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Abstract

Cosmic rays and magnetic fields are important non-thermal components of the interstellar
medium in galaxies. This thesis explores the intermittent structure of the magnetic field
generated by a fluctuation dynamo and the interaction of cosmic rays with small-scale random
magnetic fields.

First, the nonlinear state of fluctuation dynamo is described in terms of the statistical
and structural properties of magnetic and velocity fields. Using three-dimensional fluctuation
dynamo simulations, we study their properties in the kinematic and saturated stages. The
alignment of the magnetic field, electric current density, and velocity field are analyzed to
suggest a possible saturation mechanism for the fluctuation dynamo. Furthermore, we also
study the change in the diffusion of magnetic fields by calculating local magnetic Reynolds
number in the kinematic and saturated stages. We show that both the amplification and diffu-
sion of magnetic fields are affected by nonlinearity. The dynamo-generated magnetic field is
intermittent, i.e., concentrated in filaments, ribbons, and sheets. Minkowski functionals are
used to characterize the shape of the magnetic structures and study its dependence on mag-
netic Reynolds number. We find that all three length scales of magnetic structures decreases
on saturation. We also propose that observing magnetic fields in elliptical galaxies, via a grid
of the Faraday rotation measures from background polarized sources, would serve as a probe
of the fluctuation dynamo action in a galactic environment.

Next, the effect of magnetic field intermittency on cosmic ray propagation is studied.
Using test-particle simulations, it is shown that the diffusivity of low energy cosmic rays is
enhanced when the magnetic field is intermittent. It is demonstrated that the cosmic ray dif-
fusion in any random magnetic field (Gaussian or intermittent) can be better described as a
correlated random walk rather the usual Brownian motion. Then, the energy equipartition
between magnetic fields and cosmic rays usually assumed to infer magnetic field strength
from synchrotron intensity observations is discussed. Using test-particle and magnetohydro-
dynamic simulations, it is shown that the cosmic ray and magnetic field energy densities are
not correlated on scales less than the driving scale of the turbulence. Even when the cosmic
ray and magnetic field energy densities are uncorrelated, small-scale structures are seen in
the spatial distribution of cosmic rays as they are trapped between random magnetic mirrors.
These results exclude the possibility of local energy equipartition between cosmic rays and
magnetic fields.
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Chapter 1

Introduction and overview

“We cannot make bricks without straw; that is
a common enough saying. It is equally true
that we cannot construct a rational astrophysi-
cal theory without an adequate base of physi-
cal knowledge.”

– Subrahmanyan Chandrasekhar

“What we observe is not nature itself, but na-
ture exposed to our method of questioning.”

– Werner Heisenberg
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Chapter 1. Introduction and overview

1.1 Introduction

The gas density, temperature and magnetic fields in the observable universe range from 10−27

(hot intracluster medium) to 1015 g cm−3 (neutron stars), 3 (cosmic microwave background)
to 1012 K (supernova explosions) and 10−6 (interstellar and intergalactic medium) to 1015 G

(magnetars), respectively. A special place in this range is occupied by galaxies, the most
readily identifiable structures in the extragalactic sky. A galaxy is a gravitationally bound,
evolving system of stars, gas, dust, dark matter, magnetic fields and relativistic particles.
Galaxies are characterized by their morphology (spiral, elliptical, lenticular, barred, irregular
and dwarf), luminosity (ranging from 103 to 1012L�, where L� is the solar luminosity),
amount of cold gas (a measure of star formation activity: low in ellipticals, higher in spirals),
color (related to the age and metallicity of stars: ellipticals are redder than spirals), nuclear
activity (might have active galactic nuclei (AGN) at the centre) and redshift (high-redshift
galaxies statistically represents ‘younger’ stages of a present-day galaxy).

Elliptical galaxies are ellipsoidal in shape, have little gas and star formation. Most of
the elliptical galaxies have negligible rotation and many of them have an AGN at the centre.
Spiral galaxies have a spherical central bulge, a thin disc, and halo surrounding it. They have
approximately flat rotation curves which implies that they rotate differentially with angular
velocity highest close to the centre and decreasing as the galactocentric radius increases.

The space between stars is filled with the interstellar medium (ISM) and it contains
roughly 10% of a galaxy’s visible mass. The ISM gas spans a wide range in both number
density (10−4–104 cm−3) and temperature (10–106 K). Based on density and temperature, the
ISM can be divided into several phases: cold, warm and hot (Cox, 2005). Dense molecular
clouds (the cold phase) occupy small volume as compared to the other phases but contain
significant mass and are a seat of star formation. Supernova explosions heat up the ISM,
drive turbulence, accelerate particles to relativistic energies and generate galactic outflows.
The ISM turbulence in turn amplifies magnetic fields.

Cosmic rays are relativistic charged particles which are accelerated in supernova shocks
and permeate the ISM of galaxies. The energy density of cosmic rays (∼ 1 eV cm−3 near
the Sun) in spiral galaxies is comparable to the thermal, magnetic and gravitational energy
densities. Cosmic rays provide pressure support against gravitational field via their interac-
tion with the galactic magnetic field. Thus, they play an important role in the dynamics and
energetics of the ISM. The primary aim of this thesis is to study the cosmic ray-magnetic
field interaction and properties of turbulent magnetic fields in the ISM. In this chapter, the
basic facts and concepts relevant to galactic magnetic fields and cosmic rays are introduced.
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Chapter 1. Introduction and overview

1.2 Gaussian and intermittent random fields

Because of the rigorous driving by supernova and other energy sources, the ISM is turbulent
and its studies involves the theory of random fields. In probability theory, a random variable
is a quantity whose value is a possible outcome of a random phenomenon. They are used
to model stochastic processes, where the value of the variable varies randomly over possible
values in the domain of the physical variable. The values of random variables are not fixed
but are either measured from an experiment (which is a representation of a random phenom-
ena) or drawn from a distribution function (decided based on the underlying physics). For
example, the outcome of rolling a dice is a random variable in the domain {1, 2, 3, 4, 5, 6}.
The probability distribution function of particle speeds in a classical ideal gas is given by a
Maxwell–Boltzmann distribution. A random field is a collection of random variables.

The random field usually has power on various scales and the contribution from each
scale can be characterized by a power spectrum, which can be computed using Fourier trans-
forms. Here, for simplicity, the quantities are defined for a one dimensional field but can be
extended to higher dimensions. The Fourier transform, f(k), and power spectrum, pk, of a
one dimensional function f(x) is given by

f(k) =
1

2π

∫ ∞
−∞

f(x)e−ik x dx, (1.1)

pk =
1√
2π
|fk|2, (1.2)

where k is the wave number. A power law spectrum pk ∝ kn, where n is constant, is a
common class of spectrum in physics. Another useful quantity to study random fields is the
autocorrelation function

C(r) = 〈f(x)f(x′)〉 = 〈f(x)f(x+ r)〉, (1.3)

where 〈· · · 〉 denote an average over possible combinations of x and x+r. The autocorrelation
function and the one-dimensional shell-averaged power spectrum are related by the following
equation (Monin & Yaglom, 1971; Davidson, 2004)

C(r) = 2

∫ ∞
0

pk
sin(kr)

kr
dk. (1.4)

For an isotropic random field, the distance along any direction from any point in the random
field after which the correlation becomes negligible is known as the ‘correlation length’.

3
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Using the correlation function, the correlation length lc is defined as

lc =

∫ ∞
0

C(r) dr. (1.5)

Since the autocorrelation function and power spectrum are related, the correlation length can
also be expressed in terms of its power spectrum as follows

lc =
π

2

∫∞
0

2πk−1pk dk∫∞
0
pk dk

. (1.6)

One of the most common distributions in physics is the Gaussian distribution. The distri-
bution of possible sums of a large number of independent random variables gives a Gaussian
distribution by the central limit theorem. The Gaussian distribution f in one dimension is
given by

f(x, µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (1.7)

where µ is the mean of the distribution and σ is the standard deviation. In three dimen-
sion, the Gaussian function will be a product of Gaussian functions in three dimensions
f(x, µx, σx)f(y, µy, σy)f(z, µz, σz). A Gaussian function is completely characterized by its
power spectrum or autocorrelation function.

In qualitative terms, an intermittent field is a random field with rare high peaks. The series
of random numbers

0.1, 0.6, 0, 0, 0.3, 0.9, 102, 0.3, 0, 101, 0.2, 0.1, 0, 0.6, 0, 0, 0, 0.1, 0, · · · , (1.8)

is an example of an intermittent random field in one dimension. The probability distribu-
tion function of an intermittent random field develops long tails as compared to a Gaussian
distribution due to such rare but strong events. Thus, an intermittent field is also sometimes
referred to as a non-Gaussian field. A Gaussian field arises from a sum of large number of
independent random quantities and an intermittent field arises from a product of large number
of independent quantities (Zel’dovich et al., 1987). Here we provide a simple example of an
intermittent field to illustrate the idea. Consider pn = r1r2 · · · ri · · · rn as a product of inde-
pendently random quantities ri, where each ri can take value 0 or 2 with probability 1/2. For
large enough n, one of the ri will be equal to 0 and then pn will also be 0. However, for every
finite n, there is one non-zero pn which is equal to 2n and the probability of that happening is
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2−n. This non-zero value contributes to the mean and higher order statistical moments of the
distribution. For instance the mean (first order moment) of the distribution is

〈pn〉 = 0(1− 2−n) + 2n2−n = 1. (1.9)

The root mean square (second order moment) value is

〈p2
n〉 = 02(1− 2−n) + 22n2−n = 2n. (1.10)

The higher order statistical moments grows exponentially as n increases. This is another
feature of an intermittent random field. The degree of intermittency can be characterized by
the kurtosis (a measure of how strong tail the distribution has), which is given by

Kurt(f) =
〈(f − 〈f〉)4〉
〈(f − 〈f〉)2〉2

, (1.11)

where 〈· · · 〉 denotes average over the domain. Kurtosis helps to compare different inter-
mittent fields, i.e., higher the kurtosis, higher the intermittency. The kurtosis of a Gaussian
distribution is 3 and thus an intermittent random field usually have kurtosis higher than 3.
Fig. 1.1 shows the presence of spatially intermittent magnetic fields on the surface of the
Sun. Fig. 1.2 and Fig. 1.3 shows the intermittency in magnetic fields and gas density in nu-
merical simulations. Unlike a Gaussian field, higher order moments are required to describe
an intermittent field. In fact, a Gaussian and an intermittent field can have exactly same power
spectra (and autocorrelation function). This is done via phase randomization as described in
Section 3.2 of Chapter 3.

1.3 Turbulence

Fluid flows are described by the Navier-Stokes (NS) equation. For incompressible flows
(∇ · u = 0),

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+

F

ρ
+ ν∇2u, (1.12)

where ρ is the density of the fluid, u is the velocity of the flow, P is the pressure, F represents
the body forces (gravity, Coriolis force, friction, etc.) acting on the fluid and ν (assumed to
be constant in space) is the kinematic viscosity. The ratio of inertial to viscous term is defined

5
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Figure 1.1: High resolution magnetogram of a solar active region taken using Solar and Heliospheric
Observatory - Michelson Doppler Imager (Krivova & Solanki, 2004). The dark and white patches
show magnetic fields of opposite polarity and grey shows zero magnetic flux. The random distri-
bution of strong magnetic field regions surrounded by very high magnetic field is a sign of spatial
intermittency on the surface of the Sun.
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Figure 1.2: Magnetic field from the first numerical simulation of fluctuation dynamo (Meneguzzi et al.,
1981). The shaded regions show the magnetic field (within less than 5% of its maximum value). The
magnetic field is concentrated in small regions, which confirms spatial intermittency of the amplified
magnetic fields.

Figure 1.3: Slices of gas density from a three dimensional simulation of supersonic turbulence driven
by solenoidal (left panel) and compressible (right panel) forcing (Federrath, 2013). The gas density is
stronger in filaments and the field is more intermittent (higher kurtosis) when the turbulence is driven
by a compressible forcing.

7
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as the Reynolds number

Re = UL/ν, (1.13)

where U is the characteristic speed of the flow and L is its typical length scale. At low
enough values of Re the flow is laminar (smooth streamlines) and becomes turbulent when
Re increases. For example consider streamlines of a flow past a circular cylinder as shown
in Fig. 1.4. For Re < 1, the flow passes the cylinder preserving the symmetry of the flow
and its original pattern is preserved past the cylinder as shown in Fig. 1.4a. As Re increases,
the eddies form (Fig. 1.4b and Fig. 1.4c) at the rear but the flow is still laminar and regains
its original pattern downstream. Finally, at high Re (Fig. 1.4d), the flow becomes turbulent.
Another example is shown in Fig. 1.5, where the laminar smoke streams on passing through a
perforated plate becomes turbulent. Fig. 1.6 shows hydrodynamic turbulence in a water tank
which is isotropic and homogenous.

Turbulence is ubiquitous in nature, from the convection in a room to astrophysical scales.
There is no rigorous definition of turbulence but it is usually characterized by following at-
tributes.

• Randomness – Turbulent flows are random in nature. If two tracer particles have a
small separation initially, they would quickly diverge in a turbulent flow. The turbulent
flow is irregular or random and thus statistical theories are used to describe it.

• Presence of multiple scales – As seen in Fig. 1.4d, Fig. 1.5 and Fig. 1.6, there are
multiple scales presents in a turbulent flow. Turbulence can be thought of as interaction
of eddies of various sizes. Though there are smaller scales in turbulence, the size of
the smallest eddies is still much larger than the molecular size and thus the continuum
approximation required for the fluid description still holds.

• Large Reynolds number – The onset of turbulence is usually characterized by large
Reynolds number, i.e., the dominance of inertial over viscous forces. There exists a
critical Reynolds number beyond which the flow becomes turbulent and that depends
on the properties of the fluid and driving scale of turbulence.

• Diffusive – Turbulence increases the flow or exchange of momentum as fluid particles
move randomly and thus the diffusivity increases in turbulent flows.

• Cascade and dissipation – The energy passes from the large-scale eddies to the smaller
ones without much dissipation of energy during the process. This process of transfer-

8
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(a) (b)

(c) (d)

Figure 1.4: Snapshots of water flow past a circular cylinder for (a) Re = 0.16, (b) Re = 9.6, (c)
Re = 26 and (d) Re = 2000 (van Dyke, 1982). Streamlines are seen by aluminium dust in water for
(a),(b) and (c), and by air bubbles in water for (d). For low Re the flow is laminar but as Re increases
the flow past the cylinder becomes more and more turbulent.
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Figure 1.5: Initially laminar smoke streams becomes turbulent on passing through a plate with perfo-
rations (van Dyke, 1982). Based on the mesh size, Re = 1500.

ring energy from largest possible eddies (where practically there is no dissipation) to
smallest scale is referred to as an energy cascade. Next, this energy is dissipated at the
scale of the smallest eddies, where the kinetic energy is converted to heat. For steady
state to be maintained, externally energy has to be continually injected at large scales
which follows to smaller scales via cascade and then is finally dissipated at the viscous
scale. However, in shock wave turbulence, both cascade and dissipation occurs at all
scales.

• Time-dependent – Turbulent flow is time-dependent and irreversible. The statistical
properties of turbulence may not change much with time but the instantaneous flow
pattern continuously changes.

The velocity in a turbulent medium is an example of a random field which has power over
a range of scales. It is thus customary to define energy at each scale using Fourier transforms.
The range of scales smaller than the driving scale of turbulence and greater than viscous
scale, where negligible dissipation occurs, is referred to as the ‘inertial range’. Kolmogorov
studied the statistical laws of turbulent fields at high Reynolds numbers and suggested the
following two hypotheses: at small scales, local isotropy and homogeneity exist and in the
inertial range, the turbulent energy spectrum is independent of the viscosity and the large-
scale properties of the system (Kolmogorov, 1941). In the inertial range, the interaction
between close-by scales are most important and there are no special scales. Thus, the energy

10
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Figure 1.6: Turbulence produced by sweeping grid of bars at uniform velocity through a still water tank
(Sreenivasan, 1999). Unlike Fig. 1.4 and Fig. 1.5, the turbulence here is homogenous and isotropic.
The distribution is clearly intermittent with many small-scale structures.
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spectrum Ek, defined via ∫ ∞
0

Ekdk =
1

2
〈u2〉, (1.14)

where Ek represents kinetic energy per wavenumber per unit mass and u is the turbulent
velocity, depends only on the wavenumber k and the rate of energy transfer ε. Using dimen-
sional arguments, we obtain

Ek = cε2/3k−5/3, (1.15)

where c is a constant independent of k. The energy spectrum Ek ∝ k−5/3 is known as
Kolmogorov’s spectrum of turbulence. This spectrum is confirmed in a series of experiments
as shown in Fig. 1.7 and also in high-resolution direct numerical simulations (Fig. 1.8). The
velocity field in these numerical simulations is intermittent as illustrated by PDFs of a single
velocity component in Fig. 1.9. The ISM of galaxies is also turbulent as confirmed by the
power law spectrum of electron density obtained with various radio observations. The slope
roughly agrees with the Kolmogorov spectrum (Fig. 1.10).

1.4 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of electrically conducting fluids. It is applicable
to plasma too when the plasma is sufficiently collisional (to be treated as a continuum) and is
overall charge neutral (no net charge). The electric currents in the plasma generate magnetic
fields, which in turn react back on the plasma via the Lorentz force. Thus, Maxwell’s equation
and fluid equations (Navier-Stokes and continuity equation) with the Lorentz force included
are used to describe plasma when MHD is applicable.

Maxwell’s equations in the CGS units are

∇ · E = 4πρc (Gauss’s law), (1.16)

∇ ·B = 0 (no magnetic monopoles), (1.17)
1

c

∂E

∂t
= ∇×B− 4π

c
J (Ampere’s law with Maxwell’s displacement current), (1.18)

1

c

∂B

∂t
= −∇× E (Faraday’s law), (1.19)

where E is the electric field, B is the magnetic field, J is the electric current density, ρc is the
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Figure 1.7: Energy spectrum obtained from a series of experiments: turbulence generated by boundary
layers, wakes, grids, pipes, ducts, jets, and tides in the ocean (Pope, 2000). On scaling both axis with
properties of the system, all curves lie along same the line. Thus, the viscosity or the large-scale
properties of a turbulent system, doesn’t affect the spectra in the inertial range and the Kolmogorov
scaling is universal.
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Figure 1.8: Energy spectra normalized with Kolmogorov scaling obtained from direct numerical sim-
ulations by solving Navier-Stokes equation (Gotoh et al., 2002). The horizontal line shows 1.64. The
curves lie on top of each other independent of Rλ, which is the Reynolds number. This confirms
Kolmogorov scaling.

Figure 1.9: The PDFs of a single velocity field component obtained from numerical simulations for
various Reynolds numbers, here given by Rλ (Gotoh et al., 2002). The PDFs are non-Gaussian with
heavy tails confirming that the velocity field is intermittent. Also, as Reynolds number increases,
intermittency increases.
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Figure 1.10: Power spectrum of fluctuations in electron density in the ISM obtained from variety of
observations (Armstrong et al., 1995). The power law spectrum confirms that the ISM is turbulent and
the slope approximately agrees with the Kolmogorov theory.
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charge density and c is the speed of light. The time evolution of magnetic fields in a plasma
is described quantitatively by the induction equation, which can be derived using Maxwell’s
equation and Ohm’s law. For non-relativistic plasma, the term

(
c−1 ∂E

∂t

)
in Eq. (1.18) can be

neglected. Let L be the typical length scale of the system and T be the typical time over
which B and E vary, then from Eq. (1.19) we get

1

c

|B|
T
∼ |E|

L
. (1.20)

Then, comparing terms 1
c
∂E
∂t

and ∇×B in Eq. (1.18) gives

|1
c
∂E
∂t
|

|∇ ×B|
∼

1
c
|E|
T
|B|
L

∼ L2

T 2c2
. (1.21)

Thus, the displacement term can be neglected when L2/T 2 � c2 or equivalently when the
time scale over which over B varies is larger than the light crossing time of the system. For a
typical spiral galaxy of a size 30 kpc, the light crossing time is∼ 104 years, whereas the mag-
netic field in such systems varies over few times the rotation period, which is approximately
108 years (Beck et al., 1996; Brandenburg & Subramanian, 2005). Thus, the displacement
term can be safely neglected. This is also true for most astrophysical plasmas (except in
jets of active galactic nuclei, gamma-ray bursts, pulsar winds and magnetospheres of mag-
netars where relativistic effects of magnetized plasma might be important - Beskin (2010)).
Neglecting the displacement current, the Eq. (1.18) reduces to

∇×B =
4π

c
J. (1.22)

The standard Ohm’s law in a fixed frame of reference is

J = σ

(
E+

u×B

c

)
, (1.23)

where σ is the electrical conductivity and u is the fluid velocity. Substituting Eq. (1.23) to
Eq. (1.22), we get

∇×B =
4πσ

c

(
E+

u×B

c

)
. (1.24)

Taking curl of Eq. (1.24), defining magnetic diffusivity η = c2/4πσ and using Eq. (1.19) we
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obtain the induction equation as

∂B

∂t
= ∇× (u×B− η∇×B). (1.25)

If magnetic diffusivity η is constant in space, Eq. (1.25) reduces to

∂B

∂t
= ∇× (u×B) + η∇2B. (1.26)

Since the induction equation is linear in magnetic field, B = 0 is always a solution. Thus, to
amplify magnetic field a seed magnetic field is required. The first term on the right-hand side
of the Eq. (1.26) is the induction term which represents the amplification of magnetic field
due to interaction with the fluid flow. The second term represents magnetic field diffusion.
The ratio of induction to diffusion term is known as the magnetic Reynolds number ReM,
which is defined as

ReM = UL/η, (1.27)

where U is the typical speed and L is the typical length scale of the system. For u = 0, the
magnetic field would decay. Thus, for the magnetic field to grow, u must be non-zero and the
inductive effects must win over the magnetic field diffusion. Usually, in astrophysical plas-
mas, the diffusion term is much smaller than the inductive term. For example, ReM for spiral
galaxies is of the order of 1018 and for galaxy clusters is of the order of 1029 (Brandenburg &
Subramanian, 2005). The magnetic field might also be amplified when magnetic diffusivity
varies with space (Pétrélis et al., 2016; Rogers & McElwaine, 2017), then Eq. (1.25) is used.
For η = 0, the magnetic field is frozen into the fluid (Alfvén’s theorem) and this is referred
to as flux freezing. For turbulent systems with spatially ‘rough’ velocities, the flux can be
frozen but in a statistical sense (Eyink, 2011).

Magnetic fields also react back on the plasma by exerting the Lorentz force on the charged
particles. The Lorentz force FL on a single charged particle with a charge q propagating with
a velocity v in presence of a magnetic field B and an electric field E is

FL = q

(
E+

v ×B

c

)
. (1.28)

Let np be the number density of positive charges with charge qp and velocity vp and nn be the
number density of negative charges with charge qn and velocity vn. Then the Lorentz force
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per unit volume fL is

fL = ρcE+
J×B

c
, (1.29)

where ρc = qpnp − qnnn is the effective net charge and J = qpnpvp − qnnnvn is the current
density. For a non-relativistic plasma, the term with electric field in Eq. (1.29) can be ne-
glected in comparision with the term with magnetic field. Using Eq. (1.16), Eq. (1.20) and
Eq. (1.22), the ratio of the two terms in Eq. (1.29) is

|ρcE|
|J×B

c
|
∼ |E|

2

|B|2
∼ L2

T 2c2
� 1, (1.30)

where L is the typical length scale of the system and T is the typical time over which B and
E vary. Thus, the effect of an electric field can safely be ignored. When the Lorentz force is
included, the Navier-Stokes equation Eq. (1.12) for an incompressible fluid is

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+

1

ρ

J×B

c
+

F

ρ
+ ν∇2u. (1.31)

Using Eq. (1.22) the Lorentz force can be further decomposed into two components

J×B

c
=

1

c

c

4π
(∇×B)×B =

1

4π
(B · ∇)B− 1

8π
∇B2. (1.32)

The first term is the derivative of magnetic field along itself and physically represents the
magnetic tension. The second term represents magnetic pressure.

1.5 Dynamo theory

The evolution and maintenance of magnetic field is generally explained by a dynamo theory,
which is the conversion of kinetic energy (usually due to turbulence) to magnetic energy.
Turbulence is common in most astrophysical objects and is usually maintained by a regularly
occurring physical mechanism: convection in stars, supernovae blowing off in galaxies, and
motion and mergers of galaxies in galaxy clusters. The dynamo process taps this turbulent
kinetic energy to amplify an initially weak seed magnetic field.

Based on scales, the magnetic fields in these systems can be divided into two types: the
large-scale or the mean field, which are coherent over scales comparable to the size of the
system and the small-scale or the fluctuating field, whose correlation length is the order of
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the driving scale of turbulence. Usually for galaxies, the root mean square (rms) magnitude
of both the fields is comparable and thus both kinds of fields are equally important for the
ISM dynamics. As with magnetic fields, the dynamos are also divided into two categories:
mean-field (or large-scale) and fluctuation (or small-scale) dynamo, for generating each type
of field. The magnetic field in spiral galaxies can also be amplified by compression in spiral
arms or shear in interarm regions. These fields seems to be ordered over galaxy scales in the
observational probes and are referred to as ‘anisotropic turbulent’ fields (Beck, 2016).

Necessity of dynamo action in spiral galaxies

Since ReM in spiral galaxies is quite high (∼ 1018), magnetic field doesn’t decay much due
to ohmic diffusion. However, due to small-scale velocity fluctuations in a turbulent plasma,
magnetic field decays via turbulent diffusion. The decay time scale τdecay based on turbulent
diffusivity is

τdecay =
L2

ηt
, (1.33)

where L is the characteristic length scale of the magnetic field and ηt is the turbulent diffu-
sivity. The turbulent diffusivity is given by

ηt ≈
1

3
l0v0, (1.34)

where l0 is the driving scale of the turbulence and v0 is the typical turbulent velocity. In
spiral galaxies, the turbulence is driven by supernova explosions and the maximum size of
supernova (after it has reached a steady state with the surrounding medium) is 100–500 pc.
The turbulent velocity can be estimated by considering that a small fraction of total energy
emitted by supernova is converted into the kinetic energy of the turbulence (Shukurov, 2004).
The rate ėturb at which supernova supplies kinetic energy to medium is

ėturb = fνSNESNM
−1
gas, (1.35)

where f is the fraction of total supernova energy that is fed into the medium, νSN is the rate at
which supernova explodes, ESN is the energy released in a single explosion event and M−1

gas

is the total galaxy mass. ėturb can also be expressed as rate of gain in turbulent kinetic energy
of the medium per unit mass, i.e., v2

0(v0/l0). For Milky Way, using l0 = 100 pc, f = 0.07,
νSN = (30 yr)−1, ESN = 1051 erg and Mgas = 4 × 109 M� (M� being the solar mass),
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we obtain v0 ≈ 10 km s−1. Using Eq. (1.34), we get ηt ≈ 1026 cm2 s−1. Since the large-
scale magnetic field varies over a few kiloparsecs in a spiral galaxy, using L = 1kpc and
ηt = 1026 cm2 s−1 in Eq. (1.33), we get τdecay ≈ 108 yr. However, the lifetime of a galaxy is
the order of 1010 yr. Thus, any initial magnetic field must have decayed by now by turbulent
diffusivity. Since we still observe magnetic fields in number of spiral galaxies (Beck, 2016),
magnetic fields in spiral galaxies must be amplified and maintained by a dynamo mechanism.
This also confirms that the observed galactic magnetic field cannot be of a primordial origin.

In the absence of a dynamo, the magnetic energy in a differentially rotating system is
also lost via the flux expulsion (removal of the magnetic flux) (Weiss, 1966; Moffatt, 1978).
However, the galactic magnetic field in this process is expelled quite slowly over a time
scale of the order t0Re1/3

M , where t0 is the eddy turnover time of the flow and ReM is the
magnetic Reynolds number (Weiss, 1966; Gilbert et al., 2016). For galaxies, t0 = l0/v0 =

100 pc/10 km s−1 ≈ 107 yr and ReM ∼ 1018 (Brandenburg & Subramanian, 2005). The field
is lost via the flux expulsion over the time scale of the order of 1013 yr and thus the turbulent
diffusion is a much more efficient process for the removal of magnetic energy from galaxies.
So, the flux expulsion mechanism cannot justify the need for a dynamo action in galaxies.

Another magnetic energy loss mechanism in spiral galaxies is via advection of magnetic
flux by galactic winds. We follow arguments given in Shukurov et al. (2006) to calculate the
time scale for the magnetic energy loss by this mechanism. Supernova explosions produce
hot gas which leaves the galactic disk in the form of a wind. The vertical velocity of the hot
gas through the surface of the disk uz is approximately within the range 100–200 km s−1. The
volume filling factor of the hot gas f is within the range 0.2–0.3. Assuming number density
of 0.1 cm−3 for the gas, the relative density of the hot gas is ρh/ρ ' 10−27/10−25 = 10−2.
The effective mass averaged advection speed is U0 = fuzρh/ρ ' 1–2 km s−1. The time scale
for magnetic flux removal via advection is of the order of h/U0, where h is the scale height
of the warm gas layer. Using h = 0.5 kpc, we obtain the time scale to be of the order of
108 yr, which is comparable to the decay time scale via turbulent magnetic diffusivity. Thus,
the removal of magnetic flux via winds is also an efficient mechanism to decrease magnetic
energy, which further justifies a need for a dynamo action in galaxies.

1.5.1 Mean-field dynamos

The turbulent (mean-field) dynamo theory has been successful in explaining the large-scale
magnetic fields in planets, stars and galaxies. Magnetic field, being divergence free, can be
decomposed into toroidal and poloidal components. The mean-field dynamo is a process in
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which toroidal and poloidal components of magnetic fields are continuously generated from
each other. Turbulent motions in galaxies (mainly stellar winds, supernovae explosions and
superbubbles) push loops of the toroidal magnetic field out of the plane of the disk (density
stratification is important). They are then twisted by Coriolis effect generating the poloidal
field. This is known as the α-effect and is illustrated in the left-hand panel Fig. 1.11. The
poloidal field is further stretched by differential rotation regenerating the toroidal magnetic
field. This is known as the ω-effect and is shown in the right-hand panel of Fig. 1.11. Thus,
the closed toroidal-poloidal cycle leads to an exponential growth of the mean field. The αω-
dynamo can occur in physical systems with turbulence, density stratification, and differential
rotation.

In the mean-field theory, the velocity and magnetic fields are split into a mean or large-
scale component and a turbulent or small-scale fluctuating components by averaging over an
appropriate length scale (for more about details on averaging see Gent et al., 2013b). Two
separate equation for the evolution of mean and fluctuating magnetic fields are obtained from
the induction equation. In the equation for the mean magnetic field, a ‘mean electromotive
force’ emerges which depends on the statistical properties of the fluctuating velocity and mag-
netic fields. To solve the equation for the mean magnetic field, the mean electromotive force
needs to be expressed in terms of mean quantities and their derivatives (the ‘closure problem’)
(Krause & Rädler, 1980; Moffatt, 1978). The constants in the expansion are referred to as
turbulent transport coefficients. Assuming a particular form of the mean electromotive force
and transport coefficients, exponentially growing solutions of the mean field, i.e., a dynamo
solution, can be obtained. As the mean magnetic field grows, it reacts back on the mean and
fluctuating components. This leads to the saturation of the mean magnetic field. The non-
linearity in mean-field dynamo theory is usually modelled by varying transport coefficients
based on the magnetic field strength (Chamandy et al., 2014).

There have been various criticism of the mean-field galactic dynamo theory in its present
form. Particularly important problems are the poor understanding of the nonlinear form and
physics of turbulent diffusion, uncertainty in the description of removal of magnetic flux from
the disc, the effects of the multiphase structure of the ISM on the magnetic field, and the ef-
fect of rapidly growing strong fluctuating field on the mean field (Kulsrud, 1999; Shukurov,
2004). Most of the uncertainties are related to the α-effect, since the role of the ω-effect is
simpler both physically and mathematically. An alternative model for the α-effect is magnetic
loops rising up from the disk due to magnetic buoyancy instability, which is further enhanced
by cosmic rays, and subsequently reconnecting loops (the ‘Parker instability’) (Parker, 1992).
The numerical simulation of the instability agrees with the analytical results (Rodrigues et al.,
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Figure 1.11: Illustration of the α (left) and ω (right) effect (Ruzmaikin et al., 1988). The left panel
shows poloidal magnetic field is generated by twisting loops of toroidal magnetic field in a galaxy and
the right panel shows the conversion poloidal magnetic field into toroidal magnetic field by differential
rotation.
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2016). The idea of buoyancy-driven α-effect can be incorporated in the standard mean field
dynamo models (Moss et al., 1999). It has also been demonstrated numerically that such
a cosmic-ray driven dynamo can lead to amplification of galactic magnetic fields (Hanasz
et al., 2004). Another important contribution to large-scale magnetic field can be due to the
magneto-rotational instability (MRI), which is a local shear instability occurring in differen-
tially rotating discs which are weakly magnetized (Balbus & Hawley, 1991). This instability
was originally proposed to explain the loss of angular momentum in accretion disks. MRI
generates turbulence, which in turn amplifies magnetic fields. It can acts as a source of turbu-
lence, especially in the outskirts of the galactic disk where other sources are not active. The
emergence of large-scale magnetic field with this instability has been confirmed in numerical
simulations (Brandenburg et al., 1995; Stone et al., 1996).

1.5.2 Fluctuation dynamos

The fluctuation dynamo amplifies magnetic fields at scales smaller than the driving scale
of turbulence by random stretching of field lines by turbulent velocity (Kazantsev, 1968;
Zel’dovich et al., 1984). The fluctuation dynamo operates on a much faster time scale (the
turbulent eddy turnover time) in comparison to the large-scale dynamo (time scale decided
by rotation or turbulent diffusion) (Kulsrud & Anderson, 1992). The fluctuation dynamo can
quickly amplify an initial weak seed magnetic field, saturate and then seed the mean-field
dynamo. The mean-field dynamo then orders the field over the size of the system (Ruzmaikin
et al., 1988). One can also think of a unified small- and large-scale dynamo (Subramanian,
1999; Subramanian & Brandenburg, 2014; Bhat et al., 2016). Fluctuation dynamos are de-
scribed in some detail in Chapter 2.

1.6 MHD turbulence

As hydrodynamic turbulence is due to the nonlinear interaction of motions at various scales,
MHD turbulence is due to the interaction of MHD waves (in the presence of a large-scale
magnetic field serving as a ‘guide field’). Small perturbations to the guide field excite prop-
agating MHD waves. These waves, usually Alfvén waves, interact nonlinearly giving rise to
MHD turbulence. Unlike hydrodynamic turbulence, the MHD turbulence is anisotropic, es-
pecially at small scales, with different powers along the direction parallel and perpendicular
to the guide field (Goldreich & Sridhar, 1995). Further details on the theory and simulations
of MHD turbulence can be found in Biskamp (2003), Schekochihin & Cowley (2007) and
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Tobias et al. (2011).

1.7 Diffusion

Diffusion is the process which involves transport of certain quantities (such as heat, particles
and magnetic fields) from a region of high concentration to a region of low concentration,
reducing spatial gradients. For example, the smell of perfume in a corner of a room makes it
way to every part of the room via diffusion. Also, migration of people around the globe can
be thought of as a diffusive process. The theory of diffusion is based on the theory of random
walks.

We here derive the diffusion equation in one dimension, assuming that the particles (can
be any quantity which is diffusing) undergo the Brownian motion. Consider a population
of particles with the number density n(x, t), where t is the time and x is the location on an
infinite line (say along x axis). At each time step ∆t, a particle moves by a step length ∆x
either to its left or right with equal probability. The particle number density at time t+∆t is

n(x, t+∆t) =
1

2
n(x+∆x, t) +

1

2
n(x−∆x, t). (1.36)

Expanding each term in Eq. (1.36) in Taylor series gives

n(x, t+∆t) = n(x, t) +
∂n

∂t
∆t+ · · · , (1.37)

n(x+∆x, t) = n(x, t) +
∂n

∂x
∆x+

1

2

∂2n

∂x2
∆x2 + · · · , (1.38)

n(x−∆x, t) = n(x, t)− ∂n

∂x
∆x+

1

2

∂2n

∂x2
∆x2 + · · · . (1.39)

Substituting this in Eq. (1.36) we obtain

∂n

∂t
=

1

2

∆x2

∆t

∂2n

∂x2
. (1.40)

Defining the diffusion coefficient D = 1
2
∆x2

∆t
, we arrive at the diffusion equation in one

dimension as

∂n

∂t
= D

∂2n

∂x2
. (1.41)
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Table 1.1: The exponent µ in 〈r2〉 ∝ tµ characterizes the nature of population evolution.

Value of µ Particle motion
0 < µ < 1 sub-diffusion
µ = 1 diffusion

1 < µ < 2 super-diffusion
µ = 2 ballistic

The corresponding version in three dimension is

∂n

∂t
= D∇2n, (1.42)

where D is the diffusion tensor. The relation between the mean square displacement 〈r2〉 =
〈(x − x0)

2 + (y − y0)
2 + (z − z0)

2〉, where x0, y0, z0 are position at time t = 0 and 〈· · · 〉
denotes ensemble average, and time t characterizes the particle motion as shown in Table
1.1. For diffusive transport, the mean particle displacement is proportional to square root of
time.

1.8 Cosmic rays

Cosmic rays are relativistic charged particles that permeate the ISM of galaxies and are one
of its important non-thermal components in addition to magnetic fields. There are detected
directly on Earth and observed indirectly through their radio and gamma-ray emissions. Their
energy ranges from few MeV to more than 1011 GeV. The energy spectrum for different
types of particle is shown in Fig. 1.12. Ninety percent of cosmic rays are protons, 1–2%
are electrons and the rest are heavier nuclei. Cosmic rays are also divided into primary and
secondary, where primary cosmic rays refers to particles from sources and secondary cosmic
rays refers to particles which are product of spallation reactions of primary cosmic rays with
the interstellar gas.

