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Zusammenfassung

Diese Dissertation führt ein vollständiges, stochastisches Framework Cellulect ein, um
die Hydrolyse-Vorgänge von lignozellulosehaltiger Biomasse zu untersuchen, optimieren
und vorherzusagen.

Das Framework umfasst ein ausführliches geometrisches Modell für die Verfolgung von
von kristallinen/amorphen Gebieten, einzelnen Monomeren, der Polymerverteilung und
zugänglicher Oberfläche innerhalb eines lignozellulosehaltigen Substrates. Die Aktuali-
sierungen geschehen reaktionsweise anhand eines seriellen effizienten Algorithmus. Dem
Konzept der physikalischen Zeit wird genüge getan.

Verschiedene Arten von Enzymreaktionen (zufällige Schnitte, Schnitte an reduzieren-
den/nichtreduzierenden Enden und ein ggf. stationäres aktives Zentrum) sowie -struktur
(Kohlenstoffbidungsmodul mit flexiblem Linker und einer katalytischer Domain) werden
auf modulare Art berücksichtigt. Das Konzept des endlichen Zustandsautomaten wird
verwendet, um die Enzyme zu modellieren. Dies ermöglicht eine zuverlässige, mächtige
und wartbare Modellierung bereits bekannter Enzymeigenschaften, die mit zusätzlichen
Eigenschaften erweitert werden kann, die in dieser Arbeit nicht berücksichtigt wurden.

Die verwendete allgemeine probabilistische Beschreibung der katalytischen Wirkungs-
weise umfasst weiterhin Adsorption, Desorption, kompetitive Inhibition mit gelösten Po-
lymeren und dynamischen Bindungsbruchreaktionen, abhängig vom Zustand der Mono-
mere und deren Polymeren innerhalb des Substrats. Alle integrierten Parameter nehmen
Bezug auf systemspezifische Eigenschaften und liefern somit eine eineindeutige Beziehung
zwischen den Freiheitsgraden des Systems und Eigenschaften des Modells.

Schließlich beruht der Zeitentwicklungsalgorithmus auf einem modifizierten stochas-
tischen Algorithmus von Gillespie. Er stellt einen stochastisch exakten Zeit-Reaktions-
Propagationsalgorithmus zur Verfügung, der sowohl die zufällige Eigenart der Reaktio-
nen wie auch deren Auftreten berücksichtigt.

Das Framework ist bereitgestellt für eine Optimierung mit Nebenbedingungen mit
empirischen Datensätzen von Produktkonzentrationsprofilen unter Verwendung der üb-
lichen Optimierungsroutinen. Der Nachweis für verfügbare Daten für die häufigsten En-
zymarten (EG, β-G, CBH) in der Literatur wurde erbracht.

Sensitivitätsanalyse der geschätzten Modellparameter wurde betrieben. Abhängigkei-
ten von verschiedenen experimentellen Eingaben wurde gezeigt. Optimierungsverhalten
unter unterbestimmten Bedingungen wurde untersucht und dargestellt.

Ergebnisse und Vorhersagen von optimierten Enzymmischungen sowie ein praktischer
Weg das Cellulect Framework zu implementieren und zu verwenden wurde ebenfalls
zur Verfügung gestellt. Die erhaltenen Ergebnisse wurden mit experimentellen Daten
aus der Literatur verglichen, um die Anpassungsfähigkeit, Effizienz und Genauigkeit des
vorgelegten Frameworks für die Vorhersage der Biomassehydrolyse zu zeigen.
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Abstract

This dissertation introduces a complete, stochastically-based algorithmic framework Cel-
lulect to study, optimize and predict hydrolysis processes of the structured biomass
cellulose.

The framework combines a comprehensive geometric model for the cellulosic substrate
with micro-structured crystalline/amorphous regions distribution, distinctive monomers,
polymer chain lengths distribution and free surface area tracking. An efficient tracking
algorithm, formulated in a serial fashion, performs the updates of the system. The
updates take place reaction-wise. The notion of real time is preserved.

Advanced types of enzyme actions (random cuts, reduced/non-reduced end cuts, ori-
entation, and the possibility of a fixed position of active centers) and their modular
structure (carbohydrate-binding module with a flexible linker and a catalytic domain)
are taken into account within the framework. The concept of state machines is adopted
to model enzyme entities. This provides a reliable, powerful and maintainable approach
for modelling already known enzyme features and can be extended with additional fea-
tures not taken into account in the present work.

The provided extensive probabilistic catalytic mechanism description further includes
adsorption, desorption, competitive inhibition by soluble product polymers, and dynam-
ical bond-breaking reactions with inclusive dependence on monomers and their polymers
states within the substrate. All incorporated parameters refer to specific system prop-
erties, providing a one to one relationship between degrees of freedom and available
features of the model.

Finally, time propagation of the system is based on the modified stochastic Gillespie
algorithm. It provides an exact stochastic time-reaction propagation algorithm, taking
into account the random nature of reaction events as well as its random occurrences.

The framework is ready for constrained input parameter estimation with empirical
data sets of product concentration profiles by utilizing common optimization routines.
Verification of the available data for the most common enzyme kinds (EG, β-G, CBH)
in the literature has been accomplished.

Sensitivity analysis of estimated model parameters were carried out. Dependency
of various experimental input is shown. Optimization behavior in underdetermined
conditions is inspected and visualized.

Results and predictions for mixtures of optimized enzymes, as well as a practical way
to implement and utilize the Cellulect framework are also provided. The obtained results
were compared to experimental literature data demonstrate the high flexibility, efficiency
and accuracy of the presented framework for the prediction of the cellulose hydrolysis
process.
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Symbols

ki rate constants of enzymes. For each distinguishable
reaction a rate is defined. Depending on the reaction
order n, the units are

[ki] =
mol

t · moln
(0.1)

There are five reaction rate constants derived from
the chemical reactions 2.11 and 2.12:

k1: governing adsorption to the substrate

k2: governing desorption from the substrate

k3: governing hydrolization process

k4: governing desorption from the product

k5: governing adsorption to the product

13, 32,
33, 34,
60, 61,
66, 70,
73, 83

ci reaction propensities. Conditional probabilities of
according reaction events in a system, given a system
state. I.e.,

PB(A) =
P (A ∩B)

P (B)
(0.2)

where P (A|B) is the probability of a specific reaction
event A and P (B) is the probability, that an
arbitrary reaction event occurs.

32, 33,
34

kcat Hydrolization rate constant. Identified from the
reaction form to be k3, the hydrolization rate plays a
remarkable role amongst other reaction rates.

11, 12,
13, 44,
62, 63,
64, 83,
84, 102

11



vmax Maximum hydrolyzation velocity for an enzyme
mixture with concentration [E]tot. If the
hydrolyzation rate k3 is k3 = kcat, then

vmax = kcat · ET (0.3)

44, 62,
70

KM Michaelis constant. A measure of the substrate’s
affinity for the enzyme and corresponds at which
substrate concentration the reaction rate is at
half-maximum

KM =
k2 + k3

k1
(0.4)

12, 57,
62, 63,
64, 65,
67, 70,
72, 73,
74, 75,
76, 83,
84, 93,
94

KE Enzyme kinetic efficiency. A measure of how
efficiently an enzyme converts a given substrate.

KE =
kcat
KM

(0.5)

57, 72,
75, 76,
94

KI Inhibition constant. Similar to the Michaelis constant
an inhibition constant is introduced, which shows the
affinity of the enzyme to bind in a non-productive
way to substrate or product.

KI =
k4
k5

(0.6)

57, 62,
64, 65,
73, 74,
75, 93

KC Van Slyke-Cullen constant. Shows the propensity of
hydrolization relative to adsorption.

KC =
k3
k1

(0.7)

57, 70,
72, 94

K̃C Constant is defined in an analogous manner as the
van Slyke-Cullen constant. Relates the propensity of
hydrolization to the propensity of inhibition

K̃C =
k3
k5

(0.8)

73, 74,
94
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KD Dissociation equilibrium constant. Shows the
propensity of desorption relative to adsorption.

KD =
k2
k1

(0.9)

57, 94

KS Sampling parameter used for proper model parameter
samplings in optimization routines.

KS =
∑
i

ki (0.10)

60, 61,
66, 70,
78, 79

NA Avogadro constant, counting particles in a mole of
substance. It is set to

NA = 844468883 ' 6.022 · 1023mol−1, (0.11)

as proposed in ref. [1]

34, 39,
41, 50

ST Total substrate concentration in the considered
solution. Used as a shortcut for [S]tot. As the amount
of substrate is assumed to be in excess, compared to
the enzyme concentration, this is used as the
normalization value, if not otherwise stated.

13, 41,
62, 70,
72, 73,
74, 92,
93

ET Total enzyme concentration in the considered
solution. Used as a shortcut for [E]tot. It is assumed,
that the enzyme concentration is low compared to the
concentration of substrate. Enzyme concentrations
have to be defined and calculated on simulation input
as they are measurable control parameters of the
experiment, contributing to the ratio ET /ST .

11, 13,
39, 41,
44, 69,
70, 72,
73, 74,
92, 93

#E number of enzyme entities, after discretization of the
system

39, 41

#S number of substrate particles, i.e., glucose units, after
discretization of the system

41

#T turn-over number. I.e., the number of conversions per
time unit for an active (catalytic) site, equal to kcat

44

CrI Crystallinity index. Statistical quantity of current
crystallinity degree of the substrate.

26, 89
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DP degree of polymerization. I.e., the relation of the first
to the zeroth moments of polymer length distribution

DP = xN =
p(1)

p(0)
= E(x) (0.12)

where the moments are defined by

p(n) =

∫ ∞

0
xnp(x, t)dx (0.13)

55

L0 ”Solubility barrier”. Polymers with length smaller
than this value are considered soluble and dissolve, if
they are on accessible surface of the substrate

49, 55

T Temperature within the reactor and the solution. 14, 88,
89

pH Measure for acidity of an (aqueous) solution 88
ME molar mass of an enzyme 44
MS molar mass of substrate (= 162 g

mol), see ref. [2] 41
f/fmin friction factor, defining the correction form factor for

enzymes, used in diffusion factor calculation. Equal
to sedimentation factor

40

D Diffusion coefficient. In liquids defined as

D =
kBT

6πηR0
(0.14)

with kB as the Boltzmann constant, T temperature, η
dynamic viscosity of the solvent and R0 the
hydrodynamic radius of the diffusing particle.
Another common definition considers the diffusion
equation

∂tf(x, t) = D∆f(x, t) (0.15)

Assuming, the diffusion coefficient is constant.

40

lD characteristic diffusion length, defined by (A.6). 40
A specific enzyme activity, given in

[A] =
IU

mg
(0.16)

44
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1 Introduction

1.1 Enzymatic hydrolyzation of biomass
Biomass is the oldest energy source of humankind. Since the industrial revolution,
combustion of fossile fuels was the most prominent way to gain energy. In the last
century, however, costs for these energy sources grew considerably, see figure 1.1.

In times of increasing scarcity of resources other ways of biomass processing become
more and more important. For example, biomass is not only the source of a direct
energy production but also an important supplier of chemical products, such as glucose
and other sugar species. Sugars for their part are a crucial precursor for bioethanol
production.

There are two widespread feedstocks of biomass which can be converted to technical
useful sugars [4, 5]. The more established one comes from sugar canes and starch crops.
Here, the fermentable sugars are extracted by grinding or crushing followed by fermen-
tation to ethanol. Production of ethanol from starch is performed by either dry grind
or wet milling process [6]. However, the production of biofuels from food feedstocks has
negative impacts on land use and food prices [7, 8]. This has led to an increasing interest
in biofuel production from non-food biomass feedstocks, see figure 1.2 and ref. [9].

In the latter approach, glucose is separated from the biomass by hydrolytic enzymes.
Such enzymes appear in different microorganisms as yeast (Saccharomyces cerevisiae),
but also in bacteria like Escherichia coli or Cellulomonas fimi [10]. The cellulosic ap-
proach is by far less harmful to the environment and provides a possibility to further
expand renewable energy production [11, 12]. Meanwhile, the sugar production from
the biomass is difficult in terms of technological efficiency [13]. The production involves
pretreatment steps of biomass to improve its accessibility to enzymes, see refs [14, 15].
The conversion reactions require highly specialized enzymes and the conversion reactions
still remain slow.

A collaboration between experimental group at Edinburgh and Paris, industry part-
ners and the theoretical group of Peter Lenz at Philipps University of Marburg was
funded by BMBF for the Cellulect project. Within this project, the goal was to en-
hance cellulosic sugar extraction and to create a genetic platform technology by means
of which mixtures of hydrolytic active enzymes can be optimized with regard to biomass
conversion. To achieve this goal a detailed theoretical model of enzymes was developed,
which can be analyzed through computer simulations.

The main challenge was to formulate the model using as little dynamic parameters as
possible, but still to keep the model flexible and expandable enough to be able to incor-
porate features which are not considered in advance. Furthermore, to model the system
is complex: There are many bacteria producing different enzyme types. The diversity of
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Figure 1.1: Oil prices from 1946 to 2013. x-axis in years, y-axis in US dollars per barrel
of oil equivalent. The figure is the result of query ”oil price 100 years” on
the Wolfram|Alpha Knowledge base. Cf. [3]

Figure 1.2: Amount of articles about enzymatic cellulose degradation for biofuel and
bioethanol production. The figure is the result of the query ”cellulosic pro-
duction OR conversion” on the ScienceDirect literature database. The result
was sorted and filtered by date to get new literature per year published.
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enzymes reaches about 80 types, see ref. [16], and includes different types of Cellulases,
classified by their typical reactions like Endocellulases, EC 3.2.1.4, Endocellulases, EC
3.2.1.91, Cellobiases EC 3.2.1.21. Also, extra cellular enzyme complexes Cellusome are
known, see ref. [17].

Each enzyme has many biophysical parameters, of which values are partly not known
in advance. Likewise the substrate has to be modeled as a geometrical object with
a complex structure and should enclose multiple physical properties, like crystallinity,
degree of polymerization and active surface. The initialization has to be performed
with data provided by experimentalists. Updates during ongoing simulation have to be
guaranteed to be at least feasible from physical, biological and chemical points of view.

The simulated system is coupled via the substrate in a nonlinear manner. Additionally,
the interaction between enzymes should not be excluded a priori, which adds another
nonlinear coupling. Due to these circumstances, the possible phase space has a high
dimension of up to 11 continuous variables combined with up to 8 discrete and categorical
degrees of freedom, making the system an interesting research object.

1.2 Recent trends
Over the last half of this century some models evolved, trying to predict the cellulose
degradation in a qualitative and quantitative manner. Starting with Michaelis Menten
theory, defined in ref. [18], the main approach to enzyme kinetics takes place via hidden
states of an enzyme. Therein, one or more intermediate states of an enzyme are assumed.
Then for each state of enzymes and substrate an appropriate master equation can be
formulated, cf. refs. [19, 20]. See also section 2.2.

With the first approach of Michaelis-Menten kinetics, it is only possible to describe
general chemical reactions, balances and equilibria. As soon as one is interested in a
more detailed description of reactions going on and in examining specific features of the
reactants, one has to extend descriptions of reactions under inspection.

Different approaches exist to capture extended dynamics of a biomass conversion sys-
tem, some of them are mentioned in ref. [21]. The most common of them are

• A ”data driven” approach like in ref. [22] is an abstract way to model a complex
system by a neural network. Therein no physical characteristics of the system
are captured. An artificial regression model is trained by means of (experimental)
data, providing abilities to make predictions about parameter regions, which are
not known so far. However, this approach cannot model a specific behaviour change
since there is no possibility to add features. Another drawback is that a lot of input
data is needed to achieve accurate predictions. In general such data is not present.

• A ”mechanistic” approach, like in refs. [23, 24, 25] incorporates some properties of
the substrate as well as enzymes, reformulating the problem in rate equations. This
approach is capable to capture most individual properties like accessible surface of
the substrate, as well as the behavior of different enzyme types. However, every
feature requires an additional set of rate equations, each of those is not obvious to
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formulate. As the overall set of rate equations grows fast with new features, the
computational abilities of such approaches are limited. Also, there are problems to
formulate cooperative action of enzymes by population-balance equations in use.

• Another promising approach is a ”stochastic molecular” one, seen e.g. in ref. [26].
Therein features of enzymes and substrate are formulated. The algorithm itself
works in an approximative manner. Updates to the environment due to enzyme
activities propagate with a delay in comparison with the ongoing reactions. The
assumption, that the environment does not suffer an appreciable change in its
state on every reaction is not proven. Furthermore, some dynamic parameters are
introduced, which cannot be interpreted as properties of reactants, but only as
optimization parameters to suffice experimental results.

• A radically different approach is chosen by Kansou et al., in ref. [27]. ”Qualitative
reasoning” introduced in [28, 29, 30, 31] can be used, to model arbitrary precise
causality effects, but without precise quantification. Therein, principles are mo-
tivated by human cognition, and only known qualitative values are included into
the model. The model is also meant to provide ambiguous results instead of a
unique one, which is natural for analysis of complex systems. While being able to
compare various entities, like enzyme types or enzyme mixtures, this model fails
to make exact numerical predictions by design. Because the goal of this approach
is to manage incomplete knowledge, only a comparison is possible. On the con-
trary, a quantitative prediction is unfeasible as some dynamic parameters remain
unknown.

From now on, the focus will be on quantitative models to be able to make predictions,
rather that only comparisons. These models, including mechanistic and stochastic ones
make heavy use of numerics. From the numerical methodology point of view also different
approaches can be chosen, see ref. [32, 33]. The differences arise from to interpretation
of chemical and kinetic equations of the ongoing reactions. The common interpretations
include

• solving the governing master equation. Therein, a set of ordinary differential equa-
tions for each possible state of the system is defined. At time t the kth equation
gives the probability of the system being in the kth state, see ref. [34]. As the
overall system state is modeled, the number of states depends upon the total num-
ber of molecules. The resulting system of ordinary differential equations (ODEs)
is therefore very large.

• Another approach comes with the chemical Langevin equation, see ref. [35]. Here,
instead of solving the full set of ODEs to get a probability distribution over all
possible states for each time t, a sample from these distribution is generated. This
approach was derived by Gillespie, see ref. [36].

• A further approach is to neglect the stochastic nature of the ongoing process. This
assumption is known as the thermodynamic limit, see ref. [37]. Then, the governing
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equations becomes ordinary, nonlinear differential equations with reaction rates as
constants. This approach is used in many simulation software packages, e.g., in
the SimBiology toolbox in MATLAB [38].

The latter approach is not able to model single entities of interest in the system, but
only the general behavior of chemical reactions in time. Therefore it is not possible to
model specific properties of enzymes or properties of substrates which are known to be
heterogeneous.

The first approach would enable these features. However, solving an ODE for every
property of each entity of the system is only possible by adding more equations into the
system. This is hardly affordable, if once interested in optimization, where each solution
requires many thousands of system propagation steps with different input parameters.

