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Abstract	
 

Background:	 Short	 sprints	 have	been	 shown	 to	 reduce	exercise	 induced	hypoglycaemia	 in	

controlled	laboratory	settings.	This	study	tested	the	hypothesis	that	incorporating	sprinting	

into	 moderate	 intensity	 exercise	 can	 reduce	 the	 incidence	 of	 exercise	 mediated	

hypoglycaemia	in	individuals	with	T1D	in	a	free-living	setting.		

Methods:	 Individuals	 with	 T1D	 were	 recruited	 into	 a	 prospective	 randomised	 controlled	

cross	 over	 study.	 Participants	 completed	 three	 14-day	 periods	 in	 random	 order.	 In	 one	

period	participants	undertook	moderate	intensity	exercise	for	a	minimum	of	30	minutes,	at	

least	 3	 times	 a	week	 (control	 period).	 In	 the	 other	 periods,	 participants	 incorporated	 10s	

(every	20	mins)	or	4s	sprints	(every	2	mins)	into	the	exercise	regimen.	The	primary	outcome	

was	the	incidence	of	hypoglycaemia,	defined	as	sensor	glucose	readings	<3.5mmol/L	for	≥	20	

minutes	 over	 the	 14-day	 period.	 Secondary	 outcome	measures	 included	 the	 incidence	 of	

hypoglycaemia	<3.1mmol/L	and	percentage	time	<3.1mmol/L	and	<3.5mmol/L.		

Results:	24	 participants	 completed	 the	 study.	 There	 was	 no	 difference	 in	 hypoglycaemic	

events	 (<3.5mmol/L)	 between	 the	 4s	 and	 control	 period	 (p=0.28)	 or	 the	 10s	 and	 control	

period	 (p=0.05).	 The	 10s	 period	 was	 associated	 with	 fewer	 hypoglycaemia	 events	

<3.1mmol/L	 than	the	control	period	 (p=0.04),	with	an	 incidence	rate	of	0.40	 (95%	CI	0.26-

0.55),	0.33	(95%	CI	0.21-0.45)	and	0.28	(95%	CI	0.17-0.38)	events	per	day	in	control,	4s	and	

10s	 periods	 respectively.	 The	 10s	 period	 was	 associated	 with	 a	 reduction	 in	 time	 spent	

<3.5mmol/L	 (3.1%	 vs.	 2.1%,	 p=0.03)	 and	 time	 spent	 <3.1mmol/L	 (1.9%	 vs	 1.2%,	 p=	 0.03).	

There	was	no	increase	in	nocturnal	hypoglycaemia	during	the	sprinting	periods.		

Conclusion:	 In	 a	 free-living	 setting,	 the	 inclusion	 of	 10s	 sprints	 into	 moderate	 intensity	

exercise	 did	 not	 reduce	 hypoglycaemic	 events	 <3.5mmol/L	 but	 reduced	 hypoglycaemia	

<3.1mmol/l	and	the	percentage	time	spent	in	hypoglycaemia.	These	observations	may	help	

active	people	with	T1D	to	exercise	more	safely	by	reducing	the	risk	of	hypoglycaemia.			
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Chapter	1: Introduction	

1.1 Glucose	Homeostasis:	Fasting	and	Fed	States	

Blood	glucose	is	the	key	substrate	for	brain	function	(Zhang,	Kuang	et	al.	2013).	Normal	

fasting	blood	glucose	levels	are	maintained	within	a	narrow	range	(3.5-5.5mmol/L)	in	

infants,	children	and	adults	(Guemes,	Rahman	et	al.	2016).	Studies	using	continuous	glucose	

monitoring,	show	that	blood	glucose	levels	may	transiently	sit	outside	these	limits	especially	

after	a	meal,	but	quickly	revert	to	within	the	normal	range	(Kaufman	2000).	This	narrow	

range	of	normal	blood	glucose	levels	is	maintained	by	a	complex	interplay	of	hormones	

which	control	glucose	production	and	glucose	utilisation.	

1.1.1 Post	prandial	state	

Ingestion	of	food	causes	blood	glucose	levels	to	increase	and	stimulates	the	enteroendocrine	

axis.	The	increase	in	the	blood	glucose	level	and	production	of	gut	derived	hormones	

stimulates	insulin	secretion	from	the	beta	cells	of	the	pancreas	and	supresses	glucagon	

secretion	from	alpha	pancreatic	cells.		

Peak	concentrations	of	plasma	glucose	are	reached	around	30-60	minutes	following	food	

ingestion	(Felber,	Magnenat	et	al.	1977,	Mitrakou,	Kelley	et	al.	1990).	Post	prandial	blood	

glucose	levels	are	determined	by	the	balance	between	glucose	production	and	glucose	

removal.	Insulin	limits	glucose	production	by	suppressing	hepatic	glycogenolysis	and	

gluconeogenesis	and	inhibits	fat	breakdown	(lipolysis	and	ketogenesis)	(Rizza,	Mandarino	et	

al.	1981).	Insulin	facilitates	glucose	uptake	by	the	tissues	(including	the	liver,	brain,	muscle,	

small	intestine	and	adipose	tissue)	thereby	removing	glucose	from	the	blood	stream	

(Ferrannini,	Bjorkman	et	al.	1985,	Kelley,	Mitrakou	et	al.	1988).	It	is	the	plasma	insulin	

concentration	that	largely	determines	the	amount	of	glucose	uptake	by	the	tissues,	with	the	

exception	of	the	brain	(Rizza,	Mandarino	et	al.	1981).	The	uptake	of	glucose	by	the	brain	is	

independent	of	insulin	levels	and	instead	depends	on	plasma	glucose	concentrations	(Zhang,	

Kuang	et	al.	2013).		

Gut	derived	hormones,	released	in	response	to	nutrient	ingestion,	play	a	key	role	in	post	

prandial	glucose	homeostasis,	including	the	stimulation	of	glucose	dependent	pancreatic	

insulin	secretion	(Holst,	Gribble	et	al.	2016).	Studies	have	shown	that	the	ingestion	of	oral	

glucose	is	associated	with	larger	amounts	of	insulin	secretion	compared	to	administration	of	
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intravenous	glucose	(McIntyre,	Holdsworth	et	al.	1964,	Perley	and	Kipnis	1967).	This	

phenomenon	of	postprandial	enhancement	of	insulin	secretion	is	known	as	the	‘incretin	

effect’	and	is	largely	mediated	by	two	main	hormones:	glucose	dependent	insulinotropic	

polypeptide	(GIP)	and	glucagon-like	peptide	1	(GLP-1)	(Vilsboll,	Krarup	et	al.	2003).	GIP	and	

GLP-1	are	secreted	from	enteroendocrine	cells	in	the	gut	epithelium	in	response	to	nutrient	

absorption.	GIP	is	produced	by	K	cells	in	the	duodenum	and	proximal	small	intestine,	GLP-1	

secreting	L	cells	are	located	more	distally,	and	are	found	in	the	jejunum,	ileum	and	colon	

(Sjolund,	Sanden	et	al.	1983).	In	addition	to	reducing	postprandial	hyperglycaemia	through	

insulinotropic	effects,	GLP-1	also	supresses	glucagon	production	(Hvidberg,	Nielsen	et	al.	

1994,	Lund,	Vilsboll	et	al.	2011)	and	slows	gastric	emptying	(Wettergren,	Schjoldager	et	al.	

1993).		

Preceding	any	post	absorptive	rise	in	blood	glucose	levels,	a	cephalic	phase	of	insulin	

secretion	has	been	described	that	occurs	as	an	anticipatory	response	to	the	sight,	smell	and	

taste	of	food	and	is	enhanced	by	chewing	and	swallowing	for	food	(Teff,	Levin	et	al.	1993).	

Cephalic	insulin	secretion	occurs	within	10	minutes	of	chewing	food	and	is	independent	of	

the	incretin	response	(Ahren	and	Holst	2001).	This	phase	of	insulin	secretion	is	well	

described	in	animal	models	(Berthoud	and	Jeanrenaud	1982)	(Siegel,	Trimble	et	al.	1980)	but	

findings	are	inconsistent	in	human	studies	where	some	describe	a	consistent	cephalic	

response	(Eliasson,	Rawshani	et	al.	2017)	and	others	do	not	(Veedfald,	Plamboeck	et	al.	

2016).		

1.1.2 Post-absorptive	state	

The	post-absorptive	state	occurs	4-6	hours	after	a	meal.	During	this	phase	glucose	levels	

remain	in	a	steady	state	as	the	rate	of	glucose	utilisation	is	carefully	matched	by	the	rate	of	

glucose	production(Wasserman	2009).	This	balance	is	orchestrated	by	the	effects	of	insulin	

and	the	counter	regulatory	hormones	(glucagon,	cortisol,	growth	hormone,	adrenaline,	

noradrenaline).	Glucagon	promotes	the	release	of	hepatic	stored	glycogen	from	the	liver	

(Exton	and	Park	1968,	Robison,	Butcher	et	al.	1968)	.	Insulin	inhibits	glycogenolysis	in	the	

liver,	and	stimulates	fat	and	protein	synthesis	(Petersen,	Laurent	et	al.	1998).		Glucagon,	

adrenaline,	cortisol	and	growth	hormone	promote	gluconeogenesis	and	stimulate	lipolysis,	

the	breakdown	of	triglycerides	into	glycerol	and	free	fatty	acids	(Bolli	and	Fanelli	1999).	

Increasing	the	supply	of	glycerol	for	gluconeogenesis,	and	free	fatty	acids	for	oxidation,	

reduces	glucose	consumption.	In	addition,	cortisol	and	growth	hormone	play	a	role	in	
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maintaining	blood	glucose	levels	by	setting	the	insulin	sensitivity	of	the	peripheral	tissues	to	

glucagon	and	insulin	(Moller,	Jorgensen	et	al.	1990)	

1.1.3 Fasted	state	

As	fasting	continues	tissue	utilisation	of	free	fatty	acids	and	ketones	increase	while	use	of	

glucose	decreases	(Cahill,	Herrera	et	al.	1966).	There	is	a	net	reduction	in	glucose	output	

from	the	liver	with	a	decrease	in	glycogenolysis	and	an	increase	in	gluconeogenesis	

(Rothman,	Magnusson	et	al.	1991,	Katz	and	Tayek	1998).	This	increase	in	gluconeogenesis	is	

thought	to	be	mediated	by	increased	secretion	of	counter	regulatory	hormones	including	

glucagon,	and	a	reduction	in	insulin	levels	(Liljenquist,	Mueller	et	al.	1977)	.	This	hormonal	

milieu	enables	lipolysis	and	proteolysis	(the	breakdown	of	proteins	into	amino	acids).	The	

subsequent	breakdown	products	of	these	processes	provide	the	substrates	(primarily	amino	

acids	and	glycerol)	for	gluconeogenesis	(Cahill,	Herrera	et	al.	1966).	Mitochondrial	beta-

oxidation	of	free	fatty	acids	generates	acetyl-coenzyme	A	that		can	be	further	oxidised	in	the	

Kreb’s	cycle	or	can	be	used	in	the	biosynthesis	of	ketone	bodies	via	the	

hydroxymethylglutaryl	coenzyme	A	pathway	(Houten	and	Wanders	2010).	

1.1.4 Prolonged	fasting	

As	the	fast	becomes	more	prolonged,	the	tissues	increasingly	rely	on	free	fatty	acids	and	

ketone	bodies	(acetoacetate	and	3-beta-hydroxybutyrate)	as	a	source	of	fuel.	The	brain	is	

dependent	solely	on	ketone	bodies	as	an	alternative	fuel	to	glucose,	as	free	fatty	acids	

cannot	cross	the	blood-brain	barrier	(Zhang,	Kuang	et	al.	2013).		

1.2 Counterregulatory	Response	to	Hypoglycaemia	

Blood	glucose	is	the	key	substrate	for	brain	function	(Zhang,	Kuang	et	al.	2013).	Since	the	

brain	is	permanently	dependent	on	glucose,	as	plasma	glucose	levels	fall	(e.g	during	

prolonged	fasting)	the	healthy	individual	mounts	a	robust	physiological	neuroendocrine	

response	to	prevent	hypoglycaemia	(as	described	above).	This	neuroendocrine	response	is	

known	as	counterregulation,	a	system	that	prevents	and	corrects	hypoglycaemia	through	

the	release	of	counterregulatory	hormones	(glucagon,	adrenaline,	noradrenaline,	growth	

hormone	and	cortisol)	(Bolli	and	Fanelli	1999).	This	is	triggered	when	blood	glucose	levels	

decline	below	the	lower	end	of	the	normal	range	and	is	preceded	by	suppression	of	

endogenous	insulin	secretion.		There	is	a	hierarchy	of	glycaemia	thresholds	for	activation	of	

the	counterregulatory	hormones.	Increased	secretion	of	glucagon	and	adrenaline	occurs	at	
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blood	glucose	levels	of	approximately	3.8-3.9mmol/L,	secretion	of	noradrenaline	and	growth	

hormone	at	approximately	3.6-3.7mmol/L	and	secretion	of	cortisol	at	around	3.0mmol/L	

(Mitrakou,	Ryan	et	al.	1991).	Glucagon	and	adrenaline	are	the	most	important	hormones	

when	considering	the	response		to	acute	hypoglycaemia	(Cryer	1993).		

1.3 Definitions	of	Physical	Activity	and	Exercise	

The	terms	physical	activity	and	exercise	are	often	used	interchangeably	but	describe	

different	concepts.	Physical	activity	is	defined	as	any	bodily	movement	produced	by	skeletal	

muscles	that	results	in	energy	expenditure.	Exercise	is	a	subcategory	of	physical	activity	that	

is	planned,	structured	and	purposeful	(Caspersen,	Powell	et	al.	1985).			

1.4 Physiology	during	Physical	Activity	and	Exercise	(Individual	without	T1D)	

1.4.1 ATP	generation	during	physical	activity	and	exercise	

Performing	any	form	of	physical	activity	requires	the	transformation	of	chemical	energy	into	

mechanical	energy	(contraction	of	skeletal	muscles).	This	chemical	energy	is	obtained	from	

hydrolysis	of	Adenosine	Triphosphate	(ATP).	However,	the	amount	of	ATP	that	can	be	stored	

in	the	muscle	is	limited	and	would	only	enable	a	few	seconds	of	muscle	contraction	

(Gaitanos,	Williams	et	al.	1993)	.	Therefore	during	physical	activity	ATP	must	be	generated	

continuously	to	match	demand.	

There	are	three	distinct	energy	systems	to	supply	muscles	with	ATP	to	fuel	muscle	

contraction	(Fox,	Robinson	et	al.	1969)	The	three	systems	have	been	described	as	working	in	

a	sequential	manner	with	one	then	the	next	producing	ATP	as	physical	activity	continues.	

However,	although	distinct,	the	systems	are	closely	integrated	and	if	activity	is	sustained	(for	

longer	than	around	a	minute)	all	three	systems	will	operate	together	contributing	to	a	

varying	extent	to	energy	production	(Gastin	2001).	The	first	two	systems	described	are	

important	at	the	beginning	of	any	longer	duration	activity,	and	also	if	the	intensity	of	the	

exercise	is	rapidly	increased	such	as	a	sprint	to	the	finish	line	(Colberg	and	Colberg	2009).	
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Figure	1:	Relative	energy	system	contribution	to	the	total	energy	supply	for	any	given	
duration	of	maximal	exercise	(Gastin	2001).	
	

	

Figure	2:	The	three	energy	systems	of	muscle	ATP	generation	(Baker,	McCormick	et	al.	
2010)	
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1.4.2 ATP-	creatine	phosphate	system	

This	process	involves	the	splitting	of	phosphocreatine	(PCr)	to	donate	a	phosphate	group	to	

Adenosine	diphosphate	(ADP)	to	form	ATP.	Together	with	the	stored	ATP	in	the	muscle	cell,	

this	provides	immediate	energy	in	the	initial	stages	of	short	and	intense	activities	(Bogdanis,	

Nevill	et	al.	1996,	Walter,	Vandenborne	et	al.	1997).	The	PCr	system	can	fuel	an	all-out	effort	

for	around	a	maximum	of	10s	before	being	depleted.	This	system	does	not	require	any	

oxygen	for	energy	production,	and	is	therefore	anaerobic	in	nature.			

1.4.3 Lactic	acid	system	(glycolysis)	

The	second	system	involves	the	anaerobic	breakdown	of	carbohydrate	via	glycolysis	and	

results	in	the	production	of	lactic	acid.	This	system	supplies	the	additional	energy	for	

activities	that	last	longer	than	10	seconds	(Gaitanos,	Williams	et	al.	1993).		This	pathway	is	

capable	of	generating	ATP	at	high	rates	but	is	limited	by	the	total	amount	of	energy	it	can	

produce	in	a	single	bout	of	exercise	(Colberg	and	Colberg	2009).		

	

Figure	3:	Glycolytic-lactate	pathway	(Baker,	McCormick	et	al.	2010)	

1.4.4 Aerobic	system	

The	aerobic	energy	system	generates	energy	through	the	combustion	of	carbohydrates	and	

fats	in	the	presence	of	oxygen.	This	system	is	used	in	activities	sustained	for	greater	than	2	

minutes.	The	main	carbohydrate	sources	are	muscle	and	liver	glycogen,	liver	

gluconeogenesis	and	ingested	carbohydrates.	The	main	fat	sources	are	plasma	free	fatty	
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acids	and	intramuscular	triglycerides.	Protein	can	be	used	to	fuel	activity	but	it	usually	

contributes	less	than	5%	of	the	total	energy	used.	In	contrast	to	the	anaerobic	system	the	

aerobic	system	has	a	larger	capacity	to	produce	energy,	but	takes	longer	to	generate	this	

energy	(Gastin	2001).	

	

Figure	4:	Anaerobic	Respiration	(Baker,	McCormick	et	al.	2010)	

1.4.5 Fuel	utilisation	during	physical	activity	and	exercise	

During	the	transition	from	rest	to	physical	activity	the	muscle	shift	from	using	predominately	

free	fatty	acids	to	a	complex	mixture	of	circulating	free	fatty	acids,	intra	muscular	

triglycerides	and	muscle	and	liver	glycogen	(Riddell	and	BA	2006).	The	pattern	of	substrate	

utilisation	during	physical	activity	changes	with	activity	duration	and	intensity.		

1.4.6 Fuel	utilisation:	duration	of	physical	activity	or	exercise	

During	the	early	stages	of	aerobic	activity,	muscle	glycogen	is	the	chief	source	of	energy	for	

muscle	contraction,	whereas	circulating	glucose	and	free	fatty	acids	become	more	important	

with	increasing	exercise	duration	(Suh,	Paik	et	al.	2007).	
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1.4.7 Fuel	utilisation:	intensity	of	physical	activity	or	exercise	

Both	muscle	glycogen	and	blood	glucose	oxidation	rates	increase	with	increasing	intensity	of	

the	activity	(van	Loon,	Greenhaff	et	al.	2001).	In	contrast	fat	oxidation	increases	until	around	

60%	of	aerobic	capacity	is	reached,	then	decreases	thereafter	(van	Loon,	Greenhaff	et	al.	

2001)	(Romijn,	Coyle	et	al.	1993).	Thus,	fats	provide	the	main	fuel	source	for	low-moderate	

intensity	exercise	(up	to	60%	V02	max)	and	carbohydrates	are	the	main	fuel	source	during	

high	intensity	exercise	(see	figure	1).

	
Figure	5:	Energy	expenditure	and	the	contribution	of	different	metabolic	fuels	during	
exercise	of	varying	intensity	in	human	(van	Loon,	Greenhaff	et	al.	2001)	

	

During	sustained	activity	of	increasing	intensity,	a	threshold	will	be	reached	above	which	

carbohydrate	fuel	is	being	used	at	a	greater	rate	than	fat	fuel	sources.	This	threshold	

correlates	with	the	threshold	(or	intensity	of	exercise)	above	which	anaerobic	mechanisms	

supplement	aerobic	mechanisms	and	is	known	as	the	“anaerobic	threshold”(Connolly	2012).		

1.4.8 Fuel	utilisation:	other	factors		

In	addition	to	intensity	and	duration	other	factors	can	affect	the	pattern	of	substrate	

utilisation	during	physical	activity.	These	factors	include	training	status,	nutritional	status	

and	carbohydrate	ingestion	before	and	during	activity	(Gallen	2012).	Endurance	training	has	

been	shown	to	decrease	carbohydrate	utilisation	and	may	enhance	lipid	use	during	mild	to	

moderate	exercise	(Coggan,	Kohrt	et	al.	1990).	A	carbohydrate	rich	diet	may	increase	blood	

glucose	utilisation	during	exercise	in	contrast	to	a	low	carbohydrate	diet	(Galbo,	Holst	et	al.	

1979).	Carbohydrate	ingestion	just	before	or	during	exercise	has	been	shown	to	suppress	

Exercise	Intensity	(%VO2max)	
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hepatic	glucose	production	and	lipolysis	(McConell,	Fabris	et	al.	1994,	Jeukendrup,	

Wagenmakers	et	al.	1999).	

1.4.9 Glucose	homeostasis	during	physical	activity	and	exercise	

In	the	healthy	individual	blood	glucose	levels	are	normally	maintained	within	a	narrow	

physiological	range	during	physical	activity	(Smith,	Wilson	et	al.	2016).	This	is	achieved	in	the	

face	of	increased	energy	demands	by	a	complex	neuroendocrine	response	starting	at	the	

onset	of	physical	activity	(Camacho,	Galassetti	et	al.	2005,	Coker	and	Kjaer	2005).	As	one	of	

the	main	fuels	for	physical	activity	is	carbohydrate,	glucose	utilisation	by	the	working	muscle	

must	be	equally	matched	by	glucose	production	(predominately	by	the	liver)	or	

hypoglycaemia	will	occur	(Gallen	2012).	Indeed,	hypoglycaemia	can	arise	in	healthy	

individuals	when	glucose	production	fails	to	match	the	rate	of	glucose	utilisation,	such	as	

during	prolonged	activity	(usually	great	than	3	hours)	if	additional	carbohydrate	is	not	

consumed	(Felig,	Cherif	et	al.	1982).		

During	physical	activity	increased	demand	for	glucose	by	skeletal	muscle	results	in	increased	

glucose	uptake	by	the	working	muscle.	This	is	mediated	by	an	increase	in	the	translocation	

of	glucose	transporter-4	(GLUT4)	proteins	to	the	plasma	membrane	(Thorell,	Hirshman	et	al.	

1999).	Both	insulin	and	muscle	contraction	increase	GLUT4	expression	and	the	affect	is	

additive,	indicating	this	is	executed	by	two	distinct	mechanisms	(Constable,	Favier	et	al.	

1988,	Thorell,	Hirshman	et	al.	1999).		

Normal	blood	glucose	levels	are	usually	maintained	during	physical	activity	despite	this	

increase	in	glucose	uptake	by	the	skeletal	muscles.	This	is	achieved	through	increased	

glucose	production	by	the	liver	and	by	the	mobilisation	of	other	fuels	that	may	serve	as	

alternative	energy	sources	(Coker	and	Kjaer	2005).	This	careful	balance	is	orchestrated	by	

complex	neuroendocrine	mechanisms	as	detailed	below:	

1.4.10 Hepatic	glucose	production	during	physical	activity	and	exercise	

The	liver	plays	a	key	role	in	maintaining	blood	glucose	homeostasis	by	matching	the	

increased	demand	for	glucose	by	the	skeletal	muscle	with	an	increased	rate	of	hepatic	

glucose	production	(through	augmented	glycogenolysis	and	gluconeogenesis)(Wasserman	

1995).		In	the	early	stages	of	moderate	and	high	intensity	activity,	similar	to	fasting,	

increased	glucose	production	is	almost	entirely	attributable	to	accelerated	hepatic	

glycogenolysis	(Suh,	Paik	et	al.	2007).	As	physical	activity	is	prolonged	and	glycogen	stores	
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are	depleted,	gluconeogenesis	becomes	increasingly	important,	generating	glucose	from	

glycerol,	lactate	and	amino	acids	(Suh,	Paik	et	al.	2007).	In	addition,	the	timing	of	activity	in	

relation	to	food	consumption	influences	the	relative	importance	of	gluconeogenesis	in	fuel	

provision	during	exercise.	When	physical	activity	occurs	in	fasting	conditions	increased	

hepatic	glucose	production	is	predominately	from	gluconeogenesis	rather	than	

glycogenolysis	(Wahren,	Efendic	et	al.	1977).		

Hepatic	regulation	of	glucose	concentrations	during	exercise	is	mediated	by	both	hormones	

and	the	autonomic	nervous	system.	The	typical	hormone	response	to	physical	activity	in	a	

non-diabetic	individual	is	characterised	by	a	reduction	in	insulin	levels	(Hunter	and	Sukkar	

1968)	and	an	increase	in	glucagon,	catecholamine	(noradrenaline	and	adrenaline),	cortisol	

and	growth	hormone	levels	(Coker	and	Kjaer	2005).	The	ratio	of	glucagon	to	insulin	is	the	

main	regulator	of	glucose	production	during	moderate	exercise,	with	the	counterregulatory	

hormones	playing	a	supportive	role	(Wasserman,	Lickley	et	al.	1984,	Camacho,	Galassetti	et	

al.	2005).	This	decrease	in	insulin	concentration	occurs	at	the	onset	of	activity	and	is	a	result	

of	alpha-	adrenergic	stimulation	of	beta-pancreatic	cells	inhibiting	insulin	secretion	

(Hermansen,	Pruett	et	al.	1970).	The	reduction	in	circulating	insulin	increases	hepatic	

glucose	production	as	insulin	supresses	both	hepatic	glycogenolysis	and	gluconeogenesis	

(Petersen,	Laurent	et	al.	1998).	In	addition,	a	reduction	in	insulin	levels	facilitates	an	increase	

in	supply	of	gluconeogenic	precursors	to	the	liver,	as	insulin	suppresses	lipolysis	in	adipose	

tissue	(Edgerton,	Ramnanan	et	al.	2009).		Glucagon	plays	a	major	role	in	increasing	

glycogenolysis	and	to	a	lesser	extent	increases	gluconeogenesis	(Wasserman,	Spalding	et	al.	

1989).		

1.4.11 Counterregulatory	hormone	production	

Both	Glucagon	and	catecholamine	secretion	increase	with	physical	activity	intensity	and	

duration	(Adolfsson,	Nilsson	et	al.	2012).	During	intense	activity	catecholamines	increase	

glucose	production	by	the	liver	(Sigal,	Fisher	et	al.	1996,	Kreisman,	Halter	et	al.	2003).	

Increased	glucose	production	is	through	both	glycogenolysis	and	gluconeogenesis	(Dufour,	

Lebon	et	al.	2009).	Greater	catecholamine	secretion	at	higher	activity	intensities	may	be	

associated	with	hyperglycaemia	if	hepatic	glucose	production	exceeds	glucose	utilisation.	In	

healthy	individuals,	this	is	offset	with	a	rise	in	insulin	concentration	above	baseline	in	early	

recovery	from	high	intensity	interval	training	(Fahey,	Paramalingam	et	al.	2012).	However,	

the	role	of	catecholamines	in	increasing	glucose	production	by	the	liver	during	moderate	
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intensity	exercise	remains	unclear.	Studies	investigating	hepatic	glucose	output	in	

adrenalectomised	individuals	(Howlett,	Galbo	et	al.	1999),	and	in	healthy	individuals	under	

alpha	and	beta	blockade	(Simonson,	Koivisto	et	al.	1984)	do	not	suggest	that	adrenergic	

mechanisms	play	an	important	role	during	moderate	exercise.	Furthermore,	adrenaline	has	

been	shown	to	reduce	glucose	utilisation	by	inhibiting	insulin-stimulated	glucose	uptake	by	

skeletal	muscle	(Howlett,	Galbo	et	al.	1999).		

During	short-	term	physical	activity,	growth	hormone	(secreted	from	the	anterior	pituitary	

gland)	and	cortisol	(secreted	from	the	adrenal	cortex)	appear	to	play	only	a	minor	role	in	

glucose	homeostasis	(Gallen	2012).	However,	during	prolonged	activity	growth	hormone	and	

cortisol	increase	lipolysis,	generating	a	supply	of	free	fatty	acids	for	oxidation	by	the	muscles	

and	glycerol	for	hepatic	gluconeogenesis	(Hartley	1975,	Bak,	Moller	et	al.	1991).	It	should	be	

noted	that	during	prolonged	physcial	acivity	when	reliance	on	lipid	as	a	primary	fuel	source	

is	maximal,	the	body	still	has	a	requirement	for	carbohydrate	provision	and	if	this	is	not	met	

either	by	gluconeogenesis	or	oral	ingestion	then	hypoglycaemia	will	ensue	(Dennis,	Noakes	

et	al.	1997).	 	

1.5 Type	1	Diabetes		

1.5.1 Prevalence	and	incidence	

Type	1	Diabetes	(T1D)	is	a	metabolic	disorder	characterised	by	an	absolute	deficiency	of	

insulin	secretion	(Craig,	Jefferies	et	al.	2014)	.	T1D	accounts	for	approximately	10-15%	of	all	

diagnosed	cases	of	diabetes,	affecting	over	16	million	individuals	worldwide	(Onkamo,	

Vaananen	et	al.	1999)	and	accounts	for	over	90%	of	childhood	and	adolescent	diabetes	in	

most	western	countries.		The	incidence	of	Type	1	Diabetes	is	increasing	in	many	countries;	

globally	the	overall	annual	increase	is	estimated	at	around	3%	(Patterson,	Guariguata	et	al.	

2014).	The	global	distribution	of	T1D	demonstrates	large	area	to	area	variation,	both	within	

and	between	countries	and	between	different	ethnic	populations	(Craig,	Jefferies	et	al.	

2014).	For	instance,	Finland	has	the	highest	incidence	worldwide	at	57.6	per	100,000	

population	aged	under	15	years,	in	contrast	to	countries	such	as	China	and	India	with	a	

lower	incidence	of	around	of	0.1	per	100,000	(Patterson,	Guariguata	et	al.	2014).	This	may	

reflect	both	different	distributions	of	at	risk	genes	and	different	distributions	of	

environmental	exposures	as	well	as	methodological	challenges	in	epidemiological	studies	

(Patterson,	Guariguata	et	al.	2014).	In	Australia,	the	incidence	of	type	1	diabetes	among	0-14	

year	olds	is	relatively	high	at	21.6	per	1000,000	(Catanzariti,	Faulks	et	al.	2009).	
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1.5.2 Pathogenesis	of	Type	1	Diabetes	

TID	is	a	permanent	autoimmune	disease	caused	by	chronic	immune-	mediated	destruction	

of	pancreatic	beta	cells,	resulting	in	a	partial	or	more	commonly	an	absolute	insulin	

deficiency	(Craig,	Jefferies	et	al.	2014).	The	exact	cause	of	T1D	remains	to	be	elucidated,	

although	it	is	thought	to	result	from	a	complex	interaction	between	genetic	and	

environmental	risk	factors.	

1.5.3 Genetic	component	

T1D	is	a	polygenic	disorder,	with	many	different	genes	contributing	to	its	development.	

Genome	–wide	association	studies	have	identified	more	than	50	genetic	regions	that	affect	

the	risk	of	developing	T1D	(Storling	and	Pociot	2017).	The	major	histocompatibility	complex	

region	encoding	the	Human	Leukocyte	Antigen	on	chromosome	6p21	contributes	about	50%	

of	the	genetic	risk	of	T1D	(Pociot	and	Lernmark	2016).	The	remaining	genes	have	small	

individual	effects	on	disease	risk	and	therefore	cannot	be	used	in	isolation	to	predict	disease	

development.		

1.5.4 Environmental	component	

Environmental	triggers	are	implicated	in	the	development	of	T1D.	This	is	supported	by	

evidence	from	identical	twin	studies	that	report	that	if	one	twin	has	T1D	the	second	twin	will	

only	develop	the	disease	in	30-50%	of	cases	(Hemminki,	Li	et	al.	2009,	Nistico,	Iafusco	et	al.	

2012).	Exact	environmental	triggers	are	yet	to	be	confirmed.	Factors	of	interest	include:	

microbial	and	viral	infections,	dietary	components,	gut	microbiome	and	vitamin	D	levels	

(Hershey,	Perantie	et	al.	2005,	Butalia,	Kaplan	et	al.	2016).		

1.5.5 Insulin	deficiency	

T1D	is	characterised	by	an	absolute	insulin	deficiency,	thus	individuals	with	T1D	are	

completely	dependent	on	exogenous	delivery	of	insulin	for	survival.	In	a	healthy	individual,	

insulin	is	produced	by	the	beta	cells	of	the	pancreas.	Insulin	is	an	anabolic	hormone	and	

plays	an	essential	role	in	the	regulation	of	carbohydrate,	fat	and	protein	metabolism,	

promoting	the	uptake	of	glucose	from	the	blood	stream	into	liver,	fat	and	skeletal	muscle	

cells.	Insulin	stimulates	glycogen	synthesis	in	the	liver	and	muscle,	inhibits	glycogenolysis	in	

the	liver,	and	stimulates	fat	and	protein	synthesis	(Rizza,	Mandarino	et	al.	1981).		
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1.5.6 Symptoms	and	signs	of	Type	1	Diabetes	

In	individuals	with	T1D	when	approximately	90%	of	pancreatic	beta	cells	are	destroyed,	a	

lack	of	insulin	will	result	in	hyperglycaemia,	and	the	individual	will	present	with	clinical	signs	

of	diabetes	(Craig,	Jefferies	et	al.	2014).	When	hyperglycaemia	exceeds	the	renal	threshold,	

glucose	spills	into	the	urine	leading	to	an	osmotic	diuresis	and	polyuria	which	then	drives	a	

secondary	polydipsia.	Insulin	deficiency	results	in	a	“catabolic	state”	causing	lipolysis	and	the	

production	of	ketone	bodies	(3-beta-	hydroxybutyrate	and	acetoacetate).	The	resultant	high	

levels	of	ketones	in	the	blood	stream	lower	the	pH	of	the	blood	and	can	result	in	life	

threatening	coma	due	to	diabetic	ketoacidosis	(DKA)	(Alberti	and	Zimmet	1998).		

1.5.7 Management	of	Type	1	Diabetes	

The	management	of	T1D	has	been	described	as	having	three	essential	components-	insulin,	

diet	and	exercise	(Robertson,	Riddell	et	al.	2014).		

1.5.8 Insulin	Treatment		

Since	the	discovery	of	insulin	in	1922	by	Banting	and	his	colleagues,	it	has	been	possible	to	

deliver	life-preserving	exogenous	insulin	to	replace	the	lack	of	endogenous	insulin	

production	in	individuals	with	T1D.	Insulin	treatment	must	be	started	as	soon	as	possible	

after	diagnosis	to	prevent	metabolic	decompensation	and	DKA	(Danne,	Bangstad	et	al.	

2014).	Insulin	regimens	aim	to	meet	background	(or	basal)	insulin	requirements	24	hours	a	

day	with	additional	insulin	to	counteract	glycaemic	excursions	associated	with	dietary	intake.		

1.5.9 Regular	(soluble)	insulin		

Bovine	and	porcine	insulin	extracts	used	in	the	past	have	been	superseded	by	synthetic	

insulins.	Biosynthetic	human	insulin	(known	as	regular/soluble/	“short-acting”	insulin)	is	

manufactured	using	recombinant	DNA	technology	and	has	an	identical	structure	to	human	

insulin.		

1.5.10 Intermediate-acting	insulin	

Complexing	human	insulin	with	protamine	(known	as	NPH	or	isophane	insulin)	or	zinc	(lente	

insulin)	results	in	results	in	intermediate	insulins	that	have	a	longer	duration	of	action	than	

human	insulin.	Production	of	zinc-containing	insulins	has	been	stopped	(Danne,	Bangstad	et	

al.	2014).	The	profile	of	NPH	insulin	make	it	suitable	for	twice	daily	regimens,	however	these	

regimens	have	little	flexibility	and	often	require	dietary	restrictions	(Danne,	Bangstad	et	al.	

2014).		
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1.5.11 Insulin	analogues	

Clinical	limitations	of	older	insulins	including	regular	and	intermediate	forms	have	led	to	the	

development	of	current	insulin	analogues.	Insulin	analogues	have	a	modified	chemical	

structure	compared	to	human	insulin.	Modifications	enable	the	insulin	to	act	faster	than	

regular	insulin	in	rapid-acting	analogues,	or	slower	than	regular	insulin	in	basal	or	long-acting	

analogues.	Despite	modern	advances	in	insulin	formulations	unequivocal	evidence	for	the	

benefit	of	newer	insulins	(analogues)	remains	to	be	established	(Danne,	Bangstad	et	al.	

2014).	

1.5.12 Rapid	acting	insulin	analogues	

Rapid-acting	analogues	include	aspart,	glulisine	and	lispro,	all	have	a	similar	onset	and	

duration	of	action	despite	different	chemical	structures	(Philotheou,	Arslanian	et	al.	2011).	

Rapid	acting	analogues	have	been	associated	with	a	reduction	in	hypoglycaemia	but	not	with	

a	clear	benefit	in	glycaemic	control	when	compared	to	regular	(soluble)	insulins	(Tupola,	

Komulainen	et	al.	2001,	Holcombe,	Zalani	et	al.	2002,	Siebenhofer,	Plank	et	al.	2006).	When	

used	in	insulin	pumps	rapid-acting	analogue	insulins	result	in	a	small	reduction	in	HbA1c	

compared	with	regular	insulins	(Colquitt,	Royle	et	al.	2003).	Fast	acting	insulin	aspart,	is	a	

new	rapid-acting	insulin	analogue	with	a	faster	onset	of	action	than	aspart	insulin	

(Hovelmann,	Heise	et	al.	2017).	Fast	acting	insulin	aspart,	when	used	as	part	of	an	MDI	

regimen	has	been	associated	with	a	small	reduction	in	HbA1c	compared	to	insulin	aspart,	in	

adults	with	T1D	(Mathieu,	Bode	et	al.	2018).		

1.5.13 Basal	insulin	analogues	

The	basal	insulin	analogues	such	as	glargine,	detemir	and	degludec	differ	in	structure,	mode	

and	duration	of	action.	Basal	insulin	analogues	have	a	more	predictable	profile	with	less	

within	and	between	subject	variability	than	NPH	insulin	(Lepore,	Pampanelli	et	al.	2000).	

