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 SINOPSIS GENERAL 

RESUMEN 

Durante la meiosis existe un mecanismo de vigilancia denominado checkpoint de 

recombinación meiótica que asegura la correcta segregación del material genético a los gametos, 

siendo de vital importancia para el mantenimiento de la integridad genómica en los organismos 

con reproducción sexual. Por ello, nos propusimos como objetivo profundizar en el papel de 

Pch2, una ATPasa específica de meiosis de la familia AAA+, en el checkpoint de recombinación 

meiótica de Saccharomyces cerevisiae. En esta tesis hemos determinado que el papel principal de 

Pch2 en el checkpoint inducido por defectos en la sinapsis es promover la fosforilación de Hop1 

en T318 y su incorporación en los cromosomas. También hemos estudiado la relevancia 

funcional de diversos motivos de la proteína Pch2, como el sitio catalítico (actividad ATPasa) y 

el dominio N-terminal, analizando su efecto en el checkpoint así como en la localización de Pch2. 

Por otro lado, hemos contribuido al conocimiento de los factores que determinan la correcta 

localización de Pch2 en levaduras. Así, hemos desvelado que, junto a la metilación de la histona 

H3K79, la acetilación de la histona H4K16 también regula el mecanismo del checkpoint meiótico 

de S. cerevisiae, presumiblemente controlando la localización de Pch2. Además, hemos analizado 

la interacción Orc1-Pch2 en el DNA ribosómico (rDNA), concluyendo que, en contra de 

hipótesis previas, la localización de Pch2 en el nucleolo no es necesaria para el checkpoint. De 

hecho, nuestros últimos resultados indican que una población citoplásmica de Pch2 es capaz de 

llevar a cabo la función en el checkpoint. Por último, hemos expandido nuestra investigación a 

otro sistema modelo, como Caenorhabditis elegans, estudiando el papel de H3K79me en la 

meiosis de este nematodo, analizando su implicación en el checkpoint, y explorando su efecto 

sobre PCH-2. En conclusión, la ATPasa conservada evolutivamente Pch2 desempeña un papel 

fundamental en el checkpoint meiótico inducido por fallos en sinapsis, y el control de su 

localización subcelular es importante para ello, la cual viene determinada por diversos factores 

entre los que se incluyen determinadas modificaciones post-traduccionales de histonas. 
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SUMMARY 

During meiosis there is a surveillance mechanism, the meiotic recombination checkpoint, 

which monitors the correct distribution of genetic material to gametes, being crucial for the 

maintenance of genomic integrity in sexually reproducing organisms. We aimed to further 

explore the role of Pch2, a meiosis-specific AAA+ ATPase, in the meiotic recombination 

checkpoint of Saccharomyces cerevisiae. In this thesis, we have determined that the critical role 

of Pch2 in the checkpoint induced by synapsis defects is to promote Hop1 phosphorylation at 

T318 and Hop1 association to unsynapsed meiotic chromosomes. We have also studied the 

functional relevance of critical residues of the Pch2 protein, such as the catalytic site (ATPase 

activity) and the N-terminal domain, by analyzing its impact on Pch2 localization and checkpoint 

function. On the other hand, we have contributed to discover several factors that determine Pch2 

proper localization in yeast. Thus, we have revealed that, together with H3K79 methylation, 

proper levels of H4K16 acetylation regulate the meiotic recombination checkpoint, likely by 

controlling Pch2 distribution. Moreover, we have analyzed Orc1-Pch2 interaction at the 

ribosomal DNA (rDNA), concluding that, in contrast to previous hypotheses, Pch2 nucleolar 

localization is not required for the meiotic checkpoint. Indeed, we provide evidence indicating 

that a cytoplasmic pool of Pch2 sustains checkpoint function. Finally, we have expanded our 

investigation to another model system such as Caenorhabditis elegans. We have studied the 

meiotic role of H3K79 methylation in this nematode, analyzing its checkpoint implication and 

exploring its impact on PCH-2 regulation. In conclusion, the evolutionarily conserved Pch2 

ATPase plays a critical role in the meiotic checkpoint induced by synapsis defects. The control of 

Pch2 subcellular localization orchestrated by several factors, including histone post-translational 

modifications, is vital for its checkpoint function. 
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1. ANTECEDENTES  

El genoma de los organismos está constan-

temente expuesto a agentes exógenos y en-

dógenos que producen daño de forma acci-

dental. También existen procesos fisiológi-

cos que introducen roturas en el genoma de 

manera natural como es el caso de la meio-

sis.  

La meiosis es un proceso especial de di-

visión celular que genera células haploides 

(esporas en levaduras o gametos en meta-

zoos) a partir de células parentales diploides, 

resultando esencial para los organismos con 

reproducción sexual. Durante la profase 

meiótica tiene lugar la recombinación entre 

cromosomas homólogos, la cual se inicia 

con la introducción de dobles roturas en el 

DNA (DSBs, Double-Strand Breaks) indu-

cidas por la proteína conservada Spo11, re-

lacionada con las topoisomerasas, y sus pro-

teínas asociadas (keeney 2001; Keeney et al., 

2014). Estas roturas son procesadas por nu-

cleasas para generar DNA de cadena sencilla 

(ssDNA, Single-Strand DNA) con extremos 

3´OH libres (Neale et al., 2005, García et al., 

2011) que sirven de sustrato a las recombi-

nasas Dmc1 y Rad51. Estas recombinasas 

catalizan la invasión de la hebra de ssDNA 

para buscar la región de homología con la 

que reparar el daño, preferentemente en la 

cadena de la cromátida homóloga (Bishop et 

al., 1992; Schwacha and Kleckner, 1997), 

formándose una estructura conocida como 

D-loop. Posteriormente se sintetiza nuevo 

DNA utilizando como molde la hebra de la 

cromatida homóloga y se liga, dando lugar a 

una estructura denominada unión de Holli-

day doble (dHJ, double Holliday Junction) 

(Schwacha and Kleckner, 1995). Una frac-

ción de estos intermediarios se resuelven 

como entrecruzamientos recíprocos (COs, 

Crossovers) (Allers and Litchen, 2001), que 

permiten establecer uniones físicas entre los 

cromosomas denominados quiasmas y que 

son esenciales para que la segregación de los 

cromosomas hacia polos opuestos durante la 

primera división meiótica se produzca co-

rrectamente. Además, la recombinación 

meiótica también es importante para promo-

ver la variabilidad genética de los gametos 

que se originan (Gray and Cohen, 2016, San-

Segundo and Clemente-Blanco, 2020). 

El proceso de recombinación ocurre de 

manera paralela a la formación del complejo 

sinaptonémico (SC, Synaptonemal Complex) 

una estructura proteica altamente conservada 

que mantiene unidos a los cromosomas ho-

mólogos y facilita la recombinación entre 

ellos (Cahoon and Hawley, 2016; Gao and 

Colaiacovo, 2017). El SC de S. cerevisiae 

está formado por una región central cuyo 

componente principal es Zip1 (Sym et al., 

1993) y por dos elementos laterales (LEs, 

Lateral Elements) formados principalmente 

por las proteínas meióticas Hop1, Red1 y la 

cohesina meiótica Rec8 (Smith and Roeder, 

1997; Klein et al., 1999; Tovah et al., 2017) 

(Figura 1). Además, dentro de la región cen-

tral se puede distinguir el denominado ele-

mento central formado por las proteínas 

Ecm11 y Gmc2 (Voelkel-Meiman 2013; 

Humphryes 2013). Los LEs también sirven 

como punto de anclaje para otras proteínas 

que participan en la recombinación y en el 

control del ciclo celular. Además, también 

interaccionan con los anillos de cohesina que 

mantienen unidas las cromátidas hermanas y 

participan en la organización de los bucles 

de cromatina. El ensamblaje del SC comien-

za en el estadio de leptonene de la profase 

meiótica, cuando se introducen las DSBs y 
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progresa durante el zigotene a medida que se 

produce la recombinación. La sinapsis de los 

cromosomas se completa en paquitene, coin-

cidiendo con la formación de intermediarios 

de recombinación maduros que se resuelven 

al salir de paquitene y entrar en diplotene. 

En este estadio, el SC comienza a desensam-

blarse y desaparece en diaquinesis, cuando 

los cromosomas homólogos ya están unidos 

por los COs que se manifiestan citológica-

mente formado los quiasmas. En la mayoría 

de los casos, como ocurre en S. cerevisiae y 

mamíferos, la formación del SC depende de 

que se inicie la recombinación, y es necesa-

rio para que esta ocurra adecuadamente. Pe-

ro existen excepciones; por ejemplo, en S. 

pombe no se forma un SC maduro, tan solo 

los denominados elementos lineales (Bähler 

et al., 1993) y en las hembras de Drosophila 

y en C. elegans la sinapsis es independiente 

de la introducción de DSBs (Lake and 

Hawley, 2012; Lui and Colaiacovo, 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Para asegurar que la transmisión de la in-

formación genética a las células hijas se pro-

duzca de manera adecuada existe un meca-

nismo de vigilancia denominado checkpoint 

de recombinación meiótica o de paquitene 

que reconoce errores en sinapsis y/o recom-

binación y bloquea el ciclo celular en profa-

se hasta que se eliminen los defectos, previ-

niendo la segregación incorrecta de cromo-

somas y la consiguiente formación de game-

tos defectivos (Subramanian and Hochwa-

gen, 2014). En humanos, fallos en estos pro-

cesos son la principal causa de enfermedades 

genéticas (como la trisomía del cromosoma 

21), abortos espontáneos e infertilidad (Has-

sold and Hunt, 2001; Nagaoka et al., 2012). 

 

Figura 1. El complejo sinaptonémico en S. cerevisiae. A) Representación esquemática del SC. La región 

central del SC está formada mayoritariamente por filamentos transversales de la proteína Zip1, mientras que los 

elementos laterales están formados por las proteínas Hop1, Red1 y el complejo cohesina con Rec8. La cromatina 

de cada cromosoma homólogo se dispone a modo de bucles a ambos lados de los elementos laterales. Se 

representa un nódulo de recombinación. (B) Imagen de microscopía electrónica del SC. Se muestra la región 

central (CE), los elementos laterales (LE), los filamentos transversales (TFs) y la cromatina. Las imágenes han 

sido obtenidas de: A) Alberts B et al., 2002 y B) Geisinger and Benavente, 2016.  
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Este checkpoint consiste en una ruta de seña-

lización muy compleja y finamente regulada 

que se encuentra muy conservada en la evo-

lución, existiendo en levaduras (Nyberg et 

al., 2002; Perez-Hidalgo et al., 2003), C. 

elegans (Bhalla and Dernburg, 2005), Dro-

sophila (Joyce and McKim, 2009) y mamífe-

ros (de Rooij and de Boer, 2003; Pacheco et 

al., 2015). En S. cerevisiae las proteínas sen-

sor Mec1-Ddc2 detectan los errores en si-

napsis y recombinación, transmiten la señal 

a los adaptadores como Hop1 y Red1 (Car-

ballo et al., 2008; Eichinger and Jentsch 

2010), que forman parte de los LEs, y estos 

la transmiten hasta la quinasa efectora Mek1 

para producir el bloqueo del ciclo celular en 

profase (Acosta et al., 2011; Prugar et al., 

2017). Concretamente la fosforilación de 

Hop1 en la T318 por las quinasas Mec1-Tel1 

es necesaria para que Mek1 se reclute a los 

ejes de los cromosomas y se active (Carballo 

et al., 2008; Penedos et al., 2015). Además, 

para que la activación de Mek1 sea completa 

es también necesaria su dimerización y auto-

fosforilación en trans en los residuos T327 y 

T331. (Niu et al., 2007) (Ontoso et al., 

2013). Adicionalmente se requieren otras 

proteínas como Pch2, Sir2 y Dot1 que pue-

den modular la acción de los adaptadores 

(San Segundo and Roeder, 1999, 2000; On-

toso et al., 2013). La activación completa de 

Mek1 produce dos eventos bien diferencia-

dos. Por un lado, bloquea la recombinación 

entre cromátidas hermanas, ya que impide 

que se forme el complejo Rad51-Rad54, ne-

cesario para la recombinación entre cromáti-

das hermanas. Mek1 ejecuta esta acción me-

diante dos vías: (1) fosfo-rila a Rad54 en la 

T132 disminuyendo su afinidad por Rad51 

(Niu et al., 2009) y (2) fosforila a la proteína 

específica de meiosis Hed1 en la T40 que se 

une a Rad51, excluyendo a Rad54 (Callen-

der et al., 2016). Por otro lado, Mek1 produ-

ce el bloqueo del ciclo celular en profase ac-

tuando de manera directa sobre Ndt80 (Chen 

et al., 2018) y, quizás, sobre Swe1. Así, la 

activación del checkpoint dependiente de 

Mek1 da lugar a que se mantengan niveles 

altos de Swe1, que inhibe a Cdc28, la princi-

pal CDK (Cyclin-Dependent Kinase) de S. 

cerevisiae, mediante su fosforilación en la 

Y19 (Leu and Roeder, 1999). Al mismo 

tiempo Mek1 fosforila e inhibe al factor de 

transcripción Ndt80, necesario para la trans-

cripción de genes requeridos para la salida 

de paquitene, como la polo-quinasa CDC5 

(Sourirajan and Lichten, 2008) o para que se 

produzcan las divisiones nucleares, como la 

ciclina CLB1 (Chu and Herskowitz, 1998). 

En otros organismos como C. elegans, Dro-

sophila y mamíferos, la activación del che-

ckpoint meiótico también induce la muerte 

celular por apoptosis (Edelmann et al., 1996; 

Yoshida et al., 1998; Gartner et al., 2000; Xu 

et al., 2001; Bhalla and Dernburg, 2005, Pa-

checo et al., 2015).  

Para el estudio de este checkpoint en S. 

cerevisiae se emplean mutantes que inducen 

su activación, como zip1Δ, que presenta de-

fectos en la formación del SC, o dmc1 que 

es defectivo en la reparación de DSBs 

meióticas (Figura 2).  
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Pch2
TRIP13

 es una ATPasa de la familia 

AAA+ muy conservada en la evolución des-

de levaduras hasta humanos que forma com-

plejos hexaméricos (Chen et al., 2014). La 

proteína homóloga en mamíferos se denomi-

na TRIP13. Aunque inicialmente Pch2 se 

descubrió en S. cerevisiae como una proteína 

específica de meiosis implicada en el check-

point de paquitene, actualmente se sabe que 

actúa en muchos otros eventos meióticos 

como son: la formación de DSBs (Farmer et 

al., 2012; Joshi et al., 2015), la distribución 

de las DSBs (Subramanian et al., 2019), la 

configuración de los ejes de los cromosomas 

(Börner et al., 2008; Joshi et al., 2009), la 

regulación de los COs (Zanders and Alani, 

2009; Medhi et al., 2016; Chakraborty et al., 

2017), la recombinación entre homólogos 

(Zanders et al., 2011; Subramanian et al., 

2016) y la supresión de recombinación en el 

DNA ribosómico (rDNA) (San-Segundo and 

Roeder, 1999; Vader et al., 2011). Pch2 se 

engloba dentro de la familia de ATPasas 

AAA+ (ATPasas Asociadas a diversas Acti-

vidades celulares) que se caracterizan por 

utilizar la energía generada en la hidrólisis 

del ATP para producir cambios conforma-

cionales en sus sustratos (Hanson and Whi-

teheart, 2005, Puchades et al., 2019). En el 

caso de Pch2
TRIP13

 los sustratos conocidos 

son las proteínas con dominios HORMA 

como Hop1
HORMAD1,2

 y MAD2 (Ye et al., 

2017). Así, está descrito que en células 

meióticas Pch2 regula negativamente la 

acumulación de Hop1
HORMAD1,2 

en los cro-

mosomas a medida que la sinapsis se va 

completando (Roig et al., 2010; Herruzo et 

al., 2016; Subramanian et al., 2016). Por su 

parte, en C. elegans y mamíferos PCH-

2/TRIP13 también actúa sobre Mad2 en el 

 

Figura 2. El checkpoint de recombinación meiótica. Representación esquemática de los componentes 

generales de la ruta de los checkpoints. Componentes principales de la ruta del checkpoint de recombinación 

meiótica en S. cerevisiae.  
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checkpoint de ensamblaje del huso en células 

somáticas (Nelson et al., 2015; Ye et al., 

2015; West et al., 2017; Alfieri et al., 2018), 

aunque en levaduras no parece realizar esta 

función (Lago, Herruzo and San Segundo, 

Trabajo de Fin de Grado en realización). 

Además, se ha descrito recientemente que, 

en células somáticas de mamífero, TRIP13 

regula la reparación del DNA a través del 

cambio conformacional de la proteína REV7 

que también posee un dominio HORMA 

(Clairmont et al., 2020). Dentro de su papel 

en el checkpoint meiótico, Pch2 puede llevar 

a cabo diversas funciones según el estímulo 

que desencadene la activación del mismo. 

Así, en respuesta a DSBs sin procesar (como 

las que se acumulan en un mutante sae2 o 

rad50S) que son detectadas por la quinasa 

sensor Tel1, Pch2 actúa en conjunto con 

Xrs2 (un componente del complejo MRX) 

para regular la recombinación y la respuesta 

del checkpoint (Ho and Burgess, 2011). Por 

su parte, en respuesta a fallos en sinapsis, 

como ocurre en un mutante zip1Δ carente de 

la región central del SC, la quinasa Mec1 

dispara la activación del checkpoint donde 

Pch2 estaría actuando por un mecanismo 

desconocido. Para conocer mejor los meca-

nismos moleculares del funcionamiento de 

Pch2 llevamos a cabo los experimentos pu-

blicados en el primer artículo que compone 

esta tesis doctoral: “The Pch2 AAA+ ATPase 

promotes phosphorylation of the Hop1 

meiotic checkpoint adaptor in response to 

synaptonemal complex defects” (Herruzo et 

al., 2016).  

La recombinación ocurre en el contexto 

de la cromatina por lo que factores que in-

fluencian la estructura de la cromatina como 

la histona metil-transferasa Dot1 y la histona 

deacetilasa Sir2 desempeñan papeles impor-

tantes en estos procesos. Dot1 cataliza la 

mono-, di- y tri- metilación de la histona H3 

en la K79 (Frederiks et al., 2008) y no se co-

noce ninguna demetilasa que revierta su ac-

ción. Dot1 se encuentra muy conservada en 

la evolución (en mamíferos se denomina 

DOT1L) y regula un gran número de proce-

sos celulares implicados en el mantenimien-

to de la integridad genómica (Jones et al., 

2008; Mohan et al., 2010; Cecere et al., 

2013; Kim et al., 2014; Ontoso et al., 2014). 

También se sabe que defectos en la función 

de DOT1L están relacionados con leucemias 

agudas con reordenamiento MLL (Mixed 

Lineage Leukemia) (Nguyen and Zhang, 

2011). Actualmente, se están probando inhi-

bidores de DOT1L como posible diana tera-

péutica (Daigle et al., 2011; Shukla et al., 

2016; Stein et al., 2018). Más concretamen-

te, dentro de su papel en el checkpoint 

meiótico de S. cerevisiae, Dot1 promueve la 

activación de Mek1 dependiente de Hop1 y 

su reclutamiento en los ejes de los cromo-

somas. Se ha propuesto que Dot1 ejerce esta 

función, mediante el control de la distribu-

ción cromosómica/nucleolar de Pch2 (San 

Segundo and Roeder, 2000; Ontoso et al., 

2013). Por su parte, Sir2 también participa 

en el checkpoint meiótico regulando la loca-

lización de Pch2 en la cromatina (San-

Segundo and Roeder, 1999). A pesar de la 

importancia de Sir2 en el checkpoint meióti-

co, poco se ha profundizado en su mecanis-

mo de acción. Por ello, estudiar la contribu-

ción de los niveles de H4K16ac modulados 

por la histona-deacetilasa Sir2 y la histona 

acetil-transferasa Sas2 (Dang et al., 2009) 

fue otro de los objetivos de esta tesis. Estos 

resultados se encuentran recogidos en el se-

gundo artículo de la memoria: “Impact of 

histone H4K16 acetylation on the meiotic 
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recombination checkpoint in Saccharomyces 

cerevisiae” (Cavero et al., 2016).  

Pch2 se localiza mayoritariamente en la 

región del cromosoma XII que contiene el 

rDNA (nucleolo); también se puede encon-

trar una fracción más minoritaria de Pch2 en 

los cromosomas que establecen sinapsis in-

teraccionando con proteínas del SC. Por el 

contrario, en un mutante zip1Δ, Pch2 solo se 

encuentra en el nucleolo, indicando que la 

fracción nucleolar de Pch2 puede ser impor-

tante para su función en el checkpoint (San-

Segundo and Roeder, 1999). Además, exis-

tían otras evidencias que apuntaban a la re-

levancia de la localización de Pch2 en el 

rDNA, ya que su deslocalización del nucleo-

lo se correlaciona con la pérdida de función 

del checkpoint, como ocurre en los mutantes 

dot1Δ y sir2Δ (San-segundo and Roeder, 

1999, 2000). Estas observaciones nos han 

llevado a investigar los factores que deter-

minan la localización de Pch2 y cómo esa 

localización afecta a la funcionalidad del 

checkpoint. Los resultados obtenidos se han 

publicado en el tercer artículo presentado en 

esta memoria: “Characterization of Pch2 

localization determinants reveals a nucleo-

lar-independent role in the meiotic recombi-

nation checkpoint” (Herruzo et al., 2019). 

Los resultados de este artículo originaron 

la idea de que debe existir una población de 

Pch2 adicional, que no se localiza ni en los 

cromosomas ni en el nucleolo, que sería im-

portante para su función en el checkpoint. 

Para explorar más en detalle dónde se locali-

za la fracción de Pch2 relevante para su fun-

ción en el checkpoint se han llevado a cabo 

los experimentos incorporados en el Anexo 

que son los últimos resultados obtenidos 

como continuación del Artículo 3: “The 

meiosis-specific AAA+ ATPase Pch2 imple-

ments the chromosome-synapsis checkpoint 

response from outside the nucleus”. 

El mecanismo del checkpoint meiótico 

así como sus componentes principales se en-

cuentran muy conservados en la evolución. 

Así, Pch2
TRIP13 

también responde a defectos 

en sinapsis o recombinación en C. elegans 

(Bhalla and Dernburg, 2005), Drosophila 

(Joyce and McKim, 2009, 2010) y, posible-

mente, en hembras de ratón (Martinez-

Marchal and Roig, Abstract Red Española de 

Meiosis). Además, se ha descrito que la lo-

calización de DOT1L, y de las distintas for-

mas de metilación de H3K79 resultantes de 

su actividad, varía a lo largo de la esperma-

togénesis en ratón (Ontoso et al., 2014). Sin 

embargo, la función meiótica de Dot1 y su 

posible contribución al control de Pch2 no 

está descrito en nematodos, por lo que tam-

bién nos propusimos como objetivo de esta 

tesis doctoral estudiar el papel de la 

H3K79me, mediada por DOT-1.1, en la 

meiosis de C. elegans. Los resultados obte-

nidos se describen en el Artículo 4 de esta 

tesis que se encuentra actualmente en prepa-

ración. Esta parte del trabajo se ha llevado a 

cabo en colaboración con el grupo de la Dra. 

Monica Colaiacovo (Harvard Medical 

School, USA): “Role of DOT-1.1-

dependent H3K79 methylation during meio-

sis in C. elegans” (Lascarez-Lagunas, He-

rruzo, et al., 2020, en preparación). 

Por tanto, la presente memoria de tesis ti-

tulada “Análisis estructura-función de la 

ATPasa Pch2 y su implicación en el check-

point de recombinación meiótica”, elaborada 

por compendio de artículos, queda estructu-

rada en los siguientes apartados: tres artícu-

los publicados, un Anexo que recoge los úl-

timos resultados obtenidos aún sin publicar y 

un artículo en preparación: 
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ARTÍCULO 1: “The Pch2 AAA+ 

ATPase promotes phosphorylation of the 

Hop1 meiotic checkpoint adaptor in re-

sponse to synaptonemal complex defects” 

(Herruzo et al., 2016). 

ARTÍCULO 2: “Impact of histone 

H4K16 acetylation on the meiotic recombi-

nation checkpoint in Saccharomyces cere-

visiae” (Cavero et al., 2016). 

ARTÍCULO 3: “Characterization of 

Pch2 localization determinants reveals a 

nucleolar-independent role in the meiotic 

recombination checkpoint” (Herruzo et al., 

2019). 

ANEXO: “The meiosis-specific AAA+ 

ATPase Pch2 implements the chromosome-

synapsis checkpoint response from outside 

the nucleus” (Herruzo and San Segundo, 

resultados sin publicar). 

ARTÍCULO 4: “Role of DOT-1.1-

dependent H3K79 methylation during meio-

sis in C. elegans” (Lascarez-Lagunas, He-

rruzo, et al., 2020, en preparación). 

2. HIPÓTESIS DE TRABAJO 

Pch2 es una ATPasa sobre la que se había 

descrito un papel en el checkpoint meiótico 

de varios organismos. Era muy bien conoci-

da su función como regulador negativo de la 

localización de Hop1, excluyéndolo de los 

cromosomas a medida que progresa la sinap-

sis, pero no el mecanismo por el que actúa 

en el checkpoint inducido por fallos en si-

napsis. Además, se sabía que, en levaduras, 

en condiciones en las que el checkpoint está 

activo, Pch2 se localiza únicamente en el 

nucleolo, por lo que cabía esperar un papel 

relevante en el checkpoint para esa población 

nucleolar de Pch2. Por otro lado, puesto que 

los mecanismos del checkpoint meiótico se 

encuentran muy conservados en la evolu-

ción, era lógico pensar que la H3K79me 

también podría ser importante en la meiosis 

de C.elegans, dada la importancia que tiene 

esta modificación post-traduccional en la 

localización de Pch2 y en el checkpoint de 

levaduras. 

3. OBJETIVOS GENERALES 

El objetivo principal de esta tesis es el estu-

dio del mecanismo molecular por el que la 

ATPasa Pch2 actúa en el checkpoint de re-

combinación meiótica.  

Los objetivos específicos son los siguien-

tes: 

 Estudiar la función de Pch2 en la ruta 

del checkpoint de recombinación meiótica 

en S. cerevisiae inducido por fallos en si-

napsis (mutante zip1Δ). 

 Determinar la contribución funcional 

de H4K16ac, controlada por la deacetilasa 

Sir2 y la acetil-transferasa Sas2, en la re-

gulación del checkpoint meiótico. 

 Analizar los factores que determinan 

la localización subcelular de Pch2 y su 

efecto en el checkpoint. 

 Estudiar la contribución funcional de 

H3K79me, mediada por DOT-1, a la 

meiosis de C. elegans así como su papel 

en el checkpoint meiótico. 

4. CONCLUSIONES GENERALES 

1. La función principal de Pch2 en el 

checkpoint meiótico inducido por defectos 

en sinapsis es promover la fosforilación de 

Hop1 en la T318. 

2. La actividad ATPasa de Pch2 se re-

quiere para su función en el checkpoint. 

Además, la unión del ATP a Pch2 también 
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es necesaria para la formación o estabili-

dad del complejo hexamérico así como pa-

ra la correcta localización de la proteína.  

3. La regulación de los niveles de aceti-

lación de H4K16 mediante la acción de 

Sir2 y Sas2, contribuye al funcionamiento 

correcto del checkpoint, posiblemente me-

diante la regulación de la localización de 

Pch2.  

4. La localización nucleolar de Pch2 no 

se requiere para el checkpoint meiótico, 

puesto que cuando Pch2 no se recluta al 

rDNA en ausencia de Orc1, el checkpoint 

sigue siendo completamente funcional. 

5. Además de la localización cromosó-

mica y nucleolar de Pch2, existe una po-

blación de Pch2 en el citoplasma que pa-

rece ser la más relevante para su función 

en el checkpoint. 

6. La metilación de H3K79 mediada 

por DOT-1 es importante para la meiosis 

en C. elegans puesto que niveles reduci-

dos de dicha metilación producen defectos 

en apareamiento, sinapsis y recombina-

ción, que incrementan la tasa de esterili-

dad de los gusanos. 

4. GENERAL CONCLUSIONS 

1. The critical role of Pch2 in the syn-

apsis checkpoint is to promote Hop1 

phosphorylation at T318. 

2. The ATPase activity of Pch2 is re-

quired for its checkpoint function. Moreo-

ver, ATP binding is necessary for hex-

americ complex formation and proper 

Pch2 localization.  

3. H4K16ac levels, controlled by Sir2 

and Sas2, contribute to proper checkpoint 

function, likely due to regulation of Pch2 

localization. 

4. Pch2 nucleolar localization is not re-

quired for the meiotic checkpoint because, 

in the absence of nucleolar Pch2 (Orc1 

depletion), the checkpoint is completely 

functional.  

5. Besides the chromosomal and nucle-

olar localization of Pch2, there is a cyto-

plasmic pool of the protein that appears to 

be the most relevant for checkpoint func-

tion. 

6. DOT-1.1-dependent H3K79me is 

important for C. elegans meiosis, since re-

duced levels of this methylation lead to 

pairing, synapsis and recombination de-

fects that increase worm sterility rates. 
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 ARTÍCULO 1 

ARTÍCULO 1: “The Pch2 AAA+ ATPase promotes phosphorylation of the 

Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects” 

RESUMEN 

Las células meióticas poseen mecanismos de vigilancia que monitorizan eventos cruciales 

como la sinapsis y la recombinación de los cromosomas. Defectos meióticos resultantes de la 

ausencia de la proteína del complejo sinaptonémico Zip1 activan el checkpoint específico de 

meiosis, provocando el bloqueo o retraso de la progresión meiótica. Pch2 es una ATPasa AAA+ 

conservada en la evolución que se requiere para el bloqueo meiótico inducido por el checkpoint 

en el mutante zip1Δ, donde Pch2 sólo se detecta en el DNA ribosómico (nucleolo). Aquí 

describimos que niveles altos de la proteína Hop1, un adaptador del checkpoint que se localiza en 

los ejes de los cromosomas, suprime el defecto del checkpoint en el mutante zip1Δ pch2Δ, 

restaurando la actividad de Mek1 y el retraso del ciclo celular meiótico. Demostramos que el 

papel principal de Pch2 en este checkpoint de sinapsis es promover la fosforilación de Hop1, 

dependiente de Mec1, en la treonina 318. Además, mostramos que la actividad ATPasa de Pch2 

es esencial para su función en el checkpoint y que la unión del ATP por Pch2 se requiere para su 

localización. Trabajos previos han mostrado que Pch2 regula negativamente la acumulación de 

Hop1 en los cromosomas durante una meiosis normal. Basándonos en nuestros resultados, 

proponemos que, en condiciones de activación del checkpoint, Pch2 también desempeña un papel 

positivo sobre Hop1 promoviendo su fosforilación y su distribución adecuada en los ejes de los 

cromosomas sin sinapsis. 
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ABSTRACT

Meiotic cells possess surveillance mechanisms that
monitor critical events such as recombination and
chromosome synapsis. Meiotic defects resulting
from the absence of the synaptonemal complex com-
ponent Zip1 activate a meiosis-specific checkpoint
network resulting in delayed or arrested meiotic pro-
gression. Pch2 is an evolutionarily conserved AAA+
ATPase required for the checkpoint-induced mei-
otic block in the zip1 mutant, where Pch2 is only
detectable at the ribosomal DNA array (nucleolus).
We describe here that high levels of the Hop1 pro-
tein, a checkpoint adaptor that localizes to chro-
mosome axes, suppress the checkpoint defect of a
zip1 pch2 mutant restoring Mek1 activity and mei-
otic cell cycle delay. We demonstrate that the crit-
ical role of Pch2 in this synapsis checkpoint is to
sustain Mec1-dependent phosphorylation of Hop1 at
threonine 318. We also show that the ATPase activ-
ity of Pch2 is essential for its checkpoint function
and that ATP binding to Pch2 is required for its lo-
calization. Previous work has shown that Pch2 neg-
atively regulates Hop1 chromosome abundance dur-
ing unchallenged meiosis. Based on our results, we
propose that, under checkpoint-inducing conditions,
Pch2 also possesses a positive action on Hop1 pro-
moting its phosphorylation and its proper distribu-
tion on unsynapsed chromosome axes.

INTRODUCTION

During meiosis, accurate distribution of chromosomes to
the gametes is ensured by the action of meiosis-specific

surveillance mechanisms commonly known as the meiotic
recombination checkpoint or pachytene checkpoint (1,2)
and, more recently, broadly referred to as the meiotic check-
point network (3). This checkpoint monitors those meiotic
events, such as chromosome synapsis and meiotic recombi-
nation, which are important to establish the adequate num-
ber and distribution of interhomolog connections essen-
tial for proper chromosome segregation. The meiotic check-
point network reinforces the adequate order of events dur-
ing normal meiotic prophase and, in addition, it is crucial
to react to meiotic failures. In response to defects in synap-
sis and/or recombination, the pachytene checkpoint blocks
or delays entry into meiosis I, thus preventing the formation
of gametes harboring aneuploidy and other kinds of genetic
abnormalities.

Chromosome synapsis is mediated by the synaptonemal
complex (SC), an evolutionarily-conserved tripartite struc-
ture that holds homologous chromosomes together during
the pachytene stage of meiotic prophase I. Meiotic recom-
bination initiates with the generation of programmed DNA
double-strand breaks (DSBs), which undergo strictly reg-
ulated repair during prophase, preferentially with a non-
sister chromatid (4). A fraction of DSBs are repaired to
yield crossovers that, together with sister chromatid co-
hesion, give rise to physical links between homologs –
chiasmata– promoting proper chromosome distribution. In
some organisms, including budding yeast and mouse, chro-
mosome synapsis is tightly linked to and depends on meiotic
recombination.

In Saccharomyces cerevisiae, the coiled-coil Zip1 protein
is the major component of the central region of the SC. Mu-
tants lacking Zip1 fail to synapse and undergo pachytene
checkpoint-dependent meiotic arrest or delay in prophase
(5). Importantly, the Red1 and Hop1 structural compo-
nents of the SC lateral elements (LEs) are also involved
in the checkpoint; they function as adaptors to support
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activation of the meiosis-specific Mek1 effector kinase. In
particular, phosphorylation of Hop1 at Thr318 by the up-
stream sensor kinases Mec1/Tel1 is necessary for Mek1 ac-
tivation by phosphorylation (6,7). Full Mek1 activation in-
volves sequential phosphorylation events that can be geneti-
cally separated and biochemically differentiated in phos-tag
gels (8). Mec1/Tel1 dependent phosphorylation of Mek1
is followed by in-trans autophosphorylation at particular
sites in its activation loop (Thr327 and Thr331) (9). Active
Mek1 promotes two major meiotic responses: it reinforces
interhomolog (IH) recombination bias (10,11), at least in
part, through the inhibitory phosphorylation of Rad54 at
Thr132 (12) and, on the other hand, it prevents exit from
prophase and entry into meiosis I. Several crucial cell-cycle
regulators, such as Swe1, Ndt80 and Cdc5, are targeted by
the checkpoint to impose the cell cycle delay in response
to defective recombination/synapsis; whether they are di-
rect targets of Mek1 activity remains to be determined. The
Swe1 kinase carries out the inhibitory phosphorylation of
the main budding yeast cyclin-dependent kinase Cdc28 at
Tyr19. In addition, inhibition and nuclear exclusion of the
meiosis-specific transcription factor Ndt80 results in tran-
scriptional down-regulation of a number of genes including
those encoding B-type cyclins and the Cdc5 polo-like kinase
that, together with inactive Cdc28, lead to meiotic cell cycle
arrest (13–16).

Besides the Mec1-Ddc2/Tel1 sensors, the meiotic recom-
bination checkpoint also shares other upstream compo-
nents with the canonical DNA damage checkpoint, includ-
ing Rad24 and the ‘9-1-1’ (Rad17-Mec3-Ddc1) module,
which interacts with Red1 (17). In addition, epigenetic regu-
lators, such as the Sir2 histone deacetylase and the Dot1 hi-
stone methyltransferase, also operate in the meiotic check-
point response, at least in part, by regulating the chro-
mosomal distribution of the meiosis-specific Pch2 protein
(8,18,19).

Pch2 (also known as TRIP13 in mammals) is an evolu-
tionarily conserved AAA+ ATPase involved in various as-
pects of meiotic chromosome metabolism in an ample range
of organisms, including budding yeast, plants, worms, flies
and mice. Pch2 was initially discovered in S. cerevisiae as a
component of the checkpoint responding to the meiotic de-
fects of the synapsis-deficient zip1 mutant lacking the cen-
tral region of the SC (18,20). On the other hand, functional
analyses of Pch2 in wild-type meiosis, has revealed that this
ATPase negatively regulates the accumulation of the Hop1
protein at chromosome axes (18,21–23); in addition, func-
tions for Pch2Trip13 in DSB generation, crossover interfer-
ence, IH recombination bias, and regulation of rDNA re-
combination have been also described in both yeast and
mouse (24–28). Intriguingly, whereas the absence of Pch2
bypasses the meiotic delay of the synapsis-deficient zip1 mu-
tant, it has little effect on the checkpoint response to un-
repaired resected DSBs in dmc1. In contrast, Pch2 acting
through Xrs2 and Tel1 (but not Mec1) signals unprocessed
DSBs in sae2 strains; however, Tel1 is not required for the
zip1-induced synapsis checkpoint (29). All these pieces of
evidence suggest that, depending on the initiating event,
Pch2 may perform specific functions in relaying the check-
point signal generated by different meiotic perturbations.

Whereas in budding yeast Pch2 appears to be dedicated
exclusively to meiotic functions, the Trip13Pch2 homolog in
metazoa is also involved in the mitotic spindle assembly
checkpoint regulating the Mad2 protein, which, like Hop1,
contains a HORMA domain (30–32). Underscoring the rel-
evance of Trip13Pch2 function in somatic cells, the expres-
sion levels of Trip13Pch2 in certain types of cancer define
the chemotherapy resistance and prognosis (33,34). Recent
work has revealed the structural properties of this conserved
ATPase and the conformational changes induced in some of
its substrates (35).

In order to gain further insight into the functional im-
pact of Pch2 during SC-deficient meiosis, we first describe
here a genetic overexpression screen aimed to discover fac-
tors involved in the checkpoint role of Pch2. Despite the
fact that Pch2 somehow promotes the turnover of Hop1
from meiotic chromosome axes; that is, Hop1 is more abun-
dant and more continuous on pch2 chromosomes, we sur-
prisingly found that Hop1 overproduction suppresses the
checkpoint defect of the zip1 pch2 mutant. Then, we show
that, in the zip1 mutant, Pch2 is required for Mek1 auto-
phosphorylation and formation of chromosomal Mek1
foci, and that HOP1 overexpression restores full Mek1 ac-
tivation in zip1 pch2. We also demonstrate that, in contrast
with the pch2 single mutant, Hop1 is not more abundant
on zip1 pch2 chromosomes; furthermore, in response to
zip1 defects, Pch2 specifically promotes high levels of Hop1
phosphorylation at Thr318 required to sustain checkpoint
function. Finally, we show that pch2 mutants carrying mu-
tations in the Walker A or Walker B motifs phenocopy the
defects of the pch2 null-mutant, indicating that the ATPase
activity of Pch2 is essential for its synapsis checkpoint func-
tion. Moreover, the Walker A-deficient Pch2 version fails
to localize to the chromosomes and to form a stable com-
plex suggesting that adenosine triphosphate (ATP) binding
is required for formation or integrity of the Pch2 hexameric
complex. We conclude that the critical function of the Pch2
ATPase in a zip1-deficient situation is to facilitate Mec1-
dependent phosphorylation of Hop1 at Thr318.

MATERIALS AND METHODS

Yeast strains and meiotic time courses

The genotypes of yeast strains are listed in Supplemen-
tary Table S1. All strains are in the BR2495 or the
BR1919 background (5,36). The zip1::LEU2, zip1::LYS2,
zip1::URA3, zip3::URA3, ecm11::kanMX6, ndt80::LEU2,
ddc1::ADE2, rad17::LEU2, rad24::TRP1, dot1::TRP1,
pch2::TRP1, sir2::LEU2, hop1::hphMX4 and rad54::LEU2
gene deletions were previously described (5,8,15,18,19,37–
39). The rad51::natMX4 deletion was made following a
PCR (polymerase chain reaction)-based approach (40). The
ndt80::kanMX3 construct was generated by marker swap-
ping in ndt80::LEU2 strains using the M3926 plasmid (41).
The pph3::kanMX6 cassette was amplified from genomic
DNA of a W303-based strain containing that deletion (a
gift from R. Bermejo; CIB-CSIC) and used to transform
the appropriate BR1919 strains. For substitution of the
PCH2 gene for the pch2Δ-lacZ::TRP1 construct, strains
were transformed with the pSS67 plasmid (see below) di-
gested with XhoI-SphI. N-terminal tagging of PCH2 with
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three copies of the HA epitope was previously described
(18). PCH2 was also tagged with three copies of the MYC
epitope at the same position using identical procedures (42).
The MEK1-GFP and DDC2-GFP constructs were also pre-
viously described (8,43). The pch2-K320A and pch2-E399Q
mutations were introduced at the PCH2 genomic locus us-
ing the delitto perfetto technique (44); they generate a NarI
and a BstNI site, respectively, utilized for genotyping pur-
poses during genetic crosses. The sequences of the primers
used are available upon request. All strains were made by
direct transformation or by genetic crosses always in an iso-
genic background. Sporulation conditions for meiotic time
courses have been described (8). To score meiotic nuclear
divisions, samples were taken at different time points, fixed
in 70% Ethanol, washed in phosphate buffered saline (PBS)
and stained with 1 �g/�l DAPI for 15 min. At least 300
cells were counted at each time point. Meiotic time courses
were repeated several times; representative experiments are
shown.

Plasmids

The plasmids used are listed in Supplementary Table S2.
The pSS51 plasmid expressing a pch2-lacZ fusion was con-
structed by cloning a 1.3-kb XhoI-BamHI fragment con-
taining the PCH2 promoter and the N-terminal ORF re-
gion encoding the first 90 amino acids into the SalI-BamHI
sites of the YCp50-derivative R1566 plasmid harboring the
E. coli lacZ gene with a BamHI site at the 5′ end to gen-
erate an in-frame fusion. pSS67 contains a 4.3-kb BglII-
NheI fragment from pSS51 harboring pch2-lacZ cloned
into BglII-SphI of pSS53 (18). The R1692 plasmid overex-
pressing HOP1 has been previously described (45). pSS54
contains a 3.2-kb KpnI-PstI PCH2 fragment in the high-
copy YEp352 vector. The pSS316 and pSS317 plasmids
were constructed as follows: a 2.7-kb fragment containing
HOP1 ORF and the 5′ (648 bp) and 3′ (241 bp) UTR re-
gions was first amplified by PCR from genomic DNA of a
BR1919 strain using oligos HOP1-EcoRI(Fw) and HOP1-
SalI(Rv) and blunt-cloned into the pJET1.2 vector (Ther-
moFisher Scientific) to originate pSS314. This EcoRI-SalI
fragment was then subcloned into pRS426 to generate the
pSS316 plasmid. A 1.6-kb fragment spanning the hop1-
T318A mutation was amplified from the JCY565 strain (6)
(a gift from J. Carballo; CIB-CSIC), digested with BamHI-
SacI and used to replace the same 1.0-kb fragment in
pSS314 to generate pSS315. The 2.7-kb EcoRI-SalI frag-
ment of pSS315 was then transferred to pRS426 to originate
the pSS317 plasmid overexpressing hop1-T318A.