Therefore the choice was made in favor of stochastically solving the chemical Langevin
equation. The chemical Langevin and the master equations are related. The solution of
the master equation yields all possible (stochastic) paths, which a system can undergo
during evolution. A solution of the Langevin equation yields a single sample of this set.

This circumstance can be handled by enlarging the system size and the number of
samples simulated. By enlarging the system in the model, the probability of a statistical
outlier solution is lowered. By generating more samples of solution paths standard
statistical analysis methods can be used to describe the quality of the model. Their
mean serves as the reference solution, along with a deviation typical for a stochastic
model.

Generally speaking, a lot of models of enzyme kinetics exist and their number is
increasing rapidly, see ref. [9]. Bansal et al. in [33] mentions 73 kinetic models published
from 1975 to 2009. This is an attempt to implement an extendable model, taking into
account known features of substrate and enzymes, keeping the amount of unknown
parameters for the simulation as small as possible. This results into a maintainable
and extendible model so that introducing new features would not require to alter the
behavior of existing ones.

The applications of such models can also be different. Qualitative models are subjected
to show general behavior of its compartments and the influence of new features on their
dynamic behavior. With quantitative models it is also possible to incorporate unknown
dynamic variables, which then are subjects to an optimization process.

During the optimization process the model is ”trained” with some experimental results.
Within this procedure the unknown parameters can be identified and saved. After
this, the model is able to work and make predictions in parameter regions where no
experimental results exist yet.

This approach is useful because it can be applied to various existent data. However,
the quality of found parameters has to be verified. Since this optimization procedure in
general has a heuristic nature, many approaches have to be tried out in order to achieve
a significant statement.

However, the utilization of such models also has advantages in case all parameters are
already known. Once the model is verified, it can be used to predict results in regions,
where experiments are costly and take a long time to carry out.
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After a short summary of symbols this review of recent, historical, environmental,
technical trends and state of the art followed. In the next chapters the work will pursue
the following structure:

Chapter 2 introduces the model, which was composed in the present work. The main
components are the substrate and enzymes taking part in the hydrolization process.
Special attention was paid to the time propagation algorithm. The algorithm and the
discretized approach to the model components establish the stochastic nature of the
model. Boundaries of validity are also discussed in this chapter.

In chapter 3 the described model is subjected to validation. This is done by means
of experimental data and search of corresponding unknown model parameters. In that
way the model can reproduce the given experimental data. An according optimization
problem will be formulated and optimization results will follow. It will be shown, how
difficulties arisen during this phase of work were tackled. The validity of found results
will be discussed as well.

In chapter 4 some applications of the model will be demonstrated. Most of them are
shown in context of experimental data. However, such data could not be found for all
possible applications. Therefore, some of the results are of theoretical nature.

The last chapter concludes the thesis. It provides a short summary of found results,
model features implemented throughout the work and encountered problems. An outlook
and possible extension concludes this work.
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2 Cellulect Model

2.1 Model overview
The developed model is based upon the concept of ”finite state machines” (FSM). FSM
were first introduced in the context of theoretical informatics and comes from the theory
of models of computation, see ref [39]. In this work FSMs are applied for the first time
in an innovative manner for description of cellulosic hydrolysis.

The starting point of this work is the mechanistic model for enzymatic cellulose hydrol-
ysis, derived by Levine et al., in ref. [23]. This model provides a mesoscopic description
of the relevant processes that are characterized by many biochemical parameters (such
as kinetic parameters for enzyme activities, Michaelis-Menten constants, inhibition con-
stants and physical parameters characterizing the cellulose substrate). Additionally, the
model separates the enzyme-substrate interaction into binding and complex-formation
steps, and distinguishes between scission at the interior and at the end of the cellulose
chain. The resulting rate equations are solved numerically. The drawback of this ap-
proach is the dependence on many biochemical parameters, most of which are unknown.
Furthermore, this approach does not take into account any details of the distribution of
substrate.

In refs. [24, 25] Griggs et al., introduced another mechanistic model. Features of
the substrate, like separate crystalline and amorphous phases were not incorporated.
Modifications for new enzyme types are difficult to implement and involve significant
changes to the complete model.

The stochastic molecular formulation introduced in ref. [26] by Kumar et al., is able
to simulate the synergistic action of multiple enzymes during the hydrolysis process
and to capture quite a few important experimental observations (structural properties,
inhibition, etc.). However, the reasoning for time propagating algorithm remains unclear,
lacks flexibility and depends on properties of simulated enzyme kinds.

Based on the models and ideas of Griggs, Levine and Kumar a hybrid mechanistic
stochastic model of the enzymatic hydrolysis process using an event-driven method of
the enzyme-substrate interaction has been developed in this work. This is based on
an explicit set of equations of chemical reactions between system components but does
not require them. Instead rules for enzymes are defined, stating the mode of action of
each enzyme type. The main advantage of this approach is the ability to incorporate
substrate and enzyme properties into the model separately.

The model implements discrete-event enzyme-substrate interactions and includes ini-
tial environment properties, like temperature and pH, initial and dynamic substrate
properties, pretreatment conditions, cellulose surface accessibility, crystallinity of cel-
lulose fibrils, degree of polymerization. Currently, it can be used with at least three
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different types of enzymes that hydrolyze the β-1,4-glycosidic bonds: cellobiohydro-
lases (CBH), endo-β-1,4-glucanases (EG) and β-glucosidase (β-G). More enzymes can
be added using already prefabricated and prepared model training and verification with
separate sets of experimental data for each enzyme.

The model includes the following distinct ingredients:

• The solid substrate which is represented as cellulose fibrils in the form of bundles of
cellulose chains with predefined length distribution corresponding to initial degree
of polymerization of the substrate. The substrate description also includes the
initially active and accessible surface (only the chains at the surface are accessible
to the enzymes), and a predefined crystallinity with a crystallinity distribution in
the cellulose fibrils

• Multiple sets of enzymes of different types as finite-state machines

• An abstract reactor object for managing the back coupling of enzymes to the
environment and dynamic tracking of the whole set of important system parameters
during hydrolysis for evaluation, comparison and matching with experimental data.

• An independent time and reaction propagation algorithm based on the one defined
by Gillespie in [36].

Cellulose in plants appears mostly in connection with hemicellulose and lignin, see ref.
[40]. It has a complex, hierarchical structure, partially ordered in a distinguished direc-
tion into polymers, see figure 2.1.

Modelling the substrate is unavoidable, to achieve quantitative results. Without an
explicit model, either an assumption of substrate in excess has to be made, or, the
substrate model won’t be able to store any dynamic properties, which are subject to
change during the hydrolization process.

Some simplifying assumptions for modelling can be met without altering the main
features of cellulose, most of them concern its geometrical structure. In figures 2.2 - 2.7
some common models are visualized, which are used for representing a substrate.

The solid cellulose substrate in the form of a 3D matrix contains the oriented fibril
of a cellulose chain bundle with predefined location of the reducing/non-reducing ends.
Each cellulose polymer chain consists of monomers with one glucan unit length. Only
polymers at the surface of the matrix are accessible to the enzymes.

In order to mimic the complicated surface structure of the cellulose fibril and its
enhanced surface accessibility for enzymes, the initial active surface of the cellulose fibril
can be modified and made similar to patterns taken from microscopy images of the
experimental cellulose fibers. This includes the substrate structure on the surface as
well as on inner layers.

The length distribution of cellulose chains with narrow Gaussian-like shape corre-
sponds to the initial experimental degree of polymerization of the substrate. Different
efficiency of enzyme action in the crystalline and amorphous regions of the cellulose
fibril is also included in the model. Such regions are automatically distributed along
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(a) (b)

(c) (d)

Figure 2.1: Scanning electron microscope images of unpretreated ((a), (c)) and pre-
treated ((b), (d)) corn stovers, as shown in ref. [41]. The pretreatment
conditions were 0% (w/w) water input, 30 min of milling at 80◦C. The bars
indicate 20µm((a), (b)) and 100µm ((c), (d)).

Figure 2.2: Microstructure model, as shown by Wei et al., in ref. [42]. The model shows
cellulose polymer chains (grey), covered by hemicellulose (pink) and lignin
(blue).
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Figure 2.3: Schematic representation of chain and microfibril packing arrangements for
a 4 × 4 aggregate of 24-chain spruce cellulose microfibrils with alternative
shapes, as shown by Fernandes et al., in ref. [43]. Left: rectangular shape.
Right: diamond shape. The rectangular shape is in closer accordance with
the dimensions observed by X-ray scattering using the Scherrer equation
corrected for disorder. Twisting of the microfibrils prevents their coalescence
by ensuring that, even if, hypothetically, their crystal planes are aligned as
in the transverse section shown, this alignment is quickly lost further along
the microfibril aggregate.

Figure 2.4: Schematic of a cylinder comprised of cellulose chains, as shown by Griggs
et al., in ref. [44]. R is the microfibril radius, R0 is the current radius of
accessible substrate, pi is the ratio of hidden substrate and ps is the ratio of
accessible substrate.
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Figure 2.5: Different shapes and combinations, as shown by Levine in ref. [23] to repre-
sent polydisperse distribution of spheres of the substrate. The emphasis lies
on the modelling of various surface to volume ratios and to maintain same
ratios with different geometries.

Figure 2.6: Structure of elementary fibril simulated in model of Kumar, see ref. [26]. The
figure illustrates the arrangement of glucose molecules in an elementary fibril.
Glucose molecules in red represents crystalline region and glucose molecules
in black are in amorphous region.
G1: on surface; crystalline; reducing end;
G2: on surface; crystalline; non-reducing end;
G3: on surface; crystalline;
G4: on surface; amorph;
G5: on inside; crystalline; reducing end;
G6: on surface; crystalline
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Figure 2.7: Representation of the cross-section of a micro fibril and cellulose as shown
by Flores et. al. in [45].

the substrate matrix resulting in experimental crystallinity index CrI of the cellulose
substrate.

The substrate is simplified in comparison with the model of Kumar, cf. [26], as that
surfaces on elementary fibrils do no differ from surfaces on macrofibrils. However, this
feature can be added easily. For a detailed description, see section 2.5.

The distinctive feature of the implemented model is the description of enzymes as
finite-state machines (FSM), independent from substrate. I.e., in contrast to ref. [46],
any assumptions on amount, concentration, or physical properties of the substrate were
done, while formulating behavior of enzymes. The present model in particular does not
assume substrate saturation to formulate enzyme actions.

Given a reaction graph, see e.g. [47], the states of the FSM for each enzyme type
coincide with the nodes of this graph. Each reaction corresponds to a state transition,
see section 2.2. This leads to minimization of the amount of parameters needed for a
quantitative model, see ref. [48].

Enzymes detect their external environment, react in a stochastically (with predefined
probabilities) or deterministically manner, and couple back to the environment (sub-
strate and solution). The model is able to track dynamic changes of the substrate
structural properties (average degree of polymerization, crystallinity, surface accessibil-
ity) and to provide time-dependent concentrations of soluble oligomers and cellulose
chain length distributions.

In order to overcome the limitations of many previous studies the enzyme functionality
was implemented as a FSM with finite and predefined states. In this description, enzymes
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Figure 2.8: Quaternary structure of Endo-β-1,4-Glucanase. Trichoderma reesei cel12a
P201C mutant. Image generated by Pymol, see ref. [49]. PDB image: 1OLQ.

undergo state changes during the hydrolysis of cellulose. Three states were identified
and modeled:

• not bound to the substrate, i.e. “free” state,

• bound to a chain that currently cannot be hydrolyzed by the enzyme, i.e. “inhib-
ited” (by product/intermediate) state and

• bound to a chain that can be hydrolyzed, i.e. “bound” state.

In general, an enzyme is a complex, bioactive macroprotein. As accelerators for chem-
ical reactions, cells need enzymes to enable and to accelerate metabolic processes.

There are known many different enzyme types, from various bacteria. Enzymes differ
in form, size, action mode, reaction rates, orientation, catalytic domain, carbohydrate
binding module, processivity, dependency on substrate and product properties. Trying
to model every single property of an enzyme can therefore be very difficult and does not
promise to yield more significant results than with more simple assumptions.

In figures 2.8 - 2.10 there are parts of enzymes depicted as crystal structures. Even
small parts demonstrate the complexity of these proteins.

Some simplifications are made in the current work to model enzymes properly. For
example, an enzyme can bind to a single polymer chain only and cannot cover multiple
polymers simultaneously in the transversal direction. Another simplification is induced
by the difference between the size of an active center of an enzyme and the effective size,
which an enzyme blocks on the substrate surface. The former defines the characteristic
products of an enzyme, while the latter determines the maximal binding area of an
enzyme. This discrepancy was solved by introducing a specific binding area (SBA) for
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Figure 2.9: Crystal structure of catalytic domain of 1,4-beta-Cellobiosidase (CbsA) from
Xanthomonas oryzae pv. oryzae. Grouped by color, based on identified
atomic units. Image generated by Pymol, see ref. [49]. PDB image: 5XYH.

Figure 2.10: Crystal structure of beta-glucosidase A from bacterium Clostridium cel-
lulovorans. Image generated by Pymol, see ref. [49]. PDB image: 3ahx.
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an enzyme, keeping the characteristic product size as a distinct parameter. See section
2.4 for a detailed enzyme description.

Chemical reactions are modelled as a Poisson process. Therefore, the time between
reaction events is also a random variable. In this context, the physical time is defined in
terms of the so called stopping times. These are known to be exponentially distributed,
see ref. [50] and sections 2.2 and A.3. Naturally, the time, when a reaction event occurs
is not predictable by inspecting the former reaction event timings, see ref. [51]. It
follows, that it is not possible to exactly predict, at which time a specific system state
will arise.

The fact of randomized time has to be taken into account as a side effect of embedding
a discrete time Markov chain (DTMC) into a continuous time Markov chain (CTMC).
While technically being equivalent, the DTMC provides the same behavior as the CTMC.
Though the DTMC does not contain any notion of time but an artificial one, called
Markov moments. The CTMC provides the physical notion of time by defining transition
rates. As the occuring events in the system are Poisson distributed, the interarrival
times have an exponential distribution and in particular are not predictable. Section 2.3
describes, how this influences the precision of the model and its predictive power.

The algorithm is stochastically exact in the sense that it considers the random nature
of reaction events sequence, as well as the random nature of their occurrences over time
[52]. Further, it models Monte-Carlo simulations in a rejection-free manner, as a system
change with a defined rate has to emerge. As such it provides the connection between
artificial discrete time steps and the natural continuous time scale, without making any
assumptions about possible reactions during the execution. The original algorithm of
Gillespie was enhanced for performance, see section 2.2.

Sampling reactions and reaction timings simulateneously, the time algorithm is consis-
tent, self contained and separates concerns in a clear way. This provides nice properties
for reasoning and maintainability of the model in general and for the algorithm in par-
ticular.

Although the model requires optimized parameters from validated experimental data,
the number of required parameters is smaller than in other mechanistic or data driven
models. Additionally, the approach makes it possible to partially deduce the correspon-
dence between the internal parameters of the FSM used as enzyme model and its kinetic
parameters (e.g. activity, stability etc.). Provided input parameters intuitively trigger
the features contained in the model. For example, providing an initial crystallinity index,
the substrate will contain the notion of crystallinity. Providing inhibition rate constant
for an enzyme, the enzyme will undergo inhibition reactions, like in figure 2.12, whereas
omitting them leads to simplified dynamics, described by figure 2.11.

By means of this modelling approach it is possible to describe the relevant enzymes and
the substrate in such detail, that the hydrolytic cellulose conversion can be examined
under realistic conditions. As a first application it was used to find optimal enzyme
mixtures concerning cellulosic degradation. The developed model is not limited to the
description of this system. It is applicable to different enzyme driven reactions. As
such it could provide a new theoretical approach to systems, where molecular details
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E + S
k1
k2
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k3 E + P

Figure 2.11: Basic Michaelis-Menten kinetics. k1 is the adsorption rate, which forms the
enzyme-substrate complex, [k1] = (mol · [t])−1. k2 is the desorption rate
and k3 is the catalytic rate [k2] = [k3] = [t]−1

E + S
k1
k2

Cs
k3 Cp

k4
k5

E + P

Figure 2.12: Michaelis-Menten kinetics extended with (competitive) product inhibition.
k1, k2, k4 and k5 are the adsorption and desorption rates, which form the
enzyme-substrate and enzyme-product complexes, respectively. k3 is the
catalytic rate. [k1] = [k5] = (mol · [t])−1. [k2] = [k3] = [k4] = [t]−1

of enzymes play a central role, different enzymes act together or where substrates have
complex geometries or the above combined.

2.2 Time propagation algorithm
Starting from the chemical equations shown in figures 2.11 and 2.12 the underlying
process is a process with constant rates and therefore a Poisson process, see ref. [53].

Knowing the governing property of the dynamics, the remaining question is how to
convert the information contained in a reaction scheme into a usable and extendable
simulation formulation.

Let’s inspect the notion of time in a Poisson process. The process is interpreted as a
counting process {Nt, t ≥ 0}, with the properties

N(t) ≥ 0

N(t) ∈ N
s ≤ t ⇒ N(s) ≤ N(t)

s ≤ t ⇒ N(t)−N(s) = Ns+t −Ns,

(2.1)

see ref. [54]. This definition is valid for observed events in the simulated system, which
are identified as reactions in this work.

If {Nt, t ≥ 0} is a Poisson process with the intensity λ, see e.g., ref. [55], defined by

P(Nt −Ns = k) =
λk(t− s)k

k!
e−λ(t−s), (2.2)

with k ∈ N. Then, let N s
t = Ns+t − Ns, ∀s, t > 0. As the increments are mutually

independent and stationary, i.e,

• for all n ≥ 2, 0 ≤ t0 < t1 < · · · tn, the increments {Ntj − Ntj−1 ; 1 ≤ j ≤ n} are
mutually independent
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. . . x(t− 1) x(t) x(t+ 1)

y(t− 1) y(t) y(t+ 1)

. . .

Figure 2.13: A general hidden Markov Model. While the states transits from one state
x to the next in a discrete manner, the observable variable is y. The time
is modelled either continuous: t ∈ [0,∞) or discrete: t ∈ N0. In either case,
it is discretized and propagates in concert with the model state.

• for all 0 ≤ s < t, the law of Nt −Ns depends upon the pair (s, t) only through the
difference t−s, then {N s

t , t ≥ 0} is a Poisson process with intensity λ, independent
of {Nr, 0 ≤ r ≤ s}.

Since the increments {Ns+t − Ns, t ≥ 0} after s steps are independent of the past
{Nt, 0 ≤ t ≤ s}, the future {Ns+t, t ≥ 0} after s steps depends upon the past {Nt, 0 ≤
t ≤ s} only through the present value Ns. In other words, the past and the future are
conditionally independent, given the present. This is the Markov property. It is also
known, that the arrival times are exponentially distributed, as the underlying process
is Poisson. Of course, this is only correct if the states are fine grained enough, i.e., the
time scale is chosen in a way to be able to catch all present states, see ref. [56].

