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Abstract

Density functional theory (DFT) is a widely used ab initio quantum mechanical
method to study the properties of materials. Over the past 20 years a huge amount
of work has been done developing codes that are able to tackle calculations containing
large numbers of atoms. AIMPRO, a DFT code which uses Gaussian type orbitals (GTO) as
a basis set, uses a filtration methodology which makes calculations with a few thousand
atoms routinely possible on desktop machines. Previous implementations of filtration
have focused on the time saving aspect of the methodology and performed calculations
on structures containing only atoms from a small subset of the periodic table.

In this thesis a novel basis set generation routine is presented and the filtration method-
ology is modified and expanded to include most of the atoms in the periodic table. The
focus of this work lies in demonstrating the potential gains in accuracy, in addition to effi-
ciency, available through use of the filtration algorithm and shows that results comparable
to codes using systematic basis set can be achieved for each of the elements considered
across the periodic table. Two huge advantages present themselves using this scheme;
firstly, the time to solution is essentially decoupled from the basis size; secondly, basis
sets that would be unstable in a conventional calculation can be used allowing for more
accurate calculations.

The work presented here is assessed using a recently developed benchmark, the ∆-test.
This, together with the increases in speed previously demonstrated, shows that a filtered
basis calculation can now achieve the accuracy of a plane wave calculation at the asymp-
totic cost, with respect to system size, of a tight-binding calculation, enabling Kohn-Sham
calculations of unprecedented size to be performed at the basis set limit.
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Chapter 1
Introduction

Density Functional Theory (DFT) has emerged as one of the significant developments in
applying quantum mechanics. From just the position of a group of atoms one can cal-
culate many of its ground state properties without a need for any empirical input. DFT
results have been widely used accompanying experimental data for the past 50 years,
often as a type of validation. With the increase in accuracy and scope of DFT more cal-
culations become feasible allowing for different applications. In addition to accompanying
experiments it is not uncommon nowadays to encounter research where DFT has been
used in a predictive capacity to model properties inaccessible to experiment or even novel
compounds, as yet not seen experimentally.

As a byproduct of it’s success at predicting many material properties, DFT has been
increasingly adopted in a growing number of research fields, which often necessitate tai-
lored or particular types of implementation which then drives research into DFT theory
and methodology. Out of this symbiotic relationship a need for efficient (i.e. fast) and
accurate calculations has emerged. It is not hard to fathom the possibilities that codes
which can tackle more than 1000 atoms have to offer, and although calculations on that
range and higher are now possible it is often at the behest of accuracy.

AIMPRO a Kohn-Sham DFT (KSDFT) code which uses Gaussian Type Orbitals (GTO)
has recently implemented a filtration methodology where small contracted (filtered) ba-
sis sets are constructed during the DFT calculation from the underlying primitive basis
set. This method has been used to reduce the computational time of a regular KSDFT
calculation to that of a semi-empirical implementation [5], which allows for systems with
1,000-10,000 atoms to be studied routinely on a computer with moderate power. In this
thesis the possiblity to use of the filtration methodology to perform calculations with
very large basis sets, which would otherwise be infeasible in regular AIMPRO calculations,
is explored for the first time. This, we will show, allows for calculations with an accuracy
close to that of well converged plane wave implementations at the cost of a convetional
AIMPRO calculation.
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A new method to generate basis set is introduced here, which produces very accurate
basis sets with large numbers of functions. A new robust routine is introduced which uses
a discrete variable representation code to converge the energy of a pseudo-atom, so that
the GTO basis set is generated based on the accurate minimization of the pseudo-atomic
energy. Furthermore the basis set are generated with properties that suit their usage
with the filtration methodology. This large basis sets will then be tailored in situ using
filtration for the environment at hand, this allows for a great degree of transferability
and user friendliness by using only one basis set and having the calculation accuracy con-
trolled by one parameter (set by the filtration methodology), both these charachteristics
are typically missing from any GTO implementation.

A modified filtration methodology is presented here to handle the large basis sets that
are used in this thesis. Unlike previous versions of the filtration methodology, the one
used in this work produces an atomic filtered basis sets by contracting functions only
from the respective atom’s undelying primitive basis set. This allows the large basis sets
to be used which yields a good level of tranferability, and an unprecedented accuracy
for filtration calculations. Whereas before [5] filtration calculations were compared with
standard AIMPRO ones, in this work we will be comparing directly to very well converged
plane wave results. A comprehensive benchmark [6] is used to ensure a periodic-table-
wide applicability of our method.

It is shown in this thesis, that we can obtain PW accuracy at a cost of an efficient
GTO calculation. Furthermore this accuracy is approached systematically in AIMPRO us-
ing the same large primitive basis set. Although an impressive result on it’s own, the work
presented here sets the stage for an astounding future work: Large scale calculations with
an accuracy of plane waves at the cost of tight-binding.

1.1 Summary of the thesis

The work presented here can be broadly subdivided into four parts, theoretical back-
ground, implementation of a new basis set and on-site filtration, results and finally con-
clusion and future works. Below follows a summary of the individual chapters.

Chapter 2: Reviews some basic ideas in the theory of quantum mechanics, with par-
ticular emphasis on topics which underlie the foundations of this work, and which will
be mentioned throughout this thesis. In addition, some early methods which solve the
interacting many-body quantum Hamiltonian are briefly summarized.

Chapter 3: Reviews the basic tenets of density functional theory, such as the Hohenberg-
Kohn theorems and the Kohn-Shams equation. Methodologies to handle fractional occu-
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pation and spin polarization are reviewed here too. In the last part of this chapter a brief
discussion on boundary conditions is presented.

Chapter 4: Presents a brief overview of code specific details in different KSDFT imple-
mentations. Our discussion here is focused on the different basis set and the introduction
of pseudopotentials. Finally an efficient Hamiltonian and overlap matrix construction
used in AIMPRO is outlined.

Chapter 5: Introduces our novel basis set generation which produces a large uncon-
tracted even-tempered basis set. This is used to generate basis sets for the 70 elements
used in the benchmark considered in chapter 8. These basis sets would be too large for
regular AIMPRO calculations were it not for filtration.

Chapter 6: Presents a revised filtration methodology which contracts the large primi-
tive basis on-site to produce a contracted filtered basis. This together with the basis set
generated in the previous chapter lays the groundwork for very accurate calculations.

Chapter 7: Summarizes a recently developed benchmark, which can be taken to be
the best pass/fail indicator of the quality of a code. Results obtained using the new basis
sets and filtration methodology for the set of elements in this benchmark are presented. A
slightly modified version of the benchmark is introduced and used which, we show, assess
the quality of our basis set and filtration more accurately than the standard version.

Chapter 8: Presents results for ideal vacancy formation energies calculated using the
basis sets and filtration and compares them with results obtained using a PW implemen-
tation.

Chapter 9: Presents our conclusion and outlines the possible avenues of research for
future work.

1.2 Abbreviations

Although care has been taken to ensure that the abbreviations used throughout this thesis
is clear, the following list includes the most common ones to help the reader.

• DFT: Density Functional Theory

• KSDFT: Kohn-Sham Density Functional Theory

• GTO: Gaussian Type Orbital
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• PW: Plane Wave

• HK: Hohenberg-Kohn

• STO: Slater-type orbital

• GGA: Generalized Gradient Approximation

• PBE: Perdew-Burke-Ernzerhof exchange-correlation

• DVR: Discrete Variable Representation

• EOS: Equation Of State

• r.m.s.: root-mean-square

• GEP: Generalized Eigenvalue Problem

• OEP: Ordinary Eigenvalue Problem
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Chapter 2
Quantum Mechanics

2.1 Introduction

In this chapter we will briefly review the quantum mechanic formalism that serves as the
foundation for later chapters. The equations which describe the behaviour of a system
of electrons under the potential originating from a group of nucleus are introduced and
some of the first solutions developed to tackle such a problem are summarized.

2.1.1 The Single particle Hamiltonian

Most quantum mechanics problems involve solving what is known as the Schrödinger
equation. In this thesis we are concerned with static properties, for this we only need to
solve the time-independent Schrödinger equation which can be written as:

[−~2

2m 5
2 +V (r)

]
ψ(r) = Eψ(r) (2.1)

where ~ is Planck’s constant, V (r) is the potential and ψ(r) is the particle’s wave function.
Equation (2.1) can be rewritten as:

H(r)ψ(r) = Eψ(r) (2.2)

where:
H(r) = V (r) + T (2.3)

in which T is the kinetic energy and H(r) is known as the Hamiltonian. This formalism is
widely used in Hamiltonian mechanics a reformulation of classical mechanics. In classical
mechanics, and similarly in quantum mechanics, the Hamiltonian is a function (in the
case of classical mechanics) which represents the total energy of a system.

The established classical Hamiltonian “corresponds” to a quantum Hamiltonian under
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the following canonical substitution:

p→ −i~ d
dr

(2.4)

Solving equation (2.2), a non-linear partial differential equation, amounts to finding
the eigenfunctions (wave functions) and eigenvalues (energies) of H so that:

H(r)ψn(r) = Enψn(r) (2.5)

where ψn(r) are the eigenstates of H(r) with an associated eigenvalue En.
The set of eigenfunction ψn(r) forms a complete basis for the representation of the

system i.e. any state Ψ(r) under the influence of the potential V (r) can be represented
by one of the eigenstates or, most commonly, by a linear combination of eigenstates.

Ψ(r) =
∑
n

cnψn(r) (2.6)

where cn are known as the coefficients of expansion. Typically each ψn is normalized.
∫
ψ∗i (r)ψi(r)dr = 1 (2.7)

where ψ∗(r) is the complex conjugate of ψ(r). In addition, since ψn are the eigenfunctions
of H(r), which is Hermitian, they must be mutually orthogonal:

∫
ψ∗i (r)ψk(r)dr = δik (2.8)

It is often simpler, and more common, to express the previous equations and most
quantum mechanical operations in the Dirac bra-ket notation. A vector-function ψi(r)
is represented as ket (|ψi〉) and the co-vector ψ∗i (r) as a bra (〈ψi|). In this notation the
Hamiltonian H(r) is expressed as an operator, typically denoted by the hat symbol Ĥ.
Using the bra-ket notation equation (2.7) can be retyped as:

〈ψi|ψi〉 =
∫
ψ∗i (r)ψi(r)dr = 1 (2.9)

similarly for eq. (2.1)
Ĥ |ψn〉 = En |ψn〉 (2.10)

Where appropriate throughout this thesis the bra-ket notation is used.
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2.2 Operators

In quantum mechanics, physical properties of a particle that are functions of either the
coordinates or momentum are represented by linear operators (Ô). These operators act
on the wave function and yield a set of results with an associated probability of measuring
said result. The average result one would obtain by performing a physical measurement
of Ô in a state Ψ(r) is known as the expectation value of the operator. The expectation
value of Ô is given by:

〈Ô〉 =
∫

Ψ∗(r)ÔΨ(r)dr = 〈Ψ|Ô|Ψ〉 (2.11)

Given that 〈Ô〉 must be real valued - since it has to correspond the average measured
value of an observable - the operator Ô must be Hermitian, Ô = Ô∗ or:

〈Ô〉 =
∫

Ψ∗(r)
(
ÔΨ(r)

)
dr =

∫ (
ÔΨ(r)

)∗
Ψ(r)dr (2.12)

A linear operator with the properties described above has an associated spectrum of
eigenvectors. In quantum mechanics it is assumed that this spectrum is complete and
therefore forms a representation of the system [7]. Thus if ψi(r) are the eigenvectors
associated with Ô any state Ψ(r) can be expanded as follows:

Ψ(r) =
∞∑
i

ciψi(r) (2.13)

The expectation value equation (2.12) can then be recast:

〈Ô〉 =
∫

Ψ∗ÔΨ =
∫ ( ∞∑

i

ciψ
∗
i

)
Ô
( ∞∑

i

ciψi
)

=
∞∑
i

oic
2
i (2.14)

where oi are the eigenvalues of the respective eigenfuctions ψi and the previous deriva-
tion used the orthonormality of the eigenfunctions. The Hamiltonian is itself an operator
with the eigenvalues being the range of energies the system can take.

2.2.1 Finite space

When dealing with linear operators in a finite space it is preferable to use the language of
linear algebra and represent the operators as matrices and the eigenfunctions as vectors
(eigenvectors, ψn).

Let Ψ = ∑
n cnψn be a wavefunction expanded in a complete set of functions,ψn. For

any linear operator Ô the expectation value can be written (in similar fashion to eq (2.14))
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as :
〈Ô〉 =

∫
Ψ∗(r)ÔΨ(r)dr =

∑
n

∑
m

cmcnOmn (2.15)

However, in contrast to eq. (2.14), where ψi(r) were the eigenfunctions of Ô, the ψi(r) in
the previous equation are not necessarily eigenvalues of the operator Ô. So we have,

Omn =
∫
ψ∗m(r)Ôψn(r)dr (2.16)

and,
Omn 6= δmnon (2.17)

where Omn is the matrix formulation of the operator Ô in the representation we chose
and on are the eigenvalues Ô. Throughout this thesis when dealing with matrices, and
similarly for vectors, bold letters are used, i.e. the matrix representation of Ô is written as
O and Ψ(r) = ∑

cnψn = Ψ (where the vector entries would be the expansion coefficients
cn).

Expanding the expectation value equation (written in matrix form as OΨ = oΨ) we
have: ∑

m

cm(Ôψm) = o
∑
m

cmψm (2.18)

Multiplying both sides of the equation by φ∗n and integrating, we have (given that the φn
are normalized and orthogonal):

∑
m

cm(ψ∗nÔψm) = o
∑
m

cmφ
∗
nφm (2.19)

This is simply: ∑
m

cmOmn = ocn (2.20)

Here ∑ cm can be taken as a vector, rearranging the previous equation:

∑
m

(Omn − oδmn)cm = 0 (2.21)

This is just a regular eigenvalue problem from linear algebra (Mv = vv) which has a non
zero solution if and only if the following determinant is equal to zero:

|Omn − oδmn| = 0 (2.22)

In summary, once a representation is set, solving the Schrödinger equation can be trans-
formed into a linear algebra problem, very suitable for implementation on a modern
computer.
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2.2.2 The variational principle

The expectation value of the Hamiltonian can be seen as a functional of the wave function
|Ψ〉, 〈E〉 = 〈Ψ| Ĥ |Ψ〉 = E[Ψ]. From this perspective, one can apply a powerful mathe-
matical method from the calculus of variations, known as the variational principle. Let
us now slightly perturb the wave function |Ψ〉 → |Ψ〉+ |δΨ〉, the change in E[Ψ] is given
by:

δE[Ψ + δΨ] = E[Ψ + δΨ]− E[Ψ]

= 〈Ψ + δΨ|Ĥ|Ψ + δΨ〉
〈Ψ + δΨ|Ψ + δΨ〉 −

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= 1
〈Ψ|Ψ〉

[
〈δΨ|

(
Ĥ |Ψ〉 − E[Ψ] |Ψ〉

)
+ c.c.

] (2.23)

Where c.c. stands for complex conjugate and the second (or higher) order terms of δΨ
have been neglected. We find that E[Ψ] is stationary, that is δE[Ψ] = 0, when Ψ is
an eigenvalue of Ĥ. It follows from equation (2.23) that the eigenvalues of Ĥ can be
found obtained by finding the stationary values of E[Ψ], subject to 〈Ψ|Ψ〉 being constant
(typically equal to unity).

For most of this thesis DFT will be used, where the electronic ground-state ψ0 (which
is the state of Ĥ with the lowest eigenvalue) is the main quantity of interest. Assume
then that we are searching for the ground state function |ψ0〉 and we find a wave function
(|Ψ〉), which we normalize. Given that the set of φi form a complete representation we
can expand the error of our approximation (δΨ) w.r.t to the ground-state, in the following
way

|Ψ〉 = |ψ0〉+ |δΨ〉 = |ψ0〉+
∞∑
i=1

ci |ψi〉 (2.24)

in which i = 0 is excluded from the sum and we assume that the ground state is non-
degenerate. Calculating E[Ψ] we find that:

E[Ψ] = E0 + E
[∑

cnφn
]

= E0 +
∑
i,j

c∗i cj 〈ψ∗i |Ĥ|ψj〉

= E0 +
∑
i,j

c∗i cjEj 〈ψ∗i |ψj〉
(2.25)

Since E0 < Ej, and ψi are orthonormal we have:

E[Ψ] > E0 +
∑
i,j

c∗i cjE0 〈ψ∗i |ψj〉 = E0

1 +
∑
j

|cj|2
 (2.26)

The variational principle then gives us two important properties:

1. E[Ψ] > E[ψ0]; for any energy calculated from a guess function will always be higher
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than E[ψ0]

2. The error in energy depends on the square of the error in the wave function.

2.2.3 The Rayleigh-Ritz method

The variational principle explained in the previous section allows us to employ the Rayleigh-
Ritz method to approximate solutions to the time independent Schrödinger equation and
end up with a finite dimensional problem. Let us assume that we approximate the ground
state with a trial function |Ψ〉. This function can be expanded in a finite set of basis
functions (φi(r)), which we might take to be any set of normalized functions and not
necessarily eigenfunctions of any operator,

Ψ(r) =
n∑
i=1

ciφi(r) (2.27)

The Rayleigh-Ritz method thus allows one to cast the problem of minimizing E[Ψ] into
one of finding a set of (c1, c2, .., cn) which minimizes E[c1, c2, .., cn], with our trial function
approaching the true ground state as n → ∞. The variational principle ensures that
as the quality of our trial function increases the respective energy will tend to the true
ground state value.

In this thesis non-orthogonal functions will be used. When using non-orthogonal basis
sets the time-independent Schröndinger equation is mapped into a generalized eigenvalue
problem (GEP) :

H |Ψ〉 = εS |Ψ〉 (2.28)

Where S is know as the overlap matrix, with elements given by

Sij =
∫
φi(r)φj(r)dr (2.29)

The overlap matrix and non-orthogonal basis sets will be discussed in later chapters.

2.3 Angular momentum

Later on in the thesis some methods will be introduced in which the angular momentum
of electrons in different states is used to justify a particular choice of functions, therefore
a brief overview of the quantum mechanical treatment of angular momentum is presented
here.

In classical mechanics the angular momentum of a particle is given by:

L̂ = r̂ × p̂ (2.30)
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As mentioned previously, any observable has a corresponding linear operator in quan-
tum mechanics. Using the quantum mechanical operator form of momentum p̂ = −i~5
(itself given by the canonical substitution) we arrive at a vector representation of the
angular momentum operator:

L = −i~r×5 (2.31)

Using equation 2.31 we can derive the following commutation relations:

[L̂x, L̂y] = i~L̂z, [L̂y, L̂z] = i~L̂x, [L̂z, L̂x] = i~L̂y (2.32)

Where :
[L̂i, L̂j] = L̂iL̂j − L̂jL̂i (2.33)

With the intent of finding eigenvectors and eigenvalues of L̂ we introduce the following
operator,

L̂2 = L̂2
x + L̂2

y + L̂2
z (2.34)

which in vector terms is the magnitude of L. In addition let us introduce the ladder
operators:

L̂± = L̂x ± iL̂y (2.35)

The L̂± are known as the ladder operators because they either raise or lower the eigen-
value of L̂z by ~. That is let f be an eigenstate of L̂z with eigenvalue β (by construction
f is also an eigenvector of L̂2 with eigenvalue α),

L̂zL̂±f = (β ± ~)L̂±f (2.36)

We can derive the following commutators for the ladder operators,

[L̂z, L̂±] = ±~L̂± (2.37)

and
[L̂2, L̂±] = 0 (2.38)

Furthermore L̂2 can be written in terms of the ladder operators in the following way:

L̂2 = L̂±L̂∓ + L̂2
z ∓ ~L̂z (2.39)

We can now find relations for the eigenvectors of L̂2 and l̂z by systematic application
of the raising and lowering ladder operators to a state (call it f) assumed to be the
highest and lowest, respectively, eigenstate of L̂z and using equation (2.39). A detailed
explanation of this is unnecessary and can be found in [8]. From this we find that in

21



quantum mechanics the angular momentum of f is quantized. Furthermore the angular
momentum of a state can be described by 2 quantum numbers m and l (f can therefore be
expressed as |l,m〉 with regards to angular momentum) which are related to eigenvalues
of L2 and Lz,

L̂2 |l,m〉 = ~2l(l + 1) |l,m〉); L̂z |l,m〉 = ~m |l,m〉) (2.40)

where l = 0, 1, 2.... is the total angular momentum of the state and m = −l,−l+1, ...., l−
1, l is the angular momentum projected along the Z-axis (the direction of measurement is
arbitrary chosen but conventionally we use Z-axis). These two quantum numbers, allow us
to construct a vector model of the atom, in terms of angular momentum which explains the
Bohr model of the atom. This momentous result elucidates in large part the atomic nature
of electronic structure, and together with the principal quantum number (representing
different eigensolution of the Hamiltonian) and the spin quantum number (explained
next section) fully describe an electron in an atom (in a non-relativistic treatment).

2.4 Fermions and Bosons

When looking at the macroscopic world one can always, in theory, discern the path of
a specific object, however for atomic particles the same is not true. This is a direct
consequence of physical observations being eigenvalues of operators. “Observing” a par-
ticle requires a measurement of some kind, position for example r̂. However before any
measurement is performed, i.e. an operator is applied to a state, there is no a priori
requirement that the state must be in a specific eigenstate of said operators.

Consider a system of two electrons, and let us measure their position. Let us say that
we found the electrons to be at ra and rb. At a later time we again measure the positions
of the two electrons and we find rc and rd. One can not say if the electron which was pre-
viously at ra is now at rc and similarly if rb is now at rd, or vice-versa. As far as quantum
mechanics is concerned one electron is indistinguishable from another. The easiest
way to accommodate indistinguishable particles when constructing a many electron wave
function from single particle states is to not commit a particle to a specific state. For a
system of two indistinguishable particles (x,y) we can write

Ψ±(x,y) = [ψa(x)ψb(y)± ψa(y)ψb(x)] (2.41)

where Ψ− corresponds to fermions, like electrons, and Ψ+ to bosons, like photons. The
underlying theory of fermions and bosons is derived in relativistic quantum mechanics.
In quantum mechanics however, the division of atomic particles into fermions and bosons
is axiomatic.

An important consequence of electrons being fermions is the requirement that any
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wave function describing a system of interacting electrons be anti-symmetric. Let P̂xy

be the operator that changes the coordinates x to y (which amounts to interchanging
the particles). Applying P̂xy to the fermionic wavefunction (Ψ− from equation (2.41)) we
have,

P̂xyΨ−(x,y) = −Ψ−(x,y) (2.42)

A further consequence of the anti-symmetry is that no two identical particles can occupy
the same state:

Ψ(x,y) = [ψa(x)ψa(y)− ψa(y)ψa(x)] = 0 (2.43)

Equation (2.43) is the famous Pauli exclusion principle, which states that: two elec-
trons can not occupy the same state, i.e no two electrons can have the same quantum
numbers (more on this in the next section). The anti-symmetry requirement of a wave
function of electrons adds complications to any electronic calculations as we will see over
the next few sections.

2.5 Spin

Before the advent of quantum physics, it was already known that atoms with even numbers
of electrons were more stable than those with odd numbers. This order is a manifestation
of an underlying theory that, even after the first strides of quantum mechanics, was not
fully understood.

Niels Bohr, in an attempt to explain this behaviour, suggested that the perceived
stability was a result of the electrons being order in groups 2, 6 and 8 in what he called
“closed shell ” packing [9].

From the section on angular momentum we know that an eigenstate of the angu-
lar momentum operator can be specified by the quantum numbers l and ml. Similarly
eigenstates of a Hamiltonian (2.1) can be specified by the principal quantum number n.
Using all of the aforementioned quantum numbers and the exclusion principle one still is
not able to explain the closed shell packing. To do this Wolfgang Pauli introduced a new
quantum number called Spin, the electron was assumed to be a particle with spin quantum
number of magnitude 1

2 . When measured along an axis the spin operator (Ŝi) has only
two eigenstates, which we label ms with corresponding eigenvalues of 1

2~ and −1
2~. This

new spin quantum number together with Pauli’s exclusion principle, which states that no
two electrons can have the same set of quantum numbers (n, l,ml,ms), explains closed
shell packing and a good part of the atomic structure in nature. Relativistic quantum
mechanics would later verify Pauli’s assumption, Dirac eventually showed that indeed the
electron has an immutable spin quantum number of 1

2 .
However Pauli’s assignment of a spin quantum number was not just an ad-hoc assump-
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tion. The Stern-Gerlach experiment in 1922 [7] demonstrated the need for an “intrinsic”
angular momentum of the electron, which would eventually be labelled spin and, the z-
component of which, is quantized in units of 1

2~.
The algebraic treatment of the spin is similar to that for angular momentum. The

commutators of the spin operators along the different axis are:

[Ŝx, Ŝy] = i~Ŝz, [Ŝy, Ŝz] = i~Ŝx, [Ŝz, Ŝx] = i~Ŝy (2.44)

Constructing the Ŝ2 operator as before:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z (2.45)

And introducing ladder operators:

Ŝ± = Ŝ2
x ± Ŝ2

y (2.46)

we find as before:

Ŝ2 |s,ms〉 = ~2s(s+ 1) |s,ms〉); Ŝz |l,ms〉 = ~ms |l,ms〉) (2.47)

where s = 0, 1
2 , 1,

3
2 , 2.... and ms = −s,−s− 1, ...., s− 1, s.

However unlike the case of angular momentum the spin value (s) of a particle is im-
mutable, it is one of their defining characteristics. For this thesis the quantum mechanical
treatment of spin presented here suffices.

For most calculations performed in this thesis the systems will be in a spin unpolarized
state i.e. there will be no net spin. However there will be some systems with ferromag-
netic and anti-ferromagnetic properties, this requires a slightly different approach which
will be explained in the next chapter.

2.6 The Many-Body Hamiltonian.

Expanding on the previous sections one must now construct the Hamiltonian for a system
of N electrons in a potential field generated by K nuclei with charge Zn. This is the
typical Hamiltonian for electronic structure studies often called the many-body interacting
Hamiltonian, which can be written in the following form:

Ĥ(rn,Rk) =
N∑
i=1

p2
i

2me

+
K∑
n=1

p2
n

2Mn

+ 1
4πε0

1
2

N∑
i,j=1;i 6=j

e2

|ri − rj|

− 1
4πε0

K∑
n=1

N∑
i=1

Zne
2

|ri −Rn|
+ 1

4πε0
1
2

K∑
n,n′=1;n 6=n′

ZnZn′e
2

|Rn −Rn′ |

(2.48)
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where the indexes i and n label sums over the electrons and the nuclei respectively, Mn are
the masses of different nuclei and m is the electron mass. The first two terms of the Hamil-
tonian (2.51) represent the kinetic energy of the electrons and nuclei respectively. The
remaining terms are, the electron-electron, nuclear-electron and nuclear-nuclear Coulomb
interactions.
Once we have this Hamiltonian we must solve the time-independent Schrödinger equation
given by,

Ĥ(rn,Rk)Ψ(rn,Rk) = EΨ(rn,Rk) (2.49)

where now, Ψ(rn,Rk) depends on both electronic and nuclear coordinates.
Equation (2.48) is best written in atomic units where,

e = me = ~ = e2

4πε0
= 1 (2.50)

Energy is then expressed in terms of the Hartree (27.2 eV) and distance in terms of the
Bohr radius a0. Rewriting equation (2.48) in atomic units we have,

Ĥ =
N∑
i=1

p2
i

2 +
K∑
n=1

p2
n

2Mn

+ 1
2

N∑
i,j=1;i 6=j

1
|ri − rj|

−
K∑
n=1

N∑
i=1

Zn
|ri −Rn|

+ 1
2

K∑
n,n′=1;n6=n′

ZnZn′

|Rn −Rn′|

(2.51)

It is clear that any eigenfunction of this Hamiltonian will be a function of both the
electronic and nuclear coordinates. However it is widely understood, particularly in chem-
istry, that most electronic properties of matter result from interaction of electrons, with
the valence electrons playing a greater part than core ones. Thus it would seem wasteful
to consider the nuclear coordinates in the same footing as electronic ones. It would be
ideal if one could separate the wave function as

Ψ(electrons, nucleus) = Ψ(electrons)× Φ(nucleus) (2.52)

Studying electronic structure then would in principle be greatly simplified because we
would have a much simpler Hamiltonian, or at least concern ourselves with only the wave
functions of the electrons. Even if Ψ(electrons) had some parametrical dependence on the
nuclear positions one could, in principle, calculate it separately from Φ(nucleus).

In fact the previous assumption is physically realistic when one considers the nature
of the electron-nuclear interaction. The Coulomb force acting on both the electron and
the nucleus due to their charges has the same order of magnitude. Thus one could
propose that any change in momenta to both the nucleus and the electron must also be
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similar. The proton being massive when compared to the electron would have a much
smaller velocity and move very little. Therefore in the time-scale of an electronic structure
calculation one could assume that the protons remain stationary and the electrons quickly
adapt to any ground-state nuclear distribution. This is known as the Born-Oppenheimer
approximation.

2.6.1 The Born-Oppenheimer approximation

Proceeding as described in the previous section we wish to separate the eigenfunctions of
the many-body Hamiltonian in the following manner:

Ψ′(rn,Rk) = Ψ(rn; Rk)Φnucleus(Rk) (2.53)

where Ψ(rn; Rk) depends only parametrically in the nuclear coordinates Rk and is a
solution to:

ĤeΨ(rn; Rk) = εeΨ(rn; Rk) (2.54)

where εe is known as the adiabatic contribution of the electrons to the system’s energy,
and

Ĥe =
N∑
i=1

pi
2

2m + 1
2

N∑
i,j=1;i 6=j

1
|ri − rj|

−
K∑
n=1

N∑
i=1

Zn
|ri −Rn|

(2.55)

is the electronic part of the many-body Hamiltonian (2.51).
Applying the full Hamiltonian (2.51) to the eigenfunction (2.53) we have:

ĤΨ′(rn,Rk) =
(
Ĥe +

K∑
n=1

52
Rk

2Mn

+ 1
2

K∑
n,n′=1;n6=n′

ZnZn′

|Rn −Rn′|

)
Ψ′(rn,Rk)

= Ψ(rn; Rk)
(
εe +

K∑
n=1

52
Rk

2Mn

+ 1
2

K∑
n,n′=16=n′

ZnZn′

|Rn −Rn′|

)
Φ(Rk)

−
∑
K

25Rk
Φ(Rk)5rn Ψ(rn; Rk) + Φ(Rk)52

rn Ψ(rn; Rk)

(2.56)

The non-adiabatic terms involving derivatives with respect to the nuclear position con-
tribute very little to the energy and therefore can be neglected. To a first approximation
eq. (2.56) can be recast:

ĤΨ′ = Ψ
(
εe + 1

2

K∑
n,n′=16=n′

ZnZn′

|Rn −Rn′|

)
Φ (2.57)

The total energy of the system is then:

Etotal = εe +
K∑

n,n′=1;n6=n′

ZnZn′

|Rn −Rn′ |
(2.58)
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with the second term being the nuclear-nuclear electrostatic energy.
For the rest of this thesis the adiabatic approximation is used. The nuclear distribution

is assumed to be fixed for any systems treated in the next chapters. In addition the nuclear
wave function Φ(Rk) is dropped and the nuclear-nuclear electrostatic energy is ignored
unless stated.

