
 

 

Computer Engineering and Applications Vol. 9, No. 3, October 2020 

 

ISSN: 2252-4274 (Print)   175 

ISSN: 2252-5459 (Online) 

Reducing Generalization Error Using Autoencoders for The 

Detection of Computer Worms 

Nelson Ochieng1*, Waweru Mwangi2 and Ismail Ateya1 

1Strathmore University, Kenya,  
2Jomo Kenyatta University of Agriculture and Technology, Kenya 

*nochieng@strathmore.edu 

 

 

ABSTRACT 

This paper discusses computer worm detection using machine learning. More 

specifically, the generalization capability of autoencoders is investigated and 

improved using regularization and deep autoencoders. Models are constructed first 

without autoencoders and thereafter with autoencoders. The models with 

autoencoders are further improved using regularization and deep autoencoders. 

Results show an improved in the capability of models to generalize well to new 

examples. 

Keywords: Computer worm detection, generalization capability of machine 

learnings, autoencoders, deep autoencoders, regularization   

 

1. INTRODUCTION 

 

Computer and network resources are important for the operational effectiveness 

and efficiency of organizations. These resources may also be leveraged for 

competitiveness. A number of critical threats exist that could hamper these benefits. 

The most prevalent threats and attacks reported by pre-eminent security 

organizations include worms, botnets, Trojans, ransomware, spam, phishing, web 

attackers and crypto-miners [1]. 

This study has as its scope computer worm detection using machine learning in 

an organization’s network. More specifically, the study investigates and reduces 

generalization error of the detection model using autoencoders. In [2], they defines a 

computer worm as a process that can cause a (possibly evolved) copy of it to execute 

on a remote computational machine. Worms self-propagate across computer 

networks by exploiting security or policy-flaws in widely used network services. 

Unlike computer viruses, worms do not require user intervention to propagate nor do 

they piggy-back on existing files. Their spread is very rapid [3,4] with the ability to 

infect as many as 359,000 computers in under 14 hours, or even faster. Computer 

worm defence involves prevention and detection. Prevention may not always be 

wholly possible due to inherent vulnerability in all systems. The approach this study 

takes is to profile and detect attacks. Once detection has happened other mitigation 

measures may be taken. 

A number of approaches for computer worm detection have been reviewed in 

literature. These include content-based signature schemes, anomaly detection 

schemes and behavioral-signature based detection. Approaches that utilized machine 

learning have particularly yielded good results [5,6,7,8,9,10,11,12]. Machine 

learning has been defined as a field of study that gives computers the ability to learn 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ComEngApp-Journal

https://core.ac.uk/display/334998624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nochieng@strathmore.edu


Nelson Ochieng, Waweru Mwangi and Ismail Ateya  

Reducing Generalization Error Using Autoencoders  

for The Detection of Computer Worms 

 

176  ISSN: 2252-4274 (Print) 

  ISSN: 2252-5459 (Online) 

without being explicitly programmed [13]. The use of machine learning can help 

correlate events, identify patterns and detect anomalous behavior to improve the 

security posture of any defence program [14]. The studies that are most similar to 

the present study are here reviewed. 

There exist a few studies that are most similar to the present work [15,16, 17]. In 

[15], they use auto-encoders for dimensionality reduction and feature extraction. 

Auto-encoders are unsupervised learning algorithms and do not require labels for 

training. Three Deep Neural Networks (DNN) were used with the features extracted 

from the Auto- encoders and an accuracy of 99.21% obtained. The present study 

deviates from this approach by using the Auto-encoders to achieve generalization of 

the model and not accuracy alone. 

Another study that also comes close is that by [16] who propose a deep learning 

architecture using stacked auto-encoders with input being windows portable 

executable programming interface (API) calls extracted from the windows portable 

executable (PE) files. It uses unsupervised feature learning then supervised fine-

tuning. The model outperforms Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), Naive Bayes (NB) and Decision Trees (DT). Again, 

generalization error is not investigated. In [17], they use deep belief networks 

(DBNs) implemented with a deep-stack of de-noising auto-encoders generating an 

invariant compact representation of the malware behavior. The study claims 98.6% 

accuracy in classifying new malware variants. As before, generalization error is not 

investigated. Other studies use slightly different approaches. Then, in [18] they 

propose using two DNNs with the first limited to only determining if the traffic is 

normal or suspicious and the second classifying the traffic as a multi-class problem.  

