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Abstract 

 

Despite progress in liver transplantation, biliary complications such as non-

anastomotic biliary strictures (NABS) remain its “Achilles heel” and our understanding 

of the pathogenesis of these lesions remains limited. An inflammatory process 

following reperfusion injury of the liver is a possible cause for this pathology. The 

pregnane X receptor (PXR) has gained interest in recent years as a potential 

therapeutic target for inflammatory bowel and liver conditions. Its role in ischaemia 

reperfusion injury (IRI) following liver transplantation remains unexplored. The aim of 

this project was to investigate the development of biliary pathology following 

ischaemia reperfusion injury and the potential beneficial effect of PXR activation on 

these lesions. 

In vitro studies on the pro-fibrotic effect of varying oxygen conditions on human biliary 

epithelial cells were carried out initially, followed by an in vivo rat model of hepatic 

ischaemia reperfusion injury to sequentially examine the progression of fibrosis 

following hepatic IRI and the potential ameliorating effect of PXR activation on this. 

The project culminates in a retrospective clinical study to confirm the benefit of PXR 

activation in a cohort of liver transplant recipients 

The in vitro studies highlighted an active pro-inflammatory role for biliary epithelial 

cells when subjected to oxygen after a period of hypoxia. Moreover, hepatic IRI was 

found to cause persistent inflammatory and fibrotic changes beyond the initial 

ischaemic insult in the in vivo rat model. Activation of the PXR led to a reduction in 

post-IRI cellular damage, inflammation and fibrosis in the animal model and these 

promising findings were supported in the clinical study which highlighted a beneficial 

role for PXR activation in reducing anastomotic biliary strictures and ultimately 

improving patient survival following liver transplantation 

This project provides further insight into the pathogenesis of biliary lesions following 

reperfusion injury and shed further light on the potential role for PXR activation in 

improving graft outcomes following liver transplantation. It also opens the door for 

novel therapies such as the use of PXR activators in perfusion fluid, potentially 

optimising the organ donation pool. 
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Chapter 1. Introduction 
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1.1. The current state of orthotopic liver transplantation (OLT) 

Liver transplantation remains to date the mainstay therapy for patients with acute or 

chronic end-stage liver disease.  Over the past few decades, there has been an 

increasing demand for liver transplantation in Europe and North America owing to 

significant developments in immunotherapy, organ preservation, and perioperative 

care. These improvements have led to more ‘high-risk’ patients being considered 

suitable for transplantation, and more patients surviving failed transplants (Lentine 

and Schnitzler, 2011, Thuluvath et al., 2010). However, the rapid growth in transplant 

waiting lists is met with only a modest increase in the number of organ donors and 

thus the gap between organ demand and supply continues to widen, with more 

patients dying whilst awaiting transplantation (Wertheim et al., 2011, NHSBT, 2015). 

Organs from ‘marginal’ or extended criteria donors (ECD) are increasingly being 

utilised in an attempt to reduce the gap between organ supply and demand (Burra 

and Freeman, 2012). These include organs donated after cardiac death (DCD). A 

number of studies have reported inferior outcomes with the use of DCD organs 

compared to those donated after brain death (DBD) (Foley et al., 2005, Merion et al., 

2006, Jay et al., 2011a, Kaczmarek et al., 2007). A recent systematic review of DCD 

liver transplantation revealed a significantly increased risk of graft failure and 

mortality among recipients of DCD liver grafts (Jay et al., 2011b). Nevertheless, while 

the rate of DBD organs has plateaued over the past decade, the contribution of DCD 

organs to the deceased donor pool increases every year (Figure 1.1). In the UK, liver 

transplantation from DCD donors increased by 17% in 2014/2015 whereas liver 

transplants from DBD donors fell by 3% compared to the previous year (NHSBT, 

2015). However, in view of the existing organ shortage and the significant risk 

associated with DCD liver transplantation, it is imperative that all potential strategies 

for optimising DCD grafts are examined in order to minimise graft loss and insure the 

best possible outcome for each recipient. 
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Figure 1.1. Deceased donor liver transplant trends in the adult and paediatric 

populations over the past 10 years. Data from NHSBT (2015). 

 

1.2.  Non-anastomotic biliary strictures (NABS) and liver transplantation 

In 1977, Calne described biliary complications as the “Achilles heel” of liver 

transplantation (Calne, 1977). They remain a major obstacle to successful 

transplantation to date despite advances in this field (Ayoub et al., 2010, Buck and 

Zajko, 2008). Reports in recent literature indicate that biliary complications occur in 

10 to 40% of all adult cases of liver transplantation (Thethy et al., 2004, Zajko et al., 

1985). Non-anastomotic biliary strictures (NABS) account for a significant proportion 

of these complications, with an incidence ranging between 5-15% (Figure 1.2). They 

are a significant cause of morbidity, graft failure and death following deceased donor 

liver transplantation (Sharma et al., 2008). Inadequately treated lesions can lead to 

lobar atrophy, recurrent cholangitis or secondary biliary cirrhosis (Ayoub et al., 2010).  

However, despite optimal management, up to 50% of patients with non-anastomotic 

biliary strictures will eventually require re-transplantation due to graft loss, many of 

whom die whilst on the waiting list (Ayoub et al., 2010, Sharma et al., 2008). 
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Figure 1.2. Non-anastomotic biliary strictures identified on cholangiography. Lesions 

can range from solitary and mild (left) to diffuse and severe (right). From Buis et al 

(Buis et al., 2007) 

 

Liver grafts from DCD donors are particularly prone to NABS (Jay et al., 2011b, Abt 

et al., 2003, D'Alessandro A et al., 2000, D'Alessandro et al., 2004, Op den Dries et 

al., 2011, Otero et al., 2003). The association between DCD organs and NABS is not 

surprising and is reflective of the longer ischaemic periods associated with DCD 

organs. A number of studies have identified warm ischaemia as a strong risk factor 

for NABS (Guichelaar et al., 2003, Buis et al., 2007). Moreover, radiographic findings 

similar to NABS are seen in patients with hepatic artery thrombosis (Zajko et al., 

1987). The unique dependence of the biliary tree on arterial blood -which is disrupted 

during donor hepatectomy- is in contrast to the remainder of the liver parenchyma 

which receives dual arterial and portal blood (Northover and Terblanche, 1979) 

(Figure 1.3). This arrangement may explain the increased susceptibility of the biliary 

tree to ischaemic injury. Therefore, a number of approaches to enhance oxygenation 

of the liver allograft have been investigated, especially in DCD organs, with the aim 

of improving the viability of the biliary tree and reducing biliary complications 

including primary arterial revascularisation, oxygen persufflation and extracorporeal 

membrane oxygenation (ECMO) of the liver allograft (Brockmann et al., 2005, van As 

et al., 2002, Suszynski et al., 2012, Choi et al., 2012, Jimenez-Galanes et al., 2009). 
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However, ischaemia is not the only risk factor linked to development of these lesions. 

Other factors including ABO incompatibility, CMV infection, enhanced chemokine 

activity and bile salt injury have also been implicated, reflecting the complex 

pathogenic nature of these lesions (Op den Dries et al., 2011). 

  

 

Figure 1.3. Blood supply to the bile duct. Adapted from Deltenre and Valla 2006 

(Deltenre and Valla, 2006) 

 

1.3. A potential role for reperfusion injury in the development of NABS 

In addition to the effect of ischaemia on the biliary tree, reperfusion injury may play 

an important part in the development of NABS (Op den Dries et al., 2011) given that 

significant intrahepatic cellular damage following transplantation is now known to be 

caused by reperfusion injury (Teoh and Farrell, 2003). 
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The process of IRI represents a complex interplay between resident intrahepatic 

(parenchymal and non-parenchymal) cells and circulating inflammatory cells resulting 

in oxidative stress injury and cell death (Teoh and Farrell, 2003). The effects of 

reperfusion on the various cell types resident in the liver and their individual roles in 

graft injury vary considerably (Kukan and Haddad, 2001). 

Kupffer cells are activated following warm or cold ischaemia and play a central role in 

early reperfusion injury (Teoh, 2011). These cells release reactive oxygen species 

(ROS) and cytokines, leading to the recruitment of inflammatory cells and 

parenchymal damage. Sinusoidal endothelial cells (SECs) and hepatocytes have 

been shown to be susceptible to direct injury following cold and warm ischaemia 

respectively (Noack et al., 1993, Schon et al., 1998, Ikeda et al., 1992, Massip-

Salcedo et al., 2007, McKeown et al., 1988). Hepatocytes and SECs play an 

important role in ROS production and propagation of the inflammatory response 

(Saiman and Friedman, 2012, Peralta et al., 2013). In addition, SECs are implicated 

in the microcirculatory disturbances that occur upon reperfusion. A more detailed 

description of the cellular response to hepatic ischaemia reperfusion injury can be 

found in section 4.1.1. 

Despite extensive research in recent years, much remains to be uncovered about the 

effect of ischaemia reperfusion injury on hepatocytes, sinusoidal endothelial cells and 

Kupffer cells. However, even less is known about its effect on BECs. In vitro studies 

have shown that BECs are more resistant to ischaemia and more vulnerable to re-

oxygenation and reperfusion compared to hepatocytes (Noack et al., 1993). The 

reasons for such contrasting effect of oxygen on BECs is not entirely understood but 

may be a result of lower basal glutathione levels and enhanced glutathione 

breakdown during reperfusion in comparison to hepatocytes (Noack et al., 1993, 

Accatino et al., 2003). 

There is evidence to suggest that reperfusion injury to the biliary epithelium persists 

for days to weeks following transplantation and that recovery from such insult is 

prolonged compared to hepatocytes or sinusoidal endothelial cells (Kukan and 

Haddad, 2001, Cutrin et al., 1996). This may explain the often delayed presentation 

of biliary complications such as NABS following liver transplantation (Ayoub et al., 

2010). 
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1.4. Activation of the pregnane X receptor as a potential target in the 

prevention of NABS 

The pregnane X receptor (PXR) is a promising drug target for the treatment of 

inflammatory liver disease. PXR is a member of the nuclear receptor gene 

superfamily of ligand-activated transcription factors. It is highly expressed in 

hepatocytes and is activated by a wide range of xenobiotics (e.g. cyclosporin and 

rifampicin) and endobiotics (e.g. bile acids) (Pavek, 2016). In its active form, PXR 

regulates the expression of genes involved in the metabolism, transport and 

excretion of these compounds (Kliewer et al., 2002). PXR activation stimulates 

detoxification pathways that minimise the harmful effects of toxic bile salts and 

facilitate their excretion (Jonker et al., 2012, Uppal et al., 2005). In addition to these 

functions, PXR activation has been shown to produce an anti-inflammatory effect and 

has been explored as a promising therapeutic target in inflammatory bowel disease 

(di Masi et al., 2009). Researchers in our laboratory have previously demonstrated 

that PXR activation can promote hepatocyte growth and significantly reduce Nf-κB-

induced peri-portal inflammation and fibrosis (Marek et al., 2005, Haughton et al., 

2006, Wright, 2006, Wallace et al., 2010, Wallace et al., 2008). In addition, Iannelli 

and co-workers (Iannelli et al., 2011) have demonstrated that PXR activation results 

in reduced hepatocyte damage following ischaemia-reperfusion injury. PXR has been 

shown to regulate the expression of proteins that are implicated in the oxidative 

stress response such as glutathione-S-transferase (Rosenfeld et al., 2003). 

Although some animal studies have linked PXR activation with the development of 

hepatic steatosis (Lee et al., 2008), this effect has not been observed in clinical 

practice with common human PXR ligands such as rifampicin even with long-term 

administration (di Masi et al., 2009). Figure 1.4 summarises the established 

beneficial effects of PXR activation in the liver. 

 



 

8 
 

 

Figure 1.4 The effects of PXR activation in the liver 

 

A number of drugs have been reported to activate the PXR. These vary widely in 

potency and species selectivity (Table 1).  

 

Table 1 List of common PXR activators and relative potencies across species. 

Adapted from di Masi et al and Shukla et al (di Masi et al., 2009, Shukla et al., 2011) 

Drug 
PXR activation potency: EC50* (nM) 

Human PXR Mouse PXR 

Carbamazepine 15,600 - 

Ciglitazone 4,500 - 

Clotrimazole 800–5,000 1,000 

Dexamethasone 5,000–10,000 >10,000 

Hyperforin 23 - 

Mifepristone 5,500–10,000 1,000–20,000 

PCN > 10,000 200–700 

Progesterone - 5,000–20,000 

Phenobarbital 169,000–370,000 - 

Rifampicin 200–3,000 - 
*EC50=Dose resulting in half maximal activation; - denotes value unavailable for species 
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The anti-inflammatory and anti-fibrotic effects of PXR activation could potentially play 

an important role in liver transplantation by reducing the incidence of NABS and 

consequently improving graft survival. 

 

1.5. Hypotheses and aims of project 

Based on current available evidence, the hypotheses of this project are that 

1. BECs play an active role in the inflammatory response to ischaemia-

reperfusion injury 

2. Ischaemia-reperfusion injury plays a central role in the pathogenesis of NABS 

3. The administration of PXR activators will reduce the cytotoxic, inflammatory 

and pro-fibrotic effects potentially associated with hepatic ischaemia-

reperfusion injury 

 

The aim is to develop an in vitro cellular model of hypoxia in addition to an in vivo 

rodent animal model of hepatic ischaemia-reperfusion injury that are reliable and 

reproducible in order to test hypotheses 1 and 2. The results of the in vitro and in vivo 

experiments are detailed in Chapter 2 and Chapter 3 respectively. 

The effect of PXR activation on liver function following ischaemia-reperfusion injury is 

examined in the in vivo animal model in the first instance (Chapter 5). This is followed 

by a translational retrospective clinical study in order to investigate the relevance of 

these findings in clinical liver transplantation (Chapter 6). 
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Chapter 2. Biliary epithelial cells and peri-ductal fibrosis 

following ischaemia-reperfusion injury: Innocent bystanders 

or central players? An in vitro study
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2.1.  Introduction 

 

2.1.1. The role of biliary epithelial cells in the development of transplantation-
related peri-biliary fibrosis 

Our understanding of the role that BECs play in liver biology has expanded greatly in 

recent years. In addition to maintaining bile homeostasis in physiological conditions, 

these cells have been shown to play a central role in liver regeneration and immunity 

(Strazzabosco et al., 2005). BEC damage and peri-biliary inflammation and fibrosis 

are central features in a spectrum of liver diseases known collectively as 

cholangiopathies (Portmann and Zen, 2012). These range from immune-mediated to 

toxin-induced pathologies of the biliary tree and include NABS (often referred to as 

ischaemic cholangiopathy) that can complicate liver transplantation. The interrelation 

between ischaemic stress, BEC damage and peri-biliary inflammation remains poorly 

understood and is clearly essential to understand the development of NABS. 

Recent studies suggest that ischaemia may result in ‘toxic bile’ formation leading to 

bile salt-induced damage to BECs which could contribute to peri-ductal 

inflammation/fibrosis and potentially NABS (Chen et al., 2009a, Buis et al., 2009, 

Geuken et al., 2004, Hertl et al., 1995, Hertl et al., 2000, Hoekstra et al., 2006, Knoop 

et al., 1993, Yska et al., 2008). In this respect, BEC damage is viewed as a 

secondary event in the ischaemic stress response. 

Bile salts have potent detergent properties causing cell membrane injury and may 

also induce mitochondria-mediated toxicity (Palmeira and Rolo, 2004) and apoptosis 

(Schmucker et al., 1990). Hertl et al demonstrated that porcine livers flushed with 

saline containing hydrophobic bile salts at the time of procurement develop 

significantly worse intrahepatic bile duct injury even after short periods of ischemia, 

compared to control livers flushed with saline alone (Hertl et al., 1995).  

Under physiological conditions, the detrimental effect of bile salts is largely 

neutralised by phospholipids through the formation of mixed micelles in bile (Tsuboi 

et al., 2004). A number of clinical and experimental studies have shown that the ratio 

of bile salts to phospholipids increases in bile to above critical micellar concentrations 

during the first two weeks following OLT and that this may lead to increased bile salt 

toxicity (Chen et al., 2009a, Buis et al., 2009, Geuken et al., 2004, Hoekstra et al., 
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2006, Yska et al., 2008). This is thought to be a result of altered expression of 

hepatocyte bile salt transporters following OLT.  

An alternative and equally plausible hypothesis to the development of peri-biliary 

fibrosis postulates a more central and active role played by BECs following ischaemic 

stress. BECs have been shown to express CD1d and can act as antigen-presenting 

cells (Schrumpf et al., 2015). A number of studies have demonstrated that BECs can 

recognise pathogen-associated molecular patterns (PAMPs) –and potentially 

damage-associated molecular patterns (DAMPs) - through the expression of toll-like 

receptors (TLRs) in pathological states. This results in the activation of downstream 

pathways vital to the immune response including the expression of adhesion 

molecules and chemokines (Syal et al., 2012) (Figure 2.1). The evidence for cytokine 

production by BECs is summarised in Table 2. 

 

 

Figure 2.1 The expression of TLRs by BECs and the NFkB-mediated immune 

response 

 

Table 2 Cytokines secreted by BECs 

Cytokine Reference 
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IL-1β (Kamihira et al., 2005) 

IL-6 (Matsumoto et al., 1994, Yasoshima et al., 1998) 

IL-8 (Morland et al., 1997) 

CX3CL1 (Fractalkine) (Isse et al., 2005) 

CXCL12 (SDF-1) (Terada et al., 2003, Wald et al., 2004) 

CCL20 (MIP-3α) (Harada et al., 2011) 

CCL2 (MCP-1) (Morland et al., 1997) 

TNF-α (Yasoshima et al., 1998) 

TGF-β (Milani et al., 1991) 

 

The potential expression of chemokines by BECs may explain the preferential peri-

biliary inflammation and fibrosis observed in ischaemia-induced cholangiopathy. 

However, it is yet to be investigated whether a causal link between ischaemia-

reperfusion injury and BEC chemokine expression exists or not.  

 

2.1.2. Isolation of primary biliary epithelial cells in culture: Techniques and 
challenges 

The use of immortalised biliary epithelial cell lines (such as H69 cells) is a relatively 

practical approach to study BECs in vitro (Dianat et al., 2014). However, given the 

heterogeneity of intrahepatic biliary epithelial cell populations in size and phenotype, 

the isolation and culture of primary BECs remain the gold standard for the selective 

study of BEC subpopulations (Joplin and Kachilele, 2009). The challenges 

associated with primary BEC isolation and culture are mainly related to the difficulty 

in maintaining the normal phenotype of these cells in vitro given their propensity to 

de-differentiate and, in the case of human cholangiocytes, due to the paucity of 

supply in comparison to cholangiocyte-like cell lines (Joplin, 1994). BECs represent 

only 5% of the intrahepatic cellular component in a healthy liver (Grant and Billing, 

1977). This poses the additional challenge of obtaining adequate cell yields for 

culture. Nevertheless, a number of methods have been developed to facilitate 

primary BEC isolation and maximise cell yield for in vitro research. These are listed 

below. 
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Density-based isolation techniques 

Such techniques utilise the differential density of intrahepatic biliary epithelial cells 

compared to parenchymal cells (Grant and Billing, 1977). Density gradient 

centrifugation of a cell suspension using a medium such as Percoll is usually 

preceded by a method that promotes BEC proliferation such as bile duct ligation in 

order to maximise cell yield (Sirica and Gainey, 1997). Such techniques are relatively 

simple and provide cells that retain typical BEC phenotypes. Purity levels of >95% 

have been reported (Sirica and Gainey, 1997). However, these techniques usually 

involve a 2-stage process and yield hyperplastic, pathologically involved BECs which 

could limit their utility (Joplin, 1994). Moreover, although high purity BEC cultures can 

be obtained from isolation of rat BECs using density gradient centrifugation, similar 

techniques in human produce significantly contaminated cultures (Joplin, 1994). 

 

Size-based isolation techniques 

Centrifugal elutriation has been employed to isolate BECs based on the size of the 

cell subpopulation of interest (Yaswen et al., 1984). Similar to density-based 

techniques, this method can be combined with cell-proliferating techniques to 

maximise cell yield. Occasionally centrifugal elutriation and density gradient 

centrifugation methods are combined to produce more refined extraction (Ishii et al., 

1989). 

 

Selective digestion of the biliary tree 

Selective application of connective tissue digestive enzymes within the biliary tree 

can be used to obtain a high purity, mixed population BEC culture (Demetris et al., 

1988). This technique can produce high yields in livers of larger species and does not 

involve whole liver cell suspension, therefore minimising cell contamination. 

However, it requires an intact liver which is not always available. 

 

Immuno-isolation techniques  
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BECs can be selectively isolated based on their unique expression of surface 

antigens such as epithelial cell adhesion molecule (EpCAM). Immune-isolation 

techniques utilise antibodies conjugated to particles (such as magnetic beads) that 

allow cell extraction following antibody-antigen binding. These techniques are usually 

combined with some form of size/density-based preliminary purification. They are 

unsurprisingly more selective than exclusive density-based techniques and produce 

higher purity cultures (Ishii et al., 1989, Joplin et al., 1989). Immuno-isolation can 

allow isolation of specific BEC subpopulation if necessary. However, antibodies can 

remain bound to BECs for many days in culture and their effect on cultured BECs 

remains unclear (Joplin et al., 1989). Therefore a further step is occasionally 

introduced in order to cleave bound antibodies from the isolated cells (Ishii et al., 

1989). 

 

Immuno-isolation was the chosen method for BEC isolation in this project due to the 

selective nature of the technique, its applicability in human tissue and its relative 

ease of application and reproducibility. 

 

2.1.3. Hypotheses and aims 

 

Based on the above, it was hypothesized that hepatic IRI alters biliary epithelial cells 

and/or the peri-biliary environment resulting in attraction of inflammatory and 

collagen-producing cells 

The aim of this study was to examine the roles of BECs and hepatic stellate cells 

(HSCs) in a simulated ischaemia-reperfusion injury environment in vitro (hypoxia and 

subsequent re-oxygenation) by investigating: 

1. the ability of hepatic stellate cells to migrate towards bile constituents 

2. the ability of BECs to produce chemokines in response to hypoxia and re-

oxygenation 
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2.2. Materials and methods 

2.2.1. Ethical considerations 

National Research Ethics Service (NRES) approval was obtained for the use of 

human tissue (NRES 07/Q0906/15) in this project. All experiments were carried out in 

accordance with the Human Tissue Act 2004, and in strict compliance with other 

local and national guidelines and policies.  

 

2.2.2. Cell isolation protocols 

Human hepatic stellate cells (HSCs) and biliary epithelial cells (BECs) were isolated 

from fresh liver resection specimens obtained from the Freeman Hospital. Care was 

taken to not include the resection margins of the specimen or grossly abnormal 

tissue in the samples used for cell isolation. 

Resected samples were weighted and transferred from the hospital in ice cold 0.9% 

saline. Samples were occasionally stored in Dulbecco’s modified Eagle medium 

(DMEM) at 4°C overnight for cell isolation the following day. 

 

Reagents used for cell isolation 

Phosphate-buffered saline (PBS – product code 70011044) was purchased from 

Thermo Fisher Scientific (Waltham, MA, USA). Dulbecco’s modified Eagle medium 

(DMEM) low and high glucose content (product codes D5546 and D5671 

respectively), collagenase IA (product code C9891), DNAase I (product code D5025), 

OptiprepTM (product code D1556) and Hanks’ balanced salt solution (HBSS – product 

code H9269) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Percoll® 

density gradient medium (product code 17-0891-01) was purchased from GE 

Healthcare (Chicago, IL, USA). EpCam Dynabeads (CELLection Epithelial Enrich – 

product code 16203) were purchased from Life Technologies (Carlsbad, CA, USA). 

 

Isolation of human biliary epithelial cells (hBECs) by immuno-magnetic 

selection 
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Specimens are diced to fine pieces using a pair of scissors or scalpel blade and then 

incubated in 0.1% collagenase A and 0.2% DNAse in Phosphate-buffered saline 

(PBS) for 30-45 minutes at 37°C for digestion. The resultant digest is then filtered 

through an 80μm pore Nybolt mesh and washed twice in PBS with centrifugation. 

Semi-purification is achieved by overlaying the cell suspension on a 33%:77% 

Percoll gradient and centrifuging at 2000rpm for 30 minutes (80% acceleration and 

0% deceleration). The resultant BEC ring (Figure 2.2) is then extracted from the 

Percoll gradient and washed once in PBS with centrifugation. The cells are then 

incubated with Dynabead-conjugated Human Epithelial Antigen HEA-125 for 30 

minutes at 4°C. Dynabead-bound cells are then extracted and washed twice using a 

magnet to remove supernatant. The resultant hBECs are re-suspended in hBEC 

media and transferred to a T25 flask for cell culture.  

 

 

 

Isolation of human hepatic stellate cells (hHSCs) by differential density 

separation 

Figure 2.2 Percoll gradient centrifugation results in a 

HSC/hepatocyte ring (top) and a BEC ring (bottom) 
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Liver tissue is diced, digested, filtered and washed as per the hBEC isolation method. 

Cells are suspended in Hank’s balanced salt solution (HBSS) with or without 

calcium/magnesium and are then mixed with optiprep (60% solution of Iodixanol in 

water) to form a 15% Iodixanol crude cell suspension. This is gently overlaid with a 5-

10 ml layer of 10% Iodixanol in HBSS followed by a 5 ml layer of HBSS to create a 

discontinuous Optiprep gradient. The gradient is centrifuged at 2000rpm for 30 

minutes (80% acceleration and 0% deceleration). The resultant hHSC ring (Figure 

2.3) is extracted from the Optiprep gradient and is washed once in PBS with 

centrifugation. Washed hHSCs are re-suspended in hHSC media and transferred to 

T75 flasks for cell culture.  

 

 

Figure 2.3 Separation of HSC layer in Optiprep gradient 

 

Isolation of human Kupffer cells (KCs) by selective adherence 

Kupffer cells were isolate by allowing the final cell suspension obtained during hHSC 

isolation to settle in a cell culture flask for 60 minutes before rinsing with PBS and 
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transferring the non-adherent hHSCs to fresh culture flasks. This method utilises the 

capacity of KCs to adhere to plastic more rapidly than other non-parenchymal cells 

(Zeng et al., 2013). 

 

H69 cell line 

H69 cells (immortalised human intrahepatic cholangiocyte cell line) were kindly 

provided by Professor Matthew Wright (Newcastle University, UK) and cultured using 

similar media and culture conditions as hBECs. 

 

2.2.3. Cell culture conditions 

Reagents used for cell culture 

Dulbecco’s modified Eagle medium (DMEM) low and high glucose content, Ham’s 

F12 nutrient mixture medium (product code 51653C), foetal calf serum (product code 

F2442), epidermal growth factor (product code E9644), hepatocyte growth factor 

(product code H1404), hydrocortisone (product code H0888), 3,3′,5-Triiodo-L-

thyronine (product code T2877), recombinant human insulin (product code I2643), 

cholera toxin (product code C8052), trypsin-EDTA (product code 59418C), penicillin-

streptomycin (product code  P4333) and L-glutamine (product code G7513) were 

purchased from Sigma-Aldrich. MatrigelTM extracellular matrix (product code 354234) 

was purchased from Corning Inc. (Corning, NY, USA). 

 

Cell culture protocols 

Human biliary epithelial cell growth and proliferation in cell culture requires hBEC 

media which is composed of DMEM and Ham’s F12 media 1:1 mixture supplemented 

with 5% foetal calf serum (FCS), insulin (5μg/ml), hepatocyte growth factor (HGF) (10 

ng/ml), Epithelial growth factor (EGF) (10ng/ml), hydrocortisone (0.4μg/ml), tri-

iodothyronine (2 nmol/L), cholera toxin (10 ng/ml), 1% glutamine and and 1% 

penicillin/streptomycin. hBECs were cultured in 5% CO2 at 37°C for optimal growth 

and proliferation and were sub-cultured using 1X trypsin-EDTA once a confluence of 
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70-80% was reached. hBECs maintained epithelial phenotype for at least one 

passage after isolation. 

Human hepatic hepatic stellate cells were also cultured in 5% CO2 at 37°C. hHSCs 

were cultured on gel matrix, rat tail collagen or uncoated plastic depending on the 

experiment. hHSC media was composed of high glucose-DMEM supplemented with 

16% FCS, 1% glutamine and 1% penicillin/streptomycin. hHSCs were split at 

approximately70-80% confluence using 1X trypsin-EDTA and were maintained in 

culture for up to 5 passages. 

 

2.2.4. Cell culture in hypoxia 

A multi-gas incubator (Sanyo MCO-19M) was used to create a hypoxic environment 

for cells in culture (Figure 2.4). Cells were cultured in 1% oxygen either continuously 

or for a set period (8 hours) followed by culture in 21% oxygen in order to simulate 

ischaemia and reperfusion. CO2 and temperature were maintained at 5% and 37°C 

respectively throughout the hypoxia experiments.  
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Figure 2.4 Multigas incubator for in vitro hypoxia studies (left). To maintain hypoxia, 

oxygen in this incubator is replaced with nitrogen delivered via a nitrogen generator 

(right) 

 

2.2.5. Chemotaxis assays 

Reagents used for chemotaxis assays 

Bovine serum albumin (BSA – product code A2153), fibronectin (product code 

F2006), crystal violet stain (product code C0775), bilirubin (product code B4126), 

cholate (product code C1129), glycocholate (product code G2878), taurocholate 

(product code T4009), chenodeoxycholate (product code C9377), deoxycholate 

(product code D2510), lithocholate (product code L6250), phosphatidyl choline 

(product code P3556) and cholesterol (product code C8667) were purchased from 

Sigma-Aldrich. Monocyte chemoattractant protein-1  (product code 279-MC), stroma-

derived factor-1  (product code 350-NS), interleukin-6  (product code 206-IL), tumour 

necrosis factor-α  (product code 210-TA), transforming growth factor-β  (product code 

240-B), interferon-γ  (product code 285-IF), vascular endothelial growth factor  

(product code 293-VE), fibroblast growth factor  (product code 233-FB) and epithelial 

growth factor (product code 236-EG) were purchased from R&D Systems 
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(Minneapolis, MN, USA). Falcon® 8μm pore cell culture inserts and 24-well 

companion plates were purchased from Corning Inc. 

 

Chemotaxis protocol 

A modified Boyden chamber protocol was followed for the chemotaxis assays using 

sterile 8μm pore 24-well culture inserts (BD Falcon) coated with fibronectin 

(2.5μg/ml). 

Companion 24-well plates for the inserts were blocked with 1% bovine serum 

albumin (BSA) in PBS for one hour. Compounds, cells or conditioned cell media were 

added to the wells after blocking to induce cell migration across the insert filters. 

Culture-activated HSCs (passage 3-5) were used as migrating cells. These were kept 

in serum-free DMEM for 24 hours prior to the assay in order to reduce cell 

proliferation. HSCs were then detached using 1X trypsin-EDTA, washed and re-

suspended in serum-free medium at a concentration of 5-25 x 104cell/ml. The cells 

were subsequently seeded onto the fibronectin-coated inserts placed in the wells of 

the companion plate at concentrations ranging between 30,000-100,000 cell/ml. 

Platelet-derived growth factor (PDGF) was used as a positive control at a 

concentration of 1ng/ml in all migration assays. 1% BSA in PBS was used as a 

negative control. Cells were incubated for 18-24 hours following which the migrated 

cells were fixed, stained and counted under low power magnification (X10). Each 

experiment was typically performed on two occasions at least and the average cell 

count was measured from 30 field views for each variable of interest. 

In early migration assay experiments, cell counts were estimated using 

spectrophotometric analysis of solubilised crystal violet staining. Briefly, cells 

adherent to cell culture inserts were fixed in formalin and stained using 0.05% crystal 

violet stain for 30 minutes. Inserts were then washed with tap water and dried at 

room temperature for 20 minutes. The dye was then solubilised by reintroducing the 

cell inserts into the companion plate after adding 2ml of methanol to each well. The 

plate is then read at OD540 and colour intensities are compared to positive and 

negative control readings. 
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Chemotaxis experiments 

Compounds tested for hHSC chemo-attraction included cytokines such as monocyte 

chemoattractant protein-1 (MCP-1), stroma-derived factor-1 (SDF-1), interleukin-6 

(IL-6), tumour necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), 

interferon-γ (IFN-γ), vascular endothelial growth factor (VEGF), fibroblast growth 

factor (FGF), and epithelial growth factor (EGF) in addition to bile components such 

as bilirubin, cholate, glycocholate, taurocholate, chenodeoxycholate, deoxycholate, 

lithocholate, phosphatidyl choline and cholesterol. 

hBECs were also tested for expression of hHSC chemoattractants in various oxygen 

states. hBECs were cultured in 4 wells of 6-well plates in serum-free DMEM for 24 

hours in hypoxia (1% O2), normoxia (21% O2) or hypoxia for 8 hours followed by 

normoxia in order to mimic IRI. Conditioned serum-free media was collected after 24 

hours from 2 wells whilst the remainder of cells were re-cultured in hBEC media for 

24 hours and then in serum-free DMEM for a further 24 hours under the same 

oxygen state. Conditioned media was then collected at the 72 hour time point. This 

process is illustrated in Figure 2.5. Conditioned media from each oxygen state at 

each time point were diluted 1:8 in serum-free media and added to the companion 

plate wells to assess chemokine expression (Figure 2.6).  

 

 

Figure 2.5 Testing for the expression of chemoattractants by hBECs in various 

oxygen states 
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Figure 2.6 Assembly of chemotaxis assay components 

 

2.2.6. Sample processing and preservation 

Reagents used for sample processing 

RIPA buffer: Purchased from New England Biolabs (Ipswich, MA, USA) as a 10X 

stock solution (product code 9806) and diluted in deionised water to make a 1X 

solution. The 1X buffer is composed of Tris-HCl (20 mM; pH 7.5), Sodium chloride 

(150 mM), EDTA disodium (1 mM), EGTA (1 mM), NP-40 (1%), sodium deoxycholate 

(1%), sodium pyrophosphate (2.5 mM), beta-glycerophosphate (1 mM), sodium 

orthovanadate (1 mM) and leupeptin (1 µg/ml). 

Cell lysis buffer: Purchased from New England Biolabs as a 10X stock solution 

(product code 9803) and diluted in deionised water to make a 1X solution. The 1X 

buffer is composed of Tris-HCl (20 mM; pH 7.5), Sodium chloride (150 mM), EDTA 
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disodium (1 mM), EGTA (1 mM), Triton (1%), sodium pyrophosphate (2.5 mM), beta-

glycerophosphate (1 mM), sodium orthovanadate (1 mM) and leupeptin (1 µg/ml). 

Protease inhibitor cocktail (product code P8340) was purchased from Sigma-Aldrich). 

 

Processing of samples from cell culture harvest 

Samples for protein extraction were obtained by scraping cultured cells from culture 

plates on ice in 1X RIPA or lysis buffer. Protease inhibitor cocktail was added to the 

buffer for a 1X final concentration. The extracted cells were left for 30 minutes at 4°C 

for complete lysis and then centrifuged at 5000 RPM for 5 minutes at 4°C. 

Supernatants were extracted and kept at -80°C for long-term storage. 

Conditioned serum-free media samples were collected from cell culture and 

centrifuged at 5000 RPM for 5 minutes at 4°C. Supernatants were transferred to 

clean tubes and kept at -80°C for long-term storage.  

 

2.2.7. Methods for protein analysis 

Reagents used for protein analysis 

Lowry ABC reagent: Composed of 2% Sodium carbonate in 0.1N NaOH (Lowry A 

solution), 1% sodium potassium tartrate in water (Lowry B solution) and 0.5% 

copper(II) sulphate pentahydrate in water (Lowry C solution) in a 100:1:1 mixture. 

Folin and Ciocalteu’s phenol reagent: Purchased from Sigma-Aldrich (product code 

F9252). Reagent is diluted 1:1 in water for the Lowry method. 

Acrylamide/bis-acrylamide (37.5:1 ratio; 40% solution): Purchased from Sigma-

Aldrich (product code A7168). Used in various concentrations as an electrophoresis 

matrix to enable protein separation by size. 

Tris base: Purchased from Sigma-Aldrich (product code TRIS-RO). Prepared as 

1.5M (pH 8.8) and 0.5M (pH 6.8) solutions in deionised water. These are used as 

components of the separation and stacking gel solutions respectively. 
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Tetramethylethylenediamine (TEMED): Purchased from Sigma-Aldrich (product code 

T9281). This facilitates the polymerisation of acrylamide to polyacrylamide in 

electrophoresis gels. 

Amonium Persulfate (APS): Purchased from Sigma-Aldrich (product code A3678). 

This facilitates the polymerisation of acrylamide to polyacrylamide in electrophoresis 

gels. 

Sodium dodecyl sulfate (SDS): Purchased from Sigma-Aldrich (product code L3771). 

SDS is used as a component of electrophoresis gels. It acts as a strong detergent 

and denatures proteins. It also binds to polypeptides at a constant ratio of 1.4:1 

(SDS:polypeptide) 

Electrophoresis running buffer: Prepared as a stock 10X solution composed of Tris 

base (250mM), glycine (1.92M) and SDS (1% w/v) in deionised water. Buffer is 

diluted to 1X concentration in deionised water prior to use in electrophoresis. 

NuPage LDS sample buffer: Purchased from Life Technologies (product code 

NP0007) as a 4X solution. It is mixed with protein samples for a final 1X buffer 

concentration and is used as a loading buffer to prepare protein samples for 

denaturing gel electrophoresis. 

Dithiothreitol (DTT): Purchased from Sigma-Aldrich (product code D0632). Prepared 

as a 1M stock solution stored in aliquots at -20°C. DTT is added to sample buffers if 

reduction of proteins is required. 

ColorBurst electrophoresis marker: Purchased from Sigma-Aldrich (product code 

C1992) as a ready-to-use solution to identify the molecular mass of protein bands 

following electrophoresis and Western blots. 

Transfer buffer: Composed of Tris base (25mM), glycine (192mM) and 20% methanol 

in deionised water. Buffer is kept at 4°C and used for wet transfer of proteins from gel 

to nitrocellulose membrane. 

TBS-T: Composed of 1X TBS buffer and 0.05% Tween 20. TBS-T is used as a wash 

solution for nitrocellulose membranes and a component of as blocking buffer and 

antibody diluents in Western blots. 1X TBS buffer is prepared from 20X TBS stock 

buffer (4M sodium chloride and 0.4M Tris-HCl; pH 7.4) 
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Blocking buffer: Composed of 1X TBS buffer, 0.05% Tween 20 and 3% skimmed milk 

powder. Used to block the nitrocellulose membrane and minimise non-specific 

antibody binding to the membrane. 

Antibody diluent: Composed of 1X TBS buffer, 0.05% Tween 20 and 0.3% skimmed 

milk powder. Used as a diluent for primary and secondary antibodies during immune-

detection of proteins. 

Pierce enhanced chemi-luminescence (ECL) substrate kit: Purchased from Thermo 

Fisher Scientific (product code 32109). Composed of peroxide buffer and 

luminescence enhancer. Used to detect horseradish peroxidase (HRP) enzyme 

activity over protein bands. 

 

Protein quantification 

Protein quantity in samples was estimated using the Lowry method (Lowry et al., 

1951). Sample or standard (5μl) was incubated with 1ml of Lowry ABC reagent for 10 

minutes at room temperature followed by the addition of 100μl of diluted Folin 

reagent and incubation for a further 20-30 minutes at room temperature. Absorbance 

of the mixture was read at 750nm using a spectrophotometer. The unknown 

concentrations were calculated based on the calibration curve plotted using the 

absorbance readings of the standards. 

 

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Separation of sample proteins was achieved by the Laemmli method (Laemmli, 

1970) using a discontinuous polyacrylamide gel system. The gel consisted of a 

stacking gel layer (4% acrylamide w/v) and a lower separating gel layer (between 7-

15% acrylamide w/v, depending on the molecular weight of the protein of interest). 

Separating gel solutions were prepared by mixing different volumes of 

acrylamide/bisacrylamide, SDS, Tris buffer (1.5M pH 8.8) and water depending on 

the desired acrylamide concentration of the gel. Stacking gel solutions were prepared 

by mixing the same reagents as in the separating gels but substituting the 1.5M Tris 

buffer with 0.5M Tris buffer (pH 6.8). The acrylamide concentration in the stacking gel 

is 4%.  
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Gels were hand-cast using a Bio-Rad Mini-Protean Tetra Handcast apparatus. APS 

and TEMED were added to the gel solutions immediately before transferring the gel 

solution to the apparatus. The separating gel solution was cast first followed by the 

stacking gel to create a 0.75mm-thick 10-well gel. Gels were then transferred to a 

Bio-Rad Mini-Protean Tetra Cell electrophoresis tank filled with electrophoresis 

running buffer. 

Protein samples (from cell extracts or serum-free conditioned media) were mixed with 

loading buffer (with or without DTT) and heated for 10 minutes at 70C before cooling 

and loading into the SDS gel wells. Gel electrophoresis was run at a constant voltage 

of 100V for 1-2 hours. 

 

Western blot 

Gels from SDS-PAGE were removed from the electrophoresis tank and soaked in 

cold transfer buffer along with pre-cut nitrocellulose membranes, foam pads and filter 

papers for at least 10 minutes. Gel, membrane, pads and filter paper were then 

assembled in the gel holding cassette in the order outlined in Figure 2.7 ensuring 

there are no bubbles between the layers. The assembly is then inserted into a Bio-

Rad Mini Trans-Blot tank for wet transfer of proteins. Electro-transfer was maintained 

for at least one hour to ensure adequate protein transfer. 

Blotted nitrocellulose membranes were then washed in TBS-T and then blocked for 1 

hour in room temperature or overnight at 4°C in blocking buffer. Membranes were 

then washed and incubated with an optimised concentration of primary antibody 

against the protein of interest for at least 1 hour in room temperature or overnight at 

4°C. Membranes were washed again in TBS-T prior to incubation for 30 minutes at 

room temperature with a secondary HRP-conjugated antibody against the host 

species of the primary antibody. This was followed by a final wash and then chemi-

luminescent detection of probed protein bands using the ECL substrate kit. Chemi-

luminescent bands were visualised using a Syngene G:BOX CCD camera and band 

densities were quantified using GeneTools analysis software supplied with the 

camera. 

A list of antibodies used in western blot experiments is summarised in Appendix 1.  
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Figure 2.7 Assembly of transfer layers in holding cassette 

 

2.2.8. Methods for cell staining 

Reagents used for staining 

Fixative solution: Composed of formaldehyde (2% w/v) and glutaraldehyde (0.2% 

w/v) in PBS (pH 7.4). Used as a fixative for cells prior to immunofluorescence 

staining. 

Blocking solution: Composed of FCS (5%) in PBS. Used as a blocking buffer to 

prevent non-specific antibody binding during Immunocytofluorescence staining. 

Antibody diluent: Composed of FCS (0.5%) in PBS. Used as a diluent for primary and 

secondary antibodies during Immunocytofluorescence staining. 

4',6-diamidino-2-phenylindole (DAPI): Purchased from Sigma-Aldrich (product code 

D9542). 
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Methanol (product code 32213) was purchased from Sigma-Aldrich. 

 

Immunocytofluorescence staining 

Cells were washed twice with PBS after removal of culture medium and then 

incubated in ice-cold methanol for 10 minutes at 4°C. Methanol was then decanted 

and cells washed again with PBS twice before adding the fixative solution and 

incubating for 10 minutes at room temperature. This was followed by removal of the 

fixative solution, a further two washes with PBS and then the addition of blocking 

solution and incubation for 30 minutes at room temperature. Blocked cells were 

subsequently washed four times with PBS and then incubated for 1 hour with a 

primary antibody of interest (see Appendix 1) at room temperature (or at 4°C for 

longer incubation times). After removing the primary antibody and washing the cells 

twice with PBS, a suitable secondary antibody conjugated to a fluorescent dye (see 

Appendix 1) was applied to the cells for 30 minutes at room temperature and was 

covered in foil to prevent dye photobleaching. Finally, the cells were washed four 

times with PBS and the nuclei counterstained with DAPI for 5 minutes. The cells were 

kept in PBS and were visualised using a fluorescent microscope (Nikon Eclipse 

TE2000-S). 

A list of antibodies used in immunocytofluorescence staining is summarised in 

Appendix 1.  

 

2.2.9. Statistical analysis 

In the case of parametric data, results were expressed as mean ± SD unless stated 

otherwise. Means were compared using the Student t-test or the ANOVA test (where 

multiple variables were analysed or when more than two groups were compared). 

Tukey’s test was used for post-hoc analysis between the groups when significant 

differences were identified on ANOVA. Non-parametric variables were analysed 

using the Mann Whitney U test and results expressed as median (mean rank). 

Correlation between continuous independent variables was performed by measuring 

Pearson’s correlation coefficient. The strength of correlation is described as small, 

medium or large corresponding to correlation coefficient values below 0.3, between 

0.3 and 0.5, and above 0.5 respectively (Cohen, 1988). Test results with p values of 
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less than 0.05 were accepted as statistically significant. All statistical tests were 

performed using the Statistical Package for Social Sciences version 19.0 (SPSS Inc., 

Chicago, IL, USA) and Microsoft Office Excel 2010 (Microsoft Corp., Redmond, WA).
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2.3. Results 

 

2.3.1. Confirmation of isolated cell phenotype in culture 

Biliary epithelial cells 

Biliary epithelial cells had a columnar appearance with elongated nuclei and an 

overall polar morphology. They exhibited a tendency form duct-like congregations in 

culture as illustrated in Figure 2.8. 

 

 

Figure 2.8 Human BECs visualised in cell culture using immunofluorescence staining 

at 20X objective magnification. Solid white arrows denote duct-like arrangements 

 

In addition to morphological features, BECs were stained at first passage in order to 

identify typical markers of the biliary epithelium including cytokeratin 19 (CK19) 

(Figure 2.9), and to exclude markers of mesenchymal cells such as vimentin and α-

smooth muscle actin (α-SMA) (Figure 2.10).  
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Figure 2.9 Immunofluorescence staining for surface markers of BECs (transporters 

and tight junctions). Note the presence of Dynabeads from the cell isolation process 

which auto-fluoresce and do not represent antigen-antibody binding sites (as 

demonstrated in control images). CFTR: Cystic fibrosis transmembrane conductance 

regulator; AE2: Anion exchange protein 2; OSTα: Organic solute transporter alpha; 

ZO1: Zonula occludens-1; TRITC: Tetramethylrhodamine; FITC: Fluorescein 

isothiocyanate 

 

 

Figure 2.10 Immunofluorescence staining for markers of mesenchymal cells (α-SMA 

and vimentin) along with CK19 in hBECs. Note auto-fluorescence of Dynabeads in 

control images. TRITC: Tetramethylrhodamine; FITC: Fluorescein isothiocyanate 
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Figure 2.10 clearly demonstrates strong expression of CK19 in these cells. Moreover, 

the cells showed strong positivity for the apical CFTR channel. However, staining for 

other markers of BECs such as the anion exchange protein 2 (AE2), the organic 

solute transporter alpha (OSTα) and the tight junction protein zonula occludens 1 

(ZO1) was not positive in these cells with the antibody types and concentrations used 

for these experiments (Figure 2.9). Similar negative results were obtained when 

stained for platelet-derived growth factor receptor (PDGFR) and multidrug resistance-

associated protein 3 (MRP3) (results not shown). On the other hand, staining for 

vimentin was negative whereas α-SMA staining was faintly positive in comparison to 

the strong CK19 positivity expressed in the cells as shown in Figure 2.10. This 

demonstrates the predominant epithelial phenotype in these cells. 

