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Abstract

Fault-tolerant software should be engineered to be maintainable as well as efficient with

regards to performance and resources. These characteristics should be evaluated before

deployment of the software. However, the main focus is very often made on the functional

features of the application, whereas fault tolerance mechanisms are neglected. As a result,

they are often neither maintainable nor efficient. The concept of Holistic Fault Tolerance

was introduced to deal with these issues. It is a novel crosscutting approach to the

design and implementation of fault tolerance mechanisms for developing reliable software

applications that meet non-functional requirements, such as performance and resource

utilisation.

The thesis starts with the description of problems that were motivating for the idea of

Holistic Fault Tolerance. These problems are related to resource utilisation requirements

of modern computer-based systems, since more resources like hardware components and

energy are required to process modern computational tasks and ensure performance and

reliability of the computation. Moreover, the complexity of these systems grows, leading

to maintainability deterioration, especially of those system parts, which are responsible

for satisfying non-functional requirements, such as reliability, performance and resource

usage.

After analysis of the problems and motivations, the engineering approach to Holistic Fault

Tolerance is introduced and main engineering steps are defined. Next, an architectural

pattern for Holistic Fault Tolerance is presented. The method to refine the proposed ar-

chitecture and ensure efficiency of a particular system under development is demonstrated

during the modelling step. Then the implementation of Holistic Fault Tolerance based on

the proposed architecture and modelling is described in detail.

Finally, the Holistic Fault Tolerance architecture is evaluated with regards to efficiency

and maintainability. The evaluation demonstrates that Holistic Fault Tolerance assists

in meeting the non-functional requirements, makes fault tolerance mechanisms easier to

maintain and ensures higher modularity of the source code.
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5.6 Hierarchical model of the system . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 The application with HFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Critical component implementation . . . . . . . . . . . . . . . . . . . . . . 103

6.3 The HFT controller implementation . . . . . . . . . . . . . . . . . . . . . . 105

6.4 AspectJ aspect with pointcuts . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Aspect implementation of the Performance agent . . . . . . . . . . . . . . 106

6.6 Error handling advice with request to the HFT controller . . . . . . . . . . 107

6.7 Error handling advice without request to the HFT controller . . . . . . . . 107

7.1 The UML diagram of the application HFT version . . . . . . . . . . . . . . 115

7.2 The UML diagram of the application non-HFT version . . . . . . . . . . . 115

- xv -



- xvi -



List of Tables

5.1 Characterisation of the IIP component . . . . . . . . . . . . . . . . . . . . 89

5.2 Characterisation of the OCR component . . . . . . . . . . . . . . . . . . . 89

5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1 Fault assumptions, error detection and error recovery in the applications . 116

7.2 The HFT version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 The non-HFT version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Execution time in performance mode . . . . . . . . . . . . . . . . . . . . . 129

7.5 Execution time in reliability mode . . . . . . . . . . . . . . . . . . . . . . . 129

7.6 Recognition rate with fixed time limit . . . . . . . . . . . . . . . . . . . . . 129

- xvii -



- xviii -



Acronyms

FT Fault Tolerance

HFT Holistic Fault Tolerance

AOP Aspect-Oriented Programming

OOP Object-Oriented Programming

CLFT Cross-Layer Fault Tolerance

ICT Information and Communication Technologies

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

IP Internet Protocol

UDP User Datagram Protocol

CRC Cyclic Redundancy Check

LLC Logical Link Control

ACID Atomicity, Consistency, Isolation, Durability

WSNs Wireless Sensor Networks

IFTC Idealised Fault Tolerant Component

IMA Integrated Modular Avionics

ADLs Architecture description languages

UML Unified Modeling Language

SANs Stochastic Activity Networks

SAN Stochastic Activity Network

OGs Order Graphs

OG Order Graph

IIP Initial Image Processing

OCR Optical Character Recognition

GUI Graphical User Interface

NPQ Number Plates Queue

LoCs Lines of Code

- xix -



- xx -



1
Introduction

Contents
1.1 Growing complexity of fault tolerance . . . . . . . . . . . . . . . . 4

1.2 Misuse of fault tolerance techniques . . . . . . . . . . . . . . . . . 5

1.3 Maintainability of fault tolerance . . . . . . . . . . . . . . . . . . . 6

1.4 Resource and energy requirements of the ICT sector . . . . . . . 8

1.5 Holistic Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

- 1 -



Chapter 1: Introduction

Computer-based systems should provide the expected service according to their specifica-

tion. The ability to provide such service that can defensibly be trusted, while the service

failures are not more frequent than acceptable is known as system dependability [1]. The

system dependability implies that the system is ready to provide a correct service without

interruptions, there are no disastrous consequences on the people and the environment

because of system operation, and the system is repairable and modifiable. Faults, errors

and failures are the threats to system dependability. Special means are applied to deal

with these threats in order to achieve system dependability by preventing, tolerating, re-

moving and forecasting possible faults. Fault tolerance is one of dependability means that

prevents system failures, even though faults may be present in the system. Exception or

exceptional condition [2] is an anomalous behaviour when the normal computation flow is

changed by the exceptional flow. Exception handling [2, 3] is a mechanism of responding

to an exceptional condition. It is partially related to fault tolerance. Cristian [4] distin-

guishes programmed exception handling and default exception handling. The former is a

fault avoidance technique, whereas the latter is a fault tolerance technique. System fault

tolerance should be ensured during all stages of the system development life cycle.

It is not an easy task to design a dependable system that delivers critical services [5].

The complexity of modern computer-based systems and the diversity of the fault classes

require complex Fault Tolerance (FT) mechanisms to ensure system dependability. FT

engineering is a crucial part of the design and implementation of computer-based systems.

Poor FT engineering decisions could lead to disastrous consequences. There are a lot of

examples when badly designed fault tolerance led to very serious or even catastrophic

consequences.

The Therac-25 is a radiation therapy machine that was involved in several accidents of

massive radiation overdoses that were hundreds of times greater than normal [6]. Three

patients died and several were seriously injured after the overdoses. Two software faults

caused the accidents. The first fault was activated when the machine operator uninten-

tionally triggered a race condition so that some parameters were initialised incorrectly

and did not correspond to the chosen operation mode. The second fault allowed the func-

tion to be activated in operation mode that did not support this function. The previous

hardware platform had special interlocks to prevent such faults, however, the Therac-25

relied on software checks only. The commission of inquiry concluded the bad software

design and development practices were the main cause of accidents [7]. The software was
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designed in such a way that it was almost impossible to apply automated tests and check

all possible scenarios. Another reason is confusing reliability with safety. The software

was highly reliable, since there were only a few failures per tens of thousands of treatment

cases. However, this software was not safe because the failures were fatal. Thus, the sys-

tem was not dependable. The software lacked FT mechanisms that would have detected

and properly handled system state inconsistencies and bugs in the source code.

The Northeast Blackout of 2003 was a huge power outage that affected parts of the United

States and Canada on August 14, 2003 [8]. The blackout indirectly caused about 100 ca-

sualties and resulted in several billion dollar losses in the USA and Canada. There are

several causes of this major accident. Badly designed FT mechanisms and ineffective

organisational practices significantly contributed to it. Independent review was not con-

ducted by reliability council allowing responsible company to use inadequate development

and monitoring approaches. That includes ineffective communication procedures, lack

of comprehensive system assessments, especially for extreme conditions, lack of system

rigorous planning studies, lack of functional state evaluation of monitoring tools after

repairs were made, absence of spare monitoring tools for the case when primary moni-

toring systems failed. Requirements and standards were not rigorous and they could be

interpreted ambiguously, which is insufficient for reliable system operation. Reliability

coordinators did not use real-time data to support real-time monitoring. The control

room alarm system was stalled for over an hour due to a race condition in the energy

management system. This malfunction caused important alerts for system state changes

not to be transmitted to system operators.

The launch of the Ariane 5 rocket (flight 501) failed 37 seconds after the start incurring

a loss of more than 370 million US dollars [9]. The failure was caused by a hardware

exception that was triggered by arithmetic overflow due to conversion from a 64-bit floating

point number to a 16-bit signed integer value. The software code with this unprotected

conversion was reused from the earlier Ariane 4 version where the bug remained dormant.

This operation did not have an exception handler because of the assumption that the

variable presented by horizontal velocity is physically limited, whereas other operations

were protected by exception handlers.

In many computer-based systems the lack of effort to ensure systems dependability and

efficiency is often due to time and budget limits. Even if a computer-based system is

developed in accordance with best practice, there is always a trade-off between reliability,
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maintainability and efficiency to be considered.

This chapter introduces the research problem investigated in the PhD study. Firstly, mo-

tivations for the research are briefly overviewed. Then, the concepts which will be referred

to throughout the thesis are discussed. Next, the resources such as energy, hardware com-

ponents and time, that are required for the functioning of modern computer-based systems

are considered. After that, the research question is formulated and the contributions of

the thesis are listed. Finally, the structure of the thesis is outlined.

1.1 Growing complexity of fault tolerance

The amount of software is growing drastically in all areas where software is applied,

desktop applications, mobile applications, Internet platforms, cloud services, automotive

and aerospace industries [10–13]. In the automotive industry the amount of software code

demonstrates an exponential growth [14, 15]. In the late 1970s the majority of cars did

not have any software, whereas in the late 2000s many premium cars had tens of millions

of lines of code. It is inevitable that complexity of these systems is growing as well.

The growing complexity of software leads to a rise in complexity of FT mechanisms in

this software. Cristian states [16] that about 70% of code in operational computer soft-

ware systems is devoted to exception detection and exception handling. In addition, it is

claimed that most of the design faults are located in exception handling code, which is

the least documented, tested and understood part of the system. The issue of increasing

complexity of FT is addressed in [17]. It is shown that the situation in FT design is dete-

riorating as a result of growing complexity of software in general, and of FT mechanisms

in particular.

It is stated in [18] that complexity of the software and accelerated development schedules

makes defect avoidance difficult. The statistic is provided that finding and fixing the

problem after implementation is 100 times more expensive than during the requirements

and design phases. Software projects spend almost half of the effort on avoidable rework.

This rework could have been entirely avoided or fixed less expensively. Only about 10%

of defects cause about 90% of downtime events. Defect introduction rate can be reduced

up to 75% by using disciplined personal practices for the software development process.

A major problem with FT in modern systems is that due to weak documentation and

testing it is the least well-understood part of the system. Very often the design of FT
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mechanisms is seen as a lower priority and is less systematised than that of functional

requirements of computer-based systems. As pointed out in [17], the reasons for this are

difficulty of development and support of FT means, additional costs of FT development as

a result of applying redundancy, as well as many developers preferring to focus on system

functionality rather than pay attention to faults end errors.

1.2 Misuse of fault tolerance techniques

The FT techniques are often misused due to complexity of FT, low priority of FT mech-

anisms in the development process and not thought-out fault assumptions. The problem

of FT mechanism misuse due to system complexity is addressed in [19], where the authors

offer special patterns that support developers in rigorous system design. In addition,

it is acknowledged that many systems are prone to faults introduced during the early

development phases between requirements elicitation and system implementation.

The analysis of commercial-off-the-shelf components [20] has shown that the majority of

exceptions, which can be thrown during the code execution, are not documented. The

percentage of undocumented exceptions is over 98% in 3 .Net applications, over 90% in 3

.Net libraries and over 80% in 2 .Net infrastructure assemblies.

Oliveira et al. [21] analysed changes of functional and exception handling code in more

that 100 versions of 16 Android projects. The analysis has shown that increased usage

of Android abstractions is not followed by increased usage of exception handling. As a

result, the number of uncaught exceptions that crash the application increases making

the application less robust. A team of scientists [22] discovered a previously unknown

uncaughtException flaw that is caused by careless implementation of exception handling

code. In addition, this flaw could even be exploited to undertake a denial of service at-

tack. Maji et al. [23] conducted an empirical study to investigate the robustness of inter-

component communication in Android. It was found that many Android components

have poor exception handling code. It is shown in [24] that 19% of Android application

crashes could have been caused by undocumented exceptions, which are present in 18%

of non-private Android API methods. A study analysing the source code and the byte

code related to 6005 exception stack traces from 482 projects hosted in GitHub and 157

projects hosted in Google code was conducted in [25]. The outcomes have shown that

about 50% of all application crashes happen because of errors in programming logic and
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especially due to null pointer exceptions. Other bug hazards include very poor documen-

tation for exceptions thrown by Android platform and third party libraries, extensive use

of exception wrappers that deteriorates understanding of exception chains and violates

exception handling principles. All of these negatively impact application robustness. Kery

et al. [26] argue that Java try/catch exception handling mechanism is flawed. To prove

this it was pointed out that the majority of error handlers are of low quality. In this study

over 11 million try/catch blocks from GitHub projects were analysed. The examination

has shown that much of the time exceptions are handled locally and are not propagated

through the call chain. Developers apply bad practices and application-wide implications

of the caught exception are not usually considered. The use of actions like Log, Print,

Return is widespread. Very often the code is copied between the handlers. Empty catch

blocks and universal catch blocks for all types of exceptions are common. In many cases

developers prefer not to use exceptions themselves to signal an exceptional condition and

suppress exceptions that were caught without attempts to handle them properly. Among

the investigated try/catch blocks 12.4% were completely empty, 10% just printed the stack

trace, another 10% wrote to a log file only, 5% had a return statement. The majority of

actions in 98% of all catch blocks were presented by a single statement like return, print

log, method call or throw (when exception is just re-thrown without proper handling). 9

android applications were examined in [27]. The researchers were looking specifically into

Android activities – one of the application building blocks on the Android platform. It

was demonstrated that more than half of the activities did not have exception handlers.

Thus, any exception raised in such activity would cause a crash of the application.

These examples illustrate that the software development process suffers from exception

handling misuse because of unsound development practices, complexity of exception han-

dling mechanisms and weak documentation. Eventually, these problems deteriorate main-

tainability of FT.

1.3 Maintainability of fault tolerance

Software complexity affects software maintainability involving more time, higher costs and

more errors introduced after maintenance works [28]. Thus the complexity of software

and especially the complexity of FT mechanisms leads to difficulties in maintaining FT

in computer-based systems. The problem gets worse due to misuse of FT mechanisms.

And yet the FT means comprise a significant part of the application source code. The
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experiments in [29] showed that about 11% of the code in the JWAM framework was

devoted to detecting and handling exception behaviour, given the fact that the majority

of handling statements did not have complex logic for dealing with errors. The JWAM

framework is an object-oriented framework for interactive business applications consisting

of 614 classes and 44000 lines of code.

It was mentioned in the previous section that there were problems with FT design in

the past and such problems still remain in the present. It is well-known that FT is a

crosscutting concern [30, 31]. In this way, during the design and implementation of FT

functionality the main focus should be made system-wide, rather than on components. It

is more convenient to centralise FT-related code in order to facilitate modularity of the

system, since the relevant FT functionality will be coordinated by a single module, unit

or component, simplifying the understanding and access to the FT mechanisms. How-

ever, FT mechanisms are often implemented separately for system components without

consideration of the entire system.

A study [32] identifies several problems with exception handling. The most likely explana-

tion is that exception handling, especially in the fast-paced business environment, is not a

developers’ primary concern, whereas functional features receive much more attention in

requirements, design, and testing. In addition, it is extremely hard to predict all possible

errors that might emerge during the system operation, and unit tests [33] cannot cover all

possible scenarios. Moreover, exception handling is a crosscutting concern, which affects

its understandability and maintainability. Finally, a lot of code is written and maintained

in programming languages that do not explicitly support exception handling.

The need to consider exception handling during all the phases of software development is

explained in [34]. It is demonstrated that systems can be affected by the inappropriate

use of error recovery mechanisms due to dealing with exception handling only at later

stages of the software development life cycle.

Software maintainability [35] is central in reducing maintenance costs and decreasing

downtime in case of system modification or, worse, in case of system failure. However, it

often happens that due to system complexity maintenance actions unintentionally intro-

duce new bugs and faults affecting working parts of the computer system. To avoid or

at least to minimise these risks, system modules should not be made heavily dependent

on each other. In addition, each module should be responsible for certain functionality in

such a way that similar operations are not scattered across the system. This good prac-
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tice is usually followed while implementing functional system features such as business

logic or data access. The situation with non-functional features is, however, different [36].

The source code responsible for diagnostics, security or FT is often distributed across the

system, leading to code duplication or tangling with the code responsible for functional

concerns. In many cases FT functionality is not centralised and each module performs

error handling and fault handling independently, even though the errors involve the entire

system. This makes FT mechanisms more difficult to understand, and their adjustment

and modification more time-consuming, and ultimately does not support system modu-

larity. Good maintainability, by contrast, means that any modification, be it repairs or

adding a new functionality would require an anticipated amount of time and effort.

The above-mentioned problems with FT are related to the development process. Very

often developers focus on functional system requirements, whereas non-functional require-

ments are neglected. Some development teams prefer testing to reveal faults and errors

rather than rigorous development. However, this approach is not acceptable for critical

systems, such as avionics, medicine and the financial sector [37]. Since the FT code is crit-

ical and could contain bugs and design flaws itself, it should be designed and implemented

very thoroughly.

1.4 Resource and energy requirements of the ICT

sector

Information and Communication Technologies (ICT) are ubiquitous in the modern world

and new technologies have expanded to almost all spheres of human life. However, the

ICT sector consumes huge amounts of energy. It is pointed out in [38] that US data centres

consumed 1.5% of the total US energy consumption or 61 billion kWh in 2006. Moreover,

according to Mills [39], the entire ICT sector now consumes about 10% of the energy

generated in the whole world. In addition, the area of cryptocurrencies is developing very

fast. These digital currencies require huge amounts of computer resources – CPUs, GPUs,

and even specialised boards like ASICs [40] to create (mine) new tokens (cryptocoins) and

run the network. According to the New York Times [41], the daily energy consumption

of computers connected to the Bitcoin [42] digital currency network is comparable to that

of medium-size countries. Thus, energy consumption and computer resource usage are

starting to become an issue for modern computer-based systems. This makes it necessary

to develop new approaches to make these systems more efficient with regards to energy
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consumption and resource usage.

The majority of modern computer-based systems are multi-core or even many-core, and

the number of cores is expected to grow [43]. Large numbers of CPU cores will increase

computer systems energy consumption. However, these systems offer plenty of benefits.

Firstly, provided that the software code is written correctly, they operate faster. Secondly,

systems’ reliability increases due to redundancy intrinsic to such systems. Finally, modern

multi-core and many-core systems make it possible to adjust performance, CPU energy

consumption and even reliability, by changing frequency of CPU cores and switching off

unused cores (and running only the required number of cores).

Some studies have demonstrated that it is possible to optimise resource usage if thorough

analysis is done at the stage of FT mechanism design. For example, Garraghan et al. [44]

quantified the negative influence of failures on energy consumption in a large-scale cloud

system. The results show that most failure events happen in low priority tasks causing

13% of total energy waste, whereas failures which happen in high priority tasks cause 8%

of total energy waste. This suggests that system-wide analysis is vital in identifying the

main factors of failure-related energy waste. Energy waste can be reduced while providing

a required quality of service. To achieve this, FT mechanisms should take into account

task priority, energy profiles and frequency of failures inside components.

1.5 Holistic Fault Tolerance

Holistic Fault Tolerance (HFT) is introduced to ensure efficient use of resources avail-

able to computer-based systems and to address the questions of FT complexity and FT

maintainability raised in Section 1.1 and Section 1.3. This thesis proposes the concept of

HFT and the engineering support for computer-based systems developed with HFT. The

notion of HFT is described in detail and the guidance to support developers during the

design and implementation of HFT for computer-based systems is provided.

The concept of HFT assumes that a global, crosscutting approach should be applied to

manage system non-functional characteristics at all stages of the software development

life cycle. These non-functional characteristics are presented by FT, performance and

resource usage. HFT is targeting resources in general, but hardware components, energy

and time are more frequently-used. Depending on the system type some resources could

be more important than others.

- 9 -



Chapter 1: Introduction

To assist in applying a crosscutting approach, the computer-based system should be de-

veloped in accordance with the HFT architecture. This involves introducing a special

HFT controller for managing non-functional properties of the systems. To simplify the

implementation and understanding, the controller is assisted by the HFT agents, which

monitor certain properties of system components and supply processed data to the HFT

controller. The goal of the HFT architecture is making it convenient to maintain FT-

related mechanisms, and ensuring dependable and efficient operation of a computer-based

system. HFT is a general concept and it is suitable for the majority of modern computer-

based systems, however multi-core and many-core systems provide more flexibility and

benefits for HFT.

1.6 Research question

The research question of this thesis is to examine the effect of HFT on the efficiency and

maintainability of computer-based systems. It is necessary to investigate whether HFT

can monitor and dynamically adjust the entire computer-based system to achieve efficient

operation without uncontrollable reliability deterioration. By efficiency we mean the abil-

ity of a computer system to avoid the waste of time or computer resources. We also argue

that HFT facilitates the maintainability of FT functionality. To demonstrate this, the

thesis evaluates the HFT architecture, both in terms of its efficiency and its maintainabil-

ity. The former is based on analysing the interplay between reliability, performance and

resource utilisation. The latter considers modifications of FT-related functionality.

1.7 Contributions

The four main contributions of the thesis are:

• The concept of Holistic Fault Tolerance. The main idea of HFT and the steps

required to design, model, and implement a computer-based system with HFT are

presented.

• A detailed description of the HFT architecture, including all elements of the HFT

architecture and their interactions.
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• A general method intended to facilitate the design and implementation of the HFT

architecture. In this work, a modelling method for systems with the HFT architec-

ture is provided.

• The pattern for the implementation of HFT using the AspectJ Aspect-Oriented

Programming (AOP) [45] extension for Java programming language.

The proposed method is evaluated with regards to the efficiency and maintainability of

the HFT architecture.

1.8 Outline of the thesis

In Chapter 2 we discuss several motivations for this research and provide the background;

Chapter 3 is devoted to HFT engineering. The HFT architecture is described in Chapter 4,

whereas Chapter 5 focuses on modelling support for computer-based systems with the

HFT architecture. The implementation of HFT using AOP is demonstrated in Chapter 6.

HFT efficiency and maintainability are evaluated in Chapter 7, and results are discussed

and concluding remarks made in Chapter 8.
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2.1 Introduction

Several academic studies and industrial solutions that address various issues relating to the

efficiency and maintainable architectures of computer-based systems are considered in this

chapter. A critical analysis of these state-of-the-art approaches is provided, highlighting

their advantages and limitations, and explaining how these works inspired us with the idea

of Holistic Fault Tolerance (HFT) and motivated us to undertake this research project.

This chapter is organised as follows. First, the background on dependability, fault toler-

ance and fault-tolerant systems is introduced in Section 2.2. Then, the ideas of Cross-Layer

Fault Tolerance (CLFT) (Section 2.3) and centralised Fault Tolerance (FT) (Section 2.4)

are investigated and the logic behind cross-layer and centralised approaches is explored.

After that, the existing approaches to system structuring that do not always follow con-

ventional ways of system structuring are discussed in Section 2.5. Thereupon, a real world

Transmission Control Protocol/Internet Protocol (TCP/IP) [46] example motivating the

idea of HFT is introduced in Section 2.6. Concluding remarks of the chapter are given in

Section 2.7.

2.2 Basic concepts and taxonomy of dependability

The main concepts and taxonomy of dependability are an established scientific theory

thoroughly explained in [1]. Dependability is defined as the ability of the system to

provide service that can be justifiably trusted. The concept of dependability encompasses

five attributes:

• availability — readiness of the system to provide a correct service.

• reliability — continuity of correct service provided by the system.

• safety — absence of disasters caused by the system operation.

• integrity — absence of inappropriate changes in the system.

• maintainability — ability of modifications and repairs.

2.2.1 Threats to dependability

There are three threats to dependability: faults, errors and failures. A fault is a hypoth-

esised cause of an error. If a fault causes an error, it is active. Otherwise it is dormant.
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An error, in turn may cause a failure if the error reaches the service interface of a system.

A failure or a service failure, is a certain event when the provided service deviates from

correct service, and as a result, the system behaviour does not comply with the system

specification. An external state of the system is that part of the total system state which

is provided by the service interface [1]. The recursive chain of dependability threats is

shown in Figure 2.1.

... −→ failure
causation−−−−−→ fault

activation−−−−−→ error
propagation−−−−−−→ failure

causation−−−−−→ fault −→ ...

Figure 2.1: Fault, error, failure chain

One of possible examples of faults, errors and failures manifestations is shown in Fig-

ure 2.2. There are three components in the system. An activation of an internal fault in
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Figure 2.2: Error propagation through components

component A causes an error in this component. When there is no recovery of the error,

it is propagated through the component and reaches an external state of the component

resulting in a failure of component A. The failure of component A causes an external fault

activation in dependent component B. The active fault produces an error in component

B that is not recovered (or even not detected) correctly. Thus, again, the error will be

propagated to the external state of component B causing deviation of the provided service

from the correct service or failure of component B. The failure of component B causes

an external fault in component C leading to an error. This error will be detected and

recovered by component C. The error recovery stops error propagation through system

components and allows component C to return to the normal operation and provide a

correct service for the external components. Thereby, the error will not reach the external

state of the system.
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2.2.2 Types of faults

There is a great variety of faults threatening dependability of computer-based systems.

These faults are classified into eight classes [1]:

1. Phase of creation class is presented by development faults that occur during devel-

opment or maintenance phases and operational faults that occur during the system

operation phase.

2. System boundaries class distinguishes internal faults originating inside the system

boundary and external faults originating outside the system boundary. The system

boundary defines a frontier between the system and its operating environment. The

errors caused by external faults are propagated to the system through the interfaces.

For example, let us consider the interaction of two components in a computer-based

system, a hard disk drive (disk) and a software application. The disk could have

an internal fault due to tear and wear which may finally lead to an error. If this

error is detected and recovered by the disk itself, it would not reach the external

state (or interface) of the disk and it would not be propagated to the application.

So the disk error caused by an internal fault will be recovered allowing the disk

to provide the correct service to the application in the presence of fault. However,

the disk may not be able to recover the error and it would reach the external state

of the disk leading to the disk’s service failure. This failure would be an external

fault for the software application. If the disk operability is not significantly affected

and only some parts of data are corrupted (e.g. several bytes out of kilobyte), then

the application could recover the errors caused by this external fault. For instance,

special data structures with redundancy may help to mask these errors. Thus, in

the software application the error could be either recovered or propagated further,

leading to the correct service in the former case and the application failure in the

latter case.

3. Phenomenological cause consists of human-made faults resulting from human ac-

tions and natural faults that are caused by natural phenomena without human

involvement.

4. Dimension class is composed of hardware faults that occur in, or affect system

hardware and software faults (“bugs”and implementation flaws) that affect program
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or data correctness.