In galaxies, cosmic rays interact with the interstellar gas both collisionally and collision-
lessly. The average energy of galactic cosmic ray particles is about few GeVs. Very low
energy cosmic rays (2–10MeV) interact collisionally ionizing the thermal gas and heating
up the interstellar medium. Cosmic rays with energy of few GeV interact with the inter-
stellar medium via magnetic fields. The Larmor radius rL of a cosmic ray particle of non-
dimensional charge Z (charge of the particle divided by the proton or electron charge) and
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Figure 1.12: The cosmic ray spectrum for different particle types obtained from a number of experi-
ments (Zweibel, 2013). It is a power law spectrum (with energy spectral index δ = 2.7 above 10GeV)
across a huge range of energy scales.
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energy E propagating in a magnetic field of strength B is given by

rL ' 10 kpc
(E/108 GeV)

Z(B/1µG)
. (1.43)

High-energy cosmic rays (≥ 109 GeV) only weakly interact with the interstellar medium
since their Larmor radius (≈ 20 kpc for such a proton in a 5µG magnetic field) is the compa-
rable to the size of the galaxy. These high-energy particles are thought to be of extragalactic
origin. The energy density of the ion component of the cosmic rays can be measured via
observations of diffuse gamma-rays (cosmic ray ions collide with the interstellar particles to
produce pions which decay to produce gamma rays) whereas the electron/positron compo-
nent is mainly observed via synchrotron and inverse Compton emissions. Cosmic rays are
thought to be accelerated in strong supernova shocks by first order Fermi acceleration (Bell,
1978a). The shocks have associated magnetic field inhomogeneities both in the upstream and
down- stream regions which scatter cosmic rays. In the first order Fermi process, a cosmic
ray particle crosses a shock back and forth many times due to scattering by magnetic inho-
mogeneities, gaining energy with each crossing. This leads to an efficient acceleration and a
power-law energy spectrum close to that shown in Fig. 1.12 (Longair, 1994). The subject of
cosmic rays is broadly divided into two areas: cosmic ray acceleration and propagation. This
work deals with latter.

Cosmic rays propagate diffusively in galaxies (Cesarsky, 1980). This is confirmed by the
following observations.

• Abundance of lighter elements in galactic cosmic rays: If cosmic rays travel along
a straight line at a relativistic speed, they would escape the galaxy in a time tballistic ≈
10 kpc/3× 1010 cm s−1 ≈ 104 yr. However, they are confined in the galaxy for a time
much longer than tballistic. This is known by ‘dating’ samples of galactic cosmic rays
observed on or near the Earth.

Fig. 1.13 shows abundance of elements in galactic cosmic rays in comparison with
the solar-system abundances. Be is significantly more abundant in the cosmic rays
than in the solar-system. This is explained by the spallation reactions of cosmic rays
with the interstellar gas. Some isotopes of Be (like Be9 and Be10) are radioactive.
Fig. 1.14 shows the abundance of various Be isotopes in the observed galactic cosmic
rays and in laboratory experiments. The half-life of Be10 τ1/2 is known from laboratory
experiments to be of the order of 107 yr. The decreases in the number of Be10 atoms
in comparison with other isotopes is used to measure the lifetime of cosmic rays in
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Figure 1.13: Figure taken from ACE News #83 - Oct 6, 2004:
http://www.srl.caltech.edu/ACE/ACENews/ACENews83.html. Relative abundance of various
elements in solar system (blue) and galactic cosmic rays (black) measured using the Advanced
Composition Explorer (ACE) spacecraft managed by National Aeronautics and Space Administration
(NASA). Except lighter elements, galactic cosmic ray composition is very similar to the solar
abundances. The excess of certain elements (Be is in excess by six orders of magnitude) in galactic
cosmic rays is due to interaction of galactic cosmic rays with the interstellar gas.
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Figure 1.14: Distribution of isotopes of Be in low energy (few GeV) galactic cosmic rays (a) and
in laboratory (b) (Garcia-Munoz et al., 1977). The isotopes Be9 and Be10 have much less counts as
compared to other isotopes because of the radioactive decay.
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Figure 1.15: Combined cosmic ray anisotropy δcr derived from data from Tibet-AS and IceCube
experiments (Ahlers & Mertsch, 2017). Even at relatively high energy (103 times higher than the
average cosmic ray energy of GeV), the level of anisotropy is quite small (∼ 10−3) and cosmic ray
distribution can be considered almost isotropic.

galaxies. From Fig. 1.14, ratio of the number of counts of Be10 to that of Be7 (which is
not radioactive) in the Galactic cosmic rays is N(Be10)/N(Be7) ≈ 0.1. Assuming that
both were produced in similar quantities in spallation reactions, radioactive decay law
suggests that their abundance can be used to estimate the cosmic ray lifetime within the
Galaxy.

N(Be10)

N(Be7)
≈ N(Be10)

N0(Be
10)

= exp

(
−0.693

τ1/2

tconfinement

)
, (1.44)

where N0(Be
10) is the initial number of Be10 atoms and tconfinement is the confinement

(or diffusion) time of cosmic rays in galaxies. Using N(Be10)/N0(Be
10) = 0.1 and the

Be10 half lifetime τ1/2 = 107 yr, we obtain tconfinement ≈ 2×107 yr. Since tconfinement �
tballistic, the cosmic rays do not just fly out of galaxies but slowly diffuse through it.

• High degree of isotropy in cosmic rays: Cosmic ray particles are travelling at rel-
ativistic speed and thus we might expect an anisotropic distribution of cosmic rays
as most sources lie in the central regions of galaxy where supernovae go off more fre-
quently. To test this, the cosmic ray flux φcr is measured from all arrival directions at the
Earth and the level of cosmic ray anisotropy is calculated. The cosmic ray anisotropy
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δcr is given by

δcr = 1− φcr

〈φcr〉
, (1.45)

where 〈· · · 〉 denote the averaging. The observed value of δcr ≈ 10−3 is quite low for
cosmic rays of a few TeV as shown in Fig. 1.151. Thus, the cosmic ray distribution is
highly isotropic. This contradiction can be resolved if cosmic rays are diffusing instead
of travelling along straight paths.

Cosmic rays actually travel at a speed which is very close to the speed of light c. If
they are diffusing, let their effective streaming speed be vdiff . The relation between the
cosmic ray anisotropy δcr and vdiff is given by

vdiff

c
≈ δcr. (1.46)

For δcr ≈ 10−3 (Fig. 1.15), we get vdiff/c ≈ 10−4. This estimate also follows from the
theory of cosmic ray diffusion (Kulsrud & Pearce, 1969; Wentzel, 1974). Cosmic rays
travelling at a speed faster than the local Alfvén speed vA in the ISM excite Alfvén
waves via the streaming instability and are then themselves scattered by these waves
via wave-particle interaction (described in greater detail in Section 4.4 of Chapter 4).
The scattering effectively reduces the streaming velocity of the particles until it is less
than the local Alfvén speed and the streaming instability is stabilized. Thus, we would
expect vdiff ≈ vA. For the hot phase of the ISM, vA/c ≈ 10−4, which explains the high
degree of isotropy in cosmic ray flux.

These observations confirm that low-energy cosmic rays propagate diffusively within the
galaxy due to scattering by magnetic inhomogeneities or MHD waves. These can be gener-
ated by cosmic rays themselves via the streaming instability (referred to as intrinsic turbu-
lence) or other sources of turbulence in the ISM (referred to as extrinsic turbulence). Using
random walk arguments, the mean free path λcr of cosmic rays and the diffusion coefficient
can be determined. Since the velocity of the particle is nearly constant,

λcr

L
=

tballistic

tconfinement

, (1.47)

1For particles below a few TeV, the Larmor radius of particles is quite small and the particle trajectories
are significantly affected by the heliospheric magnetic fields. This makes it difficult to reliably measure the
anisotropy with low energy GeV cosmic rays. The GeV cosmic rays are expected to be much more isotropic
than the TeV cosmic rays.
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where L is the size of the system. For GeV-cosmic rays in a galaxy of a size 10 kpc, we
obtain λcr ≈ 10 pc. The cosmic ray diffusion coefficient Dcr follows as

Dcr =
1

2

λ2
cr

tconfinement

≈ 1028 cm2 s−1. (1.48)

The diffusion coefficient increases with cosmic ray energy and also depends on the properties
of the magnetic field in which they propagate. For a typical cosmic ray proton, with energy
1–10GeV, in a 5µG magnetic field, the Larmor radius is about 10−6 pc, which is much
smaller than the correlation length of the random magnetic field in the ISM (' 100 pc).
Thus, the small-scale structure of the magnetic field (discussed in Chapter 2) is particularly
important for the propagation of low-energy cosmic rays (further details in Chapter 3).

The propagation of cosmic rays in galaxies can be studied by treating them as particles or
by considering them as a fluid. We mostly treat cosmic rays as relativistic charged particles
except in Section 4.11 of Chapter 4, where we also solve the MHD equations with cosmic
rays as a diffusive fluid.

1.9 Tracers of galactic magnetic fields

Synchrotron emission

According to classical electrodynamics, accelerated charges radiate (Jackson, 1998). Charged
particles in magnetic field experience the Lorentz force and follow a helical path around a
magnetic field line gyrating at a frequency νg = qB/2πγmc, where q is the particle charge,
B is the magnetic field strength, m is the mass of the particle, c is the speed of light and
γ = (1− v2/c2)−1/2 is the Lorentz factor. These particles radiate. The radiation is polarized
with the electric field vector aligned with the particle’s acceleration vector.

For a non-relativistic particle (γ ≈ 1), the radiation is emitted at the gyrofrequency (ν =

νg) and is referred to as cyclotron radiation. The power is radiated in a ‘donut’ shape around
the acceleration direction. When the magnetic field is perpendicular to the line of sight,
the acceleration vector performs a simple harmonic motion in the plane perpendicular to
the magnetic field and thus linearly polarized radiation is observed. On other hand, if the
magnetic field is along the line of sight, the particle is viewed as moving in a circular orbit
and circularly polarized radiation is observed. Elliptically polarized radiation is observed for
any other arbitrary angle. Cyclotron emission can be used to measure magnetic field strengths
around neutron stars. A cyclotron absorption feature at the energy E = 34 keV in the binary
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X-ray source Hercules X-1 (Gruber et al., 2001) is attributed to hot gas around neutron stars
poles. Since the radiation is emitted at the gyrofrequency, one can estimate the magnetic field
strength in vicinity of the neutron star poles (h is the Planck’s constant):

B =
2πmc(E/h)

e
≈ 3× 1012 G. (1.49)

For relativistic particles (v/c > 0.1), the radiation is beamed (angular beam width' 1/γ)
in the direction of the particle motion, energy is also radiated at higher harmonics of the gy-
rofrequency (nνg, n = 2, 3, 4, · · · ) and the Doppler effect becomes important. All three
effects together broaden the emission lines resulting in a continuous spectrum instead of a
series of peaks at ν = nνg. The radiation due to relativistic particles is called the synchrotron
radiation. Since most of the radiation of a single particle lies within a beam, it is easier to
think in terms of a velocity cone. The cone is defined by the velocity vector of a particle
spiraling about a magnetic field line, with the axis along the local magnetic field direction,
and its precession with gyrofrequency. The synchrotron radiation from a single particle is el-
liptically polarized because the electric field component parallel to the field varies differently
from the component perpendicular to the magnetic field (due to the geometry of the velocity
cone). However, for an ensemble of particles of different pitch angles (angle between the
particle’s velocity vector and the magnetic field vector), the components of elliptical polar-
ization parallel to the magnetic field projection onto the plane of the sky cancel because the
beam width on either side of line of sight is very small (since γ is high) and the resulting
polarization is linear. The ratio of polarized intensity to total intensity is called the polariza-
tion fraction P . If the particles have modest value of γ, the cancellation might not be exact
and weak circular polarization is also expected. This low level circularly polarized signal, if
detected in the Milky Way, can be used to further understand the properties of the Milky Way
magnetic fields (Enßlin et al., 2017).

For a power-law distribution of particle energies,

N(E)dE = CE−δ dE, (1.50)

where N(E) dE is the number density of particles in the energy interval dE, δ is the energy
spectral index and C is a constant, the total synchrotron emissivity J as a function of fre-
quency ν and maximum linear polarization fraction P0 (assuming an uniform magnetic field)
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are (Ginzburg & Syrovatskii, 1965; Rybicki & Lightman, 1979; Longair, 1994)

J(ν) ∝ B
(δ+1)/2
⊥ ν−(δ−1)/2, (1.51)

P0 =
δ + 1

δ + 7/3
, (1.52)

where B⊥ is the magnetic field in the plane of the sky, i.e., perpendicular to the line of
sight. Note that the maximum linear polarization fraction is independent of the frequency.
The energy spectral index δ is related to the synchrotron spectral index α (synchrotron flux
∝ ν−α) by α = (δ − 1)/2.

The total radiated power of synchrotron emission depends on m−2 (Rohlfs & Wilson,
2004) where m is the mass of the particle and so relativistic electrons radiate 18362 times
more energy than the relativistic protons. Thus, almost all of the observed synchrotron emis-
sion is due to relativistic electrons. The total I and polarized PI synchrotron intensites are
given by

I = K

∫
L

ncreB
2
⊥ dl, (1.53)

PI = K

∫
L

ncre 〈B⊥〉2 dl, (1.54)

where ncre is the number density of cosmic ray electrons, B⊥ is the total magnetic field in the
plane of sky, 〈B⊥〉 is the magnetic field averaged in the plane of the sky, L is the path length
and K is a constant. :q:

Electrons with energy E in a magnetic field of strength B radiate mostly at the frequency
νmax (Ruzmaikin et al., 1988)

νmax

1MHz
' 16

B

1µG

(
E

1GeV

)2

. (1.55)

So for radio frequencies in range 150MHz–1.5GHz (wavelength ≈ 0.5–20 cm), with typical
galactic magnetic field of around 5µG, the electron energy using Eq. (1.55) is in the range
1–10GeV. For electrons in that energy range, the energy spectral index is δ ≈ 3 (Fig. 1.12) or
equivalently α ≈ 1. Using Eq. (1.52), the maximum linear polarization fraction P0 ≈ 75%.

From the observed total synchrotron intensity, an estimate of the magnetic field in the
plane of the sky B⊥ can be obtained, if independent information about relativistic electron
number density is known. In the absence of such an information, to estimate B⊥, energy
equipartition between cosmic rays and magnetic fields is often assumed (Longair, 1994; Klein
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& Fletcher, 2015). In deriving the maximum linear polarization fraction as 75%, uniform
magnetic field is assumed but the galactic magnetic field also has a significant random com-
ponent. This reduces the linear polarization fraction due to further vector cancellation of the
polarized signal. Thus, the observed linear polarization fraction P is always much less than
P0. The change of observed polarization from maximum linear polarization can be used to
estimate the ratio of strength of regular magnetic field 〈B⊥〉 to random magnetic field b⊥ as
follows (Burn, 1966; Sokoloff et al., 1998)

P =
PI

I
= P0

〈B⊥〉2

〈B⊥〉2 + b2
⊥
. (1.56)

The decrease in polarization fraction is referred to as ‘depolarization’ and various mecha-
nisms that are responsible for depolarization of synchrotron emission are described in Burn
(1966) and Sokoloff et al. (1998). Understanding physical mechanisms which lead to de-
polarization of synchrotron emission can provide further insight into the properties of the
average and random ISM magnetic fields. Assuming energy equipartition between cosmic
rays and magnetic fields, the synchrotron intensity gives an estimate of the total magnetic
field. Polarized synchrotron intensity traces the regular magnetic field and Eq. (1.56) can be
used to estimate properties of the random magnetic field component.

Faraday rotation

The polarization plane of linearly polarized emission is rotated when it propagates through
a magnetized plasma. This phenomena is known as the Faraday rotation. Physically, this is
due to the difference in the refractive index of left- and right- circularly polarized emission
in a magnetized plasma. The linearly polarized emission can be decomposed into left- and
right- circularly polarized components by superposition principle. Since both components
have different refractive indices, a phase difference between the two components develops
on propagation. On summing up the two components after passing through the magnetized
plasma, the plane of the resulting linearly polarized emission at wavelength λ with intrinsic
polarization angle of ψ0 is rotated by an angle (Longair, 1994; Klein & Fletcher, 2015)

∆ψ

1 rad
=
ψ − ψ0

1 rad
=

RM
1 radm−2

λ2

1m2
, (1.57)
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where ψ is the polarization angle after rotation and RM is the rotation measure given by

RM
1 radm−2

= 0.81

∫ z/1 pc

0

ne

1 cm−3

B‖
1µG

d

(
z
′

1 pc

)
, (1.58)

where z is the length along the line of sight. If the propagation length is larger than the
turbulent cell size (which is usually the case in galaxies), the net contribution from the random
component of the magnetic field b is zero (since 〈b〉 = 0) and rotation measures observations
provide another method to study regular magnetic fields. By convention, RM is positive
when the magnetic field is directed towards the observer. Since usually large path lengths
are involved, the angle of rotation can be as high as π (or even higher multiples of π) which
makes determinations of ψ0 and RM ambiguous (Ruzmaikin & Sokoloff, 1979). This is
referred to as the nπ-ambiguity. To resolve it, observations at more than two wavelengths are
required. By measuring the polarization angle (ψ) at three or more wavelengths and fitting a
straight line to the (λ2, ψ) points, RM (the slope) and ψ0 (the y-intercept) can be determined
using Eq. (1.57). A magnetized region which rotates the plane of linear polarization might
itself be emitting synchrotron emission when it contains magnetic field, thermal electrons
and relativistic electrons. In such a region, the plane of polarized emission from the far
side is rotated more than from the near side. This leads to depolarization and such an effect
is called the Faraday depolarization. In presence of significant Faraday depolarization, the
polarization angle ψ is not a linear function of λ2 and then it is more appropriate to define
the Faraday depth via equation Eq. (1.57) and Eq. (1.58) (Burn, 1966). For multiple rotating
and emitting regions along the line of sight (or within the beam of the telescope), a more
involved technique called the RM synthesis (Brentjens & de Bruyn, 2005) can be employed.
It provides polarized emission at different Faraday depths. RM synthesis corrects for the nπ
ambiguity and is applicable even if observations are available only in a limited part of the
wavelength spectrum (Brentjens & de Bruyn, 2005; Heald, 2009). To estimate magnetic field
from RM or Faraday depth observations, independent information about thermal electrons ne

is required. In the Milky Way, this is obtained from the dispersion measure of pulsars. The
electromagnetic interaction between charged particles and radio waves from pulsars delays
the arrival of radiation emitted at different wavelengths, which leads to broadening of the
pulse. The delay is inversely proportional to the mass of the particle (Rohlfs & Wilson, 2004)
and thus electrons cause longer delays as compared to protons. The dispersion in the pulse
thus depends on the number density of the electrons ne and the dispersion measure DM is
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given by

DM
1 cm−3 pc

=

∫ z/1 pc

0

ne

1 cm−3
d

(
z
′

1 pc

)
, (1.59)

where z is the path length along line of sight. Thus, dividing RM as in Eq. (1.58) by DM as
in Eq. (1.59), a crude estimate of magnetic field along line of sight can be obtained (Rand &
Lyne, 1994). Magnetic field in galaxies can also be studied by measuring RM of background
polarized radio sources. Their RM is a combination of intrinsic RM of the source, an inter-
vening galaxy, intergalactic medium and the Milky Way. It is usually very difficult to isolate
these contributions. This technique is used to detect magnetic fields in high-redshift galaxies
where a statistical study using number of such sources has be conducted (Bernet et al., 2008).

Optical polarization

Dust particles due to their magnetic moment are aligned with the local galactic magnetic field
(Davis & Greenstein, 1951). Since the dust grains are non-spherical, the optical starlight from
behind the dust has different levels of extinction along the major and minor axis of the grains.
This leads to linear polarization of starlight parallel to the local magnetic field component
projected onto the plane of the sky. As the level of alignment depends on the properties of
the dust grains, especially their size and magnetic properties, the resulting linear polarization
also depends on those properties. Using radio (RM) and optical (starlight polarization) ob-
servations, a three-dimensional model of the large-scale magnetic field can be constructed, as
done for the Small Magellanic Cloud (SMC) by Mao et al. (2008).

Dust polarization

Besides distorting the background optical starlight, dust particles themselves emit in the mi-
crowave, sub-millimetre and far-infrared wavebands. This emission is polarized along the
major axis of the dust grains, i.e., in the direction perpendicular to the local galactic magnetic
field. The properties of polarized emission again depend on the dust grains’ properties. The
starlight polarization data, when compared with dust polarization data, provide compatible
results for the Milky Way magnetic field (Soler et al., 2016).

Zeeman splitting

Magnetic field splits the electronic energy levels of an atom and the splitting depends on
the magnetic field strength. This is known as the Zeeman splitting and it was first used to
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Figure 1.16: Figure taken from Planck’s webpage - http://www.esa.int/spaceinimages/Images/2015/02/
Polarised emission from Milky Way dust. It shows the dust emission at 353GHz where the color
shows the total intensity (blue minimum, intense red maximum) and the striations show the direction
of the Milky Way magnetic field projected on the plane of the sky.

measure magnetic fields in sunspots. It is a direct probe of magnetic field, unlike previous
tracers. The frequency difference of radio spectral lines due to the splitting is quite small
and so it can be used only in regions where magnetic field is strong. Also, it competes with
the Doppler broadening of those lines and thus the temperature of region should also be low
enough. Thus, it is the best probe for regions with high magnetic fields and low temperature,
for example, molecular clouds (Crutcher, 2012).

1.10 Observations of magnetic fields in galaxies

It is difficult to see the overall pattern of the Milky Way’s magnetic field since we sitting in it.
Planck satellite gives a detailed view of the Milky Way’s magnetic field via dust polarization
measurements as shown in Fig. 1.16. It shows that the magnetic field is ordered and strongest
in the galactic plane. It also shows that the magnetic field in gas clouds (above and below the
plane) is turbulent and tangled. Overall, the Milky Way magnetic field is smooth and ordered
over large scales but becomes random on smaller scales. The gradient of synchrotron polar-
ization can used to extract properties of the ISM turbulence in the Milky Way (Gaensler et al.,
2011; Herron et al., 2017). Fig. 1.17 shows the gradient of observed linear polarization for a
small part of the Milky Way galaxy. The statistics of gradient of polarization obtained from
observations and numerical simulations (three dimensional MHD turbulence simulations of
the ISM with Mach number as a parameter) are compared to conclude that the ISM has a low
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Figure 1.17: Gradient of observed linear polarization for patch of the Milky Way (Gaensler et al.,
2011). By comparing statistics of the gradient with that obtained from the numerical simulations, it
can be shown that the ISM is turbulent with Mach number approximately equal to 2.

sonic Mach number (. 2). Such a turbulent medium generates spatially intermittent random
magnetic fields.

Observing magnetic fields in external galaxies shows the overall pattern of the large-
scale magnetic fields. However, the spatial resolution goes down and with the existing radio
telescopes it is difficult to directly probe the small-scale ISM properties in those systems.
Magnetic fields in the face-on spiral galaxy M51 were studied in great detail by Fletcher
et al. (2011). The spiral pattern of the regular magnetic fields as shown in Fig. 1.18 does
not produce a similar pattern in the Faraday rotation measurements. Thus, the ordered field
is a combination of the large-scale (or mean-field) dynamo generated field and anisotropic
turbulent random field. This need not be the case always. For example, in M31, the RM
pattern follows the large-scale ordering of the polarized synchrotron intensity (Berkhuijsen
et al., 2003). The extracted mean magnetic field is usually decomposed into a set of azimuthal
modes (m). For M51, in the disc the mean field is described by the m = 0, 2 modes (which
agrees with mean-field dynamo theory) and in the halo by a m = 1 azimuthal mode. The
properties of the small-scale magnetic fields are estimated from the amount of depolarization.
In M51, by analyzing synchrotron depolarization, the correlation length of the small-scale
magnetic field is estimated to be of the order of 50 pc. Many properties of the observed
magnetic fields in the Milky Way and nearby spiral galaxies agrees with the galactic dynamo
theory (Beck, 2016).

It is important to measure magnetic fields in high redshift or young galaxies to constrain
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Figure 1.18: Contours of total synchrotron intensity overlaid on the top of the optical image and lines
shows the magnetic field vectors obtained from polarized intensity in M51 (Fletcher et al., 2011). The
polarized synchrotron intensity traces the ordered magnetic field (field generated by the large-scale
dynamo and anisotropic turbulent field).
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(a)

(b)

Figure 1.19: (a) A statistical study to detect magnetic field in high redshift galaxies (Bernet et al.,
2008). Cumulative histogram showing number of RM measurements with value less than that on the
x axis for systems with no MgII absorber (red), one of more MgII absorbers (blue) and two MgII
absorbers (black). The systems with MgII absorbers statistically shows higher values of RM. This
can be used to study properties of magnetic fields in high redshift galaxies. (b) An observational
study to detect magnetic field in an individual high redshift galaxy (Mao et al., 2017). Faraday depth
spectra (fractional polarization versus Faraday depth) of two gravitationally lensed images (blue and
red) with lensing galaxy at a redshift of 0.439. The difference in the mean and standard deviation of
two components is used to infer the magnetic field in the lensing galaxy.

41



Chapter 1. Introduction and overview

the parameters of the galactic dynamo theory. However, it is extremely difficult to do the
same because of limited sensitivity and resolution of the existing radio telescopes. Magnetic
fields in young galaxies are studied via numerical simulations (Pakmor et al., 2014; Rodrigues
et al., 2015) but there have also been few attempts to study them via observations. Evidence of
large-scale magnetic fields in young galaxies is obtained by studying excess of RM in MgII

absorption systems (Bernet et al., 2008). MgII absorption line in the spectrum is usually
associated with a galaxy. The plane of polarization of the light from the background source
is rotated by a galaxy. If the redshift of the absorption line is less than that of the source,
the observed RM also has contribution from the foreground galaxy. Fig. 1.19a shows RM
in systems with none, one or more and two MgII absorption lines in the spectra. RM is
statistically higher for sources with MgII absorbers and is associated with the large-scale
field in young galaxies. The magnetic field in an individual high redshift ‘lensing’ galaxy
is estimated by comparing the distribution of Faraday depth spectra between two images
of a background source (Mao et al., 2017). Fig. 1.19b shows the Faraday depth spectra of
two images. The difference in the mean of two components (difference in RM between
two images) gives an estimate of the large-scale magnetic field in the lensing galaxy. And
the difference in the standard deviation of the two components (difference in the standard
deviation of RM) provides some information about the small-scale magnetic fields. The
strength of magnetic fields in the young galaxy is comparable to that in the nearby galaxies.
Many such observations of magnetic fields in young galaxies would be useful in confirming
various aspects of the galactic dynamo theory.

1.11 Aim and structure of the thesis

Cosmic rays and magnetic fields are important non-thermal components of the ISM in spiral
galaxies. The interaction between cosmic rays and magnetic fields is described in Fig. 1.20.
In Chapter 2, we first characterize and describe the small-scale structure of intermittent mag-
netic fields generated by a fluctuation dynamo. Then in Chapter 3, we study the effect of
magnetic intermittency in the ISM on cosmic ray propagation. We test the energy equipar-
tition assumption between cosmic rays and magnetic fields in Chapter 4. In Chapter 5, we
describe observational signatures of magnetic fields in elliptical galaxies. Beyond confirming
existing results, each chapter tries to answer couple of questions. The questions chapter-wise
are given below.

Chapter 2: Fluctuation dynamo and its nonlinear states
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Cosmic ray
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Figure 1.20: Flowchart showing interactions between cosmic rays and magnetic fields in the ISM
which leads to cosmic ray diffusion.

• How does the non-linear fluctuation dynamo saturate?

• How does the intermittent structure of the fluctuation dynamo-generated magnetic fields
depend upon its nonlinear state and on the magnetic Reynolds number?

Chapter 3: Cosmic ray diffusion in intermittent magnetic fields

• Is the intermittent structure of magnetic field important for cosmic ray diffusion?

• How do magnetic structures alter cosmic ray propagation?

Chapter 4: Correlation between cosmic rays and magnetic fields

• Are cosmic rays and magnetic fields spatially correlated?

• What is the reason for the presence of small-scale cosmic ray structures?

• Does the relation between magnetic fields and cosmic rays change when the pressure
due to thermal gas is also included?

Chapter 5: Magnetic fields in elliptical galaxies

• Can magnetic fields be detected in elliptical galaxies and used as a probe of the fluctu-
ation dynamo theory?

• What are the observational signatures of magnetic fields in elliptical galaxies?
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Fluctuation dynamo and its nonlinear states

The small-scale magnetic field in the ISM is generated by a fluctuation dynamo mechanism.
The fluctuation dynamo converts kinetic energy of a random flow into small-scale, random
magnetic field energy. The magnetic field is amplified exponentially (the kinematic stage)
until the back reaction on the flow due to the Lorentz force becomes important and then
the dynamo action saturates (the saturated stage). In this chapter, we first look at the kine-
matic fluctuation dynamo for simple flows and then study the nonlinear fluctuation dynamo
in driven turbulence via numerical simulations. We demonstrate that the magnetic field sat-
urates because its amplification and diffusion are both affected by the back reaction. The
amplification of the magnetic field is reduced due to a stronger alignment between the veloc-
ity field, magnetic field, and electric current density. Furthermore, both aspects of magnetic
field amplification, i.e. stretching and compression of field lines, are reduced as the dynamo
saturates. The enhancement in diffusion is confirmed by the decrease in the local value of
magnetic Reynolds number. Next, we study the spatially intermittent structure of the fluctua-
tion dynamo-generated magnetic fields using the Minkowski functionals. The typical length,
width, and thickness of the magnetic structures are obtained for the kinematic and saturated
stages. We show that the structures are of a larger size in the saturated stage in comparison
to the kinematic stage. The filamentarity and planarity of magnetic structures in nonlinear
dynamos approach their asymptotic values as the magnetic Reynolds number increases. This
suggest that even though the magnetic Reynolds number is extremely high in most astrophys-
ical systems, the strong (few times the root-mean square value) magnetic field produced by
the fluctuation dynamo occupies a significant fraction of the volume.
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2.1 Random magnetic fields in the ISM

Several mechanisms produce random magnetic fields in the ISM of spiral galaxies. Tan-
gling of the large-scale magnetic field by turbulent flows produces a volume-filling random
field whose statistical properties are controlled by the turbulence. This magnetic field is a
byproduct of the mean-field dynamo action. If the turbulent velocity has Gaussian statistical
properties, the resulting random magnetic field is also a Gaussian random field. Random
motions can also generate a random magnetic field directly through fluctuation dynamo ac-
tion. The resulting magnetic field is spatially intermittent (magnetic field is concentrated into
filaments and ribbons) and has strongly non-Gaussian statistical properties (further described
in Section 2.4.2). Another similarly structured contribution is produced by compression in
random shock fronts driven by supernova explosions (Bykov & Toptygin, 1985; Federrath
et al., 2010). The result of such compression is a complex random magnetic field represented
by both Gaussian and non-Gaussian parts (as shown in Chapter 3, these scatter cosmic rays
differently). In this section, we estimate the contribution of each of the above mechanisms to
the small-scale interstellar magnetic fields. We denote b1, b2 and b3 as the random magnetic
fields produced by tangling of the mean field, by the fluctuation dynamo action and by shock
compression, respectively.

The tangling of a large-scale magnetic field B0 by a random flow u can be described
by the induction equation with magnetic diffusion neglected over the timescales of interest,
∂b1/∂t ≈ ∇× (u ×B0). By order of magnitude, b1 ' urmsB0τ/l0, where τ and l0 are the
relevant time and length scales (l0 being the driving scale of the turbulence). Assuming that
τ is equal to the eddy turnover time, l0/ urms, we obtain b1 ' B0. This part of the random
magnetic field is present wherever B0 6= 0, i.e., presumably at all positions. As described in
Section 1.5.1, the strength of the interstellar large-scale magnetic field is controlled by various
global properties of the ISM. Observations suggest B0 ' 1–5µG, varying between galaxies
and between various locations within a given galaxy (Beck, 2016). Thus, b1 ' 1–5µG in the
rms sense.

Magnetic structures produced by the kinematic fluctuation dynamo due to a turbulent
flow, with the kinetic energy spectrum E ∝ k−s at k � 2π/l0 (where k is the wave num-
ber and l0 is the driving scale of the turbulence), produce magnetic structures of length l0
(independent of s) that have a typical width of l0Re−1/2

M (independent of s) and thickness
l0Re−2/(1+s)

M (Wilkin et al., 2007). The correlation length of the small-scale random magnetic
fields lb is always less than the driving scale of the turbulence, l0. Wilkin et al. (2007) find that
the magnetic correlation length scale lb/l0 ' Re−0.4

M . Subramanian (1999) suggests that the
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statistically steady (saturated) state of the dynamo corresponds to the effective value of the
magnetic Reynolds number ReM ' Re(crit)

M , where Re(crit)
M ' 102–103 is the critical magnetic

Reynolds number for the dynamo action. Then lb/l0 ' Re(crit)
M

−0.4 ' 0.2–0.05. Assuming
that the magnetic field strength within such structures is close to energy equipartition with
the turbulent energy and there is one such structure in each flow correlation volume l30, the
root-mean-square magnetic field strength (averaged over a volume l30, or larger) follows as
b2 ' (lb/l0)

3/2 beq ' Re(crit)
M

−0.6
beq ' (0.02–0.06) beq with beq = (4πρu2

0)
1/2 ' 5µG. Direct

numerical simulations suggest that, at high magnetic Reynolds number, a saturated fluctua-
tion dynamo produces a stronger rms magnetic field, b2 ' 0.1–0.7 beq (Haugen et al., 2004a).
This implies that random magnetic fields outside the filaments and ribbons contribute signif-
icantly to the magnetic energy density or there are a few magnetic structures in each flow
correlation cell. Thus, such estimates are not sufficient and direct numerical simulations are
required to study the small-scale magnetic fields generated by a nonlinear fluctuation dynamo.

Another contribution to non-Gaussian magnetic fields in the ISM is due to random shock
compression. Primary and secondary shock fronts produced by supernova explosions and
strong stellar winds can be described as pervasive shock-wave turbulence in the interstellar
medium (Bykov & Toptygin, 1987). The typical separation between random shocks in the
warm interstellar medium is 1016–1017 cm (Bykov, 1988). The magnetic field associated with
the shock-wave turbulence has a spectrum close to k−2 and is intermittent at scales smaller
than the separation of the shock fronts. It is reasonable to expect that the energy density
of these random magnetic fields is of the same order of magnitude as the kinetic energy of
turbulence, b3 ' beq.

Overall, the small-scale magnetic field in the ISM is a combination of non-Gaussian (due
to fluctuation dynamo and shocks) and Gaussian (due to tangling of a mean magnetic field)
components of comparable energy density. Thus, we consider both the intermittent and Gaus-
sian field in our study of cosmic ray propagation in random magnetic fields (Chapter 3 and
Chapter 4).

The magnetic field structure is likely to be different in different phases of the ISM. The
warm, partially ionized gas occupies a large fraction of the galactic disc volume and hosts
both the large-scale and small-scale dynamos. Hot gas has a scale height larger than the disc
half-thickness and flows up to fill the galactic corona. Numerical simulations of the multi-
phase ISM driven by supernovae (Gent et al., 2013a) suggest that the large-scale magnetic
field is stronger in the warm phase whereas random fields are equally present in all the phases
of the ISM (Evirgen et al., 2017). So, the structure of the small-scale magnetic field would
also vary depending on the phase of the ISM.
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In this chapter, we study fluctuation dynamo via numerical simulations. Our goal here is
to describe the nonlinear state of the fluctuation dynamo. We explore the saturation mech-
anism of fluctuation dynamos and then quantitatively discuss the morphology of magnetic
structures.

2.2 Introduction to fluctuation dynamos

A fluctuation dynamo is a MHD dynamo produced by a flow which is turbulent and therefore
fluctuates in time and space. A weak seed magnetic field in a turbulent electrically conducting
fluid either grows or decays. When the field grows, the magnetic field eventually becomes
strong enough to react back on the flow via the Lorentz force. This alters the properties of the
turbulent flow. However, initially the effect of the Lorentz force is negligible if the magnetic
field is weak. The problem then can be studied by solving the induction equation for a
prescribed velocity field. This is referred to as the kinematic or linear (since for a prescribed
velocity field, the problem is linear in the magnetic field) fluctuation dynamo. The goal is to
determine if the magnetic field grows exponentially and to quantify the spatial structure of
the amplified magnetic fields. In the nonlinear regime, the magnetic field saturates due to the
back reaction of the Lorentz force on the flow. The primary question in the nonlinear regime
is to describe the nonlinear state of the fluctuation dynamo and understand the mechanism by
which the dynamo saturates. This chapter deals mostly with nonlinear fluctuation dynamos
as the kinematic dynamos have been studied more thoroughly.

Dynamo action is impossible for certain kinds of velocity and magnetic fields. For ex-
ample, Cowling (1933) demonstrated that an MHD dynamo cannot maintain a steady ax-
isymmetric magnetic field and Zel’dovich (1957) showed that a planar velocity flow cannot
generate exponentially growing magnetic fields. These results are called antidynamo theo-
rems since they rule out the existence of a dynamo for certain cases, usually for symmetric
flow and magnetic field geometries (Moffatt, 1978). Such theorems also establish that the
dynamo problem is inherently three dimensional in space.

