| - N*), not counting the
process discovery step.

4. Robust subprocess discovery

A recurrent issue in the context of automated process discovery is to account for
the effects of noise in the input log that may affect the quality of the discovered model,

10

measured in terms of accuracy and complexity metrics. Possible sources of noise are
data quality issues arising from data entry errors or incompleteness — whether missing
events or missing attribute values (e.g. “null” values). For example an invoice may
wrongly point to a purchase order that is not recorded in the log. Another source of
noise is exceptional behavior. For example, in an order-to-cash process, it is gener-
ally the case that an invoice is raised with reference to a purchase order. However, in
exceptional cases it may be that an invoice is raised outside the context of a purchase
order, for example to correct errors or miscommunications. In this case, there may be
a set of invoice-related events in the log that are not related to the top-level order-to-
cash process. Such noise, even when highly infrequent, would result in the technique
presented in the previous section not discovering the parent-child relation between the
order-to-cash process and the invoicing subprocess.

In this section we discuss the implications of noise on the technique presented in
the previous section.

4.1. Types and implications of noise

The technique for extraction of process hierarchies presented in the previous section
relies on the following assumptions:

1. Perfect key assumption: For every given trace of a subprocess to be discovered,
there is an attribute or combination thereof (the “key”) such that no two events
of a given type belonging to the same subprocess trace share the same value on
these attribute(s).

2. Perfect and consistent foreign key assumption: There is an event type belonging
to a subprocess, such that every event of this type refers to exactly one parent
process instance via a given attribute or combination thereof (the “foreign key”).

Below we analyze the implications of these assumptions being violated and corre-
sponding relaxations of these assumptions to address these implications.

Perfect key assumption. The first assumption ensures the existence of a key that can be
used to determine to which (sub-)process instance a given event belongs to. However, it
may happen that there is no perfect key identifying all events that belong to a given sub-
process, due for example to exceptional behavior. Concretely, consider the case where
of an order-to-cash process where the purchaser sends a PO to the supplier and the
supplier sends back one “PO response” but in some cases, the supplier may send back
multiple “PO responses” (e.g. because the first response was found to be incomplete).
In this case, we will see in the log that there are in some cases multiple events of
type “PO response” that refer to the same PO identifier, yet they are clearly all part
of the same instance of the PO submission subprocess. The presence of multiple “PO
response” events with the same PO identifier would mean that the PO identifier is not
a key of the event type table “PO response” and thus the PO response would not be
placed in the same event type cluster as other events related to the submission of the PO.
Instead, the “PO response” would be placed in a separate event type cluster — possibly
together with other event types related to the PO submission that lack the uniqueness
property on attribute “PO identifier”. This would lead to a “catch all” subprocess being
created during the construction of the subprocess hierarchy, where for all such events
would be put together.

11

This potential issue can be addressed within the framework of the TANE algorithm
itself. Specifically, TANE can be configured (via a tolerance threshold) to discover keys
that do not strictly satisfy the uniqueness property — a problem known as approximate
primary key discovery. With reference to the previous example, this means we can set
this tolerance threshold in TANE so that it classifies the PO identifier as a candidate
key of event type “PO response” even though it is not a perfect key. The trade-off here
is that TANE may start producing more candidate keys as the tolerance threshold is
increased and thus more user intervention may be needed to select which candidate
key should be made a primary key for each event type table.

Once an approximate primary key has been discovered for a given event type, the
event log can be processed using the same techniques presented in the previous section
(i.e. in the same way as if the primary key was an exact one). Event types with duplicate
primary key values in an event type table will show up as “repeated tasks” and possibly
embedded inside loops when the automated process discovery technique is applied to
the projected log derived from the corresponding event type cluster.

Perfect and consistent foreign key assumption. The second assumption can be broken
down into two sub-assumptions:

Perfect foreign key. That each event type ET in the cluster corresponding to a subpro-
cess has a foreign key that links every event of ET to an event of an event type in
the cluster corresponding to the parent process. This means that for every event
type, there is a perfect inclusion dependency between this foreign key and the
primary key of an event type in the parent process.

Consistent foreign keys. That these foreign keys are such that all events that belong to
the same subprocess instance to the same parent process instance, as otherwise
there is an ambiguity regarding the parent process instance to which a given
subprocess instance is attached to.