In [19], they use convolution neural networks for detection based on image 

similarity and claims an accuracy of 98%. [20] investigate the class imbalance 

problem with methods like random sampling and cluster-based sampling. They use 

auto-encoders for dimensional reduction. In their work, Random Forest outperforms 

deep neural networks with a claimed accuracy of 99.78%. Then, in [21] they train 

convolutional neural networks (CNN) translating the malware classification into an 

image classification. An accuracy of 99.97% is claimed. In [22], they trains a CNN 

on dynamic behavioral features of the PE files (n-grams used to create images) to 

detect and classify obscure malware. An accuracy of 97.97% is claimed. In [23], 

they use SVM to perform clustering as well as dimensionality reduction. In [24], 

they use Independent component analysis (ICA) to separate features extracted from 

network traces into two estimated distributions of malware and benign traffic. In 

[25], they uses K-Means clustering algorithm and thereafter performs boosting using 

Genetic Algorithm. In [26], they explains that the fundamental goal of machine 

learning is to generalize beyond the examples in the training set. It would be useful 

to investigate the generalization capability of the learners. Last, in [27], they 

discusses a number of ways of reducing the generalization error including stopping 

the training as soon as performance on a validation dataset starts to get worse, 

introducing weight penalties of various kinds such as L1 and L2 regularization 

(sparse autoencoder), and drop out among others. Dropout refers to dropping out 

units (visible and hidden) in a neural network. The choice of which units to drop is 

random. They explain that dropout can be interpreted as a way of regularization by 

adding noise to a neural network’s hidden units. Other ways of reducing the 

generalization error include limiting the number of nodes in the hidden layer of the 



 

 

Computer Engineering and Applications Vol. 9, No. 3, October 2020 

 

ISSN: 2252-4274 (Print)   177 

ISSN: 2252-5459 (Online) 

network (undercomplete autoencoder) and adding random noise to the inputs and 

letting the autoencoder recover the original noise free data (denoising autoencoder). 

 

 

2. MATERIALS AND METHODS 

 

2.1 DATASETS 

 

The datasets used for the experiments were requested and obtained from the 

University San Diego California Center for Applied Data Analysis (USCD CAIDA). 

The center operates a network telescope that consists of a globally rooted /8 network 

that monitors large segments of lightly used address space. There is little legitimate 

traffic in this address space hence it provides a monitoring point for anomalous 

traffic that represents almost 1/256th of all IPv4 destination addresses on the 

Internet. 

Two sets of datasets were requested and obtained from this telescope. The first is 

the Three days of Conficker Dataset [28] containing data for the three days between 

November 2008 and January 2009 during which Conficker worm attack (Emile, 

2009) was active. This dataset contains 68 compressed packet capture (pcap) files 

each containing one hour of traces. The pcap files only contain packet headers with 

the payload having been removed to preserve privacy. The destination IP addresses 

have also been masked for the same reason. The other dataset is the Two Days in 

November 2008 dataset [29] with traces for the 12th and 19th November 2008, 

containing two typical days of background radiation just prior to the detection of 

Conficker. 

The datasets were processed using the CAIDA Corsaro software suite, a 

software suite for performing large-scale analysis of trace data. The raw pcap 

datasets were aggregated into the FlowTuple format. This format retains only 

selected fields from captured packets instead of the whole packet, enabling a more 

efficient data storage, processing and analysis. The 8 fields are source IP address, 

destination IP address, source port, destination port, protocol, Time to Live, TCP 

flags, IP packet length and Value which represents the number of packets in the 

interval whose header fields match this FlowTuple key. The instances in the Three 

Days of Conficker dataset have been further filtered to retain only instances that 

have a high likelihood of being attributable to Conficker worm attack. In [29], they 

discusses Conficker’s TCP scanning behavior (searching for victims to exploit) and 

indicates that it engages in three types of observable network scanning via TCP port 

445 or 139 (where the vulnerable Microsoft software Windows Server service runs) 

for additional victims. The vulnerability allowed attackers to execute arbitrary code 

via a crafted RPC request that triggers a buffer overflow. These include local 

network scanning where Conficker determines the broadcast domain from network 

interface settings, scans host nearby other infected hosts and random scanning. 