2.7 Independent electron approximations

Although not directly related to the topics of this thesis, we must briefly expand on a
particular independent electron approximation (Hartree-Fock), which will be mentioned
in later chapters.

2.7.1 Hartree approximation

Despite the adiabatic approximation solving equation 2.55 is still very complicated. One
could envisage, for the purposes of simplicity, a gross approximation to the many-electron
Hamiltonian (2.55), where one would construct it from single electron Hamiltonians:

Ĥind =
∑
i

H1el(i) =
∑
i

Ĥ1el(ri) =
∑
i

[
− 1

2 5
2
i −Veff(ri)

]
(2.59)

where Veff would be an effective potential. The Schrödinger could then be solved by
separation of variables. Let us then form the time-independent problem,

Hind |Ψ〉 = ε |Ψ〉 (2.60)

and
Ψ(r1, r2, ...., rn) = ψ1(r1)ψ2(r2).....ψn(rn) (2.61)

Where Ψ is the system’s electronic wave function and ψi(ri) are the wave functions of
individual electrons (solutions of Ĥ1el) and 〈ψi|ψj〉 = δij.

The product of functions in equation 2.61 is known as the Hartree product. This is
one of the most basic of approximations for the electronic wave function Ψ. For such
approximations to yield any valuable insight into the physics of a system the potential
felt by each electron V̂eff(ri) must contain not only the nuclear coulomb potential but also
the average potential (mean-field) due to the interaction with other electrons. This term
will also include exchange-correlation.

Given the presence of terms in Veff(ri) which depend upon the electric coordinates,
one must have knowledge of individual electronic wave functions to construct it. Such
wave functions, obtained from one electron calculations in which they must be used to
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define the potential, are know as self consistent.

2.8 Hartree-Fock theory

Given that the electrons are fermions one would expect that any wave function describing
a system of electron should be anti-symmetric with respect to the interchange of two
electrons which the Hartree product is not. The Hartree-Fock method improves on the
Hartree approximation by constructing an anti-symmetric wave function thereby treating
the exchange interaction exactly.

2.8.1 Exchange interaction

The appearance of the exchange interaction is a consequence of the anti-symmetry require-
ment. Let’s assume we have a system of two identical particles and we have two different
states φa and φb. Let these two states be orthogonal and normalised. We construct the
anti-symmetric wave function for the system as :

Ψ(x,y) = 1√
2

[φa(x)φb(y)− φa(y)φb(x)] (2.62)

To find out the effect of anti-symmetry on the electronic distribution the expectation
value of the squared distance between the particles can be calculated :

∆ = (x− y)2 = x2 + y2 + 2xy (2.63)

The details of the calculation can be found in [8], the expectation value of ∆ is:

〈∆〉 = 〈x2〉a + 〈x2〉b − 2 〈x〉a 〈x〉b + 2 |〈x〉ab|
2 (2.64)

Where 〈x2〉a and 〈x〉a are the expectation values of x and x2 in state φa and:

〈x〉ab =
∫
xφa(x)φb(x)dx (2.65)

As we can see from the positive last term in equation (2.64), anti-symmetric particles
are further kept apart even in the absence of any Coulomb forces. We now explore the
construction of anti-symmetric wave functions for many-electron systems.
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2.8.2 Hartree-Fock approximation

As mentioned above, the Hartree wave function is not anti-symmetric, however combina-
tions of Hartree products can be made which do have anti-symmetry. From linear algebra
we know that the determinant of a matrix is always anti-symmetric with respect to an
exchange of columns (or rows). It follows that constructing a wave function by means
of a determinant will ensure the correct behaviour. In electronic structure theory this is
know as a Slater determinant,

Ψ(r1, r2, ...., rn) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) . . . ψ1(rn)
ψ2(r1) ψ2(r2) . . . ψ2(rn)
. . . . . .

. . . . . .

ψn(r1) ψn(r2) . . . ψn(rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where the individual ψi will also be a function of the spin coordinates, however for

simplicity in this discussion spin is taken into account by multiplying the last two terms
of equation (2.66) by a factor of four.

The expectation value of a wave function constructed from a Slater determinant will
be stated here without derivation (a thorough derivation can be found in [10]) :

〈Ψ|Ĥ|Ψ〉 =
∑
i

∫
ψ∗i (ri)∗

[
− 1

2 5+Vext
]
ψi(ri)dr

+ 2
∑
i,j

∫ ∫
dr1dr2ψ

∗
i (r1)ψ∗j (r2) 1

|r1 − r2|
ψi(r1)ψj(r2)

−
∑
i,j

∫ ∫
dr1r2ψ

∗
i (r1)ψ∗j (r2) 1

|r1 − r2|
ψj(r1)ψi(r2)

(2.66)

Where the two terms, which involve only integration of one-electron terms, are the kinetic
energy and electron-nuclear Coulomb energy. The remaining terms, which involve two-
electrons, are respectively the electron-electron Hartree energy and the exact exchange
energy, which arises directly from the anti-symmetric form of the wave function.

The Hartree-Fock wave function is also an approximation of course. The true wave
function for a two electron wave function will also depend on |r1 − r2|, ie. the separation
of the two electrons, and this is not the case in a wave function constructed in a Slater
determinant. The result is that the Hartree-Fock energy (equation 2.66), EHF, is therefore
higher than the true energy, ETE, as according to the variational principle, any restriction
in the wave function increases the energy. The difference is known as the correlation
energy:

ETE = EHF + Ecorr (2.67)

where Ecorr is negative. This is ignored in HF theory, but included approximately in DFT
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as will be discussed shortly.

2.9 Summary

A brief introduction to quantum mechanics has been presented, inclunding the time-
independent Schrödinger equation which is used to treat quantum mechanical problems.
The many-body Hamiltonian, that of a system of electrons in a field of nuclei, which is the
basis for any electronic structure calculation was constructed and the Born-Oppenheimer
approximation which greatly simplifies the aforementioned Hamiltonian (and any Hamil-
tonian derived from it) was introduced.

The independent electron approximation was discussed, and one particular method-
ology, the Hartree-Fock approximation, which is used to find solution for the many-body
Hamiltonian (after the Born-Oppenheimer approximation) was discussed briefly.

Some theoretical considerations were stated which will be important, in the next chap-
ter, where the theoretical formulation of DFT is presented, the theory upon which the
main results of this work will depend.
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Chapter 3
Density Functional Theory

3.1 Density Functional Theory

The complexity of the Hamiltonian equations involved in the study of electronic struc-
ture, even after the approximations discussed in the previous chapter, curtail their useful-
ness. As summarized previously, the main obstacles when solving the time-independent
Schrödinger equation for a group of electrons and nuclei, were the many-body interactions
between electrons.

In the latter part of the previous chapter independent electron methods were in-
troduced where an approximate ground state of the system is constructed from solu-
tions of a non-interacting Hamiltonian, particularly the Hartree-Fock method which self-
consistently finds the best approximation for the true ground state wave function as an
anti-symmetric Slater determinant and calculates its energy. These wavefunctional meth-
ods, where the wave function for a system of n independent electrons is used to calculate
the energy of the system, scale in complexity as O(n(3−4)), which can limit the scope of
possible calculations.

DFT attempts to overcome the biggest drawbacks of wavefunctional methodology by
expressing the energy as a functional of the electronic density n(r).

3.1.0.1 The Hohenberg-Kohn Theorems

In 1964 Hohenberg and Kohn [11] published a set of remarkable statements in a seminal
paper, known as the Hohenberk-Kohn (HK) theorems, that laid the foundation of DFT.
At its most basic the HK theorems assert that one can deal, without any loss of gener-
ality, with the ground state density n0(r) as one would deal with the ground state wave
function Ψ0(r) and essentially express the energy as a function of density E[n(r)] instead
of E[Ψ0(r)].
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As detailed in chapter 2, after performing the Born-Oppenheimer approximation one
is left with the following Hamiltonian for a system of electrons in a potential generated
by a group of nuclei (call it Vext(r)):

Ĥ = T̂ + Û + V̂ext (3.1)

where
T̂ =

∑
i

1
2 5

2
i and Û =

∑
i

∑
j 6=i

1
|ri − rj|

(3.2)

By solving the Hamiltonian equation, Ĥ |Ψ0〉 = ε0 |Ψ0〉 one obtains the ground state |Ψ0〉
and simultaneously the ground-density n0(r). It follows then, that both the ground state
|Ψ0〉 and ground state density n0(r) are uniquely determined by V̂ext since both T̂ and Û
remain the same for any system of electrons. However one of the HK theorems asserts
that the reverse statement is also true :

• The ground state electronic density n0(r) of a system uniquely determines V̂ext.

Let us assume that the ground state |Ψ0〉 is non-degenerate, and has an associate en-
ergy E0. We proceed to prove the theorem above, i.e. that the potential is a functional
of the ground state density Vext[n0(r)], by reductio ad absurdum. As stated beforehand
the ground state density n0(r) is clearly a functional of V̂ext since it is constructed from
a solution of Ĥ (|Ψ0〉). Let us assume that there exists another potential V̂ ′ext with a re-
spective ground state |Ψ′〉 and an energy E ′0, that yields the same density n0(r) (obtained
from V̂ext). Clearly |Ψ′〉 6= |Ψ0〉 since they are the ground state solutions of two different
Hamiltonians Ĥ ′ 6= Ĥ (different potentials V̂ ′ext 6= V̂ext).

Let δ̂ = V̂ ′ext − V̂ext, by construction it follows that the expectation value 〈δ̂〉 6= 0 with
respect to both |Ψ〉 and |Ψ′〉. Using the variational principle introduced in the previous
chapter we find:

E0 = 〈Ψ0| Ĥ |Ψ0〉 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′ − V̂ ′ + V̂ |Ψ′〉 = E ′0 + 〈Ψ′| − δ̂|Ψ′〉 (3.3)

We can construct a similar relation for E ′0,

E ′0 < E0 + 〈Ψ0|δ̂|Ψ0〉 (3.4)

Calculating the expectation value of δ and find:

〈Ψ| δ̂ |Ψ〉 =
∫

Ψ∗(r)δ(r)Ψ(r)dr =
∫
n0(r)δ(r)dr (3.5)
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And similarly for |Ψ′〉,
〈Ψ′| δ̂ |Ψ′〉 =

∫
n0(r)δ(r)dr (3.6)

where equation(3.6) is derived from our initial assumption that both Ĥ and H ′ yield the
same ground state density n0(r). Therefore we have,

〈Ψ0| δ̂0 |Ψ〉 = −〈Ψ′| − δ̂ |Ψ′〉 (3.7)

Summing equation (3.3) with (3.4) and using the equality (3.7) we find the following
inequality:

E0 + E ′0 < E ′0 + E0 (3.8)

Equation (3.8) is a clear contradiction thus our initial assumption is incorrect. If V̂ext 6=
V̂ ′ext then n0(r) 6= n′0(r) and more importantly the converse of that statement, i.e. if
n0(r) 6= n′0(r) then both densities must have been constructed from solutions of Hamil-
tonians with a different external potential V̂ext. Therefore the external potential V̂ext is
uniquely determined by the ground state density so that one may write the latter as a func-
tional of the former Vext[n0(r)]. Having proven this we proceed to show that indeed one
can write the energy of the system as a functional of the density and that E0 = E[n0(r)].

3.1.0.2 Density Functional

The second theorem, which lays out the meaning of Density Functional in DFT, can be
stated as follows:

• There exists a universal functional for the ground state energy in terms of density
E[n(r)] valid for any external potential. For a particular V̂ext the ground state density
minimises said energy functional i.e. min [E[n(r)]] = E0 = E[n0(r)].

In the previous chapter it was proven that the ground state density n0(r) is enough to
determine V̂ext, and in turn also |Ψ0〉. Therefore both the kinetic energy 〈Ψ0|T̂ |Ψ0〉 and
the electronic Coulomb energy 〈Ψ0|Û |Ψ0〉 are functionals of n0(r). Let us now define the
universal functional:

F̂ [n(r)] = 〈Ψ| T̂ + Û |Ψ〉 (3.9)

according to the previous chapter and using (3.9), for a given V̂ext we can define the energy
functional as:

EHK[n(r)] =
∫
Vext(r)n(r)dr + F [n(r)] (3.10)

All that remains now is to show that n0(r) minimizes E[n(r)] at the ground state energy.
Let us consider a system with ground state density n0(r) and the corresponding Vext(r).
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The ground state energy of this system is:

E0 = EHK[n0(r)] =
∫
Vext(r)n0(r)dr + F [n0(r)] = 〈Ψ0|Ĥ|Ψ0〉 (3.11)

Now let us consider a different density n1(r) and corresponding wave function |Ψ1〉, using
the EHK[n(r)] in equation (3.11) we find,

E0 = EHK[n0(r)] = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ1|Ĥ|Ψ1〉 = EHK[n1(r)] (3.12)

Thus any guess density n1(r) will always have an higher energy than the ground state
n0(r), i.e. EHK[n0(r)] < EHK[n1(r)]. In addition the ground state n0(r) minimizes the
energy functional EHK[n(r)]. This is known as the variational principle.

In principle if one knew the exact form of F [n(r)], it follows that one could find the
ground state energy of a system by minimizing EHK[n(r)], a procedure which would scale
linearly with respect to system size.

As powerful as the HK theorems are, they are not without caveats. The HK theorems
implicitly restrict the densities n(r), that one can use to minimise EHK[n(r)], to the
subset of functions which are themselves the ground state density of an Hamiltonian with
a particular V̂ext. Such densities are known as V-representable. This severely hampers any
implementation of HK theorems as the subset of V-representable densities is not know a
priori.

3.1.0.3 The constrained search formalism

Although the ground work for DFT had been laid in the seminal Hohenberg-Kohn paper
[11] the difficult task of finding V-representable densities limited its application, in ad-
dition there was no indication on how useful approximations to the universal functional
F [n(r)] could be generated. To remedy these shortcomings Levy [12] suggested an alter-
native procedure to minimize the energy functional, which essentially introduces a second
minimization step.

Consider the subset of many-body wave functions |Ψ〉 which have the same density
n(r). The total energy for a wave function in this subset can be written as:

E = 〈Ψ|T̂ |Ψ〉+ 〈Ψ|Û |Ψ〉+
∫
Vext(r)n(r)dr (3.13)

One can then minimize the total energy over the subset of wave functions |Ψ〉 with the
same density n(r), for which we can define a unique lowest energy:

ELL[n(r)] = min
Ψ→n(r)

[
〈Ψ| T̂ |Ψ〉+ 〈Ψ| Û |Ψ〉

]
+
∫
Vext(r)n(r)dr (3.14)
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one can rewrite the previous expression as

ELL[n(r)] = FLL[n(r)] +
∫
n(r)Vext(r)dr (3.15)

where FLL[n(r)]
FLL[n(r)] = min

Ψ→n(r)

[
〈Ψ| T̂ + Û |Ψ〉

]
(3.16)

known as the Levy-Lieb functional, is the minimum kinetic and internal interactions en-
ergy with respect to all the wave functions which yield the same density. ELL[n(r)] is then
a function of the density and we can find the ground state density n0(r) by minimizing
ELL[n(r)].

Although this result may, at a first glance, seem similar to the formulation derived
from the HK theorems in the previous section, there are several noteworthy differences.
The meaning of the universal functional is now clarified and the minimization is defined
for any density n(r) which is constructed from a many-body wave function ΨN(r) for
N electrons, this is know as “n-representability”. It has been shown [13] that any non-
negative function (such as density) is n-representable, that is any density can be written
in terms of an asymmetric many-body wave function and can therefore be considered
in the minimization procedure. In addition the minimization can be extend to sets of
degenerate ground states (as long as they generate a density n(r)).

Although the V-representabilty restriction as now been removed, no method to gen-
erate FLL[n(r)] is given other than its definition. This as we will see shortly is one of the
main results of Kohn-Sham formalism.

3.2 Kohn-Sham equations

The Hohenberg-Kohn theorems allow the problem of finding the ground state energy E0

and wave function |Ψ〉 to be mapped into one of minimizing a functional E[n(r)]. How-
ever, this minimization relies upon an unknown universal functional F [n(r)], of which we
only know that it exists. Thus any benefit one could gain from an implementation of the
HK theorems, such as the linear scaling with respect to system size and exactness of the
method, is overshadowed by the unknown nature of the universal function F [n(r)].

Kohn-Sham [11] devised a method to circumvent the problems mentioned in the para-
graph above, however single particle wave functions, such as the ones described at the end
of last chapter, are reintroduced resulting in cubic scaling, O(n3), with respect to system
size, due to the orthonormality condition. However the exactness of the HK method is
maintained in the KS reformulation.

Fundamentally the Kohn-Sham formulation of Density Functional Theory (KSDFT)
rests on the assumption that:
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• The ground state density of a system of interacting electrons can be represented by
the ground state density of an auxiliary system of non-interacting electrons.

Thus one can deal with independent electrons but the density of an interacting system.
Let us start by recasting the HK universal functional,

F [n(r)] = 1
2

∫ n(r)n(r′)
|r′ − r|

drdr′ +G[n(r)] (3.17)

where the first term is the energy which arises out of the long range Hartree potential,
i.e. the electron-electron Coulomb potential,

VHartree =
∫ n(r′)
|r′ − r|

dr′ (3.18)

and G[n], is a new universal functional. Furthermore, Kohn-Sham in a stroke of genius,
more on this on a later section, further separated G[n],

G[n] = Ts[n] + Exc[n] (3.19)

where Ts[n] is the kinetic energy for a system of non-interacting electrons and Exc[n(r)],
the exchange-correlation energy, contains the complex many-body electron interactions.

In the Kohn-Sham scheme the energy functional (3.10) can then be recast, as:

EKS[n(r)] = Ts[n(r)] +
∫
Vext(r)n(r)dr + 1

2

∫ n(r)n(r′)
|r′ − r|

drdr′ + Exc[n(r)] (3.20)

we now proceed to find the Hamiltonians from which we will generate the densities so
that we might minimize (3.20).

3.2.1 The auxiliary system

Let Hnon be the Hamiltonian for a system of N non-interacting electrons,

Ĥnon = −1
2 5

2 +Vaux(r) (3.21)

where at this stage Vaux(r) need not be specified. Let the set of ψi(r) be the eigenstates of
Ĥnon with associated eigenenergies εi. The N non-interacting electrons must occupy the
lowest N states as per Pauli’s exclusion principle. The electronic density of this system
n(r) is given by :

n(r) =
N∑
i=1
|ψi(r)|2 (3.22)
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and the independent electron kinetic energy can be written as:

Ts = −1
2

N∑
i=1
〈ψi| 52 |ψi〉 (3.23)

Following the methodology set forth from the HK theorems, we wish to minimize
(3.10) to find the ground state n0(r) for our system of non-interacting electrons, subject
to the condition: ∫

n0(r)dr = N (3.24)

Given our formulation we know that the ground state n0(r) is a minimum of (3.20),

δEKS[n]
δn(r)

∣∣∣∣
n=n0(r)

= 0 (3.25)

in addition:
δEKS

δψi
= δEKS

δn0(r)
δn0(r)
δψi

= 0 (3.26)

the one-to-one correspondence between the ground state density and its corresponding
wave function in the HK theorems is further exemplified by the equation above.

Varying EKS[n(r)] with respect to ψi(r) we find:

δEKS

δψi
= δTs

δψi
+
[
δEext

δn
+ δEHartree

δn
+ δExc

δn

]
δn(r)
δψi

= 0 (3.27)

Using expressions (3.23) and (3.22) we can recast the following terms from the previous
equation,

δTs

δψi
= −1

2 5
2 ψi(r) and δn(r)

δψi
= ψi(r) (3.28)

Given the expressions above, equation (3.27) can then be reformulated using the method
of Lagrangian multipliers (to handle constraint (3.24)) as:

−1
2 5

2 ψi(r) +
[
δEext

δn
+ δEHartree

δn
+ δExc

δn
− εi

]
ψi = 0 (3.29)

where εi are the Lagrangian multipliers. But this is simply:

(ĤKS − εi)ψi = 0 (3.30)

Here εi are the eigenenergies of each state φi and ĤKs is:
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ĤKS = −1
2 5

2 +δEext

δn
+ δEHartree

δn
+ δExc

δn

= −1
2 5

2 +Vext(r) + VHartree(r) + Vxc(r)
(3.31)

Thus we have found the exact formulation for Vaux term in equation (3.21). Vaux is often
written as VKS within the KS formalism.

The total energy of the non-interacting system is given by,

N∑
i=1

εi = Ts[n] +
∫

(Vext(r) + VHatree(r) + Vxc(r))n(r)dr (3.32)

Comparing this result with the equation (3.20), we can rewrite the energy for the inter-
acting system in terms of these eigenenergies,

EKS[n(r)] =
N∑
i=1

εi −
1
2

∫ n(r)n(r′)
|r′ − r|

dr′dr + Exc[n(r)]−
∫
Vxc(r)n(r)dr (3.33)

Equation (3.30), (3.31) and (3.33) are known as the Kohn-Sham equations. If one knew
the exact exchange-correlation functional, Exc, then the Kohn-Sham scheme presented
here would calculate the exact ground state. However, the exact form of Exc is not known
and one must employ approximations.

It must be stressed, that the reintroduction of orbitals in KS methodology has resulted
in the reintroduction of cubic scaling. For large systems, we will see in later sections, the
main culprit responsible for the overall scaling of the method is the Hamiltonian diago-
nalization (where the KS orbitals are obtained). However, methods have been developed
which minimize the required computer effort in this step resulting in a more appealing
computational time [14, 15]. Our method, filtration [5, 16], will be presented in chapter
6.

3.2.2 Solving the Kohn-Sham Equations

We will keep the discussion here general, specific details on how different Kohn-Sham
schemes are implemented will be presented in the next chapter. The Kohn-Sham equa-
tions must be solved within a self-consistent scheme, particularly since the auxiliary po-
tential VKS[n](r) is a functional of the density, itself constructed from the single-state wave
functions, which are solutions of the Kohn-Sham Hamiltonian.

Figure 3.1 presents a schematic representation of the overall kernel of many KSDFT
codes using localised orbitals which can, algorithmically, be summarized as:

1. An initial guess nin(r) is chosen which specifies an initial guess for the Kohn-Sham
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potential VKS[nin(r)], using this the Kohn-Sham Hamiltonian HKS is built. This
should be done efficiently, ideally with linear scaling, if a particular implementation
is intended to be used for large scale calculations.

2. The Kohn-Sham equations are solved, i.e. HKSψi = εiψi. This step is computa-
tionally expensive particularly so for large systems, since it might involve the direct
diagonalization of a large matrix. The filtration [5] methodology implemented in
AIMPRO [16] has been shown to be a reliable method to reduce computational expen-
diture of this step. This has lead to a considerable speed up of calculations when
compared with regular AIMPRO. However, in this thesis we will demonstrate that
filtration can also be used to perform calculations with the accuracy of a plane wave
calculation.

3. A new density nout(r) is calculated using the Kohn-Sham orbitals obtained from the
previous step.

4. The difference |nout(r) − nin(r)| is compared against a chosen tolerance. If the
difference is acceptable then the ground state properties of interest are calculated,
otherwise both nout(r) and nin(r) are used to form a new density nin(r) and the
process reverts back to step 2.

The steps 2-4 are commonly known in literature as a self-consistent cycle or a self-
consistent loop. The density obtained from solving the Kohn-Sham equations in the
method described above must eventually converge as the procedure used to generate
the new input density nin(r) is typically modified steepest descent method therefore
|nout(r)− nin(r)| will tend to zero as more iterations are performed.

3.2.3 Local Density Approximation

Due to its historical placement, and given that it follows on the tracks of our discussion
the Local Density Approximation (LDA) will be discussed here briefly.

The exchange-correlation energy Exc, unlike the HK universal functional, can be suffi-
ciently approximated due to the work of Kohn-Sham. Having separated out the indepen-
dent particle kinetic energy and the long range Hartee terms Kohn and Sham proposed
that the exchange-correlation energy could be approximated locally as

Exc[n(r)] =
∫
n(r)εhom

xc [n(r)]dr (3.34)

where εhom
xc [n(r)] is the exchange-correlation energy per electron of an homogeneous elec-

tron gas and n(r) is the density obtained from the Kohn-Sham orbitals.
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Yes
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Figure 3.1: Graphical representation of the different steps in a KSDFT calculation, the
four main steps are know as a self-consistence loop.

Typically the energy exchange-correlation is separated into two different terms,

εhom
xc [n(r)] = εhom

x [n(r)] + εhom
c [n(r)] (3.35)

Where the exchange term εhom
x [n(r)] can be obtained analytically using Hartree-Fock

method and the correlation term εhom
c [n(r)] must be obtained using a mixture of analytic

and numerical Quantum Monte-Carlo methods [17]. Two common parametrizations of
εhom

c [n(r)] are the Perdew-Zunger (PZ81) [18] and Perdew-Wang (PW92) [19] results.

3.3 Spin Polarization

So far it has been assumed that the Kohn-Sham orbitals are equivalently occupied, by spin-
up and spin-down electrons so that there is no overall net spin. However, some systems,
such as ferromagnetic materials, owe their ground state properties (like magnetism) to a
system wide alignment of the net spin. Thus if such systems are to be studied in a KSDFT
calculation we must treat the spin-up and spin-down electrons carefully and separately.

The extension of spin polarization to DFT is due to Von Barth and Hedin [20], a
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thorough introduction and review of spin polarized calculations can be found in [21].
Here a brief overview is presented given that spin polarized calculations are performed
later in this thesis.

The density of spin polarized system can be expressed as,

n(r) = n↓(r) + n↑(r) =
∑
σ

n(r, σ) =
∑
σ

∑
i

|ψσi (r)|2 (3.36)

where σ is the variable used to keep track of spin in summations, and is typically written
as σ =↑ or σ =↓ for electrons.
The spin dependent orbitals ψσi (r) are solutions of,

(Ĥσ
KS − εσi )ψσi = 0 (3.37)

the previous equation seems at first glance to simply be equation (3.30) with a spin label,
however expanding the spin dependent Kohn-Sham Hamiltonian we have,

Ĥσ
KS = −1

2 5
2 +VHartree[n(r)] + V σ

ext[n(r, σ)] + V σ
xc[n(r, σ)] (3.38)

where we might have V ↓xc[n↑, n↓] 6= V ↑xc[n↑, n↓] if n↑ 6= n↓ and V ↓ext[n↑, n↓] 6= V ↑ext[n↑, n↓] if
there is an external magnetic field. Essentially, the effective potential experienced by the
two spins is not necessarily the same. It follows that the two sets of Kohn-Sham orbitals
must be obtained separately and simultaneously (within the same iterative loop) given
that both densities (n↓(r) and n↑(r)) are used to generate the Hamiltonians for the next
iteration.

The total energy for the spin polarized system can be written as,

EKS = Ts[n↓(r)] + Ts[n↑(r)] + EHartree[n(r)] + Eext[n(r)] + Exc[n↓(r), n↑(r)] (3.39)

where the terms are constructed similarly to (3.27).
A LDA formulation for spin polarized calculations is given in [20], known as Local

Spin Density Approximation LSDA.

3.4 Fractional Occupation

All of the KSDFT formalism discussed thus far has assumed that the calculations are
performed at zero temperature. For metallic systems where the Fermi energy lies in
the conducting band, or systems with small or vanishing band gaps, self-consistency
calculations can fail to produced a converged density (and therefore a ground state energy)
[22]. This can be a result of an attempted crossing of an unoccupied to a occupied energy
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level from which follows a discontinuous change in the output nout(r) for infinitesimal
changes in input nin(r) density.

Such problems can be averted by implementing fractional occupations of the Kohn-
Sham orbitals [22, 23], whereupon the density can be expressed as,

n(r) =
∑

fi|ψi(r)|2 (3.40)

and fi is given by a smearing function. For the work presented in this thesis this is a
Fermi-Dirac distribution,

fi = 1

e
εi−µ
kbT + 1

(3.41)

where 0 < fi < 1 and µ is the chemical potential. The energy of the system EKS (given
by equation (3.20)) involved in the minimization routine must be substituted by the free
energy,

F [n(r)] = EKS[n(r)]− T · S[n(r)] (3.42)

where T is the temperature and S[n(r)] is given by,

S[n(r)] = −kb
∑
i

[fi ln(fi) + (1− fi) ln(1− fi)] (3.43)

The value for the electronic temperature used in this work, and the reasoning behind its
choice, will be explained in the results chapter.

3.5 Boundary Conditions

In keeping with universality of the discussion thus far we will discuss boundary conditions
at this stage. From multi-variable calculus we know that boundary conditions must be
specified when solving any differential equation, such as the Kohn-Sham Hamiltonian, if
an unique solution is to be obtained. Typically in KSDFT there are two kinds of boundary
conditions: periodic and homogeneous (non-periodic). We will now explain the reasoning
behind our choice of periodic boundary conditions and how it affects KSDFT implemen-
tation.

3.5.1 Crystal structure

Most systems studied in this thesis are crystals: an ordered state of matter where the
positions for a set of atoms are repeated periodically over space. It follows that in order
to study such systems we don’t need to construct our KS Hamiltonian for an almost
infinitely large set of atoms, instead we can construct a small cell with a few atoms the
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positions of which are repeated periodically. The set of atomic positions in the cell are
often called a basis. To specify the crystal structure of a system one needs a basis and a
set of vectors, which define the lattice. The position of an atom Rα can then be defined
by,

Rα = nα1 a1 + nα2 a2 + nα3 a3 (3.44)

in which the set of different (nα1 nα2 , nα3 ), are the basis and the three vectors a1, a2, a3 define
the lattice. Given the periodic representation of a basis it seems natural then to choose
periodic boundary conditions.

3.5.2 Periodic boundary conditions

As mentioned above the periodicity of a system is given by the set of lattice vectors ai.
This periodicity, in the position of atoms (and therefore nuclei), implies a periodicity of
the external potential Vext(r),

Vext(r) = Vext(r + ai) (3.45)

From the HK theorems, discussed in a previous section, it is easy to see that,

n0(r) = n0(r + R) (3.46)

It follows then that specifying the atomic positions Rα and the lattice vectors ai specifies
the system’s ground state.

Periodicity of n0(r), however, does not imply a periodicity of the Kohn-Sham orbitals
ψi, in fact they can change by a phase factor in different cells. Such functions, commonly
referred to as Bloch functions, can be expressed as,

ψk = eik·ruk(r) (3.47)

where uk(r) is a periodic function (uk(r + Rα) = uk(r)) and eik·r is the phase factor.
If we use the periodic form of KS orbitals in equation (3.30) we find that,

ĤKS(eik·ruk(r)) = ε(eik·ruk(r)) (3.48)

rearranging the previous equation,

Ĥk
KSuk(r) = εkuk(r) (3.49)

where Ĥk
KS = e−ik·rĤKSe

ik·r, and εk depends on the choice of k-vector. Specifying bound-
ary conditions has therefore introduced a k dependence in the KSDFT formalism, where
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k is a vector in the reciprocal space constructed from the reciprocal lattice vectors bi,

b1 = 2π a2 × a3

a1 · a2 × a3
(3.50)

and b2, b3 are given by cyclical permutations of the previous equation.
It follows that the ground state energy EKS, and many other system properties (let

us label them f), must be averaged over states with different k,

f̄ = 1
Nk

∑
k
f(k) (3.51)

where Nk is the number of k-vectors used. The details on how the previous summation
is performed are left to later chapters as it pertains to specific code nuances.

