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Abstract 

This study evaluates the feasibility of the use of satellite radar for dam deformation monitoring. 

Spaceborne Interferometric Synthetic Aperture Radar (InSAR) has long been used to monitor 

geohazards, including earthquakes, landslides, and volcanos. However, few studies have 

recently investigated its feasibility for localised deformation monitoring such as of earth dams. 

Here two case studies are presented of the monitoring of dams in Iraq. 

Mosul dam is one of the most dangerous dams in the world. Previous studies have reported that 

over a million human lives would be potentially at risk should dam failure occur. Therefore, 

investigation of its health using precise and continuous observations is crucial. This was 

achieved with two independent geodetic datasets from levelling and InSAR, and the results 

show continuous vertical displacements on the dam crest due to the dissolution of foundations. 

Vertical displacement rate estimates from levelling and InSAR for the period 2003-2010 are in 

good agreement, with a correlation of 0.93 and an RMSE of ± 1.7 mm. For the period 2014-

2017, the correlation is 0.95 and the RMSE is ± 0.9 mm. The movement of the dam was 

evaluated using settlement index which is not referring to critical instability of the dam. 

However, the spatial and temporal displacement anomalies emphasize that a careful monitoring 

and remedial work should continue.  The continuous displacement in the dam foundation could 

loosen the compaction of the embankment and result in internal erosion. 

In a separate study, Darbandikhan dam was monitored using a global positioning system (GPS), 

levelling, and Sentinel-1 data to evaluate its stability after the 2017 Mw 7.3 Sarpol-e Zahab 

earthquake. The large gradient of the dam’s displacements on its crest hindered the estimation 

of co-seismic displacements using medium-resolution SAR data. However, Sentinel-1 images 

were sufficient to examine the dam’s stability before and after the earthquake. The results show 

that the dam was stable between October 2014 and November 2017, but after the earthquake 

continuous subsidence on the dam crest occurred between November 2017 and March 2018. 

For the first time the stability of the Mosul and Darbandikhan dams has been assessed using an 

integration of InSAR and in-situ observations. Different types of deformations were recognized, 

which helped in interpreting the dam’s deformation mechanisms. 
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Chapter 1. Introduction 

1.1 Preamble 

Water dams are important elements of a country’s infrastructure, which is used to provide water 

for irrigation, domestic use, the manufacturing sector, power generation, and flood protection. 

However, dam failures can be catastrophic, resulting in loss of life and damage to property. 

Therefore, periodic investigation and monitoring during and after construction is crucial. 

Conventional monitoring approaches are becoming less widely used since they require 

intensive computational and field work in addition to the high cost and time consumed in 

carrying out the investigation (Biedermann 1997). This leads to less frequent monitoring of 

dams during their operational lives. The success achieved by utilizing imaging radar in 

monitoring large-scale geophysical deformations such as volcanos, earthquakes, mining 

systems, and landslides has motivated research into the use of imaging radar for infrastructure 

deformation monitoring. This thesis investigates the feasibility of using Interferometric 

Synthetic Aperture Radar (InSAR) for the monitoring of embankment dams, and the stability 

of two embankment dams in Iraq (Mosul and Darbandikhan) is evaluated. 

The Mosul dam is the largest dam in Iraq and has been classified as one of the most dangerous 

dams in the world (Al-Ansari et al., 2015). It was built over gypsum rocks that are soluble at 

high water pressure. Since the dam was built in the 1980s, its foundations have been grouted to 

fill the voids that may occur because of rock dissolution. However, the grouting work was 

paused after August 2014 due to political conflicts at the dam site. This led to a serious concern 

about the dam safety. Annunziato et al. (2016) showed that about six million people would be 

affected by the collapse of the dam and more than one million of these would be at risk of 

flooding under 2 m of water. In this thesis, multi-temporal Synthetic Aperture Radar (SAR) 

datasets and levelling data are used to evaluate the stability of the dam between 2003 and 2017. 

The second case study in this thesis concerns the Darbandikhan dam. This is also an 

embankment dam (rockfill) that was built in the 1950s in the north-east of Iraq. This dam was 

badly damaged by the large Sarpol-e Zahab earthquake which occurred in November 2017. 

Global Positioning System (GPS), levelling and Sentinel-1A/B data are integrated to estimate 

the dam’s movement before and after the earthquake. The location of the Mosul and 

Darbandikhan dams are shown in Figure 1.1.  
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Figure 1.1. Study areas. Note that the Mosul and Darbandikhan dam sites are indicated with dashed 

red boxes. 

1.2 Embankment dams 

Dams can be classified into four types (US Army Corps of Engineers, 2002): 1) arc dams have 

a concrete arc structure facing toward the water to increase the resistance force; 2) buttress 

dams are also concrete or masonry dams with supporting triangular walls built on the 

downstream side to prevent the dam from being moved by the hydraulic pressure; 3) gravity 

dams are also made from concrete, but gravity is the main force that keeps the dam stable; and 

4) embankment dams are constructed from natural materials which mainly include compacted 

soil (earthfill) and/or rocks (rockfill). The last one is the most common type (Johnston et al., 

1990; U.S. Department of the Interior, 2012). In this section, only embankment dams are 

described since both of the dams studied in this thesis are of this type. The design specifications 
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and materials used in the construction of these types are presented below. The brief introduction 

of the design and specification of each dam is crucial to understand the mechanisms of 

deformation of their embankments. 

1.2.1 Earthfill dams 

Depending on the design and construction material used, earthfill dams are divided into three 

types (U.S. Department of the Interior, 2012):  

• Diaphragm dam: This is constructed from sand, gravel or rocks with impermeable material 

placed on the upstream slope or in the centre of the dam (diaphragm) to prevent water from 

penetrating the dam body. The diaphragm is constructed from asphaltic, reinforced concrete, 

metal or compacted earthfill. 

• Homogeneous embankment: A homogeneous dam is composed of one type of 

impermeable material. The upstream and downstream slopes must be smooth to avoid 

sloughing when the reservoir is rapidly drawn down. This type of dam has witnessed 

improvements to prevent water seepage in the downstream slope when the water level is 

maintained for a long time. A permeable material is placed within the dam section to control 

the seepage. This material works as a drainage feature allowing for water seepage without 

causing internal erosion. 

• Zoned earthfill: This type of dam is the most common compared to other earthfill types 

(U.S. Department of the Interior, 2012). It is composed of an impermeable central core 

protected by transition zones in the upstream slope, and drains and filters in the downstream 

slope (Hunter and Fell, 2003). Additionally, an external strong surface, or shell can be 

placed between the slope and the core (U.S. Department of the Interior, 2012). The shell 

consists of gravel, rocks, cobbles or random fill.  This type of earthfill takes advantage of 

different materials placed in various zones to take the benefits of the properties of different 

materials. The transition zones protect the core from cracking and from erosion when a 

rapid drawdown is needed. Filters prevent sediments washing out from the central core and 

the penetration of water through any potential crack or pipe. The central zone consists of 

silts, sandy silts, clays, sandy clays, gravel clays or combinations of these materials. In 

seismic regions, the design of the filters and drains must take into consideration the potential 

occurrence of cracks, and thus their thickness should be appropriate. The Mosul dam which 

is studied in this thesis is of this type. 
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1.2.2 Rockfill dams 

A rockfill dam is preferable when the dam is constructed in a mountainous region where a 

sufficient amount of rocks is available. This type can overcome various construction problems 

such as difficulties in obtaining concrete, construction during wet weather or when the dam is 

expected to be removed in the future. Further advantageous factors include ability to conduct 

grouting even during construction, and resistance to seepage and uplift pressure. Rockfill dams 

are mainly constructed from rocks and an impermeable membrane while the foundations are 

constructed from earth, reinforced concrete or asphaltic concrete. There are three types of 

rockfill dams: central core, sloping core and upstream membrane. The first two types are 

collectively called internal membrane dams and they have advantages over the upstream 

membrane type because they are protected from external damage and weathering, a short 

grouting curtain, which is rows of holes used for grouting, is required, and the core can be 

grouted from the crest. Also, this type is preferable in poor foundation conditions, and extensive 

experience is not needed as with the upstream membrane type. In contrast, the upstream 

membrane dam is protected by an impermeable layer of concrete, steel or asphalt on the 

upstream slope. The advantages of this type include easier inspection and remedial works, the 

membrane can be constructed during or after dam construction, and the foundation can be 

grouted from the surface without affecting critical zones in the core. Also, large portions of the 

dam will be protected against water seepage, and the downstream slope can remain protected 

and inaccessible to water (U.S. Department of the Interior, 2012). The Darbandikhan dam, 

which is studied in Chapter 5 of this thesis, is a central core rockfill dam. 

This thesis focusses on embankment dams since it is the most common dam type (Gutiérrez et 

al., 2003; British Dam Society, 2017). Dams are subject to internal and/or external types of 

deformation which are principally caused by environmental problems, construction faults, the 

geological setting or fluctuation in the water contained in the reservoir. Serious problems in the 

foundations or the main body of the dam can develop rapidly, posing potential hazards to 

downstream residential areas in terms of mortality risks and property loss and damage (US 

Army Corps of Engineers, 2002). Thus, the choice of a suitable monitoring technique or the 

integration of various techniques to assess the risk of failure rapidly is important. 

1.3 InSAR dam monitoring 

More recent attention has focused on employing InSAR for localised deformation monitoring. 

In contrast to large-scale monitoring applications, monitoring earthfill dams using InSAR 

depends on the structure’s orientation, the number of SAR imagery, and the temporal and spatial 
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resolution of the images, as well as the processing procedure and parameters used. To date only 

a limited number of previous studies have examined the potential of InSAR for embankment 

dam monitoring (Wu et al., 2010; Honda et al., 2012; Voege et al., 2012; Wang and Perissin, 

2012; Lazecky et al., 2013; Tomás et al., 2013; Di Martire et al., 2014; Milillo et al., 2016b; 

Zhou et al., 2016; Emadali et al., 2017; Raventós and Marcos, 2017). These studies focus on 

embankment and concrete dams. Others have focused on examine the stability of slopes of 

dam’s reservoir rather than the dam itself, while few studies focus on horizontal rather than 

vertical displacement. The majority of these previous studies validated their results using 

deformation models or data on fluctuation in the water level of the dam reservoir. Limited 

studies have compared InSAR results with those from conventional monitoring techniques such 

as levelling, total stations and GPS (Honda et al., 2012; Voege et al., 2012; Tomás et al., 2013; 

Di Martire et al., 2014; Zhou et al., 2016; Emadali et al., 2017). The most significant of these 

studies are critically summurised below.  

An early example of research using InSAR for infrastructure deformation monitoring includes 

a study by Blom et al. (1999) who attempted to examine deformation at Lost Hills in California 

and the Aswan dam in Egypt. Although their study showed a very significant movement at Lost 

Hill, it did not reveal any movement in the Aswan dam. In terms of monitoring the stability of 

the dam’s reservoir slopes and correlation of stability with the reservoir water level,  Arjona et 

al. (2010) analysed two tracks of ERS and Envisat images, collected between 1992 and 2008 

to monitor the areas surrounding the Itois and Yesa reservoirs in Spain. The Coherent Pixel 

Technique (CPT) (Mora et al., 2003; Blanco-Sánchez et al., 2008) was used to derive the time 

series and mean linear velocity of the displacement. The validation of results was based on an 

analytical model relating water load to estimated displacement. The results showed a vertical 

movement of -8 cm during 12 years at Itios reservoir and -12 cm during 15 years at the Yesa 

dam. However, the low coherence of the deformation map hindered the ability to investigate 

the stability of the dam site (Arjona et al., 2010). The authors concluded that there was a good 

agreement between the theoretical analysis and the InSAR results. Another study conducted by 

Michoud et al. (2016) on the stability of the Argentina National Road 7.  The study used 47 

Envisat Advanced Synthetic Aperture Radar (ASAR) data acquired between 2005 and 2010, 

with 27 ascending images covering the period between January 2005 and February 2010 and 

20 descending images collected between September 2007 and January 2010. There were 

significant gaps in the acquisitions between 2006 and 2009. Although the study focused on the 

inspection of a highway, the results also showed the instability of the slopes of the Potrerillos 

reservoir whose lies along the road. The Small BAseline Subset (SBAS) DInSAR technique 
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was utilized using Norut GSAR software (Larsen et al., 2005). The study was initially 

conducted on a regional scale where no clear displacement signal was detected. Then only 

localized areas were processed, with different processing parameters used including the 

perpendicular and temporal baselines and coherence thresholds. The quality of the produced 

interferograms was inspected manually and only those with limited atmospheric effects were 

selected. The ascending data showed two unstable areas with velocities of -8 mm/year and up 

to -20 mm/year in the LOS direction. No significant movement over these areas was observed 

during 2007-2008 because only one acquisition was available during this period. Similarly, the 

descending data exhibited no significant movement over these areas because the direction of 

the platform movement was almost perpendicular to the line-of sight (LOS). However, the study 

focused on the stability of the main road, and there were gaps in data acquisitions, and also 

since the topography of the area was complex, the detection of displacement on the path of the 

road was difficult. Furthermore, two main landslides were detected on the boundary of the 

Potrerillos dam reservoir with a cumulative displacement of more than 25 mm between 2005 

and 2010. It was shown that the change of the displacement rate is correlated with the variation 

in the water level in the reservoir. The study recommended the utilization of regular data 

acquisitions and a high-resolution digital elevation model (DEM) to achieve a good accuracy 

in the measurement of displacement.  

The reservoir slopes of a dam located on Ebro River in Spain were inspected by Raventós and 

Marcos (2017) using 27 ascending and 29 descending images from Envisat ASAR spanning the 

period between 2003 and 2010 and 45 ascending images from Sentinel-1 spanning the period 

from 2015 to 2016. The permanent scatterers interferometry (PSI) (Ferretti et al., 2000)  and 

Quasi-InSAR (QPS) (Perissin and Ferretti, 2007) techniques were used to carry out time series 

analysis. It was shown that different parts of the reservoir exhibited different velocities, which 

decelerated between 2015 and 2016. 

Grenerczy and Wegmüller (2011) investigated the stability of an embankment dam of a waste 

reservoir in Ajka, Hungary, before its collapse on 4 October 2010. Thirty-five descending 

Envisat images collected between 2003 and 2008 were used to apply a linear regression to the 

wrapped PSI phases to separate short-wavelength atmospheric residuals. The standard deviation 

of the linear regression was employed to assess the quality of the estimation. The vertical 

displacement was derived by projecting the LOS displacements to the vertical using imaging 

geometry and the incidence angle, assuming that no horizontal movement was present. The 

collapsed part of the embankment showed a displacement of 1.2 cm/year between March 2003 
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and August 2008. The study discussed the possible causes of failure, where the displacement 

of the embankment was quite clear even years before the event.  

Wang et al. (2011) conducted a study at the Three Gorges dam in China using 40 Envisat images 

collected between August 2003 and April 2008. The construction of the dam was completed in 

2003 and thus it was not completely represented in the SRTM DEM. Thus an integration of PSI 

(Ferretti et al., 2000) and Quasi-InSAR (QPS) (Perissin and Ferretti, 2007) was performed to 

estimate the elevation and the displacement of the dam and the surrounding region. Initially the 

elevation of the area was estimated by QPS followed by PSI processing to find the cumulative 

displacements. The results showed that the dam was stable but that some parts of the 

surrounding area were moving at a rate of 10 mm/year along the LOS direction. The authors 

reported that the differences in the water level between the upstream and downstream sides of 

the dam were correlated with the magnitude of displacement. The Three Gorges dam was also 

investigated by Wang and Perissin (2012) using 60 COSMO-SkyMed (CSK) StripMap 

acquisitions from both the ascending and descending directions to examine the stability of the 

dam and its surrounding area. The PSI technique was employed using the SARPROZ software 

(Perissin et al., 2011). Although high resolution images were used, the data covered only six 

months which is not sufficient to detect seasonal nonlinear movements (Wang and Perissin, 

2012). As found by Wang et al. (2011), the deformation on the left river bank was obvious in 

both the ascending and descending datasets but the velocity was faster than the previous 

estimate.  

Milillo et al. (2016b) integrated five tracks with 198 images from TerraSAR-X (TSX), 

COSMO-SkyMed and ALOS covering the period between 2006 and 2015 to investigate the 

instability of the arc-gravity Pertusillo dam in Italy. The study focused mainly on the horizontal 

movement of the dam. Since it is arc-shaped, the sensitivity of InSAR to movement can vary 

for different parts of the dam. The study discussed the sensitivity of each dataset to the radial 

movement of the dam. Two temperature and hydrological models were used to validate the 

estimated horizontal displacements of the dam. Data from different platforms and acquisition 

tracks were used to cover the temporal gaps present in the individual tracks. The ALOS data 

did not show any movement over the dam because of the small numbers of images (13). Two 

deterministic models, Hydrostatic Seasonal Time (HST) and Hydrostatic Temperature Time 

(HTT) were employed to interpret horizontal oscillations in the movement of the dam crown. 

The results showed good agreement between the deterministic models and displacement 

magnitude with R2 = 0.92 and 0.89 for HTT and HST respectively. 
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Embankment dams have been also examined using a variety of radar data in terms of spatial 

resolution, temporal resolution and length of coverage. Lazecky et al. (2013) used 62 images 

from TerraSAR-X and 11 images from TanDEM-X collected between October 2008 and June 

2012 to monitor the Plover Cove dam in Hong Kong. This is an embankment dam built on the 

arm of the ocean to separate a reservoir from the ocean for the purpose of fresh water storage. 

Thus, both sides of the embankment are surrounded by water. Therefore, the study focused on 

crest movement only. The PS-InSAR timeseries analysis was carried out using SARPROZ 

software (Perissin et al., 2011) considering the separation of different displacement-induced 

components, including settlement, water level and temperature effects. The study showed a 

linear displacement of 4 mm/year in the whole dam body plus nonlinear movement in the range 

of 2-10 mm correlating with the variations in the water level in the reservoir. The effect of air 

temperature variation was also investigated, and the results showed that a variation of 22˚C in 

temperature could lead to a movement of 4 mm at any point in the dam. Additionally the dam 

crest on the reservoir side was subsiding at a rate of 1-2 mm/year faster than on the ocean side 

(Lazecký et al., 2015). These results supported the explanation given by  Hunter and Fell (2003) 

that the variation in the water level on the upstream side of the dam may lead to faster 

subsidence associated with the reductions in the water level which results in the strain on the 

upstream slope of the dam being reduced. 

A study carried out by Voege et al. (2012) on the Svartevann dam in south west Norway used 

76 ascending and 59 descending images from the European Remote Sensing (ERS-1 and -2) 

satellites, spanning the period 1992-2000. The study utilised the SBAS time series algorithm 

using GSAR software (Larsen et al., 2005) to estimate the mean linear velocity and the 

displacement time series for the dam. The results showed that the dam movement decelerated 

from 25 cm/year between 1976 and 1980 to only 3 mm/year between 1992 and 2000. The 

velocity during the period 1976-1980 was estimated from terrestrial surveying, four years after 

the dam’s construction was completed. 

Some authors have validated their results with in-situ measurements. Di Martire et al. (2014) 

investigated the deformation of the Conza dam in Italy by using CPT-DInSAR (Mora et al., 

2003). Fifty-one ascending Envisat images collected between 2002-2010 and processed with 

the SUBSOFT (CPT) software (Mora et al., 2003; Blanco-Sánchez et al., 2008) were used in 

the study. First the correlation of the settlement with the water level was discussed. The 

temporal and spatial baseline thresholds were 210 days and 250 m respectively. The results 

from InSAR were compared to measurements from six ground extensometer sensors and root 

mean square error (RMS) between the two techniques was found, with σ = 0.45 cm. The study 
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concluded that the behaver of the dam was normal given the absence of heterogeneities in dam 

movements. Tomás et al. (2013) performed a comprehensive study of La Pedrera dam in Spain 

using a collection of InSAR and conventional approaches. Levelling data collected in the 

gallery for five epochs between 1975 and 1980 were used for the validation of the results and 

to interpret the dam’s behaviour. The levelling observations showed a settlement in the gallery 

of more than 1 m between 1975 and 1980. The authors carried out a new levelling during 2011 

for only 14 new benchmarks in the middle part of the gallery. This new epoch showed a 

settlement of 47 cm between 1980 and 2011. However, the authors argued that the major part 

of this settlement occurred few years after 1980 due to consolidation. ERS, Envisat and 

TerraSAR-X data was used to monitor the dam’s surface for the period between 1995 and 2010.  

Time series analysis was carried out using CPT DInSAR in two steps. Initially the linear 

deformation was determined by fitting a model to the coherence pixels while the nonlinear 

movement was estimated using spatio-temporal filtering employing a spatial filter of 800 m and 

temporal filter of one year. The study was conducted with three different processing chains, 

taking different collections of datasets each time.  Firstly, ERS-1, ERS-2 and Envisat images 

between August 1995 and May 2010 were used. Secondly, ERS-2 and Envisat data between 

June 2008 and May 2010 were used. In the third processing chain, data from TerraSAR-X 

collected between July 2008 and June 2010 were utilised.  The images were multi-looked to 

generate images with a pixel size of 60×60 m for ERS and Envisat and 10×10 m for TerraSAR-

X. A DEM with a spatial resolution of 25 m was used in the CPT processing for all datasets. 

The analysis focused on the investigation of the crest and the stability inspection of the gallery. 

The results showed settlement of 13 cm between 1995 and 2010 and of 2 cm between 2008 and 

2010, which was much less than the gallery settlements. It was expected that most of the gallery 

settlement occurred during a few years after 1980 (before the availability of InSAR 

observations) and therefore it differed from settlement of the crest. 

Zhou et al. (2016) used 21 ALOS PALSAR images spanning the period from 28 February 2007 

to 11 March 2011 to monitor the Shuibuya dam in China, which is the highest rockfill dam in 

the world with a height of 233 m. The SBAS time series analysis showed a settlement rate of 

the dam crest of 10 cm/year (downwards) located at the dam centre. The study also used 

levelling data for eleven points on the dam’s downstream slope collected between June 2006 

and January 2014, while the dam was constructed between September 2001 and July 2008. The 

levelling data indicated a rapid settlement occurring during the first filling of the dam reservoir 

which continued with a slower velocity thereafter. The correlation between levelling data and 

InSAR velocity was found to be 0.93 with an RMSE of 1.75 cm/year. 
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Emadali et al. (2017) exploited high resolution spotlight SAR images from TSX collected 

between March 2014 and February 2015 to determine the rate of deformation at the Masjed-

Soleyman dam in Iran. The InSAR time series analysis was performed using the SBAS time 

series (Berardino et al., 2002) with the StaMPS software (Hooper, 2008). A comparison 

between GPS and SBAS velocities showed a correlation of 0.97 for all points on the dam 

surface, 0.95 for points on the crest and 0.99 for points on the downstream slope. The study 

found an obvious difference between the InSAR and terrestrial observation velocities in the 

transition region between the downstream and the crest, which reached 30 mm/year. The high 

gradient of displacement and the foreshortening factor in this area can be the reason of this 

difference (Emadali et al., 2017).  

Milillo et al. (2016a) investigated the instability of Mosul dam using Envisat data for the period 

2004-2010 and Sentinel-1 and COSMO-SkyMed data for the period 2014-2016. Horizontal and 

vertical movements were estimated using the imaging geometry and taking the average from 

ascending and descending datasets. The volume of dissolution was estimated using the Markov 

chain Monte Carlo technique and compared to the volume of the injected materials during 2004-

2012. The results showed that the continuous grouting between 2004 and 2010 kept the volume 

dissolution rate constant whereas it increased during 2014-2016 when the grouting work ceased. 

1.4 Terrestrial dam monitoring techniques 

Several terrestrial monitoring techniques have been used for investigations of dam instability 

(Sousa et al., 2014). GPS, photogrammetry, tiltmeters, laser scanning, levelling, theodolites, 

electronic distance measurement and total stations are among the common instruments which 

are used for in situ dam monitoring (US Army Corps of Engineers, 2002). In terms of the 

conventional techniques, Taşçi (2008) discussed the monitoring of the Altynkaya dam in 

Turkey using static GPS technique. The geodetic network of this dam consists of 6 reference 

points and 11 monitoring pillars. The network was observed four times over two years to 

investigate the correlation between water level and magnitude of deformation. Because of the 

limited accuracy of the vertical component of the GPS, the investigation was performed on 

horizontal movement only. The study demonstrated a correlation between the water level in the 

reservoir and the magnitude of deformation. It was shown that the monitoring pillars tended to 

move towards the upstream direction when the water level is decreasing and towards the 

downstream when the water level is rising. Kalkan et al. (2016) compared three geodetic 

monitoring techniques to monitor the stability of the Ataturk dam in Turkey: precise levelling, 

trigonometry and GPS. Thirty-two reference points were used to monitor 200 target points 
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installed on the dam surface. The monitoring was carried out between May 2006 and November 

2012. The work discussed the monitoring techniques used and the geodetic system in Turkey. 

The main three levelling lines on the dam crest were observed monthly, whereas the GPS and 

trigonometry observations were performed every 6 months between 2006 and 2008 and yearly 

thereafter. Three lines on the dam’s crest, which are named upstream, centre and downstream, 

were observed using the three geodetic methods. The RMS difference between GPS and 

differential levelling results was within 2.2 cm, while that between the trigonometric and 

differential levelling is 1.6 cm and GPS to trigonometric RMS is 1.6 cm. The study showed 

greater settlement in the upstream centreline of the crest than in the downstream line. 

