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Abstract

Ranked data are central to many applications in science and social science and arise when

rankers (individuals) use some criterion to order a set of entities. Such rankings are

therefore equivalent to permutations of the elements of a set. The majority of models

for ranked data rely on a strong assumption of homogeneity, such as all rankers sharing

the same view on preferences of the entities. The aim of this thesis is to develop a richer

class of models which can reveal any plausible subgroup structure within the data both

for rankers and entities.

We begin by looking at the Plackett–Luce model, an extension of the Bradley–Terry model

for paired comparisons. First this model is extended to cater for when rankers do not report

a full ranking of all entities. For example, they might only report their top five ranked

entities after seeing some or all entities. Another issue is that most work in this area

assumes that all rankers are equally informed about the entities they are ranking. Often

this assumption will be questionable and so we develop a model which allows rankers to

have differing reliability. This model, the Weighted Plackett–Luce model, allows for such

heterogeneity through a novel two component mixture model defined by augmenting the

Plackett–Luce model.

The idea that rankers may be heterogeneous in their beliefs about entities is not new.

However, there might be groups of rankers with each group sharing the same view about

entities. Generally the number of such groups will not be known and so we investigate

the possibility of such group structure by using a Dirichlet process mixture of Weighted

Plackett–Luce models. It can also be useful to assess whether some entities are exchange-

able, that is, whether there is also entity clustering within each ranker group, an issue

that has received little attention in the literature. We extend the model further to explore

both ranker and entity clustering by adapting the Nested Dirichlet process. The resulting

model is a Weighted Adapted Nested Dirichlet (WAND) process mixture of Plackett–Luce

models. Posterior inference is conducted via a simple and efficient Gibbs sampling scheme.

The richness of information in the posterior distribution allows for inference about many

aspects of the clustering structure both between ranker groups and between entity groups

(within ranker groups), in contrast to many other (Bayesian) analyses. The methodology

is illustrated using several simulation studies and real data examples.

Finally, we relax the assumption of a known ranking process underpinning these models

by looking at the recently developed Extended Plackett–Luce model. This model allows

inference for the order in which a homogeneous set of rankers assign entities to ranks.

Analysis of this model is challenging but we have found that using Metropolis coupled

Markov chain Monte Carlo (MC3) methods can provide adequate mixing over the high

dimensional space of all possible permutations when the number of entities is not small.
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Chapter 1

Introduction

1.1 Introduction

Although often unnoticed, rankings appear in many aspects of everyday life. People rank

objects all the time, be it based on personal preference or past experiences; perhaps its

our favourite movies, online games, sports teams or even which coffee shop we prefer to

visit, the list goes on. In the data age that we live, the ability to analyse ranked data

is becoming ever more important. For example, large organisations are interested in the

preferences of consumers for advertising purposes and online search engines aim to rank

their results in an optimal manner. Ranked data are also a common result of experiments

which aim to uncover the attitudes or preferences of a cohort to a particular set of items

(Vigneau et al., 1999; Yu et al., 2005; Gormley and Murphy, 2006; Vitelli et al., 2018).

Sporting events can also give rise to rankings, with this being particularly common in

horse/motor racing or round-robin tournaments where the outcome is an ordering of the

teams or individual competitors; see, for example, Henery (1981), Stern (1990) and Caron

and Doucet (2012).

This thesis is concerned with preference orderings which arise when rankers provide a

ranking or ordering for a set of entities according to some criterion. Typically, rankers

will be individuals although this framework is fairly general and groups, organisations or

even sensors could be regarded as rankers, amongst others. There exists almost infinite

possibilities for the entities, be it political candidates, world cuisines, universities and

so on. Two common representations of ranked data exist which, using the terminology

of Marden (1995), we call the rank and order vector. Both representations portray the

same information and so when modelling ranked data one must be careful about which

representation is used. Formally, a rank vector y = (y1, . . . , yK) of K entities is a list,

where the entry yi indicates the rank given to the ith entity. In contrast, an order vector
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Rank vector Order vector

Entity y Entity x

British 3 Indian 1
Chinese 2 Chinese 2
Italian 4 British 3
Indian 1 Italian 4
Thai 5 Thai 5

Table 1.1: Rank and order vector representations of the same ranking

x = (x1, . . . , xK) of K entities can be thought of as a preference list where the entry xi

contains the label of the entity in position i (with position 1 being most preferred). For

example, suppose we ask a ranker to order 5 popular world cuisines, British, Chinese,

Italian, Indian and Thai in terms of their preference. If the ranker prefers Indian, then

Chinese, then British, then Italian with Thai the least preferred then Table 1.1 shows the

corresponding rank and order vectors – note that the rank vector depends on the order in

which the entities are listed. We adopt the order vector representation and use the terms

ranking and ordering interchangeably to denote an order vector x.

Irrespective of the adopted format, rankings are multivariate observations and moreover

any particular ranking can be thought of as a permutation of the integers 1 to K; this

perspective can be useful for the development of models for such data. Marden (1995) and

more recently Alvo and Yu (2014) provide an overview of the models and statistical liter-

ature for ranked data. Many types of models for ranked data exist including parametric,

stagewise and distance-based models. Distance-based models rely on the assumption that

a modal ranking (of the entities) exists and that rankers are expected to report rankings

which are, in some sense, “close” to this modal ordering. Although the distance between

two permutations is not well defined, a choice must be made in order to fit this type of

model. Two common choices of distance are Kendall’s and Spearman’s distance and these

give rise to Mallows’ (1957) φ and Mallows’ θ models respectively; details of these models

(amongst others) can be found in Flinger and Verducci (1986). Bayesian inference for

distance-based models can be problematic, especially when the modal ordering is assumed

to be unknown, due to the prohibitive nature of an intractable normalising constant which

must be approximated in most cases. Further, distance-based models become increasingly

more challenging to fit as the number of entities increases due to the explosion of the size

of permutation space. For these reasons we will not consider distance-based models and

instead consider parametric ranking models.

Several parametric distributions over the set of permutations have been developed. The

so-called stagewise ranking models are examples of parametric rankings models. Stage-
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wise models are underpinned by the idea that the ranking process, that is, how a ranker

constructs their ordering, can be decomposed into K−1 (dependent) stages. In this thesis

we focus predominantly on the popular Plackett–Luce model (Luce, 1959; Plackett, 1975)

which assumes the forward order, that is, the assignment of entities to positions in the

ranking proceeds sequentially from the most-preferred to the least-preferred item. If the

forward ranking process assumption is not plausible then the Reverse Plackett–Luce model

provides an alternative choice and both Graves et al. (2003) and Henderson and Kirrane

(2018) found this model was more appropriate when modelling NASCAR and Formula 1

races respectively. Further, Mollica and Tardella (2014) proposed the Extended Plackett–

Luce model which allows the assumption of an explicit ranking process to be relaxed.

Inference for this model is challenging, particularly when the number of entities is not

small, as the posterior distribution is extended to also be over permutation space. The

current Bayesian solution proposed by Mollica and Tardella (2018) relies on a restricted

sample space.

Most models for ranked data treat the information provided by each ranker equally, that

is, they assume that each ranker is equally informative. This is a rather strong assumption;

it is easy to imagine a situation where some rankers are significantly more informed about

the entities in comparison to fellow rankers. Deng et al. (2014) aimed to address this issue

and used ranker reliability as part of their BARD (Bayesian Aggregation of Ranked Data)

solution. Further, the majority of models for ranked data rely on strong assumptions about

the homogeneity of ranked data; the idea that there is an overall consensus view is one such

example. More flexible models have been proposed with Gormley and Murphy (2008a,b,

2009) and Mollica and Tardella (2014, 2016) considering finite mixtures of Plackett–Luce

and related models to allow for different preferences between rankers. This approach was

also taken by Vitelli et al. (2018). However they adopted a distance-based model — namely

that by Mallows (1957) — rather than the Plackett–Luce model. More flexible infinite

mixture models have also been proposed and these approaches allow the number of groups

to be inferred rather than be fixed by the analyst; see, for example, Caron et al. (2014).

Although these types of models allow for rankers to express different beliefs they also

assume that each ranker group can distinguish between each of the entities. However, it

is possible that a (homogeneous) group of rankers may not be able to distinguish between

some entities, that is, they might believe that some entities are exchangeable. This is

an aspect which is often overlooked within the literature and although methods have

been proposed (de Leeuw and Mair, 2009; Choulakian, 2016) they often rely on ad-hoc

summaries as opposed to a model based approach.
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1.1.1 Thesis aims

The main aim of this thesis is to provide flexible models which allow the exploration of

(possible) subgroup structure within ranked data. More specifically we aim to identify

homogeneous groups of individuals who share similar beliefs along with discovering how

some, or indeed all, of these groups may struggle to distinguish between certain entities.

Further, we aim to construct models that allow for potential heterogeneity between the

abilities of rankers. Emphasis will be placed on efficient inference schemes which enable us

to fit our models, under the Bayesian paradigm, in a reasonable amount of computational

time. In later sections we increase modelling flexibility further by relaxing the assumption

of an explicit ranking process. This is achieved through considering the Extended Plackett–

Luce model which has a parameter (representing the ranking process) that is an element of

the set of all permutations. Constructing Bayesian inference schemes that can effectively

explore large discrete spaces is not straightforward. This problem is even more challenging

when such spaces do not exhibit a natural distance measure (permutation space) and so,

in this thesis, we aim to provide an effective solution to this issue for reasonably large

spaces.

As a starting point, we consider the standard Plackett–Luce model and show how infer-

ences from this model can be affected by even a modest amount of spurious rankings. This

result motivates the idea that a suitable model for ranked data should be flexible enough

to allow for (potential) heterogeneity between rankers abilities. We propose the Weighted

Plackett–Luce model (WPL) which is formed by augmenting the standard Plackett–Luce

model with an additional parameter that allows us to handle differing ranker abilities.

Taking the WPL model as our building block we then relax the common assumption

that the data come from a homogeneous group of rankers, in which each ranker only has

fairly minor differences from an overall consensus view. This is achieved by appealing to

Bayesian non-parametrics; specifically we propose a Dirichlet process mixture of Weighted

Plakcett–Luce models. We then consider the notion that a (homogeneous) group of rankers

may not be able to distinguish between some entities, that is, they believe some entities

are exchangeable. To allow for this we consider an alternative non-parametric prior dis-

tribution which allows entities to cluster together. Combining both of these aspects into a

single model requires a two-way clustering technique and we focus on the Nested Dirichlet

Process (NDP) (Rodriguez et al., 2008). The NDP is not quite suited to clustering en-

tities and so we propose the Adapted Nested Dirichlet process (ANDP) prior. Bayesian

inference proceeds under both marginal and conditional approaches, each of which has

associated pros and cons. Numerous analyses are preformed on simulated and real data

and these show that our model performs well in different scenarios. These studies also

highlight the rich (posterior) information available to the analyst as a result of fitting our

4



Chapter 1. Introduction

model.

Until now each of the proposed models has relied on the underlying assumption of the

forward ranking process. In the final chapter we relax the assumption of a known ranking

process by looking at the Extended Plackett–Luce model (Mollica and Tardella, 2014). Af-

ter introducing the Extended Plackett–Luce model, a natural question arises: “is it possible

to identify the ranking process given a set of rankings?”. We motivate the identifiability

of the ranking process through several examples and consider a maximum likelihood ap-

proach to cement this idea further. Constructing suitable (Bayesian) posterior sampling

schemes for this model is challenging and, to the best of our knowledge, the only current

solution is given by Mollica and Tardella (2018) but this relies on a restricted parameter

space. Our aim is to develop MCMC methods capable of exploring the entire parameter

space and several sampling algorithms are presented, each of which has varying degrees of

success. We found that our final algorithm, which uses Metropolis coupled Markov chain

Monte Carlo (MC3), worked well and both the methodology and the MC3 algorithm are

described in detail.

1.1.2 Outline of thesis

The remainder of this thesis is organised as follows. In the following sections we pro-

vide a brief introduction to Bayesian inference and Markov chain Monte Carlo sampling

techniques. A generic Metropolis-Hastings algorithm is outlined and the Gibbs sampler

is shown to be a special case. Methods for diagnosing convergence of a Markov chain are

discussed and we also consider sensible strategies for handling MCMC output to ensure

we obtain a reasonable number of samples from the density of interest. This chapter

concludes with a short discussion of data augmentation as this is a particularly useful

technique which allows us to use full conditional distributions in closed form when the

likelihood is non-standard.

In Chapter 2 we consider the analysis of homogeneous ranked data, that is, we assume

that all rankers share similar beliefs about the preference of entities. The Plackett–Luce

model (Luce, 1959; Plackett, 1975) and its underpinning assumptions are described in

detail. The vanilla Plackett–Luce model is then extended to cater for when rankers do not

report a full ranking of all entities (top and partial rankings) and the associated underlying

data generating mechanism is outlined. An efficient MCMC scheme is constructed and

we consider a brief simulation study to give a flavour for how posterior inferences can be

made. The second half of Chapter 2 is concerned with the notion of ranker reliability. Most

work in this area assumes that all rankers are equally informed about the entities they are

ranking. Often this assumption will be questionable and so we develop the novel Weighted

Plackett–Luce model as this allows us to model rankers with differing reliability through a
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two component mixture model. Several simulation studies are considered and we compare

posterior inferences from both the standard and Weighted Plackett–Luce models.

Chapter 3 focusses on increasing modelling flexibility so that we can effectively handle

heterogeneous ranked data. To do this we appeal to Dirichlet process mixture mod-

els which are explored in detail using two well-known representations. Two models are

presented. The first considers the idea that rankers may be heterogeneous in their be-

liefs about entities. This idea is not new and both finite and Dirichlet process mixtures

of (standard) Plackett–Luce models are well explored within the literature. We extend

this approach slightly by building a model that comprises a Dirichlet process mixture

of Weighted Plackett–Luce models. The second model we present is novel and aims to

explore whether some entities are exchangeable, that is, whether rankers find it difficult

(or impossible) to distinguish between certain groups of entities. This issue has received

little attention in the literature and we explore this idea by considering a Dirichlet process

mixture over the skill parameters where the Weighted Plackett–Luce model is taken to

be the ranking distribution. The effectiveness of our model to detect groups of entities is

assessed through simulation studies and these conclude the chapter.

In Chapter 4 we combine the aspects of each model presented in the previous chapter, that

is, we incorporate both ranker and entity clustering within a single model by appealing to

two-way clustering techniques. We focus on the Nested Dirichlet process (Rodriguez et al.,

2008) and make a necessary adaptation so that this prior distribution can be used within

a ranked data context. The resulting model is a Weighted Adapted Nested Dirichlet

(WAND) process mixture of Plackett–Luce models. Both a conditional and marginal

approach to posterior inference are considered with efficient algorithms provided in each

case. The methodology is illustrated using several simulation studies and in Chapter 5 we

consider two real data examples. For the first real data analysis we use a data set originally

collected in 1968 by Roskam and more recently studied by de Leeuw (2006). These data

consist of rankings obtained from psychologists within the Psychology Department at

the University of Nijmengen (Netherlands). Each psychologist was asked to rank each

of 9 sub-areas according to how appropriate they are to their work. The second real

data analysis considers a data set taken from Deng et al. (2014) which involved rankings

of NBA (National Basketball Association) teams. In their paper, Deng et al. propose a

model named “Bayesian Aggregation of Ranked Data” (BARD) and we compare inferences

from the WAND model to those from BARD.

In Chapter 6 we relax the assumption of a known ranking process by looking at the

recently developed Extended Plackett–Luce model (Mollica and Tardella, 2014). This

model contains an additional free parameter (which is a permutation) that allows us

to learn about the order in which a homogeneous group of rankers assign entities to
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ranks. Constructing a suitable (Bayesian) posterior sampling scheme for this model proved

challenging. However we found that using Metropolis coupled Markov chain Monte Carlo

(MC3) worked well and both the methodology and the MC3 algorithm are described in

detail.

Finally, our conclusions are drawn in Chapter 7 and we also provide some suggested topics

for future work.

1.2 Bayesian inference

In this thesis we work almost exclusively within the Bayesian framework (Bernardo and

Smith, 1994). In this setting all unknown quantities (parameters, latent variables and

so on) are considered to be random variables. A joint probability distribution describes

the relationship between the unknown quantities and the (observed) data. The posterior

distribution is the (conditional) distribution obtained by conditioning on the observed

data and it is this distribution which allows us to make inferences about the unknown

quantities (given the data). The posterior is the result of our prior beliefs about the

unknown quantities being updated by the observed data through the likelihood function.

1.2.1 Bayes’ Theorem

Suppose we have some data D = {x1, . . . ,xn} and we are interested in learning about a

collection of K unknown quantities Λ = (λ1, . . . , λK). The likelihood L(Λ|D) = π(D|Λ)

is the probability density of the data given the parameters but regarded as a function of

the parameters for known data. Note that a “model” is typically specified by a partic-

ular likelihood function and this describes how the data are related to the parameters.

Given we are working within the Bayesian framework, we must also summarise our (prior)

beliefs about the unknown quantities through the choice of a suitably defined prior distri-

bution π(Λ). The posterior π(Λ|D) is the density that reflects our updated beliefs about

the parameters Λ having observed the data D and follows from Bayes’ Theorem as

π(Λ|D) =
π(D|Λ)π(Λ)

π(D)
. (1.1)

Note that the denominator, π(D) =
∫
π(D|Λ)π(Λ)dΛ, is the marginal likelihood and is

obtained by integrating out (marginalising over) the parameters. Clearly the marginal

likelihood does not depend on the parameters Λ and so this is simply a normalising constant

which ensures the posterior density integrates to one. It follows that Bayes’ Theorem can
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be written as

π(Λ|D) ∝ π(D|Λ)π(Λ) (1.2)

and so the posterior is proportional to the product of the prior and the likelihood.

Typically, the marginal likelihood π(D), and therefore the posterior density π(Λ|D), is not

available in closed form, that is, the posterior is not a standard distribution that can be

written down analytically with known marginal distributions and moments. In such cases

we must appeal to other methods which allow us to compute the posterior distribution.

One of the most popular methods, and the one we shall focus on, is Markov chain Monte

Carlo – this is the topic of the next section.

1.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a computational technique that can be used to

obtain realisations from the posterior density when it is not available in closed form.

In fact, MCMC can be used to obtain realisations from any distribution of interest and

so can also be useful for drawing samples from generic high-dimensional distributions.

The methodology underpinning MCMC is well studied with countless books and articles

published within the literature; see, for example, Chib and Greenberg (1995), Brooks

(1998) and Gamerman and Lopes (2006). The general idea is to construct a Markov chain

which has stationary distribution π(·), which is also known as the target distribution.

Then, given any initial starting point, providing we run the chain long enough so that

it converges (to the target distribution) we can repeatedly update the chain to generate

(dependent) samples from the target π(·). Clearly within a Bayesian inference setting we

wish the target to be the posterior π(Λ|D). In what follows we discuss a fundamental

algorithm, and an associated special case, which allows us to construct Markov chains

where the target distribution is the posterior distribution.

1.3.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, first proposed by Metropolis et al. (1953) and then

further generalised by Hastings (1970), is considered to be the fundamental algorithm used

to construct MCMC schemes which target the posterior π(Λ|D). The notion of a transition

kernel, or proposal density, is a key idea behind the Metropolis-Hastings algorithm. The

(arbitrary) proposal density is denoted q(Λ∗|Λ) and describes, probabilistically, how to

move from a current state Λ to a proposed state Λ∗. The (Metropolis-Hastings) algorithm

that follows will successively generate a sequence of values Λ(1),Λ(2), . . . , which form a

Markov chain with target distribution π(Λ|D).
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1. Let the iteration counter be t = 1 and initialise the chain to Λ(0) = (λ
(0)
1 , . . . , λ

(0)
K )

which falls somewhere in the support of π(Λ|D), that is, so that π(Λ(0)|D) > 0.

2. Draw Λ∗ from the proposal density q(Λ∗|Λ(t−1)).

3. Evaluate the acceptance probability, p = min(1, A), where

A =
π(Λ∗|D)

π(Λ(t−1)|D)
× q(Λ(t−1)|Λ∗)
q(Λ∗|Λ(t−1))

.

4. Let Λ(t) = Λ∗ with probability p; otherwise let Λ(t) = Λ(t−1).

5. Let t→ t+ 1 and return to step 2.

Typically we will not be able to evaluate the normalising constant π(D) of the posterior

density (1.1) and so we might think that we are also unable to evaluate the acceptance

rate A. However, as the posterior density features in both the numerator and denominator

of the acceptance rate we only need to know the posterior distribution up to a constant of

proportionality. It follows that, by using (1.2), we can equivalently express the acceptance

probability from Step 3 as p = min(1, A) where

A =
π(D|Λ∗)π(Λ∗)

π(D|Λ(t−1))π(Λ(t−1))
× q(Λ(t−1)|Λ∗)
q(Λ∗|Λ(t−1))

.

Note that the choice of proposal density q(Λ∗|Λ) is completely arbitrary and the Markov

chain will target the correct posterior irrespective of the choice made (assuming the support

of the proposal distribution is no smaller than the support of the posterior, that is, q(·|Λ) >

0 ∀ Λ where π(Λ|D) > 0). However, some proposal distributions are better than others

in the sense that they lead to a chain which converges rapidly and mixes well, that is, a

chain that efficiently explores the support of π(Λ|D). We now (briefly) describe some of the

more common choices of proposal distribution before moving on to discuss the “tuning”

of Metropolis-Hastings algorithms in Section 1.3.2.

Random walk Metropolis-Hastings

The random walk Metropolis-Hastings algorithm is where the proposed value is of the

form Λ∗ = Λ + ω where ω is a (vector) of random innovations. Generally ω is chosen to

follow a (multivariate) normal distribution with 0 mean and diagonal covariance structure

and so q(Λ∗|Λ) ∼ NK(Λ, σ2IK).

9
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Symmetric proposals

A symmetric proposal is any proposal distribution where q(Λ∗|Λ) = q(Λ|Λ∗) for all Λ∗,Λ

in its support. It follows that, for this type of proposal distribution, the acceptance rate

simplifies to A = π(Λ∗|D)/π(Λ|D) and so the acceptance probability is independent of

the proposal density. Note that the random walk proposal (above) is an example of a

symmetric proposal distribution.

Log-normal random walk

A log-normal random walk proposal is particularly useful when the parameters of in-

terest are constrained to be strictly positive. The proposed value is of the form Λ∗ =

exp(log Λ + ω) where ω is a random innovation. It follows that, in this case, the proposal

distribution is q(Λ∗|Λ) ∼ LNK(log Λ, σ2IK) where LNK denotes the K-dimensional log-

normal distribution. The log-normal distribution is not symmetric around its mean so

the proposal ratio q(Λ|Λ∗)/q(Λ∗|Λ) must be computed in order to evaluate the acceptance

rate A. It follows that

A =
π(Λ∗|D)

π(Λ(t−1)|D)
×

K∏
k=1

λ∗k
λk
.

Independence proposals

An independence proposal is a mechanism for generating proposed values Λ∗ that are

independent of the current state of the chain Λ. It follows that q(Λ∗|Λ) = q(Λ∗) and the

proposal ratio simplifies to q(Λ)/q(Λ∗). Further, the acceptance rate in Step 3 of the MH

algorithm can be written as

A =
π(Λ∗|D)

π(Λ(t−1)|D)
× q(Λ(t−1))

q(Λ∗)

under this proposal mechanism and so it is clear that we can increase the acceptance

probability by choosing q(Λ∗) to be as similar as possible to π(Λ∗|D). Note that if

q(Λ∗) = π(Λ∗|D) then A = 1 and the proposed value will always be accepted – per-

haps not surprising given the proposed value is from the posterior. This idea leads to the

Gibbs sampler; further details are provided in Section 1.3.3.

Componentwise updates

In what has been discussed so far we have considered the proposal Λ∗ to contain pro-

posed values for all K unknown quantities. However, in practice, it can be difficult to

10
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construct a suitable (K-dimensional) proposal distribution, particularly when the num-

ber of (unknown) parameters is large. A solution to this issue is to consider com-

ponentwise updates, that is, to update each unknown quantity one-at-a-time (condi-

tional on the remaining unknown quantities remaining fixed at their current values).

Let Λ−k = (λ1, . . . , λk−1, λk+1, . . . , λK) be the collection of all unknown quantities ex-

cluding λk then a Metropolis-Hastings algorithm to target the posterior π(Λ|D) using

componentwise updates is as follows.

1. Let the iteration counter be t = 1 and initialise the chain to Λ(0) = (λ
(0)
1 , . . . , λ

(0)
K )

which falls somewhere in the support of π(Λ|D), that is, so that π(Λ(0)|D) > 0.

2. Let Λ′ = Λ(t−1) be the current state of the chain, then for k = 1, . . . ,K

(a) draw λ∗k from the proposal density qk(λ
∗
k|λ′k).

(b) evaluate the acceptance probability, pk = min(1, Ak), where

Ak =
π(λ∗k,Λ

′
−k|D)

π(Λ′|D)
× qk(λ

′
k|λ∗k)

qk(λ
∗
k|λ′k)

.

(c) let λ′k = λ∗k with probability pk.

3. Let Λ(t) = Λ′.

4. Let t→ t+ 1 and return to step 2.

Again each (now univariate) proposal distribution qk(·) can be chosen arbitrarily and so a

combination of the previously discussed proposal mechanisms can be used depending on

the unknown quantities of interest.

1.3.2 Tuning Metropolis-Hastings algorithms

Key to the implementation of an efficient Metropolis-Hastings algorithm is the choice

of proposal distribution(s). An efficient algorithm is one that results in a chain which

converges rapidly (to the target distribution) and also mixes well, that is, a chain that

efficiently explores the support of π(Λ|D). For proposal distributions that depend on the

current state of the chain (i.e. not independence proposals) it should be clear that the

variance of the proposal will determine how the Markov chain explores the sample space.

If the variance is too small then the chain will explore the space slowly as, although the

proposed values are likely to be accepted, they will only move the chain a small distance

from the current state. In contrast, if the variance is too large, then although the proposed

values will be a large distance from the current state only relatively few of the proposed

11
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values will be accepted – the chain will therefore remain “stuck” at the same value for

many iterations, which is inefficient.

Clearly there exists a trade off between the acceptance probability of proposed values

and the distance they allow us to move around the sample space. Given this it would

be useful if we could construct proposal distributions so that the proposed values are a

reasonable distance from the current state and are also likely to be accepted. Roberts

and Rosenthal (2001) suggest that, if the target distribution is Gaussian, the optimal

acceptance probability (that which maximises the expected squared “jumping” distance)

is 0.234. This result was extended to elliptically symmetric targets by Sherlock and Roberts

(2009) with Sherlock (2013) later providing a general set of sufficient conditions for which

the optimal acceptance probability is 0.234. Further, if the proposal distribution is a

normal random walk then it has been suggested by Gelman et al. (1996) amongst others

that the variance of ω should be

2.382Var(Λ|D)

K
.

Of course, in general we will not know the posterior variance matrix Var(Λ|D), so an

estimate obtained by numerous pilot runs of the algorithm might be used.

Unfortunately there is no hard and fast rule which describes how best to construct suitable

proposal distributions in general. The form of the target distribution affects how proposal

mechanisms perform and so bespoke proposals are typically required for each scenario.

The strategy we suggest is to first choose a proposal distribution which seems sensible

a priori and then perform numerous iterations of the MH algorithm to calculate the

empirical acceptance rate (# proposals accepted/# iterations). If the acceptance rate is

too low/high then decrease/increase the variance of the proposal distribution until the

acceptance rate is ' 23%.

At the beginning of this section we noted that it is only in scenarios where the proposal

distribution depends on the current state of the chain that the variance (of the proposal

distribution) affects how the Markov chain explores the sample space. By construction

independence proposals do not depend on the current state of the chain and so the optimal

acceptance probability for this type of proposal is not 0.234. In fact for independence

proposals it is advantageous to make the acceptance probability as large as possible, that

is, the optimal acceptance probability is one in this case. In other words, we should aim

to construct a proposal distribution which is as close to the target (posterior) distribution

as possible.
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1.3.3 The Gibbs sampler

The Gibbs sampler is a special case of the (componentwise) Metropolis-Hastings algorithm

where each of the proposed values λ∗k are drawn from their corresponding full conditional

distribution. This technique was first proposed by Geman and Geman (1984) in the context

of image processing and only later was it brought to the attention of statisticians by

Gelfand and Smith (1990). The full conditional distribution of the kth unknown quantity

is π(λk|Λ−k,D) and is the conditional distribution of λk given all other unknown quantities,

and the data. It is often the case that, although the posterior π(Λ|D) may be intractable,

we can obtain the full conditional distribution for each unknown quantity in closed form

(and therefore sample from them).

Suppose we are in the scenario where we have a complete set of full conditional distribu-

tions, that is, π(λk|Λ−k,D) is available in closed form for k = 1, . . . ,K. Let Λ denote the

current state of the Markov chain and recall from Step 2(b) in the (componentwise) MH

algorithm that the acceptance rate for each unknown quantity k is

Ak =
π(λ∗k,Λ−k|D)

π(Λ|D)
× qk(λk|λ∗k)
qk(λ

∗
k|λk)

which we can equivalently express as

Ak =
π(λ∗k|Λ−k,D)π(Λ−k|D)

π(λk|Λ−k,D)π(Λ−k|D)
× qk(λk|λ∗k)
qk(λ

∗
k|λk)

=
π(λ∗k|Λ−k,D)

π(λk|Λ−k,D)
× qk(λk|λ∗k)
qk(λ

∗
k|λk)

.

Now if construct an independence proposal where the proposed value for each unknown

quantity is drawn from its corresponding full conditional distribution, that is, take qk(λ
∗
k) =

π(λ∗k|Λ−k,D) then it follows that

Ak =
π(λ∗k|Λ−k,D)

π(λk|Λ−k,D)
× π(λk|Λ−k,D)

π(λ∗k|Λ−k,D)
= 1

and so any proposed value λ∗k is guaranteed to be accepted (for k = 1, . . . ,K).

Using this result we obtain the special case of the Metropolis-Hastings algorithm known

as the Gibbs sampler. If the full conditionals π(λk|Λ−k,D) are available in closed form for

k = 1, . . . ,K then a Markov chain which targets the posterior π(Λ|D) is as follows.

1. Let the iteration counter be t = 1 and initialise the chain to Λ(0) = (λ
(0)
1 , . . . , λ

(0)
K )

which falls somewhere in the support of π(Λ|D), that is, so that π(Λ(0)|D) > 0.

2. Obtain a new realisation Λ(t) = (λ
(t)
1 , . . . , λ

(t)
K ) from Λ(t−1) by sampling from the full
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conditional distributions

λ
(t)
1 ∼ π(λ1|λ(t−1)2 , λ

(t−1)
3 , . . . , λ

(t−1)
K ,D)

λ
(t)
2 ∼ π(λ2|λ(t)1 , λ

(t−1)
3 , . . . , λ

(t−1)
K ,D)

...

λ
(t)
K ∼ π(λK |λ(t)1 , λ

(t)
2 , . . . , λ

(t)
K−1,D).

3. Let t→ t+ 1 and return to step 2.

The Gibbs sampler (above) is particularly useful when it is infeasible to directly sample

from π(Λ|D) but sampling from π(λk|Λ−k,D) is straightforward. Moreover, unlike the

standard Metropolis-Hastings algorithm, we need not construct suitable proposal distri-

butions (which can be difficult in practice) as they are simply the full conditional distribu-

tions. The algorithm we have outlined is known as the fixed sweep Gibbs sampler and is

often used in practice as it is straightforward to implement. Further generalisations such

as the random sweep Gibbs sampler also exist; see Chapter 5 of Gamerman and Lopes

(2006) for full details.

Metropolis-within-Gibbs

Of course, there is no reason why we need restrict ourselves to either implementing a

Metropolis-Hastings or a Gibbs sampling algorithm. The two sampling methods can be

combined and this gives rise to the so called Metropolis-within-Gibbs algorithm. This

algorithm is simply the componentwise MH algorithm from Section 1.3.1 where a full

conditional distribution is used as the proposal distribution for some unknown quantities

with (arbitrary) proposal distributions being used for the remainder. The Metropolis-

within-Gibbs algorithm is useful when full conditional distributions are only available in

closed form for a subset of the unknown quantities of interest.

1.3.4 Block updates

In practice it is common to update the unknown quantities within an MCMC chain one-

at-a-time, that is, by using either the componentwise MH or Gibbs sampling algorithms.

Although samplers of this kind are typically easier to implement, using single component

updates can give rise to convergence and mixing issues, particularly when some of the

unknown quantities have high posterior correlation. Intuitively if two unknown quanti-

ties λi and λj (i 6= j) are highly correlated then constructing a proposal for λi needs to

account for the current value of λj . This could be achieved by using a proposal with a
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small variance but this will lead to a poorly mixing chain. A practical solution to this

problem is to use a block update of such highly correlated parameters, that is, update

numerous unknown quantities simultaneously. In the example above it may be advanta-

geous to generate the proposed “value” (λ∗i , λ
∗
j ) from a (bivariate) proposal distribution

q(λ∗i , λ
∗
j |λi, λj) and either accept or reject the update to both unknown quantities. Of

course, this idea generalises straightforwardly to block sizes greater than 2 and further

details and discussion can be found in Gamerman and Lopes (2006) and Gelman et al.

(2014) amongst others.

1.3.5 Convergence

Recall that the general idea behind MCMC is to construct a Markov chain which has

the posterior π(Λ|D) as its stationary (target) distribution. Therefore, given we are only

interested in obtaining posterior realisations, we must ensure that the chain has reached

its stationary distribution before using further generated samples. Once a Markov chain

has reached its stationary distribution it is said to have converged. It is well known that

as the number of iterations increases the distribution of the Markov chain tends to the

posterior (stationary) distribution, that is, Λ(t)|D d→ Λ|D as t → ∞. Obviously we can

not perform an infinite number of iterations and so it is useful instead to consider how

many iterations are required so that Λ(t)|D d' Λ|D; this is known as the burn-in period.

The burn-in period required depends heavily on the form of the posterior distribution

and, to a lesser extent, on where the chain is initialised. Clearly this is going to depend

on the situation of interest. That said, there are methods for detecting when a Markov

chain has not converged. Typically this is done by visual inspection of trace plots showing

how the unknown quantities change over the iterations. If the unknown quantities show

a clear trend over the iterations then this indicates that the chain has not reached its

stationary distribution – in this case the number of iterations (the burn-in period) should

be increased. In contrast, if the trace plots show the unknown quantities moving around

the support of the distribution in a stable manner then this suggests that the Markov chain

has converged. Gelfand and Smith (1990) suggest some additional (informal) checks that

can be useful in assessing convergence and some more formal checks have been suggested

by Geweke (1992), Raftery and Lewis (1992, 1996) and Gelman (1996) amongst others.

Although these checks are useful it is still possible (and unfortunately fairly easy) to

incorrectly assume that a Markov chain has converged, particularly when the stationary

(posterior) distribution is multi-modal. It may be the case that, although the unknown

quantities show signs of stationarity, they are in fact “trapped” in a local mode and are

therefore not exploring the support of the posterior distribution. In an attempt to avoid

misdiagnosing convergence it is useful to run multiple Markov chains simultaneously –
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each of which should be initialised from a different starting value. If the trace plots from

each chain fail to overlap then this is indicative that the chains have not yet converged to

the target distribution and a longer burn-in period is required.

1.3.6 Analysing posterior samples

Once the Markov chain has converged to its stationary distribution it follows that any

generated samples will be from the posterior π(Λ|D) by construction. However, as we noted

when first introducing MCMC at the beginning of this section, the samples generated from

the Markov chain will be dependent and successive draws are said to be autocorrelated. If

successive values are highly correlated then the amount of information (about the posterior

distribution) contained within consecutive samples is much less than if these values were

independent. An autocorrelation plot can be useful for assessing the amount of dependence

between consecutive samples. The R package coda (Plummer et al., 2006) provides a useful

function for generating an autocorrelation plot which is simply the autocorrelation function

at different lag times (in addition to many other MCMC convergence diagnostics). If the

generated samples are highly autocorrelated then it can be useful to thin the MCMC

output which is done by only considering every ith iterate.

When we have obtained a reasonable number of (almost) un-autocorrelated posterior real-

isations it is straightforward to compute estimates of posterior summary statistics such as

the marginal means and variances of the unknown quantities of interest. Further, we can

easily obtain plots of marginal (or joint) posterior distributions by using a kernel density

estimate.

1.4 Data augmentation

We conclude this chapter with a brief overview of data augmentation (Tanner and Wong,

1987) and highlight the main advantages of using such an approach. We begin with

the standard framework. Suppose the form of our likelihood is non-standard or indeed in-

tractable. Applying Bayes’ Theorem will often result in our posterior distribution, π(Λ|D),

taking a non-standard form. This is somewhat inconvenient as we wish to sample from this

distribution. Of course, we could appeal to the Metropolis-Hastings algorithm outlined

in Section 1.3.1 to obtain posterior realisations. However appealing to data augmentation

might allow us to do better.

The general idea behind data augmentation is to introduce some latent variables Z so that

the joint posterior density of these variables along with the unknown quantities of inter-

est (Λ) is of a convenient form, that is, π(Λ, Z|D) is a well-known probability distribution.
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The joint posterior distribution of Λ and Z is

π(Λ, Z|D) ∝ π(D|Λ, Z)π(Z|Λ)π(Λ),

whence the posterior density of interest is

π(Λ|D) ∝
∫
Z
π(D|Λ, Z)π(Z|Λ)π(Λ)dZ,

that is, the marginal distribution of our augmented posterior. It follows that if we can gen-

erate samples from the augmented posterior distribution π(Λ, Z|D) then we can trivially

obtain the posterior distribution over the unknown quantities of interest Λ.

Unfortunately in practice it is often difficult to construct latent variables Z so that the

joint posterior density π(Λ, Z|D) is a well-known probability distribution. However, in

some scenarios it can be reasonably straightforward to introduce latent variables which

result in the full conditional distributions π(Λ|D, Z) and π(Z|D,Λ) being of standard

form. In fact, it is often the case that the latent variables are introduced by defining their

full conditional distribution π(Z|D,Λ). If all the full conditional distributions are known

then, from the results in Section 1.3.3, it should be clear that we can use a Gibbs sampler

to obtain realisations from the joint posterior, that is, repeatedly

• update Λ given D and Z by sampling from π(Λ|D, Z)

• update Z given D and Λ by sampling from π(Z|D,Λ).

It follows that a judicious choice of latent variables might allow us to avoid the need to

implement a MH algorithm (which needs us to construct and tune proposal distributions)

and instead use a more straightforward Gibbs sampling approach if the full conditional

distributions are available.
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Chapter 2

Analysis of homogeneous ranked

data

2.1 Introduction

We consider the popular Plackett–Luce model (Luce, 1959; Plackett, 1975) which is an

extension to multiple comparison (ranked) data of the model for paired comparisons pro-

posed by Bradley and Terry (1952). This model relies on strong assumptions about the

homogeneity of the ranked data, such as the idea that all rankers share an agreed overall

consensus view regarding the preference of the entities. This assumption is perhaps not

well justified in many real world scenarios. In this chapter, we begin by assuming that

all rankers share similar views and develop more flexible models which allow for hetero-

geneity between rankers’ beliefs in Chapters 3 and 4. Data typically consist of complete

and partial rankings (to be defined in Section 2.2) and we shall detail how the Plackett–

Luce model can be modified to allow for a much richer class of rankings such as top–M

and top–M partial rankings (defined in Section 2.2.1). Throughout the majority of the

literature it is assumed that any particular ranker is no more (or less) likely to share a sim-

ilar preference (of the entities) to the view expressed by the (assumed) overall consensus

group. In Section 2.5 we question this assumption and propose that some individuals may

be significantly more informed about the entities they are ranking, and so their opinion

should hold more weighting. Ranker reliability is introduced into the model by means of

a latent binary indicator within the Plackett–Luce likelihood.
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2.2 The Plackett–Luce model

We assume our data (rankings) are observations from the Plackett–Luce model (Luce,

1959; Plackett, 1975). We define the set of all entities to be K = {1, . . . ,K} with K = |K|.
Each entity has a “skill rating” λk > 0 for k = 1, . . . ,K. Individual rankings need not

contain every entity and so we let ni ≤ K be the number of entities contained within

ranking i. Thus, a typical observation from this model is xi = (xi1, . . . , xini), where xij is

the entity that has rank j in ranking i. The probability of such an observation is

Pr(Xi = xi|λ) =

ni∏
j=1

λxij∑ni
m=j λxim

(2.1)

=

ni−1∏
j=1

λxij∑ni
m=j λxim

.

The Plackett–Luce probability above is said to be a multistage model (Marden, 1995) due

to the way it is constructed. This multistage construction is naturally highlighted if we

consider a simple example. Suppose we have a complete ranking of K = 4 entities, namely

x = (1, 2, 3, 4), and skill parameters λ = (λ1, λ2, λ3, λ4). The probability of this ranking

under the Plackett–Luce model is

Pr{x = (1, 2, 3, 4)|λ} =
λ1

λ1 + λ2 + λ3 + λ4
× λ2
λ2 + λ3 + λ4

× λ3
λ3 + λ4

× λ4
λ4
.

From this we observe that the probability of a particular ranking is constructed as the

product of the individual (conditional) probabilities that each entity is ranked within their

respective position. Let |c|n be an operator that takes an arbitrary length vector c and

normalises (but maintains proportionality) the values such that
∑

i ci = 1. It should

then be clear that the probability of any entity being allocated rank 1 is given by the

corresponding entry within |λ|n. The conditional probability for an entity being allocated

rank 2 is given by the corresponding entry in |{λ}\{λx1}|n, that is, the normalised values

given that the entity assigned rank 1 is no longer available for selection. This iterative

conditioning (on positions which have already been assigned) continues until only a single

entity remains, at which point this entity is ranked last. It is often useful to think of this

construction in terms of a race containing K horses. Naturally the horse that crosses the

line first is awarded rank/position 1, that is, the strongest or most preferred entity within

a ranking context. Rank 2 is awarded to the horse which would have won the race if the

horse that finished first did not take part. Similarly rank 3 is awarded to the horse which

would have won given neither the winner nor the horse awarded rank 2 featured in the

race. This process continues until rank K is the only remaining rank to be assigned, at

this point the race only contains a single horse which will win by definition.

20



Chapter 2. Analysis of homogeneous ranked data

As the Plackett–Luce probability is constructed using the method outlined above it is said

to follow the so-called “forward ranking process” (Mollica and Tardella, 2014). Although

this ranking process is intuitive, it results in a significant limitation for the Plackett–Luce

model. When choosing to model rankings under the Plackett–Luce probability we also

inherently make the assumption that each ranking is formed using the forward ranking

process. This assumption is one which is often overlooked and is perhaps not well justified

within a real world scenario. We might imagine a scenario where a particular ranker is

more confident (or equivalently more certain) about the ranks of entities which are their

most and least preferred and therefore chooses to allocate these ranks first. Thus in this

scenario a particular ranker might allocate entities to rank 1, then to rank K, then to

rank K − 1 and so on. This is not the forward ranking process. A necessary consequence

is that, in this case, the true underlying ranking distribution will not follow the Plackett–

Luce model. Indeed, as we shall see in Chapter 6, the choice of the (forward ranking)

Plackett–Luce model in such a scenario typically results in a poor approximation to the

true underlying ranking distribution and, as a result, potentially misleading inferences.

If the forward ranking process assumption is not plausible we could instead choose to

model rankings using the Reverse Plackett–Luce model. This model was suggested by

Marden (1995) and uses a similar multistage construction as the standard Plackett–Luce

model but on the reverse rankings. The probability of a particular ranking under this

model is

Pr(Xi = xi|λ) =
K∏
j=1

λxiK−j+1∑K−j+1
m=1 λxim

.

Therefore, for the complete ranking x = (1, 2, 3, 4), the probability is

Pr{x = (1, 2, 3, 4)|λ} =
λ4

λ4 + λ3 + λ2 + λ1
× λ3
λ3 + λ2 + λ1

× λ2
λ2 + λ1

× λ1
λ1
.

Perhaps not too surprisingly this model is said to follow the so-called “backward ranking

process” (Mollica and Tardella, 2014), that is, each ranking is formed by first allocating

the entity which is least preferred (rank K) followed by that which is second least preferred

(rank K − 1) and so on. In terms of our horse race scenario, the horse which finishes first

is that which receives rank K, then the horse that would have won conditional on the

“winning” horse not being in the race receives rank K−1, the final remaining horse is the

most preferred and receives rank 1. Graves et al. (2003) used this model in the context

of NASCAR races and more recently Henderson and Kirrane (2018) used the Reverse

Plackett–Luce model when analysing Formula 1 races. Both these analyses found the

assumption of the backward ranking process resulted in better model fit than assuming

the forward ranking process. It is perhaps difficult to justify a priori which assumption

is more plausible. Indeed, a ranker could choose to allocate their ranks in any of the
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K! orderings included within SK , the set of all K! permutations of K elements. Mollica

and Tardella (2014) explored this idea and developed the Extended Plackett–Luce model.

This model relaxes assumptions on any explicit ranking process and the “choice ordering”

is instead inferred from the rankings themselves. In what follows we assume the forward

ranking process and so use the standard form of the Plackett–Luce model. We shall revisit

the Extended Plackett–Luce model in Chapter 6.

A further limitation of the Placket–Luce model is that it only defines a probability for

certain types of ranking. The model requires each ranker to report a position for each of

the entities they consider. This allows for two types of ranking: (a) Complete rankings,

which occur when a ranker considers, and assigns a rank to, all possible entities and

(b) Partial rankings, which occur when a ranker considers a subset of all the entities

but still reports a rank for each entity considered, and so ni < K in this scenario. A

paired comparison, that is, an ordered list of two entities is equivalent to a partial ranking

with ni = 2. This should come as no surprise given that the Plackett–Luce model is a

generalisation (to multiple comparison data) of the Bradley–Terry model which is defined

for paired comparison data (Bradley and Terry, 1952). We will also consider a special

case known commonly as top–M rankings. Here individuals report a rank only for those

entities which they classify as being positioned 1 to M (where they have considered more

than M entities). The Plackett–Luce model does not adequately capture the information

within data of this type. For example, if we naively chose to model top–M rankings (with

ni = M) using the Plackett–Luce model in (2.1) then the entity that is assigned rank M

would be treated as if it was ranked last. Furthermore the model would also behave as if

all the entities that did not appear within the ranking were not considered by the ranker,

that is, the model would treat this as a partial ranking. However, in the case of a top–M

ranking, we have the additional information that, although they do not receive a particular

rank, the entities not featuring in the ranking are considered to have at least rank M + 1.

Note that the definition of a partial ranking varies within the literature with some authors

defining a partial ranking to be what we consider a top–M ranking. We therefore make

it clear that, within this thesis, the terms partial and top rankings are used to refer to

ranking types as defined above.

At first it appears that allowing for top–M rankings may be problematic as we wish

to marginalise over all possible (unknown) positions of the unranked entities. However,

the Plackett–Luce model (more specifically the distribution it induces over rankings) is

internally consistent, that is, the probability of a particular ranking is independent of

the subset of entities from which the ranking was formed; see Hunter (2004) for a proof

outline. It follows that, under the Plackett–Luce model, it is trivial to consistently combine

incomplete (top, partial) rankings. The following section details how the Plackett–Luce

probability can be extended to use all the information contained within top–M rankings.
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2.2.1 Top–M rankings

In real world scenarios we often encounter a much broader class of rankings which can

be classified as top–M and top–M partial rankings. A top–M ranking is obtained when

a particular individual considers all K entities but only assigns entities to ranks 1 to M

(their most preferred M entities) and leaves the remaining entities “unranked”. A top–M

partial ranking is a special case of a top–M ranking which is obtained when an individual

only considers a subset of all the entities (hence ni < K) and again proceeds to only assign

entities to ranks 1 to M (leaving the remaining ones they considered unranked).

A modification to the Plackett–Luce probability is required to allow for these additional

ranking types. Caron et al. (2014) detail a modification to allow for top–M rankings and

their result can be trivially extended to allow for top–M partial rankings. Recall the set of

all entities is defined by K = {1, . . . ,K}. Now suppose ranker i considers Ki ≤ K entities,

and denote the set of these entities as Ki ⊆ K. Also let Ui = Ki \ {xi} be the collection of

“unranked” entities (for ranker i), by which we mean the entities they considered but did

not feature in their ranking. From the definition of Ui it is clear that any entity k ∈ Ui is

considered to be ranked at least (ni + 1)th. The probability of a particular ranking under

the (now modified) Plackett–Luce model is

Pr(Xi = xi|λ) =

ni∏
j=1

λxij∑ni
m=j λxim +

∑
m∈Ui λm

. (2.2)

Note that

Pr(Xi = xi|λ) 6=
ni−1∏
j=1

λxij∑ni
m=j λxim +

∑
m∈Ui λm

unless Ui = ∅, the empty/null set. Therefore in a situation where we have only (a) Com-

plete or (b) Partial rankings (hence Ui = ∅ ∀ i) the modified Plackett–Luce probability

simplifies and we recover (2.1). Henceforth we shall maintain full generality and proceed

assuming that at least one ranker provides a top or top partial ranking, that is, there

exists an i such that Ui 6= ∅.

We also note that, unlike the standard Plackett–Luce model, simply analysing the reverse

rankings is no longer equivalent to analysing the standard (forward) rankings under the

Reverse Plackett–Luce model. Indeed analysing the reverse rankings under model 2.2

would be particularly challenging given that we do not have explicit ranks for those entities

judged to be ranked in at least position M + 1. This results in those entities effectively

being tied for “first” place (under the reverse rankings). Of course, data of this form

could be analysed by implementing methods for handling ties within ranked data – these
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methods are discussed in Section 2.2.4.

2.2.2 Identifiability issues

The Plackett–Luce model suffers from a fundamental problem of parameter identifiabil-

ity: the probability (2.2) is invariant to strictly positive scalar multiplication of the skill

parameters. More formally, if we let λ∗k = Cλk for k = 1, . . . ,K with C > 0 then (due

to the normalisation within the construction of the probability) we have Pr(X = x|λ) =

Pr(X = x|λ∗) for any ranking x. Numerous approaches can be taken to overcome this

issue. For example we could choose to constrain λ so that it lies on the K−1 dimensional

simplex. Alternatively, we could take an approach similar to that of a corner constraint

and fix λ1 ≡ 1. Both these methods reduce the number of free parameters to K−1. Caron

and Doucet (2012) noted that the identifiability issue can also result in poor mixing within

MCMC chains. Resolving the mixing (and identifiability) issue is of course desirable and

it turns out that, within the Bayesian solution we consider, this can be easily achieved

through a suitable rescaling strategy within the inference scheme. We now turn to dealing

with the rescaling issue.

2.2.3 Rescaling

Let us consider Λ† =
∑K

k=1 λk, the sum of all the K skill parameters. As discussed

in Section 2.2.2, the Plackett–Luce likelihood is invariant to scalar multiplication of the

parameters, and hence Λ† is not likelihood identifiable. Indeed, if we let λ∗k = λk/Λ
† for

k = 1, . . . ,K, we have that π(λ∗,Λ†|D) = π(λ∗|D)π(Λ†).

Caron and Doucet (2012) noted that without the addition of a rescaling step, MCMC

schemes for Plackett–Luce models can suffer from poor mixing. The idea is to rescale the

parameters so that the posterior distribution of Λ† is the same as its prior distribution.

This is achieved by performing an appropriate rescaling step at each iteration of the

MCMC scheme. Of course, the rescaling required will be situation dependent as the prior

distribution on Λ† is induced by the prior choice for each of the skill parameters, λk.

2.2.4 Ties

Ties within ranked data can present particular modelling challenges. Most models for

ranked data, including the Plackett–Luce model, are built upon the assumption that only

a single entity can be assigned to a particular rank, that is, multiple entities can not be

“tied” for the same position. It is however possible to overcome this issue and indeed nu-

merous methods for incorporating ties within an analysis under the Plackett–Luce model

24



Chapter 2. Analysis of homogeneous ranked data

have been discussed within the literature. Perhaps the most intuitive method is to evaluate

the exact contribution the tied entities make to the likelihood, that is, average over the PL

probabilities of all possible rankings formed by permuting the ranks of the tied entities.

Unfortunately this approach can significantly increase the amount computation required

even in scenarios where relatively few entities are tied. For example, when six entities

are tied for a particular position the likelihood of such a ranking contains an additional

6! = 720 terms. Furthermore if we envisage a scenario in which numerous entities are tied

for numerous different ranks then it is clear that the computation of the likelihood will

soon become infeasible. An alternative approach discussed by Breslow et al. (1974) uses

an approximation to the exact likelihood by assuming that each of the tied entities (within

a given rank) is preferred to all other entities ranked either in the same position or lower.