The choice of the right time scale has still to be solved at this point and is not trivial,
even if the distribution of timings is known. The solution to this problem is derived with
the concept of Poisson hidden Markov model, see ref [57].

Essentially, the idea of a hidden Markov model (HMM) is, that the system under
inspection separates in two parts, a hidden and an observed one, see figure 2.13. The
observed part depends on the hidden one only. Given that the global, measurable sys-
tem is a Markovian process, the hidden process does not have to obey this restriction.
Markovian in this context means, that the next observed state depends only on the cur-
rent global state (which includes the state of the hidden process). As the hidden process
is not observed, its inputs can be arbitrary, and depend e.g. on the global state. In this
way, nonlinearities can be modelled, as long as global state changes are tracked with a
time scale which is fine grained enough, see section A.3.

From the chemical reactions described in section A.2 rate equations [58, 59] can be
formulated. From here two paths can be taken, one for the modelling approach, another
for stochastic master equation formulation. While stating the master equation here,

dPk

dt
=
∑
k

(TklPl − TlkPk), (2.3)

the derivation of it and the nomenclature used by this formulation is not needed in this
work. Furthermore, its derivation tightly follows the algorithm described below, see ref.
[60].
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The attention should now be drawn to the model approach. For the processes described
above many algorithms are known. Some of them use artificial Markov times, others work
with natural time. Some of them are exact e.g., in ref [36], others are approximative,
see refs [61, 62].

For the chosen algorithm of Gillespie, the rate constants ki are converted to propen-
sities ci to achieve a proper reaction sampling, as described in the algorithm 2.14.

First ideas about propensity definition date back to de Donder in [63]. There, an
affinity of the system to the next reaction is defined in terms of the free enthalpy change
in a reaction.

In general, the propensities can be defined in terms of conditional probabilities, see ref.
[64]. That is why they imply the normative notion of probability, being normalized by the
probability of an arbitrary reaction. The sampling used to model reaction propagating
is based upon this conditional, relative character of reaction probability.

However, the notion of continuous time, proved by Gillespie in [36] also uses the
conditioning part of the propensities. In his algorithm this is done, by formulating
the algorithm in a non-rejective manner, implying that the probabilities of described
reactions form the probability of an arbitrary event exclusively. This approach is known
as model marginalization [65].

In other words, the marginalization is not enforced for the notion of time. However,
some normalization assumption for defining (reaction) event propensities has to be made.
Modelling physical time can only be achieved, if the normalization assumption takes all
reaction rates into account, which are present in the model. Moreover, if all reaction
rates are taken equally into account, all assumptions that can be made are equivalent,
see ref. [48].

The separation of concerns is emphasized here:

• The normalization constant, which is used to convert reaction propensities ci into
unconditioned probabilities is used for time calculation.

• The remaining probabilities are used to sample reactions in a correct manner.

Given (relative) reaction probabilities, the dynamics is pinned down. However, the
time scale is only provided, if the normalization constant is recorded along with the the
reaction probabilities.

The process of marginalization (and generally, normalization) can be inverted, how-
ever, by making some assumptions. This procedure is also known as embedding a DTMC
into a CTMC, see ref. [66]. There are various possibilities of how to accomplish the em-
bedding, see ref. [67], called as realization problem. Essentially, the question to solve is
how to recover the normalization factor.

This is by design, as a normalization process, used for probability derivation, removes
a common factor from the values being normalized. That is, if reaction propensities
are given, the observed dynamics correspond to the dynamics described by reaction
equations. However, the notion of time is lost. The (normalized) propensities do not
carry any information about the original values of reaction rates.

32



The transition from rate equations to reaction propensities is technically solved by
Gillespie in [36]. Therein an intensity vector

−→
λ with entries for each distinguished event

is defined. In a reaction system, the entries in the vector take care of reaction rates, as
well as reactant amounts and have the units of 1/[t]. Then, the intensity

λ =
∑
i

λi (2.4)

is interpreted as the Poisson intensity for a reaction to happen in the time span [t, t+dt],
see also ref. [68]. The reaction is chosen in a random manner from the intensity vector
−→
λ weighted by its components. The time needed for the chosen reaction is the inverse
of the intensity λ.

The inverse problem is much harder to solve and can generally only be tackled numer-
ically. If experimental series are provided for model training, relative model parameters
λi can be found, governing the proper reaction sampling. The time scale is left out. To
find the proper time scale either a time scale parameter has to be provided along time
series or a hierarchical, so called hyperparameter optimization has to be formulated. See
e.g. ref. [69] and section A.3.

The present model works with natural time. To achieve this, the propagation al-
gorithm has to couple time propagation with the Poisson intensity function, defined
above. After this, the remaining algorithms break up in two groups: rejection kinetic
Monte Carlo methods and those which are rejection-free. The difference is, that the
former accept time going on without any change in the overall system, whereas the lat-
ter exclude such cases. Being defined in such way, the rejection-free algorithms build a
proper subset of algorithms with rejection, namely those, where probabilities to undergo
a self-transition of a system state are zero. Moreover, capabilities of the two groups of
algorithms to model physical time are equal [48].

Now, as the choice across all known algorithms is arbitrary, it was made according
to the knowledge and elaboration level. The Gillespie time propagation algorithm was
defined in [52]. The algorithm is widely used and some enhancements for specific systems
were made [70, 71, 72, 73] since its introduction. In this work the enhanced logarithmic
direct method defined in [74] is applied.

In [75] a further simplification was proposed for exact propagation algorithms, which
was also taken into account.

With the the enhancements above, the diagram of the Gillespie algorithm reads as in
figure 2.14. For calculation of propensities there are two cases to differentiate

• reactions of first order, like
X

ki−→ P (2.5)

For these reactions the propensity is calculated by

ci = ki ·X (2.6)

where ki denotes the reaction constant and X the concentrations of species for the
reaction.
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• reactions of second order, like

X + Y
ki−→ P (2.7)

In this case the rate constant has to be normalized by the molar volume, to stay
comparable with propensities of other reaction orders.

ci =
ki

NA · V
·X · Y (2.8)

where ki denotes the reaction constant, NA the Avogadro constant, V the reaction
volume and X,Y the amounts of species for the reaction, taken in their discretized
form.

See also ref. [32] for propensity calculations for other reaction orders.

2.3 Boundaries of validity
The model is a mean field model in the sense, that diffusion is neglected during simula-
tion. Reaction rates drive essentially all possible reactions. Effects taken into account,
like enzyme-enzyme interactions, substrate-surface properties, and implied biological
enzyme properties or other coupling effects can be seen as perturbances to these rates.
Reaction rate constants are assumed to be constant properties of enzymes. To imple-
ment this, a discretization of the system has to be defined. The total amount of enzymes
and substrate remains constant during a single simulation run, see ref. [76].

After discretization the simulation is carried out by solving the according Langevin
equations, as mentioned in section 1.2 This is done by constructing an appropriate
Poisson hidden Markov model, see e.g., refs. [77, 78]. This has the desired distribution
as its equilibrium distribution and produces a sample from this distribution for each
time t, until the desired simulation time is reached. The distinct feature is, that the
Markov chain in this model is constructed using substrate and enzyme properties only.
Each step during a simulation run is carried out by using the time-reaction propagating
algorithm, explained in section 2.2. The result of each step contains two statements.

• a time, sampled from an exponential distribution with the scale parameter 1/λ,
see section 2.2

• a reaction, sampled in a random manner, according to the reaction propensities
vector

−→
λ .

Both are saved. The reaction changes the global state of the system, the time contributes
the according record to the time axis.

As the time is a result of sampling from a distribution, all informations have a distri-
bution along the time axis. Moreover, the distribution is exponential, so the sequence
of sampled times is in general totally inaccessible, see refs. [79]. I.e., knowing all times
sampled so far, the next sample remains unknown and unpredictable.
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(a) Original Gillespie algorithm.

∆t = 1
ps

generate random number r

binary search for smallest m
such that r · ps <

∑m
i=1 pi

perform mth reaction,
updating system state

compute propensi-
ties pi of each reaction

ps =
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i=1 pi

(b) Gillespie algorithm with enhance-
ments.

Figure 2.14: Gillespie algorithms, original, defined in ref. [36] is reproduced in (a) vs.
enhanced one shown in (b). In comparison to the original, one less random
number is generated, a logarithmic operation is omitted, see ref. [75] and a
binary search is used for better performance at the expense of using more
space for storing of the propensity array, see ref. [74].
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Every reaction leads to a global state change, as the used algorithm is rejection-
free. However, showing e.g., the time evolution of hydrolized products or the remaining
substrate, does not reflect every reaction equally. This is, because not every reaction
leads to a conversion of substate to product. For example, the reaction of adsorption
or desorption leads to complexation or decomplexation, but does not change substrate
amount. Nor does a hydrolysation of a polymer, if the hydrolization generates two
insoluble polymers.

In this work, most plots concerning concentrations imply that reactions happened
before being aggregated. This is the natural way of analyzing the effect enzymes as
an active substance, due to the experimental accessibility. The aggregation happens
over a time span, namely the time span since the beginning of measurement/simulation,
as well as over different reactions, which have nominal character and are in general
incomparable.

The sampling of a nominal variable has to be explained. This is done by assigning a
propensity to each reaction. Being at least an ordinal variable, the propensities vector
can be ordered, weighted and used as sampling outcomes.

Here, one has to keep in mind, that as reactions are the outcome of a random process,
the aggregated value measured at some point also has a distribution. As the measured
value also ignores some of the sampled reactions any direct relation between them is
lost. I.e., even if any statistical information about the reactions is given, it is discarded
during analysis of concentrations.

At this point however it is interesting to show how reactions are distributed in time,
for an example system. Reactions and related entities are of different nature in general.
I.e., they form categories, rather than comparable values. This is why methods for
categorical variables should be applied accordingly, see ref. [57]. A new approach of
depicting such data is the so called mass evolution graph, developed by Ribler in [80],
see figure 2.15.

As seen in figure 2.15, there are time spans assigned to each reaction. The time spans
are non-overlapping but contiguous. This is another interpretation of the exclusiveness
of reaction sampling. Each time span corresponds to the exponential distribution of time
samplings 1/λ. I.e., the duration of a reaction and the error of time measurement of the
manifestation of this very reaction is interpreted to be the same.

The mass evolution graph was chosen as a convenient method to represent the under-
lying simulation procedure of the model. It also allows us to apply statistical analysis
methods to reaction arriving times, see figure 2.16. In the basic Michaelis-Menten ki-
netics, described by the model 2.11, the product related graphs are absent. With the
presence of inhibition in the model, two new time evolution series arise.

The new time series depend on the product amount, however, they are independent
from the former given time series. This fact allows to encode more information about the
system state. For example, the velocities of substrate associated reactions can be related
to the product associated for inspecting the product saturation level. This cannot be
achieved without taking inhibition by product into account.

The identified parameter to control the standard error of a concentration measurement
is the system size. The discretization ratio between reaction compartements is fixed
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(a) Depicted are counted events of different reactions and concentrations of substrate and product
vs. time. Different lines correspond to different reactions, according to the legend. In figure
(b) the marked part is shown with a larger scale.

(b) Small time frame of reaction events shown figure (a). Given a time point, the concentrations
of reactants are the result of some specified initial conditions and reactions until this time
point.

Figure 2.15: Simulated data points of concentration as well the simulated reactions in
between. Reactions are sampled at random, corresponding to their propen-
sities and are mutually exclusive by design. The lines connecting the sim-
ulated concentrations are depicted for guidance purposes. Concentration
data is distributed along both axes. Distribution along time is due the dis-
tribution of reaction arrival timings, as shown in figure (b). Distribution
along the the ordinate axis is due the random reaction sampling.
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(a) The sampled reaction arrival times, shown in figure 2.15 are now shown as cumulative distri-
bution on the support of recorded time of the simulation. Reactions related to the substrate,
especially the hydrolization reaction, depicted as s → s coincide with the product time
evolution. The time evolution behavior is further analyzed in figure (b).

(b) From CDFs in figure (a) are taken derivatives and the according PDFs are shown. These are
the velocities of reaction propensities evolutions.

Figure 2.16: Figure 2.15 contains essentially only reaction counts the interpretation of
their occurrences can be achieved via the distribution of their arriving times.
In figures are shown their CDFs and PDFs accordingly.
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Figure 2.17: Standard error of the simulation diminishes with increasing number of
enzymes. The number of enzymes is proportional to the system size
#E = NA · V · ET . I.e., the control parameter of the model precision is
the chosen system size.

by the experimental setup. So, the system size influences the number of entities in the
simulation, while their ratios remain fixed. I.e., the amount of substrate and the amount
of enzymes are sampled by means of the common discretization factor NA ·V , where V is
the system volume, or system size. The ratio of sampled units maintains some required
ratio, predefined by the user. However, the system size remains a free parameter and can
be renormalized to represent real systems of various sizes. In figure 2.17 the dependence
of the standard error with respect to the system size is shown.

Being the square root of variance, the standard error is defined as the square root of

σ2 = σ2
t + σ2

c (2.9)

For each measured point of resulting time series of concentrations:

• σ2
c is the variance along the ordinate axis. Usually concentrations at a time point

are measured on this axis.

• σ2
t is the variance along the time axis. As seen in figure 2.15, this part of the error

is expected to be small in comparison to the other.

That is, every given time point cannot be predicted exactly and will also have a distri-
bution with a given mean. This is the exponential scale parameter σt = 1/λ, discussed
above and shown in the figure 2.15.

The question about how many samples are needed for significant statistics is also rele-
vant. Here, the following qualitative argument is used: even if variance has a dependency
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on the sample number:

σ2 =
1

n

∑
i

(xi − µ)2 (2.10)

where µ is the mean of samples taken, and xi is a single sample, in general, variance has
a saturation behavior [81, 82]. Therefore, any sample size beyond the saturation point
can be taken. For figure 2.17 120 measuremens for each data point were made. Given
this, the values of means and the values of variances, still remain statistical quantities,
and depends also on the random number generation, which is in general unpredictable.

Diffusion

Diffusion is an important feature of many physical models. As such its role in a given
system has to be inspected.

For this, beginning with the diffusion equation [83]

∂C

∂t
= D∇2C (2.11)

let’s consider the fundamental solution in 1D

C(r, t) =
1

(4πDt)
exp

(
−x2

4Dt

)
(2.12)

and define the diffusion length to
lD = 2

√
Dt (2.13)

as an estimation of the characteristic diffusion length of an enzyme.
Now, using the diffusion coefficient, defined by Stokes-Einstein equations [84, p. 127]

D =
kBT

6πηR
(2.14)

with
m

ρ
= V =

4

3
πR3

0 ⇒ R0 =

(
3m

4πρ

)1/3

(2.15)

However, the dimensions based on the mass and density are not valid for an enzyme, as
it is not a smooth sphere, so we take a factor of sedimentation respectively of friction of
f/fmin = 1.5 into account, see ref. [85].

The estimated density of enzymes is about 1.37 g
cm3 [86]

For T = 300 K and η = 1 · 10−3 Pa · s we use standard conditions of water and the
mass of an enzyme is taken as 50 kDa for a rough estimation. kB = 1.38 · 10−23 J

K

As the result we get

D =
kBT

6πη · f/fminR0
= 6 · 104 nm2

ms
(2.16)
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The extended calculation can be found in section A.1 Following eq. (2.13) a length of
1.5 µm of diffusion is achieved after about 10 ms. This is the typical length scale of a
substrate.

As simulations are meant to be driven in the range of substrate saturation it is assumed
that fluctuations across substrate don’t play an important role and are therefore omitted.
By neglecting diffusion, it is assumed, that every reaction is slow enough, to neglect
concentration gradients.

System discretization
The system is being discretized on a grid with the unit cell spacing defined by experi-
mental data. This happens while system size remains not fixed and free to choose. The
grid size depends on the ratio of the active and passive species in the simulation. This
ratio is given by the experimental data or user input and is not a free parameter. The
system is therefore ”discretized by monomers”.

The essential value for discretization is the system size V [87] and the molar volume,
defined by NA · V , where NA is the Avogadro number.

Therefore, the number of entities taking part in the simulation is given by:

#S = NA · V · ST (2.17)
#E = NA · V · ET (2.18)

where ST and ET are the total concentrations of substrate and enzymes in the solution
respectively.

Typically, the ratio of ET /ST is given in µmol/g of substrate and the concentration of
ST in mol/vol. Taking into account, that the system size V remains a free parameter in
the simulation, one can parametrize the total concentration of enzymes by the concen-
tration of substrate, set ST = 1 and choose an appropriate volume V to minimize the
discretization error for the enzyme amount. The error is minimized, when the product
for #E is a natural number with minimized rounding error.

Taking this approach, total mass of substrate is calculated by

mS = NAV · MS

NA
· ST (2.19)

where MS is the molar mass of the substrate (= 162g/mol), see ref. [2].
If all concentrations are normalized by the substrate concentration, then enzyme type

concentrations are automatically satisfied by plugging in either enzyme type concentra-
tions itself or the number of enzyme samples into the simulation.

2.4 Enzyme description
In the chosen approach enzymes are described as ’finite state machines’. The concept was
formalized by Harel in [88] and is a convenient way to represent a complex behavior, see
refs. [89, 90, 91, 92, 93, 94, 95]. Also stochastic enzymatic processes can be functionally
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described by the formalism, like in refs. [96, 97]. However, in these works it lacks a
systematic application of the captured description.

Here, the approach facilitates a detailled description of the internal states of an en-
zyme. E.g., the enzyme can be adsorbed to substrate. After an adsorption a hydroliza-
tion step is possible. However, it can also be adsorbed in a non-productive way [98, 99].
After such a binding, the enzyme can only desorb. Enzyme states are mutually exclusive
and a certain amount of time is needed for transitions to happen.

Some preliminary assumptions are made before discussing the behavior of enzymes.
These concerns geometrical and logical constraints to guarantee operability of an active
entity in the present system in general.

• As mentioned in section 2.1, there were three states for enzymes identified: ”free”,
”bound” ”inhibited”. This is done especially to adapt the model of enzymes to
the underlying chemical reactions. With the equivalence of internal enzyme states
and the underlying chemical model it is possible to directly relate all simulation
parameters to substrate and enzyme properties.

• If an enzyme is bound to, or inhibited by a polymer chain, no other enzyme is able
to bind to the same location. I. e., an enzyme exclusively ”owns” the substrate
area it is bound to.

• The states an enzyme can take are exclusive. There are no mixed states in between.

• If a desorbed, (i.e., ”free”) enzyme is chosen for an action, an accessible substrate
area is chosen for binding. If the binding site is located at a hydrolysable polymer
chain, the enzyme transits to the bound state. Otherwise, the enzyme transits to
the inhibited state.

• There can be substrate areas, where no binding is possible. These are excluded
from considerations for an enzyme type while binding, until they become accessible.
Due to this, the propensity function for reactions changes its magnitude, retaining
the mutual probability ratios of reactions. Updates of substrate properties follow,
among other things, geometrical considerations of the bulk used. Therefore, the
propensity function updates in a nonlinear manner.

