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Abstract 

Habitat maps are needed to inform marine spatial planning but current methods of field 

survey and data interpretation are time-consuming and subjective.  Object-based image 

analysis (OBIA) and remote sensing could deliver objective, cost-effective solutions informed 

by ecological knowledge.  OBIA enables development of automated workflows to segment 

imagery, creating ecologically meaningful objects which are then classified based on spectral 

or geometric properties, relationships to other objects and contextual data.  Successfully 

applied to terrestrial and tropical marine habitats for over a decade, turbidity and lack of 

suitable remotely sensed data had limited OBIA’s use in temperate seas to date.  This thesis 

evaluates the potential of OBIA and remote sensing to inform designation, management and 

monitoring of temperate Marine Protected Areas (MPAs) through four studies conducted in 

English North Sea MPAs.    

An initial study developed OBIA workflows to produce circalittoral habitat maps from 

acoustic data using sequential threshold-based and nearest neighbour classifications.  These 

methods produced accurate substratum maps over large areas but could not reliably predict 

distribution of species communities from purely physical data under largely homogeneous 

environmental conditions.   

OBIA methods were then tested in an intertidal MPA with fine-scale habitat heterogeneity 

using high resolution imagery collected by unmanned aerial vehicle.  Topographic models 

were created from the imagery using photogrammetry.  Validation of these models through 

comparison with ground truth measurements showed high vertical accuracy and the ability 

to detect decimetre-scale features. 

The topographic and spectral layers were interpreted simultaneously using OBIA, producing 

habitat maps at two thematic scales.  Classifier comparison showed that Random Forests 
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outperformed the nearest neighbour approach, while a knowledge-based rule set produced 

accurate results but requires further research to improve reproducibility.  

The final study applied OBIA methods to aerial and LiDAR time-series, demonstrating that 

despite considerable variability in the data, pre- and post-classification change detection 

methods had sufficient accuracy to monitor deviation from a background level of natural 

environmental fluctuation. 

This thesis demonstrates the potential of OBIA and remote sensing for large-scale rapid 

assessment, detailed surveillance and change detection, providing insight to inform choice of 

classifier, sampling protocol and thematic scale which should aid wider adoption of these 

methods in temperate MPAs. 
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Chapter 1: Introduction 

1.1  The need for marine and coastal habitat maps  

Marine and coastal ecosystems provide multiple goods and services upon which human lives 

and livelihoods depend (Barbier, 2012), but this environment is under increasing 

anthropogenic pressure.  Direct and indirect results of human activities in the marine 

environment include overexploitation of resources, coastal modification, pollution, 

introduction of non-native species, ocean acidification and climate change, resulting in 

habitat degradation, biodiversity loss and decline in ecosystem services (Worm et al., 2006; 

Airoldi et al., 2008; Brander et al., 2010).  Globally, over 40% of the ocean is strongly affected 

by human activities, with no area being completely free from human influence (Halpern et 

al., 2008), and the cumulative impact of human activities is increasing in 66% of the ocean 

(Halpern et al., 2015).  The coastal zone is particularly heavily used, accounting for just 4% of 

the earth’s land area but containing over a third of the world’s population (Millenium 

Ecosystem Assessment, 2005).  Less than 15% of Europe’s coastline is considered to be in 

‘good’ condition (Airoldi and Beck, 2007). 

Global and regional conventions have recognised the need to reduce pressure on marine 

ecosystems, resolve conflicts between users and ensure sustainable use of resources 

through integrated ecosystem-based management of activities (United Nations, 1982; 

OSPAR, 1992; United Nations, 1992).  Marine spatial planning (MSP) has been identified as 

an effective tool for delivering ecosystem-based management (Ehler and Douvere, 2007; 

Ehler and Douvere, 2009), and over the past decade it has started to be implemented in 

many countries through national policy or legislation (Fletcher et al., 2014; Portman, 2016).   

Knowledge of the extent and distribution of marine and coastal habitats is a fundamental 

requirement of MSP (Crowder and Norse, 2008; Cogan et al., 2009; Baker and Harris, 2012).  

Because sensitivity to pressure from human activities varies with habitat type, seabed 

habitat maps and pressure-feature-sensitivity matrices can inform the spatial zoning of 

activities (Zacharias and Gregr, 2005; Foden et al., 2011; Williams et al., 2011; Caldow et al., 

2015).  In particular, habitat maps are needed to inform the establishment of a 

representative and ecologically coherent network of Marine Protected Areas (MPAs), which 

is a core element of marine spatial planning (Jordan et al., 2005; Stevens and Connolly, 2005; 

Evans et al., 2015).  Furthermore, the extent and quality of habitats must be monitored to 
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evaluate the success of MSP measures and meet requirements for reporting under 

conservation legislation, for example the EU Habitats Directive (EC, 1992) and Marine 

Strategy Framework Directive (EC, 2008). 

However, due to the high cost of conducting surveys in the marine environment, it is 

estimated that only 5-10% of the seabed has been mapped with a resolution comparable to 

the terrestrial environment (Wright and Heyman, 2008).  In the absence of survey data, large 

scale seabed habitat maps have been produced by ‘top down’ predictive modelling from 

multiple environmental variables; this is a cost-effective way of covering a large area, but the 

spatial and thematic resolution of the maps are low as they are limited by the resolution of 

the input data (Cameron, 2011; Huang et al., 2011; McBreen, 2011; Robinson et al., 2011; 

Vasquez et al., 2014).   

More robust solutions may be provided by remote sensing and object-based image analysis 

(OBIA), which have considerably progressed habitat mapping for conservation management 

in both terrestrial and  tropical marine environments (Corbane et al., 2015; Medcalf et al., 

2015; Hedley et al., 2016).  Temperate marine ecosystems present particular challenges and 

opportunities, and applications of remote sensing and OBIA in this environment are just 

beginning to be explored, drawing on knowledge gained from terrestrial remote sensing 

(Diesing et al., 2016).  Progress in this area is urgently needed, because lack of detailed 

knowledge of the seabed and lack of confidence in modelled habitat maps can hinder the 

planning and designation of MPAs (Caveen et al., 2014; Levin et al., 2014).   

This introductory chapter synthesises current knowledge on the use of remote sensing and 

OBIA for habitat mapping, identifies gaps in understanding to be addressed by this study and 

outlines the objectives and structure of the thesis.  

1.2 Remote sensing 

Remote sensing is “the science and art of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with 

the object, area, or phenomenon under investigation” (Lillesand et al., 2015).  Passive 

remote sensors measure energy radiated or reflected from the Earth’s surface, while active 

remote sensors emit a pulse of laser, sonar or radar and measure the energy returned to the 

detector (Turner et al., 2003).  Both active and passive remote sensors have a range of 

applications in the marine environment.  Satellite ocean colour imagery enables 
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measurement of primary productivity (Vargas et al., 2009) and suspended particulate matter 

(Loisel et al., 2014).  High resolution visible and infrared imagery can be used to indicate 

illegal fishing activity (Elvidge et al., 2015) and monitor megafauna (Fretwell et al., 2014).  

Microwave radiometry and infrared imagery can map sea surface temperature (Prigent et 

al., 2013; Kilpatrick et al., 2015).  Synthetic aperture radar (SAR) imagery can be used to 

detect oil spills (Xu et al., 2014), record wave height and direction (Stopa and Mouche, 2017) 

and monitor sea ice (Geldsetzer et al., 2015).  Bathymetry can be measured using sonar or, 

in shallow water, LiDAR, satellite imagery or hyperspectral aerial imagery (Gao, 2009; 

Klemas, 2011).   

One of the most important contributions of remote sensing to terrestrial ecology is the 

production of land cover, land use and habitat maps and their interpretation to detect 

environmental change (Kerr and Ostrovsky, 2003), yet this application of remote sensing has 

been relatively limited in the marine environment to date.  Research into remote sensing for 

benthic mapping has been dominated by studies of shallow tropical habitats such as coral 

reefs, mangroves and seagrass beds, due partly to the ecological importance and 

vulnerability of these habitats and partly to the ability to detect these habitats using optical 

sensors (Kuenzer et al., 2011; Goodman et al., 2013; Lyons et al., 2013; Roelfsema et al., 

2013a; Hedley et al., 2016).  Optical sensors cannot provide imagery of the seabed in deep 

water or turbid shallow water, but recent developments in sonar technology, data 

processing and georeferencing have enabled the generation of seabed images by remote 

sensing in this environment based on measurements of depth, hardness and roughness 

(Mayer, 2006).  These developments have led to a growing number of studies evaluating 

acoustic systems and data interpretation methods for benthic mapping, demonstrating the 

potential for these methods to support marine management while also highlighting the lack 

of consensus on the ‘best’ system and method (Kenny et al., 2003; Brown et al., 2011a; 

Diesing et al., 2016).   

The benefits of remote sensing, namely the ability to generate data for large areas in a non-

destructive, rapid, repeatable way, providing information beyond human perception, access 

to inaccessible locations, and enabling automated, objective data interpretation (Pettorelli, 

2014), are of particular relevance to the marine environment.  Direct sampling of the seabed 

is possible in shallow seas for survey areas smaller than 1km2, but disadvantages of direct 

sampling methods include high cost, the requirement for analyst expertise and the need for 
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high replication to yield statistical power (van Rein et al., 2009).  Benthic sampling methods 

such as grabs, cores, dredges, trawls and even video sensors on towed sleds can damage the 

seabed and are therefore inappropriate for surveying potential or existing MPAs (Sheehan et 

al., 2010).  Surveys by SCUBA divers are resource intensive and difficult to implement in 

deep or strongly current-swept areas, and such methods have been shown to be subjective 

and lead to variation in outputs within and between surveyors, even when the surveyors are 

experienced (Moore et al., 2014).   

Remote sensing therefore offers great potential for surveillance and monitoring in the 

marine environment, most of which is out of the range of direct survey methods, but there 

are many challenges to overcome in the implementation of this technology.  Considerable 

technological expertise, processing power and specialist software are needed to pre-process 

and analyse remote sensing data, while ecological expertise is needed to define appropriate 

scales of analysis and ground truthing protocols.  Because of this, the potential of remote 

sensing technology to inform conservation management and monitoring has been under-

exploited and there is a growing call for interdisciplinary research and collaboration between 

the remote sensing and ecology communities (Nagendra et al., 2013; Pettorelli, 2014; 

Pettorelli et al., 2014; Buchanan et al., 2015; Mairota et al., 2015; Turner et al., 2015).  The 

wider range of sensors and platforms potentially available for marine and coastal 

applications create a particularly pressing need for such interdisciplinary research to 

evaluate the ability of different sensors to detect ecologically meaningful differences in 

benthic habitat type or quality.  

1.3 Object-based image analysis 

Remote sensing data from both active and passive sensors are typically processed to 

produce continuous georeferenced raster images made up of cells (pixels) which each 

contain a single value.  Spatial resolution (pixel size) of remote sensing imagery is 

determined by ground sampling distance and ranges from hundreds of metres to less than 

one metre (Turner et al., 2003).  The interpretation of remote sensing imagery to produce 

land cover or habitat maps traditionally involved using statistical operators to classify each 

pixel based on its electromagnetic or acoustic frequency and the values of its neighbouring 

pixels (Lillesand et al., 2015).  Pixel-based classification methods prevailed when remote 

sensing imagery was predominantly available at low spatial resolution (e.g. from the 



Chapter 1: Introduction 

5 

 

Landsat, Terra and Aqua satellite platforms), but as finer resolution imagery became 

available (e.g. from the WorldView, QuickBird and Ikonos platforms), analysts began to 

change their focus from single pixels to the spatial patterns they create, ushering in an 

object-based approach to image analysis (Blaschke et al., 2000; Blaschke and Strobl, 2001).   

Object-based image analysis (OBIA) involves segmenting the image into groups of pixels 

according to homogeneity criteria to create objects, and then classifying those objects based 

on their spectral and geometric properties, their relationship to other objects and to 

contextual data (Benz, 2004).  OBIA has gained in popularity since around the year 2000 due 

to the increasing availability of high resolution remote sensing data, greater computer 

processing power and the availability of commercial software specifically developed for this 

purpose.  Since then, hundreds of published studies have demonstrated the usefulness of  

OBIA for habitat, land cover and land use mapping and change detection (Blaschke, 2010).  

The majority of studies cited in Blaschke’s review deal with OBIA of optical remote sensing 

data, predominantly satellite imagery, and all but two focus on terrestrial ecosystems 

(Lathrop et al., 2006; Lucieer, 2008).  Since then, a number of studies have started to 

evaluate OBIA methods with a wider range of sensors for marine habitat mapping both in 

tropical (Scopelitis et al., 2010; Leon and Woodroffe, 2011; Estomata et al., 2012; Phinn, 

2012; Roelfsema et al., 2013b; Zhang et al., 2013; Wahidin et al., 2015; Baumstark et al., 

2016; Xu et al., 2016; McIntyre et al., 2018) and temperate seas (de Oliveira et al., 2006; 

Lucieer, 2008; Lucieer and Lamarche, 2011; Lucieer et al., 2013; Diesing et al., 2014; Hasan et 

al., 2014; Hill et al., 2014; Lacharite et al., 2015; Lawrence et al., 2015; Gavazzi et al., 2016).    

1.3.1 Benefits of OBIA 

The large body of research in terrestrial remote sensing demonstrates the following 

advantages of OBIA, and the marine studies suggest how these advantages may be 

particularly relevant for benthic mapping (Table 1.1).  



Chapter 1: Introduction 

6 

 

Table 1.1: Summary of benefits of OBIA and relevance to marine habitat mapping 

Benefit of OBIA References Relevance to marine mapping Examples References 

Segmentation and classification can 
be carried out at multiple, hierarchical 
levels of resolution to reflect 
ecologically meaningful objects in the 
ecosystem under investigation. 

Hay et al. (2001) 
Hall et al. (2004) 
Hay et al. (2005) 

Both tropical and temperate 
marine ecosystems can be 
classified hierarchically, from low 
to high levels of detail in 
biological communities and/or 
topographic features. 

OBIA has been used to classify coral reefs at 
three levels of detail, from the whole reef 
system to individual biotopes/patches within 
the system, and to segment and classify 
environmental variables in both tropical and 
temperate regions to create a nested 
hierarchical model of seabed types.   

Huang et al. (2011) 
Phinn (2012) 

Image objects possess vastly more 
values than single pixels, any 
combination of which can be used in 
the classification process. Shape and 
texture can aid discrimination of 
classes which cannot be separated on 
spectral characteristics alone. 

Blaschke and 
Strobl (2001)  
Hay and Castilla 
(2006)  
Visser et al. 
(2013) 
 

The ability to use textural and 
geometric as well as spectral 
information is particularly useful 
for benthic mapping from 
acoustic imagery due to the low 
spectral resolution of this type of 
data.   

Acoustic OBIA mapping studies have used a 
range of object values, notably mean 
backscatter intensity (seabed hardness), 
standard deviation of bathymetric position 
index or of sidescan sonar imagery (seabed 
roughness) and grey level co-occurrence 
values of backscatter (seabed texture).  

Lucieer (2008) 
Lucieer et al. (2011) 
Diesing et al. (2014) 

OBIA avoids the ‘salt and pepper’ 
effect which can be generated by 
pixel-based image analysis if the 
image is highly heterogeneous at a 
fine scale. 

Blaschke et al. 
(2000) 

Marine habitats often exhibit 
fine scale heterogeneity, 
particularly in coastal and 
intertidal environments. 

‘Salt and pepper’ effect has been shown to 
reduced classification accuracy in pixel-based 
analysis of high resolution imagery for 
saltmarsh and rocky intertidal habitat 
mapping.  

Hunter and Power 
(2002)  
Hennig et al. (2007) 

Objects can be classified based on 
fuzzy logic using membership 
functions, which is useful for habitat 
mapping because it allows a more 
realistic reflection of the natural 
environment. 

Benz (2004) Marine biotopes rarely have 
distinct boundaries, but grade 
into one another along a 
continuum.  It is seldom possible 
to separate marine habitats on 
spectral or spatial threshold 
values; large overlap in the 
values of classified objects is 
common, particularly when using 
acoustic data.  

Several OBIA mapping studies illustrate the 
overlap in acoustic values of different benthic 
habitats. 

See box plots in: 
Kloser et al. (2010) 
Lucieer et al. (2011) 
Diesing et al. (2014) 
Calvert et al. (2015) 

Membership functions used with OBIA to 
model seabed habitats from environmental 
data for a whole continent, and at a finer 
scale to map saltmarsh plants and predict 
distribution of intertidal algae. 

Huang et al. (2011, 
fig.2)  
Ouyang et al. (2011) 
de Oliveira et al. 
(2006) 
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Benefit of OBIA References Relevance to marine mapping Examples References 

OBIA enables users to apply their 
ecological knowledge and use 
contextual data to develop effective 
rules for segmenting and classifying 
remotely sensed data. 

Lucas et al. 
(2007) 
Medcalf et al. 
(2014b) 
Medcalf et al. 
(2017) 

Relevant contextual data for 
marine mapping includes light 
attenuation, tidal streams, wave 
energy, seabed geology, salinity, 
water temperature, nutrients, 
freshwater input, sediment 
sources or fishing intensity. 

Environmental data is widely used in ‘top 
down’ marine habitat modelling studies but 
to date is rarely used in habitat mapping from 
remote sensing data, possibly because 
contextual data have not been available at a 
suitable spatial scale.  OBIA modelling studies 
have used wave exposure and shore height to 
predict distribution of intertidal algae, and 
light attenuation, exposure and chemical data 
to predict distribution of seabed habitats.  

Brown et al. (2011a) 
Diesing et al. (2016) 
de Oliveira et al. 
(2006) 
Huang et al. (2011) 

OBIA enables interpretation of 
multiple layers of data 
simultaneously, enabling combination 
of data from different sensors and at 
different spatial resolutions. 

Lucas et al. 
(2015) 
Mucher et al. 
(2015) 

Acoustic and optical imagery can 
be combined for marine habitat 
mapping, using optical imagery 
collected via airborne sensors in 
clear tropical seas/intertidal 
zones, or via AUV or ROV in 
temperate seas.  Acoustic data at 
different resolutions from 
different sensors can also be 
combined to increase coverage. 

Marine OBIA studies have interpreted 
acoustic data in combination with derivative 
layers such as slope, curvature or aspect and 
in combination with optical imagery.  

Lucieer et al. (2013) 
Diesing et al. (2014) 
McIntyre et al. 
(2018) 
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Few studies have directly compared pixel-based and object-based approaches using the 

same input data and classifiers, and such comparisons have seldom been carried out in 

marine or coastal ecosystems.  Using satellite and acoustic imagery to map tropical benthic 

features, McIntyre et al. (2018) found OBIA outputs to be more accurate than pixel-based 

outputs except when pixel-based outputs had been contextually edited.  Phinn (2012) found 

benthic community maps produced by OBIA more accurate than those produced by pixel-

based analysis when using medium resolution satellite imagery to map coral reefs, but they 

caution that this may not be a fair comparison due to differences in the calibration and 

validation methods applied to both approaches.  In contrast, Gavazzi et al. (2016) found 

OBIA outputs less accurate than pixel-based outputs when applied to acoustic imagery for 

mapping shallow lagoon habitats.  Using very high resolution satellite imagery to map 

saltmarsh vegetation, Ouyang et al. (2011) found that OBIA produced more accurate results 

than pixel-based methods, primarily due to the ability to use fuzzy membership functions 

and a hierarchical, multi-scale approach.  Further comparative studies are shown in Table 

1.3. 

The increasing prevalence of OBIA studies in peer-reviewed remote sensing literature is 

evidence of the benefits of this approach (Blaschke, 2010; Blaschke et al., 2014) but is not 

proof that OBIA is always a better option than pixel-based analysis; the best approach will be 

determined by the spatial resolution of the data and the scale of the ecological question 

under investigation (Gao and Mas, 2008).  The remit of this study is to evaluate the use of 

OBIA for interpreting high spatial resolution imagery (0.04m to 1m) to map and monitor 

intertidal and subtidal rock reefs which have fine-scale habitat complexity.  Different OBIA 

approaches and compared but there is no comparison of OBIA with pixel-based approaches 

in this study. 

1.3.2 Challenges of OBIA 

Despite these benefits, OBIA presents challenges.  Commercial software enables users to 

produce plausible, visually pleasing habitat maps from remotely sensed data relatively 

quickly and easily, but the development of robust, ecologically meaningful rules for 

segmentation and classification requires ecological expertise, a thorough understanding of 

the data, and an iterative, evaluative approach to developing the workflow.  Throughout the 

segmentation and classification process, the analyst has to make a number of choices which 

will influence the accuracy and usefulness of the output map. 
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The first choices relate to image segmentation.  Many methods of image segmentation have 

been developed, but the one most widely used for OBIA of remote sensing imagery is multi-

resolution/hierarchical segmentation using fractal net evaluation (Dey et al., 2010).  When 

applying this approach, the analyst must decide which imagery layers to use and what 

weighting should be accorded to each layer, then define the scale parameter and 

homogeneity criteria for object shape and compactness (Baatz and Schape, 2000).  The 

greater the number of objects, the slower the processing speed, so the aim is to create 

objects that are as small as necessary but as large as possible.  Selection of inappropriate 

parameters will result in image objects that are not representative of real-world objects, 

which in turn leads to classification inaccuracy (Addink et al., 2007; Laliberte and Rango, 

2009; Gao et al., 2011; Lucieer and Lamarche, 2011; Wahidin et al., 2015).  The critical 

dependence on appropriate segmentation parameters can be mitigated by taking a more 

flexible approach to segmentation, in which segmentations are revised and tailored for 

particular classes at later stages in the workflow (Lang et al., 2010; Tiede et al., 2010).  A 

number of tools have been developed to statistically evaluate segmentation quality by 

calculating the local variance of object heterogeneity or the ‘strength’ of object borders 

(Moller et al., 2007; Dragut et al., 2010; Zhang et al., 2010) which are useful where there is 

no a priori knowledge of the study site.  However, expert interpretation ‘by eye’ remains the 

primary method of optimising the segmentation workflow, and this requires good 

knowledge of the ecosystem under investigation. 

The classification step of OBIA also involves several choices, the first of which is the decision 

between a supervised or unsupervised approach. Unsupervised classification involves 

statistical clustering of data, e.g. spectral values, to identify natural groupings of pixels or 

objects, the total number of groups having been specified in advance by the analyst.  A class 

description may then be assigned to each group using expert knowledge or ground truth 

data.  In supervised classification, the user first defines the classes then develops a workflow 

to assign objects to these classes, either by setting threshold values or membership 

functions for class membership or by using samples to train a classification algorithm.  

Supervised classification is the most widely used approach in OBIA (Blaschke, 2010), while 

unsupervised classification has been the most common strategy for creating seabed habitat 

maps from acoustic data using pixel-based approaches (Brown et al., 2011a).  Unsupervised 

classification is objective and requires no prior knowledge of the study area, but it can be 
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difficult to determine the most suitable number of classes and there may be a mismatch 

between statistically derived clusters and real-world habitats as represented by ground truth 

data (Freitas et al., 2003; Brown and Collier, 2008; Brown et al., 2012).  Recent OBIA studies 

have demonstrated the effectiveness of supervised classification for seabed mapping from 

acoustic or optical imagery (Lucieer, 2008; Phinn, 2012; Lucieer et al., 2013; Diesing et al., 

2014; Gavazzi et al., 2016), while others have demonstrated the value of combining both 

approaches, for example using the results of unsupervised classification to aid selection of 

training objects for supervised classification (Lucieer and Lamarche, 2011) or to inform 

choice of data layers for supervised classification (Duffy et al., 2018).  A potentially highly 

beneficial use of unsupervised classification of remotely sensed data is to ensure 

representative ground truth sampling to inform a supervised classification (Clements et al., 

2010).      

The next decision to be made regards the choice of habitat classification system.  Many 

remote sensing studies in both terrestrial (Bradter et al., 2011; Lucas et al., 2011; Lucas et 

al., 2015) and marine environments (Brown and Collier, 2008; Lucieer, 2008; Shumchenia 

and King, 2010; Coggan and Diesing, 2011; van Rein et al., 2011; Calvert et al., 2015; 

Valentini et al., 2015) have used national or international standard classification systems, 

which have the benefits of being widely understood, enabling comparison between sites 

and/or over time, and identifying habitats with statutory designations for conservation.   

Another advantage is that such systems are usually hierarchical, meaning that classes 

defined by biological community and the physical environment are nested within broader 

classes defined by the physical environment alone; this supports the OBIA approach of 

segmentation and classification on multiple hierarchical levels (Strasser and Lang, 2015).   

However, standard classification systems may not correlate well to classes which can be 

detected from remote sensing data, particularly if the data are of low spectral and/or spatial 

resolution, and they may not adequately represent locally-specific habitats.  This is 

particularly true of marine classifications which have been developed using coarse scale 

environmental and biological data due to the difficulty of sampling in this environment 

(Fraschetti et al., 2008; Robinson et al., 2011; Galparsoro et al., 2012a; Galparsoro et al., 

2015).  Thus the majority of remote sensing studies for marine habitat mapping have 

developed a classification system specific to their study area, either through statistical 

analysis of ground truth data (Freitas et al., 2011; Serpetti et al., 2011; Elvenes et al., 2014; 



Chapter 1: Introduction 

11 

 

Wahidin et al., 2015; Biondo and Bartholoma, 2017) or visual assessment and categorisation 

of ground truth data (Bejarano et al., 2010; Kloser et al., 2010; Ierodiaconou et al., 2011; 

Phinn, 2012; Lucieer et al., 2013; Hasan et al., 2014).   

Whether using a standard or a site-specific classification system, the analyst needs to decide 

on an appropriate level of thematic resolution.  The thematic resolution of seabed maps 

ranges from simple bathymetric features (Lucieer, 2007; Dekavalla and Argialas, 2017) to 

substratum types, for example based on sediment grades (Serpetti et al., 2011; Diesing et 

al., 2014; Calvert et al., 2015; Biondo and Bartholoma, 2017) and finally biological 

communities (Ierodiaconou et al., 2007; Holmes et al., 2008; Rattray et al., 2009; Kloser et 

al., 2010; Ierodiaconou et al., 2011; Elvenes et al., 2014; Hasan et al., 2014).  Mapping at 

high thematic resolution is more challenging, particularly when data are of low spatial 

and/or spectral resolution and when the correlation between biological communities and 

environmental variables is imperfectly understood (Diaz, 2004; Reiss et al., 2015).  Maps at 

any level of thematic resolution can inform MSP; even simple geomorphological or ‘seabed 

feature’ maps have many uses (Harris et al., 2014), including improving understanding of 

commercial fishery species (Lucieer and Pederson, 2008; Galparsoro et al., 2009) and 

identifying optimal sites for MPAs (Banks and Skilleter, 2007; Harris and Whiteway, 2009).  

Species community maps are desirable, particularly for the management and monitoring of 

MPAs, but mapping at such high thematic resolution is costly in terms of requirements for 

high quality data, analyst expertise and knowledge of relationships between species and 

physical environmental factors (Buhl-Mortensen et al., 2015).  The choice of appropriate 

thematic resolution must therefore be informed by the desired purpose of the map and 

justified by the spatial and spectral resolution of the available remote sensing data and the 

taxonomic resolution of ground truth data. 

The final decisions relate to the classification workflow itself, namely the choice of 

classification rules or algorithms and the selection of features to be used for classification.  

Commercial OBIA software enables analysts to develop sequential rule sets to classify 

objects based on threshold values or membership functions, or to apply one of a selection of 

standard classification algorithms which can be trained by sample objects (Trimble, 2014).  

An important benefit of developing customised rules is that it enables the analyst to apply 

their ecological knowledge to the rule development process, while the transparent, 

sequential workflow enables them to fine-tune the rules to maximise classification accuracy 
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(Visser et al., 2016; Medcalf et al., 2017).  Another benefit is that this approach does not 

require training samples, although ground truth data may be used to inform the selection of 

threshold or membership function values.  However, because it is based on expert 

knowledge, this approach can be subjective to the extent that classification workflows 

produced by different experts for the same data can produce significantly different results 

(Belgiu et al., 2014).  Furthermore, because of the ‘trial and error’ method of adjusting 

membership values to maximise accuracy, knowledge-based workflows can take a long time 

to develop and are seldom transferable from one dataset to another without adjustment 

(Arvor et al., 2013). 

In contrast, standard classification algorithms do not require expert knowledge and are 

therefore relatively quick and easy to implement.  Brief descriptions of classification 

algorithms commonly used in habitat mapping from remote sensing data are provided in 

Table 1.2 and examples of marine and coastal applications are shown in Table 1.3. 
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Table 1.2: Summary of classification algorithms commonly used in habitat mapping 

Algorithm Description Availability References 

k-Nearest 
Neighbour 

Assigns objects to the class of the 
most similar training sample(s) in a 
defined feature space.  ‘k’ represents 
the number of samples considered, 
i.e. if k = 1, the object is assigned to 
the class of the most similar sample, if 
k = 5, the object is assigned to the 
class held by the majority of the five 
most similar samples.     

eCognition classifier 

class package in R 

Lucieer et al. 
(2013) 
Lucieer (2008) 
Lawrence et al. 
(2015) 
Gavazzi et al. 
(2016) 

Bayes Calculates the probability of an object 
belonging to a class based on a 
number of features which are 
assumed to be independent from each 
other.   

eCognition classifier 

e1071 package in R 

Wahidin et al. 
(2015) 

Fast Neural 
Network 

Data is entered into an input layer 
which has a node for each feature.  
The output layer contains probability 
values for each class, which add up to 
1. The input and output nodes are 
connected via a hidden layer of nodes. 

nnet package in R Marsh and 
Brown (2009) 

Support 
Vector 
Machines 

Predict which of two classes an object 
belongs to, based on identifying the 
best plane of separation between the 
two classes. 

eCognition classifier 

e1071 package in R 

Segmentation and 
Classification Toolset 
in ArcGIS 

Mountrakis et 
al. (2011) 
Hasan et al. 
(2012b) 

Decision Tree Classifies an object by applying a 
series of decisions based on if-then-
else logical conditions which have 
been determined by training data.  
The model looks like a tree in which 
each decision is represented by a 
node which splits the data, assigning 
the object to one branch or another 

eCognition classifier 

tree package in R 

Lucieer et al. 
(2013) 
Holmes et al. 
(2008) 
 

Random 
Forests 

Aggregates the results of many 
randomly constructed decision trees, 
each of which has been trained using 
the same set of features but a 
different subset of the training data.   

eCognition classifier 

randomForest 
package in R 

Belgiu and 
Dragut (2016) 
Diesing et al. 
(2014) 

In theory, classification algorithms offer a more objective and transferable classification 

method than a knowledge-based workflow, but the selection of training samples is a 

potential source of analyst bias which has a considerable influence on output and can lead to 

over-fitting the classification model to the data (Foody and Mathur, 2004; Belgiu and Dragut, 

2016; Costa et al., 2017).  Furthermore, comparative studies show that the application of 
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different classifiers to the same data produces different results, and the classifier which 

produces the most accurate results varies from one study to another (Table 1.3).  Variability 

in classifier performance may be mitigated through the use of classifier ensembles, although 

this approach has not yet been widely tested (Diesing and Stephens, 2015).  Perhaps the 

most promising way to exploit the advantages of knowledge-based rules and of classification 

algorithms is to develop a workflow which combines both approaches.  This could involve 

using knowledge-based rules to separate distinctive classes and/or to eliminate objects such 

as cloud or shadow from further classification, then applying a classification algorithm to 

separate more challenging classes in an objective, data-driven way (Heumann, 2011; Hsieh 

et al., 2017; Jones et al., 2017).  Alternatively, a classification algorithm can be applied, 

followed by a sequence of knowledge-based rules to deliver post-classification 

enhancements as suggested by Diesing et al. (2016). 
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Table 1.3: Comparative studies of 
classification approaches for marine habitat 
mapping 
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Mapping study Overall accuracy of classification 

Coral reef morphology and substrata at three 
hierarchical levels using Landsat and Quickbird 
(Benfield et al., 2007)           

Landsat: Level 1: MF = 68% to 81%, PB = 57%, Level 2: MF = 63% 
to 76%, PB = 51%, Level 3: MF = 59% to 69%, PB = 45% 
Quickbird: Level 1: MF = 88% to 90%, PB = 77%, Level 2: MF = 
85% to 87%, PB = 72%, Level 3: MF  81% to 84%, PB = 59% 

Temperate benthic substrata from sidescan 
sonar (Lucieer, 2008)            

Two classes: NN = 80%, M = 81% 
Three classes: NN = 60%, M = 72% 

Coral reef morphology and substrata at three 
hierarchical levels from Quickbird and Ikonos 
imagery (Scopelitis et al., 2010) 

 
 

        

TR = 55% to 60%, PB = 39% to 49% 
The manual classification was used to evaluate the other 
methods. 

Coral reef geomorphology from Landsat imagery 
(Leon and Woodroffe, 2011)            

Coarse classes: TR = 56%, NN = 87%, FNN = 87% 
Fine classes: FNN = 75%   

Saltmarsh vegetation from Quickbird imagery 
(Ouyang et al., 2011)            

PB = 78% to 82%, NN = 80% to 81%, MF = 85% to 87% 

Coral reef substrata from photographs and 
multibeam echosounder (MBES) data (Estomata 
et al., 2012)  

 
 

  
    

  

TR = 94%, PB = 85% to 93% 

Coral reef mapping at three hierarchical levels 
from Quickbird imagery (Phinn, 2012)            

Benthic communities: TR = 65%,  PB = 57% 
The validation methods differed between the two approaches. 

Temperate benthic substrata, rugosity and 
sponge structure classes from MBES data 
(Lucieer et al., 2013)  

 
 

        

Substrata: NN = 49% to 57%, RF = 55% to 64%, DT = 48% to 57% 
Rugosity: NN = 60% to 63%, RF = 62% to 65%, DT = 61 to 62% 
Sponges: NN = 49% to 57%, RF = 50% to 54%, DT =  49% to 56% 

Coral reef substrata and benthic communities 
from hyperspectral imagery (Zhang et al., 2013)            

Substrata: RF = 84%, PB = 70%  
Benthic communities: RF = 87%, PB = 60%   

Temperate benthic substrata from MBES data 
(Diesing et al., 2014)            

TR = 67%, RF = 76% 
Difference not statistically significant at 5% level 

Temperate benthic substrata from MBES data 
(Lawrence et al., 2015)            

NN = 63%, M = 68% 
Angular response curve 75% 

Coral reef substrata from Landsat imagery 
(Wahidin et al., 2015)           

SVM = 73%, RF = 68%, NN = 67%, B = 66%, DT =  56% 

Temperate lagoon sediments, submerged 
vegetation and sponges from MBES data 
(Gavazzi et al., 2016)  

 
 

        

Five classes: NN = 51% to 52%, PB = 54% to 71% 
Four classes: NN = 55% to 61%, PB = 58% to 73% 
Three classes: NN = 64% to 66%, PB = 68% to 83% 
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The wealth of spectral, geometric and contextual information created by grouping pixels to 

form objects is considered a key benefit of OBIA (Blaschke, 2010), but it also presents a 

significant challenge.  Using sub-optimal features reduces classification accuracy, but 

including too many features decreases processing speed and may also reduce accuracy 

(Diesing et al., 2016).  Determining the best selection of features from the hundreds 

available can be time-consuming and subjective (Laliberte et al., 2012).  Furthermore, 

features which are highly correlated may not actually be redundant, and features which are 

poor predictors when used alone may have very good predictive power when used in 

combination with other features (Guyon and Elisseeff, 2003).  Automated feature selection 

methods which can be applied in an OBIA context are broadly categorised as filters, 

wrappers and embedded methods (Tang et al., 2014).  Filters are applied to training data 

before classification, ranking features without considering how they interact with each other 

or how they affect the performance of any specific classifier.  Wrappers determine the best 

set of features by iteratively running a classifier with different subsets of features and 

evaluating the results, an approach which takes feature interaction into account but is 

computationally slow.  Embedded methods are specific to a particular classifier and select 

features during the training stage, taking account of feature interaction and performance 

with the given classifier.   

Some embedded feature selection methods commonly used with OBIA include feature space 

optimisation used with the Nearest Neighbour classifier (Lucieer, 2008; Na et al., 2015; Son 

et al., 2015), the generation of feature importance values by Decision Tree and Random 

Forests classifiers (Lucieer et al., 2013), and recursive feature elimination for the Support 

Vector Machine classifier (Ma et al., 2017).  Comparative studies have shown that the extent 

to which feature selection improves classification accuracy varies from one classifier to 

another (Georganos et al., 2017), and in some cases it actually reduces classification 

accuracy (Gilbertson and van Niekerk, 2017).  Although feature selection may be aided by 

statistical methods, it is usually informed by the analyst’s knowledge and experience, if only 

to produce an initial selection of features for further reduction (Duro et al., 2012).  The 

requirement for feature selection in OBIA therefore adds to the need for analyst expertise 

and is another potential source of subjectivity. 
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The above studies highlight the multitude of decisions confronting the OBIA analyst and 

demonstrate that there is no single ‘best’ choice in each case; the optimum parameters for 

segmentation and classification vary depending on the input data and purpose of the map.   

1.4 Quality assessment  

Quantitative evaluation of habitat maps derived from remote sensing data and clear 

presentation of the results of this evaluation are crucial, especially if the maps are intended 

to regulate activities through MSP.  Evaluation methods may be used during the mapping 

process to refine the model as well as at the end of the process to communicate to users.  

The most commonly used method of evaluation is to compare the map to reference data to 

determine how closely it represents the ecosystem under observation, while other methods 

involve evaluating the quality of the input data and the robustness of the methods.  A very 

simple quality assessment method is to score data and methods against set criteria, as 

exemplified by the Mapping European Seabed Habitats Confidence Assessment Scheme 

(MESH, 2010), which provides useful insight into the mapping process but does not quantify 

accuracy of the output.   

Accuracy assessment methods evolved considerably during the first decades of remote 

sensing (Congalton, 1991; Congalton and Green, 2009).  At the outset, maps were assessed 

only through basic visual appraisal, which is highly subjective and not quantitative.  In the 

early 1980s, accuracy was quantified by comparing the predicted area of each habitat with 

its area in a reference dataset, thereby assessing the ability to predict extent but not the 

ability to predict distribution.  To address this shortcoming, accuracy metrics were 

developed based on calculating the proportion of agreement between the map and 

reference data points; initially this consisted of a single figure for overall accuracy, which 

provided no information into the classification accuracy of particular habitats.  By the early 

1990s however, it had become standard practice to evaluate and communicate accuracy 

using a confusion matrix, or error matrix, a method which is still recommended and used 

today both for terrestrial and marine habitat mapping (Medcalf et al., 2014b; Diesing et al., 

2016).  The confusion matrix clearly illustrates where classification errors occur between 

habitats.  This is valuable information, because classification errors between two habitats 

which have similar composition and ecological function may be more acceptable to users 

than errors between two very different habitats.  Additional useful metrics can be derived 
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from the error matrix, such as producer’s accuracy calculated as the proportion of reference 

data per class which agrees with the map, and user’s accuracy calculated as the proportion 

of classified pixels/objects per class which agree with the reference data (Congalton, 1991).  

Low producer’s accuracy therefore signifies high errors of omission, while low user’s 

accuracy signifies high errors of commission.  This insight into a model’s tendency to over- or 

under-predict particular habitats can help to inform choice of classification method, 

particularly if maps are to be used to inform MSP, in which case the predicted extent of a 

given habitat will have a direct impact on regulation of activities.  The error matrix data can 

be portrayed visually as a Bangdiwala agreement chart (Bangdiwala and Shankar, 2013).  

This visualisation can provide useful insight, for example if one dominant habitat class 

accounts for the majority of agreement between the map and reference data (Calvert et al., 

2015).  Reference data rarely cover the entire area of the map, they usually represent a very 

small proportion of classified objects or pixels.  Overall accuracy and user’s and producer’s 

accuracy are therefore estimates of probability of the map’s accuracy, so it would be 

appropriate to add confidence limits when presenting these estimates although this is not 

common practice in remote sensing studies (Foody, 2008; Diesing et al., 2016). 

Another metric which can be derived from the error matrix is the Kappa coefficient (Cohen, 

1960) which is uses the off-diagonal (i.e. incorrectly classified) elements of the matrix to 

calculate the amount of agreement that could be expected to occur by chance and is 

calculated as follows: 

𝐾 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 

Endorsed by some as a useful additional measure of accuracy, a powerful technique for 

comparing error matrices and a discerning statistical tool for assessing the accuracy of 

different classifiers (Congalton, 1991; Fitzgerald and Lees, 1994), Kappa became increasingly 

widely used in remote sensing studies and integrated into mapping software, to the point 

that it has been described as a ‘standard component’ and a ‘vital accuracy assessment 

measure’ (Congalton and Green, 2009).  Others have criticised Kappa and its variants, stating 

that these measures are unnecessarily complex, add no additional information to the 

primary accuracy metrics and can even be misleading (Foody, 1992; Liu et al., 2007; Pontius 

and Millones, 2011).  Despite these conflicting views, Kappa continues to be used in current 

OBIA studies (Gavazzi et al., 2016; Onojeghuo and Onojeghuo, 2017; McIntyre et al., 2018). 
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A shortcoming of the error matrix and its associated accuracy metrics is that they give no 

insight into the spatial distribution of accuracy.  Spatially explicit accuracy measures have 

been developed based on geographically weighted regression (Foody, 2003; Foody, 2005), 

which have subsequently been extended by incorporating geographically weighted distance 

measures to produce measures of overall, user’s and producer’s accuracy within a moving 

window or kernel (Comber et al., 2012; Comber, 2013).  The majority of remote sensing 

studies do not, as yet, apply spatially explicit accuracy measures, perhaps due to insufficient 

density of reference data or because of the complexity of the method.  However, application 

of these methods to evaluate the spatial accuracy of terrestrial habitat maps produced 

through OBIA has been successfully demonstrated by Medcalf et al. (2014b). 

Classification accuracy is affected by the quantity and quality of the reference data.  

Interpretation of the error matrix is often based on the assumption that reference data are 

an accurate representation of real world habitats, but reference samples can contain 

positional errors and furthermore may not have been collected at the same time as the 

remote sensing data, which could be a cause of inaccuracy if the environment is dynamic 

(Diesing et al., 2014).  Classification of ground truth data by expert interpretation is another 

possible source of inaccuracy.  Assigning habitat classes to seabed images has been shown to 

be subjective and inconsistent, particularly at more detailed levels of classification (Rattray 

et al., 2014).  Estimating percentage cover in a quadrat or photograph is also subject to 

operator bias, although this can be mitigated to some extent by software which aids the 

objective quantification of substrate coverage through the generation of random points in 

the image (Kohler and Gill, 2006).  Use of an over-simplified classification, for example 

grouping different seabed sediment types into a single class due to the limitations of using 

seabed photographs to classify sediments, can lead to over-estimation of accuracy (Hasan et 

al., 2014; Calvert et al., 2015).  In the absence of ground truth data, reference samples may 

be generated through expert interpretation of high quality remote sensing imagery 

(Olofsson et al., 2014), which is also a source of subjectivity and potential error.   

Common strategies for selecting sample locations and for splitting a reference dataset into 

subsets for training and validation are random, stratified random and systematic sampling.  

Choice of sampling protocol has been shown to affect validation results in an OBIA context, 

particularly when there is spatial autocorrelation between data points (Zhen et al., 2013; Ma 

et al., 2015).  When reference data have been collected through field survey, it is often the 
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case that samples are unequally distributed amongst classes and that rare classes are under-

sampled, which can render it impossible to produce meaningful accuracy statistics (Medcalf 

et al., 2014b).  Balanced error rate (BER) is an accuracy metric calculated as the mean 

proportion of incorrect classifications in each class.  The lower the BER value, the higher the 

classification accuracy.  BER compensates for unequal proportions of classes in the reference 

data and/or classified map by effectively giving higher weighting to rare classes.  BER has not 

been widely used in remote sensing, but has been shown to be a useful measure of accuracy 

in seabed mapping studies with unbalanced class frequencies (Stephens and Diesing, 2014; 

Diesing and Stephens, 2015).   