The techniques used for dam monitoring can be selected according to the type of deformation 

and involved its temporal and spatial pattern. For example, GPS is effective for monitoring 

lateral movement; however, its performance for vertical movement can be limited. In addition, 

monitoring slow dam movement in a long-term timescale may not be easy. Traditional 

terrestrial monitoring instruments like total stations, levelling and laser scanners, are the most 

common approaches used in detecting dam instability. However, these can be uneconomical, 

time-consuming and require professional field experience. InSAR can potentially overcome 

these negative factors. 

1.5 Problem statement and thesis layout 

Several factors may threaten the stability and safety of dams. For example, karstification, water 

pressure, erosion, overtopping, water saturation and hydraulic gradients can impact on dam’s 

stability (Johnston et al., 1990). Thus, long-term and short-term investigations of dams are 

crucial. The early detection of signs of dam failure may help to allow remedial work to be 

carried out before the dam’s collapse. Conventional monitoring methods, particularly for very 

large dams, are becoming less attractive due to the extensive effort and computational work 

needed. As described in Section 1.3, recently InSAR has been used as an alternative technique 

for dam monitoring. Compared with the other techniques, radar imaging systems work in all 

weather conditions and 24 hours a day. InSAR has been used to study large-scale geophysical 

events, but its applications to dam monitoring can be affected by some factors which will be 

discussed in this thesis. Using InSAR to investigate the stability of infrastructure can involve a 

trade-off. On the one hand, processing SAR data for a small-scale area is preferable as this 

reduce processing time. On the other hand, detecting a complex pattern of movement in a local 

area is not an easy task, especially when the target has complex structural details in the lateral 

and vertical directions.  
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The overall aim of this thesis is to assess the feasibility of the use of InSAR for monitoring 

embankment dam deformation. Datasets from four platforms, namely Envisat, COSMO-

SkyMed, TerraSAR-X and Sentinel-1 are used. Integration with levelling data is carried out to 

monitor deformation on the Mosul dam in northern Iraq and with GPS and levelling data for 

the Darbandikhan dam in NE Iraq. There have been a limited number of historical studies 

investigating the feasibility of the use of InSAR for dam monitoring. 

This thesis attempts to answer the following research questions: 

1. To what extent can InSAR be used to monitor an earthfill dam’s deformation? How can 

vertical and horizontal displacement be determined using two or more SAR tracks? How 

accurate is the use of InSAR to measure dam deformation? 

2. How has the deformation of the Mosul dam developed over the dam surface and 

foundation? Is there any heterogeneity in the foundation displacements? 

3. How has the Mosul dam behaved before and after the suspension of grouting work in 

August 2014? 

4. How can different components of dam displacement be distinguished in order to 

determine the critical ones? 

5. How can terrestrial observations be integrated with SAR data to monitor rapid 

displacements in earthfill dams? How has the Darbandikhan dam behaved after the 

7.3Mw Sarpol-e Zahab earthquake? 

This was achieved in terms of the following objectives: 

1. To evaluate the stability of the Mosul dam using levelling and Envisat, TerraSAR-X, 

COSMO-SkyMed and Sentinel-1 data between 2003 and 2017. 

2. To assess the agreement between the results from InSAR and levelling techniques 

concerning displacements of the Mosul dam between 2003 and 2017 using 87 

monitoring benchmarks on the dam’s surface and 150 benchmarks on the foundation. 

3. To evaluate the behaviour of the Darbandikhan dam after the 7.3 Mw Sarpole Zahab 

earthquake using GPS, levelling and Sentinel-1 A/B data. 

This thesis is structured as follows. Chapter 1 presents the background, aims and objectives of 

this PhD study. Chapter 2 introduces the principles of Synthetic Aperture Radar (SAR) and 
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Interferometric SAR (InSAR), as well as the major error sources of InSAR. Chapter 3 describes 

the water system and dams in Iraq, focusing on the main embankment dams studied in this 

thesis and their problematic geological settings. Chapter 4 investigates the stability of the Mosul 

dam using InSAR and conventional techniques. The level of agreement between the results 

using conventional geodetic techniques and InSAR is also presented. Chapter 5 investigates the 

stability of the Darbandikhan dam after the 12 November 2017 7.3 Mw Sarpol-e Zahab 

earthquake on the Iraq-Iran boarder using GPS, levelling and Sentinel-1 data. Chapter 6 

summarises the PhD study and discusses future work to use spaceborne InSAR for dam 

monitoring. 
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Chapter 2. Principles of InSAR 

2.1 Introduction 

Synthetic aperture radar (SAR) is a microwave imaging technique based on the principles of 

the conventional radar (radio detection and ranging). Radar operates by transmitting short 

pulses of microwave energy into space and recording the signal backscattered from any objects 

encountered along the propagation path (Levanon, 1988). The returned echoes can be utilized 

to collect information about the target, such as its size, location, and velocity. Imaging radar 

operates according to a similar principle, having the ability to distinguish between individual 

objects. The capability to separate objects, or the imaging resolution, is partly dependent on the 

length of radar antenna. Given certain engineering and mathematical manoeuvres, an antenna 

with a suitable length can be synthesized to achieve an acceptable spatial resolution, and this is 

why it is known as Synthetic aperture radar (SAR) (Wiley, 1965). One further difference 

between the conventional radar and SAR systems is that the latter can be registered as a two-

dimensional matrix of complex numbers. These complex numbers can be utilized to derive 

valuable information about the earth surface.  

InSAR can be defined as the process of using multiple SAR images to determine small changes 

in elevation, at the level of centimetres or even higher accuracy, over a large area (Gabriel et 

al., 1989). InSAR dates back to the 1970s (Zisk, 1972; Bills and Ferrari, 1977; Gabriel et al., 

1989) and the first spaceborne SAR mission, SEASAT, was launched in 1978 to estimate ocean 

wave heights (Jordan, 1980). With increasing numbers of spaceborne radar missions, InSAR 

has developed rapidly over the last two decades. Imaging specifications in term of spatial and 

temporal resolution have improved significantly, which has led to wider applications of InSAR. 

InSAR applications have developed especially since 1991 when the European Space Agency’s 

ERS-1 was launched, followed by ERS-2 in 1995. The spaceborne InSAR has been successfully 

applied for topography mapping (Zebker et al., 1992; Ferretti et al., 1997b; Farr et al., 2007; 

Krieger et al., 2007; Liao et al., 2007; Wegmüller et al., 2009; Neelmeijer et al., 2017), 

subsidence estimation (Gabriel et al., 1989; Massonnet et al., 1994; Motagh et al., 2008; 

Motagh et al., 2017), volcano monitoring (Rosen et al., 1996; Beauducel et al., 2000; Remy et 

al., 2003; Spaans and Hooper, 2016), earthquake deformation (Gabriel et al., 1989; Massonnet 

et al., 1994; Motagh et al., 2010; Avallone et al., 2017; Polcari et al., 2017; Ganas et al., 2018), 

and lanslides assessment (Ferretti et al., 2005; Bozzano et al., 2011; Motagh et al., 2013; 

Singleton et al., 2014; Tomás et al., 2014; Dai et al., 2016; Darvishi et al., 2018). 
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This chapter focuses on the main aspects of spaceborne imaging radar. Initially, a brief 

introduction to the history of InSAR and its main applications is given. The principles of the 

synthetic aperture radar are discussed in section 2.2, followed by the principles of InSAR and 

sources of errors in section 2.3. The InSAR time series is discussed in section 2.4. 

2.2 Synthetic Aperture Radar (SAR) 

Imaging radar is a complex topic, but the general idea is not complicated. The operation starts 

with the transmission of a series of electromagnetic pulses with a specific pulse repetition 

frequency (PRF), and the amplitude and phase of the transmitted signal are known. Typical 

values of PRF range between 1 and 10 KHz (Bamler and Hartl, 1998). The backscattered echoes 

from targets on the ground represent successfully recorded echoes. If the transmitted signal is 

considered to be a function of time p(t), the signal returned by a target located x metres away 

from the platform antenna can be represented as follows (Ferretti, 2014):  

 
𝑠𝑟(𝑡) = 𝐴𝑐𝑜𝑠[2𝜋𝑓0(𝑡 − 𝜏)] = 𝐴𝑐𝑜𝑠 [2𝜋𝑓0𝑡 −

2𝜋

𝜆
2𝑥]

= 𝐴𝑐𝑜𝑠[2𝜋𝑓0𝑡 − 𝜙] 

(2.1) 

where τ = 2x/c refers to the two-way travel time of the backscattered signal, c is the speed of 

light, φ is the phase shift between the transmitted and received signals, λ and f0 are the 

wavelength and frequency of the radar signal respectively, and A is the attenuation factor since 

the backscattered amplitude is much smaller than that of the transmitted signal.  

Figure 2.1 shows how the returned signal phase is related to the distance between the sensor 

and the target. If the acquisition is repeated for the same area, the differences in the phase 

measurements can be converted into a displacement map of the targets and this is the basic 

concept of InSAR which is described in greater details in section 2.3. 
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Figure 2.1. Phase shift between transmitted and backscattered signals (Ferretti et al., 2007) 

2.2.1 SAR image formation 

SAR refers to the operation of the mathematical synthesis of a long radar antenna, exploiting 

the motion of the platform in the along-track direction, to achieve acceptable azimuth resolution 

(Wiley, 1965). The length of the synthesized antenna is proportional to the time of illumination 

of the surface objects. After a few steps of demodulation, sampling and conversion from 

analogue to digital form, the returned signal is converted into a matrix of complex numbers. 

Demodulation is carried out by applying two processing channels, I and Q which are illustrated 

in Figure 2.2 (Ferretti, 2014). Each channel involves two steps of demodulation and filtering. 

In channel I the signal is multiplied by the original carrier and then passed to a low-pass filter 

to remove the high-frequency part as follows (Ferretti, 2014):  

 𝑠𝑟(𝑡). 2 cos[2𝜋𝑓0𝑡] ⇒ 𝐴𝑐𝑜𝑠[2𝜋𝑓0(𝑡 − 𝜏)]. 2 cos[2𝜋𝑓0𝑡]

= 𝐴 cos[2𝜋𝑓0𝜏] + 𝐴 cos[4𝜋𝑓0𝑡 − 2𝜋𝑓0𝜏] 

(2.2) 

where f0 and λ are the carrier signal frequency and its wavelength respectively and τ is the time 

difference between the times of transmission and reception. 

In equation (2.2), the final term is merely double the frequency of the carrier and this can be 

removed by the low-pass filter as follows (Ferretti, 2014). 

 
𝑠𝑟(𝑡). 2 cos[2𝜋𝑓0𝑡] ⇒ 𝐴 𝑐𝑜𝑠[2𝜋𝑓0𝜏] = 𝐴 𝑐𝑜𝑠 (

4𝜋

𝜆
𝑥) = 𝐴 cos(𝜙) = 𝑖(𝑡) 

(2.3) 
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In channel Q, the signal is multiplied by the carrier with a 90˚ phase shift and a low-pass filter 

is similarly applied to yield (Ferretti, 2014):  

 
𝑠𝑟(𝑡). 2 sin[2𝜋𝑓0𝑡] ⇒ 𝐴 𝑠𝑖𝑛[2𝜋𝑓0𝜏] = 𝐴 sin (

4𝜋

𝜆
𝑥) = 𝐴 sin(𝜙) = 𝑞(𝑡) 

(2.4) 

where i(t) and q(t) are the two main components of the raw data recorded by the sensor used to 

generate the SAR image. In the following sections, several extra steps are discussed by which 

these two components can be converted into another form of information before the formation 

of the complex image. In this discussion, it is assumed that the transmitted and received signals 

are identical in frequency f0, and only the amplitude and phase vary. Thus, it will be easier to 

represent the backscattered signal as a complex number z:  

 𝑧 = 𝐴𝑒𝑗𝜙 , 𝑗 = √−1 (2.5) 

This complex number contain information about the amplitude and phase of the backscattered 

signal. The typical wavelengths used in SAR imaging systems range between 1 and 100 cm, 

corresponding to the Ka to P bands. In contrast to  optical imaging systems, SAR is applicable 

in all weather conditions due to its ability to propagate through clouds and rainwater drops and 

to operate in both the day and at night (Richards, 2009).  

 

Figure 2.2. Demodulation of the SAR signal by two channels I and Q adopted from (Ferretti, 2014) 

2.2.2 Image range resolution 

Generally, several objects may contribute to backscattered echoes. The time delay between the 

transmission and reception of the signal is a function of the distance between the sensor and the 

object on the ground. The ability to distinguish between two objects in the range direction 

depends on the pulse duration. In other words, no two objects can be distinguished from one 

another unless their distance is greater than the 2-way travel distance of the pulse duration Tp  

(Reigber, 2001):  
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 Δ𝑟 ≥  
𝑐

2
𝑇𝑝 (2.6) 

where Δr is the smallest distance between the two objects to be separated from each other on 

the image scene and c denotes the speed of light. For example, if Tp is 100 µs, the range 

resolution is Δr≈15 km (Ferretti, 2014). It is clear from equation (2.6) that a high range 

resolution requires a very short pulse duration. But with a short pulse, the backscattered energy 

can be undetectable because its magnitude is 10-11 less than the transmitted signal (Hanssen, 

2001). Thus, the returned signal needs to be amplified to a magnitude comparable to that of the 

transmitted signal, otherwise the returned signal cannot be distinguished from the background 

noise. This problem has been resolved by using the frequency modulation (FM) of the 

transmitted pulse, in so-called chirp compression. Here rather than sending a short rectangular 

pulse, the signal is modulated to a chirp of frequencies with a specific bandwidth (BW). The 

received signal is autocorrelated with the original replica of the chirp to derive a sinc function, 

such as sin(x)/x (Oppenheim et al., 1983). The sinc function is a rectangular spectrum having 

an amplitude larger than zero only within the chirp bandwidth. This process is called range 

compression and can improve the range resolution to the sub-meter level. The range resolution 

after the range compression turns to (Ferretti, 2014):  

 
Δ𝑟 ≥

𝐶

2𝐵𝑊
 

(2.7) 

where BW is the chirp bandwidth. If equation (2.7) is applied to the previous example taking 

the maximum range bandwidth of 100 MHz, the range resolution can be improved to Δr≈1.5m 

(Reigber, 2001; Ferretti, 2014). From equation (2.7) it can be seen that the range resolution is 

independent of slant distance. 

Before storing the echoes, the signal needs to be converted into a digital form. This can be 

achieved by sampling the signal with a sampling frequency fs. The sampling frequency rate 

determines the pixel size of the SAR image, but the spatial resolution is controlled by the BW. 

In other words, it is not possible to increase the range resolution by increasing the range 

sampling rate. After applying range compression, the returned signal can be written as (Ferretti, 

2014):  

 

𝑠(𝑛) = ∑ 𝐴𝑖

sin [𝜋𝐵𝑊 (
𝑛
𝑓𝑠

− 𝜏𝑖)]

𝜋𝐵𝑊(
𝑛
𝑓𝑠

− 𝜏𝑖)
𝑒𝑗𝜑𝑖 . 𝑒𝑗2𝜋𝑓0𝜏𝑖 

(2.8) 

where n represents the number of scatterers within a single cell. 
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From equation (2.8), it is obvious that the backscattered values for a specific range cell are the 

summation of the contributions from several backscattering elements within the resolution cell. 

This means the amplitude of a single image cell has a Rayleigh distribution (Hanssen, 2001). 

Thus, scattering objects with high reflectivity may dominate the amplitude and the recorded 

phase for this range.  Furthermore, if these scatterers are strong enough, they may impact even 

upon objects located tens of metres apart from the resolution cell, because the sinc function is 

not limited to a specific range distance. This effect is called sinc sidelobes (Gatelli et al., 1994a). 

2.2.3 Azimuth compression and resolution 

In all SAR systems, microwave energy is transmitted by an antenna having a length (la) and 

width (da). To avoid receiving echoes from points at the same distance from the antenna, the 

antenna is directed toward the right or left direction. However, some new systems have been 

designed to transmit at both sides, but not at the same time. COSMO-SkyMed is one example 

of such a system. The antenna is inclined to the nadir with a specific angle called the incidence 

angle, while the direction of the line-of-sight (LOS) is known as the slant range. To avoid the 

effect of the relative motion between the radar antenna and the Earth’s surface during the 

Earth’s rotation, the antenna is squinted from the azimuth direction at a small angle (for example 

±2 degrees for COSMO-SkyMed and ±0.9 degrees for Sentinel-1). The beam width dimensions 

in the cross-track and along-track directions (βr, βa) can be respectively approximated as:  

 β𝑟 ≈ 𝜆𝑅/𝑑𝑎  (2.9) 

 βa ≈ λR/𝑙𝑎   (2.10) 

where R refers to the slant distance and da and la are the antenna width and length respectively. 

Antennas with small dimensions transmit wide beams, which leads to less focused footprints. 

For example, a radar antenna with a length of 15m onboard a platform having a slant range of 

800 km gives an azimuth resolution of 3km (Reigber, 2001). This problem was solved by Wiley 

(1965) who exploited the repetition of target acquisitions while the platform moves along its 

orbit. This led to the synthesise of a long aperture that can reach up to a few kilometres. The 

length of the synthetic aperture equals the length of the flight distance from which a target can 

be illuminated. This is the basic idea of synthetic aperture radar (Wiley, 1965). Figure 2.3 shows 

the formation of a synthetic aperture, considering only one dimension of the antenna for 

simplicity (Richards, 2009). 
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Figure 2.3. The concept of SAR, employing the motion of the platform to synthesize a long antenna. The 

antenna footprint is illustrated as a rectangle for simplicity (Richards, 2009).  

Adopting this theory can improve the azimuth resolution from Ra=Rλ/L in the real aperture 

radar (RAR) to Ra=la/2 in the synthetic aperture radar (SAR). Taking ERS as an example, this 

can improve the azimuth resolution from 4.8 km to 5m (Ferretti, 2014). 

2.2.4 SAR image focusing 

An object on the ground is illuminated with several bursts while the aperture scans the Earth’s 

surface in the along-track direction. In other words, any single point will be observed from 

different azimuth coordinates, resulting in a parabolic range trajectory (Figure 2.4). The range 

and phase of one scatterer are not identical to those from other scatterers. Thus, for each 

scatterer, the range and phase from all observations are combined coherently to obtain a 

complex signal. This process is known as azimuth focusing. In general, there are two categories 

of image focusing are described in the literature in either the wave-number and range-doppler  

(Bamler, 1992). For the purpose of the present discussion, we focus on the second of these as 

it is the focusing algorithm adopted in GAMMA. Knowing the imaging geometry of the radar, 

the echoes from all scatterers within each resolution cell can be determined. Then the different 

contributions are integrated by applying a matched filter. The final output of azimuth focusing 

is a complex SAR image, represented as a matrix of complex numbers. Each resolution cell has 

a pair of range and azimuth coordinates. The complex numbers contain the amplitude 

information which refers to the backscattered energy, and the phase which partially refers to 

the sensor-target distance. 
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Figure 2.4. Variation in range and azimuth coordinates for point-wise scatterers (Ferretti, 2014). 

Another essential step in SAR image formation is the radiometric calibration (Gelautz et al., 

1998). Intensity is correlated with the cell size and thus this correlation needs to be adjusted by 

normalization. The normalized value is known as sigma naught σ˚ (Wegmüller and Werner, 

2011). This step is essential to retrieve the radar cross section (RSC) of the target. The RSC can 

be defined as the cross-section of an optimal reflecting sphere that would reflect the same 

amount of energy from the target. The higher the RCS of a target, the larger the amount of 

energy it scatters back to the radar. 

2.2.5 Multi-looking 

The coherent combination of different backscatters within the resolution cell causes a speckle 

noise in the SAR scene due to the Ryleigh distribution of the amplitude of the scattering objects 

(Bamler and Hartl, 1998). This noise can be significantly reduced by averaging the squared 

amplitude (the intensity) of several adjacent pixels. This process is known as multi-looking (Li 

et al., 1983). The higher the multi-looking factor, the more the speckle noise can be reduced, 

but at the cost of spatial resolution. Multi-looking reduces the variance of the intensity by Nr × 

Naz (Ferretti et al., 2007) where Nr and Nz are the multi look factor in the range and azimuth 

directions respectively.  



 

 22 

2.2.6 Geometric distortion 

Radar imagery are distorted geometrically according to the imaging geometry and the terrain 

topography. Pixels in the near range cover slightly smaller ground areas than those in the far 

range because of the side-looking view. Therefore, the resolution of the image along the radar’s 

line of sight varies. In spaceborne radar, this distortion can be easily corrected using the sine of 

the local incidence angle (Richards, 2009). More problematic type distortion occurs when the 

topography of the illuminated area is complicated, and the incidence angle varies locally. 

Earth-fill dams often have two slopes with opposite orientations of 180˚ (Figure 2.5). To better 

understand the feasibility of using InSAR for dam deformation monitoring, it is necessary to 

discuss the relationship between imaging geometry and dam orientation. In section 2.2.2 it is 

shown that the position of the scatterer along the cross-track line depends on the time that the 

signal takes to return to the sensor. Thus, the returned signal can be considered as the projection 

of the terrain surface onto the LOS vector. Figure 2.5 shows how the incidence angle varies 

according to the slope of the dam surface. In other words, slopes having orientations facing the 

sensor look brighter than those directed away from the sensor because the foreshortening 

increases the radar intensity. The cell size in the ground range direction is a function of the 

angle between the local vertical (the line perpendicular to the local terrain) and the LOS vector 

(β). For the sake of simplicity, the azimuth of the LOS in Figure 2.5 is assumed to be 

perpendicular to the dam’s main axis.  For points on the dam crest, the spatial resolution can be 

represented as (Richards, 2009)  

 𝑟𝑔 =
𝑐𝜏

2𝑠𝑖𝑛𝜃
  (2.11) 

where τ is the pulse duration. In contrast, on the left slope shown in Figure 2.5, the local 

incidence angle becomes ψ=β-θ. 

 𝑟𝑔 =
𝑐𝜏

2𝑠𝑖𝑛𝜓
  (2.12) 
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Figure 2.5. Geometry of radar imaging on an earth-fill dam. The local incidence angle depends on the 

slope of the dam surface. 

Furthermore, the local incidence angle of the slope surface may increase or decreases depending 

on the surface orientation and slope with respect to the LOS and, as a result, the compression, 

(so-called foreshortening) factor varies across the SAR image. Figure 2.6 shows the effect of 

foreshortening on two Envisat images from ascending and descending passes acquired over the 

Mosul dam. Further discussion of the effect of foreshortening on the embankment dam can be 

found in Chapter 5 and 6. It is obvious that the dam slope on the downstream side is slightly 

wider in the descending image than it is in the ascending image due to differences in the 

foreshortening effect. 

Another type of distortion can happen when the signal from the top of the terrain reaches the 

radar before the echoes backscattered from the lower terrain. This distortion is known as layover 

and it can flip features upside down on the SAR image. However, this effect depends mainly 

on the slope of the dam for a given radar satellite. Nonetheless, if one side of the dam is affected 

by layover, it is very likely that images from the reverse pass (ascending or descending) will 

not be similarly affected, and hence one of the two passes may be reliable for an interferometry 

application. More discussion of the geometrical distortion of images acquired over dams is 

presented in Chapter 6.  
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Figure 2.6. Foreshortening effect on Envisat images acquired over the Mosul dam: (a) Satellite image 

from Google earth; (b) Envisat ASAR image from ascending track 42; and (c) Envisat ASAR image from 

descending track 135.  

The pass direction and the geometrical baseline are important factors in selecting SAR images 

for monitoring applications. To a lesser extent, the incidence angle can also play an important 

role in selecting SAR data. To avoid geometrical distortion in InSAR applications, the choice 

of direction of pass and incidence angle have to minimize, if not eliminate, the geometrical 

deformation (Ferretti et al., 2007). The considerations of using InSAR for dam deformation 

monitoring are discussed in Chapter 6. 

2.3 SAR interferometry 

Although SAR images represent a valuable source of information about surface backscattering 

properties, Interferometric SAR (InSAR) is able to provide additional information by exploring 

phase observations. The two main interferometric applications are the topographic mapping and 

deformation monitoring. For the latter, InSAR has been widely used to investigate landslides, 

earthquakes, surface subsidence due to oil and water withdrawal, volcanic eruptions, glacier 

flow and land mass monitoring (Gabriel et al., 1989; Wright et al., 2004a; Cigna et al., 2014; 

Singleton et al., 2014; Dai et al., 2015; Chen et al., 2016; Dai et al., 2016; Darvishi et al., 2018). 

Additionally InSAR has been used successfully in topography mapping (Graham, 1974; Gabriel 

et al., 1989; Zebker et al., 1992; Ferretti et al., 1997b; Wegmüller et al., 2009; Rossi and 

Gernhardt, 2013; Baade and Schmullius, 2016; Neelmeijer et al., 2017). Furthermore, InSAR 

has been integrated with independent datasets such as GPS and levelling for the validation 

and/or mitigation of noise (Williams et al., 1998; Li, 2005b; Li et al., 2006c; Gourmelen et al., 

2010; Hammond et al., 2010; El-Gharbawi and Tamura, 2014; Yu et al., 2018a). In all InSAR 

applications, the basic idea is to estimate the variation in phase from two SAR images of the 

same area acquired from two different positions at the same time or different times. The distance 

between acquisition locations is called the geometrical baseline and its perpendicular 

component to the LOS is known as the perpendicular baseline. The Interferogram is determined 

by differencing the phase of the two acquisitions. More precisely, it can be generated by 

multiplying the first complex number from the first acquisition by the conjugate of the second 

a) b) c) 
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one. Further details of the interferometric applications can be found elsewhere  (Li and 

Goldstein, 1990; Rodriguez and Martin, 1992; Rocca et al., 1997; Massonnet and Feigl, 1998b; 

Franceschetti and Lanari, 1999; Bürgmann et al., 2000; Gens and Van Genderen, 2007; Ferretti 

et al., 2011). The first application for surface movement monitoring was performed by Gabriel 

et al. (1989) who used SEASAT images to estimate the inflation and subsidence of the ground 

as a consequence of water absorption. 