3.6 Summary

We now have an exact recipe to calculate the ground state energy, or any other ground
state property, of a system. The key points behind a KSDFT implementation are:

1. The total energy of an interacting system of electrons can be expressed in terms of
a density calculated from an auxiliary system of non-interacting electrons.

2. This density must be calculated from solutions of the Kohn-Sham equations, which
results in a cubic scaling in the computational effort with respect to system size.
However under certain conditions this can be reduced, as it will be shown later.

3. Periodic boundary conditions introduce a k dependence in a KSDFT calculation,
this, however does not affect the overall scaling.

Having now a solid theory and methodology to calculate the total energy, all that remains
is to code it according to the pseudo-algorithm given in section 3.2.2.
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Chapter 4
Kohn-Sham DFT implementation

Having established, broadly, the theoretical framework behind KSDFT we are left with
its implementation and code specific nuances. As it was noted in the previous chapter
the Kohn-Sham equations must be solved numerically and therefore the theory discussed
thus far must be expressed in a form which favours a computational implementation. A
KSDFT code must then be able to obtain the solution of the Kohn-Sham equations (the
heart of any KSDFT implementation) in a reasonable time with a controllable compu-
tational accuracy. Advances in functionality of one such code (AIMPRO) in both of these
aspects are the main topics of this thesis.

The advantages and disadvantages of different KSDFT implementations are discussed
in this chapter. We will built upon this discussion later when presenting the results.
Particularly how regular (O(n3) or scaling) KSDFT codes constructed using plane waves
(PW) are taken to be the most accurate and have systematic convergence, whilst regular
KSDFT codes which use Gaussian Type Orbitals, GTOs, are usually presented as not
as accurate and do not offer systematic convergence. However, we will show that with
filtration we can attain plane wave accuracy, at a cost of a GTO calculation.

In the latter parts of this chapter the details pertaining to an efficient matrix con-
struction for in AIMPRO are discussed, this is an important step in reducing the overall
time of a calculation.

4.1 Basis sets

One of the most important characteristics of a KSDFT code is the choice of basis set. Of-
ten the choice of basis sets even determines the fields in which a code is used. For example
in quantum chemistry it is customary to use Gaussian basis sets, for reasons which will
be presented shortly, whilst in solid state physics PW codes are more commonly used.

Essentially, a basis set is a group of functions chosen to expand the electronic wave
functions (solutions of the Hamiltonian) in either Hartree-Fock methods or DFT. In KS-
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DFT a Kohn-Sham orbital can be expanded as,

ψi ≈
N∑
j

cijφj(r) (4.1)

where the set of N functions (φj) is known as the basis set. The expansion in equation
(4.1) will undoubtedly introduce some error in the calculation, however it follows from
the variational principle discussed in chapter 2 that increasing the accuracy of expansion
(4.1), using better basis functions (φj) or increasing the basis set size (N), should result
in a more accurate prediction of the ground-state energy i.e. smaller basis set error.

There is no a priori requirement for what constitutes a good basis set, the choice of
which depends on the problem at hand. In this thesis we are concerned with KSDFT cal-
culations which can be accurate and efficient so that they can be used for a large number
of systems, thus the choice of basis sets should enable the rapid construction of both the
Hamiltonian and overlap matrices. In addition they should have properties which would
help with their transferability. These aspects will be a major topic of discussion in chapter
5 where we introduce our own basis set generation.

For now let us summarize some of the different kinds of basis sets which will be men-
tioned more prominently in this thesis. This is not an exhaustive summary, codes which
use wavelets [24] or augemented plane waves [25] are used as comparisons in chapter 7
and such basis sets are not summarized over the following sections since their only feature
of interest (with regards to the discussion in this thesis) is the ability to provide well
converged results. However in this regard, the ability to produce converged results is
explored when plane waves are discussed, in section 4.1.2, and the relevance of this with
regards to the results presented in this thesis is discussed in section 4.5 and chapter 7.

4.1.1 Slater-Type orbitals

One of the first types of functions to be employed as a basis set were Slater-type orbitals
(STOs) [26], which are solutions of Schrödinger time-independent equations for Hydrogen-
like atoms (one electron and positive Z > 1 nuclear charge). Such functions are considered
to be the best physically motivated candidates for localized basis sets, since they behave
has one would expect for a function representing electrons. A STO centred on an atom
at Rα with an angular momentum value l = n1 + n2 + n3 can be written as:

φ(r) = (x−Rα,x)n1(y −Rα,y)n2(z −Rα,z)n3e−α|r−Rα| (4.2)

The main attractive features of STOs are their locality (i.e. they are centred around an
atom) and correct physical description of the true wave function behaviour around r = Rα,
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which is referred to in literature as Kato’s cusp condition [27]. However constructing
the Hamiltonian elements for STOs is difficult, and in addition Gaussian type orbitals
(GTOs, introduced below) share some similarities in behaviour but decay much faster
making for a sparser Hamiltonian and overlap matrices, which is more desirable for efficient
implementations.

4.1.2 Plane Waves

ABINIT [28] a PW KSDFT code will be used as a reference in the result section of
this thesis therefore a brief discussion of PW implementations is warranted and will be
presented in this section.

A periodic function f(x) with period P , that is f(x) = f(x+ P ), can be expanded in
terms of plane waves (eikx) by performing a Fourier expansion:

f(x) =
∞∑

n=−∞
cne

i 2πnx
P (4.3)

where the Fourier coefficients cn are,

cn = 1
P

∫ x0+P

x0
f(x)ei 2πnx

P dx (4.4)

In the discussion at the end of last chapter it was shown that a single-state KS orbital
ψεi can be written as a Bloch function when periodic boundary conditions are employed.
It seems natural then to expand the periodic part of the Bloch function, uk(r), using PW,

uk(r) =
N∑
m=1

cm
1√
Ω
eiGm·r =

N∑
m=1

cm |Gm〉 (4.5)

where Ω is the volume of the Brillouin zone, cm is the expansion coefficient, |Gm〉 =
1√
Ωe

iGm is a reciprocal vector and N controls the number of plane waves used. In the
limit that N → ∞ the expansion (4.5) becomes exact, however for practical purposes,
i.e. numerical implementation, the expansion (4.5) must always be truncated at some
chosen N . The simplicity of controlling the accuracy of the expansion (equation (4.5))
with increasing N , is one of the great strengths, and a hallmark, of PW calculations.

Another benefit of PW is their mutual orthogonality,

1
Ω

∫
Ω
e−iGm·reiGn·rdr = δm,n (4.6)

as discussed in chapter 2 if orthonormal basis are used the KS equations can be mapped
into a ordinary eigenvalue problem, as opposed to the more complicated case of non-
orthogonal basis which forms a generalized eigenvalue problem.
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Let us now form the KS eigenvalue problem using PW. For simplicity assume we are
dealing the Γ-point in the Brillouin zone (i.e. k = 0) so that the KS wavefunction is
simply with the periodic part of the Bloch function. Using equation (4.5) we can express
the KS equation as, ∑

m

HKS |Gm〉 ci,m = εi
∑
m

ci,m |Gm〉 (4.7)

where the index i indicates an expansion of the KS wavefunction (ψi) with eigenvalue εi.
Multiplying on the right by 〈Gn| we have

∑
m

〈Gn|HKS |Gm〉 ci,m = εi
∑
m

ci,m 〈Gn|Gm〉 = εici,m (4.8)

which can be written in matrix notation as,

∑
m

Hnmci,m = εici,m (4.9)

Most modern PW implementations do not solve the previous eigenvalue problem directly,
instead they use iterative methods [29, 30] which dramatically reduce the cost of calcula-
tions. For large-scale calculations, which employ iterative solving methods, the orthogo-
nalisation of KS orbitals becomes the leading time consuming step. Due to the delocalized
nature of PW there is little prospect that the computational effort involved in this step
can be reduced making PW less attractive for calculations involving large systems. De-
spite this drawback, the popularity of PW implementations stems from the easiness to
converge the result with respect to the basis sets. This is accomplished by performing
different calculations on the same system whilst increasing the number of plane waves
(N).

To demonstrate how plane wave KSDFT calculations should converge with increasing
N let us calculate the kinetic energy term in equation (4.8):

∑
m

ci,m 〈Gn| −
1
2 5

2 |Gm〉 = ci,mG
2
m (4.10)

It is reasonable to assume, from equation (4.10), that after a certain m the kinetic
energy G2

m, of the respective |Gm〉, becomes unphysically high, it follows that the coef-
ficients of expansion corresponding to that reciprocal vector ci,m must approach zero. It
is therefore safe to assume that the coefficients ci,n for plane waves with smaller kinetic
energy, i.e. n < m, must be more important than ones with a very high kinetic energy.
From this line of reasoning we can define a quantity ecut = 1

2G
2
max and truncate the expan-

sion (4.5) to PW with kinetic energy lower than ecut, i.e. |Gm〉 is used in the expansion if
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G2
m

2 < Ecut. Equation (4.5) can then be rewritten as,

uk(r) =
Gmax∑
m

ci,m |Gm〉 (4.11)

where Gmax <
√

4ecut. The ecut value will typically vary depending on the type of
psedudopotential used, i.e. the approximation to the true nuclear potential (explained in
section 4.2).

The truncation in equation 4.11 introduces some error in the KSDFT calculation.
However this error can be quantified by systematically increasing ecut for different calcu-
lations on the same system, which are commonly known as “runs”, until the difference
in total energy of the present and previous run (with smaller ecut) is less than a chosen
tolerance:

Ei
KS − Ei−1

KS ≤ tol (4.12)

When condition (4.12) is met, the resulting energy is said to be converged with respect
to the basis set. This is regarded as one of the greatest strengths of PW implementations
since one can confidently state that whatever error is found when attempting to explain
a physical observation must be due to the other approximations used in the KSDFT code
(exchange-correlation, pseudopotential). Thus as far as KSDFT is concerned for a chosen
exchange-correlation and pseudopotential a well converged PW result is correct and any
other implementation (such as ones which use localised basis sets) that attempts to solve
the same Hamiltonian (like-to-like calculation) will most likely produce a higher energy
than the respective PW one. This has led to the widespread use of plane wave codes in
fields such as solid state physics. It should be noted though that in practice, calculations
are usually performed with fewer plane waves than needed to reasonably converge the
energy.

A drawback of the plane wave basis set, which is not shared by GTOs, deals with the
unadaptiveness of a plane wave basis set. That is the ecut value must be increased for the
whole system even if only one of the atoms requires it. The prototypical example of this
is an oxygen atom embedded in a unit cell of many Silicon atoms, here the Oxygen atom
dictates the high value of ecut to be used in the calculation even though Silicon can be
ran with a far small value of ecut.

For a modern discussion in PW implementation consult [31], and particularly [28]
which presents the plane wave code ABINIT, used later in this thesis. For the purposes
of our discussion however the benefits and drawbacks presented here and summarized at
the end of this chapter are enough.
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4.1.3 Discrete variable representation

In pseudo spectral methods such as the Discrete variable representation (DVR) one uses
both a finite basis over a set of grid points, i.e.

φi(r) =
N∑
i

ψi(r) (4.13)

and a set of grid points r1, r2, ..., rn. For a given set of basis functions, one chooses a
quadrature to convert scalar products into sums over the quadrature points ri,∫ b

a
ψm(r)ψn(r)dr =

∑
k

ψm(r)ψn(rk)wk (4.14)

where the wk are the weights. In DVR an operator which is a function of position, i.e.
V (r) can be applied to a state, say φ(r) by multypling it at the quadrature points,

V (r)ψ(r) =
∑
k

V (rk)ψ(rk) (4.15)

For the purpose of this thesis the systematic convergence of a DVR code will be important.
In Chapter 5 some results will be presented which will be compared against an atomic DFT
DVR code where the convergence of the DVR results is shown by performing calculations
with increasing number of points (and as a result of that functions). A more detailed
explanation of the DVR code used in this thesis can be found in [32].

4.1.4 Gaussian Basis sets

GTOs, like STOs, are local functions Xα(r − RI) associated with an atom at a specific
point (RI). A Cartesian Gaussian function can be written as:

φ(r−RI) = (x−RIx)nx(y −RIy)ny(z −RIz)nzeα|r−RI|2 (4.16)

where nx + ny + nz = l the angular momentum and α is the exponent responsible
for the spatial resolution of the function. Unlike STOs, GTOs do not fulfil Kato’s cusp
condition [27] however, this isn’t a serious problem as pseudopotentials are used for all
the calculations in this thesis and the nuclear cusps are removed. The implementation
of GTOSs in a KSDFT code is simpler and more efficient than with STOs, due to some
favourable mathematical properties of Gaussian functions. One such property being: The
product of two Gaussian functions is another Gaussian function,

e−α|r−RA|2e−β|r−RB |2 = KABe
−γ|r−RC |2 (4.17)
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where KAB, RC and γ are given in section 4.4.0.1. Further useful analytic properties
regarding the integrals of functions constructed from the product of a polynomial and a
Gaussian can be derived from repeat applications of the following identity,

d

dx
e−αx

2 = −2xαeαx2 (4.18)

The properties described above in conjunction with other tabulated formulas for Gaus-
sian integrals [33], allow for most integrals involving GTOs in the matrix building stage to
be performed analytically. Particular details pertaining to the use of GTOs in AIMPRO are
left for later sections. The analytical evaluation of integrals not only eliminates the error
associated with numerical integration, but it also speeds up calculations considerably.

4.2 Pseudopotentials

Describing the core electrons of an atom can be problematic and inefficient, since we must
account for the singularity in the potential as r → 0, which would require plane waves
with high kinetic energy, or similarly, if one is dealing with finite difference, a very fine
mesh.

However in most electronic calculations, be it in solid state physics or in quantum
chemistry, the core electrons contribution to the total energy of a system is mostly un-
changed from its counterpart in isolated atom calculations. The differences in energies of
valence electrons involved in binding are of much larger importance, as these differences
are pertinent to the physics and chemistry of the system. It is conceivable then that the
energy associated with an atom’s core electrons could be removed from a KSDFT cal-
culation involving many different atoms, considerably lowering the total binding energy,
with little loss to the physical prediction of the calculation.

Furthermore wave functions of core electrons add to the complexity of valence wave
functions, given that a valence electron wave function must oscillate rapidly as r → 0, to
preserve orthogonality with core states. This translates to a higher computational effort
as more PW are needed.

A new effective potential called the pseudopotential is therefore constructed which re-
places the combined potential of the core electrons and the nucleus. This pseudopotential
is “weaker” than the nuclear potential (includes core electrons). Furthermore the valence
wave function is replaced with a pseudo-wave-function which has a smooth behaviour in
the core region.

The method of pseudopotentials was, historically, developed to help with plane wave
calculations. The fast oscillations in the core region of regular KSDFT calculations
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severely restricts the range of possible systems that one could study because of the system
wide high ecut requirements. GTOs however do not suffer from this uniform spacial reso-
lution, they are adaptive bases and one can increase the number of functions for specific
atoms. Therefore if one required increased accuracy for a particular atom in a system, to
study defects for example, a stronger pseudopotential with its corresponding larger basis
set could be used just for that atom. Nevertheless pseudopotentials can be used with
GTOs, as is done in this thesis. This allows us to compare AIMPRO results with well
converged (“correct”) PW calculations.

There are two main approaches used to justify and introduce pseudopotentials: The
operator approach and the scattering approach in which a weaker pseudopotential is gen-
erated with the constraint that it has similar scattering properties to the full potential.
We will introduce pseudopotentials using the operator approach given that it highlights
the introduction of non-locality to the KSDFT scheme.

4.2.1 Operator approach (Non-locality)

This discussion follows the pseudopotential transformation of Philips and Kleinman [34]
and Antonick [35]. Consider an Hamiltonian Ĥ for an atom, let |ψv〉 be a valence state
with energy Ev and let the set of |ψcn〉 be the core states with corresponding energies En,
all of the previous states are eigenstates of Ĥ. Based on the previous section’s discussion
we attempt to construct a pseudo wave function |Ψ〉 :

|ψv〉 = |Ψ〉+
core∑
n

an |ψcn〉 (4.19)

The expansion coefficients an are fixed by the requirement that |ψv〉 must be orthogonal
to |ψcn〉,

|ψv〉 = |Ψ〉+
core∑
n

|ψcn〉 〈ψcn|Ψ〉 (4.20)

Now we can substitute this into Ĥ |ψv〉 = Ev |ψv〉:

Ĥ |Ψ〉 −
core∑
n

En |ψcn〉 〈ψcn|Ψ〉 = E |Ψ〉 − E
core∑
n

|ψcn〉 〈ψcn|Ψ〉 (4.21)

This can be simplified to:

Ĥ |Ψ〉+
core∑
n

(E − En) |ψcn〉 〈ψn|Ψ〉 =E |Ψ〉

[Ĥ + V̂nl] |Ψ〉 =E |Ψ〉
(4.22)
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Where we define,
V̂nl =

core∑
n

(E − En) |ψcn〉 〈ψcn| (4.23)

to be an extra non-local potential. The smoother pseudo wave function Ψ has the same
energy as the valence state |ψv〉, but it is now a solution of Ĥ with an extra energy depen-
dent non-local contribution V̂nl(r, r′). The repulsive non-local potential is concentrated
on the core which results in a weaker overall pseudopotential around this region.

4.2.2 Norm-conserving pseudopotentials (NCPPS)

It was shown in the section above that in order to construct a pseudo wave function
one introduces a degree of non-locality in the KSDFT implementation. However, besides
the introduction of non-locality, no requirements were made on how to construct an
accurate and transferable ab-initio pseudopotential (without any empirical input). That
is a pseudopotential that can be used on a multitude of different environments, despite
being constructed on an isolated atom.
A list of requirements for such a construction was given by Hammann, Schluter and
Chiang[36]:

1. Pseudo and all-electron valence eigenvalues agree for a referenced atomic electronic
configuration.

2. (Norm-conservation) The integral of the real and pseudo charge density agree, from
0 to r for r > rc, for valence states. That is

∫ r
0 |ψv(r)|2dr and

∫ r
0 |Ψps(r)|2dr agree

for r > rc for valence states.

3. The logarithmic derivatives of the all-electron and pseudo wave functions agree at
r = rc

Point 3, the most unintuitive out of all the points, and point 2 are taken as steps to
give better transferability of the constructed pseudopotential and to ensure the scattering
characteristics of the pseudopotential mimic that of the all-electron potential. Point 1
follows intuitively from the expectations of the pseudopotential wave function presented
in the previous section.

The choice of rc is a crucial one. Choosing a smaller rc increases the accuracy of the
pseudopotential and its transferability but leads to a “harder” pseudopotential which for
PW implementation results in high ecut values. This drawback, however, is not shared by
GTOs.

Based on the work of HSC Bachlet, Hamman and Schluter (BHS) [37] constructed
pseudopotentials which satisfy all the properties stipulated above and are expressed in a
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Gaussian expansion with tabulated coefficients. These potentials are still popular today
a testament to the title of the paper “Pseudopotentials that work” [37].

4.2.3 Goedecker-Tetter-Hutter (GTH) potentials

Goedecker, Tetter and Hutter presented a construction of pseudopotentials which is sep-
arable, local and non-local calculated separately, and can be efficiently implemented in
plane wave sets due favourable reciprocal space form (similarly for GTOs) [38]. A GGA
optimization of these potentials [39] is used in this thesis thus their form will be described
below.

The local part of a GTH pseudopotential is given by:

Vloc(r) = −Zion

r
erf( r√

2rloc
) + exp

− 1
2

(
r

rloc

)2


×

C1 + C2

(
r

rloc

)2

+ C3

(
r

rloc

)4

+ C4

(
r

rloc

)6
 (4.24)

where Zion is the charge of the nucleus minus that of the core electrons, rloc is a chosen
core radius set by the parameter list in GTH. The coefficients Ci are found by minimizing
the difference between the eigenvalues of an all electron atomic calculation and those of
the pseudo atom. This is done using a downhill simplex, chapter 5.4.3. The non-local
part is given by:

Vnl(r, r′) =
3∑
i

3∑
j

m=+l∑
m=−l

Ylm(θ, φ)pli(r)hli,jpli(r′)Ylm(θ, φ)∗

+
3∑
i

3∑
j

m=+l∑
m=−l

Ylm(θ, φ)pli(r)hli,jpli(r′)Ylm(θ, φ)∗
(4.25)

The projectors pli are:

pli(r) =
√

2rl+2(i−1)exp(−r2

2rl
)

rl+(4i−1)/2
√

Γ(l + 4i−1
2 )

(4.26)

where the rl and hli,j are parameters given in [38]. The total pseudopotential is then:

V (r, r′) = Vloc(r)δ(r− r′) +
∑
l

Vnl(r, r′) (4.27)

Vloc and Vnl both have an analytical form in reciprocal space. Even though this pseudopo-
tential was primarily developed for plane waves it is easily extended to GTOs. Further-
more the analytical dual-space character of these pseudopotentials make them computa-
tional efficient to implement.
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4.3 The Hartree potential

The Hartree potential VH(r) can be found from Poisson’s equation for an electron charge
density n(r) :

∇2VH(r) = 4πn(r) (4.28)

For reasons which will become clearer shortly, It is beneficial to expand both n(r) and
VH(r) in PW,

n(r) =
∑
G
n(G)eiG·r and VH(r) =

∑
G
n(G)eiG·r (4.29)

we can the substitute these into (4.28), and apply the Laplacian to obtain:

∑
G

G2VH(G)eiG·r = −4π
∑
G
n(G)eiG·r (4.30)

Comparing the terms, and omitting G = 0 we find:

VH(G) = −4π
G2 n(G) (4.31)

The G = 0 term needs to be treated separately. From the expansion in PW of n(r), the
n(G) term for G = 0 :

n(G = 0) = 1
Ω

∫
n(r)dr (4.32)

This is just the average of the charge density. The energy arising from this term is included
in a separate term EEwald which contains the energy due to a static infinite distribution
of charges. Thus the calculations for V H

ij (and EH) can proceed without the G = 0 term.
The Hartree energy can be found from:

EH = 2π
∑
G

|n(G)|2
|G|2

(4.33)

4.3.1 The Generalized Eigenvalue Problem

At the heart of any KSDFT code lies an eigenvalue problem. It was noted in chapter 2
that for non-orthogonal basis sets, such as GTOs, instead of an OEP one must solve a
GEP. We will now summarize how a GEP is formed in a KSDFT implementation from a
choice of non-orthogonal basis sets.

A KS state (ψλ) (associated eigenvalue λ) can be expanded in terms of non-orthogonal
functions (such as GTOs) as follows:

ψλ =
N∑
i=1

cλi φi(r) (4.34)
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The density can be expressed as:

n(r) =
nocc∑
λ

|ψλ|2 =
∑
i,j

nocc∑
λ

fλc
λ
i φic

λ
jφj =

∑
i,j

nocc∑
λ

bijφiφj (4.35)

where nocc is the number of occupied states and

bij =
∑
λ

fλc
λ
i c
λ
j (4.36)

contains all the information pertaining to the expansion, where fλ can be given by a Fermi-
Drirac distribution eqn. (3.41). It follows from our discussion thus far, that finding the
ground-state density of the system amounts to find bij which minimizes E[bij]. Therefore,
we require that the expansion (4.35) be a minimum at the ground-state with respect to
changes in the coefficients cλi with the constraint

∫
n(r)dr = 1 or

∑
i,j

∑
λ

Sijc
λ
i c
λ
j = 1 (4.37)

where we have defined the overlap matrix S with terms given by

Sij =
∫
φ∗i (r)φj(r)dr (4.38)

Doing this we find,

δ

δcλi

E[bij]−
∑
λ

ελ

∑
i,j

Sijc
λ
i c
λ
j − 1

 = 0 (4.39)

The differentiation δE[bij ]
δcλi

can be found using chain rule:

δE[bij]
δcλi

= δE[bij]
δbij

δbij
δcλi

(4.40)

Where δE[bij]
δbij

is the Hamiltonian matrix Hij. The resulting equation is :

∑
j

Hijc
λ
j = ελ

∑
j

Sijc
λ
j (4.41)

This is the Generalized Eigenvalue Problem (GEP) which must be solved in a non-
orthogonal KSDFT implementation. The Hamiltonian matrix in the primitive space (the
space generated by the primitive basis) can be formed as follows,

Hij = Tij + V ps
ij + V H

ij + V xc
ij (4.42)
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where the Oij terms corresponding to local operators O(r) are given as,

Oij =
∫
φ∗i (r)O(r)φj(r)dr (4.43)

whilst for non-local operators Onl
ij is given by,

Onl
ij =

∫
φ∗i (r′)O(r′, r)φj(r)drdr′ (4.44)

a more detail discussion on the construction of the terms in (4.42) performed in AIMPRO

will be discussed in the next section.
It must be noted that for GTOs the overlap matrix S is particularly sensitive to the

basis set choice. A poorly constructed expansion (4.35) will lead to an ill-conditioned
overlap matrix which typically either prevents diagonalization, rows in S become linear
dependent, or yields inaccurate results. Care must be taken when generating a primitive
basis sets and using it to minimize such errors, this too will be discussed in the next
chapter.

4.4 AIMPRO code

AIMPRO [5, 40, 16] is a KSDFT code which uses GTOs as a basis set, i.e. as a set of φi
to be used as described in the previous section. In this section the periodic version of
AIMPRO is discussed, we will focus our discussion on the efficient Hamiltonian and over-
lap matrix construction present in the version of AIMPRO used in this thesis, which takes
advantage of the short ranged nature of Gaussian functions for efficient evaluation of the
integrals required during the matrix building (4.42). This is an essential requirement for
large-scale calculations and, if large basis sets are used, allows us to build the Hamiltonian
and overlap matrices efficiently. The construction of the elements in equation (4.41) will
be summarized here.

4.4.0.1 The overlap matrix

It follows from the properties describe in section 4.1.4 that the overlap matrix can be
constructed analytically. Let us consider two distinct s-type Gaussian, the overlap between
them is given,

Sssij =
∫
φsi (r)φsj(r)dr =

∫
e−αi(r−Ri)2

e−αj(r−Rj)2
dr

=
∫
e
−
αiαj
αij

(Ri−Rj)2
e−αij(r−R̃ij)2

dr
(4.45)
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where
αij = αi + αj and R̃ij = αiRi + αjRj

αij
(4.46)

By performing a change of variables, r′ = r − R̃ij, and using the well know identity∫∞
−∞ e

−x2
dx =

√
π, we find:

Sssij =
(

π

αi + αj

) 3
2

e
−

αiαj
αi+αj

(Ri−Rj)2
(4.47)

Similarly, analytic relations can be found for two-centre integrals involving higher
angular momentum type Gaussians. For a p-type Gaussian, φpi (r) we have the following
identity,

φpi (r) = (r−R)ue−αi(r−Ri)2 = 1
2αi

d

dRi,u

e−αi(r−Ri)2 (4.48)

where u represents x, y or z. To capitalize on this property let us now differentiate
equation (4.47), we find,

Spsij = 1
2αi

d

dRi,u

Sssij = (Ri −Rj)uSssij (4.49)

Similarly for Sspij we have:
Sspij = (Ri −Rj)uSssij (4.50)

Equation (4.49) can be generalized for higher orbital type Gaussians, however the useful-
ness of such relations is quickly overshadowed by it’s cumbersomeness. Instead overlap
terms involving high orbital momentums such as Sdpij are written in terms of simpler re-
sults, these relations are given in [33].

From equation (4.47) it follows that for two distinct Gaussians (in this case s-type),
satisfying certain conditions, their overlap is small if they are located far from each other,
i.e. Sij << 1. Furthermore we can approximate the Vij matrix element involving these
Gaussians as,

Vij =
∫
φ∗j(r)V (r)φi(r)dr ≤ SijVmax (4.51)

Where Vmax = max[V (r)]. It follows that, constructing the Hamiltonian matrix Hij

can be sped up if we allow some of the Vij terms to be set to zero without them being
formally evaluated, as long as SijVmax falls below a certain threshold. This is called integral
screening, and can be controlled by a tolerance chosen at the beginning of a KSDFT
calculation. As system size increases the inter-atom distances |Ri − Rj| increases, and
more elements of the Hamiltonian can be set to zero without being properly evaluated,
reinforcing the usefulness of the screening relation (4.51).

58



4.4.1 The kinetic energy

The kinetic energy for a system of independent-electrons Ts[n(r)], where the density n(r)
is given by equation (4.35), can be written as:

Ts[n(r)] = −1
2

nocc∑
λ

∫
fλψλ(r)∇2ψλ(r)dr =

∑
ij

bijTij (4.52)

where bij is given in equation (4.35) and Tij is given by:

Tij = −1
2

∫
φ∗i (r)∇2φj(r)dr (4.53)

From the previous section’s discussion, particularly equation (4.49), it follows that the Tij
terms can be calculated analytically, recurrence relations to do so are given in [33]

4.4.2 External potential

In AIMPRO the external potential Vext(r), due to charge of the nucleus, is given by a
pseudopotential. The non-local term of the pseudopotential is given by,

V nl
ij =

∫ ∫
φi(r)Vnl(r, r′)φj(r′)drdr′ (4.54)

where Vnl(r, r′) is short ranged, V nl
ij can be evaluated analytically using the recuring

relations in [33]. The energy corresponding to the non-local part of the pseudopotential
is given by,

Enl = bijV
nl
ij (4.55)

The local part of the pseudopotential is given by:

V loc
ij =

∫
φi(r)Vloc(r)φj(r)dr (4.56)

where Vloc(r) is long-ranged. Given the periodic boundary conditions of our imple-
mentation this term V loc

ij can be calculated more efficiently in reciprocal space.
Vloc(r) can be expressed in reciprocal space as:

Vloc(r) =
∑
G

Vloc(G)eiG·r (4.57)

Therefore equation (4.56) can be rewritten as:

V loc
ij =

∫
φi(r)

∑
G

Vloc(G)eiG·rφj(r)dr

=
∑
G

Vloc(G)
∫
φi(r)φj(r)eiG·rdr

(4.58)
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where an efficient method to evaluate the previous integral is presented in [5], in which
the fast decay, over the reciprocal space, of the fourier transformation of the overlap terms
φiφj, is used to then recast the sum in equation (4.58) over a real space grid. This method
allows the same number of real space grid points to be used for all φiφj, which leads to a
large increase in speed.

The energy associated with this term Eloc, can similarly, be obtained efficiently in
reciprocal space,

Eloc[n(r)] =
∫
n(r)Vloc(r)dr (4.59)

expanding both Vloc(r) and n(r) in reciprocal space we find,

Eloc[n(r)] =
∑
G

∑
G′

∫
n(G)eiG·rVloc(G′)eiG

′·rdr

=
∑
G

∑
G′
n(G)Vloc(G′)

∫
eiG·reiG

′·rdr

= Ω
∑
G

n(G)Vloc(−G)

(4.60)

where in the last equation we took advantage of the orthonormality of PW. In these calcu-
lations the real to reciprocal space transformation, like in the case of PW implementations,
uses FFT to reduce the computational effort.