Other distinguishing characteristics include TTL within reasonable distance from 

Windows default TTL of 128, incremental source port in the Windows default range 

of 1024-5000, 2 or I TCP SYN packets per connection attempt instead of the usual 3 

TCP SYN packets per connection attempt due to TCP’s retransmit behavior. 

 



Nelson Ochieng, Waweru Mwangi and Ismail Ateya  

Reducing Generalization Error Using Autoencoders  

for The Detection of Computer Worms 

 

178  ISSN: 2252-4274 (Print) 

  ISSN: 2252-5459 (Online) 

2.2 MACHINE LEARNING EXPERIMENTS 

 

Pandas library [30] was used for the machine learning experiments. The number 

of instances was originally 2000 with the variables as 130. These variables included 

source port, destination port, protocol, time to live (TTL), IP packet length, Value 

(the number of instances whose signature are similar), packet source country, well 

known source and destination ports, among others.  The variables had integer 

values. The examples were then split into train and test sets using the train_test_split 

function with the proportion of 0.33 and stratify sampling. For modeling, the keras 

library [31] was used. The first model was built using an input dimension of 130 and 

ReLu activation function (Rectified Linear Activation) and 9 nodes. For the output 

layer the model had 130 neurons and the sigmoid function for the activation. The 

model type chosen was Sequential. This was an easy way to build a model and 

allowed building the model layer by layer. Dense was the layer type used. Dense is a 

standard layer type that works for most cases. In a dense layer, all nodes in the 

previous layer connect to the nodes in the current layer. The activation function 

allows the model to take into account nonlinear relationships. For the loss function, 

binary_crossentropy was used. The metrics used was accuracy. For training the 

model, the fit () function was used with the following parameters:  training dataset, 

validation dataset, 50 epochs and a batch size of 32. The training and validation loss 

models were then plotted. The second model to be built was with activity 

regularization included. L1 regularization was used. The regularizers class from 

keras library was used. ReLu and sigmoid activations were used for the layers. For 

model compilation, binary_crossentropy loss function was used together with adam 

optimizer and accuracy metrics. The training and validation loss models were again 

plotted. The third model built was using deep autoencoders. The input dimension 

was still 130 but with 9,6,4 nodes for the hidden layers and 130 nodes for the output 

layer. The ReLu and sigmoid activation functions were again used. The results are 

presented and discussed in Section 3. 

 

 

3. RESULTS AND DISCUSSION 

 

Before using autoencoders, the neural network model plotted was as shown in 

Figure 1. Models were then built using autoencoders to attempt to improve the 

generalization ability. The second model built without using regularization or deep 

autoencoders gave the result as illustrated in Figure 2. 

 

 

 

 

 

 



 

 

Computer Engineering and Applications Vol. 9, No. 3, October 2020 

 

ISSN: 2252-4274 (Print)   179 

ISSN: 2252-5459 (Online) 

 

 

 

 

 

 

FIGURE 1. Training and validation loss for the neural network model without 

regularization 

The validation loss curve drops and then rises again. This shows over-fitting. The 

model does not generalize well to new examples.  

 

 

 

 

 

 

 

FIGURE 2. Train and validation accuracy plots for shallow autoencoder 

The accuracies reported were high for both training and validation. The validation 

fluctuations were narrowed hence an improved model. The number of epochs before 

which the accuracy was flat is about 5. With sparsity constraint, the model was 

slightly smoothened out. The results reported were as shown in Figure 3. 

 

 

 

 

 

 

FIGURE 3. Train and validation accuracies for a model with sparsity constraint 

The last model developed was one with deep autoencoders. The results are as 

illustrated in Figure 4. Very high accuracies were realized and the train and test 



Nelson Ochieng, Waweru Mwangi and Ismail Ateya  

Reducing Generalization Error Using Autoencoders  

for The Detection of Computer Worms 

 

180  ISSN: 2252-4274 (Print) 

  ISSN: 2252-5459 (Online) 

curves were almost in sync. The generalization capability of the model is hence 

greatly improved. 