Basal	analogues	compared	to	NPH	are	associated	with	a	reduction	in	hypoglycaemia;	

however,	benefits	in	long-term	glycaemic	control	remain	controversial	(Schober,	Schoenle	et	

al.	2002,	Chase,	Dixon	et	al.	2003,	Vague,	Selam	et	al.	2003,	Porcellati,	Rossetti	et	al.	2004,	

Robertson,	Schoenle	et	al.	2007).		

1.5.14 Insulin	regimen	

Over	the	last	decade	the	most	notable	trend	in	diabetes	management	has	been	a	shift	from	

twice	daily	regimens	to	intensive	insulin	treatment	with	multiple	daily	injections	(MDI)	or	

continuous	subcutaneous	insulin	infusion	(CSII)	(Danne,	Bangstad	et	al.	2014).	This	paradigm	
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shift	has	been	largely	driven	by	conclusive	evidence	from	the	Diabetes	Control	and	

Complications	Trial	(DCCT)	demonstrating	that	an	improvement	in	long-term	glycaemic	

control	achieved	with	intensive	management	compared	with	conventional	treatment	(one	or	

two	injections	per	day)	delays	the	onset	and	slows	progression	of	diabetic	complications	

(DCCT	1993,	DCCT	1994).		Subsequently	intensive	management	has	become	the	gold	

standard	treatment	for	T1D	in	both	adult	and	paediatric	settings.	

1.5.15 CSII	versus	MDI		

The	MDI	approach	comprises	injections	of	rapid-acting	insulin	analogues	prior	to	meals	and	

an	injection	of	a	long-acting	(basal	analogue)	insulin	usually	at	bedtime.	CSII	is	achieved	

using	an	insulin	pump	consisting	of	a	small	portable	external	device	containing	rapid	acting	

insulin	connected	by	an	infusion	line	to	a	subcutaneous	cannula.	Rapid	acting	insulin	is	

infused	at	a	basal	rate	24	hours	a	day,	with	patient-activated	boluses	of	insulin	administered	

prior	to	the	ingestion	of	food	(Hanas	and	Adolfsson	2006,	Pickup	2012).	Given	that	basal	

rates	changes	can	be	programmed	throughout	the	day,	CSII	has	been	described	as	a	

providing	a	more	physiological	pattern	of	insulin	compared	to	MDI	regimens.	

As	only	short-acting	insulin	is	used	in	CSII,	there	is	a	risk	of	hyperglycaemia	and	ketosis	

developing	if	insulin	delivery	is	interrupted	(Zisser	2008).	Reassuringly,	studies	comparing	

MDI	and	CSII	have	not	demonstrated	an	increase	risk	in	DKA	associated	with	pump	use	

(Hanas	and	Adolfsson	2006).		

CSII	potentially	allows	more	precise	and	flexible	insulin	dosing,	with	the	opportunity	to	use	

up	to	hourly	basal	rates,	give	multiple	boluses	without	extra	injections	and	to	utilise	

different	ways	of	delivering	the	bolus	dose.	Furthermore,	CSII	has	been	shown	to	be	safe	and	

effective	in	all	age	groups	(Ahern,	Boland	et	al.	2002).		

Despite	these	features,	the	impact	of	CSII	on	glycaemic	control	when	compared	to	MDI	

treatment	is	still	unclear.	The	majority	of	studies	investigating	CSII	compare	this	means	of	

insulin	delivery	to	regimens	that	use	NPH	as	the	long	acting	insulin	and	report	an	

improvement	in	hypoglycaemia	and	HbA1c	(Boland,	Grey	et	al.	1999,	Pickup,	Mattock	et	al.	

2002).	A	study	comparing	CSII	to	MDI	where	glargine	(a	basal	analogue)	is	used	as	the	long	

acting	insulin	supports	these	findings	(Bolli,	Kerr	et	al.	2009).	In	contrast	others	have	found	

no	difference	in	glycaemic	control	between	glargine	based-MDI	therapy	and	CSII,	although	

CSII	was	associated	with	improved	patient	satisfaction	(Skogsberg,	Fors	et	al.	2008).		A	meta-
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analysis	of	six	paediatric	randomised	controlled	trials	including	165	patients	demonstrated	a	

2.6mmol/mol	(0.24%	reduction)	in	HbA1c	with	CSII	compared	to	MDI	(where	NPH	was	most	

commonly	used	as	the	basal	insulin)(Pankowska,	Blazik	et	al.	2009).		

1.5.16 	Continuous	glucose	monitoring		

Advances	in	technology	are	rapidly	changing	the	landscape	of	diabetes	management.	

Continuous	glucose	monitoring	(CGM)	and	Flash	Glucose	Monitoring	(FGM)	consist	of	a	

subcutaneously	inserted	sensor	that	measures	glucose	levels	in	the	interstitial	fluid	providing	

both	a	short	and	long-term	view	of	glucose	levels	and	trends.	These	devices	are	becoming	

increasingly	accurate	and	user-friendly	(Fonseca,	Grunberger	et	al.	2016).	CGM	use	has	been	

shown	to	facilitate	a	modest	improvement	in	glycaemic	control	in	adults	(JDRF	2010),	

adolescents	and	children	(Lewis,	McCrone	et	al.	2017).	

1.5.17 Sensor	augmented	pump	therapy:	threshold	suspend	systems	

Sensor-augmented	pump	therapy	integrates	CSII	with	CGM.	It	consists	of	an	insulin	pump	

that	uses	a	mathematical	algorithm	to	automatically	alter	insulin	delivery	in	response	to	

sensor	glucose	levels.	A	low	glucose	suspend	feature	(where	basal	insulin	is	ceased	for	up	to	

2	hours	when	sensor	glucose	levels	fall	below	a	pre-set	threshold)	is	associated	with	reduced	

rates	of	hypoglycaemia	in	individuals	with	T1D	(Bergenstal,	Klonoff	et	al.	2013,	Ly,	Nicholas	

et	al.	2013).	Furthermore,	use	of	a	predictive	low	glucose	suspend	feature	(where	basal	

insulin	is	stopped	automatically	if	sensor	glucose	is	predicted	to	fall	below	a	threshold	and	

re-starts	at	a	predetermined	level)	has	been	shown	to	reduce	hypoglycaemia	in	adults	

(Maahs,	Calhoun	et	al.	2014)	and	children	(Battelino,	Nimri	et	al.	2017)	with	T1D.	

1.5.18 Sensor	augmented	pump	therapy:	fully	automated	systems	

Research	is	in	progress	to	develop	a	fully	automated	(closed	loop)	insulin	delivery	system	to	

improve	glycaemic	control	whilst	reducing	the	burden	of	hypoglycaemia	and	diabetes	self-

care	(Thabit	and	Hovorka	2016).	Closed	loop	systems	expand	on	the	concept	of	threshold	

suspend,	by	using	a	control	algorithm	that	continually	increases	or	decreases	insulin	delivery	

in	response	to	sensor	glucose	levels.	Existing	systems	are	described	as	“hybrid”	as	the	

delivery	of	basal	insulin	is	fully	automated	but	patients	are	still	required	to	administer	

prandial	insulin	doses.	Systems	under	investigation	include	dual	hormone	(insulin	and	

glucagon)	and	single	hormone	(insulin	only)	pumps.	Both	systems	have	been	found	to	be	

safe	and	effective	in	clinic	(Haidar,	Rabasa-Lhoret	et	al.	2016),	outpatient/camp	(Haidar,	

Messier	et	al.	2017)	(Ly,	Buckingham	et	al.	2016)	and	home	settings	(Thabit,	Tauschmann	et	
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al.	2015,	Tauschmann,	Allen	et	al.	2016,	Garg,	Weinzimer	et	al.	2017)	in	children,	adolescents	

and	adults	with	T1D.	Further	large	multicentre	randomised	controlled	trials	are	under	way.	

The	first	commercial	hybrid	closed	loop	system	was	released	in	2017	in	the	USA.	

1.5.19 Diet	

In	view	of	the	impact	of	food	on	glycaemic	control,	nutritional	management	is	fundamental	

to	diabetes	care	and	education.		Dietary	recommendations	for	children	with	diabetes	are	

based	on	healthy	eating	recommendations	suitable	for	all	children	and	adults	and	therefore	

for	the	whole	family	(Smart,	Annan	et	al.	2014).	Goals	of	nutritional	management	in	children	

should	include	maintenance	of	ideal	body	weight	and	optimal	growth,	as	well	as	helping	to	

prevent	acute	and	chronic	diabetes	complications	(Smart,	Annan	et	al.	2014).		

1.5.20 Carbohydrate	counting		

Matching	of	insulin	dose	to	carbohydrate	intake	to	minimise	postprandial	glycaemic	

excursions	has	become	a	key	component	of	diabetes	management.	This	involves	

carbohydrate	counting,	a	method	of	carbohydrate	quantification	that	focuses	on	

carbohydrate	as	a	principal	dietary	component	affecting	postprandial	glucose	levels.	

Carbohydrate	counting	allows	for	flexibility	of	food	choice	and	may	improve	glycaemic	

control	(DAFNE	2003),	although	randomised	controlled	trials	in	children	are	lacking	

(Kawamura	2007).			

1.5.21 Glycaemic	control	and	risk	of	long-term	complications	

T1D	is	associated	with	long-term	microvascular	complications	including	retinopathy,	

nephropathy,	neuropathy	and	macrovascular	disease	including	heart	disease	and	stroke	

(Donaghue,	Wadwa	et	al.	2014).	The	Diabetes	Control	and	Complications	Trial	(DCCT),	a	

multicentre	randomised	controlled	clinical	trial	demonstrated	that	intensive	diabetes	and	

improved	glycaemic	control	conferred	a	significant	reduction	in	risk	of	microvascular	

complications	compared	with	conventional	treatment	(DCCT	1993).	Further	follow-up	of	this	

study	cohort	in	the	Epidemiology	of	Diabetes	Interventions	and	Complications	(EDIC)	study	

showed	that	after	4	years	there	was	no	significant	difference	in	glycaemic	control	between	

the	former	intensive	and	conventional	groups	(White,	Sun	et	al.	2010).	However,	despite	

this,	the	positive	effect	in	complication	risk	reduction	was	sustained	in	the	former	intensive	

treatment	group	(White,	Cleary	et	al.	2001,	Nathan,	Cleary	et	al.	2005)	This	phenomenon	has	

been	described	as	a	“memory	effect”	of	improved	glycaemic	control	(Donaghue,	Wadwa	et	
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al.	2014).	This	evidence	underpins	current	clinical	practice	of	striving	to	achieve	optimal	

glycaemic	control	for	each	individual.	

1.5.22 Monitoring	glycaemic	control	

Monitoring	of	glycaemic	control	includes	immediate	measures	of	glucose	levels	by	self-

monitoring	of	blood	glucose	(SMBG)	or	using	continuous	glucose	monitoring	devices	(CGM),	

and	periodic	monitoring	of	overall	glycaemia	using	glycated	haemoglobin	(HbA1c)	(Rewers,	

Pillay	et	al.	2014).	Glucose	becomes	irreversibly	attached	to	the	molecule	of	haemoglobin	

during	the	approximately	120-day	life	cycle	of	the	circulating	red	blood	cell	forming	glycated	

haemoglobin	(Rewers,	Pihoker	et	al.	2009).	HbA1c	reflects	levels	of	glycaemia	over	the	

preceding	4-12	weeks,	weighted	toward	the	most	recent	4	weeks	(Tahara	and	Shima	1995).	

Elevated	HbA1C	predicts	long-term	microvascular	and	macrovascular	complications	(DCCT	

1993).	International	guidelines	recommend	a	target	of	<7.5%	(58mmol/L)	for	all	patients	

with	T1D	younger	than	18	years	of	age	(Rewers,	Pillay	et	al.	2014)	.	More	recently	National	

Institute	of	Clinical	Excellence	(NICE)	guidelines	recommend	that	an	HbA1C	target	level	of	

6.5%	(48mmol/L)	or	lower	is	ideal	in	children	or	young	people	with	T1D	to	minimise	the	risk	

of	long-term	complications	(Beckles,	Edge	et	al.	2016).	More	recently	it	has	been	suggested	

that	CGM	measures	of	glycaemic	control	will	become	more	useful	than	HbA1c	as	average	

glucose	levels,	glycaemic	variability	and	the	proportion	of	time	spent	hypoglycaemic	and	

hyperglycaemic	can	be	accurately	assessed	(Danne,	Nimri	et	al.	2017).		

1.6 Hypoglycaemia	in	Type	1	Diabetes	

1.6.1 Mechanisms	underlying	risk	of	hypoglycaemia	in	Type	1	Diabetes	

Insulin	treated	individuals	with	diabetes	are	at	increased	risk	of	hypoglycaemia	and	the	

mechanisms	underlying	this	increased	risk	are	multifactorial.	The	principle	factor	is	the	

absence	of	natural	feedback	mechanisms,	resulting	in	a	failure	to	decrease	insulin	levels	in	

response	to	falling	blood	glucose	levels	(Cryer	2008).	This	is	because	in	the	absence	of	

endogenous	insulin	secretion,	circulating	insulin	levels	are	principally	a	function	of	the	

absorption	and	clearance	of	injected	insulin	(Cryer	2013).	Secondly,	in	individuals	with	T1D,	

glucagon	secretion	is	impaired	in	response	to	hypoglycaemia	(Cryer	2013).	Glucagon	is	

essential	for	preventing	hypoglycaemia	as	it	stimulates	hepatic	glucose	production	(through	

glycogenolysis	and	gluconeogenesis)	and	inhibits	conversion	of	glucose	to	hepatic	glycogen.	

This	loss	in	the	physiological	glucagon	response	is	related	to	the	loss	of	insulin	secretion	and	

develops	early	in	disease	progression	(Cryer	2013)	(Cryer	2011).		Evidence	suggests	that	it	is	
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the	failure	of	a	reduction	in	beta	cell	insulin	secretion	in	response	to	hypoglycaemia	that	

causes	the	lack	of	alpha	cell	glucagon	secretion	(Cryer	2011).	Thirdly,	in	T1D,	the	normal	

increase	in	adrenaline	levels	in	response	to	hypoglycaemia	is	attenuated,	with	a	lower	blood	

glucose	threshold	triggering	adrenaline	secretion	(Cryer	2013).	This	combination	of	

compromised	defences	to	hypoglycaemia	results	in	an	increased	risk	of	hypoglycaemia	in	the	

T1D	population.	

1.6.2 Definition	of	hypoglycaemia	

There	is	no	internationally	agreed	numerical	definition	of	hypoglycaemia	in	T1D.	Guidelines	

recommend	that	hypoglycaemia	is	best	defined	as	a	fall	of	the	blood	glucose	level	that	

exposes	the	patient	to	potential	harm	(Ly,	Maahs	et	al.	2014).	In	clinical	practice,	because	of	

the	risk	of	blood	glucose	levels	falling	further,	a	glucose	level	of	3.9mmol/L	is	used	as	a	

threshold	value	for	initiating	treatment	for	hypoglycaemia	in	T1D	(Ly,	Maahs	et	al.	2014).		In	

the	adult	population	hypoglycaemia	is	defined	as	severe	when	a	hypoglycaemia	event	

requires	assistance	from	another	person	for	treatment	or	resuscitative	actions	(Seaquist,	

Anderson	et	al.	2013).	This	includes	events	of	hypoglycaemic	seizures	and	coma.	As	children	

are	often	dependent	on	their	caregiver	to	treat	hypoglycaemia,	the	definition	of	severe	

hypoglycaemia	is	usually	restricted	to	that	resulting	in	seizure	or	convulsion	(Ly,	Maahs	et	al.	

2014).	Recently,	there	have	been	efforts	to	standardise	hypoglycaemia	definitions	to	allow	

consistent	analyses	over	time	and	between	cohorts	and	trials.	Three	levels	of	hypoglycaemia	

have	been	accepted	by	consensus:	hypoglycaemia	alert	(blood	glucose	<3.9	mmol/l,	

significant	biochemical	hypoglycaemia	(blood	glucose	<3.0	mmol/	l)	and	severe	

hypoglycaemia	(a	clinical	event	in	which	the	person	with	diabetes	requires	external	help	

because	of	hypoglycaemia	induced	cognitive	dysfunction	(IHSG	2017).	

1.6.3 Incidence	of	hypoglycaemia	in	individuals	with	Type	1	Diabetes	

The	incidence	of	mild	or	moderate	hypoglycaemia	is	unknown.	Clinical	practice	tells	us	that	

these	events	occur	frequently	in	people	with	insulin	treated	T1D	and	that	these	events	may	

be	unreported	or	unrecognised.	The	incidence	of	severe	hypoglycaemia	has	been	reported	

in	multiple	studies;	however,	variations	in	definitions	make	studies	difficult	to	compare	(Ly,	

Maahs	et	al.	2014).	The	DCCT	trial	reported	the	incidence	of	coma	or	seizure	was	27/100	

patient-years	in	the	intensively	treated	and	10/100	patient	years	in	those	conventionally	

treated,	among	the	adolescents	who	participated	in	the	study	(DCCT	1993).	More	recent	

data	suggests	rates	of	severe	hypoglycaemia	may	be	decreasing	(O'Connell,	Cooper	et	al.	
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2011,	Cengiz,	Xing	et	al.	2013)	and	that	the	previously	described	inverse	relationship	

between	HbA1c	and	severe	hypoglycaemia	rates	may	no	longer	be	the	case	(Haynes,	

Hermann	et	al.	2016,	Gimenez,	Tannen	et	al.	2018).	It	is	postulated	that	this	may	be	a	

consequence	of	changes	in	clinical	practice	including	contemporary	insulin	regimens	(Ly,	

Maahs	et	al.	2014).	In	support	of	this,	evidence	demonstrates	that	intensive	glycaemic	

control	with	pump	therapy	can	be	achieved	without	increasing	the	risk	of	hypoglycaemia	

(Ahern,	Boland	et	al.	2002).		

1.6.4 Symptoms	and	signs	of	hypoglycaemia	

In	a	well	individual,	as	the	blood	glucose	levels	fall,	the	symptoms	and	signs	of	

hypoglycaemia	occur	in	a	hierarchical	fashion	(Mitrakou,	Ryan	et	al.	1991).		The	initial	

symptoms	(occurring	at	a	blood	glucose	level	of	approximately	3.2-3.6mmol/L)	result	from	

activation	of	the	autonomic	nervous	system	and	include	shakiness,	weakness,	hunger,	and	

sweating.		As	the	blood	glucose	level	falls,	further	symptoms	result	from	glucose	deprivation	

in	the	brain	(neuroglycopenia)	and	include	headache/difficulty	concentrating,	blurred	vision,	

difficulty	hearing,	slurred	speech,	confusion,	seizure,	loss	of	consciousness	and	death	(Ly,	

Maahs	et	al.	2014).		In	young	children,	behavioural	changes	such	as	irritability,	agitation,	

quietness	and	tantrums	may	be	the	principal	feature	of	hypoglycaemia,	resulting	from	a	

combination	of	neuroglycopenic	and	autonomic	responses	(McCrimmon,	Gold	et	al.	1995).	

1.6.5 Impaired	counterregulatory	response	in	individuals	with	Type	1	Diabetes	

In	an	individual	with	T1D	the	counterregulatory	response	to	hypoglycaemia	is	impaired	with	

an	inability	to	reduce	exogenously	administered	insulin	and	a	reduced	or	absent	glucagon	

response	(Cryer	2013).	In	this	setting,	the	adrenomedullary	secretion	of	adrenaline	is	of	

paramount	importance	as	other	early	defences	are	compromised.	However,	as	already	

described	this	very	response	may	be	attenuated	in	individuals	with	T1D	(Cryer	2013).		

Consequently,	the	glucose	threshold	at	which	physiological	responses	occur	and	when	

symptoms	of	hypoglycaemia	are	perceived	may	be	altered.	Chronic	hyperglycaemia	may	

result	in	symptoms	occurring	at	higher	blood	glucose	levels.	Repeated	hypoglycaemia	may	

cause	symptoms	to	occur	at	lower	blood	glucose	levels	(Amiel,	Sherwin	et	al.	1988)	and	this	

can	result	in		impaired	hypoglycaemia	awareness,	defined	as	the	inability	to	perceive	the	

onset	of	hypoglycaemia	(Ly,	Maahs	et	al.	2014).	This	is	typically	described	when	

neuroglycopenic	symptoms	occur	before	the	appearance	of	autonomic	warning	symptoms		
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Many	factors	can	further	blunt	the	already	compromised	counterregulatory	response	to	

hypoglycaemia	in	a	person	with	T1D	and	thereby	increase	the	risk	of	subsequent	

hypoglycaemia.	A	key	factor	is	that	hypoglycaemia	attenuates	defences	against	subsequent	

hypoglycaemia	and	this	can	result	in	a	vicious	cycle	of	recurrent	low	blood	glucose	levels	

(Dagogo-Jack,	Craft	et	al.	1993).	Other	factors	known	to	impair	the	counterregulatory	

response	to	hypoglycaemia	include	sleep	and	prior	physical	activity	(Jones,	Porter	et	al.	

1998,	Sandoval,	Guy	et	al.	2004,	Cryer	2013).		

1.6.6 Short	term	consequences	of	hypoglycaemia		

Hypoglycaemia	is	associated	with	significant	morbidity	and	mortality	in	people	with	T1D.	In	

the	short-term	symptoms	of	hypoglycaemia	can	be	unpleasant,	embarrassing	or	potentially	

dangerous	(Ly,	Maahs	et	al.	2014).	Severe	prolonged	hypoglycaemia	can	result	in	coma,	

seizures	(Buckingham,	Wilson	et	al.	2008)	or	even	death	(Tanenberg,	Newton	et	al.	2010).	

1.6.7 Long	term	consequences	of	hypoglycaemia	

Long	term	effects	of	hypoglycaemia,	in	particular	in	the	context	of	a	child’s	developing	brain,	

remain	controversial	(Ly,	Maahs	et	al.	2014).	Several	studies	report	that	repeated	severe	

hypoglycaemia	can	adversely	affect	cognitive	function	(Ryan,	Vega	et	al.	1985,	Wysocki,	

Harris	et	al.	2003).	Furthermore,	brain	abnormalities,	including	mesial	temporal	sclerosis,	

have	been	described	in	the	context	of	repeated	episodes	of	hypoglycaemic	seizures	

occurring	in	young	children	with	early	onset	T1D	(Ho,	Weller	et	al.	2008).	In	contrast,	other	

studies	do	not	show	an	association	between	severe	hypoglycaemia	and	impaired	cognitive	

function.	A	case-control	prospective	follow	up	study	of	33	young	adults	report	no	difference	

in	intellectual	ability,	memory	or	emotional	difficulties	compared	with	matched	controls	(Ly,	

Anderson	et	al.	2011).		

While	the	evidence	is	conflicting	regarding	hypoglycaemia	and	long-term	effects	on	brain	

function,	it	is	it	clear	that	the	risk	of	hypoglycaemia	causes	significant	anxiety	for	people	with	

T1D	and	their	families.	This	fear	of	hypoglycaemia	can	act	as	a	barrier	to	achieving	optimal	

glycaemic	control	(Davis,	Keating	et	al.	1998).		

1.7 Physical	Activity,	Exercise	and	Type	1	Diabetes		

1.7.1 Benefits	of	physical	activity	and	exercise		

Exercise,	was	described	by	Joslin	in	the	1950’s	as	the	third	essential	component	in	diabetes	

management	alongside	diet	and	insulin	(Robertson,	Riddell	et	al.	2014).	Physical	exercise	has	
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numerous	well-established	health	benefits	for	individuals	with	T1D	including	improvement	

in	glycaemic	control	(Herbst,	Bachran	et	al.	2006,	MacMillan,	Kirk	et	al.	2014),	increased	

cardiovascular	function	(Fuchsjager-Mayrl,	Pleiner	et	al.	2002),	and	blood	lipid	profiles	

(Laaksonen,	Atalay	et	al.	2000)	as	well	as	enhanced	psychological	wellbeing	(Penedo	and	

Dahn	2005,	Martinez,	Frazer	et	al.	2016).		

1.7.2 Barriers	to	physical	activity	and	exercise		

Despite	these	benefits,	many	individuals	with	T1D	find	participating	in	physical	activity	

challenging	(Riddell,	Gallen	et	al.	2017).	These	challenges	can	act	as	barriers	to	exercise,	

preventing	individuals	from	engaging	in	a	physically	active	lifestyle	(Dube,	Valois	et	al.	2006).	

As	a	consequence,	individuals	with	TID	are	on	average	less	physically	active	and	have	lower	

fitness	levels	than	non-diabetic	individuals	(Komatsu,	Gabbay	et	al.	2005,	Valerio,	Spagnuolo	

et	al.	2007,	Williams,	Guelfi	et	al.	2011).		

Barriers	to	exercise	include	the	difficulty	of	maintaining	a	stable	blood	glucose	level	during	

and	after	exercise	(Lascar,	Kennedy	et	al.	2014).	This	may	involve	hypoglycaemia,	

hyperglycaemia	and/or	the	frustration	of	unpredictable	blood	glucose	levels.	In	addition	to	

overcoming	the	challenges	of	the	effect	of	exercise	on	blood	glucose	levels,	physically	active	

young	people	with	T1D	may	find	that	the	blood	glucose	level	itself	impacts	on	their	exercise	

performance	(Kelly,	Hamilton	et	al.	2010).		

Many	psychosocial	factors	may	act	as	barriers	to	exercise.	It	is	well	recognised	that	the	fear	

of	both	immediate	and	delayed	hypoglycaemia	can	prevent	individuals	being	physically	

active	(Brazeau,	Mircescu	et	al.	2012).		The	need	for	extra	support	from	caregivers,	teachers	

and	coaches	may	also	act	as	a	barrier	(Jabbour,	Henderson	et	al.	2016).		Inadequate	

knowledge	around	exercise	management	can	be	another	obstacle	in	the	course	of	engaging	

in	an	active	lifestyle	(Ryninks,	Sutton	et	al.	2015).	Furthermore,	challenges	not	specific	to	

individuals	with	T1D	such	as	motivation,	time,	and	resources	may	prevent	young	people	

from	exercising	(Lascar,	Kennedy	et	al.	2014).		

Barriers	to	exercise	may	be	overcome	with	appropriate	education	and	training	(Colberg,	

Sigal	et	al.	2016,	Riddell,	Gallen	et	al.	2017).	It	is	therefore	of	paramount	importance	that	

patients	and	health	care	professionals	are	empowered	with	knowledge	to	enable	young	

people	with	T1D	to	engage	in	a	physically	active	lifestyle.		
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1.8 Exercise	Physiology	in	Individuals	with	Type	1	Diabetes		

1.8.1 Physcial	activity	and	exercise	are	risk	factors	for	hypoglycaemia		

For	individuals	with	insulin	treated	diabetes	physical	activity	is	associated	with	an	increased	

risk	of	hypoglycaemia	(Camacho,	Galassetti	et	al.	2005).	In	the	healthy	individual	blood	

glucose	levels	are	normally	maintained	within	a	narrow	physiological	range	during	exercise	

regardless	of	the	intensity	or	duration	of	the	activity.	As	previously	described,	this	is	

achieved	despite	increased	energy	demands	by	a	complex	neuroendocrine	response.	During	

sustained	moderate	intensity	aerobic	activity	this	is	characterised	by	a	decrease	in	insulin	

levels	and	an	increase	in	glucagon	levels	at	the	onset	of	activity	(Camacho,	Galassetti	et	al.	

2005)	(Hunter	and	Sukkar	1968,	Coker	and	Kjaer	2005).	

1.8.2 Hypoglycaemia	occurring	during	and	shortly	after	physical	activity	and	

exercise	

An	individual	with	T1D	is	at	risk	of	hypoglycaemia	during	and	after	exercise.	Exogenously	

administered	insulin	is	not	under	regulation	of	the	body’s	homeostatic	mechanisms	and	

insulin	levels	fail	to	fall	at	the	onset	of	exercise,	resulting	in	a	relative	hyperinsulinaemic	

state	(Riddell	and	Perkins	2006,	Chu,	Hamilton	et	al.	2011).	Therefore,	during	sustained	

aerobic	exercise,	blood	glucose	levels	will	fall	in	most	individuals	with	T1D,	unless	additional	

carbohydrates	are	ingested	(Tansey,	Tsalikian	et	al.	2006).	Moreover,	contrary	to	normal	

physiological	responses,	it	has	been	described	that	insulin	concentrations	may	rise	at	the	

onset	of	exercise	in	individuals	with	T1D	(Riddell,	Gallen	et	al.	2017).	This	is	thought	be	

related	to	increased	blood	flow	to	the	subcutaneous	tissues	during	exercise	(Frayn	and	

Karpe	2014).			

Relatively	high	insulin	levels	during	exercise	inhibit	hepatic	glucose	production	as	insulin	

suppresses	glycogenolysis	and	gluconeogenesis	(Hunter	and	Sukkar	1968,	Edgerton,	

Ramnanan	et	al.	2009).	In	addition,	insulin	suppresses	lipolysis,	thereby	reducing	both	the	

availability	of	free	fatty	acids	for	oxidation	by	the	muscles	and	reducing	the	supply	of	

gluconeogenic	precursors	to	the	liver	(Edgerton,	Ramnanan	et	al.	2009).	Insulin	also	

increases	glucose	uptake	by	the	skeletal	muscles	during	and	after	physical	activity.	This	is	

mediated	by	an	increase	in	the	translocation	of	glucose	transpoter-4	(GLUT4)	proteins	to	the	

plasma	membrane	(Thorell,	Hirshman	et	al.	1999).			
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In	summary,	the	failure	to	reduce	insulin	levels	during	and	shortly	after	physical	activity	

results	in	a	mismatch	between	glucose	production	by	the	liver	and	increased	glucose	

utilisation	by	the	skeletal	muscle,	resulting	in	exercise	mediated	hypoglycaemia	(Chu,	

Hamilton	et	al.	2011).		

1.8.3 Late	onset	post	exercise	hypoglycaemia		

This	risk	of	hypoglycaemia	related	to	physical	activity	and	exercise	may	be	immediate,	that	is	

during	or	shortly	after	the	activity	or	delayed	by	several	hours	after	the	activity.	A	study	of	

50	adolescents	aged	11-17	years	with	T1D,	reported	twice	as	many	hypoglycaemia	events	on	

the	night	following	an	exercise	day	compared	with	the	night	after	a	sedentary	day	(Tsalikian,	

Mauras	et	al.	2005).		

Late	onset	post	exercise	hypoglycaemia	(LOPEH)	is	multifactorial	in	origin.	An	important	

factor	is	increased	glucose	uptake	by	skeletal	muscles,	resulting	in	increased	insulin	

sensitivity	during	and	after	exercise	(MacDonald	1987,	Peirce	1999).	Increased	glucose	

uptake	by	the	skeletal	muscles	is	mediated	by	both	insulin	dependent	and	insulin	

independent	mechanisms.	Both	insulin	and	muscle	contraction	increase	the	translocation	of	

glucose	transpoter-4	(GLUT4)	in	skeletal	muscle	and	these	affects	are	additive	(Thorell,	

Hirshman	et	al.	1999).	Increased	insulin	sensitivity	after	exercise	is	related	to	replenishing	

muscle	and	liver	glycogen	stores	after	exercise.	A	study	in	9	adolescents	with	T1D	showed	

that	glucose	requirements	to	maintain	euglycaemia	after	afternoon	exercise	with	T1D	

increased	in	a	biphasic	manner:	during	and	shortly	after	exercise	and	again	from	7-11	hours	

after	exercise	(McMahon,	Ferreira	et	al.	2007)(see	Figure	2).	In	contrast,	when	exercise	was	

performed	earlier	at	midday,	insulin	sensitivity	was	increased	throughout	an	11	hour	

recovery	period	in	adolescents	with	T1D,	without	a	clear	biphasic	pattern	in	

sensitivity(Davey,	Howe	et	al.	2013).	

Another	factor	to	consider	is	that	counter	regulatory	responses	to	hypoglycaemia	may	be	

impaired	in	T1D	and	this	impairment	can	be	exacerbated	post	activity	(MacDonald	1987).	

Exercise	in	children	often	occurs	in	the	afternoon,	after	school.	This	adds	a	further	element	

of	risk	to	this	post	exercise	milieu,	as	late	onset	hypoglycaemia	may	occur	overnight	when	

counter	regulatory	responses	to	hypoglycaemia	are	impaired	during	sleep	(Jones,	Porter	et	

al.	1998).	
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Figure	6:	Difference	in	glucose	infusion	rate	(GIR)	between	exercise	and	rest	studies	(mg/kg	
min)	to	maintain	euglycaemia	after	afternoon	exercise	in	adolescents	with	T1D.	Hatched	
box,	Exercise	period,	*P	0.05.	(McMahon,	Ferreira	et	al.	2007) 
	

1.8.4 Exercise	type	and	glycaemic	responses	

In	individuals	with	T1D	the	blood	glucose	response	to	exercise	depends	largely	on	the	type	

of	exercise	performed,	the	duration	of	the	activity	and	the	amount	of	circulating	insulin	on	

board	at	the	time	of	exercise	(Riddell,	Gallen	et	al.	2017).		

	

	

Time	(24hr	clock)	
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Figure	7:	Variability	in	blood	glucose	response	to	different	forms	of	exercise	in	people	with	
type	1	diabetes	(Riddell,	Gallen	et	al.	2017)	
	

1.8.5 Continuous	moderate	intensity	exercise	

Moderate-Intensity	exercise	generally	involves	continuous	aerobic	activity	between	40	and	

59%	of	maximum	oxygen	uptake	(VO2	max)	or	55-69%	of	maximal	heart	rate	(Colberg,	Sigal	

et	al.	2016).	Sustained	moderate	intensity	aerobic	exercise	carries	the	greatest	acute	risk	of	

hypoglycaemia	for	the	reasons	described	above.		Most	individuals	with	T1D	will	develop	

hypoglycaemia	within	about	45	minutes	of	starting	aerobic	exercise	if	no	additional	

carbohydrate	is	consumed	(Tansey,	Tsalikian	et	al.	2006,	Garcia-Garcia,	Kumareswaran	et	al.	

2015).		In	individuals	with	T1D	the	pattern	of	substrate	utilisation	during	exercise	is	largely	

similar	to	that	described	in	healthy	individuals	and	changes	with	exercise	duration	and	

intensity	(Raguso,	Coggan	et	al.	1995,	Riddell,	Bar-Or	et	al.	2000).	One	subtle	alteration	is	

that	individuals	with	T1D	who	are	under-insulinised	have	higher	rates	of	lipid	oxidation	

during	exercise	compared	to	controls	(Wahren,	Hagenfeldt	et	al.	1975).			
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1.8.6 High	intensity	exercise	

In	contrast	to	continuous	moderate	intensity	aerobic	exercise,	short	but	intense	anaerobic	

activities	such	as	sprinting	typically	result	in	a	rise	in	blood	glucose	levels	(Marliss	and	Vranic	

2002).	Similarly,	resistance	exercise	(weight	lifting)	is	associated	with	a	more	stable	blood	

glucose	profile	than	aerobic	exercise	and	a	lower	risk	of	hypoglycaemia	(Yardley,	Kenny	et	al.	

2012).	Increased	glucose	levels	in	response	to	anaerobic	exercise	are	thought	to	be	

mediated	by	a	rise	in	catecholamine	levels	resulting	in	increased	hepatic	glucose	production,	

and	an	increase	in	metabolites	including	lactate	(Bally,	Zueger	et	al.	2016)	and	glucose	6-

phosphate	(Fahey,	Paramalingam	et	al.	2012)	that	may	reduce	glucose	disposal.	

The	underlying	mechanisms	by	which	metabolites	may	affect	glucose	disposal	in	skeletal	

muscle	remain	unclear.	It	is	thought	that	lactate	may	act	by	being	a	glucose	competing	

substrate	or	by	inducing	peripheral	insulin	resistance.		Increased	blood	lactate	levels	have	

been	shown	to	be	associated	with	increased	lactate	utilisation	and	decreased	glucose	

oxidation	in	lactate	clamp	studies	in	healthy	individuals	performing	moderate	intensity	

exercise.	Furthermore,	animal	studies	report	reduced	glucose	uptake	by	skeletal	muscle	

when	lactate	levels	are	elevated	(Vettor,	Lombardi	et	al.	1997,	Lombardi,	Fabris	et	al.	1999,	

Choi,	Kim	et	al.	2002).	Glucose	6-phosphate	has	been	postulated	to	play	a	role	in	the	

glycaemic	excursion	associated	with	a	short	sprint	(Fahey,	Paramalingam	et	al.	2012)	.	It	is	a	

metabolite	associated	with	rapid	glycogen	breakdown	and	high	levels	can	inhibit	muscle	

glucose	use	via	inhibition	of	hexokinase	(Wasserman	1995).		

This	rise	in	glycaemia	following	high	intensity	exercise	is	also	seen	in	non-diabetic	individuals	

following	intense	anaerobic	activity,	but	is	brief	and	transient	in	nature	(Marliss,	Simantirakis	

et	al.	1991).		In	the	individual	with	T1D	this	glycaemic	excursion	is	exaggerated	because	of	a	

failed	increase	in	insulin	in	response	to	the	rise	in	glucose	(Marliss	and	Vranic	2002).		

1.9 Exercise	Management	in	Type	1	Diabetes:	The	Classical	Approach		

For	individuals	with	T1D	maintaining	stable	blood	glucose	levels	during	and	after	exercise	

continues	to	be	a	challenge.	This	can	act	as	a	barrier,	preventing	people	with	T1D	engaging	

in	a	physically	active	lifestyle	despite	the	well-established	benefits	of	exercise.	Classical	

exercise	management	strategies	involve	monitoring	blood	glucose	levels	and	tailoring	

carbohydrate	intake	and	insulin	adjustment	to	the	type	and	duration	of	physical	activity.		
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1.9.1 Patient	goal	

The	first	step	in	formulating	a	patient’s	exercise	management	plan	involves	identifying	the	

patients	exercise	goal,	as	this	may	influence	subsequent	management	decisions.	For	

example,	if	the	goal	is	facilitating	weight	loss,	it	would	be	most	appropriate	to	use	an	insulin	

sparing	strategy	rather	than	a	carbohydrate	supplementation	approach	to	avoid	

hypoglycaemia	(Riddell,	Gallen	et	al.	2017).	In	contrast	if	the	primary	goal	is	exercise	

performance	then	nutritional	guidance	specific	to	the	activity	is	required	and	insulin	

adjustment	to	match	this	additional	carbohydrate	intake	should	be	considered	(Riddell,	

Gallen	et	al.	2017).	