Genetic screen for high-copy suppressors of zip1 pch2

The zip1 pch2-lacZ mutant (DP221) was transformed with
a yeast genomic library constructed in the multicopy vec-
tor YEp24 (46). Transformants were selected on SC-Ura
and replica-plated to SPO plates containing a sterile What-
man 3MM filter paper on top. As positive controls, two
colonies of DP221 transformed with pSS54 were placed at
known positions on every plate. After incubation at 30◦C
for 3 days, the filters were removed, exposed to chloroform
fumes for 10 min and assayed for �-galactosidase activity

by incubating them at 30◦C, colony side up, in empty dishes
with a solution of 500 �l of Z-buffer (60 mM Na2HPO4,
40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 40 mM �-
mercatoethanol, pH 7.0) containing 100 �l of 20 mg/ml
X-Gal. About 23 000 transformants were scored and 21
displayed blue color; plasmids were recovered for further
analysis. The presence of PCH2 in the plasmids was dis-
carded by PCR using internal PCH2 primers. Fifteen of the
plasmids recovered fail to reproduce the phenotype when
reintroduced into DP221, indicating that the suppression
phenotype was not linked to the plasmids. The remaining
six plasmids were analyzed by restriction mapping and se-
quencing of the insert ends and were grouped into two Pch-
Two-Suppressors: PTS10 containing RPS9A and a trun-
cated form of MOT1, and PTS11 containing HOP1, PCI8,
MAM33, RPS24B and SEC6.

Western blotting and immunoprecipitation

Total cell extracts were prepared by trichloroacetic acid
(TCA) precipitation from 5-ml aliquots of sporulation cul-
tures as previously described (13). Analysis of Mek1 phos-
phorylation using Phos-tag gels was performed as reported
(8). The antibodies used are listed in Supplementary Table
S3. The ECL or ECL2 reagents (ThermoFisher Scientific)
were used for detection. The signal was captured on films
and/or with a ChemiDoc XRS system (Bio-Rad) and quan-
tified with the Quantity One software (Bio-Rad).

For immunoprecipitation of Pch2, 5-ml aliquots from 16
h meiotic cultures were crosslinked with 1% formaldehyde
for 10 min at 30◦C. The reaction was quenched by adding
glycine to 250 mM and incubating for 5 min on ice. Cells
were collected, washed and broken with glass beads in ly-
sis buffer (150 mM NaCl, 1% Triton X-100, 50 mM Tris
HCl pH 8.0) containing protease inhibitors (Complete Ul-
tra Tablets, Roche). Clarified extracts were immunoprecip-
itated with anti-HA antibodies conjugated with magnetic
MicroBeads using the �MACS Epitope Tag Protein Isola-
tion Kit (Miltenyi Biotec) following the manufacturer’s pro-
tocol.

Cytology

Immunofluorescence of chromosome spreads and whole
cells was performed essentially as described in (47) and
(48), respectively. The antibodies used are listed in Supple-
mentary Table S3. Images of spreads were captured with a
Nikon Eclipse 90i fluorescence microscope controlled with
MetaMorph software and equipped with a Hammamatsu
Orca-AG CCD camera and a PlanApo VC 100 × 1.4 NA
objective. Ddc2-GFP foci images were captured with an
Olympus IX71 fluorescence microscope equipped with a
personal DeltaVision system, a CoolSnap HQ2 (Photomet-
rics) camera and 100x UPLSAPO 1.4 NA objective. Stacks
of 10 planes at 0.4 �m intervals with 500 ms exposure time
were captured. Maximum intensity projections of decon-
volved images were generated using the SoftWorRx 5.0 soft-
ware (Applied Precisions). Quantification of the fluores-
cence signal in individual spread nuclei or cells was per-
formed with the Image J software. Background signal was
subtracted using the Otsu’s threshold method of Image J.
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DAPI images were collected using a Leica DMRXA fluo-
rescence microscope equipped with a Hammamatsu Orca-
AG CCD camera and a 63 × 1.4 NA objective.

Dityrosine fluorescence assay, sporulation efficiency and
spore viability

To examine dityrosine fluorescence as an indicator of the
formation of mature asci, patches of cells grown on YPDA
plates were replica-plated to sporulation plates overlaid
with a nitrocellulose filter (Protran BA85, Whatman). Af-
ter 3-days incubation at 30◦C, fluorescence was visualized
by illuminating the open plates from the top with a hand-
held 302 nm UV lamp. Images were taken using a Gel Doc
XR system (Bio-Rad). Sporulation efficiency was quanti-
tated by microscopic examination of asci formation after 3
days on sporulation plates. Both mature and immature asci
were scored. At least 300 cells were counted for every strain.
Spore viability was assessed by tetrad dissection. At least
144 spores were scored for every strain.

Statistics

To determine the statistical significance of differences a two-
tailed Student t-test was used. P-Values were calculated
with the GraphPad Prism 5.0 software.

RESULTS

A genetic screen for high-copy suppressors of zip1 pch2 iden-
tifies HOP1

The absence of Pch2 alleviates the checkpoint-induced mei-
otic arrest of the zip1 mutant. To gain insight into the func-
tion of Pch2 in this checkpoint we devised a genetic screen
to identify genes that, when overexpressed, restored the mei-
otic block in a zip1 pch2 double mutant. This screen could
potentially identify novel components of the checkpoint
pathway and/or reveal additional functional interactions of
Pch2 with previously known checkpoint factors. We took
advantage of the fact that Pch2 is transiently produced dur-
ing meiotic prophase in the wild type, but it accumulates
in the prophase-arrested zip1 mutant (18). To follow PCH2
expression, we generated a construct containing the PCH2
coding sequence corresponding to the first 90 amino acids
(pch2Δ90-564) fused the E. coli lacZ gene and expressed from
the PCH2 promoter in a centromeric plasmid (Figure 1A).
�-galactosidase activity was used as a readout for PCH2
expression and dityrosine fluorescence as an indicator of
sporulation on plates. Consistent with the previously de-
scribed PCH2 expression pattern, meiotic-proficient wild-
type cells containing this plasmid exhibited no or low levels
of �-galactosidase activity, but the prophase-arrested zip1
mutant accumulated high levels of �-galactosidase activ-
ity, manifested as blue color on sporulation plate assays
(Figure 1B and C). Alleviation of the prophase arrest in
a zip1 dot1 mutant (8,19) eliminated �-galactosidase pro-
duction (Figure 1B), whereas the checkpoint-independent
meiotic block imposed by deletion of NDT80 (49) resulted
in �-galactosidase accumulation (Figure 1B). Thus, the
pch2Δ90-564-lacZ fusion gene (hereafter, pch2Δ-lacZ) serves
as a useful reporter for meiotic prophase arrest.

We next generated diploid strains in which both copies of
the PCH2 gene were replaced by the pch2Δ-lacZ construct
at the genomic locus (Figure 1D). As expected, pch2Δ-lacZ
behaved like a null mutant; it bypassed checkpoint arrest
as manifested by the presence of dityrosine fluorescence
in zip1 pch2Δ-lacZ, but no �-galactosidase was detected
(Figure 1E). Notably, introduction of a single-copy or a
high-copy PCH2 restored the meiotic block in zip1 pch2Δ-
lacZ and resulted in conspicuous �-galactosidase accumu-
lation (Figure 1E). Thus, we reasoned that we could use
this assay to screen for high-copy suppressors of the un-
scheduled sporulation resulting from the defective check-
point in zip1 pch2Δ-lacZ. After transformation with a 2�-
based high-copy genomic library and replica-plate to sporu-
lation medium, we scored for the appearance of blue color
as an indicator of restored meiotic prophase arrest (Fig-
ure 1F and G). The plasmids contained in the colonies
displaying �-galactosidase activity were recovered, ana-
lyzed by restriction digestion and DNA sequencing, and re-
transformed into the original zip1 pch2Δ-lacZ strain to con-
firm that the suppression phenotype was linked to the plas-
mid. In addition to clones containing PCH2, we isolated
two different high-copy suppressor genes (PTS, for Pch
Two-Suppressors). PTS10 encoded a C-terminal truncated
version of the Mot1 transcriptional regulator (50). Since
2μPTS10 only conferred a transient and partial restora-
tion of the meiotic arrest (Figure 1H) it was not further
analyzed. In contrast, the effect of 2μPTS11 was compara-
ble to that of the 2μPCH2 control (Figure 1H). Sequenc-
ing analysis revealed that the HOP1 gene was present in
the 2μPTS11 plasmids isolated from the library. To confirm
that high levels of Hop1 were indeed responsible for the phe-
notype we analyzed a previously characterized 2μHOP1
plasmid (8,45) and found a similar effect on suppression
of zip1 pch2Δ-lacZ sporulation (Figure 1H). Thus, HOP1
overexpression restores meiotic arrest in the checkpoint-
deficient zip1 pch2Δ-lacZ mutant.

Overexpression of HOP1 suppresses the checkpoint defect of
pch2, sir2 and dot1, but not that of rad17, ddc1 and rad24
mutants

To determine whether the effect of Hop1 overproduction
was exclusively exerted when the checkpoint was inacti-
vated by the absence of Pch2, we analyzed mutants in other
checkpoint genes also required for the zip1 meiotic block.
The Rad17, Ddc1 and Rad24 proteins are members of the
9-1-1 and RFC complexes acting upstream in the check-
point pathway and contributing to the activation of the
Mec1-Ddc2 sensor kinase (6,51,52). On the other hand, the
H3K79 methyltransferase Dot1 is required for proper phos-
phorylation and localization of the Hop1 adaptor and the
Mek1 checkpoint effector kinase (8). Dot1 regulates the
chromosomal distribution of the nucleolar-associated Pch2
and Sir2 proteins (8,19). As shown in Figure 2, Hop1 over-
production significantly reduced sporulation efficiency in
zip1 pch2, zip1 sir2 and zip1 dot1, but had no effect on zip1
rad17, zip1 ddc1 and zip1 rad24 mutants. Thus, HOP1 over-
expression specifically supports meiotic checkpoint func-
tion when the Dot1-Pch2 module is not operative.
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Figure 1. Identification of HOP1 in a genetic screen for high-copy suppressors of the zip1 pch2 checkpoint defect using a pch2-lacZ construct as a reporter
for meiotic prophase arrest. (A) Schematic representation of a centromeric plasmid (pSS51) carrying the PCH2 promoter and the coding sequence for
the first N-terminal 90 amino acids fused in frame with the bacterial lacZ gene. (B) Dityrosine fluorescence and �-galactosidase assays of the indicated
strains transformed with the pSS51 plasmid after 48 h on sporulation plates. (C) Kinetics of meiotic divisions and �-galactosidase activity in meiotic time
courses of wild-type and zip1 strains containing the pSS51 plasmid. (D) Schematic representation of the substitution of the PCH2 gene for the pch2-lacZ
construct at the genomic locus. (E) Dityrosine fluorescence and �-galactosidase assays of the indicated strains after 48 h on sporulation plates. (F) Scheme
of the genetic screen. (G) Representative �-galactosidase assay of a plate from zip1 pch2Δ-lacZ transformed with the genomic high-copy library. Black
triangles indicate positive controls deliberately placed at known positions on every plate of the screen. The red arrow points to a positive ‘blue’ candidate.
(H) Dityrosine fluorescence and �-galactosidase assays of the zip1 pch2Δ-lacZ strain transformed with the indicated plasmids. Strains for (B) and (C) are:
BR2495 (wild type), MY63 (zip1), DP174 (zip1 dot1) and S3483 (ndt80). Strains for (E), (F), (G) and (H) are: DP221 (zip1 pch2Δ-lacZ) and DP228 (zip1
pch2Δ-lacZ/PCH2). DP221 was transformed with empty vector or the indicated high-copy plasmids.
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Figure 2. High-copy HOP1 specifically suppresses the checkpoint defect of
zip1 pch2, zip1 sir2 and zip1 dot1. (A) Dityrosine fluorescence assay of the
indicated strains transformed with empty vector (YEp352) of high-copy
HOP1 (R1692) after 3 days on sporulation plates. (B) Microscopic quan-
tification of the sporulation efficiency of the strains analyzed in (A). Three
independent counts were performed. Means and standard deviations are
shown. (ns), no significant difference; (***), P < 0.001. Strains are: BR2495
(wild type), MY63 (zip1), DP174 (zip1 dot1), DP223 (zip1 pch2), DP267
(zip1 sir2), S4295 (zip1 rad24), S4278 (zip1 ddc1) and S4286 (zip1 rad17).

HOP1 overexpression restores meiotic checkpoint activity in
zip1 pch2

To further explore the effect of HOP1 overexpression, we
next analyzed meiotic kinetics and molecular markers of
checkpoint activation, such as Mek1 phosphorylation (in
phostag gels) and Cdc5 inhibition, during meiotic time
courses of wild-type, zip1 and zip1 pch2 strains with or
without Hop1 overproduction (Figure 3). In the wild type,
the Mek1 kinase was only weakly and transiently activated
(Figure 3A) (8); HOP1 overexpression slightly prolonged
Mek1 activation resulting in a subtle meiotic delay (Fig-
ure 3A and B). As expected, the synapsis-deficient zip1

mutant showed extensive Mek1 phosphorylation, delayed
Cdc5 production and a significant meiotic delay; Hop1
overproduction slightly enhanced those effects (Figure 3C
and D). Consistent with the defective checkpoint, Mek1
hyperactivation was not observed in the zip1 pch2 mutant;
moreover, Cdc5 production and meiotic divisions displayed
roughly wild-type kinetics (Figure 3E and F). However,
high doses of Hop1 markedly restored Mek1 phosphory-
lation, delayed Cdc5 production and provoked a significant
meiotic delay in zip1 pch2 (Figure 3E and F).

To elude the possible effect of the different kinetics of
meiotic progression in the strains analyzed in these assays,
we assessed Mek1 activation and localization in pachytene-
arrested ndt80 cells. To achieve full activation, Mek1 under-
goes Mec1/Tel1-dependent phosphorylation followed by in
trans autophosphorylation (6,9). The different forms re-
sulting from these two phosphorylation events can be re-
solved in phostag gels (8) (Figure 3G, black and white ar-
rows). We found that Mec1/Tel1-dependent phosphoryla-
tion occurred in the absence of Pch2 (Figure 3G, black
arrow). However, the bands corresponding to Mek1 au-
tophosphorylation were absent in zip1 pch2 transformed
with empty vector (Figure 3G, white arrows) indicating
that, like Dot1, Pch2 is specifically required for Mek1 au-
tophosphorylation. Strikingly, complete Mek1 activation
was reestablished in zip1 pch2 cells overproducing Hop1
(Figure 3G).

The zip1-induced meiotic checkpoint also promotes the
formation of chromosome-associated Mek1 foci (8,53)
(Figure 3H). Like Mek1 phosphorylation, formation of
Mek1 foci was also impaired in zip1 pch2, which displayed
fewer and dimmer foci. In contrast, numerous bright Mek1
foci were observed in the zip1 pch2 mutant overexpressing
HOP1 (Figure 3H).

Taken together, these results indicate that Pch2 is re-
quired for Mek1 autophosphorylation and localization
when the synapsis checkpoint is activated by the lack of
Zip1. In the absence of Pch2, artificially-induced high lev-
els of Hop1 can support checkpoint activity suggesting that
Hop1 function is somehow compromised in the zip1 pch2
mutant resulting in impaired Mek1 activation.

Pch2 is required for Hop1 phosphorylation induced by the
synapsis checkpoint

Several lines of evidence indicate that, in unperturbed meio-
sis, Pch2 promotes the turnover of Hop1 from chromo-
somes; the pch2 single mutant displays a more abundant
and continuous localization of Hop1 along synapsed chro-
mosomes (18,22). Thus, in principle, it was rather surprising
that high doses of Hop1 could compensate for the absence
of Pch2 supporting Mek1 activation and checkpoint func-
tion in the zip1 pch2 mutant. To investigate this apparent
contradiction, we examined Hop1 production, localization
and phosphorylation in wild type, pch2, zip1 and zip1 pch2
prophase-arrested ndt80 cells. Pachytene checkpoint acti-
vation leads to Mec1/Tel1-dependent phosphorylation of
Hop1 at defined S/T-Q sites; in particular, phosphorylation
of the T318 residue is critical for Hop1 checkpoint func-
tion promoting Mek1 activation (6,7). As expected, both
on chromosome spreads and in whole-cell lysates, we found
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Figure 3. HOP1 overexpression largely restores meiotic arrest, Mek1 activation, Mek1 localization and delayed Cdc5 production in zip1 pch2. Western
blot analysis of the indicated proteins and meiotic kinetics of (A and B) wild type, (C and D) zip1 and (E and F) zip1 pch2 transformed with empty vector
(pRS426) or high-copy HOP1 (R1692). Strains are: DP421 (wild type), DP422 (zip1) and DP1029 (zip1 pch2). (G) Analysis of Mek1 phosphorylated forms
in ndt80-arrested strains. The black arrowhead marks the Mec1/Tel1-dependent band and the white arrowheads point to the forms resulting from Mek1
autophosphorylation (8). Strains are: DP428 (zip1) and DP881 (zip1 pch2), transformed with pRS426 (empty vector) or R1692 (OE-HOP1). (H) Analysis
of Mek1 localization by immunofluorescence of spread meiotic chromosomes using anti-GFP antibodies. Representative nuclei are shown. Strains are
DP582 (zip1) and DP1111 (zip1 pch2).
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higher levels of Hop1 in the pch2 single mutant, compared
with the wild type (Figure 4Aa,b; B and D). Paralleling
the accumulation of total Hop1, an increased number of
phospho-Hop1T318 foci (Figure 4Ae,f; C) and higher lev-
els of the phosphorylated protein (Figure 4D) were also ob-
served in pch2. Nevertheless, the ratio of phospho-Hop1T318

relative to total Hop1 was only moderately increased in pch2
compared with the wild type (Figure 4E). In fact, the Mek1
kinase is minimally activated in pch2 as manifested by the al-
most complete absence of autophosphorylation (Figure 4D,
white arrow), the low level of histone H3T11 phosphoryla-
tion, which is a target of Mek1 (54) and, therefore, a useful
reporter of its kinase activity (Figure 4D), and the rather
normal kinetics of meiotic progression of pch2, which only
shows a minor delay (20) (see also Figure 8D below).

On the other hand, the zip1 mutant displayed continuous
Hop1 signal along unsynapsed chromosome axes (55) (Fig-
ure 4Ac and B), numerous and strong phospho-Hop1T318

foci (Figure 4Ag and C), and high levels of phospho-
Hop1T318 protein (Figure 4D). Importantly, the phospho-
Hop1T318/total Hop1 ratio was significantly raised in zip1
(Figure 4E), leading to full activation of Mek1 and robust
H3T11 phosphorylation (Figure 4D). Deletion of PCH2 in
zip1 resulted in increased global levels of the Hop1 protein
detected by Western blot, as compared with the zip1 single
mutant (Figure 4D); however, it was not massively incorpo-
rated on the axes; Hop1 chromosomal distribution in the
zip1 pch2 double mutant was less continuous than in zip1
(Figure 4Ad and B). Importantly, zip1-induced Hop1T318

phosphorylation was dramatically reduced in the absence
of Pch2 (Figure 4Ah, C, D and E), thus explaining the im-
paired Mek1 activation and defective checkpoint response
in zip1 pch2 (Figures 3 and 4D).

These observations reveal that the critical role of Pch2
in the zip1-induced checkpoint is to promote Hop1 phos-
phorylation at T318. Confirming this notion, overexpres-
sion of wild-type HOP1, but not that of a phosphorylation-
deficient hop1-T318A mutant (6), restored Hop1T318 phos-
phorylation and checkpoint function (i.e. full Mek1 activa-
tion) in zip1 pch2 (Figure 5).

The absence of PP4 restores checkpoint activity in zip1 pch2
to a small extent

It has been reported that the protein phosphatase 4 (PP4)
counteracts Mec1/Tel1-dependent Hop1T318 phosphoryla-
tion (7); therefore, to further explore the role of Pch2 in con-
trolling Hop1T318 phosphorylation we examined the effect
of deleting the PPH3 gene, which encodes the catalytic sub-
unit of PP4. We analyzed the kinetics of meiotic divisions
(Figure 6A) and the activation of molecular markers of the
checkpoint, including Hop1T318, Mek1 and histone H3T11
phosphorylation (Figure 6B). Consistent with a role for PP4
in shutting off pachytene checkpoint signaling, the pph3
mutant showed a transient Hop1-Mek1 activation (Fig-
ure 6B) manifested as a short meiotic delay (Figure 6A);
moreover, the zip1 pph3 double mutant displayed persis-
tent checkpoint activity and strong meiotic arrest (Figure
6A and B). Although Hop1T318 phosphorylation is severely
impaired in zip1 pch2 (Figures 4D, E and 6B), the lack of
PP4 resulted in higher levels of Hop1T318 phosphorylation

and the ensuing Mek1 kinase activity (Figure 6B) leading
to delayed meiotic divisions in zip1 pch2 pph3 compared to
zip1 pch2 (Figure 6A). However, checkpoint function (i.e.
Hop1T318 phosphorylation) was not completely restored in
the zip1 pch2 pph3 triple mutant, which showed faster mei-
otic progression than that of zip1 and a weaker and shorter
Mek1 activation (Figure 6A and B).

All together, these observations confirm that Pch2 specif-
ically supports Hop1T318 phosphorylation when the synap-
sis checkpoint is triggered by the absence of Zip1 and re-
veal that the control of Hop1T318 phosphorylation by Pch2
is not, at least exclusively, exerted by modulating PP4 ac-
tion.

To determine whether the defective Hop1T318 phosphory-
lation in zip1 pch2 stems from an impaired general activa-
tion of the Mec1-Ddc2 complex, we performed immunoflu-
orescence of spread meiotic chromosome using an antibody
that recognizes the phosphorylated S/T-Q motifs. As shown
in Supplementary Figure S1A, phospho-S/T-Q foci simi-
larly decorated both zip1 and zip1 pch2 chromosomes. We
also examined the localization of the Mec1-Ddc2 complex
monitoring the induction of Ddc2-GFP foci when the mei-
otic checkpoint is triggered in zip1 cells (43). We found
that the formation of Ddc2 foci is not altered by the ab-
sence of Pch2 in ndt80-arrested cells (Supplementary Figure
S1B). These observations suggest that Pch2 does not impact
widespread Mec1 signaling.

Unsynapsed chromosomes and unrepaired DSBs remain in
zip1 pch2 ndt80

Although the precise defect(s) triggering the checkpoint
in zip1 mutants (defective synapsis and/or unrepaired
DSBs) remains unclear, since pch2 affects meiotic DSB
metabolism, it was formally possible that the reduced
Hop1T318 phosphorylation observed in zip1 pch2 resulted
from the absence or the disappearance of the checkpoint-
activating signal. However, the fact that Ddc2 foci forma-
tion and S/T-Q phosphorylation are conspicuous in zip1
pch2 (Supplementary Figure S1) indicates that the zip1 de-
fects triggering the checkpoint are still present in the ab-
sence of Pch2. We also monitored the presence of Rad51
foci as a marker for unrepaired DSBs (56). To avoid again
the effect of meiotic progression on DSB repair outcome we
performed the analysis in ndt80 cells. No or few Rad51 foci
were observed in most wild-type (1.8 ± 0.3 SEM foci per
nucleus; n = 40) and pch2 (2.0 ± 0.5 SEM foci per nucleus;
n = 35) nuclei, but the number was markedly increased in
the zip1 mutant (5.5 ± 0.5 SEM foci per nucleus; n = 35).
Importantly, although the fraction of unrepaired DSBs was
reduced in zip1 pch2 (3.5 ± 0.5 SEM foci per nucleus; n
= 45), likely due to intersister (IS) repair, the double mu-
tant still showed prominent Rad51 foci (Figure 7A). In ad-
dition, chromosome axes are unsynapsed in zip1 pch2; i.e.,
the synapsis defect continues to exist (Figure 4Ac,d). Thus,
these observations indicate that the inability of zip1 pch2 to
phosphorylate Hop1 at T318 does not stem from the ab-
sence of defects triggering the checkpoint and point to a
more direct role for Pch2 in controlling Hop1-Mek1 activa-
tion.
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Figure 4. Pch2 promotes Hop1T318 phosphorylation in zip1. (A) Immunofluorescence of spread meiotic chromosomes stained with DAPI (blue) and
anti-Hop1 (a-d panels) or anti-phospho-Hop1T318 (e–h panels) antibodies (red). Representative nuclei are shown. (B and C) Quantification of total Hop1
and phospho-Hop1T318 fluorescence signal, respectively, on the spreads analyzed in (A). Each spot in the plot represents the intensity of a nucleus scored.
(D) Western blot analysis of the indicated proteins and phosphorylation events. (E) Quantification of relative Hop1T318 phosphorylation analyzed as in
(D). The ratio of phospho-Hop1T318 versus total Hop1 chemiluminiscence signal is represented. Means and standard deviations from three independent
experiments are shown. Strains are: DP424 (wild type), DP1058 (pch2), DP428 (zip1), DP881 (zip1 pch2) and DP700 (hop1). Spreads and lysates were
prepared 24 h after meiotic induction of ndt80 cells. For DP700 the sample was taken at 17 h.
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Figure 5. Hop1T318 phosphorylation is the critical checkpoint event im-
paired in zip1 pch2. (A) Schematic representation of the Hop1 protein do-
mains and the position of the mutated T318 phosphosite (6) (B) Over-
expression of wild-type HOP1, but not the hop1-T318A mutant, restores
Mek1 activation in zip1 pch2. Western blot analysis of Hop1, phospho-
Hop1T318, Mek1 and phospho-H3T11 in ndt80-arrested cells. (C) Quan-
tification of the phospho-H3T11 signal from three experiments. Note that
Mek1 activity markedly increases, but is not fully restored in zip1 pch2 OE-
HOP1 cells due to plasmid-loss events in the meiotic cultures (43); those
cells that lose the plasmid do not overproduce Hop1 and do not contribute
to Mek1 phosphorylation. Strains are DP428 (zip1) and DP881 (zip1 pch2)
transformed with pRS426 (empty vector), pSS316 (OE-HOP1) or pSS317
(OE-hop1-T318A).

The Pch2-Hop1-Mek1 signaling module impacts meiotic cell
cycle progression

Since the analyses described above were performed in ndt80-
arrested cells, we also explored the possibility that the mu-
tation of PCH2 suppresses zip1 meiotic arrest exclusively by
allowing the repair of DSBs by recombination between sis-
ter chromatids as a result of the impaired Mek1 function in
zip1 pch2 (28). If that were the case; that is, Mek1 only con-
trols recombination partner choice and not cell cycle events,
compromising repair by mutation of recombination factors
would restore meiotic cell cycle arrest in zip1 pch2 cells;
therefore, we deleted RAD51 to interfere with DNA repair.
In parallel with monitoring meiotic divisions, we used the
presence of multiple Ddc2-GFP foci as a reporter for unre-
paired Spo11-dependent meiotic recombination intermedi-

Figure 6. Impact of the PP4 phosphatase on Pch2-dependent meiotic
checkpoint. (A) Time course of meiotic nuclear divisions; the percentage of
cells containing two or more nuclei is represented. (B) Western blot anal-
ysis of Hop1T318 phosphorylation and Mek1 activity at the indicated time
points in meiosis. PGK was used as a loading control. Strains are: DP421
(wild type), DP1247 (pph3), DP422 (zip1), DP1249 (zip1 pph3), DP1029
(zip1 pch2) and DP1245 (zip1 pch2 pph3).
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Figure 7. Effect of Pch2 on cell cycle progression and resolution of zip1-induced recombination intermediates. (A) Localization and quantification of
Rad51 foci as markers for unrepaired DSBs on spread meiotic nuclei of ndt80 cells after 24 h of meiotic induction. Strains are: DP424 (wild type), DP1058
(pch2), DP428 (zip1) and DP881 (zip1 pch2). (B) Time course of meiotic nuclear divisions. The percentage of cells with two or more nuclear masses is
represented. (C) Quantification of Ddc2-GFP foci throughout meiosis. The percentage of cells containing a single non-meiotic Ddc2 focus (green bars) or
multiple meiotic Ddc2 foci (red bars) from three different counts is represented. Note that rad51 cells accumulate spontaneous non-meiotic Ddc2 foci at
time zero. Between 150 and 800 cells were scored for each strain at every time point. (D) Western blot analysis of phospho-H3T11 (as a reporter for Mek1
activity), Cdc5 (as a marker for meiosis I entry) and PGK (as a loading control) from the same cultures analyzed in (B) and (C). Strains for (B), (C) and
(D) are: DP448 (wild type), DP449 (zip1), DP1379 (zip1 pch2) DP1381 (zip1 rad51) and DP1382 (zip1 pch2 rad51).
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ates (43), H3T11 phosphorylation as a reporter for Mek1
activity and Cdc5 production as a molecular indicator of
prophase I exit and entry into meiotic divisions (Figure 7B,
C and D). In the wild type, only a transient peak of Ddc2-
containing cells was detected because recombination is nor-
mally completed. In the zip1 mutant, cells containing mul-
tiple Ddc2 foci accumulate, leading to Mek1 activation and
delayed Cdc5 production. As expected, the zip1 pch2 double
mutant showed impaired Mek1 activation allowing normal
meiotic progression and the disappearance of recombina-
tion intermediates (Figure 7B, C and D). Notably, whereas
at late time points a fraction of zip1 cells underwent meiotic
divisions after a delay, the zip1 rad51 double mutant dis-
played a much tighter arrest (Figure 7B) and markedly re-
duced and delayed Cdc5 production (Figure 7D). Likewise,
Ddc2 multiple foci and Mek1 activation persisted for longer
in zip1 rad51 (Figure 7C and D; Supplementary Figure S2).
These observations indicate that compromising recombina-
tion by the rad51 mutation prevents the resolution of recom-
bination intermediates in zip1 leading to a stronger meiotic
block. Importantly, deletion of PCH2 reduced Mek1 acti-
vation and restored meiotic progression and earlier Cdc5
production in zip1 rad51 despite the persistence of multiple
Ddc2 foci; that is, unrepaired recombination intermediates
(Figure 7B,C,D; Supplementary Figure S2).

We also analyzed the effect of Rad54, which is a Rad51
accessory factor, and a direct Mek1 target (12). In addition
to the action of Hed1, phosphorylation of Rad54 by Mek1
reduces its affinity for Rad51 binding; therefore, mutation
of RAD54 can be used also as a tool to interfere with mei-
otic recombinational repair (57–59). We observed that, like
in zip1 pch2, the sporulation block of zip1 was still relieved
in the zip1 pch2 rad54 triple mutant (Supplementary Fig-
ure S3A). Consistent with impaired repair in the absence
of Rad54, spore viability was further reduced in zip1 pch2
rad54 (29.1%, n = 144) compared with zip1 pch2 (47.2%; n
= 144). Moreover, we used chromosome spreads to monitor
the presence of Ddc2 foci in combination with spindle stain-
ing as a sensitive cytological assay for checkpoint function
(19,43,51). Whereas zip1 rad54 cells arrested in prophase
with unseparated SPBs and numerous Ddc2 foci (35.4 ±
2.5 SEM foci per nucleus; n = 13), zip1 rad54 pch2 nuclei
displaying elongated meiosis I spindle coexisting with per-
sistent recombination intermediates (14.0 ± 3.0 SEM Ddc2
foci per nucleus; n = 10) could be detected (Supplementary
Figure S3B). In wild-type nuclei, recombination intermedi-
ates never coexist with metaphase spindles (19,43,51). These
findings indicate that, in the absence of Pch2, a late cell cy-
cle event has been initiated before an earlier one has been
completed; that is, checkpoint function is impaired.

In summary, these observations argue that Pch2 controls
a general checkpoint response via Hop1-Mek1 regulation
that includes the cell-cycle arrest outcome and not only the
regulation of recombination.

To determine whether the effect of Pch2 was exerted ex-
clusively in response to the meiotic defects resulting from
the lack of Zip1, we examined other mutants affecting SC
dynamics, such as zip3 and ecm11. Zip3 is a SUMO lig-
ase constituting the so-called synapsis initiating complex
(60,61) and Ecm11 is a component of the central element
of the SC (39,62). Similar to zip1, although to different

extents, both ecm11 and zip3 single mutants displayed de-
layed meiotic progression (Supplementary Figure S4A), in-
creased Hop1-T318 phosphorylation and induced Mek1
activity (Supplementary Figure S4B). Deletion of PCH2
resulted in faster meiotic progression and impaired Hop1
and Mek1 activation (Supplementary Figure S4). There-
fore, Pch2 impact on Hop1-Mek1 signaling is also required
to restrain meiotic divisions in other mutants altering SC
proper development.

The ATPase activity of Pch2 is required for its checkpoint
function

Pch2 is a hexameric ring AAA+ ATPase (63). In order to
investigate whether Pch2 ATPase activity is required for its
meiotic checkpoint function, conserved critical residues in
the AAA+ domain of Pch2 were mutated to abolish its cat-
alytic activity (64). In particular, the lysine 320 in the Walker
A motif required for ATP binding was changed to alanine,
and the glutamic acid at position 399 in the Walker B mo-
tif, required for ATP hydrolysis, was substituted for glu-
tamine to generate the pch2-K320A and pch2-E399Q mu-
tants, respectively (Figure 8A). We used the delitto perfetto
technique, which leaves no additional modifications, to in-
troduce these mutations in the genomic loci of strains car-
rying functional N-terminal HA- or MYC-tagged versions
of PCH2 (18). Both Pch2-K320A and Pch2-E399Q mutant
proteins were produced at normal levels and with normal
kinetics (Figure 8B). Like pch2Δ, the pch2-K320A and pch2-
E399Q single mutants showed no prominent phenotype in
unperturbed meiosis; they were able to complete meiosis
and sporulation with kinetics and efficiency similar to the
wild type, producing high levels of viable spores (Figure
8C and D; Table 1). Interestingly, when the meiotic check-
point was triggered by the lack of Zip1, we found that, like
pch2Δ, the pch2-K320A and pch2-E399Q mutations com-
pletely suppressed the sporulation defect of zip1 (Figure
8C); the zip1 pch2-K320A and zip1 pch2-E399Q double mu-
tants displayed fairly normal kinetics of meiotic divisions
(Figure 8D), but generate largely inviable meiotic products
(Table 1). These observations imply that the ATPase activ-
ity of Pch2 is absolutely required to restrain meiotic pro-
gression when the checkpoint is induced by the absence of
Zip1. To further confirm this interpretation we assessed the
effect of the pch2-K320A and pch2-E399Q mutations on
checkpoint function by monitoring molecular markers of
checkpoint activation impacted by Pch2 (see above), such
as Hop1T318 phosphorylation, Mek1 hyperphosphorylation
and histone H3T11 phosphorylation (Figure 8E). Consis-
tent with the alleviation of meiotic arrest (Figure 8C and
D), the high levels of phospho-Hop1T318 and Mek1 hy-
peractivation observed in zip1 were drastically reduced in
both zip1 pch2-K320A and zip1 pch2-E399Q double mu-
tants (Figure 8E). Like in zip1 pch2Δ, HOP1 overexpres-
sion restored Hop1T318 phosphorylation and Mek1 activa-
tion in both ATPase mutants (Supplementary Figure S5).
Thus, both ATP binding to the Walker A motif and ATP
hydrolysis by the Walker B module are critical for Pch2’s
meiotic checkpoint function.
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Figure 8. The ATPase activity of Pch2 is required for its checkpoint function. (A) Schematic representation of the Pch2 protein indicating the AAA+
domain, the conserved Walker A and Walker B motifs, and the mutations introduced at both sites. (B) Western blot analysis of Pch2, Pch2-K320A or Pch2-
E399Q production (detected with anti-HA antibodies) during meiosis. (C) Dityrosine fluorescence assay. (D) Time course of meiotic nuclear divisions; the
percentage of cells containing two or more nuclei is represented. (E) Western blot analysis of Hop1T318 phosphorylation and Mek1 activation. PGK was
used as a loading control. Strains are: DP1151 (wild type), DP1164 (pch2Δ), DP1163 (pch2-K320A), DP1287 (pch2-E399Q), DP1152 (zip1), DP1161 (zip1
pch2Δ), DP1162 (zip1 pch2-K320A) and DP1288 (zip1 pch2-E399Q).
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Table 1. Sporulation and spore viability

Genotype Sporulation frequency (%) Spore Viability (%)

Wild type 66.8 95.3
pch2Δ 73.9 90.7
pch2-K320A 64.6 96.5
pch2-E399Q 80.3 93.0
zip1 2.0 nd
zip1 pch2Δ 83.3 35.2
zip1 pch2-K320A 77.3 46.5
zip1 pch2-E399Q 80.3 31.2
Wild type + OE-HOP1 65.3 92.0
pch2Δ + OE-HOP1 20,3 94.4

Sporulation frequency and spore viability was determined as explained in Materials and Methods. nd, not determined.
OE-: overexpression.

ATP binding to Pch2 is required for its localization and com-
plex stability

We also analyzed the localization of wild-type Pch2 and the
ATPase-dead versions on pachytene chromosome spreads.
As previously described, the wild-type Pch2 protein showed
a conspicuous accumulation in a particular chromosomal
region lacking Hop1 that corresponds to the rDNA array
(18) (Figure 9Aa, Ad). In addition, faint foci outside the
rDNA can be found on wild-type chromosomes display-
ing an exclusive localization with Hop1 (18,22) (Supple-
mentary Figure S6, white arrows). Surprisingly, despite be-
ing present at normal levels in whole cell extracts (Figure
8B), the Walker A-deficient Pch2-K320A protein was not
detectable at any location on meiotic chromosomes of ei-
ther wild-type or zip1 spread nuclei (Figure 9Ab and Ae).
In contrast, the Pch2-E399Q protein showed normal rDNA
localization (Figure 9Ac and Af) even though it is catalyt-
ically inactive (63) and lacks checkpoint function (Figure
8). Remarkably, like in pch2Δ (Figure 4Ab), the Hop1 pro-
tein was also more abundant on chromosomes and dis-
played a linear instead of a dotty pattern in both pch2-
K320A and pch2-E399Q single mutants (Figure 9Ab and
Ac). On the contrary, but also similar to zip1 pch2Δ (Figure
4Ad), Hop1 localization was disrupted and discontinuous
in zip1 pch2-K320A and zip1 pch2-E399Q double mutants
(Figure 9Ae and Af). In addition, the characteristic exclu-
sion of Hop1 from the rDNA region (18,55) was lost in the
ATPase-deficient mutants (Figure 9A; arrows); in fact, the
Pch2-E399Q protein extensively colocalized with Hop1 at
the rDNA (Figure 9Ac and Af). Moreover, in contrast to the
wild type, chromosomal foci of Pch2-E399Q also colocal-
ized with Hop1 (Supplementary Figure S6, yellow arrows).

Since the Pch2-K320A version was not associated to the
meiotic chromatin, we next studied the subcellular local-
ization of Pch2 and Pch2-K320A by immunofluorescence
in whole meiotic zip1 cells. The wild-type Pch2 was promi-
nently detected in a discrete lateral nuclear region devoid
of Hop1, presumably the nucleolus (Figure 9B, arrow). On
the other hand, Pch2-K320A did not accumulate in the nu-
cleus and was present rather evenly dispersed throughout
the cell (Figure 9B). Interestingly, total cellular levels of
Hop1 were higher in the zip1 pch2-K320A mutant (Figure
9B), although the protein was not massively incorporated
onto the chromosome axes (Figure 9Ae).

Mutation of this conserved lysine in the Walker A mo-
tif of AAA+ family members commonly abolishes ATP
binding and therefore ATPase activity in vitro, as has been
demonstrated for Pch2 (63) but, in addition, it often leads
to dissociation of the hexameric complex into monomers, as
has been described for the HslU and SV40 LTag AAA+ AT-
Pases (65). Therefore, we analyzed whether the pch2-K320A
mutation compromises the formation of the Pch2 hexam-
eric complex in vivo. We generated wild-type and pch2-
K320A heterozygous diploid strains in which one copy of
the PCH2 (or pch2-K320A) gene was tagged with the HA
epitope and the other copy with the Myc epitope (Figure
10). In the wild type (PCH2-HA/PCH2-Myc), the anti-HA
antibody immunoprecipitated both Pch2-HA and Pch2-
Myc, consistent with the formation of a stable complex. In
contrast, the anti-HA antibody failed to immunoprecipi-
tate the Myc-tagged subunits in the pch2-K320A-HA/pch2-
K320A-Myc strain (Figure 10A), suggesting that ATP bind-
ing is required for the integrity or stability of the Pch2 hex-
americ ring in vivo (Figure 10B).

In summary, the ATPase activity of Pch2 is absolutely
required for the checkpoint response to zip1 meiotic de-
fects and orchestrates proper Hop1 subcellular distribution,
chromosomal localization and phosphorylation. ATP bind-
ing to the Walker A motif of Pch2, but not ATP hydrolysis,
is essential for its nuclear accumulation and association to
the meiotic chromosomes.

DISCUSSION

Suppression of pch2 checkpoint defect by Hop1 overproduc-
tion

Previous studies have reported that the Pch2 protein is an
important player in the meiotic checkpoint response trig-
gered by the absence of Zip1, a major structural compo-
nent of the central region of the synaptonemal complex.
This work provides new insights into the role of Pch2 in
this process; we show that the critical function of Pch2
in the zip1-induced checkpoint is to promote Mec1/Tel1-
dependent Hop1 phosphorylation at T318 and, therefore,
the ensuing Mek1 full activation leading to the meiotic cell
cycle block. We also show here that the ATPase activity of
Pch2 is essential for this checkpoint function.

We report the isolation of HOP1 in a genetic screen
for high-copy suppressors of the pch2 checkpoint defect.
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Figure 9. Localization of ATPase-deficient versions of Pch2. (A) Immunofluorescence of meiotic chromosomes stained with anti-HA or anti-MYC an-
tibodies to detect Pch2, Pch2-K320A or Pch2-E399Q (red), anti-Hop1 antibodies (green) and DAPI (blue). Strains are: DP1243 (wild type), DP1193
(pch2-K320A), DP1262 (pch2-E399Q), DP1244 (zip1), DP1192 (zip1 pch2-K320A) and DP1263 (zip1 pch2-E399Q). (B) Immunofluorescence of whole mei-
otic cells stained with anti-HA antibodies (to detect Pch2 or Pch2-K320A; red), anti-Hop1 antibodies (green) and DAPI (blue). The contour of the cells
is outlined in the rightmost panels. Representative cells 24 h after meiotic induction in zip1 ndt80 background are shown. The arrows point to the rDNA
region, which is distinguishable by the accumulation of Pch2 and the absence of Hop1. This region is not recognizable in the pch2-K320A mutant due to
the mislocalization of Pch2-K320A and Hop1. Strains are: DP1190 (wild type) and DP1192 (pch2-K320A).
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Figure 10. Mutation of the Pch2 ATP-binding site impairs the stability
of the hexameric complex. (A) Whole cell extracts (WCE) prepared af-
ter 16 h in meiosis were immunoprecipitated with anti-HA antibodies.
WCE and immunoprecipitates (IP) were analyzed by Western blot with
both anti-HA and anti-Myc antibodies, as indicated. Strains are: DP1325
(PCH2-HA/PCH2-Myc; lane 1), DP1329 (PCH2/PCH2-Myc; lane 2) and
DP1337 (pch2-K320A-HA/pch2-K320A-Myc; lane 3). To discard a prob-
lem with detection levels, in lane 2 (HA-untagged control) and lane 3, three
more times of IP compared to lane 1 were loaded. (B) Schematic interpre-
tation of the result described in (A). K and A represent a lysine and an
alanine, respectively, at position 320 of Pch2.