The presence of noise — whether missing events in a parent process or incorrect or
missing foreign key values — can break the perfect foreign key assumption. Accord-
ingly, we relax this assumption by assuming that the inclusion dependency between the
foreign key and the parent’s primary key is imperfect. The corresponding data mining
problem is known under the name of approximate foreign key. The SPIDER algorithm
is unfortunately designed to discover exact foreign keys only. To discover approximate
foreign keys, we employ the approximate foreign key discovery technique of Zhang et
al. [26]. In addition to its relative scalability, this technique has the advantage over al-
ternative ones: (i) it discovers both single-column and multi-column foreign keys; and
(ii) it embeds a mechanism to reduce the number of “false positives”, specifically fk/pk
(foreign key—primary key) relations that are due simply to the domain of one column
being included in the domain of another column.

In a nutshell, Zhang et al.’s method relies on a measure of randomness as an in-
dicator of the appropriateness of a candidate single or multi-column foreign key. The
intuition behind the method is that a foreign key should follow a probability distribu-
tion similar to that of the corresponding primary key, e.g., the values on the foreign key
are uniformly taken from the values on the corresponding primary key. This property
is tested for candidate fk/pk pairs by means of non-parametric statistical tests, tailored
for handling multiple random variables (cf. table attributes) from different domains.

12

The output of the method is a set of candidate fk/pk relations with high levels of ap-
propriateness, from which the user can select those that they consider meaningful from
a domain perspective, which in our case means those that are likely to correspond to
a process-subprocess relation. These pk/fk relations can then be used to construct the
process hierarchy as outlined in Section 3.

The use of an approximate foreign key detection technique instead of SPIDER
partly addresses the implications of the perfect key assumption, insofar as it allows
us to detect process-subprocess relations even in the presence of noise. However, it
is still necessary to filter out events (or entire subprocess traces) that violate inclu-
sion dependencies between fk/pk pairs linking subprocesses to their parent processes.
Moreover, the detection of approximate foreign keys does not ensure that the second
sub-assumption above is fulfilled. It may still be that two events that share the same
value for the primary key of a subprocess (i.e. they belong to the same subprocess in-
stance) refer to different parent process instances. These two remaining concerns are
addressed in the following sub-section.

4.2. Noise filtering

To handle noise in the log arising from imperfect or inconsistent fk/pk relations,
we post-process each projected log in the hierarchy in order to remove noisy events
at the lowest possible level of granularity. With reference to the procedure outlined
in Figure 3, we introduce a noise filtering step between steps “Project Log over Event
Type Clusters” and “Discover Models from Projected Logs”. The noise filtering step
consists of three filters:

1. A filter to remove traces containing at least an event referring to a parent process
instance which does not exist.

2. A filter to remove subprocess traces containing at least an event referring to a
parent process instance which does not exist.

3. A filter to remove events in a subprocess trace that refer to a different parent
process instance than other events in the same subprocess trace.

The first filter (Algorithm 1) is applied to traces containing at least an event refer-
ring to a parent process which does not exist. This filter removes process instances
containing noise, (i.e. a foreign key value that does not match any primary key value
in the trace). For each trace ¢ in a log, the algorithm scans sequentially each event in
the trace. Whenever an event e¢; contains an attribute representing a foreign key fk,
the algorithm checks if in the trace containing e; there exists an other event e, having
an attribute representing a primary key pk which value is equal to the value of fk. If
such event cannot be found the entire trace is discarded. To prevent the removal of a
large number of process instances, the algorithm requires a threshold value (between 0
and 1). If the percentage of process instances removed exceeds the given threshold the
algorithm returns the original log.

The second filter (Algorithm 2) removes subprocess instances containing noise in
the form of events that do not refer to any parent process instance (i.e. a foreign key
value that does not match any primary key value). The algorithm takes as input a
subprocess log, its parent process log, and the primary key-foreign key pair relating
the subprocess to the parent process. For each trace in the log, the algorithm scans

13

Algorithm 1: RemoveNoisyTraces

input: original log L, tolerance value #v,js., and minimum spanning tree tree
1 Lyeyw = {},
2 removed :=0;
3 while Noden in tree do

