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Abstract  

According to the predator-prey naïveté hypothesis, a lack of co-evolutionary history between 

native prey and non-native predators can result in missing predator recognition and an 

inefficient antipredator response of prey. These mechanisms can also shape non-native 

predator-predator interactions. Predator-prey and predator-predator naïveté can contribute to 

the invasion success of non-native predators. To gain a better understanding of the underlying 

mechanisms of naïveté in insects, we examined the interactions between native and non-

native lady beetle species (Coleoptera: Coccinellidae) and pea aphids Acyrthosiphon pisum 

(Hemiptera: Aphididae) as native prey and ants (Hymenoptera: Formicidae) as native 

predators. Experiments were conducted in Europe and North America to provide an 

intercontinental comparison of species-interactions. To test for predator-prey naïveté in the 

pea aphid, we compared avoidance behavior of aphids towards chemical cues of native and 

non-native lady beetles. Moreover, we quantified aphid consumption of lady beetles to assess 

their voracity. Predator-predator naïveté of ants was tested in interaction experiments between 

ants and native and non-native lady beetle species by assessing and comparing ant 

aggression and lady beetle reaction. Furthermore, we tested if cuticular chemical cues 

(cuticular hydrocarbons, CHCs) of lady beetles play a role in ant aggression and analyzed their 

composition to see if CHCs profiles are species-specific. Overall, we expected a weaker 

response of native aphids and ants towards non-native lady beetles and their cues compared 

to native lady beetles. 

Our findings showed that pea aphids avoid chemical cues of native lady beetles. Moreover, 

we demonstrated missing cue avoidance behavior of pea aphids towards chemical cues of the 

non-native Asian lady beetle Harmonia axyridis only in Europe, but not in North America. On 

both continents, H. axyrids and Coccinella septempunctata were the largest lady beetle 

species and consumed the most aphids. The ant aggression experiments revealed differences 

in ant aggression as well as lady beetle reaction of native and non-native lady beetles on both 

continents. In Europe, the CHCs of lady beetle species were species-specific in their 

composition. Furthermore, we found that cuticular chemical cues of lady beetles contribute to 

ant aggression.  

Missing cue avoidance behavior towards chemical cues of non-native H. axyridis indicates 

prey naïveté in Europe. As H. axyridis was introduced to North America a longer time ago, our 

findings suggest a rapid adaptation of avoidance behavior by pea aphids towards chemical 

cues of non-native lady beetles. Moreover, non-native lady beetles may benefit from reduced 

ant aggression or ant tolerance, which might facilitate the access to ant-tended aphids. Overall, 

predator-prey and predator-predator naïveté and, thus, associated predation and competition 

advantages of non-native predators might decrease over time. In contrast, a relatively large 

body size compared to native predators might benefit non-native predators and contribute to 

their establishment and invasion success on the long term. 
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Zusammenfassung 

Die Hypothese der Räuber-Beute Naivität besagt, dass fehlende Koevolution zwischen 

heimischen Beutetieren und nicht heimischen Prädatoren dazu führen kann, dass Beutetiere 

den Prädator nicht erkennen und sich somit nicht effizient verteidigen können. Diese 

Mechanismen finden sich auch in Räuber-Räuber Interaktionen wieder. Die Naivität von 

heimischen Beutetieren und Prädatoren kann somit zum Invasionserfolg von nicht heimischen 

Räubern beitragen. Um ein besseres Verständnis der vorliegenden Mechanismen auf das 

Gebiet der Insekten zu erweitern, haben wir Interaktionen zwischen heimischen und nicht 

heimischen Marienkäfer-Arten (Coleoptera: Coccinellidae) und heimischen Erbsenblattläusen 

Acyrthosiphon pisum (Hemiptera: Aphididae) als Beutetieren und Ameisen (Hymenoptera: 

Formicidae) als Räubern getestet. Um einen transkontinentalen Vergleich zwischen den Arten-

Interaktionen ziehen zu können, haben wir unsere Experimente in Europa und Nord Amerika 

durchgeführt. Um zu sehen, ob Räuber-Beute Naivität vorliegt, haben wir das 

Vermeidungsverhalten der Erbsenblattlaus gegenüber chemischen Signalstoffen zwischen 

heimischen und nicht heimischen Marienkäfern verglichen. Außerdem quantifizierenten wir die 

Prädation von Blattläusen durch Marienkäfer, um deren Gefräßigkeit zu erfassen. Um die 

Räuber-Räuber Naivität von Ameisen zu untersuchen, haben wir Interaktionsexperimente 

zwischen Ameisen und heimischen sowie nicht heimischen Marienkäfer-Arten durchgeführt 

und dabei sowohl die Aggression von Ameisen als auch die Reaktion von Marienkäfern erfasst 

und verglichen. Zudem haben wir uns die Rolle von kutikulären chemischen Signalstoffen 

(kutikulären Kohlenwasserstoffen, CHCs) von Marienkäfern in der Aggression von Ameisen 

näher angesehen und die Zusammensetzung dieser auf Artniveau bestimmt. Unsere 

Annahme bestand zusammenfassend darin, dass heimische Blattläuse und Ameisen 

schwächer auf nicht heimische Marienkäfer und ihre Signalstoffe im Vergleich zu heimischen 

Marienkäfern reagieren. 

Unsere Ergebnisse demonstrierten, dass Blattläuse chemische Spuren von heimischen 

Marienkäfern vermeiden. Außerdem zeigten wir, dass Singnalstoffe des nicht heimischen 

Asiatischen Marienkäfers Harmonia axyridis zwar von Blattläusen in Europa, jedoch nicht von 

Blattläusen in Nord Amerika vermieden werden. Auf beiden Kontinenten waren H. axyridis und 

Coccinella septempunctata die größten Marienkäfer-Arten und fraßen die meisten Blattläuse. 

In den Ameisen Aggressionsexperimenten stellten wir fest, dass sich die Aggression von 

Ameisen sowie das Verhalten von Marienkäfern zwischen heimischen und nicht heimischen 

Marienkäfern auf beiden Kontinenten unterscheidet. Die Zusammensetzung der CHCs von 

Marienkäfern sind in Europa artspezifisch. Außerdem demonstrierten wir, dass kutikuläre 

chemische Signalstoffe zur Aggression von Marienkäfern beitragen.  

Ein fehlendes Vermeidungsverhalten gegenüber chemischen Signalstoffen von H. axyridis in 

Europa weist auf Räuber-Beute Naivität hin. Da die Einführung von H. axyridis in Nord Amerika 

länger zurück liegt, deuten unsere Ergebnisse darauf hin, dass möglicherweise eine 

Adaptation des Vermeidungsverhaltens von A. pisum auf die chemischen Signalstoffe von 
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nicht heimischen Marienkäfern vorliegt. Zudem ist es möglich, dass heimische Marienkäfer-

Arten von einer niedrigeren Ameisenaggression oder „Ameisentoleranz“ profitieren, welches 

den Zugang zu Blattläusen, welche von Ameisen betreut werden, erleichtern könnte. 

Zusammenfassend können die Räuber-Beute und die Räuber-Räuber Naivität und die damit 

verbundenen Prädations- und Wettbewerbsvorteile von nicht heimischen Prädatoren mit 

zunehmender Zeit schwinden. Im Vergleich dazu könnte eine große Körpergröße in Relation 

zu heimischen Prädatoren langfristig zur Ansiedlung und zum Invasionserfolg von nicht 

heimischen Marienkäfer-Arten beitragen. 
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Biological invasions and biotic interactions 

Biological invasions are among the main drivers of biodiversity loss (Vitousek et al.1996, 

Nentwig 2008, Galiana et al. 2014). The invasion process by non-native species can be 

classified as following: arrival, establishment, spread and impact in the invaded range (Lodge 

1993). Accordingly, a non-native species is considered invasive, if it causes major ecological, 

environmental or economic impacts in the invaded range (Hufbauer & Torchin 2008). In 

particular, non-native predators can have tremendous effects on populations, communities and 

ecosystems (Blackburn et al. 2004, Salo et al. 2007, Vitousek et al. 2008). Research on biotic 

interactions of non-native predators and the invaded community contributes to a 

comprehensive understanding of predator invasion success (Blossey & Nötzold 1995, Torchin 

et al. 2003, Torchin & Mitchell 2004, Hufbauer & Torchin 2008, Sih et al. 2010). 

In predator-prey interactions, predators cause density-mediated effects by reducing prey 

population densities through consumption (consumptive effects) (Murdoch et al. 2003). Thus, 

predators exert a strong selection pressure on prey, resulting in the evolution of antipredator 

behaviors (Lima & Dill 1990). Antipredator behaviors can be physiological, behavioral and/or 

morphological traits reducing predation risk and increasing prey survival (Kats & Dill 1998, 

Lima & Dill 1990). The costs of antipredator behaviors can adversely affect growth, fecundity 

and/or survival of prey and are referred to as non-consumptive effects of predators (Abrams 

1995). Similar to density mediated effects, these trait-mediated effects can reduce prey 

population densities (Werner & Peacor 2003, Preisser et al. 2005). The concept of  

trait-mediated effects can similarly be applied to intraguild interactions between predators, 

possessing traits involved e.g. in the prevention of competitive encounters (Mestre et al. 2014). 

Moreover, both density- and trait-mediated effects can indirectly affect adjacent trophic levels 

(Terborgh & Estes 2010, Ohgushi et al. 2012). Research of non-native predator-prey as well 

as intraguild interactions can reveal density- and trait-mediated effects of non-native predators 

and therefore contribute to a better understanding of predator invasion success. 

 

Predator-prey and predator-predator naïveté  

In non-native predator-prey interactions, naïve prey might fail to recognize a non-native 

predator, leading to missing, inappropriate or insufficient antipredator behavior, due to a lack 

of co-evolution (Cox & Lima 2006, Banks & Dickman 2007). Specifically, prey naïveté is divided 

into three levels: Level 1 naïveté refers to prey that lacks recognition of the non-native predator 

and consequently shows no antipredator behavior. Level 2 naïveté of prey implies recognition 

of the non-native predator as thread but an inappropriate antipredator response. Level 3 

naïveté, describes prey, which recognizes and responds to the non-native predator by 
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adopting antipredator behaviors, which are insufficient due to superior strategies of the 

non-native predator (Banks & Dickman 2007, Carthey & Banks 2014). Level 1 naïveté 

indicates that costs of antipredator behaviors in naïve prey are low, resulting in low non-

consumptive effects of non-native predators on prey populations. However, ineffective 

antipredator behaviors of naïve prey towards non-native predators might lead to higher 

predation, causing high consumptive effects on prey populations (Sih et al. 2010). In contrast, 

Level 2 and 3 naïveté would result in high consumptive, as well as non-consumptive effects 

(Carthey & Banks 2014). Thus, lacking or failing antipredator responses by native prey can 

enable non-native predators to have higher consumptive effects than native predators. The 

consumptive advantages of non-native predators can facilitate the establishment, help to 

outcompete native predators and result in higher non-native predator population densities 

(Dickman 1996). A rapid increase in non-native predator numbers, however, can lead to a 

‘boom-bust’ pattern, where prey numbers crash, followed by a crash in predator numbers or 

dispersal of the non-native predator into non-invaded areas (Simberloff & Gibbons 2004, 

Sih et al. 2010). Similarly, to predator-prey interactions, native predators or parasitoids might 

fail to recognize or appropriately respond to non-native predators, due to unknown predator 

cues (predator naïveté). In that case, non-native predators might benefit from released enemy 

pressure (low consumptive effects of native top predators) by existing, native top predators 

(Enemy release hypothesis Torchin et al. 2003, Torchin & Mitchell 2004). This can manifest in 

increased competitive abilities of non-native predators, due to reduced resource allocation to 

antipredator behaviors (reduced non-consumptive effects of the non-native predator) (EICA 

hypothesis, Blossey & Nötzold 1995). In addition, non-native predators might spend more time 

on foraging, instead of engaging in predator-predator interactions (Sih et al. 2010). In the case 

of cue dissimilarities between native and non-native predators, the advantage of released 

enemy pressure and increased competitive abilities, contributes to the non-native predator’s 

ability to outcompete native predators. The benefits of predator-naïveté do not only involve 

intraguild interactions involving predation, but can also be applied to interference interactions 

(excluding predation) between native and non-native predators (Bucher et al. 2014). Thus, 

non-native predators benefit from a double advantage of prey- as well as predator-naïveté in 

the invaded range. This ‘novelty advantage’ in naïve prey- and naïve predator-interactions can 

facilitate the invasion success of non-native predators (Sih et al. 2010). Naïveté research is 

dominated by invasions on islands and freshwater ecosystems, specifically driven by the 

fundamental impact of some introduced predators on naïve prey in these isolated systems 

(Cox & Lima 2006, Blackburn et al. 2004). The role of naïveté among terrestrial arthropods 

lacks attention and requires research particularly addressing naïveté of the native community 

towards non-native insect predators (Cox & Lima 2006). 
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Predator recognition and antipredator response of prey 

Sensory predator cues can serve as information for prey to assess predation risk (Lima & Dill 

1990, Lima 1998, Hermann and Thaler 2014). Although a predator releases information in the 

form of specific signals to an intended receiver, prey can evolve recognition of these predator 

cues to reduce predation risk (Wyatt 2014). There are a variety of sensory cues, such as visual, 

auditory or chemical cues, differing in spread and persistence (Acharya & McNeil 1998, 

Chivers & Smith 1998, Sih et al. 2010). For example, visual cues during encounters can signal 

immediate predation risk, while chemical cues indicate traces of predators, persisting in the 

environment as indicators of predator presence (Kats & Dill 1998, Bytheway et al. 2013). 

Predator cues require detection and recognition of prey to reduce predation risk (Lima & Dill 

1990). Successful recognition requires the perception and comparison of the cue to an internal 

recognition template (Payne et al. 2004, Sherman, Reeve & Pfennig 1997). Threshold-

dependent matches between the internal template and the perceived cue can mediate 

recognition (Sturgis & Gordon 2010, Sherman, Reeve & Pfennig 1997, Blumstein & Bouskila 

1996). In coevolved predator-prey interactions, prey can develop perceptual, behavioral and 

cognitive adaptations to recognize predator cues, driven by the selection pressure of predation 

(Payne et al 1984, Lima 1998, Carthey & Banks 2014). However, a lack of co-evolution of 

native prey and- non-native predators can result in a mismatch of non-native predator cues 

and the internal recognition template of native prey. This can explain failed recognition and 

consequently lack of antipredator behavior of naïve prey towards non-native predators (Payne 

et al. 2004). The novelty of a non-native predator is mainly driven by the ‘degree of mismatch’ 

of the non-native predator cue and the native prey’s recognition template (Payne et al. 2004, 

Carthey & Banks 2014). Accordingly, the ‘degree of similarities’ between native and non-native 

predators can explain variation in prey response. The more similar a non-native predator 

compared to the native predator community, the more likely that prey recognizes and induces 

antipredator behaviors (Sih et al. 2010). Different approaches for the assessment of similarities 

can be considered, for example, taxonomic similarities. However, taxonomic similarities can 

fail to comply with functional or mechanistic similarities (Chalcraft & Resetarits 2003). Thus, 

Sih et al. (2010) propose to assess similarities at predator-prey interaction levels, which are 

divided into encounter, detection/recognition, and response. First, predator-prey encounters 

require spatio-temporal co-occurrence in activity of predator and prey (Preisser et al. 2007), 

suggesting a comparison of overlapping activity pattern of native and non-native predators (Sih 

et al. 2010). On detection and recognition level, Sih et al. (2010) suggest the ‘cue similarity’ 

hypothesis. Based on this hypothesis, the degree of cue similarities between native and non-

native predators mediate differences in native prey response. Not only cue similarities, but also 

the specialization of predator cue recognition, in particular the usage of general and/or specific 

predator cues to assess predation risk, substantially influences prey response to non-native 
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predators (Payne et al. 2004). General predator cues can lead to an over-estimation of 

predation risk for example, large moving objects can be non-predacious but still elicit an 

antipredator response (Dill 1974, Sih 1986). Hence, recognition of prey based on general 

predator cues, might enable prey to recognize non-native predators (Payne et al. 2004, Sih et 

al. 2010). In particular, general cues shared by native and non-native predators may lead to 

recognition of non-native predator cues by prey without prior co-evolutionary history. In 

contrast prey might use specific predator cues, for example, species-specific chemicals of 

predators used for intra‐and interspecific signaling (Boughman 2002, Smadja & Butlin 2009, 

Carthey & Banks 2014). Specific cues used by prey to recognize native predators might lead 

to Level 1 naïveté towards non-native predators, due to a lack of recognition of specific, novel 

predator cues (Carthey & Banks 2014). Prey might use specific cues for recognition of native 

predators signalizing an elevated predation risk, increasing the chances of survival and 

reducing the costs for unnecessary response (Lima & Bednekoff 1999, Carthey & Banks 2014). 

In addition, prey can use a combination of multiple cues for predator recognition, for example 

chemical and visual cues from a specific predator (Amo et al. 2004). After the detection and 

recognition of predators, appropriate prey response via antipredator behaviors can reduce 

predation risk and ensure survival of prey (Kats & Dill 1998, Lima & Dill 1990). Prey might have 

evolved multiple antipredator behaviors, which can vary depending on predation risk and 

context (Endler 1991, Binz et al. 2014). Prey response can be a general and/or specific 

antipredator behavior and play a crucial role for the understanding of non-native predator 

effects on native communities (Lima 1992, Schoeppner & Relyea 2005, Brilot et al. 2012). A 

notable example of a coevolved specialized response is the adaptation of shell properties (eg. 

shell-thickness) by gastropods to reduce shell crushing by crab predators (Freeman & Beyers 

2006). Predation risk from multiple predators, however, can result in general antipredator 

behaviors, being effective towards a wide range of predators. Increased vigilance and 

decreased movement activity are examples for general predator behaviors (Endler 1991). In 

contrast to specific antipredator behaviors, general antipredator-behaviors are more likely to 

be effective against non-native predators and therefore level 2 and 3 naïveté are less likely to 

occur in native prey (Banks & Dickmann 2007, Carthey & Banks 2014). Thus, prey responding 

with specific antipredator behaviors to a particular native predator are prone to naïveté (Level 

2 or 3), when confronted with non-native predators (Carthey & Banks 2014). Overall, the 

degree of cue specificity (general versus specific cues) used by native prey and the mode of 

antipredator behaviors by prey (general versus specific response), in combination with 

similarities between native and non-native predators might explain why some native prey 

effectively respond to non-native predators, while others fail (Sih et al. 2010). 
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Lady beetles 

The family Coccinellidae belong taxonomically to the order Coleoptera. Within the subfamily 

Coccinellinae, the majority of species are predacious and preferably consume aphids, referred 

to as aphidophagous lady beetle species (Gordon 1985, Hodek & Honěk 1996). 

Aphidophagous lady beetles have been globally redistributed for biological control, providing 

a valuable ecosystem service as predators of numerous agricultural pest species (Harmon et 

al. 2007, Obrycki & Kring 1998, Stern et al. 1959). Among them, the multicolored Asian lady 

beetle Harmonia axyridis (Pallas) is of Asian origin, native to China, Japan, Korea, Mongolia 

and Siberia (Dobzhansky 1933, Kuznetsov 1997, Brown et al. 2007). Harmonia axyridis has 

established beyond its native range, due to intentional and unintentional introductions (Day et 

al. 1994, Brown et al. 2011). In North America, H. axyridis was initially introduced in 1916 

(Gordon 1985), followed by augmented releases in the 1970s and 1980s (Tedders & Schaefer 

1994, Koch & Galvan 2007) and the first reported establishment in 1988 (Chapin & Brou 1991). 

Harmonia axyridis was not only a promising non-native biological control agent of aphids in 

North America, but also in Europe (Brown et al. 2007) introduced to France in 1982 (Iperti & 

Bertrand 1982). Initially quarantined, field experiments were conducted from 1990, followed by 

the first commercial field releases in 1995 (Brown et al. 2007). First establishments of H. 

axyridis were reported in the late 1990s and this species rapidly spread throughout Europe. H. 

axyridis is eurytopic, inhabiting arboreal and semi-arboreal habitats and meadows, heathlands, 

riparian zones, reedbeds and agricultural systems (Brown et al 2007). It is polyphagous with a 

broad dietary range, feeding not only on many aphid pest species but also non-target species 

and pollen, nectar and fruit (van Lenteren et al. 2007, Roy et al. 2016, Koch 2003). Although, 

H. axyridis is considered bivoltine in its native range (Osawa 2000), in North America (Koch 

and Hutchison 2003), and Europe (Ongagna & Iperti 1993), up to four to five generations per 

year were documented (Wang 1986, Katsoyannos et al. 1997, Koch 2003). In predator-

predator interactions, H. axyridis is a successful intraguild predator of native coccinellids in its 

invaded range (Snyder et al. 2004, Pell et al. 2008). This is beneficial in dietary terms, but also 

reduces competition on shared resources (Yasuda et al. 2004, Dixon 2000). Roy et al (2006) 

labeled H. axyridis as the ‘most invasive lady beetle species on Earth’, due to its successful 

spread and establishment in many parts of the world and its adverse effects on invaded 

communities. In addition to H. axyridis, Coccinella septempunctata (Linnaeus) originally of 

Palearctic origin (Honěk & Hodek 1996), was introduced intentionally and accidentally to North 

America in 1956 (Day et al. 1994, Angalet and Jacques 1975). The earliest documented 

establishment dates back to 1973 (Angalet and Jacques 1975). Coccinella septempunctata is 

polyphagous, primarily feeding on aphids, but also on nectar and pollen (Ricci et al. 2005). 

Compared to H. axyrids, C. septempunctata uses fewer aphid species as essential food source 

and seems to be less polyphagous (Koch 2003, Hodek & Michaud 2008). Similar to H. axyridis, 
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C. septempunctata is eurytopic, inhabiting arboreal and herbaceous habitats, including 

grasslands, fields and orchards (Honěk & Hodek 1996). Voltinism in C. septempunctata ranges 

from a univoltine cycle to a less common facultatively polyvoltine cycle in central Europe 

(Hodek 1966) and this species shows a similar heterogenetic voltinism pattern in North 

America (Obrycki & Tauber 1981, Angalet et al. 1979). Coccinella septempunctata can 

dominate as intraguild predator over some native coccinellids in its invaded range in North 

America (Snyder et al. 2004, Tumminello et al. 2015). Overall, C. septempunctata is classified 

as invasive species in North America, due to its abundance, widespread distribution and 

dominance in trophic-interactions, which negatively affects the native community (Eliott et al. 

1996). Additionally, to C. septempunctata and H. axyridis, the Palearctic Hippodamia variegata 

(Goeze) has been released for biological control of aphids in North America from 1957 (Ellis 

et al. 1999), became established in 1984 (Gordon 1987) and is not considered as invasive, so 

far. Harmonia axyridis, C. septempunctata and H. variegata  have been initially released for 

the biological control of aphids beyond their native range to reduce the detrimental effect of 

aphid pests on crops (Angalet et al. 1979, Tedders and Schaefer 1994, Ellis et al. 1999, Stern 

et al. 1959). 

 

Aphids 

The family Aphididae belongs taxonomically to the Order Hemiptera. Aphids are 

phytophagous, sap-sucking insects with significant economic importance, when gaining pest 

status in agricultural environments (Blackman & Eastop 2017). The pea aphid Acyrthosiphon 

pisum (Harris) (Hemiptera: Aphididae) is listed among the 15 aphid species of most agricultural 

importance (Blackman & Eastop 2017). As primary host plants A. pisum feeds on plants of the 

family Fabaceae and can transfer more than 30 viruses, causing significant economic damage 

on crops (Blackman & Eastop 2017). Originally a Palearctic species, A. pisum has spread 

globally since the late nineteenth-century (Thomas 1878). Acyrthosiphon pisum, consist of 

multiple genetically differentiated biotypes, specialized on different host plants (Peccoud et al. 

2009, Via 1999). The biology and host-plant preference of globally distributed A. pisum 

populations may have diverged from the original European population (Blackman & Eastop 

2017).  In Western Europe, Peccoud et al (2009) found at least 11 sympatric populations of A. 

pisum associated with different host plants. Additionally, in North America, A. pisum 

populations specialized on red clover and alfalfa are genetically distinct and demonstrated 

varying preference and fitness on specific host plants (Caillaud & Via 2000, Via 1999). The life 

cycle of the pea aphid consists of female, parthenogenetic generations, which alternate with 

sexual generations. Asexual reproduction alone can appear in some populations, especially in 

regions without cold winters. In spring and summers, asexual females produce clonal offspring. 
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The larvae undergo four molts and can develop as unwinged or winged asexually reproducing 

adults. Winged offspring development is induced by crowding or prenatal stress. Asexual 

reproduction ceases, when shorter autumn day lengths induce the production of unwinged 

sexual females and males. In pea aphids, the production of winged or unwinged aphids is 

genotype-depending. The sexual females are oviparous and produce overwintering eggs, after 

mating. In spring, the hatched aphids produce asexual, wingless females (Blackman & Eastop 

1984, The International Aphid Genomics Consortium 2010).  

 

Aphid-lady beetle interactions 

In predator-prey interactions, aphids respond to direct predator contact, vibrations on plant 

caused by predators, alarm pheromones produced by a conspecific and chemical predator 

cues on the feeding side (Klingauf 1967, Montgomery & Nault 1977, Roitberg & Myers 1978, 

Clegg & Barlow 1982, Dixon & Argawala 1999, Ninkovic et al. 2013). Acyrthosiphon pisum 

developed numerous antipredator behaviors to respond to predators, such as kicking, stylet 

removal, walking away, and dropping from the plant (Roitberg et al. 1979). The production of 

an alarm pheromone with the primary component (E)-β-farnesene is an example for 

intraspecific signaling in aphids to alarm conspecifics of predators (Bowers et al. 1972, 

Kislow & Edwards 1972, Al Abassi 2000). After neighboring aphids detect the pheromone 

released by an attacked conspecific, they can respond in different ways, such as vigorous 

movements of leg and antennae, walking away or dropping from the plant (Dill et al. 1990). 

Predator cues induce aphid dispersal to sites with less predator pressure (Roitberg et al. 1979). 