5. Objective class encompasses malicious faults that are introduced with objective to

cause harm to the system and non-malicious faults that are introduced without

malicious objective.

6. Intent class distinguishes deliberate faults that are introduced by bad decisions and

non-deliberate faults that are introduced without any harmful intent.

7. Capability class comprises accidental faults introduced by oversight and incompe-

tence faults introduced as a result of incompetence.

8. Persistence class includes three categories of faults: permanent, intermittent and

transient. Permanent faults are constant, for example stuck-at-0 or stuck-at-1 chip

faults. The difference between an intermittent fault and a transient fault is that

the former occurs in the same location. In contrast, random bit-flips are inherent

for the latter. The main reason for intermittent faults in hardware is device wear

out, especially in nanoscale nodes. The study [47] states that current detection

and recovery approaches consider only two cases: transient and permanent faults.

Shrinking of circuit components also makes hardware susceptible to device variation

and ageing effects.

Appropriate error detection, error recovery and fault handling techniques are required for

each type of fault to ensure dependable system operation and to decrease FT overheads.

2.2.3 Dependability means

The means to attain the attributes of dependability are grouped into four categories:

fault prevention, fault tolerance, fault removal and fault forecasting [1]. Fault prevention

is applied to prevent the faults from occurrence and introduction in the system. The

aim of fault tolerance is to avoid system failure while faults are present in the system.

Fault tolerance includes identification of error presence—error detection, elimination of

the error from the system state—error handling, and prevention of the fault/s causing

the error from future activation—fault handling. Error handling is presented by rollback

(or backward error recovery), rollforward (or forward error recovery), and compensation

mechanisms. Rollback restores an earlier system state, which was not affected by the

error. Typical rollback techniques are checkpointing, recovery blocks and system restarts.
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Rollforward is suitable for errors that can be entirely removed from the system state

allowing the system to continue normal operation. Rollforward is usually considered

faster than rollback, however it requires a precise knowledge about the detected error to

apply a correct error handler. Rollback and rollforward mechanisms are not mutually

exclusive and they complement each other. In case of compensation the error can be

masked by using erroneous state redundancy without any other additional redundancy.

Various error correction codes are examples of compensation mechanism. Rollback and

rollforward are executed on demand after an error is detected, whereas compensation is

applied independently of the error detection.

Fault prevention and fault tolerance are responsible for delivering the service that can be

justifiably trusted. Fault removal is applied during the two phases—system development

and system use—to diminish the number and severity of faults. Fault forecasting is used

to estimate current and future faults and to predict possible fault activation order. Fault

prevention and fault removal comprise the fault avoidance means group, whereas FT and

fault removal are part of the fault acceptance means group.

2.2.4 Relation between fault tolerance and maintainability

One of the definitions of dependable system is “the ability to avoid service failures that

are more frequent and more severe than is acceptable” [1]. Fault tolerance is a means of

dependability, which prevents the system failure in the presence of faults. FT consists of

error detection, error handling and fault handling. Maintainability along with availabil-

ity and reliability is an attribute of dependability. Maintainability represents ability of

modifications and repairs. Maintenance, in turn, comprises all modifications of the sys-

tem during the use phase of the system life cycle. There are four forms of maintenance:

corrective, preventive, adaptive and augmentative. The first two are related to repairs,

whereas the last two are applied for modifications. The goal of corrective maintenance

is to remove faults that were isolated by fault handling. The difference between FT and

maintenance is that the latter requires an external agent. With regards to the HFT archi-

tecture we focus on convenience of FT maintainability and ensuring dependable system

operation.
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2.2.5 Ensuring fault tolerance of system components

It is established [48] that all FT techniques must rely on redundancy for error detection

and for error recovery. Moreover, in case of software the redundancy of design is required.

Implementation of FT techniques depends on fault assumptions, by defining faults or

classes of faults that should be tolerated. The redundancies provided by FT techniques

should be independent of the process of fault creation and activation.

Let us look first into several examples of how FT of system components is typically en-

sured. Triple modular redundancy [49] is a form of N-modular redundancy when three

components perform the same operation and a single output is produced by a majority-

voting system. The recovery block [50] works with several implementations of the same

algorithm: after executing the primary variant, an acceptance test verifies the results. If

the acceptance test fails, the system is rolled back and the secondary variant is tried. Even-

tually, either a variant passes the test or an exception handler is invoked. The N-version

programming [51] is an approach aiming to reduce the probability of software faults by de-

veloping two or more functionally equivalent program versions independently (preferably

by different developers) in accordance with the same initial specification. These versions

are executed concurrently and a special voting algorithm choses the correct output.

The two typical approaches used to ensuring FT at several layers are action nesting and

extending component interfaces with exceptions. The best examples of the former are ex-

ception handling and nested Atomicity, Consistency, Isolation, Durability (ACID) trans-

actions [52, 53]. The latter are best represented by F. Cristian’s approach to providing

recovery for modular software [54] and the Idealised Fault Tolerant Component (IFTC)

pattern [55]. Even though these techniques support layered system structuring for FT

they do not support concerted or centralised FT at multiple layers when the decision to

apply error detection and recovery is made for all layers together.

Cristian discusses programmed exception handling and default exception handling in [4].

In addition, the usage of default exception handling for the design faults is discussed. It is

suggested that in spite of the fact that programmed exception handling and recovery block

were developed separately, they should be used in combination, but not as competitive

mechanisms. The author noticed that exceptions should not be used for “monitoring

purposes”. The exception mechanism is a control structure of the programming language,

which is applied when an exception is detected. In this case, the standard continuation
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of the operation is replaced by exceptional continuation. Cristian claims that algorithmic

faults can be the cause of system failures. Backward error recovery is proposed as a

mechanism for dealing with these faults. It is not easy to find the golden mean between

fault avoidance and FT to cope with design faults. Default exception handling, based

on backward error recovery can be an effective mechanism to tolerate design faults when

time between manifestation of the fault and detection of the error is less than the time

between the beginning and the end of a transaction. Otherwise, this technique will not

be adequate.

2.2.6 Focus of the standard approach

The issue with the standard approach to FT structuring (Subsection 2.2.5) is that it

often focuses on providing FT and does not give enough attention to other non-functional

parameters, such as performance and resource usage. In addition, the FT mechanisms

are managed inside the system components, which makes it difficult to reason about the

system FT at the system level, rather than at the level of individual components.

When the error is detected, its criticality can be often reasoned about only at the system

level, since possible influence of the error can not be predicted at the level of individual

system component. In some cases, the system could be significantly overengineered if there

is not a centralised control for FT mechanisms. For example, the IFTC pattern can be

applied recursively to engineer a system (some of IFTCs may be formed by several idealised

fault tolerant subcomponents). While this structure can be applied to create very reliable

system, since in IFTC the normal and erroneous operations are clearly separated, such an

architecture could be inefficient because the error will be analysed and recovery attempt

will be made by each of the components involved in the error propagation chain. At the

same time if there is a global view of the system-wide FT mechanisms the decisions about

the errors can be made globally without propagating these errors through all components

in the call chain.

It seems that the system units (layers or components) are usually considered separately

when the standard approach is applied. Under such circumstances, it is likely to be difficult

to adjust these units to achieve efficient system operation in terms of performance, energy

consumption or resource utilisation. Unnecessary error handlings are possible when the

caller component (or upper layer) cannot specify the required quality of service of the

callee component (or bottom layer).
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For example, let us consider a many-core system where the fault rate of one core is

significantly larger than the rate of another core. When an error is detected, the error

recovery could be achieved by re-executing the calculations on the same core making it

slower. Should there be a special system-wide mechanism, which can make a decision that

under some fault rate value, hardware layer error recovery should be applied, but after

exceeding this value, it is necessary to inform the Operating System about the faulty core,

then the system FT as a whole would be more efficient. In the latter case, the Operating

System would be capable to hide the faulty core from the applications for some time

allowing it to cool down, because the likely reason of faults is CPU core overheating. In

case when all CPU cores became faulty, different strategies could be applied depending

on fault assumptions, application domain and the system itself. If the system is just one

node of a service consisting of several nodes then the entire node can be switched-off to

allow the CPU cores to cool down, while the other nodes will deliver the service. However,

if it is a monolithic system then hiding half of the CPU cores can be considered, after

the specified time these cores will be made available again and the other half of the CPU

cores will be hidden. Another option is to apply graceful degradation of the service.

2.3 Cross-Layer Fault Tolerance

2.3.1 Cross-Layer Reliability Vision

The Cross-Layer Reliability Visioning Study [56] proposes that it is necessary to use a

cross-layer, full-system-design approach to reliability. The authors argue that in a cross-

layer reliable system the entire system stack needs to collaborate in order to recover the

errors and tolerate variations. This will be achieved because the relevant information

about the system state is shared across the layers. In addition, the application domain

of the system should always be taken into account, since different domains have various

reliability requirements.

The study introduces the cross-layer approach to reliable system design, forecasting that

the electronics industry is about to approach two inflection points that require new ap-

proaches for FT structuring. The first point is reliability and predictability. In the

fabrication technologies less than 65nm gate leakage became a serious problem that led

to reliability deterioration. This will push the designers to alter the assumptions that

semiconductors and other microelectronic elements will operate without fails during the
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whole system lifetime. The second point is energy consumption, which is a crucial issue

for contemporary computer-based systems.

The Cross-Layer Reliability Visioning Study motivates a new approach to system reliabil-

ity based on a cross-layer system design. The growing energy demand and the forecasted

reliability deterioration of modern hardware ground the importance of the cross-layer ap-

proach to reliable system design. CLFT can be applied to cope with these problems.

With a cross-layer approach, it is possible to make a decision whether the error at the

bottom layer is critical for the upper layers and apply the most suitable error recovery

scenario according to the system’s state. Thus, CLFT decreases error recovery overheads

and reduces energy consumption, because in case of an error an efficient FT strategy

will be chosen. CLFT is proposed to be very useful for performance- and energy-critical

systems.

2.3.2 Studies on Cross-Layer Fault Tolerance

The CLFT assumes that FT mechanisms are distributed among all layers of the system

stack and designed together. The final decision on using FT mechanisms is made according

to the whole system state rather than to the states of the individual layers separately.

The Relax language-level mechanism for providing energy-efficient reliability and CLFT

for supercomputers is proposed in [57]. The Relax framework allows the developer to

specify code regions where low-reliability computations should be tolerated. The frame-

work provides the relax blocks marking the regions in source code that can experience the

error propagated from the hardware layer. This error will be detected and recovery will

be performed by re-execution of the relaxed code block. Actually, the developer has a

choice to retry the operation or skip the operation if it would not significantly affect the

calculations. The last option is suitable for the processing of massive data sets when skip-

ping a certain amount of operations can be tolerated (e.g. statistical calculations, digital

signal processing). Thus, it can be considered as trading reliability for energy efficiency

and performance. This example shows that it is feasible to deal with hardware error at

the software layer, given that the error is detected.

The cross-layer design is widespread in the area of Wireless Sensor Networks (WSNs). The

wireless sensors [58] are small devices which measure temperature, humidity, air quality,

etc. These sensors are networked to each other and transmit their data to the main server.
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Very often the battery is the only power supply for them. Therefore, reliability, perfor-

mance and energy consumption are the most important requirements for these systems.

The efficient operation of the WSNs can be guaranteed only when the layers of the sys-

tem stack are considered together. The layered approach does not provide an easy way

to share any important information about the system state among the system layers, this

makes it impossible to achieve the efficient system operation. In addition, the single layer

approach is incapable of adapting to the environmental change. The paper [59] discusses

cross-layer adaptivity techniques, which leverage functionalities at different layers of the

protocol stack. The application layer is frequently involved in these activities, supporting

current system operation in accordance with measurements and forecasts of the monitored

system. The study [60] proposes a new routing protocol based on the cross-layer principle

in order to manage faults in WSNs, decrease signalling overhead and power consump-

tion. A cross-layer data delivery protocol for delay/fault-tolerant mobile sensor networks

was developed in [61]. The protocol aims to optimise energy consumption in the light

of throughput requirement, stable connectivity of the sensor nodes and sufficient chan-

nel bandwidth. In spite of the success in applying the cross-layer approach, there is no

work on systematic engineering of CLFT in the domain of WSNs. The developers design

systems without any support for reuse, often producing similar solutions independently.

The CLFT is a promising approach to the development of efficient systems, however it

is more suitable for a layered hierarchy and it would not fit all computer systems. We

realised that the idea of CLFT needs to be reworked to be applicable for systems that are

built out of components and do not have explicit layered structure. This was one of the

reasons for introducing a new holistic approach presented later in the thesis.

2.4 Studies on centralised fault tolerance

The centralisation of FT management is considered in a study [62], which provides the no-

tion of guardian – a special global exception handler for a distributed system. In addition,

the authors consider the implementation of distributed exception handling and global ex-

ception handling and analyse the provided guardian model. The goal of the guardian is

to enhance existing exception handling models and provide a basis for them. The au-

thors note that in a distributed system exception handling is far different from sequential

exception handling, since distributed systems require communication and coordination

of exception handlers. Moreover, several exceptions may be raised concurrently. Thus,

- 23 -



Chapter 2: Motivation and background

each participating process of the application should invoke the correct handler. In the

guardian model, the correct handler for each process is chosen by the guardian according

to the application defined recovery rules allowing the guardian to orchestrate the recovery

action of each involved process. The guardian model distinguishes global exceptions coor-

dinated through the guardian and local exceptions, which are handled by those processes

where they occurred. The authors list three advantages of the guardian model [62]. First,

the global exception handling is separated from the participating processes. Second, the

guardian is a more flexible and primitive scheme than existing approaches to distributed

exception handling. Third, the synchronous and asynchronous activities can interact in

a distributed application. However, the implementation of reliable broadcast and time-

limited response of participating processes involves scalability and performance overheads.

The second limitation is a complexity of definition of the contexts and corresponding set

of exceptions and handlers according to the guardian rules.

A three-layer architecture for FT control is introduced in [63]. These layers are control,

detection and supervision. The first layer is responsible for controlling sensors and actua-

tors that check faulty conditions. The second level contains detectors for each fault effect

and corresponding effectors implementing reconfigurations and remedial actions initiated

by an autonomous supervisor from the third layer. To achieve high availability and avoid

system failure, the authors prefer to apply reconfiguration of the system after fault de-

tection rather than increased robustness with performance overheads. In this work the

authors do not consider separate modules that are responsible for performance monitoring

and error handling.

A System Health Monitoring Unit is used by network-on-chip many-core systems [64].

This unit has an holistic view of the system components’ health status. A Mapper/Sched-

uler Unit generates mapping and scheduling solutions for different classes of faults (tran-

sient, intermittent and permanent) that occur in processing elements, on-chip routers and

communication links. This approach is bound to the specific network-on-chip architecture

and may not be suitable for other architectures such as software applications.

The study [65] aims at providing high availability for the request-oriented distributed

system using a CrossCheck holistic approach, which extends state-machine replication.

This approach employs majority voting based on the hash values of the results, but not

on the results themselves to reduce the message size. If some difference is detected by

voting, the faulty replica is recovered with a special recovery message. Aspect-Oriented
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Programming (AOP) is applied for the protection of critical state-objects to deal with

arbitrary state corruption. The experiments proved low performance overhead of this

solution. The CrossCheck is intended to optimise performance, but it does not consider

the trade-off between reliability and performance.

In this section several approaches to centralised fault tolerance mechanisms were con-

sidered. These approaches focus on specific architectures and may not be suitable as

approaches for a wide range of systems. In addition, the trade-off between reliability,

performance and resource utilisation is not usually considered in such systems.

2.5 Existing approaches to system structuring

This section considers the existing approaches to system structuring, which in some cases

diverge from the commonly used methods. All these methods have inherent strengths and

weaknesses. In addition, some techniques are efficient or even applicable only in limited

application domains. In the following subsections, systems with goal-seeking behaviour,

Filter fusion, Integrated Modular Avionics and Ensemble communication architecture

approaches are discussed.

2.5.1 Systems with goal-seeking behaviour

The system architecture can be considered from the goalachieving point of view. One

example is described by Brooks as the architecture of a layered control system developed

for mobile robots [66]. A control system is able to execute many complex processing tasks

in real time. Instead of decomposing the problem into functional units, the author decided

to apply task achieving behaviour decomposition. Several mobile robot requirements are

identified. Firstly, the robot has multiple goals sorted by priority because the goals could

be conflicting. Secondly, for navigation purposes, the robot uses multiple sensors, which

do not always give very precise data. The third point is robustness. If some part of the

control system fails, the robot should rely on working components. Brooks defines his

initial motivation stating that it is not necessary to use very complex control systems

in order to achieve complex behaviour. Levels of competence and layers of control are

applied to solve each small decomposed subproblem. Levels of competence are defined

as a guide for this work. Lower levels implement simple behaviours like avoiding the

objects and wander aimlessly without hitting the walls, etc. Each next level offers more
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complex behaviour and includes each earlier level of competence as a subset. For each

level of competence there is a corresponding layer of control. Layers of control are added

incrementally without changing the lower layers. A higher layer augments lower layers of

the control system, but the lower layers still produce the results without knowing about

the higher layers. The author calls this the subsumption architecture. Such an architecture

provides additional robustness since the lower levels of competence are well debugged and

continue to produce results. If the higher level is unable to produce a result during the

specified time, then the lower level will produce an acceptable result. In addition, new

layers can be added later if the control system requires additional functionality. The

given architecture does not require any central control, because the system is considered

as a system of independent agents. However, the lower layers produce results despite

the fact that these results will not be used hereafter. Such a scheme lacks system-wide

coordination. In some cases, this approach leads to overdesign: redundant operations or

waste of resources.

Another relevant work is the idea of the Teleo-Reactive programs presented by Nilsson

in [67]. To apply this approach, the developer should specify the goal and define the actions

to be performed in case of changes in a constantly monitored environment. Monitoring is

implemented as continuous computation of the parameters and conditions for the actions.

These conditions are in the regression relationship to ensure robust goal-seeking behaviour.

The restriction of the Teleo-Reactive programs is that they require a lot of computations

to check the conditions. However, the majority of conditions are irrelevant to the current

situation or might be predicted very precisely. This approach is not suitable when system

resources should be utilised efficiently.

2.5.2 Integrated Modular Avionics

Integrated Modular Avionics (IMA) is quite a new concept intended to reduce aircraft

weight and related overheads. It represents real-time computer network airborne systems,

consisting of computing modules that support various applications. These applications

differ by criticality levels. According to [68], the main goal of IMA is to decrease avionics

cost in comparison with earlier design solutions. This is achieved by sharing hardware

resources and reducing duplication. Modular architecture of IMA facilitates the develop-

ment and maintenance of avionics software, since the modules share underlying hardware

and use a common API to access this hardware. The concept of IMA is based on powerful
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computer processing units – cabinets with a special operating system for independent

execution of application software. The hardware is considered as an interface, whereas

avionics functions are mostly presented by software modules. The hardware and software

are designed independently in order to eliminate their effect on each other. Moreover,

software independence is essential to avoid the influence of applications. In IMA systems

reliability is achieved by resource redundancy. The IMA systems are mission- and safety-

critical which is why these systems must be fault-tolerant and meet rigid task execution

deadlines [69].

The paper [70] discusses the transitioning from a federated avionics architecture to an

IMA architecture, considering its benefits and difficulties. Resource management in IMA

systems is significantly different from that in federated ones. Federated architectures

are based on independent collections of dedicated computing resources, whereas IMA

architectures leverage avionics functions of various criticalities on a shared computing

platform, ensuring weight and power savings and simplifying the development process.

The authors note several benefits after transitioning to IMA:

• Flexible allocation of computing resources such as processors, communication net-

work and input/output units. In comparison with federated architectures, IMA

allocates resources more efficiently.

• The aircraft weight and power consumption are reduced due to the consolidation of

the hardware and associated cooling and wiring.

• Development expenses are reduced, since hardware consolidation means consolida-

tion of development efforts. Developers can concentrate on the application layer,

which saves them developing separate architecture for hardware as they do in the

case of a federated architecture. “Open” IMA architectures could increase develop-

ment efficiency by employing interfaces available in the public domain.

The study [70] specifies the factors to be considered before transitioning to IMA:

• Confidence in system-level integration tools and processes. The systems integrator

must be able to fulfil critical responsibilities, such as increased interface definition

and management, resource allocation and management, system configuration anal-

ysis and generation.
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• A strategy for legacy system support by defining which avionic functions will be

hosted on the IMA platform.

• Establishing an organisational structure that will collaborate to produce an opti-

mised solution for the entire set of hosted avionics functions.

• The approach to resource management will be fundamentally different from a feder-

ated architecture. Avionics system developers should work together with the system

integrator to attain an integrated solution. The system integrator is responsible for

allocating the required resources to ensure performance of each hosted function.

IMA implies fundamental alterations affecting hardware and software layers. In addition,

the usage of the IMA architecture assumes a significant organisational shift, putting pres-

sure on teams of developers to work closely with each other. All these activities are not

always desirable by development companies.

2.5.3 Filter Fusion

The paper [71] proposes Filter Fusion, a compiler optimisation technique which allows the

developer to eliminate the overhead involved in the modular design of independent filters.

A filter can be considered as a data-manipulation abstraction that reads the data from the

source, processes the data and writes the data to the destination. In a filter application,

data flows through several filters, which are separate modular entities. Such a modular

implementation has disadvantages in terms of performance. The authors assert that it

is more efficient to merge the filters in order to perform all data manipulations at once

instead of processing the data in each filter separately. When performance is important,

modular design should be replaced by an integrated design.

According to the researchers in [71], network protocol layers are regarded as filters. Pro-

grammers usually merge these filters by hand to produce efficient code. If the filters are

integrated, the data could be read once, processed many times and stored once, elim-

inating redundant memory accesses. Network applications require a number of simple

manipulations to be executed on each network packet, with the protocol stack formed by

these manipulations. The authors claim that it is more efficient to abandon abstractions

and merge the protocols for performance purposes.

Filter Fusion integrates complex independently developed filters into a single optimised

function. It is more efficient than optimisation “by hand”, since the transformation is
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performed automatically and the probability of errors is significantly reduced. Moreover,

this approach allows the programmer to retain a modular design without performance

deterioration.

The Filter Fusion is designed for the algorithm level and sometimes affects the algorithm

of functional components. In this thesis we focus on the approach that would optimise

the system without affecting its functional behaviour.

2.5.4 Ensemble communication architecture

Liu et al. [72] consider the pros and cons of systems built from components. They claim

that it is possible to significantly reduce end-to-end latency using the Ensemble commu-

nication architecture and the Nurpl formal system for program reasoning and transfor-

mation.

The authors assert that it is easier to design, develop and maintain a set of individual

components with a certain functionality than a monolithic system with the same function-

ality. Moreover, a system based on components is adaptable to new environments and can

be extended in the run-time. However, in the component-based approach, the abstraction

barrier between components requires extra overheads. In addition, the installation of the

system from components is usually harder than configuring a sealed system.

In this study, the authors use Ensemble, a high-performance network protocol architecture

based on simple micro-protocol modules, which can be stacked in different ways to satisfy

the communication requirements for the applications. These micro-protocols provide flow

control, encryption and other network-related functionality. The interface is event-driven:

event objects are passed between adjacent modules.

The study [72] explains how Ensemble’s micro-protocol components can be used to config-

ure a correct protocol stack. In addition, the authors use the formal tool Nuprl to analyse

how the performance of the result system can be improved. The researchers maintain

that the following points were crucial for the project:

• It is easier to reason about small and simple components, but not very small.

• Components should be implemented in an event-driven, functional manner.

• A language with formal semantics should be employed.
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• Using a formal tool is important, since hand-checking is very difficult and time

consuming.

• Collaboration of the system group (Ensemble) and the formal group (Nuprl).

The Ensemble architecture shows how to achieve significant performance improvement

using well-designed components and appropriate tools. However, it focuses on the optimi-

sation of system functional characteristics by reducing the overheads of unnecessary data

processing and decreasing the end-to-end latency and it does not consider optimisation

of FT-related mechanisms. In addition, the Ensemble architecture applicability is limited

to communication protocols.

2.6 TCP/IP motivating example

The TCP/IP Protocol Suite [73] acts as a motivating example for HFT. On the one hand,

there are benefits in applying a cross-layer error detection and error recovery approach

to ensure reliable communication. It illustrates how a well thought-out design assisted

in creating an efficient protocol suite that became a foundation of the Internet. On

the other hand, TCP/IP still has some architectural flaws, which affect communication

performance, especially in wireless networks. These flaws demonstrate the importance of

early stages of system design, because the evolution of communication networks was not

fully taken into account. The advantages and disadvantages of the TCP/IP protocol suite

should be considered when engineering HFT for computer-based systems. This includes

the elaborated design of the system at the initial stages of engineering and consideration

of future system evolution.

2.6.1 TCP/IP Protocol Suite

The Link layer, the lowest layer of the TCP/IP stack, is used to transmit the pack-

ets between the Internet layer interfaces of two nodes inside a local network segment.

The Transport layer provides host-to-host communication for the Application layer. The

Application layer supports data exchange between processes on different hosts over the

network connection supported by the lower layers. Data flow in TCP/IP networks is

shown in Figure 2.3.
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Figure 2.3: Data flow in TCP/IP networks

Transmission Control Protocol (TCP) [74] provides reliable packets transmission, even

though the packets may be lost, corrupted or delivered out-of-order. At the Link layer,

the Ethernet frame contains a Cyclic Redundancy Check (CRC)-32 checksum. A frame

with an incorrect checksum is discarded by the receiver hardware. The main protocol at

the Internet layer is Internet Protocol (IP), which has two implementations, IPv4 and

IPv6. The header of the IPv4 packet is protected by the CRC-16 checksum. The IP

packets with wrong checksums are dropped by the receiver. The IPv6 header does not

contain a checksum, assuming that the Link layer provides an adequate error detection.

The TCP and UDP packets of the Transport Layer have CRC-16 checksums, which protect

the payload and addressing information. TCP sends an Acknowledgement to the sender

to confirm the correct receipt or a Negative Acknowledgement if the packet checksum

is incorrect. In the latter case, the Automatic Repeat reQuest (ARQ) method is used

to retransmit the corrupted packet. If the sender receives neither an Acknowledgement

nor a Negative Acknowledgement by timeout, it resends the packet. Such a situation

can happen when the packet is lost or rejected by the lower layers due to an incorrect

checksum. In addition, a TCP packet contains a sequence number, which allows the

receiver to discard duplicate packets and sequence reordered packets. This, in particular,

shows that the errors of the lower layers are detected and recovered by concerted efforts

at several layers.