 

Cultured hBECs from first passage were then compared for CK19 and α-SMA 

positivity to hBECs from fourth passage and to cells from a cholangiocyte-like cell line 

(H69) (Figure 2.11).  

 

Figure 2.11 Immunofluorescence imaging showing CK19 and α-SMA positivity in 

freshly-cultured hBECS in comparison to mature hBECs and H69 cells. TRITC: 

Tetramethylrhodamine; FITC: Fluorescein isothiocyanate 
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The results suggest that cultured hBECs either slowly lose epithelial phenotype and 

develop markers of mesenchymal cells when kept in culture for longer periods, or 

that lower numbers of mesenchymal cells expand after multiple passages in culture. 

The results also show the stronger expression of CK19 in fresh primary human 

cholangiocytes in comparison to H69. 

 

Hepatic stellate cells 

Human hepatic stellate cells have a branched (occasionally spindle-shaped) 

appearance with round nuclei in culture. Fresh hHSCs (quiescent hHSCs) 

demonstrate abundant cytoplasmic fat droplets in keeping with their fat-storing role in 

normal liver (Friedman, 2008). Activated hHSCs in cell culture lose their lipid droplets 

and become more flattened. hHSCs become activated after approximately 5 days of 

growth in cell culture. This spontaneous activation in vitro can be slowed down by 

coating culture flasks with extracellular matrix products such as MatrigelTM rather than 

simply growing cells on plastic. These features are illustrated in Figure 2.12. 

 

 

Figure 2.12 hHSCs at 20X objective magnification under light microscopy after 5 

days in culture with (left) and withought (right) MatrigelTM. 
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Activated hHSCs were stained for myofibroblast and neural crest markers including 

α-SMA, elastin, vimentin, glial fibrillary acidic protein (GFAP) and synaptophysin, in 

addition to the Kupffer cell marker CD163. Selected examples of these stains are 

shown in Figure 2.13. 

 

 

Figure 2.13 Immunofluorescence imaging of activated hHSCs. Neural crest markers 

(GFAP and synaptophysin) are stained along with α-SMA. TRITC: 

Tetramethylrhodamine; FITC: Fluorescein isothiocyanate 
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This clearly demonstrates abundant expression of classic HSC markers such as α-

SMA, GFAP and synaptophysin, and confirms HSC activation in culture. Moreover, 

these cells stained positively for elastin and vimentin, and were negative for CD163 

staining (data not shown). 

 

2.3.2. Results of chemotaxis assays 

hHSCs were found to measure 20-40μm in culture. Cell culture inserts with a pore 

diameter of 8μm were therefore used for chemotaxis assays (Kawamoto et al., 1997). 

The pore diameter allowed active translocation of migrating cells without being 

prohibitive. A comparison of hHSC size relative to the pores in illustrated in Figure 

2.14. 

 

 

Figure 2.14 Light microscopy of cell culture insert showing size of stellate cell relative 

to pore diameter. Left: image taken at the time the cells were seeded onto insert. 

White arrowhead marks one pore. Black arrow marks one hHSC. Right: image takes 

after 20 hours of incubation. Black arrow shows previously marked cell has now 

migrated to lower surface of insert 

 

Migration of hHSCs in response known cytokines 

hHSC migration was tested against various concentrations of known cytokines and 

growth factors including PDGF, MCP-1, VEGF, SDF-1, IL-6 and IFN-γ. hHSCs 
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migration was found to be strikingly greater towards PDGF than any other cytokine 

tested (Figure 2.15). PDGF was therefore used as a positive control for all 

subsequent experiments. The results of the initial chemotaxis assays with known 

cytokines are outlined in Figure 2.16. 

 

 

Figure 2.15 Migration of hHSCs towards PDGF (left) versus VEGF (middle) and 

MCP-1 (right). Cells were used at passage 4 and seeded at 60,000 cell/ml. 

 

 

Figure 2.16 Migration of hHSCs towards various cytokines. Concentrations of 

cytokines in this example were all 62.5ng/ml. Cells were used at passage 3 and 

seeded at 100,000 cell/ml. Average absorbance of washed crystal violet stain was 
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used in preliminary experiments rather than actual cell count. *P<0.05 versus 

negative control. 

 

In addition to PDGF, MCP-1 and IFN-γ were shown to significantly attract hHSCs at 

the concentrations tested. Interestingly, hHSC migration towards IL-6 was lower than 

in negative controls but this difference did not reach statistical significance (P=0.06). 

 

Migration of hHSCs in response to various components of bile 

Various bile components were used in hHSC migration assays to investigate the 

potential pro-migratory effect of bile. The compounds tested were cholesterol, 

phosphatidylcholine, cholic acid, chenodeoxycholic acid and bilirubin at various 

concentrations. Figure 2.17 outlines the results of these assays. 

 

 

Figure 2.17 Migration of hHSCs towards high and low concentrations of various bile 

components. Cells were used at passage 4 and seeded at 60,000 cell/ml. PDGF 

used as positive control is not shown (average count >80). High 

concentrations=100ng/ml; Low concentrations=10ng/ml. PC: Phosphatidylcholine; 
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CL: Cholesterol; CDCA: Chenodeoxycholic acid; CA: Cholic acid; Bil: Bilirubin. 

*P<0.05 versus negative control; $P<0.05 versus high concentration 

 

The results highlight the chemotactic effect of cholesterol, phosphatidylcholine and 

the bile acids cholate and chenodeoxycholate on activated hHSCs. Lower 

concentrations of these compounds appear to be more effective at producing hHSC 

migration although this is only significantly different in the case of 

phosphatidylcholine and chenodeoxycholic acid. Bilirubin appears to have no 

migratory effect on activated hHSCs. 

The chemotactic effect of bile components on activated hHSCs was compared to 

those of known cytokines as part of an assay mentioned previously. Cholesterol, 

phosphatidylcholine and chenodeoxycholic acid in low concentrations retained 

significance in attracting hHSCs compared to negative controls, and were 

comparable in that effect to IFN-γ and MCP-1 (Figure 2.18). 

 

 

Figure 2.18 Comparison of hHSC migration to bile components and known cytokines. 

Concentrations of cytokines in this example were all 62.5ng/ml. Cells were used at 

passage 3 and seeded at 100,000 cell/ml. Average absorbance of washed crystal 

violet stain was used in preliminary experiments rather than actual cell count. High 
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concentrations=100ng/ml; Low concentrations=10ng/ml. PC: Phosphatidylcholine; 

CL: Cholesterol; CDCA: Chenodeoxycholic acid; CA: Cholic acid; Bil: Bilirubin. 

*P<0.05 versus negative control; $P<0.05 versus high concentration 

 

The effect of cell hypoxia on activated hHSC migration 

Conditioned serum-free media from various cell type exposed to hypoxic culture 

conditions were tested for the presence of potential chemotactic factors to activated 

hHSCs. The cell types tested included Kupffer cells, hBECs and activated and non-

activated hHSCs. Conditioned media from Kupffer cells cultured in hypoxic conditions 

demonstrated significantly lower migration to activated hHSCs compared to negative 

controls. On the other hand, hHSCs migrated towards media from Kupffer cells 

cultured in normoxic conditions in significantly greater numbers compared to media 

from hypoxic cells and negative controls (Figure 2.19). 

It is worth noting that Kupffer cells proved difficult to maintain in culture using 

standard medium. Therefore they could only be used at an early timepoint in this 

assay (24 hours in culture) and were not used in further experiments in this project. 

 

 

Figure 2.19 hHSC migration to media from hypoxic versus normoxic Kupffer cells. 

*P<0.05 versus negative control; $P<0.05 versus normoxic conditions 
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In comparison, conditioned media from hBECs cultured in either hypoxic or normoxic 

conditions resulted in hHSC migration counts significantly lower than controls. 

However, for each studied timepoint, hHSC migration was significantly greater to 

media from the hypoxic group. Moreover, regardless of oxygen condition, cell 

migration was significantly greater towards media from the later timepoint (Figure 

2.20). Far from producing chemotactic factors to hHSCs, this data suggests that 

hBECs inhibit hHSC migration particularly in normoxic conditions and at earlier 

timepoints in culture. 

 

 

Figure 2.20 hHSC migration to media from hypoxic versus normoxic human biliary 

epithelial cells at 1 and 7 days in culture. Cells were used at passage 4 and seeded 

at 100,000 cell/ml. *P<0.05 versus negative control; ^P<0.05 versus later timepoint; 

$P<0.05 versus normoxic conditions 

 

The ability of quiescent and activated hHSCs to attract activated hHSCs in hypoxic 

culture conditions was then investigated. Matrigel-coated culture flasks were used to 

delay the spontaneous hHSC activation in culture. Similar to other cells, the migration 

effects of quiescent and activated hHSC media on activated hHSCs was mostly 
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lower than that seen in negative controls. However, contrasting results were obtained 

with regards to the effect of hypoxia. While quiescent hHSCs produced significantly 

less attractive media to activated hHSCs in response to hypoxia, a similar effect was 

not observed when activated hHSCs were cultured in hypoxic conditions. Moreover, 

later timepoints produced opposite effects on quiescent versus activated hHSCs in 

comparable oxygen culture conditions (Figure 2.21 and Figure 2.22). 

This suggests that quiescent hHSCs produce an environment that suppresses HSC 

migration and that this effect becomes more pronounced in hypoxic conditions. The 

data also suggests that the regulatory effect of hypoxia on hHSC migration is lost 

once these cells become activated. 

 

 

Figure 2.21 hHSC migration to media from hypoxic versus normoxic human hepatic 

stellate cells at 3 and 7 days in coated culture. Cells were used at passage 4 and 

seeded at 100,000 cell/ml. *P<0.05 versus negative control; ^P<0.05 versus later 

timepoint; $P<0.05 versus normoxic conditions 
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Figure 2.22 hHSC migration to media from hypoxic versus normoxic human hepatic 

stellate cells at 3 and 7 days in uncoated culture. Cells were used at passage 4 and 

seeded at 100,000 cell/ml. *P<0.05 versus negative control; ^P<0.05 versus later 

timepoint; $P<0.05 versus normoxic conditions 

 

The effect of BEC re-oxygenation on activated hHSC migration 

In order to simulate the effect of IRI in vitro, hBECs were cultured in hypoxic 

conditions for 8 hours and then in re-oxygenated conditions. The migratory effect of 

conditioned media from these cells on hHSCs was compared to that of hBECs kept 

exclusively in hypoxic or normoxic conditions. This experiment was conducted on 

hBECs at passage 0 in order to avoid any potential modulatory effect of cell splitting 

on the biliary epithelial phenotype. 

As demonstrated in Figure 2.23, this assay highlighted a significant increase in 

activated hHSC migration towards media from hBECs that were exposed to hypoxia 

and subsequently to normal oxygen conditions. However, in contrast to previous 

results, the inhibitory effect of hBEC culture on hHSC migration in normoxic or 

hypoxic conditions was not seen here, nor was the improved migratory effect of 

hypoxia compared to normal oxygen conditions in culture (Figure 2.20). 

 



 

46 
 

 

Figure 2.23 hHSC migration to media from human biliary epithelial cells (passage 0) 

at 1 and 3 days in culture. Hypoxic to normoxic conditions were compared to hypoxia 

or normoxia alone. hHSCs were used at passage 3 and seeded at 60,000 cell/ml. 

*P<0.05 versus negative control; ^P<0.05 versus later timepoint; $P<0.05 versus 

normoxia or hypoxia alone 

 

The effect of in vivo reperfusion injury on activated hHSC migration 

In order to investigate the presence of hHSC chemokines in the in vivo environment 

following IRI, bile samples were obtained from rats exposed to hepatic IRI at early 

timepoints (5 and 24 hours). These were used in hHSC migration assays in vitro and 

compared to bile samples obtained from control animals. For further details on the in 

vivo hepatic IRI model, please refer to Chapter 4. 

As demonstrated in Figure 2.24, no obvious difference in hHSC migration was noted 

in response to bile samples obtained from rats exposed to hepatic IRI compared to 

control rats. However, when the average migrating hHSC cell count was correlated to 

the biliary concentrations of various cytokines measured as part of the in vivo hepatic 

IRI study, a strong correlation was identified between hHSC migration and the level 

of MCP-1 in bile (Table 3).  
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Figure 2.24 hHSC migration to bile sample obtained from rats exposed to hepatic IRI 

versus control rats. hHSCs were used at passage 3 and seeded at 30,000 cell/ml. 

*P<0.05 versus negative control 

 

Table 3 Correlation between biliary cytokine concentrations (from rats exposed to 

hepatic IRI and sham surgery) and average hHSC migration in vitro 

 Correlation to average hHSC cell migration 

Cytokine Pearson coefficient P value 

IL-1b 0.264 0.408 

IL-2 -0.038 0.908 

IL-6 -0.203 0.527 

EGF -0.307 0.332 

IL-10 -0.116 0.718 

IFNγ -0.147 0.649 

MCP-1 0.706 0.01 

IP-10 0.42 0.174 

VEGF 0.203 0.527 

MIP-2 0.284 0.37 

RANTES 0.002 0.995 
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2.3.3. Results of cytokine quantification in conditioned cell media 

Despite multiple attempts at isolating commonly known cytokine using gel 

electrophoresis and western blotting (including at 15% gel percentage), no cytokine 

was identified using the available antibodies at the manufacturers’ recommended 

doses.  
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2.4. Discussion 

The aim of these in vitro assays was to examine the potential role of BECs in 

propagating the inflammatory response to ischaemia reperfusion injury. Although a 

definitive answer to this enquiry may not have been reached, these studies do 

provide provisional evidence that the peri-biliary environment and BECs in particular 

can attract HSCs at degrees that vary according to oxygenation levels. 

Human BECs were successfully isolated in this study. This was confirmed by the 

classic morphological features in addition to the strong expression of CK19 and 

positive staining for CFTR in the isolated cells. Other biliary epithelial proteins such 

as AE2, OSTα and ZO1 were not detected with immunofluorescence staining. This 

may be due to the untested antibodies that were used in these experiments or errors 

in the staining methods, although it could also reflect a loss of these proteins in the 

isolation process. Staining for vimentin was negative in these cells whereas α-SMA 

staining was faintly positive, possibly indicating early stages of mesenchymal de-

differentiation, a recognised process that BECs gradually undergo in culture 

(Omenetti et al., 2008). This may also explain the stronger expression of 

cholangiocyte markers in BECs of earlier culture passages and the predominance of 

mesenchymal markers at later passages. Immunofluorescence staining has also 

highlighted the preference of using fresh primary BECs over cell lines such as H69 

with regards to conformity to epithelial phenotype. 

Non-parenchymal cells were isolated primarily from humans in this study in order to 

maintain compatibility between cells in culture. hBECs and hHSCs were isolated 

concurrently from retrieved specimens but same-specimen non-parenchymal cells 

were used in different experiments due to their distinct optimal utility times. 

Activation times for hHSCs in cultures were between 5-7 days from the time of cell 

isolation. Coating of cell culture flasks with Matrigel™ was shown to delay hHSC 

activation by approximately one week further. The majority of cultured hHSCs lost 

their fat droplets and became α-SMA-positive once passaged. Only activated hHSCs 

were used for the chemotaxis assays in this study. 

Among the panel of cytokines studied, PDGF was found to be the most potent 

chemoattractant to hHSCs in vitro. hHSCs also migrated consistently in response to 

MCP-1 and IFNγ at the standard concentrations tested. On the other hand, hHSC 
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migration towards IL-6 was lower than in negative control samples suggesting a 

possible inhibitory effect against myofibroblast migration, although this difference did 

not reach statistical significance. 

The potential chemotactic effect of bile was also investigated in this study. Although 

bilirubin was not found to be chemoattractant to hHSCs, hHSC migration was 

significantly positive towards bile salts, phospholipids and cholesterol in low 

concentrations in vitro, reaching levels comparable to the chemotactic effect of MCP-

1 and IFNγ. This result could be extrapolated to suggest a contributory role of these 

bile components to the inflammatory and fibrogenic response to hepatic IRI in vivo. It 

is important to point out however that these components were generally more 

effective as hHSC chemoattractant at lower doses. This may be a genuine 

concentration response, although it is equally possible that bile components such as 

bile salts may have a cytotoxic effect of on hHSCs at higher doses.  

Another aspect investigated in this study was the effect of hypoxia on the expression 

of potential chemokines to hHSCs by various non-parenchymal cells. Generally 

speaking, Kupffer cells and quiescent hHSCs exposed to hypoxia produced 

conditioned media that was less attractive to activated hHSCs compared to media 

from negative controls. This data suggests suppression of activated hHSC migration 

by these cells during hypoxic conditions. In the case of Kupffer cells, the inhibitory 

effect of hypoxia on activated hHSCs contrasts with the significantly greater cell 

migration in normal oxygen conditions in comparison to negative control media, 

perhaps suggesting a role for reactive oxygen species in the induction of chemokine 

expression as has been previously proposed (Forman and Torres, 2002). With 

regards to quiescent hHSCs, suppression of cell migration was greater in hypoxic 

compared to normal oxygen conditions. However, the regulatory effect of hypoxia on 

cell migration appears to subside when hHSCs become activated. It remains unclear 

why activated hHSCs are attractive to other activated hHSCs in vitro regardless of 

oxygen levels in culture. It is conceivable that in the activated state regardless of 

stimulant, hHSCs produce “alarm” signals calling for reinforcement and that the 

pathway for chemokine expression in these cells does not involve oxygen or reactive 

oxygen species. 

Data regarding the effect of hypoxia on hBECs in vitro was inconsistent. However, far 

from producing chemotactic factors to activated hHSCs in hypoxic or normal oxygen 
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conditions, these cells produced conditioned media that was either inhibitory or 

neutral to hHSC migration. Interestingly, the outcome was different when these cells 

were temporarily exposed to hypoxia and subsequently returned to normal oxygen 

conditions. Conditioned media in these cells elicited a significantly improved 

migratory response from activated hHSCs, suggesting a possible active role for these 

cells in the inflammatory response to hepatic IRI. 

The migratory effect of conditioned media altered with time in culture in varying ways 

according to cell type. On the whole, cells that were thought to be in a non-activated 

state such as quiescent hHSCs and fresh hBECs became more attractive to 

activated hHSCs with time in culture, probably as a result of the inevitable 

spontaneous activation and de-differentiation of these cells in culture. On the other 

hand, activated hHSCs became less attractive to other activated hHSCs after longer 

durations in culture, suggesting the presence of negative feedback pathways to 

chemokine expression in activated hHSCs. 

The search for potential chemokine candidates in the conditioned media that would 

explain the results obtained was generally unsuccessful. It is worth noting that many 

of the antibodies used in the immunodetection experiments were not previously 

tested for western blot assays and that optimal antibody dilutions were unknown for 

this application in many cases. Logistical and financial constraints in this project 

precluded in-depth testing for the presence of chemokines in vitro, yet it would be 

inaccurate to conclude that all of the probed chemokines was absent in culture. The 

application of bile samples obtained from rats exposed to IRI to the migration assays 

uncovered a strong correlation between hHSC migration and the level of MCP-1 in 

bile. Although not conclusive, this data suggests that MCP-1 is produced in the 

vicinity of bile ducts (probably by cholangiocytes) in response to hepatic IRI, and that 

this contributes to the ensuing peri-biliary inflammation and fibrosis. 

One of the main limitations of this in vitro study was the evolving nature of hBECs 

into mesenchymal-like cells in culture. This necessitated urgency in exposing these 

cells to test environments even at lower cell concentrations at times, potentially 

affecting cell-cell signalling and chemokine production. Moreover, hBECs normally 

require a number of growth factors in culture media in order to maintain their 

epithelial phenotype for longer periods. The clear need for serum-free and growth 

factor-free media for migration assays posed a major challenge to hBEC 
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maintenance in culture particularly for later timepoints (72 hours) which required an 

interim period of culture in normal hBEC medium. It is possible that this may have 

impacted on chemokine production and resulted in incomparable early and late 

samples. 

Overall, the results obtained from these experiments are very promising and point to 

an active role for hBECs and the peri-biliary environment in attracting collagen-

producing cells. The in vitro nature of this study required testing of a narrow range of 

variables. As a result, these experiments pose further questions about the 

contribution of bile components and of biliary epithelial cells to hepatic IRI and open 

the door for a wider range of variables to be explored in future studies in order to 

clarify the pro-inflammatory role for biliary epithelial cells and bile components in vivo. 
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Chapter 3. In vivo rat hepatic ischaemia-reperfusion injury 

models: A literature review
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3.1. Introduction 

Hepatic IRI has been the focus of numerous experimental studies over the years 

(Spiegel and Bahde, 2006). In vitro studies based on isolated primary liver cells or 

related cell lines can be useful in investigating the cellular response to hypoxia and 

re-oxygenation in isolation of other factors and are, broadly speaking, simpler, safer 

and less expensive to conduct in comparison to in vivo studies (Vignais et al., 2010). 

However, the isolated nature of such models can limit the extrapolability and 

relevance of results to the more complex in vivo environment (LeCluyse et al., 2012). 

An in vitro cellular model to investigate the effect of hypoxia and re-oxygenation on 

primary liver cells as part of this project is outlined in Chapter 2. 

Liver perfusion systems are an alternative method to study hepatic IRI. First 

described by Claude Bernard in the mid-19th century investigating glycogen 

metabolism in the liver (Bernard, 1855), the technique has since been modified and 

improved and is now commonly used investigate liver pathophysiology and drug 

metabolism (Borchardt et al., 1996). The main variations of the technique are in-situ 

versus ex-vivo perfusion. The choice of technique depends on the need to preserve 

or eliminate external physiological influences (Spiegel and Bahde, 2006). However, 

the substitution of blood with perfusion solution and the lack of interaction with blood 

components and other external physiological influences render the liver perfusion 

model less than ideal for studying the pathophysiology of warm ischaemia 

reperfusion injury, but more useful in investigating organ preservation and perfusate 

analysis (Bessems et al., 2006, Spiegel and Bahde, 2006). 

Various in vivo animal models involving the temporary occlusion of blood flow into the 

liver have been designed in order to study warm hepatic IRI within a live mammalian 

system. These models overcome the limitations associated with liver perfusion or in 

vitro models. Although extrapolation of results from in vivo studies to humans is 

possible, interspecies variation in liver anatomy, metabolism and hepatic tolerance to 

ischaemia in addition to variations between and within in vivo models are factors that 

should be considered in the design of an in vivo model and interpretation of its results 

(Mendes-Braz et al., 2012). 

 

3.1.1. The ideal species 
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Various animals have been utilised in in vivo experiments of warm hepatic IRI 

including pigs, dogs, cats, rabbits, rats and mice. The frequency of published use of 

each species in hepatic IRI studies is illustrated in Figure 3.1. This shows that rats 

are the most commonly used species for these studies. 

 

 

Figure 3.1 The frequency of published research on hepatic IRI studies since 1950 

according to mammalian species (results are based on PubMed search conducted in 

May 2016) 

 

The choice of species for an in vivo hepatic IRI model is influenced by a number of 

factors including animal size, hepatobiliary anatomy and physiology, technical 

feasibility, need for genetic modifications, sample size, ethical constraints and cost. 

Based on size, animals are classed as either large or small. Large animals include 

pigs and dogs. Generally speaking, the liver anatomy and metabolism in these 

animals shows greater resemblance to that of humans, and therefore, can result in 

data of relatively greater clinical relevance (Abdo et al., 2003). On the other hand, the 

use of these animals is limited by logistical, financial and ethical constraints. In 

comparison, smaller animals, such as rats and mice, exhibit distinct differences to 
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human liver anatomy and more accelerated liver metabolism which can potentially 

limit data extrapolation to humans. Procedures performed in smaller animals are 

more likely to be technically demanding which may prove challenging to less 

experienced investigators. Nevertheless, smaller animals are generally easier to 

handle in the laboratory setting and present significantly less logistical and financial 

constraints. Genetically modified strains are most commonly applicable to small 

animals (Mendes-Braz et al., 2012). 

Figure 3.2 displays a time-trend of animal choice in published in vivo hepatic IRI 

studies. It demonstrates that the utilisation of small animals has increased in the past 

decade compared to large animals. In particular, the proportion of mice studied has 

increased the most, although studies of rats remain the highest over the past decade 

in terms of absolute numbers. 

 

 

Figure 3.2 Time-trend of animal choice in published in vivo hepatic IRI studies. 

(results are based on PubMed search conducted in May 2016) 
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Based on their relative ease of handling, availability and low running costs, rats were 

selected as the animal of choice for the in vivo hepatic IRI model in this project 

(Chapter 4).  

 

3.1.2. Anatomy of the rat liver 

As is the case in human liver anatomy, the hepatobiliary system in rats exhibits 

significant anatomical variations. The need to understand the surgical anatomy of the 

rat liver and its variations is crucial when attempting to design and standardise a live 

model of hepatic IRI in order to maximise procedure efficiency, prevent complications 

and minimise skewed results (Martins and Neuhaus, 2007). 

 

General and surface anatomy 

The adult rat liver mass is roughly 5% of the total body weight whereas the human 

liver is proportionately smaller (2.5% of total body weight). In an average-sized rat 

(250-300g), the mean liver weight is about 13.6g (Vdoviakova et al., 2016, Martins 

and Neuhaus, 2007).  

The rat liver has a superior (diaphragmatic) convex surface and an inferior (visceral) 

concave surface. The superior surface is covered by peritoneum and is attached to 

the diaphragm, xiphoid process and supraumbilical anterior abdominal wall (slightly 

to the right of the midline) via the falciform ligament which forms an interlobular 

fissure that divides the median lobe of the rat liver into a larger right and smaller left 

portion by a 2:1 ratio (Madrahimov et al., 2006) (Figure 3.3). Generally speaking, the 

falciform ligament divides the whole rat liver into two parts, right and left. However, in 

contrast to humans, the right and left parts of the rat liver are roughly of equal size 

(Martins and Neuhaus, 2007).  

The inferior surface of the rat liver is in relation to the stomach, duodenum, hepatic 

flexure of the colon, pancreas, right kidney and right adrenal gland. The transverse 

fissure of the liver (porta hepatis) lies on the inferior surface and is the point of 

access of portal vein, hepatic artery, bile duct, nerves and lymphatics to the liver 

(Martins and Neuhaus, 2007, Vdoviakova et al., 2016) (Figure 3.4).  
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Figure 3.3 The falciform ligament (arrow) divides the median lobe of rat liver into right 

and left portions 

 

 

Figure 3.4 Passage of vascular and biliary structures via the transverse hepatic 

fissure (porta hepatis) (arrow). The hepatogastric ligament can also be seen on the 

left. 
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In addition to the falciform ligament, the rat liver communicates with the parietal 

surface of the abdominal wall and to visceral structures through a number of other 

ligaments. The round ligament (ligamentum teres hepatis) lies at the free edge of the 

falciform ligament extending between the umbilicus and the vertical fissure of the 

median lobe and represents the obliterated embryonic umbilical vein. Similar to 

humans, the coronal ligament surrounds a bare area of liver dorsally and extends 

laterally into right and left triangular ligaments which connect the diaphragm to the 

right and left hepatic lobes respectively. The hepatogastric and hepatoduodenal 

ligament join the inferior surface to the lesser curvature of the stomach and to the 

duodenum respectively (Vdoviakova et al., 2016, Martins and Neuhaus, 2007, 

Kogure et al., 1999). 

 

Lobes of the rat liver 

The rat liver is multilobulated in a manner similar to other mammals (Martins and 

Neuhaus, 2007). It is divided into four lobes: the median, left lateral, right and 

caudate lobe in descending order of size (Figure 3.5). The rat liver lobes are roughly 

comparable to segments of the human liver. However, in contrast to human liver 

segments, rat liver lobes are grossly well defined with deep fissures separating 

neighbouring lobes (Kogure et al., 1999, Shi et al., 2015). The median lobe 

comprises about 38% of the rat liver mass. As mentioned above, the falciform 

ligament connects the diaphragm and anterior abdominal wall to this lobe in line with 

the vertical (umbilical) fissure dividing the median lobe into a larger right median and 

smaller left median portion (Madrahimov et al., 2006). The median lobe is dorsally in 

continuity with the left lateral lobe which comprises roughly 30% of the total liver 

mass. The left lateral lobe covers most of the anterior surface of the stomach and is 

itself covered ventromedially by the left portion of the median lobe. The right lobe 

comprises around 22% of rat liver mass and is almost completely covered ventrally 

by the right portion of the median lobe. The right lobe is divided by a horizontal 

fissure into a (slightly larger) superior and an inferior portion. The caudate lobe is 

situated ventrally and to the left of the IVC and posterior to the stomach. It comprises 

around 8-10% of the total liver mass and is divided into two distinct portions: the 

paracaval portion, also known as the caudate process, surrounds a segment of IVC 

and communicates with the second portion known as the Spiegel lobe. The Spiegel 
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lobe is itself divided into two leaf-like portions: anterior and posterior, of roughly equal 

size (Martins and Neuhaus, 2007). The paracaval portion of the caudate lobe bridges 

the two portions of the Spiegel lobe to the right lobe and for that reason is considered 

not to be a distinct anatomic unit by some authors (Martins and Neuhaus, 2007, 

Madrahimov, 2006) (Figure 3.6) 

 

 

Figure 3.5 Anatomy and relative mass of rat liver lobes. Modified from Martins and 

Neuhaus 2007 (Martins and Neuhaus 2007) 

 

The right hemi-liver in the rat is comprised of the right lobe and right portion of the 

median lobe, while the left portion of the median lobe, the left lateral lobe and the 

caudate lobes form the left hemi-liver. As mentioned above, the right and left hemi-

livers are of comparable volumes in the rat (Martins and Neuhaus, 2007). 
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Figure 3.6 Right lobe (superior and inferior) joined to Spiegel lobe (anterior and 

posterior) through caudate process 

 

Vascular and biliary anatomy 

Portal vein 

The portal venous system of the rat liver is the most constant anatomic reference, as 

is the case in mammals, and its branches closely follow the hepatic lobes described 

in the previous section (Martins and Neuhaus, 2007). The portal vein is formed by the 

convergence of the superior mesenteric vein, gastrosplenic vein and gastroduodenal 

vein (Gregerson et al., 1996). At the porta hepatis, the main portal vein first gives 

branches to right (right portal vein) then caudate lobes (caudate portal vein) followed 

by the median and finally the left lateral lobe (Martins and Neuhaus, 2007). 

The right portal branch divides shortly after its origin into one superior and one (or 

more) inferior branches. The superior branch frequently supplies both the superior 

and inferior portions of the right lobe ((Sanger et al., 2015). 
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The portal branch to the caudate lobe is short and immediately divides into two 

branches, supplying the anterior and posterior Spiegel lobes. The paracaval caudate 

is supplied by branches from the right superior and the caudate portal vein (Sanger 

et al., 2015, Martins and Neuhaus, 2007). 

The portal vein then gives off two main branches: the right median and the left portal 

veins. The right median portal vein supplies the right median lobe while the left portal 

vein supplies the left median and left lateral lobes. Consequently, the median lobe 

receives two portal branches whereas each other lobe receives only one branch 

(Sanger et al., 2015). It is important to note that the division of the left portal vein can 

either occur proximally in the porta hepatis or deep within the left lateral lobe 

parenchyma. Therefore, clamping of the pedicle to the left lateral lobe or excision of 

this lobe may result in inadvertent ischaemia to the left portion of the median lobe 

(Sanger et al., 2015). Figure 3.4 illustrates the anatomy of the portal vein and its 

branches in the rat. 

 

 

Figure 3.7 Portal venous anatomy in the rat. RML: Right median lobe; LML: Left 

median lobe; LLL: Left lateral lobe; SRL: Superior right lobe; IRL: Inferior right lobe; 

ACL: Anterior caudate lobe; PCL: Posterior caudate lobe. Paracaval caudate tissue 

is omitted for simplification 
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Hepatic artery 

The arterial supply of the liver is supplied by the coeliac trunk. Branches from the 

coeliac trunk are similar to those in human but run a slightly different course. Hepatic 

artery branches generally follow the course and pattern of the corresponding portal 

venous branches lying ventral to the veins ((Madrahimov et al., 2006)). Martins and 

Neuhaus also describe an accessory left hepatic artery arising from the left gastric 

artery and supplying the dorsomedial aspect of the left lateral lobe (Martins and 

Neuhaus, 2007). 

 

Hepatic veins  

Examination of the hepatic veins in the rat has helped explain some of the variations 

in hepatic vein anatomy in humans (Kogure et al., 1999). In contrast to humans, the 

hepatic parenchyma completely surrounds a segment of IVC (Martins and Neuhaus, 

2007). The superior and inferior right lobes drain into the IVC via one (or less 

commonly two) separate hepatic veins. These correspond to the right hepatic vein 

and the frequently observed inferior right hepatic vein variant respectively (Martins 

and Neuhaus, 2007, Kogure et al., 1999, Sanger et al., 2015). 

The median lobe drains via two or (more commonly) three veins: the right, middle 

and left median hepatic veins. The vein draining the left middle lobe (left median 

vein) may join the IVC separately or, more commonly join the vein draining the left 

lateral lobe (left hepatic vein) and the middle median vein forming a common trunk 

prior to entering the IVC. A similar anatomical variation is noted in humans where the 

middle and left hepatic veins occasionally join and enter the IVC as a common trunk 

rather than separately (Sanger et al., 2015, Martins and Neuhaus, 2007, Kogure et 

al., 1999). 

The caudate lobe is drained by two veins (anterior and posterior) that can either enter 

the IVC separately or form a common trunk prior to joining the IVC. The paracaval 

caudate tissue drains directly into the IVC via multiple small branches (Martins and 

Neuhaus, 2007, Madrahimov et al., 2006, Sanger et al., 2015). Venous drainage of 

the rat liver is illustrated in Figure 3.8 



 

64 
 

 

 

Figure 3.8 Hepatic venous anatomy in the rat. RML: Right median lobe; LML: Left 

median lobe; LLL: Left lateral lobe; SRL: Superior right lobe; IRL: Inferior right lobe; 

ACL: Anterior caudate lobe; PCL: Posterior caudate lobe; IVC: Inferior vena cava. 

Paracaval caudate tissue is omitted for simplification 

 

Biliary tree 

Similar to horse and deer, and in contrast to human and mouse liver, the rat liver is 

devoid of a gallbladder (McMaster, 1922). Biliary branches in the rat liver can vary 

widely. While most (sub) lobes of the rat liver are drained via one first order biliary 

ductal branch, the left lateral and median lobes usually drain via two and four first 

order biliary branches respectively. Branches from the left lateral and left median 

lobes may converge (Aller and Arias, 2009, Martins and Neuhaus, 2007). 

Extrahepatic biliary ducts in the rat lie ventral to the portal and arterial vessels. 

Convergence of the most distal first order biliary branch at the level of the caudate 

process corresponds to the origin of the common bile duct (CBD). This can either be 

the right lobe duct (40%), the caudate lobe duct (22.5%) or both simultaneously 

(37.5%). The common bile duct runs ventral and to the right of the portal vein and 

then runs within the pancreatic parenchyma before emptying into the duodenum 

(Aller and Arias, 2009) (Figure 3.9). 
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Figure 3.9 Biliary tree anatomy in the rat. RML: Right median lobe; LML: Left median 

lobe; LLL: Left lateral lobe; SRL: Superior right lobe; IRL: Inferior right lobe; ACL: 

Anterior caudate lobe; PCL: Posterior caudate lobe; CBD: Common bile duct. 

Paracaval caudate tissue is omitted for simplification 

 

3.1.3. In vivo rat models of hepatic IRI 

Various models of normothermic ischaemia reperfusion injury in the rat liver have 

been described in the literature. These models vary in procedure severity, technical 

complexity and degree of injury produced (Expert working group on severity 

classification of scientific procedures, 2009). An overview of commonly described 

models is outlined below. 

 

Total inflow occlusion 

In total inflow occlusion models, arterial and portal inflow to the rat liver is temporarily 

interrupted via occlusion of the portal vein and hepatic artery within the 

hepatoduodenal ligament (porta hepatis) (Figure 3.4). The equivalent technique in 

clinical surgery is known as the Pringle manoeuvre, first described by James Hogarth 
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Pringle in 1908 (Pringle, 1908). The porta hepatis also includes the common bile duct 

which can either be isolated or occluded en-masse with the hepatic inflow vessels. 

The main limitation of inflow occlusion models is the consequential splanchnic 

venous congestion resulting from occlusion of the portal vein which can result in 

intestinal ischaemia, sepsis and remote organ damage due to venous stasis and 

bacterial translocation (Suzuki et al., 1998, Liu et al., 1992, Liu et al., 1996). The rat 

liver can only tolerate up to 30 minutes of continuous portal vein clamping (van der 

Meer et al., 1971). In comparison, the human liver can safely tolerate relatively longer 

periods of portal venous clamping, due to the existence of a well-developed 

portosystemic collateral network (Suzuki et al., 1998, Huguet et al., 1992). Therefore, 

if longer periods of ischaemia are required, total inflow occlusion models are 

frequently coupled with a procedure that provides portosystemic shunting. A tube 

portosystemic shunt can be inserted at the time of surgery prior to clamping and 

usually communicates between a portal venous branch and the IVC or femoral or 

jugular vein (Spiegel and Bahde, 2006). Alternatively, a direct anastomosis can be 

created between the IVC and the portal or splenic vein prior to ischaemia. Such 

shunts are subsequently ligated prior to reperfusion (Kaminski et al., 1997). Single-

stage shunt formation procedures are technically challenging and are associated with 

risks including bleeding and thrombosis. An alternative is a two-stage procedure 

which results in gradual portosystemic shunt formation. The initial step involves 

transposition of the spleen into a subcutaneous pouch through a small left upper 

abdominal incision. The wound is then closed and the rat allowed to recover. After a 

period of 2-3 weeks, adequate portosystemic anastomoses will have formed. Total 

inflow occlusion can then be performed as a second stage procedure without the risk 

of splanchnic congestion (Spiegel and Bahde, 2006). Interestingly, caecal herniation 

has been reported as an alternative procedure to splenic transposition that may also 

allow gradual portosystemic shunting (Rhee et al., 2002). The two-stage 

portosystemic shunt models do not involve microvascular techniques and are thus 

safer and less technically demanding. However, the consistency of the degree of 

collateral flow formation and the effect of long-term changes to hepatic inflow on the 

development of liver IRI remain unknown (Suzuki et al., 1998) and therefore, results 

arising from these models should be interpreted with caution. 

 

Selective (partial) inflow occlusion 
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In contrast to total inflow occlusion models, selective (also known as segmental) 

inflow occlusion involves the temporary interruption of portal venous and hepatic 

arterial flow to part of the rat liver by occluding the pedicle supplying that part. As 

demonstrated in Figure 3.10, selective inflow occlusion models can range from 10-

90% partial ischaemia models.  

 

 

Figure 3.10 Selective inflow occlusion models. Flow represents portal venous and 

hepatic arterial inflow combined. Black rectangles represent level of occlusion. 

10% 20% 

30% 40% 
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Ischaemic lobes represented in purple. RML: Right median lobe; LML: Left median 

lobe; LLL: Left lateral lobe; SRL: Superior right lobe; IRL: Inferior right lobe; ACL: 

Anterior caudate lobe; PCL: Posterior caudate lobe. Paracaval caudate tissue is 

omitted for simplification 

 

Portal venous blood flow is diverted to the non-occluded liver and hence portal stasis 

and splanchnic congestion is avoided in these models (Karatzas et al., 2014). An 

additional advantage is the potential to use the remaining non-ischaemic liver as 

internal control tissue. However, it has been shown that blood flow diverts 

preferentially into non-ischaemic tissue upon reperfusion in these models (Hayashi et 

al., 1986). Further effects of the residual non-ischaemic liver tissue on the 

development of hepatic injury are possible but remain unclear. Therefore, partial 

inflow occlusion procedures are not uncommonly combined with ligation or resection 

of the non-ischaemic liver tissue upon reperfusion (Spiegel and Bahde, 2006). 

Whereas ligation without resection leaves necrotic liver tissue in situ which likely 

influences the results and inevitably leads to sepsis, resection circumvents that risk 

and allows for longer follow up durations. Nevertheless, the addition of a resection 

procedure carries an increased risk of bleeding, liver failure and mortality compared 

to hepatic IRI alone (Spiegel and Bahde, 2006, Madrahimov, 2006) 

 

Total vascular exclusion 

In addition to the temporary interruption of inflow to the rat liver, hepatic venous 

outflow is also occluded in total vascular exclusion models. Clamps are either applied 

to the supra/infra hepatic IVC (Kaya et al., 2008) or to individual hepatic veins 

(Topaloglu et al., 2005). In clinical surgery, this technique is occasionally necessary 

in order to control excessive bleeding from the liver (Zografos et al., 1999). However, 

the technique leads to more severe oxidative stress in comparison to inflow occlusion 

alone (Darilmaz et al., 2005, Sato et al., 1998) and can results in significant 

haemodynamic instability due to venous pooling in the lower body (Kaya et al., 

2008). Therefore some authors have suggested the concomitant application of 

supracoeliac arterial clamping to mitigate the effect of venous congestion (Stephen et 

al., 1996, Kaya et al., 2008) although this would lead to lower body ischaemia and 

carries a paradoxical risk of haemodynamic instability upon reperfusion (Kaya et al., 
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2008). Regardless of technique, total vascular exclusion models are more technically 

challenging and carry greater risks of complications compared to inflow occlusion 

models. 

 

Isolated portal vein or hepatic artery occlusion 

Isolation and temporarily occlusion of either the hepatic artery or the portal vein alone 

is a recognised technique to investigate normothermic hepatic IRI and can involve 

either the main vessel or a branch supplying a particular part of the rat liver resulting 

in global or partial ischaemia respectively. These models result in incomplete 

ischaemia since blood supply the liver is maintained through the unclamped inflow 

vessel. Hepatic artery isolation and temporary dearterialisation requires microsurgical 

expertise and has been employed in experiments that investigate intrahepatic 

malignancy (Wang et al., 1995) and as an alternative technique to avoid interruption 

of portal venous flow (Tralhao et al., 2013). Portal vein occlusion is a relatively less 

technically challenging procedure and is occasionally employed to avoid the severe 

metabolic injury associated with complete ischaemia models (Matsui and Kojima, 

1991). Occlusion of the portal vein results in less biliary damage compared to hepatic 

artery occlusion (Mancinelli et al., 2015). However, splanchnic congestion remains a 

limiting factor with this model if flow in the main portal vein is interrupted. 

 

3.1.4. Aim of review 

A literature review of all published research on hepatic ischaemia reperfusion injury 

models in the rat was performed with the following aims: 

1. To examine major characteristics related to subject, technique and outcome in 

the various reported models of hepatic IRI in the rat 

2. To identify trends in model adoption and alterations in technique over time 

3. To identify risks associated with animal mortality in these models 

4. To identify the ideal in vivo hepatic IRI model to address the research aims of 

this project 
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3.2. Methods 

 

3.2.1. Study design 

A literature review of reported in vivo hepatic ischaemia reperfusion injury studies in 

rats published in the English language with no restriction on publication date or type 

of publication. 

 

3.2.2. Inclusion criteria 

Table 4 summarises the inclusion criteria of this study. 

 

Table 4 List of inclusion criteria for review 

 Criterion Comment 

Report criteria English language 
publications 

 

 Adequate description of 
model 

IRI model type reported or 
referenced 

 Original report Duplicate reports identified and 
merged 

Model criteria In vivo models 

 

Excludes in-situ reperfusion and ex-
vivo isolated perfused rat liver 
models 

 Non-transplant models 

 

To avoid the confounding 
immunopathological effect of allograft 
transplantation 

 Complete interruption of 
flow 

 

Excludes low flow models including 
sepsis, haemorrhage and 
pneumoperitoneum 

 Ten minutes or more of 
continuous interruption of 
flow 

Excludes studies related to 
preconditioning alone 

 Normothermic reperfusion 
with blood 

 

Excludes hypothermic reperfusion 
and reperfusion with blood 
substitutes or other perfusion 
solutions  

 Ischaemic residual liver Partial hepatectomy models are 
included only if the remaining liver is 
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exposed to IRI 

 

 

3.2.3. Search strategy 

A comprehensive search was conducted on four medical bibliographic databases 

(PubMed, MedlinePlus, Embase and Scopus) using the following search syntax: 

 

("rats"[MeSH Terms] OR "rats"[All Fields] OR "rat"[All Fields]) OR ("rodentia"[MeSH 

Terms] OR "rodentia"[All Fields] OR "rodent"[All Fields] 

AND 

("liver"[MeSH Terms] OR "liver"[All Fields]) OR (hepate* OR hepati* OR hepato*) 

AND 

Ischemi* OR ischaemi* OR ((interrupt* OR ligat* OR clamp* OR occlu*) AND  

(("blood"[Subheading] OR "blood"[All Fields] OR "blood"[MeSH Terms]) OR 

("vessel"[All Fields] OR "blood vessels"[MeSH Terms] OR ("blood"[All Fields] AND 

"vessels"[All Fields]) OR "blood vessels"[All Fields]) OR porto* OR porta* OR arter* 

OR ("veins"[MeSH Terms] OR "veins"[All Fields] OR "vein"[All Fields]) OR veno* OR 

vascul*))  

AND  

Pringle OR ("reperfusion"[MeSH Terms] OR "reperfusion"[All Fields]) OR unclamp* 

OR revasc* OR releas* OR reflow* 

NOT  

"shock"[title] OR "sepsis"[title] OR "hemorrhage"[title] OR "haemorrhage"[title] OR 

"transplantation"[title] OR "allograft" OR "xenotransplantation"[title] OR "graft"[title] 

OR "preservation"[title] OR "cold ischemia"[title] OR "cold ischaemia"[title] OR "cold 

ischemic"[title] OR "cold ischaemic"[title] OR "storage"[title] OR "ex vivo"[title] OR 

"extracorporeal"[title] OR "orthotopic"[title] OR "intestine"[title] OR "intestinal"[title] OR 
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"renal"[title] OR "kidney"[title] OR “mycardial"[title] OR "myocardium"[title] OR 

"cardiac"[title] OR "heart"[title] OR "lung"[title] OR "pulmonary"[title] 

 

The search was initially conducted on January the 2nd 2011 and then repeated for 

updates on May the 15th 2016. Data presented in this chapter is based on the 

updated search results.   

 

3.2.4. Exclusion of ineligible studies 

The inclusion criteria outlined in section 3.2.2 were incorporated into the search 

strategy (see 3.2.3) in order to filter studies ineligible for inclusion. The list of 

abstracts obtained from the search was skimmed in order to select studies that met 

the stated inclusion criteria for review. Full text reports of these selected studies were 

subsequently obtained (see 3.2.5) and individually examined for suitability for 

inclusion and any further ineligible studies identified were excluded. 

 

3.2.5. Data extraction 

Filing of references and extraction of full-text reports was performed using the 

bibliographic management software EndNote X4 (Thomson Reuters, London, UK). 

Full-text reports that could not be extracted using EndNote were either downloaded 

manually or obtained with library service assistance (Newcastle University and 

County Durham and Darlington NHS Foundation Trust Libraries). Hard copies of full-

text reports were scanned and attached to the corresponding references on 

EndNote. In the minority of cases where a full-text report was not available, relevant 

data was extracted from the published abstract if the IRI model was adequately 

described. Studies where no full-text report or informative abstract was available 

were excluded from the review. 