1.9.2 Glucose	monitoring		

Monitoring	blood	glucose	and	or	sensor	glucose	levels	is	clearly	important	for	managing	

glycaemia	before,	during	and	after	exercise.		Information	gathered	from	glucose	monitoring	

allows	refinement	of	future	exercise	strategies.	The	blood	glucose	response	to	60	minutes	of	

intermittent	moderate	intensity	exercise	has	been	shown	to	be	reproducible	in	an	

adolescent	when	the	pre-exercise	meal,	timing	of	exercise	and	the	amount	of	insulin	were	

kept	constant	(Temple,	Bar-Or	et	al.	1995).		These	findings	suggest	that	glucose	monitoring	

during	and	after	exercise	can	help	individuals	learn	how	different	factors	and	behaviours	

influence	their	glucose	control.	However,	in	contrast	others	report	that	an	individual’s	blood	

glucose	response	to	exercise	may	not	be	predictable	on	repeated	exercise	occasions	

(Biankin,	Jenkins	et	al.	2003).	

The	blood	glucose	level	at	the	time	of	starting	exercise	can	be	used	to	tailor	glycaemic	

management	strategies.	A	recent	consensus	statement	suggests	that	7-10mmol/l	is	an	

acceptable	starting	range	for	adult	patients	doing	aerobic	exercise	for	up	to	60-minute	

duration	(Riddell,	Gallen	et	al.	2017).	

1.9.3 Continuous	glucose	monitoring	and	flash	glucose	monitoring	

Continuous	Glucose	monitoring	(CGM)	and	Flash	Glucose	Monitoring	(FGM)	can	provide	

detailed	information	on	glucose	levels	during	and	after	exercise.	Use	of	CGM	in	adolescents	

has	shown	that	afternoon	moderate-vigorous	intensity	exercise	increases	the	risk	of	

nocturnal	and	next	day	hypoglycaemia	(Metcalf,	Singhvi	et	al.	2014).	CGM	and	FGM	provide	

the	opportunity	to	respond	not	only	to	sensor	glucose	levels	but	to	directional	arrows	that	

indicate	rates	of	change	in	glycaemia	in	real-time.	An	observational	study	in	25	adolescents	

in	a	camp-setting	showed	that	use	of	a	carbohydrate	intake	algorithm	in	response	to	sensor	
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glucose	levels	and	trends	prevents	hypoglycaemia	during	exercise	(Riddell	and	Milliken	

2011).		

CGM	and	FGM	devices	use	electrochemical	sensors	to	measure	interstitial	glucose	

concentration.	It	is	well	established	that	interstitial	glucose	levels	may	lag	behind	blood	

glucose	levels,	particularly	at	times	of	rapid	glucose	change	(Davey,	Low	et	al.	2010).	This	

lag-time	consists	of	the	time	for	glucose	to	diffuse	from	blood	to	the	interstitium,	inherent	

electrochemical	sensor	delays	due	to	the	reaction	process,	and	any	signal	processing	delays	

(Keenan,	Mastrototaro	et	al.	2009).	Despite	marked	advances	in	sensor	technology	over	the	

last	decade	with	significant	improvements	in	sensor	accuracy,	there	are	still	concerns	

regarding	the	accuracy	of	CGM	during	exercise.	Furthermore,	reported	mean	absolute	

relative	difference’s	(MARD’s)	from	laboratory	reference	measures	for	commercially	

available	sensors	are	usually	in	the	setting	of	rest	not	exercise	(Bailey,	Chang	et	al.	2015).	

MARD	is	defined	as	the	average	of	the	absolute	error	between	all	CGM	values	and	matched	

reference	values;	the	smaller	the	difference,	the	closer	the	CGM	reading	is	to	the	reference	

glucose	value.	

Exercise	potentially	poses	challenges	to	sensor	accuracy	as	it	is	associated	with	rapid	

changes	in	glucose	concentration	(Galassetti	and	Riddell	2013),	body	temperature	and	

redistribution	of	body	fluids	including	changes	in	subcutaneous	tissue	circulation	(Jacobsson	

and	Kjellmer	1964,	Jacobsson	and	Kjellmer	1964).	In	addition,	exercise	may	result	in	

mechanical	forces	at	the	site	where	the	sensor	is	placed.		A	number	of	studies	have	

investigated	the	accuracy	of	CGM	during	exercise	in	non-T1D	(Herrington,	Gee	et	al.	2012)	

and	T1D	individuals	(Kumareswaran,	Elleri	et	al.	2013,	Taleb,	Emami	et	al.	2016,	Biagi,	

Bertachi	et	al.	2018)	and	have	reported	lower	CGM	performance	during	exercise.	In	contrast,	

others	have	found	comparable	or	improved	CGM	accuracy	during	exercise	compared	to	rest	

(Yardley,	Sigal	et	al.	2013,	Bally,	Zueger	et	al.	2016,	Aberer,	Hajnsek	et	al.	2017).			

Evidence	comparing	the	performance	of	different	CGM	systems	during	exercise	is	limited.	

Aberer	et	al	compared	the	performance	of	3	different	commercially	available	sensors	and	

reported	improved	sensor	accuracy	during	exercise	(15	minutes	of	continuous	cycling	at	low	

intensity)	compared	to	rest,	with	MARD’s	(±SD)	of	8.7	±	5.9%,	15.7	±14.6%	and	19.4	±13.5%	

for	Abott,	Dexcom	and	Medronic	systems	respectively	during	exercise	when	comparing	

sensor	glucose	levels	to	earlobe	capillary	blood	glucose	levels.		
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As	a	consequence	of	the	lag-time	between	blood	glucose	and	sensor	glucose	levels,	CGM	

may	overestimate	glucose	levels	when	blood	glucose	levels	are	dropping,	and	

underestimating	glucose	levels	when	blood	glucose	levels	are	quickly	rising.	However,	some	

studies	report	CGM	reading	below	plasma	glucose	levels	during	exercise	(Yardley,	Sigal	et	al.	

2013,	Bally,	Zueger	et	al.	2016),	while	others	report	CGM	over-reading	during	exercise	

(Moser,	Yardley	et	al.	2018).		

Given	that	high	intensity	intermittent	exercise	is	known	to	be	associated	with	metabolic	

changes	including	change	in	pH,	increased	lactate	levels	and	changes	in	microcirculation	it	

has	been	hypothesised	that	CGM	accuracy	may	be	influenced	by	exercise	type.	Studies	to	

date	comparing	sensor	performance	in	individuals	with	T1D	during	continuous	exercise	

compared	to	intermittent	high	intensity	exercise	have	shown	comparable	accuracy	in	both	

conditions	(Yardley,	Sigal	et	al.	2013,	Bally,	Zueger	et	al.	2016,	Moser,	Mader	et	al.	2016).		

There	is	no	current	evidence	to	suggest	that	the	duration	of	exercise	influences	the	

performance	of	CGM.	Theoretically,	dehydration	from	prolonged	activity	may	affect	the	

amount	of	fluid	in	the	interstitial	space	and	therefore	influence	sensor	performance	(Moser,	

Yardley	et	al.	2018).	A	study	looking	at	CGM	accuracy	before,	during	and	after	exercise	was	

associated	with	lower	sensor	performance	during	exercise	compared	to	rest,	but	this	

returned	to	better	than	pre-exercise	levels	within	1	hour	of	exercise	recovery	(Biagi,	Bertachi	

et	al.	2018).		

1.9.4 Carbohydrate	intake	

Carbohydrate	consumption	before,	during	and	after	exercise	can	be	used	to	prevent	exercise	

-mediated	hypoglycaemia	(Dube,	Lavoie	et	al.	2012).	Several	guidelines	make	

recommendations	for	the	amount	of	carbohydrate	intake	around	exercise	for	children	(Craig	

2011,	Robertson,	Riddell	et	al.	2014)	and	adults	(Colberg,	Sigal	et	al.	2016,	Riddell,	Gallen	et	

al.	2017)	with	T1D.	The	key	factor	to	determine	the	amount	of	carbohydrate	intake	required	

for	exercise	is	the	timing	of	the	last	rapid	acting	insulin	bolus.	Other	factors	influencing	the	

amount	of	carbohydrate	required	for	exercise	include	body	mass,	exercise	duration	and	

intensity	and	the	blood	glucose	level	at	the	start	of	exercise.		
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1.9.5 Carbohydrate	intake	when	circulating	insulin	levels	are	high	(bolus	conditions)	

The	carbohydrate	requirement	to	prevent	exercise	mediated	hypoglycaemia	increases	with	

plasma	insulin	levels	(Francescato,	Geat	et	al.	2004).	When	insulin	levels	are	high	such	as	

within	2-3	hours	of	a	meal-time	bolus	(bolus	conditions),	International	guidelines	suggest	

consuming	up	to	1.0-1.5g	of	CHO	per	kilogram	of	body	mass	per	hour	of	strenuous	or	longer	

duration	exercise	(Robertson,	Riddell	et	al.	2014).	Thus,	carbohydrate	intake	is	a	particularly	

important	strategy	for	unplanned	activity	occurring	after	a	bolus	of	insulin,	where	insulin	

doses	have	not	been	reduced	prior	to	exercise.	

1.9.6 Carbohydrate	intake	when	circulating	insulin	levels	are	low	(basal	conditions)	

When	exercise	is	performed	before	breakfast,	when	insulin	levels	are	low,	the	risk	of	

hypoglycaemia	is	minimal	(Ruegemer,	Squires	et	al.	1990)	and		carbohydrate	

supplementation	may	not	be	required	(Nathan,	Madnek	et	al.	1985,	Soo,	Furler	et	al.	1996).	

International	guidelines	recommend	0.3g-0.5g	of	carbohydrate	per	kg	of	body	mass	per	hour	

If	the	pre-meal	bolus	has	been	lowered	or	the	exercise	is	performed	several	hours	after	

administration	of	a	bolus	dose	when	insulin	levels	are	low	(basal	conditions)(Robertson,	

Riddell	et	al.	2014).		

1.9.7 Carbohydrate	intake	and	exercise	intensity		

Carbohydrate	requirements	to	prevent	blood	glucose	levels	falling	during	exercise	vary	with	

the	intensity	and	duration	of	exercise	(Rabasa-Lhoret,	Bourque	et	al.	2001).	A	study	in	young	

people	with	T1D	reported	that	glucose	requirements	to	maintain	euglycaemia	during	

exercise	performed	under	basal	insulin	conditions	increase	with	intensity	up	to	50%	and	65%	

VO2	max,	but	in	contrast	no	glucose	was	required	at	80%	VO2	max.	This	has	been	described	

as	an	“inverted	U	relationship”	between	exercise	intensity	and	intravenous	glucose	

requirement	(Shetty,	Fournier	et	al.	2016).	Further	studies	are	required	to	establish	the	

relationship	between	intravenous	and	oral	glucose	requirements	(Shetty,	Fournier	et	al.	

2016)	and	exercise	intensity.	Furthermore,	it	remains	to	be	elucidated	if	this	relationship	is	

maintained	when	exercise	is	performed	when	insulin	levels	are	high	(bolus	conditions).		

The	majority	of	existing	guidelines	regarding	carbohydrate	intake	for	exercise	are	limited	as	

they	do	not	take	into	account	the	intensity	of	the	activity	performed.	A	recent	consensus	

statement	provides	recommendations	on	carbohydrate	intake	for	adults	with	T1D	tailored	

according	to	exercise	intensity	as	well	as	insulin	levels	(Riddell,	Gallen	et	al.	2017).		
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1.9.8 Glycaemic	index	of	carbohydrate	

In	addition	to	the	amount	of	carbohydrate,	the	type	and	timing	of	carbohydrate	ingestion	

should	also	be	considered.	Carbohydrates	with	a	high	glycaemic	Index	(GI)	such	as	glucose	

liquid,	tablets	and	gels,	are	digested	and	absorbed	quickly	resulting	in	a	rapid	rise	in	blood	

glucose	levels.	In	contrast,	low	GI	foods,	including	fruits,	milk	and	wholemeal	bread,	are	

released	more	slowly	causing	a	more	gradual	and	sustained	rise	in	glycaemia.	

1.9.9 Low	GI	carbohydrates	

Low	GI	carbohydrate	intake	is	important	to	optimise	muscle	glycogen	stores	up	to	48	hours	

prior	to	activity	and	to	replenish	stores	after	exercise.	A	meal	or	snack,	containing	low	GI	

carbohydrate	is	recommended	1-4	hours	prior	to	exercise	to	increase	hepatic	glycogen	

stores	(West,	Morton	et	al.	2011,	Bracken,	Page	et	al.	2012)	and	provide	sustained	

carbohydrate	release	during	exercise.		The	addition	of	protein	to	the	pre-	exercise	meal	may	

have	some	further	benefits	in	preventing	exercise	mediated	hypoglycaemia	(Dube,	Lavoie	et	

al.	2012).	Furthermore,	consumption	of	bedtime	snacks	containing	low	GI	carbohydrate	

(Kaufman,	Halvorson	et	al.	1997),	protein	(Kalergis,	Schiffrin	et	al.	2003)	and	or	fat	(including	

whole	milk)(Hernandez,	Moccia	et	al.	2000)	may	help	reduce	the	risk	of	late	onset	post	

exercise	hypoglycaemia.		

1.9.10 High	GI	carbohydrates	

High	GI	carbohydrates	are	preferable	immediately	prior	to	and	during	prolonged	exercise	

(greater	than	60	minutes	duration)(Grimm,	Ybarra	et	al.	2004).	Ideally	the	amount	of	

carbohydrate	ingested	should	match	the	carbohydrate	utilised	during	activity	and	should	be	

consumed	in	divided	doses	(every	15-20	minutes)	(Riddell,	Bar-Or	et	al.	1999).	However	

recommendations	should	be	modified	to	an	individual’s	gut	toleration	of	carbohydrate	

(Perrone,	Laitano	et	al.	2005).	Furthermore,	a	high	GI	snack	should	be	consumed	early	in	

recovery	(1-2	hours	post	exercise)	to	aid	glycogen	restoration.		

1.9.11 Carbohydrate	intake	for	exercise	performance	

Carbohydrate	intake	requirements	for	optimal	exercise	performance	may	differ	from	

recommendations	based	solely	on	hypoglycaemia	prevention	(Riddell,	Gallen	et	al.	2017).	

Given	that	high	carbohydrate	intake	is	often	recommended	for	healthy	individuals	during	

prolonged	exercise	to	optimise	performance,	this	strategy	has	been	explored	in	T1D	

(Adolfsson,	Mattsson	et	al.	2015).	The	author’s	report	that	increased	carbohydrate	

supplementation,	matched	with	increased	insulin	doses	is	safe	and	allows	maintenance	of	
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glycaemic	control	during	prolonged	aerobic	activity	(Adolfsson,	Mattsson	et	al.	2015).	

Indeed,	excessive	carbohydrate	supplementation	without	matched	insulin	may	result	in	

hyperglycaemia	(Francescato,	Stel	et	al.	2015).	Although	anecdotal	evidence	suggests	

hyperglycaemia	may	adversely	affect	exercise	performance,	studies	have	failed	to	

demonstrate	a	difference	in	sports	skill	performance	during	acute	hyperglycaemia	compared	

to	normoglycaemia	(Stettler,	Jenni	et	al.	2006,	Kelly,	Hamilton	et	al.	2010).	Therefore,	it	

remains	unclear	if	there	is	an	optimal	blood	glucose	target	range	for	exercise	performance.	

1.9.12 Insulin	adjustment	

Insulin	adjustment	is	a	key	tool	for	achieving	stable	blood	glucose	levels	during	and	after	

exercise	(Robertson,	Riddell	et	al.	2014,	Colberg,	Sigal	et	al.	2016,	Riddell,	Gallen	et	al.	2017).	

The	degree	to	which	blood	glucose	levels	fall	during	moderate	intensity	exercise	is	

dependent	on	plasma	insulin	levels	(Francescato,	Geat	et	al.	2004).	It	is	therefore	important	

to	establish	the	timing	of	exercise	in	relation	to	the	last	bolus	dose	of	rapid	acting	insulin.		

1.9.13 Bolus	insulin	dose	adjustments	

Reductions	in	rapid-acting	insulin	bolus	doses	are	recommended	if	exercise	is	occurring	

within	2-3	hours	of	bolus	insulin	administration	(Robertson,	Adolfsson	et	al.	2009,	Colberg,	

Sigal	et	al.	2016,	Riddell,	Gallen	et	al.	2017).	If	exercise	is	performed	within	2-3	hours	of	a	

meal-time	insulin	bolus	then	a	bolus	dose	reduction	of	25-75%	should	be	considered.	The	

extent	of	this	rapid	acting	insulin	dose	reduction	should	be	proportional	to	both	the	intensity	

and	duration	of	the	physical	activity	(Riddell,	Gallen	et	al.	2017).	

1.9.14 Basal	insulin	dose	adjustments	

Exercise	performed	in	the	late	postprandial	period	(>	3	hours)	after	a	rapid	acting	insulin	

bolus	(i.e	under	basal	conditions)	is	less	likely	to	result	in	hypoglycaemia	as	circulating	insulin	

levels	are	typically	low.	Despite	relatively	low	insulin	levels,	basal	insulin	adjustment	may	still	

be	required	(Tsalikian,	Kollman	et	al.	2006)	to	prevent	exercise	mediated	hypoglycaemia.	

Prolonged	moderate	intensity	exercise	performed	4	hours	after	lunch	by	adolescents	with	

T1D	has	been	shown	to	result	in	a	consistent	fall	in	blood	glucose	levels	(Tansey,	Tsalikian	et	

al.	2006).		

Insulin	pumps	allow	greater	flexibility	in	adjusting	basal	rates	than	multi-dose	injection	

regimens.	Furthermore,	less	post	exercise	hyperglycaemia	has	been	reported	with	insulin	

pump	therapy	compared	to	MDI	regimens	in	physically	active	adults	(Yardley,	Iscoe	et	al.	
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2013).	For	those	on	insulin	pumps,	guidelines	suggest	use	of	a	temporary	basal	rate	

reduction	of	50-80%	commenced	60-90	minutes	prior	to	the	onset	of	activity,	lasting	until	

the	end	of	the	activity	(Robertson,	Riddell	et	al.	2014,	Colberg,	Sigal	et	al.	2016,	Riddell,	

Gallen	et	al.	2017).	In	reality,	individuals	may	opt	to	completely	suspend	basal	insulin	

delivery	at	the	start	of	exercise.	This	approach	has	been	shown	to	be	more	effective	in	

reducing	a	fall	in	blood	glucose	levels	during	intermittent	high	intensity	activity	compared	to	

continuous	aerobic	activity	(Zaharieva,	Yavelberg	et	al.	2017).		

A	basal	insulin	reduction	of	20%	for	6	hours	(21:00	to	3am)	has	been	shown	to	reduce	the	

incidence	of	post	afternoon	exercise	nocturnal	hypoglycaemia	(Taplin,	Cobry	et	al.	2010).	

Reduction	in	basal	insulin	for	those	on	MDI	may	result	in	hyperglycaemia	and	is	only	

appropriate	for	those	engaging	in	more	activity	than	usual	such	as	sports	camps	(Riddell,	

Gallen	et	al.	2017).		

Advances	in	pump	technology	may	provide	further	strategies	for	basal	rate	adjustment	to	

avoid	exercise	mediated	hypoglycaemia.	Studies	investigating	low	glucose	suspend	(a	

feature	where	basal	insulin	is	discontinued	when	a	low	sensor	glucose	level	is	detected)	and	

predictive	low	glucose	suspend	technology	(where	basal	insulin	is	turned	off	when	

hypoglycaemia	is	predicted	to	occur	within	a	set	time	by	an	algorithm)	during	exercise	are	

encouraging	(Brazg,	Bailey	et	al.	2011,	Abraham,	Davey	et	al.	2016).	Future	technological	

goals	include	the	development	of	a	fully	automated	insulin	delivery	system	for	exercise	

(Colberg,	Laan	et	al.	2015,	de	Bock,	Dart	et	al.	2016).		

1.10 Exercise	Strategies	to	Prevent	Exercise	Mediated	Hypoglycaemia	

1.10.1 High	intensity	exercise	and	the	prevention	of	exercise	mediated	

hypoglycaemia	

Not	all	forms	of	exercise	result	in	hypoglycaemia	in	individuals	with	T1D	with,	as	previously	

described,	different	forms	of	exercise	resulting	in	different	glycaemic	responses	(Riddell	and	

Perkins	2006).	In	particular,	exercise	performed	at	high	intensity	(>80%	maximal	aerobic	

capacity)	for	approximately	10-15	minutes	results	in	a	rise	in	blood	glucose	levels	during	and	

after	exercise	in	both	non-diabetic	(Hermansen,	Pruett	et	al.	1970,	Brooks,	Nevill	et	al.	1990)	

and	T1D	individuals	(Mitchell,	Abraham	et	al.	1988,	Sigal,	Purdon	et	al.	1994,	Sigal,	Fisher	et	

al.	1999).		One	difference	in	this	response	is	that	the	rise	in	blood	glucose	levels	is	sustained	

for	several	hours	in	individuals	with	T1DM,	in	contrast	to	non-diabetic	individuals,	where	
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blood	glucose	levels	return	to	baseline	within	an	hour	(Mitchell,	Abraham	et	al.	1988,	Marliss	

and	Vranic	2002).		

1.10.2 Role	of	catecholamine’s	in	the	glycaemic	response	to	high	intensity	exercise	

This	high	intensity	exercise	induced	rise	in	blood	glucose	levels	is	mediated,	in	part,	by	a	rise	

in	catecholamine	levels	causing	a	disproportionate	rise	in	hepatic	glucose	production	relative	

to	the	rise	in	the	rate	of	muscle	glucose	(Mitchell,	Abraham	et	al.	1988,	Marliss	and	Vranic	

2002,	Kreisman,	Halter	et	al.	2003).	When	adrenaline	and	noradrenaline	are	infused	during	

moderate	intensity	exercise	to	mimic	the	levels	seen	in	high	intensity	exercise	there	is	an	

increase	in	hepatic	glucose	production	and	blood	glucose	levels	similar	to	that	observed	

during	high	intensity	exercise	(Kreisman,	Halter	et	al.	2003).	In	contrast,	findings	from	a	

recent	study	investigating	hormonal	responses	to	high	intensity	exercise,	suggest	decreased	

glucose	uptake	rather	than	increased	hepatic	glucose	production	is	the	cause	of	lower	

glucose	requirements	during	high	intensity	exercise	(Bally,	Zueger	et	al.	2016).	Furthermore,	

it	is	known	that	catecholamines	inhibit	insulin-mediated	glucose	uptake	in	skeletal	muscle	at	

rest	(Nonogaki	2000,	Guy,	Sandoval	et	al.	2005)	and	during	exercise	(Howlett,	Galbo	et	al.	

1999,	Watt	and	Hargreaves	2002).		

1.10.3 Role	of	insulin	in	the	glycaemic	response	to	high	intensity	exercise	

The	sustained	rise	in	glycaemia	seen	in	individuals	with	T1D	is	thought	to	be	a	result	of	a	

failure	to	increase	insulin	levels	in	response	to	elevated	blood	glucose	levels	(Marliss	and	

Vranic	2002).	Insulin	is	required	to	supress	hepatic	glucose	production	and	to	provide	a	

stimulus	for	insulin-induced	glucose	uptake	by	the	skeletal	muscle	(Riddell	and	Perkins	

2006).	Supporting	this	mechanism,	infusion	of	physiological	levels	of	insulin	following	high	

intensity	exercise	accelerates	the	return	of	blood	glucose	levels	to	pre-exercise	levels	in	

individuals	with	T1D	(Sigal,	Purdon	et	al.	1994).	

1.10.4 Role	of	cortisol	and	growth	hormone	in	the	glycaemic	response	to	high	

intensity	exercise		

Growth	hormone	and	cortisol	are	not	principal	factors	in	producing	the	rise	in	glucose	levels	

associated	with	high	intensity	exercise	(Marliss	and	Vranic	2002).	The	change	in	these	

hormone	levels	is	minimal	during	a	bout	of	intense	exercise,	with	levels	only	rising	later	in	

recovery	(Marliss	and	Vranic	2002).	In	addition	infusion	of	octreotide	to	inhibit	insulin,	

glucagon	and	growth	hormone	secretion,	with	simultaneous	replacement	of	insulin	and	
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glucagon	by	basal-rate	infusions,	has	no	effect	on	the	increase	in	glucose	production	during	

intense	exercise	(Marliss	and	Vranic	2002).		

1.10.5 Feasibility	of	high	intensity	exercise	as	a	strategy	to	prevent	exercise	

mediated	hypoglycaemia	

The	glycaemia	increasing	effect	of	a	sustained	bout	of	intense	exercise	raises	the	possibility	

that	this	type	of	exercise	may	be	beneficial	in	the	prevention	of	exercise	medicated	

hypoglycaemia	in	individuals	with	T1D.	However,	10-15	minutes	of	sustained	exercise	at	high	

intensity	is	unlikely	to	be	well	tolerated	by	most	individuals	with	T1D,	thereby	limiting	the	

translation	of	this	strategy	into	a	free-living	setting.	This	has	led	to	the	investigation	of	the	

glucoregulatory	responses	to	short	(up	to	10s)	sprints,	potentially	a	more	clinically	applicable	

strategy.		

1.10.6 The	10s	maximal	sprint	

The	effect	of	a	10s	maximal	sprint	on	blood	glucose	levels	in	T1DM	individuals	has	been	

investigated	by	a	series	of	clinic	based	studies	by	Professor	Tim	Jones	and	the	diabetes	

research	team	in	Perth,	Western	Australia	(Bussau,	Ferreira	et	al.	2006,	Bussau,	Ferreira	et	

al.	2007,	Fahey,	Paramalingam	et	al.	2012,	Davey,	Bussau	et	al.	2013).		

1.10.7 The	10s	maximal	sprint	performed	under	basal	conditions	

It	has	been	shown	that	a	single	maximal	10s	sprint	effort	performed	under	basal	

insulinaemic	conditions	results	in	a	sustained	post	exercise	rise	in	blood	glucose	levels	(1.2	±	

0.2mmol/L)(Fahey,	Paramalingam	et	al.	2012).	This	pattern	of	increased	blood	glucose	levels	

in	recovery	are	similar	to	the	patterns	associated	with	prolonged	high	intensity	exercise	

(Fahey,	Paramalingam	et	al.	2012).		

1.10.8 The	10s	maximal	sprint	performed	under	bolus	conditions	

Furthermore,	a	10s	sprint	performed	under	bolus	conditions,	immediately	before	or	after	

moderate	intensity	exercise	stabilises	an	exercise	induced	fall	in	blood	glucose	levels	for	up	

to	2	hours	post	exercise	in	individuals	with	T1D	(Bussau,	Ferreira	et	al.	2006,	Bussau,	Ferreira	

et	al.	2007)	(see	figure	3).	This	glycaemia	increasing	effect	is	not	impaired	by	antecedent	

hypoglycaemia	(Davey,	Paramalingam	et	al.	2014).	

1.10.9 Hormonal	response	to	the	10s	maximal	sprint	

The	reduced	rate	of	fall	in	blood	glucose	levels	in	response	to	a	10s	sprint	is	associated	with	

a	marked	rise	in	the	levels	of	counterregulatory	hormones	including	catecholamine,	growth	
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hormone	and	cortisol	in	recovery	(peak	levels	at	onset,	15	minutes,	and	30	minutes	of	

recovery	respectively)(Bussau,	Ferreira	et	al.	2006).	Glucagon	levels	increased	in	the	early	

recovery	period	in	the	control	group	(moderate	intensity	exercise	only)	but	did	not	change	

significantly	in	the	sprint	group	(Bussau,	Ferreira	et	al.	2006,	Bussau,	Ferreira	et	al.	2007).	

Insulin	levels	remained	relatively	stable	throughout	exercise	and	recovery	in	both	groups.	

(Bussau,	Ferreira	et	al.	2006,	Bussau,	Ferreira	et	al.	2007).	This	pattern	of	hormonal	response	

suggests	that	the	marked	rise	in	catecholamine	levels	at	the	onset	of	recovery	underpins	the	

mechanism	by	which	a	sprint	counters	an	exercise	mediated	fall	in	glycaemia,	as	the	levels	of	

the	other	counterregulatory	hormones	did	not	change	significantly	in	early	recovery.	Lactate	

may	also	contribute	to	stabilisation	of	blood	glucose	levels	in	early	recovery,	as	lactate	levels	

were	elevated	immediately	after	exercise	in	the	sprint	group.	It	is	thought	this	may	be	due	to	

lactate	providing	gluconeogenic	precursors	for	hepatic	glucose	production	and	by	increasing	

peripheral	resistance	(Bussau,	Ferreira	et	al.	2007).		

	
Figure	8:	Effect	of	a	10s	sprint	on	blood	glucose	after	moderate-intensity	exercise.	The	
moderate-intensity	exercise	commenced	at	time	point	-20.	Blood	glucose	levels	are	
expressed	relative	to	those	immediately	after	the	moderate-intensity	exercise	(time	point	
0).	Vertical	bar=sprint,	hatched	box=exercise.	(Bussau,	Ferreira	et	al.	2006).	
	

1.10.10 Glycaemic	response	to	a	10s	sprint:	glucose	kinetics	

Interestingly,	the	blood	glucose	rise	in	response	to	a	10s	sprint	has	been	shown	to	result	

from	a	transient	decline	in	rate	of	glucose	disappearance	(Rd)	in	the	presence	of	a	stable	

rate	of	glucose	appearance	(Ra)	(Fahey,	Paramalingam	et	al.	2012).	This	is	contrast	to	the	

marked	rise	in	Ra	relative	to	Rd	reported	in	both	healthy	and	diabetic	individuals	following	
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high	intensity	exercise	(Marliss	and	Vranic	2002)	but	consistent	with	more	recent	data	

showing	a	decrease	in	Rd	in	response	to	high	intensity	exercise	(Bally,	Zueger	et	al.	2016)in	

individuals	with	T1DM.	This	pattern	of	glucose	kinetics	is	further	supported	by	findings	from	

animal	models.	A	short	bout	of	high	intensity	exercise	has	been	shown	to	cause	a	post	

exercise	transient	fall	in	the	rate	of	glucose	utilisation	by	the	skeletal	muscles	in	

streptozotocin-induced	diabetic	rats	(Ferreira,	Xu	et	al.	2005).		

1.10.11 Mechanism	underlying	decline	in	rate	of	glucose	disappearance	

The	mechanism	explaining	how	a	10s	sprint	inhibits	Rd	during	early	recovery	remains	to	be	

elucidated.	One	proposed	mechanism	is	that	catecholamines	mediate	this	effect	(Fahey,	

Paramalingam	et	al.	2012),	as	they	increase	early	in	recovery	and	there	is	evidence	to	

suggest	they	inhibit	muscle	glucose	uptake.	However	others	have	reported	that	

catecholamine	infusion	during	exercise	has	little	effect	on	Rd	and	may	in	fact	enhance	rather	

than	inhibit	glucose	uptake	(Howlett,	Febbraio	et	al.	1999).	Growth	hormone	may	also	play	a	

role	as	high	levels	of	growth	hormone	are	associated	with	a	reduction	in	peripheral	glucose	

uptake	(Moller,	Jorgensen	et	al.	1990).		

Another	potential	explanation	for	the	lower	Rd	in	high	intensity	exercise	may	be	related	to	

competing	substrates,	such	as	lactate,	being	used	by	the	working	muscle	(Bally,	Zueger	et	al.	

2016).	Indeed,	increased	lactate	utilisation	has	been	associated	with	decreased	glucose	

disappearance	during	moderate	intensity	exercise	(Miller,	Fattor	et	al.	2002).	Alternatively,	

lactate	may	exert	an	effect	on	Rd	by	reducing	glucose	uptake	in	the	muscle	as	described	in	

animal	models	(Vettor,	Lombardi	et	al.	1997,	Lombardi,	Fabris	et	al.	1999).	Another	factor	

postulated	to	play	a	role	in	reducing	Rd	is	Glucose	6-phosphate,	a	metabolite	associated	with	

rapid	glycogen	breakdown	(Fahey,	Paramalingam	et	al.	2012)	as	high	levels	of	this	

metabolite	can	inhibit	muscle	glucose	use	via	inhibition	of	hexokinase	(Wasserman	1995).	

1.10.12 Repeated	4s	maximal	sprints	

Most	team	sports	and	patterns	of	spontaneous	play	in	children	are	characterised	by	low-

moderate	intensity	exercise	or	rest	interspersed	with	3-4	s	sprints	and	therefore	repeated	

short	sprints	may	more	closely	mimic	real-life	activity	patterns	in	children	(Guelfi,	Jones	et	al.	

2005).	This	has	led	to	interest	in	understanding	the	blood	glucose	response	to	intermittent	

sprinting.	Additionally,	given	that	sprinting	before	or	after	moderate	intensity	exercise	

prevents	blood	glucose	levels	falling	during	recovery,	has	led	to	the	question	“can	repeated	

short	sprints	performed	during	exercise	prevent	blood	glucose	levels	falling	during	exercise	
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as	well	as	recovery”.	This	question	has	been	addressed	by	a	series	of	clinic	based	studies	by	

diabetes	research	team	in	Perth,	Western	Australia.	It	has	been	shown	that	the	addition	of	

repeated	short	sprints	(4s	sprints	every	2	minutes)	significantly	reduced	the	decline	in	

glycaemia	during	exercise	and	early	recovery	compared	with	continuous	moderate	intensity	

exercise	in	individuals	with	T1D	(Guelfi,	Jones	et	al.	2005,	Guelfi,	Jones	et	al.	2005)(see	Figure	

4).		

	
Figure	9:	Effect	of	30	min	(represented	by	box)	of	intermittent	high	intensity	exercise	(4s	
sprints	every	2	minutes)	(•)	or	continuous	moderate	intensity	exercise	(○)	on	blood	glucose	
levels.	Results	are	expressed	as	means	±	SE.	aStatistically	significant	difference	(P	0.05)	
from	resting.	bStatistically	significant	difference	(P	0.05)	between	IHE	and	MOD.	
	(Guelfi,	Jones	et	al.	2005)	

1.10.13 Mechanism	underlying	glycaemia	rising	effect	of	repeated	4s	sprints	

The	stabilisation	in	blood	glucose	levels	in	response	to	repeated	4	s	sprints	is	associated	with	

elevated	lactate,	catecholamine	and	growth	hormone	levels	(Guelfi,	Jones	et	al.	2005,	Guelfi,	

Jones	et	al.	2005).	Investigation	of	the	glucose	kinetics	to	explain	this,	suggest	the	glycaemia	

stabilising	effect	of	repeated	4s	sprints	may	be	attributed	to	a	greater	increase	in	Ra	during	

exercise	and	a	marked	decrease	in	Rd	during	exercise	and	early	recovery(Guelfi,	Ratnam	et	

al.	2007).		

1.10.14 Short	sprints	during	exercise	and	risk	of	late	onset	post	exercise	

hypoglycaemia		

Although	short	sprints	during	exercise	may	protect	against	exercise	mediated	hypoglycaemia	

during	exercise	and	up	to	2	hours	of	recovery,	evidence	on	how	this	pattern	of	exercise	

impacts	on	late	onset	post	exercise	hypoglycaemia	is	conflicting.	In	one	study,	intermittent	

high	intensity	exercise	(5s	sprints	every	2	minutes	during	moderate	intensity	exercise)	was	
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associated	with	an	increased	risk	of	nocturnal	hypoglycaemia	when	compared	with	

continuous	moderate	intensity	exercise	alone	in	non-trained	individuals	with	T1D	(Maran,	

Pavan	et	al.	2010).	In	contrast,	another	study	found	that	intermittent	high	intensity	exercise	

(15s	sprints	spaced	5	minutes	apart	during	moderate	intensity	exercise)	was	associated	with	

less	late	onset	post	exercise	hypoglycaemia	than	moderate	intensity	exercise	alone	in	

trained	athletes	with	T1D	(Iscoe	and	Riddell	2011).		The	explanation	for	the	discrepancy	in	

these	studies	findings	is	unclear.	However,	it	should	be	noted	that	the	main	difference	

between	the	study	populations	was	the	training	status	of	the	participants.	Overall	these	

findings	indicate	that	it	is	still	unclear	whether	the	incorporation	of	short	sprints	during	

exercise	can	reduce	the	incidence	of	late	onset	post	exercise	hypoglycaemia	

1.10.15 Feasibility	of	short	sprints	during	exercise	to	prevent	exercise	mediated	

hypoglycaemia	

The	practical	logistics	and	feasibility	of	incorporating	short	sprints	into	exercise	should	also	

be	considered	when	investigating	the	effectiveness	of	sprinting	to	prevent	exercise	

mediated	hypoglycaemia.	High	intensity	exercise	regimens	(including	different	work-to-

recovery	ratios)	have	been	found	to	be	safe,	and	well	tolerated	in	a	healthy	adult	population	

(Tucker,	Sawyer	et	al.	2015).	It	should	be	noted	that	most	studies	investigating	high	intensity	

exercise	and	or	sprinting	are	in	physically	active	individuals.	To	perform	a	maximal	sprint	

requires	a	degree	of	physical	fitness	and	this	is	clearly	not	going	to	be	an	achievable	strategy	

for	all.	

Given	that	most	team	sports	and	spontaneous	play	in	children	are	characterised	by	short	

repeated	bouts	of	intense	activity,	there	may	be	limited	gain	in	adding	sprints	to	this	already	

intermittent	high	intensity	exercise.	Furthermore,	it	may	not	be	practical	to	suggest	adding	

short	sprints	in	this	setting.	In	contrast,	the	decline	in	blood	glucose	levels	associated	with	

light	or	moderate	intensity	running	or	cycling	may	be	reduced	if	interspersed	with	short	

sprints	and	this	may	be	a	workable	strategy	translatable	to	a	real-word	setting.	A	further	

advantage	of	this	approach	is	it	potentially	provides	a	carbohydrate	sparing	approach	to	

unplanned	activity.		