Aphids can respond to interspecific chemical cues, such as lady beetle footprints of larvae, 

leading to the production of winged aphid morphs and dispersal to new feeding sides 

(Dixon & Argawala 1999). Recently, researchers discovered that aphids can respond to 

footprints of C. septempunctata by avoiding the present feeding side (Ninkovic et al. 2013). 

The chemical composition of these cues are species-specific, thus it remains unknown, if 

aphids can respond to chemical cues of various lady beetle species (Magro et al. 2010, Kosaki 

& Yamaoka 1996). While searching for suitable feeding sides, these chemical cues can 

indicate predation risk on the current site. Avoidance of sites with less predator pressure, might 

reduce survival costs and predation risk (Roitberg et al. 1979). Antipredator responses can be 

energetically costly, causing feeding interruptions and survival costs through the risk of death 

by desiccation or ground predators after leaving the present host plant (Roitberg & Myers 1979, 

Dill et al. 1990). Nelson (2007) demonstrated that predator-induced disturbances of A. pisum, 

resulted in loss of feeding time and reduced reproduction (non-consumptive effects), which 

increased with the frequency of antipredator response and costs associated with the response.  
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Ant-lady beetle interactions  

Aphids feeding on phloem-sap, produce a carbohydrate-rich excretion referred to as 

‘honeydew’. Aphids excrete excess carbohydrates to balance the high carbohydrate/amino 

acid ratio of the ingested phloem sap with their dietary requirements (Wäckers 2000). Some 

aphid species can engage in mutualistic interactions with aphid-tending ant species 

(Hymenoptera: Formicidae) (Way 1963). These aphid-tending ants use the ‘honeydew’ 

produced by aphids as a food source and in return protect aphids from fungal pathogens 

(Nielsen et al. 2010) and predation and parasitism (Way 1963). As aphidophagous lady beetles 

and aphid-tending ants rely on aphids as food sources, they can engage in competitive 

interactions. Ant- lady beetle interactions are an example for intraguild interference, implying 

resource competition between spatio-temporally coinciding predators, in which direct predator 

interactions limit the access to a resource (Putman 1994). Intraguild interference can reduce 

the fitness of the subordinate predator by e.g. aggressive interactions (Eccard & Ylönen 2002). 

Interactions between lady beetles and ants can differ, depending on size, aggressiveness and 

density of tending ants, as well as size, behavior and capabilities of defensive behavior of lady 

beetles (Majerus et al. 2007). Cuticular hydrocarbons of parasitoid and predator species can 

serve as interspecific recognition cues, eliciting ant aggression (Pasteels 2007, Dettner & 

Liepert 1994). Cuticular hydrocarbons (CHCs) cover the external layer of the insect 

exoskeleton and primarily function as waterproofing agent protecting against desiccation 

(Lockey 1988). Various insects use CHCs as intra‐ and interspecific chemical communication 

(Durieux et al. 2012, Lang & Menzel 2011). Cuticular hydrocarbons, used for communication, 

are perceived as contact or short-range signals, due to their chemical properties (non‐ or semi‐

volatile long‐chain hydrocarbons) (Howard & Blomquist 2005). As insects walk, they inevitably 

leave footprints behind, consisting of hydrocarbon droplets (Devigne & Detrain 2006). Ant 

species can detect and respond to footprints, using hydrocarbons as chemical cues to reduce 

the costs of competition (Wüst & Menzel 2017). The hydrocarbons of lady beetle footprints are 

species-specific and largely identical to cuticular hydrocarbons (Kosaki & Yamaoka 1996, 

Geiselhardt et al. 2011, Hemptinne & Dixon 2000). The CHCs of lady beetle footprints serve, 

for example, as oviposition deterring pheromone, preventing female conspecific to oviposit in 

the same patch (Doumbia et al. 1998). The CHC composition of closely related lady beetle 

species tend to be more similar compared to the CHCs composition of distantly related lady 

beetle species. Specifically, chemical cues within some lady beetle genera are more similar 

than between genera (Magro et al. 2010). It remains to be tested, if species-specific cuticular 

hydrocarbons of lady beetle species induce varying aggression in ant species and if ants are 

naïve to novel lady beetle cues, but respond to similar non-native lady beetle cues. 
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Aim of thesis  

The predator-prey-naïveté hypothesis suggests that a lack of co-evolutionary history between 

non-native predator and native prey can lead to missing predator recognition and an ineffective 

or missing antipredator behavior (Diamond & Case 1986, Banks & Dickman 2007, Sih et al. 

2010). This can similarly apply to predator-predator interactions, referred to as 

predator-predator naïveté (Bucher et al. 2014, Sih et al. 2010). Non-native predators might 

benefit from predator-prey and/or predator-predator naïveté in the new range, contributing 

to their invasion success (Sih et a. 2010, Carthey & Banks 2014). To date, there is a lack of 

studies targeting naïveté among terrestrial arthropods (Cox & Lima 2006). This thesis aims to 

shed light on the mechanisms behind invasion success of lady beetles, targeting predator-

prey and predator-predator naïveté of native prey and predators based on the framework of 

Sih et al. (2010). We examined the interactions between native and non-native lady beetle 

species (Coleoptera: Coccinellidae) and pea aphids (Hemiptera: Aphididae) as native prey and 

ants (Hymenoptera: Formicidae) as native predators. Our first model system, representing 

predator-prey interactions, consists of native and non-native lady beetle-aphid interactions 

(Chapter 2-4). The second model system is an example for predator-predator interactions (i.e. 

intraguild interference) consisting of native and non-native lady beetle-ant interactions 

(Chapter 5-6). Our research was conducted in Europe and North America, allowing for an 

intercontinental comparison of species-interactions. The underlying findings are based on 

laboratory experiments and contribute to a basic understanding on mechanisms behind 

invasion success. Overall, our research can not only help to understand why some insect 

species become invasive while others fail, but additionally contribute to a better 

comprehension of ecological impacts of introduced insect species in the future. 

 

Study species  

Europe 

In Europe our lady beetle species-set consisted of four native European lady beetle species, 

Coccinella septempunctata (Linnaeus), Adalia bipunctata (Linnaeus), Propylea 

quatuordecimpunctata (Linnaeus), and Hippodamia variegata (Goeze) (Coleoptera: 

Coccinellidae) and non-native Asian Harmonia axyridis (Pallas). In the predator-prey 

interactions we used a native population of the pea aphid Acyrthosiphon pisum (Harris) 

(Hemiptera: Aphididae). In the predator-predator interactions (intraguild interference) we used 

Lasius niger (Linnaeus) and Myrmica rubra (Linnaeus) as predators. 
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North America 

In North America our lady beetle species-set consisted of three native North American lady 

beetle species Coleomegilla maculata (De Geer) Coccinella novemnotata (Herbst) and 

Hippodamia convergens (Guérin-Méneville), two non-native European lady beetle species 

Coccinella septempunctata and Hippodamia variegata and the non-native Asian lady beetle 

species Harmonia axyridis. The native and non-native lady beetle species of the genera 

Hippodamia and Coccinella are expected to bear similar cues (Magro et al. 2010) and are 

referred to as congeneric. We used a native population of the pea aphid Acyrthosiphon pisum 

as prey species. Moreover, we used Lasius neoniger (Emery) and Myrmica americana (Weber) 

as ant species for the predator-predator interactions. 

 

Comparison of ladybeetle consumption and aphid avoidance 

First, we conducted leaf-choice experiments and subsequently a predation experiment in 

Petri dishes in Europe (Chapter 2) and in North America (Chapter 3) resulting in two studies. 

In particular, we tested if native A. pisum avoids chemical cues of native and non-native 

lady beetles and subsequently can discriminate between them. Therefore, we set up a two-

choice experiment with an untreated control and a treatment leaf bearing chemical cues of 

lady beetles. In this leaf-choice experiment, we quantified aphid leaf choice and subsequently 

compared it between lady beetle species. The preference for the control leaf indicated 

avoidance behavior of lady beetles. In Europe we expected missing avoidance behavior of  

A. pisum towards chemical cues of non-native H. axyridis and avoidance behavior towards 

chemical cues of the remaining four native lady beetle species (Chapter 2). In contrast to the 

European study, the North American study considered potential similarities between non-

native and native lady beetle species by including species of the same genera. In North 

America we expected missing avoidance behavior of A. pisum towards chemical cues of non-

native H. axyridis, intermediate avoidance behavior towards congeneric H. variegata and  

C. septempunctata (due to expected cue similarities to congeneric native species) and 

comparably strongest avoidance behavior towards chemical cues of native lady beetle species 

(Chapter 3). In a second Petri dish experiment we quantified aphid consumption of lady 

beetles. In Europe and in North America, we expected higher aphid consumption of the 

similairly large H. axyridis and C. septempunctata due to body-size related food demands 

compared to smaller lady beetle species. We additionally compared cue avoidance behavior 

of aphids and aphid predation of native H. variegata and C. septempunctata as well as 

non-native H. axyridis quantified in Europe, with a subset of quantified behaviors of the same 

species in North America. This served as a comparison of predator-prey interactions involving 
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H. variegata and C. septempunctata in the native European versus the non-native North 

American range, as well as a comparison of predator-prey interactions involving non-native 

H. axyridis in Europe versus North America. 

Second, we conducted a more natural experiment on plants in Europe (Chapter 4), testing 

dropping behavior and aphid consumption and in a second experiment plant-choice of 

aphids. In the first experiment, we quantified initial dropping behavior of aphids from plants, 

expecting lower dropping rates in the presence of non-native H. axyridis compared to native 

European lady beetle species. In the same experiment we quantified aphid consumption, 

expecting higher consumption rates of H. axyridis compared to the remaining native lady beetle 

species. In the additional plant-choice experiment, we tested if native A. pisum avoids 

chemical cues of native and non-native lady beetles and subsequently discriminates 

between them. We set up a two-choice experiment with an untreated control and a treatment 

plant bearing chemical lady beetle cues. Aphid plant choice was quantified and subsequently 

compared between the different lady beetle species. The preference for the control plant 

indicated avoidance behavior of lady beetles. We expected missing avoidance behavior of A. 

pisum towards chemical cues of non-native H. axyridis and avoidance behavior towards 

chemical cues of coevolved native lady beetle species. 

 

Ant aggression, ladybeetle reaction, and the role of chemical ladybeetle cues 

Third, we conducted ant aggression experiments with lady beetles and additionally 

dummies (lady beetle elytra) bearing chemical lady beetle cues in Petri dishes in Europe 

(Chapter 5) and in North America (Chapter 6), resulting in two studies. In the first experiment, 

we quantified and subsequently compared ant aggression and lady beetle reaction of the 

different lady beetle species. In the second experiment we tested, if cuticular chemical cues 

(cuticular hydrocarbons, CHCs) of lady beetles play a role in ant aggression. We used lady 

beetle elytra as dummies bearing chemical cues (CHCs) of native and non-native lady beetles 

to quantify ant aggression. We manipulated the dummy elytra, obtaining three different 

treatments: control elytra, cue-treated elytra (cue-free elytra treated with chemical lady beetle 

cues) and cue-free elytra. We expected the control and cue treated elytra to elicit similar 

aggression strength compared to the cue-free elytra. In the European study, we expected in 

both experiments comparably higher aggression strength towards native lady beetles and cues 

and reduced aggression strength towards non-native H. axyridis and cues respectively. In 

North America, we expected comparably higher aggression strength towards native lady 

beetles and cues, intermediate aggression strength towards congeneric non-native H. 

variegata and C. septempunctata and cues (due to expected cue similarities to congeneric 
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native species) and reduced aggression strength towards non-native H. axyridis and cues, 

respectively. We analyzed the chemical composition of CHCs using GC-MS in Europe, 

expecting species-specific CHCs profiles for each lady beetle species. The analysis of CHCs 

profiles in North America is expected to reveal cue similarities in the chemical composition of 

native and non-native species of the genera Hippodamia and Coccinella in North America and 

is not included in this thesis. 
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Abstract 

While detrimental effects of invasive predators on native species are well documented, we 

often lack a mechanistic understanding of the invasion success. Lack of prey avoidance 

behaviour can lead to higher consumption rates by invasive predators compared to native 

predators. This competitive advantage is expected to contribute to the invasion success of 

non-native predators.  

We compared aphid consumption and cue avoidance behaviour of aphids between four native 

ladybird species (Coccinella septempunctata, Adalia bipunctata, Propylea 

quatuordecimpunctata, and Hippodamia variegata) and the invasive Asian ladybird Harmonia 

axyridis. The invasive H. axyridis and the native C. septempunctata consumed more aphids 

than the three smaller native ladybird species. In line with our expectations, aphids avoided 

leaves bearing cues of most native ladybird species but not of the invasive H. axyridis. 

Our results indicate that body size rather than ladybird origin determined aphid predation rates. 

The lack of aphid avoidance behaviour towards cues of H. axyridis indicates that they were not 

able to recognize chemical cues of the invasive predator. Relatively large body size and the 

absence of cue avoidance in aphids might benefit the invasive H. axyridis, particularly in 

comparison to smaller native ladybird species. The absence of avoidance behaviour in aphids 

might lead to even higher predation rates of H. axyridis under more natural conditions. 

 

Keywords: Harmonia axyridis, Acyrthosiphon pisum, naiveté hypothesis, prey naiveté, 

predator-prey interactions, invasive species, cue avoidance  
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Introduction 

The increasing number of invasive species is a global threat to biodiversity and a major cause 

of species extinctions (Blackburn et al., 2004; Clavero & García-Berthou, 2005; Lowe et al., 

2000). In particular, the establishment of non-native predators can lead to declines in prey 

populations and disturb predator-prey interactions (Paolucci et al., 2013), as invasive predators 

often inflict greater predation pressure on native prey populations compared to native 

predators (Paolucci et al., 2013; Salo et al., 2007). During co-evolution, prey species have 

often evolved detection mechanisms, allowing them to recognize a predator (e.g. chemical or 

visual cues), as well as avoidance and escape mechanisms (e.g. hiding, camouflaging, 

running, defence techniques) to reduce predation risk (Carthey & Banks, 2014; Sih et al., 

2010). In this regard, chemical cues are of particular interest because they persist in 

environments and might inform prey about potential predation risk (i.e. landscape of fear) 

(Bucher et al., 2015; Laundré et al., 2010). If prey and predator do not share a co-evolutionary 

history, however prey may not be able to detect or appropriately respond to the predator’s 

cues, leading to missing predator recognition and lacking or inefficient response behaviour 

(Sih et al., 2010). This concept is described by Cox and Lima (2006) as the naiveté hypothesis 

and has been demonstrated in several studies (Barrio et al., 2010; C. Brown & Warburton, 

1999; Carthey & Banks, 2014). 

For prey, the detection and recognition of predators before actual encounters is crucial for 

survival (Dawkins & Krebs, 1979). Insects, for example, use hydrocarbons for communication 

between and within species (e.g. species and gender recognition, chemical mimicry, fertility 

cues, etc.) (Howard & Blomquist, 2005). Prey can use either general or specific predator cues 

to recognize predator presence. Although using more general cues increases the probability 

of unnecessary anti-predator behaviour (“over-respond”, according to Sih et al. (2010)), it is 

more likely to recognize invasive predators. While using specific cues is of low costs if prey 

has evolved efficient escape mechanisms, it increases the chance of not being able to identify 

invasive predators (Sih et al., 2010). 

Besides the lack of avoidance behaviour, body size might be a crucial factor for the invasion 

success of non-native predators. According to the Metabolic Theory of Ecology (MTE), the 

maintenance rate of an organism is proportional to its body mass (van der Meer, 2006). 

Animals with higher body mass have higher metabolic rates and therefore a higher supply rate. 

Thus, predators with higher body mass would have to consume larger or more prey to cover 

their maintenance rate and enable growth. Consequently, relatively larger non-native predators 

are expected to inflict stronger competition. The validity of the MTE has been supported for 

various arthropod predators (Brose et al., 2008) and it has been suggested that larger non-

native predators are stronger invaders than smaller non-native predators (K. Roy et al., 2002; 
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Schröder et al., 2009), due to body size related advantages (i.e. faster reproduction, stronger 

competition) (Brockerhoff & Liebhold, 2017; Kajita & Evans, 2010; Ünlü et al., 2020). 

Aphids have evolved predator-recognition mechanisms to detect and avoid ladybirds. They 

use chemical cues and vibration to assess predation risk and to adapt avoidance behaviours 

(Hatano et al., 2008; Ninkovic et al., 2013; Weisser et al., 1999). Aphid species, such as 

Acyrthosiphon pisum avoid predation by dropping from the host plant, a response that can be 

costly in terms of a high death rate (Francke et al., 2008; Harrison & Preisser, 2016; Losey & 

Denno, 1998). Aphids also reduce predation risk by avoiding plants recently occupied by 

predators (Dill et al., 1990). Hydrocarbons produced by ladybirds, for example for mate choice 

or as aggregation signals (Hemptinne et al., 1998; Wheeler & Cardé, 2014), can be used by 

aphids as chemical cues to assess ladybird occurrence and predation risk and to avoid 

ladybird-rich sites (Ninkovic et al., 2013). 

Aphid feeding ladybirds are often used as biological control agents (Hagen, 1962; Hodek, 

1967). The multicoloured Asian ladybird Harmonia axyridis was introduced to Western Europe 

in 1982 as a biological control agent in greenhouses, but spread across Europe and became 

established in many European countries where it was not introduced intentionally (P. M. J. 

Brown et al., 2007; P. M. J. Brown, Thomas et al., 2011; H. E. Roy et al., 2016; H. E. Roy & 

Brown, 2015). Due to its wide trophic range and variability in its habitat, H. axyridis is a 

generalist with high competition potential (Adriaens et al., 2003; Kenis et al., 2009; Kenis et 

al., 2017; H. E. Roy & Wajnberg, 2008). Furthermore, H. axyridis is a voracious intraguild 

predator of A. bipunctata and other ladybirds (Burgio et al., 2002; Pell et al., 2008); its arrival 

and spread has been linked to recent declines in European ladybird populations (Bahlai et al., 

2015; P. M. J. Brown, Frost et al., 2011; P. M. J. Brown, Thomas et al., 2011; H. E. Roy & 

Brown, 2015). Studies have categorized H. axyridis as a high risk for native ladybirds, possibly 

leading to a negative impact, (i.e. through intraguild competition) on the native species’ function 

as biological control agents (Harmon et al., 2007; Kenis et al., 2017; van Lenteren et al., 2008). 

In our study, we compared aphid consumption rates of native and invasive ladybirds and 

assessed aphid avoidance behaviour upon contact with chemical cues of native and invasive 

ladybirds. For our multispecies-approach, we used the native European ladybirds Adalia 

bipunctata, Coccinella septempunctata, Hippodamia variegata, Propylea 

quatuordecimpunctata and the invasive Asian ladybird H. axyridis as predators. Acyrthosiphon 

pisum were used as the native European prey species (hereafter referred to as aphids). We 

expected (1) that the larger H. axyridis and C. septempunctata consume more aphids 

compared to the smaller ladybird species because of body size related energy demands 

according to MTE. Furthermore, we expected (2) that A. pisum avoids leaves bearing chemical 

cues of all native ladybird species but not leaves bearing chemical cues of the invasive 

H. axyridis. 
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Material and Methods 

Study organisms 

We collected ladybirds from March to September in grasslands and field margins around 

Marburg, Germany. C. septempunctata was collected in 2017, H. variegata and P. 

quatuordecimpunctata were collected in 2018, and H. axyridis was collected in both years. A. 

bipunctata was purchased from Bioinsecte in Belgium (Adavalue SPRL, Rue Englebert 

Lescrenier 20, B-4340 Othée), as we could not find sufficient individuals in the wild. The aphids 

(A. pisum) were obtained from the Julius-Kühn Institut (Bundesforschungsinstitut für 

Kulturpflanzen, Erwin-Baur-Straße 27, 06484 Quedlinburg, Germany). The aphid colony we 

used was collected at least ten years ago from the field and reared in the laboratory since. The 

aphids were therefore not confronted with high H. axyridis densities in the field and had likely 

never been in contact with H. axyridis prior to the experiment. Aphid behaviour in the 

experiments therefore reflects their behaviour towards H. axyridis at the time of its introduction. 

For our experiment, the aphids were reared on plants of Vicia faba L (Kings Seeds, Monks 

Farm, Coggeshall Road, Kelvedon, Colchester, Essex, CO5 9PG). Ladybirds, aphids and 

plants were kept in climate chambers with long-day conditions (16 hours of light, 8 hours of 

dark), with a constant temperature of 20°C and 65% relative humidity. Ladybirds were kept in 

small groups, separated by species, in Petri dishes (Ø 9 cm). We provided the Petri dishes 

with pieces of cellulose paper to offer shelter and increase surface area. The Petri dishes were 

cleaned and cellulose papers were renewed at least every third day. The ladybirds were fed 

ad libitum with A. pisum. Aphids were kept isolated from ladybirds on V. faba in plastic 

containers (10 x 13.5 x 6.5 cm) covered with gauze for aeration. For the experiments, we 

exclusively used aphids that had no contact to ladybirds prior to the trial. 

 

Predation experiment 

The ladybirds were separated in Petri dishes and starved for 24 hours before the start of the 

experiment. Prior to the start of the experiment, the ladybirds were weighed. We placed 30 

aphids in a Petri dish (Ø 9 cm) and added one ladybird individual of the respective species to 

each Petri dish and repeatedly counted the number of remaining aphids in time intervals of 10, 

20, 30, 45, 60, 120, 180, 240, 300, 360 minutes. This trial was replicated with 20-24 different 

individuals of each ladybird species. Predation experiments comparing H. axyridis, 

C. septempunctata, and A. bipunctata were conducted in 2017. Experiments with H. axyridis, 

P. quatuordecimpunctata, and H. variegata were conducted in 2018. We obtained a total of 20 

replicates of each native ladybird species, with the exception of A. bipunctata (24 replicates), 

and 41 replicates of H. axyridis (21 from 2017 and 20 from 2018). Because we found no 
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differences in H. axyridis predation rates between the two years (χ²1=0.61, P=0.44), we 

combined the H.axyridis replicates from both years for the weight and predation rate 

comparison between species. 

 

Cue avoidance experiment 

In a second experiment, leaves of V. faba were prepared twelve hours prior to the experiment 

as follows. Two connected leaves of one plant were separated and each of them was placed 

into a separate Petri dish (Ø 3.5 mm). We then placed a ladybird into one of these two Petri 

dishes to deposit cues on one of the leaves. The second leaf was kept in the same way but 

without the ladybird, serving as a control. After twelve hours, the ladybird was removed and 

treatment and control leaves were combined in a new Petri dish (Ø 9 cm). The middle between 

both leaves was marked. Right after this cue preparation, ten aphids were placed in the middle 

between both leaves. We then counted the number of aphids on each leaf in time intervals of 

10, 20, 30, 40, 50 60, 120, 180 minutes. Cue avoidance experiments using H. axyridis, 

C. septempunctata, and A. bipunctata as cue donators were conducted in 2017. Experiments 

with H. axyridis, P. quatuordecimpunctata, and H. variegata were conducted in 2018. We 

completed a total of  20 replicates per native ladybird species and 40 replicates for H. axyridis 

(20 in 2017 and 20 in 2018). We found no differences in H. axyridis cue avoidance between 

the two years (χ²1=1.52, p=0.22). Therefore, we combined the H. axyridis replicates from both 

years for the cue avoidance analysis between species. 

 

Statistical analyses 

We used the weight measurements of individual ladybirds recorded prior to the predation 

experiment to compare body weight between ladybird species. We used a one-way ANOVA, 

followed by a Tukey post-hoc test for pair-wise species comparison. 

To compare aphid consumption (i.e. count data) between ladybird species, we first applied a 

GLMM with Poisson-error distribution including species identity and observation time as fixed 

effects and Petri dish and observation identity as random effects to account for repeated 

measurements and for overdispersion (Bates et al., 2015). For an overall test, we did an 

ANOVA based on χ²-statistics (Fox & Weisberg, 2011) followed by a Tukey post-hoc test for 

pair-wise species comparisons. To test whether aphid consumption of ladybirds is related to 

body weight, we calculated the same model as above but with body weight (measured from 

each individual ladybird) instead of ladybird species identity as fixed effect. 

To test for ladybird cue avoidance of aphids, we first paired aphid counts on control versus 

treatment leaves (nested per petri dish). Aphids that did not choose one of the two leaves were 

ignored in the analysis (i.e. the total number of aphids varied between the experimental  
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units – therefore the analysis of proportions). We applied a GLMM with binomial-error 

distribution including the paired aphid counts and time as fixed effects and Petri dish and 

observation identity as random effects to account for repeated measurements and for 

overdispersion. In the first model, we tested for equal distributions of aphids on the two leaves 

among the ladybird species used for cue deposition (i.e. if aphids actually avoid the cues of 

the respective ladybird species). In the second model, we tested if aphid leaf-choice differed 

between the cue donators (i.e. ladybird species identity). For an overall test we calculated an 

ANOVA (χ²-statistics, (Fox & Weisberg, 2011)) followed by a Tukey-post-hoc test for pair-wise 

differences between ladybird species. All statistical analysis were carried out using R , version 

3.5.1 (R Core team, 2018). 

 

Results 

Body weight differences 

Body weight differed significantly between the ladybird species (Fig. 1; F4,120=159.2, P<0.001). 

We found no pairwise differences in body weight between the large ladybird species H. axyridis 

and C. septempunctata (z=0.0014, P=0.85). H. axyridis and C. septempunctata were both 

significantly heavier than A. bipunctata, H. variegata and P. quatuordecimpuncata (P<0.001). 

 

 

 

Figure 1. Weight (mean ± SE) of the ladybird individuals per species used in our experiments. 

Different letters indicate statistically significant differences among the different species 

accoring to Tukey post-hoc test for pairwise species comparison (P<0.001).  
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Predation experiment 

The number of consumed aphids differed significantly between ladybird species (Fig. 2; 

χ2
4=51.48, P<0.001) and increased during the experimental period (χ2

1=2190.02, P<0.001). 