Data was extracted from individually-examined full-text reports. The variables 

extracted from each included study were divided into six main domains: Report 

outlines, animal characteristics, surgical preparation, model technique, intervention 

details, and outcomes. Details of the individual variables collected within each 
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domain are outlined in Table 5. The collected data was entered into a Microsoft 

Office Excel 2010 spreadsheet (Microsoft Corp., Redmond, WA). 

 

Table 5 Details of variables collected from studies included in literature review 

Domain Variable Details 

Report outline Publication year YYYY 

 Duplicate report Yes/ No 

 Type of publication Full text/ abstract/ letter/ poster paper/ 
retracted article/ short communication/ 
technical brief 

Animal 
characteristics 

Strain Wistar/ Sprague Dawley/ Lewis/ 
Zucker/ Fischer… etc 

 Gender Male/ Female 

 Age* In weeks 

 Weight* In grams 

Surgical 
preparation 

Anaesthetic Ketamine/ Ether/ Pentobarbital/ 
Isoflurane… etc 

 Heparin administration Yes/ No; Dose in units/kg and adjusted 
to average animal weight in study. 

Model 
technique 

Method of IRI (model) Total inflow ischaemia (with or without 
shunting)/ Selective ischaemia/ 
Isolated portal vein or hepatic artery 
clamping… etc 

 Bile duct clamping Yes/ No 

 Hepatectomy Yes/ No; Percentage resected 

 Preconditioning Yes/ No; Number of cycles; Duration 
of ischaemia; Duration of reperfusion 

 Ischaemia time (minimum 
and maximum) 

In minutes 

 Reperfusion time 
(minimum and maximum) 

In minutes; Reperfusion for survival 
studies collected separately 

Intervention 
details 

Intervention type IRI alone; comparison of IRI 
techniques; other interventions on a 
background of IRI 

Outcomes Survival data Survival rates (per model and per 
ischaemia time if available) 

 Main outcome Free text 
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3.2.6. Data expression and statistical analysis 

In the case of continuous parametric data, results were expressed as mean ± SEM 

(standard error of mean) unless stated otherwise. Group means were compared 

using the independent Student t-test or the one-way ANOVA (when more than two 

groups were compared). ANOVA results are reported as F-value (degrees of freedom 

between and within groups are indicated within parenthesis) and P value. Post hoc 

analyses were performed when significant differences between groups were 

identified on ANOVA (Tukey or Games Howell test for equal or unequal variance 

respectively). 

Categorical data were expressed as frequencies (percentages). Associations 

between nominal variables were tested using the Chi square or Fisher’s exact test as 

appropriate. Results are reported as Chi-square statistic value X2 (degrees of 

freedom are indicated within parenthesis) and P value. The effect size was measured 

using Cramer’s V test with small, medium and large effect size corresponding to 

values around 0.1, 0.3 and 0.5 respectively (Cohen, 1988). 

Multiple regression analysis was performed to identify the relative contribution of 

multiple independent variables to the prediction of a single continuous independent 

variable. Results are reported as F-value (regression and residual degrees of 

freedom are indicated within parenthesis) and P value. The contribution of each 

individual independent variable to the model is reported as B regression coefficient 

[lower, upper bound 95% confidence interval for B] and P value. 

Test results with p values of less than 0.05 were accepted as statistically significant. 

All statistical tests were performed using the Statistical Package for Social Sciences 

version 19.0 (SPSS Inc., Chicago, IL, USA) and Microsoft Office Excel 2010 

(Microsoft Corp., Redmond, WA).  
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3.3. Results 

 

3.3.1. Overview of eligible studies 

The search strategy identified 3387 studies that were considered potentially eligible 

for inclusion into the review. Over half of these (58%) were subsequently excluded 

during the abstract skimming phase. Of the remaining 1423 studies, a further 248 

were excluded following examination of the full-text reports for reasons outlined in the 

study-inclusion flowchart below (Figure 3.11). 

A total of 1175 studies were included in the review. Full-text reports were obtained in 

1153 (98.1%) of these studies. Data from the remaining 22 studies was extracted 

from published abstracts. 

 

3.3.2. Description of model methodology 

 

Rat strain 

Wistar rats were utilised in IRI studies in 599 studies (50.8%). The second commonly 

used strain was Sprague Dawley [432 studies (36.6%)]. Zucker rats were solely 

utilised in experiments that addressed questions related to obesity and liver steatosis 

[21 studies (1.8%)]. Figure 3.12 summarises the distribution of rat strains within 

hepatic IRI models. 

 

Rat gender 

Male rats were used in the majority of hepatic IRI studies [1009 studies (85.9%)]. 

Female rats were in 69 studies (5.9%) and only 14 studies used both genders 

indiscriminately (1.2%). The gender of rats was not mentioned in 83 reports (7.1%). 
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Bibliographic databases searched 
(PubMed, MedlinePlus, Embase and 

Scopus) 

3387 studies identified Excluded abstracts 
n=1968 

1423 studies Non-English language 
reports 
n=103 

1320 studies 
Reports/abstracts 

unavailable 
n=5 

1315 studies Duplicate reports 
n=49 

1266 studies Model criteria violated 
n=91 

1175 studies included 

Figure 3.11 Study-inclusion flowchart 



 

77 
 

 

Figure 3.12 Distribution of rat strains utilised in hepatic IRI studies 

 

Rat age 

Animal age was the least reported variable among animal characteristics; 

documented in only 127 reports (10.8%). Age values extracted from the reports refer 

to animal ages at the time of IRI procedures and are described in weeks. The 

average age was 10.8±0.5weeks. In studies that addressed questions related to old 

age [8 studies (0.7%)] the average age in the older groups was 65.7±10.7weeks. 

 

Rat weight 

Animal weights were reported in 1063 studies (90.5%). Weight values obtained refer 

to the average animal weight at the time of IRI procedures and are described in 

grams. The average weight was 258.3±1.6g. In studies that examined obese animals 

[9 studies (0.8%)] the average weight in the obese groups was 461.7±54.1g. 

 

Anaesthetic choice 

The choice of anaesthetic was reported in 1049 studies (89.3%). The most 

commonly used single agent anaesthetic for hepatic IRI procedures was 
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pentobarbital [reported in 351 studies (29.9%)] followed by ether [188 studies (16%)]. 

The commonest combination anaesthetic was ketamine and xylazine [reported in 132 

studies (11.2%)]. The distribution of anaesthetic agents used in hepatic IRI models in 

rats is summarised in Figure 3.13. 

 

 

Figure 3.13 Frequency distribution of anaesthetic agents used in rat hepatic IRI 

studies 

 

Administration of Heparin 

The use of heparin to prevent thrombosis at the time of clamping was reported in 162 

studies (13.8%). As shown in Figure 3.14, the commonest dose administered was 

200U/Kg [14 studies (27.2%)]. The average weight-adjusted dose was 87.7±7.7U 

and ranged from 5.5-550U. In 3 reports, heparin was administered as a studied 

intervention (Abe et al., 1993, Shibayama et al., 1991, Harada et al., 2006).  
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Figure 3.14 Frequency distribution of heparin doses administered in rat hepatic IRI 

studies 

 

Ischaemia models 

As illustrated in Figure 3.15, total inflow occlusion models were utilised in almost a 

third of hepatic IRI studies in rats [360 studies (30.6%)]. In comparison, studies 

adopting segmental inflow occlusion models were over twice as commonly adopted 

[727 (61.9%) studies]. Total hepatic exclusion models (inflow and outflow occlusion) 

were identified in 9 studies (0.8%) and isolated portal vein or hepatic artery occlusion 

models were adopted in 32 (2.7%) and 21 (1.8%) studies respectively. The method 

of ischaemia was unclear in 26 studies (2.2%).  

The 70% (left and middle lobe) inflow occlusion model was utilised in 665 studies, 

making it the most commonly adopted model of hepatic IRI in rats, comprising 91.5% 

of studies using segmental inflow occlusion models and 56.6% of overall hepatic IRI 

studies in rats. Within this cohort, hepatectomy or ligation of the remaining 30% non-

ischaemic liver was incorporate in 78 (11.7%) and 39 (5.9%) studies respectively. 

The second commonest segmental hepatic IRI model was the 20% (right lobe) inflow 

occlusion model, encountered in 42 studies (5.8% of segmental models). Other 

segmental models included inflow occlusion of 40% (middle lobe), 30% (left lobe) 

and 50% (right and right middle lobe) of the liver. These were identified in 1.1%, 
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0.6% and 0.1% of the studies incorporating segmental hepatic IRI models 

respectively. 

 

 

Figure 3.15 Frequency distribution of models adopted in rat hepatic IRI studies 

 

Total inflow occlusion models were commonly performed without the need for 

portosystemic blood shunting. However, in 91 studies (25.3% of total inflow occlusion 

studies), some form of portosystemic blood shunting was incorporated. Single-stage 

shunting was performed using polyethylene tube communication or direct 

anastomosis between a systemic and portal venous tributary [63 (17.5%) and 4 

(1.1%) respectively]. Gradual portosystemic shunts were mostly formed via splenic 

transposition in 21 studies (5.8%). 

Table 6 summarises the frequency distribution of rat hepatic ischaemia reperfusion 

injury models in this review. 

 

Table 6 Frequency distribution of rat hepatic ischaemia reperfusion injury models 

Model 
Frequency 

(percentage 
of total) 

Total hepatic exclusion  9 (0.8) 



 

81 
 

Total inflow occlusion  360 (30.6) 

 Without portosystemic shunt 269 (22.9) 

 Portosystemic tube shunt 63 (5.4) 

 Portosystemic anastomosis 4 (0.3) 

 Splenic transposition 21 (1.8) 

 Caecal herniation 1 (0.1) 

 Cirrhosis model 2 (0.2) 

Segmental inflow 
occlusion 

 727 (61.9) 

 92% inflow occlusion (excluding caudate) 7 (0.6) 

 70% inflow occlusion (Left/middle) 665 (56.6) 

 50% inflow occlusion (right/right middle)  1 (0.1) 

 40% inflow occlusion (middle) 8 (0.7) 

 30% inflow occlusion (left) 4 (0.3) 

 20% inflow occlusion (right) 42 (3.6) 

Portal vein occlusion  32 (2.7) 

Hepatic artery occlusion  21 (1.8) 

Unclear  26 (2.2) 

 

A single model of hepatic IRI was adopted in the majority of studies [1125 (95.7%)]. 

The remaining reports included two [42 studies (3.6%)] or three [8 studies (0.7%)] 

models within the same study. 

 

Initial report of models 

Based on the chronological sequence of reports within this review, first describers of 
models have been identified (in the context of hepatic IRI). These are summarised in 
Table 7. 

 

Table 7 First reports of IRI models 

First 
author 

Year of 
publication 

Procedure Reference 

De Baker 1956 70% IRI (De Baker, 1956) 

van der 
Meer  

1971 Portal vein ligation (van der Meer et al., 
1971) 
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Hirasawa  1978 Total inflow occlusion with 
shunt 

(Hirasawa et al., 
1978) 

Clemens  1985 70% IRI and 30% ligation (Clemens et al., 1985) 

Flye  1987 20% IRI and 80% 
hepatectomy 

(Flye and Yu, 1987) 

Asakawa  1989 70% IRI and 30% 
hepatectomy 

(Asakawa et al., 1989) 

Senga  1990 Splenic transposition (Senga et al., 1990) 

Sjovall  1990 Hepatic artery ligation (Sjovall et al., 1990) 

Linberg  1994 Total hepatic exclusion (Linberg et al., 1994) 

Dong  2002 92% IRI and 8% 
hepatectomy 

(Dong et al., 2002) 

 

 

Exclusion of bile duct from occlusion 

The separation/inclusion of bile duct during vascular occlusion was reported in 494 

studies (42%). In 7 reports, the bile duct was ligated prior to IRI in order to investigate 

the effect of IRI on cholestasis. Of the remaining 487 reports, 86 (17.7%) reported 

isolation of the bile duct prior to clamping the vascular pedicle in order to avoid the 

potential confounding effect of cholestasis. The effect of bile duct exclusion versus 

occlusion in hepatic IRI was studied in one report (Montero et al., 2005).  

 

Ischaemic periods 

Ischaemia times were described in 1169 studies (99.5%). Variable ischaemic periods 

were studied in 162 of these studies (13.9%). The most commonly studied ischaemia 

times were 60 minutes [417 studies (35.7%)], 30 minutes [260 studies (22.2%)] and 

90 minutes [178 studies (15.2%)] in descending order. Reported ischaemia times 

ranged from 10-2880min and are summarised in Figure 3.16.  
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Figure 3.16 Frequency distribution of ischaemia times in hepatic IRI rat studies 

 

Reperfusion periods and long-term follow up (excluding survival analyses) 

Reperfusion times were described in 1168 studies (99.4%). In comparison to 

ischaemia times, variable reperfusion periods were more commonly described within 

a study [580 of all studies reporting reperfusion times (49.7%)]. Reperfusion periods 

ranged from 0-259200min (excluding reperfusion periods for survival studies).  

The term “minimum reperfusion time” in this review refers to the earliest timepoint for 

data collection in a study following restoration of blood flow. “Maximum reperfusion 

time” refers to the latest follow up period in the study (for survival and non-survival 

outcomes). The most commonly studied minimum reperfusion times in descending 

order were 60 minutes [266 studies (22.8%)], 0 minutes (immediate post-reperfusion 

period) [145 studies (12.4%)] and 120 minutes [133 studies (11.4%)]. The most 

commonly studied maximum reperfusion times (excluding survival analyses) in 

descending order were 1440 minutes (24hr) [223 studies (22%)], 60 minutes [132 

studies (13%)] and 120 minutes[116 studies (11.4%)]. Frequency distribution of 

minimum and maximum reperfusion times are summarised in Figure 3.17and Figure 

3.18. 
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Figure 3.17 Frequency distribution of minimum reperfusion times in hepatic IRI rat 

studies 

 

 

Figure 3.18 Frequency distribution of maximum reperfusion times in hepatic IRI rat 

studies (excluding survival analyses) 
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Long-term follow up (≥48hr) for outcomes excluding survival was described in 131 

studies. These are summarised in Table 8.  

 

Table 8 Frequency distribution of studies with long-term follow up (excluding survival 

analyses) 

Follow up duration Number of reports 

2 days 26 

3 days 23 

4 days 4 

5 days 5 

7 days 29 

8 days 1 

10 days 5 

14 days 14 

15 days 2 

21 days 9 

23 days 3 

28 days 4 

30 days 3 

3 months 1 

6 months 2 

 

 

Fibrosis and long-term biliary pathology 

Only 38 studies (3.2%) examined outcomes (excluding survival) for 14 days or longer 

(see Table 8). Only two of these papers examined the long term effect of hepatic IRI 

on biliary epithelial cell death and biliary proliferation ((Xu et al., 2004, Hahn et al., 

2007). One of these papers also examined the development of delayed fibrotic 

changes following IRI. However, animals in this study were also exposed to 

intraoperative radiotherapy (Hahn et al., 2007). 

 

Overview of interventions 
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Interventions were reported in all studies. In 209 reports (17.8%) IRI was the sole 

intervention studied. Of these, 154 studies (73.7%) explored outcomes from a single 

model/method of IRI. In the remaining 55 studies (26.3%), various IRI models and/or 

ischaemia times were compared. In 966 reports (82.2), other interventions layered on 

a background of IRI were investigated. Figure 3.19 summarises these intervention 

groups. 

 

 

Figure 3.19 Summary of intervention types adopted in rat hepatic IRI studies 

 

 

3.3.3. Chronological evolvement of methodologies 

 

Trends in hepatic IRI model adoption in rat studies 

The distribution of hepatic IRI model adoption over time is summarised in Appendix 
2. 

Figure 3.20 shows that the use of total inflow occlusion models in hepatic IRI studies 

in rats has altered over time. The use of immediate or gradual portosystemic shunts 

had peaked in the late 1990s and has since declined to the extent that the last 

reported use of a portosystemic tube shunt and of splenic transposition was in 2008 
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and 2003 respectively. However, the use of total inflow occlusion without 

portosystemic shunting continues to rise. 

 

 

Figure 3.20 Time-trends in the adoption of total inflow occlusion models 

 

A similar difference in time-trend was also noted within 70% inflow occlusion models. 

The incorporation of 30% hepatectomy (non-ischaemic liver) in hepatic IRI studies in 

rats peaked in the late 1990s and has been in slow decline since, whereas ligation of 

non-ischaemic 30% liver peaked later in the early 2000s and has subsequently seen 

a relatively more acute decline in use. On the other hand, the use of 70% inflow 

occlusion models without resection or ligation of non-ischaemic liver continues to rise 

in an approximately linear manner (Figure 3.21). 

The first published report of right lobe (20%) inflow occlusion with concomitant 80% 

resection of non-ischaemic liver was in 1987. The use of this technique had peaked 

in the early 1990s and subsequent use has been relatively lower but steady. In 

comparison, publications describing right lobe (20%) inflow occlusion without non-

ischaemic liver resection started to emerge in the early 1990s and a relatively greater 

interest was demonstrated in the technique in the latter half of that decade and in the 
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early 2000s. The use of this technique has subsequently seen a dramatic fall (Figure 

3.22).  

 

 

Figure 3.21 Time-trends in the adoption of 70% inflow occlusion models 
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Figure 3.22 Time-trends in the adoption of 20% inflow occlusion models 

 

Similar to right lobe occlusion models, isolated portal vein or hepatic artery occlusion 

models were adopted relatively later than total or 70% selective occlusion models. 

The first reports of portal vein and of hepatic artery occlusion were published in 1989 

and 1990 respectively. Reports of both these models have subsequently continued at 

a relatively lower but steady level, although post-2010 has seen a moderate rise in 

published reports of the isolated portal vein occlusion model (Figure 3.23). 
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Figure 3.23 Time-trends in the adoption of isolated portal vein and hepatic artery 

occlusion models 

 

Trends in anaesthetic use in rat hepatic IRI studies 

The two most commonly used single anaesthetic agents, pentobarbital and ether 

(see 3.3.2) were the only anaesthetic agents reported in hepatic IRI studies in rats 

prior to 1981. However, the reported use of both pentobarbital and ether in rat 

hepatic IRI studies has been in prominent decline following their peak reported use in 

the early 2000s and late 1990s respectively. The commonest combination 

anaesthetic ketamine and xylazine was reportedly first used in a rat hepatic IRI study 

in1990 and has subsequently seen a linear increase in its use, to the extent that it 

has surpassed pentobarbital as the most commonly reported anaesthetic used in 

these studies between 2011 and 2015 (Figure 3.24) 
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Figure 3.24 Time-trends in the reporting of the three most commonly used 

anaesthetics in rat hepatic IRI models 

 

In contrast to the striking surge in the use of ketamine in combination with xylazine, 

the reported use of ketamine alone as an anaesthetic agent for hepatic IRI studies in 

rats has seen a steady decline subsequent to its peak reported use between 2001 

and 2005. A similar pattern to ketamine is seen with the use of urethane as a single-

agent in hepatic IRI studies. On the other hand, following its first reported use as 

single agent anaesthetic in hepatic IRI studies in rats in 1996, isoflurane has seen a 

substantial increase in its reported use in these studies and has become the third 

most commonly reported anaesthetic agent used for these procedures between 2011 

and 2015. The peak reported use of chloral hydrate in hepatic IRI models in rats was 

in the late 1990s and subsequently demonstrated a slow decline. Interestingly, the 

reported use of chloral hydrate has unexpectedly risen in recent years making it the 

fourth most commonly reported anaesthetic agent in rat hepatic IRI studies between 

2011 and 2015 (Figure 3.25). 
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Figure 3.25 Time-trends in the reporting of less commonly used anaesthetics in rat 

hepatic IRI models 

 

The time-trends of rarely used anaesthetic agents (single and combination 

anaesthetic agents) are shown in Figure 3.26.  

The distribution of reported anaesthetic agents in hepatic IRI studies over time is 

summarised in Appendix 2. 
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Figure 3.26 Time-trends in the reporting of rarely used anaesthetics in rat hepatic IRI 

models 

 

Trends in heparin use in rat hepatic IRI studies 

The first reported use of heparin to prevent thrombosis in hepatic IRI models in rats 

was in 1977. The number of reports describing the use of heparin in these studies 

showed a steady rise up to the early 1990s and declined in subsequent years as 

shown in Figure 3.27A. However, when the proportion of studies reporting the use of 

heparin are examined in comparison to the overall published hepatic IRI studies in rat 

during the same period of time, it becomes apparent that this practice has been in 

gradual decline over the past four decades as demonstrated in Figure 3.27B. 
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Figure 3.27 Time-trends in reported use of heparin in hepatic IRI models in rats. (A) 

Number of reports describing heparin use compared to those where heparin is not 

given or not mentioned. (B) Percentage of reports describing heparin use in 

comparison to the overall published hepatic IRI studies in rat during the same period 

of time 

 

Trends in bile duct exclusion in rat hepatic IRI studies 



 

95 
 

The first reported separation of bile duct prior to vascular occlusion in a rat hepatic 

IRI study was in 1983. Reports of this technique subsequently increased, reaching a 

peak in the 1990s and then declined to a stable level, as demonstrated in Figure 

3.28A and Figure 3.28B. 

 

 

Figure 3.28 Time-trends in reported adoption of bile duct exclusion method in rat 

hepatic IRI studies. (A) Number of reports reporting bile duct exclusion compared to 

those where the technique is not performed or not mentioned. (B) Percentage of 
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reports describing bile duct exclusion in comparison to the overall published hepatic 

IRI studies in rat during the same period of time 

 

Trends in ischaemia times during rat hepatic IRI studies 

As demonstrated in Figure 3.29, the choice of 60 minutes ischaemia time in rat 

hepatic IRI studies is on an upward linear trend. The number of studies reporting 

other commonly chosen ischaemia times such as 30 and 45 minutes had previously 

been on the rise, reaching a plateau over the past two decades. In contrast, reports 

of 90 minutes ischaemia times have fallen subsequent to a peak in the late 1990s. 

 

 

Figure 3.29 Time trends in reporting commonly chosen ischaemia times in rat hepatic 

IRI studies 

 

Time trends of the less commonly reported ischaemia times (15, 120 and 180 

minutes) appear to display a similar upward-downward pattern, peaking in the late 

1990s and early 2000s (Figure 3.30). 
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The distribution of reported ischaemia times in hepatic IRI studies over time is 

summarised in Appendix 2. 

 

 

Figure 3.30 Time trends in reporting less commonly chosen ischaemia times in rat 

hepatic IRI studies 

 

Trends in reperfusion times during rat hepatic IRI studies 

Figure 3.31 shows that shorter minimum reperfusion times (0-180 minutes) display 

an upward-downward trend over time and that the peak of this trend is proportionate 

to the duration of minimum reperfusion. In other words, reports of reperfusion times 

of 0 and 30 minutes had peaked in the 1990s whereas those reporting longer 

reperfusion times of 120 and 180 minutes demonstrated a later peak in the 2000s. 

Although higher minimum reperfusion times (2-24hrs) are relatively less frequently 

reported, these appear to be on a continuing upward trend. 
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Figure 3.31 Time trends in reporting minimum reperfusion times in rat hepatic IRI 

studies 

 

In comparison, reported short-term maximum reperfusion times (upto 24hr) have 

mostly been on an upward trend. The most commonly studied short-term maximum 

reperfusion times between 2011 and 2015 are 24, 1 and 2 hours in descending order 

(Figure 3.32). 

Time trends for reported long-term maximum reperfusion times are displayed in 

Figure 3.33. Although an increasing trend can be observe in reports studying long-

term follow up times of 2, 7 and 30 days, the numbers within these groups are too 

small to derive any meaningful conclusion. 

A summary of the distribution of reported minimum and maximum reperfusion times 

in hepatic IRI studies over time is summarised in Appendix 2. 
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Figure 3.32 Time trends in reporting short-term (upto 24hr) maximum reperfusion 

times in rat hepatic IRI studies 

 

 

Figure 3.33 Time trends in reporting long-term (>24hr) maximum reperfusion times in 

rat hepatic IRI studies 
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Trends in number of models within report for rat hepatic IRI studies 

The first study to describe more than one hepatic IRI model in rats within the same 

report was in 1980. The number of studies reporting multiple models peaked in the 

late 1990s but remain relatively low compared to single-model reports. Time trends 

for number of models reported within study are summarised in Figure 3.34 and Table 

9 

 

 

Figure 3.34 Time trends for number of models within report in rat hepatic IRI studies 

 

Table 9 The distribution of model multiplicity in rat hepatic IRI studies over time 

Period 
Number of models in study 

One model Two models Three models 

Pre 1981 5 1 0 

1981-1985 23 0 0 

1986-1990 42 1 1 

1991-1995 153 5 1 

1996-2000 203 11 3 

2001-2005 225 8 0 
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2006-2010 234 9 2 

2011-2015 240 7 1 

 

 

Trends in intervention types for rat hepatic IRI studies 

As demonstrated in Figure 3.35, reports comparing various rat hepatic IRI models 

and/or ischaemia times have reduced in numbers since the 1990s. On the other 

hand, reports exploring outcomes related to a single methodology of hepatic IRI have 

remained stable in numbers following a relative decline in the early 2000s. In 

comparison, a prominent rise has been observed in the number of reports 

investigating other interventions (medicinal/ physical/ pathological … etc) on a 

background of hepatic IRI following the late 1980s but these numbers have 

plateaued in the past decade. These studies by far remain more common than 

investigating hepatic IRI in isolation. 

Time trends for intervention types within reports are summarised in Table 10. 

 

 

Figure 3.35 Time trends for intervention type in rat hepatic IRI studies 
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Table 10 The distribution of intervention type in rat hepatic IRI studies over time 

Period 

Intervention type 

Single method of 
IRI 

Various IRI 
models/ischaemia 
times compared 

Other layered 
intervention 

Pre 1981 4 0 2 

1981-1985 3 5 15 

1986-1990 9 12 23 

1991-1995 28 14 117 

1996-2000 40 10 167 

2001-2005 18 5 210 

2006-2010 25 4 216 

2011-2015 27 5 216 

 

 

3.3.4. Associations between hepatic IRI models and other variables 

 

Use of heparin 

There was a statistically significant association between heparin administration and 

total inflow occlusion models that incorporated immediate portosystemic shunts [X2 

(1)=102.635; P>0.0005]. This association was moderately strong [Cramer’s 

V=0.296]. A further significant association was demonstrated between heparin 

administration and total inflow occlusion models with splenic transposition [Fisher’s 

exact P=0.001]. On the other hand, 70% inflow occlusion models (with or without 

30% hepatectomy) were significantly associated with less use of heparin 

[X2(1)=6.946; P=0.008 and X2 (1)=9.247; P=0.002 respectively]. The associations 

was small in both groups [Cramer’s V<0.1]. Of note, 70% inflow occlusion models 

with ligation of the non-ischaemic 30% liver were not significantly associated with 

heparin usage. 

No significant association was noted between the use of heparin and any other 

hepatic IRI model in rat studies. 
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Choice of rat strain 

Total inflow occlusion without portosystemic shunting was significantly associated 

with the use of Wistar rats [X2 (1)=6.159; P=0.013]. A significant negative association 

was demonstrated between this model and the use of Fischer and Zucker rats [X2 

(1)=7.584; P=0.006 and X2 (1)=6.349; P=0.012 respectively].  

Models incorporating splenic transposition for portosystemic shunting were 

significantly positively associated with the use of Wistar rats [X2 (1)=7.687; P=0.006] 

and negatively associated with the use of Sprague Dawley rats [X2 (1)=4.648; 

P=0.031]. 

While 20% (right lobe) hepatic IRI models (without hepatectomy) exhibited a 

significant positive association with the use of Wistar rats [X2 (1)=15.893; P<0.0005] 

and a significant negative association with the use of Sprague Dawley rats [X2 

(1)=12.994; P<0.0005], the reverse was noted with 70% IRI non-hepatectomy 

models, which were significantly positively associated with Sprague Dawley rat 

utilisation [X2 (1)=16.993; P<0.0005] and significantly negatively associated with the 

use of Wistar rats [X2 (1)=31.954; P<0.0005]. Non-hepatectomy 70% IRI models 

were also significantly positively associated with the use of Fischer and Zucker rats 

[X2 (1)=18.496; P<0.0005 and X2 (1)=5.742; P=0.017 respectively] 

Lewis rats demonstrated a significant positive association with both 70% and 20% IRI 

models that incorporated non-ischaemic lobe resection [Fisher’s exact P=0.013 and 

0.031 respectively]. Zucker rats, on the other hand, demonstrated a significant 

positive association with 40% (median lobe) IRI models with hepatectomy [Fisher’s 

exact P<0.0005]. 

Similar to 20% IRI non-hepatectomy models, portal vein occlusion models were 

significantly positively associated with Wistar rats and negatively associated with 

Sprague Dawley rats as chosen strain choice[X2 (1)=8.609; P=0.003 and X2 

(1)=6.739; P=0.009 respectively]. 

All the above associations were considered small [Cramer’s V<0.15]. No other 

significant association was identified between hepatic IRI models and choice of rat 

strain.  
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The distribution of chosen strains across IRI models reported (with significant 

associations) is summarised in Table 11. 

 

Table 11 The distribution of chosen strains across IRI models reported (only models 

with significant associations are displayed) 

IRI model Strain 

Wistar Sprague 
Dawley 

Fischer Lewis Zucker Other Not 
mentioned

Total inflow 
occlusion (no 
shunt) 

155 94 0 9 0 7 4 

Total inflow 
occlusion 
(immediate 
shunt) 

30 27 0 3 0 2 2 

Total inflow 
occlusion 
(splenic 
transposition) 

17 2 0 1 0 0 1 

20% IRI 24 1 0 1 0 0 1 

20% IRI + 
hepatectomy 

4 4 0 3 0 2 0 

70% IRI 225 231 21 26 14 12 7 

70% IRI + 
hepatectomy 

42 24 1 7 3 0 1 

40% IRI 0 1 0 0 0 0 0 

40% IRI + 
hepatectomy 

2 0 0 0 3 2 0 

Portal vein 20 3 1 1 0 0 0 

Hepatic artery 12 3 1 2 0 0 0 

 

 

Animal gender 

A significant positive association was identified between models that incorporate 

portosystemic tube shunts or hepatic artery occlusion alone and the choice of female 

rats [Fisher’s exact P=0.002 and 0.006 respectively] compared to males. 
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In contrast, 70% IRI non-resection models were significantly associated with male 

rats in comparison to female [X2(1)=13.869; P<0.0005]. 

No statistically significant association was noted between other IRI models and rat 

gender. The distribution of chosen rat gender across IRI models reported is 

summarised in Table 12 

 

Table 12 The distribution of gender across rat IRI models reported (major models 

displayed for comparison) 

IRI model Gender 

Male Female 

Total inflow 
occlusion (no 
shunt) 

231 24 

Total inflow 
occlusion 
(tube shunt) 

47 11 

Total inflow 
occlusion 
(splenic 
transposition) 

19 0 

20% IRI 24 2 

20% IRI + 
hepatectomy 

9 1 

70% IRI 488 15 

70% IRI + 
hepatectomy 

67 8 

40% IRI 1 0 

40% IRI + 
hepatectomy 

6 0 

Portal vein 24 1 

Hepatic artery 13 5 

 

 

 

Mean age of animals 
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No statistically significant difference was noted between hepatic IRI models with 

regards to mean rat age [F(8,118)=0.693; P=0.697]. 

 

Mean weight of animals 

No statistically significant difference was noted between hepatic IRI models with 

regards to mean rat weight [F(10,1052)=1.640; P=0.091]. 

 

Bile duct involvement 

A statistically significant association was found between bile duct clamping and total 

inflow ischaemia models (without portosystemic shunting or with tube shunts) 

[X2(2)=62.768 and X2(2)=54.690 respectively; P<0.0005]. The association in both 

cases was moderately strong [Cramer’s V=0.2]. A statistically significant association 

was also found between bile duct clamping and 70% IRI models with 30% 

hepatectomy [X2(2)=7.026; P=0.03] although the effect size was small [Cramer’s 

V=0.07]. 

Unsurprisingly, a statistically significant association was noted between isolated 

portal vein or hepatic artery occlusion models and bile duct sparing. No statistically 

significant association was noted between other IRI models and bile duct 

involvement. 

The distribution of reported bile duct involvement across IRI models is summarised in 

Table 13. 

 

Table 13 The distribution of reported bile duct involvement across IRI models (major 

models displayed for comparison). Cases where bile duct involvement was not 

mentioned are not shown. 

IRI model Bile duct involvement 

Bile duct clamped Bile duct spared 

Total inflow 
occlusion (no 
shunt) 

144 9 
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Total inflow 
occlusion 
(tube shunt) 

47 0 

Total inflow 
occlusion 
(splenic 
transposition) 

7 1 

20% IRI 1 0 

20% IRI + 
hepatectomy 

1 0 

70% IRI 160 27 

70% IRI + 
hepatectomy 

26 0 

40% IRI 1 0 

40% IRI + 
hepatectomy 

4 0 

Portal vein 3 22 

Hepatic artery 3 14 

 

 

Maximum ischaemia time 

The average maximum duration of ischaemia was statistically significantly different 

for the different IRI models reported [Welch’s F(10,105.110)=47.789; P<0.0005]. Post 

hoc tests showed that the average maximum ischaemic time was significantly lower 

in total inflow IRI models (without portosystemic shunting) and in portal vein 

occlusion models compared to most other hepatic IRI models in rats. Interestingly, 

average maximum ischaemia times were significantly higher in models that 

incorporated portosystemic shunts compared to selective 70% ischaemia models by 

a factor of 14.253 (95%CI 0.24-28.27; P=0.043). 

A summary of the average maximum ischaemia times for each major IRI model is 

described in Table 14. 

 

Table 14 Average maximum ischaemia times for major IRI models 

IRI model Average 
maximum 

SEM 95% CI for mean 
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ischaemia 
duration (min) 

Total inflow 
occlusion (no 
shunt) 

36.21 1.028 [34.19, 38.23] 

Total inflow 
occlusion 
(tube shunt) 

80.6 4.026 [72.56, 88.64] 

Total inflow 
occlusion 
(splenic 
transposition) 

65.95 6.071 [53.29, 78.62] 

20% IRI 91.73 7.173 [76.96, 106.5] 

20% IRI + 
hepatectomy 

59.23 7.882 [42.06, 76.4] 

70% IRI 66.34 1.296 [63.8, 68.89] 

70% IRI + 
hepatectomy 

66.69 2.936 [60.84, 72.54] 

Portal vein 36.32 5.254 [25.28, 47.35] 

Hepatic 
artery 

62.73 6.338 [48.61, 76.85] 

 

 

Maximum reperfusion time 

 The average maximum duration of reperfusion (excluding survival analyses) was 

statistically significantly different for the different IRI models reported [Welch’s 

F(10,66.978)=6.270; P<0.0005]. 

The most striking finding on post hoc tests was that the average maximal reperfusion 

duration was significantly lower in 70% ischaemia models coupled with 30% liver 

ligation (rather than resection) when compared to other models such as selective 

70% ischaemia alone (1693; 95%CI 350.1-3035.8; P=0.003) or portal vein clamping 

(2250; 95% CI 260.3-4239.7; P=0.02).  

A summary of the average maximum reperfusion times for each major IRI model is 

described in Table 15 
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Table 15 Average maximum reperfusion times for major IRI models (excluding 

reperfusion times for survival analyses) 

IRI model 

Average 
maximum 

reperfusion 
duration (min) 

SEM 95% CI for mean 

Total inflow 
occlusion (no 
shunt) 

1207.78 245.729 [723.54, 1692.01] 

Total inflow 
occlusion 
(tube shunt) 

8045.17 1816.154 [4330.71, 11759.62] 

Total inflow 
occlusion 
(splenic 
transposition) 

7119.23 3436.152 [-367.5, 14605.96] 

20% IRI 1913.65 1652.774 [-1490.3, 5317.61] 

20% IRI + 
hepatectomy 

13536 7545.93 [-7414.86, 34486.86] 

70% IRI 2472.41 658.558 [1178.47, 3766.35] 

70% IRI + 
hepatectomy 

12365.12 6397.327 [-564.36, 25294.6] 

70% IRI + 
30% ligation 

451.62 69.961 [309.73, 593.51] 

Portal vein 2701.58 541.637 [1563.64, 3839.52] 

Hepatic 
artery 

390 233.624 [-138.49, 918.49] 

 

 

3.3.5. Survival analysis 

Survival analyses were reported in 251 (27.2%) studies. The modal observation 

(reperfusion) period for survival was 10080min (7 days) and ranged from 20-

525600min. The frequency distribution of reported observation periods for survival 

analyses is summarised in Table 16. 
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Table 16 The frequency distribution of reported observation periods for survival 

analyses 

Observation period Number of reports 

1 day 27 

2 days 5 

3 days 13 

4 days 1 

5 days 7 

7 days 113 

8 days 3 

10 days 8 

14 days 8 

15 days 6 

21 days 5 

23 days 2 

30 days 14 

3 months 1 

12 months 1 

 

 

In order to identify factors related to survival based on this review, multiple linear 

regression analysis was performed using reported survival rates as a dependent 

variable. A number of independent variables were considered in this analysis 

including year of publication, gender, average weight, heparin administration, bile 

duct involvement, duration of ischaemia, duration of reperfusion and IRI procedure. 

This model predicted survival rate with statistical significance [F(8,296)=13.323; 

P<0.0005). 

As demonstrated in Table 17, it is apparent that, of all independent factors, only IRI 

procedure and duration of ischaemia contributed significantly to the regression model 

and therefore, to the prediction of animal survival. 
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Table 17 Summary of coefficient statistics for independent variables in multiple linear 

regression model 

 

 

A breakdown of average survival rates based on reported IRI models and ischaemia 

times is outlined in Table 18. 

 

Table 18 Breakdown of average survival rates based on reported IRI models and 

ischaemia times (SEM and range omitted if n<2) 

Procedure 
Ischaemia 

time 

Average 
survival 

(%) 
SEM 

Range 
(min) 

Range 
(max) 

Total hepatic 
occlusion 

30 100    

 45 100    

 60 100    

Total hepatic 
occlusion + 
aortic clamp 

30 100 0 100 100 

 45 42.5 28.5 14 71 

Variable B (regression coefficient) 95% CI P value 

Year of 
publication 

0.203 [-0.302, 0.709] 0.429 

Gender 7.023 [-4.976, 19.021] 0.25 

Average 
weight 

0.015 [-0.085, 0.114] 0.774 

Heparin 
administration 

-6.389 [-16.112, 3.335] 0.197 

Bile duct 
involvement 

3.564 [-0.375, 7.504] 0.076 

Duration of 
ischaemia 

-0.510 [-0.628, -0.392] <0.0005 

Duration of 
reperfusion 

-0.00001 [-0.0002, 0.00001] 0.099 

IRI procedure -0.725 [-1.389, -0.062] 0.032 
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 60 0 0 0 0 

Total inflow 
occlusion – no 
portosystemic 
shunt 

30 61.7 10.1 12 100 

 45 56.3 10.9 0 100 

 60 32 9.9 0 100 

 90 27.8 13.4 0 100 

Total inflow 
occlusion and 
70% 
hepatectomy – 
no 
portosystemic 
shunt 

30 57.4 11.2 33.3 100 

 60 0    

Total inflow 
occlusion with 
single-stage 
portosystemic 
shunt 

30 100 0 100 100 

 45 75    

 60 75.8 5.9 35 100 

 90 22.9 3.9 0 100 

 120 9.8 5.1 0 62.5 

Total inflow 
occlusion and 
70% 
hepatectomy 
with single-stage 
portosystemic 
shunt 

60 30 5.8 20 40 

Splenic 
transposition 

60 71.5 16.7 0 100 

 90 42.7 18.6 13 77 

 120 0 0 0 0 

92% inflow 
occlusion 
(excluding 
caudate) + 8% 
hepatectomy 

45 100    

 60 70    

 90 100    
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 120 60    

70% inflow 
occlusion 
(Left/middle) 

 

30 95.1 4.9 41.7 100 

 45 93.3 3.4 80 100 

 60 85 4.1 10 100 

 90 49 14.3 0 100 

 120 61.1 11 14 100 

 180 10 0 10 10 

70% inflow 
occlusion 
(Left/middle) 

+ 30% 
hepatectomy 

30 95.7 2.8 85 100 

 60 62.2 7 0 100 

 90 33.8 5.8 0 66 

 120 30.8 13.4 0 65 

70% inflow 
occlusion 
(Left/middle) 

+ 30% ligation 

60 100 0 100 100 

 120 0    

40% inflow 
occlusion 
(middle) + 60% 
hepatectomy 

60 90    

 90 0 0 0 0 

20% inflow 
occlusion (right) 
+ 70% 
hepatectomy 

60 32.9 14.3 0 100 

 90 5 5 0 10 

Portal vein alone 30 100    

 45 100    

 60 100    

 90 100    

 120 70    

Hepatic artery 
alone 

60 92.4    
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 120 15    
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3.4. Discussion 

The main objective of this literature review was to identify the ideal design for an in 

vivo hepatic IRI model that would be most suited to address the research questions 

of this project (see section 1.5). The initial task was to identify the most appropriate 

species for the model and that was resolved following a brief review of the published 

literature on experimental hepatic IRI. As explained in section 3.1.1, rodent models of 

hepatic IRI continue to be utilised in significantly larger numbers compared to larger 

animals due logistical, ethical and financial reasons. Rats were chosen over mice for 

this project due to relative ease of tissue handling and lesser need for microsurgical 

expertise. Therefore only reports of hepatic IRI in rats were considered in this 

literature review. 

The choice of animal gender was important as certain-sex-dependent factors have 

been shown to affect the outcome of hepatic IRI studies (Gasbarrini et al., 2001, 

Harada et al., 2001, Harada et al., 2004). As evident from the results of this review, 

the vast majority of studied rats were male. A decision was made to use male rats 

only in this project in order to avoid the potential confounding effect of cyclic female 

hormones. The results of this review show that Wistar and Sprague Dawley rats were 

the two most commonly utilised strains. No clear advantage was demonstrated for 

the use of either strain over the other. Moreover, there was no requirement for the 

use of any specialist strain (such as Zucker rats) in this project. 

Given that the focus of this project is to investigate long-term complications of hepatic 

IRI, namely NABS and peri-portal fibrosis, previously published reports investigating 

these outcomes were sought in the literature review. This highlighted only two reports 

that had examined the long-term effect of hepatic IRI on biliary pathology. One of 

these reports identified that hepatic IRI lead initially to an increased rate of biliary 

epithelial cell apoptosis followed by ductal proliferation of intrahepatic bile ducts (Xu 

et al., 2004). The second report examined the degree of long-term ductal proliferation 

and portal fibrosis following intraoperative radiotherapy on a background of hepatic 

IRI and thus, was not purely focused on direct effects of hepatic IRI (Hahn et al., 

2007). Not only was the literature lacking in rat models that addressed the causal 

relation between hepatic IRI and delayed biliary complications, it was also noted that 

the vast majority of published reports (96.8%) involved short-term follow up (<14 
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days). Therefore, there was a clear need for in vivo experimental research on this 

subject. 

As outlined in section 3.1.3, there are a number of well described in vivo models to 

investigate hepatic IRI in the rat. However, this review has highlighted a handful of 

other, less commonly known models (or variations thereof), including the use of 

cirrhosis models (Takeda et al., 2003, Tsuchiya et al., 2003) or caecal herniation 

(Rhee et al., 2002) in conjunction with total inflow occlusion, or the combined 

occlusion of main hepatic artery and branch of portal vein (Karwinski et al., 1993, 

Xiang et al., 2006) in order to avoid splanchnic congestion. These unconventional 

models are highlighted for academic purposes and were not considered further in this 

project due to lack of standardisation. 

Based on the data presented in Table 6, it is clear that segmental (selective) and 

total inflow occlusion models are the most commonly reported models in the literature 

to investigate hepatic IRI in rats, segmental models being twice as commonly 

reported as total inflow occlusion models (61.9% versus 30.6% of total reports 

respectively). The remaining ‘conventional’ models include total vascular exclusion 

and isolated hepatic artery or portal vein occlusion. These models comprised just 

over 5% of all reported models and were deemed unsuitable for the requirements of 

this project because of the likely influence of inevitable factors such as partial 

ischaemia or haemodynamic instability on the validity and applicability of the results. 

An ischaemic period longer than 30 minutes is required for a hepatic IRI rat model to 

produce long-term biliary pathology, (Xu et al., 2004). Given that rat liver cannot 

tolerate more than 30 minutes of main portal venous occlusion (van der Meer et al., 

1971) a total inflow occlusion model would not be appropriate for this project without 

sufficient portosystemic shunting. However, this review has demonstrated higher 

rates of mortality associated with single-stage portosystemic shunting at ischaemic 

durations longer than 30 minutes in comparison to segmental ischaemia of 

comparable duration (Table 18). For example, 90 minutes of total inflow ischaemia 

with single-stage portosystemic shunting is associated with an average animal 

survival rate of 22.9±3.9% compared to 49±14.3% for a similar duration of ischaemia 

in a 70% segmental IRI model (P=0.017). This may be related to the higher risk of 

complications associated with portosystemic shunts (including bleeding and shunt 

thrombosis). The significant association demonstrated between shunt application and 
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use of heparin in this review highlights the perceived risk of shunt thrombosis by 

investigators (see section 3.3.4). Although the splenic transposition model 

demonstrated comparable average survival rates to segmental IRI models in this 

review, the questionable consistency and applicability of the data produced from 

such model rendered it less favourable (Suzuki et al., 1998). The inferior survival 

rates and reliability of data from portosystemic shunt models may explain the 

reduced popularity of these methods over the past decade (Figure 3.20). 

While segmental hepatic IRI models deliver a reasonable balance between 

procedure severity, technical demand and model applicability, the potential influence 

of non-ischaemic lobes on results remains an outstanding issue. Investigators have 

previously overcome this potential problem by combining these procedures with 

ligation or resection of the non-ischaemic lobes. Bearing in mind that the main focus 

of this project is long-term biliary pathology and peri-portal fibrosis, a 4-week follow 

up duration will be necessary in order to adequately investigate these lesions. Such 

lengthy duration of follow-up will not be feasible if ligation of non-ischaemic lobes is 

performed due to the inevitable necrosis and abscess formation in the lobes ligated 

in-situ (Spiegel and Bahde, 2006). An interesting finding from this review is that the 

reported use of the uncoupled 70% ischaemia model (the most commonly performed 

segmental model) has continued to rise over the years while models that combine 

this technique with either ligation or resection of the non-ischaemic liver have been in 

continuous decline over the past decade despite the presumed superior validity of 

results associated with the latter models (Figure 3.21). The reasons why the 

uncoupled model remains more popular with investigators may be related to the 

relatively lower technical skills required or the reduced risk of complications 

(Madrahimov et al., 2006). Certainly, this review demonstrates significantly higher 

average survival rates associated with uncoupled 70% segmental hepatic IRI 

compared to the same model combined with 30% hepatectomy for ischaemia times 

above 30 minutes (average survival rate 85±4.1% versus 62.2±7% for 60 minutes 

ischaemia; P=0.004) (Table 18). Given the increased risk of animal mortality and 

limited availability of expertise in rat liver resection, a combined 

ischaemia/hepatectomy model was not considered further in this project. 