Monitoring various cytological and molecular markers, we
demonstrate that high levels of Hop1 restore checkpoint
function in a zip1 pch2 mutant restraining meiotic cell cy-
cle progression. This finding was unanticipated, since it has
been well established that Pch2 negatively regulates Hop1
abundance (at least on synapsed chromosomes) (18,21,22).
Since Hop1 chromosomal levels are higher in the pch2 mu-
tant it was unexpected that additional amounts of Hop1
provided by an overexpression plasmid could suppress the
phenotype resulting from the lack of Pch2. Nevertheless, the
Hop1 remodeling function reported for Pch2 has been only
analyzed in the context of synapsed chromosomes, where
Pch2 determines an alternating pattern of Hop1 abundance
(21) (Figure 11). We show here in the context of unsy-
napsed chromosomes that, although global cellular levels
of Hop1 are higher in zip1 pch2 compared with zip1, the
extensive incorporation of Hop1 onto the lateral elements
of zip1 chromosomes is not further increased when PCH2
is deleted. However, the rDNA region, normally devoid of
Hop1, is decorated by the Hop1 protein in both pch2 and
zip1 pch2 mutants, consistent with the nucleolar localiza-
tion of Pch2 in both wild type and zip1 nuclei. Notably, al-
though Pch2 and Hop1 display largely exclusive localiza-
tion patterns on wild-type chromosomes, we show that the
catalytically-inactive Pch2-E399Q protein colocalizes with
Hop1 both at chromosomal foci and the rDNA confirming
that the ATPase activity of Pch2 is required for displacing
Hop1 from the meiotic chromatin in vivo like it does in vitro
(63).

Regulation of Hop1 phosphorylation

Phosphorylation of Hop1 at T318 by the Mec1/Tel1 check-
point kinases is a requisite for Mek1 autophosphoryla-
tion and, therefore, for checkpoint activity. We show here
that zip1-induced Hop1-T318 phosphorylation is drasti-
cally reduced in the absence of Pch2 or in ATPase-dead
pch2 mutants. This reduction is manifested both globally us-
ing western blot analysis of whole cell extracts and locally
on chromosome spreads, indicating a general requirement
for Pch2 to maintain high levels of Hop1-T318 phospho-
rylation when synapsis defects occur. The fact that over-
expression of wild-type HOP1, but not that of a hop1-
T318A mutant, restores the checkpoint in zip1 pch2 reveals
Hop1-T318 phosphorylation as the relevant target of Pch2’s
checkpoint function. Notably, although HOP1 overexpres-
sion in the wild type has only minimal effects, it reduces
sporulation efficiency in the pch2 single mutant (Table 1),
suggesting that Pch2 activity is required to maintain the
proper balance of Hop1 abundance and phosphorylation
also in the presence of synapsed chromosomes. We also note
that Zip1 may contribute to the accumulation of phospho-
Hop1T318 in pch2 mutant chromosomes.

We show that meiotic defects persist in zip1 pch2; thus,
in principle, two possibilities can be envisaged to explain
the regulation of Hop1-T318 phosphorylation by the Pch2
ATPase: Pch2 might favor the action of the Mec1/Tel1 ki-
nases on Hop1-T318 or, alternatively, may inhibit phospho-
Hop1-T318 phosphatase(s). In line with the first option,
Pch2 (together with Xrs2) promotes Tel1-dependent Hop1
phosphorylation in response to unresected DSBs in a
rad50S mutant (29). However, Tel1 is not required for the
zip1-induced synapsis checkpoint (29) pointing to a Tel1-
independent function for Pch2 in this particular scenario.
We also show here that the absence of Pch2 does not al-
ter the localization of the Mec1-Ddc2 complex suggesting
that Pch2 is not required for global Mec1 activity. Never-
theless, a local requirement for Pch2 in facilitating the access
of Mec1 to the Hop1-T318 substrate on chromosome axes
cannot be ruled out. In this scenario, Pch2’s ATPase activity
could be required to induce some conformational change in
the vicinity of Hop1 enabling its phosphorylation at T318
by Mec1. The interaction of Red1 with SUMO chains pro-
motes Hop1-T318 phosphorylation (66). It is possible that
Pch2 differentially modulates this interaction in response
to SC defects. In line with this possibility, a role for Pch2
in orchestrating the interdependence between Hop1 and
Red1 for Hop1 phosphorylation has been proposed (67).
Nevertheless, these studies have not been performed un-
der checkpoint-inducing conditions (i.e. zip1 mutant) where
Pch2 may have different and/or additional functions (see
below).

On the other hand, if Pch2 negatively regulates the phos-
phatase(s) involved in removing the phosphorylation of
Hop1-T318, the lack of this phosphatase should reestab-
lish the meiotic block in a zip1 pch2 mutant. It has been
proposed that PP4 is the main phosphatase reversing Hop1-
T318 phosphorylation (7); therefore, we investigated the im-
pact of PP4 in the response to zip1 defects. In the BR1919
genetic background used in this study, the zip1 mutant
shows a checkpoint-induced meiotic block in prophase, but
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Figure 11. A model for Pch2 checkpoint function. (A) In unperturbed wild-type meiosis, nucleolar Pch2 excludes Hop1 from the rDNA preventing re-
combination at this chromosome XII array. In turn, chromosomal Pch2 dictates Hop1 discontinuous axis distribution sustaining proper synapsis and
recombination. In the pch2 single mutant, Hop1 localizes to the nucleolar region and unwanted rDNA recombination occurs. Hop1 is also more abundant
on chromosome axes disturbing normal recombination events that slightly increase Hop1-T318 phosphorylation. Nevertheless, most recombination de-
fects of the pch2 mutant are only evident when DSBs are limiting (28,56). (B) In the synapsis-deficient zip1 mutant, Pch2 is absent from the chromosomes
and concentrated in the rDNA. This configuration supports continuous distribution of Hop1 along unsynapsed axes and high levels of Hop1-T318 phos-
phorylation relaying the checkpoint signal to Mek1 activation. When PCH2 is deleted (or the ATPase inactivated), Hop1 loading and phosphorylation is
impaired leading to inoperative checkpoint. (C) Despite the weakened Hop1/Mek1 activation, HOP1 overexpression in zip1 pch2 provides enough protein
to restore high levels of global Hop1 phosphorylation and reinstate checkpoint function (see text for additional details).

at later time points at least a fraction of the cells resume cell
cycle progression and complete the meiotic divisions. At the
molecular level this meiotic resumption is manifested by an
eventual decrease in Hop1-T318 phosphorylation and re-
duced Mek1 signaling (Figure 6). We found that the zip1
pph3 double mutant displays more persistent Mek1 activa-
tion and a tighter meiotic block arguing that, indeed, PP4
is crucial for deactivation and/or adaptation of the zip1-
induced checkpoint. However, we have observed that the
absence of PP4 function only confers a partial restoration
of Hop1-T318 phosphorylation in zip1 pch2, indicating that
Pch2 does not primarily act on this phosphatase or that PP4
may not be the only phosphatase capable of dephosphory-
lating Hop1-T318. The simplest interpretation of this re-

sult is that the low levels of Hop1-T318 phosphorylation in
zip1 pch2, perhaps resulting from crippled Mec1/Tel1 func-
tion, are increased to some extent when the inhibitory ac-
tion of PP4 is removed. Regardless of the identity of the
direct target of Pch2, these observations confirm that the
crucial role of Pch2 in the zip1 checkpoint is the fine regu-
lation of Hop1-T318 phosphorylation status. In fact, these
experiments reveal that manipulation of Hop1 phosphory-
lation in zip1 pch2 by other means, such as deleting PPH3,
but without altering HOP1 expression levels also has an im-
pact on the checkpoint.
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Relevance of the ATPase activity for Pch2 checkpoint func-
tion

Recent in vitro analyses of the S. cerevisiae Pch2 protein
have elegantly demonstrated that Pch2 is indeed an AAA+
ATPase that assembles into hexameric rings in the presence
of nucleotides (63). That study also assessed the in vivo mei-
otic impact of mutations in the ATPase domain of Pch2 by
determining the decrease in spore viability resulting from
combining a csm4 mutant with the loss of Pch2 function.
However, since Csm4 is involved in chromosome movement
during prophase driven by telomere attachment to the nu-
clear envelope (68–70) and there are multiple meiotic pro-
cesses influenced by Pch2, the physiological basis of this
synthetic spore viability defect with csm4 is not obvious.
Therefore, we analyzed the contribution of the ATPase ac-
tivity to the well-established Pch2 role in the zip1-induced
checkpoint. In contrast to the intermediate phenotype re-
ported for the pch2-K320A mutant based on its combina-
tion with csm4 (63), we show here that mutants defective
in either ATP binding site (pch2-K320A) or ATP hydroly-
sis (pch2-E399Q) phenocopy the pch2 deletion mutant for
the checkpoint defect indicating that both activities are ab-
solutely required for Pch2 checkpoint function. However,
we observe a striking difference between both catalytically-
inactive proteins in terms of localization on meiotic chro-
mosome spreads. Whereas Pch2-E399Q displays the nor-
mal accumulation at the rDNA region on chromosome XII
and some fainter interstitial chromosomal foci, the Pch2-
K320A version completely fails to bind to the chromo-
somes. We found that the Pch2-K320A mutation prevent-
ing ATP binding compromises the integrity of the hexam-
eric ring; this observation could explain the defect in local-
ization, which may require an intact complex for its cor-
rect targeting. On the other hand, Pch2-E399Q does local-
ize like the wild-type Pch2 protein; however, in contrast to
Pch2, which does not overlap with Hop1 staining, the Pch2-
E399Q version displays extensive colocalization with Hop1
both at chromosomal foci (in otherwise wild-type strains)
and the rDNA, where Hop1 fails to be excluded in this mu-
tant. These observations are consistent with the notion that
Pch2/Trip13 utilizes the forces generated from ATP hydrol-
ysis to displace or reorganize HORMA domain proteins,
such as Hop1/HORMAD1 in meiosis or MAD2 in the SAC
response (71). The effect of mammalian Trip13 on the con-
formational change of MAD2 is exerted with the help of the
p31 adaptor (35). To determine whether yeast Pch2 requires
additional cofactors or adaptors to disassemble Hop1 from
meiotic chromosomes awaits further investigation. Never-
theless, in vitro assays show that purified Pch2 can directly
alter Hop1 DNA binding properties (63).

A dual role for Pch2 on Hop1 regulation?

The Pch2 protein is predominantly found in the unsynapsed
region of chromosome XII, which lacks Zip1 and Hop1,
preventing recombination within the rDNA array (18,26).
In addition, Pch2 is also present in SC-associated chromo-
somal foci promoting an alternating pattern of Zip1 and
Hop1 during SC development (21). Curiously, whereas in
yeast SK1 strains Pch2 chromosomal foci are conspicuous

(22), in the BR strains used in this work, most Pch2 is de-
tected in the nucleolar area with SC-associated foci showing
a much weaker staining ((18); Figure 9 and Supplementary
Figure S6). Importantly, in the synapsis-deficient zip1 mu-
tant, the chromosomal Pch2 protein is no longer detectable
and it is exclusively observed in the rDNA ((18); Figure 9).
These observations suggest that two populations of Pch2
with different requirements for chromosome binding may
exist: the nucleolar Pch2 pool, which does not require Zip1
for being targeted to the unsynapsed rDNA array and the
interstitial chromosomal Pch2 protein, which is likely de-
pendent on Zip1 assembly for its localization. Both pools
of Pch2 possess the ability to displace Hop1 from the chro-
mosome axes because Hop1 is more abundant along the SC
and accumulates in the rDNA region in pch2 mutants lack-
ing ATPase activity. However, since Pch2 function is criti-
cally required for the zip1-induced meiotic arrest, the fact
that in the zip1 mutant Pch2 is only present at the rDNA
location implies that the nucleolar Pch2 protein is responsi-
ble for the checkpoint function by sustaining high levels of
Hop1-T318 phosphorylation in response to synapsis defects
(Figure 11).

How can Pch2 control Hop1 phosphorylation from the
nucleolus where, precisely, Hop1 is excluded? A role for nu-
cleolar proteins in the control of cell cycle events is a well-
documented phenomenon (72). Perhaps, the most paradig-
matic example is the regulation of mitotic exit in budding
yeast by the FEAR/MEN pathways orchestrating the re-
lease of the Cdc14 phosphatase from the nucleolus during
anaphase (73–75). In a similar scenario it is possible that,
when synapsis is defective, Pch2 traps in the nucleolus a cru-
cial regulator required for exit from pachytene. Upon synap-
sis completion this factor would be released promoting en-
try into meiosis I. The PP4 phosphatase was a good candi-
date to meet these requirements because it promotes Hop1-
T318 dephosphorylation and, hence, checkpoint inactiva-
tion, but our results indicate that Pch2 does not primarily
acts via PP4 regulation (see above). In addition, during mei-
otic prophase PP4 appears to be localized at centromeres,
not the nucleolus (76). We have also tested another phos-
phatase, PP1, which displays nucleolar localization at least
during some stages of the cell cycle (77). In contrast to a pre-
vious study reporting a role for Glc7 -the catalytic subunit
of PP1- in reversing Mek1 activation (38), we have found
a minimal, if any, effect of either a glc7-T152K allele or a
meiotic-depletion glc7-md mutant in Hop1 or Mek1 phos-
phorylation, and no evidence of functional relationship be-
tween Glc7 and Pch2 (AL and PSS, unpublished results).
Alternatively, nucleolar Pch2 could control the localization
of a Mec1 activator in response to synapsis defects. Since the
N-terminal domain of Xrs2 physically interacts with Pch2
(29), it will be interesting to further investigate how this in-
teraction impinges on Hop1 regulation in response to SC
defects.

In sum, our results are consistent with a differential reg-
ulation of Hop1 by chromosomal and nucleolar Pch2 in a
wild-type (checkpoint OFF) versus a zip1 (checkpoint ON)
situation (Figure 11). The identification of Pch2 co-factors
that may modulate its action on Hop1 depending on the
specific chromosomal context or synapsis status will help
to elucidate the basis of this differential effect.
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Table S1. Saccharomyces cerevisiae strains 
 
Strain  Genotype* Source 

BR2495 MATa/MATα  leu2-27/leu2-3,112  his4-280/his4-260  arg4-8/ARG4   
thr1-1/thr1-4 trp1-1/trp1-289  cyh10/CYH10  ura3-1  ade2-1 

Roeder Lab 

MY63 BR2495  zip1::LEU2 Roeder Lab 

S3483 BR2495  ndt80::LEU2 Roeder Lab 

S4278 BR2495  zip1::LEU2  ddc1::ADE2 Roeder Lab 

S4286 BR2495  zip1::LYS2  rad17::LEU2  lys2 Roeder Lab 

S4295 BR2495  zip1::LEU2  rad24::TRP1 Roeder Lab 

DP174 BR2495  zip1::LEU2  dot1::TRP1 PSS Lab 

DP221 BR2495  zip1::LEU2  pch2Δ90-564-lacZ::TRP1 This work 

DP223 BR2495  zip1::LEU2  pch2::TRP1 PSS Lab 

DP228 BR2495  zip1::LEU2  pch2Δ90-564-lacZ::TRP1/PCH2 This work 

DP267 BR2495  zip1::LYS2  sir2::LEU2  lys2 PSS Lab 

BR1919-2N MATa/MATα  leu2-3,112  his4-260  thr1-4  trp1-289  ura3-1  ade2-1 Roeder Lab 

DP421 BR1919-2N  lys2ΔNheI PSS Lab 

DP422 DP421  zip1::LYS2 PSS Lab 

DP424 DP421  ndt80::LEU2 PSS Lab 

DP428 DP421  zip1::LYS2  ndt80::LEU2 PSS Lab 

DP448 DP421  DDC2-GFP::TRP1 PSS Lab 

DP449 DP421  zip1::LYS2  DDC2-GFP::TRP1 PSS Lab 

DP460 DP421  zip1::LYS2  ndt80::LEU2  DDC2-GFP::TRP1 PSS Lab 

DP582 DP421  zip1::LYS2  ndt80::LEU2  MEK1-GFP::kanMX6 PSS Lab 

DP700 DP421  hop1::hphMX4 This work 

DP881 DP421  zip1::LYS2  pch2::TRP1  ndt80::LEU2 This work 

DP1029 DP421  zip1::LYS2  pch2::TRP1 This work 

DP1058 DP421  pch2::TRP1  ndt80::LEU2 This work 

DP1111 DP421  zip1::LYS2  pch2::TRP1  ndt80::LEU2  MEK1-GFP::kanMX6 This work 

DP1151 BR1919-2N  PCH2-3HA This work 

DP1152 BR1919-2N  zip1::LEU2  PCH2-3HA This work 

DP1161 BR1919-2N  zip1::LEU2  pch2::TRP1 This work 
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DP1162 BR1919-2N  zip1::LEU2  pch2-3HA-K320A This work 

DP1163 BR1919-2N  pch2-3HA-K320A This work 

DP1164 BR1919-2N  pch2::TRP1 This work 

DP1168 BR1919-2N  rad54::LEU2 This work 

DP1169 BR1919-2N  zip1::URA3  rad54::LEU2 This work 

DP1171 BR1919-2N  zip1::URA3  pch2::TRP1  rad54::LEU2 This work 

DP1190 BR1919-2N  zip1::LEU2  ndt80::kanMX3  PCH2-3HA This work 

DP1192 BR1919-2N  zip1::LEU2  ndt80::kanMX3  pch2-3HA-K320A  lys2/LYS2 This work 

DP1193 BR1919-2N  ndt80::kanMX3  pch2-3HA-K320A  lys2/LYS2 This work 

DP1243 BR1919-2N  PCH2-3MYC This work 

DP1244 BR1919-2N  zip1::LEU2  PCH2-3MYC This work 

DP1245 DP421  zip1::LYS2  pch2::TRP1  pph3::kanMX6 This work 

DP1247 DP421  pph3::kanMX6 This work 

DP1249 DP421  zip1::LYS2  pph3::kanMX6 This work 

DP1251 DP421  zip1::LYS2  pch2::URA3  ndt80::LEU2  DDC2-GFP::TRP1 This work 

DP1262 BR1919-2N  pch2-3MYC-E399Q This work 

DP1263 BR1919-2N  zip1::LEU2  pch2-3MYC-E399Q This work 

DP1287 BR1919-2N  pch2-3HA-E399Q This work 

DP1288 BR1919-2N  zip1::LEU2  pch2-3HA-E399Q This work 

DP1302 BR1919-2N  zip1::LEU2  pch2-3HA-E399Q  ndt80::kanMX3 This work 

DP1325 BR1919-2N  PCH2-3HA / PCH2-3MYC This work 

DP1329 BR1919-2N  PCH2 / PCH2-3MYC This work 

DP1337 BR1919-2N  pch2-3HA-K320A / pch2-3MYC-K320A This work 

DP1378 DP421  zip1::LYS2  rad54::LEU2  DDC2-GFP::TRP1 This work 

DP1379 DP421  zip1::LYS2  pch2::URA3  DDC2-GFP::TRP1 This work 

DP1381 DP421  zip1::LYS2  rad51::natMX4  DDC2-GFP::TRP1 This work 

DP1382 DP421  zip1::LYS2  rad51::natMX4  pch2::URA3  DDC2-GFP::TRP1 This work 

DP1384 BR1919-2N  zip3::URA3 This work 

DP1386 BR1919-2N  zip3::URA3  pch2::TRP1 This work 

DP1387 DP421  zip1::LYS2  rad54::LEU2  pch2::URA3  DDC2-GFP::TRP1 This work 
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DP1388 BR1919-2N  ecm11::kanMX6 This work 

DP1390 BR1919-2N  ecm11::kanMX6  pch2::TRP1 This work 

 
* All strains are diploids isogenic to BR2495 or BR1919 and, unless specified, homozygous for 
the indicated markers. DP421 is a lys2 version of the original BR1919-2N. 
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Table S2. Plasmids  
 
Plasmid name Vector Relevant parts Source  

R1566 YCp50 URA3  CEN4  lacZ Roeder Lab 
pSS51 YCp50 URA3  CEN4  pch2-lacZ This work 

pSS67 pUC18 pch2-lacZ::TRP1 This work 

pSS54 YEp352 URA3  2µ  PCH2 This work 

R1692 YEp24 URA3  2µ  HOP1 Hollingsworth Lab 
pSS314 pJET1.2 HOP1 This work 

pSS315 pJET1.2 hop1-T318A This work 

pSS316 pRS426 URA3  2µ  HOP1 This work 
pSS317 pRS426 URA3  2µ  hop1-T318A This work 
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Table S3. Primary antibodies 
 
Antibody Host and type Application* 

(Dilution) 
Source / Reference 

Mek1 Rabbit polyclonal WB (1:2000) 
 

(1) 

Cdc5 Goat polyclonal WB (1:1000) Santa Cruz Biotechnology 
sc-6733 

Hop1  Rabbit polyclonal WB (1:2000) 
IF (1:400) 

(2) 

Hop1-T318-P Rabbit polyclonal WB (1:1000) 
IF (1:150) 

Jesús Carballo (3) 

H3-T11-P Rabbit polyclonal WB (1:2000) 
 

Abcam 
ab5168 

Rad51  Rabbit polyclonal IF (1:300) Santa Cruz Biotechnology 
sc-33626 

GFP Rabbit polyclonal IF (1:400) Molecular Probes 
A-6455 

Phospho-(S/T)Q Rabbit polyclonal IF (1:400) Cell Signaling Technology 
#2851 

HA (12CA5) Mouse monoclonal WB (1:2000) 
IF (1:200) 

Roche 
11 666 606 001 

Myc (4A6) Mouse monoclonal IF (1:200) 
WB (1:1000) 
 

Millipore 
05-724 

GFP (JL-8) Mouse monoclonal IF (1:200) Clontech 
632381 

PGK (22C5) Mouse monoclonal WB (1:10000) 
 

Molecular Probes 
A-6457 

Tubulin (TAT1) Mouse monoclonal IF (1:400) (4) 

*WB, western blot; IF, immunofluorescence 
 
1. Ontoso, D., Acosta, I., van Leeuwen, F., Freire, R. and San-Segundo, P.A. (2013) Dot1-

dependent histone H3K79 methylation promotes activation of the Mek1 meiotic checkpoint 
effector kinase by regulating the Hop1 adaptor. PLoS genetics, 9, e1003262. 

2. Smith, A.V. and Roeder, G.S. (1997) The yeast Red1 protein localizes to the cores of meiotic 
chromosomes. J Cell Biol, 136, 957-967. 

3. Carballo, J.A., Johnson, A.L., Sedgwick, S.G. and Cha, R.S. (2008) Phosphorylation of the axial 
element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell, 132, 
758-770. 

4. Refolio, E., Cavero, S., Marcon, E., Freire, R. and San-Segundo, P.A. (2011) The Ddc2/ATRIP 
checkpoint protein monitors meiotic recombination intermediates J. Cell Sci., 124, 2488-2500. 
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 ARTÍCULO 1 

CONCLUSIONES 

1. La sobre-producción de la proteína adaptadora del checkpoint Hop1 suprime el 

checkpoint defectivo del mutante zip1Δ pch2Δ, restaurando la fosforilación de Mek1, su 

localización en los cromosomas y el bloqueo de la progresión meiótica.  

2. El papel principal de Pch2 en el checkpoint meiótico inducido por fallos en sinapsis es 

promover la fosforilación de Hop1 en la T318, ya que los niveles de fosforilación de Hop1 así 

como su acumulación en los ejes de los cromosomas se ve reducida al delecionar PCH2. La 

sobre-expresión ectópica de HOP1, pero no del fosfomutante hop1-T318A, restablece la actividad 

del checkpoint en zip1Δ pch2Δ. 

3. Pch2 promueve la fosforilación de Hop1 en la T318, al menos en parte, modulando la 

acción de la fosfatasa PP4, puesto que el triple mutante zip1Δ pch2Δ pph3Δ restaura parcialmente 

la funcionalidad del checkpoint.  

4. La regulación de la actividad del módulo Hop1-Mek1 por Pch2 durante la respuesta del 

checkpoint impacta directamente en el bloqueo del ciclo celular meiótico y no sólo en las rutas de 

recombinación. 

5.  La actividad ATPasa de Pch2 es necesaria para su función en el checkpoint. Además, el 

motivo de unión del ATP de Pch2 es esencial para el ensamblaje estable del complejo 

hexamérico y la correcta localización de la proteína. 
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 ARTÍCULO 1 

CONCLUSIONS 

1. Overproduction of the Hop1 checkpoint adaptor suppresses the checkpoint defect of the 

zip1Δ pch2Δ mutant, restoring Mek1 phosphorylation, its association to meiotic chromosomes 

and meiotic arrest. 

2. The critical role of Pch2 in the synapsis checkpoint is to promote phosphorylation of the 

meiotic checkpoint adaptor Hop1 at T318; Hop1 phosphorylation and accumulation on 

chromosomes axes is reduced when PCH2 is deleted. HOP1 overexpression, but not that of the 

hop1-T318A phosphomutant, reinstates checkpoint function in zip1Δ pch2Δ. 

3. Pch2 sustains Hop1 phosphorylation at T318, at least in part, by modulating PP4 

phosphatase action, given that checkpoint function is partially restored in the zip1Δ pch2Δ pph3Δ 

triple mutant. 

4. Pch2 regulation of the Hop1-Mek1 checkpoint signaling module directly impacts on 

meiotic cell cycle control and not only on recombination pathway choice. 

5. The ATPase activity of Pch2 is required for its checkpoint function. Moreover, the ATP 

binding motif is necessary for stable assembly of the hexameric complex and proper Pch2 

localization. 
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 ARTÍCULO 2 

ARTÍCULO 2: “Impact of histone H4K16 acetylation on the meiotic 

recombination checkpoint in Saccharomyces cerevisiae” 

RESUMEN 

En las células meióticas, el checkpoint de recombinación meiótica o de paquitene es un 

mecanismo de vigilancia que monitoriza procesos cruciales, como la sinapsis y la recombinación 

de los cromosomas, que son esenciales para la distribución correcta de los cromosomas entre los 

productos meióticos. Fallos en estos procesos dan lugar a la formación de gametos aneuploides. 

La recombinación meiótica ocurre en el contexto de la cromatina, de hecho, la histona 

metiltransferasa Dot1 y la histona deacetilasa Sir2 son reguladores bien conocidos del checkpoint 

de paquitene de Saccharomyces cerevisiae. Aquí describimos que la acetilación de la histona H4 

en la lisina 16 mediada por Sas2 (H4K16ac), una de las dianas de Sir2, modula la actividad del 

checkpoint meiótico en respuesta a defectos en el complejo sinaptonémico. En este artículo 

mostramos que, al igual que el mutante sir2Δ, la mutación H4-K16Q que mimetiza la acetilación 

constitutiva de la H4K16, elimina el retraso de la progresión del ciclo celular meiótico impuesto 

por el checkpoint inducido por fallos en sinapsis en el mutante zip1Δ. También demostramos que, 

como en el mutante dot1Δ, la fosforilación del adaptador del checkpoint Hop1 en la treonina 318 

y la consiguiente activación de Mek1 están afectadas en los mutantes de H4-K16. Sin embargo, al 

contrario que los mutantes sir2Δ y dot1Δ, las mutaciones H4-K16R y H4-K16Q solo tienen un 

pequeño efecto en la activación del checkpoint y en la localización nucleolar de Pch2 en células 

bloqueadas en profase (ndt80Δ). También aportamos evidencias de una interacción entre la 

H3K79me3 dependiente de Dot1 y la H4K16ac, y mostramos que Sir2 excluye la H4K16ac de la 

región del rDNA en cromosomas meióticos. Nuestros resultados desvelan que niveles adecuados 

de H4K16ac regulan este mecanismo de control de calidad meiótico y que Sir2 actúa sobre otras 

dianas adicionales para activar el checkpoint por completo.  
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Research Article 

ABSTRACT  In meiotic cells, the pachytene checkpoint or meiotic recombina-

tion checkpoint is a surveillance mechanism that monitors critical processes, 

such as recombination and chromosome synapsis, which are essential for 

proper distribution of chromosomes to the meiotic progeny. Failures in these 

processes lead to the formation of aneuploid gametes. Meiotic recombination 

occurs in the context of chromatin; in fact, the histone methyltransferase 

Dot1 and the histone deacetylase Sir2 are known regulators of the pachytene 

checkpoint in Saccharomyces cerevisiae. We report here that Sas2-mediated 

acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets, mod-

ulates meiotic checkpoint activity in response to synaptonemal complex de-

fects. We show that, like sir2, the H4-K16Q mutation, mimicking constitutive 

acetylation of H4K16, eliminates the delay in meiotic cell cycle progression 

imposed by the checkpoint in the synapsis-defective zip1 mutant. We also 

demonstrate that, like in dot1, zip1-induced phosphorylation of the Hop1 

checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are 

impaired in H4-K16 mutants. However, in contrast to sir2 and dot1, the H4-

K16R and H4-K16Q mutations have only a minor effect in checkpoint activa-

tion and localization of the nucleolar Pch2 checkpoint factor in ndt80-

prophase-arrested cells. We also provide evidence for a cross-talk between 

Dot1-dependent H3K79 methylation and H4K16ac and show that Sir2 ex-

cludes H4K16ac from the rDNA region on meiotic chromosomes. Our results 

reveal that proper levels of H4K16ac orchestrate this meiotic quality control 

mechanism and that Sir2 impinges on additional targets to fully activate the 

checkpoint. 
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INTRODUCTION 

Meiosis is a specialized type of cell division in which a sin-

gle round of DNA replication is followed by two consecu-

tive rounds of nuclear division (meiosis I and II), allowing 

the generation of haploid gametes from diploid progenitor 

cells [1, 2]. In the first meiotic division the segregation of 

homologous chromosomes (homologs) takes place, where-

as during meiosis II sister chromatids separate one from 

each other. 

Between DNA duplication and the first meiotic division, 

a complex series of events involving homologous chromo-

somes occur during the so-called meiotic prophase; namely, 

genetic recombination initiated by Spo11-induced DNA 

double-strand breaks (DSBs) [3], alignment of parental 

chromosomes (pairing) and tight association of homologs 

(synapsis) in the context of the synaptonemal complex (SC) 

[1, 4]. The SC is a highly conserved meiosis-specific tripar-

tite structure that assembles along the lengths of paired 

homologous chromosomes. It consists of a central region, 

in which the S. cerevisiae Zip1 protein is the major compo-

nent [5, 6], and two lateral elements composed of the 

Hop1 and Red1 proteins. Problems in the recombinational 

repair of meiotic DSBs as well as defects in pairing and syn-

apsis of homologs are situations that trigger the activation 

of a meiosis-specific surveillance mechanism, the so-called 

pachytene checkpoint or meiotic recombination check-
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point, that prevents meiotic nuclear division until those 

crucial processes have been completed [7-9]. In the yeast 

Saccharomyces cerevisiae, the activation of this evolution-

arily-conserved pathway by unrepaired meiotic DSBs relies 

on the same sensor proteins that the canonical DNA dam-

age checkpoint operating in vegetative growing cells, spe-

cifically the Mec1 and Tel1 kinases (the yeast homologs of 

mammalian DNA damage sensor kinases ATR and ATM), 

Rad24 and the 9-1-1 complex [10-14]. In addition, meiosis-

specific proteins, present in the chromosomal axis, such as 

Red1 and Hop1 [15-17], act as adaptors sustaining the acti-

vation and hyperphosphorylation of the meiosis-specific 

downstream effector kinase Mek1 [18-23]. The delay in the 

exit from meiotic prophase in S. cerevisiae is imposed pre-

dominantly by controlling the expression and localization 

of the meiosis-specific transcription factor Ndt80, which in 

turn promotes the activation of the majority of genes re-

quired for late meiotic development, including B-type cy-

clins and the polo-like kinase Cdc5 [18, 24-27], as well as by 

inhibiting the major cyclin-dependent kinase (CDK) Cdc28 

through its Swe1-dependent phosphorylation [28, 29]. 

Budding yeast meiotic mutants such as zip1, defective in SC 

and crossover formation that leads to the accumulation of 

recombination intermediates [5, 30, 31], are invaluable 

genetic tools to activate and study the pachytene check-

point. 

Meiotic recombination and the checkpoint response 

occur in the context of chromatin, which is subject to a 

wide variety of histone post-translational modifications 

(PTMs). These histone PTMs include acetylation, methyla-

tion, phosphorylation or ubiquitylation and exert their 

functions either influencing the overall structure of chro-

matin or regulating the binding of effector molecules. His-

tone PTMs have important roles in transcription, replica-

tion, repair, establishment of euchroma-

tin/heterochromatin and other aspects of eukaryotic 

chromosome dynamics. Various histone PTMs have been 

described to be involved in crucial meiotic processes, such 

as recombination and the pachytene checkpoint [8, 9, 32]. 

In particular, it has been proposed that H3K4 trimethyla-

tion promotes the formation of Spo11-dependent meiotic 

DSBs in S. cerevisiae mediated by the tethering of the Ssp1 

subunit of the Set1 complex to chromosome axes [33-35]. 

Nevertheless, further mechanistic studies are required to 

confirm this model. In addition, previous reports have also 

revealed the requirement of Dot1 and Sir2 for the meiotic 

block triggered by the pachytene checkpoint in zip1 mu-

tants lacking a component of the SC [21, 36, 37]. Dot1 is 

the methyltransferase required for H3K79 methylation 

(H3K79me), whereas Sir2 is a histone deacetylase that es-

tablishes and maintains silencing within yeast heterochro-

matic-like regions at telomeres, ribosomal DNA (rDNA) and 

silenced mating-type loci, and whose preferred histone 

substrates are H3K56ac and H4K16ac [38-42]. However, in 

some cases, the precise meiotic role of those epigenetic 

modifications is not well known yet. 

In this work we have investigated the role of the acety-

lation of lysine 16 in histone H4 (H4K16ac) during meiosis 

and its regulation by Sas2 and Sir2. We demonstrate that 

global acetylation of H4K16 does not change in either un-

perturbed or challenged meiosis and found that proper 

H4K16ac is dispensable during normal meiotic divisions. 

However, it is required for meiotic checkpoint activity, as 

manifested by the effect of H4-K16R and H4-K16Q mutants 

on suppression of the checkpoint-induced meiotic delay of 

zip1. These mutants show a reduction in the activity of the 

Mek1 meiotic effector kinase, which is most probably due 

to impaired Hop1 phosphorylation at threonine 318. Our 

results also indicate that the effect of H4-K16R and H4-

K16Q mutations on the meiotic checkpoint is exerted, at 

least in part, through a cross-talk between H4K16ac and 

H3K79me. We provide cytological evidence showing that 

Pch2 localization is slightly altered in the H4K16ac mutants 

and, finally, we unveil the meiotic chromosomal distribu-

tion of H4K16ac, which is excluded from the rDNA region in 

a Sir2-dependent manner. 

 

RESULTS AND DISCUSSION 

Global levels of H4K16ac do not change in either normal 

or challenged meiosis 

In budding yeast, the lysine 16 of histone H4 (hereafter 

H4K16) is primarily acetylated by Sas2, a member of the 

MYST-type family of histone acetyltransferases (HATs) [43-

47] and secondarily by the essential HAT Esa1 [48, 49]. In 

turn, at least in vitro, H4K16ac is the preferred substrate, 

but not the only one, of the NAD
+
-dependent Sir2 deacety-

lase [40, 44, 50-52]. Importantly, disruption of SIR2 leads to 

H4K16 hyperacetylation exclusively in heterochromatic-like 

regions, such as subtelomeric sequences, the rDNA locus 

and the silenced mating-type loci, but does not affect ge-

nome-wide H4K16ac [53]. In fact, Sir2-dependent deacety-

lation of H4K16ac is a characteristic feature of silenced 

chromatin at those particular genomic domains [54]. Since 

Sir2 has been shown to play a crucial role in the meiotic 

recombination checkpoint [36], we sought to explore the 

possible role of H4K16ac in this process. 

To study the kinetics of H4K16ac accumulation during 

meiosis, we performed meiotic time courses as described 

in Materials and Methods and followed this histone mark 

by immunoblotting with an anti-H4K16ac antibody. A non-

acetylatable H4-K16R mutant was used as a control for 

antibody specificity (Figure 1). In this preliminary approach 

to determine variations of this histone modification, we 

found that global levels of H4K16ac do not significantly 

change upon meiosis induction (compare time 0 with the 

remaining times) or during the whole length of the meiotic 

program (Figure 1, upper panels). Next, we wanted to de-

termine if H4K16ac was affected by the activation of the 

meiotic recombination checkpoint; thus, we analyzed a 

zip1 mutant, which triggers the checkpoint. We found that 

H4K16ac levels were also unaltered during the meiotic 

time courses in the zip1 mutant (Fig. 1, lower panels), indi-

cating that despite the role of Sir2 in the checkpoint, global 

levels of H4K16ac remain fairly constant when synapsis 

defects exist. 
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Previous studies have shown that histone acetylation 

levels, including those of H4K16, dramatically increase dur-

ing the induction of an HO-induced DSB lesion and de-

crease during the subsequent homologous recombination-

al repair, presumably due to the coordinated action of his-

tone modifying enzymes, such as Esa1 and Sir2, that are 

recruited to the lesion [55]. This ability to modify the levels 

of histone acetylation is essential to maintain cell viability 

after exposure to DNA damaging agents or during DNA 

repair by homologous recombination, either because 

changes in histone acetylation are necessary for the re-

cruitment of DNA repair enzymes and/or chromatin re-

modelers, or because they are important in downstream 

signaling. In fact, different H3 and H4 lysines are found 

acetylated upon DNA damage in yeast [56, 57]. Meiosis 

involves the generation and subsequent repair of multiple 

DSBs across the genome and signal transduction in the 

meiotic checkpoint pathway shares many components with 

the mitotic DNA damage checkpoint [8]. However, in this 

study, we show that global levels of H4K16ac do not 

change either with the induction of the meiotic program or 

when meiotic chromosome synapsis defects exist (Figure 1). 

Nevertheless, the precise meiotic errors (incomplete re-

combination, chromosome structural defects or both) trig-

gering the checkpoint in the zip1 mutant remain to be es-

tablished. In addition, in contrast to the situation in mitotic 

cells, meiotic DSB repair occurs in the special context of the 

SC with probably different chromatin modifications re-

quirements. Moreover, in our study we have measured 

global levels of H4K16 acetylation and we cannot rule out 

the possibility that local modifications of H4K16 acetylation 

may occur at particular genomic regions. 

 

H4K16 normal acetylation is required for efficient meiotic 

checkpoint regulation 

To further investigate the role of H4K16ac in meiosis, sev-

eral meiotic events were analyzed in H4-K16R (non-

acetylatable) and H4-K16Q (mimicking constitutive acetyla-

tion) mutants, both in a wild-type (unperturbed meiosis) 

and a zip1 background (triggering meiotic checkpoint acti-

vation). The kinetics of meiotic nuclear divisions was moni-

tored by DAPI staining of nuclei. Dityrosine fluorescence, a 

specific component of mature spores, was used as a semi-

quantitative indicator for sporulation efficiency. Finally, 

spore viability that reflects the fidelity of meiotic chromo-

some segregation and the integrity of the spore genome 

 

FIGURE 1: H4K16 acetylation remains unaltered during both 

normal and perturbed meiosis. Western blot analysis of H4K16 

acetylation throughout meiosis in wild-type (DP421) and zip1 

(DP422) cells. The H4-K16R (DP994) and zip1 H4-K16R (DP995) 

mutant strains were used as controls for antibody specificity. PGK 

was used as a loading control. Asterisks mark a non-specific band. 

 

FIGURE 2: The meiotic recombination checkpoint is impaired in 

H4-K16R and H4-K16Q mutants. (A) Dityrosine fluorescence, as 

an indicator of sporulation, was examined after 3 days of sporula-

tion on plates. (B) Time course of meiotic nuclear divisions; the 

percentage of cells containing two or more nuclei is represented. 

(C) Spore viability, as assessed by asci dissection, is presented. At 

least 144 spores were scored for each strain. Strains used in (A) 

are DP421 (wild type), DP994 (H4-K16R), DP1000 (H4-K16Q), 

DP422 (zip1), DP995 (zip1 H4-K16R) and DP1001 (zip1 H4-K16Q). 

Strains used in (B) and (C) are DP634 (wild type), DP635 (H4-

K16R), DP636 (H4-K16Q), DP639 (zip1), DP640 (zip1 H4-K16R) and 

DP641 (zip1 H4-K16Q). 
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was determined by tetrad dissection. In an otherwise wild-

type background, the H4-K16R and H4-K16Q single mu-

tants showed no or little meiotic defects (Figure 2). The 

progression through meiosis was normal (Figure 2B, S1A) 

and resulted in the formation of mature dityrosine-

containing spores (Figure 2A) with a high viability similar to 

that of the wild type (Figure 2C). These observations sug-

gest that normal regulation of H4K16ac is dispensable in 

unperturbed meiosis.  

As previously described, the zip1 mutant, where the 

pachytene checkpoint is triggered, showed a strong delay 

in meiotic progression and the formation of mature spores 

was dramatically reduced (Figure 2A, 2B, S1A). Notably, the 

H4-K16R and H4-K16Q mutations were able to partially 

(K16R) or completely (K16Q) alleviate the checkpoint-

dependent meiotic block: the zip1 H4-K16Q and zip1 H4-

K16R double mutants progressed faster into meiosis (Fig-

ure 2B, S1A) and formed dityrosine-containing spores in a 

higher proportion than zip1 cells (Figure 2A); however, 

spore viability remained low (Figure 2C) indicating that 

although zip1 H4-K16Q and zip1 H4-K16R cells were able to 

progress into meiosis and to form mature spores, the prob-

lems caused by the lack of Zip1 persist. Thus, the status of 

H4K16ac modulates meiotic progression in the zip1 mutant. 

Interestingly, the H4-K16Q mutant mimicking constitutive 

acetylation shows a stronger checkpoint defect, similar to 

the lack of the Sir2 deacetylase [36] (see below). 

 

H4-K16R and H4-K16Q mutants are defective in the 

maintenance, but not the establishment, of checkpoint-

induced Mek1 activation 

To investigate the meiotic checkpoint role of H4K16ac 

more directly at a molecular level, we followed the status 

of Mek1 activation throughout meiotic time courses in the 

zip1 H4-K16R and zip1 H4-K16Q mutants using high-

resolution Phos-tag gels. The appearance of hyper-

phosphorylated Mek1 isoforms is indicative of meiotic 

checkpoint activation [21]. The threonine 11 of histone 3 

has been identified as one of Mek1 downstream targets 

[58]. Although the role of H3T11ph in meiosis, if any, is still 

unclear, it is a useful additional reporter for Mek1 kinase 

activity (Figure 3) [59]. In wild-type cells, Mek1 levels rose 

transiently during meiotic prophase (peak at 20 hours) and 

then progressively declined as meiosis I and II and sporula-

tion took place. Phosphorylated forms of Mek1 and 

H3T11ph remained at very low levels during the whole 

meiotic time course (Figure 3, upper panel). In contrast, 

robust Mek1 activation, as shown by the appearance of 

additional slow migrating and stronger phosphorylated 

Mek1 forms, and marked H3T11ph could be detected in 

the zip1 mutant (Figure 3, second panel), consistent with 

its pronounced meiotic delay triggered by the checkpoint 

(Figure 2B). We next examined the zip1 H4-K16R and zip1 

H4-K16Q double mutants. Remarkably, according with the 

complete suppression of the meiotic delay (Figure 2B), 

Mek1 activation was severely impaired in the zip1 H4-K16Q 

double mutant, as manifested by the absence of the upper 

Mek1 phosphorylated forms and low levels of H3T11ph 

(Figure 3, third panel). The zip1 H4-K16R, which shows only 

 

 

FIGURE 3: H4K16 acetylation is necessary for normal Mek1 and 

Hop1 phosphorylation. Western blot analysis of Mek1 and Hop1 

activation in wild type (DP421), zip1 (DP422), zip1 H4-K16Q 

(DP1001) and zip1 H4-K16R (DP995) strains throughout meiosis. 

Black arrows point the Mec1/Tel1-dependent phosphorylated 

form of Mek1, whereas white arrows mark the bands resulting 

from Mek1 autophosphorylation [21]. Asterisks mark non-specific 

bands. H3T11 phosphorylation and Cdc5 inhibition were used as 

additional molecular markers for checkpoint activation. PGK was 

used as a loading control. 
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a partial checkpoint defect (Figure 2B), showed a milder 

reduction in both the levels and the duration of Mek1 acti-

vation and H3T11ph (Figure 3, bottom panels). 

