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Abstract

The PhD project consists of two parts. The first part is about finite trees, realizations

and random walks. The second part is about the Hecke algebras of infinite trees and

buildings and the cohomology groups. We note that some examples of finite trees can be

generalized to the infinite cases. The words of finite length in the example of ultrametric

rooted trees with finite depth can be extended to doubly infinite chains in the infinite

homogeneous trees thus defining a Banach algebra.

As the background of the project, we study the topics of finite phylogenetic trees by

understanding the combinatorial and geometrical structure of rooted and unrooted discrete

BHV tree space of n taxa. Certain types of random walks on the space of trees can be used

to model the evolution process. As a method to improve the computation of such random

walks, we realize some tree spaces into polytopes in Euclidean space where the vertices,

edges and faces indicate trees of different degenerate levels. In particular, we study the

links between the permuto-associahedra and the BHV tree-space. One specific realization

is called the secondary polytope, which is used to construct the associahedra, and we will

generalize this construction into more complicated examples and compare with the BME

polytopes of the BHV trees.

In order to study the random walks on tree space, we apply several classic methods

such as the eigensolutions of Markov chains, Gelfand pairs and spherical functions to

decompose the functions on tree space. We present some classic examples where these

methods solve the random walk explicitly. We consider biinvariant subalgebras of group

algebra which are commutative under convolution. These arise from Gelfand pairs where

spherical functions can be used to produce the eigenvectors of the transition matrix of the

random walk. We note that an example of the q-homogeneous rooted tree of a finite depth

is a good link to generalize the study from finite to infinite cases where the space is still

discrete.

The first example in the second part of the thesis is the infinite homogeneous trees

and we study the invariant subalgebra under the `1 norm. The space can be discretized to

Z+ and we show that it is isomorphic to a Hecke algebra with single generator, the Hecke

operator which corresponds to the random walk generator. It is natural to consider some

key properties of the algebra, i.e. the spherical functions, character space, derivations and

b.a.i.. The main example we study is the Gelfand pair given by projective general linear

groups over p-adic numbers and the subgroup corresponding to the the p-adic integers,

where the example of the smallest dimension corresponds to infinite homogeneous trees

and examples of higher dimensions correspond to the Bruhat-Tits buildings of type Ã.



We claim that the Hecke algebras of these Gelfand pairs are isomorphic to the invariant

subalgebras of functions on the Ã lattice subject to weight conditions determined by p.

Based on the isomorphic algebras on the type Ã lattices, we consider the examples of

types Ã and B̃, with and without the invariance conditions under the Weyl group action

on the lattices. We show that the above examples are all finitely generated and the number

of generators in each case are equal to the dimension of the lattice in the Euclidean space.

We then compute cohomology groups of the algebras of functions on the weighted lattices.

We build up from the methods introduced in the examples of those similar to Z+ and Zk+ .

The general idea is to calculate the approximate formulae from the precise ones in Z+ and

Zk+ and iterate the process with an induction by reducing the degree of the leading terms.

We also expect this method can be generalized to the Hecke algebras of other Gelfand

pairs with corresponding weighted lattices.
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Chapter 1

Overview

In this chapter, we briefly outline the materials discussed in the contents. This PhD project

is motivated by finite phylogenetic trees and the aim is to investigate specific problems

related to the combinatorial, geometrical and algebraic structure of trees. The first part

of the thesis focused on the problems of finite dimensional examples, mainly on the combi-

natorial properties and random walks. We review some background in phylogenetics and

give our own realizations of certain tree spaces in terms of convex polytopes in Euclidean

space. The second part of thesis move on to the problems in infinite dimensional exam-

ples, namely the infinite homogeneous trees and buildings. We study the Banach algebra

of functions on the vertices of trees and buildings and state the link to the Iwahori-Hecke

algebras with the `1 norm. We also study some cohomology groups of algebras of functions

on lattices which corresponds to the subalgebras of functions on trees and buildings via

an isomorphism.

Chapter 2 starts with a brief introduction to the topic of phylogenetic trees. We fix

the number of leaves to be n and consider the semi-labeled trees. We define a tree as a

connected graph with no cycles and specify the leaf vertices of degree 1 to be labeled and

the internal vertices to be unlabeled. For n ≥ 3, the space of fully resolved semi-labeled

trees, denoted by Sn in Definition 2.11, consists of all trees with all n leaf vertices labeled

by the set of n species and unlabeled (n − 2) internal vertices of degree 3. The discrete

phylogenetic tree space, denoted by S∗n in Definition 2.12, consist of all semi-labeled trees

with n leaves, including the trees in Sn and the semi-labeled trees with internal edges

of degree greater than 3. Both Sn and S∗n are finite sets thus we consider them to be

discrete. By defining the adjacencies between the trees, e.g. by the nearest neighbour

interchange in Section 2.2.2, we can define a graph and study the simple random walk on

the corresponding graph.

We also define the continuous tree space Tn by specifying the internal edge lengths for
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Chapter 1. Overview

the trees in the discrete space S∗n, as in Definition 2.16. We embed the space Tn into the

Euclidean space R2n−1−n−2 whose basis corresponds to the non-trivial splits of the n leaf

labels.

The new results are presented in Section 2.3. We present the realizations of some tree

spaces which preserve the nearest neighbour interchange adjacencies and combinatorial

structures. We realize the permutations of n leaf labels on the permutohedron Pn as an

(n − 1)-dimensional convex polytope in Section 2.3.1. We then realize the space of fully

resolved trees with leaf labels in a certain permutation on the associahedron Kn as an

(n − 2)-dimensional convex polytope in Section 2.3.2. We apply the secondary polytope

construction to produce an explicit half-space presentation of Kn, with the proof using an

original idea of the folding process in Theorem 2.39. We then combine the realizations of

Pn and Kn to construct the (n− 1)-dimensional convex polytope permuto-associahedron

KPn which consists of all fully resolved trees in the discrete space Sn in Section 2.3.3.

Finally we generalize the secondary polytope construction to construct a polytope of higher

dimension for the discrete space Sn as a generalized associahedron.

Chapter 3 is motivated by the topic of simple random walks on discrete tree spaces. We

consider the algebra of functions on a group G and on the homogeneous space X = G/K

where K is a subgroup. We present the definitions of finite Gelfand pairs and study

some examples where the bi-K-invariant subalgebra is commutative under convolution.

The spherical functions are applied to analyse the characters of the subalgebra. We will

clarify the relation between the lumpable random walk on the partitions generated from

the double cosets of a Gelfand pair (G,K) and the bi-K-invariant subalgebra of funtions

on the finite group G. The eigensolutions to the transition matrix of the simple random

walk on the homogeneous space G/K can be obtained from the spherical functions for

the Gelfand pair (G,K). In particular, we study the random walk on the vertices of the

Petersen graph, which corresponds to the discrete tree space S∗5 . We also briefly outline

how the random walks on other discrete tree space can be lumped to reduce the dimensions

of the transition matrices for the simple random walks.

Chapter 4 starts with the infinite homogeneous tree Tq. We study the Gelfand pair given

by the automorphism group acting on Tq and the subgroup which stabilizes a fixed vertex

x0. The Iwahori-Hecke algebra defined from the Gelfand pair is singly generated and can

be explicitly considered as an algebra on Z+. We study the spherical functions, characters,

the existence of point derivations and bounded approximate identities of these algebras.

We introduce a new method of the shift matrix to compute spherical functions and charac-

ters. The main result is Theorem 4.25 which proves that the bi-K-invariant subalgebras of

functions on the p-adic infinite trees with `1 norm are isomorphic to the S2-invariant sub-

2



Chapter 1. Overview

algebras on integers where the multiplications satisfy the rules for multiplications between

Laurent polynomials with an ωR-weighted `1 norm.

Chapter 5 is a generalization from the example of the automorphism group acting

on Tq. We consider the Bruhat-Tits buildings defined from the homogeneous space

PGLn
(
Qp

)
/PGLn

(
Zp
)
, the projective general linear groups over p-adic numbers and in-

tegers. In particular, we set the group G = PGLn
(
Qp

)
and the subgroup K = PGLn

(
Zp
)

and show that the pair (G,K) is a weakly symmetric Gelfand pair. Some results still need

further justification so we present them as conjectures. The bi-K-invariant subalgebra of

functions on the building correspond to the algebra of functions on a Weyl chamber of

type Ã lattices which is isomorphic to Zn−1
+ , satisfying a multiplication rule ∗p determined

by the value of the prime number p.

In Chapter 6, we study the algebra of functions on Type Ã and Type B̃ lattices with the

ωR-weighted `1 norm. We also study the invariant subalgebra under the group actions

of Sn and Bn on the corresponding lattices, namely An,ωR and Bn,ωR . We describe the

multiplication rules as the multiplications between the Laurent polynomials, the generators

and point derivations of the two types of algebras.

For the higher cohomology groups of singly generated algebras, we review some well

known methods to compute the cohomology groups of `1 (Z+) on the point modules and

dual modules, with and without the weight condition ωR on the `1 norm. For the sim-

plicial and cyclic cohomology, we study an explicit construction of coboundaries for the

algebra `1 (Z+) in [20]. The method is applied to derive an approximate construction of

coboundaries with finite inductive steps to compute the simplicial and cyclic cohomology

groups of the algebra A2,ωR which is isomorphic to the Iwahori-Hecke algebra generated

from the infinite homogeneous tree in Chapter 4. The main statement is presented in The-

orem 6.45. We finish with a conjecture of the higher cohomology groups of the invariant

subalgeras of functions on the weighted type Ã and type B̃ lattices under the Weyl group

actions.

3
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Finite trees, realizations and

random walks
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Chapter 2

Background and finite tree spaces

2.1 Introduction

Biologists use phylogenetic trees to analyse the evolution and structure of genes. Phylo-

genetic trees can be built by comparing DNA sequences using specific parts of the genome

[53], [61]. Trees play a very important role in many fields of biology such as bioinformatics,

systematics, and comparative phylogenetics [53]. Information can be obtained from a phy-

logenetic tree so that we give ourselves a better knowledge of evolutionary relationships

between species.

Trees have mathematical structures based on graph theory and the space of phyloge-

netic trees can be studied from combinatoric and geometric view points [9], [62] . Scientists

are keen to use mathematical tools to describe the space of evolutionary trees, which are

widely used by biologists and statisticians to analyze data numerically [4]. In a specific

version of tree space, the candidates for species on the leaves are fixed therefore we con-

sider the space to be finite. Within the space, the divergent patterns and their network of

paths give us numerous possibilities to infer the most likely evolutionary paths.

The space of phylogenetic trees is mostly studied by pure mathematicians analytically

[37], [26], [27]. Originally the finite dimensional problem was approached by the triangula-

tions of convex polygons, which are the dual graphs of a binary tree with fixed cyclic order

of the labels [28]. In the last decade, the study of tree spaces has exploded and attracted

different approaches from various directions [8], [9], [56], [23], [19], [57]. Therefore we

review some important results in this research subject and develop it into more general

cases.

The aim of this thesis is to investigate some pure mathematics developed for the study

of tree spaces in both finite and infinite dimensions. We start by sketching a classification

of tree spaces from different properties of geometry and combinatorics. We will then

move on to the relations and adjacencies within the same tree space (the random walk)

5



Chapter 2. Background and finite tree spaces

and compare our analysis with others. There are also published results from different

perspectives and we would like to clarify the relationships between these approaches after

the analytic work [59], [52].

We would like to produce a result on the decomposition of functions on tree spaces

which use the Laplace operators from the adjacencies. The solution will be the decompo-

sition into eigenvectors giving harmonic analysis on tree spaces. Meanwhile, the random

walk on continuous spaces can be interpreted as the solutions to the heat equation and dif-

fusion processes in applied mathematics. Similarly, the eigensolutions from the adjacency

matrices will give us information including processes and paths of evolution by likelihood

in statistics.

In graph theory, a tree is defined to be an undirected graph T = (E, V ) which is

connected and without any simple cycles. Every pair of distinct vertices on a tree is joined

by a unique path which is a set of edges. We consider trees with no trivial internal vertices

of degree 2 in the unrooted cases. The only vertex we allow to have degree 2 is the vertex

that corresponds to the root in a rooted tree. A leaf vertex is a vertex of degree 1 and a

leaf edge is the edge which is connected to a leaf vertex. A tree space T is defined to be

the collection of all trees that satisfy certain properties. We present some classic examples

of trees, their related expressions and embeddings.

Definition 2.1. For n ≥ 3, a star sn is a tree with n edges and (n+ 1) vertices, the only

internal vertex i0 and the leaf vertices {v1, · · · , vn}.

The internal vertex i0 has degree n and is connected with all leaf vertices and every

leaf vertex has degree 1 is only joined to the internal vertex i0. There are no internal edges

in this graph. We may consider the star tree as the fully degenerate phylogenetic tree of

n species. In the realization and the computation of metrics on tree spaces, the star tree

is often considered as the origin in the corresponding Euclidean space [5].

Note that the star tree is bipartite therefore there exists an eigensolution which corre-

sponds to the alternating eigenvector with eigenvalue −1 in the simple random walk on

the graph in addition to the constant solution with eigenvalue 1. In this case, the simple

random walk does not converge to a stationary distribution.

Definition 2.2. A tree is called semi-labeled if the leaf vertices are labeled and the internal

vertices are not labeled.

For a semi-labeled unrooted tree with n leaves, we choose X = {t1, t2, . . . , tn} to be set

of leaf labels which correspond to the species. To simplify the labeling, we might replace

them with the set of numbers N = {1, 2, . . . , n}. For a semi-labeled rooted tree, one of

6



Chapter 2. Background and finite tree spaces

the leaf labels is chosen to be the root. Note that in a binary rooted phylogenetic tree,

the leaf edge for the root has positive length therefore the internal vertex adjacent to the

root vertex has degree at least 3.

Definition 2.3. A permutation of X is a sequence: iπ(1), iπ(2), . . . , iπ(n) where

{i1, i2, . . . , in} = X and the group element π ∈ Sn.

We start from a string given by a permutation of X. Sometimes we write the root label

R or 0 in front of the string so that it has length (n + 1). We then add brackets on the

string by the following rules. We pick a subsequence of consecutive elements of length at

least 2 in the string, i.e. the subsequence j1, . . . , jk where there exists t such that jl = il+t

for all l = 1, . . . , k. Then we put a left bracket to the left of j1 and a right bracket to the

right of jk on the string so that the subsequence j1, . . . , jk is bracketed.

Definition 2.4. The partition given by a bracketed subsequence j1, . . . , jk of the sequence

iπ(1), iπ(2), . . . , iπ(n) is a pair of disjoint subsets {j1, . . . , jk} and {X ∪R} \ {j1, . . . , jk} of

the set X ∪R.

We then repeat the process by bracketing more subsequences of consecutive elements

of the string by choosing a subsequence Xjk that satisfies that following conditions:

• the length of Xjk must be at least 2;

• the subsequence Xjk must not be identical to any subsequence that has been already

bracketed;

• given any previously bracketed sequence X0, Xjk and X0 can either be disjoint, or

one of them is completely included in the other i.e. the two brackets for X0 and Xjk

are compatible.

Remark 2.5. The first two conditions make sure that all bracketings are nontrivial and

the third condition defines the pairwise compatible relations of the set X ∪R for any two

distinct brackets.

The string is fully bracketed if there are not any nontrivial brackets to be added by the rules

above. Note that a single label in the string is also fully bracketed. In a fully bracketed

string, every bracketed subsequence consists of a unique partition of two disjoint bracketed

subsequences. Every single label in the string is also one of the two disjoint sets of the

partition for a unique larger bracketed subsequence.

Definition 2.6. A semi-labeled Newick string of X without edge lengths is a string of X

with compatible nontrivial bracketings.

7



Chapter 2. Background and finite tree spaces

We will now construct the semi-labeled rooted binary tree from the semi-labeled Newick

string which is fully bracketed. The semi-labeled rooted binary tree will be constructed

by defining the vertices and edges which are (computer-)readable from the Newick string.

For the binary tree to be nontrivial we require n ≥ 3. We start with the star tree s3 and

label one leaf vertex by the root label R. Then we find two subsequences A1 and A2 whose

union is the full sequence A on the Newick string such that A1 and A2 are both bracketed

or just consist of a single label. We then define both subsequences to be the children

of the root R and label them on the other two vertices of the star tree respectively. If a

subsequence Xjk consists of more than one labels, we label two vertices by the two disjoint

bracketed subsequences of its partition as its children and join each of these two vertices

to the vertex labeled Xjk by an edge. We repeat this process on all subsequences until

vertices of children all correspond to single labels. We obtain a connected graph which is a

tree with (n+ 1) leaves labeled by the set X and the root R. The bracketed subsequences

on the internal vertices not only define the partition of splits, but also define the subtrees

as they are all in the semi-labeled Newick string format. An example of semi-labeled

rooted binary tree is given by the figure below.

Figure 2.1: The rooted binary tree constructed from the Newick string
(
(a, c) , b

)
,
(
(d, e) , (f, g)

)
.

Every fully bracketed semi-labeled Newick string and the rooted binary tree has a

planar embedding to a triangulated convex polygon and these two constructions have

many key properties in common.

Definition 2.7. A triangulation of a convex polygon with labeled edges is a cutting of the

polygon into triangles by connecting vertices with non-crossing line segments.

For a semi-labeled Newick string of X where |X| = n, we set the convex polygon to

have (n + 1) edges and label the top edge as the root label R. Then we label the other

edges anticlockwise from R by the string of X. Every non-crossing line segment inside the

8



Chapter 2. Background and finite tree spaces

convex polygon splits the edge labels into a partition of two disjoint strings with length at

least 2. The string without the root label R is a subsequence which can be bracketed. The

non-crossing condition for the line segments correspond to the property that all partitions

of the bracketings are compatible. When the convex polygons are cut into triangles, we

cannot add any other line segments which connect vertices and do not cross the existing

line segments. This property corresponds to the condition of the fully bracketed string.

Hence we construct the corresponding triangulation of the convex polygon from a fully

bracketed Newick string. The embedding of the rooted binary tree is by putting the

vertices inside the corresponding triangles of partitions and outside the labeled edges of

the convex polygon. We then join two vertices by an edge if their regions share a common

edge.

Definition 2.8. A triangulated convex polygon is the dual polygon of a semi-labeled

Newick string and the corresponding rooted binary tree if it satisfies two conditions:

1. the anticlockwise permutation of the edge labels apart from the root label R is the

same to the permutation for the sequence of the Newick string;

2. every partition of the edge labels given by a line segment inside the polygon is a

partition defined by a bracketed subsequence as in Definition 2.4.

An example of the triangulation with the embedded binary tree of the above Newick

string is given by the figure below.

Figure 2.2: The triangulation of the dual polygon to the Newick string
(
(a, c) , b

)
,
(
(d, e) , (f, g)

)
.

As a triangulation defines a unique set of compatible partitions of X ∪R, it gives a full

bracketing of the semi-labeled Newick string of X which shows that it is also a one-to-one

9



Chapter 2. Background and finite tree spaces

correspondence. There are Cn−1 ways to triangulate a convex polygon where Cm is the

m-th Catalan number 1
m+1

(
2m
m

)
.

Conversely, it is also possible to construct a triangulated convex polygon from a binary

tree as both graphs are planar and we can place all leaves across the polygon’s edges and

connect the vertices through the partitions of leaf labels given by the internal edges of the

tree. The triangulated polygon which is constructed from the binary tree is not unique as

there are more than one planar embeddings given by the valid cyclic orders of the leaves.

We will then discuss the groups that act on the Newick strings and triangulated polygons,

thus find the invariance conditions of the embedded binary trees.

If we fix the root label R and the positions of the brackets, the symmetric group Sn

acts on the permutation of elements of X. This group action preserves the shape of the

triangulation but changes the semi-labeling of the corresponding convex polygon.

We will now define a equivalence relation on the set of triangulated polygons and their

corresponding Newick strings which give the same binary trees.

Definition 2.9. Two semi-labeled Newick strings are said to be BHV-equivalent if all

partitions read from their corresponding bracketings are the same.

This implies the same equivalence relations on the triangulations for the dual polygon

due to the one-to-one correspondence.

If the polygon is regular, the dihedral group D2(n+1) acts on the semi-labeled trian-

gulated convex through rotations and reflections. The cyclic order of the elements in the

string X and the embedded binary tree is preserved under this action but the top edge

for the root label may change and the bracketing of the Newick string might be different.

Note that a rooted tree can also be unrooted if we do not specify the labeled leaf R as

its root. Given an internal edge in the triangulation that cuts the polygon into two small

semi-labeled polygons, the reflection of one of the two small polygons about the perpen-

dicular bisector of that internal edge, together with the labels, also fix the partitions, but

is likely to change the permutation of the labels. In the next section, we will enumerate

the number of fully resolved phylogenetic trees through the constructions of semi-labeled

Newick strings and triangulations and calculate the number of BHV-equivalent binary

trees by the invariance conditions given by the actions described above.

Example 2.10. The q-homogeneous rooted tree of depth n.

Let Σ = {0, 1, . . . , q − 1} be the alphabet where q ∈ Z+. A finite word ω over Σ is a

sequence ω = σ1 . . . σk of length k where σj ∈ Σ for all j = 1, . . . , k. We denote by Σk the

set of words of length k and Σ0 = ∅ the empty word.

We define the graph T = (V,E) of the finite q-homogeneous tree of depth n Tq,n where

n ≥ 2. First we define the vertex set V to be
⋃n
k=0Σ

k, the set of words with length

10
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0 to n. Then we define the edge set E by the adjacency relations between the vertices.

Two vertices are connected by a single edge if and only if one word can be obtained from

the other by adding or deleting the final letter. Two vertices are adjacent if they are

connected. We can see that there are not any cycles in the graph therefore it is a tree.

The empty word ∅ is adjacent to the q words of length 1 and every word of length n,

ω = σ1 . . . σn ∈ Σn is adjacent to one word of length n − 1, ω′ = σ1 . . . σn−1. Every

internal vertex corresponds to a word of length k where 1 ≤ k ≤ n − 1 and is adjacent

to q words of length k + 1 and one word of length k − 1. The leaves are given by Σn,

the set of words of length n. All internal vertices have degree q + 1, therefore the tree is

homogeneous. Given an internal vertex v = σ1 . . . σk ∈ Σk, we define Tv to be the subtree

rooted at v. The subtree Tv is a subgraph of Tq,n which consists of vertices of words of the

form vv′ where v′ ∈
⋃n−k
j=0 Σ

j and the edges are given by the adjacency relations defined

above.

Figure 2.3: T2,4, the binary tree of depth 4.

The symmetric group Sq acts at every internal vertex and the automorphism group

Aut
(
Tq,n

)
acts on the entire tree. We define Gv ' Sq to be the group that acts at the

internal vertex of the word v and there exists an isomorphism between Gv and Sq given

by θv(π) = θv,π ∈ Aut
(
Tq,n

)
where G ∈ Sq. The group Gv ' Sq stabilizes all vertices

which are not on the subtree Tv. For a word vσk+1v
′ ∈ Tv where the word v has length

k and v′ ∈
⋃n−k−1
j=0 Σj , given a group element π ∈ Sq and the corresponding element

θv,π ∈ Aut
(
Tq,n

)
, we have θv,π

(
vσk+1v

′) = vπ (σk+1) v′. In the next chapter, we will

define the ultrametric on this space and identify a subgroup K which is the stabilizer of a

fixed word 00 . . . 0. We also consider the algebra of functions on the group and compute the

spherical functions of the commutative bi-invariant subalgebras arising from the Gelfand

pair of the automorphism group and the subgroup K.

2.2 Phylogenetic trees

In this section, we present various spaces of phylogenetic trees with n labeled leaves. We

will first define the discrete spaces given by the set of trees as graphs by considering the

case where all internal vertices have degree 3 and the case where some internal vertex has

degree at least 4. We will also define the continuous space of semi-labeled phylogenetic

trees where the internal edges are assigned with lengths.

11
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We start by enumerating the tree shapes in the discrete semi-labeled tree space where

all internal vertices have degree 3 and introduce different representations of a semi-labeled

tree including the subtree splits, the quartet display and the trees and matchings of 2n

numbers [17]. We will then describe the adjacency relations between the trees in the space

as an essential setting for a random walk e.g. the nearest neighbour interchange (NNI).

The settings will be applied in the next section where we realize the discrete tree spaces

to construct the polytope from the adjacency relations.

2.2.1 Combinatorics

In terms of a graph, for n ≥ 3, a fully resolved semi-labeled phylogenetic tree with n

species on the leaves consists of n leaves, (n− 3) internal edges with positive lengths and

(n− 2) internal vertices of degree 3. A tree is said to be semi-labeled by the set of species

X if the leaves are labeled by distinct elements of the set X and the internal vertices

are not labeled. Normally we just define the set of n species X to be the set of numbers

N = {1, 2, . . . , n}. As a graph, a tree can be rooted with a root label R or unrooted if

we do not specify a root label. If there is a root, we may define the root label to be the

number 0 as it satisfies the condition of a leaf on the graph of the tree.

A tree is either fully resolved if every internal vertex has degree 3 or degenerate if there

exists an internal vertex with degree at least 4. We start from the discrete tree space to

consider the trees as graphs and do not assign lengths to the edges. We will now define

the sets of semi-labeled trees for only the fully resolved case and the set which consists of

both fully resolved and degenerate trees.

Definition 2.11. The fully resolved discrete phylogenetic tree space Sn is the set of fully

resolved semi-labeled trees with n leaves [9].

We will describe the structure of the adjacencies between the all trees in the set Sn in

the next subsection 2.2.2.

Definition 2.12. The discrete phylogenetic tree space S∗n is the set of semi-labeled trees

with n leaves which consists of both fully resolved and degenerate trees.

If we use the same set N for the leaf labels, we can see that Sn is a subset of S∗n. We

will first examine the combinatorial structure of Sn and compare with the Newick strings

introduced in the previous section 2.1.

Definition 2.13. A split of a set X is a partition of X into two disjoint subsets
{
E,EC

}
.

Definition 2.14. A split
{
E,EC

}
of X is nontrivial if |X| ≥ 4 and 2 ≤ |E| ≤ |X| − 2.

Definition 2.15. Two splits
{
E,EC

}
and

{
F, FC

}
are compatible if E∩F ∈

{
E,F, ∅

}
.

12
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This compatibility relation is also described for the bracketing of the Newick string in

Definition 2.4 and Remark 2.5 in the previous section 2.1, where E and F can only be

disjoint or one of them is a subset of the other. For a fully resolved semi-labeled tree,

every internal edge generates a split of the leaf labels. This is because when we remove an

internal edge, the graph becomes disconnected and consists of two semi-labeled trees with

disjoint sets of leaf labels. Therefore every fully resolved tree determines (n−3) compatible

nontrivial partitions. Conversely, given (n− 3) compatible nontrivial partitions of the set

X, we can reconstruct the corresponding fully resolved tree [55].

To be precise, every internal edge is adjacent to four other edges which gives the

partition of four disjoint subsets of the leaf labels. The quartet display of an internal

edge of a semi-labeled tree T with leaf labels X is given by Q(T ) = (T1, T2|T3, T4) of the

subtrees where the disjoint sets T1, T2, T3, T4 ∈ X with T1 ∪ T2 ∪ T3 ∪ T4 = X and the

notation | indicates the split
{
{T1 ∪ T2} , {T3 ∪ T4}

}
.

For S∗n, in a degenerate tree with n leaves, there are less than (n − 3) internal edges.

However we can still produce the set of compatible splits from the existing internal edges.

The star tree sn is the fully degenerate tree as the internal edges do not exist therefore

there are not any nontrivial splits of the leaf labels.

Given a tree T ∈ Sn, every partition
{
E,EC

}
generated from an internal edge subdi-

vides the tree into two subtrees. Each one of the two subtrees has a special internal vertex

of degree 2 if we remove that internal edge. The subtree with the subset E for the leaf

labels is defined to be a cherry if |E| = 2. For n ≥ 4, a tree has least 2 cherries. A tree is

called a caterpillar tree if it only has 2 cherries [9].

There are various ways to count the number of trees in the space of Sn and we will

present three of them. The three methods are given by (I) the induction of building up

from the star tree s3 [21]; (II) the counting of BHV -equivalent triangulations of semi-

labeled polygon; (III) the matching algorithm that sets the one-to-one correspondence

between Sn and the disjoint unordered 2-subsets of (2n− 4) numbers [17].

Method (I): we verify that for n = 3, there is only one possible tree which is the star

tree with leaf labels {1, 2, 3} and there is no internal edge for a star tree. For n = 4, there is

only one internal edge and the three partitions for the three trees in S4 are
{
{1, 2} , {3, 4}

}
,{

{1, 3} , {2, 4}
}

and
{
{1, 4} , {2, 3}

}
. Equivalently, the three splits correspond to the three

edges of the star tree s3 on which we insert the leaf edge labeled 4. Note that there are 4

leaf edges and 1 internal edge for the trees in S4. To construct a tree in S5, we may insert

the leaf edge labeled 5 on any one of the 5 existing edges in a tree T ∈ S4. We then repeat

this inserting process, which means that to construct a tree in Sk from a tree in Sk−1,

we may insert the leaf edge labeled k to any one of the (2k − 5) existing edges on a tree

T ∈ Sk−1 for k ≥ 5 [21]. Every single tree T in S∗n can be constructed by this process. The

construction can be reversed by removing the labeled leaves, from n down to 4. Then we
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will know the positions for the inserting process for all labeled leaves. By induction, the

enumeration result of the number of trees in Sn is given by the falling factorial number

(2n− 5)!!.

Method (II): we can count the number of distinct trees from the fully triangulated semi-

labeled regular polygon with n edges and then quotient out the corresponding binary trees

which are BHV-equivalent given in the previous section 2.1. Every permutation for the

labels and a triangulation gives a dual graph of a fully resolved tree in Sn as in Definition

2.8. The dihedral group D2n acts on the n-gon through rotations and reflections. Two

trees are also BHV-equivalent under the twisting of internal edges which corresponds to

the reflection of one of the two small polygons about the perpendicular bisector of the

corresponding internal line segment in the triangulation. The twisting does not allow

both small polygons to be reflected as this is one of the reflections generated from D2n.

Therefore every twist of an internal edge gives a two-fold symmetry which cannot be

generated from the dihedral group action as a twist only reverses the edge labels on one of

the two small polygons. These two actions, which are the dihedral group actions and the

(n − 3) twists of the internal line segments, preserve the set of splits thus preserves the

tree in Sn. All of the (n−3) twists are independent from each other and also independent

from the dihedral group action D2n [9].

We enumerate the number of triangulated regular n-gons with n labeled edges, which

is given by |Sn|Cn−2 where Cn−2 is the Catalan number and equal to the number of

triangulations of a convex n-gon. We also calculate the number of BHV -equivalent trees

which are embedded to these |Sn|Cn−2 labeled triangulated polygons. For a triangulated

regular n-gon with n labeled edges, any actions of the (n−3) twists and D2n give a another

triangulated regular n-gon which is BHV-equivalent to the original one. Hence the number

of BHV-equivalent triangulated regular n-gons can be obtained by the product of the sizes

of the independent twists and dihedral group action [9], which is given by |D2n| 2n−3.

Therefore the size of the Sn can be calculated by

|Sn| =
|Sn|Cn−2

|D2n| 2n−3
=

n! (2n− 4)!

2n−2n(n− 1)
(
(n− 2)!

)2 = (2n− 5)!!.

Method (III): We note that the number (2n − 5)!! is equal to the number of (n − 2)

unordered disjoint 2-subsets of (2n − 4) numbers. There indeed exists such matchings of

n pairs for a rooted tree of Newick string format with (n − 1) leaves [17]. We will state

the one-to-one correspondence between the matchings and trees. First we relabel the leaf

labeled n as the root R, alternatively denoted by 0. The idea is to view the graph as

hanging the tree up by its root. Then we express the tree in the Newick String format,

without the length of edges. We will then label the internal vertices from the original semi-

labeled tree to complete the labeling of the entire tree. As there exist at least two cherries
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in a fully resolved tree, we can spot them as the brackets (i1, i2) , (i3, i4) , . . . , (i2k−1, i2k)

which all consist of two leaf labels. We pick the bracket (j1, j2) if j1 or j2 is the smallest

in the set {i1, i2, . . . , i2k−1, i2k} and write down the 2-subset with the two numbers from

this bracket {j1, j2}. Then we replace this bracket by the number n in the Newick string

and obtain another Newick string. This process labels the corresponding internal vertex

on the rooted tree.

This process can be repeated by using the Newick string obtained from the previous

step, which equivalently chops off a cherry with the smallest number and then labels the

new leaf label with the next unused natural number. We repeat the process until all

internal vertices are labeled and the (n− 2) 2-subsets are written down. For example, the

matching process of the Newick string
((

(5, 2) , 4
)
, (3, 1)

)
are given by

((
(5, 2) , 4

)
, (3, 1)

)
:
{
{1, 3}

}
,

−→
((

(5, 2) , 4
)
, 6
)

:
{
{1, 3} , {2, 5}

}
,

−→
(
(7, 4) , 6

)
:
{
{1, 3} , {2, 5}

}
,

−→ (8, 6) :
{
{1, 3} , {2, 5} , {4, 7}

}
,

−→ :
{
{1, 3} , {2, 5} , {4, 7} , {6, 8}

}
.

Two Newick strings are BHV-equivalent if their corresponding splits defined by the brack-

etings are identical. Therefore two Newick strings return the same matchings if they are

BHV-equivalent as they correspond to the same tree in Sn given by the same splits.

Conversely, given (n− 2) unordered disjoint 2-subsets of a set of (2n− 4) numbers, we

are able to reconstruct the Newick string through the same process of spotting the cherry

with the smallest number. At the start, there exists a 2-subset where both numbers are

less than or equal to (n− 1). Every 2-subsets which satisfy this condition is a cherry. The

internal vertex of the cherry with the smallest number will be labeled by the number n.

We then remove the 2-subset and also remove those two numbers in that 2-subset from

the big set of (2n − 4) numbers. Equivalently we remove that semi-labeled cherry from

the semi-labeled tree and label the previous internal vertex of that cherry with number n

as that vertex is now a labeled leaf vertex. We obtain another semi-labeled rooted binary

tree and then repeat the process of spotting the cherry with the smallest number. This

process gives a unique semi-labeled binary tree in the Newick string format which can be

reversed to obtain the matchings. Therefore the one-to-one correspondence gives us the

number of fully resolved trees in Sn, which is the number of (n − 2) unordered disjoint

2-subsets of (2n− 4) numbers,
(2(n−2))!

2n−2(n−2)!
= (2n− 5)!!.

We will now define the space of phylogenetic trees with n taxa with specified lengths
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for the internal edges. We always assume that the lengths of the leaf edges are strictly

positive. We do not include the data of the lengths of the leaf edges as the splits for leaf

labels are determined by the internal edges [9].

Definition 2.16. The continuous phylogenetic tree space Tn is given by the set of semi-

labeled trees of n leaves S∗n with specified internal edge lengths.

Let the space Sn be the tree space with leaf labels {i1, . . . , in}. The number of nontrivial

splits is the number of subsets with in of the set of the n leaf labels with size of every

subset not equal to 0, 1, n− 1 or n. For n ≥ 4, the number of nontrivial splits is therefore

2n−1 − n− 2. We define the standard basis of the vector space R2n−1−n−2 to be{
1E : in ∈ E,

{
E,EC

}
is a nontrivial split of leaf labels of S∗n

}
.

Every fully resolved tree T ∈ Sn is determined by (n − 3) compatible splits which

correspond to the (n− 3) internal edges. We write E∈̃T if {E,Ec} is a nontrivial split of

leaf labels in T . In Tn, every internal edge which corresponds to a split {E,Ec} in the fully

resolved tree T ∈ Sn has a positive length lE . We explicitly write a tree T with internal

edge lengths as a vector
∑

E∈̃T lE1E ∈ R2n−1−n−2 where lE > 0 for all E∈̃T . Therefore in

Tn, the trees with the same set of compatible splits can be identified in a Euclidean region

isomorphic to Rn−3
+ with standard basis

{
1E : E∈̃T

}
.

In Tn, every fully resolved tree corresponds to a vector in R2n−1−n−2, which is a unique

linear sum of the (n − 3) unit vectors for the (n − 3) compatible splits in the standard

basis of R2n−1−n−2 with strictly positive coefficients given by the internal edge lengths.

Every degenerate tree corresponds to a vector in R2n−1−n−2, which is the linear sum of

(n − 3) unit vectors for the (n − 3) compatible splits in the standard basis of R2n−1−n−2

with non-negative coefficients. A degenerate tree in S∗n has less than (n − 3) internal

edges which generate less than (n − 3) compatible splits therefore the vector as a linear

sum of the (n − 3) unit vectors will have strictly positive coefficients for the splits which

correspond to the existing internal edges, and coefficients 0 for the unit vectors of the

non-existing internal edges. Hence every semi-labeled tree with n leaves with specified

internal edge lengths can be uniquely written as a linear sum of no more than (n − 3)

unit vectors of the compatible splits in the standard basis of R2n−1−n−2 with non-negative

coefficients. Therefore the space Tn can be identified as a subset of R2n−1−n−2
+ where the

axes are labeled by the nontrivial splits of the leaf labels.

The space of a specific fully resolved tree with positive internal edge lengths is then

isomorphic to an Rn−3
+ space as the (n−3) positive entries in the corresponding vectors in

R2n−1−n−2
+ are given by the lengths of the internal edges for the (n− 3) compatible splits.
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Definition 2.17. The space of a specific fully resolved tree T is the orthant of T in the

space of Tn.

The faces of an orthant consist of trees which can be written by less than (n− 3) unit

vectors in the standard basis of its corresponding compatible splits. The space Tn consists

of all orthants of the fully resolved trees isomorphic to Rn−3
+ . The interior of these orthants

are all disjoint as their corresponding fully resolved trees do not have the same set of splits

thus their corresponding vectors in R2n−1−n−2
+ have nonzero entries in different positions.

These orthants of the fully resolved trees are glued together in Tn which is isomorphic to

a subset of R2n−1−n−2. Two orthants share a boundary face which is isomorphic to Rk+ if

they have k splits in common and face is given by the vectors of those splits.

In the space of Tn, the star tree sn corresponds to the origin point which is the zero

vector. The star tree is also considered to be fully degenerate as there are not any internal

edges.

We can define a natural metric on Tn by the distance between the trees. If two trees

are in the same orthant, the distance will be given by the Euclidean distance between

their corresponding vectors. If two trees are in different orthants, we can define paths

between them which only go through points in the subset of R2n−1−n−2 which corresponds

to Tn. The length of the shortest path is defined to be the geodesic distance and does not

necessarily go through the origin for two trees not in the same orthant [6], [50].

We can see that the space Tn can be embedded in an
(
2n−1 − n− 2

)
-dimensional

Euclidean space but some other constructions have shown that the trees can be fit in a

much lower dimension of the Euclidean space [36].

Some stochastic process on Tn are computed by changing the internal edge lengths and

going across the faces of orthants with certain rules. This can be set as a movement of

a point with some rules in the space of Tn. Within an orthant of a fixed tree in Sn, the

change of internal edge lengths can be set as the diffusion on the space of Rn−3
+ . We may

also define other spaces which have similar structures to Tn. For example, we can restrict

the lengths to be integers by setting a lattice of mesh points of Zn−3
+ in Rn−3

+ . Then the

stochastic process which corresponds to the diffusion on the space Rn−3
+ is replaced by a

another process on Zn−3
+ . The stochastic process will be given in terms of the random walk

and we seek the eigensolutions to the adjacency operators. We can also define another

space T Ln which consists of all trees in S∗n with a fixed positive total internal edge lengths

L. In this case, the star tree sn does not exist and within each orthant, the dimension

goes one lower as the vectors are in a subspace.

Our aim is to understand the adjacency relations between the trees in Sn and between

the orthants in Tn. We will then apply the adjacency relations to realize the space of trees

into a graph in a Euclidean space of lower dimension to simplify the numerical compu-

tations of changing edge lengths and going across the orthants. The adjacency relations
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and realizations will give us better understandings to the property of tree spaces thus

simplify the numerical work to analyse the diffusions and stochastic process by reducing

the dimensions through the symmetry properties in the representations of Sn.

2.2.2 The nearest neighbour interchange and random walk

The random walk on the space of discrete semi-labeled phylogenetic trees Sn is generated

by the nearest neighbour interchange, or NNI [63]. Given an internal edge with internal

vertices u and v in a fully resolved tree, we may identify its four adjacent edges thus the four

subtrees A,B,C and D with the disjoint set of leaf labels
{
TA, TB|TC , TD

}
as in the quartet

display. The NNI process regroup the four subtrees into one of the possible two partitions

apart from the original structure. If the original split is given by {TA ∪ TB, TC ∪ TD},
there will be two possible splits after the NNI process, which are {TA ∪ TC , TB ∪ TD} and

{TA ∪ TD, TB ∪ TC} as in the diagram below.

Figure 2.4: The nearest neighbour interchange at an internal edge with 4 subtrees A,B,C,D.

Note that the splits given by any other internal edges are preserved. When the cyclic

order of the leaf labels are fixed by TA, TB, TC , TD, the split {TD ∪ TA, TB ∪ TC} is the

only possible outcome of the NNI process from the split {TA ∪ TB, TC ∪ TD}.
In the NNI process between trees in Sn, we skip the degenerate tree with an internal

vertex of degree 4 for the case of the internal edge uv in the fully resolved tree shrinks

to a vertex. In S∗n, the three fully resolved trees in the diagram are all neighbours of this

degenerate tree. In the NNI process, we are not allowed to stay in the same tree although

there exist three possible fully resolved trees from this degenerate tree. We also note the

(n − 2) compatible splits for the degenerate tree are included in each of these three fully

resolved trees.