This approach significantly reduces the computational burden (compared to calculating

the likelihood exactly). However it does come at the cost of a non-exact likelihood func-

tion. Baker and McHale (2015) discuss a further (more exact) likelihood approximation

where they consider the likelihood of all possible rankings (formed by permuting the tied

entities). However the skill parameters for the tied entities are defined to be the mean of

the respective tied entity skill parameters, with some additional random noise. For exam-

ple, if there are t tied entities then the likelihood under the t! possible rankings would be

evaluated subject to λi = µ̂ + εi (i = 1, . . . , t) where µ̂ =
∑t

i=1 λi/t. Full details of this

schematic and details of inference on λi are discussed in Appendix A of Baker and McHale

(2015).

Our solution to the problem of ties is based on our MCMC solution to the inference

problem. Essentially, at each MCMC iteration, we simulate a ranking without ties from a

uniform distribution over all rankings consistent with the rankings with ties. For example,

suppose we have a ranking x = (1, 2, 3, 4, 5) where entities 2 and 3 are tied for second

position (indicated by the bar). To incorporate this ranking into our analysis we would let

x = (1, 2, 3, 4, 5) with probability 0.5 and otherwise let x = (1, 3, 2, 4, 5) at each iteration

of our MCMC scheme. This schematic can be trivially extended to incorporate rankings

with ties involving more than two entities, for example rankings such as x = (1, 2, 3, 4, 5).

Furthermore we can allow for the possibility of more than a single set of tied entities

within a single ranking, that is, a ranking of the form x = (1, 2, 3, 4, 5). In all scenarios

we sample, uniformly at random, from the discrete distribution over all possible rankings

formed by permutations of the tied entities. This method for incorporating ties within a

ranked data analysis is described further by Glickman and Hennessy (2015).
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2.2.5 Simulating data from the modified Plackett–Luce model

Having defined our modified Plackett–Luce probability (2.2) we are now in a position to

describe the process which allows us to simulate data under this model. We begin by

specifying “true” values for the skill parameters, namely λk > 0 for k = 1, . . . ,K. These

values could be simulated from an appropriate distribution if desired. In Section 2.2.2

we discussed how the Plackett–Luce probability is invariant to (strictly positive) scalar

multiplication of the skill parameters; we must therefore be cautious when specifying values

for our skill parameters. It is important to remind ourselves that the skill parameters for

each entity can only be compared relative to one another. Hence the choice of λ = (3, 2, 5)

specifies the equivalent distribution over rankings as the choice of λ = (0.3, 0.2, 0.5) and

indeed the same distribution as Cλ for any C > 0.

We describe the data generating process using the well-known exponential latent variable

representation of the Plackett–Luce model (Diaconis (1988), Marden (1995)). In this

representation we introduce latent variables νj , which are interpreted as the (latent) arrival

time of entity j (in a homogeneous Poisson process). These variables follow independent

exponential distributions with rate parameter λj . The latent arrival times are then trivially

converted into rankings by assigning rank 1 to the entity that arrived first, rank 2 to the

entity that arrived second and so on. Formally, the complete ranking x is generated via

the following process.

1. Sample νj
indep∼ Exp(λj) for j = 1, . . . ,K.

2. Set xj = argmin
q∈Sj

νq where Sj = K \ {x1, . . . , xj−1} for j = 1, . . . ,K.

We note that the process described above is only designed to generate complete rankings.

Once we have obtained complete rankings it is possible to convert these to partial, top–M

or top–M partial rankings as required. Partial rankings are formed by removing (from the

complete ranking) those entities which were not considered by the ranker and preserving

the preference order of those entities which remain. Top–M rankings are trivially obtained

by only considering the first M positions of the complete ranking. Top–M partial rankings

are obtained from the complete ranking using a two step process. We begin by first

obtaining the corresponding partial ranking (as above), and then the ranking required

is given by taking the first M positions within the (newly formed) partial ranking. For

example, suppose we generate the complete ranking x = (1, 7, 3, 5, 2, 6, 8, 4) using the

process outlined above. Table 2.1 shows the corresponding top–5, partial, and top–5 partial

rankings formed from this complete ranking. The partial rankings were formed assuming

that entities 2 and 8 were not considered. The table also provides the number of entities

within each ranking, ni, and the total number of entities each ranker considered, Ki.
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Rank
Ranking type 1 2 3 4 5 6 7 8 ni Ki Ui K \ Ki
Complete 1 7 3 5 2 6 8 4 8 8 ∅ ∅
Top–5 1 7 3 5 2 5 8 {4, 6, 8} ∅
Partial 1 7 3 5 6 4 6 6 ∅ {2, 8}
Top–5 partial 1 7 3 5 6 5 6 {4} {2, 8}

Table 2.1: Ranking types

The sets Ui and K \ Ki containing the unranked entities and those entities that were not

considered by ranker i respectively are also provided.

2.3 Bayesian inference

We now describe how Bayesian inference can be performed using rankings assumed to

follow the modified Plackett–Luce model (2.2). In order to make meaningful inferences

these data must contain numerous rankings (n). To formulate our likelihood concisely we

let D = {xi}ni=1 be the collection of all such rankings. The likelihood under the Plackett–

Luce model is then given as the product of the respective probabilities of each ranking,

and hence takes the form

π(D|λ) =
n∏
i=1

Pr(Xi = xi|λ)

=

n∏
i=1

ni∏
j=1

λxij∑ni
m=j λxim +

∑
m∈Ui λm

. (2.3)

Inference could proceed using a maximum likelihood approach such as the MM algorithm

(Hunter, 2004), to maximise this likelihood and obtain an estimate for our skill parame-

ters λ̂. Here however we adopt the Bayesian approach to inference and therefore define a

suitable prior distribution along with an appropriate posterior sampling scheme.

2.3.1 Prior specification and latent variables

The choice of suitable prior distributions is a problem well discussed within the Bayesian

literature (Bernardo and Smith, 1994). Here our choice of prior distribution is mainly mo-

tivated by mathematical convenience. However, we believe our choice is sufficiently flexible

to allow for informative prior beliefs to be portrayed if desired. The skill parameters λk

are required to be strictly positive and so it seems sensible to choose independent Gamma

prior distributions, namely λk
indep∼ Ga(ak, bk) for k = 1, . . . ,K. It has been shown that the
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rate parameters bk are not likelihood identifiable (Caron and Doucet, 2012) and so we let

bk = b = 1 as our skill parameters are invariant to (strictly positive) scalar multiplication.

This is done widely within the literature. Therefore our prior distribution for the skill

parameters is λk
indep∼ Ga(ak, 1) for k = 1, . . . ,K and our complete model specification is

Xi|λ indep∼ PL(λ) i = 1, . . . , n,

λk
indep∼ Ga(ak, 1) k = 1, . . . ,K,

where X|λ ∼ PL(λ) denotes that ranking X = x follows the Plackett–Luce model with

probability defined in (2.2).

Under this prior choice the form of the posterior distribution is highly non-standard and

so we adopt the sampling-based approach of Markov chain Monte Carlo (MCMC). It can

be desirable to implement a Gibbs sampler (if possible) rather than a Metropolis-Hastings

sampler, particularly if this benefits in increased sampling efficiency. Conditional on an

independent Gamma prior specification, Caron and Doucet (2012) showed that by ap-

pealing to data augmentation techniques it is possible to facilitate a conjugate update for

the skill parameters. Our sample space is augmented by introducing appropriate latent

variables (collectively denoted Z) which are interpreted as the hypothetical (exponential)

inter-event times of the entities in the homogeneous Poisson processes referred to in Sec-

tion 2.2.5. These latent variables are defined through their full conditional distribution

and are given by

zij |D,λ indep∼ Exp

 ni∑
m=j

λxim +
∑
m∈Ui

λm

 , (2.4)

for i = 1, . . . , n and j = 1, . . . , ni.

Aside

If we first let Λ denote the collection of all skill parameters then using the results from

Section 1.4 we can verify that we do indeed obtain the desired posterior of our skill

parameters when we integrate out these latent variables from the joint posterior as follows

π(Λ|D) =

∫
Z
π(Λ, Z|D)dZ

∝
∫
Z
π(Z|Λ,D)π(Λ|D)π(Λ)dZ
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= π(Λ)

∫ ∞
0

∫ ∞
0
· · ·
∫ ∞
0︸ ︷︷ ︸∑n

i=1 ni

 n∏
i=1

ni∏
j=1

λxij∑ni
m=j λxim +

∑
m∈Ui λm

 ni∑
m=j

λxim +
∑
m∈Ui

λm



× exp

−
 ni∑
m=j

λxim +
∑
m∈Ui

λm

 zij


 dZ

= π(Λ)
n∏
i=1

ni∏
j=1

λxij ×
n∏
i=1

ni∏
j=1

∫ ∞
0

exp

−
 ni∑
m=j

λxim +
∑
m∈Ui

λm

 zij

 dzij

= π(Λ)
n∏
i=1

ni∏
j=1

λxij ×

 n∏
i=1

ni∏
j=1

−

 ni∑
m=j

λxim +
∑
m∈Ui

λm

−1

× exp

−
 ni∑
m=j

λxim +
∑
m∈Ui

λm

 zij


∞
0

= π(Λ)

n∏
i=1

ni∏
j=1

λxij∑ni
m=j λxim +

∑
m∈Ui λm

 n∏
i=1

ni∏
j=1

e0 − e−∞


= π(Λ)π(D|Λ).

As we shall see in the section that follows, we are also able to obtain the full conditional

distribution for Λ in closed form under this latent variable specification.

2.3.2 Full conditional distributions

Our posterior distribution is formed by applying Bayes’ Theorem. As we have augmented

our sample space, the resulting posterior distribution is a joint distribution containing the

latent random variables Z and the skill parameters λ. Before starting our derivation it is

useful to first construct the density of all stochastic quantities in the model; this is given

by

π(λ,D, Z) = π(Z|D,λ)π(D|λ)π(λ)

=

n∏
i=1

ni∏
j=1

 ni∑
m=j

λxim +
∑
m∈Ui

λm

 exp

−zij
 ni∑
m=j

λxim +
∑
m∈Ui

λm


×

n∏
i=1

ni∏
j=1

λxij∑ni
m=j λxim +

∑
m∈Ui λm

×
K∏
k=1

λak−1k e−λk

Γ(ak)

=

K∏
k=1

λak−1k e−λk

Γ(ak)
×

n∏
i=1

ni∏
j=1

λxij exp

−zij
 ni∑
m=j

λxim +
∑
m∈Ui

λm

 . (2.5)
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We are now able to obtain the full conditional distributions (FCDs) by constructing the

conditional distribution of each unknown quantity given all other stochastic quantities and

the data. If we begin with the latent variables Z it should be clear that

π(Z|D,λ) ∝
n∏
i=1

ni∏
j=1

exp

−zij
 ni∑
m=j

λxim +
∑
m∈Ui

λm

 ,

and so the full conditional distribution of the zij is as in (2.4) (by construction). The full

conditional distribution for the remaining random quantities, λ, is

π(λ|D, Z) ∝
K∏
k=1

λak−1k e−λk
n∏
i=1

ni∏
j=1

λxij exp

−zij
 ni∑
m=j

λxim +
∑
m∈Ui

λm


=

K∏
k=1

λak+qk−1k exp

−
1 +

n∑
i=1

ni∑
j=1

δij(k)zij

λk


where

qk =
n∑
i=1

I(k ∈ {xi}),

and

δij(k) = I(k ∈ {xij , . . . , xini} ∪ Ui), (2.6)

are the number of times entity k appears within a ranking and an indicator variable over

the event that entity k receives a rank no better than j in ranking i, respectively. It then

follows that

λk|D, Z
indep∼ Ga

ak + qk, 1 +

n∑
i=1

ni∑
j=1

δij(k)zij

 ,

for k = 1, . . . ,K.

As we now have a complete set of full conditional distributions we are in a position to

construct a sampling scheme to generate realisations from our posterior distribution. We

note that this is a straightforward modification of the Gibbs sampler of Caron and Doucet

(2012) where here the definition of δij(k) in (2.6) has changed so that we can deal with

top–M rankings. This sampler is also somewhat similar to that detailed in Caron et al.

(2014) but here we consider a (fixed) finite number of entities K <∞.

30



Chapter 2. Analysis of homogeneous ranked data

2.3.3 MCMC - Gibbs sampling via latent variables

In Section 2.3.2 we derived a complete set of full conditional distributions assuming the

prior and latent variable specification as in Section 2.3.1. We can now construct a Markov

chain Monte Carlo scheme to generate realisations from our posterior distribution: this is

a Gibbs sampler. The algorithm outline is as follows.

1. Initialise the iteration counter to t = 1.

Initialise the state of the chain, one option is as follows

• For k = 1, . . . ,K, sample λ
(0)
k

indep∼ Ga(ak, 1).

• For i = 1, . . . , n, j = 1, . . . , ni, sample z
(0)
ij

indep∼ Exp

(
ni∑
m=j

λ
(0)
xim +

∑
m∈Ui

λ
(0)
m

)
.

2. Obtain new realisations of λ(t), Z(t) from λ(t−1), Z(t−1) as follows:

• For k = 1, . . . ,K, sample

λ
(t)
k |D, Z(t−1) indep∼ Ga

ak + qk, 1 +

n∑
i=1

ni∑
j=1

δij(k)z
(t−1)
ij

 .

• For i = 1, . . . , n, j = 1, . . . , ni, sample

z
(t)
ij |D,λ(t) indep∼ Exp

 ni∑
m=j

λ(t)xim +
∑
m∈Ui

λ(t)m

 .

3. Rescale:

• Sample Λ† ∼ Ga

(
K∑
k=1

ak, 1

)
.

• Calculate Σ =
K∑
k=1

λ
(t)
k .

• For k = 1, . . . ,K, let λ
(t)
k → λ

(t)
k Λ†/Σ.

4. Set t = t+ 1 and return to step 2.

With computational efficiency in mind, we note that qk and δij(k) depend only on the

data and so remain constant throughout the Markov chain Monte Carlo scheme. These

values can therefore be computed at step 1 and reused within each iteration. We also note

that qk = n for all k if our data consists entirely of complete rankings.
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The rescaling in Step 3 follows from the discussion in Section 2.2.3 where it was noted that,

without the addition of a rescaling step, MCMC schemes for Plackett–Luce models can

suffer from poor mixing (Caron and Doucet, 2012). The idea was to rescale the parameters

so that the posterior distribution of the sum of all the K skill parameters is the same as

its prior distribution (as the data are not informative about this sum). Let Λ† =
∑K

k=1 λk

be the sum of all the K skill parameters. Then as λk
indep∼ Ga(ak, 1) for k = 1, . . . ,K

a priori it follows that the (induced) prior for Λ† is a Ga(
∑K

k=1 ak, 1) distribution. The

posterior for Λ† can therefore be kept the same as the prior by drawing a realisation of Λ†

from a Ga(
∑K

k=1 ak, 1) distribution and then multiplying the current (posterior) λ values

by a factor of Λ†/Σ, where Σ =
∑K

k=1 λ
(t)
k denotes the current (posterior) sum of the K

skill parameters.

2.4 Simulation study

In this study we perform Bayesian inference on data which are simulated (generated) under

the Plackett–Luce model. The benefit of performing inference on data simulated from the

true model is that we know the parameter values from which these data were generated.

We can therefore assess how our model performs under these conditions before performing

inference on a real world scenario. Here we consider two datasets, both of which contain

(only) complete rankings of K = 20 entities. The set of all entities is therefore given

by K = {1, . . . , 20}. Our first dataset (Dataset 1) contains n = 40 rankings which were

simulated using the process outlined in Section 2.2.5 subject to the “true” parameter

values

λ1 = 20, λk = λk−1 − 1, for k = 2, . . . ,K,

that is, λ = (20, 19, . . . , 1). Under this parameter specification entities that are indexed

by smaller numbers are more preferred; these entities are therefore more likely to feature

towards the beginning of a ranking (be assigned a low numbered rank) in comparison to

those entities indexed by large numbers. This becomes clear if we consider the notion of

an optimal ranking. The optimal ranking, denoted x̂, is defined as the ranking such that

the Plackett–Luce probability is maximised (conditional on some fixed skill parameters).

Mathematically such a ranking is given by

x̂|λ = argmax
x∈SK

Pr(X = x|λ), (2.7)

whence it should be clear that the optimal ranking is x̂ = (1, 2, . . . , 20) under our current

choice of skill parameters.
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The second dataset (Dataset 2) is comprised of n = 50 rankings, the first 40 of which are

those rankings from within Dataset 1 and the additional 10 rankings (numbered 41–50) are

random permutations of the K entities. Dataset 2 is therefore an extension of Dataset 1

and we make it clear that the rankings which are common amongst these datasets maintain

the same labels. The random permutations shall be referred to as uninformative or spam

rankings. The uninformative rankings are generated under the usual data generating

process (as in Section 2.2.5) with λk = c for k = 1, . . . ,K, where c is an arbitrary positive

constant. We note that this method of simulation is equivalent to sampling an element

uniformly at random from the set of all permutations SK . The purpose of analysing

a dataset such as this is to investigate how our posterior distribution (and therefore our

inference) is affected by these spam rankings. In some sense this is a sensitivity analysis to

determine how robust the Plackett–Luce model is to the addition of spurious rankings. The

rankings used within this study can be found within the appendices; Table B.1 contains

Dataset 1 and the additional 10 rankings which are included within Dataset 2 are provided

in Table B.2.

Before we can perform Bayesian inference on these data we must first specify suitable

prior distributions. In order to maintain conjugacy (and hence use the Gibbs sampler

outlined in Section 2.3.3) we choose independent gamma prior distributions for each of

our skill parameters as discussed in Section 2.3.1. In this scenario we also know the true

parameter values from which these data were simulated, however, we choose to perform

inference assuming we have no prior knowledge regarding the strength of each entity. We

therefore desire a prior specification such that each ranking is equally likely a priori. This

is achieved by choosing λk
indep∼ Ga(a, 1), that is, setting ak = a for k = 1, . . . ,K. Without

loss of generality we take a = 1.

2.4.1 Posterior analysis

Before we begin our investigation into the posterior distribution we shall first give some

computational details. Our MCMC algorithm was initialised using a random draw from the

prior distribution. We then proceeded to perform 11K iterations; the first 1K of which were

discarded as a burn-in period. This left us with 10K (almost) un-autocorrelated samples

from our posterior distribution. The computational time required to perform inference

on these data is approximately 1 and 1.3 seconds for Datasets 1 and 2 respectively. This

inference scheme is implemented in C and computation is performed on a single thread of

an Intel Core i7-4790S CPU (3.20GHz clock speed).

Our posterior distribution is of high dimension, namely (n × K) + K in these analyses.

Assessing convergence and mixing of each individual parameter is therefore problematic;

especially as it is easy to see that the dimension of our parameter space will increase

33



Chapter 2. Analysis of homogeneous ranked data

Iteration

Lo
g−

lik
el

ih
oo

d

0 2000 4000 6000 8000 10000

−
20

00
−

10
00

Iteration

Lo
g−

lik
el

ih
oo

d

0 2000 4000 6000 8000 10000

−
20

00
−

10
00

Figure 2.1: Trace plots of the log complete data likelihood for Datasets 1 and 2 from left to right
respectively.

significantly for larger datasets. Consequently it is desirable to obtain a method for con-

veniently assessing the convergence and mixing of a Markov chain for high dimensional

sample spaces such as this. As opposed to considering each random variable in turn we

instead propose to consider an overall summary of our random variables, namely the com-

plete data likelihood, π(Z,D|λ) = π(Z|D,λ)π(D|λ). Gelman et al. (2014) advocate this

approach to assessing convergence (especially when implementing mixture models which

we consider in Chapter 3). Figure 2.1 depicts trace plots of the log complete data like-

lihood (after burn-in) for the analyses of both Datasets 1 and 2. We observe that our

chains appear to be mixing well and furthermore each chain appears to be sampling from

its stationary distribution. Convergence (to the stationary distribution) was also veri-

fied by initialising numerous chains at different starting values and checking the posterior

distributions are equivalent (up to stochastic noise) in all cases.

Given that we are satisfied that our MCMC scheme is generating realisations from the

posterior distribution (for both analyses) we can now begin our investigation into the

inferences on our skill parameters λ. In order to ease comparison we perform (offline)

rescaling by letting λk → λk/λ20 for k = 1, . . . , 20 at each iteration of our MCMC output.

As λ20 now takes its true value we can compare our posterior marginals (for the remaining

skill parameters) relative to the true values chosen at the beginning of this study, λ =

(20, 19, . . . , 1). Figure 2.2 depicts boxplots of the marginal posterior distribution for each

log λk. The distributions corresponding to the analyses of Datasets 1 and 2 are shown

in white and red respectively. The blue crosses denote the true values from which the

(informative) rankings were simulated. We also make it clear that, due to our rescaling,

λ20 is constant and therefore omitted from the plot. Furthermore, outliers, defined as

those observations further into the tail than 1.5 times the inter quartile range (IQR) from

either the upper or lower quartiles, have also been omitted.

Under the analysis of Dataset 1 we observe that the posterior marginal distributions

typically have significant support for the true parameter values. This is not particularly

surprising given these data were simulated from the true model. There are of course some

exceptions; the marginal posterior distributions for entities 3, 5 and 16 show significant
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Figure 2.2: Boxplots summarising the marginal posterior densities for each log λk given that λ20 =
1. The densities in each case are shown in white and red for Datasets 1 and 2 respectively. The
blue crosses depict the true values from which these data were simulated (log scale).

support for larger values of λ than the values from which these data were generated. In

other words the analysis suggests these entities are “stronger” (or more preferred) than we

know they actually are. We believe this is a feature of these data and had we analysed a

larger dataset consisting of say n = 1000 rankings we would expect our marginal posteriors

to be somewhat more focussed around the true values. From the analysis of Dataset 1

we can conclude that the Plackett–Luce model (and our associated sampling scheme) are

capable of making reasonable inferences from a set of ranked data.

We now consider the analysis of Dataset 2, it is interesting to see how the introduction

of an additional 10 uninformative rankings has a significant effect on our marginal pos-

terior distributions; see Figure 2.2. In this analysis the marginal posterior distributions

often show little support for the true values from which the 40 informative rankings were

simulated. However it is worth nothing that, for this analysis at least, the model is still

able to detect a similar (downward) trend in the preference of the entities as to that un-

der the analysis of Dataset 1. The trend however does appear less significant and the

uninformative rankings seem to have induced a “flattening” effect, that is, the (relative)

differences between our marginal posterior distributions are less compelling. The result of

this is that there is more (posterior) uncertainty on the preference order of the entities.

This is perhaps not surprising given the uninformative rankings each express a random

preference and therefore our model takes this into account by increasing uncertainty.

Often the aim/purpose of analysing ranked data is to obtain a so-called aggregate rank-

ing. An aggregate ranking is a single ranking that summarises the preferences across all

rankings contained within a particular dataset; to this extent it could be interpreted as an

“average” ranking. There are numerous ways in which to obtain such a ranking. Here we

choose to form our aggregate ranking by ordering the entities based upon their marginal

posterior mean. The aggregate ranking, which we denote xagg, is therefore equivalent to

35



Chapter 2. Analysis of homogeneous ranked data

Dataset 1 Dataset 2
x̂ λ xagg

1 λ̄1 xagg
2 λ̄2

1 20.00 3 27.47 3 11.67
2 19.00 1 25.83 1 11.44
3 18.00 5 23.90 2 11.29
4 17.00 2 22.66 4 9.84
5 16.00 4 18.11 9 9.54
6 15.00 6 17.98 5 9.41
7 14.00 8 17.31 8 9.11
8 13.00 7 16.12 6 8.55
9 12.00 9 15.91 7 8.10
10 11.00 10 14.50 10 7.48
11 10.00 11 11.84 11 6.36
12 9.00 12 9.95 12 5.42
13 8.00 13 9.00 13 5.02
14 7.00 14 7.17 14 4.17
15 6.00 16 7.08 16 3.98
16 5.00 15 4.99 15 3.47
17 4.00 17 4.58 17 3.10
18 3.00 18 2.81 19 2.16
19 2.00 19 2.68 18 2.08
20 1.00 20 1.00 20 1.00

Table 2.2: Aggregate rankings under our analysis of Datasets 1 and 2 along with the corresponding
posterior means (denoted λ̄). The value of λ which was used to simulate these data is also
reproduced for ease of comparison.

the “optimal” ranking given λ̄ where λ̄ = (λ̄1, . . . , λ̄K) is the parameter vector containing

the marginal posterior means for each entity. Formally xagg = x̂|λ̄ where x̂|λ is as in

(2.7).

Table 2.2 provides the aggregate rankings for the analyses of Datasets 1 and 2 (denoted

xagg
1 and xagg

2 respectively) along with the corresponding marginal posterior means (λ̄1

and λ̄2). To ease comparison the true values from which these data were simulated along

with the “optimal” ranking based upon the true values (x̂) are also given. We observe

how the aggregate rankings under both analyses are coherent with the optimal ranking;

particularly for the entities which are ranked at least tenth. The Kendall-tau distance,

Kτ (a, b), is a measure of distance which is defined for any two orderings, a and b. The

value of the Kendall-tau distance is equivalent to the number of adjacent (bubble sort)

swaps which must be performed to b such that it becomes aligned with a. It is therefore

a useful distance to use when comparing rankings (Marden, 1995). We can compute the

Kendall-tau distance between the optimal ranking and the aggregate rankings under each

analysis giving Kτ (x̂,xagg
1 ) = 6 and Kτ (x̂,xagg

2 ) = 10. Therefore we conclude that the
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analysis of Dataset 1 results in an aggregate ranking that is, in some sense, more similar

to the true preference ordering in comparison to the equivalent summaries based upon

Dataset 2.

Another interesting feature of the posterior distributions is that although the aggregate

rankings are somewhat similar the marginal posterior means of the entities are significantly

different within each analysis; see Table 2.2 and the boxplots shown in Figure 2.2. In other

words, although λ̄1 and λ̄2 define different distributions over rankings, the modal ranking is

similar under each parameter vector. However, as the marginal posterior means (of the skill

parameters) are significantly less dispersed under the analysis of Dataset 2, this suggests an

increased level of uncertainty about an entity’s position. To summarise this uncertainty

we look at the probability of the modal ranking (xagg), calculated using the posterior

means of the skill parameters (λ̄), relative to the same probability calculated under the

uniform distribution. The probability of any (complete) ranking x under the uniform

distribution is 1/K! and so the quantity of interest is r = K! Pr(X = xagg|λ̄). The idea is

that large values of r indicate that the modal ranking has much larger (posterior) support

than a uniform ranking and so we can conclude that the ranking distribution (defined by

λ̄) is, in some sense, more concentrated around the modal ranking. In contrast, small

values of r suggest that the ranking distribution is not as concentrated around the modal

ranking and so there is more variation within the ranking distribution. In other words, the

differences between the probabilities of different rankings are much smaller. Small values

of r therefore indicate increased levels of uncertainty about the position of entities within

the ranking. Note that r = 1 corresponds to the uniform distribution over rankings and

so in this case each ranking is equally likely. For the analyses considered here we obtain

r1 = 103625 and r2 = 12364 for Datasets 1 and 2, and so the probability of the aggregate

ranking under the analysis of Dataset 1 is over one hundred thousand times larger than

the probability of a uniform ranking, with this reducing to around twelve thousand times

for the analysis of Dataset 2. It follows that, although the aggregate rankings under

both analyses are similar there is much more posterior support for the aggregate ranking

under the analysis of Dataset 1. This again highlights how the uninformative rankings in

Dataset 2 have weakened our inferences on the skill parameters.

To conclude, this study has shown how outlying rankings can have a significant effect on

our posterior distribution. This is a feature of our model which is not particularly desirable.

A more robust model would be one which was more flexible and had the capability to allow

for potential heterogeneity between the strength of particular rankings. In the next section

we shall detail an extension of the Plackett–Luce model which allows us to account for

such potential heterogeneity.
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2.5 The Weighted Plackett–Luce model

We have alluded to and indeed shown through our simulation study in Section 2.4 that con-

taminating our data with random permutations can have a significant effect on posterior

beliefs. This is a feature of the Plackett–Luce model which is not particularly desirable.

Ideally we would like a model where our posterior inferences are not significantly affected

by a few spurious rankings/observations. In this section we describe a novel extension to

the standard Plackett–Luce model which aims to allow for potential heterogeneity between

the amount of information contained within particular rankings.

Before outlining such a model it is natural to recast this problem in terms of ranker

reliability. From the form of the Plackett–Luce likelihood (2.3) it is clear how each ranking

makes an equally weighted contribution to the overall likelihood. In other words the

model considers each ranker to be equally informative/reliable. This is a rather strong

assumption. It is easy to conceive of a scenario in which some rankers are significantly

more informed about the entities they are ranking compared to other rankers. In the

remainder of this section we propose an extension to the Plackett–Luce model so that

rankings no longer make an equal contribution to the overall likelihood. The resulting

model is one which enables some rankings to have a larger influence over our parameter

inferences than others, and so allows for potential heterogeneity between the ability of

rankers.

We choose to model this potential heterogeneity between rankings via a mixture model

with two components: one for “informative rankings” and the other for “uninformative

rankings”. The mixture model is defined using latent binary indicator variablesWi ∈ {0, 1}
for i = 1, . . . , n. We let Wi = 0 if ranking i is uninformative and Wi = 1 otherwise. The

probability of a particular ranking (conditional on the skill parameters and the latent

binary indicator variable) under this “Weighted Plackett–Luce model” is

Pr(Xi = xi|λ,Wi = wi) =

ni∏
j=1

λwixij∑ni
m=j λ

wi
xim +

∑
m∈Ui λ

wi
m
, (2.8)

whence for an informative ranking (wi = 1) we recover (2.2), the standard Plackett–Luce

probability. However, for an uninformative ranking (wi = 0) we have

Pr(Xi = xi|λ,Wi = 0) =

ni∏
j=1

λ0xij∑ni
m=j λ

0
xim +

∑
m∈Ui λ

0
m

,

=
(Ki − ni)!

Ki!
,

=
1

P (Ki, ni)
, (2.9)
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that is, the reciprocal of the number of ordered permutations of ni entities from a set

of size Ki. The implication of a ranking being deemed uninformative under this model

results in its contribution to the likelihood being constant regardless of the values of the

skill parameters – this should be clear as Pr(Xi = xi|λ,Wi = 0) does not depend on λ.

Therefore Wi = 0 corresponds to there being no information in ranking i: essentially

ranker i has picked xi uniformly at random from all possible rankings of ni out of Ki

entities. We write this probability model using the notation Xi|λ, wi ∼ PLW(λ, wi).

At first glance taking wi to be binary may appear to be fairly restrictive as, with wi = 0,

the Weighted Plackett–Luce model assumes that the entire ranking xi is completely un-

informative. To allow more flexibility we did consider allowing each ranker to have a

different binary variable in each position of their ranking by introducing position depen-

dent binary indicators wij for i = 1, . . . , n, j = 1, . . . , ni. However, we judged that this

would introduce far too many parameters and lead to identifiability issues, particularly

when we consider clustering rankers and entities in Chapters 3 and 4. We also considered

allowing the weight parameters wi to be continuous, such as in the unit interval. However

this too is problematic as it not only renders the weights uninterpretable (in terms of

ranker reliability) but also introduces problems of identifiability. To see this problem it is

useful to consider a simple example. We begin by noting that the Weighted Plackett–Luce

probability is simply the standard Plackett–Luce probability evaluated at the skill param-

eters λwi , and so the probabilities of different entity rankings for ranker i are described

by the PL(λwi) distribution. Now consider two rankers i and j and let the skill parameter

vector be λ. Suppose these rankers have weight parameters wi = 0.8 and wj = 0.5 and

so here the ranking distributions are PL(λwi=0.8) and PL(λwj=0.5). However equivalent

ranking distributions (and hence the same weighted Plackett–Luce likelihood) could be

obtained by using λ∗ = λ0.8, with wi = 1 and wj = 0.5/0.8 = 0.625. This simple example

shows an identifiability problem for (λ,w). Also, the value of wi is not meaningful as

ranker i would be classed as fairly informative in the λ setting but extremely informative

in the λ∗ setting. These issues do not occur if we choose wi to be binary. Also this choice

has the benefit that wi = 1 recovers the standard Plackett–Luce distribution and wi = 0

is meaningful in that it represents a uniform ranking distribution.

It is also clear that the Weighted Plackett–Luce (WPL) model (2.8) differs from the model

proposed by Benter (1994). The WPL model considers ranker-specific weights (wi, for

i = 1, . . . , n) to allow for potential heterogeneity between rankers’ abilities, whereas the

Benter model considers position dependent “weight” parameters (wj , for j = 1, . . . ,K)

that are common across all rankers and represent the “importance” of each stage in the

ranking process. In theory it would also be possible to introduce both sets of weight

parameters and hence consider a Weighted Benter model. However this is likely to give

rise to identifiably issues and so this model is not considered any further within this thesis.
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2.5.1 Simulating data from the Weighted Plackett–Luce model

Our underlying probability model has changed as a result of introducing binary indicator

variables to reflect the (latent) ability of rankers. It follows that the data generating

mechanism must also be adapted to allow for this additional (potential) heterogeneity.

We generalise the well-known exponential latent variable representation of the standard

Plackett–Luce model and, conditional on the skill parameters λ and the indicator variable

w ∈ {0, 1}, the corresponding latent arrival times under the Weighted Plackett–Luce model

are

νj
indep∼ Exp(λwj ), (2.10)

for j = 1, . . . ,K.

A complete ranking x can then be simulated from under the Weighted Plackett–Luce

model as outlined in Section 2.2.5 where νj is instead drawn from (2.10) in step 1. We

also note that, although Dataset 2 from the previous simulation study (Section 2.4) was

simulated from under the standard Plackett–Luce model, these data follow the underlying

ranking distribution defined by the Weighted Plackett–Luce model with λ = (20, 19, . . . , 1)

and wi = 1 for i = 1, . . . , 40; wi = 0 for i = 41, . . . , 50.

2.6 Bayesian inference

Bayesian inference for the parameters in the Weighted Plackett–Luce model is achieved in

a similar manner to that for the standard Plackett–Luce model (see Section 2.3). However,

here we assume that the latent binary indicators are unknown (note that we essentially

assumed wi = 1 ∀ i for the standard Plackett–Luce model). It follows that we have

additional random quantities in the model, namely w = {wi}ni=1, which are also to be

inferred from the data. As with the standard Plackett–Luce model, the likelihood is

formed by taking the product of the respective probabilities for each of the n rankings,

and so

π(D|λ,w) =
n∏
i=1

ni∏
j=1

λwixij∑ni
m=j λ

wi
xim +

∑
m∈Ui λ

wi
m
, (2.11)

where D = {xi}ni=1 denotes the collection of all rankings.

Again, as with the standard Plackett–Luce model, a maximum likelihood approach could

be implemented if desired. For this model we would of course have to make appropriate

adaptations to the optimisation schemes within the literature to allow for our additional

latent indicator variables. However here we proceed within the Bayesian framework, define

a suitable prior distribution and apply Bayes’ Theorem to obtain our posterior distribution.
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2.6.1 Prior specification and latent variables

We elect to take the same prior specification for our skill parameters as in Section 2.3.1

for the reasons discussed therein. However, for this model we must also specify a suitable

prior distribution over our latent binary indicator variables w. As wi ∈ {0, 1} we choose

wi
indep∼ Bern(pi) where pi ∈ (0, 1] is the probability that ranking i is informative a priori.

Note that we omit the choice of pi = 0 as this implies that Pr(wi = 0|D) = 1; whence

the likelihood of ranking i is constant irrespective of λ. The contribution to the likeli-

hood from ranking i can therefore be absorbed into the constant of proportionality when

applying Bayes’ Theorem. It follows that, if we truly believe a ranking is uninformative

(with probability 1) it is sufficient to simply omit this ranking from our analysis. If defin-

ing probabilities pi a priori is not desired then a hierarchical model structure could be

constructed; given that pi is a probability, a Beta distribution would be a sensible choice

however this is not considered here. Our complete model specification is therefore

Xi|λ,w indep∼ PLW(λ, wi) i = 1, . . . , n,

λk
indep∼ Ga(ak, 1) k = 1, . . . ,K,

wi
indep∼ Bern(pi) i = 1, . . . , n.

As with the standard Plackett–Luce model, it is possible to augment our sample space

so that a conjugate update for our skill parameters λ can be achieved. The form of the

likelihood has changed since we introduced our latent ranker weights and we must therefore

also modify our latent variable specification. The appropriate latent variables to introduce

for this model are

zij |D,λ,w indep∼ Exp

 ni∑
m=j

λwixim +
∑
m∈Ui

λwim

 , (2.12)

for i = 1, . . . , n and j = 1, . . . , ni.
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2.6.2 Full conditional distributions

Again we proceed to derive the full conditional distributions for each of our random vari-

ables by first constructing the density of all stochastic quantities. This is given by

π(λ,D, Z,w) = π(Z|D,λ,w)π(D|λ,w)π(λ)π(w)

=
n∏
i=1

ni∏
j=1

 ni∑
m=j

λwixim +
∑
m∈Ui

λwim

 exp

−zij
 ni∑
m=j

λwixim +
∑
m∈Ui

λwim


×

n∏
i=1

ni∏
j=1

λwixij∑ni
m=j λ

wi
xim +

∑
m∈Ui λ

wi
m
×

K∏
k=1

λak−1k e−λk

Γ(ak)
×

n∏
i=1

pwii (1− pi)1−wi

=
K∏
k=1

λak−1k e−λk

Γ(ak)
×

n∏
i=1

pwii (1− pi)1−wi

×
n∏
i=1

ni∏
j=1

λwixij exp

−zij
 ni∑
m=j

λwixim +
∑
m∈Ui

λwim

 . (2.13)

Unsurprisingly, given that the latent variables introduced are defined through their full

conditional distributions, we observe from (2.13) that the FCD for the zij is as in (2.12)

for i = 1, . . . , n, j = 1, . . . , ni.

The full conditional distribution for λ is

π(λ|D, Z,w) ∝
K∏
k=1

λak−1k e−λk
n∏
i=1

ni∏
j=1

λwixij exp

−zij
 ni∑
m=j

λwixim +
∑
m∈Ui

λwim


=

K∏
k=1

λak+q̃k−1k exp

−
1 +

n∑
i=1

wi

ni∑
j=1

δij(k)zij

λk

 ,

where

q̃k =
n∑
i=1

wi I(k ∈ {xi}),

is the number of times entity k appears in an informative ranking. As in our previous

analysis δij(k) is an indicator variable over the event that entity k receives a rank no better

than j in ranking i and is given by (2.6). From this we can obtain the FCDs for our skill

parameters as

λk|D, Z,w
indep∼ Ga

ak + q̃k, 1 +
n∑
i=1

wi

ni∑
j=1

δij(k)zij

 , for k = 1, . . . ,K.
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The Weighted Plackett–Luce model also contains the additional binary indicator vari-

ables. These variables follow a discrete distribution with two components. Let w−i =

(w1, . . . , wi−1, wi+1, . . . , wn) denote the vector which contains all the indicator values ex-

cept that associated with ranker i. It follows that

Pr(wi = 1|D,λ, Z,w−i) ∝ Pr(wi = 1)π(Z|wi = 1,D,λ,w−i) Pr(D|wi = 1,λ,w−i)

= pi

n∏
i=1

ni∏
j=1

λxij exp

−zij
 ni∑
m=j

λxim +
∑
m∈Ui

λm


∝ pi

ni∏
j=1

λxij exp

−zij
 ni∑
m=j

λxim +
∑
m∈Ui

λm

 ,

and

Pr(wi = 0|D,λ, Z,w−i) ∝ Pr(wi = 0)π(Z|wi = 0,D,λ,w−i) Pr(D|wi = 0,λ,w−i)

= (1− pi)
n∏
i=1

ni∏
j=1

λ0xij exp

−zij
 ni∑
m=j

λ0xim +
∑
m∈Ui

λ0m


∝ (1− pi)

ni∏
j=1

exp

−zij
 ni∑
m=j

1 +
∑
m∈Ui

1


= (1− pi)

ni∏
j=1

exp {−zij(Ki − j + 1)} .

Hence the (discrete) full conditional distribution for wi is

wi|D,λ, Z indep∼ Bern(ρi),

where

ρi =
Pr(wi = 1|D,λ, Z,w−i)

Pr(wi = 1|D,λ, Z,w−i) + Pr(wi = 0|D,λ, Z,w−i)
, (2.14)

is the probability that ranking i is informative (given the other quantities).

2.6.3 MCMC - Gibbs sampling via latent variables

In the previous section we derived a complete set of full conditional distributions for each

random quantity within our model. As with the standard Plackett–Luce model we are

able to implement a Gibbs sampler to generate realisations from our posterior distribution.

For brevity and clarity of reading we omit the iteration counter t when outlining this

algorithm. However, the updates proceed in the same manner as the algorithm outlined
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in Section 2.3.3. The algorithm proceeds as follows.

1. Initialise the state of the chain. One possibility is as follows.

• For k = 1, . . . ,K, sample λk
indep∼ Ga(ak, 1).

• For i = 1, . . . , n, sample wi
indep∼ Bern(pi).

• For i = 1, . . . , n, j = 1, . . . , ni, sample

zij |λ,w indep∼ Exp

 ni∑
m=j

λwixim +
∑
m∈Ui

λwim

 .

2. Update the state of the chain by repeatedly performing the following steps.

• For k = 1, . . . ,K, sample

λk|D, Z,w
indep∼ Ga

ak + q̃k, 1 +
n∑
i=1

wi

ni∑
j=1

δij(k)zij

 .

• For i = 1, . . . , n, j = 1, . . . , ni, sample

zij |D,λ,w indep∼ Exp

 ni∑
m=j

λwixim +
∑
m∈Ui

λwim

 .

• For i = 1, . . . , n, sample

wi|D,λ, Z indep∼ Bern(ρi),

where ρi is given by (2.14).

• Rescale:

– Sample Λ† ∼ Ga

(
K∑
k=1

ak, 1

)
.

– Calculate Σ =
K∑
k=1

λk.

– For k = 1, . . . ,K, let λk → λk Λ†/Σ.

We note here that, unlike in the standard Plackett–Luce analysis, q̃k is no longer a func-

tion of the data alone. The value now depends on the random variables w and so the

computation of q̃k is required at each iteration of our MCMC scheme; specifically after

new realisations of wi have been drawn. On the other hand, the indicators δij(k) remain

only a function of the data and therefore can be computed at step 1 and used throughout

the MCMC scheme.
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2.7 Simulation study

In this study we perform Bayesian inference assuming our rankings follow the Weighted

Plackett–Luce model. Primarily we focus on whether this model is able to (correctly)

identify uninformative rankings contained within a given dataset. In our previous study

(Section 2.4) we observed how our posterior beliefs were significantly altered by the con-

tamination of our dataset with random permutations. With this in mind it will be inter-

esting to see how our Weighted Plackett–Luce model performs given it has the flexibility

to down-weight the influence of particular rankings on our parameter inference.

Given these aims we revisit a dataset from our previous simulation study on the standard

Plackett–Luce model; namely Dataset 2 from Section 2.4. Recall that Dataset 2 contains

n = 50 complete rankings of K = 20 entities. Forty of the rankings (1–40) are informative

and thus follow the Weighted Plackett-Luce model subject to wi = 1. The remaining

rankings (41–50) are uninformative rankings, that is, random permutations of the K

entities. These are considered to follow the Weighted Plackett-Luce model subject to

wi = 0. We also remind the reader that the optimal ranking, that is, the ranking which

maximises the Plackett–Luce probability, is x̂ = (1, 2, . . . , 20) under the parameters used

to simulate these data. Note that, strictly speaking, these data were not generated from

the data generating process for the Weighted Plackett–Luce model. However as discussed

within Section 2.5.1 the process used to generate Dataset 2 is equivalent to using the

data generating process for the Weighted Plackett–Luce model subject to the choice of

λ = (20, 19, . . . , 1), wi = 1 for i = 1, . . . , 40 and wi = 0 for i = 41, . . . , 50.

Within this study we choose to use the prior specification as outlined in Section 2.6.1,

that is, independent Gamma prior distributions on our skill parameters and independent

Bernoulli distributions on our latent ranker weights. Furthermore we also wish to make

the same assumption regarding our skill parameters as in our previous analysis; namely

that each ranking is equally likely a priori. Given this we let ak = a = 1 for k = 1, . . . ,K,

which gives λk
indep∼ Ga(1, 1). We shall now consider two separate analyses of these data,

each of which has an alternative prior specification on our latent binary indicator variables.

In Analysis 1 we choose to assume that each ranking is equally likely to be informative as

it is uninformative; hence pi = 0.5. We note that this choice is not in line with these data

as the true proportion of informative rankings within this dataset is 40/50 = 0.8. Thus

we let pi = 0.8 a priori in Analysis 2.

2.7.1 Posterior analysis

Realisations from our posterior distribution (for both analyses) are obtained by imple-

menting the Gibbs sampler detailed in Section 2.6.3. For each analysis the Markov chain
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Figure 2.3: Trace plots of the log complete data likelihood for Analyses 1 and 2 (pi = 0.5, 0.8)
from left to right respectively.

is initialised at a random draw from the prior distribution. Each chain runs for 11K it-

erations; the first 1K of which are discarded as burn-in. This results in 10K (almost)

un-autocorrelated realisations from our posterior distribution. As for previous analyses

our inference scheme is implemented in C and computation is performed on a single thread

of an Intel Core i7-4790S CPU (3.20GHz clock speed). The computational time required

to perform inference on these data is approximately 1.9 seconds for both analyses. The

mixing of our MCMC chains is assessed by inspecting the trace plots of the log complete

data likelihood; see Figure 2.3. From this we observe that our chains appear to be mixing

well over the sample space of the random quantities. Convergence has been verified by

initialising each chain at numerous starting values and checking the posterior realisations

are equivalent (up to stochastic noise) in all cases.

We begin our investigation into the posterior distribution by summarising the marginal

posterior distributions for each of our ranker weights wi. Figure 2.4 depicts the posterior

probability that each ranker is informative, that is, Pr(wi = 1|D). This probability is

obtained by taking the posterior mean of ρi and not simply the posterior expectation

of wi. Our probability is therefore a result of a Rao–Blackwellized estimator which typically

provide us with a better estimate than simply taking the (posterior) mean of wi (Casella

and Robert, 1996). The Kendall-tau distance, Kτ (x̂,xi), between each of our simulated

rankings and the optimal ranking is also given in Figure 2.4. We observe that, with the

exception of ranking 42, all the uninformative rankings (41–50) receive a lower posterior

probability of being informative than specified a priori under each respective analysis.

As expected these rankings are also those which typically have a larger distance from the

optimal ranking. It is encouraging to see that those rankings which are informative (1–

40) almost always obtain large posterior probabilities of being informative, particularly

under Analysis 2 where pi = 0.8. That said, the posterior probabilities for (informative)

ranker 8 are not close to 1 in either analysis. Closer inspection of this ranking reveals

that it is somewhat atypical of this dataset: entities 2 and 4 both appear within the

bottom 5 positions and entities 13, 11 and 10 all feature within the top 5 positions. These

features are somewhat at odds with the true parameter values from which these data were
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respectively. The blue crosses depict the true values, λk, from which these data were simulated.

simulated. Therefore it appears that the Weighted Plackett–Luce model is able to correctly

identify those rankings which are somewhat spurious and down-weight their contribution

to the likelihood appropriately.

Figure 2.5 depicts boxplots of the marginal posterior distribution of log λk for Analyses 1

and 2 (shown in white and red respectively). As in our analyses under the standard

Plackett–Luce model we have rescaled our posterior realisations so that λ20 takes its true

value, that is, set λk → λk/λ20. It is clear that the posterior marginal distributions

are comparable across the two analyses; this does not come as a surprise given that

the posterior probabilities of each ranker being informative are similar under both prior

specifications. Furthermore the preference ordering of the entities has also been identified

by the model; this is clearly seen through the downward trend in Figure 2.5 as k increases.

Interestingly when we compare the marginal posterior distributions of the skill parame-

ters under the Weighted Plackett–Luce model to those under the analysis of Dataset 1

assuming the standard Plackett–Luce model we see significant similarities; see Figure 2.6.
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Figure 2.6: Boxplots summarising the marginal posterior densities for each log λk given that λ20 =
1. The boxplots in each case are shown in white for Analysis 1 under our Weighted Plackett–Luce
model and in red for the analysis of Dataset 1 under the standard Plackett–Luce model. The blue
crosses depict the true values, λk, from which these data were simulated.

It is evident that by adopting the Weighted Plackett–Luce model our posterior distribu-

tion is significantly less affected by the incorporation of uninformative rankings within

our dataset. This becomes somewhat more clear if we consider the posterior aggregate

rankings. Table 2.3 provides the aggregate rankings for the analyses of Dataset 2 un-

der both prior specifications for our Weighted Plackett–Luce model; denoted xagg
3 and

xagg
4 respectively. The corresponding marginal posterior means, λ̄3 and λ̄4, upon which

these aggregates are formed are also given. To ease comparison the aggregate rankings

(xagg
1 , xagg

2 ) and the corresponding marginal posterior means (λ̄1, λ̄2) for the analyses

of Datasets 1 and 2 under the standard Plackett–Luce model are also reproduced here.

The true values from which these data were simulated along with the “optimal” rank-

ing based upon the true values also feature in Table 2.3. Considering our two separate

analyses under the Weighted Plackett–Luce model we observe how the aggregate rankings

are equivalent under both prior specifications. Furthermore this aggregate ranking is also

equivalent to that formed from the analysis of Dataset 1 under the standard Plackett–Luce

model, that is, the analysis containing no spam rankings. This is particularly interesting

as it shows how the effect of the spam rankings on our posterior beliefs has been negated

by introducing our binary indicators into the Plackett–Luce probability.

In Section 2.4.1 we noted that it can be useful to look at the relative probability of the

aggregate ranking in comparison to a uniform ranking (r = K! Pr(X = xagg|λ̄)) for each

analysis. This quantity provides insight into how concentrated the ranking distribution

is around the (posterior) modal ranking. Table 2.3 provides the ri for each analysis con-

sidered here, along with those for the analyses of Datasets 1 and 2 under the standard

Plackett–Luce model. We observe that the values of the ri under each of the Weighted

Plackett–Luce analyses are similar to that for the analysis of Dataset 1 under the stan-

dard PL model. Again this highlights how adopting the Weighted Plackett–Luce model
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PLW PL
pi = 0.5 pi = 0.8

Dataset 2 Dataset 2 Dataset 1 Dataset 2
x̂ λ xagg

3 λ̄3 xagg
4 λ̄4 xagg

1 λ̄1 xagg
2 λ̄2

1 20.00 3 28.83 3 25.55 3 27.47 3 11.67
2 19.00 1 24.60 1 22.41 1 25.83 1 11.44
3 18.00 5 24.19 5 21.96 5 23.90 2 11.29
4 17.00 2 23.40 2 21.43 2 22.66 4 9.84
5 16.00 4 19.35 4 17.32 4 18.11 9 9.54
6 15.00 6 17.73 6 16.19 6 17.98 5 9.41
7 14.00 8 17.62 8 16.17 8 17.31 8 9.11
8 13.00 7 15.93 7 14.70 7 16.12 6 8.55
9 12.00 9 15.31 9 14.46 9 15.91 7 8.10
10 11.00 10 14.06 10 13.40 10 14.50 10 7.48
11 10.00 11 11.37 11 10.44 11 11.84 11 6.36
12 9.00 12 9.71 12 9.08 12 9.95 12 5.42
13 8.00 13 8.16 13 7.63 13 9.00 13 5.02
14 7.00 14 6.91 14 6.57 14 7.17 14 4.17
15 6.00 16 6.88 16 6.42 16 7.08 16 3.98
16 5.00 15 4.93 15 4.74 15 4.99 15 3.47
17 4.00 17 4.38 17 4.19 17 4.58 17 3.10
18 3.00 18 2.71 18 2.62 18 2.81 19 2.16
19 2.00 19 2.52 19 2.54 19 2.68 18 2.08
20 1.00 20 1.00 20 1.00 20 1.00 20 1.00

ri 129768 93809 103625 12364

Table 2.3: Aggregate rankings under the Weighted Plackett–Luce model for the analysis of
Dataset 2 (for both analyses pi = 0.5, 0.8) along with the corresponding posterior means. To
ease comparison, the results from Table 2.2 (standard Plackett–Luce analyses) are also given. The
table also contains the relative probability of the aggregate rankings in comparison to a uniform
ranking, ri = K! Pr(X = xagg

i |λ̄i).

results in our posterior distribution being significantly less affected by the inclusion of

uninformative rankings within the dataset.
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2.8 Summary

This chapter has outlined the Plackett–Luce model and discussed the underlying assump-

tions along with some of its limitations. Identifiability issues, and several possible so-

lutions, were described with our preferred method of resolving this being to employ a

suitable rescaling strategy within our posterior sampling algorithm. The Plackett–Luce

probability was extended to deal with a much richer class of rankings (top and top partial

rankings). By appealing to data augmentation techniques, an efficient Gibbs sampling

strategy was made possible (subject to certain prior specifications) and a detailed outline

of the algorithm to sample from the posterior distribution was given.