The magnetic field only grows when the magnetic Reynolds number ReM is greater than
the critical magnetic Reynolds number Re(crit)

M , which depends on the properties of the flow.
Given a flow, the growth rate of magnetic field depends on ReM. In most astrophysical system,
ReM � Re(crit)

M . Based on the growth rate in the limit ReM → ∞, dynamos can be divided
into two types: slow and fast dynamos (Vainshtein & Zel’dovich, 1972). If the growth rate
remains positive in the limit ReM → ∞, then the dynamo is a fast dynamo, otherwise it is a
slow dynamo. Since, even at a very high ReM, magnetic fields are observed in most astrophys-

47



Chapter 2. Fluctuation dynamo and its nonlinear states

Figure 2.1: The stretch-twist-fold-merge mechanism (image credits: Anvar Shukurov). S and B are
the cross section and magnetic field strength of the initial flux tube. φ = SB is the magnetic flux
associated with the tube.

ical systems, such systems probably host fast dynamos. A fast dynamo can be conceptually
explained by a Stretch-Twist-Fold (STF) mechanism (Vainshtein & Zel’dovich, 1972; Chil-
dress & Gilbert, 1995) illustrated in Fig. 2.1. Assuming flux freezing and incompressible
motions, the algorithm to amplify magnetic field via the STF mechanism is as follows. First,
the magnetic flux tube is stretched to double its length while preserving its volume, (a) →
(b) in Fig. 2.1. This increases the magnetic field strength by a factor of two since the cross
section is halved. Then the flux tube is twisted to form a figure eight, (b)→ (c) in Fig. 2.1,
and folded on itself, (c) → (d) in Fig. 2.1. Now, both loops of the tube have the magnetic
field along the same direction and together occupy the same volume as the original flux tube.
Both loops of the tube are now merged together into one, (d)→ (a) in Fig. 2.1. The last step
requires magnetic diffusion for process to become irreversible. The magnetic field is doubled
for each cycle and increases by a factor of 2n after n such steps. The growth rate is ln 2/T ,
where T denotes the period of the STF cycle, is independent of the magnetic diffusivity or
ReM and thus this is a fast dynamo. The growth in magnetic energy is at the expense of
the kinetic energy of the STF motions. Once the magnetic field becomes strong enough, the
Lorentz forces reacts back on the flow. In the STF mechanism, this would imply difficulty in
either the stretching and twisting due to magnetic tension or the merging of loops becoming
slower (Brandenburg & Subramanian, 2005; Seta et al., 2015).

Kazantsev (1968) solved the kinematic fluctuation dynamo problem analytically for an
isotropic, incompressible, mirror-symmetric, single-scale, homogeneous and Gaussian ran-
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dom velocity field, which is also δ-correlated in time. The magnetic field power spectrum
Mk in the Kazantsev model is a power-law Mk ∝ k3/2, independent of the slope of the ve-
locity power spectrum in the inertial range (Kulsrud & Anderson, 1992). Though the scaling
obtained by Kazantsev (1968) is for a single-scale flow, it also emerges in more general cases
in numerical simulations.

It is difficult to solve the complete nonlinear dynamo problem analytically and thus the
nonlinear case is mostly studied via numerical simulations. Both the Navier–Stokes and in-
duction equations are solved numerically with a random forcing (Meneguzzi et al., 1981;
Cattaneo, 1999; Haugen et al., 2004a; Schekochihin et al., 2004; Brandenburg & Subrama-
nian, 2005; Cho & Ryu, 2009; Cattaneo & Tobias, 2009; Bushby et al., 2010; Federrath et al.,
2011; Favier & Bushby, 2012; Sur et al., 2012; Beresnyak, 2012; Brandenburg et al., 2012;
Bhat & Subramanian, 2013; Federrath et al., 2014; Federrath, 2016; Sur et al., 2018). The
numerical studies deal with both incompressible and compressible plasma. Dynamos with an
incompressible plasma are more efficient than the dynamos in a compressible medium due to
higher generation of vorticity in the incompressible medium (Haugen et al., 2004b; Federrath
et al., 2011). Since we are here interested in the physics of the saturation mechanism, we will
focus only on the dynamos in an incompressible flow.

Magnetic diffusion or dissipation occurs via reconnecting flux tubes and thus reconnec-
tion is necessary for dynamo action. This further clarifies the role of diffusion. Too much
diffusion kills the dynamo and on the other hand too little diffusion makes dynamo action
impossible. To study dynamo action, diffusion must be included as that is the only term in
the induction equation which can change magnetic field topology (Tobias et al., 2011). It is
important to change magnetic field topology for fields to grow and for the solution to become
the eigenfunction of the induction equation. Also, in the absence of diffusion, the eigenfunc-
tion eventually becomes spatially non-differentiable because of the lack of smoothing. Thus,
it is important to consider diffusion to explore a dynamo. Some numerical studies include
only the induction term, with no explicit magnetic diffusion. They therefore rely upon nu-
merical dissipation. Unfortunately, the numerical diffusion is neither easily quantifiable nor
controllable and thus in our simulations we always include explicit diffusion.

For nonlinear fluctuation dynamos in an incompressible plasma, there are three important
scales in the problem: the driving scale of the turbulent flow 2π/kF, the viscous scale lν and
the resistive scale lη. Based on the magnetic Prandtl number PrM = ReM/Re, fluctuation
dynamos can be divided into small and large PrM cases. PrM is greater than 1 for hot diffuse
plasma (interstellar and intergalactic medium) and PrM is much smaller than 1 for dense
plasma (planets, stars and liquid metal dynamo experiments). For PrM � 1, the resistive
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Figure 2.2: Log-log plots of kinetic (Ek, dashed) with a well-defined inertial range and magnetic (Mk,
solid) energy spectra for the fluctuation dynamo at PrM � 1, lη � lν (a) and PrM � 1, lη � lν (b).

scale is smaller than the viscous scale ((a) in Fig. 2.2) and thus the magnetic dissipation
occurs where the velocity field is smooth (all velocity fluctuations are damped out at the
viscous scale). On the other hand, for PrM � 1, the resistive scale is within the inertial
range of the fluid turbulence ((b) in Fig. 2.2) and so the magnetic dissipation occurs in the
region where the velocity field is turbulent or spatially rough. It is harder to excite a dynamo
with rough velocity fields (Boldyrev & Cattaneo, 2004). The small-scale eddies in the flow
rotate faster and assuming that the magnetic field is frozen in the fluid, the smallest eddies
stretches the magnetic field lines and thus amplifies the field most efficiently. For the same
lν , the magnetic fluctuations are damped at scales much larger for dynamos with PrM � 1

than that in PrM � 1 case. Thus, the magnetic field grows at a larger number of scales
(including the fastest scale close to lν) for PrM � 1, making it a more efficient dynamo. The
result has also been confirmed numerically. The critical magnetic Reynolds number Re(crit)

M ,
which is a threshold for dynamo action to occur, increases with decreasing PrM in numerical
simulations (Haugen et al., 2004a; Schekochihin et al., 2005, 2007; Iskakov et al., 2007). For
studying the saturation mechanism of fluctuation dynamos, we use numerical simulations at
PrM = 1 (lη = lν), to make sure that both resistive and viscous scales are resolved equally.
On other hand, to study the dependence of magnetic structures on the magnetic Reynolds
number ReM, we keep the underlying turbulent flow or Re the same and vary ReM. So, then
we look at simulations with PrM ≥ 1.
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2.3 Kinematic dynamos

In kinematic fluctuation dynamos, for a given velocity u(x, t), the evolution of the magnetic
field b(x, t) is governed by the induction equation alone,

∂b

∂t
= ∇× (u× b) + η∇2b, (2.1)

where η is the magnetic diffusivity (considered constant here). For various velocity fields,
we solve Eq. (2.1) in a periodic box of dimensionless size (2π)3 with 1283, 2563 and 5123

points, using sixth-order finite differences in space and a third-order Runge-Kutta scheme in
time. To ensure that ∇ · b = 0, we numerically solve for the magnetic vector potential. We
define the magnetic Reynolds number ReM = 2π urms/kFη, where kF is the forcing scale
of the turbulent velocity flow and urms is the root-mean-square (rms) velocity. Dynamo
action occurs, i.e., the magnetic field grows exponentially, if ReM exceeds a critical magnetic
Reynolds number, Re(crit)

M , whose value depends on the velocity field. We look for solutions of
the form b(x, t) = b(x) exp(γgt), where b(x) is the eigenfunction of the induction equation
and γg is the growth rate.

The first flow we consider is the Roberts flow given by

u(x) = (cos(kFyy), sin(kFxx), sin(kFyy) + cos(kFxx)), (2.2)

where kFx and kFy are the forcing wave numbers in the x and y directions respectively.
Here, for simplicity, we consider kFx = kFy = kF. The flow is independent of the spatial
coordinate z but has a z component, which depends on x and y. Thus, the anti-dynamo
theorem of Zel’dovich (1957) does not prevent the magnetic field from growing exponentially
if ReM > Re(crit)

M . With this flow, for kF = 1, Re(crit)
M ≈ 50. Time evolution of magnetic fields

for various values of ReM and kF is shown in Fig. 2.3. It shows that the magnetic field
grows exponentially for various values of ReM and kF. The velocity and magnetic field for
kF = 1 and ReM = 1250 is shown in Fig. 2.4. The magnetic field is concentrated along
the separatrix of the flow (the boundary across which uz changes sign in Fig. 2.4a). Thus,
in three dimensions as shown in Fig. 2.5, the magnetic structures are of a similar shape and
are equidistant. At high ReM, the magnetic field is localized to such regions, which enhances
diffusion. This can also be seen in Fig. 2.6 where kF = 5 and so 5 cells are formed along
each direction. This eventually leads to decay of the magnetic field at very high ReM and thus
a dynamo with the Roberts flow is a slow dynamo.
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Figure 2.3: The evolution of the magnetic field obtained in the Roberts flows in a periodic box of
non-dimensional size (2π)3 with 1283 mesh points for various ReM with kF = 5 (a) and for various
forcing wave numbers kF with ReM = 1250 (b). t0 = 1/ urmskF is the eddy turnover time.
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Figure 2.4: (a) The 2D cut in the xy-plane of the velocity field through the middle of the domain with
vectors (ux/ urms, uy/ urms) and colours showing the magnitude of uz/ urms for the Roberts flow with
kF = 1 and ReM = 1250 in a 1283 simulation. (b) As (a) but for the exponentially growing magnetic
field.
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Figure 2.5: Isosurfaces of b2/ b2rms = 2 (blue) and b2/ b2rms = 3 (yellow) for the magnetic field
generated by using the Roberts flow with kF = 1 and ReM = 1250 in a 1283 simulation.

The Roberts flow is a special case of a general class of flows called the ABC flows given
by

u(x) =(A sin(kFzz) + C cos(kFyy), (2.3)

B sin(kFxx) + A cos(kFzz),

C sin(kFyy) +B cos(kFxx)),

where kFx, kFy, kFz are the forcing wave numbers in the three coordinate directions and A,B
and C are constants. For this flow, when kFx = kFy = kFz = 1 and A = B = C = 1,
Re(crit)

M ≈ 94. The velocity and magnetic field for kFx = kFy = kFz = 1,A = B = C = 1 and
ReM = 1250 is shown in Fig. 2.7. Here, the magnetic field is stronger around the separatrix
but is also non-zero in other regions. As shown in Fig. 2.8, the magnetic structures are of
ellipsoidal shape but placed randomly within the domain. The ABC flow is supposed to be a
fast dynamo but it is difficult to demonstrate this conclusively (Bouya & Dormy, 2015).

The velocity flows can also be time dependent. One such flow is the Galloway–Proctor
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Figure 2.6: As in Fig. 2.4 but for kF = 5.
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flow (Galloway & Proctor, 1992) and one of its forms is given by

u(x, t) =(A sin(kFzz + sinωt) + C cos(kFyy + cosωt), (2.4)

A cos(kFzz + sinωt),

C sin(kFyy + cosωt)),

where kFy, kFz are wave numbers in the y and z directions,A andC are constants, and ω is the
frequency of the changing flow. This flow is known to be a fast dynamo. For kFy = kFz = 1,
ω = 1 and A = C =

√
3/2, the velocity field and growing solution of the magnetic field are

shown in Fig. 2.9. The three–dimensional magnetic structures are shown in Fig. 2.10, which
are again of fixed shapes and are located at an equal distance from one another.

Another very efficient dynamo is due to the following flow (Willis, 2012):

u(x) = (2/
√
3)(sin y cos z, sin z cosx, sinx cos y). (2.5)

called the W flow here and it has Re(crit)
M ≈ 11. In the case of the periodic box, the W flow

is closest to the most optimal time-independent flow for dynamo action (Willis, 2012). The
dynamo-generated magnetic field in a periodic box with 2563 points obtained for the W flow
is shown in Fig. 2.11.

These Lagrangian chaotic flows are useful to understand basics aspects of the fluctuation
dynamo (such as when does the magnetic field grow and how the flow circumvents anti-
dynamo theorems). Moreover, the properties of the velocity field can easily be related to
the features in the magnetic field that it generates. The magnetic structures generated by
such flows are usually of a simple shape, often with regular spacing between them (Fig. 2.5,
Fig. 2.8 and Fig. 2.10), e.g., convection-like cells for the Roberts flow and ellipsoids for the
ABC and W flows. However, these are single-scale flows and lack many properties of the
turbulent flows (such as multiple scales and an energy cascade). Also, most of the above
flows are not mirror-symmetric and produce a large-scale magnetic field. The magnetic field
correlation scale is comparable to the driving scale (roughly equal to the size of the box for
cases with kF = 1) as can be seen from two dimensional vector plots of the dynamo-generated
magnetic fields.

Finally, we consider a multi-scale flow to generate small-scale random magnetic fields,
referred to here as the KS (Kolmogorov scaling) flow. The velocity field, u, is constructed by
superposing Fourier modes with a range of wavenumbers, k, and a chosen energy spectrum
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Figure 2.7: As in Fig. 2.4 but for the ABC flow with A = B = C = 1, kFx = kFy = kFz = 1 and
ReM = 1250.
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Figure 2.8: Isosurfaces of b2/ b2rms = 3 (blue) and b2/ b2rms = 4 (yellow) for the magnetic field
generated by the ABC flow with A = B = C = 1, kFx = kFy = kFz = 1 and ReM = 1250 in a 1283

simulation. The magnetic structures are of various sizes and are randomly oriented.

Ek (Fung et al., 1992; Wilkin et al., 2007)

u(x, t) =
N−1∑
n=0

[Cn(kn) cosφn +Dn(kn) sinφn] , (2.6)

where φn = kn · x + ωnt, kn is a randomly oriented wavevector of magnitude kn, and
ωn = [k3

nEk]
1/2 is the frequency at that scale. The vectors Cn(kn) and Dn(kn) have random

directions in the plane perpendicular to kn, so that the flow is incompressible (∇ · u = 0).
Their magnitudes determine the power spectrum Ek, and are chosen such that Ek ∝ k−5/3.
We chose N = 40 with 2π/L ≤ kn ≤ 8π/L such that the flow is periodic, where L = 2π is
the width of our periodic box which is also equal to the outer (or largest) scale of the velocity
flow. For this flow, we use 5123 points and obtain Re(crit)

M ≈ 750. The magnetic field generated
by the KS flow in shown in Fig. 2.12. It is spatially intermittent. The magnetic structures
shown in Fig. 2.13 are randomly oriented and are of various shapes and sizes. The probability
distribution function (PDF) of a single component of magnetic field is shown in Fig. 2.14. The
distribution is far from a Gaussian distribution with heavy tails. The shell-averaged power
spectrum of magnetic field for various ReM is shown in Fig. 2.15. Independent of ReM, the
spectra at small wave numbers roughly follows the Kazantsev spectrum, Mk ∝ k3/2.
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Figure 2.9: As in Fig. 2.4 but for the Galloway–Proctor flow with kFy = kFz = 1, ω = 1, A = C =√
3/2 and ReM = 1250.
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Figure 2.10: Isosurfaces of b2/ b2rms = 3 (blue) and b2/ b2rms = 4 (yellow) for the magnetic field
generated by using the Galloway–Proctor flow with kFy = kFz = 1, ω = 1, A = C =

√
3/2 and

ReM = 1250 in a 1283 simulation. The magnetic structures are of a fixed shape and are equidistant.
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Figure 2.11: A 2D cut in the xy-plane through the middle of the domain with vectors
(bx/ brms, by/ brms) and colours showing the magnitude of bz/ brms for the W flow with ReM = 314
in a periodic box of non-dimensional size (2π)3 with 2563 points.
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Figure 2.12: A 2D cut in the xy-plane through the middle of the domain with vectors
(bx/ brms, by/ brms) and colours showing the magnitude of bz/ brms for the KS flow with ReM = 4800
in a periodic box of a non-dimensional size 2π with 5123 mesh points

For cosmic ray propagation in Chapter 3 and Chapter 4, we use magnetic fields generated
by the W and KS flows.

2.4 Non-linear fluctuation dynamo

2.4.1 Basic equations and numerical modelling

To study magnetic fields in random flows which are driven by a prescribed forcing, we solve
the continuity (Eq. (2.7)), induction (Eq. (2.8)) and Navier-Stokes (Eq. (2.9)) equations using
the Pencil Code 1(see Chapter A for the solution of Sod shock tube problem) in a periodic
box of non-dimensional size (2π)3 with 2563 and 5123 points. The equations are solved with
sixth-order finite differences in space and a third-order Runge-Kutta in time (for a discussion
on this numerical scheme see Brandenburg, 2003). We consider the turbulent medium to be
isothermal with equation of state p = c2

sρ, where p is the pressure, cs is the sound speed and
ρ is the density.

1http://pencil-code.nordita.org/
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Figure 2.13: Isosurfaces of b2/ b2rms = 3 (blue) and b2/ b2rms = 4 (yellow) for the magnetic field
generated by the KS flow with ReM = 4800 in a periodic box of a non-dimensional size (2π)3 with
5123 mesh points. The magnetic filaments are of various shapes and sizes.
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Figure 2.14: The probability density function of the single magnetic field component bx/ brms gener-
ated by the KS flow for various values of magnetic Reynolds number ReM as specified in the legend.
The dashed curve shows a Gaussian distribution. The distribution is strongly non-Gaussian with long
tails.
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Figure 2.15: The magnetic field spectra Mk for various magnetic Reynolds numbers ReM (specified
in the legend) in the KS flow. The spectrum at smaller wave numbers follows the Kazantsev spectrum,
Mk ∝ k3/2 (dashed) and the resistive scale increases with ReM.

The governing equations are as follows,

∂ρ

∂t
+∇ · (ρu) = 0, (2.7)

∂b

∂t
= ∇× (u× b) + η∇2b, (2.8)

∂u

∂t
+ u · ∇u =

−∇p
ρ

+
j× b

cρ
+ ν

(
∇2u+

1

3
∇∇ · u+ 2S · ∇ ln ρ

)
+ F, (2.9)

where u is the velocity field, b is the magnetic field, η is the magnetic diffusivity, j is the
electric current density, ν is the viscosity, Sij = 1

2

(
ui;j + uj;i − 2

3
δij∇ · u

)
is the rate of strain

tensor and F is the forcing function. For simplicity, both η and ν are considered constants.
Eq. (2.8) is solved in terms of the vector potential to ensure that the magnetic field obtained
is always divergence free.

We drive the flow with a mirror-symmetric, nearly incompressible (flows with Mach num-
bers less than 0.1) and δ-correlated in time forcing (Haugen et al., 2004a) of the form

F(x, t) = Re{NFk(t) exp[ik(t) · x+ iφ(t)]}, (2.10)
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where k is the wave vector, x is the position vector and π < φ ≤ π is a random phase.
To ensure that the forcing is effectively δ-correlated in time, k and φ are changed at each
time step δt. Also, to ensure that the time-integrated force is independent of the time step
δt, the normalization N is chosen to be proportional to δt−1/2. By dimensional analysis,
N = F0cs(|k|cs/δt)1/2, where F0 is the non-dimensional amplitude chosen such that the
maximum Mach number is low enough (urms/cs . 0.1) to avoid strong shocks. We randomly
select many wave vectors k which are multiples of 2π/L (to make sure the flow is periodic)
of magnitude k in a chosen range. Then we select an arbitrary unit vector e (neither parallel
nor anti-parallel to k) 2 and force the system at each time step with

Fk =
k× e√

k2 − (k · e)2
. (2.11)

The average of wave numbers at which the flow is driven is denoted by kF. Even when the
flow is periodic, kF need not be an integer.

The turbulent flow is characterized by the hydrodynamic Reynolds number Re and mag-
netic Reynolds number ReM. They are defined using the rms velocity urms with respect to
the forcing scale based on the average wave number 3 kF as

Re =
urms

ν

2π

kF

, ReM =
urms

η

2π

kF

, (2.12)

respectively. The ratio of ReM to Re is the magnetic Prandtl number

PrM =
ReM

Re
=
ν

η
. (2.13)

We use non-dimensional units for all physical variables. The lengths are in units of the
domain size, speed in units of the initial isothermal sound speed cs,0, time in terms of the
eddy turnover time t0 = 1/ urmskF, density in units of the initial density ρ0 and the magnetic
field in units of

(
4πρ0c

2
s,0

)1/2.
For the first set of simulations, with parameters given in Table 2.1, the turbulent motions

are driven between the wave numbers k = 1 and k = 2 and thus kF ≈ 1.5. A constant density,
zero velocity and a very weak random magnetic field with zero net flux are initialized in the

2We find the basis vectors (e1 and e2) in the plane perpendicular to the vector k and chose an angle φr
randomly in the range 0 ≤ φr < 2π. Then arbitrary unit vector e is computed as cosφr e1 + sinφr e2. This is
done to ensure that the resulting forcing vector is isotropic.

3It is also common to define the hydrodynamic and magnetic Reynolds number with respect to the forcing
wave number instead of the driving length scale. Then the Reynolds numbers are smaller by a factor 2π than
the values we quote.
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Table 2.1: Parameters of various nonlinear fluctuation dynamo simulations in a numerical domain of
size (2π)3 with 2563 mesh points. In all cases, the forcing scale kF is approximately equal to 1.5 (flow
driven at k = 1 and k = 2), the forcing amplitude F0 = 0.02, the magnetic Prandtl number PrM = 1
and the rms velocity in the saturated state is urms ≈ 0.11. The Reynolds number, the magnetic
Reynolds number, both based on the forcing scale 2π/kF, the rms magnetic field in the saturated state
brms, the ratio of magnetic to kinetic energy in the saturated state εM/εK = b2rms/ u

2
rms, the correlation

length of the velocity field in the kinematic stage lukin, the correlation length of the magnetic field in
the kinematic stage lbkin, the correlation length of the velocity field in the saturated stage lusat and the
correlation length of the magnetic field in the saturated stage lbsat are also given.

η, ν ReM,Re brms εM/εK lukin lbkin lusat lbsat

10× 10−4 449 0.033 0.08 3.14 1.82 3.77 1.95
5× 10−4 898 0.042 0.14 3.20 1.26 3.45 1.76
4× 10−4 1122 0.048 0.20 3.01 0.94 3.64 1.76
3× 10−4 1496 0.049 0.21 3.01 0.88 3.39 1.57
2.5× 10−4 1796 0.054 0.25 2.95 0.75 3.58 1.57
2× 10−4 2244 0.055 0.26 2.95 0.69 3.33 1.56

domain. Since the flow is nearly incompressible, density does not vary much throughout the
simulation. The magnetic field grows only for ReM ≥ Re(crit)

M , the critical magnetic Reynolds
number. For PrM = 1, Re(crit)

M ∼ 220 (Haugen et al., 2004a).
The evolution of the rms velocity urms and magnetic brms fields is shown in Fig. 2.16

for ReM = 1122. The flow speed is controlled by the forcing function and thus remains
nearly constant throughout the whole time. Most of the fluctuations in urms are due to the
system adapting to the imposed driving. The magnetic field, decays until it becomes an
eigenstate of the induction equation. Then it grows exponentially defining the kinematic
stage. As it becomes stronger, the magnetic field starts to influence the flow and slows down
the exponential increase. Finally, when the magnetic field becomes strong enough, it stops
growing and reaches a statistically steady state in the saturated stage. The exponential growth
and then saturation of the magnetic fields occurs in all runs of Table 2.1.

The shell-averaged (one-dimensional) power spectrum for various stages of magnetic
field evolution is shown in Fig. 2.17. At all times, the kinetic energy spectrum roughly fol-
lows the Kolmogorov spectrum, Ek ∝ k−5/3, confirming that the velocity flow is turbulent.
The shell-averaged magnetic field spectrum in the kinematic stage has a maximum at larger
wave numbers and the slope of the spectrum agrees with that derived analytically by Kazant-
sev (1968), Mk ∝ k3/2. Kazantsev’s theory assumes that the turbulent flow is δ-correlated in
time, which is the case in our simulations. However, the slope of the spectrum in the kine-
matic stage remains the same even when the forcing has a finite but small correlation time
(Bhat & Subramanian, 2014). As the magnetic field grows, the power shifts to smaller wave
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Figure 2.16: Root mean square (rms) of the velocity field urms and magnetic field brms as functions of
normalized time t/t0 (where t0 = 1/ urmskF, the eddy turnover time) for ReM = 1122. The randomly
initialized magnetic field first decreases till it evolves into an eigenfunction of the induction equation
and then increases exponentially with time (black-dashed) during the kinematic stage (area shaded in
light red). As magnetic field grows, its feedback on the flow slows down the exponential increase (the
transition stage, area shaded in light green). Finally, the magnetic field reaches a statistically steady
state in the saturated stage (area shaded in light blue).
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Figure 2.17: The shell-averaged (one-dimensional) kinetic Ek (dashed) and magnetic Mk (solid) en-
ergy spectra in the kinematic (red), transition (green) and saturated (blue) stages for ReM = 1122.
The kinetic energy spectrum roughly follows the Kolmogorov spectrum, Ek ∝ k−5/3 (dotted, black).
The magnetic spectra are initially peaked at large wave numbers with Mk ∝ k3/2 (dashed, black) at
smaller wave numbers (Kazantsev, 1968). As the magnetic field saturates, the power shifts to smaller
wave numbers and the magnetic spectrum flattens.

numbers and the spectrum becomes much flatter. The precise reason for the change in spectra
upon saturation is still not known.

2.4.2 Spatially intermittent nature of the dynamo generated magnetic
fields

Intermittency in a random distribution can be confirmed by looking at its probability distribu-
tion function (PDF) and by comparing the calculated kurtosis (Eq. (2.14)) of the distribution
with that of the Gaussian distribution. Also, the correlation length of the field gives further
information about the volume filling nature of the field. Here, using these tools we discuss the
spatial intermittency of the velocity and magnetic fields in non-linear fluctuation dynamos.

Fig. 2.18 shows the PDF of a single component of the velocity field ux/ urms in the kine-
matic and saturated stages for ReM = 1122 and ReM = 2244. The PDF is nearly Gaussian
for both the kinematic and saturated stages. This is primarily due to the nearly incompress-
ible forcing in the Navier–Stokes equation. This can be further confirmed by calculating the

67



Chapter 2. Fluctuation dynamo and its nonlinear states

−2 −1 0 1 2
ux/urms

10−3

10−2

10−1

100

P
D

F

ReM = 1122, kin

ReM = 2244, kin

ReM = 1122, sat

ReM = 2244, sat

Gaussian

Figure 2.18: The PDF of the normalized velocity field component ux/ urms for ReM = 1122 and
ReM = 2244 in the kinematic (dashed) and saturated (solid) stages for the value of ReM given in the
legend. The velocity field is roughly Gaussian (dashed, black) in both the stages for both ReM.

kurtosis for the velocity field u

Kurt(u) =
〈u4〉
〈u2〉2

, (2.14)

where 〈· · · 〉 refers to the spatial average over the domain. For all cases of Table 2.1, the kur-
tosis of the velocity field is very close to Kurt = 3, a Gaussian distribution. The correlation
length of the velocity field lu is calculated from the turbulent energy power spectrum Ek as

lu =
π

2

∫∞
0

2πk−1Ek dk∫∞
0
Ek dk

, (2.15)

and is given in Table 2.1. We confirm that roughly the same values are obtained by integrating
the autocorrelation function of the velocity fields. The correlation length of the velocity field
is roughly half of the numerical box size (2π). This can also be seen from Fig. 2.19. It
decreases slightly as Re increases. It increases in the saturated stage as compared to the
kinematic stage for all ReM. The velocity field thus becomes more volume filling as the
magnetic field saturates. This is directly attributable to the dynamical effects of the magnetic
fields.
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Figure 2.19: A 2D cut in the xy-plane with vectors (ux/ urms, uy/ urms) and colour showing the
magnitude of uz/ urms in the kinematic (a) and saturated (b) stages with ReM = 2244. The velocity
field in both the stages looks qualitatively the same. The structures are of the size of half of the domain.
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Figure 2.20: The PDF of the normalized magnetic field component bx/ brms for ReM = 1122 and
ReM = 2244 in the kinematic (dashed) and saturated (solid) stages for the values of ReM given in the
legend. The magnetic field for both ReM in both stages is far from a Gaussian (dashed, black). It has
heavy tails which is a sign of intermittency.
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Figure 2.21: The PDF of the normalized magnetic field strength b/ brms for ReM = 1122 and ReM =
2244 in the kinematic (dashed) and saturated (solid) stages for the values of ReM given in the legend.
The PDF of the magnetic field in the kinematic state follows a lognormal distribution (dashed, black).
The magnetic field is more intermittent in the kinematic stage than in the saturated stage.

Even though the velocity field is Gaussian, the magnetic field in both the kinematic and
saturated stages is spatially intermittent. This can be seen from the PDFs of a normalized
component of the magnetic field bx/ brms in Fig. 2.20. The distribution is far from a Gaussian
one and has long heavy tails at higher values of the magnetic field strength. The magnetic field
in the kinematic stage is more intermittent than that in the saturated stage. This can be seen
in Fig. 2.21 which shows the PDF of the strength of the magnetic field b/ brms for ReM =

1122 and ReM = 2244 in the kinematic and saturated stages. The PDF of the kinematic
magnetic field follows a lognormal distribution and it has heavier tails in comparison to that
for the saturated magnetic field. The two-dimensional vector plots of the magnetic fields in
Fig. 2.22 also show larger structures in the saturated stage. This can be further confirmed
by calculating the kurtosis of the magnetic field distribution Kurt(b). The kurtosis of the
kinematic magnetic field for ReM = 1122 is 5.29 but is 3.32 in the saturated stage. Thus,
the saturated magnetic field is more volume filling or less intermittent than the kinematic
magnetic field. The magnetic field correlation length lb is calculated using Eq. (2.15) by
replacing Ek with Mk, the magnetic field power spectrum. The magnetic field correlation
length in the kinematic lbkin and saturated lbsat stages is given in Table 2.1. The magnetic
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Figure 2.22: As Fig. 2.19 but for the magnetic field. The magnetic field in the kinematic stage is
intermittent with random magnetic structures. In the saturated stage, the field remains intermittent but
the structures are larger.
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field correlation length decreases as ReM increases, both for the kinematic and saturated
stages. Thus, the magnetic field intermittency increases as ReM increases. It is also clear that
lbsat > lbkin for all ReM which confirms again that the magnetic field in the kinematic stage
is less volume filling. This is true regardless of the choice of ReM and agrees with previous
numerical studies (Cho & Ryu, 2009; Bhat & Subramanian, 2013). A higher correlation
length in the saturated stage also indirectly implies the observed change in magnetic energy
spectra.

The structure of velocity and magnetic fields can also partly explain the ratio of magnetic
to kinetic energy densities (εM/εK). In the saturated state, εM/εK < 1 (Table 2.1). Suppose
the total turbulent kinetic energy is Estruc, assumed uniform throughout the whole volume V
(this is a justified assumption because the velocity field distribution is Gaussian). Then the
kinetic energy density is approximately equal to Estruc/V . The magnetic field is intermittent
with equipartition (PrM = 1) energy density in a smaller fraction of the total volume, Vb/V .
Then the total magnetic energy is approximately equal to Estruc(Vb/V ). Thus, the average
magnetic energy density is smaller than the average kinetic energy density and the ratio is
less than unity.

2.4.3 Saturation of the fluctuation dynamo

Previous studies of the saturation mechanism

The exponentially growing magnetic field of the kinematic phase also leads to the exponen-
tial growth of the Lorentz force applied to the plasma, which makes the problem nonlinear.
This slows down the growth and finally leads to the saturation of the dynamo (Fig. 2.16). The
nature and spatial coherence of the field in the saturated state is of paramount importance to
the study of the evolution of galactic magnetic fields (Arshakian et al., 2009) and in the in-
terpretation of cluster observations (Enßlin & Vogt, 2006). However, details of the saturation
mechanism remain poorly understood. Some ideas are discussed below (Schekochihin et al.,
2004; Brandenburg & Subramanian, 2005; Cattaneo & Tobias, 2009; Tobias et al., 2011).

• Energy equipartition argument. It is reasonable to expect that the magnetic energy
will saturate when it becomes comparable to the turbulent kinetic energy. However, in
our numerical simulations we find that the ratio of magnetic to kinetic energy (εM/εK

in Table 2.1) much less than one. Thus, the equipartition argument does not seem to
be true.

• Marginally stable state as the saturated state. Since a dynamo is a type of insta-
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bility, we can expect that the nonlinearity effectively transforms the system back to
its critical state, i.e., the magnetic Reynolds number (ReM = UL/η, where U is the
characteristic velocity, L is the characteristic length scale and η is the magnetic diffu-
sivity) in the saturated state is close to the critical magnetic Reynolds number, Re(crit)

M .
This implies that for a fixed η, either U or L or both should decrease on saturation.
We see in our simulations (Table 2.1) that the correlation length of the velocity field
actually increases when the field saturates and thus L does not decrease. This could
imply reduction in the velocity field amplitude. Such a reduction will be a huge jump,
especially for very high ReM, which is not observed in our numerical simulations. The
local magnetic Reynolds number (ReM)loc = |∇× (u×b)|/|η∇2b| can decrease with-
out changing U or L. However, we later show in the section, that even in the saturated
state, the local magnetic Reynolds number throughout the volume varies from much
smaller than Re(crit)

M to much larger than this critical number. The mean of the local
magnetic Reynolds number does decrease but not to the critical value.

• Velocity field modification. Magnetic field only grows for velocity fields with certain
properties. If these properties are altered, the field could stop growing. It has been
shown using numerical simulations with single-scale flows that the chaotic properties
of the flow (quantified by Lyapunov exponents) are suppressed significantly upon satu-
ration, suggesting weaker stretching of magnetic field lines by the flow (Cattaneo et al.,
1996; Kim, 1999). Due to the reduced stretching, the magnetic field amplification is
diminished and the field saturates. However, in a recent simulations of a fluctuation dy-
namo driven by convection (involving multiple scales), it is shown that such stretching
does not decrease drastically as the field saturates (Favier & Bushby, 2012).

Another suggestion is that the velocity field, in response to the growing magnetic field,
acquires a nonlinear velocity component (a velocity drift which is assumed to be pro-
portional to the Lorentz force) in addition to the turbulent component (Subramanian,
1999, 2003). The induction equation is then solved analytically including this addi-
tional velocity component. The solution leads to an effectively stronger magnetic dif-
fusion which saturates the field and also implies that the eigenfunction of the saturated
magnetic field is similar to the marginal eigenfunction (Subramanian, 1999). So, in
such a situation, the saturated magnetic power will be concentrated at larger scales
compared to the kinematic stage (as power at smaller scales decreases when ReM de-
creases). This in turn implies flatter magnetic field spectrum at low wave numbers in
the saturated stage, which is seen in Fig. 2.17. The saturated state in this model is
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independent of the small-scale properties of the system such as magnetic diffusivity
and viscosity. In galaxies, such an additional drift can be due to ambipolar diffusion in
partially ionized gas (Subramanian, 1998).

Such models assume that the growing magnetic field instills a property in the velocity
field which kills the growth. This is achieved by reducing amplification (Cattaneo et al.,
1996) or enhancing diffusion (Subramanian, 1999). Models based on the modification
of the velocity field alone may not be true as shown by a numerical experiment done
by Cattaneo & Tobias (2009)4. They solved the nonlinear fluctuation dynamo equa-
tions and obtained the saturated velocity and magnetic fields. Then using the saturated
velocity field, with the same magnetic Reynolds number as before, they solved only
the induction equation (i.e. the kinematic fluctuation dynamo problem, so the velocity
field does not change with time) with a random initial seed magnetic field. They found
that the magnetic field actually again grows exponentially. This clearly shows that the
modified velocity field alone is not responsible for the saturation of the fluctuation dy-
namo and a constant interaction between the velocity and magnetic field is required to
maintain the saturated state. However, in the saturation model with a nonlinear drift
proportional to the Lorentz force (Subramanian, 1999), the velocity field does depend
on the magnetic field and thus there is a constant interaction between the two quantities.
So, such a model is consistent with the findings of Cattaneo & Tobias (2009).

• Folded magnetic field structure and scale-by-scale energy equipartition.

For PrM � 1, Schekochihin et al. (2002) proposed a folded structure for small-scale
magnetic fields generated by a fluctuation dynamo. Fig. 2.23 shows such a structure
where the magnetic field consists of reversing magnetic field lines. The length and
thickness of the folds are of the order of the viscous scale lν and the resistive scale lη
respectively. Schekochihin et al. (2004) claim that the nonlinearity becomes significant
when the inertial forces balance the magnetic tension in the Navier–Stokes equation,
i.e., u · ∇u ≈ b · ∇b (it is assumed that the magnetic pressure balances the fluid
pressure). The term u · ∇u can be approximated as u2/lν , where u is the typical
velocity. For estimating b · ∇b, we use the folded structure of the field. As shown in
Fig. 2.23, the magnetic field direction changes most rapidly over the shorter scale lη
and remain roughly same within the scale lν . Thus, b · ∇b can be approximated as
b2/lν , where b is the typical magnetic field. So, equating the two terms gives u2 ≈ b2

at the viscous scale. The magnetic field growth stops first at the viscous scale when the

4A similar experiment was done by Tilgner & Brandenburg (2008) for non-linear mean field dynamos.
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Figure 2.23: Schematic of the folded structure of the magnetic field. The field is amplified by turbulent
velocity via its stretching us and compressive uc components. The field reverses several times within
a magnetic structure. The field direction changes along the smaller length scale which is comparable
to the resistive scale lη and the length of the folds are the order of the viscous scale lν .

magnetic field is in equipartition with the velocity field at that scale. Amplification can
continue at larger scales until a similar equipartition level is reached. The saturation
mechanism continues on a scale-by-scale basis until it reaches the correlation length of
the velocity field. Thus, the magnetic field energy saturates by successive equipartition
with kinetic energy at each scale, starting from the viscous scale.