4.4.3 Exchange-Correlation

The calculations presented in this thesis use the Perdew-Burke-Erzenrhof (PBE) [41]
parametrization of the General Gradient Approximation (GGA) to the exchange-correlation
[42, 43]. In the GGA scheme the energy due to the exchange-correlation is given by:

EGGA
XC [n(r)] =

∫
fxc(n(r), | 5 n(r)|)dr (4.61)

and the exchange-correlation potential Vxc(r) given by,

V GGA
xc (r) = δEXC [n(r)]

δn(r) (4.62)

The V xc
ij can be constructed efficiently using the method described above to obtain the

local pseudopotential term. More details of this construction can be found in [44].

4.4.4 Hartree terms

The Hartree energy and potential terms are found using the plane wave expansion of the
density described in section 4.3. A detailed explanation of this can be found in [5].
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4.4.5 Brillouin sampling

Periodic boundary conditions are used in all calculations presented in this thesis. From
chapter 3 we found that in a periodic calculation the eigenvalues obtained from solving
the KS Hamiltonian, λ(k), depend on the chosen reciprocal vector k. Thus any properties
which are calculated from the eigenvalues have an associated k dependence. It is essential,
then, to integrate any such properties over the reciprocal space.
The reciprocal vector k can be expressed as,

k =
3∑
i=1

li
Ni

bi (4.63)

where bi are the reciprocal vectors introduced in chapter 2, li and Ni are integers. Al-
though initially it could appear as if the integrals in reciprocal space should be done over
an infinite number of k-vectors, it follows from the properties of Bloch functions that
k-points which differ by a reciprocal vector are equivalent, therefore one can restrict our
sum to vectors which lie in the Brillouin zone (BZ). Although the number of k-vectors in
the Brillouin zone is still infinite it is far easier to integrate properties over this smaller
zone accurately.

Let fi(k) be a function which varies over BZ, the average value f̄ can be found by:

f̄ = 1
ΩBZ

∫
fi(k)dk→ 1

Nk

∑
k
fi(k) (4.64)

where ΩBZ is the volume of reciprocal space and Nk is the number of k-points. The
calculations in this thesis involve finding the total energy, and thus a summation over
the BZ is required. To find the averaged total energy the Kohn-Sham equations must be
solved at each of the k-points included in the sum (in equation (4.64)), this often severely
increases the computational time of a calculation. However this has no impact in the
regular scaling of the code.

For very large systems the BZ becomes very small since,

ΩBZ = 2Π3

Ωcell

(4.65)

It follows then that for large systems typically the k = 0 point suffices for the sum in
equation (4.64).

Several different methods have been developed to efficiently span the BZ [45, 46, 47].
Most methods try to reduce the number of k-points necessary by using the symmetry
to eliminate any equivalent k-points inside the BZ zone, thereby reducing the number of
different calculations greatly. This new zone, without equivalent k-points, is known as the
Irreducible Brillouin Zone (IBZ).The calculations in this thesis use the Monkhorst-pack
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method [48] to generate a grid of special k-points inside the IBZ.
When spanning the Brillouin Zone there is no a priori method of choosing the correct

grid. Several calculations must be performed with increasing grids. The total energy must
be converged with respect to grid size. For all the calculations presented here, when a
summation over the Brillouin Zone was necessary, the results were converged with respect
to number of k-points chosen.

4.5 Summary

An overview of the different algorithms involved in implementing a KSDFT scheme, in-
cluding basis sets, have been discussed.

Concerning the choice of basis sets, I must stress a few salient points, which will
highlight the novelty and usefulness of the method presented in this thesis:

• Any ground-state properties calculated using (PW) implementations are, up to a
choice of pseudopotential and exchange-correlation functional, the correct KSDFT
answer. Whether PW KSDFT codes accurately replicate physical observations is a
question of the quality of pseudopotential and exchange-correlation approximations,
not basis set quality. For a theory-to-theory comparison it follows that any other
implementation which uses different basis sets should, in a like-to-like calculation,
strive to obtain the well converged PW result.

• GTOs have localization properties which allow for an efficient matrix build.

• GTOs do not have systematic basis set convergence, therefore in regular O(n3)
calculations the accuracy of GTOs lag behind that of plane waves.

Point 2 and 3 will be expanded in some detail in the next chapter, where a thorough
overview of the benefits and drawbacks of GTOs is given in addition to our method of
choosing a primitive basis.
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Chapter 5
New method for generating Gaussian Basis
Sets for filtration.

5.1 Introduction

Basis sets of Gaussian type orbitals are almost always associated with an atom, given that
they are optimized for that particular atom in an separate atomic calculation (although
often extra functions can be added, which might be optimized for test molecules [49]).
This implicitly assumes that molecule or solid formation is a relatively small perturbation
on the atoms of the system (at least energetically) [50]. The atomic calculation used to
generate the basis sets can be performed with any of the independent-electron approx-
imations discussed previously. In our generation the atomic energy is calculated using
KSDFT, elsewhere Hartree-Fock is often used and we will briefly review two such basis
sets.

Accurately optimizing GTOs to properly describe the ground state of an atom (and
often some unfilled orbitals too) should in principle produce a basis set which can be used
in a variety of environments, such basis sets are deemed to be transferable. It is often
the case that attaining high accuracy and good transferability requires a large number of
primitives which would undoubtedly be very inefficient. It can be beneficial with regards
to computational expense if the primitives are contracted into a smaller set of functions
(explained in section 5.2.2). However the basis sets then loses transferability given that
the functions contracted during the atomic calculation lose some flexibility, as each prim-
itive can no longer be individual adjusted to better represent the atom in a different
environment. Thus, for most calculations requiring high accuracy, extra Gaussian func-
tions can be added to contracted basis sets to adequately describe bonding environments
[51]. This leads to yet more basis sets, the number of which grows considerably larger
when one takes into account that the electronic properties of different atoms may require
the addition of characteristic Gaussians. It follows that to properly use GTOs in KSDFT
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requires a degree of knowledge into the current state of the GTO field and, often, how the
specific GTOs behave for systems with similar properties to the one we wish to study [51].
In addition different system properties (energy, structure, vibrational frequency) converge
differently with respect to basis set. Unlike the case for plane waves where convergence is
obtained systematically, with GTOs different basis sets must be used each with increasing
accuracy (and typically size) to demonstrate that one is approaching the complete basis
limit (CBS). However there is no a priori basis set progression roadmap which makes
converging results far from trivial [50].

In the novel method of generating GTO basis sets presented in this thesis the uncon-
tracted even-tempered basis sets is constructed by minimizing the difference in energy
calculated using said basis set and an atomic DVR calculation, unlike other basis sets
[52] where often convergence of the energy is demonstrated with increasing number of
Gaussian functions. This methodology avoids having the routine pick an local minima
which could lead to erroneous results. Furthermore the routine presented here produces
the basis set with the highest first exponent for which a choosen tolerance is met, which
reduces the likelihood of calculation failure due to linear dependence. This new basis
set when used in a KSDFT calculation with filtration methodology will substantially de-
crease many of the requirements/difficulties stated above. Only one basis set composed
of uncontracted primitives is generated per atom, with the same routine, for all atoms in
the periodic table. This primitive basis set is generated in a KSDFT calculation (for a
given choice of pseudopotential and exchange correlation) to an error of less than 1 meV.
This yields a very large set of primitives that is both tailored for the specific atom and
has a good degree of flexibility by virtue of being large and uncontracted [53, 54]. Such
large primitive sets (typically more than 100 functions) would be useless in conventional
KSDFT were it not for filtration [5, 40]. By contracting the large primitive basis sets on
site (for the system at hand) using filtration, one is able to adapt it to better represent the
atom in its surrounding electronic environment than one would using atomic contracted
GTOs. This should translate into good transferability and adaptability of the basis set,
whilst maintaining the computational benefits enjoyed by smaller contracted basis sets.
Furthermore, as we will demonstrate, this methodology allows us to attain PW accuracy
at a cost of an efficient GTO implementation.

Given that ultimately in this work the basis set that is to be used in the KSDFT
calculation is generated during the filtration stage of the calculation, the requirements
on the underlying primitive basis are not as strict as they would be otherwise that is,
the basis set can be very large. Regarding the primitive basis set we must ensure that
it accurately describes the atom (in order that atomisation energies are accurate) and it
contains the appropriate angular momentum primitives that might be required when the
atom is used in any polyatomic system. In addition it could prove beneficial with regards
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to efficiency and stability if the parameters used to construct the basis set follow certain
conditions. All these points will be explored here.

The present chapter is divided in two parts: In the first part we will provide a brief
overview of the GTO field, particularly different methods to generate basis sets. At this
point two widely used Gaussian basis sets will also be briefly mentioned. In the second
part of this chapter the basis set generation routine that I developed is introduced.

When we discuss Pople and Dunning basis sets in the first part of this section any
mention of accuracy refers to the calculations provided in the respective papers. These
are used solely in the discussion therein to reinforce or discard some conclusions regarding
the said basis sets. The accuracy of our implementation is measured by using a recently
developed benchmark [6], wherein our data is compared directly with well converged plane
wave results. This will be presented in chapter 7.

5.2 Preamble

Before reviewing some common basis sets let us briefly summarize the basic recipe to
optimize primitives for the atom, introduce contracted functions and even-tempered ex-
ponents.

5.2.1 Atomic energy minimization with respect to primitives

The majority of Gaussian basis sets are generated by systematically modifying the primi-
tives - for example, by changing the exponents - to find which set of primitives minimises
the energy of an isolated atom [55, 52]. The energy of an isolated atom can be expressed
as a functional of the set of single-electron orbitals ψi in both Hartree-Fock, DFT and
KSDFT:

Eγ
atom = Eatom[{ψγi }] (5.1)

where i ∈ [0, 1, 2, ..., N ] represents the number of electronic states considered in the atomic
calculation. The γ index indicates the energy and single-electron orbital dependence on
a particular choice of the parameters which are used to generate the basis set:

|ψγi 〉 =
∑
j

cγij |φ
γ
j 〉 (5.2)

The set of ψγi are solutions of an independent-particle atomic Hamiltonian:

Hγ
atom |ψγi 〉 = λiSγatom |ψγi 〉 (5.3)
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where Sγatom is the overlap matrix.
What constitutes a choice of parameters γ and how they are modified iteratively is

characteristic of a basis generation routine. Typically each angular momentum channel
has a predetermined number of primitives, for example for the 1s orbital we have 6
exponents, for 2px we have 4 etc... A minimal basis set has one basis function per core
state and valence state [52].

Broadly speaking, a basis set generating routine consists of specifying how the energy
Eatom[ψγi ] minimization is performed with respect to the choice of parameters γ used to
construct our basis, and what kind of independent electron approximation we use. In
the next section we will briefly summarize two methods, one which uses Hatree-Fock and
another which uses post-Hartree–Fock methods to calculate the atomic energy involved
in generating the basis sets, equation (5.1).

In addition to the Gaussian primitives generated during the atomic calculations, often
extra Gaussian primitives are added to better describe the atom in a bonding environment.
The two main ones of particular importance are:

1. Polarization functions are higher angular momentum functions (than those of the
occupied states) that are added to a basis set to better describe charge polarization
and correlation effects, thus often in literature they are also referred to as correlation
functions. Given that primitives with higher angular momentum than that present
in the atom will not have an effect on the ground state atomic energy polarization
functions must be optimized in either molecular [49] or atomic calculations which
include correlation effects.

2. Diffuse functions are Gaussian primitives with exponents lower than that of the
basis set generated for the isolated atom. There are several ways of adding them
to the existent basis set, for instance the minimal augmentation, labeled by affixing
“ma-” to the basis set name, adds a primitive, for each angular momentum shell
present in the basis set, with the exponent set by dividing the lowest exponent of
said shell by 3. A good summary of diffuse functions can be found in [56].

5.2.2 Contracted GTOs

A single Cartesian Gaussian function, often referred to as a primitive, for an atom centred
at the origin, can be expressed as:

φi(r) = xnxynyznze−ηir
2 (5.4)

where ηi is a chosen exponent, nx + ny + nz = l and l is the angular momentum of the
primitive.
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For Gaussian bases, the choice of parameters that govern the quality of a basis set,
the most important of which are the number of different primitives and their exponents,
is neither clear nor straightforward. Using a large number of primitives or using high
angular momentum should correspond to a better result according to the variational
principle. However, this quickly becomes counter-productive as the increase in accuracy
is defeated by instability either in basis sets generation procedure (as we will see shortly)
or during its usage in a KSDFT calculation. To benefit from the accuracy that large
primitive sets offer but still keep the computational benefits of using a relative small
number of GTOs, a basis function can be constructed by contracting different primitives
together:

φci =
n∑
j=i

cijφj , i = 1, nc (5.5)

where the φj are Gaussian primitives, cij are the contraction coefficients, n the number
of primitives being contracted. The construction of a contracted GTO basis set (CGTO)
is often done in two stages: first the minimization of an atomic energy calculation with
respect to the primitives is performed, then the contraction coefficients are taken from
the atomic orbitals obtained during this minimization.

The contraction of primitives can be separated into two different schemes: Segmented
contraction where each primitive is constrained to contribute only to one contracted func-
tion and General contraction where primitives may contribute to any contracted function.
An efficient method to implement general contraction can be found in [57].

5.2.3 Even-tempered Gaussians.

It is clear, from the discussion in section 5.2.1, that unconstrained minimization of prim-
itives is very demanding for even small numbers of primitives. Minimising any function
of n variables f(x1, x2, x3, ....., xn) is not trivial, especially given that f(x) in our case
involves an atomic energy calculation.

Let us assume for now that l and n have been chosen and we wish to minimize
Eatom(η1, ..., ηn). Unconstrained minimization of the previous function is still difficult
[58]. In addition, calculating atomic energies with ill constructed primitives, particularly
with high l value, can lead to variational collapse [59]: a failure in solving the GEP, equa-
tion (5.3).

For basis sets with large numbers of primitives and high angular momentum the GEP
in equation (5.3) can fail due to the overlap matrix becoming singular. Let φ1(r) and
φ2(r) be two normalized primitives with high angular momenta if the overlap between
them,

S12 =
∫
φ1(r)φ2(r)dr ≈ 1 (5.6)
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then S, is singular and not invertible, since φ1(r) completely describes φ2(r) or vice-
versa. Therefore the GEP in (5.3) can’t be solved. The topic of numerical failures will be
discussed in more detail in section 5.6.5.

The problem of variational collapse was recognized early on [55], and a simple solution
was proposed to circumvent it. Instead of using unconstrained exponents, where each
exponent is optimized separately, they are constrained to form a geometric series:

ηi = α0β
i−1 (5.7)

With α0 > 0 and β > 1. Basis sets which use this geometric constraint are known as
even-tempered basis sets. The geometric constraint reduces the search space radically, for
any choice of n and l one must only span R2 to generate different primitives as opposed
to Rn for unconstrained optimization. It follows that higher values of n can be chosen
without the large overhead that comes with minimizing a n-variable function. However,
the atomic energy with n different exponents (Eatom(α, ..., α ∗β(n−1))) will still need to be
calculated and this is often time consuming.

The possibility of variational collapse present in unconstrained optimization is also
reduced by the geometric constraint. The overlap of two consecutive even-tempered and
normalized Gaussian primitives is given by [58]:

Si,i+1 =
[ 2
√
β

1 + β

](2l+3)/2
(5.8)

variational collapse can then be avoided with a suitable choice of β.
Constraining Gaussians functions to have even-tempered parametrization allows for

basis sets to be constructed which converge to the basis set limit as the basis set size is
increased. This was used to develop “universal” basis sets [54, 60] (and similarly using
STO’s as a basis set [61, 62]), where successive sets of large Gaussians functions are
generated. A mathematical analysis on the behaviour of the even-tempered parameters
(α, β) as the number of exponents increases is given by [53].

It is important to note that even-tempered basis sets are often larger than individually
optimized basis sets of similar quality [63]. For conventional calculations this is not ideal
since diagonalization would be more expensive. However, this is not a drawback when
the filtration algorithm is used to choose contractions from very large pools of primitive
functions, where this overhead is absent.
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5.3 History of Gaussian basis sets

Due to the immense amount of work and knowledge developed in the generation of Gaus-
sian basis sets, attempting any sort of field wide summary is no trivial matter. For our
purposes a brief historical survey concerning the usage of GTOs in electronic calculations
basis followed by an overview of two commonly used basis sets are enough to extract some
principles to compare and contrast during the discussion of our own basis set generation.

As we have summarized in previous chapters, most ab initio methods used in elec-
tronic structure calculations invoke the independent-particle approximation. In the early
stages of quantum mechanical electronic calculations (before the advent of DFT) most
electronic structural calculations were performed using Hartree-Fock methods (chapter 2),
where the wave function is expressed as a Slater-determinant of single electron orbitals.
Since the exact form of single-electron orbitals is unknown they are expanded in a basis
set.

During the first strides of molecular HF calculations, STOs were used as a basis sets
given that they are solutions to Hydrogen-like atomic Hamiltonians and have the correct
cusp behaviour ([27]). However for molecule calculations, constructing and solving the
GEP which arises in Self-Consitent Hartree-Fock calculations (often referred to in liter-
ature as self-consistent field equations, SCF) quickly became complicated and inefficient
for any accurate application due to the complexity of integrating STOs [64].

It so happens that a simpler type of function that could be used as a basis sets had
already been introduced for electronic calculations before SCF was developed: Boys [65]
had suggested that due to its favourable integration properties Gaussian functions could
be useful in electronic structure calculations, especially in regard to computational effi-
cacy.

A first approach to implementing GTOs in SCF calculations aimed to keep the natural
qualities of STOs whilst simultaneously foregoing the difficulties involved with integrating
them. This was accomplished by representing STOs (χ(r)) in terms of GTOs(φ(r)),

χ(r) =
∑
i

ciφi(r) (5.9)

where the contraction coefficients are given by least square fittings. Basis sets generated
in this way are named, for example, STO-3G. The other approach is to introduce GTOs
directly in SCF (or DFT). This is the approach taken in this thesis and for most of the
basis sets discussed in the current literature, including the two basis set which we will
now summarize.
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5.3.1 Pople and Dunning basis sets

Continuing with the historical motif of the current section one must introduce the Pople
basis sets, which were one of the first basis sets to be widely accepted into the quantum
chemistry community, and even to this day are referenced in research [66] as a standard.

Pople basis sets are generated from an all-electron Hartree-Fock calculation, they
are often called split valence because they use two or more contracted sets of Gaussian
primitives to represent each valence electron, this provides much better flexibility and
transferability than a minimal basis set. The wave functions of core electrons are repre-
sented by one set of contracted Gaussians primitives, although different Pople basis sets
may use different numbers of primitives to form that contraction function [52, 67].

The notation used to describe Pople basis sets is X − Y ZG where X represents the
number of primitives in the contracted function used to describe each core state and Y, Z
represent the number of primitives in each of the two functions used to represent each
valence state. The angular momentum of each CTGO is set by the orbital which it rep-
resents. The method of optimizing the primitives using Hartree-Fock employed by Pople
is both lengthy and outdated. Details can be found in [52].

Historically, the most commonly mentioned Pople basis sets is the 6-31G [67, 68]. In
addition the accuracy of the 6-31G basis set is typically increased by augmenting it with
other Gaussian functions:

6-31m++G** (5.10)

where m indicates triple valence split, ∗ indicates polarization functions on heavy atoms,
∗∗ indicates polarization functions on heavy atoms and hydrogen, + indicates diffuse func-
tions on heavy atoms and ++ indicates diffusion functions on heavy atoms and hydrogen.

When to use which basis and how to show convergence is not clear with Pople basis
sets. An early good review concerning these facts can be found in [50]. Pople basis sets
tend be used when some accuracy can be sacrificed at the behest of speed.

It is important to notice that the Pople basis sets were developed over time for different
chunks of the periodic table (i.e. first-row, second-row, etc...) [67, 68]. This is a common
feature shared by some other basis sets, due to the range of requirements necessary to
maintain similar accuracy for different sections of the periodic table [69].

A drawback of generating basis set using solely Hartree-Fock was found to be that such
basis sets were not optimal when applied to post HF calculations [51]. Dunning therefore
introduced “correlation consistent” basis set [70, 71], designed to converged these more
sophisticated calculations. They feature successively greater number of polarization func-
tions (d, f, g, etc...), which increase systematically as the description of the valence shell is
improved. More recently Karlsrhue basis sets [72] have extended this and are published for
elements H-Rn of the periodic table. The Dunning basis set [70] uses post-Hartree–Fock
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methods, configuration interaction (CI), to calculate polarization orbitals (correlation or-
bitals) for the atomic basis set. Configuration interactions improve on Hartree-Fock by
including a treatment of electron correlation [70].

Dunning basis sets, often called correlation consistent basis sets, have the following
nomenclature:

cc-pVNZ (5.11)

where cc-p stands for correlation-consistent polarized, V indicates that the basis sets have
correlation treatment for valence states only and NZ where N ∈ [1, 2, 3, ...] indicates the
split of the valence basis (Z stands for zeta which during the heydays of STOs was the
nomenclature used when referring to the exponents of valence orbitals). The polarization
functions are generated by minimizing a CI calculation and the exponents for the primi-
tives of each function (d, f, g, etc.) are given by an even-tempered distribution.

Dunning basis sets are designed to allow for pseudo-systematic convergence of en-
ergy and other ground state properties in post-Hartree–Fock calculations. Dunnning
suggested that polarization functions should be added in well-defined sequences, such as
2d1f, 3d2f1g, 4d3fg1h for double, triple and quadruple zeta for example, so that each in-
cludes successively larger shells and higher polarization functions. In addition with each
increase in the description of the valence states the number of function in the core states
is also increased, so as to evenly distribute the basis set error amongst the different basis
functions. It follows that with each step in quality Dunning basis sets consistently reduce
errors at both HF and correlated levels, however the number of basis functions nearly
doubles with each step in quality.

5.3.2 Summary

Just from the brief overview presented above of two commonly used basis sets we are left
with a large and specific lexicon which must be understood before one can apply any of
the basis sets accurately and efficiently. A recent paper reviewing basis sets [63] list 8
popular basis sets (6 additional ones to the two mentioned above) each with individual
nuances and taxonomy. Furthermore some basis sets are accompanied by a cornucopia of
unrelated, and often confusing, nomenclature.

The myriad of different basis sets and the specificity of their applications can be a
drawback when Gaussian basis sets are discussed. Not only would a potential user of
a Gaussian DFT code need to be familiar with the language and scope of the different
basis sets, he should be able to converge results with respect to them which is not always
clear. With these drawbacks in mind and the discussion above I would like to highlight
the following points:
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1. Larger basis sets are more flexible and therefore offer greater transferability.

2. Large basis sets are expensive to run and thus most basis sets are contracted during
the isolated atomic calculation and this will to some extent at least limit transfer-
ability.

3. Different sections of the periodic table have been tackled separately when generating
many traditional basis sets.

4. There is no systematic recipe to show convergence with respect to basis sets for
GTOs.

5. For certain calculations extra exponents are added to basis sets depending on the
system at hand, which often are optimized separately, and in some cases there is no
agreed prescription to this.

6. For large-scale calculations using large basis sets can lead to ill conditioned overlap
matrices, thus the the accuracy demanded of the basis set must be weighted against
stability reassurance.

In this work a new approach is presented. A single large uncontracted primitive set is
generated for each atom which is then contracted on-site during the KSDFT calculation
using filtration. This allows us to have only one basis set per atom, and by contracting it
during the KSDFT calculation we can control its accuracy as needed. Figure 5.1 highlights
the main characteristics of the primitive basis sets and the filtered (contracted) basis set.

Figure 5.1: Figure highlighting the main characteristic of both our primitive and filtered
basis sets.

Now we will introduce our primitive basis set generation.

5.4 Theoretical preamble

Before proceeding to explain our basis set generation method we must present some
well known theorems and principles which ground our method on a sound theoretical
foundation.
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5.4.1 The intermediate value theorem

The intermediate value theorem will be stated here without proof, which can be found in
any calculus book.

Theorem 5.4.1 Let f be a continuous function defined on an interval I = [a, b], f : I→
R. Let u be a number between f(a) and f(b), i.e min[f(a), f(b)] < u < max[f(a), f(b)],
then,

there exists c ∈ I, such that f(c) = u.

Theorem 5.4.1 is related to the completeness property of the real numbers. For the
purposes of this thesis a corollary of theorem 5.4.1 is more relevant. This corollary,
sometimes referred to as the Bolzano theorem, can be stated as:

Theorem 5.4.2 Let f be a continuous function defined on an interval I = [a, b], f : I→
R and let f(a) < 0 and f(b) > 0 then,

there exists c ∈ (a, b), such that f(c) = 0

The Bolzano theorem is particularly important for applied mathematics, and physics,
since it forms the theoretical basis for many root finding algorithms. Most root finding
algorithms do so by systematically reducing an interval I0 = [a0, b0], f(a0) < 0 and f(b0) >
0 to smaller intervals Ii = [ai, bi] such that 0 > f(ai−1) > f(ai) and 0 < f(bi−1) < f(bi).
Eventually the size of Ii will be approximately zero and we can form a linear combination
of ai and bi as the numerical approximation of the root i.e. f(c) = 0 where c = caai+ cbbi.

In the basis generating procedure, introduced in a later section, the bisection method
for root finding is used. This method is introduced in the section below.

5.4.2 The bisection method

The bisection method is, perhaps, one of the simplest root finding algorithms available,
both to code and understand. This easiness stands in stark contrast with its usefulness
and reliability. For most applications the bisection method is accurate enough to find the
root of a well behaved function in circumstances where the number of iterations is not
critical.

Let f be a continuous function, and assume we have a interval [a, b] such that f(a) < 0
and f(b) > 0, to find f(x) = 0 according to the bisection method we proceed in the
following manner:
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1. Generate c = a+b
2

2. Find f(c)

3. If |f(c)| < ε , where ε is a tolerance chosen at the beginning, then c is taken as the
root, otherwise proceed to step 4.

4. If f(c) > 0 , let b = c else if f(c) < 0 let a = c and go to step 1.

Figure 5.2 illustrates the bisection method, applied to the function f(x) = x2 − 1. In
this example f(c) > 0 thus we will form a new interval I = [a, c], generate c2 = a+c

2 and
proceed according to the algorithm presented above.

Figure 5.2: One iteration of the bisection method algorithm applied to f(x) = x2 − 1.
The black dot indicates the root. The points a and b are taken as starting points for the
bisection routine, yielding point c with f(c) > 0.

The bisection method, in theory, must converge since the size of interval is always
halved at each cycle, it follows that after several iterations of the bisection method the
size of the interval must be smaller than our chosen tolerance, |In| < ε, therefore any
point x ∈ In can be considered a root. The error after n iterations is bounded by:

|cn − c| ≤
|a− b|

2n (5.12)
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5.4.3 The downhill simplex method

The downhill simplex method, often called the Nelder-Mead method after its developers
[73], is a method for the minimization of a function of n-variables f(x1, x2...xn). Unlike
other methods, such as steepest descent, it is “direct” i.e. it uses only function’s eval-
uation and not derivatives, which removes some complications that could result from ill
conditioned derivatives but often results in a large number of iterations.

A simplex is a polytope of n+1 vertices in n-dimensions. In this thesis the downhill
simplex method will be used to minimize a function of two variables f(x, y) the corre-
sponding simplex is a triangle.

The basic idea behind the downhill simplex method is to systematically move the
simplex to the minimum of f(x) = f(x1, x2...xn) by a series of reflections, expansions and
contractions.

Let f(x) be the function we wish to minimize and let (x1,x2, ...,x3) be our starting
trial points. To find the global minimum of f(x), using the downhill simplex method, we
perform the following steps:

1. Order the points according to their values at the vertices; f(x1) ≤ f(x2) ≤ . . . f(xn+1).
Where f(x1) is a “better” value, i.e. a better approximation to f(xmin), than f(x2).

2. Calculate the centroid x̄ of all points except xn+1; x̄ =
∑n

i
xi

N

3. Generate a new point xr by reflection, xr = x̄ +α(x̄−xn+1) with α > 0. After this
step there are three possible outcomes:

(a) f(xr) is neither the best value or the worst, i.e. f(x1) < f(xr) < f(xn), replace
f(xn+1) by f(xr) and go to point 1.

(b) f(xr) is better than the best value i.e. f(xr) < f(x1). If this is the case we
are moving in the “right” direction, xr. Given this we move further in the xr
direction, this is done by computing the extended point xe = x̄ + γ(xr − x̄),
with γ > 1. This step is commonly referred to as expansion in the literature.
After the expansion there are two outcomes, depending on the value of xe,

i. We are still moving in the “right” direction i.e. f(xe) < f(xr). Replace
xn+1 with xe and go to step 1.

ii. Else, f(xe) < f(xr), replace f(xn+1) by f(xr) and proceed to step one.

(c) The last outcome, concerning the value of f(xr), is f(xr) > f(xn) i.e. the
simplex has stretched too far, therefore it must be contracted. A new point
xc is generated, xc = x̄ + β(xn+1 − x̄) where 0 < β < 1. After generating
xc, a step commonly referred to as contraction, we are left with two possible
outcomes,
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i. f(xc) < f(xn+1), the contraction has been successful, replace xn+1 buy xc
and go to step 1

ii. f(xn+1) < f(xc), the contraction step has not been successful. All points
xi, with the exception of x1, are replaced with xi = x1 + ρ(xi − x1) with
0 < ρ < 1. This step is often referred to as shrink. After all xi 6= x1 have
been recalculated proceed to step 1

4. The termination of the downhill simplex method is controlled by the standard de-
viation:

σ =
√√√√ 1
N

n∑
i=1

(f(xi)− ¯f(x))2 (5.13)

Once σ is smaller than a chosen tolerance the method terminates, otherwise it
returns to set one.

For a function of two variables, such as the one present in the basis generation routine,
the downhill simplex can be illustratively explained as a series of triangles generated by:
reflection, expansion and contraction. The triangles get progressively smaller as they
reach the region where the minimum of the function is located.

It has been noted [74] that for some functions the simplex downhill could get stuck
in a cyclic motion, or even a local minimum. These criticisms are overcome, in our basis
generation method, by a careful choice of starting points after an exhaustive search of
the underlying variable space. The application of the downhill method to our basis set
generation will be discussed in the following sections.

The details and FORTRAN implementation of the downhill simplex method, can be
found in [75]. The routine AMOEBA is used in this thesis.

5.5 Basis generation procedure

In contrast with the basis sets discussed beforehand our basis sets are optimized by solv-
ing an atomic Gaussian KSDFT calculation which uses pseudopotentials. It follows that
this basis set must only be used in calculations with the same exchange correlation and
pseudopotential that was used to generate the basis. In this thesis PBE exchange corre-
lation [43] and Mathias Krack’s GTH pseudopotentials [39] are used.