Numerous simulation studies were considered which revealed how, under the standard

Plackett–Luce model, our (posterior) inferences can be substantially different if the data

contain unusual (spam) rankings. This is an undesirable feature of the model and therefore

in Section 2.5 we proposed the Weighted Plackett–Luce model which allows for the notion

of ranker reliability through a latent binary indicator. We saw through simulation studies

how inferences under the Weighted Plackett–Luce model are more robust to the addition

of spam rankings. Moreover our model was able to correctly identify those rankings that

were in some sense unusual.

Although the Weighted Plackett–Luce model allows for a certain level of ranker hetero-

geneity – namely that a small group of rankers that appear to have an alternative pref-

erence can be down weighted – the model is not sufficient to effectively handle a scenario

where numerous groups of rankers express different preferences. It follows that even when

modelling rankings using the Weighted Plackett–Luce model, we must still make the un-

derlying assumption that all rankers share similar beliefs/preferences about the entities

they are ranking. We believe however that this assumption is perhaps implausible in real

world scenarios and in the next chapter we build more flexible models which allow for the

assumption of homogeneous beliefs to be relaxed.
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Analysis of heterogeneous ranked

data

3.1 Introduction

Until now we have assumed that a single parameter vector λ is sufficient to summarise the

beliefs of all rankers contributing to a dataset. Further we have also made the assumption

that each skill parameter λk (k = 1, . . . ,K) is unique. We now suppose that there may

be groups of rankers, each group with their own beliefs about the true preference ordering

of the entities. To implement this structure each ranker has their own parameter vector

λi. However, all rankers within the same ranker group share the same beliefs about the

entities, and so all rankers within the group have the same skill parameter values. We

further propose that particular ranker groups may not be able to distinguish between

certain entities, that is, there may be group structure in the entities in the ranker groups.

To allow for this we require the possibility that values within each parameter vector λi

are not necessarily unique. We appeal to Bayesian non-parametric clustering methods

to implement this structure, specifically by using Dirichlet processes. First however, we

review methods for finite mixtures.

3.2 Finite mixture models

A common approach when analysing heterogeneous data is to appeal to mixture models.

This rich class of models allow us to infer subgroups contained within data without (prior)

information on subgroup membership of individual observations. A subgroup can be

thought of as a cluster of individual observations which form a “homogeneous” group.

Individual observations within each subgroup are assumed to follow the same underlying
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distribution.

The simplest models within this class are finite mixture models; see, for example, Everitt

and Hand (1981) and Lindsay (1995). Note that, for ease of notation and exposition, we

write f(·|·) for a density (or probability) function (depending on whether the quantity is

continuous or discrete) but simply refer to these functions as densities. In finite mixture

models the parametric density that defines the model, denoted f(x), is comprised of a

fixed (finite) number N of mixture components. More formally we say a density f(x) is

an N -component mixture if it takes the form

f(x|ψ,λ) =

N∑
c=1

ψcfc(x|λc) (3.1)

where f1(x), . . . , fN (x) are component densities and the ψc are mixture weights for each

component. Each component density is also parameterised by a unique value λc. In order

for this density to be well defined the following constraints must hold: (a) the component

densities fc(x|λc) must all be valid density functions, that is, we require fc(x|λc) ≥ 0 for all

x and
∫
fc(x|λc) dx = 1 for c = 1, . . . , N , and (b) the mixture weights ψc must lie on the

(N − 1)–dimensional simplex, that is, ψc ≥ 0 for c = 1, . . . , N and
∑

c ψc = 1. Assuming

these conditions hold this mixture distribution is defined for any choice of component

densities be they continuous or discrete. In practice however these densities are often

chosen from the same family.

If we have n observations, denoted x = (x1, . . . , xn), the (observed data) likelihood is

π(x|ψ,λ) =

n∏
i=1

{
N∑
c=1

ψcfc(xi|λc)
}
, (3.2)

which, in general, is very complicated. It is however possible to make the form of the

likelihood substantially more straightforward by appealing to data augmentation methods

– specifically by introducing latent component/cluster indicator variables which we now

discuss.

A common approach when implementing mixture models is to introduce latent cluster

indicator variables, here denoted c = (c1, . . . , cn), where ci = j denotes that observation i

belongs to component/cluster j. Conditional on the latent cluster indicator variables, the

model is simplified significantly as the conditional density for observation xi is simply

fci(xi|λci). These random (unobserved) variables follow a categorical distribution defined

as Pr(ci = c) = ψc for i = 1, . . . , n, c = 1, . . . , N and denoted ci|ψ ∼ Cat(ψ). Therefore the

joint (complete data) likelihood of the data x and the latent cluster indicator variables c
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is

π(x, c|ψ,λ) =
n∏
i=1

ψcifci(xi|λci),

as, given the parameters λ,ψ, the pairs (xi, ci) are independent. This form of the like-

lihood is substantially more straightforward than (3.2) and is the reason latent cluster

indicators are typically introduced when fitting mixture models.

It follows that Bayesian implementations of finite mixture models, given the latent indi-

cators, are generally of the form

Xi|λ, ci,ψ ∼ fci(xi|λci)
ci|ψ ∼ Cat(ψ) (3.3)

ψ ∼ Dir(α)

where i = 1, . . . , n, and Dir(α) denotes the Dirichlet distribution with concentration pa-

rameters α = (α1, . . . , αN ) where αi > 0. Note that in the model definition above the

mixture components (and the latent cluster indicators) are exchangeable, that is, they can

be arbitrarily relabelled while maintaining the equivalent model specification (Stephens,

2000). Therefore, within an inference context, it is perhaps not sensible to favour a

particular mixture component a priori. This is achieved by choosing the concentration

parameters to be αi = α = 1 which gives ψ ∼ Dir(1), that is, the mixture component

weights ψ follow a uniform distribution over the (N − 1)–dimensional simplex.

Naturally we could choose to form an N–component mixture of Plackett–Luce models by

letting the component distributions be of Plackett–Luce form, with Xi|Λ, ci ∼ PL(λci)

where λc = (λc1, . . . , λcK) is the parameter vector associated with component (clus-

ter) c and Λ = {λc}Nc=1 is the collection of all such parameter vectors. Indeed Gormley

and Murphy (2008a,b, 2009) and Mollica and Tardella (2014) propose finite mixtures of

Plackett–Luce and related models to allow for differing preferences between rankers. This

approach was also taken by Vitelli et al. (2018) but instead they chose a distance based

model, namely that of Mallows (1957). Of course, this approach could be trivially ex-

tended to form an N–component mixture of Weighted Plackett–Luce models by letting

Xi|Λ, ci ∼ PLW(λci ,w). Under this setting the ranker weights w would be common across

all components with only the parameter vector λ being cluster specific. In some sense the

models described in Chapter 2 could be considered to be a trivial case within the (finite)

mixture model framework, with N = 1 mixture components, that is, a single homogeneous

subgroup which contains the entire population of rankers.

Although finite mixture models give the flexibility to model heterogeneous data, specifying

an appropriate form of such a model is a non-trivial task. One of the main issues that
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arises when fitting finite mixture models is the constraint that a fixed number of mixture

components must be chosen a priori. This requires the analyst to decide how many

subgroups are contained within a population before performing their analysis. In an

attempt to overcome this issue many choose instead to fit numerous models, each with

differing numbers of components, and then appeal to model selection techniques (such as

Akaike information criterion (AIC) or Bayesian information criterion (BIC)) to determine

which model best fits the data. This solution however comes at the cost of performing

numerous analyses. The analyst is still also required to choose the (different) number of

components to consider. Ideally the mixture model would be defined so that the number

of components is not fixed a priori and instead allows the number of components to

be inferred using, for example, reversible jump methods (Richardson and Green, 1997).

Alternatively we can appeal to a more flexible class of models, namely infinite mixture

models. As the name suggests infinite mixture models contain an “infinite” number of

components and thus the underlying density f(x|ψ,λ) can be thought of as the limiting

case as N → ∞ of a finite mixture (3.1). Note that an “infinite” number of components

only exists in theory and in practice the number of non-empty components can be at

most the number of observations. Given the form of a finite mixture model (3.3) it is

clear that we require an infinite dimensional Dirichlet distribution in order to define an

infinite mixture model. The generalised version (to infinite dimension) of the Dirichlet

distribution is the Dirichlet process – this the topic of the next section.

3.3 The Dirichlet process

In the previous section we discussed the need to increase modelling flexibility and relax

the requirement of a fixed number of components a priori by appealing to infinite mixture

models. Such models allow for full generality and furthermore allow the number of mixture

components to be inferred from the data. By their nature, infinite mixture models induce

an infinite dimensional parameter space and thus fall within the area of Bayesian non-

parametrics (Hjort et al., 2010).

The Dirichlet process is a conjugate prior for infinite dimensional categorical distributions

– a generalisation (to infinite dimension) of the result that the Dirichlet distribution is a

conjugate prior for the categorical (multinomial) distribution. We now provide an overview

and describe the common representations of the Dirichlet process before considering in-

finite mixture models. The overview provided here is somewhat brief and we refer the

reader to either Ferguson (1973) and Antoniak (1974) or the more recent book by Hjort

et al. (2010) for further details on the underlying measure theory for Dirichlet processes.

We use the notation G ∼ DP(α,G0) to denote that a distribution G follows a Dirichlet
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process, where α and G0 denote the concentration parameter and base distribution respec-

tively. As the name suggests G0 is a distribution itself and can be a continuous or discrete

distribution. A realisation from a Dirichlet process however is almost surely a discrete

distribution regardless of the form of G0. The realisations (distributions) are drawn from

around the base distribution in a conceptually similar way to how realisations from the

Normal distribution are draws from around the mean. Further the expectation of a Dirich-

let process is also the base distribution, that is, E(G) = G0. The concentration parameter

controls the deviation of realisations from the base distribution, and in that sense behaves

similarly to a (inverse) standard deviation, and so, not surprisingly, G → G0 as α → ∞,

that is, realisations get increasingly similar to the base distribution as the concentration

parameter increases. As α→ 0, the realisations G are discrete distributions concentrated

at a single point mass. It follows that the probability of two distinct components (of G)

being equal, Pr(λi = λj) for i 6= j, tends to 0 as α → ∞ (assuming G0 is continuous)

whereas Pr(λi = λj) → 1 as α → 0. Figure 3.1 illustrates this by depicting (on each

row) three independent realisations from a Dirichlet process with α = 1, 5, 10, 50, 100 from

top to bottom respectively. The base distribution chosen in this case is G0 = N(0, 1).

We observe that for the smaller values of α our (discrete distribution) realisations G are

defined over fewer atoms with some having large mass. It follows that (theoretically)

if α = 0 we would have a single point mass at some value λ ∈ R. For larger values of α

we observe that the realisations (distributions) have increasingly more unique atoms, each

having relatively small weight. In theory if α =∞ then this distribution would be defined

over infinitely many atoms each of which has mass 0, that is, the distribution would be

G0 = N(0, 1). The convergence of G to the base distribution as α increases is perhaps

more easily seen through Figure 3.2 which shows the empirical cumulative distribution

function (CDF) for each of the respective realisations shown within Figure 3.1. It is clear

that as α increases, the CDF of these realisations becomes more like that of a N(0, 1)

distribution, that is, G→ G0 as α→∞.

As the Dirichlet process is a distribution over distributions, its structure is somewhat

difficult to visualise. Sethuraman (1994) has shown that each Dirichlet process has a

corresponding stick-breaking representation: writing G ∼ DP(α,G0) is equivalent to

G(·) =
∞∑
j=1

ψjδλj (·) (3.4)

ψj = vj
∏
`<j

(1− v`)

vj
indep∼ Beta(1, α)

λj
indep∼ G0
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where δx(·) denotes the Dirac probability measure concentrated at x and j ∈ N. The con-

struction of the weights dictates that
∑

j ψj = 1 and so it follows that the stick-breaking

representation defines a discrete distribution G with atoms λj that have respective prob-

abilities (weights) ψj . We also note that the weights are stochastically decreasing, that is,

E(ψj)→ 0 as j →∞.

Although the stick-breaking representation provides the most intuitive insight in to how a

Dirichlet process is defined, there are alternative representations. Within the next section

we consider two common alternatives to the stick-breaking representation – the Chinese

restaurant process and the (related) Pólya urn scheme.
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Figure 3.1: Multiple realisations from a Dirichlet process with G0 = N(0, 1) and α = 1, 5, 10, 50, 100
from top to bottom respectively.
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Figure 3.2: Empirical CDF from multiple realisations from a Dirichlet process with G0 = N(0, 1)
and α = 1, 5, 10, 50, 100 from top to bottom respectively.

3.3.1 Alternative representations of the Dirichlet process

Chinese restaurant process representation

An alternative way of visualizing a Dirichlet process is via the Chinese restaurant process

(Aldous, 1985). This analogy, attributed to Jim Pitman and Lester Dubins, describes the

distribution over the cluster allocations (more formally the distribution over partitions)

induced by the Dirichlet process and proceeds as follows. Suppose there is a Chinese

restaurant which contains an infinite number of tables, each of which have infinite seating
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capacity. The first customer to enter the restaurant sits at table number 1. The next

customer then has a choice: (a) they sit at an occupied table with probability proportional

to the number of people currently at that table or (b) they sit at a new (unoccupied) table

with probability proportional to α. This process continues until all n customers have been

seated. At this point N c ≤ n tables will be occupied, and the individuals at each table

are interpreted as being clustered together. It follows that N c is the number of unique

clusters. From this metaphor it should be clear that a customer has higher probability

of sitting at a table with a large number of customers rather than one with only a few

customers. This is a feature of the Dirichlet process which is often summed up by the

phrase “the rich get richer”. Drawing independent realisations from G0 and assigning

a value to each table results in a discrete distribution with probabilities proportional to

the number of people seated at each respective table. This process is exchangeable, that

is to say, the order in which the n customers arrive does not affect the final probability

distribution.

Pólya urn representation

Another way to visualize a Dirichlet process (and the associated Chinese restaurant pro-

cess) is via a Pólya urn scheme (Blackwell and MacQueen, 1973). For this analogy it

is useful to consider α ∈ N although the probabilities of observations being assigned to

each cluster (to be defined) hold for any α ∈ R>0. Suppose we have an urn filled with α

white balls. A realisation from the Dirichlet process is obtained by repeatedly drawing

balls from the urn subject to the following rules. If the ball drawn is white we generate

an additional uniquely coloured ball before proceeding to place both the white ball we

selected and the new coloured ball back into the urn. If the ball drawn is not white we

generate an additional ball of the same colour as the one drawn and return both back into

the urn. This process continues until n balls have been drawn. Once the nth ball has been

drawn (and the appropriate action taken) the white balls are discarded from the urn. At

this point there will be N c ≤ n uniquely coloured balls within the urn and the distribu-

tion over these colours is equivalent to the distribution over the tables within the Chinese

restaurant process. Drawing independent realisations from G0 and assigning a value to

each unique colour results in a discrete distribution with probabilities proportional to the

number of each coloured ball. Again this process is also exchangeable, that is, if n people

each select one ball the order in which the people are arranged does not affect the final

probability distribution.
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The probability of assigning the ith person/ball to table/ball colour j under both of these

alternative representations is

Pr(ci = j|c1, . . . , ci−1) =
ncij

α+ i− 1
, for j = 1, . . . , N c,

Pr(ci = N c + 1|c1, . . . , ci−1) =
α

α+ i− 1
,

where ncij denotes the current number of observations assigned to cluster j (at iteration i),

and N c is the number of unique clusters that currently exist (N c = 0 when i = 1).

3.3.2 Generating a realisation of a Dirichlet process

In this section we describe how to obtain realisations of a Dirichlet process, that is, how

to obtain a realisation of the discrete distribution G where G|α,G0 ∼ DP(α,G0). The

stick-breaking representation, although straightforward, does come with inherent prob-

lems. In practice it is not possible to sample an infinite number of weights for each of

the corresponding atoms to define G as in (3.4). Unfortunately appealing to alternative

representations of the Dirichlet process such as the Chinese restaurant/Pólya urn schemes

yields similar issues. These processes are designed to allow for direct sampling from G, as

opposed to generating a realisation of G itself. Perhaps, given a particular realisation of

cluster allocations c and corresponding cluster parameters (λ†j
indep∼ G0 for j = 1, . . . , N c)

fromG, we might think that a realisation of the discrete distributionG is one with atoms λ†j
whose weights are proportional to the number of observations within cluster j, that is,

with Pr(λ = λ†j) ∝ #(ci = j) for i = 1, . . . , n and j = 1, . . . , N c. However, this is not

a true realisation of G as such a distribution is only defined over those atoms which are

currently assigned to one of the n observations. The remaining infinite number of atoms

(and corresponding weights) remain undefined until an observation is assigned to them.

Given this, a true realisation of G can only be generated using this method if we consider

the limit as n→∞, which is clearly infeasible. With no obvious solution to this problem

we instead return our focus to the stick-breaking representation. The main issue here

is how to sample the infinite number of weights for each of the corresponding atoms so

that we can define G as in (3.4). This is made feasible if we choose a suitable truncation

parameter N1 <∞ so that the distribution

G∗ =

N1∑
j=1

ψjδλj (·)

is a reasonable approximation to G so that then we need only sample N1 weights (and

atoms). Clearly G∗ d→ G as N1 → ∞ and thus the level of approximation decreases
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as N1 increases. This truncation parameter needs to be chosen so that
∑

j>N1
ψj ' 0,

an equivalent constraint to
∑

j≤N1
ψj ' 1. Ishwaran and Zarepour (2002) describe how

one might choose a suitable truncation parameter. We note however that this method of

sampling can become infeasible for large α. Recall that the weights are defined as

ψj = vj
∏
`<j

(1− v`), where vj
indep∼ Beta(1, α),

and so for increasing α we have that ψj ' 0 for increasingly large values of j; this follows

from the result that E(vj)→ 0 as α→∞. Therefore, in the situation where α is large it

may become infeasible to choose a suitably large truncation parameter N1 so the constraint

of
∑

j≤N1
ψj ' 1 is satisfied. However, in practice it is often possible to choose a suitable

value of N1 so that G∗
d' G even for modestly large values of α.

An approximate realisation of G is obtained by using an appropriate truncation of the

stick-breaking representation as follows:

• Choose N1 sufficiently large.

• Choose α > 0 or simulate from a suitable distribution.

• Simulate λ†j
indep∼ G0 for j = 1, . . . , N1.

• Simulate vj
indep∼ Beta(1, α) for j = 1, . . . , N1.

• Set ψj = vj
∏̀
<j

(1− v`) for j = 1, . . . , N1.

The discrete distribution (realisation of G) is that defined over atoms λ†j with weights ψj ,

that is, Pr(λ = λ†j) ∝ ψj for j = 1, . . . , N1.

Note that G∗ only defines a mixture distribution if the weights ψ sum to one; see Sec-

tion 3.2. However, the weights above only satisfy this in the limiting case when N1 =∞.

Of course we could simply rescale these weights so that
∑N1

j=1 ψj = 1 however it is often

advantageous, particularly within an inference context, to construct the weights so that

they sum to one irrespective of the choice of (finite) truncation parameter N1. This can

be achieved by simulating vj
indep∼ Beta(1, α) for j = 1, . . . , N1 − 1 and fixing vN1 = 1.

The weights are then constructed in the usual manner however in this setting we have

ψN1 =
∏
`<j(1 − v`) and so ψN1 contains all the remaining mass and this ensures that∑N1

j=1 ψj = 1. It follows that, in this case, G∗ is a valid (discrete) mixture distribution

defined by the probabilities Pr(λ = λ†j) = ψj for j = 1, . . . , N1.
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3.3.3 Generating model parameters consistent with a Dirichlet process

prior

In the previous section we considered how to obtain realisations of G where G|α,G0 ∼
DP(α,G0). We now suppose that the data are n observations and denote the parameter

for the ith observation by λi. The focus of this section is how to obtain a realisation of λ =

(λ1, . . . , λn) given λ|G ∼ G, that is, how to draw realisations (of the parameters) from G,

where G follows a Dirichlet process. Such realisations are reasonably straightforward to

obtain under the stick-breaking representation. However, any realisation obtained using

this method will only be from an approximation to the true distribution defined by the

Dirichlet process. This approximation is due to the need to truncate G so that it is

finite dimensional (see above). On the other hand, the Chinese restaurant/Pólya urn

representations allow for exact realisations to be drawn directly fromG (we need not obtain

a realisation of G explicitly). Further, these samples remain from the true distribution

defined by the Dirichlet process irrespective of the value of α.

To generate a realisation of λ = (λ1, . . . , λn) we appeal to the latent cluster indicators c,

where ci = c denotes that observation i is within cluster c. Note that, given the (unique)

cluster parameters λ†j , the cluster indicators enable us to completely identify λ and so

obtaining a realisation for the cluster indicators is equivalent to drawing a realisation

for λ. We now describe how to obtain realisations of c (and therefore λ) which are

consistent with the Dirichlet process prior under both the stick-breaking and the Chinese

restaurant/Pólya urn representations.

Stick-breaking representation

To generate a realisation of the cluster allocations consistent with a Dirichlet process prior

using the stick-breaking representation we must first obtain a (approximate) realisation

of the discrete distribution G. This can be obtained using the method described in the

previous section which gives a realisation of G defined by Pr(λ = λ†j) = ψj for j =

1, . . . , N1. Given a realisation of G, we can generate a realisation of the cluster allocations

for n observations as follows.

• Sample ci
indep∼ Cat(N1,ψ) for i = 1, . . . , n.

The parameter vector λ is then given by λi = λ†ci for i = 1, . . . , n.
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Chinese restaurant/Pólya urn representation

Under the stick-breaking representation we need to first obtain a realisation of (the dis-

tribution) G before then drawing samples of the cluster allocations (from G). However,

under the Chinese restaurant/Pólya urn representation this step is no longer needed and

we can instead draw realisations (of cluster allocations c and therefore λ) directly from G

using the following process:

• Choose α > 0 or simulate from a suitable distribution.

• Set c1 = 1 and the (current) number of clusters as N c = 1.

• For i = 2, . . . , n simulate the allocation of observation i to a cluster according to the

discrete distribution

Pr(ci = j|c1, . . . , ci−1) =
ncij

α+ i− 1
, for j = 1, . . . , N c,

Pr(ci = N c + 1|c1, . . . , ci−1) =
α

α+ i− 1
,

where ncij denotes the number of points currently within cluster j (at iteration i),

and N c → N c + 1 if ci = N c + 1.

• Simulate λ†j
indep∼ G0 for j = 1, . . . , N c.

Again, as for the stick-breaking representation, the parameter associated with observation i

is given by λ†ci . It follows that the parameter vector λ is given by λi = λ†ci for i = 1, . . . , n.

We now highlight a subtle but important difference between the two methods. Suppose

we are in the scenario where n � N1, that is, the number of observations is significantly

smaller than the truncation parameter. In this case the error resulting from the approx-

imation used in the stick-breaking approach will be reasonably small (conditional on a

suitable choice of concentration parameter). However, in the stick-breaking approach,

the realisation of G is defined over a (fixed) finite number of atoms (N1), which, as a

result, constrains the maximum number of clusters to N1. In other words, irrespective

of the number of observations n, the parameter vector λ can contain at most N1 unique

values. It follows that this method of generating parameter realisations may result in a

poor approximation to the true distribution defined by the Dirichlet process in the limit as

n→∞. However, the Chinese restaurant/Pólya urn method allows for the possibility that

each of the i observations can join a new cluster and is therefore assigned to a (unique)

parameter which is an independent draw from the base distribution. It follows that in this

case the upper limit on the number of clusters is theoretically infinite when considering

the limit as n→∞.
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3.3.4 Generalised Dirichlet process

The Pitman–Yor process is a generalised version of the Dirichlet process. This process

is accredited to Pitman and Yor (1997) for their work on the two–parameter Poisson–

Dirichlet distribution. However the name was coined by Ishwaran and James (2001) in

their review of stick-breaking priors. Here we let PY(α, d,G0) denote the Pitman–Yor

process with governing parameters α (> −d), known as the strength parameter, a discount

parameter 0 ≤ d < 1, and a base distribution G0. As for the Dirichlet process, a realisation

from the Pitman–Yor process is a discrete distribution over an infinite set of atoms; also

these atoms are (independent) draws from the base distribution G0. However, in contrast

to the Dirichlet process, the weight (probability) associated with each atom is drawn from

a two–parameter Poisson–Dirichlet distribution. This results in the Pitman–Yor process

being more flexible than the Dirichlet process with regards to tail behaviour and it is

often the preferred model for analysing data with power-law tails (the Dirichlet process

has exponential tails).

To visualise the relationship between the Pitman–Yor and the Dirichlet processes, consider

the stick-breaking representation of the former

G(·) =

∞∑
j=1

ψjδλj (·) (3.5)

ψj = vj
∏
`<j

(1− v`)

vj
indep∼ Beta(1− d, α+ jd)

λj
indep∼ G0.

Clearly the case d = 0, produces a distribution G from (3.5) that is equivalent to that

from the Dirichlet process (3.4), that is, PY(α, 0, G0)
d≡ DP(α,G0). For this reason

the Dirichlet process is considered to be a special case of the Pitman–Yor process. The

Normalised Inverse–Gamma process is another special case given by d = 0.5 and α = 0.

We need
∑

j ψj = 1 for G to be well defined, or equivalently, the atom weights must be on

the simplex. If we let a = 1− d and bj = α+ jd, Lemma 1 of Ishwaran and James (2001)

shows that ∞∑
j=1

ψj = 1 almost surely ⇐⇒
∞∑
j=1

log

(
1 +

a

bj

)
=∞. (3.6)

It is trivial to verify that condition (3.6) holds for the Dirichlet process. Recall that the

Dirichlet process is a special case of the Pitman–Yor process with d = 0, and hence a = 1
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and bj = α. Given this we have

α > 0 =⇒ 1 +
1

α
> 1

=⇒ log

(
1 +

1

α

)
> 0

=⇒
∞∑
j=1

log

(
1 +

1

α

)
=∞

=⇒
∞∑
j=1

ψj = 1 almost surely

and so the distribution in (3.4) is well defined.

In what follows we focus on the Dirichlet process and note that this is a common choice of

stick-breaking prior; primarily due to the availability of efficient sampling schemes. Many

of these (efficient) inference schemes make use of the Chinese restaurant process represen-

tation. Unfortunately, such representations are typically unavailable for the Pitman–Yor

process and so the stick-breaking representation must be used and, under this represen-

tation, it is only possible to obtain an approximate posterior distribution (although the

approximation can be made arbitrarily small given sufficient computing power) – this is

discussed further in Section 3.4.1.

3.4 Dirichlet process mixture models

The development of the Dirichlet process mixture model (DPMM) is accredited to Fergu-

son (1973) and Antoniak (1974). Since their conception, DPMMs have become popular

within the Bayesian literature as they allow for both complex and flexible models to be

constructed with relative ease. A typical Dirichlet process mixture model is a mixture of

a distribution F over its parameters. For example

xi|λi ∼ F (λi),

λi|G ∼ G,
G|α,G0 ∼ DP(α,G0),

where DP denotes a Dirichlet process (formally defined by the stick-breaking representa-

tion in (3.4)) with concentration parameter α and base distribution G0.
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3.4.1 Bayesian inference for DPMM

There are numerous ways to perform Bayesian inference for Dirichlet process mixture

models. The majority of methods can be classified as taking either a conditional or a

marginal approach, as summarised in, for example, Papaspiliopoulos and Roberts (2008).

The conditional approaches typically use truncation in order to approximate the infinite-

dimensional aspect of the stick-breaking prior, as pioneered by Ishwaran and James (2001).

However, avoiding approximations is beneficial and the slice and retrospective samplers

of Walker (2007) and Papaspiliopoulos and Roberts (2008) provide methods for achieving

this. Unfortunately, these methods can suffer from poor mixing and convergence as they

attempt to sample multimodal posterior distributions. One solution is the addition of

appropriate label switching moves (Hastie et al. (2015), Papaspiliopoulos and Roberts

(2008)) though, in general, further empirical work is needed to determine the number and

types of moves that give an effective solution.

For these reasons we avoid conditional methods here and instead implement a marginal

sampler. These samplers typically involve a Pólya urn scheme and marginalise over the in-

finite dimensional distribution (Escobar and West (1995), MacEachern and Müller (1998)),

and thereby avoid the need for approximation. Algorithm 8 of Neal (2000), hereafter re-

ferred to as Neal’s Algorithm 8, is one such sampler. This algorithm has been shown

to be one of the most efficient sampling methods for Dirichlet Process mixtures; see, for

example, Papaspiliopoulos and Roberts (2008). Also there is no need for additional label

switching moves. Efficiency is achieved by the algorithm only performing updates for the

unique components which are currently assigned to an observation. Each observation is

then assigned to either: (a) a component which is currently in use (“active”) or (b) to

one of m auxiliary components whose parameters are (independent) draws from the base

distribution. The number of auxiliary components, m, is chosen by the analyst. We note

that this places little burden on the analyst as the choice of m is made solely for effi-

ciency purposes – the equilibrium distribution of the Markov chain remains exact for all

choices of m ≥ 1 (Neal, 2000). From our experience we have found that taking m = 2

or 3 auxiliary components typically produces a well mixing Markov chain. Generally the

mixing improves as the number of auxiliary components increases due to the observations

having more opportunity to join an alternative cluster. Increasing m however does come

with additional computational cost as m (independent) draws are needed from the base

distribution for each observation at every iteration of our algorithm. Also the discrete

(full conditional) distribution over the cluster allocations will also increase in dimension.

Neal’s Algorithm 8 is closely related to other (marginal) sampling schemes within the

literature. When m = 1, Neal’s Algorithm 8 closely resembles the “no gaps” algorithm of

MacEachern and Müller (1998). However, the probability that an observation moves from
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its current (active) cluster into an auxiliary cluster is larger under Neal’s Algorithm 8. At

first view this may not appear to be helpful given that the aim is to cluster observations

together. However, the Dirichlet process has the unfortunate property of “masking” small

clusters, that is, the penalty for creating an additional cluster to house a few observations

is larger than the penalty for placing them in a current active cluster – even if these

observations are somewhat different from the existing group. Clearly observations should

be encouraged to form new clusters (join auxiliary ones) whenever they differ sufficiently

from the existing clusters.

3.4.2 Allowing for uncertainty on the concentration parameter

Central to the implementation of a Dirichlet process mixture model is the choice of con-

centration parameter α. The choice of α results in an implied prior on the number of

clusters or unique values (N c). Antoniak (1974) provides an implicit form of the condi-

tional prior distribution, π(N c|α, n), when we have n observations; see Section A.1 within

the appendices for full details.

Choosing a value of α is somewhat difficult unless we have substantial prior knowledge of

the number of subgroups within the data. It can therefore be helpful to express (uncertain)

beliefs about α in terms of a prior distribution and thereby infer its posterior distribution.

Escobar and West (1995) and West (1992) show that when using a marginal sampling

scheme and a finite mixture of Gamma distributions as a prior for α, it is possible to

derive a closed form full conditional distribution for α. It is fairly straightforward to

simulate from this full conditional distribution and so this can be incorporated within a

Gibbs sampling scheme.

In the simplest case where α has a (single component mixture of) Gamma distribution,

that is, α ∼ Ga(aα, bα), the full conditional distribution is the two component mixture

α| · · · ∼ πGa(aα +N c, bα − log η) + (1− π) Ga(aα +N c − 1, bα − log η),

where the mixture weights are given by

π

(1− π)
=
aα +N c − 1

n(bα − log η)
,

and

η| · · · ∼ Beta(α+ 1, n).

Here η is a latent random variable which facilitates the conjugate update. This result is

derived within Section A.1 of the appendices.
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3.5 Uncovering heterogeneity between rankers

Until now our main aim has been to perform Bayesian inference and obtain a single

preference ordering of entities that summarises a collection of rankings and is a form of rank

aggregation. This aim is only appropriate if the rankers are homogeneous in terms of their

beliefs about the entities, that is, each individual ranking (within a collection) follows the

same underlying ranking distribution. Our current Weighted Plackett–Luce model does

allow for heterogeneity between ranker abilities which in some sense does allow for different

groups of rankers. However, this heterogeneity only allows for limited variability between

informative and uninformative groups of rankers. This model is therefore inadequate to

handle a scenario where several groups of rankers express alternative preferences regarding

the entities that they are ranking.

In this chapter we have thus far introduced both finite and infinite mixture models and

discussed how such models can be implemented to model heterogeneous data. We now

appeal to these methods to build a model capable of handling heterogeneous ranked data.

Within this section we suppose that there may be groups of rankers, each of which has their

own beliefs about the preference of entities. Under this scenario we wish to build a model

which allows each ranker group to have their own unique set of skill parameters which

summarise their beliefs about the entities. Previously our models have considered only a

single parameter vector which summaries all rankings, that is, we have only considered a

single ranker group. To implement a grouping structure we now need a parameter vector

associated with each ranker (λi for i = 1, . . . , n). These parameter vectors need not be

unique and indeed we desire that rankers with the same beliefs about the entities also

share the same parameter vector. Our model should therefore be built so that it allows

Pr(λi = λj) ≥ 0 for all i 6= j. This structure can be achieved by implementing a Dirichlet

process prior distribution where the atoms of the DP are (unique) parameter vectors λ.

In this scenario (for α < ∞) the Dirichlet process prior specifies a discrete distribution

over a range of parameter vectors, and therefore if we draw samples from this distribution

we will have Pr(λi = λj) > 0 for all i 6= j.

In what follows we describe a new model consisting of an infinite mixture of Weighted

Plackett–Luce models with a Dirichlet process as the conjugate prior distribution. We

are able to derive a complete set of full conditional distributions for each parameter of

interest within our model by using latent variables. This allows us to form a Gibbs

sampling algorithm in which we appeal to Neal’s Algorithm 8 (Neal, 2000) to sample

the latent cluster indicator variables efficiently. We note that much of the literature

concerning modelling heterogeneous ranked data has been limited to finite mixture models

of standard Plackett–Luce models. However, here we allow for additional heterogeneity

between rankers’ abilities by assuming the Weighted Plackett–Luce model is the true

67



Chapter 3. Analysis of heterogeneous ranked data

underlying ranking distribution. We are also able to relax the assumption of a fixed

number of components a priori by constructing the model as a Dirichlet process mixture

model. The section is concluded with a simulation study.

3.5.1 The model

Suppose we have n rankers where each ranker reports positions for ni ≤ K entities.

The main components of our complete model, the Dirichlet process mixture of Weighted

Plackett–Luce models (WDP), can be written as

Xi|λi, wi indep∼ PLW(λi, wi) i = 1, . . . , n,

λi|G indep∼ G i = 1, . . . , n,

G|α,G0 ∼ DP(α,G0).

To make the form of the non-parametric prior distribution unambiguous we define the

stick-breaking representation which here is

G(·) =
∞∑
s=1

ψsδλs(·)

ψs = vs
∏
`<s

(1− v`)

vs
indep∼ Beta(1, α)

λsk
indep∼ G0

for s ∈ N and k = 1, . . . ,K. Note that under this model λsk now denotes the skill

parameter for entity k in group/cluster s whereas previously the skill parameter of each

entity was denoted λk (as we only had a single group of rankers). Furthermore there is

no need to choose a single base distribution G0. Instead a unique base distribution can

be chosen for each of the K skill parameters, that is, we can let λsk
indep∼ G0k in the

stick-breaking representation above. That said, the choice of base distribution(s) must

be exchangeable across cluster labels given the inherent exchangeability of components

within the Dirichlet process prior, that is, G0k must not depend on s.

3.5.2 Simulating data from the Dirichlet process mixture of Weighted

Plackett–Luce models

In this section we describe how to simulate data from our Dirichlet process mixture of

Weighted Plackett–Luce models. It is useful to introduce latent cluster indicator variables
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when dealing with mixture models. Here we introduce cr = (cr1, . . . , c
r
n) where cri =

j denotes that ranker i is associated with parameter vector λj . For example, if cr =

(1, 2, 1, 2) then rankers 1 and 3 are in cluster 1 and rankers 2 and 4 are in cluster 2; each

cluster has a unique parameter vector, here λ1 and λ2. Furthermore we let N r = |{cri}ni=1|
denote the number of unique ranker clusters, that is, the number of unique parameter

vectors, and let Λ = (λ1, . . . ,λNr) denote the collection of these unique parameter vectors.

Given these latent cluster indicators we can now describe how to generate data under

the WDP model outlined in the previous section. First we need to specify a ranker

clustering structure and this can be achieved by either (a) explicitly defining values for the

latent cluster allocation variables cri and labelling these 1, . . . , N r, or (b) draw a realisation

(marginally) from the Dirichlet process prior distribution as follows.

• Choose α > 0 or simulate from a suitable distribution.

• Set cr1 = 1 and the (current) number of clusters as N r = 1.

• For i = 2, . . . , n simulate the allocation of ranker i to a cluster according to the

discrete distribution given by

Pr(cri = j|cr1, . . . , cri−1) =
nrij

α+ i− 1
, for j = 1, . . . , N r,

Pr(cri = N r + 1|cr1, . . . , cri−1) =
α

α+ i− 1
,

where nrij denotes the number of points currently within cluster j (at iteration i),

and N r → N r + 1 if cri = N r + 1.

Given a clustering structure of the rankers we now need to choose values for the (cluster

specific) skill parameters λsk. Again these can either be chosen explicitly or alternatively

can be drawn from the prior distribution by sampling λsk
indep∼ G0k for s = 1, . . . , N r,

k = 1, . . . ,K. Recall that here we have a mixture of Weighted Plackett–Luce models and

we therefore need to choose whether each ranking is to be informative or not, that is,

choose (or sample) a value of wi ∈ {0, 1} for i = 1, . . . , n.

After the parameters of the model are fully specified, we can use the exponential latent

variable representation of the Weighted Plackett–Luce model to generate rankings. A

collection of n complete rankings {xi}ni=1 can be generated via the following process.

For i = 1, . . . , n

• Sample νij
indep∼ Exp(λwicrij

) for j = 1, . . . ,K.

• Set xij = argmin
q∈Sij

νiq where Sij = K \ {xi1, . . . , xij−1} for j = 1, . . . ,K.
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Alternative types of rankings (such as a top–5 ranking) can be obtained from the complete

rankings simulated using the same process as discussed in Section 2.2.5.

3.5.3 Prior specification and latent variables

When first implementing the standard (or Weighted) Plackett–Luce model in Chapter 2

we discussed how it is advantageous to use Gamma prior distributions on the skill param-

eters as this gives conjugate updates; see Section 2.3. In this model the equivalent prior

specification is achieved by letting G0k = Ga(ak, 1) which gives λsk
indep∼ Ga(ak, 1) for

s ∈ N and k = 1, . . . ,K. Our prior beliefs about the strength of entity k (relative to the

other entities) is then expressed through the parameter ak. Recall that the rate parameter

is not likelihood identifiable and so we take this to be 1. The prior distribution on the

latent binary ability indicators remains as before, with wi
indep∼ Bern(pi) where pi ∈ (0, 1]

for i = 1, . . . , n. We also wish to infer the DP concentration parameter from the data and

so we need to specify a prior distribution: we take α ∼ Ga(aα, bα).

Before we describe the (data augmentation based) posterior computation algorithm we

need to define the latent cluster indicator variables. We use the cluster indicators intro-

duced in the previous section, that is, cr = (cr1, . . . , c
r
n) where cri = j denotes that ranking i

is associated with parameter vector λj . Recall that N r = |{cri}i=1,...,n| denotes the num-

ber of unique ranker clusters and Λ = (λ1, . . . ,λNr) is the collection of the unique skill

parameter vectors.

We are now in a position to define the prior distribution over the skill parameters in this

model. The model contains N r ranker clusters, each of which has an associated parameter

vector λ. The model contains N r×K unique skill parameters, whence, conditional on the

latent cluster parameters, the prior distribution of Λ is

π(Λ|cr) =
Nr∏
c=1

K∏
k=1

λak−1ck e−λck

Γ(ak)
.

The model assumes that each ranking follows the Weighted Plackett–Luce probability,

that is, Xi|Λ,w, cr indep∼ PLW(λcri , wi). Therefore the probability of the ith ranking can

be expressed using the latent cluster indicator variables as

Pr(Xi = xi|Λ,w, cr) =

ni∏
j=1

λwicri ,xij∑ni
m=j λ

wi
cri ,xim

+
∑

m∈Ui λ
wi
cri ,m

,
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and so, as the rankings are (conditionally) independent, the likelihood of all n rankings is

π(D|Λ,w, cr) =

n∏
i=1

ni∏
j=1

λwicri ,xij∑ni
m=j λ

wi
cri ,xim

+
∑

m∈Ui λ
wi
cri ,m

.

As discussed in Chapter 2, the Plackett–Luce likelihood does not admit conjugate Bayesian

inference. However, we saw that conjugate updates for the skill parameters can be achieved

by augmenting the parameter space with appropriate latent variables. Here the latent

variables are still defined in terms of the latent exponential inter-arrival times but now are

based on cluster-specific skill parameters, that is,

zij |D,Λ,w, cr indep∼ Exp

 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

 , (3.7)

for i = 1, . . . , n and j = 1, . . . , ni.

3.5.4 Full conditional distributions

The posterior distribution is formed by applying Bayes’ Theorem. The posterior distri-

bution π(Z,Λ,w, cr, α|D) is now a joint distribution of the latent random variables Z,

the collection of unique skill parameters Λ, the binary indicator variables w, the latent

cluster indicators cr and the DP concentration parameter α. We can obtain realisations

from the posterior distribution using a Gibbs sampling strategy which samples from the

FCDs of each unknown quantity in turn. The latent cluster indicators can be drawn from

their respective full conditional distributions using Neal’s Algorithm 8 (Neal, 2000). Fur-

ther, the FCD of the DP concentration parameter α is also known; see Section 3.4.2. In

the remainder of this section we derive the FCDs for the remaining unknown quantities

(Z,Λ,w) and a complete outline of the MCMC scheme used to generate posterior samples

can be found in Section 3.5.5.

Before starting the derivation of the full conditional distributions it is useful to first con-

struct the density of all stochastic quantities. Note however that, given we already have

the FCDs for cr and α, it is sensible to only consider the conditional density of all the

remaining stochastic quantities given the latent cluster indicator variables and the DP

concentration parameter. This (conditional) joint density is

π(Λ,D, Z,w|cr, α)

= π(Λ,D, Z,w|cr)
= π(Z|D,Λ,w, cr)π(D|Λ,w, cr)π(Λ|cr)π(w)
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=

n∏
i=1

ni∏
j=1

 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

 exp

−
 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

 zij


×

n∏
i=1

ni∏
j=1

λwicri ,xij

 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

−1× Nr∏
c=1

K∏
k=1

λak−1ck e−λck

Γ(ak)
×

n∏
i=1

pwii (1− pi)1−wi

=
n∏
i=1

ni∏
j=1

λwicri ,xij
exp

−
 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

 zij

×
Nr∏
c=1

K∏
k=1

λak−1ck e−λck

Γ(ak)

×
n∏
i=1

pwii (1− pi)1−wi .

(3.8)

The full conditional distributions (FCDs) can be obtained from this density by constructing

the conditional distribution of each random quantity given all other quantities. The latent

parameters Z = {zij} are defined through their full conditional distribution and so it

should come as no surprise that we obtain

π(Z|D,Λ,w, cr, α) ∝
n∏
i=1

ni∏
j=1

exp

−
 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

 zij

 ,

and therefore the full conditional distributions for zij are as in (3.7) for i = 1, . . . , n,

j = 1, . . . , ni.

The full conditional distribution for the (cluster-specific) skill parameters λck are derived

as follows:

π(Λ|D, Z,w, cr, α)

∝
n∏
i=1

ni∏
j=1

λwicri ,xij
exp

−
 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

 zij

×
Nr∏
c=1

K∏
k=1

λak−1ck e−λck

Γ(ak)

∝
Nr∏
c=1

K∏
k=1

λak+γck−1ck e−λck ×
n∏
i=1

ni∏
j=1

exp

−
 ni∑
m=j

λwicri ,xij
+
∑
m∈Ui

λwicri ,m

 zij


=

Nr∏
c=1

K∏
k=1

λak+γck−1ck exp

−
1 +

n∑
i=1

wi

ni∑
j=1

ζij(c, k)zij

λck

 ,

where

γck =

n∑
`=1

w` I(cr` = c)I(k ∈ {x`})

is the number of informative rankings associated with cluster c in which entity k appears
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and

ζij(c, k) = I(cri = c)× I(k ∈ {xij , . . . , xini} ∪ Ui),

is an indicator function that entity k receives a rank no better than j in ranking i where

ranking i is also associated with cluster c. It follows that the FCD for λck is available in

closed form and is

λck| · · ·
indep∼ Ga

ak + γck, 1 +

n∑
i=1

wi

ni∑
j=1

ζij(c, k)zij

 , (3.9)

for c = 1, . . . , N r, k = 1, . . . ,K.

The only remaining random variables in the model are the ranker weights w. The full

conditional distribution for wi is the discrete distribution with

Pr(wi = 1|D,Λ, Z,w−i, cr, α)

∝ Pr(wi = 1)π(D|wi = 1,Λ,w−i, cr)π(Z|wi = 1,Λ,D,w−i, cr)

∝ pi
ni∏
j=1

λcri ,xij exp

−zij
 ni∑
m=j

λcri ,xim +
∑
m∈Ui

λcri ,m


and

Pr(wi = 0|D,Λ, Z,w−i, cr, α)

∝ Pr(wi = 0)π(D|wi = 0,Λ,w−i, cr)π(Z|wi = 0,Λ,D,w−i, cr)

∝ (1− pi)
ni∏
j=1

exp {−zij(Ki − j + 1)} .

Therefore, for i = 1, . . . , n, the full conditional distribution is given by

wi| · · · indep∼ Bern(ρi), (3.10)

where

ρi =
Pr(wi = 1|D,Λ, Z,w−i, cr, α)

Pr(wi = 1|D,Λ, Z,w−i, cr, α) + Pr(wi = 0|D,Λ, Z,w−i, cr, α)
,

is the probability that ranking i is informative (given the other quantities).

Recall that the latent cluster indicators cr can be sampled using Neal’s Algorithm 8 (Neal,

2000) which implements a Pólya urn scheme to marginalise out the infinite dimensional

parameters. The resulting full conditional distribution for the cluster allocations is a

discrete distribution over the clusters which are active and m auxiliary components. The

DP concentration parameter α can also be sampled from its full conditional distribution
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given in Section 3.4.2. The following section gives a complete outline of the Gibbs sampler

used to obtain posterior realisations.

3.5.5 MCMC using Neal’s Algorithm 8

We are now in a position to describe the algorithm used to sample from the posterior

distribution π(Λ, Z, cr,w, α|D). First we define the contribution to the complete data

likelihood from ranker i to be

f(xi, zi|Λ,w, cr, α) =

ni∏
j=1

λwicri ,xij
exp

−zij
 ni∑
m=j

λwicri ,xim
+
∑
m∈Ui

λwicri ,m

 .

We can now describe the algorithm concisely. Suppose we have n rankings of ni < K

entities. The state of the Markov chain has elements Λ = (λc : c ∈ {cr1, . . . , crn}), Z = (zij),

cr = (cri), w = (wi) and α for i = 1, . . . , n, j = 1, . . . , ni. The algorithm repeatedly samples

as follows:

• For i = 1, . . . , n: Let q− be the number of distinct crj for j 6= i and h = q− + m.

Label these crj values in {1, . . . , q−}. If cri = crj for some j 6= i, draw λck
indep∼ G0k for

q− < c ≤ h, k = 1, . . . ,K. If cri 6= crj ∀ j 6= i, let cri have the label q− + 1, and draw

λck
indep∼ G0k for q− + 1 < c ≤ h, k = 1, . . . ,K.

Draw a new value for cri from {1, . . . , h} using the following probabilities:

Pr(cri = c|D, Z,Λ, cr−i,w, α) =

b n−i,c f(xi, zi|Λ,w, cri = c, cr−i, α), 1 ≤ c ≤ q−,
b α
m f(xi, zi|Λ,w, cri = c, cr−i, α), q− < c ≤ h,

where Λ = {λ1, . . . ,λh}, n−i,c = #(crj = c, j 6= i), and b is the appropriate normal-

ising constant. Change the state to contain only those λc that are now associated

with one or more observations, that is, let Λ = (λc : c ∈ {cr1, . . . , crn}).

• Sample λck from (3.9) for c = 1, . . . , N r, k = 1, . . . ,K.

• Sample zij from (3.7) for i = 1, . . . , n, j = 1, . . . , ni.

• Sample wi from (3.10) for i = 1, . . . , n.

• Rescale

– Sample Λ† ∼ Ga

(
N r

K∑
k=1

ak, 1

)
.
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– Calculate Σ =
Nr∑
c=1

K∑
k=1

λck.

– For c = 1, . . . , N r, k = 1, . . . ,K, let λck → λck Λ†/Σ.

• Sample α as in Section 3.4.2 with n = n and N c = N r.

Note that this rescaling step is a straightforward generalisation of that discussed in Sec-

tion 2.2.3. The generalisation is needed as we now have K unique skill parameters within

each of the N r ranker clusters.

3.5.6 Simulation study – revisiting Dataset 2

For our first simulation study we choose to revisit Dataset 2 introduced in Chapter 2.

Recall that this dataset contains n = 50 rankings, the first 40 of which are informative

rankings and the remaining 10 (labelled 41–50) are uninformative/random permutations.

Each ranking within this dataset is a complete ranking of K = 20 entities.

Before we can perform Bayesian inference we must first of course choose a suitable prior

distribution. As in our previous analyses of these data we choose to let each ordering of

the entities be equally likely a priori, that is, let ak = 1 for all k with the resulting prior

distribution over the skill parameters being λsk
indep∼ Ga(1, 1). Specifying a (prior) choice

for the concentration parameter of the Dirichlet process is somewhat difficult and so we

place a prior distribution over α. We choose aα = bα = 1 so that α ∼ Ga(1, 1), which

gives a fairly weak prior distribution over the number of ranker clusters. Note that here

the modal prior number of ranker clusters is 1 (with probability 0.19) and thus seems

reasonable given the nature of this dataset – see Table 3.1 for the full prior distribution

over the number of clusters. We also need to choose prior probabilities that each ranker

is informative, that is, specify pi = Pr(wi = 1) for each ranker i. Here we consider 3

analyses, each defined by particular choices of the pi. Analyses 1 and 2 take the equivalent

specification to those studies considered within Section 2.7, that is, for Analysis 1 we let

pi = 0.5 (each ranker is equally likely to be informative as it is uninformative) and in

Analysis 2 we take pi = 0.8 (the true proportion within these data). For the final analysis

(Analysis 3) we assume the standard Plackett–Luce model which is achieved by taking

pi = 1. This choice is used to asses how robust our analysis is to assuming all rankers are

informative when, in fact, there are uninformative rankers in the dataset. Intuitively we

might think that the Dirichlet process mixture model would be flexible enough to cluster

together the informative rankings and form a separate cluster to house the uninformative

rankings. However, as we shall see, this turns out not to be the case. Analyses 1 and 2

allow us to compare how our DP mixture model performs in comparison to the (single

component) homogeneous model considered in Chapter 2.
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Posterior analysis

To generate realisations from the posterior distribution (for each analysis) we implemented

the sampling algorithm outlined in Section 3.5.5 with m = 2 auxiliary variables. Each

Markov chain was initialised at a random draw from the prior distribution. To obtain 10K

(almost) un-autocorrelated realisations from the posterior distribution we needed to thin

the output by factors of 60, 20 and 5 for Analyses 1–3 respectively. We therefore ran the

scheme for 600K, 200K and 50K iterations for each respective analysis and also allowed

each chain a burn-in period of 10K iterations after initialisation – these samples were

discarded. The computational time required to perform inference was (approximately)

126, 33 and 11 seconds for each analysis. The mixing of the MCMC chains was assessed

by inspecting trace plots of the log complete data likelihood; see Figure 3.3. This is

convenient not only because our state space is vast but also because the dimension of the

posterior distribution can change at each iteration (depending upon the number of unique

ranker groups). It is therefore not realistic to inspect trace plots of individual parameters

within the Markov chain, particularly as cluster labels can swap arbitrarily. Convergence

was assessed by initialising numerous chains at differing starting values and verifying that

the resulting posterior distributions were equivalent (up to stochastic noise).