In order to minimise the potential interference of non-ischaemic lobes in uncoupled 

segmental hepatic IRI models, and to maximise availability of injured hepatic tissue, it 

would appear logical to aim for a higher proportion of segmental hepatic ischaemia. 
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However, as would be expected, greater proportions of segmental ischaemia are 

associated with lower survival rates (Karatzas et al., 2014). As previously mentioned, 

the 70% segmental hepatic IRI model was found to be the most commonly reported 

hepatic IRI model in rats, comprising 56.6% of all reported models identified in this 

review (Table 6), and its reported use has seen a continuous linear rise over the 

years (Figure 3.21), despite it being the earliest hepatic IRI model described in rats 

historically (De Baker, 1956). It is likely that the popularity of this model is related to 

the balance it delivers between model refinement, ease of procedure and risk. For 

these reasons, the uncoupled 70% hepatic IRI model was selected as the model of 

choice for this project. 

In addition to the type of hepatic IRI procedure, this review identified ischaemia time 

as the only other independent factor that predicted animal survival in a regression 

model (Table 17). Considering the need to develop a reproducible model of long-term 

biliary pathology and peri-portal fibrosis secondary to hepatic IRI in this project, an 

attempt was made to identify the longest duration of ischaemia that was associated 

with acceptable survival outcomes. The review highlighted that the commonest 

ischaemia times investigated were 30, 60, and 90 minutes (22.2%, 35.7% and 15.2% 

respectively) (Figure 3.16), and that the average survival rates for these ischaemia 

times in a 70% segmental hepatic IRI model were 95.1%, 85% and 49% respectively 

(Table 18). It is worth noting that 2 out of 8 reports of 90 minutes ischaemia using 

that model reported a survival rate of 100% (Yamada et al., 2007, Koneru et al., 

1995). Greater ischaemia times were either insufficiently reported or associated with 

lower survival rates in this review. The only published report on delayed biliary 

pathology following hepatic IRI in rats demonstrated only short-lived biliary changes 

following 30 minutes ischaemia (Xu et al., 2004). On the other hand, this review 

highlighted a recent decline in the reported use of 90 minutes ischaemia for rat 

hepatic IRI studies in the literature (Figure 3.29). In spite of the above, and given the 

acceptable associated survival rates, it was decided to pilot all three common 

ischaemia times (30, 60 and 90 minutes) in order to identify the safest period that 

provided consistent long-term biliary and peri-portal pathology. Further details on the 

pilot in vivo IRI model are provided in Chapter 4. 

Based on the information displayed in Figure 3.17, there appears to be an 

abundance of published data at the 60 and 120 minute reperfusion timepoints, but 

less data on later sub-24hr timepoints. This may explain the recent rise in reports of 
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the latter and decline in the former timepoints (Figure 3.31). For this reason a later 

sub-24hr reperfusion period (5 hours) was chosen as the earliest timepoint in the in 

vivo model for this project. As mentioned earlier in this section, the maximum 

reperfusion follow up timepoint was set at 4 weeks to adequately investigate long-

term biliary pathology and peri-portal fibrosis. 

With regards to anaesthetic use, this review has identified pentobarbital, ether and 

the combination anaesthetic - ketamine and zylazine as the three most commonly 

used anaesthetic agents for rat hepatic IRI studies (Figure 3.13). Nevertheless, the 

review also demonstrates that the use of the former two agents has been in decline 

over the past decade or so while the latter has seen a steady rise in use over the 

same period (Figure 3.24). Interestingly, isoflurane has also seen a considerable 

increase in its reported use since the mid-1990s (Figure 3.25), to the extent that it 

has recently surpassed ether as the third most commonly reported anaesthetic agent 

used in studies published between 2011 and 2015. A recent study has reported 

improved liver functions and reduced mortality associated with the use of isoflurane 

compared to ketamine and xylazine following hepatic IRI in rats (Steenks et al., 

2010). Isoflurane was therefore selected as anaesthetic of choice for this project in 

view of its safety profile and availability. 

The use of heparin was found to be most commonly associated with portosystemic 

shunt models in this review, which is likely due to the increased risk of thrombosis in 

these models. On the other hand, 70% partial IRI models were significantly 

associated with heparin omission from model procedure. In addition, a gradual 

decline in overall heparin use over the years in rat hepatic IRI models has been 

demonstrated (Figure 3.27). The growing evidence of anti-inflammatory properties 

identified in heparin (Zhou et al., 2002, Wang et al., 2002, Xie et al., 2000b) may 

explain the declining trend in its use in rat IRI models given the potential influence it 

could have on the results. However, this confounding anti-inflammatory effect 

remains disputed given the conflicting results on actual rat IRI models (Shibayama et 

al., 1991, Harada et al., 2006). Furthermore, such effect should be balanced against 

the potential confounding effect of intravascular coagulation particularly at longer 

occlusion times. Therefore, heparin was not omitted in the current project and 

controls were designed in order to balance any potential confounding anti-

inflammatory effects from its use. 
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Although bile duct exclusion was reported in around 18% of studies that reported bile 

duct handling during rat hepatic IRI procedure, the actual percentage of studies is 

likely to be lower given that the bile duct would probably be included in the clamped 

pedicle in the remaining studies that did not report any bile duct procedure within the 

model design. The technique of bile duct exclusion prior to vascular occlusion 

requires a degree of technical competence and the rationale behind its use is to 

avoid the potentially confounding effect of cholestasis on hepatic IRI. However, such 

effect has not been confirmed in rat models and is countered by the possible altered 

production of glutathione and/or reactive oxygen species in the absence of bile duct 

clamping (Montero et al., 2005). Nevertheless, reports of bile duct exclusion in IRI 

models have continued to be published at a stable rate over the past decade (Figure 

3.28). Interestingly, this review also demonstrated that IRI models that are more 

technically demanding (such as those including shunts or hepatectomy) were 

significantly associated with bile duct inclusion rather than isolation, possibly 

reflecting attempts to minimise further delays in operating time. In the current project, 

bile duct isolation was chosen as part of the model design given the potential for the 

model to involve longer occlusion times and the availability of expertise to perform 

the technique.  

In conclusion, based on the evidence obtained from the literature review described in 

this chapter, a 70% segmental hepatic IRI rat model was chosen for the in vivo phase 

of this project using isoflurane anaesthesia. Various ischaemic times were chosen in 

the pilot stage of model development and a control arm was designed to balance the 

potential effects of heparin administration and bile duct exclusion. Delayed follow up 

timepoints were designated in order to adequately investigate long-term biliary 

pathology and peri-portal fibrosis. Further details of the in vivo phase of this project 

are described in Chapter 4.  
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Chapter 4. In vivo IRI model
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4.1. Introduction 

Hepatic IRI is an unavoidable process in liver transplantation. The concept was 

suggested in the late 1970s as a cause for the observed accelerated damage of liver 

tissue following restoration of oxygen delivery (Chien et al., 1977, Chien et al., 1978, 

Silver and Szabo, 1983) and the phrase “reperfusion injury” was first used in liver 

pathology in 1986 by Adkison et al to describe what had previously been attributed to 

ischaemic liver injury (Adkison et al., 1986). Scientific advances in this field have 

followed rapidly since then and It has become clear that hepatic IRI pathways are 

complex and intertwined as more details about the process continue to be unveiled 

(Gracia-Sancho et al., 2015). Hepatic IRI has been linked to early graft dysfunction 

and later complications of liver transplantation such as NABS (Mourad et al., 2014, 

Briceno et al., 2010). Therefore, it is necessary to briefly revisit the current knowledge 

on the pathogenesis of hepatic IRI in order to better understand its complications. 

 

4.1.1. Stages of hepatic IRI 

Hepatic IRI can be divided into three stages based on the predominant pathological 

feature of each stage. 

 

The cold ischaemic (energy-depletion) stage 

In the context of liver transplantation, this stage involves a period of cold preservation 

following disruption of blood flow to the liver. It is characterised by the rapid depletion 

of energy substrates leading to cellular damage and microcirculatory failure (Peralta 

et al., 2013). 

 

Energy depletion 

The early consumption of glycogen and the lack of oxygen in the ischaemic period 

results in a rapid depletion of ATP and other energy substrates within the cell. This 

triggers a state of homeostatic failure leading to disruption of energy-dependent 

membrane transport (mainly via the Na/K ATPase pump). This loss of 



 

123 
 

transmembrane gradient results in cellular swelling notably in Kupffer cells (KCs) and 

sinusoidal endothelial cells (SECs) (Vollmar et al., 1994). 

 

Cold storage-related SEC damage 

It is accepted that cold storage damage to SECs plays a key initiating role in 

transplant-related hepatic IRI (Gracia-Sancho et al., 2015). SECs are the most 

susceptible liver cells to cold storage injury, becoming activated, highly pro-

inflammatory and apoptotic after 6 hours of cold storage (Russo et al., 2012, Gracia-

Sancho et al., 2010). Indeed, in comparison to hepatocytes, where a significant 

proportion of cells can remain viable even after 48 hours of cold preservation 

followed by reperfusion, almost half of SECs rapidly lose viability following a brief 

period of cold ischaemia and reperfusion (Caldwell-Kenkel et al., 1989). SECs 

activated by cold storage injury promote platelet aggregation, vasoconstriction, KC 

activation, inflammatory cell recruitment, adhesion molecule expression and 

hepatocyte damage (Theruvath et al., 2006, Huet et al., 2004). The lack of biological 

circulatory stimuli in the cold storage environment alters the protective SEC 

phenotype by rendering it less antioxidant and antithrombotic (Gracia-Sancho et al., 

2010). 

 

Microcirculatory changes 

Cold storage results in downregulation of the transcription factor Kruppel-like factor2 

(KLF2), which amongst many things leads to a reduction of eNOS expression 

(Gracia-Sancho et al., 2010). As a result, a reduction in SEC production of the 

vasodilator nitric oxide (NO) ensues. This is also caused by lack of oxygen and 

energy substrates (Montalvo-Jave et al., 2008), and the increased breakdown of the 

NO precursor arginine through the enhanced release of arginase (Langle et al., 

1995). This results in an imbalance between NO and endothelin formation that leads 

to vasoconstriction (Goto et al., 1994). In combination with SEC oedema, this leads 

to sinusoidal narrowing, leukostasis and platelet aggregation (Vollmar et al., 1996), 

resulting in further impairment of blood flow beyond the period of macrovascular 

occlusion, a phenomenon known as “no reflow” (Chun et al., 1994) 
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The early reperfusion (oxidative stress) stage 

This stage occurs mainly within the first 2 hours of reperfusion and is characterised 

by the activation of resident Kupffer cells and by cellular injury mediate primarily 

through the formation of reactive oxygen species (ROS) (Teoh and Farrell, 2003). 

 

Kupffer cell activation 

KCs are activated by a surge in damage-associated molecular patterns (DAMPs) 

release from nearby necrotic cells (Zhai et al., 2011, Gracia-Sancho et al., 2015, 

Huang et al., 2011). The binding of these molecules to toll-like receptors (TLRs) on 

the surface of KCs leads to activation of the NFκB pathway through degradation of 

the inhibitory component IκB, allowing NFκB to translocate to the nucleus (Teoh, 

2011). NFκB induces the synthesis of iNOS and pro-inflammatory cytokines, primarily 

TNF-α and IL-1, which promote further activation of KCs (and other inflammatory 

cells), expression of adhesion molecules on leukocytes and SECs and trigger 

apoptotic pathways (Lichtman and Lemasters, 1999).  

Cold preservation has also been shown to induce strong activation of KCs (Arii et al., 

1994) 

 

Sources and effects of ROS 

Activated KCs (and subsequently PMNs) are major sources of extracellular ROS, 

generating superoxide anions (O2
-) through the induction of membrane-bound 

NADPH oxidase (El-Benna et al., 2008). Moreover, hepatocytes and SECs produce 

intracellular ROS through impaired mitochondrial function and potentially through the 

conversion of xanthine dehydrogenase to xanthine oxidase during reperfusion that 

follows prolonged ischaemic periods (Jaeschke, 2002, Peralta et al., 2013). In 

addition to simply reacting with macromolecules (leading to peroxidation of 

membranes, denaturing of proteins and oxidation of DNA), ROS are now also 

believed to stimulate apoptotic, inflammatory and other signal transduction pathways 

(Semenza, 2000, Teoh and Farrell, 2003). 
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The pH paradox, mitochondrial permeability transition and necro-apoptosis 

During ischaemia, the intracellular pH within hepatocytes is very low due to 

anaerobic metabolism, but this paradoxically protects against cellular necrosis. Upon 

reperfusion, intracellular pH is restored and this leads to accelerated cell death 

(Lemasters et al., 1998). This phenomenon is explained by the pH-dependent onset 

of mitochondrial permeability transition (MPT). 

In combination with high intra-mitochondrial Ca2+ levels, oxidative stress triggers the 

opening of MPT pores in hepatocytes (Kim et al., 2012). This results in permeability 

of the inner mitochondrial membrane and collapse of the mitochondrial membrane 

potential with the consequent swelling and rupture of mitochondria, and aggravation 

of ATP depletion (Lemasters et al., 2009). In the complete absence of ATP, this 

results in cellular necrosis. However, in cases of incomplete ATP depletion, the 

leakage of pro-apoptotic proteins such as cytochrome c, in combination with external 

activation via TNF-α and other cytokines, leads to the activation of caspase enzymes 

and initiation of the apoptotic pathway (Kim et al., 2003) 

 

The late reperfusion (inflammatory) stage 

This stage is characterised by inflammatory cell infiltration with further cell damage 

and necro-apoptosis. This stage commences approximately 6 hours after reperfusion 

(Teoh and Farrell, 2003). 

 

Activation and recruitment of polymorphonuclear leukocytes (PMNs) and 

lymphocytes 

Neutrophils are activated by DAMPs in addition to a number of cytokines (Huang et 

al., 2015). Moreover, the activation of complement pathways at an early stage in 

reperfusion results in the priming of KCs and neutrophils for enhanced ROS 

production and in the attraction of neutrophils (Jaeschke et al., 1993). Neutrophils 

along with other extrahepatic cellular entities become the predominant source of 

ROS production at later stages of reperfusion (Datta et al., 2013). 
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Various subsets of CD4+ T cells are also activated at a relatively early stage during 

reperfusion. These cells produce cytokines that further activate KCs (such as IFN-γ 

and GM-CSF) and others that recruit neutrophils (such as IL-17 and MIP-2), thus 

propagating the inflammatory response (Datta et al., 2013, Peralta et al., 2013).  

 

The role of adhesion molecules 

Neutrophils aggregate to the sinusoidal endothelium during the early stages of 

reperfusion (Sawaya et al., 1999). However, further adhesion is promoted by the 

expression of adhesion factors on both neutrophils and SECs (Teoh and Farrell, 

2003). TNF-α and IL-1 promote the expression of complement receptor 3 (CR3 – 

CD11b/CD18) on the surface of PMNs (Witthaut et al., 1994) and the expression of 

intercellular adhesion molecules 1 (ICAM-1) and P-selectins on SECs (Young et al., 

2001). 

 

The role of chemokines and metalloproteinases 

TNF-α, CXCL1, CXCL8, Macrophage inflammatory protein 2 (MIP-2) and other 

chemokines are expressed by KCs and parenchymal cells and result in further 

recruitment of PMNs (Chen et al., 2006, Hisama et al., 1996, Lentsch et al., 1998).  

Metalloproteinases (such as MMP-9) produced by neutrophils are responsible for 

degradation extracellular matrix proteins, particularly fibronectin. This facilitates 

leukocyte chemotaxis and migration across the extracellular matrix (Hamada et al., 

2009) 

 

4.1.2. Ischaemia reperfusion injury and biliary epithelial cells 

Despite significant advances in our knowledge on hepatic IRI, little has been 

established regarding the role of biliary epithelial cells and their interplay with other 

key cellular players in IRI. It is apparent that BECs are predisposed to cold 

preservation injury (Kukan et al., 1997) and are more vulnerable to reperfusion injury 

compared to hepatocytes (Noack et al., 1993). This may be related to greater 

production of ROS and lower baseline levels of protective glutathione in BECs 
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compared to hepatocytes (Noack et al., 1993). Moreover, BECs are more exposed to 

any potential cytotoxic effect of bile salt imbalance that may result from reperfusion 

injury (Buis et al., 2009), and are likely active drivers of the inflammatory response to 

reperfusion (see Chapter 2). Regardless of the underlying reason for this 

susceptibility, biochemical and morphological evidence of BEC injury following 

reperfusion persists for days to weeks following transplantation, and recovery from 

such injury is prolonged compared to hepatocytes or SECs (Kukan and Haddad, 

2001, Cutrin et al., 1996). This may explain late biliary complications following liver 

transplantation such as NABS (Ayoub et al., 2010). 

 

4.1.3. Susceptibility of the biliary epithelium to ischaemic injury: anatomical, 
physiological and embryological considerations 

The vascular supply to the biliary tract is solely arterial, in contrast to most of the 

hepatic parenchyma, which receives both portal and arterial blood. This is delivered 

via the peri-biliary vascular plexus (PBVP), a complex vascular arrangement that 

forms multi-layered networks surrounding proximal intra-hepatic bile ducts, tapering 

into scattered capillaries distally (Nishida et al., 2006). The functions of the 

intrahepatic biliary tree and the hepatic arterial vasculature are inter-related and inter-

dependent. In fact, the numerical correlation between hepatic arterial and biliary 

profiles in portal tracts is so strong that it has been proposed as an index for bile duct 

preservation or loss (Strazzabosco and Fabris, 2008).  

Embryologically, normal development of the intrahepatic biliary epithelium is found to 

be crucial to the process of arterial vasculogenesis (Clotman et al., 2003). Moreover, 

in pathological conditions leading to ductal proliferation, a parallel growth of the 

intrahepatic arterial vasculature occurs as a result of the expression of angiogenic 

growth factors such as VEGF by the biliary epithelium, an adaptative mechanism that 

sustains the growing metabolic demand of the biliary tree (Fabris et al., 2006, Gaudio 

et al., 1996, Masyuk et al., 2003) 

The dependence of the biliary tree on arterial blood supply is highlighted in the case 

of hepatic artery thrombosis which results in diffuse cholangiopathy due to ischaemia 

(Tzakis et al., 1985). In addition, biliary complications are almost inevitable in 

exclusively portal-perfused models of liver transplantation in animals (Li et al., 2011). 

The susceptibility of the biliary tree to ischaemic injury following orthotopic liver 
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transplantation in particular is exacerbated by a permanent interruption of more than 

60% of the blood supply to the PBVP, originating from proximal vessels including the 

retroduodenal, retroportal, and gastroduodenal arteries (Northover and Terblanche, 

1979) (Figure 1.3).  

 

4.1.4. Challenges to understanding NABS 

The pathogenesis of NABS remains largely obscure despite the impact of these 

lesions on graft survival after liver transplantation (Op den Dries et al., 2011). The 

diagnosis is made on radiological grounds (Buis et al., 2006) and very few clinical 

studies have described its underlying histological changes (Buis et al., 2006, Nishida 

et al., 2006, Abou-Rebyeh et al., 2003) particularly since biopsies are less likely to 

include medium to large bile ducts where the primary pathological changes occur 

(Cameron and Busuttil, 2005). This is also complicated by the fact that adjacent peri-

portal areas may show marked variability in the severity of pathology (Cameron and 

Busuttil, 2005).  

Animal models have been developed in the past to examine NABS and explore 

potential therapeutic strategies for these lesions (Cameron and Busuttil, 2005, Cheng 

et al., 2010b, Chen et al., 2009a, Zhao et al., 2008). However, the majority of these 

studies have been limited to short term outcomes whereas NABS commonly present 

late after transplantation. The choice of species for these models has also been 

problematic. The liver anatomy in larger animals such as pigs resembles more 

closely that in humans (Nykonenko et al., 2017). Liver transplantation in these 

animals is relatively less challenging than in small animals such as rats. However, 

these animals are more difficult to maintain in experimental conditions for longer-term 

follow up which may be necessary in interventional studies of NABS (Esmaeilzadeh 

et al., 2012). 

Given that ischaemia and/or reperfusion are potentially important risk factors for the 

development of NABS during liver transplantation (Op den Dries et al., 2011), the 

substitution of a liver transplantation model with a hepatic IRI model is necessary in 

order to examine their role in isolation and eliminate the potential effect of allograft 

immunogenicity and anastomotic complications on the development of NABS. 

However, no hepatic IRI model with proven reliability to induce NABS has been 

reported to date. 
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4.1.5. Aim of study 

 

1. To pilot an animal model of IRI (designed according to results from the 

literature search) and to identify the optimum ischaemia time in this model  

2. To utilise the optimised model in the investigation of short and long term 

pathological events that occur following reperfusion including the development 

of NABS 
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4.2. Materials and methods 

 

4.2.1. Ethical considerations 

Local Ethical Review Committee (ERC) and Home Office approval for the animal 

models were obtained (project license PPL 60/3907; protocol 19b9) in this project. 

All experiments were carried out in accordance with the Animals (Scientific 

Procedures) Act 1986 and in strict compliance with other local and national 

guidelines and policies.  

 

4.2.2. Rat model of hepatic ischaemia-reperfusion injury and ischaemic 
cholangiopathy 

A rat model of hepatic IRI formed the basis of this project. The procedure used was 

adapted from the well described partial (70%) ischaemia technique (Arab et al., 

2009). In this model, bile duct was separated from the clamped inflow vessels in 

order to avoid concomitant cholestatic injury (Figure 4.1). Partial hepatic ischaemia 

avoids portal congestion which, if prolonged, may result in fatal haemodynamic 

instability and intestinal infarction (Kanazawa et al., 2011). 

 

Animals 

Male Sprague Dawley rats (Charles River, Margate, UK), weighting 350-500g were 

used in all studies. Animals were housed in light- and temperature-controlled 

conditions and allowed water and standard pelleted chow ad libitum. 

 

Pilot procedure 

Ten rats were divided into IRI (n=7) and control groups (n=3). On the day of the 

procedure, animals in both groups received appropriate analgesia and prophylactic 

antibiotics subcutaneously upon induction of anaesthesia (0.1mg/100g Meloxicam, 

0.05mg/kg Buprinorphine and 150mg/kg Clamoxyl). Anaesthesia was induced in 

each animal using 5% isoflurane delivered via a vaporiser and mixed with oxygen at 
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5L/min into an anaesthetic chamber. Isoflurane 1-3% was delivered via a facemask 

to maintain anaesthesia. Animals were then shaved, cannulated and exposed to a 

laparotomy. Baseline blood samples were taken immediately prior to skin incision. 

Lobar vessels to the left and middle hepatic lobes were identified and separated from 

the corresponding bile duct branch (Figure 4.1). Intra-operative heparin (300IU/kg) 

was administered intravenously once the vessels were isolated. In the IRI group, 

these vessels were clamped for a period ranging between 30-90 minutes in order to 

induce lobar ischaemia-reperfusion injury and cholangiopathy. The lobar vessels in 

the control group were isolated but not clamped. Apart from clamping, animals in 

both groups were subjected to similar laparotomy conditions.  

 

 

Figure 4.1 Partial hepatic ischaemia with bile duct isolation 

 

During recovery from anaesthesia, a bolus of intravenous fluids was administered 

subcutaneously (10 ml 0.18% saline/4% glucose). Analgesia (0.05mg/kg 

Buprinorphine) was administered subcutaneously after 6-8 hours and on day 1 

postoperatively while subcutaneous prophylactic antibiotics (150mg/kg Clamoxyl) 

were given on postoperative day 1 and 3. Further blood samples were taken 

immediately post-operatively in both groups. 
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Following recovery, animals were regularly weighed and examined for any deviation 

from normal health. Animals showing signs of ill health were treated by the named 

veterinary surgeon (NVS) of the animal unit or, if excessive, killed humanely by a 

schedule 1 method. 

 

 

Figure 4.2 Bile duct cannulation. Cannula insertion point magnified. 

 

After 28 days, the animals were exposed to a terminal laparotomy using an 

anaesthetic regime similar to the initial procedure. During the termination procedure, 

the common bile duct was cannulated to enable bile collection into pre-weighted 

tubes for sampling and bile flow measurement (Figure 4.2). Blood samples were also 

taken and the liver lobes were harvested for tissue analysis. 



 

133 
 

The pilot phase of the in vitro study focused on developing the IRI and 

cholangiopathy model. Thirty, sixty and ninety minute clamp times were tested (n=2 

each) in order to identify the optimal warm ischaemia period (with maximal biliary 

damage and minimal mortality) and to ensure model reproducibility. 

 

Cholangiography procedure 

Cholangiography was performed by cannulating the common bile duct of an 

anaesthetised male Sprague Dawley rat and injecting 1ml of diatrizoate meglumine 

(Gastrograffin) into the bile duct followed by x-ray and CT imaging to assess the 

condition of the biliary tree. These animals were culled immediately following 

imaging. 

 

Optimised procedure for hepatic ischaemia reperfusion injury and 

cholangiopathy 

Rats were divided into IRI and control groups (n=21 per group). Peri-operative 

analgesia, antibiotic and anaesthetic regimes were similar to those described in the 

pilot procedure, in addition to preoperative preparation and fluids management. 

Intraoperatively, lobar vessels to the left and middle hepatic lobes were identified and 

separated from the corresponding bile duct branch. Intra-operative heparin was 

administered as described in the pilot procedure. In the IRI group, these vessels 

were clamped for 90 minutes (identified from the pilot study as the optimal clamp time 

to induce lobar ischaemia-reperfusion injury and cholangiopathy). The lobar vessels 

in the control group were isolated but not clamped. In accordance with the pilot 

procedures, animals in both groups were subjected to similar laparotomy conditions 

apart from vessel clamping. Baseline blood samples were taken pre- and post-

operatively in both groups. 

Following recovery, animals were regularly weighed and examined for any deviation 

from normal health. Animals showing signs of ill health were treated by the NVS or, if 

excessive, killed humanely by a schedule 1 method. 
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Every three animals in each group were assigned a certain time point for termination 

(5 hours, 1, 3, 6, 10, 14 or 28 days postoperatively) where they were exposed to a 

second laparotomy. Bile, blood and liver tissue procurement was performed in a 

manner similar to that described in the pilot procedure. 

 

4.2.3. Sample processing and preservation 

Reagents used for sample processing 

Formalin (product code HT501128), ethanol (product code 459836), xylene (product 

code A5597) and isopropanol (278475) were purchased from Sigma-Aldrich. 

TRIzol reagent: Purchased from Life Technologies (product code 15596-026) as a 

ready-to-use solution. 

RIPA buffer and cell lysis buffer as described in section 2.2.6. 

 

Processing of tissue samples obtained from animals 

Liver tissue 

For light microscopy tissue imaging, slices of liver from ischaemic and non-ischaemic 

lobes were fixed in 10% neutral buffered formalin for 48 hours in room temperature 

and then stored briefly in 70% ethanol. The fixed samples were then dehydrated in 

increasing concentrations of ethanol followed by xylene and subsequently embedded 

in paraffin blocks for long-term storage. Sections (5μm thick) were cut from the 

paraffin blocks using a microtome and then mounted on frosted microscope slides for 

staining. 

Samples obtained from ischaemic and non-ischaemic lobes for protein extraction 

were placed in 1.5 ml centrifuge tubes and snap-frozen in liquid nitrogen. These 

samples were stored in -80°C long-term and were used for a range of protein and 

biochemistry assays. Tissue homogenate was prepared by transferring a small piece 

(40-100 mg) of sample to RIPA or cell lysis buffer (100 mg/ml) and homogenising the 

tissue manually using a plastic pestle. Samples were then sonicated on ice in 2 

bursts (5 seconds each) with a 30-second interval between sonication bursts in order 

to prevent sample overheating and protein denaturation (Nelson et al., 2006). The 
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homogenised samples were left for 30 minutes at 4°C to maximise protein extraction 

and then centrifuged at 5000 RPM for 5 minutes at 4°C. Supernatants were extracted 

and kept at -80°C for long-term storage. 

Smaller samples from ischaemic and non-ischaemic lobes were obtained for mRNA 

extraction. These were finely diced and placed in 1.5 ml centrifuge tubes with 1ml 

Trizol reagent, snap-frozen in liquid nitrogen and kept in -80°C for long-term storage. 

RNA was extracted from these samples using the guanidinium thiocyanate phenol 

chloroform extraction method (Chomczynski and Sacchi, 1987).  Samples were 

initially homogenised manually using a plastic pestle and then incubated for 10 

minutes at room temperature to maximise permeation of reagent into homogenised 

tissue and facilitate RNA dissociation. Chloroform (200μl per ml of TRIzol reagent) 

was added to the homogenate suspension and mixed on a vortex for 15 seconds. 

The mixture was then left to stand for 5 minutes at room temperature and centrifuged 

at 12000 X g for 15 minutes at 4°C. The resulting aqueous phase supernatant was 

transferred to a clean tube and mixed well with 500μl of 100% isopropanol. The 

mixture was left to stand for 15 minutes at room temperature and subsequently 

centrifuged at 12000 X g for 10 minutes at 4°C. The resulting RNA pellet was washed 

with 1ml of 70% ethanol, mixed on a vortex for 5 seconds and then centrifuged at 

7500 X g for 5 minutes at 4°C. The ethanol wash was then discarded. The remaining 

RNA pellet was left to air dry for 10 minutes; resuspended in RNAse-free water and 

then quantified using a NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific). 

 

For transmission electron microscopy (TEM) imaging, fine samples (less than 2 mm3) 

from ischaemic and non-ischaemic lobes were placed in 2% gluteraldehyde in 0.1M 

sodium cacodylate buffer and stored overnight in 4°C. These samples were 

subsequently post fixed in 1% osmium tetroxide, dehydrated in increasing 

concentrations of acetone and then embedded in epoxy resin. Samples were then 

cut to ultrathin sections (70 nm), mounted on copper grids and stained with 2% 

uranyl acetate and 1% lead citrate. 

 

Bile 
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Bile samples were collected in pre-weighted 0.6 ml centrifuge tubes and then weight 

to determine approximate bile volume. Bile samples were protected from light at all 

times and were stored long-term in -80°C. 

 

Blood 

Blood samples were collected in centrifuge tubes and left to clot for approximately 20 

minutes in room temperature. Samples were then centrifuged at 5000 RPM for 5 

minutes after which the supernatant serum was collected and stored long-term in -

80°C. 

 

4.2.4. Methods for protein analysis 

Reagents used for protein analysis 

Hyaluronan Quantikine Enzyme-linked immune sorbent assay (ELISA) kit: Purchased 

from R&D systems (product code DHYAL0). This was used to quantify hyaluronan 

levels in rat samples. 

Muliplex Rat Cytokine/Chemokine Magnetic Bead Panel kit: Purchased from Merck 

Millipore (Product code RECYTMAG-65K-16). This kit was used to quantify levels of 

the following cytokines in rat samples using a MagPix system: MCP-1 (CCL2), MIP-

1α (CCL3), MIP-1β (CCL4), MIP-2 (CXCL2), RANTES (CCL5), IP-10 (CXCL10), IFN-

γ, TNF-α, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12 p70, IL-10, VEGF and EGF. 

Reagents and methods for the Lowry method, gel electrophoresis and western blot 

are similar to those described in section 2.2.7. 

 

Enzyme-linked immune sorbent assay (ELISA) 

Hyaluronan levels in rat samples (serum, bile and liver homogenate) were quantified 

via ELISA using a kit purchased from R&D Systems. Samples (or standards) were 

mixed 1:1 with assay diluent in ELISA microplate wells coated with recombinant 

human aggrecan and incubated on horizontal shaker for 2 hours at room 

temperature. Wells were then aspirated and washed 5 times. Subsequently, 
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hyaluronan conjugate (recombinant human aggrecan conjugated to horseradish 

peroxidase) was added to each well and incubated on horizontal shaker for 2 hours 

at room temperature. A substrate solution (hydrogen peroxide and stabilised 

tetramethylbenzidine) was then added to each well and incubated for 30 minutes at 

room temperature. The chromogenic reaction was then stopped using a diluted 

hydrochloric acid solution and the absorbance of the resultant product was read at 

540nm using a spectrophotometer. The unknown concentrations were calculated 

based on the calibration curve of the standards using a web-based data analysis 

programme capable of generating a four parameter logistic curve fit 

(www.myassays.com). 

 

Cytokine multiplex array 

Cytokine levels in rat samples (serum, bile and liver homogenate) were quantified 

using multiplex cytokine magnetic bead panel purchased from Merck Millipore. The 

assay is based on the Luminex xMAP technology using fluorescent beads coated 

with capture antibodies. 

Samples (or standards) were mixed with assay buffer, matrix solution and pre-mixed 

16-plex beads in equal volumes into appropriate wells of the 96-well plate provided 

with kit. The plate was then kept to incubate on a plate shaker for 2 hours at room 

temperature. The plate was then placed on a hand-held magnet and washed twice 

with wash buffer. Subsequently, pre-mixed detection antibodies were added to the 

wells and incubated on a plate shaker for 1 hour at room temperature. This was 

followed by the addition of Streptavidin-Phycoerythrin to the wells and further 

incubation for 30 minutes on a plate shaker at room temperature. The wells were 

then washed twice on the magnet with wash buffer and re-suspended in Drive Fluid 

on a plate shaker for 5 minutes at room temperature. The plate was run on a MagPix 

system and the results analysed using xPONENT software provided with the system. 

 

4.2.5. Methods for mRNA quantification 

Reagents used for mRNA quantification 
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RQ1 RNase-free DNase I (product code M610A), M-MLV Reverse transcriptase 

(product code M170B), Random Primers (product code C118A), dNTP Mix (product 

code U151B) and Pfu DNA Polymerase (product code M774A) were all purchased 

from Promega. SYBR® Green JumpstartTM TaqReadyMixTM was purchased from 

Sigma-Aldrich (product code S9939) as were all gene-specific primers. MicroAmp® 

Fast Optical 96-Well PCR Reaction plates (product code 4346906) were purchased 

from Applied Biosystems. Primers were designed using NCBI Primer-Blast 

(Bethesda, MD, USA). 

 

Real-time polymerase chain reaction (RT-PCR) 

Quantitative analysis of mRNA expression was performed using SYBR green-based 

RT-PCR. RNA samples were treated with DNAse I to remove any contaminating 

genomic DNA. First strand complimentary DNA was synthesised from RNA samples 

using random primers and M-MLV Reverse Transcriptase using the manufacturers 

protocol (Promega, Madison, WI, USA) and a Hybaid PX2 thermal cycler (Thermo 

Fisher scientific). RT-PCR was performed using an Applied Biosystems 7500 Fast 

Real-Time PCR thermocycler (Applied Biosystems, Foster City, CA, USA) 

incorporating the primer sequences summarised in Appendix 3. Standard curves 

were generated using the included software (SDS 2.0.6) and 18S rRNA was used as 

reference gene to which the data was normalised. 

 

4.2.6. Methods for tissue staining 

Reagents used for staining 

Meyer’s Haematoxylin solution (product code MHS32), eosin solution (product code 

318906) and Scott’s tap water (product code S5134) were purchased from Sigma-

Aldrich. 

Picro-sirius red solution: Composed of 0.1% Sirius red dye in (1.3%) saturated 

aqueous solution of picric acid and used for collagen staining of tissue sections. 

Sirius red and saturated aqueous picric acid were both purchased from Sigma-

Aldrich (product codes 365548 and P6744). 
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Tris-EDTA buffer: Composed of Tris base (10mM), EDTA (1mM) and Tween 20 

(0.05%) in deionised water (pH 9.0). Used as a buffer for heat-mediated antigen 

retrieval. 

Trypsin solution: Composed of Trypsin (0.05%) in deionised water. Used for enzyme-

mediated antigen retrieval. 

TBS-Triton X-100 wash buffer: Composed of Triton X-100 (0.025%) in 1X TBS. Used 

as a wash buffer for immunohistochemistry staining. 

Antibody diluent: Composed of BSA (1%) in 1X TBS. Used as a diluent for primary 

and secondary antibodies during immunohistochemistry staining. 

Hydrogen peroxide solution: Composed of hydrogen peroxide (0.3%) in 1X TBS. 

Used to suppress endogenous peroxidase activity in tissue and reduce background 

signals during immunohistochemistry staining. 

Liquid 3,3'-diaminobenzidine (DAB) and substrate chromogen kit: Purchased from 

DAKO (product code K3468). The kit is composed of two components: DAB in 

chromogen solution and a substrate buffer (hydrogen peroxide in imidazole-HCl 

buffer, pH 7.5). The two components are mixed at a ratio of approximately 1:50 to 

form the chromogenic reagent which forms a brown stain at the site of the HRP-

labelled antigen during immunohistochemistry staining.  

DPX mounting medium: Purchased from Sigma-Aldrich (product code 44581) as a 

ready-to-use medium for cover slip mounting on stained sections. 

 

Rehydration and dehydration of tissue sections 

Tissue sections for staining were prepared as described in section 4.2.3. Tissue 

sections were de-waxed by immersion in 100% xylene followed by rehydration 

through serial immersion in decreasing concentrations of ethanol and finally in water. 

Following staining, tissue sections were again dehydrated through serial immersion 

in increasing concentrations of ethanol followed by 100% xylene prior to mounting 

cover slips on slides using DPX mounting medium. 
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Haematoxylin and Eosin (H&E) staining 

Slides containing rehydrated tissue sections were immersed in Meyer’s haematoxylin 

solution for 30 seconds and then rinsed in running water followed by Scott’s tap 

water solution for 10 seconds. Slides were then counterstained by immersion in 

Eosin solution for 10 seconds and then rinsed in running water for 5 minutes. Finally, 

sections were dehydrated and covered as previously described. 

 

Sirius red staining 

Slides containing rehydrated tissue sections were immersed in picro-sirius red 

solution for 1 hour in room temperature and then washed twice in acidified water 

(0.5% glacial acetic acid in deionised water). Tissue sections were then dehydrated 

and covered as previously described. 

 

Immunohistochemistry 

Immunohistochemistry staining was performed on paraffin-embedded tissue 

sections. Sections were deparaffinised and re-hydrated as described above. 

 

Antigen retrieval 

Two methods for antigen retrieval were used in this project. Heat-induced retrieval 

was the most commonly used method. Enzymatic retrieval was used for immune-

detection of Proliferating Cell Nuclear Antigen (PCNA). 

For heat-mediated antigen retrieval, rehydrated sections were transferred to a 

pressure cooker with boiling Tris-EDTA buffer and left for 1 minute under full 

pressure after which pressure was released and cooker cooled under running water. 

Enzyme-mediated antigen retrieval involved the incubation of rehydrated sections in 

a trypsin solution pre-heated in a water bath at 37°C for 15 minutes. Sections were 

then removed from the water bath and rinsed in running tap water to remove any 

residual trypsin. 
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Immunohistochemistry staining 

After antigen retrieval, slides were washed in TBS-Triton X-100 wash buffer twice for 

5 minutes on a slow rocker at room temperature. Sections were then blocked using 

20% FCS solution in PBS for 1 hour at room temperature. Excess blocking solution 

was subsequently drained and primary antibody of interest applied to sections and 

incubated overnight at 4°C. 

On the following day, slides were washed in wash buffer twice for 5 minutes on a 

slow rocker at room temperature and then incubated in a 0.3% hydrogen peroxide 

solution for 15 minutes. This was followed by application of a suitable HRP-

conjugated secondary antibody to the sections and incubation for 1 hour at room 

temperature. Finally, the slides were washed twice in wash buffer and then covered 

with a DAB substrate-chromogen solution for a suitable period to develop the 

enzyme-labelling stain. 

 

Counterstaining 

After development of the chromogenic stain, sections were counterstained by 

immersing slides in Meyer’s haematoxylin for 1 minute and then rehydrated as 

previously described. 

 

Analysis of tissue staining 

Stained slides were scanned using a slide scanner (Leica SCN400) to enable remote 

visualisation and stain quantification. This was achieved using the web-based 

SlidePath Digital Image Hub and Tissue IA software provided by Leica microsystems 

(Weltzlar, Germany) and thus eliminated the potential for investigator bias. 

Inflammatory cell counts in H&E sections were normalised to the size of portal or 

central vein in each field of view as previously described (Wallace et al., 2010). Liver 

damage severity was graded on a scale from 0-5 as previously described (Marek et 

al., 2005). For all morphometric and structural histological analysis, slides were 
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assessed independently by two investigators blinded to the treatment groups and 

measurements were taken in at least nine portal tracts per specimen. 

 

4.2.7. Examination of biliary epithelial cell microvilli under transmission 
electron microscopy (TEM) 

TEM sections of rat liver tissue were prepared as described in section 4.2.3. Sections 

were then visualised using a Philips CM100 Transmission electron microscope 

(Philips/FEI Corporation, Eindhoven, The Netherlands) and images of the bile ducts 

and biliary epithelial cells were stored for further analysis. Microvilli were counted and 

microvillar dimensions and luminal circumferences of bile ducts were measured via 

ImageJ imaging analysis software (U.S. National Institutes of Health, Bethesda, 

Maryland, USA) using a scale bar plugin for microscopes. BEC microvillar density 

was measured by dividing the total number of luminal microvilli by the circumference 

of the bile ducts lumen in each cross section. This was measured in at least nine bile 

ducts per specimen. 

 

4.2.8. Thiobarbituric Acid Reactive Substances (TBARS) assay 

The TBARS assay protocol was used to estimate lipid peroxidation in rat serum and 

liver homogenate. The adduct formed from the reaction of malondialdehyde (MDA) 

with thiobarbituric acid (TBA) is measured spectrophotometrically to determine the 

level of TBA-reactive substances. 

 

Reagents used for TBARS assay 

Malondialdehyde bis(dimethyl acetal) (MDA): Purchased from Sigma-Aldrich (product 

code 108383). Prepared as a 1mM stock in deionised water and serially diluted to 

form the assay standard solutions. 

Thiobarbituric Acid (TBA): Purchased from Sigma-Aldrich (product code T5500). 

Working reagent was prepared as a 5.2mg/ml solution in 10% acetic acid and 

adjusted to pH 3.5 with NaOH solution (10N). 
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Butylated hydroxytoluene (BHT): Purchased from Sigma-Aldrich (product code 

W218405) and prepared as a 5% solution in methanol. BHT was used as an anti-

oxidant to prevent further oxidation of lipid during sample processing and the TBA 

reaction. 

 

TBARS protocol 

BHT was added to samples during sample processing to minimise ex-vivo lipid 

peroxidation. TBA reagent was added to each sample or standard in a 1.5ml 

centrifuge tube with vigorous mixing and then incubated on a heating block at 95°C 

for 45 minutes. Samples were then allowed to cool on ice for 5 minutes and then 

centrifuged at 3000 rpm for 15 minutes at room temperature. The supernatants were 

transferred to a 96-well plate and absorbance was read at 532nm on a microplate 

absorbance reader. The unknown concentrations were calculated based on the 

calibration curve of the standards using a web-based data analysis programme 

(www.myassays.com). 

 

4.2.9. Bile acid assay 

Bile acids were measured in rat serum, bile and liver homogenate using an 

enzymatic recycling method. The enzyme 3α-hydroxysteroid dehydrogenase (3α-

HSD) in the presence of Thio-NAD+ converts bile acids to 3-keto steroids and Thio-

NADH. This reaction is reversible and the enzyme 3α-HSD can convert the resultant 

3-keto steroids in the presence of NADH back to bile acids and NAD+ thus recycling 

the bile acids. When excess NADH is used, the rate of Thio-NADH production can be 

measured spectrophotometrically by measuring the change in absorbance over time. 

Total bile acid concentration is derived from this measurement. 

 

Reagents used for the bile acid assay 

Dialab enzymatic recycling bile acid kit: Purchased from Alpha Laboratories (product 

code 903120). The kit is composed of buffered Thio-NAD (reagent 1) and buffered 

3α-HSD mixed with NADH (reagent 2). The reagents were supplied as ready-to-use 

solutions for bile acid estimation. 
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Bile acid standard: Purchased from Alpha Laboratories (product code 903210). Used 

for the estimation of bile acids in conjunction with the Dialab bile acid kit. 

 

Enzymatic recycling bile acid assay protocol 

All reagents were pre-warmed to 37°C in a water bath. Reagent 1 was mixed with 

each samples or standard and incubated for 3 minutes at 37°C. This was followed by 

the addition of reagent 2 and further incubation at 37°C for 1 minute. Baseline 

absorbance was then read at 405nm using a spectrophotometer followed by further 

readings every minute up to 3 minutes. The average change in absorbance per 

minute was then calculated (δA) and the total bile acid concentration derived using 

the following formula: 

Total bile acid (μM) = δA (sample) X standard concentration (μM) / δA (standard) 

The assay is linear up to concentrations of 180μM. Samples with higher 

concentrations were diluted appropriately in 0.9% saline or PBS (for bile or liver 

homogenate samples respectively).  

 

4.2.10. Phospholipid assay 

Phospatidylcholine levels were measured in rat serum and bile using an enzyme-

coupled assay. Phospatidylcholine is hydrolysed enzymatically releasing choline 

which is then oxidised producing H2O2. This reacts with a probe (Oxi-Red) 

generating a highly fluorescent product (Resorufin) proportionate to the concentration 

of phosphatidylcholine in the sample. 

 

Reagents used for the phosphatidylcholine assay 

Biovision phosphatidylcholine colorimetric/fluorometric assay kit: Purchased from 

Cambridge Bioscience (product code K576-100). This kit is composed of the 

following proprietary reagents: phosphatidylcholine assay buffer, OxyRed probe, 

phosphatidylcholine hydrolysis enzyme, phosphatidylcholine development mix and 

phosphatidylcholine standard. OxyRed probe and assay buffer are supplied in a 

ready-to-use form. Phosphatidylcholine hydrolysis enzyme and phosphatidylcholine 
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development mix are dissolved in assay buffer prior to use. Phosphatidylcholine 

standard is dissolved in 200μl of deionised water to prepare a 50mM 

phosphatidylcholine standard solution from which serial standard dilutions are 

prepared. 

 

Phosphatidylcholine assay protocol 

All reagents were pre-warmed to room temperature prior to use. A reaction mix 

composed of assay buffer, hydrolysis enzyme, development mix and OxiRed probe 

were added to each sample or standard in a 96-well plate and incubated for 30 

minutes at room temperature. The absorbance was read at 570nm in a microplate 

reader and the unknown concentrations were calculated based on the calibration 

curve of the standards using a web-based data analysis programme 

(www.myassays.com). 

 

4.2.11. Glutamate dehydrogenase assay 

Glutamate dehydrogenase (GluDH) levels in rat serum, bile and liver homogenate 

were measured using a substrate-based assay. GluDH catalyses the reduction of α-

ketogluterate to glutamate and the simultaneous oxidation of NADH to NAD+. The 

rate of reduction of absorbance (due to NADH depletion) is proportionate to GluDH 

activity in the sample. 

 

Reagents used for the glutamate dehydrogenase assay 

Dialab glutamate dehydrogenase assay kit: Purchased from Alpha Laboratories 

(product code D03773). The kit contains two reagents: reagent 1 is composed of 

triethanolamine (50mM), α-ketogluterate (7mM), ammonium acetate (100mM), EDTA 

(2.5mM) , ADP (1mM) and LDH (<1.5mM) and reagent 2 is composed of NADH 

(0.25mM). Both reagents are supplied as ready-to-use solutions. 

 

Glutamate dehydrogenase assay protocol 
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All reagents and samples were pre-warmed to 37°C in a water bath. Reagent 1 was 

mixed with each samples or standard and incubated for 3 minutes at 37°C. Reagent 

2 was then added followed by further incubation at 37°C for 1 minute. Baseline 

absorbance was read after 30 seconds at 340nm using a spectrophotometer followed 

by further readings every minute up to 5 minutes. The average change in absorbance 

per minute was then calculated (δA) and the GluDH activity derived using the 

following formula: 

GluDH activity (U/L) = δA X 1485 (constant) 

The assay is linear up to concentrations of 120U/L. Samples with higher 

concentrations were diluted appropriately in 0.9% saline or PBS (for serum/bile or 

liver homogenate samples respectively). 