Where fuzzy classifications have been produced, for example through membership functions 

or a Nearest Neighbour classifier, classification stability can be calculated as the difference 

between an object’s level of membership to its assigned class and to the second most similar 

class (Benz, 2004).  This is not a measure of the map’s accuracy, but does give insight into 

the robustness of the mapping method, i.e. the larger the difference, the more stable the 

classification.  Thematic maps can be produced based on either class membership values or 

classification stability values, to determine whether there are spatial patterns in the 

robustness of the classification.  Because different outputs can be produced from the same 

data by using different classifiers, or even by using the same classifier with different training 

samples, it is useful to compare maps produced by different methods on a pixel-by-pixel or 

object-by-object basis, calculating the percentage agreement overall and per habitat class 

(Visser and de Nijs, 2006).  Agreement between models is not an indication of accuracy, but 

can be a useful way of quantifying the impact of methodological variability and visualising 

this in a spatially explicit way (Diesing et al., 2014).    

The above methods all measure agreement based on categorical classifications and are thus 

suitable for evaluating habitat maps.  The standard method for measuring agreement 

between remote sensing outputs and ground truth data on a continuous scale is to calculate 

Root Mean Square Error (RMSE) by comparing predicted values with measured values and 

calculating the standard deviation of the residuals.  This is widely used in remote sensing 

studies to quantify the horizontal accuracy of remotely sensed imagery and the vertical 

accuracy of digital elevation or bathymetry models generated by acoustic survey, LiDAR or 

photogrammetry (Dolan and Lucieer, 2014; Rapinel et al., 2015; Ierodiaconou et al., 2016). 
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The generation of accuracy statistics enables maps to be evaluated against a theoretical 

target value.  A widely used target value in terrestrial remote sensing is 85% overall 

accuracy, but this has been criticised as arbitrary, inappropriate and inflexible to the 

requirements of different research questions and study areas (Foody, 2008; Pontius and 

Millones, 2011).  There has been little discussion and no consensus amongst the marine 

research community regarding a minimum acceptable level of overall or per-class accuracy 

for marine habitat maps.  This may be considered beneficial, in that it enables researchers 

and stakeholders to determine acceptable accuracy on a case-by-case basis.  England’s 

Marine Management Organisation have stated that maps derived from remote sensing must 

have a confidence score of ≥60% in order to inform marine spatial planning (MMO, 2014b). 

A final point is that all habitat maps contain inaccuracies, including those created through 

ecological field surveys, but maps derived from remote sensing tend to be subject to more 

rigorous accuracy assessment than those derived from other methods (Foody, 2008).  This 

rigorous approach helps to compare, evaluate and improve methods, but it should not lead 

to the perception that remote sensing maps are of lower quality than other maps which 

have simply not been subjected to the same level of assessment. 

In conclusion, although research into remote sensing accuracy assessment is an evolving 

field and there is lack of consensus on certain details, such as the use of Kappa, the following 

five main best practice recommendations can be summarised from the body of research to 

date: (1) ground truth data for validation should be collected at the same time as remote 

sensing data where possible, (2) the sampling protocol should ensure sufficient sampling 

density and adequate representation of all habitat classes, (3) at least two accuracy metrics 

should be published, including overall and class-specific accuracy, (4) confidence limits for 

accuracy metrics should be defined and provided, and (5) the error matrix should be 

published. 

1.5 Implications for management 

The need for habitat maps to inform sustainable marine management as required by 

national and international legislation and policy was described in Section 1.1.  This is 

particularly relevant in the UK, where recent legislation has led to an upsurge in the 

designation of MPAs (Figure 1.1).  23% of the UK’s seabed is currently designated for 

conservation, but resources available for marine surveillance and monitoring are decreasing, 
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making it imperative to find cost-effective yet robust ways of meeting statutory obligations 

(Borja and Elliott, 2013; Rush and Solandt, 2017). 

 

Figure 1.1: Extent of UK nationally and internationally important protected areas: on land (green); at 
sea (blue); in total (red), 1950 to 2015.  Source: http://jncc.defra.gov.uk 

Marine habitat maps are required by many areas of the UK’s evolving marine governance 

framework, with potential to inform spatial planning and reporting under the Marine and 

Coastal Access Act 2009, the EU Marine Strategy Framework Directive 2008 and the 

Conservation of Habitats and Species Regulations 2010 (JNCC, 2013; Rodwell et al., 2014).  

The establishment of an ecologically coherent network of MPAs is based on design principles 

which include criteria for representativity and replication of habitats (JNCC and Natural 

England, 2010).  Habitat maps modelled from environmental variables informed initial 

network proposals (McBreen, 2011), but remote sensing surveys have since been conducted 

of recommended MPAs to produce more accurate, higher resolution habitat maps, in some 

cases using OBIA methods (Sotheran and Crawford-Avis, 2014; Curtis et al., 2015; Mitchell 

and McIlwaine, 2015).  England’s emerging marine spatial plans have been based on a 

combination of modelled and remotely sensed habitat maps, with the provision that habitat 

maps derived from remote sensing, where available, should take priority over modelled data 

(MMO, 2014b; MMO, 2014a). 
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Remote sensing is thus already making a contribution to marine management, but the 

provision of baseline data is just the start of the process.  The governance framework 

includes requirements for monitoring change in the extent and distribution of habitats, both 

within and outside MPAs.  Variability in sampling and data interpretation methods prevent 

the use of marine habitat maps to monitor change in extent or distribution of habitats as it is 

impossible to distinguish real change from apparent change resulting from methodological 

inconsistency (Frost et al. 2013).  Uncertainty arising from methodological variability could 

be addressed through the production of recommended operating guidelines and standard 

operating procedures for all aspects of marine mapping, from survey design to map 

production and quality assessment (Strong, 2015).  Sample replication and distribution, the 

collection and processing of acoustic data, and the interpretation of data to produce habitat 

maps have been identified as the three highest priority areas for the development of agreed 

community standards (Lillis et al., 2016).   

Another issue which must be addressed in order to use remote sensing to monitor change in 

extent or distribution of habitats is the determination of ecologically meaningful thresholds 

of change.  Mieszkowska et al. (2014) emphasise the importance of long-term sustained 

observations in the marine environment to remove the ‘noise’ of short-term environmental 

fluctuations and reveal genuine trends.  In Europe, statutory obligations for monitoring 

require reporting on a six year cycle, but more frequent surveillance is required for highly 

dynamic habitats and for habitats which are particularly vulnerable to human impacts  

(Medcalf et al., 2014b).  The temperate marine environment is highly dynamic, for example 

experiencing considerable movement of sediment during winter storms, and higher 

biodiversity and biomass of seaweeds and sessile fauna on both intertidal and subtidal reefs 

during summer.  Strong (2015) estimates the minimum percentage change in extent of a 

selection of temperate marine habitats that can be detected by recommended field or 

remote sensing survey methods, but cautions that these estimates do not take account of 

site-specific variables such as habitat heterogeneity, depth or wave exposure.  Furthermore, 

there is a variety of methods for using remote sensing to detect change in extent and 

distribution of habitats, but few studies have directly compared methods through 

application to the same data and none has done so in the marine environment (Tewkesbury 

et al., 2015; Gomez et al., 2016).  Further research leading to improved understanding of the 

magnitude of natural and seasonal fluctuations in this environment and of the change-
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detection capabilities of different OBIA methods and sensors would aid adoption of these 

methods to fulfil statutory requirements for monitoring. 

With greater standardisation of methods and improved understanding of ecologically 

meaningful rates of change in the marine environment, there is clear potential to use OBIA 

and remote sensing to monitor extent and distribution of marine habitats.  However, 

environmental legislation also requires monitoring of habitat condition, which presents a far 

greater challenge.  Remote sensing can be used to evaluate quality of terrestrial habitats by 

detecting key species, vegetative productivity, vegetation structure or landscape patterns as 

indicators of habitat condition (Nagendra et al., 2013; Vaz et al., 2015; Breyer et al., 2016; 

Allard, 2017).  This is made possible by the high spectral resolution of satellite imagery, 

notably the ability to generate indices for photosynthetic activity, soil moisture and plant 

water content, and by the insight into three-dimensional vegetation structure provided by 

LiDAR or SAR data.  Change in habitat condition may not be detectable from remote sensing, 

for example if it takes place beneath a forest canopy or if habitat patches are smaller than 

image pixels, but coarse indicators of change derived from satellite imagery can be used to 

direct field survey effort to areas of interest (Nagendra et al., 2013; Jones et al., 2017).   

The quality or condition of marine habitats can be defined in terms of species community, by 

comparison with an assumed ‘natural’ state, or through evaluation of functional integrity i.e. 

the ability to provide ecosystem good and services (Tillin, 2008).  Remote sensing can be 

used to detect abundance or biomass of dominant, habitat forming species (Degraer et al., 

2008; Lindenbaum et al., 2008; Limpenny et al., 2010; McGonigle et al., 2011), but in most 

cases a species-based approach to defining habitat quality from remote sensing is unlikely to 

be possible in the marine environment, especially in habitats where much of the fauna is 

hidden under a fucoid or kelp canopy or buried in sediment.  A potentially useful indicator 

for habitat quality of intertidal and subtidal reefs is topographic complexity, because there 

are proven correlations between complexity and biodiversity in the marine environment 

(Johnson et al., 2003; Frost et al., 2005; Kostylev et al., 2005; Meager et al., 2011; Rees et al., 

2014).  Topographic complexity of rock reefs can be altered through erosion and 

sedimentation, while that of biogenic reefs can be altered by any factors which affect the 

health of the habitat engineers.  Topographic models can be derived from acoustic data, 

LiDAR and more recently from optical imagery through photogrammetry.  Recent studies 

have demonstrated the use of topographic models derived from very high resolution 
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imagery to monitor coastal sediment habitats (Harwin & Lucieer 2012; Mancini et al. 2013; 

Goncalves & Henriques 2015; Ierodiaconou, Schimel & Kennedy 2016).  Research into the 

consistency and feature detection capabilities of these methods would help to evaluate their 

potential as a proxy for habitat condition of temperate reefs, with potentially useful 

implications for marine monitoring.   

1.6 Future research priorities  

Interest in OBIA and remote sensing for habitat mapping has grown steadily for over a 

decade, to the extent that OBIA has been defined as a new paradigm (Blaschke et al., 2014).  

This trend is likely to continue as remotely sensed data and processing software are 

becoming more widely available and there is strong Governmental support in Europe and 

the UK for the development of practical implementations (Medcalf et al., 2014b; Medcalf et 

al., 2014a; Lucas et al., 2015; Medcalf et al., 2015; Breyer et al., 2016).  

Nevertheless, this review reveals gaps in the knowledge required to inform the multitude of 

analyst decisions that affect the accuracy and usefulness of habitat maps.  Although the 

current body of research gives valuable insight into the factors that must be considered, the 

majority of OBIA studies to date have focussed on satellite imagery and applications in 

terrestrial environments.  Few studies have evaluated OBIA through application to other 

types of remotely sensed data in marine ecosystems, so there is a pressing need for 

comparative evaluation of methods through experimental applications in temperate subtidal 

and intertidal habitats.  In particular, further research is needed to: 

1. Evaluate the use of OBIA with remote sensing data from a range of sensors at 

different resolutions for temperate marine and coastal habitat mapping to better 

understand potential sources of error associated with each sensor and how these 

might be addressed. 

2. Quantify the effect on map accuracy of different ground truth sampling protocols, 

classifiers, classification systems and thematic resolutions in this environment, 

leading to recommendations to inform appropriate choices in these areas. 

3. Evaluate the accuracy and feature detection capability of topographic models 

derived from remotely sensed data, to ascertain their usefulness to aid predictive 

mapping in OBIA and to monitor change in physical habitat complexity. 
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4. Assess the change detection capability of OBIA and remotely sensed data through 

comparative evaluation of different workflows, leading to recommendations to 

inform adoption of these methods for intertidal monitoring. 

Improved knowledge in these areas would help to overcome current barriers to adoption of 

such methods for mapping and monitoring temperate marine and coastal habitats by 

contributing to emerging standards and guidance (Strong, 2015; Lillis et al., 2016).  If applied 

in a robust and consistent way, OBIA and remote sensing have considerable potential to aid 

sustainable management of the marine environment and fulfil statutory conservation 

requirements, much as they are starting to do in terrestrial ecosystems (Lucas et al., 2017).  

Coverage of remotely sensed data in the marine environment is patchy and incomplete, so 

the ability to integrate data from a wide range of sources is crucial; understanding the 

potential uses and limitations of different sensors will help to achieve this.  Growing 

anthropogenic pressure on the marine environment poses a significant threat to biodiversity 

and to the ecosystem services on which the human population depends.  Improved skills, 

knowledge and capacity in marine remote sensing will place us in a good position to take full 

advantage of future improvements in sensor technology, potentially moving beyond simple 

habitat mapping and change detection, to habitat condition monitoring and mapping of 

restoration opportunities.   

1.7 Thesis aim and structure 

The overall aim of this thesis is to evaluate the application of OBIA to multi-resolution 

remote sensing data for mapping and monitoring temperate marine and coastal habitats.  

The four knowledge gaps described in the previous section will be addressed through 

experimental studies in English North Sea MPAs using optical, acoustic and LiDAR data to 

produce habitat maps at different spatial and thematic scales.  Knowledge gaps 1 and 2 are 

addressed by the thesis as a whole, while knowledge gap 3 is addressed specifically by 

chapter 3 and knowledge gap 4 by chapter 5.  Findings will increase our understanding of the 

potential for using OBIA and remote sensing in this environment and inform adoption of 

suitable methods by the authorities responsible for marine spatial planning and monitoring 

in temperate seas.  

Chapter 2 introduces and tests the concept of OBIA for marine habitat mapping through 

application to acoustic data to map circalittoral habitats over a large and relatively 
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homogeneous area at broad and fine thematic scales.  This chapter investigates what can 

be achieved with simple two-band data at relatively low resolution, identifying both the 

potential benefits and the sources of error and uncertainty.   

Chapters 3 and 4 build on these findings by developing workflows to interpret imagery at 

higher spectral and spatial resolution collected via an Unmanned Aerial Vehicle (UAV) in 

a small but highly heterogeneous area.  Chapter 3 evaluates topographic models created 

by photogrammetry by validating their vertical accuracy and comparing rugosity indices 

derived from the models with those derived from manual measurements.  Chapter 4 

develops and tests three OBIA methods to interpret combined topographic and spectral 

information to produce and validate intertidal habitat maps at two thematic scales.   

Chapter 5 evaluates the change detection capabilities of OBIA to determine its suitability 

for intertidal habitat monitoring.  This chapter develops and applies three OBIA 

workflows to interpret freely available multi-temporal aerial imagery and LiDAR data to 

produce change detection maps at three levels of sensitivity. 

Chapter 6 then provides a synthesis of key findings, addresses the limitations of the 

study, discusses wider implications of the findings and highlights areas for future 

research. 
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Chapter 2: Mapping temperate circalittoral habitats through object-based 
image analysis of acoustic data 

2.1 Introduction 

The growing human population depends on the marine environment for a wide range of 

goods and services (Millenium Ecosystem Assessment, 2005), but marine ecosystems are 

under increasing pressure from anthropogenic activities (Halpern et al., 2008).  An 

understanding of the distribution, extent and condition of seabed habitats and their 

associated biological communities is needed to inform sustainable use of the marine 

environment through Marine Spatial Planning (MSP) and to underpin biodiversity 

conservation through the designation and management of Marine Protected Areas (MPAs) 

(Cogan et al., 2009).   

Remote sensing offers a cost-effective, non-destructive method of producing habitat maps 

for large areas, and has made a considerable contribution to conservation management and 

monitoring environmental change in terrestrial ecosystems, predominantly through the use 

of satellite imagery (Pettorelli et al., 2014; Corbane et al., 2015).  Satellite or aerial imaging 

of the seabed is feasible in clear tropical waters to a depth of around 20 metres (Phinn et al., 

2013), but due to the absorption and scattering of light, sonar technology offers the only 

solution for imaging large areas of seabed in deep water or in turbid shallow water (Kenny et 

al., 2003; Brown et al., 2011a). 

Technology and techniques for acoustic remote sensing, georeferencing and data processing 

have improved and become more affordable in recent decades (Mayer, 2006; Brown and 

Blondel, 2009; Le Bas and Huvenne, 2009), and guidance has been developed to promote 

consistent standards in the application of these techniques for seabed mapping (Hopkins, 

2007; Populus and Perrot, 2007; Henriques et al., 2013).  Various methods have been 

developed for the manual or automated interpretation of acoustic data, typically based on 

the statistical clustering of ground truth and acoustic data to identify and classify areas of 

seabed that share similar characteristics (Brown et al., 2011a).  Seabed mapping from 

acoustic data has traditionally focussed on pixel-based approaches (Dartnell and Gardner, 

2004; Preston, 2009; Ierodiaconou et al., 2011; Diesing and Stephens, 2015), signal-based 

methods such as analysis of the angular response curve (Fonseca and Mayer, 2007; Simons 

and Snellen, 2009; Hamilton and Parnum, 2011; Lamarche et al., 2011) or interpretation of 
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integrated signal and image data (Fonseca et al., 2009; Hasan et al., 2012a; Hasan et al., 

2014).  Research into the application of object-based image analysis (OBIA) for seabed 

mapping has not fully matured (Diesing et al., 2016), but a few pioneering studies have 

demonstrated the potential of an object-based approach for mapping seabed substrata 

(Lucieer, 2008; Lucieer and Lamarche, 2011; Lucieer et al., 2013; Diesing et al., 2014; 

Lawrence et al., 2015). 

Producing even relatively simple substrate maps from acoustic data is difficult due to data 

variability, artefacts and gaps (McGonigle et al., 2010; Collier and McGonigle, 2011), but 

mapping biological communities presents a far greater challenge (Diaz, 2004; Heap, 2011).  

Remote sensing can predict the distribution of biological communities either by detecting 

those communities directly or by detecting abiotic proxies.  The ability of acoustic remote 

sensing to detect biological communities has so far been limited to communities defined by 

a single dominant species, notably habitat engineers such as Modiolus modiolus 

(Lindenbaum et al., 2008), Sabellaria spinulosa (Limpenny et al., 2010), Lanice conchilega 

(Degraer et al., 2008) and Laminaria kelp species (McGonigle et al., 2011).  A more common 

approach to biological mapping is therefore to predict the distribution of biota from abiotic 

surrogates detectable from acoustic data.  Several studies have modelled distribution of 

biota from acoustic data with some success using pixel-based approaches (Ierodiaconou et 

al., 2007; Holmes et al., 2008; Rattray et al., 2009; Kloser et al., 2010; Gonzalez-Mirelis et al., 

2011; Ierodiaconou et al., 2011; Mielck et al., 2014; Rinne, 2014) or OBIA methods (Lucieer 

et al., 2013; Hill et al., 2014).  However, it should be noted that these studies used very 

broadly defined biological classes (for example ‘macroalgae’, ‘rhodoliths’, ‘sessile 

invertebrates’ (Holmes et al., 2008)) and most were conducted in areas with considerable 

heterogeneity of environmental features likely to influence distribution of biota.  There is 

thus a pressing need to test the application of OBIA methods to acoustic data for habitat 

mapping under relatively environmentally homogeneous conditions, which often prevail 

over large areas in temperate seas.   

When creating maps of benthic substrata or communities, the option exists to use an 

existing habitat classification system or to develop one specifically for the survey area.  An 

advantage of using an existing classification system is that the habitat map will be more 

easily understood by those responsible for marine management and spatial planning.  For 

example, the OSPAR Biodiversity Committee agreed that the EUNIS classification system 



Chapter 2: Mapping temperate circalittoral habitats through object-based image analysis of acoustic data 

30 

 

should be used to characterise habitats throughout the OSPAR maritime area and to assess 

the representativity of the range of habitats covered by the MPA network (OSPAR 

Commission, 2006).  Studies that develop and evaluate mapping methods to meet specific 

statutory marine conservation and monitoring requirements tend to use existing 

classification systems rather than developing a site-specific one (Brown and Collier, 2008; 

Shumchenia and King, 2010; Coggan and Diesing, 2011; van Rein et al., 2011). 

A disadvantage is that existing classification systems may not represent the full range of local 

variations of a particular habitat (Galparsoro et al., 2012b) and may not correlate well with 

classes derived from acoustic data (Brown and Collier, 2008; Gonzalez-Mirelis et al., 2011).  

The majority of studies on habitat mapping from acoustic data have used a classification 

system developed specifically for the study area through analysis of ground truth data (for 

example Kloser et al., 2010; Serpetti et al., 2011; Lucieer et al., 2013; Hasan et al., 2014; 

Biondo and Bartholoma, 2017).  The benefit of this approach is that the habitat classes are 

ecologically meaningful and accurate for the study area and can be separated reliably using 

remote sensing data.  Such an approach is well-suited for monitoring change within the 

study area, but wider application would likely require modification of the classification 

system, or even development of a new, regionally-specific system. 

Commercially available software packages have been developed specifically for the 

interpretation of acoustic data, notably RoxAnn [Stenmar Ltd] for interpreting single-beam 

data, and QTC Multiview [Questor Tangent Corporation] for interpreting multi-beam data.  

These have proven effective for creating benthic habitat maps (Freitas et al., 2003; 

McGonigle et al., 2009; Brown et al., 2011b; Serpetti et al., 2011; Brown et al., 2012) but one 

concern is that the user does not have access to the algorithms used as they are considered 

commercially sensitive (Davies et al., 2001).  In contrast, the commercial OBIA software 

eCognition enables users to develop classification rules using thresholds and membership 

functions to separate classes, and to apply a range of supervised classification algorithms 

trained by reference data drawn from ground truth samples (Trimble, 2014).  A commonly 

used algorithm in OBIA habitat mapping studies is k-Nearest Neighbour, which assigns an 

object to the class which is most common amongst its closest training objects in a feature 

space, with k being the number of training objects considered (Lucieer, 2008; Lucieer and 

Lamarche, 2011; Lucieer et al., 2013; Hill et al., 2014; Lawrence et al., 2015).  Although a 

wide range of classification algorithms have been used in pixel-based and object-based 
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seabed mapping studies (Diesing et al., 2016), Nearest Neighbour is a popular choice, 

particularly in OBIA studies, due to its simplicity, computational speed and  its prevalence in 

eCognition’s training and guidance documentation (Trimble, 2014).  

Consisting of just two bands, bathymetry and backscatter, processed acoustic data contains 

far less information than the multi-spectral or hyperspectral optical data commonly used for 

terrestrial habitat mapping.  However, information beyond depth and hardness can be 

provided by bathymetric derivatives such as slope, aspect and bathymetric position index 

and by textural analyses such as grey level co-occurrence matrix (Haralick, 1979) or standard 

deviation of bathymetry as a measure of structural complexity.  This creates a potentially 

vast array of variables for use in seabed mapping, which presents a challenge because the 

inclusion of irrelevant features can increase processing time and decrease predictive 

performance (Stephens and Diesing, 2014).  However, previous studies give insight into 

variables which have proven useful for separating seabed types from acoustic data, and 

methods have been developed to aid feature selection, such as eCognition’s Feature Space 

Optimisation tool (Lucieer, 2008; Lucieer and Lamarche, 2011).  This tool finds the 

combination of features that provides the largest average separation distance between 

classes; it does this by taking each training object of class A and finding the training object of 

class B with the smallest Euclidean distance to it for a given feature, then averaging these 

minimum Euclidean distances for all the class A and B objects and repeating this process for 

every class and every feature (Weise, 2014). 

The aim of this study is to evaluate the application of OBIA to acoustic data for large scale 

habitat mapping in a relatively environmentally homogeneous area of the North Sea.  

Specific objectives are (1) to develop and evaluate an OBIA workflow for interpreting 

bathymetry and backscatter data and derivatives to produce broadscale habitat maps, (2) to 

evaluate the accuracy and consistency of a Nearest Neighbour classifier for predicting the 

distribution of biological communities on circalittoral rock and (3) to compare maps based 

on an existing standard habitat classification system with maps based on a site-specific 

classification system derived from cluster analysis of ground truth data.  
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2.2 Methodology 

2.2.1 Study site 

The Marine and Coastal Access Act 2009 enabled the designation of a network of Marine 

Conservation Zones (MCZs) in the territorial waters adjacent to England and Wales and UK 

offshore waters.  Coquet to St Mary’s rMCZ was one of 127 sites recommended for 

designation following a stakeholder-led site selection process (Net Gain, 2011; JNCC and 

Natural England, 2012) and prioritised for further evidence collection following a review and 

gap analysis (Defra, 2012).  The data used in this chapter were collected between January 

and September 2014 as part of a dedicated survey programme initiated by Defra and 

coordinated by Cefas to collect and interpret new data at selected rMCZ sites.  Coquet to St 

Mary’s rMCZ was designated as an MCZ in January 2016.  It is located in the northern North 

Sea on the Northumberland coast (Figure 2.1).   

 
Figure 2.1: Location of Coquet to St. Mary's MCZ on the Northumberland coast 
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The inshore boundary extends from Whitley Bay in the south to Alnmouth in the north and 

includes both St Mary’s Island and Coquet Island.  The site covers an area of 198.75km2, 

extending between 1.8km to 7.4km seawards from the mean high water springs mark, 

reaching a maximum depth of around 50 metres below Chart Datum.  The original proposed 

MCZ boundary was amended prior to designation for practical reasons.  The seaward 

boundary of the middle section was straightened and the areas around Blyth disposal site 

and the entrance to Blyth harbour were excluded.  Figure 2.1 shows the final amended 

boundary, but all other maps in this chapter show the original proposed boundary, as this 

was the boundary used to inform data collection and analysis.  Features designated for 

protection within Coquet to St Mary’s MCZ include ten broadscale habitats, comprising four 

intertidal and six subtidal habitats. 

2.2.2 Data  

Acoustic data were acquired by the Environment Agency between January and March 2014 

from the survey vessel CSV Humber Guardian using a side mounted Reson Seabat 7101 

multibeam echosounder (MBES) system.  This was used in conjunction with the Hypack 

Hysweep multibeam echosounder data collection and editing software module.  An Ohmex 

Sonarmite v3 single beam echosounder and a Leica Viva GS10 GNSS receiver were used to 

collect ground truth single beam data at a number of indicative sites across the survey area 

to provide a quality control check of the MBES elevation data.  CARIS HIPS/SIPS v.8.1.9 

software was used to mosaic the backscatter and bathymetry data to produce 1 metre 

resolution geotiff files (Figure 2.2). 
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Figure 2.2: Mosaicked bathymetry and backscatter data collected between January and March 2014 
in Coquet to St Mary's rMCZ 

Bathymetric Position Index (BPI) derivatives were calculated from the bathymetric data using 

the Benthic Terrain Modeller add-in for ArcGIS.  BPI indicates a pixel’s elevation relative to 

its neighbouring pixels within a user-defined radius, aiding the identification of benthic 

features such as ridges and gullies (Verfaillie et al., 2007).  BPI layers were created using 10, 

25, 50 and 100 pixel search radii.  Visual interpretation in ArcGIS showed that the 50 and 100 

search radii were the most appropriate for identifying features in the bathymetric data, so 

the BPI10 and BPI25 derivatives were not used in further analysis.  A slope derivative was 

produced from the bathymetric data by calculating the maximum change in elevation 

between each pixel and its 8 neighbours to assign each pixel a value for slope in degrees. 

Artefacts are present in the acoustic data due to the prevailing conditions and vessel motion.  

Gross artefacts were manually adjusted using the brightness and contrast adjustments in 

Caris HIPS/SIPS, but many could not be edited out.  The Environment Agency, who collected 

and processed the acoustic data, state that areas of different bed type are visibly identifiable 

despite the artefacts, but that automated image analysis would be challenging due to the 

steps in the colour map/intensity (Environment Agency, 2014).  Such artefacts have been 

shown to affect the accuracy of seabed maps produced by pixel-based approaches (Lecours 
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et al., 2017) but present specific challenges with an OBIA approach because artefacts cover 

areas larger than a single pixel and can thus affect segmentation, with affected pixels being 

grouped together into objects (Diesing, M. 2015, pers. comm. 7th January).  Artefacts are 

particularly visible on homogeneous seabed, i.e. level areas of sediment, and in deeper 

water where the swath width is larger, such as the north east area of the study site (Figure 

2.2).  Artefacts present in the bathymetry data are intensified in the derived slope layer 

(Figure 2.3). 

  

  

  
Figure 2.3: Backscatter, bathymetry and slope layers for an area of sediment seabed north of Blyth.  
The location of ground truth grab sampling points are overlain on the backscatter data. 

Ground truth data were acquired by the Environment Agency between July and September 

2014 from the survey vessel CSV Humber Guardian.  Ninety-five ground truth sampling 
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stations were selected (Figure 2.4), stratified by substratum and depth based on interpreted 

MBES bathymetry and backscatter data and UKHO Admiralty charts to give the best possible 

representation of broadscale habitats within the study site.   

 
Figure 2.4: Location of 95 sampling stations used for the collection of ground truth data through video 
and grab sampling between July and September 2014 in Coquet to St Mary's rMCZ 

Video and still images of the seabed were captured using an SES SeaSpyder drop camera 

system in accordance with the MESH recommended operating guidelines for underwater 

video and photographic imaging techniques (Coggan et al., 2007).  Images of the seabed 

were captured approximately every 10 to 15 metres, with extra photographs being taken in 



Chapter 2: Mapping temperate circalittoral habitats through object-based image analysis of acoustic data 

37 

 

heterogeneous areas.  Of the 95 sampling stations, 50 were selected for grab sampling based 

on observation of suitable sediment in the images, and a mini-Hamon grab was deployed to 

collect sediment and infauna.  Samples were analysed using Particle Size Analysis (PSA). 

2.2.3 Derivation of habitat classes from ground truth data 

Broadscale habitat classes were assigned to each of the 50 grab samples and the 2,238 still 

images using the European Nature Information System (EUNIS, 2012).  ‘A4.2 Moderate 

energy circalittoral rock’, ‘A5.2 Subtidal sand’ and ‘A5.3 Subtidal mud’ are the predominant 

broadscale habitats identified from the combined data, while ‘A5.1 Subtidal coarse 

sediment’ and ‘A5.4 Subtidal mixed sediments’ constitute a far smaller proportion of 

samples (Table 2.1).   

Table 2.1: Broadscale habitats identified from ground truth data collected in Coquet to St Mary's 
rMCZ in 2014 (n=2,288) 

Broadscale Habitat   
Number of 
grab samples 

Number of 
still images  

Total number of 
ground truth samples 

A4.2: Moderate energy circalittoral rock  0 905 905 

A5.1: Subtidal coarse sediment  0 15 15 

A5.2: Subtidal sand  26 770 796 

A5.3: Subtidal mud  19 506  525 

A5.4: Subtidal mixed sediments 5 42 47 

The 95 sampling station transects range in length from 66m to 498m with a mean length of 

187 m.  The ground truth data indicates the presence of just 1 broadscale habitat at 53 

stations, 2 broadscale habitats at 21 stations, 3 broadscale habitats at 20 stations and 4 

broadscale habitats at 1 station (Table 2.2).   
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Table 2.2: Summary of broadscale habitats assigned to ground truth data collected at the sampling 
stations in Coquet to St Mary’s rMCZ (DC = drop camera, HG = Hamon Grab) (n=95) 

Station numbers A4.2 Moderate 
energy 
circalittoral 
rock 

A5.1 
Subtidal 
coarse 
sediment 

A5.2 
Subtidal 
sand 

A5.3 
Subtidal 
mud 

A5.4 Subtidal 
mixed 
sediments 

01, 10, 11, 14, 15, 21, 23, 
28, 48, 51, 55, 77, 95 

DC         

04, 07, 09, 20, 63, 65, 86, 
91 

    DC     

02, 03, 12, 19, 34, 35, 42, 
45, 59, 61, 68, 69, 70, 75, 
76, 83, 92, 93 

    DC & HG     

29, 66      DC   

25, 31, 32, 33, 37, 38, 39, 
43, 44, 52, 56, 57 

      DC & HG   

22, 47 DC DC       

05, 26, 36, 46, 67, 78, 82 DC   DC     

27, 71, 87, 88 DC   DC & HG     

06, 16, 40, 79     DC HG   

18, 94     HG DC   

13 DC       DC 

24     DC   HG 

08 DC DC DC     

41, 74 DC DC DC & HG     

81 DC   DC DC & HG   

17, 30, 49, 53, 60, 64, 72, 
80, 84, 89, 90 

DC   DC   DC 

50, 54, 73, 85 DC   DC   DC & HG 

58 DC     DC & HG DC 

62 DC   DC DC & HG DC 

Table 2.2 shows that rock and sediment habitats co-occur along the same transect at 35 out 

of 95 sampling stations.  Images collected by drop camera at several sampling stations show 

a fine-scale mosaic of sediment and rock supporting sessile fauna including Alcyonium 

digitatum, Flustra foliacea and Urticina spp. (Figure 2.5).   
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Figure 2.5: Seabed photographs collected by drop camera showing sediment overlying functional reef 
supporting sessile fauna.  Clockwise from top left: station 53 (image width 0.6m), station 50 (image 
width 0.8m), station 54 (image width 1m) and station 85 (image width 0.7m). 

A total of 886 still images from 45 stations were classified as moderate energy circalittoral 

rock.  These images were  classified on the basis of their biological community using the 

Marine Habitat Classification for Britain and Ireland v04.05 (Connor et al., 2004).  Of all the 

images collected, 14% contained insufficient information to be classified according to 

biological community and were assigned to the biotope complex ‘moderate energy 

circalittoral rock’.  A further 49% of images were classified as the biotope ‘faunal and algal 

crusts’, and 36% as sub-biotopes of ‘faunal and algal crusts’ (Table 2.3).    
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Table 2.3: Circalittoral rock biotopes and biotope complexes identified from ground truth data 
collected in Coquet to St Mary’s rMCZ (n = 886) 

Biotope or biotope complex 
Number of 
images   

Number of 
stations 

CR.MCR 
Moderate energy circalittoral rock 

120 36 

CR.MCR.EcCr.FaAlCr 
Faunal and algal crusts on exposed to moderately wave-exposed 
circalittoral rock 

438 37 

CR.MCR.EcCr.FaAlCr.Adig 
Alcyonium digitatum, Spirobranchus triqueter, algal and 
bryozoan crusts on wave-exposed circalittoral rock 

182 33 

CR.MCR.EcCr.FaAlCr.Flu 
Flustra foliacea on slightly scoured silty circalittoral rock 

69 17 

CR.MCR.EcCr.FaAlCr.Pom 
Faunal and algal crusts with Pomatoceros triqueter and 
sparse Alcyonium digitatum on exposed to moderately wave-
exposed circalittoral rock 

66 11 

CR.MCR.EcCr.FaAlCr.Bri 
Brittlestars on faunal and algal encrusted exposed to moderately 
wave-exposed circalittoral rock 

3 2 

CR.MCR.CSab.Sspi 
Sabellaria spinulosa encrusted circalittoral rock 

8 2 

The ground truth data indicates the presence of just 1 biotope/biotope complex at 4 

stations, 2 biotopes/biotope complexes at 12 stations, 3 biotopes/biotope complexes at 15 

stations, 4 biotopes/biotope complexes at 13 stations and 5 biotopes/biotope complexes at 

1 station (Table 2.4). 
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Table 2.4: Summary of biotopes and biotope complexes assigned to ground truth data collected at 
sampling stations on circalittoral rock in Coquet to St Mary’s rMCZ (DC = drop camera) (n = 45) 

Station 
numbers 

FaAlCr.Adig FaAlCr.Bri CR.MCR FaAlCr FaAlCr.Flu FaAlCr.Pom CSab.Sspi 

26, 55     DC         

21, 84       DC       

73, 90 DC   DC         

15, 23, 85, 87 DC     DC       

54 DC       DC     

49, 82       DC   DC   

05, 08, 74     DC DC       

14, 22, 50, 53, 
58, 77, 89 

DC   DC DC       

13, 51 DC     DC DC     

41 DC   DC   DC     

47 DC   DC     DC   

67, 81     DC DC DC     

71     DC DC   DC   

10       DC DC DC   

30 DC DC DC DC       

01, 28, 36, 73, 
80, 88 

DC   DC DC DC     

17, 60 DC   DC DC     DC 

48, 78 DC   DC DC   DC   

64 DC     DC DC DC   

46 DC   DC   DC DC   

11 DC   DC DC DC DC   

The abundance of taxa identified in the 886 images classified as circalittoral rock was 

recorded using the semi-quantitative SACFOR scale (Connor et al., 2004).  The SACFOR scale 

provides a unified system for deriving standard abundance values from species density or 

percentage cover, taking account of organism/colony size and growth form.  Sixty-five taxa 

or morphological groups were identified, of which 12 occur in over 10% of the images (Table 

2.5). 
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Table 2.5: Taxa and morphological groups which occur in >10% of seabed images classified as 
circalittoral rock in Coquet to St Mary's rMCZ (n = 886) 

Taxon Total Superabundant Abundant Common Frequent Occasional Rare 

Spirobranchus sp.  562 0 1 8 39 57 457 

Hydroid turf 554 1 23 58 133 251 88 

Alcyonium 
digitatum  

536 32 134 155 101 72 42 

Asterias rubens  442 1 2 43 312 83 1 

Algal crusts 329 0 1 0 14 85 229 

Faunal crusts 307 0 0 0 4 27 276 

Thuiaria thuja 211 0 1 1 27 113 69 

Echinus esculentus  183 0 6 172 5 0 0 

Ophiuroidea  161 0 16 30 85 30 0 

Ophiura albida 104 0 2 15 40 45 2 

Urticina sp. 100 0 0 3 93 3 1 

Flustra foliacea 96 19 28 25 9 10 5 

Galatheoidea  86 0 0 2 45 37 2 

SACFOR values were converted to numeric values S=6, A=5, C=4, F=3, O=2 and R=1.  This 

process balances the weighting of common and rare species in the dataset, eliminating the 

need for further transformation of the data prior to multivariate analysis.  One sample from 

station 49 was removed from the dataset because it contained no taxonomic data.  

Hierarchical cluster analysis of the remaining 885 samples based on a Bray-Curtis similarity 

matrix was performed using PRIMER v.7 (Clarke et al., 2014).  The resulting cluster 

dendrogram and non-metric MDS plot comprised 31 groups.  ANOSIM and SIMPER analyses 

were performed in PRIMER v.7 to quantify the statistical similarity within and between these 

groups.  Pairs of statistically similar groups were combined, with ANOSIM and SIMPER 

analyses performed after each combination to identify the next pair for combination, until 

the dataset had been divided into 7 groups (Table 2.6). 
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Table 2.6: Groups produced by hierarchical cluster analysis of species abundance data from seabed 
images in Coquet to St Mary's rMCZ (n = 885) 

Group name 
No. of 
samples 

Average 
similarity 

Characterising taxa 

Algal crusts and 
keelworms 
(ACKW) 

38 28.93 
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Spirobranchus  1.26  17.45   1.10    60.32 60.32 
Corallinaceae (crusts)  0.76   5.33   0.54    18.40 78.73 

Hydroid turf 
and keelworms 
(HTKW) 

87 40.80 
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Hydrozoa  2.09  24.91   1.78    61.04 61.04 
Spirobranchus                 0.80   7.88   0.83    19.32 80.36 

Hydroid turf, 
squat lobsters 
and urchins 
(HTLU) 

17 34.03 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Galatheoidea     2.24  12.27   1.04    36.07 36.07 
Hydrozoa     2.00   9.30   1.03    27.34 63.41 
Echinus esculentus     1.41   3.20   0.35     9.39 72.80 

Flustra foliacea 
and Alcyonium 
digitatum 
(FFAD) 

78 51.01 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Flustra foliacea     4.54  32.97   2.09    64.64 64.64 
Alcyonium digitatum     2.18   6.87   0.63    13.48 78.11 

Hydroid turf 
and Alcyonium 
digitatum 
(HTAD) 

26 41.75 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Hydrozoa     2.00  12.57   1.71    30.10 30.10 
Alcyonium digitatum     2.62  11.89   1.24    28.48 58.58 
Caridea     2.15  10.89   1.25    26.07 84.66 

Alcyonium 
digitatum and 
hydroid turf 
(ADHT) 

340 46.68 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Alcyonium digitatum     3.91  28.51   2.18    61.06 61.06 
Hydrozoa     1.56   6.33   0.76    13.57 74.63 

Starfish, urchins 
and keelworms 
(SUKW) 

299 44.18 

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.% 
Asterias rubens     2.45  16.47   1.29    37.28 37.28 
Echinus esculentus     2.14   8.24   0.61    18.65 55.93 
Spirobranchus     1.22   6.84   1.13    15.49 71.42 

2.2.4 OBIA workflow 

Broadscale habitat mapping  

Segmentation of the image composed of the bathymetry and backscatter layers was carried 

out using the multi-resolution segmentation algorithm in eCognition Developer v9.0.3 

(Trimble, 2014).  This algorithm enables users to influence the size of objects by defining a 

scale parameter which determines the maximum allowable heterogeneity within an object; 

the larger the scale parameter, the larger the objects.  The scale parameter operates in 

combination with weighting criteria defined by the user to determine the degree to which 

segmentation is influenced by homogeneity of shape versus colour, and by object 

compactness versus smoothness.  In this study, a scale parameter of 23 was used in 

combination with homogeneity criteria which weighted shape (0.1) versus colour (0.9), and 

object compactness (0.9) versus smoothness (0.1).  These segmentation settings were 

selected by starting from scale parameter 80 and trialling progressively smaller scales with 

different combinations of shape and compactness criteria, evaluating each output by visual 
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comparison with the bathymetry and backscatter data.  The Estimation of Scale Parameters 

(ESP) tool (Dragut et al., 2010) had been applied to the data in an attempt to find the 

optimum segmentation scale through an automated iterative process, but visual evaluation 

of the outputs showed poor delineation of features that were clearly detectable in the 

imagery, for example many objects contained a mixture of hard and soft seabed types, so 

the manual iterative process was used as this produced better results.  Scale parameter 23 

performed best at identifying seabed features such as small (100-200m2) rock outcrops 

surrounded by sediment, whilst minimising the erroneous creation of objects from artefacts 

in the acoustic data.  Application of multi-resolution segmentation to the data created 

78,875 objects with an average area of 2,061m2.   

The ground truth dataset was divided into two approximately equal sized subsets to create a 

training dataset and a validation dataset.  The division was carried out on the basis of 

stations rather than individual samples, to avoid sample pseudoreplication caused by spatial 

autocorrelation of samples taken from the same video tow (Clements et al., 2010).  Because 

PSA data is more reliable than video data as evidence of sediment type, stations at which 

grab samples were taken were allocated to the training dataset.  Three of the 95 sampling 

stations did not overlap the area covered by the acoustic survey, so the training and 

validation datasets each consisted of 46 stations, comprising 1,015 samples in the training 

dataset and 1,208 samples in the validation dataset.   

Feature values of objects overlying training samples were compared to find suitable values for 

separating the habitat classes represented by the ground truth data.  Mean backscatter 

intensity and mean slope were identified as the best features for distinguishing rock from 

sediment habitats (Figure 2.6). 

   
Figure 2.6: Mean backscatter intensity and mean slope values of objects overlying sample points in 
the training dataset (n = 1,015) 
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Objects were classified as ‘A4.2 Moderate energy circalittoral rock’ via a two-stage process 

using the following threshold parameters of mean slope and mean backscatter intensity:   

Stage 1: Mean backscatter ≥ -14.5 

 or  

Mean backscatter ≥ -17 and mean slope ≥ 4.8 

Stage 2: Border with object already classified as rock and mean backscatter ≥ -19.58 and 
mean slope ≥ 3 

or 

Border with object already classified as rock and mean backscatter ≥ -16.5 and mean 
slope ≥ 2.02 

or 

Border with object already classified as rock and mean backscatter ≥ -14.3 and mean 

slope ≥ 1.85 

Stage 2 was repeated for five cycles.  The threshold values above were informed by analysis 

of the values of objects overlying rock sample points (Figure 2.6) and refined through 

experimental application to the data and visual interpretation of the results.   