The theory of folded magnetic structures might not be true in all cases. Fig. 2.24 shows
a slice of the magnetic field in the saturated state for a fluctuation dynamo in a periodic
box of dimensionless size (2π)3 with 2563 mesh point, PrM = 50,ReM = 200,Re = 4

and the average forcing wave number kF ≈ 1.5. Folded magnetic structures can be seen
in Fig. 2.24 but there are also structures with no magnetic field reversals (for example
the one within the blue circle in Fig. 2.24). It also worth reiterating that the correlation
length of both the velocity and magnetic fields increases as the field saturates, thus the
length scales themselves might change (the spectrum shifts to smaller wave numbers).
However, we do confirm in Fig. 2.25, that u · ∇u ≈ b · ∇b, although those two
quantities are not correlated.

• Plasma effects. Since the resistive scale is quite small (high ReM), plasma effects
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Figure 2.24: A 2D cut in the xy-plane with vectors (bx/ brms, by/ brms) and colours showing the
magnitude of bz/ brms in the saturated stage with PrM = 50. The red circle shows a magnetic structure
where the field reverses and the blue circle shows a strong magnetic structure where such a reversal is
not observed. At high PrM, magnetic structures with both the presence and absence of field reversals
within them are observed (and are also seen in previous studies, e.g. Brandenburg & Subramanian,
2005).
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Figure 2.25: Two dimensional correlation of u · ∇u and b · ∇b for a run with PrM = 50. Both
quantities are approximately equal in magnitude and uncorrelated.

might play an important role at smaller scales. In fully ionized plasma, the viscosity
becomes anisotropic with respect to the magnetic field direction and actually then the
Braginskii viscosity (Braginskii, 1965) is more appropriate. Unlike bulk fluid viscos-
ity, the Braginskii viscosity only dissipates those motions which affect magnetic fields.
Thus, the back reaction of the field starts much earlier, leading to saturation of magnetic
fields at a much lower value than the equipartition value and much larger magnetic field
length scales (Malyshkin & Kulsrud, 2002). However, in this model an additional prob-
lem arises. When magnetic field is weak (which is the case initially), various plasma
instabilities are excited (Schekochihin & Cowley, 2007). Such process can be studied
using numerical simulations of the plasma dynamo (Rincon et al., 2016; St-Onge &
Kunz, 2018), which considers magnetic field amplification in a collisionless plasma. In
a partially ionized plasma, ambipolar diffusion will further enhance magnetic diffusion
(Zweibel, 2002), which might also affect the saturation mechanism. Since, we assume
the MHD approximation, we cannot test such effects with our simulations.

Our approach to study the saturation of the fluctuation dynamo

Cattaneo & Tobias (2009) suggests that the saturated velocity field amplifies a seed field as
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long as it is not aligned with the saturated magnetic field. This motivates us to look at the
alignment of the magnetic field with the velocity as a possible mechanism for the saturation.
Such an alignment has been studied in the context of convectively driven fluctuation dynamos
(Brandenburg et al., 1996; Favier & Bushby, 2012), MHD turbulence in the presence of a
strong guide field (Mason et al., 2006) and decaying isotropic MHD turbulence (Servidio
et al., 2008). For the numerical simulations described in Table 2.1, we calculate the angle
between the velocity u and magnetic field b and the current density j and magnetic field. The
cosine of the relevant angles are given by

cos(θ)u,b =
u · b
|u||b|

, (2.16)

and

cos(θ)j,b =
j · b
|j||b|

, (2.17)

respectively. When the cosine of the angle is zero, both the vectors are perpendicular and
when it is unity, both are perfectly aligned. Fig. 2.26 and Fig. 2.27 show the probability
density function of these cosines in the kinematic and saturated stages for ReM = 1122

and ReM = 1496. Since the cosines of both angles are symmetric about b = 0, we only
plot their magnitude. For both values of ReM, the cosine of the angle between the velocity
and magnetic field cos(θ)u,b tend to have higher values in the saturated stage than in the
kinematic stage. This implies that the magnetic field is more aligned with the velocity field
as the field saturates. This in turn decreases the induction term∇× (u×b) and thus reduces
the amplification of the magnetic field. However, there is a significant fraction of the volume
where the two fields are not aligned and so the amplification is not completely supressed.
This minimum level of amplification is required to balance the diffusion. The cosine of the
angle between the current density and magnetic field cos(θ)j,b also has higher values in the
saturated stage. This decreases the back reaction of the field on the flow via the Lorentz
force term j× b. Thus, the field becomes closer to a force-free form as it saturates. Overall,
because of the enhanced local alignment between the velocity and magnetic field, the field is
less amplified. And due to the increase in the local alignment between the current density and
magnetic field, the back reaction of field on the flow decreases. Thus, the field is amplified
less and also it affects the flow less, as it saturates. This conclusions also applies in the
regions of stronger field (higher b/ brms in Fig. 2.26 and Fig. 2.27). However, the level of
alignment between the velocity and magnetic field is higher in the strong field regions in
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both the kinematic and saturated stages. This suggests that the strong field regions require a
larger reduction in amplification by alignment. The distribution of cos(θ)j,b in the kinematic
stage shows some dependence upon the field strength but in the saturated stage the difference
is less pronounced. In the kinematic stage, alignment is weakest in the strong field region
suggesting that in the strong field regions, not only because of its higher strength but also
because of lower level of alignment, the field produces a stronger back reaction on the flow.

Another important question is whether the alignment between the velocity and magnetic
fields and the magnetic field and current density occur in the same spatial region. To answer
this, we show the cross-correlation between the two angles in Fig. 2.28. Fig. 2.28a and
Fig. 2.28b shows the correlation in the kinematic and saturated stages respectively. In both
cases, most of the points are at high values of cos(θ)u,b and cos(θ)j,b. This suggests that
the velocity, magnetic field and current density are always nearly aligned to each other. It is
difficult to see any further difference between the kinematic and saturated stages in Fig. 2.28a
and Fig. 2.28b. Fig. 2.28c and Fig. 2.28d show the same correlation but only for strong
field regions (b/ brms > 1.5). In Fig. 2.28c, the kinematic stage shows higher correlation in
regions with high cos(θ)u,b and low cos(θ)j,b, which is very less probable in the saturated
stage (Fig. 2.28d). This shows that the active induction in the kinematic stage decreases on
saturation. Once the field saturates, the induction is relatively less necessary (required only
to counter the diffusion) and thus the regions with high cos(θ)u,b are comparatively less, as
shown in Fig. 2.28d. The comparison between Fig. 2.28c and Fig. 2.28d also implies that
the field geometry grows in such way so as to maximize the Lorentz force, especially in the
strong field regions. However, the Lorentz force is initially limited by the amplitude of the
magnetic field. Once the field saturates, the back reaction is no longer necessary and thus the
regions with low cos(θ)j,b are less probable, as shown in Fig. 2.28d.

To summarize, the magnetic field saturates via alignment between the velocity and mag-
netic field vectors and the magnetic field and current density vectors. This strongly suggests
the field saturates by reduction in amplification. The level of alignment does not completely
inhibit the amplification, so there is always some field generated to balance the resistive de-
cay. This in turn also implies that the back reaction due to the generated field will always
remain significant. Thus, even though both velocity and magnetic field reach a statistically
steady state (Fig. 2.16), it is the mutual interaction between the two quantities which main-
tains that state.

Further, we would like to know which aspect of the amplification, i.e. stretching or com-
pression, is diminished as the field saturates. To test this, we consider the alignment of the
magnetic field with the eigenvectors of the rate of strain tensor. The symmetric 3× 3 matrix
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Figure 2.26: The total and conditional probability distribution functions of the cosines of the angles
between u and b, cos(θ)u,b (a) and between j and b, cos(θ)j,b (b) for ReM = 1122 in the kinematic
(red) and saturated (blue) states. The magnetic field in the saturated stage is more aligned with velocity
field (reducing the induction effects) as compared to kinematic stage. The magnetic field also become
better aligned with the electric current density, reducing the back reaction on the velocity field.
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Figure 2.27: As Fig. 2.26 but for ReM = 1496.
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Figure 2.28: The cross correlation of cos(θ)u,b and cos(θ)j,b in the kinematic (a,c) and saturated (b,d)
stages for ReM = 1122. Panels (a) and (b) refers to the whole domain and the difference between them
is not significant. Panels (c) and (d) refers to only the strong field regions (b/ brms ≥ 1.5). The yellow
patch close to low cos(θ)j,b and high cos(θ)u,b in the kinematic stage vanishes for the saturated
stage. The peak in the count is always at high cos(θ)u,b and high cos(θ)j,b, which implies significant
alignment between magnetic field, velocity field and current density.
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Sij =
1
2
(ui;j + uj;i) is calculated at each point in the domain using sixth-order finite differ-

ences and its eigenvalues and eigenvectors are calculated. The eigenvalues are arranged in an
increasing order, say λ1 < λ2 < λ3. The corresponding eigenvectors are e1, e2, e3. The sum
of the eigenvalues is close to zero since the flow is nearly incompressible. λ1 is always nega-
tive and the vector e1 corresponds to the direction of local compression, λ3 is always positive
and the vector e3 corresponds to the direction of local stretching and λ2 can be obtained from
λ1 + λ2 + λ3 ≈ 0. We then calculate the alignment with the magnetic field b of the vector
representing the local compression e1 and the local stretching e3. The corresponding cosine
of the angle between them are given by

cos(θ)e1,b =
e1 · b
|e1||b|

(2.18)

and

cos(θ)e3,b =
e3 · b
|e3||b|

(2.19)

respectively. Fig. 2.29 shows the PDF of the cosines in the kinematic and saturated stages for
ReM = 1796. In most of the volume, the direction of the magnetic field is perpendicular to
the direction of the local compression (Fig. 2.29a), which leads to amplification of magnetic
field due to compression. The magnetic field in the kinematic stage is found to be more
perpendicular to the direction of compression as compared to the saturated stage. The PDF
of the angle between the direction of local stretching and the magnetic field cos(θ)e3,b has
maximum at cos(θ)e3,b = 0 and cos(θ)e3,b = 1 in the kinematic stage. The magnetic field
amplification is maximum when the direction of local stretching is aligned with the direction
of the magnetic field. In the saturated stage, however all angles are nearly equiprobable.
These results are more pronounced for the strong field regions (b/ brms ≥ 1). However, as can
be seen in Fig. 2.29, the difference between the PDFs in the kinematic and saturated stages
is not very strong and thus we can conclude that a small reduction in local stretching and
compression of magnetic fields contributes towards the saturation of the fluctuation dynamo.

We now directly consider the equation for magnetic energy evolution and calculate its
growth and the dissipation terms separately. Using the induction equation, we derive the
equation for the evolution of the magnetic energy, EM . Taking the dot product of Eq. (2.8)
with b and integrating over the periodic cube (V ), we obtain∫

V

b · ∂b
∂t

dV =

∫
V

b · [∇× (u× b)] dV +

∫
V

ηb · ∇2b dV. (2.20)
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Figure 2.29: The total and conditional PDFs of the cosine of the angle between the direction of local
compression and the magnetic field cos(θ)e1,b (a) and between the direction of local stretching and
the magnetic field cos(θ)e3,b (b) for ReM = 1796 in the kinematic (red) and saturated (blue) stages.
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The left-hand side of Eq. (2.20), which is equivalent to ∂EM
∂t

= 1
2
∂
∂t

∫
V
b2 dV , is the rate

of change of the magnetic energy. The right-hand side contains two terms: the first one is
responsible for the increase in the magnetic energy due to the interaction of the magnetic field
with the velocity field and the second term represents the reduction in the magnetic energy
due to resistive losses. The first term can be further simplified as follows:∫∫∫

V

b · [∇× (u× b)] dV, (2.21)

=

∫∫∫
V

[b · (b · ∇u− u · ∇b+���
��:0

(∇ · b) · u−�����:
∼ 0

(∇ · u) b)] dV, (2.22)

=

∫∫∫
V

[bibj∂jui − b · (u · ∇b)] dV, (2.23)

=

∫∫∫
V

[bibjSij − u · 1
2
∇b2] dV, (2.24)

=

∫∫∫
V

[bibjSij −
1

2
∇ · (ub2) +

1

2
b2
���

��:∼ 0
(∇ · u) ] dV, (2.25)

=

∫∫∫
V

bibjSij dV −
1

2

∫∫
S

(ub2) · n̂ dS, (2.26)

where the surface integral in Eq. (2.26) vanishes because of the periodic boundary conditions.
Thus, the increase in the magnetic energy is due to the

∫∫∫
V
(bibjSij) dV only. The second

term in Eq. (2.20), which reduces the magnetic energy, can also be further simplified as
follows:

η

∫∫∫
V

b · ∇2b dV, (2.27)

=η

∫∫∫
V

b · [∇�����:
0

(∇ · b) −∇× (∇× b)] dV, (2.28)

=− η
∫∫∫

V

b · [∇× (∇× b)] dV, (2.29)

=− η
∫∫∫

V

(∇× b)2 dV, (2.30)

=− η
∫∫∫

V

j2 dV. (2.31)

Combining Eq. (2.26) and Eq. (2.31), the magnetic energy evolution equation can therefore
be written as

∂EM
∂t

=

∫∫∫
V

bibjSij dV − η
∫∫∫

V

j2 dV. (2.32)

The term contributing to the energy growth, bibjSij , is calculated at each point in the
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Figure 2.30: The total and conditional PDFs of the local growth term λ1b
2
1 +λ2b

2
2 +λ3b

2
3 (a) and the

local dissipation term j2 (b) in the kinematic (red) and saturated (blue) stages for ReM = 1122. When
the local growth term is negative, its magnitude is plotted and this denoted by ‘−’ in the legend. Both
the local growth and dissipation terms over the entire volume decreases on saturation. This is true
same in both the weak and strong field regions, except for the local dissipation term, which increases
in the weak field regions.
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Figure 2.31: As Fig. 2.30 but for ReM = 1796.
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Figure 2.32: The total and conditional PDFs of the local magnetic Reynolds number (ReM)loc in the
kinematic (red) and saturated (blue) stages with ReM = 1122. The purple dashed line shows the
critical magnetic Reynolds number Re(crit)

M = 220 and the black dashed line shows ReM for this run.

volume as follows. First, we project the magnetic field vector b along each of the eigenvectors
of the rate of strain tensor, e1, e2, e3. Let this be b1,b2,b3. Now, the growth term is calculated
by computing λ1b

2
1+λ2b

2
2+λ3b

2
3 at each point in space. This is called the local growth term.

The local growth term can be positive or negative (λ1 is negative and λ3 is positive). The term
contributing to the decay in energy is calculated by computing j2 (η is constant) at each point
in space. This is referred the local dissipation term. Fig. 2.30 and Fig. 2.31 show the total
and conditional PDFs of the local growth and dissipation terms in the kinematic and saturated
stages for ReM = 1122 and ReM = 1796 respectively. As seen in Fig. 2.30a and Fig. 2.31a,
the local growth term decreases on saturation and this is equally true for strong and weak
field regions. The dissipation term also decreases on saturation as shown in Fig. 2.30b and
Fig. 2.31b. This also true for strong field regions but for the weak field regions the dissipation
increases.

So, to calculate the overall decrease or increase in magnetic energy at each point in the
domain, we calculate the local magnetic Reynolds number. Both terms in Eq. (2.32) are
calculated at each point in the volume, and the local magnetic Reynolds number is defined as

(ReM)loc =
|bibjSij|
|ηj2|

. (2.33)
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Figure 2.33: As Fig. 2.32 but for ReM = 1796.

Another way is to define it directly via the induction equation at each point, i.e.,

(ReM)loc =
|∇ × (u× b)|
|η∇2b|

. (2.34)

We confirm that (ReM)loc calculated using Eq. (2.33) and Eq. (2.34) give numerically very
similar values. Fig. 2.32 and Fig. 2.33 show the total and conditional PDFs of the local
magnetic Reynolds number in the kinematic and saturated stages. (ReM)loc varies from values
much less than to much greater than Re(crit)

M in both kinematic and saturated stages. Thus,
magnetic field grows and decays in different parts of the volume but remains in a statistically
steady state overall. On saturation, both Fig. 2.32 and Fig. 2.33 show that (ReM)loc decreases.
The mean value of the local magnetic Reynolds number over the entire domain does decreases
but not to the critical value. This effectively implies enhanced diffusion, which leads to the
saturation of the fluctuation dynamo.

To summarize, the fluctuation dynamo saturates due to both a reduction in the amplifica-
tion of magnetic field and an enhancement in the magnetic field diffusion. The amplification
is reduced because of the increased alignment between the velocity and magnetic fields. Fur-
thermore, the current density and magnetic field are also statistically better aligned in the
saturated stage. The decrease in the magnetic field amplification is due to a reduction in both
the stretching and compression of magnetic field lines by the velocity field. The magnetic
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Table 2.2: Four Minkowski functions V0, V1, V2, V3, their geometrical interpretation and definitions
for a three dimensional structure. dV is the volume element, dS is the surface element, and κ1 and κ2

are the principle curvatures of the surface of a structure.

Minkowski functional Geometric interpretation Expression
V0 Volume

∫ ∫ ∫
dV

V1 Surface area (1/6)
∫ ∫

dS
V2 Integral mean curvature (1/6π)

∫ ∫
(κ1 + κ2) dS

V3 Euler characteristics (1/4π)
∫ ∫

(κ1κ2) dS

field diffusion is enhanced overall since the local magnetic Reynolds number, though varying
over a wide range from much less than to much higher than the critical value, statistically
decreases within the volume.

2.5 Magnetic field morphology

2.5.1 Minkowski functionals

As shown in Section 2.4.2, the magnetic field generated by a fluctuation dynamo is inter-
mittent, i.e., it is concentrated in filaments, sheets and ribbons. To characterize the mag-
netic structures, we use the Minkowski functionals (Minkowski, 1903). These measures have
already been used to study structures in numerical simulations and observational data. In
existing numerical studies, they are used to study the large–scale structure of the universe
(Schmalzing et al., 1999), magnetic structures generated by a kinematic fluctuation dynamo
(Wilkin et al., 2007), vorticity structures in hydrodynamic turbulence (Leung et al., 2012)
and current sheets in magnetohydrodynamic turbulence (Zhdankin et al., 2014). Minkowski
functionals and quantities derived from them are also used to study observational data such as
cosmic microwave background anisotropy maps (Schmalzing & Gorski, 1998), galaxy sur-
veys (Bharadwaj et al., 2000) and neutral hydrogen density in the interstellar medium of our
galaxy (Makarenko et al., 2015). The morphology of a d–dimensional structure can be de-
scribed by d + 1 Minkowski functionals. In three dimension, there are the four Minkowski
functionals, described in Table 2.2. We calculate the Minkowski functionals using Crofton’s
formulae (Crofton, 1868; Legland et al., 2011) and then calculate the typical length scales
(l1, l2, l3) of a three dimensional structure as (Sahni et al., 1998; Schmalzing et al., 1999)

l1 =
V0

2V1

, l2 =
2V1

πV2

, l3 =
3V2

4V3

. (2.35)
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Table 2.3: Minkowski functionals V0, V1, V2, V3, their analytical expression (Schmalzing et al., 1999)
and values calculated using analytical expression and obtained numerically, for a sphere with the
centre at (π, π, π) of radius r = π in a periodic box of size (2π)3 with 1283 grid points.

Minkowski functional Expression Calculated Numerical
V0 (4/3)πr3 129.11 129.87
V1 (2/3)πr2 20.59 20.67
V2 (4/3)r 4.18 4.19
V3 1.0 1.0 1.0

We associate the smallest length scale with the thickness T of the structures, the next largest
length scale with the width W and the largest length scale with the length L, i.e., if l1 ≤ l2 ≤
l3, then T = l1,W = l2 andL = l3. The thickness, width and length can be further used to
obtain dimensionless measures of the shape of a structure: planarity p and filamentarity f ,
given by

p =
W − T
W + T

, f =
L−W
L+W

. (2.36)

By definition, 0 ≤ p and f ≤ 1. We first test the algorithm for simple shapes for which the
planarity and filamentarity are known.

Planarity and filamentarity for simple shapes

For simple shapes, planarity and filamentarity are known: p ≈ f ≈ 0 for a sphere, p ≈
0, f ≈ 1 for a filament and p ≈ 1, f ≈ 0 for a pancake. To test the numerical calculations,
we generate simple three-dimensional spheroidal shape,

α(x− a)2 + β(y − b)2 + (z − c)2 ≤ r2; α, β ≥ 1, (2.37)

where (a, b, c) is the centre of the spheroid, r is the radius, and α and β are the parameters
which control the shape. We generate structures of this type in a cubic domain. We set 1
if the left–hand side of Eq. (2.37) is less than or equal to r2 and 0 otherwise. We then vary
parameters α and β to create various shapes. For α = β = 1, the structure is a sphere of a
radius r. All four Minkowski functionals are known for a sphere (Schmalzing et al., 1999)
and their corresponding values are given in Table 2.3. Fig. 2.34a shows a few structures
for various α and β. On increasing β, but keeping α constant at 1, a sphere (α = β = 1)
changes to a pancake (α = 1, β � 1). This is shown by the solid line in Fig. 2.34b. Then,
increasing α, but keeping β � 1 constant, we obtain a filament (α = β � 1). This shown
by the dashed line in Fig. 2.34b. Finally, decreasing both α and β, we return to a sphere,
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Figure 2.34: (a)The iso-surfaces of simple structures, showing the transition from a sphere to a fila-
ment. Planarity and filamentarity (p, f) for these shapes are: sphere (2 × 10−4, 3 × 10−5), pancake
(0.92, 0.12), thick filament (0.47, 0.75) and thin filament (0.07, 0.92). (b) The (p, f) plane showing
the transition between various shapes as α and β are varied in Eq. (2.37) (the Blaschke diagram). Solid
line: α = 1 constant, β increasing, the transition from a sphere to a pancake. Dashed line: α increas-
ing, β � 1 constant, the transition from a pancake to a filament. Dotted line: α � 1 decreasing to
α = 1, β � 1 decreasing to β = 1, transition from a filament to a sphere.
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Figure 2.35: Isosurfaces of b/ brms = 2 (blue) and b/ brms = 3 (yellow) for the magnetic field gener-
ated by using the W flow (Eq. (2.5)) with ReM = 314 in a periodic box of non-dimensional size (2π)3

with 2563 grid points.

which is represented by the dotted line in Fig. 2.34b. The calculations of p and f for simple
shapes on a cubic grid agree with our expectations and confirm the reliability of the numerical
algorithm.

2.5.2 Structures in kinematic dynamos

We now consider the size and shape of magnetic structures generated by kinematic fluctu-
ation dynamos. First, we calculate these for magnetic structures generated by the W flow
(Eq. (2.5)), shown in Fig. 2.35. The structures are of ellipsoidal shape and are smaller in size
for higher magnetic field levels.

The length, width and thickness of magnetic structures as functions of the field strength
(α = b/ brms) is shown in Fig. 2.36a. All three length scales decrease as α increases and
the rate of decrease is roughly the same for all of them. Fig. 2.36b shows the planarity and
filamentarity as functions of α. The filamentarity increases as the field strength increases
but the planarity remains roughly the same. This can also be seen from Fig. 2.35, where
structures with α = b/ brms = 3 (shown in yellow) are embedded within structures with
α = b/ brms = 2 (shown in blue). Their planarity is roughly the same but the structure with
α = 3 is more filamentary than that with α = b/ brms = 2.
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Figure 2.36: (a) Thickness T , widthW and length L of magnetic structures obtained using the W flow
as a function of the level of magnetic field α = b/ brms. All three dimensions decrease as magnetic
field strength (α) increases and at approximately the same rate. (b) Planarity p and filamentarity f
for those structures as a function of the magnetic field strength level α. f > p, so the structures are
filamentary. Also, p roughly remains constant as α increases but f increases. This can be confirmed
in qualitative terms by a visual inspection of Fig. 2.35.
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Figure 2.37: Average length (L), thickness (T ) and width (W ) of magnetic structures generated by a
kinematic fluctuation dynamo with the KS flow as functions of ReM. The average is calculated over
30 magnetic field levels between α = b/ brms = 2.5 and α = b/ brms = 4.5. The length roughly
remains constant as ReM changes. The other two length scales, T and W , decrease as ReM increases,
approximately as Re−0.4

M .
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Next, we calculate magnetic structures produced by a kinematic fluctuation dynamo with
the KS flow. Fig. 2.12 and Fig. 2.13 show the magnetic field produced by the KS flow at
ReM = 4800. To determine the dependence of these scales on ReM, we average them over a
range of magnetic field levels α = b/ brms for each ReM. Fig. 2.37 shows the average length,
width and thickness as functions of ReM. The largest length scale, L, is independent of
ReM. The length of the structures depends on the driving scale of the flow since the magnetic
correlation function of the fastest growing dynamo mode decreases exponentially after that
scale (Zeldovich et al., 1990; Subramanian, 1999). Even in the folded structure of magnetic
field (Schekochihin et al., 2002, 2004) shown in Fig. 2.23, the length of folds is of the order
of the viscous scale, which is independent of the ReM. Thus, the length in Fig. 2.37 remains
constant for all ReM (given that the underlying flow is the same). This result agrees with the
earlier work of Wilkin et al. (2007). The second largest length scale, the width of the magnetic
structures, W , is actually the dissipation scale lη which can be obtained by balancing the
rate of magnetic dissipation with the local shearing rate (Subramanian, 1998). An estimate
of W can be obtained as follows: η/W 2 ' urms/l0, where η is the magnetic resistivity,
urms is the rms turbulent velocity and l0 is the driving scale of the turbulence. This gives
W ' l0(η/ urmsl0)

1/2 = l0Re−0.5
M . In Fig. 2.37, the width of magnetic structures decreases as

Re−0.4
M which is close to this ReM dependence. The difference from expected scaling can be

attributed to the limited numerical resolution. This result does not really agree with Wilkin
et al. (2007) who obtain W ∝ Re−0.55

M . For the smallest length scale, the thickness of the
structure T , we find ReM dependence to be very similar to that for W . This results does not
agree with Wilkin et al. (2007), where they obtained T ∝ Re−0.75

M . They justify this scaling
by balancing the induction and dissipation of the magnetic field. However, such a scaling is
valid only for PrM . 1 and our runs with KS flow are of PrM � 1 (effective Re ≈ 16 and
Re(crit)

M = 750). The difference in ReM scalings with Wilkin et al. (2007) is probably due to
following two reasons. First, our simulations are at a higher resolution (5123) as compared
to theirs (1283) and thus magnetic structures, especially at higher ReM, are better resolved in
our case. Second and most importantly, Wilkin et al. (2007) considers values of ReM which
are both lower and higher than Re(crit)

M , whereas we only consider ReM > Re(crit)
M . This is

because we strongly believe that those two regimes
(

ReM < Re(crit)
M and ReM ≥ Re(crit)

M

)
are

physically different and must not be considered together to characterize the length scales of
magnetic structures as functions of ReM.
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Table 2.4: Parameters of various runs for the nonlinear fluctuation dynamo in a numerical domain of
(2π)3 in size with 5123 mesh points. In all cases, the forcing scale is kF ≈ 5, the forcing amplitude
is F0 ≈ 0.02 and the hydrodynamic viscosity is ν = 4 × 10−4. The magnetic diffusivity η, the rms
velocity in the saturated stage urms, the Reynolds number Re, the magnetic Reynolds number ReM,
the magnetic Prandtl number PrM and the critical magnetic Reynolds number Re(crit)

M (≈ 220Pr−1/2
M )

are given.

η urms Re ReM PrM Re(crit)
M

4× 10−4 0.11 346 346 1.00 220
3× 10−4 0.11 346 461 1.33 191
2× 10−4 0.10 314 628 2.00 156
1× 10−4 0.09 283 1131 4.00 110
7.5× 10−5 0.09 283 1508 5.33 95
5× 10−5 0.09 283 2261 8.00 78

2.5.3 Structures in nonlinear dynamos

In this section, we consider the magnetic structures in the saturated stage with the aim to
describe how the nonlinearity affects magnetic structures and to check whether the analysis
of the shape and size of magnetic structures provides any additional insight into the saturation
mechanism. For this study, we use runs with parameters given in Table 2.4. We make sure
the flow is roughly the same for all ReM and choose kF ≈ 5, so there is a sufficient number
of magnetic structures within the volume.

Fig. 2.38a shows the length, thickness and width of magnetic structures obtained by aver-
aging over 30 values of threshold magnetic field strengths (α = b/ brms) ranging from α = 2.5

to α = 4. Based on the arguments given in the Section 2.5.2, at least for the kinematic stage,
we would expect that the length will remain constant with ReM and other two scales will
decrease as Re−0.5

M . As seen in Fig. 2.38a, the length remains roughly constant initially but
then increases slightly after ReM ≈ 600 and again remains roughly constant. This is due to
the decrease in the Reynolds number Re as can be seen from Table 2.4. The other two scales
decrease as Re0.5

M . All three scales are larger in the saturated stage than in the kinematic stage.
This suggests that the magnetic structures become larger as the magnetic field saturates. This
is also the reason that the magnetic field correlation length scale increases as the field satu-
rates (also shown in Table 2.1). The ReM scaling is roughly the same for both the kinematic
and saturated stages. Fig. 2.38b shows the planarity and filamentarity of magnetic structures
as functions of ReM. The filamentarity is always higher than the planarity and thus the mag-
netic structures are more like filaments in both the kinematic and saturated stages. Initially, as
ReM increases, the filamentarity increases and the planarity decreases. Then, after a certain
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Figure 2.38: (a) Average length (L), thickness (T ) and width (W ) of magnetic structures in the kine-
matic (dashed, color) and saturated stages (solid, color) of the nonlinear fluctuation dynamo as func-
tions of ReM. The length of the structures L roughly remains the same with ReM. The slight increase
in the length after ReM ≈ 600 is because of the decrease in Re (see Table 2.4). The width and
thickness of the magnetic structures both decrease as Re−0.5

M . The ReM dependence of the size of
the structures is approximately the same in both the kinematic and saturated stages. (b) Planarity (p)
and filamentarity (f ) of the magnetic structures functions of ReM for the kinematic (dashed, color)
and saturated (solid, color) stages. As ReM increases, the filamentarity increases and the planarity
decreases but they seem to approach an asymptotic value after ReM ≈ 1200. The trend with respect
to ReM is the same for both the kinematic and saturated stages.
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ReM (≈ 1200 in Fig. 2.38b), the filamentarity approaches and planarity seem to approach an
asymptotic value. The asymptotic nature of planarity and filamentarity needs to be further
confirmed with runs at a higher resolution and at higher values of ReM but based on the trend
in Fig. 2.38b, they seem to approach a near-asymptotic value. This would suggest that, even
at high ReM, the magnetic structures with strength considerably higher than the rms value
have significant size (fReM→∞ 6= 1, pReM→∞ 6= 0 and L ∝ Re0

M, thus W and T are always
greater than zero) and occupy a significant fraction of the volume. However, the dependence
of these morphological measures on ReM is the same for the kinematic and saturated stages
and thus such a morphological analysis does not give any hint about the saturation mechanism
of nonlinear fluctuation dynamos.

2.6 Discussion and conclusions

Magnetic fields generated by fluctuation dynamos are spatially intermittent, and the intermit-
tency decreases as the field saturates. First, we studied the nonlinear state of the fluctuation
dynamo and showed that the magnetic field saturation is due to a decrease in the field am-
plification and a corresponding increase in the field diffusion. Both the stretching and com-
pression of magnetic field lines, that lead to amplification of magnetic fields, are reduced on
saturation. The local magnetic Reynolds number (ReM)loc decreases slightly overall confirm-
ing that the diffusion of magnetic field is also enhanced on saturation. However, (ReM)loc

varies from values much smaller to much larger than Re(crit)
M throughout the volume and thus

models which predict ReM → Re(crit)
M on saturation are probably not true. Next, we have stud-

ied the morphology of magnetic structures in the dynamo-generated fields. The structures are
of a larger size in the saturated stage as compared to the kinematic stage. In both cases, the
largest length scale is independent of ReM and the other two scales decrease as Re−0.5

M . The
planarity and filamentarity seem to approach an asymptotic value as ReM increases and thus
the magnetic field generated by a fluctuation dynamo always occupies a significant fraction
of the volume in astrophysical systems.
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Chapter 3

Cosmic ray diffusion in intermittent mag-
netic fields

The propagation of cosmic rays in turbulent magnetic fields is, on average, a diffusive process
driven by the random walk of magnetic field lines and the scattering of the charged particles
by random magnetic fluctuations. As described in Chapter 2, interstellar magnetic fields
can be highly intermittent, consisting of intense magnetic filaments and ribbons. Previous
studies of cosmic ray propagation have largely overlooked the intermittency in the magnetic
field distribution, instead adopting Gaussian random magnetic fields. In this chapter, we use
test-particle simulations to calculate cosmic ray diffusivity in intermittent magnetic fields
generated by a kinematic fluctuation dynamo. The results are compared with those obtained
from a non-intermittent magnetic field with an identical power spectrum. We show that the
presence of magnetic intermittency significantly enhances diffusivity for low-energy cosmic
ray particles, even in presence of a mean magnetic field. High-energy cosmic ray diffusion is
unaffected by magnetic field intermittency. We demonstrate that the results can be interpreted
in terms of a correlated random walk, which in turn implies that cosmic rays, when consid-
ered as a fluid in the continuum approximation, could be better modeled with the telegraph
equation instead of the diffusion equation.
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3.1 Introduction

Cosmic ray propagation in random magnetic fields is diffusive when averaged over time
and length scales large compared to the Larmor scales. The cosmic ray diffusion is due
to the combination of two processes: particles following tangled magnetic field lines and
the scattering of particles by random magnetic fluctuations. Fig. 3.1 schematically shows
the possible trajectories of a low-energy cosmic ray particle (a particle with Larmor radius
less than the correlation length of the magnetic field). Fig. 3.1a shows a particle following
a magnetic field line and the particle turns only when the magnetic field line turns, which
is inevitable in tangled magnetic fields. The particle faithfully follows field lines and the
diffusion of charged particles due to this transport is governed completely by the spread of
field lines in turbulent magnetic fields. The turbulent nature of the magnetic field lines can be
thought of as a ‘random walk’ process and the diffusion of particles due to this mechanism
is known as Field Line Random Walk (FLRW) limit (Jokipii & Parker, 1969). The diffusion
of particles due to FLRW is independent of the particle energy at least in this limit since
it only depends on the trajectories of the gyrocenters of the particles and not their Larmor
radius. Also, the particle’s pitch angle (the cosine of the angle between the magnetic field
and the velocity of the particle) is conserved in the FLRW limit. Fig. 3.1b shows a particle
following the field line for some time but then it reverses its direction due to scattering,
though still staying on the same field line. Such scattering referred to as parallel scattering,
gives rise to diffusion along magnetic field lines, referred to as parallel diffusion. Fig. 3.1c
shows a particle following a field line but then getting scattered and moving to another nearby
field line. The diffusion because of this scattering is perpendicular to the field line and is
referred to as perpendicular diffusion. The parallel and perpendicular scattering are caused
by fluctuations in magnetic fields. These fluctuations can be due to the existing turbulence in
the medium or can also be generated by cosmic rays themselves via the streaming instability
(Kulsrud & Pearce, 1969; Skilling, 1975). Depending on the spatial structure of the random
magnetic field, the parallel scattering can also induce perpendicular scattering and vice-versa.
Unlike FLRW, both parallel and perpendicular scattering depends on the Larmor radius (or
the energy of the particle). In such scattering events, the particle’s pitch angle is not conserved
and the changes in pitch angle can also be considered as a random walk process. Over a long
time scale, the particle’s pitch angle also diffuses.

High-energy particles (particles with Larmor radius greater than the correlation length of
the magnetic field) scatter even before they complete one Larmor-orbit since they encounter a
magnetic field which is uncorrelated with the magnetic field at its starting point. Thus they do
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(a)

(b)

(c)

Figure 3.1: Trajectories of a low-energy particle in a turbulent magnetic field. a) Particle following
a field line giving rise to Field Line Random Walk (FLRW) limit for an ensemble of particles over a
long time. b) Particle following the field line initially but is then backscattered, eventually giving rise
to diffusion along the magnetic field line for an ensemble of particles over a long time. c) Particle after
following field line for some time, jumps to another field line, which over a long time for an ensemble
of particles gives rise to diffusion perpendicular to the magnetic field line.
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not follow any of the trajectories shown in Fig. 3.1. The process is a pure Brownian motion
and over a long time with a large number of scatterings, diffusion sets in.

Throughout the discussion so far, we have only been considering the trajectory of a single
particle. However, diffusion is a stochastic process and thus it is impossible to predict the
exact trajectory of a single particle (or exact motion of a single field line in FLRW limit).
We thus study the process for an ensemble of particles (or equivalently an ensemble of initial
conditions for a single particle or equivalently different realizations of the magnetic field) and
look at their behaviour, on averaging over the ensemble. Fig. 3.1 thus shows the trajectory of
an ‘average’ particle in a random magnetic field.