At the Application layer, the developer can choose an appropriate Transport layer proto-

col: either the connection-oriented and reliable TCP or the connectionless User Datagram

Protocol (UDP). The developer’s choice between reliable data delivery and fast data de-
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livery depends on the application requirements. If UDP was chosen, then it might be

necessary to implement error detection and error recovery at the application layer by

adding redundant data like status code or custom checksum.

2.6.2 Positive side of TCP/IP

The TCP/IP stack provides an excellent example of CLFT applied to ensure FT and

improved performance. All layers of the TCP/IP stack participate in error detection and

error recovery in a concerted fashion.

The advantage of the TCP/IP protocol is cross-layer error detection and error recovery

that are applied in case of data retransmission issues. The Link, Internet and Transport

layers of the TCP/IP protocol use CRC checksum to detect and reject corrupted data

packets. In addition, TCP provides data retransmission in the case when the sender

did not receive an acknowledgement of successful TCP packet delivery. The following

scenario demonstrates cross-layer error detection and error recovery. If the Ethernet

frame is corrupted, the data transmission error will be detected by the two layers. The

Link layer will detect an incorrect CRC checksum of the Ethernet frame, whereas the

TCP sender at the Transport layer will not receive an acknowledgement. Error recovery

will be performed by the same two layers. The Link layer will reject the corrupted packet

and the Transport layer will retransmit the packet by timeout.

If the developer chooses UDP as a transport protocol then error detection and error

recovery are to be implemented at the application layer, since, unlike TCP, UDP does

not provide reliability features. In this case, the errors, which are not detected at the lower

layers will be detected at the application layer. Depending on the error type, the error

recovery could be performed either only by the application layer or in a cross-layer manner

by combined efforts of several layers. These examples illustrate how cross-layer fault

tolerance is applied to ensure efficient and reliable data transmission over the network.

TCP/IP is a useful example of how FT can be applied in coordination at several system

layers. This was done to ensure its efficiency and flexibility. One of the main factors

contributing to the success of this protocol is the way the FT was designed and engineered.
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2.6.3 Problems with TCP/IP

The TCP/IP protocol is not ideal and has some design issues, which do not affect its

popularity, however these issues make TCP/IP less efficient than it could be. There are

several major problems that reduce the efficiency of the TCP/IP protocol. These include

redundant CRC checks and sending redundant acknowledgement packets at several layers

of the TCP/IP stack. In addition, TCP/IP suffers from wrong fault assumptions during

the operation in wireless networks making wireless communication less efficient [75–77].

TCP is an abstraction of the network connection to the Application layer. TCP provides

end-to-end reliable communication for the application, minimises network congestion and

notifies the data source about data transmission failure if the data is still undelivered.

Although the TCP protocol verifies the CRC-16 checksum for each segment, the algorithm

used is considered weak [78] by modern standards, however this CRC-16 checksum is

important because it is an end-to-end checksum. The end-to-end property is crucial,

because it means that the checksum is computed by the packet sender and verified by the

packet receiver.

Supplementary error detection and error correction techniques may be needed for Link

layer implementations with high bit error rates. The use of a CRC or integrity checks at the

Link layer partially compensates the weak checksum of the TCP protocol. Nevertheless,

the 16-bit TCP checksum is not redundant, since errors in the packets between TCP-

protected hops are not unusual [78]. For instance, in 2008, a single bit transmission error

spread throughout the system with internal state information message. This error was not

detected by network protocols and led to the shutdown and 8-hour outage of the Amazon

Web Services servers [79].

The Link layer checksum (CRC-32) is a packet-by-packet checksum and it is recalculated

on every network node. Since the Ethernet frame passes through a lot of routers on its

way from the sender to the receiver it is dangerous to rely on all these routers assuming

that they do not have flaws in the implementation. Thus, both checksums are important

even though there could be a possibility to use only one of them. If there was an end-to-

end CRC-32 checksum at the Link layer or the TCP packet was protected by the CRC-32

checksum, an unnecessary checksum redundancy would be eliminated. Actually, when

the IPv4 protocol is applied as an Internet layer protocol, there is one more CRC-16

checksum—IP Header Checksum, however it protects only the header of the IP packet.
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Finally, as far as CRC-16 is considered weak, additional checks are introduced in some

Application layer protocols. For example, a principled hardening technique intended to

prevent error propagation and avoid massive system outages due to state corruption is

presented [80]. In general, it is strongly encouraged to employ additional tools to guarantee

the integrity of the transmitted information for distributed network applications [81].

The Link layer contains two sublayers: the Logical Link Control (LLC) sublayer and

Media Access Control (MAC) sublayer. The LLC sublayer has three operational modes:

unacknowledged connectionless (LLC1), acknowledged connection-oriented (LLC2) and

acknowledged connectionless (LLC3). The LLC2 mode is rarely applied in combination

with TCP. However, when this happens several operations are made twice at different

layers: flow control, connection establishing and acknowledgement.

Another problem with acknowledgement is that it could be very slow between the remote

servers. Three-way handshake is required to establish a connection. If the latency between

two network nodes is high then connection establishment could take a sufficient amount

of time.

Head-of-line blocking is a problem that occurs when a stream of packets is blocked by the

first packet in the stream. This could happen if the first packet in the sequence is lost

or corrupted. Even though other packets are already delivered they cannot be processed

because TCP is obliged to deliver data in the order it was sent.

TCP uses an end-to-end flow control protocol to ensure the sender is not sending data

faster than the TCP receiver is able to process the data. This is necessary because network

nodes operate at different speeds. Flow control at the Transport layer is implemented

according with sliding window flow control protocol. The receiver of a data packet specifies

the maximum amount of data (receive window) in the acknowledgement packet that it

is able to receive. The sender is allowed to send only up to this amount of data. Then

the sender waits for an acknowledgement with a new window size. If the window size is

0, then the sender stops data transfer to allow the receiver buffer to process the income

traffic.

Another feature of the TCP protocol is congestion control preventing network congestion

collapse due to network performance degradation [82]. Congestion control mechanisms

that manage the data flow in the network include the following algorithms: slow-start,

congestion avoidance, fast retransmit and fast recovery. The slow start algorithm is a non-

efficient solution for small objects, because it prevents using available network throughput.

- 34 -



Chapter 2: Motivation and background

Flow control and congestion control are usually efficient in wired networks. However, in

wireless networks the situation is different. Bit-error rate in wireless networks is much

higher that in wired networks. This happens because wireless networks are prone to

occasional packet losses due to various factors like signal loss, interference or user mobil-

ity. Usually these reasons are not related to network congestion. The TCP protocol was

initially designed for wired networks, and the packet loss is considered due to network

congestion rather than wireless signal problems. After the packet loss the congestion win-

dow size is significantly reduced to prevent congestion. The throughput of the connection

is reduced as well. If there was any evidence that the packet was lost because of wireless

problems rather than network congestion, the wireless performance would be much better.

Several solutions [83, 84] have been offered to overcome these issues in wireless networks.

2.6.4 Lessons learned from TCP/IP motivating example

The TCP/IP example demonstrates the advantages of an holistic view and applying a

cross-layer approach. At the same time, this example points out how early design flaws,

lack of system-wide analysis and wrong assumptions lead to unnecessary overheads and

finally affect performance and quality of service.

Advantages and disadvantages of the TCP/IP protocol mentioned in this section act as

a very good guideline to be followed during engineering of fault tolerant systems. The

design of such systems should provide an easy way of applying diverse FT mechanisms.

At the early stages of system engineering developers should consider how error detection,

error handling and fault handling can be designed and implemented in an holistic fashion

using all the benefits of cross-layer and centralised approaches to system-wide FT. Fault

assumptions, error propagation chains and the system-wide implications of errors must be

considered at each stage of the system life cycle. Possible future errors as well as expected

system evolution should always influence system requirements, design and implementa-

tion. After thorough analysis and elaboration of system design, redundant interactions

and computations that do not contribute to system dependability and efficiency should

be removed whenever possible.

To conclude, TCP/IP is the basis for communication in the Internet and Intranet net-

works. It has many advantages that make it useful and flexible. Nevertheless, even such an

elaborated and successful protocol is vulnerable to architectural flaws and imperfections

that were made during the design time and now they are very expensive to fix because of
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its prevalence.

2.7 Conclusion

Computer-based systems are prone to faults at different layers of the system stack, start-

ing from circuitry degradation at the hardware layer to the bugs in the application source

code. In designing large systems substantial efforts are being made to mitigate the effects

of errors caused by faults at all layers of the system stack. Traditionally, the errors are

mainly handled by those components, which detected these errors. On the one hand, this

approach is convenient, since error recovery is attempted “on the spot” and—in case of

successful recovery—the error will not affect the remaining part of the system. On the

other hand, the system-wide implications of the error are not usually analysed, and the ne-

cessity of handling is not typically considered. This situation illustrates the predominance

of convenience over system efficiency in the run-time.

Thereby, when the system efficiency becomes crucial, the system architect should consider

a transfer from conventional ways of system structuring to achieve efficient resource util-

isation and retain system reliability. The efficiency of the system FT could be achieved

only when all crucial system units, such as modules, components, or layers are considered

together during the engineering of system FT. However, it is very difficult to achieve

when the system units are engineered separately without an holistic view of the system.

In this chapter the fundamental theories on dependability and fault-tolerant comput-

ing were analysed. In many situations these theories are successfully applied to develop

dependable computer-based systems. However, as shown in Chapter 1 there are still

many examples when developers do not follow the rules and guidelines due to the system

complexity, underestimating of FT mechanisms, and strict deadlines in the fast-paced

development environment pushing the developers to focus on functional requirements,

while non-functional requirements are neglected. This reduces understanding and main-

tainability of FT mechanisms. In addition, very often the developers focus on separate

components when implementing system FT mechanisms without considering the entire

system. This is the reason why the system-wide view on the trade-off between reliability,

performance and resource usage is not usually analysed making the systems less efficient

than they could be. The several approaches to FT engineering and system structuring

that are intended to facilitate maintainability and efficiency of system FT mechanisms
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were also examined. All these approaches have certain limitations, they are either applied

in restricted application domains, suitable for specific architectures only or do not focus

on efficiency or maintainability of FT techniques. The TCP/IP motivating example has

shown the advantages of an holistic view of the system and importance of expected system

evolution analysis to ensure that the system will be efficient in the future.

The existing research, that tackles the problems stated in Chapter 1, along with a critical

analysis of the existing research evidenced that the problems of FT efficiency and FT

maintainability are not fully addressed. Therefore, there is a need for a systematised

engineering approach that addresses the efficiency and maintainability problems related

to the FT functionality. This approach should encompass the benefits of the cross-layer

and centralised approaches to FT, and overcome their limitations, while providing an

holistic view to the system FT during all stages of the system development life cycle

including predictions of the system evolution. This approach based on the concept of

Holistic Fault Tolerance will be considered in the next chapter, where the engineering

steps that should be undertaken in order to design and implement a system based on the

HFT architecture are described.
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3.1 Introduction

In Chapter 1 the importance of system FT, the cost of design flaws in the system FT,

complexity of FT and examples of FT misuse were discussed. In Chapter 2 the approaches

intended to tackle these issues were considered. However, to the best of our knowledge

there are no suitable approaches that focus on the efficiency and maintainability of FT

mechanisms simultaneously.

In the previous chapter the background and motivation for this research project were

provided. All conventional ways of ensuring system FT are associated with a component

structuring. The most prominent forms are nested atomic transactions [53], nested recov-

ery blocks [50] and nested exception handling. Techniques like these help developers to

focus on providing FT only at one layer/component, either by tolerating faults (errors)

or, when this is not possible, by passing the responsibility to a higher layer. This view

is best captured by the IFTC architectural style [55]. These recursive approaches are

widely used because they allow developers to focus on providing FT of system compo-

nents. However, it seems that these solutions do not always support a system-wide view

on ensuring FT, sometimes causing system overdesign and resulting in systems that are

not efficient with respect to system performance or resource usage. These approaches

are not usually applied to sacrifice reliability for performance or vice-versa depending on

the system operation. Thus, the trade-off between reliability, performance and resource

utilisation is not usually considered.

There are several other structuring approaches that are different from the conventional

architectures but they cannot fully support a system-wide coordination of the FT mech-

anisms. Brooks’ approach [66] to structuring complex control systems using levels of

competence is an interesting solution but it supports neither component (in this case,

level) coordination nor activities that require dynamic decisions which groups of compo-

nents to involve in FT. The IMA architecture is not developed for modular coordination

either. These approaches are not intended for dealing with situations when several system

components need to be involved in system-wide FT in an orchestrated fashion.

There is an interesting evidence indicating that the TCP/IP design that motivates our

work (Section 2.6) suffers from certain weaknesses because arguably there were some mis-

takes made in designing CLFT [75]. In certain cases, error recovery can be inefficient due

to a lack of collaboration between the Link and Transport layers, as the TCP considers
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timeouts to be a consequence of high network load and slows data retransmission accord-

ingly. However, in wireless networks the data packet can be lost due to environmental

conditions and user mobility, so the lack of information about an error can cause data

transmission delays. This means that, for system-wide FT to be efficient, practical and

reusable, its engineering needs to be properly supported.

These issues can be addressed by implementing a vision of HFT, that introduces a new

type of cross-system management to capture system-wide FT. The local FT of system

components would be complemented by a system-wide FT and fault handling strategies.

HFT would not only simplify the analysis and implementation of critical system parts,

but also facilitate system reuse and elaboration of system operating modes.

The concept of HFT is introduced in this chapter to deal with problems formulated in

Chapter 1 and overcome the limitations of existing approaches considered in Chapter 2

that tackle these problems. The concept of HFT does not involve the introduction of

new or the change of the existing well established techniques [55]. The idea is to support

reasoning about the system FT at the system level rather than at the level of individual

units and apply error detection and recovery techniques at the system level to make

FT-related mechanisms more maintainable, modular and reusable. It should be noted

here that FT and maintainability concepts are closely interconnected. FT is a means of

dependability, whereas maintainability is an attribute of dependability [1]. The concept of

HFT focuses on both of them to ensure dependable and efficient operation of the system.

This chapter will consider the systems engineering and FT engineering principles in Sec-

tion 3.2. The concept of HFT will be introduced in Section 3.3. The principal steps that

are required to engineer HFT for a computer-based system will be described in Section 3.4.

Then, the benefits of HFT and the challenges to be faced by the developers during the

engineering of HFT will be outlined in Section 3.5. Concluding remarks of the chapter

are given in Section 3.6.

3.2 Systems engineering

Engineering defines how science, empirical evidence, and mathematical methods can be

applied to design, development and maintenance of different systems, devices, objects, or

processes. The engineering discipline covers a great variety of engineering fields.

Systems engineering is a field of engineering for creation and maintenance of complex and
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successful systems throughout the system development life cycle [85]. Systems engineering

considers various issues throughout the system life cycle, such as requirements engineering,

system dependability, cooperation of developers, verification and evaluation. All these

tasks are very difficult for the engineering of large and complex systems.

In this section, software engineering and FT engineering principles will be considered.

3.2.1 Software engineering

According to the International Standard [86], software engineering is defined as “the sys-

tematic application of scientific and technological knowledge, methods, and experience to

the design, implementation, testing, and documentation of software.”

Various paradigms and development models can be applied to engineer software systems

from the conservative Waterfall model to the modern Agile model [87]. These models dif-

fer in development practices, flexibility of the development process, customer involvement,

approach to testing, philosophy, and system evolution vision. However, all these models

include typical core activities, such as requirements elicitation, design, implementation,

testing, verification, exploitation and maintenance.

FT is an essential part of all engineering steps. The system developers should pay signifi-

cant attention to engineering system FT. The FT mechanisms for the system are chosen

according to the system requirements. Fault assumptions, abnormal behaviour in com-

ponent specification, error detection, system structuring for FT should be defined at the

earliest stages of the software engineering and clarified throughout the development life

cycle.

3.2.2 Dependability and fault tolerance engineering

FT is complex to implement and maintain and also costly due to redundancy require-

ments, however the cost of failure should also be considered. A systematic use of FT

mechanisms during development of computer-based systems is a part of an engineering

process. Dependability and FT are important quality factors of computer-based systems.

Dependability and FT engineering usually are going along with system engineering. More-

over, system dependability and FT should be ensured at every stage of the development

life cycle.
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The methods for systematic engineering of dependable and fault tolerant systems are

considered in this subsection. The main engineering steps and activities in each of these

steps are considered in detail.

Avižienis [88] discusses the issues arising during the FT provision and ensuring its ef-

fectiveness on the example of dependability requirements of an Advanced Automation

System. This system must meet extreme availability and safety requirements with less

than 3 minutes down time per year. Such systems require a systematic and hierarchically

structured introduction of FT techniques during the entire design process. The rigorous

design and evaluation guidelines are intended to facilitate this process. During the sys-

tem design FT should be considered as a fundamental issue, which includes tolerating

human-made design and interaction faults, the balancing of performance and FT, and

the integration of subcomponent recovery activities into a multi-level recovery hierarchy.

The introduction of FT into the system should be accompanied by a methodical approach

starting with initial design concepts, which requires collaboration of performance and

fault tolerance architects during the definition of critical tasks and subcomponent com-

munications. Such an approach is called the design paradigm for fault-tolerant systems.

The main steps of the paradigm include:

• definition of the expected fault classes over the system lifetime.

• specification of performance and dependability goals, which could vary for different

operation modes.

• partition of the system into subsystems for performance and FT implementation.

• choosing error detection and fault diagnosis algorithms for every subsystem.

• elaboration of recovery algorithms for every subsystem.

• evaluation of FT effectiveness and its impact on performance.

• integration of subsystem FT on the system-wide scale.

These activities significantly assist in meeting the stated dependability goals. The design

paradigm is aimed to reduce the likelihood of oversights, mistakes, and inconsistencies

during the process of meeting the specified dependability goals by using selected imple-

mentation means of FT. A successful design of a fault-tolerant system requires a sound
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verification of the design completeness and meeting the specified availability and safety

goals. During the verification it is necessary to ensure that there is no unnoticed unjusti-

fied simplifications, such as insufficient fault assumptions or implicit assumptions that all

FT functions are not faulty themselves. In addition, it should be checked that the effec-

tiveness and speed of error detection, fault diagnosis, system state recovery and reconfigu-

ration are not overestimated. The verification should contain qualitative and quantitative

evaluation. The former is responsible for fault assumptions validation, FT attributes

completeness verification and checking of proper integration of subsystems recovery pro-

cedures. The latter includes determination of the ranges of coverage and execution time

parameters for all FT functions in all subsystems. Even with such a complete verification

there are the challenges to consider: tolerating new fault modes, dealing with unantici-

pated failure inducing interactions, handling more than one concurrent fault activation,

tolerating residual design faults, extension and reverification of the system protection

after every system modification or repair. The summary on how HFT addresses these

challenges will be given in Section 8.2.

It is pointed out in [17] that there is a need to engineer FT in a disciplined and rigorous

way. Starting from the requirements phase, different faults and appropriate FT mecha-

nisms to deal with these faults should be considered and refined during the system life

cycle. The FT verification and validation should become a part of system development.

The FT mechanisms under development should correspond to the types of faults, appli-

cation domain, execution environment, system requirements and development model to

avoid unnecessary complexity of the system. In addition, the FT mechanisms should be

ready for system evolution to ensure that all modifications of the system, including the

FT mechanisms, would be smooth and dependable.

A framework for dependability engineering of critical computing systems is presented

in [5] where two major classes of processes are considered. The first is the system creation

process, which includes classical engineering steps. The second is the dependability pro-

cesses that are responsible for dependability means creation. These processes are used to

support the development of dependable systems.

It is established that design of dependable systems delivering critical services is a complex

task because of computer-based systems’ complexity and the diversity of fault classes.

This requires a systematic and structured design approach integrating dependability con-

cerns starting from the earliest stages of the system engineering process. It is noticed in [5]
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that traditional software development models focus on verification and validation, and do

not incorporate reliability evaluation or FT. The authors propose to explicitly incorpo-

rate the dependability means in a development model to produce dependable systems.

The complementary activities supporting the dependability means can be appointed to

separate processes working in line with the system creation process, that orchestrates all

the activities. The system creation process is based on traditional engineering steps in-

cluding requirements elicitation, design, implementation and integration. Requirements

elicitation includes the specification of the systems representing the user needs. The

system architecture is defined during the design step and system components are imple-

mented according to their specification at the implementation step. The integration step

is responsible for the system integration into its operational environment.

The dependability processes comprise fault prevention, fault tolerance, fault removal and

fault forecasting processes. Each of these processes corresponding to dependability means

consists of several activities. For example, the fault prevention process includes evaluation

of risks from the system development and project breakdown into tasks, whereas the FT

process consists of system partitioning and fault and error handling activities. The fault

removal process is composed of system verification, system diagnosis, and system modi-

fication activities. The fault forecasting process includes the statement of dependability

objectives, allocation of these objectives among system components and evaluation of the

system behaviour.

The authors [5] state that the development of dependable systems requires the interac-

tions between the system creation process and all the dependability processes including

successive analysis and iterative refinements throughout the system development life cy-

cle. For instance, the interactions between the fault forecasting and the FT processes

define the acceptable operation modes and constraints for each mode.

Fault assumptions are crucial in dependable systems development [5]. It should be noted

that fault assumptions related to different dependability processes are usually not identi-

cal. Some faults are tolerated, while others are forecasted or removed.

The authors [5] propose the following systematic approach to engineer fault tolerant com-

puter systems. A detailed description of the main system functions including depend-

ability goals should be defined at the requirements elicitation step. In addition, different

development and certification constraints are defined during this step. The goal of the

FT process during the requirements step includes the identification of undesirable events,
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description of the system behaviour in case of failure and definitions of mechanisms to

satisfy the dependability goals. It is necessary to consider how to deal with more than

one concurrent failure. Since the system quality attributes like reliability, availability and

performance influence each other, it is impossible to optimise all of them simultaneously.

That is why appropriate trade-offs between these properties and FT mechanisms should

be considered during the requirements step in order to facilitate the implementation of

FT mechanisms. The fault forecasting process during the requirements step assesses the

occurrence of failures and classifies the system functions by criticality levels. Based on

this information, appropriate error handling and fault handling mechanisms will be chosen

during the design step. These data may be obtained from similar systems or from the

system under development if such information is already available.

The main goal of the design step [5] is to specify an architecture that allows the system to

meet the elicited requirements. During the design step, the system structure consisting of

separate components, the system behaviour, and data flows between these components are

defined. The system component can be considered as a system as well. That is why the

decomposition is recursive and it continues until the low level components are considered

atomic. In spite of the fact that there is not a universal approach to system decomposition,

the design should consider future system evolution, testability, maintainability and FT.

In an ideal case, the design should consider all classes of faults with corresponding FT and

fault avoidance mechanisms. A special attention should be given to formal specification

and verification of FT mechanisms, non-fault tolerant components and single points of

failure. Error confinement areas and fault independent areas should be defined during the

FT structuring. The former assists in the definition of error propagation barriers between

components, whereas the latter identifies components whose faults are not interconnected.

Apart from error handling mechanisms definition, the design should consider fault pro-

cessing mechanisms, which include fault diagnosis and system reconfiguration. Depending

on the design choice, error handling and fault handling mechanisms can be distributed

across the system or centralised. The FT mechanisms are chosen based on the type of

the system components, fault assumptions, and dependability attributes to be satisfied.

In addition, special techniques are required to protect FT mechanisms themselves. It is

preferable to use verification techniques for the design of components that represent a sin-

gle point of failure. In parallel with the design of the system architecture the techniques

for system integration testing should be defined.
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The fault forecasting process during the design step should include dependability eval-

uation in order to check that the chosen architecture meets the specified dependability

goals. Analytical modelling and simulations can be used as evaluation measures. The risk

of introducing too many FT mechanisms should be considered during the design step. To

evaluate the efficiency and sufficiency of FT mechanisms a fault injection technique can

be applied.

The design and implementation steps are significantly affected by the expected system

evolution. Future modifications of the system are much easier and less expensive if the

requirements evolution is anticipated. However, it demands an active involvement of the

system end-users.

This section considered the guidelines for dependable systems engineering. The similar

guidelines and advice should be considered during the engineering of HFT.

3.3 The concept of HFT

This section introduces the concept of Holistic Fault Tolerance, states the goals of HFT

and describes its main characteristics. The presented concept is called holistic, because

it is proposed to consider an entire system during the design of the system’s FT. FT

was chosen as a main part of the concept, since it is an important crosscutting concern,

which can affect other non-functional properties of the system. HFT should allow the sys-

tem to operate efficiently with regards to performance and resource usage while ensuring

dependable operation and convenient maintainability of crosscutting functionality.

The concept of HFT pursues two goals. First, it would allow developers to design and

maintain complex and reliable computer-based systems in a more coherent fashion than

the conventional structuring techniques by supporting a disciplined and systematic way

of capturing and modularising the crosscutting functionalities related to error detection,

error recovery, and fault handling. The second goal is to achieve an efficient system opera-

tion based on reasoning about the interplay between reliability, performance and resource

utilisation at the system level rather than at the level of individual system components

or any other structuring units used (such as layers, classes, etc.).

The concept of HFT assumes that the system consists of components providing the main

system functionality. The critical components are those whose operation affect the relia-

bility and performance of the entire system. The non-critical components are responsible

- 47 -



Chapter 3: Engineering Holistic Fault Tolerance

for auxiliary functionality and do not affect the main service provided by the system. For

example, complementary user interface features, information loggers, components per-

forming optional, postponable tasks. Even though these features improve the usability of

the system, critical functionality can be provided without them. A broader discussion on

critical components, different criticality levels, and separation of critical and non-critical

tasks can be found in [89]. Thus, the FT mechanisms that do not affect the system-wide

dependability and efficiency are implemented and managed by the system components

themselves. However, the FT mechanisms that affect the entire system with regards to

dependability, performance and resource usage should be managed by the modules re-

sponsible for HFT. HFT should not significantly affect the functional part of the system

since its goal is to focus on ensuring dependable and efficient operation of components

comprising the system.

According to the vision of HFT, the mechanisms implementing non-functional require-

ments of computer-based systems should be designed and developed taking into account

the entire system. Various decisions regarding system reliability, quality of service, perfor-

mance or resource usage should be made after system-wide analysis. It is not practical to

focus only on reliability, performance and resource usage of individual components, since

the picture could change when these components form a system.

The idea of HFT implies that the developers of computer-based systems should use ded-

icated modules to capture the essence of HFT. That includes system-wide monitoring of

non-functional properties, analysis of the trade-offs between these properties, and imple-

mentation of global crosscutting FT mechanisms involving critical system components.