 

4.2.12. Serum liver function tests 

Measurement of total protein, bilirubin, alkaline phosphatase, alanine transaminase 

and γ-glutamyl transferase levels in rat serum were performed at the clinical 

biochemistry laboratories of the Royal Victoria Infirmary in Newcastle upon Tyne. 

 

4.2.13. Statistical analysis 

Statistical methods used are those described in section 2.2.9. 
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4.3. Results 

 

4.3.1. Results from the pilot hepatic ischaemia-reperfusion injury model 

Animal survival 

Of the ten rats employed in the pilot study, 3 died intraoperatively (30% mortality). 

Two animals died of sudden respiratory arrest (one rat was exposed to 30 minutes of 

IRI and the other rat was exposed to a control procedure). A third rat (from the 

control group) died due to uncontrolled intraoperative haemorrhage. 

The procedure was revised in response to these incidents. Abdominal access was 

limited to a midline incision instead of an inverted T incision. Regular monitoring of 

vital signs was implemented and abdominal retractors were removed immediately 

following lobar clamping. Warm pads were kept under the animals throughout the 

procedure and moist swabs were placed over the abdominal wound during the 

ischaemic period. Following the implementation of these measures, no further 

episodes of sudden intra-operative respiratory arrest occurred. 

 

Peri-portal fibrosis 

The increase in ischaemia time had a significant effect on the degree of fibrosis on 

day 28 post IRI based on Sirius red staining [One-way ANOVA F(4,8)=15.6, 

p=0.0008]. The degree of fibrosis was found to be more severe and consistent in the 

90-minute clamp group. Post hoc comparisons using the Bonferroni-Holm test 

indicated that average percentage of fibrosis in both the 90 and 30 minute groups 

(2.3±0.3% and 1.6±0.1% respectively) were significantly higher than those in the 

control groups and in the non-ischaemic lobes (0.6±0.1% in both; p<0.05). The 60-

minute clamp group however demonstrated wide variation in fibrosis staining 

(0.7±0.7%) and was not significantly different from any of the other groups (Figure 

4.3). 

On that basis, the 90-minute clamp model was chosen due to its consistent results 

with severe fibrosis and a low incidence of mortality. 
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Figure 4.3 Average percentage of fibrosis in each study group in the pilot model 

based on Sirius red staining 

 

Cholangiography results 

Although bile duct cannulation was achieved in all animals with little difficulty, 

adequate visualisation of the biliary tree was not possible. The apparent reasons for 

this problem were twofold: Firstly, the diameter of the bile duct prevented 

downstream displacement of fluid in the biliary tree upon injection of contrast. This 

resulted in the build-up of pressure within the biliary tree and ultimately the disruption 

of ductules and leakage of contrast into the systemic circulation. Secondly, the 

resolution of the small animal CT scanner imaging was still insufficient to delineate 

any potential stenotic lesions within the biliary tree (Figure 4.4). After experimenting 

with various perfusion pressures, cannula sizes and cannulation techniques it 

became clear that no meaningful data could be obtained from rat cholangiography in 

its current approach and it was decided that the technique would not be further 

employed to develop the hepatic IRI model. 
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Figure 4.4 CT cholangiogram showing low-resolution outline of biliary tree (black 

arrow) but also showing leakage of contrast into systemic circulation as evident in the 

outlined renal vein (white arrow) 

 

4.3.2. Results from the optimised hepatic ischaemia reperfusion injury and 
cholangiopathy model 

Following the pilot study, the hepatic ischaemia reperfusion injury and 

cholangiopathy model involved an additional 50 rats and the procedure was 

optimised according to the pilot data. Most importantly, all animals in the clamp group 

were exposed to 90 minutes of ischaemia. 

 

Mortality rates 

Eight out of 50 rats died during the optimised phase of the study. Of these, two rats 

were killed accidentally (opiate overdose in one case and overheating of faulty 
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thermal pad in another). The remainder of fatalities were due to uncontrolled 

intraoperative bleeding (n=4) or unexplained sudden postoperative death (n=2). The 

exclusion of accidental fatalities resulted in an overall mortality rate of 12.5% in the 

optimised phase of the study, mainly as a result of uncontrolled intraoperative 

bleeding (75% of non-accidental deaths). Ultimately, 42 animals survived and were 

included in the analysis of the IRI model. 

 

Animal weights 

Rats in both groups experienced a loss of weight as early as 5 hours postoperatively. 

Weight loss in relation to preoperative weight was significantly greater in the clamp 

group than in the control group on postoperative day 1 (6.3±0.7% versus 3.7±0.3% 

respectively; p=0.003). However, weight gain in the clamp group improved over the 

subsequent days and was statistically comparable to the control group (Figure 4.5). 

 

 

Figure 4.5 Percentage of postoperative weight change in relation to preoperative 

weight. With the exception of day 1, both the IRI and control groups demonstrated 

statistically comparable weight changes. *p=0.003 (versus control). 
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Bile flow 

It was not possible to measure lobar bile flow as it was difficult to cannulate each 

lobar duct separately on a consistent basis. Since common bile duct cannulation was 

easier to perform consistently, total liver bile production was measured instead. Total 

bile flow rate normalised to total body weight was significantly reduced in the IRI 

group compared to the clamp group after 5 hours (13.9±3.0μl/kg/min versus 

29.4±7.8μl/kg/min; p=0.03) and 1 day of reperfusion (16.7±5.0μl/kg/min versus 

33.9±9.0μl/kg/min; p=0.04). No significant differences between the two groups were 

apparent when bile flow rates were measured at later time points (Figure 4.6).  

 

 

Figure 4.6 A comparison of bile flow rates (normalised to total body weight) between 

the IRI and control groups. Bile flow was significantly lower in the IRI group after 5 

hours and 1 day of reperfusion. *p<0.05 (versus control). 

 

Serum liver function tests 

Total protein and albumin 

No significant differences in total serum protein or albumin concentrations were noted 

between the two groups in the peri-operative period and up to 28 days post 

reperfusion (Figure 4.7 and Figure 4.8 respectively). 
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Figure 4.7 A comparison of serum total protein concentration between IRI and control 

groups. The graph includes preoperative and immediate postoperative time points 

and demonstrates no significant difference between the two groups at any time point. 
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Figure 4.8 A comparison of serum total albumin concentration between IRI and 

control groups. The graph illustrates that there is no significant difference between 

the two groups at any timepoint. 

. 

Bilirubin, bile acids, alkaline phosphatase and γ-glutamyl transferase 

Average serum levels of bilirubin were considerably higher in IRI group compared to 

control in the first postoperative day (8.8±8.4μM versus 1.5±0.2μM control; P=0.15). 

However this difference failed to reach statistical significance (Figure 4.9). On the 

other hand, average serum bile acid levels were higher in the IRI group as early as 5 

hours post-reperfusion (47.9±21.5μM versus 18.3±9.6μM control; p=0.09). This 

difference reached statistical significance on postoperative day 1 (152.3±50.7μM 

versus 9.4±1.4μM control; p=0.008) but resolved by day 3 (Figure 4.10). Serum 

alkaline phosphatase levels were significantly higher in the IRI group in the early 

postoperative period and peaked at postoperative day 3 (231.7±50.1U/L versus 

95±22.9U/L control; p=0.01). Serum alkaline phosphatase levels in the IRI group 

returned to baseline control levels by day 6 (Figure 4.11). γ-glutamyl transferase 

(GGT) levels were, on average, higher in the IRI group at the 5-hour timepoint 
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(7.5±3.3U/L versus 3.4±1.3U/L control; P=0.11) and up to 24 hours post re-perfusion 

compared to controls, but this difference was not statistically significant (Figure 4.12). 

 

 

Figure 4.9 A comparison of serum bilirubin concentration between IRI and control 

groups. Although average bilirubin levels are higher in the IRI group on day 1 the 

difference is not statistically significant. 
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Figure 4.10 A comparison of serum bile acid concentration between the IRI and 

control groups. Serum bile acids were significantly higher in the IRI group after 1 day 

of reperfusion. *p<0.01 (versus control). 
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Figure 4.11 A comparison of serum alkaline phosphatase (ALP) activity between the 

IRI and control groups. Serum ALP activity was significantly higher in the IRI group 

between postoperative day 1 and 3. *p<0.01 (versus control). 
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Figure 4.12 A comparison of serum γ-glutamyl transferase (GGT) activity between IRI 

and control groups. Although average serum GGT activity is higher in the IRI group 

within the first 24 hours post-reperfusion, the difference is not statistically significant. 

 

Alanine aminotransferase 

In the first 3 postoperative days, average serum alanine aminotransferase (ALT) 

activity was higher in the IRI group compared to the control group. Although the 

levels peaked 5 hours and 1 day after reperfusion, this difference failed to reach 

statistical significance due to the large variance in ALT levels in the IRI group at 

these timepoints (range 1457-13321U/L). ALT activity was significantly higher in the 

IRI group compared to control immediately post-surgery (1543±689U/L versus 

115.7±69.6U/L control; p<0.0001) and on postoperative day 3 (317±32.8U/L versus 

67±32.9U/L control; p=0.001) and returned to baseline control levels by day 6 (Figure 

4.13). 
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Figure 4.13 A comparison of serum alanine transaminase (ALT) activity between the 

IRI and control groups (logscale). Higher average serum ALT activity was 

demonstrated in the IRI group immediately following surgery up until day 3. *p<0.005 

(versus control). 

 

Hyaluronic acid concentration  

Hyaluronate levels were measured as a marker of sinusoidal endothelial cell 

damage. Serum hyaluronate levels were -on average- higher in the IRI group than 

control during the first 3 postoperative days. The levels peaked on day 1 

(204.9±137.8ng/ml versus 26.9±8.7ng/ml control; p=0.09) but were only significantly 

higher on day 3 (53.9±14.4ng/ml versus 14.4±3.7ng/ml control; p=0.01). Once again, 

serum levels returned to control values by day 6 (Figure 4.14). In comparison, 

measurement of hyaluronic acid concentrations in liver homogenates of ischaemic 

and sham ischaemic lobes showed a significant peak rise in the IRI group on day 3 

post re-perfusion (11582.5±5693.7ng/ml versus 810.6±225ng/ml control; p=0.03). 
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Figure 4.14 A comparison of serum hyaluronate concentration between the IRI and 

control groups. Higher average hyaluronate concentration was demonstrated in the 

IRI group on day 1 and 3 postoperatively. *p<0.05 (versus control) 

 

 

Figure 4.15 A comparison of tissue hyaluronate concentration in ischaemic and sham 

ischaemic lobes. Average hyaluronate concentration peaked on day 3 in the IRI 

group. *p<0.05 (versus control) 
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Biliary bile acid and phospholipid concentration 

Total bile acid concentration in bile surged in the IRI group to levels significantly 

higher than that in the control group on postoperative day 1 (18.6±3.3M versus 

11.2±1.5M control; p=0.02). Total biliary bile acid concentrations appeared to rise 

steadily in both groups from day 3 until day 14 with no significant difference between 

the two groups (Figure 4.16). It is unclear whether this rise represented an increase 

from or a return to preoperative baseline since pre-anaesthetic values were not 

available in view of the requirement for bile duct cannulation to obtain biliary 

samples. 

Biliary phospholipid concentration rose to significantly higher levels in the IRI group 

compared to the control group, however this only occurred on postoperative day 3 

(7.7±1.1mM versus 4.9±0.6mM control; p=0.016) lagging behind the earlier surge in 

biliary bile acid concentration in that group (Figure 4.16). Measurement of biliary bile 

salt to phospholipid (BS/PL) ratio demonstrated significantly lower values in the 

clamp group on day 3 post re-perfusion. In comparison, serum BS/PL ratio 

measurements highlighted a significant rise on day 1 in the clamp group versus 

controls. 
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Figure 4.16 A comparison between biliary bile acid (above) and phospholipid (below) 

concentrations between the IRI and control groups. A significant increase in biliary 

bile acid in the IRI group (day 1) is followed by a delayed increase in biliary 

phospholipid in that group (day 3). *p<0.05 (versus control). 
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Figure 4.17 A comparison between biliary (above) and serum (below) BS/PL ratios 

between the IRI and control groups. *p<0.05 (versus control). 

 

Bile salt transporters 

The expression of bile salt transporters was examined to further explore the findings 

related to biliary bile salt levels. RT-PCR was performed to measure Na+ -
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taurocholate co-transporting polypeptide (Ntcp; Slc10a1), bile salt export pump 

(Bsep; Abcb11) and organic anion transporting polypeptide (Oatp2b1; Slc02b1) 

mRNA transcript levels in liver homogenates of ischaemic and sham ischaemic 

lobes. 

Ntcp mRNA levels were significantly lower in the IRI group on day 1 post re-perfusion 

(18-fold reduction compared to controls; p=0.01) and remained significantly lower on 

day 3 (Figure 4.18). A similar pattern was noted with Oatp2b1 levels, with a 3-fold 

reduction on day 1 compared to controls (p=0.002) (Figure 4.19). On average, Bsep 

transcripts were lower in the IRI group between day 1 and 3 compared to controls, 

but this difference did not reach statistical significance (Figure 4.20). It was also 

observed that the levels of transcripts for all three transporters became higher in the 

IRI group on average (though not statistically significant) compared to controls at 

later timepoints (between day 10 and 14). 

 

 

Figure 4.18 RT-PCR analysis in ischaemic and sham ischaemic lobes shows 

significantly reduced expression of Ntcp in the ischaemic liver lobes between day 1 

and 3 post-reperfusion. *p<0.05 versus control 
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Figure 4.19 RT-PCR analysis in ischaemic and sham ischaemic lobes shows 

significantly reduced expression of Oatp2b1 in ischaemic liver lobes on day 1 post-

reperfusion. *p<0.005 versus control 

 

 

Figure 4.20 RT-PCR analysis comparing the expression of Bsep in ischaemic and 

sham ischaemic lobes. 



 

165 
 

 

 

 

Multiplex cytokine array 

Serum, bile and liver homogenate samples were analysed to determine levels of the 

following cytokines: IFN-γ, TNF-α, MCP-1, MIP-1α, MIP-1β, MIP-2, VEGF, RANTES, 

IP-10, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12 p70, IL-10 and EGF. 

 

Serum 

Of the cytokines measured, serum concentrations of IL-1α, MIP-1α, IL-6, MCP-1, 

VEGF and MIP-2 were significantly raised in the IRI group compared to control 

(Figure 4.21). In addition, serum levels of RANTES were lower in the IRI group in the 

early postoperative days but rose steadily to concentrations higher than those in the 

control group by postoperative day 10 (Figure 4.22).  
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Figure 4.21 Serum levels of IL-1α, MIP-1α, IL-6, MCP-1, VEGF and MIP-2 compared 

between the two study groups. *p<0.05 (versus control) 

 

 

Figure 4.22 Changes in serum RANTES concentration in both the IRI and control 

groups. *p<0.05 (versus control) 

 

Table 19 summarises the results from cytokines that demonstrated significant 

differences in concentration between the two study groups at various timepoints. 

 

Table 19 Summary of cytokines that demonstrated significant differences in serum 

concentrations between the IRI and control groups. Values are reported as 

mean±SD. 

IRI group (pg/ml) Control group (pg/ml) P value 

IL-1α 5 hours 60.9±21.4 5.3±3.2 0.01 

 Day 1 91.4±51.9 5.6±2.4 0.05 
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 Day 3 76.2±12.7 4.6±2.1 0.001 

IL-6 5 hours 604.9±86.3 107.1±92.9 0.002 

 Day 1 736±405.2 47.4±26.7 0.04 

MCP-1 Day 1 3292.2±590.8 2038.8±169 0.02 

 Day 3 3438.1±1202.8 944.1±103.3 0.02 

MIP-1a Day 1 84.8±36.3 18.5±2.6 0.03 

 Day 3 78.6±33.1 21.9±1.3 0.04 

MIP-2 5 hours 163.3±23.1 97.3±8.6 0.01 

 Day 1 227±87.8 73.1±19.4 0.04 

 Day 3 148.3±4.1 98±12.8 0.003 

RANTES Day 1 1190.7±382 3078.4±350.4 0.003 

 Day 6 5572.1±627.5 4324±165.3 0.03 

 Day 10 5292.2±521.3 3887.1±776.7 0.06 

 Day 14 4486±364.3 2922.3±675.5 0.02 

VEGF Day 1 72±21.1 31.1±9.6 0.04 

 Day 3 65.9±12.3 33.5±5.9 0.01 

 

 

Bile 

Biliary concentrations of MCP-1 and VEGF were higher in the IRI group compared to 

control in the early postoperative period (up to day 1 and day 3 respectively) (Figure 

4.23). These results appear to mirror those obtained from serum samples and, in the 

case of VEGF, peaked at higher concentrations than in serum (Figure 4.21). Biliary 

concentration of EGF in the IRI group was significantly below control baseline on 
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postoperative days 1 and 3 and rose steadily to baseline average by day 14 (Figure 

4.24). Biliary concentrations of RANTES in the IRI group progressively increased and 

were significantly higher than in the control group by postoperative day 28 (Figure 

4.25). 

 

 

Figure 4.23 Biliary levels of MCP-1 (top) and VEGF (bottom) compared between the 

two study groups. *p<0.05 (versus control) 
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Figure 4.24 Changes in biliary EGF concentration in both the IRI and control groups. 

*p<0.05 (versus IRI) 

 

 

Figure 4.25 Changes in biliary RANTES concentration in both the IRI and control 

groups. *p<0.05 (versus control) 
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A summary of the biliary cytokine results is outlined in Table 20 

 

Table 20 Summary of cytokines that demonstrated significant differences in biliary 

concentrations between the IRI and control groups. Values are reported as 

mean±SD. 

 IRI group (pg/ml) Control group (pg/ml) P value 

EGF Day 1 58.6±21.4 343.8±76.1 0.00 

 Day 3 58.5±33.4 349.6±176.2 0.05 

MCP-1 5 hours 130.6±72.5 27±21.4 0.08 

 Day 1 188.9±55.8 50.3±34.9 0.02 

RANTES 

VEGF 

Day 28 59.4±13.1 19.7±9.3 0.01 

5 hours 407.7±146.9 149.9±64.9 0.05 

 Day 1 249.4±33.6 101±6.4 0.002 

 Day 3 177.8±31.7 92.6±35.8 0.04 

 

 

Liver homogenate 

Cytokine levels in liver homogenate were normalised according to the protein 

concentration of each sample. Of the cytokines measured, significant differences 

were observed in the ischaemic liver concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-6, 

IL-10, IL-12p70, IP-10, MIP-1α, MIP-2 and VEGF between the IRI and control 

groups. 

Changes in these cytokines followed one of three patterns: 
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 Postoperative rise in the IRI group: MIP-1α levels in the IRI group rose to 

levels significantly higher than control from 5 hours to 3 days postoperatively 

after which levels returned to baseline control values (Figure 4.26). 

 Initial postoperative rise followed by late drop in the IRI group: Levels of IL-6, 

IL-12p70, MIP-2 and VEGF in ischaemic lobes were initially significantly 

greater than control values but later dropped significantly to sub-baseline 

levels by day 3-10 postoperatively. IL-1α followed a similar though less 

definitive course (Figure 4.27). 

 Sustained sub-baseline levels in the IRI group postoperatively: Concentrations 

of IL-2, IL-4, IL-10 and IP-10 in ischaemic lobes were significantly lower than 

in sham ischaemic lobes throughout the postoperative period. IL-1β followed a 

similar though less definitive course (Figure 4.28). 

 

RANTES levels in liver homogenates in the IRI group demonstrated an early sub-

baseline production followed by a delayed rise compared to controls after day 6. 

However, the differences were not statistically significant (Figure 4.29).   

 

 

Figure 4.26 Changes in MIP-1α concentration in ischaemic versus sham ischaemic 

liver tissue. *p<0.05 (versus control) 
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Figure 4.27 Levels of IL-6, IL-12p70, MIP-2, VEGF and IL-1α in ischaemic versus 

sham ischaemic liver tissue. *p<0.05 (IRI versus control) 
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Figure 4.28 Levels of IL-2, IL-4, IL-10, IP-10 and IL-1β in ischaemic versus sham 

ischaemic liver tissue. *p<0.05 (versus IRI) 
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Figure 4.29 Levels of RANTES in ischaemic versus sham ischaemic liver tissue 

 

A summary of the cytokine results in liver homogenate is outlined in Table 21 

 

Table 21 Summary of cytokines that demonstrated significant differences in 

ischaemic lobe concentration between the IRI and control groups. Values are 

reported as mean±SD. 

  IRI group (pg/ml) Control group (pg/ml) P value 

IL-1α 5 hours  67.5±3.7 33.6±7.7 0.002345 

 Day 3  13.3±6.6 32.5±11.8 0.070376 

 Day 28  28.4±2.3 22.6±3 0.05611 

IL-1b Day 3  24.3±5.7 64.6±12.1 0.006482 

IL-2 5 hours  228.3±27.1 308.6±40.6 0.046491 

 Day 1  111.4±40.9 239.3±79 0.067552 
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 Day 3  48.8±31.7 210.8±58.3 0.013404 

 Day 10  135±57.3 255.2±14.9 0.024523 

 Day 14  172.4±45.5 316.6±77.3 0.049568 

IL-4 5 hours  88.2±18.7 129.7±4.8 0.020412 

 Day 1  71.4±13.6 118.1±20.1 0.028978 

 Day 3  51.4±27.7 110.1±22.8 0.047119 

 Day 10  79.1±5.7 134±20.1 0.010432 

 Day 14  101.3±22.7 182.5±31.8 0.022789 

 Day 28  108.7±8.3 135.1±15.8 0.062884 

IL-6 5 hours  808.9±160.2 371.1±14.5 0.009206 

 Day 1  435.4±162.4 211±54.7 0.085883 

 Day 3  85.7±27 247.4±17.6 0.00097 

 Day 10  66.8±43.5 272.6±37.9 0.003476 

IL-10 5 hours  84.7±5.3 98.7±7.1 0.051705 

 Day 1  34.7±12.3 74.6±10.2 0.012256 

 Day 3  13.6±11 57.1±15.2 0.015982 

 Day 10  38.6±13.8 79.3±21.9 0.052723 

 Day 14  45.7±14.5 81.1±17 0.051783 

IL-12p70 5 hours  42.1±3.3 14.3±6 0.002221 

 Day 10  2.7±1.9 14.8±5.9 0.027277 

IP-10 Day 1  107.2±18.2 154.1±8.2 0.015319 

 Day 3  72.6±24.7 139.5±7.5 0.01096 
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 Day 10  118.1±26.1 152.9±10.3 0.098865 

 Day 14  138.3±5.5 169±22.4 0.082282 

MIP-1α 5 hours  10.7±1 4±0.9 0.000901 

 Day 1  37.6±10.2 3±0.7 0.004273 

 Day 3  89±47.8 2.8±1.1 0.035397 

MIP-2 5 hours  87.4±50.3 15.6±11.8 0.074042 

 Day 1  174.2±93.4 12.6±9.2 0.040672 

 Day 10  2±0 20.2±5.2 0.003884 

VEGF 5 hours  18.5±1.9 7.7±3.6 0.009939 

 Day 1  23.3±6.1 5.5±2.3 0.009136 

 Day 3  2.5±0.9 9±3.2 0.028403 

 

 

Histological changes 

To determine the histological changes induced by IRI, liver sections from ischaemic 

and sham ischaemic (control) lobes were stained with H&E. Sections exposed to IRI 

demonstrated distinct cellular changes compared to the control specimens (Figure 

4.30 A&B). Ischaemic changes and spotty hepatocellular necrosis in zones 2 and 3 

(mid-zonal and centrilobular, respectively) were evident as early as 5 hours after 

clamp release. This became more pronounced by day 1. Liver damage severity 

scores were significantly higher in the IRI group up to day 3 post-reperfusion 

compared to sham IRI (Figure 4.31). Progressive inflammation was manifest in zone 

1 (peri-portal) 5 hours after clamp release and peaked at day 14 (Figure 4.32). Peri-

portal inflammatory infiltrates at delayed timepoints contained increasing numbers of 

mononuclear granulocytes and haemosiderin-laden macrophages (Figure 4.30-B). In 

contrast, inflammation in zone 3 (centrilobular) was largely composed of acute 

inflammatory cells and was maximal on day 3 post-reperfusion, returning to baseline 
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levels by day 6 (Figure 4.33). The inflammatory changes in zone 1 were associated 

with ductular reaction, neovascularisation and fibrosis from day 3 and led to distortion 

of the intrahepatic architecture by day 14. Hepatocellular regeneration was marked 

on day 28 post-reperfusion, and the pathological changes in the peri-portal regions 

were still evident at this stage (Figure 4.30-B). Non-ischaemic lobes from the clamp 

and control groups appeared histologically normal and therefore only sham 

ischaemic (control) sections are shown. 
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Figure 4.30 H&E staining of liver sections in low (A) and high (B) magnification 

demonstrates early parenchymal injury followed by ductal proliferation and peri-

ductal fibrosis persisting up to 28 days following reperfusion in the IRI group. 



 

184 
 

 

Figure 4.31 Comparison of liver damage severity scores between IRI and control 

groups assessed on H&E slides (scale of 0–5: normal–extensive damage). *p<0.05 

(versus control) 

 

 

Figure 4.32 Comparison of inflammatory cell counts in peri-portal areas between the 

IRI and control groups. Inflammatory cell counts are significantly higher in the IRI 
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group from day 3 and persist for at least 28 days following reperfusion. *p<0.05 

(versus control) 

 

 

Figure 4.33 Comparison of inflammatory cell counts in centrilobular areas between 

the IRI and control groups. Inflammatory cell counts in centrilobular areas normalise 

after day 3. *p<0.05 (versus control) 

 

Peri-portal fibrosis 

Since H&E stained sections were suggestive of fibrogenesis, this was investigated 

further using α-SMA immunohistochemistry staining as a marker of activated 

myofibroblasts (Figure 4.34). Quantification of positive staining revealed a significant 

increase in α-SMA staining in ischaemic lobes in the IRI group between day 3 and 14 

post-reperfusion, peaking at day 10 (3.2 ± 0.6% versus 0.4 ± 0.1% sham IRI; 

P=0.001) (Figure 4.35). Staining of liver sections for vimentin demonstrated 

comparable results (Figure 4.36 and Figure 4.37).  
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Figure 4.34 Comparison of α-SMA immunohistochemistry staining between IRI and 

sham IRI groups demonstrates a progressive increase in α-SMA-positive 

myofibroblasts in the IRI group peaking at day 10. 
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Figure 4.35 Quantification of α-SMA immunohistochemistry staining demonstrates 

significantly higher α-SMA expression in the IRI group between day 3 and 14 post-

reperfusion compared to control. *p<0.05 (versus control) 
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Figure 4.36 Comparison of vimentin staining between IRI and sham IRI groups 

demonstrates a significant increase in vimentin-positivity in the IRI group  
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Figure 4.37 Quantification of vimentin immunohistochemistry staining demonstrates 

significantly higher vimentin expression in the IRI group between day 1 and 6 post-

reperfusion compared to control. *p<0.05 (versus control) 

 

The extent of liver fibrosis was assessed by staining serial liver sections from 

ischaemic and sham ischaemic lobes with sirius red. This analysis revealed severe 

and progressive peri-portal fibrosis in liver sections of animals in the IRI group, 

bridging portal tracts at later timepoints and persisting up to 28 days after the initial 

injury (Figure 4.38). Quantification of the areas stained with sirius red showed that 

the degree of fibrosis was maximal in the IRI lobes on day 10 post-reperfusion 

(3.6±1.2% versus 0.8±0.2% in sham IRI lobes; P=0.03). Fibrosis was still significantly 

present on day 28 post-reperfusion (2.9 ± 1.2%; P=0.26 versus IRI lobes on day 10). 

Non-ischaemic lobes from the IRI group and sham IRI groups appeared histologically 

normal and therefore only the sham IRI is shown (Figure 4.39). 
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Figure 4.38 Sirius red staining demonstrates progressive peri-portal fibrosis in the IRI 

group persisting up to 28 days following reperfusion with bridging portal tracts at late 

timepoints. 
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Figure 4.39 Progression of fibrosis in the IRI group compared to control based on 

quantification of sirius red staining. *p<0.05. *p<0.05 (versus control) 

 

To confirm these findings, mRNA transcript levels of the pro-fibrotic cytokine TGF-β, 

vimentin and pro-alpha1(I) collagen were measured by RT-PCR in ischaemic and 

sham ischaemic liver lobes. Sham ischaemic liver lobes at day 28 were used as 

reference samples. TGF-β and vimentin mRNA transcript levels were significantly 

higher in the ischaemic lobes between day 1 and 3 post-reperfusion compared to the 

sham ischaemic lobes. Peak levels were demonstrated at day 1 (13-fold and 53-fold 

increase in TGF-β and vimentin mRNA levels respectively in ischaemic lobes) 

(Figure 4.40 and Figure 4.41). COL1A1 mRNA was significantly elevated in the 

Ischaemic lobes in IRI group between day 3 and 14 after clamp release, peaking at 

day 6 with a 30-fold increase in COL1A1 mRNA levels compared to sham ischaemic 

lobes (Figure 4.42). 
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Figure 4.40 RT-PCR analysis in ischaemic and sham ischaemic lobes shows 

significantly increased expression of TGF-β in the ischaemic liver lobes between day 

1 and 3 post-reperfusion. *p<0.05 versus control 

 

 

Figure 4.41 RT-PCR analysis in ischaemic and sham ischaemic lobes shows 

significantly increased expression of vimentin in the ischaemic liver lobes between 

day 1 and 3 post-reperfusion. *p<0.05 versus control 
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Figure 4.42 RT-PCR analysis in ischaemic and sham ischaemic lobes shows 

significantly increased expression of Col1A1 in the ischaemic liver lobes between day 

3 and 14 post-reperfusion. *p<0.05 versus control 

 

Ductular reaction 

Examination of H&E-stained slides suggested the development of a ductular reaction 

in response to IRI. This was further assessed using immunohistochemistry staining to 

quantify the expression of cytokeratin 19 (CK19), a marker of both mature and 

immature biliary epithelial cells ( (Zorn, 2008) (Figure 4.43). Quantification of CK19 

staining demonstrated a significant increase in positivity following IRI from day 10 up 

to day 28 post-reperfusion, with peak positivity at day 14 (4.2±1.3% versus 0.3±0.2% 

in the sham IRI group; P=0.007) (Figure 4.44). 
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Figure 4.43 Comparison of CK19 staining between IRI and sham IRI groups 

demonstrates a significant increase in CK19-positivity in the IRI group 
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Figure 4.44 Quantification of CK19 immunohistochemistry staining demonstrates 

significantly higher CK19 expression in the IRI group from day 10 up to day 28 post-

reperfusion compared to control. *p<0.05 (versus control) 

 

Biliary epithelial cell microvilli measurements 

Based on TEM imaging of bile ducts (Figure 4.45), it was observed that biliary 

epithelial cells from large ducts demonstrated a significant increase in microvillar 

height, on postoperative day 1 in the IRI group compared to the control group. This 

difference was greater on postoperative day 28. Basal width measurements were 

higher in the IRI group but only reached statistical significance on day 28 (Table 22). 

Microvillar density was significantly reduced in the IRI group compared to control but 

increased to a value greater than control on day 28 (Figure 4.46). 

Examination of small bile duct (defined as ducts with diameters less than 100μm) 

showed no significant difference in microvillar measurements between the two 

groups.  
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Figure 4.45 TEM images comparing BEC microvilli morphology during early (day 1) 

and late (day 28) reperfusion timepoints 

 

Table 22 A comparison of BEC microvilli height and width between study groups 

 Height* Basal width* 

 
1d 28d 1d 28d 

IRI 213 (271.5) 227 (392) 102 (137) 111 (205.4) 

Control 203  (213) 197 (326.5) 96 (125.5) 100 (161.6) 

P value <0.01 <0.0001 N/S <0.0001 

*Results expressed as median (mean rank); Unit of measurement=nm 
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Figure 4.46 Changes in BEC microvillar density following IRI. *p<0.05 (versus 

control) 
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4.4. Discussion 

The aim of this study was to investigate the short and long-term pro-inflammatory and 

pro-fibrotic effects of IRI particularly in relation to the intra-hepatic biliary tract. 

The majority of the published research on hepatic IRI in animal models focuses on 

data within the first few hours/days of reperfusion (Zhao et al., 2009, Dusunceli et al., 

2008, Ichiki et al., 2008, Liu et al., 2011b, Mochizuki et al., 2007, Pratap et al., 2011, 

Teoh et al., 2010, Sener et al., 2005, Man et al., 2005). However, since complications 

following DCD organ donations that occur subsequent to initial liver injury were the 

focus of this study, a 28-day follow up period was opted for to take into account the 

delayed clinical presentation of NABS, a more clinically relevant complication in this 

group of recipients (Ayoub et al., 2010). This has been considered sufficient follow up 

for long-term complications in an adult rat by previous investigators in view of the 

relative overall lifespan of adult rats compared to humans (Schlegel et al., 2013). 

A modified 70% hepatic IRI model was adopted in this study in order to avoid portal 

congestion associated with proximal hilar inflow occlusion and cholestatic injury 

associated with concomitant bile duct clamping. Inflow occlusion of 90 minutes in the 

pilot phase of model development produced predictable and reproducible damage 

(4.3.1). An ischaemic period of 90 minutes has previously been shown to induce 

maximal TNF-α production and inflammation (Colletti et al., 1990). 

Adequate radiological visualisation of the biliary tree was not possible in this model 

due to the unavoidable disruption of ductules and leakage of contrast into the 

systemic circulation, and due to the suboptimal resolution of the small animal CT 

scanner imaging. Hence the original plan to investigate potential stenotic lesions 

within the biliary tree was abandoned. 

The initial weight loss experienced in both groups in the early postoperative period 

was most probably related to the expected increase in catabolism following surgery.  

Animals in the IRI group appeared to be more affected by this early weight loss. 

However, the improvement in weights of animals in the IRI group -which was 

comparable to controls-indicated good recovery from the hepatic IRI. The 

comparable levels of serum albumin and total protein suggest that there was no 

significant increase in the negative nitrogen balance above that normally seen 

following abdominal surgery. 
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It was evident from this study that bile flow in ischaemic livers was significantly 

reduced in the early post re-perfusion period. Although the IRI group subsequently 

achieved bile flow rates comparable to controls from day 3 onwards, it is unclear 

whether this was due to recovering bile production in ischaemic lobes or a 

compensatory effect in non-ischaemic lobes since –for practical reasons- total bile 

flow rather than lobar flow was measured in this study. Nevertheless, the microvilli of 

BEC exposed to IRI demonstrated a significant increase in surface area with time 

during this study, suggesting a prolonged adaptive secretory response within 

ischaemic lobes. 

Serum bile acid and ALP levels were found to be significantly higher in the IRI group 

in the early post re-perfusion period. These results signify cholestasis in the animals 

exposed to IRI. The prompt resolution of the cholestatic picture within one week of 

the injury point to a compensatory role probably played by the non-ischaemic lobes. 

Although serum bilirubin and GGT levels followed a pattern comparable to serum bile 

acids and ALP, the results were not statistically significant.  This was likely due to the 

large variance observed the IRI group in the face of a small sample size per 

timepoint (n=3).  

Serum hyaluronic acid was measured as a surrogate marker of sinusoidal endothelial 

cell damage (Shimizu et al., 1994). Levels in this study indicated that sinusoidal 

endothelial damage occurred mainly between day 1 and 3 post re-perfusion. These 

findings were confirmed by measuring tissue hyaluronate levels which demonstrated 

a comparable pattern.  

Serum ALT activity was used as a marker of hepatocyte damage uninfluenced by the 

compensatory effect of non-ischaemic lobes. It provided evidence of hepatocellular 

damage in the IRI group that was manifest immediately postoperatively and lasted up 

to 3 days. However, bearing in mind that the average half-life of serum ALT is 47±10 

hours (Kim et al., 2008), it is likely that the majority of hepatocellular damage will 

have occurred within the first 36 hours post re-perfusion. 

Hepatocellular necrosis -mostly visible in mid-zonal and centrilobular areas- was 

evident histologically from 5 hours up to 3 days post re-perfusion in this study. This 

was associated with an early inflammatory response in the centrilobular areas over 

the same duration of time. Peri-portal inflammation was also evident shortly after re-

perfusion, and in contrast to the centrilobular response, persisted up to 28 days.  
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Cytokine measurement was subsequently undertaken to shed further light on these 

histological findings. Interleukins 1α and 6 were found to be expressed at significantly 

greater levels in the early timepoints following IRI, suggesting an important role for 

these pro-inflammatory cytokines in the acute inflammatory phase following 

reperfusion injury. A number of chemokines followed a similar pattern, including 

MCP-1, MIP-1α and MIP-2. Two particular chemokines were found to be significantly 

elevated in bile samples following IRI: MCP-1 and VEGF. This suggests increased 

secretion of these proteins in the vicinity of biliary ductules/ducts, leading to further 

propagation of a periductal inflammatory response. The early rise in VEGF secretion 

following IRI suggests that it is produced in response to hypoxia, a known stimulant 

of VEGF expression (Ziello et al., 2007). VEGF might also play a role in the 

neovascular and ductular response observed during the latter timepoints post IRI. 

However, VEGF levels were not found to be significantly higher than controls at 

these delayed timepoints. 

Interestingly, tissue levels of the anti-inflammatory interleukins 4 and 10 were lower 

in the IRI group throughout the postoperative period, suggesting a prolonged 

suppression of immunomodulatory pathways following IRI. 

The chemokine RANTES has been previously found to be linked to progressive 

fibrosis (Ramm, 2011). In this study, we have identified a pattern of delayed RANTES 

production in animals exposed to IRI from day 6 onwards. This correlates with the 

expression of pro-fibrotic proteins in the affected liver lobes culminating in persistent 

liver fibrosis. RANTES is likely to be secreted by both lymphocytes and activated 

hepatic stellate cells (Ramm, 2011). The progressive rise in biliary levels of RANTES 

suggests considerable peri-biliary fibrosis post-IRI. 

Surprisingly, TNF-α levels were not found to be significantly elevated following 

reperfusion in this study despite evidence in the literature supporting its role in IRI 

(Datta et al., 2013). TNF-α release has been reported to be detectable in serum 

samples between 30 minutes and 8 hours of reperfusion (Datta et al., 2013). This 

window may have been too narrow to enable TNF-α detection at the chosen 

timepoint in our study. 

TGF-β secretion was evident as early as day 1 post re-perfusion. The release of this 

pro-fibrotic cytokine results in the expression of α-SMA –a marker of activated 
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hepatic stellate cells- from day 3. Findings from this study suggest that active HSCs 

persist up to 14 days post re-perfusion. 

Although Col1a1 expression persisted up to day 14, fibrosis –manifest as positive 

Sirius red staining- peaked on day 10 and was still evident on day 28 post re-

perfusion. A ductular reaction was closely associated with this fibrotic response, 

albeit peaking at a slightly later timepoint (day 14). 

The hypothesis that IRI could lead to a disturbance in the physiological balance 

between biliary bile acids and phospholipids was also tested in this study (Buis et al., 

2009). Although the findings obtained do not provide a definitive answer to the 

hypothesis in question, they do shed light on many aspects of it. While biliary bile 

acids were found to be elevated on day 1 following IRI, biliary phospholipids -which 

are thought to provide a protective role against the cytotoxic effects of bile salts- 

peaked on day 3. The resultant lag in the phospholipid response may have allowed 

enough time for bile salt damage to ensue. Nevertheless, when biliary bile 

salt/phospholipid ratios were compared between IRI and control groups, the higher 

ratio in the IRI group on day 1 did not reach statistical significance. Moreover, the 

ratios were significantly lower in the IRI group on day 3 compared to controls. This 

may suggest a more consistent and effective biliary phospholipid secretory response 

on day 3 compared to the presumed earlier bile salt secretory surge. However, both 

biliary bile acid and phospholipid measurements refer to concentrations from 

‘common bile duct’ samples which include mixed bile produced by ischaemic and 

non-ischaemic lobes and thus are predisposed to the compensatory effect of non-

ischaemic lobes. Given that bile composition from non-ischaemic lobes was not 

examined separately in this study, the magnitude of this possible compensatory 

response remains unclear.  

Measurement of hepatocellular bile salt transporters provided a way to examine this 

hypothesis from a different angle. Measurement of Ntcp, Bsep and Oatp2b1 

transcript levels in liver tissue suggested that the expression of these transporters 

was greatly reduced between day 1 and 3 post re-perfusion. Regardless of whether 

this reflected global hepatocellular damage or more selective inhibition of these 

transporters following IRI, it suggested that the overall picture was more in keeping 

with cholestasis rather than an increase in biliary bile salt secretion. This was further 

confirmed on measurement of serum bile salt/phospholipid ratio which was found to 
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be significantly elevated in the IRI group, in addition to the cholestatic picture noted in 

the liver function tests described earlier. 

This study shows that severe (90 min) hepatic IRI results in progressive peri-portal 

fibrosis that peaks at day 10 and persists for at least 28 days after reperfusion, 

following an early period of reversible cholestasis and cellular injury. This contrasts 

with the injury response following other acute hepatic injuries to CCL4 and 

methapyriline toxicity where fibrosis only develops through repeated injury over 

several weeks (Wright et al., 2001, Iredale et al., 1998).  

One limitation of this study is the small sample size per timepoint. This was due to 

the relatively large number of timepoints chosen in order to portray a meaningful 

sequence to each process examined. The small sample size per timepoint may have 

resulted in type 2 errors in the reported results, effectively underestimating the effect 

of IRI for various endpoints and timepoints. Nevertheless, restrictions on 

experimental animal procedures (NC3Rs/BBSRC/Defra/MRC/NERC/Wellcome Trust, 

2013) in addition to time and funding constraints prevented any further meaningful 

increase in sample size.  

Despite the advantages of a partial ischaemic model, one major limitation it 

presented was the potential compensatory effect of non-ischaemic lobes 

unaccounted for in various endpoints. This effect was difficult to measure particularly 

in mixed fluid samples such as serum and bile. The lack of expertise and equipment 

needed to cannulate and sample smaller vessels posed a major challenge here. In 

addition to deviating from the classic clinical transplant scenario where all lobes are 

ischaemic, the systemic effect of non-ischaemic lobes on the behaviour of ischaemic 

lobes within the same animal in this model remain poorly understood. Previous 

research has demonstrated stromal morphological alterations in non-ischaemic lobes 

probably in response to circulating inflammatory cytokines, resulting in activation of 

KCs and upregulation of MMPs but no evidence of cell death in non-ischaemic lobes 

(Kitamura et al., 2010, Liu et al., 2011a, Palladini et al., 2012, Nakamitsu et al., 2001) 

The lack of cholangiography results in this model precluded the ability to correlate 

between histological findings and radiological evidence of NABS in this study. As 

mentioned earlier, this was largely due to the lack of suitable equipment for this 

planned phase of the study. 
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Despite these limitations, this study provides significant headway in our knowledge 

regarding hepatic IRI and its fibrotic and inflammatory effects. The progression of 

fibrosis following IRI has not been investigated in a sequential manner similar to this 

study in previously published reports. The results outlined will provide valuable 

insight into the pathogenesis of biliary lesions several months after liver 

transplantation (Ayoub et al., 2010, Buis et al., 2006).  
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Chapter 5. PXR study
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5.1. Introduction 

 

Interest in the PXR as a novel therapeutic target has clearly increased over the past 

15 years (Banerjee et al., 2015). Figure 5.1 shows the rising number of publications 

that have investigated the PXR since its discovery in 1998. In order to understand the 

basis of this growing interest and potential role of the PXR in many clinical conditions 

including hepatic ischaemia reperfusion injury, it is important to examine the history 

and biology of this intriguing nuclear receptor in more detail. 

 

 

Figure 5.1 Timeline trend for PXR publications 

 

5.1.1. The nuclear receptor superfamily 

The PXR belongs to a larger group of receptors collectively known as the nuclear 

receptor superfamily. This includes receptors for a number of known hormones and 

endogenous ligands, such as the glucocorticoid receptor (GR), oestrogen receptor 

(ER), progesterone receptor (PR) and vitamin D receptor (VDR) (Li et al., 2012). In 

addition, other nuclear receptors have been identified over the years for which a 

predominant endogenous physiological ligand cannot be identified. These are 
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referred to as orphan nuclear receptors and include receptors that act as 

transcriptional regulators (such as the small heterodimer partner (SHP)), cell 

development stimulators (such as the hepatocyte nuclear factors (HNFs)), regulators 

of cholesterol metabolism (such as the peroxisome proliferator-activated receptors 

(PPARs), the liver x receptor (LXR) and the farnesoid x receptor (FXR)) and 

regulators of xenobiotic metabolism (such as the constitutive androstane receptor 

(CAR) and the pregnane x receptor (PXR)) (Mullican et al., 2013). In humans, 48 

nuclear receptors have been identified, 36 of which are orphan receptors (Li et al., 

2012). 

 

The structure of nuclear receptors 

Nuclear receptors share a common structural arrangement that is comprised of four 

major domains (Pawlak et al., 2012, Nikolenko Iu and Krasnov, 2007): 

 The N terminal A/B domain is located on the amino terminal of the protein and 

contains the activation function 1 (AF1) region which can vary in size 

significantly among orphan nuclear receptors 

 The DNA binding domain (DBD- henceforth referred to as DBDnr to avoid 

confusion with a similar acronym used in this document) is formed by two zinc 

finger motifs, one of which (known as the P-box) is responsible for the 

receptor’s DNA-binding specificity. This area is typically highly conserved 

among nuclear receptors 

 The ligand-binding domain (LBD) is located on the carboxy terminal of the 

protein and consists of 11-13 α-helical regions that forma hydrophobic pocket 

wherein ligand binding takes place. This domain is responsible for the 

receptor’s ligand-binding specificity and therefore varies between receptors in 

that regard and in the presence or absence of an activation function 2 (AF2) 

region which gives the receptor the ability to interact with coactivators. This 

domain also contains a distinct region responsible for dimerisation. 

 The hinge domain links the DBDnr to the LBD in a flexible manner and can 

vary in length between receptors 

Figure 5.2 illustrates the overall structure of a nuclear receptor. 
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Figure 5.2 The general structure of a nuclear receptor 

 

Mechanism of action of ligand-binding nuclear receptors 

The most commonly recognised feature of nuclear receptors is their ability to activate 

target gene transcription upon binding to ligands (Pawlak et al., 2012). Unbound 

nuclear receptors can either be cytoplasmic or nuclear in location (Nikolenko Iu and 

Krasnov, 2007). Cytoplasmic nuclear receptors shuttle to the nucleus following 

activation by ligand (Mullican et al., 2013). Binding of the ligand induces 

conformational changes that facilitate dissociation of corepressor molecules 

(including the silencing mediator for retinoid and thyroid hormone (SMRT) and the 

nuclear receptor co-repressor (NCoR)) and concomitant changes to the AF-2 region 

(when present) that allow interaction with various coactivator molecules such as the 

steroid receptor coactivator (SRC-1) (Pawlak et al., 2012). Ligand binding also 

induces conformational changes to the DBDnr region that allows binding of the 

nuclear receptor to sequence-specific hormone-response elements (HREs) on the 

target DNA and activation of gene transcription (Nikolenko Iu and Krasnov, 2007). 

Nuclear receptors bind to DNA either as monomers, homodimers (such as classical 

steroid receptors) or heterodimers with the retinoid x receptor (RXR) (such as VDR 

and many orphan nuclear receptors). Some nuclear receptors can function either as 

homodimers or heterodimers (such as HNFs and RXR) (Pawlak et al., 2012). 