The propagation of cosmic rays is sensitive to rather subtle details of the magnetic field in
which they move (as can be inferred from Fig. 3.1). Almost all existing studies of cosmic ray
propagation employ Gaussian random magnetic fields (for which the probability distribution
function of each vector component is Gaussian and their first two moments are sufficient to
completely describe it). The spectrum provides a complete statistical description of a Gaus-
sian random magnetic field and the propagation of cosmic rays in an isotropic Gaussian ran-
dom magnetic field has been the subject of many studies (Berezinskii et al., 1990; Michalek
& Ostrowski, 1997; Giacalone & Jokipii, 1999; Casse et al., 2002; Schlickeiser, 2002; Pari-
zot, 2004; Candia & Roulet, 2004; DeMarco et al., 2007; Globus et al., 2008; Shalchi, 2009;
Plotnikov et al., 2011; Harari et al., 2014; Snodin et al., 2016; Subedi et al., 2017). For a given
energy of a particle, the cosmic ray diffusivity in a Gaussian random field is completely de-
termined by the correlation length of the magnetic field. However, radio (Gaensler et al.,
2011; Haverkorn & Spangler, 2013; Jelić et al., 2015; Herron et al., 2017, 2018), submil-
limeter (Arzoumanian et al., 2011; Zaroubi et al., 2015; Planck Collaboration et al., 2016),
and neutral hydrogen (Heiles & Troland, 2005; Kalberla & Kerp, 2016; Kalberla et al., 2017)
observations suggest that the magnetic field in the ISM is strongly non-Gaussian, spatially
intermittent and filamentary. Spatially, the magnetic field is essentially concentrated in struc-
tures (filaments, ribbons, and sheets) surrounded by weaker fluctuations. As explained in
Chapter 2, such an intermittent field is also expected theoretically, as a result of turbulent dy-
namo action (Schekochihin et al., 2004; Wilkin et al., 2007) and random shock compression
(Bykov & Toptygin, 1985, 1987; Bykov, 1988). The magnetic field generated by dynamo
action in galaxy clusters is also likely to be intermittent (Ruzmaikin et al., 1989; Subrama-
nian et al., 2006). In such an intermittent magnetic field, we expect that the propagation of
charged particles is controlled not only by its correlation length (or its power spectrum) but
also by the size and separation of the magnetic structures. The influence of such a complex
magnetic field upon cosmic ray propagation is poorly understood. Existing theories based
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on the quasilinear approximation (Jokipii, 1966; Berezinskii et al., 1990; Schlickeiser, 2002),
or its nonlinear extensions and other alternatives (Yan & Lazarian, 2002; Matthaeus et al.,
2003; Shalchi, 2009), do not consider intermittency. Recent test particle simulations used
magnetic fields obtained from simulations of MHD turbulence (Dmitruk et al., 2004; Reville
et al., 2008; Beresnyak et al., 2011; Lynn et al., 2012; Weidl et al., 2015; Cohet & Marcowith,
2016). These models are free from the assumption of Gaussian statistics but they do not iso-
late explicitly any specific effects of magnetic intermittency. There have been no systematic
attempts to examine the significance of realistic, physically realizable magnetic intermittency
in three dimensions.

Our goal here is to identify and isolate the effects of magnetic field intermittency on
cosmic ray diffusion (Shukurov et al., 2017). For this, we use test particle simulations (Gi-
acalone & Jokipii, 1999; Casse et al., 2002; Desiati & Zweibel, 2014; Snodin et al., 2016),
integrating the equation of motion for a large number of particles in a statistically isotropic
and prescribed magnetic field. The magnetic field is obtained as a solution of the induction
equation with a prescribed velocity field that drives the fluctuation dynamo (Section 2.3 in
Chapter 2). This produces a physically realizable, intermittent magnetic field. The degree of
intermittency depends on the magnetic Reynolds number ReM. As ReM increases, the mag-
netic structures occupy a smaller proportion of the volume. The intermittency introduces two
distinct particle propagation regimes, one within a magnetic structure and another between
them. Cosmic ray particles are strongly scattered by the magnetic structures and are scattered
comparatively less between them. By comparing particle diffusion in an intermittent field
with that in a magnetic field lacking such a structure, but with an identical power spectrum,
we demonstrate that intermittency can significantly enhance diffusion, and so diffusion of
low-energy cosmic rays cannot be described in terms of the magnetic power spectrum alone.

3.2 Intermittent and non-intermittent magnetic fields

An intermittent magnetic field is obtained by solving the induction equation with prescribed
velocity field (W and KS) as described in Section 2.3 of Chapter 2. The isotropic random
magnetic field is denoted by b. To explore the effects of a mean magnetic field, we also
consider particle propagation in a magnetic field given by B = b +B0, where B is the total
magnetic field and B0 is an imposed uniform magnetic field.

To identify the effects of magnetic intermittency on cosmic ray diffusion, we consider a
Gaussian random magnetic field having the same power spectrum, M(k), as the intermittent
magnetic field. Such a Gaussian random field is obtained as follows: First, a spatial Fourier
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transform of the intermittent magnetic field is taken and then the phase of each complex mode
is changed to a random number uniformly distributed between 0 and 2π. Then the inverse
Fourier transform gives a Gaussian magnetic field (this is not strictly a Gaussian random field
but due to randomization, it is way more Gaussian than the intermittent field) with unchanged
M(k), but with coherent structures destroyed (Chapter 7 in Biskamp, 2003; Waelkens et al.,
2009; Snodin et al., 2013). The structural difference between intermittent and Gaussian ran-
dom magnetic fields is illustrated in Fig. 3.2 and Fig. 3.3 which show the isosurfaces of
magnetic field strength and Fig. 3.4 and Fig. 3.5 which show the magnetic fields in cross sec-
tion through the middle of the numerical domain. The intermittent fields (Fig. 3.2a, Fig. 3.3a,
Fig. 3.4a and Fig. 3.5a) contain magnetic structures where the magnetic field is concentrated
whereas the corresponding Gaussian fields (Fig. 3.2b, Fig. 3.3b, Fig. 3.4b and Fig. 3.5b) lack
any such structure. The spectra (Fig. 3.6) of the intermittent and randomized magnetic fields
is identical but the probability distribution functions (PDFs) of a the individual components
of the intermittent and randomized field shown in Fig. 3.7, are completely different. The in-
termittent field has long heavy tails in the PDFs, whereas the randomized field has a Gaussian
probability distribution.

3.3 Cosmic ray propagation

The propagation of cosmic rays in random magnetic fields depends primarily on the ratio
between the Larmor radius rL of the particle gyration and the length scale of magnetic field
variations, i.e., the correlation length lb (related to the driving scale of turbulence l0). The Lar-
mor radius and frequency of a relativistic particle of the rest mass m0 and charge q, travelling
at a speed v0 in a magnetic field of strength B, are given by

rL =
γm0cv0

qB
and ω0 =

v0

rL
, (3.1)

respectively, where γ = (1− v2
0/c

2)
−1/2 is the Lorentz factor, and c is the speed of light in

vacuum.
We consider relativistic charged particles propagating in a static magnetic field, B(x).

The trajectory of each particle satisfies

d2r

dt2
=
v0

rL

dr

dt
× B

Brms

, (3.2)

where r is the particle’s position, v0 is its speed, B/Brms is the total magnetic field nor-
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(a)

(b)

Figure 3.2: Isosurfaces of b2/ b2rms = 2.5 (blue) and b2/ b2rms = 5 (yellow) for the intermittent mag-
netic field at ReM = 314 generated by the W flow (a) and for the same magnetic field after randomizing
phases (b). Intermittent field shows filaments of fixed shape (a specific consequence of this choice of
flow) whereas randomized field lacks such elongated structures.

107



Chapter 3. Cosmic ray diffusion in intermittent magnetic fields

(a)

(b)

Figure 3.3: As Fig. 3.2 but now for the KS flow with ReM = 3182. Intermittent field (a) shows
filaments of various width, length, and thickness, whereas randomized (b) field lacks such structures.
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Figure 3.4: 2D cut in the yz–plane through the middle of the domain with vectors for
(by/ brms, bz/ brms) and colours showing the magnitude of bx/ brms for intermittent (a) and random-
ized (b) magnetic field generated using the W flow for ReM = 314. For intermittent magnetic field the
colours are saturated for both positive and negative values to match the scale of the randomized field.
The intermittent magnetic field is more ordered and stronger in the filaments, whereas the randomized
field lacks such structures. 109
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Figure 3.5: A Fig. 3.4 but now for the KS flow for ReM = 3182. For intermittent magnetic field (a)
the colours are saturated for both positive and negative values to match the scale of the randomized
field (b) (see the x-axis of Fig. 3.7 for the actual difference in numbers). The randomized field lacks
structures seen in the intermittent field.
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Figure 3.6: Spectra of intermittent NR (red, magneta) and randomized R (blue dashed, green dashed)
magnetic fields generated using W flow (ReM = 314) and KS flow (ReM = 1082) respectively. For
both flows, the spectra of intermittent and randomized magnetic fields is identical. For KS flow, the
spectra agrees with the Kazantsev scaling (Kazantsev, 1968) k3/2 (black dotted) power law spectrum
at small wavenumbers. The scaling holds only for flows which are δ-correlated in time and only the
KS flow is time dependent.
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Figure 3.7: PDFs of bx/ brms for intermittent (blue) and randomized (red) magnetic field generated
using the KS flow for ReM = 3182. Both have zero mean but the intermittent magnetic field has long
tails, whereas the randomized field (obtained by Fourier phase randomization) has a Gaussian PDF
(dashed).
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malized to its rms value Brms, and rL is the Larmor radius (defined with respect to Brms).
The timescale over which interstellar magnetic fields change significantly is of the order of
the eddy turnover time in interstellar turbulence, 107 yr (Beck et al., 1996). This timescale
is longer than the (diffusive) confinement time of cosmic rays in galaxies, which is of the
order of 106 yr (Berezinskii et al., 1990). It is therefore customary to neglect any time de-
pendence of the magnetic field in Eq. (3.2) and, correspondingly, neglect any electric fields
(Giacalone & Jokipii, 1999; Casse et al., 2002). This means that the speed of each particle
remains constant. This is equivalent to neglecting particle acceleration to relativistic ener-
gies, a process physically distinct from diffusive particle propagation (which is the focus of
this chapter). Since we consider static magnetic field, the diffusive reacceleration (Strong
et al., 2007; Grenier et al., 2015), which is due to moving magnetic inhomogeneities, is also
neglected.

We solve Eq. (3.2) numerically for an ensemble of cosmic ray particles (≥ 10, 000 parti-
cles), all of the same speed v0, but each of a random initial position and velocity direction. The
initial conditions are chosen randomly, and are uniformly distributed over all positions and
directions. For a given particle energy, we find the shortest Larmor time (2π/ω0) based on the
maximum magnetic field strength in the domain and then fix the time step as 10−3(2π/ω0),
to ensure that we resolve all particle gyrations. We also check that the particle energy is
conserved (to the accuracy of the numerical scheme) throughout the total propagation time
T . For a given magnetic field configuration, the nature of the trajectories depends only on
the parameter rL/lb, a measure of the particle energy, as illustrated in Fig. 3.8. By construc-
tion, the static magnetic field through which the particle propagates is periodic in all three
directions, with period L = 2π (in numerical units, equivalent to the driving scale of the tur-
bulence, l0). Even though the magnetic field is periodic, the particle trajectories are not: they
enter and leave the domain at different positions. There is an important distinction between
the Eulerian frame of the computational domain and the Lagrangian frame of each particle.
Whilst the magnetic field is periodic in the Eulerian sense, there is no periodicity in the mag-
netic field along each particle trajectory (however many times the particle enters and leaves
the domain).

Fig. 3.8 shows the trajectories of particles of low (Fig. 3.8a) and high (Fig. 3.8b) energy
in the intermittent magnetic field, respectively. The latter move faster (note the different
axis scales in the two panels) and, at the scale of the left-hand panel, the trajectory of the
higher-energy particle is nearly straight almost everywhere. Fig. 3.9 shows the correspond-
ing trajectories in the randomized magnetic field (low and high energy particles are shown
in Fig. 3.9a and Fig. 3.9b respectively). The trajectories in the randomized magnetic field
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Figure 3.8: Single particle trajectories for rL/lb = 0.45 (a) and 13 (b) in the intermittent magnetic field
of Fig. 3.5a. Colours shows the strength of the magnetic field along the trajectory normalized to its
maximum value along the part of trajectory shown. For rL/lb = 0.45, the particle path is more tangled
than for rL/lb = 13 where the particle motion is almost ballistic between rare scattering events. Also
note different spatial scales.
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Figure 3.9: Same as Fig. 3.8 but for the randomized magnetic field. More scattering events are seen in
these trajectories in comparison to the particle trajectories in the intermittent magnetic field.
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visually show more frequent scattering events in comparison to that in the intermittent mag-
netic field. From this conclusion, we expect that the diffusion coefficient would be higher for
intermittent magnetic fields.

A very high-energy particle, with rL � lb, is typically deflected (or scattered) by only
a small angle (of order lb/rL) from its initial path over a distance lb and its trajectory is,
therefore, rather insensitive to the structural properties of the magnetic field at scales smaller
than rL. By the central limit theorem, the statistical properties of an ensemble of cosmic
ray particles become Gaussian after a large number of such deflections. Particles of smaller
energies, rL . lb, are more sensitive to the fine structure of the magnetic field, and it is not
obvious how such structures would affect the cosmic ray diffusion. The aim of this chapter is
to clarify this.

The random nature of the magnetic field makes the particle propagation diffusive at suffi-
ciently large spatial and temporal scales. Without a mean field (B0 = 0), the propagation is
isotropic. We therefore calculate the isotropic diffusion coefficient as,

κ = lim
t→∞

κ(t), κ(t) =
1

6t
〈|r(t)− r(0)|2〉, (3.3)

where r(t) = (x(t), y(t), z(t)) is the particle position at time t and the angular brackets
denote averaging over the ensemble of particles. In the presence of a mean magnetic field,
the isotropic diffusion coefficient can be broken down into a parallel diffusion coefficient
in the direction of the mean field and a perpendicular diffusion coefficient perpendicular
to the mean field. For a mean field B0 directed along the x-axis, we define parallel and
perpendicular diffusion coefficients as,

κ‖ = lim
t→∞

1

2t
〈∆x(t)2〉, κ⊥ = lim

t→∞

1

4t
〈[∆y(t)2 +∆z(t)2]〉. (3.4)

3.4 Effect of magnetic intermittency on cosmic ray diffu-
sion

We first calculate the cosmic ray diffusion coefficient as a function of energy, rL/l0. Fig. 3.10
shows the dependence of the cosmic ray diffusion coefficient on rL/l0 forB0 = 0. The energy
dependence changes at rL/l0 ≈ 1. For rL/l0 � 1, κ ∝ r2

L. This is the high-energy limit
and agrees with previous results (Parker, 1965; Aloisio & Berezinsky, 2004; Parizot, 2004;
Globus et al., 2008; DeMarco et al., 2007; Beresnyak et al., 2011; Plotnikov et al., 2011;
Harari et al., 2014; Snodin et al., 2016; Subedi et al., 2017). This scaling is also confirmed

115



Chapter 3. Cosmic ray diffusion in intermittent magnetic fields

10−1 100

rL/l0

10−1

100

101

102

κ
/
v

0
l 0

ReM = 314 (W)

ReM = 3182 (KS)

∝ r2
L

Figure 3.10: The cosmic ray diffusion coefficient for the W flow, ReM = 314 (red) and the KS flow,
ReM = 3182 (blue) as a function of rL/l0. For rL � l0, the diffusion coefficient follows the high-
energy scaling κ ∝ r2

L (dashed black).

in laboratory experiments with random magnetic fields in a laser-produced plasma (Chen
et al., 2018). The high-energy scaling can be explained as follows. High-energy cosmic
ray particles, with rL � lb (lb, correlation length of the small-scale magnetic field, is less
than l0), are scattered even before completing one gyro-orbit. Over a long time, the particle
performs pure Brownian motion and diffusion sets in. The isotropic diffusion coefficient for
the Brownian motion is given by κ = 1

3
lv0, where l is the step length of the random walk and

v0 is the particle velocity. Since a particle scatters at least once within one gyro-orbit, l ≈ rL.
Thus, for an ensemble of high-energy particles,

κ =
1

3
lv ≈ rLv0 ∝ r2

L. (3.5)

For low-energy particles (rL/l0 < 1), all three diffusion processes: FLRW, parallel scat-
tering, and perpendicular scattering are significant. In this energy range, the FLRW limit in
the isotropic random magnetic field provides the upper limit for the isotropic diffusion coef-
ficient. However, the FLRW limit is never seen in test particle simulations, since the other
two scattering mechanisms are always significant. It is extremely difficult to disentangle the
contribution of the FLRW to overall diffusion from the particle scattering part. The diffu-
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Figure 3.11: The ratio of diffusion coefficients from intermittent, κ, and randomized, κR, magnetic
fields for the KS flow, ReM = 1082 (red), 3182 (blue). The dashed lines of same colour show the
corresponding CRW model, Eq. (3.15).

sion coefficient for the FLRW limit can be calculated by following magnetic field lines. The
FLRW diffusion coefficient (derived analytically and then confirmed numerically), assuming
that the effective velocity of the ensemble of particles is equal to the Alfvén speed, for an
isotropic Gaussian random magnetic field (Sonsrettee et al., 2015) is

κFLRW =

√
2

3π
lb brms, (3.6)

where lb is the correlation length and brms is the root mean square strength of the random mag-
netic field in units of rms Alfvén velocity. The coefficient in Eq. (3.6) is obtained analytically
only for a isotropic Gaussian random magnetic field. For our simulation with ReM = 3182

(where lb/l0 ≈ 0.0244) for the KS flow, the FLRW diffusion coefficient calculated using
Eq. (3.6) is κFLRW/v0l0 ≈ 0.011. The diffusion coefficient for particles in randomized mag-
netic fields with rL ≤ lb (or rL/l0 ≤ 0.0244) is less than κFLRW, as can be inferred from
Fig. 3.10 and Fig. 3.11 to be κ/v0l0 ≈ 0.004.

At lower energies, the dependence of κ on particle energy is weaker than Eq. (3.5) and
is sensitive to the magnetic structure. We expect magnetic intermittency to be important at
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those energies where
rL/l0 < 1. (3.7)

The role of magnetic intermittency is demonstrated in Fig. 3.11, showing the ratio of the
diffusivity κ, calculated with a dynamo generated intermittent magnetic field, to that in the
corresponding randomized field, κR. At high energies (large rL/l0), κ/κR ' 1, suggesting
that the magnetic structures play no role in determining the diffusion coefficient of those
particles. However, κ/κR increases rapidly up to more than 2.5 at lower energies: magnetic
structures enhance diffusion when the inequality Eq. (3.7) is satisfied. We find that the ratio
κ/κR at fixed rL/l0 increases with ReM for a given flow. At high values of rL/l0, the dif-
fusivity still depends on ReM via changes in the magnetic correlation length, but not via the
ReM-dependent intermittency, as suggested by Fig. 3.11 where κ/κR tends to unity as rL/l0

increases.

3.5 Mean field and classical scattering results

The ISM contains both fluctuating (small-scale) and mean (large-scale) magnetic fields and
thus large-scale fields also play a role in cosmic ray propagation. The particles tend to gyrate
along the large-scale field lines and are scattered by the small-scale magnetic fluctuations.
Thus, the diffusion of the particles is still due to the small-scale field. The diffusion coefficient
κij can be derived analytically using the velocity correlation function for particles via the
Taylor-Green-Kubo (TKG) formula (Taylor, 1922; Green, 1951; Kubo, 1957) 1

κij =

∫ ∞
0

〈vi(t0)vj(t0 + t)〉 dt, (3.8)

where vi(t) is the particle velocity along ith direction at time t and 〈· · · 〉 denotes average over
an ensemble of particle trajectories. The exact analytical calculation, even for a very simple
mean field (such as uniform or sinusoidal or slowly varying), is extremely difficult because
the fluctuations would have a complicated effect as a function of both space and time on the
velocity correlation function. Thus, here we use the physically motivated generic form of the
velocity correlation function to calculate the diffusion coefficients.

In presence of a mean field, the diffusion coefficients are defined along two directions:
parallel to the mean field and perpendicular to the mean field. Thus, we only concentrate

1This formula is always applicable but it is easier to use this for analytical derivation of diffusion coefficient
when mean field is present since the exact solution for the unperturbed helical trajectory of a particle is known
analytically. This diffusion coefficient is exactly equivalent to that obtained using Eq. (3.3).
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on the velocity correlation function parallel
(
〈v′v〉‖

)
and perpendicular (〈v′v〉⊥) to the mean

field. Assuming that the particles gyrate around the mean magnetic field with Larmor fre-
quency ω0 = qB0/γm0c (defined via Eq. (3.1), where B0 is the strength of mean field) and
are scattered because of magnetic fluctuations, we can disentangle the effect of each type of
field on the velocity correlation function. In the absence of any fluctuations, the particles
would follow a helical path with 〈v′v〉⊥ ≈ v2 cos(ω0t). Now when magnetic fluctuations are
considered, the particles get randomly scattered, deviate from their initial helical trajectories
and finally the velocity correlation falls off to zero at large times. The fluctuations introduce
a decorrelation in velocity. We assume correlation decreasing exponentially at a rate τ (also
referred to as the scattering time in Gleeson (1969)). For simplicity, we assume that the rate is
independent of time and direction. In general τ might be different in parallel and perpendic-
ular directions depending on the structure of the field but for isotropic magnetic fluctuations
they are roughly the same. Considering the effect of the mean and fluctuating field, the ve-
locity correlation functions in the parallel and perpendicular directions are written as

〈v′v〉⊥ ≈ v2 cos(ω0t)e
−t/τ , (3.9)

〈v′v〉‖ ≈ v2e−t/τ . (3.10)

Integrating Eq. (3.9) and Eq. (3.10), we obtain

κ⊥ = v2 τ

1 + ω2
0τ

2
, (3.11)

κ‖ = v2τ. (3.12)

The ratio of perpendicular to parallel diffusion coefficients, κ⊥/κ‖, is therefore

κ⊥
κ‖

=
1

1 + ω2
0τ

2
=

1

1 + v2τ 2/r2
L
≈ 1

1 +
(
λ‖/rL

)2 , (3.13)

where λ‖ ≈ vτ (since v is the velocity along the mean magnetic field) is the parallel mean
free path and rL is the Larmor radius of the particle. The derived ratio Eq. (3.13) agrees with
that obtained using classical scattering theories (Gleeson, 1969; Forman & Gleeson, 1975;
Bieber & Matthaeus, 1997).

Since the large-scale component is correlated over several kpc whereas the small-scale
component has a correlation length less than the driving scale of turbulence (∼ 0.1 kpc),
for our numerical simulations we add a uniform mean field (B0) directed along the x-axis
to the random magnetic fields described in Section 3.2. In presence of a mean field, rL is
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Figure 3.12: The ratio of perpendicular, κ⊥, to parallel, κ‖, diffusion coefficients for intermittent
(solid lines) and randomized (dashed lines) magnetic fields in the presence of a mean magnetic field
brms/B0 = 1 (magenta), 2 (blue) for the KS flow. The red dash–dotted line shows the ratio obtained
using Eq. (3.13) for each case.
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Figure 3.13: The ratio of diffusion coefficients from intermittent, κ, and randomized, κR magnetic
fields in the presence of a mean magnetic field brms/B0 = 1 (magenta), 2 (blue) for the KS flow,
ReM = 3182; κ‖ and κ⊥ are shown solid and dashed, respectively.
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defined with respect to the root mean square of the total magnetic field ( b2
rms +B

2
0)

1/2. In the
presence of a mean magnetic field, cosmic ray particles are scattered stronger in the direction
perpendicular to the mean field (or the guiding field) than along it, so typically, κ⊥/κ‖ � 1.
This is shown in Fig. 3.12. To compare the numerically obtained result with Eq. (3.13), λ‖
is calculated from the numerically obtained κ‖ using the relation κ‖ = v0λ‖, where v0 is
the speed of the particle. The numerical results for both the intermittent and randomized
magnetic fields agrees with Eq. (3.13), independent of the strength of the mean magnetic
field ( brms/B0).

Fig. 3.13 illustrates the effects of magnetic field intermittency in the presence of a mean
magnetic field, presenting the ratio of the parallel and perpendicular diffusivities in the inter-
mittent and Gaussian magnetic fields. A mean magnetic field somewhat reduces the effect
of intermittency but does not eliminate it even for brms/B0 = 1. In the presence of a mean
field, for low cosmic ray energies, magnetic intermittency enhances κ‖ (i.e. κ‖ > κ‖R) and
reduces κ⊥ (i.e. κ⊥ < κ⊥R

). This can be explained as follows. Magnetic intermittency
increases τ (particles need a larger number of scatterings or need longer time to diffuse),
thus using Eq. (3.12) we conclude that the κ‖ increases when magnetic structures are present.
Also using Eq. (3.11) (for ω0τ � 1, which is typically the case because low-energy particles
perform several gyrations before they diffuse) we conclude that the perpendicular diffusion
decreases when the magnetic field is intermittent. Again as explained for the isotropic case
in Section 3.4 magnetic intermittency, even in presence of a mean field, is only important for
low-energy cosmic rays.

3.6 Cosmic ray propagation as a correlated random walk

The Brownian motion is a widely used model for diffusive processes. This is the simplest
type of random walk where each step is made in a direction independent of the previous one.
However, a charged particle moves differently. As illustrated in Fig. 3.14, the direction of its
motion after deflection by a magnetic structure is correlated with the previous direction. The
deflection angle θ is related to rL, the angle between the velocity and magnetic field, β (6= 0,
which is equivalent to assuming that the particle is gyrating around B in Fig. 3.14), and the
magnetic structure width d,

θ ' d/(rL sin β). (3.14)

This is a correlated random walk (CRW) (Gillis, 1955). The CRW diffusivity depends on
〈cos θ〉, where angular brackets denote the ensemble average. The mean-square displacement
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Figure 3.14: A charged particle with the pitch angle β is deflected by an angle θ in a magnetic structure
of a thickness d. The dashed-line represents the particle moving out of the paper and going back in
again to represent the gyration of the particle around the magnetic field shown in red, which is assumed
to be in the plane of the paper.

in the CRW initially derived in two dimensions (Kareiva & Shigesada, 1983), implies the
following three dimensional diffusivity (Chen & Renshaw, 1992):

κ =
〈l2〉
6τ

+
〈l〉2

3τ

〈cos θ〉
1− 〈cos θ〉

, (3.15)

with τ = 〈l〉/v, v the particle speed and l the step length. Here the first term is due to the
usual Brownian motion and the second term represents the contribution due to the correlation
in particle trajectory. 〈cos θ〉 cannot be equal to one in Eq. (3.15) as cos θ for each particle
cannot be equal to one since the random walk model assumes that the particle scatters from
its initial trajectory.

To derive 〈cos θ〉 in the simulations, the particle trajectories were sampled at an inter-
val equal to the local Larmor time, the deflection angle for each particle in the ensemble is
calculated and then an ensemble average of the numerically computed deflection angles is
obtained. The sampling frequency does not affect the results (Codling & Hill, 2005; Rosser
et al., 2013).

The accuracy of the Eq. (3.15) is confirmed by Fig. 3.15 that shows the variation of κwith
〈cos θ〉, where κ is obtained numerically for both the intermittent and randomized magnetic
fields and in each case the corresponding κ predicted from Eq. (3.15) is also shown. For τ
in Eq. (3.15), we have used rL/v0, where rL is the local Larmor radius. The agreement is
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Figure 3.15: The dependence of cosmic ray diffusivity in intermittent and randomized magnetic fields
on 〈cos θ〉 (solid lines) for W (a) and KS (b) flow. The corresponding CRW approximations (Eq. (3.15)
with 〈cos θ〉 calculated from the simulated particle trajectories) are shown with dashed lines. The
different data points refer to different values of rL/l0. These results are obtained for B0 = 0.
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remarkably good for the W flow and excellent for the less structured magnetic field resulting
from the KS flow. This confirms directly that the cosmic ray propagation is a CRW with
the diffusivity given by Eq. (3.15). This applies to both intermittent and Gaussian random
magnetic fields (Fig. 3.15). We note that as rL increases, the first term in Eq. (3.15) increases
and dominates at higher rL. For rL � l0, the second term in Eq. (3.15) is negligible, which
reduces the equation to an expression for the diffusivity in case of Brownian motion.

3.7 Diffusion or telegraph equation?

In the continuum limit, the Brownian motion model leads to the diffusion equation whereas
the correlated random walk leads to the telegraph equation. For a correlated random walk,
the telegraph equation (in a simplified case of one-dimension) can be derived as follows
(Codling et al., 2008). Consider a population of particles which moves either left or right
along an infinite line (say along the x-axis) at finite speed v. At location x and time t, let the
number of particles moving right and left be α(x, t) and β(x, t), respectively. Thus, the total
particle number density is n(x, t) = α(x, t) + β(x, t). At each time step, ∆t, each particle
either changes direction and moves a distance ∆x along the new direction with probability
λ∆t, or moves in its previous direction by ∆x with probability 1 − λ∆t. This introduces a
correlation with the previous step, quantified by λ, with the previous step. At a time t +∆t

and location x, the number density of particles moving right and left, respectively, is given
by

α(x, t+∆t) = (1− λ∆t)α(x−∆x, t) + λ∆tβ(x−∆x, t), (3.16)

β(x,+t+∆t) = λ∆tα(x+∆x, t) + (1− λ∆t)β(x+∆x, t). (3.17)

Expanding Eq. (3.16) and Eq. (3.17) in Taylor series gives

α +∆t
∂α

∂t
+ . . . = (1− λ∆t)

[
α + (−∆x)∂α

∂x
+ . . .

]
+ λ∆t

[
β + (−∆x)∂β

∂x
+ . . .

]
,

(3.18)

β +∆t
∂β

∂t
+ . . . = λ∆t

[
α +∆x

∂α

∂x
+ . . .

]
+ (1− λ∆t)

[
β +∆x

∂β

∂x
+ . . .

]
. (3.19)
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Taking limit ∆x,∆t→ 0 with ∆x/∆t→ v gives

∂α

∂t
= −v∂α

∂x
+ λ(β − α), (3.20)

∂β

∂t
= v

∂β

∂x
− λ(β − α). (3.21)

Adding Eq. (3.20) and Eq. (3.21) and differentiating with respect to t gives

∂2(α + β)

∂t2
= v

∂2(β − α)
∂x∂t

. (3.22)

Subtracting Eq. (3.20) from Eq. (3.21) and differentiating with respect to x gives

∂2(β − α)
∂x∂t

= v
∂2(α + β)

∂x2
− 2λ

∂(β − α)
∂x

. (3.23)

Substituting Eq. (3.23) in Eq. (3.22),

∂2(α + β)

∂t2
= v2∂

2(α + β)

∂x2
− 2vλ

∂(β − α)
∂x

. (3.24)

Using Eq. (3.20) and Eq. (3.21) in Eq. (3.24) gives

∂2(α + β)

∂t2
= v2∂

2(α + β)

∂x2
+ 2λ

[
−∂β
∂t

+ λ(β − α)− ∂α

∂t
− λ(β − α)

]
. (3.25)

Now recalling that n = α + β in Eq. (3.25) gives

∂2n

∂t2
+ 2λ

∂n

∂t
= v2∂

2n

∂x2
. (3.26)

Eq. (3.26) is the telegraph equation in one dimension. This equation represents a correlated
random walk and is still globally unbiased (there is no overall preferred direction for particle
motion) like Brownian motion, it just considers the local bias (controlled by λ) of the particles
(in case of cosmic rays, the local bias is due to particle tendency to gyrate around magnetic
field lines in magnetic structures, till it gets scattered). Dividing Eq. (3.26) by 2λ gives

1

2λ

∂2n

∂t2
+
∂n

∂t
=
v2

2λ

∂2n

∂x2
. (3.27)
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Figure 3.16: Figure taken from Tautz & Lerche (2016). Isotropic cosmic ray intensity f as a function
of time t obtained by solving the diffusion equation (blue dashed), by solving the telegraph equation
(black) and that obtained from test-particle simulations (red). Initially, the telegraph equation better
captures the ballistic behaviour of the particles but over long time, both the diffusion equation and the
telegraph equation give similar solutions. Both f and t are given in arbitrary units.

Introducing v2/2λ as the diffusion coefficient D and 1/2λ as the correlation time τ , we get

τ
∂2n

∂t2
+
∂n

∂t
= D

∂2n

∂x2
. (3.28)

The corresponding three-dimensional version of the telegraph equation with D as the diffu-
sion tensor is

τ
∂2n

∂t2
+
∂n

∂t
= D∇2n. (3.29)

The late-time (t� τ ) solution of both the diffusion and the telegraph equations are simi-
lar (Codling et al., 2008; Tautz & Lerche, 2016; Rodrigues et al., 2018). However, as shown
in Fig. 3.16, the telegraph equation provides a better representation of the initial phase of
particle motion. Also, unlike the diffusion equation which assumes information travelling at
infinite speed, the particles move at finite speed when the telegraph equation is considered.
For example, solving the diffusion equation is equivalent to assuming that the particles fill
the entire available volume instantaneously, which is not the case for the telegraph equa-
tion. Thus, the telegraph equation provides a more realistic behaviour for particles travelling
at finite speed, especially during early times (when they haven’t scattered much). The ini-
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tial ballistic effect might be important, especially, to model cosmic ray propagation close to
sources and the transport of highly energetic solar particles (Effenberger & Litvinenko, 2014)
as well as particle propagation near magnetic null points (Snodin et al., 2006). The correla-
tion time (τ ) in the telegraph equation can be interpreted as the time it takes for the particles
to become diffusive (Rodrigues et al., 2018).

However, some authors claim that the norm of the solution for the telegraph equation will
not be conserved initially, which implies an unphysical situation where the number of parti-
cles is not conserved (Malkov & Sagdeev, 2015; Tautz & Lerche, 2016). This is not really
true because those authors consider only one initial condition whereas the telegraph equation
is second order in time and requires two initial conditions. When both initial conditions (at
time t = 0, total number of particles N is constant and ∂N/∂t = 0) are considered, the total
number of particles does remain constant for all times (Rodrigues et al., 2018).

3.8 Discussion and conclusions

We have demonstrated that cosmic ray propagation in random magnetic fields is affected by
magnetic intermittency in the range of energies given by Eq. (3.7), or

E

1GeV
< 109 l0

1 kpc

B

1µG
. (3.30)

In the interstellar medium of spiral galaxies, l0 ' 100 pc andB ' 10µG (Beck, 2016) and for
ultra-relativistic protons, this energy range is E . 109 GeV. In galaxy clusters, l0 ' 10 kpc,
B ' 2µG (Govoni & Feretti, 2004; Schekochihin & Cowley, 2006) and E . 1010 GeV.
However, for very high-energy particles, the Larmor radius is of the order of the size of the
system and the particles do not diffuse. Thus, in galaxies and galaxy clusters, magnetic field
intermittency affects almost all the low-energy diffusing cosmic rays. We note that magnetic
intermittency may also affect ultra-high energy cosmic rays that propagate non-diffusively.
This is because the ultra-high energy cosmic ray particles are deflected less in the intermittent
magnetic field as compared to the Gaussian random magnetic field because the probability of
missing a magnetic structure (which implies negligible deflection) is higher in the intermittent
field. In Gaussian random magnetic field, the particles are deflected uniformly throughout the
volume. Thus, magnetic intermittency is likely to affect inference for the sources of ultra-high
energy cosmic rays from their observed arrival directions.

We have shown that the the diffusive propagation of cosmic rays in any random magnetic
fields (either Gaussian or non-Gaussian) is described as a correlated random walk, rather than
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a Brownian motion. This implies that in the continuum limit, cosmic rays are better modelled
with the telegraph equation rather than the diffusion equation.
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Correlation between cosmic rays and mag-
netic fields

Synchrotron radiation from cosmic rays is one of the main observational probes of the galac-
tic magnetic fields. The interpretation of synchrotron intensity data requires knowledge of
the cosmic ray number density and cosmic rays are often assumed to be in energy equipar-
tition (i.e. tightly correlated) with the magnetic field energy density. However, there are
no compelling observational or theoretical reasons to expect such tight correlation to hold
across all scales. In this chapter, we use test-particle simulations (including several aspects
of cosmic ray–magnetic field interactions) and MHD simulations to study the correlation be-
tween cosmic rays and magnetic fields. We trace the motion of protons through a random
magnetic field to clarify the cosmic ray distribution at scales comparable to the driving scale
of turbulence. We find that there is no spatial correlation between the cosmic ray number
density and the magnetic field energy density at these scales. Moreover, their distributions
are approximately statistically independent. We also find that low-energy cosmic rays can be
trapped between two magnetic mirrors, whose location depends more on the structure of the
magnetic field lines than on the field strength. These conclusions can significantly change
the interpretation of synchrotron observations and thus our understanding of the strength and
structure of magnetic fields in the Milky way and other spiral galaxies.
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4.1 Introduction

The synchrotron emissivity E depends on the number density of cosmic ray electrons ncre

and magnetic field in the plane of the sky (or perpendicular to the line of sight l), B⊥. The
synchrotron intensity I , at any given position (x, y) in the sky is the integral of synchrotron
emissivity over the path length L

I(x, y) = K

∫
L

E (x, y) dl = K

∫
L

ncreB
2
⊥ dl, (4.1)

where K is a constant and the synchrotron spectral index is assumed to be unity. The deter-
mination of magnetic field strength B⊥ from synchrotron intensity requires knowledge of the
number density of cosmic ray electrons. This information can be obtained from independent
observations of gamma-ray emission or X-ray emission by inverse Compton scattering. In the
absence of such information, one of the following is assumed to infer magnetic field strength
from the synchrotron intensity data:

• energy equipartition between total cosmic ray energy density Ecr and magnetic field
energy density EB, i.e., Ecr ≈ EB or equivalently pressure equality where the pressures
due to cosmic rays and magnetic fields are assumed equal to each other;

• minimum energy assumption: minimize energy required to produce the observed syn-
chrotron radiation (minimizing Ecr + EB);

• uniform cosmic ray electron density, i.e., ncre ≈ constant.