The number of consumed aphids did not differ between C. septempunctata and H. axyridis 

(z=1.228, P=0.73). However, H. axyridis consumed more aphids than A. bipunctata (z=4.365, 

P=<0.001), H. variegata (z=5.624, P<0.001) and P. quatuordecimpunctata (z=5.257, 

P<0.001). Similarly, C. septempunctata consumed more aphids than A. bipunctata (z=2.599, 

P=0.07), H. variegata (z=3.791, P=0.001) and P. quatuordecimpunctata (z=3.476, P=0.005). 

If weight was used instead of species identity in the model, the number of consumed aphids 

significantly depended on the body weight of ladybirds (χ2
1=29.089, P<0.001) and time 

(χ2
1=2190.301, P<0.001). 

 

 

 

Figure 2. Number (mean ± SE) of consumed aphids over time by the different ladybird species, 

with an initial aphid density of 30 aphids. Consumed aphids were counted after 10, 20, 30, 45, 

60, 120, 180, 240, 300 and 360 minutes. H. axyridis consumed more aphids than A. bipunctata 

(P<0.001), H. variegata (P<0.001) and P. quatuordecimpunctata (P<0.001). C. 

septempunctata consumed more aphids than A. bipunctata (P=0.07), H. variegata (P=0.001) 

and P. quatuordecimpunctata (P=0.005). 
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Cue avoidance experiment 

Aphids avoided leaves containing cues from C. septempunctata (z=-4.006, P<0.001) and H. 

variegata (Fig. 3, z=-2.68, P=0.007). Avoidance of cues from A. bipunctata (z=-1.939, P=0.05) 

was marginally significant. Leaves with H. axyridis (z=-0.715, P=0.47) and P. 

quatuordecimpunctata (z=-1.582, P=0.11) cues were not avoided. The proportion of aphids on 

treatment versus control leaves differed between ladybird species (χ2
4=9.5, P=0.05). Aphid 

avoidance was stronger in response to cues from C. septempunctata compared to cues of H. 

axyridis (z=2.937, P=0.03). We found no differences in the strength of cue avoidance among 

the remaining ladybird species. There was a marginal significant effect of time on aphid leaf 

choice (χ2
1=2.98, P=0.08). 

 

 

 

Figure 3. Proportions of aphids on the control leaf without ladybird cues of the respective 

species (mean ± CI). The dashed line indicates a proportion of 0.5, meaning half of the aphids 

chose the control (i.e. no ladybird cues) and half the treatment leaf (i.e. containing ladybird 

cues of the respective species). The proportion of aphids on the control leaf differed 

significantly from 0.5 for C. septempunctata (P<0.001) and H. variegata (P=0.007) and 

marginally significant for A. bipunctata (P=0.05). Leaves with cues of P. quatuordecimpunctata 

(0.11) and H. axyridis (P=0.47) were not avoided. Aphid avoidance differed between C. 

septempunctata and H. axyridis cues and was stronger for C. septempunctata (P=0.03). 
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Discussion 

In our study, larger aphidophagous ladybird species consumed more prey than smaller species 

regardless of the ladybird origin (i.e. native vs. invasive). We demonstrated that A. pisum is 

able to detect and avoid chemical ladybird cues. However, avoidance behaviour was only 

present if confronted with cues of native ladybird species. Cues of the invasive predator H. 

axyridis were not avoided by aphids. These findings suggest naiveté (sensu Cox and Lima, 

2006) of the pea aphid towards its non-native predator H. axyridis. 

Our results show that the larger ladybird species, C. septempunctata and H. axyridis, consume 

significantly higher numbers of aphids than the three smaller ladybird species. These findings 

are in line with the MTE, according to which larger animals require a higher food intake to 

maintain their metabolic rate. There is strong empirical evidence for the body weight-

consumption rate relationship as it was shown in spiders and beetles (Brose et al., 2008). We 

found that the invasive predator H. axyridis preys on aphids similarly to C. septempunctata, 

indicating that predation rates are related more to body size than species origin (native vs. 

invasive). We suggest, that aphids rely on general cues (e.g. vibration or alarm pheromones 

from conspecifics) if directly confronted with ladybirds and can thus detect both native and non-

native predator species. In addition, possible differences in predator avoidance upon contact 

with native and non-native predators (e.g. aphids dropping from plants) are not effective in 

such simplified predation experiments. However, studies under a more natural experimental 

setup pointed into the same direction and also showed trends of body size-related dropping 

and species-related avoidance behaviour of aphids (Ünlü et al., 2020). As possibilities for 

aphids to escape predation were limited in our experimental setup, actual ladybird 

consumption rates could differ in the wild. However, our results rather reflected the potential 

consumption rates of the ladybird species tested. Greater aphid consumption by H. axyridis 

compared to smaller native species can not only have negative impacts on aphid populations 

and densities, but can also negatively affect smaller native aphidophagous ladybird species 

that compete with H. axyridis for food resources. Besides, larger body size also leads to 

advantages in life history traits. Reproduction rates, the number of eggs laid per day and the 

volume of eggs increase with female ladybird size, favouring large ladybirds when prey 

availability is high (Kajita & Evans, 2010). 

We found that A. pisum can perceive native ladybird cues and change its behaviour 

accordingly, a finding that supports previous behavioural experiments demonstrating the 

perception of chemical cues in various arthropod species (e.g. Bucher et al., 2015; Ninkovic et 

al., 2013; Oliver et al., 2008). Broad bean leaves which have been exposed to ladybirds were 

less frequently used for food source by aphids than control leaves. However, only leaves 

bearing cues of native ladybirds were avoided. Aphids did not avoid cues of the invasive H. 
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axyridis. The aphid colony used in our study was reared in the laboratory for at least ten years 

and thus had likely never been confronted with high H. axyridis densities before. The absence 

of aphid avoidance behaviour in response to H. axyridis cues reflects prey naiveté (according 

to Cox and Lima (2006)) of A. pisum towards its novel predator H. axyridis at the time of its 

introduction. In the field, chemical cues may be used by aphids to avoid settling on plants 

colonized by ladybirds and thus reduce the risk of predation before any actual encounter. 

Aphids respond to ladybird cues with increased emigration rate and reduced feeding time, 

which increases their chance of survival through faster anti-predator response (Tamai & Choh, 

2019). Stronger cue avoidance of C. septempunctata than H. axyridis is of particular interest 

because these relatively large ladybird species consumed similar numbers of aphids in our 

predation experiments. Missing avoidance of aphids could have provided H. axyridis with a 

competitive advantage over C. septempunctata. Carthey and Banks (2014) suggest that prey 

detection predation cues weigh the implied risk of predation and the costs of the behavioural 

reaction against each other. Accordingly, we would expect aphids to avoid cues of the most 

voracious predators, C. septempunctata and H. axyridis, more strongly than those of smaller 

predators. Yet, the opposite was the case for H. axyridis. This finding adds information to the 

mechanism underlying the invasion success of H. axyridis, suggesting that it was, in part, 

facilitated through prey naiveté and increased intraspecific competition potential. However, 

once aphids are directly confronted with ladybirds, less specific cues like vibration, visual 

recognition or conspecific alarm pheromones likely outweigh the use of chemical ladybird cues. 

In this case, it is possible that aphids react to H. axyridis in a similar way as they do to native 

ladybirds. Our findings therefore mainly reflect avoidance reactions prior to any attack. 

The negative impact of H. axyridis on native ladybird species would depend on the probability 

of actual encounters in the field. Although H. axyridis is present across almost all types of 

terrestrial habitats, niche overlap is greater with arboreal aphidophagous species like A. 

bipunctata (Adriaens et al., 2007; Kenis et al., 2010). Bahlai et al. (2015) found that the long-

term decline of native ladybird species in the field varies with their dietary overlap with the 

invasive H. axyridis and suggested that a decline of A. bipunctata since the introduction of H. 

axyridis was most likely due to competitive exploitation. Furthermore, A. bipunctata is not only 

competing for food with H. axyridis, but is also particularly susceptible to intraguild predation 

by H. axyridis. Studies already identified declines in A. bipunctata following the introduction of 

H. axyridis (P. M. J. Brown et al., 2018; Hautier et al., 2008; Honek et al., 2016). Nevertheless, 

all native aphidophagous ladybird species can be considered at risk from food competition with 

H. axyridis (Kenis et al., 2010). Prey naiveté could have contributed to exploitative competition 

between native and invasive ladybird species. Further experiments under more natural 

conditions would be useful in order to identify how and whether the demonstrated differences 
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in ladybird cue avoidance benefits the invasive H. axyridis in the wild. So far, it is likely that 

prey naiveté, among other factors, facilitated the invasion process of H. axyridis in Europe. 

H. axyridis is a large invasive ladybird species that consumed higher numbers of aphid prey 

compared to smaller native ladybird species and thus has the potential to be a strong 

competitor. Leaves bearing cues of native ladybird species are avoided by A. pisum, but not 

leaves with cues of H. axyridis. This demonstrates that A. pisum was naïve towards H. axyridis 

at the time of its arrival in Europe and unable to either recognize its cues as dangerous or to 

adopt appropriate avoidance behaviour. Both relatively large body size and naïve native prey 

influence predator-prey interactions and likely contributed to the invasion success of H. axyridis 

in Europe. 
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Comparison of native and non-native predator consumption rates 
and prey avoidance behavior in North America and Europe 
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Abstract 

Novel species interactions can contribute to the invasion success of non-native species. Native 

prey can fail to recognize and avoid non-native predators due to a lack of co-evolutionary 

history and cue dissimilarities with native predators. This might result in a competitive 

advantage for non-native predators. Numerous lady beetle species were globally redistributed 

as biological control agents against aphids, resulting in novel predator-prey interactions.   

 Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon 

pisum) towards chemical cues of native lady beetles and non-native Asian Harmonia axyridis 

and European Coccinella septempunctata in North America, hypothesizing that cues of non-

native lady beetles induce weaker avoidance behavior than cues of co-evolved native lady 

beetles. Additionally, we compared aphid consumption of lady beetles, examining potential 

predation advantages of non-native lady beetles. Finally, we compared cue avoidance 

behavior between North American and European pea aphid populations and aphid 

consumption of native and non-native lady beetles in North America and Europe.  

In North America, pea aphids avoided chemical cues of all ladybeetle species tested, 

regardless of their origin. In contrast to pea aphids in North America, European pea aphids did 

not avoid cues of the non-native H. axyridis. Harmonia axyridis and C. septempunctata were 

among the largest and most voracious lady beetle species tested, on both continents. 

Consequently, in North America non-native lady beetle species might have a competitive 

advantage on shared food resources due to their relatively large body size, compared to 

several native American lady beetle species. In Europe, however, non-native H. axyridis might 

benefit from missing cue avoidance of aphids as well as a large body size. The co-evolutionary 

time gap between the European and North American invasion of H. axyridis, likely explains the 

intercontinental differences in cue avoidance behavior and might indicate rapid evolution in 

aphids towards non-native predators. 

 

Keywords: Invasive species; Coccinellidae; Predator-prey interactions; Cue avoidance; 

Co-evolution  
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Introduction 

Predator-prey interactions shape ecosystems via density- and trait mediated effects (Murdoch 

et al. 2003, Preisser et al. 2005). Density mediated effects result in the elimination of prey 

individuals by a predator leading to reduced prey population densities (Murdoch et al. 2003). 

Prey adapt to the selection pressure of predators by evolving traits that increase the survival 

during predator attacks (i.e. antipredator behaviors). However, changes in these plastic traits 

can come at a fitness cost (i.e. non-consumptive effects; Lima and Dill 1990, Peacor and 

Werner 2000). Fitness costs of trait mediated-effects can reduce prey population densities to 

a similar extent as density mediated effects (Preisser et al. 2005). Both, density- and trait-

mediated effects and can expand into adjacent trophic levels (i.e. trophic cascades or trait-

mediated indirect interactions; Terborgh and Estes 2010, Ohgushi et al. 2012).        

Predator-induced changes in prey behavior (i.e. antipredator behavior) can enhance prey 

survival upon predator attacks, interfering with the detection, encounter, and/or capture of prey 

(Lima 1998). Prey species have sensory mechanisms to detect and recognize cues of co-

evolved predators, to effectively respond to a predator attack (Lima and Dill 1990, Rosier and 

Langkilde 2011). Predator cues serve as sensory information for prey, to recognize co-evolved 

predators and induce antipredator behaviors. Cues that are involved in interspecific 

communication can be visual, vibrational cues, and olfactory cues (Fischer et al. 2001, 

Hermann and Thaler 2014). Chemical cues left by predators persist in nature and can be an 

indicator of predator presence and future predation risk (Bucher et al. 2014). Lady beetles 

leave species-specific chemical cues, which are persistent, long-lasting and stick on the 

surface of plant tissue (Dixon 2000). The species-specific chemical cues left in the tracks of 

lady beetles consist of cuticular hydrocarbons (Kosaki & Yamaoka 1996) that serve for water 

proofing (Menzel et al. 2019) and mediate intra- and interspecific communication (Hemptinne 

et al. 1998, Doumbia et al. 1998, Ninkovic et al. 2013, Menzel et al. 2019). Recently studies 

revealed that the presence of lady beetle chemical cues on host plants can induce avoidance 

behavior in psyllids (Seo et al. 2018) and aphids (Ünlü et al. 2020, Ninkovic et al. 2013).         

The pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) consists of numerous 

distinct biotypes, being adopted to host plants in its local range (Peccoud et al. 2009, Peccoud 

et al. 2009). Originally of Palearctic origin, North American populations of pea aphids 

coevolved in agricultural fields with native predators for over a century (Thomas 1878). Missing 

co-evolution of predator and prey can lead to a lack of detection and recognition mechanisms 

of predator cues by prey (Cox and Lima 2006). Non-native predators can therefore benefit from 

a novelty advantage due to lacking or inappropriate antipredator response by prey, leading to 

higher predation pressure (Sih et al. 2010). Non-native predators can consequently have 

stronger consumptive effects and weaker non-consumptive effects on prey populations, 

compared to co-evolved predators. If cues of non-native and native predator species are 
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similar then a similar response can be expected by prey, regardless of predator origin (Sih et 

al. 2010). Cues of closely related species tend to be more similar, due to similar biosynthetic 

pathways compared to cues of distantly related species, e.g. chemical cues within lady beetle 

genera are more similar than between genera (Magro et al. 2010). Thus, relatedness 

associated with cue similarity between species can lower the impact on prey densities 

compared to dissimilar non-native predators (Sih et al. 2010).                                         

Lady beetles (Coleoptera: Coccinellidae) have a history of being globally introduced as 

biological control agents for decades (Harmon et al. 2007). Lady beetles are predators of 

several pest species (e.g. aphids and coccids), thus providing a valuable ecosystem service 

in agriculture (Obrycki and Kring 1998, Caltagirone and Doutt 1989). Among the introduced 

lady beetle species, the European species Coccinella septempunctata and Hippodamia 

variegata have been released for biological control of aphids in North America (Angalet et al. 

1979, Ellis et al. 1999). The earliest establishment of C. septempunctata in North America 

dates back to 1973 (Angalet and Jacques 1975); The establishment history of H. variegata 

began in 1984 in North America (Gordon 1987). Similarly, the Asian Harmonia axyridis was 

introduced as a biological control agent in North America and Europe (Tedders and Schaefer 

1994, Trouve et al. 1997). The introduction of the Asian H. axyridis in North America started in 

1916 (Gordon 1985), but its earliest establishment was in 1988 (Chapin and Brou 1991). In 

Europe, H. axyridis was introduced in 1995 and the establishment period started in 2000-2001 

(Brown et al. 2011). Coccinella septempunctata and the Asian H. axyridis are relatively large 

and highly voracious compared to common native aphidophagous species (Elliott et al. 1996, 

Hoki et al. 2014, Ünlü et al. 2020). Moreover, both species interfere with native trophic 

interactions associated with a lady beetle species decline in the non-native range, due to 

resource competition and intraguild predation (Alyokhin and Sewell 2004, Ware et al. 2009), 

absence of natural enemies (Roy et al. 2011), high abundance (Horn 1991, Koch 2003) and 

high fecundity (Kajita and Evans 2010) and are therefore classified as invasive species (Roy 

and Brown 2015). The contribution of cue avoidance behavior of aphids confronted with non-

native and native chemical lady beetle cues to the invasion success of non-native lady beetles, 

remains to be examined.     

In this study, we deployed a multi-species approach to compare differences in cue avoidance 

behavior of a North American population of pea aphid (Acyrthosiphon pisum) confronted with 

chemical cues of the Asian lady beetle species Harmonia axyridis, the European lady beetle 

species Coccinella septempunctata and Hippodamia variegata and three North American lady 

beetle species, Coleomegilla maculata, Coccinella novemnotata and Hippodamia convergens. 

In addition, we compared aphid consumption rates between all lady beetles tested. We 

hypothesized (1) missing avoidance behavior of A. pisum confronted with cues of the novel 

non-native H. axyridis, lower avoidance behavior confronted with cues of congeneric non-
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native species (Coccinella septempunctata and Hippodamia variegata) compared to cues of 

native ladybeetle species and stronger avoidance behavior of native lady beetle cues 

compared to the non-native lady beetle cues tested. (2) We expected higher aphid 

consumption of the larger non-native lady beetle species H. axyridis and C. septempunctata 

compared to smaller lady beetle species, regardless of origin. In addition, cue avoidance and 

consumption experiments were conducted in Europe, using a European pea aphid population 

as prey and non-native H. axyridis, native C. septempunctata and H. variegata as predators. 

We subsequently compared cue avoidance behavior and consumption of North American and 

European pea aphids confronted with lady beetle species occurring on both continents. We 

expected (3) weaker avoidance behavior of local aphids towards C. septempunctata and H. 

variegata cues in North America compared to Europe (native range) and missing avoidance 

behavior towards H. axyridis cues in North America and Europe. (4) We expected no 

differences in aphid consumption of H. axyridis, C. septempunctata, and H. variegata between 

North America and Europe, due to body size related food demands.  

 

Material and Methods 

Study species North America 

The North American pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) colony 

consists of individuals maintained in a colony started in 1985 at Iowa State University, Ames, 

Iowa, USA and individuals collected in Lexington, Kentucky in 2003. The colony was 

maintained in the laboratory (at Iowa State University and the University of Kentucky) on broad 

bean (Vicia faba) plants. They were kept in cages with six to eight pots containing five plants 

each. Plants were replaced weekly to guarantee a fresh food supply for aphids. Aphids were 

maintained in the laboratory in climate chambers (22°C ± 1 and a photoperiod of light 16 h: 

dark 8 h) and in a climatized laboratory (22°C ± 1 and a photoperiod of light 16 h: dark 8 h). 

The lady beetle species Coccinella septempunctata and Colleomegilla maculata were 

collected in April 2018 in alfalfa fields and in field margins at an agricultural research field 

station of the University of Kentucky in Lexington, Kentucky, USA. The overwintering 

generation of Hippodamia convergens was obtained from Rincon Vitova Insectaries, Ventura, 

CA, USA, in April 2018 and stored at low temperatures (5°C). Female and male beetles of 

these species were subsequently paired in 0.24-liter paper cartons, provided with water and 

fed ad libitum with pea aphids, and frozen Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) 

eggs (Beneficial Insectary, Redding, CA, USA). Egg clusters laid by individual females were 

collected and placed into a Petri dish. When larvae hatched, they were separated into glass 

vials, sealed with cotton, provided with water and fed ad libitum with pea aphids and frozen  
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E. kuehniella eggs until pupation. Individuals of Harmonia axyrids were field collected in the 

pupal stage in May-June and kept in Petri dishes until the adult beetles emerged. Hippodamia 

variegata individuals were collected from an alfalfa field in Le Roy, IL, USA in May/June.  

C. novemnotata was purchased in the larval stage (Lost Ladybug Project, Cornell University, 

Ithaca, New York 14850), since no individuals were found in Kentucky and separately kept in 

glass vials (see above) until they developed to adults. The adult lady beetles were 

subsequently sorted by species and stored in plastic boxes. They were provided with water 

and fed ad libitum with pea aphids, A. pisum and frozen E. kuehniella eggs and kept at 22 ± 

1°C, at a photoperiod of light 16 h: dark 8 h. Voucher specimens were preserved in Ethanol 

(70%) and stored under -7 ± 1°C at the Department of Entomology (Animal Pathology 

Building), at the University of Kentucky. 

 

Study species Europe 

The European pea aphid colony was obtained from the Julius-Kühn Institut in Braunschweig, 

Germany, which had been maintained in the laboratory since at least 2007. The aphids were 

reared on broad bean V. faba (v. Sutton Dwarf, Kings Seeds, Manchester) in plastic containers 

(10.0 x 13.5 x 6.5 cm) covered with gaze for aeration in climate chambers (20 ± 1°C, L:D 16:8 

and 65% relative humidity). Aphids were supplied with fresh plants, weekly. The lady beetle 

species H. axyridis, C. septempunctata and H. variegata were collected in June-September in 

two subsequent years (2017 and 2018) in grasslands around Marburg, Germany. Ladybeetles 

were kept in small groups, separated by species, in Petri dishes (9.4 × 1.6 cm), fed ad libitum 

with A. pisum and were kept at (20 ± 1°C, L:D 16:8 and 65% relative humidity).  

 

Cue avoidance experiments  

For the comparison with North American species, beetles were sexed prior to the experiments, 

to ensure a gender-balanced design (ten male and ten female beetles). Double leaflets of Vicia 

faba were cut in two halves, one control and one treatment leaflet, and placed into Petri dishes 

(3.5 × 1.0 cm). A single lady beetle was placed on the treatment leaflet in the Petri dish for cue 

deposition and subsequently removed after 12 hours. The control leaflet remained without a 

lady beetle. The control and the treatment leaflet were randomly assigned and placed into the 

center of each half of a Petri dish (9.4 × 1.6 cm). Ten adult aphids were released into the center 

of each Petri dish. The number of aphids on the control and treatment leaflet were counted 

after 0.25, 0.5, 1.0, 1.5, 2.0, and 3.0 hours. Twenty replicates were conducted per species in 

the laboratory under 25.10 ± 0.20 °C and artificial lightning. The leaf-choice experiments in 
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Europe were identical except that lady beetle individuals were not sexed prior to the 

experiments, but randomly chosen. 

 

Predation Experiments 

Lady beetles were sexed by morphological differences prior to the experiments, accounting for 

potential intraspecific predation differences of female and male beetles. Beetles were 

separately placed into small Petri dishes (3.5 × 1.0 cm) and starved for 24 hours prior to 

experiments. Thirty pea aphids (second to third nymph stage) were counted and placed with 

a brush into a Petri dish. Beetles were randomly assigned to a Petri dish containing aphids. 

Aphid predation was quantified by counting the remaining aphids in the Petri dish after six 

hours. In North America, we freeze-killed (-7 ± 1°C) lady beetle individuals after the 

experiments and measured body width (widest horizontal distance of closed elytra) and body 

length (elytral apex to pronotal apex) of all beetles used for the predation experiments under 

a stereomicroscope. We followed the procedure of Obrycki et al. (1998) to obtain elliptical body 

area for individual beetles (body area (mm2) = (π × 0.5 × body length (mm) × 0.5 × body width 

(mm)). Overall, 20 replicates (ten females, ten males) were conducted per species, in the 

laboratory under 25.41 ± 0.19 °C and artificial lightning. The predation experiments in Europe 

were identical, except that lady beetle individuals were randomly chosen and not sexed prior 

to the experiments. 

  

Statistical analysis 

For the cue avoidance experiments in North America and the intercontinental comparison, 

aphid counts on each leaflet were analyzed as proportions (aphids on control leaf vs. treatment 

leaf). We only considered aphids that made a distinct choice of control or the treatment leaflet. 

We applied a GLMM with a binomial error distribution to analyze differences between cue 

donator species identity (i.e. different lady beetle species) on aphid leaf choice. We included 

cue donator species identity as fixed effects and experimental unit (Petri-dish identity) and an 

observation level random effect (OLRE) as random effects (to account for repeated 

measurements and overdispersion). We obtained statistical parameters for the fixed effects 

via ANOVA (χ2-test) from the R-package car (Fox and Weisberg 2019). Pairwise differences 

between cue donator species identity were analyzed with a Tukey’s contrast test for 

comparison of means with a Holm correction, to account for familywise error rates, using the 

glht-function from the multcomp R-package (Hothorn, Bretz & Westfall 2008). We 

subsequently tested for equal distribution of aphids on control vs. treatment leaf (i.e. if aphids 

avoid lady beetle cues of the respective cue donator), by applying a GLMM with binomial error 
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distribution. Our fixed effects included species identity and experimental unit (i.e. repeated 

measurements) and ORLE (accounting for overdispersion) as random effects.   

Differences of predation rates in North America after six hours and body area were respectively 

analyzed with a Games-Howell post-hoc test, following a Welch’s ANOVA (F test) accounting 

for heteroscedasticity. To test the effects of lady beetle species identity, gender and body area 

on predation rates, we conducted a GLM with lady beetle species identity, gender and body 

area as fixed effects with a quasi-poisson error distribution. Statistical parameters for the fixed 

effects were obtained via ANOVA (χ2-test). The intercontinental predation differences between 

lady beetle species were analyzed with a Games-Howell post-hoc test, following a Welch’s 

ANOVA (F-test). All statistical analyses were performed with the statistical software R, Version 

3.4.0 (R Development Core Team, 2017). 

 

Results 

Cue avoidance in North America 

Aphid leaf choice did not differ between cues of the different lady beetle species (GLMM; χ2 = 

5.80, df = 5, P = 0.33). Aphids avoided plants previously occupied by all species 

(Fig.1.; H. axyridis: z95 = 4.03, P < 0.01; C. septempunctata: z95 = 4.89, P < 0.01; C. 

novemnotata: z95 = 3.13, P < 0.01; Col. maculata: z95 = 4.63, P < 0.01; H. convergens:  

z95 = 2.72, P < 0.01 and H. variegata: z95 = 2.35, P = 0.02; Fig.1). 

 

Figure 1. Proportion of pea aphids on cue-free control leaflets (mean ± SE) in North America. 