1.11 Summary	of	Findings	from	Literature	Review	

It	is	clear	from	the	literature	review	presented	that	maintaining	stable	blood	glucose	levels	

around	physical	activity	remains	a	major	challenge	for	individuals	with	T1D.	In	particular,	
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physical	activity	is	associated	with	an	increased	risk	of	hypoglycaemia	for	insulin	treated	

individuals	with	diabetes.		

Not	all	forms	of	exercise	result	in	a	decline	in	blood	glucose	levels.	High	intensity	exercise	

and	sprinting	can	be	associated	with	a	rise	in	blood	glucose	levels.	This	has	led	to	the	

investigation	of	sprints	as	a	possible	strategy	to	prevent	exercise	mediated	hypoglycaemia	in	

individuals	with	T1D.		

Clinical	guidelines	suggest	that	exercise	management	strategies	should	be	individualised	and	

tailored	to	the	person’s	exercise	goal	as	well	as	the	type,	duration	and	intensity	of	the	

activity.	Sprinting,	may	provide	another	clinical	tool,	in	addition	to	the	classical	approaches	

of	carbohydrate	intake	and	insulin	adjustment	in	the	diabetes	exercise	management	‘tool	

box’.	Given	that	insulin	adjustment	strategies	require	forward	planning	and	carbohydrate	

intake	strategies	result	in	additional	calorie	consumption,	sprinting	may	be	a	useful	

carbohydrate	sparing	in	option	the	setting	of	unplanned	exercise.		

1.12 Hypothesis	

This	study	tests	the	hypothesis	that	incorporating	short	sprints	into	periods	of	sustained	

moderate	intensity	exercise	can	reduce	the	incidence	of	exercise	mediated	hypoglycaemia	in	

a	free-living	setting	in	adolescents	and	young	people	with	T1D.	

1.13 Thesis	Rationale	and	Aim	

Previous	clinic	based	studies	have	shown	that	short	sprints	performed	before,	during	or	after	

exercise	during	can	help	prevent	an	exercise	mediated	decline	in	blood	glucose	levels.	

Before	advocating	the	use	of	sprinting	as	a	method	for	reducing	the	risk	of	exercise-

mediated	hypoglycaemia	in	individuals	with	T1D,	it	is	important	to	determine	whether	

findings	in	the	laboratory	are	also	applicable	in	a	practical,	free-living	setting.		

This	thesis	describes	a	clinical	study	that	aims	to	address	the	question	“can	the	incorporation	

of	short	sprints	into	periods	of	sustained	moderate	intensity	exercise	decrease	the	risk	of	

exercise	mediated	hypoglycaemia	in	individuals	with	T1D	in	a	free-living	setting?”.	

1.14 Objectives	

In	order	to	achieve	this	aim,	I	will	conduct	a	randomised	controlled	study	to	determine	if	

sprinting	during	moderate	intensity	exercise:	
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• Reduces	the	incidence	of	hypoglycaemic	events		
• Reduces	the	average	time	spent	in	hypoglycaemia		
• Increases	the	incidence	of	nocturnal	hypoglycaemia	
• Increases	the	time	spent	in	hyperglycaemia	
• Influences	carbohydrate	dosing	and	insulin	dosing	around	exercise	
• Is	feasible	in	a	free-living	setting	
• Is	perceived	to	be	enjoyable	by	participants	
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Chapter	2: Methodology	

2.1. Participants	

2.1.1 Eligibility	criteria	

Eligible	patients	were	individuals	aged	14-35	years	with	T1D	receiving	insulin	pump	therapy	

or	multiple	daily	injections,	having	been	diagnosed	with	diabetes	for	at	least	a	year,	with	a	

mean	glycated	haemoglobin	level	of	9.0%	or	lower	over	the	last	12	months,	free	from	any	

clinical	evidence	of	diabetes	complications	and	having	awareness	of	hypoglycaemia.	

Hypoglycaemia	awareness	was	determined	with	the	modified	Clarke	questionnaire	(Clarke,	

Cox	et	al.	1995)	with	a	score	of	less	than	4	being	suggestive	of	hypoglycaemia	awareness	

(see	appendix	A).		

Participants	were	required	to	have	an	HbA1c	of	75mmol/mol	(9.0%)	or	lower	to	be	eligible	

to	take	part	in	the	study.	Exercise	may	precipitate	ketosis	when	glycaemic	control	is	poor	

and	pre-exercise	blood	glucose	levels	are	high	with	low	circulating	insulin	levels(Wahren,	

Felig	et	al.	1978).	Therefore,	to	minimise	this	potential	safety	concern,	individuals	with	

HbA1C	>	75mmol/mol	(9.0%)	were	not	eligible	to	participate	in	the	study.	

Exclusion	criteria	included	musculoskeletal	injuries	and	other	medical	conditions	where	

exercise	is	contraindicated.		

Inclusion	Criteria	 Exclusion	Criteria	

• Diagnosis	of	T1D	for	>	or	equal	to	1	

year	

• Age	14-35	years	

• Mean	HbA1c	<	or	equal	to	

75mmol/mol	(9.0%)	

• Free	from	diabetes	complications	

• Hypoglycaemia	aware	(defined	as	

Clarke’s	score	of	<4)	

• Musculoskeletal	injuries	

• Medical	conditions	where	exercise	

is	contraindicated	

Table	1:	Inclusion	and	exclusion	criteria	
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2.1.2 Recruitment	

Participants	were	recruited	from	the	general	population	in	Perth	Western	Australia,	and	

from	patients	attending	the	Princess	Margaret	Hospital,	Sir	Charles	Gairdner	Hospital	and	

Fiona	Stanley	Hospital	and	Royal	Perth	Hospital	Diabetes	Clinics.		

2.1.3 Ethical	approval	and	informed	consent	

The	protocol	was	approved	by	the	Princess	Margaret	Hospital	for	Children	Human	Research	

Ethics	Committee	on	4.12.15.	

Informed	written	consent	was	obtained	from	parents	and	participants	prior	to	inclusion	in	

the	study	(see	appendix	B).	Assent	was	obtained	from	participants	aged	less	than	16	years	

old.	

2.2. Overview	of	Study	Design	

This	study	was	a	prospective	randomised	cross	over	trial	(see	figure	5).	On	three	occasions	

participants	wore	a	blinded	continuous	glucose	monitoring	(CGM)	device	for	14	days	under	

free-living	conditions.	On	one	occasion,	they	were	asked	to	follow	their	usual	blood	glucose	

management	during	periods	of	activity	(control).	In	the	alternate	conditions	the	participants	

followed	their	usual	blood	glucose	management	and	incorporated	10s	or	4	s	sprints	to	

periods	of	physical	activity.	A	sprint	was	defined	as	running	or	cycling	as	fast	as	the	individual	

was	able	to,	for	the	defined	time	period.		Participants	completed	all	three	experimental	

conditions	(control,	10s	and	4s	sprint	protocols)	in	a	random	order,	separated	by	a	one	to	

two-week	wash-out	period	where	the	individual	resumed	their	usual	pattern	of	activities	and	

refrained	from	sprinting.	
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Figure	10:	Flow	diagram	of	study	design	

	

2.3. Justification	of	Study	Design	

A	prospective	randomised	controlled	trial	is	the	gold	standard	study	design	to	investigate	the	

effectiveness	of	an	intervention.	Thus,	to	address	the	question	“can	the	incorporation	of	

short	sprints	into	moderate	intensity	exercise	reduce	the	risk	of	exercise	mediated	

hypoglycaemia?”	a	randomised,	prospective	controlled	trial	was	conducted.	Both	parallel	

and	cross-over	study	designs	were	considered.		

2.1.4 Advantages	of	a	cross-over	design	

The	primary	advantage	of	a	cross-over	study	design	over	a	parallel	design	in	the	context	of	

this	free-living	study,	is	that	all	participants	serve	as	their	own	controls,	thereby	reducing	the	

influence	of	confounding	co-variates.	Many	factors	are	known	to	influence	an	individual’s	

glycaemic	response	to	exercise	including	the	intensity	and	duration	of	the	activity,	insulin	

dosing	and	carbohydrate	intake	before,	during	and	after	exercise.	In	a	cross-over	design	all	

participants	complete	all	conditions,	therefore	reducing	the	impact	of	these	covariates.	

Furthermore,	a	cross-over	design	is	more	efficient,	requiring	fewer	participants	than	a	

parallel	design.		
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2.1.5 Disadvantages	of	a	cross-over	design	

Potential	disadvantages	of	a	cross-over	design	include	the	possibility	that	the	order	

conditions	are	completed	may	affect	the	outcome.	For	example,	will	the	participants	get	

fatigued	and	be	less	compliant	with	sprinting	in	the	final	arm	of	the	study?	To	balance	any	

order	effects,	we	randomised	participants	using	a	counterbalanced	design	in	which	

participants	were	allocated	to	one	of	six	“sequences”	based	on	the	order	in	which	they	were	

to	receive	conditions	(see	figure	5).	

Another	problem	associated	with	a	cross-over	study	design	is	the	potential	for	‘carry	over’	

between	arms.	This	means	that	the	effects	of	one	condition	may	influence	the	outcome	of	

subsequent	conditions.	We	have	addressed	this	problem	by	including	a	1-2-week	washout	

period	between	study	arms,	where	participants	resume	their	normal	activity	patterns	and	do	

not	engage	in	sprinting.		

2.2 Overview	of	Study	Visit	Schedule	

Participants	attended	a	total	of	8	study	visits	over	a	10-	12-week	period	(see	figure	6).	All	

study	visits	took	place	at	the	Children’s	Clinical	Research	Facility	at	Princess	Margaret	

Hospital,	Perth,	Western	Australia.	
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Figure	11:	Study	visit	schedule	

	

2.3 Familiarisation	Week	

Prior	to	randomisation	participants	completed	a	familiarisation	‘run-in’	week.	During	this	

week	participants	were	asked	to	perform	moderate	intensity	exercise	at	least	3	times	a	week	

and	to	try	out	the	different	exercise	protocols.	The	purpose	of	the	familiarisation	week	was	

twofold;	firstly,	to	familiarise	participants	with	study	equipment	and	protocols,	and	secondly	

to	determine	if	participants	were	able	to	follow	the	protocols	and	comply	with	study	

instructions.		
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2.3.1 Familiarisation	session	(visit	1)	

At	the	start	of	the	familiarisation	week,	participants	attended	the	Children’s	Clinical	

Research	Facility	at	Princess	Margaret	Hospital.	During	this	visit,	eligibility	for	the	study	was	

confirmed	including	screening	for	hypoglycaemia	awareness,	baseline	characteristics	were	

collected	and	all	participants	completed	a	maximal	rate	of	oxygen	consumption	test	to	

assess	their	aerobic	fitness	levels.	Participants	were	familiarised	with	the	use	of	the	CGM	

device	(Dexcom	G4	Platinum),	exercise	watch	(Suunto	Ambit	3),	participant	diary	and	

sprinting	protocols	before	returning	home	to	complete	a	7-day	familiarisation	week.		

The	following	variables	were	measured	during	the	familiarisation	session,	and	will	be	

discussed	in	turn:	

• Hypoglycaemia	awareness		

• Baseline	characteristics	

• VO2	Max	

2.4 Hypoglycaemia	Awareness		

2.4.1 Why	was	hypoglycaemia	awareness	assessed	prior	to	study	start?	

Participants	were	required	to	be	assessed	as	aware	of	hypoglycaemia	to	be	eligible	to	take	

part	in	the	study.	This	was	deemed	necessary	as	previous	studies	demonstrating	the	

glycaemia	rising	effect	of	short	sprints	have	done	so	in	a	population	of	people	with	T1D	who	

are	aware	of	hypoglycaemia.	Theoretically,	as	the	mechanism	causing	blood	glucose	levels	to	

rise	following	a	sprint	may	be	due	to	counter	regulatory	hormone	production,	attenuations	

in	this	response	associated	with	impaired	hypoglycaemia	awareness	may	affect	the	

glycaemic	effect	of	sprinting.	Furthermore,	impaired	hypoglycaemia	awareness	is	a	risk	

factor	for	severe	hypoglycaemia	and	therefore	individuals	with	impaired	hypoglycaemia	

awareness	were	excluded	from	a	safety	perspective.	

2.4.2 Method	of	hypoglycaemia	awareness	assessment		

Awareness	of	hypoglycaemia	was	assessed	using	Clarke’s	hypoglycaemia	awareness	

questionnaire	(see	appendix	A).	Clarke’s	hypoglycaemia	awareness	questionnaire	is	a	

validated	survey	encompassing	8	questions	concerning	personal	experiences	with	

hypoglycaemia	(Clarke,	Cox	et	al.	1995).	These	questions	quantify	episodes	of	mild,	

moderate	and	severe	hypoglycaemia	and	the	respondent’s	ability	to	recognise	symptoms	
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associated	with	low	blood	glucose	levels.	Participants	had	to	be	aware	of	hypoglycaemia	to	

be	eligible	for	the	study,	defined	as	a	Clarke’s	score	of	equal	or	less	than	4.	

2.4.3 Justification	for	method	of	hypoglycaemia	awareness	assessment	

There	are	three	established	questionnaire	based	methods	to	assess	awareness	of	

hypoglycaemia	in	individuals	with	T1D.	These	include	the	methods		proposed	by	Clarke	et	al	

(Clarke,	Cox	et	al.	1995),	Gold	et	al	(Gold,	MacLeod	et	al.	1994),	and	Pedersen-Bjergaard	et	al	

(Pedersen-Bjergaard,	Agerholm-Larsen	et	al.	2001).		

The	Clarke’s	method,	as	previously	described	comprises	8	questions	characterising	the	

individuals	experience	of	moderate	and	severe	hypoglycaemia	and	explores	the	glycaemic	

threshold	for	symptoms	of	hypoglycaemia.	A	score	of	more	than	four	implies	impaired	

hypoglycaemia	awareness.		

The	Gold	method	asks	the	question	“do	you	know	when	your	hypos	are	commencing?”	The	

respondent	completes	a	7	point	Likert	scale,	with	1	representing	“always	aware”	and	7	

representing	“never	aware”.	A	score	of	greater	or	equal	to	4	implies	impaired	hypoglycaemia	

awareness.			

The	Pedersen-Bjergaard	method	poses	the	question	“can	you	feel	when	you	are	low?	The	

participant	then	selects	an	answer	from	the	following	options-	“always”,	“usually”,	

“sometimes”	or	“never”.	Participants	who	answer	always	are	classified	as	hypoglycaemia	

aware,	all	other	options	imply	impaired	awareness	of	hypoglycaemia.		

All	of	the	above	questionnaires	were	considered	for	use	in	our	study.	The	Clarke’s	and	Gold	

questionnaires	have	been	demonstrated	to	strongly	correlate	with	one	another	in	an	adult	

cohort	(Geddes,	Wright	et	al.	2007),	and	to	detect	an	incidence	of	impaired	hypoglycaemia	

awareness	consistent	to	population	surveys	(Hepburn,	Patrick	et	al.	1990,	Muhlhauser,	

Heinemann	et	al.	1991,	Pramming,	Thorsteinsson	et	al.	1991).	The	Pedersen-Bjergaard	

method	has	been	criticised	for	potentially	overestimating	the	prevalence	of	impaired	

hypoglycaemia	(Geddes,	Wright	et	al.	2007).		

The	Clarke’s	questionnaire	has	been	reported	to	be	more	effective	than	the	Gold	

questionnaire	at	identifying	those	with	impaired	hypoglycaemia	awareness	in	a	paediatric	

setting	(Graveling,	Noyes	et	al.	2014).	Furthermore,	our	centre	has	extensive	experience	of	

using	the	Clarke’s	questionnaire	in	children	and	adolescents	(Ly,	Gallego	et	al.	2009,	



	 50	

Johnson,	Cooper	et	al.	2013,	Ly,	Nicholas	et	al.	2013,	Abraham,	Gallego	et	al.	2016).	

Therefore,	the	Clarke’s	questionnaire	was	chosen	for	this	study.	

2.5 Baseline	Characteristics	

Baseline	Characteristics	including	anthropometric	and	clinical	data	were	collected.	

Anthropometric	data	included	standing	height	and	body	mass.	Clinical	data	included;	age,	

mean	HbA1c	over	last	12	months,	duration	of	diagnosis	of	T1D,	insulin	regimen,	total	daily	

insulin	dose	and	total	daily	basal	insulin	dose.	Participants	were	then	interviewed	about	their	

usual	exercise	routine	and	their	diabetes	management	strategies	to	avoid	hypoglycaemia	

before,	during	and	after	exercise.		

2.6 Maximal	Rate	of	Oxygen	Consumption	Test	(VO2	Max)	

2.6.1 Why	was	a	VO2	max	test	performed	prior	to	study	start?	

Participants	completed	a	maximal	rate	of	oxygen	consumption	(VO2	max)	to	assess	their	

aerobic	fitness	levels	prior	to	starting	the	study.	Predictors	of	VO2	max	in	adult	population	

include:	age,	gender	and	body	weight	(Myers,	Kaminsky	et	al.	2017).	Adolescents	with	T1D	

diabetes	have	been	shown	to	have	a	reduced	maximal	oxygen	consumption	compared	to	

adolescents	without	diabetes	(Komatsu,	Gabbay	et	al.	2005),	although	in	contrast	other	

studies	do	not	support	this	finding	(Adolfsson,	Nilsson	et	al.	2012).		

The	VO2	max	test	was	performed	for	two	reasons.	Firstly,	training	status	of	participants	has	

previously	been	postulated	to	influence	the	risk	of	hypoglycaemia	on	nights	following	high	

intensity	exercise	(Maran,	Pavan	et	al.	2010,	Iscoe	and	Riddell	2011).	Secondly,	it	was	felt	

that	baseline	fitness	levels	would	be	pivotal	information	when	interpreting	the	

generalisability	of	our	findings.		

2.6.2 Method	of	VO2	max	test	

Participants	completed	a	VO2	max	test	on	a	cycle	ergometer	(Lode	Corival)	(see	figure	7).	

Initial	workload	was	set	at	25	W	and	subsequently	increased	by	25	W	every	3	minutes	until	

volitional	exhaustion.	During	exercise,	respiratory	gases	were	sampled	and	analysed	at	15s	

intervals	by	a	computerised	metabolic	cart	(Parvomedics	TrueOneÒ2400	Metabolic	

Measurement	System)	(see	figure	7),	which	was	calibrated	prior	to	each	exercise	test.	

Calibration	of	the	gas	analysers	was	performed	against	room	air	and	a	sample	gas	mixture	of	

known	composition.	Calibration	of	the	flow	meter	involved	a	five-stroke	calibration	using	a	
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3L	Hans	Rudolph	Syringe	and	different	flow	rates	for	each	stroke.	Heart	rate	was	

continuously	recorded	during	the	test	using	a	Polar	heart	rate	chest	strap.VO2	max	was	the	

highest	rate	of	oxygen	consumption	reached	in	the	incremental	test	using	the	60	second	

epochs.		

2.6.3 Justification	of	method	for	VO2	max	assessment	

Maximal	oxygen	uptake	using	ventilator	gas	exchange	techniques	is	recognised	as	the	gold	

standard	measure	of	cardiorespiratory	fitness	(Ross	2003).	Gas	exchange	measurements	are	

highly	reproducible	within	a	given	subject	if	testing	methods	are	consistent	(Crouter,	Antczak	

et	al.	2006).	The	computerised	metabolic	cart	used	in	this	study	uses	a	mixing	chamber	

system	(see	figure	8)	connected	to	a	measurement	module	which	contains	a	paramagnetic	

oxygen	analyser	and	an	infrared,	single	beam,	single	wave	length	carbon	dioxide	analyser	to	

measure	gas	exchange.	This	system	has	been	demonstrated	to	provide	accurate	and	reliable	

results	for	the	measurement	of	gas	exchange	variables	in	healthy	young	men	(Crouter,	

Antczak	et	al.	2006,	Cooper,	Watras	et	al.	2009,	Macfarlane	and	Wu	2013).	
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Figure	12:	Parvomedics	TrueOneâ	2400	metabolic	measurement	system	and	Lode	Corival	
Cycle	Ergometer	
	

	

	
Figure	13:	Parvomedics	TrueOneâ	400	system	connections	
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2.7 Testing	Periods	

Following	completion	of	the	familiarisation	week,	participants	completed	three	14-day	

testing	periods	in	random	order,	during	which	time	they	adhered	to	the	control,	10s	or	4s	

sprinting	protocol	during	exercise.	Participants	attended	study	visits	at	the	Children’s	Clinical	

Research	Facility	at	Princess	Margaret	Hospital,	Perth,	Western	Australia,	at	the	beginning	

and	end	of	each	testing	period,	a	total	of	6	visits	over	an	8-10	week	period.		

2.7.1 Study	visit	at	start	of	testing	period	

Prior	to	the	commencement	of	each	14-day	testing	period,	participants	attended	a	study	

visit	to	have	their	glucose	sensor	inserted	and	to	be	given	the	exercise	watch	and	study	

diaries.	Participants	were	shown	how	to	insert	and	calibrate	the	sensor	and	were	instructed	

to	change	the	sensor	on	day	7	of	the	testing	period.	Participants	were	given	verbal	and	

written	instructions	for	their	assigned	protocol.	The	study	diary	was	re-visited	and	

participants	were	asked	to	record	carbohydrate	intake	and	insulin	administration	on	exercise	

days.		

2.7.2 Study	visit	at	completion	of	testing	period	

After	completing	the	2-week	study	period	participants	met	briefly	with	the	study	team	to	

return	equipment,	at	that	time	data	were	uploaded	from	devices.	Participants	completed	a	

Physical	Activity	Enjoyment	Scale	(PACES)	to	assess	their	enjoyment	of	exercise,	a	validated	

questionnaire	consisting	of	16	statements	with	7-point	Likert-type	scale	(see	appendix	C).	

Participants	were	then	given	a	1	to	2-week	washout	period	before	undertaking	the	next	

study	period.		

2.7.3 Wash-out	period	

Each	2-week	study	period	was	separated	by	a	one	to	two-week	wash-out	period	where	usual	

activities	were	resumed.	The	purpose	of	the	wash-out	period	was	to	prevent	any	potential	

carry-over	effect	of	the	control/intervention.		

2.7.4 Justification	for	duration	of	testing	period	

The	duration	of	the	testing	period	was	required	to	be	sufficiently	long	enough	to	capture	

repeated	bouts	of	exercise,	thereby	for	the	first	time	investigating	the	effect	of	repeated	

bouts	of	sprinting.	We	considered	a	one	week	duration-	but	decided	that	if	an	exercise	

session	was	missed	then	there	would	likely	be	inadequate	exercise	occurring	to	demonstrate	

an	effect	of	sprinting.	A	14-day	period	was	a	pragmatic	approach	to	optimise	the	duration	of	
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data	capture,	while	still	trying	to	minimise	the	burden	of	study	engagement	for	the	

participant.		

2.8 	Exercise	Protocols	

During	each	14-day	study	period	participants	were	asked	to	perform	continuous	moderate	

intensity	exercise	(running	or	cycling)	at	least	3	times	per	week	for	a	minimum	of	30	minutes	

and	to	wear	an	exercise	watch	during	activity.		

Moderate	intensity	exercise	was	described	to	participants	as	being	able	to	talk	comfortably	

during	exercise	(Quinn	and	Coons	2011).	Participants	were	instructed	to	apply	a	10s	sprint	

(intervention	1),	4	s	sprint	(intervention	2)	or	control	(no	sprint)	protocol	to	physical	activity	

during	each	14-day	testing	period	in	a	random	order.	A	sprint	was	defined	as	running	or	

cycling	as	fast	as	the	individual	was	able	to,	for	the	defined	time	period.		

2.8.1 10s	sprint	protocol	

The	10s-sprint	protocol	involved	a	maximal	10	s	sprint	at	the	start	of	activity,	every	20	

minutes	during	the	activity	and	at	the	end	of	the	activity	(see	figure	9).	

	

Figure	14:	10s	sprint	protocol	

	

2.8.2 4s	sprint	protocol	

The	4s	sprint	involved	a	4s	sprint	every	2	minutes	during	the	activity,	followed	by	a	10s	

maximal	sprint	at	the	end	of	the	activity	(see	figure	10).	

	

	

Figure	15:	4s	sprint	protocol	
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2.8.3 Control	protocol	

The	control	protocol	was	a	continuous	moderate	intensity	run	or	cycle	without	sprints.	

2.9 Summary	of	Variables	Measured		

During	each	2-week	study	period	the	same	outcome	variables	were	measured	(see	table	2).	

Sensor	glucose	levels	were	measured	continuously	during	the	2-week	period.	On	each	

exercise	day,	the	following	additional	variables	were	collected:	carbohydrate	intake,	insulin	

administration	and	participants	speed	during	exercise.	At	the	completion	of	each	2-week	

study	period,	participants	completed	a	Physical	Activity	Enjoyment	Scale	(PACES)	

questionnaire	and	were	interviewed	about	their	study	experiences.		

The	following	variables	will	be	described:	

• Sensor	glucose	levels	

• Insulin	dosing	on	exercise	days	

• Carbohydrate	intake	on	exercise	days	

• Symptomatic	hypoglycaemia	

• Enjoyment	of	physical	activity	

• Participants	speed	during	exercise	and	adherence	with	exercise	protocols	
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Variable	 How	Measured	
(units)	

When	
Collected	

Description	

Aerobic	fitness	 VO2	max	
(ml/kg/min)	

Visit	1	 Stepwise	incremental	
exercise	test	

Interstitial	(sensor)	
glucose	levels	

Dexcom	G4	
Platinum	
(mmol/L)	

14-day	study	
period	

Sensor	glucose	levels	
generated	every	5	
minutes	

Insulin	dosing	on	
exercise	days	

Prospective	diary-
and	insulin	pump	
uploads	(U/kg)	

On	exercise	
days	only	

Insulin	dosing	analysed	
in	relation	to	timing	of	
exercise	

CHO	intake	on	
exercise	days	

Prospective	diary	
(grams)	

On	exercise	
days	only	

Carbohydrate	intake	
analysed	in	relation	to	
timing	of	exercise	

Symptomatic	
hypoglycaemia	

Prospective	diary	

(number	of	
events)	

14-day	study	
period	

Participant	asked	to	
document	date,	time	
and	symptoms	of	
hypoglycaemia	

Enjoyment	of	physical	
activity	

Physical	Activity	
Enjoyment	Scale	
Questionnaire	

At	completion	
of	each	14-
day	study	
period	

Validated	questionnaire	
consisting	of	16	
statements	with	7-point	
Likert-type	scale.	

Compliance	with	
sprinting	protocol	

Speed	(GPS	
generated)	on	
exercise	watch	
(Suunto	Ambit	3)	

During	
exercise	bouts	

Graphs	of	speed	against	
time	during	exercise	
assessed	to	determine	
compliance	with	
sprinting	protocols.	

Table	2:	Variables	measured	

	

2.10 Sensor	Glucose	Levels	

Participants	wore	a	blinded	continuous	glucose	monitoring	(CGM)	system	(Dexcom	G4	

Platinum)	for	the	duration	of	each	14-day	study	period	(see	figure	11).		
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Figure	16:Dexcom	G4	transmitter	and	receiver	

	

2.10.1 Justification	for	the	CGM	device	chosen	

The	Dexcom	G4	Platinum	system	was	chosen	because	at	the	time	of	study	commencement	it	

was	reported	to	be	the	most	accurate	commercially	available	CGM	system	able	to	be	

blinded.	The	Dexcom	G4	Platinum	system	has	a	reported	mean	absolute	relative	difference	

(MARD)	from	laboratory	reference	blood	glucose	measurements	of	11.3%	(Bailey,	Chang	et	

al.	2015).	MARD	is	defined	as	the	average	of	the	absolute	error	between	all	CGM	values	and	

matched	reference	values;	the	smaller	the	difference,	the	closer	the	CGM	reading	is	to	the	

reference	glucose	value.	However,	the	MARD	may	be	larger	at	times	of	rapid	blood	glucose	

change.	

2.10.2 Blinded	CGM	

This	blinded	CGM	system	differs	from	standard	CGM	in	that	the	participant	received	no	

feedback	from	the	device-	the	screen	of	the	handset	(receiver)	was	masked	(sensor	glucose	

levels	were	not	displayed)	and	there	were	no	alarms	to	warn	of	hypoglycaemia	or	

hypoglycaemia	(see	figure	12).	Therefore,	this	system	provided	data	for	retrospective	

analysis	only.	
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Figure	17:	Dexcom	G4	receiver	in	“blinded”	mode	and	transmitter	

	

2.10.3 Method	of	sensor	glucose	measurement	

The	CGM	system	consists	of	a	7-day	transcutaneous	sensor,	a	transmitter	and	a	receiver.	The	

sensor	uses	glucose	oxidase	sensor	technology	to	generate	interstitial	glucose	at	5	minute	

intervals.	The	transmitter	sends	an	electrical	signal	to	the	receiver,	where	it	is	processed	by	a	

mathematical	algorithm	into	a	glucose	value	and	adjusted	based	on	calibration	using	self-

monitoring	of	blood	glucose	levels.		

2.10.4 Calibration	

Participants	were	instructed	to	calibrate	the	sensor	glucose	levels	2	hours	post	insertion	to	

their	blood	glucose	level	by	entering	two	separate	glucometer	blood	glucose	readings	into	

the	CGM	receiver.	Thereafter	the	participant	was	instructed	to	calibrate	the	CGM	system	a	

minimum	of	every	12	hours.	Sensor	glucose	data	was	uploaded	after	each	of	14-day	testing	

periods.	

2.10.5 Advantages	of	CGM		

CGM	is	currently	the	only	tool	available	to	measure	glucose	variability	throughout	the	day	in	

an	ambulatory	setting.	Advancement	in	CGM	technology	means	devices	are	increasingly	

accurate,	especially	in	the	hypoglycaemic	range.	Improvement	in	accuracy	has	led	to	

increasing	use	of	CGM	to	assess	glycaemic	outcomes	in	clinical	trials.	A	meta-analysis	

including	data	from	six	CGM	studies	on	people	with	T1D	found	that	CGM	has	high	

concordance	with	blood	glucose	measurements	and	can	be	a	meaningful	primary	outcome	

in	the	appropriate	setting	(Beck,	Calhoun	et	al.	2012).		
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2.10.6 Disadvantages	of	CGM	

Despite	advancements	in	technology	limitations	of	CGM	systems	still	exist.	In	particular	it	is	

well	established	that	there	is	a	lag	time	between	blood	glucose	and	interstitial	glucose	levels	

when	glucose	levels	are	changing	rapidly,	such	as	during	exercise	(Davey,	Low	et	al.	2010,	

Taleb,	Emami	et	al.	2016).	To	account	for	this	lag	symptomatic	hypoglycaemia	was	included	

in	addition	to	sensor	glucose	levels	in	the	primary	outcome,	and	the	primary	outcome	was	

collected	over	the	entire	two-week	study	period,	not	just	times	of	physical	activity.	

2.11 Insulin	Dosing	on	Exercise	Days		

Participants	using	MDI	regimens	were	instructed	to	record	the	time,	dose	and	type	of	insulin	

administered	on	exercise	days	in	their	participant	diary.	For	participants	using	insulin	pumps,	

pumps	were	uploaded	at	the	final	study	visit	to	capture	insulin	dosing	data	for	exercise	days	

during	each	of	the	14-day	study	periods.	Therefore,	those	on	insulin	pumps	were	not	

required	to	record	insulin	administration	in	the	participant	diary.	

2.12 Carbohydrate	Intake	on	Exercise	Days		

On	days	when	exercise	was	performed,	participants	were	instructed	to	record	the	time,	

amount	and	describe	any	carbohydrate	consumed	in	their	participant	diary.	Participants	

were	not	required	to	record	carbohydrate	intake	on	non-exercise	days.	A	pilot	study	where	

participants	were	instructed	to	record	carbohydrate	intake	on	all	study	days	demonstrated	

that	food	diary	data	was	incomplete	and	participants	feedback	suggested	that	this	was	

related	to	the	burden	of	collecting	the	data.	It	was	therefore	decided	to	collect	data	only	on	

exercise	days	in	an	attempt	to	reduce	the	study	burden	for	participants	with	an	aim	to	

improve	the	overall	quality	of	data	collected.		

2.13 Symptomatic	Hypoglycaemia	and	‘Other’	Events	

Participants	were	asked	to	record	the	time	and	details	of	episodes	of	symptomatic	

hypoglycaemia	and	to	give	descriptions	of	any	‘other’	events	including	events	including	

sickness	and	ketosis	in	their	participant	diary.	

2.14 Enjoyment	of	Physical	Activity		

Participants’	perceived	enjoyment	of	exercise	was	assessed	at	the	completion	of	each	14-

day	testing	by	completing	the	Physical	Activity	Enjoyment	Scale	Questionnaire	(PACES)	(see	

appendix	C).	PACES	is	a	validated	scale	to	assess	enjoyment	of	physical	activity	across	
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exercise	modalities	and	has	been	shown	to	have	acceptable	internal	consistency	and	test-

retest	reliability	in	children,	adolescents	and	adults	(Kendzierski	and	DeCarlo	1991,	Motl,	

Dishman	et	al.	2001,	Moore,	Yin	et	al.	2009).	It	consists	of	16	statements	on	a	7-point	

continuum	(I	enjoyed	it-	I	hated	it)	which	are	summed	to	produce	a	total	score.		

In	addition	to	completion	of	the	PACES	questionnaire	participants	were	interviewed	at	their	

final	study	visit	regarding	their	preferred	protocol	and	experiences	throughout	the	trial.	

2.15 Participant’s	Speed	During	Exercise	and	Adherence	with	Sprinting	Protocols	

Participants	wore	an	exercise	watch	(Suunto	Ambit	3	Sport)	(see	figure	13)	during	bouts	of	

physical	activity.	The	exercise	watch	used	Global	Positioning	Systems	(GPS)	to	calculate	and	

record	the	participants	speed	during	exercise.	This	device	was	chosen	as	it	measures	speed	

in	1	s	epochs	enabling	the	detection	of	short	duration	(4-10s)	sprinting.		

	

	

Figure	18:	Suunto	Ambit	3	Sport	

	

Participants	were	instructed	to	switch	on	the	watch	to	start	recording	GPS	data	at	the	onset	

of	exercise,	and	to	switch	off	the	GPS	recording	at	the	end	of	exercise.	Alarms	were	

programmed	on	the	watch	to	remind	the	participant	to	sprint	during	exercise	in	accordance	

with	the	relevant	protocol.	During	the	10s	sprint	protocol	an	alarm	was	programmed	to	

beep	for	10s	every	20	minutes	during	exercise,	during	the	4s	arm	an	alarm	beeped	for	4s	

every	2	minutes	during	exercise.	



	 61	

Data	from	the	exercise	were	then	used	to	determine	the	extent	to	which	participants	

complied	with	the	experimental	sprinting	protocol.	A	graph	was	generated	of	participant	

speed	over	time	(see	figures	14	and	15)	for	each	exercise	session	and	assessed	

independently	by	one	of	2	researchers	for	the	presence	of	sprints	at	the	expected	time	

points	for	the	given	protocol.	

Exercise	sessions	during	the	control	(no	sprints	arm)	were	classified	as	compliant	if	greater	

or	equal	to	25	minutes	in	duration.	Exercise	bouts	during	sprinting	arms	were	classified	as	

adherent	if	they	met	the	following	criteria	(1)	greater	or	equal	to	25	minutes	in	duration	and	

(2)	presence	of	greater	or	equal	to	60%	of	the	expected	sprints.		GPS	data	was	only	

generated	when	participants	exercised	outdoors,	therefore	indoor	activity	could	not	be	

assessed	for	adherence	to	sprinting	protocols.		

	

	
Figure	19:	Exercise	watch	trace	for	4s	sprint	

	 	

	

	
Figure	20:	Exercise	watch	trace	for	10	s	sprint	
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2.16 Enjoyment	of	Physical	Activity		

Participants’	perceived	enjoyment	of	exercise	was	assessed	at	the	completion	of	each	14-

day	testing	by	completing	the	Physical	Activity	Enjoyment	Scale	Questionnaire	(PACES)	(see	

appendix	C).	PACES	is	a	validated	scale	to	assess	enjoyment	of	physical	activity	across	

exercise	modalities	and	has	been	shown	to	have	acceptable	internal	consistency	and	test-

retest	reliability	in	children,	adolescents	and	adults	(Kendzierski	and	DeCarlo	1991,	Motl,	

Dishman	et	al.	2001,	Moore,	Yin	et	al.	2009).	It	consists	of	16	statements	on	a	7-point	

continuum	(I	enjoyed	it-	I	hated	it)	which	are	summed	to	produce	a	total	score.		

In	addition	to	completion	of	the	PACES	questionnaire	participants	were	interviewed	at	their	

final	study	visit	regarding	their	preferred	protocol	and	experiences	throughout	the	trial.	

2.17 Primary	and	Secondary	Outcomes		

The	primary	outcome	of	the	study	was	the	incidence	of	hypoglycaemia	(defined	as	glucose	

sensor	readings	<3.5mmol/L	for	greater	than	or	equal	to	20	minutes);	and	or	treated	

symptomatic	hypoglycaemia.	