We begin by determining the posterior distribution formed under Analysis 3 (pi = 1) –

assuming a Dirichlet process mixture of standard Plackett–Luce models. Our intuition a

priori led us to believe that our mixture model (outlined in Section 3.5.1) might allow

the formation of a cluster housing the informative rankers and a separate cluster to house

the uninformative rankers. The marginal posterior distribution for the number of ranker
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Figure 3.3: Trace plots of the log complete data likelihood for Analyses 1, 2: pi = 0.5, 0.8 (top left
and right respectively) and Analysis 3: pi = 1 (bottom)
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i
Analysis 1 2 3 4 5 6 7 8 9 ≥ 10 E SD

1 0.86 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 0.42
2 0.75 0.19 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.32 0.62
3 0.00 0.01 0.04 0.11 0.20 0.24 0.20 0.12 0.06 0.02 6.12 1.68

Prior 0.19 0.17 0.15 0.12 0.10 0.07 0.06 0.04 0.03 0.07 4.18 3.00

Table 3.1: Posterior probabilities of the number of ranker clusters, Pr(N r = i|D), for each of the
three analyses. The expectation and standard deviation of the marginal posterior distribution are
also shown along with the prior distribution. The modal values are highlighted in bold.

groups (Table 3.1) gives Pr(N r = 2|D) = 0.01 and so there is little posterior support for

this suggestion. Perhaps surprisingly the posterior modal number of ranker groups here

is six. However, we note that there is a large amount of uncertainty on this. In contrast,

for Analyses 1 and 2, we see significant posterior support for a single homogeneous group

with Pr(N r = 1|D) = 0.86 and 0.75 respectively. Clearly allowing for uncertainty on

ranker reliability results in a significant change in posterior beliefs about the ranker groups

contained within these data – this is a feature of the model which will be discussed in more

detail later.

The marginal posterior distribution for the number of ranker clusters provides a useful

insight into the posterior distribution; however, it does not tell the full story. A more in-

depth summary of the posterior distribution can be obtained if we consider the underlying

grouping structure of the rankers. The posterior distribution of the allocation of rankers

to ranker groups is, of course, quite complex. A common way to summarise ranker hetero-

geneity is through a single summary allocation to each ranker group, such as the maximum

a posteriori (MAP) allocation or the improvements to the MAP allocation proposed by

Dahl (2006) and Lau and Green (2007). However, these summaries can be misleading

unless the posterior probability of the modal number of groups is fairly large. Note that

for the Analysis 3 posterior distribution this is certainly not the case. Instead we prefer

to summarise ranker heterogeneity using dissimilarity probabilities ∆ij = Pr(cri 6= crj |D),

that is, the posterior probability that two rankers (i and j) are not allocated to the same

cluster. The allocation of rankers to groups could then be determined by thresholding

these probabilities. However this too can suffer from inconsistent allocations of say ranker

triples, particularly when their dissimilarity probabilities are near the threshold. There-

fore, following Medvedovic and Sivaganesan (2002), we use a standard summary method

from cluster analysis, namely a dendrogram calculated from the dissimilarity probabili-

ties ∆ij . Note that we consider dendrograms formed using the complete linkage method,

also known as furthest neighbour clustering. This method tends to produce more densely

packed clusters and does not suffer from “chaining”; see Everitt et al. (2011) for further
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Figure 3.4: Complete linkage dendrograms based on the dissimilarities between each pair of rankers
for Analyses 1–3 from top to bottom respectively.

details on linkage methods. Of course many other methods could also be used to sum-

marise the heterogeneity between rankers, see, for example, Rastelli and Friel (2017) and

the references therein.

Figure 3.4 depicts the dendrograms computed from the dissimilarity matrices for each of

the analyses considered. The allocation of rankers to ranker groups for Analyses 1 and 2

is somewhat trivial given Pr(N r = 1|D) = 0.86 and 0.75 respectively. The corresponding

dendrograms confirm that all rankers are often grouped together; evident through the val-

ues of dissimilarity at which rankers join the main cluster. However it is encouraging to see

that the uninformative rankers (with the exception of ranker 42) are last to join the main

cluster: these rankers have the largest dissimilarity values. In Analysis 3 the allocation of
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rankers to groups is not quite as straightforward. The corresponding dendrogram shows

that there is a large cluster containing those rankers numbered {1, 2, . . . , 40, 42}. This con-

clusion can be drawn since ∆ij ≤ 0.30 =⇒ (1−∆ij) > 0.70 for i 6= j ∈ {1, 2, . . . , 40, 42},
that is, any pair of rankers within this set are clustered together at least 70% of the time.

Given the large proportion of the time that these rankers are co-clustered, it is reasonable

to conclude that they have similar beliefs about the entities. The remaining rankers, those

numbered 41, 43, . . . , 50, typically have a dissimilarity greater than 0.5. It is clear from

looking at the left hand side of the dendrogram that there is no clear grouping structure be-

tween any of these rankers. This is perhaps not surprising given their associated rankings

are random permutations and are therefore likely to express contradicting preferences.

We now return to the point we noted earlier, namely that allowing for uncertainty on ranker

ability changes posterior beliefs about the number of ranker groups. After investigating

the posterior distribution for each analysis, perhaps this result is not as surprising as it

first seems. In Analysis 3 the standard Plackett–Luce model does not have the flexibility

to down weight the contribution uninformative rankers make to the overall likelihood, and

this leads instead to the formation of additional clusters to house those rankers which are

not consistent with others (the uninformative rankings); see Figure 3.4. Moreover, these

rankers do not even form a single homogeneous cluster due to the high variation in random

permutations (as mentioned previously). On the other hand, in Analyses 1 and 2 (mixture

of Weighted Plackett–Luce models) the model is able to down weight the uninformative

rankers; see Figure 3.5. Recall that when wi = 0 the likelihood of ranking i is constant

(Pr(Xi = xi|λ, wi = 0) = 1/P (Ki, ni)) and does not depend on λ. Thus a ranker who

is deemed to be uninformative is free to join a cluster regardless of their beliefs about

the entities as the likelihood is unaffected. Indeed, such a ranker will typically join the

largest “active” cluster – this follows from the rich get richer notion underpinning the

Dirichlet process (as mentioned in Section 3.3.1). Consequently it is not surprising that

the uninformative rankings (41–50) join the main cluster, that is, the cluster housing the

informative rankers under Analyses 1 and 2.

We conclude this section with a brief comparison of Analyses 1–3 and those where we

assumed all rankers were homogeneous in their beliefs about the entities in Chapter 2.

There are significant similarities between the posterior distributions of the ranker weights

under Analyses 1 and 2 in both this section and Section 2.7; see Figures 3.5 and 2.4. This

is perhaps not surprising given the ranker weights are not cluster-specific and we have

significant posterior support for a single ranker cluster in these analyses. Note that when

there is only a single ranker cluster, the analyses presented here are analogous to those in

Section 2.7. The aggregate rankings formed under Analyses 1 and 2 here are very similar

to those under the corresponding homogeneous analyses considered in Section 2.7; see

Tables 2.3 and 3.2. Note that here the aggregate ranking is determined by ordering the
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Figure 3.5: Pr(wi = 1|D) – Posterior probability that ranking i is informative under each analysis
(Analysis 1: pi = 0.5, Analysis 2: pi = 0.8). Rankings which are random permutations (41–50)
are shown in red.

mean of the (fully) marginal posterior distribution for each entity (marginalised over ranker

clusters). Recall that, for the homogeneous analyses in Chapter 2 we observed that the

aggregate rankings for the analysis of Dataset 2 under the Weighted Plackett–Luce model

were equivalent to those formed by analysing Dataset 1 under the standard Plackett–Luce

model. This is the case as the WPL model is able to correctly identify the uninformative

rankers and down weight them. The same conclusion can be drawn here; see Figure 3.5

and Table 3.2. Unsurprisingly, for Analysis 3 (pi = 1; the standard Plackett–Luce model),

the aggregate ranking is affected by the misleading prior information that states that

the uninformative rankers are informative. This was also observed when considering the

homogenous analysis under the standard Plackett–Luce model; see Section 2.4.

The posterior distribution from Analysis 3 clearly suggests that there is significant het-

erogeneity between rankers beliefs; see Table 3.1. Summarising such heterogeneous data

through an overall aggregate ranking is perhaps not sensible. The differences in preferences

between the ranker groups is easily seen though the within-cluster aggregate rankings.

Such an aggregate is formed by first conditioning on an appropriate number of ranker

groups and then ordering the marginal posterior means of the skill parameters within

each group. For Analysis 3, conditioning on 6 ranker groups (the posterior mode), the

within-cluster aggregate ranking for ranker cluster 1 (that which typically houses infor-

mative rankers) is very similar to the overall aggregate under the other analyses. The

remaining within-cluster aggregates (those for ranker clusters 2–6) show little coherence

with the true entity preference order and instead appear to be random permutations of the

entities. This is perhaps not surprising as these clusters typically house the uninformative

rankers.
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Heterogeneous PLW Homogeneous PL
pi = 0.5 pi = 0.8 pi = 1

Dataset 2 Dataset 2 Dataset 2 Dataset 1 Dataset 2
x̂ λ xagg λ̄ xagg λ̄ xagg λ̄ xagg

1 λ̄1 xagg
2 λ̄2

1 20.00 3 30.91 3 25.94 3 7.20 3 27.47 3 11.67
2 19.00 1 26.27 1 22.70 2 6.41 1 25.83 1 11.44
3 18.00 5 25.73 5 22.28 1 6.36 5 23.90 2 11.29
4 17.00 2 24.94 2 21.59 5 6.10 2 22.66 4 9.84
5 16.00 4 20.73 4 17.58 4 5.21 4 18.11 9 9.54
6 15.00 6 18.97 6 16.41 9 5.06 6 17.98 5 9.41
7 14.00 8 18.72 8 16.35 8 5.02 8 17.31 8 9.11
8 13.00 7 16.94 7 14.85 6 4.82 7 16.12 6 8.55
9 12.00 9 16.10 9 14.59 7 4.35 9 15.91 7 8.10
10 11.00 10 14.78 10 13.47 10 4.14 10 14.50 10 7.48
11 10.00 11 12.14 11 10.58 11 3.38 11 11.84 11 6.36
12 9.00 12 10.20 12 9.20 12 2.86 12 9.95 12 5.42
13 8.00 13 8.68 13 7.74 13 2.72 13 9.00 13 5.02
14 7.00 14 7.28 14 6.60 16 2.25 14 7.17 14 4.17
15 6.00 16 7.28 16 6.48 14 2.19 16 7.08 16 3.98
16 5.00 15 5.17 15 4.77 15 1.90 15 4.99 15 3.47
17 4.00 17 4.57 17 4.21 17 1.61 17 4.58 17 3.10
18 3.00 18 2.85 18 2.67 19 1.57 18 2.81 19 2.16
19 2.00 19 2.62 19 2.59 18 1.34 19 2.68 18 2.08
20 1.00 20 1.00 20 1.00 20 1.00 20 1.00 20 1.00

Table 3.2: Aggregate rankings under the infinite mixture of Weighted Plackett–Luce model for
the analysis of Dataset 2 (for analyses 1–3; pi = 0.5, 0.8, 1) along with the corresponding posterior
means. The results from Table 2.2 (homogeneous standard Plackett–Luce analyses) are also given
to facilitate comparison.

3.6 Uncovering entity subgroups within a ranker group

We begin by noting that so far within this thesis we have assumed that the preference

(strength) of each entity is summarised by a unique skill parameter λk. However in this

section we now consider the notion that a (homogeneous) group of rankers may not be

able to distinguish between some entities, that is, they believe some entities are tied in

strength. To allow for this we consider an alternative non-parametric prior distribution

which allows entities to cluster together. To achieve clustering on the entities we consider

a Dirichlet process prior on the skill parameters, that is, we take a (infinite dimensional)

discrete distribution over λk such that Pr(λi = λj) 6= 0 for i 6= j. Note that in what

follows we only consider the scenario where there is a single group of rankers (cr = 1);

we relax this assumption in Chapter 4. Therefore, unlike the previous section, we assume

that all rankers share similar beliefs about the entities.
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3.6.1 The model

Suppose that we have rankings from n rankers where ranker i reports positions (ranks)

for ni < K entities. Here we only consider a single group of rankers and therefore the skill

parameter of entity k is denoted by λk. The rankers are assumed to be homogeneous and

so their rankings follow the same underlying ranking distribution, defined by the Weighted

Plackett–Luce model. The model described here is therefore akin to that considered within

Section 2.5. However, unlike this previous scenario (where each skill parameter followed a

unique continuous distribution) all K skill parameters now follow an infinite dimensional

discrete distributionG, whereG follows a Dirichlet process. This model can be summarised

as

Xi|λ indep∼ PLW(λ, wi) i = 1, . . . , n,

λk|G
indep∼ G k = 1, . . . ,K,

G|α,G0 ∼ DP(α,G0).

To make the form of the non-parametric prior distribution unambiguous we define its

stick-breaking representation, and this is

G(·) =

∞∑
s=1

ψsδλs(·)

ψs = vs
∏
`<s

(1− v`)

vs
indep∼ Beta(1, α)

λs
indep∼ G0

for s ∈ N. Given the form of the stick-breaking construction it is clear that the atoms of the

Dirichlet process are in fact scalar quantities and not parameter vectors as in Section 3.5.

Indeed this model only considers a single parameter vector λ. However, unlike the normal

implementation of the Weighted Plackett–Luce model its elements need not be unique.

Another important feature of this model (in comparison to the model which accounts

for ranker heterogeneity) is that we no longer have the freedom to specify a unique base

distribution for each of the K entities. This follows from the exchangeability of the atoms

within the Dirichlet process and thus G0 must not depend on s. The implication of this

constraint on our prior specification will be discussed further in Section 3.6.3.
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3.6.2 Simulating data from the Weighted Plackett–Luce model with en-

tity clustering

In this section we describe how to simulate data from the Weighted Plackett–Luce model

with a Dirichlet process prior on the entity skill parameters. As mentioned previously,

introducing latent cluster indicator variables is helpful when dealing with mixture models.

Here we adopt similar latent cluster indicators and notation as in Section 3.5 where we

considered clustering on rankers. We suppose there are N e entity clusters, that is, the

parameter vector for the K skill parameters contains N e unique values. The collection of

these unique parameters is denoted Λ = (λ1, . . . , λNe). Further we also use latent cluster

membership indicators ce = (ce1, c
e
2, . . . , c

e
K) with cek ∈ {1, 2, . . . , N e} for k = 1, 2, . . . ,K.

For example, if ce = (1, 2, 1, 2) then entities 1 and 3 are in cluster 1 and entities 2 and 4

are in cluster 2; the two clusters have the unique parameters λ1 6= λ2. This is equivalent

to saying that entities 1 and 3 are equivalent, and are deemed to be tied in strength; the

same is also true for entities 2 and 4. Using these latent cluster indicators, the full skill

parameter vector, here denoted λ†, that contains the parameter for each entity is given

by λ†k = λcek for k = 1, . . . ,K.

We can now describe how to generate data under this model (outlined in Section 3.6.1).

Again first we must specify a cluster structure but this time for the entities and not the

rankers. This can be achieved by either (a) explicitly defining values for the latent cluster

allocation variables cek and making sure these are labelled 1, . . . , N e, or (b) drawing a

realisation (marginally) from the Dirichlet process prior distribution as follows.

• Choose α > 0 or simulate from a suitable distribution.

• Set ce1 = 1 and the (current) number of clusters as N e = 1.

• For k = 2, . . . ,K simulate the allocation of entity k to a cluster according to the

discrete distribution

Pr(cek = j|ce1, . . . , cek−1) =
nekj

α+ k − 1
, for j = 1, . . . , N e,

Pr(cek = N e + 1|ce1, . . . , cek−1) =
α

α+ k − 1
,

where nekj denotes the number of points currently within cluster j (at iteration k),

and N e → N e + 1 if cek = N e + 1.

Once we have a clustering structure of the entities we now choose values for the (cluster-

specific) skill parameters λs. These can either be chosen explicitly or alternately drawn

from the prior (base) distribution by sampling λs
indep∼ G0 for s = 1, . . . , N e. We also must
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choose whether each ranker is informative or not, that is, choose (or sample) a value of

wi ∈ {0, 1} for i = 1, . . . , n.

The parameters of the model are now fully specified and so we can now use the exponential

latent variable representation of the Weighted Plackett–Luce model to generate rankings.

A collection of n complete rankings {xi}ni=1 is generated via the following process.

For i = 1, . . . , n

• Sample νij
indep∼ Exp(λwicej

) for j = 1, . . . ,K.

• Set xij = argmin
q∈Sij

νiq where Sij = K \ {xi1, . . . , xij−1} for j = 1, . . . ,K.

Note that the process outlined above is equivalent to the data generating process for the

(no clustering) Weighted Plackett–Luce model as in Section 2.5.1 but here the parameter

vector λ is replaced with λ† = (λce1 , . . . , λceK ). Alternative types of rankings, for example,

a top–5 ranking, can be obtained from the complete rankings simulated using the same

process as discussed in Section 2.2.5.

3.6.3 Prior and latent variable specification

We now outline our prior distribution and the likelihood under this model and appeal to the

notation and latent cluster indicators introduced in the previous section. We suppose there

to be N e entity clusters and let Λ = (λ1, . . . , λNe) denote the collection of the unique skill

parameters. The latent cluster membership indicators are given by ce = (ce1, c
e
2, . . . , c

e
K)

with cek ∈ {1, 2, . . . , N e} for k = 1, 2, . . . ,K where cek = j denotes that entity k belongs to

cluster j.

We noted earlier that choosing a value for the Dirichlet process concentration parameter α

can be difficult. Therefore, as for when we considered ranker clustering, we instead take

α ∼ Ga(aα, bα) so that we can infer this parameter from the data. We also choose a

Gamma prior distribution for the skill parameters so that a conjugate update can be

performed (after data augmentation). Recall that for this model we must choose a single

base distribution for all skill parameters, that is, G0 can no longer depend on k. Here

we take G0 = Ga(a, 1) which gives λs
indep∼ Ga(a, 1) a priori. Note that not being able

to specify a unique prior for each of the k entities has a significant effect on how much

information can be fed into the analysis through the prior distribution. Indeed given

that G0 = Ga(a, 1), the only choice we have is to place an uninformative prior on the

skill parameters; namely that each ordering of the entities is equally likely. This is a

consequence of the skill parameters λk being a random sample for any choice of a ∈ R+

and therefore Pr(λi > λj) = Pr(λj > λi) for all i 6= j. Given this we might think it is
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sufficient to let a = 1. However, the value of a still provides information about the variance

of the skill parameters, for example. The limited flexibility of the prior distribution for the

skill parameters is somewhat of a drawback of this model. Unfortunately there is no way

to resolve this given the exchangeability assumption of the Dirichlet process. However, we

note that in a real world scenario we might well wish for the data to be the main driving

force behind inference and therefore the inability to place strong prior information into

the model is perhaps not too important. Indeed we have seen in our previous analyses

that taking ak = a = 1 still enables informative inferences on the skill parameters.

Using G0 = Ga(a, 1) and recalling that the model contains N e unique skill parameters,

the prior distribution for Λ (conditional on the cluster indicators ce) has density

π(Λ|ce) =
Ne∏
c=1

λa−1c e−λc

Γ(a)
.

Also the model assumes that each ranking follows the Weighted Plackett–Luce probability,

that is, Xi|Λ,w, ce indep∼ PLW(λ†, wi). Therefore we also need a prior distribution for the

latent ranker weights, w. Here we choose the prior specification used in previous analyses,

that is, wi
indep∼ Bern(pi) where pi ∈ (0, 1] for i = 1, . . . , n. We now construct the likelihood

under this model. The probability of the ith ranking, expressed in terms of the latent

cluster indicator variables, is

Pr(Xi = xi|Λ, ce,w) =

ni∏
j=1

λwicexij∑ni
m=j λ

wi
cexim

+
∑

m∈Ui λ
wi
cem

,

and therefore, as the rankings are (conditionally) independent, the likelihood is

π(D|Λ, ce,w) =
n∏
i=1

ni∏
j=1

λwicexij∑ni
m=j λ

wi
cexim

+
∑

m∈Ui λ
wi
cem

.

Unsurprisingly, and as we have seen previously, the form of the likelihood does not ad-

mit conjugate Bayesian inference. We can however use data augmentation techniques by

introducing appropriate latent variables so that the full conditional distributions for the

skill parameters are simple. Here the latent variables required are again those which cor-

respond to the latent exponential inter-arrival times and (expressed in terms of our latent

cluster indicators) are

zij |D,Λ,w, ce indep∼ Exp

 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 , (3.11)

for i = 1, . . . , n and j = 1, . . . , ni.
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3.6.4 Full conditional distributions

We can now use Bayes’ Theorem to obtain the posterior distribution. The posterior

distribution π(Λ, Z, ce,w, α|D) is now a joint distribution of the latent random variables Z,

the collection of unique skill parameters Λ, the binary indicator variables w, the latent

cluster allocations ce and the DP concentration parameter α. Again we can sample the

latent cluster indicators using Neal’s Algorithm 8 (Neal, 2000) and the FCD of the DP

concentration parameter α is as in Section 3.4.2. The remainder of this section is concerned

with deriving the FCDs for the remaining unknown quantities (Z,Λ,w) and a complete

outline of the Gibbs sampling scheme used to generate posterior samples can be found in

Section 3.6.5.

Before starting the derivation of the full conditional distributions it is useful to first con-

struct the density of all stochastic quantities. Note however that, given we already have

the FCDs for ce and α, it is sensible to only consider the conditional density of all the

remaining stochastic quantities given the latent cluster indicator variables and the DP

concentration parameter. This (conditional) joint density is

π(Λ,D, Z,w|ce, α)

= π(Λ,D, Z,w|ce)
= π(Z|D,Λ,w, ce)π(D|Λ,w, ce)π(Λ|ce)π(w)

=

n∏
i=1

ni∏
j=1

 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 exp

−
 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 zij


×

n∏
i=1

ni∏
j=1

λwicexij

 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

−1 × Ne∏
c=1

λa−1c e−λc

Γ(a)
×

n∏
i=1

pwii (1− pi)1−wi

=
n∏
i=1

ni∏
j=1

λwicexij
exp

−
 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 zij

×
Ne∏
c=1

λa−1c e−λc

Γ(a)

×
n∏
i=1

pwii (1− pi)1−wi .

(3.12)

The derivation of the full conditional distributions (FCDs) for our parameters follows in

a similar way to that used for ranker clustering in Section 3.5.4. We now construct the

conditional distribution of each random quantity given all other stochastic quantities. By

construction, the full conditional distribution for the latent variables Z are as in (3.11)

for i = 1, . . . , n, j = 1, . . . , ni. This result can also be derived directly from (3.12) as this
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gives

π(Z|D,Λ,w, ce, α) ∝
n∏
i=1

ni∏
j=1

exp

−
 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 zij

 .

The full conditional distribution for the unique skill parameters λc is derived as follows.

We have

π(Λ|D, Z,w, ce, α) ∝
n∏
i=1

ni∏
j=1

λwicexij
exp

−
 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 zij

×
Ne∏
c=1

λa−1c e−λc

Γ(a)

∝
Ne∏
c=1

λa+βc−1c e−λc ×
n∏
i=1

ni∏
j=1

exp

−
 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 zij


=

Ne∏
c=1

λa+βc−1c exp

−
1 +

n∑
i=1

wi

ni∑
j=1

γij(c)zij

λc

 ,

where

βc =
n∑
i=1

wi

ni∑
j=1

I(cexij = c),

is the number of times that an entity in cluster c appears within an informative ranking

and

γij(c) =

ni∑
m=j

I(cexim = c) +
∑
m∈Ui

I(cem = c),

is the number of times that entities in cluster c are ranked no better than jth in the ith

ranking. It follows that the full conditional distribution for λc is available in closed form

as

λc| · · · indep∼ Ga

a+ βc, 1 +

n∑
i=1

wi

ni∑
j=1

γij(c)zij

 , (3.13)

for c = 1, . . . , N e.

The only remaining random quantities in the model that we do not currently have a

full conditional distribution for are the latent ranker weights w. Recall that we de-

note the collection of latent ranker weights excluding that associated with ranker i by

w−i = (w1, . . . , wi−1, wi+1, . . . , wn). The full conditional distribution for wi is the discrete

distribution
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Pr(wi = 1|D,Λ, Z,w−i, ce, α)

∝ Pr(wi = 1)π(D|wi = 1,Λ,w−i, ce)π(Z|wi = 1,Λ,D,w−i, ce)

∝ pi
ni∏
j=1

λcexij
exp

−zij
 ni∑
m=j

λcexim
+
∑
m∈Ui

λcem

 ,

Pr(wi = 0|D,Λ, Z,w−i, ce, α)

∝ Pr(wi = 0)π(D|wi = 0,Λ,w−i, ce)π(Z|wi = 0,Λ,D,w−i, ce)

∝ (1− pi)
ni∏
j=1

exp {−zij(Ki − j + 1)} .

Therefore, for i = 1, . . . , n, the full conditional distribution is

wi| · · · indep∼ Bern(ρi), (3.14)

where

ρi =
Pr(wi = 1|D,Λ, Z,w−i, ce, α)

Pr(wi = 1|D,Λ, Z,w−i, ce, α) + Pr(wi = 0|D,Λ, Z,w−i, ce, α)
,

is the probability that ranking i is informative (given the other quantities).

Recall that the latent cluster indicators ce can be sampled using Neal’s Algorithm 8 (Neal,

2000) which implements a Pólya urn scheme to marginalise out the infinite dimensional

parameters. The resulting full conditional distribution for the cluster allocations is a

discrete distribution over the clusters which are active and m auxiliary components. The

DP concentration parameter α can also be sampled from its full conditional distribution

given in Section 3.4.2. The following section gives a complete outline of the Gibbs sampler

used to obtain posterior realisations.

3.6.5 MCMC using Neal’s Algorithm 8

Before outlining the Gibbs sampling scheme to generate realisations from the posterior

distribution, π(Λ, Z, ce,w, α|D), it is useful to first define the contribution to the complete

data likelihood from ranker i to be

f(xi, zi|Λ,w, ce, α) =

ni∏
j=1

λwicexij
exp

−zij
 ni∑
m=j

λwicexim
+
∑
m∈Ui

λwicem

 .
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We can now describe the algorithm concisely. Suppose we have n rankings of ni < K

entities. The state of the Markov chain has elements Λ = (λc : c ∈ {ce1, . . . , ceK}), Z = (zij),

ce = (cek), w = (wi) and α for i = 1, . . . , n, j = 1, . . . , ni, k = 1, . . . ,K. The algorithm

repeatedly samples as follows:

• For i = 1, . . . ,K: Let q− be the number of distinct cej for j 6= i and h = q−+m. Label

these cej values in {1, . . . , q−}. If cei = cej for some j 6= i, draw values independently

from G0 for those λc for which q− < c ≤ h. If cei 6= cej ∀ j 6= i, let cei have the label

q−+1, and draw values independently from G0 for those λc for which q−+1 < c ≤ h.

Draw a new value for cei from {1, . . . , h} using the following probabilities:

Pr(cei = c|D, Z,Λ,w, ce−i, α) =

b n−i,c f(xi, zi|Λ,w, cei = c, ce−i, α), 1 ≤ c ≤ q−,
b α
m f(xi, zi|Λ,w, cei = c, ce−i, α), q− < c ≤ h,

where Λ = {λ1, . . . , λh}, n−i,c = #(cej = c : j 6= i) and b is the appropriate normal-

ising constant. Change the state to contain only those λc that are now associated

with one or more observations, that is, let Λ = (λc : c ∈ {ce1, . . . , ceK}).

• Sample λc from (3.13) for c = 1, . . . , N e.

• Sample zij from (3.11) for i = 1, . . . , n, j = 1, . . . , ni.

• Sample wi from (3.14) for i = 1, . . . , n.

• Rescale

– Sample Λ† ∼ Ga (N ea, 1).

– Calculate Σ =
Ne∑
c=1

λc.

– For c = 1, . . . , N e, let λc → λc Λ†/Σ.

• Sample α as in Section 3.4.2 with n = K and N c = N e.

The rescaling step given here is akin to that mentioned in Section 2.2.3.

3.6.6 Simulation study – revisiting Dataset 1

For our first simulation study we revisit Dataset 1, introduced in Chapter 2. Recall that

this dataset contains n = 40 complete rankings of K = 20 entities, whence ni = K for

i = 1, . . . , n. Also note that these data were simulated from the standard Plackett–Luce

model. Under our current setting we therefore consider these data to contain N e = K = 20
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entity clusters with each entity within its own cluster. Alternatively, and equivalently, we

could consider these data as being from the Weighted Plackett–Luce model with a Dirichlet

process prior on the skill parameters using the process outlined in Section 3.5.2 with cek = k

for k = 1, . . . ,K, λ = (20, 19, . . . , 1) and wi = 1 for i = 1, . . . , n.

The purpose of re-analysing these data is to see how this model performs in a scenario

where the collection of rankings to be analysed contains a large number of entity clusters;

specifically the scenario where each entity is in its own cluster (N e = K). It will be

interesting to see if we obtain significant posterior support for 20 entity clusters and if

not, how inferences are affected by the introduction of our entity clustering structure.

We also take this opportunity to perform a prior sensitivity analysis, and consider how

sensitive the posterior distribution is to the choice of prior distribution on the concentration

parameter α.

Before we can perform Bayesian inference we must first describe a suitable prior distribu-

tion. As in previous analyses of these data we choose to let each ordering (of the entities)

be equally likely a priori ; note that the DP prior also requires this uniform distribution

on orderings. As before we let a = 1 and so the prior distribution over the skill parameters

is λk
indep∼ Ga(1, 1) for k = 1, . . . ,K. As discussed when considering clustering rankers,

specifying a (prior) value for the concentration parameter of the Dirichlet process is some-

what difficult. Therefore instead we allow α to be uncertain and assign a suitable prior

distribution. We assess how the posterior distribution is affected by the choice of prior

for α by considering 4 separate analyses. For Analyses 1 and 2 we use the priors com-

monly used within the literature (e.g. Rodriguez et al., 2008), namely aα = bα = 1 and

aα = bα = 3 respectively. In Analyses 3 and 4 we take bα = 1 and consider aα = 3 and

aα = 5 for each analysis respectively; the posterior distribution under these analyses will

allow us to investigate the effect of increasing the prior mean for α. Table 3.3 (top) shows

the (induced) prior distribution for the number of entity clusters for each of the analyses

considered. Note that in each case the prior probabilities were obtained by simulation

as a closed form of π(N e|α,K) only exists when α is a fixed constant. The prior means

and standard deviations of both the number of entity clusters along with the concentra-

tion parameter itself are also given in Table 3.3 (bottom) for each analysis. Finally we

also need to specify the prior probability that each ranker is informative. Although, in

general, it might be pragmatic to use a conservative choice of the pi we suppose that, for

this analysis at least, we are fairly confident that the rankers are informative – these data

were simulated from under the standard Plackett–Luce model (equivalent to the Weighted

Plackett–Luce model with w = 1) – and so take pi = 0.9 for each ranker.
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j
aα bα 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15

1 1 0.24 0.21 0.17 0.13 0.10 0.06 0.04 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00
3 3 0.11 0.21 0.23 0.19 0.12 0.07 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
3 1 0.02 0.05 0.09 0.12 0.14 0.15 0.13 0.11 0.08 0.05 0.03 0.02 0.01 0.00 0.00
5 1 0.00 0.01 0.02 0.05 0.08 0.11 0.14 0.15 0.14 0.12 0.08 0.05 0.03 0.01 0.01

aα bα E(Ce) SD(Ce) E(α) SD(α)

1 1 3.18 2.07 1 1

3 3 3.45 1.76 1 1/
√

3

3 1 6.23 2.53 3
√

3

5 1 8.04 2.70 5
√

5

Table 3.3: Prior probabilities, Pr(N e = j), of the number of entity clusters for each analysis (top)
and the prior expectations and standard deviations of both the number of entity clusters and the
concentration parameter (bottom). Modal values are highlighted in bold.

Posterior analysis

We generate realisations from the posterior distribution (for each analysis) using the Gibbs

sampling algorithm outlined in Section 3.6.5. After performing a few pilot runs it appeared

that choosing m = 3 gave good mixing over the cluster labels. Note that, for this model,

increasing m does not effect the computational burden as significantly as when we con-

sidered the ranker clusterings as here we are only required to draw m auxiliary entity

clusters (scalars) and not ranker clusters (parameter vectors). That said, as when consid-

ering ranker clustering, the discrete (full conditional) distribution over the cluster labels

also increases in dimension. Each Markov chain was initialised at a random draw from

the prior distribution. We ran the MCMC scheme for 110K iterations, discarding the

first 10K samples as burn-in and thinning the remaining iterates by a factor of 10. This

left a posterior sample of 10K (almost) un-autocorrelated realisations from the posterior

distribution. The computational time required was (approximately) 215, 196, 223 and 249

seconds for Analyses 1–4 respectively. Figure 3.6 shows the trace plots of the log complete

data likelihood for all analyses. The chains appear to be mixing reasonably well in each

case. Again assessing convergence and mixing in this way is convenient not only because

the state space is vast but also because the dimension of the posterior distribution changes

at each iteration (depending upon the number of unique entity clusters). Convergence has

been assessed further by initialising numerous chains at different starting values and veri-

fying that the posterior distribution obtained from each chain is the same up to stochastic

noise.
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Figure 3.6: Trace plots of the log complete data likelihood for Analyses 1 and 2 (top left, right)
and Analyses 3 and 4 (bottom left, right).
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Figure 3.7: Pr(wi = 1|D) – Posterior probability that ranking i is informative under each analysis
(Analysis 1: aα = bα = 1, Analysis 2: aα = bα = 3). Colours distinguish between the different
priors on α.

Under each analysis we observe in Figure 3.7 that the posterior probability of each ranker

being informative is large with Pr(wi = 1|D) > 0.8 for i = 1, . . . , n. This comes as no

surprise as these data were simulated under the standard Plackett–Luce model (which

has wi = 1) and we expressed high confidence in each ranker being informative a priori.

Note that ranker 8 has a lower posterior probability than specified through the prior

(pi = 0.9). Closer inspection of this ranking reveals that it is somewhat atypical of this

dataset: entities 2 and 4 both appear within the bottom 5 positions and entities 13, 11

and 10 all feature within the top 5 positions. These features are somewhat at odds with

the true parameter values from which these data were simulated, and were noted when

we analysed these data under the Weighted Plackett–Luce model with no clustering in

Section 2.7.
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Figure 3.8: Pr(N e = i|D) – Marginal posterior distribution of the number of entity clusters for
each analysis.

We now turn our attention to the entity clustering. Figure 3.8 shows the marginal posterior

distribution of the number of entity clusters for each analysis (as frequency polygons). The

first striking observation we note is the fairly large difference in the marginal posteriors

between analyses. Of course, this aspect of the posterior distribution was always quite

likely to be affected given that the concentration parameter α controls the level of entity

clustering. It appears, for these data at least, that the prior beliefs for α play an important

role in the analysis. This might be due to there being little information in these data about

the number of entity clusters: recall that these data only contain 40 rankings of 20 entities.

If we compare the marginal posterior distributions of the number of entity clusters for

Analyses 1 and 2, that is, those which specify a unit mean on the concentration parameter

a priori, we note that there is less posterior variation for the latter. This suggests that,

for these data, information about the variation on the number of entity clusters contained

within the prior also plays an important role in the analysis – recall the prior distributions

for these analyses specify standard deviations of 1 and 1/3 for α respectively. Further,

and perhaps not surprisingly, we observe that as the prior mean for α increases, so does

the posterior mean on the number of entity clusters; see Analyses 1, 3 and 4 in Figure 3.8.

As with ranker clustering, the marginal posterior for the number of clusters does not tell

the full story. Again we use complete linkage dendrograms formed from the dissimilarity

matrix with entries ∆ij , where ∆ij = Pr(cei 6= cej |D) is the posterior probability that

entities i and j are not clustered together. Figure 3.9 shows the dendrograms of entity

clustering for each analysis. It is clear that the clustering structure shown within the

dendrograms is similar for each analysis and so this aspect of the posterior distribution is

fairly robust to the choice of prior on α (unlike the marginal posterior over the number of

entity clusters). As the prior mean for α increases we observe that the dissimilarity values

at which clusters form increases, that is, rankers are co-clustered together less often. This is

consistent with observing an increased number of entity clusters. The only notable change
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Figure 3.9: Dendrograms of entity clustering for Analyses 1, 2 (top left and right) and Analyses 3,
4 (bottom left and right).

in clustering structure from the dendrograms is that entity 11 has changed allegiance from

entities {4, 6, . . . , 10} to entities {12, 13, 14, 16} under Analysis 2 (top right). It is pleasing

to see that although our model is unable to detect each entity is within its own cluster

(they have unique values with λ = (20, 19, . . . , 1)) those entities which form groups are

typically those with labels that are most similar.

It is interesting to see how inferences on the skill parameter values are affected by incor-

porating entity clustering into the model. Table 3.4 shows the marginal posterior means

for each of the K entities under all analyses considered. Note that to ease comparison the

skill parameters have been rescaled (offline) so that λ20 takes its true value, that is, we let

λk → λk/λ20 for each realisation from our posterior distribution. The aggregate rankings

(formed by ordering entities by their posterior mean) are the same for each analysis and

therefore this is only given once in the table. It follows that this aspect of the posterior

appears to be fairly robust to the choice of prior for α. The (posterior) aggregate rank-

ing(s) are fairly similar to the optimal ranking, x̂ = (1, 2, . . . , 20), formed conditionally

on the true parameter values. Recall the optimal ranking is that which maximises the

Plackett–Luce probability and is formally defined in (2.7). Further if we compare poste-

rior inferences here to those when we assumed the (no clustering) standard Plackett–Luce

model in Section 2.4.1, we notice striking similarities. The aggregate rankings are the

same and there is little discrepancy between the posterior means of the skill parameters

for each model. Therefore, for these data, the posterior inferences are robust to incorpo-

rating entity clustering structure within the model. We note however that the posterior

distribution formed under the model that allows for entity clustering is much richer in
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Analysis
Rank xagg 1 2 3 4

1 3 24.76 23.83 25.39 25.88
2 1 24.03 23.34 24.57 24.85
3 5 23.10 22.56 23.44 23.71
4 2 22.56 22.04 22.75 22.95
5 4 19.66 19.68 19.61 19.61
6 6 19.50 19.45 19.39 19.34
7 8 19.04 19.09 18.91 18.84
8 7 18.24 18.36 18.04 17.95
9 9 18.08 18.19 17.85 17.69
10 10 16.75 16.84 16.55 16.36
11 11 13.02 12.97 12.98 13.04
12 12 10.18 10.01 10.24 10.32
13 13 9.21 9.10 9.28 9.33
14 14 7.66 7.66 7.60 7.59
15 16 7.61 7.58 7.56 7.55
16 15 5.40 5.41 5.38 5.36
17 17 4.95 4.92 4.92 4.91
18 18 3.02 3.02 2.99 2.97
19 19 2.95 2.96 2.92 2.89
20 20 1.00 1.00 1.00 1.00

Table 3.4: Marginal posterior means of the skill parameters for each analysis. The aggregate
ranking is the same under all analyses.

information. For example, we can quantify, in a principled manner, the (posterior) level

of similarity between entities – something that would require an ad hoc approach under a

standard (no clustering) analysis.

3.7 Summary

In this chapter we have shown that it is possible to reveal latent group structure contained

within ranked data by appealing to Dirichlet process mixture models. In Section 3.5 we

explored the area given much attention in the literature, namely revealing differences

between rankers’ preferences. We used an infinite mixture of Weighted Plackett–Luce

models which, through simulation studies, was shown to be an appropriate model for

analysing such data. In Section 3.6 we considered the notion that rankers may not be

able to distinguish between certain groups of entities, that is, they consider some entities

to be indistinguishable (tied in strength). The analysis used a novel (Dirichlet process)

prior distribution over the skill parameters themselves – something which, to the best of
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our knowledge, has not previously been considered within the literature. This allowed for

the exploration of (potential latent) clustering structure within the entities. Further the

richness of information within the posterior distribution allows us to quantify the level of

similarity between entities – this would require an ad hoc approach if using standard (no

clustering) techniques. Efficient (marginal) posterior sampling schemes were discussed and

a Gibbs sampling strategy (made possible by appealing to data augmentation techniques)

was outlined for each model.

We acknowledge that the simulation studies within this chapter consider data which were

simulated from homogeneous models. However, we believe our models performed suffi-

ciently well and gave reasonable inferences even in the scenario where no ranker or entity

clustering was present. It was particularly interesting to see that incorporating our DP

prior on the skill parameters had little effect on posterior inferences.

In the next chapter we explore two-way clustering techniques with the aim of building

a single model which can explore not only heterogeneity between rankers but also the

clustering structure of entities within ranker groups. As part of this we consider simulation

studies on data where (true) clustering structure is present and therefore the effectiveness

of our models (in recovering both ranker and entity group structure) will be examined

within the latter part of Chapter 4.
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The Bayesian WAND

4.1 Introduction

In Chapter 3 (Sections 3.5 and 3.6) we presented two different non-parametric prior dis-

tributions which allowed for either clustering of rankers or clustering of entities. In this

chapter we develop a non-parametric prior distribution which allows for the clustering of

both rankers and entities. We do this by appealing to other Bayesian non-parametric

priors used for two-way clustering. We begin by reviewing briefly some of the existing

methods within the literature before describing the non-parametric prior distribution we

shall use for clustering both rankers and entities.

4.2 Two-way clustering

There are a few Bayesian non-parametric priors which allow for multiple layers of clustering

via Dirichlet processes. Two of these are the Hierarchical Dirichlet Process (Teh et al.,

2006) and the Nested Dirichlet Process (Rodriguez et al., 2008) which, for conciseness, we

refer to as the HDP and NDP respectively.

The HDP has the typical model specification

λi|Gi indep∼ Gi, i = 1, . . . , n,

Gi|α,G0
indep∼ DP(α,G0), i = 1, . . . , n,

G0|γ,H ∼ DP(γ,H).

Under this prior each sample is drawn from a distribution over a common set of atoms

(which is a realisation of a Dirichlet process) whose base distribution is in turn another
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Dirichlet process realisation (with associated base distribution H). In our setting a typical

realisation from this prior is an n × K matrix Λ containing the skill parameter vectors

for each of the n rankers. The skill parameter vectors for each ranker are drawn from the

same set of atoms. However, these atoms have different weights for each of the n rankers.

One way to think about this is that each ranker is first assigned their own unique DP

before drawing a sample from this DP for their K skill parameters.

The NDP is slightly different and under this NDP prior there is a single Dirichlet process

whose atoms are themselves unique Dirichlet processes. As with the HDP, a typical

realisation (in our context) from this prior is the parameter matrix Λ containing the skill

parameter vectors. However, unlike the HDP, the NDP stipulates that two realisations of

the skill parameter vector, say λ1 and λ2, are either drawn from a distribution (realisation

of a DP) over the same atoms with the same weights, or alternatively, a distribution over

different atoms with different weights. Formally the NDP is defined through its stick

breaking representation and we let Q|α, γ,H ∼ NDP(α, γ,H) denote that Q follows the

Nested Dirichlet Process prior distribution with stick-breaking representation

Q(Λ) =
∞∑
s=1

ψsδPs(Λ),

ψs
indep∼ vs

∏
`<s

(1− v`), s = 1, 2, . . . ,

vs
indep∼ Beta(1, α), s = 1, 2, . . . ,

Ps(Λ) =

∞∑
t=1

ωstδλ†st
(λ†), s = 1, 2, . . . ,

ωst = ust
∏
`<t

(1− us`), s = 1, 2, . . . , t = 1, 2, . . . ,

ust
indep∼ Beta(1, γ), s = 1, 2, . . . , t = 1, 2, . . . ,

λ†st
indep∼ H, s = 1, 2, . . . , t = 1, 2, . . . .

A typical model specification for the NDP is therefore

λi|Gi ∼ Gi, i = 1, . . . , n,

Gi|Q ∼ Q, i = 1, . . . , n,

Q|α, γ,H ∼ NDP(α, γ,H),

where Q follows a Nested Dirichlet Process prior with concentration parameters α, γ and

base distribution H.
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Unfortunately neither of these priors are appropriate for our problem. They are designed

for situations where xij is itself an observation. However, for ranked data, this is not the

case as an observation is the entity ranking (vector) xi. In our setting both of these priors

assign a distribution (realisation of a DP) to each ranker and then draw samples for the K

skill parameters (one for each entity) based solely on the information contained within

that single ranking. However, in order to cluster entities (within each ranker group) we

require information from numerous rankers. The properties of the NDP are somewhat

desirable and we therefore adapt this prior distribution so that it can be applied in a

ranked data context. The adaptation required is fairly straightforward and is discussed in

detail within the next section.

4.3 The Adapted Nested Dirichlet Process (ANDP) prior

As mentioned we need to adapt the Nested Dirichlet Process prior so that it can be used

within a ranked data context and enable clustering of both the rankers and entities. Under

the standard NDP, rankers are first assigned to a distribution (realisation of a DP) before a

sample of the K skill parameters is then drawn (independently) for each ranker. However

we adapt the prior so that we first assign all rankers to a distribution (realisation of a DP)

before then proceeding to draw a single sample (of the K skill parameters) from each of

the unique DP realisations that rankers are assigned to. These samples are drawn based

on the information from all rankers which are assigned to each respective DP realisation.

Further the single sample (drawn from each respective DP realisation) is shared between

all rankers within that “cluster”. This results in a slightly different prior to the NDP,

which we call the Adapted Nested Dirichlet Process (ANDP) prior, and this dictates that

those rankers who are assigned to the same DP realisation (cluster) have the exact same

skill parameter vector λ. Recall that the NDP only requires that the parameter vectors

for each of the rankers (assigned to the same cluster) are drawn from the same distribution

(realisation of a DP).

The Adapted Nested Dirichlet Process prior distribution has a “top level” Dirichlet process

whose atoms are parameter vectors λ. Each of these parameter vectors is a sample from a

unique realisation of a “low level” Dirichlet process. We let G|α,γ, G0 ∼ ANDP(α,γ, G0)
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denote that G follows the ANDP prior distribution with stick-breaking representation

G(Λ) =
∞∑
s=1

ψsδλ∗s (λ
∗), (4.1)

ψs
indep∼ vs

∏
`<s

(1− v`), s = 1, 2, . . . ,

vs
indep∼ Beta(1, α), s = 1, 2, . . . ,

P (λ∗s) =
∞∑
t=1

ωstδλ†st
(λ†), s = 1, 2, . . . , (4.2)

ωst = ust
∏
`<t

(1− us`), s = 1, 2, . . . , t = 1, 2, . . . ,

ust
indep∼ Beta(1, γs), s = 1, 2, . . . , t = 1, 2, . . . ,

λ†st
indep∼ G0, s = 1, 2, . . . , t = 1, 2, . . . .

It is worth noting that the NDP (and therefore the ANDP) priors are usually specified

using two concentration parameters, one controls the top level clustering (in our case

rankings) and the second corresponds to the lower level clustering (the entity clustering).

However, for the ANDP we choose to instead introduce an infinite dimensional space

for our low level concentration parameters, that is, we introduce γs for s ∈ N and let

γ = (γ1, γ2, . . . ) be the collection of these concentration parameters. Although this change

might seem somewhat incidental it means that the ANDP prior now has more flexibility

to handle differing levels of entity clustering within each ranker group. Note that as the

low level Dirichlet processes are themselves atoms of the high level Dirichlet process, the

associated concentration parameters γs must be exchangeable (with respect to the cluster

label s). This has the consequence that if these parameters are chosen to be fixed constants,

they must all be equal, that is, γs = γ with γ > 0 and s ∈ N. In this scenario the additional

modelling flexibility is lost and the concentration parameter (for the entity clustering) is

the same across ranker groups. Alternatively γs can be given a prior distribution which

does not depend on the cluster label s. In other words, we can choose γs
indep∼ f(·) a priori

but not γs
indep∼ fs(·) due to the exchangeability requirement of the top level Dirichlet

process. We note that if the density f(·) is a mixture of Gamma distributions then,

as was the case when we considered one-way clustering (of either rankers or entities),

the full conditional distribution for each γs is straightforward. Of course, other prior

specifications could be chosen but come at the cost of a loss of conjugacy. We also note

that the concentration parameter of the top level Dirichlet process (α) remains a scalar

and controls clustering of the rankers.

100



Chapter 4. The Bayesian WAND

HDP NDP ANDP

G0 ∼ DP(γ,H)

Gi ∼ DP(α,G0)

λi ∼ Gi

Q ∼ NDP(α, γ,H)

Gi ∼ Q

λi ∼ Gi

Q|α,γ, G0 ∼ ANDP(α,γ, G0)

(λ1, . . . ,λn)|Q ∼ Q
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Figure 4.1: Comparison of non-parametric prior distributions for two-way clustering

Figure 4.1 gives a graphical representation of the HDP, NDP and ANDP (based on Figure 1

in Rodriguez et al. (2008)) and thus clarifies the differences between these non-parametric

prior distributions.

4.3.1 Generating prior samples (stick-breaking representation)

We now describe how to obtain realisations from the ANDP prior distribution when the

data contain n rankers and K entities. Recall that a typical observation from this prior

distribution is the matrix Λ which holds the parameter vectors for each of the n rankers.
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Such a realisation can be obtained fairly trivially using the stick-breaking representation

outlined by (4.1) and (4.2). A marginal method using an appropriate Pólya urn scheme will

be considered later within this chapter. When implementing the stick-breaking approach

for a single Dirichlet process we noted that we must first choose a suitable truncation

parameter which results in a reasonable approximation to the infinite dimensional dis-

tribution defined by the Dirichlet process. It is perhaps not surprising that the ANDP

requires two truncation parameters, N1 and N2, so that the distributions G and P defined

in (4.1) and (4.2) are reasonably approximated. These truncation parameters must be

chosen so that

∞∑
s=N1+1

ψs ' 0 and

N1∑
s=1

∞∑
t=N2+1

ωst ' 0, (4.3)

or, equivalently, so that

N1∑
s=1

ψs ' 1 and

N2∑
t=1

ωst ' 1 for s = 1, . . . , N1.

We can then generate a prior realisation using the following process.

• Choose N1 and N2 sufficiently large.

• Choose α > 0 or sample from an appropriate prior distribution.

• Choose γs = γ > 0 or sample γs (independently) from an appropriate prior distri-

bution which is exchangeable in s for s = 1, . . . , N1.

• Sample λ†st
indep∼ G0 for s = 1, . . . , N1, t = 1, . . . , N2.

• Sample ust
indep∼ Beta(1, γs) for s = 1, . . . , N1, t = 1, . . . , N2.

• Set ωst = ust
∏̀
<t

(1− us`) for s = 1, . . . , N1, t = 1, . . . , N2.

• Sample λ∗sk from the discrete distribution(s) with atoms λ†s· and weights ωs· for

k = 1, . . . ,K and s = 1, . . . , N1.

• Sample vs
indep∼ Beta(1, α) for s = 1, . . . , N1.

• Set ψs = vs
∏̀
<s

(1− v`) for s = 1, . . . , N1.

• Sample λi from the discrete distribution with atoms {λ∗1, . . . ,λ∗N1
} and weights ψ

for i = 1, . . . , n.

We now explore this prior distribution further in the next section by investigating the

effect of the concentration parameters on prior realisations.
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4.3.2 Exploring the ANDP prior

We now investigate how the concentration parameters affect realisations from the ANDP

prior distribution. Suppose we have n = 50 rankers and K = 20 entities. It follows that

the maximum number of unique parameter values that could be used to summarise these

data is n×K = 1000; this scenario would arise when each ranker is assigned to their own

cluster and each entity (within each ranker group) is also within its own cluster. Also the

maximum number of unique parameter vectors (ranker clusters) is n = 50. Figure 4.2

shows the number of unique values of λ (total number of unique skill parameters across

all ranker clusters) along with the number of ranker clusters (unique parameter vectors)

there are for varying values of α and γ. Here we fix the concentration parameters in ranker

groups to be constant and so set γs = γ for s = 1, . . . , N1. Note that Figure 4.2 shows the

empirical prior probabilities calculated from one million (independent) prior realisations

drawn using the method described in Section 4.3.1.