If energy equipartition is assumed, two further assumptions are made since most of the cosmic
ray energy is due to protons but the synchrotron emission is produced by electrons. Firstly,
it is assumed that the cosmic ray protons have a similar spatial distribution as cosmic ray
electrons. Secondly, the ratio of the number of protons to the number of electrons is assumed
to be a fixed constant, K0 = 100 for the ISM close to the Sun (Bell, 1978b). Then mag-
netic field strength can be estimated from the synchrotron observations. The magnetic field
strength obtained by assuming an equipartition argument is very similar to that obtained from
the minimum energy estimate (Sect. 19.5 in Longair, 1994; Sect. 3.2.2 in Klein & Fletcher,
2015). The assumption of uniform cosmic ray electron distribution might be true over large
length scales (& 1− 2 kpc) since assuming a uniform cosmic ray distribution as opposed to
the equipartition assumption was better at matching the radio observations with the large-
scale magnetic fields obtained using the mean-field dynamo theory (Moss et al., 2007).
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The following two arguments are used to justify energy equipartition between cosmic rays
and magnetic fields. The first one is that both the cosmic rays and magnetic fields have a com-
mon source of energy (supernova explosions) and thus, in an energy equilibrium state, they
would equally share the total energy from the source. Cosmic rays are accelerated in super-
nova shocks (Bell, 1978a,b; Blandford & Ostriker, 1978; Drury, 1983). Supernovae are also
a major driver of the ISM turbulence, which amplifies galactic magnetic fields. Thus, cos-
mic ray and magnetic field energies are derived from a single source and over large length-
and time- scales, both components would have roughly equal energy. This only applies to
large scales where a dynamic equilibrium between two components can be considered. This
is also probably true only for systems where an equilibrium has time to be established, i.e.,
galaxies at the present epoch. It is unlikely that the equipartition assumption holds for ac-
tive systems such as young galaxies, starburst galaxies and galaxy clusters. However, the
equipartition assumption is widely used to obtain magnetic field strengths from synchrotron
intensity, independent of the spatial resolution of observations and the system under consid-
eration (Beck & Krause, 2005). The second argument for equipartition is that the cosmic rays
are confined by magnetic fields and thus a correlation between them is expected (Burbidge,
1956; Stepanov et al., 2009, 2014). Both these arguments may sound convincing but are not
completely compelling. There are a few observational signatures in support of the energy
equipartition at larger scales (≥ kpc) in the ISM of star-forming galaxies (Seta & Beck,
2019), but the detailed physics of each argument is yet to be explored. Thus, it is important
to test the validity of the energy equipartition assumption.

4.2 Energy equipartition argument: previous tests and our
approach

The minimum energy assumption was first applied to study energy content in cosmic rays
and magnetic fields in the jet of M87 using the optical and radio emissions from the sys-
tem (Burbidge, 1956). Since then, energy equipartition assumption is used to obtain mag-
netic field strength in various systems. Duric (1990)1 suggested that the range of possible
magnetic field strengths in spiral galaxies can at most be an order of magnitude below and
above that obtained assuming energy equipartition. The conclusion is justified as follows.
If the magnetic field is significantly weaker than the equipartition value, the particles would
not be confined within the disk (relativistic charged particles cannot be confined by thermal

1This paper is titled “Equipartition: fact or fiction?”.
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gas) and thus they would escape at relativistic speeds. This would imply almost no syn-
chrotron emission from the disc. On the other hand, if the magnetic field is far stronger
than the equipartition value, the particles would be confined close to their sources for a long
time. The synchrotron–emitting cosmic ray electrons would suffer strong energy loss within
a short span of time (or over a short length scale). This would imply a very high synchrotron
emissivity but only in small regions around the sources. Neither of the above situations is
actually seen in synchrotron observations of spiral galaxies. Also, a weakness of this type
of argument is that cosmic ray diffusivity depends not on the total magnetic field strength
but on the ratio of the random to large-scale magnetic field strengths. Chi & Wolfendale
(1993) used gamma-ray observations from the Compton Gamma Ray Observatory to obtain
the proton number density in the Large and Small Magellanic Clouds (LMC and SMC). They
showed that energy equipartition does not hold for these irregular galaxies. However, Mao
et al. (2012), using more recent gamma-ray data from the Fermi Large Area Telescope, con-
cluded that the equipartition does not seem to be violated in the LMC. The slope of radio-FIR
correlation indirectly constrains the relationship between the energy densities of cosmic ray
electrons and magnetic fields. Based on the radio-FIR correlation studies, it has been con-
cluded that the energy equipartition assumption is invalid on scales smaller than a few kpc

and may hold on larger scales (Hoernes et al., 1998; Berkhuijsen et al., 2013; Basu & Roy,
2013). Yoast-Hull et al. (2016) analyze the gamma-ray spectra and the radio spectra in the
central molecular zones of three starburst galaxies (M82, NGC 253 and Arp 220) to test the
energy equipartition assumption. They concluded that the equipartition does not hold in these
dynamic systems.

The energy equipartition assumption, when applied on large scales, seems to hold for a
number of systems (Beck, 2016). However, there are also cases where this is not true. Also,
it is a convenient assumption (synchrotron emission depends on two quantities: cosmic ray
electron number density and magnetic fields, but assuming a relation between two quantities
provides information about magnetic field strength from a single observational probe) and
not a physical law. So we do not expect it to be always applicable. We here first test the
correlation between cosmic rays and magnetic fields (equivalent to a local energy equipar-
tition assumption) using test-particle simulations in random (Gaussian and non-Gaussian)
magnetic fields by constructing cosmic ray distribution from their trajectories (Seta et al.,
2018). This is important to capture the effects of magnetic field structure. Then we also solve
MHD equations coupled with equation for cosmic rays (Section 4.11), now treated as an
advective-diffusive fluid, to test the equipartition assumption including cosmic ray-thermal
gas coupling.
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4.3 Construction of cosmic ray number density from test-
particle simulations

The cosmic ray diffusion coefficient is calculated from trajectories as described in Section 3.3.
The intermittent and non-intermittent magnetic fields (both having same power spectrum)
used in this chapter are shown in Fig. 3.5a and Fig. 3.5b respectively. Fig. 4.1 shows the
isotropic diffusion coefficient as a function of time for intermittent (Fig. 4.1a) and non-
intermittent magnetic fields (Fig. 4.1b). In each case, there is an initial phase of ballistic
particle motion, in which κ(t) is approximately linear in t, followed by a diffusive phase
where κ(t) settles to its asymptotic, time-independent value. The start of the diffusive phase,
td, is the time when the slope of κ(t) becomes small, dκ/dt ' 10−6v0l0ω0; this time is
indicated by a vertical dashed line in Fig. 4.1.

To obtain the number density of cosmic rays, ncr, from the test-particle simulations, we
calculate the coordinates of each particle modulo L = 2π (the size of the periodic box),
i.e., relative to the periodic magnetic field. Next, we divide the periodic domain into 5123

cubes and count the number of particles within each cube. The size of the cubes was chosen
to match the spatial resolution of the magnetic field, which was obtained from a dynamo
simulation on a 5123 grid, but we have checked that the results are not very sensitive to the
size of the cubes. The result is the instantaneous number density of the particles ñ(x, t).
We then average the density of particles within each cube over a sufficiently long period T
(� td), to obtain the cosmic ray density

ncr(x) =
1

T − td

∫ T

td

ñ(x, t′) dt′. (4.2)

We have checked that the results are not dependent on the sampling time (dt′) as long as it is
smaller than a few times the Larmor time 2π/ω0. But for lower sampling rate the simulation
has to be averaged over a longer total time (higher T ) to collect sufficient statistics. We note
that particles of different energies were simulated over different periods T to obtain roughly
the same 〈ncr(x)〉 at all energies.

4.4 Pitch angle scattering

In addition to following magnetic field lines, cosmic ray particles are scattered by magnetic
fluctuations at a scale comparable to their gyroradius, the condition often referred to as the

133



Chapter 4. Correlation between cosmic rays and magnetic fields

101 102 103 104 105

ω0t

10−3

10−2

101

100

10−1

κ
/
v

0
l 0

(a)

rL/l0 = 0.016

rL/l0 = 0.159

rL/l0 = 1.592

101 102 103 104 105

ω0t

10−3

10−2

101

100

10−1

κ
/
v

0
l 0

(b)

rL/l0 = 0.016

rL/l0 = 0.159

rL/l0 = 1.592

Figure 4.1: Normalized cosmic ray diffusivity κ/v0l0 as a function of normalized time ω0t for
rL/l0 = 0.016, 0.159, 1.592 for the intermittent (a) and randomized (b) magnetic fields shown in
Fig. 3.5. The dashed lines of the corresponding colours show the time td after which the propagation
becomes diffusive: κ(t) ≈ κ at t > td. For low energy particles (rL ≤ lb), the diffusivity in the inter-
mittent magnetic field is larger than in the randomized (Gaussian) field of identical power spectrum as
discussed in Section 3.4.
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Figure 4.2: Cosmic ray (velocity direction shown by blue arrow) interacting with a localized magnetic
fluctuation of magnitude δB with mean field along the z-axis.

‘gyroresonance’. The scattering changes the direction of motion, and thus the cosine of the
pitch angle µ of the particle, defined via

µ ≡ cos θ =
v ·B
|v||B|

, (4.3)

also changes, where v is the velocity of the particle and B is the magnetic field. The process is
known as the pitch angle scattering (PAS). It leads to diffusion of particles in the momentum
space of the particle (still preserving energy), which in turn gives rise to their diffusion in the
physical space.

We here derive how the pitch angle of a particle changes when it encounters a magnetic
fluctuation whose properties (wavelength and amplitude) are known. As described in Kulsrud
(2005), we consider a localized MHD wave packet (magnetic fluctuation) polarized in the x-
direction in the presence of a uniform magnetic fieldB0 along the z-axis as shown in Fig. 4.2.
Before a cosmic ray particle (travelling from the left in Fig. 4.2) encounters the wave packet,
it gyrates around the background uniform magnetic field B0ẑ with frequency ω0. Consider an
MHD perturbation in the form of a plane wave,

δB⊥ = δB sin(kz − ωAt), (4.4)

where δB is the amplitude, k is the wavenumber (here assumed positive), and ωA is the
frequency of the wave. The velocity of the particle along the ŷ direction due to the background
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magnetic field B0ẑ alone is

vy = v⊥ sin(ω0t+ φ), (4.5)

where v⊥ is the component of velocity perpendicular to B0ẑ and φ is the phase between the
cosmic ray velocity vector and the wave vector. The z position of the cosmic ray particle
is z0 + vzt, where z0 is the initial position. The ẑ-component of the Lorentz force, using
Eq. (4.4) and Eq. (4.5), is therefore

e

c
(v ×B)z =

e

c
vyδB⊥

=
e

c
v⊥δB sin(kz0 + kvzt− ωAt) sin(ω0t+ φ)

=
e

2c
v⊥δB [cos[(kvz − ωA + ω0)t+ (kz0 + φ)] .

− cos[(kvz − ωA − ω0)t+ (kz0 − φ)]]. (4.6)

For vz > 0, the first term in the square bracket of the Eq. (4.6) has very high frequency and
averages out to 0. However, the second term may have significant contribution if kvz −ωA−
ω0 = 0 and this is precisely the gyroresonance condition (since ωA � ω0 for relativistic
particles). Also, for cosmic rays travelling with speed close to the speed of light, vz � vA.
For a MHD fluctuation in three dimensions the analogous gyroresonance condition is

k‖ ∼
1

µrL
, (4.7)

where µ is the pitch angle of the particle, rL is the particle gyroradius, and k‖ is component
of the wave vector along the direction of background magnetic field, B0.

If the gyroresonance condition is satisfied, the change in the particle momentum along
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the ẑ direction due to particle’s interaction with the wave packet follows from Eq. (4.6) as

δpz =
e

c

∫
(v ×B)zdt

=
eδBv⊥
2c

cos(kz0 − φ)
2π

k(vz − vA)

≈ eδBv⊥
2c

cos(kz0 − φ)
2π

kvz
, since vz � vA,

=
πeδBv⊥
cω0

cos(kz0 − φ), since kvz = ω0 + ωA ≈ ω0,

= πγmv⊥

(
δB

B0

)
cos(kz0 − φ), since ω0 =

eB0

γmc
,

≈ πp⊥

(
δB

B0

)
cos(φ′), (4.8)

where vA is the velocity of the wave (usually an Alfvén wave), p⊥ is the momentum in the
direction perpendicular to the magnetic field and φ′ = kz0 − φ is the relative phase between
the cosmic ray particle and the wave. 2

The interaction between the cosmic ray and the wave packet changes only the pitch angle.
Considering the angle between the particle momentum and the magnetic field to be θ, define
µ = cos(θ). Here p cos(θ) = pz changes as given by Eq. (4.8). As the process conserves
energy (δp = 0) it implies that

δpz = δ(p cos(θ)) = (δp) cos(θ) + pδ(cos(θ)) = −p sin(θ)δθ = −p⊥δθ. (4.9)

Substituting Eq. (4.8) in Eq. (4.9) we can calculate change in θ as

δθ = −π
(
δB

B0

)
cos(φ

′
). (4.10)

The change in pitch angle of a cosmic ray particle due to PAS is governed by Eq. (4.10).
This change in pitch angle leads to the diffusion of cosmic rays in real space. It is clear that
δθ ≈ δB/B0 and thus δB/B0 is the control parameter for PAS efficiency.

Numerically, we test the gyroresonance condition. We consider a single particle motion
by solving the Lorentz force equation (Eq. (3.2)) in the presence of a uniform magnetic field,
B0, and a localized MHD wave packet of the form Eq. (4.4) with chosen k and δB. We keep

2Note a minor typographical error in Eq. (4.8) of Kulsrud (2005), where the calculated expression for δpz
depends on θ, which is not correct physically since once the gyroresonance condition is satisfied, the amount of
scattering depends only on the amplitude of the magnetic fluctuation and not on particle properties.
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Figure 4.3: Pitch angle µ calculated from the trajectory of a single particle obtained numerically
as a function of normalized time ω0t for the case where the gyroresonance condition holds (a) and
doesn’t hold (b). When gyroresonance condition is satisfied, the particle is scattered and its pitch
angle changes. Also for such a scattering δµ ∝ δB/B0 as shown in (a). When the gyroresonance
condition doesn’t hold, the particle’s pitch angle varies across the magnetic fluctuation but returns
back to its initial pitch angle once the particle crosses the fluctuation. Thus, δµ = 0 for the case (b).
To avoid overlap in (b), the time axis for case δB/B0 = 0.01 and δB/B0 = 0.1 are shifted by +50
and −50 normalized time units respectively.

138



Chapter 4. Correlation between cosmic rays and magnetic fields

varying the wavelength (2π/k) of the fluctuation from values much smaller than the Larmor
radius rL of the particle to values much larger than rL. The pitch angle changes only when the
gyroresonance condition 2π/k ≈ rL is satisfied and δµ ∝ δB/B0 as expected from Eq. (4.10)
and as shown in Fig. 4.3a. In Fig. 4.3a cosmic rays (for all values of δB/B0) enter and leave
the wave packet at the same time ω0t ≈ 30, thus jump in δµ is at the same point for all of
them. If the gyroresonance condition is not satisfied, the particle pitch angle changes when it
is travelling through the wave packet, but then it returns back to its initial value on exit from
the wave packet. This happens independently of the magnitude of δB/B0, as illustrated in
Fig. 4.3b.

4.5 Magnetic field at the Larmor scale

The efficiency of PAS depends on the amplitude of the magnetic fluctuation, δB/B0, at the
Larmor scale. Suitable magnetic fluctuations can be a part of a magnetic energy spectrum that
extends from much larger scales, or be excited by cosmic rays themselves via the streaming
instability (Kulsrud & Pearce, 1969; Wentzel, 1974; Kulsrud, 2005). The fluctuations due
to the MHD cascade from larger scales to the Larmor scale are usually referred to as the
extrinsic turbulence and those due to cosmic ray themselves are referred to as the intrinsic
turbulence. The waves in the latter case are also sometimes called ‘self-generated waves’
(since particles are scattered by the waves that they themselves generate). Here, we estimate
δB/B0 for each case.

4.5.1 Intrinsic turbulence: self-generated waves

The magnitude of the magnetic fluctuations that are associated with pitch angle scattering due
to self-generated waves is estimated as follows. When the velocity of cosmic rays is greater
than the local Alfvén speed, the streaming instability excites Alfvén waves of a wavelength
comparable to the particles’ Larmor radius (Kulsrud & Pearce, 1969; Wentzel, 1974). Cosmic
rays (originally propagating at speeds very close to the speed of light) are slowed down by
pitch angle scattering until they move with the local Alfvén speed. We assume that the cosmic
rays (ensemble of cosmic ray particles), moving initially with the speed of light, transfer all of
their momentum to Alfvén waves (no damping processes are assumed). Using conservation
of momentum we can then estimate the maximum possible amplitude of these waves.
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The initial momentum of cosmic rays is

p = ncrγmv ' ncrγmc, (4.11)

where ncr is the number density of cosmic ray particles, m is the proton mass, v is the particle
speed (taken to be close to c, the speed of light) and γ is the Lorentz factor.

When all the momentum has been transferred to Alfvén waves, the bulk speed of the
ensemble of cosmic ray particles reduces to the Alfvén speed (as then the instability is sup-
pressed). Momentum conservation then implies that

p =
δB2

8π

1

vA

+ ncrγmvA, (4.12)

where δB is the amplitude of the Alfvén waves generated by the streaming instability, and vA

is the local Alfvén speed. The energy density of magnetic fluctuations is δB2/8π and they
travel at the speed vA, thus their effective momentum is δB2/8πvA.

Combining Eq. (4.11) and Eq. (4.12), we obtain

ncrγmc '
δB2

8π

1

vA

+ ncrγmvA,

ncrγm(c− vA) ' ncrγmc '
δB2

8π

1

vA

, since c� vA,

εcr

c
' δB2

8π

1

vA

, (4.13)

where εcr = ncrγmc
2 is the energy density of cosmic rays

Assuming that the energy density of cosmic rays is comparable to the energy density of
the magnetic field at much larger scales, εcr ' B2

0/(8π), it follows from Eq. (4.13) that

δB

B0

'
(vA

c

)1/2

. (4.14)

The pitch angle scattering is most efficient in the hot phase of the ISM (Kulsrud & Pearce,
1969; Cesarsky & Kulsrud, 1981; Kulsrud, 2005), where B ' 5µG and n ' 10−3cm−3 for
the thermal gas number density, so the Alfvén speed is of the order of 107 cm s−1. Eq. (4.14)
then yields δB/B0 ' 10−2. Since the damping of Alfvén waves is neglected, this is an upper
limit.

A similar estimate can be obtained without direct appeal to the energy equipartition be-
tween the magnetic fields and cosmic rays at larger scales. Farmer & Goldreich (2004), using
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properties of MHD turbulence, obtain δB/B0 ' (rL/l0)
1/4, where rL is the Larmor radius of

the particle and l0 is the outer scale of turbulence (∼ 100 pc for the ISM). For a 5GeV proton
in a 5µG magnetic field, the Larmor radius of the particle is 1012 cm. Thus, at the Larmor
scale, δB/B0 ' (1012/1020)1/4 ' 10−2, which agrees with our estimate in the previous para-
graph. This does not necessarily imply the equality between two physical processes, it just
shows that those two physical processes give rise to magnetic fluctuations which are similar
in strength.

4.5.2 Extrinsic turbulence: MHD turbulence cascade

The spectrum of hydromagnetic turbulence in the ISM extends to very small scales. Schekochi-
hin et al. (2009) suggest that the spectrum of kinetic Alfvén waves is truncated by dissi-
pation at scales as small as the thermal electron Larmor radius, which is approximately
3 × 106 cm in the warm ionized ISM. This scale is much smaller than the typical Larmor
radius (rL ≈ 1012 cm for a 5GeV proton in a 5µG magnetic field) of cosmic rays and thus
the magnetic turbulence due to sources other than cosmic rays also contribute to fluctuations
at the Larmor scale.

The Alfvén turbulence is excited isotropically at a large scale lmax, usually the driving
scale of turbulence (lmax ∼ 100 pc for spiral galaxies and lmax ∼ 10 kpc for galaxy clusters)
with magnetic fluctuations δB ∼ B0 (B0 is the background mean field, ∼ 5–10µG for spiral
galaxies and 1–5µG for galaxy clusters). The energy cascades isotropically at larger scales,
where the gas is collisional, up to a transition scale lt ∼ 1 pc (Brandenburg & Subramanian,
2005) and then the cascade is anisotropic (Goldreich & Sridhar, 1995, 1997). The slope
of isotropic Alfvén wave turbulence spectrum is k−5/3 and then at smaller scales k−2

‖ , for
perturbations parallel to the magnetic field and k−5/3

⊥ , for perturbations perpendicular to the
magnetic field. For the gyroresonance condition (Eq. (4.7), Farmer & Goldreich, 2004), only
the fluctuations parallel to the magnetic field matters.

Thus, to estimate the magnitude of the fluctuations at the Larmor scale rL we extrapolate
the amplitude of fluctuations from the large scale lmax to rL in two steps as illustrated in
Fig. 4.4. First, from lmax to lt via M(k) ∼ k−5/3 and then from lt to rL for M(k‖) ∼ k−2

‖ . So

141



Chapter 4. Correlation between cosmic rays and magnetic fields

for the first part,

M(k) ∼ k−5/3, δB2(k)/k ∼ k−5/3,

δB(k) ∼ k−1/3, δB(l) ∼ l1/3,

=⇒ δB(lmax)

δB(lt)
=

(
lmax

lt

)1/3

. (4.15)

Using lmax ∼ 100 pc, δB(lmax) ∼ 5µG in Eq. (4.15) for the ISM of spiral galaxies, we
obtain

δB(lt) ≈
5µG

1001/3
∼ 1µG. (4.16)

For the second range from lt to rL using only the component parallel to the magnetic field.

δB(lt)

δB(rL)
=

(
lt
rL

)1/2

,

δB(lt)

δB(rL)
≈
(

1

10−6

)1/2

≈ 103,

δB(rL) ≈ 10−3 µG. (4.17)

Thus, for the ISM of spiral galaxies, δB(rL)/B0 ' 10−4.
The relative magnitude of the magnetic fluctuations due to the extrinsic turbulence at the

Larmor radius of a 5GeV particle is of the order of δB/B0 ' 10−4, which is negligible in
comparison that of the self-generated waves in Section 4.5.1.

In our test-particle simulations, magnetic field is imposed and steady, so the streaming
instability cannot occur. We, therefore, parametrize the PAS of cosmic rays by self-generated
waves by rotating the velocity vector of each particle every Larmor time 2π/ω0 by an angle
given by Eq. (4.10) with δB/B0 = 10−2 and φ′ uniformly distributed between 0 and 2π. We
test this model numerically for particles propagating in a uniform magnetic field by solving
the Lorentz force equation Eq. (3.2). Without the PAS, particles in a uniform magnetic field
do not diffuse. However, when PAS is included, the particles scatter and over a sufficiently
long time, diffusive behaviour develops as shown in Fig. 4.5. The parallel, κ‖, and perpendic-
ular, κ⊥, diffusion coefficients are calculated using Eq. (3.4). Initially, the particles perform
a ballistic motion along the uniform magnetic field and gyrate in the perpendicular direction.
After a large number of scatterings ( td ≈ 5 × 105 Larmor times in Fig. 4.5), the diffusion
sets in. In Fig. 4.5, κ⊥/κ‖ ≈ 10−7 because the ensemble of particles have a larger mean
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Figure 4.4: Sketch of the power spectrum of the random magnetic field showing the energy cascade
from a larger scale (lmax, usually the driving scale of turbulence) to the Larmor radius (rL) of the
particle. The field is isotropic up to a transition scale (lt) and then it becomes anisotropic (Goldreich
& Sridhar, 1995). When the turbulence is anisotropic, the power spectrum for parallel fluctuations
is steeper than that for the perpendicular case. However, for the gyroresonance condition (Eq. (4.7))
only the fluctuations parallel to the field are important and thus we only consider that for our estimate.

143



Chapter 4. Correlation between cosmic rays and magnetic fields

free path along the direction of the uniform magnetic field. This is just a numerical test and
not of any significance for the ISM because the ISM magnetic field has a significant random
component. The process involves not only diffusion in the physical space but also diffusion
in pitch angle, so we verify this by calculating the time correlation function of the pitch angle

〈µ(t)µ(0)〉 =
∑N

i=1 µi(t)µi(0)

µi(0)2
, (4.18)

where µi(t) is the pitch angle of ith particle at time t and N is total number of particles. As
shown in Fig. 4.6, the 〈µ(t)µ(0)〉 decreases from unity, becoming negligible after t ' td

when the pitch angle decorrelates. This confirms that the pitch angle also diffuses. It is non-
trivial to calculate pitch angle diffusion coefficient numerically since pitch angle is a bounded
quantity (it lies in [−1, 1]).

4.6 Spatial intermittency of cosmic ray distribution

We first look at the spatial distribution of cosmic rays as a function of particle’s energy or
Larmor radius (rL). Fig. 4.7 shows the probability density function (PDF) of the particle
number density ncr obtained in intermittent (Fig. 4.7a) and randomized (Fig. 4.7b) magnetic
fields. For cosmic rays of relatively high energy (rL/lb > 1 or rL/l0 > 0.0244), the number
density ncr is very nearly uniform in space, and its PDF is Gaussian. At lower energies, the
PDF has a long, heavy tail at large ncr, which signifies the presence of spatially localized
structures in the cosmic ray distribution. It is remarkable that the distribution of (low energy)
cosmic rays is intermittent in both intermittent and Gaussian magnetic fields. The PDF of
ncr in presence of a mean magnetic field of various strengths, with (Fig. 4.8a) and without
(Fig. 4.8b) particle pitch angle scattering (PAS), is shown in Fig. 4.8. The mean magnetic
field does not eliminate the tail in the PDF and even makes it heavier.

Cosmic rays fill all the volume available. However, the distribution for low energy cosmic
rays (especially for rL/l0 = 0.0016 or rL/lb ' 0.06) is not homogeneous. Random magnetic
fields produce cosmic ray distributions where a significant fraction of the volume is occupied
by strong particle concentrations. The PDFs of ncr shown in Fig. 4.7 have a nearly Gaussian
core that contains most of the particles and has ncr close to its mean value. The tail represents
rare but intense small-scale spatial structures.

Fig. 4.9 shows the number density of cosmic rays, obtained as described in Section 4.3,
in the intermittent magnetic field. Fig. 4.9a shows the cosmic rays structures in three dimen-
sions. This is further illustrated in Fig. 4.9b, which shows strong peaks in ncr against weak but
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Figure 4.5: Normalized parallel κ‖/v0l0 (a) and perpendicular κ⊥/v0l0 (b) cosmic ray diffusivity as
a function of normalized time ω0t for particles propagating in a uniform magnetic field but with pitch
angle scattering (PAS) model included. Initially, the particle gyrates around magnetic field and thus
κ‖ varies linearly with time and because of gyration the κ⊥ oscillates. After sufficient scattering, the
diffusion sets in both in the direction parallel and perpendicular to the imposed uniform magnetic field.
The red dotted line shows the diffusion time td.
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Figure 4.6: Time correlation function of pitch angle µ as a function of normalized time ω0t for particles
propagating in a uniform magnetic field with PAS included. The correlation gradually decreases and
drops to ≈ 0 once the diffusion sets in. This can also be used to determine the diffusion time td
(shown by the red dotted line).

fluctuating background (core part of the cosmic ray distribution in Fig. 4.7a). The distribution
is inhomogeneous and evidently sensitive to the magnetic field structure. The distribution of
cosmic rays is affected by both the mean magnetic field and pitch angle scattering. As shown
in Fig. 4.8, the mean magnetic field enhances the intermittency in the cosmic ray distribution,
whereas pitch angle scattering reduces it. Fig. 4.10 illustrates how the shape and number of
structures in the cosmic ray distribution are affected. With a mean field, the structures are
more numerous and many extend along the mean field direction, the x-axis in Fig. 4.10a.
This effect becomes significant when B0/ brms ≥ 1. On the other hand, pitch angle scattering
enhances cosmic ray diffusion and, consequently, reduces their intermittency, as shown in the
Fig. 4.10b.

The degree of intermittency can be measured in terms of the parameter f = 〈ncr〉2/〈n2
cr〉,

the volume filling factor (Table 4.1). For high-energy particles, rL/l0 = 0.1592 or rL/lb '
6.52, f is close to unity, indicating a homogeneous particle distribution. This feature of
the cosmic ray distribution is further detailed in Fig. 4.11 where we show the dependence
of the fractional volume of a region where ncr/〈ncr〉 ≥ ν on ν for the configurations of
Table 4.1. Particles of sufficiently high energy, rL/lb � 1, are not sensitive to the fine
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Figure 4.7: Probability density function (PDF) of the relative number density of cosmic ray particles,
ncr/〈ncr〉, where 〈ncr〉 is the mean cosmic ray number density over the numerical domain, for various
rL/l0 in intermittent (a) and randomized (Gaussian) magnetic fields (b), with no mean-field and no
pitch angle scattering (PAS). Long tails are a signature of intermittent structures in the cosmic ray
distribution. For high-energy particles, the distribution is nearly Gaussian (with width increasing
as energy decreases) in both intermittent and Gaussian magnetic fields, but below a certain energy
(rL . lb) long tails develop. A black dashed line shows the PDF of a random variable drawn from
a Gaussian distribution with unit mean value and standard deviation of 0.07 (obtained by fitting the
Gaussian).
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Figure 4.8: PDF of ncr/〈ncr〉 for rL/l0 = 0.0016 in the intermittent field with an imposed mean field
of various magnitudes B0 (a) and with the pitch angle scattering further included (b). Intermittency in
the cosmic ray distribution increases as the mean field becomes stronger, especially for B0/ brms ≥ 1,
manifested in heavier tails at larger ncr/〈ncr〉. The pitch angle scattering enhances diffusion and thus
decreases the level of intermittency.
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Figure 4.9: (a) Isosurfaces of the number density of cosmic rays in the intermittent magnetic field
at ncr/〈ncr〉 = 3.5 for rL/l0 = 0.0016. A number of small-scale cosmic ray structures are seen
confirming an intermittent cosmic ray distribution. (b) The variation of the relative number density of
the particles along the straight line (x, z) = (π, 3.97), characterized by rare, strong maxima against a
weakly fluctuating background.
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(a)

(b)

Figure 4.10: Isosurfaces of the number density of cosmic rays at ncr/〈ncr〉 = 3.5 for rL/l0 = 0.0016
in an intermittent magnetic field with an imposed mean field of a strength B0/ brms = 1 aligned with
the x-axis (a) and with PAS further added (b).

150



Chapter 4. Correlation between cosmic rays and magnetic fields

Table 4.1: The volume filling factor f = 〈ncr〉2/〈n2
cr〉 in a representative selection of simulations,

summarising the effects of particle energy, magnetic field structure and pitch angle scattering (PAS).

Model rL/l0 b B0/ brms PAS f
A 0.0016 Intermittent 0 no 0.81
B 0.0016 Intermittent 1 no 0.68
C 0.0016 Intermittent 1 yes 0.84
D 0.0016 Randomized 0 no 0.96
E 0.1592 Intermittent 0 no 0.99

structure of the magnetic field and the probability distribution of their number density is
Gaussian. The dependence of the fractional volume, shown in Fig. 4.11, on the presence
of the mean magnetic field and its change due to the pitch angle scattering confirms that the
spatially intermittency increases on including mean field and decreases (but is not eliminated)
on including pitch angle scattering.

Fig. 4.12 shows the PDF of magnetic field energy density and cosmic ray distribution for
the tail region. Both distributions are power laws with exponent close to −11/4 for both the
magnetic field and cosmic ray number density.

4.7 Statistical relation between magnetic fields and cosmic
rays

The simplest measure of a relation between cosmic rays and magnetic field is their cross-
correlation coefficient,

C(ncr, B
2) =

〈ncrB
2〉 − 〈ncr〉〈B2〉
σncrσB2

, (4.19)

where 〈· · · 〉 denotes an average over the whole domain, and σ is the standard deviation of
the quantity specified in the subscript. The value of C ranges from C = 1 for perfect corre-
lation to C = −1 for perfect anti-correlation. In all cases considered, we find that the two
distributions are uncorrelated, C ≈ 0. This is true even for the lowest-energy cosmic rays
considered (rL/l0 = 0.0016) despite the fact that they are closely confined to magnetic field
lines. The correlation does not emerge even when the cosmic ray density and magnetic field
are smoothed to a coarser spatial grid. To confirm that this behaviour is not an artefact of the
initial conditions used for the cosmic ray particles, we have also performed a simulation with
their initial positions in the regions of the strongest magnetic field shown in Fig. 3.5a. The
value of C in this case is very close to unity initially but vanishes quickly, within the time
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Figure 4.11: The fractional volume of cosmic ray structures with ncr/〈ncr〉 ≥ ν for Models A–E
of Table 4.1. A black dashed line shows the fractional volume for a random variable drawn from a
Gaussian distribution with unit mean value and standard deviation of 0.07.
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Figure 4.12: PDF of intermittent magnetic field energy density normalized to its rms value, b2/ b2rms,
and the number density of cosmic rays normalized to its mean, ncr/〈ncr〉, for rL/l0 = 0.0016, 0.0032.
All three of them have power-law tails and the same exponent. Statistical errors are considerable at
probability densities below about 5× 10−5.
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Figure 4.13: The scatter plot of cosmic ray number density, ncr/〈ncr〉 and magnetic energy density,
b2/ b2rms, in an intermittent magnetic field for rL/l0 = 0.0016. If they are correlated, we would expect
a straight line with unit gradient but instead we see a cloud of points.

of order the diffusion time, td. Fig. 4.13 shows the scatter plot of the cosmic ray number
density and magnetic field energy density, whose form confirms that the two variables are
uncorrelated.

We now check for their statistical independence, i.e., whether p(ncr, b
2), the joint prob-

ability distribution function of the two variables is equal to p(ncr)p(b
2), the product of the

probability distribution function of each component. To test for the statistical independence
of b2 and ncr, i.e. p(ncr, b

2) = p(ncr)p(b
2), we calculate the conditional probability distribu-

tions p(b2|ncr) for a range of ncr values and use the Kolmogorov-Smirnov (KS) test to prove
that they are indistinguishable from each other. This is also done for p(ncr|b2) and a range of
b2. Fig. 4.14a and Fig. 4.16a show the joint probability densities of magnetic field strength and
cosmic ray number densities in the intermittent and Gaussian (randomized) magnetic fields,
respectively. We perform KS test on the conditional probability distributions, p(b2|ncr) and
p(ncr|b2) to check whether each of them is drawn from the same distribution. This is mea-
sured by the D statistic of the test, which is the absolute maximum difference between the
cumulative distribution functions of the two samples. A value of D smaller than 0.087 pro-
vides 95% confidence that the two samples are drawn from the same distribution. For this
we consider pairs of samples from the conditional probability distribution p(b2|ncr) with con-
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secutive ncr (cuts along consecutive values of y-axis of Fig. 4.14a). We performed the KS
test for all such pairs and found the mean value of D to be ' 0.062. A similar calculation
for p(ncr|b2) gives ' 0.072. The mean D values for Gaussian (randomized) magnetic fields
are ' 0.054 for p(ncr|b2) and ' 0.114 (higher than the critical value of D = 0.087 bit still
quite low) for p(b2|ncr) respectively. The small D values suggest that the cosmic ray number
density and magnetic field distributions are independent of each other and the joint proba-
bility p(ncr, b

2) can be factorized into p(ncr) and p(b2). We find the functional dependence
of p(ncr) on ncr and p(b2) on b2 as follows. Cuts through the joint PDF in the intermittent
magnetic field, shown in Fig. 4.14a, are well fitted with a Gaussian which, remarkably, has
neither the mean value nor the standard deviation dependent on b2 (as shown in Fig. 4.14b).
The dependence of the maximum value of the conditional PDF pn(ncr|b2) on b2 is shown in
Fig. 4.15a together with its fit with an exponential function. In the range 0 ≤ b2/ b2

rms ≤ 0.3

and 0.25 ≤ ncr/〈ncr〉 ≤ 1.75, the joint PDF of ncr and b2 has the form

p(ncr, b) ≈ (1.6 + 9.9e−10.5b2/ b2rms)e−(ncr/〈ncr〉−1)2/0.18. (4.20)

The relative accuracy of the fitted parameters is better than 5 per cent. This is confirmed by
the scatter of the measured and fitted values of p(ncr, b

2) shown in the lower left panel of
Fig. 4.15b: for a perfect fit, the points would be all on the bisector of the quadrant angle.
The scatter about that line, shown dashed (blue) provides a measure of the accuracy of the fit.
A very small number of points systematically deviate from the main dependence. The joint
PDF is thus factorizable emphasizing that both the distribution are independent.

Similar analysis for p(ncr, b
2) in the randomized (Gaussian) magnetic field is illustrated

in Fig. 4.16 and Fig. 4.17. As in the intermittent magnetic field, the joint PDF is factorizable
in an approximate manner and thus ncr and b2 are statistically independent. The form of the
conditional PDF of magnetic field strength is a lognormal distribution,

p(b|ncr) ≈ 0.5(b2/ b2
rms)

−1e−0.3 ln(b2/ b2rms)
2

(4.21)

for 0 ≤ b2/ b2
rms ≤ 3. We find that

p(ncr, b) ≈ 0.5(b2/ b2
rms)

−1e−0.3 ln(b2/ b2rms)
2

e−(ncr/〈ncr〉−0.9)2/0.32 . (4.22)

The scatter plot of the measured and fitted PDF values is shown (with the dashed blue line
for the perfect match) in Fig. 4.17b.

To summarize, the distributions of cosmic ray number density and magnetic field strength
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Figure 4.14: (a) The joint probability density function (PDF) p(ncr, b
2) of b2/ b2rms and ncr/〈ncr〉 in the

intermittent magnetic field for 0 ≤ b2/ b2rms ≤ 0.5 and 0.25 ≤ ncr/〈ncr〉 ≤ 1.75. (b) The joint PDF
p(ncr, b

2) as a function of ncr/〈ncr〉 alone for various values of b2/ b2rms together with least-square fits
of the form p(ncr, b

2) = A(b2)e−(ncr/〈ncr〉−1.0)2/0.18 (smooth dashed curves).
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Figure 4.15: (a) The height of the curve’s peak in Fig. 4.14b A as a function of b2/ b2rms fitted with an
exponential (red, dashed). (b) Scatter plot of the computed and fitted values of p(ncr, b

2), with a line
corresponding to the perfect agreement shown (dashed, blue). Most points lie close to the dashed blue
line confirming that the accuracy of the fit is reasonable.
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Figure 4.16: As in Fig. 4.14 but for the randomized (Gaussian) magnetic field for 0 ≤ b2/ b2rms ≤ 3.0
and 0.25 ≤ ncr/〈ncr〉 ≤ 1.75.
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Figure 4.17: As in Fig. 4.15 but for the randomized (Gaussian) magnetic field for 0 ≤ b2/ b2rms ≤ 3.0
and 0.25 ≤ ncr/〈ncr〉 ≤ 1.75.
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are practically statistically independent in the diffusive regime of the cosmic rays. In the in-
termittent magnetic field, the joint PDF of ncr and b is well approximated by a Gaussian in ncr

and a modified Gaussian in b. In randomized (Gaussian) field, the joint PDF is approximated
by a Gaussian in ncr and a lognormal distribution in b2. The two variables remain statistically
independent for cosmic rays of other energies too. The exact parameters of the joint PDF
are likely to depend on details of the magnetic field structure and the energy of the particle.
For both intermittent and non-intermittent magnetic fields, the joint PDF is separable which
illustrates that the cosmic rays and magnetic field distributions are statistically independent.
Assuming that this also applies to cosmic-ray electrons, Eq. (4.1) can also be written as

I = K

∫
L

ncre b
2
⊥ dl =

K

L

∫
L

ncre dl

∫
L

b2
⊥ dl = KL〈ncre〉〈b2

⊥〉, (4.23)

where 〈· · · 〉 denotes the average over the path length. Thus, one can use synchrotron intensity
and the mean cosmic ray number density to obtain the average magnetic field strength.