The rates to act on (bind to, desorb from and hydrolize) crystalline and amorphous
substrate regions can be defined independently. It is also possible to optimize their
difference based on one of the rates set. For the latter case, a one-parametric model was
chosen and verified, see section 4.4.

Starting from the “free” state, the enzyme binds to a randomly chosen site at the sub-
strate that is accessible to the enzyme. Additionally, the structural features of enzymes
include their specific binding area. This area defines the maximal area of substrate sur-
face, which becomes inaccessible to other enzymes after binding. If the binding site is
located at a soluble polymer chain that cannot be cut, the enzyme undergoes a transition
to the ”inhibited” state.

42



In the “inhibited” state the enzyme undergoes transition to the free state, determined
by the type of the enzyme. The probability can further depend on the time spent in the
current state, and on the soluble oligomer chain length it is blocked with.

In the “bound” state the hydrolysis behavior of the enzyme is also probabilistic and
is defined by the enzyme type. It can either unbind or proceed with the hydrolysis. If
the enzyme is of processive type, it remains adsorbed after a performed hydrolysis step.
This continues until it reaches the end of the polymer chain or a blocked range of the
chain, with non-zero probability to desorb underway. Addionally, the probabilities of
actions depend on the crystallinity characteristics of the substrate, to which the enzyme
is bound.

In particular, enzymes of various organisms differ in the way they bind to and hy-
drolyze the substrate, and how much time the transitions between different states need,
see section 2.1. Each of these properties can be taken into account within the present
approach. Furthermore, the geometrical structure plays an important role in cellulose
degradation. Typically only the surface of the cellulosic bulk is accessible to enzymes.
The difficulty here is that the surface changes over time. The information about the
accessible surface has to be kept up-to-date for all enzymes in order to achieve correct
behavior of the overall system. With the current approach the influence of the geometry
on the enzymatic celluose degradation can be studied in more detail than with any other
model until now.

In figure 2.18 the general state machine for considered enzymes is shown. There are
three main exclusive states of an enzyme: being either adsorbed, inhibited or desorbed.

In general, there are n2 transitions possible, if n is the number of states. However,
taking the time propagation algorithm into account, some of the transitions have to be
excluded. These are self transitions from state Ef and Ep as they would correspond to a
rejection of any action. This contradicts the chosen time propagation algorithm, which
excludes transitions, that do not change the global state. Furthermore, the transition
from Ep to Es has to be excluded, as this would imply a recombination of products
to substate. Such recombination is unlikely to happen, as stated by e.g., Bisswanger
in ref. [58]. Thus, there are six transitions left. They can be naturally interpreted
in the context of Michaelis Menten kinetics as well as in the context of the Gillespie
time-reaction propagation algorithm:

• Ef −→ Cs corresponds to enzyme binding

• Ef −→ Cp corresponds to enzyme inhibition

• Cs −→ Ef and Cp −→ Ef correspond to enzyme desorption

• both remaining transitions correspond to hydrolyzation processes. The path taken
depends on dynamic properties of the enzyme and substrate, which are not depicted
in this figure.

On the edges of the general state machine in figure 2.18 propensities for the according
reaction are depicted. For propensity calculations see section 2.2.
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Figure 2.18: Common state machine for enzymes. The probabilities of each transition

are depicted on the edges. Each transition changes the state of the whole
system, by interaction of enzyme and substrate. Following reactions are
shown:
adsorption: Ef −→ Cs,
inhibition: Ef −→ Cp,
desorption: Cs −→ Ef , Cp −→ Ef ,
hydrolysis: remaining transitions starting from Cs are mutually exclusive,
depending on enzyme type and dynamic substrate properties.

Common enzyme properties

Activity

The activity is the substantial chemical characteristics of an enzyme. There are some
varying definitions of activity, which comprise enzyme units, volume activity, specific
enzyme activity and enzyme velocity [100]. All of them represent the ability of an
enzyme kind to convert a substrate to a product.

Starting with the specific enzyme activity A the turnover number #T can be calculated
to

#T =
A ·ME

103 · 60
1

s
=

vmax

ET
= kcat (2.20)

where A is the activity given in [A] = IU/mg, ME is the molar mass of the according
enzyme given in ME = mg/mol, vmax is the maximum conversion speed, measured in
initial enzyme assays. see ref [101].

The second part of the relation comes from the inspection of Michalis-Menten kinetics,
see section A.2.

#T is a measurement of frequency for every active site in conversion process. For
simplicity, only enzymes with single active site are taken into account in the current
model. However, enzymes with more active centers can be added without any significant
difficulties.
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Specific products

From various experimental data, it follows that different enzymes produce different prod-
ucts with different predispositions. I.e., the size of the active center of the enzyme define
the lower possible limit of polymer chains, which can be hydrolyzed.

During the simulation for each polymer it has to be dynamically decided, whether it
can be hydrolyzed and a reaction propensity has to be assigned as well. The size of the
active center specifies the former result.

The measurement of the size of the active center can be inaccessible in general. It is
meant to be replaced by the information about the smallest measurable product in this
case.

Specific binding area

Beyond the size of the active center, the effective binding area of an enzyme has to be
taken into account. They do not limit the reaction ability of an enzyme, but define the
maximum area of the substrate that is going to be blocked after an adsorption. This
property is not essential for carrying out a reaction as opposed to the information about
specific products above. If the exact information about an enzyme is not known, it can
be estimated. The value of the specific binding area is expected to be larger than the
value of the according active center.

The specific binding is assumed to be the sum of the carbohydrate binding module
extents and the linker if they are present, otherwise to be of the size of the catalytic
domain. Each enzyme tries to block the current specific binding area of the chosen poly-
mer. However, the adsorption or inhibition reaction are not dependent on the availability
of this space.

Synergism effects

The model is meant to be driven in substrate excess mode. I.e., synergism effects are
mainly indirect and stochastic, in the sense of coupling via the substrate and the ap-
propriate propensity changes. However, direct enzyme-enzyme interactions cannot be
excluded and are seen as rare events. For example, if an enzyme is inhibited and a nearby
enzyme is desorbing, then the inhibited one has the ability to expand his adsorption area
to perform a transition to the adsorbed state. In the tested regions of model parameters
no influence of this feature could be observed.

Reaction rates

The number of reaction rates depends on the kinetics model taken into account. The
basic Michaelis Menten kinetics assume three different reaction rates with rate constants
k1, k2 and k3, see figure 2.11. They are responsible for adsorption, desorption and
hydrolysis processes respectively.

However, being somewhat unnatural, see ref. [97] the model in this work takes inhibi-
tion by product into account, see figure 2.12. With this extension the number of reaction
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rates number increases by two, with rate constants k4 and k5. These are responsible for
binding and desorption of products of the enzyme.

As a further approach to natural behavior a dependency of reaction rates on substrate
regions can be modelled. For this purpose, more than a single set of reaction rates are
stored in the enzyme model. For every distinct region of the substrate a specific set of
reaction rates is stored.

For example, for modelling rate dependency on crystallinity, there are two reaction
rate sets with rate constants k1a, k2a, k3a, k1c, k2c, k3c saved. Each set describes the
enzyme behavior at amorphous and crystalline substrate regions. For modelling a prod-
uct dependent inhibition for every product length a specific inhibition rate with rate
constant k4l can be stored.

It is also possible, to store only one set and imply some dependency model on substrate
characteristics. Such an approach is shown in section 4.4.

Processivity

Some enzyme types are processive in nature, see ref. [102]. I.e., enzymes of these
types remain adsorbed after a product is generated, move along the substrate and keep
hydrolyzing as long as the adsorbed polymer meets the necessary criteria.

The unbinding probability is independent from this feature and remains non-zero, as
described by the underlying model 2.12. However, the ability to stay adsorbed after a
product generation cannot be expressed by a chemical equation. In this case a reaction
graph like 2.18 is a more convenient model description.

Orientation

There is contradictory information about relevance of orientation of enzymes, cf. refs.
[103, 104], and models of Kumar and Levine, refs. [26, 23], where orientation is omitted.
This also includes modelling of a fixed position of the active center of an enzyme.

However, the microfibrils in the substrate clearly do have an orientation, see e.g., ref.
[40]. An enzyme type therefore has at least a notion of orientation, however, not every
modeled enzyme type has an elaborated propensity dependency on it.

Mode of action

It turns out, that all other features are not enough to describe the enzyme behavior
with the needed detail. Another relevant property is the mode of action. Three different
enzyme modes are taken into account: endoglucanasic, exoglucanasic and β-glucosidasic
modes.

• Endoglucanases act on the interior of polymer chains, see figure 2.20. They are
able to perform one or more hydrolizations before desorbing even if they are not
processive, see ref. [26].
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• Exoglucanases act on the exterior of polymer chains, see figure 2.19. I.e. they bind
to reducing or non-reducing polymer chain ends, depending on the modelled kind
and cleave one or more glucan units from the polymer.

• β-glucosidases bind only to already soluted polymer chains, see figure 2.21. I.e.,
they act on short polymer chains, which are known to be inhibiting for many other
enzyme types and produce glucose from them.

Activity description

With enzyme behavior defined by a finite state machine, see figure 2.18, all possible
actions for an enzyme are determined. The state machine is sufficiently general to catch
all possible events, omitting all events with probability of zero.

Furthermore, the description allows to generalize and to formulate events across dif-
ferent enzymes and enzyme types in an abstract manner. The generalized description
allows to formulate parts of enzyme dynamics preemptively and separated from enzyme
type formulation itself and to reuse these parts across all enzyme types.

It turns out, that only the hydrolization process is unique to every enzyme type,
whereas the binding and desorption can be formulated in a general manner, as follows.

• First, an enzyme is chosen for reaction, according to current propensities of the
system.

• If the enzyme chosen for a reaction is desorbed, only adsorption is possible. The
reaction partner is chosen, again according to the current propensities of the sys-
tem. If the partner is a hydrolyzable polymer chain, the enzyme undergoes the
transition to the adsorbed state, otherwise to the inhibited state. A part of the
chosen polymer chain is blocked according to the specific binding area defined for
the enzyme type.

• If the enzyme chosen for a reaction is inhibited, only desorption is possible. The
enzyme undergoes the transition to the ”free” state, freeing up the polymer chain
it is inhibited by.

• If the enzyme chosen for a reaction is adsorbed to a hydrolyzable polymer chain,
it can desorb from or hydrolyze the polymer chain at its active center.

– If the desorption reaction is chosen, the enzyme undergoes the transition to
the ”free” state, freeing up the polymer chain it is inhibited by.

– If the hydrolyzation reaction is chosen, the reaction is carried out according
to the type specific description. Some of them were defined for the current
model, see below for their description.
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Modeled enzyme types

Michaelis Menten enzyme prototype

The archetype of an enzyme is an artificial type, that is supposed to strictly follow the
Michaelis Menten kinetics. This type serves the goal to reproduce numerical solutions
of differential equations (A.7) and (A.8).

This archetype builds the core of all other enzymes, which can be described in terms
of this archetype. The modelling of different enzymes should be kept very fine-grained.
To achieve this, only this simple archetype was defined, containing all the properties
which are common to every enzyme kind. Additional properties are added as needed for
any further developed type.

For this purpose the following common properties of the enzyme archetype are as-
sumed:

• up to five reaction rates

• specific binding area is equal to the size of the active center, which is one glucose
unit large.

After the choice of an enzyme entity, the reactions are carried out as described above.
The reaction which remains to be described is the hydrolyzation reaction.

During the hydrolysis the enzyme cleaves the polymer and produces a new reducing
and a new non-reducing polymer chain end. As the type is appointed to reproduce the
Michaelis-Menten kinetics, it immediately undergoes the next transition. Depending
which model is taken into account, the next state is the ”free” or ”inhibited” state,
accordingly to figures 2.11 or 2.12.

Modelling results match experimental and artificial data quite well, see section 3.
The modelling of three reaction rates, like in the basic Michaelis Menten approach is

also available. However, these dynamics seem unnatural [97] and incomparable to other
more realistic enzyme types.

CBH(I) enzyme type

Additionally to the Michaelis Menten archetype, the CBH(I) enzyme type can have a
carbohydrate binding module with a flexible linker. It is modelled as a processive enzyme
type, which forms glucose as well as triose. However, its preferred product is cellobiose.
The enzyme acts on reducing ends of polymers in a processive manner, staying attached
to the polymer after a hydrolyzation reaction. This is an exoglucanase type, see figure
2.19.

This type can have various inhibition rates, depending on the product chain length.
As both types of Exocellulases exist, acting either on reducing or non-reducing polymer
chains, an orientation of enzymes is implied.
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Figure 2.19: Schematic representation of the exoglucanase enzyme type. The enzyme
exclusively acts on reducing or non-reducing polymer chains ends without
differing between soluble and insoluble chains. The green tilde represents
active center of the enzyme.

Figure 2.20: Endoglucanase enzyme type. The enzyme acts exclusively on the interior
of polymer chains without differing between soluble and insoluble chains.

EG(II) enzyme type

Some variations of Endoglycanases exist. As an example, a type with a catalytic do-
main, but without a carbohydrate binding module, was implemented. It does not act
in a processive manner, however, some polymer cuts are performed, before the enzyme
either desorbs or inhibits. After a hydrolysis step is performed, depending on polymer
properties where the enzyme is adsorbed to, desorption, inhibition and remaining in
adsorbed state is available for this enzyme type.

This type can have various inhibition rates, depending on the product chain length.
An orientation concept is also present for this enzyme type, however, it only influences
the behavior during adsorption, rather than its propensity.

β-G enzyme type

The β-Glucosidase was modeled as a non-processive enzyme type, attacking only soluted
polymer chains, see figure 2.21, These chains are assumed to have a length below a cutoff,
assumed to be L0 < 6, see section 2.5.
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Figure 2.21: β-Glucanase enzyme type. Acts on soluted polymer chains only, in contrast
to endo- and exoglucanases.

After a hydrolysis step is performed, depending on polymer properties which the en-
zyme is adsorbed to, desorption, inhibition and remaining in adsorbed state are available
for this enzyme type.

In most cases, there are no appropriate polymer chains around at the beginning of
simulation, as no products are present yet. This is of course a valid situation and is
the reason why optimization of this enzyme type can only be performed in presence of
another one. The other enzyme type should perform according actions to produce valid
substrates for β-Glucosidase in this case.

Furthermore, this enzyme type cannot depend on crystallinity, as the only substrate
chains it degrades does not belong to any substrate region any more. Also, no inhibition
dependency on different products can be implied. The natural product for β-G was
assumed to be glucose, so other polymer chains do not lead to any inhibition effects.

2.5 Substrate description

The Cellulect model contains an explicit model for the substrate. The substrate model
concerns physical and chemical properties as well as a geometrical representation of the
substrate object.

The first question to be solved was how to generate qualitative and quantitative ap-
plicable substrate to work with. As the application required to maintain a certain
concentration ratio between enzymes and substrate, a common multiplier had to be
found. This was already defined as the molar volume NA · V , see ref. [32]. Thus the
discretization of the substrate can be stated as in equation 2.17.

A proper discretized substrate enables first quantitative simulations based on rates
and propensities. However, it is not enough to catch all features of a more realistic
substrate like its exposed surface, polymer distribution, lignin coverage, crystallinity
regions. In order to do this, some geometry has to be assumed for the discretization
units and for each of them has to be implied an identity. The geometry implicitly stores
shape information about the substrate, all other features are uniquely mapped onto and
stored with the identity of discretized units.
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Further details about the features are described below. For now, the question about
the identity and the form factor of each discretization unit is discussed.

To avoid an introduction of arbitrary units, the smallest units of a substrate were
chosen as the discretization units. These are the glucan units comprising the polymers,
which for their part form the substrate. This simultaneously solves the questions about
the number of sampled substrate units, as well as the length and volume measurement
units in the modelled system. However, this also introduces the limitations of sampling.
The substrate can contain only an integral number of glucan units and every substrate
property which should be expressed is forced to be saved across them.

The second question to be solved is the geometry of the discretization units. A realistic
substrate can take almost any arbitrary form, see figure 2.1. Therefore, the form factor of
the smallest unit has to be capable to tesselate, i.e., to fill the 3D-space. The structural
properties of polymers also imply the geometric constraint of two dimensions behaving
similarly, while the third, where the polymer is extended to, behaves differently.

The considerations above lead to inspection of some (regular) plane tilings, and how
to add some volume onto it in form of a prism construction. The simplification made at
this step is, that the chosen tiling should be moved along a symmetry axis without any
rotation or other translation to construct the prism, cf. figure 2.3. In principle, at least
every tiling which fulfills the Conway criteria, see ref. [105] and allows periodic tiling,
see ref. [106] is sufficient. However, common computational techniques, see ref. [107]
and applications, see ref. [108] suggest the use of simple cubic voxels as a base.

Hierarchical substrate representation

Glucose units are assumed to be the smallest substrate units in the model. The substrate
is discretized by means of them. Glucose units were modeled as cubic units, with 6 dis-
tinguishable faces. The faces of each unit are interpreted as categorical variables. Other
physicochemical properties were superposed to the modeled units independently of the
geometrical form. Such approach is known especially from diverse imaging techniques,
e.g., in ref. [109].

Glucose units build up polymer chains, which in turn form a substrate bulk. Each
polymer chain is assumed to be a linear chain of glucose units, connected along a distin-
guished axis. It is assumed, that all polymers with the length less then a solubility barrier
and a common exposed surface are soluble and dissolve immediately. The appropriate
faces of the dissolved glucose units as well as their surroundings are kept up-to-date on
every enzyme reaction.

The bulk is approximated as a dense block, where polymers with a given initial length
distribution are located. Crystallinity and lignin coverage is superposed on other data
independently, possibly following a given distribution.

Nevertheless, it is possible to model arbitrary defects by removing single glucose units
from initial distribution. An example of such block can be seen in figure 2.22.

Several blocks can be modeled to achieve a more realistic picture of microfibrils which
are combined to a macrofibril.
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Figure 2.22: Artificial substrate block. Colors depict each distinguishable category of
exposed faces of glucose units.
E.g. ny: the face of the monomer in negative y-direction is on suface.
x& nz: the faces of the monomer in positive x- and negative z-direction are
on surface.
Polymers are connected along the x-axis. The solubility barrier was taken
as 6. I.e., polymers with length < 6 are dissolved.
From top to bottom:
1. Artifical substrate block with dimensions of 7×7×23 glucose units along
the x-, y- and z-axis. The three top layers are numbered. Some polymer
parts are removed from the top layer.
2. Second layer of the substrate block. Due to an artificial preparation of
the shown block and removal of polymer parts from the top layer, here also
some polymer parts are dissolved.
3. Third layer of the substrate block shows some tesselation pattern in
terms of exposed glucose faces.
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Accessible surface
An adsorption process can only take place on an accessible place of the substrate. If
an enzyme is adsorbed to the substrate, any other enzyme is not able to adsorb the
same location. Only after desorption, this surface area becomes accessible again. If a
hydrolization process takes place, then a polymer is cut into two pieces. If a polymer
becomes shorter than a given length, it is assumed to be soluble and dissolves from the
main substrate block. That is, during the simulation more and more substrate becomes
exposed due to its geometrical structure and the ongoing hydrolization processes.