Secondary	glycaemic	outcomes	included:	

• The	incidence	of	hypoglycaemic	events	defined	as:	

o sensor	glucose	levels	<3.9mmol/L	for	greater	or	equal	to	20	minutes	

o sensor	glucose	levels	<3.1mmol/L	for	greater	or	equal	to	20	minutes	

• Average	percent	of	time	spent	in	various	glycaemic	ranges	including:	

o sensor	glucose	levels	less	than	3.1mmol/L	

o sensor	glucose	levels	less	than	3.5mmol/L	

o sensor	glucose	levels	less	than	3.9mmol/L	

o sensor	glucose	levels	between	3.5-	<8mmol/L	

o sensor	glucose	levels	between	8.0	and	10.0mmol/L	

o sensor	glucose	levels	>	10.0mmol/L	

• Glycaemic	outcomes	(as	above)	for	day-	time	(06:00hr-22:00hrs)	and	night-	time	

periods	(2200hrs-0600hrs)	

Other	secondary	outcomes	included:	

• Compliance	with	the	sprinting	protocols	

• Carbohydrate	intake	before,	during	and	after	exercise	
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• Insulin	(fast	acting)	bolus	dose	before,	during	and	after	exercise	

• Participant	enjoyment	of	exercise	as	determined	by	PACES	questionnaire	

2.17.1 Justification	of	primary	outcome	

We	chose	to	use	hypoglycaemic	events,	defined	as:	sensor	glucose	levels	of	<3.5mmol/L	for	

greater	or	equal	to	20	minutes,	as	our	primary	outcome.	Readings	with	sensor	values	of	less	

than	3.5mmol/L	were	flagged,	each	group	of	consecutive	readings	were	identified.	The	total	

time	represented	by	each	instance	of	consecutive	flagged	readings	was	calculated	and	a	

hypoglycaemic	event	was	counted	if	the	period	of	time	was	greater	or	equal	to	20	minutes	

duration.		A	level	of	<3.5mmol/L	was	used,	as	this	represents	a	level	of	clinically	important	

hypoglycaemia,	approximately	the	onset	of	physiological	responses	to	hypoglycaemia	in	a	

non-diabetic	population	(Mitrakou,	Ryan	et	al.	1991).	

	A	minimum	duration	of	20	minutes	was	used	as	numbers	of	events	are	subject	to	distortion	

by	fluctuations	across	a	threshold.	International	guidelines	published	subsequent	to	the	

study	starting	suggest	that	for	this	reason	an	‘event’	should	have	a	minimum	duration	of	15	

minutes	to	be	counted	(Danne,	Nimri	et	al.	2017,	Schnell,	Barnard	et	al.	2017).	

Our	primary	outcome	was	defined	as	hypoglycaemic	events,	instead	of	the	average	time	

spent	in	a	hypoglycaemic	range.	Hypoglycaemic	events	may	provide	a	more	accurate	

representation	of	burden	to	the	patient	than	time	spent	low	(Maahs,	Buckingham	et	al.	

2016).	In	addition,	we	attempted	to	capture	episodes	of	symptomatic	hypoglycaemia-	again	

a	representation	of	burden	to	the	patient.		

2.17.2 Justification	of	secondary	glycaemic	outcomes	

In	addition	to	the	primary	outcome	we	also	analysed	the	incidence	of	hypoglycaemic	events	

defined	by	a	cut	off	level	of	3.9mmol/L.	The	level	of	3.9	was	chosen	as	it	is	a	clinically	

relevant	threshold	representing	an	alert	level	at	which	point	treatment	should	be	instigated	

to	prevent	a	further	decline	in	glycaemia	(Ly,	Maahs	et	al.	2014).		

Reporting	the	average	time	spent	in	hypoglycaemic,	in	target	and	hyperglycaemic	ranges	is	

well	established	in	studies	using	CGM	based	outcomes	(Maahs,	Buckingham	et	al.	2016,	

Danne,	Nimri	et	al.	2017),	therefore	these	measures	were	included	in	our	secondary	

analysis.	Average	percent	of	time	spent	in	various	glycaemic	ranges	was	calculated	as	a	

function	of	the	number	of	readings	in	the	defined	range	over	the	total	number	of	5-minute	

sensor	glucose	levels.	
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Subsequent	to	the	onset	of	our	study	International	guidelines	on	reporting	CGM	based	

outcomes	in	clinical	trials	suggest	using	a	hypoglycaemia	cut-offs	of	3.1mmol/l	(Schnell,	

Barnard	et	al.	2017).	We	therefore	included	the	cut-off	of	3.1mmol/L	(for	hypoglycaemia	

events	and	the	average	time	spent	hypoglycaemic)	in	our	secondary	analysis	in	response	to	

this	new	guidance.	

It	remains	controversial	whether	sprinting	increases	the	risk	of	nocturnal	hypoglycaemia,	as	

previous	studies	have	conflicting	findings	(Maran,	Pavan	et	al.	2010,	Iscoe	and	Riddell	2011,	

Bally,	Zueger	et	al.	2016).	To	address	this	question	glycaemic	outcomes	were	explored	for	

day	and	night-time	periods	in	addition	to	the	whole	study	period.		

2.18 Randomisation,	Sample	Size	and	Statistical	Analysis	

2.18.1 Randomisation		

All	participants	completed	all	three	experimental	conditions	(control,	4s	and	10s	sprint)	in	a	

random	order,	following	a	crossover	study	design.	Randomisation	was	computer	generated	

used	a	counterbalanced	design	in	which	participants	were	allocated	to	one	of	six	‘Sequences’	

based	on	the	order	in	which	they	receive	the	conditions.	Minimisation	randomisation	was	

used	and	randomisation	was	stratified	by	2	age	groups	(14-17,	18-35),	gender	and	sequence.		

Participants	were	evenly	distributed	across	the	‘Sequences’	to	balance	any	potential	order	

effect.	It	was	also	postulated	that	age	and	HbA1c	could	be	potential	co-founding	factors	and	

therefore	these	variables	were	also	distributed	evenly	across	the	sequences.	

2.18.2 Sample	size	

We	have	previously	shown,	using	a	similar	experimental	design,	an	average	of	1.4	low	

glucose	events	(sensor	glucose	readings	≤3.5mmol/L)	per	day	in	free-living	individuals	with	

T1D	with	a	standard	deviation	of	1.0	in	free-living	individuals	with	T1D.	Since	a	30%	

reduction	in	this	incident	rate	to	1.0	event	per	day	would	represent	a	statistically	significant	

change	with	an	alpha	set	at	0.05,	we	have	calculated	that	a	sample	size	of	45	participants	

will	provide	us	with	enough	statistical	power	(β	=	0.85)	to	test	our	hypothesis.		

We	aimed	to	recruit	50	participants	to	account	for	an	approximate	10%	loss	to	follow-up	

based	on	previous	studies	of	this	nature.		
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2.18.3 Statistical	analysis	

To	address	the	primary	aim	of	the	study,	each	of	the	sprinting	exercise	protocols	(10	second;	

and	4	second)	were	compared	to	the	control	condition	with	regard	to	number	of	

hypoglycaemic	events	over	the	study	period.	Generalized	linear	mixed	models	with	a	

negative	binomial	distribution	and	log	link	were	used	to	determine	whether,	compared	to	

the	control	condition,	each	of	the	sprinting	exercise	protocols	reduced	the	incidence	of	

hypoglycaemic	episodes	associated	with	physical	activity	(both	during	physical	activity	and	at	

other	times	of	the	day).	Compliance	with	protocols	was	evaluated	using	exercise	activity	

watch	data.	Finally,	average	sensor	glucose	levels	were	analysed	as	a	secondary	outcome	to	

compare	the	extent	to	which	glycaemic	control	is	affected	by	the	guidelines.	Linear	mixed	

models	were	used	to	examine	the	effect	of	the	exercise	protocols	on	sensor	glucose	levels.	A	

p	value	of	<0.05	was	considered	significant.		
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Chapter	3: Results	

3.1 Participants	

3.1.1 Enrolment	and	randomisation	

39	individuals	enrolled	in	the	study	(see	figure	16).	Of	the	39	who	attended	visit	1,	31	were	

randomised	to	exercise	protocol	sequence	order.	8	subjects	declined	to	participate	prior	to	

randomisation	because	following	visit	1	they	felt	unable	to	commit	to	the	study	protocol	and	

associated	hospital	visits.	Of	the	31	randomised,	4	withdrew	consent	prior	to	starting	the	

study	for	the	following	reasons:	1	participant	was	pregnant,	1	participant	sustained	a	knee	

injury	at	work	and	could	no	longer	participate	in	regular	exercise,	and	2	participants	decided	

they	were	too	busy	to	commit	to	the	study	schedule.		

3.1.2 Participants	excluded	from	data	analysis	

All	27	participants	who	started	the	study	completed	all	three	study	arms.	Three	participants	

were	excluded	from	data	analysis;	1	for	equipment	failure	and	2	for	breach	of	study	protocol	

as	detailed	below.	24	participants	were	therefore	included	in	the	data	analysis.	

One	participant	was	excluded	due	to	equipment	failure;	as	despite	wearing	the	CGM	device	

for	all	2-week	study	periods,	no	sensor	glucose	levels	were	recorded	during	the	4s	study	

arm.	As	stated	in	our	initial	protocol	the	remaining	data	were	not	used	in	analysis.		

Two	participants	were	excluded	from	the	analysis	due	to	significant	breaches	in	study	

protocol.	On	inspection	of	insulin	pump	data,	it	became	apparent	that	1	participant	had	

worn	a	real-time	(unblinded)	CGM	device	in	addition	to	the	blinded	study	CGM	device	during	

their	second	(4s)	and	third	(10s)	study	arms.		Furthermore,	this	device	was	linked	to	their	

insulin	pump	and	was	enabling	use	of	a	predictive	low	glucose	suspend	feature.		A	predictive	

low	glucose	suspend	feature	stops	basal	insulin	automatically	if	the	sensor	glucose	level	is	

predicted	to	fall	below	a	pre-set	threshold	and	re-starts	at	a	predetermined	level.	Given	that	

this	feature	is	known	to	prevent	hypoglycaemia	(Battelino,	Nimri	et	al.	2017),	this	

participants	data	were	excluded	from	analysis.	A	further	patient	was	excluded	from	data	

analysis	as	CGM	traces	were	clinically	consistent	with	inappropriate	and	excessive	insulin	

dosing.	Pump	data	were	missing	despite	the	study	team	uploading	the	device	on	multiple	

occasions,	therefore	it	was	not	possible	to	assess	insulin	administration	and	hence	to	
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determine	if	the	pump	had	been	used	to	deliver	excessive	insulin.	The	clinical	team	were	

alerted	to	these	concerns	and	appropriate	clinical	and	psychological	support	were	arranged.	

	

	

	Figure	21:	Study	enrolment	and	randomisation	
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3.2 Baseline	Characteristics	

3.2.1 Description	of	study	cohort	

Twenty-four	individuals	(14	female,	10	male)	with	T1D	aged	19.7	±	SD	5.4	years	(11	

participants	aged	14-17	years	and	13	participants	aged	18-35	years);	BMI	23.8	±	SD	4.2	

kg/m2	were	included	in	the	study	(see	Table	3).	The	participants	had	a	mean	Hba1c	over	the	

last	12	months	of	58	±	SD	7.7mmol/mol	(7.5	±	SD	0.7%)	and	a	mean	duration	of	diagnosis	of	

diabetes	of	9.1	±	SD	6.3	years.	All	participants	were	free	from	complications	of	diabetes	and	

hypoglycaemia	aware	(defined	as	a	Clarke’s	sore	of	equal	or	less	than	4)	with	a	mean	

Clarke’s	score	of	0.2	±	SD	0.5.	

3.2.2 Insulin	regimen	

The	average	total	daily	insulin	dose	prior	to	starting	the	study	was	0.7	±	SD	0.2units/kg/day.	

16	participants	were	treated	with	insulin	pumps	and	8	with	multiple	daily	injection	(MDI)	

insulin	regimens.	For	those	on	insulin	pumps,	the	mean	duration	of	pump	use	was	5.1	(range	

0.2-	12.3)	years.	Of	the	8	participants	using	MDI	regimens,	7	were	using	Glargine	(once	daily,	

in	the	evening),	and	1	was	using	Detemir	(twice	daily)	as	long-acting	insulin.	

3.2.3 Engagement	in	planned	exercise	and	VO2	max	test	

Participant	reported	time	spent	engaging	in	planned	exercise	prior	to	commencement	of	the	

study	was	2.0	±	SD	1.3	hours	per	week.	All	participants	completed	a	maximal	rate	of	oxygen	

consumption	(VO2	max)	test,	the	mean	VO2	max	was	32.7	±	SD	7.1ml/kg/min.	
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Female	 14	

Age,	mean	(SD)	[range],	years	 19.7	(5.4)	[14.0-32.8]	

Age	group,	years	 	

14-17		 11	

18-35		 13	

BMI,	mean	(SD)	[range],	kg/m2	 23.8	(4.2)	[15.4-31.1]	

Mean	HbA1c	over	last	12	months	(SD)	[range],	mmol/mol	

Mean	HbA1c	over	last	12	months	(SD)	[range],	%	

58	(8)	[46-73]	

7.5(0.7)[6.4-8.8]	

Insulin	regimen:	 	

Multiple	daily	injections	 8	

Insulin	pump	 16	

Physical	activity	prior	to	study,	mean	(SD)	[range],	hours	per	week	 2.0	(1.3)	[0-6]	

Duration	of	diabetes,	mean	(SD)	[range],	years	 9.1	(6.3)	[1.0-23.4]	

Average	Total	Daily	Insulin,	mean	(SD)	[range],	U/kg	 0.7	(0.2)	[0.4-1.1]	

Hypoglycaemia	unawareness	score,	mean	(SD)	[range]	 0.2	(0.5)	[0-2]	

VO2	max,	mean	(SD)	[range],	ml/kg/min	 32.7	(7.1)	[22.3-45.9]	

Table	3:	Baseline	characteristics	of	study	participants	(n=24)	

3.3 CGM	Adherence	and	Accuracy	

Glycaemic	outcomes	were	calculated	from	sensor	glucose	levels	(SGL)	obtained	from	

continuous	glucose	monitoring	over	the	three	14-day	study	periods.	The	mean	sensor	use	

during	each	14-day	study	period	was	88%	(±	SD	14.0%)	in	the	control	arm,	89%	(±	SD	9.0%)	

in	the	4s	arm	and	90%	(±	SD	8.0%)	in	the	10s	arm.	

The	mean	absolute	relative	difference	(MARD)	between	blood	glucose	levels	and	sensor	

glucose	levels	(based	on	sensor	glucose	levels	taken	within	10	minutes	prior	to	blood	glucose	

meter	readings)	was	14.7	(±	SD	14.0)	%	using	all	blood	glucose	readings	(n=1864).	The	MARD	

for	blood	glucose	levels	less	than	3.5,	3.5-8.0,	8.0-10.0	and	greater	than	10mmol/L	was	34.0	

(±	SD	31.0)	%,	15.9	(±	SD	14.8)	%,	13.0	(±	SD	11.9)	%	and	12.6	(±	SD	10.4)	%	respectively.	
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3.4 Primary	Outcome	

The	primary	outcome	was	defined	as	sensor	glucose	readings	<3.5mmol/L	for	greater	or	

equal	to	20	minutes	and	symptomatic	treated	hypoglycaemia.		Data	capture	of	self-reported	

symptomatic	treated	hypoglycaemia	from	participant	food	diaries	was	incomplete	and	

therefore	an	unreliable	field.	The	decision	was	made	to	include	only	the	reliable	and	

complete	data.	Therefore,	hypoglycaemic	events	were	defined	using	the	measure	of	CGM-

derived	hypoglycaemia	events	alone.	

Readings	with	sensor	values	of	less	than	3.5mmol/L	were	flagged,	each	group	of	consecutive	

readings	were	identified.	The	total	time	represented	by	each	instance	of	consecutive	flagged	

readings	was	calculated	and	a	hypoglycaemic	event	was	counted	if	the	period	of	time	was	

greater	or	equal	to	20	minutes	duration.		

The	total	number	of	hypoglycaemic	events	(defined	as	sensor	glucose	readings	of	readings	

<3.5mmol/L	for	greater	or	equal	to	20	minutes)	was	193	in	the	control	arm,	compared	to	

170	and	154	events	in	the	4s	and	10s	arms	respectively.	The	hypoglycaemia	incidence	rate	

was	0.63	(95%	CI	0.46-0.80)	events	per	day	in	the	control	arm,	0.55	(95%	CI	0.40-0.70)	

events	per	day	in	the	4s	arm	and	0.49	(95%	CI	0.36-0.63)	events	per	day	in	the	10s	arm	(see	

figure	17).		A	negative	binomial	mixed	model	was	used	to	compare	the	incidence	rate	of	

hypoglycaemic	events	in	the	control	arm	versus	the	4s	and	10s	sprinting	arms.	When	

comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	

negative	binomial	model	was	0.88	(95%	CI	0.69-1.11;	p=	0.28).	Comparing	the	10s	arm	to	the	

control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	0.78	

(95%	CI	0.61-1.00;	p=	0.05).		
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Figure	22:	Incidence	of	hypoglycaemia:	SG<3.5mmol/L	for	≥	20mins	
Error	bars	represent	95%	CI	
	

3.5 Secondary	Outcomes	

3.5.1 Summary	of	secondary	outcomes	

The	following	glycaemic	outcomes	(see	table	4)	will	be	reported	for	each	study	arm.	The	

sprinting	arms	of	the	study	(4s	and	10s)	were	compared	to	the	control	arm.	
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Hypoglycaemic	events:	

Sensor	glucose	levels	<3.1mmol/L	for	³	20	mins	

Sensor	glucose	levels	<3.9mmol/L	for	³	20	mins	

Average	percent	of	time	spent	with	sensor	glucose	levels*:	

<3.1mmol/l	

<3.5mmol/l	

<3.9mmol/l	

3.5-<8.0mmol/L	

8.0-10.0mmol/L	

>10.0mmol/L	

Table	4:	Secondary	outcomes:		based	on	sensor	glucose	levels	
*Average	percent	of	time	spent	in	various	glycaemic	ranges	
was	calculated	as	a	function	of	the	number	of	readings	in	the	
defined	range	over	the	total	number	of	5-minute	sensor	
glucose	levels.		
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Other	secondary	outcomes	will	subsequently	be	reported	including:	

• Glycaemic	outcomes	including	hypoglycaemic	events	and	average	time	spent	in	

hypoglycaemic,	in-target	and	hyperglycaemic	range	for	day	time	(06:00-22:00hrs)	

and	night-time	(22:00hrs06:00hrs)	periods	

• Total	daily	insulin	dose	

• Insulin	dosing	before,	during	and	after	exercise	

• Carbohydrate	intake	before,	during	and	after	exercise	

• Adverse	events	

3.5.2 Hypoglycaemic	events:	defined	as	sensor	glucose	levels	of	<3.1mmol/L		for	

greater	or	equal	to	20	minutes	

The	total	number	of	hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	

<3.1mmol/L	for	greater	or	equal	to	20	minutes)	was	124	in	the	control	arm,	compared	to	

102	and	87	events	in	the	4s	and	10s	arms	respectively.	The	hypoglycaemia	incidence	rate	

was	0.4	(95%	CI	0.3-0.6)	events	per	day	in	the	control	arm,	0.3	(95%	CI	0.2-0.5)	events	per	

day	in	the	4s	arm	and	0.3	(95%	CI	0.2-0.4)	events	per	day	in	the	10s	arm	(see	figure	18).	

When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	

negative	binomial	model	was	0.81	(95%	CI	0.56-1.18;	p=	0.27).	Comparing	the	10s	arm	to	the	

control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	0.68	

(95%	CI	0.46-0.98;	p=	0.04),	favouring	the	10s	arm.	

3.5.3 Hypoglycaemic	events:	defined	as	sensor	glucose	levels	of	<3.9	mmol/L	for	

greater	or	equal	to	20	minutes	

The	total	number	of	hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	

<3.9mmol/L	for	greater	or	equal	to	20	minutes)	was	307	in	the	control	arm,	compared	to	

258	and	273	events	in	the	4s	and	10s	arms	respectively.	The	hypoglycaemia	incidence	rate	

was	1.0	(95%	CI	0.8-1.2)	events	per	day	in	the	control	arm,	0.8	(95%	CI	0.6-1.0)	events	per	

day	in	the	4s	arm	and	0.9	(95%	CI	0.7-1.1)	events	per	day	in	the	10s	arm	(see	figure	18).	

When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	

negative	binomial	model	was	0.82	(95%	CI	0.66-1.04;	p=	0.10).	Comparing	the	10s	arm	to	the	

control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	0.87	

(95%	CI	0.69-1.09;	p=	0.21).		
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Figure	23:	Incidence	of	hypoglycaemic	events	
*p=	0.04,	comparing	10s	to	control	arm	using	a	negative	binomial	mixed	model	
Error	bars	represent	95%	CI	

3.5.4 Percentage	of	time	spent	with	sensor	glucose	levels	<	3.1mmol/L	

The	average	percent	of	time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	glucose	

levels	of	<	3.1mmol/l,	was	1.9	(±	SD	1.8)	%	in	the	control	arm,	1.4	(±	SD	1.5)	%	in	the	4s	arm	

and	1.2	(±	SD	1.1)	%	in	the	10s	arm	(see	figure	19).	A	mixed	model	was	used	to	compare	the	

time	spent	with	sensor	glucose	levels	less	than	3.1mmol/l	in	the	sprinting	arms	(4s	and	10s)	

to	the	control	arm.	Significantly	less	time	was	spent	less	than	3.1	in	the	10s-arm	compared	

to	the	control	(95%	CI	-1.4-	-0.1%,	p=0.03)	arm.	There	was	no	significant	difference	between	

the	4s	and	control	arms	(95%	CI	-1.2-	0.2%,	p=0.13).		

3.5.5 Percentage	of	time	spent	with	sensor	glucose	levels	<	3.5mmol/L	

The	average	percent	of	time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	glucose	

levels	of	<	3.5mmol/l,	was	3.1%	(±	SD	2.5)	%	in	the	control	arm,	2.5%	(±	SD	2.1)	%	in	the	4s	

arm	and	2.1	(±	SD	1.5)	%	in	the	10s	arm	(see	figure	19).	A	mixed	model	was	used	to	compare	

the	time	spent	with	sensor	glucose	levels	less	than	3.5mmol/l	in	the	sprinting	arms	(4s	and	

10s)	to	the	control	arm.	Significantly	less	time	was	spent	less	than	3.5	in	the	10s	arm	

compared	to	the	control	(95%	CI	-1.8-	-0.1%,	p=0.03)	arm.	There	was	no	significant	

difference	between	the	4s	and	control	arms	(95%	CI	-1.5-	0.3%,	p=0.18).			
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3.5.6 Percentage	of	time	spent	with	sensor	glucose	levels	<	3.9mmol/L	

The	average	percent	of	time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	glucose	

levels	of	<	3.9mmol/l,	was	5.0	(±	SD	3.3)	%	in	the	control	arm,	4.0	(±	SD	2.8)	%	in	the	4s	arm	

and	3.9	(±	SD	2.1)	%	in	the	10s	arm	(see	figure	19).	A	mixed	model	was	used	to	compare	the	

time	spent	with	sensor	glucose	levels	less	than	3.9mmol/l	in	the	sprinting	arms	(4s	and	10s)	

to	the	control	arm.	There	was	no	significant	difference	between	the	10s	and	control	arms	

(95%	CI	-2.3-	0.04%,	p=0.06)	or	the	4s	and	control	arms	(95%	CI	-2.2-	0.1%,	p=0.08).			
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Figure	24:	Average	percent	of	time	spent	in	hypoglycaemia	
*a	p=0.03,	comparing	10s	to	control	arm	using	a	linear	mixed	model	
*b	p=0.03,	comparing	10s	to	control	arm	using	a	linear	mixed	model	
Error	bars	represent	95%	CI	

	

3.5.7 Percentage	of	time	spent	with	sensor	glucose	levels	3.5-	<8.0mmol/L	

The	average	percent	of	time	spent	in	the	in-target	range,	defined	as	sensor	glucose	levels	of	

3.5-	<8.0mmol	was	38.0	(±	SD	14.9)	%	in	the	control	arm,	37.4	(±	SD	17.3)	%	in	the	4s	arm	

and	36.0	(±	SD	15.9)	%	in	the	10s	arm	(see	figure	20)	A	mixed	model	was	used	to	compare	

the	time	spent	with	sensor	glucose	between	3.5	and	8mmol/l	in	the	sprinting	arms	(4s	and	

10s)	to	the	control	arm.	There	was	no	significant	difference	between	the	10s	and	control	

arms	(95%	CI	-6.0-	2.0%,	p=0.33)	or	the	4s	and	control	arms	(95%	CI-4.6-	3.4%	p=0.77).			

3.5.8 Percentage	of	time	spent	with	sensor	glucose	levels	8.0-	10.0mmol/L	

The	average	percent	of	time	spent	in	the	hyperglycaemic	range,	defined	as	sensor	glucose	

levels	of	8.0-10.0mmol	was	17.0	(±	SD	3.6)	%	in	the	control	arm,	17.3	(±	SD	3.7)	%	in	the	4s	

arm	and	16.8	(±	SD	4.7)	%	in	the	10s	arm	(see	figure	20).	A	mixed	model	was	used	to	

compare	the	time	spent	with	sensor	glucose	between	8.0	and	10mmol/l	in	the	sprinting	

arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	difference	between	the	10s	

and	control	arms	(95%	CI	-1.8-	1.3%,	p=0.77)	or	the	4s	and	control	arms	(95%	CI	-1.4-	1.8%	

p=0.79).			
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3.5.9 Percentage	of	time	spent	with	sensor	glucose	levels	greater	than	10.0mmol/L	

The	average	percent	of	time	spent	in	the	hyperglycaemic	range,	defined	as	sensor	glucose	

levels	of	greater	than	10.0mmol/L	was	41.9	(±	SD	17.6)	%	in	the	control	arm,	42.9	(±	SD	19.4)	

%	in	the	4s	arm	and	45.1	(±	SD	19.4)	%	in	the	10s	arm	(see	figure	20).	A	mixed	model	was	

used	to	compare	the	time	spent	with	sensor	glucose	greater	than	10mmol/l	in	the	sprinting	

arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	difference	between	the	10s	

and	control	arms	(95%	CI	-1.7-	8.1%,	p=0.21)	or	the	4s	and	control	arms	(95%	CI	-4.0-	5.9%,	

p=0.70).			

	

	
Figure	25:	Average	percent	of	time	spent	in	target	range	and	in	hyperglycaemia	
Error	bars	represent	95%	CI	

3.5.10 Total	daily	insulin	dose	

The	total	daily	insulin	dose	did	not	differ	significantly	between	study	arms.	The	mean	total	

daily	insulin	dose	in	the	control	arm	was	0.65	(±	SD	0.23)	units/kg/day	in	the	control	arm,	

0.66	(±	SD	0.22)	units/kg/day	in	the	4s	arm	and	0.69	(±	SD	0.25)	units/kg/day	in	the	10s	arm	

(see	table	10).	A	mixed	model	comparing	4s	and	10s	arms	to	the	control	arm	showed	no	

significant	difference	between	the	groups	(control	vs	10s:	95%	CI	0.00-	0.06,	p=0.05,	control	

versus	4s:	95%	CI	-0.02-	0.03	p=0.87).	
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3.5.11 Insulin	bolus	doses	during	and	prior	to	exercise	

No	insulin	boluses	were	administered	during	exercise	in	the	4s,	10s,	or	control	study	arms.	

Insulin	bolus	doses	administered	less	than	or	equal	to	60,	180	or	360	minutes	prior	to	

starting	exercise	did	not	differ	significantly	between	the	study	arms	(control,	10s	and	4s)	(see	

table	10).		

The	mean	insulin	bolus	dose	administered	less	than	or	equal	to	60	minutes	prior	to	exercise	

was	1.2	(±	SD	2.5)	units	in	the	control	arm,	0.8	(±	SD	1.6)	units	in	the	4s	arm	and	1.1	(±	SD	

2.2)	units	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	insulin	bolus	dose	

administered	within	60	minutes	prior	to	exercise	in	the	control	group	compared	to	the	

sprinting	(4s	and	10s)	arms	and	did	not	find	a	significant	difference	between	the	groups	

(control	vs	10s:	95%	CI	-0.8-	0.5,	p=0.74,	control	versus	4s:	95%	CI	-1.0-	0.3,	p=0.24).	

	The	mean	insulin	bolus	dose	administered	less	than	or	equal	to	180	minutes	prior	to	

exercise	was	3.1	(±	SD	4.1)	units	in	the	control	arm,	4.1	(±	SD	5.0)	units	in	the	4s	arm	and	3.6	

(±	SD	3.7)	units	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	insulin	bolus	

dose	administered	within	60	minutes	prior	to	exercise	in	the	control	group	compared	to	the	

sprinting	(4s	and	10s)	arms	and	did	not	find	a	significant	difference	between	the	groups	

(control	vs	10s:	95%	CI	-0.8-	1.7,	p=0.44,	control	versus	4s:	95%	CI	-0.5-	1.9,	p=0.27).	

The	mean	insulin	bolus	dose	administered	less	than	or	equal	to	360	minutes	prior	to	exercise	

was	6.7	(±	SD	5.7)	units	in	the	control	arm,	7.6	(±	SD	6.6)	units	in	the	4s	arm	and	7.3	(±	SD	

5.4)	units	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	insulin	bolus	dose	

administered	within	360	minutes	prior	to	exercise	in	the	control	group	compared	to	the	

sprinting	(4s	and	10s)	arms	and	did	not	find	a	significant	difference	between	the	groups	

(control	vs	10s:	95%	CI	-1.0-	2.4,	p=0.40,	control	versus	4s:	95%	CI	-1.0-	2.3,	p=0.41).	

3.5.12 	Insulin	bolus	doses	after	exercise	

Insulin	bolus	doses	administered	less	than	or	equal	to	60,	180	or	360	minutes	after	finishing	

exercise	did	not	differ	significantly	between	the	study	arms	(control,	10s	and	4s)	(see	table	

10).		

The	mean	insulin	bolus	dose	administered	less	than	or	equal	to	60	minutes	after	exercise	

was	2.8	(±	SD	4.4)	units	in	the	control	arm,	2.2	(±	SD	3.6)	units	in	the	4s	arm	and	2.4	(±	SD	

3.7)	units	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	insulin	bolus	dose	
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administered	within	60	minutes	after	exercise	in	the	control	group	compared	to	the	

sprinting	(4s	and	10s)	arms	and	did	not	find	a	significant	difference	between	the	groups	

(control	vs	10s:	95%	CI	-1.3-	0.6	p=0.46,	control	versus	4s:	95%	CI	-1.3	-0.6,	p=0.47).	

The	mean	insulin	bolus	dose	administered	less	than	or	equal	to	180	minutes	after	exercise	

was	6.0	(±	SD	7.5)	units	in	the	control	arm,	5.0	(±	SD	5.3)	units	in	the	4s	arm	and	6.5	(±	SD	

5.7)	units	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	insulin	bolus	dose	

administered	within	180	minutes	after	exercise	in	the	control	group	compared	to	the	

sprinting	(4s	and	10s)	arms	and	did	not	find	a	significant	difference	between	the	groups	

(control	vs	10s:	95%	CI	-0.6-	2.2,	p=0.25,	control	versus	4s:	95%	CI	-1.6-	1.1,	p=0.68).	

The	mean	insulin	bolus	dose	administered	less	than	or	equal	to	360	minutes	after	exercise	

was	8.7	(±	SD	8.6)	units	in	the	control	arm,	7.2	(±	SD	5.9)	units	in	the	4s	arm	and	9.1	(±	SD	

7.4)	units	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	insulin	bolus	dose	

administered	within	360	minutes	after	exercise	in	the	control	group	compared	to	the	

sprinting	(4s	and	10s)	arms	and	did	not	find	a	significant	difference	between	the	groups	

(control	vs	10s:	95%	CI	–1.0-	2.4,	p=0.43,	control	versus	4s:	95%	CI	-2.2-	1.1,	p=0.52).	

3.5.13 Carbohydrate	intake	prior	to	exercise	

Carbohydrate	intake	prior	to	exercise	(ingested	less	than	or	equal	to	60,	180	or	360	minutes	

prior	to	starting	exercise)	did	not	differ	significantly	between	the	study	arms	(control,	10s	

and	4s)	(see	table	10).		

The	mean	amount	of	carbohydrate	ingested	less	than	or	equal	to	60	minutes	prior	to	

starting	exercise	was	8.5	(±	SD	8.4)	g	in	the	control	arm	6.7	(±	SD	7.5)	g	in	the	4s	arm	and	7.9	

(±	SD	6.6)	g	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	carbohydrate	

intake	within	60	minutes	prior	to	exercise	in	the	control	group	compared	to	the	sprinting	

arms	and	did	not	find	a	significant	difference	between	the	groups	(control	vs	10s:	95%	CI	–

5.0-	3.1,	p=0.65,	control	versus	4s:	95%	CI	-6.0	-1.8,	p=0.30).	

The	mean	amount	of	carbohydrate	ingested	less	than	or	equal	to	180	minutes	prior	to	

starting	exercise	was	24.9	(±	SD	18.6)	g	in	the	control	arm	26.0	(±	SD	16.9)	g	in	the	4s	arm	

and	29.3	(±	SD	21.2)	g	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	

carbohydrate	intake	within	180	minutes	prior	to	exercise	in	the	control	group	compared	to	

the	sprinting	arms	and	did	not	find	a	significant	difference	between	the	groups	(control	vs	

10s:	95%	CI	-5.3-	11.6,	p=0.46,	control	versus	4s:	95%	CI	-7.5-	8.9,	p=0.87).	
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The	mean	amount	of	carbohydrate	ingested	less	than	or	equal	to	360	minutes	prior	to	

starting	exercise	was	55.4	(±	SD	28.5)	g	in	the	control	arm	59.1	(±	SD	31.3)	g	in	the	4s	arm	

and	59.5	(±	SD	31.5)	g	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	

carbohydrate	intake	within	360	minutes	prior	to	exercise	in	the	control	group	compared	to	

the	sprinting	arms	and	did	not	find	a	significant	difference	between	the	groups	(control	vs	

10s:	95%	CI	-10.1-	10.2,	p=0.99,	control	versus	4s:	95%	CI	-8.5-	11.2,	p=0.79).	

3.5.14 Carbohydrate	intake	during	exercise	

The	proportion	of	exercise	bouts	with	carbohydrate	intake	(exercise	bouts	with	

carbohydrate	intake/exercise	bouts	without	CHO	intake)	was	compared	between	groups	

instead	of	total	grams	of	carbohydrate	consumed	during	exercise	as	the	distribution	of	

carbohydrate	intake	during	a	bout	of	exercise	was	not	normally	distributed	and	it	was	

therefore	more	meaningful	to	analyse	from	a	dichotomous	perspective.	

Carbohydrate	was	consumed	during	exercise	in	13.3%	of	the	total	number	of	exercise	bouts	

in	the	control	arm,	14.5%	in	the	4s	arm	and	in	4.7%	in	the	10s	arm.	A	mixed	logistic	

regression	was	used	to	compare	the	proportion	of	exercise	bouts	with	carbohydrate	intake	

during	exercise	in	the	control	and	sprinting	arms	(see	figure	21).		

There	was	a	significantly	lower	proportion	of	exercise	bouts	with	carbohydrate	intake	in	the	

10s	compared	to	the	control	arm	(95%	CI	0.09-	0.81,	p=0.02)	with	an	odds	ratio	of	0.27.	

There	was	no	difference	between	the	4s	compared	to	the	control	arm	(95%	CI	0.50-2.42,	

p=0.81)	with	an	odds	ratio	of	1.10.	
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Figure	26:	Proportion	of	exercise	bouts	with	carbohydrate	intake	during	exercise	

3.5.15 Carbohydrate	intake	after	exercise	

Carbohydrate	intake	after	exercise	(ingested	less	than	or	equal	to	60,	180	and	360	minutes	

after	finishing	exercise)	did	not	differ	significantly	between	the	study	arms	(control,	10s	and	

4s)	(see	table	10).		

The	mean	amount	of	carbohydrate	ingested	less	than	or	equal	to	60	minutes	after	finishing	

exercise	was	15.6	(±	SD	17.5)	g	in	the	control	arm,	12.2	(±	SD	12.6)	g	in	the	4s	arm	and	12.6	

(±	SD	11.2)	g	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	carbohydrate	

intake	within	60	minutes	after	exercise	in	the	control	group	compared	to	the	sprinting	arms	

and	did	not	find	a	significant	difference	between	the	groups	(control	vs	10s:	95%	CI	–9.4-	3.4,	

p=0.36,	control	versus	4s:	95%	CI	-9.5-	2.9,	p=0.30).	

The	mean	amount	of	carbohydrate	ingested	less	than	or	equal	to	180	minutes	after	finishing	

exercise	was	44.1	(±	SD	25.8)	g	in	the	control	arm,	45.7	(±	SD	22.4)	g	in	the	4s	arm	and	45.9	

(±	SD	21.3)	g	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	carbohydrate	

intake	within	180	minutes	after	exercise	in	the	control	group	compared	to	the	sprinting	arms	

and	did	not	find	a	significant	difference	between	the	groups	(control	vs	10s:	95%	CI	–6.8-	

10.2,	p=0.70,	control	versus	4s:	95%	CI	-5.6-	10.8,	p=0.53).	

The	mean	amount	of	carbohydrate	ingested	less	than	or	equal	to	360	minutes	after	finishing	

exercise	was	60.6	(±	SD	32.8)	g	in	the	control	arm,	66.0	(±	SD	34.2)	g	in	the	4s	arm	and	73.4	

(±	SD	32.0)	g	in	the	10s	arm.	A	mixed	model	was	used	to	compare	the	mean	carbohydrate	
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intake	within	360	minutes	after	exercise	in	the	control	group	compared	to	the	sprinting	arms	

and	did	not	find	a	significant	difference	between	the	groups	(control	vs	10s:	95%	CI	–1.6-

24.7,	p=0.09,	control	versus	4s:	95%	CI	-6.7-	18.8	p=0.35).	

3.5.16 Adverse	events	

No	adverse	events	including	moderate	(requiring	assistance)	and	severe	hypoglycaemia	

(coma	or	convulsion)	occurred	during	the	study.	

3.6 Glycaemic	Outcomes	for	Day	and	Night	

3.6.1 Summary	of	glycaemic	outcomes	for	day	and	night	

Glycaemic	outcomes	including	hypoglycaemic	events	and	the	average	time	spent	in	

hypoglycaemic,	in-target	and	hyperglycaemic	ranges	were	examined	during	day	and	night	

time	periods	(see	Table	5).	Day-time	was	defined	as	06:00-22:00	hrs,	night-time	was	defined	

as	22:00-06:00	hrs.	