4 FK :=n.getFK();

5 PK :=n.getPK();

6 PKparen: = n.getParent().getPK();

7 foreach Trace t in L do

8 PKs :={};

9 Lnew = Lyew U {t};
10 foreach Event e int do
11 if there not exists an attribute A € e such that A; € PK then
12 if there exists an attribute Ay € e such that Ay € PKpayen, then
13 L | PKs:=PKsU{e.d};
14 foreach Event e int do
15 if there exists an attribute Ay, € e such that e.dy € PKs then
16 L Lyew = new\{[}§
17 removed = removed + 1;

p—

8 if removed > |L| - tvpoise then return L;
19 return L,,,,

sequentially each event in the trace of the subprocess. Whenever it finds an event
containing the foreign key given in input, the algorithm checks if in the parent process
log there exists an event containing the primary key given in input and if the value of
these two attributes is equal. If an event in the parent process log cannot be found the
subprocess instance is removed.

Finally, the third filter (Algorithm 3) removes, from a grandparent process instance,
events referring to a parent process instance which does not exist. For each trace ¢ of
subprocess p1, the algorithm checks if the trace contains an event referring to a parent
subprocess p», child of p;, which does not exist. If such an event exists the event is
removed from the trace. Note that in the algorithm PKs pjgre 1s treated as the function
mapping PrimaryKeys to the sets of their possible values. Note that in Algorithm 3
PKS pilaren 18 treated as the function mapping PrimaryKeys to the sets of their possible
values.

Complexity. The complexity of the noise-resilient technique is the same as that of the
base technique of Section 3 except for two points. First the term corresponding to
the SPIDER algorithm — O(a - |[Er|log|EL|) - is replaced by the complexity of the ap-
proximate foreign key detection algorithm. When applied to a given pair of attributes
(a candidate pk/fk), the complexity of this latter algorithm is cubic on the size of the
database, i.e. O(|EL|?) in our case. If we only seek foreign keys of length one, the com-
plexity of the approximate foreign key discovery step is thus O(a- |EL|?). If we seek
composite foreign keys as well, the factor a is replaced by a binomial factor, which
quickly makes the method impractical.

The second difference with respect to Section 3 is the addition of the three filters.
These filters require one pass each through the (partitioned) log and thus add a linear
term O(|EL|)) to the overall complexity.

14

Algorithm 2: RemoveNoisySubtraces

AU AW N -

o e

10
11
12

13

input: original log L, log L, primary key PK, foreign key FK

Lnew = {},

foreach Trace t, in L, do

FKs:={};

foreach Event e, in t, do

if there exists an attribute Ay € ep, such that Ay € FK then
L FKs = FKsU{e,.d};

if |[FKs| = 1 then
foreach Trace t in L do
if#, C t then
foreach Event e int do

L L Lyew = Lyew U {tp};

return L.,

Algorithm 3: RemoveNoisyEvents

R=AN- R | AU AW N -

=
E LR S]

— e
e B N |

input: log L,, node of the minimum spanning tree related with the subprocess node

Lyew = {},
PKSchitdren = 1{}3
PKsValuespigren = {}:
foreach Node n in node.getChildren() do
PKSchitdren = PKSchitdaren U {n'gEIPK()};
PKsValuescpiigren = PKsValues pigren U { (n.getPK(),n.getPKValues()) };
foreach Trace t, in L, do
thew = <>,
foreach Event e, int, do
hasKey := false;
add := false;
if there exists an attribute Ay € ep, such that Ay € PKs¢pijaren then
hasKey := true;
L if di ¢ PKsValues piigren(Ax) then add := true;
if —hasKey or add then tye,, = te," (ep);
L if ten 7# <> then Ly, := Ly, U {tnew};

return L,,,,

15

if there exists an attribute A; € e such that Aj € PK and e.d; € FKs then

5. Identifying Boundary Events, Event Subprocesses and Markers

This section presents heuristics to refactor a BPMN model by 1) identifying inter-
rupting boundary events, ii) assigning these events a type, iii) extracting event subpro-
cesses, and iv) assigning loop and multi-instance markers to subprocesses and tasks.
The overall refactoring procedure is given in Algorithm 4, which recursively traverses
the process models hierarchy starting from the root model. This algorithm requires the
root model, the set of all models PS, the original log L and the logs for all process
models LS, plus parameters to set the tolerance of the heuristics as discussed later.