2.3.1 Interferometric phase 

A SAR image is a matrix of complex numbers which can be used to determine the reflection 

intensity, amplitude and phase for each pixel. The interferometric phase of a pixel from two 

SAR images consists of five components: flat earth, topography, deformation, atmospheric 

delay and noise. Equation (2.13) shows these components, and the geometry of the 

interferometry is depicted in Figure 2.7. The differential phase between any two points, P and 

P0 in the interferogram is determined as follows (Ferretti et al., 2007):  

 
∆∅(𝑃, 𝑃0) =

4𝜋

𝜆

𝐵𝑛

𝑅𝑚0

Δ𝑟

𝑡𝑎𝑛𝜃
+

4𝜋

𝜆

𝐵𝑛

𝑅𝑚0

ℎ

𝑠𝑖𝑛𝜃
+

4𝜋

𝜆
𝑑 + 𝛼 + 𝑛 

(2.13) 

where Bn is the perpendicular baseline, Rm0 is the range distance between the target and the 

antenna in the first acquisition, Δr is the variation in antenna-target range due to the change in 

acquisition positions, h is the relative height between point P0 and P1, θ is the radar beam 

incidence angle, α is the atmospheric delay,  n is the noise from multiple sources but mainly 

decorrelation and sensor thermal variation, and d is the deformation in P projected onto the 

LOS. The interferometric phase (Δφ) may compromise further components related to changes 

in the target’s physical properties, although this component can be cancelled out when the 

properties of backscatters remain identical between the two acquisitions. In equation (2.13), the 

first component is known as the flat earth which results from a change in the acquisition position 

and it is so named because it would be the only component that could be seen if the earth was 

completely flat with no topography or curvature. The second component is the contribution of 

the topography which arises from the variations in the height of the terrain while the third 

component is the displacements contribution. The first and second parameters can be eliminated 

using precise baseline measurements and a suitable elevation model. Any uncertainty in the 

baseline and the elevation model could introduce phase residues in ∆∅ . Separating these 

residues from each other, or at least from variation in atmospheric delay and noise is not an 

easy task. The residual of the phase from the DEM error is highly correlated with the length of 

perpendicular baseline. The elimination of the atmospheric delay is discussed below in section 
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2.3.5. Removing the flat earth, topography and atmospheric components theoretically leaves 

the interferometric phase which is only related to the terrain deformation. 

 

Figure 2.7. The geometry of SAR interferometry  (Lu and Dzurisin, 2014) 

The phase is also modulus (-π, π) and the ambiguous integer number of wavelengths should be 

estimated. Depending on the perpendicular baseline, sensitivity of the phase variation to the 

local topography is much less than the sensitivity to the change in the topography (Lu and 

Dzurisin, 2014). In other words, interferometric pairs with long baseline are more sensitive to 

the topography mapping. However, the length of the perpendicular baseline is a trade-off 

because it may lead to the loss of the interferometric signal due to the geometrical and volume 

decorrelation when its length is comparable to that of the critical baseline which is discussed in 

section 2.3.2. 

The height range which corresponds to a full phase cycle is known as the height of ambiguity. 

Its value can be computed as follows (Massonnet and Feigl, 1998a):  

 
Δℎ2𝜋 =

𝜆

2

𝑅𝑚0𝑠𝑖𝑛𝜃

𝐵𝑛
 

(2.14) 

where Rm0 is the range distance between the target and the antenna in the master image, λ is the 

wavelength of the SAR system, θ is the viewing incidence angle and Bn is the perpendicular 

baseline. If the variation in the local terrain is less than the height of ambiguity, an unwrapping 

step is unnecessary (Usai and Klees, 1999). 
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In repeat-pass InSAR, topography mapping can be more challenging due to variations in 

atmospheric delay (Goldstein, 1995; Zebker et al., 1997; Li et al., 2005). Meanwhiles in the 

single-pass, the atmospheric delay can be cancelled out because it is almost identical in two 

acquisitions. In the repeat-pass systems, baseline uncertainties may propagate into large errors 

in terrain height. Thus, a refinement of baseline can be achieved by exploiting a low-resolution 

DEM. Similar to their challenging effect in deformation mapping, the decorrelation and thermal 

noise introduce random phase error and ultimately prevent the estimation of terrain height. 

The Shuttle Radar Topography Mission (SRTM) was an 11-day mission launched by the 

National Aeronautics and Space Admission (NASA) to achieve global DEM coverage (Farr et 

al., 2007). The shuttle was equipped with C- and X-band synthetic radar. In addition to the 

transmit/receive antennae for each system, tow receiver antennae of C- and X-band are fixed 

with a 60 metres mast allowing for single pass interferometry for both systems. The shuttle 

orbited at an altitude of 223 km and with incidence angle between 30 and 60 degrees in order 

to achieve a swath coverage of 50 km for the X-band and 255 km for the C-band. This achieved 

an approximate ground resolution of 30 m (Ferretti et al., 1997a). 

The TanDEM-X mission introduced unprecedented accuracy in global InSAR DEM accuracy 

(Krieger et al., 2007). The mission consisted of a twin of X-band constellation which was 

employed to generate global DEM coverage with an accuracy higher than that of the SRTM 

DEM. This was achieved by controlling the twin platforms to work synchronously in a single-

pass mode and with a typical baseline of 200-500 m. The synchronization of the acquisitions 

resulted in highly mitigated atmospheric artefacts. The TanDEM-X mission achieved a global-

scale coverage with a relative resolution of 2 m and an absolute resolution of 10 m (Krieger et 

al., 2007). 

In this study, both SRTM and TanDEM-X DEMs are used in the interferometry processing. 

The SRTM is used as an auxiliary DEM to refine the TanDEM-X DEM generated from a pair 

of TerraSAR-X and TanDEM-X images acquired in 2012.  

Several noise sources can impact an InSAR observations, including atmospheric effects, 

temporal and geometric decorrelation, unwrapping errors and sensor temperature. Figure 2.8 

shows the workflow of InSAR for deformation mapping, starting with two acquisitions acquired 

at two different times. The main steps include co-registration, interferometry, differential 

interferometry, coherence estimation, phase unwrapping and geocoding. Each of these steps is 

discussed further in the following sections.  
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Figure 2.8. The workflow of InSAR processing. 

2.3.2 Interferogram coherence 

Phase noise can be expressed by means of local coherence. This is an estimation based on the 

cross-correlation coefficient of the complex values of two acquisitions extracted using a kernel 

window of a few pixels in size. Two types of phase decorrelation can be present in an 

interferogram (Ferretti et al., 2007; Ferretti, 2014): geometrical and temporal decorrelation. 

Geometrical decorrelation is directly related to the length of the baseline. Given that the phase 

of a single resolution cell is the association of multiple scatterers within this cell, changes in the 

relative positions of these scatterers result in changes in phase contributions of each scatterer. 

Consequently, the interferometric phase is decorrelated (Zebker et al., 1992). The backscattered 

signal is dominated by echoes from scatterers having similar dimensions to the radar 

wavelength. Thus short wavelength systems are exposed to high decorrelation effects because 

small scatterers are more likely move with respect to each other than are the larger scatterers 

(Hooper et al., 2012). Substantial differences in viewing angle reduce the coherence of the 

interferogram because they lead to shifts in the reflected spectra between two SAR acquisitions 

(Prati et al., 1994). If the shift in the spectra is smaller than the bandwidth, then the two 
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acquisitions should have a common range of frequencies known as the common bandwidth. 

Thus, there will be a threshold of the difference in the viewing angles for which the reflected 

spectra from the two SAR acquisitions are completely uncorrelated, where no common band is 

found. In such a case, the perpendicular baseline is called the critical baseline which can be 

computed as follows (Richards, 2009):  

 
𝐵𝑛𝐶𝑟𝑖𝑡 =

𝜆𝑅0

2𝑟𝑔𝑐𝑜𝑠𝜃
 

(2.15) 

where rg is the range resolution. On the other hand, a lack of coherence can arise due to the low 

signal-to-noise ratio (SNR). The SNR is related to the similarity in the reflectance of the 

scatterers during the two acquisition and it can be defined as the ratio of the power of the 

common band signal to the difference in power of the two signals (Patri and Rocca, 1992). In 

general, a high signal to noise ratio (SNR) is essential to achieve suitable coherence. 

The value of coherence can be estimated as follows (Patri and Rocca, 1992):  

 
𝛾 =

𝐸[𝑍1𝑍2
∗]

√𝐸[|𝑍1|2]𝐸[|𝑍2|2]
 

(2.16) 

where E[.] is the expectation value and * is the conjugate of the complex value. 

Furthermore, the SNR can be expressed as a function of coherence (Prati et al., 1994):  

 
𝑆𝑁𝑅 =

|𝛾|

1 − |𝛾|
 

(2.17) 

The value of coherence of an interferogram can range between zero and one. It is zero when 

the two signals are entirely uncorrelated, and one when the signals are fully correlated (with 

zero noise) (Zebker et al., 1992; Prati et al., 1994). 

2.3.3 Image Co-registration  

Image co-registration is vital for SAR interferometry. It refers to aligning the master and slave 

images in such a way that each pixel in the slave image corresponds to its counterpart in the 

master image. Different acquisition geometry leads to non-aligned images. Consequently, the 

size of the images in terms of the numbers of pixels in the azimuth and cross-track directions is 

not identical. Co-registration is carried out in coarse and fine co-registration steps (Hanssen, 

2001). Coarse co-registration finds the offsets in both the azimuth and range directions. This 

can be achieved by using visual inspection, orbital information, the intensity of the images 

and/or the phase statistics (Gabriel and Goldstein, 1988; Bamler and Hartl, 1998; Small, 1998; 
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Scheiber and Moreira, 2000). The accuracy of coarse co-registration can reach a few pixels. In 

order to achieve sub-pixel accuracy, the fine co-registration is carried out by fitting a 

polynomial model to the master and slave images. To determine the polynomial coefficient 

which refers to the shift, rotation and skew between the master and slave images. Figure 2.9 

shows the geometrical distortion between a pair of SAR images. Co-registration should account 

for all types of distortion namely range and azimuth shift and skew and rotation. It can be 

conducted as follows (Ferretti et al., 2007):  

 𝑥𝑠 = 𝑎. 𝑥𝑚
2 + 𝑏. 𝑥𝑚 + 𝑐. 𝑦𝑚 + 𝑑         (2.18) 

 𝑦𝑠 = 𝑒. 𝑥𝑚
2 + 𝑓. 𝑥𝑚 + 𝑔. 𝑦𝑚 + ℎ         2.19) 

where xs , ys , xm ,ym are the slant range and azimuth coordinates in pixels in the slave and master 

images respectively, and a-h are the polynomial coefficient. 

The polynomial coefficients can be determined by subsetting the images for a few patches and 

finding the shift in the azimuth and range directions for each patch. Then the model in equation 

(2.18) can be applied for each patch using the least squares approach to calculate the polynomial 

parameters. The patch size should be compatible with the image size. The amplitude cross-

correlation and/or fringe contrast can be used to match the patches and to find the common 

pixels between the slave and master images. For areas with high variation in topography, the 

fringe dependent-method may result in low accuracy due to the high phase gradient. The 

amplitude-dependent method is the most commonly used approach, but it may need a high SNR 

and, consequently, a large patch window is needed. The last step in the co-registration process 

is to resample the slave image to the radar coordinate system of the master image by using the 

polynomial equations in (2.18). 

For a conventional StripMap, an accuracy of 0.1 pixels can be sufficient to produce an 

interferogram of high quality. Lower levels of co-registration accuracy increase the phase 

standard deviation and hence considerably decrease the interferogram coherence (Scheiber and 

Moreira, 2000). 
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Figure 2.9 Image co-registration. The process should account for range and azimuth shift and skewing 

and rotation (Ferretti et al., 2007). 

In Sentinel-1 TOPS mode, the antenna squinted significantly in the along-track direction (De 

Zan and Guarnieri, 2006) to achieve wide coverage of three sub-swathes with several bursts in 

each. The overlap between adjacent bursts is 7-8% of the burst size. If co-registration accuracy 

is not quite sufficient, the difference in Doppler frequency between the adjacent bursts 

introduces a phase ramp in both the cross-track and along-track directions (Scheiber and 

Moreira, 2000). Although the accuracy of intensity cross-correlation can reach 0.05 pixels (Li 

and Goldstein, 1990), its performance for the co-registration of TOPS mode images for 

Sentinel-1 is not satisfactory. Therefore, a phase jump is clearly introduced in the overlap area 

between the adjacent bursts and specifically in the azimuth direction. To mitigate this phase 

jump, an extra step is required to enhance the polynomial coefficient by exploiting the phase 

statistics in the area where the bursts overlap (Scheiber and Moreira, 2000). Spectral diversity 

is applied to achieve an accuracy better than 0.005 pixels in the azimuth direction when 

coherence is sufficient (Wegmüller et al., 2015). 

2.3.4 Interferogram filtering and phase unwrapping 

One of the limitations of imaging radar is the phase ambiguity of SAR images. More precisely, 

the measured phase is modulus (wrapped) to (-π, π), and consequently the differential phase in 

the interferogram reveals only a fraction of the real phase difference between the two 

acquisitions. The ambiguous integer number of cycles should be added to the modulus phase to 

estimate the real phase difference. The process of adding the integer number of cycles is known 

as the unwrapping process. The decorrelation of the interferometric phase discussed in 2.3.2 

can be the main reason for unwrapping errors and may result in significant error in the 

deformation estimation and/or topography mapping. Thus, mitigating the noise level prior to 

unwrapping is crucial. This can be achieved using two approaches. The first involves the band 
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pass filtering of the SAR images before the interferogram formation (Gatelli et al., 1994a), and 

the second filters the interferograms in the spatial domain. Interferometric filtering can improve 

the quality of the interferograms significantly, and it is essential to generate a good quality 

unwrapped interferogram. Adaptive filtering mitigates the noise level depending on the 

amplitude dispersion and phase rate. However, this type of filtration can reduce the spatial 

resolution. One of most effective filtering algorithms was developed by Goldstein and Werner 

(1998) and there have been some attempts to improve this algorithm (Baran et al., 2003; Li et 

al., 2008). In a different approach, Deledalle et al. (2011) proposed non-local filtering based on 

pixel similarity to preserve the resolution of the filtered interferogram.  

As mentioned above, phase unwrapping is the process of recovering the full number of 

wavelengths for each pixel in the interferogram (Ghiglia and Pritt, 1998). The high gradient 

interferometric fringes in the complex topography regions need to be removed before the 

unwrapping. Some unwrapping algorithms such as 2D unwrapping algorithms, work on each 

interferogram individually (Goldstein et al., 1988; Costantini, 1998; Zebker and Lu, 1998; Chen 

and Zebker, 2000; Chen and Zebker, 2001; Sowter, 2003; Loffeld et al., 2008), while others 

work on the 3D domain utilizing multiple interferograms (Huntley, 2001; Cusack and 

Papadakis, 2002; Salfity et al., 2006; Hooper and Zebker, 2007).  

The performance of filtering and unwrapping algorithms depends on the level of noise, the 

fringe rate and the physical properties of the area of interest. Thus, experimenting with different 

filtering and unwrapping parameters can optimize the unwrapping results.   

2.3.5 Geocoding  

Geocoding refers to the transformation between Range-Doppler Coordinates (RDC) and the 

conventional coordinates such as WGS84 (φ, λ, H), where φ, and λ are the latitude and longitude 

respectively and H is the ellipsoidal height (Hanssen, 2001). Geocoding can be achieved by 

determining the mathematical relationship between the two systems. Once the relationship 

between the two systems is known, a transformation from map to radar coordinate systems or 

vice versa is straightforward. To determine the mathematical relationship, a several steps need 

to be followed (Richards, 2007; Wegmüller and Werner, 2011). Knowing the geometry of the 

SAR system, for each pixel in the DEM map, the position of the platform and acquisition time 

can be computed. The look vector for each pixel which is the vector from the pixel pointing to 

the platform antenna, is used to determine the pixel’s azimuth and slant range in the radar 

coordinate system. This process is repeated for each pixel in the DEM to generate a look-up 

table (LUT) for all pixels in the DEM file. In GAMMA, the LUT is a matrix of complex 
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numbers with a size equal to that of the DEM file. The real and imaginary parts of each element 

are the radar coordinates of the corresponding pixel in the master SAR image. The LUT can 

then be used to transform between map and radar coordinate systems. Additionally, it can be 

used to simulate a SAR image using an elevation model. The simulated SAR image can be used 

in refining the LUT and in co-registration process as discussed in section 2.3.3. The uncertainty 

in the platform positions produces errors in the LUT. Therefore, an extra step to refine the LUT 

may be needed. The refinement process is performed using the following steps (Wegmüller and 

Werner, 2011): 

• The primary LUT is used to simulate the SAR image from the DEM. 

• Cross-correlation between the original SAR image and the simulated one determines the 

offsets over several patches. 

• The offsets are employed to estimate a polynomial model utilising least squares approach. 

If the standard deviation of the polynomial coefficient is below a threshold value, the quality of 

the LUT can be deemed sufficient and suitable to transform between radar and map coordinates. 

If the quality of the polynomial fitting is lower than required, the above three steps can be 

iterated. This procedure can also be used in the co-registration process that is discussed in 

section 2.3.3. 

2.3.6  Atmospheric effects 

Although InSAR is becoming an effective tool for geophysical applications and topography 

mapping, the effect of atmosphere is still the most challenging contamination component of the 

interferometric phase. SAR images acquired at two different times, separated by more than one-

day are exposed to variation in signal delay (Hanssen, 2001). The major part of this delay arises 

from the lower layers of the atmosphere (the troposphere) while the impact of the ionosphere 

is a wavelength-dependent and it can affect the long wavelengths systems such as L-band 

(Goldstein, 1995). The variation in water vapour content during the two passes leads to changes 

in the refraction index of the medium which the signal propagates through (Doin et al., 2009). 

A variation of 20% in humidity between two-pass acquisitions results in an a atmospheric error 

of 10-14 cm in the deformation measurements and error of 80 to 290 m in the DEM derived 

using an unfavourable geometrical baseline (Zebker et al., 1997). The impact of the troposphere 

is spatially correlated but it can be random if the time between the two acquisitions is greater 

than one day (Hanssen, 2001). 

The tropospheric effect can be divided into two components: dry and wet. The upper part of the 

troposphere consists mostly of dry gases. The vertical variations of the air temperature and 
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pressure on this part cause the first order of the delay. Thus, this delay can vary vertically 

depending on topography. The other part comes from the random variation in the water vapour 

content in both the horizontal and vertical directions (Doin et al., 2009). Another classification 

of tropospheric effects has been introduced by Hanssen (2001) who divided the tropospheric 

delay into the stratified and the turbulent according to the patterns of gas distribution in the 

medium. However, the two classifications may overlap given that the stratified component may 

involve mostly dry gases and only partially water vapour. Whereas the major part of the water 

vapour can be within the turbulence component. Several studies have been conducted on 

tropospheric effects (Massonnet and Feigl, 1995; Rosen et al., 1996; Zebker et al., 1997; 

Fujiwara et al., 1998; Emardson, 2003). 

Several approaches have been used to mitigate, if not remove, atmospheric effects on repeat-

pass InSAR. Correction procedures can be divided according to the technique and data types 

used in estimating the correction models. In general, the mitigation of tropospheric effects can 

be achieved using a statistical approach (Massonnet and Feigl, 1995; Ferretti et al., 2001; 

Crosetto, 2002; Li, 2003) or by using an external data source (Li, 2005a; Li et al., 2006a; Li et 

al., 2006b; Onn and Zebker, 2006; Yu et al., 2017; Yu et al., 2018a). One of the outstanding 

atmospheric correction tools is the Generic Atmospheric Correction Online Service (GACOS) 

(Yu et al., 2017) which can separate stratified and turbulent atmospheric effect utilizing the 

Iterative Tropospheric Decomposition (ITD) model. In general, external data sources and 

statistical approaches each have advantages and drawbacks depending on the size of the area 

involved, the topography and the region. According to Hanssen (1998), images acquired in the 

daytime are more strongly affected by atmospheric heterogeneities.  

2.4 InSAR time series analysis 

One of the main limitations of InSAR is phase decorrelation, which mainly depends on the 

scattering properties of ground objects (Zebker and Villasenor, 1992). Other sources of 

decorrelation have been discussed in Section 2.3.2. One of the solutions to address the effect of 

decorrelation is the use of time series analysis. In general, two broad categories of InSAR time 

series are reported in the literature. 1) permanent scatterers (PS) (Ferretti et al., 2001; Ferretti 

et al., 2005) and 2) small baseline subsets (SBAS) (Berardino et al., 2002; Mora et al., 2002; 

Li et al., 2009). However, both categories are based on finding a set of coherent pixels which 

exhibit good coherence for a period spanned by the SAR acquisitions. PS requires persistent 

scatterers within the resolution cell that dominate the backscattered signal in the entire set of 

acquisitions (Ferretti et al., 2001; Hooper et al., 2007). In the PS approach, N interferograms 

can be generated from N+1 acquisition using a single master for all the acquisitions. PS 
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scatterers have low amplitude dispersion which refers to the ratio between the standard 

deviation of the amplitude difference and the mean amplitude. However, the existence of such 

scatterers in the vegetated or temporally decorrelated areas is rare. Hooper et al. (2004) 

presented a new approach to select PS pixels depending on phase characteristics, which can 

select pixels with low amplitude but having stable phase. 

 SBAS time series deal with the resolution cells that contain several scatterers, known as 

distributed scatterers, which show good coherence in several interferograms having a relatively 

short temporal and perpendicular baseline (Berardino et al., 2002; Li et al., 2009). SBAS has 

some advantages over PS specifically for the monitoring of man-made structures because of its 

ability to produce deformation maps with high spatial resolution. High-resolution is crucial for 

dam monitoring especially when movement is localized or clustered. For dam deformation 

monitoring, the spatial pattern of the deformation is necessary in order to interpret the dam 

behaviour, the deformation type and the magnitude of displacement. This can be potentially 

achieved by InSAR time series. In the following section, the principles of the SBAS time series 

are discussed in detail.  

The SBAS algorithm is based on distributed scatterers (DS) which are defined as the scatterers 

which exhibit good coherence for a long time but not necessarily for the entire time span of 

SAR acquisitions. Recently, Wang et al. (2018) has applied the SBAS time seies to the ground 

based SAR (GBSAR) to select the coherent pixels over a whole period of observations. In 

contrast to the spaceborne radar, temporal decorelation is rare in the GBSAR application due 

to the short observation time. SBAS combines all of the available acquisitions using multiple 

reference (master) images. This approach can increase the redundancy of measurements which 

not only reduces decorrelation but can also be exploited to estimate other noise sources such as 

DEM error and the atmospheric phase screen (APS). SBAS starts with a set of N+1 SAR 

acquisitions acquired at times t0,...tN to produce a set of M interferograms with preferred 

perpendicular and temporal baselines. Utilizing interferograms with short perpendicular 

baselines and suitable time separations should mitigate temporal and geometrical 

decorrelations. Each acquisition should at least be connected to another acquisition in the 

spatial-temporal baseline network. Thus, the number of the interferograms ranges between 

(N+1)/2 and N(N+1)/2. Neglecting typical noise sources and DEM uncertainties, the 

interferometric phase for each pixel in a specific interferogram can be written as follows 

(Berardino et al., 2002):  
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𝛿∅𝑗

 
(𝑟, 𝑎) = ∅(𝑡𝑚, 𝑟, 𝑎) − ∅(𝑡𝑠, 𝑟, 𝑎) ≈

4𝜋

𝜆
[𝑑(𝑡𝑠, 𝑥, 𝑟) − 𝑑(𝑡𝑚, 𝑥, 𝑟)] 

(2.20) 

where δϕj denotes the interferometric phase in the jth interferogram, r and a refers to the range 

and azimuth coordinates of the pixel respectively and  tm and ts are the acquisition epochs for 

the master and slave images which are used to generate the jth interferogram, 

while  𝑑(𝑡𝑠, 𝑟, 𝑐) 𝑎𝑛𝑑 𝑑(𝑡𝑚, 𝑟, 𝑐)  are the accumulative deformations in epochs ts and tm, 

respectively with respect to the reference acquisition t0. Rewriting equation (2.20) for M 

interferograms in a matrix form yield:  

 𝑨𝝓 = 𝛅𝛟 (2.21) 

If the rank of A ≥ N, which means that all the acquisitions are connected in a single subset, the 

system of M equations in equation (2.21) can be solved for N unknowns using the least squares 

approach. The unknowns are the cumulative LOS movement d(t1, r, c) ... d(tN, r, c), presuming 

that the deformation at t0, d(t0, r, c) is zero. 

 �̂� = (𝑨𝑻𝑨)(𝑨𝑻𝜹𝝓) (2.22) 

In cases where the interferogram network is separated into L subsets, ATA is a singular matrix 

and the rank of A is N-L+1 (Berardino et al., 2002). Thus, the least squares solution yields an 

infinite number of solutions. To avoid the singularity of ATA, an assumption is made that the 

velocity of displacements between sequenced epochs, 𝑑(𝑡𝑚, 𝑥, 𝑟) 𝑎𝑛𝑑 𝑑(𝑡𝑠, 𝑥, 𝑟), is constant. 