Mec1/Tel1-dependent phosphorylation of Hop1 at de-

fined S/T-Q sites is required for Mek1 hyperphosphoryla-

tion and activation, as well as for meiotic checkpoint activi-

ty [15]. Among the several S/T-Q sites targeted by 

Mec1/Tel1 in Hop1, phosphorylation of threonine 318 to-

gether with phosphorylation of serine 298 are crucial 

events in the meiotic checkpoint network to coordinate 

recombination and meiotic progression [60]. We examined 

the levels of Hop1-T318 phosphorylation throughout the 

meiotic time courses using a phospho-specific antibody as 

an upstream marker for zip1-induced checkpoint activation 

[59]. During normal meiosis, only a very weak and transient 

Hop1-T318ph signal could be detected during the meiotic 

prophase, coinciding with the weak activation observed in 

Mek1 (Figure 3, upper panel). However, in zip1 mutant 

cells triggering the activation of the pachytene checkpoint, 

Hop1-T318ph dramatically increased (Figure 3, second 

panel). We next analyzed the zip1 H4-K16R and zip1 H4-

K16Q double mutants and we found a reduction in Hop1-

T318 phosphorylation, very similar to that observed in 

Mek1 activity (Figure 3, third and bottom panels). Again, 

the effect of H4-K16Q was much stronger. 

To further support the results shown above, we also 

analyzed a downstream target of the meiotic recombina-

tion checkpoint, the Cdc5 polo-like kinase. Cdc5 is one of 

the most prominent members of a large set of genes under 

the control of the meiosis-specific Ndt80 transcription fac-

tor, with a number of functions in meiosis including the 

exit from pachytene and entry into the first meiotic divi-

sion [18, 24, 61-64]. In wild-type cells, low levels of Cdc5 

were detected in vegetative cell cycle, prior to entering 

meiosis; those levels peaked during mid-meiosis and then 

declined. Meanwhile, in a zip1 mutant the production of 

Cdc5 was clearly delayed (Figure 3, top and second panels), 

according with the slower meiotic progression (Figure 2B). 

In contrast, earlier induction of Cdc5 production was com-

pletely or partially restored in the zip1 H4-K16Q and zip1 

H4-K16R double mutants, respectively (Figure 3, third and 

bottom panels), which is again consistent with the meiotic 

progression of these mutants. 

All together, these results confirm the effect of H4-

K16Q and H4-K16R mutations in meiotic progression and 

indicate that the checkpoint defects observed most proba-

bly arise from the failure to efficiently phosphorylate Hop1 

and Mek1. Thus, H4K16ac is required for both Hop1 phos-

phorylation and the ensuing Mek1 activation in the meiotic 

recombination checkpoint pathway. 

Interestingly, the substitution of the lysine 16 of his-

tone 4 with differently charged residues resulted in slightly 

different outcomes. Similar to the lack of the Sir2 deacety-

lase [36] the H4-K16Q substitution, mimicking the constitu-

tively acetylated state of lysine, completely abolished the 

meiotic block imposed by ZIP1 disruption, as well as the 

phosphorylation of Mek1 and Hop1. Conversely, substitu-

tion of the lysine by arginine, a residue that cannot be 

acetylated, H4-K16R, only showed a partial effect on the 

meiotic progression as well as in the Hop1 and Mek1 phos-

phorylation (Figures 2 and 3). Curiously, similar conse-

quences have been observed regarding the impact of 

H4K16ac mutants on other biological processes. For exam-

ple, the H4-K16Q substitution significantly reduces lifespan 

whereas H4-K16R shows only a marginal effect [65]. Like-

wise, the frequency of chromosome loss and the levels of 

rDNA recombination are also higher in H4-K16Q strains 

than in H4-K16R mutants [66, 67]. In line with these obser-

vations, our results raise the possibility that the dynamics 

of H4K16ac, more than only the exact state of such acetyla-

tion, is required to regulate the meiotic checkpoint, alt-

hough the precise mechanism underlying such effect re-

 

FIGURE 4: Analysis of Mek1 activation and localization in ndt80-

arrested cells. (A) Western blot analysis of different Mek1 phos-

phorylation forms in ndt80-arrested cells after 24 h in meiosis. 

PGK is shown as a loading control. Strains are DP424 (wild type), 

DP428 (zip1), DP996 (zip1 H4-K16R) and DP1002 (zip1 H4-K16Q). 

Two independent clones of DP966 and DP1002 were analyzed.  

(B) Representative images of checkpoint-induced Mek1-GFP foci 

in wild type (DP584), zip1 (DP582), zip1 H4-K16R (DP1089) and 

zip1 H4-K16Q (DP1090) ndt80-arrested cells after 24 h in meiosis. 
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mains to be elucidated. 

In principle, the differences observed in Mek1 phos-

phorylation between zip1 H4-K16R and zip1 H4-K16Q dou-

ble mutants and the zip1 single mutant could be a conse-

quence of their different kinetics in meiotic progression 

(zip1 exhibits a profound delay that is bypassed in zip1 H4-

K16R and zip1 H4-K16Q; Figure 2B) or could arise from a 

direct effect of H4K16 acetylation on Mek1 activation. To 

distinguish between these two possibilities, we monitored 

Mek1 phosphorylation in pachytene-arrested ndt80 cells. 

Ndt80 is a meiosis-specific transcription factor required for 

induction of meiotic middle genes [25, 68, 69] promoting 

exit from prophase [70]; thus, ndt80 cells arrest in pachy-

tene independently of the meiotic checkpoint allowing us 

to analyze the status of checkpoint activation independent 

of meiotic progression. If H4K16 acetylation were not in-

volved in the establishment of checkpoint-induced Mek1 

activation but only in its maintenance, we will expect Mek1 

phosphorylation to be similar in zip1 and in zip1 H4K16 

acetylation mutants, in a ndt80 background. As shown in 

Figure 4A, in an ndt80 background, zip1 H4-K16R and zip1 

H4-K16Q double mutants are only slightly impaired in 

Mek1 activation. Previous studies have shown that zip1-

induced checkpoint activation results in different Mek1 

phosphorylated forms [21]. In Figure 4A we can observe 

that H4-K16R and H4-K16Q mutants slightly affected only 

the upper phosphorylated bands, corresponding to Mek1 

autophosphorylation (Figure 4A; white arrows), while the 

band immediately above the basal form, which depends on 

Mec1/Tel1 [21], remained intact (Figure 4A; black arrow). 

Moreover, when we analyzed the phosphorylation of 

H3T11 and Hop1-T318 as additional markers of checkpoint 

activation in ndt80 cells, we observed little if any reduction 

in their phosphorylation levels in the zip1 H4-K16R and zip1 

H4-K16Q mutants when compared to zip1 (Figure 5). This is 

in clear contrast with the results of a zip1 dot1 double mu-

tant in which H3T11ph and Hop1-T318ph were practically 

abolished (Figure 5), consistent with Dot1 being absolutely 

required both for checkpoint activation and maintenance 

[21]. These results suggest that the correct acetylation of 

H4K16 is not required for the establishment of checkpoint-

induced Mek1 and Hop1 phosphorylation, but more prob-

ably only for its maintenance. If the meiotic prophase block 

is artificially imposed by means of the ndt80 mutation, 

then H4K16ac becomes dispensable to sustain Hop1 and 

Mek1 activation. 

It has been previously demonstrated that, upon meiotic 

checkpoint activation, the Mek1 effector kinase localizes to 

discrete nuclear foci that can be detected both on chromo-

some spreads and in live meiotic cells [12, 21]. To investi-

gate in more detail the role of H4K16ac in the meiotic 

checkpoint, we assessed the localization of Mek1-GFP in 

wild-type, zip1, zip1 H4-K16R and zip1 H4-K16Q cells, al-

ways in an ndt80 background. As expected, zip1 mutant 

cells accumulated multiple discrete Mek1-GFP foci during 

meiotic prophase (Figure 4B) and most zip1 H4-K16R and 

zip1 H4-K16Q cells displayed a similar pattern of Mek1 

localization (Figure 4B), indicating that formation of zip1-

induced Mek1 foci is not defective in the absence of nor-

mal H4K16ac. This observation suggests that, although 

H4K16ac is required for sustained meiotic checkpoint activ-

ity, it is not necessary for the checkpoint-induced associa-

tion of Mek1 to meiotic chromosomes. 

 

The Sir2 and Sas2 proteins are required for proper meiotic 

checkpoint response 

To further investigate the role of H4K16ac in the meiotic 

recombination checkpoint we studied mutants affecting 

the metabolism of this residue, such as sir2 (deficient in a 

H4K16ac deacetylase), and sas2 (lacking the main H4K16 

acetyltransferase). The relationship of Sir2 with the meiotic 

checkpoint has been previously reported [36], but a de-

tailed analysis of meiotic progression and checkpoint activ-

ity was not described. 

We found that deletion of SIR2 completely suppressed 

the meiotic delay imposed by the checkpoint in the zip1 

mutant; that is, the zip1 sir2 double mutant showed similar 

kinetics of meiotic progression than the wild type (Figure 

6A, S1B) and displayed high levels of sporulation (Figure 

 
FIGURE 5: The sir2 mutant, but not H4-K16Q, H4-K16R or sas2, is 

defective in establishing early markers of checkpoint activation. 

Western blot analysis of zip1-induced Hop1-T318 and H3-T11 

phosphorylation, as well as H3K79 methylation, 24 h after meiosis 

induction in ndt80-arrested cells. PGK and total H3 were used as 

loading controls. Strains are: DP424 (wild type), DP428 (zip1), 

DP996 (zip1 H4-K16R), DP1002 (zip1 H4-K16Q), DP655 (zip1 dot1), 

DP1086 (zip1 sir2) and DP1073 (zip1 sas2). 
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6B). Hop1T318 phosphorylation and H3T11 phosphoryla-

tion (as a marker of Mek1 activity) were drastically reduced 

in zip1 sir2 compared to zip1 and, according with the mei-

otic progression, Cdc5 production was restored to wild-

type kinetics in zip1 sir2 (Figure 6C). Disruption of SAS2 also 

alleviated the zip1 meiotic block, but to a lesser extent 

than zip1 sir2 did (Figure 6A, 6B, S1B). Consistent with this 

intermediate effect, Hop1T318 and H3T11 phosphorylation  

showed a moderate reduction, and Cdc5 dynamics was 

only partially restored in zip1 sas2 (Figure 6C). Thus, in 

 

FIGURE 6: The meiotic recombination checkpoint response is impaired in the absence of Sir2 or Sas2. (A) Time course of meiotic nuclear 

divisions; the percentage of cells containing two or more nuclei is represented. (B) Dityrosine fluorescence, as a visual indicator of sporula-

tion, and sporulation efficiency, quantified by microscopic examination of at least 300 cells, were examined after 3 days of sporulation on 

plates. (C) Western blot analysis of the indicated proteins during meiosis. Strains are DP421 (wild type), DP422 (zip1), DP1401 (zip1 sir2) and 

DP1410 (zip1 sas2). 
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NDT80+ cells competent for meiotic progression, the 

checkpoint phenotype resulting from the lack of the Sir2 

deacetylase is similar to that produced by the H4-K16Q 

mutation mimicking constitutive acetylation, and the effect 

produced by the absence of the Sas2 acetyltransferase 

parallels that of the H4-K16R mutation preventing acetyla-

tion of this residue (Figures 2 and 3). 

The checkpoint impact of SIR2 and SAS2 deletions was 

also analyzed in ndt80 mutant cells by monitoring the lev-

els of zip1-induced Hop1T318 and H3T11 phosphorylation. 

In the case of sir2, we found a complete abrogation of both 

phosphorylation events (Figure 5), indicating that, in con-

trast to H4-K16Q, the sir2 mutant is defective both in the 

establishment and maintenance of the meiotic checkpoint, 

in a similar way to dot1. The fact that the lack of the 

H4K16ac Sir2 deacetylase does not cause exactly the same 

effect as the mimicked constitutive acetylation of the H4-

K16Q mutant in ndt80 strains suggests that Sir2 has addi-

tional checkpoint functions. On the other hand, in ndt80 

cells, SAS2 disruption only showed a marginal effect on 

both H3T11 and Hop1 phosphorylation, similar to what we 

observed with the acetylation-defective H4-K16R mutant 

(Figure 5), indicating that Sas2 is primarily involved in 

checkpoint maintenance. 

We also monitored the state of H4K16ac and, as we 

showed above (Figure 1), it was also unaffected when the 

checkpoint was triggered by zip1 in ndt80-arrested cells 

(Figure 5). Strikingly, we found that the disruption of SIR2 

did not significantly increase global levels of H4K16ac in 

either NDT80 or ndt80 cells (Figures 5 and 6C), consistent 

with the notion that Sir2 is not the main genome-wide 

H4K16ac deacetylase and its action may be specifically 

restricted to precise heterochromatic domains [53, 54]. On 

the other hand, SAS2 deletion clearly, but not completely, 

reduced H4K16ac (Figures 5 and 6C), suggesting that Sas2 

is the main, but not the only, H4K16 acetyltransferase act-

ing in the meiotic cell cycle.  

 

Cross-talk between H4K16 acetylation and H3K79 methyl-

ation 

Previous studies have shown that some histone PTMs posi-

tively or negatively affect other histone marks in what has 

been described as histone cross-talk, adding an extra layer 

of complexity to the control of different chromatin pro-

cesses [71-73]. One example is the tri-methylation of 

H3K79 by Dot1, which is completely dependent upon the 

prior ubiquitylation of H2BK123 by Rad6/Bre1 [74]. It has 

also been described that H4K16ac modulates Dot1-

dependent H3K79 methylation by promoting Dot1 binding 

to a short basic patch in the histone H4 tail in competition 

with Sir3 [75]. Since Dot1-dependent H3K79 methylation is 

required for the meiotic recombination checkpoint [21, 37] 

it was possible that the impact of H4K16ac on the check-

point (Figures 2 and 3) was exerted via regulation of 

H3K79me. To explore this possibility, we first analyzed the 

effect of H4-K16R and H4-K16Q mutations on H3K79 

mono-, di- and tri-methylation in zip1 ndt80 checkpoint-

activated and pachytene-arrested cells (Figures 5 and 7A, 

7B). Given the distributive mode of action of the Dot1 me-

thyltransferase [76], an impaired Dot1 catalytic activity is 

manifested as a reduction in H3K79me3 concomitant with 

an increase in H3K79me1 and H3K79me2 [21, 76]. Indeed, 

we observed higher levels of H3K79me1 and H3K79me2 in 

both H4K16ac-defective mutants, as well as a reduction in 

those of H3K79me3 (Figures 5 and 7A, 7B), which is the 

most relevant form to sustain the meiotic checkpoint re-

sponse [21]. Thus, these findings suggest that H4K16ac 

mutants affect the activity of Dot1. We also observed that, 

like H4-K16R, the absence of the H4K16 acetyltransferase 

Sas2 also increased H3K79me1 and H3K79me2 and re-

duced H3K79me3 (Figure 5). Curiously, disruption of SIR2, 

did not have any effect on global H3K79me levels (Figure 5), 

again consistent with the notion that Sir2 meiotic check-

point function can be exerted, at least in part, in a way that 

is independent from a global activity on H4K16ac.  

Since Dot1 catalytic activity appears to be compro-

mised in H4K16ac mutants, we explored whether DOT1 

overexpression would restore normal H3K79me3 levels 

and meiotic checkpoint function in zip1 H4-K16R or zip1 

H4-K16Q double mutants. DOT1 was overexpressed from a 

high-copy plasmid (Figure S2) and the pattern of H3K79me 

was analyzed at 0 h and 20 h after meiotic induction (Fig-

ure 7A, 7B). We found that the increased H3K79me1 and 

H3K79me2 levels observed in the zip1 H4-K16R and zip1 

H4-K16Q mutants were reduced upon DOT1 overexpres-

sion (Figure 7A, 7B). On the contrary, high doses of Dot1 

increased the amount of H3K79me3 in zip1 H4-K16R and 

zip1 H4-K16Q, although it did not reach normal wild-type 

levels (Figure 7A, 7B). These observations confirm that 

overexpression of DOT1 can partially compensate for the 

crippled Dot1 methyltransferase activity when H4K16ac 

metabolism is altered; therefore, we analyzed the effect on 

the meiotic checkpoint by monitoring the kinetics of meiot-

ic divisions.  

We have shown before that H4-K16R releases the 

checkpoint-dependent zip1 meiotic delay to some extent 

and H4-K16Q completely alleviates the zip1 block (Figure 

2B). Interestingly, DOT1 overexpression resulted in less 

efficient meiotic progression in zip1 H4-K16R and zip1 H4-

K16Q cells compared to the controls transformed with 

empty vector (Figure 7C, S1C), consistent with a partial 

restoration of the checkpoint. Altogether, these results 

suggest that the effect of H4-K16R and H4-K16Q mutations 

on the meiotic checkpoint triggered by a zip1 mutant is 

exerted, at least in part, through their effect on modulating 

proper H3K79 methylation pattern. 

 

Relationship between Sir2, H4K16ac and Pch2 nucleolar 

localization 

In Saccharomyces cerevisiae, the Pch2 protein is a negative 

regulator of Hop1 chromosomal abundance in synapsed 

chromosomes [77, 78], but it is required for the zip1-

induced meiotic checkpoint promoting Hop1 phosphoryla-

tion at T318 [36, 59]. The majority of Pch2 localizes to the 

unsynapsed nucleolar region of chromosome XII that con-

tains the ribosomal RNA genes (rDNA), where it is required 

to exclude the meiosis-specific Hop1 protein from the nu-

cleolus. This nucleolar localization of Pch2 is completely 
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dependent on the Sir2 deacetylase, which is also located in 

the rDNA [36], and deletion of SIR2 impairs the meiotic 

checkpoint (Figures 5 and 6). Moreover, the Dot1 meiotic 

checkpoint factor regulates both Sir2 and Pch2 nucleolar 

localization [21, 37]. This scenario points to a pivotal role 

for the nucleolar Pch2 in the pachytene checkpoint [59] 

and prompted us to investigate if H4-K16R and/or H4-K16Q 

mutations affected the nucleolar localization of Pch2 on 

meiotic chromosome spreads. 

In zip1 cells, when the meiotic checkpoint is activated, 

Pch2 localization is limited to the nucleolar (rDNA) region 

(Figure 8). As it has been previously shown [36], in zip1 sir2 

cells the nucleolar concentration of Pch2 was lost and the 

protein appeared in form of foci dispersed throughout the 

meiotic chromosomes (Figure 8). Then, we analyzed Pch2 

distribution in the zip1 H4-K16Q and zip1 H4-K16R mutants. 

We found that the Pch2 signal was still located in a re-

stricted chromosomal area, presumably the rDNA region, 

but it was somehow more diffused although to a lesser 

extent than in zip1 sir2 (Figure 8). Thus, like Dot1 and Sir2, 

these findings point to a role for H4K16ac in delimiting the 

nucleolar confinement of Pch2 and its exclusion from the 

rest of the chromatin, although the action of Sir2 must not 

be exerted only on H4K16ac because the effect of SIR2 

deletion on Pch2 localization is stronger than that of H4K16 

mutations. 

FIGURE 7: DOT1 overexpression 

partially restores the meiotic check-

point in H4K16ac-deficient mutants. 

(A) Western blot analysis of H3K79 

methylation species in vegetative 

(T=0h) and meiotic cells (T=20h). 

Total H3 and PGK were used as load-

ing controls. (B) Quantification of 

relative levels of the H3K79 methyla-

tion forms at T=0 from the blots 

shown in (A). Total H3 signal was 

used for normalization. (C) Time 

course of meiotic nuclear divisions; 

the percentage of cells with two or 

more nuclei is presented. Strains are 

DP422 (zip1), DP995 (zip1 H4-K16R) 

and DP1001 (zip1 H4-K16Q), trans-

formed either with an empty vector 

or with the high-copy pSS63 DOT1 

overexpression plasmid (DOT1-OE). 
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In addition, we also examined the distribution of 

H4K16ac on meiotic chromosomes. We used an antibody 

that recognizes the nucleolar Nsr1 protein involved in ribo-

some biogenesis [79] to unambiguously identify the rDNA 

region, which often appears as a chromatin loop on prepa-

rations of spread meiotic chromosomes. Strikingly, the 

H4K16ac histone mark was completely excluded from the 

rDNA in both wild-type and zip1 nuclei (Figure 9), also dis-

playing an exclusive localization pattern with that of nucle-

olar Pch2 (Figure 8, arrow). However, in the absence of Sir2, 

H4K16ac was distributed all along the chromatin, showing 

a complete co-localization with the DAPI staining, including 

the rDNA region marked by the nucleolar Nsr1 protein 

(Figure 9). Consistent with microarray studies in vegetative 

cells [53] and with our western blot analysis of global mei-

otic levels of H4K16ac (Figures 5 and 6), the H4K16ac signal 

on the bulk of the genome was not significantly altered in 

sir2 mutants (Figure 9). These results indicate that Sir2 is 

the major deacetylase specifically responsible for prevent-

ing H4K16 acetylation in the rDNA during meiosis. 

Besides the impact on the meiotic recombination 

checkpoint, it has been shown that SIR2 disruption signifi-

cantly alters the genomic distribution of Spo11-induced 

DSBs; with some genes displaying increased levels of DSBs 

whereas others experience reduced levels of DSBs in the 

absence of Sir2 [80]. Two defined genomic domains, such 

as subtelomeric regions and the rDNA array, show elevated 

recombination in the sir2 mutant [80]. Pch2 also prevents 

recombination at the rDNA by excluding Hop1 from the 

nucleolar region [36, 59]. Moreover, Sir2 and Pch2 modu-

late the protection of DSB-induced meiotic instability at the 

rDNA borders [81]. It has been proposed that the effect of 

Sir2 on recombination at subtelomeric regions is exerted 

through the regulation of H4K16ac; however, the hetero-

geneous effect of Sir2 on the global meiotic DSB landscape 

implies that multiple factors and targets must be involved 

in addition to H4K16ac [80]. 

 

Concluding remarks 

In this work we have explored the functional contribution 

of H4K16ac, the Sir2 deacetylase and the Sas2 acetyltrans-

ferase in the meiotic recombination checkpoint triggered 

by synaptonemal complex defects. In line with previous 

observations, our results indicate that an intricate network 

of histone PTMs fine-tune this meiotic quality control 

mechanism (Figure 10). We propose that reduced levels of 

Dot1-mediated H3K79me3 at the rDNA enable the enrich-

ment of Sir2 in the nucleolus. The presence of Sir2 at the 

rDNA region is responsible for the low level of H4K16ac in 

this area and, together with an additional unknown Sir2 

target, confines Pch2 in the nucleolus. The Pch2 ATPase is 

critical to orchestrate the proper balance between the 

amount of Hop1 bound to chromosome axes and phos-

phorylated Hop1, which in turn sustains Mek1 activation 

[21, 59]. Nevertheless, the precise mechanism by which 

nucleolar Pch2 regulates the phosphorylation status of the 

Hop1 checkpoint adaptor located at the axes and excluded 

from the rDNA remains to be determined.  

Curiously, when meiotic progression is prevented by 

the ndt80 mutation, we have observed different check-

point activity phenotypes resulting from deletion of SIR2 

compared with H4-K16 or sas2 mutants. Whereas Sir2 is 

required for Mek1 activation in any condition, 

Sas2/H4K16ac only affect the maintenance of Mek1 activa-

FIGURE 8: Analysis of Pch2 

localization in H4K16ac-

deficient mutants. Immuno-

fluorescence of meiotic chro-

mosome spreads from zip1 

(DP1123), zip1 sir2 (DP1124), 

zip1 H4-K16R (DP1121) and 

zip1 H4-K16Q (DP1139) stained 

with DAPI (blue) as well as with 

anti-HA to detect Pch2-HA 

(red) and anti-H4K16ac (green) 

antibodies. The arrows point to 

the rDNA region where Pch2 

accumulates and is devoid of 

H4K16ac. Representative nu-

clei are shown. Spreads were 

prepared after 24 h of meiotic 

induction in ndt80 strains. 
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tion in NDT80-proficient cells, thus supporting the notion 

that Sir2 acts on additional targets.  

We hypothesize that the general status of H4K16ac 

modulates DNA repair pathways involved in the resolution 

of recombination intermediates accumulated in zip1 trig-

gering the checkpoint arrest. Alteration of H4K16ac dynam-

ics by SAS2 deletion or H4-K16 mutations, would allow the 

Ndt80-dependent repair of those intermediates thus allow-

ing meiotic progression in zip1. Further experimental work 

will be required to explore this possibility.  

 

MATERIALS AND METHODS 

Yeast strains 

Yeast strains genotypes are listed in Table S1. All the strains 

are in the BR1919 or BR2495 genetic background [82]. Gene 

deletion and tagging were performed using a PCR-based ap-

proach or by genetic crosses always in an isogenic background. 

The dot1::URA3, zip1::LYS2, zip1::LEU2, sir2::URA3 and 

ndt80::LEU2 deletions were previously described [5, 26, 31, 37, 

83]. In the plasmid-borne H4-K16R and H4-K16Q mutants, 

both genomic copies of the histone H3-H4 encoding genes 

(HHT1-HHF1 and HHT2-HHF2) were deleted and the wild-type 

HHT2-HHF2 genes or the modified HHT2-hhf2(K16R) or HHT2-

hhf2(K16Q) versions were expressed from the centromeric 

plasmids pRM204, pWD23 and pWD25, respectively, as the 

only source of H3-H4 histones [65]. Alternatively, both copies 

of the histone H4-encoding genes HHF1 and HHF2 were mu-

tated in their genomic loci to K16R and K16Q following the 

delitto perfetto approach [84]. N-terminal tagging of Pch2 with 

three copies of the HA epitope and the MEK1-GFP construct 

were previously described [21, 36]. DOT1-HA was overex-

pressed from the pSS63 plasmid [37]. 

 

Meiotic time courses 

Strains were grown on 2xSC (3,5 ml) for 20-24 h and then 

transferred to 2,5 ml of YPDA where they were incubated to 

saturation for an additional 8 h. Cells were then harvested, 

washed with 2% potassium acetate (KAc), resuspended into 10 

ml of KAc and incubated at 30°C with vigorous shaking (235 

rpm) to induce meiosis and sporulation. 20 mM adenine and 

10 mM uracil was added to both YPDA and KAc media. Culture 

volumes were scaled up when needed. Aliquots of cells were 

removed at different time points for analysis. To analyze mei-

otic divisions, cells were fixed in 70% ethanol, washed in 

phosphate-buffered saline (PBS) and stained with 1 mg/ml 

DAPI for 15 min at room temperature. Nuclei were observed 

by fluorescence microscopy and at least 300 cells were scored 

for each strain at each time point in every experiment. Meiotic 

kinetics experiments were repeated several times and repre-

sentative experiments are shown. Dityrosine fluorescence was 

analyzed as previously described [37] and spore viability was 

determined by tetrad dissection.  

 

Western blotting 

TCA yeast whole cell extracts from 5-10 ml aliquots of meiotic 

cultures were prepared as described previously [18] and pro-

teins were resolved by SDS-PAGE and then transferred to 

PVDF membranes. To resolve the phosphorylated forms of 

Mek1, 10% SDS-PAGE gels with a 29:1 ratio of acryla-

mide:bisacrylamide containing 37,5 μM Phos-tag reagent 

(Wako) and 75 μM MnCl2 were prepared as described [18, 21], 

FIGURE 9: Sir2 excludes H4K16ac 

from the rDNA region. Immuno-

fluorescence of meiotic chromo-

some spreads from wild type 

(BR2495), sir2 (DP262), zip1 

(DP1123) and zip1 sir2 (DP1124), 

stained with DAPI (red) as well as 

with anti-H4K16ac (green) and 

anti-Nsr1 (blue) antibodies. The 

arrows point to the rDNA region 

identified by Nsr1 staining. Rep-

resentative nuclei are shown. 

Spreads were prepared after 16 h 

of meiotic induction for BR2495 

and DP262 and 24 h for DP1123 

and DP1124. 
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whereas normal 15% or 10% gels (acrylamide:bisacrylamide 

37,5:1) were used for detection of H4K16ac, H3T11ph and 

H3K79me or Mek1, Hop1-T318ph, Cdc5 and Dot1-HA, respec-

tively. Blots were probed with the following primary antibod-

ies: rabbit polyclonal antibodies raised against Mek1 (1:1000) 

[13], Hop1-T318 (1:1000; kindly provided by J. Carballo), 

H3T11ph (1:2000; Abcam 5168), H4K16ac (1:2000; Millipore 

07-329), H3K79-me1 (1:1000; Abcam ab2886), H3K79-me2 

(1:2000; Abcam ab3594) and H3K79-me3 (1:2000; Abcam 

ab2621); goat polyclonal antibody against Cdc5 (1:1000; Santa 

Cruz Biotechnology sc-6733); mouse monoclonal antibody 

against the HA epitope (1:2000; Roche 12CA5). A mouse mon-

oclonal antibody directed against 3-phosphoglycerate kinase 

(PGK) (1:10000; Molecular Probes A-6457) or a rabbit polyclo-

nal antibody against histone H3 (1:5000; Abcam ab1791) were 

used as loading controls. HRP-conjugated secondary antibod-

ies were from GE Healthcare (NA934 and NA931) or Santa 

Cruz Biotechnology (sc-2033). The Pierce ECL or ECL-2 rea-

gents (Thermo Scientific) were used for detection and the 

signal was captured on film (Amersham Hyperfilm ECL; GE 

Healthcare) and/or with a ChemiDoc XRS (BioRad) system, 

using the Quantity One software (Bio-Rad). The same software 

was used to quantify protein levels. 

 

 

Cytology 

Whole cell images were captured with a Nikon Eclipse 90i 

fluorescence microscope controlled with the MetaMorph 

software (Molecular Devices) and equipped with an Orca-AG 

(Hamamatsu) CCD camera and a PlanApo VC 100X 1.4 NA ob-

jective. To analyze Mek1-GFP foci in live meiotic cells, expo-

sure time was 1 second and stacks of 11 planes at 0,4 μm 

were captured. Maximum intensity projections were generat-

ed with the NIH ImageJ software (http://rsb.info.nih.gov/ij/). 

To outline the contour of the cells in the representative 

whole-cell images presented, an overlay of the DIC image with 

15-20% transparency over the GFP signal is shown. Immuno-

fluorescence of meiotic chromosome spreads was performed 

as previously described [36]. To detect the HA-tagged Pch2 

and H4K16ac, a mouse monoclonal anti-HA antibody (12CA5, 

Roche) or a rabbit polyclonal anti H4K16ac (Millipore 07-329) 

were used at 1:200 dilution. Nsr1 was detected with a mouse 

monoclonal antibody (clone 31C4, ThermoFisher MA1-10030) 

used at 1:200 dilution. Alexa-Fluor-488 and Alexa-Fluor-594-

conjugated secondary antibodies from Molecular Probes were 

used at 1:200 dilution. Images were captured with the same 

equipment as indicated above. 
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Table S1.  Saccharomyces cerevisiae strains 

Strain Genotype * 

BR1919-2N MATa/MATα  leu2-3,112  his4-260  ura3-1  ade2-1  thr1-4  trp1-289 

BR2495 MATa/MATα  leu2-27/leu2-3,112  his4-280/his4-260  trp1-1/trp1-289  arg4-8/ARG4  
thr1-1/thr1-4  cyh10/CYH10  ura3-1  ade2-1 
 

DP262 BR2495  sir2::URA3  PCH2-3HA 

DP421 BR1919-2N  lys2ΔNheI 

DP422 DP421  zip1::LYS2 

DP424 DP421  ndt80::LEU2 

DP428 DP421  zip1::LYS2  ndt80::LEU2 

DP582 DP421  zip1::LYS2  ndt80::LEU2  MEK1-GFP::kanMX6 

DP584 DP421  ndt80::LEU2  MEK1-GFP::kanMX6 

DP634 DP421  (hht1-hhf1)::kanMX6  (hht2-hhf2)::natMX4  p(HHT2-HHF2)::TRP1 

DP635 DP421  (hht1-hhf1)::kanMX6  (hht2-hhf2)::natMX4  p(HHT2-hhf2-K16R)::TRP1 

DP636 DP421  (hht1-hhf1)::kanMX6  (hht2-hhf2)::natMX4  p(HHT2-hhf2-K16Q)::TRP1 

DP639 DP421 (hht1-hhf1)::kanMX6  (hht2-hhf2)::natMX4  p(HHT2-HHF2)::TRP1  zip1::LYS2 

DP640 DP421  (hht1-hhf1)::kanMX6  (hht2-hhf2)::natMX4  p(HHT2-hhf2-K16R)::TRP1  zip1::LYS2 

DP641 DP421  (hht1-hhf1)::kanMX6  (hht2-hhf2)::natMX4  p(HHT2-hhf2-K16Q)::TRP1  zip1::LYS2 

DP655 DP421  zip1::LYS2  ndt80::LEU2  dot1::kanMX6 

DP994 DP421  hhf1-K16R  hhf2-K16R 

DP995 DP421  hhf1-K16R  hhf2-K16R  zip1::LYS2 

DP996 DP421  hhf1-K16R  hhf2-K16R  zip1::LYS2 ndt80::LEU2 

DP1000 DP421  hhf1-K16Q  hhf2-K16Q 

DP1001 DP421  hhf1-K16Q  hhf2-K16Q  zip1::LYS2 

DP1002 DP421  hhf1-K16Q  hhf2-K16Q  zip1::LYS2  ndt80::LEU2 

DP1073 DP421  zip1::LYS2  ndt80::LEU2  sas2::natMX4 

DP1086 DP421  zip1::LYS2  ndt80::LEU2  sir2::URA3 

DP1089 DP421  zip1::LYS2  ndt80::LEU2  hhf1-K16R  hhf2-K16R  MEK1-GFP::kanMX6 

DP1090 DP421  zip1::LYS2  ndt80::LEU2  hhf1-K16Q  hhf2-K16Q  MEK1-GFP::kanMX6 

DP1121 DP421  zip1::LEU2  ndt80::kanMX6  hhf1-K16R  hhf2-K16R  PCH2-3HA 

DP1123 DP421  zip1::LEU2  ndt80::kanMX6  PCH2-3HA 

DP1124 DP421  zip1::LEU2  ndt80::kanMX6  sir2::URA3  PCH2-3HA 

DP1139 DP421  zip1::LEU2  ndt80::kanMX6  hhf1-K16Q  hhf2-K16Q  PCH2-3HA 

DP1401 DP421  zip1::LYS2  sir2::URA3 

DP1410 DP421  zip1::LYS2  sas2::natMX4 

 
* Unless indicated, all diploid strains are homozygous for the markers. 
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 ARTÍCULO 2 

CONCLUSIONES 

1. Los niveles globales de H4K16ac no varían a lo largo de la meiosis en el mutante zip1Δ, a 

pesar del importante papel que desempeña Sir2 en el checkpoint meiótico. 

2. El control de los niveles adecuados de H4K16ac es necesario para mantener el 

checkpoint, pero no para su activación.  

3. Las mutaciones sir2Δ y sas2Δ suprimen, completa y parcialmente, el bloqueo meiótico 

del mutante zip1Δ, respectivamente. 

4. Además de regular los niveles de H4K16ac, Sir2 tiene funciones adicionales en el 

checkpoint, puesto que el efecto de la ausencia de Sir2 es mayor que el provocado por una 

acetilación constitutiva de H4K16. 

5. La función de H4K16ac en el checkpoint meiótico viene dada, al menos en parte, por el 

efecto en la metilación de H3K79. 

6. Sir2 previene la acetilación de H4K16 en el rDNA y actúa sobre alguna diana adicional 

para mantener la reclusión de Pch2 en el nucleolo. 
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 ARTÍCULO 2 

CONCLUSIONS 

1. Global levels of H4K16ac do not change in the zip1 mutant, despite the important role of 

Sir2 in the meiotic checkpoint.  

2. Proper levels of H4K16ac are required for checkpoint maintenance, but not for checkpoint 

activation. 

3. Mutation of SIR2 and SAS2 partially and completely suppress the zip1-induced 

checkpoint, respectively. 

4. The checkpoint defect caused by the lack of Sir2 is stronger than the one resulting from 

mimicking constitutive acetylation of H4K16, implying that Sir2 possesses additional checkpoint 

functions besides H4K16ac regulation. 

5. The effect of H4K16ac in the meiotic checkpoint is exerted, at least in part, through the 

modulation of proper H3K79 methylation pattern. 

6. Sir2 prevents H4K16 acetylation in the rDNA and impinges into additional target(s) to 

sustain Pch2 nucleolar confinement.  
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 ARTÍCULO 3 

ARTÍCULO 3: “Characterization of Pch2 localization determinants reveals a 

nucleolar-independent role in the meiotic recombination checkpoint” 

RESUMEN 

El checkpoint de recombinación meiótica bloquea la progresión del ciclo celular meiótico en 

respuesta a fallos en sinapsis o recombinación para impedir la segregación aberrante de 

cromosomas. La ATPasa AAA+ Pch2
TRIP13

 de levadura, conservada en la evolución, participa en 

esta ruta promoviendo la fosforilación del adaptador Hop1
HORMAD

 en T318. En una cepa silvestre, 

Pch2 se localiza en los cromosomas que han completado la sinapsis así como en la región sin 

sinapsis del DNA ribosómico (nucleolo), excluyendo a Hop1. Por el contrario, en el mutante 

zip1Δ defectivo en el complejo sinaptonémico (SC), que induce la activación del checkpoint, 

Pch2 sólo se detecta en el nucleolo. Alteraciones en algunas marcas epigenéticas que dan lugar a 

la dispersión de Pch2 del nucleolo suprimen el bloqueo del mutante zip1Δ. Estas observaciones 

han dado origen a la idea de que la localización nucleolar de Pch2 podría ser importante para el 

checkpoint de recombinación meiótica. En este trabajo investigamos cómo afecta la distribución 

de Pch2 en los cromosomas a la función del checkpoint. Hemos generado y caracterizado varias 

mutaciones que alteran la localización de Pch2 provocando una distribución aberrante de Hop1 y 

una respuesta del checkpoint comprometida. Además del motivo AAA+, hemos identificado un 

motivo básico dentro del extremo N-terminal crítico para la función de Pch2 en el checkpoint y 

para su localización. También hemos examinado la relevancia funcional de la interacción Orc1-

Pch2 ya descrita. Ambas proteínas colocalizan en el rDNA, y la degradación inducida de Orc1 

durante la profase meiótica impide la localización de Pch2 en el rDNA permitiendo la 

acumulación no deseada de Hop1 en dicha región. Sin embargo, la asociación de Pch2 con los 

componentes del SC permanece intacta en ausencia de Orc1. Finalmente, mostramos que la 

activación del checkpoint no se ve afectada por la falta de Orc1 lo que demuestra que, 

contrariamente a hipótesis previas, realmente la localización nucleolar de Pch2 es prescindible 

para el checkpoint meiótico. 
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Abstract
Themeiotic recombination checkpoint blocksmeiotic cell cycle progression in response to synapsis and/or recombination defects
to prevent aberrant chromosome segregation. The evolutionarily conserved budding yeast Pch2TRIP13 AAA+ATPase participates
in this pathway by supporting phosphorylation of the Hop1HORMAD adaptor at T318. In the wild type, Pch2 localizes to synapsed
chromosomes and to the unsynapsed rDNA region (nucleolus), excluding Hop1. In contrast, in synaptonemal complex (SC)–
defective zip1Δ mutants, which undergo checkpoint activation, Pch2 is detected only on the nucleolus. Alterations in some
epigenetic marks that lead to Pch2 dispersion from the nucleolus suppress zip1Δ-induced checkpoint arrest. These observations
have led to the notion that Pch2 nucleolar localization could be important for the meiotic recombination checkpoint. Here we
investigate how Pch2 chromosomal distribution impacts checkpoint function. We have generated and characterized several
mutations that alter Pch2 localization pattern resulting in aberrant Hop1 distribution and compromised meiotic checkpoint
response. Besides the AAA+ signature, we have identified a basic motif in the extended N-terminal domain critical for Pch2’s
checkpoint function and localization. We have also examined the functional relevance of the described Orc1-Pch2 interaction.
Both proteins colocalize in the rDNA, and Orc1 depletion duringmeiotic prophase prevents Pch2 targeting to the rDNA allowing
unwanted Hop1 accumulation on this region. However, Pch2 association with SC components remains intact in the absence of
Orc1. We finally show that checkpoint activation is not affected by the lack of Orc1 demonstrating that, in contrast to previous
hypotheses, nucleolar localization of Pch2 is actually dispensable for the meiotic checkpoint.

Keywords Meiosis . Checkpoint . Synapsis . Recombination . Pch2 . Orc1

Introduction

During gametogenesis, a tight spatiotemporal control of a myr-
iad of interrelated events that integrate the meiotic program
must occur in order to achieve the successful generation of
gametes with the adequate chromosome complement. This
control is reinforced by the action of surveillance mechanisms,
or checkpoints, that block meiotic progression in response to
defects in critical meiotic processes thus preventing errors in the
distribution of chromosomes to the meiotic progeny
(Subramanian and Hochwagen 2014). Checkpoint pathways
involve a series of molecular events frequently relying on pro-
tein phosphorylation, to eventually give rise to the adequate
cellular responses including cell cycle arrest among others.
The so-called pachytene checkpoint or meiotic recombination
checkpoint operates during meiosis to face failures in the syn-
apsis and/or recombination processes. Depending on the nature

This article is part of a Special Issue on Recent advances in meiosis from
DNA replication to chromosome segregation Bedited by Valérie Borde
and Francesca Cole, co-edited by Paula Cohen and Scott Keeney.^

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00412-019-00696-7) contains supplementary
material, which is available to authorized users.

* Pedro A. San-Segundo
pedross@usal.es

1 Instituto de Biología Funcional y Genómica (IBFG), Consejo
Superior de Investigaciones Científicas (CSIC) and University of
Salamanca, 37007 Salamanca, Spain

2 Departamento de Microbiología y Genética, University of
Salamanca, 37007 Salamanca, Spain

3 Instituto de Tecnologías Biomédicas, Hospital Universitario de
Canarias, 38320 La Laguna, Tenerife, Spain

4 Department of Cellular and Molecular Biology, Centro de
Investigaciones Biológicas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain

https://doi.org/10.1007/s00412-019-00696-7

/Published online: 12 March 2019

Chromosoma (2019) 128:297–316

72

http://crossmark.crossref.org/dialog/?doi=10.1007/s00412-019-00696-7&domain=pdf
http://orcid.org/0000-0002-5616-574X
https://doi.org/10.1007/s00412-019-00696-7
mailto:pedross@usal.es


of the triggering signal, different sensing mechanisms are in-
volved. For example, while RPA-coated processed meiotic
DNA double-strand breaks (DSBs) activate the Mec1ATR sen-
sor kinase via 9-1-1 complex and Ddc2ATRIP-mediated recruit-
ment (Lydall et al. 1996; Hong and Roeder 2002; Eichinger and
Jentsch 2010; Refolio et al. 2011), unresected DSBs activate
Tel1ATM via the Mre11-Rad50-Xrs2NBS1 (MRX) complex
(Usui et al. 2001). In any case, irrespective of the checkpoint-
inducing event, the final outcome involves a block in meiotic
progression by downregulation of the cell cycle machinery
(Acosta et al. 2011; Prugar et al. 2017).