For each activity a of p that invokes a subprocess s (line 2), we check if the sub-
process is in a self loop and if so we mark s with the appropriate marker and remove
the loop structure (line 5 — refactoring operations are omitted for simplicity). We then
check if the subprocess is triggered by an interrupting boundary event (line 6), in which
case the subprocess is an exception flow of the parent process. If so, we attach an in-
terrupting boundary event to the border of the parent process and connect the boundary
event to the subprocess via an exception flow. Then we identify the type of boundary
event, which can either be timer or message (line 8). Next, we check if the subprocess
is an event subprocess (line 10). Finally, we check if the subprocess is multi-instance
(lines 11 and 17), in which case we discover from the log the minimum and maximum
number of instances. If activity a does not point to a subprocess (i.e. it is a task), we
check if this is a loop (line 16) or multi-instance task (line 17), so that this task can be
marked accordingly. Each of these constructs is identified via a dedicated heuristic.

Algorithm 4: UpdateModel

input: Process model p, set of all process models PS, original log L, set of all process logs LS,
tolerance values 1v;,; and tVyjper, percentages pv;;..., and pv,,;

1 foreach Activity a in p do
2 if there exists a process s in PS such that label(a) = Start, then
3 s := updateModel(s, PS, L, LS, tviut, Otimer> PVtimer> PVm1):
4 L) := getLog(p, LS);
5 if 5 is in a self loop then mark s as Loop;
6 if isInterruptingEvent(a, p, Lp, tvi,) then
7 set s as exception flow of p via new interrupting event e;;
8 if isTimerInterruptingEvent(a, Ly, tViimer, PVtjer) then mark e; as Timer;
9 else mark ¢; as Message;
10 else if isEventSubprocess(a, p) then mark s as EventSubprocess of p;
11 if isMultilnstance(s, L, pvy,;) then
12 mark s as MI;
13 sy := discoverMILowerBound(s, L);
14 syp := discoverMIUpperBound(s, L);
15 else
16 if a is in a self loop then mark a as Loop;
17 if isMultilnstance(a, L, pv,,;) then
18 mark s as MI;
19 ar g := discoverMILowerBound(a, L);
20 | aus = discoverMIUpperBound(a, L);
21 return p

Identify interrupting boundary events. Algorithm 5 checks if subprocess s of p is trig-
gered by an interrupting event. It takes as input an activity a; corresponding to the

16

invocation of subprocess s. We check that there exists a path in p from a4 to an end
event of p without traversing any activity or AND gateway (line 1). We count the
number of traces in the log of p where there is an occurrence of a; (line 5), and the
number of those traces where a; is the last event. If the latter number is at least equal
to the former, we tag the subprocess as “triggered by an interrupting event” (line 8).
The heuristic uses threshold #v;,,. If tv;,, = 0, we require all traces containing a, to
finish with a; to tag s as triggered by an interrupting event, while if #v;,, = 1, the path
condition is sufficient.

Algorithm 5: isInterruptingEvent

input: Activity ay, process model p, log L,, tolerance v,

1 if there exists a path in p from ag to an end event of p without activities and AND gateways then

2 #BoundaryEvents := 0,

3 #Traces .= 0;

4 foreach trace trin L, do

5 if there exists an event ey in tr such that e; .et = label(as) then

6 if there not exists an event ey in tr such that e;.et # label(ay) and e;.T > e;.7 then
#BoundaryEvents := #BoundaryEvents + 1,

7 #Traces .= #Traces + 1;

8 if #BoundaryEvents > #Traces - (1 — tviy;) then return true

9 return false

Identify interrupting boundary timer events. Algorithm 6 detects if a subprocess s of
p is triggered by a timer boundary event. We first extract from the log of p all traces ¢
containing executions of a, (line 5). For each of these traces we compute the average
time difference between the occurrence of a, and that of the first event of the trace (lines
4-9). We then count the number of traces where this difference is equal to the average
difference, modulo an error determined by the product of the average difference and
tolerance value tvy,er (line 11). If the number of traces that satisfy this condition
is greater than or equal to the number of traces containing an execution of a;, we
tag subprocess s as triggered by an interrupting boundary timer event (line 12). The
heuristic can be adjusted using a percentage threshold pv,;,,., to allow for noise.