 

 

 

 

 

 

 

FIGURE 4. Training and Test accuracies for deep autoencoder 

 

 

4.  CONCLUSION 

 

This study sought to investigate and improve the generalization capability of 

autoencoders for the detection of computer worms. A literature discussion of similar 

studies was first presented. It was evident that many studies had left out the critical 

element of generalization performance capability hence the need for this study. 

Models were developed first with no autoencoders and later with autoencoders and 

with sparsity constraints and also with deep autoencoders. Results presented show 

improved model performance in terms of generalization. Future studies can be done 

to compare models based on a combination of parameters such as accuracy and 

generalization ability. In addition, more measures to improve generalization ability 

can be investigated and empirical evidence adduced. 

 

ACKNOWLEDGEMENTS 

 

This work was supported by the African Center for Technology Studies, ACTS and 

IBM as part of a postdoctoral research fellowship. 

 

REFERENCES 

 

 [1]  Defending against today’s critical threats, CISCO Cybersecurity Series. Threat 

Report, [online] 2020, www.cisco.com/go/securityreports (Accessed: 5th April, 

2020) 

[2] D. Ellis, “Worm Anatomy and model,” in Proceedings of the 2003 ACM 

Workshop on Rapid Malcode, 2003. 

[3]  D.Moore, C. Shannon, et al., “Code red: a case study on the spread of victims of 

an internet worm,” in Proceedings of the 2nd ACM SIGCOMM Workshop on 

Internet measurement, pp. 273-284, 2002 

http://www.cisco.com/go/securityreports


 

 

Computer Engineering and Applications Vol. 9, No. 3, October 2020 

 

ISSN: 2252-4274 (Print)   181 

ISSN: 2252-5459 (Online) 

[4]  D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford and N. Weaver, 

“Inside the slammer worm,” IEEE security & privacy, 99 (4), pp. 33-39, 2003 

[5]  M.G. Shultz, E. Eskin, F. Zadok, S.J. Stolfo, “Data Mining methods for 

detection of new malicious executables,” In Proceedings 2001 IEEE Symposium 

on Security and Privacy, 2001 

[6]  J.Z. Kolter, M.A. Maloof, “Learning to detect and classify malicious 

executables in the wild,” Journal of Machine Learning Research, 2006 

[7]   P. Vinod, V. Laxmi, M.S. Gaur, G. Chauhan, “Detecting malicious files using 

non-signature-based methods,” International Journal of Information and 

computer security, 2014 

[8]   J. Bai, J. Wang, G. Zou, “A malware detection scheme based on mining format 

information,” 2014 

[9]   M. Alazah, S. Venkatranan, P. Watters, “Zero-day malware detection based on 

supervised learning algorithms of API call signatures,” Data mining and 

analysis proceedings in the 9th Australasian data mining conference, 2020 

[10]  S. Muazzam, W. Morgan and L.  Joohan, “Detecting Internet worms using data 

mining techniques,” Journal of Systematics Cybernetics and Informatics, 2009 

[11]  R. Benchea and D. T. Gavrilut, “Combining restricted boltzmann machine and 

oneside perceptron for malware detection,” Springer International Publishing, 

2014 

[12]  N. Ochieng, W. Mwangi and I. Ateya, “Optimizing Computer Worm Detection 

Using Ensembles,” Security and Communication Networks, 2019. 