Two fully resolved trees are BHV-adjacent if they differ by one nearest neighbour

interchange. Every fully resolved tree has (n − 3) internal edges which means that it is

adjacent to other 2(n − 3) fully resolved trees in Sn. Therefore we can define a graph

whose vertices are the fully resolved trees in Sn and the edges are obtained from the

BHV-adjacencies [38], [60]. In the simple random walk on this graph, the probabilities of

moving from a vertex to all of its 2(n− 3) neighbours are equal to 1
2(n−3) .
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The four subsets in a quartet display on an internal edge are preserved under the NNI

process of that specific edge. But the quartet display on other internal edges will change.

In the continuous phylogenetic tree space Tn where the data of internal edge lengths

are isomorphic to Rn−3
+ , we regard the NNI process as one of the internal edge length

shrinks to zero and becomes a vertex of degree 4 and can still identify the 4 subtrees from

this vertex. The tree is now degenerate and on the topological boundary and on an (n−4)

dimensional face of an orthant. There are three ways to 2-2-split the 4 subtrees to make it

fully resolved again and one of them is back to the orthant of the previous fully resolved

tree. The problem of computing the geodesic distance applies the NNI process to find the

shortest path between two trees in the continuous space Tn [5].

Within an orthant where the splits of labels are fixed, the random walk is isomorphic

to the diffusion on Rn−3
+ for the continuous space or isomorphic to the simple random

walk on Zn−3
+ lattice if we restrict the edge lengths to be integers [49]. On the continuous

space Tn, when the random walk goes across the topological boundary of the orthants, the

probability are often to be considered as equal to the three possible directions given by the

nearest neighbour interchange. We study the random walk by finding the eigensolutions

of the transition matrix on the vector space of probability measures which can be applied

to simulate the stochastic process and random walks. The dimensions for both of the

spaces Sn and Tn are huge therefore we seek other methods to simplify the calculations.

In Section 2.3, we consider the realization of tree spaces into polytopes which reduce the

dimensions to O (n) or O
(
n2
)
. And in Chapter 3, we seek analytic solutions to the random

walk under the invariance conditions of the group that acts on the tree space.

The space S4 only consists of three fully resolved trees and they are all BHV-adjacent

to each other. The smallest nontrivial example to consider is S5.

Example 2.18. The space S∗5 and the Petersen graph.

Figure 2.5: The Petersen graph with compatible partitions for S5.

The Petersen graph is a regular graph with 15 edges and 10 vertices of degree 3. The

vertices can be labeled as above where the every edge consists of two disjoint subsets of the
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set {1, 2, 3, 4, 5}. Every 2-subsets of the full set can be extended to a 2-3-split, which is the

only possible size of nontrivial partitions in S5 and S∗5 . We can see that the two partitions

for the two vertices of every edge are compatible. Therefore the 15 edges of the Petersen

graph and the 15 fully resolved trees of S5 are in one-to-one correspondence. The 10

vertices of the Petersen graph and the 10 degenerate trees with one internal edge of S∗5 are

also in one-to-one correspondence. We also notice that two edges share one common vertex

if and only if they have a common split and correspond to the BHV-adjacency conditions.

Therefore the vertices and edges of the Petersen graph represent the degenerate and fully

resolved trees respectively in the space of S∗5 . The Petersen graph is also the dual graph

for the graph with vertices of Sn with the adjacency relations where the 15 fully resolved

trees are given as the vertices instead of edges and the 10 degenerate trees are given as the

triangles. If the sum of the lengths of the two internal edges are fixed, then every point

on the vertices can be identified as a Newick string with internal edge lengths.

The 10 vertices of the Petersen graph also represent the 10 degenerate trees where one

of the internal edge has length zero. The symmetric group S5 acts on the 5-set and the

stabilizer of a fixed partition is isomorphic to S2 × S3. In the stochastic process for the

discrete random walk, we will fix the size of splits and seek the eigensolutions on a set of

degenerate trees for the adjacency operators. The group S5 and the subgroup S2×S3 form

a Gelfand pair. In Chapter 3, we shall use the properties of the Gelfand pair and further

reduce the dimension for the vector space of the random walk to find the eigenfunctions

which decompose the functions on the discrete space.

2.3 Realizations of different tree spaces

In this section, we seek better realizations of tree spaces as polytopes. As every binary tree

has a planar embedding in a semi-labeled triangulated polygon, we construct a simplicial

complex where the vertices correspond to the semi-labeled triangulated polygons. The

aim is to realize the simplicial complex of a tree space as a polytope in the Euclidean

space.

Throughout this section, we use the word “facet” for all lower dimensional boundaries.

We use the word “face” if a facet is (n− 1)-dimensional on an n-dimensional polytope.

We first construct the polytope in the Euclidean space where the vertices correspond

to the permutations of the (n + 1) leaf labels, namely the permutohedron Pn which is

n-dimensional; i.e., given n unit vectors from the standard basis of the Euclidean space,

every point on the surface and inside Pn can be uniquely written as a linear sum of these

n vectors. Then we fix a permutation; i.e., the labels on the edges of the polygon, and

construct the polytope where the vertices correspond to the triangulations, namely the

associahedron Kn. We apply the Dorman Luke construction [16] to construct the dual
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polytopes P ∗n and K∗n of the permutohedron and the associahedron. We prove that the

dimension of Kn is (n− 1)-dimensional, thus always one lower than the dimension of Pn.

Finally we obtain the associahedra with different permutations of the edge labels and

identify them on the faces of a dual permutohedron, namely the permuto-associahedron

KPn, where the vertices correspond to the fully bracketed Newick strings of n leaf labels

with all possible permutations and bracketings (triangulations). We also outline a method

to realize the the space of Sn using the secondary polytope construction and compare with

the balanced minimal evolution (BME) polytope [36] of the same dimension.

2.3.1 Realizations of the permutohedra

When we fix a root label in the discrete tree space Sn+2, we consider the binary trees

written in the Newick string format. The Newick string is a fully bracketed sequence

which corresponds to a permutation of the (n+ 1) leaf labels. Our first aim is to find the

realization of all permutations of the leaf labels in a Euclidean space.

Definition 2.19. The n-permutohedron is the convex hull of all permutations of the vector

(x1, x2, . . . , xn+1) ∈ Rn+1 where xj 6= xk for all j 6= k.

Definition 2.20. The standard n-permutohedron Pn is the convex hull of all permutations

of the vector (1, 2, . . . , n+ 1) ∈ Rn+1.

The symmetric group Sn+1 acts on the entries of the vector and total number of points

is (n + 1)!. We can verify that the all points of Pn, v = (v1, . . . , vn+1) ∈ Rn+1 lie on a

n-dimensional subspace satisfying the affine condition 〈v, 1〉 =
∑n+1

i=1 vi = 1
2(n+ 1)(n+ 2).

The subspace is given by the orthogonal vector (1, . . . , 1) therefore the permutohedron lies

in an n-dimensional subspace of Rn+1.

Let E = {j1, j2, . . . , jl} be a nontrivial subset of {1, 2, . . . , n+ 1} with 1 ≤ |E| ≤ n. Let

1E ∈ Rn+1 be the vector with value 1 in the j1-th, j2-th,. . .,jl-th entries and 0 elsewhere.

We define a hyperplane in Rn+1 from the normal vector 1E as the set of pointsx ∈ Rn+1 : 〈x, 1E〉 =
∑
j∈E

vj =
|E|
(
|E|+ 1

)
2

 .

Definition 2.21. The half-space HPn (E) of the nonempty subset E ( {1, 2, . . . , n+ 1}
is the set of points given by

HPn (E) :=

v ∈ Rn+1 :
∑

j∈E,E({1,...,n+1}

vj = 〈v, 1E〉 ≥
|E|
(
|E|+ 1

)
2

 ,

where 1E is the normal vector that defines the hyperplane for the half-space HPn (E).
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The boundary of the half-space HPn (E) is the hyperplane where the points are ob-

tained by the equality relation in Definition 2.21. The points which are not in the half-space

HPn (E) are all on the same side of Rn+1 which is split by the hyperplane. The points in

the half-space HPn (E) which are not on the boundary correspond to the strict inequality

in the definition.

Lemma 2.22. The permutohedron Pn is in an n-dimensional subspace with half-space

representation given by the intersection of all half-spaces

Pn :=
⋂

E 6=∅,E({1,...,n+1}

HPn (E) .

Proof. Given all permutations of the vector (1, 2, . . . , n+ 1) ∈ Rn+1, the equality in the

condition of the half-space HPn (E) holds for a vector v on the boundary. If a vector is

given by a permutation of (1, 2, . . . , n+ 1) and on the boundary of HPn (E), then the first

l numbers {1, . . . , l} are in the j1-th, j2-th,. . .,jl-th entries of the vector for the nonempty

subset E = {j1, j2, . . . , jl} ( {1, . . . , n+ 1}.
We get the strict inequality if any number greater than l appears to be in one of the j1-

th, j2-th,. . .,jl-th entries as the sum of the entries
∑

j∈E vj will be greater than (l+1)l
2 . The

left hand side of the inequality in Definition 2.21 can be considered as an inner product

between the vector v and another vector 1E ∈ Rn+1 where the entries are either 1 or 0. All

of the hyperplanes that define the half-spaces are (n−1)-dimensional in the n-dimensional

subspace of Rn+1.

We have a natural maximal flag of the set {1, 2, . . . , n+ 1} given by

∅ ( {1} ( {1, 2} ( · · · ( {1, 2, . . . , n} ( {1, 2, . . . , n, n+ 1} .

Every vertex v of the convex hull corresponds to a permutation of (1, 2, . . . , n+ 1) thus

corresponds to another unique maximal flag of the set {1, 2, . . . , n+ 1}, given by the

positions in v for the elements in the natural maximal flag defined above, explicitly given

by

∅ ( {j1} ( {j1, j2} ( · · · ( {j1, j2, . . . , jn} ( {j1, j2, . . . , jn, jn+1} ,

where jk is the position of entry with number k in v, i.e. vjk = k.

Apart from the full set and the empty set, every set in the middle of a maximal flag

is a set E which corresponds to a half-space HPn (E) and a defining hyperplane. Every

vertex which is a permutation of the vector (1, 2, . . . , n+ 1) is then well defined by the

intersection of the n hyperplanes which correspond to the subsets in the maximal flag

for the positions of the entries in the n-dimensional subspace of Rn+1 given by the set of

points
{
x :
∑n+1

i=1 xi = (n+1)(n+2)
2

}
. The coordinates of a vector on the convex hull can

always be obtained by solving the (n + 1) linear equations, which are the n equations
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for the half-spaces and the one equation
∑n+1

i=1 xi = (n+1)(n+2)
2 for the fixed sum of the

entries.

Remark 2.23. Note that during the proof, the maximal flag for the vector v,

∅ ( {j1} ( {j1, j2} ( · · · ( {j1, j2, . . . , jn} ( {j1, j2, . . . , jn, jn+1} ,

where jk is the position of entry with number k in v, i.e. vjk = k, also de-

fines a permutation (j1, j2, . . . , jn, jn+1). If v = g (1, 2, . . . n+ 1) for g ∈ Sn+1,

then we have (j1, j2, . . . , jn, jn+1) = g−1 (1, 2, . . . n+ 1) and we define the permutation

(j1, j2, . . . , jn, jn+1) to be the inverse permutation of v.

The lemma proves that Pn is an n-dimensional convex polytope with a half-space

representation. We will describe the (n − 1)-dimensional faces and lower dimensional

facets of Pn. Every (n− 1)-dimensional face of Pn is on the boundary, i.e. the hyperplane

of a half-space that defines Pn when the equality is achieved in the definition. Two faces

on the boundaries of the two distinct half-spaces HPn (E1) and HPn (E2) intersect on the

surface of Pn if and only if one of the two sets, E1 or E2, is the subset of the other one.

There are also lower-dimensional facets on Pn given by the intersections of more than

two (n − 1)-dimensional faces. A 1-dimensional facet, which is a line segment on the

polytope, is given by the intersection of (n−1) faces which correspond to (n−1) nonempty

subsets of {1, . . . , n+ 1} in the natural maximal flag. The (n − 1) half-spaces determine

the entries of (n−1) numbers and there are only two positions left to put the two adjacent

numbers on. These two vectors differ by a swap of the two undetermined entries. If we

take the 1-skeleton of the polytope which is isomorphic to a graph, the two vectors which

correspond to the two vertices are connected by an edge and they are adjacent on the

graph. Moreover, if we relabel the vertices of Pn by the inverse permutation of the vectors

for the coordinates, the edges of the 1-skeleton will be generated by a swap of two adjacent

entries in the relabeled permutations.

In particular, when |E| = 1 or n, the (n − 1)-dimensional faces of Pn given by the

boundaries of the half-spaces HPn (E) are isomorphic to the permutohedron Pn−1. Faces

with such properties fix the position of the number 1 and there exists an isomorphism

from the vectors on a face to the vectors of Pn−1 by shifting the vectors by the constant

vector (1, 1, . . . , 1). The two half-spaces HPn (E) and HPn

(
EC
)

are parallel as they are

determined by opposite normal vectors 1E and 1EC that define their hyperplanes.

Example 2.24. The permutohedron P1.

The first nontrivial example of a permutohedron is the convex hull of two points (1, 2)

and (2, 1) in R2 and the line segment is clearly 1-dimensional.

Example 2.25. The permutohedron P2.
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The permutohedron P2 consists of 6 points in R3 which are the permutations of the

vector (1, 2, 3). They live in a 2-dimensional subspace given by the vectors v = (v1, v2, v3)

where v1 +v2 +v3 = 6. The convex hull of the 6 points is a hexagon and the 1-dimensional

faces, which are the edges of the hexagon, are given by the inequality of half-spaces HP2 (E)

for |E| = 1 or 2, with the coordinates satisfying vj = 1 and vj + vk = 1 + 2 where j 6= k

on the faces.

Figure 2.6: The permutohedron P2.

Example 2.26. The permutohedron P3.

The permutohedron P3 consists of 24 points in R4 which are the permutations of the

vector (1, 2, 3, 4) thus in the subspace where the sum of entries are equal to 10. The convex

hull is a 3-dimensional polytope and the shapes of the 2-dimensional faces are hexagons

and squares. The hexagons are given by the hyperplanes for the half-spaces HP3 (E) for

|E| = 1 or 3 and they are isomorphic to P2. The squares are given by the hyperplanes for

the half-spaces HP3 (E) for |E| = 2. This polytope can also be considered as a truncated

octahedron and we can recover the octahedron by sticking the pyramids back to the 6

square faces.
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Figure 2.7: The permutohedron P3.

Definition 2.27. Given two n-dimensional convex polytopes P and P ∗, one is the dual

polytope [64] of the other if they satisfy the following conditions:

1. the vertices of one correspond to the faces of the other;

2. the k-dimensional facets given by the intersection of the faces of one polytope cor-

respond to the (n− 1− k)-dimensional facets given by the corresponding vertices of

the other polytope for 1 ≤ k ≤ n − 2 where the corresponding vertices are given by

condition 1.

Given an n-dimensional convex polytope P , we apply the Dorman Luke construc-

tion [16] to obtain the the dual polytope P ∗. The process is to obtain the convex hull

from a set of points on a sphere which are given by the positive multiples of the corre-

sponding vectors on the faces of P . We give a detailed construction for the dual polytope

of the permutohedron Pn from the Dorman Luke construction.

The centre of the polytope Pn is given by the average position of all vectors which

are the permutations of (1, 2, . . . , n + 1). Therefore the centre OPn has coordinates(
n
2 + 1, . . . , n2 + 1

)
. We can also verify that every permutation of (1, 2, . . . , n + 1) have

the same Euclidean distance to the centre OPn thus all vertices of the permutohedron Pn

are on the Sn−1 sphere centered at OPn .

Recall the (n − 1)-dimensional faces of Pn given by the boundary of the half-spaces

HPn (E). We define the centre of the face to the average position of all vertices on the

face. For a face given by the boundary of the half-space HPn (E), the coordinates of the

centre of the face E ∈ Rn+1 has value |E|+1
2 at the k-th entry for all k ∈ E and value

|E|+n+2
2 at the j-th entry for all j ∈ EC . Note that the point E is inside the sphere as the

corresponding (n− 1)-dimensional face is inside the ball.
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We take the Sn−1 sphere centered at OPn which consists of all vertices of the permu-

tohedron Pn, in the n-dimensional subspace of Rn+1, where the coordinates of the points

satisfy
∑n+1

i=1 xi = 1
2(n + 1)(n + 2) for x ∈ Rn+1. We define the vector E∗ which is a

point on the sphere such that the vector
(
E∗ −OPn

)
is a positive multiple of the vector(

E∗ −OPn
)
. This point E∗ is unique as only one of the two intersections between the

sphere and the line given by the scalar multiples of
(
E∗ −OPn

)
is positive.

Definition 2.28. We define the dual permutohedron P ∗n to be the convex hull of the vectors

E∗

P ∗n := conv
{
E∗ : |E| ≥ 1, E ( {1, . . . n+ 1}

}
.

By this construction, the dual permutohedron P ∗n is an n-dimensional convex polytope.

We can verify that both sets of vertices of Pn and P ∗n are on the same sphere. There are

(n + 1)! distinct (n − 1)-dimensional faces on P ∗n where each (n − 1)-dimensional face

consists of n vertices. Every (n − 1)-dimensional face of the dual permutohedron P ∗n is

an (n − 1)-dimensional simplex where the n vertices correspond to n distinct subsets of

the set of (n+ 1) numbers. The n distinct subsets all have different sizes and generate a

maximal flag for the set of (n + 1) numbers as the face corresponds to a permutation of

the (n+ 1) numbers.

Every k-dimensional facet of P ∗n is given by the convex hull of (k + 1) vertices which

correspond to (k + 1) subsets in a maximal flag of the set of (n + 1) numbers. Every

(n− k)-dimensional facet of Pn is given by the intersection of k (n− 1)-dimensional faces

which also correspond to (k + 1) subsets in a maximal flag of the set of (n+ 1) numbers.

We can set the one-to-one correspondence between the k-dimensional facets of P ∗n and the

(n− k)-dimensional facets of Pn as both sets of facets are generated from (k + 1) subsets

from the maximal flags of the set of (n+ 1) numbers. Therefore P ∗n can be considered as

the dual polytope to Pn as the correspondence between the facets in all dimensions are

satisfied.

The 2-dimensional dual permutohedron P ∗2 is still a hexagon as the dual graph of

a hexagon is also a hexagon. The 3-dimensional dual permutohedron P ∗3 is a polytope

with 24 triangular faces which correspond to the 4! permutations of 4 numbers. The dual

permutohedron P ∗3 consists of 14 points which correspond to the 14 half-spaces of P3. This

polytope can also be considered as sticking 6 square faces of 6 pyramids to the 6 square

faces of a cube as in the diagram below.
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Figure 2.8: The dual permutohedron P ∗
3 .

2.3.2 Realizations of the associahedra

Recall the fully bracketed Newick string for a sequence of n letters and the corresponding

dual polygon of the embedded binary tree of the Newick string in Definition 2.6, Defi-

nition 2.7 and Definition 2.8 in section 2.1. Given a permutation of n leaf labels and a

specified root label, the binary trees of the fully bracketed Newick strings of these labels in

the permutation have planar embeddings as convex polygons whose edges have the same

permutation as the leaf labels.

Definition 2.29. The associahedron Kn, also known as the Stasheff polytope [58], is a

convex polytope whose vertices correspond to the triangulations of a convex (n + 1)-gon

with n edges labeled by the sequence apart from a root edge. Two vertices are connected

by an edge if their corresponding triangulated polygons can be obtained from each other by

removing a single diagonal and replacing by a different diagonal.

In this subsection, we will fix a permutation of the leaf labels and give an explicit

realization of the space of triangulations as a convex polytope, namely the associahedron

where the adjacency relation between the vertices of the polytope is restricted by the

nearest neighbour interchange in the space of discrete fully resolved trees. We use the

method of the secondary polytope [31] and give the half-space representation for the faces.

We obtain a new method of describing the faces of the associahedron in a folding

process which is described in detail in Theorem 2.39. We also apply this idea of the

generalized secondary polytope of higher dimensions to realize the actual space of Sn and

Tn. We will also produce a realization for the dual associahedron and show that it is

isomorphic to a subset of the corresponding trees in the continuous space Tn.

It is well known that the associahedron Kn is an (n− 2)-dimensional convex polytope

whose boundary is homeomorphic to the sphere Sn−3 [58]. The vertices on the 1-skeleton
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of Kn and the triangulations of a convex (n+ 1)-gon with fixed labels on the edges are in

one-to-one correspondence.

Two vertices of Kn are joined by an edge if their corresponding triangulations have

(n− 3) diagonals in common, i.e. their corresponding embedded fully resolved trees have

(n− 3) splits in common out of the (n− 2) splits of the leaf labels as the edge labels are

the same with leaf labels. Therefore the two fully resolved trees which correspond to the

two vertices on an edge of Kn differ by precisely one split of the (n− 2) splits of the leaf

labels, which means that the two trees are BHV -adjacent and can be obtained from each

other through a nearest neighbour interchange.

In the secondary polytope realization, we will show that all triangulations which cor-

respond to the vertices on an (n−3)-dimensional face of the (n−2)-dimensional polytope

Kn have one diagonal in common and their corresponding fully resolved trees have one

split in common. Every (n− 2− j)-dimensional facets of Kn, which is the intersection of

j distinct (n−3)-dimensional faces, consist of vertices whose corresponding triangulations

have j diagonals in common; i.e., their corresponding fully resolved trees have j splits in

common.

As a graph, the sets of vertices and edges of adjacencies only generate the combinatorial

relations. The realization of the associahedron is to assign the vertices with vectors in the

Euclidean space such that the polytope constructed from the convex hull of these vectors

have clearer interpretation of the combinatorial relation from the geometrical structure.

There are many classic realizations of the associahedra [35], [42], [31], [54], [43]. We choose

the method of the secondary polytope construction as it has the symmetry of the dihedral

group D2(n+1) and gives the explicit half-space representation for both the associahedron

Kn and the dual associahedron K∗n.

We assume n ≥ 4 for the convex n-gon. We give a natural labeling on the vertices

around a convex n-gon by the sequence (1, 2, . . . , n). A diagonal ij is a line segment joining

the vertices i and j inside the n-gon with 2 ≤ |i− j| ≤ n− 2.

Definition 2.30. Two distinct diagonals are non-crossing if the two line segments do not

intersect inside the n-gon.

Two distinct diagonals i1j1, i2j2 are always non-crossing if they have a common vertex

on the polygon i.e.
∣∣{i1, j1} ∩ {i2, j2}∣∣ = 1.

Every triangulation ∆ of a convex n-gon can also be uniquely written as a set of (n−3)

non-crossing diagonals ∆ := {i1j1, . . . , in−3jn−3}, where ik and jk are the labels on the

vertices. Alternatively we can express the triangulation ∆ as the set of (n − 2) triangles
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which constitute the full polygon

∆ :=
{
∆ijk : ijk is a triangle inside the n-gon

}
.

If we place the triangulated n-gon on the R2 plane, we can calculate the area of every

triangle area
(
∆ijk

)
as well as the area of the n-gon given by the sum of the areas of all

triangles. Let V∆j be the sum of the areas of the triangles with vertex j.

We define a vector space Rn with standard basis {ei}ni=1 labeled by the vertices of the

n-gon.

Definition 2.31. The vector V∆ ∈ Rn of the triangulation ∆ is given by

V∆ =

n∑
j=1

V∆jej =
(
V∆1 , V∆2 , . . . , V∆n

)
.

Remark 2.32. The vector V∆ ∈ Rn of the triangulation ∆ can also be obtained by

V∆ =
∑

∆ijk∈∆
area

(
∆ijk

) (
ei + ej + ek

)
.

Definition 2.33. Given a convex polygon P with n labeled vertices {1, 2, . . . , n}, the sec-

ondary polytope Q of P is given by the convex hull in Rn, explicitly given by

Q (P) := conv {V∆ : ∆ is a triangulation of P} .

To preserve the symmetries of the dihedral group, we choose the polygon P to be a

regular n-gon which can be put on the unit circle centered at the origin of the R2 plane.

Every labeled vertex j on P has coordinates vj =
(

cos 2πj
n , sin 2πj

n

)
.

Lemma 2.34. All V∆ ∈ Rn satisfy the following three affine conditions given in the form

of the inner product:

〈V∆,1〉 =

n∑
j=1

V∆j = 3 area (P) ,

〈V∆,vcos〉 =

n∑
j=1

V∆j cos
2πj

n
= 0,

〈V∆,vsin〉 =
n∑
j=1

V∆j sin
2πj

n
= 0,

Proof. As the sum of the areas of all triangles in a triangulation is equal to the area of

the polygon P, we can see that the sum of the components in the vector V∆ is equal to
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three times of the area of P, which gives us the first affine condition

〈V∆,1〉 =
n∑
j=1

V∆j = 3 area (P)

We choose the P to be a regular n-gon which can be put on the unit circle centered at the

origin of the R2 plane. Every labeled vertex j on P has coordinates vj =
(

cos 2πj
n , sin 2πj

n

)
.

The barycentre of the triangle ijk is given by

vijk =
1

3

(
vi + vj + vk

)
,

which is also the centre of mass of the triangle if we distribute the mass uniformly in the

interior of P. The position of the centre of mass vP ∈ R2, which is also the barycentre of

P, can be calculated by the equation

area (P) vP =
∑

∆ijk∈∆
area

(
∆ijk

)
vijk =

1

3

n∑
j=1

V∆jvj .

As the centre of the regular polygon P is at the origin (0, 0) of R2, we can obtain two affine

conditions for the components of V∆ for all triangulations ∆ of P. The fixed x-coordinates

gives

〈V∆,vcos〉 =
n∑
j=1

V∆j cos
2πj

n
= 0.

The fixed y-coordinates gives

〈V∆,vsin〉 =

n∑
j=1

V∆j sin
2πj

n
= 0.

Remark 2.35. The following three methods of distributing the mass m over a triangle

give the same position for the centre of mass at the barycentre of the triangle:

1. put the entire mass m at the barycentre of the triangle;

2. put mass m
3 at each one of the three vertices of the triangle;

3. distribute the mass m uniformly in the interior of the triangle.

In the vector V∆ for the triangulation ∆, the sum of the entries is equal to 3 area (P),

which can also be considered as the mass uniformly distributed inside the P with constant

density 3.
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We will now derive the half-space representation for the secondary polytope Q (P). Let

ij be a diagonal in the triangulated polygon P and we always assume that 1 ≤ i < j ≤ n
and 2 ≤ j − i ≤ n − 2. Set θij = (n−i−j)π

n . Let vij ∈ Rn be a vector with value

cos
(

2πk
n + θij

)
at the k-th entry if 1 ≤ k ≤ i − 1 or j + 1 ≤ k ≤ n and with value

2 cos θij − cos
(

2πk
n + θij

)
at the k-th entry if i < k < j.

Definition 2.36. The inner product 〈x,vij〉 is evaluated as

〈x,vij〉 =
∑

1≤k≤i,j≤k≤n
xk cos

(
2πk

n
+ θij

)
+

j∑
k=i

xk

(
2 cos θij − cos

(
2πk

n
+ θij

))
.

Remark 2.37. Note that all entries in vij are greater than or equal to cos θij.

Definition 2.38. The half-space HKn (i, j) for the diagonal ij is given by the set of points

HKn (i, j) :=
{
x ∈ Rn : 〈x,vij〉 ≤ 3 area (P)xij

}
,

where xij = 1
3n

(
(6j − 6i− 4) cos θij − 4

∑j−1
k=i+1 cos

(
2πk
n + θij

)
− 2 cos θij sin

2π(j−i)
n

sin 2π
n

)
.

Theorem 2.39. The secondary polytope Q (P) is an (n− 3)-dimensional polytope in the

(n− 3)-dimensional subspace of Rn given in Lemma 2.34 with half-space representation

Q (P) :=
⋂

i,j:1≤i<j≤n,2≤j−i≤n−2

HKn (i, j) .

Proof. Originally, the regular n-gon P is placed on the unit circle centered at the origin

of the R2 plane with labeled vertices k at
(

cos 2πk
n , sin 2πk

n

)
for all k = 1, . . . , n. We rotate

P anticlockwise by θij = (n−i−j)π
n such that the line connecting ij is perpendicular to

the x-axis with the vertex i above the x-axis. After the rotation, the vertex k will have

coordinates

(
cos
(

2πk
n + θij

)
, sin

(
2πk
n + θij

))
.

First we consider the case where ij is a diagonal of the triangulation ∆. The diagonal ij

splits the triangulated polygon P into two triangulated polygons: the left polygon PL with

vertices {i, i+1, . . . , j}, and the right polygon PR with vertices {j, j+1, . . . , n, 1, 2, . . . , i}.
The triangles in PL and the triangles in PR do not overlap and the two sets of triangles

constitute the set of all triangles in the triangulated polygon P thus cover the entire interior

of the polygon P. Regardless of how the two polygons PL and PR are triangulated, their

areas are both fixed by area (PL) and area (PR).

The centre of mass for the left polygon PL and the centre of mass for the right polygon

PR are both fixed on the R2 plane if we distribute the mass uniformly by a constant density

3 in the interior of all triangles inside P. The two centers of mass of the two polygons PL
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and PR can also be calculated by a weighted sum of the centers of mass of the triangles in

each side. By changing the distribution of the mass as described in Remark 2.35, for every

triangle ∆k1k2k3 , we put the mass of value area
(
∆k1k2k3

)
at the three vertices k1, k2 and k3

respectively and the centre of mass will stay the same if the mass is uniformly distributed

in the interior of the triangles. Therefore the centers of mass for both polygons PL and

PR will also stay the same at the centre of the mass if the mass is uniformly distributed

in the interior of the entire polygon P.

The above method for distributing the mass is equivalent to assigning the vertex k

with the value of the sum of the areas of all triangles with vertex k, which is equal to the

k-th entry of the vector V∆ by Definition 2.31. We can obtain the centre of mass of the

right polygon PR explicitly on the R2 plane. The y-coordinate is always 0 as the centre

of mass of PR is always on the x-axis. The x-coordinates xij,R is given by evaluating the

weighted sum

3 area (PR)xij,R =
∑

∆k1k2k3 is a triangle in PR

area
(
∆k1k2k3

) 3∑
l=1

cos

(
2πkl
n

+ θij

)
 .

Similarly, we can explicitly work out the coordinates
(
xij,L, 0

)
for the centre of mass of

the left polygon PL where xij,L is given by

3 area (PL)xij,L =
∑

∆k1k2k3 is a triangle in PL

area
(
∆k1k2k3

) 3∑
l=1

cos

(
2πkl
n

+ θij

)
 .

The centre of mass of P is at (0, 0) and can also be obtained from the weighted sum

3 area (PL)
(
xij,L, 0

)
+ 3 area (PR)

(
xij,R, 0

)
= 3 area (P) (0, 0) .

We then reflect the left polygon PL about the diagonal ij, i.e. fold the polygon P
along the line ij so that the folded left polygon P ′L is to the right of ij. After the folding

process, every vertex k where i < k < j have coordinates(
2 cos θij − cos

(
2πk

n
+ θij

)
, sin

(
2πk

n
+ θij

))
.

The area of P ′L is equal to the area of PL. The centre of mass
(
x′ij,L, 0

)
of P ′L can be

obtained from the reflected centre of mass of PL where

x′ij,L = 2 cos θij − xij,L.
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Note that x′ij,L is fixed as xij,L is fixed.

The new folded object which consists of both P ′L and PR, has a fixed centre of mass(
x′ij , 0

)
on the x-axis where the value x′ij can be obtained from the weighted sum

x′ij =
3 area

(
P ′L
)
x′ij,L + 3 area (PR)xij,R

3 area
(
P ′L
)

+ 3 area (PR)
=

3 area (PL)x′ij,L + 3 area (PR)xij,R

3 area (P)
.

Recall the two vectors V∆ defined in Definition 2.31 and the vector vij in Definition 2.36.

We can also obtain the fixed x-coordinate for the centre of mass of the folded object by

the weighted sum of mass of all vertices given as the inner product between the vector of

areas assigned to the vertices V∆ and the vector of the x-coordinates vij

x′ij =
〈V∆,vij〉∑n
k=1 V∆k

=
〈V∆,vij〉
3 area (P)

= xij .

Therefore the equality of the half-space HKn (i, j) as in Definition 2.38 is achieved for the

vector V∆ if ij is a diagonal in the triangulation ∆; i.e., V∆ is on the hyperplane which

is the boundary of the half-space HKn (i, j). Note that xij > cos θij for all diagonals ij

inside P.

Since every triangulation ∆ has (n − 3) distinct diagonals inside P, we can identify

the (n− 3) hyperplanes which are the boundaries of (n− 3) half-spaces correspond to the

(n − 3) diagonals. Therefore the corresponding vector V∆ is given by the intersection of

the (n− 3) hyperplanes in the (n− 3)-dimensional subspace of Rn.

We will now consider the case where ij is not a diagonal in the triangulation ∆ and show

that the vector V∆ is indeed in the half-space HKn (i, j) but not on the boundary, i.e.

the strict inequality of 〈V∆,vij〉 > 3 area (P)xij is achieved.

If ij is not a diagonal in the triangulation ∆, we draw a line segment that connects

the two vertices i and j. The line segment ij crosses with other diagonals inside P. We

label the crossing points inside P by the set
{
α1, . . . , αp

}
. This additional line segment ij

will separate some triangles in the triangulation ∆ into several small polygons. Note that

sum of all separated regions of triangles and small polygons are still fixed by 3 area (P).

We apply the additional triangulation: for the small polygons which are not triangles

inside P, we triangulate them individually by drawing non-crossing line segments joining

the vertices within the regions without creating any other crossing points apart from{
α1, . . . , αp

}
inside P. After the additional triangulation, we obtain a vector V′∆ =(

V ′∆1
, . . . , V ′∆n

)
∈ Rn where the component V ′∆k is the mass assigned to vertex k, given by

the sum of the areas of all triangles with vertex k. For the entries of the two vectors V′∆
and V′∆, we have V ′∆k ≤ V∆k for all k = 1, . . . , n, and some strict inequalities are achieved

as some of triangles with vertex k are cut to smaller regions. We also assign mass Vαl to
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the vertex αl inside P, which is given by the sum of the areas of all triangles with vertex

αl for all l = 1, . . . , p. We have the equation obtained by the fixed sum of the mass and

areas of all triangles
n∑
k=1

V ′∆k +

p∑
l=1

Vαl = 3 area (P) .

We then repeat the process folding along the line segment ij and obtain the fixed

centre of mass of the folded object, with coordinates
(
xij , 0

)
. The value of xij is obtained

as a equation of the weighted sum given by

3 area (P)xij = 〈V′∆,vij〉+

p∑
l=1

Vαl cos θij .

If we move the mass on the vertices
{
α1, . . . , αp

}
to the vertices {1, . . . , n} so that every

vertex k on the folded object has mass V∆k , we eventually shift the centre of mass of the

folded object to the right of
(
xij , 0

)
. Hence the strict inequality 〈V∆,vij〉 > 3 area (P)xij

is achieved.

Therefore we obtain the half-space representation of the polytope Kn in the (n − 3)-

dimensional of Rn as the intersection of half-spaces

Q (P) :=
⋂

i,j:1≤i<j≤n,2≤j−i≤n−2

HKn (i, j) .

where a vector V∆ is on the boundary of the half-space HKn (i, j) if the diagonal ij is in the

triangulation ∆. Every point V∆ on the secondary polytope is the intersection of (n− 3)

hyperplanes of the half-spaces given by the (n− 3) diagonals of the triangulation ∆.

Every (n − 4)-dimensional face which is on the boundary of a half-space HKn (i, j)

of the (n − 3)-dimensional polytope Q (P) is given by the convex hull of the vectors V∆

diagonal ij is in the triangulation ∆

conv {V∆ : ∆ is a triangulation with diagonal ij} .

Two (n− 4)-dimensional faces intersect on the surface of Q (P) if their half-spaces corre-

spond to two distinct non-crossing diagonals. Every (n−3−k)-dimensional facet of Q (P)

is given by the intersection of the k hyperplanes which are the boundaries half-spaces of

the corresponding k non-crossing diagonals inside P.

Every edge of the 1-skeleton of Q (P) can be considered as a 1-dimensional facet where

the two vertices of the edge correspond to the two triangulations of the two embedded

fully resolved trees which only differ by one split of the edge labels. Therefore the two

embedded fully resolved trees can be obtained from each other through a nearest neighbour
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interchange (NNI). Hence the construction of Q (P) preserves the adjacency relation for

both triangulations and the embedded trees.

We apply the Dorman Luke construction to obtain the dual polytope ofQ (P) for the trian-

gulations of the regular polygon P, namely the dual associahedron K∗n−1. The dual poly-

tope Q∗ (P) obtained from the Dorman Luke construction is also an (n− 3)-dimensional

polytope in the same (n − 3)-dimensional subspace of Rn with the secondary polytope

Q (P).

Define the centre of the secondary polytopeQ (P) to be the average vector of all vectors

that constitute the set of vertices of the convex hull

OKn =
1

Cn−2

∑
∆ is a triangulation of P

V∆.

Let Pij be set of triangulations of P with diagonal ij.

Definition 2.40. The centre of the (n− 4)-dimensional face Hij ∈ Rn on the hyperplane

for the half-space HKn (i, j) is given by the average vector of all vectors V∆ with diagonal

ij in the triangulation ∆:

Hij :=
1∣∣Pij∣∣ ∑∆∈Pij V∆.

Consider the (n − 3)-dimensional subspace defined in Lemma 2.34. Let H∗ij ∈ Rn be

the vector on the Sn−4 unit sphere centered at OKn with
(
H∗ij −OKn

)
= νij

(
Hij −OKn

)
where νij > 0.

Definition 2.41. The polytope Q∗ (P) is defined to be the convex hull of the set of vectors

H∗ij

Q∗ (P) := conv
{

H∗ij : ij is a diagonal in P
}
.

The (n − 4)-dimensional faces of Q∗ (P) correspond to the vertices of Q (P) thus

correspond to the triangulations of the convex polygon P. Every (n − 4)-dimensional

face of Q∗ (P) consists of (n − 3) vertices for the (n − 3) diagonals in the corresponding

triangulation. Therefore every (n−4)-dimensional face is an (n−4)-simplex. Every point

on a face of Q∗ (P) can be uniquely written as a weighted sum of the (n − 3) vectors of

the (n − 3) vertices of that simplex
∑

ij∈∆ λijH
∗
ij with

∑
ij∈∆ λij = 1. The boundary of

Q∗ (P) is given by the union of all faces of Q∗ (P), which is homeomorphic to the sphere

Sn−4 as the (n− 3)-dimensional polytope is homeomorphic to the (n− 3)-ball. Therefore

the set of points on the surface of Q∗ (P) and the set of points on the sphere Sn−4 are in

one-to-one correspondence.

Recall that every diagonal inside the polygon generates a split of the edge labels and

the leaf labels of the corresponding tree written in the Newick string format with a fixed
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permutation v. We pick the trees which can be written in the Newick string format with

permutation v from the continuous space Tn and fix the sum of the internal edge lengths to

be 1 to obtain a subset T 1
n,v of Tn. Then every tree in the subset T 1

n,v can be first identified

on a specific (n − 4)-dimensional face of Q∗ (P), and each one of the (n − 3) vertices of

the face corresponds to a diagonal in the triangulated n-gon, which also corresponds to a

split of leaf labels of that tree. Therefore the trees in the subset T 1
n,v of Tn and all points

on the surface of the polytope Q∗ (P), are in one-to-one correspondence.

Consider a triangulation ∆ with edges labeled by the leaf labels of permutation v

and the embedded fully resolved tree T . The internal edge given by the split from the

diagonal ij has length λij in the unique weighted sum for the point
∑

ij∈∆ λijH
∗
ij with∑

ij∈∆ λij = 1 on the simplex. Therefore the space T 1
n,v is homeomorphic to the surface

of the polytope Q∗ (P).

Corollary 2.42. Let Tn,v be the subset of Tn where all trees can be written in the Newick

string format with permutation v for the leaf labels. The space Tn,v is homeomorphic to

the vector space Rn−3.

Proof. The space Tn,v is the union of the subsets given by

Tn,v =
⋃

L∈R+

T Ln,v,

where L indicates the total lengths of the internal edges.

The dual associahedron Q∗ (P) is homeomorphic to both the space T 1
n,v and the sphere

Sn−4. Therefore the sphere Sn−4 is homeomorphic to the space T Ln,v for all positive L.

The dual associahedron Q∗ (P) is in an (n − 3)-dimensional subspace of Rn which is

isomorphic to Rn−3. We shift the polytope Q∗ (P) so that the centre OKn is at the origin

and the vertices H∗ij are shifted to H′ij on the unit sphere centered at the origin. We define

the cone of the triangulation ∆ to be the set of vectors{∑
λijH

′
ij : ij is a diagonal in the triangulation ∆,λij ≥ 0

}
.

