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Abstract
The Thompson family of groups F < T < V are well-known as
interesting (counter-) examples in group theory. Working algebraically
with these objects is difficult, and yet the groups are computationally
tractable. For instance, T and V are infinite simple groups; despite this,
both are finitely presented.

This thesis studies the middle group T, using the piecewise-linear
function point of view. We present a solution to the conjugacy problem
in this group, adapting the approach of Kassabov and Matucci 1 to 1 Kassabov and Matucci 2012.

the same problem in F. Conjugacy of elements in T was shown2 to 2 Belk and Matucci 2014.

be decidable by Belk and Matucci; however our approach constructs
explicit conjugators (when they exist). Later, we refine the description
given by Matucci 3 of nontorsion elements’ centralisers in T. 3 Matucci 2008, Chapter 7.

* * *

The first chapter introduces the world of Thompson’s groups. The
sections on cyclic order, the generalised groups PLS,G and groupoidPL2,
and on the Cantor space are particularly important for readers interested
in the rest of the thesis.

The second chapter discusses Thompson’s groups from a dynamical
point of view. We summarise how F, T and V rerrange the interval,
noting the distinction between dyadic and nondyadic points. Focussing
on T, we introduce the rotation number and explain what we can learn
from it. Amidst all this we present a number of intermediate results,
forming a toolkit for use in later chapters.

The third chapter studies conjugacy inT. Wenarrow the search space
by finding constraints that a conjugator must satisfy. Next, we break
the conjugacy problem into a search for a coarse and fine conjugator, the
product of which—if they exist—is a bona fide conjugator. We solve
these search problems,4 and thus solve the conjugacy problem in T. 4 Lemma 3.3.2 and Algorithms 3.3.5

and 3.4.8.In the fourth chapter, we study element centralisers inT via a particu-
lar group extension. We focus on nontorsion elements, providing small
details missing from Matucci’s proof which identifies the extension’s
kernel.5 We explain how to find the size of the extension’s quotient, by 5 Theorem 4.2.1 and Remark 4.2.2.

reducing the problem to a search for coarse conjugators.6 6 Algorithm 4.2.3.

The final chapter describes the extension structure of CT(α) in more
detail.7 We do so by classifying α into one of four cases. In all but 7 Section 5.2.

one case, this extension splits (as a wreath or direct product); in the
remaining case, we identify8 exactly when the extension splits (again as 8 See Proposition 5.2.15 and the

summary in in Theorem 5.3.2.a wreath product). In each case, we describe the centraliser’s structure9
9 Proposition 5.2.17.

in terms of integer parameters. We then show how to construct 10 an 10 Corollaries 5.2.6, 5.2.16, 5.2.18, 5.2.23
and 5.2.31.element of T whose centraliser has a given list of parameters.
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Introduction
In this thesis we present twomain results. The third chapter describes
a solution1 to the conjugacy problem in T which recovers an explicit 1 Theorem 3.4.9.

conjugator whenever a conjugator exists.

Theorem A. The conjugacy search problem in T has an effective solution.

The final chapter exhibits the centraliser of a nontorsion element α ∈ T
as a group extension and details 2 the structure of this extension. 2 Theorem 5.3.2, but see also Sec-

tion 5.3.
Theorem B. Let β ∈ T be nontorsion with rotation number ρ � p/q in
lowest terms. Matucci expresses CT(β) as a particular group extension. This
extension is nonsplit if and only if

• ρ , 0,

• β has a dyadic important point, and

• βq does not have a qth root with a fixed point.

Otherwise the extension splits as a wreath or direct product.

These results build upon the work of Kassabov-Matucci 3 and Bleak- 3 Kassabov and Matucci 2012.

Kassabov-Matucci,4 respectively. 4 Matucci 2008, Chapter 7.

* * *

Chapter 1 sets the scene, by defining the main trio F < T < V
of Thompson’s groups. F was originally introduced in the 1960s in
connection with Richard J. Thompson’s work on logic and associativity.
Today, F and its many generalisations form an ever-expanding family
of groups, and provide a rich source of interesting problems, examples
and counter-examples in group theory.

Thompson’s groups are sometimes called chameleons, because they
have many different definitions and appear in many different contexts.
We can see F, T and V via generators and relators using a finite
presentation; as automorphism groups5 of a certain algebra studied by 5 K. S. Brown 1987; Higman 1974.

Jónsson and Tarski; as homeomorphism groups of the Cantor set or
other fractals 6; as groups of tree-pair diagrams; as the ‘geometry group 6 Belk and Forrest 2018.

of the associative law7’; and as groups of certain piecewise-linear (PL) 7 Dehornoy 2005.

functions either on the unit interval or on the whole real line.8 While 8 Brin and Squier 2001.

we use other technologies, we focus on the PL function point of view
in particular, so that we can use the approach of and results from
Kassabov-Matucci’s article.

After defining F as a group of PL functions, we carefully explain
how these correspond to tree-pair diagrams. Doing so also helps to We define F, T and V in Section 1.1.

establish our notation, in which functions are placed to the right of
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their arguments—see page xvii. To generalise to T, we need to define
PL maps on the circle which preserve orientation. To pin down the
meaning of ‘preserve orientation’ we introduce the idea of a cyclic
order, which is modelled by a ternary (rather than binary) relation. For
completeness, we give a definition of V , though we don’t present any
results regarding V in this thesis.

Next, we introduce the generalised groups PLS,G(J), which allow us
to vary the permitted breakpoints S, permitted gradients G, and the
domain J of our functions. Particularly important are the subsets of The objects in this paragraph are

introduced in Section 1.2.one-bump and almost one-bump functions; these help us to decompose
elements of F into simple building blocks. To facilitate this decomposi-
tion it’s helpful to work with ‘Thompson-like’ maps whose domains
are not equal to their codomains. We define these formally, noting that
the collection of such maps form a groupoid we call PL2. To close
our introduction, we define the Cantor set C and identify it with the
Cantor space ∂T2 of infinite binary strings. This interacts nicely with
tree pair diagrams (which can be described using finite binary strings),
and will later allow us to identify the important points of an element.

Chapter 2 views elements of T as discrete dynamical systems on the
circle. We emphasise that our group elements are not just functions,
but objects that push points through an orbit over time. Here we
introduce some of the key ideas behind our later arguments, for
instance: the distinction between dyadic and nondyadic points on the This paragraph’s material features in

Section 2.1.circle; reducing problems in T to problems in F using conjugation by a
rotation; and the notion of the rotation number.

In order to classify the orbits of single points under an element of V ,
we give an overview of revealing tree-pairs, introduced by Brin9 and 9 Brin 2004, Section 10.

later studied by Salazar-Díaz.10 From these authors’ work, we learn that 10 O. P. Salazar-Díaz 2010.

every element of T has finitely many isolated periodic points, which
can be located directly from a revealing pair. These points are called Revealing pairs are introduced in

Section 2.2; the discussion regard-
ing important points takes place in
Section 2.3.

important,11 usually when thought of as points in the Cantor space. We

11 This term was introduced in the
article Bleak and O. Salazar-Díaz 2013,
after Corollary 2.3.

propose the name important points for their images in [0, 1] or the
circle, to highlight the fact that a dyadic important point can have two
important preimages. We can learn much from about an element α
from these points x, in particular by studying one-sided gradients at x.

Suppose we have two finite lists of points on the circle, both of the
same size. We say that these can be aligned if there is an element δ ∈ T
which sends the points of the first list to points of the second. Put
differently, the lists are alignable if some element of T restricts to a
bĳection between the two lists. We explain how to determine if two
lists are alignable, and how to construct an aligning map δ if so. We This alignment problem is discussed in

Section 2.4.do so by reducing to the analogous problem for F. This is our first
instance of a formal search problem.

Chapter 3 studies conjugacy in T. In its introduction, we summarise
the literature on conjugacy in Thompson’s groups. There are two
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important pieces to highlight for our purposes. Firstly, an article of
Belk and Matucci 12 gives a unified approach to solving the conjugacy 12 Belk and Matucci 2014.

decision problem in F, T and V by using their strand diagram technology.
They do not construct explicit conjugators (which would solve the
corresponding search problem), though we suggest that this may be
possible by studying their notion of a ‘cutting path’. Secondly, the
article of Kassabov-Matucci mentioned earlier solves the conjugacy
search problem (and more) in F. Let us also mention the full conjugacy
invariant for F provided by Gill–Short,13 itself based on work of Brin– 13 Gill and Short 2013.

Squier.14 14 Brin and Squier 2001.

In passing, we also mention an article by Barker, Duncan and the
author15 which discusses the power conjugacy problem in V . The 15 Barker, Duncan and Robertson 2016,

For the focus of the author’s contribu-
tion, see the article’s Remark 4.15.current author contributed to this article by correcting a lemma of

Higman; without this patch, Higman’s solution to the conjugacy
problem in V was incomplete. (The first complete solution was given
by Salazar-Díaz.16) Alongside this article, the author has also written 16 O. P. Salazar-Díaz 2010.

a collection of Python scripts 17 to perform computations in F, T and 17 Robertson 2015.

V . These scripts also produced TikZ code for the plots and tree pair
diagrams used throughout this document. While this article and
software are not part of this thesis, this work was part of the author’s
PhDproject, and sowe include it here for completeness. Note that other
software is available: in particular we note Roman Kogan’s nvTrees,18 18 Kogan 2008.

later modified by Collin Bleak to form vTrees.
After its introduction, the third chapter proceeds by establishing

constraints on conjugators. The key idea is if αγ � β, then the behaviour
of γ at a point x determines the behaviour of γ on the α-orbit of x. We
can attempt to use this idea to build a conjugator γ, though we have
issues like well-definedness and breakpoint locations to deal with. We Constraints on conjugators are dis-

cussed in Section 3.1; the search for
coarse and fine conjugators is covered
in Sections 3.3 and 3.4, respectively.

go on to establish Theorem A, by breaking the search for conjugators
into a search for coarse and fine conjugators. The former boils down
to the alignment problem solved at the end of Chapter 2; the latter is
essentially a conjugacy problem in F, which can solve thanks to the
work of Kassabov-Matucci. We prove19 that the algorithms we describe 19 Algorithms 3.3.5 and 3.4.8.

are correct and terminate.

Chapter 4 begins again with a summary of the literature. The main
source for centralisers in T is a chapter of Matucci’s thesis, representing
joint work with Bleak-Kassabov-Matucci. Before diving into that, we
review the structure of element centralisers in F, based on the article of
Kassabov-Matucci. As hinted at in earlier chapters, we are able to use This review takes place in Section 4.1.

their results to learn about the centralisers of elements of T which have
fixed points. This is achieved using conjugation by a rotation, which
usually makes an element of T look like an element of F.

The chapter of Matucci’s thesis mentioned above studies central-
isers in T, and related groups of circle homeomorphisms. With his
collaborators, he expresses the centraliser of an element as one of two
group extensions, depending on whether the element in question has
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finite or infinite order. We focus on the infinite order case, reproducing
Matucci’s proof which identifies the extension’s kernel and quotient. This material features in Section 4.2.

He shows that the kernel is contained in an F-type element centraliser;
we provide20 a missing detail which shows that this containment is an 20 Remark 4.2.2.

equality. Matucci et al also observe that its quotient is finite cyclic. We
point out21 that we can compute the order of this quotient, by using 21 Algorithm 4.2.3.

our solution to the conjugacy search problem.

Finally, Chapter 5 identifies the last piece needed to understand
these extensions: knowledge of how the quotient conjugates the kernel.
We consider a series of examples22 which give us a flavour of what 22 Section 5.1

to expect. In particular, we exhibit an example23 whose centraliser 23 Example 5.1.6, with some calcu-
lations deferred to Appendices A
and B.extension does not split. Next, we begin a general analysis of CT(α)

(for α nontorsion) by breaking the problem down into four separate
cases. Our cases are distinguished based upon the existence of dyadic
important points and whether or not the rotation number is zero.
Having a dyadic important point makes things easier; without it, we
need to constantly check that we are not constructing conjugators
possessing nondyadic breakpoints. Life is also easier with rotation
number zero, since we can appeal to results in F; without it, orbits of
points wrap multiple times around the circle, making it harder to see
how centralisers work.

Each case follows a similar routine:24 we define a block form for α, 24 The four cases make up Section 5.2,
and are summarised in Section 5.3.and show that this lets us easily write down centralising elements with

small rotation number ρ > 0. Then we explain how to find a maximal
block form, which produces centralising elements with ρ > 0 minimal.
From maximal block forms, we can directly observe the extension
structure of CT(α). All in all, we establish Theorem B after handling
each case in turn. To complete the story, we explain in each case how
to build a centraliser with given parameters.

* * *
Future work. Kassabov andMatucci execute a four-step plan25 to solve 25 See the introduction to Chapter 3.

the simultaneous conjugacy problem in F (and F-like groups). Together,
their first two steps solve the conjugacy problem, whereas their third
step involves understanding the intersection of element centralisers.
The results of this thesis establish the first two steps, and hopefully
make a contribution towards the third step. In the future, perhaps it
will be possible to continue generalising this plan to T.

While we do not discuss it in this thesis, Matucci’s thesis also gives
the centraliser of a torsion element as a group extension. Martínez-
Pérez and Nucinkis generalise 26 this to the groups Tr(Σ) parameterised 26 Martínez-Pérez and Nucinkis 2013.

by a ‘Cantor algebra’ Σ. It would be interesting to see how much of
the nontorsion extension structure found here carries through to this
more general setting.
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Notation

We’ll constantly be working with the action of a group G on a
space X. To distinguish these two types of object, we’ll use Greek
letters α, β, γ, . . . ∈ G to denote group elements27 and Roman letters 27 We make an exception for the usual

generators x0 and x1 of F.a , b , c , . . . ∈ X to denote points in the space.
The cyclic groups of finite order n and infinite order are denoted

by �n and �, respectively. We usually think of �n as the integers
{0, 1, . . . , n − 1 } under addition modulo n.

Let u be a finite word over the binary alphabet {0, 1 }. We use nuo
to denote the standard dyadic interval in I � [0, 1] with address28 u. 28 For example, n0o � [0, 1/2], n00o �

[0, 1/4] and n001o � [1/8, 1/4]. See
Definition 1.1.4 and the discussion
following it for full details.

Similarly, we use [u] to denote the set of infinite binary strings with u
as a prefix. The middle-thirds Cantor set is denoted C, and is homeo-
morphic to the Cantor space ∂T2 of infinite binary strings. We typically
work with the latter.

The interior, closure and boundary of a subspace A are denoted A◦,
A and ∂A, respectively.

We choose to always act on the right-hand side of an expression,
using juxtaposition to denote the result. This means a point x is sent
by a group element α to an element xα. Consequently, we conjugate
group elements according to the rule αβ � β−1αβ. Our shorthand for
‘X is acted on by α‘ is ‘X ⟲ α.’

To be consistent, we will use the same convention when dealing
with ordinary functions. An input x is fed in to the left of a function α,
with output xα. This can be extended into a ‘pipeline’ of composition
by placing additional functions α, β, . . . to the right. Thus our law
of composition reads x(αβ) � (xα)β. This matches the notation
Thompson and McKenzie used29 for right-actions of permutation 29 McKenzie and Thompson 1973,

above Definition 0.1.groups. Thompson later adopted30 a hybrid approach: see the table 30 Thompson 1980, also above Defini-
tion 0.1.below.

Under this scheme, the left, right and two-sided derivatives of α
at x are denoted x−α′, x+α′ and xα′, respectively. To clarify messier
expressions involving derivatives, we place points in square brackets
and functions in round brackets, using a centred dot to denote multi-
plication in�. For example, the chain rule reads x(αβ)′ � xα′ · [xα]β′.

Let φ : X → Y be a function. The restriction of φ to a subset W ⊆ X
is denoted φ

��
W . If in addition Y � X, i.e. if φ maps X to itself, then the

fixed point set { x ∈ X | xφ � x } is denoted Fix(φ).

Four possible ways to denote the eval-
uation of a composition. Thompson
used the lower-right option; the UK
typically uses the lower-left option. We
use the upper-right option, which pre-
serves the order of function symbols,
agrees with the domain → codomain
notation, and matches the left-to-right
order English is read in.

postcompose on

input from left right

left (x)αβ � ([x]β)α (x)αβ � ([x]α)β
right αβ(x) � α(β[x]) αβ(x) � β(α[x])
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Summary of contributions

Let us briefly describe the material in each chapter, highlighting (to
the best of our knowledge) the author’s contributions.

The material in Chapter 1 is largely standard.
Chapter 2 discusses more technical details, but again is largely

standard. We translate Proposition 2.1.4 to the language of the Cantor
space in Lemma 2.1.5; the result is not new, but this particular phrasing
is. In Section 2.2, we say nothing newwhatsoever about revealing pairs.
In Section 2.3 we discuss a version of important points suitable for the
action of T on the circle. Our discussion in Section 2.4 of aligning points
with T is new. With that said, we do make use of Kassabov–Matucci’s
ideas in this section; we prove our result by reducing to one of theirs.

Chapter 3 is mostly newmaterial. We are not aware of anyone using
a framework similar to ours in Section 3.1. In Sections 3.3 and 3.4, our
solution to the conjugacy search problem in T is new; but we note
that it is heavily inspired by Kassabov–Matucci’s solution to the same
problem in F.

Chapter 4 presents further background information. The material
in Section 4.1 is a re-expression of Kassabov–Matucci’s results on
centralisers in F, or otherwise an argument implicit in Matucci’s thesis.
Remark 4.2.2 is new, and addresses a small gap in an argument of
Matucci. Algorithm 4.2.3, and the material following it, is also new.

Chapter 5 is entirely original.
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1 The Thompson family of groups
To get started, we introduce the extended family of Thompson’s
groups. We start by defining the main trio—namely F, T and V—and
explain the ‘tree pair diagram’ calculus for computing in these groups.
There are many groups which generalise beyond this trio, but we only
introduce the family most relevant to our purposes, which relaxes the
restrictions on gradients and breakpoints. Finally we define Cantor
space, and explain how it can be usefulwhenworkingwith Thompson’s
groups.

1.1 The main trio of groups

TheThompson inquestion isRichard J. Thompson,who introduced1 his 1 Thompson 1965.

now eponymous groups in connection with his work on associativity.
It did not take long for them to become recognised as a source of
unusual or interesting examples in group theory. Thompson showed
that T and V are finitely-presented, infinite simple groups. While there
are other examples of groups with these three properties,2 T and V 2 Burger and Mozes 1997, Unlike T

and V , the groups constructed here are
additionally torsion-free!were the first such groups to be discovered.3 Later, F and V were used
3 Scott 1992.by Thompson and McKenzie4 to construct finitely-presented groups
4 McKenzie and Thompson 1973.with unsolvable word problem.

Today these groups—and a growing family of generalisations—
are studied in their own right. The first introductory paragraph in
Matucci’s thesis expresses why they capture researchers’ interest: in
particular he notes5 that ‘[e]ven though the groups have a simple 5 Matucci 2008, p. 1.

definition, many questions prove to be a challenge.’ Brin has referred
to Thompson’s groups as chameleons, recognising the wide array of
research areas in which these groups appear. In his words,6 ‘we see 6 Brin 1996.

that Thompson’s groups have the ability to be interesting objects in
many settings.’

Perhaps the most hands-on definition describes each group as a
collection of piecewise-linear (PL) functions. The standard introduction
to this point of view isCannon, Floyd andParry’s survey article.7 Strictly 7 Cannon, W. Floyd and Parry 1996.

speaking, we should say ‘piecewise-affine’ in place of piecewise-linear.
However, as Kassabov and Matucci note,8 ‘this abuse of language is 8 Kassabov and Matucci 2012, footnote

on p. 3.now common’.

1.1.1 Thompson’s group F
Express any number x as a binary
number B.b1b2b3 . . . , and let xn be the
truncation of this string to n binary
places. Then xn → x; hence the
dyadics are dense in the reals.

Definition 1.1.1. A dyadic rational (a dyadic for short) is a rational
number of the form a/2b , for integers a , b ∈ � with b ≥ 0. The set of
such rationals is a ring, denoted �[1/2].
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x0 x1 x0x1

Figure 1.1: Two example elements
x0 , x1 ∈ F, together with their com-
position x0x1. We will usually use
Greek letters to denote group elements,
but these xi are already named as in
Cannon, Floyd and Parry.

Definition 1.1.2. Let I � [0, 1] be the unit interval. Thompson’s group F
is the set of PL homeomorphisms I → I with

• finitely many linear segments,

• gradients equal to integer powers of two, and with

• breakpoints (x , y) at dyadic rational coordinates.

We define the breakpoints of a PL
function α to be the endpoints (x , y)
of each linear segment of α. In an
abuse of our notation, we sometimes
just call x a breakpoint, since we can
recover y � xα. This convention—
using x-coordinates alone—is normally
used in the literature.
For example, the points (0, 0) and
(1, 1) are breakpoints of every function
α ∈ F. In the literature, we’d just say
that 0 and 1 are breakpoints of every
such α.

This set forms a group under the operation of function composition,
which is usually denoted by juxtaposition (c.f. the remark on page xvii).

Because each linear segment has a positive gradient, the elements
of F are all increasing functions on I. In particular, every element α ∈ F
fixes the minimal point 0 and fixes the maximal point 1.

We can generate F using only two elements x0 and x1; these are
shown in Figure 1.1. The usual presentation involving this pair is 9 9 Cannon, W. Floyd and Parry 1996,

Section 3.

〈x0 , x1 | [x0x−1
1 , x−1

0 x1x0], [x0x−1
1 , x−2

0 x1x2
0]〉 . (1.1)

The relators can be made simpler at the cost of adding more generators,
resulting in the alternative presentation We never make use of a presentation

for F: these are just included for
completeness.〈x0 , x1 , x2 , . . . | x−1

k xn xk � xn+1 for k < n〉 .

There are other useful presentations for F too: see Dehornoy10 and 10 Dehornoy 2005.

Lodha-Moore.11 11 Lodha and Moore 2016, Section 3.

At first glance, it seems a little awkward to perform calculations in
this group. Imagine working out the composition of

tx0 �


0 + 1/2(t − 0) if 0 ≤ t < 1/2
1/4 + (t − 1/2) if 1/2 ≤ t < 3/4
1/2 + 2(t − 3/4) if 3/4 ≤ t < 1

(1.2)

with

tx1 �


0 + 1/2(t − 0) if 0 ≤ t < 3/4
3/8 + (t − 3/4) if 3/4 ≤ t < 7/8
1/2 + 4(t − 7/8) if 7/8 ≤ t < 1.

(1.3)
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The computation would be routine, but also tedious and unenlighten-
ing. To avoid this, it’s worth thinking a little more carefully about how
we can construct and represent an element of F.

Suppose we have a generic element α ∈ F. Name the x-coordinates
of its breakpoints 0 � x0 < x1 < · · · < xn � 1. Each of these n + 1
numbers is a dyadic rational, and the list partitions the interval into
n cells { [xi , xi+1] }0≤i<n . Call such a list a dyadic partition of the unit
interval. The breakpoints’ y-coordinates give us a second partition
0 � y0 < y1 < · · · < yn � 1. Because both lists have the same size, we
can completely describe α by specifying that it is the unique function
mapping [xi , xi+1] linearly and increasingly to [yi , yi+1].

Do all such pairs of partitions correspond to an element of F? The
answer is no. The lists xi : 0 < 1/2 < 1 and yi : 0 < 1/4 < 1 are perfectly
valid dyadic partitions with the same length, but the PL map induced
by them would send [1/2, 1] 7→ [1/4, 1], with gradient 3/4÷ 1/2 � 3/2. This
is not a power of two, and so the corresponding function does not
belong to F. Thus we cannot allow ourselves to use any old pair of
dyadic partitions.

0

0

1/2

1/4

3/4

1/2

1

1

Figure 1.2: The element x0, viewed
as a dyadic rearrangement. The top
and bottom edges of this rectangle
are a pair of dyadic subdivisions
which define x0. We call this kind of
visualisation a rectangle diagram.

The solution is the notion of a dyadic subdivision, which is a stricter
form of dyadic partition. We define this recursively by two rules:

1. The list 0 < 1 is a dyadic subdivision of I.

2. If x0 < · · · < xi < xi+1 < · · · < xn is a dyadic subdivision of I, so
too is x0 < · · · < xi < m < xi+1 < · · · < xn , where m � (xi + xi+1)/2.
The resulting partition is called an expansion of the former, having
subdivided the interval [xi , xi+1].

In words: we start with the whole interval and cut it exactly in half.
We are then allowed to repeatedly cut any subinterval into exactly half.
These subintervals always take the form [a/2n , (a + 1)/2n] for integers
a , n ≥ 0 with a + 1 ≤ 2n . Any interval of this form is called a standard
dyadic interval.

0 1/2 3/4 1

0 1/2 5/8 3/4 1

Figure 1.3: We can compose elements
by stacking their rectangle diagrams.
This is x0 on top of x1, corresponding
to the product x0x1. The result need
not immediately be a rectangle dia-
gram. Here we had to add extra dotted
lines because the interval [3/4, 1] is not
mapped linearly by x0x1; nor is [0, 1/2]
mapped linearly by (x0x1)−1.

We may now take two dyadic subdivisions with the same number
of cells, and use the same recipe as before (ith cell mapped linearly
to the ith cell) to build a PL function. Call the result of this a dyadic
rearrangement. Because a standard dyadic interval’s width is always a
power of two, we will find that a dyadic rearrangement is always an
element α ∈ F. Conversely, given any element α ∈ F, we may choose N
sufficiently large such that α is linear on every standard dyadic interval
of width 2−N . Each of these intervals is mapped to some other standard
dyadic interval, because each linear segment has gradient equal to a
power of two. Hence α is a dyadic rearrangement.

Proposition 1.1.3. F is exactly the group of dyadic rearrangements of the
unit interval.

Figure 1.2 shows an example of a rectangle diagram,12 a kind of

12 The name ‘rectangle diagrams’ was
used in Cannon, W. Floyd and Parry
1996, above Example 1.2; they attribute
the idea to Thurston.schematic for reasoning about elements α, β ∈ F.We can compute with
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these diagrams: to build a rectangle diagram for αβ, stack a diagram
for α on top of a diagram for β. To collapse the stack down to a single
rectangle, we may need to cut the dyadic partitions into smaller pieces
(as in Figure 1.3). This is because we need a finer dyadic subdivision to
ensure that each subinterval [u , v] of α’s domain is sent to an interval
[uα, vα] which is mapped linearly by β. To keep things balanced, any
refinements we make to α’s domain partition need to be reflected by
refinements to β’s range partition.

1.1.2 Tree pair diagrams

As nice as these visualisations are, we can’t hope to use them for
extended calculations. If we have very fine subdivisions, we’d need
to be able to draw rectangle diagrams very accurately! Is there a
compromise—a graphical notation which describes dyadic partitions
without literally drawing them in the plane? Figure 1.4: A forest of three binary

trees. We always draw parent vertices
above their children, and left children
to the left of right children; in other
words, our trees grow downwards.
Left: the second smallest possible

binary tree, called a caret. Right: an
unbalanced tree. This one in particular
is called a right vine.

Definition 1.1.4. For our purposes, a binary tree is a directed graph T
with at least one vertex, satisfying the following properties.

Tree. T is connected and contains no (undirected) cycles.

Rooted. T has exactly one vertex with indegree 0. This vertex is called
the root of T.

Full binary. Every vertex has outdegree 2 or 0. Such vertices are called
internal vertices and leaves, respectively.

Ordered. A node’s outward edges point to its children, which are
ordered into a left child and a right child.

A small number of examples—including a caret—are shown in Fig-
ure 1.4.

The infinite binary tree T2 (see Figure 1.5) is the union of all finite
binary trees.13 It can be defined explicitly as the graph with vertex

13 That is, the union taken after identify-
ing roots with roots, left children with
left children and right children with
right children.set {0, 1 }∗, that is the set of all finite strings over {0, 1 }. The empty

string ε is the root of T2; the left child of a string w is w0, and the right
child is w1. The string w corresponding to a given vertex is called the

We write letters of an alphabet in a a
teletype font family. For instance,
we write |1| � 1. Variables denoting
letters or strings of letters are set in
serif italics as with other variables.

address of the vertex. Its length |w | is the number of binary digits used
to form the string; note that |ε | � 0.

Apart from T2, we will only be interested in finite binary trees (since
these describe elements of F, see below). Thus when we say “binary
tree”, we usually mean “finite binary tree”.

Figure 1.5: (An approximation of) the
infinite binary tree T2. For each n ≥ 0,
there are exactly 2n vertices whose
address has length n.
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The graph structure of T2 is exactly the inclusion structure on the
set of standard dyadic intervals. This is because we have a largest
such interval, I � [0, 1], and any such interval [a , b] splits into two
smaller ones: the left child [a , (a+b)/2] and the right child [(a+b)/2, b].
Applying this rule repeatedly, we see for example that vertices with
addresses 00000 and 1001 correspond to the intervals [0, 1/32] and
[9/16, 10/16], respectively. We use nwo to denote the standard dyadic
interval with address w.

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 2/4]

[1/2, 1]

[2/4, 3/4] [3/4, 1]
Figure 1.6: A small part of T2, labelled
with standard dyadic intervals.

If T is a binary tree, we can identify the root of T with the root
of T2. Identifying left (right) children in T with left (right) children
in T2 allows us to see T as a subtree of T2, and so give addresses to T’s
vertices. We will usually identify a vertex with its address.

If we collect together the standard dyadic intervals associated to the
leaves of a finite binary tree T, we recover a dyadic subdivision14 of I. 14 The root corresponds to the trivial

subdivision 0 < 1, and each internal
vertex of T with address a describes an
expansion which subdivides nao.

Thus we can use a pair of finite binary trees with the same number of
leaves to represent an element of F.

1

2 3 1 2

3
x0

1

2

3 4

1

2 3

4

x1

Figure 1.7: Tree pair diagrams for x0
and x1. To aid the eye, we use dashed
lines to denote edges which belong to
one of D and R, but not both.

Definition 1.1.5. A tree pair diagram is a triple (D , `, R). Here D and R
are finite binary trees with the same number of leaves, called the domain
and range trees respectively. The entry ` is a bĳection from the leaves
of D to the leaves of R.

These parameters determine an element α ∈ F (later T or V) as
follows: if d` � r then α linearly maps the standard dyadic interval
ndo to the interval nro. We say that the triple (D , `, R) is a tree pair
diagram for α.

The leaves of a binary tree are ordered by the lexicographic ordering
of their addresses. For instance, the domain tree of x0 in Figure 1.7
orders its leaves 1 < 2 < 3 because 0 <lex 10 <lex 11. When working
in F, our group elements always preserve the order of the interval, so
our leaf bĳection must in turn preserve the order of the leaves. This
means that ` is redundant as far as F is concerned—though we’ll see
shortly that it’s needed for the supergroups T and V .

Why should we bother with tree pair diagrams? After all, they’re
just a graphical means to denote two dyadic subdivisions. Their
usefulness becomes apparent when we need to perform computations
in F. All the computations needed to compose and invert PL maps can
be replaced by simpler (and non-numeric) operations on tree pairs.

1 2 3 4

1 2

3

4
x0

1 2

3 4

5

1 2 3 4

5x0

Figure 1.8: Two alternative tree pairs
for x0; compare to Figure 1.7.

Tree pair diagrams for a given element are not unique. Suppose
(D , `, R) is a tree pair for α, and pick any leaf d of D. Let D′ be the
result of attaching a caret to D at d; similarly let R′ be the result of
attaching a caret to d′`. Then (D′, `′, R′) is also a tree pair for α. Here
`′ sends the left (right) child of d to the left (right) child of d`, and
otherwise behaves as ` does. This process of attaching two carets is
called expanding the tree pair; we say that (D′, `′, R′) is an expansion of
(D , `, R). The reversal of an expansion is called a contraction. If a tree
pair cannot be contracted, it is said to be reduced.
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Proposition 1.1.6. Every element of F has a unique reduced tree pair
diagram, formed by repeatedly contracting until contraction is no longer
possible.15 Moreover, different reduced tree pair diagrams describe different 15 To prove the first sentence, use

Newman’s Diamond Lemma, as
in e.g. Baader and Nipkow 2008,
Lemma 2.7.2.

elements of F, so F is in bĳective correspondence with the set of reduced tree
pair diagrams.

While the uniqueness of reduced tree pairs is useful, being reduced
is often too restrictive for our needs. Often a larger tree pair gives a
more informative description of a given element in T. This is made
precise using Brin’s notion of a revealing pair, which we discuss briefly
in Section 2.2. For now, we’ll see that being able to expand and contract
lets us perform computations in F.

Suppose we are given two tree pairs (A, `, B) representing α ∈ F
and (C,m ,D) representing β ∈ F. How can we find a tree pair diagram
for the product αβ? We can always expand to new tree pairs (A′, `′, B′)
and (C′,m′,D′) such that B′ � C′. Then their product is given by This expansion corresponds to sub-

dividing dyadic partitions. Expanding
so that B′ � C′ ensures that αβ acts
linearly on the intervals corresponding
to the leaves of A′.

removing the intermediate trees and composing leaf bĳections. In
symbols, multiplication is given by

(A′, `′, B′) · (B′,m′,D′) � (A′, `′m′,D′) .

The smallest choice for B′ � C′ is B ∪ C; we formally define the union
of binary trees in Definition 2.2.1.

We illustrate this with an example, using the tree pairs in Figure 1.7,
to compute a tree pair for the product x0x1. To do so, we need to
expand our input tree pairs to larger pairs with five leaves.

x0x1 �

©­­­­­­­«
1

2 3 1 2

3
x0

ª®®®®®®®¬

©­­­­­­­«
1

2

3 4

1

2 3

4

x1

ª®®®®®®®¬
�

©­­­­­­­«
1

2

3

4 5

1 2 3

4 5

x0

ª®®®®®®®¬

©­­­­­­­«
1 2 3

4 5

1 2

3 4

5

x1

ª®®®®®®®¬
�

1

2

3

4 5

1 2

3 4

5

x0x1

.

1 2

3 1

2 3

x−1
0

Figure 1.9: A tree pair diagram for x−1
0 .

Effectively, we just took the diagram
in Figure 1.7 and reversed the arrow.
Strictly speaking, we also inverted
the leaf bĳection—though this isn’t
immediately obvious since id−1

� id.

Because the tree pairs for the identity element all take the form
(X, id,X), it follows that inverses are given by

(A, `, B)−1
� (B, `−1 ,A) .
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Note that we can invert a tree pair directly, whereas multiplication is
only defined up to equivalence tree pairs.

1.1.3 Thompson’s group T

Our next group T is defined as a group of maps of the circle S1,
rather than the interval I. We think of the circle as the quotient space
[0, 1]/{0 ∼ 1 }, or alternatively as the quotient �/�. This allows us to
use 0 as a fixed origin for the circle.

We will need an orientation of the circle, to generalise the orient-
ation of I defined by the binary relation <. To define a cyclic order
systematically, we’ll need to use a ternary relation.16 16 See e.g. Tararin 2001 for more details.

Definition 1.1.7 (Cyclic order). Let X be a set. A ternary relation R on X
is a subset R ⊆ X3. We write x → y → z to mean that (x , y , z) ∈ R.
Such a relation is called a cyclic order on X if it satisfies the following
axioms, for any elements u , x , y , z ∈ X.

Cyclicity. If x → y → z, then y → z → x.

Antisymmetry. If x → y → z, then it is not true that z → y → x.

Transitivity. If x → y → z and x → z → u, then x → y → u.

Irreflexivity. If x → y → z, then x , y , z are pairwise distinct.

Totality. If x , y , z are pairwise distinct, then either x → y → z or
z → y → x.

If these axioms are satisfied, whenever x → y → z we say that the list
of points x , y , z is in cyclic order.

Notation There doesn’t seem to be a universally agreed-upon notation
for expressing that three points are in cyclic order. Some authors write
(x , y , z) ∈ R explicitly; others write R(x , y , z) or use juxtaposition to
say x yz; yet another alternative is [x , y , z] or (x , y , z). As mentioned
above, we will use the notation17 x → y → z. This extends to the

17 We suggest reading this relation as ‘y
is between x and z‘.

shorthand x0 → · · · → xn−1, which means that that xi → xi+1 → xi+2

for every 0 ≤ i < n − 2. If n ∈ {1, 2 } then the shorthand has no
meaning: in these circumstances x0 → · · · → xn−1 is a vacuously true
statement.

We will often use make use of a list of points x0 , . . . , xn−1 for which
x0 → · · · → xn−1 → x0 (even in the cases18 n � 1 or 2). wrapping back

18 Read literally, x0 → · · · → xn−1 → x0
means

x0 → x0 when n � 1, and
x0 → x1 → x0 when n � 2.

The former is meaningless; the latter is
always false, by the irreflexivity axiom.
To get around this, when n � 1 or 2

we define the shorthand x0 → · · · →
xn−1 → x0 to be vacuously true. To
be explicit, this applies when there
is at least one explicit arrow after the
→ · · · → shorthand, and when the first
and last points (x0 here) are equal.

around to x1 ensures that our list of points winds around the circle
exactly once (c.f. Figure 1.10).

We define open, closed and half-open arcs from x to z , x by the
formulae

Note that we don’t define arcs (x , x) or
[x , x] from and to the same point.

(x , z) � { y ∈ X | x → y → z } [x , z] � (x , z) ∪ { x , z }
[x , z) � (x , z) ∪ { x } (x , z] � (x , z) ∪ { z } .

Notice for instance that X � (x , z) ∪ [z , x], due to the totality axiom.
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x

u

y

z

Figure 1.10: Certainly x → y → z
and y → z → u, but it is not true that
x → y → u. In terms of our shorthand
notation, we have x → y → z → u.
Problems start occurring when we
travel more than once round the
circumference of our circle. This is
characterised by the fact that x → y →
z → u → x is false.

At first glance, the transitivity axiom doesn’t look like the usual
notion of transitivity for a binary relation. However, if we omit the
initial “x →” from each relation, the axiom reads

if y → z and z → u, then y → u,

which looks reassuringly like the transitivity we are familiar with for
binary relations. In this way, we can ‘cut’ our cyclic order at x to create
a new linear order <x on S1 \ { x }, defined by

y <x z if and only if x → y → z . (1.4)

Indeed, one way to view a cyclic order is as a family of linear orders.19

19 Calegari 2004, Definition 2.2.1
Remark 1.1.8. Wemight guess that the transitivity axiom takes the form

if x → y → z and y → z → u, then x → y → u.

This is not equivalent to the transitivity axiom in Definition 1.1.7, and
it is not a correct model of circular order—see Figure 1.10.

Definition 1.1.9. Let S1 � [0, 1]/{0 ∼ 1 } be the circle. Also let
R0 � { (x , y , z) ∈ [0, 1) | x < y < z }, where < is the usual order
on [0, 1). We define a cyclic order R on the circle by the formula

R is called the cyclic closure of R0.R � R0 ∪ { (y , z , x) | (x , y , z) ∈ R0 } ∪ { (z , x , y) | (x , y , z) ∈ R0 } .

In our visualisations, x → y → z will mean that the anticlockwise arc
from x to z passes through y.

The circle is equipped with a metric defined on points 0 ≤ x , y < 1
by d(x , y) � min{ |x − y |, 1 − |x − y | }. For instance, d(1/3, 2/3) �
min{ 1/3, 2/3 } � 1/3 and d(8/9, 1/9) � min{ 7/9, 29 } � 2/9. Addition and
subtraction on the circle are always evaluated modulo 1. This means
that x − ε → x → x + ε always holds true, for any point x and
distance ε < 1/2.

With that out of the way, we can make a concrete definition of T.

Definition 1.1.10. Let S1 � [0, 1]/{0 ∼ 1 } be the circle. Thompson’s
group T is the set of orientation-preserving20 PL homeomorphisms

20 On a linearly ordered set like I,
‘orientation-preserving’ meant that
x < y �⇒ xα < yα. With a cyclic
order, ‘orientation-preserving’ means
that x → y → z �⇒ xα→ yα→ zα.

S1 → S1 with

• finitely many linear segments,

• gradients equal to integer powers of two, and with

• breakpoints at dyadic rational coordinates.

This set forms a group under function composition.
1 2

3

4

3 4

1

2α

Figure 1.11: An example element α ∈ T.
Because the domain and range trees
are identical, α must have finite order
dividing the number of leaves.

Just like in F, a given element α ∈ T will map each standard dyadic
interval of width 2−N linearly, provided N is sufficiently large. In
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other words, the linear segments can be still be described by a pair
of dyadic subdivisions of the same size. What’s new is that elements
of T no longer have to fix the point 0, which is always fixed by every
element of F. Indeed, elements of T need not fix any part of the
circle whatsoever—see Figure 1.14 for instance. This allows us to
have nontrivial torsion elements21 in T; in contrast, there are no such

21 We can construct an element α ∈ T
with any given order n ∈ � as follows.
Pick a tree S with n leaves, and use
this as the domain and range tree of α.
Then define α to map the ith leaf of S
to the next leaf in the circular ordering.

elements in F (c.f. Equation (1.5) and Proposition 2.3.19, respectively).
Say the domain and range of α ∈ T is partitioned into standard

dyadic intervals D0 , . . . ,Dn−1 and R0 , . . . , Rn−1. One extra piece of
information is required: we need to specify how the {Di } are mapped
to the {Ri }. As elements of T are continuous functions preserving
cyclic order, we need only choose a single domain interval Di and
specify its image Diα � R j . Then continuity leads us to conclude that
Di+kα � R j+k for each k, with subscripts modulo n.

0 0

1/8

1/8

1/4

1/4

1/21/2 α

Figure 1.12: To adapt the rectangle
diagrams introduced in Figure 1.2
to T, we need replace the the top and
bottom intervals by circles. We’ve done
so here using an annulus. The element
visualised here is α from Figure 1.11.

To represent this on a tree pair diagram, we make use of the leaf
bĳection ` in Definition 1.1.5. The range tree’s leaves no longer have to
be labelled 1, . . . , n from left to right; instead, any cyclic permutation
of these numbers is permitted. Thus we have to take a little more
care when multiplying, to make sure we correctly compose the leaf
bĳections. For instance, if α is the element shown in Figure 1.11, then

α2
�

©­­­­­­­« 1 2

3

4

3 4

1

2α

ª®®®®®®®¬

©­­­­­­­« 1 2

3

4

3 4

1

2α

ª®®®®®®®¬
�

1 2

3

4

1 2

3

4α2
� id .

(1.5)

0 0

1/4

1/2 1/2

3/4

x0

Figure 1.13: The element x0 ∈ F
displayed as a circle homeomorphism
fixing 0.

Remark 1.1.11. As currently defined, the elements of F are not literally
elements of T (since functions I → I are not literally functions S1 → S1).
How do we settle this against our earlier claims that F < T? We have a
number of different options.

α

Figure 1.14: The element α ∈ T from
Figures 1.11 and 1.12, displayed as a PL
map on [0, 1)with a discontinuity. As
the graph never crosses the diagonal
y � x, α has no fixed points.

1. Let π be the quotient map I → S1 which identifies 0 with 1. Any
element α : I → I in F must fix the point 0 and must fix the point 1.
This ensures that there is a continuous map α0 : S1 → S1 satisfying
πα0 � απ. Now α0 ∈ T because α0 inherits the breakpoint and
gradient properties of α.

Because the process of replacing α 7→ α0 is reversible 22 and respects

22 Given α0, define α by setting tα �

tα0 for 0 ≤ t < 1 and 1α � 1.

composition, it describes an embedding F ↪→ T. Informally, we
make F look like T by bending the interval into a circle—see Fig-
ure 1.13. In doing so, F becomes the subgroup of T whose elements
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fix 0.

2. Alternatively, we could make T look more like F. Because we view
the circle S1 as [0, 1]/{0 ∼ 1 }, we can see a function α0 ∈ T as
a function α : [0, 1) → [0, 1). If 0α0 ∈ 0, then this function α is
continuous (and belongs to the restriction of F to [0, 1). Otherwise
0α0 , 0, which means α will contain a discontinuity at the point 23 23 Specifically, as we approach (0α−1

0 , 1)
from the left, we jump down to
(0α−1

0 , 0).where α0 wraps around from 1 to 0.

All in all, we can see T as a group of PL bĳections [0, 1) → [0, 1)
which are right-continuous (see Figure 1.14). Since any element
of F can be recovered from its restriction to [0, 1), we obtain an
embedding F ↪→ T.

3. A third option is to regard F and T as being groups of (equivalence
classes of) tree pair diagrams. Then F is literally a subgroup of T.