To classify the remaining objects, unclassified objects overlying ground truth samples 

identified by PSA as ‘A5.2 Subtidal sand’ or ‘A5.3 Subtidal mud’ were defined as training 

objects.  This created 24 training objects for ‘A5.2 Subtidal sand’ and 15 training objects for 

‘A5.3 Subtidal mud’.  The ground truth survey provided evidence that ‘A5.1 Subtidal coarse 

sediment’ and ‘A5.4 Subtidal mixed sediments’ were present within the study site, but 

provided insufficient data to predict their distribution reliably (Table 2.1) so these were not 

included in the training dataset.  Figure 2.7 shows the location of the PSA samples that were 

used to create training objects for mud and sand, the mud samples being predominantly in 

the deep area in the north east of the study site.  
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Figure 2.7: Location of PSA samples of mud and sand used to create training objects for object-based 
image analysis of bathymetry and backscatter data 

In order to reduce dimensionality, eCognition’s Feature Space Optimisation tool was used to 

identify the best combination of feature values for distinguishing ‘A5.2 Subtidal sand’ from 

‘A5.3 Subtidal mud’ in conjunction with a nearest neighbour classifier.  By calculating the 

Euclidean distance between all training objects of both classes for 42 feature values, ten 
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features were selected that, in combination, produce the largest average minimum 

separation distance (1.49) between the two substratum classes (Table 2.7).  Correlation was 

expected between some features, notably mean, mode and maximum bathymetry, but the 

results of Feature Space Optimisation show that reducing dimensionality further would 

weaken the separation distance between classes, so all ten features were retained and used 

for classification.   

Table 2.7: Features selected for the Nearest Neighbour classification of sediments in Coquet to St. 
Mary’s MCZ through Feature Space Optimisation analysis of training objects (n = 39) 

Feature Layer Description 

Skewness Backscatter 
Bathymetry 
Slope 

The distribution of the layer intensity values of all the pixels 
in the object.  A value of 0 indicates normal distribution.  A 
positive value indicates that the object contains more pixels 
with a layer intensity value greater than the mean, a 
negative value indicates that the object contains more 
pixels with a layer intensity value less than the mean. 

Mode Bathymetry The most frequently occurring layer intensity value of all 
the pixels in the object.  If more than one value has equal 
frequency, the minimum value is chosen. 

GLCM 
correlation 

Backscatter The grey level co-occurrence matrix (GLCM) is a measure of 
object texture, calculated by tabulating the occurrence of 
neighbouring pixel values as a proportion of all 
occurrences.  A matrix with most co-occurrence values on 
the diagonal element would indicate a ‘smooth’ object, in 
which many neighbouring pixels have equal values.  Co-
occurrence values a large distance from the diagonal 
element of the matrix indicate a ‘rough’ object in which 
neighbouring pixels have very different layer values.  GLCM 
correlation measures the linear dependency of 
neighbouring pixel values, a value of 0 indicating no 
correlation and 1 indicating perfect correlation. 
(Haralick et al., 1973; Haralick, 1979) 

Mean Bathymetry The mean layer intensity value of all the pixels in the object  

Border 
contrast 

Backscatter The mean of the difference in pixel values between all the 
edge pixels in the object and their neighbouring pixels in 
adjacent objects. 

Max Backscatter 
Bathymetry 

The maximum layer intensity value of all the pixels in the 
object 

GLCM 
homogeneity 

Bathymetry See above definition of GLCM.  GLCM homogeneity 
measures the homogeneity of the object’s texture by 
measuring the distance of the co-occurrence values from 
the diagonal element of the matrix.  A homogeneity value 
of 1 indicates a perfectly symmetrical GLCM with all co-
occurrence values on the diagonal element.    
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A supervised classification was carried out to classify unclassified objects as ‘A5.2 Subtidal 

sand’ or ‘A5.3 Subtidal mud’ using eCognition’s Standard Nearest Neighbour algorithm and 

the feature values and training objects described above.  A class membership value was 

produced for each object by comparing its feature values with those of the training objects.  

A class membership value of 1 indicates that the object’s feature values are identical to the 

training object feature values.  The difference between the object’s membership value to the 

assigned class and to the second most similar class is an indication of classification stability; 

the larger the difference, the more stable the classification (Benz, 2004).   

Following the supervised classification, objects with a class membership value of less than 

0.1 on all features were left unclassified, resulting in 2,201 unclassified objects.  These were 

predominantly very small objects, of which over 60% consisted of a single pixel, and together 

they comprised less than 0.7% of the study area.  The creation of very small objects with 

extreme bathymetry and/or backscatter values was caused by artefacts in the acoustic data 

(Environment Agency, 2014), so to produce a cleaner map these objects were classified as 

the same habitat class as their surrounding or neighbouring objects.  Objects of the same 

habitat class were then merged, and the results exported as an ESRI shapefile.  Finally, 

objects which had been erroneously classified as circalittoral rock due to artefacts in the 

acoustic data (Environment Agency, 2014) were reclassified as either sand or mud in 

accordance with ground truth data using a semi-automated process in ArcGIS v10.2 based 

on intersection with user-defined polygons.  A classification stability assessment based on 

class membership values was performed after the initial supervised classification. 

An error matrix was produced for the final map by comparing the modelled habitat objects 

with the ground truth samples from the 46 sampling stations that were not used in the 

training dataset.  Cross-validation was not performed because samples had not been 

allocated randomly to the training and validation datasets due to the decision to use all 

available PSA samples to train the model.     

Biological community mapping  

Objects classified as ‘A4.2: Moderate energy circalittoral rock’ were segmented using the 

multi-resolution segmentation algorithm in eCognition using a scale parameter of 3 in 

combination with homogeneity criteria which weighted shape (0.1) versus colour (0.9) and 

object compactness (0.9) versus smoothness (0.1).  Only the backscatter and bathymetry 
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layers were used in segmentation.  Scale parameter 3 was selected by trialling progressively 

smaller scales from 23 to 1 and comparing the mean size of objects and the presence of 

conflicting ground truth samples within objects.  The minimum size for defining a 

homogeneous biological community is considered to be 25m2 (Connor et al., 2004).  Scale 

parameter 3 produces 1,716,821 objects with a mean area of 37m2, 40% of objects have an 

area < 25m2 and 9% of objects overlying ground truth samples contain two or more 

conflicting samples.  Larger scales increase the number of objects containing conflicting 

ground truth points, smaller scales increase the number of objects with an area less than 

25m2. 

The 886 circalittoral rock ground truth samples, classified according to their biological 

community (Table 2.3 and Table 2.6), were divided to create training and validation datasets 

using a stratified 4-fold process.  The samples assigned to each habitat class were divided 

randomly into four equal subsets, which were then combined to create a training dataset 

comprising 75% of the data and a validation dataset comprising 25% of the data.  The 

subsets were rotated to create eight different training and validation datasets, four using the 

Marine Habitat Classification for Britain and Ireland v04.05 and four using the habitat classes 

derived from cluster analysis of species abundance data in the ground truth samples.  

Objects overlying these ground truth sample points were defined as training objects.   

eCognition’s Feature Space Optimisation tool was used to identify the best combination of ten 

feature values for distinguishing habitat classes in conjunction with a nearest neighbour 

classifier.  The best combination of features and the best and worst separation values varied 

according to the training dataset used (Table 2.8).   
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Table 2.8: Feature values selected to predict the distribution of biological communities on circalittoral 
rock through Feature Space Optimisation analysis of training objects  

 
Marine Habitat Classification for 

Britain and Ireland v04.05 
Classes derived from cluster 

analysis of ground truth samples 

 Training dataset: Training dataset: 

Feature and layer 
A 

(n=508) 
B 

(n=510) 
C 

(n=517) 
D 

(n=520) 
A 

(n=515) 
B 

(n=517) 
C 

(n=515) 
D 

(n=512) 

Skewness BPI100         

Skewness 
bathymetry 

        

Skewness BPI50         

Skewness 
backscatter 

        

Skewness slope         

StDev BPI100         

StDev slope         

StDev backscatter         

StDev bathymetry         

Mean bathymetry         

Mean BPI50         

Mean BPI100         

Mode backscatter         

Mode bathymetry         

Max backscatter         

GLCM correlation 
backscatter 

        

GLCM entropy 
bathymetry 

        

Best separation 5.1 4.8 6.5 7.0 4.5 4.8 5.2 5.5 

Worst separation 1.3 1.2 1.3 1.2 1.2 1.2 1.2 1.1 

A supervised classification was carried out using eCognition’s Standard Nearest Neighbour 

algorithm and the feature values and training datasets outlined above.  Objects with a class 

membership function < 0.1 were left unclassified.  An error matrix was produced for each of 

the eight output maps by comparing the modelled habitat objects with the ground truth 

sample points.  Classification stability and best classification assessments were performed 

for all eight maps based on the membership values of each classified object.  The consistency 

of the outputs was evaluated by calculating the proportion of objects which received the 

same classification in each of the four maps produced by the different training datasets. 
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2.3 Results 

2.3.1 Broadscale habitat map 

The spatial extent of each broadscale habitat predicted by the OBIA methods described 

above is shown in Table 2.9 and the predicted distribution is shown in Figure 2.8.  For 

comparison, the extent of each broadscale habitat predicted for the same area by 

UKSeaMap 2010 (McBreen, 2011) is also shown in Table 2.9 and the predicted distribution is 

shown in Figure 2.9. 

Table 2.9: Spatial extent and proportion of total MCZ area of broadscale habitats in Coquet to St 
Mary’s MCZ predicted by object-based image analysis of MBES data and by UKSeaMap 2010. Full 
descriptions for EUNIS codes: A3.1 High energy infralittoral rock, A3.2 Moderate energy infralittoral 
rock, A4.2 Moderate energy circalittoral rock, A5.1 Subtidal coarse sediment, A5.2 Subtidal sand, A5.3 
Subtidal mud and A5.4 Subtidal mixed sediments. 

   A3.1 A3.2 A4.2 A5.1 A5.2  A5.3  A5.4  

Ground Truth Samples 
Number 0 0 905 15 796 525 47 

Proportion  0.00 0.00 0.40 0.01 0.35 0.23 0.02 

Spatial extent predicted 
by OBIA of MBES data 

Area (km2) 0 0 64.2 0.0 54.3 44.4 0.0 

Proportion  0.00 0.00 0.33 0.00 0.28 0.23 0.00 

Spatial extent predicted 
by UKSeaMap 2010 

Area (km2) 73.4 48.3 69.4 1.0 0.1 0.2 2.6 

Proportion 0.37 0.24 0.35 0.01 <0.01 <0.01 0.01 

 

The area of A4.2 Moderate energy circalittoral rock predicted by OBIA is similar to that 

predicted by UKSeaMap 2010, but the predicted distribution differs greatly.  UKSeaMap 

2010 predicted circalittoral rock only in the north and south of the MCZ in the deeper waters 

at the seaward boundary, while OBIA predicted patchy distribution throughout the MCZ, 

extending to shallower waters at the shoreward extent of the survey area.  OBIA did not 

predict infralittoral rock because neither the acoustic nor the ground truth survey covered 

the infralittoral.  OBIA did not predict coarse or mixed sediments because these were 

omitted from the model due to insufficient reference data, but the extent of these habitats 

predicted by UKSeaMap 2010 was extremely small, representing about 1% of the MCZ area 

each.  The greatest difference is in the predicted extent of mud and sand; these two 

sediment classes combined represent less than 1% of the total MCZ area on UKSeaMap 

2010, but over 50% of the total MCZ area on the map created from new survey data using 

OBIA methods.  
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Figure 2.8: Distribution of broadscale habitat maps in Coquet to St. Mary's MCZ predicted by object-
based image analysis of MBES data 
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Figure 2.9: Broadscale habitat map of Coquet to St Mary’s rMCZ and the surrounding area produced 
in 2010 by top-down predictive modelling (McBreen, 2011)  

Comparison of the predicted habitat objects with the ground truth validation dataset (n = 

1,208) showed that the broadscale habitat map had an overall accuracy of 80%, kappa 

coefficient of 0.66 and balanced error rate of 54% (Table 2.10).  Both user’s and producer’s 

accuracy were higher for rock than for the two sediment classes that were mapped.  

Producer’s accuracy was higher than user’s accuracy for rock and mud, showing that this 

workflow over-predicts those classes and under-predicts sand.  Misclassification occurred 

between the two dominant sediment classes, with 50 sand ground truth samples occurring 

in areas classified as mud, and 60 mud ground truth samples occurring on areas classified as 
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sand.  The majority of coarse and mixed sediment ground truth samples occurred in areas 

classified as rock, as did 73 ground truth samples of sand.    

Table 2.10: Error matrix for the broadscale habitat map of Coquet to St Mary’s MCZ 

 

Figure 2.10 compares the range of values of training objects and classified objects for the ten 

features used in the classification, demonstrating correlation between mean, mode and max 

bathymetry.  The range of values for mud and sand training objects overlapped for every 

feature value.  The only features with minimal or no overlap between the interquartile 

ranges of the mud and sand training objects were mode, mean and maximum bathymetry 

and maximum backscatter.  Mud training objects had lower bathymetry and higher 

backscatter values than sand training objects, but as Figure 2.3 shows, backscatter intensity 

values of homogeneous sediment areas increased with depth as a result of artefacts in the 

data.  The large number of outlier values of both classified and unclassified objects for all 10 

features is due to the presence of small objects with extreme values caused by artefacts in 

the acoustic data as discussed above.   

Circalittoral 

Rock

Coarse 

sediment

Mixed 

sediments
Mud Sand Total

Circalittoral Rock 655 0 0 0 6 661

Coarse sediment 6 0 0 0 0 6

Mixed sediments 40 0 0 3 0 43

Subtidal mud 0 0 0 128 50 178

Subtidal sand 73 0 0 60 187 320

Total 774 0 0 191 243 1208
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Figure 2.10: Range of values of training objects for sand (n = 24) and mud (n = 15), objects classified as sand (n = 
17,975) and mud (n = 18,267) and unclassified objects (n = 2,201) for the 10 features used in SNN classification. 
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Objects classified as mud had a mean membership value of 0.72 and mean stability value of 

0.29, while objects classified as sand had a mean membership value of 0.65 and mean 

stability value of 0.22 (Table 2.11).  This suggests a reasonably stable classification overall, 

with greater stability in the classification of mud than of sand, but the standard deviation of 

both classification stability and membership values shows a degree of variability in the data. 

Table 2.11: Results of classification stability assessment and best classification result assessment for 
A5.2 Subtidal sand and A5.3 Subtidal mud 

  Classification stability Membership value 

  
No. of 
objects 

Mean  
Standard 
deviation 

Mean  
Standard 
deviation 

A5.2 Subtidal sand  17,975 0.22 0.16 0.65 0.19 

A5.3 Subtidal mud  18,267 0.29 0.18 0.72 0.18 

2.3.2 Biological community maps 

Eight biological community maps were produced by the OBIA methods described above, four 

using classes defined in the Marine Habitat Classification and four using classes derived from 

hierarchical cluster analysis of the ground truth data.  There was correlation between the 

predicted area of each habitat and its proportion of the ground truth dataset with both 

classification systems (Figure 2.11 and Figure 2.12).   

 
Figure 2.11: Mean proportion of training objects, predicted objects and predicted area represented by 
each biological community class assigned from the Marine Habitat Classification System v 04.05.  
Error bars represent standard deviation. 
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Figure 2.12: Mean proportion of training objects, predicted objects and predicted area represented by 
each biological community class derived from hierarchical cluster analysis of ground truth data.  Error 
bars represent standard deviation.  For explanation of abbreviations of community class names see 
Table 2.6. 

Overall accuracy of the eight predictive biological community maps was very low, ranging 

from 35% to 46% (Table 2.12 and Table 2.13).  Classification system had little effect on 

overall accuracy; mean overall accuracy of the four maps produced using the Marine Habitat 

Classification was 43% compared to 40% for the maps using habitat classes derived from 

ground truth data.  User’s and producer’s accuracy were higher than overall accuracy for the 

classes which dominated the ground truth dataset and accounted for the majority of 

predicted map area,  namely the Faunal and Algal Crusts biotope (CR.MCR.EcCr.FaAlCr) in 

the Marine Habitat Classification, and the Alcyonium digitatum and hydroid turf (ADHT) and 

Starfish, urchins and keelworms (SUKW) classes in the site-specific classification.   
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Table 2.12: Results of 4-fold cross validation of predictive maps produced using the Marine Habitat 
Classification for Britain and Ireland v 04.03 

    
Training dataset: 

    
A  B  C  D  

  Overall accuracy 0.46 0.43 0.42 0.41 

  Kappa 0.19 0.16 0.15 0.15 

  Balanced Error Rate 0.62 0.70 0.78 0.77 

U
se

r 
A

cc
u

ra
cy

 

CR.MCR.EcCr.FaAlCr.Adig 0.35 0.32 0.30 0.30 

CR.MCR.EcCr.FaAlCr.Bri 0.00 0.00 0.00 n/a 

CR.MCR 0.35 0.31 0.19 0.26 

CR.MCR.EcCr.FaAlCr 0.57 0.56 0.60 0.58 

CR.MCR.EcCr.FaAlCr.Flu 0.26 0.25 0.23 0.23 

CR.MCR.EcCr.FaAlCr.Pom 0.30 0.25 0.24 0.22 

CR.MCR.CSab.Sspi 0.33 0.33 0.00 n/a 

P
ro

d
u

ce
r 

A
cc

u
ra

cy
 CR.MCR.EcCr.FaAlCr.Adig 0.23 0.28 0.33 0.33 

CR.MCR.EcCr.FaAlCr.Bri n/a 0.00 0.00 0.00 

CR.MCR 0.27 0.32 0.17 0.17 

CR.MCR.EcCr.FaAlCr 0.64 0.60 0.59 0.58 

CR.MCR.EcCr.FaAlCr.Flu 0.31 0.24 0.18 0.23 

CR.MCR.EcCr.FaAlCr.Pom 0.35 0.18 0.25 0.22 

CR.MCR.CSab.Sspi 0.50 0.50 0.00 0.00 

Table 2.13: Results of 4-fold cross validation of predictive maps produced using habitat classes 
derived from hierarchical cluster analysis of ground truth data 

    
Training dataset: 

    
A  B C  D  

  Overall accuracy 0.35 0.41 0.39 0.44 

  Kappa 0.09 0.18 0.14 0.22 

  Balanced Error Rate 0.79 0.74 0.78 0.73 

U
se

r 
A

cc
u

ra
cy

 

Algal crusts and keelworms (ACKW) 0.15 0.33 0.00 0.11 

Alcyonium digitatum and hydroid turf (ADHT) 0.46 0.52 0.46 0.57 

Flustra foliacea and Alcyonium digitatum (FFAD) 0.06 0.21 0.17 0.33 

Hydroid turf and Alcyonium digitatum (HTAD) 0.17 0.20 0.29 0.09 

Hydroid turf and keelworms (HTKW) 0.22 0.14 0.15 0.24 

Hydroid turf, squat lobsters and urchins (HTLU) 0.00 0.00 0.00 0.00 

Starfish, urchins and keelworms (SUKW) 0.39 0.50 0.48 0.48 

P
ro

d
u

ce
r 

A
cc

u
ra

cy
 Algal crusts and keelworms (ACKW) 0.22 0.30 0.00 0.10 

Alcyonium digitatum and hydroid turf (ADHT) 0.42 0.55 0.44 0.59 

Flustra foliacea and Alcyonium digitatum (FFAD) 0.05 0.16 0.16 0.35 

Hydroid turf and Alcyonium digitatum (HTAD) 0.14 0.17 0.29 0.17 

Hydroid turf and keelworms (HTKW) 0.23 0.18 0.14 0.23 

Hydroid turf, squat lobsters and urchins (HTLU) 0.00 0.00 0.00 0.00 

Starfish, urchins and keelworms (SUKW) 0.42 0.45 0.54 0.44 
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Four-fold cross validation showed that changing the training dataset with the Standard 

Nearest Neighbour classifier affected the accuracy (Table 2.12 and Table 2.13) and 

consistency (Table 2.14) of outputs.  Of the maps created using the Marine Habitat 

Classification, 14% of objects received the same classification in all four maps and a further 

37% received the same classification in three maps, compared to 21% and 43% respectively 

for the maps created using the site-specific classification.   

Table 2.14: Consistency of object classification using the Standard Nearest Neighbour method with 
the Marine Habitat Classification and the site-specific classification system.  Total number of objects = 
1,716,821. 

 
  

Marine Habitat 
Classification  

Site-Specific 
Classification 

Proportion of total objects with the 
same classification in: 

4 maps 0.14 0.21 

3 maps 0.37 0.43 

2 maps 0.45 0.34 

Proportion with different classification in all 4 
maps 

0.04 0.02 

Mean class membership values were reasonably high, ranging from 0.63 to 0.83 for maps 

created using the Marine Habitat Classification and from 0.59 to 0.77 for the site-specific 

classification, but classification stability was extremely low, ranging from 0.05 to 0.09 for the 

Marine Habitat Classification and from 0.05 to 0.1 for the site specific classification (Table 

2.15 and Table 2.16).  In both cases, the classes defined by the bryozoan Flustra foliacea 

(CR.MCR.EcCr.FaAlCr.Flu and FFAD) had lower membership values than the other classes. 
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Table 2.15: Results of classification stability assessment and best classification assessment for 
biological community maps produced using the Marine Habitat Classification for Britain and Ireland v. 
04.05 

   Classification Stability Membership value 

Tr
ai

n
in

g 

d
at

as
et

 

 Habitat Class 
No. of 
objects Mean  

Standard 
deviation 

Mean  
Standard 
deviation 

A CR.MCR.EcCr.FaAlCr.Adig 381,996 0.08 0.08 0.75 0.19 

CR.MCR.EcCr.FaAlCr.Bri 17,414 0.05 0.05 0.78 0.15 

CR.MCR 287,132 0.06 0.06 0.78 0.16 

CR.MCR.EcCr.FaAlCr 733,754 0.08 0.08 0.74 0.20 

CR.MCR.EcCr.FaAlCr.Flu 159,420 0.08 0.10 0.66 0.22 

CR.MCR.EcCr.FaAlCr.Pom 97,297 0.05 0.05 0.76 0.20 

CR.MCR.CSab.Sspi 5,628 0.06 0.07 0.71 0.20 

B CR.MCR.EcCr.FaAlCr.Adig 417,102 0.08 0.07 0.65 0.18 

CR.MCR.EcCr.FaAlCr.Bri 20,950 0.07 0.06 0.68 0.14 

CR.MCR 267,443 0.07 0.06 0.68 0.17 

CR.MCR.EcCr.FaAlCr 725,424 0.09 0.07 0.66 0.18 

CR.MCR.EcCr.FaAlCr.Flu 124,754 0.07 0.10 0.64 0.19 

CR.MCR.EcCr.FaAlCr.Pom 122,607 0.06 0.05 0.69 0.17 

CR.MCR.CSab.Sspi 10,521 0.06 0.06 0.68 0.15 

C CR.MCR.EcCr.FaAlCr.Adig 482,003 0.08 0.08 0.72 0.18 

CR.MCR.EcCr.FaAlCr.Bri 18,438 0.07 0.06 0.72 0.16 

CR.MCR 237,413 0.06 0.06 0.74 0.17 

CR.MCR.EcCr.FaAlCr 686,461 0.09 0.08 0.70 0.20 

CR.MCR.EcCr.FaAlCr.Flu 144,809 0.08 0.07 0.63 0.21 

CR.MCR.EcCr.FaAlCr.Pom 109,677 0.06 0.07 0.71 0.22 

CR.MCR.CSab.Sspi 4,599 0.04 0.03 0.83 0.09 

D CR.MCR.EcCr.FaAlCr.Adig 323,126 0.06 0.06 0.75 0.20 

CR.MCR.EcCr.FaAlCr.Bri 3,922 0.07 0.08 0.68 0.24 

CR.MCR 302,964 0.06 0.06 0.75 0.17 

CR.MCR.EcCr.FaAlCr 788,637 0.08 0.08 0.72 0.21 

CR.MCR.EcCr.FaAlCr.Flu 144,164 0.08 0.11 0.65 0.23 

CR.MCR.EcCr.FaAlCr.Pom 112,081 0.05 0.05 0.75 0.20 

CR.MCR.CSab.Sspi 1,791 0.05 0.04 0.75 0.14 
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Table 2.16: Results of classification stability assessment and best classification assessment for 
biological community maps produced using the site-specific classification 

 

 Classification Stability Membership value 
Tr

ai
n

in
g 

d
at

as
et

 

 Habitat Class 
No. of 
objects 

Mean  
Standard 
deviation 

Mean  
Standard 
deviation 

A ACKW 68,694 0.06 0.07 0.72 0.21 

ADHT 654,079 0.08 0.07 0.74 0.20 

FFAD 171,589 0.09 0.11 0.62 0.22 

HTAD 42,936 0.06 0.06 0.75 0.17 

HTKW 179,703 0.06 0.06 0.76 0.18 

HTLU 20,851 0.05 0.05 0.74 0.19 

SUKW 540,684 0.07 0.07 0.72 0.21 

B ACKW 46,195 0.06 0.06 0.74 0.20 

ADHT 738,084 0.09 0.08 0.76 0.18 

FFAD 159,458 0.08 0.08 0.61 0.23 

HTAD 61,338 0.06 0.06 0.76 0.15 

HTKW 199,973 0.06 0.07 0.74 0.19 

HTLU 33,669 0.06 0.05 0.76 0.14 

SUKW 442,722 0.08 0.07 0.71 0.21 

C ACKW 57,404 0.05 0.05 0.77 0.16 

ADHT 719,242 0.10 0.08 0.71 0.19 

FFAD 174,109 0.08 0.09 0.61 0.23 

HTAD 65,925 0.07 0.06 0.76 0.12 

HTKW 185,965 0.07 0.07 0.71 0.18 

HTLU 16,890 0.05 0.04 0.77 0.13 

SUKW 468,330 0.08 0.08 0.69 0.21 

D ACKW 66,238 0.05 0.06 0.75 0.20 
ADHT 725,920 0.08 0.07 0.76 0.18 
FFAD 138,493 0.08 0.08 0.59 0.24 
HTAD 57,007 0.07 0.07 0.74 0.17 
HTKW 180,172 0.06 0.06 0.77 0.17 
HTLU 32,939 0.06 0.06 0.74 0.16 
SUKW 479,043 0.08 0.07 0.72 0.20 

2.4 Discussion 

2.4.1 Broadscale habitat mapping 

The spatial extent and distribution of broadscale habitats predicted by OBIA methods were 

considerably different to those predicted by UKSeaMap 2010, which prior to this study 

represented the most recent full coverage habitat map available for the study area.  Expert 

evaluation and the accuracy metrics derived from comparison with ground truth data both 

suggest that the map produced by this study provides the more reliable representation of 
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seabed habitats at the site.  This is to be expected, because although UKSeaMap 2010 is 

considered an improvement on its predecessor UKSeaMap 2006 (Connor et al., 2006) due to 

refined modelling techniques and higher resolution data from a greater number of sources, 

top-down predictive modelling from environmental variables cannot produce such reliable, 

fine scale habitat maps as can be achieved through interpretation of acoustic survey data 

(McBreen, 2011).   

The overall accuracy of the broadscale habitat map compares well with other studies.  

Previous attempts to map geological substrata from acoustic data using a similar number of 

classes have produced maps with accuracies ranging from 46%-56% (Calvert et al., 2015), 60-

66% (Lucieer et al., 2011), 60-80% (Lucieer, 2008), 63-75% (Lawrence et al., 2015), 67-76% 

(Diesing et al., 2014), 63.5% (Biondo and Bartholoma, 2017), 72% (Dartnell and Gardner, 

2004; Ierodiaconou et al., 2007), 75%-83% (Hasan et al., 2012b) to 83% (Serpetti et al., 

2011).  Comparison of overall accuracy with UKSeaMap 2010 is not possible as this modelled 

output was not validated through comparison with ground truth data.  UKSeaMap 2010 was 

evaluated using a modified version of the MESH confidence assessment method (MESH, 

2010) in which confidence scores were assigned to each cell of the main input data layers 

(biological zones, seabed substrata, wave energy and tidal current) and then multiplied to 

produce an overall confidence map for the whole area. 

User’s and producer’s accuracy for rock were higher than the map’s overall accuracy, while 

user’s and producer’s accuracy for sand and mud were lower than the map’s overall 

accuracy.  Analysis of training object values showed that rock could be separated from 

sediment fairly reliably using mean backscatter intensity and mean slope.  Rock training 

objects generally had higher values than sediment training objects for both features, 

although the slight overlap in value ranges necessitated the development of iterative rules 

with different combinations of the two features.  In contrast, there was considerable overlap 

in training object value ranges for all ten features used to separate mud and sand, with only 

mean, mode and maximum bathymetry providing any visible separation of classes).  Some 

misclassification of mud as sand, and vice versa, was expected due to this overlap in training 

object values and the consequently low separation distance of 1.49 between the two 

classes.  Few seabed mapping studies have published training object value ranges, but those 

that have show similar findings; Stephens and Diesing (2014) and Diesing et al. (2014) 

publish box plots showing considerable overlap between bathymetry and backscatter values 
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for four sediment classes at two sites in the English North Sea, Lucieer et al. (2011) 

demonstrate overlap in mean backscatter training object values for six reef and sediment 

classes at a site in Eastern Tasmania, and Calvert et al. (2015) show overlap in backscatter 

values for rock and coarse sediment, and for three classes of muddy sediment based on 

samples collected in the Irish Sea. 

In the present study, mud training objects tended to have higher backscatter intensity and 

lower bathymetry values than sand training objects, but the higher backscatter intensity is a 

product of artefacts, whose impact increases with depth.  The majority of mud samples were 

collected in the north east part of the site, which is the area worst affected by artefacts.  

Using training objects derived from these samples and a feature space which included three 

correlated bathymetry features, the SNN classifier tended to predict mud in deeper areas 

and sand in shallower areas.  Lucieer and Lamarche (2011) found similar correlation between 

depth and spatial distribution of classes predicted by OBIA with a SNN classifier, despite 

their feature space including only one bathymetric feature (mean bathymetry) alongside 

several features representing seabed hardness and texture.  Other acoustic mapping studies 

have shown correlation between sediment grain size and depth (Freitas et al., 2003; Bellec 

et al., 2009; Freitas et al., 2011) which can be explained by the influence of depth on wave 

energy, which in turn affects sediment sorting (George and Hill, 2008).  In our study, OBIA of 

acoustic data produced a reasonably accurate and stable classification, evidenced by the 

mean membership and classification stability values for mud and sand, but this classification 

relied heavily on the observed correlation between depth and sediment grade at the study 

site.    

Post-classification enhancements had to be carried out to classify unclassified objects and to 

correct misclassifications which had occurred due to backscatter artefacts.  These consisted 

of rule-based alterations in eCognition as well as semi-automated manual editing in ArcGIS.   

Few other studies report applying post-classification enhancements to habitat maps derived 

from acoustic data (Costa and Battista, 2013; Diesing et al., 2014), but Diesing et al. (2016) 

suggest that such enhancements will be applied more frequently as the science of image-

based seabed mapping matures. 
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2.4.2 Biological community mapping 

It was expected that the overall accuracy of the biotope map would be lower than that of 

the broadscale habitat map, because increasing the number of habitats in a predictive model 

has been shown to decrease overall prediction accuracy (White et al., 2003; Lucieer, 2008).  

Other studies have produced biological community maps from acoustic data with accuracy 

ranging from 62% (Mielck et al., 2014), 68%-72% (Elvenes et al., 2014), 78% (Brown and 

Collier, 2008), 38%-80% (Ierodiaconou et al., 2011), 83% (Ierodiaconou et al., 2007) 57%-

84% (Holmes et al., 2008) 70%-85% (Hasan et al., 2012b) to 70%-87% (Rattray et al., 2009).  

These studies use a small number of simplified biota classes (e.g. ‘seagrass’, ‘mixed green 

algae’, ‘mixed brown algae’, ‘mixed red algae’, ‘invertebrates’ (Ierodiaconou et al., 2007)), 

each strongly associated with physical factors such as depth, rugosity and substratum, 

factors which are detectable from acoustic data and, crucially, exhibit a wide range of values 

throughout the study area.  Only one study has attempted to map complex biological 

communities defined by a national standard classification; this was successful but used only 

four classes which were clearly separated by substratum type and depth (Brown and Collier, 

2008). 

In contrast, the circalittoral rock biotopes and sub-biotopes recorded in the study area are 

very similar to each other in terms of species composition and environmental preferences.  

The dominant species, such as Alcyonium digitatum, Flustra foliacea, Spirobranchus sp, 

Urticina spp and Echinus esculentus are ubiquitous generalists [www.marlin.ac.uk/biotic], 

tolerant of the levels of turbidity, siltation and scour that prevail throughout the study area 

(Brazier et al., 1998).  All require hard substratum and some require moderate-strong 

current, but these factors do not vary within the study area at sufficient levels to limit 

species distribution.  In a North Sea species distribution modelling study, Reiss et al. (2011) 

evaluate several models and find that performance is consistently less accurate for species 

with a broad ecological niche, which may not be limited by any of the environmental 

variables at that spatial scale.  Other distribution modelling studies have demonstrated 

correlations between individual species or broad community types and environmental 

parameters which can be derived from acoustic data, such as seabed depth, hardness and 

roughness (Kloser et al., 2010; Hill et al., 2014; Rees et al., 2014; Rinne, 2014), but these 

correlations are fairly simplistic, e.g. depth as a predictor of algal- versus faunal-dominated 

communities, or rugosity and hardness as predictors of sessile fauna versus infauna.  
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Correlation with abiotic factors at the biotope level of detail remains elusive; Richmond 

(2014) found abiotic variables to be poor predictors of biological community distribution, 

recommending that surveys be carried out to establish relationships between abiotic 

surrogates and patterns of biodiversity on a site-by-site basis if producing habitat maps to 

inform marine conservation management.  In the present study, the similarity of species 

communities and homogeneity of environmental parameters in the study area result in low 

separation distances between classes and consequently low mean classification stability, 

overall accuracy, user’s and producer’s accuracy of the predictive maps.   

These measures of accuracy and stability did not differ between the maps created using the 

national standard habitat classification system and those produced using the site-specific 

classification.  Classes derived from cluster analysis did not align exactly with the standard 

classification, but this is likely due to the different methods of collecting the data that 

underpin each classification.  The empirical data used to develop the standard classification 

were collected by in situ recording of epibiota (Connor et al., 2004) while the data used for 

cluster analysis in this study consisted only of still images; recording biota from seabed 

images results in data with low taxonomic resolution and potentially skewed estimates of 

abundance  (Foster-Smith and Sotheran, 2003; Calvert et al., 2015).  The classes derived 

from cluster analysis had fairly low average similarity due to variability in quantitative data 

derived from individual photographs. Although 65 taxa were identified in the photographs, 

only 12 occurred in >10% of the samples and consequently dominated the cluster analysis.  

These are the same taxa that characterise the biotopes in the standard classification, e.g. 

Alcyonium digitatum and Flustra foliacea.  These taxa have broad environmental niches, as 

mentioned above, so the dominance of these same taxa in both classification systems 

explains why neither system provided an advantage in classification accuracy.   

The low consistency between maps produced with different subsets of the training data 

suggests that the SNN model over-fits the model to the training data.  Reducing the feature 

space further and removing correlated variables could help to overcome this, but this was 

not explored here because Feature Space Optimisation showed that reducing the number of 

features reduced the separation distance between classes.  

In both classifications, user’s and producer’s accuracy is higher than overall accuracy only for 

the habitats which account for the largest proportion of ground truth data and predicted 

area, namely CR.MCR.FaAlCr (Faunal and algal crusts on moderate energy circalittoral rock) 
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in the biotope maps, and ADHT (Alcyonium digitatum and hydroid turf) and SUKW (starfish, 

urchins and keelworms) in the maps produced using the site-specific classification.  Locally 

rare classes have the lowest classification accuracy due to the small number of objects 

available both for training and validation.  In view of the low separation distances between 

classes and consequent low classification accuracy and stability, the observed correlation 

between predicted area and number of ground truth samples in both classifications is likely 

to be an artefact of the classification method rather than a reliable indication of the extent 

and distribution of species communities in the study area.  These issues highlight the need to 

establish the required ground truth sampling effort for each class through analysis of 

acoustic data in order to achieve a statistically robust validation (Clements et al., 2010), 

although in practice ground truth data collection is often limited by time and budget 

constraints as discussed in sections 2.4.3 and 2.4.4.   

2.4.3 Sources of error and uncertainty 

Seabed photographs were used for validation, but assigning a habitat class to a photograph 

is error prone (Rattray et al., 2014), so the error matrix may not give a true representation of  

classification accuracy, particularly in the case of sediments.  There is disagreement between 

the sediment class assigned to the grab sample and that assigned to seabed photographs at 

14 out of 95 sampling stations.  This could reflect genuine fine-scale heterogeneity of 

sediment classes or misclassification of the photographs.  The ground truth photographs 

show a veneer of sediment overlying functional reef at several stations, a fact which has 

been identified as a cause of classification error in acoustic mapping studies (Calvert et al., 

2015; Lawrence et al., 2015).  In the present study, the error matrix shows coarse sediment, 

mixed sediment and sand misclassified as rock due to high values of backscatter and/or 

slope; these could be due to underlying rock giving a strong backscatter return, or simply 

due to artefacts in the data. 

Artefacts in acoustic data, in the form of backscatter specular reflection along the nadir 

stripe, have been shown to be a source of error in both segmentation and classification, 

particularly in deeper water (Lucieer and Lamarche, 2011; Lecours et al., 2017).  In the 

present study, these artefacts caused classification errors, notably in the deeper waters in 

the south east and north east of the study site, but these errors were corrected by post-

classification enhancements.  
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Inadequate ground truth sampling can be a major source of error in benthic mapping from 

acoustic data (Clements et al., 2010).  In this study, ground truth data collection was 

stratified by depth and substratum through expert interpretation of the acoustic data.  The 

data generated were suitable for predicting and validating distribution of the three 

dominant broadscale classes, but did not include sufficient samples of the two rare sediment 

classes to enable them to be mapped reliably.  Ground truth data were collected at least 

four months after the acoustic data.  It is possible that some sediment movement could have 

occurred in that time, especially at reef edges, which could result in a change of broadscale 

habitat class at the location.   

At the biotope level, under-sampling of locally rare habitat classes was more pronounced. 

The ground truth data included only 8 and 3 samples respectively of the biotopes 

CR.MCR.EcCr.FaAlCr.Bri (brittlestars on faunal and algal encrusted rock) and 

CR.MCR.CSab.Sspi (Sabellaria spinulosa encrusted rock), which is insufficient data to train or 

validate a predictive map, as evidenced by the extremely low user’s and producer’s accuracy 

for these classes.  The inherent transience of these two biotopes is another source of 

uncertainty.   

Assigning biological community classes to photographs relies on the assumption that the 

photograph is representative of the surrounding area.  The area covered by a photograph 

was typically around 1m2, equivalent to one pixel in the acoustic data, while the average size 

of objects produced by segmentation at scale 3 was 58m2.  While some sampling stations 

showed consistency of biotopes at this scale, there is evidence of fine-scale heterogeneity of 

biotopes at others, so this assumption will not be valid in every case and is an inevitable 

source of uncertainty.   

2.4.4 Methodological improvements 

Artefacts in acoustic data could be reduced by conducting surveys during calm sea 

conditions.  Ground truth data cannot be collected simultaneously with acoustic data 

because acoustic data are needed to inform stratified sampling, but should be collected with 

the least delay possible in order to reduce uncertainty due to sediment mobility and 

transient habitats.  Collection of ground truth data is limited by cost considerations, but grab 

sampling should be used wherever possible to determine sediment type, due to the 

uncertainty of assigning sediment classes to video or photographs.  Because the mean 
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bathymetry values of mud and sand training objects overlap and the sample size is relatively 

small (n = 45), further grab sampling stratified by bathymetry would be advisable to 

ascertain whether depth is a reliable predictor of the distribution of mud and sand in the 

study area.  The ground truth sampling protocol used in this study was intended to support 

broadscale habitat mapping, not biological community mapping.  In order to identify and 

predict circalittoral rock biotopes, a sampling protocol stratified by features with potential to 

affect distribution of biota, such as rugosity and slope, would be advisable, while noting that 

1m resolution data will be too coarse to identify fine-scale topographic features that may 

affect distribution of certain species (Lucieer et al., 2013).   

The ability to use contextual data layers to inform predictions, which is one of the 

advantages offered by OBIA, was not exploited here.  Current and wave energy can aid 

prediction of biological communities (Robinson et al., 2011), but even where relationships 

between species and environmental variables are understood, data may not be available at 

appropriate resolution to model distribution (Reiss et al., 2015).  Existing hydrodynamic 

models for the study area are too low resolution to be useful predictors of biota distribution 

in this relatively homogeneous environment (ABP Marine Environmental Research Ltd, 2008; 

Burrows, 2012).  Where correlation can be established between hydrodynamic variables and 

the distribution of dominant species or communities, allowing for temporal variability in 

such data, research into fine scale hydrodynamic modelling to produce contextual layers for 

use in OBIA would be beneficial.   

A limitation of this study was that the infralittoral zone was not covered by the acoustic 

survey due to the operational depth restrictions of the survey vessel and the turbidity of the 

study site.  This is a serious shortcoming because kelp-dominated habitats support 

considerable biodiversity and provide many ecosystem services (Smale et al., 2013) and 

previous surveys have shown such habitats to be widespread in the study area at depths 

shallower than 10m (Brazier et al., 1998).  Most studies which have mapped macroalgal 

communities from acoustic data were conducted at sites where water clarity extends the 

infralittoral zone to depths accessible to acoustic survey (Ierodiaconou et al., 2007; Brown 

and Collier, 2008; Holmes et al., 2008; Rattray et al., 2009; Lucieer et al., 2011), but one 

study conducted surveys in shallow turbid waters from a vessel with a low draught using 

equipment with a shallow technical limit and predicted macroalgal distribution through 

pixel-based analysis and manual interpretation of imagery (Mielck et al., 2014).  Other 
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studies have demonstrated the potential for using bathymetric LiDAR to predict habitat 

distribution in shallow turbid waters using pixel-based approaches (Collin et al., 2011; 

Zavalas et al., 2014).  Future studies should evaluate OBIA methods for mapping infralittoral 

broadscale habitats and biotopes from shallow acoustic data and bathymetric LiDAR, but 

were not explored here because no such data are available for the study area. 

The low spectral resolution of acoustic data is a limitation of all seabed mapping studies to 

date.  The emerging ability to collect backscatter data at multiple frequencies simultaneously 

(Hughes Clarke, 2015) holds great promise for improving benthic habitat mapping.  OBIA’s 

ability to interpret multiple data layers concurrently, developed through over a decade of 

applications to multispectral and hyperspectral optical imagery (Blaschke et al., 2014), make 

this an ideal approach to mapping seabed habitats from multispectral acoustic backscatter 

when such data become commercially available.   