The procedure presented here produces an uncontracted basis sets for any element of
the periodic table, pending the existence of a pseudopotential for the particular atom.

Our basis sets use even-tempered Cartesian Gaussian functions which can be written
as:

φi(r) = xnxynyznze−αβ
ir2 (5.14)
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where
nx + ny + nz = lαβi (5.15)

and lαβi it the angular momentum value of this Gaussian function (with exponent
αβi). Given that we are dealing with uncontracted basis sets it follows that the basis
sets, of a particular atom, is entirely defined the following set of parameters:

n, α, β, lα, lαβ, .., lαβn−1 (5.16)

where, as before, n is the number of exponents, (α, β) the even-tempered constraints and
li the angular momentum value of each exponent.

In our basis set the number of different primitives with the same exponent αβi−1 is set
by its corresponding angular momentum value in the following manner: All primitives,
with the same exponent, generated by the different permutations of equation (5.15) are
included for nx + ny + nz ≤ l. That is, let φilα be Gaussian primitives with exponent α
generated from an angular momentum value lα. If we have lα = 0 then our basis sets has
only one primitive with α exponent:

φslα=s(r) = e−αβ
ir2 (5.17)

if instead lα = 1 the basis sets will have three different Gaussian primitives:

φp1
lα=p(r) = xe−αr2

φp2
lα=p(r) = ye−αr2

φp3
lα=p(r) = ze−αr2

and an extra s-state
φslα=p(r) = e−αr2 (5.18)

for a total of four primitives. If instead we have lα = 2 then the basis set contains six
primitives with l = 2, three primitives with l = 1 and one primitive with l = 0 for a
total of ten primitives with the same exponent. Table 5.1 list the number of primitives
included in the basis set according to the choice of angular momentum for the range of
angular momentum values considered in this work.

For illustrative purposes let us now construct a hypothetical uncontracted even tem-
pered basis sets for hydrogen. Let us say that the hydrogen basis set has 3 exponents,
n = 3, with α = 0.1 and β = 2.0. As is customary with common AIMPRO notation, the
angular momentum of the basis set is typically expressed as a set of values (l1, l2, .., ln)
where l1 is the angular momentum value for the lowest exponent, l2 for the second lowest,
and so forth. Let us say that the angular momentum value for this basis set is (s, p, p),

77



l-value number of primitives
l = 0 1
l = 1 4
l = 2 10
l = 3 20
l = 4 35

Table 5.1: The number of primitives with the same exponent included in the basis set,
as a function of its respective angular momentum.

i.e. (0, 1, 1). From what was discussed above the basis set for Hydrogen contains nine
primitives:

{e−0.1r2
, e−0.2r2

, xe−0.2r2
, ye−0.2r2

,

ze−0.2r2
, e−0.4r2

, xe−0.4r2
, ye−0.4r2

, ze−0.4r2}
(5.19)

In an atomic calculation, such as the ones performed in this section to generate the
basis sets, the different KS orbitals - in the current case hydrogen ones are expressed as
linear combinations of the functions in eq. (5.19).

Having established the necessary parameters used to construct a basis set, equation
(5.16), and how the basis set is constructed, equation (5.19) we are left with finding the
optimal set of parameters that will specify our basis. This will be presented in the next
sections

5.5.1 Assignment of angular momentum l.

In this section we will discuss how the angular momentum of each exponent in a basis set
is assigned.

In our construction each exponent in an element’s basis sets shares the same value of
l so that, lαβi = l for i = 1, ..., n. For each atomic basis set this l value is picked to be one
above the atom’s highest occupied orbital locc. Elsewhere in this thesis this is referred to
as the “l + 1” policy.

As an example consider hydrogen which has only one electron in a s-state (locc = s)
will have l = 1 for all the exponents in it’s basis set. For carbon with electrons in a p-state
each exponent in it’s basis set has l = 2. Note that for basis set with l > 3 primitives
with smaller l are included for each exponent, as detailed in the previous section.

From the parameter set (5.16), having assigned l, we are left with finding n, α and β

to generate our basis set. This is all done inside our basis generation routine.
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5.5.2 Assignment of n, α and β

The first step in our basis set generation is to calculate a converged energy for the pseudo-
atom. Here, too, the exchange correlation and pseudopotential choice must be consistent
with the one referenced at the beginning of this section. This energy is obtained using
a Discrete Variable Representation (DVR) atomic KSDFT code [32], therefore we label
this energy EDVR. The main motive for using the DVR atomic code rests on its ability to
provide a well converged pseudo-atomic energy comparatively quickly and simply. Con-
vergence can be shown by calculating several energies with increasing number of functions.
Evidence of this is presented in figure 5.3 where the convergence of the atomic energy with
respect to the number of basis function is shown for the elements considered here. Each
point in the graph is the average (for 70 elements) of the following quantity:

∆(i) = EDVR(i)− EDVR(300) (5.20)

where the index i represents the number of points (corresponding to the number of func-
tions used in the calculation) with 300 points being the highest value with which calcu-
lations were performed. As we can see from figure 5.3 by 150 points we find that our
energies are already converged, nevertheless the energy resulting from the run with 300
points is used in the basis set generation routine.
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Figure 5.3: Convergence of the atomic energies for all the elements for which we generate
a basis set (70 atoms, averaged) with respect to number of basis functions for the DVR
code. Each point represents the difference ∆(i) = EDVR(i)− EDVR(300).

From a variational standpoint EDVR can be taken to be the “true” pseudo-atom energy
so that in a like-to-like calculation any energy obtained using a Gaussian KSDFT code,
EGAT, will always be higher. It follows from the variational principle that we can judge
the quality of a basis set by minimizing the following positive quantity

δ = EGAT − EDVR (5.21)
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whilst systematically modifying the basis sets. The logic being that as δ → 0 the basis
set increases in quality. This is markedly different if only energies obtained with Gaussian
KSDFT codes were to be considered in the minimization routine, as one would first need
to converge the energies with respect to Gaussian basis sets i.e.

Ei+1
GAT − Ei

GAT < tol (5.22)

which, undoubtedly, requires a large number of exponents given that condition (5.22) must
be observed over several changes in the number of exponents n for it to be considered
converged. Furthermore, if the parameters that generate the basis sets are not spanned
carefully it could lead to erroneous results i.e. the method can be stuck on a local minima
and trigger condition (5.22) even over different n without it being the true minimum
(which might have a lower energy by several factors of the tolerance). By using EDVR we
do not need to worry about such problems, figure 5.4.

Having pre-assigned l, the atomic basis set is constructed using the set of (α,β), for
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α

EGAT(α)
1 meV above global minima

1 meV above local minima

Figure 5.4: Schematic of a energy convergence curve with respect to a parameter that
governs the basis set construction, in this case α. There is both a global and local
minimum, using EDVR as a check of convergence ensures the global minimum is choosen.
In the example curve above for the chosen olerance convergence could be triggered (blue
and green curve) in any of the minima if only EGAT was to be used to check convergence.

a particular n, that satisfy the following condition,

δ = EGAT(n, α, β)− EDVR = tol (5.23)
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where tol is a tolerance, chosen to be 1 meV in our case. We choose the smallest n for which
this can be achieved. In addition our procedure finds the highest α for which condition
(5.23) is satisfied for the chosen “n” (more on this in the next section). Although this is
not necessary, it reduces the likelihood of failure due to the ill condition of the overlap
matrix in the KSDFT calculation (even after filtration as we will see in the next chapter)
and more importantly it increases the efficiency of the Hamiltonian and overlap matrices
building stage.

Note that for a chosen value of n equation (5.23) describes a contour line on a 3D
surface. Given that δ involves a KSDFT calculation it does not have an analytical form,
therefore we must find points on this line numerically (condition (5.24)), so that the point,
(α, β) pair, with the highest α can be chosen. The algorithm to do so is introduced in the
next section.

Energy surface,δ(α,β)
Tolerance

α

β

δ
(α

,β
) 

m
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m

Figure 5.5: Schematic of a 3D δ(α, β) surface, bisected by the plane which describes
the tolerance. The intersection between the plane and the surface can be represented by
a curve (or several if several minima exist) in a α vs. β plane.

5.5.3 Basis set generation; Main loop

This section introduces the main part of the algorithm used to find the (n, α, β) set which
will be used to generate the basis sets.

Having obtained EDVR for the pseudo-atom and chosen the angular momentum value,
l, we proceed to find a set of (αb, βb) such that,

δ(αb, βb) = En
GAT(αb, βb)− EDVR = tol (5.24)
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where the raised index (n) indicates that we are currently searching over energies obtained
with constant n (only α and β are changed). Our routine begins with n = 5 and spans
the (α, β) ∈ R2 plane. If no (α, β) are found such that δ(α, β) ≤ tol then n is increased
and the procedure starts again. Once the previous condition is reached we find points
which satisfy equation (5.24) and choose the one with highest α

The procedure to span the (α, β) plane and to find the set of (αbβb) that meet condi-
tion (5.23) is the following:

1. Assuming that EDVR has been found and l has been chosen. For a starting value of
n, the plane (α, β) ∈ R2 is spanned with a coarse grid to generate a set of points,
(αi, βj). These points are used to calculate a set of energies; En,i,j

GAT = En
GAT(αi, βj).

2. The minimum value from the set of En,i,j
GAT is used as a starting point for a downhill-

simplex run. The downhill-simplex returns (αmin, βmin) which minimizes En
GAT(α, β),

min[En
GAT(α, β)] = En

GAT(αmin, βmin) (5.25)

and, by construction, also minimizes δ(α, β). If δ(αmin, βmin) > tol then the number
of exponents is increased, nnew = n + 1, and the procedure returns to step one.
Otherwise proceed to step three.

3. A new function is constructed,

δ′(α, β) = δ(α, β)− tol (5.26)

by construction (αmin, βmin) also minimizes δ′(α, β), in addition:

δ′(αmin, βmin) < 0 (5.27)

The set of (αb, βb) such that δ′(αb, βb) = 0 can be found by performing the following
steps:

(a) A small set of points with constant α = αmin but changing β, (αmin, βi), are
generated and a new set of energies, En

GAT(αmin, βi), are calculated. These
points, and respective energies, can be taken to form a line,

f(β) = δ′(αmin, β) (5.28)

which lies on the δ′(α, β) surface and crosses δ′(α, β) = 0 at two points βlow and
βhigh, that is f(βhigh) = f(βlow) = 0. These two points are actually (αmin, βhigh)
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and (αmin, βlow) respectively. The roots f(βhigh) and f(βlow) are found using
the bisection method.

(b) Using βlow and βhigh as interval limits a new set of points are generated and
the respective energies calculated, EGAT. As before these points and respective
energies can be taken to form k lines,

fβj(α) = δ′(α, βj) (5.29)

with
βj = βlow + j

k + 1(βhigh − βlow) (5.30)

where 1 < j < k. For all these lines the α interval from which they are
generated begins at αmin, that is for the points which define these lines we
have α ≥ αmin. If at any βj we have fβj(αmin) < 0 then α is increased until
fβj(α) > 0. We then use the bisection method to find the exact α, call it αb,
at which fβj(αb) = 0. It follows then that at (αb, βb), where now βb = βj, we
have δ′(αb, βb) = 0. A more rigorous proof that this will indeed produce such
points is provided below.

4. Once the resulting set of (αb, βb) points is obtained the one with highest αb is chosen
and the primitives are generated. Let us call this point (αend, βend).

A pictorial representation of the algorithm described above is shown in figure 5.6. In
broad terms, the procedure presented here produces the even tempered parameters that
minimize the atomic energy (αmin, βmin), step 1 and 2. Then it produces a set of even
tempered parameters ((αb, βb)) with tol = 1 meV, step 3. Finally, from this set the (α, β)
pair with the highest α is chosen (αend, βend), step 4.

Proof Concerning point 3.b We provide a proof below that the procedure will return
a set of (αb, βb) such that δ′(αb, βb) = 0.

Let us assume that the chosen tolerance is reasonable i.e. at least smaller than the
difference between any two values of EGAT. Consider the surface δ′(α, β) given by

δ′(α, β) = |EDVR − En
GAT(α, β)| − tol (5.31)

Let (αmin, βmin) be the global minimum of δ′(α, β) and let us assume that for a given n

we have δ′(αmin, βmin) < 0. Let us construct a set of functions f(α) = δ′(α, β(α)) that
cross the point (αmin, βmin). In fact we could construct infinitely many functions f(α) by
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Figure 5.6: Pictorial representation of the proposed basis set generation routine. These
steps are used to find a set of parameters (α, β, n) to generate the uncontracted primitive
basis set of a particular atom.

having β(α) = mα + c where m and c are defined by solving

βmin = mαmin + c (5.32)

for different choices of m (or c). Similarly one could define f(β), with the same properties
as f(α). The following argument uses f(α) but it could equally use any f(β).

Pictorially, the family of functions f(α) are just lines that lie on the surface of δ′(α, β)
and cross its minimum. From definition of f(α)we have,

min[f(α)] = min[δ′(α, β(α))] = δ′(αmin, βmin) < 0 (5.33)

Now as α increases we must have, bar numerical failures, |EDVR − EGAT(α, β(α))| > ε

for some interval of α with ε increasing as α increases (for reasonable intervals) since
EGAT(α, β(α)) must progressively gets worse as the basis sets will only contain very short
ranged Gaussian and thus not be good representation of the Kohn-Sham orbitals. It
must be noted that the increase in ε is not necessarily monotonic (the surface might
have multiple minima). Nevertheless, given our reasonable choice tol we can assume that
tol << ε for an interval of α, if not let us just redefine tol. We can therefore assume that
for a big enough α, call it αbig we have,
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f(αbig) = δ′(αbig, β(αbig))

= |EDVR − En
GAT(αbig, β(αbig))| − tol > ε− tol > 0

(5.34)

and so f(αbig) > 0. Therefore we have f(αmin) < 0 and f(αbig) > 0 for some αbig. By
the Bolzano theorem we know that f(α) has a root, which could be found numerically
using the bisection method. Thus, in principle, one should be able to find the (αb, βb)
line, given by δ′(αb, βb) = 0, by constructing infinitely many f(α) lines.

The basis generation procedure described above, particular step 3.b is, guaranteed to
generate at least two points (αb, βb) such that δ′(αb, βb) = 0. It is often the case, however,
that all the lines generated in step 3.b will yield the valuable (αb, βb) points.

Parameter choice We have found the method above to be robust, with respect to the
parameters used to specify the intervals and spanning ranges. A discussion regarding
some of these values will be presented in the next section.

In step 1 of our routine we span α ∈ [0.01, 0.25] in 25 equidistant steps. Similarly for
β we generate 25 points in β ∈ [1.80, bend] where

bend =
(efix10.0

0.25
) 1.0
n−1 (5.35)

and efix is the lowest rloc in the pseudopotential. We have found having bbeg less than 1.80
can lead to instability in the atomic calculation for some elements, further justification
for this choice will be presented in section 5.6.3. In point 3b we have found that ten lines
are enough to yield a valuable (αb, βb) set.

5.6 Results

Regarding basis sets their utility and value is measured by application. That is, whether
or not a basis set is good depends on how well it performs a particular KSDFT calculation.
This is one of the driving factors behind the appearance of many benchmarks, such as
the G2-benchmark [76]. Typically a positive result in a benchmark test is taken to imply
accuracy and transferability, the two main qualities of any useful GTO basis set. Our own
basis set will be tested along with filtration using the recently developed ∆-test [6]. These
calculations will be presented in chapter 7. For the present discussion it is important to
note that the ∆-test contains 70 different elemental crystals therefore 70 primitive basis
sets were generated, one for each atom. Any results presented below were calculated for
this particular set of atoms, which we call the ∆-set. However our basis set routine could
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be used for any atom provided a suitable pseudopotential exists.
In the remaining sections of this chapter we will analyse the data obtained from the

application of the basis generation routine described above to the elements in the ∆-set.
Doing this we may verify the proper working of the algorithm and, in addition, investigate
some properties regarding the parameters involved in the construction of uncontracted
even-tempered basis sets.

5.6.1 Output of the hydrogen run.

The data resulting from step 1 (grid search) and step 3 (search for high α) of our routine
during the basis set generation for the hydrogen atom is plotted in Fig. 5.7. The purple
surface represents the δ(α, β) surface where as before:

δ(α, β) = En,l=locc+1
GAT (α, β)− EDVR (5.36)

In the current example the grid energies, En,l=locc+1
GAT , were calculated with n = 6 (the last

iteration of the Hydrogen basis generation). The green points overlaid in this surface are
the resulting (αb, βb) pairs – recall that any points labelled (αb, βb) have δ(αb, βb) = 1 meV
– obtained during the search for the highest α for which δ(α, β) = 1 meV. As intended our
routine found several points in the EGAT(α, β) surface that satisfy condition (5.24). Note
that this surface appears to have several local minima but our routine correctly picked
the global one, a consequence of using EDVR as a reference.

For easier visualization the green points in figure 5.7 are replotted in a α vs. β axis
in figure 5.8. Bear in mind that all points in this graph have δ(α, β) = 1meV .

The (αb, βb) pair with the highest α, the rightmost point in figure 5.8, is chosen to
construct our primitive basis set (step 4 in section 5.5.3). This point has,

αhigh = 0.0734173 βhigh = 2.8252 (5.37)

the uncontracted even-tempered Hydrogen basis set can then be constructed using
l = 1, n = 6, α = 0.0734173 and β = 2.8252. In common AIMPRO notation this can be
written has:

{p, p, p, p, p, p}

0.0734173 0.2074241 0.5860304 1.6556974 4.6778019 13.2160808
(5.38)

The two leftmost points in figure 5.8 are obtained during step 3a in section 5.5.3.
Therefore both points have α = αmin where αmin is obtained from the simplex mini-
mization (step 2 in section 5.5.3). We have αhigh > αmin thus, as intended, step 3b has
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Figure 5.7: Plot of δ(α, β) surface with n = 6, in purple, generated during the Hydrogen
basis set generation. The green points correspond to the set of (αb, βn) obtained during
the search for the highest α.

produced a higher α than the one obtained from the simplex minimization.
The average difference between the individual atomic αmin and corresponding αhigh

is presented in section 5.6.5. In addition the computational savings resulting from using
uncontracted primitives with higher α are also discussed therein. Beforehand the conver-
gence of the Gaussian atomic energy, EGAT(α, β), for each element in the set is presented.

The resulting parameter set which define the individual uncontracted even-tempered
basis set for the 70 elements considered in this thesis is presented at the end of this chapter
in table 5.4.

5.6.2 Convergence of the Gaussian atomic energy

In Figure 5.12, located at the end of this chapter, the minimum δ(α, β) obtained from the
different simplex minimizations (δ(αmin, βmin)) is plotted for all elements. For elements
with several data points each point corresponds to the simplex energies obtained using
a different number of exponents (n), this is step 2 of our basis generation routine. Each
line links all the simplex energies obtained using the same number of exponents.

As expected below the dotted line – 1 meV line – there is one point for each element.
This indicates that a converged Gaussian atomic energy (according to our chosen toler-
ance) has been found for all elements in the ∆-set. This is the necessary condition for the
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Figure 5.8: The set of αb, βb generated from step 3.b for Hydrogen atom (n = 6).

basis generation routine (section 5.5.3) to proceed to step 3 and eventually finish.

5.6.3 Behaviour of even-tempered parameters

In this section, and the next two, the behaviour of α and β for the different elements
is analysed in some detail to reinforce and explain the choice of parameters presented
in section 5.5.3. In this section when α and β are mentioned it is assumed that these
are the parameters which minimize the Gaussian atomic energy for a specific number of
exponents, i.e. in our case these are found at each simplex run (αmin, βmin).

The mathematical analysis regarding convergence of even-tempered basis sets (for
atomic calculations) is due to Schmidt and Ruedenberg [53]. Perhaps the most appealing
feature of an even-tempered distribution of Gaussian primitives is that as the number
of primitives is increased, i.e. n → ∞, we can expect the basis set to become complete
[53, 60]. Furthermore, if the basis set does tend to completeness as n increases then both
α and β must be functions of n [60],

α = α(n) β = β(n) (5.39)

In addition, we must have

lim
n→∞

α(n) = 0 lim
n→∞

β(n) = 1 lim
n→∞

[α(n)β(n)] =∞ (5.40)

Schmidt and Ruedenberg [53] and Wilson and Kryachko [60] use these identities to
postulate relations for α(n) and β(n) in terms of n. For example Schmidt and Rudenberg
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postulate the following,

ln[ln[β]] = bln[n] + b′

ln[α] = aln[β − 1] + a′
(5.41)

Where a, a′, b, b′ can be found by least square fittings of several αmin(n) and βmin(n) ob-
tained from regular non-linear multivariable minimization for each angular momentum
symmetry, i.e. αl(n), βl(n). This set of parameters would be derived for each atom.
Although such construction should indeed provide systematic convergence for a partic-
ular atomic calculation and would most likely do so on polyatomic calculations as well
by virtue of its size, it is unlikely that such a basis set would be of use directly due to
its predictably large size. In addition calculations on large systems or calculations which
use large basis sets predicate some preferable constraints on α(n) and β(n), particularly
on α(n), which are contrary to their expected behaviour as n increases, this will be ex-
panded upon in section 5.6.5 since it is one of the features of our basis set generation.
Nevertheless as we will see in the next section the different (αmin, βmin) found during the
basis set generation for each atom follow the behaviour dictated by 5.40 with a few caveats.

5.6.4 Behaviour of β

The only constraint placed on β during our basis set generation is that intevarls which
span β space start at 1.8. This might appear to be counter intuitive based on the anal-
ysis of previous section, Schmidt and Ruedenberg [53], but we found that the isolated
atomic calculations (using Cartesian Gaussian functions) can be sensitive to low β, with
some calculations failing due to numerical instabilities. However we found the smallest
β required to achieve our tolerance was β = 1.83 for Cu and the atomic calculation was
perfectly stable at this value.

To see how numerical instability creeps up as β becomes smaller let us consider as an
example two consecutive normalized primitives φi(r) and φi+1(r), both with p-symmetry.
Their overlap integral is, according to section 5.2.3:

Si,i+1 =
[

2
√
β

1 + b

]5/2

(5.42)

If β = 1 then we have Si,i+1 = 1, which implies that φi = φi+1 therefore S has a
linear dependency and the atomic calculation will fail. Given this let us say that we take
Si,i+1 = 0.999 to be the highest overlap integral that the particular atomic calculation
can manage. That is, assume that if Si,i+1 > 0.999 the diagonalization of S fails. Let
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Si,i+1 = k, we can rearrange equation 5.42,

k
4
5β2 + (2k 2

5 − 4)β + k
2
5 = 0 (5.43)

from which we find that for k = 0.999 we get β = 1.09. Thus for any β smaller than 1.09
the calculation will fail. From this discussion it follows that care must be taken regarding
the choice of β in a basis set given that we don’t know a priori if the calculation will fail
or not. This is particularly important during a basis set generation routine where several
β might be systematically searched, especially as n is increased. Furthermore the limiting
β will change for different elements.
To visualize the behaviour of α and β with respect to the number of exponent, let us plot
the α and β for copper and galium (two elements whose basis sets contain the largest
number of exponents) at the simplex stage (averaged) in figure 5.9. Since at this point
in our basis set routine we would expect α and β to follow the behaviour proposed by
Schmidt and Rudenberg (equation (5.40)).
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Figure 5.9: Plots of the averaged values (for copper and galium) of αmin and βmin with
respect to the number of exponents.

From figure 5.9 we find that αmin does decay towards zero, that is limn→∞ α(n) = 0.
However as we expected based on our discussion β (in this case βmin) does not decrease
monotonically to 1. This shows that our energy surface is more complex that that of
Schmidt and Rundenberg for two reasons. First we have s, p and d occupied states in
our calculation which share the same α and β values whereas Schmidt and Ruedenberg
looked at a single angular momentum channel. Also our basis sets for Ga and Cu (semi-
core pseudopotential) includes f -type orbitals, meaning we have additional s and p type
functions (multiplied by r2) in our basis sets, something not considered in the above
analysis.
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Figure 5.10: Plot of the individual β used to generate the uncontracted primitive basis
set.

5.6.5 Regarding the choice of high first exponent (α)

When generating the basis sets we implemented steps with the goal of choosing the high-
est α which satisfies our chosen stopping condition. To verify that this goal has been
accomplished we can compare the α obtained during the last simplex minimization with
the one that is chosen by the routine to form the basis set. Table 5.2 contains the av-
erage (over all atoms) for the first exponent (α) and difference in energy (δ′) at those
two stages, for the last iteration of each atom’s run. The first row contains the averaged
values obtained at the simplex stage, the second row contains the resulting values from
the basis generation routine.

average α average δ′ (meV)
Simplex 0.0481406755 0.5845902638

Final 0.0584184143 0.999998068

Table 5.2: Simplex α vs final α, and the respective average delta′ values.

As intended we obtain a higher α using our routine than one would using regular
minimization (simplex) whilst maintaining an error smaller than 1 meV.

To relate α to efficiency recall from chapter 4 the concept of integral screening. If for
two primitives centred around different atoms their overlap term Sij is less than a certain
value we might disregard the corresponding Hamiltonian term (Hij) if SijVmax is smaller
than a chosen tolerance. It follows that efficiency increases as the number of screened
terms increases, firstly because we do not need to compute the integral exactly and in
addition both the overlap and Hamiltonian matrices become sparser.

To see the effect that increasing alpha has on integral screening let us consider two
Gaussian with different centers Ra and Rb but with the same exponent α, i.e. a system
with at least two atoms of the same kind. For reasons of simplicity let us consider only
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one s− state primitive on each atom, with the following form:

φa = e−α(r−Ra)2
φb = e−α(r−Rb)2 (5.44)

Let Ra −Rb = D, from chapter 4.4 we find that the overlap integral between these two
primitives is:

Sab =
∫
φa(r)φb(r)dr =

∫
e−α(r−Ra)2

e−α(r−Rb)2
dr

=
(
π

2α

) 3
2
e−

α
2D

2
(5.45)

where the exponential factor of the previous equation (5.45) is the dominant term, we can
therefore approximate the equation as,

Sab ≈ e−
α
2D

2 = e−τ (5.46)

where
α

2D
2 = τ (5.47)

rearranging the previous equation we have

D =
√
τ

2α (5.48)

therefore a bigger α is advantageous, since it allows us to discard integrals at a much
smaller distance than one would with a smaller α. From this analysis it also follows that
increasing α reduces the likelihood of linear dependency.

For calculations on large systems or calculations which use very large basis sets where
efficiency and stability are a main concern, it follows that the basis generation routine
presented above produces the most efficient and stable basis set (for basis sets constructed
from uncontracted even-tempered primitives as we described in section 5.5) in the matrix
building stage, within our chosen atomic tolerance. That is, it is unlikely that there exist
other primitives which will generate an equally sparse Hamiltonian and overlap matrices
and produce atomic results within 1 meV at the basis generation stage, given that we pick
the highest α possible. Although the primitive basis set will be contracted on-site during
the filtration stage for the calculations present in this thesis, the overlap and Hamiltonian
matrices still need to be constructed in primitive space (this will be discussed in the next
chapter) therefore the choice of high α does indeed make the overall calculation more
efficient and stable.
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Atomic radius Keeping our discussion focused on α let us now analyse its relation
with atomic radius.

The lowest exponent (α) of our primitive basis should, in principle, correlate with each
element’s radius since it controls the spatial decay of the KS orbitals. As a first approxi-
mation we might expect that has the atomic radius decreases the lowest α increases, since
the Gaussian primitive e−αr

2 must decay faster. We might approximate the following
relation for our data:

Ratomic ∝
1

√
αmin

(5.49)

where Ratomic is the atomic radius and αmin is obtained from the last simplex minimization
of each run. The actual relation between each individual αmin and the atomic radius is
not important for the current discussion and this approximation suffices.

In figure 5.11 we have plotted 1√
Ratomic

(where Ratomic is taken to be the atomic covalent
radius) against αmin of the respective atomic basis set and αhigh, the parameter used to
construct our basis set (taken from table 5.4). Ratomic is scaled so that αmin = 1√

Ratomic
for

the helium atom.
Interestingly the behaviour of αmin and αhigh across the set of elements follows that
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Figure 5.11: Plot of the square root of the inverse atomic radius, αmin and αhigh for the
elements considered in the ∆-set.

of the square root of the inverse atomic radius, albeit not exactly. Nevertheless the more
pronounced features of the inverse atomic radius plot, such as the big drops from He to
Li, Ne to Na and Ar to K which correspond to the increase in radius from fully filled
electronic orbitals (for noble gases) to that of a valence orbital with one electron, are
replicated by both α curves. A similar behaviour was reported in [53] for the first and
second row elements (although only s-orbitals were considered in that particular plot).
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Besides elucidating the overall trend for α with respect to the different elements, figure
5.11 demonstrates that our search for higher α has not destroyed the expected behaviour
of α across the set of elements.

5.7 Summary

An uncontracted even-tempered primitive basis set has been generated for each atom in
the ∆-set. These bases are large when compared with similar Gaussian basis sets, see
table 5.3 for a comparison between our basis sets and that of Dunning for a few elements.
The number of primitives in each of the basis sets generated here can be inferred from
table 5.4. The same basis generation routine was used for each atom and we showed that
the resulting basis set produces a ground state atomic energy that is only 1 meV away
from a very well converged systematic calculation. It was demonstrated that our basis
sets produces the set of even-tempered parameters with the highest α, which helps with
both stability and efficiency. The large size of our basis sets offer a good starting point
for contraction in a polyatomic KSDFT calculation. Furthermore the basis sets contain
polarization primitives which might be tailored for the calculation at hand.

The next chapter will address the filtration step, here the very large number of prim-
itive functions we have chosen (up to 240 for Cu) can be used to produce a manageable
basis set for a full calculation.