Pea aphids avoided leaflets with chemical cues of the native lady beetle species (unfilled 

symbols) Coccinella novemnotata (C9), Coleomegilla maculata (C. mac), Hippodamia 

convergens (Hipc) and the non-native lady beetle species (filled symbols) Harmonia axyridis 

(Hax), Coccinella septempunctata (C7) and Hippodamia variegata (Hipv) (P ≤ 0.02, 

respectively). 
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Aphid consumption by lady beetles in North America 

The number of aphids consumed after six hours differed among lady beetle species (Welch’s 

ANOVA; F = 26.13, df = 5, P < 0.01). Aphid consumption by C. septempunctata and H. axyridis 

did not significantly differ (Games Howell post-hoc test (GH); P = 0.97). There were no 

differences in aphid consumption between C. novemnotata and H. axyridis (GH, P = 0.48); 

Aphid consumption of C. novemnotata was lower compared to C. septempunctata (GH, P = 

0.03). Aphid consumption of C. septempunctata and H. axyridis was respectively higher 

compared to H. convergens, Col. maculata and H. variegata (GH; P ≤ 0.02, Fig. 2).                

Body area differed between lady beetle species (Welch’s ANOVA; F = 248.34, df = 5, P < 0.01). 

There were no body area differences between C. septempunctata and H. axyridis (P = 0.11) 

The remaining species (C. novemnotata, H. convergens, Col. maculata and H. variegata) were 

respectively smaller than C. septempunctata and H. axyridis (GH; P < 0.01).  

H. convergens, Col. maculata and H. variegata were smaller than C. novemnotata, (GH; P < 

0.01). There were no size differences between H. convergens and Col. maculata (GH; P = 1). 

H. variegata was smaller than Col. maculata and H. convergens (GH; P < 0.01; Fig. 2). 

Consumption rates of lady beetles can be explained by differences in species identity (GLM; 

χ2 = 23.18, df=5, P< 0.01), beetle gender (GLM; χ2 = 26.32, df = 5, P < 0.01) and beetle body 

size (GLM; χ2 = 6.23, df = 5, P = 0.01).  

 

Figure 2. Number of pea aphids consumed after six hours (mean ± SE) and body area (mm2; 

mean ± SE) of native (unfilled symbols) and non-native lady beetle species (filled symbols): 

Different uppercase letters indicate statistical differences of aphid consumption and different 

lowercase letters indicate statistical differences in body area between species based on a 

Games-Howell post-hoc test (P < 0.05, same letters do not differ significant). Dotted regression 

line (y = 0.8133 x - 0.4305; R2 = 0.54) shows the linear relationship between aphid consumption 

and body area. 
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Intercontinental comparison of aphid cue avoidance  

Avoidance behavior of local pea aphids differed between cues of different lady beetle species 

(Glmer; χ2 = 30.56, df = 5, P = 0.01). Avoidance behavior of European aphids was weaker 

when confronted with H. axyridis cues compared to avoidance behavior of North American 

aphids, C. septempunctata cues from both continents and North American H. variegata cues 

(Tukey’s contrasts test (TCT); P < 0.01, respectively). Avoidance behavior was marginaly 

higher when confronted with European H. variegata cues compared to European H. axyridis 

cues (TCT; P = 0.08). No differences of avoidance behavior were observed between the 

remaining species (TCT; P > 0.29, respectively; Fig. 3).                        

In Europe, A. pisum showed no avoidance confronted with cues of H. axyridis  

(z95 = -1.12, P = 0.26), but avoidance of C. septempunctata cues (z95 = 5.31, P < 0.01) and H. 

variegata cues (z95 = 2.59, P < 0.01). In North America A. pisum showed avoidance to H. 

axyridis cues (z95 = 4.429, P < 0.01), C. septempunctata cues (z95 = 3.85, P < 0.01) and H. 

variegata cues (z95 = 2.44, P < 0.01; Fig. 3).  

 

Figure 3. Proportion of aphids on cue-free control leaflets (mean ± SE) in North America 

(unfilled symbols) and Europe (filled symbols). Asterix indicates significant avoidance behavior 

of leaflets with chemical cues of lady beetle species (P < 0.05). Different letters indicate 

statistical differences between species based on Tukey’s contrast test (P < 0.05).  
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Intercontinental comparison of lady beetle consumption rates 

Predation rates differed among lady beetle species (Welch’s ANOVA;  

F = 42.38, df = 5, P < 0.01). North American H. variegata consumed fewer aphids than North 

American and European C. septempunctata (GH; P < 0.1, respectively) and North American 

and European H. axyridis (GH; P < 0.1, respectively). Moreover, European H. variegata 

showed lower consumption rates compared to North American and European C. 

septempunctata (GH; P < 0.1, respectively) and North American and European H. axyridis 

(GH; P < 0.1, respectively). European and North American aphids were consumed to a similar 

extent by H. axyridis from North America or Europe (GH; P = 0.52). Moreover, consumption 

rates did not differ between European C. septempunctata and North American C. 

septempunctata (GH; P = 1.0) as well as between European H. variegata and non-native North 

American H. variegata (GH; P = 0.10). C. septempunctata and H. axyridis consumption rates 

did not differ significantly in North America (GH; P = 0.97) and in Europe (GH; P = 0.94; Fig. 

4). 

 

Figure 4. Number of pea aphids consumed after six hours (mean ± SE) of lady beetle species 

in North America (unfilled symbols) and Europe (filled symbols): Different letters indicate 

statistical differences of aphid consumption of different lady beetle species based on a Games-

Howell post-hoc test (P < 0.05, same letters do not differ significantly). 
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Discussion 

In North American pea aphids avoided chemical cues of all lady beetle species tested, 

regardless of lady beetle origin. In contrast to North American pea aphids, European pea 

aphids did not avoid cues of the non-native H. axyridis. Consumption rates were strongly 

correlated with body size of lady beetles. On both continents, C. septempunctata and  

H. axyridis were the largest species tested and consumed the most aphids.    

Contrary to our expectations, North American pea aphids equally avoided chemical cues of all 

lady beetle species tested, regardless of the origin of lady beetle species. The avoidance of H. 

axyridis cues might be explained by the strong selection pressure by voracious non-native 

predators on native prey, leading to a rapid evolution of antipredator behaviors (Carthey and 

Blumstein 2018). In a maritime system, for example, the intertidal snail Littorina obtusata 

responded to the increasing predation pressure of the intertidal crab (Carcinus maenas), which 

was expanding its range, with rapid morphological change of shell forms (Seeley 1986). 

Moreover, research on cue avoidance behavior in mammals, showed that native common 

ringtail possum (Pseudocheirus peregrinus) recognized and subsequently avoided olfactory 

cues of the invasive European red fox (Vulpes vulpes), within a few generations of co-evolution 

(Anson and Dickman 2013). However, in addition to predation risk, the frequency of predator-

prey encounters and the length of time since introduction, can be decisive for the evolution of 

antipredator behaviors (Nelson 2007, Gérard et al. 2014). Prey naïveté decreases with the 

number of generations since introduction (Anton et al. 2020). The intercontinental comparison 

of cue avoidance behavior of pea aphids in Europe and North America, indicates only lacking 

aphid cue avoidance towards European H. axyridis cues. Thus, differences of avoidance 

behavior of pea aphids on both continents could be explained by a difference in co-evolutionary 

time of non-native H. axyridis and pea aphid populations in the field, being shorter in Europe 

than in North America (Gordon 1985, Brown et al. 2011).  In North America, H. axyridis was 

released in multiple agricultural landscapes starting in 1916 (Gordon 1985). Biocontrol agents 

are repeatedly reintroduced to control agricultural pest species (Lombaert et al. 2014). Thus, 

our findings suggest that North American pea aphid populations evolved cue avoidance 

behavior towards H. axyridis during the co-evolutionary time spend in shared agricultural fields, 

which started with H. axyridis introduction. In Europe, H. axyridis was introduced in the 1990s 

and the establishment period is estimated to be 2000-2001 (Brown et al. 2011). Here, the co-

evolutionary history of A. pisum is shorter with H. axyridis populations, compared to that of 

North American populations. Thus, we suggest that differences in the length of co-evolutionary 

time between H. axyridis and pea aphids in North America and Europe can explain the 

existence of avoidance behavior in North America but not among European pea aphids. Based 

on our findings, long-term studies could enhance our knowledge on evolutionary changes in 
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non-native predator-prey interactions starting with the initial introduction of non-native 

predators (Mallon et al. 2015, Anton et al. 2020).        

Avoidance behavior of American pea aphids confronted with non-native C. septempunctata as 

well as H. variegata cues could be explained by the shared European co-evolutionary history 

prior to the introduction of pea aphids to North America (Thomas 1878). In the intercontinental 

comparison, we found that European pea aphids avoided cues of C. septempunctata and H. 

variegata, indicating that avoidance behavior is an innate response of European aphids to 

native C. septempunctata and H. variegata. Innate antipredator responses to extinct predators 

can be retained over several generations for decades (reviewed in Parsons et al. 2018); e.g. 

prey species showed innate avoidance behavior towards olfactory cues of locally extinct 

predators, even though the extinctions dated 100 years back (Osada, Miyazono & 

Kashiwayanagi, 2014; Chamaillé‐Jammes et al. 2014). According to the ‘multipredator 

hypothesis’, prey retains evolved antipredator behaviors towards extinct predators in the 

presence of remaining predators (Blumstein 2006). Thus, chemical cue avoidance towards 

non-native European C. septempunctata and H. variegata might be a retained innate 

antipredator response of pea aphids, which evolved prior to the introduction of pea aphids to 

North America in the beginning of the 19th century and remained due to the presence of 

congeneric native predators (e.g. C. novemnotata and H.convergens). Moreover, we suggest, 

that chemical cue similarities between congeneric non-native C. septempunctata and H. 

variegata and native C. novemnotata and H.convergens in North America might contribute to 

the equally strong avoidance behavior in pea aphids (Sih et al. 2010); Here, cues of non-native 

and native congeneric lady beetle species can be more similar (Magro et al. 2010) and 

consequently a similar response can be expected in prey, regardless of predator origin (Sih et 

al. 2010). However, the degree of cue similarity between the tested lady beetle species 

remains open and needs further attention. Overall, the ‘multipredator hypothesis’ in 

combination with chemical cue similarities of related (congeneric) species might explain cue 

avoidance of congeneric non-native C. septempunctata and H. variegata and native C. 

novemnotata and H. convergens in North America, as well as the similar strength of avoidance 

behavior between European and American pea aphids.       

In North America and in Europe, the non-native C. septempunctata and H. axyridis were the 

largest lady beetles tested (see Ünlü et al. 2020) and consumed the most aphids, compared 

to smaller native species. Food consumption increases with body mass, due to increasing 

metabolic requirements (Brose et al. 2008), confirming the positive relationship between lady 

beetle body area and aphid consumption rates. The successful establishment of a large 

predator can depend on, i.e. predator size and prey availability (Crookes et al. 2019). In North 

America, C. septempunctata was primarily considered as a non-native biological control agent 

on pest species, due to large size and voraciousness (Elliot et al. 1996). Predation advantages 
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of invasive H. axyridis over the smaller native lady beetle species Cycloneda sanguinea on 

shared pest species, were attributed to a dominance in intraguild interactions, wider dietary 

range, higher voracity and larger size (Michaud 2002). Moreover, we found, that the smaller 

sized, non-native H. variegata consumes a lower number of aphids, compared to 

C. septempunctata and H. axyirids in North America. Thus, asymmetric competition 

advantages over smaller native and non-native species, can benefit the larger non-native 

H. axyridis on both continents and non-native C. septempunctata in North America (Michaud 

2002, Hoki et al. 2014). Furthermore, a recent study found that the efficiency of resource 

utilization was comparatively higher in invasive H. axyridis than in native H. convergens, when 

allometric scaling was considered. In addition, aphid handling time was lower and maximum 

consumption rate was higher in H. axyridis, compared to native H. convergens, indicating that 

the invasive H. axyridis is the dominating competitor (Crookes et al. 2019). Overall, body size 

and correlated physiological and/or behavioral traits of invasive species can significantly 

contribute to a competition advantage towards native and non-native predators (Obrycki et al. 

1998, Michaud 2002, Kajita and Evans 2010, Hemptinne et al. 2012).              

Non-consumptive effects (i.e. fitness costs) of chemical cue avoidance behavior of pea aphids 

on aphid populations is likely to comparable between non-native and native lady beetle species 

in North America. Prior studies showed that disturbances in pea aphid behavior induced by 

predator cues can lead to increased searching behavior for suitable feeding sides and 

consequently decreased feeding times, resulting in reproductive costs (Nelson et al. 2004, 

Nelson 2007). However, predator cues, covering the surrounding area can lead to aphid 

dispersal to sites with less predator pressure and consequently reduce survival costs through 

immediate predator consumption (Roitberg et al. 1979). The ‘landscape of fear’ induces prey 

to shift to sites with low predation pressure by avoiding sites with high predation risk (Laundre 

et al. 2001). Another study confirms, that prey can discriminate between risky and suitable 

feeding sides, by demonstrating that the Colorado potato beetle, Leptinotarsa decemlineata 

reduces feeding on potato leaves covered with predator cues, compared to a cue-free control 

(Hermann and Thaler 2014). Our findings suggest that chemical lady beetle cues of non-native, 

as well as native lady beetle species can equally repel aphids and can subsequently serve as 

proxy for future predation risk. Unexpectedly, non-native lady beetle species do not benefit 

from missing cue avoidance of pea aphids in North America and fitness costs for pea aphids, 

inflicted by non-native and native lady beetle species are expected to be comparable. In 

contrast, pea aphids in Europe, lacking avoidance behavior towards chemical cues of  

H. axyridis, might have lower associated fitness costs, but can suffer higher losses through 

direct consumption. Our results can further help to explain the current invasion status of 

H. axyridis and European lady beetle species in North America: While the two larger species 

H. axyridis and C. septempunctata have spread all over the US within few decades, the smaller 
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H. variegata, Propylea quatuordecimpuncata, and Adalia bipunctata kept a more local 

distribution in the North East (and Noth West for A. bipuncata; Gordon 1985, Lost Ladybug 

Project 2020: www.lostladybug.org). Among other characteristics, large body size can 

contribute to the invasion success of lady beetles due to increased food competition (see 

above). Analyzes of a 24-year dataset in southwestern Michigan revealed only significant 

declines in the relatively small Col. maculata and A. bipunctata (Bahlai et al. 2015). Likewise, 

A. bipuncata sowed stronger declines in the presence of H. axyridis compared to other native 

lady beetle species, in Europe (Roy et al. 2012). In contrast, C. novemnotata maintained an 

ecological foothold in the face of invasion by the equally sized C. septempunctata (Evans 

2017). Thus, we suggest that lady beetle body size might be a good predictor for their invasion 

potential in areas beyond their native ranges. In contrast to body size, differences in predator 

avoidance can diminish with time. Here, North American aphids but not European aphids 

avoided cues of the Asian H. axyridis. Such rapid evolutionary adaptations can contribute to 

so called ‘boom-bust dynamics’: invaders go through an initial outbreak before declining to a 

lower population size (Simberloff and Gibbons 2004, Strayer et al. 2017). So far, evidence for 

a decline in H. axyridis populations is restricted to microsatellite effective population estimates 

(Sethuraman et al. 2017). In the long term, the evolution of avoidance behavior in native aphids 

might result in a stable co-existence within the native community and may consequently lead 

to a more harmless situation relative to the current impact of H. axyridis. Rapid evolution in 

response to non-native predators has important consequences for ecological studies aiming 

to elucidate the underlying mechanism of biological invasion such as a lack of avoidance 

behavior: Although lacking avoidance behavior towards non-native predators during early 

stages of biological invasions benefit the non-native predator, the mechanisms might no longer 

be detectable at later stages due to rapid co-evolution. Our results in concert with lady beetle 

distribution data in North America and in Europe indicate that relative lady beetle body size is 

a key predictor of the invasion success of non-native lady beetle species, but also for native 

lady beetle species that are at particular risk if they co-occur with non-native lady beetles. 
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Conclusion  

Missing avoidance behavior of European pea aphids towards chemical cues of non-native  

H. axyridis, suggests that non-native predators can benefit from chemical cue novelty resulting 

in a lack of antipredator behavior of prey, during early stages of biological invasions. In 

contrast, North American pea aphids showed avoidance behavior towards H. axyridis cues, 

suggesting a rapid evolution of avoidance behavior against voracious, non-native predators. 

Avoidance behavior towards non-native H. variegata and C. septempunctata cues might be 

explained by cue similarities to congeneric native species and co-evolutionary history prior to 

the introduction of pea aphids to North America. Harmonia axyridis and C. septempunctata 

consumed the most aphids compared to native and non-native lady beetle species, due to 

large body sizes. Overall, predation advantages of non-native predators due to missing 

antipredator behaviors of prey might diminish with time, whereas body size related competition 

advantages over smaller native and non-native predators could sustainably benefit large, non-

native predators. In addition, long-term studies are required to provide a better understanding 

of evolutionary changes in non-native predator-prey interactions starting with the initial 

introduction of non-native predators.  
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Abstract 

Invasive species are a major driver of global biodiversity loss. However, we often lack a 

mechanistic understanding why some non-native species become invasive. Missing co-

evolutionary history between invasive predators and native prey can lead to a lack of predator 

avoidance by native prey and consequently higher consumption rates by invasive predators. 

We compared predation rates of four native European lady beetle species and the invasive 

lady beetle species Harmonia axyridis Pallas (Coleoptera: Coccinellidae), using the native pea 

aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) for prey. Here, we also quantified 

initial dropping of A. pisum from host plants. In an additional plant-choice experiment, we tested 

for aphid avoidance of plants bearing lady beetle cues.        

Differences in predation were determined by predator body size. Initial dropping of aphids did 

not differ between the invasive lady beetle species H. axyridis and the remaining native lady 

beetle species. However, A. pisum showed no avoidance behavior towards H. axyridis cues, 

but to cues of the most voracious native species. Thus, relatively large body size and missing 

chemical cue avoidance by aphids can benefit the invasive H. axyridis. 

 

Keywords: Predator-prey naïveté, co-evolution, invasion, antipredator response, predator 

avoidance, Harmonia axyridis Pallas (Coleoptera: Coccinellidae)
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Introduction 

Novel species interactions can play a pervasive role in the invasion success of non-native 

species and their ecological impact (Carthey and Banks 2014). Several evolutionary and 

ecological hypotheses focus on novel species interactions (Hufbauer and Torchin 2007). The 

evolution of increased competitive ability (EICA) hypothesis, for example, implies that novel 

species might benefit from the absence of native top and intraguild predators, reducing the 

impact on population growth through reduced predation. Thus, the reduced resource allocation 

to antipredator response in the novel species, leads to a higher competitive ability and 

consequently to higher fitness (Blossey and Notzold 1995). Besides the absence of predators, 

missing predator recognition of prey can result in similar consequences for predators: 

According to the prey-naïveté hypothesis, a lack of co-evolutionary history between native prey 

and novel predator results in missing species recognition and ineffective antipredator response 

of native prey, leading to higher consumption rates of the novel predator (Cox and Lima 2006; 

Sih et al. 2010). While the majority of studies focus on prey naïveté of vertebrates and aquatic 

organisms (Cox and Lima 2006), there is little scientific understanding of predator-prey-naïveté 

in arthropods.               

Interspecific communication is crucial for species recognition in trophic interactions (Lima and 

Dill 1990). The assessment of predation risk by prey is mediated by general and/or specific 

cues (Sih et al. 2010). In arthropods, chemical cues (e.g. cuticular waxes; Dixon 2000; Pasteels 

2007) are known to mediate mutualistic and antagonistic interactions (Lang and Menzel 2011; 

Bucher et al. 2014; Dixon 2000; Mestre et al. 2014). Since predator-specific chemical traces 

are left by predators on feeding sites, prey species evolved mechanisms to assess and avoid 

chemical cues of syntopic predators to reduce risk of predation (Ninkovic et al. 2013; Bucher 

et al. 2015a). Hence, native prey can suffer from heavy predation after the introduction of a 

non-native species (Sih et al. 2010). However, chemical cue similarity between native and non-

native predators could enhance prey recognition and subsequently mediate invasion success 

(Sih et al. 2010).           

Aphids (Hemiptera: Aphididae) have evolved several survival strategies to escape predation, 

such as kicking, walking away, dropping from the plant and releasing an alarm pheromone to 

warn neighboring aphids (Villagra et al. 2002; Francke et al. 2008). In addition, aphids can 

respond to predator presence with the production of winged offspring, allowing for future 

dispersal (Lees 1966, Weisser et al. 1999). The pea aphid Acyrthosiphon pisum Harris 

(Hemiptera: Aphididae) is originally a Palearctic species, which started spreading in the late 

19th century and is now globally distributed (Thomas 1878). The species A. pisum consists of 

numerous sympatric populations, characterized by genetic or phenotypic divergence and 

differences in host plant adaptation in its local range (Peccoud et al. 2009; Peccoud and Simon 

2010). Aphids are an essential food resource for several lady beetle species (Coleoptera: 
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Coccinellidae) (Gordon 1985; Obrycki and Kring 1998), e.g. the Asian multicolored lady beetle 

Harmonia axyridis Pallas (Coleoptera: Coccinellidae) is a voracious predator of aphids in 

agricultural landscapes (Hukusima and Ohwaki 1972). From 1995, H. axyridis was introduced 

as a biocontrol agent in Central Europe (Brown et al. 2008). The period of spread and 

establishment of Harmonia axyridis in most parts of Central Europe ranged from 2002 to 2007 

(Brown et al. 2008). Within two decades, this beneficial, non-native species became a 

successful invader with high dispersal and establishment abilities and wide food spectrum. The 

spread of H. axyridis is associated with the decline of native lady beetles in Europe (Majerus 

et al. 2006; Van Lenteren et al. 2008; Roy et al. 2012) and North America (Brown and Miller 

1998, Alyokhin and Sewell 2004).             

We applied a multi-species approach to compare the strength of predator-prey interactions 

between the invasive Asian lady beetle species Harmonia axyridis, four native European lady 

beetle species, Coccinella septempunctata Linnaeus, Adalia bipunctata Linnaeus, Propylea 

quatuordecimpunctata Linnaeus, and Hippodamia variegata Goeze (Coleoptera: 

Coccinellidae), using the native pea aphid Acyrthosiphon pisum for prey. We expected (1) 

higher aphid predation of H. axyridis compared to the native lady beetle species and (2) higher 

dropping rates if confronted with native lady beetle species compared to H. axyridis. In addition, 

we expected (3) weaker response of A. pisum confronted with H. axyridis cues, compared to 

cues of native lady beetle species. This plant choice experiment allowed us to evaluate the 

role of chemical cues mediating avoidance behavior towards native and invasive lady beetles.  

 

Material and Methods 

Study species  

Broad bean plants Vicia faba Linnaeus (Fabales: Fabaceae) (variety Sutton dwarf; Kings 

Seeds Essex, UK) were planted weekly in plastic trays (56.5 × 41.5 × 8.5 cm) under room 

conditions. After seedling emergence, seedlings were potted in groups of six to eight in open 

plastic containers (18 × 13.5 × 6.5 cm) in a climate chamber (20 ± 1 °C, 65 % relative humidity 

and 16 h L: 8 h D photoperiod). Pea aphids (Acyrthosiphon pisum) were obtained from a 

laboratory colony of the Julius Kühn-Institut (Braunschweig, Germany), which were maintained 

in the laboratory for more than ten years. To test for prey naïveté, we chose an unexperienced 

laboratory aphid population. Here, the aphid laboratory colony was established, when spread 

and establishment of H. axyridis started in Central Europe (see above, Brown et al. 2008). 

Consequently, this aphid colony has not experienced high H. axyridis densities in the field. 

Aphids were maintained on single (2-3 weeks old) broad bean plants (see above), which were 

transplanted from plastic containers to plastic cups (11.5 × 12.5 cm) and subsequently  



 

81 
 

covered with gauze for aeration in a climate chamber (20 ± 1 °C, 65 % relative humidity and 

16 h L: 8 h D photoperiod). Aphids were transferred weekly to new plants to guarantee fresh 

food supply. Lady beetles were collected in agricultural and semi-natural habitats from March 

to August 2017 in Germany, Switzerland and France. Based on observations in field and 

laboratory (mating activity), the majority of beetles used for the experiments were sexually 

mature. Individuals of all species, used for the experiments were short-term stored (less than 

30 days) under low temperatures (8 ± 1 °C) in plastic collecting tubes (5.3 × 10.0 cm and 3.6 

× 8.3 cm) with a water containing microtube for moisture supply, until sufficient numbers of 

individuals were collected for the respective experiments. Here, cold storage is not expected 

to have adverse effects on lady beetle behavior in the experiments, due to the short storage 

period and appropriate storage conditions (Watanabe 2002, Labrie et al. 2008, Ruan et al. 

2012). In addition, lady beetles had an acclimatization time of at least 48 hours prior to start of 

the experiments. Due to an insufficient number of wild A. bipunctata individuals found (N = 10), 

larvae and adults were purchased (Sautter & Stepper GmbH and BioInsecte). At least 48 hours 

prior to the experiments, lady beetle adults were placed into Petri dishes (9.4 × 1.6 cm) and 

fed ad libitum with pea aphids on single Vicia faba leaves. Lady beetles were maintained under 

constant conditions (20 °C, 65 % relative humidity and 16 h L: 8 h D photoperiod). Plants, lady 

beetles and aphids were randomly selected for the experiments. All experiments were 

conducted in microcosms under daylight conditions (natural and supportively artificial lighting) 

at 24.2 ± 0.8 °C in the laboratory from May-September 2017. 

 

Experimental setup and procedure 

Predation and dropping experiments 

Lady beetles were starved for 24 hours and singly kept in Petri dishes (3.5 × 1.0 cm). Prior to 

the experiments, body width (widest horizontal distance between the two closed elytra) of each 

beetle used for the experiment, was measured under the microscope. Body width is easy to 

measure on living beetles and used as a proxy for body size (Eberhard 1982). Species-specific 

body sizes were obtained, to account for size-related metabolic constraints of food 

consumption (Brose et al. 2008).                  