Algorithm 6: isTimerInterruptingEvent

input: Activity ay, log Ly, tolerance tv;jmer, percentage pv;,..,

#TimerEvents := 0;

timeDiff;or 1= 0;

timeDifferences := &,

foreach rrace trin L, do

if there exists an event ey in tr such that e) .et = label(a;) then

ey = first event of tr;
timeDiffror := timeDiffipr + (€1.T — €2.7);
timeDifferences := timeDifferences U{(e1.T—e,.T) };

=B B Y I R S

9 timeDiffg 1= timeDiffio [|timeDifferences|;
10 foreach diff € timeDifferences do
11 L if [imEDWavg - timeDl.‘fﬁwg Wiimer < dlff < timEDWavg + timeDl.‘fﬁwg Wiimer then

#TimerEvents := #TimerEvents + 1;

12 return #TimerEvents > |timeDifferences| - pv, e,

17

Identify event subprocesses. A subprocess s of p is identified as an event subprocess if
it satisfies two requirements: i) it needs to be repeatable (i.e. it has either been marked
with a loop marker, or it is part of a while-do construct), and ii) can be executed in
parallel with the rest of the parent process (either via an OR or an AND block).

Identify multi-instance activities. Algorithm 7 checks if a subprocess s of p is multi-
instance. We start by retrieving all traces of p that contain invocations to subprocess
s (line 5). Among them, we identify those where there are at least two instances of
subprocess s executed in parallel (lines 6-7). As per Def. 5, an instance of s is delimited
by events of types Start; and End, sharing the same (PK, FK). Two instances of s are in
parallel if they share the same FK and overlap in the log. If the number of traces with
parallel instances is at least equal to a predefined percentage pv,,; of the total number of
traces containing an instance of s, we tag s as multi-instance. Finally, we set the lower
(upper) bound of instances of a multi-instance subprocess to be equal to the minimum
(maximum) number of instances that are executed among all traces containing at least
one invocation to s. Note that e[PK] is the projection of event e over the primary key
of e.et and e[FK] is the projection of e over the event type of the parent cluster of e.et.

Algorithm 7: isMultilnstance

input: Subprocess s, original log L, percentage pv,,

1 if s is Loop then
2 #Tracesy; :=0;
3 #Traces := 0;
4 foreach trace tr in L do
5 if there exists an event e in tr such that e.et = Start, then
6 if there exist two events ey, e, in t such that e .et = Start,, e.et = Starty,
¢1|PK] # e2|PK] and e|[FK] = e>[FK] then
7 if there exists an event e3 in tr such that e3.et = Endy, e3[PK| = e [PK],
63[FK] = el[FK], e1.T < er.7T < e3.7 then
8 L #Tracesyy; = #Tracesyy + 1;
9 #Traces := #Traces + 1;
10 return #Tracesy; > #Traces -pvy;

11 return false

Complexity. Bach heuristic used in Algorithm 4 requires one pass through the log
and for each trace, one scan through the trace, hence a complexity in O(|EL|). The
heuristics are invoked for each process model, thus the complexity of Algorithm 4 is
O(p- |EL|), where p is the number of process models. This complexity is dominated
by that of subprocess identification.

6. Implementation

We implemented the proposed technique as a ProM plugin called BPMN Miner.
This plugin implements the procedure for extracting a process model hierarchy from
an event log outlined in Figure 3, and then utilizes the heuristics presented in Section 5
for identifying boundary events, event subprocesses and activity markers. While in
principle our technique supports multi-rooted logs, i.e. logs that capture the events of

18

multiple business processes, the implementation is restricted to a log with a single-
rooted hierarchy, i.e. it assumes that the log records the events of a single business
process. Thus, the tool generates a single hierarchical BPMN process model.

Before starting the discovery procedure, the user is requested to choose an exist-
ing flat process model discovery method upon which the technique will be applied,
and configure the parameters of the various heuristics described in Section 5, e.g. the
tolerance level for interrupting events and multi-instance activities (see Figure 4(a)).

Event Types and Available Primary Keys

review

(a) Selecting flat discovery method (b) Overwriting a primary key
Figure 4: Configuration dialogs of the BPMN Miner plugin for ProM.