4. In Section 1.2.3 we introduce Cantor space, and in particular the
Cantor space ∂T2 consisting of infinite binary strings. We can view
F, T and V (the latter defined below) as groups of homeomorphisms
of Cantor space; this is arguably the most natural way to think
about Thompson’s groups. From this point of view, the subgroup
relationships F < T < V are immediate. Even better, we don’t need
to spend effort worrying about the difference between [0, 1], [0, 1)
and S1: we have just one ambient space permuted by the main trio
of Thompson’s groups.

c

1

2 3

2

3 1

c

Figure 1.15: Cannon-Floyd-Parry’s
generator c for T. Despite being
only of order three, c can be used in
conjunction with x0 and x1 to produce
any element of T (which can have
arbitrarily large order).

Remark 1.1.12. We can augment Presentation (1.1) to form a presentation
for T. In addition to x0 and x1, we require only one new generator c
which allows us to cyclically permute leaves. Cannon-Floyd-Parry
show24 that four extra relations (in addition to the two between the the

24 Cannon, W. Floyd and Parry 1996,
Section 5.

xi) are sufficient to build a presentation of T.

1.1.4 Thompson’s group V

The largest of Thompson’s main trio can be again defined as a group
of PL functions on the interval. We take the viewpoint of Item 2 of
Remark 1.1.11, thinking of our elements as right-continuous functions α
to and from [0, 1). This allows discontinuities to exist for α (and not
just its derivative like in F).

Definition 1.1.13. Thompson’s group V is the set of right-continuous PL
bĳections [0, 1) → [0, 1)with

• finitely many linear segments,25 25 Strictly speaking, the linear segments
are now closed on the left and open on
the right.• gradients equal to integer powers of two, and with

• breakpoints at dyadic rational coordinates.

This set forms a group under function composition.
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Unlike inT, elements ofV canhave arbitrarilymanydiscontinuities—
compare Figures 1.14 and 1.16. Thus ifwe have twodyadic subdivisions
D and R with the same number of cells n, there are no restrictions
on how V must send D’s cells to R’s cells—any of the n! matchings
describe a valid element of V . The tree pair approach to V is perfectly
valid too—to accommodate V , we just allow an arbitrary bĳection `
between the leaves in a diagram (D , `, R).

β

1

2 3

4

2 4 3 1

β

Figure 1.16: An example element
β ∈ V , which turns out to have order 5.
We have not drawn the discontinuity
markers for the sake of clarity.

Because V allows us total freedom to rearrange tree pair leaves (or
to rearrange subdivisions, if you prefer), its elements exhibit a vast
variety of behaviours. To see this, let G be any finite group, viewed
as a permutation group on n elements {1, 2, . . . , n }. Choose a binary
tree D with n leaves, and number the leaves 1, . . . , n. Then the set of
tree pair diagrams { (D , `,D) | ` ∈ G } is a subgroup of V isomorphic
to G. Thus every finite group embeds into V! In contrast, the finite
subgroups of T are exactly the cyclic groups.26

26 Geoghegan and Varisco 2017, The-
orem 3.1.

To identify and control the new behaviour possible in V , it is
useful to work with carefully chosen tree pair diagrams called revealing
pairs—see Section 2.2.

We can further augment Cannon-Floyd-Parry’s presentation for T
(Remark 1.1.12) to form a presentation for V , again using only one
new generator π. In addition to CFP’s six relations, we need to add
a further eight relations27 to account for the introduction of π. More 27 Cannon, W. Floyd and Parry 1996,

Section 6.recently, Bleak and Quick have produced28 a ‘human-interpretable’ 28 Bleak and Quick 2017.
presentation with 3 generators and 8 relations; Tietze transformations
reduce this to 2 generators and 7 relations.

π0

1

2 3

2

1 3

π0

Figure 1.17: Cannon-Floyd-Parry’s
generator π0 for V . This provides a
non-cyclic leaf permutation, which can
be used together with x0, x1 and c to
produce any element of V .

1.2 Other points of view

There are many different tools and languages we can use to study
Thompson’s family of groups. (Indeed, this is partly why these groups
interest so many researchers!) In this section we introduce other ways
to think about the main trio, and some generalised Thompson groups
which are will be relevant later.

1.2.1 Generalised gradients and breakpoints

We can tweak the definition of F to define a similar groupwith different
choice of gradients and breakpoints.

Definition 1.2.1. Let S be an additive subgroup of � and let G be a
subgroup of the multiplicative group { g ∈ �>0 | Sg � S }. We define
the group PLS,G(I) to be the group of PL homeomorphisms I → I with

• finitely many linear segments,

• gradients in G, and with

• breakpoints’ coordinates in S × S.

As usual, I denotes the unit interval [0, 1].
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We use the notation of Kassabov-Matucci.29 For completeness, we 29 Kassabov and Matucci 2012, Sec-
tion 2.1.note that PLS,G(I) is called G(I; A; p) by Bieri-Strebel 30 and F(`,A, P) 30 Bieri and Strebel 2016.

by Stein.31 Our S (resp. G and I) corresponds to Bieri-Strebel’s A (resp. 31 Stein 1992.

P and I) and Stein’s A (resp. P and `).
There are three important choices of gradient and breakpoints to

highlight. Taking S � �[1/2] and G � 2� � {2n | n ∈ � } yields
Thompson’s group F. We write PL2 as shorthand for PL�[1/2], 2� . On
the other hand, taking S � � and G � �>0 yields the largest group of
this type, with no restrictions on gradients or breakpoints. We write
PL+ as shorthand for PL�,�>0 . If is often convenient to work in this
group when we want to reason about the PL nature of the functions
being studied, and not the distinction F makes between dyadics and
nondyadics.

In the middle lies the choice S � � and G � �>0, which we denote
as PL� for short. We can think of PL� as an approximation to PL+

in which computation is feasible, since computers can work with
rationals, but not reals. All of these sit inside the full group Homeo+(I)
of increasing homeomorphisms of the interval.

By changing these functions to be orientation-preserving maps of
the circle, we get a family PLS,G(S1) of PL homeomorphisms of S1.
Important examples are T � PL2(S1) and PL+(S1); again these sit inside
the full group Homeo+(S1) of orientation-preserving homeomorph-
isms. Similarly, using right-continuous functions on [0, 1) yields a
V-like family of groups.

If we have a compact interval J ⊆ � with endpoints in S, we
define PLS,G(J) to be the group of PL homeomorphisms J → J subject
to the same restrictions as in Definition 1.2.1. Let J1 and J2 be two such
intervals. If the symbol PLS,G is one of the three cases PL2, PL� or PL+

above, then the groups PLS,G(J1) and PLS,G(J2) are isomorphic. This is
not true32 for general parameters S and G.

32 Kassabov and Matucci 2012, Re-
mark 9.5

There are two natural definitions33 of PLS,G(J)when J has endpoints

33 Kassabov and Matucci 2012, Re-
mark 2.2. Our group PLflat is their
group PLFix�I\J .

not in S.

1/3

1/3

2/3

2/3

γ

1 2

3

4

5 6

7 1

2 3

4

5

6 7

γ

Figure 1.18: Let J � [1/3, 2/3] and
K � I. The element γ ∈ F is such that
the restriction of γ to J is in PLrest

2 (J),
but γ is not in PLflat

2 (J). (‘Rest’ stands
for ‘restriction’.)

Definition 1.2.2. Let S and G be as in Definition 1.2.1. Also let
J � [ j1 , j2] and K be compact real intervals with J ⊆ K and ∂K ∈ S.
The groups PLrest

S,G(J) and PLflat
S,G(J) are defined to be

PLrest
S,G(J) � {α

��
J | α ∈ PLS,G(K) fixes j1 and j2 }

and PLflat
S,G(J) � {α ∈ PLS,G(K) | tα � t for all t ∈ K \ J } .

Any element of PLflat
S,G(J) can be uniquely recovered from its restriction

to J, so we can think of this group as containing functions J → J. If we
do so, then PLflat

S,G(J) is a subgroup of PLrest
S,G(J).

What’s the difference between these groups? If ∂J ⊆ S then these
groups are identical to PLS,G(J). For each α in PLflat

S,G(J), the left gradient
j−1 α
′ and right gradient j+2 α

′ at J’s endpoints must be equal to 1, since
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beyond these points α is the identity. If one of J’s endpoints, say j1, is
not in S, then we must have an internal gradient j+1 α

′ also equal to 1.
In this case, the initial gradient of α

��
J cannot be steep (> 1) or shallow

(< 1); hence the term ‘flat’. In contrast, there is no such restriction on
j+1 α
′ (or j−2 α

′) if α ∈ PLrest
S,G(J), allowing the latter group to contain more

elements—see Figure 1.18.
In short, we have PLflat

S,G(J) ≤ PLrest
S,G(J). Equality holds if ∂J ⊆ S;

otherwise the equality might not hold.
We will want to work with the fullest possible set of PL functions

later, so we make the convention that PLS,G always refers to PLrest
S,G.

Finally, Kassabov and Matucci define34 three subsets of PLS,G(J). 34 Kassabov and Matucci 2012, Defini-
tions 2.3–2.4.Their dynamics are relatively straightforward, so functions in these

sets will be important objects of study in later chapters.

Definition 1.2.3. Let J � [ j1 , j2] be a real interval. We define two sets
(in fact semigroups) of functions

PL<S,G(J) � {α ∈ PLS,G(J) | tα < t for all j1 < t < j2 }
and PL>S,G(J) � {α ∈ PLS,G(J) | tα > t for all j1 < t < j2 }

whose graphs are strictly below (above) the diagonal. Elements in
either set are called one-bump functions. One-bump functions also For instance, x0 in Figure 1.1 is a one-

bump function below the diagonal; its
inverse x−1

0 is the same, but with graph
above the diagonal. In the same figure,
x1 is not a one-bump function.

belong to a larger set

PL0
S,G(J) � {α ∈ PLS,G(J) | if tα � t for some j1 < t < j2, then t < S }

whose elements are known as almost one-bump functions. In this larger See γ in Figure 1.18 for an example of
an almost one-bump function on [0, 1]
which is not one-bump.

set, elements’ graphs may cross the diagonal—but if so, their gradients
cannot change while crossing. Notice that id < PL0

S,G(J).
Almost one-bump functions are a useful collection of ‘building

blocks’, because any function in PLS,G(J) can be formed by gluing
together almost one-bump functions and copies of the identity. This
allows Kassabov and Matucci to reduce much of their analysis in
PLS,G(J) to only consider almost one-bump functions—a strategy we
will use too.

1.2.2 More piecewise-linear maps

So far, we have only spoken about piecewise linear maps to and from
the same interval, say X. Later we will want to consider PL maps on
another interval Y, and it will be useful to have a way of producing
maps on Y from maps on X.

Σ

Σ−1

Figure 1.19: The simplest PL2 map
Σ : [0, 1] → [0, 1/2] has only one
linear segment. The same is true of its
inverse Σ−1.

Definition 1.2.4. Let X and Y be compact real intervals. We define

Notice that we do not require the
endpoints (or ‘exterior breakpoints’)
∂X or ∂Y to be dyadic.

PL2(X,Y) to be the set of PL homeomorphisms X → Y with

• finitely many linear segments,

• gradients equal to integer powers of two; and with
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• interior breakpoints at dyadic rational coordinates.

Maps of this form are called PL2 maps, or sometimes said to be
Thompson-like. The set of such maps is written PL2(X,Y). If we take
Y � X, we obtain the group PL2(X,X) � PL2(X). If ∂X is not dyadic,
this is the larger group PLrest

2 (X) rather than the smaller PLflat
2 (X).

Claim 1.2.5. The category PL2 defined below is a groupoid.

• The category’s objects are compact intervals X,Y ⊆ �.
• The morphism set between X and Y is PL2(X,Y).
• Morphisms f : X → Y and g : Y → Z are composed using function

composition.

PL2([0, 1]) � F

PL2([0, 1/2])

[0, 1]

[0, 1/2]

ΣΣ−1

x0

x−1
0

id
x−1

1

x1

Figure 1.20: A schematic illustrating a
very small part of the groupoid PL2.
Functions with the same domain and
range X, form a group PL2(X). We can
think of maps between different sets,
say Σ : X → Y, as ‘converting’ between
PL2(X) and PL2(Y).

To establish this we’ll need to consider the gradient of a composition
of functions; we’ll do so by making use of the chain rule from single
variable calculus. Except for the identity, the PL functions f we’re
considering have at least one breakpoint x. At such points, the left- and
right-derivatives x+ f ′ and x− f ′ exist but are not equal, so the two-sided
derivative x f ′ will not exist. Thus we need to use a one-sided version
of the chain rule.

This will also help establish our non-
standard notation for the derivative: a
superscript + or − indicates a direction,
and · denotes multiplication in �.

Proposition 1.2.6 (One-sided chain rules). Let f : A→ B and g : B→ �
be functions defined on open intervals A, B ⊆ �, and let x ∈ A be some point.

We really are making use of the fact
that f is locally increasing here. E.g.
if f were is decreasing to the right
of x instead, we’d have to use the rule
x+( f g)′ � x+ f ′ · [x f ]−g′.

• Suppose that f is increasing on some interval [x , x + ε]. If the right-
derivatives x+ f ′ and [x f ]+g′ exist, then the right-derivative x+( f g)′ exists
and is equal to the product x+ f ′ · [x f ]+g′ of the first two derivatives.

• Suppose that f is increasing on some interval [x − ε, x]. If the left-
derivatives x− f ′ and [x f ]−g′ exist, then the left-derivative x−( f g)′ exists
and is equal to the product x− f ′ · [x f ]−g′ of the first two derivatives.

Note that every PL2 map is left-differentiable everywhere except for
the left endpoint of its domain. The symmetric statement obtained by
swapping the roles of ‘left’ and ‘right’ is also true.

In particular, this proof explains why
F is a group—something we asserted
without proof earlier.

Proof of Claim 1.2.5. First we check that PL2 is a category. The identity
morphisms idX are just the identity functions id: X → X in PL2(X).
Function composition is associative, but we should check that f ∈
PL2(X,Y) and g ∈ PL2(Y, Z) implies that f g ∈ PL2(X, Z). Let X �

[x0 , x1] and Z � [z0 , z1] be the domain and codomain of f g.

Gradients. Let L be any linear segment of the product f g. The domain
of L contains a point x , x1 at which the right-derivative x+ f ′ exists.
We know then that x f , x1 f , and so the right-derivative [x f ]+g′

exists. These gradients are integer powers of two; in particular they
are positive, so f is increasing at x. The one-sided chain rule applies,
telling us that x+( f g)′ � x+ f ′ · [x f ]+g′. This is a product of integer
powers of two, so is itself an integer power of two. Thus all linear
segments L have a permissible gradient.
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Finitely many linear segments. We certainly have two ‘extreme’ break-
points (x0 , z0) and (x1 , z1) at the endpoints of our intervals. Since f
and g are continuous, all other ‘internal’ breakpoints of f g occur
when x+( f g)′ , x−( f g)′. Using one-sided chain rules, we conclude
that x+ f ′ · [x f ]+g′ , x− f ′ · [x f ]−g′. This implies that x+ f ′ , x− f ′

or [x f ]+g′ , [x f ]−g′ (possibly both). In other words, if x is a
breakpoint of f g then x is a breakpoint of f or x f is a breakpoint
of g.35 This shows that there are finitely many breakpoints (hence 35 The converse implication is false.

Take an internal breakpoint x of f
and set g � f −1. Then x f is an
internal breakpoint of g, but x is not a
breakpoint of f g � idX , since the latter
has no internal breakpoints!

finitely many linear segments) of f g.

Internal breakpoints. As noted above, for each breakpoint (x , x f g)we
know that x is a breakpoint of f or x f is a breakpoint of g. If both
options hold, then the coordinates are dyadic by definition of f
and g.

If only the former option holds, then x is dyadic and we know that
(x f , x f g) lies within a linear segment L of g. The points of L—say
(y′, z′)—satisfy z′ � s g+2i(y′−s), where i is an integer and (s , s g) is
an endpoint of L withdyadic coordinates. Thus x f g � s g+2i(x f −s).
The right-hand side is a combination of dyadic rationals, so x f g is
also a dyadic rational.

If only the latter option holds, then x f and x f g are dyadic and
we know that (x f , x f g) lies within a linear segment L of f . Its
points—say (x′, y′)—satisfy y′ � s f +2i(x′− s), where i is an integer
and (s , s f ) is an endpoint of L with dyadic coordinates. Thus
x f � s f + 2i(x − s), which rearranges to x � 2−i(x f − s f )+ s. Again,
x is a combination of dyadic rationals, so is a dyadic rational itself.

Thus f g is a PL2 map.
x0Σ

(x0Σ)−1

Figure 1.21: The product x0Σ is a more
complicated PL2 map [0, 1] → [0, 1/2].
Its inverse map [0, 1/2] → [0, 1] is also
shown.

To make PL2 a groupoid, we need an inversion map. Any PL2 map
f : X → Y is a homeomorphism, so is invertible. Thus our inversion
map is just the ordinary inversion of functions. However, we need to
check that f −1 : Y → X is PL2. The reasoning is similar to the above.
Briefly: there is a bĳection between linear segments of f and f −1: take
the segment S of f to the segment S−1 of f −1 whose domain is the
image of S. Thus f −1 has a finite number of segments. The gradient
of S−1 is the reciprocal of the gradient of S, so is an integer power of two.
There is also a bĳection between breakpoints: (y , x) is a breakpoint
of f −1 if and only if (x , y) is a breakpoint of f . The latter has dyadic
coordinates, so the former does too. �

In passing, we note that Matucci has spoken of a different object
called Thompson’s groupoid F , in relation to strand diagrams.36 36 Matucci 2008, p. 25.

Claim 1.2.7. Let G be a groupoid. For any object X ∈ G, the set G(X) of
maps X → X is a group. Let Y ∈ G be another object. If there is a groupoid
map Σ : X → Y, then G(X) is isomorphic to G(Y). An isomorphism
G(X) → G(Y) is given by ·Σ : α 7→ αΣ � Σ−1αΣ.

In particular, if Σ is a PL2 map X → Y
then PL2(X)Σ � PL2(Y).
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We call this isomorphism a local conjugation by Σ. We say ‘local’
because this conjugation only makes sense for the PL2 maps X → X; it
ignores all the other maps in PL2.

Anotherway to express this claim is that vertex groups in a connected
component of a groupoid are all isomorphic.37 The change of basepoint 37 Cohen 1989, Chapter 3.

isomorphism 38 is a famous instance of this result in algebraic topology. 38 Munkres 2000, Sections 51–52.

Proof. Pick group elements α, β ∈ G(X). The conjugation described
above is a homomorphism, because (Σ−1αΣ)(Σ−1βΣ) � Σ−1(αβ)Σ.
The kernel is trivial, because Σ−1αΣ � idY implies α � Σ idY Σ

−1 �

ΣΣ−1 � idX . The map is surjective, because γ ∈ G(Y) is the image of
ΣγΣ−1 ∈ G(X). �

Claim 1.2.8. Let X and Y be compact real intervals with dyadic endpoints.
Then PL2(X) ∼� PL2(Y).
Proof. Partition X into standard dyadic intervals, then do the same
for Y. If the partitions have a different number of cells, subdivide a
cell in the smaller partition. This adds one more cell to P; repeat until
the partitions have the same number of cells. Say our partitions are
X : x0 < · · · < xn and Y : y0 < · · · < yn . We define a map Σ : X → Y
by stipulating that Σ linearly maps [xi , xi+1] to [yi , yi+1] (as we did in
Section 1.1.1). Now Σ is a PL2 map: in particular, it has the correct
gradients, because the width of each segment’s domain and range is an
integer power of 2. By the claim above, we see that PL2(X) and PL2(Y)
are isomorphic, via a conjugation by Σ. �

Remark 1.2.9. If the ratio of thewidth of Y to thewidth of X is a power of
two, then we can choose Σ : X → Y to consist of a single line segment,
as in Figure 1.19 for example. Otherwise we will need to partition X
and Y, then subdivide. This could potentially introduce arbitrary Say for instance that we have three

cells, and need to expand the partition
to four cells. Which of the three should
we subdivide?

choices and produce different maps Σ, hence different isomorphisms
PL2(X) → PL2(Y). Thus the recipe we have given does not produce a
canonical isomorphism.

In later chapters, we won’t worry about this too much—we just need
to get our hands on any PL2 map Σ : X → Y, in order to explicitly work
with an isomorphism ·Σ : PL2(X) → PL2(Y).

Brown’s article 39 gives more details on groupoids, and a thorough 39 R. Brown 1987.

motivation for their study.

1.2.3 Cantor space homeomorphisms

Finite binary trees describe dyadic subdivisions well, but they don’t
give us a natural way to talk about the points x ∈ I. At best, we can
only approximate x with smaller and smaller dyadic intervals. We can
formalise this by using infinite rather than finite addresses.

Notation 1.2.10 (Working with infinite strings). Let x � x1x2 . . . be an
infinite string over an alphabet A. Any substring of the form x1 . . . xn
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for n ≥ 0 is called a prefix of x; this includes the empty string ε when
n � 0. An infinite substring of the form xn xn+1 . . . for n ≥ 1 is called a
suffix or tail of x.

If a � a1 . . . an is a finite nonempty string, we denote by a the infinite
string aaaa · · · � (a1 . . . an)(a1 . . . an) · · · . The smallest string g such
that a � g is called the minimal generator of a. The left cyclic shift of a
is the string aC � a2 . . . an a1. Repeatedly cycling left i times yields the
string aC i � ai+1 . . . an a1 . . . ai , with subscripts modulo n.

If x takes the form x � x1 . . . xn a, we say that x is eventually repeating
and call a a repeating tail of x. Note that x can also be written as
x1 . . . xn a1a2 . . . an a1 � x1 . . . xn a1aC, so aC is also a repeated tail of x.

Definition 1.2.11. The boundary of T2 is the set ∂T2 � {0, 1 }� of
sequences of binary digits. To be explicit, its elements are infinite
strings s � s1s2s3 . . . with no restrictions on the pattern of digits. If u
is a finite binary string, we define the cone below u to be the set

[u] � {us | s ∈ ∂T2 } .

It has the same cardinality as ∂T2, namely |2� | � |�|. We equip ∂T2

with the topology40 generated by the cones below each finite string

40 If we give {0, 1 } the discrete topo-
logy, the topology we are describing
is exactly the product topology on∏

n∈�{0, 1 }.

u ∈ {0, 1 }∗. We call the resulting topological space the Cantor space
(see Remark 1.2.13).

01

Figure 1.22: The cone [01] below
u � 01.

This is a specific instance of the Gromov boundary of a hyperbolic
space X. Formally this consists of equivalence classes of geodesic rays
in X, but the tree structure of T2 means that we can describe everything
using binary strings only.41 41 See Kapovich and Benakli 2002 for

more details.When equipped with the topology above, the Cantor space ∂T2 is
homeomorphic to the Cantor set C. In the construction of the latter
set, we divide an interval into two parts. This leaves us with a left and
right subinterval—hence the connection to T2 in Figure 1.23. The full
construction is as follows.

Definition 1.2.12. The Cantor set C is a subset of the interval I construc-
ted by an iterated function system. We delete the open middle third
of [0, 1], leaving us with the subset C1 � [0, 1/3]∪[2/3, 1]. A scaled down
version of this procedure is applied to the connected components of C1:
we delete the open middle third of the two remaining intervals. This
results in a set C2 consisting of four disjoint intervals, each of length 1/9.
The process is repeated, yielding a sequence {Cn }n∈� of subsets in
which the nth term is a disjoint union of 2n intervals of length 3−n .

The Cantor set C is defined as the intersection of all Cn . Its topology
is the subspace topology inherited from I.

The natural homeomorphism φ : ∂T2 → C is given by the formula
(s1s2 . . . )φ �

∑
n∈�(2sn) 3−n . The idea is to turn a string s � s1s2 . . .

over {0, 1 } into a string s′ � s′1s′2 . . . over {0, 2 }, by replacing every 1
with a 2. The result is then interpreted as the infinite ternary expansion
of a real number sφ � 0.s′1s′2 . . . . For instance, take the string s �
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Figure 1.23: The correspondence
between Cantor set construction
steps Cn and the vertices of T2.01 ∈ ∂T2. This becomes a ternary string s′ � 02 ∈ {0, 2 }�, which we

interpret as an infinite ternary expansion sφ � 0.0222 · · · ∈ C. This is a
geometric series with sum sφ � 1/3 ∈ C.
Remark 1.2.13. Some authors reserve the term ‘Cantor set’ exclusively
for the subset C ⊆ I constructed by removing middle thirds. The
Cantor set can be characterised purely topologically: every totally
disconnected, perfect, compact, metric space is homeomorphic to the
Cantor set.42 Such spaces are called Cantor spaces, and ∂T2 in particular 42 Willard 2004, Corollary 30.4.

is called the Cantor space.
For our purposes the infinite string notation is most useful, so we

will work with the Cantor space ∂T2 throughout this thesis.

There is a natural surjection π from the Cantor space to the interval I.
An infinite string s � s1s2 . . . is interpreted by π as the infinite binary
expansion 0.s1s2 . . . of a real number sπ �

∑
n∈� sn2−n (c.f. the map φ

above). Even better, π is continuous. To see this, let U ⊆ I be an open
subset.43 For each x ∈ U, there is a standard dyadic interval nwxo such 43 We give I the topology it inherits

as a subspace of � under the usual
topology. This means e.g. that the
intervals [0, ε) and (1 − ε, 1] are open
in I, for all ε > 0.

that x ∈ nwxo ⊆ U. The inverse image nwxoπ−1 is a cone [wx], which
is open. Then Uπ−1 � (⋃x∈Unwxo) π−1 is the union

⋃
x∈U[wx] of open

sets, and hence open. In short, π allows us to use the Cantor space to
reason about the interval I.

There is a price to pay for this: π is not injective. To see this, consider
the infinite strings x � 10 and y � 01. The former has image xπ � 1/2,
which is equal to the image yπ � 1/4 + 1/8 + 1/16 + · · · � 1/2 of the latter.
More generally, let s1 . . . sn−11 be a finite string ending in 1. Then the
distinct infinite strings s1 . . . sn−110 and s1 . . . sn−101 are both mapped
by π to the real number z with finite binary expansion z � 0.s1 . . . sn−11.
This phenomenon44 occurs exactly when z is a dyadic rational, because 44 This is the same mechanism which

causes the decimal expansions 0.9
and 1.0 to be equal. See also Fig-
ure 2.17 for a visualisation.

the dyadics are exactly the numbers with finite binary expansions. So
nondyadics have exactly one preimage under π.

The rationals � have binary expansions which are eventually re-
peating. In (0, 1), these expansions take the form x � 0.ab. If x is
not dyadic, then the repeating tail is unique up to cyclic shifts (see
Notation 1.2.10). Otherwise there are two possible repeating tails 0
and 1, as noted above.

There are two natural choices of metric to use on the Cantor space.
Let x � x1x2 . . . and y � y1 y2 . . . be two points in ∂T2. First there is
the metric dthirds(x , y) � |xφ − yφ | obtained by restricting the usual
metric on [0, 1] to the middle-thirds Cantor set C. The second metric
is easier to define in terms of strings. If x � y then set d(x , y) � 0;
otherwise there is a maximal index k ≥ 0 for which xk � yk . We define
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C ∂T2 [0, 1]

[u]φ [u] nuo
[0, 1/3] ∩ C [0] n0o � [0, 1/2]
[2/3, 1] ∩ C [1] n1o � [1/2, 1]

φ−1

φ
π Figure 1.24: The Cantor set C is

connected to the Cantor space ∂T2 via
the homeomorphism φ. The map π
continuously projects onto the unit
interval I � [0, 1]. The examples
demonstrate how π ‘reattaches’ the
intervals which remain after deleting a
middle third during the construction
of the Cantor set.

d(x , y) � 2−k in these circumstances; this is the width of the smallest
standard dyadic interval nx1 . . . xko containing both x and y.

We will typically work with the latter metric since we prefer to
work with infinite strings and the Cantor space ∂T2. Fortunately, the
topologies generated by dthirds and d are the same as the topology
generated by the cones (as in Definition 1.2.11).

start

echo

1/ε

0/00

0/011/1

0/0

1/1
Figure 1.25: A transducer on the
input and output alphabet {0, 1 }
corresponding to x0 ∈ F. The ‘x/y′
notation is short for ‘read x, then
write y’. The symbol ε stands for the
empty word.

start

flip 0/1

1/0

1/ε

0/00

0/011/1

Figure 1.26: If we modify the echo
state to flip digits 0↔ 1, the resulting
transducer does not model an element
of V . Instead, it first applies x0 ∈ F,
then reflects each cone [0], [10]
and [11] about their midpoint.

The Cantor space is a kind of cover of the interval (via π), so we can
lift elements of V to maps on the Cantor set. The recipe is the following:
take a tree pair diagram (D , `, R) for α ∈ V , and let d1 , . . . , dn be the
addresses of the leaves of D. The Cantor space version of α, α̂ say, is
defined on the cone [di] below di by the formula

(di b1b2b3 . . . ) α̂ � (di`)b1b2b3 . . . , (1.6)

for any infinite binary string b1b2 . . . . This is compatible with π in the
sense that α̂π � πα. Working over the Cantor space ∂T2 instead of [0, 1]
has its advantages, because the space ∂T2 itself distinguishes between
approaching a dyadic s from the left and the right. For example, the
left-hand limit x → (1/2)− corresponds to the point 01 ∈ ∂T2, whereas
the right-hand limit x → (1/2)+ corresponds to 10. This is useful when
elements of V exhibit different behaviour either side of breakpoints—
see the discussion surrounding Figure 2.15.

In the light of Equation (1.6), one way to generalise Thompson’s
groups is to a group of functions which rearrange infinite strings.
We might insist that the rearrangement is performed by a finite-state
transducer.45 Informally, this is a simple computer which switches

45 For a rigorous definition, see
Grigorchuk, Nekrashevych and
Sushchanskiı̆ 2000.

between a finite set of states Q. The transducer is in exactly one state
q ∈ Q at any given time. A computation step is performed by reading
a binary digit b as input. Two things happen: the transducer outputs
a sequence b′ of binary digits, and changes to a new state q′ ∈ Q
(possibly q′ � q). The output word b′ and new state q′ are entirely
determined by the input digit b and previous state q.

An element α ∈ V will always be represented by a transducer
with an ‘echo state’ e. In this state, the transducer reads in a digit b,
immediately outputs the same digit and remains in state e. (See
Figure 1.25, and compare with Equation (1.6)). This preserves the tail
of an infinite string, once we have read as input the address of an
interval on which α acts linearly. Transducers without an echo state
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(e.g. Figure 1.26) describe new homeomorphisms of the Cantor space;
see for instance the articles of Grigorchuk et al, Bleak et al and Aroca.46 46 Grigorchuk, Nekrashevych and

Sushchanskiı̆ 2000; Bleak, Donoven
and Jonušas 2017; Aroca 2018.
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2 The dynamics of Thompson’s groups
A fruitful way to think of Thompson’s groups is to consider their
elements as being discrete dynamical systems.

Definition. A discrete dynamical system1 on a space X is a homo- 1 Strictly speaking this is a reversible sys-
tem, since we are rearranging X with
homeomorphisms. More generally we
could modify X with endomorphisms,
which need not have an inverse—let
alone a continuous inverse. Then we’d
need to use� to model time.

morphism Γ : �→ Homeo(X). The space X is called the phase space,
and the integers �model time.

Such a system is determined entirely by the homeomorphism at
time point 1, say γ � 1Γ ∈ Homeo(X). Points x ∈ X are mapped
through their orbit Ox � { x(tΓ) � xγt | t ∈ � }.

γ

0 1/3 2/3 1

Figure 2.1: As t → ∞, the powers
γ, γ2 , . . . , γt , . . . of γ from Figure 1.18
move points away from the sources 0
and 2/3, limiting on sinks 1/3 and 1.
Each of these four sources and sinks
is fixed by γ. This is summarised in
the sketch below the graph, which is
known as a phase portrait in the theory
of dynamical systems.

In our context, the phase space X is either the interval [0, 1], the
circle S1 or the Cantor space ∂T2; our homeomorphisms γ are elements
of F, T or V . Rather than study a Thompson group element γ directly,
we’ll study its orbits, to see how γ rearranges points in X. This is
particularly advantageous, since an element γ need not act nicely on
the set of standard dyadic intervals (i.e. on T2); at best, we have only a
partial action. For example, the image of [0, 1/2] under γ in Figure 2.1
is [0, 3/8]—which is not a standard dyadic interval.

2.1 Actions of Thompson’s groups

This chapter serves as a ‘toolkit’: a collection of minor results for
use later. To get things started, we study how the Thompson groups
rearrange the points of the interval (or if you prefer, the points of the
Cantor space). Later we specialise to the action of T on the circle.

2.1.1 Dyadics versus nondyadics

The first thing to emphasise is the distinction between dyadic and
nondyadic points. Let G be one of the groups F, T or V , and take a
linear segment of a generic element α ∈ G. This segment is described
by an equation of the form y � y0 + M(x − x0), where (x0 , y0) is an
endpoint with dyadic coordinates and M � 2m is a power of two. If x
is dyadic, then y is formed by adding, multiplying and subtracting
other dyadics—so y � xα is dyadic.2 Conversely, if y is dyadic then 2 We have already made use of this

argument in the proof of Claim 1.2.5.x � yα−1 is dyadic by the same kind of argument. This shows that
each of the three actions I ⟲ G permute the dyadics (and hence their
complement, the nondyadics) in [0, 1]. The upshot is that the dyadics
are first-class citizens—perhaps not a surprise given their prominence
in Definitions 1.1.2, 1.1.10 and 1.1.13 of F, T and V .

How are the dyadics in [0, 1] divided into orbits under Thompson’s
groups? For starters, F must preserve the minimum and maximum
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elements of the interval, being a group of order-preserving transforma-
tions. Thus {0 } and {1 } are orbits of size one under F. Any remaining
dyadics x � a/2n and x′ � a′/2n′ must beminimal elements of standard
dyadic intervals X and X′. Because x , x′ < {0, 1 }, we may assume that
both X and X′ contain neither 0 or 1.3 Choose dyadic subdivisions 3 If 1 ∈ X, replace X with its left child.

D and D′ containing X and X′, respectively. We may expand these
subdivisions so that they contain the same number of cells, and so
that X and X′ have the same index in their respective partitions. The
element of F corresponding to the modified subdivisions D and D′

must then map x to x′.
Now we complete the story for T and its supergroup V . As noted

above, any element α ∈ T must send 0 (now identified with 1) to a
dyadic. It is now possible that 0α , 0: for instance, α in Figure 1.14
sends 0 7→ 1/4. Then an element β ∈ F can be used to send 0α to any
other dyadic. Thus T (and hence V) act transitively on the dyadics in
S1 ∼� [0, 1).

We summarise with a lemma.

Lemma 2.1.1 (Behaviour on dyadics). Every element of F fixes 0 and
fixes 1. The actions of

• F on the dyadics in (0, 1), and
• T and V on the dyadics in S1

are transitive.

The observation above—thatwe canmove dyadics to other dyadics—
is worth formalising. As Cannon-Floyd-Parry explain,4 we can actually 4 Cannon, W. Floyd and Parry 1996,

Lemma 4.2.map sorted lists of dyadics to sorted lists of dyadics using F.

Lemma 2.1.2 (F aligns dyadics). Let x0 < · · · < xn and y0 < · · · < yn be
dyadic partitions.5 We can construct an element α ∈ F such that xiα � yi 5 As defined above Proposition 1.1.3.

for each i simultaneously. Thus F acts transitively on the set of ordered dyadic
partitions with k components, for each k.

Sometimes it’s not enough tomap points to points. The next lemma6 6 Matucci 2008, Lemma 4.1.5. Our
quoted result is not exactly that written
by Matucci: we allow our intervals to
share endpoints, and more carefully
handle the case when 0 or 1 belongs to
the intervals in question.

allows us to join up (or ‘glue’) pre-existing maps from subintervals to
other subintervals.

Lemma 2.1.3 (Extension of partial maps). Let I1 , . . . , Ik ⊆ [0, 1] be a
family of intervals Ii � [ai , bi] whose endpoints a1 < b1 ≤ a2 < b2 ≤ · · · <
bk−1 ≤ ak < bk are all dyadic. Let J1 , . . . , Jk be another family of intervals
Ji � [ci , di] whose endpoints satisfy the same conditions. Assume that

• bi � ai+1 if and only if di � ci+1;

• a1 � 0 if and only if c1 � 0; and

• bk � 1 if and only if dk � 1.

Suppose that γi : Ii → Ji is a PL2 map for each i. Then there exists a map
Γ ∈ F such that Γ

��
Ii
� γi for each i simultaneously.
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2.1.2 The action on the rationals

More generally, if x is a member of some ring R ≤ �which contains
the dyadics �[1/2], then y � xα belongs to R if and only if x ∈ R, for all
α ∈ G. Thus G permutes R ∩ I, and also the difference (R \�[1/2]) ∩ I.
The action on the rationals R � �will be particularly important (see
Lemma 2.3.10). Kassabov and Matucci 7 specify when two rationals in 7 Kassabov and Matucci 2012, Proposi-

tion 6.18.(0, 1) belong to the same orbit under F.

Proposition 2.1.4. Let x � 2t m/n and y � 2k p/q be rational numbers
in (0, 1), where t , k ∈ � and m , n , p , q are odd integers with gcd(m , n) �
gcd(p , q) � 1. Then there is a γ ∈ F such that xγ � y if and only if n � q
and

p � 2Rm (mod n)
for some R ∈ �. Moreover there is an algorithm which constructs such an
element γ if the above condition is satisfied.

Their result is easier to state if we use the infinite address notation
for points in the Cantor space.

Lemma 2.1.5. Let G be one of the groups F, T or V . Let x , y ∈ (0, 1) be
rational numbers, with binary expansions x � 0.ab and y � 0.cd such that
b , 1 , d.

Assume that b and d are minimal generators8 for b and d. Then x and y 8 See Notation 1.2.10

belong to the same orbit under G if and only if b is a cyclic permutation of d.

Proof. The second assumption is necessary to handle the fact that
dyadics have two binary expansions: see the discussion after Defini-
tion 1.2.12.

Let α ∈ G belong to one of Thompson’s groups. There is a finite
prefix w of x � ab such that α maps nwo linearly onto its image. Any
prefix longer than w also has this property, because nw0o and nw1o
are subintervals of nwo. Extending w if necessary, we may assume w
takes the form w � abn c, where c is a prefix of b—say b � cd. Then
x � wdcd � wdc � wbC|c | . This is sent by α to xα � (wα)bC|c | , so the
cyclic permutation condition on b and d is necessary for x and y to
share an orbit.

In the other direction, let d � bC i so that d � uv and b � vu, where
|v | � i. Rewrite x as x � avu � avuv � avd. We may assume that av
and c both contain at least one 0 and one 1. If not, replace a and c with
the strictly longer strings ab and cd. This works because abn and cdm

are prefixes of x and y respectively, and x , y < {0, 1 } have addresses
with at least one of each binary digit. Let γ be the PL2 map navo to nco
consisting of one linear segment. Invoke Lemma 2.1.3 to construct an
element Γ ∈ F which restricts to γ. Then xΓ � avγd � cd � y. Thus
the cyclic permutation condition is sufficient for x and y to share an
orbit. �

This lets us partition � ∩ [0, 1] into orbits under F. Firstly, both 0
and 1 belong to orbits of size one; all other dyadics belong to the same
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orbit. A nondyadic is represented—up to cyclic shifts—by the minimal
generator for its binary expansion’s repeating tail (i.e. b above). To
select a unique representative, choose the cyclic shift of b which is
minimal under the lexicographic order.

In T and V , the dyadics including 0 and 1 form a single orbit. The
nondyadics are broken into the same orbits as in F.

2.1.3 Rotations

In this and the following section, we consider dynamical systems on
the circle S1, rather than the on interval I or Cantor space ∂T2. This is
because wewant to discuss the group T later in the thesis, rather than F
or V . With this in mind, we need to work in the group Homeo+(S1) of
orientation-preserving homeomorphisms, rather than the larger group
Homeo(S1) of all homeomorphisms. Working in the smaller group
excludes the maps which reverse orientation, including e.g. reflection
maps.

One important class we do have at our disposal is the collection of
rotations. These are parameterised by an angle s, which may be taken
to be any real number 0 ≤ s < 1. (Our angles are in units such that a
rotation by 1 is a rotation through 2π radians.) The rotation by s is
the map ρs which sends x 7→ x + s mod 1. Its inverse element is the
rotation ρ−s through the same angle in the opposite direction.

6 7 8 1 2 3 4 5

ρ3/8

ρ3/8

Figure 2.2: The dyadic rotation by 3/8.
The tree pair diagram (D , l , R) uses the
same tree twice, so we’ve abbreviated
this by only drawing R. The domain
tree is labelled 1, . . . , 8 as usual.

When working in Thompson’s groups, we don’t have access to the
full group of rotations. If s < �[1/2] is not dyadic, then ρs would
map the point 0 to s. But this is impossible, because we know from
Lemma 2.1.1 that T permutes the dyadics in S1. So suppose otherwise
that s � a/2n . To construct ρs ∈ T, let D be the tree pair with 2n leaves,
each of depth n. Label these 1, . . . , 2n from left to right. Let ` be the
permutation of the leaves of D which sends leaf i to leaf i + a mod 2n .
Then (D , `,D) is a tree pair for ρs .

Thus the rotations inside T are precisely the dyadic rotations. The
set of such maps forms a subgroup of T, isomorphic to the Prüfer
2-group

�(2∞) � 〈{ gn }n∈� | g2
1 � id, g2

n+1 � gn〉 ∼� �[1/2]/� ,

where the generator gn corresponds to the rotation ρ2−n . See e.g. Rot-
man9 for more details. 9 Rotman 1995, Section 10, in particular

Theorem 10.13 and Exercise 10.5.This next result isn’t deep at all, but it does highlight an important
connection between F and T.

Lemma 2.1.6. Let x ∈ S1 be dyadic. The stabiliser Tx � {α ∈ T | xα � x }
of x is exactly the conjugate Fρx .

Proof. First suppose that α ∈ Tx . Because x is dyadic, ρ−x ∈ T and
so αρ−x ∈ T also. The calculation 0ρxαρ−x � xαρ−x � xρ−x � 0
shows that this conjugate fixes 0, and hence belongs to F. Thus
α � (αρ−x )ρx ∈ Fρx .
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Conversely, given β ∈ F, the conjugate βρx ∈ Fρx is in T. This
conjugate maps x to xρ−xβρx � 0βρx � 0ρx � x, so βρx ∈ Tx . �

ααρ1/8

Figure 2.3: An element α ∈ F and its
conjugate αρ1/8 ∈ T. The blue graph
is obtained from the red graph by
translating along the vector (1/8, 1/8).

We’ll reuse the idea on a number of occasions: if β ∈ T has a dyadic
point x of interest, we can ‘pretend’ that β ∈ F and that x is 0. Then
hopefully we can use our knowledge of F to our advantage. We achieve
this via conjugation by a dyadic rotation. When viewed graphically,
this conjugation translates a function’s graph along the diagonal— see
Figure 2.3.

Here’s an example of this pretending in action, in which we general-
ise our earlier gluing result (Lemma 2.1.3) to T.

Lemma 2.1.7 (Extension of partial maps). Let I1 , . . . , Ik ⊆ S1 be a family
of closed arcs Ii � [ai , bi] with dyadic endpoints. Suppose that any two arcs
intersect either trivially or at a common endpoint. Let J1 , . . . , Jk ⊆ S1 be
another family of closed arcs Ji � [ci , di] with the same properties. For each i,
assume that bi � a j for some j if and only if di � c j .

Suppose that γi : Ii → Ji are PL2 maps. Then there exists a map Γ ∈ T
such that Γ

��
Ii
� γi for each i simultaneously.

Proof. Let X : x1 → . . .→ xn → x1 be the points of the set { ai , bi | 1 ≤
i ≤ k }with duplicates removed. Similarly let Y : y1 → . . .→ ym → y1

be the points of the set { ci , di | 1 ≤ i ≤ k } with duplicates removed.
The ‘assume that. . . ’ condition tells us that n � m, and that [xi , xi+1] �
I j for some j if and only if [yi , yi+1] � Jj for the same i and j.