[13]  A. L. Samuel, “Some studies in machine learning using the game of checkers,” 

IBM Journal of Research and Development, vol. 3, pp. 210-229, 1959 

[14]  A. L. Buckzak and E. Guven, “A survey of data mining and machine learning 

methods for cyber security intrusion detection,” IEEE Communications Surveys 

& Tutorials, vol. 18(2), pp. 1153-1176, 2015 

[15]  H. Rathore, S. Agarwal, S.K. Sahay and M. Sewak, “Malware detection using 

machine learning and deep learning,”. In International Conference on Big Data 

Analytics, Springer, Cham, pp. 402-411, 2018 

[16]  W. Hardy, L. Chen, S. Hou, Y. Ye, Y and X. Li, “DL4MD: A deep learning 

framework for intelligent malware detection,”. In Proceedings of the 

International Conference on Data Mining (DMIN), pp. 61, 2016 

[17]  O.E. David and N.S. Netanyahu, “Deepsign: Deep learning for automatic 

malware signature generation and classification,” In 2015 International Joint 

Conference on Neutral Networks (IJCNN), pp. 1-8, 2015 

[18]  H.H. Al-Maksousy, M.C. Weigle and C. Wang, “NIDS: Neutral Network 

based Intrusion Detection System,” International Symposium on Technologies 

for National Security, IEEE, pp. 1-6, 2018 

[19]  R. Kumar, Z. Xiaosong, R.U. Khan, I. Ahad and J. Kumar, “Malicious code 

detection based on image processing using deep learning,” In Proceedings of 



Nelson Ochieng, Waweru Mwangi and Ismail Ateya  

Reducing Generalization Error Using Autoencoders  

for The Detection of Computer Worms 

 

182  ISSN: 2252-4274 (Print) 

  ISSN: 2252-5459 (Online) 

the 2018 International Conference on Computing and Artificial Intelligence, 

ACM, pp. 81-85, 2018 

[20]  M. su, S.K. Sahay and H. Rathore, “An investigation of a deep learning-based 

malware detection system,”. In Proceedings of the 13th International 

Conference on Availability, Reliability and Security, ACM, p. 26, 2018 

[21]  M. Kalash, M. Rochan, N. Mohammed, N.D. Bruce, Y. Wang, Y and F. Iqbal, 

“Malware classification with deep evolutional neural networks,”. In 2018 9th 

IFIP International Conference on New Technologies, Mobility and Security 

(NTMS), IEEE,  pp. 1-5, 2018 

[22]  SL, S. D. SL and C.D. Jaidhar, “Windows malware detector using 

convolutional neural network based on visualization images,” IEEE 

Transactions on Emerging topics in Computing, 2019 

[23]  M. Lòpez- Viscaìno, C. Dafonte, F. Nòvoa, D. Garabato and M. Álvarez, 

“Network data unsupervised clustering to anomaly detection,” 

Multidisciplinary Digital Publishing Institute Proceedings, vol. 2(18), pp. 

1173, 2018 

[24]  H. Mekky, A. Mohaisen and Z.L. Zhang, “Separation of benign and malicious 

network events for accurate malware family classification,” In 2015 IEEE 

Conference on Communications and Network Security (CNS), pp. 361-365, 

2015 

[25]  A. Martin, H.D. Menèndez and D. Camacho, (2016, July). “Genetic boosting 

classification for malware detection,” In 2016 IEEE Congress on Evolutionary 

Compultation (CEC), pp. 1030-1037, 2016 

[26]. P.M. Domingos, “A few useful things to know about machine learning,” 

Commun.acm, vol. 55(10), pp. 78-87, 2012 

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, 

“Dropout: a simple way to prevent neural networks from overfitting,” The 

journal of machine learning research, vol. 15(1), pp. 1929-1958, 2014 

[28]  CAIDA USCD Network Telescope  “Three days of Conficker”  - 

http://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml  

[29] Emile Aben, “Conficker/Conflicker/Downadup as seen from the USCD 

network telescope,” Technical Report, Caida, [online] 2009, 

https://www.caida.org/research/security/ms08-067/conficker.xml (Accessed: 

5th April 2020) 

[30] W. McKinney et al., “Data structures for statistical computing in python,” 

In Proceedings of the 9th Python in Science Conference, vol. 445, pp. 51–56, 

2010 

[31] F. Chollet et al., “Keras,” (GitHub). [online] 2015, 

https://github.com/fchollet/keras (Accessed: 6th April, 2020) 

 

http://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml
https://www.caida.org/research/security/ms08-067/conficker.xml
https://github.com/fchollet/keras