Let λij be the length of internal edge of the embedded tree given by the corresponding

diagonal λij . As in Definition 2.17, the cone of the triangulation ∆ isomorphic to the

orthant of a tree T in the space Tn, therefore isomorphic to Rn−3
+ .

Then every face of the shifted polytope Q∗ (P), which is given by (n − 3) vertices on

the unit sphere, can be identified in the corresponding cone of of the triangulation ∆.

When we restrict the sum of the internal edges of the embedded trees to be bounded by
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L0 for the triangulations, i.e., take the union

Tn,v =
⋃
L≤L0

T Ln,v,

the corresponding vectors in the cones of all triangulations is a set of points given by the

convex hull

conv
{
L0H

′
ij : ij is a diagonal in P

}
.

By the definition of Q∗ (P), the convex hull defined above is the scaled dual associahedron

constructed inside the (n− 3)-ball centered at the origin with radius L0.

The vector space Rn−3 is homeomorphic to the union of the zero vector and the Sn−4

spheres of all positive sizes, which is homeomorphic to union of the boundaries of the

scaled dual associahedra of all positive sizes.

Remark 2.43. The homeomorphism between Tn,v and Rn−3 suggests that we can simplify

the numerical work of Tn to the space of Rn−3 for a set of specific trees which can be

written in the Newick string format with permutation v for the leaf labels.

Example 2.44. The associahedron K3.

The associahedron K3 consists of two vertices which are connected by an edge. The

two vertices correspond to the two triangulations of a square.

Example 2.45. The associahedron K4.

The associahedron K4 is given by the five triangulations of a pentagon, which can be

constructed in R2 and homeomorphic to the circle S1. Every edge in K4 corresponds to

a pentagon with one diagonal, which is the common diagonal of the two triangulations

which correspond to the two vertices of that edge in K4. The dual graph of K4 is also a

pentagon as there is no higher dimensional faces in K4.

Figure 2.9: The associahedron K4
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Example 2.46. The associahedron K5.

The associahedron K5 can be constructed as a polytope in R3 whose 14 vertices corre-

spond to the 14 triangulations of a labeled hexagon. Every vertex has degree 3 and is the

intersection of 3 faces. The 9 faces of K5 correspond to the 9 possible diagonals inside the

hexagon. If a diagonal cuts the hexagon into a triangle and a pentagon, the corresponding

face of the diagonal will be a pentagon which is isomorphic to K4.

If a diagonal cuts the hexagon into two quadrilaterals with separated regions, the trian-

gulation to each quadrilateral is a given by the associahedron K3 which is a line segment.

The triangulations of the two quadrilaterals are independent therefore the corresponding

face is a quadrilateral homeomorphic to the product K3 ×K3.

Figure 2.10: The associahedron K5

The dual associahedron K∗5 is the dual polytope of K5, with 9 vertices and 14 triangular

faces. The dual associahedron K∗5 is also called the triaugmented triangular prism and can

be constructed by sticking three pyramids to the three square faces of a triangular prism.

Every triangle corresponds to a triangulation and is adjacent to the other 3 triangles.

Every vertex corresponds to a diagonal inside the hexagon and there are six vertices of

degree 5 and three vertices of degree 4.

By Corollary 2.42 and Remark 2.43, we can identify the trees in the subset Tn,v where

v is a fixed permutation of the leaf labels for the Newick string format of some trees in

T6. The numerical work can be simplified to R3 for the trees in the subset, which is an

improvement compared to the space of T6 defined as a subset of R15.
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Figure 2.11: The dual associahedron K∗
5

2.3.3 Realizations of the permuto-associahedra

We have shown that the permutohedron Pn−1 and its dual polytope P ∗n−1 are realizable

in the Euclidean space Rn−1 and homeomorphic to the sphere Sn−2. Each one of the n!

distinct (n− 2)-dimensional faces of P ∗n corresponds to a permutation of n elements. The

associahedron Kn and its dual polytope K∗n are realizable in Rn−2 and homeomorphic to

the sphere Sn−3. Every vertex on the associahedron Kn corresponds to a triangulation of

a convex polygon with fixed labels on the its (n+ 1) edges.

We will give a brief description of the realization of the permuto-associahedron, the

polytope denoted by KPn, where the vertices correspond to the triangulations of a convex

polygon with all permutations [40] of edge labels. We also present how the vertices of KPn

link to the semi-labeled fully resolved trees with (n+1) leaves in the discrete phylogenetic

tree space Sn+1 and show that the adjacencies on KPn are restricted by the nearest

neighbour interchange in Sn+1.

Definition 2.47. The permuto-associahedron KPn, also known as the Type A Coxeter-

associahedron [40], is the convex polytope whose vertices correspond to the fully bracketed

strings of n letters of all permutations. Two vertices are connected by an edge of the 1-

skeleton of KPn if their corresponding fully bracketed strings can be obtained from each

other by one of the two actions:

1. a swap of two letters in a bracket which only consists of the two letters;

2. replacing one bracket with another bracket so that the string is still fully bracket i.e.

given three subsequences A1, A2 and A3 which form a bracketed subsequence in the
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Newick string, the two bracketings
(
A1, (A2, A3)

)
and

(
(A1, A2) , A3

)
can be obtained

from each other by this action.

Recall the permutohedron Pn−1 whose vertices are the vectors v ∈ Rn which are

permutations of (1, . . . , n). Given (n+ 1) leaf labels {i0, i1, . . . , in}, we assign every vertex

(v1, . . . , vn) of Pn−1 a permutation of leaf labels
(
i0, ij1 , . . . , ijn

)
where the subscripts in

the permutation of the leaf labels are given by the inverse permutation of v apart from i0.

We also assign the same permutations of leaf labels to the corresponding faces of the

dual permutohedron P ∗n−1. Note that i0 is always fixed and corresponds to the specified

root label on the tree. Two faces on the dual permutohedron P ∗n−1 are adjacent, i.e.

their corresponding simplexes have (n − 2) vertices in common, if their corresponding

permutations of the leaf labels differ by a swap of two adjacent labels.

Loday’s explicit realization of the associahedron Kn [43] proves that the vertices of

the polytope can be constructed as a subset of an (n− 2)-simplex. The faces of Kn which

correspond to the diagonal j, (j + 2) can be set parallel to the faces of the (n− 2)-simplex

and the vertices in Loday’s realization which is constructed by truncating the simplex.

We define this realization of the associahedron as the polytope Kn where the coordinates

of its vertices satisfy the above properties.

Similar to Kapranov’s realization by putting the associahedra around the vertices of

the permutohedron Pn−1 [40], we construct the permuto-associahedron KPn by the convex

hull of points of the associahedra Kn identically on all n! faces of the dual permutohedron

P ∗n−1.

Definition 2.48. Let Kn,v be the Loday’s realization of the associahedron on the face with

of the dual permutohedron P ∗n , constructed by the triangulations of the convex (n+ 1)-gon

with edges labeled by the permutation v with fixed i0 [24]. The polytope KPn is given by

the convex hull

conv
{
Kn,i : i is a permutation of the leaf labels {i0, i1, . . . , in} with fixed i0

}
.

The polytope KPn given by the convex hull is an (n− 1)-dimensional convex polytope

in the Euclidean space. As the vertices are placed in the interior of the (n−2)-dimensional

faces of the dual permutohedron P ∗n−1, the convex hull can also be considered as a trun-

cated dual permutohedron. The n! associahedra on the polytope KPn can be identified on

the n! faces of the dual permutohedron P ∗n−1. There are also additional (n−2)-dimensional

faces on the polytope KPn apart from the faces of the dual permutohedron P ∗n−1. The

additional faces are given by the edges whose pairs of vertices correspond to the same

triangulation in the polygons with different permutation of edge labels which only differ

by a swap of two adjacent edge labels if these two labels are in the same triangle.

We consider the adjacencies between the vertices on the polytope KPn which are
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given by the edges of the 1-skeleton of KPn . Two vertices are joined by an edge in an

associahedron Kn,(i) if their corresponding sets of splits leaf labels differ by only one split,

which means that their corresponding embedded trees in Sn+1 are adjacent under the

nearest neighbour interchange.

Two vertices are joined by an edge in one of those additional faces if their corresponding

trees in Sn+1 differ by a twist of a cherry. A twist of only one cherry corresponds to a swap

of two adjacent edge labels not including i0. The swapping of two adjacent edge labels

changes the permutation of the edge labels and correspond to the two adjacent faces of

P ∗n . The swap does not change any diagonals inside the (n+1)-gon thus preserve all splits

of the embedded tree. Therefore every pair of vertices which are joined by an edge on the

polytope is either a correspondence of a nearest neighbour interchange, or preserves the

splits of a tree in the space of Sn+1.

The conditions of the permuto-associahedron are satisfied in the construction of KPn,

which shows that the realization is valid and the Sn symmetry of the (n− 1) dimensional

polytope is preserved.

As the polytope KPn consists of points of all possible permutations and compatible

splits of the leaf labels, all trees in the discrete space Sn+1 can be identified by 2n−2 points.

The BHV-adjacencies in Sn+1, i.e. the set of all nearest neighbour interchanges, can be

identified by the edges in the n! associahedra on the surface of KPn.

Example 2.49. The permuto-associahedron KP3.

As shown in Figure 2.12, the permuto-associahedron KP3 is a dodecagon, which is a

2-dimensional convex polytope. We can identify the 6 faces of the dual permutohedron

P ∗2 , which are labeled by the permutations inside the 6 edges of the dodecagon. Every

face which is labeled by a permutation is an edge and an associahedron K3, where the

vertices are given in the bracketings of the Newick string format labeled on the 12 vertices

of KP3. The 6 unlabeled edges correspond to a swap of two adjacent labels in the same

bracket, which is a cherry in the embedded tree.

41



Chapter 2. Background and finite tree spaces

Figure 2.12: The permuto-associahedron KP3

Example 2.50. The permuto-associahedron KP4

The permuto-associahedron KP4 is a 3-dimensional polytope with 24 pentagon faces,

8 dodecagon faces, 6 square faces and 24 rectangle faces as shown in the figure below.

Figure 2.13: The permuto-associahedron KP4

Each one of the 120 vertices can be identified in one of the 24 pentagons. Every

pentagon can be identified as an associahedron K4 with 5 vertices correspond to the tri-

angulations of a pentagon with specific permutations of edge labels which correspond to

the faces of the dual permutohedron P ∗3 . The edges which do not belong to any associa-

hedron connect to vertices which correspond to the same bracketing of two Newick strings

with the permutations differ by a swap of two labels in the same bracket which only

consist of those two labels, e.g. the two vertices which correspond to the Newick strings
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((
i1, (i3, i4)

)
, i2

)
and

((
i1, (i4, i3)

)
, i2

)
as they differ by a swap of the leaf labels i3 and

i4 inside the bracket with two labels. The vertices on the square faces all correspond to

the bracketing
(
(i1, i2) , (i3, i4)

)
and all of its permutations of the 4 leaf labels. A vertex

is on a dodecagon face if it is not on a square face. Every dodecagon face is isomorphic to

the permuto-associahedron KP3. We can identify the isomorphism by fixing the first or

the fourth leaf label of the Newick string with 4 leaf labels, the Newick strings with the

other three labels correspond to the permuto-associahedron KP3.

2.3.4 Realizations of the space of finite phylogenetic trees

In this subsection, we first briefly present the balanced minimal evolution (BME) polytope

constructed as the convex hull of vectors in R(n2) which correspond to the fully resolved

trees in the discrete tree space Sn. Then we outline another idea of the realization of

the space Sn from the method of realizing the associahedron as the secondary polytope.

These two realizations give two different families of polytopes of the same dimension in

the Euclidean space which may lead to further applications and numerical work.

Given a fully resolved tree T ∈ Sn with leaf labels {1, 2, . . . , n}, we define lij to be

the number of internal vertices in the path from leaf i to leaf j. We also have lii = 0

and lji = lij . The values for lij are integers with 1 ≤ i, j ≤ n − 2 for all pairs i 6= j [9].

We define a vector d ∈ R(n2) with subscripts of the components in the lexicographic

order d = (d12, d13, . . . , d1n, d23, d24, . . . , dn−1 n). The vector lT ∈ R(n2) is given by l =

(l12, l13, . . . , l1n, l23, l24, . . . , ln−1 n). Let cT ∈ R(n2) be the vector with components in the

lexicographic order which have values cTij = 2−lij . We may choose to multiply all entries

by 2n−2 so that components in the vector xT = 2n−2cT are all integers. Then every fully

resolved tree T ∈ Sn corresponds to a different vector xT ∈ R(n2) [36].

Definition 2.51. The balanced minimum evolution (BME) polytope BMEn for the dis-

crete fully resolved tree space Sn is defined as

BMEn := conv
{

xT : T ∈ Sn
}
,

the convex hull in R(n2) given by the vectors determined by the number of internal vertices

between any pair of leaves.

Given any leaf label i for a vector xT on the BME polytope BMEn, we have a Kraft

equality [36] given by ∑
i:i 6=j

xTij = 2n−2.

These n equalities for the n leaves give the dimension of the BME polytope BMEn,

dim (BMEn) =
(
n
2

)
− n.
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For example, the three fully resolved trees in BHV4, given in the quartet display

{1, 2|3, 4},{1, 3|2, 4} and {1, 4|2, 3}, correspond to the vectors (2, 1, 1, 1, 1, 2), (1, 2, 1, 1, 2, 1)

and (1, 1, 2, 2, 1, 1). The three points given by the three vectors form a triangle in R6, which

is a 2-dimensional convex polytope.

Recent publications have described some of the facets on the BME polytopes and

outlined an idea to describe all faces of the maximum dimension and the adjacencies

between the vertices which correspond to the nearest neighbour interchange in Sn [25],

[24].

However, we would like to have a realization of the discrete space Sn as a convex poly-

tope which can be further applied to construct the dual polytope to realize the continuous

space Tn. When we have a fixed cyclic order of the leaf labels, the embedded fully resolved

trees can be put in the dual polygon with fixed leaf labels on the edges in R2. If we do

not fix the cyclic order of the leaf labels of Sn, it is natural to consider them on the n

vertices of a standard (n−1)-simplex. We apply the similar idea of the secondary polytope

construction for the associahedra and generalize to higher dimensions; i.e., the generalized

secondary polytope for the triangulation of an (n− 1)-dimensional polytope. We outline

the idea of the realization which can be extended to further analysis.

Definition 2.52. Two hyperplanes are non-crossing inside a polytope P if the intersection

of the two hyperplanes are not in the interior of the polytope P.

Definition 2.53. A cutting hyperplane of the n-dimensional convex polytope P is an

(n−1)-dimensional hyperplane which is an (n−1)-dimensional convex hull of some vertices

of the polytope P.

Definition 2.54. A triangulation of an n-dimensional convex polytope P is a cutting

of the polytope into disjoint regions with the maximum number of non-crossing (n − 1)-

dimensional cutting hyperplanes inside P.

Note that the disjoint regions after the triangulation are still convex or non-concave.

We identify the vertices for every disjoint region ∆j1...jk inside P, given as vectors

in Euclidean space {jk, . . . , jk}. We will assign mass vol
(
∆j1...jk , jl

)
to every vertex of

∆j1...jk by the barycentric distribution which has the following properties. The sum of the

mass assigned to all vertices
∑k

l=1 vol
(
∆j1...jk , jl

)
, are equal to its volume vol

(
∆j1...jk

)
.

The centre of mass ∆j1...jk , which can be evaluated by the weighted sum of the vertices’

coordinates

vol
(
∆j1...jk

)
∆j1...jk =

k∑
l=1

vol
(
∆j1...jk , jl

)
jl,

have the same coordinates as the fixed barycenter of the region, for the case where the

mass is uniformly distributed within the interior of the region. This distribution of mass
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to the vertices can always be achieved as the region is n-dimensional in the Euclidean

space, equal to the dimension of P, thus consists of at least (n + 1) vertices which are

not on an (n − 1)-dimensional hyperplane. This can be done by setting the mass at the

vertices as unknown variables and we can obtain precisely (n+ 1) equations. One of these

equations corresponds to the fixed sum of mass, which is equal to the volume of the region.

The other n equations correspond to the n components for the coordinates of the centre

of mass in the Euclidean space, which are equal to the entries for the barycenter of the

region.

Definition 2.55. For convex polytope P with m vertices, let {ei}mi=1 be the standard basis

of the vector space Rm with subscripts labeled by the vertices of P. Let ∆ be a triangulation

of P and voli be the sum of all mass assigned to the vertex i. The vector V∆ ∈ Rm is

given by

V∆ =

m∑
i=1

voliei.

Remark 2.56. The vector V∆ can also be expressed as

V∆ =
∑

∆j1...jk is a truncated region in P

k∑
l=1

vol
(
∆j1...jk , jl

)
ejl ,

where vol
(
∆j1...jk , jl

)
is the mass given by the volume of the region ∆j1...jk assigned to the

vertex jl by the barycentric distribution.

Definition 2.57. The amended generalized secondary polytope Q for the convex polytope

P with m vertices is given by the convex hull

Q := conv {V∆ : ∆ is a triangulation of P} .

We define the polytope Σ′n to be the convex hull of the middle points of all edges of

the standard (n− 1)-simplex in Rn. The n vertices of the standard (n− 1)-simplex have

coordinates ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn where the only nonzero component 1 is at the

j-th entry. In Rn, the standard n-simplex is explicitly given by the set of pointsx = (x1, . . . , xn)

∣∣∣∣∣∣
n∑
i=1

xi = 1, 0 ≤ xi ≤ 1 for i = 1, . . . , n

 .

The middle points of the edges of this standard (n − 1)-simplex have coordinates eij =

eji =
(

0, . . . , 1
2 , . . . ,

1
2 , . . . , 0

)
where the only two nonzero components 1

2 are at the i-th

and j-th entries. The polytope Σ′n can be considered as a truncated n-simplex, which is

the union of the standard (n − 1)-simplex and the n half spaces defined by xj ≤ 1
2 for
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j = 1, . . . , n; i.e., the set of points whose components are all between 0 and 1
2 inside the

standard n-simplex. Therefore in Rn, the polytope Σ′n is explicitly given by the set of

points

Σ′n :=

x = (x1, . . . , xn)

∣∣∣∣∣∣
n∑
i=1

xi = 1, 0 ≤ xi ≤
1

2
for i = 1, . . . , n

 .

There are n faces of Σ′n given by the hyperplanes xj = 1
2 for j = 1, . . . , n in the subspace

where the components satisfy
∑n

i=1 xi = 1. We will label these n faces by the n leaf labels

in the discrete tree space Sn and consider the triangulations of Σ′n. Note that every pair of

labeled faces i and j do not have any common edge, but only have one point in common,

the vertex eij . The other unlabeled n faces of Σ′n are part of the original faces of the

n-simplex before the truncation, given by the hyperplanes xj = 0 for j = 1, . . . , n where

the components satisfy
∑n

i=1 xi = 1.

We will consider the hyperplanes that cut Σ′n into disjoint regions which satisfy the

conditions of triangulating an (n − 1)-dimensional convex polytope. For n ≥ 4, let E be

a subset of the set of leaf labels with 2 ≤ |E| ≤ n− 2. Therefore the two sets E and EC

constitute a nontrivial split of the leaf labels. We may always assume that the leaf label

n is in the subset E.

Definition 2.58. Let vE ∈ Rn be the vector with values 1 at the entries with subscripts

in the subset E and −1 at the entries with subscripts in the subset EC . The cutting

hyperplane E inside Σ′n is given by the set of points

E :=

x ∈ Σ′n : 〈x,vE〉 =
∑
i∈E

xi −
∑
j∈EC

xj = 0

 .

We can see that a vertex eij of the polytope Σ′n is on the hyperplane E if i and j are

not in the same subset E or EC . The hyperplane E also defines the half-spaces inside Σ′n;

i.e., we obtain the inequalities for the vertices which are not on the hyperplane from the

split:

〈eij ,vE〉 > 0 if i, j ∈ E,

〈eij ,vE〉 < 0 if i, j ∈ EC .

Two distinct vertices ei1j1 and ei2j2 are connected by an edge of Σ′n if and only if∣∣{i1, j1} ∩ {i2, j2}∣∣ = 1. Therefore every edge given by two adjacent vertices ei1j1 and

ei2j2 satisfies precisely one of the three following conditions.

• the edge is parallel to the hyperplane E, if the three numbers i, j1, j2 are in the same

subset E or EC as it is on the parallel hyperplane defined by 〈eij ,vE〉 = 1 or −1;
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• the edge is on the hyperplane E, if i ∈ E, j1, j2 ∈ EC or i ∈ EC , j1, j2 ∈ E;

• the edge crosses the hyperplane at ei1j1 or ei2j2 if j1 and j2 are not in the same

subset E or EC .

Therefore the hyperplane E cuts the polytope Σ′n into two disjoint regions without creating

additional vertices on the surface of Σ′n. Both regions are also convex polytopes and consist

of at least two labeled faces which correspond to the nontrivial split of the leaf labels.

Given two compatible nontrivial splits of the leaf labels E and F , the two hyperplanes

E and F do not cross in the interior of the polytope Σ′n. The entries for the coordinates of

any interior points of the n-simplex are all nonzero and there does not exists any nonzero

solutions for the coordinates x that satisfy both equations below of the hyperplane if their

splits are compatible.

〈x,vE〉 =
∑
i∈E

xi −
∑
j∈EC

xj = 0,

〈x,vF 〉 =
∑
i∈F

xi −
∑
j∈FC

xj = 0.

Moreover, the two hyperplanes E and F cross on the boundary of the polytope Σ′n, defined

by the facets with vertices eij where i and j are not in same subset E or EC , and not in

same subset F or FC .

Therefore the (n − 3) compatible nontrivial splits of a fully resolved tree T ∈ Sn
correspond to (n−3) non-crossing hyperplanes inside the convex polytope Σ′n which gives

a triangulation of Σ′n, as every hyperplane E of a split generates the same split of the

labeled faces of Σ′n. We will now define the amended secondary polytope of Σ′n given by

the convex hull of the vectors define by the triangulations of Σ′n.

Definition 2.59. Let ∆ be a triangulation of Σ′n and ṽol
(
∆j1...jk , jl

)
be the mass of from

the region ∆j1...jk assigned to the vertex jl by the barycentric distribution. The barycentric

distribution is a symmetric distribution if the value ṽol
(
∆j1...jk , jl

)
is invariant under the

group action that stabilizes the region ∆j1...jk by permuting the n labels in the subscripts

of the vertices on Σ′n.

Definition 2.60. Let Ṽ∆ ∈ R(n2) be the vector of the triangulation ∆ of the convex

polytope Σ′n where the mass is assigned to the vertices by the symmetric distribution.

By definition we have

Ṽ∆ =
∑

∆j1...jk is a truncated region in Σ′n

k∑
l=1

ṽol
(
∆j1...jk , jl

)
ejl =

∑
α is a vertex of Σ′n

ṽolαeα,
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Definition 2.61. The amended generalized secondary polytope Qn for the convex polytope

Σ′n is given by the convex hull

Qn := conv
{

Ṽ∆ : ∆ is a triangulation of Σ′n

}
,

The dimension of the secondary polytope Qn is
((

n
2

)
− n

)
where

(
n
2

)
corresponds to

the number of vertices on Σ′n. The points on the secondary polytope Qn, given in the

form of vectors in R(n2), are in the subspace generated from the n affine conditions. One

affine condition is given by the fixed sum of mass and the other (n − 1) conditions are

given by the fixed position of the barycentre of the convex polytope Σ′n.

The secondary polytope Qn and the BME polytope BMEn have the same dimension

in the Euclidean space. Both realizations have reduced the dimension of the graph of the

discrete space Sn to the order of n2, which suggests a construction of the continuous space

Tn in the same dimension.
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Random walks, finite Gelfand

pairs and spherical functions

In this chapter, we study the definitions and properties of Gelfand pairs and spherical func-

tions and seek methods to solve the random walks given by nearest neighbour interchange

on the discrete tree spaces Sn and S∗n defined in Chapter 2.

Some examples of tree spaces we consider are relatively large and cost more than

exponential time to simulate numerically [53], [61]. We can produce the Markov chain

from the nearest neighbour interchange (NNI) process that generates the simple random

walk in Sn but the dimension of the transition matrix is (2n − 5)!!. Our aim is to find

the decomposed eigensolutions under the invariance conditions of the symmetric groups

acting on the tree spaces Sn and S∗n.

We also note that some tree spaces can be parametrized by a large group G and a non-

trivial subgroup K which form a Gelfand pair. Thus we apply the connection between the

Gelfand pairs and the simple random walks to find the characters and spherical functions of

the bi-K-invariant subalgebra `1
(
K\G/K

)
which can be interpreted as the eigensolutions

of the transition matrix for the simple random walks.

The Gelfand pair (Sn, Sm×Sn−m) is used to solve the random walk on the split of the

leaf labels of the trees in Sn and S∗n. We outline a method to solve the spherical functions

from the Johnson scheme and the Bernoulli-Laplace diffusion model. In particular, we

present the solution for the random walk on the vertices and edges of the Petersen graph

which corresponds to S5 and S∗5 .

The trees and matchings of 2n elements into unordered n pairs as defined in Method

(II) of enumerating the number of trees in Sn+2 in Section 2.2 correspond to the Gelfand

pair (S2n, S2 oSn). The matchings only correspond to the set of fully resolved trees and do

not have the same NNI adjacencies and symmetry properties as the space of phylogenetic

trees [17].
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The automorphism group Aut
(
Tq,n

)
acts on the rooted q-ary ultrametric trees of

depth n. The automorphism group Aut
(
Tq,n

)
and the stabilizer of a fixed leaf Kq,n form

a Gelfand pair and is a model which can be generalized to the infinite case; i.e., Banach

algebras in the second part of the thesis.

3.1 Finite Gelfand pairs

Throughout this chapter we assume that the group G is finite and consider the `1 norm

on the group algebras and the invariant subalgebras. We mainly use the definitions and

notations from [15].

LetG be a finite group and `1 (G) be the algebra of summable complex-valued functions

on the group. For all f ∈ `1 (G), we have
∑

g∈G
∣∣f (g)

∣∣ <∞.

Let δg ∈ `1 (G) be the characteristic function on the group element g ∈ G. We have

δg (g) = 1 and δg (h) = 0 for h ∈ G with h 6= g. The algebra `1 (G) has a basis
{
δg
}
g∈G

given by the characteristic functions on the group elements.

Definition 3.1. Given a group G and a subgroup K ⊆ G, a function f ∈ `1 (G) : G −→ C
is right-K-invariant if for all g ∈ G and for all k ∈ K, we have f (g) = f (gk) and is

left-K-invariant if for all g ∈ G and for all k ∈ K, we have f (g) = f (kg).

The set of summable right-K-invariant functions `1
(
G/K

)
is a subspace of `1 (G).

A function f ∈ `1
(
G/K

)
satisfies f (h1) = f (h2) for all h1, h2 in the same right coset

gK. Set δgK ∈ `1 (G) =
∑

h∈gK δh to be the sum of characteristic functions of the group

elements h in the right coset gK. The right-K-invariant subspace `1
(
G/K

)
has a basis{

δgK
}
gK⊂G given by the characteristic functions of the right cosets δgK =

∑
h∈gK δh.

Let G acts on the space X and K be the stabilizer of x0 ∈ X. Then X is the

homogeneous space of G/K and for all x ∈ X we have x = gx0 for some g ∈ G. The set

of right cosets {gK}g∈G is isomorphic to the homogeneous space X.

We can then define fX ∈ `1 (X) : X −→ C as the complex valued functions on X. The

values of fX are given by the right-K-invariant function f ∈ `1 (G) where fX(x0) = f(e)

and fX(gx0) = f(g). Therefore the right-K-invariant subspace `1
(
G/K

)
has a basis

{δx}x⊂X for all x = gx0. The right-K-invariant subspace `1
(
G/K

)
can also be considered

as the algebra of functions on the homogeneous space X. When X is finite, the dimension

of `1 (X) is equal to the cardinality |X|. The basis is given by the set of characteristic

functions {δx : x ∈ X}. For all y ∈ X, we have

δx(y) =

1 if y = x

0 if y 6= x
.
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Definition 3.2. Given a group G and a subgroup K ⊆ G, we define that a function

f ∈ `1 (G) is bi-K-invariant if f is both left-K-invariant and right-K-invariant; i.e., for

all g ∈ G and for all k1, k2 ∈ K, we have f (g) = f (k1gk2).

Definition 3.3. Let G be a finite group and K be a subgroup of G. The pair (G,K) is

called a Gelfand pair if the algebra `1
(
K\G/K

)
of bi-K-invariant functions under the

convolution multiplication ∗ is commutative [15].

Lemma 3.4. Let `1
(
K\G/K

)
be the subalgebra of bi-K-invariant functions under the

convolution multiplication ∗. Then `1
(
K\G/K

)
closed is with respect to convolution.

That is, for all f1, f2 ∈ `1
(
K\G/K

)
, f1 ∗ f2 is bi-K-invariant.

Proof. For all g′ ∈ KgK, there exists k1, k2 ∈ K such that g′ = k1gk2.

[f1 ∗ f2]
(
g′
)

=
∑
h∈G

f1(g′h)f2(h−1) =
∑
h∈G

f1(k1gk2h)f2(h−1)

=
∑
h∈G

f1(gk2h)f2(h−1) =
∑
h∈G

f1(gk2h)f2(h−1k−1
2 )

setting h′ = k2h

=
∑
h′∈G

f1(gh′)f2(h′−1) = [f1 ∗ f2] (g) .

Lemma 3.5. Given a group G and a subgroup K ⊆ G, Suppose for any g ∈ G we have

g−1 ∈ KgK. Then (G,K) is a Gelfand pair (Example 4.3.2 of [15]).

Proof. We assume that f(g) = f(g−1) for all f ∈ `1
(
K\G/K

)
. Then for f1, f2 in this

algebra we get

[f1 ∗ f2](g) =
∑
h∈G

f1(gh)f2(h−1)

=
∑
h∈G

f1(gh)f2(h)

setting t = gh

=
∑
t∈G

f1(t)f2(g−1t)

=
∑
t∈G

f1(t−1)f2(g−1t)

= [f2 ∗ f1](g−1).

By Lemma 3.4, f2 ∗ f1 is also bi-K-invariant. Hence we have [f2 ∗ f1](g−1) = [f2 ∗ f1](g).

Therefore [f1 ∗ f2](g) = [f2 ∗ f1](g),which shows that (G,K) is a Gelfand pair.
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Remark 3.6. If (G,K) is a Gelfand pair and g−1 ∈ KgK for all g ∈ G, then (G,K) is

called a symmetric Gelfand pair.

Definition 3.7. Let (X, d) be a finite metric space and G be a group acting on X by

isometries i.e. d (gx, gy) = d (x, y) for all x, y ∈ X. The action is 2-point homogeneous

(or distance-transitive) if for all (x1, y1) , (x2, y2) ∈ X×X such that d (x1, y1) = d (x2, y2),

there exists g ∈ G such that gx1 = x2 and gy1 = y2 [15].

Let X be the homogeneous space G/K. Let G be the finite group that acts isometri-

cally and 2-point homogeneously on the metric space (X, d). The condition of the metric

d (x0, y) = d (y, x0) implies that there exists g ∈ G such that y = gx0 and x0 = gy for all

x0, y ∈ X which further implies x0 = gy = g−1y and d (x0, gx0) = d
(
x0, g

−1x0

)
. If K is the

stabilizer of x0, then x0 = kx0 and d
(
kx0, kg

−1x0

)
= d

(
x0, kg

−1x0

)
= d

(
x0, gk

−1x0

)
=

d (x0, gx0) for all k ∈ K, The equality d
(
x0, kg

−1x0

)
= d (x0, gx0) shows that there ex-

ists k′ ∈ G such that x0 = k′x0 and k′kg−1x0 = gx0. Therefore we have k′ ∈ K and

g−1 ∈ KgK thus (G,K) is a symmetric Gelfand pair.

We identify the following examples of groups and subgroups and show that they form

symmetric Gelfand pairs and present the links to the corresponding tree spaces.

Example 3.8. We consider the group that acts on the m, (n−m) splits of the leaf labels

on trees in the discrete tree space S∗n.

Let G be the symmetric group Sn acting on the m-subsets of the set {1, . . . , n} by

permuting the numbers. Let K be the subgroup Sm × Sn−m which is isomorphic to the

stabilizer of the m-subset x0 = {1, . . . ,m}. The homogeneous space X, which is the set

of all m-subsets of {1, . . . , n}, is isomorphic to G/K.

Let S∗n be the tree space with leaf labels {1, . . . , n} . Every nontrivial split of a tree

T ∈ S∗n is given by the partition of a subset of {1, . . . , n} and the complement of the subset.

In this example, we fix the size of the subset to be m and consider the splits correspond

to the m-subsets of the set of leaf labels {1, . . . , n}.

Lemma 3.9. The pair (Sn, Sm × Sn−m) is a symmetric Gelfand pair.

Proof. First we identify the double cosets. The group G acts transitively on the m-subset

of {i1, . . . , in} by

π {i1, . . . , in} =
{
π (i1) , . . . , π (in)

}
, for all π ∈ G.

We have kx0 = k and |kx ∩ x0| = |kx ∩ x0| for all k ∈ K. For all k1, k2 ∈ K, we have

|k1gk2x0 ∩ x0| = |k1gx0 ∩ x0| = |gx0 ∩ x0| ,
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which shows that the double cosets of g are determined by the number of unmoved elements

in x0 after the group action g:

KgK =
{
π ∈ G

∣∣|πx0 ∩ x0| = |gx0 ∩ x0|
}
.

Given a group element g ∈ G and a number ik ∈ x0, we have either gik ∈ x0 or

gik /∈ x0. The group Sn also acts on all subsets of {1, . . . , n}. We define the set

x1 = {ik ∈ x0|gik ∈ x0} and the set x2 =
{
ik ∈ x0

∣∣gik /∈ x0

}
. Then we have a partition

x0 = x1 ∪ x2 and gx0 = gx1 ∪ gx2. Note that x1 ∩ x2 = φ, |gx2 ∩ x0| =
∣∣x2 ∩ g−1x0

∣∣ = 0

and |gx0 ∩ x0| =
∣∣x0 ∩ g−1x0

∣∣ = |gx1| = |x1|.
We have g−1x0 ∩ x0 =

(
g−1 (x1 ∪ x2)

)
∩ x0 =

(
g−1x1 ∩ x0

)
∪
(
g−1x2 ∩ x0

)
. Then∣∣g−1x0 ∩ x0

∣∣ = |x1 ∩ x0| = |x1|, i.e. if g stabilizes j elements in x0, then g−1 also stabilizes

j elements in x0 which implies |gx0 ∩ x0| =
∣∣g−1x0 ∩ x0

∣∣. Therefore g−1 ∈ KgK and

(G,K) is a symmetric Gelfand pair.

Remark 3.10. Let d : X×X −→ R+ be the metric defined as d (x, y) = min{m,n−m}−
|x ∩ y| for all x, y which are the m-subsets of the set of n numbers. The action of Sn on

the metric space (X, d) is 2-point homogeneous.

In the next section, we consider the random walk on the m-subsets of the set of n

numbers and the random walk on the double cosets given by the subalgebra of bi-K-

invariant functions. We may use this setting as the model of the random walks on the

trees in S∗n and only consider the degenerate trees when the splits correspond to the m-

subsets. The eigensolutions to both random walks can be obtained from each other. When

n is small, the number of possible choices of m is also small and we will be able to use this

Gelfand pair to solve the random walks quickly. For n = 5, we have only one nontrivial

choice of m = 2 which corresponds to the random walk on the Petersen graph as described

in Example 2.18. When n is large, the number of tree topologies given by the partitions

of the internal edges are not easy to compute [9].

Example 3.11. We consider trees in the discrete space Sn and the matchings of the (n−2)

unordered disjoint 2-subsets of (2n− 4) numbers.

As described in Method (II) of enumerating the number of trees in Sn in section 2.2.1,

we set up a one-to-one correspondence between the semi-labeled fully resolved trees and

the (n− 2) unordered disjoint 2-subsets of (2n− 4) numbers [17].

LetX be the family of all partitions of {1, . . . , 2n} consisting of 2-subsets. The elements

x ∈ X are of the form
{
{i1, i2} , {i3, i4} , . . . , {i2n−1, i2n}

}
. The symmetric group S2n acts

on these n unordered pairs. For all π ∈ S2n,

πx =
{
{πi1, πi2} , {πi3, πi4} , . . . , {πi2n−1, πi2n}

}
.
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Set x0 =
{
{1, 2} , {3, 4} , . . . , {2n− 1, 2n}

}
and let the subgroup K be the stabilizer of x0.

We express K as the wreath product S2 o Sn and we can compute that |X| = (2n)!
2nn! .

The pair (S2n, S2 o Sn) is a symmetric Gelfand pair [17]. However the elements of X

which belong to a double coset KgK do not have the Sn+2 symmetry we expect to have

for Sn. The adjacencies are different from the nearest neighbour interchange [17] hence the

corresponding homogeneous space and double cosets from the Gelfand pair (S2n, S2 o Sn)

do not correspond to the discrete metric structure of the space Sn [9].

Example 3.12. We consider the q-homogeneous rooted tree of depth n, the ultrametric

space, the automorphism group Aut(Tq,n) and the stabilizer of the word 0 . . . 0.

As defined in Example 2.10 in section 2.1, the q-homogeneous rooted tree of depth n is

a graph whose vertices correspond to the words from the alphabet Σ = {0, 1, . . . , q − 1}
with length at most n. The automorphism group Aut

(
Tq,n

)
is isomorphic to the n-iterated

wreath product Sq o · · · o Sq [7] and we define the subgroup Kq,n to be the stabilizer of the

word 0 . . . 0 of length n.

Definition 3.13. Given two leaves of Tq,n which correspond to the two words x =

x1 · · ·xn ∈ Σn and y = y1 · · · yn ∈ Σn, we define the function d : Σn × Σn −→ R+

as

d (x, y) = n−max {k : xi = yi for all i ≤ k} .

We see that d (x, y) = d (y, x) ≥ 0 for all x, y ∈ Σn and the equality holds if and only

if x = y. Note that for any three words x, y, z ∈ Σn, the triangle inequality d (x, y) ≤
d (x, z) + d (z, y) can be obtained from the relation

d (x, y) ≤ max
{
d (x, z) + d (z, y)

}
,

which is called the ultrametric inequality. Therefore the function d is a metric. This

metric d is called the ultrametric distance and (Σn, d) is called the ultrametric space. For

x, y ∈ Σn we have d (x, y) ∈ {0, 1, . . . , n}.
We denote the stabilizer of the word x0 = 00 · · · 0 ∈ Σn by

Kq,n =
{
g ∈ Aut

(
Tq,n

)
: g (x0) = x0

}
.

If the subgroup Kq,n stabilizes x0, then Kq,n also stabilizes all words of the form 00 · · · 0
of any length less than n including the empty word φ.

We identify the double cosets from the orbits of the leaves determined by the ul-

trametric d. For j ∈ {0, 1, . . . , n}, define the set of leaves Ωn,j as the set of words{
x ∈ Σn : d (x0, x) = j

}
. The total numbers of words in each orbits are given by

∣∣Ωn,0∣∣ = 1

and
∣∣Ωn,j∣∣ = (q − 1) qj−1 for 1 ≤ j ≤ n. Given gn,j ∈ Aut

(
Tq,n

)
where d

(
x0, gn,jx0

)
= j,
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the double coset Kgn,jK is given by

Kgn,jK =
{
g ∈ Aut

(
Tq,n

)∣∣∣gx0 ∈ Ωn,j
}
.

Lemma 3.14. The pair
(
Aut

(
Tq,n

)
,Kq,n

)
is a symmetric Gelfand pair.

Proof. For all k ∈ Kq,n we have k−1 ∈ Kq,n.

If g /∈ K, let x = gx0 = 0 · · · 0xj · · ·xn where the first nonzero letter xj ∈ Σ\ {0} ap-

pears in the j-th position. Then we have y = g−1x0 = 0 · · · 0yj · · · yn where the first

nonzero letter yj ∈ Σ\ {0} also appears in the j-th position. Therefore d (x, x0) =

d (y, x0) = n − j. We can see that g−1 ∈ KgK which implies that
(
Aut

(
Tq,n

)
,Kq,n

)
is a symmetric Gelfand pair.

Remark 3.15. The action of Aut
(
Tq,n

)
on the metric space (Σn, d) is 2-point homoge-

neous [15].

In the next chapter, we study the automorphism group Aut
(
Tq
)

acting on the infinite

homogeneous tree Tq and the stabilizer K of a fixed vertex x0. We use the 2-point homo-

geneous property to show that
(
Aut

(
Tq
)
,K
)

is a Gelfand pair and study the properties

of the corresponding Iwahori-Hecke Algebra with `1 norm.

3.2 Spherical functions

In this section, we introduce the definitions and some key properties of the spherical

functions for a commutative bi-K-invariant subalgebra of the group algebra `1 (G). We

also present how the spherical functions link to the minimal idempotents of the bi-K-

invariant subalgebra for finite dimensions.

We consider the the bi-K-invariant subalgebra `1
(
K\G/K

)
. The subalgebra

`1
(
K\G/K

)
has a natural basis given by the set of characteristic functions on the double

cosets
{
YKgK

}
g∈G given by

YKgK (h) =

1 if h ∈ KgK

0 if h /∈ KgK
.