Now we rotate our partitions’ points so that they include zero.
Introduce new linear partitions

Xρ−x1 � X′ : 0, x2ρ−x1 , . . . , xnρ−x1

and Yρ−y1 � Y′ : 0, y2ρ−y1 , . . . , ynρ−y1 ,

of the interval [0, 1], andwrite I′j � I jρ−x1 and J′j � Jjρ−y1 . Let γ′i denote
the PL2 map γ′i � ρ+x1γiρ−y1 . The chain of domains and codomains is

I′j
ρ+x17−−−→ I j

γi7−→ Jj
ρ−y17−−−→ J′j ,

so γ′j maps I′j → J′j . As all the points involved are dyadic, we can
invoke Lemma 2.1.3 to yield an element Γ′ ∈ F such that Γ′

��
I′j
� γ′j for

each j. Then define Γ � ρ−x1Γ
′ρ+y1 , noting that Γ ∈ TFT ⊆ T. The

restriction of Γ to I j is

Γ
��
I j
�

(
ρ−x1Γ

′ρ+y1

) ��
I j

� ρ−x1 Γ
′��

I′j
ρ+y1

� ρ−x1ρ+x1γjρ−y1ρ+y1

� γj ,

as required. �
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2.1.4 The rotation number

Unfortunately, the rotation maps account for only a small proportion of
orientation-preserving homeomorphisms α ∈ Homeo+(S1). However,
every such α has a ‘nearest’ rotation that—in some sense—best approx-
imates α. This idea is made precise by the Poincaré rotation number of α,
which we define and discuss below. For a thorough treatment of the
rotation number, see Katok and Hasselblatt 10 or Bleak et al.11 10 Katok and Hasselblatt 1995,

Chapter 11.
11 Bleak, Kassabov and Matucci 2011.Definition 2.1.8 (Rotation number). Let α be an orientation-preserving

homeomorphism of the circle. Choose a lift ᾱ : �→ � of α, via the
covering map π : �→ S1 which sends x 7→ x mod 1. We define the
rotation number rot(α) to be the limit

rot(α) � lim
n→∞

xᾱn − x
n

mod 1 ∈ �/� , (2.1)

which always exists and is independent of the choices of point x and
lift ᾱ used.

For the sake of convenience, we always take our rotation number in
the interval [0, 1) so that we don’t have to identify numbers that differ
by an integer. When specifying a rational rotation number p/q, we
assume 0 ≤ p < q and q > 0 are coprime. In the special case p � 0, we
take q � 1.

1

2 3

4 4

1 2

3α

α

Figure 2.4: This element α ∈ T \ F fixes
1/3 and 2/3. Thus rot(α) � 0.

Proposition 2.1.9. The rotation number operator rot(·) has the following
properties.

1. The rotation number of ρs is s.

2. If m ∈ � then rot(αm) � m rot(α).
3. rot is invariant under conjugation in Homeo+(S1).
4. rot(α) � 0 if and only if α has a fixed point. Note that fourth property is the special

case of the fifth property where q � 1.
5. rot(α) � p/q ∈ �/� in lowest terms if and only if α has a periodic orbit

of length q. If this is the case, then all periodic points are in size q orbits
under α.

Let α ∈ T. The fourth property tells us that if α ∈ F then rot(α) � 0,
since any element of F fixes ∂I � {0, 1 } pointwise. The converse is
false: see Figure 2.4.

The fifth property does not tell us what the numerator of rot(α)
is. Suppose that x ∈ S1 is fixed by αq and choose a lift ᾱ of α.
Then xᾱq � x + p for some integer p. In prose, this means that the
point x is wound p times around the circle by αq . It follows that
xᾱmq � x + mp, for any integer m. Let rn be the nth term of the
sequence in Equation (2.1). Then

rmq �
xᾱmq − x

mq
�

mp
mq

�
p
q
(mod 1) ,
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which shows that (rmq)m≥1 is a convergent subsequence of (rn)n≥1.
Since we know that the larger sequence has a limit rot(α), it must be
equal to the subsequence’s limit, namely rot(α) � p/q.

In short: the numerator of a rational rotation number counts how
many times a periodic orbit wraps around the circle before returns to
its starting position.

Lemma2.1.10 (Finding the rotation number). Suppose α ∈ Homeo+(S1)
has a finite orbit X � { x0 → · · · → xq−1 → x0 } of points in the circle,
enumerated in circular order. Let x0α � xp . Then rot(α) � p/q in lowest
terms.

Proof. The orbit of x0 is traced out by α in the order

x0 7→ xp 7→ x2p 7→ · · · 7→ x(q−1)p 7→ xqp � x0 ,

with subscripts modulo q. Because this list is the entire orbit X, we
know that p has order q in the additive group �q of integers modulo q.
This means that gcd(p , q) � 1 and hence lcm(p , q) � pq. We see that x0

returns to its original position for the first time after q applications of α.
In doing so, x0 winds around the circle p times. So rot(α) � p/q. �

In short, we can read off a rotation number given only a finite orbit.
In the other direction, once we know α has a rational rotation number,
we can immediately break down a finite set permuted by α into orbits.

Lemma 2.1.11 (Rotation number determines actions). Let X � { x0 →
· · · → xn−1 → x0 } be a nonempty finite set of points in the circle permuted
by α ∈ Homeo+(S1). Write rot(α) � p/q in lowest terms. Then:

1. X consists of t � n/q orbits of size q. The orbit containing x j is

{ x j → x j+t → x j+2t → · · · → x j+(q−1)t → x j }

(expressed in cyclic order rather than orbit order).

2. The action X ⟲ α is given by x jα � x j+pt , for each 0 ≤ j < n. In
particular x jαk � x j+t , where k � p−1 (mod q).

That is, k is the unique integer 0 ≤
k < q such that pk ≡ 1 (mod q). This
number k is the multiplicative inverse of
p modulo q.Proof. As all finite orbits under αmust have size q (Proposition 2.1.9.5),

we know that n � qt for some integer t. Write x0α � xi . Since α
preserves the cyclic order on X, we know x jα � x j+i for each j, with
subscripts modulo n. We know that x jαq � x j+qi � x j . The rotation
number tells us we have wound p times around the circle, so we have
qi � pn. Rearranging yields i � pn/q � pt. Finally, we know k � p−1

(mod q) exists because p and q are coprime. Then x jαk � x j+pkt � x j+t ,
since subscripts are modulo n. �

Since the rotation number is an invariant of conjugacy (Proposi-
tion 2.1.9.3), we immediately obtain the following corollary.

Corollary 2.1.12. Let X ⊆ S1 be a finite set permuted by conjugate elements
α and β. Then the actions X ⟲ α and X ⟲ β are identical.
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Rotation numbers may very well be irrational, e.g. take the
rotation by 1/√2. If so, α is a ‘wild’ automorphism, and its orbits are
qualitatively different12 to those of an element with rational rotation 12 Katok and Hasselblatt 1995, Table

above Theorem 11.2.9.number. Fortunately, the next theorem tells us that the elements
of T have rational rotation number (so are not ‘wild’). It is originally
due to Ghys-Sergiescu,13 though other proofs later followed.14 Our 13 Ghys and Sergiescu 1987.

14 Liousse 2005; Calegari 2007; Burillo
et al. 2009; Bleak, Kassabov and
Matucci 2011; Diller and Lin 2017.

proof makes use of the ‘revealing pair’ technology, which we’ll see in
Section 2.2.

Theorem 2.1.13. Every element of T has rational rotation number. Moreover
every rational x ∈ �/� is the rotation number of some element α ∈ T.

Proof. To compute the rotation number of α ∈ T, choose a revealing
pair (D , `, R) for α. We will see later (in Remark 2.2.9) that we can
always find a point x in a finite orbit. Then Proposition 2.1.9.5 tells us
that rot(α) is rational.

To construct 15 α ∈ T with rotation number 1/q, let D be any tree 15 Bleak et algo beyond this construc-
tion and provide an embedding
�/� ↪→ T; see Bleak, Kassabov and
Matucci 2011.

with q leaves, labelled 1 < · · · < q in left-to-right order. Define β by the
tree pair diagram (D , `,D), where ` sends the ith leaf to the (i + 1)th
leaf modulo q. Call the leaves u0 , . . . , uq−1 in left-to-right order, and
let xi be the left endpoint of nuio. Then X � { x0 → · · · → xn−1 → x0 }
is a finite orbit of points under α, with x0α � x1. We conclude from
Lemma 2.1.10 that rot(α) � 1/q. Then Proposition 2.1.9.2 informs us
that rot(αp) � p/q. �

The rotation number is a powerful tool to have at our disposal. For
starters, we use it to show that the only periodic points under F are
fixed points.

Lemma 2.1.14. Suppose that α ∈ F has a periodic point xαn � x with
n , 0. Then xα � x.

Proof. As α ∈ F, we must have 0α � 0, so rot(α) � 0/1 by Propos-
ition 2.1.9.4. Then all finite orbits under α have size 1, by Proposi-
tion 2.1.9.5.

For amore direct proof, let O � { xαi | i ∈ � } be the orbit in question
Seeking a contradiction, assume |O | ≥ 2 and write m � min O. Then
m < mα. As F preserves orientation (i.e. linear order)we have m < mαi

for each positive integer i. But then we’d conclude that m < mαn � m,
which is nonsense. �

With that said, the rotation number is not all-powerful. It is not
a homomorphism Homeo+(S1) → �/�, nor a homomorphism T →
�/�; see for example Figure 2.5. However, it is a homomorphism
when restricted to certain subgroups of homeomorphisms.16 16 Matucci 2008, Theorem 6.2.1, pub-

lished in Bleak, Kassabov and Matucci
2011, Lemma 1.8.Theorem. Let G ≤ Homeo+(S1) have no nonabelian free subgroups. Then

the rotation number is a homeomorphism G→ �/�.
In the next lemma, we use Proposition 2.1.9 to explain why the

following result 17 about circle homeomorphisms fails for T. 17 Matucci 2008, Lemma 7.1.2.
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α β αβ

Figure 2.5: Two elements α, β ∈ T with
rotation number 0. Their product αβ
has rotation number 5/6, so the rota-
tion number is not a homomorphism
T → �/�. Compare with Figure 6.4 of
Matucci’s thesis.

Lemma 2.1.15. Let G be one of the groups Homeo+(S1) or PL+(S1). Every
torsion element of G is conjugate to a rotation.

Proof that this is false in T. In short: T doesn’t contain enough rotations.
In more detail, let α ∈ T have finite order q > 2 and suppose that

q is odd. Then α and any of its conjugates have rotation number
rot(α) � p/q, for some integer p coprime to q. So the only conjugate
of α which could be a rotation is ρp/q . But p/q is not dyadic, because
q > 2 is odd. Hence ρp/q < T. �

2.2 Revealing pairs

The previous section tried to discuss the big picture, explaining how
Thompson’s groups act on spaces as a whole. Now we want a much
smaller picture: we’ll examine the orbit of single points x under a
single element α.

1

2 3

4 5 2

4 5

3 1

β

Figure 2.6: Another tree pair diagram
for β from Figure 1.16.Not all tree pair diagrams are created equally. A given element

α ∈ V has a unique minimal tree pair diagram, but this doesn’t always
give us a clear picture of how α rearranges the interval. Take β from
Figure 1.16 for instance. Without tracing through the orbit of points
or intervals, it’s difficult to see how β behaves. If we add a caret to
the domain tree at address 1, we obtain the slightly larger tree pair
as in Figure 2.6. Crucially, the domain and range trees are now equal.
Hence β can be seen as a permutation of the leaf labels {1, . . . , 5 }. Its
order must therefore divide 5!, and certainly be finite.

What is it about this larger tree pair that allows it to better describe
the action of β on the interval? We turn to Brin18 and Salazar-Díaz19 18 Brin 2004, Section 10.

19 O. P. Salazar-Díaz 2010, Section 3.for the answer. Alternatively see Bleak et al.20
20 Bleak, Bowman et al. 2013, Sec-
tion 4.1.Definition 2.2.1 (Operations on binary trees). Let D and R be two

binary trees, viewed as subtrees of the infinite binary tree T2. The
union D ∪ R is the subtree whose vertices belong to at least one of D
and R. The intersection D ∩ R is the subtree whose vertices belong to
both D and R. The difference D \R is the subforest of D whose vertices
belong to D and are not internal vertices of R. Figure 2.7 illustrates
these operations with examples.

The leaves of D ∩ R are partitioned into three types.

• Leaves of both D and R. These are called neutral leaves.
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• Leaves of D which are internal vertices of R. These are roots of R \D.

• Leaves of R which are internal vertices of D. These are roots of D \R.

ε

00 01

1

D

ε

00 01

1

R
ε

00 01

1

D ∪ R

ε

00 01

1

D ∩ R

00 01

D r R

1

R r D

Figure 2.7: Four operations displayed
for two binary trees D and R of
different sizes.

When (D , `, R) is a tree pair, we denote the intersection D ∩ R with
solid edges and the differences D \ R and R \ D with dotted edges.

Definition 2.2.2 (Attractors and repellers). Let d1 be a leaf of D \ R in
a tree pair (D , `, R). Its iterated augmentation chain (IAC) is the maximal
sequence d1 , . . . dn which

• contains no element more than once, and

• has the property that di` � di+1 for 1 ≤ i < n.

Then d2 , . . . , dn are neutral leaves, and r � dn` is a leaf of R \ D. We
call dn` the target of the IAC, and n the length of the IAC.

We call d1 a repeller if the address of r is a prefix of the address of d1.
In this situation r is the root of the component of D \ R containing d1.
The binary string s such that d1 � rs is called the spine of the repeller.
Since d1αn � r, we see that d1sαn � d1 for a repeller d1.

Dually, we call r an attractor if the address of d1 is a prefix of the
address of r. In this situation d1 is the root of the component of R \ D
containing r. The binary string s such that r � d1s is called the spine of
the attractor. This time we see that d1αn � d1s for an attractor d.

Remark 2.2.3. It would be nice to maintain the distinction between
α acting on infinite strings and ` acting on finite strings (the tree
pair’s leaves’ addresses). In practice, we blur the lines a little: when
convenient, we define dwα � d`w, for some finite—possibly empty—
string w over {0, 1 }. (Compare to in Equation (1.6)). For instance,
when we say above that d1sαn � d1 for a repeller, we really mean that

d1sαn
� d`n s � rs � d1 .

We don’t define the image of an interval vertex u of D under α, because
there is no guarantee that α maps nuo linearly to its image: perhaps
nuo contains a breakpoint. Thus there is no need for α to act nicely on
the vertices of T2; we only have a partial action.

lea
ve

s o
f D

leaves of R

ro
ot

sroots

neutral leaves

D ∩ R

D \ R R \ D

Figure 2.8: A schematic overview of
a tree pair (D , `, R). The leaves of the
intersection are denoted by a dotted
black line.
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1

2 3

4

5 6 7 8

1

3 8 4

2 6

7 5
γ

Figure 2.9: In this tree pair diagram,
the leaf with address 000 is a repeller
and the leaf with address 0110 is an
attractor. Note that the components
of D \ R below addresses 10 and 11 do
not contain repellers.

Definition 2.2.4. A tree pair (D , `, R) is called revealing if every con-
nected component of D \ R contains a repeller and every connected
component of R \ D contains an attractor. The leaves of D \ R which
are not attractors are called sources; dually the leaves of R \ D which
are not repellers are called sinks.

The tree pair for γ in Figure 2.9 is not revealing: the components
of D \ R with leaves labelled 5, 6 and 7, 8 do not contain repellers.
Fortunately, Brin explains21 that we will always be able to find a 21 Brin 2004, Lemmas 10.2–10.6.

revealing pair for a given element.

Proposition 2.2.5. There is an algorithm which can construct a revealing
pair for a given element α ∈ V .

1

2 3

4

5 6

7 8

9

1

3 9 4

2 6

7 8

5
γ

Figure 2.10: Having added a caret
to D at 001 and to R at 001α � 01,
we obtain a new pair (D′, `′, R′)
for α which is revealing. We have
highlighted the spines in red to
emphasise the attractor and repeller
leaves.

Any given element has infinitely many revealing pairs, and there
need not be a unique minimal revealing pair.22 22 O. P. Salazar-Díaz 2010, Remark after

Claim 16.

The killer feature of a revealing pair is that it gives us a complete
description23 of the orbit of any point x in the Cantor space ∂T2, and 23 Brin 2004, Proposition 10.1;

O. P. Salazar-Díaz 2010, Claim 5,
Lemma 4hence any point in the interval I. We give a brief overview of the details

here.
Say we have a revealing pair (D , `, R) for α ∈ V , and let x � x1x2 . . .

be a point in the Cantor space. There is exactly one leaf d of D which is
a prefix of the infinite string x, so that x � dy1 y2 . . . for some digits yi .
We can partition the leaves of a revealing pair’s domain tree into three
kinds of (partial) orbits:

1. Finite cycles of neutral leaves under α;
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2. IACs coming from a repeller, or leading to an attractor; which leaves

3. IACs coming from a source and leading to a sink. These are known
as source-sink chains. 1 2

3 4 5 1

2 3

5 4

δ

Figure 2.11: This revealing pair for δ
exhibits all types of IACs.
• 000 is a repeller, with target 00;

• 001 is a source, with target the sink
010;

• 01 is a root of R \ D, with target the
attractor 011;

• 10 and 11 form a cycle of neutral
leaves.

As in Figure 2.10, the spines are
highlighted in red.

The behaviour of d under α and the tail Y � y1 y2 . . . completely
determine the orbit of x. We will demonstrate this by explicitly
computing the translate xαM . To do so, write M in the unique form
M � kn + m, where k ∈ � and 0 ≤ m < n.

Finite cycles The first option is the most straightforward. Suppose
d � di belongs to afinite cycle of leaves, say d1 , . . . , dn with dnα � dn`d1.
It follows that diαn � di`n � di , so we may directly compute

xαkn+m
� (diY)αknαm

� diα
knαmY � diα

mY � di+mY

with subscripts modulo n. We see that x belongs to an orbit of size n
under α.

Repellers Suppose d belongs to a repeller IAC d1 , . . . , dn with spine s;
say d � di . First let the tail Y of x be the specific string s. Observe that

xαn
� di sαn

� d1α
i−1sαn

� d1sαi−1αn
� d1(ss)αnαi−1

� (d1s)αn sαi−1
� d1sαi−1

� d1α
i−1s � di s � x .

It follows that xαkn+m � xαm � xαm � di+m s, for integers k ∈ �,
0 ≤ m < n and with subscripts modulo n. Once again, x belongs to an
orbit of size n under α. The points in this orbit (di s for 1 ≤ i ≤ n) are
called repelling periodic points, since they lie under the IAC of a repeller.

1 2

3

4

3 1 2 4

ε

Figure 2.12: This revealing pair for ε
has an repeller at 000. Its IAC has
length two, moving to 01, before
reaching the target of 00. The repelling
periodic point 0 is sent by ε to 010
and then to 0 again, forming an orbit
of size 2. In contrast, the attracting
periodic point 1 is fixed by ε.

Now assume we have any other tail Y , s, so that x is near 24 to—but

24 Let N be the length of the address
of di . Then 0 < d(x , di s) ≤ 2−N .
(See the discussion of metrics after
Definition 1.2.12.)

distinct from—our previous point. Rather than give a full description
of the orbit of x here, we show in the next paragraph that a forward
translate xαi lies below a leaf in a source-sink chain. Then we can
deduce the orbit of x once we have described the orbit of points below
a source-sink chain below.

Let p ≥ 0 be maximal with the property that Y � spY′, and let r
be the target of the IAC containing d. We can uniquely write Y′ as
a concatenation Y′ � zY′′, where z is the address of a leaf of D \ R
relative to r. Then z , ε, and we note that z , s (by the maximality
of p). The orbit of x is the same as the orbit of

xα−(i−1)α(n+1)p
� diYα−(i−1)α(n+1)p

� d1Yα(n+1)p

� d1sp zY′′α(n+1)p

� d1spα(n+1)p zY′′

� rzY′′ .
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rnα

c1r1

a1

ckα amα

r2 rn

c2 ck

a2 am

· · ·

· · ·

· · ·

sr tr sata

Figure 2.13: A schematic of the nodes
involved in a source-sink chain. There
are three IACs involved: that of a
repeller, an attractor and a source. The
left (right) tree stands for a generic
component of D \ R (R \ D). The
middle vertices stand for neutral leaves.
Note that the IACs may have different
lengths, despite the picture suggesting
otherwise.

This last string sits in the cone below rz. The leaf at this address is a
source for the pair (D , l , R), due to the properties of z above.

Attractors The attractors in the revealing pair (D , `, R) for α are
precisely the repellers of the revealing pair (R, `−1 ,D) for α−1. Thus a
similar analysis of orbit structure can be undertaken for attractors.

Suppose that a leaf a of R is an attractor with spine s, and let a be
the target of the IAC d1 , . . . , dn . The upshot is that the n points of the
form x � di s belong to a single orbit, and are called attracting periodic
points. Any other point x′ below any di has a translate x′αM which lies
below a source in the revealing pair.

Source-sink chains Finally, d � ci could be part of an IAC c1 , . . . , ck

starting at a source. It must be the case that ck` is a sink. If not, then ck`

is an attractor, meaning c1 would be a root of R \ D. But sources are
leaves of D \ R, so c1 would be both strictly below and strictly above a
leaf of R—which is absurd. This explains why sources are joined by
their IACs to sinks.

Let’s set up our notation (see Figure 2.13).

• Let c1 , . . . , ck be the IAC of a source being studied. The target of
this, ck`, is a sink.

• Let r1 be the repeller in the same component of D \R as the source c1.
It has an IAC r1 , . . . rn and spine sr . Then rnαsr � r1.

• Let a1 , . . . , am be the IAC whose target is the attractor amα in the
same component of R \ D as the sink ckα. Its spine sa satisfies
a1sa � amα.

We now compute the orbit of the leaf ci under α. By definition
ciα j � ci+ j for 1 − i ≤ j ≤ k − i. Continuing forward, the next image
leaf is ckα � a1ta . Let M ≥ 0 be an integer written uniquely in the form
M � pm + j, for p ∈ � and 0 ≤ j < m. We compute

ciα
k−i+1+M

� ckαα
M

� a1taα
M

� a1α
jαpm ta � a j s

p
a ta .

For the backward orbit of c1, set N � pn + j > 0 with p ∈ � and
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0 ≤ j < n. Then

ciα
1−i−n−N

� c1α
−n−N

� rnαtrα
−nα−N

� r1α
− j trα

−pn

� r1− jα
−pn tr � r1− j s

p
r tr ,

with subscripts modulo n. We see that each image ciαM is a distinct
leaf of T2, so ci and any point x � ciY below it lie in an infinite orbit.

We can say more about the orbit of x. In the forward direction
(again with M � pm + j), we move to

xαk−i−+1+M
� ciα

k−i−+1+MY � a j s
p
a taY .

This limits on the periodic sequence whose (pm + j)th term is a j sa .
Specifically, the base two logarithm of the term-to-term distance is at
most −|a j | − p |sa |, so this distance tends to zero as p ,M →∞. But this
periodic sequence is an orbit of repelling periodic points, as we saw
earlier! Similarly, the backwards orbit moves through the points

xα1−i−n−N
� ciα

1−i−n−N Y � r1− j s
p
r trY

(with N � pn + j as above). The sequence with (pn + j)th term
r1− j mod n sr is an orbit of attracting periodic points. The base two
logarithm of the term-to-term distance is −|r1− j mod n | − p |sr |, so again
the distance tends to zero.

We see that the orbit of x converges to (and emerges from) a limit
cycle. Informally, points x are pushed out from an orbit of repelling
fixed points; pushed forward below a source-sink chain for a finite
time; then they are drawn forever towards attracting fixed points.

1 2

3 4 5 1

2 5

3 4

α

α

Figure 2.14: The repelling fixed
point 000 is fixed by α, and the at-
tracting fixed point 011 has order 3
under α. This is despite the fact that
they are linked by the source-sink
chain 001 7→ 010.

We summarise with a proposition.

Proposition 2.2.6. Let α ∈ V , and think of α as a homeomorphism of the
Cantor space ∂T2 or interval I. We can fully describe the orbit of x ∈ ∂T2

(hence xπ ∈ I) given a revealing pair for α. In particular:

• There are finitely many maximal cones (maximal standard dyadic intervals)
which have a finite orbit under α. Each of these is fixed pointwise by a
power of α.

• Excluding these, there are finitely many isolated points with a finite orbit
under α. These are classified as either attracting or repelling.

• This finite amount of data can be determined algorithmically by constructing
a revealing pair.

• All other points belong to an infinite orbit under α. Their orbits move
away from repelling periodic orbits and towards attracting periodic orbits.

Remark 2.2.7. Suppose we have a source-sink chain leading from a
repeller r to an attractor a. Let x and y be the associated attracting and
repelling fixed points. Since these points are ‘linked’ by a source-sink
chain, we might guess that they must have the same period. This is
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false, as Figure 2.14 shows. With that said, under an element α ∈ T all
periodic points must have the same order—see Proposition 2.1.9.5.

Revealing pairs enable us to give a concise proof of the next lemma.
It was proven using revealing pairs by Bleak et al.25, who attribute the 25 Bleak, Bowman et al. 2013,

Lemma 4.4.result to Burillo et al.26 26 Burillo et al. 2009, Proposition 6.1.

Lemma 2.2.8. An element α ∈ V has finite order if and only if it can be
described by a tree pair whose domain and range tree are equal.

Proof. Let (D , `, R) be a revealing pair for a finite order element α.
This pair cannot have any attractors or repellers, or else some point x
would have an infinite orbit under α. Thus both D \ R and R \ D are
empty, so D � R.

On the other hand if (D , `,D) is a tree pair for α, then ` is a
permutation of the leaves of D. Thus α has finite order equal to the
order of `. �

Remark 2.2.9. A similar argument shows that every element α ∈ V must
have a periodic point. Choose a revealing pair (D , `, R) for α. If this
pair has a cycle of neutral leaves, then any point below any of these
leaves lies in a finite orbit. Otherwise there are no such cycles. Then
D , R, so D \R and R \D are nonempty. Then the pair has at least one
attractor and at least one repeller, so α has an (attracting or repelling)
periodic point.

2.3 Behaviour near periodic points

The simplest possible behaviour in a dynamical system is a point x
which the system moves back to itself after a finite time (possibly
immediately). These points have much to tell us about the system in
question. From a group-theoretical viewpoint in particular, suppose
that αγ � β and that xαk � x. Then xγ � xαkγ � xγ(γ−1αkγ) � xγβk .
In words, points in a finite orbit under α get sent by conjugators into
a finite orbit of the same size under β. There’s nothing special about
Thompson’s group here—this is just how conjugation interacts with a
group action. The point is that a group action can reveal information
about the group which is hard to discern from a purely algebraic point
of view.

In this section, we will use the knowledge we gain from revealing
pairs to describe what happens near to periodic points. We saw there
were two types of periodic points—those under cycles of leaves, and
others below attractors and repellers. We distinguish these two types
topologically, then go on to study the second kind—called ‘important
points’—in particular. Our aim is to describe in more detail how
important points influence the dynamics of elements of T.

We will denote by Fix(β) the points of the interval fixed by β ∈ V .
When working in T, the same notation will refer to fixed points in the
circle.
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2.3.1 Important points for V

Let d be an attractor or repeller with spine s for α ∈ V . Then x � ds
belongs to a finite orbit under α of attracting or repelling periodic
points. We saw that all infinite orbits lie below source-sink chains.
These diverge from repelling periodic points and converge to attracting
periodic points. Assembling this information into a graph yields
the train tracks and flow graphs introduced by Bleak et al.27 They are 27 Bleak, Bowman et al. 2013, Sections

4.2–4.3.useful for summarising the global dynamics of an element of V . Up
to the right notion of equivalence, flow graphs in particular serve as a
conjugacy invariant.

In short, the attracting and repelling periodic points are very signi-
ficant in determining the orbits of an element α. Let us give them a
name.28

28 Bleak and O. Salazar-Díaz 2013, after
Corollary 2.3

Definition 2.3.1. Let (D , `, R) be a revealing pair for α ∈ V . The
important points Iα of α are the points of the form usαi ∈ ∂T2, where i
is an integer, and u is an attractor or repeller with spine s. All other
points y ∈ ∂T2 \ Iα are called unimportant.

This definition depends on a choice of revealing pair for α. Salazar-
Díaz’s thesis 29 describes how all revealing pairs for α can be obtained 29 O. P. Salazar-Díaz 2010, Section 3.5.

from one another, via moves called ‘rollings’. If R is a revealing pair
for α, it can be checked that any rolling S of R yields the same set of
important points as R. Thus we are justified in referring to these points
as being important points of α, without reference to a revealing pair.

Why do we care about important points in Cantor space? We could
use the map π : ∂T2 � I (from Section 1.2.3) to project from the Cantor
space to the interval, and then look for analogous points in I. However,
doing so gives us a blurrier picture with less information. This is part
of why Cantor space is the natural space for studying V

Let’s try an example: consider α from Figure 2.15. The point x � 011

is important for α, and in particular x is fixed by α. On the other hand
take y � 1000. Its forward orbit is

1000 7→ 1100 7→ 1110 7→ 11110 7→ · · · 7→ 1n0 7→ . . . ;

this contains infinitely many elements, and so y is not an important
point for αWe see that x and y have different dynamical behaviours.
In particular, x is important whereas y is not. This distinction is lost
if we move to the interval, because the images xπ � yπ � 1/2 are the
same. To recover the two different behaviours, we need to spend extra
effor taking one-sided limits. In this example we have (1/2)+α � 3/4 and
(1/2)+α′ � 1 from the right, whereas (1/2)−α � 1/2 and (1/2)−α′ � 1/2 from
the left.

The next claim follows immediately from the study of revealing pairs
earlier: in particular, from Proposition 2.2.6 and Lemma 2.2.8.
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Claim 2.3.2. There are always finitely many important points Iα of an element
α ∈ V . Moreover, |Iα | � 0 if and only if α has finite order.

α

1 2

3

4 5

6 1

2 3

5

4 6

α

Figure 2.15: Above: a revealing
pair for an element α ∈ V . Below:
the element α viewed as a right-
continuous map I → I.
The two preimages (1/2)π−1 ⊆ ∂T2

have different dynamical behaviour:
one is fixed, whereas the other is
attracted to 111.

In the next lemma, we give a topological characterisation of an
element’s important points.

Lemma 2.3.3. Let α ∈ V , and let P be the set of points in ∂T2 in finite orbits
under α. Then Iα is the set of isolated points of P.

Proof. First we show that important points x are isolated in P; then we
show that unimportant points y ∈ P are not isolated in P.

Take x to be an important point. Then we can write x � ds, for some
leaf address d such that either dsαn � d or dαn � ds. To show x is
an isolated point of P, we must produce a neighbourhood of x which
contains no other points ofP. Wedemonstrated in Proposition 2.2.6 that
[d] is such a neighbourhood, because all points in [d] \ { x } belong to
infinite orbits (which either attract to or repel from x). Thus important
points are isolated in P.

The unimportant points in finite orbits y ∈ P are those below a leaf e
in a neutral cycle of leaves. To show y is not an isolated point of P,
we must show that any neighbourhood U of y contains a point z ∈ P
distinct from y. Such a neighbourhood U must contain an open set of
the form [u], where u is a prefix of y. Let v be the longer of the two
words e and u, so that y ∈ [v] ⊆ [e] ∩U. Then any point z ∈ [v] \ { y }
is in [e], so must have a finite orbit. Hence z ∈ P, which shows that y
is not isolated in P. �

The following lemma uses the characterisation to identify important
points of powers αi—without constructing a revealing pair for αi .

Lemma 2.3.4. Let α ∈ V and 0 , i ∈ �. Then the important points I(α)
and I(αi) are equal.
Proof. For a fixed value of i, let Pi denote the points x ∈ ∂T2 in finite
orbits under αi . The following statements are equivalent.

• x ∈ P1.

• xαn � x for some n , 0.

∂T2
x � ds ∈ [d] y ∈ [u]

d

e

us Figure 2.16: Schematic illustrating
the proof of Lemma 2.3.3. In this
example we have u � e1, so that e is a
proper prefix of u′ � u. The horizontal
arrows are meant to suggest that [d] is
attracted towards the attractor x.
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• xαmi � x for some m , 0.

• x ∈ Pi .

This shows that Pi � P1. Take the subset of isolated points on both
sides to see that I(αi) � I(α). �

We conclude with a short—but important—observation about im-
portant points.

Lemma 2.3.5. An element α ∈ V permutes its important point set Iα.

Proof. This is immediate from Definition 2.3.1: if usαi is important, so
too is usαi+1.

Alternatively, we could make use of the topological characterisation
above. Our element α must map its set of periodic points P to P, or
else the points in P wouldn’t be periodic! The restriction α

��
P : P → P

of α to P is a homeomorphism, and so must preserve all topological
properties of P. In particular, α

��
P preserves the isolated points of P. �

2.3.2 Important points for T

In the rest of this thesis, we’re going to work with the action of T on
the circle S1. We’ll still want to use important points, along with all
the information we have at our disposal from the study of V . To keep
things in order, it’s worth establishing definitions specific to T and S1.

Definition 2.3.6. Let π : ∂T2 � I be the projection map from Sec-
tion 1.2.3, and let φ : I � S1 be the projection map which identifies 0
and 1. Define π0 � πφ : ∂T2 → S1 to be their composition. The import-
ant points of an element α ∈ T are the points in the image Iαπ0 ⊂ S1.
All other points y ∈ S1 are called unimportant.

When it is clear from context that we are working with the action
S1 ⟲ T of T on the circle, we shall simply call these the important points
of α. In this circumstance, we’ll drop the map π0 and refer to the
important point set as just Iα, or occasionally I(α) if α is replaced by a
complicated expression.

Much of what we know about important points from Proposi-
tion 2.2.6 applies to important points too.30 We saw that points x ∈ ∂T2 30 Though as noted after page 36, the

picture becomes a little blurrier after
projecting to S1.in infinite orbits move away from and converge to the orbits of import-

ant points (for V). As the projection map π0 : ∂T2 � S1 is continuous,
it must preserve limits. Thus we see that points xπ0 ∈ S1 in infinite
orbits for T move away from and converge to the orbits of important
points for T.

The following is another example where important points exhibit
the same behaviour in T and V .

Lemma 2.3.7. Let α ∈ T.

1. Iα is finite; it is empty if and only if α has finite order.
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2. Let 0 , i ∈ �. The important points of I(α) and I(αi) are equal.
3. The element α ∈ T permutes its important point set Iα.

Proof. These follow from Claim 2.3.2, and Lemmas 2.3.4 and 2.3.5,
respectively. �

Just like in V , we have a topological characterisation of important
points for T.

Lemma 2.3.8. Let I(α′) be the important points (for T) of an element α′ ∈ T.
Then I(α′) � ∂P′, where P′ ⊆ S1 is the set of points in finite orbits under
α′ ∈ T.

Proof. In this proof, primed symbols refer to the circleS1, andunprimed
symbols refer to theCantor space ∂T2. We canview α′ ∈ T as an element
α ∈ V , where the latter acts on Cantor space ∂T2. These actions S1 ⟲ α′

and ∂T2 ⟲ α are compatible because31 απ0 � π0α′. 31 That is, α and α′ are topologically
semiconjugate (via π0).First we show that I(α′) ⊆ ∂P′. Take an important point x ∈ ∂T2

for α ∈ V , so that xπ0 ∈ S1 is important for α′ ∈ T. Now x must be
of the form x � ds, for some finite strings s and d (c.f. Lemma 2.3.3).
To show that xπ0 ∈ ∂P′, we must show that any neighbourhood U′ of
xπ0 contains a point not in P′. As π0 is continuous, the inverse image
U � U′π−1

0 is a neighbourhood of x. This means there is some basic
open set [u]with x ∈ [u] ⊆ U. Let v be the longer of the two words d
and u, so that x ∈ [v] ⊆ [d] ∩U. Our study of revealing pairs shows
that every point z ∈ [v] \ { x } ⊆ U belongs to an infinite orbit (repelled
from or attracted to x). Thus our neighbourhood U′ contains a point
zπ0 ∈ Uπ � U′ in an infinite orbit,32 which establishes x ∈ ∂P′.

32 The infinite orbit Oz cannot project
onto a finite set under π0, because
each point in the circle has at most two
preimages under π0. (Dyadics have
two preimages; nondyadics have one.)

Let rot(α′) � p/q in lowest terms. Then all finite orbits under α′ (and
α) have size q, by Proposition 2.1.9.5. This means that P′ � Fix(αq).
Now P′ is closed, because fixed point sets of continuous maps β : X →
X in a Hausdorff space X are closed. Hence ∂P′ ⊆ P′.

To finish the proof, let y′ ∈ S1 be unimportant for α′. If y′ < P′ then
y′ < ∂P′ (by the paragraph above), so assume otherwise that y′ ∈ P′

has a finite orbit. We will explain how to find a neighbourhood U′

of y′ contained within P′. Our argument breaks into two cases.

Suppose y′ is nondyadic. Then y′ has exactly one preimage y ∈ y′π−1
0 ⊆

P. We know y is unimportant and has a finite orbit,33 so y ∈ [e] ⊆ P

33 Argue as in sidenote 32: the orbit
of y cannot be infinite, as could not
project onto the finite orbit of y′
under π0.

lies below a leaf e in a cycle of neutral leaves. Applying π0, we
see that y′ ∈ neo ⊆ P′. Because y′ is nondyadic, y′ belongs to the
interior of neo. Thus we may take U′ � neo◦. y1 y0

ne1o ne0o

C

S1
y′

π

e1

e0

Figure 2.17: Schematic illustrating the
case of a dyadic unimportant point y′
with two preimages yi ∈ ∂T2. We’ve
drawn ∂T2 as the middle-thirds Cantor
set C here, to emphasise the distance
between y0 and y1.

Suppose y′ is dyadic. Then y′ has two preimages: y0 with tail 0, and y1
with tail 1. Again, each yi is unimportant and belongs to a finite orbit
so, each yi ∈ [ei] ⊆ P lies below a leaf ei in a neutral cycle of leaves.
Applying π0, we see that y′ ∈ neio for both i. Set U′ � (ne0o∪ne1o)◦.
If y′ ∈ neio◦ for some i, then y ∈ U′. Otherwise y′ is the right
endpoint of ne1o and the left endpoint of ne0o, so again y ∈ U′.
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In both cases, there is an open set U′ contained in P′ and contain-
ing y′. This shows that y′ ∈ (P′)◦, and that y′ < ∂P′ in particular. �

Remark 2.3.9. Let α′ ∈ T have reduced rotation number p/q. We argued
in the proof above that P′ � Fix(αq), and so we have Iα � ∂ Fix(αq).

With this remark in mind, whenever
Kassabov and Matucci work with
∂ Fix(α) in F, we will work with
∂ Fix(αq) in T.

With that out of the way, which points can be important points
for an element β ∈ T? As noted above, Iβ � ∂ Fix(βq) where q is the
reduced rotation number denominator. To simplify things, we put
α � βq and look for important points z ∈ ∂ Fix(α).

Because our functions α are piecewise linear, there are two ways
they can have a fixed point. Firstly, a linear segment of α could have
gradient m � 1 and run along along the diagonal y � x. Alternatively,
a segment’s gradient could be m , 1 and cross the diagonal at exactly
one point. Thus our fixed point set’s connected components are
either fixed intervals or fixed singletons. What are the boundaries of
these components? At the endpoints of a fixed segment we have a
breakpoint, so the endpoints must be dyadics, and in particular they
must be rational. On the other hand, the isolated fixed points are their
own boundary. Where can they occur?

Take a linear segment of α with gradient M � 2m , 1 and initial
breakpoint (x0 , y0). Its points (x , y) satisfy the equation y − y0 �

M(x − x0), where x0 and y0 are dyadics. We locate a fixed point z by
putting x � y � z; rearranging shows that 34

34 In the more general setting of PLS,G ,
isolated fixed points take the form
s/(g − 1), where S ∈ S and 1 , g ∈ G.
Kassabov and Matucci call the set of
such points QS . See Kassabov and
Matucci 2012, Theorem 6.12.

z � (y0 − 2m x0)/(2m − 1) � s/(2m − 1)

is the dyadic integer s divided by an integer. Again we see that z is
neccessarily rational.

Can every rational in the interval be a important fixed point? The
answer is ‘yes’, as the next lemma shows.

Lemma 2.3.10. A point z ∈ S1 � [0, 1]/{0 ∼ 1 } is a important fixed point
of some element of T if and only if z is rational.

Proof. We have just seen that any such fixed point z must be rational;
now we explain how to build an element α ∈ T with z as a important
fixed point. To keep things simple, we’ll actually construct an element
α ∈ F. First note that ∂ FixS1(x0) � ∂{0 } � {0 }, where x0 is the element
defined in Equation (1.2) and Figure 1.1. So 0 can be a important fixed
point. For the rest of the proof, we take z to be a rational number in
(0, 1).

Write z as a repeating base two number z � 0.ab, where a � a1 . . . an

and b � b1 . . . bm are finite binary strings with n ≥ 0 and m ≥ 1. Then
z � abπ. Invoke Lemma 2.1.3 to build an element α ∈ F which linearly
maps nabo to nab2o. It follows that α fixes z, because

zα � abbαπ � abαbπ � ab2bπ � abπ � z .
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1/3

α
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3 4 5 1
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5α

Figure 2.18: We illustrate the proof of
Lemma 2.3.10. Since 1/3 �

∑
n∈� 4−n

we can write 1/3 � 0.01 � 0.0101. We
construct a tree pair for F where 01
and 0101 are leaves of the domain and
range trees, respectively. The resulting
element α fixes the point 1/3.

Now we explain why z ∈ ∂ Fix(α) is important. To do so we need to
explain why every neighbourhood of z contains points not fixed by α.
At least one of the one-sided derivatives (say in the positive direction)
of α at z is 2−m < 1. If z is not dyadic, then α must be continuous at z.
The other one-sided derivative (say in the negative direction) must also
be 2−m , or else z would be a breakpoint. Then no point z ± ε in the
immediate vicinity of z is fixed by α. Otherwise z is dyadic. We can
modify35 α outside of nabo so that it is continuous and has a gradient 35 E.g. use Lemma 2.1.3.

not equal to 1 in the other (say negative) direction. Then no point z − ε
in the immediate vicinity of z is fixed by α. �

Corollary 2.3.11. A point z ∈ S1 � [0, 1]/{0 ∼ 1 } is a important point of
some element β ∈ T if and only if z is rational. The period of z under β can
be any positive integer.

Sketch proof. As discussed above Lemma 2.3.10, to study important
points it suffices to study important points which are fixed. So our first
assertion follows from the same lemma.

We can build an element β ∈ T with z as a important point of
period n as follows. Choose a tree A with leaves a1 , . . . , an . Then write
z � ai tsπ as an infinite binary string, for some i and some strings t , s
with |s | ≥ 1. Use Lemma 2.3.10 to find an element α ∈ F for which
w � tsπ is a important fixed point of α. Choose a tree pair (D , R) for α,
say with m leaves each.

Form new a tree D′ (resp. R′) by attaching a copy of D (R) to each ai .
The new trees both have mn leaves in total. Then define β to have the
tree pair (D′, `, R′), where ` sends the ith leaf of D′ to the (i +m)th leaf
of R′. Then z belongs to an orbit of size n under β. Moreover, points
near z are attracted to or repelled from z by βn ; this occurs because
points near w are attracted to or repelled from w by α. �

The key thing to take away from this result is that any rational can
be important—even a nondyadic. This is a potential source of difficulty,
since (broadly speaking) it is more difficult to work with and around
nondyadic points z. We have to spend extra effort ensuring that z (or
any other point depending on z) is not a breakpoint of any elements
we’re considering.



behaviour near periodic points 42

α

Figure 2.19: An illustration to com-
plement the proof of Lemma 2.3.12.
In this sketch, a function α has two
different gradients x+α′ � 1/2 and
x−α′ � 2 either side of a fixed point x.
The grid represents the square [0, 1]2.

Points x0 are fed into the function
from the x-axis. These ‘staircase
diagrams’ show the iterations x0αn

starting with x0 � 63/128 and x0 �

1, for 1 ≤ n ≤ 5. Gradients less
than 1 cause attraction to fixed points,
whereas those greater than 1 repel
points away from x.