Only two OBIA classification methods were applied, namely threshold-based rules and the 

SNN algorithm.  The SNN classifier was chosen because its simplicity, speed of 

implementation and prevalence in the software documentation (Trimble, 2014) make it very 

likely to be selected by users; an evaluation of this method’s application to a policy-relevant 

case study was therefore deemed useful.  Diesing et al. (2016) recommend conducting 

comparative studies of classification algorithms to address knowledge gaps in benthic 

acoustic mapping.  To date, little comparative evaluation has been carried out, and 

variability in findings suggests that the ‘best’ classification method is influenced by the site 

and the data.  In pixel-based studies, Ierodiaconou et al. (2011) found that decision tree 

classifiers outperformed maximum likelihood classifiers, while Hasan et al. (2012b) found 

that support vector machines and random forests classifiers outperformed decision trees, 

and in a North Sea application Diesing and Stephens (2015) found negligible difference in 

overall accuracy of maps produced by random forests, naïve Bayes, neural networks and 

decision tree classifiers, but found that these four methods outperformed support vector 

machines and nearest neighbour.  Two studies have compared OBIA with pixel-based 

methods; Lawrence et al. (2015) found that automated interpretation of backscatter angular 

response curves and manual segmentation and classification through visual analysis of 

acoustic imagery both produced more accurate results than OBIA with a SNN classifier; 

Diesing et al. (2014) found that an OBIA threshold-based rule set produced less accurate 

results than both a geostatistics approach and a random forests classifier, although the 
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differences in accuracy were not statistically significant.  Only one study has compared the 

performance of different OBIA classifiers through application to the same acoustic data, 

finding that a random forests classifier performed best at distinguishing substrates while a 

nearest neighbour classifier performed best at predicting distribution of biota (Lucieer et al., 

2013).  Further comparison of different object-based algorithms is therefore strongly 

recommended for future studies, but was not pursued here because the data and study site 

provide a poor testing ground for different classification methods due to the broad 

environmental niche of the modelled communities, the homogeneity of environmental 

variables, the confounding influence of artefacts, insufficiency of ground truth samples and 

uncertainty in their analysis.   

2.4.5 Wider implications 

Broadscale habitat maps produced using the OBIA methods described in this chapter 

contributed to the evidence base for the designation of Coquet to St Mary’s MCZ and 

Runswick Bay MCZ in 2016 (Fitzsimmons et al., 2015a; Fitzsimmons et al., 2015b).  The maps 

informed the establishment of conservation objectives and continue to inform the design 

and implementation of spatial management measures by regulatory bodies.  The remit of 

the UK’s MPA network is “to protect flora and fauna that are rare, threatened or 

representative of UK biodiversity”(Defra, 2010), and MCZ design principles aim to achieve 

protection of both broadscale habitats and features of conservation importance, namely 

habitats or species that are rare or threatened (JNCC and Natural England, 2010).  The 

remote sensing methods used in this study are unlikely to be suitable for monitoring rare 

habitats or species.  The prevalent species detectable in the seabed imagery were large, 

common, locally abundant species such as Flustra foliacea and Alcyonium digitatum.  Rare, 

mobile, small or cryptic species are unlikely to be captured in seabed imagery at this scale.   

Furthermore, although these methods were able to distinguish mud and sand broadscale 

habitats through interpretation of acoustic data informed by PSA of grab samples, this 

provides no insight into the infaunal communities present in these sediments.  Within the 

‘A5.2 Subtidal sand’ habitat complex there are 17 biotopes, of which 4 are found in 

circalittoral waters, while in the ‘A5.3 Subtidal mud’ habitat complex here are 33 biotopes of 

which 8 are found in circalittoral waters, but  classification to this level would require 

taxonomic analysis of sediment infauna (EUNIS, 2012).  Acoustic remote sensing can be used 

to predict the distribution of sediment biotopes in areas where there is a strong relationship 
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between backscatter signal and grain size, and between grain size and infaunal community 

(Brown and Collier, 2008), but this was not pursued in this due to insufficient ground truth 

data.    

These methods show promise for meeting statutory requirements for broadscale marine 

habitat monitoring, such as the EU Habitats Directive, Marine Strategy Framework Directive 

and Water Framework Directive (EC, 1992; EC, 2000; EC, 2008).  This legislation requires the 

extent and condition of features to be monitored.  Feature extent can be derived from 

broadscale habitat maps and if future surveys are carried out, maps produced using the 

same methods could be compared to monitor change in extent, allowing for the margin of 

error defined by the maps’ accuracy.  The seabed imagery examined in this study shows a 

fine-scale mosaic of different substrata at the interface between more extensive areas of 

reef or sediment, suggesting that sediments are mobile, which is to be expected at the 

depths and energy levels present in the study site (Brazier et al., 1998).  The remote sensing 

methods presented here could detect changes in the boundaries between broadscale 

habitats, although there is likely to be natural fluctuation in these boundaries due to wave 

action in winter storms so repeat surveys would be needed initially to determine the 

background level of natural change to inform future monitoring.  The seabed imagery also 

provides evidence of a veneer of sediment overlying functional reef in many parts of the 

study site.  Even a thin layer of sediment can soften the acoustic return and result in the area 

of seabed being classified as sediment rather than reef (Calvert et al., 2015; Lawrence et al., 

2015).  MPA management is often feature-based, with activities such as benthic trawling 

permitted on sediment habitats and prohibited on reef habitats, so the classification of 

functional reef as sediment due to an overlying veneer can result in lack of protection for the 

associated fauna (Sheehan et al., 2013).  The methods described here could be used to 

produce broadscale habitats maps from acoustic data to inform feature-based MPA 

management (Defra, 2013b), but ground truth data should be collected, at least initially, to 

determine whether sediment veneers are present and a buffer zone should be placed 

around features to allow for shifting boundaries (Halpern et al., 2010).    

Measures of the condition of subtidal reefs include the extent and distribution of biotopes 

within the reef and the total number of biotopes present (Davies et al., 2001).  The low 

accuracy of output maps and low separation distance between classes suggest that these 

methods are not recommended for monitoring change in the extent, distribution or number 
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of biotopes in areas with homogeneous environmental conditions, although their application 

in areas with greater spatial heterogeneity of depth, substratum and topography should be 

explored.  On reefs where the biological community appears to be homogeneous there may 

be subtle differences in biota that are not detectable from video surveys.  An alternative 

measure of condition could therefore be topographic complexity, which is correlated with 

biodiversity in this environment (Johnson et al., 2003; Frost et al., 2005; Kostylev et al., 

2005).  OBIA methods could be developed to segment and classify multiple layers of acoustic 

imagery and derivatives to map and monitor change in topography at different scales, 

building on previously developed pixel-based approaches to topographic feature mapping 

(Lucieer, 2007; Diesing et al., 2009).   

Although site-specific habitat classes can be locally relevant and easier to separate using 

remote sensing data, in this case the site-specific classification did not improve accuracy and 

therefore is not recommended, as maps based on existing standard classifications are better 

suited to meet statutory conservation and monitoring requirements.  The hierarchical 

structure of the biotope classification system has the benefit of enabling classification at a 

higher level if there is insufficient data to separate classes at finer levels of detail.  This was 

not applied in this study because four classes were sub-biotopes of another class so mapping 

at a higher level would have reduced the classification to three classes, one of which was 

defined by absence of visible biota.    

Although the cost of conducting full coverage MBES surveys and collecting video and grab 

sample data is high, OBIA provided a very cost-effective way of interpreting the data to 

produce maps.  Despite the need for post-classification enhancements, segmentation and 

classification of the acoustic data were performed far more quickly and reproducibly than 

could be achieved by manual interpretation of the data.  Once developed, the OBIA rule set 

can be applied to other datasets, with adjustments in threshold values and SNN feature 

space as required.   

2.5 Conclusions 

This study applied OBIA to acoustic data to produce a broadscale habitat map with high 

overall accuracy that considerably improved our understanding of the extent and 

distribution of benthic substrata.  This improved knowledge had immediate practical 

implications in terms of conservation designation and management of the study area.  This 
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demonstrates that despite challenges presented by artefacts and limited spectral resolution 

of acoustic data and by uncertainties in interpreting ground truth data, these methods can 

contribute to MPA planning and management in temperate seas.  The methods separated 

rock from sediment reliably; classification errors were rare and are likely explained by the 

observed veneer of mobile sediment overlying rock.  Sediment classification was reasonably 

accurate, but this accuracy was largely due to the observed correlation between sediment 

grade and depth at the study site rather than to detectable differences in backscatter signal.  

The reliability of sediment classifications could be improved by modifying the sampling 

strategy to ensure adequate representation of locally rare classes and collecting more grab 

samples to remove the uncertainty inherent in classifying sediments from video data.   

The low accuracy and classification stability of biological community maps produced by this 

study were due to the broad environmental niche of the dominant biota and the 

homogeneity of environmental parameters in the study area.  However, the proven ability to 

map biotic classes from acoustic data in more heterogeneous areas using pixel-based 

approaches (Brown and Collier, 2008; Holmes et al., 2008; Rattray et al., 2009) and the 

demonstrated advantages of object-based over pixel-based methods in terrestrial 

environments (Blaschke, 2010) suggest that it would be beneficial to continue to explore 

OBIA methods for mapping benthic biota.  Future studies conducted in areas with greater 

heterogeneity of abiotic variables and demonstrable correlation between those variables 

and the distribution of species communities can compare the performance of different OBIA 

classification algorithms, assess the benefits of using imagery with higher spatial and/or 

spectral resolution and evaluate the potential of contextual data to improve classification 

accuracy, where suitable data exist.          

While demonstrating that object-based analysis of acoustic imagery can inform marine 

spatial planning at a coarse thematic scale, this study has provided essential insight into 

multiple factors affecting the reliability of methods for producing and validating habitat 

maps, which should inform both future research and practical applications of these 

methods.     
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Chapter 3: Measuring intertidal reef rugosity using structure-from-motion 
photogrammetry and UAV imagery 

3.1 Introduction 

Relationships between benthic habitat physical structural complexity and biodiversity in the 

marine environment have been established by a number of studies on habitats including 

coral reefs (Graham and Nash, 2013), algal and seagrass beds (Gratwicke and Speight, 2005), 

mangrove forests (MacKenzie and Cormier, 2012), intertidal and subtidal rock reefs (Johnson 

et al., 2003; Frost et al., 2005; Kostylev et al., 2005; Meager et al., 2011; Medeiros et al., 

2011) and artificially engineered habitats (Hunter and Sayer, 2009; Borsje et al., 2011; Firth 

et al., 2014).  Relationships vary depending on the habitat and species under investigation, 

but the majority of studies report a positive correlation between habitat structural 

complexity and species richness and/or abundance (Beck, 2000; Schlacher et al., 2007; 

Wilson et al., 2007b; Matias et al., 2010; St Pierre and Kovalenko, 2014; Newman et al., 

2015; Trebilco et al., 2015).  Mechanisms driving this correlation are incompletely 

understood but include the influence of structural complexity on water and sediment 

movement, light availability, protection from predation and surface area for attachment, 

factors which are likely to operate in combination and at multiple spatial scales (Kovalenko 

et al., 2012).  Structural complexity is used as an abiotic surrogate in species distribution 

modelling (Pittman et al., 2009; Pittman and Brown, 2011), predictive habitat mapping 

(Wilson et al., 2007a), ecological monitoring (Murray et al., 2001; Hill and Wilkinson, 2004) 

and marine spatial planning (Banks and Skilleter, 2007; McArthur et al., 2010). 

Various methods have been developed with the aim of measuring structural complexity in a 

standard, repeatable way at ecologically relevant scales.  These include visual assessment 

(Wilson et al., 2007b), counting and measuring refugia (Menard et al., 2012), using a falling-

rod gauge to record the profile of the contoured surface (Underwood and Chapman, 1989) 

and using a chain (Risk, 1972), distance-wheel (Wilding et al., 2010) or laser (Lambert, 2012) 

to record the length of the contoured surface.  Indices generated to characterise terrain 

complexity from surface measurements include root mean square difference in height 

between sequential measurements or the angular standard deviation of vectors along a line 

(McCormick, 1994), scale-invariant fractal dimensions (Kostylev et al., 2005) and linear 

rugosity derived from the ratio of the contoured surface to a horizontal straight line distance 

(Risk, 1972; Luckhurst and Luckhurst, 1978).  Comparative studies have found varying levels 
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of correlation between different methods of measuring structural complexity (McCormick, 

1994; Beck, 1998; Frost et al., 2005; Leon et al., 2015).  Manual methods of taking surface 

measurements are labour-intensive and restricted to accessible areas such as intertidal or 

shallow subtidal reefs.  Measurements are limited to a single scale defined by the length and 

link size of a chain or the length and rod size of a profile gauge.  Furthermore, manual 

methods require contact with the seabed and could cause environmental damage.   

Remote sensing techniques enable the creation of three-dimensional topographic models of 

the seabed or shore without risk of harm to benthic communities.  Indices of structural 

complexity can be derived from these models at far greater sampling density than could be 

achieved from manual measurements.  Remotely sensed models also enable the generation 

of more sophisticated indices than could be easily derived from manual measurements, such 

as root mean square of heights within a planar area (Leon et al., 2015), ratio of contoured 

surface area to horizontal planar area (Jenness, 2004) and two- and three-dimensional arc-

chord ratios (Du Preez, 2015).  Techniques such as sonar, LiDAR and terrestrial laser scanning 

(TLS) are widely used to generate three-dimensional models of marine and coastal 

environments, but data capture is expensive and data processing requires specialist software 

and expertise.  Although topographic complexity can be characterised from sonar or LiDAR 

data at coarse scales over large areas, the resolution of processed imagery is too low to 

resolve finer scale rugosity (Zawada and Brock, 2009; Zawada et al., 2010).  Digital 

photogrammetry enables the reconstruction of scene geometry from overlapping 

photographs, providing a relatively low-cost and accessible method of producing high 

resolution topographic models.  While acoustic or laser surveys capture only the physical 

characteristics of the landscape, photogrammetry combines spectral and geometric 

information to create a photorealistic model which could be used in ecological analyses, for 

example to assess the extent, distribution and condition of algal and sessile faunal 

communities and their relationship with topographic features. 

Traditional photogrammetric techniques used trigonometric equations to calculate the 

location of points in an image from the known locations of the camera(s) (Baily et al., 2003).  

Early applications of stereo photogrammetry in the intertidal environment produced 

topographic complexity indices that correlated with species density at scales of habitat 

patches  (Beck, 1998) and whole sites (Guichard et al., 2000), but Frost et al. (2005) found 

stereo photogrammetry more error-prone than manual methods of taking surface 
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measurements, leading to overestimation of rugosity on smooth surfaces.  The more recent 

development of Structure-from-Motion (SfM) photogrammetry enables the geometry of a 

scene to be resolved from overlapping photographs without the prior specification of 

camera positions and ground target coordinates (Snavely et al., 2008).  To enable their use in 

geoscience applications, models created by SfM photogrammetry can be georeferenced by 

aligning points in the imagery with features of known coordinates, which can be facilitated 

by deploying high contrast physical targets (Ground Control Points) within the survey area 

prior to image collection (Westoby et al., 2012; Micheletti et al., 2015).  A range of open 

source and low-cost commercial software packages are available, enabling users to create 

3D models from photographs captured by consumer grade cameras without the need for 

specialist skills (Remondino et al., 2012).   

As with all remote sensing techniques, there is a trade-off between spatial resolution and 

extent of coverage.  Close-range (< 5m) photogrammetry has been applied in marine 

environments to produce topographic models of small areas (< 500m2) from which rugosity 

indices can be derived (Friedman et al., 2012; He et al., 2012; Burns et al., 2015; Figueira et 

al., 2015; Leon et al., 2015) and measurements of benthic organisms recorded (Courtney et 

al., 2007; Lavy et al., 2015).  Only three of the above studies compared rugosity indices 

derived from models with those derived from manual measurements; Friedman et al. (2012) 

and Figueira et al. (2015) both observed that photogrammetric measurements 

underestimated rugosity compared to manual measurements, while He et al. (2012) found 

no significant difference between measurements. 

To cover a  larger area, SfM photogrammetry has been applied to imagery captured by 

unmanned aerial vehicle (UAV) to create georeferenced topographic models for purposes 

including forest biomass monitoring (Mlambo et al., 2017), assessing earthquake damage to 

urban areas (Menderes et al., 2015) and informing hydrographic modelling in fluvial 

(Javernick et al., 2014; Woodget et al., 2016), agricultural (Ouedraogo et al., 2014) and polar 

environments (Lucieer et al., 2014; Rippin et al., 2015).  SfM photogrammetry of UAV 

imagery has been tested in coastal and estuarine environments, demonstrating the potential 

of these methods for monitoring erosion of sediment habitats (Harwin and Lucieer, 2012; 

Mancini et al., 2013; Goncalves and Henriques, 2015; Ierodiaconou et al., 2016) but to date 

the technique has not been evaluated as a means of recording the rugosity of intertidal 

reefs. 
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This study aims to evaluate SfM photogrammetry of ultra-high resolution multispectral UAV 

imagery as a method for quantifying rugosity by conducting an experimental study on a 

temperate intertidal reef.  Specific objectives are (1) to produce topographic models of the 

shore under different processing parameters and in different formats (point cloud and digital 

elevation model) to assess the influence of these factors on processing time and quality of 

output, (2) to assess the vertical accuracy of all models by comparison with ground truth 

data, (3) to compare linear rugosity indices derived from the models with indices derived 

from manual measurements using the chain-and-tape method (Risk, 1972), applying 

statistical tests to evaluate the consistency of indices generated by photogrammetric and by 

manual methods.  The cost, time and ease of use of both methods will also be compared. 

3.2 Methods 

3.2.1 Study site 

The study was conducted at Kettleness headland, North Yorkshire, UK (54° 32.050’ N, 0° 

42.800’ W) (Figure 3.1) because of this site’s high topographic diversity and conservation 

interest.   

 
Figure 3.1: Map showing the location of Kettleness headland and (inset) the boundary of Runswick 
Bay Marine Conservation Zone.  Contains Ordnance Survey data © Crown copyright and database 
right (2018). 
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Kettleness lies within Runswick Bay Marine Conservation Zone which was designated in 

January 2016 under the UK’s Marine and Coastal Access Act 2009 to maintain a number of 

features including intertidal rock in favourable condition.  The intertidal area consists of a 

~300m wide wave-cut platform of Cleveland ironstone at the base of 80m to 100m high cliffs 

comprising deposits of grey shale and alum shale capped by carboniferous sandstone.  The 

site’s topography was heavily modified by alum production and jet mining in the 18th and 

19th centuries and continues to be affected by landslips (Miller, 2002; Jecock et al., 2003).  As 

a result, the stepped bedrock of the upper shore is strewn with large boulders deposited by 

quarrying and cliff falls, while the lower shore is cut by gullies and channels, some naturally 

occurring and some man-made to aid the transport of quarried materials or the run-off of 

waste products from alum processing. 

Kettleness is a north-facing headland, exposed to prevailing wind and wave action.  Due to the 

high exposure, the fucoid canopy is reduced and the mid-shore dominated by turf-forming red 

seaweeds, predominantly Osmundea pinnatifida and Corallina officinalis, while the upper 

shore is dominated by dense communities of the barnacle Semibalanus balanoides.  Tides are 

diurnal with a mean tidal range of 4.8m on spring tides and 2.4m on neap tides.   

3.2.2 Aerial imagery acquisition 

Ultra-high resolution aerial imagery was collected during a low spring tide on the 3rd July 

2015 using a senseFly eBee UAV (www.sensefly.com/drones/ebee).  The eBee is a fixed wing 

UAV weighing 0.7kg with a 0.96m wingspan.  Flights were pre-programmed using senseFly’s 

ground station software eMotion 2 to collect imagery of the study site at 0.04m ground 

sampling distance with 60% lateral overlap and 75% forward overlap between images.  The 

flight plan consisted of perpendicular intersecting flight lines to maximise image overlap and 

reduce the impact of crosswinds on image acquisition.  Two flights were conducted using the 

eBee’s onboard GPS to follow the flight plan, each flight lasting eleven minutes.  On the first 

flight, a Canon IXUS 127 HS 16.1 megapixels camera was used to capture red-green-blue 

(RGB) imagery (390nm to 700nm).  On the second flight a Canon Powershot ELPH 110 HS 

16.1 megapixels camera was used to capture red edge imagery (680nm to 750nm).  The 

eBee’s flight recorder logged the time of image capture, horizontal and vertical location (x, y, 

z) and rotation angle (pitch: ω, roll: φ and yaw: κ) of the sensor for every image.  A summary 

of image acquisition is provided in Table 3.1.   
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Table 3.1: Flight and imagery details of UAV surveys conducted in Runswick Bay on 3rd July 2015 

Camera 
Flight times 
(GMT+1) 

Tide height above 
Chart Datum (m) 

Number of 
images 

Survey Area 
(km2) 

Mean Ground 
Sampling 
Distance (m) 

Canon IXUS 127 HS 
RGB 

11:49 – 12:00 0.78 – 0.79 113 0.2246 0.0392 

Canon Powershot 
ELPH 110 Red Edge 

12:23 – 12:34 0.88 – 0.97 133 0.1988 0.0346 

There was no cloud cover during either flight, so lighting conditions were as consistent as 

possible.  The flights were carried out close to midday (Table 3.1) to minimise the impact of 

shadows in the imagery.   

Seven ground control points (GCPs) consisting of 0.5m x 0.5m squares marked with a white 

cross on a black background were distributed throughout the survey area and remained in 

place during both flights.  The horizontal and vertical coordinates at the centre of each GCP 

were logged using a Leica Viva GS10 high-precision receiver (Leica Geosystems), which 

recorded one observation per second for three minutes.  The logged coordinates were 

differentially corrected in Leica Geo Office software (Leica Geosystems) using reference data 

from the Global Navigation Satellite System (GNSS) base station network downloaded from 

Leica’s SmartNet website (http://uk.smartnet-eu.com/) in RINEX format.  The processed 

coordinates had a horizontal and vertical accuracy of between 0.001m and 0.003m.  The 

same method was used to collect and process coordinates at an additional 162 points 

distributed throughout the survey area to provide a dataset for validating the vertical 

accuracy of 3D models. 

The images were processed using PostFlight Terra 3D software (senseFly) to create 

orthomosaics and digital elevation models (DEM) for both flights at 0.04m resolution.  The 

georeferencing RMS error was 0.011m for the RGB orthomosaic and 0.006m for the red 

edge orthomosaic.  ArcGIS v.10.3 (ESRI) was used to clip all the raster layers to the same 

boundary to remove cliffs and sea, leaving only the intertidal area (Figure 3.2).    
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Figure 3.2: Orthomosaic of the intertidal area of Kettleness produced by SfM photogrammetry of RGB 
imagery and clipped to remove sea and cliffs. 

3.2.3 Manual surface measurements 

Object-based image analysis was used to define a stratified random sampling protocol for 

the collection of rugosity measurements.  eCognition Developer v.9.0.3 produced a 

chessboard segmentation of the DEM at 255 pixel scale, creating 1,923 10m x 10m square 

objects.  These objects were exported to ArcGIS with the attribute value of standard 

deviation of elevation values within each object.  This value was used to divide the dataset 

into five quantiles to produce five classes of rugosity from least rugose (standard deviation 

of elevation: 0 to 0.064) to most rugose (standard deviation of elevation: 0.262 to 3.313) 

(Figure 3.3).   
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Figure 3.3: Overview of stratified random sampling method showing the location of the 50 target 
sample points against the grid produced by chessboard segmentation of the digital elevation model 
and categorised based on standard deviation of elevation values within each object. 

A random number generator was used to select ten squares from each of the five rugosity 

classes, creating fifty target sampling points located at the centroid of each randomly 

selected 10m x 10m square (Figure 3.3).  Linear surface measurements were collected during 

low spring tides on the 24th, 25th and 26th March 2016 using the ‘chain-and-tape’ method.  A 

5m long chain with 0.04m links was used to match the spatial resolution of the imagery.  At 

each sampling point, the chain was laid either north-south or east-west, whichever direction 

was deemed to give the best representation of the rugosity class being sampled.  If 

rockpools or overhangs occurred along the transect, their contours were followed as closely 

as possible with the chain and their presence was noted on a recording form.  The 

coordinates of the start and end point of each transect were logged using a Leica Viva GS10 

high-precision receiver and post-processed as described above.  The distance between the 

start and end point of the transect was measured on a horizontal plane using a tape 

measure.  Every transect was photographed. 
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3.2.4 Creation and validation of 3-dimensional models 

To create georeferenced 3D models from the UAV imagery, structure-from-motion 

photogrammetric processing was carried out in PhotoScan Professional v. 1.3.0 (Agisoft), 

because it is widely used commercial stand-alone software with a practical user interface.  

The following photogrammetric processes were applied to the imagery from the first flight 

(RGB), the imagery from the second flight (red edge) and to the combined imagery from 

both flights.  The coordinate system was defined as WGS84 / UTM zone 30N and the sensor 

position data (x, y, z, ω, φ, κ) from the eBee’s flight log were used to aid the initial photo 

alignment process.  The horizontal and vertical coordinates of the GCPs were then used to 

optimise triangulation and improve the accuracy of the georeferenced outputs.  Place 

markers were automatically added to all photographs containing the GCP coordinates (60 

photographs from flight 1 and 61 photographs from flight 2).  Manual adjustments were 

made to align the place marker in each photograph with the centre of the cross marked on 

the GCP.  The PhotoScan workflow for building a dense point cloud from the imagery 

enables users to select pre-set quality parameters defined by the level of compression of the 

original photographs (lowest, low, medium, high, ultra-high) and different strengths of depth 

filtering, i.e. the removal of points which appear to be outliers (disabled, mild, moderate, 

aggressive).  The quality parameters used in this study were medium (images compressed to 

25% of their original size), high (images compressed to 50% of their original size) and ultra-

high (no compression applied).  The depth filtering parameters used were aggressive, which 

is least tolerant of outliers and therefore removes the largest number of points, moderate, 

which is more tolerant of outliers, and mild, which is the most tolerant of outliers and 

therefore removes the smallest number of points.  Nine dense point clouds were created for 

each of the three sets of imagery using every combination of medium, high and ultra-high 

quality and mild, moderate and aggressive depth filtering.  The results were exported as 

georeferenced LAS files.  Vertical accuracy of each model was validated by comparing the 

elevation measured by GNSS equipment at the 162 sampling points with the elevation (z) 

value of the point cloud at the same coordinates and calculating root-mean-square error 

(RMSE) from the differences.  RMSE was chosen as a standard measure of accuracy because 

it is an easily understood metric which is widely used when the ground truth data consist of 

points rather than a continuous surface (Harwin and Lucieer, 2012). 
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3.2.5 Generation and comparison of rugosity indices 

Linear rugosity indices were calculated using the formula 

𝑅𝑐ℎ𝑎𝑖𝑛 = 
𝐿𝑐ℎ𝑎𝑖𝑛

𝐷𝑐ℎ𝑎𝑖𝑛
 

in which Lchain is the length of the contoured surface and Dchain is the horizontal straight line 

distance between the start and end points of the contoured surface.  Rchain was therefore 

calculated from the manual measurements by dividing the chain length (5 m) by the 

horizontal distance measured by tape measure. 

In order to derive rugosity indices from the 3D models, a polyline shapefile was created in 

ArcGIS using the post-processed coordinates for the start and end points of the 50 transects.  

The straight line distance between each set of points was measured using the Calculate 

Geometry command to provide a virtual value for Dchain.  The Add Surface Information tool 

in the 3D Analyst toolbox was used to calculate Lchain values for the 50 transects from each 

of the 3D models.  Rchain values were calculated from these virtual measurements as 

described above.  Rchain values derived from photogrammetry were compared to those 

derived from manual measurements and RMSE was calculated from the differences.  A 

Wilcoxon signed-rank test (Wilcoxon, 1945) was conducted to determine whether the 

indices derived from photogrammetry were significantly different to those derived from 

manual measurements. This test was used because the data are paired but not normally 

distributed and met the assumptions of the test.  Digital Elevation Models (DEMs) were then 

produced in PhotoScan from the dense point clouds with the lowest RMSE rugosity values 

for each of the three sets of imagery.  Rugosity indices were derived from the DEMs using 

the same methods described above.   

3.3 Results 

3.3.1 Vertical accuracy 

Comparison of elevation values between the models and the 162 ground points measured 

with GNSS produced RMSE values ranging from 0.061m to 0.128m.  Accuracy increased with 

increasing point density, with the ultra-high quality parameter producing point clouds with 

the highest vertical accuracy in all but one case, namely the model produced from RGB 

imagery with mild depth filtering (Figure 3.4).  Differences between vertical RMSE produced 
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by different depth filtering parameters were in the order of millimetres; mild depth filtering 

produced highest RMSE values in the ultra-high point density models, but aggressive depth 

filtering produced highest RMSE values at medium and high point densities.  Vertical RMSE 

values of DEMs were within millimetres of the vertical RMSE values of the ultra-high quality 

point clouds from which they were created (Figure 3.4). 

 
Figure 3.4: Vertical RMSE values of point clouds produced using different combinations of point 
density and depth and DEMs produced from the point cloud with the lowest RMSE rugosity value in 
each of the three sets of imagery.  RMSE values were produced by comparing elevation values derived 
from the 3D models with elevation values measured by GNSS (n = 162).  
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The vertical difference between elevation values derived from photogrammetry and those 

measured using GNSS are shown for the model with the lowest vertical RMSE produced from 

each set of imagery (Figure 3.5).  Values are distributed evenly around zero for the model 

derived from the RGB imagery, while the values derived from the red edge imagery are 

positively skewed, i.e. elevation values derived from the model tend to be higher than those 

measured using GNSS.  The vertical accuracy of models produced by combining the imagery 

from both flights was on a par with that of models produced from the RGB imagery alone.  

 

 
Figure 3.5: Vertical difference between elevation values derived from point clouds and those 
measured using GNSS for the models with the lowest vertical RMSE values produced from each set of 
imagery (n = 162) 

3.3.2 Comparison of photogrammetric and manual rugosity measurements 

Comparison of rugosity indices values derived from the models with those measured 

manually produced rugosity (Rchain) RMSE values ranging from 0.044 to 0.077 and surface 

length (Lchain) RMSE values ranging from 0.189m to 0.325m (Table 3.2), which represents 

3.8% to 6.5% of the 5m sampling distance.  Consistency between photogrammetric and 

manual rugosity measurements increased with increasing point density, but the choice of 

depth filtering parameter did not appear to have a consistent influence; the models with 

lowest Rchain RMSE values for RGB, red edge and combined imagery were produced by 

moderate, aggressive and mild depth filtering respectively (Figure 3.6).  Increasing the 
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number of photographs by combining the imagery from both flights did not appear to 

increase correlation between photogrammetric and manual rugosity measurements. 

 
Figure 3.6: Rugosity RMSE values of point clouds produced using different combinations of point 
density and depth and DEMs produced from the point cloud with the lowest RMSE rugosity value in 
each of the three sets of imagery.  RMSE values were produced by comparing Rchain values derived 
from the 3D models with Rchain values measured manually using the chain-and-tape method (n = 50). 

There was a significant difference between rugosity indices derived from manual 

measurements and those derived from medium and high quality point clouds (Wilcoxon 

signed rank p < 0.001) or from ultra-high quality point clouds with mild depth filtering of RGB 
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imagery (Wilcoxon signed rank p < 0.01) and red edge imagery (Wilcoxon signed rank p < 

0.05) (Table 3.2).  The vertical RMSE and Rchain RMSE values of DEMs are comparable with 

the RMSE values of the ultra-high quality point clouds from which the DEMs were produced, 

but there was a significant difference between rugosity indices derived from DEMs and 

those derived from manual measurements (Wilcoxon signed rank p < 0.001).    
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Table 3.2: Table of point density, vertical RMSE, rugosity RMSE and Wilcoxon signed-rank test results 
for 27 point clouds and 3 DEMs produced using different combinations of quality and depth filtering 
parameters in PhotoScan 

Camera 

Point 
cloud 
quality  

Point cloud 
depth 
filtering 

Mean 
point 
density 
(m-3) 

Vertical 
RMSE 
(m) 

Dchain 
RMSE 
(m) 

Lchain 
RMSE 
(m) 

Rchain 
RMSE 

Significant 
difference 
between 
photogrammetric 
and manual Rchain 
values 

Canon 
IXUS 127 
HS (RGB) 

Medium Mild 43 0.079 0.050 0.312 0.074 Yes (p < 0.001) 

Moderate 43 0.080 0.050 0.319 0.076 Yes (p < 0.001) 

Aggressive 43 0.082 0.050 0.320 0.076 Yes (p < 0.001) 

High Mild 173 0.065 0.050 0.268 0.064 Yes (p < 0.001) 

Moderate 175 0.064 0.050 0.282 0.067 Yes (p < 0.001) 

Aggressive 176 0.065 0.050 0.293 0.069 Yes (p < 0.001) 

Ultra-
high 

Mild 698 0.072 0.050 0.223 0.053 Yes (p < 0.01) 

Moderate 706 0.063 0.050 0.207 0.047 No 

Aggressive 719 0.061 0.050 0.226 0.052 No 

 
Ultra-
high 

Moderate DEM 0.061 0.050 0.25 0.058 Yes (p < 0.001) 

Canon 
Powershot 
ELPH 110 
(Red Edge) 

Medium Mild 56 0.125 0.050 0.300 0.075 Yes (p < 0.001) 

Moderate 56 0.125 0.050 0.321 0.077 Yes (p < 0.001) 

Aggressive 56 0.128 0.050 0.324 0.077 Yes (p < 0.001) 

High Mild 223 0.102 0.050 0.283 0.067 Yes (p < 0.001) 

Moderate 224 0.102 0.050 0.283 0.067 Yes (p < 0.001) 

Aggressive 228 0.103 0.050 0.306 0.072 Yes (p < 0.001) 

Ultra-
high 

Mild 909 0.093 0.050 0.298 0.066 Yes (p < 0.05) 

Moderate 923 0.089 0.050 0.254 0.059 No 

Aggressive 936 0.089 0.050 0.244 0.057 No 

 
Ultra-
high 

Aggressive DEM 0.089 0.050 0.264 0.062 Yes (P < 0.001) 

Combined 
imagery 

Medium Mild 54 0.089 0.050 0.315 0.075 Yes (p < 0.001) 

Moderate 55 0.089 0.050 0.325 0.077 Yes (p < 0.001) 

Aggressive 55 0.090 0.050 0.320 0.076 Yes (p < 0.001) 

High Mild 219 0.072 0.050 0.283 0.068 Yes (p < 0.001) 

Moderate 222 0.072 0.050 0.307 0.073 Yes (p < 0.001) 

Aggressive 224 0.073 0.050 0.285 0.068 Yes (p < 0.001) 

Ultra-
high 

Mild 883 0.066 0.050 0.189 0.044 No 

Moderate 897 0.062 0.050 0.251 0.058 No 

Aggressive 915 0.064 0.050 0.208 0.049 No 

 
Ultra-
high 

Mild DEM 0.067 0.050 0.252 0.058 Yes (p < 0.001) 

The rugosity indices derived from point clouds were higher than those derived from manual 

measurements for 64% (RGB), 65% (red edge) and 68% (combined imagery) of the samples 

(Figure 3.7).  In contrast, the indices derived from DEMs were lower than those derived from 

manual measurements for 73% (RGB), 76% (red edge) and 80% (combined imagery) of the 

samples.  In both cases, photogrammetric measurements were increasingly lower than 
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manual measurements at higher rugosity index values.    

 

Figure 3.7: Rugosity indices derived from photogrammetry against those derived from manual 
measurements for the three point clouds with the lowest rugosity RMSE values and the three DEMs 
produced from those point clouds (n = 50).  The dashed line is the line of best fit and the grey 
unbroken line represents 1:1 correspondence. Transects at which overhangs were present are 
highlighted in red on the bottom left plot only.   

Three transect profiles derived from point clouds and DEMs illustrate inconsistencies in 

surface contours derived from different sets of imagery (which can lead to over- or 

underestimation of rugosity), and the ‘smoothing’ effect of DEMs which leads to 

underestimation of rugosity. 
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Figure 3.8: Profiles of three 5m transects showing the contoured surface derived from ultra-high 
density point clouds and DEMs created from RGB, Red Edge and combined imagery. 

Transect A 

Transect C 

Transect B 
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Lchain, Dchain and Rchain values derived from manual and photogrammetric measurements for 

three transects (Figure 3.8) illustrate the variation in surface contours derived from different 

imagery and file formats, which caused the inconsistency between photogrammetric and 

manual rugosity measurements (Figure 3.7 and Table 3.3).  However, despite this 

centimetre-scale variability in surface contours, decimetre-scale terrain features such as 

ridges, steps and channels were consistently identified (Figure 3.8).          

Table 3.3: Lchain, Dchain and Rchain values for the three 5m transects shown in Figure 3.8 

Transect Rugosity index derived from: 
Lchain 
(m) 

Dchain 
(m) Rchain 

Difference between 
photogrammetric and 

manual Rchain 
measurements 

A Chain-and-tape 5.000 4.520 1.106  

 Point Cloud RGB 5.007 4.548 1.101 -0.5% 

  Red Edge 5.212 4.548 1.146 3.6% 

  Both 5.032 4.548 1.106 0.0% 

 DEM RGB 4.852 4.548 1.067 -3.5% 

  Red Edge 4.902 4.548 1.078 -2.6% 

    Both 4.890 4.548 1.075 -2.8% 

B Chain-and-tape 5.000 4.510 1.109  

 Point Cloud RGB 5.038 4.586 1.099 -0.9% 

  Red Edge 5.183 4.586 1.130 1.9% 

  Both 5.075 4.586 1.107 -0.2% 

 DEM RGB 4.918 4.586 1.072 -3.3% 

  Red Edge 4.957 4.586 1.081 -2.5% 

    Both 4.911 4.586 1.071 -3.4% 

C Chain-and-tape 5.000 4.030 1.241  

 Point Cloud RGB 4.571 3.982 1.148 -7.5% 

  Red Edge 4.606 3.982 1.157 -6.8% 

  Both 4.658 3.982 1.170 -5.7% 

 DEM RGB 4.390 3.982 1.103 -11.1% 

  Red Edge 4.360 3.982 1.095 -11.7% 

    Both 4.426 3.982 1.112 -10.4% 

Transect lengths (Dchain) measured by tape measure were systematically higher than those 

measured by GNSS (Figure 3.9). 
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Figure 3.9: Differences between horizontal distance between the start and end point of transects 
measured by GNSS and by tape measure (n = 50) 

3.4 Discussion 

3.4.1 Evaluation of topographic models 

This study was the first to evaluate SfM photogrammetry of UAV imagery as a method for 

quantifying rocky shore rugosity.  Production of topographic models under different 

processing parameters showed that compression of source imagery had a considerable 

negative impact on accuracy.  Image compression is desirable to increase processing speed 

and reduce the size of the output models, but the results of this study suggest that image 

compression should not be applied if the models need to faithfully represent fine-scale 

topographic detail.  In contrast, depth filtering did not appear to affect accuracy significantly 

or in a consistent way.  The aim of depth filtering is to reduce ‘noise’ in topographic models 

by eliminating outlier points above or below the connected surface, mild depth filtering is 

recommended for scenes with a lot of vertical variation and aggressive depth filtering for 

scenes with relatively smooth topography (Agisoft LLC, 2017).  Aggressive depth filtering 

produced more accurate results with the red edge imagery, but the models derived from this 

imagery had lower accuracy overall than the models derived from RGB or combined imagery 

and the transect profiles showed that there is a lot of ‘noise’ in the red edge imagery.  It is 

therefore likely that aggressive filtering was necessary with this dataset, but that mild or 

moderate depth filtering would be a more appropriate choice for modelling rocky shores 
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which often have high vertical variation due to the presence of boulders and channels, as 

was the case here.   

The analysis also showed that file format affects model accuracy.  Although DEMs had 

comparable vertical accuracy to the ultra-high point cloud from which they were created, 

the rugosity RMSE values of DEMs were higher than those of their source point clouds and 

DEMs were shown to under-estimate rugosity by ‘smoothing’ the fine topographic detail 

captured in the point clouds.  DEMs are more widely used than point clouds or triangular 

irregular networks (TINs) in spatial ecology and geoscience applications due to advantages 

including faster processing speed, data availability and more consistent, comparable 

outputs, but surface area measurements derived from DEMs tend to be lower and less 

accurate than those derived from vector data (Jenness, 2004).  Until recently, DEMs were 

the only format in which topographic data could be interpreted using object-based image 

analysis (OBIA), but recent developments in commercial software will in future enable the 

analysis of point clouds using OBIA (Blaschke and Tomljenovic, 2017).  Although this novel 

technology was not available at the time of this investigation, these results suggest that it 

would be beneficial for future studies to evaluate the use of OBIA with point clouds derived 

from photogrammetry for marine habitat mapping.  

Comparison with ground truth data showed that all the topographic models had a high level 

of vertical accuracy.  RMSE vertical accuracy values ranged from 0.061m to 0.128m, and the 

mean vertical accuracy for the models created without compressing the source imagery was 

0.07m ± 0.01m.  These results compare favourably with those of other studies which applied 

SfM photogrammetry to UAV imagery in different environments, achieving vertical RMSE of 

0.021m – 0.171m (Harwin and Lucieer, 2012), 0.038m – 0.046m (Goncalves and Henriques, 

2015), 0.11m (Mancini et al., 2013), 0.139m (Ouedraogo et al., 2014) and 0.29m (Hugenholtz 

et al., 2013).  Harwin and Lucieer (2012) demonstrate that the density of GCPs has a major 

influence on vertical accuracy, but there are several other methodological differences 

between these studies which could affect vertical accuracy, such as ground sampling 

distance, type of camera (compact/DSLR), capture of oblique imagery, image overlap and 

resolution and format of processed data.  The results also compare favourably with the 

vertical accuracy achieved by LiDAR surveys, for example 0.17m to 0.26m (Hodgson and 

Bresnahan, 2004) or 0.03m to 0.25m (Hladik and Alber, 2012). 
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Despite the high vertical accuracy achieved in this investigation, no correlation was found 

between rugosity indices derived from manual measurements and those derived from any of 

the topographic models except for the point clouds created with no compression of source 

imagery.  No previous study has compared long-range photogrammetry with manual 

methods for calculating rugosity indices, but these findings corroborate studies of close-

range photogrammetry which report a tendency for photogrammetric measurements to 

under-estimate rugosity compared to manual or laser-scanning methods (Friedman et al., 

2012; Figueira et al., 2015) and to overestimate rugosity at low rugosity values (Frost et al., 

2005).  However, inconsistencies between manual and photogrammetric measurements of 

rugosity may also be due to sources of error in the manual measurements, which are 

discussed below.  

3.4.2 Sources of error and uncertainty 

Although manual ‘chain-and-tape’ measurements were used as reference values for 

comparison with photogrammetric measurements, sources of error and uncertainty in this 

method are likely to have contributed to the observed inconsistencies between 

measurements.  The observed differences between manual and photogrammetric transect 

lengths (Dchain) could be caused by not holding the tape measure completely taut or level.  

This is likely to be a major contributing factor to the 0.05m RMSE Dchain values (Table 3.2).  

Other potential sources of discrepancy between manual and photogrammetric 

measurements include failing to lay the chain in a perfectly straight line and allowing an 

open-linked chain to bunch up under its own weight, both of which lead to overestimation of 

rugosity (Friedman et al., 2012). 

A benefit of the chain-and-tape method is the ability to capture overhanging areas provided 

that they are small enough to be accessible and that care is taken to follow their contours 

when laying the chain.  Overhangs were present on 18 of the 50 transects (Figure 3.7, 

bottom left plot), the majority of which consistently had lower rugosity indices derived from 

photogrammetry than from manual measurements.  This is likely to be a source of 

inconsistency between manual and photogrammetric measurements in this study.        

3.4.3 Methodological improvements 

Accuracy and precision of terrain models derived from UAV photogrammetry can be 

improved by reducing ground sampling distance, obtaining oblique as well as nadir imagery 
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and increasing GCP density (Harwin and Lucieer, 2012; Micheletti et al., 2015).  Future 

studies could evaluate whether these methodological adjustments improve the consistency 

between manual and photogrammetric rugosity measurements, and at what cost in terms of 

data collection and processing time.  A critical limitation of UAV photogrammetry for 

evaluating rugosity which is unlikely to be overcome by improvements in sensor technology 

is the difficulty of capturing overhangs.  Flying at lower altitude and capturing oblique 

imagery may help to some extent, but for complex sites a combination of long-range and 

short-range photogrammetry may be the best way to capture topographic detail. 