Remark 3.16. There exists a natural normalization for the set of bases
{
YKgK

}
g∈G as{

YKgK
|KgK|

}
g∈G

such that all elements in the set of bases have norm 1.

Definition 3.17. Let (G,K) be a Gelfand pair. A bi-K-invariant function φ on G is a

spherical function if it satisfies the following conditions
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1. For all f ∈ `1
(
K\G/K

)
there exists λf ∈ C such that φ ∗ f = λfφ.

2. φ (1G) = 1.

Note that the constant function φ(g) = 1 is always a spherical function as for all g ∈ G,

we have

φ ∗ f(g) =
∑
t∈G

φ (gt) f
(
t−1
)

=

∑
h∈G

f (h)

φ (g) .

The following statement is proved in Theorem 4.5.3 in [15].

Theorem 3.18. A nonzero bi-K-invariant function φ is a spherical function if and only

if
1

|K|
∑
k∈K

φ (gkh) = φ(g)φ(h)

for all g, h ∈ G.

Corollary 3.19. Let YKgK ∈ `1
(
K\G/K

)
be the characteristic function of the double

coset KgK. Let δφ
(
YKgK

)
= φ(g). Then δφ is a character on the algebra `1

(
K\G/K

)
given by the spherical function φ.

Proof. The convolution product of two characteristic functions is given by

YKg1K ∗ YKg2K(h) =
∑
t∈G

YKg1K

(
ht−1

)
YKg2K (t)

=
∑

t∈Kg2K
YKg1K

(
ht−1

)
YKg2K (t)

=
1

|K|2
∑

k1,k2∈K
YKg1K

(
hk1g

−1
2 k2

)
=

1

|K|
∑
k∈K

YKg1kg2K (h) .

The identity element of `1
(
K\G/K

)
for the convolution multiplication is the characteristic

function YK1GK . We verify that the character corresponds to the characteristic function

of K1GK is χφ
(
YK1GK

)
= φ (1G) = 1. Therefore the character is nontrivial.
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Given two characteristic functions of `1
(
K\G/K

)
, by Theorem 3.18 we have

χφ
(
YKg1K ∗ YKg2K

)
= χφ

 1

|K|
∑
k∈K

YKg1kg2K


=

1

|K|
∑
k∈K

φ (g1kg2)

= φ (g1)φ (g2)

= χφ
(
YKg1K

)
χφ
(
YKg2K

)
,

which shows that χφ is a character.

Remark 3.20. Note that the characters are in the dual of `1
(
K\G/K

)
. The dual of the

space `1 (G) is given by `∞ (G).

Let G be a finite group and (G,K) be a Gelfand pair with the number of orbits of

K on the corresponding homogeneous space X ' G/K equal to N + 1. We apply the

following statements from [15] to present the connection between the idempotents of the

subalgebra `1
(
K\G/K

)
and the spherical functions:

1. There exist N + 1 pairwise orthogonal spherical functions
{
φj
}N
j=0

, including the

constant spherical function, φ0(g) = 1 for all g ∈ G, by Corollary 4.5.6, Proposition

4.5.7 in [15].

2. `1 (X) decomposes into N + 1 distinct irreducible subrepresentations, by Theorem

4.6.1 in [15].

3. Every spherical function corresponds to a 1-dimensional irreducible subrepresenta-

tion in `1 (X), Theorem 4.6.2 in [15].

The invariant subalgebra `1
(
K\G/K

)
is (N + 1)-dimensional and has a set of (N + 1)

distinct minimal idempotents {ei}Ni=0 which correspond to the natural basis of CN+1. The

minimal idempotents satisfy eiei = ei and eiej = 0 for i 6= j. Every minimal idempotent ei

corresponds to a character χi where χi (ei) = 1 and χi (ei) = 0 for i 6= j.

Every function f ∈ `1
(
K\G/K

)
can be written as a linear sum of the minimal idem-

potents, given by f =
∑N

j=0 αjej . We have fej = αjej and χj
(
fej
)

= χj (f)χj
(
ej
)

= αj

for all j = 0, 1, . . . , N .

Let (G,K) be a Gelfand pair and
{
KgjK

}N
j=0

be the set of distinct double cosets

which constitute the finite group G as a disjoint union. Let
{
φj
}N
j=0

be the set of spherical

functions for the subalgebra `1
(
K\G/K

)
. We find the set of minimal idempotents {ei}Ni=0

from the set of spherical functions.
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If φj is a spherical function, then there exists λj ∈ C such that φj ∗ φj = λjφj . Let

fj = 1
λj
φj be the scalar multiple of the spherical function φj . We have fj ∗ fj = fj ,

which shows that fj is an idempotent. Since all spherical functions are orthogonal, i.e.

φj ∗ φl = 0 when j 6= l, the set of scaled spherical functions
{
fj
}N
j=0

constitute the set of

minimal idempotents of `1
(
K\G/K

)
.

3.3 Random walk on tree spaces

Random walks are widely used in simulating the data of discrete tree spaces [9]. Statisti-

cians require the probability distribution to analyze the stochastic process which simulates

the evolutions as a random walk with a transition matrix [9], [4]. The dimension of the

transition matrix is normally given by the size of the corresponding set which consists of

elements in S∗n. The aim is to find the eigensolutions for the random walk which are given

in the form of eigenvectors and eigenvalues which predict the probability distribution after

certain steps without expanding the multiplications of the transition matrix.

The data given by the trees can be large but there might exist an invariance condition

between the trees under certain group actions on the labels. Thus we seek better methods

to simplify the random walk on a set of trees; e.g., to reduce the dimension of the transition

matrix by defining a partition of the set of the trees. The partition is normally given by

a lumping process as in Definition 3.24 and the eigensolutions of the random walk on the

partition are preserved from the eigensolutions of the random walk on the original set

through an invariant group action.

In some particular examples, given a symmetric Gelfand pair (G,K), the random walk

is on the homogeneous space X ' G/K and is lumpable (Definition 3.24) to the random

walk on the partition ofX given by the double cosets. We show that the adjacency operator

on the vector space of the partition is equivalent to the convolution multiplication of the

bi-K-invariant subalgebra of the group algebra thus find the correspondence between the

eigensolutions of the random walk and spherical functions of the subalgebra.

One obvious example to study is the random walk on the m-subsets of a set of n

numbers which correspond to the random walk on the m, (n − m)-splits of trees in S∗n
and Sn. We describe the lumpable random walk on the space of the m-subsets of a set

of n numbers and link to the Gelfand pair (Sn, Sm × Sn−m). We also present that the

eigensolutions of the random walk can be interpreted as the spherical functions of the

commutative bi-invariant subalgebra defined from the Gelfand pair.

3.3.1 Lumpable random walk and eigensolutions

When we consider the random walks on the set X, we construct a graph G = (V, E) as a

realization of the space X. The set of vertices V correspond to the elements in X and the
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edges E correspond to the adjacency relations in the random walks.

For x, y ∈ X, let p (x, y) be the probability of moving from x to y in one step. The

transition matrix P =
(
p (x, y)

)
x,y∈X is a square matrix of dimension |X| with nonnegative

entries and satisfies
∑

y∈X p (x, y) = 1 for all x ∈ X.

Definition 3.21. Let X be a finite set and ν0 be a probability distribution on X. A

(homogeneous) Markov chain with state space X, initial distribution ν0 and transition

matrix P is a finite sequence ν0, ν1, . . . , νn, . . . where νj = P jν0 for all j ∈ Z+.

Note that the distribution on X is normally given as a column vector so that the left

multiplication with the transition matrix P is still a column vector.

A distribution νT ∈ `1 (X) is a stationary distribution if PνT = νT . When the initial

distribution ν0 is given by a Dirac measure δx, we define that the Markov chain starts at

the point x. We choose a starting position x0 in the space and compute the probability

distribution after n steps of diffusion. In the discrete phylogenetic tree space S∗n, a possible

initial distribution is the Dirac measure from the star tree which is fully degenerate.

Let G = (V, E) be a graph where there is at most one edge between two connected

vertices. We denote an edge by x ∼ y if two vertices x, y ∈ V are connected by an edge.

The probabilities of moving from a vertex x to its adjacent vertices are all equal. The

corresponding transition matrix P for the simple random walk is given by

p (x, y) =


1

deg x if x ∼ y

0 otherwise
.

Let PG be a |V| by |V| matrix with entries given by p (x, y) as above. We verify that∑
y∈V p (x, y) = 1 for all x ∈ V. Hence PG is a transition matrix.

Definition 3.22. A simple random walk on the vertices V of the graph G = (V, E) is

a particular case of Markov chain (Definition 3.21)with state space V ∈ `1 (V) and the

transition matrix PG.

Remark 3.23. Multiple edges and self loops are allowed in the graph that defines the

simple random walk.

Given the discrete tree space S∗n, we may define the graph as G = (V, E) where the

vertices V correspond to the trees in S∗n and the edges correspond to the adjacencies, e.g.

the nearest neighbour interchange. We can also define a subgraph where the vertices are

given by a subset of S∗n. The aim is to find the eigensolutions of the random walk on the

graph G given as the eigenvectors and eigenvalues.

Let X ′ =
⋃N
j=0Xj be a partition of the finite set X by the disjoint subsets{

Xj

}N
j=0

. Let {ex}x∈X be the natural basis of `1 (X). Given a probability distribu-

tion v =
∑

x∈X v (x) ex ∈ `1 (X), we obtain the corresponding probability distribution on
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the partition X ′ as the vector v′ =
∑N

j=0 v
′ (Xj

)
ej ∈ `1

(
X ′
)

where v′
(
Xj

)
=
∑

x∈Xj v (x).

Let PX be the transition matrix of a random walk on X and the sequence v0, v1, . . . be

the Markov chain with initial distribution v0.

Definition 3.24. The random walk on X given by the transition matrix PX is lumpable

with respect to the partition X ′ if for any initial distribution v0 ∈ `1 (X), the sequence of

the corresponding probability distributions on the partition X ′, v′0, v
′
1, . . . is also a Markov

chain whose transition matrix does not depend on the choice of v0.

There exists a transition matrix P ′X for the partition X ′ from the lumpable random

walk given by the transition matrix PX =
(
p (x, y)

)
x,y∈X . By Proposition 1.10.2 in [15],

for all x ∈ Xj , y ∈ Xk and Xj , Xk ∈ X ′, we require the transition matrix PX to satisfy∑
y∈Xk p (x, y) is a constant p

(
Xj , Xk

)
; i.e., the probability of moving from subset Xj to

the subset Xk does not depend on the choice of x ∈ Xj . Therefore the transition matrix

P ′X is an (N + 1) by (N + 1) square matrix given by

P ′X =
(
p
(
Xj , Xk

))
Xj ,Xk∈X′

.

Let G = (X, E) be a finite, connected graph without self loops. Let d(x, y) be the

number of edges in the shortest path joining the two vertices x, y ∈ X. We verify that

d(x, y) is always a nonnegative integer satisfying

1. d(x, x) = 0 for all x ∈ X,

2. d(x, y) = d(y, x) for all x, y ∈ X,

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X where equality holds if the vertex z is in

the shortest path joining x and y.

Therefore (X, d) is a metric space and there exists a smallest N ∈ Z+ such that d(x, y) ∈
{0, 1, . . . , N} for all x, y ∈ X. We denote diam (X) = N = max

{
d(x, y) : x, y ∈ X

}
by

the diameter of the graph. Note that a vertex y is a neighbour of a vertex x if d(x, y) = 1

and the degree of a vertex deg(x) is the number of the neighbours of x. A graph is regular

if the degrees on all vertices are equal.

Definition 3.25. Let ∆0, ∆1, . . . ,∆N : `1 (X) −→ `1 (X) be the linear operators on the

vector space `1 (X) given by

(
∆jf

)
(x) =

∑
y∈X,d(x,y)=j

f(y).

For j ≤ −1 or j ≥ N + 1, we define the other linear operators ∆j : `1 (X) −→ `1 (X)

to be the zero operators.

60



Chapter 3. Random walks, finite Gelfand pairs and spherical functions

Consider the simple random walk on the regular graph G = (X, E) where the probabil-

ity of moving to one neighbours is 1
deg(x) . The operator ∆0 is the identity operator. The

multiplication between the transition matrix PX and a probability distribution column

vector v ∈ `1 (X) can be obtained from the normalized operator ∆1 as

PXv =
1

deg(x)
∆1v.

The operator ∆1 is called the Laplace operator of the graph and normalized operator
1

deg(x)∆1 is called the random walk operator.

Let G = (X, E) be a distance-regular graph; that is, there exists a set of constants

{a0, b0, c0, a1, b1, c1, . . . , aN , bN , cN} for all j = 0, 1, . . . , N , one has

∆j∆1 = aj∆j−1 + bj∆j + aj∆j+1,

which implies ∆j = pj (∆1) is a polynomial of ∆1 with degree j. Therefore all distance

operators ∆0, ∆1, . . . ,∆N can be generated from the single generator ∆1. The algebra of

functions on the vertices of the finite graph G with operators ∆0, ∆1, . . . ,∆N is also called

the Bose-Mesner algebra associated with the set of vertices X [41], [18], [39].

Let Xj =
{
x ∈ X : d(x, x0) = j

}
be the subset of X where all vertices have distance

j away from the vertex x0. Then X ′ =
⋃N
j=0Xj is a partition of the finite set X. Let

{ex}x∈X be the natural basis of `1 (X). We have ∆j

(
ex0
)

= pj (∆1)
(
ex0
)

=
∑

x∈Xj ex

for all linear operators ∆0, ∆1, . . . ,∆N as defined in Definition 3.25.

Consider the simple random walk on the distance-regular graph G = (X, E) which

is lumpable with respect to the partition X ′. Let the probability distribution on X,

v ∈ `1 (X) be invariant on the vertices which belong to the same subset Xj . The basis

of the probability distribution which are constant on the subsets
{
Xj

}N
j=0

on X are given

by the vectors eXj =
∑

x∈Xj ex ∈ `1 (X) for all j = 0, 1, . . . , N . The basis
{

eXj

}N
j=0

correspond to the natural basis
{
ej
}N
j=0

the vector space `1
(
X ′
)
. The random walk on

the partition X ′ from the lumpable random walk on X is also generated by a single random

walk operator which corresponds to the Laplace operator ∆1 for `1 (X) [15].

Let G be a finite group acting on the metric space (X, d) transitively and 2-point-

homogeneously where d(x, y) ∈ {0, 1, . . . , N} for all x, y ∈ X. Let K be the stabilizer of

x0 ∈ X where the homogeneous space X is given by G/K. Then (G,K) is a symmetric

Gelfand pair. We choose X ′ to be the partition of the double cosets KgK where every

double coset is a union of right cosets which correspond to a subset ofX. LetX ′ =
⋃N
j=0Xj

be the partition of the orbits determined by the distance j from the element x0. The bi-

K-invariant subalgebra `1
(
K\G/K

)
has a basis

{
YKgjK

}N
j=0

given by the characteristic

functions of the double cosets.
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Define a graph with the set of vertices X with no self loops. Two vertices x and y

are connected by an edge if there exists g ∈ Kg1K such that gx = y. The characteristic

function YKg0K is the identity in the convolution multiplication in `1
(
K\G/K

)
and can

be considered as the zero-th power of any other characteristic functions.

Definition 3.26. The bi-K-invariant subalgebra `1
(
K\G/K

)
is singly generated if there

exists a function f ∈ `1
(
K\G/K

)
such that all functions in `1

(
K\G/K

)
can be uniquely

written as a polynomial of f.

Remark 3.27. If the bi-K-invariant subalgebra `1
(
K\G/K

)
is singly generated by the

characteristic function YKg1K , then the characteristic functions of other double cosets can

be written as polynomial of YKg1K .

Assume that the bi-K-invariant subalgebra `1
(
K\G/K

)
is singly generated by YKg1K .

The convolution multiplications between the characteristic functions are given by

YKg1K ∗ YKgjK =
N∑
l=0

mj,lYKglK .

Let P ′X =
(
p(j, l)

)
j,l∈{0,1,...,N} be a square matrix labeled by the double cosets of the

Gelfand pair (G,K) where

p(j, l) =
|KglK|∣∣KgjK∣∣ |Kg1K|

mj,l.

We verify that 0 ≤ p(j, l) ≤ 1 for all j, l ∈ {0, 1, . . . , N} and
∑N

l=0 p(j, l) = 1 for all

j = 0, 1, . . . , N . Therefore P ′X is a transition matrix thus define a random walk on the

double cosets. Note that the scaled operator
YKg1K
|Kg1K| can be considered as the corresponding

random walk operator for the vector space `1
(
X ′
)

with scaled characteristic functions as

the basis, given as

YKg1K
|Kg1K|

∗
YKgjK∣∣KgjK∣∣ =

N∑
l=0

p(j, l)
YKglK
|KglK|

.

Lemma 3.28. The eigenvectors of the transition matrix P ′X are given by the spherical

functions of the bi-K-invariant subalgebra `1
(
K\G/K

)
.

Proof. Let X ′ be the partition of the homogeneous space X = G/K given by the cor-

responding double cosets. Let
{
ej
}N
j=0

be the natural basis of `1
(
X ′
)
' CN+1. For

f =
∑N

j=0 f
(
gj
)
YKgjK ∈ `1

(
K\G/K

)
, we define the column vector v ∈ `1

(
X ′
)

as

vf =
N∑
j=0

1∣∣∣YKgjK∣∣∣f
(
gj
)
ej .
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Note that
{
ej
}N
j=0

can be considered as another basis of `1
(
K\G/K

)
as ej is given by a

scalar multiple of the characteristic function YKgjK for `1 (X). This implies the one-to-one

correspondence between vectors vf and the functions f ∈ `1
(
K\G/K

)
.

Let φ be a spherical function of `1
(
K\G/K

)
. By Definition 3.17, there exists λφ ∈ C

such that
1

|Kg1K|
YKgjK ∗ φ = λφφ.

Therefore the vector vφ is an eigenvector of the transition matrix P ′X with eigenvalue λφ,

i.e. P ′Xvφ = λφvφ.

Conversely, if vφ is an eigenvector of the transition matrix P ′X with eigenvalue λφ, then

φ is a spherical function of `1
(
K\G/K

)
. Every function f ∈ `1

(
K\G/K

)
can be written

as a polynomial of the characteristic function YKg1K as f = pf
(
YKg1K

)
. Therefore there

exists λf ∈ C such that pf
(
YKg1K

)
∗ φ = λfφ.

Remark 3.29. The random walk on X ′ given by the transition matrix P ′X is the corre-

sponding lumped simple random walk on the graph G = (X, E) where x and y are joined

by an edge if there exists g ∈ Kg1K such that y = gx.

Let v ∈ `1 (X) be an eigenvector of the transition matrix for the simple random walk

on G = (X, E). The vector vk given by the group action k ∈ K on the vertices X is still

an eigenvector if the graph and orbits of vertices given by the double cosets are invariant

under K. Therefore the average of all eigenvectors under the group action K, 1
|K|
∑

k∈K v
k,

is also an eigenvector with the same eigenvalue.

The eigenvectors of the random walk on G = (X, E) which are invariant on the vertices

inside the same orbit given by a double coset, correspond to the eigenvectors of the lumped

random walk with transition matrix P ′X . Therefore by solving the random walk on X ′, we

effectively obtain all eigenvalues and K-invariant eigenvectors.

3.3.2 Random walks on graphs of phylogenetic tree spaces

In this section, we consider examples of random walks on sets which are related to discrete

tree spaces. We show that the simple random walk on the permutohedra and the associ-

ahedra are lumpable. We also present the explicit eigensolutions for the lumpable simple

random walk on the vertices of the Petersen graph as the eigensolutions corresponds to the

random walk on the trees in S∗5 under the nearest neighbour interchange. The eigenvectors

of the transition matrix of the lumped random walk can be interpreted as the spherical

functions of the bi-invariant subalgebra defined from the Gelfand pair (S5, S2 × S3).

Example 3.30. We consider the simple random walk on the permutohedron Pn−1.
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As introduced in Section 2.3.1, we label the vertices of the standard permutohedron

Pn−1 by the inverse permutation of the coordinates of the n numbers in the coordinates

in the Euclidean space Rn.

The vertices with the inverse permutations correspond to the sequence of the planar

embedding of the leaf labels on the binary trees. The 1-skeleton of the permutohedron

Pn−1 can be considered as a regular graph GPn which does not contain any multiple edges

or self loops. The edges of GPn indicate the adjacencies between the sequences of the leaf

labels. Two vertices are connected by an edge if their corresponding sequences of the leaf

labels differ by a swap of two adjacent labels in the sequence of n elements. Hence we can

see that every vertex of GPn has degree (n− 1).

As defined in Definition 2.21, given a half-space HPn (E), we can identify the normal

vector 1E that defines the hyperplane of the half-space. A vertex with coordinates v ∈ Rn

is on the hyperplane if it satisfies

〈v, 1E〉 =
∑
j∈E

vj =
|E|
(
|E|+ 1

)
2

.

Since all entries in the coordinates of vertices on Pn−1 are integers, the inner product

〈v, 1E〉 =
∑

j∈E vj always gives an integer for all vertices v of Pn−1. We can verify that

|E|
(
|E|+ 1

)
2

≤ 〈v, 1E〉 ≤
|E|
(
|E|+ 1

)
2

+ |E|
(
n− |E|

)
,

which shows that the values of 〈v, 1E〉 is the set of integers

LE =

{
|E|
(
|E|+ 1

)
2

,
|E|
(
|E|+ 1

)
2

+ 1, . . . ,
|E|
(
|E|+ 1

)
2

+ |E|
(
n− |E|

)}
.

Therefore every vertex v ∈ Pn−1 can be identified in a set

VE,l =
{
〈v, 1E〉 = l, l ∈ LE

}
.

Given a vertex with coordinates v, the (n − 1) neighbours of v ∈ VE,l can only be in

one of the three subsets: VE,l−1, VE,l and VE,l+1 as the adjacencies are generated from a

single swap of two adjacent integers. The numbers of neighbours of v in all three subsets

are also fixed. Hence by Definition 3.24, the simple random walk on GPn is lumpable with

respect to the partition
⋃
l∈LE VE,l for all subset E ( {1, 2, . . . , n}.

Example 3.31. We consider the simple random walk on the associahedron Kn−1.

As introduced in Section 2.3.2, given a permutation v ∈ Rn of n leaf labels, we obtain

a subset of trees in the discrete space Sn and S∗n. The vertices of the associahedron Kn−1
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correspond to a subset of Sn which is a set of fully resolved trees with a fixed permutation

of leaf labels in their corresponding Newick string formats.

The adjacencies between the vertices of Kn−1 are given by one of the two neighbours

from the nearest neighbour interchange process which preserve the cyclic order of the leaf

labels. Therefore we can define the simple random walk on Kn−1 which can be considered

as the simple random walk on the graph GKn−1 obtained from the 1-skeleton of Kn−1 with

the set of vertices {V∆ : ∆ is a triangulation of the regular n-gon}. The dihedral group

D2n acts on the coordinates of the vertices from the secondary polytope realization of the

regular n-gon defined in Section 2.3.2.

Let V∆ be a subset of vertices of Kn−1 constructed from the secondary polytope realiza-

tion. A vertex V′∆ is in the subset V∆ if the corresponding triangulated regular n-gon can

be obtained from the triangulation ∆ through the D2n action on the labeled coordinates

in Rn.

Since the number of triangulations is finite, we obtain a partition
⋃
V∆ which is a

union of disjoint subsets which constitute the set of all vertices on Kn−1. Every subset

V∆ is invariant under the D2n action thus the simple random walk on GKn−1 is lumpable

with respect to the partition
⋃
V∆.

Example 3.32. We consider the simple random walk on the vertices of the Petersen

graph.

Let the vertices of the Petersen graph be labeled as below.

Figure 3.1: The Petersen graph

The 10 vertices correspond to the set of 2-subsets X or the 2-3-splits of the

set {1, 2, 3, 4, 5}. Two vertices are connected by an edge if their corresponding subsets

are disjoint; i.e., the two corresponding 2-3-splits for the leaf labels of the discrete tree

space S∗5 are compatible.

The transition matrix PX =
(
p
(
{i1, i2} , {j1, j2}

))
is a 10 by 10 square matrix labeled

by the 10 subsets. The nonzero entries are given by p
(
{i1, i2} , {j1, j2}

)
= 1

3 if {i1, i2} and

{j1, j2} are disjoint.
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We define three subsets of the set of 10 vertices as follows:

X0 =
{
{1, 2}

}
X1 =

{
{3, 4} , {3, 5} , {4, 5}

}
,

X2 =
{
{1, 3} , {1, 4} , {1, 5} , {2, 3} , {2, 4} , {2, 5}

}
.

The partition X ′ is given by X = X0 ∪X1 ∪X2. We can see that the simple random walk

on the Petersen graph is lumpable with respect to the partition X ′ [49]. We obtain the

transition matrix P ′X for the lumped random walk on X ′ as

P ′X =

 0 1
3 0

1 0 1
3

0 2
3

2
3

 .

As the partition X ′ is singly generated by the random walk operator, we can obtain the

eigensolutions by solving the equations of the eigenvalue λ and express the entries of the

corresponding eigenvector as a polynomial of λ. All eigenvectors of P ′X are of the form

v =
(
1, 3λ, 9λ2 − 3

)
with eigenvalue λ. The three eigenvectors of P ′X are v0 = (1, 3, 6) with

eigenvalue 1, v1 = (1,−2, 1) with eigenvalue −2
3 and v2 = (1, 1,−2) with eigenvalue 1

3 .

We also note that the symmetric group G = S5 acts transitively and 2-point-

homogeneously on the set of 2-subsets X and the stabilizer of the subset {1, 2} is iso-

morphic to the subgroup K = S2 × S3. The pair (G,K) is a symmetric Gelfand pair and

the partition X ′ correspond to the partition G = Kg0K ∪Kg1K ∪Kg2K as a union of

the three disjoint double cosets. Therefore by Lemma 3.28, we can obtain the spherical

functions of the bi-K-invariant subalgebra `1
(
K\G/K

)
by normalizing the eigenvectors

of the transition matrix P ′X for the lumped random walk on the Petersen graph.

Example 3.33. We consider the simple random walk on the space X of the m-subsets of

the set {1, . . . , n}.

For n − m ≥ 2, we construct a graph Gn,m where the vertices correspond to the m-

subsets or m, (n−m)-splits of the set {1, . . . , n}. Two vertices are connected by an edge

if their corresponding m-subsets have exactly (m− 1) elements in common.

The symmetric group G = Sn acts transitively and 2-point-homogeneously on the

m-subsets {1, . . . , n}. The stabilizer of {1, . . . ,m} is isomorphic to the subgroup K =

Sm × Sn−m. The pair (G,K) is a symmetric Gelfand pair [15] and we can define the

metric space (X, d) as in Remark 3.10.

The random walk on Gn,m is lumpable with respect to the partition X ′ which corre-

sponds to the double cosets from the Gelfand pair (G,K). The bi-K-invariant subalgebra

`1
(
K\G/K

)
is also singly generated thus we can obtain the spherical functions from the
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eigenvectors of the lumped random walk.

Note that the m, (n−m)-splits of the set {1, . . . , n} correspond to the split of leaf labels

in the discrete tree space S∗n. We may apply the eigensolutions of the lumpable random

walk on Gn,m to the random walk on a subset of S∗n which only consists of degenerate trees

given by a single internal edge that indicates the m, (n−m)-splits of the leaf labels.

Example 3.34. We consider the random walk on the tree shapes of the space of fully

resolved trees Sn.

We consider the simple random walk on the discrete tree space Sn with the nearest

neighbour interchange as the adjacencies. The transition matrix is (2n− 5)!!-dimensional

but does not have the symmetries from the symmetric Gelfand pair (S2n, Sn o S2). The

symmetric group S2n does not act transitively and 2-point homogeneously on the graph

of Sn where the adjacencies are obtained from the nearest neighbour interchange.

We can still define a partition X ′ of the space Sn. The symmetric group Sn acts

on the leaf labels, thus acts on all splits of the fully resolved trees. Two fully resolved

trees T1, T2 ∈ Sn are of the same tree-shape if they can be obtained from each other by

permuting the leaf labels in all (n− 3) splits with a group element g ∈ Sn. The partition

X ′ is then given by the disjoint union of trees with different tree-shapes.

The simple random walk on Sn with the nearest neighbour interchange is lumpable

with respect to the partition X ′ of the tree-shapes. The eigensolutions of the lumped

random walk may help us obtain an approximate distribution of different tree shapes for

small n, but the number of tree-shapes grows fast for n > 10 [55].
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Algebras of automorphism groups

of homogeneous trees

In this chapter, we consider some algebras of automorphism groups of homogeneous

trees and buildings and the Iwahori-Hecke algebras of the corresponding infinite Gelfand

pairs [11]. These particular examples of Banach algebras are motivated by those which

arise from harmonic analysis on structures related to phylogenetic trees. The method is

to apply the properties of Gelfand pairs and spherical functions to solve some specific

random walk problems and to check the amenability and other homological properties of

those Banach algebra examples.

We start with a group acting on the vertices of the infinite homogeneous tree Tq and

the subgroup which stabilizes a fixed point. We show that these two locally compact

groups form a Gelfand pair. We define the algebra of summable functions on the vertices

V of Tq whose values are determined by the distance from a fixed vertex x0. The Laplace

operator which is given by the average adjacency relations, corresponds to the diffusion

or the simple random walk to the adjacent vertices [14].

By fixing the Haar measure to normalize the size of the subgroup, the algebra of inte-

grable bi-invariant functions on the locally compact group, is discretized to be isomorphic

to the Hecke algebra Aq on Z+, with `1 norm. The Hecke operator can be understood as

the single generator of the algebra. The conditions for the eigenfunctions for the Laplace

operator can be worked out straightforwardly from the random walk equation, and scaled

to be spherical functions. We show that the bounded spherical functions indeed give the

values of bounded characters for the isomorphic Hecke algebra Aq.

We use a shift matrix to compute the characters on Aq. The character space is

parametrized by an ellipse arising from a symmetrized bi-disc, generated by the set of

unordered pairs of points with fixed product on an annulus on the complex plane. We will

prove the existence of point derivations and bounded approximate identities given by the
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interior and the boundary of the character space.

4.1 The groups acting on the infinite homogeneous tree Tq

A tree is a non-directed connected graph without any closed cycles. An edge is an un-

ordered pair of connected vertices (xi, xj). The vertices V in the infinite homogeneous tree

Tq all have degree q+ 1 and there exists a unique path between any pair of vertices (x, y).

A sequence of vertices Xn = [x0, x1, . . . , xn] is a chain if every adjacent pair of vertices

(xi, xi+1) is connected as an edge and xi 6= xj for all 0 ≤ i < j ≤ n. The length of the

chain is d(x0, xn) = d(xn, x0) = n. This sequence of vertices can be extended to be doubly

infinite as [. . . , x−N , . . . , x0, . . . , xN , . . .].

A map g : V −→ V is an automorphism if it is bijective, and (x, y) is an edge if and only

if
(
g(x), g(y)

)
is an edge. Given a chain which is a sequence of vertices, every adjacent

pair of vertices form an edge. Under the automorphism, an edge (x, y) is mapped to

another edge (x′, y′). If Xn is a chain then gXn is also a chain. Therefore the composition

of two automorphisms maps one edge to another edge and also maps a chain to another

chain. If g is an automorphism, then g−1 is also an automorphism. The identity map is

an automorphism. Hence the set of automorphisms of the infinite homogeneous tree is a

group under composition.

We define G to be the group of automorphisms of Tq. Hence G preserves all chain

structures on Tq. The infinite tree Tq is locally finite and homogeneous as all vertices

have the same degree q + 1 with q < ∞, as the common cardinality; i.e., the graph is

(q + 1)-regular.

When q = 1, the vertices of the tree T2 are isomorphic to the integers Z and there

exists only one doubly infinite chain. In this case, the group algebra is easier to compute

and we will discuss this example in a later section.

The group of automorphisms Aut
(
Tq
)

of the infinite homogeneous tree can be turned

into a topological group [22], [48]. For any W ⊆ Aut
(
Tq
)
, W is open in the compact-open

topology. We also use the fact that Tq is discrete and Aut
(
Tq
)

is a Hausdorff topological

group.

In general, we assume that q ≥ 2. We choose a subgroup K of the locally compact

group G where K is the stabilizer of a given vertex x0. Note that G is unimodular and K

is compact [51]. When q is a prime number, we will show that (G,K) is a Gelfand pair

and the pair of p-adic projective general linear groups
(
PGL2

(
Qp

)
, PGL2

(
Zp
))

is also a

Gelfand pair. The two bi-invariant subalgebras under the `1-norm from the two Gelfand

pairs are isomorphic to each other.
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For any j ∈ Z+, we define a set of vertices

Vj =
{
x ∈ V

∣∣d(x, x0) = j
}
.

For every Vj , we define a subset of G as

Ωj = KgjK =
{
g ∈ G : gx0 ∈ Vj

}
.

We fix a family
(
gj
)∞
j=0

such that gj ∈ Ωj . This ensures that d(gj(x0), x0) = j and

Ωj = KgjK, which shows that the group G is an infinite disjoint union of the double

cosets. The size of every orbit can be computed by enumerating the number of vertices

with the same distance away from x0, explicitly as

|V0| =
∣∣{x0}

∣∣ = 1 and
∣∣Vj∣∣ = (q + 1)qj−1 for q ≥ 2.

We will show that (G,K) is a Gelfand pair and compute the random walks on the

vertices of Tq in the following sections. We define the group algebra and the bi-K-invariant

subalgebra with L1 norm by fixing a Haar measure. The commutativity from the property

of the Gelfand pair allows us to find the isomorphic Iwahori-Hecke algebra in a discretized

version.

4.2 The algebra of functions on the vertices on Tq

The purpose of this section is to study the algebra of integrable bi-K-invariant functions

in L1(K\G/K). We present all bounded spherical functions of the Gelfand pair (G,K).

We set up an isomorphism from the algebra of bi-K-invariant functions in L1(K\G/K) to

a Banach algebra on the discrete space Z+ and find the space of characters and describe

the topology. It is then natural to determine the existence of b.a.i. and point derivations

for the character space.

Definition 4.1. Let G be a locally compact, unimodular group and let K be a compact

subgroup. An integrable function f ∈ L1(G) is said to be bi-K-invariant if f(k1gk2) = f(g)

for all k1, k2 ∈ K and g ∈ G, from Chapter II, Section 4 in [22] .

We write L1
(
K\G/K

)
for the space of all bi-K-invariant integrable functions on G.

We say that (G,K) is a Gelfand pair if f1 ∗ f2 = f2 ∗ f1 for all f1, f2 ∈ L1
(
K\G/K

)
.

Lemma 4.2. L1
(
K\G/K

)
is closed with respect to convolution. That is, if f1, f2 ∈

L1
(
K\G/K

)
then f1 ∗ f2 ∈ L1

(
K\G/K

)
.
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Proof. For all g′ ∈ KgK, there exists k1, k2 ∈ K such that g′ = k1gk2.

[f1 ∗ f2]
(
g′
)

=

∫
h∈G

f1(g′h)f2(h−1)dh =

∫
h∈G

f1(k1gk2h)f2(h−1)dh

=

∫
h∈G

f1(gk2h)f2(h−1)dh =

∫
h∈G

f1(gk2h)f2(h−1k−1
2 )dh

setting h′ = k2h

=

∫
h′∈G

f1(gh′)f2(h′−1)dh′ = [f1 ∗ f2] (g) .

Proposition 4.3. For all g ∈ Ωj, we have g−1 ∈ Ωj.

Proof. Given any g ∈ Aut
(
Tq
)
, suppose g ∈ Ωj , we have d(x0, gx0) = d(g−1x0, x0) = j.

The subgroup K acts transitively on all infinite chains starting at x0 thus K acts on the

finite chains with length d(g−1x0, x0) and starting at x0. Hence K acts on the all vertices

x which have the same distance n from x0, namely Vj . This implies that there exists

k ∈ K such that (kg−1)x0 = gx0 and h = g−1kg−1 ∈ K, which shows that g−1 = hgk−1

and g−1 ∈ KgK.

Corollary 4.4. The pair (G,K) is a Gelfand pair, i.e. L1(K\G/K) is commutative under

convolution.

Proof. By Proposition 4.3, we have f(g) = f(g−1) for all f ∈ L1(K\G/K). We show that

for all f1, f2 ∈ L1(K\G/K) where f1 = f2 almost everywhere, the convolution satisfies

f1 ∗ f2(g) =

∫
h∈G

f1(h)f2

(
h−1g

)
dh

=

∫
h∈G

f1(h)f2

((
g−1h

)−1
)
dh

(setting h = gh1)

=

∫
h1∈G

f1(gh1)f2

(
h−1

1

)
dh1

(as G is unimodular)

=

∫
h1∈G

f1

(
h−1

1 g−1
)
f2 (h1) dh1

=

∫
h1∈G

f2 (h1) f1

(
h−1

1 g−1
)
dh1

= f2 ∗ f1

(
g−1
)
.

By Lemma 4.2, we have f2 ∗ f1(g−1) = f2 ∗ f1(g). Thus f1 ∗ f2 = f2 ∗ f1 for all f1, f2 ∈
L1(K\G/K), which shows that the pair (G,K) is a Gelfand pair.
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We will now define a basis for the bi-K-invariant functions L1(K\G/K), the functions

on the vertices V and the functions on Z+.

The basis of L1(K\G/K) is given by the characteristic function

δΩj (g) =

1 if g ∈ Ωj
0 elsewhere

.

For a bi-K-invariant function on G, it is right invariant i.e. f(g) = f(h) if h ∈ gK. We

therefore define the summable functions on the vertices V, fV ∈ `1(V) as

fV : V −→ C, fV(gx0) =

∫
h∈gK

f(h)dh.

We can also define the basis of `1(V) by the characteristic function

δgx0(x) =

1 if x = gx0

0 elsewhere
.

Since f is bi-K-invariant function on G, the function on vertices fV is invariant on every

orbit set Vj . Therefore the values of fV are determined by a radial function [29] f̃ on Z+,

which is defined to be

f̃ : Z+ −→ C, f̃(j) = f̃(d(gx0, x0)) =
∣∣Vj∣∣ fV(x) for g ∈ Ωj .

The basis for the radial function f̃ ∈ `1(Z+) is given by the characteristic function Yj

where

Yj(k) =

1 if j = k

0 if j 6= k
.

Fix the Haar measure on G by setting the mass of the subgroup K to be 1. By

normalizing the characteristic functions, we will show that there exists an isomorphism

between L1(K\G/K) and a Banach algebra on Z+ with specific multiplication rules ∗q
given by the properties of Tq.

Definition 4.5. Let Aq = `1(Z+, ∗q) be a commutative Banach algebra with multiplication

∗q. Let
{
Yj
}∞
j=0

be the normalized characteristic functions on Z+. Let Y0 be the identity
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and Y1 be the single generator of Aq, given by

Ym ∗q Y0 =Ym,

Ym ∗q Y1 =
q

q + 1
Ym+1 +

1

q + 1
Ym−1 for m ≥ 1.

For m ≥ n ≥ 2, the multiplication of ∗q in the algebra Aq gives

Ym ∗q Yn =
q

q + 1
Ym+n +

1

(q + 1)qn−1
Ym−n +

q − 1

q + 1

n−1∑
j=1

Ym+n−2j

qj
.

Theorem 4.6. The Banach algebras L1(K\G/K) and Aq are isomorphic. The isomor-

phism sends δΩ0 to Y0 and δΩ1 to Y1.

Proof. We note that normalized basis {Yj} for Aq is a rescaling of the characteristic func-

tions δΩj ∈ L1(K\G/K) as

Yj(j) =
1

|Ωj |

∫
g∈G

δΩj (g)dg

so that all Yj have mass 1.

For all δΩj ∈ L1(K\G/K) and Yj ∈ Aq, define a linear map

θ : L1(K\G/K) −→ Aq, θ

(
δΩj
|Ωj |

)
= Yj .

We need to show that for all m,n ∈ Z+, θ
(
δΩm
|Ωm| ∗

δΩn
|Ωn|

)
= θ

(
δΩm
|Ωm|

)
∗q θ

(
δΩn
|Ωn|

)
= Ym ∗q Yn.

When n = 0,

δΩm ∗ δΩ0(g)

|Ωm||Ω0|
=

1

|Ωm|

∫
h∈G

δΩm(h)δΩ0(h−1g)dh

=
1

|Ωm|

∫
h∈G

δΩm(hg−1)δΩ0(h−1)dh

=
1

|Ωm|

∫
h∈K

δΩm(hg−1)dh

=
1

|Ωm|
δΩm(g−1) =

1

|Ωm|
δΩm(g).
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When m ≥ n and n = 1,

δΩm ∗ δΩ1(g)

|Ωm||Ω1|
=

1

|Ωm||Ω1|

∫
h∈G

δΩm(h)δΩ1(h−1g)dh

(setting h1 = hg)

=
1

|Ωm||Ω1|

∫
h1∈G

δΩm(h1g
−1)δΩ1(h−1

1 )dh1

=
1

|Ωm||Ω1|

∫
h1∈Ω1

δΩm(h1g
−1)dh1

=
1

|Ωm||Ω1|
(
δΩm+1 + qδΩm−1

)
=

1

(q + 1)qm−1(q + 1)

(
(q + 1)qmY ′m+1 + (q + 1)qm−1Y ′m−1

)
=

(
q

q + 1
Y ′m+1 +

1

q + 1
Y ′m−1

)
.