Besides modelling arbitrary defects, the influence of accessible surface on the hydroliza-
tion process can be studied by initializing the substrate to different ratios of surface to
volume. The results can be seen in chapter 4. As the substrate is modeled by a block,
the volume is calculated by

V = l · w · h (2.21)

where l is the overall length of the bulk, w the chosen width and h its height.
However, for the surface A only the lateral area is taken. I.e., the simplification is met,

that front and back ends do not account for it. This is, because even for Exoglucnases
to adsorb it, it is not enough to have only the end of a polymer chain accessible. Some
interior glucose units also have to be accessible from another direction. This yields for
the surface calculation to be

A = 2l · (w + h) (2.22)

Now, if a surface/volume ratio is given,

A

V
= 2 · w + h

w · h
, w, h ∈ N, A/V ∈ R (2.23)

the cross section parameters, representing the width and the height of the block can be
chosen, such that the ratio is met as exact as possible. If two equal choices are possible,
the one, which minimizes the absolute difference of |w − h| is chosen.

Crystallinity
Crystallinity is an important feature of cellulose regarding enzymatic hydrolization pro-
cesses [110, 111, 112]. Crystallinity degrees are commonly given in percentage of the
whole substrate. Usual crystallinity degrees lie between 0.5 and 0.9. The vast majority
of enzymes act less effectively on crystalline regions compared to amorph ones. Due
to this, the challenge in pretreatment stages is to lower the crystallinity degree. Nat-
urally, cellulose forms different regions of crystallinity during its growth, however, the
form and position of these regions is not well investigated. Two of the possible modelled
distributions are shown in figures 2.23 and 2.24

Being local substrate property, crystallinity is mapped onto the modeled glucose units.
During preparation, an initial distribution of crystallinity is build. Typical measurements
of crystallinity take place by x-ray diffractometry, so initial distributions are less known.
Nevertheless, some assumptions have to be made regarding it. Crystallinity changes
during the hydrolyzation process, as degradation changes the accessibility of different
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Figure 2.23: Random initial distribution of crystallinity regions across the substrate
bulk. Crystallinity degree is set to 0.5. The colors show crystalline vs.
amorph regions, mapped onto the monomers in a random manner.

Figure 2.24: Band structure w.r.t. crystallinity, as assumed in [26]. Initial crystallinity
degree is set to 0.5. Colors show crystalline vs. amorph regions, mapped
onto the monomers in a band structure.
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regions. This implies a coupling between crystallinity and the property of exposition of
polymers. As a working hypothesis it was assumed, that polymers being exposed from all
directions cannot be crystalline. This includes all soluted polymers. Otherwise, glucose
chains are crystalline, if they lie in crystalline regions, constructed during initialization.
The influence of crystallinity and its distribution on hydrolization processes can be seen
in chapter 4.

Polymers as intermediate units
Polymer chains with a length L0 < 6 are considered soluble products [26] and can lead
to inhibition of enzymes. In contrast to the glucose units any polymer has an identity.
Instead of this, a representative of the polymer chain is chosen. Via this representation
the whole polymer can be constructed by inspecting the dynamic properties of each
constituting glucose unit, see also sections B.2 and B.1.

Monomers as description units
Monomers are the smallest modeled units. Following [113, Chapter 14.7] the model is
therefore volumetric and this property contributes to its efficiency. On every reaction the
properties of monomers affected by the reaction are updated. This includes a recursive
algorithm of surface updates, which properly transforms hidden surface of a microfibril
into accessible one.

Degree of polymerization
The common way to describe the typical length of polymers in a substrate is by means
of the degree of polymerization. This is done by observing moments of the distribution
of polymer lengths following the definition in [25]

p(n)(t) =
∑

xnp(x, t) (2.24)

Here, the continuous distribution of polymer lenghts was discretized.
The degree of polymerization is then defined as

DP =
p(1)

p(0)
=

∑
xp(x, t)dx∑
p(x, t)dx

(2.25)

This is indeed the mean chain length of the substrate.
However, different substrates are prepared and pretreated in different ways [114].

Therefore, no special distribution is favored. Instead, the sensitivity to the distribution
itself can be studied by modelling substrate with different polymer length distributions.
Considered distributions were

pC =

{
1, x = DP
0, else

pP =
λk

k!
exp (−λ), with λ = DP

(2.26)
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Figure 2.25: A substrate bulk partially covered by lignin. Percentage chosen: 20%. As
in figure 2.22, the colors depict accessible faces of the substrate, exposed on
the surface. The state of faces on the surface is interpreted as categorical
variable and encoded by different colors.
If lignin covers a monomer, it is considered to be not on the surface and
therefore not accessible. This state is permanent, until another face of the
monomer, which initially could not be covered by lignin becomes accessible.
This can only be achieved, if some monomers in the neighborhood dissolve.

The results can be seen in section 4.3.
Although only two polymer length distributions were considered, any input can be

managed by the model, if a distribution can be provided. For this, Poisson distributions
are chosen, which are suitable to represent the provided distribution. Then, the distri-
butions are superposed and thinned out in a uniform manner. This yields again a valid
Poisson distribution, which is available for the model to simulate [68, p. 160].

Lignin
Another available feature is hiding of accessible surface by lignin. Lignin is a cross-linked
polymer incorporated into the cell walls of most cellulosic substrates. It is important for
the cell wall rigidity and leads to a more persistent structure. As a side effect lignin forms
a physical barrier shielding the substrate from enzyme attack. Due to its abundance on
Earth, exceeded only by the cellulose itself, it is seen as another important feature of
substrates among crystallinity, see ref. [115]. A surface partially covered by lignin can
be seen on figure 2.25.

The surface once considered covered by lignin can neither be used as a position for
enzyme adsorption, nor for hydrolization. However, if the polymer chain becomes acces-
sible to an enzyme other than from the covered surface, it still can be hydrolyzed.

The lignin distribution is modeled by generating connected paths on the surface of a
microfibril in a random manner. The surface hidden by lignin is not accessible and the
hydrolization bonds between affected glucose units can only be broken from another side
of the polymer chain.
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3 Model validation

The model described in chapter 2 now has to be validated. Given that some parameters
in the model are not known, they must be fixed using experimental data. Experimental
data come in many facets. Time series can be provided along with initial values of
concentrations. Results of multiple experiments after a fixed time can be given, again,
with a description of the experimental setup. Another possibility is to provide some
known system parameters, which were measured in advance.

The data in form of enzyme assays has the form of time series of substrate, product
(and possibly enzyme) concentration profiles as functions of time. They are provided
as data sets over some time, where notable concentration changes occur. Often, only
concentrations of products and substrate are measurable, as enzymes are present in a
small amounts compared to the substrate for the reasons mentioned in chapter 1.

The developed model of this dissertation has the ability to use experimental results as
optimization target. The optimization behavior of the system, needed data, restrictions,
etc. are the topic of this chapter.

If model parameters are given, they are often provided as ratios of reaction rates in
the biochemistry community, cf. figure 2.12 and ref. [59]:

• KD = k2
k1

is the dissociation equilibrium constant of the enzyme-substrate complex

• KI = k4
k5

is the dissociation equilibrium constant of the enzyme-product complex

• KC = k3
k1

is the Van Slyke-Cullen constant

• KE = k3
KM

is the specifity constant or kinetic efficiency

• KM = k2+k3
k1

is the Michaelis-Menten constant. Note, KM = KD +KC

In principle, far more relations can be defined, e.g., one can think of relating

• k1/k5 as a measure of enzyme affinity to substrate related to its affinity to the
product when the same amounts of both presence conditions of they both

• k2+k3
k4

as the activity relation of the two inspected enzyme complexes.

Some of them are dependent on others and therefore redundant, like it is the case
for KD, KC and KM . For definitions of such relations there are no restrictions given.
However, the possibilities to measure them are rather limited.

Which of these constants are useful and how needed parameters can be derived for
the optimization of the current model will be answered further below. The amount of
required data for this model to be successfully optimized has to be answered as well.
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3.1 Model optimization problem
The goal of model training is to fix unknown kinetic parameters, by providing known,
measured data. For this purpose, the ability to use data coming in form of known
parameters as well as any time series in form of data sets has to be ensured.

Model training is mainly the process of systematic search for the global minimum of the
model function with respect to given experimental data. The experimental data set for
this model consists of time series of concentrations of soluble polymers as hydrolization
result of an enzyme mixture and known measured enzyme parameters of any kind.
During the search for feasible model parameters they are varied to find the minimization
objective. The problem which has to be solved is

min
x∈S

‖M(x, t)− E(t)‖ (3.1)

with

• x representing a valid model parameter set within a set S, defined below.

• M(x, t): the time series generated by the model and

• E(t): the time series provided by the experiment, as training data and

• ‖·‖: a distance measure defined on the objective space, discussed below.

The set S is a valid parameter subspace, defined by different kind of restrictions:

• bounds, lb ≤ x ≤ ub, including the possibility to provide ∞ as one or both of the
boundaries for each of the components of x.

• linear equality Aeq · x = beq and

• linear inequality Aineq · x ≤ bineq constraints

• nonlinear equality and inequality constraints: ceq(x) = 0 and cineq(x) ≤ 0

For all model parameters such constraints can be formulated.
The distance measure on the objective space is defined over the finite set of available

timings set T from experimental data, point-wise to be one or a sum of the common
distance definitions, like the maximum distance

‖f‖max = max
t∈T

|f(t)| (3.2)

the l1 distance
‖f‖1 =

∑
t∈T

|f(t)| (3.3)

the l2 distance
‖f‖2 =

∑
t∈T

[f(t)]2 (3.4)
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and so on. This notion of distance serves the purpose of measuring the quality of the
chosen phase space point relating the outcome of the model to the given experimental
data. The smaller this distance measure goes, the better the chosen candidate from
phase space is found to be.

As the amount of available measurements is finite, the distance measures are equiv-
alent, see e.g, ref. [116]. However, the distance definition in use is dependent upon
the particular requirements demanded by the application. Furthermore, different opti-
mization algorithms behave differently depending on the chosen measure, see e.g. the
more conservative library in ref. [117] vs. recent usages for machine learning algorithms
reviewed in ref. [118].

In general, optimization algorithms can be divided in two types: deterministic algo-
rithms, which proceed until a minimum is found. Convergence criteria are provided
along these algorithms and after a finite time an optimum can be found. However, there
is no guarantee, that this is the global optimum in the phase space. Other algorithms
are formulated in a stochastic manner. For such algorithms no convergence guarantees
can be given. These algorithms yield a result when their abort criteria formulated in a
more abstract way are fulfilled. The result of such algorithms is in general a collection
of best points found so far.

In any case criteria can be formulated in a very general manner, and consider parame-
ter candidates found so far, time spent on the search and other search statistics provided
by the chosen algorithm which become available along the way.

In other words, the minimization problem itself is specified by experimental data, de-
fined by means of a measure on the objective space. Convergence criteria or time bounds
guarantee it is achievable in finite time, by defining a tolerance and time bounded. The
minimization problem is therefore well defined both in technical as well as economical
terms, see ref. [119].

In the present work some of well established optimization algorithms were tried out;
the presented results derive from utilizing the l1 distance measure defined on the objective
space. These algorithms systematically trying to cover regions of the parameter space
either deterministically or randomly and comparing the result of the model function to
the required result.

Tested algorithms include

• controlled random search algorithms introduced by Price, see ref. [120]

• genetic algorithm formulated by Conn in ref. [121]

• pattern search developed by Audet in [122]

• particle swarm optimization described by Parsopoulos in ref. [123]

• simulated annealing of Kirkpatrick in ref. [124]

• alopex based algorithm mentioned in ref. [125]

• bayesian optimization developed by Bull in ref. [126]
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• surrogate optimization described in ref. [127]

• multi-object optimization algorithms defined in refs. [128, 129, 130]

If neither the derivative nor the function to minimize is known, or if the model does
not even has a closed form, as in the current case, most of the algorithms above serve
only for finding a global minimum heuristically in the parameter space, see ref. [131].
If there are multiple valid solutions, the algorithms provide isolated, local solutions,
depending on the choice of the initial starting point guess. This is the case for example,
if there are multiple local minima of comparable magnitude or if the objective function
is flat. The manifold of valid solutions remains uncovered and any trial to recover its
structure fails.

3.2 Optimization procedure
For the optimization realization a convenient sampling method for generating parame-
ter samplings has to be defined. The sampling method has to comply with assumptions
about the optimization values, does not prefer any parameter region and is chosen prefer-
ably regarding the performance of the optimization routine.

The best approach is to choose first a single sampling parameter, which is then used to
uniformly generate the remaining optimization parameters. The choice of the sampling,
or ”scale” parameter is rather arbitrary. However, there are hints, that the definition
regarding the l1 distance measure for the optimization parameter is appropriate:

• Once a distance measure in the objective space is chosen, it is known that many
optimization algorithms perform better, when the optimization function has a
similar overall structure.

• The l1 norm is known to perform well in technical applications, see e.g., [132].

• The proposed propagation algorithm of Gillespie, makes heavy use of time calcu-
lation with the matrix exponential calculation. This is a further example of the
trace class operator, see ref. [133] used as a time propagator.

Therefore, on the available phase space the l1 metric was imposed, also known as
Taxicab metric, see [134]. This lead to a diamond shaped norm perception of the phase
space, see appendix B.3.

With such coordinate transformation, the phase space can be uniformly sampled via
the sample parameter KS , defined as

KS =
∑
i

ki (3.5)

Indeed, this is the radius in the Taxicab metric, forming a single diamond sphere
around the coordinate center. With such sampling all rate constants can be transformed
to be elements from the unit interval (0, 1), multiplied by their common sum of sampled
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KS . The transformed rate constants are orthogonal to the chosen parameter KS by
definition of orthogonality of the coordinate system.

During optimization an inner optimizer is driven by the constraint of a constant KS .
Each solution lies therefore on a uniquely defined surface of the phase space Rn

+, where n
is the amount of ki, dependent from the system under inspection. The outer sampling of
KS can either be driven by another, independent optimization algorithm or performed
manually, in case of a brute force scanning of the phase space.

The inversion of the sampling process from ”sample a ki tuple, leading to a specific
KS” to ”sample a KS , leading to a specific ki tuple” is well defined, as the probability
of finding two different optimum sets with a common KS value is zero almost surely, see
ref. [135].

Performing samplings in this way implies that exactly one solution exists for each
choice of KS . The solution lies on the according diamond surface of dimension n − 1,
when there are n optimization parameters available. In case of optimization of reaction
rate constants, the solution is defined to be the best found ki tuple on this surface.

The common approach for global optimization is to use either optimization algorithms
with an initial population of start points covering available phase space or to restart the
optimization several times with different start points. This is done to ensure that the
optimization results are independent from the choice of the starting point, which is
typical for local optima.

A global optimization algorithm stops when the stopping criteria, formulated in terms
of optimization parameters as well as minimization goal and further algorithm dependent
specifics, are fulfilled. Algorithms guaranteed to find a minimum provide a convergence
stopping criteria, however this is in general not the case.

3.3 Optimization results

If not otherwise stated, the following results shown in this chapter are obtained with
artificially generated data, by using a simplified deterministic model, shown in figures
2.11 and 2.12. However, keeping in mind that the main model, introduced in chapter 2,
is of stochastic nature, appropriate convergence criteria are formulated and emphasized
at the appropriate places.

For a stochastic model, like in the current case, different outcomes are possible for the
same input. If the optimization algorithm stopping criteria include any too narrowly
formulated convergence criteria, the optimization algorithm will not converge. If they
are missing, omitted or formulated too loosely, any found minimum is guaranteed to be
global.

In other words, the global nature of optimization can be handled by choosing several
starting points in the phase space, applying a combination of optimization algorithms
and heuristics to systematically search the available phase space. The stochastic nature
of the model and model input however prevent a formulation of any strict convergence
criteria.
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Under the mentioned conditions, the optimization was run on the model, depicted in
figure 2.11. The results, see figure 3.1(a), show many solutions for kcat and KM . Which
are located around their expected values.

At this place it is important to recall, that the knowledge of measurable constants
is not enough for a model containing an independent time propagating algorithm, as
already stated in section 2.2. For such a model, all rates of modeled events are needed.

To get every single rate constant, they were optimized independently, especially the
rate constants for adsorption and desorption k1 and k2. The results, shown in figure
3.1(b), are placed along the line, defined by the Michaelis Menten constant KM .

The problem, that many points are found, arises here for the first time. The reason
does not lie in the microscopic nature of the problem. All the solutions are the con-
sequence of the finite precision constraint on the optimizer algorithm. This is however
unavoidable. By chance the dynamic defining constants are narrowly located and if the
optimizer stops at any of it, similar results are achieved.

The found solutions are also consistent with the fit model

F (t) =
ST

KM
exp

(
ST

KM
− vmax

KM
t

)
(3.6)

found in Goudar et. al, [136, 137]. However, while the fit model yields the same results
for the time courses generated by means of the according parameter, the current model
yields three individual reaction rate constants, and the fit model of Goudar yields only
two.

The state of affairs changes dramatically, if the system becomes more complex, con-
taining inhibition. The optimization results for a system containing competitive inhibi-
tion are shown in figure 3.2. Here kcat, KM and most notably KI are found in a large
parameter space, covering in general many orders of magnitude.

Choosing a single optimum becomes more severe problem in this case. Depending on
the optimization routine setup, very different macroscopic parameters can be found.

Any condition can be defined to reduce the solution set to a single value. As it was
mentioned before, after defining a cutoff limit for optimization precision, every attempt
to do so fails. As long as the found parameter reproduces the given time series in an
acceptable manner, all of them are equivalent from this point of view. Statistical con-
siderations like cluster analysis w.r.t. the found values and different averaging technics
were tried out, however they did not achieve further narrowing of found results.

Such results are shown in figure 3.3. Even with the optimization precision set to the
numerical limit of the computing machine, many solutions are still found.

As the fact of multiple solutions was discovered for the system with inhibition, the
question has to be answered if the optimization itself is consistent. It turns out, that
the number of solutions decreases smoothly as the precision is lowered. In figure 3.4 it
is shown on logarithmic axes, that the number of optimal points is getting smaller in a
well formed manner. For any fixed, finite precision there are however, still a multiplicity
of possible parameter candidates left.
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(a) Optimization of the simple model without inhibition also leads to ambiguous solutions, how-
ever, the solutions are located in a small region of the phase space. As the optimization
was done with artificiall generated data, the expected values are known: KM = 0.3667,
kcat = 2000 in renormalized units.