Single 2-3-week-old broad bean plants were trimmed to two leaves for standardization and 

potted into a glass vial (2.2 × 4.5 cm). Fluon® (Polytetrafluoroethylene dispersion) was applied 

on the stem and the vial, to prevent dropped aphids from climbing back on the plant. Petri 

dishes (9.4 × 1.6 cm) were treated with Fluon® on the inner walls and subsequently used as 

ground cover for the experiments. Thirty 2nd-3rd instar aphids were placed on each plant with 

a brush. Adult aphids were not used in the experiment, due to the possibility of offspring 
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production, increasing the total amount of aphids in our experiments. After an acclimation time 

of 30 minutes for aphids to settle on the plant, a single lady beetle adult was added at the top 

of the plant. To prevent lady beetles from escaping, a plastic cup was placed over each plant 

and petri-dish. Predation was assessed after 0.25, 0.5, 1, 2, 3, 4, 5 and 6 hours, quantifying 

the remaining number of aphids in each microcosm. Twenty- twenty-three replicates were 

conducted for each lady beetle species in the predation experiments, divided into ten 

experimental blocks. Initial dropping was assessed 15 minutes after placing lady beetles on 

the plants, counting aphids on the ground of each Petri dish. We assessed aphid dropping only 

at the beginning of the experiment, since dropped and consumed aphids could not be 

subsequently distinguished. We excluded microcosms from the initial dropping analysis, when 

beetles were observed to be on the cup or ground after 15 minutes, since aphid consumption 

by beetles on the ground could have reduced the number of aphids dropped. Thus, the number 

of replicates differed between the predation and dropping experiments (Predation experiment: 

H. axyridis N = 21, C. septempunctata N = 20, A. bipunctata N = 20, P. quatuordecimpunctata 

N = 23, and H. variegata N = 21; Dropping experiment: H. axyridis N = 16, C. septempunctata 

N = 11, A. bipunctata N = 17, P. quatuordecimpunctata N = 15, and H. variegata N = 10).  

 

Cue avoidance experiments 

Single standardized broad bean plants (see above) were placed into a petri dish, the plant 

roots were subsequently covered with soil and the ground was than leveled and compacted. 

Three lady beetles of the same species were placed on single treatment plants. During 24 

hours, lady beetles were allowed to walk on the broad bean plants to deposit their chemical 

cues (e.g. cuticular hydrocarbons). Control and treatment plants were subsequently covered 

with perforated plastic cups (9.5 × 10.5 cm).        

After 24 hours lady beetles were removed from the treatment plants. A single treatment and a 

control plant were positioned opposite each other in a terrarium (23.0 × 15.3 × 16.5 cm) and 

the remaining bare ground around the petri-dishes was covered with soil (see Bucher et al. 

2015b). Prior to the start of the experiments 30 aphids (adult and fourth instars) were placed 

with a brush into a small Petri dish (3.5 x 1.0 cm). Aphids were subsequently released in the 

center of the terrarium on neutral ground. Terraria were covered with perforated cling film to 

prevent aphids from leaving. The number of aphids on treatment and control plant were 

quantified after 0.5, 1, 1.5, 2, 3, 4 and 6 hours. The position of treatments in terraria and cups 

were randomized prior to the experiments, to account for potential position-related confounding 

factors. Twenty replicates per lady beetle species were conducted, divided into ten 

experimental blocks. 
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Statistical analysis 

To test the effect of lady beetle species on aphid predation over time, we used a Generalized 

Linear Mixed Model (GLMM, lme4 package, Bates et al.  2015) with a poisson error distribution. 

The fixed effects included species and time and the random effects experimental unit (i.e. 

repeated measurements) and Observation-Level Random Effect (OLRE), accounting for 

overdispersion, were added to the model. We obtained statistical parameters for the fixed 

effects via ANOVA (χ2 test) from the R package ‘car’ (Fox and Weisberg 2019). To test for 

differences between aphid predation of lady beetle species we used a Tukey’s contrast test 

for comparison of means with a Bonferroni correction to account for familywise error rates, by 

using the glht function from the multcomp package (Hothorn, Bretz & Westfall 2008).  

Differences of predation rate after six hours (last time point) and body width were respectively 

analyzed with a Games-Howell post-hoc test, following a Welch’s ANOVA (F test) accounting 

for variance inhomogeneity. 

To test the effect of beetle body width on predation after six hours (last time point), we used a 

Generalized Linear Model (GLM) with a quasi-poisson distribution (accounting for 

overdispersion). Body width and species were included as fixed effects in the model. Statistical 

parameters for the fixed effects were obtained via ANOVA (χ2 test).  

In the dropping experiment we tested the effect of lady beetle species on aphids dropped, 

using a GLM with a quasi-binomial error distribution (accounting for overdispersion). Aphid 

counts entered the model as proportions (aphids on plant vs. dropped) and species was 

included as fixed effect. We obtained statistical parameters for the effect of species via ANOVA 

(χ2 test). Multiple comparisons of means were achieved by using Tukey’s contrasts method, 

with a Bonferroni correction.  

In the cue avoidance experiment, aphid counts were analyzed as proportions (aphids on 

control plant vs. treatment plant). We only considered aphids that made a distinct choice of the 

control or the treatment plant. Therefore, aphids on the ground and terrarium wall were 

excluded from the analysis. We used a GLMM with a binomial distribution to see the effects of 

species and time on aphid plant choice. We included species and time as fixed effects and 

experimental unit and OLRE (accounting for overdispersion) entered the model as random 

effects. We obtained statistical parameters for the fixed effects via ANOVA (χ2 test). We 

subsequently tested for equality of proportions of aphids on control vs. treatment plants, by 

applying a GLMM with binomial error distribution. Our fixed effects included species and as 

random effects we added experimental unit (i.e. repeated measurements) and OLRE 

(accounting for overdispersion) to the model. 

Statistical analyses were performed with the statistical software R, Version 3.4.0  

(R Development Core Team, 2017). 
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Results  

Predation and dropping experiment 

Species significantly affected predation rate over time (GLMM, χ2 = 23.33, df = 4, P < 0.01).  

The number of aphids consumed differed between ladybeetle species; H. axyridis and 

C. septempunctata consumed higher numbers of A. pisum than H. variegata and 

P. quatuordecimpunctata over a six-hour feeding period (Tukey’s contrast test P < 0.02, 

respectively; Fig. 1). Predation rates of A. bipunctata did not differ significantly from H. axyridis 

and C. septempunctata (Tukey’s contrast test P = 0.17 and 0.10, respectively; Fig. 1). No 

differences in predation rates were observed between C. septempunctata and  

H. axyridis (Tukey’s contrast test P = 1.0; Fig. 1) as well as between H. variegata, A. bipunctata 

and P. quatuordecimpunctata (Tukey’s contrast test P > 0.8, respectively; Fig. 1).  

 

 

Figure 1. Number of aphids consumed (mean ± SE) by the invasive Harmonia axyridis and 

native lady beetle species (Coccinella septempunctata, Adalia bipunctata, Propylea 

quatuordecimpunctata, and Hippodamia variegata) over a six-hour feeding period. 
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If only the last time point of six hours was analyzed, predation rates differed between species 

(Welch’s Anova, F4,47.85 = 12.41, P < 0.01). C. septempunctata and H. axyridis respectively 

consumed more aphids than A. bipunctata, H. variegata or P. quatuordecimpunctata after 

6 hours (Games-Howell test, P < 0.02, respectively; Fig. 2). Predation rates between 

C. septempunctata and H. axyridis did not differ (Games-Howell test, P > 0.99; Fig. 2). No 

differences could be observed between H. variegata, A. bipunctata and 

P. quatuordecimpunctata (Games-Howell test, P > 0.50, respectively; Fig. 2).    

Body size of species differed (Welch’s Anova, F4,48.63 = 374.67, P < 0.01). H. axyridis and 

C. septempunctata were the largest species used in our experiments (Games-Howell test,  

P = 0.53; Fig. 2), compared to the smaller A. bipunctata, P. quatuordecimpunctata and  

H. variegata (Games-Howell test, P < 0.01, respectively; Fig. 2). A. bipunctata was larger than 

P. quatuordecimpunctata and H. variegata (Games-Howell test, P < 0.02 respectively; Fig. 2). 

The predation rate of beetles can be explained by differences in beetle body size (GLM,  

χ2 = 5.68, df = 1, P < 0.02) at the last time point of six hours. If body size was included in the 

model, aphid predation rates were no longer explained by lady beetle species identity (GLM, 

χ2 = 4.76, df = 4, P = 0.31). 

 

Figure 2. Number of aphids consumed (mean ± SE) by the invasive Harmonia axyridis and 

native lady beetle species (Coccinella septempunctata, Adalia bipunctata, Propylea 

quatuordecimpunctata, and Hippodamia variegata) after six hours (a). Body width (mean ± SE) 

in mm of lady beetle species used for the predation and dropping experiments (b). Different 

lower-case letters indicate statistical differences based on a Games-Howell post-hoc test 

(P < 0.05). 
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Initial dropping rate of A. pisum varied among ladybeetle species (GLM, χ2 = 16.16, df = 4,  

P < 0.01). Significantly lower numbers of aphids dropped after encounters with P. 

quatuordecimpunctata compared to C. septempunctata (Tukey’s contrast test P < 0.01; 

Fig. 3). Moreover, marginally lower numbers of aphids dropped after encounters with  

A. bipunctata compared to C. septempunctata (Tukey’s contrast test P < 0.07; Fig. 3). We 

observed no further significant differences in aphid dropping rate between the different lady 

beetle species (P > 0.2, respectively; Fig. 3).  

 

Figure 3. Number of aphids dropped (mean ± SE) in the presence of a single lady beetle after 

15 minutes. Differences in dropping rate of lady beetle species were analyzed by Tukey’s 

contrast test for comparison of means (P < 0.05, same letters do not differ significantly).  
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Cue avoidance experiment  

Aphid plant choice was marginally affected by lady beetle species (GLMM, χ2 = 8.18, df = 4,  

P = 0.09) and the effect of time was not significant (GLMM, χ2 = 0.65, df = 1, P = 0.42). The 

test for equality of proportions on control plant vs. treatment plant showed, that aphids avoided 

plants previously occupied by C. septempunctata (z95 = 2.00, P < 0.05) (Fig. 4) and showed 

preference towards the control plant. We observed no avoidance behavior towards cues of 

H.axyridis (z95 = -0.24, P = 0.81), A. bipunctata (z95 = -0.99, P = 0.32), P. quatuordecimpunctata 

(z95 = 1.08, P = 0.28) and H. variegata (z95 = -1.43, P = 0.15) (Fig. 4). 

 

Figure 4. Proportion of aphids on control plant (mean ± SE) compared to treatment plant with 

cues of different lady beetle species. GLMM results indicate avoidance against C. 

septempunctata cues (z95 = 2.0, P < 0.05) but not against cues of H. axyridis (z95 = -0.24,  

P = 0.81), A. bipunctata (z95 = -0.99, P = 0.32), P. quatuordecimpunctata (z95 = 1.08, P = 0.28) 

and H. variegata (z95 = -1.43, P = 0.15).  
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Discussion 

Aphid predation rates of H. axyridis and. C. septempunctata did not differ significantly. 

A. bipunctata, H. variegata and P. quatuordecimpunctata respectively consumed significantly 

fewer aphids than H. axyridis or C. septempunctata after six hours. There were no significant 

differences in predation rates between H. variegata, P. quatuordecimpunctata and A. 

bipunctata. Here, differences in predation rates can be better explained by beetle body  

size than by species identity. C. septempunctata caused significantly higher dropping rates 

than P. quatuordecimpunctata. Unexpectedly, no differences in aphid dropping could be seen 

between H. axyridis and the remaining species. Predator avoidance was only observed in 

treatment plants bearing C. septempunctata cues, compared to the untreated control plant. A. 

pisum did not avoid cues of H. axyridis and the remaining native species.     

Differences in predation among the lady beetles used in our experiments can be explained by 

beetle body size, being comparable in C. septempunctata and H. axyrids, but lower in the 

remaining native species. No significant differences in predation rates over the whole 

observation period between A. bipunctata and H. axyridis or C. septempunctata can be 

explained by smaller interspecific predation differences at the earlier time points, which 

increased with time (see Fig. 1). Moreover, intraspecific body size differences (i.e. a few 

considerably larger individuals) between larger wild individuals and smaller laboratory 

individuals resulted in higher intraspecific variation of A. bipunctata predation rates compared 

to the other lady beetle species tested. The consumption increases with body size, due to 

developmental requirements (Hodek 1973). Thus, rather than advantages in predation due to 

a lack of co-evolutionary history, beetle size considerably influences aphid predation. Our 

results are in line with previous body size related quantitative predation studies of lady beetle 

species (Finlayson et al. 2010; Mishra et al. 2011). Beetle size and predator efficiency of non-

native lady beetle species on shared food resources (Obrycki et al. 1998; Majerus et al. 2006; 

Roy et al. 2012; Hoki et al. 2014) can be factors contributing to the decline of native lady beetle 

species.                  

In the predation experiments, aphids were confronted with physically present predators and 

therefore immediate predation risk, inducing aphid dropping. Dropping behavior is an 

antipredator response to escape larger predators, like aphidophagous lady beetles, which 

pose a high predation risk (Evans 1976; Losey and Denno 1998). Contrary to our expectations, 

aphid dropping rates induced by the presence of the invasive H. axyridis are comparable to 

those of native lady beetle species. Previous studies on coccinellid induced aphid dropping, 

observed an increase in dropping behavior with increasing body size of the predators (Hoki et 

al. 2014; Francke et al. 2008; Evans 1976; Losey and Denno 1998). Increasing size ratios 

between predator and prey can lead to the evolution of stronger antipredator response (Evans 

1976; Binz et al. 2014). H. axyridis and C. septempunctata are relatively large, however smaller 
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native species elicited similar dropping rates in pea aphids, indicating that further cues or 

species traits could induce aphid dropping. Here, a relatively large, moving object can be 

considered as a general predator cue (Dill 1974; Sih 1986; Sih et al. 2010), initiating aphid 

dropping. In addition, higher activity of a predator can result in higher dropping rates of A. 

pisum, due to increased vibration or more potential aphid encounters (Francke et al. 2008). 

Furthermore, aphids attacked by a predator, can release an alarm pheromone (Bowers et al. 

1972; Kislow and Edwards 1972; Nault et al. 1973), which can lead to dropping behavior of 

surrounding aphids (Roitberg and Myers 1978; Dill et al. 1990). In summary, we suggest that 

cues eliciting dropping behavior in pea aphids are general predator cues, which H. axyridis 

and native species have in common.         

While dropping is a response to immediate predation risk, avoidance behavior towards 

chemical cues left by predators are a proxy for future predation risk. Aphids can leave the 

current host plant and move to neighboring host plants, due to e.g. predator disturbance 

(Roitberg et al. 1979) or water stress (Honěk et al. 1998). Since younger instars are limited in 

movement capacities, adults and older instars preferably walk away and look for neighboring 

host plants (Roitberg et al. 1979, Honěk et al. 1998). Consequently, adult and forth instar 

aphids, used in the cue avoidance experiments were able to choose between plants and were 

not impaired in movement activity, due to the developmental stage. We expected that aphids 

are more likely to respond to chemical cues of coevolved native predators and show a lack of 

recognition towards the chemical cues of the invasive predator. Aphids showed no avoidance 

to H. axyridis and three native lady beetle species (A. bipunctata, H. variegata and  

P. quatuordecimpunctata), but against C. septempunctata cues. This finding is consistent with 

the results of Ninkovic et al. (2013), who showed that C. septempunctata cues repelled cherry 

oat aphids Rhopalosiphum padi Linnaeus (Hemiptera: Aphididae) from barley plants Hordeum 

vulgare Linnaeus (Poales: Poaceae). Thus, aphids can detect chemical traces of coccinellid 

predators and subsequently avoid feeding sites (Ninkovic et al. 2013). Predation risk can 

further induce the production of winged aphid offspring, accounting for the survival of the next 

generation on new plants (Dixon and Agarwala 1999). Chemical cues of lady beetles consist 

of numerous chemical compounds (Hemptinne et al. 1998, Hemptinne and Dixon 2000). 

Although the composition of chemical cues are species specific, certain compounds can 

appear across species (Magro et al. 2010). Native and non-native lady beetle species, bearing 

similar cues, could induce comparable prey avoidance. Thus, cue similarity between species 

should be considered, when testing for cue recognition. Magro et al. (2010) found that chemical 

cue composition of invasive H. axyridis larvae differed significantly from those of native A. 

bipunctata and C. septempunctata cues, whereas cue compositions of the two native species 

showed higher similarities. Since avoidance was only observed in treatment plants bearing C. 

septempunctata cues, our results indicate that species specific cues are involved (Sih et al. 
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2010). However, the chemical compounds in adult C. septempunctata cues that induce aphid 

avoidance are not identified and it remains unknown, if they are part of the chemical profile of 

the other lady beetle species. Contrary to our hypothesis, A. pisum did not avoid cues of the 

smaller native species. We suggest that larger predators exert stronger selection pressure on 

prey (see Binz et al. 2014). Antipredator responses are associated with costs and therefore 

depend on the degree of risk perceived by the prey (Kats and Dill 1998; Carthey and Banks 

2014). According to our results, C. septempunctata is the most voracious predator among the 

tested native species, possibly inducing cue avoidance as an evolutionary response of A. 

pisum to avoid severe future predation risk. Our results further indicate that, cues of the equally 

voracious H. axyridis did not repell A. pisum, suggesting that A. pisum could not evolve 

adequate predator recognition, due to a shorter co-evolutionary time with H. axyridis. 

 

Conclusion 

We suggest, that H. axyridis has a competition advantage when preying on pea aphids 

compared to smaller native species, due to predator size rather than due to missing predator 

recognition. Immediate risk by the presence of a predator elicits dropping behavior in A. pisum, 

regardless of the origin of the lady beetle species. However, A. pisum responds only to 

chemical cues of the native C. septempunctata. A higher selection pressure of larger predators 

on A. pisum, might explain the missing cue avoidance towards the three smaller native species, 

whereas predator-naïveté might be the cause for missing chemical cue recognition of the large, 

invasive H. axyridis. Although H. axyridis and C. septempunctata consumed similar numbers 

of aphids in our laboratory experiment, lower aphid predation rate of C. septempunctata might 

be expected under natural conditions, due to stronger cue avoidance of A. pisum. Our results 

indicate that size differences with native predators as well as missing cue avoidance can 

contribute to the invasion potential of non-native species.  
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Abstract 

The predator-predator naïveté hypothesis suggests that non-native predators benefit from 

being unknown to native predators, resulting in reduced intraguild interference with native 

predators. This novelty advantage should depend on the ability of native predators to recognize 

cues of non-native predators. Here, we compared ant aggression and ladybeetle reaction in 

four native and the invasive ladybeetle species Harmonia axyridis. In addition, we tested 

whether ladybeetle cuticular hydrocarbons (CHCs) are involved in species recognition, which 

might explain naïveté if the invasive species has a specific CHC profile. To this end, we 

conducted behavioral assays confronting two native ant species with both living ladybeetles 

and ladybeetle elytra bearing or lacking CHCs of different ladybeetle species. Finally, we 

characterized CHC profiles of the ladybeetles using GC-MS. In general, aggression of Lasius 

niger was stronger than that of Myrmica rubra. Both, L. niger aggression and ladybeetle 

reaction were stronger in Coccinella septempunctata compared to the invasive H. axyridis. The 

removal of CHCs from ladybeetle elytra reduced aggression of both ant species. If CHCs of 

respective ladybeetle species were added on cue-free elytra, natural strength of L. niger 

aggression could be restored. CHC analyses revealed a distinct cue composition for each 

ladybeetle species. Our experiments demonstrate that the presence of chemical cues on the 

surface of ladybeetles contribute to the strength of ant aggression against ladybeetles. 

Reduced aggression of L. niger towards H. axyridis compared to the equally voracious  

C. septempunctata might improve the invasive ladybeetle’s access to ant-tended aphids. 

 

Keywords: biological invasion, species interaction, ant aggression, cuticular hydrocarbons, 

Coccinellidae, Formicidae  
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Introduction 

Non-native species invading areas beyond their native ranges are often a major threat to 

biodiversity (Lodge 1993; Mack et al. 2000; Bax et al. 2003) and their numbers are likely to 

increase due to worldwide traveling and transportation of goods (Lodge 1993; Hulme et al. 

2008). Detrimental effects of invasive species on native species are well documented in the 

scientific literature, but we often lack a mechanistic understanding of the invasion success 

(Hayes and Barry 2008; Blackburn et al. 2011). A number of ecological and evolutionary 

hypotheses have been proposed aiming to explain the invasion success of non-native species 

(see Hufbauer and Torchin 2007), many of which focus on the role of biotic interactions. The 

‘enemy release hypothesis’, for example, proposes that non-native species can benefit from 

missing predators (Keane and Crawley 2002; Colautti et al. 2004). Nevertheless, even if 

predators are present, the lack of shared evolutionary history between native prey and a non-

native predator can facilitate the establishment of non-native predators because of lacking 

predator recognition, also known as ‘predator-prey naïveté hypothesis’ (Cox and Lima 2006; 

Carthey and Banks 2014). 

Predation risk is one of the great driving forces of prey populations (Lima and Dill 1990) and 

invasive predators, in particular, are causing rapid extinctions or declines in many native prey 

species (Mooney and Cleland 2001; Carthey and Banks 2014). Besides predator-prey 

systems, predator-predator interactions can contribute to invasion success as well (Finlayson 

et al. 2009). Killing of other predators (i.e. intraguild predation) or interference with other 

predators (i.e. intraguild interference) is common in food webs and can hamper top-down 

control of predators (Polis et al. 1989; Arim and Marquet, 2004). Studies on the invasion 

success of non-native predators should thus consider intraguild interactions (Vance-Chalcraft 

and Soluk 2005). So far, the empirical evaluation of hypotheses aimed to explain invasion 

success is biased towards plants, vertebrates and aquatic organisms while terrestrial insects 

received relatively less attention (Parker et al. 1999; Bax et al. 2003) despite the fact that they 

represent a large part of the alien fauna (Kenis et al. 2009). 

In insects, chemical cues play an important role for intra- and interspecific communication 

(Howard and Blomquist 2005; Monnin 2006). Chemical recognition is best known in social 

insects, where cuticular hydrocarbons (CHCs) serve as intraspecific recognition cues (Greene 

and Gordon 2003; Howard and Blomquist 2005), but also as cues to recognize mutualists 

(Lang and Menzel 2011; Menzel and Schmitt 2012) or to avoid competitors or predators 

(Geiselhardt et al. 2011; Mestre et al. 2014; Wüst and Menzel 2017). The composition of 

substances and compounds of CHC profiles varies between species (Geiselhardt et al. 2011; 

Menzel et al. 2017). If species use such specific chemical cues for species recognition, they 

either need to learn or adapt to chemical cues of their interaction partners (Sih et al. 2010). 
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However, if species recognition is based on general cues (i.e. chemical substances present in 

many different species) they should be able to recognize non-native predators despite missing 

co-evolutionary history (Sih et al. 2010). Consequently, the similarity of chemical cues between 

native and non-native species as well as the species’ ability to discriminate between different 

cue profiles is expected to influence interactions between native and non-native species and 

can thus contribute to the invasion success of non-native species (Sih et al. 2010). 

Ladybeetles have been intentionally redistributed across continents as pest control agents 

against aphids. In 1982, the multicolored Asian ladybeetle, Harmonia axyridis, was introduced 

to Europe for the biological control of aphids in greenhouses and sold by biological control 

companies since 1995 (Brown et al. 2007). In 2002, first feral populations were sighted in the 

Netherlands, Belgium and Germany (Babendreier 2007). Since then, H. axyridis has spread 

over Central Europe and is now a dominant member of the ladybeetle community in many 

European countries. H. axyridis displaces native ladybeetles in Europe but also in North 

America (Elliott et al. 1996; Koch 2003; Evans 2004; Brown et al. 2011; Roy et al. 2012). The 

rapid decline in the abundance of native ladybeetle species in the last 30 years has become 

an increasing cause for concern (Alyokhin and Sewell 2004; Harmon et al. 2006). 

So far, research on ecological effects of invasive ladybeetles on native communities has 

concentrated on intraguild predation among ladybeetles, on prey depletion, on body size and 

fecundity, on phenology as well as on habitat displacement (reviewed in Roy and Wajnberg 

2008). More recently, the role of chemical protection (Kajita et al. 2010; Kajita et al. 2014) and 

endoparasites (Vilcinskas et al. 2013) of invasive ladybeetles for the invasion success has also 

been studied. In addition, differences in ant aggression towards native and non-native 

ladybeetles could contribute to the invasion success of non-native ladybeetles as well 

(Finlayson et al. 2009). Ants are known as predators, ecosystem engineers and for their 

important role in communities as hemipteran mutualists (Flatt and Weisser 2000; Stadler and 

Dixon 2005). Some ant species show aphid tending behavior: They feed on honeydew and 

defend aphids against various predators (Way 1963; Völkl et al. 1999; Stadler and Dixon 2005). 

Relying on aphids as food source, ladybeetles are competitors of ants and are thus particularly 

prone to ant aggression. Reduced intraguild interference with ants is expected to contribute to 

the invasion success of non-native ladybeetles because of enhanced food access. So far, we 

lack understanding to which extent ant aggression contributes to the invasion success of H. 

axyridis in Europe (Pell et al. 2008).  

Here, we compared the strength of ant aggression towards ladybeetles and ladybeetle reaction 

upon contact with ants between native and non-native ladybeetles in Europe. In our laboratory 

experiments, we confronted individuals of four native ladybeetle species (Coccinella 

septempunctata, Hippodamia variegata, Adalia bipunctata, and Propylea 

quatuordecimpunctata) and the invasive ladybeetle species H. axyridis with individuals of two 
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co-occurring native ant species (Lasius niger and Myrmica rubra). In an additional experiment, 

we confronted ants with chemically manipulated ladybeetle elytra. The elytra were either 

untreated, washed and thus expected to be free of chemical cues, or treated with chemical 

cues of the different ladybeetle species. This dummy experiment allowed us to evaluate the 

role of chemical cues for the strength of ant aggression. Finally, we analyzed the chemical 

composition of CHCs using Gas Chromatography-Mass Spectrometry (GC-MS) to compare 

the similarity of chemical cues among the ladybeetle species used in our behavioral assays. 