When m ≥ n ≥ 2,

δΩm ∗ δΩn(g)

|Ωm||Ωn|
=

1

|Ωm||Ωn|

∫
h∈G

δΩm(h)δΩn(h−1g)dh

(setting h1 = hg)

=
1

|Ωm||Ωn|

∫
h1∈G

δΩm(h1g
−1)δΩn(h−1)dh1

=
1

|Ωm||Ωn|

∫
h1∈Ωn

δΩm(h1g
−1)dh1

(enumerating x ∈ Vm+n−2j such that h1g
−1 ∈ Ωm and d(x, g−1x0) = n)

=
1

|Ωm||Ωn|

δΩm+n +

n−1∑
j=1

(q − 1)qj+1δΩm+n−2j + qnδΩm−n


=

 q

q + 1
Y ′m+n +

q − 1

q + 1

n−1∑
j=1

Y ′m+n−2j

qj
+

1

(q + 1)qn−1
Y ′m−n

 .

Since the convolution multiplications in L1(K\G/K) are commutative, we have shown that

θ is an isomorphism between L1(K\G/K) and Aq, which proves that these two algebras

are isomorphic.

4.3 Random walk on Tq, spherical functions and characters

To study the random walk on the vertices of the homogeneous tree Tq, we define a linear

operator, the Laplace operator on the vector space of bounded complex-valued function

on V. For a function fV : V −→ C, we define the value of (LfV)(x) to be the average of
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the values of all fV(y), where y is adjacent to x, expressed as

(LfV)(x) =
1

q + 1

∑
d(x,y)=1

fV(y).

The Laplace operator can be used as the generator of the unweighted random walk on the

vertices through adjacencies.

Under the bi-K-invariance condition; i.e., the function on V is radial, we can also define

the corresponding Laplace operator to the radial function, L̃f̃ : Z+ −→ C where

(L̃f̃)(j) =
1

q + 1
f̃(j − 1) +

q

q + 1
f̃(j + 1), for j ≥ 1

(L̃f̃)(0) = f̃(1),

which can be seen as a weighted random walk between adjacent orbits of vertices.

A bounded radial function ψ̃ ∈ `∞(Z+) is an eigenfunction for the Laplace operator L̃

if it satisfies that for all j ∈ Z+, there exists λ ∈ C such that
(
L̃ψ̃
)

(j) = λψ̃(j), where

λ is the eigenvalue. In this example, we can work out the values of ψ̃ from the adjacency

relations

ψ̃(1) = λψ̃(0), (4.1)

ψ̃(j + 2) =
q + 1

q
ψ̃(j + 1)− 1

q
ψ̃(j) for j ≥ 0, (4.2)

where ψ̃(0) 6= 0 and an extra condition on λ will be needed for the eigenfunction to be

bounded. We will work out the condition of boundedness explicitly by from the growth

rate later in this section. From the identity above we can show that ψ̃(m) =
∑m

j=0 am,jλ
j

by induction. Note that we always have am,j = 0 if m+j is odd. For j 6= 0, the coefficients

am,j are given by

am,j = (−1)
m−j

2 q−
m+j
2

((m+j
2 − 1

j − 1

)
(q + 1)j−1q +

(m+j
2 − 1

j

)
(q + 1)j

)
ψ̃(0). (4.3)

For j = 0, we have

am,j = (−1)
m−j

2 q−
m+j
2

(m+j
2 − 1

j

)
(q + 1)jψ̃(0). (4.4)

In Lemma 4.7 and Lemma 4.9, we explain the conversion between the powers of Y1 and

natural basis of Aq, given by the set
{
Yj
}∞
j=0

. The coefficients in the conversion between

the two set of basis are mostly used in numerical computations.

Lemma 4.7. For the algebra Aq, set Y 0
1 = Y0 The natural basis element Ym of Aq can be
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expressed as a linear sum of powers of the generator Y1, Ym =
∑m

j=0 am,jY
j

1 . For j 6= 0,

the coefficients am,j are given by

am,j = (−1)
m−j

2 q−
m+j
2

((m+j
2 − 1

j − 1

)
(q + 1)j−1q +

(m+j
2 − 1

j

)
(q + 1)j

)
. (4.5)

For j = 0, we have

am,j = (−1)
m−j

2 q−
m+j
2

(m+j
2 − 1

j

)
(q + 1)j . (4.6)

Proof. First we have a0,0 = 1 and a1,1 = 1. For m ≥ 2, the adjacency relation YmY1 =
q
q+1Ym+1 + 1

q+1Ym−1 gives

am,j =
q

q + 1
am−1,j−1 +

1

q + 1
am−1,j+1 for j ≥ 2,

am,0 =
1

q + 1
am−1,1,

am,1 = am−1,0 +
1

q + 1
am−1,1.

The values of am,j can then be verified by induction.

Remark 4.8. As for the uniqueness, we know that the leading term am,m is the first non-

zero term. Every step by canceling the next term we can determine the other coefficients

downwards. Note that the odd terms from the top are all positive and the even terms

are negative. Although the sum of these coefficients
∑m

j=1 am,j is always 1, the value of∑m
j=1 |am,j | grows exponentially with growth rate q+1

q , which is not a good control to the

norm.

Lemma 4.9. The power of the generator Y n
1 can be expanded as a linear sum of elements

in terms of the natural basis Yk, Y n
1 =

∑bn/2c
k=0 cn,kYn−2k, where

cn,k =
k−1∑
p=0

((
n− p− 1

k − p

)
−
(
n− p− 1

k − p− 1

))
(q + 1)p−n+1qn−1−p−k + (q + 1)k−n+1qn−2k−1.

Proof. Consider the expansion of Y n+1
1 into Y n

1 ∗q Y1. For n ≥ 2, the coefficients cn+1,k
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are given by

cn+1,0 =
q

q + 1
cn,0,

cn+1,k =
q

q + 1
cn,k +

1

q + 1
cn,k−1 for 1 ≤ k < bn

2
c,

cn+1,n/2 = cn,n/2 +
1

q + 1
cn,n/2−1 for even n,

cn+1,(n+1)/2 =
1

q + 1
cn,(n−1)/2 for odd n.

The values of cn,k can then be verified by induction.

Remark 4.10. Since the coefficients of the expansion are all nonegative, the power of

Y1 in terms of the natural basis Yk also have mass 1. However the expansion of Ym into

powers of Y1 in the previous proposition does not have good control of the norm, despite

the sum of the coefficients is always 1.

Proposition 4.11. Let (G,K) be the Gelfand pair as above and ψ be a bi-K-invariant

function on G. Let ψV and ψ̃ be the corresponding functions on V and the radial func-

tion. Then ψ is a spherical function if and only if the bounded radial function ψ̃ is an

eigenfunction for the Laplace operator L̃ with ψ̃(0) = 1.

Proof. If ψ is a spherical function, from ψ(e) = 1 we know that the corresponding radial

function satisfies ψ̃(0) = 1. Let ψ̃(1) = λ, i.e. for all g ∈ G such that d(x0, gx0) = 1,

ψ(g) = λ.

Given an edge (x, y) such that gx0 = x and hx0 = y, we have d(gx0, hx0) = 1. Since

G acts transitively on V, we obtain further adjacency relations as

d(x0, g
−1hx0) = d(x0, kg

−1hx0) = d(x, gkg−1hx0) = 1,

where there exists (q + 1) distinct kj ∈ K such that gkjg
−1hx0 = yj , the (q + 1) distinct

vertices which are adjacent to x. Note that the (q + 1) vertices kjg
−1hx0 are the (q + 1)

neighbours of x0, therefore each one of the set Kj = {kj ∈ K|gkjg−1hx0 = yj} will have
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mass 1
q+1 by the Haar measure 1 of K, as the (q+1) disjoint sets of Kj form K. Therefore

ψ̃(1)ψ̃(d(x, x0)) = ψ(g−1h)ψ(g)

=

∫
k∈K

ψ
(
gkg−1h

)
dk

=

∫
k∈K

ψ̃

(
d
(
gkg−1hx0, x0

))
dk

=
1

q + 1

∑
d(x,yj)=1

ψV(yj)

= (LψV)(x)

= (L̃ψ̃)(d(x, x0)),

which shows that ψ̃ is an eigenfunction for the Laplace operator L̃ with eigenvalue ψ̃(1) =

λ.

Conversely, we assume that the radial function ψ̃ is an eigenfunction for the Laplace

operator L̃ with eigenvalue λ and ψ̃(0) = 1. The value of ψ̃(1) = λ is the eigenvalue. We

need to show that for all g, h ∈ G,
∫
K ψ(gkh)dk = ψ(g)ψ(h), where ψ(g) = ψ̃(d(gx0, x0))

for all g ∈ G.

For d(gx0, x0) = m and d(hx0, x0) = n, we have ψ(g) = ψ̃(m) and ψ(h) = ψ̃(n).

When g ∈ K, it is trivial to show that ψ(e) = ψ̃(0) = 1 and
∫
K ψ(gkh)dk = ψ(h). When

d(gx0, x0) = 1, from analysis of the disjoint set in the previous proof, we have∫
K
ψ(gkh)dk =

1

q + 1

∑
y|d(y,hx0)=1

ψV(y)

= (LψV)(hx0) = λψ(h) = ψ̃(1)ψ̃(n).

When m ≥ n ≥ 2, from the weight of the orbits in the multiplications, we expand∫
K ψ(gkh)dk in terms of powers of ψ̃(1) and prove that the expansion is indeed the product
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of ψ̃(m) and ψ̃(n).

∫
K
ψ(gkh)dk =

q

q + 1
ψ̃(m+ n) +

1

(q + 1)qn−1
ψ̃(m− n) +

q − 1

q + 1

n−1∑
j=1

ψ̃(m+ n− 2j)

qj

=
q

q + 1

m+n∑
k=0

am+n,kψ̃(1)k

+
q

q + 1

m−n∑
k=0

am−n,kψ̃(1)k


+
q − 1

q + 1

n−1∑
j=1

1

qj

m+n−2j∑
k=0

am+n−2j,kψ̃(1)k




=

 m∑
j=0

am,jψ̃(1)j

 n∑
k=0

an,kψ̃(1)k


= ψ̃(m)ψ̃(n),

which shows that ψ is indeed a spherical function.

By Lemma 4.2 and Lemma 4.3 of Chapter II in [22], we can also define the bounded

characters of Aq from the spherical functions in L∞(K\G/K). A character χ of the

commutative algebra Aq is a bounded linear function χ : Aq −→ C such that χ(YmYn) =

χ(Ym)χ(Yn) for all Ym, Yn ∈ Aq. For an eigenfunction ψ̃ where ψ̃(0) = 1 and ψ̃(1) = λ,

let χλ : Aq −→ C be a function which satisfies χλ(Ym) = ψ̃(m) for all m ∈ Z+. Then we

have χλ(Y0) = 1 and χλ(Ym)χλ(Yn) = ψ̃(m)ψ̃(n) = χλ(YmYn) for all m,n ∈ Z+ from the

previous isomorphism θ, which shows that χλ is a character for Aq.

Proposition 4.12. There exists a decomposed form for the bounded characters of the

algebra Aq.

Proof. We will now compute the values of characters and spherical functions in the decom-

posed form from the above linear relations between adjacent terms, using a shift matrix.

We denote a basic edge by a column vector Yj =
(
Yj+1, Yj

)T ∈ A2
q , the linear operator

S2 ∈M2(Aq) shifts the Yj vector by one step to Yj+1 as S2Yj = Yj+1, explicitly expressed

as  q+1
q Y1 −1

q

1 0

 Yj+1

Yj

 =

 Yj+2

Yj+1

 , (4.7)

Given χ(Y1) = λ, the eigenvalues µ1, µ2 of the matrix χ (S2) are the solutions to

µ2 − q + 1

q
λµ+

1

q
= 0.

The corresponding eigenvectors of the distinct eigenvalues µ1 and µ2 are (µ1, 1)T and
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(µ2, 1)T respectively. We verify that the vector χ (Y1, Y0) = (λ, 1) is a linear combination

of the two eigenvectors with nonzero coefficients. Therefore we express χ (Y1, Y0) as the

decomposed form

χ (Y1, Y0) = α1 (µ1, 1) + α2 (µ2, 1) (4.8)

where α1, α2 are determined by the value of λ and both nonzero. When µ1 6= µ2, we have

α1 =
λ− µ2

µ1 − µ2
, α2 =

λ− µ1

µ2 − µ1
. (4.9)

Hence we work out the characters from the eigenvectors and eigenvalues of the shift matrix

as

χ
(
Yj+1, Yj

)T
= χ

(
Sj2Y0

)T
=
(
α1µ

j
1 (µ1, 1) + α2µ

j
2 (µ2, 1)

)T
. (4.10)

We cannot have the case where |µ1| = |µ2| > 1 as the product of µ1 and µ2 is fixed to

be 1/q. The only case we have µ1 = µ2 is when µ1 = µ2 = q−1/2 and λ = 2q1/2

q+1 . In this

case, we compute the values of the characters as χ (Ym) = 2q
q+1µ

m
1 for m ≥ 1.

As the value of the character grows exponentially in terms of µ1 and µ2 and to be

bounded by arbitrary powers of j, we require the norms of both µ1 and µ2 to be bounded

by 1, to obtain the bounded characters. Therefore, every unordered pair{
{µ1, µ2} :

1

q
≤ |µ1| ≤ 1,

1

q
≤ |µ2| ≤ 1, µ1µ2 =

1

q

}
(4.11)

gives a unique bounded character in Aq.

Conversely, every character χλ in Aq also determines an undered pair (µ1, µ2). Since

every character in Aq gives a unique value of λ = χλ(Y1) and the value λ is the parameter

that affects the solutions to the equation for the growth rate µ1 and µ2, thus the unordered

pair (µ1, µ2) is determined by the character χλ.

Lemma 4.13. The character space of Aq is parametrized by an ellipse MA centered at

the origin on the complex plane.

Proof. A character χλ in Aq is determined by the value χλ(Y1) = λ. Recall the sym-

metrized bi-disc [2], given by a set of points on the complex plane Γ = {(µ1 + µ2, µ1µ2) :

0 ≤ |µ1| ≤ 1, 0 ≤ |µ2| ≤ 1}. Let s = µ1 + µ2 and p = µ1µ2. Agler and Young showed that

(s, p) ∈ Γ if and only if

|s| ≤ 2, and |s− s̄p|+ |p|2 ≤ 1.

Since we have a fixed p = µ1µ2 = 1
q , the above inequality implies that

|qµ− µ̄| ≤ q − 1.
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Set µ = x+ iy in the complex plane, the character space MA we have is

|(q − 1)x− i(q + 1)y| ≤ q − 1,

which is an ellipse centered at the origin. We can also check that |λ| ≤ 1 for all q ≥ 1,

which agrees with the property of the random walk.

Remark 4.14. The boundary of the character space ∂MA is achieved when one of µ1 and

µ2 has modulus 1 and the other has modulus 1
q .

4.4 Point derivations and b.a.i

Definition 4.15. Let A be an algebra and χ : A −→ C be a character. A point derivation

D on A is a linear function D : A→ C such that

D (f1f2) = D (f1)χ (f2) + χ (f1)D (f2) , for all f1, f2 ∈ A.

The function D(f) is a point bi-module to be evaluated by the multiplication with a

character in the character space.

Lemma 4.16. There exists an essentially unique point derivation D : Aq → C for every

character χλ for which λ ∈MA\∂MA.

Proof. For a character χλ where χλ(Y1) = λ is not on the boundary of the ellipse, i.e.,

both |µ1|, |µ2| are strictly less than 1, we have the unique expressions of the eigenfunction

and character as a polynomial of degree m

ψ̃(m) = χλ(Ym) =

m∑
j=0

am,jλ
j = Pm(λ).

We can define a point derivation on the basis term Ym ∈ Aq as Dλ : Aq −→ Cλ, where

Dλ(Ym) :=
d

dz′
(
Pm(z′)

) ∣∣∣
z′=λ

Dλ.

Set z′ = q+1
q (µ′1 + µ′2) and µ′1µ

′
2 = 1

q , we have

Pm(z′) =
z′ − µ′2
µ′1 − µ′2

µ′m1 +
z′ − µ′1
µ′2 − µ′1

µ′m1 ,

which shows that Dλ(Ym) is indeed bounded.

Since Aq is singly generated by Y1, every element Yj of the natural basis of Aq is a

unique finite sum of powers of Y1, the set of powers of Y1 {Y k
1 }k∈Z+ also form a basis of
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Aq. Every Y k
1 is also a finite sum of powers of (Y1−λY0). Thus {(Y1−λY0)n}n∈Z+ is also

a basis for Aq.

To prove the uniqueness of Dλ, we can choose the basis {(Y1 − λY0)n}n∈Z+ and the

identity Y0 for Aq. Given a point derivation D : Aq −→ Cλ, we have

D((Y1 − λY0)n) = nD(Y1 − λY0)(z′ − λ)n−1
∣∣∣
z′=λ

=

D(Y1) if n = 1

0 if n 6= 1
,

which shows that the point derivation D is determined by the value of D(Y1). Therefore

any linear multiple of D is also a point derivation of Aq.

Definition 4.17. A bounded left approximate identity for a normed algebra A is a bounded

net {eα}α∈I with the property limα eαa = a for a ∈ A. Bounded right and two-sided

approximate identities are defined similarly. [10]

For the algebra Aq, we seek a sequence (eN )N≥1 which satisfies the condition of being

a b.a.i.. Lemma 4.18 and Lemma 4.19 are based on a suggestion of the external examiner.

Lemma 4.18. Let A be a commutative Banach algebra, J a closed ideal, (eN )N≥1 a

bounded sequence in J . Suppose there is x ∈ J such that Ax = J and limN xeN = x.

Then (eN ) is a b.a.i. for J .

Proof. Let b ∈ J and let ε > 0. By assumption there exists a ∈ A with‖b− ax‖ < ε. Then

‖beN − b‖ ≤
∥∥(b− ax)eN

∥∥+
∥∥a(xeN − x)

∥∥+‖ax− b‖

≤ ε‖eN‖+‖a‖‖xeN − x‖+ ε.

As N → ∞ the middle term → 0. Therefore, for all sufficiently large N , ‖beN − b‖ ≤(
supN‖eN‖+ 2

)
ε. Since ε is arbitrarily small, ‖beN − b‖ → 0.

Lemma 4.19. Let χλ be any character on Aq. Then every f ∈ ker (χλ) may be approxi-

mated by elements of the form g (Y1) (Y1 − λY0) where g is a polynomial.

Proof. We know from Lemma 4.7 that there is a sequence of polynomials (hn) such that∥∥hn (Y1)− f
∥∥→ 0. Define the new polynomials

(
h′n
)

by h′n (X) = hn(X)− hn(λ). Then

∥∥h′n (Y1)− f
∥∥ =

∥∥∥hn (Y1)− χλ
(
hn (Y1)

)
Y0 + χλ(f)Y0

∥∥∥
≤‖hn − f‖+

∣∣χλ(fn − f)
∣∣→ 0

and the polynomial h′n (X) has a root at X = λ, hence it has a factor of X−λ, so we may

define gn(X) = h′n (X) /(X − λ).
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Proposition 4.20. There exists a b.a.i. for the kernel of every character χλ on the

boundary of the character space.

Proof. By Lemma 4.18 and Lemma 4.19, it suffices to find a bounded sequence (eN ) in

kerχλ which also satisfies eN ∗q (Y1 − λY0) → Y1 − λY0. We seek a solution of the form

eN =
∑N−1

j=1 αjYj .

For f = Y1 − λY0,

eNf =

(
−λα0 +

1

q + 1
α1

)
Y0 +

(
α0 +

1

q + 1
α2 − λα1

)
Y1

+
N−2∑
j=2

(
−λαj +

q

q + 1
αj−1 +

1

q + 1
αj+1

)
Yj

+

(
q

q + 1
αN−2 − λαN−1

)
YN−1 +

q

q + 1
αN−1YN .

Set βk = αN−k. We choose αj such that all middle terms vanish i.e. −λαj + q
q+1αj−1 +

1
q+1αj+1 = 0, then

λβk =
q

q + 1
βk+1 +

1

q + 1
βk−1 for k = 2, . . . , N − 2,

which has the same form as for the difference equation to the random walk with the shift

matrix in Equation (4.7), and the terms in the eigenfunction corresponding to eigenvalue

λ. By Remark 4.14, we consider the characters at the boundary of the character space; i.e.,

one of µ1 and µ2 has modulus 1 and the other has modulus 1
q . Set |µ1| = 1 and |µ2| = 1

q .

Any middle terms αj of the form αj = Aµ−j1 + Bµ−j2 vanish for Yj when 1 ≤ j ≤ N − 1.

Choose α0 = 1 and B = 0.

For the condition χλ(eN ) =
∑N−1

j=0 αjχλ(Yj) = 0, the equation

N−1∑
j=0

αjχλ(Yj) = 1 +
N−1∑
k=1

Aµ−k1

(
µk1

(
λ− µ2

µ1 − µ2

)
+ µk2

(
λ− µ1

µ2 − µ1

))

= 1 +A

(N − 1)

(
λ− µ2

µ1 − µ2

)
+

(
λ− µ1

µ2 − µ1

)N−1∑
k=1

(
µ2

µ1

)k
= 0

holds when

A = −

(N − 1)

(
λ− µ2

µ1 − µ2

)
+

(
λ− µ1

µ2 − µ1

)N−1∑
k=1

(
µ2

µ1

)k−1

.
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Since |µ2µ1 | =
1
q < 1 and µ1 6= µ2 6= 0, we can choose large N such that

(N − 1)

(
λ− µ2

µ1 − µ2

)
+

(
λ− µ1

µ2 − µ1

)N−1∑
k=1

(
µ2

µ1

)k
6= 0.

Note that λ 6= µ2, as shown in Equation (4.9) as the nonzero coefficients in the decom-

posed form of the characters. Since |A|−1 grows like O(N), we have supN‖eN‖ < ∞ and∥∥f ∗q eN − f∥∥→ 0.

We introduce another variable Zk = (q + 1)qk/2−1Yk, which has a simpler form in the

relations of the multiplication:

Zj ∗ Z1 = Zj+1 + Zj−1 for j ≥ 1,

Zj ∗ Z0 =
q

q + 1
Zj

Zm ∗ Zn = Zm+n + Zm−n +
q − 1

q

n−1∑
j=1

Zm+n−2j for m > n ≥ 2.

The power of Z1 and Y1 can be computed as

Y n
1 =

( √
q

q + 1

)n
Zn1

= (q + 1)−nq
n
2

bn2 c∑
k=0

 k∑
m=0

C(n− 1− k, k −m)

(
q

q + 1

)mZn−2k


= (q + 1)1−nqn

bn2 c∑
k=0

 k∑
m=0

C(n− 1− k, k −m)

(
q

q + 1

)m q−1−kYn−2k

 ,

where C(a, b) is the generalized Catalan number
(
a+b
b

)
−
(
a+b
b−1

)
. Conversely, by induction

we can also rewrite Yn as a polynomial of Y1 and Y0, where Y0 acts as the constant term

in the polynomial. For an element f =
∑n

j=0 αjYj = pn(Y1) in the algebra, the character

χλ can be calculated by χλ(f) = pn(λ), which is a polynomial in λ. If χλ(f) = 0, then

pn(Y1) can be factorized and one of the factors is (Y1 − λY0).

We have shown that eN (Y1−λY0)→ (Y1−λY0). Since f can be factorized as (Y1−λY0)g

when χλ(f) = 0, we have eNf = eN (Y1 − λY0)g = (Y1 − λY0)g, which proves that eN is a

b.a.i. for the character χλ.

Remark 4.21. If there exists a bounded approximate identity which is in the kernel of a

character χλ, there cannot exist a nontrivial point derivation. Given a b.a.i. eN ∈ kerχλ

such that eNf → f and χλ(eN ) = χλ(f) = 0, for all f ∈ kerχλ, a point derivation Dλ
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satisfies

Dλ(f) = Dλ(eNf) = eNDλ(f) +Dλ(eN )f = 0

For f /∈ kerχλ, we can write f as f = eNf
′+ cY0, where Dλ(cY0) = 0 as Y0 is the identity

of Aq.

4.5 The isomorphism to a weighted subalebra of `1 (Z)

As the multiplications in Aq are not balanced, we seek an isomorphism between Aq and

another commutative algebra on Z+ with a weighted `1-norm. First we define the ωR-

weighted `1-norm on Z+.

Definition 4.22. Let Zj be the characteristic function for j ∈ Z+. The ωR-norm of Zj

is given by ∥∥Zj∥∥ωR = Rj .

Consider the normalized symmetric Laurent polynomials on with one variable z, Za =
1
2

(
za + z−a

)
for a ∈ Z+. The multiplications satisfy Za ∗ Zb = 1

2

(
Za+b + Z|a−b|

)
.

We define a commutative algebra on Z+ with the ωR norm and the multiplications be-

tween the characteristic functions
{
Zj
}
j∈Z+

satisfy the rules from the symmetric Laurent

polynomials on Z.

Definition 4.23. Let ∗ be the multiplication rule given by the normalized symmetric

Laurent polynomials with one variable and
{
Zj
}
j∈Z+

be the characteristic functions on

Z+. The algebra A2,ωR is defined to be

A2,ωR := `1 (Z+, ∗, ωR) =

f =
∞∑
j=0

cjZj

∣∣∣∣∣∣‖f‖ωR =
∞∑
j=0

|cj |Rj <∞

 .

Remark 4.24. We can extend the definition of ωR-norm to Z; i.e.,
∥∥Zj∥∥ωR = R|j| for

j ∈ Z. Then the algebra A2,ωR is the S2-invariant subalgebra of `1 (Z, ∗, ωR), which is

given by A2,ωR = `1 (Z+, ωR)S2.

Theorem 4.25. There exists an isomorphism between the Hecke algebra Aq and A2,ωR

when R = q1/2.

Proof. The algebra Aq has generator Y1 and every element in the natural basis can be

written as

Ym =
m∑
j=0

am,jY
j

1 .
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The algebra A2,ωR has generator Z1 = 1
2

(
z−1 + z

)
and every basis element can be written

as

Zm =
m∑
j=0

a′m,jZ
j
1 .

For f̌ =
∑∞

j=0 βjZj ∈ A2,ωR , the ωR-weighted `1 norm is given by

∥∥∥f̌∥∥∥
ωR

=

∞∑
j=0

(∣∣βj∣∣Rj) .
We scale the generator Y1 of Aq to

Y ′1 =
q

1
2 + q−

1
2

2
Y1.

Define Y ′0 = Y0 and Y ′m+1 = 2Y ′mY
′

1 − Y ′m−1 for m ≥ 1. We have the following identities

Y ′m ∗q Y ′0 = Y ′m,

Y ′m ∗q Y ′1 =
1

2

(
Y ′m+1 + Y ′m−1

)
, when m ≥ 1,

Y ′m ∗q Y ′n =
1

2

(
Y ′m+n + Y ′m−n

)
, when m ≥ n ≥ 0,

which satisfy the same multiplication rules for the basis elements
{
Zj
}∞
j=0

of A2,ωR . For

m ≥ 2, we compute Y ′m =
∑m

j=0 βm,jYj explicitly. The nonzero coefficients βm,j are given

by

βm,m =

(
q + 1

2q

)
q
m
2 for all m ≥ 2,

βm,0 = −
(
q − 1

2

)
q−

m
2 when m is even,

βm,m−2k = −q−2k (q − 1)βm,m = −

(
q2 − 1

2q

)
q
m
2
−2k for all 1 ≤ k < m

2
.

We verify that

sup
m
q−m/2

∥∥Y ′m∥∥ <∞.
Define a linear map θR,q : A2,ωR −→ Aq by

θR,q

 ∞∑
j=0

αjZj

 =

∞∑
j=0

αjY
′
j .

From the multiplication rules above, we apply the identities to show that θR,q is a homo-
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morphism as

θR,q (ZmZn) = Y ′m ∗q Y ′n, for all m,n ∈ Z+.

When R = q
1
2 , we have

sup
m

∥∥Y ′m∥∥
‖Zm‖

<∞.

Therefore the map θR,q is well-defined, linear and bounded from A2,ωR to Aq.

Conversely, we can scale the generator Z1 for A2,ωR to be

Z ′1 =
2

q
1
2 + q−

1
2

Z1.

For m ≥ 2, define the elements Z ′m ∈ A2,ωR by induction

Z ′m =
q + 1

q
Z ′m−1Z

′
1 −

1

q
Z ′m−2.

We have the following identities

Z ′mZ
′
0 = Z ′m,

Z ′mZ
′
1 =

q

q + 1
Z ′m+1 +

1

q + 1
Z ′m−1 when m ≥ 1.

For m ≥ 2, we compute Z ′m =
∑m

j=0 γm,jZj explicitly. The nonzero coefficients γm,j are

given by

γm,m =
2q−m+1

q
1
2 + q−

1
2

,

γm,0 =
q − 1

2
q−2m,

γm,m−2k = (q − 1)q−m−2k for all 1 ≤ k < m

2
.

When R = q
1
2 , we verify that

sup
m

∥∥Z ′m∥∥ωR <∞.
Define a linear map θq,R : Aq −→ A2,ωR by

θq,R

 ∞∑
j=0

αjYj

 =

∞∑
j=0

αjZ
′
j .

From the multiplication rules above, we apply the identities to show that θq,R is a homo-

morphism as

θq,R
(
Ym ∗q Yn

)
= Z ′mZ

′
n, for all m,n ∈ Z+.
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When R = q
1
2 , we have

sup
m

∥∥Z ′m∥∥
‖Ym‖

<∞.

Therefore the map θq,R is well-defined, linear and bounded from Aq to A2,ωR .
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For the projective general linear group over the p-adic numbers and p-adic integers, we

show that the quotient space PGLn
(
Qp

)
/PGLn

(
Zp
)

has the structure of a Bruhat-Tits

building [1]. The building is homogeneous where the degree of every vertex is equal and

determined by the prime number p. The group PGLn(Qp) acts on the equivalence classes

of n-dimensional p-adic integer lattices which correspond to the vertices of the building.

We define the algebra of the bi-invariant summable functions on the vertices of the

building given by the Gelfand pair (PGLn(Qp), PGLn(Zp)) [47]. There will be a set of (n−
1) distinct and independent Laplace operators generated by different types of adjacency

relations on the building. The Hecke algebra An,p on Zn+ with `1 norm, which is isomorphic

to the discretized bi-invariant subalgebra of the group algebra, will also have (n−1) Hecke

operators as the generators. There is a correspondence between eigenfunctions, spherical

functions and characters. The shift matrices for each algebra are more complicated to

compute. For n = 2 and n = 3 we conjecture an explicit description of the character space

and the existence of bounded approximate identities for the ideals given by certain points

in the space. In particular, we will study the Gelfand pair
(
PGL3

(
Qp

)
, PGL3

(
Zp
))

and

the related Ã2 building and lattices [46].

By rescaling the normalized orbit, we obtain the multiplication rules of An,p with the

same coefficients as the algebra of summable functions on the weighted (n−1)-dimensional

permutohedral lattice, `1(Λn, ωR) where every vertex corresponds to a monomial. These

two algebras have isomorphic character spaces determined by the prime number p and the

weight conditions ωR for the rescaling. The isomorphism between the character spaces

suggest that these two algebras are isomorphic to each other. We finish with a conjecture

that there exists an isomorphism between An,p and the weighted subalgebra. The compu-

tation of derivations and bounded approximate identities will be easier and enable us to
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analyze the cohomology groups in later problems.

5.1 Lattices of p-adic numbers and the buildings

Throughout this section we denote by Qp and Zp the p-adic rational numbers and the

p-adic integers. Let G = PGLn(Qp) be the projective general linear group over p-adic

rational numbers, which is locally compact. Let the subgroup K = PGLn(Zp) be the

projective general linear group over p-adic integers. We recall some definitions of lattices

on p-adic numbers and show that the quotient space G/K is isomorphic to the Bruhat-Tits

building.

Definition 5.1. Given a set of n linearly independent vectors {vi|i = 1, . . . , n, vi ∈ Qn
p},

an n-dimensional lattice of Qp is a set of vectors {v =
∑n

i=1 αivi|αi ∈ Zp}.

If we write {αivi} as column vectors, then the n× n matrix g = (α1v1|α2v2| . . . |αnvn)

is an element in the general linear group GLn(Qp). Let Pn(V ) be the set of diagonal

matrices which are powers of the diagonal matrix diag(p, p, . . . , p). The projective general

linear group G = PGLn(Qp) can therefore be expressed explicitly as the quotient group

G = GLn(Qp)/Pn(V ).

We know that every g ∈ PGLn(Qp) can be written as a product of two matrices

g = (u1|u2| . . . |un)k = Mk, whereM = (u1|u2| . . . |un) ∈ PGLn(Qp) is an upper triangular

matrix and k ∈ PGLn(Zp). We can assume without loss of generality that all column

vectors {ui}ni=1 form upper triangular matrix (u1|u2| . . . |un) such that the diagonal entries

have value pai all i = 1, . . . , n. This shows that {ui|i = 1, . . . , n, ui ∈ Qn
p} is also a basis

of the lattice.

Let L be the set of all equivalence classes of lattices in Qp and LM be a lattice generated

by M ∈ PGLn(Qp). Two lattices L(u1|u2|...|un) and L(v1|v2|...|vn) are physically the same

if and only if for all (α1, . . . , αn) ∈ Znp there exists a unique (β1, . . . , βn) ∈ Znp such that∑n
i=1 αiui =

∑n
i=1 βivi, and for all (β1, . . . , βn) ∈ Znp , there exists a unique (α1, . . . , αn) ∈

Znp such that
∑n

i=1 αiui =
∑n

i=1 βivi.

Remark 5.2. We denote LM the lattice with basis consisting of the column vectors in

M . The (projective) equivalence class [L(u1|u2|...|un)] [45] consists of lattices of the form

L(αu1|αu2|...|αun) and L(plu1|plu2|...|plun), where α is invertible in Qp and l is an arbitrary

integer. Therefore the quotient G/K is isomorphic to the set of equivalence classes of

n-dimensional lattices of p-adic numbers.

Definition 5.3. The lattice L(u1|...|un) is said to be a sublattice of the lattice L(v1|...|vn) if

we have

L(u1|...|un) ( L(v1|...|vn).
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The lattice L(pu1|...|pun) is clearly a sublattice of L(u1|...|un).

Definition 5.4. Two lattices L(u1|...|un) and L(v1|...|vn) are adjacent if we have

L(pu1|...|pun) ( L(v1|...|vn) ( L(u1|...|un).

There are at most n lattices M0,M1, . . . ,Mn−1 which are pairwise adjacent.

Example 5.5. Let M0 = I such that LM0 is the lattice generated by the identity matrix

and Mj =diag(p, p, . . . , p, 1, 1, . . . , 1) for j = 1, . . . n− 1, the diagonal matrix with the first

j diagonal entries to be p and the last (n − j) diagonal entries to be 1. Then we have

Ldiag(p,p,...,p)M0
( LMn−1 ( LMn−2 ( . . . (M1 ( LM0.

We explicitly list all the sets Ml of different families of upper triangular matrices M

such that Ldiag(p,p,...,p)M0
( LM ( LM0 = LI , for different families l = 1, . . . , n− 1 as

Ml =


M ∈ PGLn(Qp)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Mij = 0 when i > j,

Mii ∈ {1, p} ,
detM = pl,

Mij ∈ {0, 1, . . . , n− 1}, when i < j,Mii = p and Mjj = 1,

0 elsewhere


.

Note that the disjoint union of the right cosetsMlK = {MK|M ∈Ml} is a double coset

for G = PGLn(Qp) and K = PGLn(Zp) ⊂ G.

Definition 5.6. A lattice y generated by My is said to be a type-i neighbour of another

lattice x generated by Mx if there exists an element M ′ ∈Mi such that My = M ′Mx. We

denote this adjacency relation by y ∼i x.

Remark 5.7. Note that y ∼i x if and only if x ∼n−i y.

The size of every familyMl can be computed by enumerating the number of matrices

in the above set. The number of lattices in Ml is given by

|Ml| = σl

(
1, p, . . . , pn−1

)
=

∑
0≤k1<k2<...<kl≤n−1

p
∑l
i=1 ki , (5.1)

the l-th elementary symmetric polynomial of
(
1, p, . . . , pn−1

)
.

Define a graph Gn whose vertices V correspond to the set of equivalence classes of

lattices above. Two vertices are adjacent and connected by an edge if their corresponding

lattices are connected by the description of sublattice relations above. The graph Gn have

both the combinatorial and geometric structure of a building [30]. The building is locally
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finite and homogeneous and the degree of every vertex is determined by the prime number

p. Note that the infinite homogeneous tree Tq also has these properties.

The group G = PGLn(Qp) is an automorphism group acting on the equivalence classes

of lattices and K is the stabilizer of the standard lattice generated by the identity matrix.

The isomorphism between the vertices V of the building and the equivalence classes of

lattices shows that G acts transitively on the V and K stabilizes a fixed vertex x0 which

corresponds to the identity matrix [13]. Thus we have L ' G/K ' V.

By Proposition 4.4.3 of [12], the double coset Ωã = KgãK consists of all elements

which can be written as the form k1diag(pa1 , . . . , pan)k2 as the Cartan decomposition,

where k1, k2 ∈ K. We will clarify the notations which relate to the powers of the diagonal

entries.

Pick a representative vector a = (a1, . . . , an) in the equivalence class of

(Zn)Sn /(1, 1, . . . , 1). Another vector b = (b1, . . . , bn) ∈ Zn is said to be in the same

equivalence class with a if they differ by a multiple of the vector (1, 1, . . . , 1) or by a

permutation of the entries. There exists a unique m-vector in Zn−1
+ from the equivalence

class of ã-vectors in Zn/(1, 1, . . . , 1) with monotonic descending order given by

m = (m1,m2, . . . ,mn−1) = (a1 − a2, a2 − a3, . . . , an−1 − an) ,

where ã = a1 ≥ . . . ≥ an. Thus we can alternatively denote the orbit Ωã by Ωm. Let

{ei}ni=1 be the set of canonical basis for Zn/(1, 1, . . . , 1) and {ej}n−1
j=1 be the set of canonical

basis for Zn−1
+ . Note that

∑n
i=1 ei = 0. We can see that the space Zn/(1, 1, . . . , 1) is

isomorphic to the (n − 1)-dimensional permutohedral lattice, denoted by Λn−1. The m-

vectors in Zn−1
+ are in a Weyl chamber of the lattice.

5.2 The Gelfand pair (PGLn(Qp), PGLn(Zp))

We will show that the algebra of the integrable bi-K-invariant functions on G, L1(K\G/K)

is commutative and isomorphic to a Banach algebra `1(Zn−1
+ , ∗p). We will use the following

facts to show that (G,K) is a Gelfand pair .

• G is locally compact and unimodular by Lemma 8.1.5 in [65];

• K is a compact subgroup of G by Proposition 8.1 in [22];

• the transpose gT is also in the double coset KgK as g = k1diag(pa1 , . . . , pan)k2

implies that gT = kT2 diag(pa1 , . . . , pan)kT1 ;

• the transpose operation g → gT preserves the Haar measure as G is unimodular by

Lemma 8.1.5 of [65].

93



Chapter 5. Algebras of automorphism groups of buildings and the ωR-norm

Theorem 5.8. Let G = PGLn(Qp) and K = PGLn(Zp). The pair (G,K) is a Gelfand

pair; i.e., the bi-K-invariant functions on G are commutative under convolution.

Proof. For all f1, f2 ∈ L1(K\G/K) and g ∈ G, we have the convolution between f1 and

f2 as

f1 ∗ f2(g) =

∫
h∈G

f1 (h) f2

(
h−1g

)
dh(

setting h1 = h−1g
)

=

∫
h1∈G

f1

(
gh−1

1

)
f2 (h1) dh1

=

∫
h1∈G

f1

((
gh−1

1

)T)
f2

(
hT1

)
dh1

=

∫
h1∈G

f1

((
h−1

1

)T
gT
)
f2

(
hT1

)
dh1(

setting h2 = hT1

)
=

∫
h2∈G

f2 (h2) f1

(
h−1

2 gT
)
dh2

= f2 ∗ f1

(
gT
)
.

Since gT ∈ KgK, then by Lemma 4.2, we have f2∗f1(gT ) = f2∗f1(g). Thus f1∗f2 = f2∗f1

for all f1, f2 ∈ L1(K\G/K), which shows that the pair (G,K) is a Gelfand pair.

Note that for n ≥ 3, (G,K) is not a symmetric Gelfand pair as Kg−1K 6= KgK for most

g ∈ G.

We will now define a basis for the integrable bi-K-invariant functions L1(K\G/K),

the functions on the equivalence classes of lattices and the functions on Zn−1
+ . We fix a

Haar measure such that the subgroup K has normalized mass 1.

We define a basis for L1(K\G/K) by the scaled characteristic function as

Y ′ã(g) =
1∣∣Ωã∣∣δΩã(g) =


1

|Ωã| if g ∈ Ωj

0 elsewhere
.

We also define the summable functions on the equivalence classes of lattices which are

isomorphic to the vertices V of the building, fL ∈ `1(L) as

fL : G/K −→ C, fL
(
Lg
)

=

∫
h∈gK

f(h)dh.
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The basis for `1(L) is given by the characteristic function

δLg(Lg′) =

1 if Lg′ = Lg

0 elsewhere
.