4.8 Random magnetic traps

Since ncr is not correlated with the magnetic field strength, the localized concentrations of
cosmic rays must be caused by some geometrical property of the magnetic field lines. In
fact, we find that these regions occur where cosmic rays are trapped between two magnetic
mirrors, i.e., positions where magnetic lines converge.

Magnetic trapping of particles by long wavelength waves was studied analytically to ex-
plain the confinement of cosmic ray particles for which gyroresonant waves are damped
quickly (Holman et al., 1979; Felice & Kulsrud, 2001). To test this numerically, we solve
the equation of motion for a single particle in a uniform magnetic field along x axis, super-
imposed on a magnetic wave packet of the form Eq. (4.4) (same as Section 4.4) having a
wavelength 2π/k � rL. Fig. 4.18a shows the time evolution of the cosine of the particle
pitch angle µ. The particle returns to follow its initial trajectory but in the opposite direction,
after a reflection. The particles moves back and forth along x-axis and the trapped particles
follow a closed curve in µ vs. kx plot. This is shown in Fig. 4.18b. The particles are trapped
only if the pitch angle is less than a critical value.

Now we consider the particle distributions in random magnetic fields, in particular, re-
gions (shown in Fig. 4.9 and Fig. 4.10) where cosmic ray density is higher than the mean
cosmic ray density. These regions represent random magnetic traps, as confirmed by the
form of individual particle trajectories and the magnetic field structure in locations of the
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Figure 4.18: (a) The cosine of the particle pitch angle µ calculated from its trajectory as a function of
normalized time ω0t for a single particle reflection. The fact that µfinal = −µinitial confirms that the
particle is reflected back along the arrival direction, i.e. oscillates between the magnetic mirrors. (b)
The cosine of the pitch angle µ as a function of kx, where k is the wavenumber of the wave and x is
the displacement along the x-axis. For particles with the same energy but different initial pitch angles
(before they enter the trap). When the initial pitch angle is less than a critical value, the particles are
trapped.

160



Chapter 4. Correlation between cosmic rays and magnetic fields

high cosmic ray concentration. Fig. 4.19a shows a particle trajectory near a maximum of ncr

at (x, y, z) = (3.15, 2.55, 5.975) in Fig. 4.9a. If a magnetic flux tube is pinched at both ends,
then particles are repeatedly reflected at the magnetic mirrors (between the two ends), creat-
ing a magnetic trap. Because the field lines must be reasonably smooth in order to form a trap
(otherwise the particle might get scattered), the regions of high cosmic ray density are typi-
cally smaller than the magnetic correlation length, lb. The cosine of the particle’s pitch angle,
µ is shown in Fig. 4.19b as a function of position and magnetic field strength (similar to one
of the closed curves in Fig. 4.18b). This quantity reverses sign along the trajectory whenever
the particle is reflected at an end of the magnetic trap. This happens where the magnetic
field is relatively strong. Magnetic trapping is associated with the conservation of v2

⊥/B, an
adiabatic invariant (Jackson, 1998), where v⊥ = v sin θ is the particle speed perpendicular to
the local magnetic field. We have verified that v2

⊥/B = const with relative accuracy of order
10−5 along the trajectories of the trapped particles.

We estimate the enhancement of cosmic ray number density due to magnetic traps as
follows. Consider a magnetic trap of a length l in a magnetic flux tube of radius d. The
particle can escape the trap by scattering perpendicular to the field lines. For an ensemble
of particles within the trap, the expected trapping time is estimated as τ⊥ ' d2/κ⊥, where
κ⊥ is the local perpendicular diffusivity of cosmic rays. Defining Nm,⊥ to be the number of
times that a particle travels along the trap before leaving it, we expect Nm,⊥ ' τ⊥v/l. The
resulting number density of particles within the trap is given by n0,⊥ = Nm,⊥〈ncr〉 with 〈ncr〉
the mean number density of cosmic rays. The number density of the particles within the trap
follows as

n0,⊥ '
vd2

lκ⊥
〈ncr〉. (4.24)

According to this estimate, we expect that the number of trapped particles will depend in-
versely on the local perpendicular cosmic ray diffusivity and the length of the trap but directly
on the velocity of the particle and the thickness of the trap.

Another escape route for the particles from the trap is via the loss cone due to parallel
scattering events. The particles are then trapped for the time approximately equal to τ‖ '
l2/κ‖, where κ‖ is the local parallel diffusivity of cosmic rays. Again, defining Nm, ‖ to be the
number of times that a particle travels along the trap before leaving it via the loss cone, we
expect Nm, ‖ ' τ‖v/l. The resulting number density within the trap n0, ‖ = Nm, ‖〈ncr〉. Thus,
the number density of particles following this process is

n0, ‖ '
vl

κ‖
〈ncr〉. (4.25)

161



Chapter 4. Correlation between cosmic rays and magnetic fields

x

3.10
3.15

3.20

y2.5

2.6

5.950

5.975

6.000

z

(a)

1.37

1.47

1.58

1.69

1.80

1.92

b
/
b

rm
s

5.94 5.96 5.98 6.00 6.02
z

−0.6

−0.4

−0.2

0.0

0.2

0.4

µ

(b)

1.37

1.47

1.58

1.69

1.80

1.92

b
/
b

rm
s

Figure 4.19: (a) A particle trajectory near a maximum of ncr at (3.15, 2.55, 5.975) with magnetic field
strength along the trajectory shown with colour. The dark grey lines show magnetic field lines near the
trajectory. The particle moves forward and backward between two magnetic mirrors. (b) The particle
pitch angle µ as a function of z with magnetic field strength colour coded. The particle turns around
(µ changes sign) at the magnetic mirrors, regions where magnetic field is stronger.

162



Chapter 4. Correlation between cosmic rays and magnetic fields

According to this estimate, we expect that the number of trapped particles will depend in-
versely on the local parallel cosmic ray diffusivity and directly on the velocity of the particle
and the length of the trap. This number density n0, ‖ does not depend on the thickness of the
trap, d.

In the ISM, κ‖ is much greater than the κ⊥ (for a 5GeV particle in a 5µG field, κ‖ ∼
1028 cm2 s−1 and κ⊥ ∼ 1026 cm2 s−1). Thus, τ⊥ � τ‖ (d and l are of similar magnitude as
shown in Section 2.5). Thus, the parallel scattering is the more efficient escape mechanism.
For a rough estimate of n0, we assume that the local cosmic ray diffusivity κ‖ is due to pitch
angle scattering with a uniform background magnetic field (random magnetic fields on scales
much smaller than the magnetic field correlation length can be considered uniform). We
measure the dimensions of the trap from Fig. 4.19a and use the local cosmic ray diffusivity
κ‖ obtained in Fig. 4.5b. Using Eq. (4.25), we obtain n0, ‖ ≈ 5〈ncr〉, which is of the same
order of magnitude as the cosmic ray number density in traps obtained directly from the
simulation (Fig. 4.9a and Fig. 4.9b).

To calculate n0 throughout the entire volume using Eq. (4.24) or Eq. (4.25), the local
cosmic ray diffusivites and the dimensions of the traps are required as a function of space.
Even numerically, those are very difficult to calculate. It is hard to exactly calculate the local
value of the cosmic ray diffusivity at the scales of such magnetic traps (results reported in
Section 3.4 are for the global perpendicular diffusion coefficients when an uniform mean
field is imposed). A simulation which involves defining diffusion coefficients perpendicular
and parallel to local (turbulent) magnetic field lines is necessary to estimate the local values.
It is even harder to calculate the dimensions of the trap since that depends on the subtle
properties of magnetic field structure and the cosmic ray energy (different energies selects
different traps from the same random magnetic field).

A mean magnetic field introduces a specific direction which particles follow and so in-
creases the probability for a magnetic trap to occur, as shown in Fig. 4.10a. On the other hand,
the pitch angle scattering due to self-generated waves decreases the level of intermittency in
the cosmic ray number density, as shown in the Fig. 4.10b, because it facilitates the diffusion
(the denominator increases in Eq. (4.24) or Eq. (4.25)). When the distribution in Fig. 4.10a is
smoothed over a coarser scale, it does not correlate with the distribution in Fig. 4.10b. This
further illustrates that the pitch angle scattering not only reduces the length of trapping region
but also changes the propagation of particles significantly.

It is important to note that the spatial intermittency of cosmic rays does not require the
intermittent structure of the random magnetic field. Even in the randomized magnetic field,
which has almost perfect Gaussian statistics, and is free of intermittency, magnetic traps occur
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and lead to a spatial intermittency of cosmic rays.

4.9 Magnetic traps and cosmic ray diffusion

Cosmic ray intermittency at low energies in both non-Gaussian and Gaussian magnetic fields
confirm the presence of magnetic traps in each type of field. From Fig. 4.7, we see that cos-
mic ray intermittency tends to be higher for the intermittent magnetic field as compared to
randomized (Gaussian) magnetic field. This implies that either the number of magnetic traps
is higher for the intermittent magnetic field or traps in the intermittent field are ‘stronger’
(keeping particles trapped for a long time). The cosmic ray intermittency is only seen for low
energy cosmic rays, i.e., rL ≤ l0. As described in Section 3.4, this is also the energy range
where magnetic field intermittency affects cosmic ray diffusion. Here, we describe how con-
sidering more magnetic traps for the intermittent magnetic field as compared to the Gaussian
magnetic field might explain the enhancement of the cosmic ray diffusion coefficient when
magnetic field intermittency is considered (results from Section 3.4 and Section 3.5).

Magnetic traps inhibit diffusion and an ensemble of trapped particles are non-diffusive in
nature. If, for an intermittent magnetic field the number of traps is higher, the particles are
trapped for a longer time as compared to the Gaussian field. If the magnetic traps are stronger,
particles spend longer time in each trap. In both cases, since there is some additional trapping
time for intermittent magnetic field, they require more scatterings for diffusion to set in and
thus take longer to become diffusive (as can be confirmed by comparing td for rL/l0 = 0.016

in Fig. 4.1a and Fig. 4.1b). It is difficult to confirm these arguments numerically since the sta-
tistical properties of the traps (such as their rate of occurrence and strength) are controlled by
subtle properties of the random magnetic field and finding them is a non-trivial probabilistic
problem.

4.10 Cosmic ray distribution and the Liouville’s theorem

In an ideal situation, a perfectly isotropic and homogenous cosmic ray distribution would
always remain isotropic and homogenous in a static magnetic field due to the Liouville’s
theorem (shown in Enßlin (2003)). However, we do obtain an inhomogeneous cosmic ray
distribution. This is due to a finite number of particles in numerical simulations. The initial
distribution in such simulations is not completely isotropic and homogeneous, this makes
the final distribution inhomogeneous. We support this claim by showing PDFs of cosmic
ray distribution in Fig. 4.20 for a different number of particles (Fig. 4.20a) and different
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time averaging (Fig. 4.20b) (different time integration for Eq. (4.2) to construct a cosmic
ray number distribution from the ensemble of particle positions). The distribution becomes
more Gaussian on increasing both the number of particles and the averaging time. However,
spatially, the localized areas of high cosmic ray density are the regions with magnetic bottle
traps and this is confirmed in numerical simulations by looking at particle trajectories in the
vicinity of a trap (Section 4.8). The presence of such traps enhances cosmic ray number
density at certain locations (or reduces at others) but those are not necessarily the strong
magnetic field (or the weak magnetic field) regions. Thus, the cosmic rays and magnetic field
distribution still remain uncorrelated.

4.11 Coupling of cosmic rays and thermal gas

To consider thermal gas-cosmic ray coupling, we solve the MHD equations using a two-
fluid model: gas with adiabatic index γg = 5/3 (a non-relativistic fluid) and cosmic rays
with adiabatic index γcr = 4/3 (a relativistic fluid). For an isothermal gas with equation
of state pg = c2

sρ, where pg is the gas pressure, cs is the constant sound speed and ρ is the
gas density, we solve equations for mass conservation (Eq. (4.26)), Navier-Stokes equation
(Eq. (4.27)), magnetic induction (Eq. (4.28)) and cosmic ray advection-diffusion (Eq. (4.29)
and Eq. (4.30)) in a box of dimensionless size (2π)3 (periodic boundary condition for y and
z, stress-free normal field boundary condition with energy density of cosmic rays ecr = 0 at
boundaries x = 0, 2π) with 2563 points.

The governing equations are

∂ρ

∂t
+∇ · (ρu) = 0, (4.26)

∂u

∂t
+ u · ∇u =

−∇(pg + pcr)

ρ
+

j× b

cρ
+ ν(∇2u+

1

3
∇∇ · u+ 2S · ∇ ln ρ) + F, (4.27)

∂b

∂t
= ∇× (u× b) + η∇2b. (4.28)

where u is the gas velocity, j is the current density, Sij = 1/2 (ui;j + uj;i − 2/3δij∇ · u)
is the rate of the strain tensor, ν is the viscosity (assumed constant) and F is the forcing
function driving turbulence at scale 2π/kF, b is the magnetic field, c is the speed of light and
η is the magnetic diffusivity (assumed constant). The forcing is mirror-symmetric, nearly
incompressible and δ correlated in time (details described in Section 2.4.1 of Chapter 2).
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Figure 4.20: The PDFs of cosmic ray number density on increasing the averaging time (a) and de-
creasing number of particles from 8192 (Fig. 4.7a) to 1024 (b) for rL/l0 = 0.0016 in the intermittent
magnetic field. The distribution tends to be less intermittent (weaker tail in the distribution) as the
averaging time increases or the number of particles increases. As the averaging time or number of
particles increases even further, we expect that the distribution would tend to a Gaussian distribu-
tion and would eventually become a delta function at ncr = 〈ncr〉 for a very large averaging time or
equivalently a large number of particles.
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Table 4.2: Non-dimensional parameters used to solve the MHD and cosmic ray fluid equations
(Eq. (4.26) - Eq. (4.30)) and their corresponding ISM values.

Parameter Numerical value ISM value
γg 5/3 5/3
γcr 4/3 4/3
kF 1 and 2 100 pc and 50 pc
ν 2× 10−3 2× 1023 cm2 s−1

η 1× 10−3 1× 1023 cm2 s−1

κ‖ 3× 10−1 3× 1025 cm2 s−1

κ⊥ 0 0
τ 3× 10−1 0.3Myr
Qcr 0.001, 0.005, 0.01 (0.001, 0.005, 0.01)× 10−26 erg cm−3 s−1

Cosmic ray advection-diffusion equation 3 is

∂ecr

∂t
+∇ · (ecru) + pcr∇ · u = −∇ · Fcr +Qcr. (4.29)

where ecr is the cosmic ray energy density, pcr = ecr(γcr − 1) is the cosmic ray pressure, Qcr

is the cosmic ray energy source by which cosmic rays are injected uniformly throughout the
volume at a constant rate (note that the cosmic rays are lost via the boundaries in x direction),
Fcr is the cosmic ray flux defined via

τ
∂Fcri

∂t
= −κij∇jecr − Fcri, (4.30)

where τ is the cosmic ray flux correlation time and κij is the diffusion coefficient. κij =

κ⊥δij + (κ‖ − κ⊥)b̂ib̂j is written in terms of the parallel κ‖ and perpendicular κ⊥ diffu-
sion coefficients (b̂i is the unit vector along i-axis). Here we solve the telegraph equation
Eq. (4.30) to study cosmic ray diffusion (as justified in Section 3.7) instead of the usual dif-
fusion equation.

We solve equations (Eq. (4.26) – Eq. (4.30)) using the Pencil code for parameters given in
Table 4.2. All velocities are in units of the sound speed cs, densities are in units of the initial
gas density ρ0, lengths are in units of the box size L = 2π (so that the smallest wavenumber
is k1 = 1), time is in units of the eddy turn over time t0 = 1/urmskF, the magnetic field
in units of (4πρ0c

2
s)

1/2 and all the diffusivities are in units of cs/k1. All other units can be
derived from these basic units. The unit of the cosmic ray source term is Qcr is ρ0c

3
sk1. We

3Here it is assumed that cosmic rays in randomly generated magnetic fields are diffusing and choosing a
diffusion coefficient κij is equivalent to selecting an energy for particles in test particle simulations (Section 3.4)
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Figure 4.21: Time evolution of the rms velocity field urms (red) , rms magnetic field brms (blue) and
mean cosmic ray energy density 〈ecr〉 (magenta) as a function of normalized time t/t0, where t0 is the
eddy turnover time, for the case where 〈ecr〉 > b2rms. The magnetic field decreases till it becomes an
eigenfunction of the induction equation and then it grows exponentially (kinematic stage, light pink).
The magnetic field finally saturates (saturated stage, light blue) due to the back reaction on the velocity
flow by Lorentz forces. The cosmic ray energy density saturates faster than the magnetic field.
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Figure 4.22: (a) 2D cut in the xy-plane through the middle of the domain with vectors for
(bx/ brms, by/ brms) and colours showing the magnitude of bz/ brms for magnetic field in the kine-
matic stage. (b) Similar 2D cut at the same time for the normalized energy density of cosmic rays
ecr/〈ecr〉 in the kinematic stage. This is for the case where 〈ecr〉 > b2rms.
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Figure 4.23: As in Fig. 4.22 but for the saturated stage.
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Figure 4.24: The scatter plot for the normalized energy densities of cosmic rays ecr/〈ecr〉 and magnetic
fields b2/〈b2〉 for the case with 〈ecr〉 ≈ 〈b2〉 at the box scale. Even though both energy densities are
equal when averaged over the size of the domain, locally they are not correlated.
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select κ⊥ = 0 for simplicity. We choose three different values for the cosmic ray source
term Qcr to have following three different cases in the saturated stage: 〈ecr〉 < b2

rms, 〈ecr〉 ≈
b2

rms, 〈ecr〉 > b2
rms. The gas density and magnetic field (of very small amplitude) are both

initialized with a Gaussian random distribution in space. Fig. 4.21 shows the evolution of the
root mean square (rms) velocity field, rms magnetic field and mean cosmic ray energy density.
The magnetic field first decays till it latches on to an eigenfunction of the induction equation
and then it grows exponentially (referred to as kinematic stage). Finally, the magnetic field
becomes strong enough and the Lorentz force reacts back on the velocity flow saturating the
magnetic field (referred to as saturated stage). Fig. 4.22 and Fig. 4.23 shows the magnetic
field and cosmic ray distribution in a slice through middle of the numerical domain for the
case 〈ecr〉 > b2

rms. For all three cases, we find that the cross correlation between cosmic
rays and magnetic fields (using Eq. (4.19)) is very close to zero. Thus, even including the
effect of thermal gas, cosmic rays and magnetic fields remain uncorrelated. In Fig. 4.22 and
Fig. 4.23, cosmic rays seems to follow the magnetic field vectors because we have considered
only diffusion of cosmic ray fluid along the field line (κ⊥ = 0). Fig. 4.24 shows the scatter
plot of the cosmic ray and magnetic field energy densities over the entire domain for the case
where 〈ecr〉 ≈ 〈b2〉. The form of the plot confirms that the two quantities are not correlated.
Thus, even when both energies are equal over the scale of the domain (by construction here),
they are not correlated locally.

4.12 Discussion and conclusions

Using test-particle simulations of cosmic rays, we have demonstrated that the spatial distribu-
tion of cosmic rays is not correlated with magnetic field strength on scales that are less than
(or comparable to) the outer scale, l0, of a random flow that produces magnetic field. This im-
plies that the local equipartition between cosmic ray and magnetic field energy densities does
not occur on these scales. We have also shown the same using cosmic ray fluid equations,
where the cosmic rays interact with both the thermal gas and the magnetic fields. In fact,
in test-particle simulations we find that cosmic ray number density and magnetic field are
approximately statistically independent. This allows us to express synchotron intensity as the
product of the average cosmic ray number density and average magnetic field strength. How-
ever, energy equipartition between cosmic rays and magnetic fields may yet hold at scales
much larger than the driving scale of turbulence, l0 ' 100 pc in spiral galaxies and 10 kpc in
galaxy clusters.

At high energies, rL > lb with lb the correlation length of the magnetic field, the cosmic
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ray distribution is uniform. At low energies, rL < lb, the spatial distribution of cosmic rays is
intermittent in both Gaussian and non-Gaussian (spatially intermittent) magnetic fields. This
occurs because of the presence of magnetic traps in random magnetic fields where the local
magnetic field has a specific structure but is not necessarily strong. As a result, the cosmic ray
number density is not directly related to the local magnetic field strength. The trapping, and
the ensuing intermittency in the cosmic ray distribution, are enhanced by a mean magnetic
field and reduced by the pitch angle scattering of cosmic ray particles or any other additional
diffusion.

The intermittency in the distribution of cosmic ray particles is a robust feature of their
propagation in a random magnetic field that emerges in both Gaussian and non-Gaussian
magnetic fields. The presence of small-scale cosmic ray structures due to random magnetic
traps can enhance the synchrotron intensity locally. Such effects must be considered while
analyzing high-resolution synchrotron observations of spiral galaxies. This extreme small-
scale inhomogeneity may also affect the cosmic ray spectra or the interactions of cosmic rays
with interstellar gas (Grenier et al., 2015), including spallation reactions and ionization, e.g.,
producing strong local variations in the ionization rate. The γ-ray emissivity can also be
affected by the trapping of cosmic rays particles in random magnetic traps.

For cosmic rays to become trapped, their Larmor radius must be smaller than the corre-
lation length of the magnetic field, i.e., rL ≤ lb. In spiral galaxies, where lb . 100 pc, the
proton energy in a 5µG field with rL = 100 pc is 108 GeV. Thus, the trapping of cosmic
rays described above should be effective and efficient for galactic cosmic rays. In galaxy
clusters, with lb . 10 kpc and b ' 1µG, protons of energy up to 109 GeV can be trapped and
thus exhibit spatial intermittency. This particle trapping can effectively confine higher en-
ergy particles for which other confinement mechanisms (scattering by self-generated waves,
scattering by extrinsic turbulence and field line random walk) are not very active (Chandran,
2000).
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Magnetic fields in elliptical galaxies

Fluctuation dynamo action is crucial for our understanding of the evolution of magnetic fields
in galaxies. However, an unambiguous observational confirmation of the fluctuation dynamo
action in galaxies is still missing. This is because, in spiral galaxies, it is difficult to differ-
entiate between the small-scale magnetic field generated by a fluctuation dynamo and those
due to the tangling of the mean field. We propose that observing magnetic fields in elliptical
galaxies would serve as a probe of the fluctuation dynamo action in a galactic environment.
In this chapter, we aim to explore this possibility via a grid of the Faraday rotation measures
from background polarized sources seen through an elliptical galaxy. We estimate the prop-
erties of the rotation measure distribution in terms of the properties of the random magnetic
field and thermal electron number density. We then confirm the estimates with numerical sim-
ulations, for which we use the magnetic field generated by a nonlinear fluctuation dynamo
(Chapter 2) and three physically motivated thermal electron density distributions. Finally, we
discuss the possibility of observing background radio sources through our nearest elliptical
galaxy, Maffei 1. Such an observation would help us study the strength and structure of mag-
netic fields in an elliptical galaxy, which in turn would help us better understand the theory
of fluctuation dynamos.
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5.1 Motivation

Magnetic fields have been detected in many spiral galaxies (Beck, 2016) and are usually ex-
plained by the turbulent dynamo theory (Brandenburg & Subramanian, 2005). Based on the
driving scale of turbulence, the observed magnetic field can be divided into large- and small-
scale magnetic fields. The large-scale field is believed to be generated by a large-scale or
mean-field dynamo (Beck et al., 1996; Brandenburg & Subramanian, 2005). As discussed
in Section 2.1, the small-scale magnetic field in spiral galaxies can be generated by three
mechanisms: tangling of the large-scale field, the fluctuation dynamo action and compres-
sion by shocks. The magnetic field generated by compression due to shocks is correlated
with the gas density (Federrath et al., 2011). The small-scale magnetic field due to a fluc-
tuation dynamo is spatially intermittent (Section 2.4.2), whereas that due to the tangling of
the large-scale field is presumably Gaussian in nature. Considering the driving scale of tur-
bulence within a range of 50–100 pc1(Ohno & Shibata, 1993; Gaensler et al., 2005; Fletcher
et al., 2011; Houde et al., 2013), it would require a spatial resolution of 10 pc or less, to
study the structure of the small-scale magnetic field in spiral galaxies. Such a resolution is
extremely difficult to achieve with present day telescopes and thus it is difficult to observa-
tionally differentiate between the magnetic field generated by a fluctuation dynamo and that
due to the tangling of the large-scale field. In a turbulent environment like the ISM of spiral
galaxies, a fluctuation dynamo is physically the most plausible scenario for magnetic field
amplification (Chapter 2) but we are yet to confirm this observationally. The existence of a
fluctuation dynamo in galaxies is fundamental to the galactic dynamo theory. In the absence
of a fluctuation dynamo, the magnetic field in protogalaxies would be seeded with a much
weaker field and then the mean-field dynamo would take much longer to amplify the field
up to the present day observed value (Ruzmaikin et al., 1988; Arshakian et al., 2009). Fur-
thermore, the field generated by a fluctuation dynamo is important for low-energy cosmic ray
propagation (Chapter 3) and for interpretations of radio observations. Thus, it is important to
find a clear observational probe of the fluctuation dynamo action.

There is a similar question with respect to the solar magnetic field. The 11 year solar
cycle is associated with the large-scale magnetic field of the Sun and a mean-field dynamo
theory is used to explain the large-scale field. In the absence of a fluctuation dynamo in
the Sun, the small-scale magnetic field would be correlated with the solar cycle since all the
small-scale field would be due to the tangling of the large-scale field. The analysis of solar

1Even smaller values of 1–20 pc are also reported (Minter & Spangler, 1996; Haverkorn et al., 2008; Iaco-
belli et al., 2013)
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magnetograms suggests that this is the case (Stenflo, 2012). However, there are also claims
that the correlation is not that significant and a fluctuation dynamo is indeed active in the Sun
(Jin & Wang, 2015a,b). Numerical simulations are consistent with the latter option (Karak &
Brandenburg, 2016).

With a motivation to probe the fluctuation dynamo action in a galactic environment, we
consider magnetic fields in elliptical galaxies (slow rotators as defined by the ATLAS3D

Project2) . Unlike spirals, elliptical galaxies have a very small rotation rate (Emsellem et al.,
2011; Cappellari et al., 2011) and so a mean-field dynamo action is unlikely. Moreover, these
systems are not differentially rotating so an MRI generated large-scale field is also unlikely.
However, the interstellar turbulence due to supernova explosions and random motion of stars
can amplify a weak seed field (due to stellar mass ejecta) by fluctuation dynamo action (Moss
& Shukurov, 1996). The magnetic field generated by a fluctuation dynamo can be further
amplified by compression due to cooling flows 3 in elliptical galaxies (Mathews & Brighenti,
1997). This magnetic field is non-Gaussian and spatially intermittent (Section 2.4.2). The
detection and characterization of magnetic field in an elliptical galaxy would be a direct ob-
servational confirmation of the fluctuation dynamo action. Moreover, the observations can
be compared with the theories of fluctuation dynamos to further understand the physics of
magnetic field saturation (Section 2.4.3). The structure of magnetic field generated by a
fluctuation dynamo has been studied theoretically (Zeldovich et al., 1990) and numerically
(Section 2.5) but lacks a concrete and convincing observational confirmation.

5.2 Magnetic fields in elliptical galaxies

Turbulence in the hot gas of elliptical galaxies

The source of hot gas in ellipticals can be internal or external to the galaxy. Internally, the hot
gas can be due to outflows from evolved stars and Type Ia supernova explosions. Externally,
some of the circumgalactic gas (expelled from the galaxy by winds driven by frequent Type
II supernovae explosions at earlier stages of galactic evolution) can fall back into the galaxy,
as well as the gas accreted from the galaxy group or cluster. The hot gas in elliptical galaxies
is observed via its X-ray emission. The relationship between the X-ray luminosity LX and
optical luminosity (in B band) LB of bright elliptical galaxies is observationally found to

2http://www-astro.physics.ox.ac.uk/atlas3d/
3The gas in the centres of elliptical galaxies quickly loses its energy via X-ray emission. Since the central

core cools quickly, the weight of the outer region will cause the surrounding material to flow inwards. This is
referred to as the cooling flow (Fabian, 1994).
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be LX ∝ L2.2
B (O’Sullivan et al., 2001). This confirms the non-stellar origin of the X-ray

emission, otherwise the relationship would have been linear. From X-ray observations, gas
mass can be inferred. The total mass of the hot gas is about 1–2% of the total stellar mass.
Generally, the hot gas is the dominant fraction of the interstellar medium of the elliptical
galaxies.

The major and continuous sources of turbulent energy in elliptical galaxies are Type Ia
supernovae explosions and random motions of stars (Moss & Shukurov, 1996). The length
scales associated with random star motions would be much smaller than those due to super-
nova explosions, thus we consider Type Ia supernova explosions as the only source of turbu-
lence in the ISM. Each explosion of a Type Ia supernova enriches the surrounding medium
with roughly 0.7M� (M� being the solar mass) of iron and thus the observed iron abundance
can be used to estimate the supernova rate in ellipticals (Mathews & Brighenti, 2003). The
supernova rate cannot be as high as in spiral galaxies. This is inferred from the following
three observations. First, if the rate was very high there would be galactic outflows or winds
from ellipticals, which are not observed. Second, the observed X-ray luminosity gives a rate
which is much smaller than that in the spirals. Finally, the observed iron abundance also
suggests that the rate is low.

We estimate the driving scale and velocity of the ISM turbulence driven by Type Ia su-
pernova explosions in elliptical galaxies. First, we use the temperature of the hot gas inferred
from X-ray observations to calculate the local sound speed. Then we calculate the size of
largest supernova remnants assuming that a supernova explosion drives negligible turbulence
once the shock front velocity is approximately equal to the local sound speed. The supernova
radius at that time gives the driving scale of the turbulence l0. Next, we consider that a frac-
tion of the total supernova energy is converted to kinetic energy of the turbulence to calculate
the turbulent velocity in the medium (very similar to Section 1.5 where this done for spiral
galaxies).

X-ray observations suggest a temperature T of the order of 107 K for the diffuse inter-
stellar gas in elliptical galaxies (Brighenti & Mathews, 1997). This implies a sound speed
cs ≈

√
kBT/mp ≈ 300 km s−1, where kB = 1.38×10−16 ergK−1 is the Boltzmann constant

and mp = 1.67× 10−24 g is the proton mass (assuming that most of the hot gas is made up of
protons) . We now use the sound speed and Sedov–Taylor blastwave self-similarity solution
(Ostriker & McKee, 1988) to calculate the driving scale of the turbulence. The radius of a
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supernova remnant R as a function of time t is then

R =

(
κ
ESN

ρ0

)1/5

t2/5, (5.1)

whereESN is the energy of a supernova explosion, ρ0 is the average gas density of the ambient
medium and κ is a parameter which is about 2 for a monoatomic ideal gas. Now, the radius
R is roughly equal to the driving scale of the turbulence l0, when the velocity of shock front
is equal to cs. So, then t ≈ R/cs. This gives

l0 '
(
κ
ESN

ρ0

)1/3
1

c
2/3
s

. (5.2)

Using ESN = 1051 erg, ρ0 = 10−3mp cm
−3 = 1.67 × 10−27 g cm−3 and cs = 300 km s−1,

we obtain l0 ' 300 pc. This scale is slightly larger than that in spiral galaxies (' 100 pc)
because the ambient medium is less dense. The supernovae survive longer in the ellipticals
as compared to the spirals but their frequency is much lower and so they inject less turbulent
kinetic energy in the medium. To calculate the turbulent velocity, we assume that about 1%
of the total supernovae energy is converted to the kinetic energy of the turbulence (Dyson &
Williams, 1997). The rate at which supernovae inject energy into the medium can be balanced
with the rate of gain of kinetic energy of the medium as

v2
0

l0/v0

≈ fνSNESNM
−1
gas, (5.3)

where v0 is the turbulent velocity, f is the fraction of energy that is injected into the medium,
νSN is the frequency of supernova explosions and Mgas is the mass of the hot gas. Using
l0 = 300 pc, f = 0.01, νSN = 10−3 yr−1(Cappellaro et al., 1999), ESN = 1051 erg and
Mgas = 1010 M�, we obtain v0 ' 2.5 km s−1. This is lower than that in spiral galaxies
(' 10 km s−1 as derived in Section 1.5).

The driving scale of turbulence l0 ' 300 pc and velocity v0 ' 2.5 km s−1 are global
values calculated from average quantities. The eddy turnover time can be calculated as t0 ≈
l0/v0 ' 1.2×108 yr. The typical value of magnetic Reynolds numbers can also be calculated.
Spitzer resistivity η for a plasma at a temperature T can be estimated from the following
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expression 4 (Brandenburg & Subramanian, 2005):

η ' 104

(
T

106 K

)−3/2

cm2 s−1. (5.4)

Using T = 107 K, we obtain η ' 3 × 102 cm2 s−1. For l0 = 300 pc and v0 = 2.5 km s−1,
we obtain ReM = l0v0/η ' 1022. The estimated ReM is considerably greater than Re(crit)

M

(' 102–103), which is required for the fluctuation dynamo action. Thus, it is reasonable to
expect fluctuation dynamo-generated magnetic fields in elliptical galaxies.

Since the gas and stellar densities in elliptical galaxies varies with the radius (usually the
variation is described by the King profile f = f(0)(1 + (r/a)2)−β , where f(0) is the density
at radius r = 0, a is the radius of the central core and β is the exponent), the properties of
the ISM turbulence would also change. We, however, are interested only in the core region
of the elliptical galaxies where the density of the hot gas is high and thus the probability for
an unambiguous detection of the magnetic field is higher.

Fluctuation dynamo action and further amplification by cooling flows

Any pre-existing magnetic field energy remaining from the galaxies which merge to form an
elliptical galaxy will cascade down to smaller scales and will be eventually lost by resistive
decay in a time of order t0 = 108 yr. Thus, there must be a continuous generation of mag-
netic field within the galaxy, which we claim is via the fluctuation dynamo action due to the
random turbulent velocity in the medium. The seed field from stellar ejecta or that remaining
after galaxy merger events will be amplified by a fluctuation dynamo to produce intermittent
magnetic fields (Chapter 2). The root mean square (rms) value of the amplified magnetic
field brms in the core (where the density is higher) of the elliptical galaxy is related to the
equipartition field beq (Table 2.1),

brms ≈ 0.5 beq = 0.5(4πρ)1/2v0, (5.5)

where ρ is the density of the medium and v0 is the turbulent velocity. With ρ = 0.1mp cm
−3 =

1.67× 10−26 g cm−3 (Forman et al., 1985) and v0 = 2.5 km s−1, we obtain brms ' 0.2µG.
The magnetic field would be further enhanced by the cooling flows due to compression.

By flux conservation under spherically symmetric compression, the field strength b grows
as ρ2/3, where ρ is the gas density. In cooling flows, the density can be enhanced by a
factor of 10 or more (Mathews & Brighenti, 1997). Thus, the magnetic field with magnitude

4Assuming the Coulomb logarithmic factor is of the order unity.
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approximately equal to 0.2µG can be further amplified to be around 1µG. Mathews &
Brighenti (1997), using a detailed spherical cooling flow model, suggest a radial dependence
for the magnetic field of the form b(r) ∼ [1–10 (r/10 kpc)−1.2] µG.

Existing observations of magnetic fields in elliptical galaxies

The observational tracers of magnetic fields in spiral galaxies described in Section 1.9 are
not very useful for ellipticals. Synchrotron emission from elliptical galaxies is not observed
because of the lack of cosmic ray electrons. Polarized dust emission is also not observed
because of a relative low level of dust. It is not possible to probe magnetic field via the
Zeeman splitting because of the absence of dense cold gas. The most promising probe for
studying magnetic fields in elliptical galaxies is Faraday rotation. The rotation measure RM
in terms of convenient units is written as

RM
1 radm−2

= 0.81

∫ L/1 pc

0

ne

1 cm−3

b‖
1µG

d

(
l

1 pc

)
, (5.6)

where ne is the thermal electron number density, b‖ is the magnetic field parallel to the line
of sight and L is the path length. For a cosmologically distant source at a redshift z, the RM
in the observer frame is further reduced by a factor of (1 + z)2 than that given by Eq. (5.6)
(which is the RM in the rest frame).

Greenfield et al. (1985) studied the radio polarization signal from two gravitationally
lensed images of the quasar 0957+561 (z ≈ 1.41) at multiple wavelengths and found that the
rotation measures of the two images differs by 100 radm−2. This difference can be attributed
to the magnetic field in the ISM of the lensing (cD) galaxy at z ≈ 0.36. So, to estimate
magnetic field in the galaxy using Eq. (5.6) for the quasar at a redshift z, we can write RM in
terms of mean quantities as

RM ≈
(
0.81

〈ne〉
cm−3

〈b〉
µG

L

pc

)/
(1 + z)2 , (5.7)

where 〈· · · 〉 denotes the average over the path length. Assuming 〈ne〉 ≈ 0.01 cm−3 and L ≈
30 kpc, for RM = 100 radm−2 and z = 1.41, we obtain 〈b〉 ' 2.5µG. This is comparable
in strength to magnetic fields observed in nearby spiral galaxies (Fletcher, 2010). However,
mass modelling of the system suggest that the lens must also have some contribution from
the cluster to explain the lensing observations (Greenfield et al., 1985). Thus, it then becomes
difficult to differentiate between the contribution to the RM difference due to the galaxy’s and
cluster’s magnetic fields.
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Table 5.1: List of sources, their redshifts z, the depolarization fraction for jets DPj and counter jets
DPcj (Garrington et al., 1991). The calculated standard deviation of the rotation measure in jets
σRMj( radm

−2), counter jets σRMcj( radm
−2), elliptical hosts σRMellip

( radm−2) and the rms mag-
netic field brms(µG) in ellipticals are also given.