2.3.3 Partitioning at important points

Revealing pairs showed us that infinite orbits in ∂T2 jump all over the
place, as they diverge from and converge to limit cycles—namely, the
orbits of important points for V . If we consider a suitable power αq

instead of α, this ‘jumping’ vanishes. Instead, we find that intervals are
stretched away from repelling important points and squashed towards
attracting important points. Limit cycles of size n become separated
into n separate, stationary limit points—namely, the important points
themselves.

We’re going to mirror this approach, using important points for T
instead of for V , and using the circle S1 instead of Cantor space ∂T2. Let
α ∈ T be a generic element. We know α has finitely many important
points. Enumerate them and sort them into circular order, say as
r0 → · · · → rn−1 → r0 and let Pi � [ri , ri+1] for each 0 ≤ i < n. Let
rot(α) � p/q in lowest terms, so that I(αq) � Iα. If we have n � 0
important points, then αq � id, so the entire circle remains unchanged
by αq .

Otherwise n ≥ 1, so assume now that we have at least one important
point and cell. Each cell Pi is fixed setwise by αq , and may be equipped
with a linear order <ri formed by cutting the cyclic order on S1 at ri .36

36 See Definition 1.1.7, and Equa-
tion (1.4) in particular.

For each cell, we will show that one of its endpoints either attracts,
repels, or leaves unchanged the points within Pi . The other endpoint
must then repel, attract or leave unchanged the points of Pi . Note that
if n � 1 then these two endpoints are the same point on the circle!

r0

r1

r2

r3

r4

r5

Figure 2.20: The forward orbits of αq

will either leave points fixed—as
on the arc [r5 , r0]—or move them
away from one and towards another
important point. Each important
point may attract, repel, or have no
influence on its left and right side—see
Remark 2.3.13 for more on this.
In this example, r0 and r5 repel on

one side and attract on neither; r1
attracts on one side and repels on the
other; r2 and r4 attract on both sides;
and r3 repels on both sides.

Lemma 2.3.12. Let α have rotation number p/q in lowest terms. Partition S1

into cells Pi � [ri , ri+1] as above, and write mi � r+i (αq)′. Points in the cell
interior (ri , ri+1) are
• fixed pointwise by αq if mi � 1,

• repelled from ri and attracted to ri+1 by αq if mi > 1, and otherwise

• repelled from ri+1 and attracted to ri by αq if mi < 1.

Expressed in other words, this result says that the cell behaviour
under αq is determined by the right-gradient r+i (αq)′ at the start of
each cell. See Figures 2.20 and 2.21 for a visualisation.
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(a) (b) (c) (d)

r0 r0

r1

r0

r1

Figure 2.21: The circle can be divided
up into cells Pi by the n important
points ri of an element α ∈ T.

(a)Here n � 0 and αq � id. The
entire circle is fixed pointwise by αq .

(b)Now n � 1 so αq , id. Points
are repelled from r0 to the right, only
to be attracted to r0 from the left.

(c)Now n � 2. Both important
points attract material from their
left and repel it to their right. Over
time, the powers of αq will send all
unimportant points clockwise until
they approach a important point.

(d) Again n � 2, but this time points
are repelled on both sides by r0, and
attracted to r1 from both sides.

Proof. Suppose for starters that m � 1. Then αq has to fix the entire
cell Pi . If not, let x � inf{ y ∈ (ri , ri+1) | yαq , y } be the infimum of
points not fixed by αq . Then x must be a breakpoint, with x−(αq)′ � 1
and x+(αq)′ , 1. But then x would belong to ∂ Fix(αq), so x ∈ (ri , ri+1)
would be a important point. As we have already sorted Iα into cyclic
order, no point in the cell interior is a important point: a contradiction.

Next is the case when m > 1. View the cell Pi as a linearly ordered
set 37 Let s be the first breakpoint of αq to the right of ri . Then αq is

37 See Equation (1.4).

locally defined by (ri+ε)αq � ri+mε, for all ε in the range ri ≤ ri+ε ≤ s.
Choose such an ε and fix a point x � ri + ε. As m > 1 it follows that
xαqN � ri + mNε for any N ≤ 1. This converges to ri as N → −∞,
showing us that x is repelled from ri .

What happens as N →∞? We certainly have ri < x < xαq < rr+1.
As αq preserves the linear order on the cell Pi , we know ri < xαq <

xα2q < ri+1. Continue by induction to see that ri < x < · · · < xαqN <

ri+1 for all N > 0. Now xαqN must converge to a important point as
N →∞. Since the (linear) distance |xαqN − ri | increases with N, the
forward orbit of x cannot converge to ri ; instead, the orbit must be
attracted to ri+1.

We now know that any point y ∈ (ri , ri+1) is contained in the interval
(xα−Mq , xαMq), for some M > 0. Since αq is orientation preserving,
the translate yαN belongs to (xα−Mq+N , xαMq+N ). Taking limits as
N → ±∞, we see that the entire cell interior (ri , ri+1) is attracted to ri+1

and repelled from ri .
The case m < 1 is similar; we could even replace α with α−1 and

argue as above. Then every point in (ri , ri+1) is attracted to ri and
repelled from ri+1. �

Remark 2.3.13 (Dyadics versus nondyadics). There exists an element α ∈ T
with only nondyadic important points—see Figure 2.22 on page 45.

If a important point r is attracting (repelling) on one side and not on
the other, then the gradients r−αq′ and r+αq′ must be different. So r is
a breakpoint, and hence must be dyadic. Taking the contrapositive, we
see that nondyadic important points r must have the same gradients
either side. It’s impossible for r to be neither attracting or repelling on
both sides—then it wouldn’t be important.38 So nondyadic important 38 See Remark 2.3.9.

points must either attract on both sides or repel on both sides.
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2.3.4 Gradients

One of the first comments in the part of Matucci’s thesis which deals
with conjugacy39 is that taking gradients at fixed points results in a 39 Matucci 2008, Section 4.1.2.

homomorphism. Unfortunately, we don’t necessarily have any fixed
points in T, so it’s not clear that we can use this approach. What can
we do instead? We start with the calculation behind all of this, which
boils down to careful use of the chain rule.

Claim2.3.14. Let α and γ be right-differentiable (left-differentiable) functions
under composition with positive gradients. Suppose that xα � x is a fixed
point and that γ is invertible. Then the right (left) derivatives [xγ]±(αγ)′
and x±α′ are equal.

Proof. The chain rule tells us that

(αγ)′ � (γ−1αγ)′ � (γ−1)′ · (γ−1α′) · (γ−1αγ′) ,

so evaluating40 the right-hand derivatives at xγ yields

40 We’re using the fact that our func-
tions are locally increasing here: see
Proposition 1.2.6.

[xγ]+(αγ)′ � [xγ]+(γ−1)′ · ([xγγ−1]+α′) · ([xα]+γ′) .

The right-hand side simplifies to

[xγ]+(αγ)′ � [xγ]+(γ−1)′ · (x+γ′) · (x+α′) . (2.2)

after applying xα � x, cancelling γγ−1 and reordering the factors.
Finally, since γ−1γ � id, the chain rule informs us that

1 � (γ−1γ)′ � (γ−1)′ · (γ−1γ′) ,

so
1 � [xγ]+(γ−1)′ · ([xγγ−1]+γ′) � [xγ]+(γ−1)′ · (x+γ′) .

Applying this to Equation (2.2) yields [xγ]+(αγ)′ � x+α′.
The calculation for the left-derivative is identical: replace every

superscript plus with a superscript minus. �

Corollary 2.3.15. Let αγ � β in a group of right-differentiable (left-
differentiable) functions under composition. Suppose that x is fixed by
α, β and γ. Then the right (left) derivatives of α and β at x are equal.

Proof. This is the special case where xγ � x. �

In F, Matucci applies this observation to elements α and β whose
important points Iα and Iβ are equal.41 If these elements are conjugate 41 Matucci 2008, Section 4.1.1.

in F, say αγ � β, their gradients at points x ∈ Iα � Iβ must agree.
Conversely, mismatching gradients will help us filter out nonconjugate
pairs of elements.

Canwe use a similar approach to study conjugate elements α, β ∈ T?
Suppose again that their important point sets Iα � Iβ are identical.
Unlike in F, these sets need not be fixed pointwise by α and β (or even



behaviour near periodic points 45

1

2 3

4 4

1 2

3α 1

2 3

4

5

6 7

8 4

5 6

7

8

1 2

3
β

α β β2

Figure 2.22: Two elements α, β ∈ T
with only nondyadic important
points Iα � {1/3, 2/3 } and Iβ �

{1/6, 1/3, 2/3, 5/6 }. The rotation
numbers are rot(α) � 0 and rot(β) �
1/2. Also shown is the plot of the
square β2.
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Figure 2.23: The elements α, β ∈ T are
conjugate via γ ∈ F.

α β

Figure 2.24: Plots of α, β ∈ T from
Figure 2.23. Notice the different
gradients (1/2)±α′ and (1/2)±β′.
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a conjugator γ). Fortunately, we know that the actions of α and β on
this set are identical by Corollary 2.1.12. This weakens our hypotheses
to xαi � xβi for 1 ≤ i < q. This doesn’t give us much to work with
when repeating the previous calculation; indeed Figures 2.23 and 2.24
show that gradients at important points need not be conserved by
conjugation in T.

We need a bigger picture, with global rather than local information.
The answer is the ‘speed homomorphism’ of Bleak et al.42 In short, we 42 See Bleak, Bowman et al. 2013,

Lemma 7.5. Their speed is the base 3
logarithm of our speed, because they
are working with the middle thirds
Cantor set C.

don’t get enough information about dynamics by looking at a single
gradient at a point—we need to investigate gradients along this point’s
orbit.

Definition 2.3.16. Let O ⊆ S1 be a finite subset of the circle. For any
element α ∈ PL+(S1), define the right-speed of α at O to be the quantity43 43 Speed isn’t quite the right word for

this quantity. Since we’re taking the
product of derivatives at multiple
points, we can construct examples
where taking O to be larger results
in a larger speed. Perhaps we should
be using the geometric mean of
{ x+α′ | x ∈ O } instead, as a kind of
average speed rather than total speed?

αS+

O �

∏
x∈O
(x+α′) ,

where the superscript + indicates a right-hand derivative. The left-
speed S−O is the defined by the same formula, but using left-hand
derivatives (x− instead of x+).

Claim 2.3.17. Let O be a finite subset of the circle permuted by a group
G ≤ PL+(S1). Then S+

O and S−O are homomorphisms G → �>0 which are
constant on conjugacy classes.

Proof. Suppose that α and γ permute O. Then

(αγ) S+

O �

∏
x∈O

x+(αγ)′

�

∏
x∈O
(x+α′) · ([xα]+γ′)

�

∏
x∈O
(x+α′)

∏
x∈O
([xα]+γ′) .

Now as α permutes O, we can substitute y � xα and iterate over
y ∈ Oα � O. We obtain

(αγ) S+

O � αS+

O
∏
y∈O
(y+γ′) � αS+

O · γS+

O .

Now the speed (αγ)S+

O of a conjugate is the product (γS+

O)−1 · αS+

O · γS+

O
of speeds. Since the codomain group �>0 is abelian, we see that the
latter speed is just αS+

O .
The calculation for S−O is identical: replace +with − as before. �

Note that Corollary 2.3.15 is the special case of the previous result
when O � { x } is a singleton.
Remark 2.3.18 (Orbit speeds are gradients of powers). Suppose we take O
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to be a finite orbit { xαi }q−1
i�0 . Applying the chain rule twice, we see that

x+(αq)′ � x+(αq−1)′ · [xαq−1]+α′
� x+(αq−2)′ · [xαq−2]+α′ · [xαq−1]+α′ .

Continue this until the leftmost factor is x+(αq−(q−1))′ � x+α′. At this
point we obtain

x+(αq)′ �
q−1∏
i�0
[xαi]+α′ � αS+

O ,

which shows that the speed over O is exactly the gradient of αq at x.
If we were to take another representative y � xα j ∈ O instead of x,

exactly the same calculation would apply. It follows that y+(αq)′ �
x′+(αq)′. To put this in prose, gradients of qth powers are the same
everywhere on a size-q orbit.

To close this subsection we prove a classical result about F (and
F-like groups). We include it here to emphasise the fact that this is
an argument about gradients, so can be seen as a consequence of the
dynamics of F acting on the interval. Alternatively we could prove
this using the rotation number, as in Lemma 2.1.14.

Proposition 2.3.19. Let J be a compact interval. Then PLS,G(J) is torsion-
free.

Proof. Let id , α ∈ PLS,G(J), and let

x � sup{ t ∈ J | s+α′ � 1 for all points s < t } .

Then the interval (possibly singleton) [0, x] is fixed pointwise by α,
and m � x+α′ , 1. We saw above that the map 〈α〉 → G sending αi

to x+(αi)′ is a homomorphism, so x+(αi)′ � m i . As m , 1, we have
x+(αi)′ , 1 for each integer i , 0. Thus αi is not the identity function,
for each i , 0. �

2.4 Aligning finite lists of points

Let X : x1 < · · · < xn be a sorted list of points in the interval I. We
call such a list a linear partition, since it expresses I as the union44 44 In the usual definition of a partition

S �
⋃
λ∈Λ Tλ , the cells Tλ are pairwise

disjoint. In contrast, the intersection of
any two of our cells is either empty or a
singleton { xi }.

of intervals [0, x1] ∪ · · · ∪ [xi , xi+1] ∪ · · · ∪ [xn , 1]. In Section 1.1.1 we
saw special instances of this definition, namely dyadic partitions and
dyadic subdivisions. Let Y : y1 < · · · < yn be another linear partition
with the same number of points. We say that X and Y can be aligned
by F if there is an element α ∈ F with xiα � yi for every index i.

Lemma 2.1.2 shows that any two dyadic partitions can be aligned
by F. Kassabov and Matucci go one step further,45 explaining that 45 Kassabov and Matucci 2012, Corol-

lary 6.14.we can determine if two linear partitions of rational numbers can be
aligned with F.
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Theorem 2.4.1 (Searching for alignments of with F). Suppose we have
two linear partitions 0 < y1 < · · · < ym < 1 and 0 < z1 < · · · < zm < 1
where each yi and zi is rational. There is an algorithm which constructs an
element α ∈ F such that yi � ziα for each i, or else determines that no such α
exists.

Now our task is to extend this result to T.46 A circular partition is 46 It’s probably more accurate to say
that we reduce the analogous results
for T to those of Kassabov and Matucci
in F.

a finite list X : x0 , . . . , xn−1 of points in the circle with the property
that x0 → x1 → · · · → xn−1 → x0. This partitions the circle into cells
[xi , xi+1] for 0 ≤ i < n, with subscripts modulo n. Let Y : y0 , . . . , yn−1

be another circular partition of the same length. We say that X and Y
can be aligned by T if there is an element α ∈ T and index 0 ≤ j < n
such that xiα � yi+ j for every index i, with subscripts modulo n. Such
an element α is said to align the two partitions with index difference j.
Note that the parameter j allows for up to n ways in which the circular
partitions can be aligned, while there’s only one way to align linear
partitions. An alignment with j � 0 is said to align the circular
partitions directly.

We can generalise the problem solved by Theorem 2.4.1 to the
following problem in T.

Problem 2.4.2. Let X : x0 . . . , xn−1 and Y : y0 , . . . , yn−1 be two circular
partitions in which every element xi and yi is rational. Construct an
element γ ∈ T such that xiγ � yi for every i; or otherwise demonstrate
that no such γ exists.

As stated, the problem asks us to align the circular partitions directly.
This is not a loss of generality: we may replace partition Y with its
j-fold left cyclic shift

YC j : y j , . . . , yn−1 , y0 , . . . , y j−1 .

Then any solution to Problem 2.4.2 can be used to determine if X
and YC j can be aligned directly. Such an alignment is exactly an
alignment of X and Y with index difference j. Repeating this for each
0 ≤ j < n, we will determine which of the n potential alignments are
possible in T.

2.4.1 Alignment involving a dyadic point

One strategy to find alignments in T would be to modify the partitions
with elements of T, sending x1 and y1 (say) to zero. Then we could
apply Theorem 2.4.1 to the modified partitions, and use its result to
solve the problem for the original problems. Unfortunately, in T we
can only map rationals to zero if they are dyadic.47 47 See Section 2.1.1.

Lemma 2.4.3. We can solve Problem 2.4.2 when one of the xi or yi is dyadic.

Proof. If there is no index i for which xi and yi are both dyadic, it is
not possible to align X and Y directly. So assume such an i exists, and
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relabel the partitions’ indices so that x0 and y0 are dyadic. Rotate the
points of X by −x0 and those of Y by −y0 to obtain new linear partitions Note the similarity to the proof of

Lemma 2.1.7.

X′ � Xρ−x1 : 0, x1ρ−x1 , . . . , xn−1ρ−x1

and Y′ � Yρ−y1 : 0, y1ρ−y1 , . . . , yn−1ρ−y1 .

Note that the maps ρ−x0 and ρ−y0 are elements of T, because x0

and y0 are dyadic. Use Theorem 2.4.1 to search for an element γ′ ∈ F
aligning X′ and Y′ directly. If such an element exists, it satisfies
xiρ−x0γ

′ � yiρ−y0 for each i. Then γ � ρ−x0γ
′ρ+y0 ∈ TFT ⊆ T sends

each xi to yi .
To complete the proof, we must show that if a solution γ exists

to Problem 2.4.2 aligning X and Y, then there must be an element γ′

matching X′ to Y′. This is almost immediate: if xiγ � yi then

yiρ−y0 � xiγρ−y0 � xiρ−x0(ρ+x0γρ−y0) ,

and so γ′ � ρ+x0γρ−y0 matches X′ with Y′. �

We’ve used a particular structure in this proof which is worth
emphasising, as we’ll make use of it later. First, a little formalism.

For more details, see R. W. Floyd and
Beigel 1994, Chapter 2.

Definition 2.4.4. A search problem P may be modelled as a relation
from a set I of instances to a set A of answers. If i ∈ I is related to a ∈ A,
we say that i has answer a or that a is an answer for i. For instance, we
could take I � A � � and let P be the relation

a is an answer for i ⇐⇒ a is a prime dividing i .

Less formally, P is the problem ‘find a prime factor of i’.
An effective solution to P is an algorithmwhich takes an instance i ∈ I

as input and outputs an answer a for i in finite time. If no such a exists,
the algorithm must terminate with no output in finite time. We say
that P is solvable if there exists an effective solution to P. An answer
computed by such a solution is sometimes called a positive certificate for
the instance i under consideration. Similarly, evidence that there does
not exist an answer for i is sometimes called a negative certificate for i.

Remark 2.4.5 (Reducing search problems). In the previous proof, we
showed that one search problem P reduces to another Q by arguing as
follows.

• Ananswer a for an instance p ofP can be algorithmically constructed
from an answer a′ to a particular instance qp of Q.

Note that the second instance qp
depends on p.

• If an answer a for p exists, then an answer a′ for qp must exist.

We can now build an effective solution for P given an effective solution
for Q. When an instance p is input, use the given solution to find an
answer a′ for qp . If there is no such answer, then there is no answer
for p by the contrapositive of the second bullet. Otherwise construct a
from a′; this is possible and is a correct answer by the first bullet.
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In our proof above, p is the instance “find a direct alignment of X
and Y by T” of Lemma 2.4.3. On the other hand, qp is the instance
“find an alignment of X′ and Y′ by F” of Theorem 2.4.1. The answers
to these questions are γ and γ′ respectively.

Corollary 2.4.6. Two circular partitions X and Y with the same size con-
sisting only of dyadics can always be aligned by T.

Proof. Rerun the proof of Lemma 2.4.3 assuming that each xi and yi

are dyadic. The modified partitions X′ and Y′ would also consist only
of dyadics. This time, we would be able to use Lemma 2.1.2 (instead
of Theorem 2.4.1) to align the primed partitions. This lemma always
returns a concrete element γ′, and thus the proof would always build
an aligning element γ. �

2.4.2 Alignment involving no dyadics

To complete our description of a solution to Problem 2.4.2, we need to
handle the remaining case where no point xi or yi is dyadic.

Lemma 2.4.7. We can solve Problem 2.4.2 when no partition element is
dyadic.

Proof. Let X : x1 . . . , xn and Y : y1 , . . . , yn be our circular partitions. Note that we’re indexing our partitions
from 1 to n here, instead of 0 to n − 1.Choose a small arc [x0 , x1.5] with dyadic endpoints containing x1

but no other xi . Similarly choose [y0 , y1.5] with dyadic endpoints,
containing y1 but no other yi . We obtain new partitions

X′ : x0 → x1 → x1.5 → x2 → x3 → · · · → xn → x0

and Y′ : y0 → y1 → y1.5 → y2 → y3 → · · · → yn → y0 ,

both of which contain a dyadic point. Any function γ′ ∈ T directly
aligning X′ and Y′—sending xi 7→ yi for each 0 ≤ i ≤ n—solves the
problem for the original partitions X and Y. Use Lemma 2.4.3 to decide
if there exist such a γ′, and return it if so.

Now we need to explain why such a γ′ must exist if the unprimed
partitions can be aligned by some γ ∈ T. In this situation, any arc
[x0 , x1.5] as above ismapped to someother dyadic arc [x0γ, x1.5γ]which
contains the point x1γ � y1. Because xn → x0.5 → x1 → x1.5 → x2

is in cyclic order, so too is the list yn → x0.5γ → y1 → x1.5γ → y2,
because γ preserves cyclic order. Thus we can align X′ and Y′ if we can
find a δ ∈ T which aligns X′γ and Y′. Explicitly, these partitions are

X′ : x0.5 → x1 → x1.5 → x2 → x3 → · · · → xn → x0.5 ,

X′γ : x0.5γ→ y1 → x1.5γ→ y2 → y3 → · · · → yn → x0.5γ

and Y′ : y0 → y1 → y1.5 → y2 → y3 → · · · → yn → y0.5 .

Now we use a trick of Kassabov–Matucci.48 Choose more dyadic 48 Matucci 2008, see Figure 4.3.
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points z0.25, z0.75, z1.25 and z1.75 such that the lists

Z : z0.25 → x0.5γ→ z0.75 → y1 → z1.25 → x1.5γ→ z1.75 → y2 →
→ y3 → · · · → yn → z0.25

Z′ : z0.25 → y0.5 → z0.75 → y1 → z1.25 → y1.5 → z1.75 → y2 →
→ y3 → · · · → yn → z0.25

are in cyclic order. Apply Lemma 2.4.3 to copies of Z and Z′ which
have had the { yi | i ∈ � } removed. All points remaining in the copies
are dyadic, so the lemmawill produce amap δ0 ∈ T aligning the copies.
Modify δ0 by forcing it to restrict to the identity function on the arcs
[z0.75 , z1.25] and [z1.75 , z0.25]; this is possible because each zi is dyadic.
The result, say δ ∈ T, aligns the uncopied partitions Z and Z′. Thus the
composition γ′ � γδ ∈ T aligns the partitions X′ and Y′ directly. �

Corollary 2.4.8 (Searching for alignments of rationals with T). Prob-
lem 2.4.2 has an effective solution.

To close the chapter, let X and Y be the circular partitions described
in Problem 2.4.2. It is possible to test for the existence of an aligning
map γ ∈ T without attempting to construct it.49 49 We thank C. Bleak for highlighting

this fact. The proof sketch we give is
essentially that given above Kassabov
and Matucci 2012, Cor. 6.14.

Lemma 2.4.9 (Deciding when rationals can be aligned with T). Let
X : x0 , . . . , xn−1 and Y : y0 , . . . , yn−1 be two circular partitions in which
every element xi and yi is rational. Each point has a binary expansion
xi � 0.ai bi and yi � 0.ci di with repeating tails bi and di . Let

Bi � min lex{ bi , bCi , b
C 2
i , . . . } and Di � min lex{ di , dCi , d

C 2
i , . . . }

be the lexicographically minimal cyclic permutation of these tails.
Then there exists a map γ ∈ T aligning X and Y directly if and only if

Bi � Di for each i.

The fact that γ aligns these partitions directly is not a loss of generality.
To recover the general case, replace Y with a cyclic shift YC j , as below
the statement of Problem 2.4.2.

Sketch proof. If xiγ � yi then it is neccessary that xi and yi have the
same repeating tail up to cyclic shifts, and hence have the same lexico-
graphically minimal repeating tail. This is established in Lemma 2.1.5
and the discussion following it.

To show that this condition is sufficient, let γi ∈ T be such that
xiγi � T. (Again, Lemma 2.1.5 and the discussion following it establish
that such a map exists.) Surround each point xi with a sufficiently
small closed arc Ii such that the collection of arcs { Ii }0≤i<n are pairwise
disjoint. We may then apply Lemma 2.1.7 to glue the restriced maps
γi

��
Ii
together, forming a map γ ∈ T with γ

��
Ii
� γi

��
Ii
for each i. In

particular, xiγ � xiγi � yi holds for each i. �
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3 Conjugacy in T
The conjugacy problem (CP) in a group G is the following decision
problem: given elements α, β ∈ G, determine if there exists an element We did not define a decision problem

formally in Definition 2.4.4. Briefly, a
decision problem is a search problem
for which every instance i has exactly
one answer ‘yes’ or ‘no’.

γ ∈ G such that αγ � β. The corresponding search problem—which
we consider here—requires us to construct a conjugator γ as a positive
certificate of conjugacy.

Conjugation has been well-studied in Thompson’s groups. Higman
used the universal algebra viewpoint 1 to solve CP in the groups Vn ,r . 1 Higman 1974.

(Informally, these groups are versions of V whose gradients are powers
of n and whose functions rearrange [0, r), for integers n and r.) As
part of a study of power conjugacy in Vn ,r , a small error was corrected
in Higman’s CP solution by Barker et al.2 The corrected algorithm was

2 Barker, Duncan and Robertson 2016

implemented by the author in Python.3 A more concrete approach 3 Robertson 2015.

to conjugacy in V using revealing pairs to understand dynamics was
given in Salazar-Díaz’s thesis.4 4 O. P. Salazar-Díaz 2010.

In F, CP was solved by Guba and Sapir using Diagram groups.5 5 Victor Guba and Mark Sapir 1997,
Theorem 15.23.Another solution to CP in F was given by Gill and Short, building ‘on

the geometric invariants introduced by Brin and Squier’.6 6 Gill and Short 2013; Brin and Squier
2001.Matucci’s thesis gives a unified approach to conjugacy in all three

groups F, T and V , in joint work with Belk. The authors use strand dia-
grams, describing their strategy as ‘dual’ to that of Guba and Sapir. They
prove7 that an element’s ‘reduced annular strand diagram’ (RASD) is 7 Belk and Matucci 2014, Theorem 2.10;

see also Theorems 2.12 and 2.15.a conjugacy invariant, and that two elements of F are conjugate if and
only if they have the same RASD. Computing and comparing RASDs
can be performed in linear time.8 The approach generalises to T and V , 8 Hossain et al. 2013.

but requires cubic time.9 More recently, this technique was adapted by 9 Matucci 2008, Theorem 2.4.5. See also
Proposition 2.1.10 for cutting paths.Aroca10 for larger groups Vn(H) of homeomorphisms.
10 Aroca 2018.

The fourth chapter of Matucci’s thesis—later published as an article
with Kassabov—solves the k-simultaneous conjugacy problem (SCP) in F.
This is a harder problem, taking as input 2k elements α1 , . . . , αk and
β1 , . . . , βk . The goal is to determine if there exists an element γ such
that αγi � βi for each i simultaneously; note that the special case k � 1
is the ordinary conjugacy problem. Again, the corresponding search
problem requires us to produce such a conjugator γ as a positive
certificate.

Kassabov–Matucci’s approach views F � PL2(I) as a group of PL
functions, and generalises naturally to the larger groups PLS,G(J)
with ∂J dyadic. They outline a four-step plan11 to tackle SCP in these 11 Kassabov and Matucci 2012, Sec-

tion 2.2.larger groups.

Step 1. Find an element of F which aligns Fix(α)with Fix(β).
Step 2. Solve the conjugacy problem when Fix(α) � Fix(β).
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Step 3. Describe the intersection of element centralisers.

Step 4. Reduce the SCP to a ‘restricted’ conjugacy problem.

In this chapter we will generalise the first two steps to the group T. Our approach is reminiscent of the
discussion preceding Lemma 2.1.7: we
reduce a problem P in T to a problem
Q in F. As long as the reduction takes
finite time and calls a solution to
Q a finite number of times, we can
implement a solution to P.
To abuse terminology, our problem P

is ‘virtually Q’ (in the finite-index
sense of virtually cyclic, virtually
hyperbolic, etc. groups).

The tools required to do so have mostly been covered in Chapter 2.
Since we will frequently refer to them, we abbreviate ‘Kassabov and
Matucci’ to ‘K&M’.

3.1 Constraints on conjugators

In this sectionwe present three lemmaswhich describe the relationship
between a conjugator γ and its restriction γ

��
U to some subset U ⊆ S1.

We’ll use this to see how partial maps can be extended to bona fide
conjugators.

If we have a candidate conjugator γ defined on some small set U,
the first lemma explains how γ must be defined on the α-orbit of U.

Lemma 3.1.1. Let α, β and γ be permutations of a space X. Suppose αγ � β,
and let U ⊆ X. Then γ is uniquely determined on the translates Uαi by α, β
and γ

��
U .

Proof. Let t ∈ Uαi be a point in a given translate of U. Then tγ �

tα−iγβi . The statement t ∈ Uαi is equivalent to tα−i ∈ U, so γ in the
previous equation can be replaced by γ

��
U . Thus γ must satisfy

tγ � tα−i γ
��
U β

i for all t ∈ Uαi and all i ∈ � , (3.1)

so γ is uniquely determined on translates Uαi by α, β and γ
��
U . �

If the translates of U cover the whole space X, then this condition is
sufficient for γ to be a conjugator.

Lemma 3.1.2. Let α, β and γ be permutations of a space X, and let U ⊆ X.
Suppose X �

⋃
i∈�Uαi . If γ satisfies Condition (3.1), then αγ � β.

A note of caution: if α and β belong to some group of interest
G ≤ Sym(X), there is no reason that a map γ satisfying Condition (3.1)
also belongs to G. We have to decide if γ ∈ G separately.

Proof. By hypothesis, each t ∈ X belongs to a translate Uαi . Then
tα ∈ Uαi+1, so

(tα)γ � tαα−(i+1) γ
��
U β

i+1 ;

whereas
(tγ)β � (tα−i γ

��
U β

i)β .
As the two right-hand expressions are equal and this argument holds
for all t ∈ X, we see that γβ � αγ. �

This gives us a crude means to search for conjugators. First we
find a set U with the property that X �

⋃
i∈�Uαi . Then we choose a



constraints on conjugators 55

bĳection δ0 : U → V , for some set V ⊆ X. We define δ : X → X by

tδ � tα−iδ0β
i for all t ∈ Uαi and all i ∈ � . (3.2)

Then we check to see if δ conjugates α to β. There are two details to
verify. Firstly, because the translates {Uαi } may overlap, we need
to check that δ is well-defined. We also need to verify that δ is a
permutation, i.e. that δ−1 : X → X exists. The next lemma does so,
under some additional hypotheses.

Lemma3.1.3. Let α and β be permutations of a spaceX. Also letU,V ⊆ X be
such that X �

⋃
i∈�Uαi �

⋃
i∈� Vβi . Suppose there exists an integer q > 0

with the following properties.

1. U � Uαq and V � Vβq .

2. U ∩Uα` � ∅ and V ∩ Vβ` � ∅, for each 0 < ` < q.

If δ0 : U → V is a bĳection with δ−1
0 αq

��
U δ0 � βq

��
V , then the map δ defined

by Equation (3.2) is a well-defined permutation, with αδ � β.

Proof. The only means by which δ may be ill-defined occurs when
Uαi ∩Uα j is not empty, for distinct integers i < j. Assume that this is
the case. In order for δ to be well-defined, we require that

tα−iδ0β
i
� tα− jδ0β

j for all t ∈ Uαi ∩Uα j ,

for each such pair i < j as above. By multiplying on the right by β−i ,
we see that this condition is equivalent to

tα−iδ0 � tα− jδ0β
j−i for all t ∈ Uαi ∩Uα j .

Let t′ � tα−i . Noting that t′ ∈ (Uαi ∩ Uα j)α−i � U ∩ Uα j−i , this is
equivalent 12 to 12 On the right-hand side, replace t

with tα−iαi � t′αi .

t′δ0 � t′α−( j−i)δ0β
j−i for all t′ ∈ U ∩Uα j−i .

There exist unique integers n ≥ 0 and 0 ≤ r < q such that j − i �
nq + r. Since U � Uαq , it follows that Uαnq+r � Uαr . If 0 < r < q,
property 2 tells us that U ∩ Uαnq+r � U ∩ Uαr is empty. Thus the
only way for Uαi ∩Uα j to be nonempty is if r � 0. Now we know that
j − i � nq, the condition we have been tracking is now

t′δ0 � t′α−(nq)δ0β
nq for all t′ ∈ U . (3.3)

Now we need to demonstrate that this statement is a consequence of
our hypotheses.

Thanks to this lemma’s requirements on δ0, we know that

tδ0 � tα−qδ0β
q for all t ∈ U . (3.4)

Now if t′ ∈ U, then t′α−q ∈ U also. Applying Equation (3.4) tells us
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that t′α−qδ0 � (t′α−q)α−qδ0βq . Multiplying by βq on the right yields

t′α−qδ0β
q
� t′α−2qδ0β

2q for all t′ ∈ U .

However the left-hand side of this equation is just t′δ0, again by
Equation (3.4). We conclude that

t′δ0 � t′α−2qδ0β
2q for all t′ ∈ U .

Use the same trick to see that t′α−2qδ0 � t′α−3qδ0βq for all t′ ∈ U; then
conclude that t′δ0 � t′α−2qδ0β2q � t′α−3qδ0β3q . Repeating this process
inductively, we deduce that

t′δ0 � t′α−mqδ0β
mq for all t′ ∈ U and all m ≥ 0,

and in particular this holds for m � n. Thus Condition (3.3) holds,
meaning that δ is well-defined.

Is δ an invertible function? We know that δ restricts to q functions

δ
��
Uαi � (α−iδ0β

i)��Uαi : Uαi → Vβi ,

where 0 ≤ i < q. These restrictions are a composition of invertible
functions α−1, δ0 and β, so each restriction δ

��
Uαi is a bĳection. Now we

argued above that {Uαi }0≤i<q is a partition of X; similarly, {Vβi }0≤i<q

is another partition of X. Thus δ is a bĳection. We can conclude that
αδ � β by applying Lemma 3.1.2 with δ in place of γ. �

3.2 The miracle of F

The aim of this short section is to justify a miraculous lemma about
conjugacy in F and F-like groups. Briefly: conjugators between powers
are also conjugators between roots.

Proposition 3.2.1 (The miracle of F). Let α, β, γ ∈ PLS,G(J), for some
compact interval J. Let n , 0 be any integer. Then αγ � β if and only if
(αn)γ � βn .

This miracle has two particularly nice consequences.

Corollary 3.2.2 (Roots are unique in F). et α, β ∈ PLS,G(J) and let n , 0
be an integer.

1. αn � βn if and only if α � β.

2. CPLS,G(J)(α) � CPLS,G(J)(αn), where CH(·) denotes a centraliser in H.

Proof. These are special cases of Proposition 3.2.1. For part 1, choose
γ � id. For part 2, choose α � β. �

How should we prove our miraculous proposition? The hard work
has already been done for us by Kassabov and Matucci (K&M). We
will use the following result of theirs.
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Lemma 3.2.3. Let J � [ j0 , j1] be a compact interval and let α, β ∈ PL0
S,G(J)

be almost one-bump functions. Fix an element g ∈ G. There is at most one
element γ ∈ PLS,G(J) such that αγ � β and j+0 γ

′ � g. Similarly, there is at
most one element γ ∈ PLS,G(J) such that αγ � β and j−1 γ

′ � g.

In other words, this lemma says a conjugator between almost one-
bump functions is entirely determined by its initial (or final) gradient.

Proof. K&M prove this result in the case13 where ∂J ⊆ S. For the case

13 Kassabov and Matucci 2012, Proposi-
tion 4.20, Remark 4.22.
While their computational require-

ments (see their Section 3) are not sat-
isfied when using � as the breakpoint
group, the uniqueness of conjugators
with a given initial gradient still holds.

where ∂J 6⊆ S, we can use the larger breakpoint group S′ � � and
apply their proposition in the context of the larger group PL�,G(J).
This is legitimate because ∂J ⊆ �. �

Proof of Proposition 3.2.1. The �⇒ direction is immediate; we need to
establish the ⇐� direction. Assume then that (αn)γ � βn . We’ll split
our argument into various cases based on the ‘bumpiness’ of αn .

No bumps. If αn � id then βn � (αn)γ � idγ � id. Since F-like groups
are torsion-free,14 it follows that α � β � id. So it is certainly the 14 Proposition 2.3.19

case that αγ � β holds.

Almost one-bump. If αn ∈ PL0
S,G(J) is an almost one-bump function,

then by definition Fix(αn) ∩ S � ∂J. Now

Argue as in Section 2.1.1 to see
that PLS,G(J) acts on S ∩ J. This
means that Sγ � S, which justifies the
third equality.

Fix(βn) ∩ S � Fix([αn]γ) ∩ S � Fix(αn)γ ∩ S

� [Fix(αn) ∩ S] γ � ∂Jγ � ∂J ,

meaning that βn is also an almost one-bump function.

Seeking a contradiction, suppose that α is not an almost one-bump
function. Then there is some point s ∈ S ∩ J◦ fixed by α. But
that point s would also be fixed by αn , contradicting our earlier
assumption that αn is almost one-bump. We conclude that α ∈
PL0

S,G(J)must be almost one-bump. Apply the same reasoning with
β in place of α to see that β ∈ PL0

S,G(J) is almost one-bump too.

Observe that the elements β and αγ both conjugate βn to itself: This paragraph’s argument is that
given in Kassabov and Matucci 2012,
Lemma 4.13.

(βn)β � βn and

(βn)(αγ) � (αγ)−1βnαγ � γ−1α−1(γβnγ−1)αγ
� (α−1αnα)γ � (αn)γ � βn .

Write J � [ j0 , j1]. As the elements αn and βn are conjugate, their
initial gradients

j+0 (αn)′ � ( j+0 α′)n and j+0 (βn)′ � ( j+0 β′)n

must be equal, by Corollary 2.3.15. Take nth roots in the gradient
group G � 2� to see that the initial gradients of α and β are also
equal. Use Corollary 2.3.15 once more to learn that initial gradients
of α and αγ are equal. This establishes that αγ and β share an initial
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gradient and both conjugate βn to itself. By Lemma 3.2.3 we must
have α � β.

Many bumps. Let A � ∂J∪(∂ Fix(αn) ∩ S) and B � ∂J∪ (
∂ Fix(βn) ∩ S

)
. These sets are the important points of

αn and βn for F.Enumerate these sets as A � { a0 < · · · < am } and B � { b0 < · · · <
bm }. Then m ≥ 1, J � [a0 , am] � [b0 , bm], and aiγ � bi for each i.
Define Ai � [ai , ai+1] and Bi � [bi , bi+1] so that Aiα � Ai , Biβ � Bi

and Aiγ � Bi . Then the restrictions α
��
Ai
, αn

��
Ai
, β

��
Bi

and βn
��
Bi

are all
almost one-bump functions.

We are in the situation where (αn)γ � βn . Restricting this equality
to Bi , we see that (αn

��
Ai
) γ|Ai � βn

��
Bi
. As all three restrictions are

almost one-bump functions, we can use our argument from the
previous case to conclude that (α��Ai

) γ|Ai � β
��
Bi

for each i. Thus
αγ � β. �

We could try to extend this ‘miracle’ from F to T. Unfortunately,
there is no miracle 15 of T, so we can only use the ideas and techniques 15 For example, let α, β ∈ T be the

elements described in Examples 5.1.2
and 5.1.3. These are constructed
such that α2 � β2, so the powers are
conjugate via γ � id. But α , β, so
αγ , β in this example. Thus there is
no miracle of T.

from F up to a point.

3.3 Finding coarse conjugators

The rest of this chapter describes an algorithm to solve the conjugacy
problem in T. Given α, β ∈ T, we are asked to construct (if possible)
a conjugator γ ∈ T with αγ � β. First we should establish any
conditions on α and βwhich are necessary for γ to exist. We know from
Proposition 2.1.9.3 that the rotation numbers of conjugate elements are
equal, so our first task is to compute and compare rot(α) and rot(β)
using Theorem 2.1.13. If these are not equal, we immediately conclude
that the elements are not conjugate. Assume then that rot(α) � rot(β)
is a rational number p/q in lowest terms.

As we’ve noted before, if x ∈ S1 is fixed by α, then xγ is fixed by αγ.
The converse is true too, so if β � αγ then Fix(β) � Fix(αγ) � Fix(α)γ.
Replacing α with αi , we see that any conjugator γ must map Fix(αi)
to Fix(βi), for each i ∈ �. We know by Proposition 2.1.9.5 that
all finite orbits have period q. Thus any conjugator γ must satisfy In F, the rotation number is always

0 � 0/1, so Kassabov and Matucci
(K&M) know their conjugators γ have
to map Fix(α) to Fix(β).

Fix(αq)γ � Fix(βq). We give a name to maps satisfying this condition.

Definition 3.3.1. Let α, β ∈ T have the same rotation number p/q in
lowest terms. An element δ ∈ T for which Fix(αq)δ � Fix(βq) is called
a coarse conjugator for α and β.

Nowwe explain how to search for coarse conjugators; in Section 3.3.3
we’ll see how they can be used to solve the conjugacy problem.

If δ is a coarse conjugator then Fix(αq)δ � Fix(βq). Because T is
a group of homeomorphisms, it follows that ∂ Fix(αq)δ � ∂ Fix(βq).
In other words, the important points Iα of α are mapped by δ to the
important points Iβ of β. This gives us another necessary condition
to establish: it must be the case that |Iα | � |Iβ |, or else they cannot
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be aligned by any map δ ∈ T. If this is not the case, we immediately
conclude that the elements are not conjugate.

How we proceed depends on the number of important points
n � |Iα | � |Iβ |. We handle the two cases n � 0 and n > 0 separately.

3.3.1 No important points

In this sectionwehandle the casewhere there are no important points to
align, i.e. when ∂ Fix(αq) � ∂ Fix(βq) � ∅. A set has empty boundary if
and only if it’s closed and open. The only closed and open subsets of S1

are the empty set and S1 itself (because S1 is a connected space). We
can’t have Fix(αq) � ∅: that would mean that α has no periodic points,
but this is false (see Remark 2.2.9). Thus Fix(αq) � S1 and Fix(βq) � S1

are equal. Since q is the reduced rotation number denominator, we see
that α and β are torsion elements of T with order q.

Notice that when we have n � 0 important points, the fixed point
sets are automatically equal—there is no need to search for a coarse
conjugator.

It turns out that torsion elements with the same rotation number are
always conjugate. Put differently, the rotation number is a complete
conjugacy invariant for torsion elements. To the best of the author’s
knowledge, this result is due to Burillo et al,16 but see also the work of 16 Burillo et al. 2009, Corollary 6.2.

Matucci 17 and Geoghegan and Varisco.18 17 Matucci 2008, Proposition 2.2.13,
Lemma 7.1.2.
18 Geoghegan and Varisco 2017, Corol-
lary 2.6.

Lemma 3.3.2. Torsion elements α, β ∈ T have the same rotation number
if and only if they are conjugate in T. In this situation, we can construct a
conjugator δ ∈ F so that αδ � β.

Proof. We already know—from Proposition 2.1.9.3—that the rotation
number is a conjugacy invariant. We prove the other implication by
constructing a conjugator δ ∈ F. A0

B0

A1

B1

A...

B...

Aq−1

Bq−1

αk

βk

αk

βk

αk

βk

δ0

Figure 3.1: A schematic depicting the
cells Ai and Bi , as well as the maps αk ,
βk and δ0.

Let the rotation number be rot(α) � rot(β) � p/q in lowest terms.
Use A and B to denote the orbits of 0 under α and β, respectively.
Arrange them into circular order, say as

A : 0 � a0 → a1 → · · · → aq−1 → 0

and B : 0 � b0 → b1 → · · · → bq−1 → 0 ,

and let the arcs Ai � [ai , ai+1) and Bi � [bi , bi+1) be the ith cells of
these partitions, closed at the left and open at the right. We know from
Lemma 2.1.11 that aiα � ai+p and ai � a0αik where k � p−1 mod q.
It follows that Ai � A0αik and A0αi � Aip mod q . The same is true
replacing the symbols ai , Ai and α with bi , Bi and β, respectively.