For fixed α, the prior distribution of the number of ranker clusters (the number of unique

parameter vectors λ) is the same for all γ values; see Figure 4.2 (top left). This follows

as the DP (4.1) whose atoms are skill parameter vectors is conditionally independent of γ

given λ∗s for s ∈ N. The consequence of this is that γ plays no role in the level of ranker

clustering and this aspect of the prior distribution is controlled by α alone. As when we

considered clustering rankers (Section 3.5), the number of unique ranker clusters increases

as α increases; see Figure 4.2 (top right). It follows from our first observation that, for

any particular choice of α, the prior distribution of the number of ranker clusters is the

same irrespective of γ. Therefore, for this aspect of the prior distribution, allowing both α

and γ to vary is equivalent to only considering variation on α. Before we consider the level

of entity clustering, recall that here we are considering the total number of entity clusters

across all ranker clusters, that is, the total number of unique skill parameters λ, and not

the number of entity clusters within individual ranker clusters. As expected, for fixed α,

the number of entity clusters increases as γ increases; see Figure 4.2 (bottom left). Note

that here we have larger prior uncertainty for the number of entity clusters compared to

when we had clustering on entities alone. This follows as we have additional uncertainty

on the number of ranker clusters with the ANDP prior. Also, with fixed γ, the number

of unique entity clusters increases as α increases; see Figure 4.2 (bottom right). This is

perhaps counter-intuitive as, for fixed γ, the prior distribution of the number of entity

clusters (within a ranker group) remains unchanged. However, as α increases, the number

of ranker clusters increases and each unique ranker cluster contains at least one entity

cluster. Therefore, as the number of ranker clusters increases (and therefore the number

of parameter vectors λ) so too does the number of unique λ values. This follows as the

skill parameter vector for each different ranker cluster is drawn from a unique distribution
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Figure 4.2: Number of ranker and entity clusters under the Adapted Nested Dirichlet Process prior
for various values of concentration parameters α and γ.

(realisation of a DP) and therefore Pr(λc1i = λc2j) = 0 for two unique cluster labels c1 6= c2

and all i, j ∈ {1, . . . ,K}.

4.4 The model

We now describe the full model which incorporates both the ranker reliability parameter

and the two-way clustering of both rankers and entities (within ranker groups). The

model is an infinite mixture of Weighted Plackett–Luce models with the ANDP chosen as

the prior distribution. We refer to this model as the Weighted Adapted Nested Dirichlet

(WAND) process mixture of Plackett–Luce models. The main components of this model

can be written as

Xi|λi, wi ∼ PLW(λi, wi), i = 1, . . . , n,

(λ1, . . . ,λn)|Q ∼ Q

Q|α,γ, G0 ∼ ANDP(α,γ, G0),

where the stick-breaking representation of the ANDP prior is as in Section 4.3.
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4.5 A conditional sampling approach

In Section 3.4.1 we discussed different methods of implementing MCMC sampling algo-

rithms for Dirichlet Process mixture models. When considering one-way clustering (Chap-

ter 3) it was fairly straightforward to implement a marginal sampling scheme based on

Neal’s Algorithm 8 (Neal, 2000). However this non-parametric prior distribution is more

complex due to the two-way clustering it induces. Although there are inherent problems

with implementing conditional sampling schemes (such as the choice of truncation param-

eters and the requirement of label switching moves) these methods are often the most

intuitive and so we consider them a good place to start in this case.

4.5.1 Simulating data from the WAND model

In this section we describe how to simulate data from the Weighted Adapted Nested

Dirichlet (WAND) process mixture of Plackett–Luce models. Again it is helpful to first

introduce latent cluster indicators. Let c = (c1, . . . , cn) where ci = j denotes that ranking i

is associated with parameter vector λj . We also need indicators to denote the entity

clustering within each ranker group (parameter vector). Let dij = ` denote that entity j

within parameter vector i is allocated to entity cluster ` and let D = (dij) denote the

matrix of latent entity cluster indicators. In this notation, the value of the skill parameter

assigned to entity j from ranking i is λci,dci,j .

Note that under the (vanilla) NDP, the skill parameter corresponding to λci,dci,j would

be λci,di,j . Although subtle, the difference is that under the NDP each ranker would have

their own entity clustering structure, that is, the (entity) cluster indicators within di need

not be the same as those within dj even if rankers i and j are within the same ranker

cluster (ci = cj). The ANDP on the other hand requires that if two rankers are in the same

cluster then they also have the equivalent entity clustering, whence the clustering structure

for a ranker in cluster ci is given by dci . Recall that this constraint is made so that entity

clustering can be inferred as there is no information (about the entity clustering) contained

within a single ranking and therefore we must use all the information from those rankers

within cluster c to get information about dc.

We now describe how to generate ranked data from this model. We first need to specify

both the ranker clustering structure and the entity clustering structure within each (active)

ranker cluster. We could, of course, just choose these structures by giving values to the ci

and dck. Note that, as we are using a conditional sampling approach there is no longer a

requirement for the active (entity or ranker) clusters to be labelled incrementally from 1

as our state space (over cluster indicators and the collection of unique skill parameters Λ)

remains of fixed dimension, namely N1×N2. The cluster labels are therefore only required
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to be chosen so that ci ∈ {1, . . . , N1} and dck ∈ {1, . . . , N2}. Alternatively we could draw

cluster structures for both the rankers and entities from the ANDP prior distribution as

follows.

• Choose N1 and N2 sufficiently large.

• Choose α > 0 or sample from an appropriate prior distribution.

• Sample vs
indep∼ Beta(1, α) for s = 1, . . . , N1 − 1 and let vN1 = 1.

• Set ψs = vs
∏̀
<s

(1− v`) for s = 1, . . . , N1.

• Sample ci
indep∼ Cat(N1,ψ) for i = 1, . . . , n.

• Choose γs = γ > 0 or sample γs (independently) from an appropriate prior distri-

bution which is exchangeable with respect to s for s ∈ {c}.

• Sample ust
indep∼ Beta(1, γs) for s ∈ {c}, t = 1, . . . , N2 − 1 and let usN2 = 1.

• Set ωst = ust
∏̀
<t

(1− us`) for s ∈ {c}, t = 1, . . . , N2.

• Sample dsk
indep∼ Cat(N2,ωs) for s ∈ {c}, k = 1, . . . ,K.

Once we have a clustering structure of both the rankers and entities we need to choose

values for the (cluster-specific) skill parameters λsk. Again these can either be chosen

explicitly or drawn from the prior distribution by sampling λsk
indep∼ G0 for s ∈ {c},

k ∈ {ds}. Finally we need to specify whether rankers are informative or not and so must

choose a value of the binary wi or sample them independently from Bern(pi) distributions.

Now all the parameters of the model are given, we can use the exponential latent variable

representation of the Weighted Plackett–Luce model to generate rankings. A collection

of n complete rankings {xi}ni=1 is generated via the following process.

For i = 1, . . . , n

• Sample νij
indep∼ Exp(λwici,dci,j

) for j = 1, . . . ,K.

• Set xij = argmin
q∈Sij

νiq where Sij = K \ {xi1, . . . , xij−1} for j = 1, . . . ,K.

Alternative types of rankings, such as a top–5 ranking, can be obtained from the complete

rankings simulated using the same process as discussed in Section 2.2.5.
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4.5.2 Prior specification and latent variables

Again we choose a Gamma prior distribution for the skill parameters so that a conjugate

update can be performed (after data augmentation). As in Section 3.6 our model allows

for entity clustering and so we need to choose a single base distribution G0 for all skill

parameters. This follows from the exchangeability requirement of the DP prior over the

entity parameters as discussed previously. Here we take G0 = Ga(a, 1), giving λst
indep∼

Ga(a, 1) a priori ; recall that the rate parameter is not likelihood identifiable and so is fixed

at one. Note that as we are using a conditional sampling approach, we must also choose

truncation parameters to approximate the infinite dimensional aspect of the Dirichlet

processes. The state space of the skill parameters therefore remains of fixed dimension

(N1×N2). Let Λ = (λst) denote the collection of all unique skill parameters (s = 1, . . . , N1,

t = 1, . . . , N2). The prior distribution over the skill parameters is therefore

π(Λ) =

N1∏
s=1

N2∏
t=1

λa−1st e−λst

Γ(a)
.

We choose the prior distribution for wi to be as before, with wi
indep∼ Bern(pi), pi ∈ (0, 1]

for i = 1, . . . , n. Recall that the prior choice pi = 0 is not allowed. We could specify the

concentration parameters α and γs as fixed constants but making specific choices can be

difficult. Also the ANDP prior requires that these entity concentration parameters must

be the same for all ranker clusters. Instead we choose to place a prior distribution over

the concentration parameters for both ranker and entity clustering and let α ∼ Ga(aα, bα)

and γs
indep∼ Ga(aγ , bγ) for s = 1, . . . , N1 a priori.

We also introduce the latent cluster indicators from the previous section: recall that

ci = j denotes that ranker i is associated with parameter vector λj and dij = ` denotes

that entity j within parameter vector i is allocated to entity cluster `. The value of the

skill parameter assigned to entity j from ranking i is therefore given by λci,dci,j . Using

these latent variables, the likelihood is

π(D|Λ, c, D,w) =
n∏
i=1

ni∏
j=1

(
λci,dci,xij

)wi
ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi . (4.4)

Unsurprisingly, given what we have seen previously, the form of the likelihood does not

admit conjugate Bayesian inference. The implementation of a Gibbs sampler to maintain

computational efficiency without the need for multiple tuning parameters is however highly

desirable. To facilitate this we appeal to the same technique as for previous models, that
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is, data augmentation. A Gibbs sampling solution can be obtained using a straightforward

generalisation of the latent variables in Caron and Doucet (2012), namely

zij |D,Λ, c, D,w indep∼ Exp


ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi (4.5)

for i = 1, . . . , n, j = 1, . . . , ni.

Using these latent variables, the complete data likelihood is

π(D, Z|Λ, c, D,w) = π(D|Λ, c, D,w)π(Z|D,Λ, c, D,w)

=

n∏
i=1

ni∏
j=1

(
λci,dci,xij

)wi
exp

−
 ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi zij


=

N1∏
s=1

N2∏
t=1

λβstst

n∏
i=1

ni∏
j=1

exp

−
 ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi zij


=

N1∏
s=1

N2∏
t=1

λβstst exp

−λst n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

 , (4.6)

where

βst =

n∑
i=1

wi I(ci = s)

ni∑
j=1

I(dci,xij = t) (4.7)

is the number of times that the random variable λst is assigned to an entity within an

informative ranking, and

ζij(s, t) = I(ci = s)

 ni∑
m=j

I(dci,xim = t) +
∑
m∈Ui

I(dci,m = t)

 (4.8)

is the number of times that the random variable λst represents an entity within an infor-

mative ranking and is ranked no higher than jth in the ith ranking.

4.5.3 Full conditional distributions

Previously, when applying a marginal sampling approach, we used Neal’s Algorithm 8

(Neal, 2000) to sample the latent indicators from their full conditional distributions. The

full conditional distribution for the DP concentration parameter was also known; see

Section 3.4.2. It follows that we could obtain the FCDs for the remaining parameters by

considering the density of all (remaining) stochastic quantities conditional on the latent

indicators and the concentration parameter. However, when implementing a conditional
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sampling approach, we must derive the full conditional distributions for all of the unknown

quantities (including the latent indicators and the concentration parameter). Here the

posterior distribution of interest is π(Λ, Z,v, c, u,D, α,γ,w|D) and in the remainder of this

section we derive the full conditional distributions for each of the unknown quantities. A

complete outline of the MCMC scheme used to generate posterior realisations is described

in Section 4.5.7.

We begin by constructing the density of all stochastic quantities as

π(Λ,D, Z,v, c, u,D, α,γ,w)

= π(Z|D,Λ, c, D,w)π(D|Λ, c, D,w)π(D|u)π(u|γ)π(c|v)π(v|α)π(Λ)π(α)π(γ)π(w)

=

N1∏
s=1

N2∏
t=1

λβstst exp

−λst
n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij


×

N1∏
s=1

N2−1∏
t=1

Γ(1 + γs)

Γ(1)Γ(γs)
(1− ust)γs−1 ×

N1∏
s=1

K∏
j=1

ωs,dsj

×
N1∏
s=1

N2∏
t=1

λa−1st e−λst

Γ(a)
×
N1−1∏
s=1

Γ(1 + α)

Γ(1)Γ(α)
(1− vs)α−1 ×

n∏
i=1

ψci

× baαα
Γ(aα)

αaα−1e−αbα ×
N1∏
s=1

b
aγ
γ

Γ(aγ)
γ
aγ−1
s e−γsbγ ×

n∏
i=1

pwii (1− pi)1−wi

=

N1∏
s=1

N2∏
t=1

λa+βst−1st

Γ(a)
exp

−
1 +

n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

λst


×

N1∏
s=1

N2−1∏
t=1

γs(1− ust)γs−1 ×
N1∏
s=1

N2∏
t=1

{
ust
∏
`<t

(1− us`)
}mst

×
N1−1∏
s=1

α(1− vs)α−1 ×
N1∏
s=1

{
vs
∏
`<s

(1− v`)
}ms

× baαα
Γ(aα)

αaα−1e−αbα

×
N1∏
s=1

b
aγ
γ

Γ(aγ)
γ
aγ−1
s e−γsbγ ×

n∏
i=1

pwii (1− pi)1−wi

=

N1∏
s=1

N2∏
t=1

λa+βst−1st

Γ(a)
exp

−
1 +

n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

λst


×
N1−1∏
s=1

αvmss (1− vs)
α−1+

N1∑
`=s+1

m`
N1∏
s=1

N2−1∏
t=1

γsu
mst
st (1− ust)

γs−1+
N2∑

`=t+1

ms`

× baαα
Γ(aα)

αaα−1e−αbα ×
N1∏
s=1

b
aγ
γ

Γ(aγ)
γ
aγ−1
s e−γsbγ ×

n∏
i=1

pwii (1− pi)1−wi , (4.9)
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where

ms =

n∑
i=1

I(ci = s) and mst =

K∑
j=1

I(dsj = t)

are the number of rankers assigned to ranker cluster s and the number of entities assigned

to entity cluster t within ranker cluster s respectively.

The derivation of the full conditional distribution (FCD) for each random quantity within

the model follows a similar procedure to that seen previously. Each full conditional dis-

tribution is obtained by taking the appropriate parts of (4.9). The FCDs are as follows.

• Λ: For s = 1, . . . , N1, t = 1, . . . , N2,

λst|D, Z,v, c, u,D, α,γ,w indep∼ Ga

a+ βst, 1 +

n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

 . (4.10)

• Z: As defined in (4.5) for i = 1, . . . , n, j = 1, . . . , ni,

zij | · · · indep∼ Exp


ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈τi

(
λci,dci,m

)wi . (4.11)

• v: For s = 1, . . . , N1 − 1,

vs| · · · indep∼ Beta

(
1 +ms, α+

N1∑
`=s+1

m`

)
. (4.12)

• U : For s = 1, . . . , N1, t = 1, . . . , N2 − 1,

ust| · · · indep∼ Beta

(
1 +mst, γs +

N2∑
`=t+1

ms`

)
. (4.13)

• c: For i = 1, . . . , n, ci has a discrete distribution with probabilities given by

Pr(ci = s| · · · ) = Pr(c = c̃| · · · )

∝
N1∏
s=1

{
vs
∏
`<s

(1− v1)
}ms

×
N1∏
s=1

N2∏
t=1

λβstst exp

−λst
n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij


=

n∏
i′=1

ψc̃i′ ×
n∏

i′=1

ni∏
j=1

(
λc̃i′ ,dc̃i′ ,xi′j

)wi′

× exp

−zi′j


ni′∑
m=j

(
λc̃i′ ,dc̃i′ ,xi′m

)wi′
+
∑
m∈Ui′

(
λci′ ,dci′ ,m

)wi′


110



Chapter 4. The Bayesian WAND

∝ ψc̃i
ni∏
j=1

(
λc̃i,dc̃i,xij

)wi
exp

−zij


ni∑
m=j

(
λc̃i,dc̃i,xim

)wi
+
∑
m∈Ui

(
λc̃i,dc̃i,m

)wi


(4.14)

where 1 ≤ s ≤ N1, and c̃i,s has c̃j = cj for j 6= i and c̃i = s. Note that this is simply

the complete data likelihood for ranker i given that they are in (ranker) cluster s.

Also note that if wi = 0 then

Pr(ci = s|wi = 0, · · · ) = Pr(c = c̃|wi = 0, · · · )

∝ ψs
ni∏
j=1

(
λs,ds,xij

)0
exp

−zij


ni∑
m=j

(
λs,ds,xim

)0
+
∑
m∈Ui

(λs,dsm)0




= ψs

ni∏
j=1

1× exp

−
ni∑
j=1

zij

 ni∑
m=j

1 +
∑
m∈Ui

1


= ψs

ni∏
j=1

exp {−zij(Ki − j + 1)}

∝ ψs,

and so when a ranker is deemed uninformative, the computational cost is reduced

as there are no likelihood evaluations needed.

• D: For s = 1, . . . , N1, j = 1, . . . ,K, dsj has the discrete distribution given by

Pr(dsj = t| · · · ) = Pr(ds· = d̃st| · · · )

∝
N1∏
s′=1

N2∏
t=1

{
us′t

∏
`<t

(1− us′`)
}ms′t

λ
βs′t
s′t exp

−λs′t
n∑
i=1

wi

ni∑
j=1

ζij(s
′, t)zij


=

N1∏
s′=1

K∏
j′=1

ωs′,d̃s′j′
×

n∏
i=1

ni∏
j′=1

(
λci,d̃ci,xij′

)wi

× exp

−zij′


ni∑
m=j′

(
λci,d̃ci,xim

)wi
+
∑
m∈Ui

(
λci,d̃ci,m

)wi


∝ ωst ×
∏
i∈F

ni∏
j′=1

(
λci,d̃ci,xij′

)wi

× exp

−zij′


ni∑
m=j′

(
λci,d̃ci,xim

)wi
+
∑
m∈Ui

(
λci,d̃ci,m

)wi
 , (4.15)
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where 1 ≤ t ≤ N2, F = {i : ci = s} and d̃st is given by d̃s` = ds` for ` 6= j and

d̃sj = t. Note that for any ranker q ∈ F , if wq = 0 then

ni∏
j′=1

(
λci,d̃ci,xij′

)wi
exp

−zij′


ni∑
m=j′

(
λci,d̃ci,xim

)wi
+
∑
m∈Ui

(
λci,d̃ci,m

)wi


=

ni∏
j′=1

exp
{
−zij′(Ki − j′ + 1)

}
and is therefore constant with respect to changes in the value of dsj . It follows that

we can redefine the set as F = {i : (ci = s) ∩ (wi = 1)} which will help to reduce

the computational burden.

• w: For i = 1, . . . , n, wi has the discrete distribution given by

Pr(wi = 1|w−i, · · · )
∝ Pr(wi = 1)π(D|w−i, wi = 1, · · · )π(Z|w−i, wi = 1, · · · )

∝ pi
n∏
i=1

ni∏
j=1

(
λci,dci,xij

)wi
exp

−zij


ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi


∝ pi
ni∏
j=1

λci,dci,xij exp

−zij
 ni∑
m=j

λci,dci,xim +
∑
m∈Ui

λci,dci,m

 .

Pr(wi = 0|w−i, · · · )
∝ Pr(wi = 0)π(D|w−i, ws = 0, · · · )π(Z|w−i, wi = 0, · · · )

∝ (1− pi)
n∏
i=1

ni∏
j=1

(
λci,dci,xij

)wi
exp

−zij


ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi


∝ (1− pi)
ni∏
j=1

exp

−zij
 ni∑
m=j

1 +
∑
m∈Ui

1


∝ (1− pi) exp

−
ni∑
j=1

zij(Ki − j + 1)

 .

Therefore, for i = 1, . . . , n, the full conditional is

wi| · · · indep∼ Bern(ρi), (4.16)

where
ρi =

Pr(wi = 1|w−i, · · · )
Pr(wi = 1|w−i, · · · ) + Pr(wi = 0|w−i, · · · )

,

is the probability that ranking i is informative (given the other quantities).
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• α: From (4.9) we have

π(α| · · · ) =
baαα

Γ(aα)
αaα−1e−αbα ×

N1−1∏
s=1

α(1− vs)α−1

∝ αaα+N1−2e−αbα
N1−1∏
s=1

exp {(α− 1) log(1− vs)}

∝ αaα+N1−2 exp

{
−α

(
bα −

N1−1∑
s=1

log(1− vs)
)}

,

whence

α| · · · ∼ Ga

(
aα +N1 − 1, bα −

N1−1∑
s=1

log(1− vs)
)

(4.17)

as bα −
∑N1−1

s=1 log(1− vs) > 0 since the vs ∈ (0, 1).

• γ: From (4.9) we have

π(γ| · · · ) =

N1∏
s=1

b
aγ
γ

Γ(aγ)
γ
aγ−1
s e−γsbγ ×

N1∏
s=1

N2−1∏
t=1

γs(1− ust)γs−1

∝
N1∏
s=1

γ
aγ+N2−2
s e−γsbγ

N1∏
s=1

N2−1∏
t=1

exp {(γs − 1) log(1− ust)}

∝
N1∏
s=1

γ
aγ+N2−2
s exp

{
−γs

(
bγ −

N2−1∑
t=1

log(1− ust)
)}

,

whence for s = 1, . . . , N1,

γs| · · · indep∼ Ga

(
aγ +N2 − 1, bγ −

N2−1∑
t=1

log(1− ust)
)

(4.18)

as bγ −
∑N2−1

t=1 log(1− ust) > 0 since the ust ∈ (0, 1) for all s = 1, . . . , N1.

We note in passing that, although perhaps counter-intuitive, the most computationally

expensive FCDs to evaluate are the discrete distributions over the ranker and entity cluster

labels c and D. This follows as numerous likelihood calculations are needed (each involving

many terms) in order to sample each cluster allocation, particularly for entity labels.

To generate realisations from the posterior distribution π(Λ, Z,v, c, u,D, α,γ,w|D) we

could employ a Gibbs sampling strategy and repeatedly sample from the FCDs given in

(4.10–4.18) in turn. However, this strategy could lead to the Markov chain becoming

stuck in a local mode (of the stationary distribution). This follows as the full conditional

distributions in (4.14) and (4.15) allow for updating the (ranker and entity) cluster alloca-
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tions, c and D, using one-at-a-time updates. Therefore a large cluster containing numerous

rankers or entities will have difficulty in changing its allocation variable. Initially this may

not appear to be a significant issue as the likelihood (4.4) is invariant to permutations

of the latent cluster indicator variables. However, if we consider the full posterior distri-

bution π(Λ, Z,v, c, u,D, α,γ,w|D), it becomes clear that the value of the density will be

affected by changes to the cluster labels through the construction of the weights of the

atoms (for both rankers and entities within each ranker cluster). The weights are defined

to be stochastically decreasing and therefore the weights of the clusters with larger labels

have smaller expectation. It follows that, for example, if we had two clusters occupied,

we would rather them be labelled 1 and 2 as opposed to N1 − 2 and N1 − 1 as the first

labelling has an increased value of posterior density.

Thankfully it is possible to overcome this issue by introducing appropriate label switching

steps which improve the mixing of the chain over the latent cluster indicators. We now

describe these moves before outlining a full MCMC scheme that can be used to generate

posterior realisations in Section 4.5.7.

4.5.4 Label switching moves

Papaspiliopoulos and Roberts (2008) and more recently Hastie et al. (2015) noted that

when using a conditional sampling scheme for Dirichlet process mixture models (derived

from the stick-breaking construction), the Markov chain can suffer from poor mixing

of the cluster allocations. Initially this does not appear to be much of a concern as

the likelihood (4.4) is invariant to permutations of the cluster labels. However, the full

posterior distribution π(Λ, Z,v, c, u,D, α,γ,w|D) is affected by changes to the labels. In

particular, inferences on the concentration parameters α and γ can be significantly affected

if the Markov chain fails to mix well over cluster labels; see Hastie et al. (2015) for details.

The poor mixing of cluster labels is an issue for both ranker cluster allocations c and the

entity cluster allocations in each row of D.

As the weights of the atoms within each Dirichlet process are stochastically decreasing,

the cluster allocation with highest posterior support is the one where the largest cluster

has label 1, the second largest is labelled 2, and so on. However, our proposed Gibbs

sampling scheme performs one-at-a-time updates to the cluster allocations. This results

in cluster allocations swapping very rarely and could therefore be overly influenced by

the (possibly random) initialisation of the sampler. To improve mixing, Papaspiliopoulos

and Roberts (2008) proposed two label switching moves, here called Swap 1 and 2. In

addition it has recently been noted by Hastie et al. (2015) that although these two swaps

encourage movement to the cluster allocation of highest posterior support, once this state

is reached the mixing becomes poor. They propose a further label switching move, which
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we call Swap 3. All three of these swaps are accepted or rejected though Metropolis-

Hastings proposals. In the following section we describe how these label switching proposal

moves are implemented within our model setting. As our model contains nested Dirichlet

processes we pay particular attention to the required state space swaps within the Markov

chain when a label switching move is accepted.

4.5.5 Ranker allocations

We begin by considering proposed swaps to the latent ranker cluster allocations. Due to

the nested nature of the Dirichlet processes, if we change a ranker cluster label we also

need to change the labels of all parameters corresponding to the low level DP associated

with the ranker clusters. We now describe the required state space swaps along with their

proposal mechanisms.

Swap 1

Recalling that ms =
∑n

i=1 I(ci = s) denotes the number of rankers assigned to ranker

cluster s we let C(al) = {s : ms > 0, 1 ≤ s ≤ N1} be the set of ranker cluster allocation

labels for those clusters which are populated, that is, the labels of clusters to which one

or more rankers are assigned. This label switching step proposes to swap the labels of two

random “alive” clusters j, l ∈ C(al) and is accepted with probability

min

{
1,

(
ψj
ψl

)ml−mj}
.

If the swap is accepted then we need to make a number of changes to the state space of

the Markov chain. Of course, we must swap the ranker cluster labels within the allocation

vector c and also the skill parameters associated with each ranker cluster, that is, swap

the appropriate rows of Λ. However, in order to preserve the entity clustering within each

ranker cluster we must also swap the corresponding rows of D, u and ω, that is, swap the

low level Dirichlet processes associated with each ranker cluster. Finally we must swap γj

with γl as the unique concentration parameter for each of the low level DPs must also be

preserved. The details of the changes required are given by (4.19)–(4.23) below.

Firstly swap the labels in the ranker allocation vector c:

c′i =


l i : ci = j,

j i : ci = l,

ci otherwise.

(4.19)
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Secondly swap the rows in the parameter matrix Λ:

λ′i· =


λl· i = j,

λj· i = l,

λi· otherwise.

(4.20)

Also, to maintain the entity clustering structure (within the ranking clusters) the rows in

the entity clustering allocation matrix D are swapped:

d′i· =


dl· i = j,

dj· i = l,

di· otherwise.

(4.21)

Recall that we also need to swap the Dirichlet process associated with each of the ranker

clusters. This requires the swapping of the rows within the matrix u and recalculating the

weights ω for each (ranker) cluster. However, as the values of u (on which the values of ω

are based) do not change it is more convenient to simply relabel these too:

u′i· =


ul· i = j,

uj· i = l,

ui· otherwise.

ω′i· =


ωl· i = j,

ωj· i = l,

ωi· otherwise.

(4.22)

Finally we also change the value of the concentration parameters for the DPs corresponding

to clusters j and l:

γ′i =


γl i = j,

γj i = l,

γi otherwise.

(4.23)

The state of the Markov chain is then updated by letting c → c′, Λ → Λ′, D → D′,

u→ u′, ω → ω′ and γ → γ ′.

Swap 2

The second label switching move we consider was also derived by Papaspiliopoulos and

Roberts (2008) and proposes to swap the labels of two neighbouring ranker clusters, re-

gardless of whether they are occupied or not. First we randomly sample a ranker cluster

label j ∈ {1, . . . , N1 − 1} and then let l = j + 1. The cluster allocation variables j and l
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are swapped with probability

min

{
1,

(1− vl)mj
(1− vj)ml

}
.

If accepted, the state space of the Markov chain needs to be changed in the same way as

for Swap 1, that is, by the swaps in (4.19)–(4.23). In addition, for this proposal, if the

swap is accepted we also swap the corresponding values of the beta random variables v

associated with the ranker clusters:

v′i =


vl i = j,

vj i = l,

vi otherwise.

We must also now recalculate the “weights” for each ranker cluster by recomputing ψ. It

is not possible to simply relabel the corresponding weights due to their construction.

Swap 3

The final label switching proposal we implement is that of Hastie et al. (2015); this also

proposes swapping the ranker cluster labels of two neighbouring clusters. Let C∗ = max
1≤i≤n

ci

be the largest label of a ranker cluster which is occupied. We then sample a random cluster

label j ∈ {1, . . . C∗ − 1} and let l = j + 1. Before giving the acceptance probability it is

useful to define the following terms:

E1 =
E(ψj |c′, α)

E(ψl|c, α)
=

1 + α+ml +
∑

q>lmq

α+ml +
∑

q>lmq
,

E2 =
E(ψl|c′, α)

E(ψj |c, α)
=

α+mj +
∑

q>lmq

1 + α+mj +
∑

q>lmq
,

ψ+ = ψj + ψl,

ψ̂ = ψlE1 + ψjE2.

The ranker cluster labels j and l are then swapped with probability

min

{
1,

(
ψ+

ψ̂

)mj+ml
Eml1 E

mj
2

}
.

Again, if accepted, the state space swaps given in (4.19)–(4.23) must be applied. Further

we also need to update the weights ψ (for the ranker clusters) and values for the beta
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random variables v:

ψ′i =



ψlψ
+E1

ψ̂
i = j,

ψjψ
+E2

ψ̂
i = l,

ψi otherwise.

v′i =



ψ′j∏
q<j

(1− vq)
i = j,

ψ′l
(1− v′j)

∏
q<j

(1− vq)
i = l,

vi otherwise.

4.5.6 Entity allocations

We have found that the proposed cluster label swaps outlined in the previous section are

sufficient to ensure adequate mixing over the ranker cluster labels. For this model however

we also need to ensure adequate mixing over the latent entity cluster variables within each

of the ranker groups. We do this by using the same three swapping mechanisms as for

the ranker allocations. However each of these swaps needs to be performed within each

of the N1 low level Dirichlet processes. The changes required to the state space of our

Markov chain are somewhat more straightforward for the entity labels as we are dealing

with a typical Dirichlet process (whose atoms are scalars) and therefore the details (given

below) are more similar to those described in Papaspiliopoulos and Roberts (2008) and

Hastie et al. (2015).

Swap 1

Recall first that mst =
∑K

j=1 I(dsj = t) denotes the number of entities assigned to entity

cluster t within ranker cluster s. For s = 1, . . . , N1, let D
(al)
s = {t : mst > 0, 1 ≤ t ≤ N2}

be the set of entity cluster labels which are populated within Dirichlet process s. Note

that there is no requirement for a ranker to be assigned to ranker cluster s and we only

consider the entity clusters here. This label switching step proposes to swap the labels of

two random alive clusters j, l ∈ D(al)
s . This swap is accepted with probability

min

{
1,

(
ωsj
ωsl

)msl−msj}
.

If the proposal is accepted then we need only make two changes to the state space of our

Markov chain. We must, of course, swap the entity cluster labels within row s of the entity

cluster label matrix D but also must swap the skill parameter values for entities j and l.
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Formally we swap the labels in row s of our entity allocation matrix, D, by letting

d′si =


l i : dsi = j,

j i : dsi = l,

dsi otherwise.

(4.24)

We then swap the skill parameters for the entity clusters within row s of Λ by letting

λ
′†
si =


λ†sl i = j,

λ†sj i = l,

λ†si otherwise.

(4.25)

The state of the Markov chain is then updated by letting Λ→ Λ′ and D → D′. All other

quantities remain unchanged.

Swap 2

Recall that for this swap changes are made to the labels of neighbouring clusters whether

they are occupied or not. For s = 1, . . . , N1, we randomly sample an entity cluster label

j ∈ {1, . . . , N2 − 1} and let l = j + 1. The entity cluster labels j and l are swapped with

probability

min

{
1,

(1− usl)msj
(1− usj)msl

}
.

If accepted we update the state space of our Markov chain as in (4.24) and (4.25). Recall

that when applying this move for the ranker labels we also swapped the corresponding

values of the beta random variables for these two clusters. The equivalent swap here is

done within row s of the matrix u and we let

u′si =


usl i = j,

usj i = l,

usi otherwise.

Note that the entity cluster weights within DP s (ωs·) must also be recalculated given

their (inherent) dependence on the values of u. These can not simply be swapped due to

their construction.
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Swap 3

Finally we implement the label switching move described by Hastie et al. (2015). For

s = 1, . . . , N1 let D∗s = max
1≤j≤K

dsj be the largest label of an active entity cluster within

DP s. We sample a random cluster label j ∈ {1, . . . D∗s − 1}, set l = j + 1 and calculate

E1 =
E(ωsj |d′, γs)
E(ωsl|d, γs)

=
1 + γs +msl +

∑
q>lmsq

γs +msl +
∑

q>lmsq
,

E2 =
E(ωsj |d′, γs)
E(ωsl|d, γs)

=
γs +msj +

∑
q>lmsq

1 + γs +msj +
∑

q>lmsq
,

ω+ = ωsj + ωsl,

ω̂ = ωslE1 + ωsjE2.

The acceptance probability for this proposal is

min

{
1,

(
ω+

ω̂

)msj+msl
E msl

1 E
msj
2

}
.

Again, if accepted, the state space swaps given in (4.24) and (4.25) must be applied.

Further we must update the weights ω and the corresponding values for the beta random

variables u:

ω′si =



ωslω
+E1

ω̂
i = j,

ωsjω
+E2

ω̂
i = l,

ωsi otherwise.

u′si =



ω′sj∏
q<j

(1− usq)
i = j,

ω′sl
(1− u′sj)

∏
q<j

(1− usq)
i = l,

usi otherwise.

4.5.7 MCMC – a conditional sampler

We now describe an algorithm for generating samples from the posterior distribution

π(Λ, Z,v, c, u,D, α,γ,w|D). In Section 4.5.3 we derived a complete set of full conditional

distributions for each random quantity of interest so that we could use a Gibbs sampling

scheme by repeatedly sampling from these distributions. However, as discussed, there are

problems with mixing over the latent cluster indicator variables c and D. To remedy this

issue we employ additional label switching moves with proposed changes assessed through

Metropolis-Hastings steps as described in the previous section. The algorithm we use is

therefore a Metropolis-within-Gibbs sampler.
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Given a suitable choice of truncation parameters, N1 and N2, the posterior samples can

be generated by repeatedly performing the following steps.

• Sample λst from (4.10) for s = 1, . . . , N1, t = 1, . . . , N2.

• Sample zij from (4.11) for i = 1, . . . , n, j = 1, . . . , ni.

• Sample wi from (4.16) for i = 1, . . . , n.

• Sample vs from (4.12) for s = 1, . . . , N1 − 1, and let vN1 = 1

• Compute ψ, that is, let ψs = vs
∏̀
<s

(1− v`) for s = 1, . . . , N1.

• Sample ci from (4.14) for i = 1, . . . , n.

• Sample ust from (4.13) for s = 1, . . . , N1, t = 1, . . . , N2 − 1, and let usN2 = 1.

• Compute ω, that is, let ωst = ust
∏̀
<t

(1− us`) for s = 1, . . . , N1, t = 1, . . . , N2.

• Sample dsj from (4.15) for s = 1, . . . , N1, j = 1, . . . ,K.

• Sample α from (4.17).

• Sample γs from (4.18) for s = 1, . . . , N1.

• Propose ranker label swaps as in Section 4.5.5.

• Propose entity label swaps (for s = 1, . . . , N1) as in Section 4.5.6.

• Rescale

– Sample Λ† ∼ Ga (N1N2 a, 1).

– Calculate Σ =
N2∑
s=1

N2∑
t=1

λst.

– For s = 1, . . . , N1, t = 1, . . . , N2, let λst → λst Λ†/Σ.

A note on the choice of truncation parameters

As the algorithm employs truncation (using N1 and N2) any posterior samples generated

are from an approximation of the true posterior. The level of approximation depends on

the choice of truncation parameters N1 and N2, with the samples increasingly being from

the true posterior as N1, N2 →∞. The choice of N1 and N2 a priori is somewhat difficult

as the level of truncation required heavily depends on the value of the concentration

parameters, α and γ. The strategy we advocate is to perform a few pilot runs of the
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MCMC scheme to gauge plausible values of the concentration parameters. The truncation

parameters will then need to be changed so that the conditions in (4.3) hold. Of course, it

would be helpful to make the truncation parameters as large as possible but increasing N1

and N2 has a major effect on the computational burden and can lead to considerable

redundant prior sampling. The choice of truncation is therefore rather situation specific

and perhaps limited by the computational resources available to the analyst.

4.5.8 A brief summary

So far this chapter has outlined the Adapted Nested Dirichlet process prior (ANDP) dis-

tribution and explored some of its features through simulation. We then described the

Weighted Adapted Nested Dirichlet Process mixture of Plackett–Luce models (WAND).

This took the ANDP as the prior distribution and used it to mix over Weighted Plackett–

Luce models. Using the stick-breaking representation of the ANDP prior and truncating

the infinite dimensional aspect we were able to derive a complete set of full conditional

distributions. Additional label switching moves were then introduced to improve mix-

ing over cluster labels. The resulting algorithm was a Metropolis-within-Gibbs sampling

scheme. Adopting the (conditional) sampling approach outlined here does however have

some drawbacks, the most notable of which is that we can only obtain samples from an

approximate posterior distribution. A further issue is that it is difficult to determine

what a priori choices of the truncation parameters lead to a reasonable approximation to

the true posterior. Ideally, as for the one-way clustering in Chapter 3, we would avoid

truncation methods and appeal to a marginal approach to inference. In the section that

follows we discuss how to improve the MCMC scheme to avoid such approximations by

implementing a two-way marginal sampling scheme.

4.6 A marginal sampling approach

Implementing marginal sampling methods for two-way clustering models which use Dirich-

let processes can be somewhat challenging. For example, the construction of the standard

NDP results in a “fully” marginal scheme being computationally infeasible (Rodriguez

et al., 2008). The real crux when designing such a marginal sampling scheme is obtaining

(posterior) realisations of the top level cluster labels, c. For the standard Nested Dirichlet

process, sampling ci requires the evaluation of π(xi|Gs) (for all s), that is, the likelihood of

observation xi given it is in cluster s. The issue here is that Gs is itself a Dirichlet process

(recall that under the NDP the atoms of the top level Dirichlet process are themselves

Dirichlet processes). It follows that obtaining a value of π(xi|Gs) requires the evaluation

of an infinite sum – something which is clearly problematic. Given this, it is perhaps now
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clear that a “single truncation” sampling scheme could be designed to obtain posterior

realisations under the NDP prior. If the low level Dirichlet processes Gs are truncated at

a finite value, say N2, then the evaluation of π(xi|Gs) is straightforward. The resulting

posterior sampling scheme would then comprise a marginal scheme (based on a Pólya

urn) to sample the top level cluster indicators c, and a conditional sampling approach to

approximate the posterior over the low level indicators D; see Rodriguez (2007) for full

details. Such a sampling scheme would not only increase computational efficiency but

also reduce the approximation to the posterior distribution in comparison to a “double

truncation” approach akin to that discussed in Section 4.5. Further, the additional label

switching moves would no longer be required for the ranker cluster labels.

Given the Adapted Nested Dirichlet process is inherently related to the NDP it follows that

we too could implement a single truncation approach. It transpires, however, that a fully

marginal approach is possible as a result of the adaptation made to the prior distribution.

Recall that for the NDP, unless the low level DPs are truncated, a marginal approach

to sample the indicator variables ci is infeasible due to the need to evaluate π(xi|Gs).
However, for the ANDP we are instead required to evaluate π(xi|λs) where λs ∼ Gs,

that is, λs is a realisation from a Dirichlet process and not a DP itself (as it is for the

NDP). In other words, the subtle difference which allows for marginal schemes under the

ANDP is that the top level Dirichlet process is fairly standard, with the atoms being

parameter vectors which are realisations from (independent) DPs, whereas, for the NDP,

the atoms of the top level DP are themselves (infinite dimensional) discrete distributions.

The evaluation of π(xi|λs) is therefore trivial – it is simply the (Plackett–Luce) likelihood

of ranking i conditional on the skill parameters for ranker cluster s.

In what follows we develop a marginal sampling algorithm which can be used to generate

posterior samples under the Bayesian WAND model. Although the conditional sampling

algorithm outlined in Section 4.5.7 is capable of generating approximate posterior samples

(subject to the addition of label switching moves) it is still advantageous to appeal to

a marginal approach – not least to reduce the computational burden when performing

inference but also so that we can generate realisations from the true posterior distribu-

tion. As discussed in Section 3.4.1, marginal sampling algorithms typically involve the

use of a Pólya urn scheme which enables the marginalization of the infinite dimensional

distribution (Escobar and West (1995), MacEachern and Müller (1998)) and thus avoid

approximations. We discussed in Section 4.5 how conditional samplers rely on truncation

parameters to define the maximum size of the state space (N1, N2 in our case). When per-

forming inference this entire state space needs to be updated at each iteration and causes

a substantial amount of redundant prior sampling. To produce our marginal sampler we

again appeal to Neal’s Algorithm 8 (Neal, 2000). Recall that this algorithm only performs

updates for the unique components (clusters) which are currently populated and the re-

123



Chapter 4. The Bayesian WAND

maining (theoretically infinite) unpopulated clusters are not considered to be within the

sample space. Each observation is then assigned to either a component which is currently

in use or to one of m auxiliary components which are independent draws from the prior

distribution. Our model has nested clustering and so under the conditional method, the

state space for the skill parameters Λ is dimension N1 ×N2. If we let N r and N e
s be the

number of ranker clusters and the number of entity clusters within ranker cluster s respec-

tively (for s = 1, . . . , N r) then the size of our state space is reduced to
∑Nr

s=1N
e
s � N1×N2

under marginal methods. It is clear therefore that marginal methods have the potential to

reduce the number of operations required per iteration quite substantially. Neal’s Algo-

rithm 8 is designed to sample from a single DP mixture and so we design a nested version

which will enable inference to be performed under the Bayesian WAND model.

Recall that the WAND model comprises an infinite mixture of Weighed Plackett–Luce

models with the ANDP chosen as the prior distribution. As in Section 4.4, the main

components of the model are

Xi|λi, wi ∼ PLW(λi, wi), i = 1, . . . , n,

(λ1, . . . ,λn)|Q ∼ Q

Q|α,γ, G0 ∼ ANDP(α,γ, G0),

where the stick-breaking representation of the ANDP prior is as in Section 4.3.

4.6.1 Sampling marginally from the ANDP prior

We begin by first outlining how we can (marginally) simulate a realisation from the ANDP

prior distribution via a Pólya urn scheme. To outline this process concisely we make use

of the latent cluster indicators introduced in Section 4.5.1. Recall that ci = j denotes that

ranking i is associated with parameter vector λj and c = (c1, . . . , cn) is defined to be the

collection of these latent ranker cluster labels. For our entity clustering we let dij = `

denote that entity j within parameter vector i is allocated to entity cluster ` and D be the

collection of all latent entity cluster labels. Note that, unlike for the conditional sampling

approach, under the marginal sampling approach the cluster labels are required to be

labelled incrementally from 1, that is, we require ci ∈ {1, . . . , N r}, (for i = 1, . . . , n) where

N r denotes the number of ranker clusters and also dsj ∈ {1, . . . , N e
s}, (for j = 1, . . . ,K)

where N e
s denotes the number of entity clusters within ranker cluster s ∈ {c}. A prior

realisation from the ANDP is obtained using the following process.

• Choose α > 0 or sample from an appropriate prior distribution.

• Set c1 = 1 and the (current) number of ranker clusters N r = 1.
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• For i = 2, . . . , n simulate the allocation of ranker i to a ranker cluster according to

Pr(ci = j|c1, . . . , ci−1) =
nrij

α+ i− 1
, for j = 1, . . . , N r,

Pr(ci = N r + 1|c1, . . . , ci−1) =
α

α+ i− 1
,

where nrij denotes the number of rankers currently within ranker cluster j (at itera-

tion i), and N r → N r + 1 if ci = N r + 1.

• For each ranker cluster s = 1, . . . , N r

– Choose γ = γs > 0 for all s or sample from an appropriate prior distribution

(note the choice of prior distribution must be exchangeable with respect to s).

– Set ds1 = 1 and the current number of entity clusters within ranking cluster s

N e
s = 1.

– For k = 2, . . . ,K simulate the allocation of entity k to an entity cluster accord-

ing to

Pr(dsk = j|ds1, . . . , ds,k−1) =
nekj,s

γs + k − 1
, for j = 1, . . . , N e

s ,

Pr(dsk = N e
s + 1|ds1, . . . , ds,k−1) =

γs
γs + k − 1

,

where nekj,s denotes the number of entities currently within entity cluster j (at

iteration k in ranker cluster s), and N e
s → N e

s + 1 if dsi = N e
s + 1.

• Simulate λsj
indep∼ G0 for s = 1, . . . , N r, j = 1, . . . , N e

s .

4.6.2 Simulating data from the WAND model

In Section 4.5.1 we outlined how data can be generated from the WAND model using

a conditional sampling approach. The mechanism for the marginal approach is almost

identical and differs only in how we generate a realisation (of the cluster structure) from

the ANDP prior. It follows that if the clustering structure is chosen explicitly, that is, it

is not drawn from the ANDP prior, then the data generating process is the same as that

outlined in Section 4.5.1. However, if we instead wish to sample a cluster structure from the

prior distribution then using the marginal method given in Section 4.6.1 is advantageous

as it allows the simulation of exact realisations from the prior distribution (in contrast

to the approximation provided by the conditional sampling approach). Conditional on

a prior sample (generated using the method in Section 4.6.1) a collection of n complete

rankings of K entities is generated using the same method as in Section 4.5.1:
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For i = 1, . . . , n

• Sample νij
indep∼ Exp(λwici,dci,j

) for j = 1, . . . ,K.

• Set xij = argmin
q∈Sij

νiq where Sij = K \ {xi1, . . . , xij−1} for j = 1, . . . ,K.

Alternative types of rankings for example, a top–5 ranking, can be obtained from the

complete rankings simulated using the same process as discussed in Section 2.2.5.

4.6.3 Prior specification and latent variables

Before we perform Bayesian inference we must first of course choose a suitable prior

specification for our model. We consider the same prior specification as when we considered

the conditional sampling approach in Section 4.5.2. We let G0 = Ga(a, 1) which gives

λst
indep∼ Ga(a, 1) a priori (recall that the rate parameter is not likelihood identifiable

and therefore chosen to be 1). Again we define Λ to be the collection of all unique skill

parameters and note that the dimension of the parameter space (over Λ) is
∑Nr

s=1N
e
s and

therefore is now dependent on the number of both ranker and entity clusters. It follows

that the prior distribution over Λ is

π(Λ|c, D) =
Nr∏
s=1

Ne
s∏

t=1

λa−1st e−λst

Γ(a)
.

Furthermore we choose the prior on the latent binary ability indicators to be wi
indep∼

Bern(pi) with pi ∈ (0, 1] for i = 1, . . . , n. Recall that the prior choice of pi = 0 is

not allowed; in this scenario ranker i has constant likelihood and therefore this ranker

has no information about the parameters and so should not be considered. The prior

distributions on the concentration parameters are α ∼ Ga(aα, bα) and γs
indep∼ Ga(aγ , bγ)

for s = 1, . . . , N r.

Of course, the likelihood under the Bayesian WAND model is the same irrespective of

the sampling method used. However, we note that when augmenting the likelihood it is

helpful for the distribution of the skill parameters to be of dimension
∑Nr

s=1N
e
s rather than

of dimension N1 ×N2 as in the conditional approach. The likelihood, conditional on the

latent cluster indicators, is

π(D|Λ, c, D,w) =
n∏
i=1

ni∏
j=1

(
λci,dci,xij

)wi
ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi . (4.26)
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Again it is useful to use latent variables as in (4.5) as these give semi-conjugate updates

for the skill parameters. The latent variables are

zij |D,Λ, c, D,w indep∼ Exp

 ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi (4.27)

for i = 1, . . . , n, j = 1, . . . , ni.

Before we construct the density of all stochastic quantities (and subsequently derive the

full conditional distributions for each random variable within the model) it is useful to

define the complete data likelihood as

π(D, Z|Λ, c, D,w, α,γ) = π(D|Λ, c, D,w)π(Z|D,Λ, c, D,w)

=

n∏
i=1

ni∏
j=1

(
λci,dci,xij

)wi
exp

−
 ni∑
m=j

(
λci,dci,xime

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi zij


=

Nr∏
s=1

Ne
s∏

t=1

λβstst

n∏
i=1

ni∏
j=1

exp

−
 ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi zij


=

Nr∏
s=1

Ne
s∏

t=1

λβstst exp

−λst n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

 , (4.28)

where

βst =
n∑
i=1

wi I(ci = s)

ni∑
j=1

I(dci,xij = t),

is the same as that under the conditional approach (4.7) and gives the number of times

that the random variable λst is assigned to an entity within an informative ranking, and

ζij(s, t) = I(ci = s)

 ni∑
m=j

I(dci,xim = t) +
∑
m∈Ui

I(dci,m = t)

 ,

is also as defined under the conditional approach in (4.8) and gives the number of times

that the random variable λst represents an entity which is ranked no higher than jth in

the ith ranking.

4.6.4 Full conditional distributions

The posterior distribution is formed by applying Bayes’ Theorem. The posterior distribu-

tion π(Λ, Z, c, D,w, α,γ|D) is now a joint distribution of the latent random variables Z,

the collection of unique skill parameters Λ, the binary indicator variables w, the latent
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cluster indicators c, D and the DP concentration parameters α,γ. Posterior realisations of

the latent indicators can be sampled from their respective full conditional distribution via

a nested version of Neal’s Algorithm 8 (Neal, 2000) which is described in the next section.

Further the full conditional distribution for the DP concentration parameters are akin to

those in Section 3.4.2 and are given in Section 4.6.5 when we provide a complete out-

line of the MCMC scheme used to generate posterior samples. Conditional on the latent

cluster indicator variables and DP concentration parameters, the density of all remaining

stochastic quantities is

π(Λ,D, Z,w|c, D, α,γ) = π(Λ,D, Z,w|c, D)

= π(Z|D,Λ, c, D,w)π(D|Λ, c, D,w)π(Λ|c, D)π(w)

=
Nr∏
s=1

Ne
s∏

t=1

λβstst exp

−λst n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij


×

Nr∏
s=1

Ne
s∏

t=1

λa−1st e−λst

Γ(a)
×

n∏
i=1

pwii (1− pi)1−wi

=
Nr∏
s=1

Ne
s∏

t=1

λβst+a−1st

Γ(a)
exp

−
1 +

n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

λst


×

n∏
i=1

pwii (1− pi)1−wi .

The full conditional distributions are then as follows.

• Λ: For s = 1, . . . , N r, t = 1, . . . , N e
s ,

λst|D,Λ−st, Z, c, D,w, α,γ indep∼ Ga

a+ βst, 1 +
n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

 .

• Z: The latent variables are defined by their full conditional distribution (4.27).

Hence for i = 1, . . . , n, j = 1, . . . , ni,

zij |D,Λ, Z−ij , c, D,w, α,γ indep∼ Exp

 ni∑
m=j

(
λci,dci,xim

)wi
+
∑
m∈Ui

(
λci,dci,m

)wi
• w: This has the same FCD as under the conditional approach. Hence for i = 1, . . . , n,

wi follows the discrete distribution given by
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Pr(wi = 1|w−i, · · · ) ∝ Pr(wi = 1)π(D|w−i, wi = 1, · · · )π(Z|w−i, wi = 1, · · · )

∝ pi
ni∏
j=1

λci,dci,xij exp

−zij
 ni∑
m=j

λci,dci,xim +
∑
m∈Ui

λci,dci,m

 .