Thus, the magnitude of displacement is substituted by the velocity as follows. 

 
𝒗𝑻 = [𝒗𝟏 =

𝝓𝟏

𝒕𝟏 − 𝒕𝟎
, … , 𝒗𝑵 =

𝝓𝑵 − 𝝓𝑵−𝟏

𝒕𝑵 − 𝒕𝑵−𝟏
] 

(2.23) 

Equation (2.23) transforms the phase in the jth interferogram into:  

 

𝜹𝝓 = ∑ (𝒕𝒌 − 𝒕𝒌−𝟏)𝒗𝒌

𝑰𝑬𝒋

𝒌=𝑰𝑺𝒋+𝟏

,       ∀𝒋 = 𝟏, … , 𝑴 (2.24) 

And this yields the following manipulated system:  

 𝑩𝒊𝒗𝒊 = 𝛅𝛟𝒊,                         ∀i=1,…,k (2.25) 

When k is the number of pixels in each interferogram, B is the M × N matrix in which B(j, k)= 

tk+1 - tk  for  IEj ≥ k ≥ ISj+1 , ∀j=1,…,M while B(j, k)=0 elsewhere. Now, equation (2.25) can be 
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solved to determine the velocities between adjacent acquisitions. The pseudoinverse of B, that 

is B+, can be determined using singular value decomposition (SVD) as follows.  

  𝑩 = 𝑼𝑺𝑽𝑻 and 𝑩+ = 𝑽𝑺+𝑼𝒕 (2.26) 

where S= diag(σ1 … σN-L+1, 0, ….0) and its pseudoinverse S+=diag(1/σ1 … 1/σN-L+1, 0, 

….0) 

Equation (2.25) can be expressed as:  

 �̅��̅� = 𝛅�̅�  (2.27) 

Which can be solved as  𝑣 = 𝐵+𝛿∅, so that the accumulated deformation between t0 and ti is:  

 

∅̂(𝑡𝑖) = ∑(𝑡𝑘 − 𝑡𝑘−1)

𝑖

𝑘=1

𝑣𝑘, ∀= 1, … , N 

(2.28) 

The SBAS algorithm has witnessed developments in terms of determination of the non-linear 

deformation component (Lanari et al., 2004b) or to investigate the impact of DEM 

uncertainties, on the accuracy of the estimated deformation signal (Fattahi and Amelung, 2013). 

Lanari et al. (2007) reviewed the reliability of SBAS in term of large-scale and localized 

deformation mapping. SBAS is more effective if the scatterers contribute equally across the 

resolution cell, while PS works more efficiently with a single scatterer dominating the signal of 

the resolution cell. Furthermore, a combination of the two algorithms can increase the number 

of pixel candidates, as well as the spatial resolution and the signal-to-noise ratio (Hooper et al., 

2012).       

The InSAR time series is also capable of addressing the effect of the atmospheric variations. 

This can be achieved by using statistical approaches (Ferretti et al., 2000; Berardino et al., 

2002)  or by integrating InSAR with external data sources such as  (GNSS) or an auxiliary 

remote sensing technique (Williams et al., 1998; Li, 2005b; Li, 2005a). Given that atmospheric 

signals are uncorrelated in time and vary smoothly within a patch of 800 m in space (Hanssen, 

2001; Hooper et al., 2007), multi-interferogram techniques firstly introduced by averaging the 

phase gradients to remove the major part of the tropospheric delay. Sandwell and Price (1998) 

used an approach to average the phase gradient to partially remove the atmospheric effects. 

This approach is known as stacking and has been applied in several displacement applications 

(Strozzi et al., 2000; Wright et al., 2001). Although stacking can mitigate the atmospheric signal 

significantly, it may hide an important part of the displacement signal. 
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2.5 Determination of 2D and 3D displacement vectors 

Another limitation of InSAR is that the deformation is estimated along the one-dimension of 

the LOS. In most of the deformation analysis the use of 3D displacement vectors is essential to 

understand the mechanism and source of the deformation. To derive 3D or at least 2D 

deformation vectors from InSAR, two or more observations from different viewing angles are 

required (Fialko et al., 2001; Wright et al., 2004b). Estimating the 3D deformation vector from 

only one track of SAR images is not possible. If the displacement vector in a specific reference 

frame such as international terrestrial reference frame (ITRF) is [E N U], then the estimated 

deformation from InSAR is the projection of this displacement vector to the LOS of the radar.  

 𝑣 = 𝐸 sin 𝜃 sin 𝜑 + 𝑁 sin 𝜃 cos 𝜑 + 𝑈 cos 𝜃 (2.29) 

where v is the magnitude of the deformation along the LOS, E, N and U are the 3D components 

of the displacement vector in the east, north and upward directions respectively, θ is the radar 

incident angle, and φ is the azimuth direction of the projection of the LOS onto the horizontal 

plane. When the number of velocity maps is n and n > 3, equation (2.29) can be written in a 

matrix form as follows: 

𝑅 = [
𝑣1
⋮

𝑣𝑛
]          𝑈 = [

𝐸
𝑁
𝑈

]        𝑃 = [
sin 𝜃1 sin 𝜑1 sin 𝜃1 cos 𝜑1 cos 𝜃1

⋮ ⋮ ⋮
sin 𝜃𝑛 sin 𝜑𝑛 sin 𝜃𝑛 cos 𝜑𝑛 cos 𝜃𝑛

] 

The above matrix form can be solved with the least square approach to determine the magnitude 

of displacement as: 

 𝑈 = (𝑃𝑡𝑊𝑃)−1 (𝑃𝑡𝑊𝑅) (2.30) 

where W is the weight matrix which can be derived from the error maps of the timeseries of 

each dataset as the inverse of the variance map.  The error in the E, N, U component can be 

estimated from the variance-covariance matrix as follows.  

 Σ𝑥𝑥 = (𝑃𝑡Σ𝑣𝑣𝑃)−1 (2.31) 

where Σvv is the inverse of the variances of three line of sight velocities estimated from SBAS 

time series. The diagonal axis of the Σxx is the variances of the 3D components: 𝜎𝑒
2, 𝜎𝑛

2, 𝜎𝑢
2. 
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Chapter 3. Dams in Iraq 

This chapter presents a breif history of the water system in Iraq and describes two major dams, 

the Mosul and Darbandikhan dams, which are the main case studies in this thesis.  Iraq has one 

of the oldest water systems with origins dating back to 705-681 B.C.  The two major rivers in 

Iraq, the Tigris and Euphrates, contributed to the development of the Assyrian and the 

Sumerians civilizations who settled along the basins of these two rivers. Since that time, dams 

have played a vital role in the rise and decline of civilisations, especially for people highly 

dependent on agriculture. An ancient irrigation system in Mesopotamia was developed by the 

Babylonians and Assyrians as early as 2100 B.C (Jansen, 1983). Two masonry dams have been 

discovered on the Khosr and Atrush rivers, and the earliest dams were built by the Assyrian 

king Sennacherib to protect the city of Nineveh (the ancient name of Mosul) (Jansen, 1983). 

One of the major ancient dams in this area was 240 m long and 3 m high  (Jansen, 1983). To 

the south of Baghdad, the Babylonian king Nebuchadnezzar II also constructed an ancient dam 

at Abu Habba. Fast forward to the present day and in the last 50 years, seven major dams have 

been constructed in north and north-east Iraq. The majority of these dames were built on rivers 

coming from the west of Iran and the south of Turkey (Figure 3.1). Six of these dams are 

embankment dams. Table 3-1 shows the types of these dams with other specifications of the 

structure and reservoirs. Most of these were multipurpose dams whose main functions are to 

regulate water, and providing irrigation, power generation and protection from flood hazards. 

In addition, the reservoirs of dams such as Dokan and Darbandikhan are considered to be tourist 

sites.  

Dokan was the first concrete dam to be built in Iraq, on the Lesser Zab river and was constructed 

in 1959 as a cylindrical arch with a crest length of 345 m and a height of 116.5 m (Hassan et 

al., 2017). The Lesser Zab river is one of the major flows from the Qendeel mountains in the 

west of Iran into the Tigris river about 80 km south-west of Al-Dibis city. The capacity of the 

dam’s reservoir is 7.250 × 109 cubic metres, 0.700 × 109 cubic metres of which is dead storage 

(Cordell, 2006; Hassan et al., 2017). The Darbandikhan dam is located on the Diala river which 

flows from the west of Iran into the Tigris river about 31 km north of Baghdad. It was the first 

embankment dam to be constructed in Iraq with a height of 128 m and a crest width of 17m. 

More details of this dam are presented in Section 3.3 and Chapter 5. 
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Figure 3.1. The major dams in Iraq (black triangles) and provinces (red circles). 

In the 1980s, Iraq adopted a programme to construct additional dams on the Euphrates and 

Tigress and their tributaries. This program started with building the Himreen dam in 1981 on 

the Diala river about 120 km north-east of Baghdad. The dam was constructed downstream of 

Darbandikhan to protect Baghdad from flood risks. It was the first earthfill dam constructed in 

Iraq with a height of 40 m and a length of 3560 m. In 1985 the Mosul dam, which is the largest 

in Iraq was built on the Tigris river. The volume of the dam reserve is 11.11 ×109 cubic metres 

and it is used for irrigation and power generation. Nevertheless, the Mosul dam is a most 

problematic structure because of the existence of soluble gypsum rocks in its foundations. More 

details about this dam are presented in Section 3.3 and Chapter 4. One year after the 

construction of the Mosul dam, the Haditha dam was constructed on the Euphrates river, about 
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7 km to the north-west of Haditha city. The only dam to have been constructed on the Euphrates, 

it is the site of of the second largest hydropower station operating in Iraq (Shamout and Lahn, 

2015). It is an earthfill dam with a length of 8150 m, only 500 m of which crosses the river 

valley, and it is used for irrigation in addition to power generation. In 1989, the Dohuk dam, 

which is also an earthfill dam with a clay core, was constructed on the Rowbar river with a 

height of 60 m and was constructed mainly for irrigation. The last dam in this programme was 

built on the Udaim river from which the dam took its name, and it is formed by tributaries 

originating in the Zagros mountains and flows into the Tigris river between Balad and Khalis. 

The Udaim dam is an earthfill dam constructed on the intersection of the Udaim river with the 

Himreen mountain range, giving a reservoir of 119 km2. A few other large dams are under 

construction, such as the Bakma and Taqtaq dams, in the Kurdistan region, but the political 

instability and economic crisis have hindered the completion of these dams. 

Table 3-1. Specifications of the major dams in Iraq.  Dead storage refers to the volume of water when 

the water level of the reservoir reaches minimum limit. Max and Min stand for maximum and minimum 

water level of the reservoir with respect to the mean sea level (msl). 

Dam Province 

Total 

Storage 

×109 

(m3) 

Dead 

Storage 

×109 

(m3) 

Dam 

Type 

Dam 

Height 

(m) 

Power 

Generation 

(MW) 

Completion 

Date 

Max 

Elev. 

(msl) 

Min 

Elev. 

(msl) 

Haditha Anbar 10.000 0.240 Earth fill 57 660 1987 150.3 129 

Dohuk Dohuk 0.052 0.004 Earth fill 60 _ 1988 618.8 584 

Mosul Nainawa 11.110 3.420 Earth fill 113 750 1985 338.5 300 

Dokan Sulaimaniya 7.250 0.700 Arch 116 400 1959 515 469 

Al-Udhaim SalahAl Dain 3.800 0.500 Earth fill 62 27 1999 143 89 

Darbandikhan Sulaimaniya 4.040 0.470 Rock fill 127 240 1962 493.5 434 

Himreen Diyala 3.560 0.100 Rock fill 40 50 1981 107 92 

 

     In addition to the aforementioned dams, 11 other major regulators have been built on the 

Tigris and Euphrates and their tributaries for water regulation and protection from floods. All 

these dams and regulators are operated by the Ministry of Water Resources (MOWR) in Iraq. 

Geodetic monitoring of the structures and embankment of these dams is carried out by the State 

Commission of Surveying (SCS). 

3.1 Topography and climate 

As one of the aims of this thesis is to examine the stability of two major dams in Iraq, it is 

necessary to first address the topography and climate in the study areas. While the topography 
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and the climate of Iraq are suitable for the construction of dams, chalanges arise due problems 

with long-term stability of dams once constructed. 

In terms of topography, the Kurdistan region on the north of Iraq is a mountainous area 

bordering Mesopotamia in the east and the Zagros and Taurus mountains in the west. The 

foothills of these mountains form the fertile plain of the Kurdish highlands. The high mountains 

of Kurdistan cover 21 % of Iraq total area. The mountains are known for heavy snowfall with 

a mean precipitation of 1200 mm during winter, while it is dry and warm during summer 

(Stansfield, 2001). In contrast to the mountainous areas, the plains of Kurdistan have a 

Mediterranean climate that is rainy in winter and warm and dry in summer. This variation in 

the regional climate contributed to the formation of aquifers, springs and rivers which flow 

from the mountainous regions to the fertile plains, turning this region into a good base for 

agricultural land use. As mentioned in the introduction of this Chapter, the need for dams in 

this area dates back to 705-681 B.C. The Tigris basin have witnessed several flood events when 

the raise of the water level in the Tigris river can reach a rate of 300 mm/hour (Jaradat, 2002).  

Therefore, regulators and dams have been constructed in this region to organise the water 

supply for irrigation and to protect downstream residential and agricultural areas from flooding.  

Iraq is one of the 19 countries that has been most affected by the global climate change in the 

20th century (Al-Ansari, 2013). The variations on weather patterns and the harsh weather 

conditions accompanying climate change increase the risk of dam failures (Tofiq and Guven, 

2014; Tofiq and Guven, 2015). It has been shown that a slight variation in climate conditions 

possibly increases the risk of structural damage to dams (Auld et al., 2006). Accordingly, to 

overcome the challenges of climate change regarding dam safety, it is necessary to improve 

dam design specifications, which may lead to economic issues, or to find more rapid and precise 

inspection procedures (Tofiq and Guven, 2015).   

Before investigating the stability of the Mosul and Darbandikhan dams in Chapters 4 and 5 

respectively, it is necessary to provide historical information about these two dams in the 

following sections. 

3.2 The Mosul dam 

3.2.1 History of the Mosul dam  

The Mosul dam is the largest in Iraq and located on the Tigris river between Duhok and Mosul. 

It is an earthfill dam with a clay core. It was constructed after a long debate and investigation 

into the site’s suitability for the construction of such a huge dam. The geological investigation 
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was carried out by the Techno-brom Export Company in 1962, followed by another geological 

study in 1964 carried out by the Foima company (Alabayachi, 2015). The dam’s design was 

carried out by a consortium of Swiss Consultants. Four groups, namely Suiselectra, Motor 

Columbus, Electrowatt and Societe General pour 1’Industrie, cooperated in this project 

(Sissakian et al., 2014). Construction work by a consortium of highly experienced international 

German-Italian contractors started in 1981. The stages of construction were supervised by the 

Swiss Consultants group and the Yugoslavian Energo-Projekt (Sissakian et al., 2014). The 

construction was completed in 1985 and the first filling of the reservoir started in June 1986. 

The seepage of water was noticed immediately and thus a continuous grouting programme 

recommended by the consultants. Water seepage was mainly noticed in the gallery and both 

sides of the spillway with a maximum flow of 70 l/s from the left side of the spillway (Kelley 

et al., 2007). 

The dam consists of main embankment, the spillway, a hydropower station and an inspection-

gallery (Figure 3.2). The gallery is used for maintenance and the monitoring of the foundation’s 

stability. As shown in Figure 3.3, the old river channel passed through the left abutment of the 

dam and this could be the reason why this part is highly karstified in this area (Kelley et al., 

2007). During construction, the river stream was diverted several times to the east and west 

sides of the embankment to satisfy the construction needs (Kelley et al., 2007).  The vertical 

section of the river bed in the dam site consists of 20 m of sandy and clayey silt (Sissakian et 

al., 2014). The geology of the Mosul dam is strongly influenced by its regional geological 

setting. The topographical slope of the area has a gradient of 50 m/km, which is not the usual 

topography in which karstification can be found. According to Jassim et al. (1997), 

karstification normally occurs in topographies with gradients less than 35 m/km. 
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Figure 3.2. Main features of the Mosul dam (background image from Esri  DigitalGlobe 2018)).  

 

Figure 3.3. Topographical map of the ancient path of the Tigris river at the location of Mosul dam as 

provided by the SCS. The shaded area is the footprint of the Mosul dam while the colour scale refers to 

the topography of the area prior to the dam’s construction (background image is from Esri DigitalGlobe 

2018). 

Figure 3.4 illustrates a typical section of the dam embankment. The dam core was constructed 

from clayey silt layers up to 20 m thick whereas the slopes of the embankment consisted from 

conglomerate and alluvium materials taken from the river section. According to Charles (1986) 

puddle clays and granular materials have a similar compaction coefficient ranges between 0.001 
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and 0.004 and for poorly compacted fill it can reaches 0.007. The compaction coefficient of the 

Mosul dam puddle core and conglomerate materials are estimated in Chapter 6. 

The Mosul dam is located about 60 km north of the city of Mosul, which is the second largest 

city after Baghdad in Iraq. The concerns over the dam’s safety started with the first filling of 

the lake when water leakage was observed in several parts of the downstream side. It was 

reported that 6 million people would be affected in the case of dam failure, with two millions 

of them at risk of 2 m of inundation (Annunziato et al., 2016). Mosul would be the most 

seriously affected city facing a wave of 25 m height after less than two hours, while the capital 

Baghdad would be inundated with a 2 m wave after 84 hours (Annunziato et al., 2016). 

 

Figure 3.4. Typical embankment section of the Mosul dam showing construction materials. 

3.2.2 Geological setting of the Mosul dam 

Mosul province is located on the Arabian plate, which was for a long-time part of the continent 

of the Gondwanan. The geology of the Mosul area generally consists of three settings (Al-Saigh 

and Al-Dabbagh, 2011).  The upper marl series consists of two clayey types: silty clay and 

marls. The underlying setting is the lower Marl series which mainly consists of clayey marls, 

limestone and gypsum layers (Salih, 2013). The earliest geological setting is the Jeribe 

Formation (Early Miocene) which consists of dolomitized limestone, dolostone, sporadic thin 

gypsum and clayey dolostone. The second unit is the Fatha Formation (Middle Miocene) which 

is divided into two main layers with varying regional thickness. In the Mosul area, the thickness 

of the lower layer is about 90 m, and its vertical section from top to bottom consists of 

limestone, gypsum and carbonate (Jassim et al., 1997). The upper layer consists of gypsum and 

to less extent carbonate as well as green and red claystone. The upper unit is the Injana 

formation (Upper Miocene) which consists of fluviatile claystone (Sissakian et al., 2014). In 

general, 11-15% of Iraqi soil compromises gypsums, forming 7.3-10% of the world’s gypsum 

area (Salih, 2013). 
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The presence of gypsum rocks under high-pressure fresh water is an enabling factor for the 

development of voids and karst features. The permeability of water through the fractures 

accelerates the rate of solubility of gypsum (Thanoon, 1990). The other factors which may 

contribute to the development of voids are temperature, the hydraulic gradient and the length 

of water passages for both ground and surface water (Ford, 1988).  The solubility rate in 

streaming water can reach 0.10-0.08 m3/year, and this can lead to a progressive dissolution of 

gypsum rocks. Karst features can take four forms, namely: sinkholes; shafts and karren; karst 

valleys and caves (Jassim et al., 1997). Sinkholes are underground voids formed in gypsum 

areas with a size reachs 400 m3 and they have been detected around the Mosul dam in several 

locations (Kelley et al., 2007; Salih, 2013; Sissakian et al., 2014). The depth and diameter of 

sinkholes depend on the thickness of the gypsum bed, and whether it is overlaid by limestone 

(Jassim et al., 1997). Karren and shafts are narrow and deep holes which develop in gypsum 

areas and they can reach depths of 20 m and widths of 1-2 m, while karst valley is a rectangular 

drainage path developed on limestone with underlying features. Caves are not known in the 

Mosul area, but some do exist in Tel Afar (Jassim et al., 1997). 

The karstification around Mosul city was investigated by Jassim et al. (1997) using aerial 

photogrammetry. A variety of dissolution features were detected, namely, shafts, karren and 

sinkholes. It was noted that the sizes of the sinkholes range between 2 and 25 m. The presence 

of dissolution features was quite clear even during the initial construction phases of the Mosul 

dam (Kelley et al., 2007). Sinkholes emerged, in early stages of the operation, around the dam 

site and fissures developed in the foundations. Seven sinkholes were detected to the downstream 

side with a settlement magnitude of 2-3 m (Bowen, 2007). Additional sinkholes were detected 

between 2005 and 2006 indicating continuous dissolution taking place in this area. Thus, it was 

recommended that the dam should be continuously grouted until stability is achieved (Bowen, 

2007). However, the grouting works was suspended for an unknown period after the dam site 

witnessed severe conflict between 7th and 18th August 2014 (King, 2016). 

The complex geology of the Mosul area has been discussed in several studies, although most 

are merely reviews of previous reports presented during the construction stages or afterwards. 

Kelley et al. (2007) published the first detailed report to sum up the available information about 

the geology of the Mosul dam. Their study provided the first geological cross-section of the 

dam. Other geological information about the Mosul dam can be found in (Jassim et al., 1997; 

Jassim et al., 1999). In terms of conventional geodetic monitoring, no previous study has 

examined the instability of the Mosul dam using in-situ data. 
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3.3 The Darbandikhan dam 

3.3.1 The history of Darbandikhan dam 

The Darbandikhan  dam was built between 1956 and 1961 at the intersection between the Diala 

(Sirwan) river and Baranand Dagh anticline (Cordell, 2006; Tofiq and Guven, 2014). The 

embankment type is a clay core rock-fill with a maximum height above the foundation of 

128 m.  Figure 3.5b shows a typical cross section of the dam. The gradient of the upstream and 

downstream slopes is 1:1.75 (V: H) in the upper slope and 1:2 (V:H) in the lower slope, and the 

length and width of the crest are 535 m and 17 m, respectively. The dam crest connects the road 

between Sulaimaniya province and Darbandikhan city, which is about 2 km to the west of the 

dam. The volume of the slope rocks is 5.2×106 m3, and those were taken from the surrounding 

mountainous area (Cordell, 2006). The volume of the clay core is 1.3 ×106 m3, covered with 

filters which are granular material allows the passage of water and prevents the movement of 

the sediment through the dam body with a volume of 0.6×106 m3. Remedial work was carried 

out mainly to stabilise a sliding area on the left and right banks of the reservoir (Cordell, 2006). 

Between 1999 and 2000, the upstream slope was protected by extra riprap which is a layer of 

rocks placed on the upstream slop to prevent the erosion caused by fluctuation in the reservoir’s 

water level. This remedial work was followed by another efforts to support the slope in 2006 

(Cordell, 2006). Between 1983 and 1985, a new 249 MW power station was installed on the 

dam toe to replace a smaller one. The water flow to the turbines is controlled by an intake that 

has three vertical gates, each with dimensions of 4.75 m × 9.50 m (Figure 3.5c). A spillway was 

constructed on the western abutment to control the water level in emergencies. The elevation 

of the spillway ogee is 470 m, allowing  a discharge of 5700 m3/s to 11400 m3/s when the 

reservoir water level varies between 485.00 and 493.50 m, respectively (Cordell, 2006; Tofiq 

and Guven, 2014). The grouting and inspection gallery is divided into two parts separated by 

75 m of the dam that is not penetrated by the gallery. The right gallery runs from a point under 

the spillway head and ends 175 m from the right abutment at an elevation of 366 m. The left 

bank gallery extends for 250 m starting from the left abutment and ending at an elevation of 

373 m (Cordell, 2006). 



 

 48 

 

Figure 3.5  a) The location of Darbandikhan dam indicated on satellite image from Google earth, b) 

overview to the dam site from http://www.rudaw.net/english/kurdistan/03122013 , c) the hydropower 

station of the dam from https://twitter.com/WorldBankMENA?lang=en and d) a typical cross section of 

the dam.   

The design of the dam was carried out by the American Harza engineering company (Tofiq and 

Guven, 2015) while the investigation drilling was accomplished by the Britain Cementation 

and the French Sondages Injections Forages companies. Several contractors and sub-

contractors from the USA, Germany and Austria collaborated in constructing the dam 

embankment. The reservoir capacity is 3 ×109 m3 when the water level is 485 m and; covers an 

area of 133 km2; whereas the live storage capacity is 2.5 × 109 m3. The minimum drawdown 

water level is 434 m; which allows for a dead storage volume of 0.5 × 109 m3. The reservoir has 

been exposed to rockslides on more than one occasion. Therefore, a high water level is 

maintained to prevent any potential slides which could lead to overtopping (Al-Ansari and 

Knutsson, 2011).   