They will create such systems together with dedicated HFT modules that will define FT

policies which crosscut system functionalities. This would allow the developers to deal

with complexity of the FT mechanisms, facilitate maintainability of the FT mechanisms

and ensure efficient operation of the system.

To be flexible, the concept of HFT should support operation modes and load balancing

capabilities. These features will be considered in the following subsections.

3.3.1 Operation modes

Operation mode is a special state of the system. Operation mode defines which system

functionality will be available at the given instant of time. Or in other words, operation

mode determines a link between the system state and available system functionality, since
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the capabilities that are available in one mode may not be available in another one. For

example, a different set of operations is available for an aircraft during the taxiing, take-off

or flight.

The concept of HFT advocates that associating modes with various levels of performance

and resource usage is a useful and practical way of structuring HFT in computer-based

systems. As has been shown [90], FT can be linked with the system modes in a natural

way.

In [91] the authors promote the notion of mode as partition of the system state space.

In addition, they consider the modes as a convenient method for modular specification of

large state machines. Transition is used to change the mode for the system. Two possible

relationships between modes are provided: serial and parallel. Serial mode means that

the system could only be in one mode at one point of time, whereas parallel relationship

assumes that the system is in all of the available parallel modes simultaneously. Thus,

modes represent control information on system behaviour.

Modal systems are presented in [92]. In this study a modal system is defined as an

abstract specification of the modes and mode transition. The authors propose formal

definitions of the abstractions for specifying modal systems. It is claimed that operation

modes are very common in real-time systems, for example a deadline could depend on

the operation mode. Using modes and modal system refinement facilitates the definition

of system properties, transformation of system requirements into model definition, and

control structure of the system.

To this end, engineering mechanisms for mode design and analysis that are associated

with HFT will need to be developed.

3.3.2 Load balancing

Load balancing [93] is responsible for workload distribution across several computational

resources such as clusters, networks, CPUs, or data storages. The goal of load balancing

is to optimise resource usage and increase system throughput. The system reliability and

availability may be improved through redundancy if the system has several components

performing the same tasks and implements load balancing mechanisms. However, these

mechanisms should be implemented carefully, since they should be reliable as well, and

depending on the system they may require dedicated software and/or hardware. It is

proposed to provide load balancing capabilities by HFT.
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3.4 The HFT engineering stages

In the previous section the concept of HFT was presented. This section considers the

steps required to engineer the system with HFT based on the guidance presented in

Subsection 3.2.2.

The main steps of HFT engineering are illustrated in Figure 3.1 (the key HFT-related

steps are explored in detail in the corresponding chapters). After the requirements elici-

tation phase of the engineering process, the HFT architecture is designed. Then, at the

modelling step, the HFT elements will be elaborated and tuned efficiently and all im-

portant interfaces between them and the system components will be defined. Finally, a

designed system will be ready for the implementation step. Successful implementation is

followed by verification and testing.

Requirements

elicitation

HFT Design

HFT Modelling  

HFT Implementation 

Verification and 

Testing

Requirements

Elicitation

Chapter 4

Chapter 5

Chapter 6

Figure 3.1: The HFT engineering stages
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3.4.1 Requirements elicitation

HFT engineering starts with requirements elicitation and preliminary analysis of the pro-

posed system. At this step, the problem to be solved is stated and functional specification

of the system is produced. In addition, the operation environment and development

constraints of the system are defined. The system dependability attributes and their

trade-offs are stated according to the system non-functional requirements. During the

requirement elicitation step system fault assumptions should be defined and possible FT

mechanisms should be proposed. After that, operation modes and reconfiguration policies

of the system can be defined.

3.4.2 The HFT design

Apart from satisfying functional requirements, the design stage of HFT engineering should

ensure efficiency and maintainability of the future system. This stage defines the system

architecture including the HFT elements. Description of the system behaviour and decom-

position of the system to components are made. Depending on functional requirements,

critical system components are defined and designed.

During the design stage it is necessary to address several issues with regards to system

FT. Fault assumptions defined during the requirements stage should influence the HFT

design decisions including the structuring of the component-wide and system-wide FT

mechanisms. In addition, error handling and fault handling techniques should be chosen.

After that the interactions, including interfaces and data flows between the HFT part and

critical components, should be described depending on the elicited system requirements.

The designed system should be analysed to determine the possibility of managing perfor-

mance and resource utilisation by introducing special knobs and monitors. These mech-

anisms will be controlled by the HFT part of the system.

3.4.3 The HFT modelling

The HFT modelling step should assist in the refinement of the HFT part and its interfaces

with critical system components. To do this, critical system components should be im-

plemented and characterised to analyse their performance, reliability and resource usage.

This would allow the designer to select only the necessary interfaces between the HFT
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elements and the system and to refine the structure of the HFT elements. This should be

done before the implementation of HFT for the system.

3.4.4 The HFT implementation and verification

When the HFT architecture is designed and refined, the system implementation can be

started. During the implementation stage, appropriate techniques and tools are chosen to

satisfy the requirements and develop the system according to the designed architecture.

The HFT implementation is followed by verification and testing. However, the last steps

do not require specific HFT-related techniques. In this way standard verification and

testing techniques will be applied.

3.4.5 The HFT engineering support

Various approaches can be used to support the HFT crosscutting design, including AOP,

dedicated reference architectures, extended programming languages, programming libraries,

patterns and styles.

Model-based development will play a crucial role in applying HFT for computer-based sys-

tems. This will allow analysis/verification at the earlier architectural phases and support

direct traceability of designs to critical system requirements, such as safety, reliability,

efficient resource usage and system performance, which can only be met by applying FT.

Note that other non-functional requirements, such as confidentiality and execution cost,

are related to FT and the use of redundancy, too, so they can also be met by designing

HFT. Modelling HFT can be supported by the mechanisms available for enabling ar-

chitectural viewpoints (e.g. [90, 94]), because HFT is in effect an architectural view on

system-wide FT.

It is clearly not practical to develop HFT that would deal with all possible errors in

the system. Its complexity would be overwhelming. The practical question is to decide

which errors to handle locally in components and which to handle holistically. The mech-

anisms to be developed should support both types of FT and their smooth integration

and interplay.

Modelling techniques for HFT should support zooming into system models to help with

exploring various HFT solutions and choosing which system components to involve in

HFT (again, it is not practical to link HFT with all system components). One promis-
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ing technique to ensure HFT scalability is Order Graphs [95], which support a rigorous

selection of the level of detail at which models are reasoned about. In terms of resource

usage, the efficient way is to focus only on components that require a substantial amount

of computational resources [96].

The HFT architecture should describe a set of system-wide FT policies along the lines of

a well-established area [55]. This will require a notation that can represent types of faults

and errors and their combinations, the corresponding error recovery and fault handling

techniques, resources required, sets of system components involved and error propagation

chains. For complex systems this could even be done with assistance of special Domain-

Specific Languages (DSL). The application of such DSLs will help HFT developers to

make their work less error prone and more reusable.

To explicitly control performance and resource utilisation, HFT should be able to use a

number of knobs in different system components. This includes switching off/on CPU

cores, excluding CPU cores at the OS level (e.g. using Linux governors), using Dynamic

Voltage and Frequency Scaling, etc. In addition, various application-specific solutions can

be employed: using less precise computation or reducing the quality of the outputs. These

need to be supported as well.

Engineering HFT is a complex problem and it is a part of the system development life

cycle. Thus, system developers need support, recommendations, and guidance how to

engineer HFT throughout the system engineering process. The main challenges of HFT

engineering to be encountered by the developers are considered in the next section.

3.5 Challenges of the HFT engineering

HFT always relies on a centralised design in which the HFT control is mainly defined in the

HFT controller (Section 4.3), but there might be various ways of implementing the HFT

controller. A centralised component is the first option but this can create a single point

of failure if the component crashes. This can be solved by standard FT techniques like

component replication and checkpointing. Another option is to attach an HFT controller

to every critical component during the implementation step, so that each component is

controlled by its own controller.

As part of the HFT design it is essential to generate a table that would compile all

the faults that have to be dealt with at the system level, and the corresponding error
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detection, error handling and fault handling strategies, which can involve several system

components. It is important to include in this table the erroneous situations when two or

more faults can activate in parallel.

The system-wide FT mechanisms require a special design of the system to ensure that

all necessary properties of the system are captured by the HFT part. After definition of

the system components and the HFT elements there is a need to refine the architecture

to ensure that all the interfaces between the system and the HFT part are necessary and

they contribute to system reliability and system efficiency. To do this HFT modelling

should be applied.

The HFT mechanisms require special implementation that addresses system crosscutting

concerns, while providing good understanding of these mechanisms. They should be easily

maintainable in spite of the fact that they are managed by the centralised HFT control.

The guidelines on how to implement the system with HFT will be given in Chapter 6.

This section identified the problems that could arise during the engineering of HFT. To

deal with these problems a global workflow for HFT engineering was presented. Some

engineering steps, like requirements elicitation, verification or testing do not require a

special attention for HFT, however, such steps as architecting (Chapter 4), modelling

(Chapter 5) and implementation (Chapter 6) should be supported. The following chapters

will consider the major steps of the HFT engineering workflow presented in Section 3.4

and provide answers to the challenges discussed in this section.

3.6 Conclusion

Since FT engineering is a complex task it requires a systematic and structured approach

during all stages of the development life cycle. The FT mechanisms should be taken into

account during all these stages.

This chapter introduced a concept of HFT, considered important stages of engineering a

dependable system and provided an outline of the steps required to design and implement

a computer-based system with HFT.

Contributions of the proposed HFT include a centralised access to crosscutting functional-

ity, which should result in better maintainability of FT mechanisms, support of operation

modes and load balancing capabilities, and prerequisites for efficient system operation.
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The chapters following correspond to the three major steps of HFT engineering and will

consider how to architect, model and implement HFT for a computer-based system.
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4.1 Introduction

In the previous chapter the concept of HFT was proposed. To build a computer-based sys-

tem in accordance with this concept there is a need to support HFT engineering through-

out the system development life cycle. The design step is crucial since the fundamental

architectural choices are made during the design process. This chapter proposes an ar-

chitectural pattern for systems with HFT. It introduces the HFT architecture, describes

all its elements, interactions between these elements, and considers how to apply the

proposed architectural pattern for computer-based systems.

To apply the HFT architecture it is assumed that the system is built out of components

whose responsibility is to deliver the main system functionality. The core of this architec-

ture is a special unit called the HFT controller, which is supported by a number of HFT

agents. These together ensure dependable and efficient system operation. In addition,

they facilitate the management and maintainability of the system FT mechanisms. The

HFT controller coordinates system-wide FT and performs required system reconfigura-

tions, while the HFT agents assist the HFT controller by simplifying its implementation

and improving its scalability. Each HFT agent acts as an intermediary between the HFT

controller and one or more system components. This was done to reduce the complexity

of the HFT controller.

This chapter is organised as follows. Section 4.2 provides the background on software ar-

chitecture, architectural styles and patterns. Section 4.3 and Section 4.4 describe the HFT

controller and HFT agent correspondingly. Cooperation between the HFT controller and

the HFT agents is considered in Section 4.5. Section 4.6 explains the interactions between

the HFT elements and critical system components. Discussion and recommendations on

the design of computer-based systems with the HFT architecture are given in Section 4.7.

Finally, Section 4.8 concludes the chapter.

4.2 Background

An architecture is an unchanging deep structure. The term software architecture was mo-

tivated by the architecture of a building [97]. The main concepts of a software architecture

include decomposition of the system into components, describing interactions among these

components, and satisfying the system requirements (functional and non-functional).
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4.2.1 Software architecture

There is a great variety of software architecture definitions. Bass et al. [98] define a soft-

ware architecture as “the structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the relationships among

them.” It focuses on external properties of system elements, whereas private implementa-

tion details of these elements are not architectural. The software architecture considers

services, which are provided and required by the component, system performance charac-

teristics, system resource usage characteristics, the FT and fault handling mechanisms.

The software architecture defines system components and interactions among them [99].

To specify the system structure and topology the architecture illustrates the compliance

between the system requirements and components of the designed system.

Three constituents of software architecture are defined in [97]. The first is elements, that

are presented by processing elements, data elements and connecting elements. The second

is an architectural form describing properties and relationships between these elements.

The third is a rationale motivating the choice of architectural style, elements and the

form.

The software architecture is very important since every quality system requires a solid

foundation. It represents a high level structure of a software system [100] and focuses

on early high-impact design decisions, that are very difficult to change. Thus, the right

architecture is crucial to develop a successful system. Abstract representation of the ar-

chitecture improves system understanding, simplifies analysis of complex systems, and fa-

cilitates negotiation and communication among stakeholders and engineers. The software

architecture addresses crucial properties of the system such as performance, maintain-

ability and dependability. When done correctly it can be successfully reused for future

systems.

4.2.2 Architectural styles and patterns

An architectural style [100, 101] is a collection of architectural design decisions for a

particular development context. An architectural style defines structural organisation of

the system, including components, connectors between these components, and constraints

imposed on components and their connectors. Some examples of architectural styles

include component-based system, client-server and pipe-and-filter.
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An architectural pattern [101] is a reusable solution for general problems in software ar-

chitectures. It defines architectural design decisions for typical design problems. For

example, MVP and MVC patterns are applied to separate data and presentation.

Some researchers and practitioners do not distinguish between architectural styles and

patterns. For instance, Garlan and Shaw [100], and Microsoft guide [30] treat archi-

tectural styles and architectural patterns as synonyms. However, these concepts can be

distinguished by their scope. An architectural style is a conceptual way to organise the

source code, whereas an architectural pattern provides a solution for recurring problems.

In addition there are software design patterns [102] which are specific to particular parts

of the source code. For example, the famous patterns are: Factory (creates class instances

when a class type would be known at run-time only), Façade (provides a unified interface

to a big part of code making it easier to use), Singleton (guarantees that there is only one

instance of a class), etc.

In case of HFT, it is an architectural pattern that solves the problem of complexity,

maintainability and inefficiency of FT mechanisms. It can be applied in combination with

different architectural styles and patterns considered in this subsection.

4.2.3 Reference architectures

A reference architecture is a software architecture that provides a typical architectural

solution in a particular application domain [103]. It is a template based on the gener-

alisation of the architectural structures that were applied in successful implementations

and can be referred to for best practice. It is a guidance for solving the same problems

of development, standardisation and evolution of a system based on past experience. It

could speed up the system engineering due to reuse of existing architectural solutions and

improve system interoperability because of using a proven standard solution. In addition,

knowledge based on past experience allows the development team to avoid typical design

flaws. A reference architecture encompasses hardware, software, development process,

system requirements, system configurations and system components. It should evolve

and include new experience and practices to be up-to-date.

A proposed HFT architecture could be used as a reference architecture in particular do-

mains after several successful implementations of systems with HFT in these domains. It

will be considered as a typical architectural solution to deal with complexity, maintain-

ability and efficiency of FT mechanisms.
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4.2.4 Architecture description languages

Architecture description languages (ADLs) are applied to describe the system architec-

ture. An ADL is a language for specification and modelling of a system’s conceptual

architecture [104], including system components, interfaces, and configurations. ADLs

are classified into three categories: box-and-line informal drawings, formal ADLs and

Unified Modeling Language (UML) notations.

Box-and-line notations are criticised [105] for being informal since the model produced

by these notations can be approached from different perspectives by different stakehold-

ers. In addition, it is difficult to check that a system implementation corresponds to its

architectural description. These limitations of box-and-line notation were overcome by

introducing various formal ADLs [104] that represent an architecture in a formal way and

are readable by humans and computers. Formal ADLs focus on different architecture

elements, application domains and analysis techniques. However, they have some disad-

vantages, since there is no consensus on what should be represented by ADLs and most of

them are targeted at a particular type of analysis. A general-purpose UML notation [106]

is intended to deal with the problems inherent in box-and-line informal drawings and for-

mal ADLs. UML provides a standard way to visualise a system’s architectural blueprints

in various diagrams. These diagrams are presented by structure diagrams (component

and class diagrams), behaviour diagrams, and interaction diagrams.

UML component diagrams and plain English were applied to describe all the details of

the HFT architecture with its elements and interactions between these elements.

4.3 HFT controller

The HFT controller is a central element of the HFT architecture. It coordinates system-

wide FT strategies and distributes available resources among the system components.

These resources can include computer hardware, energy and power. In addition, it recon-

figures the system components using special reconfiguration interfaces if it detects that

the system can operate faster or more reliably. These tasks are mainly performed with

the assistance of the HFT agents, which obtain all required information from the sys-

tem components by monitoring them and passing this information to the HFT controller.

Moreover, the HFT controller initiates fault handling and reconfiguration of the entire

system after detecting certain erroneous conditions and checking error rates. In this case,
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apart from the HFT agents’ help, the HFT controller utilises public interfaces of critical

system components in order to adjust the reliability, quality of service, performance and

energy consumption of the system. However, it should not be aware of the inner structure

or encapsulated information of the system components because in this case it will be very

complex for maintenance and understanding. This is the reason why the knowledge of

the HFT controller about the system should be restricted by the general structure of the

system and the performance characteristics and average resource utilisation requirements

of the system components. The HFT controller has information about the dependencies

between the HFT agents and system components. However, in all cases where the im-

plementation details of the system components are required to get run-time information

about the internal behaviour and to perform some action, the HFT agents are applied,

since they are implemented with knowledge of the components’ inner structure and are

responsible for their area of crosscutting concern. In this and the following chapters it

is assumed that a computer-based system with the HFT architecture has only one HFT

controller. Although configurations with several HFT controllers are possible, that would

require special coordination between the HFT controllers. Such configurations could be

needed only for very complex systems. Thus, systems with more than one HFT controller

are not considered in this thesis.

4.3.1 Internal structure of the HFT controller

HFT controller

Decision Maker

Static Data Storage  Dynamic Data Storage 

Requires the 
interface from critical  
system components 

Provides the  
interface for  
the HFT agents

Figure 4.1: The internal structure of the HFT controller

The HFT controller consists of three parts: static data storage, dynamic data storage and

decision maker (Figure 4.1). The static data represents predefined HFT policies that are

mainly based on the system requirements. This includes expected system performance and

- 62 -



Chapter 4: Holistic Fault Tolerance Architecture

reliability, fault assumptions of the system (expected errors), available system resources,

general structure of the system components and conditions for system reconfiguration.

The dynamic data is the information about the current system state, which includes

performance characteristics of the system components, error rates in critical functions

and diagnostic information. These data are supplied by the HFT agents. The decision

maker is responsible for reconfiguration and fault handling of the system. Moreover,

it chooses the most suitable error recovery action for the error in the system component

that should be handled holistically. These decisions are made based on static and dynamic

data. The UML diagram in Figure 4.1 illustrates the HFT controller where the dynamic

data storage is supplied with data from the decision maker, which filters the dynamic

data received from the HFT agents. However, if all these data are useful (e.g. offline data

analysis or machine learning) then it should be saved to the log file. In such a case it

would be more convenient to assign this task to the dynamic data storage and implement

an interaction between the dynamic data storage and the HFT agents directly without

involvement of the decision maker.

4.3.2 Knowledge of the HFT controller

Not all errors should be handled with assistance of the HFT controller. A lot of errors

should be handled locally by system components. The HFT modelling (Chapter 5) will

provide precise information about the most suitable place for error handling.

4.4 HFT agent

The HFT agent is a special auxiliary object assisting the HFT controller. Each HFT

agent is responsible for monitoring certain non-functional feature, such as performance

or error handling in one or more system components. The HFT agent monitors and, if

needed, intervenes in the control flow of activities in critical system components. This

intervention should be as implicit as possible for the system components to avoid tangling

of the HFT mechanisms and main functional responsibilities of the component.

The introduction of HFT agents is aimed at improving the scalability of the HFT ar-

chitecture. The HFT agents are aware of the implementation details of critical system

components and have the possibility and right of intervention inside the control flow ac-

tivities of these components in order to check results, perform error detection and error
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recovery, evaluate performance and suppress exception raising. The HFT agent is not

aware of the entire system structure, because its goal is to monitor only parts of the

system and pass the up-to-date information to the HFT controller. If the HFT agent

monitors more than one component, errors could be detected based on concurrent anal-

ysis of two components. In this case, error recovery could affect both components as

well.

4.4.1 Internal structure of the HFT agent

The HFT agent consists of monitoring logic, intervention logic and local decision maker

(Figure 4.2). The monitoring logic defines which members (functions, properties or ac-

tivities) of critical system components will be monitored by the agent. Monitoring does

not involve any changes of state inside the system components. The intervention logic

determines how the control flow inside monitored activities will be affected by HFT. The

local decision maker of the HFT agent communicates with the HFT controller. The local

decision maker distinguishes the data that should be transmitted to the HFT controller

and the data that can be processed locally. These three parts of the HFT agent are ap-

plication specific and they should be implemented depending on the type of the system,

system requirements and an area of crosscutting concern. Some HFT agents do not imple-

ment intervention logic if they perform only monitoring actions, for example performance

monitoring or function calls counter.

HFT agent

Local Decision Maker

Intervention Logic  Monitoring Logic 

Requires the 
interface from  

the HFT controller Critical system 
component 1 

Critical system 
component N 

Critical system 
component 2 

Figure 4.2: The internal structure of the HFT agent

4.4.2 Typical HFT agents

Various HFT agents can be applied in the system architecture depending on the type,

size and requirements of the system. Typical examples of HFT agents include the Error
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Handling agent, Performance agent and Diagnostic agent.

The Error Handling agent supports the HFT controller in implementing the system-wide

FT mechanisms. It monitors the errors in critical system components that affect relia-

bility of the entire system. When it is necessary the Error Handling agent intercepts the

detected error and performs error handling in accordance with instruction from the HFT

controller. Possible handling actions include error skipping, repeating erroneous operation

(if the error is not permanent) or executing a stand-by alternate operation. It should be

noted that some of these actions could be implemented as default error handling by the

component itself.

The Performance agent monitors how fast the critical components are executing their

tasks. If some activities or functions became slower than is expected from the compo-

nent, the Performance agent informs the HFT controller that makes necessary system

reconfiguration based on these data.

The Diagnostic agent is responsible for collecting diagnostic information from the system

components. The obtained data are aggregated and passed to the HFT controller. The

Diagnostic agent implements monitoring activities only and does not have an intervention

logic since there is no need to alter the component behaviour.

In small- and medium-scale systems the responsibilities of the Diagnostic agent may be

shared between the Error Handling agent and the Diagnostic agent when it is not practical

to introduce a separate module for diagnostic activities and these activities can be done

in parallel with error handling and performance monitoring activities. However, in bigger

systems, it is more convenient to separate these activities and to introduce the Diagnostic

agent.

Apart from these three agents, the design of a certain system could require other agents

like Security agent, Resource Distribution agent or Energy Distribution agent.

The aforementioned recommendations act as a guidance and should not be followed ex-

tremely strictly. Thus, each implementation of the system with the HFT architecture will

be unique and the choice of the HFT agents and their responsibilities could diverge from

this guidance if in this case the system structure would be more rational and understand-

able.
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4.5 Interaction between the HFT controller and the

HFT agents

The HFT controller works with all available HFT agents. In case of error in an observed

component, the HFT agent could request the HFT controller for a suitable error recovery.

In addition, the HFT agent should detect the states in the monitored component that may

cause an error, and propagate this information to the HFT controller. To reduce HFT

controller complexity, it is advised to simplify the data sent by the HFT agents whenever it

is possible. For instance, quality of an operation or result of a function could be presented

by discrete enumeration: Error, Low Quality, Medium Quality and High Quality. The

task to map from the component-specific data to the simplified data suitable for the HFT

controller is performed by the HFT agents.

The HFT agents are intended to simplify the development and implementation of the

HFT controller. The HFT agents get the information from monitored system components,

transform it to the format suitable for the HFT controller and transmit this information.

The data mapping to the HFT controller format is necessary to avoid tangling of the HFT

controller with encapsulated details of critical system components. Otherwise, scalability

of the HFT controller will be deteriorated. To improve performance and avoid bottlenecks

in the HFT controller, the HFT agents should filter the information and send important

data only.

4.6 Interaction of the HFT elements with the system

4.6.1 The HFT controller and system components

In the system with the HFT architecture, critical functional components should provide

interfaces to the HFT controller. These interfaces will be used by the HFT controller

for reconfiguration and fault handling. This is applied to deal with an interplay between

reliability, performance and resource usage. In such a scheme the HFT controller does

not need to know the implementation details of the system components, since it uses

only a predefined interface and is aware only of general structure of the system. This

link between the HFT controller and system components is supposed to be used only

asynchronously. The decision maker of the HFT controller should operate in a separate

thread (or process). Based on the information from the HFT agents, it can detect that
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operation of the system could be more efficient or more reliable. In this case, the HFT

controller specifies the most suitable configuration for the system component. If the

system does not have any reconfiguration possibilities or various options of resource usage

then the implementation of the HFT architecture would be much easier, however, in this

case the HFT architecture will demonstrate maintainability benefits only. Reconfiguration

is available for system components that provide some redundancy in their implementation.

The concept of HFT implies that acceptable frequency and severity of the service failures

could vary depending on user requirements or current system settings.

For the case of direct interaction between the HFT controller and the system components,

the latter should provide special interfaces, which are used to adjust component settings, to

choose operation mode and/or to perform fault handling by reconfiguring the component.

These interfaces enable the HFT controller to tune the reliability and performance of

the entire system. All actions that are not expressed via public interfaces and require

amendment of the component behaviour should be done by the HFT agents implicitly

to the components. Thus, the HFT controller does not have strong dependency on the

system components, but it still has a global knowledge about the entire system.

In a software application such components (classes) should implement an interface by pro-

viding an implementation of methods for adjusting and reconfiguration (for instance Se-

tOperationMode, SetNumberOfWorkingThreads, SetQualityOfService, SetSettings

Java methods). An example of such an interface (IAdjustableComponent) is shown in

Figure 4.3.

1 public interface IAdjustableComponent {
2 void SetOperationMode(...);
3 void SetNumberOfWorkingThreads(...);
4 void SetQualityOfService (...) ;
5 void SetSettings (...) ;
6 }

Figure 4.3: The interface for component reconfiguration

The FT mechanisms in the HFT architecture are distributed across the entire system, but

coordinated centrally by the HFT controller. In some cases, it is beneficial to introduce

redundancy in the FT mechanisms in such a way that the same error could be handled

by the component itself and by the HFT agent. The decision on suitable error handling

scenarios will be made by the HFT controller depending on the current system state.

Such an approach provides flexibility in the choice of the optimal error recovery scenario.