Linear indices were used in this study for pragmatic reasons, but rugosity is not isotropic and 

2-dimensional indices are not the best way of measuring 3-dimensional topographic 

heterogeneity.  Frost et al. (2005) recommend making as many chain-and-tape 

measurements as logistically feasible to compensate for this.  Furthermore, the appropriate 

scale for measuring topographic complexity varies with the species or system being studied 

(McCormick, 1994; Beck, 1998) so multiple metrics of topographic complexity often have to 

be combined (Gratwicke and Speight, 2005; Wilson et al., 2007b).  This comparison of linear 

rugosity indices provides useful insight into levels of consistency between photogrammetric 

and manual measurements and into the optimum parameters for producing 3D models from 

UAV imagery for assessing rugosity.  With this understanding, more sophisticated and robust 

techniques can be applied to 3D models to derive rugosity indices relevant to the ecological 

question being studied.  At the simplest level, multiple linear measurements at different 

scales and in different directions could be taken in order to represent 3D rugosity, achieving 

a sampling density that would not be possible using manual techniques.  Other measures 

could include calculating scale-invariant fractal dimensions, root mean square height or the 

index between surface area and projected planar area (Leon et al., 2015) or calculating 2- or 

3-dimensional rugosity indices in which rugosity is decoupled from slope by projecting the 

surface onto a plane of best fit (Friedman et al., 2012; Du Preez, 2015) 

3.4.4 Cost, time and ease of use 

The cost of a senseFly eBee equipped with cameras and flight planning and image processing 

software ranged from GBP 19,800 – 22,200 in 2017.  However, a range of portable aerial 

platforms are available to suit different budgets, and include balloons and kites as well as 

remotely-controlled or pre-programmed fixed wing or rotary UAVs (Colomina and Molina, 

2014; Klemas, 2015) so the methods described here could be adapted to lower cost 



Chapter 3: Measuring intertidal reef rugosity using structure-from-motion photogrammetry and UAV imagery 

96 

 

platforms.  Fonstad et al. (2013) found that SfM photogrammetry of imagery captured by a 

hand-held helikite flown at 10m – 70m generated digital elevation models with vertical 

accuracy of 0.07m ± 0.15m which is comparable with the results of this study, although they 

do not attempt to derive surface complexity from the models. 

This investigation used professional-grade GNSS survey equipment, specialist software for 

differential correction and a SmartNet user license, which together may be beyond the 

budget of some potential users.  The majority of studies into applications of UAVs for 

topographic modelling use similar professional-grade equipment with either real time 

kinematic processing or post-processing, but Bryson et al. (2013) used a consumer-grade 

hand-held GPS to record ground control locations, reporting low ‘global accuracy’ with 

residual errors of over 1m relative to absolute coordinates, but high ‘local accuracy’ with 

errors of just a few cm relative to other points in the model.  Accurate georeferencing 

relative to an absolute coordinate system was necessary in this study to ensure like-for-like 

comparison of rugosity measurements, but for some applications good ‘local’ accuracy 

would suffice, removing the need for high-cost GNSS equipment.     

Although the two flights lasted only eleven minutes each, the complete process of collecting 

aerial imagery, including flight programming, distributing GCPs, downloading data between 

flights, took a team of four people around three hours.  The process of manually aligning 

images with GCP coordinates took around one hour per set of imagery, based on seven GCPs 

present in at least seventy images per flight, i.e. less than 1 minute per image.  Image 

processing time depended on the quality setting used, requiring less than one hour to create 

a point cloud at medium density, around four hours at high density and around twelve hours 

at ultra-high density.  However, this is an automated process and the operator can carry out 

other tasks while the software is processing the data so this has no implications in terms of 

staff costs.  Once the point clouds had been generated, the additional time taken to create 

TINs and DEMs was negligible.  Processing time was not affected by choice of depth filtering 

parameter or by the number of photographs.  The computer used for image processing had 

64 GB RAM, an Intel® Xeon® 2.4 GHz processor and an NVIDIA GeForce GTX 780 graphics 

processing unit.  Collection of rugosity measurements using manual methods took two 

people around twelve hours, spread over three days.  Given the time restrictions imposed by 

the tidal cycle, reducing data collection time is a greater priority than reducing automated 

processing time when working in this environment. 
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3.4.5 Wider implications 

SfM photogrammetry of UAV imagery has potential to meet the growing need for non-

invasive, rapid, cost-effective topographic survey methods, particularly in environments with 

limited accessibility such as the intertidal zone.  Growing affordability of data capture 

platforms and data processing software mean that these methods are likely to be 

increasingly widely used in future, but Micheletti et al. (2015) caution that “the high level of 

automation of SfM data processing creates both opportunities and threats, particularly 

because user control tends to focus upon visualisation of the final product rather than upon 

inherent data quality”.  The aims of this research were to evaluate consistency between 

rugosity indices derived from photogrammetry and those derived from manual 

measurements and to assess the influence of data processing parameters on this 

consistency.  This study found that only point clouds created without prior compression of 

source imagery generated rugosity indices that were significantly correlated with manual 

measurements, and that even where correlation was observed, there was considerable 

scatter of data points.  This suggests a need for caution if attempting to quantify fine-scale 

rugosity from terrain models created using long-range photogrammetry.   

One of the aims of this thesis is to evaluate OBIA methods of interpreting UAV imagery to 

map temperate intertidal habitats through an experimental field study which is described in 

the next chapter.  Inclusion of topographic information from LiDAR has been shown to 

improve the accuracy of predictive habitat maps in both marine and terrestrial environments 

(Chust et al., 2008; Medcalf et al., 2014b).  This accuracy assessment of terrain models 

derived from UAV photogrammetry has helped to quantify the confidence with which these 

models and potential derivatives, such as slope, can be used for intertidal habitat mapping.   

Despite variability between manual and photogrammetric rugosity measurements, 

decimetre-scale topographic features were consistently detectable in all the terrain models 

created by SfM photogrammetry of UAV imagery, including the DEMs which are the current 

preferred format for OBIA.  These high resolution terrain models can therefore inform 

ecological analysis and predictive mapping on intertidal temperate reefs, where sub-metre 

scale topographic complexity has been shown to influence the distribution and behaviour of 

species communities (Johnson et al., 1997; Guichard et al., 2000). 
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3.5 Conclusions 

This study demonstrates the potential benefits of SfM photogrammetry and UAV technology 

methods for topographic survey in intertidal environments and their current limitations for 

measuring centimetre-scale terrain rugosity.  Ongoing improvements in sensor technology 

can only increase the benefits and may help to overcome some of the limitations, 

particularly in combination with methodological adjustments such as increasing the number 

of GCPs and reducing ground sampling distance.       

The methods described here have particular benefits in the intertidal environment due to its 

dynamic nature, high spatial heterogeneity and limited accessibility.  Fine-scale topographic 

models are a valuable tool for ecological analysis and spatial planning in this environment, in 

which species communities exhibit strong fidelity to vertical zones with specific periods of 

emersion and immersion.  However, these methods are far more widely applicable and have 

considerable potential to inform conservation monitoring and environmental decision-

making in a range of habitats.  As SfM methods become more accessible and increasingly 

automated, it is crucial that data, workflows and outputs continue to be critically evaluated 

in order to ensure robust and ecologically meaningful final products. 
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Chapter 4: Mapping temperate intertidal habitats from UAV imagery: a 
comparison of OBIA methods 

4.1  Introduction 

Temperate intertidal rock reefs support high levels of biodiversity and provide important 

ecosystem services (Wilson et al., 2005).  They are susceptible to anthropogenic degradation 

due to pollution, resource extraction, introduction of non-native species and modification of 

coastal processes through development, but are more amenable to management than 

subtidal benthic habitats (Thompson et al., 2002).  International legislation calls for the 

conservation of temperate reefs and evaluation of their condition in response to human-

induced pressures  (EC, 1992; EC, 2008).  Intertidal habitat mapping is a widely used tool for 

informing the designation and monitoring of intertidal protected areas, and such maps have 

predominantly been produced through a combination of field survey and manual 

interpretation of aerial imagery (Bunker et al., 2001; JNCC, 2004; Wyn et al., 2006).  These 

methods can produce accurate maps, but are time-consuming and prone to subjectivity 

(Ekebom and Erkkila, 2003; Thorner et al., 2013).   

Automated interpretation of remote sensing data provides a cost-effective, consistent way 

of generating contiguous habitat or land cover maps for large areas (Kerr and Ostrovsky, 

2003; Turner et al., 2003; Aplin, 2005; Wang et al., 2010).  The adoption of remote sensing 

techniques for the coastal zone has lagged behind applications in the terrestrial and marine 

environments, largely due to the low temporal and spatial resolution of hitherto available 

data (Cracknell, 1999; Malthus and Mumby, 2003; Peterson et al., 2003).  Temperate 

intertidal reefs have very high spatial and temporal heterogeneity; complex interactions of 

abiotic and biotic factors influence the distribution of species communities, which may also 

undergo seasonal change, cyclical succession and rapid response to stochastic weather 

events (Hartnoll and Hawkins, 1980).  Unless remote sensing data are collected to order, the 

probability of obtaining imagery of the intertidal area under optimal tidal, seasonal and 

weather conditions is extremely low (Thomson et al., 2003).  

However, some advantages of remote sensing are particularly relevant to the intertidal 

environment.  Extensive areas of coastline are inaccessible for ground survey, making 

remote sensing the only practical option for surveillance and monitoring.  Remote sensing 

can produce elevation data with high vertical resolution which can be used to improve the 
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accuracy of terrestrial habitat maps (Mucher et al., 2013; Mucher et al., 2015; Rapinel et al., 

2015); such data are especially useful in the intertidal environment in which species 

communities exhibit strong fidelity to vertical zones with specific periods of emersion and 

immersion (Chust et al., 2008).  Intertidal habitats have high spectral diversity due to the 

distinct combinations of photosynthetic and accessory pigments found in red, green and 

brown algal species, and the results of in situ spectral analysis highlight the potential for 

separating seaweed communities or even individual species from optical remotely sensed 

data (Zacharias et al., 1992; Smith and Alberte, 1994; Kotta et al., 2014). 

Relatively few studies have been published on the automated interpretation of remote 

sensing data for intertidal habitat mapping.  While a few have used satellite imagery (Larsen 

et al., 2004; Lucas et al., 2011; Lyons et al., 2012), the majority used airborne remote sensing 

for its finer spatial resolution and the flexibility to collect data at optimal times, with a 

notable preference for hyperspectral imagery (Bajjouk et al., 1996; Hunter and Power, 2002; 

Thomson et al., 2003; Garono et al., 2004; Hennig et al., 2007; Garono et al., 2008; Oppelt et 

al., 2012; Valle et al., 2015).  Hyperspectral sensors have a high number of narrow bands 

able to discriminate vegetation on subtle differences in spectral response, but data 

collection is expensive and the computational cost of data storage and processing is high.  

Unmanned aerial vehicles (UAVs) offer an increasingly cost-effective and flexible means of 

data collection (Eisenbeiss and Sauerbier, 2011; Mancini et al., 2013; Colomina and Molina, 

2014), but to date only one study has interpreted UAV imagery for intertidal habitat 

mapping (Burrows et al., 2014), although several have evaluated UAV technology for 

monitoring intertidal topography (Perez-Alberti and Trenhaile, 2014; Goncalves and 

Henriques, 2015; Ierodiaconou et al., 2016) or intertidal species (Konar and Iken, 2017; 

Murfitt et al., 2017). 

The majority of intertidal habitat mapping studies used pixel-based classification methods, 

notably the Maximum Likelihood Classifier and/or Spectral Angle Mapper techniques for 

supervised classification (Hunter and Power, 2002; Hennig et al., 2007; Chust et al., 2008; 

Lyons et al., 2012; Oppelt et al., 2012; Burrows et al., 2014), ISODATA cluster analysis for 

unsupervised classification (Larsen et al., 2004), or a combination of these supervised and 

unsupervised methods (Thomson et al., 2003; Garono et al., 2004; Garono et al., 2008).   

Only one of the above studies discusses any limitations of a pixel-based approach, namely 

the patchy ‘salt-and-pepper’ effect of classifying individual pixels and the ‘edge effect’ of 
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misclassified pixels at habitat boundaries (Hennig et al., 2007).  Object-based image analysis 

(OBIA) overcomes these problems, enabling users to create ecologically meaningful objects 

at multiple, hierarchical levels and to classify them using combinations of spectral, geometric 

and contextual properties (Hay and Castilla, 2006; Blaschke, 2010).  These benefits over 

traditional pixel-based approaches hold promise for the development of OBIA methods for 

mapping the complex and dynamic intertidal environment, but to date few studies have 

been published on the application of OBIA methods for mapping the distribution of intertidal 

habitats (de Oliveira et al., 2006; Lucas et al., 2011).  Commercially available OBIA software 

enables users to apply ecological knowledge to develop sequential rule-sets using Boolean 

operations and membership functions to separate classes (Lucas et al., 2011), as well as 

offering a range of standard algorithms for supervised classification that can be trained with 

samples (Trimble, 2014).  The standard nearest neighbour (SNN) classifier is a widely used 

method which assigns objects to the class of the sample they most closely resemble within a 

given feature space; this supervised classifier has been used for habitat mapping in 

terrestrial and, more recently, marine environments (Conchedda et al. (2008), Lucieer et al. 

(2013), Na et al. (2015), Stephens and Diesing (2014), Varela et al. (2008),  Zhang (2015)).   

Random forests (RF) is an ensemble classifier that creates a number of classification and 

regression trees (CARTs), each trained by a subset of training data with randomly sampled 

variables, and classifies objects as the class assigned by the majority of trees in the forest 

(Breiman, 2001).  RF has grown in popularity for classifying remote sensing data due to its 

processing speed, classification accuracy and ability to handle a large number of variables 

(Belgiu and Dragut, 2016).  Although it is a more recent and less well documented addition 

to the commercial OBIA toolkit than the SNN classifier (Trimble, 2014), several studies have 

evaluated the RF classifier through applications to various types of remote sensing data and 

environments, finding it compares favourably with other supervised classification algorithms 

(Wahidin et al., 2015; Li et al., 2016; Onojeghuo and Onojeghuo, 2017), with pixel-based 

approaches (Jhonnerie et al., 2015) and with manual methods (Husson et al., 2016). 

The thematic resolution of intertidal habitat maps produced from remote sensing data 

varies; some studies map only physical characteristics (Lucas et al., 2011; Thorner et al., 

2013), the majority map broadscale habitats e.g. seagrass, red, brown or green algae, 

(Hunter and Power, 2002; Thomson et al., 2003; Garono et al., 2004; Larsen et al., 2004; 

Hennig et al., 2007; Garono et al., 2008) and only a few have attempted to map individual 
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species or communities (Bajjouk et al., 1996; de Oliveira et al., 2006; Chust et al., 2008; Valle 

et al., 2015).  To our knowledge, none has yet attempted to apply an existing national or 

international standard habitat classification system.   

The aim of this research is to evaluate object-based methods of interpreting very high 

resolution UAV imagery to map the extent and distribution of temperate intertidal rock reef 

habitats.  Specific objectives are (1) to develop OBIA workflows to produce intertidal habitat 

maps at broad and fine thematic scales using a SNN classifier, a RF classifier and a 

knowledge-based rule set, (2) to evaluate the accuracy of all three methods by validating the 

output maps against ground truth data; (3) to evaluate the consistency of the SNN and RF 

methods by 2-fold cross validation and (4) to evaluate the reproducibility of all three 

methods by applying them to a separate dataset of UAV imagery. 

4.2  Methodology 

4.2.1  Study site 

The study site is Kettleness headland in Runswick Bay Marine Conservation Zone (54° 

32.050’ N, 0° 42.800’ W), the same location as the study site for chapter 3 (Figure 3.1).  

Kettleness is a north-facing headland, exposed to prevailing wind and wave action.  Due to 

the high exposure, the fucoid canopy is reduced and the mid-shore dominated by turf-

forming red seaweeds, predominantly Osmundea pinnatifida and Corallina officinalis, while 

the upper shore is dominated by dense communities of the barnacle Semibalanus 

balanoides.  Tides are diurnal with a mean tidal range of 4.8m on spring tides and 2.4m on 

neap tides.   

4.2.2 Data acquisition and processing 

Reference data 

Reference data for training and validation were collected between April and July 2015 from 

164 locations selected by stratified random sampling based on four shore height strata 

derived from LiDAR data, and in March 2016 from a further 100 locations selected by 

stratified random sampling based on five shore rugosity strata derived from a digital 

elevation model (see chapter 3).  Biotopes were assigned to each sample using the Marine 

Habitat Classification for Britain and Ireland v04.05 (Connor et al., 2004).  Broadscale habitat 

classes of red algae, green algae, brown algae and barnacles were assigned to a subset of 
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samples; they could not be assigned to every sample because some samples contained a 

mixture of classes, for example red and brown algae.  The biotopes recorded in the 

reference data are shown in Table 4.1 with the number of samples assigned to each biotope 

and the abbreviations that will be used to refer to these biotopes throughout this chapter. 

Table 4.1: List of biotopes recorded through ground survey at Kettleness headland 

Biotope code Biotope name Abbreviation Samples 
LR.HLR.FR.Osm Osmundea pinnatifida on moderately exposed 

mid eulittoral rock 
Osm 59 

LR.HLR.FR.Coff Corallina officinalis on exposed to moderately 
exposed lower eulittoral rock 

Coff 47 

LR.HLR.MusB.Sem Semibalanus balanoides on exposed to 
moderately exposed or vertical sheltered 
eulittoral rock 

Sem 43 

LR.HLR.MusB.Sem.FvesR Semibalanus balanoides, Fucus vesiculosus and 
red seaweeds on exposed to moderately 
exposed eulittoral rock 

FvesR 42 

IR.MIR.KF.Ldig.Ldig Laminaria digitata on moderately exposed 
sublittoral fringe bedrock 

Ldig 23 

None No biotope assigned due to insufficient fauna 
and flora 

Bare rock 12 

LR.MLR.BF.FvesB Fucus vesiculosus and barnacle mosaics on 
moderately exposed mid eulittoral rock 

FvesB 10 

LR.MLR.BF.Fser.R Fucus serratus and red seaweeds on 
moderately exposed lower eulittoral rock 

Fser.R 9 

LR.FLR.Eph.Ent Enteromorpha spp. on freshwater-influenced 
and/or unstable upper eulittoral rock 

Eph.Ent 7 

LR.FLR.Rkp.Cor.Cor Coralline crusts and Corallina officinalis in 
shallow eulittoral rockpools 

Cor 6 

LR.FLR.Rkp.FK Fucoids and kelp in deep eulittoral rockpools Rkp.FK 4 

LR.MLR.BF.FSpiB Fucus spiralis on exposed to moderately 
exposed upper eulittoral rock 

FSpiB 2 

 Total number of samples:  264 

Percentage cover of seaweed species, barnacles and bare rock was recorded using a 0.25m2 

quadrat for the samples collected in 2015.  Hierarchical cluster analysis was applied to these 

data based on a Bray-Curtis similarity matrix using PRIMER v.7 (Clarke et al., 2014).  The 

resulting cluster dendrogram and non-metric MDS plot produced habitat classes that were 

very closely correlated with the biotopes assigned to the samples, so the classes created 

through cluster analysis were not used in the mapping process.  The coordinates of every 

sample were recorded using a Leica Viva GS10 high-precision receiver (Leica Geosystems), 

which recorded one observation per second for three minutes.  The logged coordinates were 

differentially corrected in Leica Geo Office software (Leica Geosystems) using reference data 

from the Global Navigation Satellite System (GNSS) base station network downloaded from 
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Leica’s SmartNet website (http://uk.smartnet-eu.com/) in RINEX format.  The processed 

coordinates had a horizontal and vertical accuracy of between 0.001m and 0.003m.   

Aerial imagery 

Aerial imagery was collected during low spring tides on the 3rd July and 1st September 2017 

using a senseFly eBee UAV (www.sensefly.com/drones/ebee).  As in the previous chapter, 

flights were pre-programmed to collect imagery at 0.04m ground sampling distance with 

60% lateral overlap and 75% forward overlap between images.  Perpendicular intersecting 

flight lines maximised image overlap and reduced the impact of crosswinds on image 

acquisition.  Two flights were conducted on each date, one using a Canon IXUS 127 HS 16.1 

megapixels camera to capture red-green-blue (RGB) imagery (390nm to 700nm) and one 

using a Canon Powershot ELPH 110 HS 16.1 megapixels camera to capture red edge imagery 

(680nm to 750nm).  Seven ground control points (GCPs) were placed within the survey area 

during all flights and their coordinates logged and post-processed as described above.  A 

summary of image acquisition is provided in Table 4.2.  There was no cloud cover during any 

of the flights. 

Table 4.2: Flight and imagery details of UAV surveys conducted on 3rd July and 1st September 2015 

Date Camera 
Flight times 
(GMT+1) 

Tide height 
above Chart 
Datum (m) 

Number of 
images 

Survey 
Area (km2) 

Mean Ground 
Sampling Distance (m) 

3/7/2017 RGB 11:49 – 12:00 0.78 – 0.79 113 0.2246 0.0392 
3/7/2017 Red Edge 12:23 – 12:34 0.88 – 0.97 133 0.1988 0.0346 
1/9/2017 RGB 12:50 – 12:55 0.26 – 0.28 53 0.0946 0.0380 
1/9/2017 Red Edge 13:24 – 13:29 0.46 – 0.52 56 0.0827 0.0380 

The images were processed using PostFlight Terra 3D software [senseFly] to create 

orthomosaics and digital elevation models (DEMs) for all four flights at 0.04m resolution.  The 

georeferencing RMS error was 0.011m for the RGB orthomosaic and 0.006m for the red edge 

orthomosaic.  ArcGIS v10.3 [ESRI] was used to clip and align the imagery, to derive slope layers 

from the DEMs, and to create normalised difference vegetation index (NDVI) layers from the 

red and red edge bands using the formula:  

Red edge −  Red

Red edge +  Red
 

4.2.3 OBIA workflows 

Workflows were created in eCognition Developer v9.0.3 [Trimble] to create habitat maps 

from both sets of imagery.  The first stage of the workflow classified cliffs, sea and shadow to 
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remove these objects from further classification.  eCognition’s multi-resolution 

segmentation algorithm was applied to the DEM using a scale parameter of 120 with 

homogeneity criteria which weighted shape (0.1) versus colour (0.9) and object compactness 

(0.5) versus smoothness (0.5), and objects were classified as ‘cliff’ based on a threshold 

mean elevation value.  A further segmentation was carried out on unclassified objects at 

scale parameter 90 with homogeneity criteria weighting shape (0.1) versus colour (0.9) and 

compactness (0.9) versus smoothness (0.1), following which objects were classified as ‘sea’ 

based on threshold values of shore height, NDVI and red/green band ratio and as ‘shadow’ 

based on threshold values of border contrast with slope, border to cliffs, NDVI, blue and 

red/blue band ratio.     

Three different classification methods were then applied and compared to create habitat 

maps using a broadscale classification (red, green and brown algae and barnacle/rock) and a 

classification consisting of the biotopes shown in Table 4.1.  The methods evaluated were 

the Standard Nearest Neighbour (SNN) and Random Forests (RF) algorithms which classify 

objects based on their similarity to training samples, and a hierarchical knowledge-based 

rule set which used combinations of Boolean thresholds and membership functions to 

classify objects.  The hierarchical rule-set first classified objects as broadscale habitats, then 

re-classified red and brown algae as species, then created a new level with larger objects 

which were classified as biotopes based on the proportion of species within them.  

eCognition’s Sample Editor tool was used with objects selected from the imagery to inform 

feature selection and the definition of thresholds and membership functions in the 

knowledge-based rules. 

The SNN and RF classifiers were trained using reference data.  The samples assigned to each 

habitat class were divided randomly into two equal subsets, each of which was used in turn 

for training the classifier, so two maps were produced using each method.  eCognition’s 

Feature Space Optimisation tool was used to identify the best combination of ten features 

for distinguishing habitats using the SNN classifier.  The lowest separation distance between 

habitat classes calculated by Feature Space Optimisation ranged from 3.56 to 4.92 for 

broadscale habitats and from 2.11 to 2.89 for biotopes.  The RF classifier was queried to 

generate ‘importance values’ for the features used in the classification, and the classification 

re-run using the features with a value greater than 0.  The feature space used by the SNN 

and RF classifiers comprised mean (including brightness), mode, standard deviation, 
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skewness and border contrast of all layers, grey level co-occurrence matrices (GLCM) of the 

DEM, NDVI and slope layers, and customised features of band ratios.   

Segmentation was carried out at scale parameter 10 with a weighting of shape (0.1) versus 

colour (0.9) and compactness (0.9) versus smoothness (0.1) to produce broadscale habitat 

maps, and at scale parameter 120 with the same homogeneity criteria weightings to 

produce biotope maps.  A finer segmentation was used for broadscale habitats than for 

biotopes because there was fine scale heterogeneity of the classes red, green and brown 

algae and rock, whereas biotopes can comprise a mosaic of algae and rock and should be at 

least 25m2 (Connor et al., 2004) so a larger segmentation scale was appropriate for biotope 

classification. 

The OBIA workflows are summarised in Figure 4.1 and the knowledge-based rule set is 

shown in detail in Appendix 2. 

 
Figure 4.1: Summary of OBIA workflows to produce habitat maps using SNN and RF classifiers and a 
knowledge-based rule set 
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4.2.4 Evaluation methods 

Overall accuracy, user’s and producer’s accuracy, Kappa coefficient and balanced error rate 

were calculated for each map through comparison with the reference data.  Classification 

stability assessments were performed for the maps produced using the SNN classifier.  The 

consistency of the outputs produced by the same classifier using different training data was 

assessed by calculating the percentage area with the same classification in each pair of 

maps. 

4.3  Results 

4.3.1 Broadscale Habitat Maps 

Overall accuracy of the broadscale habitat maps ranged from 67.7% ± 8.6% to 94.5% ± 4.5% 

using the RF classifier, from 80.0% ± 7.1% to 87% ± 10.1 using the SNN classifier, and from 

80.6% ± 13.0% to 84.8% ± 14.5% using the knowledge-based rules (Figure 4.2).  The Kappa 

coefficient was largely correlated with overall accuracy.  Balanced error rate was not simply 

inversely correlated with overall accuracy because of the uneven number of samples per 

habitat class.  Maps produced using the SNN classifier with training samples B from the July 

and September imagery had very similar overall accuracy of 79.7% and 80.0% respectively 

but balanced error rates of 44.5% and 25.7%.  The July validation dataset contained only one 

sample of green algae and this intersected an object which had been left unclassified, while 

the September dataset contained two samples, both of which intersected objects classified 

as green algae resulting in a lower balanced error rate.  The 90% confidence intervals ranged 

from ± 4.8% to ± 7.8% for maps derived from the July imagery and from ± 8.6% to ± 14.5% 

for maps derived from the September imagery, because fewer ground truth samples were 

available for the area covered by the September imagery.  In all but one case, overall 

accuracy was lower for broadscale maps derived from September imagery than from July 

imagery, although the difference was smaller than the 90% confidence interval range. 
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Figure 4.2: Overall accuracy, Kappa coefficient and Balanced Error Rate for broadscale habitat maps 
produced using the knowledge-based rule set, RF and SNN classifiers.  Error bars on overall accuracy 
represent 90% confidence intervals. 

Calculation of user’s and producer’s accuracy gave further insight into classifier performance 

(Figure 4.3 and Figure 4.4).  Maps produced by the knowledge-based rules had high 

producer’s accuracy for red and brown algae, and high user’s accuracy for barnacle/rock, 

showing that this rule set over-predicted red and brown algae and under-predicted 

barnacle/rock.  The performance of the SNN and RF classifiers varied with training samples.  

The map produced using the SNN classifier and training samples A from July imagery had 

high errors of commission for brown algae, while that produced using training samples B had 

high errors of commission for red algae.  Each habitat class in the map produced from July 

imagery using the RF classifier with training samples A had similar user’s and producer’s 

accuracy, indicating an equal level of errors of commission and omission per habitat class.  In 

contrast, the map produced from the same dataset and classifier using training samples B 

had high errors of commission for red algae and high errors of omission for brown algae.   

The 90% confidence interval values were very large for some classes, particularly on the 

maps derived from the September imagery, indicating an insufficient number of ground 

truth samples.     
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Figure 4.3: User's accuracy for broadscale habitat maps produced using the knowledge-based rule 
set, RF and SNN classifiers.  Error bars represent 90% confidence intervals. 

 
Figure 4.4: Producer's accuracy for broadscale habitat maps produced using the knowledge-based 
rule set, RF and SNN classifiers.  Error bars represent 90% confidence intervals. 
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The most important features for distinguishing broadscale habitat classes using the RF 

classifier were the mean and mode of band ratios, DEM and single bands, and standard 

deviation of band ratios and slope (Figure 4.5).   

 

Figure 4.5: Relative importance values of features used in RF classification of broadscale habitat maps 
(mean importance / mean theoretical equal importance). 

Figure 4.6 shows the range of sample values for the three features with the highest 

importance value used by the RF classifier, illustrating a good level of class separability, 

particularly when these features were used in combination.   
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Figure 4.6: Sample values for the three features with highest importance used to create biotope maps 
using the RF classifier  

Figure 4.7 shows the features predominantly selected by Feature Space Optimisation for 

distinguishing broadscale habitats using the SNN classifier.  Some features selected by 

Feature Space Optimisation also had high importance when used with the RF classifier, 

notably the mean, mode and standard deviation of band ratios and mean DEM.  In contrast, 

skewness of DEM, single bands and slope were frequently selected by Feature Space 

Optimisation but had very low importance values when used with the RF classifier.  The 

range of sample values for the three features most frequently selected by Feature Space 

Optimisation are shown in Figure 4.8, illustrating that mean DEM (which also had high 

importance value with the RF classifier) provided good class separability, while skewness 
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DEM and skewness red edge had considerable overlap in the range of sample values for all 

classes.  

 

Figure 4.7: Relative importance values of features used to create broadscale maps using the SNN 
classifier (mean number of selections by Feature Space Optimisation / mean potential number of 
selections by Feature Space Optimisation). 
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Figure 4.8: Sample values for the three features most frequently selected by Feature Space 
Optimisation to create broadscale habitat maps using the SNN classifier 

Classification stability is the difference between an object’s membership value to its assigned 

class and to the second most similar class.  Mean classification stability of broadscale 

habitats ranged from 0.17 ± 0.14 to 0.36 ± 0.19 (Table 4.3).  The mean values suggested a 

reasonably stable classification (Benz, 2004) but the standard deviation values indicated high 

variability, showing that for many objects the SNN classifier with this feature space did not 

provided clear separation of broadscale classes.   
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Table 4.3: Mean and standard deviation classification stability derived from all classified objects in 
broadscale habitat maps created using the Standard Nearest Neighbour classifier 

Imagery July September 

Training samples A B A B 

Classification 
stability Mean 

St 
dev Mean 

St 
dev Mean St dev Mean St dev 

Red algae 0.27 0.18 0.36 0.23 0.33 0.19 0.29 0.19 

Brown algae 0.20 0.14 0.25 0.15 0.30 0.18 0.19 0.13 

Barnacle/rock 0.19 0.13 0.23 0.16 0.19 0.14 0.21 0.14 

Green algae 0.17 0.14 0.23 0.12 0.21 0.18 0.18 0.16 

4.3.2 Biotope maps 

There was far greater variability in classifier performance when applied to biotope mapping 

than broadscale habitat mapping (Figure 4.9).  The overall accuracy of the map produced by 

the knowledge-based rule set from the July imagery was 70.2% ± 13.1% but only 30.9% ± 

11.7% for the map produced from the September imagery using the same rule set.  Overall 

accuracy for maps produced by the RF classifier ranged from 53.7% ± 12.1% to 65.6% ± 

10.2%, and from 26.8% ± 10.6 to 55.6% ± 8.5% for maps produced by the SNN classifier. 

The Kappa coefficient was less closely correlated with overall accuracy than was the case 

with the broadscale habitat maps; Kappa values were low relative to overall accuracy for the 

maps derived from September imagery because the ground truth dataset for the September 

imagery was smaller and contained fewer classes, so the probability of correct classification 

happening by chance was greater for maps produced from the September imagery.  As with 

the broadscale maps, balanced error rate values were not simply inversely correlated with 

accuracy, due to the uneven number of samples per habitat class.  For example, the two 

maps created from July imagery using the RF classifier had similar levels of overall accuracy 

but the map produced using training samples B had a disproportionately high balanced error 

rate due to misclassification of locally rare habitats.  The validation dataset for this map 

contained only one sample each of the rockpool biotopes Cor and Rkp.FK, both of which 

intersected objects which have been incorrectly classified.  In contrast, the validation dataset 

for the map produced from training samples A contained two samples of Cor, both of which 

intersected correctly classified objects, and two samples of Rkp.FK, one of which intersected 

a correctly classified object. 
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Figure 4.9: Overall accuracy, Kappa and Balanced Error Rate for biotope maps produced from UAV 
imagery using the knowledge-based rule set, SNN and RF classifiers 

User’s and producer’s accuracy for biotope maps are shown in Table 4.4 and Table 4.5.  Due 

to the low number of ground truth samples for some habitat classes, these values only 

provided insight into classifier performance with regard to the dominant biotopes Coff, 

FvesR, Ldig, Osm and Sem (emphasised in bold type in both tables).  The RF classifier tended 

to over-predict the red seaweed dominated biotopes Osm and Coff, while the knowledge-

based rule set tended to over-predict the kelp biotope Ldig and the red seaweed biotope 

Coff, but to under-predict the red seaweed biotope Osm.   
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Table 4.4: User’s accuracy for biotope maps produced using the knowledge-based rule set, RF and 
SNN classifiers.  Empty cells indicate that no objects of that class intersected ground truth points of 
any class.  Grey cells indicate that the class was not mapped due to absence of ground truth samples. 

Classifier Random Forests Standard Nearest Neighbour 
Knowledge 
based 

Imagery July September July September July Sept 

Training 
samples A B A B A B A B     
 

bare 
rock 0.67 0.33     0.00 0.50     1.00   
Coff 0.78 0.82 0.43 0.43 0.43 0.54 0.00 0.20 0.70 0.35 
Cor 1.00         0.33     0.33 0.00 
Eph.Ent 1.00 1.00 1.00 1.00     0.00   0.67   
Fser.R       0.00 0.17 0.00 0.00 0.00 0.25   
FspiB           0.00     1.00   

FvesB 1.00 0.60     0.33 0.60     0.86   
FvesR 0.40 0.46 0.50 1.00 0.44 0.54 0.00 0.13 0.61 0.30 
Ldig 1.00 0.43 0.75 0.60 1.00 0.25 0.33 0.00 0.78 0.39 
Osm 0.73 0.71 0.59 0.56 0.60 0.70 0.40 0.60 0.89 0.33 
Rkp.FK 1.00   1.00   1.00 0.50 1.00 1.00 1.00   
Sem 0.50 0.78 0.50 0.56 0.50 0.88 0.30 0.22 0.67 0.67 

Table 4.5: Producer’s accuracy for biotope maps produced using the knowledge-based rule set, RF and 
SNN classifiers.  Empty cells indicate that no validation samples existed for that class.  Grey cells 
indicate that the class was not mapped due to absence of ground truth samples. 

Classifier Random Forests Standard Nearest Neighbour 
Knowledge 
based 

Imagery July September July September July Sept. 

Training 
samples A B A B A B A B 

 

 

bare 
rock 0.50 0.25     0.00 0.25    0.63   
Coff 0.88 1.00 0.43 0.38 0.38 0.78 0.00 0.13 0.94 0.53 
Cor 1.00 0.00     0.00 1.00    1.00 0.00 
Eph.Ent 1.00 1.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 0.00 

Fser.R 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.25 0.00 
FspiB 0.00 0.00   0.00 0.00   1.00 0.00 
FvesB 0.75 0.75   0.50 0.75   0.75   
FvesR 0.36 0.50 0.17 0.25 0.36 0.58 0.00 0.25 0.48 0.33 
Ldig 0.75 1.00 0.75 0.75 0.25 0.33 0.25 0.00 1.00 0.88 

Osm 0.80 0.91 0.77 0.69 0.60 0.64 0.46 0.46 0.76 0.04 
Rkp.FK 0.50 0.00 1.00 0.00 0.50 1.00 1.00 1.00 0.67 0.00 
Sem 0.75 0.50 0.67 0.71 0.58 0.50 0.60 0.29 0.62 0.46 

The extremely low producer’s accuracy for the Osm biotope in the map produced by the 

knowledge-based rules from the September imagery is the main contributing factor to the 

low overall accuracy of this map.  The validation dataset contained 26 samples of Osm, 10 of 
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which intersected objects misclassified as Coff and 13 of which intersected objects 

misclassified as Cor.  The dominant species of the Osm biotope, Osmundea pinnatifida 

(Hudson) Stackhouse 1809, is known to change frond colour from dark red to pale yellow 

due to UV exposure (Wells, 2007).  The features used to distinguish the Osm, Cor and Coff 

biotopes in the knowledge-based rules were the green/blue band ratio, red/blue band ratio, 

mean green, mean blue, mean red edge, mode green, mode blue, mode red edge and 

brightness.  Figure 4.10 shows the range of values for those features in the July and 

September imagery based on objects overlying ground truth sampling points.  For each 

feature, the range of values for each biotope changed from the July to September imagery, 

and while the values taken from the July imagery showed good separation of Osm from the 

Coff and/or Cor biotopes, the values taken from the September imagery showed 

considerable overlap in value ranges between the Osm and the Coff and/or Cor biotopes.  

This explains how the changed spectral signature of Osmundea pinnatifida between July and 

September led to misclassification of this locally abundant biotope by the knowledge-based 

rules and low overall accuracy of the resultant biotope map.  The accuracy of the broadscale 

habitat maps produced by the knowledge-based rules was not affected by this change in 

spectral signature because both Osmundea pinnatifida and Corallina officinilis are in the 

class ‘red algae’. 
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Figure 4.10: Sample values from UAV imagery collected in July and September 2015 for the biotopes 
Coff, Cor and Osm. 
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The four most important types of feature for distinguishing biotopes using the RF classifier 

were mean band ratios, mean single band values, and mean and mode DEM values (Figure 

4.11), all of which were also important for distinguishing broadscale habitat classes (Figure 

4.5).  In contrast, mode band ratios and single band values were important for distinguishing 

broadscale habitats but not biotopes.   

 

Figure 4.11: Relative importance values of features used to create biotope maps from UAV imagery 
using the RF classifier (mean importance / mean theoretical equal importance) 

The range of sample values for the three features with the highest importance values used 

by the RF classifier are shown in Figure 4.12, illustrating that while no single feature could be 

used to separate all twelve classes, each feature provided good separability of some classes.  

For example, FSer.R could be separated from FVesR using mode DEM but not using 

brightness, while Coff could be separated from Cor using brightness but not using mode 

DEM.       
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Figure 4.12: Sample values for the three features with highest importance used to create biotope 
maps from UAV imagery using the RF classifier 

Figure 4.13 shows the features predominantly selected by Feature Space Optimisation for 

classifying biotopes using SNN.  The only feature to have high importance with both the RF 

and SNN classifiers was mean DEM; the features most frequently selected by Feature Space 

Optimisation were border contrast of band ratios, GLCM of band ratios, DEM and slope and 

Skewness of band ratios, DEM and single bands.   
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Figure 4.13: Relative importance values of features used to create biotope maps from UAV imagery 
using the SNN classifier (mean number of selections / mean potential number of selections by Feature 
Space Optimisation) 

The range of sample values for the three features most frequently selected by Feature Space 

Optimisation for biotope classification are shown in Figure 4.14, illustrating that these 

features provided low class separability due to the considerable overlap in sample value 

ranges for most biotopes.  
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Figure 4.14: Sample values for the three features most frequently selected by Feature Space 
Optimisation to create biotope maps from UAV imagery using the SNN classifier 

Mean classification stability of biotope objects ranged from 0.06 ± 0.05 to 0.17 ± 0.12 (Table 

4.6).  The low mean values show that the classification was not very stable, suggesting that 

the SNN classifier with this feature space did not provide clear separation of biotopes.   
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Table 4.6:  Mean and standard deviation classification stability derived from all classified objects in 
biotope maps created from UAV imagery using the Standard Nearest Neighbour classifier.  Grey cells 
indicate that the biotope was not predicted due to lack of training samples for this class. 

Imagery July September 
Training samples A B A B 

Classification 
stability Mean St dev Mean St dev Mean St dev Mean St dev 

Bare rock 0.10 0.10 0.11 0.08         
Coff 0.12 0.11 0.13 0.11 0.12 0.11 0.13 0.13 
Cor 0.17 0.12 0.15 0.14     
Eph.Ent 0.00 0.00 0.00 0.00 0.08 0.08 0.09 0.07 
Fser.R 0.13 0.11 0.15 0.12 0.10 0.08 0.06 0.05 
FspiB 0.08 0.06 0.14 0.12         
FvesB 0.09 0.08 0.15 0.12         
FvesR 0.13 0.11 0.13 0.10 0.13 0.11 0.11 0.08 

Ldig 0.13 0.10 0.11 0.10 0.11 0.10 0.12 0.09 
Osm 0.13 0.11 0.14 0.11 0.12 0.10 0.10 0.09 
Rkp.FK 0.10 0.08 0.14 0.11 0.13 0.11 0.08 0.08 
Sem 0.15 0.13 0.11 0.10 0.12 0.10 0.13 0.10 

4.3.3 Consistency of outputs 

The consistency of outputs was evaluated by measuring the proportion of total area with the 

same classification in maps produced from the same imagery using the same classifier with 

different training samples.  The results are shown in Table 4.7, illustrating that the RF 

classifier produced more consistent results than the SNN classifier in all cases and that 

broadscale habitat maps had a higher level of consistency than biotope maps.  The 

knowledge-based rules were not included in this analysis because although ground truth 

data were used to inform the establishment of thresholds and membership functions, these 

data were not used to train a classification algorithm so two-fold cross validation was not 

applied to this method. 



Chapter 4: Mapping temperate intertidal habitats from UAV imagery: a comparison of OBIA methods 

124 

 

Table 4.7:  Proportion of total area with the same classification in two maps produced from the same 
imagery using the same classifier with different training samples. 

 Proportion of total area with the same classification in both maps 

Imagery  Thematic scale Standard Nearest Neighbour Random Forests 

July Broadscale 0.79 0.92 

September Broadscale 0.74 0.83 

July Biotopes 0.32 0.62 

September Biotopes 0.23 0.72 

4.4 Discussion 

The aim of this study was to evaluate the accuracy, consistency and reproducibility of OBIA 

methods for mapping temperate intertidal rock habitats from high resolution UAV imagery 

at broad and fine thematic scales.  The results show that application of OBIA to UAV imagery 

has great potential for habitat mapping in this highly spatially heterogeneous environment, 

but that thematic scale, ground truth sampling protocol and classification algorithm all have 

considerable impact on the accuracy and consistency of outputs.   