Some nuclear receptors can supress target gene transcription when in the ligand-free 

state through the formation of corepressor complexes (Pawlak et al., 2012) 

 

5.1.2. Discovery of the PXR 

A/B DBDnr LBD NH3 COOH
Hinge 
region 

AF-2 P-box AF-1 
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The effect of xenobiotics on metabolic enzymes and transporters had been well 

known but not truly understood until the eventual discovery of the PXR in 1998 (Yan 

and Xie, 2016).  

In 1997, a mouse DNA sequence representing a fragment of a novel nuclear receptor 

LBD was identified by Kliewer et al (Glaxo Wellcome) while searching the 

Washington University Expressed Sequence Tag database (Kliewer et al., 1998). 

With the help of a mouse liver cDNA library, this data was used to clone the full 

length mouse protein of 431 amino acids, which the Kliewer team labelled PXR. The 

name was given due to activation of this nuclear receptor by a number of naturally-

occurring pregnanes. 

Shortly after the discovery of mouse PXR (mPXR), human PXR was isolated 

independently in 1998 by three research groups: the Kliewer group at Glaxo 

Wellcome laboratories in North Carolina (Lehmann et al., 1998), the Evans group at 

the Salk institute in California (Blumberg et al., 1998) and the Berkenstam group at 

the Pharmacia and Upjohn laboratories in Stockholm (Bertilsson et al., 1998). The 

newly cloned human nuclear receptor was designated the human pregnane x 

receptor (hPXR), the steroid and xenobiotic receptor (SXR) and the human 

pregnane-activated receptor (hPAR) by each of these groups respectively. The 

receptor became classified as a member of the NR1I group and given the 

designation NR1I2 in 1999 based on the Unified Nomenclature System for the 

Nuclear Receptor Superfamily (Nuclear Receptors Nomenclature Committee, 1999). 

It remains preferentially referred to as the PXR (Ekins, 2007). In addition to mouse 

and human PXR, monkey, dog, rabbit and rat PXR have since been cloned as well 

as that of other species (Kliewer et al., 2002). 

 

5.1.3. The structure of the PXR and its mechanism of action  

The structure of the PXR follows the structural organisation of nuclear receptors 

described in 5.1.1. The hPXR is made of 434 amino acids, 3 longer than the mPXR 

(Lehmann et al., 1998). The 3D structure of the hPXR has previously been 

determined through x-ray crystallography (Watkins et al., 2001). This has shown the 

hydrophobic pocket of the LBD to be large, spherical and flexible, in contrast to other 

nuclear receptors. This allows a number of structurally diverse compounds to bind to 
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the LBD ranging from 268-823kDa in size, and gives the PXR its known role as a 

promiscuous xenobiotic receptor (Kliewer et al., 2002, Mullican et al., 2013).  

The unbound PXR is located in the cytoplasm and translocates to the nucleus in a 

ligand-dependent manner (Kawana et al., 2003). The LBD of the PXR includes an 

AF-2 region which is thought to play a role in nuclear translocation and allows the 

binding of transcriptional coactivators (di Masi et al., 2009). In the case of CYP3A4 

transcription regulation (a known target gene for the PXR), the absence of ligand-

bound PXR in the nucleus permits coactivators such as SRC-1, HNF4α and PPARγ-

coactivator-1α (PGC-1α) to facilitate the transcription of SHP (a regulatory orphan 

nuclear receptor) and SMRT (a nuclear receptor corepressor) which in turn suppress 

the transcription of CYP3A4. Upon translocation of the ligand-bound PXR to the 

nucleus, it forms a heterodimer with RXRα, which is further stabilised by SRC-1, 

HFN4α and PGC-1α, and inhibits the transcription of SHP and SMRT. The PXR-

RXRα-coactivator complex then binds the xenobiotic responsive enhancer molecule 

(XREM)/PXRE and promotes transcription of CYP3A4 (Shukla et al., 2011). This 

process is illustrated in Figure 5.3. 

The PXR is mainly expressed in the liver and intestine in human, rabbit, rat and 

mouse (Kliewer et al., 2002). Unsurprisingly, this distribution is identical to that of 

CYP3A expression in these species (Lehmann et al., 1998, Kliewer et al., 2002, 

Savas et al., 2000, Zhang et al., 1999). Although traces of mPXR transcripts have 

also been identified in the mouse stomach and kidney, this has not been evident in 

human tissue (Figure 5.4). It is now widely accepted that the PXR acts as a master 

transcription factor regulating the expression of key phase I and phase II enzymes 

and transporters in the metabolism of drugs and xenobiotics (Tolson and Wang, 

2010, Pavek, 2016). A list of hPXR target genes is summarised in Table 23, 

highlighting drug-metabolising enzyme and transporter genes. 

Other members of the NR1I family are VDR and CAR. The PXR is most closely 

related to CAR where the two nuclear receptors share 66% and 45% of their DBDnr 

and LBD amino acid identity respectively. Both function as regulators of xenobiotic 

metabolism in a coordinative manner and have an overlapping gene target profile 

although CAR is less promiscuous in binding ligands (Kliewer et al., 2002, Maglich et 

al., 2002). In contrast to PXR, CAR activation can take place without ligand binding, 

as its name implies (Tolson and Wang, 2010). 
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Figure 5.3 Regulation of CYP3A4 transcription by ligand-activation of the PXR. 

Adapted from Shukla et al (Shukla et al., 2011) 

 

 

Figure 5.4 Northern blot analysis of hPXR expression in various human tissue. From 

Lehmann et al (Lehmann et al., 1998) 
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Table 23 List of PXR target genes and role in xenobiotic metabolism. Corresponding 

human orthologues of murine genes reported if known. Phase I: Activation; Phase II: 

Solubilisation; Phase III: Elimination. Adapted from Rosenfeld et al and Hariparsad et 

al (Rosenfeld et al., 2003, Hariparsad et al., 2009) 

Target gene Role in xenobiotic 
metabolism 

Target gene Role in xenobiotic 
metabolism 

Abcb1a (Mdr1a)* Phase III CYP3A5 Phase I 

Abcb1b (Mdr1b)* Phase III CYP4F12 Phase I 

ABCB4 (MDR2/3) Phase III ENTPD5 N/A 

ABCB9 Phase III FASN N/A 

ABCC3 (MRP3) Phase III GCKR N/A 

ABCC4 (MRP4) Phase III GLDC N/A 

AKR1C1 N/A GSTA1 Phase II 

AKR1C2 N/A GSTA4 Phase II 

ALDH1a1 Phase I GSTM1 Phase II 

Aldh1a7* Phase I GSTM2 Phase II 

ALDH3A2 Phase I GSTT1 Phase II 

ARAF N/A HMGCR N/A 

BMP1 N/A INSIG2 N/A 

CARS N/A LTBP1 N/A 

CD36 N/A MTTP N/A 

CD59 N/A NR1I2 (PXR) All 

CES2 Phase I NR1I3 (CAR) Phase I 

CES3 Phase I OATP2 Phase III 

CFL1 N/A PAPSS2 Phase II 

Cpt1* N/A PDIA4 N/A 

Cyp2a4* Phase I POR N/A 

Cyp2b10* Phase I S100A8 N/A 

CYP2C8 Phase I SLC40A1 N/A 

Cyp3a11* Phase I SULT1B1 Phase II 

CYP3A4 Phase I TCN2 N/A 

Abcb1a (Mdr1a)* Phase III UGT1A Phase II 

*No clear human orthologue 
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5.1.4. PXR ligand selectivity between species 

Orthologues of the PXR from various species display different affinities to ligands. 

For example, rifampicin is an activator of the human and rabbit PXR but has little 

effect on the rat and mouse PXR. On the other hand, Pregnenolone-16α-carbonitrile 

(PCN) is a potent rodent PXR activator that shows little affinity to the human PXR 

(Kliewer et al., 2002). 

As mentioned in 5.1.1, the DBDnr is highly conserved whereas the LBD varies 

significantly between nuclear receptors. In a similar manner, divergence in the PXR 

LBD between species provides an explanation for the observed differences in ligand 

affinity between PXR orthologues. However, while most human and rodent nuclear 

receptor orthologues share over 90% of the amino acid identity in the LBD, in the 

case of the PXR, they only share 76-77% (Kliewer et al., 2002). This may indicate an 

evolutionary divergence in diet and xenobiotic exposure between various species (Li 

et al., 2012). Despite the divergence in ligand affinities between PXR orthologues, 

they operate through a common metabolic pathway with comparable target genes 

given the conserved DBDnr region amongst these orthologues (94-100% amino acid 

identitiy) (Li et al., 2012, Kliewer et al., 2002). 

Figure 5.5 shows a comparison of PXR amino acid sequences between species and 

with other NR1I members 
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Figure 5.5 Comparison of PXR sequences (DBDnr and LBD) between orthologues 

and other NR1I members. Numbers indicate percentage similarity of amino acid 

identity. DBDnr for pig, dog and fish were not cloned at the time the original diagram 

was published and hence are not shown. From Kliewer et al (Kliewer et al., 2002) 

 

5.1.5. Role of the PXR 

Much of what is currently understood about the role of the PXR is owed to research 

using PXR-null (Staudinger et al., 2001b) and hPXR transgenic mice (Xie et al., 

2000a). In normal conditions, PXR-null mice thrive, develop and reproduce normally, 

and display no obvious phenotypic changes compared to wild type mice. In addition, 

extensive biochemical testing has shown no significant abnormalities in serum levels 

of a number of metabolic parameters including glucose, cholesterol and liver 

enzymes. This suggests that function of the PXR is not vital in baseline conditions 

and in the absence of a xenobiotic challenge (Kliewer et al., 2002). However, the lack 

of PXR causes an altered or absent response to various xenobiotic and pathological 

insults in comparison to wild type mice, thus providing insight into the role of the PXR 

(Marek et al., 2005, Teng and Piquette-Miller, 2007, Dou et al., 2012). 

The ligand-activated PXR commonly carries out its functions through direct induction 

of target gene expression. In addition, it has also been shown to exert effects through 

cross-talk with other nuclear receptors usually mediated by interference with or 

competition for coactivation factors (Pavek, 2016). As new functions of the PXR 

continue to be unveiled, its currently recognised roles are listed below. 



 

214 
 

 

Metabolic roles of the PXR 

Regulation of xenobiotic metabolism 

As detailed earlier, upon activation by a range of drugs and other xenobiotics, the 

PXR induces the expression of a number of enzymes and transporters that 

metabolise and excrete these chemicals, in conjunction with CAR (see section 5.1.3). 

 

Regulation of bile acid metabolism 

The PXR is activated by bile acids, most potently lithocholic acid (LCA) (Xie et al., 

2001). Similar to its regulatory effect on xenobiotic metabolism, the activated PXR 

induces the expression of enzymes and transporters, including OATP2, UDP-

glucuronosyltransferases (UGTs) and MRP2 that results in the uptake, conjugation 

and excretion of bile acids into bile. In addition, the PXR can inhibit bile acid 

synthesis from cholesterol via suppression of CYP7A1 (Jonker et al., 2012). It is 

debatable whether the PXR exerts its regulatory effect on bile acids in physiological 

conditions as the normal serum levels of bile acids are at least 10-fold lower than the 

AC50 of LCA, the most potent PXR activator amongst bile acids. Therefore, it is more 

likely that the PXR provides a detoxifying mechanism against high bile acid levels 

present during cholestatic conditions (Copple and Li, 2016). The PXR exerts its 

regulatory effect in collaboration with the FXR, the main bile acid regulatory nuclear 

receptor (Jonker et al., 2012). 

 

Regulation of glucose metabolism 

Activated PXR has been shown to indirectly suppress the expression of rate-limiting 

enzymes in gluconeogenesis and glycogenolysis (glucose-6-phosphatase and 

phosphoenolpyruvate carboxykinase 1) through the inhibition of transcription factors 

for these enzymes (cAMP-response element binding protein (CEBP) and the 

forkhead box protein FoxO1) (Zhou et al., 2006b, Kodama et al., 2007, Kodama et 

al., 2004, Ihunnah et al., 2011) 
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Regulation of lipid and cholesterol metabolism 

PXR activation suppresses the transcription of carnitine palmitoyl transferase 1A 

(CPT1A) and 3-hydroxy-3-methylgluterate-CoA synthase 2 (HMGCS2) which are key 

steps in fatty acid oxidation and ketogenesis. This possibly occurs through 

deactivation of the forkhead box protein FoxA2 (Nakamura et al., 2007, Ihunnah et 

al., 2011). In addition, PXR activation directly induces the expression of CD36, a 

membrane glycoprotein that facilitates cellular uptake of circulatory free fatty acids, 

thus promoting lipogenesis. This effect may explain the potential link between PXR 

activation and hepatic steatosis (see section 5.1.6) (Zhou et al., 2006b, Koonen et 

al., 2007, Ihunnah et al., 2011). Evidence for the effects of PXR activation on 

cholesterol and lipoprotein metabolism is inconsistent and thus its role in this aspect 

remains unclear (Ihunnah et al., 2011). 

 

Other metabolic roles 

PXR activation has also been shown to promote adrenal glucocorticoid and 

mineralocorticoid hormone synthesis (Zhai et al., 2007) and deactivation of 

androgens (Zhai et al., 2007). In addition, it directly promotes bilirubin detoxification 

by inducing the expression of conjugating enzymes (UGTs) and transporter proteins 

that facilitates its excretion, in a manner similar to that of bile acids (Ihunnah et al., 

2011). 

 

Other emerging roles for the PXR 

Research in recent years has uncovered evidence of potential value for PXR 

activation in pathological conditions (Li et al., 2012). In addition to the beneficial 

effects in cholestatic conditions described earlier in this section, the PXR has been 

shown to produce a number of potentially useful effects in areas listed below. 

 

Inflammation 

Anti-inflammatory properties have been demonstrated following PXR activation in 

liver, intestinal tissue and articular cartilage in vivo (Wallace et al., 2010, Shah et al., 
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2007, Mencarelli et al., 2013). Moreover, a recent study has demonstrated a more 

regulated and effective immune response to bacterial infection in wild type compared 

to PXR-null mice (Qiu et al., 2016). 

A reciprocal negative regulatory relationship is believed to exist between PXR and 

NFκB signalling (Zhou et al., 2006a, Gu et al., 2006). Therefore, it is likely that the 

anti-inflammatory effect of PXR activation is due to suppression of NFκB signalling 

and the resultant immunomodulatory effect on cytokine expression (Wallace et al., 

2010, Shah et al., 2007) 

In view of this effect, a number of studies have examined the potential therapeutic 

effects of PXR activation on various inflammatory conditions over the past decade. 

Several PXR activators have been shown to improve clinical and biochemical 

manifestations of inflammatory bowel disease in animal models (Zhang et al., 2015b, 

Hu et al., 2015, Zhang et al., 2015a, Hu et al., 2014, Shah et al., 2007, Cheng et al., 

2010a), while certain PXR gene haplotypes have been found to be associated with 

increased susceptibility to Crohn’s disease (Glas et al., 2011). In addition, a recent 

study using a murine model of arthritis has demonstrated significant improvement in 

localised arthritic and systemic inflammation using a PXR activator (Mencarelli et al., 

2013). 

 

Fibrogenesis 

PXR activation has been shown to ameliorate carbon tetrachloride-induced liver 

fibrosis and bleomycin-induced skin fibrosis in rodents (Marek et al., 2005, Beyer et 

al., 2013). The anti-fibrotic action of ligand-activated PXR is thought to be due to a 

direct effect on myofibroblasts (Haughton et al., 2006) as well as an indirect 

immunomodulatory effect (Axon et al., 2008, Beyer et al., 2013). 

 

Neoplasia 

There is emerging evidence that PXR activation may be beneficial in certain 

malignancies. A recent study on a murine colon cancer model showed a reduction in 

tumour burden and improved animal survival following PXR activation through 

promotion of apoptosis and suppression of proliferation in tumour cells (Cheng et al., 



 

217 
 

2014). However, the evidence on this matter is by no means consistent (Zhou et al., 

2008). Favourable results with PXR activation have also been noted on cervical and 

endometrial cancer tissue (Masuyama et al., 2007, Niu et al., 2014).  

On the other hand, PXR activation in tumours that express relatively high levels of 

PXR such as breast, ovarian and prostate cancer can result in increased tumour 

proliferation and chemoresistance (Meyer zu Schwabedissen et al., 2008, Chen et 

al., 2009b, Masuyama et al., 2016, Chen et al., 2007). 

 

Growth and healing 

PXR activation in mice has been shown to induce hepatocyte growth and liver 

regeneration (Staudinger et al., 2001a, Marek et al., 2005, Dai et al., 2008). It has 

also been found to promote intestinal epithelial healing and repair of colitis-induced 

damage to gut epithelial barrier (Terc et al., 2014). In addition, PXR activation has 

been found to promote the expression of antiapoptotic proteins in vitro and in vivo 

(Iannelli et al., 2011). 

 

5.1.6. Risks associated with PXR activation 

The use of PXR activators has been found to be associated with a number of 

potential risks that may limit its applicability in clinical practice.  

 

Drug-drug interactions 

Given that the CYP3A family of metabolic enzymes are primary targets of the 

activated PXR, and that these enzymes are responsible for the metabolism of over 

50% of prescription medications, it comes as no surprise that PXR activation can 

result in significant and occasionally life-threatening drug interactions (Kliewer et al., 

2002). A classic example is the herbal remedy and potent PXR activator St John’s 

wort, used as an over-the-counter antidepressant and anxiolytic medication. Its use 

has been associated with increased metabolism of a number of drugs that are 

metabolised by CYP3A4 including oral contraceptives, digoxin and warfarin (Kliewer 

et al., 2002). An extreme case of cardiac transplant rejection due to interaction of this 
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PXR activator with ciclosporin has been reported in the literature (Ruschitzka et al., 

2000). Due to such potentially dangerous interactions, screening for PXR activation 

occurs at early stages of modern drug development in order to select safer candidate 

medications less likely to cause such interactions (Willson and Kliewer, 2002, Synold 

et al., 2001) 

On a similar note, PXR activation has been associated with potentiation of 

paracetamol-induced liver injury through the acceleration of paracetamol metabolism 

and accumulation of a toxic reactive metabolite N-acetyl-p-benzoquinone imine 

(NAPQI) in the liver (Guo et al., 2004, Wolf et al., 2005, Cheng et al., 2009) 

 

Steatosis 

Research on human hepatocytes and on humanised PXR mice has linked the use of 

PXR activators to the development of hepatic steatosis (Moya et al., 2010, Lee et al., 

2008, Cheng et al., 2012). In theory, this would suggest an increased risk of 

developing non-alcoholic fatty liver disease (NAFLD) with the use of PXR activators. 

The intracellular accumulation of triglyceride noted in these studies is thought to be 

caused by the upregulating action of PXR on of CD36, a fatty acid transporter that 

has been associated with the development of cardiovascular and metabolic 

abnormalities (Febbraio and Silverstein, 2007). In addition, two PXR polymorphisms 

(rs7643645 and rs2461823) have been associated with disease severity in NAFLD 

(Sookoian et al., 2010). However, the clinical relevance of these findings remains 

questionable, since no reports of drug-induced steatosis has been reported on PXR 

activators in clinical use to date (di Masi et al., 2009). 

 

Promotion of neoplastic growth 

As detailed in section 5.1.5, activation of the PXR may promote the proliferation and 

chemoresistance of certain cancer types (e.g. breast, ovarian and prostate). 

 

Other potential risks associated with long-term PXR activation 



 

219 
 

Growth retardation and liver toxicity has been demonstrated in mice with 

constitutively-expressed hPXR, suggesting potentially deleterious effects associated 

with sustained PXR activation (Xie et al., 2000a, Kliewer et al., 2002). However, the 

clinical significance of these findings is unclear.  

 

5.1.7. Hypothesis and aim of study 

Given the potential anti-inflammatory, anti-fibrotic and regenerative effects 

associated with PXR activation, it was postulated that activation of the PXR would be 

of benefit in reducing the hepatic damage caused by IRI (see Chapter 4 for details on 

IRI-related liver damage). Indeed, a beneficial role for PXR activation in hepatic IRI 

has previously been suggested (Iannelli et al., 2011). 

The aim of this study was to investigate the effect of a PXR-activation on IRI-induced 

hepatic inflammation and fibrosis in a previously validated rat model of hepatic IRI.
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5.2. Materials and methods 

5.2.1. Ethical considerations 

Local Ethical Review Committee (ERC) and Home Office approval for the animal 

models were obtained (project license PPL 60/3907; protocol 19b9) in this project. 

All experiments were carried out in accordance with the Animals (Scientific 

Procedures) Act 1986 and in strict compliance with other local and national 

guidelines and policies.  

 

5.2.2. Model to investigate the effect of PXR activation on hepatic ischaemia-
reperfusion injury 

Rats (male Sprague Dawley, weight 350-500g) were divided into treatment and 

control groups (n=10 per group). A PXR activator (50 mg/kg Pregnenolone-16α-

carbonitrile 30mg/ml in 100% DMSO) or vehicle control was administered 

subcutaneously to rats in the treatment and control groups respectively for 2 days 

prior to hepatic ischaemia-reperfusion injury.  

 

Reagents for in vivo PXR model 

Pregnenolone-16α-carbonitrile (PCN) is a rodent-specific PXR activator and was 

purchased from Sigma-Aldrich (product code P0543) along with dimethyl sulfoxide 

(DMSO) (product code D8418) which was used as solvent vehicle.  

 

Procedure for in vivo PXR model 

Pre-operative analgesia, antibiotic and anaesthetic regimes were administered to 

animals in both groups on the day of the procedure in a manner similar to that 

described in section 4.2.2. 

Upon induction of anaesthesia, animals were shaved, cannulated and exposed to a 

laparotomy. Using a surgical microscope, lobar vessels to the left and middle hepatic 

lobes were identified, separated from the corresponding bile duct branch and 

clamped for 60 min in both groups in order to induce lobar IRI and BEC injury. Intra-
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operative heparin (300IU/kg) was administered intravenously immediately prior to 

clamping. Post-operative analgesia, antibiotic and fluid regimes were administered in 

line with the hepatic ischaemia-reperfusion injury model. Baseline blood samples 

were taken pre- and post-operatively in both groups. 

Following recovery, animals were weighed on a daily basis and examined for any 

deviation from normal health. Animals showing signs of ill health were treated by the 

NVS or, if excessive, killed humanely by a schedule 1 method. 

Daily doses of PXR activator (50 mg/kg PCN 30mg/ml in 100% DMSO) or vehicle 

control were injected subcutaneously in the treatment or control groups respectively 

for up to day 10 post surgery. 

Animal in each group were assigned one of two time points for termination (1 or 10 

days postoperatively) where they were exposed to a second laparotomy. 

Anaesthesia was induced and maintained in a manner similar to the initial procedure. 

During the termination procedure, the common bile duct was cannulated to enable 

bile collection into pre-weighted tubes for sampling and bile flow measurement. Blood 

samples were also taken and the liver lobes were harvested, weighted and preserved 

for tissue analysis as previously described in section 4.2.2. 

Diagrammatic representation of the PXR study is illustrated in Figure 5.6 and Figure 

5.7. 
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Figure 5.6 In vivo PXR study: treatment and control groups 

 

 

Figure 5.7 PXR study timeframe 
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5.2.3. Sample processing and preservation 

Reagents and techniques used for sample processing, preservation and storage 

(liver, bile and blood) are similar to those described in section 4.2.3. 

 

5.2.4. Protein analysis 

Reagents and methods for the Lowry method, gel electrophoresis and western blot 

are similar to those described in section 2.2.7. 

 

5.2.5. mRNA quantification 

Reagents and methods used for mRNA quantification are as previously described in 

section 4.2.5. 

 

5.2.6. Methods for tissue staining 

Reagents and methods for processing of tissue sections and for H&E, Sirius red and 

immunohistochemistry staining are similar to those described in section 4.2.6. 

 

5.2.7. Other biochemical analyses 

Reagents and methods for the TBARS, bile acid and GluDH assays are similar to 

those described in section 4.2. Rat serum levels of total protein, bilirubin, alkaline 

phosphatase, alanine transaminase and γ-glutamyl transferase were performed at 

the clinical biochemistry laboratories of the Royal Victoria Infirmary in Newcastle 

upon Tyne. 

 

5.2.8. Statistical analysis 

Statistical methods used are those described in section 2.2.9.  
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5.3. Results 

 

5.3.1. Mortality 

In view of the significant risk of death caused by intraoperative bleeding in the IRI 

model, a small animal surgical microscope was employed for dissection of hilar 

structures in the PXR activation model. This significantly reduced operating times in 

this study and reduced mortality to 0%. 

 

5.3.2. Evidence of PXR activation 

Induction of cytochrome P450 (Cyp3A1) was used as an indicator of PXR activation. 

Expression of Cyp3A1 was significantly higher in the treatment group compared to 

control on day one as demonstrated by western blot analysis (Figure 5.8 and Figure 

5.9). This difference increased on day 10. Using RT-PCR analysis, a 3.7 and 24-fold 

increase in Cyp3A1 mRNA transcripts was evident on day 1 and 10 post-reperfusion 

respectively in the treatment group relative to day 1 levels in the control group 

(Figure 5.10). 

 

 

Figure 5.8 Western blot of Cyp3A1 expression on day 1 and 10 in IRI+PCN and 

IRI+vehicle groups. 
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Figure 5.9 Corresponding densitometry analysis of Cyp3A1 western blot results in 

ischaemic and sham ischaemic lobes. *P<0.05 versus IRI+vehicle 

 

 

Figure 5.10 RT-PCR analysis of Cyp3A1 mRNA transcripts in ischaemic and sham 

ischaemic lobes. *P<0.05 versus IRI+vehicle 
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5.3.3. Effect of PXR activation on lipid peroxidation 

Malondialdehyde (MDA) was used as a surrogate marker of lipid peroxidation to test 

whether or not PXR activation reduces oxidative stress during IRI. MDA levels were 

measured in liver homogenates from the ischaemic lobes from both the IRI-PCN and 

IRI-vehicle groups.  

Although serum MDA levels were comparable between the two groups, MDA levels 

in liver homogenates were significantly lower in the ischaemic lobes of the IRI-PCN 

group on day 1 post-reperfusion (7.9 ± 0.6 μM versus 10.5 ± 1.8 μM in the IRI-vehicle 

group; P=0.03) (Figure 5.11). No significant differences in MDA levels in non-

ischaemic lobes were noted between the two groups on day 1. 

 

 

Figure 5.11 Liver MDA levels. PCN treatment compared to control. *P<0.05 versus 

IRI+vehicle. 

 

5.3.4. Effect of PXR activation on bile flow 

PCN treatment significantly increased bile flow rates on day 1 following IRI by 25% 

compared to the IRI-vehicle group (37.7 ± 2.9 μl/kg/min versus 30.1 ± 2.1 μl/kg/min in 

the IRI-vehicle group; P=0.001) (Figure 5.12). Average bile flow remained higher in 

the IRI-PCN group on day 10 post-reperfusion but this effect did not reach statistical 
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significance. Similarly, serum bile acid levels were significantly lower in the PCN-

treated group on day 1 (Figure 5.13). 

 

 

Figure 5.12 Bile flow post-IRI. PCN treatment compared to control. *P<0.005 versus 

IRI+vehicle. 
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Figure 5.13 Serum bile acid levels post-IRI. PCN treatment compared to control. 

*P<0.05 versus IRI+vehicle. 

 

5.3.5. Effect of PXR activation on hepatocellular necrosis 

The severity of liver damage was quantified in H&E sections in both groups (Figure 

5.14). PCN treatment resulted in a significant reduction in liver damage severity 

scores on day 1 post-reperfusion (Figure 5.15). Evidence of necrosis was minimal in 

both groups on day 10 after IRI in accordance with the findings in the previous IRI 

study (Figure 4.31). 
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Figure 5.14 H&E staining of liver sections in PXR study. Scale bar represents 100μm 

at X20 magnification 

 

 

Figure 5.15 Comparison of liver damage severity scores between IRI+PCN and 

IRI+vehicle groups assessed on H&E slides (scale of 0–5). *P<0.05 versus 

IRI+vehicle 
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5.3.6. Effect of PXR activation on liver function tests 

PCN treatment resulted in a significant reduction in serum ALT levels in the IRI-PCN 

group on day 1 post-reperfusion (381.3±62.0U/L versus 970.3±314.5U/L in IRI-

vehicle control; P=0.03). Serum ALT levels were similar to pre-operative baseline 

levels on day 10 in both groups. PCN treatment had no significant effect on serum 

bilirubin, albumin or ALP levels. Serum ALT, ALP and total protein results are 

displayed in Figure 5.16, Figure 5.17 and Figure 5.18. 

 

 

Figure 5.16 Serum ALT pre and post-IRI. PCN treatment compared to control. 

*P<0.05 versus IRI+vehicle 
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Figure 5.17 Serum ALP levels pre and post-IRI. PCN treatment compared to control. 

 

 

Figure 5.18 Serum total protein levels pre and post-IRI. PCN treatment compared to 

control. 

 

5.3.7. Effect of PXR activation on inflammatory cell infiltration 
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PCN treatment significantly reduced the number of peri-portal and centrilobular 

inflammatory cells on day 1 compared to the IRI-vehicle group (Figure 5.19, Figure 

5.20 and Figure 5.21). The inflammatory cell count in the peri-portal areas remained 

significantly higher in the vehicle control group on day 10 (Figure 5.20). 

 

 

Figure 5.19 A: H&E staining of liver sections in PXR study. Scale bar represents 

100μm at X10 magnification 

 

 

Figure 5.20 Comparison of inflammatory cell counts in peri-portal areas between the 

IRI+PCN and IRI-vehicle groups. *P<0.05 versus IRI+vehicle 
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Figure 5.21 Comparison of inflammatory cell counts in centrilobular areas between 

the IRI+PCN and IRI-vehicle groups. *P<0.05 versus IRI+vehicle 

 

5.3.8. Effect of PXR activation on dry liver weight 

Liver lobes in animals treated with PCN showed less signs of damage 

macroscopically compared to control livers (Figure 5.22). When normalised to total 

body weight, ischaemic lobes in the PCN group weighed significantly more on day 10 

post-reperfusion (2.6±0.1g/100g versus 2.1±0.1g/100g in the control group; P<0.001) 

(Figure 5.23). 
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Figure 5.22 Gross changes in size and features of rat liver lobes (top) subjected to 60 

min of partial lobar ischaemia followed by reperfusion for 10 days in PCN-treated 

animals (left) compared to vehicle-treated controls (right). Non-ischaemic lobes 

(bottom) are shown for comparison. 
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Figure 5.23 Liver lobe weights on day 10 post-IRI. *P<0.05 versus IRI+vehicle 

 

5.3.9. Effect of PXR activation on IRI-induced fibrogenesis 

The effect of PCN treatment on IRI-induced fibrogenesis was investigated by 

quantifying TGF-β, α-SMA, vimentin and collagen levels in ischaemic liver samples 

through RT-PCR, immunohistochemistry and Sirius red staining. 

 

RT-PCR 

Ischaemic lobes from the IRI-PCN group expressed significantly reduced mRNA 

transcript levels for TGF-β and α-SMA (2.55 and 2.97-fold reduction compared to IRI-

vehicle respectively; P<0.05) on day 1 post-reperfusion (Figure 5.24 and Figure 

5.25). Vimentin mRNA transcript levels were also lower, while MMP-2 mRNA levels 

were higher on day 1 in PCN-treated livers, however, these differences did not reach 

statistical significance (Figure 5.26 and Figure 5.27). No differences in the expression 

of any of the above genes were identified on day 10 between the two groups. 

Hepatic mRNA transcript levels for Col1a1 were expressed in significantly lower 

levels in the PCN-treated group on day 10 (5-fold reduction compared to IRI-vehicle 

respectively; P<0.05) (Figure 5.28). 
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Figure 5.24 RT-PCR analysis comparing TGF- β mRNA expression between the 

IRI+PCN and IRI-vehicle groups. *p<0.05 versus IRI+vehicle 

 

 

Figure 5.25 RT-PCR analysis comparing α-SMA mRNA expression between the 

IRI+PCN and IRI-vehicle groups. *p<0.05 versus IRI+vehicle 
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Figure 5.26 RT-PCR analysis comparing vimentin mRNA expression between the 

IRI+PCN and IRI-vehicle groups. 

 

 

Figure 5.27 RT-PCR analysis comparing MMP-2 mRNA expression between the 

IRI+PCN and IRI-vehicle groups. 
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Figure 5.28 RT-PCR analysis comparing Col1a1 mRNA expression between the 

IRI+PCN and IRI-vehicle groups. *p<0.05 versus IRI+vehicle 

 

Immunohistochemistry staining 

Liver sections were probed for vimentin and α-SMA expression in order to quantify 

the extent of active myofibroblasts following PXR activation. PCN treatment led to a 

53% reduction in vimentin expression around portal tracts in ischaemic liver sections 

on day 10 after clamp release in comparison to controls (3.8±1.4% versus 8.2±1.7% 

in IRI-vehicle; p=0.002) (Figure 5.29). Peri-portal α-SMA expression in liver sections 

treated with PCN was reduced by 58% on day 10 (4.6±0.8% versus 11±6% in IRI-

vehicle; P=0.047) (Figure 5.30). 
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Figure 5.29 Comparison of vimentin staining between IRI+PCN and IRI+vehicle 

groups on post-reperfusion days 1 and 10 (above) with corresponding stain 

quantification (below). *P<0.005 versus IRI+vehicle 
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Figure 5.30 Comparison of α-SMA staining between IRI+PCN and IRI+vehicle groups 

on post-reperfusion days 1 and 10 (above) with corresponding stain quantification 

(below). *P<0.05 versus IRI+vehicle 

 

Sirius red staining 

Liver sections were stained with Sirius red in order to assess the extent of liver 

fibrosis. PCN treatment was shown to reduce the extent of Sirius red staining in rats 

treated with PCN by 68% in comparison to vehicle controls on day 10 after clamp 

release (0.26±0.06% versus 0.84±0.5% in IRI-vehicle; p=0.045) (Figure 5.31). 
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Figure 5.31 Comparison of Sirius red staining between IRI+PCN and IRI+vehicle 

groups on post-reperfusion days 1 and 10 (above) with corresponding stain 

quantification (below). *P<0.05 versus IRI+vehicle 

 

5.3.10. Effect of PXR activation on IRI-induced ductular reaction 

Liver sections were probed for the expression of CK19 to assess the extent of 

cholangiocyte proliferation and ductular reaction. CK19 positivity in PCN-treated liver 

sections on day 10 was comparable to day 1 baseline levels and reduced by 46% 

compared to day 10 controls (1.4±0.2% versus 2.7±1.1% in IRI-vehicle; p=0.042) 

(Figure 5.32). 
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Figure 5.32 Comparison of CK19 staining between IRI+PCN and IRI+vehicle groups 

on post-reperfusion days 1 and 10 (above) with corresponding stain quantification 

(below). *P<0.05 versus IRI+vehicle 
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5.4. Discussion 

In view of the cholestatic, inflammatory and fibrotic response to IRI in the liver 

observed in the initial rat IRI model (Chapter 4), it was hypothesised that a drug 

intervention targeting activation of the PXR would alleviate these adverse effects, 

providing proof of principle for a rational treatment to reduce the prevalence of NABS 

and graft failure in patients undergoing liver transplantation. 

To test this hypothesis, rats were subjected to IRI with or without administration of the 

rodent-specific PXR activator PCN. Once daily subcutaneous PCN treatment 

significantly induced expression of the Cyp3a1 protein - which is transcriptionally 

regulated by the activated PXR (Moore and Kliewer, 2000) – demonstrating that 

hepatic levels of PCN were sufficient to sustain functional PXR activation as early as 

48 hours after commencement of PCN treatment. 

A modified 70% hepatic IRI model similar to the initial rat IRI model was adopted in 

the in vivo PXR study to avoid portal congestion and cholestatic injury. The 

ischaemic period, however, was reduced to 60 minutes in the PXR study in order to 

better represent the clinical conditions associated with marginal liver transplants. 

Although the reduction in ischaemia time may have contributed to the dramatic 

reduction in peri-operative mortality experienced in this study, improved animal 

survival was most probably related to the employment of a surgical microscope which 

dramatically reduced operating times and reduced the risk of intraoperative vascular 

injury and bleeding. 

The main endpoints in this experiment were inflammation and fibrosis. Thus only two 

timepoints were chosen (day 1 and 10). This was based on optimal windows for 

identifying these endpoints according to data from the optimised hepatic IRI model 

(Chapter 4). 

This study shows that activation of the PXR prior to and after IRI reduces cellular 

damage, inflammation and fibrosis. This is consistent with results from previous 

studies which revealed cyto-protective, anti-inflammatory and anti-fibrotic effects of 

PXR activation in a number of acute and chronic liver injury models (Marek et al., 

2005, Wallace et al., 2010, Stedman et al., 2005, Axon et al., 2008, Andrews et al., 

2010, Teng and Piquette-Miller, 2007). Iannelli et al (2011) have previously shown 

that the administration of clotrimazole -a strong PXR activator- prior to IRI resulted in 
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an anti-apoptotic effect during the first six hours post-reperfusion. The study 

presented in this chapter demonstrates that the cyto-protective effect of PXR 

activation extends beyond the first few hours post-reperfusion as evident by reduced 

necrosis on H&E sections and reduced serum ALT levels on day 1 post-reperfusion 

when PCN was administered. PXR activation also resulted in a reduction in the 

degree of lipid peroxidation post IRI. This may be due to the increased expression of 

PXR-regulated proteins implicated in the oxidative stress response such as 

glutathione-S-transferase (Rosenfeld et al., 2003) which has previously been shown 

to play a protective role during reperfusion injury (Romani et al., 1988). Reduced 

oxidative stress may further explain the enhanced cyto-protection associated with 

PXR activation in addition to the previously described anti-apoptotic effect (Iannelli et 

al., 2011). 

The choleretic effect of the activated PXR is well described (Jonker et al., 2012, 

Kakizaki et al., 2009) and was clearly evident in this study. The early reduction in 

serum bile acids following PCN treatment also highlighted the ameliorating effect of 

PXR activation on hepatic IRI-induced cholestasis. Whether the improvement of 

cholestasis in this model further contributed to the reduced cellular damage or was a 

direct manifestation of hepatocellular survival and function following PXR activation 

remains to be elucidated. However, it is most likely that the two phenomena are inter-

related. 

Beyond the initial post-reperfusion period, it was also demonstrate that PXR 

activation during IRI results in a reduced ductular reaction and an anti-inflammatory 

effect that persists in peri-portal areas for at least 10 days post-reperfusion. A clear 

anti-fibrotic effect was also evident by the reduced TGF-β (day 1), α-SMA (day 1) and 

Col1a1 (day 10) hepatic transcript levels, and reduced α-SMA and Sirius red staining 

-particularly around portal tracts- on day 10 with PCN treatment. Higher average 

levels of MMP-2 in that group –though not statistically significant- suggest a trend 

towards increased extracellular matrix breakdown with PXR activation. 

The implications of these findings for graft survival in liver transplantation are far 

reaching particularly in the case of DCD organs which are particularly predisposed to 

NABS. In this sense, activation of the PXR during liver transplantation may improve 

graft outcomes and increase the efficiency of donor liver utilisation. 
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However, the lack of cholangiography data limit the clinical applicability of the results 

in relation to the development of NABS. The challenges faced in obtaining 

cholangiography images have been discussed in the previous chapter (4.4). 

It may be argued that the decision to reduce ischaemia time in this study compared 

to the previous hepatic IRI model may have altered the optimal timepoints for the 

identification of inflammation and fibrosis. This may be the case. However, based on 

the results obtained, the chosen timepoints (day 1 and 10) were sufficient to identify 

differences in the main endpoints as a result of PCN treatment. Furthermore, 

excessive ischaemia beyond what is relevant clinically could have unnecessarily 

resulted in non-salvageable hepatic IRI damage and clinically inapplicable results. 

The relatively small sample size is a limitation in this study. However, a power 

analysis was performed a priori based on an expected 50% and 20% reduction in 

inflammatory and fibrotic markers respectively on day 10 according to previous work 

in our laboratory (Marek et al., 2005, Wallace et al., 2010). It was identified that a 

minimum of 4 animals would be required per group assuming a power of 80% and an 

alpha level of 0.05. Based on that, a sample size of 5 animals per group for each 

timepoint was adopted in this study in keeping with the National Centre for the 

Replacement Refinement & Reduction’s guidelines to minimise animal use in such 

experiments (NC3Rs/BBSRC/Defra/MRC/NERC/Wellcome Trust, 2013) 

The optimal time point at which the first dose of PXR activator should be 

administered in relation to reperfusion and the duration of treatment in order to confer 

any benefit following liver transplantation remains unclear. In the current study, PXR 

activation was commenced 48 hours prior to IRI as opposed to 72 hours in the study 

by Iannelli et al (2011) and demonstrated comparably favourable outcomes despite 

longer ischaemia times. This raises the question of whether pre-IRI treatment with 

PXR activators provides any added benefit over the commencement of treatment 

during or following IRI. This question is addressed in the clinical PXR study 

presented in the following chapter (Chapter 6). 
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Chapter 6. Clinical PXR study
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6.1. Introduction 

 

The results obtained from PXR activation in the rat IRI model are highly encouraging 

(Chapter 5). Nevertheless, translation of this achievement into clinical practice should 

follow at this stage in order to test the clinical applicability and relevance of these 

results and further advance our knowledge on this subject. The benchside to bedside 

approach however, is rarely a straightforward endeavour and presents multiple 

challenges and obstacles to overcome (Keramaris et al., 2008). Therefore, it is 

important to understand key issues that need to be addressed in order to adapt the 

benchside model to a clinical population. 

 

6.1.1. Rat versus human PXR 

As detailed in section 5.1.4, there are key evolutionary differences between PXR 

orthologues from different species. Varying LBD regions between orthologues mean 

that their ligand-specificities vary significantly, although it is likely that the regulated 

target genes and signalling pathways are comparable given the conservative nature 

of the DBDnr regions amongst orthologues (Kliewer et al., 2002). An understanding 

of this ligand-specificity is imperative in order to identify clinically-relevant PXR 

activators. 

 

6.1.2. Identification of clinically relevant PXR activators 

In addition to the issue of species-selectivity, it is worth noting that not all ligands that 

bind to the PXR necessarily lead to its activation (Ekins et al., 2007). Furthermore, in 

view of its capacity to accept molecules of varying sizes and chemical properties, and 

an ability to accommodate smaller molecules in different orientations, traditional 

structure-based virtual screening methods are of little help in identifying potential 

PXR ligands (Ekins et al., 2009). Therefore, various in vivo and in vitro laboratory 

techniques have been developed to investigate ligand binding to and activation of the 

PXR. Key approaches are outlined below. 

 

Human hepatocyte-based assays 
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The use of cultured primary human hepatocytes is the gold standard in vitro system 

to assess induction potentials of new drugs (LeCluyse, 2001). It is a system widely 

accepted by the drug industry, academia and regulatory bodies and enables the 

investigation of various aspects of drug action and its regulation within an intact 

cellular system (Sinz et al., 2008). However, the difficulty in obtaining and 

maintaining primary human hepatocytes in culture has driven researchers towards 

using immortalised hepatocytes and other in vitro assays for early stages of drug 

screening (Zhu et al., 2004, Sinz et al., 2008). 

 

Ligand binding assays 

A number of ligand binding assays have been employed using isolated PXR 

receptors in vitro. These include the scintillation proximity assay (SPA) that utilises a 

radioligand with scintillating effect when bound to the immobilised PXR, an effect that 

reduces when non-radioactive ligands compete for PXR binding (Kliewer et al., 

2002); the coactivator receptor ligand assay (CARLA) where interaction of the PXR 

with a radioactive coactivator upon ligand binding produces co-precipitation of the 

complex which can then be measured (Kliewer et al., 2002); and fluorescence 

resonance energy transfer (FRET) where interaction of a coactivator with a 

fluorescence-labelled LBD (in the presence of a bound ligand) produces a 

measurable fluorescence signal (Shukla et al., 2009). These assays can be used to 

create concentration-response curves and measure binding potencies of various 

ligands. However, despite their  relative simplicity, ligand binding assays lack the 

structural cellular components that put ligand binding into life-like context and hence 

data obtained from these assays usually requires further validation (Sinz et al., 2008) 

 

Trans-activation assays 

These assays are cell-based; usually involving either primary hepatocytes (Raucy et 

al., 2002)or cell line derived from immortalised hepatocytes (e.g. HepG2) (Shukla et 

al., 2011). Cells are co-transfected with a vector containing species-specific PXR 

coding regions (encoding full or chimeric receptor), and a vector combining a reporter 

gene, an upstream target gene (e.g. CYP3A4) enhancer and a minimal promoter 

element. Various ligands can then be assessed for PXR activation (through 
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measurement of reporter gene output) and/or target gene expression. Similar to 

ligand-binding assays, trans-activation assays can measure binding potencies of 

various ligands. Although these assays are more complex and time-consuming, they 

also provide essential information beyond ligand binding, such as receptor activation 

and gene expression, differentiating PXR agonists from antagonists or non-functional 

ligands (Ekins et al., 2007, Sinz et al., 2008). However, one major disadvantage of 

these assays is that they only assess direct interaction of ligands to the isolated PXR. 

No account is taken of the interactions and cross talk between ligand-bound PXR 

and other nuclear receptors, which come into play in real life. 

 

The above assays can be employed in automated high throughput screening (HTS) 

processes to profile large numbers of potential PXR ligands (Shukla et al., 2011, 

Raucy and Lasker, 2010). 

 

Transgenic animal models 

Humanised hPXR mice were first developed by Xie et al (Xie et al., 2000a). These 

animals are genetically engineered to express hPXR (rather than mPXR) and 

therefore respond to human-specific PXR activators allowing the investigation of 

hPXR-ligand interaction within a complex dynamic living system. This facilitates more 

detailed assessment of drug pharmacokinetics including drug-drug interactions, 

particularly in more complex humanised models where human CYP genes are also 

introduced (Scheer et al., 2015). However, these models are not suitable for 

screening large numbers of drugs for PXR activation for obvious reasons. In addition, 

such models result in in vivo interplay between “humanised” gene products and 

native genes and proteins and therefore does not fully replicate events in an intact 

unmodified biological system (Sinz et al., 2008). 

 

6.1.3. PXR polymorphism 

In addition to variations in PXR response between species, disparate responses can 

occur within the individuals of the same species. Indeed, the inter-individual variation 

in response to PXR-activating drugs is well established albeit still poorly understood 
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(Eichelbaum and Burk, 2001, Kliewer et al., 2002). Various environmental and 

genetic factors have been implicated in this observation (Rana et al., 2016).  

The existence of over 35 single nucleotide polymorphisms (SNP) in the PXR gene 

may partly explain this variation (Zhang et al., 2001, King et al., 2007). PXR SNPs 

have been shown to explain variations in response to many drugs including warfarin 

(Moon et al., 2015), imatinib (Liu et al., 2017) and certain chemotherapeutic regimes 

(Mbatchi et al., 2015, Revathidevi et al., 2016), and have been linked to susceptibility 

to conditions such as NAFLD (Sookoian et al., 2010), Crohn’s disease (Glas et al., 

2011) and colorectal cancer (Ni et al., 2015). However, it is worth noting that, of the 

multiple SNP identified, only a small proportion are in the PXR protein coding regions 

resulting in a few variant PXR proteins. The frequency of these variants is very low 

and is unlikely to account for a significant proportion of variation in drug responses 

between individuals (Zhang et al., 2001, Kliewer et al., 2002). Other polymorphisms, 

including that of CAR and various coactivators are likely to be key contributors to this 

variation (Prakash et al., 2015) 

 

6.1.4. Designing a clinical study 

Multiple methodology aspects need to be addressed in order to design a robust 

translational study based on data from the animal research. 