- 67 -



Chapter 4: Holistic Fault Tolerance Architecture

Some errors will be handled by both the component itself and the HFT agent. Only part

of the system components needs to be involved in the HFT mechanisms. It makes sense

to use only critical components that globally affect the system operation or could be re-

configured in terms of performance or resource usage. It is definitely more convenient to

implement these system components to be “HFT-ready” providing all necessary interfaces

and preparing them to work with the HFT controller and the HFT agents. If the com-

ponents do not provide such interfaces, for example legacy components, developers can

implement special wrappers or adapters.

4.6.2 The HFT agents and system components

The HFT agents are aware of the inner structure and encapsulated implementation details

of the critical system components, however, these components are implemented without

knowledge about the HFT agents. On the one hand, this approach violates the abstrac-

tion and encapsulation principles because the HFT agent is significantly dependent on

the structure of critical components. On the other hand, it assists in the separation of

crosscutting concerns. It is not advised to use the HFT agents to amend the functional

behaviour of the component. Instead, the HFT agents should be used to simplify the

management of crosscutting concerns. Thus, the problem of implicit coupling between

the HFT agent and critical system components is overlapped by better modularity allow-

ing the developer to avoid code tangling and improve the understanding of system-wide

FT techniques.

4.6.3 Operation modes

The HFT architecture supports operation modes by considering an interplay between

reliability, performance and resource usage. Operation modes can be applied for the

entire system and for the separate components. The HFT controller is the most suitable

place to control and choose an efficient operation mode for the system components. Let

us consider the following example. Two components are performing some operation. To

finish one cycle, a chunk of data should be processed by one component and put in the

queue. The second component checks the queue. When there is a chunk of data, it

takes this chunk for processing. To balance the loading of the components we can specify

how to distribute computer resources between these two components by operation mode

assignation and how to balance the data chunk queue. This can be elegantly done by the
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HFT controller. The HFT agents monitor these components and supply the information

to the HFT controller, so that the HFT controller is able to increase or decrease the quality

of service for each component on-the-fly. The operation mode can also be considered as a

graceful degradation for the system when some component fails or requires a restart. This

idea provides the possibility of fault handling with the assistance of the HFT controller,

which performs system reconfiguration by choosing a suitable operation mode for the

system components.

4.6.4 System with the HFT architecture

HFT Controller

HFT 
Agent 1

HFT
Agent 2

HFT
Agent 3

HFT
Agent 4

C1 C2 C3

C4C5

C6

C7

Figure 4.4: The system based on the HFT architecture

Figure 4.4 illustrates an architecture of a component-based system with HFT. This system

has seven functional components (C1–C7) that implement functional requirements of the

system and the HFT part (depicted in red colour) consisting of the HFT controller and four

HFT agents. For the sake of simplicity connections between the functional components

are omitted. The HFT architecture considers four groups of components depending on the

way of interaction between these components and the HFT part. Components in the first

group (C1, C2 and C3) are monitored by one or more HFT agents and provide the interface

for the HFT controller. Thus, the given components can be used for the reconfiguration

of the system and it is useful to monitor their inner operation to reason about the state of

the entire system. The second group (C4) of components is only monitored by the HFT

agent/s. The state of such components is useful for holistic monitoring, however, these

components are not reconfigurable. The dependency relation between the HFT agents and
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system components is implicit for the components. Thus, the system components do not

know about the HFT agent. Components from the third group (C5) are not monitored

by the HFT agents, but provide an interface for the HFT controller. Such components

implement various operation modes and could be reconfigured when needed. However, it

is impractical to monitor or intervene into their operation with HFT agents. The fourth

group (C6 and C7) of components is not directly affected by the HFT architecture.

As is shown in Figure 4.4, components C1, C2, C3 and C5 provide interfaces for the

HFT controller, while the HFT agents implicitly monitor and if necessary intervene in the

control flow of components C1, C2, C3 and C4.

4.7 Discussion

The architecture of the HFT elements in different systems would be similar. However,

their implementation significantly depends on the system being developed. Thus, the

implementation of HFT varies from system to system.

It is impractical to connect all system components to the HFT part. It is necessary

to choose only those components, which affect the operation of the entire system and

are able to provide important information about the system state. If some of these

carefully selected critical components are already implemented or reused then there is less

flexibility to use them in the HFT mechanisms without additional elaboration. However,

if these components are not implemented yet or there are no obstacles preventing their

modification then it is reasonable to make these components HFT-ready. This includes

introducing some redundancy to support different operation modes and reconfigurations.

The responsibilities and structure of the HFT controller and the HFT agents should be

defined according to the system requirements, fault assumptions and application domain

of the system. This is followed by the description of the interactions between the HFT

controller, the HFT agents, and critical system components. The interactions include

reconfiguration interfaces for the HFT controller, monitoring and intervention mechanisms

for the HFT agents, and the information flows between the HFT elements and functional

system components.

After the first prototype of the architecture has been created during the design step the

system architecture may require refinement and evolution to ensure its efficiency. The

HFT modelling step described in Chapter 5 is intended to ensure that the system based
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on the HFT architecture will be efficient.

An important question regarding this architecture is how to avoid a single point of failure,

since FT strategies and system reconfigurations are managed by the centralised HFT

controller. One of the options is to ensure dependability of the HFT controller and the

HFT agents using standard FT techniques [55]. The complexity of this implementation

depends on system criticality. Apart from this option, the “default” system behaviour

for the case when the HFT controller or one of the agents fails should be implemented

by those system components that are involved in the system-wide HFT mechanisms. In

this case the system would operate not optimally and possibly less reliably, but system

failure will be avoided and the service will still be provided. The main thing is detection

of the problems with the HFT elements and well-timed correction to return the system

to efficient operation. However, it does not change the fact that the HFT mechanisms

should be developed rigorously and they should be dependable.

4.8 Conclusion

This chapter presented an architectural pattern for the design of computer-based systems

with the HFT architecture. The guidance and advice on how to structure and architect

the system with HFT were provided. A typical system based on the HFT architecture

consists of functional components satisfying functional requirements and the HFT part,

which is responsible for dependable and efficient operation of the system. The HFT part

includes one HFT controller and several HFT agents. Critical system components are

implicitly monitored by the HFT agents, and, when necessary, reconfigured by the HFT

controller through special reconfiguration interfaces. However, there is a need to ensure

that the proposed architecture allows the system to be dependable and operate efficiently.

In addition, apart from the design, the implementation stage of HFT engineering should

be described.

The HFT modelling intended to guarantee the efficiency of the system designed in ac-

cordance with the HFT architecture will be presented in the next chapter. After this,

guidance on the implementation of the software application with the HFT architecture

will be provided in Chapter 6.
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In the two previous chapters we described an engineering approach to designing computer-

based systems with HFT and provided a thorough description of the HFT architecture.

In this chapter, a method to assist in modelling the computer-based systems with HFT is

proposed. The method is intended to refine the interactions between the HFT part and

critical components of the system designed at the previous step (Chapter 4). This novel

HFT design method is based on hierarchical modelling and stochastic simulations. The

former caters for system complexity whereas the latter supports reasoning about non-

functional properties and their trade-offs. This chapter starts by introducing the general

modelling method and demonstrates its applicability with a case study of a number plate

recognition application.

The chapter is organised as follows. A brief introduction to the chapter is given in Sec-

tion 5.1. The background material on Control Theory, Stochastic Activity Networks and

Order Graphs, and the reasoning behind the choices of the modelling approach are given

in Section 5.2. The aims of the modelling are discussed in Section 5.3. The algorithm for

the creation of Order Graphs models and the steps of the modelling method proposed are

presented in Section 5.4. The practical usage of this modelling method is demonstrated

in Section 5.5 using the case study. Section 5.6 briefly summarises the work presented in

the chapter and draws some conclusions.

5.1 Introduction

System modelling aims to create an abstract representation of the system under design.

This process assists in a better understanding of the system and its structure and gives a

possibility to find and eliminate potential problems at early stages of system development.

However, for complex systems the system model can also be complex and difficult to use.

Therefore, it is necessary to ensure that only important parts of the system are studied

during modelling to reduce comprehension complexity. By the important parts we mean

those components of the computer-based system which are responsible for the main system

functionality and significantly affect the system characteristics, such as quality of service,

performance and reliability.

A widely-accepted method for dealing with model complexity is the use of hierarchical

models. Different models may be constructed for the same system or a subsystem at

different levels of abstraction. On the one hand, high-level models of high degrees of
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abstraction tend to be smaller and easier to analyse, but also include few details and may

provide low representative resolution or precision for the characteristics or the parameters

being studied [107]. On the other hand, less abstract low-level models may offer a finer

grain representation of system detail and provide a higher precision for modelling the

parameters of interest. However, they may have high degrees of complexity and be more

difficult to work with. Hierarchical modelling provides designers with a means of trading

off modelling quality with model usability.

Another popular method of dealing with model complexity and at the same time handling

run-time unpredictability is stochastic modelling. Quantities and parameters under study

are assumed to be of a stochastic nature, whereas the models of a manageable size can be

used to estimate such quantities without precise knowledge of all the contributing factors

such as run-time eventualities [108].

Aspects of study during system design and analysis include functional behaviour and

non-functional parameters. Functional correctness is important, but non-functional pa-

rameters can also be significant contributors to the success or failure of a design. The most

interesting non-functional parameters attracting the attention of system designers include

reliability, performance and resource usage. Depending on the application domain of the

computer-based system, resource usage can be presented by energy consumption, power

consumption, hardware resource allocation or by a combination of these characteristics.

As presented in Chapter 4, the HFT architecture includes system components, an HFT

controller and a number of agents which supports interactions between the components

and the HFT controller. The HFT run-time is implemented through control loops that

manage the non-functional parameters through component configuration. However, there

remain challenges faced by the HFT developer during the design stage. It is not always

clear how to choose the system components which will be involved in the interaction

with the elements of the HFT architecture (essentially the number of control loops). If

the designer chooses to involve all system components in the interaction with the HFT

elements, i.e. have the maximum number of all possible control loops included, the system

would be extremely complex for modelling, implementation and maintenance. On the

other hand, unguided control loop reduction would rarely result in optimal system design.

This chapter focuses on modelling that supports design-time and run-time system optimi-

sation through the (re)configuration of system components and the efficient use of control

loops. However, the model should not be very complex for understanding. Iterative top-
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down design and stochastic representation of non-functional parameters offer promising

solutions.

A general design method supporting HFT systems is proposed. This method makes

use of a hierarchical model language, known as Order Graphs (OGs) [95], which has

good representations of horizontality and verticality issues and good support for having

different levels of abstraction for different parts of a system model. Also included is an

established stochastic model language, known as SANs [108], which provides facilities such

as state-space analysis and simulation engines.

The proposed design workflow is based on the following key points:

• The characterisation of system components leading to SANs models. These SANs

models can be used to provide estimates of the non-functional parameters under

study (usually reliability, system utilisation and/or performance) and generate im-

portance costs for potential control loops in the HFT control.

• The concept of controllability is applied to minimise the number of control loops.

• The development of a hierarchical model of the HFT system based on OGs. This

model can be used to validate the existence of control loop paths at all levels of

model abstraction.

5.2 Background

In this section, the underlying background material covering Control Theory, SANs and

Stochastic modelling and OGs modelling, is considered. It is important since HFT mod-

elling is based on these areas.

5.2.1 Control Theory

During the modelling the concepts of Control Theory, such as transfer functions, control

loops and typical steps applied for control problems are referred.

Control Theory [109, 110] is applied to control continuously operating dynamic systems.

Control Theory is presented by classical control theory and modern control theory. Clas-

sical control theory is suitable only for single-input, single-output systems, which is not
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enough for complex modern systems. Modern control theory, in turn works with multiple-

input, multiple-output transfer functions and is based on time-domain analysis of differ-

ential equation systems. It made the design of modern control systems much simpler.

The transfer function in control theory is a mathematical representation of the relation

between the input and output of the component in a form of linear, time-invariant or

differential equations that are applied to describe the system.

A controller in control theory is a special device that monitors and alters the operating

conditions of the controlled dynamic system.

There are two types of control loops: open loop control and closed loop control. In the

former case, the controller does not analyse the system output. Sometimes open loop

control is called feed-forward control. The latter is called feedback control and in this

case the controller’s action depends on the system output. In the system with the HFT

architecture both types of control loops are applied. Open loop control is between the HFT

controller and system components. The HFT controller decides whether it is necessary

to make a certain reconfiguration of the system. Closed control loop exists between the

HFT agents and system components, and between the HFT agents and HFT controller.

A significant issue during the system modelling is a trade-off between simplicity and accu-

racy. Simple models could be inaccurate, whereas precise models could be very complex

for comprehension.

There are three main steps that are applied to the majority of control problems:

• building a mathematical model that is a simplified representation of a real system.

• applying mathematical analysis and design techniques to the model.

• interpretation of the mathematical results.

5.2.2 SANs and Stochastic modelling

SANs [111, 112] is an extension to general stochastic Petri nets (GSPNs) which are based

on Petri nets (PNs) [113]. It inherits the general attributes of PNs including a distributed

representation of system states, making it easy to represent parts of a system directly as

local subsystems, and more straightforward representations of such important issues as

concurrency and synchronisation. A well-established method, it is supported by various

software modelling tool-kits like METASAN [114], UltraSAN [115], and Möbius [116, 117].
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SANs are capable of representing both deterministic and stochastic events, and event

durations in time. The elements used in this work include a) transitions whose firing

speeds (rates) are specified as stochastic, following given distributions, and b) transitions

with multiple firing cases with specific probabilities for each case.

The Möbius tool was applied because it provides all the features required for SANs mod-

elling and it is supported by most modern operating systems. The Möbius tool, incor-

porates a set of solvers including both Monte-Carlo simulation and state space related

solvers. Numerical Markovian solutions can be done for steady-state or time averaged

interval rewards, but are limited to models with exponentially distributed firing rates.

The tool concept of “rewards” is used to evaluate a system’s non-functional properties

including performance, reliability (defined as success rate), and resource utilisation.

5.2.3 Order Graphs and resource modelling

OGs [95] is a system model with a hierarchical structure, which provides zooming across

several layers of detail (orders). What is more important, zooming can be performed

independently in different parts of the model, thus allowing the designer to make cuts

through different orders. This is convenient when there is a need to focus on a particular

parameter whose values are commensurable only at different orders (levels of detail) in

various parts of the model. However, these parameters are significantly different at the

same order. For example, if there are two components, the first is responsible for intensive

calculations, whereas the second stores application settings, then the CPU usage of these

two components would be significantly different. If there is a need to analyse the CPU

usage of these components in the context of a system, then it is more practical to consider

subcomponents of the first component and the entire second component. Only in this

case would it be possible to analyse parameter values that are not significantly different.

This is impossible if the analysis is done at the same level of detail.

The aforementioned cuts can be analysed as a flat model during design time and run-time.

This significance-driven modelling facilitates the modelling process and allows the designer

to consider only those parts of the model and corresponding parameter values that are

really important for the chosen modelling task without overcomplicating the model.

OGs [95] have been chosen because this technique allows us to model complex systems at

the required level of detail. For non-important components the designer can stop earlier

and not put any effort into the detailed characterisation of the components. Various
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approaches, such as discrete event simulation [118] and Petri nets [113] were considered

as candidates for HFT modelling, however all of them lack hierarchical modelling and

possibility to create cross-layer cuts. These features are available for OGs and they are

vital for analysing an interplay between reliability, performance and resource utilisation

of various components in the system at different level of detail.

Hierarchical representations have been used for modelling complex systems for a long

time. The idea of separating the “vertical” relation between the layers of abstraction from

the “horizontal” knowledge of the system at each particular layer of abstraction has been

hinted at in [119] and then formally defined in Zoom structures [120] as the concepts

of verticality and horizontality. Zoom structures are based on partial orders and are

very permissive. In contrast, OGs put a number of constraints on the modelling, which

guarantee consistency between the abstraction layers.

An Order Graph (OG) is a graph with nodes representing various system resources, such

as hardware components, energy or power budget, arranged in tree hierarchies. The

hierarchies can be built from the knowledge of the system structure and by similarities

of its constituents. The distance from the root relates to the level of abstraction. The

formal definition and properties can be found in [95].

Modelling using OGs is an iterative top-down process, starting from the most abstract

representation of the system and gradually adding more detail, when moving to lower

levels. The dependencies between the system’s components at the same level of abstraction

are represented with “horizontal” arcs in the graph, hence the horizontal paths represent

transitive dependencies between the elements in the system. The rigorous definition of

OGs provides a built-in capability of consistency checking by preserving the resource

dependency paths at each level of abstraction. For small and medium scale systems OGs

modelling can be done manually as is shown in Subsection 5.4.5. However, there is an

ArchOn [121] modelling tool for OGs that is currently under development by the PRiME

project team at Newcastle University.

5.3 Aims of the HFT modelling

Modelling allows us to design an abstract structure of the system and focus on problematic

points at early stages of system design. Ideally, the majority of possible flaws and logical

inconsistencies should be eliminated at this step. In addition, it should allow to select
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only those interfaces between the critical system components and the HFT part that are

really important for reliable and efficient system operation.

In supporting HFT it is proposed to use modelling at that step of the system engineering

when the majority of the critical system components are ready or at least they have full

functional characterisation. Outcomes of the modelling process will assist in selecting

the correct set of interfaces for the interaction between critical components and the HFT

part. It allows the designer to remove redundant interfaces and to add missing interfaces

to achieve efficient operation. This is especially crucial for the computer system, which is

able to operate in various operation modes. The most important outcome of the modelling

is the ability to design an effective HFT for the system. Modelling answers questions about

the control loops that should be implemented between the HFT part and functional part of

the system. Unnecessary control loops, which do not provide benefits for system efficiency

will be defined and eliminated during the modelling step. Thus, HFT modelling allows

the designer to model the computer-based system, which will be efficient with regards to

the chosen non-functional requirements.

HFT modelling should assist in design and implementation of the system, which will op-

erate as close as possible to Pareto efficiency [122] state. Pareto efficiency is such a state

of the system when it is impossible to improve one criterion without deteriorating the

others. With regards to HFT, these criteria are abovementioned non-functional param-

eters: reliability, performance and resource utilisation. Sometimes, all these criteria can

be improved by reducing the level of abstraction and, as a consequence, by deteriorating

understandability of the system. However, in this case, it makes sense to consider system

abstraction as a criterion of Pareto efficiency as well.

5.4 Modelling method

In this section, the workflow of the proposed modelling approach is explained. In addition,

non-functional properties of a computer-based system under development are defined.

These non-functional properties are of interest for HFT, since it is necessary to define an

effective way to monitor and adjust the system to ensure efficient operation.

The goal of modelling is to provide a method that allows the developer to design and im-

plement an efficient system based on the HFT architecture. It is necessary to guarantee

that the system will be efficient with regards to non-functional properties, such as relia-
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bility, performance and resource utilisation. Modelling assists in defining efficient points

of the interplay between these non-functional properties. An efficient design allows the

developer to implement such a system, which will be efficient in terms of this interplay.

Performance is considered as the amount of work completed per unit time. Faster op-

eration typically requires more resources or can be achieved by reducing the quality of

computation. The work performed by the system is measured in work units. The pro-

cessing of each work unit can be finished successfully or unsuccessfully.

Reliability is represented with the success rate, which is defined as the ratio of successfully

finished work units to the total amount of work units.

Resource utilisation is the amount of computer resources required to process a certain

number of work units. In this context, a resource is defined as any facility that enables

computation, which may include CPU cores, application threads, memory, energy, etc.

A computer-based system with the HFT architecture contains functional components

that provide the main system functionality and the HFT part (Chapter 4). The HFT

control for the non-functional properties is realised using knobs and monitors. The knobs

are provided by system components as configuration points (or interfaces for the HFT

controller), and the monitors are an instrumentation that provides readings of values and

parameters at the component level. These readings performed by the HFT agents assist

in reasoning about the non-functional characteristics of interest. The system-wide set

of knob states is called a system configuration. During the system operation, the HFT

controller dynamically choses the most suitable system configuration, depending on the

history of observed data.

An instance of such interaction between the HFT elements and the functional system

components is defined as a control loop. It can be considered as a special interface between

the components and the HFT part. The control loops are managed only by the HFT part

and they can be either explicit or implicit to the system components. The former control

loops are presented by the reconfiguration interfaces used by the HFT controller, whereas

the latter define the interaction between the HFT agents and the system components.

5.4.1 Workflow of the modelling approach

The workflow of the HFT system modelling approach is described in Figure 5.1. Each

of the steps is explained in a subsequent subsection. Note that OG modelling happens
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Figure 5.1: Workflow diagram

in parallel with the main branch of the workflow. The inputs of the modelling include

characterisation of the critical system components, Stochastic Activity Network (SAN)

model and OG model. The output of the modelling is a validated OG model of the systems,

which allows the designer to select only important control loops between the HFT part and

critical system components and ensure that there is no redundant interactions between

them.

5.4.2 Characterisation of the component non-functional prop-
erties

Characterisation is the process of finding out how a system behaves with regards to non-

functional properties by running the system under carefully selected input patterns and

extracting the properties from a set of runs. The results of characterisation leads to
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models, the running of which simulates system behaviour under input patterns that have

not been experimented in characterisation. For instance, at the end of the characterisation

process it would be possible to say what is expected performance or reliability of one of

the critical components over a broad range of input and operating conditions. Then

these expectations are used in the analysis, but not the actual values obtained from the

experimental runs.

The designer should characterise the non-functional properties of each critical component

which is involved in the HFT mechanisms (Section 4.6). If the component supports

multiple configurations or algorithms of processing, the characterisation should be done for

each individual configuration. First of all, to characterise the component, it is necessary to

choose several input data sets, which are typical for the given component and are expected

to be processed by the component. The choice depends on many factors. Depending on

the system complexity and required model accuracy the number and type of input data

sets could vary. It therefore is of vital importance to correctly select the input patterns

and other conditions for characterisation experiments in order that the resultant data is

meaningful for the type of models being built. If there is a need to model an “extreme”

behaviour of the component, when unusual input is given to the component, then input

data sets should contain non-typical data. Otherwise, the input data should be chosen

according to the principle, when it is as close to real conditions as possible, while spending

a reasonable amount of time for input data sets creation.

Then, each data set should be processed by the component. Finally, after the processing,

the component characterisation can be made. This characterisation includes expected

performance, expected reliability and expected resource utilisation for processed data

sets. The full result of a characterisation pertaining to some component and some non-

functional property describes the value of that property when executing that component.

Characterisation is not done beyond the component level.

5.4.3 Building and simulating the SAN model of the system

This step defines how the HFT part (the HFT controller and the HFT agents) should

be designed and implemented. The decision on structure and responsibility of the HFT

elements will be made based on the simulation results. The SAN model includes critical

system components, however the HFT elements are not in the model. Modelling of the

components responsible for HFT is a part of future work, which is related to adaptive

- 83 -



Chapter 5: Modelling of computer-based systems with Holistic Fault Tolerance

HFT (Subsection 8.5.1). By simulation we assume running models and not the systems

themselves to derive quantitative or qualitative expectations of non-functional properties.

In this step the SAN model of the system is built using component characterisations from

the previous step and the system-only OG model (Subsection 5.4.5). The granularity

of the SAN model for any part of the system is determined by the OG modelling step

(Figure 5.1) and the parameter values are obtained from the characterisation step. The

characterisation step usually pertains to the SAN model of the finest detail, because

there is no point in developing a SAN model at a finer level of detail than the existing

characterisation data. If the OG step suggests a higher level of abstraction, it is possible

to derive SAN models of less detail than the characterisation data, for instance by running

simulations at the characterisation level of detail then abstracting from the results.

From characterisation to the final SAN model for simulations the approach is bottom-up,

but the OG step is usually top-down. There is no conflict because in order to determine the

granularity of the final SAN model the entire OG model covering all levels of abstraction

needs to have been established. In a way discovering the SAN model is a process of raising

the level of abstraction from the bottom traversing the OG until a satisfactory SAN has

been found.

The preferred tool for working with SANs is Möbius [117]. The main point of this step

is that the SAN system model, assembled from component models, supports system-wide

analysis of the modelled non-functional properties from component-level characterisation

data. The most practical analysis method for SAN models of HFT is simulation, as other

forms of analysis such as state space studies tend to be restricted to very small models.

However, Möbius does provide non-simulation solvers if and when they can and need to

be used.

5.4.4 Reducing complexity of HFT

The estimated values of system-wide non-functional properties obtained from the pre-

vious step can be used to reduce the complexity of the HFT controller by eliminating

unnecessary control loops (control loop pruning process).

The method is based on the problem of preserving controllability [109] while reducing the

number of knobs. It assumes that the number of monitors is both sufficient and necessary

to represent the non-functional properties under study. The monitor values are considered

state variables.
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Möbius simulations (running the model that was created in the Möbius tool) are used

to built a system transfer function [109] relating knobs to monitors. This is achieved

by analysing differentials in the estimated monitor values from simulations. Ideally, this

requires an exhaustive set of simulations covering all combinations of knob values. For

the systems that require high precision of simulation and tuning it is advised to apply

other known optimisation methods, such as Monte-Carlo [123], to improve the usability

of the method.

The smallest set of knobs that maintains controllability is determined from this database

of state relations.

Although in this chapter we deal only with deciding what control loops to include in an

HFT system, the off-line design flow described here can yield valuable quantitative data

that may be helpful for the detailed design of run-time control. For instance, the SAN

models may provide a set of reference points which may be used in the design of individual

control loops.

5.4.5 Validation using Order Graphs hierarchy

OGs modelling proves that control loops between the HFT parts and the system compo-

nents are sufficient and not redundant. A rigorous path consistency checking between the

layers of abstraction guarantees that the designed HFT part is consistent with the control

loops established in the previous steps of the workflow.

As mentioned in Section 5.2, OG modelling provides a top-down workflow that helps the

developer to incrementally add the details in the system design. In the proposed workload,

the dependencies in the graph represent interactions between the elements of the system

and provide paths for the control loops.

OG contains the static knowledge of the system and needs to be paired with a dynamic

model to capture the system behaviour (in our case: SANs). The nodes in OG that are

included in this model relation form a cut. If the cut goes through different depths in the

hierarchy (layers of abstraction), it is called a cross-layer cut. The cut containing all leaves

relates to the most concrete (detail) model of the system. Moving up in the abstraction

hierarchy, thus grouping multiple nodes into one, represents grouping the corresponding

elements in SANs into a single entity by averaging/totalling their parameters (known as

black-boxing). This reduces the size of a model, but also introduces inaccuracy. The
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trade-off between model complexity and accuracy can be achieved from manipulating

cross-layer cuts. This method, called selective abstraction, has been explored in detail

in [107].