	

Day	(0600-22:00	hrs)	 Night	(22:00-0600	hrs)	
Hypoglycaemic	events:	
SGLs	<3.1mmol/L	for	³	20	mins	
SGLs	<3.5mmol/L	for	³	20	mins	
SGLs	<3.9mmol/L	for	³	20	mins	

Hypoglycaemic	events:	
SGLs	<3.1mmol/L	for	³	20	mins	
SGLs	<3.5mmol/L	for	³	20	mins	
SGLs	<3.9mmol/L	for	³	20	mins	

Average	percent	of	time	spent	with	
SGLs:	
<3.1mmol/l	
<3.5mmol/l	
<3.9mmol/l	
3.5-<8.0mmol/L	
8.0-	10.0mmol/L	
>10.0mmol	

Average	percent	of	time	spent	with	
SGLs:	
<3.1mmol/l	
<3.5mmol/l	
<3.9mmol/l	
3.5-<8.0mmol/L	
8.0-10.0mmol/L	
>10.0mmol/L	

Table	5:	Glycaemic	outcomes	for	day	and	night	
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3.6.2 Day-time	hypoglycaemic	events:	defined	as	sensor	glucose	levels	of	

<3.1mmol/L	for	greater	or	equal	to	20	minutes	

There	were	no	between	group	differences	in	day-time	hypoglycaemic	events	defined	as	

sensor	glucose	levels	of	<3.1	for	greater	or	equal	to	20	minutes	(see	figure	22).	The	total	

number	of	hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	

<3.1mmol/L	for	greater	or	equal	to	20	minutes)	during	the	day	(06:00-22:00)	was	71	in	the	

control	arm,	compared	to	64	and	66	events	in	the	4s	and	10s	arms	respectively.	The	

hypoglycaemia	incidence	rate	was	0.4	(95%	CI	0.2-	0.5)	events	per	day,	in	the	control	arm,	

0.3	(95%	CI	0.2-	0.5)	events	per	day	in	the	4s	arm	and	0.3	(95%	CI	0.2-	0.5)	events	per	day	in	

the	10s	arm.	When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	

ratio	using	the	negative	binomial	model	was	0.85	(95%	CI	0.57-	1.27;	p=	0.43).	Comparing	

the	10s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	

model	was	0.87	(95%	CI	0.59-	1.29;	p=	0.50).	

3.6.3 Daytime	hypoglycaemic	events:	defined	as	sensor	glucose	Levels	of	

<3.5mmol/L	for	greater	or	equal	to	20	minutes	

There	were	no	between	group	differences	in	day-time	hypoglycaemic	events	defined	as	

sensor	glucose	levels	of	<3.5	for	greater	or	equal	to	20	minutes.	The	total	number	of	

hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	<3.5mmol/L	for	

greater	or	equal	to	20	minutes)	during	the	day	(06:00-22:00)	was	132	in	the	control	arm,	

compared	to	111	and	116	events	in	the	4s	and	10s	arms	respectively.	The	hypoglycaemia	

incidence	rate	was	0.7	(95%	CI	0.5-0.9)	events	per	day	in	the	control	arm,	0.6	(95%	CI	0.4-

0.7)	events	per	day	in	the	4s	arm	and	0.6	(95%	CI	0.4-	0.7)	events	per	day	in	the	10s	arm.	

When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	

negative	binomial	model	was	0.11	(95%	CI	0.61-	1.04;	p=	0.10).	Comparing	the	10s	arm	to	

the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	

0.83	(95%	CI	0.64-	1.09;	p=	0.17).	
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3.6.4 Day-time	hypoglycaemic	events:	defined	as	sensor	glucose	levels	of	

<3.9mmol/L	for	greater	or	equal	to	20	minutes	

There	were	no	between	group	differences	in	day-time	hypoglycaemic	events	defined	as	

sensor	glucose	levels	of	<3.9	for	greater	or	equal	to	20	minutes	(see	figure	22).	The	total	

number	of	hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	

<3.9mmol/L	for	greater	or	equal	to	20	minutes)	during	the	day	(06:00-22:00)	was	215	in	the	

control	arm,	compared	to	184	and	209	events	in	the	4s	and	10s	arms	respectively.	The	

hypoglycaemia	incidence	rate	was	1.1	(95%	CI	0.8-	1.4)	events	per	day	in	the	control	arm,	0.9	

(95%	CI	0.7-1.2)	events	per	day	in	the	4s	arm	and	1.0	(95%	CI	0.8-1.3)	events	per	day	in	the	

10s	arm.	When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	

using	the	negative	binomial	model	was	0.82	(95%	CI	0.64-	1.04;	p=	0.10).	Comparing	the	10s	

arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	

was	0.93	(95%	CI	0.73-1.17;	p=	0.53).	

	

	
Figure	27:	Incidence	of	daytime	hypoglycaemia	
Error	bars	represent	95%	CI	
	

3.6.5 Night-	time	hypoglycaemic	events:	defined	as	sensor	glucose	Levels	of	

<3.1mmol/L	for	greater	or	equal	to	20	minutes	

There	were	less	night-time	hypoglycaemic	events	defined	as	sensor	glucose	levels	of	<3.1	for	

greater	or	equal	to	20	minutes	in	the	10s-arm	compared	to	the	control	arm	(see	figure	23).	
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<3.1mmol/L	for	greater	or	equal	to	20	minutes)	during	the	night	(22:00-06:00)	was	47	in	the	

control	arm,	compared	to	40	and	26	events	in	the	4s	and	10s	arms	respectively.	The	

hypoglycaemia	incidence	rate	was	0.5	(95%	CI	0.3-0.7)	events	per	day	in	the	control	arm,	0.4	

events	per	day	(95%	CI	0.2-	0.6)	in	the	4s	arm	and	0.2	events	per	day	(95%	CI	0.1-0.4)	in	the	

10s	arm.	When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	

using	the	negative	binomial	model	was	0.81	(95%	CI	0.45-	1.44;	p=	0.47).	Comparing	the	10s	

arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	

was	0.51	(95%	CI	0.27-	0.96;	p=	0.04),	favouring	the	10s	arm.	

3.6.6 Night-time	hypoglycaemic	events:	defined	as	sensor	glucose	levels	of	

<3.5mmol/L	for	greater	or	equal	to	20	minutes	

There	were	no	between	group	differences	in	night-time	hypoglycaemic	events	defined	as	

sensor	glucose	levels	of	<3.5	for	greater	or	equal	to	20	minutes	(see	figure	23).	The	total	

number	of	hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	

<3.5mmol/L	for	greater	or	equal	to	20	minutes)	during	the	night	(22:00-06:00)	was	61	in	the	

control	arm,	compared	to	58	and	43	events	in	the	4s	and	10s	arms	respectively.	The	

hypoglycaemia	incidence	rate	was	0.6	(95%	CI	0.4-	0.9)	events	per	day	in	the	control	arm,	0.6	

events	per	day	(95%	CI	0.3-0.8)	in	the	4s	arm	and	0.4	(95%	CI	0.2-0.6)	events	per	day	in	the	

10s	arm.	When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	

using	the	negative	binomial	model	was	0.93	(95%	CI	0.58-	1.5;	p=	0.78).	Comparing	the	10s	

arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	

was	0.68	(95%	CI	0.41-	1.12;	p=	0.13).	

3.6.7 Night-time	hypoglycaemic	events:	defined	as	sensor	glucose	levels	of	

<3.9mmol/L	for	greater	or	equal	to	20	minutes	

There	were	no	between	group	differences	in	night-time	hypoglycaemic	events	defined	as	

sensor	glucose	levels	of	<3.9	for	greater	or	equal	to	20	minutes	(see	figure	23).	The	total	

number	of	hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	

<3.9mmol/L	for	greater	or	equal	to	20	minutes)	during	the	night	(22:00-06:00)	was	92	in	the	

control	arm,	compared	to	84	and	73	events	in	the	4s	and	10s	arms	respectively.	The	

hypoglycaemia	incidence	rate	was	0.9	(95%	CI	0.6-1.2)	events	per	day	in	the	control	arm,	0.8	

(95%	CI	0.5-1.1)	events	per	day	in	the	4s	arm	and	0.7	(95%	CI	0.4	-0.9)	events	per	day	in	the	

10s	arm.	When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	

using	the	negative	binomial	model	was	0.88	(95%	CI	0.60-	1.29,	p=	0.50).	Comparing	the	10s	
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arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	

was	0.75	(95%	CI	0.51-	1.11;	p=	0.15).	

	
Figure	28:	Incidence	of	night-time	hypoglycaemia	
*p=0.04,	comparing	10s	to	control	arm	using	a	negative	binomial	mixed	model	
Error	bars	represent	95%	CI	

3.6.8 Percent	of	day-time	spent	with	sensor	glucose	levels<	3.1mmol/L	

The	average	percent	of	day-time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	

glucose	levels	of	<	3.1mmol/l,	was	1.9	(±	SD	2.0)	%	in	the	control	arm,	1.2	(±	SD	1.2)	%	in	the	

4s	arm	and	1.1	(±	SD	0.9)	%	in	the	10s	arm	(see	figure	24).	A	mixed	model	was	used	to	

compare	the	time	spent	with	sensor	glucose	levels	less	than	3.1mmol/l	in	the	sprinting	arms	

(4s	and	10s)	to	the	control	arm.	Significantly	less	time	was	spent	less	than	3.1mmol/l	during	

the	daytime	in	sprinting	arms	compared	to	control	(10s	arm	compared	to	the	control,	95%	CI	

-1.4-	-0.2%,	p=0.01,	4s	arm	compared	to	control,	95%	CI	-1.3-	-0.2%,	p=0.01).			

3.6.9 Percent	of	day-time	spent	with	sensor	glucose	levels<	3.5mmol/L	

The	average	percent	of	day-time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	

glucose	levels	of	<	3.5mmol/l,	was	3.0	(±	SD	2.6)	in	the	control	arm,	2.1	(±	SD	1.8)	%	in	the	4s	

arm	and	2.0	(±	SD	1.5)	in	the	10s	arm	(see	figure	24).	A	mixed	model	was	used	to	compare	

the	time	spent	with	sensor	glucose	levels	less	than	3.5mmol/l	in	the	sprinting	arms	(4s	and	

10s)	to	the	control	arm.	Significantly	less	time	was	spent	less	than	3.5mmol/l	during	the	

daytime	in	sprinting	arms	compared	to	control	(10s	arm	compared	to	the	control,	95%	CI								

-1.8-	-0.2%,	p=0.01,	4s	arm	compared	to	control,	95%	CI	-1.7-	-0.2%,	p=0.02).			

0

0.2

0.4

0.6

0.8

1

1.2

1.4

<3.9mmol/L <3.5mmol/L <3.1mmol/L No
.o
f	N

ig
ht
	T
im

e	
Hy

po
gl
yc
ae
m
ic
	Ev

en
ts
	

pe
r	2

4	
Ho

ur
s

Control 4	sec 10	sec

*



	 86	

3.6.10 Percent	of	day-time	spent	with	sensor	glucose	levels<	3.9mmol/L	

The	average	percent	of	day-time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	

glucose	levels	of	<	3.9mmol/l,	was	5.0	(±	SD	3.3)	%	in	the	control	arm,	3.5	(±	SD	2.5)	%	in	the	

4s	arm	and	3.8	(±	SD	2.3)	%	in	the	10s	arm	(see	figure	24).	A	mixed	model	was	used	to	

compare	the	time	spent	with	sensor	glucose	levels	less	than	3.5mmol/l	in	the	sprinting	arms	

(4s	and	10s)	to	the	control	arm.	Significantly	less	time	was	spent	less	than	3.9mmol/l	during	

the	daytime	in	sprinting	arms	compared	to	control	(10s	arm	compared	to	the	control,	95%	CI	

-2.3-	-0.1%,	p=0.03,	4s	arm	compared	to	control,	95%	CI	-2.6-	-0.4,	p=0.01).			

	
Figure	29:	Average	percent	of	daytime	spent	in	hypoglycaemia			
*a	p=0.01,	comparing	4s	to	control	arm	using	a	linear	mixed	model	
*b	p=0.01	comparing	10s	to	control	arm	using	a	linear	mixed	model	
*c	p=0.01,	comparing	4s	to	control	arm	using	a	linear	mixed	model		
*d	p=0.01,	comparing	10s	to	control	arm	using	a	linear	mixed	model	
*e	p=0.01,	comparing	4s	to	control	arm	using	a	linear	mixed	model	
*f	p=0.03,	comparing	10s	to	control	arm	using	a	linear	mixed	model	
Error	bars	represent	95%	CI	

	

3.6.11 Percent	of	day-time	spent	with	sensor	glucose	levels	3.5-<8.0mmol/L	

The	average	percent	of	day-time	spent	in	target	range,	defined	as	sensor	glucose	levels	of	

between	3.5-<8.0mmol/l,	was	38.3	(±	SD	14.6)	%	in	the	control	arm,	37.4	(±	SD	16.6)	%	in	

the	4s	arm	and	36.8	(±	SD	16.1)	%	in	the	10s	arm	(see	table	12).	A	mixed	model	was	used	to	

compare	the	day-time	spent	with	sensor	glucose	levels	in	the	range	3.5-	<8mmol	in	the	

sprinting	arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	difference	between	
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the	10s	and	control	arms	(95%	CI	-5.5-	2.6,	p=0.48)	or	the	4s	and	control	arms	(95%	CI	-5.0-

3.2,	p=0.68).			

3.6.12 Percent	of	day-time	spent	with	sensor	glucose	levels	8.0-10.0mmol/L	

The	average	percent	of	day-time	spent	in	the	hyperglycaemic	range	defined	as	sensor	

glucose	levels	of	between	8	-10mmol/l,	was	16.8	(±	SD	4.1)	%	in	the	control	arm,	17.4	(±	SD	

4.1)	%	in	the	4s	arm	and	17.0	(±	SD	5.0)	%	in	the	10s	arm	(see	table	12).	A	mixed	model	was	

used	to	compare	the	day-time	spent	with	sensor	glucose	levels	in	the	range	8mmol-

10mmol/L	in	the	sprinting	arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	

difference	between	the	10s	and	control	arms	(95%	CI	-1.5-	1.9%,	p=0.84)	or	the	4s	and	

control	arms	(95%	CI	-1.1-	2.3%,	p=0.47).			

3.6.13 Percent	of	day-time	spent	with	sensor	glucose	levels	greater	than	

10.0mmol/L	

The	average	percent	of	day-time	spent	in	the	hyperglycaemic	range	defined	as	sensor	

glucose	levels	greater	than	10mmol/l,	was	41.9	(±	SD	18.1)	%	in	the	control	arm,	43.1(±	SD	

19.0)	%	in	the	4s	arm	and	44.2	(±	SD	19.8)	%	in	the	10s	arm	(see	table	12).	A	mixed	model	

was	used	to	compare	the	day-time	spent	with	sensor	glucose	levels	in	the	range	8mmol-

10mmol/L	in	the	sprinting	arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	

difference	between	the	10s	and	control	arms	(95%	CI	-2.3-	6.9,	p	=0.32)	or	the	4s	and	control	

arms	(95%	CI	-3.4-	5.8%,	p=0.61).			

3.6.14 Percent	of	night-time	spent	with	sensor	glucose	levels<	3.1mmol/L	

The	average	percent	of	night-time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	

glucose	levels	of	<	3.1mmol/l,	was	1.9	(±	SD	2.2)	%	in	the	control	arm,	1.8	(±	SD	2.7)	%	in	the	

4s	arm	and	1.3	(±	SD	2.0)	%	in	the	10s	arm	(see	figure	25).	A	mixed	model	was	used	to	

compare	the	night-time	spent	with	sensor	glucose	levels	less	than	3.1mmol/l	in	the	sprinting	

arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	difference	between	the	10s	

and	control	arms	(95%	CI	-1.9-	0.7%,	p=0.35)	or	the	4s	and	control	arms	(95%	CI	-1.4-	1.2,	

p=0.90).			

3.6.15 Percent	of	night-time	spent	with	sensor	glucose	levels<	3.5mmol/L	

The	average	percent	of	night-time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	

glucose	levels	of	<	3.5mmol/l,	was	3.2	(±	SD	3.2)	%	in	the	control	arm,	3.2	(±	SD	3.5)	%	in	the	

4s	arm	and	2.3	(±	SD	2.7)	%	in	the	10s	arm	(see	figure	25).	A	mixed	model	was	used	to	
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compare	the	night-time	spent	with	sensor	glucose	levels	less	than	3.5mmol/l	in	the	sprinting	

arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	difference	between	the	10s	

and	control	arms	(95%	CI	-2.5-	0.8%,	p=0.31)	or	the	4s	and	control	arms	(95%	CI	-1.6-	1.7%,	

p=0.97).			

3.6.16 Percent	of	night-time	spent	with	sensor	glucose	levels<	3.9mmol/L	

The	average	percent	of	night-time	spent	in	the	hypoglycaemic	range,	defined	as	sensor	

glucose	levels	of	<	3.9mmol/l,	was	5.2	(±	SD	4.6)	%	in	the	control	arm,	5.0	(±	SD	4.4)	%	in	the	

4s	arm	and	4.2	(±	SD	3.4)	%	in	the	10s	arm	(see	figure	25).	A	mixed	model	was	used	to	

compare	the	night-time	spent	with	sensor	glucose	levels	less	than	3.9mmol/l	in	the	sprinting	

arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	difference	between	the	10s	

and	control	arms	(95%	CI	-3.1-	1.1%,	p=0.37)	or	the	4s	and	control	arms	(95%	CI	-2.3-	1.9%,	

p=0.82).			

	
Figure	30:	Average	percent	of	night-time	spent	in	hypoglycaemia		
Error	bars	represent	95%	CI	

	

3.6.17 Percent	of	night-time	spent	with	sensor	glucose	levels	3.5-<8.0mmol/L	

The	average	percent	of	night-time	spent	in	target	range,	defined	as	sensor	glucose	levels	of	

between	3.5-<8.0mmol/l,	was	37.3	(±	SD	18.1)	%	in	the	control	arm,	37.3	(±	SD	22.4)	%	in	

the	4s	arm	and	34.4	(±	SD	20.1)	%	in	the	10s	arm	(see	table	12).	A	mixed	model	was	used	to	

compare	the	night-time	spent	with	sensor	glucose	levels	in	the	range	3.5-	8mmol	in	the	

sprinting	arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	difference	between	
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the	10s	and	control	arms	(95%	CI	-8.6-	2.8%,	p=0.32)	or	the	4s	and	control	arms	(95%	CI	-5.7-	

5.7%,	p=1.0).			

3.6.18 Percent	of	night-time	spent	with	sensor	glucose	levels	8.0-10.0mmol/L	

The	average	percent	of	night-time	spent	in	the	hyperglycaemic	range	defined	as	sensor	

glucose	levels	of	between	8.0	-10.0mmol/l,	was	17.3	(±	SD	6.2)	%	in	the	control	arm,	16.9	(±	

SD	5.5)	%	in	the	4s	arm	and	16.4	(±	SD	7.4)	%	in	the	10s	arm	(see	table	12).	A	mixed	model	

was	used	to	compare	the	night-time	spent	with	sensor	glucose	levels	in	the	range	8	mmol-

10mmol/L	in	the	sprinting	arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	

difference	between	the	10s	and	control	arms	(95%	CI	-4.1-	2.2%,	p=0.56)	or	the	4s	and	

control	arms	(95%	CI	-3.6-	2.7%,	p=0.78).			

3.6.19 Percent	of	night-time	spent	with	sensor	glucose	levels	greater	than	

10.0mmol/L	

The	average	percent	of	night-time	spent	in	the	hyperglycaemic	range	defined	as	sensor	

glucose	levels	greater	than	10.0mmol/l,	was	42.2	(±	SD	19.7)	%	in	the	control	arm,	42.6	(±	SD	

23.4)	%	in	the	4s	arm	and	46.9	(±	SD	23.6)	%	in	the	10s	arm	(see	table	12).	A	mixed	model	

was	used	to	compare	the	night-time	spent	with	sensor	glucose	levels	in	the	range	8mmol-

10mmol/L	in	the	sprinting	arms	(4s	and	10s)	to	the	control	arm.	There	was	no	significant	

difference	between	the	10s	and	control	arms	(95%	CI	-2.3-	11.7%,	p=0.19)	or	the	4s	and	

control	arms	(95%	CI	-6.6-	7.4%,	p=0.91).			

3.7 Adherence	to	Exercise	Protocols	

A	total	of	420	episodes	of	exercise	occurred	during	the	study,	including	144,	138	and	138	

sessions	in	the	control,	4s	and	10s	arms	respectively.	The	average	number	of	exercise	

sessions	during	the	2-week	study	period	were	similar	between	the	study	arms	5.9	(±	SD	1.0)	

in	the	control,	5.5	(±	SD	1.3)	in	the	4s	and	5.7	(±	SD	1.0)	in	the	10s	arm.	Exercise	watch	data	

were	only	available	for	exercise	occurring	outdoors	(not	indoors),	including	69/144,	75/138	

and	67/138	total	sessions	in	the	control,	10s	and	4s	arms	respectively.	Adherence	with	

exercise	protocols	were	assessed	using	watch	data	and	episodes	were	categorised	as	

“adherent”	or	“non-adherent”	based	on	pre-determined	criteria	outlined	in	the	methods	

section.	Exercise	sessions	were	classified	as	adherent	in	69/69	(100%),	66/75	(88%)	and	

65/67	(97%)	of	sessions	in	the	control,	4s	and	10s	arms	respectively.	
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3.8 Enjoyment	of	Physical	Activity	

The	PACES	questionnaire	was	completed	by	23/24,	24/24,	24/24	participants	in	the	control,	

4s	and	10s	arms	respectively.	The	mean	paces	score	was	82.3	(±	SD	11.6)	for	the	control	

group,	79.5	(±	SD	16.3)	for	the	4s	86.0	(±	SD	10.7)	for	the	10s	arms	(see	table	13).	There	was	

no	significant	difference	between	the	10s	arm	and	control	arms	(95%	CI	-2.1-	8.6,	p=0.23)	or	

the	4s	and	control	arms	(95%	CI	-8.6-	2.1,	p=0.23).		However,	there	was	statistically	

significant	difference	between	the	4s	and	10s	arms	(difference	6.5,	p=0.02),	with	participants	

scoring	the	10s	arm	as	more	enjoyable	than	the	4s	arm.	

3.9 Hypoglycaemia	after	Exercise	

An	exploratory	analyses	of	hypoglycaemia	outcomes	in	time	blocks	after	exercise	was	

performed	post	hoc.	The	incidence	of	hypoglycaemic	events	(defined	as	the	number	of	

sensor	glucose	readings	<3.5mmol/L)	and	the	percentage	of	sensor	glucose	readings	spent	in	

hypoglycaemic	ranges	(defined	as	number	of	SG	readings	less	than	3.5mmol/l	divided	by	the	

total	number	of	SG	readings)	were	analysed	in	time	blocks	in	relation	to	exercise.	Time	

blocks	included;	from	the	onset	of	exercise	until	6	hours,	12	hours	and	24	hours	post	

exercise.		

3.9.1 Analysis	of	hypoglycaemic	events	after	exercise	

In	the	post	exercise	analyses,	hypoglycaemic	events	were	defined	as	a	single	time-point	less	

than	the	defined	hypoglycaemic	range,	and	this	SGL	did	not	need	to	be	sustained	for	greater	

or	equal	to	20	minutes.	It	was	decided	that	counting	a	single	time	point	as	an	event	was	

more	meaningful	in	view	of	fewer	measurements	in	the	shorter	time	frame	of	analyses,	

resulting	in	a	large	number	of	zero	values	when	events	were	defined	as	a	minimum	of	20	

minutes	duration.	Analysis	was	only	performed	for	hypoglycaemic	events	as	defined	by	our	

primary	outcome,	as	SG	levels	of	less	than	3.5mmol/L	due	to	the	small	number	of	events	

recorded	in	this	time	frame.		

3.9.2 Analysis	of	percentage	of	sensor	readings	spent	in	hypoglycaemic	ranges	after	

exercise	

In	the	previously	described	secondary	analyses,	time	spent	in	various	hypoglycaemic	ranges	

was	calculated	as	a	function	of	the	number	of	readings	over	the	total	number	of	5-minute	

sensor	glucose	levels.	This	was	treated	as	a	continuous	measure	and	analysed	using	a	linear	
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mixed	model.	This	approach	of	using	sensor	glucose	readings	as	a	continuous	variable	is	well	

established	in	the	literature.	

The	post	exercise	analysis	differs,	as	each	reading	in	the	defined	hypoglycaemic	range	is	

treated	as	a	count,	expressed	as	a	proportion	of	the	total	number	of	sensor	glucose	readings	

in	the	defined	period.	This	‘count’	data	is	analysed	using	a	negative	binomial	model.	This	

approach	is	used	as	there	are	far	fewer	measurements	in	this	smaller	time	frame	and	if	we	

were	to	treat	sensor	glucose	levels	as	a	continuous	variable	(i.e	percentage	time	spent	low)	

the	resultant	measure	would	be	more	volatile	with	a	larger	standard	deviation.	

3.9.3 Hypoglycaemic	events	(SGL<	3.5mmol/L)	occurring	up	to	6	hours	post	exercise	

There	was	no	difference	in	the	incidence	of	hypoglycaemic	events	in	the	time	period	from	

the	onset	of	exercise	to	6	hours	post	exercise.	The	total	number	of	hypoglycaemic	events	

(defined	as	glucose	sensor	readings	of	readings	<3.5mmol/L)	during	this	period,	was	27	in	

the	control	arm,	compared	to	26	and	28	events	in	the	4s	and	10s	arms	respectively.	When	

comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	

negative	binomial	model	was	0.98	(95%	CI	0.57-	1.68;	p=	0.94).	Comparing	the	10s	arm	to	

the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	

1.05	(95%	CI	0.62-	1.79,	p=	0.85).	

3.9.4 Hypoglycaemic	events	(SGL	<3.5mmol/L)	occurring	up	to	12	hours	post	

exercise		

There	was	no	difference	between	the	arms	in	the	incidence	of	hypoglycaemic	events	in	the	

time	period	from	the	onset	of	exercise	to	12	hours	post	exercise.	The	total	number	of	

hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	<3.5mmol/L)	during	

this	period,	was	54	in	the	control	arm,	compared	to	41	and	45	events	in	the	4s	and	10s	arms	

respectively.	When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	

ratio	using	the	negative	binomial	model	was	0.78	(95%	CI	0.52-1.18;	p=	0.24).	Comparing	the	

10s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	

model	was	0.83	(95%	CI	0.56-	1.25,	p=	0.37).	

3.9.5 Hypoglycaemic	events	(SGL	<3.5mmol/L)	occurring	up	to	24	hours	post	

exercise	

There	was	no	difference	between	the	arms	in	the	incidence	of	hypoglycaemic	events	in	the	

time	period	from	the	onset	of	exercise	to	24	hours	post	exercise.	The	total	number	of	
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hypoglycaemic	events	(defined	as	glucose	sensor	readings	of	readings	<3.5mmol/L)	during	

this	period,	was	88	in	the	control	arm,	compared	to	75	and	80	events	in	the	4s	and	10s	arms	

respectively.	When	comparing	the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	

ratio	using	the	negative	binomial	model	was	0.87	(95%	CI	0.62-	1.23;	p=	0.43).	Comparing	

the	10s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	

model	was	0.89	(95%	CI	0.64-	1.26,	p=	0.52).	

3.9.6 Percentage	of	sensor	glucose	levels	<	3.5mmol/L	up	to	6	hours	post	exercise	

There	was	no	difference	between	the	arms	in	the	percentage	of	sensor	glucose	levels	less	

than	3.5mmol/l	in	the	time	period	from	the	onset	of	exercise	to	6	hours	post	exercise.	The	

percentage	of	SGLs	less	than	3.5mmol/L	was	2.6	(95%	CI	1.7-3.6)	%	in	the	control	arm,	2.6	

(95%	CI	1.7-3.5)	%	in	the	4s	arm	and	2.6	(95%	CI	1.5-3.7)	%	in	the	10s	arm.	When	comparing	

the	4s	arm	to	the	control	arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	

model	was	0.98	(95%	CI	0.48-	2.0;	p=	0.95).	Comparing	the	10s	arm	to	the	control	arm,	the	

adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	1.00	(95%	CI	0.49-	2.0,	

p=	0.99).	

3.9.7 Percentage	of	sensor	glucose	levels	<	3.5mmol/L	up	to	12	hours	post	exercise	

There	was	no	difference	in	the	percentage	of	sensor	glucose	levels	less	than	3.5mmol/	in	the	

time	period	from	the	onset	of	exercise	to	12	hours	post	exercise.	The	percentage	of	SGLs	less	

than	3.5mmol/L	was	3.9	(95%	CI	2.5-5.3)	%	in	the	control	arm,	2.7	(95%	CI	1.5-3.8)	%	in	the	

4s	arm	and	2.5	(95%	CI	1.5-	3.6)	%	in	the	10s	arm.	When	comparing	the	4s	arm	to	the	control	

arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	0.63	(95%	CI	

0.32-	1.26;	p=	0.19).	Comparing	the	10s	arm	to	the	control	arm,	the	adjusted	incidence	rate	

ratio	using	the	negative	binomial	model	was	0.61	(95%	CI	0.31-1.19,	p=	0.15).	

3.9.8 Percentage	of	sensor	glucose	levels	<	3.5mmol/L	up	to	24	hours	post	exercise	

There	was	no	difference	in	the	proportion	of	sensor	glucose	levels	less	than	3.5mmol/	in	the	

time	period	from	the	onset	of	exercise	to	24	hours	post	exercise.	The	percentage	of	SGLs	less	

than	3.5mmol/L	was	3.4	(95%	CI	2.3-	4.4)	%	in	the	control	arm,	2.6	(95%	CI	1.7-	3.5)	%	in	the	

4s	arm	and	2.2	(95%	CI	1.5-	2.9)	%	in	the	10s	arm.	When	comparing	the	4s	arm	to	the	control	

arm,	the	adjusted	incidence	rate	ratio	using	the	negative	binomial	model	was	0.72	(95%	CI	

0.42-	1.24	p=	0.24).	Comparing	the	10s	arm	to	the	control	arm,	the	adjusted	incidence	rate	

ratio	using	the	negative	binomial	model	was	0.64	(95%	CI	0.38-	1.09,	p=	0.10).	
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3.10 Sensor	Glucose	Levels	During	Exercise	

An	exploratory	analyses	of	sensor	glucose	levels	during	exercise	was	performed	post	hoc.	

3.10.1 Sensor	glucose	levels	at	the	start	of	exercise	

There	was	no	difference	in	sensor	glucose	levels	(SGL)	at	the	start	of	exercise	between	the	

study	arms.	The	mean	SGL	at	the	onset	of	exercise	was	9.7	(95%	CI	9.0-10.4),	9.1	(95%	CI	8.4-

9.7)	and	9.2	(95%	CI	8.6-9.8)	mmol/L	for	the	control,	4s	and	10s	arms	respectively.	A	linear	

mixed	model	approach	was	used	to	compare	the	sprinting	arms	to	the	control	arm.	There	

was	no	significant	difference	between	the	10s	and	control	arms	(95%	CI	-1.2-	0.5mmol/L,	

p=0.37)	or	the	4s	and	control	arms	(95%	CI	-1.5-	0.2mmol/L,	p=0.14).			

3.10.2 Change	in	sensor	glucose	levels	during	exercise	

No	significant	difference	in	the	change	in	SGL	(SGL	at	onset	exercise-	SGL	at	end	of	exercise)	

was	demonstrated	between	the	sprinting	and	control	study	arms.	The	mean	change	in	SGL	

during	exercise	was	-1.6mmol/l	(95%	CI	-1.9-	-1.3)	in	the	control	arm,	-1.3	(95%	CI	-1.5-	-1.0)	

in	the	4s	arm	and	-1.3	(95%	CI	-1.6-	-1.0)	mmol/l	in	the	10s	arm.	A	linear	mixed	model	

comparing	the	sprinting	arms	to	the	control	arm	showed	no	significant	differences	between	

the	groups	(10s	arm	compared	to	the	control,	95%	CI	-0.1-	0.6,	p=0.2,	4s	arm	compared	to	

control,	95%	CI	-0.1-	0.7,	p=0.13).			

3.10.3 Percentage	of	sensor	glucose	levels	<	3.5mmol/L	during	exercise	

The	percentage	of	SGL	in	the	hypoglycaemic	range	<3.5mmol/L	during	exercise	did	not	differ	

between	the	arms.	Due	to	the	short	duration	of	exercise,	there	were	insufficient	readings	to	

calculate	percentage	time	spent	less	than	3.5mmol/L.	Instead	as	previously	described,	each	

time	point	with	a	reading	of	<3.5	was	counted	as	a	single	‘count’,	and	this	was	divided	by	the	

total	number	of	readings	to	generate	the	percentage	of	sensor	glucose	levels	spent	in	

hypoglycaemia.	During	exercise,	the	percentage	of	SGLs	less	than	3.5mmol/L	was	3.9	(95%	CI	

1.3-	6.5)	%	in	the	control	arm,	3.0	(95%	CI	1.1-	5.0)	%	in	the	4s	arm	and	3.7	(95%	CI	1.4-	6.0)	

%	in	the	10s	arm.	

A	mixed	negative	binomial	model	for	the	‘events’	was	used	to	compare	the	sprinting	arms	to	

the	control	arm,	and	found	no	significant	difference	between	the	arms.	When	comparing	the	

4s	arm	to	the	control	arm,	the	adjusted	incident	rate	ratio	using	the	negative	binomial	model	
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was	0.82	(95%	CI	0.24-	2.79,	p	0.75).	Comparing	the	10s	arm	to	the	control	arm,	the	adjusted	

incident	rate	ratio	was	0.98	(95%	CI	0.29-	3.33,	p=0.98)	

3.11 Subgroup	Analysis	

A	subgroup	analysis	was	performed	to	evaluate	the	effect	of	sprinting	on	the	incidence	of	

hypoglycaemia	(defined	as	our	primary	outcome:	sensor	glucose	readings	of	readings	

<3.5mmol/L	for	greater	or	equal	to	20	minutes)	in	the	following	subgroups	of	participants:	

• Gender	(male	vs	female)	

• Age	group	(aged	14-17	years	vs	18-33	years)	

• HbA1c	category	(<58mmol/mol	(7.5%)	vs	³58mmol/mol	(7.5%))	

• VO2	max	category	(<30	vs	³	30	ml/kg/min)	

• Regimen	(pump	vs	MDI)	

No	differences	were	identified	between	the	sprinting	arms	and	control	arms	in	any	of	the	

subgroups.		

	

Subgroup	 p	¶	

Gender	(Male	vs	female)	 0.12	

Age	group	(aged	14-17	years	vs	18-33	years)	 0.49	

HbA1c	category	(<58mmol/mol	(7.5%)	vs	³	
58mmol/mol	(7.5%))	 0.86	

VO2	max	category	(<30	vs	³	30	ml/kg/min)	 0.30	

Regimen	(pump	vs	MDI)	 	 0.12	

Table	6:	Subgroup	analysis.		
¶Chi2	used	to	compare	interaction	of	subgroup	with	study	arm	
	

3.12 Summary	of	Key	Findings	

3.12.1 Glycaemic	outcomes	

A	pattern	of	reduction	in	hypoglycaemia	in	the	sprinting	arms	compared	to	the	control	arms	

was	demonstrated	across	all	hypoglycaemic	outcomes.	This	pattern	was	seen	in	both	10s	

and	4s	sprinting	arms	and	was	most	marked	in	the	10s	arm.	This	did	not	reach	statistical	

significance	in	our	primary	outcome,	but	did	for	other	established	hypoglycaemia	definitions	

(see	Table	7).		
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A	summary	of	key	glycaemic	outcomes	follows:	

• No	significant	difference	was	demonstrated	in	hypoglycaemic	events	as	defined	by	

our	primary	outcome	(glucose	sensor	readings	of	readings	<3.5mmol/L	for	greater	or	

equal	to	20	minutes)	in	the	sprinting	arms	compared	to	the	control	arms.	A	trend	of	a	

reduction	in	hypoglycaemic	events,	most	marked	in	the	10s	arm	was	shown,	but	this	

did	not	reach	statistical	significance.		

• There	was	a	significant	reduction	in	hypoglycaemic	events	in	the	10s	arm,	compared	

to	the	control	arm	when	events	were	defined	as	sensor	glucose	levels	<3.1mmol/L	

for	greater	or	equal	to	20	minutes.		

• The	10s	sprint	arm	was	associated	with	a	significant	reduction	in	time	spent	<3.5	and	

time	spent	<3.1mmol/L	compared	to	the	control	arm.	

• A	reduction	in	night	time	hypoglycamic	events	(defined	as	sensor	glucose	levels	less	

than	3.1mmol/	was	demonstrated	in	the	10s	arm	compared	to	the	control	arm.	

• No	increased	risk	of	nocturnal	hypoglycaemia	was	found	in	the	sprinting	arms	

compared	to	the	control	arms.	

• Both	the	4s	and	10s	sprinting	arms	were	associated	with	a	significant	reduction	in	

time	spent	in	hypoglycaemic	ranges	(<3.1,	<3.5	and	<3.9mmol/L)	during	the	day	

compared	to	the	control	arm.	