 

Type of study 

Analysis and quantification of the effect of PXR activation in clinical practice is 

essential to the validation of results from the animal work. The gold standard 

analytical design in clinical research is the randomised control trial (RCT), where bias 

is minimised and the controlled benchside research environment is simulated as 

closely as possible (Grimes and Schulz, 2002). However, such prospective work 

presents a number of ethical and logistical challenges. For example, based on an 

annual average of 42 liver transplants at local level (Newcastle upon Tyne NHS Trust 

local data), it will require at least four years to recruit a sufficient number of patients in 

order to adequately power such study to detect a generous 50% reduction in a 

hypothetical commonly occurring risk at an alpha level of 0.05. Given the time 

restrictions associated with this project, the alternative option is to design a 
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retrospective cohort study based on previous liver transplantations performed in the 

trust, accepting the limitations associated with such design (Grimes and Schulz, 

2002). 

 

Method for identifying and grading PXR-activating drugs 

Various PXR screening studies were examined in order to select the optimal tool for 

the identification and grading of clinically relevant PXR activators (Persson et al., 

2006, Moore et al., 2000, Lehmann et al., 1998, Shukla et al., 2009, Shukla et al., 

2011). These were assessed for assay strengths and limitations, reporting of potency 

profiles, comprehensiveness and inclusion of current drugs. The hPXR activation 

dataset by Shukla et al (Shukla et al., 2011) was chosen as a reference tool based 

on its comprehensive assessment of contemporary and clinically relevant drugs. 

 

Prediction of clinical PXR activation status in retrospect 

In an ideal situation, PXR activation would be quantified based on prospective tissue 

analysis of subjects. Given the clear ethical questions that such approach poses, and 

in the absence of routine tissue collection post transplantation, definitive PXR status 

quantification was not a viable option. However, the alternative prediction-based 

approach presents a number of challenges in its own right. Innumerable drug- and 

patient-related variables dictate individual patient response to PXR activators 

particularly when given in combination with other PXR-activating and non-activating 

medications. Only a handful of these variables are available retrospectively (drug 

dose, route of administration, PXR activating potency and patient weight). Moreover, 

no validated approaches to the prediction of PXR activation have been reported in 

the literature to date. Therefore, a prediction tool was developed by the project team 

based on established pharmacokinetic principles and the availability of retrospective 

data, accepting that this is an objective yet unvalidated tool with the potential risk of 

inaccurate estimation. A detailed description of this tool is provided in section 6.2.4. 

 

Outcome measurement 
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Results from the animal model were based on largely on histological and short-term 

biochemical data. However, a focus on clinically relevant outcomes is required in a 

translational study. In the context of liver transplantation, such outcomes include 

early graft function, procedure-related complications and long term graft and patient 

survival. Based on results from the animal model, improved outcomes were 

anticipated in graft survival and the risk of developing NABS. 

 

6.1.5. Hypothesis and aim of study 

Based on the animal models, it was hypothesised that hPXR activation in the early 

post-transplantation period would lead to improved graft survival and a reduction in 

clinically-relevant complications associated with ischaemia reperfusion injury 

The aim of this clinical study was to investigate the effect of early hPXR-activation on 

procedure-related complications and survival outcomes in a cohort of liver 

transplantation recipients. 
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6.2. Methods 

 

6.2.1. Study design 

This clinical study was designed as a retrospective cohort study of patients 

undergoing deceased donor orthotopic liver transplantation (OLT) between October 

2010 and September 2016 at the Institute of Transplantation of the Freeman Hospital 

(Newcastle upon Tyne Hospitals NHS Foundation Trust, UK). 

 

6.2.2. Data extraction 

Data for this study was obtained from multiple sources including the Trust’s electronic 

medical record system, eRecord (Cerner, Kansas City, USA); a locally held 

transplant coordinator database; the NHSBT National Transplant Database (NTxD); 

the NHSBT Organ Donation and Transplantation Electronic Offering System (EOS); 

the British National Formulary (BNF 69) (Joint Formulary Committee, 2015); the 

Merck Index Online and drug profiling data for Human PXR (hPXR) activation 

obtained from the National Institutes of Health (NIH) (Shukla et al., 2011) 

The extracted data was divided into six main domains: Donor, recipient and graft 

data, admission and transplantation data, medication data, early graft function data, 

complication data and survival data. Details of the individual variables collected 

within each domain are outlined in Table 24. 

The collected data was entered into a Microsoft Office Excel 2010 spreadsheet 

(Microsoft Corp., Redmond, WA). 

 

Table 24 Details of variables collected for clinical PXR study 

Domain Variable Details 

Donor, 
recipient and 
graft data 

Donor age Age at the time of death (years) 

Based on EOS data 

 Donor gender Male or Female 

Based on EOS data 

 Donor height Height at the time of death (cm) 
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Based on EOS data 

 Donor weight Weight at the time of death (kg) 

Based on EOS data 

 Donor Body Mass Index 
(BMI)* 

Derived from donor height and weight 

BMI=Weight (kg)/Height^2 (m) 

 Donor ethnicity Categories 

Based on EOS data 

 Cause of donor death Categories 

Based on EOS data 

 Donor Cytomegalovirus 
(CMV) status 

IgG positive or negative at the time of 
death 

Based on EOS data 

 Type of deceased donor DBD or DCD 

Based on EOS data 

 Recipient age Age at the time of transplantation 
(years) 

Based on eRecord data 

 Recipient gender Male or Female 

Based on eRecord data 

 Donor/recipient gender 
mismatch* 

Derived from donor and recipient 
gender data 

Yes=opposite donor/recipient genders 

 Recipient height Height at the time of transplantation 
(cm) 

Based on eRecord data 

 Recipient weight Weight at the time of transplantation 
(kg) 

Based on eRecord data 

 Recipient Body Mass 
Index (BMI)* 

Derived from recipient height and 
weight 

BMI=Weight (kg)/Height^2 (m) 

 Recpient 
Cytomegalovirus (CMV) 
status 

IgG positive or negative at the time of 
transplantation 

Based on eRecord data 

 CMV mismatch* Derived from donor and recipient 
gender data 

Yes=donor CMV positive and recipient 
CMV negative 

 Primary liver pathology of 
recipient 

Categories 

Based on local database and NTxD 
data 
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 Previous liver 
transplantation 

Yes or No 

Based on local database and NTxD 
data 

 Model for End Stage 
Liver Disease (MELD) 
score 

Calculated using recipient serum 
creatinine, bilirubin and international 
normalized ratio for prothrombin time 
(INR) at the time of transplantation 

Based on local database and NTxD 
data 

 Graft type Whole or split liver graft 

Based on local database and NTxD 
data 

 Super-urgent status Yes or No 

Based on local database and NTxD 
data 

Admission and 
transplantation 
data 

Date of admission DD/MM/YYY 

Based on eRecord data 

 Date of transplantation DD/MM/YYY 

Date at the start of transplantation 

Based on eRecord data 

 Date of discharge DD/MM/YYY 

If readmitted within 48 hours then 
latest date of discharge 

Based on eRecord data 

 Length of hospital stay 
(LOS)* 

Derived from transplantation and 
discharge dates (days) 

LOS=duration of time between 
transplantation and discharge 

 Cold ischaemia time 
(CIT) 

Calculated as the total duration of cold 
storage of the graft (minutes) 

Based on NTxD data 

 Total Warm ischaemia 
time (WIT) 

Total warm ischaemia time (minutes) 

is the combined duration of first and 
second warm ischaemia times 

First warm ischaemia time is 
calculated from the time of death to 
graft procurement (in DCD retrieval) 

Second warm ischaemia time is 
calculated from the time of graft 
removal from cold storage to 
reperfusion of graft (in both DBD and 
DCD organ transplantation) 
Based on NTxD data 
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 Veno-venous bypass 
time 

Total duration of veno-venous bypass 
(minutes) 

Based on NTxD data 

 Type of biliary 
anastomosis 

Duct-to-duct anastomosis or Roux-en-
Y hepaticojejunostomy 

Based on NTxD data 

 Type of arterial 
anastomosis 

Single or multiple 

Based on NTxD data 

 Number of organs 
transplanted 

Liver alone or multi-organ 
transplantation 

Based on local database and NTxD 
data 

 Intraoperative blood 
transfusion 

Number of units transfused 
intraoperatively 

Based on NTxD data 

 Postoperative blood 
transfusion 

Number of units transfused within 48 
hours postoperatively 

Based on NTxD data 

 Operating surgeon Primary operating surgeon 

Based on eRecord data 

 Duration of intensive care 
unit (ITU) stay 

Postoperative period up to discharge 
from ITU (days) 

Based on NTxD data 

Medication 
data  

Collected for each drug administered. Total amount of drug 
administered within the first 7 days post-transplantation is 
calculated (in moles) and normalised to total body weight 

 Drug dose Amount of drug per dose (mg) 

Based on eRecord data 

Drug doses expressed in volumes (ml) 
or other delivery forms (e.g. puffs) are 
converted to equivalent weights (mg) 
based on BNF data 

 Route of drug 
administration 

Recorded route of drug administration 

Based on eRecord data 

 Total number of doses 
administered 

Total number of doses administered 
within first 7 days post-transplantation 

Based on eRecord data 

 Drug molecular weight From standard molecular formula of 
drug 

Based on BNF and Merck Index 
Online data 

 Half-maximal activation 
value (AC50) of drug to 

The concentration of drug which 
produces 50% of maximal hPXR 
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hPXR activation response on a 
concentration-response curve (CRC) 

Based on NIH data 

 Class of drug 
concentration response 
curve (CRC) 

CRC class indicating quality of fit and 
efficacy of hPXR activation response 

Based on NIH data 

Early graft 
function data 

Serum bilirubin Serum bilirubin on day 7 post-
transplantation (μmol/L) 

Based on eRecord data 

 Serum prothrombin time 
(PT) 

Serum PT on day 7 post-
transplantation (seconds) 

Based on eRecord data 

 Serum ALT Highest level of serum ALT within first 
7 days of transplantation (IU/L) 

Based on eRecord data 

 Early Allograft 
Dysfunction (EAD)* 

Derived from early graft function data 
(serum bilirubin, PT and ALT) 

See section 6.2.5 

Complication 
data 

See section 6.2.5 for definitions of complications 

 Primary non-function 
(PNF) 

Yes or No 

Defined as failure of graft to function 
immediately after transplantation 
(where specific technical causes have 
been excluded) leading to death or 
requiring re-transplantation (Oh et al., 
2004) 

Based on local database and NTxD 
data 

 Vascular complications Bleeding, thrombosis or vascular 
stenosis 

Type, date of diagnosis (radiological, 
histological or intraoperative) and 
intervention details are recorded 

Based on eRecord and NTxD data 

 Biliary complications Biliary strictures or leaks 

Type, date of diagnosis (radiological, 
endoscopic, histological or 
intraoperative) and intervention details 
are recorded 

Based on eRecord and NTxD data 

 Infective complications Yes or No 

Culture-proven and treated infection 
regardless of site 
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Type, date of first positive culture and 
type of treatment are recorded 

Based on eRecord and NTxD data 

 Sepsis* Yes or No  

Derived from clinical, biochemical and 
pharmacological data composing the 
Sequential Organ Failure Assessment 
(SOFA) score (Sepsis-3 definition) 

Based on eRecord data 

 Return to theatre Yes or No 

Number of re-exploration procedures, 
reason(s) for return to theatre and 
date(s) of surgery are recorded 

Based on eRecord data 

 T cell-mediated rejection 
(TCMR) 

Yes or No 

Number of episodes and dates of 
positive biopsies are recorded 

Based on eRecord and NTxD data 

 Degree of TCMR Mild, moderate or severe episode 
based on biopsy report 

If multiple biopsies are taken within 
one episode of TCMR, the degree of 
TCMR is measured according to the 
highest reported severity 

Based on eRecord data 

 Antibody-mediated 
rejection (AMR) 

Yes or No 
Number of episodes and dates of 
positive biopsies are recorded 

Based on eRecord and NTxD data 

 Chronic rejection Yes or No 

Date of first suggestive biopsy is 
recorded 

Based on eRecord data 

 Disease recurrence Yes or No 

Based on eRecord data 

Survival data See section 6.2.5 for definitions of survival data 

 Occurrence of TCMR As above 

Yes or No 

Based on eRecord data 

 Occurrence of graft 
failure 

Yes or No 

Based on eRecord data 

 Occurrence of Death Yes or No 

Based on local database and NTxD 
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data 

 Cause of death Categories 

Based on local database and eRecord 
data 

 Date of first TCMR 
episode 

As above 

DD/MM/YYY 

Date of first positive biopsy 

Based on eRecord data 

 Date of re-transplantation DD/MM/YYY 

Based on eRecord data 

 Date of death DD/MM/YYY 

Based on local database and NTxD 
data 

 Last date of follow up DD/MM/YYY 

Latest review date of patient (in person 
or via telephone) as of 22/05/2017 

Based on eRecord data 

 Rejection-free graft 
survival* 

Duration of time between date of 
transplantation and date of first TCMR 
episode [otherwise censored at date of 
re-transplantation, death or last follow 
up] 

 Graft survival (death-
censored)* 

Duration of time between date of 
transplantation and date of re-
transplantation [otherwise censored at 
date of death or last follow up 
whichever the latest] 

 Patient survival* Duration of time between date of 
transplantation and date of death 
[otherwise censored at date of last 
follow up] 

*Derived variables 

 

6.2.3. Exclusion criteria 

The following exclusion criteria were applied in this study  

 Recipients of combined organ transplantation 

 Recipients that experienced graft failure within the first 7 days post-

transplantation (including primary non-function) 

 Recipients that died within the first 7 days post-transplantation  



 

260 
 

Recipients of DCD organs, split liver transplants, super-urgent transplants and 

recipients of previous transplants were included in the study if they did not meet the 

above exclusion criteria. 

 

6.2.4. Calculation of Predicted hPXR activation value on day 7 (PPAV7) 

Given the retrospective nature of this study and the lack of consistency in tissue 

availability in the studied population, hPXR activation in recipients was indirectly 

assessed based on the total dose and hPXR-activation potency of drugs 

administered within the first week of transplantation. The 7-day timepoint was chosen 

to coincide with the early assessment of graft function, one of the main outcomes 

measured in this study. 

For each recipient, the total amount of each drug administered within the first 7 days 

of transplantation was identified and calculated using the electronic prescription 

function of eRecord. In order to maintain consistency in measurement between 

various drugs, the total amount of each drug administered over 7 days was converted 

to moles based on its average molecular weight obtained from The Merck Index 

Online (www.rsc.org/merck-index). The molar total was then divided by body weight 

of recipient at the time of transplantation to take into account the effect of body 

weight on the pharmacokinetics of each drug (Burton, 2006). Calculation of the 

weight-normalised 7-day molar total (WTD7) for each drug is summarised in the 

following equation: 

WTD7 ൌ
TD7ሺgmሻ

MW ∗ TBWሺkgሻ
 

Where TD7 is the total amount of the corresponding drug administered over 7 days, 

MW is the molecular weight of that drug and TBW refers to total body weight of the 

recipient at the time of transplantation. 

Data on the Human PXR (hPXR) activation profile of clinically used drugs was based 

on a dataset kindly provided by researchers at the National Institutes of Health (NIH) 

(Shukla et al., 2011). According to the data provided, drugs were classified into one 

of four major concentration-response curve (CRC) classes that correspond to the 

compound efficacy and quality of curve fit (r2) derived from the Hill equation (Shukla 

et al., 2009). Drugs with CRC classes 1.1, 1.2, 2.1 and 2.2 were considered active. 
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Drugs with class X.4 curves showed poor fit and low efficacy and were considered 

inconclusive whereas drugs with class 4 curves exhibited no concentration-response 

relationship and were thus considered inactive. For the purpose of this study, drugs 

associated with the latter curves were not considered to be hPXR activators at 

clinically administered doses and were excluded from further measurements. The 

relative potencies of the remaining drugs were quantified based on the half-maximal 

activation value (AC50) provided in the NIH datasets. 

The predicted hPXR activation value on day 7 (PPAV7) represents an attempt to 

predictively measure the degree of hPXR activation for an individual recipient on the 

7th day post-transplantation based on the weight-normalised total dose (WTD7) and 

potency (AC50) of each hPXR activator administered to that recipient during the 7-day 

period. It was calculated based on the following equation: 

PPAV7 ൌ
WTD7	ሺdrug	Aሻ
AC50	ሺdrug	Aሻ

൅
WTD7	ሺdrug	Bሻ
AC50	ሺdrug	Bሻ

൅
WTD7	ሺdrug	Cሻ
AC50	ሺdrug	Cሻ

൅ ⋯ 

Where drugs A, B, C … are medications associated with CRC classes 1 and 2 

administered to the recipient within the first 7 days post-transplantation. 

The final PPAV7 value was multiplied by a factor of 1x106 to produce a simpler 

decimal figure. 

Due to the retrospective nature of this study, three unavoidable presumptions were 

made in the calculation of recipient PPAV7: 

1. That the practically unmeasurable inter- and intra-drug variation in 

pharmacokinetic parameters (such as bioavailability and volume of drug 

distribution) due to various recipient and drug characteristics would not have a 

significant impact on hPXR activation after 7 days of drug administration  

2. That hPXR activation in vivo was dependent primarily on the hPXR-activation 

potency of any given drug (inversely related to the AC50 value) and not its 

efficacy (which differs between activators of high and low quality CRC 

subclasses) 

3. That no genetic variation in response to hPXR activator existed between 

individuals 

In reality, it is highly unlikely that any of these presumptions were accurate given the 

complex nature of mammalian systems. However, since any potential error in PPAV7 
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measurement arising from these presumptions would be random, it was postulated 

that inaccurately-predicted values would be randomly distributed between the various 

study subgroups and would not significantly influence the outcomes. 

The study population was divided into low and high hPXR activation groups based on 

a cut-off median PPAV7 within the cohort. 

 

6.2.5. Outcomes 

Early allograft dysfunction 

The primary outcome investigated in this study was Early Allograft Dysfunction (EAD) 

based on the modified definition validated by Olthoff et al (2010). EAD was defined 

as the presence of at least one of the following criteria: 

 Serum bilirubin level ≥10mg/dl (170μmol/L) on day 7 post-transplantation 

 International normalised ratio (INR) ≥1.6 on day 7 post-transplantation 

 Serum Alanine or Aspartate aminotransferase (ALT or AST) >2000IU/L within 

the first 7 days post-transplantation 

EAD provided an early measure of graft function and has been shown to be 

associated with graft loss and patient mortality (Olthoff et al., 2010). 

 

Early and late postoperative complications 

The incidence of transplant-related vascular, biliary and infective complications was 

also investigated in this study in addition to the incidence of return to theatre and 

acute rejection. Late complications including chronic graft rejection and disease 

recurrence were also examined. These outcomes are listed and defined in Table 25. 

 

Table 25 Definition of liver transplant-related complications 

Outcome Definition 

Vascular complication Bleeding, thrombosis or vascular stenosis (arterial or 
venous; anastomotic or otherwise), diagnosed 
radiologically, histologically or intraoperatively and 



 

263 
 

requiring pharmacological, radiological or surgical 
intervention. Equivalent to grade III complications 
according to the Clavien-Dindo classification (Dindo et al., 
2004) 

Biliary complication Bile leak or stricture (anastomotic or NABS; solitary or 
multiple), diagnosed radiologically, endoscopically, 
histologically or intraoperatively and requiring operative or 
endoscopic intervention such as washout, drainage, 
stenting, dilatation or re-transplantation. Equivalent to 
grade III complications according to the Clavien-Dindo 
classification (Dindo et al., 2004) 

Infective complication Culture-proven infection (including wound, biliary tree, 
gastrointestinal, urinary tract, indwelling catheter, deep-
seated infected fluid collection or isolated bacteraemia of 
unclear source) treated with antibiotics or drainage 
(radiological or surgical). Equivalent to grade II and III 
complications according to the Clavien-Dindo classification 
(Dindo et al., 2004) 

Antibiotic treatment for positive cultures from donor or 
preservation fluid specimens is excluded as is prophylactic 
or empirical antibiotic administration 

Sepsis Evidence of organ dysfunction [quantified as a Sequential 
Organ Failure Assessment (SOFA) score of 2 or more 
points] in response to a culture-proven infection (Singer et 
al., 2016). Equivalent to grade IV complications according 
to the Clavien-Dindo classification (Dindo et al., 2004) 

Return to theatre Any planned or unexpected return to theatre for re-
exploration of the abdomen within the same admission 
regardless of indication or surgical intervention performed 

T cell-mediated 
rejection (TCMR) 

Biopsy-proven T cell-mediated rejection (early or late). 
Classified as mild, moderate or severe according to 
maximum severity reported. (Demetris et al., 2016) 

Repeated episode of rejection is defined as biopsy-proven 
acute rejection following previous rejection with normalised 
liver function tests or rejection-negative biopsy in the 
interim period 

Acute antibody-
mediated rejection 
(AMR) 

Histopathological, immunohistochemical and serological 
evidence suggestive of acute antibody-mediated rejection 
and reasonable exclusion of other pathologies that may 
lead to a similar pattern of injury (Demetris et al., 2016)  

Chronic rejection Histological evidence suggestive of chronic rejection (early 
or late) supported by clinical, biochemical or radiological 
findings (Demetris et al., 2016) 

Disease recurrence A combination of histological, biochemical, immunological 
and/or radiological evidence consistent with recurrent 
original liver pathology (Demetris et al., 2006) 
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Survival outcomes 

Delayed outcomes examined in this study were rejection-free survival, graft survival 

(death-censored) and overall patient survival. Rejection-free survival time was 

calculated from the date of transplantation to the date of first TCMR episode and 

censored at re-transplantation, death or last follow up date. Graft survival time was 

calculated from the date of transplantation to the date of re-transplantation and 

censored at death or last follow up date. Patient survival time was calculated from the 

date of transplantation to the date of death and censored at date of last follow up. 

 

6.2.6. Data expression and statistical analysis 

Data expression and bivariate statistical analysis for continuous and categorical data 

is similar to that described in 3.2.6. In addition, correlation between continuous 

independent variables was performed by measuring Pearson’s correlation coefficient. 

The strength of correlation is described as small, medium or large corresponding to 

correlation coefficient values below 0.3, between 0.3 and 0.5, and above 0.5 

respectively (Cohen, 1988). 

Kaplan-Meier statistics were performed for survival analyses. Median time to event 

(in days) is reported for each group when available [lower, upper bound 95% 

confidence interval for median time to event]. Log rank test was used to identify 

differences in survival distribution between groups and results are reported as chi-

square statistic (degree of freedom indicated within parenthesis) and P value. 

Univariate followed by multivariate Cox regression analyses were performed to 

identify the relative contribution of multiple independent variables to the prediction of 

occurrence of rejection-free, graft and patient survival. The univariate analysis was 

performed to measure the individual effect of independent variables on survival. 

Independent variables that demonstrated significant effects on survival were then 

combined in a multivariate regression model to investigate the simultaneous effect of 

these relevant variables. The ratio of events per variable (EPV) was maintained at 

acceptable levels in the multivariate regression model in order to preserve validity of 

the model analysis (van Domburg et al., 2014). The multivariate model was executed 

using the standard Enter method. Results are reported as hazard ratio [lower, upper 
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bound 95% confidence interval for hazard ratio] and P value. Multicolinearity 

diagnostics were performed to identify evidence of linear dependency between 

independent variables in a multivariate regression model. Variance inflation factor 

(VIF) values below 4 indicated acceptably low levels of inter-variable multicollinearity. 

Statistical test results with p values of less than 0.05 were considered statistically 

significant. All statistical tests were performed using the Statistical Package for Social 

Sciences version 19.0 (SPSS Inc., Chicago, IL, USA) and Microsoft Office Excel 

2010 (Microsoft Corp., Redmond, WA). 
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6.3. Results 

 

6.3.1. Overview of patient inclusion 

In total, 253 OLT procedures were performed at the Freeman Hospital between 

October 2010 and September 2016. Of these, 240 were considered eligible for 

inclusion in this study (228 recipients). The remaining 13 transplant procedures were 

considered ineligible for inclusion due to reasons outlined in the inclusion flowchart 

below (Figure 6.1). 

 

 

Figure 6.1 Procedure-inclusion flowchart 

 

Multi-organ transplants 
n=3 

Recipient death within 7 
days of transplantation 

n=7 

PNF/graft failure within 7 
days of transplantation 

n=53 

240 OLT procedures 
included (228 recipients) 

Deceased donor orthotopic liver 
transplantation (Oct 2010- Sep 

2016) at the Institute of 
Transplantation 
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6.3.2. Characteristics of study population 

 

Recipient characteristics  

Two hundred and twenty eight recipients received 240 liver transplants during the 

study period. Recipients that had received more than one transplant were analysed 

separately for each transplant episode. Categorical and continuous characteristics of 

the recipients are summarised in Table 26 and Table 27 respectively.  

 

Table 26 Frequency distribution of recipient characteristics 

Recipient characteristic 
Frequency 

(percentage 
of total) 

Gender Female 96 (40) 

 Male 144 (60) 

Primary liver pathology ALD 60 (25) 

 Autoimmune liver disease 50 (20.83) 

 Graft failure -acute 8 (3.33) 

 Graft failure -chronic 16 (6.67) 

 Liver tumour +/- chronic liver disease 42 (17.5) 

 NAFLD 15 (6.25) 

 Other -acute 5 (2.08) 

 Other -chronic 8 (3.33) 

 Paracetamol overdose 11 (4.58) 

 Unclear -acute 9 (3.75) 

 Unclear -chronic 4 (1.67) 

 Viral hepatitis 12 (5) 

Previous transplants  30 (12.5) 

 

 

Table 27 Descriptive statistics of recipient characteristics (continuous variables) 

Recipient characteristic Average SEM Lowest Highest 



 

268 
 

Age (years) 53.2 0.85 17 71 

MELD 18.28 0.63 6 65 

Height (cm) 169.62 0.6 147 193 

Weight (kg) 79.07 1.15 39.1 128.8 

BMI 27.3 0.34 16.21 41.44 

 

 

Donor characteristics 

Categorical and continuous characteristics of the donors are summarised in Table 28 

and Table 29 respectively. The majority of OLT donors were of the DBD type 

(88.75%) and of Caucasian ethnicity (97.5%). With the exception of donor gender, 

overall donor demographics were comparable to those of the recipients.  Donor 

anthropometrics were significantly associated with those of the recipient (weight-

weight and height-height correlation coefficients were 0.545 and 0.203 respectively; 

P<0.005). However, donor and recipient ages were not significantly correlated even 

when super-urgent cases were excluded (correlation coefficient -0.107; P=0.124). 

 

Table 28 Frequency distribution of donor characteristics 

Donor characteristic 
Frequency 

(percentage 
of total) 

Donor Type DBD 213 (88.75) 

 DCD 27 (11.25) 

Donor gender Female 125 (52.08) 

 Male 115 (47.92) 

Donor COD (grouped) Hypoxic brain injury/stroke 43 (17.92) 

 Intracranial haemorrhage/trauma 187 (77.92) 

 Meningitis 5 (2.08) 

 Other 2 (0.83) 

 Tumour 3 (1.25) 

Race Asian 2 (0.83) 

 Black 1 (0.42) 
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 Chinese 3 (1.25) 

 White 234 (97.5) 

 

 

Table 29 Descriptive statistics of donor characteristics (continuous variables) 

Donor characteristic Average SEM Lowest Highest 

Age (years) 50.25 0.95 17 80 

Height (cm) 170.21 0.62 149 194 

Weight (kg) 75.76 0.95 43.3 125 

BMI 26.12 0.29 15.57 42.02 

 

 

Transplantation characteristics 

Categorical and continuous characteristics of the transplantation process 

(perioperative data) are summarised in Table 30 and Table 31. Super-urgent and 

redo OLT comprised 13.3% and 12.5% of all included procedures respectively. The 

majority of procedures were performed using whole liver grafts (95%).  

Recipient age was significantly inversely correlated to a number of perioperative 

variables including MELD score, postoperative transfusion requirement and length of 

ITU and hospital stay (correlation coefficient -0.267, -0.184, -0.194 and -0.157 

respectively; P<0.05). Interestingly, recipient preoperative MELD score correlated 

significantly with postoperative ITU stay (correlation coefficient 0.308; P<0.0005). A 

correlation matrix of all continuous recipient, donor and perioperative variables is 

reported in Appendix 4. 

 

Table 30 Frequency distribution of transplant characteristics 

Transplant characteristic 
Frequency 

(percentage 
of total) 

Super-urgent transplant  32 (13.33) 

CMV mismatch  54 (22.5) 
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Gender mismatch  89 (37.08) 

Graft type Whole 228 (95) 

 Split 12 (5) 

Primary surgeon BJ 25 (10.42) 

 CHW 14 (5.83) 

 DMM 50 (20.83) 

 DT 41 (17.08) 

 GS 25 (10.42) 

 JJF 55 (22.92) 

 SAW 30 (12.5) 

Biliary anastomosis End-to-end 181 (75.42) 

 Roux-en-Y 54 (22.5) 

 Delayed 5 (2.08) 

HA anastomosis Single 206 (85.83) 

 Multiple 34 (14.17) 

 

 

Table 31 Descriptive statistics of transplant characteristics (continuous variables) 

Transplant characteristic Average SEM Lowest Highest

Cold ischaemia time (min) 585.75 9.4 128 1043 

Veno-venous bypass (min) 136.66 3.5 0 346 

Warm ischaemia time (min) 54.31 1.29 19 155 

Intraoperative blood transfusion (units) 6.59 0.43 0 40 

Postoperative blood transfusion (units) 1.7 0.3 0 53 

ITU stay (days) 7.31 (4*) 0.61 1 59 

Length of hospital stay (days) 32.95 (25*) 1.49 9 138 

*median values 

 

 

6.3.3. hPXR activation 
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Identification of hPXR activators used in liver transplantation 

A list of hPXR activators used within the first 7 days post-transplantation was 

generated by comparing eRecord pharmacy data for transplant recipients to the NIH 

drug hPXR-activation profile database. This list is shown in Table 32. Lower AC50 

values indicate higher hPXR activation potencies. As is evident from this data, 

Rifampicin was the most potent hPXR activator documented to have been 

administered in the immediate (7-day) post-transplantation period followed by 

Phytomenadione (vitamin K1). A full list of medications used in the postoperative 

period for transplant recipients is outlined in Appendix 4. 

 

Table 32 hPXR activators administered within the first 7 days post-transplantation 

Drug AC50 for hPXR activation (μM) 

Amlodipine 8.91 

Azithromycin 35.48 

Beclometasone 15.85 

Budesonide 8.91 

Ciprofloxacin 7.08 

Domperidone 25.12 

Efavirenz 3.98 

Fentanyl 14.13 

Haloperidol 14.13 

Levothyroxine 25.12 

Loperamide 10 

Mirtazapine 15.85 

Nifedipine 12.59 

Phytomenadione 2.51 

Rifampicin 0.71 

Salmeterol 3.98 

Sertraline 28.18 

Tolterodine 5.62 

Verapamil 12.59 
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The most commonly administered hPXR activator was Phytomenadione followed by 

Fentanyl and then Amlodipine (administered to 89.17%, 34.17% and 20% of 

transplant recipients respectively). Table 33 summarises the administered doses for 

the commonly received hPXR activators during the study period. 

 

Table 33 Administered doses of common hPXR activators during the first 7 days 

post-transplantation 

hPXR activator * Number of patients 
receiving medication 
(percentage of total) 

Median 
number of 
doses per 

patient 

Minimum 
dose 

Maximum 
dose 

Amlodipine 
5-10 mg PO 

48 (20) 3 1 8 

Ciprofloxacin 
400-500 mg PO 

18 (7.5) 4 1 14 

Fentanyl infusion 
20-50 ml IV 

82 (34.17) 1 1 150 

Haloperidol 
0.5-5 mg PO/SC 

23 (9.58) 1 1 10 

Levothyroxine 
50-300 mcg PO 

13 (5.42) 7 2 7 

Loperamide 
2-4 mg PO 

6 (2.5) 1.5 1 3 

Phytomenadione 
10 mg IV 

214 (89.17) 3 1 12 

Rifaximin  
400-550 mg PO 

25 (10.42) 3 1 19 

*Excludes drugs received by less than 5 recipients 

 

Predicted hPXR activation status of recipients on day 7 post-transplantation 

(PPAV7) 

The average PPAV7 in this study was 32.5±4.9 and ranged from 0 to 582.1. The 

median PPAV7 was 8. Given the wide variation in PPAV7, median PPAV7 was used 

as a cut-off value dividing the study population into low and high hPXR activation 

groups (n=119 and 121 respectively). 
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A comparison of recipient, donor and perioperative transplant characteristics 

between the two groups is outlined in Table 34. This demonstrates a statistically 

significant difference in recipient gender distribution between the two groups with a 

relatively higher proportion of female recipients in the high hPXR group. In addition, 

recipient height, weight and BMI were significantly greater in this group. With the 

exception of these variables, there were no significant differences between the two 

groups in other recipient, donor or transplant characteristics. 

It is worth noting that no significant difference was noted in average PPAV7 between 

male and female recipient gender (35.9±7.3 versus 27.3±5.6 respectively; P=0.39). In 

addition, no significant correlation was observed between PPAV7 and recipient 

anthropometric measurements (Appendix 4). 

 

Table 34 Comparison of recipient, donor and transplant variables between low and 

high hPXR activation groups 

Variable (units) Low hPXR 
group* 

High hPXR 
group* 

P value 

 (percentage or mean±SEM)  

Recipient features 

Gender Female 31.93 47.93 0.013 

 Male 68.07 52.07  

Age (years)  53.32±1.11 53.08±1.29 0.88 

MELD score 17.47±0.79 19.11±0.98 0.19 

Height (cm)  168.31±0.86 170.98±0.83 0.026 

Weight (kg)  75.69±1.5 82.51±1.69 0.003 

BMI  26.6±0.44 28.03±0.51 0.03 

Primary liver pathology  0.38 

Re-transplant  11.76 13.22 0.85 

Donor features 
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Type of donor DBD 89.92 87.6 0.68 

 DCD 10.08 12.4  

Gender Female 48.74 55.37 0.37 

 Male 51.26 44.63  

Age (years)  49.74±1.39 50.77±1.29 0.59 

Height (cm)  169.57±0.84 170.88±0.9 0.29 

Weight (kg)  75.21±1.32 76.33±1.37 0.56 

BMI  26.12±0.4 26.12±0.41 0.99 

Cause of death ICH/Trauma 75.63 80.17 0.4 

 HBI/CVA 21.85 15.7  

 Other 2.52 4.13  

Race White 97.48 97.52 1 

 Other 2.52 2.48  

Perioperative features 

Super-urgent transplant 13.4 13.2 1 

CMV mismatch 22.69 22.31 1 

Gender mismatch 38.66 35.54 0.69 

Split graft  5.88 4.13 0.57 

Primary surgeon   0.1 

CIT (minutes)  592.07±13.5 579.33±13.1 0.5 

VV bypass (minutes) 141.88±4.76 131.35±5.1 0.13 

WIT (minutes)  54.36±1.79 54.26±1.88 0.97 

Biliary anastomosis End-to-end 73.95 76.86 0.73 

 Roux-en-y 24.37 20.66  

 Delayed 1.68 2.48  

Multiple arterial anastomoses 17.65 10.74 0.14 
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IO blood transfusion (units) 6.89±0.58 6.29±0.62 0.48 

PO blood transfusion (units) 1.45±0.19 1.93±0.55 0.42 

ITU stay  8.45±0.98 6.14±0.72 0.06 

Hospital stay 34.74±2.2 31.13±2.01 0.23 

 

 

6.3.4. Early allograft dysfunction (EAD) and hPXR activation 

EAD was identified in 48 recipients (20%) in this study. This was triggered by high 

serum ALT levels in over half the cases (54.1%) and by high serum bilirubin in 

slightly less than half the cases (47.9%). EAD was less commonly triggered by high 

PT levels (27% of EAD cases). EAD was triggered by more than one factor in 27% of 

EAD cases. 

In order to validate the definition of EAD, graft and patient survival were analysed 

using EAD as the grouping factor. This demonstrated a significant difference in 

death-censored graft survival between recipients that showed EAD versus those that 

did not (1- and 5-year survival: 80.9±5.7% and 77±6.6% versus 95±1.6% and 

90.4±2.8% respectively; Log Rank P=0.002) (Figure 6.2). However, no significance 

difference in patient survival was noted between the EAD and non-EAD groups (1- 

and 5-year survival: 94.1±1.7% and 77.7±4.2% versus 91.5±4.1% and 87.4±5.6% 

respectively; Log Rank P=0.48) (Figure 6.3). 

The association between hPXR activation and early graft function was subsequently 

explored. The risk of EAD was found to be comparable between the low and high 

hPXR groups (18.5% and 21.5% respectively; P=0.629) (Figure 6.4). In addition, the 

average PPAV7 was 29.3±8.5 in the EAD cohort versus 33.3±5.8 in the cohort that 

did not experience EAD (P=0.748) (Figure 6.5). 
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Figure 6.2 Kaplan-Meier curve comparing graft survival (death-censored) between 

EAD and non-EAD groups 

 

 

Figure 6.3 Kaplan-Meier curve comparing patient survival between EAD and non-

EAD groups 
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Figure 6.4 Comparison of EAD risk between low and high hPXR activation groups 

 

 

Figure 6.5 Comparison of average PPAV7 between EAD and non-EAD cohorts 
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6.3.5. Post-transplant complications and hPXR activation 

 

The incidence of post-OLT complications within the study population 

The incidence of vascular, biliary and infective complications was analysed amongst 

the overall study population in addition to the incidence of re-laparotomy, rejection 

and disease recurrence. The risk of graft failure and death is also briefly outlined in 

this section but is examined in more detail in 6.3.6. 

Postoperative bleeding occurred in 15.8% of the study population and was the most 

common reason for re-laparotomy (48.7% of all cases returning to theatre). HAT and 

NABS occurred in 5.8% and 5.4% of the overall cohort respectively. Severe sepsis 

occurred in 12.9% of cases.  

TCMR occurred in 38.8% of cases post-OLT. Of these, 27.9% experienced severe 

TCMR and 17.2% experienced multiple episodes of rejection. AMR occurred in 4.6% 

of cases, all of which were associated with TCMR. The primary liver disease recurred 

in 9.6% of the study population. This was related to recurrent hepatitis C virus 

infection in 82.6% of cases. 

The incidence of graft failure in the study population was 9.6%. Graft failure occurred 

within 90 days of transplantation in 3.3% of cases (34.8% of graft failure). The 90-day 

and overall mortality rate post-OLT was 2.5% and 14.6% in the study population. 

This was most commonly due to sepsis and multi-organ failure (83.3% of 90-day 

mortalities and 34.3% of overall deaths). 

A summary of post-OLT complications is outlined in Table 35. The overall 

complication rate (including rejection) was 79.6%. 

 

Table 35 Incidence of post-OLT complications in the study population 

Complication Frequency (percentage of total) 

Vascular complications 82 (34.2) 

 Bleeding 38 (15.8) 

 Vascular stenosis 25 (10.4) 

 Venous thrombosis 22 (9.2) 
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 HAT 14 (5.8) 

Biliary complications 61 (25.4) 

 NABS 13 (5.4) 

 Biliary leak 25 (10.4) 

 Anastomotic stricture 36 (15) 

Infective complications 103 (42.9) 

 Sepsis 31 (12.9) 

Return to theatre 41 (17.1) 

Reason Bile leak 5 (2.1) 

 Bleeding 20 (8.3) 

 Perforated viscus 5 (2.1) 

 Planned relook 7 (2.9) 

 Other 4 (1.7) 

T cell-mediated rejection 93 (38.8) 

Acute antibody-mediated rejection 11 (4.6) 

Chronic rejection 6 (2.5) 

Overall complications 191 (79.6) 

 

 

Associations between post-OLT complications and hPXR activation 

The average PPAV7 was compared between recipients experiencing post-OLT 

complications and those that did not. The results are summarised in Table 36. 

The data highlights significantly lower average PPAV7 in recipients that developed 

anastomotic biliary strictures (17.66±5.49 versus 35.12±5.7 in recipients without 

strictures; P=0.03) and recipients that had experienced sepsis (16.39±7.14 versus 

34.89±5.54 in sepsis-free recipients; P=0.04). Interestingly, the average PPAV7 in 

patients that developed non-anastomotic biliary strictures (NABS) was higher than in 

recipients without this complication. However, this difference did not reach statistical 

significance (43.1±20.27 versus 31.89±5.09 respectively; P=0.61).  
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There was no significant difference in average PPAV7 between recipients 

experiencing TCMR and TCMR-free recipients (38.1±9.13 versus 28.96±5.61 

respectively; P=0.37). In addition, average PPAV7 was comparable between patients 

experiencing single and multiple episodes of TCMR and between patients 

experiencing mild, moderate and severe episodes of TCMR (data not shown). Table 

36 also shows lower average PPAV7 in patients experiencing AMR and those 

experiencing chronic rejection. However, these results did not reach statistical 

significance. 

 

Table 36 A comparison of average PPAV7 between recipients with and without 

various post-OLT complications 

Complication Yes* No* P value 

Vascular complications 31.08±8.4 33.24±6.1 0.84 

 Bleeding 49.78±17.23 29.25±4.87 0.26 

 Vascular stenosis 38.06±22.93 31.86±4.84 0.7 

 Venous thrombosis 37.76±26.1 31.97±4.77 0.74 

 HAT 27.71±15.72 32.8±5.15 0.81 

Biliary complications 29.56±6.94 33.5±6.18 0.73 

 NABS 43.1±20.27 31.89±5.09 0.61 

 Biliary leak 33.52±11.46 32.38±5.34 0.94 

 Anastomotic stricture 17.66±5.49 35.12±5.7 0.03 

Infective complications 24.71±6.7 38.36±6.99 0.16 

 Sepsis 16.39±7.14 34.89±5.54 0.04 

Return to theatre 52.78±18.16 28.32±4.59 0.2 

T cell-mediated rejection 38.1±9.13 28.96±5.61 0.37 

Acute antibody-mediated rejection 19.05±6.08 33.15±5.15 0.55 

Chronic rejection 5.75±2.66 33.19±5.05 0.39 

Disease recurrence 66.58±28.14 28.89±4.53 0.2 

Overall complications 35.49±5.98 20.86±6.05 0.09 

*Results expressed as average PPAV7±SEM  
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6.3.6. The impact of hPXR activation on survival following OLT 

 

Patient, graft and rejection-free survival analysis 

A comparison was made between low and high hPXR activation groups to 

investigate potential differences in patient, graft and rejection-free survival. The 

resultant Kaplan-Meier survival curves are shown in Figure 6.6, Figure 6.7 and 

Figure 6.8 respectively. 

 

 

Figure 6.6 Kaplan-Meier curve comparing patient survival between low and high 

hPXR activation groups 
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Figure 6.7 Kaplan-Meier curve comparing graft survival (death-censored) between 

low and high hPXR activation groups 

 

 

Figure 6.8 Kaplan-Meier curve comparing rejection-free survival between low and 

high hPXR activation groups 
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The high hPXR activation group experienced a significant improvement in patient 

survival compared to the low hPXR group (1- and 5-year survival: 97.4±1.5% and 

88.7±3.8% versus 89.9±2.8% and 70.7±5.8% respectively; Log Rank P=0.023). No 

significant difference in graft or rejection-free survival was evident between the two 

groups (Log rank P values 0.758 and 0.964 respectively). 

 

Factors that influence patient, graft and rejection-free survival 

Univariate and multivariate Cox regression analyses were performed in order to 

examine the effect of various factors (including hPXR activation) on patient, graft and 

rejection-free survival. 

 

Patient survival 

Results from univariate Cox regression for patient survival are summarised in Table 

37. Recipient age, preoperative MELD score, primary liver disease recurrence, graft 

failure and hPXR activation group were identified as significant independent variables 

associated with patient survival. These variables were used in the multivariate 

regression model in addition to overall complications which, as an encompassing 

variable, was also found to be significantly associated with patient survival. Overall 

complications included complications such as HAT, sepsis and non-NABS biliary 

complications which were identified as significant complications independently 

associated with patient survival but not entered separately into the multivariate 

regression model to avoid the negative impact of an unacceptably low EPV ratio on 

model validity. The multivariate Cox regression for patient survival is summarised in 

Table 38. Based on this model, only preoperative MELD score, graft failure and 

hPXR activation group retained statistical significance as independent prognostic 

factors for patient survival.  

Multicolinearity diagnostics showed no evidence of linear dependency between the 

independent variables selected in the multivariate regression model. 
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Table 37 Univariate Cox regression for patient survival 

Independent variable Hazard 
ratio 

95% CI P value 

Recipient factors    

Male gender 1.56 [0.75, 3.25] 0.23 

Age 1.04 [1.01, 1.08] 0.02 

MELD 0.94 [0.89, 0.99] 0.01 

Height 0.997 [0.96, 1.03] 0.87 

Weight 0.999 [0.98, 1.02] 0.94 

BMI 1.01 [0.94, 1.07] 0.87 

Primary liver pathology   

 ALD (ref)   0.14 

 Autoimmune liver disease 1.005 [0.32, 3.17] 0.99 

 Liver tumours 2.44 [0.96, 6.19] 0.06 

 Other causes 1.13 [0.44, 2.9] 0.81 

Redo transplant 1.8 [0.74, 4.34] 0.19 

Donor factors    

DCD 1.56 [0.6, 4.05] 0.36 

Male gender 1.5 [0.77, 2.92] 0.24 

Age 0.98 [0.96, 1.002] 0.08 

Height 1.03 [0.997, 1.07] 0.07 

Weight 1.02 [0.995, 1.04] 0.12 

BMI 1.02 [0.95, 1.09] 0.66 

Cause of death    

 ICH/Trauma (ref)  0.62 

 HBI/CVA 0.99 [0.41, 2.4] 0.99 

 Other 2.04 [0.48, 8.57] 0.33 
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Non-caucasian ethnicity 1.44 [0.2, 10.67] 0.72 

Perioperative factors    

Super-urgent transplant 0.19 [0.03, 1.39] 0.1 

CMV mismatch 0.96 [0.65, 1.42] 0.83 

Split graft 1.43 [0.85, 2.41] 0.18 

CIT 0.998 [0.99, 1.001] 0.16 

VV bypass 0.99 [0.99, 1.002] 0.15 

WIT 0.99 [0.97, 1.01] 0.26 

Biliary anastomosis    

 End-to-end (ref)  0.63 

 Roux-en-y 1.44 [0.69, 3.01] 0.34 

 Delayed 0.00001  0.98 

Multiple arterial anastomoses 0.95 [0.59, 1.53] 0.84 

IO blood transfusion 0.98 [0.93, 1.04] 0.57 

PO blood transfusion 0.87 [0.71, 1.07] 0.18 

ITU stay 0.97 [0.92, 1.03] 0.29 

Hospital stay 0.998 [0.98, 1.01] 0.84 

Complications    

Vascular complications 1.77 [0.91, 3.44] 0.09 

 Bleeding 0.9 [0.35, 2.33] 0.83 

 Vascular stenosis 2.19 [0.91, 5.29] 0.08 

 Venous thrombosis 1.48 [0.57, 3.8] 0.42 

 HAT 4.68 [1.8, 12.16] 0.002 

Biliary complications 1.38 [0.68, 2.82] 0.38 

 NABS 2.64 [0.93, 7.5] 0.07 

 Biliary leak 2.03 [0.84, 4.89] 0.11 

 Anastomotic stricture 1.64 [0.74, 3.6] 0.22 

Infective complications 2.94 [1.44, 6] 0.003 
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 Sepsis 5.42 [2.72, 10.79] <0.001 

Return to theatre 0.52 [0.16, 1.72] 0.29 

T cell-mediated rejection 0.56 [0.26, 1.19] 0.13 

 Time to TCMR 1.001 [0.997, 1.01] 0.52 

 Number of TCMR 0.61 [0.31, 1.19] 0.15 

 Degree of TCMR 0.79 [0.26, 2.38] 0.68 

Acute antibody-mediated 
rejection 

0.85 [0.12, 6.22] 0.87 

Chronic rejection 1.03 [0.14, 7.52] 0.98 

Overall complications 4.53 [1.09, 18.91] 0.04 

Disease recurrence 2.37 [1.08, 5.23] 0.03 

Graft failure 5.12 [2.37, 11.06] <0.001 

EAD 1.04 [0.45, 2.38] 0.93 

High hPXR group 0.45 [0.22, 0.91] 0.03 

 

 

Table 38 Multivariate Cox regression for patient survival 

Independent variable Hazard 
ratio 

95% CI P value 

Recipient age 1.03 [0.995, 1.07] 0.09 

MELD score 0.94 [0.89, 0.99] 0.01 

Overall complications 4.05 [0.95, 17.18] 0.06 

Disease recurrence 1.56 [0.69, 3.5] 0.29 

Graft failure 3.81 [1.7, 8.53] 0.001 

High hPXR group 0.48 [0.23, 0.99] 0.048 
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Graft survival 

Results from univariate Cox regression for graft survival are summarised in Table 39. 