Figure 5.2: A general template for HFT Order Graph model

Figure 5.2 illustrates the hierarchical model of a computer-based system with the HFT

architecture (Chapter 4) in three levels of detail. At the top level, there is only the

system with the HFT architecture. The second level contains graphic user interface,

backend or functional part of the system and the HFT part. Information flow between

the backend and the HFT is shown in both directions. The next level represents the

backend is decomposed to the system components and the HFT part decomposed to the

HFT controller and HFT agents. For simplicity, the figure shows only one component and

only one agent. At this level, the control loops between the system components and the

HFT elements should start to appear.

The most detailed level of the hierarchical model considers the inner structure of the sys-

tem components and the HFT elements. The system component may include third-party

subcomponents, public interfaces, component settings and critical parts. The internal

structure of an HFT agent (presented in Subsection 4.4.1) consists of monitoring logic,
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intervention logic and local decision maker. The HFT controller (Subsection 4.3.1) in-

cludes the decision maker, the system state history (dynamic data storage) and the HFT

policies (static data storage).

Connections represented by the dashed lines assume that for better maintainability it is

preferable to implement this link in such a way that the system component is not aware

of implementation details of monitoring and intervention logic in the HFT agent. HFT

agents do not directly provide performance of reliability benefits. They were introduced

to simplify the developing and improve understanding of the systems with HFT. It will

be shown in Section 7.4 that such configuration supports maintainability of the system.

This is the reason for decomposition of the HFT architecture to the HFT controller and

the HFT agents.

5.5 Modelling of the case study

5.5.1 Case study application

The application for the recognition of UK number plates was chosen as a use case. The

input of the application is a set of images. As an output, the application links each image

with recognition results that include the contour of the number plate, recognised string

and the probability of correct recognition.

The functional part of the application consists of several components. The Graphical User

Interface (GUI) component is the frontend of the application, which allows the user to

upload the images. These images are sent to the Initial Image Processing (IIP) component.

At this stage, every image undergoes an initial processing, which includes various filters,

searching of the number plate on the image, cropping of the number plate from the image

and elimination of the perspective skews of the number plate cutout. Two algorithms for

number plate search can be applied: OpenCV-based [124] rectangle detection and HAAR

cascade [125] trained to recognise the area with the UK number plate. If the number

plate is found and cropped it is put to the Number Plates Queue (NPQ). When the NPQ

is not empty, the Optical Character Recognition (OCR) component takes an available

number plate cutout and performs text recognition on the cutout. There are two OCR

algorithms in the OCR component: Tesseract [126] and the number plate recognition

algorithm described in [127]. If the OCR recognises the text on the cutout, this text is

checked by the Result Checker (RC) component to ensure compliance of the car number
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with a national format. These additional algorithms are introduced to provide redundancy

and increase reliability of the application.

The UML diagram of the application is shown in Figure 5.3. The GUI does not participate

in the HFT scheme and it should not be considered in detail in the model. Interfaces

between the functional components (IIP and OCR) and the HFT controller are omitted

to make the diagram clearer.

In both IIP and OCR components the images are processed concurrently. The HFT con-

troller specifies the most suitable number of working threads for each component. The

Performance agent monitors the execution time of the IIP and OCR components. The Er-

ror Handling agent is responsible for handling the errors in the IIP and OCR component.

An error implies a deviation from the correct service [1] and it is not necessarily an excep-

tion only. Impossibility to find the number plate or low probability of the recognition is

considered as an error as well. At the same time, not all exceptions are regarded as errors.

If the error is detected by the Error Handling agent, it requests the HFT controller for a

suitable error recovery action, which could vary depending on current system operation.

A more detailed description of the application can be found in Section 7.2.

HFT Controller

Performance AgentError Handling Agent

CNPR IIP OCRNPQ RC

Figure 5.3: The UML diagram of the use case application

5.5.2 Characterisation of the components

For the characterisation, the IIP and the OCR components were chosen, since they are

the most critical components of the application. Characterisation data is presented in

Table 5.1 and Table 5.2. The input data varies significantly for the given application,
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hence three groups of images distinguished by size have been chosen: small, medium and

large. Time and reliability of the image processing significantly depends on the image

size.

Table 5.1: Characterisation of the IIP component

Number plate detection algorithm

Original image size Rectangle detection HAAR cascade

Average
time

Average
reliability

Average
time

Average
reliability

Small < 200 KB 20 ms 85% 9.3 ms 77%

Medium 200 KB – 1MB 85 ms 80% 76 ms 85%

Large 1 MB – 7 MB 143 ms 72% 328 ms 86%

Table 5.2: Characterisation of the OCR component

Optical Character Recognition algorithm

Original image size OpenCV implementation Tesseract

Average
time

Average
reliability

Average
time

Average
reliability

Small < 200 KB 23 ms 70% 33 ms 75%

Medium 200 KB – 1MB 29 ms 73% 37 ms 78%

Large 1 MB – 7 MB 45 ms 48% 50 ms 62%
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Figure 5.4: Detailed SANs model of the use case application in Möbius

5.5.3 SAN modelling and simulations of the system

With this characterisation data, the SAN models can be built in Möbius. A detailed

SAN model for the two components IIP and OCR, each in three versions small, medium

and large is shown in Figure 5.4. These component versions can be considered as thread

pools for processing of images of corresponding size. The fundamental states for each

component version are working and idle. Working means that this component version is

in execution and idle means that it is not in execution. The model is simplified to put

all idles together. This means that for, e.g. IIP, the IIP idle place is initialised with the

number of threads given to the IIP component. This may be known as the IIP capacity

of the system. Each completion of an IIP component version puts a token back to this

idle place. Each IIP component version has a probability of success Ps and a probability

of failure 1 − Ps and this is represented by the stochastic timed transitions IIP finish.

The OCR component models have the same structure. Between the IIP and OCR blocks,

three queues are modelled with the standard SAN representation for queues or buffers.

The IIP start transition on the left generates input images stochastically according to

probability functions and rates that can be set in the model.

The occurrences of failure are tracked by the markings of the failure places and the overall

number of successful recognitions is recorded in the final done place at the right end of

the net. Running simulations with this model produces success and failure rates, resource

utilisation (e.g. the average number of threads being active) and overall performance.

This model turns out to require somewhat significant time (more than a few minutes) to

simulate. As a result, by making OG analysis and studying the characterisation data, a

reduced model was derived, which is shown in Figure 5.5.

The reduced model only has a single OCR component version by combining the three

different versions in the detailed model into one using average behaviour. The reason
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Figure 5.5: Reduced SANs model of the use case application in Möbius

behind this is that the version pertaining to large size is significantly slower than the oth-

ers, which are very similar. Intuitively, component capacities are used more on the faster

processing versions as they tend to grab the token from the idle place more frequently.

The reduced model required simulation times that are an order of magnitude shorter than

the detailed model, and they produced very close results with differences within 5% on

all the non-functional properties being studied. Some simulation results are shown in

Table 5.3.

Table 5.3: Simulation results

Configuration Estimates

IIP IIP OCR OCR Core Success Image
algorithm threads algorithm threads allocation rate time (ms)

Rectangle 4 OpenCV 4 4.55 0.543 44.89
Rectangle 2 OpenCV 6 2.4 0.55 55.91
Rectangle 6 OpenCV 2 6.63 0.548 40.77
Rectangle 1 OpenCV 7 1.24 0.528 87.11
Rectangle 7 OpenCV 1 7.49 0.559 40.68
Rectangle 1 OpenCV 1 1.22 0.529 88.26
Rectangle 3 OpenCV 1 3.4 0.553 48.86
HAAR 4 Tesseract 4 4.53 0.574 90.54
HAAR 2 Tesseract 6 2.36 0.577 116.89
HAAR 6 Tesseract 2 6.57 0.568 77.46
Rectangle 4 Tesseract 4 5.42 0.561 46.23
Rectangle 2 Tesseract 6 2.86 0.564 56.53
Rectangle 6 Tesseract 2 7.27 0.551 41.91
HAAR 4 OpenCV 4 4.26 0.561 90.01
HAAR 2 OpenCV 6 2.2 0.589 117.79
HAAR 6 OpenCV 2 6.31 0.557 76.98

In these particular simulations, we intended to find out if the relative numbers of IIP and
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OCR threads executed affect the execution time, resource utilisation and reliability. It was

found that the reliability stays about the same, but running more IIP threads than OCR

threads improved the overall execution time and resource utilisation (more threads get

executed simultaneously, pressing more cores and reducing idle time and queue length).

If the observed change in reliability is considered insignificant, the reduction of control

loops leads to removal of all knobs except the number of IIP threads. This remaining

knob provides control over resource utilisation and performance. On the other hand, if

the reliability difference is considered significant, all knobs contribute to controlling the

system properties.

5.5.4 Hierarchical model of the system

A hierarchical model of the system is built following the general template (Figure 5.2)

and is shown in Figure 5.6.

Figure 5.6: Hierarchical model of the system

At Level 1 of the system Order Graph there is only one node “Car Number Plate Recog-

nition Application”. Level 2 distinguishes between the HFT part of the system and the

functional part, which comprises the GUI and system backend. At Level 3 all crucial

components of the system and the HFT part are illustrated. We do not model GUI be-

haviour, therefore we stop at Level 2 for the GUI. The backend was decomposed to IIP,

NPQ and OCR components because it follows the UML structure of the application. The
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HFT part is decomposed to the HFT controller, the Performance agent and the Error

Handling agent. At Level 4 there is further decomposition to the inner structure of the

functional components and the HFT elements. Level 4 is not illustrated here due to the

number of elements at this level.

There is unidirectional information flow from the IIP, the NPQ and the OCR components

to the Performance agent, because this agent only monitors the components, but it does

not affect the control flow of the components. In contrast, the Error Handling agent

has bi-directional information flow, since it intervenes in the control flow of IIP and

OCR components in order to handle the errors. The interfaces between the agents and

components are represented by dashed lines because they are implicit for the components.

The HFT controller, in turn, utilises public interfaces of the IIP and OCR components to

reconfigure the components and performs fault handling of the application. In addition,

there are information flows between the HFT controller and the HFT agents. It can be

seen that all control loops mentioned in Section 5.4 exist in this Order Graph, which

validates the correctness of the selected HFT architecture.

5.6 Discussion

In this chapter we elaborated the general method for modelling computer-based systems

with HFT at the early stages of system engineering. The given method simplifies the

modelling process and allows the developer to adjust the system at the early stage to

achieve efficient operation after implementation.

As a part of the workflow, the SANs model of the system was built using the Möbius

tool. After that the list of interfaces for the HFT control representing the control loops

between system components and non-functional properties of the system was obtained.

At the same time, a hierarchical model of the system with HFT was created using Order

Graphs. The method has been demonstrated with a use case application of UK number

plate recognition.

The next chapter is dedicated to the implementation of the HFT architecture for the

software application. AOP [45] was applied to implement crosscutting functionality of the

application. The structure of the AOP modules is defined by the list of interfaces between

the HFT part and the system functional components. These interfaces are defined at the

modelling stage.
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Chapter 7 is devoted to the evaluation of the HFT architecture. We compare efficiency and

maintainability of the software application with the HFT architecture and the software

application without the HFT architecture. These applications are functionally identical,

however crosscutting concerns (fault tolerance mechanisms, performance monitoring, etc.)

are implemented differently. The presented modelling method was applied to model and

adjust the application with the HFT architecture in order to prepare it for efficiency

evaluation, which involves comparison of performance, resource utilisation and reliability

under different operating conditions.
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6.1 Introduction

The previous chapters described details of the HFT architecture and HFT modelling.

This chapter is devoted to the implementation stage of the HFT engineering process. It

describes the principles of software structural quality, analyses the AOP paradigm and

its applicability, and finally, presents the guidelines and advice on the implementation

of quality software applications with HFT. These guidelines cover critical system com-

ponents, elements of the HFT architecture, and their interactions. The HFT controller

and application components are implemented using the best practices of Object-Oriented

Programming (OOP). Implementation of the HFT agents, in turn, leverages AOP to

capture crosscutting concerns.

The chapter is organised as follows. The principles that are applied to improve software

maintainability, understandability and flexibility are examined in Section 6.2. The AOP

programming paradigm is considered in Section 6.3. The reasons for choosing AOP for

the implementation of the HFT mechanisms are discussed in Section 6.4. Guidance on the

implementation of the application components, the HFT controller, and the HFT agents

is presented in Section 6.5. Features of various application domains that could be useful

for an implementation of HFT are considered in Section 6.6. Section 6.7 sums up the

chapter.

6.2 Principles of software structural quality

The principles that act as guidelines for creation of robust and easily maintainable software

systems are described further.

6.2.1 Abstraction

The notion of abstraction is to focus on information that is important in a given context

and hide information that is irrelevant [128] in that context. Abstraction is applied to

deal with complexity of a computer system. It allows the developer to work with data

objects without going into their implementation details. Each object provides a simple

interface, while intricate implementation details are encapsulated.
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6.2.2 Single Responsibility Principle

According to the Single Responsibility Principle [129, Chapter 8] every module should

work on its own task and it should have responsibility over a single part of the software

functionality. In addition, in case of modifications, the module should have only one

reason of change, otherwise, a split into two or more modules is necessary.

6.2.3 Open/closed principle

The Open/closed principle (OCP) [130, 131] implies that software modules should be open

for extension, but closed for modification. This principle ensures that a single change in

one module does not cause changes in dependent modules. Moreover, OCP guarantees

that system functionality is not corrupted after the extension of the program. Thus, it is

more preferable to add new code rather than modify or delete any existing code.

6.2.4 Coupling and cohesion

Coupling and cohesion usually are considered together [132]. The former describes inter-

dependencies between modules, while the latter illustrates how the elements of the module

are related to each other. Developers are expected to provide high cohesion within each

module and loose coupling among modules to reduce complexity, improve readability and

support maintainability of the software. Software modules should be easily replaceable in

such a way that other parts of the program do not require significant changes after these

actions. This task is much easier when the modules are loosely coupled with each other.

High cohesion, in turn, means that similar functionality should be placed in one module.

This concept is a very good argument why the system FT mechanisms should be placed

in a separate module rather than be partially implemented by each individual module.

6.2.5 Modularity

Modularity is a way to design a system consisting of separate modules where each module

is responsible for its area of concern [30]. A modular design simplifies the implementation

of modules, due to high cohesion inside modules, loose coupling between modules and well-

defined interfaces for module interactions. Such an approach creates logical separation

between modules, improves maintainability, and allows the developers to implement and

test modules independently.
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6.2.6 Separation of concerns

Separation of concerns (SoC) [133] is a design principle assuming that a computer program

should be divided into distinct features to ensure modularity of the program code. Each

of these features or concerns represents a single piece of interest in the program, such as

business logic, database access level, user interface or API for external clients. However,

some concerns are dispersed across different parts of the program.

These crosscutting concerns [36] affect the entire system and cannot be distinguished

straightforwardly to fit the OOP style. In object-oriented design these concerns can cre-

ate a high degree of tangling and affect modularity of the program. This often results

in scattering and tangling of the source code responsible for the implementation of cross-

cutting concerns. Usually it is impossible to decompose crosscutting concerns from the

remaining system part during the design and implementation stages of the software en-

gineering process. Typical examples of crosscutting concerns include error and exception

handling, caching, monitoring, logging, and security. There are academic and industrial

studies [30, 31] referring to FT as a crosscutting concern. For example, error handlers

should be reused rather than copy-pasted, whenever it is possible and practical. Hence,

when an error affects the whole system but not a single component it should be handled by

a designated system-wide action but not by the component itself. Crosscutting concerns

were a motivation for the AOP paradigm.

6.2.7 Software reuse

The software reuse [134] principle implies that it is a good practice to use existing func-

tions, patterns and modules in order to reduce redundancy, decrease development time,

improve maintainability, and ensure quality of software. This is possible because already

created and time-proved software parts are used in the development process. The notion

of software reuse infers that the software under construction should be treated in such a

way that it will be used for development of new software in the future.

6.3 Aspect-Oriented Programming

AOP [36] is a promising paradigm intended to improve the modularity of computer systems

by the separation of crosscutting concerns. It is achieved by extension of the program

code behaviour in certain points, without modification of the code itself. AOP languages
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provide special mechanisms to specify crosscutting code in separate modules called aspects.

Each aspect usually contains several advice, which complement or even alter behaviour

of the functional code when a certain point of program execution, called join point, is

reached. Aspects in AOP can be considered as analogues of classes in OOP, whereas

advice constructions are analogues of OOP methods. The AOP paradigm assumes that

classes should work with functional concerns that can be clearly distinguished from the

remaining part of the codebase, whereas aspects group crosscutting concerns that are

scattered across the codebase. AOP advice and OOP method are connected when control

flow of the program reaches a specified join point.

There are a great variety of AOP extensions for the Java programming language, like

AspectJ, Spring AOP, CaesarJ and JBoss AOP. In comparison with other languages,

AspectJ is considered a powerful, most mature and most popular language [135, 136]

allowing developers to write easily understandable AOP code that supports modular im-

plementation of crosscutting concerns.

AspectJ [45, 136] supports several AOP constructs like aspect, advice and pointcut that

rely on the concept of join point. Join points are certain points in the program execution

workflow, presented by method calls, returns from methods, and exceptions thrown during

the method execution. Pointcut represents a named collection of join points. There are

several kinds of advice in AspectJ. Before advice runs before the code that starts at the

join point. After advice runs after the piece of code that started at the join point. Around

advice runs instead of the join point. If necessary, the control flow of the method can

be altered using an around advice. The next section considers various examples of FT

mechanisms implemented with AOP.

6.4 Aspect-Oriented Programming for the implemen-

tation of fault tolerance mechanisms

The state-of-the-art studies on applying AOP for the implementation of the system FT

are examined in this section.

In [135] the quantitative assessment of exception handling as aspects is provided. The

author considers the benefits of using AOP for modularisation of exception detection and

exception handling. AOP allows the developer to lexically separate the exception handling

code and the normal application code making changes in the AOP code less intrusive and
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much simpler.

The paper [137] analyses the claim that AOP facilitates the modularisation of excep-

tion handling mechanisms. The authors state that the majority of software development

methodologies do not give consideration to the design of a system’s exceptional behaviour.

It is shown that in some cases AOP could even deteriorate the quality of the system. The

main result of the study is that AOP will not improve FT in a system with bad architec-

ture. However, it is able to improve the structure of well designed systems by separating

normal and exceptional activities of the system.

Feasibility and evaluation of using AOP for Software Implemented Hardware Fault Tol-

erance (SIHFT) is presented in [138]. The authors propose to apply AOP in order to

avoid tangling of SIHFT code with code related to the main functionality of the program.

Fault coverage and performance penalty were used to assess SIHFT based on aspects.

According to the experimental results AOP is convenient for programs with SIHFT.

The paper [139] estimates the impact of using AOP and compares AOP with other tech-

niques. The authors measure memory consumption and execution time overhead of the

automotive brake controller application after introducing FT mechanisms represented by

time redundant execution and control flow checking. These software mechanisms are in-

tended to deal with hardware faults. The implementation is done at a source code level

by three approaches: AOP, source code transformation and manual programming in C.

Software implemented FT is preferable since it allows the designers to minimise the cost

of redundancy by using self-checking and internally fault tolerant electronic control unit

(ECU) instead of replicating several ECUs. The authors analysed the pros and cons of

AOP for systematic and application specific implementations. At the function level, FT

mechanisms have a very high degree of tangling. This is the reason why AOP introduces

some performance overheads for systematic implementation. However, when knowledge

of the application is leveraged, the overheads of using AOP are similar to those caused by

manual programming in C, but AOP is more preferable for the developer since it provides

the separation of crosscutting concerns.

Research focusing on facilitating exception handling is presented in [140]. The authors

state that the goal of exception handling mechanisms is to distinguish normal code and

error handling code. However, when the exception related code is modified, the control

flow of the program could be unexpectedly affected. Sometimes it is difficult to locate

the place where the exception will be handled or where it was raised. The authors claim
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that the main disadvantage of Java-type languages is that there is no link between the

exception rising site and the exception handling site. However, the exception control flow

is a crosscutting concern and AOP techniques can be applied to facilitate modularity and

maintainability in the presence of exceptions. For example, AspectJ [45] provides a way

to distinguish normal and error handling code. Thus, AOP can be applied to reduce

error likelihood, facilitate software maintainability, improve implementation productivity

by providing automated support for developers and make exception control flow more

understandable.

Analysis of these studies demonstrated the benefits and feasibility of using AOP for imple-

mentation of the system FT mechanisms. In the majority of the examples FT is considered

as a crosscutting concern.

6.5 Guidance on the implementation of HFT

This section presents a guidance on the implementation of a software application with

HFT where a system-wide FT is considered as a crosscutting concern. Various options

can be chosen for the implementation of the HFT mechanisms, such as classes with static

members, computational reflection, and AOP. All these approaches have advantages and

disadvantages. Classes with static members could be more understandable for the devel-

opers who are not experienced in the reflection and AOP principles, but they do not solve

the problem with code tangling. Computational reflection [141] can facilitate modularisa-

tion of the program and provide the same benefits for software maintainability as AOP.

However, reflection works in the run-time and could significantly affect performance of

the application. In contrast, the AspectJ [45] compiler weaves an aspect code into a class

code at compile time. Thus, a produced Java’s bytecode will contain aspect behaviour

after compilation. After thorough analysis of these options and examination of existing

research (Section 6.4), it was decided to use AspectJ for the implementation of system-

wide FT mechanisms. The Java programming language was chosen to demonstrate the

HFT implementation since it is a cross-platform, high-level language successfully applied

in different application domains.

The HFT architecture assists in following the single responsibility principle. Therefore,

functional components are dealing with their direct functional responsibilities, whereas

the management of FT, performance and resource utilisation is given to the HFT part of

- 101 -



Chapter 6: Implementation of Holistic Fault Tolerance

the application.

The UML class diagram of the application with HFT that is applied as a template to

demonstrate the HFT implementation is illustrated in Figure 6.1. Critical functional

components and the HFT controller are implemented in Java using pure OOP style.

The HFT agents are implemented in Java with the AspectJ [45] AOP extension. The

implementation detail of these elements are considered further.

CriticalComponent1

+ CriticalFunction11(): CriticalResult
+ CriticalFunction12(): CriticalResult 

HftController

+ decisionMaker: DecisionMaker
+ staticData: StaticData
+ dynamicData: DynamicData 

 + getRecoveryAction(): RecoveryAction  
 + errorDetected(): void 
 + updatePerformanceInfo(): void 

<<Aspect>> 
ErrorHandlingAgent

+ localDecisionMaker: EhDecisionMaker

<<Aspect>> 
PerformanceAgent

+ localDecisionMaker: PerfDecisionMaker

CriticalComponent2

+ CriticalFunction21(): CriticalResult
+ CriticalFunction22(): CriticalResult 

UseUse Use Use

Use

Use

CriticalComponent3

+ CriticalFunction31(): CriticalResult
+ CriticalFunction32(): CriticalResult 

<<Interface>> 
IReconfigurableComponent 

+ numberOfWorkingThreads: int 
+ qualityOfService: QualityOfService
+ configuration: IComponentConfiguration

+ SetNumberOfWorkingThreads: void 
+ SetQualityOfService: void 
+ SetConfiguration(): void

1 1

Figure 6.1: The application with HFT

6.5.1 Implementation of critical system components

It is always preferable to implement HFT-ready critical system components. Only in this

case would the application leverage all the advantages of the HFT architecture. Otherwise,

the application will not use the benefits of fault handling and reconfiguration provided by

the HFT architecture.

Critical components should be implemented with redundancy to support HFT mecha-

nisms, however, they should not be aware of the reconfiguration policies, since the latter

could change. Instead, critical components should provide an interface for the HFT con-

troller, that will adjust the component’s performance, reliability and resource utilisation.
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This interface should not reveal the inner structure of the component to avoid overcom-

plication of the HFT controller.

In addition, the critical components will be implicitly monitored by the HFT agents (these

dependency relations are depicted in red colour in Figure 6.1). The implicit relationship

was chosen to focus on functional behaviour of components. There is no need for critical

components to provide a special interface for the HFT agents since the relationship is

implicit for the components. However, these components should be developed according

to best practices (Section 6.2). Class methods should be meaningful and concise [142].

Only in this case will the HFT agents easily monitor and intervene the control flow of

critical components. The preferable structure of the methods in critical component is

shown in Figure 6.2. The first method supports several alternates, which is very useful for

error handling mechanisms implemented by the Error Handling agent. In addition, both

methods are concise, which facilitates the reasoning about their performance and quality

of service by the agents.

1 public class CriticalComponent1 implements IReconfigurableComponent {
2 // Fields
3 ...
4 // Constructor
5 ...
6 public CriticalResult CriticalFunction11() {
7 switch (m qualityOfService) {
8 case Low:
9 return LowQualityAlternate();

10 case Medium:
11 return MediumQualityAlternate();
12 case Good:
13 return GoodQualityAlternate();
14 default :
15 return LowQualityAlternate();
16 }
17 }
18
19 public CriticalResult CriticalFunction12() {
20 int [] operationAResult = OperationA();
21 int [] operationBResult = OperationB();
22 return Calculate(operationAResult, operationBResult);
23 }
24 ...
25 // Methods
26 }

Figure 6.2: Critical component implementation
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6.5.2 Implementation of the HFT controller

There are several ways to implement the HFT controller. Depending on the system scale,

the HFT controller and its elements can be implemented using only one class, or several

classes (current case), or even separate packages. Since this section considers medium-

scale applications, the HFT controller implemented as a class is sufficient.

If the HFT controller is implemented as a standard Java class then the developer should

ensure that only one instance of this class is created. This can be resolved by implementing

the HFT controller as a singleton class. This is a flexible solution, which guarantees that

only one instance of the HFT controller will be available across the application. However,

a singleton class, like any other patterns, should be used with precaution to avoid calls

to this singleton from all parts of the application. Another option is to implement the

HFT controller as a class with a private constructor and only static methods. This

implementation has similarities with a singleton class. However, such a class cannot

implement the interface and there are no instances of this class. Under such circumstances

the HFT agents will need to call the HFT controller explicitly, which increases the coupling

between the HFT agents and the HFT controller.

A template for the implementation of the HFT controller is illustrated in Figure 6.3. The

HFT controller is implemented as a class and its inner elements (decision maker, static

data storage and dynamic data storage) are implemented as separate classes as well.