• There	was	no	difference	in	time	spent	in	hyperglycaemic	ranges	in	the	sprinting	arms	

compared	to	the	control	arms	

	 	



	 96	

	

	

Hypoglycaemia	Outcomes	 Control	 4s	 p	 10s	 p	

Events:	SG<3.5mmol/L	for	≥20	mins,	
incidence	rate	per	24	hrs		

0.6	 0.6	 0.28	 0.5	 0.05	

Events:	SG<3.1mmol/L	for	≥20	mins/24	hrs	 0.4	 0.3	 0.27	 0.3*	 0.04a	

%	Time	(hours)	spent	SG	<3.5mmol/L	 3.1	 2.5	 0.18	 2.1*	 0.03b	

%	Time	(hours)	spent	SG	<3.1mmol/L	 1.9	 1.4	 0.13	 1.2*	 0.03b	

Night	events	(22:00-06:00):	SG<3.1mmol/L	
for	≥20	mins/24	hrs	

0.5	 0.4	 0.47	 0.2*	 0.04a	

%	Day	time	(06:00-22:00)	spent	SG	
<3.1mmol/L	

1.9	 1.2*	 0.01c	 1.1*	 0.01b	

%	Day	time	(06:00-22:00)	spent	SG	
<3.5mmol/L	

3.0	 2.1*	 0.02c	 2.0*	 0.01b	

%	Day	time	(06:00-22:00)	spent	SG	
<3.9mmol/L	

5.0	 3.5*	 0.01c	 3.8*	 0.03b	

Table	7:	Summary	of	key	hypoglycaemic	outcomes	
a	Comparing	10s	to	control	arm	using	a	negative	binomial	mixed	model	
b	Comparing	10s	to	control	arm	using	a	linear	mixed	model		
c	Comparing	4s	to	control	arm	using	a	linear	mixed	model	
*Statistically	significant	finding,	where	p	value	<0.05	
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3.12.2 Insulin	dosing	and	carbohydrate	intake	around	exercise	

A	summary	of	key	insulin	and	carbohydrate	outcomes	follows:	

• Insulin	dosing	before,	during	and	after	exercise	did	not	differ	between	the	study	

arms.	

• Carbohydrate	intake	before	and	after	exercise	did	not	differ	between	the	study	arms	

• Fewer	carbohydrate	intake	episodes	occurred	during	the	10	s	sprint	exercise	sessions	

compared	to	the	control	exercise	sessions	

3.12.3 Enjoyment	of	physical	activity	

Key	findings:	

• There	was	no	difference	in	participants	enjoyment	of	exercise	(as	determined	by	the	

PACES	questionnaire)	in	the	10s	arm	compared	to	the	control	arm.	

• Participants	rated	the	10s-sprint	exercise	as	significantly	more	enjoyable	than	the	4s	

sprint	exercise	using	the	PACES	scale.	
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3.13 Results	Tables	

	

		 Control	 4s	 pa	 10s	 pb	

	SG<3.5mmol/L	for	≥20	
mins,	incidence	rate	per	24	
hrs	(95%	CI)	

0.6	
(0.5-0.8)	

0.6	
(0.4-0.7)	

0.28	 0.5		
(0.4-0.6)	
	

0.05	

SG<3.1mmol/L	for	≥20	
mins,	incidence	rate	per	24	
hrs	(95%	CI)	

0.4	
(0.-03.6)	

0.3		
(0.2-0.5)	

0.27	 0.3		
(0.2-0.4)	

0.04*	

SG<3.9mmol/L	for	≥20	
mins,	incidence	rate	per	24	
hrs	(95%	CI)	

1.0		
(0.8-1.2)	

0.8		
(0.6-1.0)	

0.10	 0.9		
(0.7-1.1)	

0.21	

Table	8:	Hypoglycaemic	events	
	a	Comparing	4s	to	control	arm	using	a	negative	binomial	mixed	model	
b	Comparing	10s	to	control	arm	using	a	negative	binomial	mixed	model	
*	Statistically	significant	finding,	where	p	value	<0.05	
	

	

	

	
	

Mean	%Time	Spent	 Control	 4s	 pa	 10s	 pb	
Mean	%	time	spent	SG	<3.1mmol/L	
(SD)	

1.9	
(1.8)	

1.4	
(1.5)	

0.13	 1.2*	
(1.1)	

0.03	

Mean	%	time	spent	SG	<3.5mmol/L	
(SD)	

3.1	
(2.5)	

2.5	
(2.1)	

0.18	 2.1*	
(1.5)	

0.03	

Mean	%	time	spent	SG	<3.9mmol/L	
(SD)	

5.0	
(3.3)	

4.0	
(2.8)	

0.08	 3.9	
(2.1)	

0.06	

Mean	%	time	spent	SG	3.5-<8.0	
mmol/L	(SD)	

38.0	
(14.9)	

37.4	
(17.3)	

0.77	 36.0	
(15.9)	

0.33	

Mean	%	time	spent	SG	8.0-10.0	
mmol/L	(SD)	

17.0	
(3.6)	

17.3	
(3.7)	

0.79	 16.	8	
(4.7)	

0.77	

Mean	%	time	spent	SG	>10.0	mmol/L	
(SD)	

41.9	
(17.6)	

42.9	
(19.4)	

0.70	 45.1	
(19.4)	

0.21	

Table	9:	Average	percent	of	time	spent	in	defined	glycaemic	ranges	
a	Comparing	4s	to	control	arm	using	a	linear	mixed	model	
b	Comparing	10s	to	control	arm	using	a	linear	mixed	model	
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		 Control	 4s	 pa	 10s	 pb	

Mean	total	daily	insulin	dose,	(SD)	
U/kg/day		

0.65	
(0.23)	

0.66	
(0.22)	 0.87	 0.69	

(0.25)	 0.05	

Insulin	bolus	doses	prior	to	exercise:	 	 	 	 	 	
Insulin	bolus	dose	≤	60	mins	prior	
to	exercise	(SD),	U	

1.2	
(2.5)	

0.8	
(1.6)	 0.24	 1.1	

(2.2)	 0.74	

Insulin	bolus	dose	≤	180	mins	prior	
to	exercise	(SD),	U	

3.1	
(4.1)	

4.1	
(5.0)	 0.27	 3.6	

(3.7)	 0.44	

Insulin	bolus	dose	≤	360	mins	prior	
to	exercise	(SD),	U	

6.7	
(5.7)	

7.6	
(6.6)	 0.41	 7.3	

(5.4)	 0.40	

Insulin	bolus	does	after	exercise:	 	 	 	 	 	
Insulin	bolus	dose	≤	60	mins	after	
exercise	(SD),	U/kg	

2.8	
(4.4)	

2.2	
(3.6)	 0.47	 2.4	

(3.7)	 0.46	

Insulin	bolus	dose	≤	180	mins	after	
exercise	(SD),	U	

6.0	
(7.5)	

5.0	
(5.3)	 0.68	 6.5	

(5.7)	 0.25	

Insulin	bolus	dose	≤	360	mins	after	
exercise	(SD),	U	

8.7	
(8.6)	

7.2	
(5.9)	 0.52	 9.1	

(7.4)	 0.43	

CHO	intake	prior	to	exercise:	 	 	 	 	 	
CHO	intake	≤	60	mins	prior	to	
exercise,	(SD)	g	

8.5	
(8.4)	

6.7	
(7.5)	 0.30	 7.9	

(6.6)	 0.65	

CHO	intake	≤	180	mins	prior	to	
exercise,	(SD)	g	

24.9	
(18.6)	

26.0	
(16.9)	 0.87	 29.3	

(21.2)	 0.46	

CHO	intake	≤	360	mins	prior	to	
exercise	(SD),	g	

55.4	
(28.5)	

59.1	
(31.3)	 0.79	 59.5	

(31.5)	 0.99	

CHO	intake	during	exercise:		 	 	 	 	 	
Proportion	of	exercise	bouts	with	
CHO	intake	during	exercise,	%	of	
total	exercise	bouts	per	arm		

13.3	 14.5	 0.81	 4.7*	 0.02	

CHO	intake	after	exercise:	 	 	 	 	 	
CHO	intake	≤	60	mins	after	
exercise,	(SD)	g	

15.6	
(17.5)	

12.2	
(12.6)	 0.30	 12.6	

(11.2)	 0.36	

CHO	intake	≤	180	mins	after	
exercise,	(SD)	g	

44.1	
(25.8)	

45.7	
(22.4)	 0.53	 45.9	

(21.3)	 0.70	

CHO	intake	≤	360	mins	after	
exercise	(SD),	g	

60.6	
(32.8)	

66.0	
(34.2)	 0.35	 73.4	

(32.0)	 0.09	

Table	10:	Insulin	dosing	and	carbohydrate	(CHO)	intake	before,	during	and	after	
exercise	
a	Comparing	4s	to	control	arm	using	a	linear	mixed	model	
b	Comparing	10s	to	control	arm	using	a	linear	mixed	model	
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		 Control	 4s	 pa	 10	 pb	
Daytime	(06:00-22:00)	events:	 	 	 	 	 	
SG<3.1mmol/L	for	≥20	mins,	
incidence	rate	per	24	hrs	(95%	CI)	

0.4		
(0.2-0.5)	

0.3	
(0.2-0.5)	 0.43	 0.3		

(0.2-0.5)	 0.50	

	SG<3.5mmol/L	for	≥20	mins,	
incidence	rate	per	24	hrs	(95%	CI)	

0.7		
(0.5-0.9)	

0.6		
(0.4-0.7)	 0.10	 o.6		

(0.4-0.7)	 0.17	

SG<3.9mmol/L	for	≥20	mins,	
incidence	rate	per	24	hrs	(95%	CI)	

1.1		
(0.8-1.4)	

0.9		
(0.7-1.2)	 0.10	 1.0		

(0.8-1.3)	 0.53	

Night-time	(22:00-06:00)	events:	 	 	 	 	 	
SG<3.1mmol/L	for	≥20	mins,	
incidence	rate	per	24	hrs	(95%	CI)	

0.5		
(0.3-0.7)	

0.4		
(0.2-0.6)	 0.47	 0.2*		

(0.1-0.4)	 0.04	

	SG<3.5mmol/L	for	≥20	mins,	
incidence	rate	per	24	hrs	(95%	CI)	

0.6		
(0.4-0.9)	

0.6		
(0.3-0.8)	 0.78	 0.4	

(0.2-0.6)	 0.13	

SG<3.9mmol/L	for	≥20	mins,	
incidence	rate	per	24	hrs	(95%	CI)	

0.9		
(0.6-1.2)	

0.8		
(0.5-1.1)	 0.50	 0.7		

(0.4-0.9)	 0.15	

Table	11:	Daytime	and	night-time	hypoglycaemic	events	
	a	Comparing	4s	to	control	arm	using	a	negative	binomial	mixed	model	
b	Comparing	10s	to	control	arm	using	a	negative	binomial	mixed	model	
*	Statistically	significant	finding,	where	p	value	<0.05	
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	 Control	 4s	 pa	 10s	 pb	

Average	percent	of	daytime	spent:	 	 	 	 	 	
Mean	%	daytime	spent	SG	
<3.1mmol/L	(SD)	

1.9	
(2.0)	

1.2*	
(1.2)	

0.01	 1.1*	
(0.9)	

0.01	

Mean	%	daytime	spent	SG	
<3.5mmol/L	(SD)	

3.0	
(2.6)	

2.1*	
(1.8)	

0.02	 2.0*	
(1.5)	

0.01	

Mean	%	daytime	spent	SG	
<3.9mmol/L	(SD)	

5.0	
(3.3)	

3.5*	
(2.5)	

0.01	 3.8*	
(2.3)	

0.03	

Mean	%	daytime	spent	SG	3.5-
8mmol/L	(SD)	

38.3	
(14.6)	

37.4	
(16.6)	

0.68	 36.8	
(16.1)	

0.48	

Mean	%	daytime	spent	SG	8.0-
10.0mmol/L	(SD)	

16.8	
(4.1)	

17.4	
(4.1)	

0.47	 17.0	
(5.0)	

0.84	

Mean	%	day	time	spent	SG	
>10mmol/L	

41.9	
(18.1)	

43.1	
(19.0)	

0.61	 44.2	
(19.8)	

0.32	

Average	percent	of	night	time	spent:	 	 	 	 	 	
Mean	%	night-time	spent	SG	
<3.1mmol/L	(SD)	

1.9	
(2.2)	

1.8	
(2.7)	

0.90	 1.3	
(2.0)	

0.35	

Mean	%	night-time	spent	SG	
<3.5mmol/L	(SD)	

3.2	
(3.2)	

3.2	
(3.5)	

0.97	 2.3	
(2.7)	

0.31	

Mean	%	night-time	spent	SG	
<3.9mmol/L	(SD)	

5.2	
(4.6)	

5.0	
(4.4)	

0.82	 4.2	
(3.4)	

0.37	

Mean	%	night-time	spent	SG	3.5-
8.0mmol/L	(SD)	

37.3	
(18.1)	

37.3	
(22.4)	

1.00	 34.4	
(20.1)	

0.32	

Mean	%	night-time	spent	SG	8-
10.0mmol/L	(SD)	

17.3	
(6.2)	

16.9	
(5.5)	

0.78	 16.4	
(7.4)	

0.56	

Mean	%	night-	time	spent	SG	
>10.0mmol/L	(SD)	

42.2	
(19.7)	

42.6	
(23.4)	

0.91	 46.9	
(23.6)	

0.19	

Table	12:	Average	percent	of	day	time	and	night-time	spent	in	defined	glycaemic	
ranges	
	a	Comparing	4s	to	control	arm	using	a	linear	mixed	model	
b	Comparing	10s	to	control	arm	using	a	linear	mixed	model	

	

	
	

		 Control	 4s	 10	 pa	 pb	 pc	

Mean	PACES	
score¶	(SD)	[n]		

82.3	(11.6)	
[23]	

79.5	(16.3)	
[24]	

86.0*	(10.7)	
[24]	

0.23	 0.23	 0.02	

Table	13:	Physical	activity	enjoyment	scale	questionnaire	score		
¶	16	statements	scored	1-7	(1	least	enjoyable,	7	most	enjoyable)	and	summed	
aComparing	4s	to	control	using	a	mixed	model	
bComparing	10s	to	control	using	a	mixed	model	
cComparing	10s	to	4s	using	a	mixed	model	
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Chapter	4: Discussion		

4.1 Purpose	of	the	Study	

Maintaining	stable	blood	glucose	levels	around	exercise	remains	a	major	challenge	for	

individuals	with	T1D.	In	particular,	physical	activity	is	associated	with	an	increased	risk	of	

hypoglycaemia	for	insulin	treated	individuals	with	diabetes	(Camacho,	Galassetti	et	al.	2005,	

Galassetti	and	Riddell	2013).	The	resulting	fear	of	hypoglycaemia	is	often	perceived	by	

people	with	T1D	as	the	most	significant	barrier	to	adopting	a	physically	active	lifestyle	

(Brazeau,	Rabasa-Lhoret	et	al.	2008),	despite	the	well-established	health	benefits	of	regular	

exercise.	

Not	all	forms	of	exercise	result	in	a	decline	in	blood	glucose	levels.	It	is	well	known	that	high	

intensity	exercise	and	sprinting	can	be	associated	with	a	rise	in	blood	glucose	concentrations	

(Mitchell,	Abraham	et	al.	1988,	Marliss,	Simantirakis	et	al.	1991,	Sigal,	Fisher	et	al.	2000).	

This	has	led	to	the	investigation	of	sprinting	as	a	possible	strategy	to	prevent	exercise	

mediated	hypoglycaemia	in	individuals	with	T1D	(Guelfi,	Jones	et	al.	2005,	Bussau,	Ferreira	

et	al.	2006,	Bussau,	Ferreira	et	al.	2007,	Guelfi,	Ratnam	et	al.	2007).	Classical	exercise	

management	strategies	involve	adjustment	of	carbohydrate	intake	or	insulin	dosing.	As	

insulin	adjustment	requires	a	degree	of	forward	planning,	sprinting	may	be	a	useful	

carbohydrate	sparing	tool	in	the	setting	of	unplanned	exercise.	

Previous	studies	have	demonstrated	that	a	10s-sprint	performed	before	or	after	20	minutes	

of	moderate-intensity	exercise	can	prevent	blood	glucose	levels	from	falling	for	up	to	two	

hours	post-exercise	(Bussau,	Ferreira	et	al.	2006,	Bussau,	Ferreira	et	al.	2007).	It	has	also	

been	shown	that	engaging	in	repeated	maximal	4-s	sprints	every	2	min	during	a	30-minute	

bout	of	moderate	intensity	exercise	compared	to	continuous	moderate	intensity	exercise	

reduces	the	rate	of	fall	in	blood	glucose	levels	both	during	and	up	to	90	minutes	after	

exercise	in	individuals	with	T1D	(Guelfi,	Jones	et	al.	2005).		All	studies	to	date	have	

investigated	the	glycaemic	effects	of	sprinting	in	a	clinic-based	setting	under	controlled	

laboratory	conditions.	

Before	advocating	the	use	of	sprinting	as	a	method	for	reducing	the	risk	of	exercise-

mediated	hypoglycaemia	in	individuals	with	T1D,	it	is	important	to	determine	whether	

findings	in	the	laboratory	are	also	applicable	in	a	practical,	free-living	setting.	This	is	an	

essential	step	in	translating	laboratory	findings	into	clinical	practice.	Therefore,	the	specific	
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aim	of	this	study	was	to	determine	the	effectiveness	of	incorporating	short	sprints	into	

moderate	intensity	exercise	for	hypoglycaemia	prevention	during	exercise	in	individuals	with	

T1D	in	a	free-living	setting.	

4.2 Summary	of	Main	Findings	

In	this	study,	we	found	that	incorporating	sprinting	into	moderate	intensity	exercise	did	not	

reduce	the	rate	of	hypoglycaemic	events,	as	defined	in	our	primary	outcome	(sensor	glucose	

levels	of	less	than	3.5mmol/L	for	greater	or	equal	to	20	minutes).	However,	when	

hypoglycaemic	events	were	defined,	in	concordance	with	recently	published	guidelines	

(Schnell,	Barnard	et	al.	2017)	as	<3.1mmol/l,	we	demonstrated	a	reduction	in	hypoglycaemic	

events	over	the	2-week	study	period	in	the	10s-arm	compared	to	the	control	arm.	The	10s	

arm,	was	also	shown	to	be	associated	with	a	significant	reduction	in	the	time	spent	in	a	

hypoglycaemic	range	(<3.1	and	<3.5mmol/l).	In	addition,	carbohydrate	intake	during	

exercise	occurred	less	frequently	during	the	10s-sprint	condition,	and	may	represent	

reduced	symptomatic	hypoglycaemia	during	exercise.	There	was	no	increase	in	nocturnal	

hypoglycaemic	events	in	the	sprinting	compared	to	the	control	arms.	The	10s-sprint	arm	was	

associated	with	a	reduction	in	hypoglycaemic	events	<3.1mmol/l	overnight.		There	was	no	

difference	in	time	spent	in	hyperglycaemic	ranges	between	sprinting	and	control	study	arms.	

Enjoyment	of	exercise	sessions,	as	determined	by	the	PACES	questionnaire	was	similar	for	

the	10s	and	control	arms.	Participants	scored	exercise	in	the	10s	arm	as	more	enjoyable	than	

the	4s	arm.		

In	summary,	the	incorporation	of	short	sprints	into	periods	of	sustained	moderate	intensity	

exercise	did	not	reduce	the	incidence	of	exercise	mediated	hypoglycaemia	when	

hypoglycaemia	was	defined	as	sensor	glucose	levels	of	<	3.5mmol/l	for	greater	or	equal	to	

20	minutes.	However,	the	10s-sprint	arm	was	associated	with	fewer	hypoglycaemia	events	

<3.1mmol/L	and	a	reduction	in	the	average	time	spent	<3.5mmol/L	and	<3.1mmol/L	than	

the	control	period.	Furthermore,	the	10s	arm	was	associated	with	a	reduction	in	

hypoglycaemic	events	<3.1mmol/L	overnight.		

Data	from	this	study	suggest	that	incorporating	10s	sprints	into	continuous	moderate	

intensity	exercise	may	reduce	the	incidence	of	hypoglycaemic	events	and	the	average	time	

spent	in	a	hypoglycaemic	range	over	a	2-week	period,	without	increasing	the	incidence	of	

nocturnal	hypoglycaemia	or	time	spent	in	hyperglycaemia.	These	findings	suggest	that	



	 104	

sprinting	can	be	incorporated	into	exercise	management	plans	for	individuals	with	T1D	and	

may	reduce	the	risk	of	exercise	mediated	hypoglycaemia.		

4.3 Results	in	Relation	to	Previous	Studies	

Our	results	are	consistent	with	laboratory	based	studies	that	report	that	a	10s-sprint	

performed	before	or	after	20	minutes	of	moderate	intensity	exercise	can	prevent	a	decline	

in	blood	glucose	levels	in	recovery	(Bussau,	Ferreira	et	al.	2006,	Bussau,	Ferreira	et	al.	2007).	

In	contrast	to	previous	studies	(Guelfi,	Jones	et	al.	2005),	no	significant	difference	in	

hypoglycaemia	was	demonstrated	between	the	4s	sprint	and	control	arms	of	the	study.	

However,	although	no	statistical	difference	was	demonstrated	between	the	4s	and	control	

study	arms,	a	pattern	of	a	graded	reduction	in	hypoglycaemia	greatest	in	the	10s	arm,	

followed	by	the	4s	arm,	was	evident	across	hypoglycaemia	outcomes	and	may	represent	a	

dose-like	effect	of	sprinting	in	reducing	hypoglycaemia.	Furthermore,	participant	adherence	

and	perceived	enjoyment	of	exercise	was	lowest	in	the	4s	condition	compared	to	10s	or	

control	conditions.		These	findings	may	imply	that	participants	found	the	4s	sprint	protocol	

difficult	to	perform	in	a	free-living	setting,	raising	questions	about	the	practical	feasibility	of	

translating	the	4s	sprint	protocol	from	the	laboratory	into	the	real-world.	Consequently,	the	

lack	of	glycaemic	outcome	difference	between	the	4s	and	control	arms	may	in	part	be	

related	to	insufficient	sprinting	during	the	4s	protocol	because	of	difficulties	with	protocol	

adherence.		

4.4 Potential	Concerns	about	Sprinting		

4.4.1 Sprinting	and	risk	of	late	onset	post	exercise	hypoglycaemia	

In	contrast	to	some	reports	in	the	literature,	our	study	did	not	demonstrate	any	increased	

risk	of	nocturnal	hypoglycaemia	associated	with	sprinting.		Maran	et	al,	found	that	

intermittent	high	intensity	exercise	(5s	sprints	every	2	minutes	during	moderate	intensity	

exercise)	was	associated	with	an	increased	risk	of	nocturnal	hypoglycaemia	when	compared	

with	continuous	moderate	intensity	exercise	alone	in	non-trained	individuals	with	T1D	

(Maran,	Pavan	et	al.	2010).	Similar	to	our	findings,	other	studies	do	not	demonstrate	an	

increased	risk	of	delayed	onset	post	exercise	hypoglycaemia	with	intermittent	high	intensity	

exercise	(Iscoe	and	Riddell	2011,	Davey,	Bussau	et	al.	2013,	Campbell,	West	et	al.	2015,	

Moser,	Tschakert	et	al.	2015,	Bally,	Zueger	et	al.	2016).		
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The	reasons	for	conflicting	findings	in	the	literature	remain	unclear.	Iscoe	et	al	suggest	that	

the	discrepancy	in	findings	between	their	study	and	Maran’s	study	may	in	part	be	related	to	

differences	in	the	training	status	of	the	study	populations.	Iscoe	et	al	postulate	that	their	

finding	of	a	reduction	in	nocturnal	hypoglycaemia	following	high	intensity	exercise,	may	be	

related	to	the	highly	trained	nature	of	their	participants	who	had	a	mean	VO2	max	of	42.4	±	

1.6	(Iscoe	and	Riddell	2011),	higher	than	the	participants	in	Maran’s	study	who	had	a	mean	

VO2	max	of	33	±	6.1ml/kg/min	(Maran,	Pavan	et	al.	2010).	Our	findings	do	not	support	this	

hypothesis	as	our	study	population	were	not	highly	trained	and	no	increased	risk	of	late	

onset	post	exercise	hypoglycaemia	was	demonstrated.	Our	study	population	had	a	mean	

VO2	max	of	32.7	±	7.1	ml/kg/min,	lower	than	reported	by	Iscoe	et	al.	Our	VO2	findings	are	

also	lower	than	data	reported	from	a	study	population	of	individuals	with	T1D	aged	between	

9	and	20	years,	who	were	exercising	not	more	than	twice	a	week	and	had	a	mean	VO2	max	

of	41.6	±	7.7	(Komatsu,	Gabbay	et	al.	2005).	Our	VO2	data	are	similar	to	normative	data	

derived	from	an	adult	population	of	healthy,	untrained	individuals	where	females	had	a	

mean	VO2	max	of	27.5ml/kg/min	and	males	had	a	mean	VO2	max	of	37.9ml/kg/min	(Myers,	

Kaminsky	et	al.	2017).			

4.4.2 Effect	of	antecedent	hypoglycaemia	and	exercise	on	the	glycaemia	rising	

effect	of	sprinting	

The	glycaemic	effects	of	sprinting	in	a	free-living	setting,	in-contrast	to	the	laboratory,	may	

be	influenced	by	other	factors	such	as	antecedent	hypoglycaemia	and	exercise.	Antecedent	

hypoglycaemia	has	been	shown	to	increase	the	risk	of	exercise	induced	hypoglycaemia	in	

subsequent	moderate	intensity	exercise	by	blunting	the	counter	regulatory	response	to	

hypoglycaemia	(Galassetti,	Tate	et	al.	2003).	There	is	evidence	to	suggest	that	this	is	not	the	

case	following	a	10s	sprint,	as	the	glycaemia	increasing	effect	of	a	10s	sprint	is	not	

diminished	following	hypoglycaemia	(Davey,	Paramalingam	et	al.	2014).		

Antecedent	exercise	has	also	been	shown	to	increase	the	risk	of	hypoglycaemia	in	

subsequent	moderate	intensity	exercise.	There	are	no	studies	to	date	examining	the	effect	

of	frequent	bouts	of	high	intensity	exercise	on	the	glycaemic	response	to	sprinting.	Our	

findings	of	a	small	reduction	in	the	incidence	of	hypoglycaemia	over	a	2-week	period,	

suggest	that	antecedent	exercise	or	hypoglycaemia	does	not	completely	diminish	the	

protective	effect	of	sprinting.		
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4.4.3 Effect	of	sprinting	on	hypoglycaemia	awareness	

The	study	was	not	designed	to	test	the	effect	of	sprinting	on	hypoglycaemia	awareness.	The	

fact	that	a	positive	effect	was	seen	in	hypoglycaemia	reduction	during	the	study	period	is	

reassuring	as	it	suggests	that	any	reduction	in	hypoglycaemia	awareness	was	not	large	

enough	to	result	in	increased	hypoglycaemia	events.	Furthermore,	there	were	no	episodes	

of	moderate	or	severe	hypoglycaemia	during	the	study.	All	participants	had	to	be	

hypoglycaemia	aware	(defined	as	a	Clarke’s	score	of	equal	or	less	than	4)	to	be	eligible	to	

take	part	in	the	study.	There	is	some	evidence	that	in	individuals	with	T1D	who	are	

hypoglycaemia	aware,	high	intensity	intermittent	training	may	reduce	awareness	of	

subsequent	hypoglycaemia	(Rooijackers,	Wiegers	et	al.	2017).	Interestingly,	in	the	same	

study	symptoms	of	hypoglycaemia	were	not	reduced	in	individuals	with	T1D	with	known	

impaired	awareness	of	hypoglycaemia.	In	addition,	high	intensity	exercise	has	recently	been	

shown	to	restore	the	counter	regulatory	response	in	recurrently	hypoglycaemic	rodents	

(McNeilly,	Gallagher	et	al.	2017).		

4.4.4 Feasibility	of	sprinting	

Findings	from	this	study	show	that	sprinting	during	exercise	is	feasible	in	a	free-living	setting.	

Sprinting	did	not	adversely	impact	on	the	enjoyment	of	exercise	compared	to	sustained	

moderate	intensity	exercise.	Participants	scored	the	10s-sprint	exercise	as	more	enjoyable	

than	the	4s	sprint	exercise	using	the	PACES	questionnaire.	Based	on	outdoor	exercise	

sessions	(as	only	outdoor	exercise	could	be	assessed	for	protocol	adherence),	97%	10s	sprint	

exercise	sessions	were	classified	as	adherent	compared	to	88%	of	4s	sprint	exercise	sessions.	

These	findings	suggest	that	the	10s	protocol	was	more	enjoyable	and	potentially	more	

feasible	in	a	free-living	setting	compared	to	the	4s	sprint	protocol.		

4.5 Potential	Confounding	Factors	

We	set	out	to	test	the	hypothesis	that	incorporating	short	sprints	into	moderate	intensity	

exercise	can	reduce	the	incidence	of	exercise	mediated	hypoglycaemia	in	individuals	with	

T1D.	Our	findings	suggest	that	incorporating	10s	sprints	into	moderate	intensity	exercise	

may	reduce	the	incidence	of	hypoglycaemia	over	a	2-week	period	during	which	exercise	is	

performed	at	least	3	times	a	week.		
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Results	are	in	keeping	with	laboratory	studies	that	demonstrate	a	glycaemia	rising	effect	of	

short	sprints.	Nevertheless,	we	should	consider	if	our	positive	findings	could	be	a	result	of	a	

confounding	factor	and	not	directly	attributable	to	sprinting	per	se.		

Our	study	design	and	secondary	analysis	(including	insulin	dosing	and	carbohydrate	intake	

on	exercise	days	and	sensor	glucose	levels	at	the	start	of	exercise)	suggest	our	findings	are	

likely	to	be	caused	by	the	presence	of	sprinting	during	exercise	and	not	due	to	a	confounding	

factor.	

4.5.1 Study	design	and	minimisation	of	confounding	factors	

The	cross	over	design	of	the	study	means	that	all	participants	completed	all	three	study	

conditions	(control,	10s	and	4s	sprint	protocols),	thereby	acting	as	their	own	controls.	This	

reduces	the	likelihood	of	confounding	factors	such	as	differences	in	fitness	levels,	gender,	

glycaemic	control,	exercise	management	strategies	including	carbohydrate	intake	and	insulin	

adjustment.	To	balance	any	effect	of	the	order	of	conditions	on	study	findings,	participants	

were	randomised	to	one	of	six	‘sequences’	based	on	the	order	in	which	they	were	to	receive	

conditions.	

4.5.2 Insulin	dosing	and	carbohydrate	intake	on	exercise	days	

Analysis	of	insulin	dosing	and	carbohydrate	intake	in	time	bands	before	and	after	exercise	

shows	no	differences	between	sprinting	and	control	arms.	Investigation	of	carbohydrate	

intake	during	exercise	shows	a	reduction	in	carbohydrate	intake	during	exercise	in	the	10s	

compared	to	the	control	arm.	This	suggests	that	there	may	be	fewer	episodes	of	

symptomatic	hypoglycaemia	during	exercise	in	the	10s	arm.		

4.5.3 Sensor	glucose	levels	at	the	start	of	exercise	

Another	potential	confounding	factor	is	the	sensor	glucose	level	at	the	start	of	exercise	and	

we	have	shown	that	this	did	not	differ	significantly	between	conditions.		

4.6 Mechanism	of	Glycaemia	Rising	Effect	of	Sprinting	and	Timing	of	Effect	

This	home-based	study	was	not	designed	to	assess	the	mechanisms	underpinning	the	

glycaemic	effects	of	sprinting	or	to	investigate	the	timing	of	these	effects	in	relation	to	

exercise.	Previous	laboratory	based	studies	show	that	a	10s-sprint	performed	before	or	after	

20	minutes	of	moderate	intensity	exercise	can	oppose	a	decline	in	glycaemia	seen	with	

moderate	intensity	exercise	(without	sprints)	for	up	to	120	minutes	post	exercise.	
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Furthermore,	engaging	in	repeated	maximal	4-s	sprints	every	2	min	during	a	30-minute	bout	

of	moderate	intensity	exercise	compared	to	continuous	moderate	intensity	exercise	has	

been	shown	to	reduce	the	rate	of	fall	in	blood	glucose	levels	both	during	and	up	to	90	

minutes	after	exercise.		

4.6.1 Glycaemic	outcomes	after	exercise	

To	ascertain	when	the	sprint	was	exerting	its	glycaemia	raising	effect	we	performed	an	

exploratory	analysis	to	look	at	hypoglycaemic	outcomes	in	time	blocks	(6	hours,	12	hours	

and	24hrs)	after	exercise.	Unexpectedly,	this	did	not	show	any	differences	between	the	

groups.			

This	negative	finding	may	relate	to	the	study	being	underpowered	to	detect	a	difference	in	

this	shorter	timeframe.	A	further	explanation	may	be	that	if	sprinting	is	associated	with	a	

small	reduction	in	hypoglycaemia	following	exercise	that	we	have	been	underpowered	to	

detect,	then	this	positive	effect	may	have	ongoing	continued	benefit	in	hypoglycaemia	

reduction	on	subsequent	non-exercise	days.	It	is	well	established	that	lows	beget	lows-	and	a	

single	episode	of	afternoon	hypoglycaemia	has	been	shown	to	impair	physiological	defences	

to	hypoglycaemia	the	following	morning	(Dagogo-Jack,	Craft	et	al.	1993).	Thus,	a	small	

reduction	in	hypoglycaemia	on	exercise	days	may	confer	a	larger	benefit	when	outcomes	are	

measure	over	a	longer	(i.e	2	week)	time	frame.		

This	study	occurring	in	a	free-living	setting	was	designed	to	address	the	question:	“can	

sprinting	during	exercise	help	prevent	exercise	mediated	hypoglycaemia.”	Our	findings	

suggest	that	sprinting	for	10s	at	20	minute	intervals	may	offer	a	small	reduction	in	

hypoglycaemia	over	a	2	-week	period,	the	mechanism	of	exactly	how	and	when	this	positive	

effect	is	occurring	is	beyond	the	scope	of	this	study.		

4.6.2 Glycaemic	outcomes	and	carbohydrate	intake	during	exercise	

We	looked	at	the	change	in	sensor	glucose	level	from	the	start	of	exercise	to	the	end	of	

exercise	and	showed	no	statistical	difference	between	the	sprinting	and	control	study	arms.	

However,	we	found	that	there	was	a	significantly	lower	proportion	of	exercise	bouts	with	

carbohydrate	intake	in	the	10s	compared	to	the	control	arm.	During	the	10s	arm	the	

participants	were	2.7	times	less	likely	to	consume	carbohydrate	during	exercise	than	in	the	

control	arm.	This	may	be	clinically	relevant	as	carbohydrate	intake	during	exercise	is	likely	to	

represent	treated	symptomatic	hypoglycaemia.		
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4.6.3 Influence	of	other	factors	(age,	fitness,	HbA1c,	gender	and	adherence	with	

study	protocol)	

Glycaemic	responses	to	sprinting	may	vary	based	upon	factors	such	as	age,	gender,	

glycaemic	control	and	fitness	levels.	We	performed	a	post	hoc	subgroup	analysis	to	explore	

if	specific	factors	influenced	the	effect	of	sprinting	in	our	study	population.	We	did	not	

demonstrate	any	difference	in	hypoglycaemic	outcomes	when	outcomes	were	analysed	by	

HbA1c,	gender,	insulin	regimen,	baseline	VO2	max	score	or	compliance	with	exercise	

protocols.	It	should	be	noted	that	the	study	was	not	powered	for	subgroup	analysis	and	

negative	findings	may	represent	inadequate	power	to	detect	a	difference	between	the	

groups.	

4.7 Limitations	of	the	Study	

4.7.1 Sample	size	and	study	power	

The	sample	size	achieved	for	the	study	was	lower	than	estimated	in	the	original	power	

calculation.	A	total	of	24	participants	were	included	in	analyses,	compared	to	a	

recommended	sample	size	of	50.	This	smaller	sample	size	means	the	study	may	not	have	

been	sufficiently	powered	to	detect	a	difference	between	the	groups.	This	may	explain	the	

failure	to	demonstrate	a	difference	in	our	primary	outcome	(defined	as	sensor	glucose	

readings	of	readings	<3.5mmol/L	for	greater	or	equal	to	20	minutes).	However,	a	statistically	

significant	difference	was	seen	in	our	secondary	analysis,	when	hypoglycaemic	events	were	

defined	as	<3.1mmol/L,	and	when	the	average	time	spent	in	various	hypoglycaemic	ranges	

were	explored.	Furthermore,	consistent	with	these	positive	findings,	a	dose-like	effect	

pattern	of	a	graded	reduction	in	hypoglycaemia	greatest	in	the	10s	arm,	followed	by	the	4s	

arm	(although	not	statistically	significant),	was	evident	across	hypoglycaemia	outcomes.	

4.7.2 Recruitment,	retention	and	exclusion	of	participants.	

The	main	factors	contributing	to	this	suboptimal	sample	size	were	difficulties	with	

recruitment	and	retention	of	participants.	Recruitment	was	indeed	challenging.	Verbal	

feedback	form	patients	who	declined	to	participate	included	concerns	about	committing	to	a	

10-12-week	study	period,	having	to	exercise	at	least	3	times	a	week,	attending	up	to	8	

hospital	visits,	and	wearing	blinded	CGM.	Recruitment	became	even	more	challenging	in	

April	2017,	when	the	Australian	government	announced	that	they	would	provide	fully	

subsidised	CGM	to	eligible	children	and	young	people	aged	under	21	years	with	T1D.	

Subsequently	an	increased	accessibility	to	“real-time”	CGM	meant	that	many	individuals	
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were	no	longer	interested	in	participating	in	a	study	where	only	“blinded”	CGM	could	be	

used	during	the	study	period.	Therefore,	a	decision	was	made	to	stop	recruitment	in	May	

2017.	

In	terms	of	retention	of	participants,	a	total	of	39	participants	consented	and	attended	visit	

1.	Eight	participants	then	declined	to	participate	prior	to	randomisation	as	on	second	

thoughts	they	decided	they	were	unable	to	commit	to	the	study	visits.	31	individuals	were	

randomised	to	study	protocol.	Following	this	a	further	4	participants	withdrew	consent	(1	

pregnant,	1	non-study	related	knee	injury,	2	decided	they	were	too	busy	to	commit	to	the	

study	visits).	It	is	important	to	note	that	all	participants	who	withdrew	consent	did	so	before	

formally	starting	the	study	period	and	therefore	is	unlikely	to	reflect	feasibility	issues	with	

the	sprinting	protocols.	

A	further	3	participants	were	excluded	from	analysis	(as	detailed	in	the	results	section).	This	

included	1	participant	who	despite	wearing	his	CGM	device	for	all	2-week	study	periods,	no	

sensor	glucose	levels	were	recorded	during	his	4s	arm.	Multiple	attempts	were	made	to	

retrieve	this	data,	including	liaising	with	the	CGM	company	directly.	Unfortunately,	there	

was	no	evidence	of	this	data	on	the	device.	In	line	with	our	study	protocol,	data	from	the	

remaining	study	arms	were	not	included	in	our	final	analysis.		