We now define the summable functions on Zn−1
+ , which are isomorphic to the vertices

of a Weyl chamber of the An−1 lattice Λn−1, including the vertices on the boundary of

the chamber. The function f̃ which corresponds to fL ∈ `1(L) and f ∈ L1(K\G/K) are

defined as

f̃ : Zn−1
+ −→ C, f̃(m) = |Ωm| fL

(
Lg
)

for g ∈ Ωm.

The basis are given by the characteristic functions Ym on the m-vectors in Zn−1
+ as

Ym(x) =

1 if x = m

0 elsewhere
.

Remark 5.9. Alternatively, for a ∈ Zn, we are allowed to express Ym = Ya if there exists

b = (b1, . . . , bn) such that m = (b1 − b2, . . . , bn−1 − bn), which is in the same equivalence

class of (Zn)Sn /(1, 1, . . . , 1) with the a-vector.

We will show that there exists an isomorphism between L1(K\G/K) and a Banach

algebra on Zn−1
+ with specific multiplication rules ∗p given by the properties of Gn.

Definition 5.10. We define the commutative algebra An,p = `1(Zn−1
+ , ∗p), where

Yã ∗p Y0 =Ya,

Yã ∗p Yej =
1∣∣Mj

∣∣ ∑
1≤k1<k2<...<kj≤n

(
p
∑j
i=1(n−ki)Y

ã+
∑j
i=1 eki

)
,

for all j ∈ {1, 2, . . . , n− 1}.

Alternatively, we may write the above equations in the form of Ym ∗p Y0 and Ym ∗p Yej by

the conversion stated in Remark 5.9.

Theorem 5.11. Recall the equivalence class of the a-vectors in Zn/(1, 1, . . . , 1) with

canonical basis {ej}nj=1 and the m-vectors in Zn−1
+ with canonical basis {ei}n−1

i=1 . The

algebra of bi-K-invariant functions L1(K\G/K) is isomorphic to the commutative alge-

bra An,p. The isomorphism sends the characteristic functions Y ′ã of L1(K\G/K) to the

corresponding characteristic functions Yã of An,p.

Proof. For n ≥ 2 the commutative algebra An,p has got (n− 1) generators {Yej}
n−1
j=1 ; i.e.,

every Yã ∈ An,p can be uniquely written as a linear sum of products of the generators.
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For all normalized basis elements Y ′ã ∈ L1(K\G/K) and Yã ∈ An,p, define a linear map

θ : L1(K\G/K) −→ An,p, θ
(
Y ′ã

)
= Yã.

Denote m = (m1, . . . ,mn−1) ∈ Zn−1
+ and a representative vector in the equivalence classes

of Zn/(1, . . . , 1), ã = (a1, . . . , an), such that mk = ak − ak−1 for all k ∈ {1, 2, . . . , n − 1}.
We need to show that for all equivalence classes of the ã-vectors in Zn/(1, . . . , 1) and every

j ∈ {1, 2, . . . , n− 1}, θ(Y ′ã ∗ Y ′ej) = θ(Y ′ã) ∗p θ(Y ′ej) = Yã ∗p Yej . We will show the proof for

the multiplication with Ye1 and the multiplications with the rest of generators just follow

from the usual steps.

Y ′ã ∗ Y ′e1(g) =
1∣∣Ωã∣∣ ∣∣Ωe1

∣∣ ∫
h∈G

δΩã (h) δΩe1

(
h−1g

)
dh

=
1∣∣Ωã∣∣ ∣∣Ωe1

∣∣ ∫
h∈Ωã

δΩe1

(
h−1g

)
dh.

For every h−1 = k−1
1 diag(p−a1 , p−a2 , . . . , p−an)k−1

2 where k1, k2 ∈ K and h−1g ∈ Ωe1 , we

require g = k2diag(pa1 , pa2 , . . . , pan)Mk3, where M ∈M1. For every upper triangular ma-

trix M ∈M1, if M has value p at its i-th diagonal entry, then diag(pa1 , pa2 , . . . , pan)M is in

the double coset Kdiag(pa1 , . . . , pai+1, . . . , pan)K. Since there are precisely pn−i elements

in M1 with value p at its i-th entry, we can work out the integral of the characteristic

function as

Y ′ã ∗ Y ′e1(g) =
1∣∣Ωe1

∣∣ n∑
j=1

(
pn−iY ′ã+ej

)
=

1

|M1|

n∑
j=1

(
pn−iY ′ã+ej

)
,

which shows that θ
(
Y ′ã ∗ Y ′e1

)
= θ

(
Y ′ã

)
∗p θ

(
Y ′e1
)
. Similarly, we can show this equality

holds for the multiplications with all generators {Yej}
n−1
j=1 , which shows that the two Banach

algebras are isomorphic to each other.

Remark 5.12. For the algebra Aq (Definition 4.5) where q = p is a prime number, the

two algebras Aq and A2,p are the same. By Equation (5.1), we have |Ml| = p + 1. The

multiplication rules ∗p and ∗q are of the same form with the same coefficients.

Yã ∗p Ye1 =
1

p+ 1

 ∑
1≤k≤2

p2−kYã+ek

 =
p

p+ 1
Yã+e1 +

1

p+ 1
Yã+e2

When n = 2, the m-vectors are just non-negative integers. The canonical basis of the a-
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vectors, e1 and e2, correspond to +1 and −1 in the m-vectors. Then (ã+ e1) corresponds

to m+ 1 and (ã+ e2) corresponds to m− 1 in the m-vectors.

5.3 Typed Laplace operators and random walks

To study the random walk on the vertices of the building Gn, we define a set of lin-

ear operators {Li}n−1
i=1 , where Li is the type-i Laplace operator on the vector space of

bounded complex-valued functions on the set of equivalence classes of lattices L of the

p-adic numbers.

For a function fL : L −→ C, we define the value of (LifL) (x) to be the average of the

values of all fL(y), where y is a type-i neighbour of x, expressed as

(LifL) (x) =
1

σi
(
1, p, . . . , pn−1

) ∑
y∼ix

fL(y).

Under the bi-K-invariance condition; i.e., the function on L is determined by its cor-

responding position on a fixed Weyl chamber of the An−1 integer lattice ΛSnn−1, we can

also define the typed Laplace operators on to the functions on the integer lattice ΛSnn−1,

L̃j f̃ : Zn−1
+ −→ C, as

(
L̃j f̃

)
(m) =

1∣∣Mj

∣∣ ∑
1≤k1<k2<...<kj≤n

p∑j
i=1(n−ki)f̃

m +

j∑
i=1

 ki∑
l=1

(en−l)



 ,

for all j ∈ {1, 2, . . . , n}. By definition, we can see that the typed Laplace operators are

commutative, i.e. (
L̃k

(
L̃j f̃

))
(m) =

(
L̃j

(
L̃kf̃

))
(m) .

The type-j Laplace operator parametrizes a weighted random walk to
(
n
j

)
directions on

the integer lattice Λn−1. We will compute the eigenfunctions to the random walk, starting

with n = 3, and generalize the result to all n ∈ Z+ in the next section.

Proposition 5.13. Let (G,K) be the Gelfand pair (PGLn(Qp), PGLn(Zp)) and ψ ∈
L∞

(
K\G/K

)
be a bounded bi-K-invariant function on G. Let ψV and ψ̃ be the corre-

sponding functions on the equivalence classes of lattices L and the function on the integer

lattice Λn−1. Then ψ is a spherical function if and only if the bounded radial function ψ̃

is an eigenfunction for the Laplace operators {L̃i}n−1
i=1 with ψ̃(0) = 1.

Proof. If ψ is a spherical function, from ψ(e) = 1 we know that the corresponding function

on the (n − 1)-dimensional permutohedral lattice Λn−1 has value ψ̃(0) = 1 at 0. For the

m-vectors in Zn−1
+ ' Λn−1, let ψ̃

(
ej
)

= λj for all j ∈ {1, 2, . . . , n− 1}.
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First we show that ψ̃ is an eigenfunction for the type-1 Laplace operator L̃1. Let

x0 be the lattice generated by the identity matrix I. Given two lattices x generated by

Mx ∈ PGLn(Qp) and y ∈ PGLn(Qp) generated by My such that y ∼1 x, we know that y

is a type-1 neighbour of x. Let Mx be in the double coset Ωm. Since G acts transitively

on L, we obtain more type-1 adjacency relations as

LMy ∼1 LMx

⇐⇒LM−1
x My

∼1 LI

⇐⇒LkM−1
x My

∼1 LI

⇐⇒LMxkM
−1
x My

∼1 LMx ,

where the (1 + p+ . . .+ pn−1) distinct kj ∈M1 such that every MxkjM
−1
x My generates a

a lattice yj which is a type-1 neighbour of x and these corresponding (1 + p+ . . .+ pn−1)

right cosets are all disjoint. Not that each one of the set Kj = {k ∈ K|LMxkM
−1
x My

= yj}
will have mass 1

(1+p+...+pn−1)
by the Haar measure 1 of K, as the union of the disjoint sets

Kj is K. Therefore, from the properties of the spherical function, we have

ψ̃ (e1) ψ̃ (m) = ψ
(
M−1
x My

)
ψ (Mx)

=

∫
k∈K

ψ
(
MxkM

−1
x My

)
dk

=
1

q + 1

∑
yj∼1x

ψL
(
yj
)

= (L1ψL) (x)

=
(
L̃1ψ̃

)
(m),

which shows that ψ̃ is an eigenfunction for the type-1 Laplace operator L̃1. Similarly, we

can show that ψ̃ is an eigenfunction for all (n−1) typed Laplace operators with eigenvalues

{λi}n−1
i=1 .

Conversely, we assume that the function on the (n − 1)-dimensional permutohedral

lattice ψ̃ is an eigenfunction for all of the typed Laplace operators {L̃i}n−1
i=1 . The eigenvalues

for the (n−1) typed Laplace operators are ψ̃(ei) = λi for all i ∈ {1, . . . , n−1}. We need to

show that for all g, h ∈ G, we have
∫
K ψ(gkh)dk = f(g)f(h). The steps of the proof is the

same for all dimensions. Since we have proved the n = 2 example, where the Gelfand pair

(PGL2(Qp), PGL2(Zp)) is isomorphic to the automorphism group and a selected subgroup

of Tq in Section 4.3, it is a repetition to show for general n-dimensional cases.
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5.4 The Ã2 lattice Λ2 and the algebra A3,p

In this section, we consider the Hecke algebra of the Gelfand pair (PGLn(Qp), PGLn(Zp))
with L1 norm and the algebra An,p which are functions on the Ãn−1 lattice. In Section

4.3, as shown in Equation (4.11), we have found the character space for the example

of n = 2 which is the only example of a symmetric Gelfand pair. We now start with

n = 3 and generalize the result to n-dimensional example based on our analysis for the

n = 2 case. We compute the bounded characters of the algebra from a shift matrix and

describe the character space Λ = {λj}n−1
j=1 . When n ≥ 3, the characters of the algebra

An,p are parametrized by more than three variables. We finish with two conjectures for

the existence of point derivations and bounded approximate identities as the calculations

are much more complicated than the n = 2 case.

In Section 5.1, we have shown that the algebra of integrable bi-PGLn(Zp)-invariant

functions on PGLn(Qp) is commutative and isomorphic to the Hecke algebra An,p by

Theorem 5.11. When n = 3, we can view A3,p as living on a Weyl chamber of the Ã2

lattice Λ2, which is a triangular grid. The lattice Λ2 consist of three types of vertices

which are determined by the determinant of the representative diagonal matrix in the

double coset Kdiag(pa1 , pa2 , pa3)K. The type-j vertices of Λ2 correspond to the double

cosets with the determinant of representative diagonal matrix equal to pj . The types for

the vertices can be easily computed by (a1 + a2 + a3) modulo 3. Every vertex on the Ã2

lattice Λ2 is adjacent to six vertices which form a hexagon. For a vertex of type j, three

of its neighbours are of type k and the other three are of type l, where {j, k, l} = {1, 2, 3}.
In this computation, we use the m-vectors in Z2

+ with natural basis {e1, e2}. In the

commutative algebra A3,p, the multiplications with generators Ye1 and Ye2 are expressed

in different forms. By definition 5.10, for m = (m1,m2), when both m1,m2 > 0, we have

Ye1Y(m1,m2) =
1

p2 + p+ 1

(
p2Y(m1+1,m2) + pY(m1−1,m2+1) + 1Y(m1,m2−1)

)
,

Ye2Y(m1,m2) =
1

p2 + p+ 1

(
p2Y(m1,m2+1) + pY(m1+1,m2−1) + 1Y(m1−1,m2)

)
.
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For m1 = 0 or m2 = 0, we have

Ye1Y0 = Ye1 ,

Ye2Y0 = Ye2 ,

Ye1Y(m1,0) =
1

p2 + p+ 1

(
p2Y(m1+1,0) + (p+ 1)Y(m1−1,1)

)
,

Ye2Y(m1,0) =
1

p2 + p+ 1

((
p2 + p

)
Y(m1,1) + 1Y(m1−1,0)

)
,

Ye1Y(0,m2) =
1

p2 + p+ 1

((
p2 + p

)
Y(1,m2) + 1Y(0,m2−1)

)
,

Ye2Y(0,m2) =
1

p2 + p+ 1

(
p2Y(0,m2+1) + (p+ 1)Y(1,m2−1)

)
,

where the coefficients are slightly different to the general case due to the reflections on the

boundaries of the Weyl chamber.

By proposition 5.13, the values for the spherical functions in the algebra of bi-

PGL3(Zp)-invariant functions on PGL3(Qp), the eigenfunctions for the Laplace operators

and the characters for the algebra are given by the same form

ψλ1,λ2

(
diag

(
pm1+m2 , pm2 , 1

))
= ψ̃λ1,λ2 (m1,m2) = χλ1,λ2 (Ym) ,

where

χλ1,λ2 (Y0) = 1,

χλ1,λ2
(
Ye1
)

= λ1,

χλ1,λ2
(
Ye2
)

= λ2.

Similar to Proposition 4.12, we seek the shift matrices for the algebra A3,p to obtain

the decomposed form of the bounded characters.

Proposition 5.14. There exists a decomposed form for the bounded characters of the

algebra A3,p.

Proof. We define a column vector Ym =
(
Ym, Ym+e1 , Ym+e2

)T ∈ A3
3,p, which can be seen

as a vector with entries which are the basis of three vertices which form a triangle on the

lattice. Define the linear operators S3,1,S3,2 ∈ M3

(
A3,p

)
such that S3,1Ym = Ym+e1 and

S3,2Ym = Ym+e2 . The linear operators S3,1 and S3,2 shift the column vector Ym along

the e1 and e2 directions by one step, respectively. For m′ =
(
m′1,m

′
2

)
and m = (m1,m2)

where m′1 > m1 and m′1 > m1, we have Ym′ = Sm
′
1−m1

3,1 Sm
′
2−m2

3,2 Ym. If we choose m1 or
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m2 to be 0, then the shift relations can be explicitly expressed as

S3,1

 Y(m1,0)

Y(m1+1,0)

Y(m1,1)

 =

 Y(m1+1,0)

Y(m1+2,0)

Y(m1+1,1)

 ,

where

S3,1 =


0 1 0

0 (p2+p+1)
p2+p

Ye1 −p+1
p2

− 1
p2+p

(p2+p+1)
p2+p

Ye2 0

 ,

and

S3,2

 Y(0,m2)

Y(1,m2)

Y(0,m2+1)

 =

 Y(0,m2+1)

Y(1,m2+1)

Y(0,m2+2)

 ,

where

S3,2 =


0 1 0

0 (p2+p+1)
p2+p

Ye2 −p+1
p2

− 1
p2+p

(p2+p+1)
p2+p

Ye1 0

 .

Define a function χ̌λ1,λ2 : M3(A3,p) −→M3(C) by

χ̌λ1,λ2
(
Sij
)

= χλ1,λ2
(
Sij
)
Mij ,

where Sij is the matrix entry in M3(A3,p) and Mij is a matrix unit in M3(C).

Similar to the method of computing the characters of Aq in Section 4.2, we use the

shift matrices S3,1 and S3,2 to obtain

χ̌λ1,λ2 (Ym) = χ̌λ1,λ2

(
Sm1

3,1 S
m2
3,2Y0

)
= χ̌λ1,λ2

(
Sm1

3,1

)
χ̌λ1,λ2

(
Sm2

3,2

)
χ̌λ1,λ2 (Y0) . (5.2)

We verify that the column vector χ (Y0) = (1, λ1, λ2)T is not an eigenvector of χ̌λ1,λ2(S3,1)

or χ̌λ1,λ2(S3,2). Therefore all eigenvalues of χ̌λ1,λ2(S3,1) or χ̌λ1,λ2(S3,2) contribute to the

growth rate in the decomposed form of characters.

By Equation (5.2), the values of χ̌λ1,λ2 (Ym) are obtained by computing the powers of

the two shift matrices. Therefore, for the character χλ1,λ2 : A3,p −→ C to be bounded on

all Ym, we require both matrices χ̌λ1,λ2(S3,1) and χ̌λ1,λ2(S3,2) have eigenvalues bounded

by modulus 1, which indicate the growth rate of χλ1,λ2(Ym) in terms of m1 and m2.
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The eigenvalues of χ̌λ1,λ2(S3,1) and χ̌λ1,λ2(S3,2) are the solutions of the equations

µ3
1 − λ1

(
1 +

1

p
+

1

p2

)
µ2

1 + λ2

(
1

p
+

1

p2
+

1

p3

)
µ1 −

1

p3
= 0,

µ3
2 − λ2

(
1 +

1

p
+

1

p2

)
µ2

2 + λ1

(
1

p
+

1

p2
+

1

p3

)
µ2 −

1

p3
= 0,

which are obtained from the characteristic polynomials of χ̌λ1,λ2(S3,1) and χ̌λ1,λ2(S3,2).

Let {µ11, µ12, µ13} be the set of solutions to the first equation above with |µ11| ≥
|µ12| ≥ |µ13| and {µ21, µ22, µ23} be the set of solutions to the first equation above with

|µ21| ≤ |µ22| ≤ |µ23|. We obtain the following identities from the solutions:

σ3 (µ11, µ12, µ13) = σ3 (µ21, µ22, µ23) = σ3

(
1,

1

p
,

1

p2

)
λ1 =

σ1 (µ11, µ12, µ13)

σ1

(
1, 1

p ,
1
p2

) =
σ2 (µ21, µ22, µ23)

σ2

(
1, 1

p ,
1
p2

) ,

λ2 =
σ2 (µ11, µ12, µ13)

σ2

(
1, 1

p ,
1
p2

) =
σ1 (µ21, µ22, µ23)

σ1

(
1, 1

p ,
1
p2

) ,

where σ1, σ2, σ3 denote the elementary symmetric polynomials. We can see that µ21 =

µ12µ13/p
2, µ22 = µ11µ13/p

2 and µ23 = µ11µ12/p
2. Therefore the solutions to the second

equation is completely dependent on the first one. When the values of µ11, µ12, µ13 are

distinct, the character χλ1,λ2 can be explicitly written as the decomposed form

χλ1,λ2

(
Y(m1,m2)

)
=

∑
0≤j1≤m1,0≤j2≤m2

am,j1,j2λ
j1
1 λ

j2
2

= C123µ
m1
11 µ

m2
12 + C132µ

m1
11 µ

m2
13

+ C213µ
m1
12 µ

m2
11 + C231µ

m1
12 µ

m2
13

+ C312µ
m1
13 µ

m2
11 + C321µ

m1
13 µ

m2
12 ,

where Cijk are the chamber coefficients for the six Weyl chambers of the hexagonal lattice

on the plane.

As we require the modulus of all solutions to be bounded by 1, the modulus all six

values will also have a lower bound of 1
p2

. Therefore the character χλ1,λ2 is parametrized

by an unordered triple (µ11, µ12, µ13) with fixed product 1
p3

, which are three points on an

annulus with interior radius 1
p2

and exterior radius 1 on the complex plane.

The above computation shows that given a bounded character χλ1,λ2 , we can find out

the bounded growth rate which is a triple (µ11, µ12, µ13). And the elementary symmetric

polynomials of the triple are equal to the values determined by λ1 and λ2.
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Conjecture 5.15. Conversely, if we have an unordered triple (µ11, µ12, µ13) with fixed

product 1
p3

and every µ1j satisfies 1
p2
≤ |µ1j | ≤ 1, we can find a bounded character χλ1,λ2

with λ1 = σ1(µ11,µ12,µ13)

σ1

(
1, 1
p
, 1
p2

) and λ2 = σ2(µ11,µ12,µ13)

σ2

(
1, 1
p
, 1
p2

) . This construction gives χλ1,λ2 (Y0) = 1,

χλ1,λ2
(
Ye1
)

= λ1 and χλ1,λ2
(
Ye2
)

= λ2.

We assume that |µ11| ≥ |µ12| ≥ |µ13|. Let MA3,p be the space of (µ11, µ12, µ13) that

parametrize the characters. Then we have

MA3,p =

{
(µ11, µ12, µ13)

∣∣∣∣1 ≥ |µ11| ≥ |µ12| ≥ |µ13| ≥
1

p2
, µ11µ12µ13 =

1

p3

}
. (5.3)

Remark 5.16. We observe that the triple (µ11, µ12, µ13) with a fixed product for a charac-

ter of A3,p is only determined by two values on an annulus on the complex plane. Similar

to the definition of the boundary of a symmetrized bi-disc [3], we clarify different types of

boundary points of MA3,p in Definition 5.17.

Definition 5.17. We say that the topological boundary MA3,p is obtained when either

|µ11| = 1 or |µ13| = 1
p2

is satisfied, and the distinguished boundary of MA3,p is achieved

when both |µ11| = 1 and |µ13| = 1
p2

are satisfied.

We finish this section with the following conjectures which can probably be extended

from Lemma 4.16 and Proposition 4.20. These two statements can probably be generalized

to the cases for n ≥ 3.

Conjecture 5.18. If (µ11, µ12, µ13) does not belong to the distinguished boundary, then

there is a non-trivial point derivation on A3,p.

Conjecture 5.19. There exists a bounded approximate identity for every character χλ1,λ2
where the corresponding triple (µ11, µ12, µ13) for (λ1, λ2) is on the distinguished boundary

of MA3,p.

5.5 The weight condition on Ã lattices

In this section, we aim to show that the Hecke algebra An,p is isomorphic to another

commutative Banach algebra An,ωR = `1(Zn−1
+ , ωR). The algebra An,ωR consist of all

weighted bounded functions on the Ãn−1 lattice which are invariant under Sn action on

the Weyl chambers. The weight condition ωR of the lattice is parametrized by the prime

number p in the Hecke algebra An,p.

Consider the Ãn−1 lattice Λn−1 where n ≥ 2. Recall the equivalence classes of a-

vectors in Zn/(1, 1, . . . , 1) with the canonical basis {ei}, and the m-vectors with basis

{ej}n−1
j=1 of Zn−1. Every vertex on Λn−1 can be uniquely expressed as a representative of

103



Chapter 5. Algebras of automorphism groups of buildings and the ωR-norm

an equivalence class of the a-vectors or an m-vector. Note that the entries of the a-vectors

do not have to be of descending order and the entries of the m-vectors do not have to be

positive for the vertices on all Weyl chambers of Λn−1.

To each a-vector a = (a1, a2, . . . , an) ∈ Zn we assign a monomial (z)a = za11 za22 · · · zann ,

with the condition
∏n
i=1 zi = 1 imposed to satisfy the quotient relation. The algebra of

summable functions on the lattice `1(Λn−1)

f̌ : Λn−1 −→ C

has the set of characteristic functions {χ̃a}a∈Λn−1 as basis. The multiplication between

two characteristic functions on this lattice is clearly commutative. The multiplication

is explicitly given by the vector addition, generated by the multiplications of monomials

which are defined above. Therefore the algebra `1(Λn−1) is isomorphic to the set of infinite

Laurent polynomials where the `1 norm is bounded.

The lattice Λn−1 consist of n! Weyl chambers, which are given by the elements in the

symmetry group π ∈ Sn to indicate the descending order aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(n). Fix

a value R > 1. We define the weight condition on the lattice to be

R (a) =
∥∥(z)a

∥∥
Λn−1

= R
∑n
j=1(j−n+1

2
)aj ,

where a1 ≥ a2 ≥ . . . ≥ an.

We define an algebra of bounded functions on the weighted lattice Λn−1 to be

`1(Λn−1, ωR) =


∑

a∈Λn−1

f̌(a)
n∏
i=1

zaii


∣∣∣∣∣∣∣

n∏
i=1

zi = 1,
∥∥∥f̌∥∥∥

ωR
<∞

 , (5.4)

where ωR is the weight condition that defines the weight R (a) on the corresponding lattice

points and the weighted one norm of f̌ is bounded. The weight condition ωR is defined to

be invariant on the vertices which are invariant under the Sn action on the Λn−1 lattice.

The algebra of the functions on the lattice has an Sn-invariant subalgebra generated

by Zm. For m = (m1,m2, . . . ,mn−1) ∈ Zn−1
+ in terms of the m-vectors, the corresponding

truncated a-vector where an = 0 is given by ǎ = (a1, . . . , an−1) ∈ Zn−1
+ , where the en-

tries are in monotonic descending order. Therefore we have the basis of the Sn-invariant

subalgebra as

Zm = Zǎ =
1

n!

∑
π∈Sn

n−1∏
j=1

z
aj
π(j)

 , (5.5)

for all ǎ = (a1, . . . , an−1) ∈ Zn−1
+ where the entries are in monotonic descending order.

Note that the every basis element Zǎ is given by the symmetric polynomials of n variables
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with certain powers of every monomial.

Definition 5.20. The Sn-invariant subalgebra An,ωR = `1(Zn−1
+ , ωR) is given by

An,ωR = `1(Λn−1, ωR)Sn =


∑

m∈Zn−1
+

(
f(m)Zm

)∣∣∣∣∣∣∣ ‖f‖ωR <∞
 .

Note that the weight condition is multiplicative in a fixed Weyl chamber ΛSnn−1 as

R
(
ǎ+ b̌

)
=
∥∥∥Zǎ+b̌

∥∥∥
Λn−1

=
∥∥Zǎ∥∥Λn−1

∥∥∥Zb̌∥∥∥
Λn−1

.

Every lattice point has n− 1 types of adjacent points, and the types are given by the

corresponding typed vertices in the Hecke algebra. There are n − 1 generators for the

Sn-invariant subalgebra, namely {Zek}
n−1
k=1 . The multiplication with a generator in the

algebra An,ωR are given by the unbiased random walk on the lattice

ZmZek =
1(
n
k

) ∑
m′∈Zn−1,m′∼km

Zm′ , (5.6)

where ∼k denotes the relation of type-k adjacency on the vertices of Λn−1.

Recall the multiplication Yã ∗p Yej and Ym ∗p Yek in the algebra An,p in Definition 5.10.

By the conversion Equation (5.5), we seek a scaling Z ′a = CaZa such that the multiplication

between the scaled variables Z ′a have similar coefficients as the multiplications Ym ∗p Yek
in An,p. The only possible scaling that gives the same magnitude as the coefficients in the

multiplications between the generators of the p-adic algebras An,p will be

Ca = Amp
∑n
j=1(j−n+1

2
)aj ,

for a1 ≥ a2 ≥ · · · ≥ an−1 > an = 0 in the integer vector a, where Am are the constants in

the scaling functions and m is the number of actual equalities in the array. We can check

that the centre of the lattice which corresponds to the constant vector in the quotient

always has weight 1 so that the scaling function is well defined on Zn and Zn/(1, 1, . . . , 1).

Based on the isomorphism between the Hecke algebras A2,p and A2,ωR , we aim to

reach the statement of a conjecture of the existence of an isomorphism between An,p and

An,ωR . Both algebras An,p and An,ωR consist of bounded functions on a Weyl chamber

of the Ãn−1 lattice ΛSnn−1. Theorem 5.11 showed that An,p with `1 norm is isomorphic

to the Hecke algebra of the Gelfand pair (PGLn(Qp), PGLn(Zp)) with L1 norm for all

prime numbers p. The prime number p parametrizes the condition of boundedness and

the character space. The characters of An,p are parametrized by n points on an annulus

with a fixed product.
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When p = 1, the `1 norm for the algebra An,1 is unweighted and An,1 is isomorphic

to the bounded functions on a Weyl chamber of the Ãn−1 lattice ΛSnn−1. The characters of

this algebra are parametrized by n points on a circle with the fixed product to be 1, which

is not homeomorphic to the annulus.

The following statement is generalized from Theorem 4.25 but requires further explicit

computation to complete the proof.

Conjecture 5.21. There exists an isomorphism between the Hecke algebra An,p and

An,ωR .

The aim is to find a bounded linear map θp,R from An,p to An,ωR which is an homo-

morphism and to find the inverse map θR,p. The steps follow from the proof of Theorem

4.25.

We define the elements Y ′m ∈ An,p for all m ∈ Zn−1
+ where the 1-norms are uniformly

bounded. We will construct these elements from the scaled generators of this algebra.

Both Banach algebras An,p and An,ωR have n−1 generators, namely
{
Yek
}n−1

k=1
for An,p

and
{
Zek

}n−1

k=1
for An,ωR . We keep the identity term Y ′0 = Y0 and scale the generators of

An,p to

Y ′ek =
σj

(
1, 1

p ,
1
p2
, . . . , 1

pn−1

)
(
n
k

) p
n−1
2
kYek , for all k = 1, . . . , n− 1.

In the algebra An,ωR , recall that every basis element Zm ∈ An,ωR can be constructed

by induction Zm+ek =
(
n
k

)
ZmZek− lower terms, which can be easily obtained from the

type-k adjacency relation ZmZek = 1

(nk)

∑
m′∼km Zm′ . Thus every Zm ∈ An,ωR can be

written as a linear combinations of powers of the generators uniquely as

Zm =
∑

l=(l1,...,ln−1)∈Zn−1
+

a′m,l

n−1∏
k=1

Z lkek

 . (5.7)

Similarly, we define the type-k adjacency relations between elements in the algebra

An,p as

Y ′mY
′
ek

=
1(
n
k

) ∑
m′∈Zn−1,m′∼km

Y ′m′ , for all k = 1, . . . , n− 1. (5.8)

These adjacency relations allow us to express the terms Y ′m ∈ An,p explicitly by induction

for all m ∈ Zn−1
+ . We have all Y ′m ∈ An,p in terms of the linear combinations of powers of

the scaled generators Y ′ek . By expanding the powers of the generators, we will have Y ′m in
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terms of a unique linear combination of the natural basis elements Yj ∈ An,p as

Y ′m =
∑

l=(l1,...,ln−1)∈Zn−1
+

a′m,l

n−1∏
k=1

Y ′lkek


=

∑
j=(j1,...,jn−1)∈Zn−1

+

(
βm,jYj

)
.

We need to show that the 1-norm of Y ′m,
∥∥Y ′m∥∥1

=
∑

j∈Zn−1
+

∣∣βm,j

∣∣ is uniformly bounded

by some conditions on powers of p.

There exist linear relations between the values of βm,j. Such relations are obtained

from the adjacency equations of Y ′mY
′
ek

= 1

(nk)

∑
m′∼km Y ′m′ , where the coefficients for the

expansions into the linear combinations of Yj need to be equal for all j ∈ Zn−1
+ . Note that

the value of βm,j is always zero if j is not of the same type with m.

Define the Λn,p-weight function on Zn−1
+ by

‖m‖Λn,p = p
∑n−1
j=1

(∑n−1
k=j (j−

n+1
2 )mk

)
=‖Zm‖ωR

when R = p
n−1
2 .

By solving the linear equations of the adjacency relations, we can obtain all values of

βm,j explicitly as

βm,j = α̌m,j

‖m‖Λn,p
‖m− j‖2Λn,p

= α̌m,j

‖Zm‖ωR∥∥Zm−j
∥∥2

ωR

,

where α̌m,j is a constant which is determined only by whether m is on any boundary of

the Weyl chamber and whether there are any zero entries in the vector m− j. Note that

all α̌m,j are bounded by
β(1,1,...,1),(1,1,...,1)

‖(1,1,...,1)‖
Λn,p

. We note that j ∈ ∆m if βm,j 6= 0.
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For m =
∑n−1

k=1 mkek, the 1-norm of Y ′m can be computed by

∥∥Y ′m∥∥1
=

∑
j∈Zn−1

+

∣∣βm,j

∣∣
≤
β(1,1,...,1),(1,1,...,1)‖m‖Λn,p∥∥(1, 1, . . . , 1)

∥∥
Λn,p

∑
j∈∆m

1

‖m− j‖2Λn,p

≤
β(1,1,...,1),(1,1,...,1)‖m‖Λn,p∥∥(1, 1, . . . , 1)

∥∥
Λn,p

n−1∏
k=1

 mk∑
ik=0

1

‖ikek‖2Λn,p


≤
β(1,1,...,1),(1,1,...,1)‖m‖Λn,p∥∥(1, 1, . . . , 1)

∥∥
Λn,p

n−1∏
k=1

 ∞∑
ik=0

1

‖ikek‖2Λn,p

 ,

which is the product of n − 1 sums of bounded geometric sequences. Thus, when R =

p(n−1)/2, there is a constant Kn,p such that
∥∥Y ′m∥∥ ≤ Kn,p‖m‖Λn,p = Kn,p‖Zm‖ωR for all

m ∈ Zn−1
+ .

Since the construction of Y ′m is unique for all m ∈ Zn−1
+ , we can alternatively obtain

another basis of the algebra An,p, given by the set of elements

{
Y ′m

‖m‖Λn,p

}
where m ∈ Zn−1

+ .

Define a linear map θp,R : An,p −→ An,ωR by

θp,R
(
Y ′m
)

= Zm, for all m ∈ Zn−1
+ .

Since both Y ′m and Zm are constructed by induction from the generators, they satisfy the

same adjacency relations which are given by the type-k adjacency equation in the two

algebras. Thus we can check that the linear map θp,R is a homomorphism. Conjecture

5.21 would now follow if we knew that θp,R is surjective. This would require an upper

bound on ‖Zm‖ωR by some constant multiple of
∥∥Y ′m∥∥.
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Algebras with weighted norms and

cohomology

In this chapter, we study the algebras of summable functions on weighted type Ã and

type B̃ lattices where the characteristic functions on the lattice points are generated by

the corresponding Laurent polynomials. The weight conditions on the lattices are related

to the size of different orbits on the p-adic buildings in Chapter 5. We also study the

invariant subalgebras under the corresponding Weyl group actions on the components of

the coordinates on the lattices. We clarify the character space for both cases, with or

without the invariance conditions, and study the existence of point derivations.

For the higher cohomology groups of the algebras of functions on weighted lattices,

we start with the algebras with single generator; e.g., summable functions on Z+ and Z,

with or without invariance conditions, with weighted or unweighted `1 norm. We look

at some classical methods to explicitly find the second cohomology groups and derive a

inductive process on an example with the invariance condition under the weighted `1 norm.

Finally we generalize the method for higher simplicial and cyclic cohomology groups on

the invariant subalgebras of functions on the weighted lattices with multi-generators.

6.1 Algebras of functions on weighted type Ã lattices

In this section, we consider `1 (Λn−1, ωR), the algebra of summable functions on the

weighted Ãn−1 lattice Λn−1 and the Sn-invariant subalgebra An,ωR = `1 (Λn−1, ωR)Sn .

We will discuss the space of characters of the two algebras and the existence of point

derivations. In addition, we find the space of simplicial derivations for A2,ωR , which is

isomorphic to the algebra Aq for the infinite homogeneous tree Tq in Chapter 4.

We recall the definitions of the algebra `1 (Λn−1, ωR) and the invariant subalgebra
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An,ωR from Section 5.5:

`1(Λn−1, ωR) =


∑

a∈Λn−1

f̌(a)

n∏
i=1

zaii


∣∣∣∣∣∣∣

n∏
i=1

zi = 1,
∥∥∥f̌∥∥∥

ωR
<∞

 ,

An,ωR = `1(Λn−1, ωR)Sn =


∑

m∈Zn−1
+

(
f(m)Zm

)∣∣∣∣∣∣∣ ‖f‖ωR <∞
 .

Given n variables with fixed product 1, the basis of the algebra without the invariance con-

dition `1(Λn−1, ωR), is given by the Laurent monomials of the n variables, za =
∏n
j=1 z

aj
j

with
∏n
j=1 zj = 1 and a ∈ Λn−1. The invariant subalgebraAn,ωR is isomorphic to the Hecke

algebra An,p which corresponds to the building from the p-adic general linear groups, and

thus is generated by the (n−1) elementary symmetric polynomials of the n variables. We

obtain the space of characters of An,ωR as

MAn,ωR =

{µj}nj=1

∣∣∣∣∣∣
n∏
j=1

µj = 1, R−1 ≤
∣∣µj∣∣ ≤ R for j = 1, . . . , n


The characters on the generators Zei are given by elementary symmetric polynomials of

the set of n numbers
{
µj
}n
j=1

as

χλ
(
Zei

)
= λi = σi (µ1, . . . , µn) for i = 1, . . . n− 1.

The characters of the algebra `1(Λn−1, ωR) are parametrized by n ordered points on

an annulus with fixed product 1. The space of characters of `1(Λn−1, ωR) is given by

M`1(Λn−1,ωR) =

(µ1, . . . , µn)

∣∣∣∣∣∣
n∏
j=1

µj = 1, R−1 ≤
∣∣µj∣∣ ≤ R for j = 1, . . . , n

 .

The character χ̃µ on each variable zj is given by χ̃µ
(
zj
)

= µj .

It can be shown that a character χµ is determined by the sequence
{
χµ
(
zj
)}n

j=1
with a

condition imposed for the product of the n values to be fixed. The set of analytic functions

which determine a character indicate that every character is mapped to a set of n points

on an annulus on the complex plane with the fixed product.

The interior of the character space of the algebra `1 (Λn−1, ωR) is obtained when all n

points are not on the internal or external circle of the annulus. The topological boundary

is obtained when at least one point is on the internal or external circle whereas the dis-

tinguished boundary is achieved when there are precisely bn2 c points on the internal circle

and bn2 c points on the external circle of the annulus.
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Lemma 6.1. Let χµ be a character on `1(Λn−1, ωR) where χ
(
zj
)

= µj for all j =

1, . . . , n. If χµ is not on the distinguished boundary of M`1(Λn−1,ωR), the set of point

derivations H1
(
`1 (Λn−1, ωR) ,Cµ

)
is in an (n − 1)-dimensional subspace of the linear

span of 〈Dµ1 , Dµ2 , . . . , Dµn〉 with
∑n

j=1 µ
−1
j Dµj = 0 and Dµj = D(zj) for j = 1, . . . , n.

Proof. The functions in the algebra `1 (Λn−1, ωR) are given by the linear sums of monomials

za where a is in the equivalence class of Zn/(1, . . . , 1). Note that the product of the n

variables is 1; i.e.,
∏n
j=1 zj = 1. A point bi-module Cµ of the commutative algebra

`1 (Λn−1, ωR) is evaluated by

zaD
(
zb
)
zc = χµ (za)χµ (zc)D

(
zb
)
.

A point derivation is a bounded linear function D : `1 (Λn−1, ωR) −→ Cµ satisfying

D
(
zazb

)
= zaD

(
zb
)

+D (za) zb with D(1) = 0. We expand D(1) as

D (z1z2 . . . zn) = z2z3 . . . zn.D (z1) + z1z3 . . . zn.D (z2) + . . .+ z1 . . . zn−1D (zn)
∣∣
Cµ

=
n∑
j=1

z−1
j D

(
zj
) ∣∣

Cµ

=

n∑
j=1

µ−1
j D

(
zj
)
,

which shows that the n values of
(
D (z1) , . . . , D (zn)

)
are actually in an (n−1)-dimensional

subspace of Cn.

We can always add any integer multiples of (1, . . . , 1) to a vector a such that the

monomial Za have positive powers on all n variables. Assume that all entries of a are

positive, then the linear function D can be expanded as

D
(
Za
)

= χµ
(
Za
) n∑
j=1

ajµ
−1
j D

(
zj
)
, (6.1)

which shows that the point derivations is determined by the n values of Dµj .

We will consider the special case where the set of n points of the annulus for a character

χµ is on the topological boundary; i.e., |µj | = R or R−1. When |µj | = R, the function

D
(
z
aj
j

)
= ajµ

aj−1
j Dµj is not uniformly bounded by

∥∥∥zajj ∥∥∥
ωR

if Dµj is not zero. Since

D
(
z
aj
j

)
= ajµ

aj−1
j Dµj , when |µj | = R we have

∣∣∣∣D (zajj )∣∣∣∣∥∥∥zajj ∥∥∥
ωR

=
|aj |

∣∣∣Dµj

∣∣∣
R

.
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Therefore
∣∣∣Dµj

∣∣∣ ≤ R|aj |−1‖D‖, for arbitrarily large aj , hence
∣∣∣Dµj

∣∣∣ = 0. When |µj | =

R−1, ∣∣∣∣D (z−ajj

)∣∣∣∣∥∥∥z−ajj

∥∥∥
ωR

=
|aj |

∣∣∣Dµj

∣∣∣
R

,

and so by similar reasoning
∣∣∣Dµj

∣∣∣ = 0.

Therefore the value of Dµj must be zero if µj is on the internal or external circle of

the annulus for the character χµ. When there are maximum number of points on the

boundary of the annulus, i.e. when we have a character on the distinguished boundary,

all values Dµj must be zero.