Elements Our basis set Dunning (cc-pVTZ) [70]
H 18 8
C 60 18
Si 60 26
Cu 240 47

Table 5.3: The number of primitives in our basis sets compared and a triple zeta Dunning
basis set. The cc-pVTZ basis set were consulted in [2].
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Element α β n
H 0.07341 2.8252 6
He 0.15187 2.4966 6
Li 0.02312 2.2837 9
Be 0.05782 2.6962 7
B 0.05020 2.3588 6
C 0.06120 2.4860 6
N 0.07259 2.2304 7
O 0.08522 2.2739 7
F 0.09936 2.3019 7

Na 0.03119 2.0882 10
S 0.06738 1.9274 7

Mg 0.03621 2.1537 10
Al 0.03383 2.4059 6
Si 0.04255 2.0251 6
P 0.05177 2.1571 6
Cl 0.07873 1.9256 7
Ar 0.08549 1.9464 7
K 0.03411 1.9252 10
Ca 0.04167 1.9395 10
Sc 0.03876 2.3157 9
Ti 0.04258 2.0614 9
V 0.04241 2.0643 9
Cr 0.04047 2.1270 9
Fe 0.05436 1.8759 11

Element α β n
Co 0.05618 1.8640 11
Ni 0.06205 1.8488 11
Cu 0.05473 1.8767 12
Zn 0.07263 1.8283 11
Ga 0.04064 1.8938 12
Ge 0.03985 2.8576 5
As 0.05228 2.6376 5
Se 0.08085 1.9961 6
Br 0.08986 2.0013 6
Kr 0.09924 2.0676 6
Rb 0.02319 2.4949 7
Sr 0.03489 2.4875 7
Y 0.03952 2.0914 8
Nb 0.03887 2.1645 8
Mo 0.04189 2.1606 8
Tc 0.05040 2.0983 8
Ru 0.05117 2.0991 8
Rh 0.03102 2.0435 9
Pd 0.04164 1.9637 9
Ag 0.04084 1.9698 9
Cd 0.05324 1.9015 10
In 0.03209 1.8902 11
Sn 0.05247 2.1300 6
Sb 0.06268 2.0995 6

Element α β n
Sb 0.06268 2.0995 6
Te 0.07197 2.1080 6
I 0.08116 2.1056 6

Xe 0.09112 2.0718 6
Cs 0.02524 2.5266 7
Ba 0.03216 2.2760 7
Hf 0.04300 2.2826 7
Zr 0.04216 2.1100 8
Ta 0.06312 2.1627 7
W 0.07151 2.1179 7
Re 0.07893 2.1271 7
Ne 0.11249 2.1031 8
Re 0.07893 2.1271 7
Os 0.08499 2.1252 7
Ir 0.09019 2.1269 7
Pt 0.07762 2.1347 7
Au 0.06832 2.1834 7
Hg 0.08813 2.0527 6
Tl 0.03302 1.9418 8
Pb 0.04977 2.0787 8
Bi 0.04611 2.1456 7
Po 0.05914 2.3911 5
Rn 0.06557 2.4010 5

Table 5.4: The parameters which define the uncontratcted even-tempered primitive basis set for each
element considered in the ∆-test.

96



Chapter 6
An updated filtration methodology tailored
for large primitive basis sets

6.1 Introduction

Over the previous chapters an efficient method to build the KS Hamiltonian using GTOs
was summarized and a procedure to generate high-quality GTOs was presented, all that
remains now is to solve the GEP. Straightforward application of direct diagonalization
to solve the GEP results in the cubic scaling of computational expenditure with respect
to Hamiltonian matrix size (i.e. the size of the basis set). Efforts to reduce the compu-
tational effort in the diagonalization step can be adopted from linear algebra. Methods
optimized for sparse matrices [77, 78] (when the problem at hand permits it) can be
used, iterative diagonalization methods can also be implemented [79], or more modern
techniques involving parallelization [80] can be used. One such iterative method used in
regular AIMPRO can be found in [81]. If such methods are used the computational effort
involved in solving the GEP and the respective scaling with respect to basis set size can
be reduced from cubic to quadratic. However even with such a reduction in computer
time large scale calculations are still very demanding.

Most KSDFT implementations discussed thus far do scale cubically O(N3). The com-
puter time required for a calculation can then be expressed, as a function of the number
of atoms, as:

T = cN3
atom (6.1)

Where c is a prefactor. Notwithstanding, the scaling involved in the other steps of a
KSDFT calculation, typically for large-scale calculations the bottleneck with regards to
timing resides in the scaling of the diagonalization step [14]. Current state-of-the-art
Gaussian methods can tackle up to 500 atoms on a modern PC cluster [81]. However,
KSDFT’s success in solid-state physics and quantum chemistry has led to its spread to
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other fields, such as nano-technology [82] and biology [83] (or even large-scale metallic
calculations [84]) which require far more atoms, on the order of thousands or tens of
thousands. To combat this a great deal of research, in the DFT field, has been done to
develop algorithms with lower complexity, often called order-N (O(N)), which provide
linear scaling with respect to the number of atoms.

The overall CPU time of a calculation using low-complexity methods can be expressed
as,

T = clNatom (6.2)

where cl is the prefactor involved in the timing of linear-scaling calculations. The pref-
actors involved in the regular methods and linear-scaling are typically different, with cl

being often larger than c [14]. The point (number of atoms) at which the linear-scaling
method is preferable to the regular cubic-scaling is known as the crossover point. For sys-
tems that are smaller than a particular code’s crossover point, a regular cubically scaling
code is faster as figure 6.1 indicates.

C
P

U
 t

im
e 

a.
u

.

Number of atoms

Linear-scaling code
Cubic-scaling code

Figure 6.1: Schematic illustrating the change in CPU time with respect to an increasing
number of atoms for a linear and a cubic scaling code. The black circle indicates the
crossover point. For systems with a smaller number of atoms than the one indicated by
this point a cubic scaling code is preferred.

Other methods exist which allow for calculations on large systems, force fields or semi-
empirical methods such as density functional tight biding (DFTB) [85], can also handle
large number of atoms, however such methods are not ab-initio. Particularly, tight-biding
owes it speed due to its small Hamiltonian GEP (or OEP depending on the choice of basis
sets) [86], in this regard it is similar to the filtration algorithm to be described in this
chapter.
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Unlike low-complexity DFT methods the filtration methodology does not rely on physi-
cal locality to perform fast calculations, it derives its computational saving by constructing
a Hamiltonian with size comparable to that of a tight-binding calculation and performing
the time consuming diagonalization in this space. In [16] the relaxed structure of a cell
of 1728 silicon atoms was calculated using AIMPRO, both conventionally (O(n3) scaling)
and using the filtration methodology. It was found that even with a modest filtration
strategy — good enough to provide filtration results which were within ≈ 10−4Å error of
the conventional calculation — the filtration calculation was approximately 3 times faster.
It is important to note that in these calcualtions and those presented in [5] the filtration
calculations were compared with conventional AIMPRO runs. However, in this work we
will be comparing our results with those obtained from plane wave implementations, a
hard task for any GTO implementation. Furthermore unlike low-complexity methods the
benefits of filtration extend to systems of all sizes there is no notion of a “cross-over”
point.

In this section we will summarize the filtration methodology used in AIMPRO [5, 16],
including recent changes to the algorithm.

6.2 Linear-scaling methods and locality

Although the locality responsible for many low-complexity implementations is not in-
volved in filtration, it is worth briefly reviewing it here to differentiate it from other forms
of locality, associated with spatial distribution, which do play a part in filtration.

As mentioned in the introduction most linear-scaling methods are conceptually linked
to a fundamental feature of electronic structure, properties of a small region of atoms
(in a big system) are weakly influenced by other atoms that are located, spatially, far
away [87, 14, 15]. This is known as locality or near-sightedness [87].This is not necessarily
related to the often labelled “locality” of a basis sets (spacial distribution), these are two
separate, but relatable, topics. Indeed the “locality” of some real space implementations,
often as a result particular choice of basis set, is often used to take advantage of the
near-sightedness property of electronic structure and implement linear-scaling methods.

In science, particularly in Chemistry and Biology, the concept of locality is often tac-
itly assumed. For example when studying DNA molecules by breaking the molecule into
pairs [88], or proving the bonding of large molecules by focusing on small subsets of said
molecule [89] there is an underlying assumption that the physics of the overall system
are only marginally affected by our focused analysis. It would seem natural then that in
quantum mechanics (ultimately most of Biology and all of Chemistry is applied quantum
mechanics) a certain degree of locality is to be expected.
The need to study large scale structures with DFT has resulted not just in the develop-
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ment of linear-scaling algorithms but in addition it has lead to a deeper understanding
of locality in quantum systems [87, 90]. In fact near-sightedness can be observed in some
structures using regular DFT. For example, if one has a C2H6 chain and appends to it
a CH2 unit, one finds that the energy of this unit when calculated in the chain is very
similar to the energy of a CH2 unit calculated in a very long chain [14]. For an electron in
a CH2 unit then, the length of the CnH2n+2 chain it inhabits has only a small effect on its
perceived environment (after a certain length of CnH2n+2 chain is constructed). For some
systems we could be justified, for efficiency, in cutting out the interactions of a particular
unit within that system with neighbouring units that are a certain distance away without
a loss to the overall physics of the system. This near-sightedness property however does
not imply that a particular problem can be broken down into smaller problems. Take for
example the calculation of the conductivity of DNA using a linear-scaling DFT method
[91, 92] 30 base pairs sufficed, however some problems involving kinks and DNA folding
will most likely require more than 160 base pairs [93].

Most O(N) methods are built around localization regions, where outside of this re-
gion exponentially decaying terms are cut off [14]. It is therefore beneficial, for real space
methods, that whatever basis sets one picks offers spatial locality. A good overview of
the different sorts of linear-scaling methods and locality is given in [14] and [15]. Near-
sightedness is not a universal concept [90]. Metals at a low temperature do not exhibit
near-sightedness. Filtration, however, does not have any problems with systems which do
not have any near-sightedness property, as we will see shortly.

When the term locality is used to describe a function it typically implies a small spa-
tial distribution. Although there is no exact definition for what the locality of a function
is we can deem a function f(r) to be local if f(r − R) ≈ 0 for |r − R| > rc, for some
reasonable rc where R is the “centre” of the function f(r).

It is also possible to define the locality over coefficient (or Hamiltonian) space. If a
function (Φ) is expanded over a space of functions (φi for i = 1, 2, ...N) we can define Φ
to be local in coefficient space if,

Φ =
N∑
i=1

ciφi (6.3)

and ci is finite only for a small number of functions φi in the space of functions..
I must stress that spacial and coefficient locality are pertinent to filtration, however,

the near-sightedness is not.

6.3 Filtration

The filtration method summarized below differs slightly from previous implementations
of the methodology [5, 40, 16]. However, the computational saving and the respective fast
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calculations arise out of the same underlying principle, that of transforming the primitive
GEP to a much smaller filtered GEP. Whilst previous work [5, 40, 16] has focused on
the time saving aspect of filtration, in this thesis we are concerned with benchmarking
and demonstrating its potential accuracy, which we aim to demonstrate can rival that
of plane wave implementations. We will now summarize the filtration methodology and,
where appropriate, highlight the current changes to the algorithm.

6.3.1 KSDFT summary

In order to visualize how the filtration algorithm acts we must briefly revisit the steps
involved in a self-consistency loop of KSDFT calculation. Throughout this section we
will be referring to the primitive space which is spanned by the primitive basis sets
{φi}[i = 1, ..., N ] (the uncontracted even-tempered GTOs from chapter 4). As before,
a KS orbital is expanded in the primitive space as

ψλ(r) =
∑
i

ciλφi(r) (6.4)

and the Hamiltonian and overlap matrices are constructed as described in chapter 4. A
brief summary of the main steps involved in a KSDFT calculation is provided below with
some extra information regarding timings.

1. The Hamiltonian matrix is built in the primitive space.

Hij =
∫
φi(r)(−1

2 5
2 +V (r))φj(r)dr

+
∫ ∫

φi(r)V nl(r, r′)φj(r′)drdr′
(6.5)

where V (r) includes all the local terms: the local pseudopotential, the Hartree and
the exchange-correlation potentials. V nl(r, r′) is the non-local part of the pseu-
dopotential. This non-locality of the pseudopotential does not affect the filtration
method, given that it is short ranged. For small scale calculations this step is
typically the most computationally expensive. An efficient Hamiltonian build was
discussed in chapter 4.

2. Similarly the overlap matrix is constructed in the primitive space,

Sij =
∫
φi(r)φj(r)dr (6.6)

and the GEP is formed,
Hc = ScΛ (6.7)
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3. Solve the GEP (either by direct diagonalization or an iterative process), update the
density matrix

bij =
N∑
λ

fλciλcjλ (6.8)

and generate the new density,

n(r) =
N∑
ij

bijφi(r)φj(r) (6.9)

which we use to construct a new V (r).

The Filtration method replaces step 3. Instead of solving the full (primitive space) GEP,
H and S are expressed in a contracted space,

H′c′ = S′c′Λ′ (6.10)

Where,
kTHk = H′ (6.11)

and k are contraction matrices. The GEP is then solved in the contracted space.

6.3.2 Contracted Basis sets

The contracted (or filtered) basis set {φ̃I}[I = 1, .., ñ] is constructed using the underlying
primitive basis set {φi}[i = 1, ..., N ],

φ̃I(r) =
N∑
i

kiIφi(r); I = 1, ..., ñ (6.12)

where kiI are the contraction coefficients and ñ < N . Contracted basis sets have been
described previously in this thesis (chapter 4), however the contraction presented here
is fundamentally different. Conventionally, such as in Pople [52] or Dunning [70], the
matrix of contraction coefficients kI is obtained from an isolated atomic calculation and
the coefficients (kiI) remain frozen throughout subsequent KSDFT calculations, whenever
the basis set is used. This is one of the main reasons for the plethora of different basis
sets existent today. In the case of filtration however using very high quality primitives
we construct the contracted basis set on-the-fly for the system at hand. This allows us to
tailor the contracted basis set to the current electronic environment, removing the need
for countless different basis sets and system appropriate augmentations. This contraction
(filtration) is done by filtering out components from high-energy eigenfunctions from the
primitive basis, the resulting, much smaller, contracted basis sets spans the, useful, lower
energy interval of the Hamiltonian.
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6.3.3 Filtration

For simplicity, in the current discussion we assume an orthogonal basis. Once the filtration
method is explained the case for non-orthogonal basis is described. Consider an n × n
eigenvalue problem

Hcλ = λcλ (6.13)

if one is only interested in eigenvalues in a specific range [λi < λ < λj] then solving
equation (6.13) using direct diagonalization can be deemed wasteful, especially if the
eigenvalue spectrum under consideration is small. To remedy this one could devise a
function of the Hamiltonian F(H) that would filter out eigenvalues outside the desired
spectrum,

F =
∑
i

|i〉 f(λi) 〈i| (6.14)

Where f(λi) would select, mostly, the eigenvectors |i〉 for which λi is in the chosen spec-
trum. Operating with F on a trial function |tk〉,

F |tk〉 =
∑
|i〉 f(λi) 〈i|tk〉 = |t′k〉 (6.15)

where {|i〉 , λi} are the eigenpairs of H and similarly {|i〉 , f(λi)} are the eigenpairs of F
with 0 < f(λi) < 1. By applying F to our trial function the resulting filtered function |t′k〉
will have, mostly, components in the desired eigenvector range. This process is repeated
and different filtered functions (|t′k〉 )are generated until the space is spanned adequately
(say by |t′k〉 [k = 1, ..,m]). A m×m GEP is constructed in the subspace of m functions,

H′c′ = S′c′Λ′ (6.16)

and diagonalized.
The accuracy of this method can always be increased by using a larger number of trial

functions or constructing a lower temperature filtration function f(λ), an example of the
effect of chosing different temperatures for the filtration can be seen in figure 6.2.

For non-orthogonal primitives the filtration step, equation (6.15) becomes

cf(Λ)cTS |t〉 = FS |t〉 = |t′〉 (6.17)

However, the underlying idea and outcome is the same as when orthogonal basis are used.
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6.3.3.1 Filtration function

For our applications, given that we are interested in the lowest eigenpairs of the Hamil-
tonian, we use a modified high-temperature Fermi-Dirac distribution:

f(λi) =
(
e(λi−µ)/kT + 1

)−1
(6.18)

Where λi are the eigenvalues and µ is chosen based on the HOMO-LUMO gap of the atom,
i.e. difference between the highest occupied atomic orbitalal and the lowest unocuppied
atomic orbital. We shall refer to µ as the Fermi energy throughout this thesis when
filtration is discussed. The Fermi energy can be increased to facilitate the inclusion
of functions with higher angular momentum values than those present in the atom, as
we can see in figure 6.2. The main body of work presented in this thesis was done so
using a systematic assignment of µ for each atom. However a small number of atomic
calculations required manual tweaking of this parameter, this will be discussed at end of
the next section and in the future works.
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Figure 6.2: Plot of two Fermi-Dirac functions, where µ2 > µ1. Recall that, the eigenvec-
tors of the Hamiltonian for which f(λ) 6= 0 are included in the generation of the filtered
basis. Increasing µ results in more eigenfucntions being included in the filtration stage,
particularly those with a higher angular momentum than the highest filled KS orbital.

6.4 Localization constraints

The localization constraints of the current filtration methodology differ slightly from the
original implementation [5, 16]. Nevertheless, it is worthwhile to explain how the local-
ization region was defined previously given that the newest method can be taken as an
limiting case of the previous.
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The filtration method as presented up until now does not offer any computational
saving. Constructing the filtration matrix F requires the same computational effort as
calculating the density (both require solving H in the primitive space). To remedy this,
we impose localization constraints when constructing F. For each atom in the system, at
Rα[α = 1, .., Natom], we construct a filtration matrix Fα using only the primitive basis of
atoms located within a distance rαcut from the atom at Rα. That is the primitive functions
of the atom at Rβ) are used to construct Fα if |Rβ −Rα| < rαcut. We shall refer to this
method as off-site filtration.

In the filtration method used in this thesis, however, only the primitives from the atom
at Rα are used when generating Fα. A method which we refer to as on-site filtration.
It is important to notice that the matrix elements used to construct the smaller filtred
Hamiltonian are taken from the full Hamiltonian, so that this smaller space is contructed
in situ in the environment of the full problem.

As mentioned above, a Fermi-Dirac function is used when constructing each Fα, the
temperature is set to be high, assuring the localization of the filtered functions. However,
it follows from this localization that more filtered functions are required to properly span
the primitive space.

With regards to the locality referenced in this section it must be stressed that filtration
is unlike low complexity methods which rely on the density matrix to attain linear-scaling.
Particularly divide and conquer methods [94] where a system is divided in to smaller sub-
systems, and the respective densities of calculated there and then reformed into the whole
system’s density. At first glance this method appears similar to filtration, but it is more
alike, in its theoretical foundation, to methods which use the locality of the density matrix
to produce sparse matrices and attain linear-scaling [95, 96].

Filtration relies on the filtration matrix locality (eq. (6.15)), not the density matrix.
Ultimately the Hamiltonian GEP is still diagonalized with cubic scaling but in a reduced
space unlike low complexity methods. It follows that such methods might struggle with
systems which do not exhibit near-sightedness such as low electronic temperature metallic
systems [14]. Filtration, however, does not depend on any near-sightedness property and
is therefore suitable for arbitrary systems [5].

6.4.1 Trial functions

The filtration method as described above places no constraints on the set of trial functions,
|t〉, that are used to generate the filtered functions, |t′〉. The only caveat being that the set
of trial functions should be localized in real space. Ideally, for each atom one would use a
set of trial functions that adequately represent its different KS orbitals, particularly from
the angular momentum point of view. In addition, one should include functions which
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represent higher lying orbitals than that of the fully filled atom. For example, carbon
has two electrons with px and py angular momentum channels, σ-orbital, thus one could
be inclined to chose a set of trial functions which mimic the behaviour of these orbitals,
however when carbon is in graphene it is well known that the π-orbital, constructed from
the pz angular momentum channel, is important for band structure calculations. Thus
our initial guess for the trial functions would most likely miss out what, a posteriori, is
an important angular momentum channel for carbon applications.

Gaussian functions are localized both in real and in primitive coefficient space making
them great candidates for trial functions, in addition AIMPRO’s kernel is already optimized
to handle them which greatly simplify their usage in filtration. Our set of trial functions
is constructed from the underlying primitive basis set as described in the next section.

6.4.1.1 The number of primitives in the trial set

The number of primitives in the trial set is controlled by the positive basis-ecut parameter,
specified by the user. Once the atomic calculation is performed in the subspace, we count
the atomic states, of angular momentum l, that have an energy below our chosen basis-
ecut. The total number of states for each angular momentum channel will determine the
numbers of primitives, with the same angular momentum value l, in the trial set. The
exponents of these primitives are given by an even-tempered distribution where the α is
taken to be the same as the primitive set’s, and βtrial is given by,

βtrial =
(

α

αend

) 1
Nl−1

(6.19)

where αend is the largest exponent in the primitive set and Nl is the number of states
with angular momentum l with energy less than basis-ecut. Nl will also be the number
of exponents in the trial set with angular momentum l, the primitives generated from
these exponents take into account the degeneracies due to l. For example, If there are
five s-states and four p-states with energy below a chosen basis-ecut, the trial set will be
constructed with five primitives (all with different exponents) with an angular momen-
tum of l = 0, and four sets of 3 primitive (each with the same exponent) with angular
momentum l = 1.

With a higher basis-ecut we have Nl = N for all values of l at which point the trial set
becomes almost the same as the primitive set, at which point increasing basis-ecut further
will have no effect.

106



6.4.2 Computational method

Having described the filtration methodology, all that remains is to implement it inside
an AIMPRO calculation. As mentioned before the filtration method replaces the direct
diagonalization of a regular AIMPRO run. Therefore it is assumed here that both H and S
have been constructed using the primitive basis. A linear-scaling build of the Hamiltonian
was described in chapter 4.

6.4.2.1 Construction of the filtered basis

We will describe the method for on-site filtration. Let us assume that H and S have been
built in the primitive space. We loop over and construct the filtered basis for each atom
in the system. The steps presented below assume we are dealing with an atom at Rα.

1. Localization constraint : The set, call it {Bα}, of nα primitives from the atom at
Rα are used to generate a new atomic Hamiltonian H̄. Note that nα < N and is
independent of system size. The elements of the new Hamiltonian can actually be
taken from the respective entries in the primitive Hamiltonian,

H̄ij = Hij, if i, j ∈ {Bα} (6.20)

2. The nα × nα subspace GEP, H̄c̄ = Λ̄S̄c̄, is solved.

3. The respective columns of the filtration matrix, f(c̄)S̄, are formed,

|fk(c̄)〉 = c̄f(Λ̄)c̄T S̄ |tk〉 (6.21)

4. The vector |fk(c̄)〉 (with space size nα) is mapped into the corresponding column
of k (with space size N). This decompresses a vector of length nα into a sparse N
length vector, with the individual entries referring to the respective primitive basis.
Looping over the set of trial functions provides ñα columns of the contraction matrix
k, where ñα � nα is the number of trial functions, set by basis ecut.

As each GEP in step 2 is independent of system size the generation of the filtered basis set
scales linearly with system size. Furthermore this algorithm can be performed in parallel
given that, for the purposes of filtration, each atom is independent.

The filtration step described here is performed in each self-consistent loop. The overall
result of this is the construction of the contraction matrix (k) with size N ×Nsub, where

Nsub =
Natoms∑
α=1

ñα (6.22)

with Nsub < N .
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6.5 Primitive to filtered space transformation.

Once the k matrix is formed filtered basis might be expressed as,

φ̃I(r) =
N∑
i

kiIφi(r); I = 1, ..., ñ (6.23)

we may now transform the original GEP in the primitive space to a much smaller GEP
in the contracted subspace,

H̃IJ =
∫
φ̃I(r)Ĥφ̃J(r)dr

=
N∑
i

N∑
j

kiIkjJ

∫
φi(r)Ĥφj(r)dr

=
N∑
i

N∑
j

kiIkjJHij

(6.24)

where kiI are the contraction coefficients obtained during the filtration step. Equation
(6.24) can be rewritten as

H̃ = kTHk (6.25)

and similarly for the overlap matrix,

S̃ = kTSk (6.26)

We can then construct the subspace GEP,

H̃c̃ = S̃c̃Λ̃ (6.27)

which we then solve using direct diagonalization. The Hamiltonian matrix size is now
Nsub ×Nsub. Whereas before generating the new density required N3 operations (where
N is the number of primitives) we have now reduced the computational expenditure by
( N
Nsub

)3. For small Nsub this provides large time savings [5].
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6.6 Filtered to primitive subspace.

Once the subspace GEP has been solved and the density matrix (b̃) constructed we can
transform back to the original primitive space.

n(r) =
Nsub∑
IJ

b̃IJ φ̃I(r)φ̃J(r)

=
Nsub∑
IJ

N∑
ij

kiIkjJ b̃IJφi(r)φj(r)

=
N∑
ij

bijφi(r)φj(r)

(6.28)

It follows from equation (6.28) that elements in bij which are finite in S can be constructed
from elements in b̃IJ which are finite in S̃. Thus the density matrix b in the primitive
space can be build from the subspace density matrix as,

b = kb̃kT (6.29)

After the subspace to primitive transformation the calculation then proceeds as in the
regular AIMPRO implementation. Due to the sparsity of the matrices both primitive space
→ subspace and subspace → primitive space transformation scale linearly with respect
to system size.

6.7 Summary

Figure 6.3 summarizes the different steps performed to generate a density from a GEP
using filtration and direct diagonalization. Although the method presented here is slightly
different than previous filtration implementations, the potential time savings still arise
out of the same concept. This aspect of filtration has have already been discussed and
demonstrated in [5, 16]. Essentially, the main difference from previous methodology to
the one presented here is that we are producing, effectively, a new primitive set and the
current work focus on the potential gains in accuracy and stability by means of filtration
rather than speed. Algorithm wise the main difference between the two methodologies is
the on-site (current) vs off-site (previous) filtration.

Unlike low complexity algorithms where the benefit of linear scaling methods only
becomes prominent for very large calculations. Filtration is a multi-purpose “tool”, not
only does it allow for systems of 10,000 atoms to be analysed on a desktop but also, as
we will demonstrate, for very accurate basis set to be performed.

Having generated high quality uncontracted basis sets which would be unusable in
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regular AIMPRO (save for an isolated atom) we can now use them regularly with filtration,
setting the stage for calculations close to the basis set limit. In addition this accuracy can
be attained in a systematic way by increasing the size of trial functions, therefore giving
us systematic convergence.

The accuracy of our methodology and basis sets will now be assessed using a recent
benchmark [3], which distils the results of an almost periodic-table wide test set into a
single value, named the ∆-value.

Non-Filtration AIMPRO

Hc = Sc𝚲

n(r)

Filtration AIMPRO

Hc = Sc𝚲

n(r)

Generate transformation matrix (k)

Primitive space to subspace GEP transformation  

𝐇#𝐜% = 𝐒(𝐜%𝚲#

𝐇# = 𝐤𝐇#𝐤𝐓

Subspace GEP diagonalization  

Subspace to primitive space transformation

𝒪	 𝑁./01 	

𝒪	 𝑁./01

𝒪	 𝑁./01	

𝒪(𝑁3456 )

𝒪(𝑁6)

Figure 6.3: Comparison between the steps involved in generating a density from a
primitive GEP between a filtration and regular calculations. The scaling refer to the
steps directly to the left.
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Chapter 7
The ∆ benchmark as an assessment of the
filtration methodology

7.1 Introduction

Recall, from the introductory chapters, that although DFT is in principle exact some
approximations were made before arriving at a solvable set of Kohn-Sham equations,
particularly:

• The Born-Oppenheimer approximation (immovable nuclear charge).

• Approximations to the exact exchange-correlation functional.

These approximations will contribute error to any property calculated with DFT. With
the choice of exchange-correlation being responsible for most of the deviation between
DFT predictions and experimental results (for ground state properties). Minimising the
error associated with a choice of exchange-correlation functional or understanding the
limitations of a particular functional is common to any KSDFT implementation and it
is a topic of active research [97, 98], typically benchmark studies focus on providing a
measure of this error. Both of the aforementioned errors are shared by all DFT imple-
mentations. To separate these kinds of errors — shared by all implementations — to those
particular to a specific code they are labelled intrinsic errors [6]. It follows then that,
having specified an exchange-correlation and using a state-of-the-art all electron code [99]
(taken to be the most accurate kind of DFT codes [100]) these errors are responsible for
the code-to-experiment deviation, i.e. the accuracy of the result predicted by DFT.

Barring the intrinsic errors, all DFT implementations should predict identical results
for a given choice of exchange-correlation functional. However the numerical implemen-
tation of the KSDFT formalism leads to code specific deviations related to the particular
kernel of the code. The choice of basis sets, pseudopotential or even how numerical op-
erations are performed will lead to a scatter of predicted results. This can be thought as
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affecting the precision of a code, that is how far does the result deviate from that of a
well-converged all-electron calculation (a code-to-code measure).
Lejaeghare et al. label these errors as numerical errors [6], of which the two biggest
sources are:

• Basis sets.

• Pseudopotentials.

The implementation of relativistic effects, particularly for heavier atoms, can be another
source of numerical deviation. However this is more noticeable in all-electron calculations
where this must be treated explicitly, than for codes using pseudopotentials in which the
relativistic effects are treated during their generation.

A recipe to quantify both numerical and intrinsic errors is given by the recently devel-
oped ∆-benchmark [6, 3]. Although the ∆-benchmark does provide a recipe to ascertain
the quality of an exchange-functional (the accuracy), the novel, and important, procedure
to provide a comprehensive check of the precision of a code and indicating it with a single
value (the ∆-value) is the main focus of the present chapter. Particularly we are interested
in assessing the error introduced by the filtration and our uncontracted basis sets when
compared with similar calculations (same pseudopotential) and those performed using the
all-electron codes.

7.1.1 The ∆-benchmark

The ∆-benchmark is a pairwise code comparison involving calculations of root-mean-
squared (r.m.s.) difference between the equations-of-state — for the 71 ground-state
elemental crystals — of two different methods (the method one wishes to evaluate and a
reference). We will only be using 70 elements since there is no pseudopotential for Lu (for
Mathias Krack’s pseudopotentials [39]). Amongst the set of 70 ground-state elemental
crystals, there is a wide range of crystal structures which vary from simple hexagonal and
cubic to low symmetry monoclinic cells, an overview of the different structures and the
number of atoms is presented in figure 7.1. In addition ground-state crystals for elements
which require spin polarization calculations are also included: O, Cr, Mn (antiferromag-
netic) and Fe, Co, Ni (ferromagnetic), these correspond to the grey entries in figure 7.1.
Such a diverse array of materials and structures allowed for comprehensive calculations
which are considered to “establish statistically justified intrinsic error estimates” for the
PBE functional [6].

The procedure to generate a code’s ∆-value uses the same elements and almost the
same structures (the elemental crystals for Mn and S are changed for purposes of efficiency)
as the intrinsic error evaluation. Here too the diversity of the ∆ elemental crystals set
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Figure 7.1: The ground-state crystal structures for all the 70 elements considered in
this thesis used in the ∆-set test. The grey background indicates elements which require
a spin-polarized calculation. The first number in each element box corresponds to the
space group, whilst the xYN entry is the Pearson symbol, with x standing for the Crystal
family, Y for the lattice and N for the number of atoms.

allows for a “broad and comprehensive” test for precision, so that an acceptable ∆-value
is (currently) the best pass/fail indicator of a code’s quality [3].

7.1.2 The ∆-test

Typically the ∆-benchmark calls for the reference calculations to be performed with all-
electron codes, however any type of code can be used. The ability to choose different
reference codes allows us to tailor the benchmark to study specific numerical errors of
interest. This will be discussed at the end of this section.