2	participants	were	excluded	from	the	analysis	on	a	basis	of	significant	breaches	of	study	

protocol.	On	exploration	of	insulin	pump	data,	it	became	apparent	that	one	participant	had	

been	wearing	his	own	“real-time	CGM	device,	with	the	predictive	low	suspend	feature	

enabled,	during	2	out	of	this	3	study	periods.	As	this	system	is	known	to	reduce	

hypoglycaemia	this	participant’s	data	had	to	be	excluded	from	analyses.	This	case	has	

important	learning	points	for	future	research	studies,	as	it	demonstrates	the	changing	

landscape	of	technology	in	diabetes	management,	with	real-time	CGM	and	augmented	

insulin	pump	use	becoming	a	standard	of	care	for	some	individuals.	This	change	in	clinical	

practice	may	need	to	be	reflected	in	future	study	protocols.		

A	further	participant	was	excluded	from	data	analysis	as	their	CGM	traces	were	clinically	

suggestive	of	inappropriate	and	excessive	insulin	dosing.	This	could	not	be	corroborated	by	

insulin	pump	data	as	unusually	pump	data	was	not	able	to	be	retrieved	from	the	pump	

despite	multiple	attempts	to	upload	the	pump	by	the	study	team.	Of	note,	this	participant	

did	not	have	any	evidence	of	adverse	events	including	moderate	or	severe	hypoglycaemia.	
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Psychological	issues	were	subsequently	explored	by	the	clinical	team	and	support	arranged.		

There	was	no	evidence	to	suggest	that	underlying	psychological	issues	were	in	anyway	

related	to	participation	in	the	study.	It	was	recommended	to	exclude	this	participant’s	data	

from	the	final	data	analysis	following	review	of	CGM	traces	by	an	independent	diabetes	

researcher	who	was	not	a	member	of	the	sprint	study	team.		

4.7.3 Accuracy	of	CGM	

CGM	is	the	only	tool	that	can	measure	glycaemic	outcomes	throughout	the	day	and	night	in	

an	ambulatory	setting	(Heinemann	2009)	and	has	been	shown	to	provide	feasible	and	

meaningful	outcome	measures	in	clinical	trials	(Beck,	Calhoun	et	al.	2012,	Schnell,	Barnard	et	

al.	2017).	Although	advancement	in	CGM	technology	means	devices	are	increasingly	

accurate,	particularly	in	hypo	and	hyperglycaemic	ranges,	there	are	still	ongoing	concerns	

regarding	the	accuracy	of	CGM	systems.	It	is	well-established	that	there	is	a	lag	time	

between	blood	glucose	and	interstitial	glucose	levels	when	glucose	levels	are	changing	

rapidly,	such	as	during	exercise	(Davey,	Low	et	al.	2010,	Taleb,	Emami	et	al.	2016).	

Consequently,	this	may	result	in	CGM	over	estimating	glucose	levels	when	blood	glucose	

levels	are	dropping,	and	underestimating	glucose	levels	when	blood	glucose	levels	are	

quickly	rising	(Riddell,	Gallen	et	al.	2017).		

To	address	this	issue	of	accuracy,	our	study	used	the	most	accurate	CGM	device	(Dexcom	G4	

platinum)	available	on	the	market	at	the	time	of	study	commencement.	The	Dexcom	G4	

Platinum	system	has	a	reported	mean	absolute	relative	difference	(MARD)	from	SMBG	

measurements	of	11.3%	(Bailey,	Chang	et	al.	2015).	MARD	is	defined	as	the	average	of	the	

absolute	error	between	all	CGM	values	and	matched	reference	values;	the	smaller	the	

difference,	the	closer	the	CGM	reading	is	to	the	reference	glucose	value.	However,	the	

MARD	may	be	larger	at	times	of	rapid	blood	glucose	change.	

The	MARD	calculated	from	our	data	at	14.7%	is	higher	than	previously	reported.	However,	it	

should	be	noted	that	this	study	was	not	designed	to	determine	the	MARD	and	therefore	

several	factors	may	be	influencing	this	finding.		

Firstly,	MARD	is	usually	measured	by	comparing	the	sensor	reading	to	the	meter	reading	

when	both	readings	are	taken	concurrently.	We	do	not	have	concurrent	SGL	for	all	BGL’s	

entered	into	the	CGM	device.	We	have	taken	the	closet	SGL	reading	occurring	within	10	
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minutes	prior	to	the	BGL,	as	SGL	readings	post	the	BGL	will	be	influenced	by	the	BGL	as	part	

of	the	calibration	process.		

Secondly,	the	BGL	readings	are	not	being	taken	at	random	times;	the	participant	determined	

when	these	were	taken.	There	are	likely	to	be	some	behavioural	determinants	such	as	“it’s	

been	a	long	time	I’ve	been	wearing	the	sensor,	I	should	calibrate”,	and	“my	sensor	says	X,	

but	I	feel	different”.	Given	the	non-random	nature	of	sampling,	there	is	therefore	the	

potential	for	bias	with	testing	at	times	when	the	sensor	and	the	meter	are	most	discordant.	

Finally,	we	did	not	standardise	the	procedure	for	blood	glucose	measurement	during	the	

study.	Studies	designed	to	assess	the	accuracy	of	glucose	measuring	devices,	compare	

glucose	levels	to	a	‘gold	standard’	laboratory	reference	blood	glucose	measurement.	In	our	

study	participants	used	their	own	blood	glucose	meters	and	were	asked	to	follow	standard	

clinical	recommendations	for	blood	glucose	monitoring.	It	is	known	that	the	MARDs	of	point-

of	care-	blood	glucose	meters	vary	widely	between	devices.	When	17	different	commercially	

available	blood	glucose	meters	were	assessed	against	a	laboratory	reference	(YSI	2300)	the	

MARD	of	the	meters	ranged	from	5.6-20.8%	(Ekhlaspour,	Mondesir	et	al.	2017).	Therefore,	

differences	in	the	accuracy	of	blood	glucose	meters	would	have	further	impacted	on	the	

MARD	in	our	study.	

Nonetheless,	our	reported	MARD	should	be	considered	as	a	limitation	to	our	glycaemic	

outcomes.	Furthermore,	discordance	between	SGL	and	BG	levels	was	even	more	

pronounced	in	the	hypoglycaemic	range.	To	minimise	the	potential	issue	of	underreporting	

hypoglycaemia	during	times	of	rapid	change	such	as	exercise	we	measured	glycaemic	

outcomes	throughout	the	2-week	period,	not	just	during	exercise.	In	addition,	we	attempted	

to	prospectively	capture	episodes	of	symptomatic	hypoglycaemia	in	the	study	diary,	as	these	

may	represent	episodes	of	hypoglycaemia	not	captured	on	CGM	due	to	rapidly	changing	

blood	glucose	levels.	Indeed,	we	have	shown	that	there	were	less	episodes	of	carbohydrate	

intake	during	exercise	in	the	10s-sprint	arm,	likely	to	reflecting	fewer	episodes	of	

symptomatic	hypoglycaemia	when	the	10s	sprint	is	incorporated	into	exercise	compared	to	

moderate	intensity	exercise	alone.		
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4.7.4 Adherence	to	CGM	wear	and	calibration	

As	our	primary	outcome,	and	secondary	glycaemic	outcomes	are	based	on	sensor	glucose	

levels,	adherence	to	CGM	use	is	central	to	the	validity	of	our	findings.	Mean	sensor	wear	was	

89%,	90%	and	91%	of	the	14-day	period	for	the	control	4s,	and	10s	arms	respectively.		

Mean	sensor	use	was	therefore	similar	between	the	study	arms	and	cannot	account	for	our	

study	findings.		

Twice	daily	calibration	is	required	to	maintain	the	accuracy	of	the	sensor	glucose	recordings.	

Furthermore,	the	precision	with	which	the	blood	glucose	measurement	is	performed	has	an	

impact	on	the	quality	of	the	sensor	glucose	data	(Heinemann	2009).	Our	study	population	

calibrated	on	average	1.8	times	per	day.	This	is	less	than	recommended	practice	of	twice	per	

day	and	may	have	adversely	impacted	on	the	accuracy	of	sensor	glucose	readings.	It	should	

also	be	acknowledged	that	we	did	not	standardise	the	procedure	for	blood	glucose	

measurement	during	the	study.	Participants	used	their	own	blood	glucose	meters	and	were	

asked	to	follow	standard	clinical	recommendations	for	blood	glucose	monitoring.		

4.7.5 Blinding	of	CGM	

Our	study	utilised	masked	or	blinded	CGM.	This	differs	from	real-time	CGM	in	that	the	

participant	received	no	feedback	from	the	device-	the	screen	of	the	handset	(receiver)	was	

masked	(sensor	glucose	levels	were	not	displayed)	and	there	were	no	alarms	to	warn	of	

hypoglycaemia	or	hypoglycaemia.	Thus,	CGM	data	was	only	available	for	retrospective	

analyses,	thereby	removing	any	investigator	or	participator	bias.	The	blinded	nature	of	the	

CGM	used	in	the	study	presented	a	barrier	to	recruitment	as	real-time	CGM	became	

increasingly	accessible	and	was	perceived	by	many	as	a	key	standard	of	care.	

4.7.6 CGM	endpoint	selection	

CGM	can	potentially	provide	meaningful	primary	outcomes	in	clinical	trials	(Schnell,	Barnard	

et	al.	2017)	and	has	been	used	in	a	number	of	studies	as	an	outcome	evaluation	method	

including	investigation	of	glucose	excursions	associated	with	diet	and	exercise	(Riddell	and	

Milliken	2011,	Adolfsson,	Mattsson	et	al.	2015,	Paterson,	Smart	et	al.	2016),	closed-loop	

systems	(Maahs,	Buckingham	et	al.	2016)	and	glucose	lowering	medications	(Baek,	Jin	et	al.	

2015,	Holst,	Buse	et	al.	2015,	Bergenstal,	Bailey	et	al.	2017).		

One	of	the	key	issues	in	CGM	trials	is	which	glycaemic	end	point	should	be	used.	We	chose	

to	use	hypoglycaemic	events,	defined	as:	sensor	glucose	levels	of	<3.5mmol/L	for	greater	or	
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equal	to	20	minutes,	as	our	primary	outcome.	A	level	of	<3.5mmol/L	was	used,	as	this	was	

felt	to	represent	a	level	of	clinically	important	hypoglycaemia,	approximately	the	onset	of	

physiological	responses	to	hypoglycaemia	in	a	non-diabetic	population	(Mitrakou,	Ryan	et	al.	

1991).	We	used	the	traditional	alert	level	of	<3.9mmol/l	in	our	secondary	analysis.		

Subsequent	to	the	onset	of	our	study	the	International	Hypoglycaemia	Study	group	

recommended	that	glucose	concentrations	of	less	than	3.0mmol/L	should	be	reported	in	

clinical	trials	(IHSG	2017).	Following	this,	in	May	2017,	recommendations	on	reporting	CGM	

based	outcomes	in	clinical	trials	were	published	and	suggest	hypoglycaemia	cut-offs	of	

<3.9mmol/l	and	<3.1mmol/l	(Schnell,	Barnard	et	al.	2017).	We	have	therefore,	included	the	

cut-off	of	3.1mmol/L	in	our	secondary	analysis	in	response	to	this	new	guidance.	Most	

recently,	an	international	consensus	on	use	of	CGM,	recommends	reporting	hypoglycaemia	

outcomes	in	clinical	trials	as	the	percentage	of	CGM	values	that	are	below	3.9	or	3.0mmol/L,	

or	the	number	of	minutes	or	hours	below	these	thresholds	(Danne,	Nimri	et	al.	2017).	

Our	primary	outcome	was	defined	as	hypoglycaemic	events,	instead	of	the	average	time	

spent	in	a	hypoglycaemic	range.	Hypoglycaemic	events	may	provide	a	more	accurate	

representation	of	burden	to	the	patient	than	time	spent	low	(Maahs,	Buckingham	et	al.	

2016).	In	addition,	we	attempted	to	capture	episodes	of	symptomatic	hypoglycaemia-	again	

a	representation	of	burden	to	the	patient.	Despite	our	best	efforts	to	prospectively	collect	

self-reported	events	of	symptomatic	hypoglycaemia	it	is	apparent	that	this	was	most	likely	

under	reported.		Reliable	capture	of	symptomatic	hypoglycaemia	is	a	well-known	challenge	

in	clinical	trials	and	hypoglycaemic	event	rates	is	an	established	alternative	(Maahs,	

Buckingham	et	al.	2016).		

4.7.7 Adherence	with	exercise	protocols	

Assessment	of	adherence	with	exercise	protocols	was	limited	to	exercise	occurring	outdoors.	

Evaluation	of	adherence	involved	assessment	of	a	GPS	watch	generated	speed	trace	for	

overall	duration	and	presence	of	acceleration	suggestive	of	sprinting.	GPS	information	was	

only	available	for	exercise	episodes	occurring	outdoors.	Thus,	indoor	exercise	could	not	be	

assessed	for	adherence	with	exercise	protocols.	

4.7.8 Assessment	of	exercise	intensity	

A	further	limitation	of	the	study	is	that	we	did	not	formally	measure	the	intensity	of	the	

exercise	performed	by	participants.	Laboratory	based	studies	demonstrating	the	glycaemia	
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raising	effects	of	sprinting	incorporated	into	moderate	intensity	exercise	define	moderate	

intensity	exercise	as	40%	of	the	VO2	max.	This	intensity	is	justified	as	representing	the	type	

of	activity	pattern	performed	by	the	general	population	when	exercising	in	“real-life”	

conditions.	

Clearly,	it	is	not	possible	to	set	the	exercise	intensity	as	a	proportion	of	VO2	max	in	an	

ambulatory	setting.		An	established	alternative	to	quantify	exercise	intensity	is	to	measure	

the	percentage	of	maximal	heart	rate.	We	explored	use	of	a	heart	rate	monitor	during	

protocol	development.	As	wrist	worn	heart	rate	monitors	are	prone	to	inaccuracy	we	trialled	

the	use	of	an	‘actiheart’	device-	a	combined	accelerometer/heart	rate	monitor	(Actiheart,	

Cambridge	Neurotechnology	Ltd,	Papworth,	UK).	However,	this	device	was	poorly	tolerated	

by	participants,	who	fed-back	that	it	was	uncomfortable	leading	to	poor	adherence	with	

wearing	the	device.	Moreover,	data	capture	was	unreliable	with	multiple	periods	of	missing	

data	due	to	signal	loss,	and	it	was	difficult	to	identify	sprints	based	on	accelerometry	data.	

The	decision	was	made	to	not	collect	heart	rate	data	in	an	attempt	to	minimise	participant	

burden	and	maximise	compliance	with	data	collection	of	other	variables.		

In	an	attempt	to	set	exercise	at	moderate	intensity	(40-59%	VO2	max),	we	asked	our	

participants	to	exercise	(when	not	sprinting)	at	a	level	where	they	could	still	maintain	a	

conversation	comfortably.	This	recommendation	was	based	on	the	“talk	test”,	a	subjective	

measure	of	exercise	intensity	(Persinger,	Foster	et	al.	2004).	In	a	laboratory	based	setting	the	

talk	test	involves	a	participant	reading	a	passage	at	a	particular	point	in	exercise	and	then	

being	asked	if	he	or	she	can	talk	comfortably.	The	last	point	at	which	participants	could	

comfortably	respond	to	conversation	during	a	period	of	continuous	exercise	has	been	shown	

to	represent	approximately	60%	VO2	max	and	81%	of	maximal	heart	rate	(Quinn	and	Coons	

2011).		

In	summary,	we	did	not	objectively	measure	the	intensity	of	the	exercise	performed	in	the	

study.	This	means	we	cannot	determine	if	exercise	intensity	varied	throughout	the	exercise	

episode,	or	indeed	between	episodes.	However,	the	fact	that	the	study	exercise	is	

performed	in	“free-living”	conditions	make	our	findings	relevant	to	people	exercising	in	the	

real	world.	
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4.8 Significance	of	Findings	

This	is	the	first	study	to	investigate	the	use	of	short	sprints	during	exercise	to	prevent	

exercise	mediated	hypoglycaemia	in	individuals	with	T1D	in	a	real-world	setting.	This	is	a	key	

step	in	translating	laboratory	based	findings	into	practical	recommendations	for	patients.	

Studies	to	date	have	evaluated	the	glycaemic	effect	of	sprinting	in	early	recovery	from	

exercise	and	up	to	24	hours	after	exercise.	This	study,	for	the	first	time,	investigates	the	

effect	of	sprinting	over	a	longer	time	frame	(2	weeks).	Moreover,	this	study	is	novel	as	it	

looks	at	the	effect	of	repeated	bouts	of	sprinting	exercise	during	this	timeframe.		

Investigating	how	regular	sprinting	impacts	on	glycaemia	over	a	2-week	period	is	important	

as	concerns	have	been	raised	regarding	potential	sequelae	from	sprinting	such	as	an	

increased	risk	of	nocturnal	hypoglycaemia	and	reduced	awareness	of	hypoglycaemia.	No	

evidence	of	adverse	effects	of	sprinting	have	been	demonstrated	in	this	study,	suggesting	

that	sprinting	could	be	incorporated	into	exercise	recommendations.	Findings	from	this	

study	will	inform	the	development	of	exercise	guidelines	for	young	people	with	T1D.	

It	should	be	acknowledged	that	the	statistically	significant	reduction	in	hypoglycaemic	

events	(<3.1mmol/L)	and	percentage	time	spent	low	(<3.1	and	<3.5mmol/L)	associated	with	

the	10s	sprint	period	is	modest	and	raises	questions	regarding	the	clinical	significance	of	

these	findings.	An	event	rate	of	0.4	events	per	day	in	the	control	period	versus	0.3	events	

per	day	in	the	10s	period	equates	to	an	absolute	reduction	of	1.4	events	per	week.	The	

reduction	in	time	spent	less	than	3.1mmol/L	from	1.9%	to	1.2%	equates	to	a	reduction	from	

6.3	hours	to	4.0	hours	spent	less	than	3.1mmol/L	over	a	2	week	period.	Although	these	

effect	sizes	are	small	the	fact	that	sprinting	is	an	easy	to	use,	carbohydrate	free	strategy,	

which	in	contrast	to	insulin	adjustment	does	not	require	prior	planning	makes	it	an	attractive	

management	option	and	with	no	burden	associated	with	technology	or	any	demonstrated	

adverse	sequelae	such	as	nocturnal	hypoglycaemia,	perhaps	any	conferred	benefit	is	

clinically	relevant.	Furthermore,	it	remains	to	be	determined	if	the	glycaemic	benefits	of	

sprinting	are	augmented	when	used	in	conjunction	with	other	exercise	strategies	such	as	

reduction	in	basal	insulin	delivery	or	in	the	setting	of	automated	insulin	delivery.	
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4.9 Generalisability	of	Results	

The	finding	from	this	free-living	study	are	generalisable	to	other	young	people	with	T1D	

participating	in	exercise.	Our	study	population	were	not	highly	trained	as	reflected	in	a	VO2	

max	of	32.7ml/kg/min	and	had	a	suboptimal	mean	HbA1c	of	58mmol/mol	(7.5%)	and	thus	

are	representative	of	the	general	T1D	population.		

It	should	be	noted	that	we	have	not	assessed	the	benefits	of	sprinting	in	a	very	young	

population.	Furthermore,	as	patterns	of	spontaneous	play	in	young	children	are	typically	

characterised	by	short	repeated	bouts	of	activity	separated	by	periods	of	moderate	intensity	

activity	or	rest-	akin	to	intermittent	high	intensity	exercise,	the	role	of	sprinting	as	a	tool	to	

prevent	hypoglycaemia	in	this	young	population	my	not	be	relevant.	Neither	have	we	

assessed	the	role	of	sprinting	in	an	older,	sedentary	population-	and	in	this	context	sprinting	

may	not	be	feasible.	

We	have	only	assessed	the	benefits	of	incorporating	sprinting	into	continuous	moderate	

intensity	exercise,	including	running	and	cycling.	The	glycaemic	effects	of	sprinting	during	

other	exercise	types	such	as	swimming	remain	to	be	elucidated.	

Diabetes	technology	is	rapidly	evolving	and	is	changing	the	landscape	of	diabetes	

management.	Increasing	accessibility	to	diabetes	technology	including	real-time	CGM	and	

automated	insulin	delivery,	directly	impacted	on	the	recruitment	and	retention	of	

participants	in	this	trial.	The	benefits	of	sprinting	to	prevent	exercise	mediated	

hypoglycaemia	in	the	setting	of	automated	insulin	delivery	such	as	predictive	low	glucose	

suspend	and	closed	loop	insulin	delivery	remains	to	be	determined.	On	one	hand,	

automated	insulin	adjustment	may	in	itself	prevent	exercise	mediated	hypoglycaemia	

thereby	making	other	strategies	such	as	sprinting	less	useful.	On	the	other	hand,	automated	

insulin	delivery	may	reduce	the	basal	percentage	of	the	total	daily	dose,	and	this	reduction	in	

basal	insulin	may	potentially	allow	the	glycaemic	effect	of	sprinting	to	be	more	pronounced.		

It	should	be	acknowledged	many	individuals	with	T1D	are	cared	for	in	healthcare	systems	

with	limited	resources	and	diabetes	technology	may	not	be	accessible	(Acerini,	Craig	et	al.	

2014).	Access	to	healthcare	uninterrupted	supplies	of	insulin	remains	problematic	in	some	

settings.	(Beran	and	Yudkin	2010).		Furthermore,	even	when	technology	such	as	insulin	

pump	therapy	and	automated	insulin	delivery	systems	are	available,	some	individuals	may	

choose	alternative	management	strategies	because	of	patient	or	parent	perceived	barriers	
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to	technology	uptake	(Commissariat,	Boyle	et	al.	2017).	Consequently,	despite	technological	

advances,	simple	strategies	such	as	sprinting	may	have	a	role	to	play	in	exercise	

management	in	both	resource	limited	and	technology	accessible	settings.		

4.10 Clinical	Implications	of	the	Study	

We	have	demonstrated	that,	in	a	free-living	setting,	the	inclusion	of	10s	sprints	into	regular	

moderate	intensity	exercise	can	reduce	the	incidence	of	hypoglycaemia	over	a	2-week	

period,	without	increasing	the	risk	of	nocturnal	hypoglycaemia.	Conventional	strategies	for	

the	prevention	of	exercise	mediated	hypoglycaemia	include	carbohydrate	intake	and	insulin	

adjustment,	thus	sprinting	offers	a	third	dynamic	strategy.	Potential	benefits	of	sprinting	

include	that	it	is	a	carbohydrate	free	strategy	(and	does	not	carry	the	risk	of	weight	gain	

associated	with	carbohydrate	intake)	and	does	not	require	any	prior	planning.	Our	findings	

are	of	a	very	practical	nature	and	will	directly	inform	guidelines	to	help	young	people	with	

T1D	to	exercise	more	safely.		

4.11 Directions	for	Future	Research	

In	order	to	translate	these	findings	into	improved	patient	care	we	first	need	to	address	how	

to	effectively	educate	healthcare	professionals	and	patients	about	integrating	sprinting	as	a	

strategy	to	prevent	exercise	mediated	hypoglycaemia	into	exercise	management	plans.	

Furthermore,	it	remains	to	be	assessed	how	well	sprinting	as	a	strategy	is	adopted	by	

individuals	with	T1D	in	the	real-world	out-with	a	study	setting.	

Further	work	is	required	to	determine	the	glycaemic	impact	of	sprinting	in	different	exercise	

modalities.	The	effect	of	sprinting	during	prolonged	or	endurance	exercise	remains	to	be	

determined.	Sprinting	may	be	a	limited	tool	in	this	setting	when	glycogen	stores	are	

depleted.	Furthermore,	the	effect	of	sprinting	in	a	wider	range	of	exercise	types	such	as	

swimming	remains	unknown.		

We	acknowledge	that	our	study	population	is	limited	to	adolescents	and	young	adults	who	

were	of	average	fitness	levels	with	HbA1C	levels	of	<75mmol/mol	(9%).	Further	studies	are	

needed	to	assess	the	effectiveness	of	sprinting	to	reduce	exercise	mediated	hypoglycaemia	

in	wider	patient	groups.	Moreover,	in	clinical	practice,	health	care	professionals	strive	to	

provide	patients	with	individualised	exercise	management	plans.	For	this	reason,	it	would	be	

helpful	to	understand	if	sprinting	is	more	effective	in	some	people/situations	than	others-	
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such	as	gender,	glycaemic	control,	the	amount	of	insulin	on	board	or	evidence	of	impaired	

hypoglycaemia	awareness.	Further	research	is	required	to	address	these	specific	questions	

Physical	activity	and	exercise	remains	one	of	the	challenges	to	automated	insulin	delivery	

systems.	Given	technological	advances	and	increased	accessibility	to	technology	it	would	be	

pertinent	to	evaluate	sprinting	as	an	adjunctive	exercise	management	tool	in	the	setting	of	

automated	insulin	delivery.		

To	address	these	questions	incorporation	of	short	sprints	during	exercise	should	be	

integrated	with	other	exercise	strategies	and	evaluated	on	a	wider	scale.	Future	research	

directions	include	formulation	of	an	exercise	management	tool	such	as	an	app	or	calculator	

to	provide	patient	goal	directed	management	recommendations	including	use	of	short	

sprints	during	exercise.	This	tool	should	be	developed	with	direct	engagement	from	patients	

and	families	to	ensure	the	content	and	presentation	of	information	is	patent	led	and	user	

friendly.	This	exercise	management	tool	should	be	evaluated	in	a	randomised	controlled	trial	

and	findings	translated	into	clinical	practice.	
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Appendices	

Appendix	A:	Clarkes	Hypoglycaemia Awareness Questionnaire 

 

	 	

Clarke’s Hypoglycaemia Awareness Questionnaire _Clarke et al 1995 (modified 2013) 
 

Hypoglycaemia Awareness Questionnaire 
 

     Name: ___________________________________________         Date __________________ 
 

Please answer all questions by placing a tick in one box 
 

 
 

A0 
R1 
R2 
R2 

 
 
 
 
 

R2 
A0 

 
 
 
 
 
 

A0 
          R1    
          R1 
          R1 

R2 
 
 
 
 
 

A0 
R1 
U2 

 

1. Tick the box that best describes you? (tick only one) 
 
r I always have signs when my BGL is low  
r I sometimes have signs when my BGL is low 
r I never have signs when my BGL is low  
r I no longer have signs when my BGL is low 
 
 

2. Have you lost some of the signs and symptoms that used to occur 
when your BGL was low? 

 
r Yes        
r No          
 
 

3. In the past 6 months how many times have you had a hypo episode 
where you have been confused, disorientated or lethargic, and needed 
help to treat your hypo? 

 
r Never 
r One or twice 
r Every other month   
r Once a month   
r More than once a month 
 
 

4. In the past year how often have you had a severe hypo episode, where 
you were unconscious or had a seizure? 

 
r Never 
r 1 to 11 times 
r 12 times or more 
 
 

5. In the last month how many times have you had a blood glucose level 
(BGL) of less than 3.9 mmol, with symptoms? 

 
r Never  
r 1 to 3 times in the month 
r Once a week   
r 2 to 3 times a week   
r More than 3 times a week 
r Almost every day   
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Clarke’s Hypoglycaemia Awareness Questionnaire _Clarke et al 1995 (modified 2013) 
 

 
 
 

0 
1 
1 
2 
2 
2 

 
 
 
 

R2 
R1 
A0 
A0 

6. In the last month how many times have you had a blood glucose level 
(BGL) of less than 3.9 mmol, without any symptoms? 

 
r Never  
r 1 to 3 times in the month 
r Once a week   
r 2 to 3 times a week   
r More than 3 times a week 
r Almost every day   
 
 

7. How low does your BGL fall before you notice any signs? 
 
r Less than 2.2   
r 2.2 – 2.7   
r 2.8 – 3.3   
r Greater than 3.3 
 
 

 
 

R2 
R2 
R1 
A1 
A0 

8. Can you tell your BGL is low by certain signs or behaviour? 
  
r Never  
r Rarely  
r Sometimes   
r Often  
r Always                    
  
 

  
  

 
 
 
THANK YOU! 
 
 
 

	 	

Scoring	Explanation:	

Calculation	of	the	Clarke’s	Score	

• A	score	of	1	was	given	each	time	an	‘R’	response	was	selected	
• An	additional	R	score	of	‘1’	was	given	if	the	answer	to	question	6	was	greater	than	the	

answer	to	question	5.	
• The	total	‘R’	score	was	summed.	

	

Interpretation	of	the	Clarke’s	score	

• Hypoglycaemia	aware	was	defined	as	a	total	score	of	4	or	less	
• Impaired	hypoglycaemia	awareness	was	defined	as	a	score	of	more	than	4.	
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Appendix	B:	Participant	Information	Sheet	and	Consent	Form	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

FORM 3A 
 

Sprint Trial Participant Information Sheet and Consent_V5.0 31/03/16 1 of 4 pages 

 
 

 
 
 

 
 

PARTICIPANT INFORMATION SHEET  
 
 

The benefits of sprinting for improving blood glucose management in 
individuals with type 1 diabetes mellitus 

 
Why are we doing the study? 
The aim of this study is to find out whether adding short sprints to exercise in real-life 
improves blood glucose management in people with type 1 diabetes. To determine this we are 
asking people with diabetes to try adding 4 and 10 second sprints to their exercise. 
 
Who is carrying out the study? 
The Diabetes and Obesity Research Team at Princess Margaret Hospital (PMH) and the 
Telethon Kids Institute, together with the School of Sports Science, Exercise and Health at the 
University of Western Australia, will be running the study. 
 
What will the study tell us? 
The study will tell us whether adding short sprints to a period of exercise will help to 
minimise changes in blood glucose levels in people with type 1 diabetes. 
 
Do you have to take part? 
No. You do not have to take part in this study. If you decide to take part and then change your 
mind, you can stop at any time.  
 
What will you be asked to do if you decide to take part in this study? 
You will be asked to visit PMH 8 times. We will ask you to test three different types of 
activity in two week blocks. These are doing what you normally do (control), adding a 4 
second sprint to your exercise, or adding 10 second sprint to your exercise. 
 
Visit 1 –  
On your first visit, you will meet the study team and be able to ask any questions about the 
study. You will then be fitted with a Continuous Glucose Monitoring System (CGMS) to 
monitor your blood glucose levels. This device includes a small sensor that will be placed just 
under your skin using a small needle and an insertion tool. The sensor will send glucose 
readings to a monitor the size of an insulin pump that you will carry in your pocket or clipped 
to your belt. You will also be given an exercise activity watch to wear during exercise to 
monitor your physical activity levels. You will then spend the next week at home getting use 
to the equipment and practicing the sprints.   
 
Visit 2 -  
One week later, you will come back to PMH to return the CGMS, and exercise activity watch. 
You will then be sent home to continue your usual activity for one week without any 
monitoring.  
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FORM 3A 

 

Sprint Trial Participant Information Sheet and Consent_V5.0 31/03/16 2 of 4 pages 

Visit 3 –  
Seven (7) days later you will visit the research unit again and we will re-fit a CGMS, and give 
you the exercise activity watch to wear during exercise. You will also be given instructions 
for adding a 4 second or 10 second sprint to your exercise or completing your normal routine. 
For the next 2 weeks, you will follow these instructions every time you exercise. You will 
also have to write down when and for how long you exercise, when you have a hypo and what 
you eat after exercise. During the study, you will change your glucose sensor at home after 7 
days.  
 
Visit 4 –  
After the two weeks is up, you will come back to PMH to return the CGMS, and exercise 
activity watch. You will then be sent home to continue your usual activity for one week 
without any monitoring. 
 
Visit 5 & 7–  
Are the same as visit 3, however you will try a different type of activity. 
 
Visit 6 & 8 –  
Are the same as visit 4. 
   
 
What do you need to do to be in the study? 
Please contact Tarini or Niru (contact details below), who will make an appointment for your 
first visit. To be part of the study you must be between 14 and 35 years old, physically active 
at least 3 times per week, with an HbA1c of less than 9%, and aware of your hypos. We will 
work out if you’re aware of your hypos by asking you to answer a questionnaire. You will 
have to wear a CGMS continuously during the study. During exercise you will need to wear 
an exercise watch and follow the instructions given to you. If you have an injury or any health 
conditions (other than type 1 diabetes), please let us know as you may not be able to 
participate in the study.  
 
Is there likely to be a benefit to me? 
Yes. You will benefit by learning about how to manage your blood glucose levels during 
exercise. You will also be given continuous glucose readings that can be used to help improve 
your blood glucose management, if necessary. 
 
Is there likely to be a benefit to other people in the future? 
Yes. The outcomes of this study will help to work out the benefit of including short sprints 
into periods of exercise for minimising changes in blood glucose levels in people with type 1 
diabetes. This will help to improve guidelines for people with type 1 diabetes to exercise 
without the worry of hypos. 
 
What are the possible risks and/or side effects? 
There is a risk of hypos when you exercise. But, this will be small since you will mostly do 
what you normally do and we will give you the most up-to-date recommendations for keeping 
this risk small.  
 
There is also a small risk of infection with the CGMS sensor. But, this risk is small and we 
will follow correct instructions to keep it that way. We have used these devices in lots of other 
studies and generally they are very well tolerated. 
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FORM 3A 
 

Sprint Trial Participant Information Sheet and Consent_V5.0 31/03/16 3 of 4 pages 

What are the possible discomforts and/or inconveniences? 
You may find that wearing the CGMS all the time is a bit of a bother, but most people tolerate 
this device very well. 
 
Where is my information kept? 
All information collected during the study will be kept in a secure office and on computer 
files that need a password at PMH. 
 
What about my privacy? 
Your identity will be kept private by using codes to label data sheets and blood samples.. 
 
Who has approved the study? 
The study has been approved by the Princess Margaret Hospital Human Research Ethics 
Committee. 
 
Who to contact for more information about this study: 
If you would like more information about this study, please do not hesitate to contact a 
member of the research team.  We are very happy to answer your questions. 
 
Dr Tarini Chetty, Fellow on 6229 3322 or Tarini.Chetty@health.wa.gov.au 
 
Ms Niru Paramalingam, Clinical Research Coordinator and Research Nurse on 9340 8671 or 
nirubasini.paramalingam@telethonkids.org.au 
 
Who to contact if you have any concerns about the organisation or running of the study? 
If you have any concerns or complaints regarding the conduct of this study, you can contact 
the Director of Medical Services at PMH (Telephone No:  (08) 9340 8222).  Your concerns 
will be reviewed by the Ethics Committee who is monitoring the study. 
 
What to do next if you would like to take part in this research: 
If you would like to take part in this study, please contact Dr. Chetty on 6229 3322 Niru 
Paramalingam on 9340 8671.  
 
 

THANK YOU FOR YOUR TIME 
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FORM 3A 
 

Sprint Trial Participant Information Sheet and Consent_V5.0 31/03/16 4 of 4 pages 

 
 

 
FORM OF CONSENT 

(For Adult) 
 

 
PLEASE NOTE THAT PARTICIPATION IN RESEARCH STUDIES IS VOLUNTARY 
AND SUBJECTS CAN WITHDRAW AT ANY TIME WITH NO IMPACT ON 
CURRENT OR FUTURE CARE. 
 
 
I ................................................................................................................................. have read 
       Given Names                                                  Surname 
 
the information explaining the study entitled  
 

The benefits of sprinting for improving blood glucose management in 
individuals with type 1 diabetes mellitus 

 
I have read and understood the information given to me.  Any questions I have asked have 
been answered to my satisfaction. 
 
 
I understand that I may withdraw from the study at any stage and withdrawal will not impact on 
routine care. 
 
 
I agree that research data gathered from this study may be published, provided that names are 
not used. 
 
 
 
Dated ................................. day of ............................................................ 20 .......... 
 
 
     
Signature ..................................................... 
 
 
 
 
I, ........................................................................... have explained the above to the  
  (Investigator’s full name) 
 
signatory who stated that he/she understood the same. 

 
 
 

Signature ........................................................... 
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Appendix	C.	Physical	Activity	Enjoyment	Scale	(PACES)	

Please	rate	how	you	feel	at	the	moment	about	the	exercise	you	have	been	doing.	
	

I	enjoyed	it	 1	 2	 3	 4	 5	 6	 7	 I	hated	it	

I	felt	bored	 1	 2	 3	 4	 5	 6	 7	 I	felt	interested	

I	disliked	it	 1	 2	 3	 4	 5	 6	 7	 I	liked	it	

It	was	pleasurable	 1	 2	 3	 4	 5	 6	 7	 It	was	not	pleasurable	

It	was	no	fun	at	all	 1	 2	 3	 4	 5	 6	 7	 It	was	lots	of	fun	

It	gave	me	energy	 1	 2	 3	 4	 5	 6	 7	 It	was	tiring	

It	made	me	depressed	 1	 2	 3	 4	 5	 6	 7	 It	made	me	happy	

It	was	very	unpleasant	 1	 2	 3	 4	 5	 6	 7	 It	was	very	pleasant	

My	body	felt	good	 1	 2	 3	 4	 5	 6	 7	 My	body	felt	bad	

I	got	something	out	of	
it	

1	 2	 3	 4	 5	 6	 7	 I	got	nothing	out	of	it	

It	was	very	exciting	 1	 2	 3	 4	 5	 6	 7	 It	was	not	at	all	exciting	

It	frustrated	me	 1	 2	 3	 4	 5	 6	 7	 It	didn’t	frustrate	me	

It	was	not	at	all	
interesting	

1	 2	 3	 4	 5	 6	 7	 It	was	very	interesting	

It	gave	me	strong	
feelings	of	success	

1	 2	 3	 4	 5	 6	 7	 It	didn’t	give	me	feelings	
of	success	

It	felt	good	 1	 2	 3	 4	 5	 6	 7	 It	felt	bad	

I	would	rather	be	doing	
something	else	

1	 2	 3	 4	 5	 6	 7	 There	is	nothing	else	I	
would	rather	be	doing	
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