3.3.2 Geological setting of the Darbandikhan dam 

Darbandikhan dam is located 230 km to the north-east of Baghdad and 65 km south-east of 

Sulaimaniyah province (45°51'23.512"E 34°27'10.021"N), see Figure 3.5a. Its location was 

selected to span the gorge formed by the intersection of the Daila river and Branand Dagh 

anticline. Four main geological units can be found in the area: Qarah Chauq Limestone, Green 

http://www.rudaw.net/english/kurdistan/03122013
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Marl Formation, Buff Formation and Bituminous Marl Formation. The dam’s foundation is 

based on the latter two strata (Cordell, 2006). The dam is located close to the collision between 

the Arabian and Eurasian tectonic plates in the Zagros collision zone (Sadeghi and Yassaghi, 

2016).  According to Binnie and Partners (1987), the dam was designed to be safe during 

earthquakes with a maximum Mw of 6.5. The reservoir is surrounded by mountains which have 

witnessed several landslides and rockfall events. It is fed by two rivers, the Diala in the east and 

Tanjero in the north.  

On 12 November 2017, an earthquake with a magnitude of Mw 7.3 struck the border region 

between Iraq and Iran with an epicentre located about 30 km from the Darbandikhan dam. The 

destruction in the nearby cities on both the Iranian and Iraqi sides was extensive. This event is 

the strongest to have occurred in this region. The embankment of Darbandikhan dam was 

seriously affected by shaking and rockfall from the surrounding mountains. The deformation 

of the embankment is obvious, and several cracks on the dam crest emerged. These cracks are 

critical to slope failure should another earthquake take place in the future because they require 

less energy to contribute to the slope failure (Utili and Abd, 2016). In Chapter 5 of this thesis, 

the stability of the dam is examined using three independent datasets: GPS, levelling and 

Sentinel-1A/B. 

3.4 Summary 

This chapter presents a brief summary of historical information of the water system in Iraq and 

described the dams studied in this thesis. Furthermore, historical information is provided about 

the major dams in Iraq and the geological setting of the Mosul and Darbandikhan dams. A brief 

background of the water systems in Iraq is followed by descriptions of the major dams and their 

locations. Topography and climate of Kurdistan, and how these factors contribute to the dam’s 

construction purpose and stability challenges is also discussed. As the evaluation of the stability 

of Mosul and Darbandikhan dam is one of the major aims of this thesis, the construction history, 

geological setting and main issues for each dam are detailed. Also, construction information 

and historical remedial work at both dams are summarised. The problematic geology of the 

Mosul dam foundation is explained along with the development of the karstification in the area. 

Finally, history of Darbandikhan dam and its geological setting are described. The information 

summarized here is crucial to understand the background of these dams before studying their 

instability in the following chapters. 
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Chapter 4. Mosul Dam Instability Revealed from Multiple Geodetic Data  

4.1 Introduction 

Embankment dams are subject to different types of load depending on the geology of the site 

and the construction materials and specifications (Berga, 1998). Loads on an embankment dams 

mainly arise from the embankment self-weight and the reservoir water pressure (Johnston et 

al., 1990). Consequently, embankment may be deformed with different patterns and 

magnitudes. Furthermore, pore water pressure may be compromised due to a weakness in the 

construction materials or the instability of the dam’s foundation which are the main reasons for 

the potential failure of a dam. Deformation can occur in the dam’s crest, foundation or slopes. 

The early detection of deformation and identification of its cause is crucial for dam safety. 

Several dam failure events in history were catastrophic and resulted in huge loss of lives and 

properties. One of the worst disasters in the history occurred when the St. Francis dam in 

California collapsed (Rogers, 1995). The most recent catastrophic event was the collapse of a 

dam under construction in Laos on 23 July 2018, when thousands of people were left homeless 

with hundreds of lives lost (BBC News Asia, 2018). 

The monitoring of dam behaviours during construction and surveillance are crucial and 

controlled by legislation in many countries (Berga, 1998). The investigation of dam stability 

can be carried out with instruments or visually. Large, rapidly developing deformations such as 

those caused by earthquakes, can easily be detected, while the slow deformation that results 

from the dissolution of material requires continuous monitoring. Instruments are used to 

observe the measurable quantities such as surface displacements, foundation subsidence, water 

seepage, hydraulic pressure and the quantity of leaked water whereas visual inspection can help 

to detect cracking or seepage at the early stages. 

InSAR has been approved as an effective tool for large-scale deformation mapping such as in 

mining (Alex et al., 2011; Li et al., 2015), oil and gas extraction (Blom et al., 1999; Khakim et 

al., 2013; Liu et al., 2015), water pumping (Lanari et al., 2004a; Bozzano et al., 2015) and 

tunnelling. Moreover, it has been widely utilised for estimating the pre- co- and inter-seismic 

and volcanic deformation (Rosen et al., 1996; Beauducel et al., 2000; Hooper et al., 2004; 

Spaans and Hooper, 2016). The millimetre level accuracy achieved by InSAR and the high 

temporal accuracy of the new SAR constellations has motivated researchers to evaluate the 

effectiveness of monitoring the stability of dams using InSAR techniques (Blom et al., 1999; 

Tarchi et al., 1999; Usai and Klees, 1999; Vöge et al., 2011; Wang et al., 2011; Wang and 
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Perissin, 2012; Lazecky et al., 2013; Tomás et al., 2013; Di Martire et al., 2014; Sousa et al., 

2014; Anghel et al., 2016; Milillo et al., 2016a; Milillo et al., 2016b; Emadali et al., 2017; 

Milillo et al., 2017; Raventós and Marcos, 2017). The major advantages of InSAR over 

conventional monitoring techniques are its low cost, high resolution and the ability to work in 

all weather conditions during the day and night. However, there are a few drawbacks which 

may affect this ability. Firstly, the deformation can be estimated only in one dimension along 

the line of site (LOS), and secondly there is low sensitivity to the north-south movement in 

contrast to up-down and east-west movement (Wright et al., 2004b). Furthermore, when used 

at embankment dams, the imaging geometry can cause distortions, such as layover and 

foreshortening, that may hinder proper monitoring (Cigna et al., 2014; Emadali et al., 2017). 

Nonetheless, InSAR can be utilised to assess the previous behaviour of structures which have 

not been investigated using conventional geodetic approaches if SAR images are available. 

InSAR can also be used in disasters to evaluating inaccessible sites rapidly. Therefore, InSAR 

can be considered as a complementry approach even if not an alternative to other monitoring 

techniques. 

Mosul dam is the largest embankment dam in Iraq. It suffers from geological issues that lead to 

the risk of a catastrophic scenario at any moment (Bowen, 2007; Annunziato et al., 2016; 

Milillo et al., 2016a). The geological issues with this dam have been discussed in Chapter 3. It 

is obstructing about 11.11 × 109 cubic metres of water from rushing down towards Mosul and 

ultimately southward to Baghdad. The dam was built in 1985 for the purpose of irrigation and 

power generation. The majority of previous studies have focused on the geological setting of 

the dam foundation and the surrounding area using construction reports (Jassim et al., 1997; 

Jassim et al., 1999; Bowen, 2007; Kelley et al., 2007; Wakeley et al., 2007; Al-Saigh and Al-

Dabbagh, 2011; Sissakian et al., 2014; Al-Ansari et al., 2015). The results of these studies 

suggest that the Mosul area is highly karstified due to the presence of the soluble rocks 

encountered in this region (Kelley et al., 2007; Salih, 2013). A few other studies have 

investigated the sedimentary impact on the dam lake (Ezz-Aldeen et al., 2013; Issa, 2013; Issa 

et al., 2013). It has been revealed that the lake is exposed to high sedimentation rates that 

reached 17.6 m in the upper part of the lake between 1986 and 2011 (Issa, 2013). 

Coffman (2009) utilised Envisat images to analyse the movement of the dam surface using 

multi-temporal InSAR for the period between 2003 and 2010. According to the results the 

velocity of vertical displacement on the dam surface is 8 mm/year along the LOS. Milillo et al. 

(2016a) used multi-temporal and multi-platform InSAR to monitor the instability of the dam 

between 2003 and 2016 using SAR data from Envisat, Sentinel-1 and COSMO-SkyMed. Their 
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study showed an acceleration of dam displacement after August 2014 when grouting activities 

were paused for an unknown period after the dam site was captured by the self-proclaimed 

Islamic State (IS). 

This chapter firstly describes the instability of the dam using levelling epochs collected between 

1989 and 2017 over 87 BMs on the dam surface. The history of the dam’s instability along the 

dam axes and in the lateral upstream-downstream directions is discussed in detail. Areas with 

critical instability are indicated precisely by comparing the surface and foundation 

displacements. Additionally, the relationship between the magnitude of subsidence and 

variations in the reservoir water level is investigated. Secondly, an InSAR time series analysis 

is presented. Six tracks, two from Envisat, one from COSMO-SkyMed, one from TerraSAR-X 

and two from Sentinel-1 are used to monitor the external surface movement of the dam. The 

velocity of the vertical and horizontal displacements is estimated using 2D InSAR 

computations. For the time span between 2003 and 2010, ascending and descending Envisat 

tracks are used while, for the period 2014-2017, three tracks from Sentinel-1 ascending, 

Sentinel-1 descending and COSMO-SkyMed ascending are used. The agreement between 

InSAR and the vertical movement from levelling data is presented. 

4.2 Datasets 

4.2.1 The horizontal monitoring network of the Mosul dam 

Mosul dam is provided with two geodetic networks to monitor the stability of the embankment, 

power station, water intake and spillway. The first network is used for the monitoring of the 

horizontal movement in the main dam and its surrounding area. The second is used to monitor 

vertical subsidence in the dam crest, foundation and the other controlling structures such as the 

guard chamber, power station intake, and spillway. The horizontal network consists of 20 

pillars, six of which are fixed on the dam crest and labelled P1 to P6 (see Figure 4.1). Each 

pillar is fixed along the main axes of the dam with a concrete monument and distributed on 

almost equal intervals (Figure 4.2b). The other pillars are distributed on the surrounding area 

of the main dam. The State Commission of Survey (SCS) is one of the Ministry of Water 

Resources (MOWR) institutes in Iraq, and it is in charge of the geodetic monitoring of the dam. 

According to the SCS, the main horizontal network consists of two subnets surrounding the 

area of the dam. These subnets are distributed in two zones surrounding the dam site. The first 

subnet is monitored every five years using the Iraqi national geodetic network every five years. 

However, this subnet has been destroyed, but it was being used to monitor the second network 

closer to the dam site every 2.5-years. This second subnet is the only one that still exists, and it 
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is used to monitor the six pillars fixed on the dam crest every six months. The survey of the 

whole network requires the measurements of 154 distances and 214 angles. According to the 

International Commission on Large Dams ICOLD (2005), the stability of the reference network 

should be examined using the external network before observing the monitoring pillars. 

However, this examination has not been performed because the external reference network has 

been destroyed. Therefore, the horizontal network is not used in this study to avoid any analysis 

mistakes which can results from the distortion in this network. 

 

 

Figure 4.1. The horizontal geodetic network of the Mosul dam. The monitoring pillars P1-P6 are 

monitored using the other reference pillars on the dam site. Background image from (Esri, DigitalGlobe 

2018). 

 

4.2.2 The vertical monitoring network of the Mosul dam 

The vertical monitoring network consists of 87 pillars arranged in six longitudinal lines parallel 

to the dam axis (Figure 4.2a). Levelling data for the first line on the upstream side is not 

available because these pillars are seasonally covered with water, and thus they are not involved 

in the monitoring plan. The six pillars from the horizontal network on the dam’s crest (P1-P6) 

are additionally involved in precise levelling. All of the benchmarks on the dam are used to 

assess vertical movement with respect to a reference benchmark fixed on a stable area outside 
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the dam site. The reference benchmark is known as BM20 and is indicated by a black square in 

Figure 4.2a. Other pillars are established on the hydraulic power station, the spillway and the 

guard chamber to monitor the stability of these structures. The benchmarks on the dam crest 

are fixed with a metal pole inside a concrete box and protected with a metallic cover Figure 

4.2d). The benchmarks on the dam slope are established with a concrete monument and are 

fixed on the compacted rock surface (Figure 4.2c). The pillars are distributed regularly to cover 

the dam crest and the upstream and downstream slopes. The names of the pillars can be found 

in Figure 4.3. 

Levelling is carried out by a specialist team from the SCS every six months (mostly in June and 

November each year) (SCS, 2017). The reservoir water level typically reaches its maximum 

and minimum levels during these two times of year. However, the campaign measurements 

were cancelled or delayed a few times due to security issues or economic circumstances. 

Geodetic observations were carried out using an optical level during the period from 2005 to 

2012. In recent years, GNSS observations have been collected to evaluate the horizontal 

instability while an electronic level is utilised for precise levelling. However, GPS data is not 

available for this study. It is not known exactly in which year the electronic level instead of 

optical level has been used. The surveying was carried out with closed loops which are shown 

in Figure 4.2 as one to the upstream benchmarks and the other for the downstream benchmarks 

on the dam surface. The same procedure and loops are followed during each levelling epoch to 

guarantee similar monitoring circumstances. The elevation of each BM is adjusted using the 

least-squares approach to yield the instant elevation for each BM (SCS, 2017). The relative 

vertical displacement of each BM with respect to the first epoch t0 is calculated as follow.  

 𝑑𝑉𝑏𝑖 = 𝐻𝑏(𝑡𝑖) − 𝐻𝑏(𝑡0) (4.1) 

Were dVbi is the vertical displacement of any BM which occurred between ti and t0, and Hb(ti) 

is the absolute height of that BM at ti. The mission of observing the whole network usually 

takes 10-15 days.  
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Figure 4.2. The vertical geodetic network of Mosul dam: a) location of BMs on the Mosul dam, where 

dashed lines refer to the levelling loops which are used in geodetic levelling monitoring. Background 

image from (Esri, DigitalGlobe 2018), b) monument pillar of the horizontal network, c) BM on the dam 

slope; d) BM on the dam crest; e) BM on the gallery. 
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Figure 4.3. Levelling benchmarks of the Mosul dam. 

 



 

 57 

4.2.3 SAR datasets 

The InSAR analysis described in this chapter utilises SAR images collected during the span 

between March 2003 and August 2017 from four different platforms: 1) ESA’s Envisat; 2) 

ESA’s Sentinel-1[S1]; 3) the Italian COSMO-SkyMed [CSK]; and 4) the German TerraSAR-

X [TSX]). The number of images in each track is shown in Table 4-1. Figure 4.4 illustrates the 

temporal coverage of each dataset. Both ascending and descending tracks from Envisat and 

Sentinel-1 are utilised. There are 22 ascending and 24 descending C-band Envisat images, 39 

ascending X-band CSK images, 14 descending X-band images from TSX, and 47 ascending 

and 51 descending C-band Sentinel-1A/B images. Figure 4.5a shows the spatial coverages of 

the Envisat, CSK and TSX datasets while the Sentinel-1 coverage is shown in Figure 4.5b. As 

the number of acquisitions and spatial coverage of Sentinel-1 images are huge compared to the 

other platforms, thanks to the Copernicus Sentinel-1 program for high temporal resolution, the 

processing of all the Sentinel-1 images would be computationally very expensive during both 

the differential interferometry and the time series analyses. Accordingly, cropping the image to 

a small area can reduce the processing time significantly. Nonetheless, if the size of the cropped 

image segment is quite small, any long wavelength signals from orbital error or atmospheric 

delay may not be easily observed. Therefore, three bursts of Sentinel-1 images were extracted 

from the whole datasets to be used in the interferometry processing. The procedure used for 

extraction is explained in section 4.3.1. 

Table 4-1. SAR datasets used in this study 

SAR system Pass 

direction 

Number 

of images 

Number of 

interferograms 

Time span (from/to) 

Sentinel-1 

A/B 

Ascending 47 595 03/10/2014 22/09/2016 
Descending 51 780 04/10/2014 11/09/2016 

Envisat Ascending 22 84 27/03/2003 29/04/2010 

Descending 24 89 12/06/2003 23/09/2010 

TerraSAR-X Descending 14 91 25/05/2015 11/05/2016 

COSMO-

SkyMed 

Ascending 39 288 03/01/2014 18/04/2016 
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Figure 4.4. Temporal coverage of the SAR images and levelling data used in the Mosul dam study. 

 

     

Figure 4.5. Coverage of SAR datasets: a) Envisat, COSMO-SkyMed and TerraSAR-X; b) Sentinel-1 

coverage where dashed boxes refer to the coverage of three bursts extracted from the Sentinel-1 scene 

while the black square in the image subset refers to the area used in time series processing. 

4.3 Methods 

4.3.1 Sentinel-1 processing 

The Sentinel-1 Interferometric Wide Swath (IWS) images are collected in the TOPS acquisition 

mode (De Zan and Guarnieri, 2006). In this mode, the radar antenna is tilted to the azimuth and 

range direction so as to achieve a large swath coverage of about 250 km at the cost of along-

track spatial resolution. The IWS acquisition consists of three Single Look Complex (SLC) 

subswaths with a few bursts in each subswath (Figure 4.6). The area of interest can be covered 

by two or three successive acquisitions. Therefore, a MATLAB script was developed to extract 
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a subset from each acquisition followed by mosaicking these subsets to generate an SLC image 

segment covering the area of interest. This was achieved by using a Google Earth kml polygon 

covering the area of interest (AoI). From each acquisition, only the bursts that are within or 

intersect with this polygon are extracted from the scene. This process detects the common bursts 

from two acquisitions automatically and determines the adjacent bursts from two successive 

acquisitions.  

Firstly, a sequence number between 1 and 3 is given to the three subswaths. Also, each burst 

within the subswath is given a sequenced number between one and the maximum number of 

bursts in each subswath. This gives each burst a position within the scene represented by a pair 

of coordinates. The first number of this pair refers to the subswath and the second number refers 

to the sequenced number of the burst in this subswath. For example, a burst having the 

coordinates (2,4) is the fourth burst within the second subswath. Hence a subset of the image 

can be represented by a pair of coordinates referring to the first and last bursts in the image 

subset. For example, the subset (1,4;3,7) refers to an image segment that includes all the bursts 

located between the fourth burst in the first subswath and the seventh burst in the third 

subswath. An auxiliary text file containing the subset coordinates is generated for each 

acquisition. This file is used then to extract the SLC subset and to mosaic the adjacent 

acquisitions when the AoI is partially covered by two successive scenes.  

Figure 4.6 illustrates an example of the extraction of the area of interest from two successive 

acquisitions to generate an SLC image segment that fully covers this area. The first subset is 

(2,1;2,1) representing only the first burst from the second subswath, while the second subset 

from the second acquisition is (2,8;2,9) representing the 8th and 9th bursts of the second 

subswath. This approach is merely a technical solution to reduce the time and effort involved 

investigation of each scene in order to generate an image segment covering the area of interest. 

One of the Fringe 2017 workshop recommendations was to find a solution to the problem of 

the different coverage slicing in Sentinel-1 acquisitions (Fringe, 2017). Following this approach 

overcomes this problem, and the processing time and efforts can be remarkably reduced. 
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Figure 4.6. Mosaicking two Sentinel-1 adjacent acquisitions to cover the area of interest. 

4.3.2 Interferometric processing 

Gamma software (Wegmüller and Werner, 1997) was used for interferometry processing. For 

each dataset, the SLC images were generated in the first step. For Envisat and Sentinel-1 

images, the precise orbit vectors were used to eliminate the first order long wavelength orbital 

error. The Sentinel-1 precise orbit vectors were downloaded from 

https://qc.sentinel1.eo.esa.int/aux_poeorb/, while the Envisat DORIS precise Orbit State 

Vectors were downloaded from https://earth.esa.int/web/guest/data-access/browse-data-

products/-/article/doris-precise-orbit-state-vectors-1502. In order to generate an image with an 

almost squared pixel, Envisat and Sentinel-1 data were multilooked with 1×5 and 5×1 

respectively. This multilooking achieves a pixel size of about 20 m × 20 m. The co-registration 

of each dataset was carried out using the first acquisition as a reference for all other images. 

Special attention was given to the Sentinel-1 co-registration (Scheiber and Moreira, 2000; 

Wegmüller et al., 2015), because the conventional co-registration approach is not sufficient due 

to the phase discontinuity present on the burst overlap along the azimuth direction. This is a 

consequence of the Doppler shift of the spectrum in TOPS imaging mode. Therefore, the 

spectral diversity algorithm (Scheiber and Moreira, 2000) was used to enhance the accuracy of 

co-registration. 

Only interferograms with a perpendicular baseline smaller than 400 m were generated in order 

to mitigate the geometrical decorrelation. The visual inspection of some interferometric pairs 

with a perpendicular baseline longer than 400 m showed that such pairs are not reliable because 

of their geometric decorrelation. Another constraint was applied to treat interferometric pairs 

having a temporal baseline of fewer than 900 days. This choice is supported by evidence that 

the man-made structures can show good coherence over several years (Usai, 2000; Hanssen and 

van Leijen, 2008). However, it has been noticed that interferograms with a temporal baseline 

https://qc.sentinel1.eo.esa.int/aux_poeorb/
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-orbit-state-vectors-1502
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/doris-precise-orbit-state-vectors-1502
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longer than 900 days show low coherence over the Mosul dam because of the high phase 

gradient and temporal decorrelation. Figure 4.7 illustrates the spatial-temporal network of the 

six SAR tracks used in this chapter. It can be observed that a massive number of interferometric 

pairs is generated from the Sentinel-1 acquisitions because of the favourable perpendicular and 

temporal separations. In order to separate the topographical phase component from the other 

components, a DEM with a spatial resolution of 6 m was generated from a pair of TanDEM-X 

[TDX] images collected in 2012 and an auxiliary 30 m Shuttle Radar Topography Mission 

(SRTM) DEM. 

Figure 4.7. Spatial-temporal baseline network for: a) Envisat ascending; b) Envisat descending; c) 

COSMO-SkyMed ascending; d) TerraSAR-X descending; e) Sentinel-1 ascending; and f) Sentinel-1 

descending. 
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It can be seen from Figure 4.7 that the interferometric pairs from Envisat, CSK and TSX have 

longer perpendicular baselines compared with Sentinel-1. A long perpendicular baseline leads 

to a slight difference in viewing angles. As a result, geometrical decorrelation can be significant. 

In order to reduce this decorrelation in such interferometric pairs, range spectral shift filtering 

was applied so that only the common spectral band between the master and the slave 

acquisitions would be considered (Gatelli et al., 1994b). This method can reduce geometrical 

decorrelation when the spatial separation is relatively long. Since the acquisition mode of 

Envisat, CSK and TSX images is the StripMap (ST) where the look angle is fixed in the azimuth 

direction, no azimuth spectral filtering is required. In contrast, Sentinel-1 acquisitions are 

acquired from small spatial separations. Thus, the ground wavenumber spectra of the master 

and slave acquisitions can be quite similar and, therefore, no spectral bandpass was applied.  

Figure 4.8 shows individual differential interferograms from each dataset in this study. It can 

be noticed that the 455-day interferogram from Envisat is strongly affected by temporal 

decorrelation because of the long temporal interval. However, the coherence over the dam site 

and some other rock surfaces are still sufficient for deformation estimation. The coherence of 

the other interferograms is functional due to their short time separations. The phase signal in 

the interferograms is a combination of deformation, atmospheric delays, orbit errors and DEM 

errors. However, the spatial variability of the signal refers to the domination of the tropospheric 

signal. This tropospheric signal can mask the deformation signal completely (Zebker et al., 

1997; Hanssen, 2001). The separation of the deformation signal from other components is 

required, and this is discussed in section 4.3.3. 

 In order to mitigate temporal and geometrical decorrelation, spatial adaptive filtering 

(Goldstein and Werner, 1998) was applied to the interferograms. This approach should lower 

phase noise and make phase unwrapping easier. However, the spatial resolution can be reduced 

slightly. The exponent of the non-linear filtering applied to all datasets was 0.7 with a filtering 

window of 64 pixels for Envisat and Sentinel-1 data which represent 960 m while for CSK and 

TSX the filtering window size is 32 pixels which represent 128 m. The window size is a critical 

parameter, especially for the non-linear localised deformation. The window size must be 

carefully selected as a trade-off between a reliable estimation of coherence and compatibility 

with image resolution (Usai and Klees, 1999). Ultimately, the noise in the filtered 

interferograms is reduced significantly, and this leads to less unwrapping errors.  
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Figure 4.8. Sample interferogram from each dataset used in the Mosul dam study. a) 696 days ascending 

interferogram from Sentinel-1; b) 684 days descending interferogram from Sentinel-1; c) 805 days 

ascending interferogram from Envisat; d) 875 days descending interferogram from Envisat; e) 352 days 

ascending interferogram from CSK; f) 532 days descending interferogram from TSX. 
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The unwrapping step was carried out using the minimum cost flow (MCF) 2D unwrapping 

(Costantini, 1998). Given that the phase of each pixel is related to the change in the Satellite-

target distance, the unwrapping process should adopt a reference area to guarantee that the 

unwrapped phase for all pixels is relative to one reference. Accordingly, the levelling reference 

benchmark BM20 was selected as the centre of the reference area for the unwrapping process. 

This not only eliminates the phase offset among the individual interferograms, but also to 

mitigate the displacement offset between the levelling and InSAR. BM20 was installed on what 

was presumed a relativly stable area of the west side of the dam (Figure 4.2) and close to the 

dam site, which makes it suitable as an unwrapping reference. Unwrapping errors in some 

Envisat descending interferograms was quite clear and thus a manual correction of these errors 

was carried out. The correction was performed on areas showing phase discontinuities by 

adding 2π for these areas until acceptable phase continuity is achieved. The unwrapped 

interferograms were then geocoded and cut for a small area covering the Mosul dam site (Figure 

4.5). Due to the small scale of the area of interest, the local oscillator decay were not removed 

from Envisat datasets as this is neglectable for such a localised area (Marinkovic, 2013). The 

size of the cut area is shown in Figure 4.5b by a black rectangle. 