In order to compute the event type clusters the tool identifies a list of candidate
event attributes for primary key detection.These are the event attributes that remain
after filtering out those known not to be valid primary keys in a process log, e.g. ac-
tivity name, timestamp, assigned resource and data in/out. The tool assigns to each
activity the most likely event attribute. This assignment can then be modified by the
user, which, prompted with the list of candidate event attributes for primary key de-
tection,can remove false positives, if any, among the attributes identified. Upon com-
pletion, the TANE algorithm (cf. Section 3) is invoked to discover functional depen-
dencies. The identified candidate primary keys are then shown to the user who can
overwrite the selection in case of multiple candidates for a primary key (see Figure 4).
Afterwards, the tool automatically performs the remaining steps of the procedure for
subprocess extraction and applies the discovery heuristics. To increase performance,
the log projection over event type clusters has been multi-threaded (one thread per
cluster) as well as the removal of noisy subtraces using Algorithm 2 (one thread per
subprocess log). An example of the result produced by BPMN Miner is the top model
of Figure 1.

BPMN Miner supports the following flat process model discovery methods:
Heuristics Miner and ILP as they provide the best results in terms of accuracy ac-
cording to [17]; the InductiveMiner as an example of a method intended to discover
block-structured models with high fitness; Fodina Heuristics Miner, which generates
flat BPMN models natively; and the o-algorithm, as an example of a method suffering
from low accuracy, according to [17].

As part of this work, we also implemented a number of utility plugins to:

e measure the complexity of a BPMN model;

e convert Petri nets to BPMN models in order to compare models produced by flat

19

discovery methods with those produced by BPMN Miner. For this, we adapted
the Petri Net to EPCs converter available in ProM 5.2;

e convert BPMN models to Petri nets in order to compute accuracy. For this, we
implemented the algorithm in [27];

e convert Heuristic Nets to BPMN models, in order to use the Heuristics Miner as
a flat process model discovery method within our plugin. For this, we adapted
the Heuristics Nets to EPCs converter available in ProM 5.2;

o simplify the final BPMN model by removing trivial gateways and turning single-
activity subprocesses into tasks.

All plugins, together with the experimental results reported in this paper and the
artificial logs used for the tests, are made available in the BPMN Miner package of the
ProM 6 nightly-build.” Additionally, BPMN Miner is available as a standalone tool.>

7. Evaluation without noise

Using BPMNMiner, we conducted a number of tests to assess the benefits of our
technique in terms of accuracy and complexity of the discovered process models. In
this section we report the results of these tests on logs without noise; in the next section
we discuss the results in the presence of different levels of noise.

7.1. Datasets and Setup

For the tests without noise, we used two real-life logs and one artificial log. The
first log comes from a system for handling project applications in the Belgian research
funding agency IWT (hereafter called FRIS), specifically for the applied biomedical
research funding program (2009-12). This process exhibits two multi-instance subpro-
cesses, one for handling reviews (each proposal is reviewed by at least five reviewers),
the other for handling the disbursement of the grant, which is divided into installments.
The second log (called Commercial) comes from a large Australian insurance company
and records an extract of the instances of a commercial insurance claims handling pro-
cess executed in 2012. This process contains a non-interrupting event subprocess to
handle customer inquires, since these can arrive at any time while handling a claim,
and three loop tasks to receive incoming correspondence, to process additional infor-
mation, and to provide updates to the customer. Finally, the third log (called Artificial)
is generated synthetically using CPN Tools,* based on the model of an order-to-cash
process that has one example of each BPMN construct supported by our technique
(loop marker, multi-instance marker, interrupting and non-interrupting boundary event
and event subprocess). Table 1 shows the characteristics of the datasets, which differ
widely in terms of number of traces, events and duplication ratio (i.e. the ratio between
events and event types).

We measured accuracy and complexity of the models produced by BPMN Miner
on top of the five process discovery methods supported by BPMN Miner (see Section 6

2http://processmining.org
3http://apromore.org/platform/tools
“http://cpntools.org

20

Log Traces | Events | Event types | Duplication ratio
FRIS 121 1,472 13 113
Commercial 896 12,437 9 1,382
Artificial 3,000 32,896 13 2,530

Table 1: Characteristics of the event logs used for the validation.

for a rationale for the choice of these methods, we remind the reader that among these
five process discovery methods only Fodina natively support BPMN models, while the
other support Petri nets or Heuristics nets), and compared them to the same measures
on the corresponding model produced by the flat discovery method alone.

Following [17], we measured accuracy in terms of F-score — the harmonic mean
of recall (fitness — f) and precision (appropriateness — a), i.e. 2% We measured
complexity using size, CFC, ACD, CNC and density, as justified in Section 2.