The evolutionarily conserved Pch2TRIP13 proteinwas initially
discovered in Saccharomyces cerevisiae in a genetic screen for
mutations that alleviate the checkpoint-induced meiotic arrest of
the zip1Δ mutant lacking a main component of the central re-
gion of the synaptonemal complex (SC) (Sym et al. 1993; San-
Segundo and Roeder 1999; Wu and Burgess 2006; Herruzo
et al. 2016). Pch2 is also required for the checkpoint response
elicited by unresected DSBs involving the interaction with Xrs2
(Ho and Burgess 2011). The participation of Pch2 orthologs in
the checkpoint response to various meiotic stimuli has been also
reported in other organisms, such as worms (Bhalla and
Dernburg 2005) and flies (Joyce and McKim 2009). Besides
the checkpoint role, Pch2 additionally impinges on multiple
interrelated meiotic recombination events, including DSB for-
mation (Farmer et al. 2012; Joshi et al. 2015), chromosome axis
morphogenesis (Börner et al. 2008; Joshi et al. 2009), crossover
control (Medhi et al. 2016; Chakraborty et al. 2017),
interhomolog bias (Zanders et al. 2011; Subramanian et al.
2016), crossover interference (Zanders and Alani 2009), and
ribosomal DNA (rDNA) array stability (San-Segundo and
Roeder 1999; Vader et al. 2011). Pch2TRIP13 belongs to the
AAA+ family of ATPases (Chen et al. 2014; Vader 2015) that
utilize the energy generated from ATP hydrolysis to produce
conformational changes on the substrates (Hanson and
Whiteheart 2005). In the case of Pch2TRIP13, many of its meiotic
functions involve the action on the Hop1HORMAD1,2 SC compo-
nent; in particular, Pch2 promotes Hop1 disengagement from
chromosome axes as synapsis progresses (San-Segundo and
Roeder 1999; Li and Schimenti 2007; Börner et al. 2008;
Wojtasz et al. 2009; Roig et al. 2010; Herruzo et al. 2016;
Subramanian et al. 2016). Although budding yeast PCH2 is
only expressed in meiotic cells, recent studies have revealed a
crucial role for Pch2 orthologs in the mitotic spindle assembly
checkpoint in worms and mammals, also acting on a HORMA
domain–containing protein, namelyMAD2 (Nelson et al. 2015;
Ye et al. 2015; Ma and Poon 2018; West et al. 2018).

Since Pch2 removes Hop1 from meiotic chromosomes, the
pch2Δ single mutant displays more abundant and continuous
Hop1 distribution on synapsed chromosomes (San-Segundo
and Roeder 1999; Börner et al. 2008). In contrast, unexpectedly,
our previous work has demonstrated that under checkpoint-
inducing conditions (zip1Δ), the Pch2 protein is critically

required for maintaining linear Hop1 localization along chromo-
some axes and, more important, for sustaining high levels of
Hop1 phosphorylation at Thr318. In other words, chromosomal
Hop1 is less abundant and Hop1-T318 phosphorylation is dras-
tically reduced in zip1Δ pch2Δ compared to zip1Δ (Herruzo
et al. 2016). Deficient Mec1-dependent Hop1-T318 phosphory-
lation leads to impaired Mek1 activation (Carballo et al. 2008),
thus explaining the defective checkpoint response in zip1Δ
pch2Δ cells. Importantly, HOP1 overexpression restores check-
point function in zip1Δ pch2Δ (Herruzo et al. 2016). Cytological
studies have uncovered a peculiar localization pattern for the
Pch2 protein on meiotic chromosomes. Pch2 displays a promi-
nent localization in the unsynapsed rDNA region of chromosome
XII and a weaker distribution on interstitial synapsed chromo-
somal sites (San-Segundo and Roeder 1999; Börner et al. 2008;
Herruzo et al. 2016). The association of Pch2 with the SC is
clearly evidenced by the presence of Pch2 on Zip1-containing
polycomplexes (San-Segundo and Roeder 1999; Dong and
Roeder 2000). Remarkably, in a checkpoint-activated scenario
like the SC-deficient zip1Δmutant, Pch2 has been only detected
in the nucleolar region. Nucleolar accumulation of Pch2 requires
histoneH3K79methylation byDot1 and proper levels of H4K16
acetylation controlled by Sir2 (Ontoso et al. 2013; Cavero et al.
2016). The fact that both dot1 and sir2 mutations impair the
meiotic recombination checkpoint is consistent with the notion
that nucleolar Pch2 is important for checkpoint activity. However,
this hypothesis has not yet been tested directly.

In this work, we have identified a basic motif in the non-
conserved N-terminal domain (NTD) of Pch2 that is necessary
for its localization to both SC and rDNA. Mutation of this
motif results in impaired checkpoint response suggesting that
it may be required for proper Pch2 chromatin association and/
or interaction with additional critical factors. The Orc1 protein
targets Pch2 to the rDNA to repress meiotic DSB formation
(Vader et al. 2011); thus, in order to definitely assess the func-
tional relevance of Pch2 nucleolar localization for the zip1Δ-
induced checkpoint, we have engineered a conditional orc1-
3mAID degron allele. We found that induced Orc1 degrada-
tion during meiotic prophase precludes Pch2 localization to
the rDNA, but association with SC components is unaltered.
Using various cytological and molecular assays, we show that
checkpoint activation remains intact in the absence of Orc1.
Thus, we conclude that Pch2 nucleolar localization is dispens-
able for the checkpoint response to SC defects.

Results

An NLS-like element in the Pch2 N-terminal domain is
required for checkpoint function and localization

Alignment of the protein sequences of Pch2/TRIP13
orthologs of different species revealed the presence of a non-
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conserved extended N-terminal domain (NTD) in the Pch2
protein of S. cerevisiae (Fig. 1a and Fig. S1). In wild-type
yeast meiotic chromosomes, Pch2 accumulates at the SC-
devoid nucleolar rDNA region of chromosome XII and a mi-
nor fraction also associates to the SC along synapsed chromo-
somes (San-Segundo and Roeder 1999; Börner et al. 2008;
Herruzo et al. 2016; Subramanian et al. 2016). In other organ-
isms such as plants and worms, Pch2 orthologs have been
localized only to the SC (Miao et al. 2013; Deshong et al.
2014; Lambing et al. 2015). The fact that nucleolar accumu-
lation of Pch2 appears to be restricted to budding yeast sug-
gests that the NTD of Pch2 may be involved in this character-
istic distribution pattern. Several observations point to a crit-
ical role for the nucleolar Pch2 in meiotic recombination
checkpoint function (see BIntroduction^); therefore, we
searched the NTD sequence for motifs possibly involved in
nucleolar targeting. We found a 17-amino-acid stretch at po-
sitions 42 to 58 containing several basic residues that could
resemble a nuclear or nucleolar localization signal (NLS/
NoLS) (Fig. 1a and Fig. S1). To explore the meiotic relevance
of this NLS-like sequence, we used the delitto perfetto ap-
proach to generate PCH2 mutants carrying a precise deletion
of this motif in the genomic loci (pch2-nlsΔ) (Fig. 1a). Like
the pch2Δ null mutant, the pch2-nlsΔ single mutant complet-
ed meiosis and sporulation with similar kinetics and efficiency
than the wild type generating high levels of viable spores (Fig.
1b, c; Table 1). Notably, when the checkpoint was triggered by
the absence of Zip1, the pch2-nlsΔ mutation suppressed the
sporulation defect of zip1Δ (Fig. 1b) to produce largely invi-
able spores (Table 1). Likewise, the substantial delay in the
kinetics of meiotic divisions of zip1Δ was drastically sup-
pressed in zip1Δ pch2-nlsΔ to reach near wild-type kinetics
(Fig. 1d). Western blot analysis revealed that, in both the wild-
type strain and the pch2-nlsΔ single mutant, the Pch2 and
Pch2-nlsΔ proteins were induced during meiotic prophase
(15 h) and then disappeared with similar kinetics as meiosis
and sporulation progresses (Herruzo et al. 2016) (Fig. 1c, e).
In the zip1Δmutant, high levels of the wild-type Pch2 protein
persisted until late time points (Fig. 1e) according to its strong
meiotic prophase block (Fig. 1d). In contrast, in zip1Δ pch2-
nlsΔ, the levels of Pch2-nlsΔ drastically diminished as mei-
otic divisions took place (Fig. 1d, e). To determine whether the
reduced levels of Pch2-nlsΔ in zip1Δ pch2-nlsΔ cells were
responsible for the bypass of zip1Δ arrest or simply reflected
the consequences of meiotic progression beyond the point
when the Pch2 protein is normally produced, we quantified
Pch2 protein levels in the ndt80Δ mutant at the 24-h time
point, when most cells in the BR strain background display
a uniform prophase arrest (Voelkel-Meiman et al. 2012). We
found that in ndt80Δ-arrested cells, Pch2-nlsΔ levels were
not significantly reduced compared to those of the wild-type
Pch2 (Fig. 1f, g), demonstrating that the disappearance of
Pch2-nlsΔ at late time points in the zip1Δ pch2-nlsΔ double

mutant (Fig. 1e) is the consequence, and not the cause, of
meiotic cell cycle progression. We also analyzed molecular
markers of checkpoint activation influenced by Pch2 function,
such as Mec1-dependent Hop1-T318 phosphorylation and
Mek1-dependent H3-T11 phosphorylation (Govin et al.
2010; Penedos et al. 2015; Herruzo et al. 2016; Kniewel
et al. 2017). The zip1Δ mutant showed high levels of these
phosphorylation events that were largely abolished in both
zip1Δ pch2Δ and zip1Δ pch2-nlsΔ (Fig. 1e) consistent with
suppression of the meiotic block. Thus, the zip1Δ pch2-nlsΔ
mutant phenocopies the checkpoint defects of zip1Δ pch2Δ,
indicating that the NLS-like sequence is absolutely required
for meiotic checkpoint function.

We also examined the localization of the Pch2-nlsΔ protein
by immunofluorescence of spread pachytene chromosomes at
24 h after meiotic induction in an ndt80Δ background. We
used antibodies recognizing the Nsr1 protein as a nucleolar
marker. Nuclei with a zygotene/pachytene chromosomal mor-
phology based on DAPI staining of chromatin were scored in
all localization analyses. As previously described, in both
wild-type and zip1Δ nuclei, Pch2 displayed a conspicuous
accumulation at the rDNA region marked by the presence of
Nsr1 in the vicinity (Fig. 2b; Table S1). In contrast, the Pch2-
nlsΔ protein was not detected associated to the meiotic rDNA
chromatin (Fig. 2a; Table S1) despite the fairly normal levels
observed in whole-cell extracts (Fig. 1f, g). Thus, the NLS-
like stretch is required for Pch2 nucleolar localization.

The faint rDNA-independent SC-associated foci of Pch2
on wild-type prophase chromosomes are difficult to detect in
most nuclear spread preparations (at least from BR strains)
because their intensity is only slightly above the background
level and they are often masked by the intense nucleolar signal
(Herruzo et al. 2016). To circumvent this issue, we devised an
alternative strategy to monitor the ability of Pch2 (or mutant
derivatives) to bind SC components by inducing the formation
of polycomplexes. The polycomplex is an extrachromosomal
aggregate of SC proteins formed under certain circumstances
(i.e., ZIP1 overexpression or Spo11 deficiency) that mimics
the same ultrastructure as the native SC (Dong and Roeder
2000). The formation of this structure provides an excellent
and prominent readout for SC assembly allowing us to easily
assess Pch2 interaction with SC components (Fig. 2b).
Therefore, we examined the presence of different Pch2 ver-
sions in the polycomplexes of strains overexpressing ZIP1. As
expected, the wild-type Pch2 protein extensively colocalized
with Zip1 in the polycomplex (San-Segundo and Roeder
1999); in contrast, Pch2-nlsΔ failed to be detected in this
structure (Fig. 2b; Table S1). We conclude that the NTD por-
tion deleted in Pch2-nlsΔ is necessary not only for rDNA
localization, but also for interaction with SC proteins.

We also analyzed the ability of the checkpoint-deficient
ATPase-dead versions of Pch2 previously generated (Pch2-
K320A and Pch2-E399Q) (Fig. 1a) to interact with Zip1 in
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the polycomplex. Pch2-K320A lacks the ATP-binding site in
the Walker A motif; this protein fails to maintain a stable
AAA+ hexameric complex and also fails to localize to meiotic
chromatin. Pch2-E399Q lacks the ATP-hydrolysis site in the
Walker B motif, but it does localize to the rDNA region de-
spite being catalytically inactive (Chen et al. 2014; Herruzo
et al. 2016). Consistent with those observations, we found that
Pch2-K320A does not localize to polycomplexes, whereas the
Pch2-E399Q version retains the capacity to associate with SC

components (Fig. 2b; Table S1). Thus, the ATPase activity of
Pch2 is not intrinsically a requisite for its proper localization.

To assess whether the basic-rich 17-amino-acid NTD se-
quence is actually acting as a true NLS to sustain Pch2 func-
tion, we replaced it by a bona fide NLS from the SV40 virus
generating the pch2-SV40NLS version (Fig. 1a). Albeit with
slightly reduced levels, the Pch2-SV40NLS protein displayed
the characteristic kinetics of prophase induction and eventual
disappearance coincident with meiotic progression similar to
Pch2 and Pch2-nlsΔ (Fig. 1e). Like pch2Δ and pch2-nlsΔ,
the pch2-SV40NLS single mutant sustained normal sporulation
and high levels of spore viability (Fig. 1b, Table 1). In addi-
tion, similar to zip1Δ pch2Δ and zip1Δ pch2-nlsΔ, the
zip1Δ-induced checkpoint-dependent meiotic block was alle-
viated in the zip1Δ pch2-SV40NLS double mutant resulting in
increased spore death (Fig. 1b, d; Table 1). Consistently,
zip1Δ pch2-SV40NLS displayed impaired Hop1-T318 and
H3-T11 phosphorylation as compared to zip1Δ (Fig. 1e).
Moreover, like Pch2-nlsΔ, the Pch2-SV40NLS version also
failed to localize to the rDNA region and to the polycomplex
on meiotic chromosome spreads (Fig. 2a, b; Table S1). Thus,
these findings are consistent with the possibility that the func-
tion of the Pch2 NTDmotif is not, at least exclusively, driving
Pch2 nuclear or nucleolar targeting/import by a canonical
NLS-dependent mechanism.

The BKRK^ basic motif in the Pch2 NTD is required
for checkpoint function and localization

In order to pinpoint the residues within the 17-amino-acid
stretch that are relevant for Pch2’s checkpoint function, we
constructed several mutants in which the basic residues were
changed to alanine in different combinations (Fig. 1a): in
pch2-ntd6A, all lysines (K) and the arginine (R) were mutated;
in pch2-ntd2A, the KK at positions 42–43 were mutated; and
in pch2-ntd3A, the KRK at positions 56–58 were mutated. We
introduced these mutations into centromeric plasmids contain-
ing 3HA-tagged PCH2 and transformed a checkpoint-
deficient zip1Δ pch2Δ strain to assess their ability to restore
checkpoint function by monitoring sporulation efficiency
(Fig. 3a). As controls, the zip1Δ pch2Δ strain was also trans-
formed with the empty vector (checkpoint fully inactive) or
with the wild-type PCH2 (checkpoint active). We found that
pch2-ntd6A and pch2-ntd3A completely suppressed the zip1Δ
sporulation defect, whereas pch2-ntd2A only conferred a par-
tial decrease in sporulation efficiency. Note that the wild-type
PCH2 did not fully restore checkpoint arrest in this plasmid-
based assay as a consequence of plasmid-loss events. Those
zip1Δ pch2Δ cells that lose the plasmid (about 25%) become
completely checkpoint defective and complete sporulation
(Refolio et al. 2011). In any case, these observations suggest
that the Pch2-ntd6A and Pch2-ntd3A proteins do not support
checkpoint function, but the Pch2-ntd2A version retains

�Fig. 1 A basic-rich motif in the Pch2 NTD is essential for its checkpoint
function. a Pch2-relevant motifs and mutants generated. A schematic
representation of the S. cerevisiae Pch2 protein (ScPch2) and the
orthologs from C. elegans (CePCH-2) and human (HsTRIP13) is
depicted indicating the characteristic AAA+ ATPase motifs. The se-
quence of the basic-richmotif (purple) in the extendedN-terminal domain
of Pch2 (NTD) is shown along with the modifications introduced (light
blue) in the different mutants generated in this work (see text). Walker A
and Walker B mutants previously constructed are also shown (Herruzo
et al. 2016). b Sporulation efficiency, determined by microscopic
counting, after 3 days on sporulation plates. Error bars: SD; n = 3. c, d
Time course analysis of meiotic nuclear divisions; the percentage of cells
containing two or more nuclei is represented. Error bars: SD; n = 6 in c;
n = 3 in d. e Western blot analysis of Pch2 production during meiosis
(detected with anti-HA antibodies), Hop1-T318 phosphorylation, and
Mek1 activation (H3-T11 phosphorylation). PGK was used as a loading
control. Strains in (b, c, d, e) are DP1151 (wild type), DP1164 (pch2Δ),
DP1408 (pch2-nlsΔ), DP1455 (pch2-SV40NLS), DP1152 (zip1Δ),
DP1161 (zip1Δ pch2Δ), DP1409 (zip1Δ pch2-nlsΔ), and DP1456
(zip1Δ pch2-SV40NLS). f Western blot analysis of Pch2 production in
ndt80Δ-arrested strains of the indicated genotypes. Auxin (500 μM)
was added to orc1-m3AID cultures 12 h after meiotic induction and all
cell extracts were prepared at 24 h. g Quantification of Pch2 levels nor-
malized with PGK and relativized to wild type. Errors bars: SD; n = 3; ns,
not significant. The ndt80Δ strains in f and g are DP1191 (wild type),
DP1411 (pch2-nlsΔ), DP1569 (pch2-ntd3A), DP1451 (orc1-m3AID),
DP1190 (zip1Δ), DP1412 (zip1Δ pch2-nlsΔ), DP1570 (zip1Δ pch2-
ntd3A), and DP1452 (zip1Δ orc1-3mAID)

Table 1 Sporulation and spore viability

Relevant genotype Sporulation frequency (%) Spore Viability (%)

Wild type 69.2 95.3a

pch2Δ 77.2 90.7a

pch2-nlsΔ 76.3 93.1

pch2-SV40NLS 73.0 91.0

orc1-6HA 79.0 95.1

orc1-3mAID 67.6 91.7

zip1Δ 3.6 nd

zip1Δ pch2Δ 82.4 35.2a

zip1Δ pch2-nlsΔ 76.3 41.7

zip1Δ pch2-SV40NLS 86.6 45.1

zip1Δ orc1-6HA 1.6 nd

zip1Δ orc1-3mAID 2.8 nd

aData obtained from Herruzo et al., 2016

nd not determined
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partial activity. To confirm this conclusion, we analyzed H3-
T11 phosphorylation as a reporter for Mek1 activity.
Consistent with the meiotic phenotype, H3-T11ph was

severely impaired in the strains harboring pch2-ntd6A and
pch2-ntd3A mutations and only partially reduced in pch2-
ntd2A (Fig. 3b) indicating that the KRK motif at positions
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56–58 of the Pch2 NTD is critical for the meiotic recombina-
tion checkpoint. Note that the absence of the Pch2-nlsΔ,
Pch2-ntd6A, and Pch2-ntd3A proteins at the 24-h time point
(Fig. 3b) is the consequence of meiotic progression in these
checkpoint-deficient mutants since both Pch2-nlsΔ and Pch2-
ntd3A are produced at fairly normal levels in prophase-
arrested ndt80Δ strains (Fig. 1f, g).

We next examined the localization of these Pch2-ntd
mutant versions on spread zip1Δ meiotic nuclei in combi-
nation with Hop1 staining at the 15-h time point when all
the proteins are present. Both Pch2-ntd6A and Pch2-ntd3A
failed to decorate the rDNA meiotic chromatin. Moreover,
like zip1Δ pch2Δ (Herruzo et al. 2016), the zip1Δ pch2-
ntd6A and zip1Δ pch2-ntd3A mutants displayed
fragmented and discontinuous Hop1 distribution, in con-
trast to the linear Hop1 axial configuration characteristic of
the zip1Δ mutant (Fig. 3c; Table S1). On the other hand,
the Pch2-ntd2A protein, which confers partial checkpoint
activity, did localize to the rDNA retaining the capacity to
exclude Hop1 from the nucleolar region (Fig. 3c;
Table S1). We also determined the ability to interact with
SC components by analyzing colocalization with Zip1 in
polycomplexes. We overexpressed ZIP1 from a high-copy
vector in pch2Δ strains co-transformed with centromeric
plasmids expressing either wild-type PCH2 or the different
pch2-ntd mutant versions. As expected, we observed ex-
tensive colocalization of wild-type Pch2 and Zip1 within
the polycomplex (Fig. 3d; Table S1). In contrast, Pch2-
n td6A and Pch2-n td3A did no t as soc i a t e wi th
polycomplexes, whereas Pch2-ntd2A could be detected in
this structure (Fig. 3d; Table S1). Thus, both pch2-ntd6A
and pch2-ntd3A mutants, but not pch2-ntd2A, appear to be
defective in Pch2 localization and meiotic recombination
checkpoint function, suggesting that the KRK motif in the
context of the Pch2 NTD is crucial for Pch2 action in the
response to zip1Δ-induced meiotic defects.

The PCH2 intron is not relevant for the meiotic
checkpoint

The mRNA produced by the PCH2 gene contains an intron
close to the end that undergoes Tgs1-dependent and Mer1-
independent splicing (Fig. S2) (Qiu et al. 2011). Although most
budding yeast genes do not possess introns, their presence is
relatively frequent among meiotic genes; indeed, controlled in-
tron processing is crucial for certain meiotic events (Munding
et al. 2010). In order to investigate if the regulated splicing of the
PCH2 mRNA is required for a proper meiotic checkpoint re-
sponse, we constructed a centromeric plasmid carrying a PCH2
allele lacking the intron sequence (pch2-intΔ) (Fig. S2) and
assessed its ability to restore checkpoint function when trans-
formed into a zip1Δ pch2Δ mutant. The Pch2 protein was
produced from the pch2-intΔ allele with similar dynamics as
the protein produced from the wild-type PCH2 gene (Fig. 3b).
Introduction of the pch2-intΔ allele decreased sporulation effi-
ciency of zip1Δ pch2Δ to the same levels as the wild-type
PCH2 did (Fig. 3a), and it sustained high levels of H3-T11
phosphorylation (Fig. 3b). Moreover, like the protein produced
from the wild-typePCH2 gene, the Pch2 protein generated from
the pch2-intΔ allele localized to the rDNA excluding Hop1
from this region (Fig. 3c; Table S1) and also was capable of
interacting with Zip1 in the polycomplex (Fig. 3d; Table S1).
Therefore, although we cannot rule out a subtle effect in other
meiotic events controlled by Pch2, we conclude that the PCH2
intron is dispensable for the zip1Δ-induced meiotic recombina-
tion checkpoint and for Pch2 chromosomal localization.

Analysis of Pch2 localization in whole meiotic cells

Using chromosome spreading, we have shown above that de-
letion or mutation of the NLS-like motif in the Pch2 NTD
prevents its rDNA localization and association with SC pro-
teins also leading to defective checkpoint function. Insertion
of a bona-fide NLS from SV40 restores neither Pch2 chromo-
some binding nor function. Therefore, to further investigate
the contribution of this basic NTD motif to govern Pch2 loca-
tion, we explored Pch2 subcellular localization in whole mei-
otic cells. For this purpose, we initially generated diploid
strains (GFP-PCH2) expressing a version of the PCH2 gene
containing the sequence of the green fluorescent protein
(GFP) inserted at the second codon in its own genomic locus.
A flexible linker encoding five Gly-Ala repeats was also in-
troduced between the GFP and PCH2 sequences (Fig. S3a).
Several lines of evidence demonstrated that the GFP-Pch2
protein is functional. First, zip1Δ GFP-PCH2 strains
displayed a tight sporulation block similar to that of zip1Δ
(Fig. S3b). Second, like the zip1Δ mutant, zip1Δ GFP-
PCH2 showed a marked meiotic delay in meiotic time courses
(Fig. S3c), and sustained Hop1-T318 and H3-T11 phosphor-
ylation (Fig. S3d). Third, Hop1 was excluded from the rDNA

�Fig. 2 The basic-rich motif in the Pch2 NTD is essential for its nucleolar
localization and for its association with SC components. a
Immunofluorescence of meiotic chromosomes stained with anti-Pch2 an-
tibodies to detect Pch2, Pch2-nlsΔ, or Pch2-SV40NLS (red); anti-Nsr1
antibodies (green); and DAPI (blue). Representative nuclei are shown.
Arrows point to the rDNA region. Samples were prepared 24 h after
meiotic induction for the ndt80Δ strains DP1191 (wild type), DP1411
(pch2-nlsΔ), DP1190 (zip1Δ), and DP1412 (zip1Δ pch2-nlsΔ), or at
15 h for DP1455 (pch2-SV40NLS) and DP1456 (zip1Δ pch2-SV40NLS).
b Immunofluorescence of meiotic chromosomes stained with anti-HA
antibodies to detect Pch2, Pch2-nlsΔ, Pch2-K320A, Pch2-E399Q, or
Pch2-SV40NLS (red); anti-Zip1 antibodies (green); and DAPI (blue).
Representative nuclei are shown. Samples were prepared 15 h after mei-
otic induction. Arrows point to the polycomplex. Strains in b are DP1151
(wild type), DP1408 (pch2-nlsΔ), DP1163 (pch2-K320A), DP1287
(pch2-E399Q), and DP1455 (pch2-SV40NLS), all of them transformed
with a high-copy plasmid overexpressing ZIP1 (pSS343)
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region in zip1ΔGFP-PCH2meiotic chromosomes (Fig. S3e).
Nevertheless, despite being functional, western blot analysis
revealed that GFP-Pch2 was produced inmeiotic cells at about
10-fold reduced levels compared to the wild-type Pch2 protein
and was barely detectable (Fig. 4a; second lane; Fig. S3d).
These observations indicate that extremely low levels of
Pch2 are sufficient to establish the meiotic checkpoint re-
sponse, but prevent the use of the endogenous GFP-PCH2
fusion for precise and sensitive localization studies. Thus,
we placed the GFP-PCH2 construct (as well as GFP-pch2-
nlsΔ and GFP-pch2-SV40NLS) under control of the meiosis-
specificHOP1 promoter in centromeric plasmids (Fig. 4b). In
this situation, GFP-Pch2 and GFP-Pch2-nlsΔ were produced
at roughly similar levels as the untagged Pch2 protein, and
GFP-Pch2-SV40NLS at only slightly reduced levels (Fig. 4a).
Moreover, this plasmid-borne version of GFP-PCH2 was ca-
pable of restoring sporulation arrest to large extent when trans-
formed into zip1Δ pch2Δ (Fig. 4c) (sporulation was not
completely blocked due to plasmid-loss events; see previous
sections for explanation). In contrast, GFP-Pch2-nlsΔ and
GFP-Pch2-SV40NLS did not confer checkpoint functionality
(Fig. 4c), consistent with the results shown above (Fig. 1b, d).
Consequently, we used these constructs to examine Pch2 dis-
tribution in whole meiotic prophase cells. These plasmids
were transformed into zip1Δ strains, also harboring HOP1-
mCherry in heterozygosis as a marker for meiotic prophase
chromosomes, and were analyzed by fluorescence
microscopy.

We found that the wild-type GFP-Pch2 localized mainly to
a discrete reduced area in one side of the nucleus (Fig. 4d; Fig.
S4). According to the prominent localization pattern of Pch2
on chromosome spreads (Fig. 2a) (San-Segundo and Roeder
1999; Herruzo et al. 2016) and with the fact that this conspic-
uous GFP-Pch2 structure did not overlap with Hop1-mCherry
(Fig. 4d; Fig. S4), we conclude that it likely corresponds to the
nucleolus. In addition, GFP-Pch2 also displayed a diffuse ho-
mogenous cytoplasmic signal (Fig. 4d; Fig. S4). In contrast,
GFP-Pch2-nlsΔ was largely excluded from the nucleus and
found mostly in the cytoplasm (Fig. 4d; Fig. S4), as demon-
strated by the reduced nuclear/cytoplasm fluorescence ratio of
GFP-pch2-nlsΔ cells compared to that of wild-type GFP-
PCH2 (Fig. 4e). On the other hand, GFP-Pch2-SV40NLS

was more concentrated inside the nucleus (Fig. 4e) displaying
a diffuse nucleoplasmic signal, but did not show nucleolar
accumulation (Fig. 4d; Fig. S4). The use of the LineScan tool
of MetaMorph software to trace fluorescent signals confirmed
the differential distribution of GFP-Pch2, GFP-Pch2-nlsΔ,
and GFP-Pch2-SV40NLS across nucleolar, nuclear, and cyto-
plasmic compartments (Fig. 4d; Fig. S4).

These results indicate that the basic-rich motif in the NTD
of Pch2 is required for its nuclear/nucleolar accumulation, but
it is not simply acting as a canonical NLS sequence. The
substitution of this motif for the SV40 NLS is capable of
bringing Pch2 back to the nucleus, but it does not restore its
normal distribution or its checkpoint function. We conclude
that Pch2’s NTD basic motif drives Pch2 subcellular localiza-
tion and function by additional mechanisms besides the mere
control of nuclear import.

Orc1 and Pch2 colocalize in the nucleolar region

The results presented above allowed us to identify a short motif
in the Pch2 NTD important for its function and localization.
We next sought for possible Pch2-interacting factors that could
orchestrate Pch2 chromosomal distribution to support its
checkpoint role. It has been described that Orc1 interacts with
Pch2 promoting its nucleolar targeting to exert a repressive
effect on meiotic DSB formation in the rDNA region (Vader
et al. 2011). However, the possible implication of Orc1 in the
meiotic recombination checkpoint remains to be tested. We
first analyzed the localization of Pch2 and Orc1 on spread
preparations of meiotic chromosomes. In order to detect
Orc1, we constructed a C-terminal 6HA-tagged version of
the protein. The ORC1-6HA strain (also carrying 3MYC-
PCH2) sporulated to normal levels and displayed high levels
of spore viability (Fig. S5a; Table 1). Moreover, the zip1Δ
ORC1-6HA 3MYC-PCH2 diploid showed a strong sporulation
block (Fig. S5a) indicating that Orc1 tagging does not disturb
the meiotic checkpoint response. Immunofluorescence analy-
sis of spread nuclei revealed that Pch2 and Orc1 at least par-
tially colocalize in the rDNA region (Fig. 5a; arrows).

�Fig. 3 The KRK sequence within the basic motif in the Pch2 NTD is
essential for its checkpoint function, nucleolar localization, and
association with SC components. a Sporulation efficiency, determined
by microscopic counting, after 3 days on sporulation plates. Error bars:
SD; n = 3. The dotted line marks the basal level of complementation of
zip1Δ pch2Δ checkpoint defect with the wild-type PCH2 plasmid
discarding the plasmid-loss effect. b Western blot analysis of Pch2 pro-
duction and Mek1 activation (H3-T11 phosphorylation) at the indicated
times after meiotic induction. PGK was used as a loading control. Strains
in a and b are DP421 (wild type), DP422 (zip1Δ), and DP1405 (zip1Δ
pch2Δ). The zip1Δ pch2Δ strain was transformed with pSS75 (PCH2),
pRS314 (vector), pSS338 (pch2-nlsΔ), pSS358 (pch2-ntd6A), pSS363
(pch2-ntd2A), pSS364 (pch2-ntd3A), and pSS362 (pch2-intΔ). c
Immunofluorescence of meiotic chromosomes stained with anti-HA an-
tibodies to detect Pch2, Pch2-nlsΔ, Pch2-ntd6A, Pch2-ntd2A, Pch2-
ntd3A, or Pch2-intΔ (red); anti-Hop1 antibodies (green); and DAPI
(blue). Representative nuclei are shown. Samples were prepared 15 h
after meiotic induction. Arrows point to the rDNA region. The DP1405
(zip1Δ pch2Δ) strain was transformed with pSS75 (PCH2), pSS338
(pch2-nlsΔ), pSS358 (pch2-ntd6A), pSS363 (pch2-ntd2A), pSS364
(pch2-ntd3A), and pSS362 (pch2-intΔ). d Immunofluorescence of mei-
otic chromosomes stained with anti-HA antibodies to detect Pch2, Pch2-
ntd6A, Pch2-ntd2A, Pch2-ntd3A, or Pch2-intΔ (red); anti-Zip1 antibod-
ies (green); and DAPI (blue). Representative nuclei are shown. Samples
were prepared 15 h after meiotic induction. Arrows point to the
polycomplex. The DP186 (pch2Δ) strain, transformed with pSS75
(PCH2), pSS358 (pch2-ntd6A), pSS363 (pch2-ntd2A), pSS364 (pch2-
ntd3A), and pSS362 (pch2-intΔ), was also co-transformed with a high-
copy plasmid overexpressing ZIP1 (pSS343)
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Nevertheless, we note that Pch2 was somewhat mislocalized
from the nucleolar area in the strain harboring Orc1-6HA,
displaying an additional chromosomal punctate pattern that

was not observed in Orc1-untagged nuclei (Fig. 5a;
arrowheads; Table S1). These and other observations with ad-
ditional Orc1-tagging attempts (data not shown; see below)
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indicate that this essential protein appears to be extremely sen-
sitive to structural alterations produced by the fusion to ectopic
epitopes. Although the essential replicative function of Orc1-
6HA likely remains intact (growth and sporulation are normal
in the tagged strains), other functions, such as Pch2 localiza-
tion, appear to be slightly affected without compromising
checkpoint functionality. To corroborate that the nuclear loca-
tion where Orc1 colocalizes with Pch2 corresponds to the nu-
cleolus, we took advantage of the fact that acetylation of his-
tone H4 at lysine 16 (H4K16ac) is absent from the rDNA
region (Cavero et al. 2016). As shown in Fig. 5b, Orc1 accu-
mulation occurred in a region completely devoid of H4K16ac
confirming that it coincides with the nucleolus.

Nucleolar localization of Pch2, but not polycomplex
association, is impaired in Orc1-depleted cells

Since ORC1 is an essential gene, in order to investigate in
detail the requirement for Orc1 to target Pch2 to the rDNA
and/or to the SC and the implication in the checkpoint, we
aimed to generate conditional orc1 alleles using the auxin-
inducible degron (AID) system (Nishimura and Kanemaki
2014). We initially fused the C terminus of Orc1 to either
the original full degron tag (AID), a shorter version (mAID),
or three tandem copies of it (3mAID), in haploid strains ex-
pressing plant TIR1 from the ADH1 promoter and assessed the

ability to grow on plates containing auxin (Fig. S5b, c). Only
the orc1-3mAID mutant showed auxin-dependent growth in-
hibition (Fig. S5c); therefore, we selected this orc1-3mAID
construct to generate diploid strains harboring the TIR1 gene
under control of the meiosis-specific HOP1 promoter to use
this system for depleting Orc1 in meiotic cultures. The orc1-
3mAID mutant sustained normal levels of sporulation and
spore viability and, like zip1Δ, the zip1Δ orc1-3mAID double
mutant showed a tight sporulation block (Table 1; Fig. S5d).
To explore the consequences of Orc1-3mAID depletion in
meiotic time courses, we added auxin (or ethanol, as the sol-
vent control) 12 h after meiotic induction, coinciding with
prophase initiation in the BR strain background. We found
that Orc1-3mAID was indeed efficiently degraded upon auxin
treatment, but Pch2 global levels were not altered when Orc1
was depleted (Fig. 1f, g, 6a). Analysis of chromosome spreads
revealed that, consistent with a previous report using an orc1-
161 thermosensitive allele (Vader et al. 2011), Pch2 was not
detected in the nucleolar region of orc1-3mAID nuclei in ei-
ther the presence or the absence of added auxin (Fig. 6b;
Table S1). This result confirms that Orc1 is required for nu-
cleolar targeting of Pch2 and reveals that C-terminal tagging
of Orc1 with the 3mAID degron impairs this particular func-
tion without altering other essential roles of Orc1. Thus, Pch2
localization in the rDNA is exquisitely sensitive to Orc1 in-
tegrity. In any case, although orc1-3mAID per se prevents
Pch2 normal distribution, we performed all the ensuing exper-
iments involving this allele with auxin addition to promote
Orc1-3mAID degradation (Fig. 6a) and using the untagged
version as control thus avoiding uncertainties in the
conclusions.

Since Pch2 prevents Hop1 binding to the rDNA, we exam-
ined the impact of Orc1 depletion onHop1 localization in both
wild-type and zip1Δ cells. Consistent with the absence of
nucleolar Pch2 in the orc1-3mAID mutant (Fig. 6b), Hop1
decorated the rDNA region distinguished by the Nsr1 nucle-
olar marker (Fig. 6c; Table S1). These observations suggest
that Pch2/Orc1-dependent exclusion of Hop1 from the rDNA
likely underlies the meiotic DSB repressive effect in this re-
gion. We next determined the ability of Pch2 to bind to SC
components in the absence of Orc1 by analyzing the
colocalization with Zip1 in the polycomplex. In an initial at-
tempt to induce the formation of polycomplexes by overex-
pressing ZIP1 from a high-copy plasmid (see above), we
found that the orc1-3mAID allele precludes ZIP1 overexpres-
sion (Fig. S6), likely as a consequence of a fully functional
Orc1 requirement for plasmid maintenance (Fox et al. 1995).
Therefore, we took advantage of the recombination and
synapsis-defective spo11Δ mutant as an alternative tool to
promote polycomplex formation (Cheng et al. 2006). In con-
trast to the pch2-ntd mutants characterized above, we ob-
served that Pch2 does colocalize with Zip1 in the
polycomplexes formed in the orc1-3mAIDmutant treatedwith

�Fig. 4 The basic NLS-like motif in Pch2 NTD orchestrates its proper
subcellular distribution. a Production of untagged Pch2 and different
versions of GFP-Pch2 were analyzed by western blot 15 h after meiotic
induction. Protein levels were normalized with PGK and relativized to
untagged wild-type Pch2; n = 4. Strains are BR2495 (PCH2), DP1508
(GFP-PCH2), and DP186 (pch2Δ). DP186 was transformed with
pSS393 (PHOP1-GFP-PCH2), pSS396 (PHOP1-GFP-pch2-nlsΔ), and
pSS397 (PHOP1-GFP-pch2-SV40

NLS). b Schematic representation of the
PHOP1-GFP-PCH2 construct in the pSS393 plasmid. The pSS396 and
pSS397 plasmids (not depicted) are similar, but express GFP-pch2-
nlsΔ and GFP-pch2-SV40NLS, respectively. c Sporulation efficiency, de-
termined by microscopic counting, after 3 days on sporulation plates.
Error bars: SD; n = 6. Strains are DP421 (wild type), DP422 (zip1Δ),
and DP1405 (zip1Δ pch2Δ), transformed with pRS314 (vector), pSS75
(3HA-PCH2), pSS393 (PHOP1-GFP-PCH2), pSS396 (PHOP1-GFP-pch2-
nlsΔ), or pSS397 (PHOP1-GFP-pch2-SV40NLS), as indicated. d
Fluorescence microscopy analysis of GFP-Pch2 (green) and Hop1-
mCherry (red) distribution in whole meiotic cells 15 h after meiotic in-
duction. The overlay with differential interference contrast (DIC) images
is also displayed to show the cell morphology. The plots represent the
GFP and mCherry fluorescent signals (green and red, respectively) along
the depicted yellow lines from left to right. Representative cells are
shown. Additional cells and line-scan plots are presented in Fig. S4. e
Quantification of the ratio between the nuclear (including the nucleolar)
and cytoplasmic GFP fluorescent signal. The cartoon illustrates the sub-
cellular localization of the different Pch2 versions. The strains in d and e
are DP1500 (zip1Δ) transformed with pSS393 (PHOP1-GFP-PCH2),
pSS396 (PHOP1-GFP-pch2-nlsΔ), or pSS397 (PHOP1-GFP-pch2-
SV40NLS); 62, 72, and 59 cells, respectively, were scored
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auxin (Fig. 6d; Table S1). The presence of Pch2 in the
spo11Δ-induced polycomplexes tended to be even more fre-
quent in orc1-3mAID compared to the wild type, although the
statistical difference was not significant (Fig. 6e). In sum,
these observations indicate that, unlike the rDNA, Pch2 inter-
action with SC components does not involve Orc1. Thus, the
orc1-3mAID allele provides a unique scenario to determine
whether Pch2 nucleolar localization is specifically required
for the meiotic recombination checkpoint response.

The zip1Δ-triggered meiotic recombination
checkpoint is active in the absence of Orc1

We analyzed the impact of auxin-induced Orc1-3mAID de-
pletion on the meiotic recombination checkpoint during mei-
otic time courses (Fig. 7). The orc1-3mAID single mutant
displayed normal kinetics of nuclear divisions and, more im-
portant, like zip1Δ, the zip1Δ orc1-3mAID double mutant
showed a strong delay in meiotic progression (Fig. 7a) sug-
gesting that the checkpoint remains functional in the absence
of Orc1. Moreover, the meiotic block of zip1Δ orc1-3mAID
was alleviated by deletion of PCH2 (Fig. 7b) indicating that it
stems from activation of the meiotic recombination

Fig. 5 Colocalization of Pch2 and
Orc1 in the rDNA region. a
Immunofluorescence of meiotic
chromosomes stained with anti-
Pch2 antibodies to detect Pch2
(red), anti-HA antibodies to detect
Orc1 (green), and DAPI (blue).
Representative nuclei are shown.
Samples were prepared 15 h after
meiotic induction. Arrows point
to the rDNA region. Arrowheads
point to some of the
extranucleolar Pch2 dots ob-
served in ORC1-6HA nuclei.
Strains are DP1243 (3MYC-
PCH2), DP1426 (3MYC-PCH2
ORC1-6HA), DP1244 (zip1Δ
3MYC-PCH2), and DP1427
(zip1Δ 3MYC-PCH2 ORC1-
6HA). b Immunofluorescence of
meiotic chromosomes stained
with anti-H4K16ac (red), anti-HA
antibodies to detect Orc1 (green),
and DAPI (blue). A representative
nucleus is shown. Samples were
prepared 15 h after meiotic in-
duction. Arrows point to the
rDNA region. The strain is
DP1426 (3MYC-PCH2 ORC1-
6HA)

�Fig. 6 Nucleolar localization of Pch2, but not interaction with SC
components, depends on Orc1. a Western blot analysis of Pch2
production (detected with anti-HA antibodies) and Orc1-m3AID (detect-
ed with anti-mAID antibodies) at the indicated times in meiosis. Auxin
(500 μM) or ethanol (as control) was added 12 h after meiotic induction.
PGK was used as a loading control. b Immunofluorescence of meiotic
chromosomes stained with anti-Pch2 antibodies to detect Pch2 (red), anti-
Nsr1 antibodies (green), and DAPI (blue). Representative nuclei are
shown. Auxin (500 μM) or ethanol (as control) was added 12 h after
meiotic induction and samples were prepared at 17 h. Arrows point to
the rDNA region. c Orc1 prevents Hop1 localization to the rDNA.
Immunofluorescence of meiotic chromosomes stained with anti-Nsr1 an-
tibodies (red), anti-Hop1 antibodies (green), and DAPI (blue).
Representative nuclei are shown. Auxin (500 μM) was added 12 h after
meiotic induction and samples were prepared at 17 h. Arrows point to the
rDNA region. Strains in a, b and c are DP1151 (wild type), DP1437
(orc1-3mAID), DP1152 (zip1Δ), and DP1438 (zip1Δ orc1-3mAID). d
Orc1 is dispensable for Pch2 association with the polycomplex.
Immunofluorescence of meiotic chromosomes stained with anti-HA an-
tibodies to detect Pch2 (red), anti-Zip1 antibodies (green), and DAPI
(blue). Representative nuclei are shown. Auxin (500 μM) was added
12 h after meiotic induction and samples were prepared at 17 h. Arrows
point to the polycomplex. e Quantification of the nuclei displaying Pch2
in the Zip1-containing polycomplex. Error bars, SD; n = 3; ns, not signif-
icant. Strains in d and e are DP1425 (spo11Δ) and DP1444 (spo11Δ
orc1-3mAID)
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checkpoint. To validate this interpretation, we analyzed Hop1-
T318 and H3-T11 phosphorylation as markers of checkpoint
activation. In zip1Δ orc1-3mAID cells treated with auxin to
induce Orc1-m3AID degradation (Fig. 7c), we found high
levels of these checkpoint phospho-targets (Fig. 7d),
confirming that Orc1 is dispensable for activation and

maintenance of the meiotic checkpoint. In addition, to avoid
the influence of the different kinetics of meiotic progression of
the strains examined, we also quantified the ratio of phospho-
Hop1-T318/total Hop1 as a selective indicator of Pch2 check-
point function in ndt80Δ-arrested cells harboring various
pch2 and orc1 mutations (Herruzo et al. 2016) (Fig. 7e, f).