4.3.3 InSAR time series analysis 

Surface displacement time series and mean linear velocity were estimated for each datasets 

using the in-house InSAR TS+AEM software (Li et al., 2009) which is based on the small 

baseline subset (SBAS) approach (Berardino et al., 2002). The network of differential 

interferograms was inverted to the phase time series of the acquisition epochs using the least 

square approach. The constraints adopted in the interferometry processing result in a fully 

connected network. Given that the tropospheric contribution is corelated in space only and the 

noise is not corelated with both time and space, a temporary linear velocity (TLV) model is 

used to estimate the atmospheric phase screen (APS). The process was iterated until divergence 

achieved.   The results of the SBAS approach are the displacement time series, the mean linear 

velocity, the APS time series and the DEM errors, all estimated along the LOS direction. 

A high-resolution TanDEM-X DEM was generated using a pair of images collected in 2012. A 

coherence masking threshold of 0.7 was selected to mask out the water bodies from the DEM. 

Thus, in all the interferograms, the signals from the water bodies of the reservoir and the river 

are completely masked out. 
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4.3.4 2D and 3D displacement models 

To carry out a comparison between the InSAR and levelling displacements, these displacements 

must be estimated along the same vertical axis. Additionally, they have to be estimated at the 

same epochs. The time series of InSAR from one side and the time series from the levelling 

data from the other side were collected in completely different epochs. Furthermore, the InSAR 

time series was estimated along the LOS direction while the levelling time series was estimated 

along the vertical direction. Therefore, 2D velocity maps were generated to  estimate the vertical 

(U) and horizontal (H) velocity maps using two or more LOS maps with the assumption that 

the direction of the horizontal deformation vector is perpendicular to the dam axis. The 2D 

estimation was used for the interval between 2003 and 2010 as only two tracks from Envisat 

were available, while three tracks from Sentinel-1 ascending, Sentinel-1 descending and CSK 

ascending were used for the interval from 2014 to 2017. The 2D computations is derived as 

follow: 

In the 3D computations, east (E), north (N) and up (U) components can be derived by using the 

following formulas:  

 𝑅 = 𝑈. 𝑃 (4.2) 

where R is the projection of the velocity vector U onto the LOS, and P is the unit vector pointing 

from any target on the ground to the SAR antenna. Accordingly, equation (4.2) can be written 

as:  

 𝑣 = 𝐸 sin 𝜃 sin 𝜑 + 𝑁 sine 𝜃 cos 𝜑 + 𝑈 cos 𝜃 (4.3) 

where ν is the velocity along the LOS, E, N and U are the three components of the deformation 

velocity vector, θ is the incidence angle, and φ is the azimuth of the LOS. 

When the number of velocity maps from InSAR is n then equation (4.3) can be rewritten in 

matrix form to be solved as: 

               𝑅𝑛×1 = [
𝑣1
⋮

𝑣𝑛
]         𝑈3×1 = [

𝐸
𝑁
𝑈

]  

          𝑃𝑛×3 = [
sine 𝜃𝑖 sin 𝜑𝑖 sin 𝜃𝑖 cos 𝜑𝑖 cos 𝜃𝑖

⋮ ⋮ ⋮
sine 𝜃𝑛 sin 𝜑𝑛 sine 𝜃𝑛 cos 𝜑𝑛 cos 𝜃𝑛

] ⋀  i=1…n. 

This matrix form can be solved using the least squares approach:  
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 𝑈 = (𝑃𝑡𝑊𝑃)−1 (𝑃𝑡𝑊𝑅) (4.4) 

The error in the 3D components can be estimated from the variance-covariance matrix Σxx as 

follows.  

 Σ𝑥𝑥 = (𝑃𝑡Σ𝑣𝑣𝑃)−1 (4.5) 

where Σvv is the inverse of the variances of three line of sight velocities estimated from the 

SBAS time series. Thus, the diagonal axis of Σxx is the variances of the 3D components: 𝜎𝑒
2, 𝜎𝑛

2, 

𝜎𝑢
2. An important concern should be raised here, as the nearly polar orbit of the SAR system 

causes a significant reduction in the precision of the N component. In other words, if there is a 

movement in the downstream direction, it may be inaccurate because the flight direction is 

almost in the polar orbit (Wright et al., 2004b; Motagh et al., 2017).  

In the cases when only two tracks are available, an assumption can be made that the horizontal 

movement of the dam is dominantly downstream. In other words, zero movement along the 

dam axis is assumed. However, this assumption may still mis-estimate the lateral movement 

because the direction of the dam axis is mostly in an east-west direction which may result in 

reduced sensitivity to the horizontal component. The 2D computations are performed as 

follows. 

If E and N in equation (4.3) are substituted by the following 

 E=H sin λ   and N=H cos λ (4.6) 

where H is the horizontal component of the dam movement toward the downstream and 

perpendicular to the dam axis, and λ is its azimuth, then equation (4.3) can be rewritten as:  

 𝑣 = 𝐻 sin λ sin 𝜃 sin 𝜑 + 𝐻 cos λ sin 𝜃 cos 𝜑 + 𝑈 cos 𝜃 (4.7) 

In equation (4.7), H and U can be computed using only two observations from the Envisat 

ascending and descending datasets. Alternatively, three LOS maps can be used as a redundant 

observation and the equations solved using the least squares approach. Figure 4.9 shows the 

geometry of the 2D computations.  
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Figure 4.9. Geometry of the 2D computations indicated on a Google earth image. 

4.4 Results and discussion 

4.4.1 Crest vertical displacement from levelling data 

Figure 4.10 shows a comparison of the vertical movement of five cross-sections on the dam 

crest. The analysis of 21 geodetic monitoring epochs carried out between June 1989 and August 

2017 shows that the pillars on the centre of the dam crest exhibited the maximum movement 

using June 1989 as the reference date, with zero settlement for all benchmarks. The extent of 

each cross-section is indicated in Figure 4.10f. For discussion purposes, each cross-section is 

given a name to distinguish it from the others. The names are Upstream, Crest, Downstream1, 

Downstream2 and Downstram3. The three cross sections on the downstream slope are arranged 

from top to bottom respectively. The cross-sections are arranged in almost parallel lines with 

respect to the dam axis in order to compare the settlement of the dam in the lateral direction. In 

order to mitigate the correlation between the magnitude of the displacement and the height of 

each BM, the pillars in each cross section were chosen to have almost similar elevations. It is 

worth mentioning that the elevations of some pillars are missing at specific epochs. 
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Figure 4.10. The Vertical displacements of the Mosul dam: a-e) on five cross sections on the dam surface 

between 2005 and 2017. f) the extent of each cross section. The names of the pillars can be found in 

Figure 4.3. 

In Figure 4.10 the maximum settlement in the crest is 610 mm, which is located at 840 m from 

the reference station on the east abutment of the dam. The average height of the Upstream cross-

section is 330 m, which is 15 m higher than the average height of the Downstream1 cross-

section. However, the displacements of the Downstream1 cross-section is larger than the 

displacements in the Upstream1. This may indicate that the downstream slope of the dam has 

subsided faster than the upstream slope during 1989-2017. The Downstream2 cross-section 

shows the least displacement compared to other cross-sections, with a maximum settlement of 

250 mm. Nonetheless, the area close to station 0+500 has subsided faster than the neighbouring 

points which are closer to the dam centre, and this is also revealed by the Upstream and 

Downstream1 cross-sections. The pillar BM56 in the crest is the closest to the centre of the 

subsidence, having a maximum vertical displacement of 610 mm occurred between 1989 and 

2017, while the maximum vertical displacements in the upstream is 420 mm in BM63 for the 
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same period. In contrast, the maximum vertical displacements in Downstream1 and 

Downstream2 are 530 and 250 mm as observed in BM63 and BM72 respectively. According 

to the above analysis, Downstream2 behaves differently in comparison to the other cross-

sections. In other words, the maximum displacement of the Upstream, Crest and Downstream1 

cross-sections occurs between station 0+839 and station 0+940, while the maximum 

displacement in Downstream2 occurs in station 1+063. This confirms heterogeneities of the 

dam behaviour on the Downstream2 cross-section. 

4.4.2 Gallery vertical displacement from levelling data 

In addition to the analysis of the Mosul dam crest, 150 levelling BMs inside the grouting gallery 

were utilised to assess the instability of the dam foundation. The levelling was carried out with 

Zeiss Ni2 and Topcon digital level taking BM20 as a reference benchmark. The standard 

deviation of the adjusted levels for all BMs was less than ±2 mm. Thus, the expected uncertainty 

in the estimated displacement between each two epochs is: 

𝜎𝑙 = √𝜎1 + 𝜎2 

where σl is the error in displacement, σ1 and σ2 are the standard error in the first and second 

observations respectively, presuming different types of equipment are used in the observations. 

Figure 4.11 shows a longitudinal cross-section of the vertical displacement in the dam 

foundation between June 1989 and August 2017 and a geological section showing the estimated 

water pressure in the construction time. It can be seen that the maximum displacement in the 

gallery was 180 mm, that is slightly shifted towards the east abutment of the dam. the 

subsidence area falls within the maximum water pressure measured in the construction time 

Nonetheless, there was clear progressive subsidence around the three stations: 0+413, 0+959 

and 1+339. This localized subsidence of the dam foundation is an evidence of the potential for 

failure (Charles, 1986; US Army Corps of Engineers, 2002), because it could lead to a hydraulic 

fracture and thus development of a seepage path (Almog, 2011). Insufficient grouting could 

shorten the seepage paths and concentrates the hydraulic pressure in specific zones which could 

lead to piping in the foundation (ICOLD, 2005). The subsidence of station 0+950 during only 

four months between June 2009 and October 2009 was 6mm. This rapid displacement is 

unprecedented during the displacement history of this point. Data on the grouting history was 

not available in order to allow an investigation of the reason for this rapid displacement. 
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Figure 4.11 Progressive vertical displacement of the Mosul dam foundation measured between June 1989 and August 2017 plotted with geological section of the dam 

showing the water pressure on the foundation estimated in the construction time (Kelley et al., 2007).  
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A comparison of Figure 4.10 and Figure 4.11 shows that the displacements at the crest is larger 

than that of the foundations. This is likely to have occurred because the volume lost at the 

foundations is substituted by a larger volume from the upper layers due to the large compaction 

forces on the layers close to the foundation. Hence, this could loosen the compaction on the 

layers close to the crest and accordingly internal erosion may occur. 

Figure 4.12 shows the displacement of the dam foundation at stations 0+413, 0+959 and 1+339 

respectively whereas the surface subsidence was discussed in section 4.4.1. Velocity of the 

displacement where estimated over three periods, 1989-2005, 2005-2014 and 2014-2017. As 

revealed in section 4.4.2, the displacements rate was fast between 1989 and 2005, slowed down 

between 2005 and 2013 and reaccelerated after 2014.  
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Figure 4.12 Vertical displacement and velocity (V) of three stations in the gallery. a) Station 0+960; b) 

Station 1+349; and c) Station 0+400. 
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4.4.3 Correlation between displacements and water level. 

Figure 4.13 shows the vertical displacement of the crest on the centre of the area of deformation 

at two benchmarks, BM56 and BM65 along with the water level time series. The correlation 

between subsidence velocity estimated over two period, 1989-2005 and 2005-2017. The 

correlation between the water level and the displacement rate is clear. It can be seen that the 

velocity of the subsidence was about 29 mm/year between 1989 and 2005 but when the water 

level lowered to 320 m, the velocity decelerated to 11 mm/year. The same effect of the water 

level reduction can be seen in Figure 4.13b.  

 

Figure 4.13 Correlation between the water level and the displacement at station 0+840 (centre of the 

deformation area).  
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4.4.4 InSAR time series results 

Figure 4.14 shows the LOS velocity map for each track of the six SAR datasets used in this 

study. The pattern of displacement from the six displacement maps is very similar. However, 

the magnitude of the subsidence differs slightly in the six maps. This is likely to be due to: 1) 

the different acquisitions geometry of the SAR datasets; and 2) the difference in temporal 

coverage for each dataset. The displacement maps from Envisat, from the ascending and 

descending data, show rapid subsidence of 10 mm/year during the period 2003-2010. The 

disagreement between the ascending and descending maps may occur due to the foreshortening 

of the dam slope in the ascending images which can under estimate the displacement signal. 

The comparison of the six maps shows a rapid displacement between 2003 and 2010 with a 

deceleration of displacement velocity between 2014 and 2015. Additionally, the TSX map 

shows an acceleration in displacement between 2015 and 2016. This acceleration is very likely 

occured after the suspension of grouting operations in August 2014. Rapid displacement at 

station 0+916 is indicated in Figure 4.14f which agrees with the levelling results at the 

Downstream3 cross-section. The acceleration of the displacement could take few months before 

becoming apparent on the dam surface, and thus it can be shown clearly in the data collected a 

few months after the event and this is achieved by TSX data. Also, it can be seen, in all the 

velocity maps that the descending data shows a stronger signal than the ascending data due to 

the imaging geometry and the dam orientation, thus the acceleration can be seen clearly in the 

descending data.  

The displacement maps from Sentinel-1 ascending and descending exhibit better coherence 

than the Envisat maps. This is due to the higher temporal resolution of the Sentinel-1 

acquisitions. Given that the X-band images are more sensitive to the temporal decorrelation, 

the velocity maps from CSK and TSX show larger masked (incoherent) areas in contrast to 

Sentinel-1 and Envisat maps because of temporal decorrelation. Moreover, the displacement 

map from TSX exhibits a more irregular signal because of the short temporal coverage of the 

TSX acquisitions. 
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Figure 4.14. LOS velocity maps from six tracks in three different time spans: a) Envisat ascending and 

b) descending tracks during 2003-2010; c) Sentinel-1 ascending and d) Sentinel-1 descending; e) 

COSMO-SkyMed ascending during 2014-2015; and f) TerraSAR-X descending during 2015-2016. Note 

that the map from TerraSAR-X is noisier than the others due to the limited number of TSX images and 

the short time span. 

Figure 4.15 shows the vertical and horizontal velocity maps estimated using the 2D 

computations discussed in section 4.3.4. Envisat ascending and descending data was used for 

the period between 2003 and 2010, while Sentinel-1 ascending, Sentinel-1 descending and CSK 

ascending data was used for the period between 2014 and 2016. The CSK data overlaps with 

the Sentinel-1 data for 1.5 years between October 2014 and April 2016. The horizontal velocity 

maps do not show significant horizontal movement between 2014 and 2017, while some noisy 

signal, can be seen in the 2003-2010 map. If the direction of horizontal movement is assumed 



 

 76 

to be downstream (south-west), then such movement could have been partially underestimated 

(Wright et al., 2004b; Motagh et al., 2017). 

 

Figure 4.15. 2D deformation maps for two periods, a,b) vertical and horizontal deformation maps from 

2003 to 2010 and c,d) vertical and horizontal deformation maps from 2014 to 2016. The first two maps 

were estimated from Envisat ascending and descending, while c) and d) estimated from Sentinel-1 

ascending, Sentinel-1 descending and CSK ascending tracks.  

4.4.5 Comparison of InSAR and the levelling dispalcements 

In order to validate the InSAR 2D velocity maps, levelling data collected over 87 benchmarks 

on the dam surface was employed. The average velocity of each benchmark for the span covered 

with SAR data was estimated and compared to the vertical velocities estimated from the use of 

InSAR 2D approach. The comparison suggests an RMS of 1.7 mm/year and a correlation of 

0.93 between InSAR and levelling data during 2003-2010. In contrast, the RMSE for the 

difference between InSAR and levelling velocities is 0.88 mm/year during 2014-2017 with a 

correlation of 0.95. Moreover, difference of velocities between the two techniques during the 

period 2003-2010 is less than that for the span between 2014 and 2017. This could be caused 

by the acceleration of the surface displacement between 2014 and 2017. 
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Figure 4.16. Comparison between mean linear velocity from InSAR and levelling using 87 benchmarks 

on Mosul dam: a) for the period between 2003 and 2010; and b) for the period between 2014 and 2017. 

Since the horizontal movement of the Mosul dam embankment is not very significant as was 

shown in Figure 4.15, the agreement between vertical displacement from levelling data and 

InSAR timeseries for each track has been examined. The vertical displacement from leveling 

was projected to the LOS using the incidence angle of each track. Figure 4.17 shows the 

agreement between levelling and TSX timeseries of six benchmarks on the upstream and 

downstream slopes for the period between 2015 and 2016. The RMS for the six benchmarks is 

less than 1 mm. 

The comparison between leveling and InSAR timeseries at benchmark located on the center of 

the deformation (BM56) for each dataset is shown in Figure 4.18. The best agreement is 

achieved by the CSK and TSX timeseries and this is likely due to the high spatial and temporal 

resolution of this data. Since Envisat ascending data exposed to high foreshortening factor, 

timeseries from this dataset shows the largest RMS in contrast to other datasets, i.e., 8.6 mm. 

Similarly, Sentinel-1 ascending data shows larger RMS in contrast to Sentinel-1 descending for 

the same reason.  
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Figure 4.17. Agreement between levelling and TSX timeseries for benchmarks located on the upstream 

(left) and downstream (right). 

The RMS maps for levelling and Envisat ascending and descending timeseries for all 

benchmarks on the dam surface is shown in Figure 4.19. The RMS for all BMs is less than 8 

mm except BM65 which is indicated with red circle. This point is located in a small deformed 

area (see Figure 4.14f) and thus the RMS between levelling and InSAR is about 20 mm. This 

large RMS can be due to the high displacement gradient in this area (Emadali et al., 2017).  
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Table 4-2. Imaging geometry and spatial resolution of SAR images collected over the Mosul dam. 

Platform Heading(deg) Incidence angle(deg) Spatial resolution 

(m) 

CSK ascending -10.34 35.81 5 

Envisat ascending -12.03 19.21 20 

Envisat descending -168.11 24.69 20 

TSX descending -170.51 43.09 3 

Sentenel-1 ascending -13.20 41.02 20 

Sentinel-1 

descending 

-166.89 41.18 20 

 

 

Figure 4.18. Agreement between levelling and InSAR timeseries for benchmarks located at the dam's 

deformation center (BM56), InSAR displacements were fitted to the leveling displacement by subtracting 

the mean difference between the two techniques, RMS value is indicated for each figure. 
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Figure 4.19. RMS map between levelling and InSAR timeseries for a) Envisat ascending and b) Envisat 

descending, BM 65 which is indicated with red circle has maximum RMS (≈20 mm) in both maps, 

background from Google Map.  

 

Figure 4.20. RMS map between levelling and InSAR timeseries for a) CSK ascending and b) TSX 

descending, background from Google Map. 

 

Figure 4.21. RMS map between levelling and InSAR timeseries for a) Sentinel-1 ascending and b) 

Sentinel-1 descending, background from Google Map. 
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4.4.6 Analysis of Mosul dam behavior between 1989 and 2017 

Post construction deformation of dams continue long time after their construction has been 

completed. This deformation is indicative of the structure's performance to evaluate its task. 

Initially huge or unpredicted movements may be the only sign of critical process within a dam. 

If, however, the postconstruction subsidence can be empirically predicted, then a comparison 

of predicted and observed values can give indication to potential problems. To evaluate the 

behavior of dams, Sowers (1965) used a survey data of 14 rockfill dams. He found that the 

settlement per unit height, as a function of logarithm time, is always expressed in a straight line 

and can be expressed as follows: 

 ∆𝐻 = 𝐶𝛼(log 𝑡2 − log 𝑡1)   

 

(4.8) 

in which ΔH = settlement to the embankment height percent between times t1 and t2 and Cα is 

the rate of ΔH. However, Clements (1983) argued that such approaches can lead to significant 

uncertainties in the predicted settlement if they used for different dams because they neglect 

important parameters such as the compaction procedures, construction method, embankment 

materials, etc. In other word, each dam should have a specific value of Cα. Accordingly, 

Clements (1983) suggests comparative approach between dam under study and other dams 

having similar characteristics. Based on Sowers’s model, Charles (1986) suggested a settlement 

index SI, which is analogous to Cα in equation (4.8) accept that the settlement rate expressed 

unitless per year instead of a percent of height per year. SI can be used to evaluate the settlement 

of the dams as follows: 

 𝑆𝐼 =
𝑠

1000 × 𝐻 × 𝑙𝑜𝑔(𝑡2 𝑡1⁄ )
 (4.9) 

where s is the crest settlement in mm measured between times t1 and t2 since the completion of 

the dam at a section of the dam with height of H meters (Charles, 1986). 

Using the embankment height (H) for BMs on Mosul dam crest as the differential heights of 

points on the crest and those on the gallery, ΔH in equation (4.8) can be estimated as follows: 

 ∆𝐻 =
𝑠

𝐻
× 100 %  (4.10) 

From equations (4.8), (4.9) and (4.10), it can be seen that Cα=SI x100. Charles (1986) suggests 

SI value of 0.02 as a critical threshold in which a dam may suffers from a concerning process 

rather than the creep.  
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Hunter and Fell (2003) analyzed the deformation behavior of large number of dams during their 

normal deformation behavior. They used the long-term settlement index SLT which equivalent 

to Cα to analyze the deformation of puddle core dams. The studied dams are divided into two 

groups: steady state and fluctuation state. In the steady state group, the water level was 

maintained almost constant level during the monitoring period while in the fluctuated group the 

reservoir water level was fluctuating in a normal operation. Based on available records analyzed 

by Hunter and Fell (2003) it was considered that Cα for normally behaved and steady state 

dams is less than 1% while dams operating in a large fluctuating water level Cα ranges between 

2.6-7.5% which represent SI of 0.026-0.075. 

Figure 4.22 shows the possible scenarios of deformation in earthfill dams. The deformation can 

take place in the dam foundation as in Figure 4.22a or in the embankment as in Figure 4.22b. 

For the following discussion the terms Sdam and Sgallery will be used to refer to the settlement of 

the dam body and foundation respectively. The total settlement observed on the dam crest is 

the summation of the possible settlement of these two components, i.e, Sdam and Sgallery. In 

addition, the dam settlement (Sdam) can involve abnormal movement caused by internal erosion 

or normal consolidation movement. Therefore, the total settlement can be expressed as follows: 

 𝑆𝑐𝑟𝑒𝑠𝑡 = 𝑆𝑑𝑎𝑚 + 𝑆𝐺𝑎𝑙𝑙𝑒𝑟𝑦  (4.11) 

To evaluate the dam stability, SI should be calculated using the total settlement observed on the 

dam crest (Screst). Thus, any abnormal deformation on the dam body or the foundation can be 

detected by SI.  
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Figure 4.22. Possible deformation scenarios in earthfill dams (Tomás, 2018). a) deformation take place 

under the dam foundation, b) deformation takes place in the dam body and c) the relationship between 

crest, dam and gallery settlements. 

Using Charles (1986) approach the settlement index SI was calculated for the BMs on the Mosul 

dam crest. Figure 4.23 shows SI calculated between 1989 and 2017 using the accumulated 

settlement since 1989. It can be seen that between 1989 and 2005 SI was increasing and reached 

0.007 just before lowering the water level significantly in 2005, which means that geotechnical 

conditions were worsening during this period. The increase of SI is produced during the time 

period in which water level reaches maximum yearly elevation oscillations and maximum 

elevation levels. Additionally, SI is less than the critical value (0.02) and thus, it means that 

there are not anomalous mechanism causing deformation besides creeping according to Charles 

(1986). For the period between 2005 and 2015 SI was decreasing which means that geotechnical 

conditions are improving. It can be seen that SI is slightly cambered between August 2009 and 

May 2012 due to the increase in the oscillation range of water level during this period and the 

mean SI slightly increased after 2015. This increase may confirm the deterioration of the dam 

stability after the grouting work interruption.  
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Figure 4.23. Mean and maximum settlement index SI over the period 1989-2017 calculated from 13 

points on the dam crest with daily water level observations for the dam reservoir. 

According to the previous observations, it is clear that SI didn’t cross the critical threshold 

(0.02). However, the dam was slightly settling while lowering the water level in 2005. Since 

the main concern about the Mosul dam is from the gypsum rocks dissolution, a sudden collapse 

of rocks under the foundation may occur. Thus, SI may not be the best parameter to detect the 

collapse of the foundation since it depends on the total settlement observed on the crest. 

Therefore, other parameters such as the water seepage and the gypsum dissolution rate might 

be better to be used to evaluate the dam safety.  Additionally,  the spatial variation of crest 

displacement, which has been shown in section 4.4.1, is a concerning factor and thus further 

analysis for the temporal and spatial variation of the settlement will be discussed in section 

4.4.7. 

4.4.7 Separating benign and critical settlements 

In sections 4.4.1 and 4.4.2, levelling data on the dam crest and gallery showed obvious 

anomalies in the dam’s crest and foundations, thus it is essential to determine the critical areas 

at the dam foundation using the levelling data on the dam surface. Following Clements (1983) 

and Oscar and ASCE (1987), the mean Cα was calculated for all observations between 2005 

and 2017 using equation (4.8). It is wealth to mention that the dam settlement (Sdam) was used 
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to calculate the mean Cα. Then the predicted settlement was modelled using the combination 

of equations (4.8) and (4.10) as follows (Clements, 1983; Oscar and ASCE, 1987): 

 
𝑠 =

𝐻

100
× 𝐶𝛼(log 𝑡2 − log 𝑡1)   

(4.12) 

The predicted settlement for each levelling epoch is shown in Figure 4.24. The embankment 

heights for each benchmark was estimated from the differential elevation of benchmarks on the 

surface and those on the gallery. An assumption was made here that the river cross-section is 

identical to the gallery profile over the dam footprint to estimate the embankment height on the 

dam slopes. 