Use Lemma 2.1.1 to produce an element δ0 ∈ F for which a1δ0 � b1.
Then A0δ0 � B0, as δ0 fixes a0 � b0 � 0. For each i, the composition
φi � α−ikδ0βik is a PL2 map Ai → Bi . Use Lemma 2.1.7 to glue19 these

19 Strictly speaking, our definition
of PL2 maps and the gluing lemma
require that the domain and codomain
of the φi are closed. This isn’t a
problem: extend φi to a map Ai → Bi
between closed arcs by defining
ai+1φi � bi+1. (The overbar denotes the
closure operation.)

functions together. The result δ ∈ T is defined by

tδ � tα−ikδ0β
ik if t ∈ Ai � A0α

ik , for each 0 ≤ i < q,
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for each 0 ≤ i < q; this is a particular instance of Equation (3.2).
Now apply Lemma 3.1.3, where the arcs A0 and B0 take on the

roles of U and V , respectively. The lemma’s requirements are satisfied,
because

• {Ai }qi�0 and {Bi }qi�0 are both partitions of the circle;

• A0αi ∩A0α j � Aip mod q ∩A jp mod q , ∅ if and only if i ≡ j (mod q),
and similarly for Bi and B j ; and finally because

• αq � βq � id.

Thus we conclude that δ ∈ F is a well-defined conjugator between α
and β. �

3.3.2 At least one important point

Nowwe handle the remaining case, in which there are n > 0 important
points which must be aligned by a coarse conjugator. In this situation,
α and β have infinite order, so we have to deal with points in infinite
orbits converging to and from attracting and repelling points. (Contrast
this to previous section, where all points belonged to size q orbits
under α and β.)

Enumerate the important points in cyclic order as Iα : x1 , . . . , xn and
Iβ : y1 , . . . , yn . A coarse conjugator must align these cyclic partitions, C.f. Section 2.4.

with some index difference 0 ≤ j < n. We determine if a coarse
conjugator δ exists by looping over each value 0 ≤ j < n, and looking
specifically for a coarse conjugator δ j with index difference j.

There is a necessary condition to worry about. Let Xi � [xi , xi+1]
and Yi � [yi , yi+1] be the cells corresponding to the important point
partitions. Then Xiδ j � Yi+ j . For δ j to exist, it is necessary that

whenever Xi is fixed pointwise by αq , its image
Xiδ j � Yi+ j must be fixed pointwise by βq ;

(3.5)

this is because Fix(αq) is sent to Fix(βq) by any conjugator. We can
determine if a cell is fixed pointwise using Lemma 2.3.12, so for each j
we can check if Condition (3.5) holds true. If not, then there cannot
be a coarse conjugator δ j with index difference j. For any remaining
values of j, we defer to Corollary 2.4.8 and construct—if possible—a
coarse conjugator δ j .

3.3.3 Reducing to a search for fine conjugators

Now that we’ve explained how to find coarse conjugators, how do we
use them to solve the conjugacy problem?

Definition 3.3.3. Two elements α, β ∈ T are called coarsely equivalent
if they have the same reduced rotation number p/q and the same
periodic point sets Fix(αq) � Fix(βq). Such elements have the same
important points I � Iα � Iβ.
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X1

X2X3

X4

Y1

Y2

Y3

Y4

Figure 3.2: In this schematic, the even-
indexed cells Xi are fixed pointwise
by αq , but odd-indexed cells are
not fixed pointwise by αq . Similarly,
even-indexed (odd-indexed) cells Yi
are (are not) fixed pointwise by βq .
Condition (3.5) tells us that we should
only look for coarse conjugators δ0
and δ2 with index differences 0 and 2,
respectively, because we need to map
cells fixed pointwise to cells fixed
pointwise.

Suppose as above that α, β ∈ T have the same rotation number p/q
in lowest terms. If there is a coarse conjugator δ between these two
elements, then Fix([αδ]q) � Fix([αq]δ) � Fix(αq)δ � Fix(βq). We also
know that rot(α) � rot(αδ), so the elements αδ and β are coarsely
equivalent.

Next, suppose that a ‘full’ conjugator γ with αγ � β exists. Then
certainly (αδ)δ−1γ � β. Now we need a procedure to find an element ε
of the form δ−1γ; what are these properties?

The name ‘fine’ is unfortunate, because
‘a fine’ sounds and reads like ‘affine’.
The key phrase in this definition is

fixes I pointwise. The idea is that we
want coarse conjugators alone to be
responsible for aligning important
points; once they’re aligned, fine
conjugators should leave them well
alone.

Definition 3.3.4. Let α, β ∈ T be coarsely equivalent elements with
important points I � Iα � Iβ. A map ε ∈ T with αε � β which fixes I
pointwise is called a fine conjugator between α and β.

Given coarsely equivalent elements α and β, the aligned conjugacy
problem (ACP) is the search problem which asks us to find a fine
conjugator ε between α and β, or determine that no such ε exists.

If we find a fine conjugator ε between αδ and β, then we can use
γ � δε as a full conjugator between α and β. This suggests that we can
reduce CP to ACP. We explain why this is the case with the following
formal algorithm, which corresponds to step 1 of K&M’s four-step
outline.

Algorithm 3.3.5 (Reduction to fine conjugator search). The following
procedure constructs a coarse conjugator for elements α and β in T,
and reduces the conjugacy problem to ACP.

1. Check that the elements have the same reduced rotation number p/q.
2. Check that they have the same number of important points n �

|Iα | � |Iβ |.
3. If n � 0, use Lemma 3.3.2 to construct a conjugator γ and return it.

4. For each 0 ≤ j < n/q: The loop bounds are tighter than the
discussion above would suggest; see
the proof for a justification.(a) For each 1 ≤ i ≤ n, check that Xi is fixed pointwise by αq if and

only if Yi+ j is fixed pointwise by βq . If not, continue to the next
value of j.

(b) Use Corollary 2.4.8 to construct a element δ j mapping Iα to Iβ
with index difference j. This is our coarse conjugator. If this is
not possible, continue to the next value of j.
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(c) Use a solution to ACP to construct an element ε j which fixes Iβ
pointwise and satisfies (αδ j )ε j � β. This is our fine conjugator.
If such an ε j exists, return the product γj � δ jε j as a positive
certificate of conjugation. Otherwise continue to the next value
of j.

5. If any of the checks in steps 1 and 2 fail, or if we never return from
the loop in step 4c, there is no conjugator αγ � β.

Proof of correctness. If the algorithm succeeds, then we produce a bona
fide conjugator. We must explain why the algorithm will succeed
if such an element γ exists, with index difference j0 say. All of the
necessary conditions (‘Check that...’ above) will be satisfied. The
case where α and β have (the same) finite order is handled by step 3.
Otherwise we reach step 4.

We know from Lemma 2.1.11 that α acts on its important points Iα
by pushing them pn/q steps forward. If p , 0 then let k � p−1 mod q,
so that αk pushes Iα forward by t � n/q steps. Write j0 � `t + j, where
` and j are integers and 0 ≤ j < t. Then γ′ � α−k`γ is also a conjugator
between α and β. It aligns the important point sets Iα and Iβ with
index difference j0 − `t � j in the range 0 ≤ j < t � n/q.

If p � 0 then q � 1, since we assume the rotation number p/q is in
lowest terms. Let γ′ � γ and j � j0 in this case. It is still true that γ′ is
a conjugator between α and β with index difference 0 ≤ j < n/q � n.
This justifies the upper limit on the loop in step 4.

Within the body of the loop, we will pass step 4a because Con-
dition (3.5) is another necessary condition which is satisfied by any
conjugator. In step 4b, a coarse conjugator δ j certainly exists: δ j � γ′

is an example. Whichever δ j is chosen, in step 4c a fine conjugator ε j

completing the conjugation must exist: ε j � δ−1
j γ
′ is an example. This

fixes I(αδ j ) � Iβ pointwise because bδ j � bγ′ for each b ∈ Iβ, since
the two maps δ j and γ′ have the same index difference j. Thus the
algorithm produces a conjugator. �

Remark 3.3.6 (Restricting the index difference). Suppose we restrict the
loop in step 4 to run for only a single value j∗, possibly outside the
range 0 ≤ j < n/q. Then the resulting algorithm will construct a full
conjugator γ with index difference j∗, or determine that no such γ
exists.

3.4 Finding fine conjugators

To complete the story, we need to explain how to solve the aligned
conjugacy problem. Assume then that α, β ∈ T have infinite order and
are coarsely equivalent. As usual, let p/q be their reduced rotation
numbers and let I , ∅ be their important point sets. We begin with a
general discussion of our strategy for finding fine conjugators ε ∈ T,
i.e. for finding ε such that αε � β and ε

��
I � id.
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Onepotential avenue of attack could be to cut the circle at a important
point r into an interval [r, r+1] ⊆ �. Since αq , βq and a fine conjugator ε
all fix r, we can see these elements as members of PL2([r, r +1]). This is
an F-like group rather than a T-like group, so the results of K&M apply.
We might hope that an understanding of conjugacy in this group will
help us find fine conjugators. There are three potential problems to
overcome with this approach.

First of all, we need to distinguish between dyadics and nondyadics.
In the theorem below,20 K&M explain how to solve the conjugacy 20 Kassabov and Matucci 2012, The-

orem 7.5; see also Remark 2.2.problem in PL2(J) assuming that J has has dyadic endpoints ∂J. With
that said, their machinery—in particular the stair algorithm—works
perfectly well in any group PL+(J), with no restrictions on ∂J.

Theorem (Kassabov–Matucci). Let PLS,G(I) be the generalised Thompson
group defined in Definition 1.2.1. Let J ⊆ I be a closed subinterval with
endpoints ∂J ⊆ S. Then the group PLS,G(J) has solvable conjugacy problem.
Moreover we can construct and enumerate all possible conjugators.

If r is not dyadic we have a second problem to be aware of. If ω ∈ T
is one of our elements αq , βq or ε under consideration, then we must
have r+ω′ � r−ω′. If ω corresponds to a map φ ∈ PL2([r, r + 1]) then
this condition reappears as r+φ′ � [r + 1]−φ′. These gradients need
not be 1, which means that we must work in PLrest

2 ([r, r + 1]) rather
than in PLflat

2 ([r, r + 1]) 21; when we say PL2 we mean PLrest
2 . The set of 21 For the definition of and distinction

between ‘rest’ and ‘flat’, see Defini-
tion 1.2.2.such elements φ forms a proper subgroup of PL2([r, r + 1]). We need

to make sure we only produce conjugators in this subgroup, so that
we can recover a fine conjugator ε on the circle.

A third issue with this proposed method is that it searches for a fine
conjugator between α, β ∈ T by instead searching for fine conjugators
between the powers αq and βq . Any conjugator between roots is a
conjugator between powers, but is the reverse true? In a general group
the answer is ‘no’. Encouragingly, the answer is ‘yes’ for F-like groups,
as we saw in Section 3.2 above.

Hopefully the reader agrees that the search for fine conjugators
does not immediately reduce to an F-like conjugacy problem. At the
very least there are details to check! In the rest of this chapter, we will
use some of the ideas above to describe how to find fine conjugators.
The main departure from the discussion above is that we cut the circle
into q intervals—not just a single interval [r, r + 1].

3.4.1 Restriction to a representative arc

Thanks to the lemmas at the start of this chapter, we only need to
consider a sufficiently representative slice of the circle—a kind of
fundamental domain. Let us define this slice more precisely.

Definition 3.4.1 (Representative arc). Let α, β ∈ T be coarsely equival-
ent, with reduced rotation numbers p/q and equal important point
sets I. Arrange I in circular order as r0 → · · · → rn−1 → r0. If
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possible, choose r0 to be dyadic; otherwise all ri are nondyadic. For
0 ≤ j < q, define Q j � [r jt , r( j+1)t), where t � n/q. These sets are called Note that subscripts on points ri and

arcs Q j are reduced modulo n and q,
respectively.

representative arcs for α and β.

Because we know that α and β permute I, we have riα � riβ � ri+pt .
This means that the arcs themselves are permuted according to the
rule Q jα � Q jβ � Q j+p . In particular, if k � p−1 mod q we have
riαk � riβk � ri+t , and hence Q jαk � Q jβk � Q j+1. Thus an endpoint
of Q j is dyadic if and only if the other endpoint is dyadic. In fact, the
endpoints of our arcs

⋃
0≤ j<q ∂Q j form a single orbit under α (and also

a single orbit under β). Because of this—and because of the convention
on r0 in Definition 3.4.1—we have two cases.

1. We could have ∂Q j ⊆ �[1/2] for each j. This occurs when I contains
at least one dyadic point; I may or may not contain nondyadics.

2. The other option is that ∂Q j ∩ �[1/2] � ∅, for each j. This occurs
when all points of I are nondyadic.

We cannot avoid the latter case,22 because it is quite possible that a non- 22 We cannot avoid this case, but our
definition means we don’t have to
handle this case unless we have no
other choice!

torsion element of T has no dyadic important points—see Figure 2.22
for an example.

Despite naming them ‘arcs’, we think of each Q j as subinterval
of � rather than a circular arc. In particular, if q � 1 there is a single
representative arc Q0 equal to the whole circle S1. We will think of
this arc as the real interval [r, r + 1), in order to handle this case in the
same way as the case q > 1.

The following claim will show that we only need to search for fine
conjugators over a single representative arc.

Claim 3.4.2. Let α, β ∈ T be coarsely equivalent, with rotation number p/q
in lowest terms and representative arcs {Q j }0≤ j<q .

1. A fine conjugator ε between α and β is uniquely determined by its
restriction ε0 to Q0.

There’s nothing special about Q0 over
the other Q j : we just need to choose
one representative arc in particular.

2. Any orientation-preserving homeomorphism ε0 : Q0 → Q0 satisfying
(αq

��
Q)ε0 � βq

��
Q uniquely extends to a fine conjugator ε ∈ Homeo+(S1)

given by There is no guarantee that ε ∈ T—we’ll
have to check this separately.tε � tα− jε0β

j if t ∈ Q0α
j . (3.6)

Proof. Let U � V � Q0 � [r0 , rt) be our chosen representative arc. For
any integer i we have

Uαi
� Vβi

� Qip mod q . (3.7)

Firstly, this means that the translates {Uαi }i∈� cover the circle. Apply
Lemma 3.1.1 to see that item 1 above holds.

Secondly, because the {Q j } are pairwise disjoint, Equation (3.7)
means that properties 1 and 2 from Lemma 3.1.3 hold in our scenario.
Apply that very lemma—with ourmap ε0 in place of its δ0—to construct
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r0 rt r2t r3t r(q−1)t r0

Q0 Q1 Q2 Q··· Qq−1

r···

L1 L2 L3 L4 L5

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 rt

Figure 3.3: We split Q � Q0 into
subintervals Li by partitioning Q
at dyadic important points ( ). On
the Li containing nondyadic important
points ( ), αq and βq are almost one-
bump functions. On the remaining Li ,
these powers are either both the
identity or both one-bump functions.

N.B. In this sketch, ∂Q0 consists of
dyadic points; but this need not always
be the case.

the fine conjugator ε. (Specifically, Equation (3.6) comes from Equa-
tion (3.2)). The uniqueness of ε is guaranteed by item 1. Finally, note
that ε is an orientation-preserving homeomorphism because the restric-
tions ε

��
Q0α j �

(
α− jε0β j ) ��

Q0α j are themselves orientation-preserving
homeomorphisms defined over pairwise disjoint sets {Q0α j }. This
establishes item 2 above. �

From now on, we drop the subscript 0 and refer to our chosen
representative arc as Q, rather than Q0.

To proceed, we further divide Q into smaller ‘blocks’ on which
the behaviour of αq and βq are manageable. Let I′ � I ∩ Q ∩ �[1/2]
be the set of dyadic important points in Q. Add in the (potentially
nondyadic) endpoints ∂Q to form the set I′′ � I′∪ ∂Q. This contains at
least two points, since we treat Q as a real interval and not a circular arc.
Arrange I′′ in linear order as q1 < · · · < qm+1, and define the ‘blocks’
to be the intervals Li � [qi , qi+1], for 1 ≤ i ≤ m. As the endpoints are
important, each block is fixed setwise by αq and βq . Our choice of
cut points I′′ ensures that either αq

��
Li
and βq

��
Li
are almost one-bump

functions, or αq
��
Li

� βq
��
Li

� idLi .

dyadic important points
do exist do not exist

r0 dyadic no ri dyadic
I′′ � I′ I′′ � ∂Q, I′ � ∅
m ≥ 1 block(s) m � 1 block

Figure 3.4: A summary of how we
divide Q into blocks, depending on
whether ∂Q is dyadic. If we have a
dyadic important point then ∂Q ⊆ I′,
so that I′′ � I′. If there are no dyadic
important points then then I′ is empty,
meaning that m + 1 � |I′′ | � |∂Q | � 2.

We will construct the representative part ε0 � ε
��
Q of a fine conjug-

ator ε by searching for the potential restrictions εi � ε0
��
Li
for 1 ≤ i < m

and gluing them together. So now we need to search for a PL2 map
εi : Li → Li which conjugates αq

��
Li
to βq

��
Li
. For brevity, drop the sub-

script i and restriction symbols; thus we’re trying to find a conjugator ε
between αq and βq in PL2(L). Also write L � [r, s], so that we have a
name for each endpoint.

Suppose first that L is fixed pointwise by αq . As Fix(αq) � Fix(βq)
we conclude that L is also fixed pointwise by βq . Then αq � βq � idL

are conjugate in PL2(L), and we may choose any element of PL2(L) as
our conjugator ε. To keep things simple, we can choose ε � idL.

Otherwise L is not fixed pointwise by αq , nor by βq . Then these
maps restrict to non-identity, almost one-bump functions on L. We turn
to the following proposition23 which greatly reduces our search space. 23 Kassabov and Matucci 2012, Pro-

position 4.20 and Remark 4.22. The
computation requirements are dis-
cussed in their Section 3.

In short, the result says that there is at most one conjugator ε ∈ PL2(L)
with a given initial or final gradient. Its proof explicitly constructs a
map ζ ∈ PL2(L) using the ‘stair algorithm’, and then checks to see if ζ
conjugates αq to βq . If so, we can use ε � ζ and we’re done; if not,
there is no conjugator ε on L.

Proposition 3.4.3. Let L � [r, s] be an interval with ∂L ⊆ S, and assume
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that S and G satisfy certain computational requirements. Let α, β ∈ PL0
S,G(L)

be almost one-bump functions. Fix a gradient g ∈ G.
We can algorithmically construct a conjugator ε ∈ PLS,G(L) between

α and β with initial gradient r+ε′ � g. If such an element ε exists, it
is uniquely determined24 by the initial gradient r+ε′. Similarly, we can 24 See also our discussion in and

around Lemma 3.2.3.construct a conjugator ε̄ with a given final gradient s− ε̄′ � g, or determine
that no such ε̄ exists. Again, such an ε̄ is uniquely determined by s− ε̄′.

We normally use the breakpoint group S � �[1/2] and gradient
group G � 2�. Unfortunately, doing so here would prevent us from
using the proposition, because the endpoints ∂L � { r, s } are both
nondyadic. Instead, we note that our endpoints are always rational, as
they’re important points (see Remark 2.3.13). The choice of breakpoint
and gradient groups S � � and G � �>0 satisfiesK&M’s computational
requirements,25 so we can apply Proposition 3.4.3 to the group PL�(L). 25 Kassabov and Matucci 2012, Ex-

ample 9.1.Since we are seeking conjugators in PL2(L), we’ll only use initial
gradients g ∈ 2� as inputs (even though any rational gradient is
permitted by K&M’s algorithm). If this results in a conjugator ε ∈
PL�(L), we can inspect gradients and breakpoints to determine if
ε ∈ PL2(L).

Next we follow K&M in establishing bounds26 on the initial gradient 26 Kassabov and Matucci 2012, Sec-
tion 7.of a conjugator ε (if one exists at all).

Lemma 3.4.4. Suppose L � [r, s] is not fixed pointwise by αq ∈ PLS,G(L),
nor by βq ∈ PLS,G(L). Let A � r+(αq)′. If αq and βq are conjugate in
PLS,G(L), then they are conjugate via a map ε ∈ PLS,G(L) whose initial
gradient r+ε′ belongs to the real interval with endpoints 1 (inclusive) and A
(exclusive).

Proof. If the elements are conjugate via δ ∈ PL2(L), they are also
conjugate via αq jδ for each j ∈ �. Let g � r+δ′. The initial gradient of
α±qδ is

r+(α±qδ)′ � r+(α±q)′ · [rα±q]+δ′ � A±1 · r+δ′ � A±1 g .

It follows that α jqδ is a conjugator between αq and βq with initial
gradient A j g, for each j ∈ �.

Let m � blogA gc. We must have A , 1, or else αq would be the bxc denotes the floor of x, the greatest
integer n ≤ x.identity on some small interval containing r—which would mean

that αq is not an almost one-bump function. If A > 1 we have
Am ≤ g < Am+1, so 1 ≤ A−m g < A. Hence the initial gradient of
ε � α−mqδ belongs to [1,A). Otherwise we have A < 1. In this case
Am+1 < g ≤ Am , so A < gA−m ≤ 1. This time, the initial gradient of ε
belongs to (A, 1]. �

Since the intervals (A, 1] and [1,A) contain finitely many powers of
two, we can enumerate all of these powers 2k . For each power, we use
Proposition 3.4.3 to construct a conjugator εk over L with r+ε′k � 2k . If
there is no such element εk , then there cannot exist a fine conjugator δ
between αq and βq .
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Because we can also use Proposition 3.4.3 to test for the existence of
conjugators with a given final gradient, we obtain the following.

Lemma 3.4.5. Let αq , βq and L and δ be as in Lemma 3.4.4 and let
B � r+(αq)′. If the restrictions αq

��
L and βq

��
L are conjugate in PLS,G(L), then

they are conjugate via a map ε ∈ PL2(L) whose final gradient s−ε′ belongs
to the real interval with endpoints 1 (inclusive) and B (exclusive).

Sketch proof. The proof is very similar: replace A with B; r+ with s−;
and the word ‘initial’ with ‘final’. �

We summarise our discussion with a claim.

Claim 3.4.6. Let α, β ∈ T be coarsely equivalent and let L be a block as
discussed above. If L is fixed pointwise by αq , then any function ε ∈ PL2(L)
conjugates αq

��
L to βq

��
L; in particular we may take ε � idL. Otherwise

there exists a conjugator between these two restrictions if and only if there
exists a conjugator εg ∈ PL2(L) with initial (final) gradient g belonging to
a constructable finite set Γ. For each initial (final) gradient g ∈ Γ, we can
effectively construct such an element εg , or prove that no such εg exists.

Thus we can decide if αq
��
L and βq

��
L are conjugate in PL2(L), and produce

a conjugator if so.

3.4.2 Reassembly

To solve the aligned conjugacy problem we now turn to brute force.
We use Claim 3.4.6 to enumerate conjugators on each Li . Gluing these
together, we obtain a conjugator ε0 on the representative arc Q. This
extends to a conjugator ε defined on the whole circle, according to
Claim 3.4.2. Now certainly ε must be an element of PL�(S1). By
inspecting gradients and breakpoints, we can then check if ε ∈ T.

The next lemma enables a small optimisation to this process: it
allows us to determine if ε ∈ T given only ε0.

Lemma 3.4.7. Let α, β ∈ T be coarsely equivalent, and let Q � [r, s] be a
representative arc. Suppose ε0 ∈ PL2(Q) is extended to a candidate conjugator
ε ∈ PL�(S1). If ∂Q consists of dyadics, then ε ∈ T. If ∂Q is nondyadic and
q � 1, then ε ∈ T if and only if

s−ε′0 � r+ε′0 . (3.8)

If ∂Q is nondyadic and q > 1, then ε ∈ T if and only if

s−ε′0 � s(α−k)′ · r+ε′0 · r(βk)′ , (3.9)

where k � p−1 mod q.

Proof. The map ε is formed by gluing the functions α− jε0β j together.
Call these functions ε j : Qα j → Qα j , for each 0 ≤ j < q. We know ε

must have finitely many linear segments (each with gradient equal to
an integer power of two) because each εi is a PL2 map. To conclude

We can’t use Lemma 2.1.7 to conclude
that ε ∈ T, because ∂Q need not be
dyadic.
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that ε ∈ T, we need to locate the breakpoints of ε, and verify that
each is dyadic. The breakpoints in the interior of Qα j are dyadic,
because each ε j is a PL2 map. Any remaining breakpoints are in
∂(Qα j) � (∂Q)α j for some j. Because T acts on the dyadics, if ∂Q
consists of dyadics then all breakpoints of every ε are dyadic, so ε ∈ T.

In the remaining case, ∂Q consists of nondyadics. First we handle
the situation where q � 1 and hence Q � S1. In these circumstances, r
and s � r+1 represent the same point r on the circle. It’s possible that r
is a nondyadic breakpoint of ε. This does not occur if and only if the
initial and final gradients of ε0 are equal, which justifies Condition (3.8).

Otherwise ∂Q is nondyadic and q > 1. We know from the definition
of a representative arc that s � rαk � rβk , where k � p−1 mod q. For
each 0 ≤ j < q, the point x j � rα( j+1)k is the right endpoint of Q j and
the left endpoint of Q j+1. Now ε ∈ T if and only each of these gluing
points x j is not a breakpoint. The left-hand derivative is

[rα( j+1)k]−ε′ � [rα( j+1)k]−(α− jkε0β
jk)′

� [rα( j+1)k]−(α− jk)′ · [rαk]−ε′0 · [rαkε0]−(β jk)′
� [rα( j+1)k]−(α− jk)′ · s−ε′0 · s−(β jk)′ , (3.10)

according to the chain rule. Similarly the right-hand derivative is

The third equality holds because
s � rαk and sε0 � s.

We are using the fact that rε0 � r here.

[rα( j+1)k]+ε′ � [rα( j+1)k]+(α−( j+1)kε0β
( j+1)k)′

� [rα( j+1)k]+(α−( j+1)k)′ · r+ε′0 · r+(β( j+1)k)′ . (3.11)

Thus ε ∈ T if and only if Expressions (3.10) and (3.11) are equal, for
every value of j. After some rearrangement, this condition takes the
form We are always differentiating α and β

at a point t of the form t � rαi , for
some i. As r is nondyadic, so too are
the points in its orbit. Thus the left and
right derivatives of α and β at t are the
same. This allows us to drop some of
the superscripts ± on derivatives.

s−ε′0
r+ε′0

�
[rα( j+1)k](α−( j+1)k)′
[rα( j+1)k](α− jk)′ ·

r(β( j+1)k)′
s(β jk)′ . (3.12)

Let A j (resp. B j) be the left (resp. right) fraction on the right-hand
side of Equation (3.12). Apply the chain rule to the numerator of A j to
see that

A j �
[rα( j+1)k](α− jk)′ · [rαk](α−k)′

[rα( j+1)k](α− jk)′ � [rαk](α−k)′ � s(α−k)′

is independent of j. Using the fact that s � rαk � rβk , we see in a
similar fashion that

B j �
r(βk)′ · [rβk](β jk)′
[rβk](β jk)′ � r(βk)′

is also independent of j. Thus we see that ε ∈ T if and only if

s−ε′

r+ε′
� A jB j � s(α−k)′ · r(βk)′ ,

which is equivalent to Condition (3.9). Note that this is the equality
between Expressions (3.10) and (3.11) in the special case j � 0. �
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Now we assemble our work in this section into an algorithm to search
for fine conjugators.

Algorithm 3.4.8 (Finding fine conjugators). The following procedure
solves the aligned conjugacy problem by building27 a fine conjugator ε 27 If no such ε exists, the algorithm re-

turns the message ‘no fine conjugator’.for coarsely equivalent elements α, β ∈ T. Let their common rotation
number be p/q in lowest terms, and let I denote their shared important
point set.

1. Split the circle at the orbit of a important point r, forming represent-
ative arcs Q � Q0 , . . . ,Qq−1. If possible, choose r to be dyadic.

2. Partition Q � [r, s] at its interior dyadic points, breaking it into
blocks L1 , . . . , Lm .

3. If ∂Q is dyadic:

(a) For each 1 ≤ i ≤ m:

i. Use Claim 3.4.6 to construct a conjugator εi ∈ PL2(Li).
ii. If this is not possible, there is no fine conjugator between α

and β. We terminate the algorithm, returning the message ‘no
fine conjugator’.

(b) Assemble ε0 : Q → Q by gluing together ε1 , . . . , εm .

4. If ∂Q is nondyadic: 28 28 In this situation, m � 1 and there is
only one block L1 � Q. See Figure 3.4.

(a) Let A � r+(αq)′. If A > 1, let M be the interval [1,A); otherwise
let M � (A, 1].

(b) For each integer power of two g � 2 j in M:

i. Use Proposition 3.4.3 to build a conjugator ε0,g ∈ PL2(Q) with
initial gradient g. If this is not possible, continue to the next
value of g.

ii. If q � 1, let k � 0; otherwise let k � p−1 mod q. Check that
s−ε′0,g � s(α−k)′ · g · r(βk)′. If the check passes, store ε0,g as ε0

for use later, and break the loop over g.

(c) If we exhaust all values of g without storing an element ε0, then
there is no fine conjugator between α and β. We terminate the
algorithm, returning the message ‘no fine conjugator’.

5. Extend ε0 to ε : S1 → S1 using Claim 3.4.2. Return ε.

Proof of correctness. First we show that any value ε returned by the
algorithm is a fine conjugator in T. The only point at which this occurs
is step 5. The claim referred to in this step guarantees that ε is a
conjugator between α and β, provided that ε0 is a conjugator between
αq

��
Q and βq

��
Q . If ∂Q is nondyadic then this is true thanks to the success

of step 4(b)i. Otherwise ∂Q is dyadic, and ε0 is a conjugator over Q
because it is formed from the εi in step 3b, each of which is a conjugator
between αq

��
Li
and βq

��
Li
. In either case, ε0 fixes the important points
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in Q, and hence ε fixes all important points I. Thus ε ∈ PL�(S1) is a
fine conjugator. Finally we check that ε ∈ T. Lemma 3.4.7 tells us this
is automatically the case when ∂Q is dyadic. Otherwise we know from
the success of step 4(b)ii that Condition (3.8) or (3.9) (as appropriate) is
satisfied, so ε ∈ T by the same lemma.

Now we need to explain why the algorithm must produce an
output ε whenever a fine conjugator γ exists. If ∂Q is dyadic, then
step 3(a)i will always succeed, because γ

��
Li

is a conjugator between
αq

��
Li
and βq

��
Li
. We then proceed to step 5 without any problems.

The alternative is that ∂Q is nondyadic, inwhich case m � 1 and Q �

L1 (see Figure 3.4). In step 4(b)i, there must exist a conjugator ε0 with
initial gradient in the given range M. An example of the form ε0,g �

Let x ∈ { r, s } and ω ∈ {α, β, γ }.
When considering step 4, we have
x < �[1/2]. Since ω ∈ T, we know that
x−ω′ � x+ω′ in this situation. Thus we
may drop some of the superscripts ±
for brevity, as in Lemma 3.4.7.(αxqγ)��L1

is guaranteed to exist with initial gradient g � [r(αq)′]x · rγ′,
according to Lemma 3.4.4. We now show that step 4 is successfully
completed when (if) the loop considers this particular example ε0,g ;
this means passing the gradient check in step 4(b)ii.

If q � 1 then ε0,g � αxqγ is an element of T, thought of as a PL2 map
on [r, s] � [r, r + 1]. So it will certainly be the case that s−ε0 � r+ε0,
because r � s mod 1 is a nondyadic, which cannot be a breakpoint of
αxqγ ∈ T. We pass the gradient check and successfully exit the loop.

Otherwise q > 1, and we need to check that

s−ε′0,g � s(αk)′ · g · r(βk)′ . (3.13)

By applying the chain rule, we see that s−ε′0,g � s(αxq)′ · sγ′ �

[s(αq)′]x · sγ′. With this and the value of g above in hand, we see that
Equation (3.13) is equivalent to

[s(αq)′]x · sγ′ � s(αk)′ · [r(αq)′]x · rγ′ · r(βk)′ .

Because s � rαk belong to the same α-orbit and are fixed by αq ,
their derivatives under αq are equal (by Remark 2.3.18). Thus we can
simplify to obtain the equivalent equation

sγ′ � s(αk)′ · rγ′ · r(βk)′ .

This is true by Lemma 3.4.7,29 and so Equation (3.13) is satisfied. This 29 Apply the lemma with γ in place
of ε. As γ ∈ T is a fine conjugator,
Condition (3.9) must hold—which is
exactly what we wanted to show.

means we will pass the gradient check and complete step 4. We move
on to step 5, which will return a conjugator ε ∈ T, as explained in the
first paragraph of this proof. �

With this proof and Algorithm 3.3.5 above in hand, we have the
tools to construct conjugators in T.

Theorem 3.4.9. The conjugacy search problem in T has an effective solution.
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4 Centralisers in T
What should we do if one conjugator is not enough? Suppose
αγ � β in some group G. If δ is any other conjugator with αδ � β,
then the difference δγ−1 belongs to the centraliser CG(α). Conversely
if ε ∈ CG(α) then αεγ � β. Thus the set of all conjugators CG(α, β) �
{ δ ∈ G | αδ � β } is exactly the right coset CG(α)γ represented by a
(any) conjugator γ. On the other hand, the difference δ−1γ belongs
to CG(β). Again if ε ∈ CG(β), we see that βεγ−1

� α, meaning that
αγε

−1
� β. Thus CG(α, β) is also the left coset γCG(β). In short:

element centralisers parameterise the set of available conjugators. For
this reason, the study of centralisers is naturally linked with the study
of conjugators.

Let us briefly summarise what is known about centralisers for each
of the main trio of Thompson groups. Guba and Sapir’s work on
diagram groups includes the result 1 that element centralisers in F 1 Victor Guba and Mark Sapir 1997,

Corollary 15.36.are direct products of � and F; in a follow-up article they show2 that
2 V.S. Guba and M.V. Sapir 1999,
Theorem 34.these are undistorted in F. From the piecewise-linear point of view,

Kassabov and Matucci 3 (K&M) obtain the same direct product result, 3 Kassabov and Matucci 2012.

and show that a similar result holds for the centraliser of any finitely
generated subgroup of F. As a corollary, they note that the intersection
of any finite number element centralisers {CF(αi) }1≤i≤n is equal to an
intersection of two element centralisers CF(β1) ∩ CF(β2).

At the other end of the spectrum lies V . Bleak et al 4 describe 4 Bleak, Bowman et al. 2013.

an element centraliser CV (α) by using revealing pairs to understand
the dynamics of α. They show that CV (α) is finitely generated, after
expressing this centraliser as a direct product involving two kinds of
factors. The first kind is a semidirect product involving the Higman-
Thompson5 group Vn ,r ; this is a version of V whose gradients are 5 Higman 1974.

powers of n and whose functions permute [0, r] instead of [0, 1]. The
second is a wreath product of the base group A o � with a finite
symmetric group, for some finite group A. Recently, Bieniecka6 has 6 Bieniecka 2018.

shown that every finite group A and every semidirect product A o�
is involved in the centraliser of some element of V .

Martínez-Pérez,Matucci andNucinkis consider a generalisation ofV
called Vr(Σ), which consists of automorphisms of a Cantor algebra Σ.
An argument they use7 shows that the first of Bleak et al’s factors is of 7 Martínez-Pérez, Matucci and Nucin-

kis 2016, Theorem 4.9.type F∞. The same is true of the second kind of factor, from which it
follows that the whole centraliser CV (α) is finitely presented (not just
finitely generated). In a later article, the three authors give an explicit
finite presentation8 for centralisers of finite subgroups. 8 Martínez-Pérez, Matucci and Nucin-

kis 2018, Section 7.In the middle lies T. A chapter of Matucci’s thesis discusses element
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centralisers in T (as well as larger groups of circle homeomorphisms),
handling torsion and nontorsion elements separately. He shows9 that a 9 Matucci 2008, Theorem 7.1.5.

torsion element α has a centraliser CT(α)which is a nonsplit extension
of a finite cyclic group by T. Geoghegan and Varisco separately show
the same result, including the extra observation10 that the normaliser 10 Geoghegan and Varisco 2017, The-

orem 1.3.NT(α) is equal to CT(α). Martínez-Pérez and Nucinkis generalise
Matucci’s result to the group Tr(Σ), where again Σ is a Cantor algebra;
they exhibit 11 the centraliser of a finite subgroup as a central extension. 11 Martínez-Pérez and Nucinkis 2013.

Matucci’s thesis also describes12 nontorsion elements’ centralisers 12 Matucci 2008, Theorem 7.2.5.

as an extension. In this chapter, we fill a small gap in his proof, and
study this extension in more detail. We will make use of K&M’s work
on centralisers in F when considering this extension’s kernel.

4.1 Centralisers in F

We will continue to adapt results in F to results in T. This time we’re
concerned with results about centralisers.

Definition 4.1.1. Let G be a group containing an element α and let
0 , n ∈ �. An nth root of α is an element ω ∈ G for which ωn � α. We
call ω a root of α if it is an nth root of α, for some 0 , n ∈ �. If α does
not have an nth root for any |n | ≥ 2, we say that α is a root element. A
root element ω which is a root of α is called a minimal root of α.

Any element commutes with any power of itself and any of its roots,
so if ω is a minimal root of α, we know that 〈ω〉 ≤ CG(ω). With a little
effort to handle nondyadic points, K&M explain13 that this inclusion 13 Kassabov and Matucci 2012, The-

orem 5.5.is an equality for almost one-bump functions in F. Their statement
requires that ∂J ⊆ S. However, this requirement is not used in their
proof, nor in the results they refer to (which describe centralisers
in PL+(J)).
Theorem 4.1.2. Let α ∈ PL0

S,G(J) be an almost one-bump function. Then
CPLS,G(J)(α) is infinite cyclic, generated by a minimal root ω of α. A
generator ω can be constructed algorithmically.

Sketch proof. K&M’s stair algorithm shows that one-bump functions
β ∈ PLS,G([a , b]) have infinite cyclic centralisers generated by aminimal
root. This is because an element which commutes with β can be
uniquely reconstructed from its initial gradient a+β′ alone.14 It follows 14 This reconstruction property is the

root cause of the ‘miracle of F’: see
Section 3.2.that CT(β) is isomorphic to the group Gβ � { a+γ′ | γ ∈ CT(β) } ≤ G of

initial gradients. In the case of Thompson’s main trio, G � 2� is infinite
cyclic and hence Gβ

∼� CT(β) is also infinite cyclic. More generally, it
can be shown15 that Gβ is a discrete subgroup of �>0, and hence is 15 Kassabov and Matucci 2012, The-

orem 5.1, Lemmas 5.2–5.3.infinite cyclic.
Enumerate Fix(α) � { j1 < · · · < jn } so that Let J � [ j1 , jn]. Be-

cause α is almost one-bump, { j2 < · · · < jn−1 } 6⊆ S is a discrete set
of ‘nondyadic’ points. Then α can be formed by gluing together the
one-bump functions α

��
Di

for 1 ≤ i < n, where Di � [ ji , ji+1]. If γ
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commutes with α, then γ
��
Di

commutes with α
��
Di
. Because the ji are

nondyadic, the final gradient of γ
��
Di

is equal to the initial gradient
of γ

��
Di

(or else ji+1 is a breakpoint of γ). Thus the initial gradient of
γ
��
D1

determines the whole function γ
��
D1
; this determines the initial

gradient of and thus the entire function γ
��
D2
. This continues up to

γ
��
Dn−1

, so that γ is entirely determined by its initial gradient. It follows
that

CPLS,G(J)(α) ∼� CPLS,G([ j,k])(α
��
[ j,k]) , (4.1)

for any j < k in Fix(α). In particular, this group is infinite cyclic. �

The next step16 is to use this result to consider the centraliser of an 16 Kassabov and Matucci 2012, The-
orem 5.10.arbitrary element of F. In short, these centralisers are finite products

of � and F.

Theorem 4.1.3 (Description of centralisers in F). Let α ∈ PLS,G(J). Its
centraliser CPLS,G(J)(α) is isomorphic to a product �z ×∏ f

i�1 PLS,G(Di), for
some intervals Di ⊆ J with ∂Di ⊂ S, and some non-negative integers f and z
not both zero. Moreover,17 the centralisers CPLS,G(J)(α) and CPLS,G(J)(αk) are

17 At the time of writing, the author has
not been able to find the result given in
this sentence in the literature.

equal, for any k , 0.

Sketch proof. Find the ‘dyadic’ important points Iα ∩ S � ∂ Fix(α) ∩ S
and enumerate them as r0 < · · · < rn , so that J � [r0 , rn]. Define Di to
be the interval [ri , ri+1] for 0 ≤ i < n. The centraliser of α is isomorphic
to the direct product

CPLS,G(J)(α) ∼�
∏

0≤i<n

CPLS,G(Di )(α
��
Di
) .

To be more specific, it is the internal direct product 18 18 Let I0 be a subset of Iα ∩ S containing
∂J � { r0 , rn }. This internal direct
product decomposition still holds if we
define the Di in terms involving only
our chosen important points I0, rather
than the full collection Iα ∩ S.

CPLS,G(J)(α) �
∏

0≤i<n

CPLS,G(Di )(α
��
Di
)θi ,

where θi : PLS,G(Di) → PLS,G(J) is an injective homomorphism. The
image γθi of γ ∈ PLS,G(Di) is defined by

t(γθi) �
tγ if t ∈ Di

t otherwise.

In other words, θi extends maps Di → Di to maps J → J by making
them identity on the complement J \ Di .

If α
��
Di

is the identity then CPLS,G(Di )(α
��
Di
) � PLS,G(Di) ∼� PLS,G(I);

otherwise α
��
Di

is almost one-bump, so CPLS,G(Di ) is infinite cyclic by
Theorem 4.1.2. There are no other possibilities because there are no
important dyadic points in the interior of Di .

For the last part of this claim,19 let k , 0. As I(αk) � Iα, we obtain a 19 This isn’t explicitly written down
in the literature, but can be deduced
quickly given K&M’s description.very similar internal direct product decomposition

CPLS,G(J)(αk) �
∏

0≤i<n

CPLS,G(Di )(αk
��
Di
)θi

to that of CPLS,G(J)(α). Again, each restriction is an almost one-bump
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function. One possibility is that αk
��
Di

� id, which would imply that
α
��
Di

� id, because F-like groups are torsion-free (Proposition 2.3.19).
On the other hand αk

��
Di

could be nontrivial; then its root α
��
Di

would
be too. In both cases, CPLS,G(Di )(αk

��
Di
) � CPLS,G(Di )(α

��
Di
) (again by

Theorem 4.1.2). So the two internal direct products in this proof are
identical. �

Can we partly generalise this result to T? We reuse a trick from
Chapters 2 and 3, where we exploit the ability to conjugate by rotations.
Before that, some notation.

Definition 4.1.4. Let H be a group of homeomorphisms of a space X.
We denote by H0 the subset of H whose elements have fixed points.

It is not automatically true that H0 is a subgroup of H: see for
instance Figure 2.5.

Corollary 4.1.5. Suppose α ∈ T \ { id } has a dyadic fixed point r. Then
CT(α)0 is a subgroup of T isomorphic to a direct product �z × F f .

Proof. Without loss of generality, we may assume that r is important:
if not, r belongs to a fixed interval which is not the entire circle as
α , id. Then we may replace r with either endpoint of this interval.

Let ρ � ρ−r be the rotation by −r. Then CT(α)0 is equal 20 to 20 We’re using CG(α)β � CGβ (αβ) here,
and the fact that α has a fixed point iff
αβ has a fixed point.[CT(αρ)0]ρ−1 . Now αρ fixes 0, so αρ ∈ F. We claim that CT(αρ)0 is

equal to CF(αρ). If γ ∈ CT(αρ)0 then γ permutes the important points
I(αρ) � I(α)ρ; in particular this set contains rρ � 0. Now γ ∈ CT(αρ)0
has a fixed point and hence rot(γ) � 0, so γ must fix 0. Thus γ ∈ F,
so CT(αρ)0 ⊆ CF(αρ). The other containment CT(αρ)0 ⊇ CF(αρ) is
immediate.

We may now argue that

CT(α)0 � [CT(αρ)0]ρ−1
� CF(αρ)ρ−1 ∼� CF(αρ) .