We computed fitness using ProM’s Alignment-based Conformance Analysis plu-
gin, and appropriateness using the Negative event precision measure in the CoBeFra
tool.> The choice of these two particular measures is purely based on the scalability
of the respective implementations. These measures operate on a Petri net. We used
the mapping in [27] to convert the BPMN models produced by BPMN Miner and by
Fodina to Petri nets. For this conversion, we treated BPMN multi-instance activities as
loop activities, since based on our tests, the alignment-based plugin could not handle
the combinatorial explosion resulting from expanding all possible states of the multi-
instance activities.We set all tolerance parameters of Algorithm 4 to zero.

7.2. Accuracy and Complexity

Table 2 shows the results of the measurements. Here and in the following tables we
use the following abbreviations: H for Heuristics Miner, I for ILP, N for InductiveM-
iner, F for Fodina Heuristics Miner and A for the o-algorithm. When using BPMN
Miner on top of these methods, we abbreviate it as BPMNy where X is the abbrevia-
tion of the method chosen.

From the results we observe that BPMN Miner consistency produces BPMN mod-
els that are more accurate and less complex than the corresponding flat models. The
only exception is made by BPMN; on the artificial log. This model has a lower F-score
than the one produced by the flat version of the ILP, despite improving on complexity.
This is attributable to the fact that the artificial log exhibits a high number of concur-
rent events, which ILP turns into interleaving transitions in the discovered model (one
for each concurrent event in the log). After subprocess identification, BPMN Miner
replaces this structure with a set of interleaving subprocesses (each grouping two or
more events), which penalizes both fitness and appropriateness.

In spite of the a-algorithm generally producing the least accurate models, we ob-
serve that BPMNy produces results comparable to those achieved using BPMN Miner
on top of other discovery methods. In other words, BPMN Miner thins off differences
between the flat discovery methods. This is attributable to the fact that, after subprocess
extraction, the discovery of ordering relations between events is done on smaller sets

Shttp://processmining.be/cobefra

21

of event types (those within the boundaries of a subprocess). In doing so, behavioral
errors also tend to get fixed.

Log Method Accuracy Complexity
Fitness | Appropr. | F-score | Size | CFC ACD CNC Density
FRIS A 0.855 0.129 0.224 33 25 3.888 1.484 0.046
BPMN, 0.917 0.523 0.666 32 21 34 1.25 0.040
F 0.929 0.354 0.512 35 85 8.5 2.828 0.083
BPMNg 0.917 0.644 0.756 26 10 3.142 | 1.115 0.044
I 0.919 0.364 0.521 47 48 4312 | 1.765 0.038
BPMN; 0.987 0.426 0.595 42 34 3.652 | 1.428 0.034
H 0.567 0.569 0.567 31 26 3.25 1.290 0.043
BPMNy 0.960 0.658 0.780 24 7 32 1.083 0.047
N 1 0.442 0.613 45 81 3.866 1.6 0.036
BPMNy 0.977 0.525 0.682 39 28 3 1.230 0.032
Commercial | A 0.703° 0.285 0.405 19 16 3.5 1.263 0.070
BPMN, 1 0.382 0.552 23 11 35 1.173 0.053
F 0.928 0.398 0.557 26 29 4 1.538 0.061
BPMN, 0.982 0.407 0.575 37 35 3909 | 1.540 0.042
T 1 0.221 0.361 41 54 5.133 | 2.121 0.053
BPMN; 0.913 0.264 0.409 34 31 4.105 | 1.558 0.047
H 0.399% 0.349 0.372 35 32 3.083 | 1.342 0.039
BPMNy 0.935 0.425 0.584 17 2 4 1 0.062
N 1 0.448 0.618 25 21 4.571 1.680 0.070
BPMNy 1 0.466 0.635 23 14 4 1.260 0.057
Artificial A na 0.208 na 38 47 3.636 | 1.447 0.039
BPMN, 0.654 0.222 0.331 33 11 3 1 0.031
F na 0.295 na 46 53 3.677 1.543 0.034
BPMN 0.813 0.413 0.548 47 31 33 1.212 0.026
1 0.969 0.331 0.493 T4 130 7.068 | 2.982 0.040
BPMN;, 0.870 0.160 0.270 37 21 4.2 1.216 0.033
H