Pr(wi = 0|w−i, · · · ) ∝ Pr(wi = 0)π(D|w−i, ws = 0, · · · )π(Z|w−i, wi = 0, · · · )

∝ (1− pi) exp

−
ni∑
j=1

zij(Ki − j + 1)

 .

Therefore the full conditional is

wi| · · · indep∼ Bern(ρi),

for i = 1, . . . , n where

ρi =
Pr(wi = 1|w−i, · · · )

Pr(wi = 1|w−i, · · · ) + Pr(wi = 0|w−i, · · · )

is the probability that ranking i is informative (given the other quantities).

4.6.5 MCMC – a marginal sampler

We are now in a position to describe the algorithm used for sampling from the posterior dis-

tribution π(Λ, Z, c, D,w, α,γ|D) under the WAND model. Recall that N r = |{ci}i=1,...,n|
is the current number of ranker clusters and N e

s = |{dsj}j=1,...,K | denotes the number of

entity clusters within ranker cluster s. The state of the Markov chain then consists of

c = (ci), D = (dsl), Λ = (λst), Z = (zij), w = (wi), γ = (γs) and α for s = 1, . . . , N r,

t = 1, . . . , N e
s , i = 1, . . . , n, j = 1, . . . , ni and l = 1, . . . ,K. Now if we first define the

contribution to the complete data likelihood from ranker i to be

f(xi, zi|Λ, c, D,w, α,γ) =

ni∏
j=1

λwici,dci,xij
exp

−
 ni∑
m=j

λwici,dci,xim
+
∑
m∈Ui

λwici,dci,m

 zij


then the updates proceed as follows.

• For i = 1, . . . , n: Let qr− be the number of distinct cj for j 6= i and hr = qr− +mr.

Label these cj values in {1, . . . , qr−}. If ci = cj for some j 6= i, draw λc
indep∼

DP(γc, G0) for qr− < c ≤ hr. If ci 6= cj ∀ j 6= i, let ci have the label qr− + 1, and

draw λc
indep∼ DP(γc, G0) for qr− + 1 < c ≤ hr.
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Draw a new value for ci from {1, . . . , hr} using probabilities

Pr(ci = c|D,Λ, Z, c−i, D,w, α,γ)

=

b nr−i,c f(xi, zi|Λ, c−i, ci = c,D,w, α,γ), 1 ≤ c ≤ qr−,
b α
mr f(xi, zi|Λ, c−i, ci = c,D,w, α,γ), qr− < c ≤ hr,

where nr−i,c is the number of cj for j 6= i that are equal to c, and b is the appropriate

normalising constant. Change the state to contain only those λc that are now

associated with one or more observations. i.e. let Λ = (λc : c ∈ {c1, . . . , cn}).

• Relabel c so that ci ∈ {1, . . . , N r} for i = 1, . . . , n.

• For s = 1, . . . , N r, i = 1, . . . ,K: Let qe−s be the number of distinct dsj for j 6= i and

hes = qe−s + me. Label these dsj values in {1, . . . , qe−s }. If dsi = dsj for some j 6= i,

draw λd
indep∼ G0 for qe−s < d ≤ hes. If dsi 6= dsj ∀ j 6= i, let dsi have the label qe−s + 1,

and draw λd
indep∼ G0 for qe−s + 1 < d ≤ hes.

Draw a new value for dsi from {1, . . . , hes} using probabilities

Pr(dsi = d|D,Λ, Z, c, D−si,w, α,γ)

=


b nes,−i,d

∏
i∈R

f(xi, zi|Λ, c, D−si, Dsi = d,w, α,γ), 1 ≤ d ≤ qe−s ,

b γs
me

∏
i∈R

f(xi, zi|Λ, c, D−si, Dsi = d,w, α,γ), qe−s < d ≤ he,

where nes,−i,d is the number of dsj for j 6= i that are equal to d, R = {i : ci = s} and

b is the appropriate normalising constant. Change the state to contain only those λ

that are now associated with one or more observations, that is, let Λ = (λst : s =

1, . . . , N r, t ∈ {ds1, . . . , dsK}).

• For s = 1, . . . , N r relabel ds such that dsj ∈ {1, . . . , N e
s } for j = 1, . . . ,K.

• For s = 1, . . . , N r, t = 1, . . . , N e
s sample

λst|D,Λ−st, Z, c, D,w, α,γ indep∼ Ga

a+ βst, 1 +
n∑
i=1

wi

ni∑
j=1

ζij(s, t)zij

 ,

• For i = 1, . . . , n, j = 1, . . . , ni sample

zij |D,Λ, Z−ij , c, D,w, α,γ indep∼ Exp

 ni∑
m=j

λwici,dci,xim
+
∑
m∈Ui

λwici,dci,m

 .
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• For i = 1, . . . , n, sample wi from the discrete distribution given by

Pr(wi = 1|D,Λ, Z, c, D,w−i, α,γ) ∝ pi f(xi, zi|Λ, c, D,w−i, wi = 1, α,γ),

Pr(wi = 0|D,Λ, Z, c, D,w−i, α,γ) ∝ (1− pi) f(xi, zi|Λ, c, D,w−i, wi = 0, α,γ)

∝ (1− pi) exp

−
ni∑
j=1

zij(Ki − j + 1)

 .

• Rescale

– Sample Λ† ∼ Ga

(
a
Nr∑
s=1

N e
s , 1

)
.

– Calculate Σ =
Nr∑
s=1

Ne
s∑

t=1
λst.

– For s = 1, . . . , N r, t = 1, . . . , N e
s , let λst → λst Λ†/Σ.

Conditional on the prior distribution described in Section 4.6.3, the concentration param-

eters can be sampled from the following mixtures

• Sample

α| · · · ∼ π Ga(aα +N r, bα − log η) + (1− π) Ga(aα +N r − 1, bα − log η),

where
π

(1− π)
=

aα +N r − 1

n(bα − log η)
, and η| · · · ∼ Beta(α+ 1, n).

• For s = 1, . . . , N r sample

γs| · · · indep∼ πs Ga(aγ +N e
s , bγ − log ηs) + (1− πs) Ga(aγ +N e

s − 1, bγ − log ηs),

where

πs
(1− πs)

=
aγ +N e

s − 1

K(bγ − log ηs)
, and ηs| · · · indep∼ Beta(γs + 1,K).
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4.7 Simulation studies

In this section we present two illustrative simulation studies based on simulated data which

highlight the flexibility of the Bayesian WAND for the analysis of ranked data.

4.7.1 Study 1

In this study we consider two (new) datasets with complete rankings of K = 20 entities.

The first dataset (Dataset 3) contains complete rankings from n = 40 informative (wi = 1)

rankers in a single ranker group (N r = 1 and ci = 1). The distinct “skill” parameters λk

were sampled from the prior distribution with γ1 = 1 and base distribution G0 = Ga(1, 1).

This simulation gave six unique entity clusters (N e
1 = 6). The entity clusters are {1} �

{2} � {3, 4} � {5, 6} � {7–16} � {17–20} where � means “is preferred to” and the

distinct skill parameters are 3.07, 1.83, 1.47, 0.85, 0.45, 0.04 for each cluster respectively.

The simulated data are given in Table B.3 within the appendices. Note that, for ease of

interpretation, we applied a permutation to the entity labels so that the λk were decreasing,

with the most preferred entity being labelled 1 and the least preferred labelled 20.

The second dataset (Dataset 4) contains complete rankings from n = 50 rankers, consisting

of those in Dataset 3 and an additional set from 10 uninformative rankers, with w41:50 = 0.

The addition of these random rankings will allow us to investigate the extent to which

the model both identifies and handles uninformative rankings. These additional (random)

rankings are given within the appendices in Table B.4.

We investigate the effect of incomplete rankings by comparing the analysis of the complete

rankings with those of top–M rankings for M = 5, 10, 15. That is, we analyse the data

assuming rankers see Ki = K = 20 entities and report their top ni = 5, 10, 15, 20 entities.

These analyses will allow us to investigate the level of uncertainty introduced by only

observing truncations of the rankings. It will also be interesting to explore whether a

collection of complete rankings is required if we only wish to infer, say, the top–5 entities.

Another scenario we consider is that of a so-called “restricted” analysis in which any entity

not ranked by any ranker is removed from the dataset. The intuition behind this scenario

is that our beliefs about the orderings of entities that appear in at least one ranking should

not be affected by whether non-appearing entities are included or not. One example of

this is in Dataset 3 where, under the top–5 and top–10 scenarios, entities 17, 18 and 20

do not appear in any of the rankings. Thus we also consider restricted top–5 and top–10

analyses of Dataset 3 which use Ki = K = 17.

We will adopt the same base distribution as for previous analyses and take G0 = Ga(1, 1).

Further we choose the prior distributions for the concentration parameters to be α ∼
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Ga(1, 1) and γs ∼ Ga(3, 3) for s ∈ N, noting that these are common choices within the

literature (Rodriguez et al., 2008). Here we consider two scenarios of an exchangeable prior

for the ranker reliability parameters w: one in which we are unsure about their ability

(taking pi = 0.5) and the other where we are quite confident that they are informative

(taking pi = 0.9).

To generate realisations from the posterior distribution (for each analysis) we implemented

the (marginal) sampling algorithm outlined in Section 4.6.5 with mr = 2 and me = 3

auxiliary (ranker and entity) variables. Each Markov chain was initialised at a random

draw from the prior distribution. To obtain 10K (almost) un-autocorrelated realisations

from the posterior distribution we allowed each chain a burn-in period of 10K iterations

then ran the scheme for a further 1M iterations and thinned the output by a factor of 100

in each case. The most computationally expensive analyses were those of Dataset 4 with

pi = 0.9 and the computational time required to perform inference was (approximately)

7, 16, 21 and 26 minutes for the top–5, top–10, top–15 and complete cases respectively.

The mixing of the MCMC chains was assessed by inspecting trace plots and convergence

was assessed by initialising numerous chains at differing starting values and verifying that

the resulting posterior distributions were equivalent (up to stochastic noise).

Figure 4.3 shows the posterior probability Pr(wi = 1|D) that ranker i is informative for

each information scenario and for both choices of prior probabilities pi = Pr(wi = 1).

It is not surprising that the restricted analyses, due to the loss of information, produce

results which are less consistent with the “known” abilities of the rankers (w1:40 = 1 and

w41:50 = 0) than the full (unrestricted) analyses which consider all entities. This finding

is clear for both choices of the pi but is more noticeable for the pi = 0.5 case. The results

correctly show that the the majority of rankers have been identified as informative (middle

row). Unsurprisingly this identification becomes clearer as more comprehensive rankings

are used (going from top–5 up to complete). It is also interesting to see that the most

data–poor (top–5) analysis does reasonably well.

The analyses for Dataset 4 show that the uninformative (random) rankers have been

identified quite clearly, particularly for the pi = 0.5 case where the posterior probability

that rankers 41 to 50 are informative are very close to zero (bottom left plot). The

probabilities for rankers 1 to 40 remain similar to those found when analysing Dataset 3.

This (and other analyses not given here) suggests that the identification of informative

rankers using this model is fairly robust to the addition of rankings from uninformative

rankers. The bottom row of plots show the influence of the choice of the pi in the prior

distribution. Here we see that having a high level of confidence that uninformative rankers

are informative can potentially mask their identification. It is clear here that the posterior

probabilities Pr(wi = 1|D) for the uninformative rankers are well separated from those for
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Figure 4.3: Plots of the posterior probability Pr(wi = 1|D) that ranker i is informative for both
scenarios of prior on their ability: pi = 0.5 (left column) and pi = 0.9 (right column). The
top row of plots show the comparison between the restricted (*) and full (unrestricted) analyses
for Dataset 3. Plots in the middle row are those for the full analyses using Dataset 3, with the
corresponding plots using Dataset 4 in the bottom row.

informative rankers but nevertheless they might be identified as informative if this choice

were made by thresholding these posterior probabilities at say 0.5 or even higher. This

suggests that the analyst should use a fairly conservative choice of the pi and should be

careful about expressing over confidence in ranker abilities a priori.

Table 4.1 gives the posterior distribution of the number of ranker clusters N r under each

analysis. For Dataset 3, we see much more posterior support for a single ranker group

under the full (unrestricted) analyses compared to their restricted equivalents, with little

dependence on the choice of the pi. Also, for the analyses of Dataset 4, the posterior

support for a single ranker group reduces, particularly for the pi = 0.9 case. Indeed for

this case, the high prior confidence that all rankers are informative changes the modal

number of ranker clusters from one to two, though this comes with a higher level of

posterior uncertainty. Also, as before, the probability of the correct number of ranker

clusters increases as more comprehensive rankings are included within the analysis.

In Chapter 3 we noted that determining the allocation of rankers to ranker groups can be

problematic. For example, conditioning on the modal number of ranker clusters and allo-

cating ranker i to ranker cluster k using only an MCMC estimate of Pr(ci = k|N r,D) can
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p = 0.5

Dataset 3 1 2 3 4 ≥ 5
Top–5* 0.73 0.20 0.05 0.02 0.00
Top–10* 0.88 0.11 0.01 0.00 0.00
Top–5 0.87 0.11 0.02 0.00 0.00
Top–10 0.98 0.02 0.00 0.00 0.00
Top–15 0.99 0.01 0.00 0.00 0.00
Complete 1.00 0.00 0.00 0.00 0.00

p = 0.9

Dataset 3 1 2 3 4 ≥ 5
Top–5* 0.65 0.23 0.08 0.02 0.01
Top–10* 0.88 0.11 0.01 0.00 0.00
Top–5 0.87 0.11 0.02 0.00 0.00
Top–10 0.99 0.01 0.00 0.00 0.00
Top–15 1.00 0.00 0.00 0.00 0.00
Complete 1.00 0.00 0.00 0.00 0.00

Dataset 4 1 2 3 4 ≥ 5
Top–5 0.74 0.20 0.05 0.01 0.00
Top–10 0.88 0.10 0.02 0.00 0.00
Top–15 0.89 0.10 0.01 0.00 0.00
Complete 0.89 0.10 0.01 0.00 0.00

Dataset 4 1 2 3 4 ≥ 5
Top–5 0.06 0.29 0.29 0.19 0.10
Top–10 0.09 0.38 0.30 0.16 0.06
Top–15 0.15 0.36 0.28 0.14 0.05
Complete 0.16 0.35 0.28 0.14 0.06

Table 4.1: Posterior distribution of the number of ranker clusters N r for restricted (*) and full
(unrestricted) analyses. Numbers in bold indicate modal values.

fail to give an adequate description of the joint posterior distribution of the allocations c,

particularly if there is not overwhelming posterior support for the choice of N r. Instead

we prefer not to condition on a particular N r and to use the full MCMC output to look

at co-clustering probabilities Pr(ci = cj |D). We define a dissimilarity matrix ∆ = (∆ij),

where ∆ij = Pr(ci 6= cj |D) measures how dissimilar rankers i and j are, and then consider

the corresponding dendrogram when forming the allocation of rankers to ranker clusters,

whilst also accounting for the posterior distribution of N r. We use the complete link-

age method, also known as furthest neighbour clustering, as this tends to produce more

densely packed clusters and does not suffer from “chaining”.

The posterior distribution for the number of ranker clusters in the Dataset 3 analysis

gives overwhelming support for the true number N r = 1 for each case, and particularly

for the complete, top–15 and top–10 cases. Therefore the allocation of rankers to ranker

clusters is trivial. However, the allocation is not quite as straightforward in the Dataset 4

analysis. Note that here we have retained the same prior for the upper level concentration

parameter α rather than amend it to reflect the known heterogeneity in ranker beliefs in

Dataset 4.

Figure 4.4 gives the complete linkage dendrograms for both pi = 0.5 and pi = 0.9 cases in

the (complete ranking) analysis of Dataset 4. The method clearly picks out the informative

and homogeneous rankers (numbered 1–40) and puts them into a single ranker group. The

posterior probabilities that these rankers are co-clustered is 0.997 and 0.979 respectively –

these probabilities are straightforward to obtain from the (posterior) realisations of cluster

allocations and are given by Pr(c1 = c2 = · · · = c40|D). When pi = 0.5 we see that the

uninformative ranker most “similar” to the informative group is ranker 42. This ranker
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Figure 4.4: Dendrograms for ranker clustering within Dataset 4 under a complete analysis for
pi = 0.5 (left plot) and pi = 0.9 (right plot).

is co-clustered with each of the informative rankers at least 98.5% of the time. The other

uninformative rankers also have high co-clustering probabilities and this is consistent with

the very high posterior support for a single group of rankers, Pr(N r = 1|D, pi = 0.5) =

0.89. This result occurs as a consequence of the model down-weighting the influence of the

uninformative rankers: Pr(wi = 1|D, pi = 0.5)� 0.1 for i = 41, . . . , 50. On the other hand

when we are much more confident in the ability of the rankers (with pi = 0.9) the most

“similar” uninformative ranker to the informative group is co-clustered with informative

rankers at least 68.6% of the time, a much smaller proportion than in the pi = 0.5 case.

Also the uninformative rankers do not separate themselves into a single distinct cluster,

with 0.311 ≤ ∆ij ≤ 0.555 for any i 6= j ∈ {41–50}, that is, any pair of uninformative

rankers are co-clustered between 44.5%–68.9% of the time. It is perhaps not surprising

that the model is not able to detect significant similarities between any pair of the ten

uninformative rankers as their rankings are random permutations and they are few in

number.

Table 4.2 gives the marginal posterior distributions of the number of entity clusters condi-

tional on a single ranker cluster (for all analyses of each dataset). Note that the pi = 0.9

analysis of Dataset 4 gives very low posterior support for a single ranker cluster, with

Pr(N r = 1|D, pi = 0.9) = 0.16, and so later in Section 4.7.1 we look at results when

conditioning on two ranker clusters (the posterior modal number). The table also shows

that posterior support for the correct number of entity clusters (N e
1 = 6) increases as the

information provided within each ranking increases. The cost of performing a restricted

analysis is especially visible in the top–5 case. As was the case for ranker clustering, the

inclusion of complete rankings in comparison to top–10 rankings does not have a significant

effect on our posterior beliefs.

Figure 4.5 shows dendrograms of the entity grouping structure for each of the complete

analyses, conditional on a single ranker cluster. Note that the entity clusters are similar

under both pi = 0.5 and pi = 0.9 analyses, particularly for entities 1–6 and 15–20. The

other entities (on the right hand side of each dendrogram) also have a similar grouping
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p = 0.5
Dataset 3 1 2 3 4 5 6 7 8 9 ≥ 10
Top–5* 0.00 0.11 0.23 0.27 0.18 0.12 0.06 0.02 0.01 0.00
Top–10* 0.00 0.00 0.05 0.19 0.28 0.23 0.15 0.06 0.02 0.02
Top–5 0.00 0.00 0.15 0.27 0.24 0.17 0.09 0.04 0.02 0.02
Top–10 0.00 0.00 0.03 0.13 0.22 0.25 0.19 0.11 0.05 0.03
Top–15 0.00 0.00 0.00 0.07 0.21 0.29 0.22 0.13 0.05 0.03
Complete 0.00 0.00 0.00 0.09 0.24 0.29 0.21 0.11 0.04 0.02

Dataset 4 1 2 3 4 5 6 7 8 9 ≥ 10
Top–5 0.00 0.00 0.14 0.26 0.25 0.17 0.10 0.05 0.02 0.01
Top–10 0.00 0.00 0.03 0.12 0.22 0.24 0.19 0.12 0.05 0.03
Top–15 0.00 0.00 0.00 0.08 0.22 0.29 0.23 0.12 0.05 0.01
Complete 0.00 0.00 0.00 0.10 0.24 0.28 0.21 0.11 0.04 0.02

p = 0.9
Dataset 3 1 2 3 4 5 6 7 8 9 ≥ 10
Top–5* 0.00 0.10 0.28 0.29 0.20 0.08 0.03 0.02 0.00 0.00
Top–10* 0.00 0.00 0.04 0.18 0.28 0.25 0.15 0.07 0.02 0.01
Top–5 0.00 0.00 0.21 0.31 0.24 0.14 0.06 0.02 0.01 0.01
Top–10 0.00 0.00 0.03 0.11 0.22 0.24 0.20 0.12 0.05 0.03
Top–15 0.00 0.00 0.00 0.08 0.22 0.28 0.23 0.13 0.05 0.01
Complete 0.00 0.00 0.00 0.08 0.22 0.30 0.22 0.11 0.05 0.02

Dataset 4 1 2 3 4 5 6 7 8 9 ≥ 10
Top–5 0.00 0.00 0.17 0.24 0.25 0.18 0.08 0.05 0.02 0.01
Top–10 0.00 0.00 0.02 0.10 0.24 0.24 0.21 0.11 0.05 0.03
Top–15 0.00 0.00 0.00 0.06 0.22 0.28 0.25 0.13 0.05 0.01
Complete 0.00 0.00 0.01 0.07 0.23 0.28 0.23 0.12 0.05 0.01

Table 4.2: Posterior distribution of the number of entity clusters, conditional on a single ranker
cluster, for restricted (*) and full (unrestricted) analyses. Numbers in bold indicate modal values.

structure with only minor discrepancies in the order that entity pairs cluster together

(and clustering taking place at similar levels of the dissimilarity measure ∆ij). Thus the

dendrograms are fairly robust to the addition of the uninformative rankings. This can

partly be explained by the dendrograms being conditional on a single ranker cluster and

the Dataset 4 analysis correctly identifying the uninformative rankers (with w41:50 = 0).

We can explore our posterior distribution further by investigating where specific entities

are likely to be ranked. Consider the posterior probability that a specific entity is ranked

at most ith, that is, Pi = Pr(entity in top i|D). Figure 4.6 displays P5 for all analyses, P10

for all except the top–5 case and P15 for the top–15 and complete analyses. Interestingly

the posterior probabilities under the restricted top–5 and top–10 analyses are very similar

to those under the unrestricted analysis (especially when pi = 0.5). This suggests that,

for these data, this aspect of the posterior distribution is robust to whether or not the

unobserved entities (in the restricted analysis) are included in the analysis. The two left
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Figure 4.5: Dendrograms for entity clustering for Dataset 3 (top) and Dataset 4 (bottom) condi-
tional on a single ranker cluster under both prior specifications for the complete analyses.

hand plots within Figure 4.6 shows considerable similarity between the full (unrestricted)

analyses of the two datasets (when pi = 0.5). Here the WAND model has been able

to identify the so-called spam rankings within Dataset 4 (see Figure 4.3) and so these

rankings have little effect on the analysis. However, this is not the case when we take

pi = 0.9. In this case, the high level of confidence that the rankers are informative

results in the WAND model being reluctant to classify any rankers as uninformative;

again see Figure 4.3. This leads to the uninformative rankers contaminating the posterior

distribution of the entity λ–parameters.

Earlier we questioned whether a collection of complete rankings is required if we only wish

to infer, say, the top–5 entities. Looking at the results for Dataset 3 (in the top plots in

Figure 4.6), if we consider P5 we can see how the top–5 analysis is able to detect that

entities 1–4 are highly likely to be within the top–5, however there is some doubt about

which is the 5th strongest entity. In contrast, the other analyses (top–10, top–15 and

complete) indicate that entity 6 is much more likely to be within the top–5 in comparison

to the remaining entities. Furthermore notice how P5 decreases significantly for entities 7–

20 under the top–15 and complete analyses in comparison to the top–10 scenario. Similar

results are obtained for P10 and P15, that is, as we increase the information contained

within the rankings, we become more certain about those entities which are the most

preferred. In conclusion, although it is possible to identify the most preferred entities

without complete rankings, it has been advantageous to incorporate as much information

as possible.
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Figure 4.6: Posterior probabilities P5 for all analyses, P10 for all except the top–5 case and P15

for the top–15 and complete analyses. The analyses of Dataset 3 and Dataset 4 are shown on the
upper and lower row respectively for each prior choice of p.

Dataset 4 analysis conditional on two ranker clusters

Here we revisit the analysis of Dataset 4 under the choice of pi = 0.9 a priori. In the

previous section we looked at the posterior entity clustering structure conditional on a

single ranker cluster. However there was little posterior support for a single ranker cluster,

with Pr(N r = 1|D, pi = 0.9) ≤ 0.16 under all analyses considered, and the modal posterior

number of ranker clusters was two. Therefore we now look at the (posterior) clustering

structure conditional on this modal number of ranker groups (as would be done if we had

no knowledge of the generating mechanism for these data).

Table 4.3 gives the marginal posterior distributions of the number of entity clusters within

each ranker group (conditional on two ranker clusters) for all analyses. Note that, within

ranker cluster 1, the posterior support for the correct number of entity clusters (N e
1 =

6) increases as the information provided within each ranking increases – this was also

observed when conditioning on a single ranker group. For ranker cluster 2 we see increased

uncertainty within the marginal posteriors (in comparison to ranker cluster 1) with only

two or three entity clusters being most probable under all analyses. Clearly the rankers

in ranker cluster 2 are less able to distinguish between the entities – and this is perhaps

not surprising as this cluster typically houses the uninformative rankers.

Figure 4.7 shows dendrograms of the entity grouping structure within ranker clusters 1

and 2 (left and right respectively) for the complete analysis of Dataset 4 with pi = 0.9,

conditional on two ranker clusters. Note that the entity clusters within ranker cluster 1

are very similar to those when conditioning on a single ranker cluster; see Figure 4.5. This
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Dataset 4 Cluster 1 2 3 4 5 6 7 8 9 ≥10
Top–5 1 0.01 0.01 0.16 0.26 0.25 0.17 0.09 0.03 0.02 0.00

2 0.14 0.23 0.22 0.18 0.12 0.06 0.03 0.01 0.01 0.00
Top–10 1 0.00 0.00 0.02 0.11 0.21 0.23 0.21 0.12 0.06 0.04

2 0.11 0.21 0.24 0.19 0.13 0.07 0.03 0.01 0.01 0.00
Top–15 1 0.00 0.00 0.00 0.08 0.21 0.28 0.23 0.12 0.06 0.02

2 0.18 0.25 0.21 0.16 0.10 0.05 0.03 0.01 0.01 0.00
Complete 1 0.00 0.00 0.00 0.08 0.25 0.28 0.20 0.12 0.05 0.02

2 0.20 0.24 0.23 0.15 0.10 0.05 0.02 0.01 0.00 0.00

Table 4.3: Posterior distribution of the number of entity clusters, conditional on two ranker clusters,
for each analysis of Dataset 4 with pi = 0.9. Numbers in bold indicate modal values.
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Figure 4.7: Dendrograms of entity clustering (conditional on 2 ranker clusters) in ranker cluster 1
(left) and ranker cluster 2 (right) for the analysis of Dataset 4 with pi = 0.9.

is probably due to ranker cluster 1 containing all informative rankers in both cases (of

one or two ranker groups). For ranker cluster 2 we see that any two entities are clustered

together at least 49% of the time (∆ij < 0.51). Also entity clusters are formed at similar

levels of dissimilarity, again highlighting the uncertainty on the entity clustering within

this ranker group.

4.7.2 Study 2

In study 2 we look at a single dataset with n = 40 complete rankings of K = 20 entities

from informative (wi = 1) rankers. We also simulate the cluster allocations (for both

rankers and entities) marginally from the prior. The distinct skill parameters and cluster

allocations were simulated using α = γs = 1 for s ∈ N, and a = 1 so that our base distri-

bution is G0 = Ga(1, 1). The simulation gave three ranker clusters (N r = 3) containing

24, 12 and 4 rankers, which we label as rankers 1–24, 25–36 and 37–40. Also the ranker

clusters contained 8, 6 and 3 entity clusters (N e
1 = 8, N e

2 = 6, N e
3 = 3).

Table 4.4 shows the entity clustering (within each ranker cluster) along with the associated

true values of the skill parameters on the log scale. For ease of interpretation, the entities

are labelled according to the size of their “true aggregate” skill parameter, largest to
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Entity cluster
Cr Rankers 1 2 3 4 5 6 7 8
1 1–24 1 6 10,13 3,4,7,9,12,15 2 5,11,14,17–20 16 8

2.47 0.65 0.52 0.40 0.34 0.24 0.02 0.01
2 25–36 2–5,8 1,7,9,11 14,16 12 6,10,15,17 13,18–20

1.72 0.76 0.68 0.42 0.21 0.15
3 37–40 2,6,10 7 1,3–5,8,9,11–20

1.54 1.16 0.64

Table 4.4: True allocation of entities in to clusters, along with the corresponding true parameter
value for each of the entity clusters.

smallest, so that they are labelled with the most preferred entity overall first, down to the

least preferred entity overall last. Here the true aggregate values are an average of the true

parameter values within each ranker cluster, weighted by the size of the ranker clusters.

The complete (simulated) rankings analysed within this study can be found in Table B.5

within the appendices.

The purpose of this study is to investigate the ability of our WAND model to (correctly)

identify different ranker groups and the associated preferences therein. The analysis given

here uses the same base distribution and prior distribution for the entity concentration

parameters as in Section 4.7.1, that is, G0 = Ga(1, 1) and γs ∼ Ga(3, 3) for s ∈ N. To

reflect the known ranker heterogeneity within these data we now take aα = bα = 3, that

is, α ∼ Ga(3, 3). We also consider the case where we have only moderate confidence in

our rankers being informative by taking pi = 0.5.

Realisations from the posterior distribution were obtained using the (marginal) sampling

algorithm outlined in Section 4.6.5 with mr = 2 and me = 3 auxiliary (ranker and entity)

variables. The Markov chain was initialised at a random draw from the prior distribution.

To obtain 10K (almost) un-autocorrelated realisations from the posterior distribution we

performed a burn-in period of 10K iterations and then ran the scheme for a further 1M

iterations and thinned the output by a factor of 100. The computational time required to

perform inference was (approximately) 17 minutes. The mixing of the MCMC chain was

assessed by inspecting trace plots and convergence was assessed by initialising numerous

chains at differing starting values and verifying that the resulting posterior distributions

were equivalent (up to stochastic noise).

The left plot in Figure 4.8 shows the posterior probabilities, Pr(wi = 1|D), that ranker i

is informative. The plot shows that, in general, the rankers in (true) ranker clusters 1

and 2 (rankers 1–36) are well identified to be informative. However the rankers in (true)

ranker cluster 3 are identified as uninformative. The reason for this misidentification

is perhaps due to the (true) entity clustering structure present within ranker cluster 3.

Table 4.4 shows that this ranker cluster contains only 3 entity clusters, with one of these

containing 16 out of the 20 entities, and so it is very likely that rankings in this cluster
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Figure 4.8: Plot of the posterior probability Pr(wi = 1|D) that ranker i is informative (left), colours
distinguish between the “true” ranker clusters. Dendrogram (complete linkage) computed using
the dissimilarity ∆ij between rankers i and j (right).

resemble a random permutation of the K entities.

The right plot in Figure 4.8 shows the complete linkage dendrogram determined using

dissimilarities ∆ij . The dendrogram suggests there are two ranker clusters (taking dis-

similarity ∈ (0.53, 1)) which separates those rankers numbered {25 − 30, 32, 33, 34, 36}
from the remaining rankers. That there are two ranker clusters is supported further by

the marginal posterior distribution of the number of ranker clusters: Pr(N r = i|D) =

0.68, 0.25, 0.06, 0.01 for i = 2, 3, 4, 5. It is not surprising that the analysis has not iden-

tified the third ranker cluster as this cluster only contains rankers whose rankings are

virtually indistinguishable from random permutations; rather the model prefers to deem

such rankers as uninformative and place them within clusters of informative rankers.

Table 4.5 gives the marginal posterior distribution for the number of entity clusters within

each ranker cluster, conditional on the posterior modal number of ranker clusters. The

modal number of entity clusters within ranker clusters 1 and 2 is six and four respectively

(the corresponding true values are eight and six). Here the analysis has correctly identi-

fied that ranker cluster 1 is the stronger cluster, in that these rankers are more able to

distinguish between entities. The dendrograms in Figure 4.9 suggest that there are five

entity clusters within ranker cluster 1 (taking dissimilarity ∈ (0.58, 0.83)) and three entity

clusters in ranker cluster 2 (taking dissimilarity ∈ (0.50, 0.69)). Notice that in ranker clus-

ter 1, the most preferred entity in this cluster (entity 1) has its own cluster, and entities 16

and 8 (in true entity clusters 7 and 8) also form a single cluster; perhaps these are not sur-

prising given the “true” values of the skill parameters for these entities within this ranker

Cluster 1 2 3 4 5 6 7 8 9 ≥10
1 0.00 0.00 0.00 0.07 0.20 0.25 0.21 0.14 0.08 0.05
2 0.00 0.11 0.25 0.26 0.18 0.11 0.05 0.02 0.01 0.01

Table 4.5: Posterior distribution of the number of entity clusters, conditional on two ranker clusters.
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Figure 4.9: Dendrograms showing the dissimilarity between entities within ranker clusters 1 (left)
and 2 (right), conditional on two ranker clusters (Nr = 2).

cluster (see Table 4.4). True entity cluster 6 is fairly well identified with only entity 14

not being included and entity 3 (from true cluster 4) joining the cluster. The remaining

two entity clusters identified by the dendrogram house the other entities from true entity

clusters 2–5. Within ranker cluster 2 the “true” entity clustering structure from which

the data were simulated is largely preserved but the inferred clusters are groups of the

“true” clusters, with all entities in “true” cluster 1 being clearly identified in one cluster

and those in clusters 2, 3 and 4 in another cluster and those in clusters 5 and 6 in another

cluster. That these entity clusters have merged is perhaps not too surprising given the

true values (see Table 4.4) and the limited number of rankings observed.

We now investigate the preference ordering of the entities within each ranker group and an

overall preference ordering; see Table 4.6. Here the preference ordering within each ranker

group has been determined by the posterior mean of the “skill” parameters, averaged

over both the entity clustering and the allocation of rankers to each ranker group. The

overall preference ordering has been further averaged over all ranker clusters. Comparing

these preference orderings with the truth (in Table 4.4) we see that the WAND model

has performed fairly well in recovering the true preferences expressed in ranker clusters 1

and 2, especially for those entities which are the most and least preferred within each ranker

group. Not surprisingly there is an increased level of misidentification in the middle ranks

of the preference ordering for both ranker clusters, and particularly so for ranker cluster 1.

This is perhaps due, in part, to the true values of the skill parameters in entity clusters

2–6 within each ranker cluster being fairly similar, with those in ranker cluster 1 being

the most similar; see Table 4.4.

The entities in Table 4.6 are listed in order of their overall “true” skill parameter. Even

though the WAND model has allowed for differences between rankers, the inferred overall

ordering is very different from the “true” order. That said, the inferred orderings within

the ranker clusters are very similar to the “true” orderings and give a much better account

of the heterogeneity within the model underpinning the data. This illustrates how inferring

preference orderings using overall (population level) summaries of heterogeneous rankers
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Cr1 Cr2 Aggregate
Rank Entity Mean (SD) Entity Mean (SD) Entity Mean (SD)

1 1 3.54 (1.57) 2 1.91 (1.11) 1 2.93 (1.15)
2 7 1.02 (0.54) 8 1.77 (1.08) 7 1.13 (0.47)
3 13 1.02 (0.54) 5 1.73 (1.07) 4 1.02 (0.41)
4 10 0.91 (0.46) 4 1.71 (1.06) 2 0.97 (0.40)
5 14 0.89 (0.45) 3 1.65 (1.05) 14 0.96 (0.40)
6 6 0.87 (0.44) 16 1.51 (1.02) 12 0.95 (0.39)
7 12 0.83 (0.42) 1 1.44 (0.99) 9 0.89 (0.38)
8 15 0.76 (0.39) 7 1.41 (0.98) 3 0.82 (0.35)
9 4 0.75 (0.40) 9 1.36 (0.96) 13 0.80 (0.39)
10 9 0.70 (0.38) 11 1.31 (0.95) 5 0.78 (0.34)
11 2 0.60 (0.35) 12 1.23 (0.92) 10 0.73 (0.33)
12 3 0.49 (0.28) 14 1.13 (0.87) 6 0.69 (0.31)
13 20 0.44 (0.24) 10 0.25 (0.21) 11 0.64 (0.29)
14 18 0.44 (0.24) 17 0.22 (0.17) 15 0.62 (0.29)
15 17 0.41 (0.21) 15 0.22 (0.16) 8 0.52 (0.31)
16 5 0.41 (0.21) 20 0.22 (0.16) 16 0.47 (0.29)
17 11 0.37 (0.19) 13 0.21 (0.15) 20 0.39 (0.18)
18 19 0.37 (0.18) 19 0.21 (0.15) 18 0.38 (0.18)
19 16 0.05 (0.07) 6 0.21 (0.15) 17 0.36 (0.16)
20 8 0.03 (0.08) 18 0.20 (0.14) 19 0.33 (0.14)

Table 4.6: Posterior preference orderings within ranker clusters 1 and 2 (conditional on two ranker
clusters) and the overall/aggregate ranking, with mean (and standard deviation) of their skill
parameters.

can be very misleading even when knowing the skill parameters, let alone when attempting

to infer their values.

4.8 Summary

In this chapter we have described the Adapted Nested Dirichlet process prior which facil-

itates two-way clustering on both rankers and entities (within ranker groups). We then

used this prior to form the WAND model by taking the underlying ranking distribution to

be the Weighted Plackett–Luce model. Two approaches to inference for the WAND model

were then considered. In Section 4.5 we appealed to a conditional sampling approach. Al-

though intuitive, this approach to inference for DP mixtures comes with drawbacks when

compared to marginal sampling schemes, as discussed in Chapter 3. In Section 4.6 we

discussed how a marginal scheme for posterior sampling can be constructed for this adap-

tation of the NDP. The marginal posterior sampling scheme we outlined in Section 4.6.5

allows for fast and efficient inference under our WAND model.

We saw through the simulation studies in Section 4.7 that reasonable inferences can be

made under the WAND model even when only limited (partial) information is available.
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The richness of information in the posterior distribution allows us to infer many details

of the structure both between ranker groups and between entity groups (within ranker

groups). The high dimension of the posterior distribution can make the production of

insightful but simple summaries quite difficult and we have explored different approaches,

ranging from conditioning on modal number of groups to adopting a classification based

on calculations from a dissimilarity matrix summary.

In the next chapter we consider two real datasets that have been analysed in the literature,

and compare their conclusions with those obtained from fitting the WAND model.
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Real data analyses

5.1 Roskam’s data set

In this section we consider a dataset originally collected in 1968 by Roskam, more recently

studied by de Leeuw (2006). The data are available in the R package homals (de Leeuw

and Mair, 2009) and are also given in Table B.6 within the appendices. The data consist

of rankings obtained from n = 39 psychologists within the Psychology Department at

the University of Nijmengen (Netherlands). Each ranker gives a complete ranking of

K = 9 sub-areas (entities), listed according to how appropriate the sub-areas are to their

work. The sub-areas are: SOC - Social Psychology, EDU - Educational and Developmental

Psychology, CLI - Clinical Psychology, MAT - Mathematical Psychology and Psychological

Statistics, EXP - Experimental Psychology, CUL - Cultural Psychology and Psychology

of Religion, IND - Industrial Psychology, TST - Test Construction and Validation, and

PHY - Physiological and Animal Psychology.

The heterogeneity within these data has been analysed by de Leeuw (2006) using a non-

linear principal component analysis to detect groupings within the rankings. Their anal-

ysis supported the idea that there are two groups of rankings: one group which favours

the qualitative fields and the other favouring the quantitative fields of psychology. A

homogeneity analysis was later performed by de Leeuw and Mair (2009) which exposed

groupings of entities within the rankings. More recently Choulakian (2016) performed a

Taxicab correspondence analysis to look at structure both between the rankings and the

entities within ranker groups. Their results support the conclusions of de Leeuw (2006)

and suggest that the psychologists comprise two homogeneous groups with 23 and 16 mem-

bers respectively. Within the larger ranker group they obtain the entity clustering {MAT,

EXP} � {IND, TST} � {PHY, SOC, EDU} � CLI � CUL, where � means “is preferred

to”, and quantitative areas of psychology appear to be preferred. The corresponding clus-

147



Chapter 5. Real data analyses

tering of entities for the other ranker group is {EDU, CLI, SOC} � {CUL, MAT, EXP}
� {TST, IND} � PHY, and here qualitative areas of psychology appear to be preferred.

They also conclude that the larger ranker group is somewhat more homogeneous than the

smaller group.

We now use our WAND model to investigate subgroup structure in these data and take

our prior specification for the base distribution and concentration parameters to be a = 1

and aα = bα = 1, aγ = bγ = 3. These data contain orderings of individual preferences

which we believe to be informative and so take pi = 0.75. The posterior distribution is

fairly robust to this choice; a sensitivity analysis follows in Section 5.1.1. We report the

results from a typical run of our MCMC scheme initialised from the prior, with a burn-in

of 10K iterations and then run for a further 1M iterations and thinned by 100 to obtain

10K (almost) un-autocorrelated realisations from the posterior distribution. Convergence

was assessed by using multiple starting values, inspection of traceplots of parameters and

the log complete data likelihood, and standard statistics available in the R package coda

(Plummer et al., 2006). The MCMC scheme runs fairly quickly, with C code on a single

thread of an Intel Core i7-4790S CPU (3.20GHz clock speed) taking around 5 minutes.

Table 5.1 shows both the prior and posterior distribution for the number of ranker clusters.

The data clearly have been informative and suggest that it is likely that there are between

two and four ranker groups, with two groups being most plausible. Note that there is

almost no posterior support to suggest there is a single (homogeneous) ranker group and

so an aggregate ranking from this dataset may be misleading. Figure 5.1 shows the den-

drogram of rankers along with the posterior probability that each ranker is informative.

The dendrogram suggests that there are two ranker groups (taking dissimilarity > 0.60),

and this is consistent with the posterior distribution in Table 5.1 and the conclusions of

previous analyses. We note that the data are consistent with most rankers being infor-

mative (with Pr(wi = 1|D) ≥ 0.8), an increase from their prior probabilities (pi = 0.75).

Also the rankers whose probabilities have decreased (rankers 1, 5, 8, 10, 13, 14, 15, 31) are

those with (slightly) different preferences and hence late to join the right-hand cluster in

the dendrogram.

We now turn to the subgroup structure of entities within the ranker clusters, and here we

condition on there being two ranker clusters. Figure 5.2 shows the (marginal) posterior

distribution for the number of entity clusters within each ranker cluster together with the

1 2 3 4 5 6 7 ≥ 8
Posterior 0.00 0.43 0.33 0.16 0.06 0.02 0.00 0.00
Prior 0.20 0.18 0.16 0.13 0.10 0.08 0.05 0.10

Table 5.1: Prior and posterior distribution of the number of ranker clusters (to 2 d.p.).
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Figure 5.1: Roskam’s dataset: Dendrogram (left) showing the ranker cluster structure along with
the posterior probability, Pr(wi = 1|D), for each ranker i (right).

prior distribution. The dendrograms in Figure 5.3 show the entity clustering structure

in each ranker cluster. We define entity clusters at dissimilarities in ranges (0.45,0.95)

and (0.63,0.89) for rankers groups 1 and 2 respectively and form a preference ordering of

these entity clusters by examining the marginal posteriors for the skill parameters λcidcij
within each ranker group ci. Conditioning on these allocations to both ranker and entity

groups and ordering by posterior mean, we obtain {EXP, MAT} � {TST, PHY, IND}
� {EDU, SOC, CLI} � {CUL} (with entity cluster means 3.02, 0.72, 0.22, 0.06) in ranker

cluster 1 and {SOC, EDU, CLI, MAT} � {CUL, IND, EXP, TST} � {PHY} (with entity

cluster means 1.96, 0.82, 0.12) in ranker cluster two. These entity clusters (within ranker

groups) are similar to those given by Choulakian (2016). Also if we use the average value

of Pr(wi = 1|D) as a measure of homogeneity within a ranker cluster then we obtain 0.68

and 0.56 for clusters 1 and 2 respectively, which again agrees with the Choulakian (2016)

conclusion that ranker cluster 1 is more homogeneous than ranker cluster 2. Note that,

for this data analysis, we obtain a very similar entity ordering using marginal posterior

means of the skill parameters within each ranker group (marginal over the distribution of

entity clusters); see Table 5.2. Indeed the table suggests that the ranker groups almost

have opposite (reverse) preferences to each other.

We looked at the sensitivity of the posterior distribution (and inferences) to modest

changes to the prior distribution. The posterior distribution was fairly insensitive to
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Figure 5.2: Prior and marginal posterior densities for the number of entity clusters within each
ranker cluster (conditional on two ranker clusters).
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Figure 5.3: Roskam’s dataset: Dendrograms showing the entity clustering structure within ranker
cluster 1 and 2 (left and right respectively) conditional on two ranker clusters.

Ranker Rank
cluster 1 2 3 4 5 6 7 8 9

1 EXP MAT TST PHY IND EDU SOC CLI CUL
3.13 2.68 0.76 0.70 0.63 0.27 0.22 0.20 0.07

2 SOC EDU CLI MAT CUL IND EXP TST PHY
1.95 1.75 1.49 1.32 0.94 0.90 0.87 0.87 0.10

Table 5.2: Roskam’s dataset: entity rankings by posterior mean within ranker cluster (conditional
on two ranker clusters). Rank 1 corresponds to the entity most preferred within each cluster.

changes in the index (a) of the gamma base distribution and to changes in the parame-

ters (aα, bα, aγ , bγ) of the gamma prior distributions for the concentration parameters.

The posterior distribution was most sensitive to changes in the prior probabilities (pi)

of rankers being informative. Not surprisingly most affected by such changes were their

posterior equivalents Pr(wi = 1|D) though the conclusion of two ranker groups and the

membership of these groups was robust. The allocation of entities to groups (within each

ranker cluster) was also fairly robust, with only a minor change in the allocation in the

p = 0.85 case. Section 5.1.1 contains the (ranker and entity) dendrograms and plots of

Pr(wi = 1|D) for pi = 0.65 and pi = 0.85 in addition to the choice pi = 0.75 used in this

analysis.

5.1.1 Prior sensitivity analysis

Here we look at the sensitivity of the posterior distribution to changes in the prior prob-

ability that a ranker is informative. We consider two alternative choices to the one used

in our previous analysis (pi = 0.75), namely pi = 0.65 and pi = 0.85. For ease of reference

we also include the results for the pi = 0.75 case.

Overall, we found that the posterior distribution was fairly robust to the choice of pi

a priori. Perhaps unsurprisingly the aspect of our posterior distribution most sensitive

to changes in the pi was their posterior equivalents Pr(wi = 1|D); see Figure 5.4 (right

column). However we note that the rankers whose informative probability decreases (prior
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→ posterior) remain the same in each case: these are rankers {1, 5, 8, 10, 13, 14, 15, 31}.
The dendrograms of the ranker clustering structure are similar for each prior choice and

clearly indicate that there are two groups of rankers. Also the allocation of rankers to

clusters is similar in each case; see Figure 5.4 (left column). Interestingly we observe

increasing posterior support for two ranker clusters as the pi decrease – this is also the

posterior mode in each case; see Figure 5.5. In addition, conditional on there being two

ranker clusters, the marginal posterior of the number of entity clusters N e
s (within each

ranker cluster s = 1, 2) remains fairly robust to the prior choice; see Figure 5.5. Also the

dendrograms of the entity clustering structure are similar in each case; see Figure 5.6.
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Figure 5.4: Roskam’s dataset: Dendrogram (left) showing the cluster structure of the rankers along
with the posterior probability Pr(wi = 1|D) for each ranking i (right) for pi = 0.85, 0.75, 0.65 (from
top to bottom respectively).
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Figure 5.5: Roskam’s dataset: Prior and marginal posterior densities for the number of rankers
clusters (left plot) and the number of entity clusters within each ranker cluster, conditional on two
ranker clusters, (right plot) for pi = 0.85, 0.75, 0.65.
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Figure 5.6: Roskam’s dataset: Dendrograms of entity clustering structure within ranker cluster 1
(left) and ranker cluster 2 (right). These are shown for each prior specification, pi = 0.85, 0.75, 0.65,
from top to bottom respectively.
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5.2 NBA study

We now consider another dataset of ranks, studied by Deng et al. (2014) and involving

rankings of NBA (National Basketball Association) teams. In their paper, Deng et al.

propose a model (named “Bayesian Aggregation of Ranked Data”, BARD) which aims to

aggregate rankings and identify the “relevant entities”. Their model also accommodates

the possibility that rankings may not be equally reliable. One drawback of the BARD

model is that it assumes that all rankings come from a single homogeneous group. We

now investigate this assumption by using the WAND model and also produce an aggregate

ranking to compare with the BARD aggregate ranking.

In 2011/12 the NBA league contained K = 30 teams (entities) and the dataset we consider

has a ranking of these teams from each of n = 34 rankers. The first six complete rankings

were obtained from odds given at “professional” websites and the other top–8 rankings

obtained from amateurs. Further, each amateur was asked to classify themselves into one

of the following groups: “Avid fans” (never missed an NBA game), “Fans” (watched NBA

games frequently), “Infrequent watchers” (occasionally watched NBA games) and “Not

interested” (never watched an NBA game). Each ranker considered all teams and so we

have Ki = K for i = 1, . . . , n. The rankers are numbered as follows: Professionals (1–6),

Avid fans (7–12), Fans (13–18), Infrequent watchers (19–25) and Not interested (26–34).

Therefore we have ni = K = 30 for i = 1, . . . , 6 and ni = 8 for i = 7, . . . , n. The data are

given in Table B.7 within the appendices. Further details on how these data were collected

can be found in Deng et al. (2014).

We now analyse these data using our WAND model and see whether it is plausible that

these rankers are homogeneous or whether the self-assessed groups behave differently. We

take the same prior for the base distribution (a = 1) as in the previous example. However,

to reflect weak prior beliefs that there are several ranker groups, we take aα = bα = 3

in addition to the previous choice for entities, aγ = bγ = 3. The prior we choose for

each ranker’s ability is based on how much attention they reportedly pay to the NBA,

with professional rankers likely to be most informative, followed by the Avid fans, then

Fans and so on. We do this by giving the same pi-value for each ranker in the same

“ability” group, with pi = 0.9 for professionals, pi = 0.7 for Avid fans, pi = 0.5 for Fans,

pi = 0.3 for Infrequent watchers and pi = 0.1 for Not interested. We appreciate that,

in general, this type of information is unlikely to be available to the analyst and so in

Section 5.2.1 we consider an analysis where pi = 0.5 for each ranker (a sensible choice

when no information is available). Generally, we found that the posterior distribution is

fairly robust to the choice of pi a priori which is perhaps not surprising given what we have

seen in the previous simulation studies and (other) real data analysis. Unsurprisingly the

aspect of the posterior distribution most sensitive to changes in the pi was their posterior
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equivalents Pr(wi = 1|D) although the inferences under each analysis were robust.

As in the previous analysis, we report the results from a typical run of our MCMC scheme

initialised from the prior, with a burn-in of 10K iterations and then run for a further 1M

iterations and thinned by 100 to obtain 10K (almost) un-autocorrelated realisations from

the posterior distribution. Convergence was assessed by using multiple starting values,

inspection of traceplots of parameters and the log complete data likelihood, and standard

statistics available in the R package coda. Again the MCMC scheme runs reasonably

quickly, with C code on a single thread of an Intel Core i7-4790S CPU (3.20GHz clock

speed) taking just under 18 minutes.

Our analysis of the posterior realisations reveals very little posterior support for a single

homogeneous group of rankers, with most support for two ranker groups (Pr(N r = 1|D) =

0.00, Pr(N r = 2|D) = 0.80 and Pr(N r = 3|D) = 0.17). Figure 5.7 (left) shows a den-

drogram of the posterior clustering structure of rankers and confirms the conclusion that

there are two distinct groups of rankers: one with rankers 1–10, 12, 15 and the other with

rankers 11, 14, 17–26, 28 and 32. Nearly all the other rankers are classed as uninformative,

with Pr(wi = 1|D) < 0.25, except informative ranker 16 who is (roughly) equally likely

to be allocated to each cluster; see Figure 5.7 (right). Note that obtaining a clustering

by using the MAP allocation would be misleading as the MAP allocation occurs in only

60 of the 10K iterations in the MCMC chain. Unsurprisingly, uninformative rankers are

typically those who pay less attention to the NBA, with average values of Pr(wi = 1|D)

for rankers in the self-certified groups (from professionals down to the not interested indi-

viduals) of 1, 1, 0.87, 0.88, 0.34 respectively. A similar conclusion was found under BARD

through its ranking quality parameters; see Figure 8 in Deng et al. (2014).