By Theorem 4.1.3, this group is isomorphic to a product �z × F f . In a
little more detail, Section 4.1 tells us that

CF(αρ) �
∏

0≤i<n

CPL2(Di )(αρ
��
Di
)θi ,

where the Di are delimited by the dyadic important points of αρ. Thus

CT(α)0 � CF(αρ)ρ−1
�

∏
0≤i<n

[
CPL2(Di )(αρ

��
Di
)θi

]ρ−1

�

∏
0≤i<n

CPL2(D′i )(α
��
D′i
)θ′i ,

where D′i � Diρ−1 and θ′ extends maps on D′i to maps on J which are
the identity on J \ D′i . The intervals D′i are delimited by the important
points of α. �
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Corollary 4.1.6. Suppose α ∈ T has n ≥ 1 fixed points, all of which are
nondyadic. Then CT(α)0 ∼� �, generated by a minimal root ω of α in CT(α)0.
Moreover CT(α)0 ∼� CPL2([r,s])(α

��
[r,s]), where r , s are distinct fixed points

of α.

Proof. Let r be a nondyadic fixed point of α. Take an element γ ∈
CT(α), and view γ and α as PL2 functions γ̄, ᾱ on [r, r + 1]. Then
certainly γ̄ ∈ CPL2([r,r+1])(ᾱ); thus we have an injective homomorphism
·̄ : CT(α) ↪→ CPL2([r,r+1])(ᾱ). To check that this is a surjection, we need
to ensure that every element β of the codomain group has the same
initial and final gradient. (Then β describes amap β̂ ∈ PL2(S1), because
r is not a breakpoint of β̂.) We do so in Remark 4.2.2; thus ·̄ is an
isomorphism.

Now because α has no dyadic fixed points, ᾱ is an almost one-bump
function. Then Theorem 4.1.2 tells us that CPL2([r,r+1])(ᾱ) is infinite
cyclic, generated by a minimal root ω̄ of ᾱ. Applying the inverse of the
bar isomorphism, we see that CT(α) is infinite cyclic, generated by a
minimal root ω of α.

The final claim is a consequence of Equation (4.1) and the discussion
preceding it. �

Lemma 4.1.7. Let α ∈ T have rotation number rot(α) � 0. Then CT(α) �
CT(αk), for any integer k , 0.

Proof. The left-hand centraliser is contained in the right-hand cent-
raliser automatically; we just need to show that if γ commutes
with αi then γ commutes with its root α. If α � id this is cer-
tainly true. Otherwise, enumerate the n > 0 important points
Iα � I(αk) � { r0 → · · · → rn−1 → r0 }. Because rot(α) � 0 we
have rot(αk) � 0, and so riα � riαk � ri for each i. If γ ∈ CT(αk), we
know that γ cyclically permutes I(αk): say riγ � ri+ j for some j.

Now γ ∈ CT(αk) means exactly that (αk)γ � αk . We have the
equality21 γ � ρ−rn− jρrn− jγ. Substitute this into the previous equation, 21 The rotations ρ−r0 and ρrn− j need

not be elements of T because r0 (and
hence rn− j) need not be dyadic. So
this is an equality in the larger group
PL+

�
(S1) > T.

then conjugate both sides by ρ−r0 to conclude that

(αk)ρ−rn− j ρrn− j γρ−r0 � (αk)ρ−r0 .

Use associativity (and the fact that conjugation commutes with powers)
to rebracket this equation as

([αρ−rn− j ]k)[ρrn− j γρ−r0 ] � [αρ−r0 ]k . (4.2)

The computations We never use the fact that the maps
ρ∗ in the proof are rotations; we only
require that they are elements of T
which map 0, r0 and rn− j to the right
places.

0 rn− j rn− j 0

0 rn− j r0 0

0 r0 r0 0

ρrn− j α
ρ−rn− j

ρrn− j γ ρ−r0

ρr0 α ρ−r0

show that each of the three products in square brackets belong to F.
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Now Corollary 3.2.2.1 tells us that kth roots are unique in F, so from
Equation (4.2) we conclude

[αρ−rn− j ][ρrn− j γρ−r0 ] � αρ−r0 .

This simplifies to αγρ−r0 � αρ−r0 ; a final conjugation on both sides
by ρ+r0 yields αγ � α. �

To close this section, we consider more carefully which direct
products may occur as centralisers in F. To the author’s knowledge,
this was first written down in print by Guba and Sapir.22 22 V.S. Guba and M.V. Sapir 1999,

Above Theorem 34.
Claim 4.1.8 (Which F-centralisers are possible?). Let f and z be integers.
There exists an α ∈ F with centraliser CF(α) ∼� F f × �z if and only if f
and z are not both zero and satisfy 0 ≤ f ≤ z + 1.

Proof. “Not both zero” is necessary because otherwise CF(α) � id; this
is impossible, since CT(id) � F , { id }, and the centraliser of any other
element α , id contains α, so can’t be trivial.

Why is the inequality necessary? Enumerate the dyadic important
points as Iα � ∂ Fix(α) � {0 � r0 , r1 , . . . , rn−1 , rn � 1 }, say. As
described above, we find the direct factors of CF(α) by restricting to the
‘blocks’ Di � [ri , ri+1], for 0 ≤ i < n. We get a factor of F if α

��
Di

� idDi ,
and a factor of � otherwise. We cannot have two consecutive F-type
blocks, i.e. we cannot have α

��
Di

� idDi and α
��
Di

� idDi : then ri+1 would
not belong to ∂ Fix(α) so would not be important. Thus our F-type
blocks ( f in total) must be separated by �-type blocks (z in total). We
need at least z ≥ f − 1 blocks to achieve this separation.

F�F�F · · · F�F

F�F�F · · · F�F��� · · ·�
��� · · ·�F�F�F · · · F�F

F����F · · · F��F�F� · · ·�F

Figure 4.1: Label Di with the symbol F
(resp. �) if α

��
Di

is isomorphic to F
(resp. �). If we concatenate the labels
for D0 ,D1 , . . . ,Dn−1, we get a string of
length n � f + z over {F,� } in which
there is no substring ‘FF’.

Nowwe let 0 ≤ f ≤ z+1 and construct an element whose centraliser
has these parameters, as follows. Set n � f + z and partition the unit
interval into n standard dyadic intervals Di . On D0 ,D2 , . . . ,D2( f−1)
define α to be the identity. On all other intervals Di , define α to be
an almost one-bump function23 on PL2(Di). Then this map has the 23 For instance, take α

��
Di

to be a scaled
copy of x0. We can do this explicitly by
declaring α

��
Di

� xΣi
0 , where Σi is a PL2

map I → Di .

required centraliser. �

4.2 Centralisers of nontorsion elements in T

A chapter of Matucci’s thesis studies24 the centralisers of elements in 24 Matucci 2008, Sections 7.1–7.2.

orientation-preserving circle homeomorphism groups. In particular,
he describes the centraliser of an element α ∈ T. His analysis is split
into two cases: first when α has finite order; then when α has infinite
order. We present Matucci’s main result for the latter case25 below. 25 Matucci 2008, Theorem 7.2.5.

Matucci’s theorem applies to PL+(S1)
and T � PL2(S1), but we only consider
the latter.

Theorem 4.2.1. Let α ∈ T have rotation number rot(α) � p/q and suppose
that αq , id. Pick a representative arc Q � [r, s] for the action of α on
the circle, as in Definition 3.4.1. Then K � CT(α)0 is indeed a subgroup
of CT(α), and there is a short exact sequence of the form

1→ CT(α)0︸  ︷︷  ︸
K

↪→ CT(α)� CT(α)
��
Iα︸   ︷︷   ︸

H

→ 1 . (4.3)
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The quotient H is a finite cyclic group, whereas the kernel K is isomorphic In some sense, the fine (resp. coarse)
conjugators from Chapter 3 correspond
to the kernel (resp. quotient) of this
extension.

to CPL2(Q)(αq
��
Q). In particular, if ∂Q is nondyadic then K ∼� �.

Sketch proof. If γ commutes with α, then γ conjugates α to itself. The
set P � Fix(αq) consists of the points in finite orbits under α. Now P is
mapped by γ to itself, as the calculation

Fix(αq)γ � Fix([αq]γ) � Fix(αq)

shows. Since boundaries commute with homomorphisms, we may
take boundaries on both sides to learn that [∂ Fix(αq)] γ � ∂ Fix(αq).
Thus we have Iαγ � Iα. Recall from Lemma 2.3.8 that Iα � ∂P.

All in all, we have an action Iα ⟲ CT(α). The group K � CT(α)0 is
the kernel of this action, consisting of the centralising elements that
fix Iα pointwise. The corresponding quotient H � CT(α)/K must be a
finite cyclic group, because the elements of T preserve the cyclic order
on the finite set Iα. �

Recall our convention regarding representative arcs Q from Defini-
tion 3.4.1: if at all possible, we choose the endpoints ∂Q to be dyadic. So
∂Q consists of nondyadics if and only if there are no dyadic important
points of α.

4.2.1 Identifying the kernel

While we know how to characterise the elements of the kernel group
K � CT(α)0, it would be nice to have a way of parameterising them.
Theorem 4.2.1 does this by asserting that K ∼� CPL2(Q)(αq

��
Q). We will

justify this assertion in more detail.
We know that ∂Q consists of important points for α, and so is

fixed pointwise by K. Thus Q is fixed setwise by K. So the set
K
��
Q � {κ��Q | κ ∈ K } is a group. Let θ : K � K

��
Q be the restriction

map. This is a homomorphism, because (γδ)��Q � γ
��
Q δ

��
Qγ � γ

��
Q δ

��
Q .

We know that αq has rotation number 0, so must belong to K.
As each element δ ∈ K commutes with α, we have δαq � αqδ for
all δ ∈ K. Apply the map θ to obtain δ

��
Q α

q
��
Q � αq

��
Q δ

��
Q , which

shows that K
��
Q ≤ CPL2(Q)(αq

��
Q). Now by Claim 3.4.2 (with β � α)

there is a unique extension of δ
��
Q to CPL�(S1)(α). By uniqueness, this

extension must be δ ∈ K. This shows that θ is injective, and hence is a
isomorphism.

So far we have shown that K ∼� K
��
Q ≤ CPL2(Q)(αq

��
Q). Matucci’s

proof concludes by classifying the group CPL2(Q)(αq
��
Q) as an F-type

centraliser (see also Section 4.1).

Remark 4.2.2 (The inclusion is an equality). Implicit in Matucci’s proof is
the fact that the containment ≤ above is actually an equality. This is
not explicitly shown in his thesis; we give an explicit proof of this here.

Proof. A centralising element is exactly one which commutes α to
itself. Thus we may apply Claim 3.4.2 to any map γ0 ∈ CPL2(Q)(αq

��
Q),
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resulting in a unique extension γ ∈ CPL�(S1)(α). Let Q � [r, s] so that
we can refer to the endpoints of Q. If we can establish that γ ∈ T, then
γ ∈ K because γ0 fixes ∂Q. Then γ0 � γ

��
Q ∈ K

��
Q , which will complete

the proof.
When ∂Q is dyadic, Lemma 3.4.7 guarantees that γ ∈ T. So suppose

otherwise that ∂Q is not dyadic. This time, Lemma 3.4.7 tells us that
γ ∈ T only in certain circumstances. For q > 1, γ ∈ T if and only if
Condition (3.9) is satisfied with β � α and with γ0 in place of ε0. This
condition reads

s−γ′0 � s(α−k)′ · r+γ′0 · r(αk)′ .

Observe that

s(α−k)′ · r(αk)′ � s(α−k)′ · sα−k(αk)′ � s(α−kαk)′ � 1 ,

and so γ ∈ T if and only if

s−γ′0 � r+γ′0 . (4.4)

This is exactly Condition (3.8), which is equivalent to γ ∈ T when
q � 1. We see that the value of q plays no role: we just need to establish
Condition (4.4).

Because ∂Q is nondyadic, our convention in Definition 3.4.1 means
that the interior Q◦ contains no dyadic fixed points. Thus αq

��
Q is

an almost one-bump function Q → Q. According to Theorem 4.1.2,
the centraliser CPL2(Q)(αq

��
Q) is infinite cyclic, generated by a minimal

root ω of αq
��
Q . Say ω

u � αq
��
Q with u > 0, so that γ0 � ωi for some

integer i. Because r and s � rαk belong to the same α-orbit and are
fixed by αq , their derivatives under αq are equal (by Remark 2.3.18).
Because ω ∈ PL2(Q) it must fix ∂Q � { r, s } pointwise. These two facts
justify the equalities

[r+ω′]u � r+(ωu)′ � r+(αq
��
Q)′ � s−(αq

��
Q)′

� s−(ωu)′ � [s−ω′]u .

We conclude that r+ω′ � s−ω′, because uth roots are unique in the
multiplicative group G � 2�. Hence

s−γ′0 � s−(ωi)′ � [s−ω′]i � [r+ω′]i
� r+(ωi)′ � r+γ′0 .

This establishes Condition (4.4), which completes the proof. �

4.2.2 Identifying the quotient

The quotient of Sequence (4.3) is the group of permutations H �

CT(α)
��
Iα
induced on Iα by the centraliser. Since the action preserves

the cyclic order on Iα, the rightmost factor is isomorphic to a cyclic
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group, of order h say. If rot(α) � p/q then h ≥ q, since the important
points have size q orbits under α. To determine the actual value of h,
we turn to brute force.

Algorithm 4.2.3. Let α ∈ T with rotation number rot(α) � p/q. The
order h of the quotient in Sequence (4.3) can be determined algorith-
mically as follows.

1. Enumerate the important points of α as Iα � { x1 → . . .→ xn → x1 }
in cyclic order.

2. For each proper divisor j of n/q, in ascending order:

(a) UseRemark3.3.6 todecide if there exists a conjugator γj between α
and itself with index difference j; that is, with xiγj � xi+ j for
each i.

(b) If so, break the loop and retain the current value of j.

3. If we did not break the previous loop, return h � q.

4. Otherwise return h � n/ j (using the value of j from the break).

Proof of correctness. The algorithm always terminates and returns a
value—we need to show it returns the correct value. Let G be the
group of all cyclic permutations of Iα, i.e. the group of functions
{γj : Iα → Iα }n−1

j�0 where xiγj � xi+ j . The group operation is γjγk �

γj+k with subscripts modulo n, so G is cyclic of order n. The subgroups
of cyclic groups H ≤ G are determined26 by their order h � |H |, which 26 Rotman 1995, Lemma 2.15.

must divide |G |. Explicitly, if d � n/h then H is the subgroup H � 〈γd〉.
Now let H be the right-hand side of Sequence (4.3). Since we have

the inclusion 〈α��Iα 〉 ≤ H ≤ G, it follows that q | h | n by taking group
orders. Then d � (n/h) | (n/q). One possibility is that n/h � n/q,
in which case h � q. Then the loop in step 2 never breaks, and we
correctly return h � q in step 3. Otherwise the loop breaks at j < n, in
which case 〈γj〉 ≤ H. Now j is minimal with this property, because
the loop in step 2 is evaluated in ascending order. This means that no
element γj′ with 1 ≤ j′ < j belongs to H; hence H � 〈γj〉 has order
h � n/ j, which we return as our output. This justifies step 4. �

Example h < n h � n

q < h 5.1.7 5.1.2
q � h 5.1.8 5.1.3

Figure 4.2: These examples exhibit all
four cases of the inequality q ≤ h ≤ n.
This shows that the bounds on h
cannot be strengthened.

As noted in the proof above, the group orders q, h and n divide
each other (from left to right), so certainly q ≤ h ≤ n. Each inequality
may be strict or not; there are then four possible cases, each of which
does indeed occur—see Figure 4.2 for references to examples. The first
inequality is strict if and only if then H � CT(α) has a strictly finer
action27 than 〈α〉 on Iα. The second inequality is strict if and only if H 27 i.e. each α-orbit is strictly contained

in an H-orbit.acts intransitively on Iα.

Remark 4.2.4. LetG2 ≤ G be the groupof cyclic permutations of Iαwhich
map dyadics to dyadics and nondyadics to nondyadics. Because T
preserves the dyadics, it must be the case that H ≤ G2. Thus we can
refine the inequality q ≤ h ≤ n to q ≤ h |G2 | ≤ n.
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Algorithm 4.2.3 does more than identify the order h � |H |: it also
produces an element γj ∈ CT(α)whose restriction to Iα, η say, generates
the quotient H. (If we don’t break the loop in step 2 then h � n/q, so
j � n/q is the minimal index difference. We may take γj � α as an
element with this difference.) We may then take γi

j to be a preimage
of ηi ∈ H, for each power 0 ≤ i < h. This collection of preimages is a
transversal for K.

If we understand the kernel K, quotient H, and how a chosen trans-
versal conjugates K, then we gain an understanding of the extension
(in this case CT(α)). For instance, if we have presentations for K and H
and understand the transversal, we can construct 28 a presentation 28 Johnson 1997, Section 10.2.

for CT(α). So far, we’ve concentrated on understanding the first two
ingredients K and H. In the rest of this thesis, we’ll seek to understand
the final piece of the puzzle: how exactly does our transervsal for H
conjugate K?
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5 Nontorsion centraliser structure
Fix a nontorsion element α ∈ T. In this chapter, we will explain how
to determine the structure of Sequence (4.3). We do so by classifying
such elements α into one of four categories, and from these we classify
CT(α) into one of five types.

5.1 Examples

To begin, we present a series of examples to illustrate Theorem 4.2.1 and
explore the questions pose at the end of Section 4.2.2. Each example is
constructed by gluing together shrunk copies of elements of F. In the
interests of brevity, we introduce some notation to facilitate this gluing. Σ

Σ′

L

R

Figure 5.1: We introduce two PL2 maps
Σ and Σ′ for discussing centraliser
examples.

Notation 5.1.1. Let I, L and R be the real intervals [0, 1], [0, 1/2] and
[1/2, 1] respectively. Define Σ : I → L to be the PL2 map t 7→ t/2.
Similarly let Σ′ : I → R be the map t 7→ t/2 + 1/2. ‘Conjugating’ by
these maps results in isomorphisms · Σ : F � PL2(I) → PL2(L) and
· Σ′ : F→ PL2(R) (c.f. Claim 1.2.5).

When thought of as a permutation of I, the dyadic rotation ρ1/2 can
be defined in terms of this notation as

tρ1/2 �

t + 1/2 if t ∈ L

t − 1/2 if t ∈ R.

Notice then that Σ′ � Σ ρ1/2
��
L and Σ � Σ′ ρ1/2

��
R.

Example 5.1.2. Themap α illustrated in Figure 5.2 has been constructed
by gluing two copies of x0 together. Specifically, α is the result of the
recipe

tα �

txΣ0 if t ∈ L

txΣ
′

0 if t ∈ R.

The important points Iα � {0, 1/2 } are fixed pointwise by α, so the
rotation number is rot(α) � 0 with denominator q � 1. Thus our
representative arc for α is Q � I. If H ∼� �h denotes the quotient of
Sequence (4.3) as above, then α projects onto the identity of H.

xΣ0

xΣ
′

0

α

Figure 5.2: The element α from Fig-
ure 2.5 consists of two copies of the
generator x0 ∈ F, rescaled to permute
the standard dyadic intervals [0, 1/2]
and [1/2, 1].

By design, α commutes with the dyadic rotation ρ1/2 ∈ T. To
be explicit, the two products in question are given by the casewise
formulas

tαρ1/2 �

txΣ0 ρ1/2 if t ∈ L

txΣ
′

0 ρ1/2 if t ∈ R
(5.1)
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and

tρ1/2α �

tρ1/2xΣ
′

0 if t ∈ L

tρ1/2xΣ0 if t ∈ R.
(5.2)

If t ∈ L, then
txΣ0 ρ1/2 � tΣ−1x0Σρ1/2

� t(Σ′ρ1/2)−1x0Σ
′

� tρ1/2Σ′−1x0Σ
′

� tρ1/2xΣ
′

0 ,

(5.3)

showing that tαρ1/2 � tρ1/2α in this case. A similar calculation holds
for t ∈ R, and so ρ1/2 commutes with α.

Our centralising element ρ1/2 pushes the important points d steps
forward, where d � 1. So CT(α) transitively permutes Iα, and hence
the quotient group H must be of size h � n/d � 2. We see that the
inequalities q ≤ h ≤ n are realised as 1 < 2 � 2 in this scenario.

As noted above, ρ1/2 gives us a transversal 1 σ of the kernel K in 1 By ‘a transversal σ’ we really mean a
transversal function σ : H → CT (α), as
described in Robinson 1996, Section 11,
p. 311 in particular.

Sequence (4.3). If γi is the map which cyclically pushes Iα forward by
i steps, then our transversal sends γ0 7→σ id and sends γ1 7→σ ρ1/2. This
is not just a function between sets: the relation γ2

1 � γ0 is preserved
by σ, because ρ2

1/2 � id. Since σ is a homomorphism (a splitting), the
centraliser splits 2 as a semidirect product CT(α) ∼� K o�2. 2 Rotman 1995, Lemma 7.20.

To understand the group structure of this semidirect product, we
need to identify K and describe how conjugating by ρ1/2 affects K.
Matucci’s analysis 3 of centralisers in F shows that the kernel K is 3 Kassabov and Matucci 2012, Section 5.

See also our Section 4.1.isomorphic to

K ∼� CPL2(Q)(α1��
Q) � CF(α)
∼� CPL2(L)(α

��
L) × CPL2(R)(α

��
R)

� 〈α��L〉 × 〈α��R〉
∼� � ×� .

Since α
��ρ1/2
L � α

��
R, these two direct factors are swapped by ρ1/2. This

shows that CT(α) is isomorphic to the wreath product � o�2 arising
from the action {L, R } ⟲ �2.

For our next example, we’ll consider a related element whose
rotation number is nonzero. The idea is to use the same building
blocks (two shrunk copies of x0), but this time we’ll build an element
which exchanges the two copies.

xΣ0 ρ1/2

xΣ
′

0 ρ1/2

β

Figure 5.3: The product β � αρ1/2
∈ T \ F.

Example 5.1.3. With α as in Example 5.1.2, let β � αρ1/2 be the element
shown in Figure 5.3. The new element β is constructedmuch like α: we
use two copies of x0, according to the recipes given in Equations (5.1)
and (5.2). The important point set is Iβ � Iα � {0, 1/2 }; since 0β � 1/2
we see that the rotation number is rot(β) � 1/2, with denominator q � 2.
As β transitively permutes Iβ, we have d � 1 and h � n/d � 2. In this
example, our inequality q ≤ h ≤ n is realised as 2 � 2 � 2.
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We take Q � L as our representative arc for β. We note that β is the
product of two elements which commute with ρ1/2, so β itself must
commute with this rotation. Thus we can use the transversal σ to split
the extension CT(β), exactly as in Example 5.1.2.

β2

α |L

Figure 5.4: The square of β from
Figure 5.3. The shaded region is the
set L2 containing the graph of β2

��
L .

Also shown is the graph of α
��
L , which

generates CPL2(L)(β2
��
L).

The kernel of the extension is CT(β)0 ∼� CPL2(L)(β2
��
L). We can directly

compute

tβ2
�

t(xΣ0 ρ1/2) (ρ1/2xΣ0 )
t(xΣ′0 ρ1/2) (ρ1/2xΣ

′
0 )

�

t(x2
0)Σ if t ∈ L

t(x2
0)Σ

′ if t ∈ R,

which shows in particular that β2
��
L is a shrunken copy of x2

0. Thus
CPL2(L)(β2

��
L) ∼� CF(x2

0) � 〈x0〉, again by Matucci’s study of centralisers
in F-like groups. The pseudo-conjugate xΣ0 � α

��
L is a generator for

CPL2(L)(β2
��
L). Thus the extension’s kernel is generated by the unique

extension of this element to CT(β), namely α.
In summary, the centraliser CT(β) splits as a semidirect product

CT(β)0 o�2 � 〈α〉 o 〈ρ1/2〉. Since α commutes with ρ1/2, this must in
fact be a direct product CT(β) � 〈α〉 × 〈ρ1/2〉 ∼� � ×�2.

The next two examples are similar in spirit to those above. We
slightly complicate things by ensuring that our elements have different
(but conjugate) graphs over L and R. Much of our discussion goes
through unchanged for our new version of α, but the story is not so
simple for the analogue of β.

Example 5.1.4. Let γ, φ ∈ F be the maps shown in Figure 5.5. In
particular, γ is given by the recipe

tγ �

txΣ0 if t ∈ L

t(xφ0 )Σ
′ if t ∈ R.

This element has similar dynamical behaviour to that of α in Ex-
ample 5.1.2: both consist of one-bump functions below the diagonal on
L2 and R2. Consequently, the rotation number is again rot(γ) � 0, with
reduced denominator q � 1. Our representative arc for γ is Q � I; we
only have one block. The important point set is {0, 1/2 }, fixed pointwise
by γ. What is the value of h? By Algorithm 4.2.3, we must determine
if there exists an element ω ∈ T conjugating γ to itself with 0ω � 1/2.

1

2 3

4 5

1 2 3 4

5φ

xΣ0

(xφ0 )Σ
′

γ

Figure 5.5: We construct an element
γ ∈ F. In the lower-left quadrant L2,
γ is a scaled copy of x0. In contrast,
the graph of γ in the upper-right
quadrant R2 is a scaled copy of xφ0 ,
where φ ∈ F is the map with the given
tree pair diagram.
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φΣ

(φ−1)Σ′

ω

Figure 5.6: The centralising element ω.

From thin air, we conjure an element ω defined by

tω �

tφΣρ1/2 if t ∈ L

t(φ−1)Σ′ρ1/2 if t ∈ R

(see Figure 5.6). We see that 0ω � 1/2 as required, but is γω � γ? The
relevant computations are

tωγ �

t(φΣρ1/2)(xφΣ
′

0 ) if t ∈ L

t([φ−1]Σ′ρ1/2)(xΣ0 ) if t ∈ R

and

tγω �

t(xΣ0 )(φΣρ1/2) if t ∈ L

t(xφΣ′0 )([φ−1]Σ′ρ1/2) if t ∈ R.

The expressions for t ∈ L are equal, because

tωγ � tΣ−1 (
φ[Σρ1/2(Σ′)−1]φ−1) x0φΣ

′
� tΣ−1x0φΣρ1/2 � tγω ,

where the bracketed factor is equal to the identity. A similar (but
increasingly messy) calculation holds over t ∈ R. Thus h � 2, and the
inequality q ≤ h ≤ n is realised as 1 < 2 ≤ 2, just as in Example 5.1.2.

Does ω have order 2? Its square is given by

tω2
�

t(φΣρ1/2)([φ−1]Σ′ρ1/2) if t ∈ L

t([φ−1]Σ′ρ1/2)(φΣρ1/2) if t ∈ R.

If t ∈ L, then

tω2
� tΣ−1 (

φΣρ1/2(Σ′)−1φ−1) Σ′ρ1/2 � tΣ−1Σ � t ,

and once again a similar calculation holds for t ∈ R. We see that
ω2 � id, which means that CT(γ) ∼� CF(γ) o 〈ω〉 ∼� �2 o�2 ∼� � o�2 as
in Example 5.1.2.

The wreath corresponds to the action
{L, R } ⟲ 〈ω〉.

Remark 5.1.5. Let χ ∈ T be themapdefined by χ
��
L � id and χ

��
R � φΣ

′ . A
direct computationverifies that αχ � γ. Sowith the benefit of hindsight,
it’s no coincidence that γ and α have isomorphic centralisers.

In our next example, we define δ � γρ1/2 by analogy with β � αρ1/2
in Example 5.1.3. These two elements’ centralisers are not as similar as
we might expect.

xΣ0 ρ1/2

(xφ0 )Σ
′
ρ1/2

δ

Figure 5.7: The product δ � γρ1/2.

Example 5.1.6. Let δ � γρ1/2 be the map illustrated in Figure 5.7. To
be explicit, δ is defined casewise by

tδ �

txΣ0 ρ1/2 if t ∈ L

t(xφ0 )Σ
′
ρ1/2 if t ∈ R.

Then rot(δ) � 1/2 with denominator q � 2; the important points
Iδ � {0, 1/2 } are permuted transitively by δ, so d � 1 and h � n/d � 2;



examples 85

and we may again take Q � L as a representative arc for δ. The
inequality q ≤ h ≤ n is realised as 2 � 2 � 2.

(x0xφ0 )Σ

δ2

Figure 5.8: The square of δ. The
shaded area is L2, containing the graph
of δ2 |L . This restriction is equal to a
scaled copy of x0xφ0 . Within R2, δ2 |R is
a scaled copy of a different map xφ0 x0.

We’ll start by identifying the kernel K � CT(δ)0 of the extension,
which we know to be isomorphic to CPL2(L)(δ2

��
L). The square is given

by

tδ2
�

t(xΣ0 ρ1/2) ([xφ0 ]Σ
′
ρ1/2)

t([xφ0 ]Σ
′
ρ1/2) (xΣ0 ρ1/2)

�

t(x0xφ0 )Σ if t ∈ L

t(xφ0 x0)Σ′ if t ∈ R,

so the kernel is isomorphic to CPL2(L)([x0xφ0 ]Σ) ∼� CF(x0xφ0 ). As X �

x0xφ0 is a one-bump function, its centraliser in F is generated by a
minimal root of X. The initial gradient of X is 1/4, and it can be checked4

4 See Appendix A.

that no element w ∈ CF(X) exists with initial gradient 1/2. (Again
we are using Kassabov and Matucci’s work5 on F-like centralisers

5 Kassabov and Matucci 2012, The-
orem 5.6.ii.

here.) Thus CF(X) � 〈X〉 is infinite cyclic, and so CPL2(L)(δ2
��
L) is

generated by XΣ � δ2
��
L. The unique extension of δ2

��
L to CT(δ) is δ2, so

CT(δ)0 � 〈δ2〉 ∼� �.
Because h � 2, we know that K � 〈δ2〉 has index 2 in CT(δ). The

missing coset must be 〈δ2〉δ, meaning that CT(δ) � 〈δ〉 ∼� �. Notice
that the centraliser extension does not split in this case,6 as there is no

6 See also Appendix B for another
argument to this end.

element of order 2 in 〈δ〉.

The examples so far have all had q � h, because we constructed
elements α (say) whose important points were transitively permuted
by α. Another pair of examples shows that this is not necessary. The
key is to replace the use of x0 in previous examples with x1.

xΣ1

xΣ
′

1

ε

Figure 5.9: The element ε is construc-
ted in the same manner as α from
Example 5.1.2, using x1 in place of x0.

Example 5.1.7. In this example, we construct an element ε ∈ T with
parameters q < h < n. Let ε ∈ T be the map defined by

tε �
txΣ1 if t ∈ L

txΣ
′

1 if t ∈ R.

Since ε ∈ F, its rotation number is rot(ε) � 0, with denominator q � 1.
Its important points are Iε � {0, 1/4, 1/2, 3/4 }, each of which is fixed by ε.
Our representative arc is Q � I.

To identify the quotient of the extension, we first note that ρ1/2 ∈
CT(ε). The calculation to justify this is the same as that given in Equa-
tions (5.1) to (5.3), after the symbol x0 is replaced with x1 throughout.
Thus we know that q ≥ 2. In fact q � 2, because no element of the
centraliser can map 0 to 1/4 or 3/4. This is because7 the gradients of

7 Or: centralisers send fixed intervals to
fixed intervals—see Condition (3.5).

εq � ε differ: 0+ε′ � 1, whereas 1/4+ε′ � 3/4+ε′ � 1/2. Thus the inequal-
ity q ≤ h ≤ n is realised as 1 < 2 < 4. Once again, we see that the
extension splits.

F

�
F

�

ε

n00o n01o n10o n11o
Figure 5.10: The F-centraliser of ε
splits as a direct product over four
factors. The first, second, third and
fourth factors’ elements rearrange the
intervals n00o, n01o, n10o and n11o,
respectively.

Arguing as in Examples 5.1.2 and 5.1.4, we see that the kernel of the
extension is CF(ε). This in turn is the product

CF(ε) ∼� CPL2(L)(ε
��
L) × CPL2(R)(ε

��
R)

� CPL2(L)(xΣ1 ) × CPL2(R)(xΣ
′

1 )
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∼�
(
CPL2(n00o)(id) × CPL2(n01o)(xΣ01

0 )
)

×
(
CPL2(n10o)(id) × CPL2(n11o)(xΣ11

0 )
)

�

(
FΣ00 × 〈xΣ010 〉

)
×

(
FΣ10 × 〈xΣ100 〉

)
, (5.4)

where Σs is the PL2 map I → nso with a single linear segment, for any
string s over {0, 1 }. (For instance, Σ0 � Σ and Σ1 � Σ′.) To reconstruct
the extension, we note that our chosen preimage ρ1/2 for the generator
of H ∼� �2 swaps the bracketed factors in Expression (5.4). Thus the
entire centraliser is the semidirect product CT(ε) ∼� (F × �)2 o �2 ∼�
(F ×�) o�2.

By analogy with previous examples, we again study the product
of our previous element with ρ1/2. Much is similar to the case of β in
Example 5.1.3; however we have to take a little more care this time,
because q < h.

Example 5.1.8. Let ζ � ερ1/2, as shown in Figure 5.11. The rotation
number is rot(ζ) � 1/2 with denominator q � 2. The important point
set is Iζ � {0, 1/4, 1/2, 3/4 }, of size n � 4. Each important point is shifted
two steps forward by ζ.

xΣ1 ρ1/2

xΣ
′

1 ρ1/2

ζ

Figure 5.11: The product ζ � ερ1/2 ∈
T \ F.

The rotation ρ1/2 commutes with ζ, because ζ is a product of two
elements which also commute with ρ1/2. This shows h ≥ 2. Once
again, no element of the centraliser can map 0 to 1/4 or 3/4 (just as in
Example 5.1.7). This time the relevant gradients are 0+(ζ2)′ � 1 versus
1/4+(ζ2)′ � 3/4+(ζ2)′ � 1/4. This shows that h � 2, and so we can use ρ1/2
to split the extension. We note that the inequality q ≤ h ≤ n is realised
as 2 � 2 < 4.

The extension’s kernel is isomorphic to CPL2(L)(ζ2
��
L), which is

CPL2(L)(ζ2��
L) � CPL2(L)([x2

1]Σ)
∼� CPL2(n00o)(id) × CPL2(n01o)([x2

0]Σ01)
� FΣ00 × 〈xΣ010 〉
∼� F ×� .

Note that this is the left-hand bracketed factor in Expression (5.4). To
finish, we need to know how conjugation by ρ1/2 affects the kernel K, so
we need to work with elements of K ≤ CT(ζ) instead of an isomorphic
copy of K.

(x2
1)Σ

ζ2

Figure 5.12: The square of ζ. The
shaded region is the set L2, in which ζ2

is a scaled copy of x2
1 .

Any element ω ∈ CPL2(L)(ζ2
��
L) lifts to a unique element ω̄ ∈ CT(ζ)0

given by

tω̄ �

tω if t ∈ L

t ζ−1
��
R ω ζ

��
L if t ∈ R.

The two products involving ω̄ and ρ1/2 are

tω̄ρ1/2 �

tωρ1/2 if t ∈ L

t ζ−1
��
R ω ζ

��
L ρ1/2 if t ∈ R
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Example Name Centraliser q ≤ h ≤ n

5.1.2 α � o�2 1 < 2 � 2
5.1.3 β � ×�2 2 � 2 � 2
5.1.4 γ � o�2 1 < 2 � 2
5.1.6 δ � 2 � 2 � 2
5.1.7 ε (F ×�) o�2 1 < 2 < 4
5.1.8 ζ (F ×�) ×�2 2 � 2 < 4

Figure 5.13: A summary of the cent-
ralisers we’ve been discussing. This
isn’t a comprehensive survey of non-
torsion elements of T: for instance, we
have not considered an element with
nondyadic fixed points.

and

tρ1/2ω̄ �

tρ1/2 ζ−1
��
R ω ζ

��
L if t ∈ L

tρ1/2ω if t ∈ R.

For the moment, we suppose that t ∈ L. Then ω̄ρ1/2 � ρ1/2ω̄ if and
only if

tωρ1/2 � tρ1/2 ζ−1��
R ω ζ

��
L .

With some rearrangement, we see that

tω � tρ1/2 ζ−1��
R ω ζ

��
L ρ1/2 � tω( ζ |Lρ1/2) � tω(x

Σ
1 ) .

Thus ρ1/2 commutes with ω̄ over L if and only if ω commutes with xΣ1 .
Put differently, we need ω ∈ CPL2(L)(ζ2

��
L) � CPL2(L)([x2

1]Σ) to be con-
tained in CPL2(L)(xΣ1 ). This is true if and only if CF(x2

1) ≤ CF(x1).
Matucci’s analysis of centralisers in F shows that these two groups are
in fact equal to 〈x1〉 (see also Theorem 4.1.3).

A similar argument applies when we suppose that t ∈ R, so we
conclude that ω̄ commutes with ρ1/2. Then the centraliser extension is
a direct product CT(ζ) � CT(ζ)0 × 〈ρ1/2〉 ∼� (F ×�) ×�2.

This concludes our series of examples, which are summarised in
Figure 5.13. Five of our examples split: two of these are direct products
and the other three as wreath products. The element δ was the odd
one out, since for some reason its centraliser extension is nonsplit. In
the remainder of this chapter, we generalise this approach to study a
generic nontorsion element of T. We’ll see that the wreath and direct
products above are part of a general pattern; why δ was different to
the other examples; and we’ll see what happens when there are no
dyadic important points to work with.

Remark 5.1.9. Up to equivalence, there are three extensions of �2 by �,
namely

� ↪→ � ×�2 � �2 (direct product)

� ↪→ � o�2 � �2 (infinite dihedral)

2� ↪→ � � �2 (division by 2)

We have seen that CT(β) and CT(δ) are isomorphic to the first and last
extensions, respectively. Does there a nontorsion element η ∈ T whose
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rotation number

rem. points zero nonzero

some dyadic
dyadic self-similar dyadic offset-similar

DSS DOS
Section 5.2.1 Section 5.2.2

all nondyadic
nondyadic self-similar nondyadic offset-similar

NSS NOS
Section 5.2.3 Section 5.2.4

Figure 5.14: Names and abbreviations
for our four types of nontorsion
element, along with the section each is
discussed in.

centraliser is infinite dihedral? The answer is ‘no’, because the centre of
CT(η) contains8 〈η〉, which is nontrivial; however the infinite dihedral 8 Notice that we don’t need the hypo-

thesis that η is nontorsion here; we just
need η , id.group is centreless.

5.2 Extension structure in detail

In this section we aim to describe the structure of Sequence (4.3) in
more detail, generalising from the examples we have already seen.
We break our analysis into four cases using two independent criteria:
firstly, does the element have a dyadic important point; and secondly,
does the element have zero rotation number? We give each case a
name (see Figure 5.14) and handle each in its own subsection. Each
type of element α ∈ T is studied according to a four-step plan.

1. Define a block form for α: some data which give a recipe for con-
structing α.

2. Use the block form to find formulas for centralising elements γ ∈
CT(α).

3. Check that every element α ∈ T of the current case has a maximal
block form.

4. Use the maximality to find all elements γ ∈ CT(α), then use their
formulas from step 2 to deduce the group structure of CT(α).

5.2.1 Case 1: dyadic self-similar elements

We now demonstrate that the recipe used to construct α, γ and η in
Examples 5.1.2, 5.1.4 and 5.1.7 can be generalised, always yielding split
centralisers.

Definition 5.2.1. Let x be any element in F \ { id }. Let d0 → d1 →

Normally x denotes a point rather than
a group element. We use x here to
remind the reader of x0 and x1 from
our examples.

· · · → dh−1 → d0 be a circular partition in which every point is dyadic,
for some h ≥ 1. Define circular arcs Di � [di , di+1] with subscripts
mod h, for each 0 ≤ i < h. Each Di is called a block. Finally, let
Σi : I → Di be a collection of PL2 maps, with one map for each i.
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In terms of these ingredients, we define an element α ∈ T by the
recipe

tα �

{
txΣi if t ∈ Di .

xΣ0

xΣ1

xΣ2 α

D0 D1 D2

D0

D1

D2

Figure 5.15: An example element an
element α of the form described in
Definition 5.2.1. This example was
constructed using x � x0 and three
blocks Di .

Such an element α is called dyadic self-similar. The data (x;Σ0 , . . . ,Σh−1)
is called a block form for αwith h blocks. If it is not possible to express α
in block form with h′ > h blocks, we say that a block form with h
blocks is maximal.

In an attempt to mimic Example 5.1.4, we could instead have defined

tα �

{
txφiΣi if t ∈ Di , (5.5)

for some maps φ ∈ F. However, this is unnecessary: we can define
Σ′i : I → Di to be the PL2 product φiΣi . Then the map given in
Equation (5.5) has block form (x;Σ′i) as above. In this way, the maps Σi

can ‘absorb’ a conjugation of x in F.
For n > 0 we have αn

��
Di

� (α��Di
)n � (xΣi )n � (xn)Σi . As x , id, we

see that α , id.
Because a self-similar element α is divided up into blocks and

behaves similarly on each block, we can immediately write down a
certain centralising element.

Lemma 5.2.2. Let α be a dyadic self-similar element, with a block form
(x;Σi) containing h blocks. Define an element δ ∈ T by the formula

tδ �

{
tΣ−1

i Σi+1 if t ∈ Di ,

with subscripts on Σ modulo h. Then δ commutes with α and has order h.

Σ−1
0 Σ1

Σ−1
1 Σ2

Σ−1
2 Σ0

δ

D0 D1 D2

D0

D1

D2

Figure 5.16: The splitting element
δ ∈ CT (α), which cyclically shifts the
blocks {Di } one step forward.

Proof. First we check that δ is a well-defined element of T. If h �

1 then δ is already well-defined. Otherwise, the only nonempty
intersections among the blocks Di � [di , di+1] are those of the form
Di ∩ Di+1 � { di+1 }. On the one hand we have

di+1 δ
��
Di

� di+1Σ
−1
i Σi+1 � 1Σi+1 � di+2 ;

on the other we have

di+1 δ
��
Di+1

� di+1Σ
−1
i+1Σi+2 � 0Σi+2 � di+2 ,

so δ is well-defined. Since eachΣi is a PL2 map, so too is each restriction
δ
��
Di
. Hence δ ∈ T. We note that Diδ � Di+1.
Let t ∈ Di . Then the expressions

tαδ � txΣi (Σ−1
i Σi+1) � tΣ−1

i x(ΣiΣ
−1
i )Σi+1 � tΣ−1

i xΣi+1

and

tδα � t(Σ−1
i Σi+1)xΣi+1 � tΣ−1

i (Σi+1Σ
−1
i+1)xΣi+1 � tΣ−1

i xΣi+1

are equal, so we see that δ ∈ CT(α).
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Next, we see that

tδh
� t δ

��
Di
δh−1

� t(Σ−1
i Σi+1) δ

��
Di+1

δh−2

� tΣ−1
i (Σi+1Σ

−1
i+1)Σi+2δ

h−2

� tΣ−1
i Σi+2δ

h−2

...

� tΣ−1
i Σi+ jδ

h− j ,

for each index 0 < j ≤ h. In particular, the choice j � h yields
tδh � tΣ−1

i Σi � t, so δ has order dividing h. This order must be
exactly h, because δ transitively permutes the arcs {Di }h−1

i�0 . �

Our plan is to use δ to split Sequence (4.3). In order to do that,
we need to know that δ corresponds to a generator of the quotient
group H. In other words, we need to make the order of δ—which is
h—as large as possible. Thus we want to work with maximal block
forms, where the block count h is as large as possible.

Now we characterise the set of dyadic self-similar elements, and in
doing so we will explain how to obtain a maximal block form for such
an element. We make use of the element δ to prove that this block
form really is maximal.

Lemma 5.2.3. An element α ∈ T is dyadic self-similar if and only if has
a dyadic important point and rotation number 0. We can algorithmically
determine a maximal block form for any such α.

Proof. First suppose that α is dyadic self-similar, with block form
(x;Σi). Then α fixes each ∂Di pointwise, so rot(α) � 0. As x , id, there
is some point z ∈ I which is not fixed by x. Then zΣi is not fixed by xΣi ,
so α is not the identity. Hence Fix(α) is neither empty nor the entire
circle. The same is true of any connected component A of Fix(α). We
must have ∂A ⊆ �[1/2], and so α has a dyadic important point.