(b) In the k1 k2 projection the solutions are located on a line. Roughly speaking, the line fulfills
the evident relation k1 = KMk2 + kcat, with a kcat as depicted in figure (a), assumed to be
constant. The both shown rates are not measurable, the exact solution remains uncovered.
As the optimization was done with artificial generated data, the expected values are known:
k1 = 6000, k2 = 200 in renormalized units.

Figure 3.1: Insufficient optimization input, and a finite precision constraint on the op-
timizer algorithm lead to many possible solutions. This is the case, even
for the Michaelis Menten system without inhibition. While the values for
KM and kcat are well localized, all rate constants are needed for quantitative
simulation, see ref. [48]. These remain undetermined in general.
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(a) Optimization results for the task (3.1) with measured concentrations of product and substrate
over time. A finite acceptable precision was defined. Many feasible results emerge in the
phase space projected onto kcat and KM axes. While values for KM are between 0 and 10,
feasible values for kcat vary on the scale of 5000 and over 40000. As the optimization was
done with artificial data, the expected values are known: kcat

exp = 6000, KM
exp = 0.3666 in

renormalized units.

(b) Optimization results for the task (3.1) with measured concentrations of product and substrate
over time. A finite acceptable precision was defined. Many feasible results emerge in the
phase space projected onto kcat and KI axes. Values for KI vary on the large scale of orders
100 − 1015. Values for kcat vary on the scale of 5000 and over 40000. As the optimization
was done with artificial data, the expected values are known: kcat

exp = 6000, KI
exp = 0.75

in renormalized units.

Figure 3.2: Optimization of the model providing time series as optimization input yields
ambiguities on large scales for the quantities kcat, KM and KI . The simi-
larity to the given time series were used as stopping criteria. Therefore, the
remaining, shown optima cannot be distinguished any further.
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Figure 3.3: Optimization of current stochastic model leads to many results, all in a good
agreement with the data, used as the optimization target. For all outputs the
distance measure, defined as above, calculated with 10 equally distributed
points is below 0.03. As the input data was generated artificially, all values
can be compared in this case. The table below shows the input as well as
a sample from the output values, in a unitless form. The last line shows a
heuristic result found by applying another optimization approach as a try to
identify a unique phase space point across all feasible points. As all other
feasible parameter tuples, this value reproduces experimental results with
good agreement. However, its values do not coincide with the values of the
optimization input, nor do the resulting values of KM or KI .

k1 k2 k3 k4 k5 KM KI

Input 12000 400 4000 6000 8000 0.36 0.75
Output 01: 12886.7 1946.6 13464.5 2893.2 4060.9 1.2 0.7
Output 02: 13811.4 1175.9 5988.9 3931.4 5838.4 0.5 0.7
Output 03: 19227.5 4790.7 3711.8 8350.4 6628.6 0.4 1.3
Output 04: 19998.9 1354.7 3198.0 8021.4 16088.9 0.2 0.5
Output 05: 18913.4 6151.4 4986.2 5285.6 4335.5 0.6 1.2
Output 06: 13587.3 401.3 2880.3 12923.6 20087.5 0.2 0.6
Output 07: 11701.3 0.0 5817.2 3991.0 6030.5 0.5 0.7
Output 08: 8438.1 162.2 36285.7 2762.8 2197.3 4.3 1.3
Output 09: 8874.6 410.0 3194.2 14677.0 9997.2 0.4 1.5
Heuristic: 10309.5 3400.6 6066.8 5793.1 3454.4 0.9 1.7
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Figure 3.4: Optimization with experimental data only leads to many solutions, shown
in figures 3.2 and 3.1. Their amount decreases by confining the optimization
criteria smoothly, see figure 3.4. However a certain amount remains for a
given optimum criteria.

Evaluation of the parameter space

The presence of many equivalent optima, and therefore the underdetermined state of the
system confirms the choice of l1 distance measure for sampling generation, see section
3.2. This case is well known in theory, see e.g. ref. [138, 139, 140, 141], as well as in
various applications, see e.g., refs. [142, 143, 144, 145].

KS is also a projection of ki in terms of a radial basis function, see [146]. From this
point of view it is now possible to inspect the achieved results along this projection.
The bayesian and surrogate optimization algorithms, mentioned above are specialized
to explore the phase space with as few function evaluations as possible. The results
provided from bayesian optimization of systems (shown in figures 2.11 and 2.12) are
shown in figures 3.5(a) and 3.5(b) respectively.

Therein one can see a separation in the ki phase space. A region exists, where no
ki could be found to reproduce experimental measurements. However, there is another
phase space region, where many ki exist, which fulfill the requirements.

The results of the present work, shown in figures 3.1 and 3.2 lead to the conclusion
that any valid model can be formulated based only on experimental enzyme assays.
Any attempt to establish such a model, leads to not well-defined solutions. Therefore
concluding on dynamic enzyme characteristics based only on their time assays is an
incomplete approach, which is demonstrated here for the first time.
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(a) The optimization without any additional parameters shows that a wide region of parameters
is able to fit the provided data. Similar results are obtained if KM is provided along the
experimental data.

(b) A similar picture appears in case of optimization with the enhanced model with inhibition.
There is an area, which can be excluded, as there isn’t any parameter which can reproduce
experimental data. Then phase space region exists, where many parameters are located, all
of which can reproduce the optimization goal with a good approximation.

Figure 3.5: The pictures (a) and (b) show phase space estimations for numerical models
with and without inhibition. Only experimental data is provided, in the first
case even enzyme time series where provided to the optimization routine. A
feasible region in the phase space can be identified, however no particular
global minimum can be identified.
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Figure 3.6: Optimizing result for CBHI. Left: Avicel (25g/L), various loadings of CBH
I. Betzerra RMF, Dias AA, 2004; right: 4.1mg/g enzyme with model results
after optimizing below: Avicel (25g/L), various loadings of CBH I. Bezerra
RMF, Dias AA 2004 with results of model prediction. Correlation coeffi-
cient is R = 0.9923, showing a good prediction ability of the model w.r.t.
experimental data.

Reusability and validity

In the last part of this section, the power of the model prediction after the optimization
will be shown. After optimization utilizing some curves from the experiment, unknown
model parameters are fixed. Here, either an arbitrary value is chosen from the available
optimization minima or it is chosen by a heuristic, see e.g., ref. [147] and the caption of
figure 3.3. In this state, the model is able to make prediction in parameter regions and
time series not used during optimization.

In figure 3.6 experimental as well as modeled time curves are shown. One of the exper-
imental curves is used for model training. Two others are used to check the prediction
abilities of the model. Taking the both curves for the check, the resulting correlation
coefficient is R = 0.9923, showing a striking match of experimental and modeled data.

In order to validate the EG model, there also was an optimization driven with the
resulting correlation coefficient of R = 0.91816. However, simultaneous optimization
of all product profiles was not achieved due the difficult behavior of EG type enzymes
already known from literature, see refs. [148] and [26].
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Figure 3.7: Optimization results for Glucose time series. Experimental data was taken
from Medve et. al., see ref. [149]. While it was possible to find optimal
parameters for the time series of glucose, the optimization of other sugar
length failed. It is assumed therefore, that some action mode details remain
uncovered in the model.

3.4 Identifying optimal Lagrange parameter

One of the consequences of the previous section is, that the minimization problem de-
fined in (3.1) is usually underdetermined for this model. This is unexpected, as it is a
common practice to use experimental data to solve the inverse problem of gaining model
parameters.

Providing further independent time data is possible, but the mass conservation laws,
present as algebraic equations in (A.7) and (A.7), remove one of the measurable time
series from the independent set and thus from consideration. What remains are one or
two respectively, enzyme concentration time series. These are however not measurable
in most cases, due the small concentrations of total enzyme ET .

Another possibility is to provide other measured data in form of constraints to the
optimization algorithm. The optimization problem would then be formulated in terms
of Lagrange multipliers method, see ref. [150] and becomes

min
x∈S

‖M(x, t)− E(t)−G(x)‖ (3.7)

The additional parameter G(x), also known as regularization term see ref. [151] or
hyperparameter, see [152] has to be provided by the user. This is done based on existent
knowledge of kinetic parameters, experience or other considerations, which are not topic
of this work. For the rest of this chapter, the attention is drawn on the amount of
hyperparameters needed and their definition.
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Independent of the chosen Langrange function a parameter has to be chosen, to use
for independent parameter samplings. This is seen as the complement to the regular-
ization mentioned above, known as generalization, see ref. [153]. This task was already
accomplished. KS serves as generalization parameter for the present model.

Until a Lagrange parameter is defined, the generalization parameter serves as source
of parameter samplings over the defined parameter space, good enough to estimate the
behavior of the minimization problem.

For finding the Lagrange parameter (and generally, there are multiple of them needed)
a common approach to analyze a complex system is chosen by converting it to an ap-
propriate normal form, see ref. [154]. Then, information about the complex system can
be retrieved by analyzing linearizations around specific points in the state space.

First, this is done on the simple case of Michelis Menten system without inhibition.
This case serves as comparison for the actual system under inspection and as a proof
of concept for the procedure. Then, the analysis is repeated for the case including
inhibition.

Michaelis Menten kinetics without inhibition
After imposing the algebraic equations on the differential equations, cf. (A.7) one is left
with only two linear independent differential equations for concentration quantities.

∂tCs = k1[(ET − Cs)(ST − P − Cs)−KMCs]

∂tP = k1KCCs
(3.8)

where Cs is the concentration of the enzyme-substrate complex, P is the concentration
of the product, KM = k2+k3

k1
is the Michaelis-Menten constant, KC = k3

k1
the van Slyke-

Cullen constant, ET and ST are the initial concentrations of enzyme and substrate in
the system and ki are the constants of enzyme reaction rates.

There are some other approaches of analyzing this system to consider, before the
normal form analysis is done.

First, note the graphical approach. Analysing the initial rate of reaction

v =
vmaxS

KM + S
(3.9)

where vmax is the maximal conversion rate of the enzyme,one comes to the conclusion,
that (3.9) is of the form of a hyperbola. By providing KM and vmax one defines the
hyperbola by defining its asymptotes in the parameter space. Another way of uniquely
defining the hyperbola is by providing its eccentricity as a single parameter.

Another approach comes from the graph theory, see e.g. ref. [155]. Roughly speaking,
therein one converts the reactions into a directed graph, which is then subjected to graph
theory tools for examining for the essential dynamical properties. While this approach
is the fastest for qualitative statements about the system, at the end, there are still
differential equations to analyze for more precise predictions.

A different approach delivers perturbation theory. For the case of Michaelis Menten
kinetics without inhibition, this approach can be found in [59]. While the system is
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(a) By providing the optimal Lagrange parameter numerical errors are small, and the global
minimum estimation is efficient.

(b) For the model with inhibition, there is more effort to estimate a proper minimum. However,
by providing a proper Lagrange function this can still be solved, and the model for the
hyperparameter can be found.

Figure 3.8: Optimization results with the optimal Lagrange parameter provided. The
hyperparameter was found by linear stability analysis. In the simple case,
without inhibition, (a) the model optimized values follow the model estima-
tion almost exactly. In the case with inhibition the optimization is more
noisy, however, a minimum can be identified, even with the single hyperpa-
rameter.
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analyzed in detail therein, at this place only the first outcome is needed. Dingee et al.
derive the ratio of two time scales present in the system to be

ε =
KCET

(ET + ST +KM )2
(3.10)

Letting the initial parameters aside and neglecting the power in the denominator in
(3.10) one arrives to the parabola eccentricity of the graphical approach. This value also
coincide with the enzyme efficiency KE .

While being a powerful tool for analyzing complex systems this approach fails for more
complex cases. The reason for this is not the approach itself. It is rather the necessity
to choose the number and form of the linearization parameters, i. e. an Ansatz at the
beginning. However, for more complex cases the choice of an Ansatz is not apparent.

To the help comes another powerful tool of linear stability analysis, see e.g., ref. [156].
Formulating the normal form of the differential equations reveals bifurcations in the
system, however in this work it is used to identify the relevant time scales of the system.
Note, the system is two dimensional in the current case.

By formulating the Jacobian J defined as

J =

∂x1f1 ∂x2f1 · · · ∂xnf1
...

... . . . ...
∂x1fm ∂x2fm · · · ∂xnfm

 (3.11)

of the dynamic system at a fixpoint in the phase space of the reactants, and by searching
for its eigenvalues one obtains

J |x0
= k1

(
−(ET + ST +KM ) −ET

KC 0

)
(3.12)

if x0 is chosen to be
x0 = (0, 0)T (3.13)

and
J |x0

= k1

(
−(ET +KM ) −ET

KC 0

)
(3.14)

if x0 is chosen to be
x0 = (0, ST )

T (3.15)
one recognizes, that this is a common initial state of the inspected model, naturally

being an unstable fixpoint of the system.
Solving for eigenvalues det(J |x0

− λI) reveals the discriminant ∆ of the quadratic
equation to be

∆|(0,0)T = 1− 4 ·KC · ET

(ET + ST +KM )2
(3.16)

and
∆|(0,ST )T = 1− 4 ·KC · ET

(ET +KM )2
(3.17)

which are up to constant terms identical to the time scales of Dingee et al., identified
in ref. [59].
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Michaelis Menten kinetics including inhibition

An analogous problem evolves in the more realistic case of kinetics extended by inhibi-
tion, cf. (A.8). Here, after incorporating algebraic equations into differential ones three
linear independent equations are left.

∂tCs = k1{[(ET − (Cs + Cp)][(ST − P − (Cs + Cp)]−KMCs]}

∂tCp = k5{[ET − (Cs + Cp)]P + K̃CCs −KICp}
∂tP = k5{KICp − [ET − (Cs + Cp)]P}

(3.18)

where Cs is the concentration of the enzyme-substrate comples, Cp is the concentration
of the enzyme-product comples, P is the concentration of the product, KM = k2+k3

k1
is

the Michaelis-Menten constant, let K̃C = k3
k5

, KI = k4
k5

is the inhibition constant, ET

and ST are the initial concentrations of enzyme and substrate in the system and ki are
the constants of enzyme reaction rates.

Compared to the Michaelis Menten case without inhibition, this case is three dimen-
sional, containing five parameters. The characteristic polynomial will be of third degree
and generates more different cases for inspection.

The velocity for product generation can’t be formulated without assumptions about
substrate or product, see ref. [157], not to mention any formal similarity to a hyper-
bola. This is due to the presence of a back reaction with the product. The hyperbolic
association in the phase space is lost.

The reaction graph gives rise to the assumption, that three time scales are involved
now: one for the substrate complexation, one for product complexation and one for the
slow reaction of substrate conversion. However, a trial to derive them by means singular
perturbation failed. What is left is the treatment of the system again by linear stability
analysis applied to the corresponding normal form (3.18).

The according Jacobian has now the form

J |x0
=

−k1 · (ET + ST +KM − 2Cp − P ) −k1 · (ET + ST − 2Cp − P ) −k1 · (ET − Cp)

−k5 · (P − K̃C) −k5 · (P +KI) −k5 · (Cp − ET )
k5 · P k5 · (P +KI) k5 · (Cp − ET )


(3.19)

evaluated at x0 = (0, 0, 0)T for the initial concentrations of (Cs, Cp, P ) and x0 = (0, ST −
P ∗, P ∗) for the final concentrations of (Cs, Cp, P ), with the positive branch solution for P :

P ∗ = (ST − ET −KI)

(
1

2
+

√
1 +

4KIST

(ST − ET −KI)2

)
(3.20)

The system is now three dimensional and the time scales observed from the normal form are
defined by the solution of the charachteristic polynomial, which is now cubic. One more time
scale is expected from graphical analysis.

The two time scales in the Michaelis Menten model without inhibition originated from the
adsorbing/desorbing process w.r.t. the substrate and the hydrolization process. Now, a third
one emerges additionally from the adsorbing/desorbing process w.r.t. the products.
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The solution is to a certain extent more complex in comparison to the two dimensional case,
however still tangible. It is also given in terms of a discriminant, however, now the discriminant
has two obligatory terms which cannot be reduced to a single one without some effort.

The general form of the discriminant is defined by inspecting e.g., the Cardano’s method,
redefining the discriminant to

∆ =
(q
2

)2
+
(p
3

)3
(3.21)

with

p = b− a2

3
(3.22)

q =
2a3

27
− ab

3
+ c (3.23)

and

a(0,0,0)T = k1(ST + ET +KM ) + k5(ET +KI) (3.24)

b(0,0,0)T = k1k5[ET
2 +KI(ST + ET +KM ) + ET (ST +KM + K̃C)+ (3.25)

+ K̃CST ]

c(0,0,0)T = −k1k
2
5K̃CETET +KI + ST (3.26)

a(0,ST−P∗,P∗)T =
1

2
(−ET k1 − 2k5

√
(ET +KI)2 + 2(−ET +KI)ST + ST

2+ (3.27)

+ k1(KI − 2KM + ST −
√

(ET +KI)2 + 2(−ET +KI)ST + ST
2))

b(0,ST−P∗,P∗)T =
1

2
k1k5(ET

2 +KI
2+ (3.28)

+ 2KM

√
(ET +KI)2 + 2(−ET +KI)ST + ST

2−

−KI(K̃C − 2ST +
√
(ET +KI)2 + 2(−ET +KI)ST + ST

2)+

+ ET (2KI + K̃C − 2ST +
√
(ET +KI)2 + 2(−ET +KI)ST + ST

2)−

− (−K̃C + ST )(−ST +
√

(ET +KI)2 + 2(−ET +KI)ST + ST
2))

c(0,ST−P∗,P∗)T = −1

2
k1k

2
5K̃C(ET

2 + ET (2KI − 2ST+ (3.29)

+
√
(ET +KI)2 + 2(−ET +KI)ST + ST

2)−

− (KI + ST )(−KI − ST +
√
(ET +KI)2 + 2(−ET +KI)ST + ST

2))

Now, there are four cases in general for the discriminant to evaluate, in the case of a cubic
equation:

∆ = 0: due q = p = 0. This is the case, when the solution of the cubic equation for λ has only
a triple root. This case is the reason, why q cannot be factorized any further from the
discriminant.

∆ = 0: due (q/2)2+(p/3)3 = 0, q, p 6= 0. This is the case, when the solution of the cubic equation
for λ has two solutions, where one of it is of double kind.

∆ > 0: This is the case, when the solution of the cubic equation for λ has one real and two complex
solutions.

∆ < 0: This is the case, when the solution of the cubic equation for λ has three distinct real
solutions.
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Exploring the first case more deeply, taking the parameters at initial state of the system (0, 0, 0)
one finds, that if q = p = 0, then the solution for the single available eigenvalue is λ = −a/3,
while a > 0 for all possible model parameters. This implies, that for a system with parameters
chosen such that q = p = 0 the eigenvalue belongs to a stable solution. The only valid solutions
for k1 and k5 are obtained to be zero. This case is excluded during optimization, and therefore,
the case of p = q = 0 cannot emerge. All other cases of dynamics are expressible by the single
ratio of p/q, taken at one of the fix points.

Thus, the result of the stability analysis, is that a parameter exists, which is enough to provide
a valid constraint, so that the dynamics of the system is uniquely described.