For n = 2, we consider the invariant subalgebra A2,ωR . By Theorem 4.25, when R =

q1/2, the algebra A2,ωR is isomorphic to the Hecke algebra Aq of the infinite homogeneous

tree Tq. The multiplications and change of variables are easier to compute if we consider

A2,ωR where the multiplications with the generator corresponds to a balanced random

walk on the Z+ lattice. Explicitly, we have

A2,ωR = `1 (Λn−1, ωR)S2 =

f =

∞∑
j=0

cjyj

∣∣∣∣∣∣‖f‖ωR =

∞∑
j=1

|cj |Rj <∞

 , (6.2)

where yj = 1
2

(
zj + z−j

)
with yj = y−j and yjyk = 1

2

(
yj+k + yj−k

)
.

Definition 6.2. The simplicial derivations on an algebra A is the set of linear functions

D : A −→ A∗ such that

D (f1f2) (f3) = D (f1) (f2f3) +D (f2) (f3f1) , for all f1, f2, f3 ∈ A.

Since Aq is singly generated by Y1, we can derive that D(1)(Ym) = 0 for all m ∈ Z+

and

D (Y m
1 ) (Y n

1 ) =
m

m+ n
D
(
Y m+n

1

)
(Y0) ,

which shows that D is determined by the sequence
{
D
(
Y m

1

)
(1)
}∞
m=1

. It is not straight-

forward to compute the simplicial derivations of Aq in terms of its natural basis. Since

this commutative algebra has one single generator Y1, it is possible to convert all Ym into

a linear sum of powers of Y1. The values of am,j from Lemma 4.7 and cn,k from Lemma

4.9 will be used in the numerical computation.

Let HH1(Aq) be the set of bounded simplicial derivations of Aq. The map from

HH1(Aq) to A∗q gives a correspondence from the simplicial derivation D : Aq −→ A∗q to a

sequence τ . Set τn = D(Yn)(1) We aim to prove that there exists a simplicial derivation
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D : Aq −→ A∗q if and only if the sequence τ is bounded. Given a bounded sequence on Z+

which determines the values of {D(Yn)(1)}∞n=0, we seek the general form of D(Ym)(Yn) by

converting the terms between the two different methods of expansions as

D(Ym)(Yn) = D

 m∑
j=0

am,jY
j

1

 n∑
k=0

an,kY
k

1


=

m∑
j=0

n∑
k=0

(
am,jan,k

j

j + k
D(Y j+k

1 ) (Y0)

)

=

m∑
j=0

n∑
k=0

b j+k
2
c∑

l=0

(
cj+k,lam,jan,k

j

j + k
D(Yj+k−2l) (Y0)

)

=
m+n∑
i=0

Cm,n,iD(Yi)(Y0)

=
m+n∑
i=0

Cm,n,iτi,

where the numerical computation suggests that
∑m+n

i=1 |Cm,n,i| < 1.

Lemma 6.3. The simplicial derivation D on the algebra A2,ωR is determined by

D (ya) (yb) =
1

2

(
a

a+ b
D (ya+b) (1) +

a

a− b
D (ya−b) (1)

)
for a 6= ±b,

D (yn) (yn) =
1

4
D (y2n) (1) .

Moreover, if we define τn = D(yn)(1), then ‖D‖ ≤‖τ‖∞.

Proof. After defining the simplicial derivation in Definition 6.2, we showed that every

simplicial derivation D(ya)(yb) can be written as a linear sum of
∑a+b

l=0 Ca,b,lD(yl)(1).

However we did not compute the values of the coefficients Ca,b,l for the algebra Aq of the

infinite homogeneous tree. The boundedness also needs to be clarified in both Aq the

isomorphic algebra A2,ωR .

Let τ be a sequence such that τn = D(yn)(1) for all n ∈ Z+. We need to show that for

all pairs (a, b) ∈ Z2
+, the derivation D (ya) (yb) is bounded by Ra+b‖τ‖.

For b = 0, we have D (ya) (y0) = D (ya) (y1). For a = b = n, it is clear that

D (yn) (yn) +D (yn) (yn) = D (ynyn) (1) =
1

2
D (y2n) (1) ,

which implies that D (yn) (yn) = 1
4D (y2n) (1).

From D (yayb) (1) = D (ya) (yb)+D (yb) (ya), we will know the value of D (yb) (ya) once

we know the value of D (ya) (yb). Therefore we only need to find values of D (ya) (yb) for

113



Chapter 6. Algebras with weighted norms and cohomology

all positive integer pairs where b > a ≥ 1.

We then consider the derivation D (ym) (y1). For m ≥ 2, using the coefficients of am,j

from Lemma 4.7 with q = 1, the expansion gives

D (ym) (y1)

= D

 m∑
j=0

am,jy
j
1

 (y1)

= D

 m∑
j=0

j

j + 1
am,jy

j+1
1

 (1)

= D

 m∑
j=0

1

2

(
m

m+ 1
am+1,j+1 +

m

m− 1
am−1,j+1

)
yj+1

1

 (1)

=
1

2

(
m

m+ 1
D (ym+1) (1) +

m

m− 1
D (ym−1) (1)

)
.

For N = a+ b = 3, the only case is a = 2 and b = 1, which is included in the previous

calculation with m = 2.

We assume that D (ya) (yb) = 1
2

(
a
a+bD (ya+b) (1) + a

a−bD (ya−b) (1)
)

is true for all

b > a ≥ 1 and a+ b ≤ N . We have shown that it is true for all a ≥ 2 with b = 1 and we

can obtain the values of all D (y1) (ya) from the values of D (ya) (y1). For a+ b = N + 1,

we assume that it is true for all 1 ≤ b ≤ n. When m−n 6= 2, for a = m− 1 and b = n+ 1,
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we have

D (ym−1) (yn+1)

= D (ym−1) (2yny1 − yn−1)

= D (ym−1) (2yny1)−D (ym−1) (yn−1)

= D (2ynym−1) (y1)−D (yn) (2y1ym−1)−D (ym−1) (yn−1)

= D (ym+n−1) (y1) +D (ym−n−1) (y1)−D (yn) (ym)−D (yn) (ym−2)−D (ym−1) (yn−1)

=
1

2

(
m+ n− 1

m+ n
D (ym+n−2) (1) +

m+ n− 1

m+ n− 2
D (ym+n−2) (1)

)
+

1

2

(
m− n− 1

m− n
D (ym−n) (1) +

m− n− 1

m− n− 2
D (ym−n−2) (1)

)
−1

2

(
n

m+ n
D (ym+n) (1) +

n

n−m
D (ym−n) (1)

)
−1

2

(
n

m+ n
D (ym+n) (1) +

n

n−m
D (ym−n) (1)

)
−1

2

(
n

m+ n− 2
D (ym+n−2) (1) +

n

n−m+ 2
D (yn−m+2) (1)

)
−1

2

(
m− 1

m+ n− 2
D (ym+n−2) (1) +

m− 1

m− n
D (ym−n) (1)

)
=

1

2

(
m− 1

m+ n
D (ym+n) (1) +

m− 1

m− n− 2
D (ym−n−2) (1)

)
.

The first term m−1
m+nD (ym+n) (1) is clearly bounded by ‖τ‖Rm+n. The maximum value of

m−1
m−n−2‖ym−n−2‖ is achieved when m−n− 2 = logR. Hence the norm of the second term

is uniformly bounded by (m− 1)e‖τ‖. Therefore we have∣∣∣∣∣ m−1
m−n−2D (ym−n−2) (1)

‖ym+1‖‖yn−1‖

∣∣∣∣∣ ≤ e‖τ‖mR−m ≤ eR
− 1

logR

logR
‖τ‖ = C‖τ‖ ,

which indicates that D (ym−1) (yn+1) is bounded by 1
2(1 + C)‖τ‖Rm+n.

Hence for all positive integer pairs (a, b), the simplicial derivation is bounded if and

only if the sequence τ is bounded.

Remark 6.4. The isomorphism between Aq and A2,ωR shows that there indeed exists a

simplicial derivation for Aq, as well as the Hecke algebra A2,p with `1 norm of the Gelfand

pair
(
PGL2

(
Qp

)
, PGL2

(
Zp
))

.
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6.2 Algebras of functions on weighted type B̃ lattices

In this section, we consider `1 (Zn, ωR), the algebra of functions on the Zn integer lattice

with respect to the ωR-weighted `1 norm. We assume that the characteristic functions

multiply as the Laurent polynomials of n independent variables. In particular, we compute

the invariant subalgebra Bn,ωR = `1 (Zn, ωR)Bn where the functions on the lattice are

invariant under the action of the Coxeter group Bn which acts on the n-hypercube. We

start from n = 1 and n = 2 and then generalize to higher dimensions by finding the space

of characters and study the existence of the point derivations of the two algebras.

Given a point a = (a1, . . . , an) ∈ Zn on the integer grid, we express the characteristic

function on at the point a as the Laurent monomial za =
∏n
j=1 z

aj
j .

Definition 6.5. The ωR norm of a characteristic function za on the Zn integer lattice is

given by a weighted `1 norm as

‖za‖ωR = R
∑n
i=1|ai|.

The Weyl group Bn acts on the Zn integer lattice by alternating the signs and permut-

ing the n entries of the coordinates. We have |Bn| = 2nn!. The ωR norm of a characteristic

function ‖za‖ωR is fixed under the Bn action on the coordinates.

Definition 6.6. The algebra of summable functions on the weighted Zn integer lattice is

given by

B̃n,ωR = `1 (Zn, ωR) =

f̃ =
∑
a∈Zn

caz
a

∣∣∣∣∣∣
∥∥∥f̃∥∥∥

ωR
<∞

 .

For all i = 1, . . . , n, a character χµ of the algebra `1 (Zn, ωR) is given by

χµ (zi) = µi,

χµ

(
z−1
i

)
= µ−1

i ,

χµ (za) =
n∏
i=1

µaii .

For the characters to be bounded, we require R−1 ≤ |µi| ≤ R for all i = 1, . . . , n. Thus

the character space is parametrized by n ordered points on an annulus where the radii are

R−1 and R for the internal and external circle on the complex plane as

M`1(Zn,ωR) =
{

(µ1, . . . , µn)
∣∣∣R−1 ≤ |µi| ≤ R for all j = 1, . . . , n

}
.

We consider the Bn-invariant subalebgra Bn,ωR = `1 (Zn, ωR)Bn . The values of the

functions on the vertices of Zn are invariant if and only if the coordinates of these points
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can be obtained from each other by alternating the signs and permuting the entries.

There are 2nn! Weyl chambers on the Zn integer lattice. We pick a specific chamber

which consists of the vertices a ∈ Zn such that a1 ≥ a2 ≥ . . . ≥ an ≥ 0. Every vertex in

this chamber corresponds to a vector in Zn+ where the entries are in monotonic descending

order. We use another vector m ∈ Zn+ which corresponds to a unique element in this

chamber, given by m = (a1 − a2, a2 − a3, . . . , an−1 − an, an). The basis of Bn,ωR is given

by the set of Bn-symmetric Laurent polynomials, denoted by Zm or Za as

Zm = Za =
1

|Bn|
∑
g∈Bn

za
g
.

with
∥∥Za∥∥ =

∥∥∥zag∥∥∥ for all g ∈ Bn. In particular, we have B1,ωR = A2,ωR .

Explicitly, the algebra Bn,ωR can be considered as summable functions on the lattice

points of a Weyl chamber of the Zn lattice. We denote the characteristic functions on

the lattice points of the specific Weyl chamber by the Bn-symmetric Laurent polynomials

from the algebra `1 (Zn, ωR). We have

Bn,ωR =

f =
∑

m∈Zn+

cmZm

∣∣∣∣∣∣∣ ‖f‖ωR <∞
 .

Proposition 6.7. Every Bn-symmetric Laurent polynomial Zm ∈ Bn,ωR is generated by

the elementary symmetric polynomials of the set of polynomials{(
z1 + z−1

1

)
, . . . ,

(
zn + z−1

n

)}
,

namely

σ±j = σj

((
z1 + z−1

1

)
,
(
z2 + z−1

2

)
, . . . ,

(
zn + z−1

n

))
, 1 ≤ j ≤ n;

i.e., every symmetric polynomial Zm can be uniquely written as a linear sum of powers of

the elementary symmetric polynomials as

Zm = Pm
(
σ±1 , . . . , σ

±
n

)
=
∑
j∈Zn+

am,j

n∏
k=1

(
σ±k

)jk .

Proof. The elementary symmetric polynomials σ±j are in fact the element Zej ∈ Bn,ωR ,

where {ej}nj=1 are the canonical basis of the m vectors in Zn+. Let Za = Zm where m =

(a1 − a2, a2 − a3, . . . , an−1 − an, an). Given any a ∈ Zn+ and the corresponding m ∈ Zn+,

we expand the product
∏n
k=1

(
σ±k

)mk
and observe that the term with the highest power
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is indeed Zm and the coefficient of this leading term is fixed to be 1. For a = (a1, . . . , an)

and b = (b1, . . . , bn), the expansion is given by

n∏
k=1

(
σ±k

)mk
= Zm + lower terms

= Za +
∑
b∈Zn+

γa,bZb,

where the coefficient γa,b is nonzero only when bi ≤ ai for all entries of a and b. This

step can be repeated until there are no other terms apart from the elementary symmetric

polynomials. Then we can recover the symmetric polynomial Zm in terms of a linear sum

of powers of the elementary symmetric polynomials. The coefficients in this construction

are fixed as we have no choice for the leading term thus have no alternative route for the

repeated steps of the induction.

We apply some concepts of the symmetrized bi-disc from [2] The symmetrized bi-disc

is a set of points in C2, given by

Γ =
{

(z + w, zw)
∣∣ |z| ≤ 1, |w| ≤ 1

}
⊂ C2.

The topological boundary of Γ is achieved when either z or w has modulus 1. The distin-

guished boundary of Γ is achieved when both z and w have modulus 1. The royal variety

of Γ is achieved when z = w.

Lemma 6.8. The character space of B2,ωR , MB2,ωR is parametrized by the symmetrized

bi-disc.

Proof. The two elementary symmetric polynomials that generate this subalgebra are

σ±1 = Z1,0 =
(
z1 + z−1

1

)
+
(
z2 + z−1

2

)
,

σ±2 = Z1,1 = z1z2 + z−1
1 z2 + z1z

−1
2 + z−1

1 z−1
2 =

(
z1 + z−1

1

)(
z2 + z−1

2

)
.

Every character χλ is determined by λ1 = χλ

(
σ±1

)
and λ2 = χλ

(
σ±2

)
, which can be

considered as the sum and the product of the pair

{(
z1 + z−1

1

)
,
(
z2 + z−1

2

)}
.

As described in the examples of Aq and A2,ωR , the character space of Aq and A2,ωR ,

are both parametrized by an ellipse on the complex plane, which is homeomorphic to a

unit disc. The boundary of the ellipse is achieved when |z| or |z−1| is on the boundary of

the annulus.

Therefore the character space of B2,ωR is parametrized by the symmetrized bi-ellipse.

Both ellipses are homeomorphic to the unit disc which implies that this character space is
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also parametrized by the symmetrized bi-disc.

Remark 6.9. In general, it can be proved that the character space of Bn,ωR , is parametrized

by the symmetrized n-disc

Γn =
{(
σ1 (z1, . . . , zn) , . . . , σn (z1, . . . , zn)

) ∣∣∣ |zj | ≤ 1 for all j = 1, . . . , n
}
⊂ Cn,

which is homeomorphic to a set of n unordered ellipses thus corresponds to the set of n

unordered points on an annulus of the complex plane.

Let χλ be a character on Bn,ωR , the character on the elementary symmetric Laurent

polynomials are evaluated as

χλ

(
σ±j

)
= λj = σj

((
µ1 + µ−1

1

)
, . . . ,

(
µn + µ−1

n

))
Similar to the point derivations of the algebra of functions on the type Ã lattice, a

point derivation D ∈ H1
(
`1 (Zn, ωR) ,Cλ

)
for a character χλ, is determined by the n values(

D(z1), . . . , D(zn)
)
. If the modulus of µj is equal to R or R−1, then we have D(zj) = 0.

We will now calculate the point derivations on the Bn-invariant subalgebra Bn,ωR by

computing the derivative of the polynomial of the generators by the chain rule.

Lemma 6.10. Given a character χλ not on the distinguished boundary of the char-

acter space, the set of point derivations H1
(
Bn,ωR ,Cλ

)
is given by the linear span of

〈Dλ1 , Dλ2 , . . . , Dλn〉 with D
(
Zej

)
= Dλj for all j = 1, . . . , n.

Proof. For a character χλ in the interior of the character space, i.e. R > |µi| > R−1 for

all j = 1, 2, . . . , n, we consider the unique expressions of the character as a polynomial of

λ1, λ2, . . . , λn, χλ(Zm) = Pm (λ1, λ2, . . . , λn).

We define a point derivation Dλj : Bn,ωR −→ Cλ by

Dλj (Zm) :=
d

dyj

(
Pm (y1, y2, . . . , yn)

) ∣∣∣
y1=λ1,...,yn=λn

Dλj ,

for all j = 1, 2, . . . , n. This shows that every point derivation D is determined by the set

of values
{
Dλj

}n
j=1

. We need to find the condition for the boundedness for all characters

χλ in the character space.

We consider the symmetric polynomial which corresponds to Za as a homogeneous

polynomial with positive powers of 2n variables. namely fa

(
z1, . . . , zn, z

−1
1 , . . . , z−1

n

)
. For
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n = 2,

Za =fa

(
z1, z2, z

−1
1 , z−1

2

)
= za11 za22 +

(
z−1

1

)a1
za22 + za11

(
z−1

2

)a2
+
(
z−1

1

)a1 (
z−1

2

)a2
+ za21 za12 +

(
z−1

1

)a2
za12 + za21

(
z−1

2

)a1
+
(
z−1

1

)a2 (
z−1

2

)a1
We set yj = σj

(
(x1 + x−1) , . . . , (xn + x−n)

)
, the j-th elementary symmetric polynomial

of the n sums of pairs (x1 + x−1) , . . . , (xn + x−n). For a continuous function fa on the 2n

variables x1, . . . , xn, x−1, . . . , x−n, we have

fa
(
x±
)

= fa (x1, . . . , xn, x−1, . . . , x−n) = Pm (y1, y2, . . . , yn) .

The derivative can also be evaluated as

d

dyj

(
Pm (y1, y2, . . . , yn)

) ∣∣∣
y1=λ1,...,yn=λn

=
d

dyj
fa
(
x±
) ∣∣∣
x1=µ1,...,xn=µn,x−1=µ−1,...,x−n=µ−1

n

=
n∑
k=1

dxk
dyj

∂

∂xk
fa
(
x±
) ∣∣∣
x1=µ1,...,xn=µn,x−1=µ−1,...,x−n=µ−1

n

+
n∑
k=1

dx−k
dyj

∂

∂x−k
fa
(
x±
) ∣∣∣
x1=µ1,...,xn=µn,x−1=µ−1,...,x−n=µ−1

n

=
∑
g∈Bn

d
(
xg(1) . . . xg(j)

)
dyj

∂

∂
(
xg(1) . . . xg(j)

)fm (x±) ∣∣∣
x1=µ1,...,xn=µn,x−1=µ−1,...,x−n=µ−1

n

.

Note that none of the values of dxk
dyj

and
dx−k
dyj

depend on the choice of m or a. When

R−1 < |µk| < R for all k = 1, . . . , n, all partial derivatives ∂
∂xk

fa
(
x±
)

and ∂
∂x−k

fa
(
x±
)

are uniformly bounded by
∥∥Za∥∥ωR .

We consider the case for the character χλ on the topological boundary of the character

space. When the corresponding unordered set of points on the annulus, {µ1, . . . , µn} has

precisely k values with modulus equal to R or R−1, there exists an element g in the Weyl

group Bn such that the partial derivative ∂
∂(xg(1)...xg(j))

fm
(
x±
)

is unbounded if j ≤ k.

In this case we require Dλj to be zero for the point derivations to be bounded for all

1 ≤ j ≤ k.

Furthermore, when a character is on the distinguished boundary of the character space,

i.e. all n values of {µ1, . . . , µn} are equal to R or R−1, all Dλj need to be zero, i.e. there

does not exist any nontrivial point derivations.
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6.3 Higher cohomology of algebras with single generator

In this section, we consider the examples of higher cohomology groups of algebras of

functions on Z+ with weighted and unweighted `1 norm. We also consider the higher

cohomology groups of functions on Z, with or without the invariance condition of S2 for

the weighted case.

6.3.1 Second cohomology of algebras on Z and Z+

Definition 6.11. A bounded 2-linear map φ from A2 to the bimodule Y is a 2-cocycle if

for all a, b, c ∈ A, we have

δφ(a, b, c) = aφ(b, c)− φ(ab, c) + φ(a, bc)− φ(a, b)c = 0.

Definition 6.12. A bounded 2-linear map δψ from A to the bimodule Y is a 2-coboundary

if

δψ(a, b) = ψ(a)b− ψ(ab) + aψ(b)

for some bounded linear map ψ from A to Y .

We denote the linear space of the 2-cocycles by Z2(A, Y ) and the linear space of the

2-coboundaries by B2(A, Y ). The second cohomology group H2(A, Y ) is defined by the

quotient

H2(A, Y ) =
Z2(A, Y )

B2(A, Y )
.

The proofs for Lemma 6.13 and Lemma 6.14 are well known. We will apply the ideas

from the two lemmas to the algebras with the weighted `1 norm.

Lemma 6.13. H2
(
`1 (Z+) ,C0

)
= 0.

Proof. A bounded 2-linear map φ from `1 (Z+) to the point bimodule C0 is a 2-cocycle if

it satisfies

δφ (za1 , za2 , za3) = za1φ (za2 , za3)− φ
(
za1+a2 , za3

)
+ φ

(
za1 , za2+a3

)
− φ (za1 , za2) za3 = 0.

When n = a1 +a2 +a3 and a1, a3 6= 0, the 2-cocycle equation shows that φ
(
za1+a2 , za3

)
=

φ
(
za1 , za2+a3

)
= f (zn) for some bounded function f . When a1 6= 0 and a3 = 0, we have

δφ
(
za1 , za2 , z0

)
= −φ

(
za1+a2 , 1

)
= 0.

121



Chapter 6. Algebras with weighted norms and cohomology

Define ψ
(
zn+1

)
:= −φ (zn, z) for n ≥ 0 and ψ(1) := φ(1, 1). For a, b 6= 0,

δψ(za, zb) = ψ(za)zb − ψ(za+b) + zaψ(zb)

= −ψ(za+b) = φ(za+b−1, z).

We also have δψ(za, 1) = 0 when a ≥ 1, δψ(1, zb) = 0 when b ≥ 1 and δψ(1, 1) = ψ(1) =

φ(1, 1).

Let φ′ = φ− δψ. For a, b 6= 0, we have φ′(za, zb) = φ(za, zb)− δψ(za, zb) = f(za+b)−
f(za+b−1+1) = 0. With φ′(1, 1) = 0, φ′(za, 1) = φ′(1, zb) = 0, we obtain that the function

ψ cobounds φ.

Lemma 6.14. H2
(
`1 (Z+) ,C 1

2

)
= 0.

Proof. We consider the algebra of summable functions on Z+ with the unweighted `1 norm.

We write the characteristic functions as the monomials
{
zj
}∞
j=0

.

The character space of the algebra `1 (Z+) is given by a unit disc centered at the origin

on the complex plane. We consider the point module C 1
2
.

Set w = z − 1
2 and we have ‖w‖n =

(
3
2

)n
. The 2-cocycles equation can be written

in the form of powers of w. The set of powers of w span the set of powers of z and

wn =
(
z − 1

2

)n
=
∑n

j=0(−1)n−j
(
n
j

) (
1
2

)n−j
zj . We will define a 2-coboundary function ψ

that cobounds φ and then show that ψ is bounded.

Define ψ
(
wn+1

)
:= −φ (wn, w) for n ≥ 0 and ψ(1) := φ(1, 1). We apply the proof in

Lemma 6.13. For a, b 6= 0, we have

δψ
(
wa, wb

)
= ψ (wa)wb − ψ

(
wa+b

)
+ waψ

(
wb
)

= −ψ
(
wa+b

)
= φ

(
wa+b−1, w

)
.

We also have δψ(wa, 1) = 0 when a ≥ 1, δψ(1, wb) = 0 when b ≥ 1 and δψ(1, 1) = ψ(1) =

φ(1, 1).

Let φ′ = φ−δψ. We can show that φ′(wa, wb) = 0 for all a, b ∈ Z+ therefore φ′(za, zb) =

0 as the powers of z are spanned by the powers of w.

We will show that ψ is bounded by induction. First we verify that

ψ (z) = ψ

(
w +

1

2

)
= −φ (1, w) +

1

2
φ(1, 1) = −φ (1, z) + φ(1, 1),

which indicates
∣∣ψ (z)

∣∣ ≤ 2‖φ‖.
We assume that

∣∣ψ (zm)
∣∣ ≤ 2‖φ‖+ 2

∣∣φ(1, z)
∣∣ for all m ≤ n.

122



Chapter 6. Algebras with weighted norms and cohomology

Consider δψ (zn, z), as ψ and φ satisfy the inequality

∣∣φ(zn, z)
∣∣ =

∣∣δψ(zn, z)
∣∣ =

∣∣∣∣ 1

2n
ψ(z)− ψ(zn+1) + ψ(zn)

1

2

∣∣∣∣ ≤‖φ‖ ,
we have ∣∣∣ψ(zn+1)

∣∣∣ ≤‖φ‖+
1

2n
∣∣ψ(z)

∣∣+
1

2

∣∣ψ(zn)
∣∣

≤‖φ‖+
1

2n
∣∣ψ(z)

∣∣+
1

2
‖φ‖+

1

2n−1

∣∣ψ(z)
∣∣+
∣∣∣ψ(zn−1)

∣∣∣
. . .

≤ 2‖φ‖+ 2
∣∣ψ(z)

∣∣
≤ 2‖φ‖+ 2

∣∣φ(1, z)
∣∣ ,

which proves that
∣∣ψ(zn+1)

∣∣ is indeed bounded by 2‖φ‖ + 2
∣∣φ(1, z)

∣∣. Hence ψ is well

defined.

The proof for the following statement applies a similar method from Lemma 6.14. In

general, we assume the weight condition ωR to have R > 1.

Lemma 6.15. H2
(
`1 (Z+, ωR) ,C1

)
= 0.

Proof. We consider the algebra of summable functions on Z+ with the ωR weighted `1

norm. We write the characteristic functions as the monomials
{
zj
}∞
j=0

. With the weight

condition ωR, a monomial zn has weight Rn.

The character space of the algebra l1 (Z+, ωR) is given by a disc with radius R centered

at the origin on the complex plane. Consider the point module C1 where the point 1 is in

the interior of the character space.

The method is similar to the proof of Lemma 6.14. Set w+ = z − 1. Then wn+ has

weight
∥∥wn+∥∥ = (R + 1)n. Define ψ(wn+1

+ ) := −φ(wn+, w+) for n ≥ 0 and ψ(1) := φ(1, 1).

We can show that φ′ = φ − δψ on l1(Z+, ωR)2 is always zero; i.e., φ′(wa+, w
b
+) = 0 and

φ′(za, zb) = 0 for all a, b ∈ Z+. To prove that ψ is bounded, we have the inequality

∣∣φ(zn, z)
∣∣ =

∣∣δψ(zn, z)
∣∣ =

∣∣∣ψ(z)− ψ(zn+1) + ψ(zn)
∣∣∣ ≤ Rn+1‖φ‖ ,
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to give ∣∣∣ψ(zn+1)
∣∣∣ ≤ Rn+1‖φ‖+

∣∣ψ(z)
∣∣+
∣∣ψ(zn)

∣∣
≤ Rn+1‖φ‖+

∣∣ψ(z)
∣∣+Rn‖φ‖+

∣∣ψ(z)
∣∣+
∣∣∣ψ(zn−1)

∣∣∣
. . .

≤ R

R− 1
Rn+1‖φ‖+ (n+ 1)

∣∣ψ(z)
∣∣

≤ Rn+1

(
R

R− 1
+

R

e logR

)
‖φ‖ .

which proves that ψ is bounded and ‖ψ‖ ≤
(

R
R−1 + R

e logR

)
‖φ‖.

The below statement is a new result.

Proposition 6.16. H2
(
`1 (Z, ωR) ,C1

)
= 0.

Proof. We define A+ = `1(Z+, ωR) and A+ = `1(Z−, ωR), therefore A = `1(Z, ωR) =

A+ ⊕ A−. We use the Laurent monomials as the basis and use the weight condition

‖zm‖ = R|m| on the characteristic functions.

Define w+ = z−1 and w− = z−1−1. We have −w+w− = w+ +w−. Then the positive

and negative powers of z can be expressed in terms of w+ and w− separately. We have

shown that H2(A+,C1) = 0 in Lemma 6.15 and we can show that H2(A−,C1) = 0 with

the same method.

Define ψ(1) := φ(1, 1) which agrees on both A+ and A−. Define ψ(wn+1
+ ) :=

−φ(wn+, w+) and ψ(wn+1
− ) := −φ(wn−, w−). By the inequalities shown at the end of Lemma

6.15, ψ is bounded on both Z+ and Z− therefore bounded on all Z. Set φ′ = φ− δψ. We

have φ′(za, zb) = 0, φ′(z−a, z−b) = 0, φ′(wa+, w
b
+) = 0 and φ′(wa−, w

b
−) = 0 for all a, b ∈ Z+.

We will now need to show what conditions φ′(za, zb) satisfy when a > 0, b < 0 or

a < 0, b > 0. Consider the 2-cocycles equation, for all a1, a2, a3 ∈ Z,

δφ′(za1 , za2)(za3)

= za1φ′(za2 , za3)− φ′(za1+a2 , za3) + φ′(za1 , za2+a3)− φ′(za1 , za2)za3 = 0. (?)

By taking a1 = 1, a2 = −1 and a3 = 1, we have

φ′(z−1, z)− φ′(1, z) + φ′(z, 1)− φ′(z, z−1) = 0.

The middle two terms vanish, hence φ′(z−1, z) = φ′(z, z−1).

Suppose a ≥ 1. Taking a1 = −a, a2 = 1 and a3 = −1 in Equation (?), we have

φ′(z−a, z−1)− φ′(z−a+1, z−1) + φ′(z−a, 1)− φ′(z−a, z1) = 0.
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The middle two terms vanish, hence φ(z−a, z) = φ′(z, z−1).

If b ≥ j ≥ 1, then taking a1 = b, a2 = −j and a3 = 1 in Equation (?), we have

φ′(z−j , z)− φ′(zb−j , z) + φ′(zb, z−j+1)− φ′(zb, z−j) = 0.

The second term vanishes, hence

φ′(zb, z−j)− φ′(zb, z−j+1) = φ′(z−j , z) = φ′(z, z−1) (??)

For b ≥ a ≥ 1, a summation of Equation (??) gives

a∑
j=1

(
φ′(zb, z−j)− φ′(zb, z−j+1)

)
= φ′(zb, z−a)− φ′(zb, 1) = φ′(zb, z−a) = aφ′(z, z−1).

Similarly, by taking a1 = 1, a2 = −j and a3 = b and apply the summation as above,

we obtain that for all b ≥ a ≥ 1,

φ′(z−a, zb) = aφ′(z−1, z) = φ′(zb, z−a).

We then consider the cases where the signs are alternated. The analysis is by swapping

z and z−1 in the previous arguments. For all b ≤ a ≤ −1, we have

φ′(zb, z−a) = φ′(z−a, zb) = aφ′(z, z−1).

Therefore, for any m,n ≥ 1, we have shown that

φ′
(
z±m, z∓n

)
= min(m,n)φ′

(
z, z−1

)
.

Now define ψ′(za) := 1
2 |a|φ

′(z, z−1), which shows that ψ′ is uniformly bounded by

‖φ‖′, hence uniformly bounded by ‖φ‖. For a, b both non-negative or non-positive, we

have δψ′(za, zb) = 0 and δψ′(za, z−b) = min{|a|, |b|}φ′(z, z−1), which proves that φ′′ =

φ′ − δψ′ = φ− δ(ψ + ψ′) = 0, where ψ′′ = ψ + ψ′ is uniformly bounded by ‖φ‖.

Theorem 6.17. H2
(
A2,ωR ,C1

)
= 0.

Proof. We consider the S2-invariant subalgebra of `1 (Z, ωR). The algebra A2,ωR is gen-

erated by a single generator y1 = z+z−1

2 and all variables of the form ym = zm+z−m

2 can

be written as ym =
∑m

j=0 am,jy
j
1. Similarly, we set w = y1 − 1 and define ψ

(
wn+1

)
:=

φ (wn, w) for n ≥ 0 and ψ(1) = φ(1, 1). Now we have three sets of elements: the powers

of w
R+1 , the powers of y1

R and
{
yj
Rj

}∞
j=1

. It is obvious that these three sets have the same

span; i.e., each set of elements can be expressed as a linear sum of other set of elements.

From Lemma 6.15 we know that φ− δψ vanishes on the powers of w. Therefore we need
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to check that ψ is uniformly bounded by ‖φ‖ on this set
{
yj
Rj

}∞
j=1

against their weight.

Recall the coefficients of am,j from Lemma 4.7 and cn,k from Lemma 4.9 with q = 1. We

compute ψ (ym) explicitly from the relations between the variables of ym, y1 and w as

ψ (ym) = ψ

 m∑
j=0

am,jy
j
1


= ψ

 m∑
j=0

am,j (w + 1)j


= ψ

 m∑
j=0

am,j

 j∑
k=0

(
j

k

)
wk




= ψ

 m∑
j=1

am,j

 j∑
k=1

(
j

k

)
wk


+ φ(1, 1)

= −
m∑
j=1

am,j

 j∑
k=1

(
j

k

)
φ
(
wk−1, w

)+ φ(1, 1)

= −
m∑
j=1

am,j

 j∑
k=1

(
j

k

)
φ
(

(y1 − 1)k−1 , w
)+ φ(1, 1)

= −
m∑
j=1

am,j

 j∑
k=1

(
j

k

)
φ

k−1∑
l=1

(
k − 1

l

)
yl1(−1)k−1−l, w


+ φ(1, 1)

= −
m∑
j=1

am,j

 j∑
k=1

(
j

k

)
φ

k−1∑
l=1

(k − 1

l

)
(−1)k−1−l

bl/2c∑
i=0

cl,iyi

 , w


+ φ(1, 1).

The numerical computation suggests

ψ (ym) = −φ

2

m−1∑
p=1

pym−p, y1 − 1

+
(

2m2 −m+ 1
)
φ(1, 1). (6.3)

This can be proved by induction from the relation

ψ (yn+1) = 2ψ (yn) + 2ψ (y1)− ψ (yn−1)− 2φ (yn, y1) .
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By Equation (6.3), we calculate the size of
∣∣ψ (ym)

∣∣ by

∥∥ψ (ym)
∥∥ ≤

m−1∑
p=1

2(R+ 1)pRm−p +
(

2m2 −m+ 1
)‖φ‖ .

The first term is bounded by 2R(R+1)
(R−1)2

‖ym‖ and the second term is bounded by 8R
− 2

logR

(logR)2
‖ym‖.

Hence for all weight conditions ωR where R > 1, the ψ function is well defined.

Definition 6.18. An n-cochain φ ∈ Cn (A) is cyclic if

φ (a0, a1, . . . , an−1) = (−1)n (a1, . . . , an−1, a0)

for all a0, a1, . . . , an−1 ∈ A.

A bounded 2-linear map φ from A2 to the dual module A′ is cyclic if for all a1, a2, a0 ∈
A, we have

φ (a1, a2) (a0) = φ (a0, a1) (a2) = φ (a2, a0) (a1) .

The cyclic map φ is a cyclic 2-cocycle if δφ = 0.

A bounded linear map ψ from A to the dual module A′ is cyclic or antisymmetric if

for all a1, a0 ∈ A, we have

ψ (a1) (a0) = −ψ (a0) (a1) .

The map δψ is a cyclic 2-coboundary if δψ (a1, a2) (a0) = ψ (a1) (a2a0) − ψ (a1a2) (a0) +

ψ (a2) (a0a1). We denote the linear space of the cyclic 2-cocycles by ZC2 (A) and the linear

space of the 2-coboundaries by BC2 (A). The cyclic cohomology group HC2 (A) is defined

by the quotient

HC2 (A) =
ZC2 (A)

BC2 (A)
.

Lemma 6.19. HC2
(
`1 (Z+, ωR)

)
' C1.

Proof. Consider the algebra A = `1 (Z+, ωR). The dual module is defined to be

za1φ(za2 , za3) = φ(za2 , za3)(za0za1). The 2-cocycles equation is given by

δφ(za1 , za2 , za3)(za0) = φ(za2 , za3)(za0+a1)− φ(za1+a2 , za3)(za0)

+ φ(za1 , za2+a3)(za0)− φ(za1 , za2)(za3+a0)

= 0.
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For a+ b > 0, we define

ψ(za)(zb) =
1

a+ b

 a∑
i=1

φ(zi, za−i)(zb)−
b∑

j=1

φ(za, zj)(zb−j)

 ,

where a summation term is zero if a = 0 or b = 0. Given a bounded φ, we have

∣∣∣ψ(za)(zb)
∣∣∣ ≤ 1

a+ b

 a∑
i=1

‖φ‖Ri+a−i+b +
b∑

j=1

‖φ‖Ra+j+b−j

 =‖φ‖Ra+b, (6.4)

which shows that
∣∣∣ψ(za)(zb)

∣∣∣ is bounded by‖φ‖ against the weight of (za)(zb). We expand

the 2-coboundary equation δψ(za1 , za2)(za3) from the ψ defined above and obtain that

δψ(za1 , za2)(za3) = −φ(za1 , za2)(za3). The only function which cannot be cobounded is

the function φ (1, 1) (1) supported by the triple
(
z0, z0, z0

)
as δ (1, 1) (1) = ψ(1)(1) = 0.

Therefore we have HC2(l1(Z+, ωR)) ' C1.

We will now move to the invariant subalgebra and show that the second cyclic coho-

mology group is also one-dimensional.

Theorem 6.20. For R >
√

2, HC2(A2,ωR) ' C1.

Proof. The only term we cannot cobound is φ (1, 1) (1). Given φ ∈ ZC2(A2,ωR), we will

find bounded ψ
(
ym1

) (
ym2

)
for all a, b ∈ Z+ such that δψ = φ.

As the algebra A2,ωR is generated by a single generator y1, it is possible to apply

the similar construction of ψ in the proof of HC2(l1(Z+, ωR)) in Lemma 6.19 to define

ψ
(
ya1
) (
yb1

)
as

ψ (ya1)
(
yb1

)
= −

 a∑
i=1

φ
(
yi1, y

a−i
1

)(
yb1

)
−

b∑
j=1

φ
(
ya1 , y

j
1

)(
yb−j1

) .

Therefore ψ
(
ym1

) (
ym2

)
can be expressed as a linear combination as

ψ
(
ym1

) (
ym2

)
=

m1∑
j1=0

m2∑
j2=0

am1,j1am2,j2ψ
(
yj11

)(
yj21

)
.

This construction makes ψ antisymmetric and δψ = φ. We will now show that ψ is

bounded.

First, we consider δψ (y0, y0) (yn). This gives us ψ (y0) (yn) = φ (y0, y0) (yn). The norm

estimate is straightforward to show that
∣∣ψ (y0) (yn)

∣∣ =
∣∣φ (y0, y0) (yn)

∣∣ ≤ Rn‖φ‖. By the

antisymmetry property, we have ψ (ya) (ya) = 0.
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Then we consider the first example that needs conversion into powers of y1, ψ (y1) (y2).

The expansion gives

ψ (y1) (y2) = ψ (y1)
(

2y2
1 − y0

)
= 2ψ (y1)

(
y2

1

)
− ψ (y1) (y0)

= −2

3

(
φ (y1, y0)

(
y2

1

)
− φ (y1, y1) (y1)− φ

(
y1, y

2
1

)
(y0)

)
+ φ (y0, y0) (y1)

= −1

3
φ (y1, y0) (y2) +

1

3
φ (y1, y2) (y0) +

2

3
φ (y1, y1) (y1) + φ (y1, y1) (y1) ,

which shows that
∣∣ψ (y1) (y2)

∣∣ ≤ 2R3‖φ‖.
We will prove by induction that all

∣∣∣ψ (ym1

) (
ym2

)∣∣∣ are bounded by Rm1+m2‖φ‖ 2R2+1
R2−2

.

Let KN = max{|ψ(ym1)(ym2) : m1 +m2 ≤ N}. By our previous remarks, K2 ≤ R2‖φ‖
and K3 ≤ 2R3‖φ‖.

We have verified the cases of m1 + m2 ≤ 3, m1 or m2 = 0, and m1 = m2. By the

antisymmetry property, we are now left to check the cases where 1 ≤ m1 <
m1+m2

2 .

Let N = m1 +m2, and choose a such that

∣∣ψ (ya) (yN−a)
∣∣ := max

{∣∣ψ (yi) (yN−i)
∣∣ : 1 ≤ i ≤ N − 1

2

}
.