We expected (1) stronger ant aggression towards native ladybeetles compared to invasive 

ladybeetles; (2) stronger reaction of native ladybeetles compared to invasive ladybeetles if 

confronted with native ants. In our dummy experiment, we expected (3) weaker ant aggression 

towards cue-free elytra compared to untreated elytra and (4) comparable ant aggression 

between initially cue-free elytra with added ladybeetle cues and untreated elytra. Regarding 

the chemical composition of ladybeetle cues, we expected (5) a species-specific CHC profile 

for each ladybeetle species included in our experiments. 

 

Methods 

Study species 

Adult individuals of the five ladybeetle species were collected from field margins in the 

agricultural landscape of Central Europe (Germany, France and Switzerland) from March till 

September 2017. Additional individuals of A. bipunctata were purchased (Bioinsecte, Adavalue 

SPRL, Othée, Belgium) as we could not find enough individuals in the wild. Small groups of 

ladybeetles separated by species were kept in Petri dishes (ø 9 cm) with moistened cotton and 

stored in a climate cabinet (MLR-352H, Panasonic Corporation, Kadoma, Osaka, Japan; at 

20°C, 65 % RH, 16/8 h day night rhythm). The ladybeetles were fed ad libitum with pea aphids 

Acyrthosiphon pisum. An initial population of aphids was provided by the Julius-Kühn-Institut 

(Braunschweig, Germany). Aphids were reared on bean plants Vicia faba (variety Sutton 

Dwarf; Kings Seeds, Essex, UK). Plants had to be renewed twice a week. Both, aphids and 

plants were kept in climate cabinets (20°C, 65 % RH, 16/8 h day night rhythm). 

Ant colonies of Lasius niger and Myrmica rubra were excavated in meadows and at forest 

edges in the vicinity of Marburg, Germany. All ladybeetle species co-occurred at the sites 

where ants were collected. With H. axyridis being the most abundant ladybeetle species during 

the study period and H. variegata and A. bipuncata being relatively rare at these sites. We 

always kept two active ant colonies per species with brood during the whole study period. The 

ant colonies were replaced by fresh colonies in case only a few active workers and/or no brood 

was present anymore. In total we ended up with 8 ant colonies for both experiments. Each 

colony was kept in a terrarium (20 cm x 20 cm x 30 cm) in the laboratory. The upper edge of 
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the terraria was covered with Fluon® (Polytetrafluoroethylene dispersion) to prevent the ants 

from escaping. Water was provided in tubes clogged with cotton and the soil was moistened 

with a spray bottle twice a week. Ants were fed twice a week with honey and with dead house 

crickets Acheta domesticus. 

 

Aggression experiments with living ladybeetles 

The behavioral assays were performed in Petri dishes (ø 9 cm) with Fluon®-covered walls to 

prevent the ants from escaping. Each Petri dish was only used once in order to prevent 

contamination with ant or ladybeetle cues. For each trial, three ant workers were caught out of 

one colony and placed in the Petri dish. After an acclimatization time of 15 min, one adult 

ladybeetle of the respective species was placed in the center of the Petri dish. During three 

minutes following elements of ant aggression were quantified: prolonged antennation, opening 

mandibles, chasing, grasping, biting, and stinging (see Finlayson et al. 2009). Thereof, 

antennation and opening mandibles were considered as weak aggression (i.e. no contact with 

ladybeetle and no ladybeetle reaction) and chasing, grasping, biting and stinging were 

considered as strong aggression. In addition, following elements of ladybeetle reaction were 

quantified: changing movement direction, retracting legs or antennae, preening, turning on 

back, flailing legs, fluttering wings, backing, running away and flying away (see Finlayson et 

al. 2009). Here, changing movement direction, retracting legs or antennae and preening were 

considered as weak reaction (i.e. no energetically costly increase in movement) were as 

turning on back, flailing legs, fluttering wings, backing, running away and flying away were 

considered as strong reaction. If behavioral elements continued for more than three seconds 

they were counted again. All behavioral assays were recorded with a video camera (LUMIX 

DMC-FZ300, Panasonic Corporation, Kadoma, Osaka, Japan) mounted on a tripod. The 

recordings were used for a slow-motion replay if many different behavioral elements occurred 

very quickly. For the aggression experiments with living ladybeetle individuals, we compared 

five ladybeetle species in combination with two ant species with at least 20 replicates per 

combination, resulting in 206 replicates. The order of ladybeetles species identity during the 

experimental period was randomized. 

To compare the strength of ant aggression and ladybeetle reaction between the ant and 

ladybeetle species, we compared the proportion of strong interactions out of the total counts 

of interactions observed (see Roulston et al. 2003; Pamminger et al. 2011). First, we calculated 

a generalized linear model with ant and ladybeetle species identity as well as the interaction 

between both fixed effects. The model followed quasi-binomial error distribution to account for 

overdispersion. Since behavioral interactions differed between ant species, differences in 

interaction strength between the ladybeetle species were analyzed for each ant species 
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separately. In the case of significant overall effects based on a subsequent ꭕ²-test, a Tukey 

post-hoc test was applied to obtain pairwise contrasts between the ladybeetle species with 

adjusted p-values. All statistical analyses were conducted using the statistical software 

environment R version 3.5.2 (R Development Core Team, 2018). 

 

Aggression experiments with manipulated elytra 

We used ladybeetle elytra as dummies to manipulate CHCs. Elytra can easily be removed 

from dead beetles. They contain no secretory glands (Pettersson 2012), and our analyses did 

not detect any other compounds than CHCs in elytra extracts. Ants can grasp and bite easily 

into these strongly sclerotized body parts. A number of 60 adult individuals per ladybeetle 

species plus additional 200 H. axyridis individuals were killed in the freezer at approximately -

10 °C for 12 h. Thereafter, the dead ladybeetles were defrosted and both elytra were broken 

off with a clean tweezer. The resulting 120 elytra per ladybeetle species were divided into 80 

elytra for the cue extraction and 40 elytra remained untreated. To obtain cue-free ladybeetle 

elytra, 400 H. axyridis elytra were repeatedly immersed in clean 20 ml hexane or 

dichloromethane (i.e. to solve apolar and polar organic substances): hexane for ten min, 

dichloromethane for one hour, hexane for one hour, dichloromethane for ten min and again 

hexane for ten min. Between each step, the elytra were dried on clean paper towel for 30 s. 

Half of these cue-free elytra were later used as negative treatments (i.e. cues washed away) 

and the other half as positive treatment (i.e. adding ladybeetle cues of the respective species). 

To obtain the cues of the different ladybeetle species, 80 elytra of each ladybeetle species 

were covered with 4.0 ml hexane for ten minutes. Afterwards, the solutions were transferred 

into smaller vials (4.0 ml, 15 mm x 45 mm) and were stored without cover to allow the hexane 

to evaporate. The CHCs were then resolved in 800 μl hexane. 

In each aggression trial, three ants were confronted with one elytron of either of the following 

treatments: untreated elytron of the respective ladybeetle species, cue-free elytron of H. 

axyridis with pure hexane (negative treatment), or cue-free elytron of H. axyridis with added 

cues of the respective ladybeetle species solved in hexane (positive treatment). Each elytron 

of the negative treatment was treated with pure hexane. To this end, the elytron was held with 

a spring steel tweezer and 10.0 μl hexane was applied on the outer surface with a micropipette. 

After the hexane had dried, the elytron was turned and another 10.0 μl hexane was applied on 

the inner surface. For the positive treatment, the same procedure was applied but with the cue 

solution of the respective ladybeetle species instead of pure hexane. In this dummy 

experiment, we ended up with 200 replicates with untreated elytra (20 replicates per ladybeetle 

and ant species combination), 200 replicates of the negative treatment and 200 replicates of 

the positive treatment (with 20 replicates per cue-donator ladybeetle and ant species 
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combination) resulting in a total of 600 replicates. During the behavioral assays, ant aggression 

was quantified as described above. Proportions of strong ant aggression were analyzed using 

a generalized linear model with quasi-binomial error distribution. Treatment, ant-, and 

ladybeetle species identity as well as their interactions entered the model as fixed effects. 

Differences in ant aggression between the treatments were compared for each ant species 

separately (see experiment with living ladybeetles). In case of significant overall effects based 

on a subsequent ꭕ²-test, a Tukey post-hoc test was applied to obtain pairwise contrasts 

between the treatments. 

 

Chemical analysis 

CHC extracts for chemical analyses were obtained by immersing the two elytra of one freeze-

killed ladybeetle in 1.0 ml hexane for ten minutes. This was done for seven C. septempunctata, 

four A. bipunctata, five P. quatuordecimpunctata, eight H. variegata, and nine H. axyridis 

individuals. All extracts were concentrated under nitrogen flow and injected into a 7890A gas 

chromatograph coupled to a 5975C mass spectrometer (both Agilent Technologies Inc., Santa 

Clara, USA) in the split less mode at 250 °C. Helium was used as carrier gas (1.2 ml/min). The 

stationary phase was a capillary column (Phenomenex Zebron ZB5-HT Inferno, 30 m × 0.25 

μm × 0.25 μm). Oven temperature was 60 °C for two min, then increased to 200 °C by 60 

°C/min, and then increased to 320 °C by 4 °C/min, where it remained constant for ten minutes. 

We used an ionization current of 70 eV and scanned molecular fragments from 40 to 650 m/z. 

Data were acquired using the software MSD Chem Station E.02.02 (Agilent Technologies). 

We analyzed all hydrocarbons with a chain length > C20 and an average abundance of at least 

0.5%; the abundance of all hydrocarbons < C20 totaled less than one percent of the total. 

Substances were identified based on retention time and diagnostic ions. Chemical differences 

between species were tested with a PERMANOVA (999 permutations, command adonis, R-

package vegan, Oksanen et al. 2013) based on Bray-Curtis distances, which contained the 

relative abundances of all hydrocarbons as dependent variable in a multivariate analysis. 
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Results 

Ant aggression towards living ladybeetles 

The strength of ant aggression differed between ladybeetle species (ꭕ²4,196 = 20.61, p < 0.001) 

and aggression of L. niger was stronger than that of M. rubra (ꭕ²1,196 = 206.49, p < 0.001). We 

found no interactive effect of ladybeetle and ant species identity on ant aggression (ꭕ²4,196 = 

2.81, p = 0.59). For L. niger, the strength of aggression differed between ladybeetle species 

(Figure 1a; ꭕ²4,96 = 13.16, p = 0.01). Here, aggression was stronger towards C. septempunctata 

compared to H. axyridis (z = 2.99, p = 0.02) and tended to be stronger towards C. 

septempunctata compared to A. bipunctata (z = 2.69, p = 0.06). For M. rubra, the strength of 

aggression differed between ladybeetle species (Figure 1b; ꭕ²4,100 = 10.88, p = 0.03). Here, 

ant aggression was stronger towards P. quatuordecimpunctata compared to A. bipunctata (z 

= 2.95, p = 0.03). We found no further pairwise differences in the ant aggression among the 

remaining ladybeetle species. 

 

Reaction of ladybeetles to ant encounters 

The strength of ladybeetle reaction upon contact with ants differed between ladybeetle species 

(ꭕ²4,196 = 38.00, p < 0.001) and ladybeetle reaction upon contact with L. niger tended to be 

stronger compared to that after confrontations with M. rubra (ꭕ²1,196 = 3.13, p = 0.08). We found 

no interactive effect of ladybeetle and ant species identity on ladybeetle reaction (ꭕ²4,196 = 4.83, 

p = 0.31). Coccinella septempunctata showed the strongest reaction towards L. niger 

compared to the other ladybeetle species (Figure 1c; effect of species identity: ꭕ²4,96 = 24.85, 

p < 0.001; all pairwise comparisons: z > 3.67, p < 0.01). For encounters with M. rubra, 

ladybeetle reactions also differed between species (Figure 1d; ꭕ²4,100 = 19.31, p < 0.001). Here, 

ladybeetle reaction was stronger in C. septempunctata compared to H. axyridis (z = 2.77, p = 

0.04), A. bipunctata (z = 3.94, p < 0.001), P. quatuordecimpunctata (z = 2.85, p = 0.04). In 

addition, individuals of H. variegata tended to react stronger compared to individuals of A. 

bipunctata (z = 2.68, p = 0.06).  
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Figure 1. Proportion of strong aggression of (a) L. niger and (b) M. rubra towards the studied 

ladybeetle species (Ha: H. axyridis, Hv: H. variegata, A2: A. bipunctata, P14:  

P. quatuordecimpunctata, C7: C. septempunctata) and proportion of strong reaction of the five 

ladybeetle species upon encountering (c) L. niger and (d) M. rubra (mean ± SE). Different 

lowercase letters indicate statistical differences (α < 0.05). Letters in brackets indicate 

statistical trends (α < 0.1). 
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Aggression towards ladybeetle CHCs 

The strength of ant aggression differed between the CHC treatments (Figure 2; ꭕ²2,592 = 47.87, 

p < 0.001) and between the two ant species (ꭕ²1,592 = 22.52, p < 0.001). We also found a 

significant treatment/ant species identity interaction (ꭕ²2,592 = 11.86, p < 0.01). Ant aggression 

did not differ between ladybeetle species or between chemical cues of the different ladybeetle 

species (ꭕ²4,592 = 3.56, p = 0.47) nor did we find a significant treatment/ladybeetle species 

identity (ꭕ²8,592 = 8.71, p = 0.37), ladybeetle species/ant species identity (ꭕ²4,592 = 7.35, p = 

0.12), and three-way interaction (ꭕ²8,592 = 5.10, p = 0.75). For L. niger, the strength of 

aggression differed between the CHC treatments (ꭕ²2,289 = 48.90. p < 0.001) but not among 

ladybeetle species (ꭕ²4,289 = 4.18, p = 0.38). Nor did we find a significant treatment/ladybeetle 

species identity interaction (ꭕ²8,289 = 7.55, p = 0.48). Here, ant aggression was weaker when 

chemical cues were removed compared to untreated elytra (z = 2.75, p = 0.02). The application 

of ladybeetle cues of the respective species on cue-free H. axyridis elytra increased the 

strength of aggression (z = 2.44, p = 0.04) and was similar to the aggression against untreated 

elytra (z = 0.38, p = 0.92). Similar to L. niger, aggression by M. rubra differed between CHC 

treatments (ꭕ²2,285 = 13.84. p < 0.001) but not between ladybeetle species (ꭕ²4,285 = 6.19, p = 

0.19). Nor did we find a significant treatment/ladybeetle species identity interaction (ꭕ²8,285 = 

6.37, p = 0.61). Here, ant aggression was weaker when chemical cues were removed 

compared to untreated elytra (z = 3.22, p <0.01). The application of ladybeetle cues of the 

respective species on cue-free elytra did not restore aggression compared to cue-free H. 

axyridis elytra (z = 0.81, p = 0.69), hence being lower than towards untreated elytra (z = 2.48, 

p = 0.03). 

 

Figure 2. Proportion of strong aggression (mean ± SE) of L. niger (black) and M. rubra (grey) 

towards untreated elytra of the studied ladybeetle species (untreated), cue-free H. axyridis 

elytra (- cues), and initially cue-free H. axyridis elytra bearing the cues of the respective 

ladybeetle species (+ cues). Different lowercase letters indicate statistical differences (α < 

0.05). Letters in brackets indicate statistical trends (α < 0.1). 
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Chemical composition of cues 

The composition of the chemical cues differed between ladybeetle species  

(pseudo-F4,28 = 58.57, p < 0.001) revealing a distinct species-specific chemical profile for each 

ladybeetle species (see Figures 3 and 4; all pairwise-comparisons: pseudo-F ≥ 41.7, p ≤ 0.05). 

Here, cue composition was relatively similar between H. axyridis and H. variegata (multivariate 

distance between species centroids based on Bray-Curtis distances: 0.54). The profiles of both 

species were characterized by a very high proportion of alkenes, followed by alkadienes and 

n-alkanes. In contrast, the profile of P. quatuordecimpunctata was dominated by alkadienes 

(distance to the H. axyridis centroid: 0.73), while the profiles of C. septempunctata and  

A. bipunctata strongly differed from all previous species, having high proportions of 

monomethyl alkanes (as well as di- and trimethyl alkanes in the case of C. septempunctata) 

(distance to the H. axyridis centroid for both species: 0.86).  
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Figure 3. Schematic cuticular hydrocarbon (CHC) profile of the ladybeetle species included in 

the behavioral assays. The bars represent the relative abundances of different substance 

classes at different chain lengths. Note that this representation does not show differences 

between hydrocarbons of the same hydrocarbon class and chain length. 
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Figure 4. Ordination plot (Non-metric MultiDimensional Scaling with Bray-Curtis dissimilarity) 

based on the relative abundance of identified substances. Each symbol represents a 

ladybeetle individual of the respective species. 
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Discussion 

Our behavioral experiments revealed that ant aggression as well as ladybeetle reaction 

differed between ant and ladybeetle species. Across ladybeetle species, the aggression of L. 

niger was stronger than that of M. rubra. In particular, aggression of L. niger against C. 

septempuncata and the reaction of C. septempunctata upon encounters with L. niger were 

stronger compared to interactions with the invasive H. axyridis. Removing chemical cues from 

ladybeetle elytra reduced aggression of both ant species and the addition of ladybeetle cues 

on cue-free elytra increased the aggression of L. niger but not that of M. rubra. In contrast to 

the behavioral experiments with living ladybeetles, the comparison of ant aggression towards 

ladybeetle elytra revealed no differences between ladybeetles species identity and their cues. 

Our chemical analyses showed a distinct species-specific CHC profile for each ladybeetle 

species, which is a prerequisite for predator-predator naïveté. 

 

Ant aggression and ladybeetle reaction 

In terms of effect size, the most evident pattern we observed was the higher aggression of  

L. niger compared to that of M. rubra. L. niger is known to be more aggressive than M. rubra 

and often dominates M. rubra in direct encounters (Binz et al. 2014). In addition, ants of the 

genus Lasius are more strongly involved in trophobiosis with aphids and even overwinter 

aphids in their nests whereas ants of the genus Myrmica regularly prey on other arthropods 

including aphids (Seifert 2007). Consequently, L. niger is expected to be a stronger ladybeetle 

competitor compared to M. rubra.  

Differences in ant aggression between ladybeetle species are contrasting and not as simple 

as we expected. Weaker L. niger aggression (fewer grasping and biting) against H. axyridis 

compared to C. septempunctata is in line with our expectation. This result suggests that  

L. niger lack the ability to recognize non-native H. axyridis as strong competitor and to react 

accordingly. Further experiments with completely ladybeetle-naïve ants would be required to 

test whether the recognition ability is learned or innate. If recognition is learned, H. axyridis 

should elicit strong aggression, since it was by far the most common ladybeetle at the sites of 

ant collection. Furthermore, H. axyridis is an equally voracious aphid predator compared to  

C. septempunctata (Ünlü et al. 2020) and consequently an equally strong competitor. Thus, 

one would expect a selection pressure towards ants being equally aggressive to H. axyridis in 

the long term. Given that many ant workers used in the experiment should have never been in 

contact with any ladybeetle suggest that ladybeetle recognition may be innate. Ant aggression 

did not differ between H. axyridis and the other native lady beetle species A. bipunctata,  

H. variegata and P. quatuordecimpunctata, which are considerably smaller than  

C. septempunctata and hence less relevant ant competitors.  
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Regarding the role of intraguild interactions in the ant-ladybeetle-aphid system, the vast 

majority of studies focuses on intraguild predation between ladybeetles (reviewed by Pell et al. 

2008), whereas information about differences in ant aggression against ladybeetles is scarce. 

To our knowledge, the only multispecies comparison including native and non-native 

ladybeetle species has been conducted by Finlayson et al. (2009). In their study aggression of 

M. rubra workers tending potato aphids Macrosiphum euphorbiae was compared between 

North American, European, and the Asian ladybeetle species H. axyridis. Similar to our results, 

Finlayson et al. (2009) found no differences in the intensity of M. rubra aggression against 

novel H. axyridis and co-evolved C. septempunctata. Lacking ladybeetle species 

discrimination in M. rubra but not in L. niger might again be explained by their involvement in 

trophobiosis with aphids (i.e. more competitive encounters with ladybeetles), which is more 

pronounced in the genus Lasius than in the genus Myrmica (Seifert 2007). 

The reaction of the different ladybeetle species towards ants mirrored to some extent 

differences in the strength of ant aggression among the ladybeetle species, i.e. higher 

aggression strength led to stronger escape behavior. In particular, C. septempuncata showed 

much stronger reaction if confronted with L. niger compared to all other ladybeetle species. 

Although L. niger aggression was strongest against C. septempuncata, over proportionally 

strong reaction suggests that C. septempuncata is able to effectively avoid ant aggression.  

Earlier studies under more natural conditions indicate that C. septempuncata is quite 

successful in avoiding ants (Sloggett et al. 1998) and is better protected with alkaloids 

compared to A. bipuncata (Marples 1993). Regarding interactions with M. rubra, 

P. quatuordecimpunctata received highest aggression (possibly due to a stronger habitat 

overlap) but their reaction was lower compared to those of C. septempunctata. 

P. quatuordecompuncata might thus be particularly prone to ant aggression if they feed on ant-

tended aphids. In summary, our laboratory experiments revealed stronger aggression of L. 

niger compared to M. rubra and provide evidence that L. niger aggression as well as ladybeetle 

reaction is weaker in the invasive H. axyridis compared to the equally voracious native 

ladybeetle C. septempunctata – with potential implications for their invasion success in Europe.  

 

Implications of ant aggression for the invasion success of H. axyridis 

Ants have pervasive effects on terrestrial ecosystems by influencing community structure but 

also by hampering top-down control (Stadler and Dixon 2005; Sanders et al. 2011). For 

example, the presence of North American ants reduced soybean aphid predation by Orius 

insidiosus (Anthocoridae) and H. axyridis and led to a tenfold increase in aphid numbers 

(Herbert and Horn 2008). As a result of ant aggression, ladybeetles only feed on ant-tended 

aphids when untended prey is scarce (Sloggett and Majerus 2000). In the presence of L. niger, 
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the invasive H. axyridis might outcompete native C. septempuncata due to reduced ant 

aggression and ladybeetle reaction. That it is attacked less by ants – possibly due to predator-

predator naiveté – would be an additional competitive advantage for H. axyridis compared to 

its strongest native counterpart. However, experiments under more natural conditions would 

be necessary to infer competitive advantages of invasive ladybeetles due to release form 

intraguild interference by ants. Differences in ant aggression between different ladybeetle 

species could change if ants are actually tending aphids (Way 1963). For example, the 

myrmecophilous Coccinella magnifica received similar ant aggression compared to C. 

septempunctat on trails but only C. magnifica fed upon tended aphids (Sloggett et al. 1998). 

Given the strong context dependency in ant-ladybeetle interactions, we see the need for field 

or semi-field experiments including ants, ladybeetles, and aphids to compare differences in 

aphid predation rates among ladybeetle species in presence and absence of ants. Such 

experiments would ideally include different lifestages of ladybeetles as well as different 

competing ladybeetle species. Nonetheless, the experimental approach presented here is very 

well suited to study behavioral responses to native and non-native ladybeetle species since 

they allow large replicate numbers across multiple species, and enable detailed behavioral 

analyses. Even though these aggression assays are relatively simple and somewhat artificial, 

they have been frequently and successfully used to disentangle chemical and behavioral cues 

underlying aggression in ants (Foitzik et al. 2007; Steiner et al. 2007; Menzel et al. 2009).   

 

The role of chemical cues for intraguild interference 

Ants were aggressive against ladybeetle elytra, albeit less so than against living beetles. 

Removal of chemical cues led to a strong reduction of ant aggression. This indicates that 

chemical cues are highly relevant for intraguild interactions between ladybeetles and ants. This 

is not surprising, given that for ants, cuticular chemical cues, such as cuticular hydrocarbons, 

are the basis for the recognition of nestmates (Howard and Blomquist 2005) and mutualistic 

interaction partners (Lang and Menzel 2011; Menzel and Schmitt 2012). The addition of 

ladybeetle cues on initially cue-free elytra led to similar L. niger aggression compared to the 

untreated elytra demonstrating that chemical cues elicit aggression of L. niger. Surprisingly, 

the addition of ladybeetle cues did not increase the strength of aggression by M. rubra. The 

aggression of M. rubra was generally lower than that of L. niger, which might be due to 

differences in their food preference (see discussion above). The chemical treatment might 

further weaken behavioral responses because the cues are not presented in the entirely 

natural form, and hence trigger weaker or no responses. At least for L. niger, aggression could 

be restored by re-application of CHC extracts reconfirming their role for species recognition. 

However, in contrast to the live beetles, ant aggression did not differ between different beetle 
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extracts. Hence, the CHCs alone might not fully explain differences in ant aggression, 

suggesting that behavioral responses by the ladybeetles further modulate ant aggression. 

Similarly, Finlayson et al. (2009) observed that ant aggression was higher if some ladybeetle 

species had more exposed body parts on which ants could grasp. Moreover, generally weak 

ant aggression against elytra might mitigate differences in aggression between ladybeetle 

species that occur under natural conditions (i.e. against living ladybeetles). 

Our chemical analyses of the ladybeetle cues revealed a unique CHC profile for each 

ladybeetle species. All species were significantly different from each other, with only few 

shared substances among all ladybeetle species. The shared substances (e.g. n-C22, n-C23, 

n-C25, and n-C27) are commonly found in many insect species and, due to their high melting 

point, have been related to waterproofing rather than to recognition (Menzel et al. 2019). 