The Static Data Storage stores all the HFT policies that correspond to the non-functional

requirements of the application. The Dynamic Data Storage collects the information

about the state of application components. This information is provided by the monitoring

mechanisms of the HFT agents. The decision maker has a separate thread for continuous

analysis of the states of critical components based on information from the Dynamic

Data Storage and the system requirements specified in the Static Data Storage. When it

detects that the application could operate faster or more reliably it will reconfigure the

application components through their reconfiguration interfaces. In addition, the HFT

controller provides several methods that are used by the HFT agents during error handling

and performance monitoring activities.
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1 public class HftController implements IHftController {
2 private StaticDataStorage m staticData;
3 private DynamicDataStorage m dynamicData;
4 private DecisionMaker m decisionMaker;
5 private IReconfigurableComponent[] m criticalComponents;
6
7 public HftController(IReconfigurableComponent[] criticalComponents) {
8 m criticalComponents = criticalComponents;
9 m staticData = new StaticDataStorage();

10 m dynamicData = new DynamicDataStorage();
11 m decisionMaker = new DecisionMaker(m staticData, m dynamicData,

m criticalComponents);
12 PerformanceAgent.setHftController(this);
13 ErrorHandlingAgent.setHftController(this);
14 }
15
16 public RecoveryAction getRecoveryAction(MonitoredFunctions func, Exception exc, int

attemptNumber) {
17
18 m dynamicData.errorDetected(func, exc, attemptNumber);
19 return m decisionMaker.getRecoveryAction(func, exc, attemptNumber);
20 }
21
22 public void errorDetected(MonitoredFunctions func, Exception exc, int attemptNumber) {
23 m dynamicData.errorDetected(func, exc, attemptNumber);
24 }
25
26 public void updatePerformanceInfo(MonitoredFunctions func, long executionTime) {
27 m dynamicData.updatePerformanceInfo(func, executionTime);
28 }
29 }

Figure 6.3: The HFT controller implementation

6.5.3 Implementation of the HFT agents

Section 6.4 considered the studies that showed the feasibility and benefits of centralisation

of the FT management. In the majority of the examples FT is considered as a crosscutting

concern and AOP was employed for the implementation of the system FT mechanisms.

Thus, the AOP paradigm was chosen for the implementation of the HFT agents. Each

HFT agent is implemented as an AspectJ aspect and its monitoring and intervention mech-

anisms are implemented as an AspectJ around advice (Section 6.3). Such an approach

makes the HFT mechanisms fully implicit for critical application components.

As part of the HFT agents’ implementation it is advised to introduce a separate aspect

to store all AspectJ pointcuts that are used in an AOP advice of the HFT agents. This

would provide a clear access to all join points that are targeted by the HFT agents. In

addition, this aspect supports reuse, since the same join points can be used by various

agents. An aspect with two pointcuts is shown in Figure 6.4. A pointcut with name
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1 public aspect Pointcuts {
2 pointcut PointcutCriticalFunction11(CriticalComponent1 component) :
3 target(component) && call(CriticalResult CriticalFunction11());
4
5 pointcut PointcutCriticalFunction12(CriticalComponent1 component) :
6 target(component) && call(CriticalResult CriticalFunction12());
7 }

Figure 6.4: AspectJ aspect with pointcuts

PointcutCriticalFunction11 contains one join point, which will be reached when the

method with name CriticalFunction11 from the class of type CriticalComponent1

returning an object of type CriticalResult is called.

1 public aspect PerformanceAgent {
2 private static IHftController m hftController;
3
4 public static void setHftController(IHftController hftController ) {
5 m hftController = hftController;
6 }
7
8 CriticalResult around(CriticalComponent1 component) throws Exception :
9 Pointcuts.PointcutCriticalFunction11(component) {

10
11 long startTime = System.currentTimeMillis();
12 CriticalResult result = proceed(component);
13 long executionTime = System.currentTimeMillis() − startTime;
14 m hftController.updatePerformanceInfo(
15 MonitoredFunctions.CriticalFunction11, executionTime);
16 return result ;
17 }
18 }

Figure 6.5: Aspect implementation of the Performance agent

The HFT agents require an interface from the HFT controller to supply it with information

about the system state and to request suitable error handling actions. The usage of this

interface by the Performance agent is shown in Figure 6.5. This agent performs monitoring

activities only. Firstly, it notes the time before the start of the CriticalFunction11

method execution. Then, it executes this method (proceed(component) instruction).

And, finally, it calculates the total execution time and sends this information to the HFT

controller.

The Error Handling agent performs monitoring and intervention activities. Figure 6.6

shows the AOP advice that performs the handling of errors occurred in the Critical-

Function11 method. This advice wraps the call of the original method to the try/catch

block. Whenever an exception is raised the advice checks whether the number of attempts
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1 CriticalResult around(CriticalComponent1 component) throws Exception :
Pointcuts.PointcutCriticalFunction11(component) {

2
3 int attemptNumber = 0;
4 while (true) {
5 try {
6 attemptNumber++;
7 CriticalResult result = proceed(component);
8 return result ;
9 }

10 catch (Exception ex) {
11 if (attemptNumber >= Settings.NumberOfAttempts)
12 return CriticalResult .GetEmptyResult();
13 RecoveryAction ra = m hftController.getRecoveryAction(
14 MonitoredFunctions.CriticalFunction11, ex, attemptNumber);
15 if (ra == RecoveryAction.Retry)
16 continue;
17 else if (ra == RecoveryAction.Skip)
18 throw ex;
19 else if (ra == RecoveryAction.TryAnotherAlternate)
20 return TryAnotherAlternate();
21 }
22 }
23 }

Figure 6.6: Error handling advice with request to the HFT controller

is exceeded and after that requests the most suitable action from the HFT controller.

These actions include retry the operation, skip the exception (allow the method to handle

the exception by itself), and try another alternate instead of CriticalFunction11.

1 CriticalResult around(CriticalComponent1 component) throws Exception :
Pointcuts.PointcutCriticalFunction12(component) {

2
3 int attemptNumber = 0;
4 while (true) {
5 try {
6 attemptNumber++;
7 CriticalResult result = proceed(component);
8 return result ;
9 }

10 catch (Exception ex) {
11 if (attemptNumber >= Settings.NumberOfAttempts)
12 return CriticalResult .GetEmptyResult();
13 }
14 }
15 }

Figure 6.7: Error handling advice without request to the HFT controller

Figure 6.7 illustrates the AOP advice implementing simple exception handling for Criti-

calFunction12 without requests to the HFT controller. Thus, some FT mechanisms can

be implemented by the Error Handling agent without participation of the HFT controller.
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6.5.4 Discussion of the HFT implementation

The HFT implementation templates presented in this section provide an easy way to

analyse and maintain FT-related mechanisms of the application. All system-wide FT

mechanisms, performance management and resource distribution techniques can be easily

traced through the HFT controller and corresponding HFT agent. If some system-wide

modification of the FT-related techniques will be required, then it is very likely that

this modification would affect only the HFT part of the application. At the same time,

an analysis and modification of critical components would be much easier, since their

code will be responsible for their functional tasks only and it will not be tangled with

crosscutting code.

It is obvious that implementation of HFT for a particular system would diverge slightly

from the presented guidelines, since each application would require its own HFT mecha-

nisms. The contribution of this section is a set of templates and general principles that

facilitate implementation of the HFT mechanisms for various applications. The goal of

these principles is to ensure that the HFT mechanisms are efficient, understandable and

easily maintainable.

6.6 HFT in different application domains

The application domain of the system should always be considered during HFT engi-

neering. Some domains support the features that can be naturally adopted during the

implementation of HFT using the guidelines presented in the previous section. This in-

cludes leverage of multi-core and many-core systems, and special programming language

extensions that will be considered below.

6.6.1 Multi-core and many-core systems

Computer systems with tens, hundreds or thousands of processor cores are called many-

core systems [143], whereas multi-core systems have typically only 2-8 cores. Many-core

architectures use low performance small cores each of which alone is less productive than a

large core, however hundreds or thousands of small cores deliver better performance than

ten large cores. Even though we can expect that the throughput will increase with an

increasing number of cores, the performance growth is restricted by the percentage of serial
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code in the application according to Amdahl’s Law [144]. Engineering of efficient many-

core systems is now an area of active research focusing on developing scalable methods

for structuring complex many-core applications and for efficient parallelisation at the

operating system and hardware layers.

Multi-core and many-core systems are likely to become the predominant type of architec-

tures used in the future and it is expected that they will become widely used in safety-

critical applications. Borkar proposes [43] that the number and variety of cores will be

continually increasing. One of the challenges in the area is that there is a need to un-

derstand the trade-off between reliability, performance and resource utilisation (or more

specifically energy consumption), since more energy is necessary to support the operation

of redundant cores. Another challenge is that FT is typically developed separately for

each system layer even though these systems are always built as multilayer architectures.

Ensuring FT of many-core systems is a complex task during the system engineering. The

first problem is that when voltage and frequency scaling is applied to reduce power con-

sumption reliability is affected when near-threshold values are used. So there is a need

to understand the interplay between energy and reliability. Moreover, modern semicon-

ductors are more vulnerable to faults or negative effects like ageing and variation due to

their extra small sizes. Many-core systems can provide redundancy to deal with these

problems (e.g. some cores can be used to provide error detection and error recovery for

other cores). Our analysis shows that in many-core systems FT is typically applied at the

individual layers such as OS, application, communication middleware, memory, etc.

Apart from providing redundancy, some multi-core and many-core systems are heteroge-

neous [145], which gives the possibility to utilise different computation units for various

tasks. This is very useful for reducing power and energy consumption.

Ensuring high performance, low energy consumption, efficient resource utilisation and

high reliability, as well as understanding their interplay are the main challenges for all

types of many-core systems ranging from large-scale systems, like data centres to small-

scale systems, like mobile devices. HFT can tackle these challenges while utilising useful

features of multi-core and many-core systems.

6.6.2 Energy Types

The paper [146] describes a new type of system aimed to improve energy-aware program-

ming. It is claimed that application energy management can be improved by phases and
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modes. The phase is used to illustrate a distinct pattern of program workload and the

mode exemplifies an anticipated energy state of the application. The authors assume that

a type-based approach is a very wise way to provide energy efficiency of the application

depending on the required energy budget.

Energy Types is an object-oriented language for smartphone programming. It has al-

most the same syntax as Java except additional language features have been developed

to support phases and modes directly in the source code. Phases are defined with special

phase qualifiers, for example, mathematical calculation phase, input-output phase, graph-

ics phase and so on. Various phases require different CPU utilisation. A similar way is

used to work with modes. The difference between phases and modes is that the former

are known during compilation time, whereas the latter are chosen during the run-time.

In order to adjust CPU energy consumption depending on current phase and mode, the

authors use the Dynamic Voltage and Frequency Scaling (DVFS) technique as a low-level

energy management.

If the platform where the application with HFT is being developed provides such features

as the Energy Types language, then these features should definitely be applied for the

implementation of the HFT mechanisms. The HFT implementation should leverage all

the possibilities that could improve maintainability and efficiency of the HFT mechanisms.

6.7 Conclusion

This chapter analysed the principles of software structural quality and considered the

software engineering approaches facilitating the implementation of FT mechanisms by

addressing FT as a crosscutting concern. These ideas motivated an approach for the

implementation of HFT. The main contribution of the chapter is a guidance for the

implementation of HFT for a medium-scale software application using AOP. The general

guidelines for the implementation of the HFT controller, the HFT agents, critical system

components, and interfaces between all these elements were provided. These guidelines

can be applied to the development of future software applications with HFT.

The next chapter evaluates the AOP-based implementation of HFT with regards to main-

tainability and efficiency of the FT-related mechanisms. The evaluation was performed

by comparing two functionally identical applications, the first is based on the HFT archi-

tecture, while the second is implemented according to standard OOP principles.
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In Chapter 3 an approach for the engineering of HFT was proposed. Engineering steps in-

cluding a detailed description of the HFT architecture, a modelling method for computer-

based systems with the HFT architecture, and implementation of the application with

HFT were expanded on in the subsequent chapters. In this chapter, we will talk about

evaluation of the HFT architecture implemented with AOP. The evaluation is very im-

portant since it demonstrates that the concept of HFT is sound and can be applied in

practice for real computer-based systems. There are two main goals of HFT to ensure

maintainability of FT mechanisms and achieve an efficient system operation acting upon

the interplay between reliability, performance and resource utilisation. In this chapter

we verify how HFT addresses both goals and, more precisely, report on the evaluation of

HFT efficiency and HFT maintainability.

This chapter is organised as follows. An introduction and the main idea of the chapter

are given in Section 7.1. The experimental setup is described in Section 7.2. The HFT

maintainability evaluation experiments and the experimental results are discussed in Sec-

tion 7.3 and Section 7.4 correspondingly. Evaluation of the HFT efficiency is presented

in Section 7.5. The role of HFT modelling in the evaluation of the HFT architecture is

presented in Section 7.6. Possible overheads of the HFT architecture and ways to deal

with these overheads are discussed in Section 7.7. Concluding remarks and a summary of

the chapter are given in Section 7.8.

7.1 Introduction

Evaluation of the efficiency and maintainability of a software architecture before deploy-

ment is crucial in creating high-quality software. It allows the developers to find out

an anticipated quality of the software under development and estimate the difficulties of

future maintenance and repairs.

Software maintenance is a crucial phase of the software development life cycle. It is

important to facilitate this stage, complying with both functional and non-functional

requirements. However, very often the main focus is on the functional features of the

application, whereas the FT mechanisms are neglected and as a result do not provide

sufficient maintainability and reusability.

Software efficiency ensures that the software operation is as close to optimal operation

as is possible and practical. An efficient software application involves minimal waste of
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resources, such as time, computational power, and energy.

In the previous chapters it was already presented how to architect, model and implement

HFT for a computer-based system. However, to prove that HFT provides benefits in

comparison with the standard state-of-the-art approaches, there is a need to evaluate the

HFT architecture. It is claimed that the HFT architecture provides efficiency and main-

tainability benefits, therefore there is a need to evaluate the HFT efficiency and HFT

maintainability. The former considers how the system deals with the trade-off between

reliability, performance and resource utilisation at run-time, whereas the latter analy-

ses the developer’s effort required to accomplish various maintenance works related to

crosscutting concerns.

In both cases mainly non-functional requirements of the system are considered because,

ideally, the HFT should not affect the functional operation of the system since HFT

focuses on FT-related mechanisms and other non-functional requirements. Thus, efficiency

evaluation relates to the trade-off between non-functional properties of the system, and

maintainability evaluation relates to the developer’s experience during maintenance of the

system.

In this chapter an experimental evaluation of efficiency and maintainability of a medium-

scale software application based on the HFT architecture is provided. This architecture

was implemented using AOP, more specifically an AspectJ AOP extension of the Java

language [45]. To evaluate the HFT architecture, two versions of the same application

were implemented. The first is based on the HFT architecture with AOP, whereas the

second was implemented using standard OOP techniques. After that, a set of experiments

on both versions of the application was carried out. For the efficiency evaluation the

applications were compared by performance, resource utilisation and reliability. During

the maintainability evaluation experiments, a number of FT-specific changes were made

in the source code of both applications. The experimental results showed that in the

majority of cases the HFT architecture is more maintainable with respect to the FT-

related modifications and provides better modularity.

The HFT architecture could involve some overheads, such as broken encapsulation or

significant dependencies of the HFT agents on functional components of the system. In

Section 7.7 these overheads are discussed, analysed from different points of view, and

finally, the possibilities of how to deal with and minimise them are considered.
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7.2 Experimental setup

The HFT architecture is not suitable for all software applications. It makes sense to im-

plement the HFT part only for the HFT-ready application. Such an application should

be able to run in several operation modes, providing various performance and quality of

service, and utilising different amounts of resources. In addition, the application com-

ponents should support reconfiguration and provide the interfaces allowing the external

controllers (the HFT controller in our case) to carry out the reconfiguration to optimise

the current operation or handle the faults. If the application does not provide any of these

features, then it is not reasonable to implement the HFT architecture for it to facilitate

application efficiency.

These were the reasons for choosing the case study application for the recognition of UK

number plates as an experimental setup. Its components support reconfiguration, while

the application is able to run in different operation modes: reliability, performance and

fixed time limit. The application has about 6500 lines of code not including third-party

libraries. Two versions of the application were prepared to evaluate maintainability and

efficiency of the HFT architecture. One version was developed in accordance with the

HFT architecture using the guidelines presented in Chapter 6. Before the evaluation, this

version was adjusted using the modelling method proposed in Chapter 5, since modelling

is intended to ensure that there are no redundant interactions between the functional

part of the application and the HFT part. The advantages of this step are considered in

Section 7.6. Another version uses a standard approach to implement FT mechanisms. The

UML diagrams of both applications are shown in Figure 7.1 and Figure 7.2. The functional

part of both versions is the same. The Car Number Plate Recognition component (CNPR)

is responsible for the interaction between the user and the application. The user uploads

a set of images as an input for recognition. After that the images are sent to the IIP

component where these images are processed concurrently. This component undertakes

an initial processing of each image and tries to find the number plate area on the image.

There are two algorithms for IIP: rectangle detection based on OpenCV and HAAR

cascade [125]. If the number plate is found, it is cropped from the image and sent to

the Number Plates Queue (NPQ). The OCR component checks the NPQ and, if it is

not empty, the OCR component takes the number plate cutout and performs recognition

of the number plate. The OCR component has two algorithms as well: Tesseract [126]
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and the number plate recognition algorithm described in [127]. The former algorithm

recognises the entire string, while the latter algorithm requires to separate the symbols of

the number plate string before recognition.

HFT Controller

Performance AgentError Handling Agent

CNPR IIP OCRNPQ RC

Figure 7.1: The UML diagram of the application HFT version

CNPR IIP OCRNPQ RC

Figure 7.2: The UML diagram of the application non-HFT version

Since third-party libraries with computer vision algorithms were used, it is impossible

to be sure that the functions from these libraries will not fail. One problem is inability

to detect the required data on the image, which is not an unusual situation for the im-

age recognition operations. Another problem is an exception in the third-party library.

Redundant algorithms for the IIP and OCR stages were introduced to perform fault han-

dling and error handling. Depending on the current application state, the error could be

skipped or recovered. Recovery includes running another algorithm or re-executing the

current algorithm if the fault that caused the error is not permanent. In addition, the

application could be reconfigured to use another default algorithm if the current applica-

tion operation is not efficient. The fault assumptions, error detection and error recovery

(Table 7.1) are addressed differently in the two applications. In the HFT version, the

HFT controller and the Error Handling agent manage FT mechanisms. In the non-HFT

version the FT mechanisms are scattered across the functional components and do not

have a centralised controller.
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Table 7.1: Fault assumptions, error detection and error recovery in the applications

Error The HFT
detection

The HFT
recovery

The
non-HFT
detection

The
non-HFT
recovery

Number plate
is not found

The EH agent The EH agent
and the HFT
controller

The IIP
component

The IIP
component

Exception in
the library

The EH agent The EH agent
and the HFT
controller

The IIP or the
OCR
component

The IIP or the
OCR
component

Number plate
is not
recognised

The EH agent The EH agent
and the HFT
controller

The OCR
component

The OCR
component

Injected CPU
exception

The EH agent The EH agent
and the HFT
controller

The IIP or the
OCR
component

The IIP or the
OCR
component

Recognition
fail

The EH agent The EH agent
and the HFT
controller

The “Image”
object, the IIP
and the OCR
component

The IIP and
the OCR
component

To ensure smooth processing of the images, the average NPQ size is kept between 3

and 5 items. If the queue is growing, then the number of working threads used by the

OCR component is increased and the number of threads used by the IIP component is

decreased. If the queue size is less than 3 and not all images have been processed, then

the IIP component creates more working threads, whilst the OCR component reduces

its thread pool. In the HFT version performance monitoring is done by the Performance

agent, and the number of threads for the component is specified through its public interface

by the HFT controller. In the non-HFT version, performance monitoring is done by the

components themselves and the CNPR component specifies the number of threads for the

components.

This specific implementation of the case study is well-suited for the demonstration of

the capabilities of the HFT architecture, since the components have spare/redundant

algorithms and can be reconfigured. In addition, the application allows trading off of

performance and quality of service (or recognition rate). Thus, the HFT controller is able

to choose an efficient configuration at run-time. These are the typical characteristics of

the applications, for which HFT could be applied.
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7.3 Maintainability evaluation experiments

When both versions were ready a number of modifications related to FT functionality

were defined and implemented. During the experiments, changes in the functional part of

the application were avoided since the main goal of these experiments is to evaluate the

maintainability of the FT-related mechanisms in the HFT architecture. Typical examples

of the modifications in the FT code caused by changing fault assumptions, deploying of

new features, or refactoring the codebase were selected. These were made in both versions

of the application and are described below.

7.3.1 Changes in the settings that are used in fault tolerance
mechanisms

Sometimes the setting that defines a behaviour of FT mechanisms should be updated. This

modification allows us to check whether there is any difference in changing the settings in

the HFT and in the non-HFT versions.

7.3.2 Centralisation of thread management for IIP and OCR
components

In some software applications, there is no special module for thread management since a

chosen framework encapsulates these features and no effort from the developer is required.

However, if the application is multithreaded and performs a lot of concurrent operations, it

inevitably requires a thread management module. In the HFT version the HFT controller

is responsible for crosscutting concerns, so it is the best place to manage and distribute

the threads (computational resources) among other application components. In the non-

HFT version, a new class was introduced. The main motivation for this modification is

the separation of concerns, since dealing with thread allocation and distribution is not a

task of the functional component.

7.3.3 Handling of injected CPU error

In the case study a CPU error was introduced to analyse the feasibility of handling hard-

ware errors and exceptions at the software layer with the HFT architecture. This error is

not a real CPU error, instead it is being injected with a specified rate into critical func-

tions of the IIP and OCR components. In the given modification, two options regarding
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the CPU error were considered. The first option is to introduce the CPU error in both

applications and to apply system-wide action for the recovery of the CPU error. Before

this modification either version did not have any trace of the CPU error. In the HFT

version handling of the CPU error was added to the Error Handling agent with assistance

of the HFT controller. In the non-HFT version this error is handled mainly by the compo-

nent (IIP or OCR) where it was detected, but the component requests current recognition

success rate to choose the most suitable action for error recovery. The second option is

almost opposite. The handling of the CPU error that was introduced at the previous step

is moved to the component (IIP or OCR) where this error was detected. This experiment

represents transformation of global error handling to local error handling. Therefore, the

CPU error is now hidden from the external modules and will be recovered locally.

7.3.4 Logging diagnostics information

The majority of applications require saving diagnostics information. The logs are used

to trace possible problems and errors, and subsequently patch the application. Thus,

the current modification consists of adding a special logger to the application. For this

modification, the changes were made in such a way that each significant stage of image

processing, calls of critical functions and exceptions in critical functions are logged. In

the HFT version the Diagnostics agent, which is implemented as an aspect was added.

For all functions in the application which should be logged, the corresponding before or

after AOP advice was added. All the modifications are concentrated in a single aspect.

For the non-HFT version the class Logger with static methods, which is much shorter

than the Diagnostics agent, was added. However, all the functions whose calls should

be logged had to be modified. Switching off the diagnostics information is implemented

approximately equally. However, if there is a need to entirely remove the diagnostics for

the HFT version, only one aspect should be deleted or modified, whereas for the non-HFT

version a set of functions should be modified by deleting the lines of code with Logger

class calls.

7.3.5 Reconfiguration logic based on operation mode

Operation mode is a flexible application option intended to provide different quality of

service in various conditions. It is logical that error handling may be implemented differ-

ently for various operation modes. In reliability mode, it is necessary to apply all available
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means to recover the error, while in performance mode the error could be skipped in some

cases. The latter option is applicable for errors which will not affect the expected relia-

bility of the system. In the HFT version, the operation modes are managed by the HFT

controller. In the non-HFT version, the code related to the operation modes is managed

by the designated class. Originally IIP and OCR components were able to work in two

operation modes: reliability and performance. Reliability mode means that for the spec-

ified performance the system should be as reliable as possible, while performance mode

assumes that for the required reliability it is necessary to finish all tasks as fast as possible.

7.3.6 “Complex” error detection

In many cases error detection is not a trivial task. Very often the developer needs to

check several components or analyse the result of several functions in order to detect

an error. This modification involves detection of the error by checking the result of two

functions. Low quality of the result in the IIP component and consequent low probability

of successful recognition in the OCR component are considered an error. It should be

noted that these two conditions separately are not supposed as errors. Error recovery

involves reprocessing of the image with “better” settings at the IIP component. In the

HFT version the Error Handling agent has the trace of the processing for each image.

Thus, the detection of the given situation can be added at the OCR stage. The error

recovery action is requested from the HFT controller. For the non-HFT version the

information about image processing steps was added to the object that stores the image.

7.4 Maintainability evaluation

In this section the goal of the experiments that measured a set of realistic modifications

in the FT-related code is explained, the metrics of the source code maintainability are

considered, and the results of the conducted experiments are discussed. These experiments

show advantages and limitations of the HFT architecture with respect to the modification

of crosscutting concerns related to FT.

7.4.1 Goal of the experiments

In many cases FT is addressed as a crosscutting concern of the application which is why

it should be separated from functional modules to improve modularity. It is claimed
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that HFT can be beneficial for small- and medium-scale software applications, especially

for those which are adjustable based on an interplay between reliability, performance

and resource utilisation during the run-time. However, the counter-argument is that

HFT would make it harder to maintain the application. The problem could arise due

to an implicit coupling between the HFT agents and application components, significant

dependence of the HFT controller on the HFT agents and application components, and

global knowledge of the HFT controller about the application. In addition, the HFT

agents could amend the control flow of the monitored functions, which is not always

considered as a benefit for the maintainability of the application.

The aim of this part of the work is to gain empirical knowledge of the positive and negative

effects of the HFT architecture on software maintainability. To show the feasibility of

applying the HFT architecture experiments evaluating the HFT architecture were carried

out. During these experiments, a longitudinal study was performed and the effects of the

HFT on software maintainability were analysed.

The evaluation is based on comparison of the efforts required for the implementation of the

modifications in two versions of the same application. The first version is implemented in

the OOP style with crosscutting functionality implemented in AOP, whereas the second

version uses only a pure object-oriented approach. Although the implementations are

different, these applications are functionally identical. For simplicity, the application

with AOP is called the HFT version and the OOP-based application as the non-HFT

version.

This type of evaluation has been chosen since OOP is very wide-spread in modern software

development. Thus, it was decided to compare the maintainability of the “standard”

solution implemented in OOP-style and the proposed solution that is still OOP-based,

but its HFT functionality implemented with AOP. The experiments were designed to

understand the challenges that could be faced by developers during the maintenance of FT

functionality in the HFT architecture. In addition, we can reason about the complexity of

the HFT maintenance in comparison with the popular OOP approach. The modifications

chosen for the experiments represent typical changes and bug fixes in the FT mechanisms

of a medium-scale software application during maintenance. The evaluation should show

how significantly the source code of both applications is affected by each modification. In

addition, it should show how easy it is to find the place (class/aspect and function/advice)

where the modification should be done. It should be noted that more changes in the
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source code, especially related to modifications or deletions of the code, could introduce

new bugs. This is the reason why such modifications are considered as non-preferable in

comparison with adding new code. However, less new code in a centralised place means

less effort required for maintenance. Thus, the experiments will show the differences

between two versions and reveal advantages and disadvantages of the HFT architecture

for maintainability of FT techniques.