Fig. 7 Orc1 is not required for activation of the meiotic recombination
checkpoint. a, b Time course analysis of meiotic nuclear divisions; the
percentage of cells containing two or more nuclei is represented. Error
bars: SD; n = 3. c Western blot analysis of Orc1-m3AID production de-
tected with anti-mAID antibodies. dWestern blot analysis of Hop1-T318
phosphorylation and Mek1 activation (H3-T11 phosphorylation). In a, b,
c, and d, auxin (500 μM) or ethanol (as control) was added 12 h after
meiotic induction. PGK was used as a loading control. Strains in a, b, c,
and d are DP1151 (wild type), DP1152 (zip1Δ), DP1437 (orc1-3mAID),
DP1438 (zip1Δ orc1-3mAID), DP1161 (zip1Δ pch2Δ), and DP1586

(zip1Δ orc1-3mAID pch2Δ). e Western blot analysis of Pch2 and Hop1
production, and Hop1-T318 phosphorylation in ndt80Δ-arrested strains
of the indicated genotypes. Auxin (500 μM) was added to the zip1Δ
orc1-m3AID culture 12 h after meiotic induction and all cell extracts were
prepared at 24 h. fQuantification of relative Hop1-T318 phosphorylation
analyzed as in e. The ratio of phospho-Hop1-T318 versus total Hop1 is
represented. Errors bars: SD; n = 3. Asterisk: p < 0.05; ns, not significant.
The ndt80Δ strains in e and f are DP1191 (wild type), DP1190 (zip1Δ),
DP881 (zip1Δ pch2Δ), DP1412 (zip1Δ pch2-nlsΔ), DP1570 (zip1Δ
pch2-ntd3A), and DP1452 (zip1Δ orc1-3mAID)

Chromosoma (2019) 128:297–316310

85



We found that, like in zip1Δ pch2Δ, the relative levels of
Hop1-T318 phosphorylation were drastically reduced in
zip1Δ pch2-nlsΔ and zip1Δ pch2-ntd3A, accounting for the
defective Mek1 activation and according to the results pre-
sented above; in contrast, Hop1-T318 levels were not signif-
icantly altered in zip1Δ orc1-3mAID, confirming that the
checkpoint was not abrogated. In sum, we can conclude that
the Orc1-dependent conspicuous presence of Pch2 in the
rDNA region is not required for its function in triggering the
meiotic recombination checkpoint, namely sustaining Hop1-
T318 phosphorylation.

Discussion

Previous work has spotted Pch2 as a crucial player in the
meiotic recombination checkpoint triggered by the defects
provoked by the absence of SC components, such as Zip1
and others (Sym et al. 1993; San-Segundo and Roeder 1999;
Wu and Burgess 2006; Herruzo et al. 2016). Pch2 is critically
required to sustain high levels ofMec1-dependent Hop1-T318
phosphorylation in order to relay the checkpoint signal to the
downstream Mek1 effector kinase. Strikingly, cytological
studies reveal that under checkpoint-inducing conditions, such
as in the zip1Δ mutant lacking the central region of the SC,
Pch2 is only detected in the rDNA region raising the possibil-
ity that Pch2 exerts its checkpoint function from this particular
location. Consistent with this notion, mutations in certain
chromatin modifiers that provoke Pch2 mislocalization from
the rDNA impair the meiotic checkpoint (San-Segundo and
Roeder 2000; Ontoso et al. 2013; Cavero et al. 2016) and also
recombination control in perturbed meiosis (Börner et al.
2008). The rDNA array in chromosome XII of budding yeast
possesses a unique heterochromatin-like structure that

represses recombination (Gottlieb and Esposito 1989). In the
case of meiosis, SC formation does not occur in the rDNA and
Hop1 binding is prevented (Smith and Roeder 1997). Thus,
previous to this study, a puzzling question in the field was how
the nucleolar Pch2 could control the phosphorylation status of
the axial component Hop1 that is particularly absent in the
rDNA region. A paradigm of a crucial cell cycle regulator
governed by the nucleolus is the Cdc14 phosphatase; con-
trolled release of Cdc14 from the nucleolar RENT complex
impinges on various processes such as mitotic exit (Stegmeier
and Amon 2004), DNA repair (Villoria et al. 2017), and mei-
otic chromosome segregation (Fox et al. 2017). By analogy
with this mechanism, it was possible to speculate that Pch2
may orchestrate the timely nucleolar sequestration and/or re-
lease of a critical factor involved in Hop1 phosphorylation.

In order to directly assess the requirement for the nucleolar
Pch2 in the meiotic recombination checkpoint, we have iden-
tified and characterized cis and trans localization and function-
al determinants of Pch2. Table 2 summarizes our findings. The
extended NTD of Pch2 was an opportune element to dissect,
because it is not conserved in the Pch2 orthologs of other spe-
cies where the nucleolar localization has not been reported. We
have pinpointed a short stretch in Pch2’s NTD containing a
KRK basic motif that is essential for its checkpoint function.
Nevertheless, this motif is not specific for Pch2 nucleolar
targeting; it is also required for interaction with SC components
raising the possibility that this basic amino acid stretch may
direct global binding of Pch2 to meiotic chromosomes.
Alternatively, it was also possible that the only function of this
motif is to drive Pch2 nuclear import. The functional analysis
of a Pch2-SV40NLS version combined with cytological studies,
both in spread chromosomes and whole meiotic cells, has
allowed us to address this question. Consistent with the obser-
vation that the Pch2-nlsΔ protein does not associate with

Table 2 Summary of functional
and localization analysis of Pch2 Relevant genotype Pch2 rDNA localization Pch2 SC associationa Checkpoint functionb

PCH2 + + +

pch2Δ NA NA –

pch2-K320Ac – – –

pch2-E399Qc + + –

pch2-nlsΔ – – –

pch2-SV40NLS – – –

pch2-ntd6A – – –

pch2-ntd2A + + ±

pch2-ntd3A – – –

pch2-intΔ + + +

orc1-3mAID – + +

a Inferred from Zip1-Pch2 colocalization in polycomplexes
b Checkpoint induced by ZIP1 deletion
c ATPase-dead mutants described in Herruzo et al., 2016

NA not applicable
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chromatin on nuclear spreads, it is largely excluded from the
nucleus displaying a prominent cytoplasmic localization.
Substitution of the NLS-like region by a well-defined NLS
from the SV40 virus is capable of promoting the transport of
Pch2 to the nucleus but, remarkably, it shows a diffuse nucle-
oplasmic distribution and, unlike the wild-type Pch2, does not
accumulate in the nucleolus. Thus, the fact that Pch2-SV40NLS

restores neither Pch2 function nor chromosomal association,
despite being present inside the nucleus, implies that the
NLS-like region in Pch2’s NTD is not solely acting in Pch2
nuclear transport. This basic patch, which is located in a pre-
dicted alpha-helical structure (Fig. S7), may be involved in the
interaction of Pch2 with additional factors required for its prop-
er localization and/or function. The N-terminal domain of the
Xrs2 protein, a component of theMRX complex, interacts with
Pch2 to modulate the Tel1-dependent checkpoint response to
unresected meiotic DSBs (Ho and Burgess 2011). Since Tel1 is
not required for the zip1Δ-induced meiotic block, it is possible
to speculate that Xrs2 acts together with Pch2 in the checkpoint
response induced by the absence of Zip1 without involving the
MRX complex. In fact, MRX-independent functions of Xrs2
have been described in the vegetative DNA damage response
(Oh et al. 2016). Perhaps, the NTD of Pch2 is required to form
a complex with Xrs2 to sustain the zip1Δ checkpoint.
Alternatively, mutation of the basic motif in Pch2’s NTD may
disrupt the AAA+ hexameric complex thus preventing its bind-
ing to normal Pch2 chromosomal target sites. Indeed, the
ATPase-dead Pch2-K320A mutant version, defective in ATP
binding, also fails to form a stable AAA+ complex (Wendler
et al. 2012; Chen et al. 2014; Herruzo et al. 2016) and, like
Pch2-ntd6A and Pch2-ntd3A, it is unable to localize to either
the rDNA or the SC (Herruzo et al. 2016) (Fig. 3c, d).
However, ATPase activity per se is not required for Pch2 local-
ization because the ATP hydrolysis–deficient Pch2-E399Q ver-
sion does localize normally to both rDNA and SC despite being
inactive, as manifested by its inability to exclude Hop1 from
the nucleolar area (Herruzo et al. 2016) (Fig. 2b). Future exper-
iments will address these and other possibilities to delineate the
precise role of the essential NTD motif identified in this work.

As an additional strategy to elucidate whether the nucleolar
Pch2 population is involved in the meiotic recombination
checkpoint response, in this work, we have also studied the
participation of Orc1 in this surveillance mechanism and its
requirement for targeting Pch2 to distinct chromosomal loca-
tions. Orc1 is an essential component of the Origin
Recognition Complex (ORC), which is necessary for initia-
tion of DNA replication during both the mitotic and meiotic
cell cycles (Bell et al. 1993; Vader et al. 2011). Besides the
replicative function, Orc1 collaborates with Pch2 in maintain-
ing meiotic stability of the rDNA array by preventing DSB
formation and the unwanted non-allelic homologous recom-
bination that could potentially arise (Vader et al. 2011).
Curiously, Orc1 protein levels are meticulously regulated

during meiosis by intricate transcriptional and post-
transcriptional mechanisms that ultimately rely on the Ndt80
transcription factor (Xie et al. 2016). Ndt80 is a key target of
the meiotic recombination checkpoint raising the possibility
of a functional coupling between Orc1 levels and the control
of exit from prophase I by the status of checkpoint activation.

In our work, we describe the localization pattern of Orc1 on
meiotic chromosomes. In accordance with the multiple replica-
tion origins in the rDNA repeats representing ORC binding
sites, Orc1 often accumulates on this region partially
colocalizing with Pch2. In addition, we also find a general dis-
tribution of Orc1 throughout meiotic chromatin likely reflecting
Orc1 binding to genomic replication origins. Although we can-
not discard a sensitivity issue, Pch2 appears to be absent from
these sites suggesting that Orc1 and Pch2 interaction may occur
exclusively in the nucleolus. Consistent with this notion, we
show that Orc1 is specifically required for localization of Pch2
to the rDNA, but not for its association with SC proteins. Like
Pch2, the Orc1 protein also belongs to the AAA+ family of
ATPases (Duncker et al. 2009). While Pch2 forms
homohexamers in vitro (Chen et al. 2014), the possibility of
heteromeric complexes between Pch2 and Orc1 has been sug-
gested (Vader 2015). Supporting this hypothesis, we note that
Pch2 nucleolar localization, but not other Orc1 essential func-
tions, is extremely sensitive to Orc1 fusion to small tags that
could somehow disrupt proper complex structure. If this were
the case, these Pch2-Orc1 heteromeric complexes would be
involved exclusively in the rDNA-related functions, whereas
Pch2 homohexamers would possess the capacity for removing
Hop1 only from synapsed chromosomes. Alternatively, it is also
possible that nucleolar Pch2 catalytic activity on the Hop1 sub-
strate does not require Orc1, whose main function would be
targeting Pch2 to the rDNA to exert the protective function on
undesirable DSB formation.

The orc1-3mAID allele generated in this work solely com-
promises Pch2 nucleolar localization allowing us to unequiv-
ocally address the direct contribution of this particular geno-
mic location to Pch2’s role in the zip1Δ-induced meiotic
checkpoint. We show multiple cytological and molecular
pieces of evidence demonstrating that in the absence of Orc1
the checkpoint-launching response remains intact, thus indi-
cating that Orc1 and, hence, nucleolar Pch2 are dispensable
for the activation of this quality control mechanism. In the
zip1Δ mutant lacking the central region of the SC, and thus
triggering the checkpoint, Pch2 is only detectable in the rDNA
by the chromosome spreading technique. In auxin-treated
zip1Δ orc1-3mAID nuclei, Pch2 is no longer detected on
chromosomes, but the checkpoint is still active. The DNA
content profile of the zip1Δ orc1-3mAID double mutant is
similar to that of zip1Δ (Fig. S5e) and, importantly, its strong
delay in meiotic progression still relies on Pch2 (Fig. 7b),
supporting the conclusion that the meiotic arrest of zip1Δ
orc1-3mAID results from activation of the Pch2-dependent
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meiotic recombination checkpoint and not from other unrelat-
ed defects. Our results, therefore, open the question of the
precise localization and/or distribution of the Pch2 population
relevant for the checkpoint response when Zip1 is absent.
Although a technical sensitivity issue in Pch2 localization
studies cannot be ruled out, it is also possible that a fraction
of Pch2 loosely associated to chromatin is responsible for the
checkpoint role. In line with this possibility, it has been sug-
gested that the Drosophila PCH2 protein exerts its meiotic
checkpoint function from a location associated to the nuclear
envelope, but at a distance from the chromosomes (Joyce and
McKim 2010). Previous studies have revealed a correlation
between Pch2 nucleolar mislocalization and meiotic check-
point deficiency in sir2 and dot1 mutants (San-Segundo and
Roeder 1999, 2000; Ontoso et al. 2013; Cavero et al. 2016).
However, we show here that the checkpoint remains intact
when Pch2 is removed from the nucleolus upon Orc1 deple-
tion. Therefore, Dot1 and Sir2 may also control the nucleolar-
independent population of Pch2 important for checkpoint
function. Consistent with the results presented here, the mei-
otic recombination checkpoint is functional in zip1Δ rdnΔ
strains lacking the rDNA array on chromosome XII (San-
Segundo and Roeder 1999). In this rdnΔ scenario, Pch2
shows a substantial redistribution to chromosome ends, and
both Pch2 telomeric localization and checkpoint function be-
come dependent on the Sir3 silencing factor, which is not
normally required for zip1Δ arrest in RDN+ cells. Curiously,
the budding yeast Sir3 protein is a paralog of Orc1 that arose
by gene duplication and subsequent functional specialization
during evolution (Hanner and Rusche 2017). Thus, multiple
regulatory networks impact Pch2 function and localization in
different circumstances. In sum, our results have contributed
to narrow down the factors impinging on at least some of the
paramount roles of Pch2, such as the zip1Δ-induced check-
point response. Additional future studies will be aimed to
discriminate the critical spatiotemporal regulatory mecha-
nisms underlying the meiotic functions of this enigmatic con-
served meiotic protein.

Materials and methods

Yeast strains and meiotic time courses

The genotypes of yeast strains are listed in Supplementary
Table S2. All strains are in the BR1919 or BR2495 back-
ground (Rockmill and Roeder 1990). The zip1Δ::LEU2,
zip1Δ: :LYS2 , ndt80Δ: :LEU2 , ndt80Δ: :kanMX3 ,
pch2Δ::URA3, and pch2Δ::TRP1 gene deletions were previ-
ously described (Herruzo et al. 2016). The spo11Δ::natMX4
deletion was generated using a polymerase chain reaction
(PCR)–based approach (Goldstein and McCusker 1999). N-
terminal tagging of Pch2 with three copies of the -HA or -

MYC epitopes was previously described (San-Segundo and
Roeder 1999; Herruzo et al. 2016). TheORC1-6HA and orc1-
3mAID constructs were generated by a PCR-based method
using the pYM16 (Janke et al. 2004) and pMK152
(Nishimura and Kanemaki 2014) plasmids, respectively. To
direct expression of the Oryza sativa TIR1 gene during meio-
sis in yeast for the auxin-induced degron technique, PHOP1-
OsTIR1 was targeted to the genomic ura3-1 locus by StuI
digestion of pSS346 (see below). The pch2-nlsΔ, pch2-
SV40NLS, and pch2-ntd3A mutations were introduced into
the genomic 3HA-PCH2 locus using the delitto perfettometh-
od that leaves no additional marker (Stuckey et al. 2011).
Essentially, the CORE cassette (URA3-kanMX4) was first
inserted into the 3HA-PCH2 gene in the vicinity of the loca-
tion where the mutation was to be made. Then, the strains
carrying 3HA-pch2-CORE were transformed with DNA frag-
ments containing the desired mutation and homologous
flanking sequences to both sides of the CORE insertion point
to evict the cassette. 5-Fluoroorotic acid (FOA)–resistant and
G418-sensitive clones were selected and further checked for
the presence of the desired mutation. Generation of pch2-
K320A and pch2-E399Q was previously reported (Herruzo
et al. 2016). Strains harboring N-terminal tagging of Pch2
with GFP (GFP-PCH2) were also constructed using the
delitto perfetto approach. Basically, a PCR fragment contain-
ing the PCH2 promoter followed by GFP inserted at the sec-
ond codon of PCH2 with a five Gly-Ala linker in between
(Fig. S3A) was transformed into a strain carrying the CORE
cassette close to the 5′ end of PCH2 and correct FOA-resistant
clones were selected. All constructions and mutations were
verified by PCR analysis and/or sequencing. The sequences
of all primers used in strain construction are available upon
request. All strains were made by direct transformation of
haploid parents or by genetic crosses always in an isogenic
background. Sporulation conditions for meiotic time courses
have been described (Ontoso et al. 2013). To score meiotic
nuclear divisions, samples were taken at different time points,
fixed in 70% ethanol, washed in phosphate-buffered saline
(PBS) and stained with 1 μg/μl 4 ′,6-diamidino-2-
phenylindole (DAPI) for 15 min. At least 300 cells were
counted at each time point. Meiotic time courses were repeat-
ed several times; averages and error bars from at least three
replicates are shown.

Plasmids

The plasmids used are listed in Supplementary Table S3. The
pSS346 plasmid, in which OsTIR1 is placed under control of
the HOP1 promoter, was constructed by cloning a PCR-
amplified 660-bp fragment containing the HOP1 promoter
flanked by EcoRI-SpeI into the same sites of pMK200 to
replace the ADH1 promoter by the HOP1 promoter. The dif-
ferent pch2 mutations in pSS338, pSS358, pSS362, pSS363,
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and pSS364 were generated following essentially the proce-
dure described in the Q5 site-directed mutagenesis kit (New
England Biolabs) using the pSS75 plasmid as template. To
analyze the localization of functional GFP-Pch2 in live mei-
otic prophase cells, the pSS393 plasmid was constructed using
several cloning steps. Essentially, pSS393 is a pRS314-
derived centromeric plasmid harboring the HOP1 promoter
to drive the prophase-specific expression of the GFP coding
sequence fused at the second codon of the PCH2ORF lacking
the intron (Fig. 4b). A flexible linker of five Gly-Ala repeats
was also placed between GFP and the Pch2 N-terminus. The
pSS396 and pSS397 plasmids driving the production of GFP-
Pch2-nlsΔ and GFP-Pch2-SV40NLS, respectively, were de-
rived from pSS393 by using the Q5 site-directed mutagenesis
procedure (pSS396) or the NEBuilder assembly kit (New
England Biolabs) (pSS397). Specific details on plasmid con-
struction and the sequences of all primers used are available
upon request.

Antibody generation

To raise rabbit polyclonal antibodies against Pch2, a DNA
fragment encoding amino acids 91–300 was cloned into the
pET30a vector (Novagen) for expression in Escherichia coli.
The His-tagged protein was purified using Ni-NTA resin
(Qiagen) following the manufacturer’s instructions and was
used for rabbit immunization. Serum was collected after five
injections and was affinity purified against the recombinant
antigen as described (Petkovic et al. 2005).

To obtain the mouse anti-Hop1 monoclonal antibody, the
MonoExpress Gold Antibody service from Genescript was
used. In brief, a recombinant fragment of HOP1 encoding
Hop120-250 was used to immunize mice. Hybridomas were
generated and positive clones were selected for antibody pro-
duction and affinity purification.

Western blotting

Total cell extracts were prepared by trichloroacetic acid (TCA)
precipitation from 5-ml aliquots of sporulation cultures as pre-
viously described (Acosta et al. 2011). The antibodies used are
listed in Supplementary Table S4. The ECL, ECL2, or
SuperSignal West Femto reagents (ThermoFisher Scientific)
were used for detection. The signal was captured on films and/
or with a ChemiDoc XRS system (Bio-Rad) and quantified
with the Quantity One software (Bio-Rad).

Cytology

Immunofluorescence of chromosome spreads was performed
essentially as described (Rockmill 2009). The antibodies used
are listed in Supplementary Table S4. Images of spreads were
captured with a Nikon Eclipse 90i fluorescence microscope

controlled with MetaMorph software (Molecular Devices)
and equipped with a Hammamatsu Orca-AG charge-coupled
device (CCD) camera and a PlanApo VC 100 × 1.4 NA ob-
jective. DAPI images were collected using a Leica DMRXA
fluorescence microscope equipped with a Hammamatsu Orca-
AG CCD camera and a 63 × 1.4 NA objective. Images of
whole live cells expressing GFP-PCH2 and HOP1-mCherry
were captured with an Olympus IX71 fluorescence micro-
scope equipped with a personal DeltaVision system, a
CoolSnap HQ2 (Photometrics) camera, and × 100
UPLSAPO 1.4 NA objective. Stacks of 7 planes at 0.8-μm
intervals were collected. Maximum intensity projections of
planes containing Hop1-mCherry signal and single planes of
GFP-Pch2 are shown in Fig. 4d and Fig. S4. The line-scan tool
of the MetaMorph software was used to measure and plot the
fluorescence intensity profile across the cytoplasm and nucle-
us/nucleolus. To determine the nuclear/cytoplasm GFP fluo-
rescence ratio, the ROI manager tool of Fiji software
(Schindelin et al. 2012) was used to define the cytoplasm
and nuclear (including the nucleolus) areas and the mean in-
tensity values were measured. Background values were
subtracted prior to ratio calculation.

Dityrosine fluorescence assay, sporulation efficiency,
and spore viability

To examine dityrosine fluorescence as an indicator of the for-
mation of mature asci, patches of cells grown on YPDA plates
were replica-plated to sporulation plates overlaid with a nitro-
cellulose filter (Protran BA85, Whatman). After 3-day incu-
bation at 30 °C, fluorescence was visualized by illuminating
the open plates from the top with a hand-held 302-nm ultra-
violet (UV) lamp. Images were taken using a Gel Doc XR
system (Bio-Rad). Sporulation efficiency was quantitated by
microscopic examination of asci formation after 3 days on
sporulation plates. Both mature and immature asci were
scored. At least 300 cells were counted for every strain.
Spore viability was assessed by tetrad dissection. At least
144 spores were scored for every strain.

Statistics

To determine the statistical significance of differences, a two-
tailed Student t test was used. P values were calculated with
the GraphPad Prism 5.0 software.
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Table S1. Quantitative data corresponding to spread immunolocalization figures

Figure 2a Pch2 rDNA localization
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
wild type (DP1191) 100 0 58
pch2-nlsΔ (DP1411) 0 100 30
pch2-SV40NLS (DP1455) 0 100 25
zip1Δ (DP1190) 100 0 20
zip1Δ pch2-nlsΔ (DP1412) 0 100 31
zip1Δ pch2-SV40NLS (DP1456) 0 100 20

Figure 2b Pch2 localization at polycomplex
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
wild type OE-ZIP1 (DP1151/pSS343) 81.8 18.2 33
pch2-nlsΔ OE-ZIP1 (DP1408/pSS343) 0 100 22
pch2-K320A OE-ZIP1 (DP1163/pSS343) 0 100 20
pch2-E399Q OE-ZIP1 (DP1287/pSS343) 78.9 21.1 19
pch2-SV40NLS OE-ZIP1 (DP1455/pSS343) 0 100 21

Figure 3c Pch2 rDNA localization
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
zip1Δ  PCH2 (DP1405/pSS75) 60 40 40
zip1Δ  pch2-nlsΔ (DP1405/pSS338) 0 100 40
zip1Δ  pch2-ntd6A (DP1405/pSS358) 2.5 97.5 40
zip1Δ  pch2-ntd2A (DP1405/pSS363) 53.7 46.3 41
zip1Δ  pch2-ntd3A (DP1405/pSS364) 0 100 40
zip1Δ  pch2-intΔ (DP1405/pSS362) 62.2 37.8 37

Hop1 localization pattern
Relevant genotype (Strain) Linear (%) Fragmented (%) Nuclei scored
zip1Δ PCH2 (DP1405/pSS75) 58 42 50
zip1Δ pch2-nlsΔ (DP1405/pSS338) 0 100 40
zip1Δ pch2-ntd6A (DP1405/pSS358) 2.1 97.9 47
zip1Δ pch2-ntd2A (DP1405/pSS363) 52.9 47.1 51
zip1Δ pch2-ntd3A (DP1405/pSS364) 2.3 97.7 43
zip1Δ pch2-intΔ (DP1405/pSS362) 52.5 47.5 40

Figure 3d Pch2 localization at polycomplex
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
PCH2 (DP186/pSS75+pSS343) 68.4 31.6 19
pch2-ntd6A (DP186/pSS358+pSS343) 0 100 18
pch2-ntd2A (DP186/pSS363+pSS343) 30.8 69.2 26
pch2-ntd3A (DP186/pSS364+pSS343) 0 100 16
pch2-intΔ (DP186/pSS362+pSS343) 57.9 42.1 19
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Figure 5a Pch2 rDNA accumulation
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
3MYC-PCH2 ORC1-6HA (DP1426) 84.7 15.3 72
zip1Δ 3MYC-PCH2 ORC1-6HA (DP1427) 58.8 41.2 51
3MYC-PCH2 (DP1243) 100 0 12
zip1Δ 3MYC-PCH2 (DP1244) 100 0 13

Pch2-Orc1 colocalization in the rDNA
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
3MYC-PCH2 ORC1-6HA (DP1426) 100 0 61
zip1Δ 3MYC-PCH2 ORC1-6HA (DP1427) 100 0 30

Figure 5b Orc1 rDNA localization
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
3MYC-PCH2 ORC1-6HA (DP1426) 100 0 26

Orc1 rDNA accumulation
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
3MYC-PCH2 ORC1-6HA (DP1426) 53.9 46.1 26

Figure 6b Pch2 rDNA localization
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
wild type + Auxin (DP1151) 100 0 16
orc1-3mAID + EtOH (DP1437) 0 100 15
orc1-3mAID + Auxin (DP1437) 0 100 18
zip1Δ + Auxin (DP1152) 100 0 20
zip1Δ orc1-3mAID + EtOH (DP1438) 0 100 20
zip1Δ orc1-3mAID + Auxin (DP1438) 0 100 20

Figure 6c Hop1 exclusion from the nucleolus
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
wild type + Auxin (DP1151) 100 0 29
orc1-3mAID + Auxin (DP1437) 0 100 20
zip1Δ + Auxin (DP1152) 100 0 23
zip1Δ orc1-3mAID + Auxin (DP1438) 0 100 21

Figure 6d Pch2 localization at polycomplex
Relevant genotype (Strain) YES (%) NO (%) Nuclei scored
spo11Δ + Auxin  (DP1425) 54.2 45.8 24
spo11Δ orc1-3mAID + Auxin (DP1444) 76.0 24.0 25
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Table S2. Saccharomyces cerevisiae strains 
 
Strain  Genotype* Source 

BR2495-2N MATa/MATα  leu2-27/leu2-3,112  his4-280/his4-260  arg4-8/ARG4 
thr1-1/thr1-4  trp1-1/trp1-289  cyh10/CYH10  ura3-1  ade2-1 Roeder Lab 

DP186 BR2495-2N  pch2Δ::URA3 PSS Lab 

BR1919-2N MATa/MATα  leu2-3,112  his4-260  thr1-4  trp1-289  ura3-1  ade2-1 Roeder Lab 

DP421 BR1919-2N  lys2ΔNheI PSS Lab 

DP422 DP421  zip1Δ::LYS2 PSS Lab 

DP881 DP421  zip1Δ::LYS2  pch2Δ::TRP1  ndt80Δ::LEU2 PSS Lab 

DP1023 DP421 pch2Δ::TRP1   PSS Lab 

DP1029 DP421 zip1Δ::LYS2  pch2Δ::TRP1   PSS Lab 

DP1151 BR1919-2N  3HA-PCH2 PSS Lab 

DP1152 BR1919-2N  zip1Δ::LEU2  3HA-PCH2 PSS Lab 

DP1161 BR1919-2N  zip1Δ::LEU2  pch2Δ::TRP1 PSS Lab 

DP1163 BR1919-2N  3HA-pch2-K320A PSS Lab 

DP1164 BR1919-2N  pch2Δ::TRP1 PSS Lab 

DP1190 BR1919-2N  zip1Δ::LEU2  ndt80Δ::kanMX3  3HA-PCH2 PSS Lab 

DP1191 BR1919-2N  ndt80Δ::kanMX3  3HA-PCH2 PSS Lab 

DP1243 BR1919-2N  3MYC-PCH2 PSS Lab 

DP1244 BR1919-2N  zip1Δ::LEU2  3MYC-PCH2 PSS Lab 

DP1287 BR1919-2N  3HA-pch2-E399Q PSS Lab 

DP1405 DP421  zip1Δ::LEU2  pch2Δ::URA3 This work 

DP1408 BR1919-2N  3HA-pch2-nlsΔ This work 

DP1409 BR1919-2N  zip1Δ::LEU2  3HA-pch2-nlsΔ This work 

DP1411 BR1919-2N  ndt80::kanMX3  3HA-pch2-nlsΔ This work 

DP1412 DP421  zip1Δ::LEU2  ndt80Δ::kanMX3  3HA-pch2-nlsΔ This work 

DP1425 BR1919-2N  spo11Δ::natMX4  3HA-PCH2 This work 

DP1426 BR1919-2N  3MYC-PCH2  ORC1-6HA::hphNT1 This work 

DP1427 BR1919-2N  zip1Δ::LEU2  3MYC-PCH2  ORC1-6HA::hphNT1 This work 

DP1437 BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3  
3HA-PCH2 This work 
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DP1438 BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3 
zip1Δ::LEU2  3HA-PCH2 This work 

DP1444 BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3 
spo11Δ::natMX4  3HA-PCH2 This work 

DP1451 BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3 
ndt80Δ::kanMX3  3HA-PCH2 This work 

DP1452 BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3 
zip1Δ::LEU2  ndt80Δ::kanMX3  3HA-PCH2 This work 

DP1455 BR1919-2N  3HA-pch2-SV40NLS This work 

DP1456 BR1919-2N  zip1Δ::LEU2  3HA-pch2-SV40NLS This work 

DP1500 DP421  zip1Δ::LYS2  HOP1/HOP1-mCherry::natMX4   This work 

DP1508 BR1919-2N  GFP-PCH2 This work 

DP1509 BR1919-2N  GFP-PCH2  zip1Δ::LEU2   This work 

DP1569 DP421  ndt80Δ::kanMX3  3HA-pch2-ntd3A This work 

DP1570 DP421  zip1Δ::LEU2  ndt80Δ::kanMX3  3HA-pch2-ntd3A This work 

DP1586 
BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3 
zip1Δ::LEU2  pch2Δ::TRP1 
 

This work 
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Table S3. Plasmids  
 
Plasmid name Vector Relevant parts Source  

pMK200 pRS306 URA3  PADH1-OsTIR1 (Nishimura and 
Kanemaki 2014) 
 
 

pSS75 pRS314 TRP1  CEN6  3HA-PCH2 PSS Lab 

pSS338 pRS314 TRP1  CEN6  3HA-pch2-nlsΔ This work 

pSS343 YEp351 LEU2  2µ  ZIP1 Roeder Lab 

pSS346 pRS306 URA3  PHOP1-OsTIR1 This work 
pSS358 pRS314 TRP1  CEN6  3HA-pch2-ntd6A This work 

pSS362 pRS314 TRP1  CEN6  3HA-pch2-intΔ This work 

pSS363 pRS314 TRP1  CEN6  3HA-pch2-ntd2A This work 
pSS364 pRS314 TRP1  CEN6  3HA-pch2-ntd3A This work 

pSS393 pRS314 TRP1  CEN6  PHOP1-GFP-PCH2 This work 

pSS396 pRS314 TRP1  CEN6  PHOP1-GFP-pch2-nlsΔ This work 
pSS397 pRS314 TRP1  CEN6  PHOP1-GFP-pch2-SV40NLS This work 
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Table S4. Primary antibodies 
 
Antibody Host and type Application* 

(Dilution) 
Source / Reference 

Hop1 (5C12E8) Mouse monoclonal WB (1:2000) 
 

This work 

Hop1  Rabbit polyclonal IF (1:400) (Smith and Roeder 1997) 

Hop1-T318-P Rabbit polyclonal WB (1:1000) (Penedos, et al. 2015) 

H3-T11-P Rabbit polyclonal WB (1:2000) 
 

Abcam 
ab5168 

PGK (22C5D8) Mouse monoclonal WB (1:5000) 
 

Molecular Probes 
459250 

Pch2  Rabbit polyclonal WB (1:2000) 
IF (1:325) 

This work  

Nsr1 (31C4) Mouse monoclonal IF (1:150) ThermoFisher  
MA1-10030 

Nsr1 (2.3 b) Mouse monoclonal IF (1:20) M. Snyder 
 

HA (12CA5) Mouse monoclonal WB (1:2000) 
IF (1:200) 

Roche 
11 666 606 001 

Zip1 Rabbit polyclonal WB (1:2000) 
IF (1:200) 

(Sym, et al. 1993) 

mAID (1E4) Mouse monoclonal WB (1:400) 
 

MBL 
M214-3 

H4-K16ac Rabbit polyclonal IF (1:200) Millipore 
07-329 

*WB, western blot; IF, immunofluorescence 
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 ARTÍCULO 3 

CONCLUSIONES 

1. El motivo básico KRK dentro del extremo N-terminal de Pch2 es necesario para su 

función en el checkpoint meiótico, así como para su localización en el nucleolo, su asociación 

con proteínas del complejo sinaptonémico y su correcta distribución entre los distintos 

compartimentos celulares. 

2. El motivo básico del NTD de Pch2 no actúa, al menos solamente, como una simple NLS 

puesto que la sustitución de dicho motivo por la NLS canónica del virus SV40 es capaz de 

redirigir a Pch2 al núcleo, pero sin recuperar la localización correcta en el nucleolo ni la 

funcionalidad del checkpoint.  

3. El intrón de Pch2 no tiene relevancia funcional en el checkpoint ni en la localización de la 

proteína. 

4. Orc1 y Pch2 colocalizan en el nucleolo, siendo Orc1 necesario para la localización de 

Pch2 en esta región, pero no para la asociación de Pch2 con proteínas del complejo 

sinaptonémico (Zip1). 

5. La activación del checkpoint de recombinación meiótica no se ve afectada por la ausencia 

de Orc1 ni, por tanto, por la falta de localización nucleolar de Pch2  
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 ARTÍCULO 3 

CONCLUSIONS 

1. The basic-rich KRK motif in the Pch2 N-terminal domain is required for meiotic 

checkpoint function as well as for Pch2’s nucleolar localization, association to SC components 

and proper subcellular distribution. 

2. The basic-rich motif in the NTD of Pch2 is not simply acting as an NLS sequence given 

that the substitution of this motif for the canonical NLS from SV40 is capable of bringing Pch2 

back to the nucleus, but it does not restore its normal nucleolar distribution or its checkpoint 

function.  

3. The PCH2 intron is neither relevant for the meiotic checkpoint nor for Pch2 chromosomal 

localization. 

4. Orc1 and Pch2 colocalize in the nucleolar region, being Orc1 required for Pch2 

localization in this region, but not for Pch2 association with SC proteins (Zip1).  

5. Activation of the meiotic recombination checkpoint is not affected by the absence of 

Orc1, and hence, of nucleolar Pch2.  
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The meiosis-specific AAA+ ATPase Pch2 implements the 

chromosome-synapsis checkpoint response  

from outside the nucleus 
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INTRODUCTION 

Using chromosome spreading, we have pre-

viously described that Pch2 is not recruited 

to the nucleolus (rDNA) in the absence of 

Orc1 and, consistent with that, Hop1 is not 

excluded from that region. However, the 

zip1Δ-triggered meiotic recombination 

checkpoint is fully functional in this situa-

tion, demonstrating that Pch2 nucleolar lo-

calization is dispensable for the checkpoint 

(Herruzo et al., 2019).  

In the zip1Δ mutant lacking Orc1, Pch2 is 

not detected whatsoever associated to meiot-

ic chromosomes, but the meiotic checkpoint 

is still functional. This observation raises the 

possibility of a chromatin/chromosome-

independent fraction of Pch2 that may sus-

tain the checkpoint response. Therefore, to 

elucidate where the Pch2 population that is 

relevant for checkpoint function localizes to, 

we explored Pch2 subcellular localization in 

whole meiotic cells in different conditions. 

RESULTS 

Pch2 localizes to the cytoplasm in the 

absence of Orc1, but the zip1-induced 

checkpoint remains active 

To explore Pch2 subcellular distribution in 

zip1Δ orc1-3mAID whole meiotic cells we

integrated the PHOP1-GFP-PCH2 construct 

previously described (Herruzo et al., 2019) 

into the genome of zip1Δ orc1-3mAID. We 

first checked that the GFP-Pch2 protein is 

completely functional, as evidenced by the 

tight sporulation block of the zip1Δ PHOP1-

GFP-PCH2 strain, similar to that of zip1Δ 

(Figure 1A). Consistent with our previous 

results (Herruzo et al., 2019), we confirmed 

that the checkpoint remains fully functional 

in the zip1Δ orc1-3mAID PHOP1-GFP-PCH2 

strain, as manifested by high levels of Hop1 

phosphorylation when Orc1 is depleted, also 

comparable to those of zip1Δ (Figure 1B). 

Next, we analyzed GFP-Pch2 and Hop1-

mCherry subcellular distribution by fluores-

cence microscopy in live meiotic cells. In the 

zip1Δ mutant, GFP-Pch2 localized to a dis-

crete region at one side of the nucleus that 

does not overlap with Hop1-mCherry. Ac-

cording with the well-characterized Pch2 

localization on zip1Δ chromosome spreads 

(Herruzo et al., 2016, 2019) this discrete re-

gion must correspond to the nucleolus. In 

addition, GFP-Pch2 was also detected in the 

cytoplasm, displaying a diffuse homogenous 

signal (Figure 1C). In contrast, and con-

sistent with the lack of Pch2 nucleolar local-

ization upon Orc1 depletion observed by 

immunofluorescence of chromosome 
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spreads (Herruzo et al., 2019), GFP-Pch2 

exclusively localized to the cytoplasm in 

zip1Δ orc1-3mAID cells (Figure 1C). Quan-

tification of the ratio between nuclear (in-

cluding nucleolus) and cytoplasmic GFP 

signal confirmed the cytoplasmic accumula-

tion of Pch2 in the absence of Orc1 (Figure 

1D). Importantly, despite the altered subcel-

lular distribution, GFP-Pch2 global levels 

were unaltered when Orc1 was depleted 

(Figure 1B). Since the checkpoint remains 

completely active in the zip1Δ orc1-3mAID 

mutant (Herruzo et al., 2019; Figure 1B) 

these results suggest that the cytoplasmic 

population of Pch2 is relevant to promote 

Hop1-Mek1 activation. 

 

Figure 1. The absence of Orc1 leads to cytoplasmic accumulation of Pch2 and the checkpoint remains active.  

A) Functional analysis of the GFP-tagged version of PCH2. Dytirosine fluorescence, as an indicator of sporulation, 

and sporulation efficiency were examined after 3 days of sporulation on plates. Strains are DP421 (wild type), 

DP422 (zip1Δ) and DP1621 (zip1Δ GFP-PCH2). B) Western blot analysis of Orc1-3mAID production, detected 

with an anti-mAID antibody, GFP-Pch2 and Pch2, detected with an anti-Pch2 antibody, and Hop1-T318 

phosphorylation (Hop1ph). PGK was used as loading control. Strains are DP424 (wild type), DP428 (zip1Δ), 

DP1640 (zip1Δ GFP-PCH2), DP1630 (zip1Δ orc1-3mAID GFP-PCH2) and DP881 (zip1Δ pch2Δ). All strains are 

in a ndt80Δ background. EtOH or auxin (500 µM) was added to orc1-3mAID cultures at 12h. Samples were 

collected at 24 h after meiotic induction. C) Fluorescence microscopy analysis of GFP-Pch2 (green) and Hop1-

mCherry (red) distribution in whole meiotic cells 16 h after meiotic induction. Representative cells are shown. D) 

Quantification of the ratio between the nuclear (including the nucleolar) and cytoplasmic GFP fluorescent signal. 

The cartoon illustrates the subcellular localization of GFP-Pch2 in the different conditions. The strains in C and D 

are DP1636 (zip1Δ GFP-PCH2) and DP1633 (zip1Δ orc1-3mAID GFP-PCH2). Auxin (500 µM) was added to the 

orc1-3mAID culture 12 hours after meiotic induction. 
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GFP-PCH2 overexpression leads to 

cytoplasmic aggregates that retain 

checkpoint function 

To rule out the possibility of the existence of 

an undetectable fraction of GFP-Pch2 pre-

sent in the nucleus of zip1Δ cells that might 

still be responsible for the checkpoint, we 

overexpressed the PHOP1-GFP-PCH2 con-

struct from a high-copy plasmid (OE- GFP-

PCH2) (Figure 2A). Western blot analysis 

showed that strong overproduction of GFP-

Pch2 was achieved (Figure 2B).  

We next analyzed GFP-Pch2 localization 

in meiotic chromosome spreads of zip1Δ. 

We found that despite the high levels of the 

protein, GFP-Pch2 chromatin association 

was not incremented and it was only detect-

ed associated to the nucleolus (Figure 2C). 

 

Figure 2. GFP-PCH2 overexpression leads to cytoplasmic aggregates and the checkpoint is active. A) 

Schematic representation of the PHOP1-GFP-PCH2 construct in the pSS367 high-copy plasmid. B) Western blot 

analysis of GFP-Pch2 and Pch2 (detected with an anti-Pch2 antibody), and H3T11 phosphorylation as an indica-

tor of Mek1 activation. PGK was used as loading control. Strains are DP421 (wild type) and DP422 (zip1Δ) 

transformed with the empty vector (pRS426) and DP1029 (zip1Δ pch2Δ) transformed with pSS367 (PHOP1-GFP-

PCH2). C) Immunofluorescence of meiotic chromosome spreads stained with an anti-Pch2 antibody to detect 

Pch2 and GFP-Pch2 (red) and DAPI (blue). Representative nuclei are shown. Samples were prepared at 15 h in 

meiosis. Arrows point to the rDNA region. Strains are DP422 transformed with the empty vector (pRS426) and 

DP1029 (zip1Δ pch2Δ) transformed with pSS367 (OE-GFP-PCH2). D) Fluorescence microscopy image show-

ing GFP-Pch2 (green) and Hop1-mCherry (red) localization in whole meiotic cells. The overlay with differential 
interference contrast (DIC) images is also shown. Strain is DP1501 (pch2Δ) transformed with pSS367 (OE-

GFP-PCH2). E) Time course analysis of meiotic divisions; the percentage of cells containing two or more nuclei 

is represented. Error bars: SD; n=3. 
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To investigate where the excess of the GFP-

Pch2 protein localizes to, we analyzed its 

distribution in whole meiotic prophase cells. 

We observed that GFP-Pch2 was not notably 

detected in the nucleolus as it normally is 

(see Figure 1C above). In contrast, GFP-

Pch2 formed conspicuous aggregates in the 

cytoplasm (Figure 2D, arrows).  

We next explored checkpoint functionali-

ty in this condition where strong overproduc-

tion leads to GFP-Pch2 altered distribution. 