For simplicity let us define the following notation when referring to different types of
∆-values:

∆i
y (7.1)

where the presence of a i superscript indicates the ∆-value of a particular element (where
i can be the element’s symbol), or if i is absent it indicates an average of the individual
∆i (i.e. the code’s ∆-value). The y subscript indicates, if present, which code we use as a
reference (i.e. ∆ABINIT implies the ∆-value was calculated using ABINIT as a reference).
If only ∆ is present this indicates the standard ∆-test, where each individual ∆i was
calculated with respect to an all-electron calculation. Using this notation we can write
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AIMPRO’s ∆ABINIT as,

∆ABINIT =
∑N
i=1 ∆i

ABINIT
N (7.2)

where N is the number of elements considered.
The ∆i of an element is defined as a difference between the equation of state (EOS)

(for the ground-state elemental crystal) calculated using the code in question and that of
a reference code:

∆i =
∫

∆E2(V )dV
∆V (7.3)

where
∫

∆E2(V )dV , plotted in figure 7.2, is the r.m.s. difference between the two code’s
EOS, ∫

∆E2(V )dV =
∫ Vf

Vi
(E1(V )− E2(V ))2dv (7.4)

𝐸"(V)	

𝐸#(V)	

V

E(
m
eV

)

Figure 7.2: A comparison of two EOS obtained from two codes: Code 1 (red) and code
2 (blue), the integral difference is indicated by the grey area between the two curves.
This integral is always calculated between an initial volume (Vi) and a final volume (Vf ).
Where, conventionally, Vi and Vf are 94% and 106% of the VASP optimized equilibrium
volume.

and ∆V = Vf − Vi, where Vi and Vf are drescribed in figure 7.2. The equations of
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state E1(V ) and E2(V ) are Birch-Murnaghan EOS given by:

E(V ) = E0 + 9V0B

16

[(V0

V

) 2
3
− 1

]3

B1 +
[(
V0

V

) 2
3
− 1

]2[
6− 4

(
V0

V

) 2
3
] (7.5)

where E0 is the energy per atom of the compound we are investigating, V0 the equilib-
rium volume, B0 the bulk modulus and B1 the pressure derivative of the bulk-modulus
(evaluated at the V0),

B1 = ∂B

∂P

∣∣∣∣∣
V0

= ∂

∂P

V ∂2E

∂V 2

∣∣∣∣∣∣
V0

(7.6)

Note that in evaluating (7.5) all structural lengths are scaled as the volume is changed
(including atomic positions). The E0, V0, B and B1 values do not directly give us any
insight into the numerical errors, however they can be used to ascertain the quality of a
functional (intrinsic errors), since experimental values of these quantities can be found in
literature for the ground-state elemental crystals considered in the set [6].

For the evaluation of numerical errors the minimum energy E0 is not used when
calculating ∆i. The benchmark calls for the minima of both code’s EOS to be the same,
i.e. min[E1(V )] = min[E2(V )]. Only V0, B,B1 are used to define both code’s EOS,
equation 7.5, and by extension the integral in equation 7.4. It follows that the ∆i of an
element is then dependent on two sets of EOS parameters (V0, B,B1), one for the reference
code and another for the code we wish to study. For each code, and particular element, the
parameters (V0, B,B1) are found by fitting the total energy obtained from well converged
(with respect to any internal parameters) KSDFT calculations of the ground-state energy
of the elemental crystal at 7 separate volumes, without any geometry optimization. The
volumes in these calculations range from 0.94Ve to 1.06 Ve in steps of 0.02 Ve, where Ve
is the equilibrium volume of the structure calculated using VASP. The fitting procedure
is provided in the ∆-benchmark package. It is written in python and requires 7 sets of
(V,E(V )) data, generated as I have described above. A pictorial representation of the
fitting is shown in figure 7.3.

In conclusion, to calculate the overall ∆ for a code each EOS must be found for all
elements in the set. In our case this translates into 490 (7 × 70) calculations, typically
the parameters, (V0, B,B1), for the reference code’s EOS equations are given by the
benchmark package (otherwise 980 calculations).
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Figure 7.3: A least-square fit of the Birch-Murnaghan EOS to seven different energies
obtained from KSDFT calculations of the Carbon ground-state crystal structure with
different volumes using AIMPRO. The resulting parameter set, which defines the EOS, is
V0 = 11.63396 Å3 , B = 205.52326 GPa and B1 = 3.544.

7.2 Methodology

The structure and accepted equilibrium volume is provided in the ∆-benchmark website
[1]. Note that this volume is only used to determine the specimen volumes at which E(V)
is evaluated. Each code evaluates its V0 by fitting to the Birch-Murnaghan EOS.

Due to the large number of calculations required to produce a ∆-value, we have com-
pletely automated the process to generate it using several scripts written in Perl and
Bash. This automation includes the process of generating a basis set and subsequent file
handling, setting and running the different AIMPRO calculations and collating all results
to be used by the benchmark package. This not only removes any human error that could
appear whilst handling the data files but it also streamlines the process of generating
a ∆ so that any change to either the implementation (AIMPRO), or the choice of pseu-
dopotential and exchange-correlation, which could potential affect numerical errors can
be easily assessed. The different stages involved in generating a ∆-value from a choice of
pseudopotential performed in this thesis are shown in figure 7.4.

A suggested list of settings to run the calculations, such as the number of k-points
and temperature factor, etc... are specified in the supplementary material of [6]. Our
chosen settings will be discussed in the next few chapters.
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Figure 7.4: A plot highlighting the different stages involved in generating a ∆-value
using AIMPRO. Each arrow indicates a perl script. The lighter blue squares indicate stages
where DFT calculations are run, here bash scripts are also used to manage the different
calculations efficiently.

7.3 Standard ∆-values

Before proceeding to present AIMPRO’s ∆-value we must first expand on what can be
considered a “good” value of ∆. As a first step into establishing a typical value of ∆,
Lejaeghere et al took high quality experimental measurements for the equations of state
for Cu, Au and Ag [101, 102] and applied the r.m.s. formalism described above to find
an average ∆exp = 1 meV/atom between the different experiments [3]. For the same set
of elements the respective EOS were calculated using several all-electron codes [103, 104,
105, 106, 107, 108, 99], using the process described above. Doing this we find an average
∆code = 0.8 meV/atom among all the different all-electron codes [3]. It follows that for
this particular set of elements the precision of all-electron codes outperformed that of the
experiments.

A broader overview of the current precision for all-electron codes can be found using
the 71 elements in the ∆-benchmark [3]. Generating the EOS equations for this set of
elements using the different all-electron codes referenced above and calculating the ∆-
values using all the permutations of code-to-be-evaulated and reference code, table 7.1,
we find an average ∆a.e.=0.6 meV/atom, with the highest code-to-code ∆-value being
elk’s ∆FPLO = 1 meV/atom (or vice-versa). It was then asserted by Lejaeghere et all [3] -
given that the benchmark call for an all-electron code to be used but not specifying which
- that codes with a ∆ ≈ 1 meV/atom, or even 2 meV/atom, produce almost identical
EOS.
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elk exciting FHI-aims Fleur FPLO RSPt WIEN2k
elk 0.3 0.3 0.6 1.0 0.9 0.3

exciting 0.3 0.1 0.5 0.9 0.8 0.2
FHI-aims 0.3 0.1 0.5 0.9 0.8 0.2
FLEUR 0.6 0.5 0.5 0.8 0.6 0.4
FPLO 1.0 0.9 0.9 0.8 0.9 0.9
RSPt 0.9 0.8 0.8 0.6 0.9 0.8

WIEN2k 0.3 0.2 0.2 0.4 0.9 0.8

Table 7.1: Comparison between all electron codes, using the ∆ formalism, which have
their EOS parameters available in the Comparison website [1]. The ∆-values in this table
have units of meV/atom. If two ∆-values are available for the same code, the parameters
which yield the lowest ∆ are used. Data taken from the supplementary materials available
in [1], the details pertaining to the specific calculations can be found therein. Further
information regarding this comparison can also be found in [3].

7.4 Results

In this section the results obtained using the ∆-benchmark package as a method to assess
the filtration methodology and our basis sets are presented and analysed.

7.4.1 Convergence of the energy with respect to basis-ecut

In figure 7.5 the convergence of the total energy calculated (with AIMPRO) with respect
to basis-ecut for two elements (C and Y) (belonging to the set considered here) is shown.
For these calculations the respective lattices were taken from the ∆-set and the VASP
optimized volume was used. In this plot the y-axis corresponds to,

δ(x) = E(x)− E(highest) (7.7)

where E(x) is the total energy per atom calculated with a particular basis-ecut, which we
label x, and E(highest) is the total energy per atom calculated with the highest basis-ecut
for which the calculation ran without instability. For C the E(highest) = −155.02856
eV/atom and basis-ecut = 400 eV (which corresponds to 46 filtered functions out of 60
primitives) and for Y we have E(highest) = −1042.7468 eV/atom and basis-ecut = 200
eV (which corresponds to 104 filtered functions out of 160 primitives).

Indeed from figure 7.5 we see that as basis-ecut is increased (and corresponding number
of filtered functions) the energy of the system converges. This is a marked difference from
other GTO basis sets where convergence is not a straightforward property.

As highlighted in chapter 5, the primitive basis set considered here is very large which
would make their usage in regular AIMPRO very inefficient, and most often, infeasible.
Similarly at certain high values of basis-ecut which are system dependent and most likely
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correspond to a large number of filtered functions and/or high angular momentum the
calculation for certain systems might fail. For the ∆-benchmark calculations presented
over the next sections the highest basis-ecut for which the calculation ran without insta-
bility is chosen. Given that we are trying to assess potential gains in accuracy using
the filtration methodology this assignment corresponds to using the highest number of
functions possible in the filtered set and thus our most accurate. This method leads to
different basis-ecut values over the set of elements considered, these are shown in figure
7.10.
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Figure 7.5: Convergence with respect to basis-ecut for the total energy (per atom) of
the ground state elemental crystals for Y (a) and C (b) at the VASP equilibrium volume.
The bottom axis indicates the number of filtered basis functions used whilst the top axis
indicates its corresponding basis-ecut. The y-axis contains the difference in energy with
respect to the highest basis-ecut. For Y the total number of functions in the underlying
primitive basis set is 160, whilst for C it is 60. Filtration produces filtered basis sets with
up to 160 and 60 functions for Y and C respectively (the size of the respective underlying
primtive basis sets), where the basis-ecut parameter controls the number of functions in
the filtered set.

7.4.2 AIMPRO’s standard ∆-value

Figure 7.10 contains the individual ∆i
WIEN2k calculated using AIMPRO and the respec-

tive basis-ecut (and corresponding number of filtered functions), for reasons which will
be expanded upon in section 7.6 we include only 66 elements out of the 70 available in
our overall ∆. The set of parameters which define the individual EOS calculated us-
ing AIMPRO are given in table 7.5. For the calculations which yielded these EOS curves
(and respective ∆-values) the Brillouin zone is spanned using grids generated according
Monkhorst-Pack [48]. The individual k-point meshes used for each elemental system con-
sidered here are shown in table 7.6. These k-point meshes are taken to produce converged
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results (with respect to the number of k-points) according to the additional information
in [1]. For purposes of stability each calculation uses a Fermi-Dirac smearing function
with a temperature of 0.01 eV. The reasoning behind these choices will be detailed in the
next section.

Averaging the different ∆i
WIEN2k (figure 7.10) we obtain AIMPRO’s overall ∆WIEN2k =

2.245 meV/atom. Initially, it would appear that this value is higher than the 1 meV/atom
(or 2 meV/atom) discussed in the previous section and for some elements the individ-
ual ∆i also appear to be high. However, recall that the calculations performed with
AIMPRO use Krack pseudopotentials, which as discussed previously adds pseudization er-
rors. Comparing our ∆-value with that of ABINIT, where the results are well converged,
for the same group of elements (and respective pseudopotentials) we find that ABINIT
∆WIEN2k = 2.112 meV/atom, which is very close to ours. Furthermore comparing indi-
vidual ∆i

WIEN2k from both codes, figure 7.9, we find that for the most elements AIMPRO’s
∆i

WIEN2k curve follows that of ABINIT, particularly the region of high ∆i
WIEN2k. Thus it

is likely that great part of AIMPRO’s ∆WIEN2k is mostly due to the use of pseudopotentials.
It is important to stress at this point, that ABINIT’s ∆ calculations were performed with
an plane wave energy cut-off of 250 Ry, an atypically high value. So that the ABINIT
points in figure 7.9 correspond to very accurate (and computationally expensive) plane
wave calculations.

As we will see below the flexibility of the benchmark, however, allows us to properly
assess the accuracy of our methodology as well.

7.4.3 ∆-value with respect to systematic basis sets

To understand the nature of our standard ∆-value (i.e. whether it is dominated by
pseudization error, basis set error or something else entirely) we can approximately break
down the intrinsic errors, considered by the ∆-benchmark, into constituent parts. Let us
assume the following relation for AIMPRO’s ∆-value (it would work similarly for any code,
but for simplicity let us use AIMPRO),

∆WIEN2k = f(pp,bs,numerical) (7.8)

where pp is as the error associated with using a pseudopotential, bs is the error asso-
ciated with basis sets (in our case GTOs) and the numerical term contains any numerical
errors not associated with the previous two terms. If instead of an all-electron method
we perform AIMPRO’s ∆-test with respect to a KSDFT code with systematic convergence,
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say ABINIT, using the same pseudopotentials, we can then rewrite equation 7.8 as,

∆ABINIT = f(numerical,bs) (7.9)

this is a reasonable assumption since specifying a pseudopotential and the exchange-
correlation defines the KS Hamiltonian and we would expect two well-converged codes
to yield similar results. Any error resulting from a pseudopotential would be related to
how the pseudopotential is implemented and thus not pseudization error, it would instead
be part of the numerical term. We must have the pp term be 0. Furthermore assuming
that the plane wave calculations have been converged with respect to ecut we can assume
that most of the bs error is due to AIMPRO’s use of GTOs. Having homogeneity in the
calculation settings between AIMPRO’s and that of the new reference code – such as k-point
sampling method and grid, smearing function and temperature, etc... – ensures that the
errors due to the numerical term are minimized (with respect to the reference code) for
different calculation settings. Numerical errors can be further minimized by ensuring that
other code specific calculation settings are set to very accurate values, doing so one could
further approximate equation 7.9 as,

∆ABINIT ≈ f(bs) (7.10)

where the ∆-value (calculated with the reference code described above) is now a good
estimate of the error associated with the basis sets and filtration methodology, and by
virtue of the comprehensive nature of the ∆-benchmark the best single assessment of our
method.

It must be noted that assessing AIMPRO’s methodology error, as described here, can
not be done by subtracting its standard ∆WIEN2k from the standard ABINIT ∆WIEN2k in
the following manner,

AIMPRO∆ABINIT 6= AIMPRO∆WIEN2k − ABINIT∆WIEN2k (7.11)

given that the ∆-benchmark uses a r.m.s method to construct the individual ∆i.

7.4.3.1 Drawback of using just the standard ∆-test

A potential hidden danger, particularly with regards to non-systematic type basis sets
(for this discussion, GTOs) can arise if only the standard ∆-test is used as figure 7.6
illustrates.

Let us assume that we have found a particular EOS with a GTO which we label
Ebs1(V ), in addition assume that we have calculated in a like-to-like calculation for the
same structure, as described above, another EOS Ebs2(V ) using a well converged plane

121



wave code. Even if we find the standard bs1∆i
WIEN2k ≈ bs2∆i

WIEN2k this does not imply
Ebs1(V ) ≈ Ebs2(V ) as figure 7.6 illustrates. Both areas (salmon and light blue) in 7.6 have
a similar size which would be indicative of similar standard ∆i however the predicted equi-
librium volumes are different. Furthermore bs1∆i

bs2, which as discussed above indicates
the GTO error, is higher than their individual ∆i

WIEN2k. Thus the standard ∆-test is in
fact a misrepresentation of the true GTO error. Other constructions of hypothetical EOS
can be performed which highlight the same scenario only now B0 and B1 are changed lead
to the same conclusion. This ambiguity can lead to erroneous conclusions regarding the
quality of a basis set if only the standard ∆-test is used. However this can be eliminated
by a more exhaustive application of the ∆-formalism as we demonstrated in section 7.4.3.

4

𝐸𝑎𝑒(𝑉) 𝐸'()(𝑉)𝐸'(*(𝑉)

Volume

En
er
gy

Figure 7.6: Illustration of a possible pitfall to the uniformed usage of the ∆-benchmark.
In this figure Ebs1(V ) represents the EOS resulting from well converged calculations which
uses pseudopotentials, Eae is the EOS calculated by an all-electron code and let Ebs2 be
another EOS calculated by a different code using the same pseudopotential as Ebs1. Using
the standard ∆ test one finds that the blue area and the red area, and therefore the
resulting ∆i, are similar. However Ebs1 6≈ Ebs2.

7.4.3.2 AIMPRO ∆ABINIT

It follows from the two previous sections, that using well converged EOS obtained from
ABINIT and performing the ∆-test with respect to them is a more accurate assessment
of our methodology than just a standard all-electron comparison.

The reasoning for our choice of calculation settings in section 7.4.2 is now clear, we
intended for the respective EOS to be used in a like-to-like comparison with ABINIT.
The settings used by ABINIT can be found in the supplementary material available in
[1], they are the same as the ones used with AIMPRO. We can then just use ABINIT’s
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published EOS parameters (available in [1]) to perform the analysis described in section
7.4.3. Doing so we find that AIMPRO ∆ABINIT = 0.401 meV/atom an excellent result.
Furthermore the individual ∆i

ABINIT are plotted in figure 7.11, which are, also, all excellent
results (note the different scale on the vertical axes when compared with fig. 7.9). From
these result it follows, according to the ∆-benchmark, that the filtration methodology
implemented in AIMPRO generates results which are practically indistinguishable from
similar well converged plane wave results, in a much shorter time scale.

7.5 Precision of the filtration methodology

Similar to the analysis presented above which lead to a measure of the precision of all-
electron codes, we can perform a comparison using the ∆-benchmark between codes that
use a chosen pseudopotential, in our case semicore Krack pseudopotential [39]. This sort
of comparison should improve the accuracy of the approximation made in (7.10) i.e. that
performing AIMPRPO’s ∆ with respect to a systematic basis set reference, gives a good
indication of the basis set error.

As before we should expect ∆code < 1 meV/atom among the different codes, given
that we are just making a code-to-code comparison. In this instance not all codes will
necessarily have the same calculation settings. Using the results posted online [1], we
can extract a set of 29 elements for which calculations were performed using the same
Krack pseudopotentials for two different codes ABINIT and BigDFT. BigDFT [24] uses
wavelets and, like ABINIT, offers systematic convergence with respect to basis sets. Its
standard ∆-test is calculated using a mixture of Krack pseudopotentials (29 elements)
and in-house developed pseudopotentials. However for the purposes of our discussion we
are only interested in results using Krack pseudopotentials.

Table 7.2 contains the ∆code for AIMPRO, ABINIT and BigDFT calculated with re-
spect to each other. We find, as we expected, that all ∆code are less than 1 meV/atom.
Therefore, according to the standards set by Lejeghaere [3] indicates practically indis-
tinguishable EOS and we find, as before, that very accurate AIMPRO calculations using
filtration (performed with the highest basis-ecut permissable) have an accuracy comparable
to that of systematic basis sets.

7.5.1 Analysis of individual ∆i

Plotting the elemental ∆i
code, figure 7.7, obtained from the calculations involved in con-

structing table 7.2, we can observe one of the drawbacks, highlighted in section 7.4.3,
of the standard ∆ test. The elements Ti, V, Fe and Co all present an unusual high
BigDFT ∆i

code with respect to both ABINIT and AIMPRO. Note that for most of the other

123



BigDFT AIMPRO ABINIT
BigDFT 0.878 0.689

AIMPRO 0.878 0.260
ABINIT 0.689 0.260

Table 7.2: Comparison between ABINIT, AIMPRO and BigDFT, using the ∆ formalism,
for a set of elements that use the same Krack pseudopotentials. The values show in
this table have units of eV/atom. For ABINIT and BigDFT their EOS parameters are
available in the comparison website [1]. The details pertaining to each calculation can be
found in the supplementary materials in [1].

elements the individual ∆i
code are almost always within 1 meV/atom of each other. The

discrepancy for those 4 elements most likely indicates a problem with the calculation for
these particular elements with BigDFT. Indeed, consulting the supplementary materials
regarding BigDFT ∆-value calculation (available in [1]) we find that the temperature used
in their calculation differs from ABINIT (and by construction AIMPRO). In addition for
some elements, Fe and Co in particular, the k-point grid used was smaller than that of the
corresponding calculations with AIMPRO and ABINIT. These discrepancies indicate a need
for ensuring that all the calculations submitted to the comparison website are converged
with respect to any code parameters, and ideally should use similar k-point meshes or
smearing functions. Similarly a precision test such as the one performed above should be
done and individual ∆i checked to ensure that there are no underlying apparent sources
of numerical errors which could be corrected by a more exhaustive application of the for-
malism. Although calculation settings are suggested in the original paper [6] I believe, as
the analysis above shows, that this is not enforced strictly. However, the reasons for this
particularly discrepancy are not fundamentally important for this discussion as opposed
to the resulting conclusions.

The pertinent point regarding figure 7.7 with respect to the standard ∆-test becomes
apparent when one observes the ∆i

WIEN2k for these particular elements. In table 7.3 the
standard ∆i

WIEN2k obtained, for all the elements with high ∆i
code in figure 7.7 are shown.

Let us take Cobalt (Co) as an example, from the application of the standard ∆-test

BigDFT ABINIT AIMPRO
Ti 2.595 0.590 0.662
V 3.956 0.892 0.955
Fe 2.666 5.148 6.017
Co 2.689 2.682 2.849

Table 7.3: Standard ∆i
WIEN2k (meV/atom) for the elements with the highest error in

figure 7.7.

(comparison with all-electron codes) one could deduce that BigDFT ∆Co
WIEN2k is compa-
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Figure 7.7: Individual ∆iWIEN2k for a set of 30 elements calculated by AIMPRO,
ABINIT and BigDFT using Krack pseudopotentials. The individual EOS parameters for
ABINIT and BigDFT can be found in [1].

rable to that of ABINIT (or AIMPRO), table 7.3, and thus conclude that as far as the
benchmark is concerned, whatever parameters or basis sets one used for Co are justified.
However performing the ∆-test with respect to another code which uses the same pseu-
dopotential and provides very accurate results, table 7.4, disagrees with that assessment.
As discussed in section 7.4.3 the ∆i

code obtained by comparing like-to-like calculation
should provide a more accurate assessment of calculations involving pseudopotentials,
such as the present Cobalt one, unlike the all-electron comparison. Indeed comparing
the values shown in red (which involve a BigDFT calculation) and those shown in green
(involve only ABINIT and/or AIMPRO) in both tables 7.3 and 7.4, we see evidence of the
problems highlighted in section 7.4.3.1. That is, BigDFT ∆Co

code calculated with respect to
both AIMPRO and ABINIT (red values in table 7.4) are much higher than AIMPRO ∆Co

ABINIT

(green value in table 7.4), however we have from table 7.7,

AIMPRO∆Co
WIEN2k ≈ ABINIT∆Co

WIEN2k ≈ BigDFT∆Co
WIEN2k (7.12)

which is ambiguous. This becomes even more apparent when we plot Cobalt’s EOS
calculated with the different codes, fig. 7.8.

BigDFT w.r.t. ABINIT BigDFT w.r.t. AIMPRO AIMPRO w.r.t. ABINIT
Co 5.392 5.565 0.177

Table 7.4: Calculated ∆i
code for Cobalt comparing codes which use Krack pseudopoten-

tial.
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the calculations performed using the last 3 codes referenced above, the same pseudopo-
tentials were used. Each Birch-Murnaghan has been modified such that the minimum
energy is set to zero.

In figure 7.8 we see that, for Co, both AIMPRO and ABINIT yield similar EOS thus we
would be justified in presenting and drawing any conclusions from their respective stan-
dard ∆i. Whilst the EOS calculated by BigDFT differs from both however, fortuitously,
it predicts just enough of an erroneous volume as to yield an acceptable standard ∆i.

When one considers BigDFT, or any code with systematic convergence, the disparity
between the standard ∆-test and that of a like-to-like comparison most likely indicates
an unconverged calculation or different calculation settings, which does not point to any
particular fault within the code, but nevertheless confusing and unnecessary. If instead
we were using GTOs such disparities could be caused by a bad basis set and — if we are
not careful with the application of the ∆-formalism — lead us to accept an otherwise un-
acceptable basis set. It is in such cases, like ours, were a ∆-value calculated with respect
to a well converged like-to-like calculation becomes imperative, or more so several such
comparisons like in the precision test above.

This analysis lends further credence to our assessment regarding filtration high accu-
racy. Not only have we demonstrated that AIMPRO’s (using filtration and our basis set)
standard ∆-value is close to that of ABINIT’s and dominated mostly by pseudopotential
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error, but in addition comparison between AIMPRO and different systematic implementa-
tions yield almost indistinguishable results.

7.6 Elements which required variation in the filtra-
tion parameters

The work presented thus far used the same internal settings which control the filtration
step, such as the temperature which controls the fictitious Fermi-Dirac function. It is
remarkable that so much of the periodic table – in our case 66 elements out of the original
70 for which there are pseudopotentials – yielded good ∆i values with the only varying
parameter, with regards to filtration, being basis ecut. However out of the 70 elements
for which we generated a basis set the heavy atoms Ir, Tl, Pb and Hg incurred some
instabilities which resulted in failures in the filtration calculation. The primary reason
for this stems from the process of choosing the correct Fermi energy for the Fermi-Dirac
filtration function. Particularly for heavier atoms where the “l + 1” policy leads to the
inclusion of functions with an angular momentum value of g. Such functions might not be
present at the atomic level with a low Fermi level energy Fermi-Dirac function. This leads
to instabilities if one tries to generate a filtered (contracted) function with “g” angular
momentum, given their absence from the available functions to filter from. See section
6.3.3.1 and figure 6.2.

Indeed manually tweaking the Fermi energy upwards, i.e.increasing µ (section 6.3.3.1),
removes this class of problems. For example, considering Hg and increasing the Fermi
level energy we obtain, with basis-ecut=50 eV, a ∆Hg

ABINIT = 0.936 meV/atom. Before, the
calculation ran with instabilities only for a basis-ecut < 10.0 eV.

In addition to the type of instabilities referenced above, for some elements with low
first exponent (i.e. α) the filtered basis KSDFT calculation can fail due to ill conditioned
matrices (discussed in chapter 5 but with respect to primitive basis). As before, this type
of instability manifests itself more often on heavier atoms where g angular momentum
functions might be used (potentially adding instability on top of that which arises out
of the correct setting of the Fermi energy value). For instance Ir has α ≈ 0.050, Pb
has α ≈ 0.046 and Tl has α ≈ 0.033. Calculations for the aforementioned elements
failed even for small basis-ecut. A potential solution will be discussed in the future works,
however we have found that this class of problems can be overcome with a careful choice
of trial functions. Typically increasing the α used to generate the trial functions to a
value higher than that present in the primitive set whilst at the same time increasing
the Fermi energy, to account for the type of instability discussed above, removes this
type of problem. Following this we Increased Ir’s α to 0.13, Pb’s α to 0.38 and Tl’s
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α to 0.390 (for functions in the trial basis with“f” and “g” angular momentum). In
addition the Fermi energy was manually increased. The calculations performed with
these settings yielded ∆Ir

ABINIT = 0.123 meV/atom, ∆Pb
ABINIT = 0.047 meV/atom and

∆T l
ABINIT = 0.594 meV/atom, all excellent values.

Due to our, self-imposed, requirement for a systematic setting of filtration parameters
we decided to discuss these 4 elements (Hg, Pb, Ir and Tl) separately and provide both
a discussion on the difficulties encountered with filtration and potential solutions. More
on this will be discussed in the future work section. On a side note it is important to
note that the ∆i benchmark package does not call for all the elements to be included in
the overall ∆-value calculation and some codes miss out some elements for undisclosed
reasons. In this work we have presented filtration ∆i values for all possible elements, 66 of
which had systematic filtration settings (basis-ecut will undoubtedly change depending on
the type element and system.) and 4 of which required a small manual shift of parameters.

Having discussed some failures due to instability we can address Cl, an element for
which our calculations were stable but we have a ∆Cl

ABINIT = 2.7 meV/atom. This value,
although acceptable according to [3], is an outlier when compared with other elemental
∆i.This value is well converged with a basis-ecut = 400 eV and thus it does not suffer from
the instabilities described in the previous paragraphs, however it is indirectly related to it.
Using an uncontracted basis set, constructed as described in the previous chapter but with
an angular momentum value two above the highest filled orbital in the atom we obtain
a ∆Cl

ABINIT = 0.536 meV/atom with a basis-ecut of 100 eV, an excellent result this time.
Similarly for other atoms the uncontracted basis set could be constructed with an angular
momentum that is two above its highest filled atomic orbital and we would expect smaller
∆i, however in practice more elements would develop instabilities due to the difficulty in
choosing the respective Fermi energy level (discussed above) arising from the inclusion of
even higher lying angular momentum functions. In addition such inclusion would lead to
an heavier computational load arising in the filtration step. A more thorough discussion
on this will also be included in the future work section.

7.7 Conclusion

It has been demonstrated elsewhere [5, 16] that filtration can considerably speed up lo-
calised basis sets calculations. However, an added benefit of contracting the basis set
in situ and in vivo is the possibility of using large uncontracted primitive basis sets and
attain plane wave accuracy in a systematic manner using GTOs. It was demonstrated in
this chapter, using a modern state-of-the-art benchmark package, that for a wide range of
elements with different structures we were able to produce results which are practically in-
distinguishable from like-to-like calculations using a plane wave implementation ABINIT.
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Doing so we found that AIMPRO’s ∆ABINIT = 0.401 meV/atom, an excellent result which
indicates that AIMPRO’s calculation were practically identical to the respective plane waves
ones. Furthermore, it is important to note that ABINIT’s results were calculated with
an ecut of 250 Ry, which is an uncommon large value considering typical calculations. In
addition performing AIMPRO’s ∆ test with respect to like-to-like plane wave calculations
revealed that most of our standard ∆WIEN2k = 2.245 meV/atom resulted from the use of
pseudopotentials.

A further and more exhaustive precision test where we compared ∆i for a smaller
subset of elements among three different codes (AIMPRO being one of them) which all used
the same pseudopotentials lead to similar conclusions regarding the accuracy of filtration.
This result also strengthened our assumption that performing the ∆-test with respect to
systematic basis sets was a good assessment of our primitive basis sets and filtration.

In conclusion the filtration methodology coupled with the large uncontracted primitive
basis set presented in this thesis has indeed allowed us to perform very accurate calcu-
lations using GTO’s. Such basis sets are too large to be considered in regular AIMPRO

calculations. This has enabled calculations to be converged across the whole periodic
table, the first time this has been achieved with AIMPRO.

129



 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

 
 H

  H
e 

 
 L

i  B
e 

 
 B

  C
 

 
 N

  O
 

  F
  N

e 
 

 N
a  M

g
   A

l  S
i 

  P
  S

 
 

 C
l  A

r 
 

 K
  C

a 
 

 S
c 
 T

i 
 

 V
  C

r 
 

 M
n

  F
e 

 
 C

o
  N

i 
 

 C
u

  Z
n

 
 

 G
a  G

e 
 

 A
s  S

e 
 

 B
r  K

r 
 

 R
b

  S
r 

 
 Y

  Z
r 

 
 N

b
  M

o
   T

c  R
u

 
 

 R
h

  P
d

 
 

 A
g

  C
d

 
 

 I
n

  S
n

 
 

 S
b

  T
e 

  I
  X

e 
 

 C
s  B

a 
 

 H
f  T

a 
 

 W
  R

e 
 

 O
s  P

t 
 

 A
u

  B
i 

 
 P

o
  R

n
 

Energies (meV/atom)

 
 E

le
m

en
ts

’A
B

IN
IT

’
’A

IM
P

R
O

’

F
ig

ur
e

7.
9:

Pl
ot

of
in

di
vi

du
al

∆
i W

IE
N

2k
ca

lc
ul

at
ed

w
ith

A
BI

N
IT

an
d

AI
MP

RO
fo

r
th

e
66

el
em

en
ts

w
hi

ch
ha

ve
a

K
ra

ck
ps

eu
do

po
te

nt
ia

l,
se

m
i-c

or
e

if
av

ai
la

bl
e.