Notably, the species showed a remarkable chemical diversity even concerning the dominant 

substance classes: While C. septempunctata and A. bipunctata profiles were dominated by 

monomethyl alkanes, H. axyridis and H. variegata mostly possessed alkenes, and 

P. quatuordecimpunctata mostly contained alkadienes. All of these compounds have vastly 

different physical properties (Menzel et al. 2019). The adaptive value of these differences still 

remains to be found. Interestingly, the main compound in our H. axyridis samples, a C25-

alkene, was not reported in conspecific samples from Japan (Magro et al. 2010), which might 

be due to between-population differences in this species. Usually, CHC profiles are 

qualitatively quite invariant within a species (Kather and Martin 2012, Sprenger and Menzel 

2020), which is why they are highly useful for chemotaxonomy, i.e. to distinguish closely related 

or cryptic species. The species-specific chemical profiles also mean that there is no general 

chemical ladybeetle cue (i.e. substances present on all aphidophagous ladybeetles). Rather, 

ants have to recognize each species individually, be it by learning or by evolutionary 

adaptation. From an evolutionary viewpoint, this can be expected if different predators require 

different antipredator behaviors (Binz et al. 2014; Sadowski and Grosholz 2019). Cue 

dissimilarity between native and non-native predators as well as species-specific recognition 

cues are a prerequisite for predator-predator naïveté against invasive predators (Sih et al. 

2010). However, a larger species set would be required to formally link chemical cue similarity 

with aggression strength. 
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Conclusions 

Our behavioral experiments revealed differences in ant aggression and ladybeetle reaction 

between ant and ladybeetle species. In particular, L. niger showed stronger aggression 

towards ladybeetles compared to M. rubra, and aggression of L. niger was stronger towards 

the native C. septempuncatata compared to the invasive H. axyridis. The strength of this 

intraguild interference is influenced by the presence of chemical cues on the surface of 

ladybeetles. The analysis of the chemical ladybeetle cues further revealed species-specific 

CHC profiles for each ladybeetle species, refuting the existence of a general chemical 

ladybeetle cue, and making it necessary for ants to recognize ladybeetle species individually. 

Our aggression assays with L. niger thus provide support for the theoretical framework 

proposed by Sih et al. (2010) suggesting predator-naïveté against novel predators if interaction 

partners rely on species-specific cues. However, ants might also rely on various and more 

general cues (e.g. ladybeetle behavior) depending on the context (e.g. if they actually tend 

aphids). Weaker L. niger aggression and ladybeetle reaction likely benefits the non-native 

ladybeetle H. axyridis when competing with the equally voracious native C. septempunctata 

for ant-tended aphids and might ultimately contribute to its invasion success.  
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Abstract 

Predator-predator interactions may contribute to the invasion success of non-native predators. 

This may occur due to the lack of co-evolutionary history between predators resulting in 

reduced aggression towards non-native predators in interference interactions. However, non-

native predators might comparably experience similar aggression if they possess cue 

similarities with native predators.          

Here, we tested the aggression strength of two native ant species confronted with native and 

non-native lady beetles and quantified aggression of ants and the reaction of lady beetles. In 

an additional experiment, we used lady beetles’ elytra to test if species-specific chemical cues 

elicit different levels of aggression in ants. In both experiments we expected the strongest 

aggression of ants towards coevolved native lady beetles, intermediate aggression towards 

non-native, congeneric lady beetles (due to potential cue similarities) and least aggression 

towards the non-native Harmonia axyridis.         

We observed differences in strength of aggression and reaction in native and non-native lady 

beelte-ant interactions. Similarities of ant aggression, but reduced reaction of non-native H. 

axyridis compared to native Coleomegilla maculata suggests higher ant tolerance of H. 

axyridis. Furthermore, reaction and aggression strength of non-native Coccinella 

septempunctata, compared to native Col. maculata were lower. Additionally, higher aggression 

strength towards elytra with chemical cues of H. axyridis compared to elytra with cues of C. 

septempunctata suggests that H. axyridis might be perceived as an increased threat to ant-

tended colonies. Cue similarities between congeneric native and non-native species might 

explain similarities in aggression by ants. Overall, non-native species might benefit from 

tolerating ant attacks than reduced aggression behavior of ants, facilitating the access to ant-

tended resources. This might favour non-native lady beetle species over native lady beetle 

species in competition on ant-tended aphid resources.  

 

Keywords: intraguild interference; invasion; Coccinellidae; ant aggression; chemical cues  
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Introduction 

Predator-predator interactions can shape prey and predator population dynamics (Sih et al. 

1998). For example, if the foraging activity of one predator enhances the predation success of 

another predator, this interaction will increase the suppression of prey populations (Losey & 

Denno 1998). Alternatively, prey populations may benefit from antagonistic interactions 

between predators, such as intraguild predation or predator-induced foraging disruption, which 

can bring about changes in predator populations (Rosenheim et al. 1995, Polis et al. 1998). 

Hereby, intraguild interference describes temporally and spatially coinciding predators 

competing over a shared resource, in which direct predator interactions limit the access to a 

resource (Putman 1994). These interactions can decrease fitness of the subordinate predator 

by e.g. aggressive predatory encounters (Eccard & Ylönen 2002).          

The effects of non-native predators on native predator and prey species can be significant and 

can ultimately lead to a loss of biodiversity (Doherty et al. 2016). In particular, non-native 

predators can destabilize native communities by changing their structure and function (Wagner 

& Van Driesche 2010). For example, the invasion of the Argentine ant (Linepithema humile), 

altered the native ant community structure (Sanders et al. 2003) and diversity in North America 

(Human & Gordon 1997). This invasive ant species had further consequences for adjacent 

trophic levels, e.g. reduced seed dispersal of native plant species by native ants (Bond & 

Slingsby 1984). The interference with coevolved interaction networks can lead to novel 

interactions (Verhoeven et al. 2009, Carthey & Banks 2014). Prey species use predator cues 

as information to assess predation risk of predators (Lima & Dill 1990). The lack of co-evolution 

between non-native predators and native prey can lead to missing cue recognition and 

consequently lack of antipredator behaviors by native prey (Banks & Dickman 2007, Sih et al. 

2010, Carthey et al. 2017). For example, flightless birds in New Zealand do not flee from 

invasive mammalian predators, thus suffer heavy predation (Blackwell 2005). Similarly, non-

native predators might remain undetected by native competitors in intraguild interactions. 

Consequently, non-native predators are expected to be stronger competitors for shared prey 

compared to native predators, which might contribute to their invasion success (Cox & Lima 

2006, Banks & Dickman 2007, Sih et. al. 2010). However, if coevolved and non-native predator 

cues are similar, non-native predators might not benefit from cue novelty by eliciting similar 

antipredator behaviors as coevolved native predator species (Sih et. al. 2010).              

Lady beetles are predators of aphids and coccids and were therefore globally introduced as 

biological control agents for pest control (Harmon et al. 2007). Invasive lady beetle species are 

associated with a decline of native lady beetle species, e.g. the Asian Harmonia axyridis in 

Europe and North America (Roy et al. 2016) and the European Coccinella septempunctata in 

North America (Evans 2000). Compared to many native coccinellids, both species are 

relatively large in body size, highly fecund and voracious (Kajita & Evans 2010, Elliott et al. 
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1996, Hoki et al. 2014, Ünlü et al. 2020). Moreover, both species are often superior to native 

lady beetles in intraguild interactions such as resource competition or intraguild predation 

(Obrycki et al. 1998, Michaud et al. 2002, Aloykhin & Sewell 2004, Ware et. al 2009). Most 

studies to date focused on intraguild interactions between lady beetle species. However, ants 

frequently tend and/ or prey on aphids and thus represent competitors for lady beetles (Way 

1963, Styrsky & Eubanks 2007). In lady beetle-ant interactions, aggression behavior of ants 

towards lady beetles, as well as defensive behaviors of lady beetles upon ant attacks can vary 

in intensity and can be species-specific (see Finlayson et al. 2009, Bucher et al. under review). 

Chemical cues consisting of cuticular hydrocarbons (CHCs) play a key role for intra- and 

interspecific communication in ants (Greene & Gordon 2003, Binz et al. 2014, Wüst & Menzel 

2017). Previous studies demonstrated, that cuticular hydrocarbons of parasitoid and predator 

species can serve as interspecific recognition cues, inducing aggressive behaviors in ants 

(Dettner & Liepert 1994, Pasteels 2007, Bucher et al. under review). Missing cue recognition 

of non-native lady beetles with distinct chemical cues by ants, might result in lower aggression 

behavior compared to native lady beetle species. Disturbances in feeding activity of lady 

beetles by ant aggression can be energetically costly, by reducing time spent for foraging and 

feeding (Finlayson et al. 2009). Thus, competitive foraging and feeding advantages over native 

lady beetle species, involving ant-tended prey might contribute to the invasion of non-native 

lady beetle species (Finlayson et al. 2009).     

Here, we tested the strength of intraguild interactions between two native North American ant 

species, Lasius neoniger and Myrmica americana and three native North American lady beetle 

species Coleomegilla maculata, Coccinella novemnotata and Hippodamia convergens, two 

non-native congeneric European lady beetle species Coccinella septempunctata and 

Hippodamia variegata and the non-native Asian lady beetle species Harmonia axyridis. In 

aggression experiments with living beetles, we expected the highest aggression by ants 

towards coevolved native lady beetles, intermediate aggression towards non-native, 

congeneric lady beetles (due to potential cue similarities) and lowest aggression towards non-

native H. axyridis. We simultaneously assessed lady beetle reaction upon contact with ants. 

Additionally, we conducted a dummy experiment with chemically manipulated lady beetle 

elytra (wing covers) to test, whether chemical cues (cuticular hydrocarbons) of lady beetles, 

can elicit aggression behaviour in ants, serving as recognition cues. In this dummy experiment 

we compared the strength of ant aggression towards dummy elytra in three treatments: control 

elytra (species-specific lady beetle elytra), cue-treated elytra (cue-free elytra treated with 

chemical lady beetle cues) and cue-free elytra. We expected similar aggression towards 

control and cue-treated elytra and comparably lower aggression towards cue free elytra. When 

confronted with control and cue-treated elytra, respectively, we expected the highest 

aggression by ants towards cues of native lady beetles, intermediate aggression towards cues 
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of non-native, congeneric lady beetles and lowest aggression towards cues of non-native  

H. axyridis. 

 

Material and Methods 

Study Species    

Ants were collected at agricultural field margins at the agricultural research field station of the 

University of Kentucky (Lexington, Kentucky, USA) from May to June 2018. We excavated ant 

colonies with brood from the ground and stored them in a terrarium (23.0 × 15.3 × 16.5 cm; 

Lasius neoniger) and buckets (38.1 × 26.67 cm; Myrmica americana). Lasius neoniger colonies 

were subsequently maintained in the climate chamber (22 ± 1 °C, light 16 h: dark 8 h.) and M. 

americana colonies were stored in the laboratory under room conditions (25 ± 1 °C, light 16 h: 

dark 8 h.). We used three L. neoniger colonies for the aggression experiments with living lady 

beetles and two other colonies for the dummy experiments, while the same two  

M. americana colonies were used for both experimental series. Ant colonies were supplied 

daily with honey and water and fed weekly with freeze-killed crickets and grasshoppers, 

collected from the research field station. Adult Col. maculata, C. septempunctata and H. 

axyridis were collected at the location of ant collection (research field station, Lexington, 

Kentucky, USA) in alfalfa, soybean, and corn fields from May to September 2018. Hippodamia 

variegata was collected from an alfalfa field in Le Roy, IL, USA in May and June. Hippodamia 

convergens was purchased from Rincon Vitova Insectaries, Ventura, CA, USA, in April 2018. 

Coccinella novemnotata larvae were purchased from the Lost Ladybug Project, Cornell 

University, Ithaca, New York, since no individuals were found in Kentucky. They were kept 

separately in glass vials until they developed to adults. The adult lady beetles were sorted by 

species and stored in plastic boxes. They were provided with water and fed ad libitum with pea 

aphids, Acyrthosiphon pisum and thawed Ephestia kuehniella eggs and kept in climate 

chambers (22 ± 1°C, light 16 h: dark 8 h). For the second experiment, H. axyrids individuals 

were collected from aggregations on the outside wall of the Department of Entomology at the 

University of Kentucky (Lexington, Kentucky, USA) in September 2018 and immediately 

freeze-killed (-7 ± 1°C) in Petri dishes (9.4 × 1.6 cm). Voucher specimens were preserved in 

Ethanol (70%) and stored under -7 ± 1°C at the Department of Entomology (Animal Pathology 

Building), at the University of Kentucky.  
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Aggression experiments with living beetles 

Experimental procedure 

We used a round Petri dish (9.4 × 1.6 cm) as experimental arena for the ant aggression 

bioassays. Fluon® was applied on the Petri dish wall to prevent ants from leaving. Three 

individuals from one ant colony were randomly collected, placed inside the Petri dish and 

acclimatized for 15 minutes prior to the start of the experiments. A single adult lady beetle was 

placed into the Petri dish and lady beetle and ant behaviors were quantified over three minutes. 

Each of the following ant aggression behaviors were quantified: prolonged antennation, 

opening mandibles, chasing, grasping, biting, and stinging (stinging M. americana only; see 

Finlayson et al. 2009). Aggression behaviors were subsequently divided into weak aggression 

(prolonged antennation and opening mandibles) and strong aggression (chasing, grasping, 

biting and stinging). Lady beetle reaction was quantified as following: changing direction of 

movement, retracting legs or antennae, preening, turning on back, flailing legs, fluttering wings, 

backing, running away and flying away (see Finlayson et al. 2009). Changing movement 

direction, retracting legs or antennae and preening were considered as weak reactions and 

turning on back, flailing legs, fluttering wings, running and flying away were considered as 

strong reactions. Aggression or reaction behaviors, which lasted longer than three seconds 

were quantified as new behavior. We compared six lady beetle species in combination with 

two ant species with at least 19 replicates per species combination, resulting in 243 replicates. 

All behavioral assays were recorded with a video camera (LUMIX DMC-FZ300, Panasonic 

Corporation, Kadoma, Osaka, Japan) mounted on a tripod. Videos were analyzed in slow 

motion, if interactions and behaviors occurred too quickly to be visually quantified during the 

experiments. Experiments were conducted in the laboratory under 26.8 ± 0.1 °C and artificial 

lightning. 

 

Dummy aggression experiments using elytra  

Preparation of cue-free elytra 

The elytra of 240 freeze-killed H. axyridis individuals were carefully removed and subsequently 

collected in a glass vial and stored in the freezer (-7 ± 1°C). After 12 hours elytra were removed 

from the freezer and transferred into a new glass vial, which was previously cleaned with 

hexane. We used hexane and dichloromethane to wash off and remove polar and apolar 

cuticular substances on the elytral surface. We applied 24 ml of hexane (3 times) and 

transferred it into the glass vial containing the H. axyridis elytra. After 10 minutes the hexane 

solution was removed with a Pasteur pipette. The glass vial was subsequently filled with 24 ml 
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of dichloromethane (2 times). After 10 minutes the dichloromethane solution was removed with 

a Pasteur pipette. The hexane and dichloromethane washing procedure was alternately 

repeated with new solvents and during each washing step, the solution was repeatedly, gently 

mixed. The cue-free elytra were placed in a glass Petri dish and stored in the freezer  

(-7 ± 1°C), until they were used in experiments.  

 

Preparation of species-specific cue solutions  

Lady beetle species were separated into Petri dishes and freeze-killed (-7 ± 1°C). Elytra of 

lady beetles were carefully removed. At least 120 elytra per species (60 beetles) were 

collected. Forty elytra were stored in glass Petri dishes as species-specific control elytra 

(control elytra). The remaining 80 elytra were placed into a separate vial for the preparation of 

the cue solution and stored for 12 hours in the freezer (-7 ± 1°C). The cue solution was 

prepared by adding 4 ml of hexane into the vial. After 10 minutes the hexane solution was 

removed with a Pasteur Pipette and transferred into another glass vial. The cue solution was 

subsequently left under the fume hood for 24 to 48 hours until the hexane evaporated. The 

cues were dissolved in 800 μl of hexane, carefully mixed and sealed with a lid. We used micro 

pipettes with disposable tips to transfer the cue solution on the lady beetle elytra (cue-free H. 

axyridis elytra). Each elytron was slightly lifted with forceps and subsequently treated with 10 

μl of cue solution on each side of the elytron, with a drying period of 30 seconds prior to 

changing sides (cue-treated elytra). The same procedure was applied to the cue-free elytra, 

with 10 μl applications of hexane per elytron side, which were subsequently used as control 

elytra (cue-free elytra). 

 

Experimental procedure 

Experiments were conducted in round Petri dish dishes (3.5 × 1.0 cm) with a Fluon® cover on 

the walls, keeping ants inside. Three individual ants were randomly collected from one colony, 

placed into the Petri dish and acclimatized for 15 minutes prior to the start of the experiments. 

After one of the randomly assigned treatment elytron (either control, cue-treated or cue-free 

elytron) was placed in the center of the Petri dish, aggression behavior was quantified for three 

minutes. Aggression behaviors, lasting longer than three seconds were quantified as new 

behavior. Prolonged antennation and opening mandibles were classified as weak aggression 

behaviors, while grasping, biting and stinging were classified as strong behaviors. Ant and 

elytra treatment combinations were randomized and at least 18 replicates were conducted per 

treatment and species combination. Overall, we conducted 767 replicates consisting of 255 

replicates of the control elytra treatment, 238 replicates of the cue-treated elytra treatment and 
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274 replicates of the cue-free elytra treatment. All behavioral assays were recorded with a 

video camera (see above). Experiments were conducted in the laboratory under 25.61 ± 0.13 

°C and artificial lightning. 

 

Statistical analysis 

We calculated the proportion of strong aggression/ reaction behaviors out of the total frequency 

of aggression/ reaction behaviors and referred to it as aggression/ reaction strength. To 

analyse differences in aggression and reaction strength (response variables) respectively, we 

applied generalized linear mixed models (GLMs) with a quasi-binominal error distribution to 

account for overdispersion for the living aggression and the dummy experiments, respectively. 

In the living aggression experiments we tested for differences in strength of aggression and 

strength of reaction, respectively, of ant and ladybeetle species and their interaction (predictor 

variables) via ANOVA (ꭕ² test). Experiments with L. neoniger and M. americana were 

subsequently analyzed separately, i.e. to account for species-specific biological (e.g. 

morphological) differences. Lady beetle species identity entered the model as predictor 

variable. The differences between aggression and reaction strength, respectively, between 

lady beetle species were analyzed via ANOVA (ꭕ² test), followed by a post-hoc test (Tukey’s 

contrasts test).  

In the dummy experiments we tested for differences in strength of aggression of ant species 

and dummy treatments and their interaction (predictor variables) via ANOVA (ꭕ² test). Based 

on the biological differences of L. neoniger and M. americana, we subsequently analyzed 

aggression of ant species towards dummy treatments separately. Dummy treatment identity 

entered the model as predictor variable. The differences of aggression strength between 

dummy treatments were analyzed with an ANOVA (ꭕ² test), followed by a post-hoc test 

(Tukey’s contrast test).  

Aggression strength towards species-specific control elytra were separately analyzed for both 

ant species with lady beetle species identity as predictor variable. To test for differences of 

aggression strength between control elytra we applied an ANOVA (ꭕ² test), followed by a post-

hoc test (Tukey’s contrasts test). Statistical analyzes were conducted by using the statistical 

software R version 3.5.2 (R Development Core Team, 2018). 
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Results  

Aggression experiments with living beetles  

Aggression strength was higher in L. neoniger compared to M. americana (GLM; ꭕ² = 14.32, 

df = 1, p < 0.01) and differed between lady beetle species (GLM; ꭕ² = 15.35, df = 5,  

p < 0.01). Additionally, there was an interactive effect of ladybeetle and ant species on ant 

aggression (GLM; ꭕ² = 13.36, df = 5, p = 0.02). In L. neoniger-lady beetle interactions,  

L. neoniger aggression strength differed between lady beetle species (GLM; ꭕ² = 16.91,  

df = 5, p < 0.01). Aggression strength was significantly higher towards Col. maculata compared 

to C. septempunctata (Tukey’s contrast test (TCT); p < 0.05, Fig. 1) and marginally higher 

towards Col. maculata compared to C. novemnotata (TCT; p = 0.08). Aggression strength did 

not differ between H. axyridis and the remaining non-native and native species (TCT;  

p > 0.33). Aggression between native and non-native Hippodamia species (TCT; p = 0.95), as 

well as native and non-native Coccinella species did not differ significantly (TCT; p = 1.00). In 

M. americana-lady beetle interactions, the aggression strength of M. americana towards lady 

beetle species indicated marginal differences (GLM; ꭕ² = 10.77, df = 5, p = 0.06). Here, 

aggression strength was marginally higher towards C. novemnotata compared to C. 

septempunctata (TCT; p = 0.10, Fig. 1). The aggression strength towards the remaining 

species was similar (TCT; p < 0.20). Reaction strength of lady beetles differed between lady 

beetle species (GLM; ꭕ² = 26.13, df = 5, p < 0.01) and was similar upon contact with  

L. neoniger and M. americana (GLM; ꭕ² = 0.10, df = 1, p = 0.75). There was no interactive 

effect of ladybeetle and ant species on lady beetle reaction (GLM; ꭕ²= 4.74, df = 5, p = 0.45). 

In interactions with L. neoniger , lady beetle reaction strength differed interspecifically (GLM; 

ꭕ² = 19.66, df = 5, p < 0.01). Coleomegilla maculata reaction strength towards L. neoniger was 

significantly stronger compared to reaction strength of H. axyiridis and C. septempunctata 

(TCT; p < 0.01 and p = 0.01, respectively, Fig. 1) and marginally higher than C. novemnotata 

(TCT; p = 0.06). Harmonia axyridis reaction strength was similar to the remaining species 

(TCT; p > 0.19, respectively). Both non-native and native congeneric Coccinella and 

Hippodamia species respectively, showed similar reaction strength to L. neoniger (TCT;  

p > 0.95, respectively). In interactions with M. americana, the reaction strength of lady beetle 

species differed marginally (GLM; ꭕ² = 10.83, df = 5, p = 0.06). Here, reaction strength varied 

marginally between H. axyridis and Col. maculata (TCT; p = 0.10, Fig. 1). Reaction strength of 

the remaining lady beetle species were similar (TCT; p > 0.25, respectively).  
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Figure 1. Aggression strength (model prediction ± 95 % CI) of Lasius neoniger and Myrmica 

americana confronted with lady beetles and reaction strength (model prediction ± 95 %CI) of 

lady beetles towards ants of both species (black symbol native, white symbol non-native;  

Hax = Harmonia axyridis, C7 = Coccinella septempunctata, C9 = Coccinella novemnotata and 

HC = Hippodamia convergens, HV = Hippodamia variegata, Cmac = Coleomegilla maculata). 

Different letters indicate statistical differences between species based on Tukey’s contrast test 

(p < 0.05). 

 

 

 

 

 

 

 

 

L. neoniger  M. americana 
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Dummy aggression experiments 

Aggression towards treatment-specific dummy elytra 

In these experiments, the aggression strength was similar between ant species (GLM;  

ꭕ² = 1.05, df = 1, p = 0.31), but differed between dummy treatments (GLM; ꭕ² = 42.38,  

df = 2, p < 0.01). The interaction between ant species and dummy treatments differed 

marginally (GLM; ꭕ² = 4.70, df = 2, p = 0.10). Lasius neoniger aggression strength towards 

dummy elytra differed with respect to the dummy treatments (GLM; ꭕ² = 33.00, df = 2,  

p < 0.01). Aggression towards cue-treated elytra was significantly lower compared to 

aggression towards control elytra (TCT; p < 0.01, Fig. 2). The cue-free elytra induced less 

aggression compared to the control elytra (TCT; p < 0.01) and marginally less aggression 

compared to the cue-treated elytra (TCT; p = 0.08). Myrmica americana aggression strength 

differed between dummy treatments (GLM; ꭕ² = 9.97, df = 2, p < 0.01, Fig. 2). Aggression 

towards cue-treated elytra did not differ from aggression towards cue-free elytra or control 

elytra (TCT; p = 0.20 and p = 0.40, respectively). The cue-free elytra induced less aggression 

compared to the control elytra (TCT; p < 0.01). 

 

 

 

Figure 2. Aggression strength (model prediction ± 95 % CI) of Lasius neoniger and Myrmica 

americana confronted with dummy elytra of lady beetles (either control elytra, cue-treated 

elytra or cue-free elytra). Different letters indicate statistical differences between species based 

on Tukey’s contrast test (p < 0.05). 
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Agression towards species-specific control elytra  

Aggression strength of L. neoniger towards control elytra differed among lady beetle species 

(GLM; ꭕ² = 19.83, df = 5, p < 0.01). Aggression strength was higher when L. neoniger was 

confronted with H. axyridis elytra compared to C. septempunctata elytra (TCT; p < 0.05, 

Fig. 3) and marginally higher compared to C. novemnotata elytra (TCT; p = 0.06), respectively. 

There, were no species-specific differences in aggression strength of M. americana towards 

control elytra (GLM; ꭕ² = 7.26, df = 5, p = 0.20, Fig. 3). 

 

 

Figure 3. Aggression strength (model prediction ± 95 % CI) of Lasius neoniger and Myrmica 

americana confronted with species-specific control elytra of the different lady beetle species 

(black symbol native, white symbol non-native; Hax = Harmonia axyridis, C7 = Coccinella 

septempunctata, C9 = Coccinella novemnotata and HC = Hippodamia convergens,  

HV = Hippodamia variegata, Cmac = Coleomegilla maculata). Different letters indicate 

statistical differences between species based on Tukey’s contrast test (p < 0.05). 
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Discussion 

Our findings revealed differences in lady-beetle ant interactions between ant species, as well 

as native and non-native lady beetle species. The aggression behavior towards lady beetles 

was higher in L. neoniger compared to M. americana. In the aggression experiments with living 

beetles, L. neoniger exhibited higher aggression towards the native Col. maculata compared 

to the non-native C. septempunctata. Moreover, in L. neoniger interactions, the reaction of 

native Col. maculata was higher compared to that of the non-native H. axyridis and  

C. septempunctata. Lasius neoniger and M. americana aggression was similar towards the 

remaining native and non-native lady beetle species, respectively. Moreover, Lasius neoniger 

and M. americana were aggressive to species-specific control elytra of lady beetles. 

Interestingly, L. neoniger showed higher aggression strength towards H. axyridis elytra than 

towards C. septempunctata elytra. 