Now suppose that α has a dyadic important point r0 and rotation
number 0. We must have α , id because the identity has no important
points. We will explain how to construct a minimal block form for α.
Enumerate all the important points Iα � { r0 → · · · → rn−1 → r0 } in
cyclic order. Now any element of CT(α) permutes Iα with some index
difference. Use Algorithm 4.2.3 to find an element γ ∈ CT(α) with
minimal index difference 0 < d ≤ n. Then n � dh, where h is the order
of γ

��
I(α). Define our blocks to be Di � [rid , r(i+1)d] for each 0 ≤ i < h;

that is, take di � rid . We note that Diα � Di and Diγ � Di+1 mod h .
Choose9 a PL2 map Ω : I → D0, and use it to define x � α

��
D0
Ω−1 . 9 See Remark 1.2.9.

Then x is a PL2 map I → I, i.e. x ∈ F. We must have x , id, because
otherwise α � id, which we noted above is impossible. To finish, define
Σi � Ω γi

��
D0

for each i. These are PL2 maps I → Di as required. The
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calculation

xΣi �

(
α
��
D0
Ω−1

)Ω γi |D0
� α

��
D0

γi |D0 � α(γ
i )
���
Di

� α
��
Di

shows that α is dyadic self-similar.
Why is (x;Σi) a maximal block form? If there were a block form

with h′ > h blocks, we could construct an element δ′ ∈ CT(α) with
order h′, using Lemma 5.2.2. Then δ′ would cyclically permute Iα with
index difference n/h′ < n/h � d. This is a contradiction, because γ
has minimal index difference d. �

Proposition 5.2.4. Let α ∈ T be dyadic self-similar with a maximal block
form (x;Σi) containing h blocks. Then CT(α) splits as the wreath product
CF(x) o�h arising from the action {Di }hi�1 ⟲ �h . The right-hand factor is
generated by the image of δ from Lemma 5.2.2.

CF(x)

CF(x)

CF(x)

CF(x)
δ

δ

δ

δ

Figure 5.17: A schematic of the cent-
raliser CT (α). The h different copies of
CF(x) (one for each Di) are permuted
cyclically by the splitting element δ.

Proof. The quotient in Sequence (4.3) is the restriction of CT(α) to the
important point set Iα. As explained in the proof of Lemma 5.2.3,
because the block count h is maximal, the quotient must have order h.
Since δ has order h, the extension splits.

The extension’s kernel is K � CT(α)0, which is isomorphic to the
direct product

∏
0≤i<h CPL2(Di )(α

��
Di
) by Corollary 4.1.5. Write Ai �

CPL2(Di )(α
��
Di
) for the ith factor of this product, so that

CT(α) ∼�
( ∏

0≤i<h

Ai

)
o 〈δ〉 .

Now the endpoints of each Di are all dyadic, because rdi � r0δi and r0

is dyadic. Thus
Note that the equality PL2(Di) � FΣi is
a special instance of Claim 1.2.7.Ai � CPL2(Di )(α

��
Di
) � CFΣi (xΣi ) ∼� CF(x) ;

in other words, the factor Ai is parameterised by elements y ∈ CF(x).
Explicitly, the parameter y corresponds to the element ωy; i ∈ Ai of the
form

tωy; i �

t yΣi if t ∈ Di

t if t < Di

To conclude, we need to determine the action of the quotient on the
kernel. What is the result of conjugating ωy; i by δ? If t ∈ Di+1 then

tδ−1 ωy; i δ � tΣ−1
i+1Σiωy; i δ � tΣ−1

i+1Σi(yΣi )Σ−1
i Σi+1

� t yΣi+1 � tωy; i+1 ,

and if t ∈ D j , Di+1 then

tδ−1 ωy; i δ � tΣ−1
j Σ j−1ωy; i δ � tΣ−1

j Σ j−1(idD j−1)Σ−1
i Σi+1

� t idD j � tωy; i+1 .
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We see that ωδy; i � ωy; i+1, so conjugation by δ maps the ith factor Ai

isomorphically to Ai+1 mod h . In doing so, the choice of representative
y ∈ CF(x) is preserved.10 This shows that CT(α) is isomorphic to the

10 Informally, conjugating by δ induces
the ‘correct’ isomorphism between Ai
and Ai+1.wreath product CF(x) o�h arising from the action {Di } ⟲ 〈δ〉. �

Remark 5.2.5. In the light of this proof, it is worth highlighting the
structure of a generic element ω ∈ CT(α)0. It must be a product of the
form

ω � ωy1; 1ωy2; 2 · · ·ωyh ; h ,

parameterised by h elements yi ∈ CF(x). Thus ω is given by the
casewise formula

tω � t yi
Σi , for t ∈ Di and 0 ≤ i < h.

There are no constraints that hold between the { yi }: we may freely
choose h elements that commute with x.

To complete the story, we ask ‘which groups can be centralisers of
dyadic self-similar elements?’

Corollary 5.2.6. Let α be dyadic self-similar. Then CT(α) is isomorphic to
(F f ×�z) o�h , for some integer parameters z ≥ 0, 0 ≤ f ≤ z + 1 and h > 0
such that (0, 0) , ( f , z) , (1, 0).

Moreover, for each such triple ( f , z , h) there exists a dyadic self-similar
element α whose centraliser has these parameters.

Proof. The isomorphism follows from Matucci’s classification of cent-
ralisers in F: see our Theorem 4.1.3 and Claim 4.1.8 above, together
with Proposition 5.2.4. The latter claim explained it was possible to
construct an element x whose centraliser was isomorphic to F f ×�z ,
with f and z in the given range. Now ( f , z) � (1, 0) if and only if the
graph of x consists of a single fixed interval, which in turn occurs if
and only if x � id. Since the definition of block form requires x , id,
we exclude the possibility ( f , z) � (1, 0). This establishes that our
conditions are necessary.

We show the same conditions are sufficient by building a specific
element α whose centraliser has parameters ( f , z , h). Given f and z,
partition the unit interval into f + z standard dyadic intervals E j �

[e j , e j+1], for 0 ≤ j < f + z. Over E0 , E2 , . . . , E2( f−1), define x
��
E j

to be
the identity. On the remaining z intervals {E j }, define x

��
E j

� (x0
j)Ξ j ,

where Ξ j is some PL2 map I → E j and x0 ∈ F is the standard generator
shown in Figure 1.1. To build α, choose a partition of the unit circle
into h standard dyadic intervals D0 , . . . ,Dh−1, and select PL2 maps

Figure 5.18: Schematic illustrating
the break down of I � [0, 1] into
standard dyadic intervals E j . On f of
these, x is just the identity, leading to
a centraliser isomorphic to F over each
such interval. No two F-type intervals
are adjacent. On the remaining z
intervals, x is a specific one-bump
function, and hence has a cyclic
centraliser.

e0 e1 e2 e3

E0

F
E1

�

E2

F

e2 f−3 e2 f−2 e2 f−1 e2 f

E2 f−3

�

E2 f−2

F
E2 f−1

�

e2 f+1 e f+z−1 e f+z

E2 f

�

E f+z−1

�
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Σi : I → Di . As usual, we define α
��
Di

to be xΣi , so that α has block form
(x;Σi)with h blocks. As noted above, x , id because ( f , z) , (1, 0).

idΞ0

x1
0
Ξ1

idΞ2

x3
0
Ξ3

x4
0
Ξ4

x5
0
Ξ5

x

E0 E1 E2 E3 E4 E5

Figure 5.19: We choose a particular
element x ∈ F whose centraliser is
isomorphic to F f ×�z . In this example,
f � 2 and z � 4.

The fixed point set of α is

Fix(α) �
⋃

i

Fix(α��Di
) �

⋃
i

Fix(xΣi ) �
⋃

i

Fix(x)Σi ,

so now we need the fixed point set of x. By construction, this is the
union

Fix(x) � E0 ∪ E2 ∪ · · · ∪ E2( f−1) ∪ { e2 f , . . . , e f+z } .

of intervals and isolated points. Noting that e f+zΣi � e0Σi+1, we can
express Fix(α) as

Fix(α) �
⋃

i

(
E0 ∪ E2 ∪ · · · ∪ E2( f−1) ∪ { e2 f , . . . , e f+z−1 }

)
Σi .

Each of the finitely many sets within the union is closed and pairwise
disjoint, meaning that boundary of union is the union of boundaries.
In symbols,

Iα � ∂ Fix(α) �
⋃

i

∂
(
E0 ∪ E2 ∪ · · · ∪ E2( f−1) ∪ { e2 f , . . . , e f+z }

)
Σi

�

⋃
i

{ e0 , e1 , e2 , . . . , e f+z−1 }Σi

� { e jΣi | 0 ≤ j < f + z and 0 ≤ i < h } .

Setting d � f + z, we see that α has n � hd important points Iα �

{ r j+id � e jΣi }.

xΣ0

α

D0 D1D1

Figure 5.20: Continuing Figure 5.19,
we select h � 2 dyadic arcs to cover
the circle, namely D0 � [1/4, 3/4] and
D1 � [3/4, 1/4]. Selecting PL2-maps
Σi : I → Di , we define α on Di to
be xΣi . We’ve only shaded D2

0 ⊂ (S1)2
for clarity.

To conclude our proof, we need to show the the block form (x;Σi) is
maximal. We do so by showing that that there is no element γ ∈ CT(α)
which permutes the important points rk 7→ rk+d′ , for some 0 < d′ < d.
Then we will know that the centraliser quotient has order exactly
h � n/d.

Seeking a contradiction, suppose we have such a γ. Then the
functions α and αγ are equal, andhence so too are their right-derivatives
at any point. Differentiate α at e1Σi ∈ E1Σi ⊆ Di to see that We’re making use of Claim 2.3.14 to

handle derivatives of conjugates here.

[e1Σi]+(α
��
Di
)′ � [e1Σi]+(xΣi

��
E1Σi
)′ � [e1Σi]+(x

��
E1

Σi )′ � e1
+(x��E1

)′

� e1
+(xΞ1

0 )′ � [e1Ξ
−1
1 ]+x′0 � 0x′0 � 2−1 .

After some simplification, differentiating αγ at the same point e1Σi

yields
[e1Σi]+(αγ)′ � [e1Σiγ

−1]+α′ . (5.6)

We note that

e1Σiγ
−1

� rid+1γ
−1

� rid+1−d′ � r(i−1)d+d−d′+1 � ed−d′+1Σi−1 ,
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so we may continue the calculation in Equation (5.6) to see that

[e1Σi]+(αγ)′ � [ed−d′+1Σi−1]+(α
��
Ed−d′+1Σi−1

)′

� [ed−d′+1Σi−1]+(x
��
Ed−d′+1

Σi−1)′

� ed−d′+1
+(x��Ed−d′+1

)′ .

Depending on the value of d − d′+ 1, the restriction of x is either the
identity or a scaled version of xd−d′+1

0 . In the former case, the derivative
is 1; in the latter it is

ed−d′+1
+([x0

d−d′+1]Ξd−d′+1)′ � [ed−d′+1Ξ
−1
d−d′+1]+(x0

d−d′+1)′
� 0(x0

d−d′+1)′
� 2−(d−d′+1) .

Hence either 2−1 � 1 or 2−1 � 2−(d−d′+1). The first possibility is false;
the latter holds if and only if d � d′, which contradicts 0 < d′ < d. This
contradiction completes the proof. �

5.2.2 Case 2: dyadic offset-similar elements

Examples 5.1.3, 5.1.6 and 5.1.8 describe the centraliser of elements
β, δ, ζ ∈ T with nonzero rotation number and a dyadic important point.
Can we formulate a description of a generic such element?

Definition 5.2.7. Let d0 → d1 → . . . → dh−1 → d0 be a circular
partition in which every point is dyadic, for some h ≥ 2. Define blocks
Di � [di , di+1] for each 0 ≤ i < h, and let Σi : I → Di be a PL2 map, for
each i in the same range. Next, let q be a divisor of h, say h � sq. Also
let 0 < p < q be an integer coprime to q, so that 0 < ps < h. Finally,
select a map xi ∈ F for each 0 ≤ i < h, subject to the constraint that
the product X �

∏
0≤ j<q xi+ jps is independent of i and not equal to the

identity. (Subscripts on the xi are modulo h.)

Σ−1
0 x2Σ2

Σ−1
1 xΣ3

Σ−1
2 Σ0

Σ−1
3 xΣ1

β

D0 D1 D2 D3

Figure 5.21: Schematic of a dyadic
offset-similar element β. Here we have
h � 4 blocks; the other numerical
parameters are p � 1, q � 2 and s � 2.
Our elements of F are (x0 , x1 , x2 , x3) �
(x2 , x , id, x), where x is one of the
standard generators of F (usually
denoted by x0).
The product X is independent of i:

each of its h � 4 possible values

x0x2 � x2 id � x2

x1x3 � x2

x2x0 � id x2
� x2

x3x1 � x2

are all equal to x2.

From these ingredients, we define an element β ∈ T by the recipe

tβ �

{
tΣ−1

i xiΣi+ps if t ∈ Di .

Any element of this form is said to be dyadic offset-similar (DOS). The
data tuple ({ xi }; {Σi }; p; q) is called a block form for β, with h blocks.
If it is not possible to express β in block form with h′ > h blocks, we
say that a block form with h blocks is maximal.

There are a few changes to note from Definition 5.2.1. This time, we
require at least h ≥ 2 blocks, which are no longer fixed by the result of
our recipe: instead, Diβ � Di+ps , Di . Each of these is rearranged by
(a suitable conjugate of) its own element xi ∈ F; we no longer use only
a single x ∈ F \ {1 }. We note that

Xxi � x−1
i (xi xi+ps xi+2ps · · · xi+(q−1)ps)[xi]

� xi+ps xi+ps+ps · · · xi+ps+(q−2)ps[xi+ps+(q−1)ps] � X ,
(5.7)
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which shows that each xi ∈ CF(X).
Claim 5.2.8. Let β have block form (xi ;Σi ; p; q). Then rot(β) � p/q , 0 in
lowest terms.

Proof. We know that β cyclically permutes the intervals {Di }0≤i<h ,
sending Di 7→ Di+ps . Since there are h � qs blocks in total, the rotation
number is rot(β) � ps/qs � p/q. This is in lowest terms because p
and q are coprime. As 0 < p < q, q ≥ 2 and rot(β) , 0. �

The original goal of introducing block forms for elements α with
rotation number 0 was to make it easy to write down centralising
elements with small (hopefully minimal) index difference. We can do
the same for β with nonzero rotation number—with some extra effort.
First we establish some helpful notation; then we derive conditions for
such a centralising elements θ to exist. As a corollary we point out
that such a θ can always be constructed.

Notation 5.2.9. Let β have block form (xi ;Σi ; p; q) and let X be the
productX �

∏
0≤ j<q xi+ jps . Wedefine the symbolπi ,m �

∏
0≤ j<m xi+ jps ,

for any integer 0 ≤ i < h and any natural number m ≥ 1. This has the
following properties, where we treat the first subscript i on π as an
integer modulo h.

1. πi ,m+1 � πi ,m xi+mps , and hence πi ,m+m′ � πi ,mπi+mps ,m′ .

2. Σ−1
i πi ,mΣi+mps � βm

��
Di
.

3. πi ,q � X, for any value of i; hence πi ,qk � Xk .

4. πi ,m ∈ CF(X), because it’s a product of elements xi ∈ CF(X).
Lemma 5.2.10. Let β have block form (xi ;Σi ; p; q) with h blocks, and let X
be the product X �

∏
0≤ j<q xi+ jps . Then there exists an element θ ∈ CT(β)

with rot(θ) � 1/h if and only if there exist maps θ0 , . . . , θh−1 ∈ CF(X)
satisfying the simultaneous equations

xiθi+ps � θi xi+1, for all 0 ≤ i < h. (5.8)

Proof. If θ ∈ CT(β) then θ maps Di to Di+1. Thus we have θ
��
Di

�

Σ−1
i (Σi θ

��
Di
Σi+1)−1Σi+1. As shorthand, define θi � Σi θ

��
Di
Σ−1

i+1 for
each i. Then θ

��
Di

� Σ−1
i θiΣi+1 holds for every 0 ≤ i < h. Now the

products θβ and βθ are equal if their restrictions to Di are equal, for
all i. The former restriction is

θ
��
Di
β
��
Di+1

� Σ−1
i θiΣi+1Σ

−1
i+1xi+1Σi+1+ps � Σ

−1
i θi xi+1Σi+1+ps ,

whereas the latter restriction is

β
��
Di
θ
��
Di+1

� Σ−1
i xiΣi+psΣ

−1
i+psθi+psΣi+ps+1 � Σ−1

i xiθi+psΣi+ps+1 .

As these expressions are equal, we learn that

Σ−1
i θi xi+1Σi+1+ps � Σ

−1
i xiθi+psΣi+ps+1 for each 0 ≤ i < h,
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which is equivalent to Condition (5.8). Repeatedly apply this condition
using different values of i to see that

θi � xiθi+ps x−1
i+1

� xi(xi+psθi+2ps x−1
i+ps+1)x−1

i+1

� xi xi+ps xi+2psθi+3ps x−1
i+2ps+1x−1

i+ps+1x−1
i+1

...

� πi ,mθi+mpsπ
−1
i+1,m , for any integer m ≥ 0.

(5.9)

In particular, take m � q so that θi+mps � θi and that both π symbols
become X. Then we see that θi ∈ CF(X), as claimed.

Conversely, given {θi }0≤i<h ⊂ CF(X) satisfying Condition (5.8),
define11 an element θ ∈ T by the formula θ

��
Di

� Σ−1
i θiΣi+1 for 0 ≤ i < h. 11 Formally, use Lemma 2.1.7 to see

that this is a well-defined map θ ∈ T
instead of θ ∈ Homeo+(S1) \ T.Then θ maps Di to Di+1 mod h for all 0 ≤ i < q, so rot(θ) � 1/h. Repeat

the above calculations for θ
��
Di
β
��
Di+1

and β
��
Di
θ
��
Di+1

; the two functions
will be equal precisely because our {θi } satisfy Condition (5.8). This
holds for all 0 ≤ i < q, so θβ � βθ. �

Corollary 5.2.11. Let β and X be as in Lemma 5.2.10. For any elements
θ0 , . . . , θs−1 ∈ CF(X), there is a unique element θ ∈ CT(β) with θ

��
D j

�

Σ−1
j θjΣ j+1 for each 0 ≤ j < s. Moreover rot(θ) � 1/h.

Proof. Adopt the notation used in Lemma 5.2.10 to describe the given
block from for β. Suppose we have elements θ0 , . . . , θs−1 ∈ CF(X).
To prove this result, we will establish that there are unique elements
θs , . . . , θh−1 such that thewhole collection {θ0 , . . . , θh−1 } satisfies Con-
dition (5.8). For each 0 ≤ j < s, we must define θps , θ1+ps . . . , θs−1+ps

by θj+ps � x−1
j θj x j+1, in order to satisfy to satisfy Condition (5.8) when

i � j. For the same values of j, we must similarly define

θj+2ps � x−1
j+psθj+ps x j+ps+1

� x−1
j+ps x−1

j θj x j+1x j+ps+1

� π−1
j,2θjπ j+1,2 ,

to satisfy Condition (5.8) for i � j + ps. In general, we define θj+mps �

π−1
j,mθjπ j+1,m ; this is necessary to satisfy the required condition when

i � j + (m − 1)ps, for each 0 < m < q and each 0 ≤ j < s.

id

id

x−1
0 x1

x−1
1 x2

θ

Figure 5.22: The result of our recipe
for constructing a centralising element
θ ∈ CF(β), where β is the element
illustrated in Figure 5.21. We choose θ
to be the identity on D0 and D1; this
determines θ on the remaining Di .

With all our θi nowdefined, we need to verify that the last remaining
case (i � j + (q − 1)ps) of Condition (5.8) holds, i.e. to verify that

x j+(q−1)psθj+qps � θj+(q−1)ps x j+(q−1)ps+1 (5.10)

for each 0 ≤ j < s. The left-hand side of Condition (5.10) is the product
x j+(q−1)psθj+qps , since qs � 0 (mod h); this is equal to the right-hand
side because

θj+(q−1)ps x j+(q−1)ps+1 � π−1
j,q−1θjπ j+1,q−1 x j+(q−1)ps+1
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� π−1
j,q−1θjπ j+1,q

� (Xx−1
j+(q−1)ps)−1θjX

� x j+(q−1)ps X−1θjX

� x j+(q−1)psθj .

Thus Condition (5.8) is satisfied for every 0 ≤ i < h. �

We now give a dynamical characterisation of DOS elements. For
each DOS element β, we explain how to construct a maximal block
form for β.

Lemma 5.2.12. An element β ∈ T is dyadic offset-similar if and only if it has
a dyadic important point and nonzero rotation number. We can algorithmically
determine a maximal block form for any such β.

Proof. First assume that β has a block form (xi ;Σi ; p; q)with h blocks.
We saw that rot(β) , 0 in Claim 5.2.8, so now we need to find a dyadic
important point. The whole important point set is Iβ � ∂ Fix(βq). On a
given block, the qth power is

βq
��
Di

� Σ−1
i πi ,qΣi+qps � Σ

−1
i XΣi ,

by Notation 5.2.9. Now since X , id there must be a dyadic important
point 12 r ∈ IX � ∂ Fix(X). It follows that rΣi is a important point of β; 12 Let [0, s] be the first linear segment

of X, for some s < 1. If this segment
has gradient 1, take r � s; otherwise
take r � 0. Then r ∈ ∂ Fix(X).

this is also dyadic because r is dyadic and Σi is a PL2 map.
In the other direction, we take an element β with rotation number

p/q , 0 in lowest terms which possesses a dyadic important point
r0. We will describe an algorithm to produce a maximal block form
for β. Enumerate all important points in cyclic order as Iβ � { r0 →
r1 → · · · → rn−1 → r0 }. Use Algorithm 4.2.3 to find an element
γ ∈ CT(β) with minimal index difference 0 < d ≤ n. Then n � dh
for some integer h; use d to divide the important points into h blocks
Di � [rid , r(i+1)d]. As each ri lies in a size q orbit under β, we must have
h � qs for some s ≥ 1; thus h ≥ q ≥ 2.

As γ commutes with β, it must also commute with βq . This means
that the quotient of CT(βq) (from the structure of Sequence (4.3)) has
order at least h (possibly larger). But the power βq is dyadic self-similar,
so it has a (not necessarily maximal) block form (X;Σi)with h blocks.
Since the important points I(βq) � Iβ are the same, we may assume
without loss of generality that the codomain of Σi is Di . Thus we
obtain βq

��
Di

� Σ−1
i XΣi .

Define δ ∈ T by δ
��
Di

� Σ−1
i Σi+1 as in Lemma 5.2.2, so that δ ∈ CT(βq).

Now certainly β ∈ CT(βq), so the product ε � βδ j ∈ CT(βq) also.
Choose j � −ps so that ε ∈ CT(βq)0 has rotation number 0. From
Remark 5.2.5, we know that ε

��
Di

� xΣi
i , for some maps xi ∈ CF(X).

Then

β
��
Di

� ε
��
Di
δps

��
Di

� (Σ−1
i xiΣi)(Σ−1

i Σi+ps) � Σ−1
i xiΣi+ps .
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Now that we have formulas for β
��
Di

and βq
��
Di
, we can restrict the

equality βq � ββ · · · β to Di to learn

Σ−1
i XΣi � (Σ−1

i xiΣi+ps)(Σ−1
i+ps xi+psΣi+2ps) · · · (Σ−1

i+(q−1)ps xi+(q−1)psΣi+qps)
� Σ−1

i

( ∏
0≤ j<q

xi+ jps

)
Σi .

We see that the product X �
∏

0≤ j<q xi+ jps is independent of i, and
X , 1. Thus β has block form (xi ;Σi ; p; q).

Finally we consider the maximality of h. We deliberately chose γ
to have minimal index difference d, and so the image of γ in the last
term H of Sequence (4.3) has maximal order h � n/d. If our block
form for β were not maximal, there would be a block form with h′ > h
blocks. But then we could construct an element θ′ ∈ CT(β) with
rotation number 1/h′ using Corollary 5.2.11. This would yield an
element of order h′ > h in H, which is a contradiction. We conclude
that our block form is indeed maximal. �

With maximal block forms in hand, we can begin to describe the
structure of Sequence (4.3) for CT(β).
Lemma 5.2.13. Let β ∈ T be dyadic offset-similar with maximal block form
(xi ;Σi ; p; q) consisting of h blocks. Set X �

∏
0≤m<q xi+mps . Then there is a

short exact sequence This sequence is a specific instance of
Sequence (4.3).

CF(X)s ↪→ CT(β)� �h , (5.11)

where h � qs. Given an element θ ∈ CT(β) which is a preimage of 1 ∈ �h ,
we can explicitly describe how θ conjugates the kernel of this extension.13 13 See Equation (5.14).

Proof. Given a choice of representative arc Q, we know that the kernel
of Sequence (4.3) for CT(β) is isomorphic to CPL2(Q)(βq

��
Q). Since this

arc needs to cover 1/qth of the circle, we take Q � D0 ∪ · · · ∪ Ds−1,
whereDi is thedomain ofΣi . Because of the condition on the { xi } in the
definition of offset-similar block form, we know that βq

��
Di

� Σ−1
i XΣi .

Thus, by the argument of Theorem 4.1.3, our kernel is a direct product
of other centralisers, namely

Reminder. Isomorphism (5.12a)
decomposes the centraliser over Q
into the product of centralisers over
the {D j }. This is valid because the
endpoints ∂D j are dyadic important
points. Isomorphism (5.12c) is a
conjugation by the PL2 map Σ−1

j .

CPL2(Q)(βq
��
Q) ∼�

∏
0≤ j<s

CPL2(D j )(βq
��
D j
) (5.12a)

�

∏
0≤ j<s

CFΣ j (XΣ j ) (5.12b)

∼�
∏

0≤ j<s

CF(X) . (5.12c)

Any element θ ∈ CT(β)with rotation number 1/h projects onto 1 ∈ �h .
We know that such an element exists thanks to Corollary 5.2.11. We
also know that 1/h is the smallest nonzero rotation number possible,
because our block form (and hence h) is maximal. Thus the extension’s
quotient is �h , as claimed.
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We saw in Equation (5.12) that our kernel’s elements were paramet-
erised by tuples (ω0 , . . . , ωs−1) ∈ CF(X)s . After applying the inverse of
Isomorphism (5.12c) followed by the inverse of Isomorphism (5.12a),
our parameters yield an element ω ∈ PL2(Q) defined by ω

��
D j

� ω
Σ j

j , for
each 0 ≤ j < s. To obtain a fully-fledged element of T, we need to apply
the inverse of the isomorphism CT(β)0 ∼� CPL2(Q)(βq

��
Q) discussed in

Theorem 4.2.1 and Remark 4.2.2. Take ω and form its unique extension
ω̄ ∈ CT(β); this is given by

ω̄
��
D j+mps

� (ω��
D j
) β

m |Dj � (ωΣ j

j )
Σ−1

j π j,mΣ j+mps
� ω

π j,mΣ j+mps

j , (5.13)

where 0 ≤ j < s and 0 ≤ m < h. Thus the conjugate ω̄θ is given by

ω̄θ
��
D j+mps

� (ω̄��
D j+mps−1

) θ |Dj+mps−1 .

Now ω̄θ is also an element of the extension’s kernel, so it must be
described by s parameters in CF(X). What is the jth such parameter?
First we handle the cases 0 < j < s. Write θ

��
Di

� Σ−1
i θiΣi+1 as in the

proof of Lemma 5.2.10. Then

ω̄θ
��
D j+mps

� (ω̄��
D j−1+mps

) θ |Dj−1+mps

� (ωπ j−1,mΣ j−1+mps

j−1 )Σ−1
j−1+mpsθj−1+mpsΣ j+mps

� ω
π j−1,mθj−1+mpsΣ j+mps

j−1

� ω
θj−1π j,mΣ j+mps

j−1 ,

where the last equality is due to Equation (5.9). Comparing with
Equation (5.13), we see that the jth parameter for ω̄θ is ωθj−1

j−1 .
The case j � 0 is a little different: here j + mps − 1 � mps − 1 needs

to be expressed in the form (s − 1) − s + mps � (s − 1) + (m − k)ps,
where k � p−1 mod q. Then

ω̄θ
��
Dmps

� (ω̄��
D(s−1)+(m−k)ps

) θ |D(s−1)+(m−k)ps

� (ωπs−1,m−kΣmps−1
s−1 )Σ−1

mps−1θ(s−1)+(m−k)psΣmps

� ω
πs−1,m−kθ(s−1)+(m−k)psΣmps

s−1

� ω
θs−1πs ,m−kΣmps

s−1 ,

again thanks to Equation (5.9). Now since π0,m � π0,kπs ,m−k , we can
rewrite this last line as

ω̄θ
��
Dmps

� ω
(θs−1π−1

0,k )π0,mΣmps

s−1 .

Comparing with Equation (5.13) shows that the parameter defining

ω̄θ over D0 is ω
θs−1π−1

0,k
s−1 .

In summary, the action of θ on CF(X)s is given by

(ω0 , . . . , ωs−1)θ � (ωθs−1π−1
0,k

s−1 , ωθ0
0 , ω

θ1
1 , . . . , ω

θs−2
s−2 ) , (5.14)
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where the ω j ∈ CF(X) are arbitrary parameters for elements ω̄ of the
extension’s kernel. This completes our proof. �

Now we will study the conditions under which Sequence (5.11)
for CT(β) splits. This occurs if and only if we can find an element θ of
order h �

���CT(β)
��
Iβ

��� in the centraliser. The next lemma tells us how to
determine if such a θ exists, given a maximal block form. Even better,
if such an element exists then we can construct an example.

Proposition 5.2.14. Let β ∈ T have maximal block form (xi ;Σi ; p; q) with h
blocks. Set X �

∏
0≤ j<q xi+ jps . Then Sequence (5.11) splits if and only if X

An equivalent statement of this result
is that CT (β) splits if and only if βq has
a qth root in F.

has a qth root in F.

Proof. To split the extension, we need to find an element θ ∈ CT(β)
whose image in the right-hand term �h of Sequence (5.11) has order h.
Without loss of generality, we may assume that rot(θ) � 1/h. If not,
then say that rot(θ) � p′/h in lowest terms. Set k′ � p′−1 mod h, so
that θk′ has rotation number p′k′/h � 1/h (mod 1).

To start, we assume that such a θ exists and construct a qth root of X.
Arguing as in theproof of Lemma5.2.10,wemaywriteθ

��
Di

� Σ−1
i θiΣi+1

for some maps θi ∈ CF(X). First we note that

θh
��
D0

� (Σ−1
0 θ0Σ1)(Σ−1

1 θ1Σ2) · · · (Σ−1
h−1θh−1Σ0) � Σ−1

0 θ0θ1 · · · θh−1Σ0 .

For each 0 ≤ m < q define Θm �
∏

0≤ j<s θms+ j . Then Θm ∈ CF(X),
and the previous equation now reads θh

��
D0

� Σ−1
0 Θ0Θ1 · · ·Θq−1Σ0.

Set k � p−1 mod q, so that kps ≡ s (mod h). Use this together with
Equation (5.9) to conclude that

θj+ms � θj+mkps � π
−1
j,mkθjπ j+1,mk

for each m as above. This means that

Θm � θmkpsθmkps+1 · · · θmkps+(s−1)

�

(
π−1

0,mkθ0π1,mk

) (
π−1

1,mkθ1π2,mk

)
· · ·

(
π−1

s−1,mkθs−1πs ,mk

)
� π−1

0,mkθ0θ1 · · · θs−1πs ,mk

� π−1
0,mkΘ0πs ,mk .

Expressing each Θm in terms of Θ0 only, we learn that

θh
��
D0

� Σ−1
0 Θ0

(
π−1

0,kΘ0πs ,k

) (
π−1

0,2kΘ0πs ,2k

)
· · ·

· · ·
(
π−1

0,(q−1)kΘ0πs ,(q−1)k
)
Σ0 .

Now because kps ≡ s (mod h) we have π0,kπs ,mk � π0,(m+1)k . It
follows that the q − 2 factors of the form πs ,mkπ−1

0,(m+1)k in the previous
equation are all equal to π−1

0,k . The previous equation now reads

θh
��
D0

� Σ−1
0

(
Θ0π

−1
0,k

) q−1
Θ0πs ,(q−1)kΣ0 ;
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rewrite the right-hand side to obtain the expression

θh
��
D0

� Σ−1
0

(
Θ0π

−1
0,k

) q
π0,kπs ,(q−1)kΣ0

� Σ−1
0

(
Θ0π

−1
0,k

) q
π0,qkΣ0

� Σ−1
0

(
Θ0π

−1
0,k

) q
XkΣ0

(5.15)

for θh
��
D0
.

The above holds for any θ ∈ CT(β) with rot(θ) � 1/h. Now we also
that θh � id. Applying this to Equation (5.15) yields

Σ0 idD0 Σ
−1
0 �

(
Θ0π

−1
0,k

) q
Xk .

Since Σ0 idD0 Σ
−1
0 is equal to idI � idF , the above is equivalent to the

equation
X−k

�

(
Θ0π

−1
0,k

) q

in which all terms belong to CF(X). Next, set φ � Θ0π−1
0,k so that

φq � X−k . Each of the elements {θi , xi }0≤i<h belongs to CF(X), so
we must also have φ ∈ CF(X). There is an integer ` such that 1 �

gcd(p , q) � kp + q`. Then φ−qp � Xkp � X1−q` , which tells us that
φ−qpXq` � X. But then X � (φ−pX`)q , so X has a qth root as claimed.

θ′

Figure 5.23: Let β be as in Figure 5.21.
Then X � x2. We have p � k � 1,
q � s � 2 and h � 4, so we take ψ to
be the unique qth root ψ � x of X in F.
Now π0,k � x0 � x2, so we define

θ0 � ψ−kπ0,k � x−1x0 � x

θ1 � id
which forces

θ2 � x−1
0 θ0x1 � x−2xx � id

θ3 � x−1
1 θ1x2 � x−1 .

This defines θ ∈ CF(x), which has
rotation number 1/4 and order 4.

What about sufficiency? Suppose that ψ ∈ F is a qth root of X. (We
note that such a ψ must be unique, by Corollary 3.2.2.1.) As before set
k � p−1 mod q, then define θ0 � ψ−kπ0,k ∈ CF(X). For j in the range
1 ≤ j < s, define θj � id ∈ CF(X). Extend this to a map θ ∈ CT(β)
using Corollary 5.2.11.

To see that θ has order h we first turn to Equation (5.15), which now
reads

θh
��
D0

� Σ−1
0 ψ−kqXkΣ0 � Σ−1

0 X−k XkΣ0 � idD0 .

The restriction θh
��
Di

is the conjugate (θh
��
D0
)θi , which is equal to idDi

by the previous equation. This holds for all i, so we conclude that
θh � id and that the order of θ divides h. Since rot(θ) � 1/h, the order
of θ must be exactly h. �

Kassabov andMatucci (K&M) explain how to search for roots in F by
reducing to a search for conjugators.14 This means we can construct a 14 Kassabov and Matucci 2012, The-

orem 5.6.ii.splitting element θ of order h whenever it exists, or otherwise conclude
that no such θ exists. If such a θ exists, we immediately conclude that
CT(β) ∼� CF(X)s o 〈θ〉 ∼� CF(X)s o�h . To see which semidirect product
this is, we need to understand how θ conjugates the kernel. This action
is described by Equation (5.14). If we choose θ carefully, we will see
that this action is that of a wreath product.

Proposition 5.2.15. Assume the hypotheses of Lemma 5.2.13, and further
assume that X has a qth root. Then CT(β) is a wreath product CF(X) os �h .
The subscript s indicates that the wreath corresponds15 to the action�s ⟲ �h .

15 To be explicit, if j ∈ �s and i ∈ �h ,
then the image of j under i is j.i � j + i
(mod s).

Proof. In the proof of Proposition 5.2.14, we saw that Sequence (5.11)
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splits via somemap θ if and only there exist maps θ0 , . . . , θs−1 ∈ CF(X)
satisfying

θ0 · · · θs−1π
−1
0,k � φ ,

for some fixed element φ ∈ F which is the unique qth root of X−k . Now
from Equation (5.14) we see that θ splits CT(β) into a wreath product
if and only if each of the elements θ0 , θ1 , . . . , θs−2 , θs−1π−1

0,k belongs to
Z(CF(X)), where Z(·) denotes the centre. Thus Sequence (5.11) splits
as a wreath product if and only if

There exist elements θ0 , . . . , θs−2 ∈ Z(CF(X)) and there
exists θs−1 ∈ CF(X) such that θs−1π−1

0,k ∈ Z(CF(X)) and
θ0 · · · θs−2θs−1π−1

0,k � φ.
(5.16)

θ

Figure 5.24: Continuing from Fig-
ure 5.23, φ is the unique qth root
φ � x−1 of X−k � x−2 in F. We define a
different centraliser θ′ by

θ′0 � φ � x−1

θ′1 � π0,k � x2

which forces
θ′2 � x−1

0 θ′0x1 � x−2x−1x � x−2

θ′3 � x−1
1 θ′1x2 � x−1x2 id � x .

This defines θ′ ∈ CF(x), which has
rotation number 1/4, order 4 and splits
CT (β) into a wreath product.

As φ is a root of a power of X, it follows from Lemma 4.1.7 that
CF(φ) � CF(X); hence φ ∈ Z(CF(φ)) � Z(CF(X)). Additionally, π0,k ∈
CF(X) because it is a product of factors xi ∈ CF(X). This means we can
satisfy Condition (5.16) by choosing elements

θ0 � φ , θ1 � θ2 � · · · � θs−2 � id and θs−1 � π0,k .

Hence the extension of {θ0 , . . . , θs−1 } to a centraliser θ ∈ CT(β) splits
the centraliser as a wreath product. �

Corollary 5.2.16. Let β ∈ T be dyadic offset-similar. If Sequence (5.11)
splits, then CT(β) is isomorphic to (F f ×�z)os�h , for some integer parameters
( f , z , h , s), with ( f , z , h) as in Corollary 5.2.6 and with s ≥ 1 dividing h.

Moreover, for every such 4-tuple there is a dyadic offset-similar element β
whose centraliser extension splits with these parameters.

ω0

ω1

ω′
0

ω′
1

ω′′
0

ω′′
1

θ

θ

θ

θ

θ

θ

Figure 5.25: A schematic illustrating
the centraliser CT (β), with parameters
h � 6, q � 3 and s � 2. In con-
trast to Figure 5.17, kernel elements
ω ∈ CT (β)0 are determined by their
behaviour on a representative arc Q,
which consists of s � 2 blocks.
In this example, this behaviour is de-

scribed by the pair (ω0 , ω1) ∈ CF(X)2.
The behaviour of ω on translates of Q
is then given by related elements
ω′0 , ω

′′
0 , ω

′
1 , ω

′′
1 ∈ CF(X). Conjugating

by θ permutes the blocks one step for-
ward. If we choose θ carefully, then ωθ
is described by the pair (ω1 , ω0), and
CT (β) has a wreath product structure.

Proof. CT(β)must be of the form (F f ×�z) os �h by Proposition 5.2.15.
Here h > 0 is some integer divisible by s > 0. The left-hand factor
is (isomorphic to) the centraliser CF(X), where id , X ∈ F can be
obtained from a block form for β. The bounds on f and z are necessary
by Claim 4.1.8. As in Corollary 5.2.6, we must have ( f , z) , (1, 0)
because X , id. This establishes the necessity of our conditions on the
parameters.

Todemonstrate sufficiency, we’ll explain how to construct an element
β ∈ T whose centraliser has given parameters ( f , z , h , s). Let α ∈ T be
a dyadic self-similar element whose centraliser has parameters ( f , z , h).
(We can construct an explicit example α using Corollary 5.2.6.) Then
α has a maximal block form (x;Σi)with exactly h blocks. Define β to
be the element with offset block form (xi ;Σi ; 1; q), where h � qs and
xi � x for all 0 ≤ i ≤ h. In this case, the product X �

∏
0≤m≤q xi+mps is

X � xq .
We claim that this is a maximal block form for β. Seeking a

contradiction, suppose not. Then there is a block form for β with
h′ > h blocks. We can use this to construct an element θ ∈ CT(β) with
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rotation number 1/h′ (see Corollary 5.2.11). Observe that

βq
��
Di

� Σ−1
i XΣi � Σ

−1
i xqΣi � α

q
��
Di

;

since this holds for all i, we see that βq � αq . Then

θ ∈ CT(β) ≤ CT(βq) � CT(αq) � CT(α) ,

where the last equality is due to Lemma 4.1.7. We see that θ ∈ CT(α)
has rotation number 1/h′—but this contradicts the fact α has amaximal
block form with h blocks. Hence our block form for β is maximal.

To finish the proof, we note that X � xq has a qth root in F. So
CT(β) splits as a wreath product CF(X) os �h , by Proposition 5.2.15.
But CF(X) � CF(xq) � CF(x) by Lemma 4.1.7, and CF(x) ∼� F f ×�z by
our choice of element α. �

To conclude this case, we briefly discuss what happens when CT(β)
doesn’t split—as in Example 5.1.6. We see that we can choose θ ∈ CT(β)
with rotation number 1/h inducing a wreath-like action on the kernel.

Proposition 5.2.17. Assume the hypotheses of Lemma 5.2.13, and further
assume that X does not have a qth root. Then Sequence (5.11) does not split
as a wreath expansion. However, we can choose a preimage θ of 1 ∈ �h whose
conjugation action cyclically shifts the s factors of the kernel.

Proof. The fact that Sequence (5.11) does not split was established by
Proposition 5.2.14.

In order to cyclically permute the factors in Equation (5.14), we need
to find elements θ0 , . . . , θs−2 ∈ Z(CF(X)) and θs−1 ∈ CF(X) such that
θs−1π−1

0,k ∈ Z(CF(X)). There certainly is such a collection of elements:
for instance, take

θ0 � · · · � θs−2 � id and θs−1 � π0,k .

As in the second half of Proposition 5.2.14’s proof, extend the maps
θ0 , . . . , θs−1 to a map θ ∈ CT(β)with rotation number 1/h.

For completeness, we note that θ has infinite order. Using Equa-
tion (5.15) we see that

θh
��
D0

� Σ−1
0

(
θ0 · · · θs−1π

−1
0,k

) q
XkΣ0 � Σ−1

0 XkΣ0 � βq
��
D0
,

where the last equality follows from to Notation 5.2.9. Moreover

θh
��
Di

� (θh
��
D0
)θi � (βq

��
D0
)θi � βq

��
Di

for each i, so θh � βq . As β is nontorsion, we see that θ is also
nontorsion. �

Corollary 5.2.18. Let β ∈ T be dyadic offset-similar. If Sequence (5.11) does
not split, then CT(β) is an extension (F f ×�z)s ↪→ CT(β)� �h , for some
integer parameters ( f , z , s , h) as in Corollary 5.2.16 with q � h/s ≥ 2.
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Moreover, for every such 4-tuple there is a dyadic offset-similar element β
whose centraliser extension does not split and has these parameters.

Proof. The necessary conditions on ( f , z , s , h) from Corollary 5.2.16
also apply here. We must have q ≥ 2: otherwise q � 1, and X will have
a qth root, so Sequence (5.11) will split by Proposition 5.2.14.

To build an element with such a centraliser, let α ∈ T be a dyadic
self-similar element whose centraliser has parameters ( f , z , h). (Again,
Corollary 5.2.6 gives an explicit construction.) Then α has a maximal
block form (X;Σi) with h blocks. Without loss of generality we may
assume that X is a root element: if not, we can use K&M’swork16 to find 16 Kassabov and Matucci 2012, The-

orem 5.6.ii.a minimal root X′ of X. Then the element α′ with block form (X′;Σi)
has the same centraliser parameters as α, because CF(X) � CF(X′) by
Theorem 4.1.3.

Use this “rootless block form” to define a dyadic offset-similar
element β ∈ T with block form (xi ;Σi ; 1, q). Here the elements xi ∈ F
are

x0 � · · · � xs−1 � X and xs � · · · � xh−1 � id .

The products
∏

0≤m<q xi+mps are all equal to X , 1 by design. This
means that

βq
��
Di

� Σ−1
i XΣi � α

��
Di

for each i, and so βq � α. We learn that CT(β) ⊆ CT(βq) � CT(α). This
means our block form for β is maximal: if there was a block form with
h′ > h blocks, we could create an element with rotation number 1/h′
in CT(β) and hence in CT(α)—but this is impossible. This means that
CT(β) is an extension CF(X)s ↪→ CT(β)� �h . As X is a root element,
the extension is nonsplit by Proposition 5.2.14. �

5.2.3 Case 3: nondyadic self-similar elements

In this section we mimic our analysis for dyadic self-similar elements,
adapting to elements α which only have nondyadic important points.
Many of our calculations are identical; others are completely new,
needed to ensure we are building elements of T from PL2 maps defined
between nondyadic points.