To this end, we monitored the kinetics of 

meiotic divisions (Figure 2E) and the phos-

phorylation status of H3T11 as a readout of 

Mek1 kinase activity; that is, of checkpoint 

activation (Figure 2B). We found that the 

checkpoint is functional in zip1Δ pch2Δ cells 

overexpressing GFP-PCH2, as manifested 

by the noticeable meiotic arrest and the high 

levels of H3T11ph, similar to those of zip1Δ 

(Figures 2E and 2B, respectively).  

These observations reinforce the notion 

that points to the cytoplasmic pool of Pch2 

as the relevant population for the checkpoint 

function. First, the association of GFP-Pch2 

to the chromosomes remains undetectable 

despite the significant increase in protein 

levels, arguing against a technical detection 

issue. Second, high levels of GFP-Pch2 re-

sult in the formation of aberrant cytoplasmic 

aggregates compared to the normal diffuse 

localization; however, despite this altered 

distribution, the presence of Pch2 in the cy-

toplasm is capable of sustaining checkpoint 

activity.  

Influence on checkpoint function of forced 

Pch2 nuclear export and import 

To further analyze how Pch2 subcellular dis-

tribution impacts on checkpoint function we 

fused a Nuclear Export Signal (NES) or a 

Nuclear Localization Signal (NLS) to Pch2 

to force its localization outside or inside the 

nucleus, respectively. Canonical NES and 

NLS sequences were inserted between the 

GFP and PCH2 coding sequences in cen-

tromeric plasmids containing the PHOP1-

GFP-PCH2 construction (see Materials and 

Methods for details). These plasmids were 

transformed into zip1Δ or zip1Δ pch2Δ 

strains also harboring HOP1-mCherry in 

heterozygosis as a marker both for the nu-

cleus and for meiotic prophase stage. Live 

meiotic cells were analyzed by fluorescence 

microscopy to examine Pch2 and Hop1 lo-

calization. As controls, we used the zip1Δ 

pch2Δ strains transformed with either the 

empty vector or with the plasmid expressing 

wild-type GFP-PCH2. We found that, unlike 

the wild-type GFP-Pch2 protein, the GFP-

NES-Pch2 version did not localize to the nu-

cleolus and accumulated in the cytoplasm 

(Figure 3A and 3B). In contrast, GFP-NLS-

Pch2 strongly accumulated in the nucleolus 

and also showed a diffuse pan-nuclear signal 

(Figure 3A and 3B).  

To analyze how these variations in Pch2 

distribution affect the meiotic checkpoint we 

quantified sporulation efficiency as a readout 

for checkpoint activity. The zip1Δ mutant 

showed a tight sporulation block resulting 

from checkpoint activation; this meiotic ar-

rest was suppressed in the checkpoint-

deficient zip1Δ pch2Δ double mutant trans-

formed with the empty vector that displayed 

wild-type sporulation levels (Figure 3C). As 

expected, sporulation efficiency was strong-

ly reduced in the zip1Δ pch2Δ strain express-

ing the wild-type GFP-PCH2 from the cen-

tromeric plasmid, consistent with restored 

checkpoint function. Note that the meiotic 

block was not completely reestablished due 
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Figure 3. Pch2 subcellular distribution impacts on checkpoint function. A) Fluorescence microscopy analy-

sis of GFP-Pch2, GFP-NES-Pch2 or GFP-NLS-Pch2 (green) and Hop1-mCherry (red) distribution in whole 

meiotic cells 15 h after meiotic induction. Representative cells are shown. B) Quantification of the ratio of nu-

clear (including nucleolar) to cytoplasmic GFP fluorescent signal. The cartoon illustrates the subcellular locali-

zation of the different versions of GFP-Pch2. Strains in A and B are DP1500 (zip1Δ) transformed with pSS393 
(GFP-PCH2), pSS408 (GFP-NES-PCH2) and pSS421 (GFP-NLS-PCH2) plasmids. C) Quantification of sporu-

lation efficiency after 3 days on SPO plates. At least 300 cells were scored from each strain. Error bars: SD; n=3. 

The green and red dotted lines mark the range of full checkpoint function and full checkpoint defect, respective-

ly, in this assay. Strains are DP421 (wild type) and DP422 (zip1Δ) transformed with the empty vector (pRS314), 

and DP1405 (zip1Δ pch2Δ) transformed with the empty vector (pRS314) or the pSS393 (GFP-PCH2), pSS408 

(GFP-NES-PCH2) and pSS421 (GFP-NLS-PCH2) centromeric plasmids. 
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to plasmid-loss events; see Herruzo et al., 

2019 for explanation. Notably the presence 

of GFP-NES-PCH2 also reduced sporulation 

in zip1Δ pch2Δ to similar levels as the wild-

type GFP-PCH2 did (Figure 3C) indicating 

that the checkpoint is fully active. In con-

trast, the sporulation efficiency was consid-

erably increased in the zip1Δ pch2Δ strain 

transformed with the plasmid expressing 

GFP-NLS-PCH2 (Figure 3C) indicating that 

the checkpoint is, at least partially, defective.  

Thus, when Pch2 distribution is biased to 

the nucleus/nucleolus (GFP-NLS-Pch2), 

checkpoint function is impaired and, by the 

contrary, when Pch2 accumulates in the cy-

toplasm (GFP-NES-Pch2), checkpoint func-

tion is maintained.  

DISCUSSION 

In this work we have explored the functional 

contribution of Pch2 subcellular distribution 

to the meiotic recombination checkpoint 

triggered by synapsis defects. Our results 

show a strong correlation between check-

point activation and Pch2 cytoplasmic local-

ization, suggesting that the cytoplasmic pool 

of Pch2, but not the nuclear/nucleolar popu-

lation, is responsible for promoting the mei-

otic checkpoint response.  

We have previously demonstrated that 

the critical function of Pch2 is to promote 

Hop1-T318 phosphorylation at unsynapsed 

chromosome axes to sustain Mek1 activation 

and the subsequent checkpoint responses 

(Herruzo et al., 2016). How can Pch2 from 

the cytoplasm control the phosphorylation of 

Hop1 on chromosomes? Based on the obser-

vations described here, we hypothesize that 

the cytoplasmic pool of Pch2 could use its 

ATPase activity to modify a cytoplasmic 

factor required for Hop1 phosphorylation 

altering its conformation, as AAA+ ATPases 

usually do (Puchades et al., 2019). This con-

formational change may involve the exposi-

tion of a masked NLS (or the interaction 

with another NLS-containing protein) allow-

ing its transport throughout the nuclear pore 

to promote Hop1 phosphorylation and its 

association to meiotic chromosomes (Figure 

4).  

Future experiments will be aimed to 

identify Pch2 cytoplasmic interactors, which 

will help us to elucidate the mechanism by 

which Pch2 from the cytoplasm promotes 

Hop1 phosphorylation on chromosomes. 

 

Figure 4. Working model for the possible role 

of the cytoplasmic Pch2 in the meiotic 

recombination checkpoint. See text for details.  
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MATERIALS AND METHODS 

Yeast strains 

The genotypes of yeast strains are listed in 

Supplementary Table S1. All strains are in 

BR1919 background (Rockmill and Roeder, 

1990). Gene deletions and orc1-3mAID con-

structs were previously described (Herruzo 

et al., 2016, 2019; Cavero et al., 2016). The 

PHOP1-GFP-PCH2 construct was introduced 

into the genomic locus of PCH2 using the 

delitto perfetto technique (Stuckey et al., 

2011). Basically, a PCR fragment containing 

the HOP1 promoter followed by GFP insert-

ed at the second codon of PCH2 separated 

by a five Gly-Ala repeats linker was trans-

formed into a strain carrying the CORE cas-

sette close to the 5’ end of PCH2. Correct 5-

FOA-resistant clones containing the con-

struct inserted were checked by PCR and 

verified by sequencing. 

Plasmids 

The plasmids used are listed in Supplemen-

tary Table S2. The pSS367 plasmid overex-

pressing PHOP1-GFP-PCH2 was constructed 

by amplifying the PCH2 ORF from pSS361 

carrying a PCH2 allele lacking the intron 

sequence, using oligos PCH2-NotI and 

PCH2-SphI and cloning it into NotI-SphI 

sites of pSS248, a high-copy plasmid con-

taining GFP under the HOP1 promoter 

(González-Arranz et al., 2018). The pSS393 

centromeric plasmid expressing PHOP1-GFP-

PCH2 was previously described (Herruzo et 

al., 2019). The pSS408 and pSS421 plasmids 

driving the production of PHOP1-GFP-NES-

PCH2 and PHOP1-GFP-NLS-PCH2, respec-

tively, were derived from pSS393. An ap-

proximately 350 bp PCH2 fragment was 

amplified from pSS393 with oligos encod-

ing the NES (LALKLAGLDI) or NLS 

(PKKKRKV) sequences, digested with Not-

I-BamHI and cloned into the same sites of 

pSS393.  

Other techniques 

Meiotic time courses, western blotting, cy-

tology, sporulation efficiency, dytirosine as-

say and statistics were performed essentially 

as described in Herruzo et al., 2019. The an-

tibodies used for western blotting and im-

munofluorescence of chromosome spreads 

are listed in Supplementary Table S3.  
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SUPPLEMENTAL DATA 

Table S1. Saccharomyces cerevisiae strains 

Strain  Genotype* Source 

BR1919-2N 
MATa/MATα  leu2-3,112  his4-260  thr1-4  trp1-289  ura3-1  

ade2-1 
Roeder Lab 

DP421 BR1919-2N  lys2ΔNheI PSS Lab 

DP422 DP421  zip1Δ::LYS2 PSS Lab 

DP424 DP421  ndt80::LEU2 PSS Lab 

DP428 DP421  zip1Δ::LYS2  ndt80::LEU2 PSS Lab 

DP881 DP421  zip1Δ::LYS2  pch2Δ::TRP1  ndt80Δ::LEU2 PSS Lab 

DP1029 DP421  zip1Δ::LYS2  pch2Δ::TRP1 PSS Lab 

DP1500 DP421  zip1Δ::LYS2  HOP1/HOP1-mCherry::natMX4 PSS Lab 

DP1501 DP421  pch2Δ::TRP1  HOP1/HOP1-mCherry::natMX4 This work 

DP1621 BR1919-2N  zip1Δ::LEU2  PHOP1-GFP-PCH2 This work 

DP1630 
BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3 

zip1Δ::LEU2  PHOP1-GFP-PCH2  ndt80Δ::kanMX3 
This work 

DP1633 

BR1919-2N  orc1-3mAID::hphNT  PHOP1-OsTIR1::URA3 

zip1Δ::LEU2  PHOP1-GFP-PCH2  HOP1/HOP1-

mCherry::natMX4 

This work 

DP1636 
BR1919-2N zip1Δ::LEU2  PHOP1-GFP-PCH2 HOP1/HOP1-

mCherry::natMX4 
This work 

DP1640 
DP421/BR1919-2N  zip1Δ::LEU2  PHOP1-GFP-PCH2 

ndt80Δ::kanMX3 
This work 

*All strains were homozygous for the markers, except when indicated 

 

 

Table S2. Plasmids  

Plasmid name Vector Relevant parts Source  

pSS367 pYES2 URA3  2µ  PHOP1-GFP-PCH2 This work 

pSS393 pRS314 TRIP1  CEN6  PHOP1-GFP-PCH2 (Herruzo et al., 2019) 

pSS408 pRS314 TRIP1  CEN6  PHOP1-GFP-NES-PCH2 This work 

pSS421 pRS314 TRIP1  CEN6 PHOP1-GFP-NLS-PCH2 This work 
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Table S3. Primary antibodies 

Antibody Host and type 
Application* (Di-

lution) 
Source / Reference 

Hop1-T318-P Rabbit polyclonal WB (1:1000) (Penedos et al., 2015) 

H3-T11-P Rabbit polyclonal WB (1:2000) 
Abcam 

ab5168 

PGK (22C5D8) Mouse monoclonal WB (1:5000) 
Molecular Probes 

459250 

Pch2  Rabbit polyclonal 
WB (1:2000) 

IF (1:325) 
(Herruzo et al., 2019) 

mAID (1E4) Mouse monoclonal WB (1:400) 
MBL 

M214-3 

*WB, western blot; IF, immunofluorescence 
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CONCLUSIONES 

1. La población citoplásmica de Pch2 puede ser relevante para promover la respuesta del 

checkpoint meiótico.  

CONCLUSIONS 

1. The cytoplasmic population of Pch2 could be relevant to promote the meiotic checkpoint 

response. 
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RESUMEN 

Las modificaciones epigenéticas están emergiendo como reguladores importantes del genoma. 

Sin embargo, los mecanismos por los que regulan procesos específicos durante la meiosis no se 

conocen bien. La metilación de H3K79 mediada por la histona metil-transferasa Dot1 está 

involucrada en el mantenimiento de la estabilidad genómica en varios organismos. En S. 

cerevisiae, Dot1 modula la respuesta del checkpoint meiótico inducido por defectos en sinapsis 

y/o recombinación promoviendo la activación de Hop1 y por tanto de Mek1, así como su 

incorporación en los ejes de los cromosomas sin sinapsis, al menos en parte, regulando la 

localización de Pch2. Sin embargo, se desconoce cómo esta proteína regula la meiosis en 

metazoos. Aquí describimos los efectos de la reducción de H3K79me3 mediante el análisis de 

mutantes dot-1.1 o zfp-1 en la meiosis de Caenorhabditis elegans. Así, hemos observado un 

aumento de letalidad embrionaria y esterilidad en los mutantes dot-1.1, lo que sugiere defectos en 

la meiosis. Mostramos que DOT-1.1 desempeña un papel en la regulación del apareamiento, 

sinapsis y recombinación en gusanos. Además, demostramos que H3K79me3 es un regulador 

importante del checkpoint de sinapsis. En resumen, nuestros resultados desvelan que la 

regulación de H3K79me juega un papel importante en la coordinación de los eventos meióticos 

en C. elegans.   
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ABSTRACT  

Epigenetic modifiers are emerging as important regulators of the genome. However, how 

they regulate specific processes during meiosis is not well understood. Methylation of 

H3K79 by the histone methyltransferase Dot1 has been shown to be involved in the mainte-

nance of genomic stability in various organisms. In S. cerevisiae, Dot1 modulates the meiotic 

checkpoint response triggered by synapsis and/or recombination defects by promoting 

Mek1-dependent Hop1 activation and distribution along unsynapsed meiotic chromosomes, 

at least in part, by regulating Pch2 localization. However, how this epigenetic modification 

regulates meiosis in metazoans is unknown. Here, we describe the effects of H3K79me3 de-

pletion via analysis of dot-1.1 or zfp-1 mutants during meiosis in Caenorhabditis elegans. We 

observed an increase in sterility and embryonic lethality in dot-1.1 mutants suggesting mei-

otic dysfunction. We show that dot-1.1 plays a role in the regulation of pairing, synapsis and 

recombination in the worm. Furthermore, we demonstrate that H3K79me3 is an important 

regulator of mechanisms surveillling chromosome synapsis during meiosis. In sum, our re-

sults reveal that regulation of H3K79me plays an important role in coordinating events 

during meiosis in C. elegans. 

INTRODUCTION 

Meiosis is an essential cell division program 

for all sexually reproducing organisms. It 

halves the genome’s content by following 

one round of DNA replication with two suc-

cessive rounds of cell division, meiosis I and 

II, to generate haploid gametes (i.e. sperm 

and oocytes). A series of well-orchestrated 

events ensure accurate homologous chromo-

some segregation at meiosis I while preserv-

ing sister chromatid associations until meio-

sis II (Baudat et al. 2013). Namely, homo-

logs have to pair, synapse and recombine. 

Errors in any of these processes can lead to 

the formation of aneuploid gametes, which 
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in humans can result in birth defects such as 

Down syndrome, miscarriages and infertility 

(Hassold and Hunt 2001). While many of the 

proteins required for achieving homologous 

pairing, synapsis and recombination are 

known, far less is understood about how dy-

namic changes in the chromatin landscape 

affect these processes during meiosis.  

Alterations in the chromatin landscape 

are mediated in part by post-translational 

modification of histones which form octam-

ers wrapped around DNA (H3/H4 hetero-

tetramer and two H2A/H2B dimers) to form 

the building blocks of chromatin, the nucleo-

somes (Van Holde et al. 1980; Luger et al. 

1997; Kornberg and Lorch 1999; Zhang and 

Dent 2005). Post-translational modifications 

of histones play an important role in the es-

tablishment and maintenance of gene ex-

pression, and covalent histone modifications 

influence chromatin structure and function 

directly or indirectly through the recruitment 

of effector proteins to specific chromatin 

domains (Strahl and Allis 2000; Martin and 

Zhang 2005; Kouzarides 2007).  

One of these histone modifications is the 

methylation of H3K79 (hereafter H3K79me) 

by the histone methyltransferase Dot1 which 

has been reported to be involved in the 

maintenance of genomic stability in various 

organisms (Wood et al. 2005; Mohan et al. 

2010b; Nguyen and Zhang 2011). Dot1 is a 

methyltransferase that catalyzes mono-, di- 

and trimethylation of histone H3K79 (Ng et 

al. 2002; Frederiks et al. 2008). A demethyl-

ase for this histone mark has not been identi-

fied so far. Dot1 is an evolutionarily con-

served protein that regulates diverse cellular 

processes, such as development, reprogram-

ming, differentiation, and proliferation  

(Mohan et al. 2010a; Ontoso et al. 2013; Ce-

cere et al. 2013; Kim et al. 2014). During 

meiosis in yeast, Dot1 modulates the meiotic 

checkpoint response induced in the zip1Δ 

mutant lacking a major component of the 

central region of the synaptonemal complex 

(SC). Dot1 promotes Mek1-dependent Hop1 

activation and distribution along unsynapsed 

meiotic chromosomes. Several lines of evi-

dence suggest that Dot1 regulates this 

checkpoint, at least in part, by defining Pch2 

chromosomal distribution (San-Segundo and 

Roeder 2000; Ontoso et al. 2013). In mam-

mals, defects on DOT1L (Dot1 (yeast) -

Like) enzyme function are related to mixed 

lineage leukemia (MLL) (Nguyen and Zhang 

2011). The C. elegans genome encodes five 

putative methyltransferases of the Dot1 fam-

ily (Feng et al. 2002), among which DOT-

1.1 has been shown, through computational 

and experimental analysis, to be the homo-

log of mammalian DOT1L (Cecere et al. 

2013; Esse et al. 2019). Although cytologi-

cal analyses of DOT1L and H3K79me dis-

tribution in mouse spermatocytes are sugges-

tive of a functional implication for this his-

tone modification in mammalian meiosis 

(Ontoso et al., 2014) the roles of DOT-1.1 

and regulation of H3K79 methylation during 

meiosis had not been previously directly ex-

amined in a metazoan. 

Despite its importance, the impact of the 

chromatin environment during meiotic pro-

gression has been poorly studied. Here we 

describe the roles of dot-1.1 and H3K79me3 

in the germline of C. elegans. Analysis of 

dot-1.1 mutants revealed that DOT-1.1 regu-

lates the levels of H3K79me3 in the 

germline and is required for normal brood 

size and embryonic viability. We also show 

that dot-1.1 mutants exhibit impaired ho-

mologous pairing, chromosome synapsis and 
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recombination. Importantly, dot-1.1 is impli-

cated in the activation/establishment of the 

synapsis checkpoint in the worm in a PCH-2 

localization independent manner.  

MATERIAL AND METHODS 

Genetics 

C. elegans strains were cultured at 20°C un-

der standard conditions as described in 

(Brenner 1974). The N2 Bristol strain was 

used as the wild-type background. The fol-

lowing mutations and chromosome rear-

rangements were used: linkage group I 

(LG1) dot-1.1[knu337-(pNU1092-KO 

loxP::hygR::loxP)], rad-54(ok615), hT2[bli-

4(e937) let-?(q782) qIs48] (I,III); LGII pch-

2(tm1458); LGIII, zfp-1(gk960739); LGIV, 

ced-3(n1286), nt1[unc-?n754]let-

?gls50)(IV;V); LGV, syp-1(me17). Full gen-

otypes for combinatorial mutants used in this 

study are listed in Supplementary Table S1. 

zfp-1(gk960739)III and dot-1.1[knu337-

(pNU1092-KO loxP::hygR::loxP)]I; ced-

3(n1286)IV mutants were obtained from Alla 

Grishok’s laboratory. These lines were back 

crossed at least six times.  

Scoring embryonic lethality, sterility and 

males 

Age-matched (24 hours post-L4 stage) indi-

vidual hermaphrodites were placed into reg-

ular NGM plates to score the embryonic le-

thality, sterility and percentage of males 

among their progeny. Worms were moved 

every 24 hours to new NGM plates (this was 

done for four consecutive days). The total 

number of fertilized eggs laid, hatched, and 

the number of progeny that reached adult-

hood were scored. 

Cytological Analysis 

Whole mount preparation of dissected gon-

ads and immunostainings were performed as 

in (MacQueen and Villeneuve 2001) with 

some modifications. Briefly, gonads from 

hermaphrodites 24h post-L4 larval stage 

were dissected and fixed with 1% of formal-

dehyde for 5 minutes, freeze-cracked and 

post-fixed in ice-cold 100% methanol for 1 

minute followed by blocking with 1% BSA 

for 1 hour. Gonads for RAD-51 im-

munostaining were dissected and then 

freeze-cracked and fixed in 4% formalde-

hyde for 30 minutes. The following primary 

antibodies were used at the indicated dilu-

tions: rabbit α-phospho HIM-8/ZIMs 

(1:1000, (Kim et al. 2015)) rabbit α-PCH-2 

(1:500, (Deshong et al. 2014)), rabbit α-

H3K79me3 (1:500, Abcam Ab2621), rabbit 

α-RAD-51 (1:10000, Novus Biological 

(SDI) 29480002), goat α-SYP-1 (1:3000, 

(Nadarajan et al. 2017)), rabbit α-HIM-8 

(1:500, Novus Biological (SDI), guinea pig 

α-HTP-3 (1:500, (Goodyer et al. 2008)), 

rabbit anti-RAD-51 (1:10,000; Catalog 

#29480002; Novus Biologicals). The follow-

ing secondary antibodies were purchased 

from Jackson ImmunoResearch Laboratories 

(West Grove, PA) and used at the following 

dilutions: α-rabbit Cy-3 (1:200), α-guinea 

pig Cy-5 (1:100), α-goat Alexa 488 (1:500), 

α-rabbit Alexa 488 (1:500), and α-guinea pig 

Alexa 488 (1:500). DAPI was used to coun-

terstain DNA. Vectashield from Vector La-

boratories (Burlingame, CA) was used as a 

mounting media and anti-fading agent. 

To perform the quantitative analysis of 

pHIM-8/ZIMs foci the average number of 

foci for all seven zones composing the 

germline was measured. Between 4 and 6 

gonads were scored for each genotype (Sup-

plemental File S1).  
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To evaluate oocytes at diakinesis whole 

worms were Carnoy’s fixed and then stained 

with DAPI as in (Villeneuve 1994). Images 

were taken from the diakinesis oocyte more 

proximal to the spermatheca (-1 oocyte).  

Imaging was performed using an IX-70 

microscope (Olympus) with a cooled CCD 

camera (model CH350; Roper Scientific) 

controlled by the DeltaVision system (Ap-

plied Precision). Images were collected us-

ing 100x objective with or without auxiliary 

magnification (1.5) and Z-stacks were set at 

0.2 μm thickness intervals. Image deconvo-

lution was done using SoftWoRX 3.3.6 pro-

gram (Applied Precision) and processed with 

Fiji ImageJ (Schindelin et al. 2012; Schnei-

der et al. 2012). 

Time course analysis for RAD-51 foci 

Quantitative analysis of RAD-51 foci for all 

seven zones composing the germline was 

performed as in (Colaiácovo et al. 2003). 

The average number of nuclei scored per 

zone (n) from 4 to 6 gonads for each geno-

type ± standard deviation is shown in Sup-

plemental File S1. Statistical comparisons 

were performed using the two-tailed Mann-

Whitney test, 95% C.I. (Supplemental File 

S2). 

Germ cell apoptosis 

Acridine orange (AO) staining of apoptotic 

germ cells in wild type (N2), zfp-1, syp-1 

and pch-2 alleles as well as in the corre-

sponding double and triple mutants was per-

formed as in (Craig et al. 2012). Briefly, 

apoptotic germ cell corpses were scored in 

the germlines of adult hermaphrodites, ana-

lyzed 24 hours post-L4 stage following in-

cubation with Acridine Orange (AO) for 2 

hours at room temperature. The germlines of 

a minimum of 27 worms from at least two 

independent biological repeats were scored 

for each genotype. Apoptotic germ cell 

corpses were visualized using a Leica 

DM5000B fluorescence microscope. Statis-

tical analysis was done using an unpaired 

two-tailed Mann-Whitney test with 95% C.I. 

(Supplemental Table 3). 

RESULTS  

dot-1.1 mutant worms exhibit sterility, in-

creased embryonic lethality and altered 

germline chromosome morphogenesis 

To determine the role of DOT-1.1 during 

meiotic prophase all of our analyses were 

done using a dot.1.1(knu339);ced-3(n1286) 

double mutant, since it was demonstrated 

that dot-1.1 null mutants do not survive due 

to massive apoptosis which can be circum-

vented with a mutation in ced-3 that encodes 

for a homolog of mammalian caspase-3 (Es-

se et al. 2019). We assessed whether dot-

1.1;ced-3 mutants exhibit impaired chromo-

some segregation by scoring the number of 

eggs laid (brood size), embryonic lethality 

(Emb), and incidence of males (Him) among 

the surviving progeny. A 35% reduction in 

the mean numbers of eggs laid on plates, 

which is indicative of increased sterility, was 

observed in dot-1.1;ced-3 mutant worms 

compared to wild type, but not in the ced-3 

mutant alone (Figure 1A). We also observed 

significantly increased embryonic lethality in 

dot-1.1;ced-3 mutants compared to wild type 

(Figure 1A) (17.8% and 1%, respectively, 

P<0.0001 by the two-tailed Mann-Whitney 

test, C.I. 95%). A less significant increase in 

embryonic lethality was also observed in 

ced-3 single mutants compared to wild type 

(6.2% and 1%, respectively, P<0.05), 
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Figure 1. dot-1.1 mutant worms exhibit increased embryonic lethality, sterility and defects in chromoso-
mal organization in the germline. (A) Embryonic lethality, incidence of males and the number of eggs laid 

(brood size) are shown for the indicated backgrounds and compared to wild type. Error bars represent SEM. 

*P<0.05, **P<0.01,***P<0.001 and ****P<0.0001 by the two-tailed Mann-Whitney test, 95% C.I. n = number 

of individual worms analyzed. (B) Left, high-resolution images of whole mounted gonads stained with DAPI 

from wild type and dot-1.1;ced-3 mutant animals oriented from left to right. The different stages of meiotic pro-

phase are indicated above the gonads and the seven equally-sized zones scored (Z1-Z7) are delimited by vertical 

white lines. Nuclei in Z1 and Z2 are undergoing mitosis. They enter meiosis at Z3 when they enter the transition 

zone, which corresponds to the leptotene/zygotene stages. Nuclei then proceed through pachytene (Z4-Z7). In-

sets show the presence of transition zone-like nuclei in mid-pachytene for dot-1.1;ced-3 mutant worms indicat-

ing the presence of lagging leptotene/zygotene nuclei. Right, histogram indicates percentage of gonads exhibit-

ing nuclei with chromatin in a leptotene/zygotene-like organization in the pachytene zone (n = number of gonads 

examined for each genotype). Scale bars, 2M. (C) Histogram representing the percentage of nuclei with paired 

HIM-8 signals scored at different zones along the germline in wild type, dot-1.1;ced-3 and ced-3.  The X chro-

mosomes were scored as paired when the two HIM-8 signals were  ≤ 0.75 m apart from each other. Data was 
obtained from 4 to 6 independent biological repeats for wild type (n=30), dot-1.1;ced-3 (n=40) and ced-3 

(n=30). n= number of gonads scored. * P<0.05.  
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however, there is a significant difference be-

tween the embryonic lethality observed in 

dot-1.1;ced-3 and the ced-3 single mutant 

(17.8% and 6.2%, respectively, P<0.001), 

which suggests that most of the increase in 

chromosome missegregation results from the 

dot-1.1 mutation itself. We did not find high 

incidence of males in dot-1.1 mutants (Fig-

ure 1A).  

To explore whether the increased sterility 

and embryonic lethaliy are due, at least in 

part, to defects during meiosis we examined 

DAPI-stained gonads from wild type, dot-

1.1;ced-3 and ced-3 mutant worms. In the C. 

elegans germline, nuclei are organized in a 

spatial-temporal gradient thereby facilitating 

the identification of alterations in chromo-

some organization at specific meiotic stages 

(Lui and Colaiácovo 2013). We observed an 

increase in the number of gonads with nuclei 

with chromatin in a leptone/zygotene-like 

organization (crescent shape configuration) 

at the zone corresponding to the pachytene 

stage in dot-1.1;ced-3 mutants compared 

with either wild type or ced-3 alone reveal-

ing an extended transition zone in the ab-

sence of dot-1.1 (Figure 1B). Taken togeth-

er, these data suggest that DOT-1.1 is re-

quired for normal meiotic chromosome mor-

phogenesis and chromosome segregation. 

DOT-1.1 is required for normal progres-

sion of homologous pairing and SC as-

sembly and preferentially affects the X 

chromosome 

To determine the role of DOT-1.1 during 

meiosis we analyzed homologous pairing, 

synapsis and recombination in the hermaph-

rodite germline. We divided germlines into 

seven zones of equal size and evaluated the 

levels of homolog pairing for the pairing 

center end (a cis-acting region implicated in 

homolog recognition) of the X-chromosome 

as visualized by localization of the zinc fin-

ger protein HIM-8 to that region (Phillips et 

al. 2005). X chromosome pairing was as-

sessed by the presence of closely juxtaposed 

HIM-8 foci less  apart. In wild-

type and ced-3 hermaphrodites, X chromo-

some pairing was observed initiating at the 

leptotene/zygotene stage of meiosis (zone 3; 

Figure 1B-C) (there is a background level of 

association between homologs in the pre-

meiotic tip, as previously reported; (Phillips 

et al. 2005). By early pachytene (zone 4; 

Figure 1B-C), X chromosome homologous 

pairing was detected in nearly 100 percent of 

nuclei. In contrast, in dot-1.1;ced-3 her-

maphrodites, we observed a delay in pairing 

as shown by the lower levels of nuclei with 

paired HIM-8 signal starting at transition 

zone and persisting into early pachytene 

(zones 3 through 4, Figure 1C; P<0.05, Fish-

er’s exact test). However, between 95% to 

97% of nuclei exhibited paired X chromo-

somes from mid to late pachytene (zones 5 

through 7) which was not significantly dif-

ferent from wild-type worms. Nevertheless, 

there were a few nuclei exhibiting unpaired 

HIM-8 signal until zone 7 in dot-1.1;ced-3 

mutants. 

The persistence of nuclei with a lepto-

tene/zygotene-like chromatin organization at 

the zone corresponding to the pachytene 

stage and the delay in chromosome pairing 

have been previously associated with defects 

in SC formation (MacQueen et al. 2002). To 

examine SC assembly we co-stained whole-

mounted gonads from wild type, dot-

1.1;ced-3 and ced-3 mutants with antibodies 

against HTP-3, a lateral element component 
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Figure 2. SYP-1 loading is affected in dot-1.1 mutants. (A) Histogram representing the percentage of nuclei 

that exhibit complete synapsis as a function of meiotic progression in wild-type, dot-1.1;ced-3 and ced-3 mutant 

worms. Nuclei showing complete overlapping signal of the lateral element component HTP-3 and the central 

region component SYP-1 were considered as nuclei with complete synapsis. (B) High-resolution images of 

pachytene nuclei co-immunostained with SYP-1 (green), HTP-3 (red), HIM-8 (yellow) and DAPI (blue). Images 

show independent channels and merge. Unlike wild-type and ced-3 mutant worms, some nuclei in dot-1.1;ced-3 

mutants exhibited DAPI-stained regions lacking SYP-1 signal at the pachytene stage (9.8%, 41/419). 24.4 % 

(10/41) of these nuclei did not show HTP-3 signal and in 61% (25/41) the unsynapsed chromosome correspond-

ed to the X chromosome as indicated by presence of HIM-8 signal (arrow). Between 5 to seven gonads from 
three biological repeats were scored for wild type (n=312), dot-1.1;ced-3 (n=419) and ced-3 (n=320); n=number 

of nuclei scored. Higher magnification images for wild type and dot-1.1;ced-3 are shown under the correspond-

ing panel. Scale bars, 5 m. 
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of the SC (MacQueen et al. 2005; Goodyer 

et al. 2008), and SYP-1, a central region 

component of the SC (MacQueen et al. 

2002). We observed normal nuclei in which 

the SC is fully formed as shown by co-

localization of HTP-3 and SYP-1 between 

all chromosome pairs. However, we also 

found nuclei with incomplete synapsis where 

stretches of HTP-3 were detected without 

SYP-1 signal, suggesting normal axis mor-

phogenesis, but impaired assembly of SC 

central region components, as well as nuclei 

lacking both HTP-3 and SYP-1 signal, indi-

cating a defect at the level of axis morpho-

genesis (Figure 2B). We calculated the per-

centage of nuclei with complete synapsis as 

a function of meiotic progression. In wild-

type worms, initiation of SC assembly, de-

fined by the presence of short patches of 

central region components on chromosomes 

with lateral element proteins fully loaded 

throughout the full length of the chromo-

somes, was first observed at transition zone 

(zone 3), and 96% of nuclei had completed 

SC assembly by early pachytene (zone 4). 

dot-1;ced-3 worms also initiated SC assem-

bly at transition zone, but only 65% of nuclei 

had completed SC assembly by early pachy-

tene indicating a delay in SC assembly com-

pared to wild type (P<0.0001, Fisher’s exact 

test) (Figure 2A). Such defect seems to be 

specific to dot-1.1 since we did not observe 

it in a ced-3 single mutant. We observed 

similar levels of SC disassembly between 

wild type and dot-1.1;ced-3 mutant worms 

(Figure 2A; zone 7). More detailed analysis 

showed that in dot-1.1;ced-3 mutant animals 

10% of the nuclei in mid to late pachytene 

(zones 5 and 6) did not have SYP-1 signal in 

at least one chromosome compared to 0.64% 

and 0.63% observed in wild type and ced-3 

single mutant, respectively (n=419, 312 and 

320 nuclei analyzed, respectively). From 

those, 24.4% (15/41) also lacked HTP-3 sig-

nal explaining the absence of SYP-1 since 

proper assembly of the SC depends on the 

normal formation of axes (Goodyer et al. 

2008). The remaining nuclei (26/41), lacked 

SYP-1 signal although HTP-3 signal was not 

altered (Figure 2B) suggesting that DOT-1.1 

is implicated in the regulation of SYP-1 

loading itself. Furthermore, since we ob-

served that the absence of SYP-1 was mainly 

restricted to one chromosome in each nucle-

us and we had evidence of a delay in X 

chromosome pairing (Figure 1C) we used 

HIM-8 as a marker to evaluate whether the 

X chromosome was the chromosome primar-

ily affected by lack of DOT-1.1 function. 

Using a triple co-immunostaining for SYP-1, 

HTP-3 and HIM-8 we observed that 61% of 

the chromosomes without SYP-1 signal 

(25/41) were positive for HIM-8, which 

means that the X chromosome is more de-

pendent on DOT-1.1 for SYP-1 loading 

(Figure 2B).  

DNA double-strand break formation is 

impaired in dot-1.1 mutant 

Since impaired homologous pairing and SC 

assembly can be linked with defects in mei-

otic recombination we assessed meiotic DSB 

repair progression by quantifying the levels 

of RAD-51 foci on immunostained whole-

mounted gonads in wild type and dot-

1.1;ced-3 mutants (Figure 3). RAD51 binds 

to 3’ ssDNA ends at resected DSBs to pro-

mote strand invasion/exchange during DSB 

repair (Sung 1994) and in C. elegans, RAD-

51 foci on chromosomes indicate sites un-

dergoing DSB repair (Colaiácovo et al. 

2003). We scored the number of RAD-51 
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foci per nucleus throughout the germline. In 

wild-type and ced-3 mutant gonads, low lev-

els of RAD-51 foci were observed at the 

premeiotic tip where nuclei are undergoing 

mitosis (zones 1-2). RAD-51 foci levels start 

to increase upon entrance into meiosis at 

transition zone (zone 3), peak by mid-

pachytene (zone 5) and then decrease by late 

pachytene (zones 6 and 7) as DSB repair is 

completed (Figures 3A and 3B). In contrast, 

dot-1.1;ced-3 mutants showed significantly 

lower levels of RAD-51 foci in meiotic nu-

clei (zones 3-7). The lower levels of RAD-

51 foci in dot-1.1;ced-3 mutants could either 

be due to a reduction in the levels of DSB 

formation or to a faster turnover/repair of 

DSBs. To distinguish between these possi-

bilities, we assayed RAD-51 foci in rad-54 

 

Figure 3. DSB formation is altered in dot-1.1 mutant worms. (A) High-resolution images representative of 

mid-pachytene nuclei (zone 5) immunostained for RAD-51 (magenta) and co-stained with DAPI (blue). Scale 

bar, 5 m. (B) Histogram shows  the mean number of RAD-51 foci/nucleus (y-axis) scored along each zone in 
the germlines (x-axis) of the indicated genotypes. Between 4 and 6 gonads were scored per genotype. A signifi-

cant decrease in levels of RAD-51 foci were observed for zones 4 to 7 in dot-1.1;ced-3 germlines compared to 

wild-type and in dot-1.1;ced-3;syp-1 germlines compared to syp-1. Error bars represent SEM from technical re-

peats for each of two to three biological replicates (*P<0.05, ****P<0.0001 by the two-tailed Mann-Whitney 

test, 95% C.I.). (C) Histogram shows the mean number of RAD-51 foci/nucleus for each zone along the 

germlines of rad-54 combinatorial mutants. Decreased levels of DBSs for dot-1.1;rad-54;ced-3 compared to 

rad-54 and for dot-1.1;rad-54;ced-3;syp-1 compared to rad-54;ced-3;syp-1 were observed beginning in early 

pachytene (zone 4) and persisting until late pachytene (zone 7). Error bars represent SEM for technical repeats 

from two biological repeats (****P<0.0001 by the two-tailed Mann-Whitney test, 95% C.I.). 
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and dot-1.1;rad-54;ced-3 triple mutants 

(Figure 3C) given that a mutation in rad-54 

prevents the removal of RAD-51 from repair 

intermediates and stalls the progression of 

meiotic recombination, essentially “trap-

ping” DSB-bound RAD-51 and allowing for 

quantification of the total number of DSBs. 

dot-1.1;rad-54;ced-3 showed a significant 

decrease in the levels of RAD-51 foci in the 

leptotene/zygotene, early, mid- and late-

pachytene stages compared to rad-54 single 

mutant (zones 3, 4, 5, 6 and 7, respectively; 

P<0.0001; Figure 3C) suggesting that DOT-

1.1 may regulate DSB formation. Raw data 

for rad-51 foci quantification are included in 

Supplemental file S1 and all the statistics 

comparisons in Supplemental file S2.  

Levels of CO formation are altered in dot-

1.1 mutants 

To determine whether dot-1.1 is required for 

normal crossover formation we used ZHP-3 

as a marker to quantify the number of sites 

designated to be repaired as crossovers 

(COs) in wild type, dot-1.1;ced-3 and ced-3 

mutants (Figure 4A). The number and distri-

bution of COs along each pair of homolo-

gous chromosomes are tightly regulated 

throughout species (Baudat et al. 2013). This 

is particularly evident in C.elegans where 

only one CO occurs per homolog pair 

(Meneely et al. 2002). In wild-type and ced-

3 worms, a mean of 6 ZHP-3 foci per nucle-

us was observed by late pachytene, corre-

sponding to one ZHP-3 focus for each of the 

six pairs of homologs. However, a mean of 

6.6 ZHP-3 foci was detected in dot-1.1;ced-3 

germlines (Figure 4A). Since there are fewer 

DSBs formed in dot-1.1;ced-3 mutants, this 

suggests that CO interference is altered in 

the absence of DOT-1.1. 

To further investigate chiasma formation 

in dot-1.1 mutants we scored the numbers of 

DAPI-stained bodies observed in -1 oocytes 

at diakinesis (the most proximal oocyte to 

the spermatheca) in wild-type, ced-3 and 

dot-1.1;ced-3 worms (Figure 4B). While 

100% of -1 oocytes in wild type and ced-3 

mutant worms contained 6 DAPI bodies (bi-

valents), consistent with 6 pairs of attached 

homologs, only 87.4% of oocytes in dot-

1.1;ced-3 worms exhibited six DAPI bodies 

with 6.3% each carrying 5 and 7 DAPI-

stained bodies, respectively. The presence of 

5 DAPI-stained bodies suggests potential 

end-to-end chromosome fusions or aggre-

gates while 7 DAPI stained bodies suggest 

the presence of 5 bivalents and two univa-

lents, potentially corresponding to the X 

chromosome which our analysis suggests is 

more affected in the dot-1.1 mutant. Careful 

examination of chromosome morphology 

revealed significantly elevated levels of -1 

oocytes with aberrant chromosome conden-

sation in dot-1.1;ced-3 worms (P<0.0001; 

Fisher’s exact test). Furthermore, albeit not 

statistically significant, dot-1.1 chromo-

somes exhibited a range of defects which 

included the presence of fragments, frayed 

chromosomes and aggregates (Figure 4C). 
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Figure 4. Altered crossover formation in dot-1.1 mutants leads to bivalent morphogenesis defects. (A) His-

togram shows the mean number of ZHP-3 foci scored for each genotype. Foci were quantified in late pachytene 

when six ZHP-3 foci per nucleus are clearly detected in wild type representing six COs (one per homolog pair). 

The number of nuclei scored for wild type, dot-1.1;ced-3 and ced-3 were n = 104, 76 and 83, respectively (from 

at least 5 gonads each from two biological repeats). Error bars represent SD (***P<0.001 by the two-tailed 

Mann-Whitney test, 95% C.I.). (B) Quantification of the number of DAPI-stained bodies observed in the -1 oo-

cytes for the indicated genotypes. Wild-type and ced-3 worms show 6 DAPI bodies which correspond to 6 pair 

of homologs. In contrast, oocytes with either 5 or 7 DAPI bodies were detected in dot-1.1;ced-3 mutant worms. 

The number of nuclei scored for wild-type, dot-1.1;ced- and ced-3 were n = 38, 48 and 48, respectively from 

three biological repeats. (C) Top, table shows the quantification of the percentage of -1 oocytes at diakinesis 
displaying each one of the indicated defects in chromosome morphology. n=number of -1 oocytes scored. 

Decond.= decondensation. Aggreg.= aggregates. Bottom, representative high-resolution images of DAPI-stained 

bodies observed in -1 oocytes at diakinesis exhibiting either normal morphology (wild-type) or defects including 

evidence of aggregates, chromosome fragments and frayed chromosomes (arrows) in dot-1.1;ced-3 mutants. 

Scoring was done for three biological repeats. Scale bar, 2 μm.  
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dot-1.1 regulates a meiosis checkpoint in 

worms 

Dot1 and its homologs appear to be solely 

responsible for H3K79 methylation since 

knockout of Dot1 in yeast, flies, and mice 

result in complete loss of H3K79 

methylation (van Leeuwen et al. 2002; 

Shanower et al. 2005; Jones et al. 2008). 

The yeast protein Dot1 and its human 

homolog, DOT1L, are able to catalyze 

mono-, di-, and trimethylation in a non 

processive manner (Min et al. 2003; 

Frederiks et al. 2008). In C. elegans, levels 

of H3K79me2 are almost absent in whole 

worm extracts from L3 stage dot-1.1;ced-3 

mutants (Esse et al. 2019) and H3K79me3 

signal is lost in the germline of dot-1.1 

mutant adult worms (Figure S1). 