Broadscale habitat maps had greater accuracy and consistency than biotope maps regardless 

of the choice of classifier or training samples, which concurs with the findings of other 

studies that accuracy increases as the number of habitat classes decreases, for example 

through aggregation into parent classes in a hierarchical classification system (White et al., 

2003; Lucieer, 2008; Lyons et al., 2012).  The accuracy metrics for the broadscale maps 

showed that OBIA of UAV imagery can produce accurate and reproducible habitat maps at 

this thematic scale, but they provided little insight to inform classifier choice because the 

difference in values for maps produced by different classifiers was small.  Only the 

calculation of percentage area agreement between maps produced from different training 

samples provided information to aid classifier choice, suggesting that RF produces more 

consistent results than SNN.  In contrast, the accuracy metrics for biotope maps showed far 

greater variability in response to choice of classifier.  The knowledge-based method 

produced the biotope map with the highest overall accuracy, corroborating other habitat 

mapping studies that used membership functions with a multi-scale hierarchical approach 

informed by ecological knowledge (de Oliveira et al., 2006; Lucas et al., 2011; Ouyang et al., 

2011).  However, the low accuracy of the map produced by the knowledge-based rules from 

the September imagery showed that the model was over-fitted to the data used to develop 
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it.  However, this should not be taken as an indication that the knowledge-based method is 

unsuitable; other studies have acknowledged that manual intervention may be necessary to 

change thresholds and membership function value ranges when applying a knowledge-based 

rule set to imagery from a different location or season (Lucas et al., 2011; Lucas et al., 2015).  

An important advantage of the RF classifier is its ability to avoid over-fitting by training each 

tree using a bootstrapped sample of the training data and randomly selected features 

(Breiman, 2001), but Juel et al. (2015) report a significant reduction in classification accuracy 

when RF models are applied to imagery that they were not trained on.  In this study, the RF 

classifier was not expected to be sensitive to seasonal changes in spectral signature because 

it was trained using sample values taken from the relevant imagery, and indeed the accuracy 

of the RF biotope maps was reasonably consistent for both sets of imagery and training 

samples.   

Although the SNN classifier performed comparably with the RF classifier and knowledge-

based rules at the broad thematic scale, it performed noticeably worse than the other 

classifiers at the biotope scale, producing maps with low overall accuracy, high balanced 

error rate, low consistency (% area agreement between maps produced from different 

training samples) and low classification stability.  Feature space is a key factor affecting 

classifier performance; reduction of data dimensionality is crucial for decreasing processing 

time and improving map accuracy, but there are many possible feature selection methods 

(Laliberte et al., 2012; Canovas-Garcia and Alonso-Sarria, 2015; Diesing et al., 2016; 

Gregorutti et al., 2017).  In this study, dimensionality was reduced by using Feature Space 

Optimisation with the SNN classifier, ‘importance’ metrics with the RF classifier and the 

Sample Editor tool with the knowledge-based rules.  All three methods produced a reduced 

feature space that nevertheless included correlated features, for example the use of both 

mean and mode blue, green and red edge values to separate the Osm, Coff and Cor biotopes 

in the knowledge-based rules.  The inclusion of correlated features is counter-intuitive, but 

Guyon and Elisseeff (2003) demonstrate that in many research areas, better class separation 

can be achieved by including variables that are so highly correlated they appear to be 

redundant.   

At the broad thematic scale, there was some consistency between features used by the RF 

and SNN classifiers, notably mean and mode band ratios and DEM values, and analysis of 

sample value ranges showed that these features provide good separation of classes, 
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especially when used in combination.  At the biotope scale, the RF classifier used similar 

features to those used for broadscale mapping and, again, analysis of sample values showed 

that these provided good separation of classes.  In contrast, feature space for the SNN 

classifier was dominated by skewness, GLCM and border contrast features, and analysis of 

sample values for these features showed poor class separation.  This is likely to be a key 

contributing factor to the poor performance of the SNN classifier at creating biotope maps, 

consistent with the findings of Laliberte et al. (2012) that although eCognition’s Feature 

Space Optimisation tool is a rapid and convenient method for reducing data dimensionality, 

it frequently generates a feature space that results in relatively low classification accuracy.    

At both thematic scales, Kappa is largely correlated with overall accuracy, consistent with 

the assertion by Pontius and Millones (2011) that Kappa does not reveal information that is 

different from overall accuracy in a way that could inform decision-making, and is thus 

redundant.  In contrast, balanced error rate was not correlated with overall accuracy and did 

provide a useful additional measure of classifier performance, consistent with other studies 

that have attempted classifier comparison with an uneven number of ground truth samples 

per class (e.g. Diesing and Stephens, 2015).  

While accuracy is likely to be the main driver for classifier choice, there are other 

considerations.  A disadvantage of RF is that the decision rules are hidden from the user 

(Gomez et al., 2016), whereas this study demonstrates that the transparency of the 

knowledge-based approach enables the user to determine the cause of classification errors.  

The RF and SNN classifiers offer the speed, convenience and relative objectivity of an ‘off the 

shelf’ solution.  In contrast, a knowledge-based rule set takes longer to develop (around 40 

hours in this study), but the ability to integrate ecological expertise is a valuable benefit 

(Adamo et al., 2016) and once developed, knowledge-based rule sets may be built upon or 

adapted to new sites and imagery (Medcalf et al., 2014b; Medcalf et al., 2015).  Although the 

rules developed in this study proved to be over-fitted to the data derived from the July 

imagery, the transparency of the classification rules should enable thresholds and 

membership function value ranges to be adjusted to improve classification accuracy of the 

September imagery, or indeed imagery from another site or season. 

4.4.1 Sources of error and uncertainty 

Regardless of classifier choice, reference data to train and validate a supervised classification 
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should be statistically independent and large enough to represent the entire study area and 

to adequately characterise each habitat class (Congalton, 1991; Foody and Mathur, 2004; 

Millard and Richardson, 2015).  The main limitation of this study was that the stratified 

random sampling protocol based on shore height provided too few samples of some habitat 

classes for effective training and validation, as illustrated by the variation in balanced error 

rate, user’s and producer’s accuracy.  Despite the high sampling density of 1,122 samples 

km-2, some classes were under-represented in the reference data due to the high number 

and unequal proportions of habitats in the study area.  This was particularly problematic at 

the biotope scale, leading to the omission of some classes from the maps, but even at the 

broad thematic scale the locally rare class of green algae was under-sampled.  Furthermore, 

random sampling produced several samples were not good representatives of their class, for 

example located in a non-homogeneous area in an ecotone between two habitats.  In an 

attempt to mitigate these problems, the dataset was augmented with samples which had 

been collected for the primary purpose of measuring rugosity (Chapter 3).  These 

supplementary samples occurred in pairs located less than 5m apart, but even at 

segmentation scale parameter 120 these paired points occurred in different objects and 

frequently in different habitats due to the high spatial heterogeneity of the site.  

Nevertheless, due to the high sampling density, there is likely to be spatial autocorrelation 

between some training and reference data points.  Reference data should be collected 

contemporaneously with remote sensing data where possible, but due to time constraints 

the reference data in this study were collected between April 2015 and March 2016 and 

used to train and validate imagery collected in July and September 2015.  This relies on the 

assumption that the dominant community at each sample point did not change during that 

time period; this assumption is supported by visual assessment of the UAV imagery and 

knowledge of the site.  Although the shortcomings of the stratified random sampling 

protocol do not detract from this study’s findings, they do highlight an area where 

methodological improvements could be introduced.   

4.4.2  Methodological improvements 

Stratified sampling of reference data based on shore height was used in this pilot study to 

ensure objectivity and independence of ground truth samples from remote sensing data.  A 

benefit of this approach was that it enabled ground truth data collection to start before UAV 

imagery collection, thus maximising use of low spring tides which are a critical limiting factor 
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in intertidal fieldwork.  However, in future applications a two-stage methodology could be 

adopted in which unsupervised classification of the UAV imagery could inform a stratified 

random sampling protocol to collect reference data from areas of homogeneous spectral 

signature, which would then be used for supervised classification of the imagery.  This two-

stage methodology is commonly used in broadscale benthic surveys (Anderson et al., 2008) 

and has the benefit of ensuring an even number of samples per habitat class and possibly 

increasing the spectral separability of habitat classes (Franklin and Wulder, 2002; Clements 

et al., 2010).   

As hierarchical cluster analysis of the ground truth data produced classes that were closely 

correlated with the biotopes assigned to the samples, future applications could omit the 

recording of species percentage cover and simply record the biotope or broadscale habitat 

class.  This would increase efficiency and enable the collection of a far larger reference 

dataset.   

An alternative way of increasing ground truth sample size and ensuring all classes are 

adequately represented is to augment the reference dataset with samples selected through 

expert interpretation of the imagery (Corcoran et al., 2013); this would certainly be possible 

at the broad thematic scale but it is unlikely that all biotopes could be distinguished through 

visual assessment of UAV imagery.   

Truly random sampling is likely to generate samples which are not good representatives of 

their class, potentially resulting in reduced accuracy when used as training data in a 

supervised classification.  Corcoran et al. (2013) demonstrated how this problem can be 

overcome by following a random sampling protocol but using discretion during field survey 

to collect data from the most homogeneous area in the vicinity of each target sample 

location and also later eliminating training samples that were not representative of their 

habitat class. 

In this study, equipment limitations required collection of RGB and red edge imagery on two 

separate flights, introducing potential inconsistency due to changes in lighting, tide height or 

other environmental conditions between flights.  A methodological improvement would be 

to use a multispectral camera to collect data from all bands simultaneously, thus improving 

consistency and increasing the amount of data that can be captured during a single low tide. 

Future research should evaluate the effect on accuracy of using near infrared (750nm to 
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950nm) rather than red edge imagery (680nm to 750nm), as studies based on satellite or 

hyperspectral aerial imagery have shown the near infrared band to be useful in 

distinguishing seaweed species (Zacharias et al., 1992; Guillaumont et al., 1993; Bajjouk et 

al., 1996; Siddiqui and Zaidi, 2015).   

Feature selection was shown to be an important factor affecting the accuracy of maps 

created by the RF and SNN classifiers; further research could investigate other data 

dimensionality reduction methods such as principal component analysis or feature ranking 

conducted outside the classification software, or simply using expert judgement and analysis 

of sample values rather than Feature Space Optimisation to select features for the SNN 

classifier. 

4.4.3 Future implications 

The recent upsurge of interest in UAVs for ecological surveillance and monitoring is likely to 

continue due to ongoing innovation in platform and sensor design coupled with reductions 

in cost (Anderson and Gaston, 2013; Colomina and Molina, 2014).  UAVs are a particularly 

attractive option for intertidal survey due to the inaccessibility, high spatial heterogeneity 

and dynamic nature of this environment (Burrows et al., 2014).  The findings of this study 

can help to inform adoption of UAV and OBIA technology for intertidal habitat mapping at 

both broad and fine thematic scales, particularly decisions on classifier choice and ground 

truth sampling protocol.  

The ability to produce intertidal habitat maps in a rapid, repeatable way has positive 

implications for intertidal MPA planning, management and monitoring.  Even at the broad 

thematic scale, maps derived from UAV surveillance can provide useful insight into rocky 

shore dynamics.  For example, the shape and size of areas of bare rock has been shown to 

influence recruitment and recovery after disturbance (Airoldi, 2003); this study 

demonstrated that OBIA of UAV imagery was an efficient and reliable method of measuring 

shape and extent of bare and vegetated patches on intertidal reef.  UAV surveillance only 

captures dominant species such as canopy-forming macroalgae or sessile fauna such as 

barnacles, it cannot capture information on understorey algae or small, mobile species 

(Konar and Iken, 2017; Murfitt et al., 2017).  However, other studies have demonstrated that 

understorey species can be predicted from macroalgal canopy composition (Irving and 

Connell, 2006; Cardenas et al., 2016), and the classification system used in this study was 



Chapter 4: Mapping temperate intertidal habitats from UAV imagery: a comparison of OBIA methods 

130 

 

created through statistical analysis of empirical data (Connor et al. 2004) so correlation is 

expected between dominant species and associated communities.   

The evaluation of consistency by two-fold cross validation and of reproducibility by applying 

the methods to a second dataset from a different season and partially different area of the 

site have important implications for the adoption of these methods for monitoring change.  

At the broad thematic scale, all the OBIA methods had a good level of reproducibility and 

consistency, although RF was less affected by changing the training samples than SNN.  At 

the biotope scale, only the RF classifier performed consistently in response to changing 

training samples and datasets, and is therefore likely to be a better choice of classifier for 

change detection.  Further research into within-class spectral variability and the effect of 

seasonal change on seaweed spectral signatures could inform the establishment of feature 

value ranges for thresholds and membership functions, enabling the application of the 

knowledge-based rule set for intertidal monitoring.  Although this pilot study was conducted 

in one region, the findings regarding the accuracy, consistency and reproducibility of OBIA 

methods are broadly applicable and could inform the adoption of these methods for 

surveillance and monitoring on intertidal reefs in any temperate region.  

4.5  Conclusions 

This study demonstrated the great potential of OBIA and UAV imagery for intertidal habitat 

mapping and provided valuable insight to help inform choice of classifier, sampling protocol 

and thematic scale.   

The accuracy, consistency and reproducibility of outputs were higher at the broad thematic 

scale than at the biotope scale.  Of the two sample-trained classifiers, RF performed better 

than SNN, largely due to its superior feature selection method and its ability to avoid over-

fitting to training data.  The performance of both the RF and SNN classifiers could likely be 

improved by collecting training samples from homogeneous areas stratified by spectral 

signature to ensure a sufficiently high number of samples per habitat class.  The knowledge-

based rule set shows promise for both broadscale habitat and biotope mapping, but further 

research into within-class spectral variability is recommended to improve its reproducibility 

at the biotope scale. 

A great benefit of UAV technology is the ability to target surveys to sites of interest at 

optimal times, such as low spring tides, and to capture imagery at sub-decimetre and even 



Chapter 4: Mapping temperate intertidal habitats from UAV imagery: a comparison of OBIA methods 

131 

 

sub-centimetre resolution.  A disadvantage is that UAVs can only cover small areas, typically 

less than 1km2 per flight, due to technical and operational restrictions such as battery 

duration and regulations on flying within visual line-of-sight (VLOS).  It is possible to cover 

the landward to seaward extent of a typical UK rocky shore on a low spring tide without 

flying outside VLOS, but surveying a linear stretch of coastline would require several flights 

from different take-off points, which could not all be completed on a single low tide.  This 

study demonstrated the ability of OBIA to produce single-date intertidal habitat maps of a 

small area using UAV imagery.  Further research will evaluate the scalability of these 

methods through application to other types of data in order to cover larger areas, and test 

the change-detection capability of OBIA through application to multi-temporal imagery.  If 

successful, the OBIA and UAV surveillance methods evaluated in this study could form an 

integral part of a cost-effective monitoring protocol for temperate intertidal habitats.  
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Chapter 5: Using OBIA with multi-temporal aerial and LiDAR data to monitor 
change in intertidal habitats 

5.1 Introduction 

Coastal ecosystems are naturally dynamic, exhibiting high levels of temporal and spatial 

change (Hartnoll and Hawkins, 1980).  However, in addition to these natural seasonal and 

cyclical fluctuations, the distribution of species and habitats can be affected by 

anthropogenic factors, including ocean warming and acidification (Brodie et al., 2014), non-

native species (Molnar et al., 2008), pollution (Islam and Tanaka, 2004) and coastal 

development (Bulleri and Chapman, 2010).  Several studies provide evidence of long term 

change in extent and distribution of habitat-forming macroalgae on temperate rocky shores, 

possibly influenced by climate change (Davies et al., 2007; Fernandez, 2011; Yesson et al., 

2015).  It is predicted that canopy-forming fucoids will decline as the climate continues to 

warm, with consequent reduction of biodiversity and primary productivity (Hawkins et al., 

2009).  Surveillance and monitoring of coastal ecosystems within and outside MPAs is 

required under national and international legislation (for example EC, 1992; EC, 2000; EC, 

2008) and must seek to distinguish anthropogenic changes from natural fluctuations in order 

to inform management of anthropogenic pressures. 

Multi-decadal marine time-series datasets, for example on plankton (Reid et al., 2003), 

seabird populations (Paleczny et al., 2015), rocky shore communities (Hawkins et al., 2008) 

or physical oceanography (Mackenzie and Schiedek, 2007), are a valuable resource for 

monitoring environmental change, providing insight into the impact of anthropogenic 

activities on marine ecosystems and predicting future trends (Ducklow et al., 2009; 

Mieszkowska et al., 2014).   Remote sensing does not provide datasets of comparable 

duration, nor can it be used for monitoring detailed change in species communities, but it 

can be used to detect change in land use, land cover or habitats at coarse thematic scales 

over large areas (Singh, 1989).  Automated interpretation of remote sensing data offers 

several advantages for monitoring change in land use, land cover or habitats for 

conservation purposes; it is non-invasive and can be applied at different temporal and 

spatial scales to provide quantitative outputs (Willis, 2015).  Although remote sensing is a 

relatively new field compared to the long-term marine monitoring methods mentioned 

above, a growing number of systems and sensors provide data with high temporal frequency 

over many years, for example Landsat imagery which dates back to 1972 (Lyons et al., 2012).   
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The increasing availability of remote sensing data has given rise to many change detection 

methods, but despite a number of comparative studies there is no agreement as to the 

‘best’ technique (Tewkesbury et al., 2015).  This proliferation of methods has arisen in 

response to the particular challenges presented by multi-temporal data (Lu et al., 2004; 

Gomez et al., 2016), namely that inaccurate spatial registration can lead to spurious change 

detection caused by image misalignment; there may be considerable spectral variability 

between datasets, for example due to sensor calibration, off-nadir angle or weather 

conditions; imagery acquired under different phenological conditions may cause natural 

seasonal fluctuation to be confounded with meaningful ecological change; and the 

acquisition of reference data to train models and validate outputs can be difficult, especially 

for historical imagery.  These challenges influence the decisions taken at every stage in the 

change detection process, from selecting and pre-processing imagery, defining units of 

analysis, choosing a comparison method, determining the magnitude and type of change to 

be detected, to assessing the accuracy of the final output (Tewkesbury et al., 2015). 

The most widely used approach to change detection is bi-temporal comparison, which 

entails comparing two sets of imagery collected on different dates, most commonly on 

anniversary dates in different years (Lambin, 1996; Coppin et al., 2004).  However, 

comparison of two dates gives no insight into the rate or persistence of change, and 

techniques have been developed to analyse multi-temporal imagery to detect longer term 

trends in phenology and landscape dynamics (Gillanders et al., 2008; Melaas et al., 2013).  

Whether comparing imagery from two or multiple dates, efforts must be made to reduce or 

compensate for spectral variability between images; the most common approach with 

satellite data is to pre-process the imagery, for example using methods outlined by Lu et al. 

(2004). 

The simplest unit of analysis in remote sensing change detection is the pixel, but as spatial 

resolution of data has increased, object-based methods of producing change detection maps 

have become more popular.  These avoid the ‘salt and pepper’ classification of pixel-based 

methods, enable the use of a wider range of features such as texture and geometric 

properties (Chen et al., 2012; Hussain et al., 2013) and have been shown to produce more 

accurate results than pixel-based approaches (Im et al., 2008; Robertson and King, 2011).   

However, segmenting two or more sets of imagery separately can cause ‘sliver’ objects 

resulting in spurious change detection (McDermid et al., 2008), and some studies have 
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overcome this by using hybrid approaches between pixel- and object-based methods 

(Aguirre-Gutierrez et al., 2012; Duro et al., 2013). 

Change detection comparison methods fall into two broad categories, pre- and post-

classification.  Pre-classification techniques involve combining imagery from two or more 

dates in a single stack and identifying areas of change through simple layer arithmetic or by 

applying a classification algorithm trained by reference samples, while post-classification 

methods involve creating a map for each date and comparing them to classify areas of 

change using transitional ‘from-to’ classes (Manandhar et al., 2010).  Areas of change 

identified through pre-classification methods may subsequently be classified according to 

transition type using a classification algorithm or knowledge-based rules (Doxani et al., 2012; 

Bruzzone and Bovolo, 2013).  Post-classification methods overcome the problem of spectral 

variability due to atmospheric conditions or sensor differences (Fan et al., 2007) and provide 

information on the direction of change, but the potentially large number of transition classes 

can be computationally expensive and confusing to end users, and classification errors in the 

interim maps are perpetuated in the final change maps (Tewkesbury et al., 2015).  An 

advantage of pre-classification techniques is that only one classification stage is required, 

although the generation of training samples can be challenging and time-consuming 

(Schneider, 2012).  Although several reviews discuss the advantages and disadvantages of 

both approaches (Coppin et al., 2004; Lu et al., 2004; Tewkesbury et al., 2015), only two 

studies to our knowledge have compared pre- and post-classification methods directly by 

applying both techniques to the same data and quantifying the accuracy of the results (Mas, 

1999; Conchedda et al., 2008).  Both of these studies found post-classification to be more 

accurate than pre-classification methods when applied to low resolution satellite imagery, 

but no comparative study has yet been carried out using high resolution imagery.   

Methods for quantifying the accuracy of single-date predictive maps through comparison 

with reference data, such as the error matrix (Congalton, 1991), Kappa coefficient (Cohen, 

1960) and balanced error rate (Stephens and Diesing, 2014), may be used in change 

detection studies but the selection of reference data presents challenges when working with 

multi-temporal data.  In some cases, reference data may be available from ground sampling 

that was carried out over the same period as remote sensing data collection, but it is more 

common that reference data will need to be sourced from remote sensing data (Duro et al., 

2013; Gomez et al., 2016).  The key principle is that the reference classification must be of 
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higher quality than the map classification.  If ground truth data or higher resolution remote 

sensing data are not available, reference data may be obtained from the same source 

material used to create the map, provided that the method of classifying the validation 

samples is more accurate than the method used to classify the map they will be used to 

evaluate (Olofsson et al., 2014).  

Most remote sensing change detection studies, including those cited above, developed 

methods using satellite imagery.  Satellite imagery has been the focus of change detection 

research because it is available, often free of charge, over decadal time periods with 

frequent revisit times and its spectral and spatial resolution is suitable for detecting 

landscape-scale changes such as deforestation, desertification or urban expansion.  

However, satellite imagery might not be suitable for change detection in marine and coastal 

environments, particularly in areas with turbid water, frequent cloud cover or fine-scale 

habitat heterogeneity (Thomson et al., 2003).  More recent studies have started to apply 

established change detection methods to a wider range of remote sensing data for marine 

and coastal monitoring, such as sonar (Rattray et al., 2013), UAV (Goncalves and Henriques, 

2015; Ierodiaconou et al., 2016), LiDAR and aerial imagery (Anderson et al., 2016), but no 

study has yet compared the accuracy and consistency of object-based pre- and post-

classification change detection methods. 

Preceding chapters developed and evaluated OBIA methods for creating habitat maps using 

data collected specifically for that purpose, but an important benefit of remote sensing is 

that data can be used for multiple purposes.  In this chapter, data which were originally 

collected to monitor coastal erosion and inform shoreline management plans are 

repurposed for habitat mapping and change detection.  This chapter aims to evaluate the 

application of OBIA to high resolution, freely available aerial and LiDAR multi-temporal 

imagery to detect short-term change in extent and distribution of temperate intertidal 

habitats.  Specific objectives are (1) to ascertain whether OBIA of aerial and LiDAR multi-

temporal data can detect change in extent and distribution of broadscale intertidal habitats, 

(2) to gain insight into the type, magnitude and spatial distribution of change within the 

study site over the eight year period, (3) to compare the accuracy of random forests and 

membership function classifiers as means of producing habitat maps from aerial and LiDAR 

data, (4) to compare the accuracy and consistency of pre- and post-classification change 

detection methods, and (5) to evaluate the impact on map accuracy of different thresholds 
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for defining ‘change’.  Some challenges of using multi-temporal data are explored and their 

impact on the accuracy and consistency of output maps is quantified.         

5.2 Methodology 

5.2.1 Study site 

This study was conducted on the south coast of Flamborough Head in the East Riding of 

Yorkshire, 54° 6.20 N, 0° 8.50 W.  Flamborough Head was designated a Special Area of 

Conservation in April 2005 to protect and monitor features of conservation importance 

under the Habitats Directive (EC, 1992), including intertidal and subtidal chalk reefs.  Under 

Article 17 of the Directive, the condition and conservation status of designated features 

must be assessed and reported every six years.  Prior to designation, a baseline survey was 

carried out to map intertidal biotopes and establish eight monitoring transects (Howson, 

2000) to be resurveyed at intervals to monitor change in extent or distribution of biotopes 

along each transect (Musk et al., 2010).  

The coastline from Sewerby to Danes Dyke on the south of the headland (Figure 5.1) was 

established as the North Sea’s first No Take Zone (NTZ) in July 2010 under a local bylaw.  The 

NTZ covers 1km2, of which approximately 80% is subtidal and 20% intertidal, the intertidal 

area composed predominantly of chalk bedrock and boulder reef.  

 
Figure 5.1: Boundaries of Flamborough No Take Zone and adjacent unprotected control area.  
Contains Ordnance Survey data © Crown copyright and database right (2018) 

A criterion of establishment was that the NTZ would be monitored for an experimental 

period of five years.  Current monitoring activity comprises surveys by the North Eastern 

Inshore Fisheries and Conservation Authority (NE IFCA) to monitor the extent of Mytilus 
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edulis beds and carapace sizes of Cancer pagurus and Homarus gammarus, and annual 

surveys by the University of York to monitor intertidal species communities through direct 

sampling in the NTZ and an adjacent unprotected control area (Figure 5.1).   

A full-coverage swath bathymetry survey was conducted from Flamborough Head to Spurn 

Point in 2011 and expert visual interpretation of the data used to produce subtidal 

broadscale (EUNIS level 3) and substratum maps (Colenutt and Kinnear, 2014), but to date 

no use has been made of remote sensing data to map or monitor change in intertidal 

habitats at this site. 

5.2.2 Aerial and LiDAR data   

Aerial and LiDAR surveys of the East Riding coast have been conducted every spring and 

autumn since September 2008 to monitor coastal erosion and inform the maintenance of 

coastal defence structures.  These surveys were commissioned by East Riding of Yorkshire 

Council and carried out by the Environment Agency, producing 1m resolution LiDAR and 

0.2m resolution aerial imagery which is freely available for re-use under the UK’s Open 

Government License.  LiDAR and aerial tiles overlapping the study area were downloaded 

from the Channel Coast Observatory website [http://www.channelcoast.org/] with metadata 

for each set of imagery.  The RMS error for image alignment of the aerial imagery ranged 

from 0.19m to 0.50m which is in accordance with guidelines set by the Royal Institution of 

Chartered Surveyors (RICS, 2010; Environment Agency, 2016). 

The data collection period runs from spring 2009 to spring 2016; no data were available for 

autumn 2008 because the flight did not fully cover the study area, and no flight was 

conducted in autumn 2016 due to bad weather.  Table 5.1 shows metadata for each set of 

imagery, demonstrating variation in flight month and sensor within the eight year dataset.   
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Table 5.1: Aerial and LiDAR data collected by the Environment Agency for East Riding of Yorkshire 
Council from 2009 to 2016, showing date of collection, sensor used and area covered within the study 
site.  Data courtesy of Channel Coast Observatory.  

Flight 
year 

Flight 
month 

Camera  LiDAR system Coverage of study 
area (km2) 

2009 April  Rollei P45+ Optech ALTM Gemini 06SEN191 0.366 

 September  Rollei P45+ Optech ALTM Gemini 06SEN191 0.541 

2010 April  Rollei P45+ Optech ALTM Gemini 07SEN206 0.402 

 October  Rollei P45+ Optech ALTM Gemini 06SEN191  0.514 

2011 April Rollei P45+ Optech ALTM Gemini 06SEN191  0.500 

 September Rollei Metric AIC Optech ALTM Gemini 167 0.580 

2012 March Leica RCD30 Optech ALTM Gemini 06SEN191  0.361 

 September Leica RCD30 Optech ALTM Gemini 08SN230 0.513 

2013 April Leica RCD30 Optech ALTM Gemini 06SEN191 0.435 

 October Leica RCD30 Optech ALTM Gemini 06SEN191 0.359 

2014 May Leica RCD30 Optech ALTM Gemini 06SEN191 0.445 

 November Leica RCD30 Optech ALTM Gemini 06SEN191 0.479 

2015 April Leica RCD30 Optech ALTM Gemini 06SEN191 0.536 

 September Leica RCD30 Optech Orion 13SEN330 0.526 

2016 March Leica RCD30 Optech ALTM Orion 14SEN342 0.463 

Each set of flight imagery was processed by the Environment Agency to produce 

orthorectified mosaics (Environment Agency, 2016).  Radiometric adjustments were applied 

using inPho Orthovista (Trimble) to compensate for intensity, contrast or colour differences 

between adjacent or overlapping images, sun glint was removed and the individual images 

were mosaicked to produce 1km tiles.  These were adjusted for white balance, contrast and 

exposure in Photoshop CC (Adobe).  An atmospheric sharpening filter was applied and the 

geotiffs were compressed to Enhanced Compression Wavelet (ECW) format using Erdas 

Imagine (Hexagon Geospatial).  No further processing was conducted to compensate for 

variability between datasets, for example due to different atmospheric conditions on 

different flight dates. 

ArcGIS v.10.3 (ESRI) was used to mosaic the image tiles, define the coordinate system as 

OSGB36 and clip the imagery to the intertidal zone of the NTZ and control area.  The area 

covered varies because of differences in tidal height at the time of data capture, ranging 

from 0.359km2 to 0.580km2 (Table 5.1).  ArcGIS was also used to create slope rasters from 

the LiDAR imagery and normalised band indices from the aerial imagery.  Identification and 
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comparison of landmarks in the aerial imagery ensured that each dataset was accurately 

aligned with the others.  Visual assessment of the imagery determined that change of 

substratum and algal cover did occur during the eight year period and is detectable from the 

imagery.  Some examples of change are shown in Figure 5.2, Figure 5.3 and Figure 5.4. 

 
Figure 5.2: Examples of change from sand to chalk cobbles (A), green algae to sand (B) and sand to 
rock (C) seen in aerial imagery of Flamborough Head collected in September 2009 and October 2010 
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Figure 5.3: Examples of change from brown algae to green algae (A), rock to green algae (B), sand to 
rock (C) and red algae to rock (D) seen in aerial imagery of Flamborough Head collected in April 2010 
and April 2011 
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Figure 5.4: Examples of change from chalk cobbles to strandline (A), green algae to rock (B) and sand 
to rock (C) seen in aerial imagery of Flamborough Head collected in September 2012 and October 
2013 

5.2.3 Creation and validation of habitat maps  

Workflows were created in eCognition Developer v9.0.3 [Trimble] to create habitat maps 

from each dataset.  A broadscale habitat classification was defined for the study area 

through visual interpretation of the imagery and reference to survey reports (Howson, 2000; 

Musk et al., 2010).  The classification comprised eight classes: red algae, green algae, brown 

algae, barnacle-covered rock, bare chalk cobbles and sand, plus classes of shadow and 

strandline to remove these objects from further classification.   

Segmentation was performed by applying eCognition’s multi-resolution segmentation 

algorithm to the red, green and blue layers at scale parameter 22 with homogeneity criteria 

weighting shape (0.1) versus colour (0.9) and object compactness (0.9) versus smoothness 
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(0.1).  These parameters were selected by starting from scale 30 and trialling progressively 

smaller scales with different combinations of shape and compactness parameters, 

evaluating each output by visual comparison with the imagery.  Scale parameter 22 created 

separate objects for different algal communities, while larger scales produced objects 

containing a mixture of brown and green algae. 

The site’s topography consists of low bedrock ridges which cast narrow linear shadows, so 

objects were classified as shadow if they met the criteria of brightness <= 50 and 

length/width >= 4.  The strandline consists of dried fucoid algae on the upper shore, so 

objects were classified as strandline if they met the criteria of brightness <= 100 and mean 

elevation >= 2m or brightness <= 150 and mean elevation >= 2.4m. 

Training samples for the remaining six classes were created for each set of imagery through 

manual non-random selection to provide around 100 samples per dataset, divided as evenly 

as possible between habitat classes.  Validation samples were created through systematic 

random sampling by creating an evenly spaced grid of points.  In both cases, habitat classes 

were assigned to the points through visual inspection of the imagery.  Examples are shown 

in Figure 5.5.  

 
Figure 5.5: Training and validation samples created through visual inspection of aerial imagery 
collected in September 2009 
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Unclassified objects were then classified as red, brown or green algae, barnacles, chalk 

cobbles or sand using two supervised classification methods in turn: random forests (RF) and 

membership functions (MF). 

Random Forests 

Objects overlying points in the training dataset were defined as training samples.  

eCognition’s Random Trees classifier was trained using these samples with a set of 45 

feature values for 2009-2014 imagery and 65 feature values for 2014-2016 imagery which 

includes near infrared (NIR) (Table 5.2).  All other training parameters in the Random Trees 

classifier were kept at their default values.  

Table 5.2: Feature values used to train Random Trees classifier in eCognition to produce habitat maps 
from each set of combined aerial and LiDAR imagery.  Spectral layers which were only available from 
2014 onwards are shown in italics. 

Feature Spectral layers Topographic layers 

Mean Brightness, Maximum difference, Red, Green, Blue, 
Blue/Green Band Ratio, Red/Blue Band Ratio, 
Red/Green Band Ratio, Normalised Blue Green 
Index, Normalised Blue Red Index, Normalised 
Green Red Index, NIR, NDVI, Normalised NIR Blue 
Index, Normalised NIR Green Index 

Elevation, Slope 

Mode Red, Green, Blue, Normalised Blue Green Index, 
Normalised Blue Red Index, Normalised Green Red 
Index NIR, NDVI, Normalised NIR Blue Index, 
Normalised NIR Green Index 

Elevation, Slope 

Standard 
deviation 

Red, Green, Blue, Normalised Blue Green Index, 
Normalised Blue Red Index, Normalised Green Red 
Index NIR, NDVI, Normalised NIR Blue Index, 
Normalised NIR Green Index 

Elevation, Slope 

Skewness Red, Green, Blue, Normalised Blue Green Index, 
Normalised Blue Red Index, Normalised Green Red 
Index NIR, NDVI, Normalised NIR Blue Index, 
Normalised NIR Green Index 

Elevation, Slope 

GLCM 
Homogeneneity 
(all directions) 

Red, Green, Blue, Normalised Blue Green Index, 
Normalised Blue Red Index, Normalised Green Red 
Index NIR, NDVI, Normalised NIR Blue Index, 
Normalised NIR Green Index 

Elevation, Slope 

The trained classifier was applied to all unclassified objects to produce a habitat map.  The 

classifier was then queried to generate ‘importance values’ for the features used in the 

classification, and the classification re-run using the subset of features with an importance 

value greater than the mean importance value for the whole set of features. 
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Membership Functions (MF) 

Membership functions define an object’s degree of membership (from 0 to 1) to a class by 

applying fuzzy logic.  Samples were created from objects overlying points in the training 

dataset.  eCognition’s Sample Editor tool was used to compare histograms of sample values 

for pairs of classes to select the best subset of features for defining membership to each 

class.  eCognition’s basic classification algorithm was used to evaluate every unclassified 

object’s degree of membership to each class based on these features, assigning the object to 

the class with the highest membership value.  The classification was run twice for each 

dataset; first the same set of ‘fixed’ value ranges was applied to each dataset, then value 

ranges specific to each dataset were computed from the samples for that dataset.  Table 5.3 

shows the features and the ‘fixed’ value ranges used to define membership to each class.   

Table 5.3: Membership functions used to define the degree of membership to habitat classes.  
Features which were only available for data from 2014 onwards are shown in italics. See Appendix 2 
for an explanation of function forms. 

Habitat class Feature Value range  Function form 

Barnacles Brightness  
Standard deviation Red 
Red/Green Band Ratio 
Mean NDVI 

70 – 255  
0.85 – 29  
0.8 – 1.2  
-0.19 – 0.18  

About range 
About range 
Linear range (triangle) 
About range 

Chalk cobbles Brightness  
Mean LiDAR (x3 weighting) 

150 – 255  
1.2 – 15  

Full range  
Full range 

Browns Mean Normalised Blue Red Index  
Mean Normalised Blue Green Index 
Brightness  
Mean NDVI 

-0.1 – 0.2  
-0.1 – 0.08  
28 – 88  
-0.3 – 0.85  

Approximate Gaussian  
About range  
About range  
Approximate Gaussian 

Greens Brightness  
Red/Green Band Ratio 
Mean Normalised Blue Green Index 
Mean Normalised NIR Green Index 

0 – 105  
0.7 – 1.1  
-0.15 – 0.01  
0.04 – 0.37  

Approximate Gaussian 
About range  
About range  
About range 

Reds Mean Normalised Green Red Index  
Brightness 
Mean Normalised Blue Red Index 
Red/Blue Band Ratio 
Mean Normalised NIR Blue Index 

-0.08 – 0.07  
20 – 120  
-0.18 – 0.18  
0.5 – 1.5  
-0.25 – 0.33  

About range  
Approximate Gaussian  
About range  
About range  
About range 

Sand Maximum difference 
Red/Green Band Ratio 
Standard deviation Red 
Mean NDVI 

0.2 – 1.8  
0.9 – 1.17  
0 – 18  
-0.49 – 0.11  

Greater than  
Linear range (triangle)  
About range  
About range 

The overall accuracy of each map generated by the RF and MF classifiers was calculated 

through comparison with validation samples, which were created from objects overlying the 

grid of points as exemplified in Figure 5.5. 
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5.2.4 Post-classification change detection 

Maps created using the RF classifier were converted to 0.2m resolution rasters with habitat 

class names reclassified as numeric values as follows: 

Strandline  1 
Shadow  2 
Barnacle/rock  3 
Chalk cobbles  4 
Sand   5 
Brown algae  6 
Red algae  7 
Green algae  8 

Pairs of maps from the same season in consecutive years were imported to eCognition and a 

chessboard segmentation carried out at scale 1 to create objects consisting of single pixels.  

Habitat classes and membership thresholds were created to classify change at three levels of 

sensitivity by comparing the classification of each single-pixel object in the two maps (Table 

5.4).  The term ‘sensitivity’ is used in this context to describe each map’s thresholds for 

defining change, it is not a reference to ecological sensitivity.  ‘High’ sensitivity classifies 

change as any difference in classification between the two maps except for change to or 

from shadow or strandline; ‘medium’ sensitivity classifies change as any difference in 

classification except change to or from shadow or strandline or from one algal class to 

another; ‘low’ sensitivity classifies change as a transition from any algal class to any 

unvegetated class or vice versa.   
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Table 5.4: Habitat classes and membership thresholds for creating change-detection maps at three 
levels of sensitivity, showing the transitions in either direction between pairs of habitat classes 
classified by each rule. 

Class Membership thresholds 

Transition 
in either 
direction 
between 
classes 

Change (high) Year 1 <> Year 2 and Year 1 > 2 and Year 2 > 2  3-4, 3-5,  
3-6, 3-7,  
3-8, 4-5,  
4-6, 4-7,  
4-8, 5-6,  
5-7, 5-8, 
6-7, 6-8,  
7-8 

No change (high) Year 1 = Year 2 1-1, 2-2,  
3-3, 4-4,  
5-5, 6-6,  
7-7, 8-8 

Change (medium) Year 1 <> Year 2 and Year 1 > 2 and Year 2 > 2 and Year 1 < 6 
or 
Year 1 <> Year 2 and Year 1 > 2 and Year 2 > 2 and Year 2 < 6 

3-4, 3-5,  
4-5, 3-6,  
3-7, 3-8,  
4-6, 4-7,  
4-8, 5-6,  
5-7, 5-8 

No change (medium) Year 1 = Year 2  
or 
Year 1 >=6 and Year 2 >= 6 

1-1, 2-2,  
3-3, 4-4,  
5-5, 6-6,  
7-7, 8-8,  
6-7, 6-8,  
7-8 

Change (low) Year 1 >= 6 and Year 2 <= 5 and Year 2 >= 3 
or 
Year 2 >=6 and Year 1 <= 5 and Year 1 >=3  

3-6, 3-7,  
3-8, 4-6,  
4-7, 4-8,  
5-6, 5-7,  
5-8 

No change (low) Year 1 = Year 2 
or 
Year 1 >=6 and Year 2 >= 6  
or 
Year 1 <=5 and Year 1 >=3 and Year 2 <=5 and Year 2 >=3  

1-1, 2-2,  
3-3, 4-4,  
5-5, 6-6,  
7-7, 8-8,  
3-4, 3-5,  
4-5, 6-7,  
6-8, 7-8 

5.2.5 Pre-classification change detection 

Rasters were created from the normalised index between the same band in two consecutive 

images using the formula: 

Year 2 Band x − Year 1 Band x

Year 2 Band x + Year 1 Band x
× 100 
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The index is multiplied by 100 to enable the layers to be used in segmentation; differences in 

values from -1 to 1 are too small to be detected by eCognition’s multi-resolution region 

growing segmentation algorithm. 

Spectral layers for pairs of imagery were imported to eCognition, creating projects with 15 

image layers for years with RGB imagery and 24 image layers for years with RGB and NIR 

imagery (Table 5.5).  LiDAR data was not included because comparison of consecutive 

images showed that difference in elevation was less than the vertical accuracy of the 

imagery (0.15m) for between 80-90% of the total area, and change in elevation greater than 

0.15m was restricted to areas of sand and the base of cliffs, rather than intertidal reef which 

was the focus of this study. 

Table 5.5: Image layers used in the creation of pre-classification change detection maps.  Layers only 
available from 2014 onwards are shown in italics. 

Year 1 Red, Green, Blue, NIR, Normalised Blue Green Index, Normalised Blue Red Index, 
Normalised Green Red Index, Normalised NIR Blue Index, Normalised NIR Green 
Index, NDVI 

Year 2 Red, Green, Blue, NIR, Normalised Blue Green Index, Normalised Blue Red Index, 
Normalised Green Red Index, Normalised NIR Blue Index, Normalised NIR Green 
Index, NDVI 

Difference Normalised Year 2 Year 1 Red Index, Normalised Year 2 Year 1 Green Index, 
Normalised Year 2 Year 1 Blue Index, Normalised Year 2 Year 1 NIR Index 

A class hierarchy was created with the following classes: 

Change   
Algae to Rock    
Algae to Sand   
Rock to Algae 
Rock to Sand 
Sand to Algae 
Sand to Rock 

No change 
Algae to Algae 
Rock to Rock 
Sand to Sand 

Segmentation was carried out at scale parameter 22 with homogeneity criteria weighting  

shape (0.1) versus colour (0.9) and compactness (0.9) versus smoothness (0.1) using the 

three normalised year 1 year 2 band index layers.  Points were created at the centroid of 

each object, and a training dataset was created for each pair of images by manually selecting 

at least 100 points, distributed as evenly as possible between the above habitat classes, and 

classifying them through visual interpretation of both images.  Supervised classification was 

carried out using both RF and standard nearest neighbour (SNN) classifiers with reference to 

sample object values of mean, mode, standard deviation, skewness and GLCM homogeneity 
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for all image layers.  Feature Space Optimisation was carried out prior to SNN classification, 

to select the best ten features for separating classes with each pair of images. 

Objects were then reclassified as ‘change’ or ‘no change’ to produce medium or low 

sensitivity change maps as shown in Table 5.6: 

Table 5.6: Transition types included in 'low' and 'medium' sensitivity pre-classification change maps 

 Change No change 

Medium 
sensitivity 

Algae to Rock, Algae to Sand, 
Rock to Sand, Sand to Rock, Rock 
to Algae, Sand to Algae 

Algae to Algae, Rock to Rock, 
Sand to Sand 

Low sensitivity 
Algae to Rock, Algae to Sand, 
Rock to Algae, Sand to Algae 

Algae to Algae, Rock to Rock, 
Rock to Sand, Sand to Rock, Sand 
to Sand 

Validation datasets were created by randomly selecting equal numbers of points within 

areas classified as ‘change’ and areas classified as ‘no change’ and classifying them through 

visual assessment of the imagery.  Overall accuracy, user’s accuracy and producer’s accuracy 

of each map was calculated through comparison with the validation datasets.  Finally, the 

Combine tool in ArcGIS was used to calculate the percentage area with the same 

classification in pairs of change maps produced from the same data using different methods.  

5.3 Results 

5.3.1 Habitat maps 

Validation of the habitat maps produced from each dataset showed that the RF classifier 

produced maps with the highest and most consistent level of mean accuracy (71.4% ± 1.6%).  