If the case p = q = 0 is excluded from further considerations, the discriminant governing the
dynamics of the system can be further simplified by factorizing q/2 and one finds

∆ = 1− (p/3)3

(q/2)2
(3.30)

as the analogous time scale parameter for the case of Michaelis Menten kinetics with inhibition.
The experimental data reduced the dimension of the solution space already in the Michaelis

Menten case without inhibition. This part is fully contained in the model of enzyme dynamics
including inhibition. By removing the case of p = q = 0 the five dimensional solution space is
reduced even more. This is done, however, in a highly nonlinear manner. For the discriminant
all values are still possible, only the case of ∆ = 0 is not degenerated any more. A further
implication is now, that even for the more complicated case of Michaelis Menten kinetics extended
by inhibition still only a single parameter is needed along with experimental data to determine
its behavior.

The other thing is, that the parameter

ε =
(p/3)3

(q/2)2
(3.31)

is not measurable in general, as opposed to the simple case without inhibition. That leaves only
one with the possibility of providing more, measurable parameters. Encouraging results were
achieved, when enzyme efficiency KE = k3/KM from the simplified model was complemented
by KI = k4/k5.

This requires two constraint parameters, however, a minimum is found without any problems,
see fig. 3.9. The fact, that constraints can be formulated in many ways goes hand in hand with
the fact, that the Lagrange parameter is also generally not unique. The method described in this
chapter therefore defines a possible Lagrange parameter, however not necessarily a unique one.

Also this result won’t be valid for a general nonlinear system, as the linearization does not
yield meaningful results in every possible case. However, the numerical trials for this model did
so, for the non-stochastic modelling approach with partial differential equations (A.7) and (A.8).

3.5 Sensitivity analysis of the model
The sensitivity analysis is a possible approach to confirm, that a minimum was found. However,
without any additional constraints, no pronounced minimum is found, as seen in section 3.3.
Due to this reason this analysis is postponed until now. After the section 3.4 a way is known,
how to locate a minimum and a sensitivity analysis can be done.

Local and global sensitivity analysis can be carried out. The goal of the local sensitivity anal-
ysis is to show, how well a minimum is expressed under small perturbations of found parameters.
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Figure 3.9: Optimization results with two constraints provided. Without being able
to measure the single calculated time scale parameter, one is left with two
hyperparameter, which can be passed to the optimization routine. This is of
course also possible, resulting in a pronounced minimum in the parameter
space. The plot shows a pronounced minimum in the phase space of KM×KE

The term of global sensitivity analysis is not well defined in general. The sensitivity of the
model on its parameters is defined locally, w.r.t. some distinguished parameter space point.
Especially in the present case, where the overall system behavior has a pronounced dependency
not only on kinetic parameters but also on initial parameter values, like initial concentrations of
reactants.

However, following Leamer in [158, 159], global sensitivity can be seen as the investigation of
model behavior under various assumptions variation, which enters the data generation.

Local sensitivity analysis of the model
A known method to analyze sensitivity of a found parameter set is to apply the common sensi-
tivity analysis, described e.g., in ref. [160]. Here, the analysis is driven locally, by varying single
parameter at once. However, the varied parameter can, but does not necessarily need to be one
of the optimized model parameters, in general. Also, one of the provided constraints can be
varied. The solution can be inspected w.r.t. stability of arbitrarily defined parameters in the
aforementioned manner. Some correlation results for the found solutions are shown in figures
3.10 and 3.11.

Global sensitivity analysis of the model
For optimization very few assumptions were made explicitly. This was done deliberatively, to
keep the optimization as general as possible. Therefore in the global analysis it will be shown,
how the choice of distance measure affects the expressiveness of minimum found.
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Again, the definitions of the sampling parameter and the constraint are kept fixed. The global
analysis is therefore a rough test of optimization performance with the context of chosen sampling
parameter, constraint and the optimization algorithm in use.

The unbound sampling parameter was chosen in such a way, that all other parameters are
constrained into a box with finite dimensions. This can be accomplished in various ways, in
particular four of them were inspected.

l∞ norm
Choosing the l∞ norm for the parameter vector of the model parameters, led to a box constraint
of the sampling parameters with one of them being normalized to 1.

0 ≤ pi ≤ 1 ∀i
max

i
pi = 1

(3.32)

l2 norm
Choosing the l2 norm for the parameter vector of the model parameters, led to a sphere constraint
of the sampling parameters

0 ≤ pi ≤ 1 ∀i∑
i

√
p2i = 1

(3.33)

l1 norm
Choosing the l1 norm for the parameter vector of the model parameters, led to a diamond
constraint of the sampling parameters

0 ≤ pi ≤ 1 ∀i∑
i

pi = 1 (3.34)

l0 norm
Choosing the l0 norm, defined by Banach, in ref. [161] for the parameter vector of the model
parameters, led to an abstract F-Space defined by

0 ≤ pi ≤ 1 ∀i

ki = 2i
pi

1− pi
(3.35)∑

i

2−i ki
1 + ki

=
1

KS

The constraint is nonlinear in this case, using all sampling parameters, including the normaliza-
tion parameter for feasibility detection of model parameters. The sampling is associated with
the l0 norm due the normalization procedure, considered e.g., in ref. [162].

The normalization parameter KS was sampled uniformly for direct phase space search and
using its inverse for bayesian optimization.
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Michaelis Menten Michaelis Menten
without inhibition with inhibition

convexity time per eval [s] convexity time per eval [s]
l∞ 5.6 · 10−1 3.9 · 10−1 1.7 · 10−1 7.3

l2 3.6 · 10−5 6.6 · 10−1 3.6 · 10−3 6.9

l1 1.13 · 105 1.3 9.5 · 104 3.3

l0 2.9 · 10−5 1.5 1.1 · 10−5 1.2

Table 3.1: Different metrics are equivalent, however, the behavior of used optimization
algorithm differs a lot, depending on the used metric definitions. As the
convexity measure, the integral of

∫
min(F )− F over the sampled range was

used. During the optimization a benchmark was done, which is then was
divided by the number of samplings.
As larger the convexity measure is, as better: This is a rough measure of
expressiveness of the found minimum.
As smaller the time per evalution is, as better: For a successful function phase
space landscape approximation about 30 samplings were needed.

While the sampling procedure associated with l1 norm shows the best results, others lead to
less pronounced minimum during the optimization runs, see table 3.1 for minima shape char-
acterization. The minimum could either not be found or the optimization time become huge,
making the routine infeasible.

The optimization of the model given by partial differential equations is a smooth model,
without any stochasticity. Therefore, for the hyperplane defined by the constraints above the
local minimization routine fmincon was used. For phase space landscape of the problem bayesian
optimization was used.
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4 Model application

This chapter contains some demonstrations of the model abilities, in case dynamic pa-
rameters can be found.

Dependency on different properties of substrate can be studied, like dependency on the
ratio of surface to volume or the presence of lignin and different polymer distributions,
see sections 4.1 - 4.3. Further model refinements, like explicit modelling of crystallinity
dependency can be tested, see section 4.4.

Last but not least, the model can be used to predict the best possible mixture of
enzyme concentrations for a given substrate description, as it is done in section 4.5.

Some preliminary considerations can be taken beforehand prior discussing the influ-
ence of different substrate features on the enzyme dynamics. It is assumed, e.g., that
the initial substrate is insoluble. This way, the shortest polymer length has to be chosen
equal to the solubility barrier. Furthermore, realistic enzyme concentrations do not lie
above 0.01mol/mol with respect to substrate concentration.

4.1 Ratio of active surface to volume

Keeping the enzyme concentration constant with respect to substrate concentration and
varying substrate’s initial accessible surface the dependency on it can be depicted. The
results are shown in figure 4.1. The assumption still holds, that substrate is present in
excess, that is, even with small accessible surface area all enzyme entities are able to
bind at any time.

In order to achieve a constant concentration with tested surface/volume ratios, two
different initial bulk configurations are tried.
L0 = 500 glucose units, combined with 6 × 6 cross section is used first. This is

compared against a single polymer chain with the length of 18000 glucose units. The
enzyme concentration and the measured time is kept constant.

4.2 Dependency on lignin coverage

Modelling lignin is an attempt to model a more realistic substrate. Therefore also a
more realistic enzyme has to be used for this demonstration.

Using an EG enzyme, two different substrates, which differ in initial lignin coverage
were tried. The results can be seen in figure 4.2
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Figure 4.1: For substrates with different initial ratios of surface to volume time evolution
of product concentration is shown. Even for the artificial enzyme kind, there
evolves different dynamics. As the initial accessibility become larger, the
substrate conversion also grows. This is expected behavior.

Figure 4.2: Two distinct lignin coverage percentages were tried. The overall conversion of
substrate as well as glucose production depend on lignin coverage in general.
The dependency is seen mostly in the initial and intermediate time span.
At the end, substrate is expected to be degraded to the level, where lignin
coverage plays a less important role.
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Figure 4.3: Model prediction of polymer lengths distribution during cellulose degradation
at various times. The data was created by means of the stochastic model.
Times, and concentrations are in arbitrary units. Polymer lengths are in
glucose units.

4.3 Polymer distribution

The change of polymer distribution during the hydrolization process is a common heuris-
tic shown in literature, see e.g., [163]. The results therein are provided by analytic or
explicit numeric models. Here, the results shown in figure 4.3 are for the stochastic
model derived in chapter 2.

4.4 Rate dependency on crystallinity

The hydrolytic ability of enzymes is known to be almost linearly dependent on the
crystallinity degree of the substrate, see e.g., ref. [164].

Trials were done to introduce some relation between ki to reproduce this behavior.
However a parametric model was quickly dismissed.

Nevertheless, optimization of the rate constants to experimental data taken from Agar-
wal et. al., [164] was successful. The results show a clear relation between measurable
enzyme characteristics and the measured data, see figure 4.4. Therein substrate hydroly-
sis percentage after a certain amount of time is shown on the left ordinate. The common
x-coordinate is chosen to be initial crystallinity index of a given substrate. On the right
ordinate optimization results of the ratio kcat/KM are shown.
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Figure 4.4: Experimental data taken from Agarwal et. al., [164] for hydrolysis after 72h.
It correlates clearly to the optimization results of rates, presented as the ratio
of kcat and KM .
The rate constants k1, k2, k3 were optimized independently for each experi-
mental point under identical optimization conditions. Then, the results are
compared with experimental data.

The prediction bands for further expected measurements are overlapping in a large
area. The Pearson correlation coefficient is almost 1. The correlation coefficients of this
experimental data vs. kcat is 0.57, and vs. KM −0.66.

4.5 Best possible mixture search
Predictions about best possible mixture are highly appreciated in enzyme model ap-
plications, see e.g. refs [165, 148]. The common way to depict the results are ternary
plots.

For the best mixture search the optimization results from former sections were used
for the CBH and EG enzymes. The action mode of β-G enzyme was assumed. The
phase space was now scanned by varying the initial amounts of enzymes, whereas their
total amount was kept constant.

The results are seen in figure 4.6.For comparison, results from Levine et. al, in ref.
[148] are reused in figure 4.5.
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Figure 4.5: Three-dimensional plots of percent of cellulose at 24h of hydrolysis with
mixture of EG2-CBH1-CBH2. See Levine, et. al, see ref. [148].Vertical axis
shows total cellulose conversion (%). Total cellulase loadings is 10 mg g−1,
DP = 1500 and surface area = 47.6 m2 g−1.

Figure 4.6: Simulation data of glucose yield after 24h of hydrolysis with mixtures of EG1-
CBH1-β-G. Vertical axis shows percentage of glucose yield w. r. t. of initial
substrate amount. Total cellulase loadings is 10mmol/mmol substrate. DP=
200 and surface/volume ratio of substrate 2/3m−1.
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5 Conclusions

5.1 New model for enzymatic substrate hydrolization
In the present work, a new model for enzymatic substrate hydrolization was created.
The novelty of the model lies in the rigour of its formulation. All features are designed
in a modular way and are independent of each other. They can be switched on, off freely
and tuned in different ways.

The Cellulect model contains a distinct formulation of the substrate and enzymes.
Both contain numerous features, which can influence the behavior of the hydrolization
process. New features can be added easily and their influence studied in connection with
other features or independent of them.

Furthermore, the model contains a propagation algorithm formulated separately and
independent of the underlying components. The algorithm is stochastic exact, paying
tribute to the stochastic nature of biochemical reactions and being able to keep track of
every of them.

The substrate is discretized at the level of product units. This approach keeps the
discretization level lower than in many general purpose modelling frameworks. Further-
more, it allows to keep track of all conservation laws present in the modelled system.

All features of the substrate such as its crystallinity index, degree of polymerization,
accessible surface, lignin coverage and the overall form factor is mapped and expressed
by the discretized units. The discretization error is therefore predictable for all features
and easy to control by unrestricted choice of the system size.

The initial state of the substrate can be freely described by experimentally measured
means of its properties. However, the model also provides the possibility to specify initial
distributions for them, such as initial crystallinity and polymerization distributions.

The main feature of current substrate modelling is the representation of its voluminous
nature by voxel units. On one side, this approach is already known and widely used,
e.g., in medicine. On the other, this allows to represent arbitrary structures, once the
unit of measure is defined.

Modelled enzyme features contain, among other things, their size, a distinguishable
position of its active center, orientation, processivity, different action modes, carbohy-
drate binding module, catalytic domain and a flexible linker. Experimental knowledge of
typically produced products and binding partners can and is supposed to be plugged into
their model. Different reaction propensities can be modelled dependent on encountered
substrate regions.

Three different enzyme types were formulated and used for demonstration purposes.
A further, artificial enzyme type was created for comparison reasons. The addition
of further enzyme types can be done in a natural way, formulated by difference to
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already modelled enzyme types. Extending common features leads to consistent behavior
changes across defined enzyme types.

The enzyme model uses the same notion of discretization as the substrate. This
allows an exact modelling of their actions on a molecular level. The model keeps track
and updates the system state on a reaction base. The stochastic nature of the system is
retained and demonstrated in the course of the work.

The heart of the model is a dedicated, well known time-reaction propagating algo-
rithm, proved and used in diverse models since over forty years. The algorithm is kept
completely independent from other parts of the model. This allows to easily reason
about it, increases its maintainability and flexibility. Performance enhancements were
applied to improve the overall simulation speed.

Separation the time propagation from other model content implies a normalization
process of all quantities present in the model. This way, substantial quantities of the
model could be defined and identified. First hints for the abstract analysis approach of
the system appeared due to this modelling approach.

The used algorithm is optimal in the sense, that every simulation step contains a track-
able state change. Idle time steps are excluded by definition. Every reaction is chosen
stochastically, physical time scale is modelled in concert with the ongoing reactions.

Furthermore, an impressive agreement of the developed model with numerical solu-
tions of differential equations was established. The numerical error is the result of system
discretization only and can be taken under full control by enlarging the system. For de-
riving statistical surveys about simulation runs several runs are needed. This is common
among stochastic models.

The purpose of the present work was to establish a simple yet powerful and extendible
framework for enzymatic substrate degradation modelling. This was accomplished by
tackling the biochemical reaction equations developed by Michaelis Menten. To get close
to reality the model was complemented with competitive, reversible product inhibition.
This is an important reaction observed in closed systems, preserving the conservation
law of mass.

Diffusion was neglected, which imply a well-stirred system. Furthermore, the assump-
tion about enzyme reaction rates far from diffusion limiting case goes hand in hand
with this operational mode. The limiting time scale for enzyme reactions was derived.
Another point is, that even if diffusion has to be be taken into account, the data cannot
contradict the provided measurements. Therefore, all achievements in this work will
remain valid within their own framework.

New features, which are not considered in the current model state can be added in a
natural way, see section 5.3 for some ideas of model developing.

The validation of the model by means of experimental data was found to be under-
determined. In this regime, many valid solutions are found, fulfilling the requested op-
timization criteria. For convenience and phase space landscape estimation the bayesian
hyperparameter optimization was used.

The hyperparameter was identified as the lacking Lagrange parameter missing in the
underdetermined case. Linear stability analysis was used to identify the optimal pa-
rameter which then was used to receive numerical results. It was found, that only a
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single parameter is enough to localize an optimization optimum however. More known
parameters can be passed, in case the single one is not experimentally accessible.

Different random samplings, distance measures and constraint formulations were tried
during optimization runs. However, a certain complexity degree seems to remain. A
rough assessment of optimization problem formulations was done to compare optimiza-
tion performance. One of the tested routines was chosen for best performance to make
further quantitative analysis.

After the validation the model was used to reproduces experimental data. This was
successful to some extent. So, the original model given by partial differential equation
could be reproduced. Dynamic parameters of some of more realistic enzyme type could
be obtained by optimization. However, as the experimental curves become more com-
plex, the optimization of all experimental results simultaneously fails. Heuristics could
be obtained and reproduces already known features of enzyme models.

All in all, most difficulties originated from the fact, that the description of enzyme
action mode is not unified and in particular comes from a different source than the
experimental data. This lead to the most discrepancies of the model and the experiments,
trying to reuse the model on different measurements. I. e. as the dynamic properties of
the enzymes are only loosely coupled to their structural properties, a description based
on their dependency is most likely correct only for very rare cases.

It was tried to solve the uniformization task in this work, by regarding most different
prevalent enzyme kinds of EG, CBH and β-G types. Many features are therefore
included in the model and the observed dynamics could be explained by using only
known biochemical terms. However, if further enzyme kinds are to be added, further
properties are likely to be incorporated into the model.

5.2 Implemented model features
In figure 5.1 a sketch of implemented model features is shown. The code base is available
under git.physik.uni-marburg.de/alexander.orlov/cellulectlibrary.git.

5.3 Outlook
Despite being a fully formulated model, there are still many features left out. For
example,

• The acidity of solution pH during the reaction is assumed to be held on a constant
level. This was done, assuming that all enzymes behave similarly under pH vari-
ation. However, to approach the reality even more, this effect can be taken into
account, see ref. [166].

• The same assumption was made for the reactor temperature T . Here, the Arrhenius
law 5.1 could be taken into account, see ref. [167]

k = k0e
− Ea

kBT (5.1)
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with k0 as a known reaction rate constants at some temperature, Ea the activation
energy, kB, the Boltzmann constant and T the current temperature.

While quantities above can be used for better modelling enzyme behavior under various
reaction conditions, polarimetry measurements could also be used as input data, see refs.
[168].

Crystallinity index CrI and lignin models could be unified by the recalcitrancy term,
see ref. [169, 11, 149]. This would enhance the unification, integrity and consistency of
the the substrate model even more. Also the difference of accessibility between microfib-
rils and macrofibrils would incorporated into this extension. The dependency of enzyme
actions could be modelled on a finer scale.

Along recalcitrancy, enzyme behavior could be partly modelled in terms of fuzzy logic,
see ref. [170]. This would reduce some of the logic cross products needed and contribute
to model substrate accessibility in a uniform manner.