7.4.2 Metrics of the source code maintainability evaluation

The existing approaches to evaluating the reusability, modularity and changeability of

program code are considered in this section.

A number of metrics for object-oriented design are proposed in [147]. These metrics illus-

trate the complexity of class methods (Weighted Methods per Class), coupling between

classes in the package (Coupling between object classes) and cohesion illustrating cohesion

of the classes (Lack of Cohesion in Methods, which implies that classes should be divided

into subclasses to reduce complexity of the original class).

Metrics of AOP code are considered in [148]. These metrics comprise OOP metrics and

AOP-specific metrics, such as number of modules affected by the given aspect (Crosscut-

ting Degree of an Aspect), and number of aspects whose advice could be triggered by

operations in a given module (Coupling on Advice Execution).

Due to the scope of the application, the metrics like Weighted Methods per Class, Depth

of Inheritance Tree, Number of Children, Crosscutting Degree of an Aspect or Coupling on

Intercepted Modules were not applied, since these metrics are more suitable for complex

systems. The maintainability index (MI) metric for assessing software maintainability

was proposed in [149]. It is calculated as a factored formula. However, MI is criticised in

[150] for the lack of understandability and difficulty of root-cause analysis.

The Lines of Code metric is easier for calculation and understanding and suitable for

estimation of the developer’s effort. The Lines of Code metric was successfully applied

to the evaluation of exception detection and handling with AOP in [29] where the main

outcomes of the study are mainly based on comparison of the lines of code.

The following metrics of maintainability evaluation were chosen: lines of code affected,

functions affected and classes affected. These metrics represent the volume of code affected

by the modifications. In addition, each metric is subdivided into three parts. The first is
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Quantity of Added (lines of code, functions, classes). This metric is less critical and more

preferable since a new feature was added only without changing any existing functionality.

The second metric is Quantity of Modified. In this case, these is a need to check all places

where the modified code (e.g. functions) is used or called. The third metric is Quantity

of Deleted. If there are deleted functions, it is inevitable that some parts of the program

require modification in the places where deleted functions were called.

7.4.3 Evaluation results

Table 7.2: The HFT version

Lines of Functions / Classes /

Changes code Advice Aspects

A M D A M D A M D

Settings 0 N 0 0 0 0 0 1 0

Thread management 32 17 5 7 12 5 0 7 0

CPU exception (holistic handling) 7 9 0 0 10 0 0 3 0

CPU exception (local handling) 16 2 5 0 3 0 0 3 0

Diagnostics info 106 0 0 17 0 0 1 1 0

Reconfiguration logic based on OM 24 2 0 1 2 0 1 1 0

“Holistic” error detection 47 22 3 3 8 0 0 3 0

Table 7.3: The non-HFT version

Lines of Functions / Classes /

Changes code Advice Aspects

A M D A M D A M D

Settings 0 N 0 0 0 0 0 1 0

Thread management 38 15 5 8 12 5 1 6 0

CPU exception (holistic handling) 32 9 0 2 10 0 0 3 0

CPU exception (local handling) 0 2 10 0 3 2 0 3 0

Diagnostics info 60 0 0 2 13 0 1 6 0

Reconfiguration logic based on OM 75 0 0 4 2 0 2 1 0

“Holistic” error detection 63 18 3 5 9 0 1 3 0

According to the open/closed principle [130, 131] it is better to add new code rather than

modify or delete the existing code. Thus, if some segment of code (e.g. new line, function
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or class) was added, it is more preferable than modification or deletion of the existing

code. This is how the modification is evaluated in the experiments. The experimental

data is presented in Table 7.2 (the HFT version) and Table 7.3 (the non-HFT version).

A, M, D column headers mean added, modified and deleted metrics correspondingly.

The first modification relating to the changes in the settings was the simplest and showed

predictable outcomes. In both cases, it was necessary to modify only one file and for each

setting only one line of code was modified. Thus, the change of N settings requires the

change of N lines of code. This modification alone cannot be used for reasoning about the

HFT architecture.

The thread management modification metric did not show significant differences between

the two versions. This modification was motivated by the separation of concerns. In

addition, thread management could affect performance of the application. We attempted

to separate image processing activities and thread management activities in the functional

components. The reason that there is no difference between the two versions is that the

code managing the threads was already well structured. After modification this code was

placed in a designated module in both versions. AOP was not directly applied for this

task in the HFT version. The only use of AOP in this modification relates to performance

monitoring in the Performance agent.

It is not a trivial question where the error should be handled. Many approaches propose to

recover the error in the place where it was detected. However, the component that detected

the error is not always aware how this error would affect the application. This leads to

the situation when error recovery is implemented to deal with a worst-case scenario,

or sometimes the error is not taken into account. At the system component, there is

not enough information about the best option for error recovery. The choice significantly

depends on the rate of this error. If the error rate is stable and does not have big deviations

from the average value, it would be more convenient to recover the error where it was

detected. However, when the error rate is not constant and the fault causing the error is

intermittent then it would be more convenient to recover the error holistically taking into

account the entire system state. Whenever the developer had more information about the

error, the recovery would be much more efficient. If the error will not significantly affect

the system operation, it could be skipped. Such a scenario is acceptable for the systems

that process large amounts of data and there is an allowance for a certain rate of failed

operations.
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The two following experiments were used to evaluate the efforts required for the imple-

mentation of different approaches of CPU error handling. The first approach is handling

of the CPU error by holistic action. The HFT version was much better for this modifica-

tion. Only 7 Lines of Code (LoCs) were added in the HFT version, whereas the non-HFT

version required 32 LoCs. Moreover, two functions were added to the non-HFT version.

A reason for success behind the HFT version is a centralised mechanism for handling

various errors. Error handling is performed by the Error Handling agent, which requests

suitable recovery action at the HFT controller. So, the information about the CPU error

was just added to this centralised handler. In the non-HFT version a CPU error handler

was implemented in all places it could be raised.

The second approach is local handling of the CPU error. Thus, the CPU error handling

was moved to the component where this error was detected. External classes will not

be aware about this exception. The metrics for both application versions are not very

different. The HFT version required to add 16 LoCs, whereas no new code was added

to the non-HFT version. However, only 5 LoCs were deleted in the HFT version, while

in the non-HFT version 10 LoCs were deleted. In addition, 2 functions were deleted in

the non-HFT version. All other metrics are the same. Hiding (or suppressing) of CPU

exception inside the class where it was detected does not demonstrate the benefits of the

HFT architecture because the goal of HFT is the opposite. The problem for the HFT

architecture here is that the CPU exception was handled by the Error Handling agent

and by the HFT controller. The change required to delete all this code and handle the

exception inside the IIP and OCR classes. We will get the benefits if the class is allowed

to propagate this exception and then handle it with the HFT controller. This was shown

in the first approach of CPU error handling.

Logging and grouping the diagnostics information is an important part of a computer-

based system especially at the initial stages of system exploitation. However, the source

code responsible for saving and processing of the diagnostics information does not con-

tribute to system functionality. Moreover, if this code is tangled with functional code

it is difficult for the developers to search the bugs and add new features to the system.

Thus, there is a need for textual separation of the functional and diagnostics code. In

addition, there should be a possibility to switch off the diagnostics if the problem is re-

solved or in order to provide better performance during high system load. AOP provides

such features. The developer can specify which information should be logged without
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modification of the functional code. In the OOP approach, it is necessary to add calls to

a special object whenever this information should be logged. In our experiments related

to logging the diagnostics information the HFT version was better by a majority of the

metrics. It loses by lines added and functions/aspects added metrics, 106 against 60, and

17 against 2 correspondingly. However, the HFT version is simpler and more intuitively

understandable, since all changes are made within one file, while in the non-HFT version

6 files and 13 functions had to be modified. The code in the non-HFT version became less

readable. Even though the HFT version requires more lines of code, it was necessary to

add only 2 functions and 15 AspectJ advice. No modification of the functions or lines of

code is required and only one aspect was added. If exception logging only is considered,

then the non-HFT version will lose by the “lines of code” metric as well.

Add reconfiguration logic change. The HFT version already had some functions that were

reused for this change. The non-HFT version required a new class with new functions.

Almost all metrics are better for the HFT version. Moreover, it requires 3 times fewer

lines of code.

Complex (or holistic) error detection is a very typical modification for modern software.

System requirements are constantly clarified and it is logical that in some cases certain

errors could be detected not only by one component, but by monitoring of two or more

system components. Even though each state of the separate components is not considered

as an error, the combined states of the components are the error. This experiment clearly

illustrated the advantages of the HFT architecture. The HFT version requires fewer new

LoCs, slightly more modifications in LoCs, and fewer new and modified functions.

Regarding the combined analysis of lines of code affected, functions/advice affected and

classes/aspects affected metrics, modifications related to holistic error handling, intro-

ducing reconfiguration logic and diagnostics clearly showed the advantages of the HFT

architecture. These modifications are very likely FT-related modifications of the applica-

tion and the HFT version was better for these modifications. The HFT architecture will

not give the benefits for handling of local errors that are related to the inner operation of

the application components. However, even in this case the HFT architecture based on

AOP would not be worse than the standard OOP approach.
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7.4.4 Modularity and maintainability of each version

Some metrics such as cohesion, coupling, separation of concerns and changeability do

not directly depend on affected LoCs or functions. Changeability of the FT mechanisms

was mainly better in the HFT version. The HFT version provides better cohesion with

regards to performance and error handling code. In the HFT version this code is not

tangled with functional code. Thus, it provides better cohesion in functional components

and in the HFT part. In the non-HFT version, performance monitoring and error handling

code is significantly tangled with functional code, which increases coupling and decreases

cohesion.

The HFT version provides clear separation of performance management, resource utilisa-

tion management, FT management and operation mode management. In the non-HFT

version the separation of crosscutting concerns is almost not supported. Due to the scope

of the case study, it was convenient to use one module (the HFT controller) to manage

all these concerns. For larger applications, it would make sense to develop dedicated con-

trollers for each of these concerns and coordinate the functionality of these concern-specific

HFT controllers.

The HFT version introduces an implicit coupling between the HFT agents and the mon-

itored application components. Certain modifications of the inner structure of the com-

ponents would require modification of the HFT agent. However, this is the cost of better

cohesion and separation of crosscutting concerns.

7.5 Efficiency evaluation

In this section evaluation of HFT efficiency is discussed. The two versions of the case study

application are compared by performance, reliability and resource utilisation. In the HFT

version, the HFT controller is responsible for adjusting the system components to provide

an efficient operation. In the non-HFT version, the functional components are more

complex and they are self-adjusted, since there is no centralised control. If there were a

centralised control in the non-HFT version, this would be another implementation of HFT.

This is the primary reason for choosing the given evaluation approach. Intuitively, the

non-HFT version will be better at optimising the individual components, since each crucial

component is itself responsible for the optimisation. However, without the evaluation, it

is very difficult to say how the efficiency of the entire application will be affected.
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In the evaluation, three crosscutting parameters are monitored and adjusted:

• Performance (average time for image processing).

• Reliability – percentage of successfully recognised number plates, or recognition rate.

• Resource utilisation. In the given case study resource utilisation is the number of

CPU threads allocated among application components.

Resource utilisation can be considered differently for different types of devices. On the

personal computer or the laptop, which were used for the experiments, energy consumption

is not a crucial factor. In addition, due to the specifics of the application we do not

experience a lack of disk space or RAM. Therefore, we focus on the CPU usage only.

For other types of application, the resource utilisation can be expressed by RAM, disk

or network usage. In addition, if the application can be used on a device which has only

an autonomous power supply, it is reasonable to analyse power and/or energy usage as a

resource utilisation.

7.5.1 Interplay between reliability, performance and resource
utilisation

In the evaluation, three non-functional parameters: reliability, performance and resource

utilisation are considered. The better application, in current conditions, shows a better

parameter value when two other parameters are fixed. For example, the application that

runs faster, will be considered better, when reliability and resource usage properties of

both applications are the same.

The extreme cases—where one or two parameters are fixed with their lowest possible

values—were avoided. If the system is allowed to be totally unreliable, then the best

strategy for both applications would be just to fail fast to ensure the best possible perfor-

mance. Such extreme cases can say neither about the advantages nor the disadvantages

of HFT. This is the reason why we focus on the test cases without a trivial solution.

7.5.2 Dynamic adjusting of the applications

Both experimental applications should constantly monitor and, if necessary, adjust their

performance, reliability and resource utilisation. The application with the HFT architec-

ture is being adjusted by the HFT controller. When the HFT controller detects that the
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application could operate faster with the same reliability and same resource utilisation,

it reconfigures the application through the public interfaces of the system components.

The non-HFT version, in turn, is being adjusted at the component level, i.e. each crucial

component is responsible for its own optimisation.

7.5.3 Running the experiments

In the efficiency evaluation experiment we analyse how the applications operate at run-

time by processing the same input data. 100 .jpg images with UK number plates (on the

cars) were used for the experiment. It does not make sense to upload the images without

number plates to check how the recognition algorithms would deal with that because even

with the number plates on the images, the algorithms cannot provide a 100% recognition

rate.

For the efficiency evaluation, the total processing time of a set of images, recognition rate

of image processing, and a number of working threads allocated is checked.

To optimise the resource usage, the HFT controller can specify how the available CPU

threads will be distributed among the IIP and OCR components. In the non-HFT version,

the components are doing this task by themselves, based on the NPQ size.

It is preferred when the system operates as reliable as possible. However, even though

this is achievable, it is not always reasonable to provide such quality of service. On top

of requiring many more resources it could slow down the application and deteriorate the

availability – readiness to provide the correct service. Therefore, sometimes it is reasonable

to reduce reliability requirements in order to provide better performance and distribute

the resources more efficiently.

To provide the flexibility for the trade-off search between these parameters the computer

system should be adjustable. In our case study, there are several possibilities for the ad-

justment. The IIP component has two diverse algorithms for the initial image processing

and searching of the number plate: rectangle detection and HAAR cascade. Each algo-

rithm has advantages and disadvantages in certain conditions. Moreover, their behaviour

depends on the input images.

The input images are classified into three categories: small (less than 200 Kbyte), medium

(200 Kbyte–1 Mbyte) and large (1 Mbyte–7 MByte). Approximate processing times are

given in Table 7.4 and Table 7.5. It should be noted that even if the size of the images is
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equal, the processing time (in one application version) could differ significantly due to the

image data itself. For instance, the rectangle detection algorithm of the IIP component

would require much more time if the image was taken in front of a brick wall, a building

with windows or some other structure with a rectangular pattern.

Table 7.4: Execution time in performance mode

Run The HFT version (ms) The non-HFT version (ms)
1 881 1029
2 947 995
3 910 1053

Table 7.5: Execution time in reliability mode

Run The HFT version (ms) The non-HFT version (ms)
1 1317 1531
2 1342 1448
3 1330 1420

Table 7.6: Recognition rate with fixed time limit

Run The HFT version The non-HFT version
1 75% 70%
2 72% 71%
3 78% 68%

7.5.4 Efficiency evaluation results

The experiments showed that the HFT version is faster than the non-HFT version in the

performance and reliability modes. In the performance mode, the HFT version required

about 880–950 ms to process the set of images, whereas the non-HFT version required

about 990–1050 ms. In the reliability mode the HFT version was faster as well, 1310–1340

ms against 1420–1530 ms. Moreover, when the execution time is fixed (1250 ms), the HFT

version provides a better success rate (Table 7.6).
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7.6 Role of modelling in the design and implementa-

tion of the case study

The HFT modelling (Chapter 5) assisted in defining the control loops between the HFT

elements and functional system components. The HFT version of the application was

designed and implemented in an efficient manner, without unnecessary interactions be-

tween the functional components and the HFT part. This allowed the HFT version to

outperform the non-HFT version, while providing better maintainability. Thus, HFT

modelling is an important step in the engineering of computer-based systems with the

HFT architecture.

7.7 Overheads of the HFT architecture

In the proposed architecture, there are two types of interaction between the HFT controller

and application components. The former link is asynchronous, which uses public interfaces

of the application components. When the HFT controller starts reconfiguration of the

application, it uses these interfaces to make necessary adjustments in the application

components. Since the link is asynchronous, there is no high risk of locks or bottlenecks.

However, the latter link is synchronous and it is implicit for the application component.

This interaction is initiated by the intervention logic of the HFT agent, when the agent

requests the HFT controller for a suitable action. Here is a risk of dead-lock and delays

for performance-intensive applications. These applications require a special attention to

the implementation of the synchronous part of the HFT controller in order to avoid dead-

lock and bottlenecks. It is advised to apply HFT modelling (Chapter 5) to define which

interactions between the HFT elements and the application components are required and

which interactions could be omitted since they will not provide benefits for the application

efficiency.

7.8 Results and discussion of the HFT evaluation

During their lifetime software systems require various maintenance work to add new fea-

tures and fix discovered bugs. These modifications are related to functional and non-

functional features. In this chapter, an experimental evaluation of the Holistic Fault

Tolerance architecture based on the typical changes of FT-related code was presented.
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We started by justifying the choice of modifications and evaluation techniques. Then

the aspect-oriented implementation proposed for HFT was evaluated by conducting its

experimental comparison with a standard object-oriented FT implementation. According

to the experimental results there are clear benefits of using the HFT architecture imple-

mented with AOP. In most cases, the HFT version is more efficient and it is better for

maintainability. Thus, the HFT architecture can be applied to improve maintainability

of FT mechanisms and ensure higher modularity of the source code in the application.

The maintainability evaluation showed that for the set of typical changes in FT-related

code used to evaluate maintainability, the HFT version (AOP approach) proved to be

easier to maintain as opposed to the non-HFT version (pure OOP approach) in most cases.

In the remaining cases, an almost identical effort was required to implement modifications

in the HFT and non-HFT versions. However, there was no such modification for which

the HFT version would be worse than the non-HFT version. In addition the HFT version

provides much better cohesion and separation of concerns than the non-HFT version.

The efficiency evaluation confirmed that the HFT version of the case study is better

performing as compared to the non-HFT version with regard to the trade-off between

reliability, performance and resource utilisation.

In the next chapter the research outcomes will be discussed, the limitations of HFT will

be considered, and research directions for future work will be given.
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8.1 Discussion

Engineering fault tolerance for a computer-based system is not a trivial task. It is im-

possible to find a universal solution that would fit all occasions. However, it is feasible to

provide certain patterns, techniques, and guidances that would improve maintainability,

simplify the understanding and ensure the efficiency of fault tolerance mechanisms for

computer-based systems. This thesis proposed a methodology for designing computer-

based systems with Holistic Fault Tolerance. The main motivations for introducing the

concept of Holistic Fault Tolerance are related to the growing problem with efficiency and

maintainability of fault tolerance mechanisms in modern computer-based systems.

The thesis started with describing a research area and inspirations for the idea of Holistic

Fault Tolerance. The importance of systematic and rigorous engineering of fault tolerance

mechanisms to ensure dependability of computer-based systems, and the problems of fault

tolerance complexity, maintainability, and misuse were discussed in Chapter 1. The ex-

isting approaches to fault tolerance engineering and system structuring that tackle these

problems and a critical analysis of their limitations was presented in Chapter 2. After

that in Chapter 3 an engineering concept for systems with Holistic Fault Tolerance was

formulated and the engineering stages required to develop computer-based systems with

HFT were described. Holistic Fault Tolerance solves the problems stated in Chapter 1 by

considering system fault tolerance as a crosscutting concern and provides a holistic view

of system-wide fault tolerance mechanisms simplifying their understanding and improving

their efficiency. The three steps for engineering Holistic Fault Tolerance were presented

in Chapter 4, Chapter 5 and Chapter 6. An architectural blueprint describing how to

structure computer-based systems with Holistic Fault Tolerance was provided in Chap-

ter 4. The modelling method for such systems was presented in Chapter 5. The patterns

and guidelines to implement the HFT architecture using AOP were given in Chapter 6.

Maintainability and efficiency of computer-based systems with the HFT architecture were

evaluated in Chapter 7.

8.2 Contributions of the study

The thesis focuses on the concept of Holistic Fault Tolerance for computer-based systems.

The idea itself and engineering steps including design, architecture, modelling, and imple-

mentation that are required to implement a computer-based system with Holistic Fault
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Tolerance were covered.

The main contributions of the research are listed below:

• The concept of Holistic Fault Tolerance and all relevant stages required to engineer

a computer-based system with Holistic Fault Tolerance are presented.

• Basic elements of the Holistic Fault Tolerance architecture with their interfaces and

interactions are described in detail.

• A modelling method intended to facilitate the design and implementation of computer-

based systems with the Holistic Fault Tolerance architecture is explained.

• The guidelines on how to implement the application with Holistic Fault Tolerance

in the Java programming language using AspectJ AOP extension are provided.

In Subsection 3.2.2 the challenges of FT engineering, such as tolerating new and residual

faults, dealing with unanticipated failures, handling more than one concurrent fault ac-

tivation, and ensuring system protection after modifications were stated. Holistic Fault

Tolerance addresses all these challenges by applying a systematic approach to system-wide

FT mechanisms during all stages of the development life cycle. Special FT techniques can

be implemented by the HFT controller and Error Handling agent to tolerate new and

residual faults and to handle two and more concurrent faults. This would minimally af-

fect the functional part of the system, while the mechanisms responsible for tolerating

these faults will be implemented in a modular way simplifying deployment, testing and

future modifications. With regards to concurrent fault activation, HFT provides the pos-

sibility of centralised monitoring of critical components in order to detect and recover the

errors caused by concurrent fault activations in different parts of the system.

An example of an unanticipated failure is an unhandled exception in the software applica-

tion. Some programming languages provide the means to catch all unhandled exceptions

in one place. However, it is not advised because the system state could be corrupted

because of unhandled exception. The better option could be to let the application crash

and use a special watchdog that will restart the application after failure. This watchdog

should be dependable itself. In addition, it is necessary to ensure that the system will be

able to start after the unhandled exception and there are no inconsistencies with data that

were saved to the disk (these corrupted data may prevent the application from restart).

The HFT controller can implement the required watchdog possibilities.
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To ensure the system protection is verified after modifications and repairs FT should be

addressed from the earliest stages of the system development life cycle. This approach is

in line with the concept of HFT presented in the thesis. Moreover, HFT maintainabil-

ity evaluation experiments were conducted to ascertain that system functionality is not

corrupted after maintenance work on HFT mechanisms.

The proposed concept was evaluated with regards to efficiency and maintainability of

fault tolerance mechanisms. It was shown that the application version implemented ac-

cording to the Holistic Fault Tolerance architecture using AOP programming illustrates

better efficiency of fault tolerance and fault handling mechanisms than the system im-

plemented using a standard OOP approach. In addition, the Holistic Fault Tolerance

version provided better maintainability of fault tolerance mechanisms due to the separa-

tion of crosscutting concerns.

8.3 Applying HFT to computer-based systems

As was shown, Holistic Fault Tolerance can be applied to computer-based systems to

improve modularity and assist in the separation of crosscutting concerns taking into ac-

count efficiency and maintainability of computer-based systems. It is more convenient to

implement the system with Holistic Fault Tolerance from scratch, since it is easier when

functional system components are HFT-ready from the initial steps of system engineering.

However, there is still a possibility to introduce Holistic Fault Tolerance into existing sys-

tems. The system components should be modified and updated accordingly, by providing

all necessary interfaces to the elements of the Holistic Fault Tolerance architecture. In

addition, system-wide fault tolerance mechanisms should be redesigned to be managed by

the Holistic Fault Tolerance part of the system.

Due to the limited resources available this thesis does not cover all possible applicabilities

of Holistic Fault Tolerance. Examples were given for small- and medium-scale software

applications. However, Holistic Fault Tolerance is suitable for various systems and it can

encompass more layers and components of computer-based systems including hardware.

8.4 Limitations of Holistic Fault Tolerance

The presented research concentrated on the trade-off between maintainability, reliability,

performance and resource utilisation of computer-based systems. These are very impor-
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tant non-functional characteristics of the system. However, such factors as cost and time

of developers’ training or willingness of paradigm change by the companies were not con-

sidered. Many industrial bodies are quite reluctant to introduce new approaches especially

if these approaches do not involve an immediate financial profit. Performance issues are

often resolved by upgrading the hardware, while resource usage (sometimes even waste)

is very often ignored. Thus, the concept of Holistic Fault Tolerance does not address

organisational issues yet.

In addition, system security was not considered in the context of Holistic Fault Tolerance.

Security along with fault tolerance and performance is a crosscutting concern and it could

be managed by elements of the Holistic Fault Tolerance architecture. However, it is out

of scope of this research.

Another limitation of the Holistic Fault Tolerance architecture is that its elements (the

HFT controller and the HFT agents) are not adaptable themselves, even though they are

used to adjust and configure the functional part of the system. The configuration and

adjustment of the HFT elements is performed during development and apart from working

under different operation modes there is no significant adjustment of the HFT controller

and the HFT agents. In some cases this could prevent the system being as efficient as

possible because of redundant activities of the HFT part.

8.5 Future work

As a future work there is a plan to elaborate the idea of Adaptive Holistic Fault Tolerance

where the elements of the Holistic Fault Tolerance architecture will be self-tunable. This

self-tuning will be achieved by introducing or switching-off the HFT agents and reconfig-

uring the HFT controller at run-time depending on the chosen operation mode, system

loading and system state. This will help to ensure the efficiency and scalability of the

Holistic Fault Tolerance part of the system.

8.5.1 Adaptive Holistic Fault Tolerance

As mentioned in Section 8.4, the proposed Holistic Fault Tolerance architecture has some

limitations regarding the participation of the Holistic Fault Tolerance part in adjusting

an entire computer-based system. It seems logical that depending on the system state,

the whole system, including the Holistic Fault Tolerance part, should be adaptable and
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reconfigurable, but not only the functional part. For example, some HFT agents can

be switched-off and other agents can be reconfigured depending on the system state.

The HFT controller could select different sets of functional component activities to be

monitored under different system loading. This is an area of further research.

8.5.2 Universal approach to applying HFT

The approach presented in the thesis was examined on small- and medium-scale software

applications. However, various cloud and distributed systems are common nowadays and

there is a need to ensure that Holistic Fault Tolerance is suitable for such systems and

these systems can benefit from Holistic Fault Tolerance. Future work will include an in-

depth modelling and thorough analysis of all implications of Holistic Fault Tolerance on

large-scale systems.
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