 

Aggression experiments with living lady beetles 

Aggression strength towards living lady beetles was lower in M. americana compared to  

L. neoniger. Consistent with our findings, in Europe, differences in aggression strength of 

native ant species of the genera Myrmica and Lasius confronted with lady beetles, 

demonstrated lower aggression of Myrmica rubra compared to Lasius niger (Bucher et al. 

under review). In contrast to L. neoniger, aggression of M. americana did not significantly differ 

between lady beetle species, suggesting that this species is less likely to distinguish between 

lady beetle species. Similarities in aggression behavior can be explained by, shared general 

cues (e.g. visual cues, behvioral cues) of native and non-native lady beetle species, inducing 

similar aggression behavior in ants (Sih et al. 2010). Thus, in direct confrontations with lady 

beetles, ants exhibit aggression behavior, regardless of lady beetle origin.   

In L. neoniger interactions, we found differences in strength of aggression and reaction 

between native and non-native lady beetles. Our findings suggest that differences in interaction 

strength could be explained by species-specific ant aggression tolerance (Majerus et al. 2007).  

Native Col. maculata might be less tolerant to ant aggression than non-native H. axyridis, given 

that both experience similar aggression, but the reaction of H. axyridis is comparably lower. 

Previous research on lady beetle-ant interactions demonstrated that fire ants (Solanopsis 

invicta) were more effective in aggressively forcing H. convergens from plants than H. axyridis, 

indicating higher tolerance of H. axyridis towards this ant species (Dutcher et al. 1999). Thus, 

ant tolerance of H. axyridis might facilitate access to ant-tended aphid prey (Pell et al. 2008). 

Similarly, to H. axyridis, non-native C. septempunctata elicited lower aggression strength and 

additionally showed lower reaction strength in comparison with native Col. maculata. In 
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Europe, C. septempunctata coexists with Formica rufa and consequently has shown 

intermediate ant tolerance in prior studies in its native range (Sloggett & Majerus 2000). In our 

study, however, C. septempunctata reaction strength might be low due to a reduced 

aggression strength by ants and therefore it is unclear, if this species can tolerate high ant 

aggression strength beyond its native range. Lower aggression strength by ants towards C. 

septempunctata could be further explained by e.g. species-specific chemical protection of C. 

septempunctata to deter predators, since reflex bleeding of C. septempunctata was observed 

in ant interactions (Bhatkar 1982). Interestingly, both native and non-native Coccinella species 

experience similarly low aggression behavior, which could be explained by similarities in cues 

or chemical protection of these congeneric species. The ant tolerance of non-native H. axyridis 

and C. septempuncata might result in a competition advantage in exploiting ant-tended 

resources compared to non-native lady beetle species, such as Col. maculata. Differences in 

foraging interruption of ants by aggressive attacks, might result in differences in food uptake 

and therefore oviposition behaviour by lady beetles (Takizawa & Yasuda 2006). Thus, besides 

predation advantages, both non-native species might benefit from fitness advantages, 

however this requires further research under more natural conditions. 

 

Aggression experiments with chemically manipulated lady beetle elytra 

Strength of aggression towards lady beetle elytra suggests that chemical cues contribute to 

the aggressive behavior of ants. Our findings are consistent with a similar study in Europe, 

demonstrating that ants react aggressively towards lady beetle elytra (Bucher et al. under 

review). In our study, species-specific elytra elicited higher aggression strength, than the cue-

treated elytra. This could be explained by a decreased signalling effect of cuticular substances 

re-applied on lady beetle elytra (cue-free) compared to species-specific elytra. During the 

chemical application of the cue solution, cues might not have been equally distributed on the 

elytron, due to inconsistencies in adherence of cues to the elytral surface. Thus, the untreated 

species-specific elytra might be more consistently covered in cuticular cues, than the cue-

treated elytra. Although cues of lady beetles are species-specific (Bucher et al. under review) 

the identity of cuticular substances (substance mixtures) inducing ant aggression remains 

unknown. Ants can discriminate between nestmates and hetero- and conspecifics; therefore, 

ant recognition is based on a comparison of colony-specific chemical cues, particularly 

cuticular hydrocarbons, as an internal template to the individual cuticular hydrocarbon profile 

of the cue donor (Sturgis & Gordon 2012). Thus, threshold-depending cue dissimilarities 

between the internal template and the received cues can mediate behavioral response, such 

as aggression behavior in ants (reviewed in Sturgis & Gordon 2012). Previous research on 

parasitoid-ant interactions, e.g., demonstrated that aphid parasitoids acquire ant hydrocarbons 
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through direct contact to ants, manipulating their chemical profile by chemical camouflage, to 

prevent ant aggression (Takada & Hashimoto 1985, Akino &Yamaoka 1998, Akino 2008). 

However, another study on aggression behaviour of ant colonies to congeneric ant species, 

showed, that cue dissimilarities do not always mediate aggression behaviour; particularly, 

aggression behavior towards a co-occurring ant species was higher, compared to an 

allolopatric ant species. This indicates that some ant species might have developed enemy-

specific recognition and behavioral response (aggression or defense) towards significant, 

coevolved enemies (Scharf et al. 2011). According to our expectations, aggression strength 

towards non-native and native Coccinella species, as well as between both Hippodamia 

species, were similar. Magro et al. demonstrated (2010) that CHCs of closely related lady 

beetle species tend to be more similar compared to cues of more genetically distantly related 

species. Thus, similar cues of congeneric lady beetle species might explain similar aggression 

strength of ants, regardless of lady beetle origin. Moreover, our findings reveal that strength of 

L. neoniger towards H. axyridis elytra was higher compared to aggression strength towards C. 

septempunctata elytra, suggesting species-specific discrimination of chemical lady beetle cues 

by L. neoniger. In North America, C. septempunctata started dominating the landscape in the 

1980s followed by H. axyridis in the 1990s (Harmon et al. 2007, Brown & Miller 1998, Koch et 

al. 2003). Brown and Miller (1998) further showed that H. axyridis dominated the coccinellid 

landscape including the previously dominant non-native C. septempunctata in apple orchards 

in North America. Differences in aggression could be explained by enemy-specific risk posed 

by the predator (Scharf et al. 2011). Should C. septempunctata show comparably lower 

interactions with ants in the invaded range, H. axyridis might be the dominating non-native lady 

beetle species, engaged in competitive interactions with ants. The interaction between ants 

and C. septempunctata and H. axyridis beyond their native range requires further research 

(Pell et al. 2008). Especially if predation pressure on aphids by H. axyridis reduces resource 

availability for ants (honedew), ants might have developed high aggression towards H. axyridis 

within the time of its introduction to North America. Future field studies on ant-lady beetle 

interactions involving non-native H. axyridis and C. septempunctata, might shed light on 

competitive advantages of non-native lady beetle species on ant-tended aphids and their 

effects on the native lady beetle community.  
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Conclusion 

Our findings on lady beetle-ant interactions show that ant aggression and lady beetle reaction 

can differ between native and non-native lady beetle species. In interactions with L. neoniger, 

non-native H. axyridis showed reduced reaction behavior upon similar ant aggression 

compared to native Col. maculata. Additionally, non-native C. septempunctata received 

reduced aggression of L. neoniger and showed lower reaction compared to native  

Col. maculata. The chemical cues on lady beetle elytra contributed to the aggression behavior 

of ants. Moreover, L. neoniger was more aggressive towards elytra of H. axyridis than of  

C. septempunctata. Overall, we show that ant aggression towards non-native H. axyridis is 

similairly high compared to native lady beetles, suggesting that this species does not benefit 

from reduced aggression in its invaded range. The lower reaction behavior compared to native 

Col. maculata, suggests that H. axyridis might benefit from a comparably higher ant tolerance. 

Further research is required to provide insights on ant tolerance of non-native lady beetle 

species, which could reveal potential effects on resource competition with native lady beetles.
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Summary  

This thesis aims to contribute to the naïveté research among terrestrial arthropods which 

received relatively little attention up to date (Cox & Lima 2006, Carthey & Banks 2014). Our 

model systems consist of native and non-native lady beetles interacting with the native pea 

aphid Acyrthosiphon pisum and native ants of the genera Myrmica and Lasius in Europe and 

North America. To assess naïveté, we focused on antipredator responses of A. pisum in 

predator-prey interactions and aggression behavior of ants in predator-predator interactions 

towards non-native and native lady beetles, as well as their chemical cues. In addition, we 

quantified aphid consumption of lady beetles to assess their voracity. In North America, our 

lady beetle species set included non-native and native lady beetle species from the same 

genera, expecting similar chemical cues within lady beetle genera (Magro et al. 2010). We 

analyzed the chemical composition of cuticular hydrocarbons using Gas Chromatography-

Mass Spectrometry to compare the similarity of chemical cues among lady beetle species. Our 

comparisons of native and non-native species interactions revealed differences between 

non-native lady beetle species and native A. pisum. In Europe, A. pisum did not show any 

avoidance behavior towards chemical cues of non-native H. axyridis, but towards native lady 

beetle species. In North America, all chemical cues of lady beetle species were avoided by 

A. pisum, regardless of origin. The body size of lady beetles and aphid predation rates were 

positively correlated. Harmonia axyridis and C. septempunctata were the largest and most 

voracious lady beetle species in North America and in Europe. In Europe, a more natural set-up 

revealed that A. pisum avoids cues of the largest native C. septempunctata but shows no 

avoidance behavior towards chemical cues of non-native H. axyridis or smaller native lady 

beetle species. Moreover, dropping behavior of aphids was similar between native lady beetle 

species and non-native H. axyridis. In addition to predator-prey interactions, we found 

differences between native and non-native lady beetle species in intraguild interactions with 

ants. In Europe, ant aggression and lady beetle reaction were higher in native 

C. septempunctata compared to non-native H. axyridis. In North America, ant aggression was 

similar between H. axyridis and native lady beetle species. Furthermore, ant aggression was 

higher towards the native Col. maculata compared to the non-native C. septempunctata. 

Additionally, the reaction of native Col. maculata towards ants was comparably higher than the 

reaction of non-native H. axyridis and C. septempunctata. The cuticular chemical cues of lady 

beetle species in Europe were species-specific in their composition. We found that ants 

showed aggression behavior towards cuticular chemical cues on lady beetle elytra. The 

intercontinental comparison revealed that lady beetle-aphid and lady beetle-ant interactions 

differed in Europe and North America. While the European population of A. pisum did not avoid 

chemical cues of non-native H. axyridis, the North American A. pisum population showed 

avoidance behavior towards all non-native lady beetle species, including the non-native 
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H. axyridis. In Europe, ant aggression towards non-native H. axyridis was lower compared to 

native C. septempunctata, whereas in North America the aggression behavior of ants was 

comparably similar between non-native H. axyridis and native lady beetle species. 

 

Prey response varies with cue type and cue similarities  

Predator cues can serve as sensory information for either prey or other predators (Lima & Dill 

1990). Our findings shed light on differences in prey and predator response upon confrontation 

with native and non-native predators or their chemical cues. In predator-prey interactions, 

predator presence serves as information for immediate predation risk. Accordingly, dropping 

behavior of aphids is an efficient response to escape immediate predation risk implied by lady 

beetles (Losey & Denno 1998). In the dropping experiments, A. pisum dropping did not differ 

between native lady beetles and non-native lady beetles. This indicates that cues involved in 

lady beetle presence, eliciting dropping behavior in A. pisum are general predator cues, e.g. 

behavioral cues, which non-native and native lady beetle species have in common. Moreover, 

dropping is induced by the release of an alarm pheromone, which is a general response of 

aphids, attacked by predators, such as lady beetles (Losey & Denno 1998). Thus, lady beetle 

presence implies an increased risk of predation and involves general cues inducing aphid 

dropping, regardless of lady beetle origin (Carthey & Banks 2014, Sih et al. 2010). Similarly, 

ants confronted with present lady beetles behaved aggressively, regardless of lady beetle 

origin. However, aggression behavior of ants differed between native and non-native lady 

beetles. In the dummy experiments we demonstrated that cuticular substances contribute to 

ant aggression. We showed that the composition of these cuticular substances on lady beetle 

elytra are species-specific. This indicates that in addition to shared general lady beetle cues 

species-specific chemical cues of lady beetles are involved in ant aggression. In contrast to 

immediate risk implied by predator presence, remaining chemical cues of predators can persist 

in the environment and indicate potential predation risk (Kats & Dill 1998). In contrast to 

predator presence, chemical cues of absent predators imply lower predation risk and 

accordingly the induced antipredator behavior of prey requires less energy (Lima & Dill 1990). 

In our leaf-choice and plant-choice experiments we showed that aphids can avoid chemical 

cues of lady beetles. Prior studies have revealed that the chemical cues in lady beetle 

footprints serve as signals for nearby-predator presence, implying potential predation risk for 

aphids and psyllids (Ninkovic et al. 2013, Seo et al. 2018b). Moreover, the cuticular 

hydrocarbon profiles of lady beetles are species-specific and as such the footprints left on plant 

tissues (Kosaki & Yamaoka 1996, Geiselhardt et al. 2011). Based on our findings in Europe, 

A. pisums shows missing avoidance behavior of chemical cues of H. axyridis in the leaf-choice 

and plant-choice experiments. This suggests that A. pisum does not associate chemical cues 
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of H. axyridis with predation risk, lacks efficient response and is therefore naïve towards 

predator-specific chemical cues of H. axyridis. Thus, chemical cue novelty of non-native 

predator species can result in an inefficient antipredator response and lead to a potential 

predation advantage over non-native species (Sih et al. 2010). Interestingly, native and non-

native lady beetle species from the same genus induced similar aphid or ant response, which 

could be explained by cue similarities (Magro et al. 2010). The analysis of the CHC composition 

of lady beetles in North America will provide us with supportive information on cue similarities 

between congeneric native and non-native lady beetle species and will be included in the fifth 

manuscript prior to publication.  

 

Prey response varies with predation risk 

The plant-choice experiments revealed cue avoidance behavior towards native  

C. septempunctata, but not towards the smaller native lady beetle species and non-native  

H. axyridis. In contrast to the leaf-choice experiments, feeding disturbances of A. pisum by 

increased searching behavior on neighboring plants can cause more severe energy 

constraints, which can result in reproductive costs (Lima & Dill 1990, Nelson 2007). This 

indicates that the avoidance behavior of A. pisum might be influenced by antipredator 

behavioral flexibility driven by the trade-off between energy intake and the risk of predation 

implied by the chemical cues of lady beetles (Dill & Ydenberg 1986, Lima & Dill 1990). Our 

findings suggest that the implied predation risk of C. septempunctata is higher compared to 

the remaining native lady beetle species, since C. septempunctata is comparably more 

voracious. In contrast to the chemical cues of smaller lady beetle species, chemical cues of  

C. septempunctata might signalize a higher predation risk and consequently outweigh the 

benefits of feeding on the present plant and ultimately result in a change of host plants (Lima 

1998).  
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Naïveté – an evolutionary snapshot?  

Time since introduction is a key determinant for naïveté, as prey naïveté declines with the 

number of generations since introduction (Anton et al. 2020). After numerous prey generations, 

prey can adapt efficient antipredator behaviors towards predators (Yoshida et al. 2003, Anton 

et al. 2020). An intercontinental comparison provided us with a snapshot of non-native 

predator-prey interactions in Europe and North America; while the European study represents 

a snapshot of initial interactions with A. pisum and non-native H. axyridis, the North American 

study portrays a snapshot of prolonged interactions between A. pisum and non-native  

H. axyridis. Our differences in non-native predator response of A. pisum might derive from 

differences in interaction frequencies and time since introduction of non-native lady beetles, 

which has been longer in North America than in Europe. Thus, we suggest, that the shared 

experience between the North American A. pisum population and non-native H. axyridis might 

have resulted in rapid adaptations of antipredator behaviors in prey. Agricultural pest species 

evolve often rapidly towards environmental and human-induced selection pressures (Pélissié 

et al. 2018). To enhance our comprehension of evolutionary (adaptation) as well as ecological 

changes (competition, dispersal) in non-native predator-prey interactions, long-term studies 

are required, starting with the initial introduction of the non-native predator (Mallon et al. 2015, 

Anton et al. 2020). Overall predator-predator and predator-prey naïveté might decline over 

time, due to adaptations of the native community and the tremendous impacts of successful 

invaders might decrease (Yoshida et al. 2003, Anton et al. 2020). Evolutionary changes not 

only occur in native communities but also in the invader itself, as the non-native predator is 

exposed to new biotic and abiotic factors in the native community (Novak 2007). Studies in the 

native range of invasive lady beetles are highlighted as ‘snapshot of the ancestral lady beetle’ 

and could be compared to studies in the invaded range to reveal evolutionary changes 

(Sloggett 2012). Overall, further studies in the invaded range of non-native predators will 

provide insights into the evolutionary changes involved in non-native predator-prey interactions 

and their ecological effects, whereas studies in the native range will provide baseline 

information for evolutionary changes in the non-native predator itself (Reznick & Ghalambor 

2001, Sloggett 2012). 
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Invasion success and body size 

Non-native species possess traits which contribute to their establishment success (Baker & 

Stebbins 1965, Sax & Brown 2000). These traits are characteristic to the native range of non-

native species and have preadapted them to successfully establish in new regions (Baker & 

Stebbins 1965, Mack 2003, Alzate et al. 2020). Non-native H. axyridis in Europe and North 

America, as well as non-native C. septempunctata in North America have preadapted life-

history traits (Slogget 2012, Evans et al. 2011); among these larger body size compared to 

native lady beetle species is suggested to have promoted their establishment success (Eliott 

et al. 1996, Kajita & Evans 2010, Hemptinne et al. 2012). Large body size in lady beetles is 

correlated with high fecundity and can additionally indicate a reproductive advantage over 

smaller non-native lady beetle species (Kajita & Evans 2010). Not only potential reproductive 

rate but also speed of movement are positively correlated with body size (Hemptinne et al. 

2012). Higher population densities by increased offspring production can lead to dispersal and 

expansion of the current range (Davis 2009). In addition, our findings show that increasing 

body size of lady beetles correlates with higher predation rates. Previous studies have 

demonstrated that H. axyridis can dominate over native lady beetles in exploiting shared 

resources, benefitting e.g. from larger body size and predatory efficiency (Michaud 2002, 

Crookes et al. 2019). Similarly, Hoki et al. (2014) showed that C. septempunctata has higher 

consumptive effects and is additionally larger in body size compared to native C. novemnotata 

in its invaded range. In addition, Bahlai et al. (2015) found that native Col. maculata and non-

native A. bipunctata have declined, while co-occurring with non-native H. axyridis and 

C. septempunctata over a time period of 24 years in southwestern Michigan. This study 

suggests that the decline of native Col. maculata and non-native A. bipunctata is likely due to 

a niche overlap with larger non-native lady beetles resulting in competitive exploitation. In 

addition to competition on shared food resources, H. axyridis and C. septempunctata are 

successful intraguild predators of native coccinellids in their invaded range (Snyder et al. 2004, 

Aloykhin & Sewell 2004, Pell et al. 2008, Ware et. al 2009, Moser & Obrycki 2009). Competition 

in the same environment can result in the displacement of native lady beetle species, if non-

native lady beetle species are comparably superior in survival and acquiring shared resources 

(Harmon et al. 2007, Snyder 2009, Bahlai et al. 2015). Our findings demonstrate that  

H. axyridis and C. septempunctata consumed more aphids compared to smaller native lady 

beetle species in a limited time frame, indicating enhanced foraging abilities and therefore a 

competition advantage. Overall, a relatively large body size compared to native lady beetle 

species is an important predictor for the establishment and invasion success of non-native lady 

beetle species (Hemptinne et al. 2012). 
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Further research options  

Our study provides insights into the research on predator-prey naïveté among insect species. 

In particular, we revealed that missing cue avoidance behavior towards chemical cues of non-

native H. axyridis, indicates prey naïveté in Europe. The aphid population used for the 

European experiments were collected prior to the establishment and spread of H. axyridis 

(Brown et al. 2007) in Europe and subsequently maintained as a colony in the laboratory. In 

comparison to the pea aphids used for our experiments, wild pea aphid populations 

experienced high densities with H. axyridis in the field, given that European establishments of 

H. axyridis were reported in the late 1990s and this species rapidly spread (Brown et al. 2007). 

To develop a full picture on the potential decline of predator-prey naïveté over time, future 

studies should examine, if wild European A. pisum populations have adapted avoidance 

behavior towards chemical cues of the currently invasive H. axyridis. 

Our findings revealed differences in native and non-native lady beetle-aphid and lady  

beetle-ant interactions. Non-native lady beetle species received less aggression and/or 

showed lower reaction towards ants. To understand if non-native lady beetle species are 

tolerant to ant attacks in their invaded range, lady beetle-ant-aphid interactions should be 

examined (Dutcher et al. 1999, Layman & Lundgren 2016). For example, a competition 

experiment could be conducted with an ant-tended aphid colony on single plants with either a 

single adult lady beetle or a lady beetle larva. Attack rates of ants towards lady beetles can be 

quantified and compared to provide information on differences between aggression levels 

towards native versus non-native lady beetle species. Moreover, aphid consumption of lady 

beetles can be quantified and compared between native and non-native lady beetle species, 

showing the potential of exploiting ant-tended aphid colonies. Both aggression levels and 

consumption rates can provide information on ant tolerance of lady beetles. As for field 

observations, aphid tended colonies can be observed and lady beetle presence and activity in 

these colonies documented to reveal differences between native and non-native lady beetle 

species in interactions with ants (Sloggett & Majerus 2000, Majerus et al. 2007). These 

experiments could enhance our understanding of competition on shared resources between 

ants and lady beetles, as well as competition between lady beetle species of different origins. 

Furthermore, these experiments could reveal, if ant-tolerant non-native lady beetles can 

benefit from an enemy-free space in the ‘safe’ vicinity of ants (Pell et al. 2008). Specifically, 

ant tolerant non-native lady beetle species could benefit from reduced intraguild predation, if 

their predators, such as other lady beetle species, were less tolerant to ant attacks (Pell et al. 

2008). Overall, this could provide us additional information on the role of ant tolerance in the 

establishment success of non-native lady beetle species. 
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Chemical cues of predators, inducing avoidance behavior have a repellent effect on herbivores 

and can additionally decrease oviposition (Herrmann & Thaler 2014, Seo et al. 2018b). 

Additionally, chemical cues of predators can reduce the reproduction of herbivores, deriving 

from feeding inhibitions and an extensive search for suitable feeding and oviposition sides 

(Herrmann & Thaler 2014, Nelson 2007). Based on our findings, the chemical cues of lady 

beetle species induced avoidance behavior in A. pisum on broad bean plants. Similarly, a prior 

study showed that the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus) detected and 

avoided barley leaves bearing lady beetle footprints of C. septempunctata via chemicals in the 

lady beetle tracks (Ninkovic et al. 2013). Moreover, the Asian citrus psyllid, Diaphorina citri 

(Kuwayama) avoided footprints of larvae and adults of H. convergens on citrus leaves (Seo et 

al. 2018 a, b). Lady beetle chemical cues have therefore a promising potential to be used in 

the control of herbivore pest species on crops. Future research must examine which substance 

mixtures of chemical lady beetle cues are involved in the avoidance behavior of prey. After the 

detection of the required substances, these can be synthetically produced and made 

applicable for use as herbivore repellant in crops. Chemical cues might have an intra-specific 

signaling effect, for example larval tracks of lady beetles serve as an oviposition-deterring 

pheromone in conspecific females (Doumbia et a. 1998, Hemptinne & Dixon 2000). The 

evaluation of the repellant must therefore consider potential negative effects on non-target 

species. Specifically, predators from which the cue derived from might be affected. Overall, 

chemical cues of predators might have a potential as applicable repellents for herbivores on 

crops, however non-target effects due to potential intra-specific signaling in the predator itself, 

must be considered and evaluated. 
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Conclusion  

This thesis provides valuable insights on invasion mechanisms of non-native lady beetles on 

two continents by revealing differences in native and non-native lady beetle-aphid and lady 

beetle-ant interactions. Our findings on lady beetle-aphid interactions in Europe represent a 

snapshot of the initial phase of non-native predator-prey interactions, whereas our findings in 

North America portray non-native predator-prey interactions existing for a comparably longer 

time. In Europe and in North America, A. pisum avoided chemical cues of coevolved lady 

beetle species. However, missing avoidance behavior towards chemical cues of the non-native 

H. axyridis indicates an inefficient antipredator response and thus predator-prey naïveté of 

A. pisum in Europe. In contrast, the North American A. pisum population avoided non-native 

H. axyridis cues as well as cues of non-native lady beetles of European origin. Aphid 

consumption of lady beetles was positively correlated with body size. Harmonia axyridis and 

C. septempunctata were the largest and most voracious lady beetles on both continents. In 

contrast to Europe, ants in North America experienced high densities of non-native lady 

beetles over a longer time. The lady beetle-ant interactions revealed differences in aggression 

and reaction between native and non-native lady beetle species on both continents. In Europe, 

native C. septempunctata received higher aggression and showed stronger reaction behavior 

towards ants in comparison to non-native H. axyridis. Similarly, in North America native 

Col. maculata received higher aggression and showed stronger reaction behavior compared 

to non-native C. septempunctata. This indicates that non-native lady beetle species can 

receive less ant aggression than native lady beetle species in the invaded range. In contrast 

to Europe, in North America aggression behavior between native lady beetle species and non-

native H. axyridis was similar, whereas the reaction behavior of non-native H. axyridis was 

lower compared to native Col. maculata. A reduced reaction of non-native H. axyridis despite 

of high ant aggression might indicate increased ant tolerance. In Europe, our chemical analysis 

of cuticular hydrocarbons showed that the CHCs profile of lady beetles is species-specific. 

Moreover, our findings demonstrate that ants can show aggression behavior towards cuticular 

chemical cues on lady beetle elytra. The intercontinental differences in non-native species 

interactions might derive from differing levels of experience between native prey or predators 

and non-native predators. Overall, long-term studies following initial introductions of non-native 

predators can improve our knowledge on evolutionary changes in native prey and predators 

and the decline of predator-prey and predator-predator naïveté. Our findings on body size 

related voracity of larger non-native lady beetle species contribute to the research on 

competition advantages over smaller lady beetle species, which are associated with their 

establishment and invasion success. 
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