 

Figure 4.24. Predicted vertical displacement between April 2005 and August 2017 modelled using the 

mean settlement rate (Cα) of crest BMs between 2005 and 2017. 

The modelled settlement is then subtracted from the observed settlement for each epoch to 

indicate areas that may have exhibited instabilities in the foundation. Figure 4.24 shows the 
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observed settlement while the residuals of the subtraction are shown in Figure 4.26. It can be 

seen that four areas exhibited unpredicted movement, which is very likely due to foundation 

movements. Two of these areas are located at the dam centre, with one of them on the crest and 

the other on the downstream slope. The other two areas are located on the east and west 

abutments of the downstream slope. The area on the east shows more localised displacement 

and has exhibited rapid subsidence in contrast to the other subsidence areas. These areas are 

very likely suffering from foundation movements. This is evidenced by comparing the 

settlement shown in Figure 4.26 with the gallery movement from the levelling data in Figure 

4.10. It can be seen from these two figures that the displacement of the foundation at the centre 

of the dam is identical (≈ 25 mm). 

Figure 4.25. Observed vertical displacement during the period 2005-2017. 
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Figure 4.26. Vertical displacement of the Mosul dam after removing the predicted movement. Note that 

dashed black ovals indicate four regions with unpredicted settlements. 

The spatial and temporal variation of vertical displacement on the dam, which is shown in 

Figure 4.26, is critical for the dam safety. Thus, monitoring of the dam displacement should 

continue carefully at least until the SI trends starts decreasing. The procedure applied here to 

separate benign and critical dam movement is promising for application to InSAR. Although 

the levelling data have been successfully used to separate these two types of movement, there 

is a chance that some critical areas located between the benchmarks have not been detected. 

Therefore, the high spatial resolution of an InSAR deformation map can overcome this problem, 

and hence applying this procedure with the InSAR technique is one of the future plans arising 

from the finding of this thesis. 
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4.5 Conclusions 

Mosul dam represents a serious threat to millions of people living in cities along the Tigris river 

basin between Mosul and Baghdad. The dam retains 11.11 × 109 cubic meters of water in the 

reservoir. The failure of the dam would be catastrophic, especially for Mosul city which is 

located about 70 km downstream of the dam. In this chapter, the dam’s instability is addressed 

using two geodetic datasets. Levelling data collected between 2003 and 2017 for monitoring 

the dam embankment and its foundations along with radar images from Envisat, CSK, TSX and 

Sentinel-1 are used to examine the displacement of the embankment. 

The analysis of the levelling data is carried out on the dam crest and gallery over the period 

between 1989 and 2017. The correlation between the dam’s movement and the reservoir water 

level is also presented. The analysis was conducted along longitudinal cross-sections of the dam 

surface located on the upstream, the crest, and the downstream. 

Additionally, SAR data from Envisat, CSK, TSX and Sentinel-1, collected between 2003 and 

2017 were employed to monitor the displacement of the dam surface. The Envisat data cover 

the period between 2003 and 2010 with 22 images from the ascending pass and 24 images from 

the descending pass being used. High phase gradient and temporal gaps in the Envisat 

acquisitions resulted in a low coherence in some localized subsiding areas on the dam. Thus, 

manual unwrapping errors corrections was carried out. For the span between 2014 and 2017, 

three types of SAR datasets were used. Fourteen descending images from TSX covering the 

period between May 2015 and May 2016, 39 images from CSK covering the period between 

January 2014 and April 2016, 47 ascending and fifty-one descending images from Sentinel-

1A/B covering the period between October 2014 and December 2017 were used in this study. 

The GAMMA InSAR processor was used for interferometric processing, and the TS+AEM 

time series package was utilised for the time series analysis. The TSX data between 2015 and 

2016 show an acceleration of displacements. The horizontal and vertical displacement velocity 

maps are estimated using the 2D approach with the assumption that the horizontal movement 

is toward the downstream. The finding related to the velocity of the vertical displacement from 

levelling and InSAR analysis were cross-validated. 

For the period between 2003 and 2010, the RMS of the difference between InSAR and levelling 

is 1.7 mm/year, with a correlation coefficient of 0.93. In contrast, for the span between 2014 

and 2016, the RMS between InSAR and levelling data is 0.88 mm/year, and the correlation 

coefficient is 0.95. Further discussion about the agreement between InSAR and levelling was 

carried out by comparing the displacement timeseries from levelling with that from InSAR 
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results. The RMSE was less than 1 mm for TSX and CSK whiles it reaches 20 mm for Envisat 

over areas with localized displacement gradient. This can be due to low spatial and temporal 

resolution of Envisat images. This is evidenced by the good RMS from Sentenel-1 data that 

was about 1-2 mm.  

Analysis from levelling and InSAR show that the Mosul dam has continuous movement for 

long time. The settlement index didn’t cross the critical value since 1989. Furthermore, a spatial 

and temporal variation of movements is obvious over the dam crest and foundation which is 

considered a concerning factor for the dam safety. Monitoring of the dam movement and the 

water level fluctuation should continue until the dam reaches stability state. 
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Chapter 5. The Stability of the Darbandikhan Dam after the 12 November 

2017 Mw 7.3 Sarpol-e Zahab (Iran–Iraq Border) Earthquake 

5.1 Introduction 

The 12 November 2017 Sarpol-e Zahab earthquake was one of the largest earthquakes 

occurring in the Iran–Zagros zone since 1900 (Alsinawi and Ghalib, 1975). About 396 lives 

were lost, and 7000 people were injured on both sides of Iraq–Iran border (BBC News Middle 

East, 2017), with the majority of fatalities occurring in the Iranian city of Sarpol-e Zahab, 

whereas Darbandikhan was the most impacted city in Iraq. The earthquake struck the northeast 

of Iraq, with its epicentre 30 km away from the Darbandikhan dam (Figure 5.1), and there is 

now serious concern about the Darbandikhan dam’s safety. The dam was previously evaluated 

to be seismically safe under a maximum probable shaking of Mw 6.5 (Cordell, 2006). 

According to the map of the shaking intensity from the United States (US) Geological Survey 

(USGS) (Figure 5.1b), the dam lies within the region of 8 MMI (modified Mercalli intensity) 

for the 2017 event. Following this earthquake, the dam operators immediately lowered the water 

level in the reservoir because of concern about the dam’s safety. The deformation of the dam 

body after the earthquake is visually apparent, and the State Commission on the Survey of Iraq 

observed several fissures on the crest soon afterwards. In the following months, this region 

exhibited 53 aftershocks with Mw >4. 

Dams can be affected by earthquakes with several different types of deterioration, including: 

(1) slope failure; (2) cross-sectional and longitudinal cracks; (3) seepage from the foundation 

and the side slopes; (4) liquefaction of the dam body; (5) freeboard reduction; and (6) 

overtopping due to waves in the reservoir (Jansen, 1983; Seco and Pedro, 2010) 
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Figure 5.1 The geological settings of the Darbandikhan dam. (a) Regional map of Iraq, (b) shaking 

intensity map of the earthquake with geological faults indicated by black lines (USGS, 2017). The colour 

bar refers to the shaking intensity magnitude, the green star indicates the epicenter (USGS, 2017), (c) 

optical image showing the location of the Darbandikhan dam from Esri DigitalGlobe 2018) (d) the 

instrumentation network and the main features of the Darbandikhan dam. Triangles refer to the pillars 

observed with GPS, and levelling while circles indicate the pillars observed with GPS only. 

The response of earth fill and rockfill dams to earthquakes differs according to the acceleration 

and velocity of the motion (Newmark, 1965), and also depends on the geological setting of the 

dam (Anastasiadis et al., 2004). The most important factor that may affect the man-made 

infrastructure during an earthquake is the velocity of shaking (Newmark, 1965). When the 

acceleration is sufficiently large, the shaking causes a temporary downslope movement, which 

may reach 1.5 m (Serff et al., 1976). Another critical factor is the construction quality. Dams 
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with a low degree of compaction are most susceptible to damage by earthquakes. The crest of 

the dam is the most vulnerable part during a seismic event, as its slopes can temporarily slide 

towards the toe of the dam. The failure of the dam can lead to permanent displacements along 

the slope and may extend to the whole surface or just part of the dam slope (Jansen et al., 1995). 

Some notable dams were damaged by earthquakes with Mw > 6, e.g., the Sheffield Dam in 

1925 and the San Andreas Dam in 1906 (both in California, US). Seco and Pedro (2010) 

reviewed several case studies of dam deformation following earthquakes, based on the history 

of embankment dams selected from all over the world. Not far away from the Darbandikhan 

dam, the Mosul dam threatened millions of people living downstream, and interferometric SAR 

(InSAR) has been used to detect its instability after the political instability of the area in 2014 

(Milillo et al., 2016a). The early detection of the instability of the Mosul dam with InSAR led 

to a maintenance plan to stabilize the foundation of the dam before it turned into a disaster 

(Annunziato et al., 2016; Trevi, 2018). The worst scenario of dam failure triggered by an 

earthquake was the loss of 100,000 lives during the landslides following the 1786 Kangding–

Luding Mw 7.7 earthquake, which struck Sichuan, southwest China (Dai et al., 2005). 

Newmark (1965) discussed the mechanics of the dam structure during successive shakings. He 

suggested three possible movements of the dam: (1) dam slope motion either in the upstream 

or downstream direction; (2) creep of the whole dam in a specific direction; and (3) relative 

motion between the structural parts, which may lead to fissures in the dam body. The third is 

the most problematic, because it may be followed by internal erosion (Anastasiadis et al., 2004). 

Although the Darbandikhan dam lies in an active seismic region, there is no seismic 

instrumentation in the dam to monitor its behaviour during and after earthquakes. A previous 

concern about the safety of the dam was reported in Cordell (2006). This detailed report 

discussed the importance of monitoring the dam grouting gallery, as water seepage was 

observed here on more than one occasion (Cordell, 2006). Furthermore, it was reported that 

there was further concern about a landslide in the left bank and rock fill from the cliffs in the 

right and left abutments of the dam. Thus, there were some efforts to implement a maintenance 

plan between 2006 and 2010. 

In This study three geodetic datasets namely: GPS, levelling, and Sentinel-1 data are integrated 

to evaluate the stability of the Darbandikhan dam in northeast Iraq after the 2017 Mw 7.3 

Sarpol-e Zahab earthquake. GPS and levelling datasets collected in March and November 2017 

were used to compute the co-seismic surface displacements of the dam. Sentinel-1 synthetic 

aperture radar (SAR) images collected between October 2014 and March 2018 were employed 

to recover the displacement time series of the dam. The large-magnitude displacement gradient 
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on the dam crest hindered the estimation of the co-seismic displacement using this medium-

resolution SAR data. However, Sentinel-1 images are sufficient to examine the stability of the 

dam displacement before and after the earthquake. The results show that the dam was stable 

between October 2014 and November 2017, but after the earthquake, Sentinel-1 data shows a 

continuous subsidence of the dam crest between November 2017 and March 2018. To the best 

knowledge of the authors, this study is the first that utilises InSAR to investigate the behaviour 

of a dam after a large earthquake. 

The layout of this chapter is as follow: Section 5.2 outlines the methodology used in the 

monitoring, including a description of the geodetic monitoring system, the principles of InSAR, 

and the limitations of small baseline subset (SBAS) InSAR to monitor the slopes of the dam. 

The results from geodetic and InSAR techniques are presented in Section 5.3, followed by a 

discussion of the main findings in Section 5.4. A summary and conclusions of the study are 

presented in Section 5.5. 

5.2 Methods 

5.2.1 Dam Instrumentation 

The safety of Darbandikhan dam is inspected periodically by the Ministry of Water 

Resources/State Commission of Survey of Iraq by observing a geodetic network to detect any 

abnormal behaviour. Figure 1d illustrates the monitoring pillars of the dam, which are used in 

this study. This network consists of pillars installed on the dam surface, where regular GPS and 

levelling observations are taken, as well as levelling stations within the inspection gallery for 

which no relevant data are available. Only two epochs of GPS and levelling data, collected in 

March and November 2017, were available for this study. To plot a displacement profile of the 

dam crest and for analysis purposes, we consider the left edge of the spillway head (Station M4) 

as the reference. This is also applicable for calculating the gradient of displacement in Section 

5.2.2. 

Water seepage was monitored by nine piezometers installed in the dam body, and 23 

piezometers installed in the gallery. Readings of the core piezometers taken during two 

periods—(i) from 1976 to 1978 and (ii) from January 1980 to May 1981 indicated normal 

behaviour of the dam (Cordell, 2006). The reservoir water level is monitored by a floating 

instrument installed close to the power station intake. The accuracy of the reading is ±10 mm.  
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5.2.2 InSAR 

A total of 68 Sentinel-1 images from Track 6 were collected over the Darbandikhan dam. One 

of the limitations of using InSAR for dam monitoring is the foreshortening of the side slopes, 

which may result in underestimation of the deformation magnitude. Images of objects in the 

SAR images are projected to the line of sight (LOS) of the radar beam. Consequently, the 

distances of the dam slopes and crests appear to be shorter than their actual values by a factor 

depending on the SAR geometry and slope aspect. First, we investigated this compression 

factor, which is the ratio between slant and ground ranges, for the upstream and downstream 

slope in each track. The compression factor can be calculated as follows (Cigna et al., 2014; 

Darvishi et al., 2018): 

 𝑅 = sin (𝜗 − 𝛽 · sin(𝐴)) (5.1) 

where 𝜗 is the incidence angle of radar signals, β is the dam side slope, and A is the aspect 

correction factor, which can be computed from the aspect of the slope (α) and the satellite 

heading angle (ϒ). A = α − ϒ for the descending pass, and A = α + ϒ + 180° for the ascending 

pass (Cigna et al., 2014). The parameters of Equation (5.1) are shown in Figure 5.2. Table 5.1 

shows the compression ratios for different tracks of Sentinel-1 data on the upstream and 

downstream slopes of the dam. Over the downstream slope, tracks 72, 79, and 174 are more 

influenced by foreshortening than track 6, so we used images from track 6 only in this study. 

The same calculations over the upstream slope show that the foreshortening on the upstream 

slope is much more than that on the downstream slope. Although the upstream slope is often 

covered by water, the water level was reduced to a shallower level after the 12 November 2017 

earthquake, and so part of this slope is now visible. 

Table 5-1 Foreshortening compression factors over the upstream (UPS) and downstream (DNS) slopes 

of the Darbandikhan dam for both ascending (As) and descending (Ds) tracks. Note that (i) the average 

incidence angle for the dam area is provided for each track; (ii) the downslope of the dam (β) is 30°, 

and the aspect (α) is 220° for downstream and 40° for the upstream slopes. LOS: line of sight.   

Track 

No. 
Flight Direction 

Heading 

(ϒ)° 

LOS 

Inc 

(θ)° 

A 
Compression 

Factor 

UPS DNS UPS DNS 

6 Ds −167.0 45.6 53.0 233.0 0.29 0.90 

174 As −13.0 32.3 53.0 233.0 0.11 0.81 

79 Ds −167.0 34.9 53.0 233.0 0.15 0.84 

72 As −13.0 43.6 53.0 233.0 0.27 0.89 
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Figure 5.2. The foreshortening effect on the slopes of embankment dams. Plotted after Cigna et al. 

(2014). 

According to Cigna et al. (2014), R takes values between 0 and 1 for each pixel on the dam 

surface. R = 0 when the LOS is perpendicular to the sloping surface, and R = 1 when the LOS 

is parallel to it. All of the pixels on a level surface, such as pixels on the dam crest, have: 

 𝑅 = sin (𝜗) (5.2) 

This is yielded by considering β = 0 in Equation (5.1). Thus, for pixels on the dam crest, R = 

0.55 for the ascending pass, and R = 0.69 in the descending pass. 

In Figure 5.3, the dam is indicated with red circles. The downstream slope of the dam and the 

terrain slopes facing to the radar LOS, look brighter than the other areas in the single-look 

complex (SLC) image. This is because the foreshortening increases the radar intensity (having 

more backscatter returned into a single pixel yield more intensity); the foreshortening factor R 

for slopes facing the radar is smaller than that for the slopes facing away from the radar LOS. 

Although tracks 72 and 174 are from the same ascending pass, those slopes look brighter in 

track 72. This is because the SLC image subset in Figure 3 is located in the far range of track 

72, while it is in the near range of track 174. In other words, their incidence angles are different, 

leading to different foreshortening impacts. 
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Figure 5.3. The foreshortening effects on the slope surface; four images from four tracks of Sentinel-1 

images over the Darbandikhan dam. The dam is indicated with red circles. 

Another limitation of InSAR is the difficulty of retrieving the LOS displacement when it 

exceeds the maximum detectable gradient (Di Traglia et al., 2014; Singleton et al., 2014). This 

limitation comes from an assumption that is made at the stage of phase unwrapping. This 

assumption is that the difference in the LOS phase changes between two adjacent pixels is less 

than π/2, which is equivalent to a difference of λ/4 in the LOS range changes because of the two-

way travel path of the radar signals. To investigate the reliability of using Sentinel-1 for such large 

magnitude displacements, we computed the gradient along the LOS by simulating the LOS 

displacement from the levelling and GPS measurement on the dam crest using the following 

equation: 

 𝐿𝑂𝑆𝑑𝑖𝑠 = 𝐸𝐺 sin 𝜗 sin 𝜑 + 𝑁𝐺 sin 𝜗 cos 𝜑 + 𝑈𝐿 cos 𝜗 (5.3) 

where LOSdis is the projection of the three-dimensional (3D) displacement vector [EG NG UL] 

to the LOS vector. EG and NG are the easting and northing components derived from GPS, UL 

is the vertical component obtained from levelling, and ϑ and 𝜑 are the incidence angle of the 
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radar LOS and the azimuth of the satellite flight, respectively. The spatial resolution of the SAR 

images can be a critical parameter in cases of steep gradients of displacement (Singleton et al., 

2014). To evaluate the feasibility of the Sentinel-1 spatial resolution for such localised 

displacement over short distances (less than 500 m), the gradient of LOS displacement between 

every pair of adjacent benchmarks on the dam crest is computed by dividing the difference of 

their LOS displacements by the horizontal distance between them. Table 5.2 shows the 

computations of the simulated LOS displacement of Track 6 and the gradient between every 

pair of adjacent pillars on the dam crest. 

Assuming the pixel size of the interferograms generated from Sentinel-1A/B is ≈20 m and the 

surface is completely flat (knowing that all of the benchmarks M4 to BM17 in Table 5.2 are on 

the crest), the maximum detectable gradient (MDG) of displacement is: 

 
𝑀𝐷𝐺 =

𝜆

4𝐷 × 𝑅
 

(5.4) 

where λ is the wavelength of the SAR system (0.0555 m for Sentinel-1), D is the pixel size, and 

R is the compression factor. Thus, the maximum detectable gradient is ≈1 mm/m, which is less 

than the LOS displacement gradient between all of the benchmarks on the dam crest, as shown 

in Table 5.2. In Table 5.2, the maximum gradient is 3 mm/m between M6 and M7. Thus, the 

minimum resolution required to detect this displacement is λ/4 g, which amounts to 4.57 m. In 

other words, when using data with a spatial resolution less than 4.57 m, it is impossible to 

recover such a large gradient displacement signal, which is evidenced by all of the co-seismic 

interferograms (Figure 5.4a) generated in this study. Here, we assume that the unwrapping path 

will follow the topmost part of the crest where the apparent displacement gradient is smallest. 

For points on the slope, the apparent displacement gradient G will be: 

 𝐺 = 𝑔/𝑅 (5.5) 

where g is the actual displacement gradient, and R is the compression factor. On the downstream 

slope, the gradient of the displacement will be significantly larger, because R is at most 0.69, 

and hence unwrapping errors are likely, hindering any estimation of co-seismic displacement 

using Sentinel-1 data. Following a different unwrapping path with a steeper gradient would 

require a spatial resolution better than 4.57 m. The High-Resolution Spotlight or the Starring 

Spotlight (SP) acquisition modes of TerraSAR-X are the most suitable to recover such large-

gradient co-seismic displacements, but these were unavailable for our study. Consequently, 

Sentinel-1 data was used only to investigate the dam surface displacements before and after the 

earthquake, whereas the co-seismic displacements were estimated from GPS and levelling data.  
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The GAMMA software (Wegmüller et al., 2009) was used for InSAR processing. Two 

constraints were applied to select the interferograms: (i) the perpendicular baseline should not 

exceed 400 m, and (ii) the time separation of the two SAR acquisitions should be less than 180 

days. All of the SLC images were co-registered to one master. The differential interferograms 

were filtered using the adaptive filtering algorithm (Goldstein and Werner, 1998). This step was 

performed to increase the signal-to-noise ratio in some incoherent pixels so as to reduce the 

likelihood of unwrapping errors in the next step. The differential interferograms were 

unwrapped using the minimum cost network flow two-dimensional (2D) unwrapping method 

(Goldstein et al., 1988; Costantini, 1998). The surface displacement time series and the mean 

linear velocities for each pixel were generated using the in-house InSAR TS+AEM software, 

which essentially employs the small baseline subset (SBAS) approach (Li et al., 2009). Recent 

studies suggest that tropospheric delay products from external datasets such as the Global 

Navigation Satellite System (GNSS) and European Centre for Medium-Range Weather 

Forecasts (ECMWF) can be used to reduce the atmospheric effects on radar measurements (Yu 

et al., 2017; Yu et al., 2018a), which can, in turn, facilitate time series analysis (Li et al., 2018; 

Yu et al., 2018b). However, due to the small extent of the dam, we did not expect large spatial 

variations in the atmospheric water vapour. Thus, no such external information was used to 

mitigate atmospheric effects. 

 

Figure 5.4 Co-seismic interferogram (7 November 2017 – 19 November 2017): (a) Interferogram, and 

(b) Coherence. Darbandikhan dam is indicated with white oval.
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Table 5-2. The gradient of LOS displacement simulated from the global positioning system (GPS) and levelling data collected in March and November 2017 

on the dam crest benchmarks. The incidence angle of the radar LOS is 45.65°, and the azimuth of the satellite flight is 260.59°. 

BM 

Latitude  

(Decimal 

Degrees) 

Longitude  

(Decimal 

Degrees) 

Orthometric 

Elevation 

(m) 

East 

Displacement 

(m) 

North 

Displacement 

(m) 

Vertical 

Displacement 

(m) 

Distance 

from M4 

(m) 

LOS 

Displacement 

(m) 

Gradient 

(mm/m) 

M4 35.11375536 45.70548463 477.959 0.103 0.069 −0.144 0 −0.187  

M5 35.11370024 45.70557167 479.410 0.121 0.066 −0.154 10.01 −0.207 −2.0 

M6 35.11362193 45.70569536 481.547 0.143 0.068 −0.185 24.24 −0.244 −2.6 

M7 35.1133471 45.70612983 482.839 0.193 0.119 −0.342 74.21 −0.395 −3.0 

BM12 35.11307236 45.70656465 479.039 0.173 0.149 −0.470 124.2 −0.474 −1.6 

BM13 35.11279793 45.70699924 478.886 0.169 0.205 −0.509 174.14 −0.505 −0.6 

BM14 35.11252439 45.70743219 480.342 0.127 0.225 −0.462 223.91 −0.445 1.2 

BM15 35.11224962 45.70786674 479.169 0.103 0.236 −0.391 273.88 −0.380 1.3 

BM16 35.11197574 45.70830231 483.574 0.057 0.232 −0.249 323.86 −0.247 2.7 

BM17 35.11169989 45.70873661 489.682 0.013 0.139 −0.123 373.89 −0.117 2.6 
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5.3 Results 

5.3.1 InSAR Time Series 

To investigate the behaviour of the dam before and after the earthquake, we generated the 

displacement time series using 68 Sentinel-1A/B images collected between October 2014 and 

March 2018. Only acquisitions from track 6 were used to generate the SBAS time series, 

because they are less distorted, as discussed in Section 3.2. We separated the time series into 

two time spans. Figure 5.4 shows the spatial–temporal separation of the acquisition for each 

time span. For the pre-seismic period between October 2014 and 7 November 2017, we 

generated the SBAS time series using 54 Sentinel-1 images. Figure 5.5a shows the mean LOS 

velocity map of the dam before the earthquake. The maximum rate of displacement of any point 

on the dam crest, with respect to the phase unwrapping origin point on bedrock just to the east 

of the dam (Figure 5.5b), is 4 mm/year during this period. Note that the apparent uplift across 

areas of higher topography away from the dam most likely represents residual atmospheric 

effects that are unrelated to deformation across the dam, and can be neglected. The time series 

error map is shown in Figure 5.7. 

 

Figure 5.5 The perpendicular baseline network for a small baseline subset (SBAS) time series (a) before 

the earthquake and (b) after the earthquake. 
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Figure 5.6 (a) The mean linear velocity estimated from Sentinel-1A/B before the earthquake event, 

during the period from 30 October 2014 to 7 November 2017, (b) the mean linear velocity after the 

earthquake, during the period from 19 November 2017 to 7 March 2018. Note that (i) the earthquake 

occurred on 12 November 2017 at 18:18 UTC, (ii) the reference point for phase unwrapping is indicated 

by the red dot in the abutment southeast of the dam, and (iii) positive implies that the Earth’s surface 

moved away from the radar sensor (i.e., subsidence in the radar line of sight), and negative implies 

uplift in the radar LOS. 

 

Figure 5.7 The corresponding error maps of the mean linear velocity maps in Figure 5.6a and b 

respectively. 