Autoimmune primary liver pathology, donor male gender, delayed biliary 

reconstruction, HAT, NABS, sepsis and EAD were identified as factors significantly 

associated with death-censored graft survival. In order to limit the number of 

variables carried forward to the multivariate regression model, donor male gender 

and EAD were excluded from further analysis. The former variable was excluded 

given the available evidence refuting its significance (Sarkar et al., 2015) while the 

latter was excluded because further validation of the prognostic value of EAD in graft 

survival was beyond the scope of this study. Multicolinearity diagnostics showed no 

evidence of linear dependency between the remaining independent variables 

selected in the multivariate regression model. The results of this model are 

summarised in Table 40. Only delayed biliary reconstruction and HAT retained 

statistical significance as independent prognostic factors for death-censored graft 

survival in the multivariate model. 

As predicted from the lack of association between EAD and hPXR activation 

described in 6.3.4 and from the non-significant Kaplan-Meier analysis for graft 

survival (Figure 6.7), hPXR activation groups did not demonstrate a significant 

association with graft survival on Cox regression analysis. 

 

Table 39 Univariate Cox regression for graft survival 

Independent variable Hazard 
ratio 

95% CI P value 

Recipient factors    

Male gender 0.97 [0.42, 2.25] 0.95 

Age 0.99 [0.96, 1.02] 0.62 

MELD 0.997 [0.95, 1.04] 0.91 

Height 1.001 [0.96, 1.05] 0.95 

Weight 1.001 [0.98, 1.02] 0.9 
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BMI 1.01 [0.93, 1.09] 0.87 

Primary liver pathology   

 ALD (ref)   0.22 

 Autoimmune liver disease 9.36 [1.15, 76.15] 0.04 

 Liver tumours 7.34 [0.86, 62.86] 0.07 

 Other causes 7.4 [0.95, 57.82] 0.06 

Redo transplant 1.16 [0.34, 3.9] 0.81 

Donor factors    

DCD 2.53 [0.93, 6.83] 0.07 

Male gender 2.68 [1.1, 6.52] 0.03 

Age 1.02 [0.99, 1.06] 0.13 

Height 1.01 [0.96, 1.05] 0.81 

Weight 1.01 [0.98, 1.04] 0.59 

BMI 1.01 [0.92, 1.11] 0.81 

Cause of death    

 ICH/Trauma (ref)  0.45 

 HBI/CVA 0.39 [0.09, 1.67] 0.2 

 Other 0.0001  0.98 

Non-caucasian ethnicity 1.91 [0.26, 14.24] 0.53 

Perioperative factors    

Super-urgent transplant 0.29 [0.04, 2.19] 0.23 

CMV mismatch 1.15 [0.67, 1.98] 0.61 

Split graft 0.83 [0.35, 1.95] 0.67 

CIT 0.89 [0.33, 2.44] 0.83 

VV bypass 1.003 [0.999, 1.01] 0.06 

WIT 1.003 [0.995, 1.01] 0.47 

Biliary anastomosis    
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 End-to-end (ref)  0.09 

 Roux-en-y 1.41 [0.55, 3.63] 0.48 

 Delayed 5.13 [1.17, 22.55] 0.03 

Multiple arterial anastomoses 1.1 [0.64, 1.89] 0.72 

IO blood transfusion 1.02 [0.96, 1.07] 0.56 

PO blood transfusion 0.86 [0.64, 1.14] 0.29 

ITU stay 1.02 [0.99, 1.05] 0.27 

Hospital stay 1.01 [0.997, 1.02] 0.13 

Complications    

Vascular complications 10.33 [3.51, 30.37] <0.0001

 Bleeding 1.86 [0.73, 4.73] 0.19 

 Vascular stenosis 1.97 [0.67, 5.81] 0.22 

 Venous thrombosis 1.38 [0.41, 4.63] 0.61 

 HAT 30.14 [12.61, 72.08] <0.0001

Biliary complications 1.91 [0.83, 4.41] 0.13 

 NABS 4.21 [1.43, 12.42] 0.01 

 Biliary leak 0.86 [0.2, 3.68] 0.84 

 Anastomotic stricture 1.99 [0.78, 5.04] 0.15 

Infective complications 1.69 [0.74, 3.84] 0.21 

 Sepsis 3.48 [1.43, 8.49] 0.01 

Return to theatre 1.05 [0.36, 3.08] 0.94 

T cell-mediated rejection 1.01 [0.44, 2.32] 0.99 

 Time to TCMR 0.99 [0.95, 1.03] 0.53 

 Number of TCMR 0.95 [0.49, 1.86] 0.89 

 Degree of TCMR 1.58 [0.51, 4.87] 0.43 

Acute antibody-mediated 
rejection 

2.25 [0.53, 9.63] 0.27 

Chronic rejection 1.67 [0.23, 12.43] 0.61 

Overall complications 29.18 [0.4, 2106.39] 0.12 
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Disease recurrence 2.3 [0.85, 6.21] 0.1 

EAD 3.79 [1.67, 8.6] 0.001 

High hPXR group 0.88 [0.39, 1.99] 0.76 

 

 

Table 40 Multivariate Cox regression for graft survival 

Independent variable Hazard 
ratio 

95% CI P value 

Autoimmune liver disease 0.93 [0.32, 2.69] 0.89 

Delayed biliary reconstruction 7.8 [1.7, 35.85] 0.01 

HAT 25.99 [10.17, 66.44] <0.0001 

NABS 1.92 [0.52, 7.04] 0.33 

Sepsis 2.3 [0.89, 5.96] 0.09 

 

 

Rejection-free survival 

Results from univariate Cox regression for rejection-free survival are summarised in 

Table 41. Recipient gender, recipient age, alcoholic liver disease, autoimmune liver 

disease, super-urgent transplant, CIT, venous thrombosis and NABS were identified 

as independent variables associated with TCMR-free survival. Given the high 

number of event in the dataset, all the above independent variables were included in 

the multivariate model with minimal risk to the model validity. As observed in the Cox 

regression models described earlier, multicolinearity diagnostics showed no evidence 

of linear dependency between the independent variables selected in the multivariate 

regression model for rejection-free survival. The results of the multivariate model are 

summarised in Table 42. Only recipient age, NABS and venous thrombosis retained 

a significant independent association with rejection-free survival in this model. 

Interestingly, both recipient age and venous thrombosis appear to confer a protective 

effect against TCMR (HR [95% CI]: 0.98 [0.96, 0.99] and 0.25 [0.08, 0.8] 
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respectively; P<0.05), in contrast to NABS which was associated with an increased 

rejection risk (HR [95% CI]: 2.2 [1.06, 4.57]; P=0.03). 

 

Table 41 Univariate Cox regression for rejection-free survival 

Independent variable Hazard 
ratio 

95% CI P value 

Recipient factors    

Male gender 0.5 [0.33, 0.76] 0.001 

Age 0.98 [0.97, 0.99] 0.002 

MELD 1.02 [0.995, 1.04] 0.13 

Height 0.99 [0.97, 1.02] 0.65 

Weight 0.99 [0.98, 1.001] 0.08 

BMI 0.96 [0.93, 1.01] 0.09 

Primary liver pathology   

 ALD (ref)   0.003 

 Autoimmune liver disease 2.59 [1.42, 4.75] 0.002 

 Liver tumours 0.89 [0.42, 1.9] 0.76 

 Other causes 1.68 [0.95, 2.99] 0.08 

Redo transplant 1.8 [0.74, 4.34] 0.19 

Donor factors    

DCD 1.52 [0.86, 2.68] 0.15 

Male gender 0.82 [0.55, 1.24] 0.35 

Age 1.01 [0.998, 1.03] 0.1 

Height 0.996 [0.98, 1.02] 0.72 

Weight 0.996 [0.98, 1.01] 0.55 

BMI 0.99 [0.94, 1.04] 0.63 
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Cause of death    

 ICH/Trauma (ref)  0.99 

 HBI/CVA 1.03 [0.61, 1.72] 0.92 

 Other 0.93 [0.29, 2.95] 0.9 

Non-caucasian ethnicity 0.05 [0.0002, 8.12] 0.25 

Perioperative factors    

Super-urgent transplant 1.74 [1.04, 2.91] 0.04 

CMV mismatch 1.27 [0.96, 1.67] 0.09 

Split graft 0.73 [0.41, 1.29] 0.28 

CIT 0.998 [0.997, 0.999] 0.03 

VV bypass 1.001 [0.997, 1.005] 0.58 

WIT 0.995 [0.98, 1.01] 0.38 

Biliary anastomosis    

 End-to-end (ref)  0.4 

 Roux-en-y 0.69 [0.4, 1.19] 0.19 

 Delayed 1.11 [0.27, 4.54] 0.88 

Multiple arterial anastomoses 1.05 [0.8, 1.39] 0.72 

IO blood transfusion 0.98 [0.94, 1.01] 0.24 

PO blood transfusion 0.88 [0.76, 1.004] 0.06 

ITU stay 0.99 [0.96, 1.01] 0.25 

Hospital stay 1.004 [0.996, 1.01] 0.36 

Complications    

Vascular complications 0.66 [0.42, 1.05] 0.08 

 Bleeding 0.63 [0.34, 1.19] 0.16 

 Vascular stenosis 0.92 [0.46, 1.83] 0.82 

 Venous thrombosis 0.28 [0.09, 0.88] 0.03 

 HAT 0.57 [0.18, 1.81] 0.34 

Biliary complications 1.09 [0.69, 1.72] 0.73 
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 NABS 2.4 [1.21, 4.78] 0.01 

 Biliary leak 0.64 [0.3, 1.39] 0.26 

 Anastomotic stricture 1.32 [0.78, 2.24] 0.3 

Infective complications 1.37 [0.91, 2.06] 0.13 

 Sepsis 0.88 [0.47, 1.65] 0.69 

Return to theatre 0.997 [0.58, 1.71] 0.99 

Disease recurrence 1.37 [0.73, 2.58] 0.32 

Graft failure 1.25 [0.63, 2.48] 0.53 

EAD 0.94 [0.56, 1.58] 0.82 

High hPXR group 0.99 [0.66, 1.49] 0.96 

 

 

Table 42 Multivariate Cox regression for rejection-free survival 

Independent variable Hazard 
ratio 

95% CI P 
value 

Recipient gender 1.23 [0.97, 1.57] 0.08 

Recipient age 0.98 [0.96, 0.99] 0.003 

Alcoholic liver disease 0.9 [0.5, 1.64] 0.74 

Autoimmune liver disease 1.63 [0.94, 2.81] 0.08 

Super-urgent transplantation 1.14 [0.56, 2.29] 0.72 

CIT 0.999 [0.998, 1.0004] 0.17 

Venous thrombosis 0.25 [0.08, 0.8] 0.02 

NABS 2.2 [1.06, 4.57] 0.03 

 

 

6.3.7. Subgroup analyses 
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In order to identify any confounding effect introduced by the inclusion of recipients of 

DCD organs, split liver transplants, super-urgent transplants and recipients of 

previous transplants, subgroup analyses of the main outcomes in this study were 

performed by excluding the abovementioned groups separately. 

 

The effect of hPXR activation on EAD in the subgroups 

As demonstrated in the main group analysis, no differences in average PPAV7 was 

found between recipients with and without EAD when DCD, split organ, super-urgent 

and redo transplant recipients were excluded separately from the analysis (Table 43).  

 

Table 43 Subgroup analyses comparing average PPAV7 between recipients with and 

without EAD 

Subgroup analysis Yes* No* P value 

DCD transplants excluded 30.8±9.7 33.2±6.3 0.86 

Split liver transplants excluded 29.7±8.8 34.4±6.1 0.72 

Super-urgent transplants excluded 60±17.2 28.9±5.4 0.09 

Redo transplants excluded 34.8±10.5 25.9±4.7 0.43 

*Results expressed as average PPAV7±SEM 

 

Post-OLT complications 

Average PPAV7 remained significantly lower in recipients demonstrating anastomotic 

biliary strictures and those experiencing sepsis when split liver transplant recipients 

were excluded. Average PPAV7 values were also significantly lower in the presence 

of anastomotic biliary strictures when super-urgent recipients were excluded. 

However, differences In PPAV7 between recipients that experienced sepsis did not 

reach statistical significance in this subgroup. When DCD or redo transplant 

recipients were excluded from the analysis, no significant reduction in average 
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PPAV7 was identified in the presence of anastomotic biliary strictures or sepsis 

(Table 44 and Table 45) 

 

Table 44 Subgroup analyses comparing average PPAV7 between recipients with and 

without anastomotic biliary strictures 

Subgroup analysis Yes* No* P value

DCD transplants excluded 19.3±6.3 35.1±6.2 0.078 

Split liver transplants excluded 18.3±5.8 36.1±6 0.035 

Super-urgent transplants excluded 19.4±6.1 37.8±6.5 0.04 

Redo transplants excluded 15.9±5.7 29.5±5 0.075 

*Results expressed as average PPAV7±SEM 

 

Table 45 Subgroup analyses comparing average PPAV7 between recipients with and 

without sepsis 

Subgroup analysis Yes* No* P value

DCD transplants excluded 17.3±7.9 35.1±6.1 0.079 

Split liver transplants excluded 16.4±7.1 36.1±5.9 0.036 

Super-urgent transplants excluded 18.2±8.5 37.4±6.2 0.074 

Redo transplants excluded 18.4±9.6 28.6±4.7 0.46 

*Results expressed as average PPAV7±SEM 

 

Patient survival 

Patient survival remained significantly improved in the high hPXR group even when 

DCD, split or super-urgent liver transplant recipients were excluded from the survival 

analysis. However, when redo transplant recipients were excluded, statistical 

significance was lost (Table 46). 
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Table 46 Subgroup analyses of patient survival (only Log Rank P values reported) 

Subgroup analysis Log Rank P value 

DCD transplants excluded 0.024 

Split liver transplants excluded 0.013 

Super-urgent transplants excluded 0.037 

Redo transplants excluded 0.14 
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6.4. Discussion 

This study was performed in order to explore the findings of the animal PXR study 

(Chapter 5) and to assess the clinical applicability and benefit of PXR activation in 

liver transplantation. The hypothesis was that hPXR activation in the early post-

transplantation period would lead to improved graft survival and a reduction in 

clinically-relevant complications associated with ischaemia reperfusion injury. 

Accurate measurement of pharmacological data was central to this study. Therefore 

the inclusion period was limited by the timepoint at which the electronic medical 

record system (eRecord) became fully operational within the trust. The hPXR-

activating efficacy and potency of drugs administered within the first week of 

transplantation was assessed using a comprehensive drug-hPXR activation dataset 

obtained from an external source (Shukla et al., 2011). This ensured impartiality, 

consistency and objectivity in hPXR activation assessment particularly during 

occasions where results from this dataset contradicted sporadic locally-produced 

PXR-profiling data.  

Data on drug administration was limited to the first 7 days following transplantation in 

this study. This timeframe was chosen to ensure consistent drug data collection 

during the inpatient period (bearing in mind that some patients were discharged as 

early as 9 days post-transplantation (Table 31)) and also to coincide with EAD 

assessment on day 7 post-transplantation.  

EAD was included as a measured outcome in this study due to its validated 

association with graft failure (Olthoff et al., 2010). This association was further 

validated in our local cohort of liver transplant recipients where the predictive value of 

EAD in graft survival extended well beyond the originally described 6-month survival 

(Figure 6.2). However, it is worth noting that, in contrast to the original EAD report, no 

significant association was found between EAD and recipient mortality (Figure 6.3). 

Graft failure and patient death were the main clinically-relevant outcomes measured 

in this study. Recipients that experienced either of these events within the first week 

post-transplantation were excluded because 7-day drug data was not fully obtainable 

in these patients. Other clinically-relevant outcomes measured in this study included 

various post-OLT complications and disease recurrence. 
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Survival analyses demonstrated a significant improvement in patient survival in 

patients estimated to have relatively higher hPXR activation status on day 7 post-

transplantation (classified as high hPXR activation group). Subsequent univariate 

and multivariate Cox regression analysis confirmed the hPXR activation groups to be 

a significant predictor of patient survival. The lack of association between the hPXR 

activation groups and graft survival was in keeping with earlier negative results 

comparing average PPAV7 between recipients with and without EAD. However, the 

observed lack of improvement in graft survival with hPXR activation may be related to 

the definition of graft failure applied in this study. Recipients with failing grafts who 

are deemed ineligible for further transplantation and those that die prior to re-

transplantation are not included in this definition. It remains unclear whether or not 

the inclusion of these subgroups of recipients would have affected the graft survival 

analysis. 

A key finding in this study was that average PPAV7 values were significantly lower in 

recipients demonstrating anastomotic biliary strictures and those experiencing sepsis 

post-transplantation compared to recipients that did not experience these 

complications. Given the previously obtained results from the animal model 

demonstrating anti-fibrotic effects due to PXR activation (Chapter 5), it would not be 

unreasonable to suggest a protective effect for hPXR activation against the 

development of anastomotic biliary strictures in clinical transplantation. The 

improvement in septic complications may be a direct result of reduced biliary 

obstruction and, consequently, biliary sepsis. However, further detailed analysis of 

the studied cohort will be required in order to explore this explanation. Surprisingly, 

average PPAV7 values showed no significant shifts when examined in the context of 

NABS. A protective effect of hPXR activation against this complication was 

anticipated given the potential implication of ischaemia-reperfusion injury in its 

development (Mourad et al., 2014). However, these results highlight the complexity 

and heterogeneity in the pathogenesis of these lesions and the pathological 

distinction from anastomotic biliary strictures (Ryu and Lee, 2011). 

It is worth noting that average PPAV7 values were found to be lower in recipients that 

experienced AMR and in those that developed chronic rejection although the 

difference were not statistically significant compared to recipients that did not develop 

these complications. It is possible that a larger sample size was required to uncover 

significant changes given the low incidence of these complications (4.6% and 2.5% 
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overall respectively). On the other hand, no significant association was demonstrated 

between hPXR activation and rejection-free survival defined by TCMR episodes, 

which excludes a hPXR effect on this type of graft rejection. 

The retrospective nature of this study is its main limitation. Recipient hPXR activation 

status was estimated in this study based on the type and amount of medications 

received within a pre-determined timeframe. A number of presumptions were made 

regarding drug action and patient response in order to reach a calculated estimation, 

and it is highly unlikely that any of these assumptions are accurate. However, 

inaccurate estimations of hPXR activation would have been consistent and randomly 

distributed between the study groups and, therefore, would not have significantly 

influenced the outcomes. A more accurate method for assessing hPXR activation 

would be based on tissue sample analysis. However, such method is associated with 

significant ethical and logistical constraints and was thus not pursued in this project. 

Potential bias may have been introduced to the results from the presence of a 

significantly higher proportion of female and obese recipients in the high hPXR 

group. However, average PPAV7 values were not found to be significantly different 

between male and female in the overall cohort. The increased average weight noted 

in the high hPXR group cannot simply be explained by gender difference alone since 

the average height was also significantly greater in this cohort. It is also worth noting 

that weight-normalisation in the calculation of PPAV7 would produce relatively lower 

values in more obese patients. Therefore, larger doses of PXR activators may have 

been administered to obese patients although no significant correlation was identified 

between recipient weight and PPAV7 (Appendix 4). Regardless of the explanation for 

the gender and anthropometric differences between the hPXR groups, neither 

recipient weight nor gender demonstrated any significant association with graft or 

recipient survival. In addition, no association was noted between recipient weight or 

gender and the incidence of anastomotic biliary strictures or sepsis (results not 

shown). 

The potential confounding effect of including DCD, split organ, super-urgent and redo 

transplant recipients in this study was also addressed. Redo transplantation 

recipients were found to have a significantly greater risk of sepsis (data not shown). 

Otherwise, none of these factors were significantly associated with post-OLT 

complications that were shown to be affected by hPXR activation. Nevertheless, the 
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effect of hPXR activation on post-OLT complications was lost when either DCD, 

super-urgent or redo transplant recipients were excluded in separate subgroup 

analyses. On the other hand, the effect of hPXR activation on patient survival 

remained significant even when DCD, split graft and super-urgent transplant 

recipients were separately excluded. Although redo transplantation may have 

contributed to patient death in view of the higher risk of sepsis in this group, redo 

transplantation was not a factor significantly associated with patient survival in the 

Cox regression model. Regardless of the questionable impact of redo transplantation 

on patient death, hPXR activation was identified as an independent significant 

prognostic factor in recipient survival.  

A remarkable finding in this study was that the apparent short-term exposure to 

medications that activate the hPXR was associated with a long-term survival benefit. 

Although this finding may suggest long-lasting effects of hPXR activation, it is equally 

plausible that the greater short-term exposure underlines a propensity to longer-term 

exposure to the same hPXR-activating medications. 

Interestingly, clinically-relevant hPXR activators identified in this study (including 

Amlodipine, Nifedipine and Verapamil) were previously shown to have beneficial 

effects in animal models of liver ischaemia reperfusion injury as demonstrated during 

the  literature review stage of this project (Chattopadhyay et al., 2010, Hardy et al., 

1995, Oliveira et al., 2001, Erdogan et al., 2001, Pronobesh et al., 2008). Although 

the beneficial effects in those studies were not attributed to PXR activation, this may 

have played a significant role. 

In conclusion, this study highlights the beneficial role for hPXR activation in reducing 

anastomotic biliary strictures, sepsis and ultimately improving patient survival 

following liver transplantation, in keeping with results from the earlier animal PXR 

model. However, further research would be required to address issues such as the 

accuracy of assessing PXR activation and the role of longer term PXR activation 
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Conclusion 

 

This project included a number of studies that were aimed at investigating the 

development and resolution of biliary pathology due to ischaemia reperfusion injury 

following liver transplantation. Although inconclusive, the initial in vitro assays 

suggested an active pro-inflammatory role for biliary epithelial cells when subjected 

to oxygen after a period of hypoxia and prompted a focus on ischaemia reperfusion 

injury in vivo. 

Following a comprehensive review of the literature, an in vivo model of rat hepatic 

ischaemia reperfusion injury was developed. This examined the progression of 

fibrosis following hepatic IRI in a sequential manner not previously explored, and 

demonstrated that hepatic IRI causes persistent inflammatory and fibrotic changes 

beyond the initial ischaemic insult, although radiological evidence for the presence of 

NABS could not be obtained in this study due to the lack of appropriate equipment. 

Seen as a promising therapeutic target in inflammatory liver conditions, activation of 

the pregnane x receptor was investigated in a separate study using the same rat 

model of hepatic IRI. Consistent with previous results from our group, this new study 

demonstrated a reduction in post-IRI cellular damage, inflammation and fibrosis 

following activation of the PXR, and suggested a positive effect in reducing biliary 

complications following liver transplantation. These findings were subsequently 

verified in a retrospective clinical study that highlighted a beneficial role for PXR 

activation in reducing anastomotic biliary strictures and ultimately improving patient 

survival following liver transplantation 

These studies provide further insight into the pathogenesis of biliary lesions following 

reperfusion injury and shed further light on the potential role for PXR activation in 

improving graft outcomes following liver transplantation. However, as with most 

research, new questions have emerged from these studies including the potential 

role of chemokines such as MCP-1 in post-reperfusion biliary pathology and the 

optimal duration of PXR activation following transplantation. This research also 

opens the door for innovative therapies such as the use of PXR activators in 

preservation and perfusion fluid prior to liver transplantation. Further research is 

required to address these and other outstanding questions.
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Appendices 

Appendix 1 

Antibodies used in experiments 

Antibody Species 
raised 
in 

Product 
code 

Dilution 
(IHC/ICC) 

Dilution 
(WB) 

Manufacturer

a-SMA Mouse Ab134813 1:250-500  Abcam 
Vimentin Rabbit ab92547 1:250-500  Abcam 
CK19 Rabbit Ab84632 1:250-500  Abcam 
Cyp3A1 Mouse ab22724  1:3000 Abcam 
b-Actin Mouse A5441  1:3000 Sigma 
Synaptophysin Mouse Ab8049 1:500  Abcam 
GFAP Rabbit Ab7260 1:500  Abcam 
CD163 Rabbit Ab213612 1:250  Abcam 
Elastin Rabbit Ab217356 1:500  Abcam 
OSTa Rabbit Ab103442 1:500  Abcam 
AE2 Rabbit Ab191189 1:500  Abcam 
CFTR Mouse Ab2784 1:500  Abcam 
ZO1 Rabbit Ab216880 1:500  Abcam 
MRP3 Mouse Ab3376 1:500  Abcam 
PDGFR Rabbit Ab62437 1:500  Abcam 
Anti-mouse 
HRP 

Goat P0447 1:200 1:3000 DAKO 

Anti-rabbit 
HRP 

Goat P0448 1:200 1:3000 DAKO 

Anti-rabbit 
TRITC 

Goat T6778 1:200  Sigma 

Anti-rabbit 
FITC 

Sheep F7512 1:200  Sigma 

Anti-mouse 
FITC 

Rabbit F9137 1:250  Sigma 
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Appendix 2 

The distribution of model adoption in rat hepatic IRI studies over time 

IRI model 

Period 

Pre 
1981 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

2006-
2010 

2011-
2015 

Total hepatic 
exclusion 

0 0 0 1 3 2 2 1 

Total inflow 
occlusion 

1 1 3 19 47 62 62 73 

Portosystemic 
shunt 

1 4 5 13 26 11 3 0 

Portosystemic 
anastomosis 

0 0 0 0 2 2 0 0 

Splenic 
transposition 

0 0 1 7 10 3 0 0 

92% inflow 
occlusion 
(excluding 
caudate) 

0 0 0 0 0 0 0 2 

92% inflow 
occlusion + 
caudate 
resection 

0 0 0 0 0 2 1 2 

20% inflow 
occlusion 
(right) 

0 0 0 2 11 10 3 1 

20% inflow 
occlusion + 
80% resection 

0 0 1 5 2 2 3 2 

70% inflow 
occlusion 
(Left/median) 

4 10 24 81 77 93 128 131 

70% inflow 
occlusion + 
30% resection 

0 0 4 20 21 12 11 10 

70% inflow 
occlusion + 
30% ligation 

0 1 3 4 7 12 9 3 

40% inflow 
occlusion 
(middle) 

0 0 0 0 1 0 0 0 

40% inflow 0 0 0 0 1 0 3 3 
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occlusion + 
60% resection 

50% inflow 
occlusion 
(right/right 
middle) 

0 0 0 0 0 0 0 1 

30% inflow 
occlusion 
(left) 

0 0 0 0 0 0 2 2 

Portal vein 
occlusion 

0 0 2 5 13 3 3 6 

Hepatic artery 
occlusion 

0 0 1 3 5 3 5 4 

 

 

The distribution of anaesthetic use in rat hepatic IRI studies over time 

IRI model 

Period 

Pre 
1981 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

2006-
2010 

2011-
2015 

Chloral 
hydrate 

0 0 0 4 6 4 4 16 

Ether/ 
pentobarbital 

0 2 0 4 5 1 1 0 

Ketamine/ 
xylazine 

0 0 2 1 8 19 42 60 

Ketamine/ 
barbiturate 

0 0 0 3 7 1 6 3 

Ether 4 7 11 41 56 38 23 8 

Enflurane 0 0 0 2 5 3 0 0 

Halothane 0 0 0 3 2 2 2 1 

Isoflurane 0 0 0 0 7 16 26 29 

Ketamine 0 1 3 8 11 14 11 7 

Pentobarbital 2 3 18 61 66 83 68 50 

Thiopental 0 0 0 0 2 2 5 6 

Urethane 0 0 0 2 11 14 15 11 

 

 

The distribution of ischaemia time in rat hepatic IRI studies over time 
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IRI 
model 

Period 

Pre 
1981 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

2006-
2010 

2011-
2015 

15 min 1 3 1 12 15 3 5 5 

30 min 0 3 12 29 53 49 54 60 

45 min 0 0 3 17 14 31 33 39 

60 min 1 6 15 54 69 80 92 100 

90 min 1 11 9 32 38 31 33 23 

120 min 1 4 11 15 14 15 8 2 

180 min 1 4 11 15 14 15 8 2 

 

 

The distribution of minimum reperfusion time in rat hepatic IRI studies over time 

IRI model 

Period 

Pre 
1981 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

2006-
2010 

2011-
2015 

0 min 2 1 6 23 42 34 30 7 

1-60 min 2 4 24 71 95 82 75 78 

61-120 
min 

1 4 6 13 28 49 39 37 

121-240 
min 

0 5 0 5 15 20 31 42 

241-360 
min 

0 0 1 4 17 22 25 40 

361-720 
min 

0 0 0 6 4 5 7 6 

721-1440 
min 

1 6 4 21 11 14 32 25 

 

 

The distribution of short-term maximum reperfusion time in rat hepatic IRI studies 
over time 

IRI model 

Period 

Pre 
1981 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

2006-
2010 

2011-
2015 
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01-60 min 0 1 14 47 46 36 39 45 

61-120 
min 

2 4 6 14 35 38 35 33 

121-240 
min 

0 6 1 6 15 12 31 32 

241-360 
min 

0 0 0 4 11 30 21 32 

361-720 
min 

0 0 0 7 6 10 13 6 

721-1440 
min 

2 8 11 32 36 40 55 56 

 

 

 

The distribution of long-term maximum reperfusion time in rat hepatic IRI studies over 
time 

IRI model 

Period 

Pre 
1981 

1981-
1985 

1986-
1990 

1991-
1995 

1996-
2000 

2001-
2005 

2006-
2010 

2011-
2015 

1441-
2880 min 

1 0 3 5 5 5 4 8 

3d 0 0 0 4 10 1 6 2 

4-7d 0 0 1 8 13 7 17 15 

8-14d 0 0 0 3 6 8 3 0 

15-30d 0 0 2 6 1 7 1 4 

>30d 0 0 0 0 0 0 1 2 
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Appendix 3 

Primers used in experiments (rat) 

Primer ID Primer sequence 5’-3’ Experiment 
18s rRNA US CCCGAAGCGTTTACTTTGAA 

DS CCCTCTTAATCATGGCCTCA 
IRI/PXR 

Ntcp US GCATCATGCCCCTCGCTGCT 
DS GGTGGTCATCACGATGCTGAGGT 

IRI 

Bsep US GCCAGGGGAAACGACGGCTC 
DS GGCCGTCCAGAGTCACCATGC 

IRI 

Abcb4 US AGCGAGAAACGGAACAGCACGG 
DS AGCTATGGCCATGAGGGTGCC 

IRI 

Tgfβ1 US CGAGCCCGAGGCGGACTACT 
DS ATAGATTGCGTTGTTGCGGTCCACC 

IRI/PXR 

Acta2 (α-SMA) US TGCCATGTATGTGGCTATTCA 
DS ACCAGTTGTACGTCCAGAAGC 

IRI/PXR 

Col1a1 US TGTGTTGCTGAAAGACTACCTCGT 
DS AGTTGCCCCGGTGACACACAA 

IRI/PXR 

Mmp2 US GCACCGTCGCCCATCATCAAGT 
DS TTGCGGGGAAAGAAGTTGTAGT 

IRI/PXR 

Vimentin US CAGGCCACCTCGTCCTTCGAAG 
DS TGTGCCGGAGCCACCGAACAT 

IRI/PXR 

Cyp3A1 US TGGCCCAGTGGGGATTATGGGG 
DS GGGACAGGTTTGCCTTTCTCTTGCC 

IRI/PXR 

Nr1i2 (PXR) US GCTCCTGCTGGACCCGTTGA 
DS GCCAGGGCGATCTGGGGAGAA 

IRI/PXR 

Nr1i3 (CAR) US     CTCTCCTGACAGGCCTGGGGT 
DS     CGAAGCTCAGCTAGCAGGCCC 

IRI/PXR 
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Appendix 4 

Correlation matrix of continuous recipient, donor and perioperative variables in 

clinical PXR study* 

PPAV
7 Age LOS MELD Ht Wt BMI 

D-
Age D-Ht 

D-
Wt 

D-
BMI CIT VV WIT IOB POB 

ITU 
stay 

PPAV
7 PC 1.000 -0.028 0.111 -0.059 0.065 0.043 0.012 0.003 0.016 0.108 0.098 0.076 0.074 -0.055 0.204 -0.030 0.173 

 Sig  0.663 0.085 0.372 0.324 0.503 0.853 0.968 0.801 0.098 0.131 0.238 0.255 0.394 0.002 0.668 0.007 

Age PC -0.028 1.000 -0.157 -0.267 -0.030 0.104 0.147 -0.126 0.046 -0.002 -0.035 -0.001 -0.195 0.042 -0.113 -0.184 -0.194 

Sig 0.663 0.015 0.000 0.644 0.107 0.024 0.051 0.482 0.981 0.589 0.993 0.002 0.516 0.081 0.008 0.003 

LOS PC 0.111 -0.157 1.000 0.220 0.025 0.032 0.022 -0.111 0.100 0.048 -0.009 0.080 0.184 0.097 0.294 0.171 0.695 

Sig 0.085 0.015 0.001 0.707 0.617 0.733 0.085 0.125 0.466 0.893 0.216 0.004 0.135 0.000 0.014 0.000 

MELD PC -0.059 -0.267 0.220 1.000 -0.114 -0.173 -0.176 0.146 -0.027 -0.062 -0.048 0.064 0.257 0.067 0.163 0.173 0.308 

Sig 0.372 0.000 0.001 0.086 0.008 0.008 0.025 0.682 0.351 0.469 0.329 0.000 0.308 0.013 0.014 0.000 

Ht PC 0.065 -0.030 0.025 -0.114 1.000 0.552 0.096 0.069 0.203 0.389 0.299 0.026 0.079 0.002 0.122 0.169 -0.038 

Sig 0.324 0.644 0.707 0.086   0.000 0.142 0.291 0.002 0.000 0.000 0.690 0.226 0.980 0.063 0.017 0.561 

        

Wt PC 0.043 0.104 0.032 -0.173 0.552 1.000 0.877 0.070 0.233 0.545 0.458 0.163 0.031 0.151 -0.048 0.071 -0.026 

Sig 0.503 0.107 0.617 0.008 0.000 0.000 0.280 0.000 0.000 0.000 0.011 0.636 0.019 0.464 0.313 0.683 

        

BMI PC 0.012 0.147 0.022 -0.176 0.096 0.877 1.000 0.061 0.138 0.408 0.371 0.162 -0.011 0.217 -0.113 -0.003 -0.010 

Sig 0.853 0.024 0.733 0.008 0.142 0.000   0.348 0.036 0.000 0.000 0.013 0.865 0.001 0.084 0.967 0.875 

D-Age PC 0.003 -0.126 -0.111 0.146 0.069 0.070 0.061 1.000 -0.238 0.039 0.190 0.151 0.039 0.055 -0.034 0.110 -0.021 

Sig 0.968 0.051 0.085 0.025 0.291 0.280 0.348 0.000 0.549 0.003 0.020 0.549 0.396 0.599 0.115 0.745 

D-Ht PC 0.016 0.046 0.100 -0.027 0.203 0.233 0.138 -0.238 1.000 0.488 -0.105 0.062 -0.005 -0.008 0.043 -0.076 0.010 

Sig 0.801 0.482 0.125 0.682 0.002 0.000 0.036 0.000   0.000 0.107 0.343 0.938 0.902 0.508 0.285 0.875 

        

D-Wt PC 0.108 -0.002 0.048 -0.062 0.389 0.545 0.408 0.039 0.488 1.000 0.811 0.081 0.003 0.023 0.008 0.023 -0.020 

Sig 0.098 0.981 0.466 0.351 0.000 0.000 0.000 0.549 0.000 0.000 0.214 0.958 0.725 0.902 0.743 0.763 

        

D-BMI PC 0.098 -0.035 -0.009 -0.048 0.299 0.458 0.371 0.190 -0.105 0.811 1.000 0.050 0.006 0.034 -0.021 0.079 -0.022 

Sig 0.131 0.589 0.893 0.469 0.000 0.000 0.000 0.003 0.107 0.000   0.445 0.928 0.607 0.744 0.265 0.734 

CIT PC 0.076 -0.001 0.080 0.064 0.026 0.163 0.162 0.151 0.062 0.081 0.050 1.000 0.194 0.089 0.129 0.061 -0.002 

Sig 0.238 0.993 0.216 0.329 0.690 0.011 0.013 0.020 0.343 0.214 0.445 0.003 0.171 0.046 0.384 0.977 

VV PC 0.074 -0.195 0.184 0.257 0.079 0.031 -0.011 0.039 -0.005 0.003 0.006 0.194 1.000 0.198 0.288 0.137 0.233 

Sig 0.255 0.002 0.004 0.000 0.226 0.636 0.865 0.549 0.938 0.958 0.928 0.003 0.002 0.000 0.051 0.000 

WIT PC -0.055 0.042 0.097 0.067 0.002 0.151 0.217 0.055 -0.008 0.023 0.034 0.089 0.198 1.000 0.201 0.029 0.153 

Sig 0.394 0.516 0.135 0.308 0.980 0.019 0.001 0.396 0.902 0.725 0.607 0.171 0.002 0.002 0.677 0.017 

IOB PC 0.204 -0.113 0.294 0.163 0.122 -0.048 -0.113 -0.034 0.043 0.008 -0.021 0.129 0.288 0.201 1.000 0.227 0.256 

Sig 0.002 0.081 0.000 0.013 0.063 0.464 0.084 0.599 0.508 0.902 0.744 0.046 0.000 0.002 0.001 0.000 

POB PC -0.030 -0.184 0.171 0.173 0.169 0.071 -0.003 0.110 -0.076 0.023 0.079 0.061 0.137 0.029 0.227 1.000 0.181 

Sig 0.668 0.008 0.014 0.014 0.017 0.313 0.967 0.115 0.285 0.743 0.265 0.384 0.051 0.677 0.001 0.009 

ITU 
stay PC 0.173 -0.194 0.695 0.308 -0.038 -0.026 -0.010 -0.021 0.010 -0.020 -0.022 -0.002 0.233 0.153 0.256 0.181 1.000 

Sig 0.007 0.003 0.000 0.000 0.561 0.683 0.875 0.745 0.875 0.763 0.734 0.977 0.000 0.017 0.000 0.009 
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*Abbreviations: LOS: Length of hospital stay; Ht: recipient height; Wt: recipient 

weight; D-Age: donor age; D-Ht: donor height; D-wt: donor weight; D-BMI: donor BMI; 

CIT: cold ischaemia time; VV: veno-venous bypass time; WIT: warm ischaemia time; 

IOB: intraoperative blood transfusion; POB: postoperative blood transfusion. 

 

PXR activation profile of drugs used in the post-transplantation period* 

Drug ac50 class Drug ac50 class

Abacavir 0 4 Hyoscine butylbromide 0 4 

Acetazolamide 0 4 Ibuprofen 0 4 

Acetylcysteine 0 4 Insulin soluble human 0 4 

Aciclovir 0 4 Ipratropium 0 4 

Adenosine 0 4 Irbesartan 0 4 

Alendronic acid 0 4 Isosorbide mononitrate 0 4 

Alginate sodium 0 0 Ketamine 19.95 2.4 

Allopurinol 0 4 Labetalol 0 4 

AMILORide 0 4 Lactulose 0 4 

Amiodarone 15.85 2.4 Lamivudine 0 4 

Amitriptyline 0 4 Lansoprazole 0 4 

AMLODipine 8.91 1.2 Latanoprost 0 4 

Amoxicillin 0 4 Leflunomide 0.79 4 

Amphotericin B 0 4 Lercanidipine 0 4 

Amphotericin B liposomal 0 4 Levothyroxine 25.12 2.1 

Anidulafungin 0 4 Linezolid 0 4 

Argipressin 0 4 Liothyronine 3.16 1.1 

Aripiprazole 0 4 Lisinopril 0 4 

Aspirin 0 4 Loperamide 10 2.1 

Atenolol 0 4 Lorazepam 10 2.4 

Atorvastatin 0.04 1.4 Lymecycline 0 4 

AzathioPRINE 0 4 Melatonin 0 4 

AzithroMYCIN 35.48 3 Meropenem 0 4 

Aztreonam 0 4 Mesalazine 0 4 

Beclometasone 15.85 2.1 Metformin 0 4 
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Benzydamine 5.62 2.4 Methadone 0 4 

Bimatoprost + Timolol 0 4 MethylPREDNISOLONE 0 4 

Bisacodyl 0 4 Metoclopramide 0 4 

Bisoprolol 0 4 Metoprolol 0 4 

Budesonide + Formoterol 8.91 1.3 Metronidazole 0 4 

Bumetanide 0 4 Metronidazole topical 0 4 

Calcium carbonate 0 4 Midazolam 0 4 

Calcium carbonate + 

Colecalciferol 

0 4 Midodrine 0 4 

Calcium carbonate + 

lactate + gluconate 

0 4 Mirtazapine 15.85 2.2 

Calcium chloride 0 4 Mometasone nasal 0 4 

Calcium glubionate + 

Calc. lactobionate 

0 4 Morphine 0 4 

Calcium gluconate 0 4 Mupirocin 0 4 

Carbocisteine 0 4 Mycophenolate mofetil 0 4 

Carbomer 980 0 4 Mycophenolic acid 0 4 

Carvedilol 0 4 Naloxone 0 4 

Caspofungin 0 4 Naltrexone 0 4 

Ceftazidime 0 4 Nateglinide 19.95 2.4 

Ceftriaxone 0 4 Nefopam 0 4 

Cefuroxime 0 4 Neomycin 0 4 

Cetirizine 0 4 Nicotine 0 4 

Chloramphenicol 0 4 Nifedipine 12.59 3 

Chloramphenicol 

ophthalmic 

0 4 Nitrazepam 0 4 

Chlordiazepoxide 0 4 Noradrenaline 0 4 

Chlorhexidine 0 4 Norfloxacin 0 4 

Chlorhexidine + 

Neomycin 

0 4 Nystatin 0 4 

Chlorphenamine 0 4 Olanzapine 0 4 

Ciprofloxacin 7.08 3 Omeprazole 0 4 

Cisatracurium 0 4 Ondansetron 0 4 

Citalopram 0 4 Orlistat 0 4 
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Clarithromycin 0 4 Oseltamivir 0 4 

Clindamycin 0 4 Oxethazaine 14.13 3 

Clonazepam 0 4 Oxycodone 0 4 

Clonidine 0 4 Paracetamol 0 4 

Co-amoxiclav 0 4 Perindopril 0 4 

Co-beneldopa 0 4 Phenoxymethylpenicillin 0 4 

Codeine 0 4 Phytomenadione 2.51 1.1 

Colecalciferol 0 4 Pioglitazone 0 4 

Colistin 0 4 Piperacillin + 

Tazobactam 

0 4 

Co-trimoxazole 0 4 Pravastatin 0 4 

Crotamiton 0 4 PrednisoLONE 0.18 1.4 

Cyclizine 0 4 Pregabalin 0 4 

Dalteparin 0 4 Prochlorperazine 0 4 

Dapsone 0 4 Propofol 0 4 

Daptomycin 0 4 Propranolol 3.98 2.4 

Dequalinium dichloride 0 4 Pyridoxine 0 4 

Desmopressin 0 4 Quetiapine 19.95 2.4 

Diazepam 0 4 Quinine 0 4 

Digoxin 1.58 5 Ramipril 0 4 

Diltiazem 0 4 Ranitidine 0 4 

Docusate 0 4 Remifentanil 0 4 

Domperidone 25.12 3 Ribavirin 0 4 

Dopexamine 0 4 Rifampicin 0.71 1.2 

Dosulepin 0 4 Rifaximin 10 2.3 

Doxazosin 0 4 Risperidone 0 4 

Doxycycline 0 4 Salbutamol 0 4 

Efavirenz 3.98 2.2 Salmeterol 3.98 2.2 

Emtricitabine + Tenofovir 0 4 Sertraline 28.18 2.1 

Entecavir 0 4 Sildenafil 0 4 

Eplerenone 0 4 Simvastatin 0.79 1.4 

Epoprostenol 0 4 Sitagliptin 0 4 

Ertapenem 0 4 Sodium valproate 0 4 

Erythromycin 0 4 Spironolactone 0 4 
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Erythromycin 

lactobionate 

0 4 Tacrolimus 0 4 

Escitalopram 0 4 Tamsulosin 0 4 

Fenofibrate micronised 0 4 Teicoplanin 0 4 

Fentanyl 14.13 2.1 Temazepam 0 4 

Finasteride 0 4 Tenofovir 0 4 

Flucloxacillin 0 4 Terlipressin 0 4 

Fluconazole 0 4 Thiamine 0 4 

Fludrocortisone 0 4 Thiopental 25.12 2.4 

Fluoxetine 3.16 2.4 Tibolone 0 4 

Fluticasone + Salmeterol 3.98 2.2 Tinzaparin 0 4 

Folic acid 0 4 Tiotropium 0 4 

Fosfomycin 0 4 Tolbutamide 0 4 

Furosemide 0 4 Tolterodine 5.62 1.3 

Gabapentin 0 4 Tramadol 0 4 

Gentamicin 0 4 Tranexamic acid 0 4 

GliCLAzide 0 4 Trazodone 4.47 1.4 

Glyceryl trinitrate 0 4 Trimethoprim 0 4 

Glycopyrronium 0 4 Ursodeoxycholic acid 0 4 

Halibut liver oil 0 4 ValGANciclovir 0 4 

Haloperidol 14.13 2.1 Vancomycin 0 4 

Heparin 0 4 Venlafaxine 0 4 

Hydrocortisone 0.08 2.2 VERAPAMIL 12.59 2.1 

Hydromorphone 0 4 Vitamin E 0 4 

HydrOXYzine 0 4 Zopiclone 0 4 

*Excludes immunotherapy and nutrition/electrolyte supplements 
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