Figure 5.8 shows the marginal posterior distribution for the number of entity clusters

within each ranker cluster (conditional on there being two ranker clusters) together with

the prior distribution. The posterior mean number of entity clusters for ranker clusters 1

and 2 is 8.88 and 4.58 respectively, with corresponding standard deviations 1.55 and 1.29.
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Figure 5.7: NBA dataset: Dendrogram (left) showing the clustering structure of rankers and
highlighting those rankers with Pr(wi = 1|D) < 0.25. Plot (right) of the posterior probabilities
Pr(wi = 1|D) for each ranker, with vertical lines separating the self-certified groups.
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Figure 5.8: Prior and marginal posterior densities for the number of entity clusters within each
ranker cluster (conditional on two ranker clusters).

These distributions suggest that rankers within cluster 1 are able to distinguish between

many more entities than those in cluster 2. Again this should come as no surprise as ranker

cluster 2 mainly consists of rankers who typically pay little attention to the NBA. The

dendrograms in Figure 5.9 show the entity clustering in each ranker cluster, and suggest

that there are six distinct entity clusters within ranker cluster 1 (taking dissimilarity

> 0.81) and three entity clusters in ranker cluster 2 (taking dissimilarity > 0.61). We note

that the MAP clustering gives six and two entity clusters respectively, though there are

relatively few MCMC iterations contributing to the MAP allocation for either cluster.

It is also of interest to look at the differences in preferences between the two ranker clusters

by examining the within-cluster aggregate rankings; see Table 5.3. As before, these are

determined by the marginal posterior mean for each entity (within each ranker cluster).

The horizontal lines in this table show the MAP entity clustering described above and the

(quite small) number of occurrences of the MAP is also given. So that our results can

be compared to those of Deng et al. (2014), the table also includes the overall aggregate

ranking, determined by ordering the mean of the (fully) marginal posterior distribution

for each entity (marginalised over ranker clusters).

The entity rankings in ranker cluster 1 strongly favour the Heat (entity 1) and Thunder

(2), with the Bulls (10) as the 3rd most preferred team. Ranker cluster 2 also favours

the Heat but differs in their preferences for second and third positions – here being the
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Figure 5.9: NBA dataset: Dendrograms showing the entity cluster structure within ranker clus-
ters 1 and 2 (left and right respectively) conditional on two ranker clusters.
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Ranker cluster 1 Ranker cluster 2 Aggregate
Rank Entity Mean (SD) Entity Mean (SD) Entity Mean (SD)

1 1 5.63 (2.17) 1 3.18 (1.73) 1 Heat 4.35 (1.38)
2 2 5.22 (2.38) 6 3.03 (1.77) 2 Thunder 2.61 (1.20)
3 10 1.48 (1.24) 4 2.23 (1.73) 6 Lakers 1.99 (0.95)
4 6 0.92 (0.54) 8 0.20 (0.16) 4 Celtics 1.52 (0.92)
5 9 0.86 (0.54) 10 0.20 (0.16) 10 Bulls 0.81 (0.57)
6 4 0.75 (0.44) 9 0.19 (0.16) 9 Mavericks 0.52 (0.26)
7 3 0.74 (0.43) 3 0.19 (0.15) 3 Spurs 0.46 (0.22)
8 5 0.53 (0.36) 18 0.19 (0.15) 5 Clippers 0.28 (0.17)
9 11 0.32 (0.23) 11 0.18 (0.15) 11 Knicks 0.26 (0.13)
10 12 0.20 (0.16) 20 0.18 (0.14) 8 76ers 0.13 (0.09)
11 7 0.05 (0.04) 2 0.17 (0.15) 18 Rockets 0.12 (0.08)
12 13 0.05 (0.04) 26 0.15 (0.13) 12 Grizzlies 0.12 (0.08)
13 14 0.05 (0.04) 14 0.12 (0.12) 20 Suns 0.10 (0.08)
14 17 0.05 (0.03) 27 0.10 (0.10) 14 Magic 0.09 (0.07)
15 8 0.04 (0.03) 15 0.09 (0.10) 26 Kings 0.08 (0.07)
16 15 0.04 (0.03) 29 0.07 (0.08) 15 Hawks 0.07 (0.06)
17 18 0.03 (0.02) 23 0.07 (0.08) 13 Nuggets 0.07 (0.05)
18 19 0.02 (0.02) 13 0.07 (0.08) 7 Pacers 0.06 (0.04)
19 20 0.00 (0.00) 22 0.06 (0.07) 27 Wizards 0.05 (0.06)
20 22 0.00 (0.00) 25 0.06 (0.07) 17 TBlazers 0.05 (0.03)
21 21 0.00 (0.00) 21 0.05 (0.06) 23 Twolves 0.04 (0.05)
22 23 0.00 (0.00) 7 0.05 (0.06) 29 Cavaliers 0.04 (0.05)
23 25 0.00 (0.00) 19 0.05 (0.06) 19 Bucks 0.04 (0.04)
24 24 0.00 (0.00) 30 0.05 (0.06) 22 Warriors 0.04 (0.04)
25 16 0.00 (0.00) 28 0.05 (0.05) 25 Pistons 0.04 (0.04)
26 26 0.00 (0.00) 16 0.04 (0.04) 21 Nets 0.03 (0.04)
27 27 0.00 (0.00) 24 0.04 (0.05) 30 Bobcats 0.03 (0.03)
28 28 0.00 (0.00) 5 0.04 (0.04) 28 Raptors 0.03 (0.03)
29 29 0.00 (0.00) 17 0.04 (0.04) 16 Jazz 0.03 (0.03)
30 30 0.00 (0.00) 12 0.04 (0.04) 24 Hornets 0.03 (0.03)

MAP: 24 MAP: 67

Table 5.3: NBA analysis: Posterior preference orderings within ranker clusters 1 and 2 (conditional
on two ranker clusters) and the overall/aggregate ranking, with mean (and standard deviation)
of their skill parameters. The horizontal lines indicate the MAP entity clustering within ranker
clusters. The numbers at the bottom are the number of occurrences in which the MAP clustering
was observed (out of 8038 iterations with two rankers clusters).

Lakers (6) and Celtics (4). There are many differences in preference orderings between

the ranker clusters, for example, the Thunder and Bulls appear in positions 11 and 5 in

ranker cluster 2.

The analysis given in Deng et al. (2014) looks at the so-called “relevant entities”, defined

to be those entities within the top–16, and concludes that these are {1, 2, . . . , 15, 18}.
The overall aggregate ranking reported under our WAND model gives the top–16 as

{1, 2, . . . , 6, 8, . . . , 12, 14, 15, 18, 20, 26}; see Table 5.3. Perhaps surprisingly, despite the
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Figure 5.10: The probability P16 that each entity is in the top–16 under the WAND (×) model, and
the probabilities that each entity is a relevant entity under BARD (·). The vertical line separates
out the teams that actually reached the top–16 playoffs.

BARD analysis assuming only a single ranker cluster, there is considerable overlap be-

tween the WAND and BARD top–16 lists – the differences being that entities 20 and 26

feature in our list whereas entities 7 and 13 are omitted, with entities 7 and 13 just missing

out from our top–16 and appearing in positions 18 and 17. However, this can be explained

by the WAND overall aggregate ranking being formed by a consensus between the very

discriminating ranker cluster 1 and the much less discriminating ranker cluster 2.

If we now compare the BARD top–16 with the rankings in the WAND ranker clusters,

we see that the entity rankings in ranker cluster 1 are consistent with the BARD results,

with the only differences being that entity 18 is ranked 17th and entity 17 moves into

the top–16. The entity rankings in ranker cluster 2 are much less consistent with the

BARD results, and this is partially explained by the larger uncertainty on entity positions

within this cluster. The closeness of the entity posterior means (in ranker cluster 2) helps

to explain this level of rank uncertainty as these rankers clearly struggle to distinguish

between entities.

The BARD analysis also reports a probability for each entity being a relevant entity which

is similar to the probability P16 that each entity is in the top–16 under the WAND model.

The values for these probabilities under both BARD and WAND models are shown in

Figure 5.10; the vertical dashed line separates entities 1–16 from the remainder, that is,

separates the teams that actually reached the top–16 playoffs that season from the others.

It is interesting to see that the WAND model places much more uncertainty on many

top–16 teams than under BARD, in the sense that their P16 values are smaller – BARD

values are essentially zero or one.
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5.2.1 Prior sensitivity analysis

In Section 5.2 we used the (self declared) ranker abilities to form a relatively “informative”

prior on the ranker weights wi. In general this information is unlikely to be available to

the analyst and so here we look at the sensitivity of the posterior distribution to changes

in the prior probability that a ranker is informative. From our experience using WAND

we have found that, in a scenario where there is little information regarding the ranker

abilities, it is best to make conservative choices of pi a priori. We consider an alternative

choice to the “staggered” pi used previously and let pi = 0.5 for all i so that each ranker

is equally likely to be informative/uninformative and compare the posterior under each

analysis.

Generally, we found that the posterior distribution is fairly robust to the choice of pi a

priori which is perhaps not surprising given what we have seen in the previous simulation

studies and (other) real data analysis. As before, it came as no surprise that the aspect of

the posterior distribution most sensitive to changes in the pi was their posterior equivalents

Pr(wi = 1|D); see Figure 5.11 (right column). Unsurprisingly the largest discrepancies are

for those rankers whose prior pi has been increased the most (rankers 19–25 and 26–34).

We note however that the rankers who obtain Pr(wi = 1|D) < 0.25 are similar under

both analyses with only rankers 31 and 33 no longer under this threshold for the pi = 0.5

analysis (note Pr(w31 = 1|D) = 0.26). The dendrograms of the ranker clustering structure

are similar for each prior choice and clearly indicate that there are two groups of rankers.

Also the allocation of rankers to clusters is similar in each case; see Figure 5.11 (left

column). This is further supported by the marginal posterior distribution of the number

of ranker groups which shows that these data have clearly been informative and suggest

2 ranker groups under both prior choices; see Figure 5.12 (left). Interestingly, conditional

on there being two ranker clusters, the marginal posterior of the number of entity clusters

N e
s (within each ranker cluster s = 1, 2) suggests there are slightly more entity clusters

within ranker group 2 under the pi = 0.5 analysis; see Figure 5.12 (right). This is perhaps

an artifact of additional information being available within this cluster as Pr(wi = 1|D)

has increased for some of the rankers within this group. The dendrograms of the entity

clustering structure in ranker group 1 are similar in each case; see Figure 5.13 (left column).

Although the corresponding dendrograms of the entity clustering for ranker group 2 may

appear to be slightly different for each analysis upon closer inspection it becomes clear

that only the Magic and the Wizards have changed association from the right hand group

to the central group for the pi = 0.5 analysis.
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Figure 5.11: NBA dataset: Dendrogram (left) showing the clustering structure of rankers and
highlighting those rankers with Pr(wi = 1|D) < 0.25. Plot (right) of the posterior probabilities
Pr(wi = 1|D) for each ranker, with vertical lines separating the self-certified groups. The top row
shows the results for the “staggered” choice of pi and the bottom row shows the corresponding
results when pi = 0.5 for all rankers.
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Figure 5.12: NBA dataset: Prior and marginal posterior densities for the number of rankers clusters
(left plot) and the number of entity clusters within each ranker cluster, conditional on two ranker
clusters, (right plot) for “staggered” choice of pi and pi = 0.5.
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Figure 5.13: NBA dataset: Dendrograms showing the entity cluster structure within ranker clus-
ters 1 and 2 (left and right respectively) conditional on two ranker clusters for “staggered” choice
of pi and pi = 0.5, top and bottom respectively.

5.3 Summary

In this chapter we fitted the WAND model to two real datasets that have been previously

analysed in the literature. In general we found that the inferences under the WAND

model were similar to those obtained under other models. However, the richness of the

information within the posterior distribution (under WAND) allows us to infer additional

information about the structure between both ranker and entity groups. Our analysis

of the NBA data also revealed strong signs of heterogeneity between the rankers’ beliefs

about the entities. It follows that the BARD model may not be well suited to these data

given the underlying (ranker) homogeneity assumption.

In the next chapter we consider relaxing the assumption of an explicit ranking process by

appealing to the Extended Plackett–Luce model (Mollica and Tardella, 2014).
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Chapter 6

The Extended Plackett–Luce

model

6.1 Introduction

In this chapter we revert to considering homogeneous ranked data and consider the Ex-

tended Plackett–Luce model proposed by Mollica and Tardella (2014). This model is an

extension to the standard Plackett–Luce model which relaxes the a priori assumption of

an explicit ranking process. Recall that the standard Plackett–Luce model (and also the

Weighted Plackett–Luce model) assumes that each ranker forms their ranking using the

forward ranking process; see Section 2.2. Here each ranker forms their ranking by first

allocating their most preferred entity, then their second most preferred entity and so on

until their least preferred entity is allocated last. This is a rather strong assumption. It

is easy to imagine a scenario where an individual ranker might assign entities to positions

in an alternative way. For example, it is quite plausible that rankers may find it easier to

identify their most and least preferred entities first rather than those entities they place in

the middle positions of their ranking. In such a scenario rankers might form their ranking

by first assigning their most and then least preferred entities to a rank before completing

their ranking (by filling out the middle positions) through a process of elimination using

the remaining (unallocated) entities, that is, they use a different ranking process. The

effect of the (assumed) underlying ranking process is somewhat unknown with, to the

best of our knowledge, only the standard (forward ranking) Plackett–Luce model and the

(backward ranking) Reverse Plackett–Luce model receiving significant attention within

the literature. The Extended Plackett–Luce model allows the underlying ranking process

to be further explored as it instead allows for all possible ranking processes and allows the

data to inform us which is most plausible.
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The remainder of this chapter is outlined as follows. We begin with a discussion of the

Extended Plackett–Luce model and describe the associated data generating process. In

Section 6.2.2 we consider the identifiability of the ranking process and provide some in-

sight as to where the information about the ranking process is contained within the data.

The remaining sections focus on inference for the Extended Plackett–Luce model and

we consider both maximum likelihood and Bayesian approaches with efficient inference

algorithms presented in both cases. Throughout this chapter we perform several simula-

tion studies to demonstrate how insightful inferences can be obtained using the Extended

Plackett–Luce model.

6.2 The Extended Plackett–Luce model

Mollica and Tardella (2014) propose the Extended Plackett–Luce (EPL) model which

allows the a priori assumption of an implicit ranking process to be relaxed. It follows

that for this model we can learn about both the (possibly unobserved) underlying ranking

process and the parameters of the entities. Before we describe the Extended Plackett–Luce

model it is natural to recast the underlying ranking process in terms of a “choice order”

where the choice order is the order in which rankers assign entities to positions/ranks. For

example, a choice order of (1,K, 2, 3, . . . ,K−1) corresponds to the ranking process where

a ranker first assigns their most preferred entity, then their least preferred entity before

then assigning the remaining entities in rank order from 2nd down. In other words, the

rankers choose their most and least preferred entities and then assign the remaining entities

using the forward ranking process. Note that the choice order is just a permutation of the

ranks 1 to K. The EPL model is defined through the introduction of an additional (free)

parameter to represent the choice order within the Plackett–Luce model. Suppose there

are K entities and let σ denote the (possibly unknown) choice order then the probability

of a particular ranking under the Extended Plackett–Luce model is

Pr(Xi = xi|λ∗,σ) =

K∏
j=1

λ∗xiσj∑K
m=j λ

∗
xiσm

(6.1)

where λ∗ ∈ RK>0 are the entity parameters and σ ∈ SK , the set of all possible permu-

tations of the ranks 1 to K. Note that, to maintain notational consistency, we have

adopted an alternative representation to that of Mollica and Tardella (2014): here xi =

(xi1, xi2, . . . , xiK) represents the preference of the entities reported by ranker i and so, as

before, entity xi1 is their most preferred entity, xi2 is the second most preferred entity and

so on. In what follows, the rankings xi are often referred to as preference orderings to

make it clear that we are considering the preference of the entities expressed by ranker i
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irrespective of the choice order. Further, under the Extended Plackett–Luce model the

parameters have a different interpretation from those under the standard (forward rank-

ing) Plackett–Luce model (discussed below) and so we let λ∗ be the parameters of the

entities to make this distinction clear. We also note that the Extended Plackett–Luce

model is only well defined for complete rankings (Mollica and Tardella, 2014) and so each

ranker must provide a preference ordering of all the entities. Hence for the Extended

Plackett–Luce model we require ni = K for i = 1, . . . , n.

The form of the Extended Plackett–Luce probability is naturally quite similar to that

of the standard Plackett–Luce probability. Indeed, the standard and reverse Plackett–

Luce models are special cases of the EPL. The standard (forward ranking) Plackett–Luce

model is recovered from the EPL model when σ is the identity permutation, that is, when

σj = j for j = 1, . . . ,K. Also, the (backward ranking) Reverse Plackett–Luce model is

obtained when σ = (K,K − 1, . . . , 1). Given this it is perhaps now clear that although σ

is nominally a model parameter, each unique σ ∈ SK defines a different Plackett–Luce

model.

A key aspect of analysing ranked data using a Plackett–Luce model is the interpretation

of the parameters λ∗. Although perhaps not obvious, for the Plackett–Luce model the

interpretation of the parameters depends on the underlying ranking process. It follows that

for the Extended Plackett–Luce model, the interpretation of the parameters depends on

the choice order parameter σ. This becomes clear if we consider an example conditional on

known (fixed) choice orders: suppose we have two entities (labelled i, j) with parameters λ∗i
and λ∗j where λ∗i > λ∗j . For the standard (forward ranking) Plackett–Luce model (σ =

(1, 2, . . . ,K)) the interpretation is that entity i is preferred to entity j. However, for the

(backward ranking) Reverse Plackett–Luce model (σ = (K,K−1, . . . , 1)) these parameters

are interpreted as entity j being preferred to entity i. It follows that the preference order of

entities must be read with respect to the choice order. In general, the entity with the largest

parameter is the entity most likely to be ranked in position σ1. Also, conditional on an

entity being assigned to rank σ1, the entity with the largest parameter of those remaining

is that most likely to be assigned rank σ2. Although for the forward and backward ranking

processes this leads to a natural interpretation of the skill parameters, the interpretation

for other ranking processes can be tricky. For example, again suppose that λ∗i > λ∗j , and

now consider the choice order to be σ = (5, 3, 2, 1, 4). It follows that, for this choice order,

entity i is more likely to be ranked fifth than entity j. Further, if another entity ` 6= i, j, is

assigned rank 5 then entity i is preferred for rank 3 (σ2) over entity j. This interpretation

is not exactly intuitive. Given the Extended Plackett–Luce model considers all σ ∈ SK it

would be helpful if we could devise a method for consistently interpreting the preference

of entities (via the parameters) irrespective of the choice order.
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In what follows we discuss how the probability for the EPL model can be rewritten in

such a way so that the parameters maintain a preference order interpretation irrespective

of the choice order. Recall that the probability of a particular preference ordering xi for

the EPL model is

Pr(Xi = xi|λ∗,σ) =
K∏
j=1

λ∗xiσj∑K
m=j λ

∗
xiσm

.

Note that the numerator of the jth product λ∗xiσj is the parameter for the entity in rank σj

of preference order i. However, to maintain the preference ordering interpretation of the

parameters we require that the numerator of the jth product corresponds to the parameter

for the entity in rank j as opposed to that in rank σj (as above). If we let a “permuted

ranking” be x∗ = x ◦ σ, that is, x∗ij = xiσj for j = 1, . . . ,K then it follows that the

probability of a preference ordering x under the EPL model can be written in terms of

the permuted ranking x∗ as

Pr(Xi = xi|λ∗,σ) =
K∏
j=1

λ∗xiσj∑K
m=j λ

∗
xiσm

=

K∏
j=1

λ∗x∗ij∑K
m=j λ

∗
x∗im

, (6.2)

and this is simply the standard (forward ranking) Plackett–Luce probability defined over

the permuted rankings. Indeed we have already seen a special case of this result in Chap-

ter 2 when we noted that the Reverse Plackett–Luce model is equivalent to the forward

ranking PL model applied to rankings which have been permuted in to reverse order. Note

however that under this representation the parameters λ∗ must still be interpreted with

respect to the choice order as we are analysing the permuted rankings and so the entity in

rank 1 of the permuted rankings (the entity most likely to be chosen first) is that which

has preference σ1. It follows that although the probability has been rewritten the skill

parameter λ∗x∗ij is still the parameter for the entity in position σj of the preference ordering.

The consequence of this is that, for this model, the largest parameter will correspond to

the entity which has preference σ1. Ideally the entity with the largest parameter would

be that which has preference 1 (as in the standard Plackett–Luce model). This can be

achieved by considering the inverse permutation σ−1 which is defined so that

σ ◦ σ−1 = σ−1 ◦ σ = σI

where σI is the identity permutation, that is, σI = (1, 2, . . . ,K). It is therefore clear

that σ−1σ1 = 1 by definition. Now let λ = (λ1, . . . , λK) with λk = λ∗σk for k = 1, . . . ,K be a

collection of skill parameters then, by construction, we have λ∗k = λσ−1
k

for k = 1, . . . ,K.
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It follows that λ∗x∗ij = λσ−1
x∗
ij

and so we can write the probability of a preference ordering

for the Extended Plackett–Luce model in terms of the skill parameters λ as

Pr(Xi = xi|λ,σ) =

K∏
j=1

λ∗x∗ij∑K
m=j λ

∗
x∗im

=
K∏
j=1

λσ−1
x∗
ij∑K

m=j λσ−1
x∗
im

=
K∏
j=1

λσ−1
xiσj∑K

m=j λσ−1
xiσm

, (6.3)

so that the largest skill parameter will be for the entity which has preference 1, as desired.

Hence by considering the skill parameters λ (as opposed to λ∗) and using formulation (6.3)

we maintain the preference order interpretation of the skill parameters, that is, λi > λj

indicates that entity i is preferred to entity j (irrespective of the choice order). That

said, we make it clear that, although λk represents the preference of entity k, our usual

intuition about the probabilities they specify over the ranking no longer holds; λk no longer

represents the probability that entity k is given rank 1, unless σ1 = 1.

6.2.1 Simulating data from the Extended Plackett–Luce model

The method for generating data from the Extended Plackett–Luce model is similar to that

for the standard (forward ranking) Plackett–Luce model. However there is a subtle but

yet important difference. For the standard PL model, the entity which is chosen first is

also that which is the most preferred. However, for the Extended Plackett–Luce model

this is no longer the case and the entity that is chosen first is instead considered to have

rank σ1. Recall that x∗ = x ◦ σ denotes a permuted ranking where x is the correspond-

ing preference ordering and σ is the choice order. Now noting that, by construction, a

permuted ranking x∗ is an ordering of entities according to the order in which they were

chosen (and not the preference of the entities) it follows that we can simulate these order-

ings from the standard PL model as they follow the forward ranking process by definition.

Then given a (simulated) permuted ranking x∗ we can obtain the corresponding preference

order trivially by recalling that x = x∗ ◦ σ−1.
When simulating data consistent with the Extended Plackett–Luce model additional at-

tention must be placed on the choice of the skill parameters. Although λk still corresponds

to the strength/ability of entity k, our usual intuition about the probabilities they specify

over the ranking no longer holds. Recall that for the standard Plackett–Luce model the

probability that entity k is given rank 1 is proportional to λk. Now given that the EPL
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model is actually the standard Plackett–Luce model defined over the permuted rankings

with parameters λ∗ it follows that the parameter λ∗k is proportional to the probability that

entity k is ranked first within x∗, or equivalently, the probability that entity k is ranked

in position σ1 of the preference ordering x is Pr(xσ1 = k) ∝ λ∗k for k = 1, . . . ,K.

A collectionX∗ = {x∗i }ni=1 of n permuted rankings using permutation σ are generated from

the standard (forward ranking) Plackett–Luce data generating mechanism conditional on

the parameters λ∗ as follows.

For i = 1, . . . , n,

1. Sample νij
indep∼ Exp(λ∗ij) for j = 1, . . . ,K.

2. Set x∗ij = argmin
q∈Sij

νiq where Sij = K \ {x∗i1, . . . , x∗ij−1} for j = 1, . . . ,K.

The preference orderings are then obtained by letting xi = x∗i ◦ σ−1 for i = 1, . . . , n.

Example

To provide additional clarity we now consider a brief example which shows how the data

generating mechanism works in practice. Suppose we have K = 5 entities and let K =

{a, b, c, d, e} denote the collection of all entities. Further, let λ = (λa, λb, λc, λd, λe) =

(10, 8, 6, 4, 2) and so entity a is most preferred, entity b is second most preferred and so

on. Note that, for the standard (forward ranking) Plackett–Luce model, σ = (1, 2, 3, 4, 5),

and with this choice of skill parameters, the optimal ranking that maximises the standard

PL probability is x̂1 = (a, b, c, d, e). Now let σ = (5, 3, 2, 1, 4) so that rankers first choose

their least preferred entity, then choose their 3rd, 2nd, 1st and 4th most preferred entities

respectively. Recall that λ∗k = λσ−1
k

for k = 1, . . . ,K and so λ∗ = (4, 6, 8, 2, 10) given σ−1 =

(4, 3, 2, 5, 1). It follows that, with respect to λ∗, entity e is the “strongest” entity and

therefore the most likely to be selected first. Therefore, given λ∗, the optimal permuted

ranking is x̂∗ = (e, c, b, a, d) and so the corresponding optimal preference order is x̂2 =

x̂∗ ◦ σ−1 = (a, b, c, d, e), that is, the optimal ranking is the same as that for the standard

forward ranking process given λ, which seems sensible. The permuted rankings x∗i are then

generated by repeatedly performing Steps 1 and 2 above and the corresponding preference

orderings are given by xi = x∗i ◦ σ−1.

6.2.2 Identifiability of the ranking process

In this section we discuss the identifiability of the ranking process. Indeed, it is perhaps not

obvious that the data contain any information to identify the choice order parameter σ.

Again suppose that we have K = 5 entities with K = {a, b, c, d, e} and skill parameter

166



Chapter 6. The Extended Plackett–Luce model

vector λ = (λa, λb, λc, λd, λe). If we now consider a single preference ordering x1 =

(1, 2, 3, 4, 5) ≡ (a, b, c, d, e) and two different choice orderings σ1 = (1, . . . ,K) and σ2 =

(K, . . . , 1) then the probability of the preference ordering for each choice order is

Pr(x1|λ,σ1) =
λa

λa + λb + λc + λd + λe
× λb
λb + λc + λd + λe

× λc
λc + λd + λe

× λd
λd + λe

× λe
λe
.

Pr(x1|λ,σ2) =
λa

λa + λb + λc + λd + λe
× λb
λb + λc + λd + λe

× λc
λc + λd + λe

× λd
λd + λe

× λe
λe
.

Therefore, in this scenario, there is clearly no information in the single preference order-

ing x1 with which to identify the choice order as the probability of x1 is the same for

all λ ∈ RK>0 under both choice orders. However, let us instead consider the likelihood of

several preference orders. Given that the preference orders are conditionally independent,

the likelihood under the Extended Plackett–Luce model is

π(D|λ,σ) =
n∏
i=1

Pr(xi|λ,σ)

=
n∏
i=1

K∏
j=1

λσ−1
xiσj∑K

m=j λσ−1
xiσm

(6.4)

where D denotes a collection of preference orders {xi}ni=1. Now suppose that n = 2 and the

additional preference order is x2 = (3, 2, 1, 4, 5) ≡ (c, b, a, d, e) then from (6.4) it follows

that the probability of D = {x1,x2} under the choice order σ1 is

π(D|λ,σ1) =
λa

λa + λb + λc + λd + λe
× λb
λb + λc + λd + λe

× λc
λc + λd + λe

× λd
λd + λe

× λe
λe

× λc
λc + λb + λa + λd + λe

× λb
λb + λa + λd + λe

× λa
λa + λd + λe

× λd
λd + λe

× λe
λe
,

and under the choice order σ2 is

π(D|λ,σ2) =
λa

λa + λb + λc + λd + λe
× λb
λb + λc + λd + λe

× λc
λc + λd + λe

× λd
λd + λe

× λe
λe

× λa
λa + λb + λe + λd + λc

× λb
λb + λe + λd + λc

× λe
λe + λd + λc

× λd
λd + λc

× λc
λc
.

It is clear that the two probabilities are only equal when λa = λc = λe and so

π(D|λ,σ1) = π(D|λ,σ2) ⇐⇒ λa = λc = λe.

As more (unique) preference orderings are introduced into the likelihood it is clear that

additional constraints on the skill parameters will be required in order for the likelihood
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Entity
Rank a b c d e

1 0.33 0.27 0.20 0.13 0.07
2 0.28 0.26 0.22 0.16 0.08
3 0.21 0.23 0.24 0.20 0.12
4 0.13 0.17 0.22 0.28 0.20
5 0.04 0.07 0.12 0.23 0.54

Table 6.1: Probabilities that each entity is assigned to a specific rank for the standard Plackett–
Luce model with λ = (5, 4, 3, 2, 1).

to be the same under different choice orders. Indeed for sufficiently large n we have that

π(D|λ,σi) = π(D|λ,σj) ⇐⇒ λk = λ

for i 6= j and k = 1, . . . ,K. Mollica and Tardella (2014) provide a proof to this effect

which shows that each choice order σi ∈ SK defines a unique distribution over rankings. It

follows that the choice order is identifiable given a reasonably large number of rankings n.

Unfortunately providing theoretical justification for a sufficient value of n is difficult as

this will not only depend on the number of entities K but also on the positions of entities

within the preference orderings. We suppose however that in the scenario where n � K

the choice order is likely to be identifiable.

We now take this opportunity to provide some insight into where the information about

the choice order is contained within the data (preference orderings). It turns out that it is

the variation within the positions of the preference orderings that allows us to determine

the choice order. To see this it is useful to first consider the probabilities of each entity

being assigned to a specific rank for the standard (forward ranking) Plackett–Luce model.

Suppose we have K = 5 entities with skill parameters λ = (5, 4, 3, 2, 1). Again we denote

the complete set of entities as K = {a, b, c, d, e} and so entities a and e are the most and

least preferred entities respectively. We can describe the variation within the preference

orderings by calculating the probabilities that each entity is assigned to a specific rank; see

Table 6.1. Note that Table 6.1 is not symmetric and so the probability of the most preferred

entity being ranked last is not the same as the probability of the least preferred entity

being ranked first. Interestingly we also see that the least preferred entity (e) is ranked

last the majority of the time (probability 0.54). In contrast, the most preferred entity (a)

is only ranked first a third of the time. This suggests that there is more uncertainty about

which entities are assigned to the ranks at the beginning of the preference ordering in

comparison to the latter ranks with this choice of λ. In other words, the weaker entities

are often clearly identified and appear near the bottom of the preference orderings whereas
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Entity
Rank a b c d e

≤ 1 0.33 0.27 0.20 0.13 0.07
≤ 2 0.61 0.53 0.42 0.29 0.15
≤ 3 0.82 0.76 0.46 0.49 0.27
≤ 4 0.95 0.93 0.88 0.77 0.47
≤ 5 1.00 1.00 1.00 1.00 1.00

Entity
Rank a b c d e

≥ 1 1.00 1.00 1.00 1.00 1.00
≥ 2 0.66 0.73 0.80 0.87 0.94
≥ 3 0.38 0.47 0.58 0.71 0.86
≥ 4 0.17 0.24 0.34 0.51 0.74
≥ 5 0.04 0.07 0.12 0.23 0.54

Table 6.2: Cumulative probabilities of each entity being ranked no lower than (left) and no higher
than (right) or equal to each position. Entry i, j corresponds to Pr(j ∈ x1:i) (left) and Pr(j ∈ xi:K)
(right).

the stronger entities are more susceptible to appearing lower than they perhaps should in

the preference orderings. What we are actually seeing here is an artifact of the forward

ranking process. Recall that the forward ranking process dictates that a ranker first assigns

an entity to rank 1 and so they choose their most preferred entity from the full set K,

that is, from the K entities that are available for selection when they make this choice.

The ranker then chooses an entity for rank 2 where this choice is made conditional on the

entity they placed in rank 1 no longer being available for selection and so, at this stage

of the ranking process, there are only K − 1 possible entities from which to choose. It

is clear that at each step in the ranking process there is one fewer entity to choose from

than in the previous step. It follows that when a ranker is allocating their least preferred

entities, most of the other entities will have already been allocated and so there are only a

few to choose from and this results in the reduced variation on which entities are assigned

to these ranks. The level of variation within each rank is further highlighted in Table 6.2

which shows the cumulative probabilities of each entity being ranked no lower than (left)

and no higher than (right) each rank.

We now look at the probabilities that entities are assigned a specific rank for the Extended

Plackett–Luce model. Suppose the choice order is σ = (5, 3, 2, 1, 4) and as before let the

skill parameters be λ = (5, 4, 3, 2, 1), that is, we keep the preference of entities as before,

with entity a being the most preferred and entity e the least preferred. Table 6.3 (top left)

shows the probabilities that each entity is assigned to a specific rank (within the preference

ordering). By comparing these probabilities to those from the standard (forward ranking)

Plackett–Luce model in Table 6.1 it is clear that the distribution (of entities) over the

ranks is not the same for the Extended Plackett–Luce model, that is, the EPL model

defines a different ranking distribution. However, as we shall now see, these distributions

are inherently related. Recall that when outlining the data generating mechanism for

the EPL model we noted that the skill parameters λ are no longer proportional to the

probability that an entity is ranked first within the preference ordering and instead the
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Entity
Rank a b c d e

1 0.28 0.22 0.17 0.20 0.13
2 0.20 0.24 0.23 0.12 0.21
3 0.16 0.22 0.26 0.08 0.28
4 0.23 0.12 0.07 0.54 0.04
5 0.13 0.20 0.27 0.07 0.33

Entity
Rank a b c d e

σ1 0.13 0.20 0.27 0.07 0.33
σ2 0.16 0.22 0.26 0.08 0.28
σ3 0.20 0.24 0.23 0.12 0.21
σ4 0.28 0.22 0.17 0.20 0.13
σ5 0.23 0.12 0.07 0.54 0.04

Entity
Rank e c b a d

σ1 0.33 0.27 0.20 0.13 0.07
σ2 0.28 0.26 0.22 0.16 0.08
σ3 0.21 0.23 0.24 0.20 0.12
σ4 0.13 0.17 0.22 0.28 0.20
σ5 0.04 0.07 0.12 0.23 0.54

Table 6.3: Probabilities of each entity being ranked within each position. Entry i, j corresponds
to Pr(xi = j), that is, the probability entity j receives rank i.

“original” parameters λ∗k are proportional to the probability that entity k is ranked in

position σ1. Given this it seems sensible to instead consider the probabilities that each

entity is assigned rank σi. Table 6.3 (top right) shows these probabilities and we note these

are obtained by simply applying the permutation σ to the rows of the table in Table 6.3

(top left). Note that these probabilities are actually the probabilities that each entity is

ranked first within the permuted rankings x∗. Now by recalling that the choice order is

σ = (5, 3, 2, 1, 4) it follows that the entity most likely to be first in x∗ is that which is

the fifth (σ1th) preferred entity. If we therefore permute the columns of the table so that,

with respect to x∗, the entities are the most to least preferred from left to right then

the probabilities for the Extended Plackett–Luce model become the same as those for the

standard (forward ranking) Plackett–Luce model; see Table 6.3 (bottom) and Table 6.1. It

is therefore clear that the data contain information in which to identity the choice order σ.

In the following section we examine how informative the likelihood function is about the

choice order σ before we then consider Bayesian analysis in Section 6.4.

6.3 Likelihood information about the choice order

Before we consider a fully Bayesian analysis of the Extended Plackett–Luce model, we

examine how informative the likelihood function is about the choice order σ. In this

section we verify that the choice order is not only identifiable but the likelihood function

can also be quite informative. We examine this issue by looking at the maximised likelihood
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function as a function of the choice order σ. The likelihood is maximised at the maximum

likelihood estimate λ̂(σ) and this estimate will depend on the choice order.

Recall from Section 2.2.2 that the standard Plackett–Luce probability is invariant to scalar

multiplication of the skill parameters. Also, we saw in Section 6.2 that the Extended

Plackett–Luce model is simply the standard Plackett–Luce model evaluated over the per-

muted rankings x∗ = x ◦ σ (with parameters λ∗). Thus the EPL probability is also

invariant to scalar multiplication of the parameters λ∗ (and therefore also the skill param-

eters λ), that is, Pr(D|λ,σ) = Pr(D|Cλ,σ) for any C ∈ R>0 and so λ̂ cannot be identified.

However, this issue is resolved by constraining the skill parameters so that
∑

k λk = 1,

that is, placing the skill parameter vector λ on the (K − 1)-dimensional simplex .

We now examine the information in the likelihood function by looking at the max-

imised log-likelihood for a given choice order σ. Hunter (2004) proposed a Minorisa-

tion/Maximisation (MM) algorithm which enables the maximum likelihood estimate of

the parameters of the standard Plackett–Luce model to be obtained. Here, by again not-

ing that the Extended Plackett–Luce model is simply the standard Plackett–Luce model

given the permuted rankings x∗ = x ◦ σ and with parameters λ∗, it follows that we can

obtain the MLE λ̂
∗

given a fixed choice order σ by applying the standard MM algorithm

to the permuted preference orderings. Note that, if desired, the MLE λ̂ of the skill pa-

rameters is straightforward to obtain with λ̂k = λ̂∗σk for k = 1, . . . ,K. It follows that, for

any σ ∈ Sk we can let D = {x∗i }ni=1 be the collection of permuted rankings and use the

MM algorithm to obtain λ̂
∗

so that the standard Plackett–Luce likelihood

πPL(D|λ∗) =
n∏
i=1

K∏
j=1

λ∗x∗ij∑K
m=j λ

∗
x∗im

(6.5)

is maximised. We now describe the MM algorithm which enables us to obtain the MLE λ̂
∗

of the parameters given a fixed choice order.

6.3.1 MM Algorithm

The collection of skill parameters λ̂ which maximise the Extended Plackett–Luce likeli-

hood for a given choice order σ can be obtained from the parameters λ̂
∗

that maximise

the standard (forward ranking) Plackett–Luce model given a collection of permuted rank-

ings X∗ = {xi ◦ σ}ni=1. Specifically λ̂k = λ̂∗σk for k = 1, . . . ,K where λ̂
∗

is obtained as

follows.

1. Initialise: Let t = 0 and λ∗(0) = (λ
∗(0)
1 , λ

∗(0)
2 , . . . , λ

∗(0)
K )
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2. Let λ
∗(t)
k = wk

n∑
i=1

K∑
j=1

δij(k)

 K∑
m=j

λ
∗(t−1)
x∗im

−1 for k = 1, . . . ,K.

3. Rescale:

• calculate Σ(t) =
K∑
k=1

λ
∗(t)
k .

• let λ
∗(t)
k → λ

∗(t)
k /Σ(t) for k = 1, . . . ,K.

4. Set t = t+ 1 and return to Step 2.

Here the quantity wk =
∑n

i=1

∑K
k=1 I(x∗ij = k) is the number of times the parame-

ter λ∗k represents an entity in the collection of permuted rankings and δij(k) = I(k ∈
{x∗ij , . . . , x∗ini}) is an indicator variable over the event that entity k appears no higher

than position j in the permuted ranking i. Note that wk = n given we only consider

complete rankings for the Extended Plackett–Luce model.

The number of iterations to perform is an important issue to consider when implementing

the above MM algorithm. Hunter (2004) shows that in the limit as t → ∞ the (true)

MLE λ̂
∗

is obtained almost surely. Of course, in practice we must consider only a finite

number of iterations so that λ∗(t) is a reasonable approximation to the (true) MLE λ̂
∗
.

Choosing a finite number of iterations to perform a priori is difficult as there is no guar-

antee that the algorithm will have converged by this point. To avoid making this choice

it is sensible to instead implement a stopping rule. A stopping rule is a (mathematical)

logical statement which is evaluated at each iteration and the algorithm proceeds until

this logical statement is satisfied. Although there is a wealth of possible stopping rules we

could consider, for the purpose of this thesis, we implement the straightforward stopping

rule used by Hunter (2004) and take λ∗(t) to be the MLE when the L2-norm of the change

in the value of the parameter vector is less than 10−9, that is, when

||λ∗(t) − λ∗(t−1)||2 =

√√√√ K∑
k=1

(
λ
∗(t)
k − λ∗(t−1)k

)2
< 10−9 (6.6)

is satisfied.

6.3.2 Simulation study

In this study we look at a single dataset with n = 5000 complete rankings (preference

orderings) ofK = 5 entities. We consider a large number of preference orderings so that the

MLE λ̂
∗

for each of the K! = 120 different possible choice orders is obtained after relatively
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few iterations of the MM algorithm. The preference orderings were simulated from the data

generating mechanism described in Section 6.2.1 with skill parameters λ = (5, 4, 3, 2, 1)

and choice order σ = (5, 3, 2, 1, 4). The primary focus of this study is to verify that the

choice order is identifiable and to investigate maximised values of the log-likelihood for

different choice orders. Here the actual values of the MLEs λ̂
∗

(under the different choice

orders) is not a primary concern but nevertheless these parameters must be interpreted

with respect to the choice order σ as we are working with the standard (forward ranking)

Plackett–Luce model given permuted rankings.

Recall from Section 6.3 that we can use the MM algorithm to obtain the MLE λ̂
∗
j that

maximises πPL(D = {x∗i }ni=1|λ∗) for any permutation σj , and so obtain the MLEs λ̂
∗
j

given σj for all possible permutations j = 1, . . . ,K!. Each MM algorithm is initialised

with λ∗k = λ∗ = 1/K and proceeds until the stopping rule (6.6) is satisfied. Figure 6.1

shows log π(D|λ̂j ,σj), that is, the log-likelihood of the Extended Plackett–Luce model

evaluated at the MLE of the skill parameters λ̂j for each choice order σj . Clearly the

log-likelihood is not constant and indeed the assumed choice order can have a large affect

on the overall log-likelihood. Table 6.4 shows (a subset of) the ranking of choice orders

(permutations) based on the value of the log-likelihood under the corresponding MLE for

the skill parameters. The Kendall-tau distance between each choice order and the true

permutation σ = (5, 3, 2, 1, 4) is also given. Interestingly each of the top 5 choice orders

have σ4 = 1 and σ5 = 4 and so we have clearly identified that the most preferred entity

is chosen 4th and the fourth preferred entity is chosen last. Also, perhaps surprisingly,

the reverse choice order (σ = (4, 1, 2, 3, 5)) to the one these data were simulated from

results in the ninth largest log-likelihood. By definition this permutation is the furthest in

(Kendall-tau) distance from the “true” choice order and so it is clear that local modes can

be separated by large distances within permutation space. This is a key observation and
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Figure 6.1: π(D|λ̂j ,σj): maximised log-likelihood given each choice order σj and the respective

MLE λ̂j for j = 1, . . . ,K!.
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Rank Log-likelihood Choice order Kendall-tau distance

1 -21613.95 (5,3,2,1,4) 0
2 -21689.21 (3,5,2,1,4) 1
3 -21760.05 (5,2,3,1,4) 1
4 -21914.95 (2,5,3,1,4) 2
5 -21920.27 (3,2,5,1,4) 2
...

...
...

9 -22131.35 (4,1,2,3,5) 10
...

...
...

84 -23750.71 (1,2,3,4,5) 7
...

...
...

116 -23900.67 (1,5,2,4,3) 5
117 -23904.19 (2,5,1,4,3) 4
118 -23905.65 (2,5,4,1,3) 5
119 -23912.46 (5,1,2,4,3) 4
120 -23914.28 (5,2,4,1,3) 4

Table 6.4: A subset of the ranking of choice orders (permutations) based on the value of the

log-likelihood evaluated at the corresponding MLE for the skill parameters (π(D|λ̂j ,σj)).

will play an important role when we consider a Bayesian inference scheme for the EPL

model in the following section.

We note in passing that the choice order σ = (5, 3, 2, 1, 4) from which these data were

simulated is that which gives the largest maximised log-likelihood, that is, it is also the

MLE for σ for these data. However, in general, it is problematic to determine the MLE for

σ as this requires a search over all possible (K!) choice orders, and this may be prohibitive

when K is not small.

6.4 Inference – a Bayesian approach

In this section we consider a Bayesian approach to inference as opposed to the maximum

likelihood approach taken previously. By taking a Bayesian approach we are able to

obtain the posterior distribution π(σ|D) and, as a consequence, quantify the uncertainty

on the choice order parameter in a principled manner. To the best of our knowledge,

the only current Bayesian solution is given by Mollica and Tardella (2018) but this relies

on a restricted sample space for σ. Here we aim to develop MCMC methods capable of

exploring the entire sample space. This is not straightforward given that σ ∈ SK and

so particular attention must be placed on how we can construct a Markov chain Monte

Carlo sampling scheme capable of effectively exploring this space and targeting the correct

posterior distribution.
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6.4.1 Prior specification and latent variables

Before we perform Bayesian inference we must first choose a suitable prior specification

for our model. We consider the same prior specification for the skill parameters as when

we considered the standard Plackett–Luce model in Chapter 2, that is, we let λk
indep∼

Ga(ak, 1) a priori (recall that the rate parameter is not likelihood identifiable and therefore

chosen to be 1). It follows that the prior distribution over λ is

π(λ) =
K∏
k=1

λak−1k e−λk

Γ(ak)
.

Note that here we are free to choose a unique shape parameter ak for each entity as we do

not consider entity clustering (and so there are no exchangeability constraints). However,

for the Extended Plackett–Luce model, additional attention must be placed on the choice

of ak as the ranking distribution is not solely specified by λ but also by the choice order

σ. Recall from Section 6.2.1 that the probability of entity k receiving rank σ1 in the

preference ordering is proportional to λ∗k, that is, Pr(xσ1 = k) ∝ λ∗k where λ∗k = λσ−1
k

for

k = 1, . . . ,K. It follows that specifying an informative prior for the skill parameters is

tricky unless the choice order σ is fixed and so in practice it is often useful to instead

let ak = a so that all preference orders are equally likely a priori (irrespective of the

choice order σ).

We must also choose a suitable prior distribution over the possible choice orderings. Each

choice ordering σi is an element of SK and so there are K! possible choice orderings

given K entities. It follows that the prior distribution over the choice orderings is a discrete

distribution with K! possible values. We assume that each choice order (permutation) is

equally likely a priori and so

Pr(σ = σi) =
1

K!

for i = 1, . . . ,K!. Note that, if desired, it is possible to consider a subset of all the possible

choice orderings by making an appropriate choice of prior probabilities.

Recall from Section 6.2.2 that the likelihood under the Extended Plackett–Luce model is

π(D|λ,σ) =

n∏
i=1

K∏
j=1

λσ−1
xiσj∑K

m=j λσ−1
xiσm

and so is of similar form to that of the standard Plackett–Luce model. It follows from

what we have seen previously that the form of the likelihood does not admit conjugate

Bayesian inference. The implementation of a Gibbs sampler to maintain computational

efficiency without the need for multiple tuning parameters is however highly desirable.
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To facilitate this we appeal to the same technique as for previous models, that is, use

data augmentation. A Gibbs sampling solution can be obtained using a straightforward

generalisation of the latent variables in Caron and Doucet (2012), namely

zij |D,λ,σ indep∼ Exp

 K∑
m=j

λσ−1
xiσm


for i = 1, . . . , n, j = 1, . . . ,K.

Using these latent variables, the complete data likelihood is

π(D, Z|λ,σ) = π(D|λ,σ)π(Z|D,λ,σ)

=

n∏
i=1

K∏
j=1

λσ−1
xiσj

exp

−zij
K∑
m=j

λσ−1
xiσm

 . (6.7)

Further, given our choice of prior distribution, the density of all stochastic quantities is

π(λ,D, Z,σ) = π(D|λ,σ)π(Z|D,λ,σ)π(λ)π(σ)

=

n∏
i=1

K∏
j=1

λσ−1
xiσj

exp

−zij
K∑
m=j

λσ−1
xiσm

×
K∏
k=1

λak−1k e−λk

Γ(ak)
× 1

K!
. (6.8)

6.4.2 Full conditional distributions for λ, Z

From (6.8) we can obtain the full conditional distributions of the skill parameters λ and

the latent variables Z as

• λ: For k = 1, . . . ,K,

λk| · · ·
indep∼ Ga

ak + βk, 1 +
n∑
i=1

K∑
j=1

δij(k)zij


where

βk =
n∑
i=1

K∑
j=1

I(σ−1xiσj = k) and δij(k) =
K∑
m=j

I(σ−1xiσj = k)

are the number of times λk represents an entity within the data and an indicator

variable over the event that λk represents an entity which appears in a position

no higher than j in permuted ranking i, respectively. Note that βk = n (for k =

1, . . . ,K) given we only consider complete rankings for the Extended Plackett–Luce

model.
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• Z: For i = 1, . . . , n, j = 1, . . . ,K,

zij | · · · indep∼ Exp

 K∑
m=j

λσ−1
xiσm

 .

6.4.3 Full conditional distribution for σ

The full conditional distribution for the choice order σ is also straightforward and is the

discrete distribution with probabilities

Pr(σ = σi| · · · ) ∝ π(D, Z|λ,σ = σi) Pr(σ = σi)

for i = 1, . . . ,K!. Clearly sampling from this full conditional will require K! complete

data likelihood evaluations and so a Gibbs update for σ is probably only plausible if K is

sufficiently small; perhaps not much greater than 5. Of course, the probabilities Pr(σ =

σi| · · · ) and Pr(σ = σj | · · · ) are conditionally independent for i 6= j and so could be

computed in parallel which may facilitate this approach for slightly larger values of K.

The computational burden will also increase with n due to the evaluation of π(D, Z|λ,σ =

σi). However, the complete data likelihood could also be computed in parallel (for each

choice order) as a consequence of the preference orderings being conditionally independent.

Although parallel computing can be beneficial this approach probably remains infeasible

for even a modest number of entities and so in the next section we consider an alternative

approach capable of generating posterior realisations when Gibbs sampling is infeasible.

6.4.4 Metropolis-Hastings proposals for σ

Suppose we are in a scenario where performing a Gibbs update for σ is not computation-

ally feasible. Of course, we still wish to obtain the posterior distribution π(σ,λ, Z|D) and

so we instead consider a Metropolis-Hastings update for σ which will allow us to target the

posterior distribution (in addition to the full conditionals for λ and Z from Section 6.4.2).

Given σ ∈ SK , it follows that we must construct a suitable proposal mechanism that allows

the Markov chain to efficiently explore the (discrete) space of all K! possible permutations.

From our investigation into the likelihood of the Extended Plackett–Luce model given dif-

ferent choice orders in Section 6.3.2 it is clear that π(D|λ,σ) is multi-modal. Further, local

modes can be large distances from one another within permutation space. Our proposal

mechanism must therefore be capable of making large jumps within permutation space

as only proposing small moves (in terms of distance) may result in our chain becoming

stuck in a local mode and not exploring the entire space. With this in mind our proposal

distribution q(σ†|σ) will comprise 5 alternative proposals mechanisms which occur with
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probabilities pprop = (pprop1 , . . . , pprop5 ) which are to be specified a priori. More formally

our proposal distribution is the 5 component mixture distribution

q(σ†|σ) =
5∑
i=1

ppropi qi(σ
†|σ) (6.9)

where qi(σ
†|σ) denotes the ith component. We now describe each component of the

mixture distribution in further detail.

Proposal 1 – the random swap

For our first proposal mechanism we consider a “random swap”. We sample (uniformly)

at random, and with replacement, two positions ρ1, ρ2 ∈ {1, . . . ,K} and let the proposed

choice order σ† be the current choice order σ where the elements in positions ρ1 and ρ2

have been swapped. More formally we sample two positions ρ1 and ρ2 from the discrete

distributions

Pr(ρ1 = p1) =
1

K
, for 1 ≤ p1 ≤ K

Pr(ρ2 = p2) =
1

K
, for 1 ≤ p2 ≤ K

and let

σ†ρ1 = σρ2 , σ†ρ2 = σρ1 , and σ†i = σi for i ∈ {1, . . . ,K} \ {ρ1, ρ2}.

The fact that the two positions are sampled with replacement may seem incidental however

there is good reason for this. Recall that we require our proposal mechanism to be capable

of proposing large jumps around permutation space. Clearly if we only consider swapping

two positions within σ then the number of unique proposals will be small; specifically

(KC2 + 1)� K! (including the “null swap” ρ1 = ρ2). Therefore to increase the number of

possible proposals it is sensible to consider swapping two positions s > 1 times. However,

by not allowing the null swap we limit the possible proposals substantially depending

on whether s is chosen to be odd or even. For example, suppose σ = (1, 2, 3, 4, 5) and

swapping positions ρ1 = ρ2 is not allowed. In this scenario it is impossible to obtain

σ† = (2, 1, 3, 4, 5) if s > 1 is even, and, in contrast, if s > 1 is odd then σ† = (2, 1, 3, 5, 4)

can not be obtained. However, by allowing the null swap this issue is avoided as swapping

positions ρ1 = ρ2 effectively changes s from being odd or even without altering the current

state of σ; this notion is discussed further in Section 6.4.5.