The Cellulect model is capable of modelling arbitrary complex substrate structures.
This could also be used to model the substrate directly, from electron microscope pic-
tures. Image recognition facilities can be involved for this purpose, see e.g., ref. [171] or
[172].

Enzyme extents have to be expressed in the same units as the substrate. This is by
design, as the substrate defines the smallest common unit of measure by the extent of
products. However, in the present model all enzymes are assumed to have only one
dimension, its length. A more elaborated model could be enhanced in this respect.

Another consideration concerns the form factor of the substrate. In the present model
a rectangle cross section of the substrate was assumed. This was partly done for simplifi-
cation and partly due to symmetry assumptions. However, another geometry could also
be tested. The interplay of two or even tree dimensional enzymes with such geometries
could be of interest.

The enzyme model can be extended in many ways. Beyond their geometry, mentioned
above, more biological aspects could be involved. For example, several active centers
and conformations could be included into the model, see ref. [173]. More complexation
centers for a single substrate lead to hyperbolic propensity function [174].

Additional enzyme types could be forged. Enzyme types like Cellusomes, see ref. [175]
were not considered in the present model. These were omitted in favor of well known
enzyme types, which already build a complex system, which is not fully captured yet.

Hill equations, see ref. [176] were neglected to simplify the model even further. Using
them as optimization constraints or taking them into account while comparing the model
output could be a reasonable extension to the current model.

Diffusion treatment could be added. However, the model with diffusion should deliver
the same numerical results, as seen in section 5.1. Nevertheless, the addition of diffusion
could be used to compare results about the diffusion properties of various kinds of
enzymes.
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Figure 5.1: A sketch of implemented features in the cellulect model model.
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A Support information

A.1 Diffusion coefficient calculation
Using the Stokes-Einstein equation the diffusion coefficient is derived to be

D =
kBT

6πη · f/fminR0
(A.1)

see, ref. [177]. Where

• kB: the Boltzmann constant

• T : temperature

• η: viscosity

• f/fmin: friction coefficient, taken into account, the particle is not a sphere

• R0: radius of the particle

Now, first calculate R0 to be

R0 =

(
3m

4πρ

)1/3

=

(
3 · 5

4π · 1.37 · 6.022
· 102

)1/3

nm = 2.4367 nm (A.2)

here, is used

m = 50 kDa = 5 · 104 Da

ρ = 1.37
g

cm3
= 1.37 · 6.022 · 10

23

1021
Da

nm3

(A.3)

see 2.3 for more details.
At the next step the constants are set, cf. [85].

kB = 1.38 · 10−23 J

K
= 1.38 · 10−23 · 10

18 nm2 · kg
106 ms2 ·K

= 1.38 · 10−11nm
2 · kg

ms2 ·K
T = 300 K = 3 · 102 K

η = 1 · 10−3 Pa · s = 1 · 10−3 kg

1012 nm ·ms
= 1 · 10−15 kg

nm ·ms
f/fmin = 1.5

R0 = 2.4367 nm

(A.4)

91



This yields the diffusion coefficient to

D =
1.38 · 10−11 · 3 · 102

6π · 1 · 10−15 · 1.5 · 2.4367
nm2 · kg ·K · nm ·ms

ms2 ·K · kg · nm
=

=
1.38 · 3

6π · 1.5 · 2.4367
· 106 nm2

ms
= 6.0091 · 104 nm2

ms

(A.5)

The common definition of the diffusion length, depending on time is lD =
√
2 · n ·Dt.

Here, a well stirred volume as well as only enzyme movements along the substrate are
considered. Therefore, the diffusion length is set to lD = 2

√
Dt; this yields

lD = 2
√
Dt = 490, 2673 nm ·

√
t (A.6)

This result is used in section 2.3 to derive a minimal time step cutoff, where neglecting
diffusion remains valid.

A.2 Michaelis-Menten kinetics and beyond

Governing equations

In ref. [18] Michaelis and Menten introduced for the first time in the framework of
enzyme kinetics. This theory is now known as Hidden Markov Model. The assumption
was made, that some transient states exist, between that rates mediates the chemical
conversion of reactants, see figure 2.11.

The basic reaction assumes a single intermediate state of adsorbtion between the
substrate and the enzyme, after which the conversion of substrate to product by hy-
drolyzation happens. This initial idea already leads to a rich class of kinetics governed
by nonlinear dynamic and algebraic equations, see equation (A.7) and ref. [59].

∂tS = −k1SE + k2Cs

∂tP = k3Cs

∂tE = −k1SE + (k2 + k3)Cs

∂tCs = k1SE − (k2 + k3)Cs

ET = E + Cs

ST = S + P + Cs

(A.7)

In case of a more elaborated model, it is possible to take more intermediate states
into account. In this work, inhibition by product was taken into cosideration. This is
a natural assumption, avoiding the system loosing all degrees of freedom at the end of
cellulose conversion.

The according kinetic equations are as follows:

92



∂tS = −k1SE + k2Cs

∂tP = k4Cp − k5EP

∂tE = −k1SE + k2Cs − k5EP + k4Cp

∂tCs = k1SE − (k2 + k3)Cs

∂tCp = k3Cs + k5EP − k4Cp

ET = E + Cs + Cp

ST = S + P + Cs + Cp

(A.8)

In both cases, there are two additional algebraic equations in the system, showing
conservation of mass. They make it possible, to simplify two of the kinetic equations
as they are linearly dependent via the constant of total enzyme ET or substrate ST

concentration, respectively.
In the present work, the defined algebraic equations play by far a more important role

than the kinetic equations. Rules for enzyme actions were added and imposed on the
kinetic equations. The chosen modelling approach allows to define an arbitrary amount
and variety of such rules for enzyme actions. This provides a fine grained control on
the mode of action of enzymes and substrate properties updates, which are not trivially
expressible by differential or integro-differential equations. However the given algebraic
equations still play a role as stoichiometric mass conservation law, which is guaranteed
to hold.

Macroscopic Constants

It is common to describe the substrate affinity by the Michaelis constant KM , for which
the following relation holds.

KM =
k2 + k3

k1
(A.9)

where

• k1 is the adsorption rate constant, which describes the formation of the enzyme
substrate complex,

• k2 is the desoption rate constant and

• k3 is the catalytic rate constant, which denotes the conversion between substrate
and product.

In case inhibition is modelled, it is convenient to introduce an equivalent inhibition
constant KI

KI =
k4
k5

(A.10)

where, additionally to the rate constants k1, k2, k2

• k4 is the desorption rate constant of an enzyme from the product
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• k5 is the adsorption rate constant, which corresponds to the forming of the enzyme
product complex

Frequently, there are more macroscopic ratios introduced, for expressing measurable
quantities at steady states, see ref. [59].

The Van Slyke-Cullen constant KC , see [178]

KC =
k3
k1

(A.11)

The dissociation equilibrium constant KD

KD =
k2
k1

(A.12)

The enzymatic specificity constant KE

KE =
k3
KM

(A.13)

By analogy, an altered Van Slyke-Cullen constant K̃C , was defined as

K̃C =
k3
k5

. (A.14)

State Machine and Graph represenation
As stated by Kemeny in [179] there is a natural connection between the general concept
of state machines and Markov chains. Herein the connection between the representation
of the process by means of state machines and computation by means of transition
matrices is meant. In this work these two concepts are used in different contexts.

A Markov chain, is a stochastic process that moves successively through a set of states.
If it is in state sk it moves on to the next stop, state sj , with probability pkj . These
probabilities can be exhibited in the form of a transition matrix. Here, it is important
to note, that the whole system under inspection is modelled as a Markov chain. For
each state, there is a defined constant rate for each transition. The process is therefore a
Poisson process, as pointed out in section 2.1. On each transition the state of substrate
changes unavoidable by using the time propagating algorithm, described in section 2.2.

On the other side, the concept of a finite state machine (FSM) is used to model
enzymes. A FSM being either of Mealy-kind, see ref. [180] or Moore-kind, see ref.
[181] and being indeed equivalent by the powerset construction, see ref. [182] is rather
a technical notation based on conventions, see ref. [183] and does not have an unique
definition.

It can be defined as a quintuple A = (S, I,A, δ, γ). Where

• S is the set of automata states (or nodes),

• I the set of input set, called alphabet,
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• A output set

• δ : S × I → S the next-state function (or transition function) and

• γ the output function.

cf. also [184]. S, I and therefore A are used to be finite.
The notion of automata contains general rules which lead to transitions from its state

sk to state sj depending on the current state by means of an optional input (=event),
optionally providing an output. This model approach is chosen to represent enzymes,
identifying them as the active species of the model. With them as a helping tool, the
probabilities for the whole system mentioned above are gained.

Constrained to chemical reactions 2.11 and 2.12 the reaction graphs and corresponding
state machines for enzymes and substrates are straight forward to formulate, see fig. A.1.

There are two different problems here. On one side, the representation of enzymes as
state machines. On the other side, the transition matrix representing the Markov process
used to model the whole system of glucose units, polymers constituting the substrate
and enzymes hydrolyzing the substrate. They must not be mixed. However the idea is,
that the enzymes provide required probabilities to the governing transition matrix. As
the simulation goes on, the states of enzymes and the substrate evolve, updating the
possible inputs to the enzymes as state machines and providing in such a way the base
of calculation of updated transition probabilities.

Now, for the purpose of the present work, following entities can be identified

• S with the states of an enzyme in figure 2.11 or 2.12, respectively.

• I as the reaction being sampled by the time reaction evolution algorithm,

• the next-state function as the appropriate transition function according to the
reaction graph

Inspecting the states of the reactants directly, the output function γ as well as the output
A can be neglected. This leaves behind a semi-automat as defined by Medvedev in ref.
[185, pp. 385-401]

The goal is now, by inspecting the possible inputs to the enzymes as state machines,
taking given reaction rates into account and the current state of enzymes to calculate
every probability pij needed for the Markov process to make the next jump.

For this purpose the possible inputs are partitioned by means of the reaction rates.
I.e., there is a 1:1 relation between reaction rates and reactions (= inputs for enzymes).
Then, the substrate (and accordingly the product) is subdivided to match the given
reaction rates. Similarly, enzymes are partitioned. This is done by counting sampled
entities of the substrate and enzymes. The underlying process is a Poisson process and
therefore a counting process, which allows the procedure.

Multiplying the partitioned amounts of reactants with the according reaction rates
w.r.t. their units yields propensities of each reaction, and their sum yields the intensity
of the underlying Poisson process. This indeed coincides with formulation of the process
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Figure A.1: Common state machine for enzymes, restricted to Michaelis Menten dynam-
ics, see also figures 2.11, 2.12 for definitions of ki and ref. [97].
Figures (a) and (b) show continuous time Markov chain (CTMC) represen-
tation with reaction rates on edges.
Figures (c) and (d) show general state machine representation with accord-
ing events leading to state changes.
Figures (e) and (f) show the common reaction graphs for substrate and prod-
uct.
As the descriptions are independent, they can be simultaneously achieved.
In order for the simulation to be correct, this has to be guaranteed.
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as a master equation, cf. [186]. By normalizing the propensities by their sum the prob-
abilities of reactions are calculated. The reciprocal intensity yields the uniformization
constant [75] and therefore the time which is needed for the next reaction.

A.3 Notion of time
To justify the time calculation for each reaction there is some work to be done. First,
note, that enzymes are modelled as state machines. Though, the output of the state
machines is not measured directly. This is influenced by the Michaelis-Menten kinetics
as well as by the fact, that due to small enzyme amount, the measurement of their
concentrations is generally not accessible.

The general framework governing this approach is the framework of hidden-Markov
model (HMM). The first reference dates back to Baum & Petrie in [187], while a more
elaborated work was done by Zucchini & MacDonald in [188].

HMMs assume a bivariate process (Xt, Qt), t ∈ T where Xt are the observable random
variables, whereas Qt is the hidden process, as defined in [57]. In this work Qt is
associated with the state machine of enzymes and Xt with observations made on the
substrate.

However, in contrast to the definition in [57], the index set T is not taken to be
necessarily discrete. It is either T = N or T = [0,∞) and T is the Borel σ-algebra of
T . (T, T ) is then the measurable space of the time domain. The domain can be even
extended by the one-point compactification of T to infinite times: T∞ = T ∪ {∞} and
its σ-algebra in an analogous manner. So that (T∞, T∞) is also a measurable space. A
random variable τ taking values in T∞ is called a random time.

The hidden Markov chain is assumed to be time-homogeneous, i.e., the associated
transition matrix Q for the hidden Markov model still has the Laplace property, see ref.
[189]:

Q(G)ij =

eij if i 6= j

−
∑
v 6=j

evj , if i = j (A.15)

with G as the graph of the CTMC encoding the process Qt and eij being the labels on the
transitions of the graph. However, the entries eij are generalized to be dependent on the
observed variables Xt−1: eij ≡ eij(Xt−1). The conditional distribution Xt also remains
time-homogeneous: P (Xt = x|Qt = q) = p(x|q) ∀t. The HMM defining property holds,
too:

The ith conditional probability splits into

P (Xt, Qt|Xt−1, . . . , Qt−1, . . . ) = P (Xt|Xt−1, . . . , Qt, . . . ) · P (Qt|Xt−1, . . . , Qt−1, . . . )
(A.16)

The observation equation holds:

P (Xt|Xt−1, . . . , Qt, . . . ) = P (Xt|Qt) ∀t ∈ T (A.17)

stating, that the conditional distribution of Xt is completely determined by the current
hidden state Qt. This is the Markov property of the observed process Xt.
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However, in the present case the process (Xt, Qt)t∈T is neither purely parameter-
driven:

P (Qt|Xt−1, . . . , Qt−1, . . . ) 6= P (Qt|Qt−1) (A.18)

nor purely observation-driven:

P (Qt|Xt−1, . . . , Qt−1, . . . ) 6= P (Qt|Xt−1) (A.19)

Though, it holds:

P (Qt|Xt−1, . . . , Qt−1, . . . ) = P (Qt|Qt−1, Xt−1) (A.20)

Now, as the Laplace property for the Qt process still holds, assume Xt is a counting
process {N(t), t ≥ 0} for the events of Qt. It is valid to assume the Poisson distribution
of Xt conditioned on Qt = q given for each time point as

P (X(t) = n|Qt = q) = e−λq ·t · (λq · t)n

n!
(A.21)

So, the Poisson intensity for a given state Qt is λq and time is exponential distributed.
During the simulation λq is calculated on the fly, taking the current state of concen-

trations as well as provided reaction rates into account. Then, after the current time
step is determined, the reaction is sampled according to the provided propensities. Each
propensity on their own has a one-to-one relation to the corresponding reaction rate.

The algorithm separates the concerns of time calculation and reaction sampling. Dur-
ing the time calculation the values of propensities are important, while during reaction
sampling only their ratios are important. The optimization therefore has to be formu-
lated in a hierarchical manner.

While the general optimization problem (3.1) remains well formulated, the hierarchical
optimization is formulated as hyperparameter optimization, see refs. [190, 191, 192,
193, 194, 195, 196, 197, 198]. In general this problem remains hard to solve. Only
randomization and estimation algorithms exist. Though, a proper sampling of variables
can lead to some insights.

The full optimization procedure is defined as following:

• sample a hyperparameter, which corresponds to a time scale ratio in the system.

• given the hyperparameter, search for an optimum of other parameters present in
the system optimizing a defined cost function.

• repeat the two steps (at random or by means of a dedicated estimator) until the
global optimum of the cost function is found. The set of parameters yielded is valid
in both respects. The hyperparameters are the time scale defining parameters.
Intern parameters are set by optimization w.r.t. experimental data to fixed values.

Some possible hyperparameter definitions as well as optimization results are shown in
chapter 3.
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B Technical details

B.1 Van Emde Boas tree

One of the performance critical sections was the storing of polymer objects during simu-
lation runtime. For this task a cache oblivious data structure, the van Emde Boas tree,
with constant time for inserting, removing, searching of elements and neighbors actions
was used, see refs. [199, 200].

Using this tree structure all operations are achievable in loglogM , where M is a
constant universe size. As the law of mass conservation holds during a single simulation
run, the maximum number of elements stays constant and is known since initialization.

A polymer is identified by the glucose unit at the reducing end. Each glucose unit has
an identity. In such a way the look up for the corresponding polymer identity takes a
single look up, starting at arbitrary position and performing a neighbors search in the
appropriate direction.

By performing two searches in opposite directions the whole polymer can be con-
structed.

During a hydrolyzation step a new element is inserted into the tree structure. In this
way a new polymer emerges and the list of them is kept up to date.

For convenience, the number of tree elements is also kept up-to-date. In such a way
the look up for current polymer amount also takes O(1).

B.2 Cut theorem

The cut elimination theorem is a central theorem in sequence calculus theory, see refs.
[201, 202]. In its simple form the theorem states

Γ ` A ∧ A,∆ ` B ⇒ Γ,∆ ` B (B.1)

A consequence of this theorem is, that for proof of consistency of a system it is enough
to show, that A is consistent.

Now, lets identify Γ with some state of the substrate. A is the corresponding state of
its polymers and ∆ are actions performed by enzymes. The actions of enzymes transit
the state of polymers A into state B.

With the cut elimination theorem it is easy to state now, that if the polymer objects
behave consistent, then the whole system of substrate and enzymes is consistent. This
approach was used during implementation to simplify reasoning about simulation runs.
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(a) With l2 metric a sphere arise as the
unit cell of the natural space topol-
ogy.

(b) In contrast to this, optimization of
rates were driven using the l1 dis-
tance metric. The unit cell deforms
in this case to the shown form.

Figure B.1: Comparison of unit cells using l2 and l1 distance metrics in subfigures (a)
and (b) respectively.

B.3 Random sampling within metric spaces
Random sampling is not a trivial task in general. Many efforts were made to achieve
faster pseudo random number generation algorithms, longer periodicity and more uni-
formly samplings. For recent trends see e.g., refs. [203, 204, 205].

Additionally, the task becomes even more challenging, if constraints are added on the
random samplings. For example, this has to be done to restrict the optimization routine
to a feasible set of parameters, sampled from a more general set. Throughout this work
it was a common task to sample random numbers in the positive metric space of Rn

+,
where either a scale parameter and/or an additional constraint was superposed.

To fulfill a proper sampling the scale parameter maps to its own linear subspace of
Rn
+. After this, the remaining problem becomes reduced by one dimension to Rn−1

+ .
While the optimization algorithm takes over the sampling and phase space search inside
the reduced subspace the separated 1 − D radial component was used as a projection
dimension either to represent the outcomes or to drive the samplings in the subspace.

It has to be guaranteed, that the samplings can be handled as on independent identi-
cally distributed random variables without any bias. In figure B.1 a comparison of such
subspace separation for the l2 and l1 metric is shown. With the l2 metric the natural
space topology is euclidean and randomized points can be picked on a sphere, see refs.
[206, 207]. For the l1 metric the sphere deforms to a diamond.

However, in both cases a unit radius can be defined, which is orthogonal to the shown
surfaces, and can therefore be independently sampled, optimized and analyzed.
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