T
he

pa
ra

m
et

er
s

w
hi

ch
sp

ec
ify

th
e

di
ffe

re
nt

EO
S

ca
lc

ul
at

ed
by

A
BI

N
IT

ca
n

be
fo

un
d

in
[1

].

130



H
He

0.
12

5
0.
70

3

40
0

40
0

Li
Be

B
C

N
O

F
Ne

0.
01

2
0.
41

7
0.
94

3
0.
19

9
0.
58

8
2.
63

3
1.
80

7
0.
02

4

20
0

40
0

20
0

40
0

40
0

40
0

40
0

40
0

Na
M
g

Al
Si

P
S

Cl
Ar

0.
41

5
0.
01

9
0.
44

3
1.
58

4
1.
81

4
1.
66

6
0.
18

3
0.
00

2

20
40

10
0

10
0

40
0

40
0

40
0

40
0

K
Ca

Sc
Ti

V
Cr

M
n

Fe
Co

Ni
Cu

Zn
Ga

Ge
As

Se
Br

Kr

0.
07

8
0.
21

7
0.
13

6
0.
66

2
0.
95

5
13

.9
17

15
.6
59

6.
01

7
2.
84

9
1.
51

2
1.
29

6
0.
71

2
2.
77

6
1.
99

5
0.
16

4
0.
03

0.
34

7
0.
03

8

60
60

10
0

60
60

40
60

40
40

40
20

20
10

10
0

10
0

20
0

40
0

40
0

Rb
Sr

Y
Zr

Nb
M
o

Tc
Ru

Rh
Pd

Ag
Cd

In
Sn

Sb
Te

I
Xe

0.
11

1
0.
04

0.
42

2
0.
48

3
0.
72

4
2.
11

8
3.
68

5
3.
94

9
3.
79

8
2.
96

3.
90

1
2.
46

8
1.
49

1
2.
11

5
2.
76

3
1.
98

5
1.
54

8
0.
01

4

10
0

20
0

20
0

10
0

60
60

60
60

20
15

20
10

0
10

20
0

20
0

40
0

40
0

40
0

Cs
Ba

Hf
Ta

W
Re

O
s

Pt
Au

Bi
Po

Rn

0.
06

5
0.
49

5
1.
45

5.
70

7
9.
47

1
13

.5
89

12
.3
45

1.
98

9
2.
31

5
0.
69

8
0.
36

6
0.
08

2

40
0

10
0

10
0

60
30

20
30

30
30

60
60

40
0

F
ig

ur
e

7.
10

:
T

he
st

an
da

rd
∆
i

ob
ta

in
ed

fro
m

ca
lc

ul
at

in
g

th
e

EO
S

fo
r

th
e

di
ffe

re
nt

el
em

en
ta

lc
ry

st
al

us
in

g
A

IM
PR

O
an

d
ap

pl
yi

ng
th

e
∆

fo
rm

al
ism

.
A

s
be

fo
re

th
e

gr
ey

ba
ck

gr
ou

nd
in

di
ca

te
s

el
em

en
ts

w
hi

ch
re

qu
ire

d
a

sp
in

-p
ol

ar
iz

ed
ca

lc
ul

at
io

n.
T

he
fir

st
nu

m
be

r
in

ea
ch

el
em

en
t

bo
x

co
rr

es
po

nd
s

to
∆
i

in
(m

eV
/a

to
m

),
w

hi
lst

th
e

se
co

nd
en

tr
y

is
th

e
re

sp
ec

tiv
e

ba
sis

-e
cu
t

us
ed

.

131



 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5

 
 H

  H
e 

 
 L

i  B
e 

 
 B

  C
   N

  O
   F

  N
e 

 
 N

a  M
g

  
 A

l  S
i 

  P
  S

   C
l  A

r 
 

 K
  C

a 
 

 S
c  T

i 
 

 V
  C

r 
 

 M
n

 
 F

e 
 

 C
o

 
 N

i 
 

 C
u

 
 Z

n
  

 G
a  G

e 
 

 A
s  S

e 
 

 B
r  K

r 
 

 R
b

 
 S

r 
 

 Y
  Z

r 
 

 N
b

 
 M

o
  

 T
c  R

u
  

 R
h

 
 P

d
  

 A
g

 
 C

d
   I
n

  S
n

  
 S

b
 

 T
e 

  I
  X

e 
 

 C
s  B

a 
 

 H
f  T

a 
 

 W
 

 R
e 

 
 O

s  P
t 

 
 A

u
 

 B
i 
 

 P
o

 
 R

n
 

Energies (meV/atom)

 
 E

le
m

en
ts

F
ig

ur
e

7.
11

:
In

di
vi

du
al

A
IM

PR
O

∆
i A
B
I
N
I
T

fo
r

66
el

em
en

ts
w

hi
ch

ha
ve

a
K

ra
ck

ps
eu

do
po

te
nt

ia
l,

se
m

i-c
or

e
if

av
ai

la
bl

e.
T

he
pa

ra
m

et
er

s
w

hi
ch

sp
ec

ify
th

e
di

ffe
re

nt
EO

S
ca

lc
ul

at
ed

by
A

BI
N

IT
ca

n
be

fo
un

d
in

[1
].

132



H
He

0.
05

0
0.
69

5

40
0

40
0

Li
Be

B
C

N
O

F
Ne

0.
04

0
0.
41

7
0.
01

5
0.
33

5
0.
50

9
1.
31

2
0.
88

7
0.
18

7

20
0

40
0

20
0

40
0

40
0

40
0

40
0

40
0

Na
M
g

Al
Si

P
S

Cl
Ar

0.
16

3
1.
06

2
0.
03

1
0.
34

1
1.
32

9
1.
06

6
2.
73

8
0.
03

1

20
40

10
0

10
0

40
0

40
0

40
0

40
0

K
Ca

Sc
Ti

V
Cr

M
n

Fe
Co

Ni
Cu

Zn
Ga

Ge
As

Se
Br

Kr

0.
00

1
0.
11

1
0.
01

3
0.
07

2
0.
06

3
0.
30

3
0.
03

9
0.
87

8
0.
17

7
0.
26

6
1.
06

4
0.
13

4
1.
25

6
0.
04

5
0.
18

3
0.
15

4
0.
19

7
0.
01

7

60
60

10
0

60
60

40
60

40
40

40
20

20
10

10
0

10
0

20
0

40
0

40
0

Rb
Sr

Y
Zr

Nb
M
o

Tc
Ru

Rh
Pd

Ag
Cd

In
Sn

Sb
Te

I
Xe

0.
00

3
0.
12

4
0.
05

6
0.
15

1
0.
51

7
0.
24

8
1.
04

0
1.
20

6
1.
00

3
0.
82

9
0.
38

1
0.
07

9
0.
09

6
0.
01

4
0.
05

2
0.
16

9
0.
27

5
0.
00

7

10
0

20
0

20
0

10
0

60
60

60
60

20
15

20
10

0
10

20
0

20
0

40
0

40
0

40
0

Cs
Ba

Hf
Ta

W
Re

O
s

Pt
Au

Bi
Po

Rn

0.
01

9
0.
01

8
0.
02

2
0.
06

4
0.
16

7
3.
15

9
0.
29

8
0.
12

0
0.
26

7
0.
09

3
0.
05

8
0.
00

9

40
0

10
0

10
0

60
30

20
30

30
30

60
60

40
0

F
ig

ur
e

7.
12

:
AI

MP
RO

in
di

vi
du

al
∆
i A
B
I
N
I
T

ob
ta

in
ed

as
de

sc
rib

ed
in

se
ct

io
n

7.
4.

3.
T

he
fir

st
nu

m
be

r
in

ea
ch

el
em

en
t

bo
x

co
rr

es
po

nd
s

to
∆
i

in
(m

eV
/a

to
m

),
w

hi
lst

th
e

se
co

nd
en

tr
y

is
th

e
re

sp
ec

tiv
e

ba
sis

-e
cu
t

us
ed

.

133



El. V0 B0 B1

H 17.445 10.237 2.691
He 15.109 1.634 6.403
Li 20.223 13.860 3.305
B 7.223 234.338 3.421
Be 7.894 122.023 3.381
C 11.640 206.753 3.556
N 28.838 53.296 3.681
F 19.412 33.484 4.012
O 18.798 50.267 3.899
Na 37.724 7.413 3.862
P 21.350 68.097 4.224
Cl 38.927 18.441 4.379
S 17.094 83.081 4.069

Mg 22.936 36.089 4.044
Al 16.453 78.133 4.635
Si 20.367 87.018 5.099
Ar 52.371 0.742 7.327
K 73.599 3.595 3.817
Ca 42.249 17.466 3.416
Sc 24.631 54.474 3.450
Ti 17.417 111.704 3.624
V 13.475 182.452 3.956
Cr 12.185 133.928 7.219
Mn 12.004 119.266 6.187
Fe 11.486 172.527 8.036

El. V0 B0 B1

Co 10.919 211.086 5.009
Ni 10.921 198.719 5.252
Cu 11.993 141.520 4.840
Zn 15.224 75.702 5.164
Ga 20.574 47.432 5.115
Ge 24.075 57.603 4.762
As 22.578 68.588 4.211
Se 29.741 47.153 4.443
Kr 65.985 0.645 7.293
Br 39.376 22.507 4.851
Rb 91.054 2.796 3.756
Sr 54.510 11.326 4.704
Y 32.890 41.150 3.109
Sb 31.981 50.130 4.525
Nb 18.154 166.057 3.426
Te 35.179 44.717 4.724
Mo 15.823 259.633 4.456
Tc 14.493 300.755 4.405
Ru 13.821 312.033 4.778
Rh 14.108 256.700 5.225
Pd 15.392 165.945 5.566
Ag 18.043 89.099 5.765
Cd 22.878 44.639 6.868
In 27.650 36.230 5.331
Sn 37.096 34.135 4.720

El. V0 B0 B1

I 50.615 18.491 5.045
Xe 86.768 0.549 7.099
Cs 116.884 1.957 3.376
Ba 63.435 8.732 2.265
Hf 22.471 107.036 3.367
Zr 23.361 93.878 3.270
Ta 18.152 193.322 3.625
W 15.996 303.039 4.205
Re 14.791 345.449 3.692
Os 14.140 400.023 4.597
Ne 24.352 1.196 8.414
Pt 15.605 253.789 5.501
Au 17.897 143.327 6.001
Bi 36.982 42.602 4.554
Po 37.622 45.695 4.947
Rn 93.431 0.531 7.222

Table 7.5: The parameters which define the EOS for the 66 ground state crystals which are used
in our ∆ test. V0 is the equilibrium volume per atom (Å3

/atom), B0 the bulk module (GPa) and B1

the derivative of the bulk modulus.
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El. kpts
H 28× 28× 20
He 40× 40× 22
Li 38× 38× 38
Be 52× 52× 28
B 26× 26× 24
C 48× 48× 12
N 16× 16× 16
F 16× 28× 14
O 26× 24× 24
Na 22× 22× 22
P 30× 8× 22
Cl 12× 24× 12
S 38× 38× 38

Mg 36× 36× 20
Al 24× 24× 24
Si 32× 32× 32
Ar 16× 16× 16
K 20× 20× 20
Ca 18× 18× 18
Sc 34× 34× 20
Ti 40× 40× 22
V 34× 34× 34
Cr 36× 36× 36
Mn 28× 28× 28
Fe 36× 36× 36

El. kpts
Co 46× 46× 24
Ni 28× 28× 28
Cu 28× 28× 28
Zn 44× 44× 20
Ga 22× 12× 22
Ge 30× 30× 30
As 30× 30× 10
Se 26× 26× 20
Kr 16× 16× 16
Br 12× 24× 12
Rb 18× 18× 18
Sr 16× 16× 16
Y 32× 32× 18
Sb 26× 26× 8
Nb 30× 30× 30
Te 26× 26× 16
Mo 32× 32× 32
Tc 42× 42× 22
Ru 42× 42× 24
Rh 26× 26× 26
Pd 26× 26× 26
Ag 24× 24× 24
Cd 38× 38× 18
In 30× 30× 20
Sn 26× 26× 26

El. kpts
I 12× 22× 10

Xe 14× 14× 14
Cs 16× 16× 16
Ba 20× 20× 20
Hf 36× 36× 20
Zr 36× 36× 20
Ta 30× 30× 30
W 32× 32× 32
Re 42× 42× 22
Os 42× 42× 24
Ne 22× 22× 22
Pt 26× 26× 26
Au 24× 24× 24
Bi 26× 26× 8
Po 30× 30× 30
Rn 14× 14× 14

Table 7.6: The k-point mesh used to span the Brillouin zone for the individual ∆i calculations.
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Chapter 8
Defect formation energy

The study of defects such as vacancies using DFT is greatly improved by methods, such as
filtration, which can perform calculations more efficiently than regular DFT implementa-
tions, given that accurate calculations might require the use of very large simulation cells
to remove spurious defect-defect interactions [109, 110, 111]. In addition for comparisons
with experiments the results should be converged with respect to system size [110] which
adds yet more overhead to what is already a highly demanding calculation.

It is clear then that very accurate and fast KSDFT implementations, such as filtration,
can be a tremendous tool to study defects. Having established filtration as an accurate
method in the previous chapter here we demonstrate that the somewhat artificial def-
inition of the ∆-value comes across into real world application by calculating the ideal
vacancy formation energy for some elements and comparing it to well converged plane
wave results.

8.1 Constructing supercells

As detailed before in this thesis, periodic boundary conditions are well suited to repre-
sent a crystal. However, the introduction of defects in a calculation which uses periodic
boundary conditions results in a periodic repetition of defects. This can result in un-
wanted defect-defect interactions which could lead to some error in the prediction of
isolated defect formation energies when compared with experiment [112, 110]. Such er-
rors can be minimized by constructing a supercell where the unit lattice of the system
(without defect) is repeated periodically to construct a much larger cell (supercell) and
then the defect is then introduced in this supercell, as figure 8.1 shows. The reasoning
for this being that after a certain size of supercell is reached, the defects will be spaced
so far apart that the defect-defect interaction will be negligible.

When a comparison with respect to experimental values is to be performed the va-
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Unit	lattice Supercell

Repeat	unit	cellVacancy
Vacancy

Figure 8.1: To create a supercell the unit cell is appended multiple times in the the
x,y and z directions to form a supercell. The defect is then introduced in one of the
unit cells. Constructing increasing larger supercells will eventually minimize defect-defect
interactions to an acceptable level.

cancy calculation should then be converged with respect to the size of the supercell, which
is typically expressed by the number of atoms within it [113]. For instance, to calculate
the vacancy formation energies in Aluminum one particular study performed calculations
using supercells with up to 1372 atoms [112] to ensure convergence with respect to lat-
tice size. Similar calculations in a different study used supercells with the number of
Aluminium atoms in the range of 1000 - 10,000 [114]. In another study where the va-
cancy formation energy of Silicon was investigated, supercells with up to 1000 atoms were
considered [111]. In this study, however, we are only concerned with accuracy, that is a
theory vs theory comparison, and so a much smaller supercell can be used. There is no
need to minimize defect-defect interaction as we are not comparing with experiment.

8.2 Ideal vacancy calculations

In this work we will only consider vacancy formation energy (Ev), i.e. the energy required
to remove one atom from a supercell. This can be defined as [110],

Ev = EN−1 −
(
N − 1
N

)
EN (8.1)
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where EN is the total energy of the N atom supercell (without vacancy) and EN−1 is the
energy of the N − 1 atom supercell with the vacancy, that is the supercell where an atom
has been removed at any of the nuclear positions.

For a comparison with experiment the total energy of the supercell with the vacancy,
EN−1, should be calculated with relaxed atomic positions. However for the purposes of
theory to theory comparison we may perform the calculation without relaxing the atomic
positions in the vacancy supercell, if this is the case the energy obtained using equation 8.1
but without relaxing the atomic positions in the vacancy supercell is sometimes referred
to as unrelaxed or ideal vacancy formation energy [110]. In this chapter we will compare
like-to-like ideal vacancy formation energy calculations for C, Ge and Al using AIMPRO

with filtration against well converged ABINIT results. However, the ability to produce
very accurate relaxed structures with filtration has been previously demonstrated [5].

For the calculations presented here it is enough to sample the Brillouin zone using
only Γ-point for C and Ge, however for Al we will be using a 10× 10× 10 k-point grid for
reasons which will be explained in section 8.2.3. As before in this thesis the calculations
were performed using the filtration methodology with PBE [41], Krack pseudopotentials
[39] and using the uncontracted basis sets introduced in Chapter 5. No manual adjust-
ment was made to any of the filtration parameters for the calculations in this chapter.

8.2.1 Equilibrium lattice constant calculations

Before constructing the different supercells we calculated the lattice constants of the re-
spective unit cells using ABINIT, which we will report in this section. The conventional
lattice for both C and Ge is simple cubic with 8 atoms, whilst Al conventional lattice
is simple cubic with 4 atoms. For these calculations the k-point mesh and plane wave
ecut which resulted in well converged results (less than 1 meV/atom) are shown in table 8.1.

C Ge Al
ecut 80 60 100

k-point 6× 6× 6 6× 6× 6 26× 26× 26

Table 8.1: The k-point mesh size and respective ecut (Ha) which resulted in well con-
verged calculations and were subsequently used to find the equilibrium lattice constant.

We found the lattice constants by fitting an EOS (Birch-Murhagan) to energies cal-
culated at different volumes (E(V )) using the settings found in table 8.1, similar to what
is done in the ∆-benchmark. The calculated lattice constants are shown in table 8.2.
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C Ge Al
This work 3.573 5.775 4.039

PBE 3.575 5.769 4.019
Experimental 3.544 5.639 4.019

Table 8.2: Equilibrium lattice constants a0 (Å) for C (diamond), Ge(diamond) and Al
(fcc) unit cells. The PBE (theory) and experimental values were taken from [4].

The lattice constants generated with ABINIT using Krack pseudopotentials [39] and
PBE [41] differs only slightly from previous PBE calculations [4]. Regardless, given that
we will be comparing like-to-like ideal vacancy formation energy calculations, such small
differences will not affect the overall comparison and resulting discussion.

8.2.2 C and Ge un-relaxed ideal vacancy energy

Figure 8.2: A 64 atom supercell obtained from a 2 × 2 × 2 repetition of the 8 atom
conventional lattice. Both C and Ge supercell have this structure, with different lattice
constants and respective (scaled) atomic distances.

The supercell for C and Ge contains 64 atoms, figure 8.2, which is constructed from a
2× 2× 2 repetition of the 8 atom conventional lattice. Both Ev calculations (C and Ge)
we will be performed at the Γ point in the Brillouin zone.

For Ev calculations using ABINIT our tolerance for convergence with respect to plane
wave ecut is set at 0.01 eV (a similar tolerance is used in [110]), that is if

|Ei
v − Ei+1

v | < 0.01 eV (8.2)

where i and i+1 indicate successive and higher values of ecut our plane wave Ev calculation
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is taken to be converged. This tolerance will also serve as a guideline when AIMPRO’s Ev
results are compared with that of ABINIT’s.

For C and Ge we found that ecut = 120 Ha and ecut = 40 Ha, respectively, was enough
to provide a converged Ev with ABINIT, these values yielded the Ev shown in table 8.3.
It should be noted that both plane wave cut-offs used to produce these results are large
compared to values used in typical (i.e. non-∆-value) calculations.

For AIMPRO’s Ev calculations the results are shown in table 8.3, these were obtained
with a basis-ecut = 180 eV and basis-ecut = 80 eV, for C and Ge respectively.

ABINIT AIMPRO Difference
C 6.77390 6.76401 0.0099
Ge 1.00748 1.00677 0.0007

Table 8.3: Vacancy formation energies for C and Ge calculated using ABINIT and
AIMPRO in eV. The third row contains the difference of the previous two values (eV).

From table 8.3 we find that for both C and Ge the difference in calculated Ev between
ABINIT and AIMPRO was smaller than 0.01 eV, which is less than the tolerance used during
ABINIT’s ecut convergence stage. This indicates that filtration was able to produce an
ideal vacancy formation that is within the cut-off tolerance of a converged plane wave
result, thus we might take AIMPRO’s calculation to be as accurate as ABINIT’s.

8.2.3 Al un-relaxed ideal vacancy energy

Figure 8.3: The Aluminium supercell used in the vacancy formation energy calculation.

The Al supercell, figure 8.3 consist of 108 atoms a 3× 3× 3 repetition of the 4 atoms
conventional cell.
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For Aluminium – and similarly other metals – it is important to choose a reasonable
temperature to overcome instabilities that could arise during the self-consistent calcula-
tions without temperature smearing (Chapter 3) [113, 115]. Such considerations must
also be taken when performing vacancies formation energies calculation [116, 117]. For
the work presented here an electronic a Fermi-Dirac smearing function with an electronic
temperature of 0.05 eV was used in both ABINIT and AIMPRO. Previous research on Al
have found the vacancy formation energy calculations to be very sensitive with regards to
k-point sampling [118]. A 3× 3× 3 k-point mesh has been used in calculations supercell
of similar size [119, 119]. For the results presented here, Ev is calculated (in ABINIT and
AIMPRO) over a 10× 10× 10 k-point grid.

For ABINIT a plane wave cut-off of 100 Ha was found to produce a converged result,
table 8.4. For AIMPRO a basis-ecut of 60 eV was used to produced the result shown in table
8.4.

ABINIT AIMPRO Difference
Al 0.63932 0.645186 0.0059

Table 8.4: Vacancy formation energy (eV) for Al calculated using ABINIT and AIMPRO
using the same calculation settings. The difference between these two values is shown in
the third row.

Here too AIMPRO’s Ev is within 0.01 eV of ABINIT. This further demonstrates filtra-
tion ability to provide accurate results for real world applications. Note that here too the
plane wave ecut required to converge ABINIT’s result is high.

8.3 Conclusion

In this chapter ideal vacancy formation energies (Ev) for 3 different structures (with
varied electronic properties) were calculated with AIMPRO (using filtration) and compared
with well converged ABINIT results. We found that AIMPRO’s results when compared
with ABINIT are within typical tolerance values used to ensure convergence with respect
plane wave cut-off in vacancy formation energy calculations. This indicates, as before,
the possibility for highly accurate calculations using filtration.

Particularly with respect to the calculation of defects the results presented here, which
again show the potential gains in accuracy afforded by filtration, coupled with the large
scale efficiency demonstrated elsewhere [5, 16] show the great power of filtration to tackle
demanding calculations efficiently and accurately.

It must be noted that achieving results with the level of accuracy presented here
required very large plane wave cut-offs. Such values would be impractical for large scale
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calculations. However for AIMPRO this is routinely achievable. Essentially we are getting
plane wave accuracy at a cost of an efficient GTO implementation. Eventually, as it will
be discussed in the future work, we will aim to bring this cost further down. So that large
scale calculations could potentially be performed with an accuracy that is characteristic
of much smaller systems using plane waves.
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Chapter 9
Conclusions and future work

The aim of this work was to demonstrate the potential gains in accuracy that could be
obtained by using the filtration methodology in AIMPRO a GTO KSDFT code. Whereas
the gains in speed have been previously demonstrated [5], this work has shown for the
first time that calculations using filtration can be performed at plane wave like accuracy
for a comprehensive set of elements in the periodic table.

First, high quality uncontratcted GTO basis sets, for 70 elements of the periodic table,
were generated that yielded an atomic energy (for the respective pseudo-atom) to within
1 meV of the complete basis set limit. In addition these basis sets were generated with
properties that made them favourable for an efficient use within the filtration formalism.
Particularly, it was shown that our basis set generation routine found the highest α —
used to generate the uncontracted even-tempered primitives — for which our atomic tol-
erance was met. The gains in efficiency and stability which occur from this choice were
summarized therein.

An updated filtration methodology, to be used with the basis sets generated in this
work, was summarized. Essentially the methodology used here produces a new contracted
basis by performing on-site filtration. The parameters which govern this construction are
systematically chosen so that for the main results presented here only a single parameter
basis-ecut was changed across the different elements. Because of this, from the stand point
of a user, the quality of the basis sets is controlled using only one parameter the basis-ecut,
which controls the number of contracted functions to be used in the KSDFT calculation.

A recently developed benchmark [3] was used to assess AIMPRO’s quality, using the basis
sets presented here and filtration. In addition some examples were provided where appli-
cation of the standard ∆-test can lead to misjudging the quality of a particular atomic
calculation, and likely perturbing the resulting overall ∆-value as well. By performing
the comparison present in the benchmark with respect to like-to-like well converged plane
wave calculations (or other systematic codes), we demonstrated that such problems can
be resolved. Particularly, for the work shown in this thesis such a comparison resulted in a
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fair assessment of the filtration methodology and our newly developed basis set. We found
that AIMPRO’s ∆-value calculated with respect to ABINIT was 0.401 meV/atom, which is
typically taken to imply that AIMPRO’s calculations were indistinguishable from ABINIT.
It follows from this that our standard ∆WIEN2k = 2.245 meV/atom was mostly due to
pseudization error. This value compares well with ABINIT ∆WIEN2k = 2.1 meV/atom,
which required an atypically high plane wave cut-off of 250 Rydberg to reach such accu-
racy. Essentially demonstrating that with our new basis sets and filtration we are getting
very well converged plane wave accuracy at a cost of GTO. At the time of writing no other
GTO implementation has a ∆WIEN2k published in [1]. Making AIMPRO’s ∆WIEN2k = 2.245
meV/atom the first of its kind.

Unrelaxed vacancy formation energy calculations were performed for supercells of C,
Ge and Al. Here it was found that AIMPRO’s results were within the tolerance used to
ascertain convergence with respect to plane wave cut-off ecut for a plane wave implemen-
tation. This once more demonstrates that plane-wave-like accuracy is made possible by
our high quality basis set and filtration, only in this instance a real world class of prob-
lems were attempted, rather than just a benchmark. For ideal vacancy formation energies
reaching a convergence of 0.01 eV with respect to energy cut-off with plane waves required
high cut-off values which are computational demanding and would certainly not be used
in typical “production” calculations. This once more demonstrates the many possibilities
of the current filtration methodology and our basis sets.

In short we have demonstrated that combining filtration with a high quality underpin-
ning basis set has resulted in plane wave accuracy at a much reduced computational cost.
With the added benefit, from a user’s point of view, that said accuracy can be obtained
systematically using the same GTO basis set.

9.1 Future work

This study has shown that filtration can perform calculations with plane wave accuracy at
a fraction of it’s computational cost. We hope that in the future filtration will be used to
tackle a great variety of problems, which would otherwise be computationally expensive
even at moderate accuracies.

Although a tremendous success, the current filtration methodology can be further im-
proved in both its accuracy and speed. Current AIMPRO development aims to handle basis
sets with h and i angular momentum values at little added cost when compared to the
implementation used in this work. Once this newer version of AIMPRO is available the
uncontracted primitives can be generated with an angular momentum value 2 (or even 3)
above the respective highest angular momentum value present in the atom. This would
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enormously reduce any residual error associated with the primitive basis set, a conclusion
that seems clear form the discussion of Cl in the previous chapter.

Once such basis sets begin to be used within filtration it is likely that the Fermi energy,
which controls the filtration function, will need to be systematically integrated with basis-
ecut to avoid instabilities during the filtered basis KSDFT calculation. Some work was
done in the previous chapter where the Fermi energy was manually tweaked and indeed
some types of instabilities for just 4 atoms were resolved in this manner. Furthermore for
primitive basis sets with very large angular momentum the lowest exponent of the trial
basis will probably need to be increased, particularly for trial functions with very large
angular momentum. Some work has also been done in this area during this project, which
should be revisited once the updated version of AIMPRO is available.

Whilst the discussion in this thesis is focused on attaining plane wave like accuracy,
originally filtration was introduced as a method to speed up the calculations considerably
whilst maintaining reasonable accuracy. However the speed factor can be reintroduced in
the current methodology whilst retaining the quality of the results presented here. This
will be accomplished by having multi step filtration, that is performing a second stage
filtration (or more) after the first one is performed within the same calculation. This will
likely hide the overhead that one incurs by dealing with such large primitive basis. Most
likely this will also help with the stability of the overall calculation.

As it was demonstrated here, most of AIMPRO’s standard ∆ value could be attributed
to the use of pseudopotentials. Given GTOs natural flexibility in handling harder pseu-
dopotentials, it stands to reason that if they are generated we could get AIMPRO’s ∆ to
be within the range obtained using all electron results. Such accuracy would most likely
be very expensive to attain with regular plane wave codes.

Finally, relativistic effects could be incorporated besides the averaged way in which
they are handled in pseudopotentials. This would contribute to an even lower standard
∆-value, and we would expect that the individual ∆i for heavier elements would benefit
significantly from this, and codes used to “define” a standard ∆ use approximations to
relativistic theory.

If these further developments are made, there is no reason why AIMPRO can not have
a standard ∆-value of 0-0.5 meV/atom together with an asymptotic speed similar to
tight-binding or semi-empirical quantum chemistry approaches. This would be a very
impressive end point to this investigation.
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H to Pu,” Phys. Rev. B, vol. 26, pp. 4199–4228, 1982.

[38] S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space Gaussian pseudopo-
tentials,” Phys. Rev. B, vol. 54, pp. 1703–1710, 1996.

[39] M. Krack, “Pseudopotentials for H to Kr optimized for gradient-corrected exchange-
correlation functionals,” Theor. Chem. Acc., vol. 114, no. 1, pp. 145–152, 2005.

[40] M. Rayson, “Rapid filtration algorithm to construct a minimal basis on the fly
from a primitive Gaussian basis,” Comput. Phys. Commun., vol. 181, no. 6, pp.
1051–1056, 2010.

148



[41] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, 1996.

[42] J. P. Perdew et al., “Atoms, molecules, solids, and surfaces: Applications of the
generalized gradient approximation for exchange and correlation,” Phys. Rev. B,
vol. 46, pp. 6671–6687, 1992.

[43] J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic
exchange energy: Generalized gradient approximation,” Phys. Rev. B, vol. 33, pp.
8800–8802, 1986.

[44] J. A. White and D. M. Bird, “Implementation of gradient-corrected exchange-
correlation potentials in Car-Parrinello total-energy calculations,” Phys. Rev. B,
vol. 50, pp. 4954–4957, 1994.

[45] A. Baldereschi, “Mean-value point in the Brillouin zone,” Phys. Rev. B, vol. 7, pp.
5212–5215, 1973.

[46] D. J. Chadi, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 16,
pp. 1746–1747, 1977.
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