Figure 5.5b shows the post-seismic LOS velocity map using 14 Sentinel-1A/B images between 

19 November 2017 and 7 March 2018. The error map of the SBAS time series is presented in 

Figure 5.7. To connect the pre-event and post-event time series at the monitoring pillars on the 

dam crest, we estimated the LOS displacement for each benchmark from GPS and levelling 

data using Equation (5.3). Figure 5.6 illustrates the LOS displacement time series of three points 

on the dam crest—M6, BM14, and BM17—which are indicated in Figure 5.5a. BM14 is located 

close to the centre of the dam, and the other two are on the western and eastern edges, 

respectively. It can be seen that the dam was stable before the earthquake, but there is a rapid 

displacement of BM14 after 11 November 2017, and it is clear that the dam crest is continuously 
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moving, even four months after the earthquake, with a 17-mm LOS displacement of BM14 

between 19 November 2017 and 7 March 2018. 

 

Figure 5.8 The LOS displacement of two time series: from October 2014 to March 2018 of three points 

on the Darbandikhan dam crest: M6 (top row), BM14 (middle row), and BM17 (bottom row). The 

location of each point is indicated in Figure 5a. (a–c) The time series of the displacement before the 

earthquake. (d–f) The time series before and after the earthquake is connected using the co-seismic 

movement estimated from GPS and levelling. (g–i) The post-seismic movement estimated from the SBAS 

time series. The ranges of panels (a–c) and (g–i) are identical. Note, to be consistent with GPS and 

levelling displacements, interferometric synthetic aperture radar (InSAR)-derived displacements were 

multiplied with −1, so that positive implies that the Earth’s surface moved towards the radar sensor 

(i.e., uplift in the radar LOS), and negative implies subsidence in the radar LOS. 

5.3.2 Co-Seismic Displacement from GPS and Levelling Measurements 

The first GPS and levelling campaign was carried out in March 2017, and the second was 

carried out in November 2017. Figure 5.9 shows the absolute co-seismic displacements relative 

to ITRF08. Four stable points (indicated by a black oval) outside the dam body and close to the 

spillway moved by a similar magnitude to the spillway head and the dam toe (both indicated by 

red circles). The average horizontal displacement of these four stable points is approximately 

0.12 m in the southwest direction, which represents the absolute co-seismic movement of the 

dam and its surrounding area. It is well-known that relative movements are more crucial in 

terms of dam safety. Therefore, the average displacement of the four stable points away from 

the dam body, which are indicated by the black oval in Figure 5.9, is subtracted from the dam 

movements. Figure 5.10 shows the vertical and horizontal relative displacements of the dam 

crest and its spillway measured by GPS and levelling after subtracting this average horizontal 
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movement. The maximum relative horizontal displacement measured by GPS is 0.27 m at 

station BM13. The relative horizontal displacements of the left and right abutments are around 

0.14 m and 0.12 m, respectively. It can be seen that the pattern of displacement of all of the 

points on the crest tends towards the centreline of the dam. The pillars near the centre of the 

dam moved perpendicular to the dam axis, while points on the right and the left of the dam 

moved in the northeast and northwest directions, respectively. 

 

Figure 5.9 The horizontal (indicated by arrows) and vertical (indicated by circles) displacements of the 

monitoring pillars on Darbandikhan dam measured by GPS and levelling. The source of the background 

image is from (Esri, DigitalGlobe 2018). Note that (i) the horizontal displacements are referenced to 

ITRF08, and (ii) the pillars labelled with letter H were measured with GPS only. 
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Figure 5.10 The relative vertical and horizontal co-seismic displacements inferred from levelling and 

GPS measurements collected in March and November 2017. The source of the background image from 

Esri) (a) arrows indicate the direction and magnitude of the horizontal displacements, and different 

colours of circles represent different magnitudes of the vertical displacements. The red lines labelled 

with C1–C8 refer to the displacement cross-sections in Figure 5.9. (b) The cross-section of C7–C1 for 

both the vertical and horizontal displacements. 

The relative vertical displacement measured by the levelling is shown as coloured scale circles 

in Figure 5.7a, and depicted as a blue vertical profile in Figure 5.7b. The subsidence of the 

central part of the dam is more than 0.50 m. The vertical displacements of the points on the left 

and right abutments range from 0.15 m to 0.45 m.  

5.4 Discussion 

The LOS mean velocity maps in Figure 5.5, which were derived from the InSAR time series, 

show different patterns of settlement on the left and right parts of the dam. It is understood that 

the water level in the reservoir was lowered immediately after the earthquake, which could be 

the reason why there was no water seepage crossing the dam body at that stage. The emergence 

of cracks on the downstream side slope can be more dangerous than those upstream or on the 

crest. No crack has yet been observed on the downstream slope of the Darbandikhan dam, but 
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minor cracks could be hiding beneath the boulder-covered face of the slope due to the difficulty 

of observing cracks in such a surface. 

It is clear in Figure 5.7 that different parts of the dam displaced with different magnitudes in 

both the vertical and horizontal directions, although the maximum displacement is focussed in 

the centre. As suggested by Newmark (1965) and Herndon (1990), such behaviours are 

expected for Earth fill dams during an earthquake. Shaking the embankment of the dam results 

in the non-uniform displacement of different parts of the embankment, depending on the 

acceleration. The direction of the shaking may impact the magnitude of the displacement, while 

the movement must be along the slope aspect in spite of the direction of the shaking, because 

of the gravity. In addition, the slope in the centre of the dam is expected to be longer than the 

left and right sides, suggesting a V section of the bedrock along the dam axis. This suggestion 

is evidenced by the gallery design that was constructed along the dam axis following the 

bedrock and leaving 75 m of the dam section without any gallery (Cordell, 2006). We expect 

that this section was left without the gallery because the bedrock along the river section is too 

steep, which may hinder the construction of the gallery in this section. Therefore, the most 

affected part of the dam is the crest, and maximum deformation can be observed close to the 

dam centre when the embankment height and the slope length are maximum. This behaviour is 

evidenced by several cracks that appeared on the left and right abutment of the Darbandikhan 

dam after the earthquake.  

According to (Cordell, 2006), the dam’s surrounding area exhibited several landslide events in 

the past. The GPS displacement vectors above the reservoir to the east of the dam show 

consistent downslope local movements. Thus, continuous monitoring of the area is essential, 

especially given that the region exhibited several minor aftershock events. Higher-resolution 

radar images (e.g., TerraSAR-X and COSMO-SkyMed) are desirable for monitoring the 

upstream dam slope, which is expected to move more than the downstream slope, according to 

the GPS and levelling data. 

Figure 5.11 shows six displacement cross-sections derived from the SBAS InSAR time series 

between November 2017 and March 2018. The location of each cross-section is depicted in 

Figure 5.9a. Figure 5.11a–c are cross-sections that are parallel to the dam axis, arranged from 

the top to the toe of the dam, respectively. As inferred from the GPS and levelling, the topmost 

section shows the greatest displacement. Figure 5.11d–f show the displacement on three cross-

sections along the downstream slope that are arranged from the west to east abutment, 
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respectively. Figure 5.11e is along the centreline of the slope, and similarly shows the greatest 

displacement at the dam crest. 

 

Figure 5.11 Cross-sections of InSAR-derived LOS displacement time series during the period from 

November 2017 to March 2018. (a) C1–C7, (b) C6–C2, (c) C5–C3, (d) C7–C5, (e) C8–C4, and (f) C1–

C2. Note (i) negative values indicate that the surface moved away from the satellite radar; (ii) the 

location of each cross-section is shown in Figure 5.7a. 

5.5 Conclusions 

In this chapter, the impact of the Mw 7.3 Sarpol-e Zahab earthquake on the deformation of the 

Darbandikhan dam in northeast (NE) Iraq was demonstrated. Three geodetic techniques were 

used to investigate the dam movements before, after, and during the earthquake. Due to the 

steep gradients of the co-seismic displacements, GPS and levelling measurements were utilised 

to observe the distortion of the dam body caused by the earthquake, suggesting movements of 

up to 270 mm in the horizontal direction and 500 mm in the vertical direction. We discussed 

the limitations of using InSAR techniques for monitoring sloping surfaces, and the spatial and 

temporal resolution required to recover large-gradient displacements. The rate of the dam 

displacement before and after the earthquake was investigated using InSAR time series analysis 
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with 68 Sentinel-1 images collected between October 2014 and March 2018. Our results suggest 

that the dam was relatively stable before the event, with a maximum LOS velocity of 4 

mm/year, but after the event, the crest of the dam was still creeping at a rate of up to 70 mm/year 

until at least March 2018. These results suggest that spaceborne InSAR monitoring of the post-

seismic dam deformation is useful to inform maintenance plans, but that episodic terrestrial 

surveys remain essential in case of large-gradient deformation during future earthquakes. 
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Chapter 6. Conclusions and recommendations 

6.1 Conclusions of the research  

Over the last few decades, Interferometric Synthetic Aperture Radar (InSAR) has been 

employed to map deformation and topography of the Earth’s surface. The main goal of this 

thesis is to investigate the potential of using InSAR for dam deformation monitoring. This study 

was carried out on two major dams in Iraq. Mosul dam has been classified as one of the most 

dangerous dams in the world and this thesis has combined multi-platform SAR data with 25-

years of levelling for the first time to investigate its stability. This data was used to examine the 

stability of the dam and to validate the InSAR results. In addition, GPS, levelling and Sentinel-

1 data have been integrated for the first time to investigate the stability of the embankment of 

Darbandikhan dam after the 7.3 Mw Sarbol-e Zahab earthquake. The main conclusion that can 

be drawn is that InSAR can be used for monitoring the stability of dams, although some factors 

should be kept in mind such as the dam’s orientation, the temporal and spatial resolution of the 

images and the gradient and velocity of the displacement on the dam surface. According to the 

settlement index the behaviour of the Mosul dam is not concerning however a remedial work 

and monitoring should continue due to the spatial and temporal variation of movement over the 

dam surface and gallery. In terms of the evaluation of the stability of Darbandikhan dam, the 

results showed that the dam embankment was not stable at least for three months after the 

earthquake. 

The main contributions of this thesis are as follows: 

1. The stability of Mosul dam has been assessed for the first time through the integration 

of 25-year in-situ data and 14-year radar observations. 

2. A collection of SAR data from four platforms was used to estimate the velocity of the 

Mosul dam’s displacement, with the validation of this estimation conducted using the 

levelling data collected between 2005 and 2017. This validation has been carried out for 

the first time for this dam and no previous study has used such a large number of datasets 

to validate InSAR results. 

3. The separation of benign and critical movement using levelling data over the Mosul 

dam has been carried out for the first time. This procedure was used to distinguish 

between benign settlements and critical processes such as foundation movement. The 

results from this procedure are promising and the same procedure with InSAR could be 

used to detect foundation settlements from space.  



 

 109 

 

4. An integrated analysis using GPS, levelling and Sentinel-1 data has been used for the 

first time to assess the behaviour of the Darbandikhan dam’s embankment after the 2017 

7.3 Mw Sarpol-e Zahab earthquake. 

5. A procedure has been developed to estimate horizontal and vertical displacement using 

SAR data from two or more tracks, assuming the direction of the horizontal movement 

towards the downstream direction. 

The conclusions of this thesis described below are linked to the five research questions 

presented in Chapter 1, followed by a summary of the main contributions of this thesis. 

6.1.1 InSAR for dam deformation monitoring 

Research Question 1: To what extent can InSAR be used to monitor an earthfill dam’s 

deformation? How can vertical and horizontal displacement be determined using two or 

more SAR tracks? How accurate is the use of InSAR to measure dam deformation? 

In Chapter 4, multi-platform SAR data collected between 2003 and 2017 were analysed to 

investigate the Mosul dam displacements during this period. All interferometry processing was 

carried out using GAMMA, whereas the SBAS timeseries analysis was performed with the in-

house software TS+AEM package (Li et al., 2009). Data from six tracks and four platforms 

were utilized for this purpose and the results show a maximum displacement velocity of 10 

mm/year between 2003 and 2010, whereas for the period between 2014 and 2017 the datasets 

from CSK, TSX and Sentinel-1 shows displacement velocity of 7-10 mm/year along the LOS. 

This range of velocity arise from the different imaging geometries and spatial resolutions used. 

However, the TSX data show a more rapid displacement velocity after 2014 due to the 

suspension of the grouting work in August 2014. This acceleration in the displacement velocity 

is not clearly shown in the other datasets due to insufficient spatial resolution and imaging 

geometry. 

The vertical and horizontal displacement components were estimated using a 2D model. This 

was conducted using two tracks from the Envisat data collected between 2003 and 2010 

assuming no movement along the dam axis.  In contrast, two tracks from Sentinel-1 and one 

track from CSK were used to estimate vertical and horizontal movements during 2014-2017. 

The velocity maps show no significant horizontal movement while the maximum vertical 

displacement velocity ranges between 9-11 mm/year. 
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In section 4.4.5 a comparison was carried out of values of displacement velocity from the 

analysis of InSAR and levelling data. The vertical displacement velocity estimated from InSAR 

was compared to the that from levelling data. The comparison shows an RMSE of 1.7 mm/year 

and a correlation of 0.93 between 2003 and 2010, whereas an RMSE of 0.88 mm/year and 

correlation of 0.95 between 2014 and 2017. The high correlation between the two techniques is 

promising for the use of InSAR as an alternative or supporting technique for dam monitoring. 

However, some localised subsiding area on the eastern part of the dam embankment, were not 

shown in the InSAR deformation maps. 

To examine the agreement between InSAR and levelling timeseries for each dataset, the 

levelling timeseries was projected into the LOS direction. The RMS between levelling and 

InSAR was computed for each dataset. Envisat data showed large RMS that reaches 20 mm in 

areas with high displacement gradient. For other areas with lower displacement gradient the 

RMS doesn’t exceeds 8mm. The RMS between TSX and CSK from one side and the levelling 

data from the other side is less than 1mm, whereas the RMS between Sentinel-1 and Levelling 

is 1-2 mm. 

The good agreement between InSAR and levelling timeseries confirms the effectiveness of 

InSAR for monitoring embankment dam.    

6.1.2 The stability of the Mosul dam using levelling data between 1989 and 2017 

Research Question 2: How has the deformation of the Mosul dam developed over the dam 

surface and foundation. Is there any heterogeneity in the foundation displacements? 

A brief history of Mosul dam and a summary of construction information have been presented 

in Chapter 3. The problematic geology of the dam’s foundation was discussed in section 3.3.2. 

It was shown that the presence of gypsum rocks in the dam foundation is critical for dam safety. 

The continuous subsidence of the dam crest and foundation was discussed in sections 4.4.1 and 

4.4.2 respectively. For the period between 1989 and 2017, the maximum subsidence in the dam 

crest was 610 mm whereas it was 420 and 530 mm in the upstream and downstream slopes for 

the same period. To compare the behaviour of Mosul dam with other worldwide dams, the 

settlement index was determined for the dam crest. The results show that the settlement index 

didn’t cross the critical value. Also, the dam movement pattern shows a spatial and temporal 

anomaly on the dam crest and slopes which is considered as indication of the dam safety issue. 

Thus, careful monitoring of the settlement and water level fluctuation should continue.  
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The stability of the dam foundation was assessed using levelling data from 150 benchmarks 

installed along the dam gallery. The settlement of the dam galley was analysed during the period 

between 2005 and 2017.  This analysis shows continuous subsidence around the three stations 

0+413, 0+959 and 1+339 on the gallery. The localised settlement of the dam foundation can 

loosen the compacted layers of the embankment which are closer to the crest and, accordingly, 

fractures on the puddle core can develop due to fluctuations in the water level leading to a 

possible dam failure. 

6.1.3 The behaviour of the Mosul dam after the cessation of grouting in August 2014 

Research Question 3: How has the Mosul dam behaved before and after the suspension of 

grouting work in August 2014? 

In section 4.4.2 the displacement of three stations of the dam foundation was discussed. These 

stations show an acceleration of the displacement after 2009. For the period between 2011 and 

2013 the foundation was relatively stable, but after 2014 the displacement accelerated again. 

The halting of the grouting work after 2014 is very likely the reason for this acceleration. Thus, 

remedial work is crucial to keep the foundation stable. 

6.1.4 Separating the deformation of the embankment from foundation subsidence 

Research Question 4. How can different components of dam displacement be distinguished in 

order to determine the critical ones? 

Deformation from a benign process can interfere with other critical deformation types on the 

dam surface and prevent the detection of such critical deformation. In section 6.1.2, a procedure 

to separate benign deformation from critical movement over Mosul dam is presented. The 

displacements of points on the gallery and their upper points on the crest were used to model 

the coefficient of secondary consolidation Cα, which was found to be 0.45 and that is in 

agreement with the expected values for clayey soils (Charles, 1986). This coefficient was then 

used to predict the vertical displacement of the crest and the predicted value were then 

subtracted from the observed displacement on the crest. This procedure is used to detect the 

problematic areas which on the foundations using observation collected on the dam surface. 

This will contribute to focus the grouting work on areas in which the foundation is inaccessible 

for investigations. The successful application of distinguishing between secondary 

consolidation and other critical processes is encouraging for the application of this procedure 

to InSAR technique and this is one of the areas of future work arising from the findings of this 

thesis. 



 

 112 

6.1.5 Utilizing InSAR and conventional geodetic approaches to investigate the 

Darbandikhan displacement after the 2017 Mw 7.3 Sarpol-e Zahab earthquake 

Research Question 5: How can terrestrial observations be integrated with SAR data to monitor 

rapid displacements in earthfill dams? How has the Darbandikhan dam behaved after the 

7.3Mw Sarpol-e Zahab earthquake? 

In addition to internal erosion and water seepage in dams posing a safety concerns, seismic 

issues are also problematic in cases of dams located in seismically active areas. Monitoring 

dams during and after seismic events is important in evaluating dam performance. InSAR can 

be an effective tool in the evaluation of dam behaviour before and after earthquakes. The 7.3 

Mw Sarpol-e Zahab earthquake on the border between Iraq and Iran seriously affected the 

Darbandikhan dam. In chapter 5, an integration of three independent datasets was used to 

evaluate the dam stability after this earthquake. The large co-seismic displacement of the 

embankment prevented an estimation of co-seismic movement. Vertical displacement from 

levelling and horizontal displacement from GPS data were used to simulate the co-seismic 

movement and to link the two InSAR timeseries, one before the earthquake and the other after 

it. The two timeseries were generated from Sentinel-1 data collected between 2014 and 2018. 

To estimate the relative movement of the embankment with respect to the area surrounding the 

dam, the general co-seismic movement of the area was estimated from GPS observations for 

benchmarks located outside the dam embankment and this movement was subtracted from the 

movement of the dam embankment. The results show that the dam was quite stable before the 

earthquake but because of the severe shaking, the embankment was no longer stable for at least 

three months after the earthquake. The maximum displacement velocity after the earthquake 

was 17 mm/year along the LOS. Although data from Sentenle-1 with moderate spatial 

resolution was used, this study confirms the possibility of using InSAR to evaluate the 

instability of dams after earthquakes. 

6.2 Further discussion of the limitations of InSAR for dam stability monitoring 

It has been demonstrated that InSAR is a powerful and effective tool for dam deformation 

monitoring in this thesis, however users should keep in mind the following limitations of InSAR 

while employing it for dam stability monitoring: (i) the Dam-vs-SAR geometry (including the 

radar azimuth and incidence angle, dam aspect and slope), and (ii) the dectable maximum 

displacement gradient of InSAR and its relationship with the wavelength and pixel size of SAR 

imagery. For example, the compression factor, which is the ratio of slant to ground range 

distance, over the dam slope can impact on performance in the use of InSAR for the detection 
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of deformation. The magnitude of the compression factor, which is discussed in detail in 

Chapter 5, depends on the incidence angle, the direction of the platform movement, the spatial 

resolution of the SAR image and the orientation and slope of the dam. The following paragraphs 

introduce a briefly discussion of the relationships between these factors.  

The relationship between the dam’s aspect orientation and the compression factor over a dam 

having an embankment slope of 23.5˚ and observed with ascending images having an incidence 

angle of 45˚ is shown in Figure 6.1a. It can be seen that the best dam orientation that mitigates 

the foreshortening factor would lie between 45˚ and 180˚. In contrast, a dam slope having an 

azimuth orientation between 210˚ and 300˚ will be strongly affected by foreshortening. Figure 

6.1b shows the relationship between the compression factor and the dam orientation when 

ascending images are used. It can be seen that the relationship is reversed in contrast to that in 

Figure 6.1a. This effect of the dam orientation can be noticed in the high RMS between the 

leveling and the ascending Envisat data (see Figure 4.19 ).  

Furthermore, the horizontal creep of the dam may be under estimated if its direction is parallel 

to the satellite orbit. However, data from geostationary Earth Orbit Synthetic Aperture Radar 

(GEOSAR) platforms or airborne SAR system can overcome this limitation because of the 

possibility to direct the radar beam to different azimuths. One more difficulty of using InSAR 

in monitoring dams is that the arch shape of concrete dams could be challenging due to their 

complex structure. The arc shape of a dam may result in different levels of sensitivity to the 

deformation and also data with high spatial resolution may be required because the crown of 

arch dams is usually smaller than that of earthfill dam crest. 

The relationship between the incidence angle of descending images from a platform heading 

(γ) with azimuth of  -167˚, and the compression factor R, for a dam having an aspect orientation 

(α) of 195˚ and embankment slope (β) of 23.5˚ is illustrated in Figure 6.1c. It can be seen from 

this figure that large incidence angles lead to high compression factors and accordingly less 

distortion of the dam slope. Thus, if there is an option to select between two types of SAR 

datasets which have different incidence angles, it would be better to choose one with the largest 

incidence angle or at least choosing images in which the dam site is located in the far range of 

the image. For example, Darbandikhan dam is observed from four tracks of Sentinel-1 but it is 

located in the far range of the descending track 6. Therefore, only this track was selected to 

investigate the stability of the dam (see Figure 5.1).  From Figure 6.1a-c, it is obvious that the 

specifications of radar images and the dam details should be investigated prior to conducting 

any monitoring using the InSAR technique. 
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Figure 6.1. Considerations in selecting SAR data for dam monitoring: a-b) compression factor R on 

dam slope (β) of 23.5˚ when the incidence angle (ϑ) is 45˚ for both ascending (γ=-13) and descending 

(γ=-167) images respectively, plotted after Cigna et al. (2014); c) relationship between incidence angle 

and compression factor on descending images collected over a dam having slope of 23.5˚ and aspect 

oreintation (α) of 195˚. 

One other important factor that should be considered is the temporal resolution of the SAR data. 

Interferograms with long temporal baseline separation would generally be preferable because 

they have a large signal-to-noise ratio (SNR). However, the temporal decorrelation in such 

interferograms can be problematic. Furthermore, if the dam exhibits localised deformation in 

which the displacement gradient is high, phase discontinuities could result in low phase 

coherence in the deformation area. Accordingly, in the presence of temporal decorrelation, 

especially in data from short wavelength radars such as x-band, this phase discontinuity can be 

inappropriately filtered during the spatial filtering that is performed prior to phase unwrapping. 

Therefore, the deformation signal may be underestimated particularly in those interferograms 

having a long temporal baseline. The gradient of fringe is proportional to radar wavelength. 

Therefore, when a deformed area observed with X-, C-, and L-band images having identical 

pixel size, the fringe gradient in the X-band images is denser than C- and L-band radar assuming 

identical pixel size. 
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In order to maximize the capability of InSAR for dam deformation monitoring the above-

mentioned factors should be examined carefully.    

6.3 Recommendations for future research 

One of the major contributions of this work is to have demonstrated the ability to investigate 

the historical instability of large-scale dams using spaceborne SAR data. A further important 

point is that, with the freely available SAR data like those from Sentinel-1 this research has 

paved the way for the development of an automated dam monitoring web-based system for 

large dams at a global scale. This can contribute to mitigation of effort and cost devoted to 

monitoring dams by using conventional instruments. Such an outstanding service could be an 

effective tool for the early detection of the structural malfunctions in dams and to povide 

forcasts of catastrophic events. 

The high temporal and spatial resolution of SAR data enable very accurate deformation maps 

to be generated rapidly in contrast to conventional monitoring data. Correlation analysis can be 

performed between displacement time series and water level (or other environment factors ) to 

determine the triggering factor(s). Of course, this will help dam operators to control fluctuations 

in water levels so as to minimise the impacts on the dam structure. For newly constructed dams, 

the high temporal and spatial resolution deformation maps may help in effort to redistribute 

and/or densify the existing geodetic monitoring network according to the deformation pattern 

on the dam surface. Furthermore, a network of corner reflectors can be installed in deformed 

areas and their spatial distribution determined according to the results of this study. Also further 

work required to investigate the feasibility of using InSAR to identify horizontal movement and 

in monitoring other types and scales of dams, espicialy those with concrete structures, using 

higher resolution SAR data. 

The following further research is recommended concerning the employment of  InSAR for the 

monitoring of dams. 

1) Exploiting further unwrapping algorithms to overcome the problem of phase discontinuity 

for rapid subsiding areas. One of the interesting research here is the development of 2D or 

3D unwrapping algorithm following pixels with minimum foreshortening factor. 

2) Establishing a web based service to monitor embankment dams using Sentinel-1 data. 

3) Separating benign and critical movement of dams using InSAR time series. This can be 

carried out by using the model in Equation (4.8) in the SBAS timeseries instead of the linear 

model.  
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4) Using high spatial and temporal resolution SAR data for monitoring earthfill and concret 

dams to overcome the problems of high dispalcement gradients. 
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