To explore the possibility that H3K79me 

is required for a meiotic checkpoint in 

worms, as observed in S. cerevisiae (San-

Segundo and Roeder 2000; Ontoso et al. 

2013), we examined germ cell apoptosis 

levels by acridine orange staining. Since dot-

1.1 must be combined with a ced-3 mutation 

to maintain viability, we are unable to score 

germ cell apoptosis in this background 

lacking a caspase, so instead we examined 

this in a zfp-1 mutant. The zfp-1 gene is the 

worm homolog of the MLL fusion partner, 

acute lymphoblastic leukemia 1-fused gene 

from chromosome 10 (AF10). ZFP-1 has 

been shown to interact directly with DOT-

1.1 modulating histone methyltransferase 

activity (Cecere et al. 2013). In agreement 

with this, we observed a decrease in 

H3K79me3 signal in the gonads of zfp-1 

mutant worms (Figure S1). In order to 

trigger the synapsis checkpoint in worms, we 

used the syp-1 mutant that lacks SC 

formation and has been previously shown to 

exhibit checkpoint-dependent elevated germ 

cell apoptosis (MacQueen and Villeneuve 

2001). As a control, we also analyzed the 

pch-2 mutant implicated in the checkpoint 

that monitors synapsis in C. elegans (Bhalla 

and Dernburg 2005). Thus, we examined the 

levels of germ cell apoptosis in syp-1, pch-2 

and zfp-1 single mutants as well as the 

combination of double and triple mutants. 

As expected, germ cell apoptosis was 

dramatically increased in syp-1 compared to 

the wild type (Figure 5A) and also, as 

previously described, this enhanced 

apoptosis was reduced in the checkpoint-

defective syp-1;pch-2 double mutant (Bhalla 

and Dernburg 2005), thus validating this 

assay to monitor checkpoint activity. 

Interestingly, like syp-1;pch-2, the syp-1;zfp-

1 double mutant also displayed significantly 

decreased levels of apoptotic corpses 

compared to syp-1 (Figure 5A), suggesting 

that the reduced H3K79me3 observed in the 

absence of ZFP-1 leads to impaired synapsis 

checkpoint function. Although apoptotic 

levels were slightly increased in the zfp-1 

single mutant, they were similar to those in 

pch-2, zfp-1;pch-2 and zfp-1;pch-2;syp-1 

mutants, suggesting that the small increase 

in germ cell apoptosis observed in the zfp-1 

single mutant does not result from activation 

of the PCH-2-dependent checkpoint. Thus, 

these results suggest that regulation of 

H3K79me3 levels is important for the 

surveillance mechanism that monitors proper 

synapsis in C. elegans. 

Additionally, quantification of the levels 

of RAD-51 foci, revealed that, like pch-2, 

mutation of dot-1.1 also alters the number of 

RAD-51 foci in a syp-1 mutant background 

(Figure 3B). In a syp-1 mutant, lacking the 

133



 
 ARTÍCULO 4 

 

 

Figure 5. dot-1.1 is required for the synapsis checkpoint. (A) Scatter plot showing the distribution of germ 
cell corpses in hermaphrodites from the indicated genotypes. Bars indicate mean ± SD. Levels of germ cell 

corpses in syp-1 mutant worms were significantly higher than those observed in wild-type worms however such 

increase is no longer observed in a zfp-1;syp-1 double mutant (****P<0.0001 by the two-tailed Mann-Whitney 

test, 95% C.I.). A minimum of 27 gonads per genotype were scored from two to three biological repeats. (B) 

Top, high magnification images of representative nuclei showing the different categories of phosho-HIM-8 

(pHIM8) foci scored (>1 focus corresponds to zone 3, 1 focus corresponds to zone 4 and 0 foci corresponds to 

zone 5). Scale bar, 5 μm. Bottom, histogram representing the percentage of nuclei with >1, 1 or 0 pHIM-8 foci. 

In wild-type worms most of the nuclei show more than 1 focus in zone 3, even distribution of >1 and 1 focus in 

zone 4 and mostly 0 foci reaching zone 5. Germline nuclei in syp-1 mutant worms never show 100% of 0 foci 

per nuclei; however, germline nuclei in dot-1.1;ced-3;syp-1 show an increase in the percentage of nuclei exhibit-

ing 0 foci in mid- to late pachytene (zones 5 and 6). The zone quantified is indicated on top of each graph. 4 to 6 

gonads from two biological repeats were analyzed. Average % ± SEM are shown. 
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central region of the SC, the number of 

RAD-51 foci is drastically increased and 

persists for longer due to an inability to 

repair DSBs from a homologous partner 

since homologs are not stably held together 

in the absence of the SC (Colaiácovo et al. 

2003). However in the dot-1.1;ced-3;syp-1 

triple mutant, the mean number of RAD-51 

foci decreased significantly starting from 

zone 3 (Figure 3B), suggesting that a 

fraction of DSBs are repaired in syp-1 when 

the synapsis checkpoint is abrogated. 

Nevertheless, the reduction in the levels of 

RAD-51 foci in the absence of DOT-1.1 also 

comes in part from a reduction in the total 

number of DSBs generated (Figure 3C).  

As another approach to investigate the 

possible role of H3K79me in the synapsis 

checkpoint, we monitored CHK-2 activity in 

syp-1 and syp-1;dot-1.1 mutants. In yeast, it 

is known that Dot1 affects activity of Mek1 

(the CHK-2 ortholog) (Ontoso et al. 2013), 

so we explored whether this mechanism is 

conserved in worms. As a proxy for CHK-2 

activity we used the phosphorylation status 

of HIM-8, which is CHK-2-dependent (Kim 

et al. 2015). We measured CHK-2 activity 

by quantifying the fraction of nuclei with 1 

focus, >1 foci or 0 foci for phosphorylated 

HIM-8 (pHIM-8) in leptotene/zygotene 

(zone 3) and pachytene stages of meiosis 

(zones 4 to 6) (Figure 5B). The distribution 

of pHIM-8 in the germline of dot-1.1 

mutants was similar to wild-type, with 

predominantly 0 foci observed by mid-

pachytene when homologs are fully paired 

and synapsed and pHIM-8 is no longer 

observed (Figure 5B). As previously 

described, we observed that CHK-2 activity 

was prolonged in the syp-1 mutant in 

response to synapsis failure (Kim et al. 

2015), and we found that this striking 

extension was slightly reduced in dot-

1.1;syp-1 double mutants, supporting a 

possible role for DOT-1-dependent H3K79 

methylation in the C. elegans meiotic 

checkpoint sensing chromosome synapsis 

(zones 4-6, Figure 5B).  

Finally, in yeast, it has been proposed 

that Dot1 modulates the meiotic checkpoint 

response in part by regulating Pch2 

localization. In the yeast zip1Δ dot1Δ double 

mutant, the nucleolar confinement of Pch2 is 

lost correlating with defective checkpoint 

response (Ontoso et al. 2013).To analyze 

whether C. elegans uses a similar 

mechanism we evaluated PCH-2 localization 

in dot-1.1, syp-1 and dot-1.1;syp-1 mutants. 

As previously shown, PCH-2 is present in 

germline nuclei prior to the transition zone 

and is no longer detected by late pachytene 

(Deshong et al. 2014) (Figure 6). In dot-

1.1;ced-3 worms the distribution of PCH-2 

is indistinguishable from wild-type (Figure 

6), which suggests that H3K79me does not 

regulate PCH-2 localization to the SC under 

normal conditions. Like in yeast, synapsis is 

required for PCH-2 localization to the SC, 

since PCH-2 localization is completely lost 

from chromosomes in syp-1 mutants 

(Deshong et al. 2014) (Figure 6). However, 

unlike yeast, PCH-2 localization to the 

rDNA is not observed in C. elegans and 

analysis of PCH-2 in the dot-1.1;syp-1 

mutant background did not show alteration 

of the diffuse PCH-2 distribution. Thus, pch-

2 and dot-1.1 may be working in different 

pathways to promote a chromosome 

synapsis checkpoint in C. elegans. 

Consistent with this notion, a dot-1.1;pch-

2;ced-3;syp-1 quadruple mutant exhibited a 

decrease in the number of nuclei with
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aberrant CHK-2 activity compared to that of 

dot-1;ced-3;syp-1 and pch-2;syp-1 double 

mutants (zone 6, Figure 5B). 

DISCUSSION 

Possible causes of embryonic lethality and 

increased chromosome non-disjunction in 

dot-1.1 mutants 

The decreased brood size and increased em-

bryonic lethality observed in the dot-1.1 mu-

tant can be due in part to defects during mei-

osis leading to errors in chromosome segre

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gation and the consequent formation of an-

euploid gametes as has been previously 

shown in C. elegans (Hodgkin et al. 1979; 

Gartner et al. 2000). Besides problems with 

chromosome segregation, embryonic lethali-

ty can result from problems in early embryo 

development. We cannot discard the possi-

bility that the embryonic lethality observed 

in dot-1.1 mutants is the consequence of ear-

ly developmental problems as it has been 

demonstrated in mice and flies. Specifically, 

germline knockout of mDOT1L results in 

lethality by embryonic day 10.5 (E10.5) dur-

 

Figure 6. H3K79me3 does not regulate PCH-2 localization in C. elegans. High resolution images of  gonads 

from indicated backgrounds co-immunostained with PCH-2 (red) and DAPI (blue). Images show independent 

channels and merge. The zones of the gonad showed were selected to indicate meiotic distribution of PCH-2. In 

wild type worms as in dot-1.1;ced-3 mutant worms PCH-2 is expressed in transition zone (Z3).  Once meiosis 

initiates and chromosomes are synapsed, PCH-2 localizes to the SC until mid-pachytene (zone 5) the signal get 

lost by late pachytene (Z7). Scale bar, 5 μm.  
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ing organogenesis of the cardiovascular sys-

tem (Jones et al. 2008). Furthermore, Grap-

pa, the homolog of DOT1L in Drosophila, 

plays an important role in regulating tran-

scription of developmental genes. In general, 

DOT1L has been implicated in regulating 

gene expression due to its activity as a me-

thyltransferase. Nevertheless, although 

Dot1/DOT1L-dependent H3K79me prefer-

entially occurs at actively transcribed ORFs, 

there are only few cases where Dot1/DOT1L 

has been casually linked to transcription reg-

ulation (Vlaming and van Leeuween 2016). 

Studies in C. elegans suggest that DOT-

1/H3K79 methylation may promote RNA 

polymerase pausing (Cecere et al. 2013). 

Here, we showed that H3K79me3 levels de-

crease in the germline of dot-1 mutant 

worms so it is likely that dot-1.1 is regulat-

ing gene expression levels in the germline. 

Although DOT1L is the only H3K79 me-

thyltransferase in mammals and H3K79 

methylation is present on actively tran-

scribed genes, inhibition of DOT1L methyl-

transferase activity does not result in dra-

matic changes in gene expression in cultured 

cells (Zhu et al. 2018). However, expression 

of specific genes, such as HOXA9 and 

MEIS1, is strongly dependent on DOT1L 

specially in leukemias induced by MLL-

fusion proteins (Okada et al. 2005). So em-

bryonic lethality and reduction in brood size 

could be related to the direct regulation of 

specific gene transcription. Moreover, par-

ticular defects observed with chromosome 

morphology in oocytes at diakinesis suggest 

specific gene expression regulation by dot-

1.1. Specifically, problems at the level of 

chromosome compaction (Figure 4) can re-

sult from the direct regulation of genes such 

as arf-1.2 (ortholog of human ARF1, ADP 

ribosylation factor 1) and rnr-2  (orholog of 

human RRM2, ribonucleotide reductase reg-

ulatory subunit M2) which have been de-

scribed as potential targets of dot-1.1 and 

implicated in oocyte chromatin condensation 

(Green et al. 2011; Cecere et al. 2013). 

Thus, the reduction of H3K79me increased 

the occurrence of chromosomal abnormali-

ties, which is consistent with the increased 

sterility and embryonic lethality, revealing 

significant defects in genomic stability. 

 

Decreased DSB formation and CO desig-

nation levels in dot-1.1 suggest alterations 

in chromosome structure 

Our experiments showed a reduction in the 

levels of DSB formation and deregulation of 

CO formation (Figures 3 and 4) in the dot-

1.1 mutant worms, which may be directly 

related to the observed decrease in the levels 

of H3K79me3 in this mutant (Figure S1). 

Numerous enzymes have been shown to cat-

alyze post-translational modifications of core 

histone proteins, and each of these modifica-

tions has profound impacts on overall chro-

matin organization (Jenuwein and Allis 

2001; Turner 2002). Moreover, the organiza-

tion of large-scale chromatin architecture in 

prophase I meiocytes has been attributed to a 

role in the global modulation of meiotic re-

combination and CO frequency (Heng et al. 

1996; Kauppi et al. 2011; Gruhn et al. 

2013). One key piece of evidence to substan-

tiate this model is that the frequency of 

MLH1 foci, a CO marker, is more closely 

associated with the length of the SC than 

DSB marker frequency (Baier et al. 2014). 

Therefore, the relation between chromatin 

modifications and the lengths of the chromo-

some axes as well as of the chromatin loops 
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is essential to the establishment of chromo-

some structure and regulation of gene ex-

pression. In C. elegans, elongation of chro-

mosome axes in condensin mutants showed 

that perturbations to chromosome structure 

influence the position and frequency of 

DSBs in the genome and, hence, of COs 

(Mets and Meyer 2009). Thus a potential 

explanation for CO deregulation in the dot-

1.1 mutant is the alteration of chromatin 

landscape derived from the depletion of 

H3K79me3 with potential implications in 

the deregulation of either chromatin loops or 

chromosome axes. Another non-mutually 

exclusive possibility is the regulation by dot-

1.1 of specific genes involved in either DSB 

formation and/or CO designation. Regula-

tion of spo-11 expression, the gene encoding 

for the topoisomerase-like factor that cata-

lyzes meiotic DSBs (Dernburg et al. 1998), 

is not likely since in dot-1.1 mutants we did 

not see the 12 univalents at diakinesis nor-

mally associated with the complete lack of 

DSB formation and subsequent CO for-

mation. However, we cannot rule out the 

possibility that dot-1.1 regulates the expres-

sion of other genes modulating DSB for-

mation. 

H3K79me3 regulates a meiotic checkpoint 

in C. elegans 

Proper chromosome segregation relies on the 

accurate interaction between homologous 

chromosomes, including synapsis and re-

combination. During meiosis in C. elegans, 

checkpoints are set in place to monitor pair-

ing, synapsis and recombination. Here we 

showed evidence that a meiotic checkpoint 

surveilling synapsis is misregulated in dot-

1.1 mutants. We suggest that such misregu-

lation is directly connected to the decrease in 

H3K79me3 levels observed in dot-1.1 

germline as has been probed in yeast where 

the status of H3K79 methylation modulates 

the meiotic recombination checkpoint, with 

the H3K79me3 form being the most relevant 

to sustain the checkpoint response (Ontoso et 

al. 2013). Unlike yeast, where Dot1 protein 

is dispensable in otherwise unperturbed mei-

osis, we found that in C. elegans it has a role 

in the regulation of key meiotic processes: 

pairing, synapsis and recombination. This is 

closer to the general effects observed for 

dot1 mutants in evolutionarily higher organ-

isms, suggesting that H3K79me function has 

evolved in metazoans. We show evidence 

that CHK-2 activity (measured by pHIM-8) 

is reduced in synapsis-defective mutants 

when they are in combination with a dot-1.1 

mutation. CHK-2 is essential for DSB for-

mation and acts as a master regulator that 

governs pairing, synapsis, and recombination 

during meiotic prophase (MacQueen and 

Villeneuve 2001). Thus, the reduced number 

of DSBs in syp-1;dot-1.1 worms may stem 

from impaired CHK-2 activity. dot-1.1 

checkpoint regulation seems to be independ-

ent of axes proteins since HORMA domain 

protein HTP-3 is mostly not affected in dot-

1.1 mutants. However, it remains to be de-

termined if dot-1.1 directly regulates the ex-

pression/activity of chk-2. 

The defects in chromosome synapsis and 

the generation of aneuploid gametes (Figures 

1 and 6) are still manifested in the dot-

1.1;syp-1 double mutant despite the kinetics 

of meiotic progression being partially res-

cued in this background (Figure 5). There-

fore, relief of the meiotic block by the dot-

1.1 mutation is not due to suppression of the 

defects that trigger checkpoint-induced ar-

rest, but rather due to disruption of the 
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checkpoint per se as has been proposed in 

yeast (San-Segundo and Roeder 2000; Onto-

so et al. 2013). The mechanism by which 

H3K79me, a constitutive histone mark, is 

regulating the checkpoint activation needs to 

be clarified. Like in syp-1 worms, in yeast 

zip1Δ mutants lacking the central region of 

the SC, Pch2 is lost from chromosomes, but 

unlike worms, Pch2 remains associated to 

the unsynapsed nucleolar rDNA array in 

zip1Δ (San Segundo and Roeder 1999; 

Herruzo et al. 2016). In the checkpoint-

defective yeast zip1Δ dot1Δ mutant, Pch2 is 

not retained in the nucleolus and Pch2 dis-

tributes throughout chromatin leading to the 

proposal that regulation of Pch2 nucleolar 

localization by Dot1 is important for check-

point function (San-Segundo and Roeder 

2000; Ontoso et al. 2013). However, more 

recent studies have demonstrated that the 

Pch2 protein also localizes in the cytoplasm 

of yeast cells, and that the presence of Pch2 

in the nucleolus is actually dispensable for 

checkpoint function (Herruzo et al. 2019). In 

syp-1 worms, PCH-2 is not detected associ-

ated to the chromatin (Deshong et al. 2014) 

(Figure 6), but the synapsis checkpoint is 

active (Bhalla and Dernburg 2005) (Figure 

5A). All these observations raise the ques-

tion, both in yeast and C. elegans, of where 

the Pch2 protein relevant for the checkpoint 

localizes to. Thus, it is conceivable that the 

impact of DOT-1 in the synapsis checkpoint 

may not be directly linked to PCH-2 chro-

mosomal distribution. It is possible that 

DOT-1.1 is acting through a mechanism 

more similar to the one proposed in mam-

mals for DNA damage checkpoint activa-

tion; it has been proposed that chromatin 

remodeling in the vicinity of DNA lesions 

may locally expose histone marks (i.e., 

H3K79me, H4K20me) supporting the re-

cruitment of DNA damage checkpoint adap-

tors to activate the checkpoint (Huyen et al. 

2004; Botuyan et al. 2006) so when the mark 

is not present the recruitment of proteins is 

not activated and the checkpoint activation is 

abrogated.  
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SUPPLEMENTAL DATA 

Table S1. C. elegans strains 

 

Strain Genotype 

AGK769 zfp-1(gk960739)III 
 

AV176 syp-1(me17)V/nt1[unc-?n754]let-?gls50)(IV;V) 
 

COP1302 dot-1.1[knu337-(pNU1092-KO loxP::hygR::loxP)]I;ced-3(n1286)IV 

CV345 pch-2(tm1458)II 
 

CV592 pch-2(tm1458)II; syp-1(me17)V/nt1[unc-?n754]let-?gls50)(IV;V) 

CV775 pch-2(tm1458)II;zfp-1(gk960739)III 

CV776 
zfp-1(gk960739)III;syp-1(me17)V/nt1[unc-?n754]let-?gls50)(IV;V) 
 

CV777 
pch-2(tm1458)II;zfp-1(gk960739)III;syp-1(me17)V/nt1[unc-
?n754]let-?gls50)(IV;V) 
 

CV816 

dot-1.1[knu337-(pNU1092-KO loxP::hygR::loxP)]I;pch-
2(tm1458)II;ced-3(n1286)IV;syp-1(me17)V/nt1[unc-?n754]let-
?gls50)(IV;V) 
 

CV810 
dot-1.1[knu337-(pNU1092-KO loxP::hygR::loxP)]I;pch-
2(tm1458)II;ced-3(n1286)IV 

CV811 
dot-1.1[knu337-(pNU1092-KO loxP::hygR::loxP)]I;ced-
3(n1286)IV;syp-1(me17)V/nt1[unc-?n754]let-?gls50)(IV;V) 

CV824 ced-3(n1286)IV 

WS3687 rad-54(ok615)I/hT2 [qIs48] (I;III) 

CV842 
dot-1.1[knu337-(pNU1092-KO loxP::hygR::loxP)]I; rad-
54(ok615)I/hT2 [qIs48] (I;III); ced-3(n1286)IV 

CV843 
rad-54(ok615)I/hT2 [qIs48] (I;III); syp-1(me17)V/nt1[unc-?n754]let-
?gls50)(IV;V) 
 

CV844 
rad-54(ok615)I/hT2 [qIs48] (I;III); ced-3(n1286)IV; syp-
1(me17)V/nt1[unc-?n754]let-?gls50)(IV;V) 
 

CV845 

dot-1.1[knu337-(pNU1092-KO loxP::hygR::loxP)]I; rad-
54(ok615)I/hT2 [qIs48] (I;III); ced-3(n1286)IV; ; syp-
1(me17)V/nt1[unc-?n754]let-?gls50)(IV;V) 
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Supplemental Figure 1. (A) High resolution images of  gonad nuclei from indicated backgrounds co-

immunostained with H3K79me3 (magenta) and DAPI (blue). In wild-type worms H3K79me3 signal is 

associated with the chromatin through the entire gonad; however, in dot-1.1;ced-3 and, less dramatically, in the 

zfp-1 mutant this signal is decreased. Premeiotic tip (zone 2), transition zone (zone 3) and pahytene (zone 5) are 

indicated. Scale bar, 5 μm. 
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CONCLUSIONES 

1. La regulación de H3K79me por DOT-1.1 se requiere para el correcto apareamiento, 

sinapsis y recombinación de los cromosomas en C. elegans. Por ello, niveles reducidos de 

H3K79me3 producen un aumento en la letalidad embrionaria y esterilidad, así como defectos en 

la morfología de los cromosomas en diacinesis. 

2. Los niveles altos de apoptosis del mutante syp-1 se ven reducidos en el doble mutante zfp-

1 syp-1 y la notable extensión de la actividad de CHK-2 del syp-1 se reduce ligeramente en 

gusanos dot-1.1;syp-1. Por tanto, H3K79me3 se requiere para el checkpoint de sinapsis en C. 

elegans. 

3. Al contrario que en S. cerevisiae, el papel de H3K79me en el checkpoint de sinapsis es 

independiente de PCH-2. 
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CONCLUSIONS 

1. Regulation of H3K79me by DOT-1.1 is required for proper chromosome pairing, synapsis 

and recombination in C. elegans. Consequently, reduced levels of H3K79me3 produce an 

increase in embryonic viability, sterility and chromosome morphology defects in diakinesis.  

2. The elevated level of apoptotic corpses in syp-1 is reduced in the zfp-1;syp-1 double 

mutant and the striking extension of CHK-2 activity in syp-1 is slighty reduced in dot-1.1;syp-1 

worms. Thus, H3K79me is required for the synapsis checkpoint in C. elegans. 

3. In contrast to S. cerevisiae, the role of H3K79me in the synapsis checkpoint is 

independent of PCH-2 localization. 
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 DISCUSIÓN GENERAL 

Para cerrar la presente memoria hago una 

valoración conjunta de las principales con-

clusiones obtenidas a lo largo de esta tesis 

doctoral. Además, también propongo un 

modelo final que integra la actuación de 

Pch2 en el checkpoint de recombinación 

meiótica. 

La ATPasa Pch2
TRIP13

 desempeña un pa-

pel muy importante en la meiosis. Se trata de 

una proteína con múltiples funciones pues, al 

menos en S. cerevisiae, participa en procesos 

meióticos tan diversos como son la forma-

ción de DSBs, la configuración de los ejes 

de los cromosomas, la regulación de los 

COs, el destino de la recombinación entre 

homólogos frente a cromátidas hermanas, la 

inhibición de la recombinación en el rDNA y 

el checkpoint de paquitene (Figura 3). Mu-

chos de estos papeles se atribuyen al efecto 

que provoca sobre su sustrato predilecto: 

Hop1 (Vader 2015).  

De todas estas funciones, este proyecto 

de tesis se centra en el papel de Pch2 en el 

checkpoint de recombinación meiótica, con 

el objetivo principal de profundizar en el 

mecanismo de acción de Pch2 en este check-

point inducido por fallos en sinapsis. Para 

poder distinguir el papel de Pch2 en este 

proceso del de cualquier otra de sus funcio-

nes en una meiosis normal, empleamos el 

mutante zip1Δ. Este mutante al carecer de la 

región central del SC presenta fallos en si-

napsis y recombinación que inducen la acti-

vación del checkpoint.  

Así pues, comenzamos demostrando que 

el papel principal de Pch2 cuando existen 

errores en sinapsis es promover la fosforila-

ción de Hop1 en la treonina 318 ejercida por 

Mec1, favoreciendo la subsiguiente fosfori-

lación de Mek1 y la activación del bloqueo 

meiótico. El hecho de encontrar Hop1 como 

diana de la acción de Pch2 no era de extra-

ñar, pues se conocía muy bien la acción ne-

gativa de Pch2
TRIP13

 sobre Hop1
HORMAD1,2

, 

excluyendo esta proteína de los ejes de los 

cromosomas a medida que se va completan-

do la sinapsis. De este modo, se impide que 

se formen nuevas DSBs en regiones que ya 

se han asociado por el SC (Roig et al., 2010; 

Subramanian et al., 2016). Sin embargo, aquí 

describimos por primera vez la acción con-

traria, de manera que Pch2 puede actuar 

también positivamente sobre Hop1 favore-

ciendo su fosforilación y su incorporación a 

los cromosomas en un mutante zip1Δ, es de-

cir, en condiciones de checkpoint activado. 

Una posibilidad para entender cómo Pch2 

puede ejercer acciones contrarias sobre 

Hop1 sería que Pch2 estuviese recibiendo 

señales para encender y apagar el check-

point, por eso en meiosis normales excluye 

Hop1 y cuando el checkpoint está activado 

lo recluta. La responsable de enviar esas se-

ñales a Pch2 podría ser la quinasa Mec1, ya 

que Pch2 cuenta con un sitio consenso TQ 

potencialmente fosforilable por las quinasas 

sensor del checkpoint Mec1/Tel1. Existen 

evidencias que apoyarían la idea de que 

Pch2 puede requerir de esta modificación 

post-transduccional para modular su activi-

dad. Por un lado, se ha descrito que Pch2 

interacciona con el dominio BRCT de Xrs2 

(Ho and Burgess, 2011) y se sabe que estos 

dominios interaccionan con proteínas fosfo-

riladas (Yu et al., 2003). Por otro lado, resul-

tados obtenidos por nosotros, no recogidos 

en esta memoria, muestran que la mutación 

de la T428 que forma parte del consenso TQ 

altera la respuesta del checkpoint, así como 

la distribución de Pch2 en los cromosomas 

meióticos.  
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La actividad catalítica ATPasa de Pch2 es 

esencial para su función. Hemos demostrado 

que tanto la unión del ATP como la hidróli-

sis del ATP son necesarias para la función de 

Pch2 en el checkpoint. Además, observamos 

que la unión al ATP también es necesaria 

para su asociación a la cromatina y para la 

formación del complejo hexamérico.  

Es bien conocido que las modificaciones 

post-traduccionales de las histonas regulan 

numerosos procesos biológicos, como la ac-

tividad transcripcional, el establecimiento de  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

regiones de heterocromatina, la replicación, 

la reparación del DNA, la recombinación o 

el control del ciclo celular (Kouzarides 2007; 

Luger et al., 2012; Becker and Workman,  

2013). Por lo que se refiere al checkpoint de 

recombinación meiótica, se conoce el papel 

de la H3K79me3 mediada por Dot1 en este 

mecanismo de control, siendo necesaria para 

la correcta localización de Pch2 en el nu-

cleolo (Ontoso et al., 2013). Asimismo, Sir2 

también participa en este proceso (San-

Segundo 1999). Aquí describimos que los 

 

Figura 3. Funciones de Pch2 en la meiosis de S. cerevisiae. Pch2 participa en diversos procesos meióticos in-

cluyendo el checkpoint de recombinación. Se representa la predicción de la estructura de un monómero de Pch2.    
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niveles de H4K16ac, regulados por Sir2 y 

Sas2, también afectan al checkpoint y deter-

minan la localización nucleolar de Pch2 de-

bido, al menos en parte, al control de la 

H3K79me. Inicialmente postulamos que el 

impacto de ambas modificaciones de histo-

nas en el checkpoint se debía a que controlan 

la localización de Pch2 en el nucleolo (Cave-

ro et al., 2016). Sin embargo, al demostrar 

posteriormente que la población de Pch2 

asociada a la cromatina no es esencial para el 

checkpoint (Herruzo et al., 2019; Anexo), 

planteamos la hipótesis de que Dot1 y Sir2 

estén controlando también la localización de 

Pch2 en el citoplasma. Estudios futuros 

abordarán esta posibilidad. 

En cuanto a otros factores que determi-

nan la localización nucleolar de Pch2, ade-

más de los ya mencionados Sir2 y Dot1, he-

mos encontrado un motivo rico en aminoáci-

dos básicos dentro del NTD de Pch2 que se 

requiere tanto para la localización de Pch2 

en el núcleo como para su asociación al 

rDNA y para el checkpoint meiótico. La sus-

titución de este motivo por una NLS canóni-

ca de SV40 es capaz de dirigir la localiza-

ción de Pch2 dentro del núcleo, pero no rees-

tablece la localización nucleolar ni la fun-

cionalidad del checkpoint. Estas observacio-

nes sugieren que el motivo básico del NTD 

podría ser necesario para la formación del 

complejo hexamérico. Alternativamente, es 

posible que este motivo medie la interacción 

de Pch2 con otras proteínas a través de su 

NTD. De acuerdo con esta posibilidad, está 

descrito que el NTD de Pch2 es necesario 

para interaccionar con otras proteínas como 

Orc1 o MAD2 (Ye et al., 2017, Villar-

Fernández et al., 2019). Así, pudiera serlo 

también para la interacción con Xrs2, una 

proteína con la que Pch2 colabora en la res-

puesta del checkpoint inducida por DSBs 

meióticas sin procesar detectadas vía Tel1 en 

mutantes como sae2Δ o rad50S (Ho and 

Burgess, 2011). Aunque la posible contribu-

ción de Xrs2 en el checkpoint inducido en 

respuesta a fallos en sinapsis (detectados vía 

Mec1) no está caracterizada, sí podría ser un 

buen candidato. Una posible hipótesis sería 

que Mec1 estuviese regulando por fosforila-

ción la interacción entre Xrs2 y el NTD de 

Pch2, y estas dos proteínas colaborarían para 

promover la fosforilación de Hop1 en T318. 

Por último, con el objeto de dilucidar de-

finitivamente si existe una relación funcional 

entre la localización de Pch2 en el rDNA y 

el checkpoint hemos abordado en detalle el 

estudio de la conexión entre Pch2 y Orc1. 

Observamos que, tal y como se había descri-

to, Orc1 es necesario para reclutar a Pch2 al 

nucleolo (Vader et al., 2012) y comproba-

mos que, consecuentemente, es necesario 

para la exclusión de Hop1 de dicha región. 

Sin embargo, sorprendentemente, la función 

del checkpoint no se ve afectada por la au-

sencia de Orc1. Por tanto, concluimos que, 

contrariamente a nuestra hipótesis de partida, 

la localización nucleolar de Pch2 no se re-

quiere para la funcionalidad del checkpoint. 

Estudios recientes de ChIP-seq apuntan que, 

además de la asociación al rDNA, Orc1 

promueve la unión de Pch2 a otras regiones 

de la cromatina que se transcriben activa-

mente y que no corresponden a las zonas de 

los ejes enriquecidas en Hop1 (Cardoso da 

Silva et al., 2019). Nuestros resultados im-

plican que, ni la fracción de Pch2 nucleolar, 

ni ninguna otra que pudiese estar controlada 

por Orc1 son importantes para el checkpoint. 

Nuestros estudios detallados de la distri-

bución de Pch2, tanto en extensiones de 

cromosomas como en células intactas, han  
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revelado la existencia de al menos tres po-

blaciones de esta proteína con distintas loca-

lizaciones subcelulares: nucleolo, cromoso-

mas y citoplasma. En el caso de condiciones 

de checkpoint activo (mutante zip1Δ) la loca-

lización de Pch2 se limita a nucleolo y cito-

plasma, ejerciendo cada población una fun-

ción diferente. Así la proteína Pch2 de la 

fracción nucleolar, que es reclutada al nu-

cleolo por Orc1 presumiblemente a través 

del NTD de Pch2, es la responsable de su-

primir la recombinación en la región del 

rDNA, mediante la exclusión de Hop1 de 

dicha región. De la misma manera, la frac-

ción de Pch2 presente en la región central 

del SC excluye a Hop1 de los cromosomas 

que han establecido la sinapsis controlando 

la recombinación en estas regiones. Al tra-

tarse de una ATPasa de la familia AAA+, 

Pch2 es capaz de emplear la energía produ-

cida en la hidrólisis del ATP para producir 

cambios conformacionales en sus sustratos, 

promoviendo así el desensamblaje de Hop1 

de los ejes cromosómicos. De hecho se han 

descrito interacciones in vitro entre Pch2 y 

las proteínas HORMAD (Chen et al., 2014; 

Ye et al., 2017). Además, nuestros estudios 

citológicos in vivo muestran que Hop1 siem-

pre está excluido de las regiones donde hay 

Pch2. Sin embargo, la versión Pch2-E399Q, 

incapaz de hidrolizar el ATP, colocaliza con 

Hop1 tanto en el rDNA como en los cromo-

somas. 

Por su parte, en el mutante zip1Δ orc1-

3mAID, la única subpoblación de Pch2 que 

somos capaces de detectar es la presente en 

el citoplasma. Puesto que en esta situación el 

checkpoint sigue siendo completamente fun-

cional esto implica que la fracción citoplás-

mica de Pch2, y no la nuclear ni nucleolar, 

debe ser la relevante para la respuesta de 

checkpoint frente a defectos en sinapsis (Fi-

gura 4). El uso de versiones de Pch2 en las 

que se altera de forma artificial su localiza-

ción subcelular mediante la fusión de se-

cuencias NES o NLS refuerzan esta misma 

conclusión. 

Este último descubrimiento nos lleva a 

un escenario aún más complicado en el que 

Pch2 desde el citoplasma estaría promovien-

do la fosforilación de Hop1 y su incorpora-

ción a los cromosomas dentro del núcleo. 

Por tanto, debe existir una comunicación nú-

cleo-citoplásmica importante para el funcio-

namiento del checkpoint de recombinación 

meiótica que podría implicar el transporte de 

Pch2 del citoplasma al núcleo. De hecho, se 

ha descrito recientemente un papel para la 

nucleoporina Nup2 en la regulación de la 

distribución de Pch2 entre el nucléolo y los 

cromosomas (en cepas ZIP1) con el consi-

guiente impacto sobre Hop1 y la distribución 

regional de DSBs en los cromosomas 

(Subramanian et al., 2019). Por tanto, resul-

taba atractiva la hipótesis de que la nucleo-

porina Nup2, que forma parte de la “cesta” 

del poro nuclear, pudiera regular el transpor-

te del propio Pch2 o bien el de sus posibles 

sustratos implicados en el checkpoint (Hop1, 

Mec1, PP4). No obstante, disponemos de 

resultados preliminares que indican que el 

checkpoint sigue siendo activo en el doble 

mutante zip1Δ nup2Δ (Baztán, Herruzo and 

San-Segundo, 2016, Trabajo de fin de Grado 

en realización) descartando la implicación de 

Nup2 en este proceso. Proponemos un mo-

delo alternativo para el papel de Pch2 en el 

checkpoint de manera que la fracción de 

Pch2 presente exclusivamente en el cito-

plasma, mediante su actividad ATPasa, po-

dría modificar la conformación de algún fac-

tor esencial para la fosforilación de Hop1 en 
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Figura 4. La fracción citoplásmica de Pch2 promueve la fosforilación de Hop1 y la activación del check-

point. La función del checkpoint no se ve afectada por la ausencia de Orc1. Por tanto, la población nucleolar de 
Pch2, aunque es necesaria para excluir a Hop1 del rDNA, no es relevante para la fosforilación de Hop1 en T318 ni 

la activación del checkpoint. 
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T318, por ejemplo, exponiendo una posible 

NLS o facilitando la interacción con otras 

proteínas transportadoras, posibilitando su 

tráfico al interior del núcleo. Este factor ne-

cesario para la fosforilación de Hop1, cuyo 

transporte citoplasma-núcleo es controlado 

por Pch2, podría ser la propia quinasa Mec1, 

algún activador de la quinasa o bien algún 

inhibidor de la fosfatasa PP4. Además, de-

bemos añadir en este escenario las proteínas 

modificadoras de histonas Dot1 y Sir2 que 

podrían estar regulando probablemente de 

manera indirecta, además de la población 

nucleolar de Pch2, también la del citoplasma 

(Figura 5). Estudios futuros irán dirigidos a 

dilucidar los mecanismos moleculares impli-

cados en esta nueva y sorprendente situación 

que han abierto los resultados de esta tesis 

doctoral descubriendo un nivel adicional de 

regulación del checkpoint de recombinación 

meiótica previamente desconocido e inespe-

rado. 

La presencia de Pch2 en el nucleolo pa-

rece ser exclusiva de levaduras y no se ha 

encontrado en otras especies. Así, en mamí-

feros, nematodos y plantas se localiza aso-

ciada al SC durante la meiosis (Deshong et 

al., 2014; Lambing et al., 2015, Maldonado-

Linares and Roig, Abstract Red Española de 

Meiosis). Además, en el caso de mamíferos 

y nematodos Pch2
TRIP13 

se ha detectado aso-

ciada a los cinétocoros, de acuerdo con su 

función en el checkpoint de ensamblaje de 

huso dependiente de MAD2 (Wang et al., 

2014; Nelson et al., 2015). Más allá de nues-

tros trabajos en S. cerevisiae, no se ha des-

crito la localización de Pch2 en el citoplasma 

en otras especies, aunque no puede descar-

tarse que también pueda ocurrir y no se haya 

detectado por cuestiones técnicas puesto que 

en la mayoría de los estudios citológicos de 

la meiosis se circunscriben al núcleo y los 

cromosomas. Se sabe que PCH-2 tiene un 

papel importante en el checkpoint inducido 

por fallos en sinapsis en C. elegans (mutante 

syp-1) y que, en esas condiciones, PCH-2 no 

se asocia a la cromatina (Deshong et al., 

2014). Entonces, surge la cuestión de dónde 

se localiza la fracción de PCH-2 que está 

actuando en el checkpoint inducido por el 

mutante syp-1. Podría ocurrir que, al igual 

que en levaduras, PCH-2 esté regulando el 

checkpoint que monitoriza la sinapsis de los 

cromosomas desde otro compartimento celu-

lar independiente de la cromatina que podría 

ser el citoplasma. Nuestros estudios prelimi-

nares de inmunolocalización en gónadas de 

C. elegans parecen apoyar la posibilidad de 

una distribución citoplásmica de PCH-2 en 

el mutante syp-1 (Lascarez-Lagunas, Herru-

zo, et al., 2020, en preparación). 

Por otro lado, tras haber analizado el pa-

pel de la H3K79me mediada por DOT-1.1, 

así como haber indagado en el mecanismo 

del checkpoint meiótico en nematodos, todo 

apunta a que la implicación de, al menos al-

gunas, proteínas del checkpoint está conser-

vada en la evolución. Así, tal y como ocurre 

en S. cerevisiae, donde la H3K79me3 me-

diada por Dot1 se requiere para la fosforila-

ción de Mek1
CHK2

 y el consiguiente bloqueo 

en profase cuando existen errores en sinap-

sis, DOT-1.1 también es una pieza clave pa-

ra la meiosis de C. elegans. Más concreta-

mente, podría estar desempeñando un papel 

importante en el checkpoint meiótico, afec-

tando a la actividad de la quinasa efectora 

CHK-2. Sin embargo, la conservación del 

funcionamiento detallado de los mecanismos 

del checkpoint no parece estar tan clara. 

Pueden existir muchas vías adicionales con 

relaciones funcionales muy complicadas es- 
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Figura 5. Modelo de acción de la ATPasa Pch2 en el checkpoint meiótico. 
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pecíficas de cada organismo. Así, aunque 

tanto en S. cerevisiae como en C. elegans 

ambas proteínas Pch2 y Dot1 participan en 

el checkpoint de recombinación meiótica, la 

regulación de Pch2 por Dot1 no ocurre en C. 

elegans. 

En definitiva, a lo largo de esta tesis he- 

mos ido aportando resultados que contribu-

yen al conocimiento del mecanismo de ac-

ción de Pch2 en el checkpoint meiótico pero, 

sobre todo, que ayudan a entender la com-

plejidad de la red que regula la función y 

localización de Pch2 según las circunstan-

cias.  
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ABREVIATURAS 

AAA+: ATPases associated with diverse cellular activities 

AID: auxin-inducible degron 

AO: acridine orange 

mAID: mini-auxin-inducible degron 

3mAID: 3 copies of mini-auxin-inducible degron 

ATP: adenosin triphosphate 

BSA: bovine serum albumin 

CCD: charge-coupled device 

CDK: cyclin-dependent kinase 

CePch2: Caenorhabditis elegans Pch2 

COs: crossovers 

DAPI: 4’, 6-diamidino-2-phenylindole 

dHJ: double Holliday junction 

DIC: differential interference contrast 

DNA: deoxyribonucleic acid 

DOI: digital object identifier 

DSB: double-strand break 

Emb: embryonic lethality 

EP: early pachytene 

GFP: green fluorescent protein 

H3K79me: methylation of histone H3 at lysine 79 

H3K79me1: monomethylation of histone H3 at lysine 79 

H3K79me2: dimethylation of histone H3 at lysine 79 

H3K79me3: trimethylation of histone H3 at lysine 79 

H3T11ph: phosphorylation of histone H3 at threonine 11 

H4K16ac: acetylation of histone H4 at lysine 16 

HA: human influenza hemagglutinin 

HATs: histone acetyltransefrases 

Him: high incidence of males 

Hop1-T318ph: phosphorylation of Hop1 at threonine 318 

HORMAD: Hop1, Rev1 and Mad2 domain 

HRP: horseradish peroxidase 

HsPch2: Homo sapiens Pch2 

IH: interhomolog 

IP: immunoprecipitates 

IS: intersister 

ISSN: international standard serial number 

LEs: lateral elements 

LG: linkage group 
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LP: late pachytene 

mDOT1L: mice DOT1L 

MLL: mixed lineage leukemia 

MP: mid-pachytene 

MRX: Mre11-Rad50-Xrs2 

NEB: New England Biolabs 

NES: nuclear export signal 

NGM: nematode growth media 

NLS/NoLS: nuclear or nucleolar localization signal 

NTD: N-terminal domain 

OE: overexpression 

ORC: origin recognition complex 

ORF: open reading frame 

PBS: phosphate buffered saline 

PCR: polymerase chain reaction 

PGK: phosphoglycerate kinase 

PTMs: post-Translational modifications 

PTS: Pch two-suppressors 

PVDF: polyvinylidene difluoride 

rDNA: ribosomal DNA 

RFC: replication factor C 

SAC: spindle assembly checkpoint 

SC: synaptonemal complex 

ScPch2: Saccharomyces cerevisiae Pch2 

SD: standard desviation 

SPBs: spindle pole bodies 

ssDNA: single-strand DNA 

SUMO: small ubiquitin-like modifier 

TCA: trichloroacetic acid 

TZ: transition zone 

UTR: untranslated region 

UV: ultraviolet 

WCE: whole cell extracts 

WT: wild type 

YPDA: yeast extract, peptone, dextrose and adenine medium 
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