This set is nonempty as
∣∣ψ (y1) (yN−1)

∣∣ is in the set. We have

δψ (ya, ya) (yN−2a) = 2ψ (ya) (yayN−2a)− ψ (yaya) (yN−2a) = φ (ya, ya) (yN−2a) ,

which simplifies to

2ψ (ya) (yN−a)−ψ (y2a) (yN−2a) = 2ψ (ya)
(
y|N−3a|

)
−ψ (y0) (yN−2a)+2φ (ya, ya) (yN−2a) .

As ψ (ya) (yN−a) is chosen to be the function which has the largest norm of all ψ
(
ym1

) (
ym2

)
such that m1 +m2 = N , we have

∣∣ψ (y2a) (yN−2a)
∣∣ ≤ ∣∣ψ (ya) (yN−a)

∣∣. Hence,

∣∣ψ (ya) (yN−a)
∣∣ ≤ ∣∣2ψ (ya) (yN−a)− ψ (ya) (yN−a)

∣∣
≤
∣∣2ψ (ya) (yN−a)− ψ (y2a) (yN−2a)

∣∣ .
And we use the setting that a is a positive integer and strictly less than N

2 to have a ≤ N−1
2

and a+ |N − 3a| ≤ N − 2, which shows that

∣∣∣∣ψ (ya)
(
y|N−3a|

)∣∣∣∣ ≤ KN−2.

129



Chapter 6. Algebras with weighted norms and cohomology

The inequalities give

∣∣ψ (ya) (yN−a)
∣∣ ≤ ∣∣2ψ (ya) (yN−a)− ψ (y2a) (yN−2a)

∣∣
≤ 2

∣∣ψ (ya) (yN−3a)
∣∣+
∣∣ψ (y0) (yN−2a)

∣∣+ 2
∣∣φ (ya, ya) (yN−2a)

∣∣
≤ 2

∣∣ψ (ya) (yN−3a)
∣∣+
∣∣φ (y0, y0) (yN−2a)

∣∣+ 2
∣∣φ (ya, ya) (yN−2a)

∣∣
≤ 2KN−2 +RN−2‖φ‖+ 2RN‖φ‖ .

Using the inductive hypothesis for KN−2, we obtain that

KN ≤ RN−2‖φ‖

(
2(1 + 2R2)

R2 − 2
+ 1 + 2R2

)
≤ RN‖φ‖ 2R2 + 1

R2 − 2
,

which shows that ψ is indeed bounded for R >
√

2.

6.3.2 Simplicial and cyclic cohomology of algebras on Z+

In this section, we study higher simplicial and cyclic cohomology groups of some singly

generated algebras. We first consider the algebra `1 (Z+) and the higher simplicial and

cyclic cohomology groups HHn
(
`1 (Z+)

)
and HCn

(
`1 (Z+)

)
. We present the method

introduced in [20] with an explicit construction of cobounding in the algebra `1 (Z+). The

aim is to apply a similar method to the algebra A2,ωR with the weighted ωR norm. We

use a finite induction method to find an explicit construction of the coboundaries for the

higher simplicial and cyclic cohomology groups. We use a setting of similar notations in

[44], [33], [34] and [32] to define the cohomology groups.

Let A be a Banach algebra and the dual A′ be an A-bimodule. Let the n-cochain φ

be a bounded n-linear map from An to A′, denoted by φ ∈ Cn
(
A,A′

)
.

Definition 6.21. The n-cochain φ is cyclic if we have

φ (w1, w2, . . . , wn) (w0) = (−1)nφ (w0, w1, . . . , wn−1) (wn) .

Definition 6.22. We define a map δ : Cn
(
A,A′

)
−→ Cn+1

(
A,A′

)
as

δnφ (w1, w2, . . . , wn+1) (w0) = φ (w2, . . . , wn+1) (w0w1)

+
n∑
j=1

(−1)jφ
(
w1, w2, . . . , wjwj+1, wn+1

)
(w0)

+ (−1)n+1φ (w1, . . . , wn) (wn+1w0) .

Definition 6.23. The n-cochain φ is an n-cocycle if δφ = 0.
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Definition 6.24. The n-cochain φ is an n-coboundary if there exists ψ ∈ Cn−1
(
A,A′

)
such that φ = δn−1ψ.

Definition 6.25. The n-cochain φ is a cyclic n-coboundary if there exists cyclic ψ ∈
Cn−1

(
A,A′

)
such that φ = δn−1ψ.

We denote the linear space of all n-cocycles by Zn
(
A,A′

)
and the linear space of all

n-coboundaries by Bn
(
A,A′

)
. We use the fact that Bn

(
A,A′

)
is a subset of Zn

(
A,A′

)
.

The n-th simplicial cohomology group is defined by the quotient

HHn (A) = Hn
(
A,A′

)
=
Zn
(
A,A′

)
Bn (A,A′)

.

We denote the linear space of all cyclic n-cocycles by ZCn
(
A,A′

)
and the linear space of

all cyclic n-coboundaries by BCn
(
A,A′

)
. The n-th cyclic cohomology group is defined by

the quotient

HCn (A) =
ZCn

(
A,A′

)
BCn (A,A′)

.

For w = w1 ⊗ · · · ⊗ wn ⊗ w0 ∈
⊗n+1A, we write φ(w) as the n-cochain

φ (w1, w2, . . . , wn) (w0).

We start with a discussion on the pre-dual of the algebra A+. We consider the algebra

A+ = `1 (Z+) where the characteristic functions at all nonnegative integers m ∈ Z+ are

given by the monomials zm. The algebra A+ is singly generated by z. First we consider the

subalgebra of polynomials with finite sums of powers Ã+ and then extend to the Banach

algebra A+.

Definition 6.26. Define single-variable-splitting map s̃ : Ã+ −→ Ã+ ⊗ Ã+ as s̃ (zn) =∑n
i=1 z

a−i ⊗ zi for n > 0 and s̃ (1) = 0.

Definition 6.27. Define the product map π : Ã+ ⊗ Ã+ −→ Ã+ as π
(
za ⊗ zb

)
= zazb =

za+b.

Note that 1
n (πs̃) (zn) = zn, which is the identity map of the monomial zn for n > 0.

We consider an elementary tensor product w = za1⊗· · ·⊗zaj ⊗zaj+1⊗· · ·⊗zan+1⊗za0

for the algebra Ã+ . We always assume that n ≥ 1. Let N =
∑n+1

k=0 ak be the total degree

of w.

Definition 6.28. Define the face maps dnj :
⊗n+2 Ã+ −→

⊗n+1 Ã+ as

dnj (w) = (−1)jza1 ⊗ · · · ⊗ zajzaj+1 ⊗ · · · ⊗ zan+1 ⊗ za0 for 1 ≤ j ≤ n+ 1.

Definition 6.29. Define the wrap around pinching map dn0 :
⊗n+2 Ã+ −→

⊗n+1 Ã+ as

dn0 (w) = za2 ⊗ · · · ⊗ zan+1 ⊗ za0za1 .
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Definition 6.30. Define the splitting map snk :=
⊗n+1 Ã+ −→

⊗n+2 Ã+ on the k-th

variable of an elementary tensor product w as

snk (w) =
(−1)j

N
za1 ⊗ · · · ⊗ s̃ (zak)⊗ · · · ⊗ zan+1 ⊗ za0 for 1 ≤ k ≤ n+ 1.

Let w = w1⊗ · · · ⊗wn ∈
⊗n+1A be a tensor product of the algebra A. Let the cyclic

equivalence relation be generated by the map t :
⊗n+1A −→

⊗n+1A be defined as

t (w) = (−1)nw2 ⊗ · · · ⊗ wn+1 ⊗ w1.

Definition 6.31. The cyclic equivalence class CCn (A) is a subspace of
⊗n+1A generated

by the cyclic equivalence relation as CCn (A) :=
⊗n+1A/〈w − t(w)〉 ⊂

⊗n+1A.

Set dn =
∑n+1

j=0 d
n
j and sn =

∑n+1
k=1 s

n
k . Sometimes we write d and s as the abbreviation

of dn and sn.

Lemma 6.32. The proof is stated in [20]. For w ∈ CCn
(
Ã+

)
, we have

(
sn−1dn−1 + dnsn

)
(w) = w.

Proof. We expand
(
sn−1dn−1 + sndn

)
(w) and obtain the cancellations as the following

terms:

n+1∑
k=1

dnks
n
k(w) = w,

sn−1
k dn−1

j + dnj s
n
k+1 = 0, for 1 ≤ j < k ≤ n,

sn−1
k dn−1

j + dnj+1s
n
k = 0, for 1 ≤ k < j ≤ n,

sn−1
k dn−1

0 + dn0s
n
k+1 = 0, for 1 ≤ k ≤ n− 1,

sn−1
k dn−1

k + dnk+1s
n
k + dnks

n
k+1 = 0, for 1 ≤ k ≤ n

sn−1
n dn−1

0 + dn0s
n
n+1 + dn0s

n
1 ≡ 0,

which shows that (
sn−1dn−1 + dnsn

)
(w) =

n+1∑
k=1

dnks
n
k(w) = w.

Definition 6.33. Let w = za1 ⊗ · · · ⊗ zan+1 be an elementary product in
⊗n+1 Ã+. We

define another split map sn0 :=
⊗n+1 Ã+ −→

⊗n+2 Ã+ on an elementary tensor product
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w as

sn0 (w) =
(−1)n+1

N

a1∑
i=1

(
za1−i ⊗ · · · ⊗ zan+1+i ⊗ z0

)
for a1 6= 0. And sn0 (w) = 0 if a1 = 0.

Set s′n = sn + sn0 .

Lemma 6.34. For w ∈
⊗n+1 Ã+, we have(

s′n−1dn−1 + dns′n
)

(w) = w.

Proof. We consider the additional terms apart from the terms in Lemma 6.32. The addi-

tional terms cancel as follows:

s0dj + djs0 = 0, for 2 ≤ j ≤ n− 1,

d0s1 + dn+1s0 = 0,

snd0 + d0sn+1 + d0s0 = 0,

s0d0 + s0d1 + d1s0 = 0.

Hence we have
(
s′n−1dn−1 + dns′n

)
(w) = w.

Remark 6.35. Note that the maps dj, sk,
∑n

j=0 dj and
∑n+1

k=1 sk are all continuous on the

tensor product of algebra of finite sums of powers of z and the space is dense. The splitting

maps are all bounded because of the averaging factor 1
N in the coefficient. Therefore we

can apply the same setting to the Banach algebra of infinite sums of powers A+.

The two theorems below are presented in [20].

Theorem 6.36. Let n be a positive integer greater than 1. We have

1. HCn (A+) ' C1 if n is even.

2. HCn (A+) ' 0 if n is odd.

Proof. Let φ(w) be a cyclic n-cycle. We consider the function φ where φ
(
z0, . . . , z0

) (
z0
)

=

1 and 0 elsewhere. If n is even and the function ψ cobounds φ, then we have φ = δψ. As

ψ
(
z0, . . . , z0

) (
z0
)

= 0 and δψ
(
z0, . . . , z0

) (
z0
)

= 0, the function φ cannot be cobounded.

If n is odd, we have φ
(
z0, . . . , z0

) (
z0
)

= 0.

Recall the operator s and d on the predual of the tensor products. Set ψ (w) =

φ
(
s (w)

)
. The dual of s on the function ψ is given by s∗ψ (w) = φ (w).

We apply the identity map (sd+ ds) on w in Lemma 6.32 and obtain that

φ
(
(sd+ ds)w

)
= δs∗φ(w) + s∗δφ(w) = δψ(w).
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Theorem 6.37. Let n be a positive integer greater than 1. We have HHn (A+) ' 0.

Proof. Let φ(w) be an n-cocycle and ψ be an (n−1)-cochain. If n is odd, δφ(1, . . . , 1)(1) =

φ(1, . . . , 1)(1) = 0. If n is even, set ψ(1, . . . , 1)(1) = φ(1, . . . , 1)(1). In general, we set

ψ = s′∗φ. We apply the identity map
(
s′d+ ds′

)
on w in Lemma 6.34 and obtain that

φ
((
s′d+ ds′

)
w
)

= δs′∗φ(w) + s′∗δφ(w) = δψ(w).

We now move to the invariant subalgebra A2,ωR with a single generator y1 and the

characteristic functions on Z+ multiply as yayb = 1
2

(
ya+b + y|a−b|

)
. We consider the

algebra of weighted polynomials Ã2,ωR given by the finite powers of y1 with the same

multiplication rule to A2,ωR .

Definition 6.38. For w =
∑N

j=0 αjyj ∈ Ã2,ωR , the degree of w, deg(w) is defined to be

the largest j where αj 6= 0.

The algebra A2,ωR can be extended from Ã2,ωR given by the infinite sums of powers of

y1. Define the map s̃ : Ã2,ωR −→ Ã2,ωR ⊗ Ã2,ωR as

s̃ (yn) = 2
n−1∑
i=1

yn−i ⊗ yi + y0 ⊗ yn (6.5)

for n ≥ 2. We also define s̃ (y1) = y0⊗y1 and s̃ (y0) = 0. We define the same product map

π as in the algebra A+ where π (ya ⊗ yb) = yayb. Note that the map πs̃ on the algebra

Ã2,ωR has got a similar form to the map on A+ as

πs̃ (yn) = nyn + (terms with degree strictly less than n) .

We can check that the lower terms in this expansion are uniformly bounded against the

weight of yn.

Given an elementary tensor product w = ya1 ⊗ · · · ⊗ yaj ⊗ yaj+1 ⊗ · · · ⊗ yan+1 ⊗ ya0 , we

define the pinching and splitting maps similarly to the maps on the tensor product of A+.

Definition 6.39. Define the face maps dnj :
⊗n+2 Ã2,ωR −→

⊗n+1 Ã2,ωR as

dnj (w) = (−1)jya1 ⊗ · · · ⊗ yajyaj+1 ⊗ · · · ⊗ yan+1 ⊗ ya0 for 1 ≤ j ≤ n+ 1.

Definition 6.40. Define the wrap around pinching map dn0 :
⊗n+2 Ã2,ωR −→

⊗n+1 Ã2,ωR

as

dn0 (w) = ya2 ⊗ · · · ⊗ yan+1 ⊗ ya0ya1 .
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Definition 6.41. Define the splitting map snk :=
⊗n+1 Ã2,ωR −→

⊗n+2 Ã2,ωR on the

k-th variable of a non-trivial elementary tensor product w as

snk (w) =
(−1)j

N
ya1 ⊗ · · · ⊗ s̃

(
yak
)
⊗ · · · ⊗ yan+1 ⊗ ya0 for 1 ≤ j ≤ n+ 1,

where N =
∑n

k=1 ak > 0 is the called the degree of w.

For n ≥ 2, set dn =
∑n+1

j=0 d
n
j and sn =

∑n+1
k=1 s

n
k . We will show that the map(

sn−1dn−1 + sndn
)
, abbreviated as sd + ds, is an approximation of the identity map;

i.e., an identity map plus an error term with small norm.

Consider a tensor product W = W1⊗· · ·⊗Wn+1 ∈
⊗n+1 Ã2,ωR where Wj ∈ Ã2,ωR for

j = 1, . . . n+ 1. Define the map t :
⊗n+1 Ã2,ωR −→

⊗n+1 Ã2,ωR to be

t (W ) = (−1)nW2 ⊗ · · · ⊗Wn+1 ⊗W1.

Define the cyclic equivalence class CCn
(
Ã2,ωR

)
=
⊗n+1 Ã2,ωR/〈W−t(W )〉 ⊆

⊗n+1 Ã2,ωR

to be the subspace which is generated by the cyclic equivalence relation.

Lemma 6.42. Let w = ya1⊗· · ·⊗yaj⊗yaj+1⊗· · ·⊗yan+1 be an elementary tensor product

in the cyclic equivalence class CCn
(
Ã2,ωR

)
with degree N ≥ 2. Then (sd+ ds− 1) (w)

has degree at most N − 2.

Proof. We expand
(
sn−1dn−1 + dnsn

)
as

n∑
k=1

n∑
j=0

sn−1
k dn−1

j +
n+1∑
k=0

n+1∑
k=1

dnj s
n
k

and consider the following different types of terms.

Type 1 : dnks
n
k , for 1 ≤ k ≤ n+ 1,

Type 2 : sn−1
k dn−1

j + dnj s
n
k+1, for 1 ≤ j < k ≤ n,

Type 3 : sn−1
k dn−1

j + dnj+1s
n
k , for 1 ≤ k < j ≤ n,

Type 4 : sn−1
k dn−1

0 + dn0s
n
k+1, for 1 ≤ k ≤ n− 1,

Type 5 : sn−1
k dn−1

k + dnk+1s
n
k + dnks

n
k+1, for 1 ≤ k ≤ n

Type 6 : sn−1
n dn−1

0 + dn0s
n
n+1 + dn0s

n
1 .
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For the elementary tensor product w = ya1 ⊗ · · · ⊗ yaj ⊗ yaj+1 ⊗ · · · ⊗ yan+1 , we have

Type 1 : for 1 ≤ k ≤ n+ 1, dnks
n
k (w)

=
1

N
ya1 ⊗ · · · ⊗

akyak +

ak−1∑
i=1

y|ak−2i|

⊗ · · · ⊗ yan+1

=
ak
N
w + terms with degree at most N − 2;

Type 2 : for 1 ≤ j < k ≤ n,
(
sn−1
k dn−1

j + dnj s
n
k+1

)
(w) =

(−1)j+k

(
1

N
− 1

N − 2 min{aj , aj+1}

)
ya1 ⊗ · · · ⊗ y|aj−aj+1| · · · ⊗ s̃

(
yak
)
⊗ · · · ⊗ yan+1 ;

Type 3 : for 1 ≤ j < k ≤ n,
(
sn−1
k dn−1

j + dnj s
n
k+1

)
(w) =

(−1)j+k

(
1

N
− 1

N − 2 min{aj , aj+1}

)
ya1 ⊗ · · · ⊗ s̃

(
yak
)
· · · ⊗ y|aj−aj+1| ⊗ · · · ⊗ yan+1 ;

Type 4 : for 1 ≤ k ≤ n− 1,
(
sn−1
k dn−1

0 + dn0s
n
k+1

)
(w) =

(−1)k
(

1

N
− 1

N − 2 min{a0, an+1}

)
ya2 ⊗ · · · ⊗ s̃

(
yak
)
· · · ⊗ yan ⊗ y|a0−an+1|;

Type 5 : for 1 ≤ k ≤ n,
(
sn−1
k dn−1

k + dnk+1s
n
k + dnks

n
k+1

)
(w) =

(−1)k
(

1

N
− 1

N − 2 min{ak, ak+1}

)
ya1 ⊗ · · · ⊗ s̃

(
y|ak−ak−1|

)
⊗ · · · ⊗ yan+1 ;

Finally, we have

Type 6 :
(
sn−1
n dn−1

0 + dn0s
n
n+1 + dn0s

n
1

)
(w)

≡
(

1

N
− 1

N − 2 min{a1, an+1}

)
ya2 ⊗ · · · ⊗ yan ⊗ s̃

(
y|a1−an−1|

)
,

which consists of terms of degree at most N − 2 under the cyclic equivalence relation.

We rename the terms of degree less than N as the error terms. The sum of the type

dksk terms in the summation is precisely w plus error terms which have degree at most

N − 2. All the other types of terms in the summation have degree at most N − 2; i.e.,

these are all error terms. We will then estimate the size of the error terms.
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Set w0 = w and wj = (sd+ ds− 1)j (w).

Corollary 6.43. For all j ≥ bN2 c+ 1, we have wj = 0.

Proof. As wj+1 = (sd+ ds− 1)
(
wj
)
, we can see that the highest possible degree of wj+1

is always 2 less than the highest possible degree of wj , otherwise 0. Therefore wj =

(sd+ ds− 1)j (w) has degree at most N − 2j for j ≤ bN2 c. After apply the (sd+ ds− 1)

map bN2 c times on the original w, the result will have degree 0.

As the norm of w1 may be greater than the norm of w, we seek an alternative way to

estimate the error terms in the inductive process of the map (sd+ ds− 1).

Lemma 6.44. Given the weight condition ωR, for all R > 1, there exists a positive integer

N0 and a constant CN0 such that
∥∥(sd+ ds− 1) (w)

∥∥ is bounded by CN0‖w‖ if N < N0 or

bounded by 1
2‖w‖ if N ≥ N0.

Proof. For large N , consider different types of error terms in the expansion of

(sd+ ds− 1) (yN ) from Lemma 6.42. The norm of Type 1 error terms are estimated

by the summation
∥∥∥∑ak−1

i=1 y|ak−2i|

∥∥∥ with other fixed coefficients, which is a geometric pro-

gression. If aj = 0, then we get value zero for the coefficient
(

1
N −

1
N−2 min{aj ,aj+1}

)
in the

Type 2, 3, 4 or 5 expansion. The norm of Type 2, 3, 4 and 5 error terms are estimated

to 1
NR

−2aj‖w0‖ or 1
NR

−2aj+1‖w0‖, which is bounded by 4
NR2 . We compute the size of the

first error terms w1 by adding up all types of error terms to obtain that

‖w1‖ =
∥∥(sd+ ds− 1) (w)

∥∥ ≤ ( 4(n+ 1)2

N
(
R2 − 1

) +
4n2

NR2

)
‖w0‖ .

We will later pick a positive integer N0 and for the degree of w where N ≥ N0 and define

w1 = w1,high + w1,low,0.

For N < N0, we write

w1 = w1,low,0,

where w1,high consists of terms with degree at least N0 of w1 and w1,low,0 consists of terms

with degree less than N0 of w1 and w1,low,0.

When N ≥ N0, we can compute the size of the two sets of error terms as

∥∥w1,high

∥∥ ≤ 4(n+ 1)2RN

N
(
R2 − 1

) +
4n2RN

NR2
,

∥∥w1,low,0

∥∥ ≤ 4(n+ 1)2RN0

N
(
R2 − 1

) +
4n2RN0

NR2
.
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Fix N0 = 16(n+1)2

(R2−1)
. Then for all N ≥ N0, we have ‖w1‖ ≤ 1

2‖w0‖, which indicates both∥∥w1,high

∥∥ and
∥∥w1,low,0

∥∥ bounded by 1
2‖w0‖.

When N < N0, we have

∥∥w1,low,0

∥∥ =‖w1‖ ≤
8(n+ 1)2

R2 − 1
‖w0‖ = CN0‖w0‖ .

For N ≥ N0, we write w0 = w0,high. Then (sd+ ds− 1) (w) may consist of terms of

degree both greater or less than N0, i.e. w1 = w1 = w1,high + w1,low,0. We define

(sd+ ds− 1)
(
wj,high

)
= wj+1,high + wj+1,low,0

and

(sd+ ds− 1)wj,low,k = wj,low,k+1,

where the high and low in the subscripts indicate the terms with large and small degree.

Every specified error term is precisely obtained from a unique previous error term. There-

fore there does not exist any interactions between the error terms with large and small

degree during the computation of the powers of (sd + ds − 1) and we use the diagram

below to show the relation as

w0,high −→ w1,low,1 −→ · · · −→ w
1,low,bN0

2
c −→ 0

↓

w1,high −→ w2,low,1 −→ · · · −→ w
2,low,bN0

2
c −→ 0

↓
...

↓

wbN−N0
2
c,high

−→ wbN−N0
2
c+1,low,1

−→ · · · −→ wbN−N0
2
c+1,low,bN0

2
c −→ 0

↓

0

where the vertical arrows indicate the the large error terms and the horizontal arrows

indicate the small error terms when applying the (sd+ ds− 1) map. The vertical arrows

only come out from the large error terms therefore the arrows don’t cross. This setting
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implies that

wj = wj,high +

j∑
k=0

wj−k,low,k.

We have a norm control of the error terms as

∥∥wj+1,low,0

∥∥ ≤ 1

2

∥∥wj,high

∥∥∥∥wj+1,high

∥∥ ≤ 1

2

∥∥wj,high

∥∥∥∥wj,low,k+1

∥∥ ≤ CN0

∥∥wj,low,k

∥∥ ,
for all j, k ≥ 0. From the degree-decreasing lemma above, we also have 1

2

∥∥wj,high

∥∥ = 0 for

all j ≥ bN−N0
2 c and

∥∥wj,low,k

∥∥ = 0 for all k ≥ bN0
2 c.

To compute the norm of all error terms precisely, we have

bN−N0
2
c∑

j=0

∥∥wj,high

∥∥ ≤ bN−N0
2
c∑

j=0

2−j‖w‖ ≤‖w‖

and

bN0
2
c∑

k

∥∥wj+1,low,k+1

∥∥ ≤ bN0
2
c∑

k

CkN0

∥∥wj∥∥
≤ Clow

∥∥wj∥∥ .
For N < N0, we have

bN
2
c∑

k=1

∥∥w1,low,k

∥∥ ≤ CN0‖w‖ .

As in Remark 6.35, we extend the setting of s and d maps to the Banach algebra

A2,ωR and compute the simplicial and cyclic cohomology groups with a verification of

the boundedness to the coboundaries. We apply the same argument to the n-cocycle

φ(1, . . . , 1)(1) in Theorem 6.36 and Theorem 6.37 to check whether the function supported

by terms with zero degree can be cobounded.

Theorem 6.45. Let n be a positive integer greater than 1. We have

1. HCn
(
A2,ωR

)
' C1 if n is even.

2. HCn
(
A2,ωR

)
' 0 if n is odd.

Proof. As φ is cyclic, we cannot cobound φ (y0, . . . , y0) (y0) and its scalar multiples when

n is even. When n is odd, we have φ (y0, . . . , y0) (y0) = 0. Given a bounded function in

139



Chapter 6. Algebras with weighted norms and cohomology

the cyclic n-cocylce φ ∈ ZCn
(
AωR

)
where the total degree of the monomials in φ are not

zero, we shall construct a bounded cyclic function ψ such that δψ = φ.

We write φ (w) = φ
(
ya1 , . . . , yan

) (
yan+1

)
for w = ya1 ⊗ · · · ⊗ yan+1 and ψ (w) =

φ
(
ya1 , . . . , yan−1

)
(yan) for w = ya1⊗· · ·⊗yan . The d operator in the pre-dual corresponds

to the dual operator δ where δφ (w) = φ (dw) = 0.

Set φ0 = φ. Define ψ0 (w) := s∗φ (w) = φ
(
s (w)

)
. We have

φ
(
(sd+ ds)w

)
= φ (w + w1) = δs∗φ (w) + s∗δφ (w) = δψ0 (w) ,

which implies

δψ0 (w) = φ (w) + φ (w1) ,

Now define wj = (sd+ ds− 1)j w0 and ψj (w) := s∗φ
(
wj
)
. We have

δψj (w) = δs∗φ
(
wj
)

+ s∗δφ
(
wj
)

= φ
(
(sd+ ds)wj

)
= φ

(
wj
)

+ φ
(
wj+1

)
.

Let ψ =
∑bN

2
c

j=0 (−1)jψj , we have

δψ (w) =

bN
2
c∑

j=0

(−1)j
(
φ
(
wj
)

+ φ
(
wj+1

))
= φ (w0) + (−1)b

N
2
cφ
(
wbN

2
c

)
= φ (w) ,

which shows that ψ cobounds φ when the degree N is nonzero.

We will now show that ψ is indeed bounded. If N < N0, we simply have w1 = w1,low,0

and

‖w1‖ =
∥∥w1,low,0

∥∥ ≤ CN0‖w‖ .

In this case, we can compute ‖φ‖ straightforwardly as

∣∣ψ (w)
∣∣ ≤ bN2 c∑

j=0

ψj (w)

≤
bN

2
c∑

j=0

φ
(
snwj

)

≤
bN

2
c∑

j=0

∥∥wj∥∥‖sn‖‖φ‖
≤ (2Clow + 2)‖φ‖‖w‖ .
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When N ≥ N0, we have

∣∣ψ (w)
∣∣ ≤ bN2 c∑

j=0

∣∣ψj (w)
∣∣

≤
bN

2
c∑

j=0

∣∣∣φ (snwj)∣∣∣
≤
bN−N0

2
c∑

j=0

‖sn‖‖φ‖
∥∥wj,high

∥∥+

bN−N0
2
c∑

j=1

bN0
2
c∑

k=0

‖sn‖‖φ‖
∥∥wj,low,k

∥∥
≤‖sn‖‖φ‖‖w‖+ Clow‖φ‖‖w‖

≤ (2Clow + 4)‖φ‖‖w‖ ,

which shows that ψ is bounded by (2Clow + 4) for all N ≥ 1.

We define another splitting map sn0 :=
⊗n+1 Ã2,ωR −→

⊗n+2 Ã2,ωR as

sn0 (w) =
(−1)n+1

N

a1−1∑
i=1

2ya1−i ⊗ · · · ⊗ yan ⊗ yan+1+i ⊗ y0

+ y0 ⊗ · · · ⊗ yan ⊗ yan+1+a1 ⊗ y0

for a1 6= 0 and sn0 (w) = 0 for a1 = 0.

Lemma 6.46. Set s′ = s + s0. Let w ∈
⊗n+1 Ã2,ωR with degree N ≥ 2. Then(

s′d+ ds′ − 1
)

(w) has degree at most N − 2.

Proof. We compare the new map to the previous
(
s′d+ ds′ − 1

)
and notice that the fol-

lowing terms are additional to the terms computed in the cyclic case:

s0dj + djs0 for 2 ≤ j ≤ n− 1,

d0s1 + dn+1s0,

snd0 + d0sn+1 + d0s0,

s0d0 + s0d1 + d1s0.
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The expansion of these terms give

for 2 ≤ j ≤ n− 1,
(
s0dj + djs0

)
(w) =

(−1)j+n+1

(
1

N
− 1

N − 2 min{aj , aj+1}

)
a1−1∑
i=1

ya1−i ⊗ · · · ⊗ y|aj−aj+1| · · · ⊗ yan+1+i ⊗ y0

+ (−1)j+n+1

(
1

N
− 1

N − 2 min{aj , aj+1}

)
y0 ⊗ · · · ⊗ y|aj−aj+1| · · · ⊗ yan+1+a1 ⊗ y0;

(snd0 + d0sn+1 + d0s0) (w) =(
1

N
− 1

N − 2 min{a1, an+1}

)
ya2 ⊗ · · · ⊗ yan ⊗ s̃

(
y|a1−an−1|

)
;

(s0d0 + s0d1 + d1s0) (w) =(
1

N
− 1

N − 2 min{a1, a2}

) |a1−a2|∑
i=1

y|a1−a2|−i ⊗ · · · ⊗ yan ⊗ yan+1+i ⊗ y0

+

(
1

N
− 1

N − 2 min{a1, a2}

)
y0 ⊗ · · · ⊗ yan ⊗ yan+1+|a1−a2| ⊗ y0

for a1 ≥ 2, (d0s1 + dn+1s0) (w) = − 1

N

a1−1∑
i=1

ya1−i ⊗ · · · ⊗ yan ⊗ y|an+1−i|,

for a1 ≤ 2, (d0s1 + dn+1s0) (w) = 0,

which shows that these terms consist of elementary tensor products of degree at most

N − 2.

Now we estimate the norm of error terms after j steps of inductive process; i.e., to

compute the size of
(
s′d+ ds′ − 1

)j
(w).

Lemma 6.47. Given the weight condition ωR, for all R not close to 1, there exists N ′0
such that

∥∥∥(s′d+ ds′ − 1
)

(w)
∥∥∥ is bounded by HN0‖w‖ if N < N ′0 or bounded by 1

2‖w‖ if

N ≥ N ′0.

Proof. We have computed the extra error terms in
(
s′d+ ds′ − 1

)
(w) which are not in-

cluded in the calculation of (sd+ ds− 1) (w). From the expansions we observe that∥∥∥(s′d+ ds′ − 1
)

(w)− (sd+ ds− 1) (w)
∥∥∥ ≤∥∥(sd+ ds− 1) (w)

∥∥ ,
which implies

∥∥∥(s′d+ ds′ − 1
)

(w)
∥∥∥ ≤ 2

∥∥(sd+ ds− 1) (w)
∥∥. Note that there is a factor of

1
N in both norms. Therefore we use the value of N0 obtained from Lemma 6.44, and set

N ′0 = 2N0. This completes the classification of the high and low error terms similar to the

cyclic case.
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Set w′0 = w and w′j =
(
s′d+ ds′ − 1

)j
(w). For N ≥ N ′0, we write w′0 = w′0,high.

Then
(
s′d+ ds′ − 1

)
(w) may consist of terms both greater or less than N ′0, i.e. w′1 =

w′1,high + w′1,low,0. We define

(
s′d+ ds′ − 1

) (
w′j,high

)
= w′j+1,high + w′j+1,low,0

and (
s′d+ ds′ − 1

)
w′j,low,k = w′j,low,k+1,

as we defined wj with high and low terms for (sd+ ds− 1)j (w)

Theorem 6.48. Let n be a positive integer greater than 1. We have HH
(
A2,ωR

)
' 0.

Proof. The proof follows the same the steps as in Theorem 6.45.

6.4 Future work

In this section, we consider the higher simplicial cohomology groups for the invariant

subalgebras Ak+1,ωR and Bk,ωR on the weighted type Ã and type B̃ lattices for k ≥ 2. The

computations for the cohomology groups and the verification for the boundedness of the

coboundaries are yet to be done. Both Ak+1,ωR and Bk,ωR have k generators hence it is

natural to consider the analysis of the higher simplicial cohomology groups of the algebra

`1
(
Zk+
)

in [32].

The algebra `1
(
Zk+
)

has k generators, namely the set of variables
{
zj
}k
j=1

for the

polynomials. Set A = `1 (Z+) and I = `1 (N), a closed ideal of A. Theorem 7.5 in [32]

states that up to topological isomorphism,

1. HHn
(
`1
(
Zk+
))
' 0 if n > k.

2. HHn
(
`1
(
Zk+
))

=
⊕(kn)

[(
I⊗̂

n⊗̂
A⊗̂

k−n
)′]

if n ≤ k.

We consider the pre-dual
⊗̂n+1

`1
(
Zk+
)

. For n > k, there exists a bounded contracting

homotopy map sn+1 :
⊗̂n+1

`1
(
Zk+
)
−→

⊗̂n+2
`1
(
Zk+
)

and a bounded face map dn+1 :⊗̂n+2
`1
(
Zk+
)
−→

⊗̂n+1
`1
(
Zk+
)

, abbreviated as s and d respectively, such that the map(
sndn + dn+1sn+1

)
is the identity map. This shows that given an elementary product

w ∈
⊗̂n+1

`1
(
Zk+
)

with positive degree, we have
(
sndn + dn+1sn+1

)
(w) = w. For a

bounded n-cocycle φ, we take the dual map s∗ to define ψ = s∗φ that cobounds φ. The

face map d is given by the dual of the δ map defined in Definition 6.22 hence the map d

preserves the degree of w. We will analyse the property of the map s and show that it

maps an elementary tensor product w to homogeneous terms with the same degree.
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Lemma 6.49. Let the map s be defined as above and w ∈
⊗̂n+1

`1
(
Zk+
)

be an elementary

tensor product with degree N > 0. There exists a map s :
⊗̂n+1

`1
(
Zk+
)
−→

⊗̂n+2
`1
(
Zk+
)

such that s(w) ∈
⊗̂n+2

`1
(
Zk+
)

also has degree N > 0.

Proof. Since (sd+ ds) is the identity map, (sd+ ds)(w) = w has degree N . Let wdeg j be

the terms in w with degree j. Then we have

w =

∞∑
j=0

((
ds(w)

)
deg j

+ sd(w)deg j

)
= d

 ∞∑
j=0

(
s(w)

)
deg j

+

∞∑
j=0

(
sd(w)

)
deg j

= wdegN .

Without loss of generality, we can set
(
sd(w)

)
deg j

and
(
s(w)

)
deg j

to be zero for all j 6= N .

Set š(w) = s(w)degN . Then š is a map such that (šd+ dš) is the identity map. Hence we

can use š as the contracting homotopy map s where s(w) consists of homogeneous terms

of degree N .

We aim to compute the higher simplicial cohomology groups for the algebras on the

weighted type Ã and type B̃ lattices and their invariant subalgebras under the Weyl group

actions. The statement for the conjecture of the higher simplicial cohomology groups on

these algebras are similar. Let A be one of the following algebras or invariant subalgebras:

`1 (Λk, ωR), `1
(
Zk, ωR

)
, Ak+1,ωR and Bk,ωR . Up to an topological isomorphism,

1. HHn (A) ' 0 if n > k.

2. HHn (A) is
(
k
n

)
-dimensional if n ≤ k.

For n > k, in each one of the cases of the above algebras and subalgebras, there are some

computational difficulties to obtain the precise bounded n-coboundaries.

The first example is Ãk+1,ωR = `1 (Λk, ωR), the algebra of summable functions on

the ωR-weighted k-dimensional Λk lattice. As described in Section 6.1, the characteristic

functions on the vertices of Λk are isomorphic to the monomials of k variables with non-

negative powers. The k variables in the monomials can be used as the k generators of

the algebra. As the weight condition ωR is multiplicative on the lattice Λk, for n > k, we

define a bounded contracting homotopy map sÃ :
⊗̂n+1

Ãk+1,ωR −→
⊗̂n+2

Ãk+1,ωR such

that for all n-cocycles φ ∈ ZCn
(
Ãk+1,ωR

)
, the bounded cochain ψ = s∗

Ã
φ cobounds φ.

As the contracting homotopy map s on the tensor product of the algebra `1
(
Zk+
)

is

homogeneous, the contracting homotopy map s on the tensor product of the algebra

Ãk+1,ωR also preserves the powers of the variables, thus preserve the norm on the ωR-

weighted Λk lattice.

We then consider B̃k,ωR = `1
(
Zk, ωR

)
, the algebra of summable functions on Zk

with the weight condition ωR. The construction of the contracting homotopy map sB̃ :
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⊗̂n+1
B̃k,ωR −→

⊗̂n+2
B̃k,ωR on an elementary tensor product w ∈

⊗̂n+1
B̃k,ωR is the same

as the contracting homotopy map s for the algebra `1
(
Zk+
)

if the powers on all variables

in w are all positive or all negative. When there exist both positive and negative powers

on the variables of w, the contracting homotopy map sB̃ might be different. The analysis

will also base on the construction of the 2-coboundaries of HC2
(
`1 (Z, ωR)

)
, where we used

different constructions of ψ for vertices on different sections of Z2.

The invariant subalgebras under the corresponding Weyl group actions, Ak+1,ωR and

Bk,ωR , can both be considered as algebras on Zk+ with weight conditions ωR and multi-

plication rules given by the symmetric Laurent polynomials. The face map d, which is

the dual map of δ defined in Definition 6.22, is not homogeneous on an elementary tensor

product w ∈
⊗̂n+1

Ak+1,ωR or w ∈
⊗̂n+1

Bk,ωR . If we take a similar homogeneous con-

tracting homotopy map sA or sB on an elementary tensor product w of Ak+1,ωR or Bk,ωR
as the contracting map s on an elementary tensor product of `1

(
Zk+
)

, there might not

exist any terms with the same degree of w in (sAd+ dsA) (w) or (sBd+ dsB) (w); i.e., the

maps (sAd+ dsA) and (sBd+ dsB) might not be the approximations of the identity maps

on the two subalgebras.

However it might be possible to construct a contracting homotopy map on an elemen-

tary tensor product of the k generators in the invariant subalgebras. In this case, it is

hard to estimate the norm of the precise contracting homotopy map obtained from the

operations on the powers of generators. One possible route is to analyse the properties of

the coefficients used in the transform between the linear sums of symmetric polynomials

and the powers of the generators which are the elementary symmetric polynomials.
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[22] Alessandro Figà-Talamanca and Claudio Nebbia. Harmonic analysis and represen-

tation theory for groups acting on homogeneous trees, volume 162 of London Mathe-

matical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991.

[23] Sergey Fomin and Nathan Reading. Root systems and generalized associahedra. In

Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., pages 63–131.

Amer. Math. Soc., Providence, RI, 2007.

147



Bibliography

[24] Stefan Forcey, Logan Keefe, and William Sands. Facets of the balanced minimal

evolution polytope. J. Math. Biol., 73(2):447–468, 2016.

[25] Stefan Forcey, Logan Keefe, and William Sands. Split-facets for balanced minimal

evolution polytopes and the permutoassociahedron. Bull. Math. Biol., 79(5):975–994,

2017.

[26] L. R. Foulds and R. W. Robinson. Determining the asymptotic number of phylo-

genetic trees. In Combinatorial mathematics, VII (Proc. Seventh Australian Conf.,

Univ. Newcastle, Newcastle, 1979), volume 829 of Lecture Notes in Math., pages 110–

126. Springer, Berlin, 1980.

[27] L. R. Foulds and R. W. Robinson. Enumeration of binary phylogenetic trees. In

Combinatorial mathematics, VIII (Geelong, 1980), volume 884 of Lecture Notes in

Math., pages 187–202. Springer, Berlin-New York, 1981.

[28] L. R. Foulds and R. W. Robinson. Enumerating phylogenetic trees with multiple la-

bels. In Proceedings of the First Japan Conference on Graph Theory and Applications

(Hakone, 1986), volume 72, pages 129–139, 1988.

[29] Steven A. Gaal. Linear analysis and representation theory. Springer-Verlag, New

York-Heidelberg, 1973. Die Grundlehren der mathematischen Wissenschaften, Band

198.

[30] Paul Garrett. Buildings and classical groups. Chapman & Hall, London, 1997.

[31] I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and

multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser
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