Limiting the number of features used with the RF classifier to those with a high importance 

value did not increase the mean accuracy of the output maps (67.5% ± 2.0%).  Maps 

produced using the MF classifier had a mean overall accuracy of 64.9% ± 3.6% when value 

ranges were derived from the image being used to create the map, but a mean overall 

accuracy of 41.8% ± 7.0% when the same value ranges were applied to all datasets.   

Examination of feature values of training samples showed a high degree of within-class 

spectral variability during the multi-temporal dataset as exemplified in Figure 5.6.  This 

variability explains the low accuracy of maps produced using the MF classifier with fixed 

values and could be caused by changes in atmospheric conditions, sun angle, sensor and 

image processing methods during the eight year period. 
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Figure 5.6: Mean red, mean green and mean blue values for training samples in the brown algae 
habitat class (n = 16). 

Examination of training sample values showed that the best features for separating classes 

were band ratios, normalised band indices, brightness and shore height.  However, no single 

feature could separate all six classes and the ability of spectral features to distinguish habitat 

classes varied from one dataset to another.  For example, the normalised blue red index 

(blue – red / blue + red) was used by both the MF and RF classifiers, but Figure 5.7 illustrates 

the variability in the range of values defining each class and in the ability of this feature to 

separate classes.  Some plots showed a clear separation of values for brown and red algae, 

while others showed overlap in the range of values for these two classes.    
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Figure 5.7: Mean red and mean blue reflectance values of training samples used to create habitat 
maps from spring aerial imagery.  Green algae training samples were not created for some datasets 
because the habitat class was not detectable in the imagery. 

For each method, the mean accuracy was slightly higher for maps created using RGB and NIR 

imagery (2014-2016, n = 5) than for those created using only RGB imagery (2009-2013, n = 
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10), but in each case the difference between the means was smaller than the standard 

deviation (Figure 5.8). 

 

Figure 5.8: Mean overall accuracy of habitat maps created through object-based analysis of multi-
temporal aerial and LiDAR imagery (n = 15).  Error bars represent standard deviation. 

Classification accuracy varied with habitat class; chalk cobbles, sand and brown algae had 

high levels of accuracy compared to barnacle/rock, red algae and green algae (Figure 5.9).  

User’s accuracy was higher than producer’s accuracy for all habitat classes except for red 

and green algae, showing that errors of omission were more prevalent than errors of 

commission in classifying these habitats.  Red and green algae classes had particularly low 

user’s accuracy, meaning that errors of commission were more prevalent for these habitat 

classes, which were less abundant and more transient than the other habitat classes.   
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Figure 5.9: User's and Producer's accuracy per class for the habitat maps produced using the RF 
classifier.  Error bars represent standard deviation. (n = 15) 

The relatively low accuracy of the barnacle/rock category could be due to the presence of 

sparsely vegetated rock with a different spectral signature to fully vegetated and 

unvegetated rock, and indeed Figure 5.10 shows evidence of misclassification between rock 

and all three algal classes.  Figure 5.10 shows that equally high levels of misclassification 

occurred between algal classes (mean proportion of total map inaccuracy of 11.5% ± 2.3%) 

and between algal and bare substratum classes (11.6% ± 2.2%).  



Chapter 5: Using OBIA with multi-temporal aerial and LiDAR data to monitor change in intertidal habitats  

153 

 

 
Figure 5.10: Mean contribution of each misclassification type to overall map inaccuracy for habitat 
maps produced using the RF classifier.  Error bars represent standard deviation. (n = 15).   

This has implications for the production of change detection maps; medium and low 

sensitivity maps ignore change from one algal class to another, so could have higher 

accuracy than the habitat maps from which they are produced, but misclassification errors 

between algal and bare substratum classes will impact the accuracy of change detection 

maps even at low sensitivity.  The highest levels of misclassification occurred between sand 

and rock and between red and brown algae, classes which have similar spectral signatures 

and, in the case of red and brown algae, phase into each other on the shore rather than 

having distinct boundaries.  Rock is likely to have higher rugosity than sand, but this may not 

be detectable from LiDAR imagery at 1m resolution.   

Despite overall inaccuracy levels of around 30%, visual assessment of habitat maps produced 

using the RF classifier showed that areas of change visible in the aerial imagery are also 

visible in the habitat maps, for example the transition from algae-covered rock to sand 

shown in Figure 5.11.   
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Figure 5.11: Habitat maps for September 2009 (72.5% accuracy) and October 2010 (71.0% accuracy) 
produced using a RF classifier (top) and the aerial imagery from which they were produced (bottom), 
showing a transition from algae-covered rock to sand in the north east of the map. 

5.3.2 Change detection maps  

Mean overall accuracy of the change detection maps ranged from 70.5% ± 2.9% to 82.6% ± 

3.3%, with the RF and post-classification methods producing more accurate results than the 

SNN classifier (Figure 5.12).  Both RF and post-classification methods showed a slight inverse 

correlation between accuracy and sensitivity.   
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Figure 5.12: Mean overall accuracy of high, medium and low sensitivity change detection maps 
created by object-based analysis of multi-temporal aerial and LiDAR imagery (n = 13).  Error bars 
represent standard deviation. 

Mean user’s accuracy for the ‘change’ class ranged from 58.8% ± 3.1% to 75.7% ± 3.0% and 

was consistently lower than mean user’s accuracy for the ‘no change’ class which ranged 

from 80.3% ± 2.3% to 93.5% ± 2.6% (Figure 5.13).   
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Figure 5.13: Mean user's accuracy for the 'change' and ‘no change’ classes (n = 13).  Error bars 
represent standard deviation.  

Mean producer’s accuracy for the ‘change’ class ranged from 75.3% ± 2.4% to 91.6% ± 3.1% 

and was consistently higher than mean producer’s accuracy for the ‘no change’ class which 

ranged from 67.9% ± 3.3% to 78.9% ± 4.5% (Figure 5.14). 
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Figure 5.14: Mean Producer's accuracy for the 'change' and ‘no change’ classes (n = 13). Error bars 
represent standard deviation 

Figure 5.13 and Figure 5.14 show that the main cause of map inaccuracy with all three 

classification methods and all levels of sensitivity was errors of commission in the ‘change’ 

class and errors of omission in the ‘no change’ class.  Although mean overall accuracy was 

comparable between the post-classification and RF methods, the post-classification 

approach produced maps with a higher producer’s accuracy for ‘change’ and higher user’s 

accuracy for ‘no change’, showing that this method had greater tendency to over-predict 

change than the RF pre-classification method.  

The mean proportion of total area classified as ‘change’ was 39.5% ± 1.3% for the high 

sensitivity maps, and ranged from 16.7% ± 3.7% to 22.8% ± 2.0% for medium sensitivity 

maps and from 13.8% ± 3.3% to 16.2% ± 3.4% for low sensitivity maps (Figure 5.15).  
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Figure 5.15: Mean proportion of total area classified as 'change' in change detection maps created by 
object-based analysis of multi-temporal aerial and LiDAR imagery (n = 13).  Error bars represent 
standard deviation. 

Comparison of the proportion of total area occupied by each change class in consecutive 

maps provided no evidence of directional change within the 8-year period but was 

suggestive of cyclical fluctuation (Figure 5.16 and Figure 5.17).  For example, an increase in 

rock in autumn 2010 was followed by an increase in algae in the following two years, then by 

another increase in rock in 2013 and another increase in algae in the following two years 

(Figure 5.17).  In some years there was no single dominant change class, but similar sized 

losses and gains in different parts of the shore.  For example, in spring 2011-12, 4% of the 

total area was classified as changing from algae to rock while 3.7% was classified as changing 

from rock to algae, and in autumn 2011-12, 3.9% of the total area was classified as changing 

from algae to sand while 4.5% was classified as changing from sand to algae. 
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Figure 5.16: Proportion of total area classified as each change category from bi-temporal 
comparisons of spring imagery using a RF classification 

 

Figure 5.17: Proportion of total area classified as each change category from bi-temporal 
comparisons of autumn imagery using a RF classification 
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Although the amount and type of change varied from year to year, change consistently 

occurred predominantly at the reef edges where there is an interface between bedrock and 

sand or between bedrock and chalk cobbles on the upper shore.  Figure 5.18 shows 

consecutive spring aerial images of the edge of the reef at the western boundary of the NTZ, 

again suggesting cyclical fluctuations rather than directional change, with algal coverage 

decreasing in 2010, 2012 and 2016, increasing in 2011 and 2013 and remaining stable in 

2014 and 2015.  Sand covered much of the reef in 2010, then receded over subsequent years 

to expose increasing amounts of bare rock, but covered much of the reef again in 2015 and 

2016. 

 
Figure 5.18: Spring aerial imagery from the western end of the No Take Zone showing fluctuations in 
algae, sand and bare rock at the reef edge 
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Figure 5.19 shows a low sensitivity change detection map produced using the RF 

classification as a typical example of the spatial distribution of change at the reef edges; 

reference to the aerial imagery shows change from algae to sand on the lower shore of both  

the NTZ and the control zone, from algae to rock at the western end of the NTZ, from algae 

to sand at the eastern end of the NTZ and from algae to rock along the upper shore, all of 

which have been classified as ‘change’ by the RF classification.  

 

Figure 5.19: Low sensitivity change map produced using the RF classifier and the two sets of aerial 
imagery collected in September 2009 and October 2010 from which it was produced.   

The mean proportion of total area with the same classification in pairs of maps produced 

from the same imagery using different methods ranged from 70.0% ± 2.3% to 83.1% ± 1.7% 

(Figure 5.20).  The level of consistency was lowest between maps produced by the post-
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classification and SNN methods.  With all three pairs of methods there was a slight inverse 

correlation between consistency and sensitivity.  

 
Figure 5.20: Consistency between change detection maps produced by different OBIA methods 
calculated as mean % of total area with the same classification in pairs of maps produced from the 
same data using different methods (n = 13).  Error bars represent standard deviation. 

5.4 Discussion 

5.4.1 Accuracy of habitat maps 

This study set out to evaluate whether freely available aerial and LiDAR imagery could be 

used to detect change in the extent and distribution of intertidal habitats, and to compare 

the accuracy and consistency of different OBIA change detection methods.  The results 

showed that despite considerable within-class spectral variability, OBIA methods can be 

applied to these data to produce habitat maps with overall accuracy >70% and change 

detection maps with overall accuracy > 80%.    

This was the first study to map temperate intertidal habitats from aerial and LiDAR imagery 

using an object-based approach, but for comparison overall accuracy achieved by pixel-

based supervised classification in similar environments range from 53%-68% (Hunter and 

Power, 2002), 64%-71% (Thomson et al., 2003), 76% (Hennig et al., 2007), >80% (Lucas et al., 

2011), 77%-85% (Oppelt et al., 2012) to 85% (Bajjouk et al., 1996).  The low accuracy of 
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habitat maps created using the MF classifier with ‘fixed’ values is to be expected due to 

variability in the data.  Signature extension, the process of training a classifier with reference 

values from one set of imagery then applying it to imagery of another place or time (Sexton 

et al., 2013), is only likely to be successful if radiometric correction is first applied to improve 

the consistency of imagery (Gomez et al., 2016).  However, even when the MF classifier was 

applied using value ranges derived from each set of imagery, it produced habitat maps with 

lower mean accuracy and greater variability in accuracy than the RF classifier.  Several 

comparative studies have shown RF to have higher accuracy than other classifiers, 

particularly when multi-dimensional or multi-source data are used (Ghimire et al., 2012; 

Ghosh and Joshi, 2014; Shang and Chisholm, 2014; Xu et al., 2014; Han et al., 2015; Belgiu 

and Dragut, 2016), so these findings regarding the performance of the RF classifier at 

producing both habitat maps and change detection maps from combined aerial and LiDAR 

imagery are consistent with these studies.  The low user’s accuracy indicating high errors of 

commission of the red and green algae classes may be explained by the sampling design 

which aimed to create an equal number of training samples per habitat class.  Other studies 

have shown that the RF classifier is sensitive to the proportions of different classes in the 

training samples (Colditz, 2015; Millard and Richardson, 2015) so given that some habitat 

classes (e.g. red and green algae) are less abundant than others (e.g. fucoid algae) at this 

study site, an area-proportional sampling strategy might have produced more accurate 

results.  It would have been possible to create a multi-level classification rule set similar to 

the one developed in chapter 4, first to separate rock, sand, algae and chalk cobbles and 

then to separate algae into red, green and brown classes.  The simpler approach of 

classifying all classes simultaneously using Random Forests or Membership Functions was 

adopted here because of the larger number of datasets involved, but future studies could 

assess the impact on accuracy of applying multi-level classification to these types of data. 

5.4.2 Accuracy of change-detection methods 

The accuracy of post-classification change detection maps usually cannot exceed the 

accuracy of the contributing single-date habitat maps, and for this reason some studies 

provide an accuracy assessment only for the single-date maps (Anderson et al., 2016) while 

others estimate change detection accuracy by multiplying the overall accuracies (Serra et al., 

2003) or the Kappa coefficients (Prenzel and Treitz, 2006) for each single-date map.  

However, the decision to create maps at different sensitivity levels which combine some 
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transitions into a single class enabled the accuracy of the post-classification change maps to 

differ from the single-date maps, making a separate validation necessary.  The stratified 

random validation of the change maps showed little difference in accuracy between the 

post-classification and RF pre-classification methods, with mean accuracy around 80% for 

the low and medium sensitivity maps produced by both approaches.  This contrasts with the 

findings of Mas (1999) and Conchedda et al. (2008) who found post-classification more 

accurate than pre-classification methods for detecting change in coastal environments, 

although those studies both used low resolution satellite imagery, the former with a pixel-

based and the latter with an object-based approach, so are not directly comparable with this 

study.  

While some studies have found a SNN classifier to produce change detection maps with a 

good level of accuracy (Conchedda et al., 2008; Son et al., 2015), in some cases 

outperforming support vector machine and decision tree classifiers (Tehrany et al., 2014) 

and membership function classifiers (Stow et al., 2008), to our knowledge this is the first 

study to compare SNN and RF classifiers for change detection, finding the SNN classifier to 

be less accurate than the RF classifier.   

The main source of inaccuracy with all three approaches consisted of false positives, i.e. 

areas that had not changed being incorrectly classified as having changed.  The relative 

importance of errors of commission and omission depends on the map’s intended use.  A 

slight tendency to over-predict change, to ‘err on the side of caution’, may be preferable if 

the map is to be used as a decision-support tool to highlight areas of potential change for 

further investigation. 

5.4.3 Defining change 

In addition to evaluating different methods of producing change detection maps from aerial 

and LiDAR imagery, this study provided insight into the types of change occurring at the 

study site, identified the areas most susceptible to change and strongly suggested that this is 

cyclical fluctuation rather than directional change.  While other studies have used multi-

temporal remotely sensed data to detect coastal change, many have focussed on periods 

with severe directional change due to weather events (Anderson et al., 2016) or 

anthropogenic impacts (Manson et al., 2003); this was the first study to our knowledge that 

identified a baseline level of change in temperate intertidal habitats from aerial and LiDAR 
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multi-temporal data.  Further research would be needed to assess whether this is 

representative of other temperate intertidal systems with similar physical characteristics, 

but this insight into the baseline level of fluctuation at the site is crucial information for the 

development of monitoring protocols, whether using remote sensing or ground-based 

survey methods or a combination.   

This study compared three different thresholds for defining change, finding that the high 

sensitivity maps produced by classifying every possible transition as change had lower 

overall accuracy than the medium and low sensitivity maps, and classified around 40% of the 

total area as change.  This corroborates the statement by Olofsson et al. (2014) that it might 

not be advisable to define every possible transition as change due to the large number of 

potential classes this can create.  A change detection map that classifies almost half of the 

total area as change is likely to be of little use as a decision-support tool to aid monitoring, 

and classifying every transition as change is not justified in this case by the accuracy of the 

contributing habitat maps.   

The methods developed and evaluated here detected change in the extent and distribution 

of simple broadscale habitats.  Further development and application of these methods 

should involve consultation with the responsible monitoring authorities to identify particular 

types of change of relevance to conservation targets and management decisions and to 

ascertain whether these can be detected through OBIA of remote sensing data.  These could 

include reduction in area of conservation priority habitats, such as seagrass, saltmarsh or 

biogenic reefs, increase in area of non-native algal canopy species such as Sargassum 

muticum, or change in intertidal algal communities potentially indicative of climate change 

and ocean acidification (Brodie et al., 2014).  

5.4.4 Sources of error and uncertainty 

The creation of training and validation data through visual interpretation of the imagery is 

unavoidable when neither ground truth data nor higher quality remote sensing data are 

available.  Change is often clearly detectable using this approach, as was the case in this 

study, but this introduced operator-mediated selection into an otherwise automated 

process and could therefore be a source of bias or even error.  Imperfect reference data 

have been shown to affect the outcome of quality assessments (Foody, 2010).  Future 

research could quantify the impact of this by collecting ground truth data to compare with 
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samples derived from contemporary imagery and/or conducting a study to quantify 

between-operator consistency in classifying samples derived from historic imagery.  

Operator bias or error can affect classifications made in situ as well as classifications derived 

from imagery, although this is more likely to be a factor with complex classifications based 

on identification and abundance of species than with the simple classification used in this 

study. 

The main sources of error in the habitat classification maps were the within-class variability 

in spectral signature throughout the multi-temporal dataset and the between-class overlap 

in object feature values for any given year.  Remote sensing can only be used for change 

detection when the change in land cover produces a change in spectral signature which is 

larger than changes caused by other factors such as atmospheric conditions or sun angle 

(Singh, 1989).  Although the aerial imagery was processed to reduce differences in contrast 

and colour between adjacent images, no further processing was carried out to attempt to 

reduce variability between imagery collected on different dates; instead the impact of 

within-class spectral variability on accuracy was reduced by using training samples taken 

from each set of imagery.  The accuracy of OBIA supervised classifications is greatly affected 

by feature selection, including the removal of redundant or correlated features (Laliberte et 

al., 2010; Diesing et al., 2016).  This study attempted to optimise feature selection through 

analysis of sample values using box plots, eCognition’s Sample Editor tool and ‘importance 

values’ derived from RF classifications.  Further research might determine better features for 

separating classes, but some habitats remain inherently difficult to separate due to the 

similarity of their spectral signatures, e.g. red and brown algae, or sand and rock.   

The decision to investigate change using data collected biannually for eight years was 

determined by data availability rather than ecological rationale.  This study demonstrated 

that cyclical habitat fluctuations occurred during this period and that they were 

concentrated at the reef edges.  There was no evidence of directional change; analysis of 

multi-decadal time-series imagery, possibly with more frequent observations, would be 

necessary to investigate this question.   

5.4.5 Methodological improvements 

The aerial and LiDAR imagery used in this study were not collected with the purpose of 

detecting change in the extent and distribution of intertidal habitats, and a key aim of the 
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study was to evaluate what could be achieved with pre-existing freely available data.  

Nevertheless, methodological improvements could be introduced to future data collection 

to improve suitability for habitat monitoring, namely collecting data on low spring tides and 

in the same seasons each year.  Collection of LiDAR data at sub-metre resolution could also 

improve classification accuracy by enabling the use of texture features, such as grey level co-

occurrence matrix or standard deviation, to aid the separation of classes that are difficult to 

separate on spectral signature alone.  

These methods only defined change from one habitat class to another, they did not consider 

potential indicators of habitat quality, such as density of algal coverage or diversity of 

habitat types in a given area.  Future methodological developments could include 

monitoring change in algal density by creating additional classes, and monitoring the 

patchiness/continuity of intertidal habitats by evaluating change in object size, shape and 

relation to neighbouring objects, but at present this level of analysis is not justified by the 

accuracy of initial classifications that can be achieved from these data.   

This study made a series of bi-temporal comparisons of the same season in consecutive 

years.  Bi-temporal comparison is the most widely used approach to change-detection (Lu et 

al., 2004; Hussain et al., 2013; Tewkesbury et al., 2015) but it is also the most simplistic.  

Temporal trajectory analysis would give more insight into whether continuous change is 

occurring and in which direction (Coppin et al., 2004; Czerwinski et al., 2014; Thonfeld et al., 

2015).  This approach was not used in this study because the timespan of the dataset was 

too short to expect to see continuous change, phenological conditions are not comparable 

between images, and the study area would be reduced to the area of the imagery captured 

at the highest tide.  Nevertheless this approach might be a methodological improvement 

where suitable data are available, especially if directional change is suspected.   

5.4.6 Future implications 

The use of remote sensing and OBIA for mapping and monitoring habitats in the UK is likely 

to increase rapidly in the next few years (Medcalf et al., 2014a; Medcalf et al., 2014b; 

Medcalf et al., 2015).  The results of this study can contribute considerably to the 

understanding of remote sensing methods by the responsible monitoring authorities, 

enabling more robust use of information derived from remote sensing data and more 

confident communication with stakeholders.  Despite the cost of aerial surveys and the 
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increasing availability of free satellite imagery, regular multi-spectral and LiDAR coastal 

surveys are likely to continue in the UK because only these methods provide data at the 

coverage and resolution necessary to inform shoreline management plans.  This study 

demonstrated that OBIA of these freely publicly available datasets can detect change in the 

extent and distribution of broadscale intertidal habitats and provided insight into the type, 

magnitude and spatial distribution of natural cyclical change that occurred in the study area 

over the eight year period.  OBIA of remote sensing data could provide regular coarse-scale 

rapid assessments of large areas of coastline.  This could act as an ‘early warning system’ to 

direct more detailed UAV or ground-based surveys to areas where ecologically relevant 

change has been detected.  Coppin et al. (2004) recommend such a “multi-scale, nested 

approach” in which different change detection methods are applied at spatial and temporal 

scales relevant to the type of change observed.  The insight into cyclical change and its 

detectability by OBIA provided by this study could inform the establishment of such an 

approach. 

The broad cycle of change observed at the study site consisted of sand being washed away  

to reveal bare rock at the reef edges; the bare rock was then colonised by brown/green 

algae; the sand then re-covered the rock and the algae was removed, presumably due to 

scouring or smothering.  A sudden or gradual change in environmental conditions could 

affect the background pattern of cyclical change at the study site in various ways, for 

example the cycle could speed up or slow down, steps in the cycle could be omitted or new 

steps added, the spatial distribution of change could alter, or the cycle could be disrupted 

and a particular state could become permanent or at least last for several decades 

(Masselink et al., 2016; Hawkins et al., 2017; O'Brien et al., 2018).  

Understanding the baseline level of natural fluctuation in intertidal broadscale habitats could 

act as a trigger for further investigation if OBIA of remote sensing data detects change above 

the baseline level.  The knowledge that change occurs predominantly at the reef edges could 

prompt investigation if change is detected in different areas.  Awareness of the expected 

cyclical pattern of fluctuation could prompt investigation if change occurs out of sequence or 

if a different type of change is detected, for example a large growth of green algae could 

indicate a change in salinity or nutrient levels (Fong et al., 1996; Arevalo et al., 2007).  

Finally, understanding the baseline level of natural fluctuation can help monitoring 

authorities know when investigation is not necessary and to reassure stakeholders that 
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cyclical change or sediment movement due to longshore drift is expected in the dynamic 

intertidal environment and is not a cause for concern.  This is valuable information at a time 

when resources for monitoring and surveillance are limited. 

The study also provided quantitative evaluation to inform choice of change detection 

method, classification algorithm, sample selection protocol and change definition 

thresholds.  Both the pre- and post-classification methods based on the RF classifier showed 

great potential for detecting change in the extent and distribution of intertidal habitats from 

aerial and LiDAR imagery.  Both methods had a similar level of accuracy, so the choice may 

be determined by other factors, for example the pre-classification approach required less 

processing time, but post-classification produced single-date habitat maps which may be 

useful for other purposes.  The two methods produced fairly consistent results, but the post-

classification approach had a slightly higher tendency to over-predict change.  The MF 

classifier is not recommended for intertidal habitat mapping as part of a post-classification 

change detection approach; even when using feature values derived from samples from the 

relevant year to compensate for between-year spectral variability, it produced less accurate 

results than the RF classifier.  The SNN classifier is not recommended for pre-classification 

change detection as it produced less accurate results than the RF classifier.    

The temporal scale of observations should match that of the type of change being monitored 

(Lambin, 1996; Nagendra et al., 2013).  Biannual data as used in this study could be suitable 

for repeated coarse-scale rapid assessments as described above, but frequent observations 

over several weeks or months would be needed to monitor the impact of a pollution 

incident or severe storm, while a multi-decadal time-series would be needed to monitor the 

response of intertidal communities to climate change.  Future studies could explore 

adaptation of the methods developed and evaluated here for use on different temporal 

scales where suitable data are available.   

5.5 Conclusions 

This study provided insight into both the background level of change in temperate intertidal 

habitats and the accuracy of different approaches to intertidal habitat mapping and change 

detection.  The results are of direct practical relevance; they can inform the adoption of 

suitable methods by monitoring authorities and improve their understanding and 

communication about remote sensing.  Despite considerable within-class variability in 
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spectral signature and overlap in the spectral values of different classes, freely available 

aerial and LiDAR imagery can be used to detect change in intertidal habitats on a coarse 

thematic scale with a good degree of accuracy.  Although the ‘best’ change detection 

algorithm has been shown to vary from case to case (Lu et al., 2004), these findings suggests 

that a RF classifier is a better choice than SNN or MF classifiers for producing intertidal 

habitat or change detection maps from aerial and LiDAR imagery.  Defining every possible 

transition as ‘change’ reduces classification accuracy and classifies a high proportion of the 

total area as change; raising thresholds for defining change by combining transition types 

produces more accurate maps, but the classification should be developed based on 

ecological rationale and user requirements.  Ecologically significant change in intertidal 

habitats can sometimes only be detected by expert ground survey (Wells et al., 2007; Konar 

and Iken, 2017), but the approaches developed and evaluated in this chapter have great 

potential for adoption, in combination with other remote sensing and ground-survey 

methods, as part of a multi-scale monitoring strategy to ensure the most effective use of 

resources.  
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Chapter 6: Thesis overview, limitations and wider implications 

This thesis has examined the potential of object-based image analysis (OBIA) and remote 

sensing for mapping and monitoring temperate marine and coastal habitats in the North 

Sea.  A variety of sensors and platforms were used to provide imagery at different spectral 

and spatial resolutions, which was interpreted using photogrammetry to create topographic 

models and OBIA to produce habitat and change-detection maps.  Outputs were validated 

using ground truth data, enabling direct comparison of methods.  As the first study of its 

kind in the North Sea, this work provides novel and timely insight into the applicability of 

these methods in the temperate marine environment.  This chapter provides an overview of 

the thesis, highlights key findings and their wider implications, discusses the limitations of 

the study, and suggests areas for future research. 

6.1 Key findings and contribution to knowledge 

Globally, interest in remote sensing for nature conservation is growing, fuelled by rapid 

advances in sensors, platforms and software and the increasing need to monitor pressures 

and impacts that occur at large spatial scales (Lucas et al., 2017).  In the marine 

environment, remote sensing has become a “keystone technology” for monitoring fragile 

habitats (Purkis, 2018) and a critical component of robust extrapolation from fine-scale 

ecological sampling to broad-scale ecosystem assessments (Strong and Elliott, 2017).  Both 

optical and acoustic remote sensing are promising tools for marine monitoring at an 

ecosystem scale, with potential for integration with other novel methods such as genomic 

tools and species distribution modelling (Borja et al., 2016).  Remote sensing could thus aid 

the monitoring of climate-driven changes that are already being observed in marine 

ecosystems and expected to increase rapidly in future (Mieszkowska and Sugden, 2016; 

Henson et al., 2017), potentially providing cost-effective solutions at a time when a growing 

need for monitoring coincides with reduced availability of resources (Borja and Elliott, 2013). 

However, remote sensing is still not as widely used for nature conservation as it could be, 

partly because the increasing choice of remote sensing data products is potentially 

overwhelming and the responsible organisations often lack the time, skills or staff to access 

and interpret remotely sensed data to inform their operations (Lucas et al., 2017).  Lack of 

transferability of methods, caused by variability of data, ground truthing protocols, 

interpretation techniques and user requirements, also presents a significant barrier to the 
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application of remote sensing for habitat monitoring in both terrestrial and marine 

environments (Lillis et al., 2016; Borre et al., 2017).  Even where remote sensing is being 

used for marine habitat mapping, it is not always applied effectively or consistently, with 

consequent negative implications for marine management and decision making (Diesing et 

al., 2016; Lecours, 2017). 

In the UK, the new framework for marine spatial planning and the recent increase in the 

number and extent of MPAs create a pressing need to maximise the potential of remote 

sensing and ensure its robust use to inform decision making.  This must be underpinned by 

understanding of the current limitations as well as potential benefits of different 

approaches.  Comparative evaluation of methods in the temperate marine environment is 

therefore crucial, but prior to this thesis no such studies had been conducted in the North 

Sea or applied to such a wide range of data.  The novel achievements of this thesis lie in the 

rigorous evaluation of the consistency, accuracy and repeatability of photogrammetry and 

OBIA for mapping and monitoring temperate marine habitats using a variety of remote 

sensing data.  These achievements provide new insight, outlined in the following sections of 

this chapter, to inform the choices that analysts make throughout the process of data 

collection, interpretation and validation. 

6.1.1 Sensors and platforms 

This study developed and applied photogrammetry and OBIA methods for the interpretation 

of data collected by several sensors and platforms, with spectral resolution ranging from one 

to five bands and spatial resolution ranging from 0.04m to 1m (Table 6.1).   

Table 6.1: Spectral and spatial resolution of data used in this thesis 

Platform Sensor Spectral resolution Spatial resolution (m) 

UAV  RGB camera 3 bands (Combined to 
give 5 bands: 
R,G,B,RE + DEM) 

0.04 

UAV Red edge camera 3 bands  0.04 

Aeroplane RGB camera 3 bands 0.20 

Aeroplane RGB-NIR camera 4 bands 0.20 

Aeroplane LiDAR 1 band 1.00 

Boat Multibeam echosounder 2 bands 1.00 

Most remote sensing habitat mapping studies to date have focussed on satellite imagery, 

which has higher spectral resolution and lower spatial resolution than the sensors studied 

here.  The optimal spatial resolution of remotely sensed data is determined by the scale of 
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features being observed, in this case the size of habitat patches and three dimensional 

topographic features.  The present study demonstrated that both aerial and UAV imagery 

can be interpreted using OBIA to produce reliable broadscale habitat maps of temperate 

intertidal sites, which are characteristically highly spatially heterogeneous.  Broadscale 

intertidal habitat maps produced from 0.04m resolution imagery at Runswick Bay using a 

Random Forests (RF) classifier had higher mean overall accuracy (85.3% ± 5.9%) than those 

produced from 0.2m resolution aerial imagery at Flamborough using the same classifier 

(71.4% ± 1.6%).  Spatial resolution might be a contributing factor to this observed difference 

in accuracy, but it could also be influenced by ecological differences between the two sites, 

e.g. Runswick Bay is dominated by red algae while Flamborough is dominated by fucoids, or 

by methodological differences, e.g. the validation samples for Runswick Bay were collected 

by field survey using stratified random sampling while those for Flamborough were selected 

from the imagery using systematic sampling.  The aim of the study was to evaluate the OBIA 

approach and compare different classifiers, rather than to evaluate the influence of spatial 

resolution on classification accuracy, but the results suggest a possible correlation between 

accuracy and spatial resolution in temperate intertidal habitat mapping that could be tested 

in future studies.  Research in highly heterogeneous tropical marine environments has 

shown that classification accuracy of pixel-based habitat maps is improved by using higher 

spatial resolution imagery, although this is less cost-effective than using lower resolution 

imagery (Capolsini et al., 2003; Mumby and Edwards, 2003).  Terrestrial OBIA studies have 

shown that the accuracy of habitat maps in heterogeneous environments can be improved 

by using high resolution aerial or UAV imagery to supplement lower resolution satellite 

imagery, but working with such high resolution imagery in OBIA can result in over-

segmentation and increased processing time (Medcalf et al., 2015; Medcalf et al., 2017).   

Spectral resolution may also influence classification accuracy; a greater number of spectral 

bands typically increases the ability to distinguish habitats based on subtle differences in 

spectral response (Medcalf et al., 2014a).  The majority of intertidal mapping studies to date 

have used hyperspectral aerial imagery, which enables the detection of seagrass and algal 

classes due to its high number of narrow bands, but these sensors are expensive and data 

interpretation requires considerable expertise (Garono et al., 2008; Oppelt et al., 2012; Valle 

et al., 2015).  Thus the availability of the red edge band may be another factor which 

contributed to the higher accuracy of the habitat maps produced for Runswick Bay.  While 
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the Runswick Bay imagery consisted of four colour bands, the aerial imagery for 

Flamborough consisted mainly of three bands, with a fourth near-infrared (NIR) band 

available for five of the fifteen images.  The inclusion of the NIR band did not significantly 

improve classification accuracy of the Flamborough habitat maps produced using a RF 

classifier (mean overall accuracy 71.0% ± 1.6% with three bands, 72.0% ± 1.7% with four 

bands).  Nevertheless, analysis of the feature importance values generated by the RF 

classifier showed that the Normalised Difference Vegetation Index (NDVI) and other features 

derived from NIR and red edge were consistently important features for separating 

broadscale habitats at both Runswick Bay and Flamborough.    

Evaluation of topographic models produced by photogrammetry from 0.04m resolution 

imagery demonstrated high vertical accuracy (mean RMSE 0.07m ± 0.01m for the models 

produced without compressing the imagery) and the ability to detect decimetre scale 

topographic features.  The inclusion of topographic information alongside spectral 

information aided the predictive mapping of intertidal habitats.  Mean and mode elevation 

values derived from the digital elevation model (DEM) were assigned a high importance 

value by the RF classifier, and mean elevation was used at many stages of the knowledge-

based workflow to aid the classification of broadscale habitats and biotopes.  However, the 

photogrammetric models lacked sufficient accuracy to detect sub-decimetre scale features 

and to measure the fine-scale rugosity that is known to influence species distributions in this 

environment, and it is possible that increasing the spatial resolution of the imagery by flying 

at a lower altitude could generate more accurate results (Kung et al., 2011).  

The circalittoral study demonstrated that OBIA of 1m resolution multibeam echosounder 

data can be used to produce substratum maps with a high degree of accuracy.  Although this 

sensor produces only two bands of imagery (bathymetry and backscatter), the data were 

enriched through the production of bathymetric derivatives.  These aided the classification 

process, for example slope was used in combination with backscatter to separate rock from 

sediment through iterative cycles of threshold based rules.  Comparative studies have found 

that the inclusion of secondary acoustic features improves classification accuracy (Calvert et 

al., 2015), although predictive power is decreased by the indiscriminate inclusion of all 

available derivatives (Stephens and Diesing, 2014).  The only derivative layers created and 

used in this study were slope and bathymetric position index (BPI) at a range of scales.  

Additional derivatives could be explored in future studies to evaluate their influence on 
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accuracy in OBIA mapping of temperate marine habitats, for example eastness, northness, 

Moran’s I, topographic roughness index, vector rugosity measure and curvature (Rattray et 

al., 2009; Elvenes et al., 2014). 

Even when supplemented by derivative layers, habitat mapping from acoustic data is 

challenging, particularly on sediment seabeds.  The majority of studies that have obtained 

high accuracy in distinguishing sediment grades overcame the low spectral resolution of 

acoustic data by using specialist software such as RoxAnn or QTC-Multiview to detect subtle 

variations in  backscatter data (McGonigle et al., 2009; Brown et al., 2011b; Brown et al., 

2012) or by analysing the backscatter angular response curve (Hamilton and Parnum, 2011; 

Lamarche et al., 2011).  In the present study, the successful discrimination of sand and mud 

using OBIA of acoustic layers and derivatives owed much to the correlation between 

sediment type and depth in the study site.  Were it not for this correlation, it is unlikely that 

a Standard Nearest Neighbour OBIA approach could distinguish sediments using the 

available data with an acceptable degree of accuracy.  However, improvements to acoustic 

data collection, as discussed in chapter 2, could produce bathymetry and backscatter data 

with fewer artefacts.  Future studies could apply the OBIA methods that were tested in later 

chapters, such as Random Forests or membership functions, to ‘cleaner’ acoustic data and 

derivatives, to evaluate the capability of distinguishing sediments without relying on 

correlation with depth. 

OBIA of acoustic imagery was found by the present study to be unsuitable for mapping 

temperate circalittoral reef communities, but this was primarily due to the characteristics of 

the study site than to shortcomings of the sensor.  Other studies have successfully mapped 

benthic biota from acoustic data in areas where broadly defined species communities have 

distinct environmental niches defined by environmental parameters which have a wide 

spectrum of values in the study site (Holmes et al., 2008; Ierodiaconou et al., 2011; Hasan et 

al., 2012a; Mielck et al., 2014).  The low accuracy of biotope maps in this study was largely 

due to the similarity of the circalittoral rock communities in terms of species composition 

and environmental parameters.  In the classification system used, each habitat class in the 

study area has the same set of characterising species, all of which tolerate a wide range of 

conditions, and the differences between habitats are defined by differences in the relative 

abundance of each species.  The classification of subtly different sub-biotopes was based on 

interpretation of seabed photographs with the assumption that a photograph is 
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representative of the surrounding area, an assumption which is likely to be a source of error 

(Rattray et al., 2014).  The spectral and spatial resolution of acoustic data are likely to be too 

low to detect such subtle differences in habitat composition, regardless of the interpretation 

methods used.  However, fine-scale seabed habitat maps could be produced for areas of 

interest through application of the photogrammetric and OBIA methods developed in 

chapters 2 and 3 if suitable optical imagery could be obtained; this is discussed in section 

6.3.  

Variability of data within habitats is an issue with all sensors and platforms, but the use of 

satellite imagery for habitat and land cover mapping over several decades has led to 

increased standardisation of collection and calibration procedures to reduce variability.  In 

contrast, aerial and UAV platforms are subject to less standardisation, and their smaller 

coverage means that data for a large area may need to be collected over several days, the 

final image being a composite of multiple dates (Medcalf et al., 2015).  Chapter 5 

demonstrated that the considerable within-class spectral variability of aerial imagery 

collected on different dates can severely impact classification accuracy but can be overcome 

by defining habitat classes using feature value ranges specific to each set of imagery.  In 

chapter 4, the main cause of inaccuracy when OBIA rules were applied to imagery from a 

different season was a change in spectral signature caused by actual environmental change 

(seaweed bleaching) rather than by data variability.  However, variability in UAV imagery is 

also to be expected, particularly as the sensors were not calibrated for difference in lighting 

conditions on different flights.  There was no opportunity in this study to compare acoustic 

data collected from the same site at different times, but variability in acoustic data is well 

documented and research is underway to address this through development of standardised 

protocols for collection and processing (Lamarche and Lurton, 2017).   

This study has demonstrated the potential of each of the platforms and sensors tested for 

mapping temperate marine habitats using OBIA.  With their ability to collect high resolution 

topographic and spectral information simultaneously on demand, UAVs seem an ideal 

platform for surveying the intertidal environment due to its dynamic nature and high spatial 

and spectral heterogeneity.  However, UAV coverage is typically limited to <1km2 per flight 

due to regulations that require the craft to remain within the operator’s visual line of sight.  

An aeroplane may collect colour imagery simultaneously with LiDAR data, covering several 

kilometres of coastline within a single low tide.  This study suggests that the lower spectral 
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and spatial resolution of aerial imagery compared to UAV imagery may result in reduced 

classification accuracy, but this might be an acceptable trade-off for more extensive 

coverage.  In subtidal environments where turbidity prevents use of optical data from aerial 

platforms, acoustic data and derivatives can be interpreted using OBIA to provide reliable 

maps of seabed substrata.  

None of the sensors studied produced data that enabled habitats to be separated based on 

single features or simple threshold values.  Even the separation of rock from sediment in 

chapter 2 required the use of two features (mean slope and mean backscatter intensity) and 

an iterative cycle of classification with different threshold combinations, because the range 

of values for both of these features overlapped between the two classes.  Overlap in the 

acoustic signature of different seabed substrata has been documented by other subtidal 

studies (Lucieer et al., 2011; Diesing et al., 2014; Stephens and Diesing, 2014; Calvert et al., 

2015), but chapters 4 and 5 also demonstrated considerable overlap in spectral signature of 

intertidal habitat classes derived from optical imagery, even when working at a coarse 

thematic scale.  This highlights the challenge of habitat mapping in the temperate marine 

environment from relatively low spectral resolution data and shows that an OBIA approach 

can help to overcome this challenge by increasing the number of features available and 

enabling creation of workflows based on knowledge of the site and of the data.  

6.1.2 OBIA workflows 

Several OBIA approaches were developed and evaluated in this thesis.  The approach 

adopted in the initial subtidal study was relatively simple, consisting of rule sets based on 

thresholds and a Standard Nearest Neighbour (SNN) classifier.  No further algorithms or rule 

based approaches were tested in this chapter because of the limitations imposed by the 

nature of the study site and the data, as discussed in the previous section.  However, 

subsequent chapters explored more sophisticated OBIA approaches including multi-level 

classification, the RF classifier and rule sets based on membership functions. 

A key finding of chapters 4 and 5 was that the RF classifier produced more accurate and 

consistent results than SNN.  SNN is a popular choice of classifier due to its simplicity and the 

fact that it is better documented than other classifiers in software literature (Trimble, 2014) 

so this study has been valuable in highlighting its weaknesses.  An important weakness, 

demonstrated in chapters 2 and 4, was the failure of the Feature Space Optimisation tool to 
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select the best features for separating habitat classes.  The main reasons for the superior 

performance of the RF classifier were the avoidance of over-fitting to training data and the 

potential to improve classification accuracy by using features with high importance values to 

train the classifier.  These benefits of RF have been discussed in other studies (Belgiu and 

Dragut, 2016), but this was the first study to demonstrate the benefits in this environment 

with these types of data. 

The 2-fold and 4-fold cross validation applied in these studies highlighted the considerable 

influence of sample selection on model output when using classifiers trained by samples.  

Changing the training dataset led to inconsistent results in both intertidal and subtidal maps, 

the level of inconsistency being far greater with the SNN classifier than with the RF classifier.  

This is a crucial point for practitioners to be aware of, because such inconsistency of outputs 

could create the illusion of change in extent or distribution of habitats (Frost et al., 2013).  It 

may be desirable to use standard classification algorithms for marine or coastal habitat 

mapping, particularly where there is insufficient prior knowledge of the study site to develop 

a rule-based workflow, or where speed and ease of use are primary concerns.  The most 

statistically robust outputs are likely to be achieved by applying several classifiers to the 

same data with the same training samples and combining the results through ensemble 

analysis (Diesing and Stephens, 2015; Zhang, 2015), but this approach is complex and 

requires greater technical expertise than the application of a single classification algorithm.  

RF is itself an ensemble approach combining the outputs of multiple decision trees, and is a 

reliable choice provided that care is taken to ensure that sample selection adequately 

represents the range of habitats present, and that feature selection is informed by previous 

research and by the importance values generated by the classifier (Ma et al., 2015; Millard 

and Richardson, 2015).   

Chapter 4 demonstrated both the benefits and risks of a knowledge-based OBIA approach.  

The transparent, sequential workflow enabled the rules to be adjusted, resulting in a higher 

classification accuracy than was achieved by the RF or SNN classifiers.  However, this 

approach has been criticised by other studies for its subjectivity (Arvor et al., 2013; Belgiu et 

al., 2014).  The present study clearly demonstrated the risk, especially when working with 

high resolution imagery, of creating overly intricate rules to achieve the desired result.  The 

low classification accuracy that arose from application of the knowledge-based rules to 

another set of imagery showed that the rules were over-fitted to the imagery for which they 
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were originally developed, leading to misclassification of habitats whose spectral signature 

had altered due to seasonal change.  This study’s findings suggest that knowledge-based 

rules should be considered for wider implementation for intertidal habitat mapping due to 

their potential to achieve high classification accuracy without the need for training samples, 

but workflows should be kept as simple as possible and value ranges will need to be adjusted 

when rules are applied to new imagery.   