Definition 5.2.19. Let d0 → d1 → · · · → dh−1 → d0 be a circular
partition with h ≥ 1 points in which no di is dyadic. Define circular For dyadic self-similar elements there

was a natural choice of interval to use
as the domain of Σi , namely I � [0, 1].
This is because any two intervals with
dyadic endpoints have isomorphic PL2
groups see (Claim 1.2.8). There’s no
obvious choice to use in place of I in
the nondyadic case, so we simply use
D0 in place of I � [0, 1].

arcs Di � [di , di+1] with subscripts mod h, for each 0 ≤ i < h. Each Di

is called a block. For 0 ≤ i < h, let Σi : D0 → Di be a PL2 map; similarly
let x : D0 → D0 be a PL2 map. We impose the condition that

there is a constant c such that d+

0Σ
′
i+1 � c · d−1Σ

′
i , for all i (5.17)

on our collection of maps {Σi }. We also require that 17
17 This condition is equivalent to x , id.

1 , d+

0 x′ � d−1 x′ (5.18)

and that x has no interior dyadic important points.
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In terms of these ingredients, we define an element α ∈ T by the
recipe

tα �

{
txΣi if t ∈ Di .

Such an element α is called nondyadic self-similar (NSS). The data
(x; {Σi }) is called a block form for α with h blocks. If it is not possible
to express α in block form with h′ > h blocks, we say that a block form
with h blocks is maximal.

Bookkeeping. We need to explain why our recipe produces a well-
defined element α in T. The only time two blocks overlap is at
{ di+1 } � Di ∩ Di+1. This isn’t a problem, because

di+1Σ
−1
i xΣi � d1xΣi � d1Σi � di+1

and di+1Σ
−1
i+1xΣi+1 � d0xΣi+1 � d0Σi+1 � di+1 ;

we see that α is well-defined.
For each i, the restriction α

��
Di

is a product Σ−1
i xΣi of maps in

the groupoid PL2. So α
��
Di
∈ PL2(Di), which means the internal

breakpoints of α
��
Di

are all dyadic. The last thing to check is that no
point di+1 between two blocks is a breakpoint. The left derivative is

d−i+1(Σ−1
i xΣi)′ � [di+1Σ

−1
i ]−x′ � d−1 x′ ,

where the first equality is due to Claim 2.3.14.18 Similarly, the right 18 Apply the claim with (d1 , x ,Σi) in
place of the claim’s (x , α, γ).derivative is

d+

i+1(Σ−1
i+1xΣi+1)′ � [di+1Σ

−1
i+1]+x′ � d+

0 x′ .

These two derivatives are equal thanks to Condition (5.18). This
establishes that α ∈ T (rather than PL�(S1)).

As in previous cases, the point of defining a block form is to make it
easy to write down certain centralising elements. The details of how to
do so are largely the same as in the dyadic self-similar case.

Lemma 5.2.20. Let α be a nondyadic self-similar element, with block form
(x;Σi) consisting of h blocks. Define an element δ ∈ T by the formula
δ
��
Di

� Σ−1
i Σi+1, for each i with subscripts modulo h. Then δ commutes

with α, has rotation number rot(δ) � 1/h and has order h.

Proof. The calculations follow exactly as in Lemma 5.2.2. However,
we need to justify why δ ∈ T, since we have introduced blocks with
nondyadic endpoints. Again, we cannot have any nondyadic break-
points within the interior of Di , because the internal breakpoints of
Σ−1

i Σi+1 ∈ PL2(Di ,Di+1) are all dyadic (see also Claim 1.2.5). So we
need to check that gradients do not change at the points di+1 between
blocks. The left gradient is

d−i+1(Σ−1
i Σi+1)′ � d−i+1(Σ−1

i )′ · d−1Σ
′
i+1 �

d−1Σ
′
i+1

d−1Σ
′
i
,
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whereas the right gradient is

d+

i+1(Σ−1
i+1Σi+2)′ � d+

i+1(Σ−1
i+1)′ · d+

0Σ
′
i+2 �

d+

0Σ
′
i+2

d+

0Σ
′
i+1

.

These two fractions are equal due to Condition (5.17). Hence di+1 is
not a breakpoint of δ for any i, meaning that δ ∈ T. �

As before, the next step is to characterise the nondyadic self-similar
elements of T. To do so, we describe a process which produces
maximal block forms. Once again, the ideas are similar to the dyadic
self-similar case; the new material in this proof is checking the location
of breakpoints.

Lemma 5.2.21. An element α ∈ T is nondyadic self-similar if and only if
α has rotation number 0 and has n ≥ 1 important points, all of which are
nondyadic. We can algorithmically determine a maximal block form for any
such α.

Proof. First suppose that α is nondyadic self-similar, with block form
(x;Σi). As α fixes each Di � [di , di+1] setwise, we have that diα � di

and so rot(α) � 0. The one-sided gradients

d+

i+1α
′
� d+

i+1(Σ−1
i+1xΣi+1)′ � d+

0 x′

and
d−i+1α

′
� d−i+1(Σ−1

i xΣi)′ � d−1 x′

are both equal to a number distinct from 1, by Condition (5.18) on x.
Hence di ∈ ∂ Fix(α) � Iα, showing that Iα is nonempty. We need
to check that all points in r ∈ Iα are nondyadic. If r ∈ D◦i then
r ∈ ∂ Fix(xΣi ) � ∂ Fix(x)Σi � IxΣi , where Ix are the important points
of x. Since these are nondyadic andΣi maps nondyadics to nondyadics,
we see that r is nondyadic. Otherwise r is the left endpoint di of some
block Di , so is nondyadic by definition of our block form.

In the other direction, we now suppose that α has the properties
listed in the statement of the lemma. The construction of a block form
is very similar to that given in the proof of Lemma 5.2.3. Enumerate
the important points Iα; find an element γ ∈ CT(α)with minimal index
difference 0 < d ≤ n; then define the h blocks Di exactly as before.
To define x and Σi we don’t need to worry about using a map Ω to
conjugate back to PL2(I) � F; instead we simply define

x � α
��
D0

and Σi � γ
i
��
D0
.

Does this data satisfy the definition of a block form? By construction,
an endpoint d ∈ ∂Di is a important point of α, so is nondyadic. Each
Σi is a restriction of the PL2 map γ, so are themselves PL2. We also
note that x cannot have any (interior) dyadic important points—as
then they would be important points of α.

We have two conditions on gradients to verify. Using the chain rule



extension structure in detail 107

once more, we see that the Σmaps satisfy

d+

0Σ
′
i+1 � d+

0 (γi+1)′
� d+

0 γ
′ · [d0γ]+(γi)′

� d+

0 γ
′ · d+

1 (γi)′
� d+

0 γ
′ · d−1 (γi)′

� d+

0 γ
′ · d−1Σ

′
i ,

which establishes Condition (5.17). We also have a condition on the

The fourth equality holds because d1 is
not dyadic, so is not a breakpoint of γi .

gradients of x to establish. We calculate that

d+

0 x′ � d+

0 α
′
� [d0γ]+(αγ)′ � d+

1 α
′
� d−1 α

′
� d−1 x′ ;

as d0 is nondyadic we have d−0 α
′ � d+

0 α
′. This gradient cannot be 1

We’ve made use of Claim 2.3.14 here in
the second equality. Again, d1 is not a
breakpoint of α, so the left and right
derivatives of α at d1 are equal.

or else d0 would not be a important point of α, contrary to the choice
of blocks Di . Thus d+

0 x′ , 1, establishing that Condition (5.18) holds.
Finally, the calculation

xΣi � (α��D0
) γi |D0 � α(γ

i )
���
Di

� α
��
Di

verifies that α can be built using x and the {Σi }.
Why is the block form (x;Σi) maximal? If there were a larger

block form with h′ > h blocks, we could again construct an element
δ′ ∈ CT(α) with order h′, this time using Lemma 5.2.20. This would
contradict our choice of γ and the minimality of d. �

Proposition 5.2.22. Let α ∈ T be nondyadic self-similar with a maximal
block form (x;Σi) containing h blocks. Then CT(α) is an extension

CPL2(D0)(x) ↪→ CT(α)� �h ,

which splits as the direct product � ×�h .

Proof. The kernel of Sequence (4.3) is CT(α)0. This is infinite cyclic
by Corollary 4.1.6, generated by a minimal root ω of α with rotation
number rot(ω) � 0. By the same result, we can take the kernel to be

CPL2(D0)(α
��
D0
) � CPL2(D0)Σi (xΣi ) ∼� CPL2(D0)(x)

up to isomorphism.
Lemma 4.1.7 establishes that CT(ω) � CT(α), so ω ∈ Z(CT(ω)) �

Z(CT(α)), where Z(·) denotes the centre. Because our block form is
maximal, we know the quotient of the extension is�h , so the element δ
(of order h) constructed in Lemma 5.2.20 can be used to split the
extension. We thus have a split central extension � ↪→ CT(α)� �h ,
meaning that CT(α) is the direct product � ×�h

∼� 〈ω〉 × 〈δ〉. �

It is worth highlighting the structure of elements ε ∈ CT(α)0 in the
kernel of the extension for CT(α). We saw that these are powers of
a minimal root ω ∈ CT(α)0; say ωn � α. Then ω must be given by
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ω
��
Di

� Σ−1
i wΣi , where w is the nth root of x in PL2(D0). Since ε � ωk

for some k, we see that

ε
��
Di

� Σ−1
i wkΣi , for each i . (5.19)

We conclude our study of nondyadic self-similar elements by asking
‘which centralisers are possible?’

Corollary 5.2.23. For every integer h ≥ 1, there is a nondyadic self-similar
element α whose centraliser is isomorphic to � ×�h .

Proof. Let Th be a binary tree with exactly h leaves. Let their addresses
be t0 , . . . , th−1 in lexicographic order. Also let D and R be the domain
and range trees of the element α from Figure 2.22. This element is
nondyadic self-similar, because Iα � { 1/3, 2/3 } is fixed pointwise by α.
We use α to create a related element αh with more important points
below. Note that our approach does not construct a block form directly.

1

2 3

4 4

1 2

3α

α

Figure 5.26: The element α ∈ T with
domain and range trees (D , R), as
shown in Figure 2.22.

Define a new tree Dh by gluing copies of D below each leaf of Th ;
similarly define Rh by gluing copies of R below the leaves of Th . To be
explicit, the leaves of Dh have addresses

d4i+0 � ti0, d4i+1 � ti100, d4i+2 � ti101 and d4i+3 � ti11

for 0 ≤ i < h. Similarly, Rh is the tree whose leaves have addresses

r4i+0 � ti00, r4i+1 � ti010, r4i+2 � ti011 and r4i+3 � ti1 ,

again for 0 ≤ i < h. We define an element αh ∈ T using the tree pair
(Dh , σh , Rh), where the leaf bĳection σh maps dk to rk+1 mod 4h . We
claim that αh is nondyadic self-similar and has centraliser isomorphic
to � ×�h .

To establish the first subclaim, we use the characterisation given in
Lemma 5.2.21. From the observation

d4iαh � r4i+1 � ti010 � d4i10 , (5.20)

it follows that the infinite string d4i10 is fixed by αh ; all other infinite
strings with prefix d4i are not fixed by αh . Thus rot(αh) � 0 and so the
important points are I(αh) � ∂ Fix(αh). We also observe that

d4i+1αh � r4i+2 � ti011 � d4i11

r4i+301αh � d4i+2αh � r4i+3 (5.21)

d4i+3αh � r4(i+1) � ti+100 � d4(i+1)0 ,

which shows that the only other fixed points of αh are those of the
form r4i+301. Altogether, we see that

I(αh) � ∂ Fix(αh) � Fix(αh) � { d4i10, r4i+301 | 0 ≤ i < h }

is a discrete set of size 2h. Enumerated in circular order, its points are
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the infinite strings

I(αh) : d010→ r301→ d410→ r701→ . . .

. . .→ d4(h−1)10→ r4(h−1)+301→ d010 .

Because the tails of these infinite strings are neither 0 nor 1, each
corresponds to a nondyadic point on the circle. Hence αh is nondyadic
self-similar.

We know that CT(αh)
��
I(αh ) is a cyclic group of size k ≥ 0. To conclude

this proof, we need to show that k � h. Let δ ∈ T be the element with
tree pair (Th , ρ, Th), with leaf bĳection given by tiρ � ti+1 mod h . (In
other words, δ cycles the leaves of Th forward one step.) We see that δ
has order h, because the same is true of ρ. From the calculations

d4iαδ � r4i+1δ � ti010δ � ti+1010 � r4(i+1)+1

and

d4iδα � ti0δα � ti+10α � d4(i+1)α � r4(i+1)+1 ,

we learn that αδ and δα agree below d4i . Similar calculations hold
below the remaining d4i+ j , so we conclude that δ ∈ CT(α).

We note that δ cycles the important points forward with index
difference 2; for instance, d010δ � d410. Now there cannot be an
element ε ∈ CT(α) with index difference 1. If so, ε would map
x � d010 to y � r301. Then by Corollary 2.3.15 the gradients x+α′h
and y+α′h should be equal. As x ∈ nd0o, we see from Equation (5.20)
that the former gradient is 2−2. On the other hand, y ∈ nr4i+301o; we
see from Equation (5.21) that the gradient here is 2+2. These gradients
are different—but this is a contradiction. Thus the minimal index
difference is 2, so the centraliser quotient has size k � 2h/2 � h. �

5.2.4 Case 4: nondyadic, offset-similar elements

For our last case, we adapt Section 5.2.2 to the case where our elements
have only nondyadic important points.

Definition 5.2.24. Let { di }hi�1, {Di }hi�1 and {Σi : D0 → Di }hi�1 be as in
Definition 5.2.19, including Condition (5.17). Next, let q be a divisor
of h, say h � sq. Select an integer 0 < p < q which is coprime to q. For
each 0 ≤ i < h, select maps xi ∈ PL2(D0) subject to the constraint that
X �

∏
0≤ j<q xi+ jps is independent of i, has initial gradient d0X′ , 1

and has no internal dyadic important points. We also require that the
gradients of the { xi } satisfy

d+

0 x′i+1 � d−1 x′i for each i. (5.22)

From these ingredients, we define an element β ∈ T by the recipe
β
��
Di

� Σ−1
i xiΣi+ps . Any element of this form is said to be nondyadic

offset-similar (NOS). The data tuple ({ xi }; {Σi }; p; q) is called a block
form for β, with h blocks.
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Bookkeeping. We need to explain why our recipe produces a well-
defined element β in T. The only place two blocks overlap is at
{ di+1 } � Di ∩ Di+1. This isn’t a problem, because the expressions Again we are using Claim 2.3.14 here.

di+1Σ
−1
i+1xi+1Σi+ps+1 � d0xi+1Σi+ps+1 � d0Σi+ps+1 � di+ps+1

and di+1Σ
−1
i xiΣi+ps � d1xiΣi+ps � d1Σi+ps � di+ps+1

(5.23)

are equal—thus β is well-defined.
For each i, the restriction β

��
Di

is a product Σ−1
i xiΣi+ps of maps in

the groupoid PL2. So β
��
Di
∈ PL2(Di ,Di+ps), which means the internal

breakpoints of β
��
Di

are all dyadic. The last thing to check is that no
point di+1 between two blocks is a breakpoint. The left derivative is

d−i+1(Σ−1
i xiΣi+ps)′ � d−i+1(Σ−1

i )′ · d−1 x′i · d−1Σ
′
i+ps

�

d−1Σ
′
i+ps

d−1Σ
′
i
· d−1 x′i ;

similarly the right derivative is

d+

i+1(Σ−1
i+1xi+1Σi+ps+1)′ � d+

i+1(Σ−1
i+1)′ · d+

0 x′i+1 · d+

0Σ
′
i+ps+1

�

d+

0Σ
′
i+ps+1

d+

0Σ
′
i+1

· d+

0 x′i+1 .

These two quantities are equal thanks to Conditions (5.18) and (5.22).
This establishes that β ∈ T (rather than PL�(S1)).
Remark 5.2.25. The calculation

d+

0 X′ � d+

0
©­«

∏
0≤ j<q

x1+ jps
ª®¬
′

�

∏
0≤ j<q

d+

0 x′1+ jps

�

∏
0≤ j<q

d−1 x′jps � d−1
©­«

∏
0≤ j<q

x jps
ª®¬
′

� d−1 X′

shows that the initial and final gradients of X are equal (and distinct
from 1).

Equation (5.7) still applies to the nondyadic case, so again each
xi ∈ CPL2(D0)(X).

Does this block form allow us to write down centralising elements?
The answer is a little different than in previous cases: thanks to the
restrictions which follow from having nondyadic important points, it
turns out for a centralising elements to transitively permute the blocks
{Di }, we must have a very specific block form.

Lemma 5.2.26. Let β ∈ T be nondyadic offset-similar with block form
(xi ;Σi ; p; q) and let X be the product X �

∏
0≤ j<q xi+ jps . If there exists

θ ∈ CT(β) with rotation number 1/h, then θ must take the form θ
��
Di

�

Σ−1
i θ0Σi+1 for some θ0 ∈ CPL2(D0)(X), and all the { xi } must be equal.

Proof. Suppose that θ ∈ CT(β) with rotation number 1/h. As in
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the proof of Lemma 5.2.10, define θi � Σi θ
��
Di
Σ−1

i+1 ∈ PL2(D0) for
each i. Again as before, the fact that θ ∈ CT(βq) establishes that
θi ∈ CPL2(D0)(X) for each i. Now X , 1 has no internal dyadic
important points by the definition of our block form. So X is an almost
one-bump function in PL2(D0). Thus its its centraliser CPL2(D0)(X) is
infinite cyclic, generated by a minimal root ω of X.

Say that ωn � X and write D0 � [d0 , d1]. From Remark 5.2.25 and
the fact that d+

0 X′ , 1, we learn that

1 , (d+

0 ω
′)n � d+

0 (ωn)′ � d+

0 X′ � d−1 X′ � d−1 (ωn)′ � (d−1 ω′)n ,

and hence 1 , d+

0 ω
′ � d−1 ω

′. Since each θi is a power of ω, we have
d+

0 θ
′
i � d−1 θ

′
i . Now each di+1 is nondyadic, so d−i+1θ

′ � d+

i+1θ
′. The left

derivative is

d−i+1θ
′
� d−i+1(Σ−1

i )′ · d−1 θ
′
i · d−1Σ

′
i+1

�
d−1Σ

′
i+1

d−1Σ
′
i
· d−1 θ

′
i ,

(5.24)

but the right derivative is

d+

i+1θ
′
� d+

i+1(Σ−1
i+1)′ · d+

0 θ
′
i+1 · d+

0Σ
′
i+2

�
d+

0Σ
′
i+2

d+

0 (Σ−1
i+1)′

· d+

0 θ
′
i+1 .

(5.25)

The two fractions are equal thanks to Condition (5.17), so we learn that
d−1 θ

′
i � d+

0 θ
′
i+1. Altogether, we see that each θi has the same initial

(and final) gradient. In turn, this means that each θi is the same power
of ω, and hence each θi is equal to θ0.

Because θ ∈ CT(β) we can again deduce that xiθi+ps � θi xi+1

(Condition (5.8) from before). But since each θj � θ0, this reads
xθ0

i � xi+1. All three elements in this equation belong to CPL2(D0)(X),
but this group is isomorphic to �, so is abelian. Thus xi � xi+1 for
each i. �

This slightly surprising result demonstrates the strength of the
condition ‘β has only nondyadic important points.’ Since we are using
block forms to study and construct centralising elements, we need to
specialise to this particular kind of block form.

Definition 5.2.27. A block form (xi ;Σi ; p; q) for a nondyadic offset-
similar element β is called constant if xi � x0 for every i. A constant
block form for β with h blocks is called maximal if there does not exist
a constant block form for β with h′ > h blocks.

With this in mind, we consider the converse of Lemma 5.2.26.

Lemma 5.2.28. Let β have constant block form (x0;Σi ; p; q). Then any θ0 ∈
CPL2(D0)(x0) extends to an element θ ∈ CT(β) given by θ

��
Di

� Σ−1
i θ0Σi+1.



extension structure in detail 112

Proof. Calculations similar to Equation (5.23) establish that

di+1Σ
−1
i x0Σi+1 � di+2 � di+1Σ

−1
i+1x0Σi+2 ,

from which we see that θ is well-defined.
To check that θ ∈ T, we need to check that

d−i+1θ
′
�

d−1Σ
′
i+1

d−1Σ
′
i
· d−1 θ

′
0 (as in (5.24))

is equal to

d+

0 θ
′
�

d+

0Σ
′
i+2

d+

0 (Σ−1
i+1)′

· d+

0 θ
′
0 . (as in (5.25))

The two fractions are again equal due to Condition (5.17). Now X � xq
0

because we have a constant block form, so CPL2(D0)(X) � CPL2(D0)(x0).
Hence θ0 ∈ CPL2(D0)(x0) is a power of a root of X, and so must have
the same initial and final gradient (because X has the same property).
Thus θ ∈ T.

Finally we see that

(θβ)��Di
� Σ−1

i θ0Σi+1Σ
−1
i+1x0Σi+1+ps � Σ

−1
i θ0x0Σi+1+ps

is equal to

(βθ)��Di
� Σ−1

i x0Σi+psΣ
−1
i+psθ0Σi+ps+1 � Σ−1

i x0θ0Σi+ps+1

because θ0 ∈ CF(x0). Thus θ ∈ CT(β). �

Our next step (as in previous cases) is to characterise these elements β
and explain how to product maximal constant block forms.

Lemma 5.2.29. An element β ∈ T is nondyadic offset-similar if and only β
has nonzero rotation number rot(β) � p/q and has n ≥ 1 important points,
all of which are nondyadic. We can algorithmically determine a maximal
constant block form for any such β.

Proof. First assume that β has a (not necessarily constant) block form
(xi ;Σi ; p; q)with h blocks. Wewill find that rot(β) � p/q , 0 by arguing
as in Claim 5.2.8. The whole important point set is Iβ � ∂ Fix(βq).
Again, βq

��
Di

� Σ−1
i XΣi , so Fix(βq) ∩ Di � Fix(XΣi ). This means that

the important points within the interior D◦i are

Iβ ∩ D◦i � ∂ Fix(XΣi ) ∩ D◦i
� (∂ Fix(X)Σi) ∩ (D◦0Σi)
� [∂ Fix(X) ∩ D◦0 ]Σi .

The set in square brackets contains no dyadics by definition of X, and
PL2 maps send nondyadics to nondyadics. So there are no dyadic
important points in D◦i .

This covers all points on the circle except the { di }, which are
nondyadic—showing that Iβ is entirely nondyadic. To see that Iβ is
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nonempty, wewill show that each di is a important point of β. Certainly
each di is fixed by βq ; the right-hand gradient at this point is

d+

i (βq)′ � d+

i (XΣi )′ � d+

0 X′ , 1 ,

which shows that di ∈ ∂ Fix(βq).
In the other direction, we take an element βwith the given properties

and describe an algorithm to produce a maximal constant block form
for β. As in the proof of Lemma 5.2.12, find an element γ ∈ CT(β)with
minimal index difference 0 < d ≤ n, where dh � n for some h. Let
the reduced rotation number of β be p/q , 0, so that h � qs for some
integer s. Partition the important points Iβ � { r0 → · · · → rn−1 → r0 }
into blocks Di � [rid , r(i+1)d] � [di , di+1], for each 0 ≤ d < h. Now βq is
nondyadic self -similar and commutes with γ, so βq has a block form
(X;Σi) with h blocks. From the definition of this block form, we know
that the {Σi } satisfy Condition (5.17) and that 1 , d+

0 X′ � d−1 X′ (from
Condition (5.18)). We may impose without loss of generality that the
codomain of Σi is Di . Then βq

��
Di

� Σ−1
i XΣi for each i.

Define δ ∈ CT(βq) by δ��Di
� Σ−1

i Σi+1, this time using Lemma 5.2.20.
This time, the proof of Proposition 5.2.22 tells us that CT(βq) contains
the direct product CT(βq)0 × 〈δ〉. Now β belongs to this group, so we
can write β � εδps for some ε ∈ CT(βq)0. As noted in Equation (5.19),
ε must take the form ε

��
Di

� wk for some k, where w ∈ PL2(D0) is a
minimal root of X. Then

β
��
Di

� ε
��
Di
δp s

��
Di

� (Σ−1
i wkΣi)(Σ−1

i Σi+ps) � Σ−1
i wkΣi+ps .

The product
∏

0≤ j<q xi is (wk)q � X, which meets all the requirements
specified in the definition of a block form. Finally, d+

0 X′ � d−1 X′ implies
that d+

0 w′ � d−1 w′, and hence d+

0 (wk)′ � d−1 (wk)′. This establishes
Condition (5.22).

All in all, we see that β has a constant block form (wk ;Σi ; p; q)with h
blocks. If there were a constant block formwith h′ > h blocks, we could
construct a centralising element with rotation number 0 < 1/h′ < 1/h
using Lemma 5.2.28. This would contradict the minimality of d, so our
block form above must be maximal. �

Once again a maximal (constant) block form for β allow us to
determine the extension structure of CT(β).
Proposition 5.2.30. Let β ∈ T be nondyadic offset-similar with maximal
constant block form (x0;Σi ; p; q). Then CT(β) is a central extension

CPL2(D0)(x0) ↪→ CT(β)� �h

which splits as the direct product � ×�h .

Proof. We use Q � D0 ∪ · · · ∪ Ds−1 as our representative arc. For
some integer k, we know that CT(β) is an extension CPL2(Q)(βq

��
Q) ↪→

CT(β)� �k (from Sequence (4.3)). We must have k � h because our
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constant block form is maximal. Because x0 has no internal dyadic
important points and ∂Di is nondyadic, βq

��
Q is an almost one-bump

function and thus has infinite cyclic centraliser. By the argument
preceding Equation (4.1), CPL2(Q)(βq

��
Q) is isomorphic to

CPL2(D0)(βq
��
D0
) � CPL2(DΣ0

0 )
(xΣ0

0 ) ∼� CPL2(D0)(x0) .

We saw in Lemma 5.2.28 that elements θ ∈ CT(β) with rotation
number 1/h take the form θ

��
Di

� Σ−1
i θ0θi+1, for some (any) element

θ0 ∈ CPL2(D0)(x0). Its hth power is given by

θh
��
Di

�

∏
0≤ j<h

θ
��
Di+ j

�

∏
0≤ j<h

Σ−1
i+ jθ0Σi+ j+1 � Σ−1

i θ
h
0Σi ,

so if we take θ0 � idD0 then θh � id. This means that θ splits the
extension.

We could compute the conjugate of a kernel element by θ to complete
our study of the extension. Instead, let α � βq . Then α is nondyadic
self-similar, with block form (xq

0 ;Σi). Now CT(β) ≤ CT(βq) � CT(α).
We proved in Proposition 5.2.22 that the latter group is abelian, so
CT(β)must be abelian too. This means that our split extension must
be a direct product � ×�h . �

The last piece of the puzzle is to see which of these potential
centraliser types actually exist.

Corollary 5.2.31. For every integer h ≥ 2, there is a nondyadic offset-similar
element β whose centraliser is isomorphic to � ×�h .

Notice that the condition h ≥ 2 is necessary, because h ≥ q , 1.

β β2

Figure 5.27: The element β ∈ T from
Figure 2.22 has only nondyadic import-
ant points Iβ � {1/6, 1/3, 2/3, 5/6 }. It
is constructed by following the recipe
in this proof, where h � 2 and α � α2
is the element constructed in Corol-
lary 5.2.23. Also shown is the graph of
the square β2.

Proof. Let α be a nondyadic self-similar element with a maximal
block form (x;Σi) containing h blocks. (Such an element exists by
Corollary 5.2.23.) Define β to be the element with constant block form
(x;Σi ; 1; h). This constant block form must be maximal: if not, there is
some constant block form with h′ > h blocks. Then we can construct
a centraliser θ ∈ CT(β) with rotation number 1/h′, by Lemma 5.2.28.
Now βq has block form (xq ;Σi), so βq � αq . Because α has rotation
number zero, we know from Lemma 4.1.7 that CT(α) � CT(αq). Thus
θ ∈ CT(α) with rotation number 1/h′ < 1/h, which contradicts the
maximality of our block form for α.

From our maximal constant block form for β, we use Proposi-
tion 5.2.30 to immediately conclude that CT(β) ∼� � ×�h . �

5.3 Summary

We conclude with a summary of this chapter’s findings; see also
Figure 5.28.

Having analysed each of the four cases in turn, we now have a
description of an arbitrary nontorsion element α ∈ T. The description
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allows us to determine the structure of CT(α).
Theorem 5.3.1. Every nontorsion element α ∈ T belongs to exactly one of
the types DSS, DOS, NSS or NOS. The particular type of α is determined by
the rotation number rot(α) and the important points Iα.

We can construct a maximal block form for any such element α. Such a
block form allows us to express the centraliser CT(α) as a group extension and
determine its parameters.

Justification. We broke our analysis into four cases at the start of
Section 5.2. Lemmas 5.2.3, 5.2.12, 5.2.21 and 5.2.29 explained how to
construct maximal block forms; then Propositions 5.2.4, 5.2.15, 5.2.17,
5.2.22 and 5.2.30 showed how we can deduce the centraliser’s structure
from these block forms. �

We saw that one case was an odd-one out: that of dyadic offset-
similar elements. Unlike the other three cases, centralisers of DOS
elements are not guaranteed to split. We were able to identify exactly
when this centraliser splits. We give a neater description here, which
doesn’t require us to find a block form.

Theorem 5.3.2. Let β ∈ T be nontorsion. Then the sequence

CT(β)0 ↪→ CT(β)� CT(β)
��
I(β)

is nonsplit if and only if

• rot(β) � p/q , 0 in lowest terms,

• β has a dyadic important point, and

• there does not exist a qth root ω of βq with rot(ω) � 0.

Proof. The centraliser extension always split in the DSS, NSS and NOS
cases by Propositions 5.2.4, 5.2.22 and 5.2.30. This establishes that
the first two bullets are necessary for the extension to be nonsplit.
Proposition 5.2.14 tells us how to drill down to a necessary and
sufficient condition: an element β with block form (xi ;Σi ; p; q) has
nonsplit centraliser extension if and only if X �

∏
0≤ j<q xi+ jps does not

have a qth root w ∈ F.
To see that this condition is equivalent to the third bullet, suppose

such a w ∈ F exists. Then the (self-similar) block form (w;Σi) describes
an element ω ∈ T whose qth power has block form (X;Σi)—so ωq � βq .
Conversely, a qth root ω of βq with rotation number zero must have
block form (w;Σi) for some w ∈ F. Then the restriction of the equation
ωq � βq to Di reads Σ−1

i wqΣi � Σ
−1
i XΣi , and so wq � X. �

Lastly, we managed to determine which parameters f , z, s and h
are actually used by centralisers. Informally, any reasonable tuple of
parameters are parameters for some element α ∈ T.
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Corollary 5.3.3. Choose one of the four types of nontorsion elements DSS,
DOS, NSS and NOS. We can construct an element α ∈ T of this type whose
centraliser has the following parameters if and only if all the requirements
below hold.

• The parameter h must be a positive integer. For DOS and NOS elements,
h must be at least 2.

• For DOS elements, the parameter s must be a divisor of h. Otherwise there
is no s parameter.

• For DSS and DOS elements, the parameters f and z must be integers not
both zero satisfying19 0 ≤ f ≤ z + 1. Otherwise, there is no f and no z 19 i.e. ( f , z)must the parameters for a

centraliser in F: see Claim 4.1.8.parameter.

Justification. This was explained in Corollaries 5.2.6, 5.2.16, 5.2.18,
5.2.23 and 5.2.31. �

case DSS DOS NSS NOS

important points some dyadic all nondyadic

rotation number zero nonzero zero nonzero
max. block forms Lemma 5.2.3 5.2.12 5.2.21 5.2.29

centraliser (�z × F f ) oh �h either (�z × F f ) os �h , or else � ×�h � ×�h

structure nonsplit (�z × F f )s ↪→ ·� �h

deduced in Proposition 5.2.4 5.2.15 and 5.2.17 5.2.22 5.2.30

0 ≤ f ≤ z + 1, with f and z not both zero no f , no z no f , no z

parameters h ≥ 1 h ≥ 2 h ≥ 1 h ≥ 2
no s s divides h no s no s

explained in Corollary 5.2.6 5.2.16 and 5.2.18 5.2.23 5.2.31

Figure 5.28: A summary of our studies
into nontorsion centralisers in T.
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A Deferred calculations
Let L be the interval [0 , 1/2]. In Example 5.1.6, we claimed1 that 1 Strictly speaking, in Example 5.1.6 we

had an element X � x0xφ0 ∈ F, and
claimed that CF(X) � 〈X〉. Conjugate
both sides of this equation by Σ : I → L
to see that this equation is equivalent
to

CPL2(L)(δ2��
L) � 〈δ2��

L〉 ,
which we address in this appendix.

the centraliser CPL2(L)(δ2
��
L) was equal to 〈δ2

��
L〉. We justify this now in

more detail.

(x0xφ0 )Σ

δ2

Figure A.1: The element δ2 from
Figure 5.7

* * *

The map in question ∆ � δ2
��
L is explicitly given by

t∆ �



0 + 1/4 (t − 0) if 0 ≤ t < 1/8
1/32 + 1/8 (t − 1/8) if 1/8 ≤ t < 1/4
3/64 + 1/4 (t − 1/4) if 1/4 ≤ t < 5/16

1/16 + 2 (t − 5/16) if 5/16 ≤ t < 3/8
3/16 + 1 (t − 3/8) if 3/8 ≤ t < 7/16

1/4 + 4 (t − 7/16) if 7/16 ≤ t < 1/2.

Figure 5.7 shows that ∆ is a one-bump function, so its centraliser is
infinite cyclic, generated by a minimal root of ∆. The initial gradient
of ∆ is 1/4, so we only need to look for a (square) root ρ with initial
gradient 1/2. We run the stair algorithm2 with this initial gradient,

2 Kassabov and Matucci 2012, Sec-
tion 4.2.

and see if it produces a conjugator ρ between ∆ and itself. If so, then
CPL2(L)(∆) � 〈ρ〉; otherwise CPL2(L)(∆) � 〈∆〉.

The initial linearity box for this setup is [0, 1/8]2, because ∆ has no
breakpoints internal to I � [0, 1/8]. The final linearity box is [7/16, 1/2]2,
because ∆ has no breakpoints internal to F � [7/16, 1/2]. Let ρ be the
candidate conjugator we’re building. All we know for now is that

tρ �

{
1/2t if 0 ≤ t < 1/8.

If there exists a conjugator ρ then ρ � ∆ρ∆−1, which implies that
ρ
��
I∆−1 � ∆

��
I∆−1 ρ

��
I ∆

��
Iρ. Using computer-assisted calculations3 to evalu- 3 Robertson 2015, See Appendix A.1

below for the script which produced
these calculations.ate the right-hand side of this equation, we learn that

tρ �


1/16 + 1/4 (t − 1/8) if 1/8 ≤ t < 1/4
3/32 + 1/2 (t − 1/4) if 1/4 ≤ t < 5/16

1/8 + 8 (t − 5/16) if 5/16 ≤ t < 21/64

1/4 + 4 (t − 21/64) if 21/64 ≤ t < 11/32.

Now set J � Iρ∆ � [0, 11/32] and use the previous observation with J in
place of I. Again with the help of a computer, we learn that 4 4 The calculation determines ρ on four

more linear segments on 7/16 ≤ t ≤
59/128; we omit these for brevity. But
notice that these segments are all in the
final linearity box F2; this is another
way of seeing that no conjugator ρ ∈ F
exists.

tρ �

{
5/16 + 1/4 (t − 11/32) if 11/32 ≤ t < 3/8

41/128 + 1/8 (t − 3/8) if 3/8 ≤ t < 7/16.

Since 7/16 is the left endpoint of our final linearity box we’re done:



118

if ρ really is a conjugator, it must have one last linear segment

tρ �

{
21/64 + M(t − 7/16) if 7/16 ≤ t ≤ 1/2,

where M � (43/64)/(1/8). This is not an integer power of 2, so there is
no conjugator ρ ∈ PL2(L) between ∆ and itself with initial gradient 1/2.
Hence CPL2(L)(∆) � 〈∆〉.
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A.1 Script source code

For completeness, we include the script used to run the computer calculations presented above. It uses a
library written by the author, which can be obtained with

git clone --branch plmaps https://github.com/DMRobertson/thompsons_v.git

The bulk of the library is documented at https://thompsons-v.readthedocs.io, with experimental
features briefly described at https://thompsons-v.readthedocs.io/en/plmaps/plmaps.html.

* * *

#! /usr/bin/env python3

from thompson import *
from plmaps import *
from plmaps.util import glue

# First define our ingredients.

x0_std = PL2.from_aut(standard_generator())

phi = PL2.from_aut(Automorphism.from_dfs("110100100", "111001000"))

SigmaL = PL2([0, 1], [0, 1/2])

SigmaR = PL2([0, 1], [1/2, 1])

rho = CPL2.rotation(1/2)

# Use the ingredients to construct δ and δ2.

def build_delta():

gamma = glue(x0_std^SigmaL, x0_std^(phi * SigmaR), cls=CPL2)

delta = gamma * rho

return delta

delta = build_delta()

d2 = delta * delta

plot(delta, d2)

# ∆ � δ2
��
L in this appendix is called d2_rest here.

d2_rest = d2.restriction(0, 1/2)

print(d2_rest.format_pl_segments(LaTeX=True, sfrac=True))

plot(d2_rest)

# Run Kassabov-Matucci staircase algorithm to find a generator for CPL2(L)(∆).
gen = d2_rest.one_bump_cent_gen(verbose=True)

assert gen == d2_rest

https://thompsons-v.readthedocs.io
https://thompsons-v.readthedocs.io/en/plmaps/plmaps.html
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B To split, or not to split?
These are quick notes which reconsider the element δ from Ex-
ample 5.1.6. Let’s set the scene. The relevant plots are reproduced in
Figures B.1 and B.2.

• x0 is the standard generator of F.

• L � [0, 1/2] and R � [1/2, 1] are subintervals of I � [0, 1].
• Σ : I → L and Σ′ : I → R are the PL2 maps which linearly shrink I

down to L and R respectively.

• φ ∈ F is a fixed element such that φ < CF(x0).
• ρ1/2 is the rotation through half a turn of the circle. For brevity,

we’ll write ρ � ρ1/2 in this note.

Define an element δ ∈ T casewise by

tδ �

txΣ0 ρ if t ∈ L

t(xφ0 )Σ
′
ρ if t ∈ R.

The important points of δ are {0, 1/2 }. These are permuted transitively
by δ, and so we have a short exact sequence

CT(δ)0 ↪→ CT(δ)� �2 ,

as argued earlier.

Claim. This sequence does not split.

Proof. To prove this, we’ll need to demonstrate that there does not exist
an element µ ∈ CT(δ) of order 2. Seeking a contradiction, suppose that
such a µ exists. What can we deduce about µ? We know that µ must
permute the important points of δ. First suppose that 0µ � 0, so that
µ ∈ F. Now F is torsion-free, so the order of µ is either 1 or ∞; the
order cannot be 2. Thus we learn that 0µ � 1/2, which means µ takes
the form

tµ �

tµΣLρ if t ∈ L

tµΣ
′

R ρ if t ∈ R

for some maps1 µL , µR ∈ F. A direct computation shows that µ2
��
L is 1 Explicitly, µL � (µ��L ρ)Σ−1 and

µR � (µ��R ρ)Σ′−1 .the product µ2
��
L � µΣLρµ

Σ′
R ρ. Now since Σ′ρ � Σ and ρ � ρ−1, we can

simplify this to
µ2��

L � µΣLµ
Σ
R � (µLµR)Σ .

Because µ2 � id we must then have (µLµR)Σ � idL. It follows that

µR � µ−1
L . (B.1)
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Next, since µ ∈ CT(δ) we have µδ � δµ. Restricting this equation to
L, we learn that

µΣLρ xφΣ
′

0 ρ � xΣ0 ρ µ
Σ′
R ρ .

Again because Σ′ρ � Σ and ρ � ρ−1, this equation reads

µΣL xφΣ0 � xΣ0 µ
Σ
R , i.e. (µLxφ0 )Σ � (x0µR)Σ .

Now conjugate by Σ−1 and use Equation (B.1) to conclude that

µLxφ0 � x0µ
−1
L . (B.2)

This is an equation in the group F which contains just one unknown
µL ∈ F. Differentiate both sides and evaluate at 0 to learn that

0+µ′L · 0+x′0 �
0+x′0
0+µ′L

;

This implies that (0+µ′L)2 � 1. As this is an equality in the gradient
group G � {2n | n ∈ � }, we learn that µL has initial gradient

0+µ′L � 1 . (B.3)

Now if µ ∈ CT(δ) then certainly µ ∈ CT(δ2). The square is given by

tδ2
�

t(x0xφ0 )Σ if t ∈ L

t(xφ0 x0)Σ′ if t ∈ R.

Restricting the equality µδ2 � δ2µ to L yields

µΣLρ (x
φ
0 x0)Σ′ � (x0xφ0 )ΣµΣLρ .

Bring the rightmost ρ over the left-hand side. Then—using the rela-
tionship between Σ,Σ′ and ρ as before—we obtain

µΣL (x
φ
0 x0)Σ � (x0xφ0 )ΣµΣL ,

and so we learn that the equality µLxφ0 x0 � x0xφ0 µL holds in F. But
this reads

xφ0 x0 � (x0xφ0 )µL . (B.4)

Certainly µL � x0 is a solution to Equation (B.4). However, the
initial gradient of x0 is 1/2, so µL � x0 does not satisfy Equation (B.3).
The full set of solutions to Equation (B.4) is the coset CF(x0xφ0 )x0. We
need to see if this coset contains an element with initial gradient 1. To
do so, we need to determine the centraliser CF(x0xφ0 ).

The element x0xφ0 being centralised belongs to PL<2 (I), because x0

and xφ0 also belong to PL<2 (I). We know from Kassabov-Mattuci’s
work that CF(x0xφ0 ) generated by a minimal (‘rootiest’) root of x0xφ0 .
In Appendix A, we considered the one-bump function ∆ � (x0xφ0 )Σ ∈
PL2(L). We used the stair algorithm to argue that CPL2(L)(∆) � 〈∆〉,
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because ∆was its own root element. Conjugating by Σ−1, we learn that
CF(x0xφ0 ) � 〈x0xφ0 〉.

This last fact means that µL ∈ CF(x0xφ0 )x0 takes the form

µL � (x0xφ0 )n x0 ,

for some n ∈ �. The initial gradients of x0xφ0 and x0 are 1/4 and 1/2
respectively. Hence

0+µ′L �
1

4n ·
1
2 �

1
21+2n .

This initial gradient must be equal to 1, by Equation (B.3). But that
would mean that 1 + 2n � 0, and there is no integer n satisfying this
equation.

This contradiction leads us to conclude that there is no element
µL ∈ F satisfying the neccessary conditions Equations (B.2), (B.3)
and (B.4). Hence there does not exist an element µ ∈ CT(δ) of order
2. �

Remark B.0.1. Again, the argument boils down to the assertion that
X � x0xφ0 has no square root. We have no proof of this other than
the computer calculations presented in Appendix A. However, the
example could be adapted to work with any other element Xalt ∈ F
with initial gradient 0+X′alt � 1/4 and no square root in F. Unfortunately,
the author is not aware of such an element Xalt which obviously has no
square root.
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Σ

Σ′

L

R

1

2 3

4 5

1 2 3 4

5φ
xΣ0

(xφ0 )Σ
′

γ

Figure B.1: Our ingredients. The graph
of γ shows that x0 , xφ0 , i.e. that
φ < CF(x0).

xΣ0 ρ1/2

(xφ0 )Σ
′
ρ1/2

δ

(x0xφ0 )Σ

δ2

Figure B.2: The troublesome element δ
and its square δ2.
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x0 Figure B.3: Tree pair diagrams for x0,

xφ0 and their product x0xφ0 . I claim that
x0xφ0 has no square root.
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