Name z DPj σRMj
DPcj σRMcj

σRMellip
brms

0017+15 2.012 0.61 12.479 0.21 22.174 18.329 0.086
0123+32 0.794 0.96 3.586 0.89 6.059 4.884 0.065
0225-01 2.037 0.85 7.156 0.08 28.209 27.286 0.126
0232-04 1.436 0.81 8.148 0.16 24.028 22.604 0.163
0838+13 0.684 0.73 9.957 0.25 20.899 18.375 0.277
0850+58 1.322 0.57 13.308 0.15 24.448 20.509 0.162
1023+06 1.699 0.45 15.861 0.25 20.899 13.609 0.08
1115+53 1.235 0.86 6.893 0.18 23.243 22.197 0.19
1218+33 1.519 0.56 13.516 0.07 28.945 25.596 0.172
1226+10 2.296 0.69 10.812 0.04 31.845 29.953 0.118
1241+16 0.557 0.9 5.761 0.41 16.76 15.739 0.277
1258+40 1.659 0.84 7.412 0.11 26.371 25.308 0.153
1318+11 2.171 0.97 3.098 0.06 29.772 29.61 0.126
1323+65 1.618 0.73 9.957 0.18 23.243 21.002 0.131
1634+17 1.897 0.77 9.074 0.27 20.31 18.17 0.092
1634+58 0.985 0.84 7.412 0.25 20.899 19.54 0.212
1656+57 1.281 0.9 5.761 0.1 26.934 26.311 0.216
1709+46 0.806 0.56 13.516 0.15 24.448 20.372 0.267
1732+16 1.27 0.68 11.023 0.08 28.209 25.966 0.215
1816+47 2.225 0.82 7.907 0.06 29.772 28.703 0.118
0107+31 0.689 0.65 11.65 0.39 17.224 12.686 0.19
0712+53 0.064 0.34 18.436 0.28 20.026 7.82 0.295
0824+29 0.458 0.86 6.893 0.44 16.083 14.531 0.292
0903+16 0.411 0.65 11.65 0.38 17.46 13.005 0.279
0937+39 0.617 0.78 8.847 0.77 9.074 2.017 0.033
1001+22 0.974 0.5 14.778 0.36 17.941 10.173 0.112
1055+20 1.111 0.88 6.346 0.52 14.353 12.874 0.123
1354+19 0.72 0.59 12.893 0.23 21.518 17.228 0.249
1548+11 1.901 0.89 6.059 0.33 18.689 17.68 0.09
1618+17 0.555 0.84 7.412 0.62 12.272 9.781 0.173
1830+28 0.594 0.81 8.148 0.75 9.52 4.923 0.083
2325+29 1.015 0.83 7.662 0.6 12.686 10.111 0.106
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Laing (1988) and Garrington et al. (1988) studied radio polarization from FRII radio
sources and observed that the polarization signal strength was significantly higher on the jet
side which is closer to us than that in the jet side which is further away from us (the counter
jet). Assuming that both jets have similar intrinsic properties, the difference in the polariza-
tion can be attributed to the depolarization by a foreground screen (the radiation from the
more distant side travels more through the screen and is thus more depolarized), which can
be an X-ray emitting halo of the elliptical galaxy. Assuming that the depolarization is be-
cause of a halo of an elliptical galaxy, we can estimate its magnetic field. We consider that
the elliptical galaxy acts as a Faraday screen, i.e., a medium with magnetic fields and thermal
electrons but lacking relativistic electrons (this is a justified assumption since an elliptical
galaxy has very few cosmic ray electrons). For a Faraday screen, assuming a Gaussian dis-
tribution of Faraday depths, the degree of polarization p at wavelength λ is given by (Burn,
1966; Sokoloff et al., 1998)

p = p0 exp(−2σ2
RMλ

4), (5.8)

where p0 is the maximum degree of polarization and σRM is the standard deviation of the
fluctuations in rotation measure due to the screen. The depolarization DP between the wave-
lengths λ1 and λ2 with λ1 > λ2 is given by

DP = exp(−2σ2
RM(λ

4
1 − λ4

2)). (5.9)

For the source 0225-01 at z = 2.037, DP at λ1 = 20 cm and λ2 = 6 cm for the jet DPj and the
counter jet DPcj is observed to be 0.85 and 0.08, respectively (Garrington et al., 1991). Using
Eq. (5.9), we obtain the standard deviation in the rotation measure distribution for the jet σRMj

and counter jet σRMcj
to be 7.156 radm−2 and 28.209 radm−2, respectively. Assuming that

the difference is due to the halo of an elliptical galaxy and accounting for the factor (1 + z)2,
we derive the the standard deviation in the rotation measure distribution for the galaxy σRMellip

to be
√
28.202 − 7.152/(1 + 2.037)2 ≈ 5.30 radm−2. σRMellip

in radm−2 is given by (this
assumes a uniform thermal electron number density, see Section 5.3.1)

σRMellip
=

(2π)1/4

31/2
K〈ne〉 brms(Llb)

1/2, (5.10)

where K = 0.81µG−1 cm3 pc−1 radm−2 is a constant, 〈ne〉 is the mean thermal electron
number density in cm−3, brms is the rms magnetic field strength in µG, L is the path length
in pc and lb is the magnetic field correlation length in pc. Assuming 〈ne〉 ≈ 0.01 cm−3,
L ≈ 100 kpc (here the path length is larger because of the halo) and lb = 100 pc, for σRMellip

=
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Figure 5.1: Two dimensional histogram of the redshift of the sources z and the calculated magnetic
field of host galaxies brms(µG). There is no clear trend of magnetic fields with redshift.

5.30 radm−2 and z = 2.037, we obtain brms ' 0.126µG. This estimate gives a slightly lower
but still considerable magnetic field strength in the halo of an elliptical galaxy. In Table 5.1,
we repeat this calculation for a number of sources. The rms magnetic field ranges from
0.03µG to 0.3µG. Fig. 5.1 shows a two dimensional histogram of redshift of 32 sources
listed in Table 5.1 and the calculated magnetic field in their host galaxies. We do not see any
obvious relationship between the two quantities. However, the depolarization asymmetry can
be due to an extended disk of magneto-ionic medium surrounding elliptical galaxies (Gopal-
Krishna & Nath, 1997), anisotropic magnetic fields, absence of a spherically symmetric halo
(Laing et al., 2008) or difference in Faraday rotation due to shocked and un-shocked medium
(Guidetti et al., 2012).

Recently Nyland et al. (2017) found that cores of early-type galaxies are bright in syn-
chrotron because stars are still being formed in the central regions of the galaxies. They find
a deficiency in radio emission as compared to the infrared emission and one of the possible
reasons for observation is a weak magnetic field in the medium5. These authors calculate
magnetic field of the order of 1–10µG but to estimate that they assume that such early type
galaxies are very similar in properties (such as energy equipartition between cosmic rays and
magnetic fields, ratio of number density of cosmic ray electrons to cosmic ray protons to be
100 and disc-like or cylindrical geometry of the synchrotron emitting region with gas scale
heights similar to a spiral galaxy) to the nearby spiral galaxies.

Our aim is to find observational evidence of magnetic fields in an elliptical galaxy which

5Another reason given is the quick escape of cosmic ray electrons. However, there is no sign of an outflow
or wind in such galaxies. Thus, the cosmic rays transport must be dictated by magnetic fields. But it is extremely
difficult to understand the cosmic ray propagation without knowing the structure and strength of magnetic fields
in those galaxies.
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is relatively isolated and does not have a central active nucleus. Considering the mag-
netic field amplification by a fluctuation dynamo and subsequent enhancement by a galactic
cooling flow, Mathews & Brighenti (1997) suggest the radial dependence of magnetic field
strength b(r) ∼ 1–10 r−1.2 µG. The radial dependence of thermal electron number density
is ne(r) ∼ 0.1r−1.5 cm−3 (Mathews & Brighenti, 2003). Thus, we expect substantial fluc-
tuations in Faraday rotation measure from at least the core (usually defined as the radius at
which the slope of the surface brightness profile changes drastically from very low values) of
an elliptical galaxy.

5.3 Simulated Faraday rotation measure in elliptical galax-
ies

5.3.1 Theoretical predictions of rotation measure fluctuations

The standard deviation of fluctuations in rotation measure σRM can be estimated from the
two-point correlation function of RM, which in turn can be estimated from the two-point
correlation of the magnetic field. For the simplest case, this can be done by assuming that
the number density of thermal electrons is uniform. Assuming a constant ne in Eq. (5.6),
Shukurov & Sokoloff (2007) demonstrated that

σRM =
(2π)1/4

31/2
Kne brmsL

1/2l
1/2
b , (5.11)

where K is a constant, brms is the root mean square magnetic field strength in the region, L
is the path length and lb is the correlation length of the random magnetic field. In the central
region, ne = 0.1 cm−3 (Mathews & Brighenti, 2003), brms = 1µG, lb = 100 pc (l0/lb ' 3−4
in Table 2.1 and l0 ' 300 pc), L = 1.5 kpc (since the emission is considered from the central
region only) andK = 0.81 (when rotation measure is in the units of radm−2, number density
is in the units of cm−3, magnetic field is in the units of µG and lengths are in the units of pc),
we obtain σRM ' 300 radm−2. This is significant and we expect that this can be observable.
However, the number density decreases with the radius and this might further decrease the
σRM at larger radii.

The analysis can be extended to include the contribution from a varying thermal electron
number density (see Appendix A in Bhat & Subramanian (2013)). Assuming the King profile
for electrons in an elliptical galaxy ne = ne(0)(1 + (r/a)2)−3/4, where ne(0) is the electron
number density at r = 0, a is the core radius, and also assuming that brms ∝ nγe , σRM at r = 0
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is

σRM(0) =
(2π)1/4

31/2
Kne(0) brmsa

1/2l
1/2
b

(
Γ (3

2
(γ + 1)− 0.5)

Γ (3
2
(γ + 1))

)1/2

. (5.12)

Using K = 0.81, ne(0) = 0.1 cm−3, brms = 1µG, a = 400 pc, lb = 100 pc and γ = 2/3

(motivated by the flux freezing condition, i.e., b ∝ ρ2/3), we obtain σRM(0) ' 125 radm−2.
The σRM as a function of the radial distance in the plane of the sky r⊥ is

σRM(r⊥) = σRM(0)
[
1 + (r⊥/a)

2
]−(1

4
Γ

(
3

2
(γ + 1)− 1

))
. (5.13)

For σRM(0) = 125 radm−2 and γ = 2/3, we obtain σRM(r⊥) = 125 radm−2(1+(r⊥/a)
2)−0.22.

5.3.2 Numerical simulations

We confirm our expectations for σRM (Section 5.3.1) using our numerical simulations of the
nonlinear fluctuation dynamo (Section 2.4). We use the magnetic field from a nonlinear dy-
namo simulation with kF = 5,Re = 283,ReM = 2261 6 and PrM = 8 (Table 2.4) in a
box of non-dimensional size L = 2π with 5123 points. In terms of dimensional quantities,
2π/kF = 300 pc and L = 1.5 kpc. This means that there are 5 velocity correlation cells
along each direction in the domain and a total of 125 cells in the whole cube. The simulations
are for an isothermal and incompressible gas. Thus, the electron number density is roughly
uniform within the domain. To consider the effect of thermal electron number density distri-
bution on the rotation measure distribution, we consider the following physically motivated
distributions:

• a uniform ne as suggested by isothermal simulations,

• ne following the King profile similar to the gas density, i.e., ne(r) = ne(0)/(1 +

(r/a)2)3/4, where a is the core radius,

• ne proportional to b3/2 as suggested by the magnetic flux freezing.

We assume that the background polarized source density is uniform and the only effect the
radiation has while passing through the simulation box is the rotation of its polarization angle,

6The typical value of ReM estimated for an elliptical galaxy in Section 5.2 is not yet accessible by numerical
simulations. However, based on Section 2.5.3 of Chapter 2, we expect that the magnetic field structure would
approach an asymptotic state after a certain ReM.

185



Chapter 5. Magnetic fields in elliptical galaxies

−2 −1 0 1 2
RM

10−2

10−1

100
P

D
F

(a) ne : constant

ne : King profile

N(µ = 0, σ = 0.6)

N(µ = 0, σ = 0.2)

−20 −10 0 10 20
RM

10−3

10−2

10−1

P
D

F

(b)

ne ∝ b3/2

1
πw

w2e−(x−x0)2/2σ2

(x−x0)2+w2

Figure 5.2: (a) PDFs of RM for the cases where the electron number density ne is not correlated
to the magnetic field strength: ne constant (red) and ne following the King distribution (blue) with
a = 1.25l0, where l0 is the driving scale of turbulence. Both distributions are roughly Gaussian with
mean µ ≈ 0 (since a mean magnetic field is absent). The standard deviation σ is lower for the King
profile. (b) PDF of RM for the case where ne is related to magnetic field strength b via the flux freezing
condition, i.e., ne ∝ b3/2. The distribution is non-Gaussian and can be approximated by a product of
a Cauchy–Lorentz distribution and an exponential function. The parameters of the resulting function
are as follows: the location parameter x0 = 0, the width at half-maximum w = 3.6 and the standard
deviation of the exponential function σ = 15.81.
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which is quantified by RM. With the fluctuation dynamo generated magnetic field b for each
ne given above, we calculate the RM at each point within a face of the domain as

RM(xi, yi) = K

512∑
i=1

ne(xi, yi, zi) b(xi, yi, zi) dz, (5.14)

where (xi, yi, zi) is a coordinate on the grid and dz = 2π/512 is the grid spacing. This
involves looking along the sightlines through the core of an elliptical galaxy and gathering
statistics from the periodic box of a physical length 1.5 kpc, which is a good representation
of the region of our interest. Fig. 5.2 shows the probability density function (PDF) of RM
for the three electron number density distributions. In all cases, the mean RM ≈ 0. This
is expected since there is no mean field in the domain. Fig. 5.2a shows the PDFs for the
case when ne is uniform and follows a King profile with a = 1.25l0 = 375 pc. Both distri-
butions are Gaussian with different standard deviations σRM. The one with the King profile
has a smaller standard deviation. The distributions agree well with the analytical expressions
Eq. (5.11) and Eq. (5.12) respectively. Fig. 5.2b shows the RM distribution when ne ∝ b3/2.
The distribution is clearly non-Gaussian and can be approximated by a product of a Cauchy–
Lorentz distribution and an exponential function. The Gaussian or non-Gaussian nature of the
RM distribution in these cases follows from Eq. (5.6) or Eq. (5.14). In an isotropic random
magnetic field, the polarization angle performs a random walk as it rotates randomly along
the path length. When ne does not depend on b directly, RM depends on the first power of
the magnetic field and the random walk is a Brownian motion which gives rise to a Gaussian
distribution. For the case where ne ∝ b3/2, RM depends on a higher power of the mag-
netic field and since the underlying magnetic field is intermittent (Chapter 2), the resulting
RM distribution is non-Gaussian. In the case of a non-Gaussian distribution, it is difficult to
associate a single number (for example σRM) to the distribution but the calculated standard
deviation for a non-Gaussian distribution would be far higher than that for a Gaussian dis-
tribution (compare the x-axis in Fig. 5.2a and Fig. 5.2b). The calculated standard deviation
of the RM distribution shown in Fig. 5.2b is approximately equal to 8, whereas the deviation
for both the Gaussian distributions in Fig. 5.2a is less than unity. Knowing the expected RM
distribution in various cases, we aim to observationally explore the distribution of RM from
background sources seen through an elliptical galaxy to probe its magnetic field.
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Figure 5.3: 95th percentile deviation from the combined σ of the elliptical galaxy and the Milky Way
foreground versus the number of sources. We have assumed that the standard deviation of rotation
measures due to the elliptical galaxy and foreground are 300 radm−2 and 100 radm−2 respectively.
When the number of sources nobs is greater than 9 (red dotted line), the error in the observed σ is
less than half of σe in 95% of cases. Thus, we need at least 10 sources to differentiate between the
elliptical galaxy and the Milky Way foreground.

5.4 Specific observational target: Maffei 1

To probe the magnetic field in elliptical galaxies via rotation measure from background
sources, we choose the nearest elliptical galaxy, Maffei 1, to maximize the number of back-
ground sources. Maffei 1 is an E3 galaxy of an angular size 18.2′ at a distance of 2.85 ±
0.36Mpc and is located at the galactic coordinates (135.86◦,−0.55◦). Using arguments given
in Section 5.3.1, we estimate the expected σRM ' 300 radm−2 in the core of the galaxy. The
elliptical galaxy lies in the Milky Way galactic plane and thus observations would suffer con-
tamination due to the Milky Way foreground. σRM due to our galaxy in that region is around
100 radm−2 (Schnitzeler, 2010). However, both RM distributions from the Milky Way and
the Maffei 1 have a different standard deviations. The contribution from the elliptical galaxy
can be isolated if a sufficient number of background sources is available. Moreover, any sys-
tematic large-scale trends should be removed since they can only be produced in the Milky
Way.

To calculate the minimum number of background radio sources to be observed, we per-
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Figure 5.4: Properties of 1.4GHz extragalactic sources of radio intensity up to 1µJy (Hales, 2013).
The total and linearly polarized intensity normalized by the differential source counts (top panel), the
total number of source counts (middle panel) and the average spacing between the sources (bottom
panel) are shown as functions of the intensity. The dotted lines shows the fitted models. Knowing the
number of sources required per square degree, we can use the middle panel to obtain the minimum
intensity we must achieve to observe that many sources.
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form a Monte-Carlo simulation assuming RM fluctuations due to an elliptical galaxy with
σe = 300 radm−2 and that due to the foreground with σf = 100 radm−2. We draw 105 ran-
dom samples from a Gaussian distribution with the combined standard deviation

√
σ2
e + σ2

f .
From that sample, we select nobs number of RM and calculate their standard deviation.
Fig. 5.3 shows the plot of the 95th percentile deviation from the true standard deviation as
a function of the number of sources nobs. To distinguish the elliptical galaxy from the fore-
ground, we at least need 10 sources because that will give an error of less than 150 radm−2

(half of σe) in 95% of cases. To sample the core of Maffei 1, we need at least 10 or more
sources within central core of size 2–3 arcmin (Buta & McCall, 1999; Davidge, 2002), which
implies 300–200 sources per degree of the extragalactic sky. From the middle panel of
Fig. 5.4, this implies a noise level of 10µJy or less. Using the exposure calculator 7 of
the Very Large Array (VLA), we calculate that it requires 200 hours of observations in the L
(low-frequency, 1–2GHz) band to observe the background sources through the Maffei 1.

5.5 Discussion and conclusions

We suggest that observations of magnetic fields in elliptical galaxies would provide a direct
confirmation of the operation of a fluctuation dynamo. We confirm that the supernova-driven
turbulence in elliptical galaxies would generate magnetic fields of a sufficient strength to be
observable. We then study the existing observations and show why they are not sufficient for
this purpose. Finally, we propose to study the strength and structure of magnetic fields in
the elliptical galaxy Maffei 1 by using a grid of Faraday rotation measures from background
radio sources seen through it.

If the proposed observations suggest much lower fluctuations in rotation measure than our
estimate, then the magnetic field generated by the fluctuation dynamo in the saturated stage is
probably much weaker than that expected from the theoretical arguments and numerical sim-
ulations. This would further imply that the mean-field dynamo in spiral galaxies is probably
seeded with a much weaker magnetic field. This in turn would require a much more efficient
mean-field dynamo mechanism than presently known to explain the observed magnetic fields
in a number of nearby spiral galaxies.

7https://science.nrao.edu/facilities/vla/docs/manuals/propvla/determining
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Chapter 6

Final discussion and outlook

“This work contains many things which are
new and interesting. Unfortunately, everything
that is new is not interesting, and everything
which is interesting, is not new.”

– Lev D. Landau

“We can only see a short distance ahead, but
we can see plenty there that needs to be done.”

– Alan Turing
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This thesis explores small-scale magnetic fields generated by a fluctuation dynamo and the
propagation of cosmic rays in random magnetic fields. Here we discuss the questions raised
and possible future directions for each chapter.

Chapter 2: Fluctuation dynamo and its nonlinear states

• How does the non-linear fluctuation dynamo saturate?
After exploring the kinematic fluctuation dynamo, the main goal of this chapter was to
study the mechanism for the saturation of the fluctuation dynamo. We discuss previous
attempts to solve the problem and possible issues with them. Using numerical simula-
tions, we studied the nonlinear fluctuation dynamos in driven turbulence at PrM = 1.
It is confirmed that the statistically steady state of the magnetic field is maintained by
a constant interaction between the velocity and magnetic fields. We have shown that
both the amplification and diffusion of the magnetic field are affected by the back-
reaction by the Lorentz force on the flow. The reduction in the amplification is due to
the enhanced alignment between the velocity field and magnetic field (which reduces
induction) and magnetic field and electric current density (which reduces the back-
reaction itself, making the field more force-free). Moreover, the level of alignment
between the velocity and magnetic field is higher where a larger reduction in ampli-
fication is required, i.e., the strong field regions. We further found that both aspects
of the amplification, the local stretching and compression of magnetic field lines, are
reduced. The increase in diffusion is confirmed by a decrease in the local magnetic
Reynolds number (ReM)loc and its mean value over the entire domain. However, this
does not decrease to the critical magnetic Reynolds number Re(crit)

M as suggested by a
few saturation mechanisms proposed earlier. (ReM)loc varies from values much smaller
to much larger than the Re(crit)

M and 〈(ReM)loc〉 � Re(crit)
M .

• How does the intermittent structure of the fluctuation dynamo-generated mag-
netic fields depend upon its nonlinear state and on the magnetic Reynolds num-
ber?
Even though the turbulent velocity field is Gaussian, the fluctuation dynamo-generated
magnetic field is spatially intermittent (with magnetic structures of various shapes and
sizes) in both the kinematic and saturated stages. The magnetic field in the saturated
stage is less intermittent than the kinematic magnetic field as confirmed by the shape
of the PDF of the magnetic field strength, the calculated kurtosis and the correlation
length of the magnetic field. The correlation length of the velocity field (still remaining
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Gaussian in nature) also increases as the magnetic field saturates and this confirms the
dynamical effect of the growing magnetic field on the velocity field. Magnetic struc-
tures are characterized by three scales, length, width and thickness, which are obtained
using the Minkowski functionals. The length of the structures does not vary with ReM

but the width and thickness decrease as Re−0.5
M in nonlinear fluctuation dynamos. All

three length scales increase in magnitude as the dynamo saturates but their ReM de-
pendences do not change. Thus, such a study of magnetic structures is not useful to
probe the saturation mechanism of the fluctuation dynamo. The planarity and filamen-
tarity (non-dimensional parameters to characterize the shape of magnetic structures)
approach a near-asymptotic value as ReM increases (with filamentarity always greater
than planarity, suggesting that the structures are more like filaments). Thus, we can
claim that even though the magnetic Reynolds number is high in most astrophysical
systems (ReM ≈ 1018 for galaxies and ReM ≈ 1029 for galaxy clusters), the fluctuation-
dynamo generated magnetic field occupies a significant fraction of the volume. Hence,
such magnetic structures will therefore make a very significant contribution to the dy-
namics of the system (the simulations already show that the field strength is comparable
to the equipartition value).

• Future work
To completely explain the saturation mechanism, we first need to understand what ex-
actly causes the alignment and why the magnetic field diffusion increases. Then the
study can be extended to various other scenarios. We have explored the saturation
mechanism of the nonlinear fluctuation dynamo and studied the morphology of mag-
netic structures for incompressible flows. An immediate extension would be to repeat
the entire analysis for dynamos in a compressible medium (Haugen et al., 2004b; Fed-
errath et al., 2011; Sur et al., 2018), which is more relevant for young galaxies and
star-forming gas clouds. We expect that answers would qualitatively remain the same.
Another extension would be to do the analysis for PrM � 1 (interstellar and inter-
galactic medium) and PrM � 1 (stars, planets and liquid metal experiments). In driven
turbulence simulations like ours, the forcing is usually synthetic and thus it would be
interesting to explore a fluctuation dynamo in a numerical setup with turbulence driven
more naturally by convection (Cattaneo, 1999; Bushby et al., 2010). Also, this is more
relevant for magnetic fields on the solar surface. Recent cosmological simulations with
magnetic fields suggest the presence of fluctuation dynamo in galaxies (Pakmor et al.,
2017) and the intracluster medium (Vazza et al., 2018). However, these claims are
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based on the power spectrum of the small-scale magnetic fields in simulations, which
roughly agrees with the Kazantsev spectrum. A careful analysis of the small-scale
velocity and magnetic fields is required to confirm convincingly that the fluctuation
dynamo is indeed active in such simulations.

The fluctuation dynamo-generated magnetic field has filamentary structures. Such
structures are also seen in a number of observations: neutral hydrogen (Heiles &
Troland, 2005; Kalberla & Kerp, 2016; Kalberla et al., 2017), polarized synchrotron
emission (Haverkorn et al., 2004; Jelić et al., 2015) and emission at submillimeter
wavelengths (Planck Collaboration et al., 2016; Planck Collaboration et al., 2016). It
is important to look for signatures of magnetic filaments in such observations. To ad-
dress this, a systematic study (including both statistical and topological measures) can
be performed to compare structures in simulations and observations.

We have adopted the MHD approximation but plasma effects might also play an im-
portant role. It would be interesting to compare our results with those of the plasma
dynamo (St-Onge & Kunz, 2018) and see how the relationship between velocity and
magnetic fields and the magnetic field structure change when plasma effects are con-
sidered. Plasma effects might be particularly important for the weakly collisional gas
in galaxy clusters. We explored the fluctuation dynamo in an Eulerian setting and it
can also be studied using Lagrangian properties of magnetic field lines. Eyink (2010)
and Eyink et al. (2013) showed that, in the kinematic stage, the Lagrangian trajectories
become stochastic due to the Richardson diffusion and this can lead to an additional
‘anti-dynamo’ effect. It would be interesting to extend such a study to the nonlinear
stage and then compare both the Eulerian and Lagrangian scenarios.

Chapter 3: Cosmic ray diffusion in intermittent magnetic fields

• Is the intermittent structure of magnetic field important for cosmic ray diffusion?
Cosmic ray diffusion is due to particles scattering in random magnetic fields. Using
test-particle simulations, we calculated the diffusion coefficient of cosmic rays in in-
termittent and non-intermittent magnetic fields (with the same magnetic spectra). We
showed that the diffusivity of low-energy particles (with a Larmor radius rL less than
the driving scale of the turbulence l0) is higher for intermittent magnetic fields. For
high-energy particles (rL ≥ l0), the intermittent structure of magnetic fields is not
important for cosmic ray diffusion. For low-energy cosmic rays, the effect of inter-
mittency is significant even when a mean field is present. For galaxies (l0 ' 100 pc),
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the intermittency is important for cosmic ray particles with energy less than 109 GeV,
which is practically all of the confined cosmic rays.

• How do magnetic structures alter cosmic ray propagation?
The increase in low-energy cosmic ray diffusivity is explained in terms of a correlated
random walk of particles. The particles are not uniformly scattered but they have a
preferred angle of deflection, which can be related to the typical width of the intermit-
tent magnetic structures. This implies that the diffusivity depends not only on the step
length and particle speed but also on the mean of the cosine of the deflection angles. We
derive this dependence analytically and confirm it numerically. The diffusivity in both
the intermittent and non-intermittent magnetic fields is better explained by a correlated
random walk rather than a Brownian motion. Furthermore, in the continuum limit, the
correlated random walk implies the telegraph equation. So, we propose that the cosmic
ray fluid in random magnetic fields is better modelled by the telegraph equation rather
than the diffusion equation.

• Future work
We do consider the effect of a mean field on cosmic ray diffusion in random magnetic
fields but this can be further explored. A spatially varying mean magnetic field can be
considered and then the cosmic ray diffusivity may depend on the ratio of the correla-
tion length and strength of the mean to random magnetic fields. Also, the expression
for the parallel and perpendicular cosmic ray diffusivities must be derived from the
correlated random walk model. This would involve performing the whole correlated
random walk analysis in the direction parallel and perpendicular to the mean magnetic
field.

We can also extend numerical simulations to generate magnetic fields at a higher res-
olution, so particles of even smaller energies can be considered. Since high-energy
particles are not affected by the intermittency, the dependence of cosmic ray diffusivity
on energy (∝ r2

L) for them is the same in both intermittent and non-intermittent mag-
netic fields. We can test if the dependence changes for low-energy cosmic rays when
magnetic field intermittency is considered. This requires a few more data points at
lower energies.

Chapter 4: Correlation between cosmic rays and magnetic fields

• Are cosmic rays and magnetic fields spatially correlated?
To extract magnetic field information from synchrotron intensity observations, a local
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energy equipartition or correlation between cosmic rays and magnetic fields is usually
assumed. Our test particle simulations have shown that at the scales less than the driv-
ing scale of the turbulence l0, cosmic ray number density and magnetic field strength
are not locally correlated. Furthermore, the correlation remains close to zero when
both distributions are averaged over the size of magnetic structures. Even on including
a uniform mean magnetic field, both the distributions remain uncorrelated. Further-
more, the magnetic field energy density and cosmic ray number density are statistically
independent of each other. Thus, the synchrotron intensity can be expressed as the
product of the average cosmic ray number density and average magnetic field strength
(here ‘average’ refers to a spatial average over the path length). The conclusion remains
valid for both intermittent and non-intermittent magnetic fields. However, the energy
equipartition between cosmic rays and magnetic fields may hold at scales larger than
l0.

• What is the reason for the presence of small-scale cosmic ray structures?
Even when the magnetic field and cosmic rays are uncorrelated, there are small-scale
cosmic ray structures at low energies (rL ≤ lb, where lb is the magnetic field correlation
length). The resulting cosmic ray distribution is also intermittent with heavy tails at
higher values of the number density in the probability distribution function. We show
that this is due to magnetic mirror traps in random magnetic fields. The number of
such cosmic ray structures increases when a uniform magnetic field is included and
decreases when the pitch-angle scattering due to the unresolved magnetic fluctuations
is added.

We discuss that the inhomogeneity in the cosmic ray distribution is due the lack of per-
fectly isotropic and homogeneous in phase space of the initial cosmic ray distribution.
However, the exact locations where cosmic ray number density is higher (or lower),
which gives rise to the inhomogeneous cosmic ray distribution, is due to magnetic bot-
tle traps as confirmed by the numerical trajectories. Furthermore, the cosmic ray and
magnetic field distribution still remain uncorrelated at scales below the driving scale of
turbulence.

• Does the relation between magnetic fields and cosmic rays change when the pres-
sure due to thermal gas is also included?
Cosmic rays exert pressure on the thermal gas which affects the magnetic field, which
in turn controls the cosmic ray propagation. To include this nonlinear effect, we solved
the MHD equations together with an advection-telegraph equation for the cosmic ray
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fluid. We show that, even when cosmic rays are included as a dynamic component, the
magnetic field and cosmic ray energy densities are not tightly correlated at scales less
than the driving scale of the turbulence.

• Future work
In addition to assuming local energy equipartition between cosmic ray and magnetic
field energy densities for interpreting synchrotron observations, it is customary to make
two additional assumptions. Firstly, it is assumed that that the cosmic ray protons (that
carry most of the energy) are spatially distributed in same way as cosmic ray elec-
trons (responsible for synchrotron radiation) and secondly, a constant ratio between the
number of electrons to the number of protons is adopted. Both of these assertions need
not be true, especially considering the fact that the electrons suffer significant energy
losses during their propagation. The electron distribution is expected to be more inter-
mittent than that of the protons (as electrons will spend a longer time in magnetic traps
because of their smaller Larmor radii and energy losses). To test these assumptions,
the next step would be to include energy loss for the particles. Once the energy loss is
included, synthetic synchrotron maps can be generated from the spatial distribution of
cosmic ray electrons and magnetic fields. Similar previous studies (Herron et al., 2016)
assumed a uniform cosmic ray electron distribution but it is clear from our test-particle
simulations that this cannot be true.

Cosmic rays in our MHD simulations only exert pressure on the thermal gas. Another
important effect is the cosmic ray streaming. Cosmic ray scatter off waves excited by
the streaming instability (Kulsrud & Pearce, 1969; Skilling, 1971; Wentzel, 1974) and
then stream at the Aflvén speed down their pressure gradient. The excited waves are
damped and their energy is deposited into the medium. This could be modelled in
our numerical simulations (a stable numerical scheme for the cosmic ray streaming is
discussed in Sharma et al., 2010). The cosmic ray streaming is particularly important
for launching of galactic winds (Ruszkowski et al., 2017b; Zweibel, 2017), the Parker
instability (Heintz & Zweibel, 2018) and heating of galaxy clusters (Enßlin et al., 2011;
Ruszkowski et al., 2017a). Another major extension would be to include cosmic rays in
the multiphase ISM simulations where the turbulence is driven by supernova explosions
(Gent et al., 2013a; Li et al., 2015; Kim & Ostriker, 2017). The cosmic rays would then
accelerate in supernova shocks and diffuse away from their sources.

The radio maps generated from such numerical simulations can be compared with
observations. The comparative study will identify the relative importance of various

197



Chapter 6. Final discussion and outlook

physical processes and also constrain parameters of the simulations. Further, the re-
sults can be used to asses the efficiency of various data analysis techniques: gradient
of polarization observations (Gaensler et al., 2011; Herron et al., 2017), gradient of
synchrotron observations (Lazarian et al., 2017), analysis of synchrotron fluctuations
in observations (Iacobelli et al., 2013; Stepanov et al., 2014) and topological analysis
of the observational data (Makarenko et al., 2018a,b).

Chapter 5: Magnetic fields in elliptical galaxies

• Can magnetic fields be detected in elliptical galaxies and used as a probe of the
fluctuation dynamo theory?
Since any large-scale magnetic field is absent in elliptical galaxies, we propose that
observing magnetic fields in those galaxies would be a direct probe for the fluctuation
dynamo action. This is because the small-scale magnetic fields in ellipticals would not
be contaminated by the tangling of the mean field as in the case of spiral galaxies. Also,
since the spatial resolution with existing radio telescope is not capable of differentiating
between the types of small-scale fields in spiral galaxies, observations of magnetic
fields in ellipticals is required to study fluctuation dynamo action. Observations of
magnetic fields in young galaxies can also probe fluctuation dynamo action but such
measurements have only recently become possible. Furthermore, they mostly provide
only the root mean square magnetic field strength of the galaxy.

• What are the observational signatures of magnetic fields in elliptical galaxies?
We expect the core of the ellipticals to host strong magnetic fields. This can be probed
by using Faraday rotation measures from background polarized radio sources seen
through a large elliptical galaxy. The probability distribution of such rotation mea-
sure observations can be compared with that obtained from the theory to estimate the
properties of the magnetic field. Based on the existing fluctuation dynamo theories,
we would expect the rotation measure distribution to have a mean very close to zero
and a non-zero standard deviation. The standard deviation can then be expressed in
terms of the correlation length and strength of the random magnetic field (assuming the
path length and thermal electron number density distribution are known to a reasonable
degree of accuracy).

• Future work
First we should actually conduct the observations for a grid of background sources
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seen through the nearby elliptical galaxy, Maffei 1, and check whether what we pro-
pose can be done. Any large-scale trends in the data can be compared with the Milky
Way magnetic field models in that region. This can benefit us in two ways. Firstly, it
would help us to better probe magnetic fields in Maffei 1 and secondly, it would prob-
ably constrain the Milky Way magnetic fields. Also, a more realistic simulation of the
fluctuation dynamo which includes heating at the core and the galactic gravitational
potential to model cooling flows would provide a better picture. With upcoming tele-
scopes (SKA and ngVLA), there would be numerous high resolution observations of
magnetic fields in elliptical galaxies, spiral galaxies and young galaxies, which would
help us to study the fluctuation dynamo action in much greater detail.
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Appendix A

Shock Tube Test

The Sod shock tube problem (Sod, 1978) is a good test of code’s capability to handle dis-
continuities, which are expected in the case of spatially intermittent random magnetic fields.
We compare the results obtained using the Pencil code (fixed grid and uses finite difference
numerical scheme) with the FLASH1 code (adaptive mesh refinement and uses finite volume
numerical scheme).

We solve the equations for conservation of mass, momentum and energy for a shock in
one dimension (say x direction). The initial conditions (density ρ, pressure p and velocity
vx on the left and right hand side of the shock) for an ideal gas with γ = 1.4 in an interval
0 < x ≤ 1 are

(ρ, p, vx)t=0 =

(1.0, 1.0, 0.0), 0 < x ≤ 0.5,

(0.125, 0.1, 0.0), 0.5 < x ≤ 1.

For the Pencil code, a very small explicit smoothing (tanh function with a smoothing param-
eter, which here is chosen to be 0.0005) is required across the shock since the code uses finite
difference scheme. It also requires a small value of thermal conductivity (0.0001) and viscos-
ity (0.00055). The FLASH solves the equations in a conservative form and such additional
parameters are not required. Fig. A.1 shows profiles for the density, pressure, temperature
and velocity on the left and right hand side of the shock as it evolves. Both codes give very
similar solutions for the Sod shock tube test. The analytical solution (not shown) also agrees
with it.

1http://flash.uchicago.edu/site/
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(a) (b)

(c) (d)

Figure A.1: Time evolution of the density ρ (a), pressure p (b), temperature T (c) and velocity in x
direction vx (d) for solution of Sod shock tube test using the Pencil (solid line) and FLASH (dotted
line) codes. For profiles from FLASH, the number of dots increases closer to the shock since it use
adaptive mesh refinement. The agreement between two solutions is quite good.
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