This study did not directly compare object-based with pixel-based approaches through 

application to the same data, but nevertheless demonstrated several benefits of the object-

based approach, notably the use of a wider range of features than would be possible with  

pixel-based mapping, simultaneous interpretation of multiple layers and, in chapter 4, the 

ability to classify a scene on multiple hierarchical levels.  However, it did not use contextual 

data, which is a great potential benefit of the OBIA approach (Lucas et al., 2007; Medcalf et 

al., 2014b).  Contextual data, for example on exposure and currents, were not available for 

the North Sea at sufficient resolution for use in this study, but this is an important potential 

benefit of the OBIA approach and should be explored in future studies where such data can 

be made available through survey or modelling. 

6.1.3 Classification system and thematic resolution 

This study used existing standard classification systems in chapters 2 and 4, a classification 

derived from cluster analysis of species abundance data in chapter 2 and a classification 

derived from visual analysis of imagery in chapter 5.  The thematic resolution of habitat 

maps ranged from purely physical classes of seabed substrata in chapter 2, to broad 

community classes in chapters 4 and 5, and highly detailed biological communities 

(biotopes) in chapters 2 and 4.   

The thematic resolution of habitat maps must be justified by the spatial and spectral 

resolution of the remote sensing data (discussed in 6.1.1) and, if training samples are used, 

by the taxonomic resolution of the ground truth data.  This study showed that biotopes 

could be assigned with confidence to ground truth data collected through intertidal field 

survey in chapter 4, but the allocation of biotopes or sub-biotopes to seabed photographs in 

chapter 2 was fraught with uncertainty.  Visual interpretation of aerial imagery in chapter 5 

enabled classification of broad community classes with a reasonable degree of confidence, 

but did not enable the classification of detailed biological communities.  
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Using a site-specific classification produced by cluster analysis of subtidal species abundance 

data produced no improvement in classification accuracy compared to a standard 

classification system, while cluster analysis of intertidal species abundance data produced 

habitat classes that were so closely aligned with the standard classification that there was no 

justification for their use in habitat mapping.  However, creation of a broad community 

classification based on analysis of aerial imagery in chapter 5 enabled intertidal habitats to 

be mapped at higher thematic resolution than would have been possible if using a standard 

classification.  In the UK’s standard classification system, even broad community types are 

defined by species-level classification, for example requiring the separation of fucoid algae 

species which are not spectrally distinct, or by the presence of sub-canopy species such as 

barnacles or mussels, which cannot be detected by remote sensing (Connor et al., 2004; 

Parry, 2014).  Using aerial imagery it would therefore only be possible to classify intertidal 

habitats at the higher ‘habitat complex’ level, in which classes are defined only by 

substratum and energy.  The creation of classes such as red, green and brown algae thus 

enabled production of more useful habitat maps from the available data than if the standard 

classification system had been used.  It is recommended that a standard marine habitat 

classification system is used where possible because of the practical benefits of being widely 

understood by marine managers and facilitating comparison between sites and over time.  

However, site-specific classifications should be used if they enable production of maps at 

higher thematic resolution, as these may be of greater use for monitoring or spatial 

planning.   

Standard marine habitat classifications are based on ecological knowledge of the 

environmental factors that influence the distribution of species communities, while site-

specific classifications created for remote sensing studies are based on what can be detected 

by sensors.  In some cases, the latter approach may be the only approach justified by the 

spectral and spatial resolution of the imagery.  Ground truth sampling is needed to ascertain 

the ecological relevance of a classification based on what sensors can detect, i.e. whether 

there is correlation between features detected by the sensor and the ecological 

communities present on the ground.  Habitat or change detection maps based on a simple 

site-specific classification can provide useful information to aid site management or to direct 

survey effort, provided that the relationship between benthic biodiversity and detectable 

features is understood. 
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6.1.4 Ground truth sampling protocols and quality assessment 

The stratified random ground truth sampling protocols adopted in chapters 2 and 4 led to 

the under-sampling of locally rare habitat classes and consequent inability to map and 

validate those habitats reliably.  Chapter 5 used manual non-random selection of training 

samples to ensure that all classes were adequately represented, and systematic selection of 

validation samples (i.e. using an evenly spaced grid of points) to ensure that the validation 

approach was objective.  Although systematic sampling was effective for the quality 

assessment of habitat maps, it proved inadequate for validating the change detection maps 

because these consisted of just two classes, of which ‘no change’ occupied a far greater 

proportion of the map than ‘change’.  Validation samples for the change detection maps 

were therefore selected using random sampling stratified by class, generating an equal 

number of validation points per class and enabling the calculation of meaningful user’s and 

producer’s accuracy values for both ‘change’ and ‘no change’ classes.   

Chapter 2 demonstrated that random sampling generated some samples which were not 

good representatives of their class, for example occurring on a boundary between two 

habitats.  It has generally been widely assumed in remote sensing studies that ground truth 

samples should be taken from homogeneous areas and that the use of mixed pixels or mixed 

objects would reduce mapping accuracy, although a recent study has challenged this 

assumption and shown that the inclusion of mixed samples in a training set can actually 

improve classification accuracy (Costa et al., 2017).  Further research would be necessary to 

evaluate whether these findings are applicable to other classifiers and environments, but 

although mixed samples may prove viable as training samples, validation samples should 

consist of pure objects to avoid ambiguity in accuracy metrics.   

Random sampling is recommended for its objectivity, but should be based on unsupervised 

classification of the remote sensing imagery where possible to ensure that all classes are 

adequately represented and that samples are taken from homogeneous areas with a pure 

spectral signature.  When this is not possible, for example if ground truth data are collected 

before or during the remote sensing survey as in chapter 4, a random sampling protocol 

could be modified to ensure adequate representative samples of each habitat while 

retaining an element of objectivity (Corcoran et al., 2013).    
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Evaluation and clear communication of map accuracy is crucial if maps are to be used as a 

basis for environmental decision making.  This is particularly true in the UK, where “the data 

and information we use to make our decisions will be available for others to scrutinise and 

challenge us” under the Defra Open Data Strategy, and data are often given a confidence 

rating (Defra, 2013a).  Validation assessment in this study was carried out in accordance with 

best practice recommendations drawn from the literature and outlined in chapter 1.  Overall 

accuracy was calculated as a useful headline figure, but was insufficient on its own to 

evaluate model performance.  Balanced Error Rate was found to be a useful additional 

measure, particularly in chapters 2 and 4 where there was an uneven number of ground 

truth samples per class.  The Kappa statistic proved less useful in this study as it was 

correlated with overall accuracy, but there was justification for considering it as some 

seabed mapping studies have found Kappa to be a more useful measure than overall 

accuracy for comparing performance of different approaches (Stephens and Diesing, 2014).   

The most useful measures were user’s and producer’s accuracy, which provided valuable 

insight into model performance in terms of tendency to over- or under-predict particular 

classes, and the error matrix which illustrates where classification errors occur between 

habitats, enabling users to judge whether some misclassifications are more acceptable than 

others.  This study also demonstrated that user’s and producer’s accuracy cannot be 

generated reliably for classes with a very low number of samples, but this could be 

overcome by adopting a more representative sampling protocol as described above.  

Calculation of the percentage of total area with the same classification in maps produced 

from the same data using different methods, as used in chapters 2, 4 and 5, was a valuable 

measure of consistency.  Where classifications were based on fuzzy membership, the 

measures of separation distance and classification stability used in chapters 2 and 4 provided 

a useful evaluation of the reliability of the output maps.  Although overall accuracy has the 

appeal of offering ‘at a glance’ comparison between outputs, the more detailed insight 

provided by these additional measures should always be considered when conducting 

comparative evaluation to inform choice of mapping method.   

Root Mean Square Error (RMSE) is a standard method for evaluating horizontal and vertical 

accuracy of remote sensing data and thus has the benefit of being intuitive and widely 

understood.  It was a reliable measure of the vertical accuracy of topographic models 

produced in chapter 3 because the measurements taken through field survey had a very high 
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degree of accuracy and precision.  In contrast, the manual measurements of rugosity 

contained many sources of error which are discussed in chapter 3, so in this instance the 

ground truth data do not represent perfect accuracy, and RMSE can only be interpreted as a 

measure of consistency between manual and photogrammetric measurements rather than a 

measure of the accuracy of the model output.   

The quality assessments applied in these studies could not be made spatially explicit due to 

insufficient data density, but a geographically weighted approach to validation has 

considerable benefits and should be considered in future studies (Comber, 2013).  This 

would be a useful addition to the above measures of accuracy and could significantly aid 

communication between decision makers and stakeholders. 

6.2 Limitations 

This study was subject to several limitations imposed by the timeframe of the research and 

the cost and logistic constraints of collecting data in the North Sea.  The spatial extent of the 

study was limited to one large subtidal site and two small intertidal sites.  Findings are likely 

to be applicable to other temperate marine and coastal areas, but this cannot be assumed 

and further field studies are recommended to test the transferability of these methods.    

The UAV and sensors available for this study also imposed certain limitations.  The 

lightweight (0.7 kg) UAV offered logistical and cost benefits, but could only carry one camera 

per flight, thus reducing the amount of data that could be collected during a low tide and 

increasing the likelihood of changes in atmospheric conditions during the survey.  The UAV 

was not equipped with a downwelling light sensor to measure ambient light during the flight 

and enable image correction for changes in lighting.  The consumer-grade compact cameras 

used did not capture RAW imagery, thus some spectral and spatial detail is likely to have 

been lost through compression.  The make and model of the camera used to collect the 

aerial imagery in chapter 5 was changed during the eight year time period, which could have 

contributed to the observed within-class variability of spectral signature.  Different LiDAR 

systems were also used during the study period.   

The study was also subject to several temporal limitations.  The temporal coverage of the 

acoustic and UAV data consisted of one acoustic survey conducted in 2014 and two UAV 

surveys conducted in 2015, which limited the potential for testing the reproducibility of 

methods with these sensors.  However, the availability of biannual aerial and LiDAR data for 
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an eight year period enabled exploration of issues of data variability, method reproducibility 

and the dynamic nature of intertidal environment.  Survey timing is also likely to have 

affected the quality of outputs.  The acoustic survey was not conducted at the optimal time 

of year, which led to artefacts in the data with consequent negative impacts on 

segmentation and classification.  The aerial and LiDAR data were not always collected on the 

lowest spring tides, thus limiting their usefulness for intertidal habitat mapping.  Logistic 

constraints meant that subtidal ground truth data were not collected at the same time as 

the acoustic survey, and that only part of the intertidal ground truth data was collected at 

the same time as the UAV survey.  Due to budgetary constraints, the majority of circalittoral 

ground truth data consisted of seabed photographs rather than grab samples, which is a 

potential source of error particularly in the classification of sediments. 

These limitations do not detract from the study’s findings, but demonstrate what can be 

achieved with the available equipment and have helped to highlight specific methodological 

improvements which are outlined in each of the preceding chapters.  Improved coordination 

of data collection, for example collecting aerial or LiDAR imagery on low spring tides, could 

increase the number of potential uses of a dataset. 

6.3 Wider implications 

The findings presented here have immediate practical relevance and potential to inform 

wider adoption of these methods for mapping and monitoring temperate marine habitats.  

This study has demonstrated that OBIA can be applied to imagery from a range of sensors to 

record the extent and distribution of subtidal and intertidal habitats.  Mapping at high 

thematic resolution with a reasonable degree of accuracy requires higher spectral and 

spatial resolution imagery, but there is a trade-off between extent of coverage and spatial 

resolution of data.  Furthermore, survey costs per area tend to increase with increasing 

spatial resolution.  In the UK, an individual MPA may cover several hundred square 

kilometres, and surveillance is required outside as well as within MPAs to inform wider 

marine spatial planning. 

Choice of appropriate thematic resolution is therefore influenced by the level of detail 

required to inform decision-making, the acceptable minimum level of accuracy or confidence 

in output maps and the level of detail justified by the remote sensing data and ground truth 

data.  Individually, each of the methods and levels of spatial and thematic resolution 
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explored in this thesis have potential for practical application.  Detailed species community 

maps can be used for local-scale site monitoring, while broadscale habitat maps can inform 

MPA designation and management, for example ensuring that targets for the 

representativity and replication of habitats are met (JNCC and Natural England, 2010) or 

underpinning site-specific risk-based management measures (Defra, 2013b).   

However, the most promising opportunity lies in the potential to develop an integrated 

mapping and monitoring protocol, in which multiple remote sensing platforms and sensors 

collect data at different spatial resolutions.  OBIA methods would be applied to the imagery 

at each level of resolution to create habitat or change-detection maps, which would then be 

used to identify areas of interest for surveillance using higher resolution, and therefore more 

costly, survey methods (Figure 6.1). 
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Figure 6.1: Diagrammatic illustration of a multi-scale OBIA and remote sensing protocol for intertidal 
and subtidal habitat monitoring.  Intertidal survey methods are shown on the left and subtidal 
methods on the right.  The coloured area represents the spatial coverage of the survey at each level.  
Methods at the top of the diagram have high spatial coverage but low spatial resolution, while those 
at the bottom of the diagram have high spatial resolution but low spatial coverage.  The grey 
boundaries represent interpretation of survey data to create ecologically meaningful objects, such as 
habitats or other features, at each level of resolution.  The red area at each level represents the area 
of interest targeted for more detailed survey in the level below.  Survey costs per equivalent area are 
higher for the methods shown at the bottom of the diagram than for those shown at the top of the 
diagram.  Detailed costs are provided in Table 6.2 

In this hierarchy, the greatest coverage but lowest spatial resolution data would be provided 

by satellite imagery for the intertidal environment and by opportunistic acoustic data for the 

subtidal environment.  Freely available satellite imagery, such as that provided by the 

LandSat or Sentinel platforms, has lower spatial resolution than imagery from commercial 

platforms such as WorldView but higher spectral resolution than aerial imagery.  Studies 

have demonstrated that such imagery can be used for mapping coastal habitats at very 

coarse spatial and thematic scales with extensive coverage and a good degree of accuracy 
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(Larsen et al., 2004; Lyons et al., 2012).  In the subtidal environment, full-coverage acoustic 

survey is expensive, but vessels fitted with acoustic equipment can become platforms of 

opportunity, collecting data while performing other tasks.  The most affordable systems are 

single-beam echosounders.  Single-beam data tend to be lower spatial resolution than data 

generated by multi-beam or sidescan sonar systems, fine-scale variation in the seabed is lost 

through interpolation between tracks, and performance instability can lead to inconsistent 

results (Kenny et al., 2003).  Nevertheless, studies have demonstrated that single-beam data 

can be used effectively for benthic mapping either alone (Foster-Smith and Sotheran, 2003) 

or ‘blended’ with higher resolution multibeam data (Serpetti et al., 2011).  Data collected 

opportunistically rather than by targeted survey are likely to be patchy and biased, but 

Elvenes et al. (2014) demonstrated that compiled single-beam data can be interpreted to 

create benthic maps for management purposes where full coverage multibeam data are not 

available.  Recent development of more affordable  multibeam systems could lead to 

opportunistic generation of multibeam imagery (ENL Group, 2016), and there would be 

benefit in developing and testing OBIA methods for interpreting such imagery in future. 

At the next level in the hierarchy, medium resolution imagery can be provided by aerial and 

LiDAR surveys in the intertidal environment and by targeted acoustic survey or bathymetric 

LiDAR in the subtidal environment.  In particular, bathymetric or topobathymetric LiDAR 

could provide solutions for mapping the shallow turbid sublittoral areas inaccessible to 

acoustic or optical survey (Zavalas et al., 2014; Parrish et al., 2016).  Automated 

interpretation of these data using the methods outlined in chapters 2 and 5 could identify 

areas of interest for higher resolution remote sensing survey, for example areas where 

change appears to be occurring above a natural baseline level.  Chapter 5 provides insight 

into the type and level of natural fluctuation occurring at a temperate intertidal site, as well 

as into the ‘noise’ caused by variability in the data.  This information could be used to define 

site-specific minimum detectable change values, i.e. the percentage change in extent that 

can be detected against a background of natural variation within the limits of confidence 

associated with the survey method (Strong, 2015).      

The highest resolution remote sensing imagery for the intertidal environment could be 

provided by UAV surveillance or by more affordable solutions such as balloons or kites 

(Bryson et al., 2013; Fonstad et al., 2013).  Fine-scale subtidal habitat mapping could be 

achieved by collecting optical imagery using a remotely operated underwater vehicle (ROV), 
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autonomous underwater vehicle (AUV) or by SCUBA divers.  AUVs are an increasingly 

reliable and flexible platform due to their ability to operate independently from the surface 

vessel for up to several days, to carry a range of sensors and to fly relatively close to the 

seabed (Wynn et al., 2014; Lucieer and Forrest, 2016).  High resolution two- or three-

dimensional mosaics could then be created from the imagery using the photogrammetric 

methods demonstrated with UAV imagery in chapter 3, and OBIA methods could be applied 

to interpret spectral and topographic information simultaneously, as demonstrated in 

chapter 4.  In common with UAV surveillance, the time and cost of conducting such detailed 

surveys make this method suitable for smaller areas of interest where maps are needed at 

fine spatial and thematic resolution.  A recent study on the Great Barrier Reef demonstrated 

effective use of an AUV to collect hyperspectral and stereo imagery simultaneously to create 

highly detailed spectral and topographic maps for a small area (Bongiorno et al., 2017). 

In situ surveillance by divers or intertidal ecologists will always be necessary to achieve high 

levels of taxonomic resolution which cannot be detected even by the finest resolution 

remote sensing data (Wells et al., 2007; Konar and Iken, 2017; Murfitt et al., 2017).  Field 

surveys are costly, but automated OBIA interpretation of remote sensing imagery could 

identify priority areas for more detailed surveillance, thus making the most efficient use of 

scarce resources.  Table 6.2 provides a comparison of data collection and data processing 

costs, spatial coverage and spatial resolution for the methods discussed above and 

illustrated in Figure 6.1.  This comparison considers the direct costs of data collection and 

preliminary processing, such as digitising field data or producing orthomosaics from aerial 

imagery.  Ancillary costs such as travel and subsistence for surveyors, pre-survey planning 

and preparation, risk assessment and report writing are not included in the comparison as 

there is likely to be great variability in these costs depending on the site and the scope of the 

survey.  Similarly, the costs of recruiting or developing staff skills in field survey and/or data 

processing methods and the costs of purchasing and maintaining hardware for data 

processing are not included in the comparison as these vary from one organisation to 

another due to differences in company size, assets and staff retention.  Although like-for-like 

comparison between such different survey methods is challenging, the information provided 

in Table 6.2 and throughout Section 6.3 provides insight into the costs and benefits of each 

approach which could aid greater integration of these methods for marine and coastal 

monitoring.     
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Table 6.2: Comparison of data collection and data processing costs, spatial coverage and spatial resolution for different sensors and survey methods.     
Data collection 
method 

Purchase of 
platform/ 
sensor 

Cost to end-user of one day’s 
data collection 

Area covered by one 
day’s survey 

Cost to end-user of data processing Resolution of 
processed imagery 

References 

INTERTIDAL OR SHALLOW SUBTIDAL IN CLEAR WATER 

Satellite  n/a Free (Sentinel, Landsat) 

£3,820 for 4-band data and £3,975 
for 8-band data collected on 
demand (GeoEye, WorldView, 
QuickBird)  

£193 to £367 per 25km2 archive 
imagery (GeoEye, WorldView, 
Quickbird, IKONOS, Pleiades)  

Swath width: 

84,100km2 (Sentinel 2) 

34,225km2 (Landsat 8)  

272km2 (WorldView 2)  

269km2 (QuickBird)  

225km2 (GeoEye)  

None if using analysis ready data. 

Otherwise, staff time ~1 day plus software 
e.g. one of the following: 

ENVI £6,200 to £8,040 perpetual 

ArcGIS £5,592 per year 

ERDAS IMAGINE £2,150 per year 

MATLAB £1,800 perpetual  

If using free software e.g. R, QGIS, GRASS 
GIS, Sentinel Toolbox, Google Earth Engine 
or MultiSpec the only cost is staff time. 

30m (Landsat 8) 

10m (Sentinel 2) 

4m (IKONOS) 

2.4m (QuickBird) 

2m (Pleiades) 

1.84m (GeoEye 1, 
WorldView 2) 

 

Thierry Büttel, European Space 
Imaging (pers. comm.) 

(Young et al., 2017) 

https://sentinel.esa.int/web/sen
tinel/toolboxes  

https://store.esriuk.com/produc
ts/#business 

https://www.hexagongeospatial.
com/ 

Gareth Kirby, Harris Geospatial 
(pers.comm.) 

Aerial and 
LiDAR 

n/a Archive imagery in England is free 
to end users under Open 
Government License. 

The cost of data collection and 
initial processing 
(orthorectification and radiometric 
adjustments) is £123 per km2 for 
aerial imagery and £265 per km2 
for LiDAR.  The minimum starting 
cost for one flight is £5,500. 

50 – 60km2 Minimal processing required by end-user, 
e.g. mosaicking tiles.  Staff time <1 day plus 
software costs if using commercial software 
e.g. ArcGIS (see above)  

0.1m – 0.2m (Aerial) 

0.25m – 2m (LiDAR) 

http://environment.data.gov.uk/
ds/survey/#/survey 

https://www.channelcoast.org/ 

Samuel Pitman, Channel Coast 
Observatory (pers. comm.) 

Suzanne Winch, Environment 
Agency (pers. comm.)  

 

UAV ~£1,000 to 
£25,000 

£350 - £500  1km2 to 4km2 depending 
on shape of coastline and 
desired spatial resolution 

Staff time <1 day plus specialist software 
e.g. one of the following: 

Pix4D Mapper: £2,320 per year 

DroneDeploy: £2,309 per year 

Agisoft Photoscan Pro: £2,703 perpetual 

<0.1m https://cloud.pix4d.com/store/ 

https://www.dronedeploy.com/
pricing.html 

http://www.agisoft.com/buy/onl
ine-store/ 

Field survey 

Phase 1 biotope 
survey by 2 
intertidal 
ecologists  

n/a £600 0.3km2 (complex bedrock 
platform) to 0.5km2 
(mixed shores) 

Staff time 1-2 days to process field data plus 
software costs if using specialist software 
e.g. ArcGIS (see above) 

n/a Paul Brazier, Natural Resources 
Wales (pers. comm.)   

(Wyn et al., 2006) 

Liz Morris-Webb, Marine EcoSol 
(pers.comm.) 
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Data collection 
method 

Purchase of 
platform/ 
sensor 

Cost to end-user of one day’s 
data collection 

Area covered by one 
day’s survey 

Cost to end-user of data processing Resolution of 
processed imagery 

References 

SUBTIDAL 

Opportunistic 
acoustic data 
 

WASSP S3 
multibeam 
£11,650 
(includes 
software) 

Single beam 
echosounder 
£3,000 to 
£6,000 

n/a – opportunistic data collection 

 

6.5km2 to 13km2 

(WASSP)  

0.07km2 to 0.14km2 
(Olex single beam) 

based on 8 hours at 
depth of ~30m 

 

Staff time 2 days plus software e.g. 

Olex software and hardware: £4,984 
perpetual 

WASSP interface for Olex: £3,000 perpetual 

WASSP software: included with purchase of 
sensor (£11,650) 

0.25m - 4m (WASSP) 

5m (Olex single 
beam) 

http://www.olex.no/produkter_
e.html  

Mark Southerton, 
Northumberland Inshore 
Fisheries Conservation Authority 
(pers. comm.) 

Arlene Hardacre, Echomaster 
Marine (pers. comm.) 

Acoustic survey 
 

Reson Seabat 
£16,000 to 
£25,000 

WASSP (see 
above) 

£3,000 – £3,500 

 

8km2 to 9km2 based on 8 
hours at depth of ~30m. 
Area covered varies with 
shape of survey area and 
number of line turns 
needed. 

Staff time 2 days plus software:  

Teledyne CARIS HIPS and SIPS Professional 
software £14,680 perpetual 

1m Alison Pettafor, Cefas (pers. 
comm.) 

Mark Southerton, NIFCA (pers. 
comm.) 

Tony Cran, Seatronics Ltd (pers. 
comm.) 

AUV survey From 
£580,000 for 
a small AUV 
e.g. Teledyne 
GAVIA 

£800 - £4,000 (small UAV) or 
£1,800 - £5,800 (large UAV) plus 
technician fees, boat costs and 
insurance 

1km2 for a small UAV 
with a single battery.   

Staff time 1 day plus specialist software e.g. 
one of the following: 

Teledyne CARIS HIPS & SIPS Professional 
£14,680 perpetual 

QPS Fledermaus 7, FM Geocoder Toolbox 
and FM GIS add-on: £3,460 per year 

0.1m to 0.5m side 
scan 

0.5m to 1m 
bathymetry and 
backscatter 

Karen Boswarva, Scottish 
Association for Marine Science 
(pers. comm.) 

(Tillin et al., 2018) 

QPS BV (pers. comm.) 

Diver survey 

Phase 1 biotope 
survey by 2 - 4 
scientific divers 

n/a £1,760 - £2,440 0.0003km2 – 0.0009km2 

(2 to 6 x 150m2 
transects) 

The number of transects 
completed in a single day 
is site-specific, depends 
on tides and current. 

Staff time ~1 day per two 150m2 transects to 
process field data plus software costs if 
using specialist software e.g. ArcGIS (see 
above) 

n/a Paul Brazier, Natural Resources 
Wales (pers. comm.) 

Liz Morris-Webb, Marine EcoSol 
(pers.comm.) 
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All of the above methods are already being used, or at least starting to be explored, for 

marine habitat mapping, but they are not yet integrated into a coherent multi-resolution 

‘nested’ strategy for monitoring marine biodiversity at different spatial scales (van Rein et 

al., 2009; Lecours et al., 2015).  Although such ‘nested’ approaches are sometimes used to 

collect benthic data at different scales within a single survey (Ferrini et al., 2007; Yoerger et 

al., 2007; Paull et al., 2013), there is scope to develop this idea further into a regional or 

national monitoring protocol.  The OBIA methods developed and tested in this thesis could 

play a key role within this protocol, enabling automated interpretation of imagery with low 

resolution and wide coverage to direct higher resolution survey effort towards areas of 

interest or change.  Achievement of this goal would require progress in a number of areas: 

data collection and calibration protocols should be developed to reduce data variability, 

particularly for platforms other than satellites (Held et al., 2015; Lillis et al., 2016; Lamarche 

and Lurton, 2017); remote sensing data should be made more widely accessible, particularly 

pre-processed ‘analysis-ready’ data, (Turner et al., 2015; Giuliani et al., 2017); data 

interpretation methods should be standardised and, where possible, developed for open 

source software (Kilcoyne et al., 2017) and, finally, marine ecological research must continue 

to improve our understanding of the relationships between species communities and abiotic 

variables detectable from remotely sensed data to produce maps at a scale relevant to 

management (Diesing et al., 2016).  Progress in these areas could ultimately enable direct 

comparison of outputs derived from different sensors and potentially seamless habitat 

mapping from the intertidal to the subtidal to inform marine and coastal spatial planning. 

6.4 Future considerations 

This study addressed several key questions but has also highlighted new areas of interest.  In 

order to fulfil the potential of OBIA within a multi-scale monitoring strategy, further research 

should be undertaken in the following areas:  

 The effect of spatial resolution on map accuracy should be quantified by creating 

habitat maps for the same site using the same method with different data, for 

example, satellite, aerial and UAV imagery for an intertidal site. 

 UAV data collection methods must be optimised to improve the accuracy of 

topographic models and habitat maps.  This thesis posits suggestions in chapters 3 and 

4 as to how this may be achieved, but field tests must be conducted in temperate 
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intertidal environments to quantify the influence on accuracy of variables such as 

ground sampling distance, ground control point density, image density and use of 

oblique imagery.   

 The transferability and scalability of methods described in this thesis must be assessed 

through applications in other temperate areas.  Aerial and LiDAR imagery are available 

for most of the English coastline, providing an opportunity for wider testing of the 

methods developed in chapter 5. 

 Research into OBIA for temperate marine habitat mapping needs to keep pace with 

rapid developments in sensor technology.  OBIA methods should be developed and 

tested in temperate marine and coastal areas using multispectral acoustic data 

(Hughes Clarke, 2015), multibeam data collected by a cost-effective sensor (ENL 

Group, 2016), bathymetric or topobathymetric LiDAR, and acoustic and optical data 

collected by AUV.   

 Methods for topographic modelling through photogrammetry of seabed imagery 

collected by ROV or AUV need to be developed and tested in temperate seas.  The 

methods described in chapter 3 could be applied to evaluate the accuracy and feature 

detection capability of seabed terrain models.  Ecological research should be 

conducted to identify relationships between benthic biodiversity and features 

detectable through photogrammetric modelling, to inform use of topographic models 

as proxies for habitat condition. 

 The recent ability to apply OBIA to point cloud data (Blaschke and Tomljenovic, 2017) 

should be tested in the marine and coastal environment, for example using 

topographic models derived from sonar or LiDAR surveys or from photogrammetry of 

optical imagery.  

 Knowledge-based OBIA rule sets for intertidal and subtidal mapping should be refined 

by defining ranges of threshold or membership function values for habitat classes to 

aid the transferability of these methods.  Appropriate sources of contextual data 

should be integrated into the workflow if possible, and their impact on classification 

accuracy assessed.   

 A wider range of OBIA machine learning classifiers should be tested in temperate 

marine and coastal environments, such as Bayesian neural networks, support vector 
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machines and CART decision trees, followed by evaluation of ensemble approaches to 

combine the results of the best performing classifiers.   

 To facilitate wider uptake and testing of these methods, the OBIA and 

photogrammetry approaches developed and evaluated in this thesis using commercial 

software should be adapted to open source software and the outputs compared (da 

Costa et al., 2007; Christophe and Inglada, 2009; Clewley et al., 2014; Kilcoyne et al., 

2017). 

6.5 Concluding remarks 

This thesis was the first study to evaluate OBIA methods with a variety of remote sensing 

data in the North Sea.  It greatly improved our knowledge of the distribution of habitats at 

the study sites, which in the case of Coquet to St Mary’s Island informed the site’s 

designation and subsequent management as an MPA.  It offered novel insight into the 

potential benefits of remote sensing, photogrammetry and OBIA for mapping temperate 

intertidal and subtidal habitats.  The current limitations and opportunities for future 

research outlined here highlight the need for continued collaboration and knowledge 

exchange between researchers and practitioners.   

At a time of increased demand for marine habitat maps and decreased resources for 

surveillance and monitoring, key findings from this work will help to inform the adoption of 

these methods.  This will help user organisations to make more robust use of information 

derived from remote sensing data, enabling more cost-effective use of limited resources, 

more confident communication with stakeholders and most importantly improved 

environmental decision making.  It is hoped that these findings, and those arising from the 

future research recommended here, will help to inform the development of a well-

integrated, multi-scale monitoring protocol for temperate seas.  
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Appendix 2: OBIA workflow for mapping temperate intertidal habitats 

Knowledge-based OBIA workflow used in chapter 4 for classifying broadscale habitats at 

Level 1 and biotopes at Level 2.   

Abbreviations:  

DEM = Digital Elevation Model 

NDVI = Normalised Difference Vegetation Index 

RE = imagery collected using Canon Powershot ELPH 110 camera (red edge) 

RGB = imagery collected using Canon IXUS 127 camera (red, green, blue) 

AG = Approximate Gaussian (curve defining membership function) 

Membership function values generated from samples are shown as lower, mid and upper 

values of the range separated by colons.  Membership function values defined using 

predefined functions are shown as upper and lower values preceded by the type of function 

(Figure 6.2).  

 
Figure 6.2: Predefined membership function types used in eCognition. 

Numbers in brackets are membership function weightings. 
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At Level 1 

Remove Cliffs Multiresolution 
segmentation 
at pixel level 
creating Level 
1. 

Scale: 120, Shape: 0.1, Compactness: 0.5 
Use DEM 
 

Classification Mean DEM > 51.2 

Merge region Class filter: Cliff 

Remove Sea Multiresolution 
segmentation 
at image object 
level 

Class filter: unclassified 
Level usage: Use current 
Scale 90, Shape 0.1, Compactness 0.9 
Use DEM, NDVI, RE Blue, RE Green, RE Red, RGB Blue, RGB 
Green, RGB Red x 1 each. 

Classification Class filter: unclassified 
Sea: 
Mean DEM < 45.54 and RGB Red/Green <0.9 
Grow Sea: 
Mean DEM <46.02 and Mode[Median] NDVI <-0.4 and RGB 
Red/Green < 0.865 
Assign Class: Grow Sea to Sea 

Merge region Class filter: sea 

Remove Shadow Classification Class filter: unclassified 
Boulder shadow: 
Border contrast slope >0.55 and Mean DEM > 45.53 and 
mode[median] Blue RGB < 100 and mode[median] NDVI < -
0.15 
Cliff shadow: 
Mode[median] Blue RGB < 200 and RGB Red/Blue <0.7 
Grow cliff shadow: 
Border to cliff shadow >= 1 pixel and mode[median] NDVI <-
0.15 or Border to Cliffs >= 1 pixel and mean NDVI < 0 
Assign Class: boulder shadow, cliff shadow, grow cliff 
shadow to Shadow 

Merge region Class filter: Shadow 

Classify 

barnacle/rock 

and algae 

Multiresolution 
segmentation 
at image object 
level 

Class filter: unclassified 
Level usage: Use current 
Scale 10, Shape 0.1, Compactness 0.9 
Use DEM, NDVI, RE Blue, RE Green, RE Red, RGB Blue, RGB 
Green, RGB Red (weighted x 1 each). 

Classification Class filter: unclassified 

Barnacle 
/rock 

Logical operator: And (minimum) 

Brightness 
RE Red/Blue 
Mode Blue RGB 
Mode Blue RE 
Mode Red RGB 
Mode Green RE 
Mean Green RE 
Mean Red RGB 

87.439 : 172.6 : 243.36 
0.408 : 0.855 : 1.412 
55.189 : 155.83 : 233.67 
84.773 : 180.6 : 254 
67.24: 171.02 : 250.5 
63.855 : 155.48 : 228 
79.49 : 164.69 : 245.23 
81.39 : 178.44 : 254 

Algae Logical operator: Mean (arithmetic) 
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 Mode NDVI 
Mean NDVI  
RGB Green/Blue 
Mean Green 
RGB  
RGB Red/Green 
Mode Red RGB 

-0.503 : 0.14 : 0.739 
-0.349 : 0.218 : 0.78 
0.468 : 1.158 : 2.238  
0 : 104.75 : 234.97  
0.613 : 1.165 : 1.529 
0 : 94.867 : 254 

Classify red, 
green and brown 
algae 
 

 

 

 

 

 

 

 

 

Classification 
Class filter: algae 

Brown Logical operator: Mean (arithmetic) 

Mode NDVI 
Mean NDVI 

0 : 0.433 : 0.739 
-0.349 : 0.309 : 0.78 

Green Logical operator: Mean (arithmetic) 

RGB Green/Blue 
Mean Green RGB 

0.88 : 1.51 : 2.14 (AG) 
29.59 : 125.62 : 222.42 
(AG) 

Red Logical operator: Mean (arithmetic) 

RGB Red/Green 
RGB Green/Blue 
Mode Red RGB 

0.969 : 1.165 : 1.446 
0.658 : 1.1 : 1.731 
0 : 126.5 : 254 (AG) 

Assign Class Class filter: Red 
Threshold: RGB red/green < 1.1 and mean DEM <=45.83  = 
Brown 

Assign Class Class filter: unclassified 
Threshold: Brightness <95 = Brown 

Assign Class Class filter: unclassified 
Threshold: Brightness >= 95 = Barnacle/rock 

Classify red algae 
as Osmundea, 
Corallina, 
Corallina (pool), 
Rhodo/Poly or 
Red rock 

Assign Class Class filter: Red 
Threshold: mean DEM > 48 = red rock 

Assign Class Class filter: Red 
Threshold: RGB green/blue < 1.01 and mean DEM < 45.83 = 
rhodo/poly 

Classification Class filter: Red 

Osmundea Logical operator: Mean (arithmetic) 

Mean blue RGB 
Mean red RE 
Mode red RE 
RGB green/blue 
RGB red/blue 

37.56 : 70.52 : 118.83 
99.22 : 136.08 : 175.7 
91.35 : 130.19 : 172.6 
0.948 : 1.261 : 1.663 
1.055 : 1.54 : 2.203 

Corallina Logical operator: Mean (arithmetic) 

Brightness 
Mean blue RGB 
Mean green RGB 
Mode blue RGB 
Mode green RGB 

101.39 : 147.39 : 211.53 
93.14 : 131.15 : 180.782 
99.913 : 145.84 : 209.87 
80.09 : 122.55 : 178.889 
86.864 : 134.53 : 207.97 

Corallina 

(pool) 

Logical operator: Mean (arithmetic) 

Mean green RGB 
RGB green/blue 
RGB red/blue 

85.569 : 110.45 : 128.59 
0.918 : 1.09 : 1.35 
1.077 : 1.364 : 1.547 

Classify brown 
algae as Fucus 

Assign Class Class filter: Brown 
Threshold: Mean DEM > 48.5 = Fucus spiralis 
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spiralis, Fucus 
vesiculosus, 
Fucus serratus,  
Laminaria or 
Rockpool 

Assign Class Class filter: Brown 
Threshold: Mean DEM >= 46.58 and Mean DEM < 48.5 = 
Fucus vesiculosus 

Assign Class Class filter: Brown 
Threshold: Brightness <= 55 and Mean DEM >= 45.48 or 
Brightness <= 45 and Mean DEM >= 45.3 = Laminaria (pool) 

Assign Class Class filter: Brown 
Threshold: Mean DEM >=45.75 = Fucus serratus 

Assign Class Class filter: Brown 
Threshold: Mean DEM < and Brightness <= Laminaria 
rockpools 

At Level 2 

Create biotope 
size objects 

Multiresolution 
segmentation 

Class filter: UNCLASSIFIED 
Parameter Level: Level 1 
Level Name: Level 2 
Level Usage: Create above 
Scale 120, Shape 0.1, Compactness 0.9 
Use DEM, NDVI, RE Blue, RE Green, RE Red, RGB Blue, RGB 
Green, RGB Red weighted x 1 each. 

Add cliffs to this 
level 

Assign class 
Class filter: unclassified 
Condition: Area of sub objects Cliff >= 1 pixel = Cliff 

Add sea to this 
level 

Assign class 
Class filter: unclassified 
Condition: Area of sub objects Sea >= 1 pixel = Sea 

Add shadow to 
this level 

Assign class 
Class filter: unclassified 
Condition: Relative area of sub objects Shadow >=0.5 

Classify Coff, Cor, 
Eph.Ent, Sem, 
FvesR, Fser.R, 
FvesB, Ldig, 
FspiB, Rkp.FK 
and bare rock 

Classification 
Class filter: unclassified 
Condition: Rel. area of sub objects Corallina >= 0.5 
Logical operator: Mean (arithmetic) for all classes 
Membership function weighting shown in brackets 

Bare 
rock 

(2) Mean DEM 
Rel. area of algae  
Rel. area of 
barnacle/rock 

About range 48.2 to 52 
Smaller than 0 to 0.1 
Larger than 0.75 to 1 

Coff Mean DEM 
Rel. area of 
barnacle/rock 
Rel. area of 
Corallina 
Rel. area of 
Corallina (pool) 
Rel. area of 
Osmundea 

About range 45.25 to 48 
Smaller than 0 to 0.75 
 
Larger than (Boolean, 
crisp) 0.33 
Smaller than 0 to 0.4 
 
Smaller than 0 to 0.5 

Cor (4) Rel. area 
Corallina (pool) 
Mean DEM 
Mean Slope 
Rel. area Corallina 
Rel. area 
Osmundea 

Larger than (Boolean, 
crisp) 0.5 
About range 45.25 to 48.5 
Smaller than 0 to 20 
Smaller than 0 to 0.5 
Smaller than (Boolean, 
crisp) 0.1  
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Eph.ent (3) Rel. area of 
Green 
Mean DEM 
Rel. area of 
Barnacle/rock 
Rel. area of Fucus 
spiralis 

Full range 0.02 to 1 
 
About range 49 to 50 
About range 0 to 1 
 
Full range 0 to 0.6 

Fser.R (3) Rel. area 
Fucus serratus 
Mean DEM 
Rel. area of 
Corallina 
Rel. area of 
Corallina (pool) 
Rel. area of 
Laminaria 
Rel. area of 
Laminaria (pool) 
Rel. area of 
Rhodo/Poly 

Larger than (Boolean, 
crisp) 0.5 
Full range 45 to 46.1 
Smaller than linear 0 to 
0.8 
Smaller than linear 0 to 
0.6 
Smaller than (Boolean, 
crisp) 0.75 
Smaller than 0 to 0.1 
 
Smaller than 0 to 0.2 

FspiB Mean DEM 
Rel. area of 
Barnacle/rock 
Rel. area of Fucus 
spiralis 
Rel. area of Green 

Full range 48.2 to 51 
Full range 0 to 0.7 
 
Full range 0.18 to 1.01 
 
Smaller than 0 to 0.05 

FvesB (5) Rel. area F. 
vesiculosus 
Mean DEM 
Rel. area of 
Barnacle/rock 
Rel. area of 
Corallina 
Rel. area of 
Corallina (pool) 
Rel. area of 
Osmundea 

Larger than 0.1 to 1 
 
About range 47 to 48 
Smaller than 0 to 0.11 
 
Smaller than 0 to 0.7 
 
Smaller than 0 to 0.1 
 
Smaller than 0 to 0.1 

FvesR Algae 
 
Mean DEM 
Rel. area of 
Barnacle/rock 

Smaller than linear 0.02 
to 1 
About range 46 to 49.5 
Smaller then linear 0.06 
to 1  
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Ldig (3) Rel. area of 
Laminaria 
Mean DEM 
Rel. area of 
Barnacle/rock 
Rel. area of 
Corallina 
Rel. area of 
Corallina (pool) 
Rel. area of Fucus 
serratus 
Rel. area of 
Laminaria (pool) 
Rel. area of 
Rhodo/Poly 

Larger than (Boolean, 
crisp) 0.36 
Full range 45 to 46 
Smaller than 0 to 0.25 
 
Smaller than linear 0 to 
0.1 
 
Full range 0 to 0.25 
 
Full range 0 to 0.3 
 
Full range -0.01 to 0.15 
 
Full range -0.01 to 0.2 

Osm (4) Rel. area of 
Osmundea 
Mean DEM 
Rel. area of 
Barnacle/rock 
Rel. area of 
Corallina 
Rel. area of 
Corallina (pool) 
Rel. area of Fucus 
serratus 
Rel. area of F. 
vesiculosus 
Rel. area of 
Laminaria 

Larger than (Boolean, 
crisp) 0.09 
About range 45.25 to 
48.5 
Smaller than 0 to 0.08 
 
Smaller than 0 to 0.4 
 
Smaller than linear 0 to 1 
 
Smaller than 0 to 0.71 
 
Smaller than 0 to 0.5 
 
Smaller than 0 to 0.5 

Rkp.FK Mean DEM 
Rel. area of 
Corallina 
Rel. area of 
Corallina (pool) 
Rel. area of Fucus 
serratus 
Rel. area of 
Laminaria 
Rel. area of 
Laminaria (pool) 

About range 45 – 46.5 
Smaller than 0 – 0.05 
 
Smaller than 0 – 0.4 
 
About range 0 – 0.65 
 
Larger than 0 – 0.5 
 
Full range 0.5 - 1 

Sem (2) Mean DEM 
Algae 
Rel. prop. of 
barnacle/rock 

About range 45 to 49.5 
Smaller than 0 to 0.15 
Larger than 0 to 1 

Merge Merge region  

 