A key feature of implementing a Metropolis-Hastings proposal is the so-called proposal

ratio q(σ|σ†)/q(σ†|σ). Of course, the proposal ratio is going to involve the ratio of the
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mixture distribution (6.9) however it is useful if we first consider each proposal in turn, that

is, qi(σ|σ†)/qi(σ†|σ). Consider first the case when s = 1. For this proposal mechanism it

is clear that there are two possible ways in which the proposal σ† can be formed; either

by swapping positions (p1, p2) or by swapping positions (p2, p1). The proposal ratio is

formed by considering the probability of obtaining σ given the proposed value σ† along

with the probability of the “reverse move”, that is, the probability of obtaining σ† given

the current state σ. It follows that, given

Pr(ρ1 = p1, ρ2 = p2) =
1

K2
= Pr(ρ1 = p2, ρ2 = p1),

the proposal ratio is

q1(σ|σ†)
q1(σ†|σ)

=
Pr(ρ1 = p2, ρ2 = p1) + Pr(ρ1 = p1, ρ2 = p2)

Pr(ρ1 = p1, ρ2 = p2) + Pr(ρ1 = p2, ρ2 = p1)

=
2 Pr(ρ1 = p1, ρ2 = p2)

2 Pr(ρ1 = p1, ρ2 = p2)

= 1

and so this proposal mechanism is clearly symmetric. A straightforward generalisation of

this result shows that this proposal remains symmetric when considering swapping two

positions s > 1 times; this is discussed further in Section 6.4.5.

Proposal 2 – the Poisson swap

The second proposal mechanism is what we refer to as the “Poisson swap”. As for the

random swap (Proposal 1) we form the proposed choice order by swapping two positions

(ρ1, ρ2) of the current permutation σ, however, the positions we swap are no longer chosen

uniformly at random. Here we instead consider swapping positions ρ1 and ρ2 = ρ1 + m

where m follows a Poisson (mixture) distribution. The idea here is that swapping positions

closer to one another (small m) will lead to greater acceptance rates and so we are able

to tune this proposal mechanism through the choice of the distribution for m.

Formally, we sample the position ρ1 uniformly at random, that is, from the discrete dis-

tribution

Pr(ρ1 = p1) =
1

K
, for 1 ≤ p1 ≤ K.

Then, in contrast to Proposal 1, we swap position ρ1 with a position that is a certain

number of positions away, namely m = (−1)pf where p ∼ Bern(0.5), f ∼ Po(τ) and

so ρ2 = ρ1 + m. It follows that the parameter τ is considered to be a tuning parameter
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which allows us to alter the distribution of the distance between proposed swaps so that

we obtain reasonable acceptance rates. Of course, we require that ρ2 ∈ {1, . . . ,K} and

so we define the choice order to be cyclic, that is, we suppose that σ1 is next to σK . It

follows that we can let ρ2 → ρ2 Mod K where Mod is the upper modulus given by

x Mod K ≡ {(x− 1) mod K}+ 1.

The proposed choice order σ† is then formed as for Proposal 1, that is

σ†ρ1 = σρ2 , σ†ρ2 = σρ1 , and σ†i = σi for i ∈ {1, . . . ,K} \ {ρ1, ρ2}.

Before we consider the proposal ratio for this swap it is useful to note that the distribution

of m is symmetric about 0, that is, Pr(m = c) = Pr(m = −c) for all c ∈ N. The proposal

ratio for this swap is therefore

q2(σ|σ†)
q2(σ†|σ)

=
Pr(ρ1 = p2) Pr(ρ2 = p1|ρ1 = p2)

Pr(ρ1 = p1) Pr(ρ2 = p2|ρ1 = p1)

=
K Pr(ρ1 +m = p1|ρ1 = p2)

K Pr(ρ1 +m = p2|ρ1 = p1)

=
Pr(m = p1 − ρ1|ρ1 = p2)

Pr(m = p2 − ρ1|ρ1 = p1)

=
Pr(m = p1 − p2)
Pr(m = p2 − p1)

=
Pr(m = p1 − p2)
Pr(m = −(p1 − p2))

= 1,

and so this swap is clearly symmetric. Again a straightforward generalisation of this result

shows that this proposal mechanism remains symmetric when applying s > 1 swaps.

Proposal 3 – random insertion

The third proposal we consider is a “random insertion” proposal (Bezáková et al., 2006).

In contrast to the previous (swap based) proposals here the proposed choice order σ† is

instead formed by taking the value in position ρ1 and inserting it back into the permutation

so that it is instead in position ρ2. It follows that this mechanism moves numerous positions

within the permutation unlike the swap moves considered previously. To see this it may

be useful to consider permuting (“shuffling”) a deck of playing cards. Under this proposal

mechanism the new permuted deck is formed by removing the card that is currently in

position ρ1 and then reinserting it into the deck so that is has position ρ2. Clearly the
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cards in the positions between ρ1 and ρ2 must also move to accommodate this. These

cards will move either up or down a position depending on the value of the pair (ρ1, ρ2).

Formally, we sample two positions (ρ1, ρ2) from the discrete distributions

Pr(ρ1 = p1) =
1

K
, for 1 ≤ p1 ≤ K

Pr(ρ2 = p2|ρ1 = p1) =
1

K − 1
, for 1 ≤ p2 6= p1 ≤ K

and let

σ† =

(σ1, . . . , σρ1−1, σρ1+1, . . . , σρ2 , σρ1 , σρ2+1, . . . , σK), if ρ1 < ρ2

(σ1, . . . , σρ2−1, σρ1 , σρ2 , . . . , σρ1−1, σρ1+1, . . . , σK), otherwise.

For example, suppose the current choice order is σ = (1, 2, 3, 4, 5) and we have (ρ1, ρ2) =

(2, 4) then the proposed choice order is σ† = (1, 3, 4, 2, 5), or, if instead (ρ1, ρ2) = (4, 2)

then the proposed choice order would be σ† = (1, 4, 2, 3, 5).

As for the previous proposal mechanisms the proposal ratio for this move is straightfor-

ward. Suppose the proposed permutation is formed by applying the moves above given

(ρ1 = p1, ρ2 = p2) then it is clear that the current choice order can be recovered from the

proposed σ† by considering (ρ1 = p2, ρ2 = p1) and so

q3(σ|σ†)
q3(σ†|σ)

=
Pr(ρ1 = p2) Pr(ρ2 = p1|ρ1 = p2)

Pr(ρ1 = p1) Pr(ρ2 = p2|ρ1 = p1)

=
K(K − 1)

K(K − 1)

= 1.

Proposal 4 – prior proposal

The fourth proposal mechanism we consider is a “prior proposal”. Here σ† is simply an

independent draw from the prior distribution π(σ). Formally this is an independence

proposal as the proposal distribution is independent of the current state of the Markov

chain, that is, q(σ†|σ)
d
= q(σ†). It follows that the proposal ratio is straightforward and

is given by

q4(σ|σ†)
q4(σ∗|σ)

=
π(σ)

π(σ†)

=
Pr(σ = σ)

Pr(σ = σ†)

= 1
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as our prior distribution is uniform over all permutations. Of course, this proposal may

not be symmetric if an alternative prior choice is specified.

Proposal 5 – reverse proposal

Our final proposal mechanism is the “reverse proposal”. Here we let σ† be the reverse

ordering of the current permutation σ, that is, if σ = (1, 2, 3, 4, 5) then the proposed

choice order is σ† = (5, 4, 3, 2, 1). Note that, in general, the reverse permutation is not

the inverse permutation. This proposal mechanism is motivated by our observation from

the investigation into the likelihood of the EPL model (under all possible choice orders)

in Section 6.3.2 where we saw that the reverse of the “true” choice order featured quite

highly in the ranking of choice orders; see Table 6.4. Further, the reverse of the current

choice order is unlikely to be proposed by any of the previous proposal mechanisms as,

by construction, the reverse permutation is a large distance away from the current state.

Formally we let

σ† = σK:1 = (σK , . . . , σ1).

with probability 1. It follows that the proposal distribution is q5(σ
†|σ) = δσK:1 where δx

denotes the Dirac probability measure concentrated at x and so the proposal ratio is

q5(σ|σ†)
q5(σ†|σ)

=
δ
σ†K:1

δσK:1

= 1. (6.10)

The acceptance probability

In general, the acceptance probability of σ† is min(1, A) where

A =
π(σ†| · · · )
π(σ| · · · ) ×

q(σ|σ†)
q(σ†|σ)

.

From the density of all stochastic quantities (6.8) it is clear that

π(σ| · · · ) ∝ π(D|λ,σ)π(Z|D,λ,σ)π(σ)

= π(D, Z|λ,σ)π(σ),

and so, unsurprisingly, the posterior distribution of σ is proportional to the complete data

likelihood times the prior.
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Recall our proposal distribution is the 5 component mixture distribution (6.9) and by

noting that qi(σ
†|σ) = qi(σ|σ†) for i = 1, . . . , 5 it follows that the proposal ratio is

q(σ|σ†)
q(σ†|σ)

=

5∑
i=1

ppropi qi(σ|σ†)

5∑
i=1

ppropi qi(σ
†|σ)

=

5∑
i=1

ppropi qi(σ
†|σ)

5∑
i=1

ppropi qi(σ
†|σ)

= 1.

Clearly the acceptance probability simplifies substantially and can be written as min(1, A)

where

A =
π(D, Z|λ,σ†) Pr(σ = σ†)
π(D, Z|λ,σ) Pr(σ = σ)

=
π(D, Z|λ,σ†)
π(D, Z|λ,σ)

which is simply the ratio of the complete data likelihood given the proposed and the

current permutation (assuming each choice order is chosen to be equally likely a priori).

6.4.5 Further considerations

Exploring large discrete spaces such as the set of all permutations SK with a Metropolis-

Hastings algorithm is a non-trivial task. The proposal distribution discussed in Sec-

tion 6.4.4 comprises a mixture of “local” (Proposals 1–3) and “global” (Proposals 4 and

5) proposal mechanisms for the choice order parameter in an attempt to facilitate ef-

fective exploration of this large discrete space. Although reasonably straightforward to

implement, it is useful to first consider the proposal distribution in more detail as a naive

implementation may result in an inefficient proposal distribution due to the subtleties

involved within some of the proposal mechanisms; particularly the swap moves.

The first thing to note is that, by construction, both Proposal 4 and 5 have the potential

to propose large jumps (in terms of distance) from the current permutation. Although

useful for escaping local modes large jumps typically result in smaller acceptance prob-

abilities. Given this it is perhaps sensible to only consider constructing σ† from either

Proposal 4 or 5 relatively infrequently in comparison to the more local proposals. This

can be achieved through an appropriate choice of the mixture component weights in the

proposal distribution (6.9). At first glance we might also think that Proposal 3 could suffer

from poor acceptance rates given the proposed permutation is formed by moving numer-

ous positions within the current permutation. However the construction of this proposal

mechanism dictates that much of the structure that is present in the current permutation

is also present within the proposed permutation. It follows that, in terms of distance, the

proposed permutation will not be that far away from the current permutation as much of

the order is preserved.
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Perhaps surprisingly it is Proposals 1 and 2 that have potential to cause issues within this

proposal distribution. Note that by swapping only two positions within σ the number of

unique proposals that can be generated is (KC2 + 1) � K! (including the “null swap”

ρ1 = ρ2) and so we could easily become stuck in a local mode. Therefore, as alluded to in

Section 6.4.4, it is perhaps sensible to instead consider swapping two positions s > 1 times

to allow our proposal mechanism to propose larger jumps around permutation space. Each

of the s swaps should be performed iteratively. For example, suppose we have s pairs of

positions to swap (ρ1, ρ2)1, . . . , (ρ1, ρ2)s which are samples from the appropriate discrete

distributions. The proposed choice order σ† is obtained by first forming a “temporary

proposal” σ†1 by swapping positions (ρ1, ρ2)1 within the current state σ, then by consid-

ering σ†1 to be the current state of the chain we obtain another temporary proposal σ†2 by

swapping positions (ρ1, ρ2)2 within σ†1 . This process continues and the proposed choice

order is σ† = σ†s. Naturally as s increases so does the number of possible proposals, Np.

The distance between the current and proposed choice orders will also typically increase

with s and so the number of swaps is nominally a tuning parameter and can be adjusted

to increase acceptance rates. Of course, we must consider how performing s > 1 swaps

affects the proposal ratio. We consider this for Proposal 1 and note that similar arguments

apply for Proposal 2. Recall that each of the s swaps is performed iteratively and so we

can write the proposal distribution as

q1(σ
†|σ) = q1(σ

†
s|σ†s−1, . . . ,σ†1)× · · · × q1(σ†1|σ)

= q1(σ
†
s|σ†s−1)× · · · × q1(σ†1|σ)

given the proposal distribution for each swap s is conditionally independent given the

temporary proposal σ†s−1. Further, it is also clear that

q1(σ|σ†) = q1(σ
†
s−1|σ†s)× · · · × q1(σ|σ†1)

and so the proposal ratio q1(σ|σ†)/q1(σ†|σ) = 1 for all s ≥ 1 which follows from the result

that q1(σi|σj) = q1(σj |σ1) for any σi,σj ∈ SK ; see Section 6.4.4.

We now briefly return our attention to why it is sensible to allow the null swap when

generating proposed permutations using a swapping mechanism (Proposals 1 and 2) as

mentioned in Section 6.4.4. Naturally we expect the number of possible proposals (Np)

to increase as we consider more swaps, more specifically we might imagine that Np → K!

as s → ∞. However, if we suppose that swapping positions ρ1 = ρ2 is not allowed then

Np = K!/2 for large s. Moreover the set of possible permutations that can be proposed

depends on whether s is chosen to be even or odd. If we let Σodd and Σeven denote the sets

of possible permutations that can be generated when s is odd and even respectively then

it can be shown that SK = {Σodd∪Σeven} and Σodd∩Σeven = ∅. It follows that if s > 1 is
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fixed a priori then repeatedly swapping two positions ρ1 6= ρ2 only enables us to explore

half of the possible permutations – those with either even or odd parity (depending on

the parity of the current permutation). Although here we have considered the asymptotic

result it is clear from our example in Section 6.4.4 that not allowing the null swap results

in the proposal mechanism being unable to propose some permutations which are close in

distance depending on the choice of s. One strategy to avoid this problem is to consider s

to be a random variable as opposed to a fixed constant. Choosing s ∼ Geom(ps) is perhaps

sensible however we opt to instead consider fixed s and allow the null swap.

6.4.6 A Metropolis-within-Gibbs algorithm for the EPL model

A Metropolis-within-Gibbs algorithm can be constructed to target the joint posterior

distribution of the skill parameters λ, the choice order parameter σ, and the latent vari-

ables Z. Posterior samples are generated as follows.

1. Initialise: choose σ ∈ SK , λ ∈ RK>0 and zij > 0 for i = 1, . . . , n, j = 1, . . . ,K.

2. Repeatedly perform the following steps:

• Sample λk| · · ·
indep∼ Ga

(
ak + n, 1 +

n∑
i=1

K∑
j=1

δij(k)zij

)
for k = 1, . . . ,K, where

δij(k) is as in Section 6.4.2.

• Sample zij | · · · indep∼ Exp

(
K∑
m=j

λσ−1
xiσm

)
for i = 1, . . . , n, j = 1, . . . ,K.

• Sample ` from the discrete distribution with probabilities Pr(` = i) = ppropi for

i = 1, . . . , 5

– propose σ† using proposal mechanism `

– let σ → σ† with probability min(1, A) whereA =
π(D, Z|λ,σ†) Pr(σ = σ†)
π(D, Z|λ,σ) Pr(σ = σ)

• Rescale

– sample Λ‡ ∼ Ga

(
K∑
k=1

ak, 1

)
.

– calculate Σ =
K∑
k=1

λk.

– let λk → λk Λ‡/Σ for k = 1, . . . ,K .

If K is sufficiently small, or we have the computational power to do so, we could instead

sample σ from its full conditional distribution as discussed in Section 6.4.3 in which case

we would have a straightforward Gibbs sampler.
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6.4.7 Simulation study – Metropolis-within-Gibbs

In this study we consider a new dataset (Dataset 6) with n = 100 complete rankings of

K = 10 entities. The skill parameters used to simulate these data are λ = (10, 9, . . . , 1)

and the choice order (ranking process) is chosen to be σ = (3, 10, 9, 1, 7, 4, 5, 6, 8, 2). The

simulated data are given in Tables B.8 and B.9 within the Appendices.

We will adopt the same prior distribution for the skill parameters as used in previous

analyses, that is, take λk
indep∼ Ga(1, 1) and so ak = a = 1. Further we assume that each

choice order is equally likely a priori and so Pr(σ = σi) = 1/K! for all σi ∈ SK . Given

this prior distribution we use the Metropolis-within-Gibbs algorithm from Section 6.4.6

in an attempt to obtain posterior realisations from π(λ,σ, Z|D). Of course, we must

also choose suitable tuning parameters for the proposal distribution (6.9) of the choice

order parameter σ. From our discussion in Section 6.4.5 we believe it is sensible to let

pprop = (0.3, 0.3, 0.3, 0.05, 0.05) so that the “local” proposals (swaps and insertion) are

favored over the global proposals (prior and reverse) given the former are perhaps more

likely to be accepted. We also choose to perform s = 2 swaps when using proposals 1

and 2 and take τ = 3 within the latter so the expected distance between positions being

swapped is 3.

To investigate the convergence and mixing properties of our Metropolis-within-Gibbs sam-

pler we consider 5 chains; each of which is initialised at a different choice order parameter σ

as shown in Table 6.5. Naturally we hope that the MCMC scheme has been constructed

such that it is capable of (efficiently) exploring the set of all permutations and (quickly)

converging to its stationary distribution irrespective of the initial choice order. We report

the results from a typical run of our MCMC scheme initialised as described, with a burn-in

of 10K iterations and then run for a further 1M iterations and thinned by 100 to obtain

10K (“posterior”) samples. The MCMC scheme runs reasonably quickly, with C code on

a single thread of an Intel Core i7-4790S CPU (3.20GHz clock speed) taking around 1

minute 35 seconds (for each chain).

Chain Initial permutation

1 σ = (1, 2, . . . , 10) Identity permutation
2 σ = (10, 9, . . . , 1) Reverse identity permutation
3 σ = (3, 10, 9, 1, 7, 4, 5, 6, 8, 2) True permutation
4 σ = (2, 8, 6, 5, 4, 7, 1, 9, 10, 3) Reverse true permutation
5 σ = (8, 10, 7, 4, 3, 1, 2, 6, 5, 9) Random permutation

Table 6.5: Permutations (choice orders) used for the initialisation of each chain
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Figure 6.2: Trace plots of the log complete data likelihood (left) and the marginal posterior π(σ|D)
(right) for chains 1 to 5 from top to bottom respectively (Metropolis-within-Gibbs approach).

Inspection of the trace plots showing the log complete data likelihood (log π(D, Z|λ,σ)) for

each chain shows that the MCMC scheme appears to be mixing fairly well and indeed shows

signs of convergence; see Figure 6.2 left. However, if we look at the marginal posterior

distribution of σ (defined by the probabilities Pr(σ = σi| . . . )) then it is clear that the

chains have not reached their stationary distribution; see Figure 6.2 right. Of course, given

the MCMC scheme runs fairly quickly we could perform further iterations in the hope that

the chains reach convergence. However, in our experience, this is often difficult to achieve.

From Figure 6.2 (right) it is clear that chains 1, 4 and 5 have become stuck in the local

mode around the reverse “true” choice order. Although we introduced Proposal 5 (the
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Proposal mechanism
1 2 3 4 5

# proposed 302995 302982 303379 50246 50399
# accepted 1867 1921 1383 0 0
Pr(accept) 0.006 0.006 0.005 0 0

Table 6.6: Acceptance rates for each of the 5 proposal mechanisms for the choice order σ.

reverse proposal) in the hope of avoiding this it appears that, in this scenario, this proposal

move does not allow the chain to move to the other mode (around the “true” choice order).

This observation is further supported if we consider the acceptance rates of the proposal

distribution for σ. The overall acceptance rate of σ is less than 1% and Table 6.6 shows

the acceptance rates for each of the 5 proposal mechanisms (components of the mixture

proposal). Note that the results shown are those obtained from chain 1, however, these

results are indicative of the other chains. From Table 6.6 we see that neither the reverse

nor the prior proposal (Proposals 4 or 5) are accepted and so our chains struggle to escape

local modes. Clearly this is an issue which needs to be resolved.

From further investigation of the posterior distribution (and also the MLEs λ̂j from Sec-

tion 6.3 which maximise the Extended Plackett–Luce probability for each choice order

σj) it is clear that there is large correlation between λ and σ, that is, between the skill

parameters and the choice order. Moreover throughout this thesis we have seen that, for

a fixed choice order, Gibbs sampling via data augmentation leads to rapid convergence of

the Markov chain to the stationary distribution π(λ, Z|D,σ). It follows that, given a fixed

choice order σi, if the skill parameters λ (and the latent parameters Z) are sufficiently

optimised then it is going to be difficult to propose a reasonable alternative choice order

(given these λ, Z) and so our chain is going to become stuck in this mode. A typical

strategy to improve mixing in such a scenario is to consider a joint update of the highly

correlated parameters (Gamerman and Lopes, 2006). Unfortunately performing a joint

update of (λ, Z,σ) is not straightforward – the difficulty is how to construct a suitable

proposal mechanism. Of course, we could use q(σ†|σ) to generate a proposed choice order

as before, then, given the proposed choice order σ†, draw the skill parameters and latent

variables from their full conditional distributions. By using this strategy we have the

following options

1. draw σ†|σ 2. draw σ†|σ
draw λ†|Z,σ† draw Z†|λ,σ†

draw Z†|λ†,σ† draw λ†|Z†,σ†
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however, neither option is likely to generate reasonable proposals (λ†, Z†,σ†) given that,

clearly, λ and Z are going to be highly correlated.

Given this we must therefore consider an alternative strategy in an attempt to break the

correlations and obtain an MCMC scheme that exhibits good mixing with respect to the

choice order σ. We propose to remove the latent variables Z from the parameter space

and instead consider Metropolis-Hastings updates for both the skill parameters λk and

the choice order σ; this is the topic of the next section.

6.4.8 Metropolis-Hastings proposals for λ

From the previous section it is clear that our Metropolis-within-Gibbs sampling scheme

is inadequate to generate realisations from the posterior distribution for the Extended

Plackett–Luce model. We now instead consider a Metropolis-Hastings update for the skill

parameters and so need not introduce the latent variables Z into the sample space. First

note that, given we are not considering the latent variables Z, the density of all stochastic

quantities is now

π(λ,D,σ) = π(D|λ,σ)π(λ)π(σ)

=

n∏
i=1

K∏
j=1

λσ−1
xiσj∑K

m=j λσ−1
xiσm

×
K∏
k=1

λak−1k e−λk

Γ(ak)
× 1

K!
(6.11)

and so

π(λk| · · · ) ∝
n∏
i=1

K∏
j=1

λσ−1
xiσj∑K

m=j λσ−1
xiσm

× λak−1k e−λk

Γ(ak)

= π(D|λ,σ)π(λk) (6.12)

for k = 1, . . . ,K.

Clearly, this is a non-standard distribution and so we use a Metropolis-Hastings step to

target this distribution. Given λk > 0 it is sensible to consider a Log-normal proposal

distribution centered at the current value for the skill parameters, that is, take λ†k|λk
indep∼

LN(log λk, σ
2
λk

). For this choice of proposal distribution the acceptance probability is

min(1, A) where

A =
π(λ†k| · · · )q(λk|λ

†
k)

π(λk| · · · )q(λ†k|λk)

=
π(D|λ−k, λk = λ†k,σ)

π(D|λ,σ)
×
(
λ†k
λk

)ak
e(λk−λ

†
k).
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Further, because the density of all stochastic quantities has now changed (given we no

longer consider the latent variables Z) it is clear that the acceptance probability of σ

must also change. From the form of the density of all stochastic quantities (6.11) it is

clear that π(σ| . . . ) ∝ π(D|λ,σ)π(σ) and so, given the proposal mechanism described in

Section 6.4.4, the acceptance probability for σ† is min(1, A) where

A =
π(D|λ,σ†) Pr(σ = σ†)
π(D|λ,σ) Pr(σ = σ)

.

which is simply the ratio of the EPL likelihood given the proposed and the current per-

mutation (assuming each choice order is chosen to be equally likely a priori).

6.4.9 A Metropolis-Hastings algorithm for the EPL model

Using the results from Section 6.4.8 we can construct a Metropolis-Hastings algorithm

to target the joint posterior distribution of the skill parameters λ and the choice order

parameter σ as follows.

1. Initialise: choose σ ∈ SK and λ ∈ RK>0

2. Repeatedly perform the following steps:

• For k = 1, . . . ,K

– draw λ†k|λk ∼ LN(log λk, σ
2
λk

)

– let λk → λ†k with probability min(1, A) where

A =
π(D|λ−k, λk = λ†k,σ)

π(D|λ,σ)
×
(
λ†k
λk

)ak
e(λk−λ

†
k)

• Sample ` from the discrete distribution with probabilities Pr(` = i) = ppropi for

i = 1, . . . , 5

– propose σ† using proposal mechanism `

– let σ → σ† with probability min(1, A) where A =
π(D|λ,σ†) Pr(σ = σ†)
π(D|λ,σ) Pr(σ = σ)

.

• Rescale

– sample Λ‡ ∼ Ga

(
K∑
k=1

ak, 1

)
.

– calculate Σ =
K∑
k=1

λk.

– let λk → λk Λ‡/Σ for k = 1, . . . ,K.
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6.4.10 Simulation study – Metropolis-Hastings

In this study we revisit Dataset 6 which was first introduced in Section 6.4.7. However, here

we perform Bayesian inference using the Metropolis-Hastings algorithm from Section 6.4.9

as opposed to the Metropolis-within-Gibbs sampler considered previously. Recall that

Dataset 6 comprises n = 100 complete rankings of K = 10 entities. The skill parameters

and choice order (ranking process) used to simulate these data are λ = (10, 9, . . . , 1) and

σ = (3, 10, 9, 1, 7, 4, 5, 6, 8, 2) respectively.

We choose the same prior distribution as in Section 6.4.7 and so ak = a = 1 and each

choice order is equally likely a priori, that is, Pr(σ = σi) = 1/K! for all σi ∈ SK .

Further, we take the same tuning parameters for the proposal distribution of the choice

order, that is, we choose to perform s = 2 swaps when using proposals 1 and 2 and

take τ = 3 in the latter. Again the probabilities of each proposal mechanism being used

are pprop = (0.3, 0.3, 0.3, 0.05, 0.05). As for the previous analysis we consider 5 chains,

each of which is initialised at a different choice order parameter σ as shown in Table 6.5.

Note that for this analysis we must also both initialise and tune the proposal mechanism

for λ. Here we initialise by taking independent draws from the prior (λk
indep∼ Ga(1, 1))

and let the tuning parameter be σλk = σλ = 0.75 which we determined to be sensible after

performing numerous pilot runs. The results reported are from a typical run of our MCMC

scheme initialised as described, with a burn-in of 20K iterations and then run for a further

2M iterations and thinned by 200 to obtain 10K (“posterior”) samples. The MCMC

scheme runs reasonably quickly, with C code on a single thread of an Intel Core i7-4790S

CPU (3.20GHz clock speed) taking around 24 minutes 30 seconds (for each chain). Note

that this algorithm requires more computational time than the corresponding Metropolis-

within-Gibbs algorithm from Section 6.4.6 due to the additional likelihood evaluations

required to compute the MH acceptance rates for the skill parameters λk.

Figure 6.3 (left) shows the trace plots of the log-likelihood (log π(D|λ,σ)) for each chain

from which we see that some of the chains exhibit signs of poor mixing. In spite of the

potential mixing issues it will be interesting to see what the posterior distribution looks

like under each chain. Recall that when we considered a Metropolis-within-Gibbs sampler

it became clear from the marginal posterior over the choice order σ that the chains had not

reached their stationary distribution. However, in contrast to our previous analysis, our

MCMC scheme appears to be mixing fairly well over σ with none of the chains becoming

stuck in the local mode around the reverse “true” permutation; see Figure 6.3 (right).

Indeed, although only a small number of choice orders are labelled on the plots, there is

a significant increase in the number of choice orders which have posterior support under

this analysis; see Figures 6.2 and 6.3 (right).
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Figure 6.3: Trace plots of the log complete data likelihood (left) and the marginal posterior π(σ|D)
(right) for chains 1 to 5 from top to bottom respectively (Metropolis-Hastings approach).

To further investigate the marginal posterior distribution of σ is it useful to look at which

choice orders receive high posterior support. Figure 6.4 shows the 25 choice orders with

highest posterior support (and their corresponding posterior probabilities) from chains 1

to 5, that is, a subset of the marginal posterior. Although there are discrepancies between

the posteriors produced from each chain it is clear that the Metropolis-Hastings approach

is performing substantially better than the Metropolis-within-Gibbs algorithm. It is clear

however that mixing over the choice orders must be improved further as, although reason-

able here, this issue will only worsen as K increases. To help us better explore SK , the set
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Figure 6.4: Subset of the marginal posterior π(σ|D) showing the 25 choice orders with highest
posterior support from chains 1 to 5 (read from left to right)

of all permutations, we appeal to Metropolis coupled Markov chain Monte Carlo which is

the topic of the next section.

6.5 Metropolis coupled Markov chain Monte Carlo

Metropolis coupled Markov chain Monte Carlo (Geyer, 1991), or parallel tempering as it is

also known within the Bayesian literature, is a sampling technique that aims to improve the

mixing of Markov chains in comparison to standard MCMC methods (Gilks and Roberts,

1996). Although Metropolis coupled Markov chain Monte Carlo (MC3) methods can be

applied in many scenarios this sampling technique is particularly useful when the target

distribution is multi-modal (Brooks, 1998). The general idea behind Metropolis coupled

Markov chain Monte Carlo is to consider multiple “Markov” chains – one of which targets

the density of interest and the remaining chains target “tempered” densities which are

constructed so that they are easier to explore. The multiple chains are then Metropolis

coupled through the proposal of state space swaps between the chains. It follows that

samples from the better mixing chains (those targeting the tempered densities) can filter

in to the chain targeting the density of interest and thus improve the exploration of this

density. We note that, strictly speaking, each of the chains is not Markovian as, due to the
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(Metropolis) coupling of the chains, each chain no longer depends only on the previous

value within this chain but also on the previous values of all the other chains. In the

next section we discuss how it is easier to construct a Markov chain to efficiently target

a tempered density as opposed to the non-tempered density. We conclude this section by

describing the methodology underlying parallel tempering and give a generic algorithm

outline.

6.5.1 The advantage of targeting tempered densities

Here we discuss how the mixing (and therefore the sampling efficiency) of Markov chains

whose target densities are multi-modal is improved when they instead target an appro-

priate tempered density. Suppose we are interested in designing a standard Markov chain

Monte Carlo scheme to target the density π(θ) where

θ ∼ 1

2
N(−2, 0.52) +

1

2
N(2, 0.52),

that is, the density of interest is an equally weighted two-component normal mixture with

component means of ±2 and common standard deviations 0.5. It follows that the target

density π(θ) is multi-modal by construction; see Figure 6.5. Of course, given that we

know the target density it is straightforward to generate realisations of θ, however, for

argument’s sake, let us suppose that the distribution of θ is unknown. In this scenario a

sensible strategy would be to use a Metropolis-Hastings algorithm to target the density.

Given that θ ∈ R, a Normal random walk is a plausible proposal distribution, that is,

θ∗|θ ∼ N(θ, σ2). However, it should be clear that if such an algorithm is initialised at one

of the modes of the target distribution then the Markov chain will struggle to “bridge”

the area of low probability and explore the other mode. Of course, for this example, we

could invent a proposal distribution which encouraged the algorithm to jump between the

−4 −2 0 2 4

0.
0

0.
2

0.
4

θ

D
en

si
ty

Figure 6.5: π(θ): density plot of an equally weighted two-component normal mixture with compo-
nent means of ±2 and standard deviations of 0.05.
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modes (e.g. q(θ∗|θ) = δ−θ) as we know the form of the target. However, in general this

will not be the case and so constructing a suitable proposal will be non-trivial; especially

if the target contains a large number of modes.

Let us now instead consider the tempered density π(θ)1/T where T ≥ 1 is known as the

temperature. Clearly the target density of interest is recovered when T = 1. Figure 6.6

shows the tempered densities for temperatures T ∈ {1, 2, 4, 8, 16, 32, 64, 128}. From this

we observe that as we increase the temperature (“heat”) the tempered density becomes

“flatter” and it follows that π(θ)1/T is completely flat (uniform) when T = ∞. It there-

fore becomes increasingly more straightforward to construct a Markov chain capable of

effectively targeting π(θ)1/T as T →∞. Of course, we are only interested in targeting the

density π(θ)1/T when T = 1. However, as all the tempered densities are inherently related,

we can use the accepted samples from a chain targeting a tempered density to improve the
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Figure 6.6: Tempered densities π(θ)1/T for T ∈ {1, 2, 4, 8, 16, 32, 64, 128}.
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mixing within the chain targeting the density of interest. In the next section we discuss

how we can take advantage of this technique within a Bayesian inference setting.

6.5.2 Parallel tempering

Parallel tempering (or MC3) is the notion of using tempered densities within a Bayesian

inference context. Suppose that we are interested in targeting a (possibly) multi-modal

posterior distribution π(θ|x). Now, in contrast to standard MCMC schemes, we construct

multiple “Markov” chains. One chain targets the true posterior π(θ|x) and the other

chains target tempered posteriors π̃(θ|x). The multiple chains are then Metropolis coupled

through a (Metropolis-Hastings) proposal involving state space swaps between the chains

and so samples from better mixing chains (targeting the tempered posteriors) can filter in

to the chain targeting the true posterior. We now formally define the tempered posteriors

and then consider the proposal mechanism for the state space swaps between chains.

Recall from Bayes’ Theorem that the true posterior is

π(θ|x) ∝ π(x|θ)π(θ)

and let the cth tempered posterior be

π̃c(θc|x) ∝ π(x|θc)1/Tcπ(θ)

where Tc > 1 is the temperature of chain c. We note that the tempered posteriors are

formed by only tempering the likelihood component of the true posterior as, given we are

working within the Bayesian paradigm, our a priori beliefs should be consistent irrespec-

tive of the posterior we are targeting.

The issue now is how to swap the states of the chains without affecting their respective

target distributions. Suppose we have C chains, that is, a chain to target the true posterior

and a further C − 1 chains targeting tempered densities. Noting that π̃c(θc|x) = π(θ|x)

when Tc = 1 it is useful to let T = (1, T2, T3, . . . , TC) so that the chains being considered

are given by π̃c(θc|x) for c = 1, . . . , C. Now if we consider all C chains to be evolving

together then it follows that, as the posteriors π̃c(θc|x) are conditionally independent

given x, together the chains are targeting the joint posterior

π(θ1, . . . , θC |x) =
C∏
c=1

π̃c(θc|x). (6.13)

As a brief aside we note that the joint target (6.13) is preserved irrespective of the within-

chain updates to the parameters as a consequence of π̃i and π̃j being conditionally inde-
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pendent. Indeed using different within-chain updates is a sensible strategy given the form

of the target density is different for each chain. Returning to the proposal of state space

swaps between chains it should be clear that we are simply proposing to swap θi and θj

for some i 6= j within the joint target (6.13). Let θ = (θ1, . . . , θC) denote the current

state of the joint chain and so the proposed state of the chain is θ∗ = (θ∗1, . . . , θ
∗
C) where

θ∗i = θj , θ
∗
j = θi and θ∗` = θ` for ` 6= i, j. Assuming a symmetric proposal mechanism, that

is, that the probability of proposing to swap the states of chains (i, j) is the same as the

probability of proposing to swap the states of chains (j, i), the acceptance probability of

the state space swap is min(1, A) where

A =
π(θ∗|x)

π(θ|x)

=
C∏
c=1

π̃c(θ
∗
c |x)

π̃c(θc|x)

=
C∏
c=1

π(x|θ∗c )1/Tcπ(θ)

π(x|θc)1/Tcπ(θ)

=
π(x|θj)1/Tiπ(x|θi)1/Tj
π(x|θi)1/Tiπ(x|θj)1/Tj

. (6.14)

Of course, if the proposal mechanism is not symmetric then the probability A must be

multiplied by the proposal ratio q(θ|θ∗)/q(θ∗|θ). Further, it is straightforward to gen-

eralise the proposal mechanism above to allow for scenarios where the proposal involves

swapping the parameters of more than 2 chains. This should typically be avoided however

as such a proposal can have poor acceptance rates; this will be discussed further in Sec-

tion 6.5.4 where we consider the tuning of proposal distributions within an MC3 sampling

scheme. In the next section we consider a general algorithm outline for a MC3 sampling

scheme before discussing tuning and a further generalisation of this method.

6.5.3 General algorithm outline

A general algorithm outline of a Metropolis coupled Markov Chain Monte Carlo sampling

scheme using C chains is as follows.

• Initialise:

– let T1 = 1 and choose Tc > 1 for c = 2, . . . , C

– let θ = (θ1, . . . , θC)

• Repeatedly perform the following steps:
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1. For c = 1, . . . , C,

– draw θc from π̃c(θc|x) ∝ π(x|θc)1/Tcπ(θ) using standard MCMC techniques

2. Sample a pair of chain labels (i, j) where 1 ≤ i 6= j ≤ C
– let θi → θj and θj → θi with probability min(1, A) where

A =
π(x|θj)1/Tiπ(x|θi)1/Tj
π(x|θi)1/Tiπ(x|θj)1/Tj

The posterior realisations of interest are θ1, that is, the accepted draws from chain 1. Given

each of the remaining chains target a tempered posterior density the draws from these

chains are of no interest and so the collection of samples (θ2, . . . , θC) may be discarded.

6.5.4 Tuning a MC3 sampling scheme

Recall that Metropolis coupled Markov chain Monte Carlo schemes consider C chains;

each of which targets an alternative (tempered) density. Further, as these chains are

conditionally independent given x, each chain can be considered to be an independent

standard MCMC scheme targeting its respective density. It follows that each chain should

therefore be tuned in a typical fashion, that is, as discussed in Section 1.3.2. Note however

that as each chain is targeting an alternative density it is sensible to consider different

proposal distributions for each chain. Intuitively we expect larger jumps around the sample

space to be more plausible for large T , this follows as the target density becomes “flatter”

as the temperature of the chain increases; see Section 6.5.1.

Tuning the between chain proposal (Step 2 of the MC3 algorithm) can be tricky in gen-

eral. The acceptance rate of swaps between chains is not only affected by the choice of

temperatures Tc but also by the mechanism which determines which chains to propose

a swap between. Atchadé et al. (2011) show that, when targeting a normal density, the

optimal acceptance rate (that which maximises the expected squared jumping distance)

between chains is 0.234. Of course, in any realistic scenario we are unlikely to be targeting

a normal density using MC3 as more standard techniques would be sufficient to generate

samples from a normal target. It is generally accepted that between chain acceptance

rates of around 20% to 60% provide reasonable mixing (with respect to the joint den-

sity of θ1, . . . , θC); see for example Geyer and Thompson (1995) or more recently Altekar

et al. (2004). The question is therefore how to choose the temperatures and the swapping

mechanism to achieve such acceptance rates. The strategy we suggest, also advocated by

Wilkinson (2013), is to choose the temperatures so that Ti < Tj for i < j and consider

swaps between adjacent chains. The intuition behind this strategy is that the target den-

sities become increasingly dissimilar as |Ti − Tj | increases and so swaps are less likely to
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be accepted. Further, the temperatures should be chosen so that they exhibit geometric

spacing, that is, Tc+1/Tc = r for some r > 1. Note that this reduces the problem of choos-

ing C − 1 temperatures to that of choosing T2 (or equivalently r) as given T1 = 1 and T2

the remaining temperatures are completely determined. Typically it is sensible to perform

a few pilot runs of the MC3 scheme to determine a suitable temperature ratio. Of course,

this is only a general strategy and each temperature may need adjusting depending on the

situation.

6.5.5 Parallel Metropolis coupled Markov chain Monte Carlo

A notable drawback of using Metropolis coupled Markov chain Monte Carlo sampling

schemes is the significant increase in the amount of computation required in comparison

to standard MCMC samplers. Recall that an MC3 sampling scheme considers C chains;

each of which needs to be updated in order to generate a single sample from the desired

target density (note that for standard MCMC schemes only a single chain needs to be up-

dated to generate the same number of samples from the target). It is therefore clear that

for MC3 schemes the amount of computation required to generate (posterior) realisations

increases linearly with C. However, although it is not possible to reduce the amount of

computation per se, it is possible to reduce the time required to perform these computa-

tions by appealing to Parallel Metropolis coupled Markov chain Monte Carlo (pMC3) –

this method is also known as Multi-core Metropolis coupled Markov chain Monte Carlo

or MC4 within the literature. From Step 1 in the general algorithm given in Section 6.5.3

it should be clear that standard MC3 considers updating of each chain in serial, that is,

we sequentially draw θc for c = 1, . . . , C, from their respective targets π̃c. Typically this

step is the most computationally expensive part of the algorithm as it involves multiple

(tempered) likelihood evaluations by construction. However, by exploiting the conditional

independence of the chains we can reduce the amount of time required to perform this step;

this is the idea behind Parallel Metropolis coupled Markov chain Monte Carlo (pMC3).

Recall that π̃i and π̃j are conditionally independent given x and so it follows that we

can perform within-chain updates of the chains targeting these densities independently

without affecting the joint target distribution π(θ1, . . . , θC |x). Clearly these updates can

be performed in parallel across multiple cores. It is important to note however that Step 2

of the MC3 algorithm can only be performed once all of the individual chains have been

updated, that is, we must wait until the last chain is updated before we proceed.

The number of cores to use (ncore) is an important factor when using pMC3; especially

given that all C chains must be updated before we proceed to Step 2 of the MC3 algorithm.

Naturally we might think that increasing the number of cores will reduce the amount of

time it takes to update the C chains and, although this is true in general, it is not quite
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Core Time
ncore 1 2 3 4 5 6 Total Relative

1 θ1 – – – – – 6 1
θ2 – – – – –
θ3 – – – – –
θ4 – – – – –
θ5 – – – – –
θ6 – – – – –

2 θ1 θ2 – – – – 3 1/2
θ3 θ4 – – – –
θ5 θ6 – – – –

3 θ1 θ2 θ3 – – – 2 1/3
θ4 θ5 θ6 – – –

4 θ1 θ2 θ3 θ4 – – 2 1/3
θ5 θ6 – – – –

5 θ1 θ2 θ3 θ4 θ5 – 2 1/3
θ6 – – – – –

6 θ1 θ2 θ3 θ4 θ5 θ6 1 1/6

Table 6.7: Theoretical optimal job allocation across cores with total and relative execution time
(assuming job takes a unit time).

that straightforward. To see this we consider an example: suppose we choose to use

C = 6 chains within a pMC3 sampling scheme and so we must update θ1, . . . , θ6 at each

iteration. If we assume that updating θc takes unit time then the total time taken to

update all C = 6 Markov chains for different values of ncore can be seen in Table 6.7.

Of course, this is a theoretically optimal job schedule which is not achievable in practice

(due to additional overheads such as memory allocation and initialisation of cores/jobs)

however it illustrates the general idea. Note that when ncore = 1 pMC3 is the same as

standard MC3, that is, each chain is updated in serial. From Table 6.7 it is clear that

we can halve the time required to update the C chains simply by considering two cores.

Further, for this example, by taking ncore = 3 we reduce the updating step to a third of

the time in comparison to standard MC3. Note however that we do not improve on this

if ncore = 4, 5 as although we can update more chains in the first unit time this is of little

benefit as the entire update step is only complete when all C chains are updated. Clearly

taking ncore > C will provide no additional gains. It follows that, in general, the best

strategy is to choose ncore = C however this may not be possible when considering a large

number of chains. In this scenario it is sensible to choose the largest possible number of

cores ncore which is also a divisor of C, that is, choose the largest possible ncore so that C

mod ncore = 0. Altekar et al. (2004) provide further computational details and give more

realistic relative performance gains of pMC3 (against MC3) as opposed to the theoretical

gains considered here.
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6.6 Inference – a Bayesian approach (revisited)

We now return to constructing a Bayesian inference scheme which is capable of generating

posterior realisations of both the skill and choice order parameters by implementing a par-

allel Metropolis coupled Markov chain Monte Carlo algorithm to target the joint posterior

distribution. This section will then conclude with a simulation study where we show that

the mixing of our Markov chains is improved considerably by using MC3 as opposed to

standard MCMC techniques developed in Section 6.4.

6.6.1 A pMC3 algorithm for the EPL model

A parallel Metropolis coupled Markov chain Monte Carlo algorithm to target the joint

posterior distribution of the skill parameters λ and the choice order parameter σ is as

follows.

1. Tune:

• choose the number of chains (C) and the number of cores (ncores)

• let T1 = 1 and choose Tc > 1 for c = 1, . . . , C

2. Initialise: choose σc ∈ SK and λc ∈ RK>0 for c = 1, . . . , C

3. For c = 1, . . . , C perform, in parallel, the following steps:

• For k = 1, . . . ,K

– draw λ†ck|λck ∼ LN(log λck, σ
2
λck

)

– let λck → λ†ck with probability min(1, A) where

A =

{
π(D|λc,−k, λck = λ†ck,σc)

π(D|λc,σc)

}1/Tc

×
(
λ†ck
λck

)ak
e(λck−λ

†
ck)

• Sample ` from the discrete distribution with probabilities Pr(` = i) = ppropi,c for

i = 1, . . . , 5

– propose σ†c using proposal mechanism `

– let σc → σ†c with probability min(1, A) where

A =

{
π(D|λc,σ†c)
π(D|λc,σc)

}1/Tc

× Pr(σ = σ†c)
Pr(σ = σc)

.
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• Rescale

– sample Λ‡c ∼ Ga

(
K∑
k=1

ak, 1

)
.

– calculate Σc =
K∑
k=1

λck.

– let λck → λck Λ‡c/Σc for k = 1, . . . ,K.

4. Sample a pair of chain labels (i, j) where 1 ≤ i 6= j ≤ C

• let (λi,σi)→ (λj ,σj) and (λj ,σj)→ (λi,σi) with probability min(1, A) where

A =
π(D|λj ,σj)1/Tiπ(D|λi,σi)1/Tj
π(D|λi,σi)1/Tiπ(D|λj ,σj)1/Tj

5. Return to Step 3.

6.6.2 Simulation study

For this study we again revisit Dataset 6 which we analysed previously using standard

MCMC techniques in Section 6.4. Recall that these data comprise n = 100 complete

rankings of K = 10 entities. The skill parameters and choice order (ranking process) used

to simulate these data are λ = (10, 9, . . . , 1) and σ = (3, 10, 9, 1, 7, 4, 5, 6, 8, 2) respectively.

Here we perform Bayesian inference using the pMC3 algorithm described in Section 6.6.1

with C = 5 chains running across ncores = C = 5 cores. We adopt the same prior

distribution as for previous analyses of these data, that is, ak = a = 1 and each choice

order is chosen to be equally likely a priori. The motivation behind this choice of prior

distribution is given in Sections 6.4.7 and 6.4.10. Also the proposal distribution for the

choice order parameter is chosen to be the same as before; namely s = 2, τ = 3 and

pprop = (0.3, 0.3, 0.3, 0.05, 0.05) within each chain.

Before we can perform Bayesian inference using the pMC3 algorithm from Section 6.6.1

we must also choose appropriate temperatures for each chain along with a suitable mech-

anism for proposing the between-chain swaps. We choose the temperatures to be T =

(1, 0.75−1, 0.6−1, 0.5−1, 0.4−1) which were determined after making some manual adjust-

ments (guided by pilot runs) to the temperatures obtained using geometric spacing with

ratio 4/3, that is, Tc+1/Tc = 4/3. Further, as discussed in Section 6.5.4, we consider

it sensible to only consider swaps between two adjacent chains and we sample the chain

labels (i, i + 1) uniformly at random. The resulting between-chain acceptance rates are

around 50% to 60% which we consider acceptable and should allow us to benefit from using

an MC3 scheme. Of course, we must also choose a tuning parameter for the Log-normal

random walk proposal which generates the proposed skill parameters. As in the previous
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analyses we choose σλk = σλ = 0.75 which gives acceptance rates around 19% to 25%

(within each chain).

In this study we initialise each of the C chains (within our single inference scheme) from

the prior distribution, that is, we draw λck
indep∼ Ga(1, 1) and uniformly sample σc from

the set of all permutations SK for c = 1, . . . , C and k = 1, . . . ,K. The results reported

are from a typical run of our pMC3 scheme initialised as described, with a burn-in of 20K

iterations and then run for a further 2M iterations and thinned by 200 to obtain 10K

(almost) unautocorrelated posterior samples. The pMC3 scheme runs reasonably quickly,

with C code on ncores = C = 5 cores of an Intel Core i7-4790S CPU (3.20GHz clock speed)

taking around 35 minutes 20 seconds. Note the equivalent analysis takes around 123

minutes and 45 seconds under a standard (serial) MC3 implementation (ncores = 1) and

so clearly using parallel computing is advantageous. Also, due to the additional likelihood

evaluations required to propose the between chain swaps the pMC3 scheme requires more

CPU time than the standard Metropolis-Hastings MCMC scheme from Section 6.4.10

where the equivalent analysis took approximately 24 minutes 30 seconds.

Figure 6.7 shows a trace plot of the log-likelihood (left) and also the marginal posterior

distribution of the choice order σ (right). Here, in contrast to the previous Bayesian

analyses, the marginal posterior distribution for σ obtained from numerous pMC3 schemes

(initialised at different values) are consistent up to stochastic noise (not reported here)

and so, for this example, MC3 has enabled us to generate posterior realisations. Figure 6.8

shows the 25 choice orders with highest posterior support and their corresponding posterior

probabilities. Note that the choice order used to simulate these data is shown in red and

has posterior probability Pr(σ = (3, 10, 9, 1, 7, 4, 5, 6, 8, 2)|D) = 0.011. It is perhaps not

surprising that we do not see large posterior support for the choice order used to simulate

these data (or indeed any choice order) given we are only considering n = 100 observations

and there are 10! possible choice orderings. That said, it is pleasing to see that the choice

orders with largest posterior support are fairly similar to that which was used to simulate

these data. Another interesting observation from Figure 6.8 is that it appears we can

clearly identify the lower positions within the choice order and much of the uncertainty

resides within the first 4 entries of σ.
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Figure 6.7: Trace plot of the log-likelihood (left) and the marginal posterior π(σ|D) (right).
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Figure 6.8: Subset of the marginal posterior π(σ|D) showing the 25 choice orders with highest
posterior support (red denotes choice order used to simulate these data)

Figure 6.9 depicts boxplots of the marginal posterior distribution for each log λk condi-

tional on both the posterior modal choice order (σ = (3, 1, 10, 9, 7, 4, 6, 5, 8, 2)) and the

“true” choice order (σ = (3, 10, 9, 1, 7, 4, 5, 6, 8, 2)) in white and red respectively. The blue

crosses denote the true values from which these data were simulated and we note that we

have rescaled the values so that λ10 = 1 is constant and therefore omitted from the plot

along with any outliers. Clearly there is large posterior uncertainty on the values of the

skill parameters, however this is perhaps not surprising given the associated uncertainty

on the choice order (and the small number of observations). Further, these boxplots are

constructed based on a relatively small number of (posterior) realisations due to the con-

ditioning on a particular choice order. However, it is pleasing to see that the marginal

posterior for the skill parameters are coherent under both of the selected choice orders

and the aggregate rankings (formed by ordering the skill parameters on their posterior

mean) are xagg = (4, 3, 1, 2, 5, 6, 8, 7, 9, 10) under the posterior modal permutation and

xagg = (2, 1, 3, 4, 5, 6, 7, 8, 9, 10) under the true permutation – recall the true preference of

entities is (1, . . . , 10).

It is also of interest to see if there is any benefit to using the complicated EPL model

and whether we can instead draw reasonable inferences about these data by using the

standard (forward ranking) Plackett–Luce model. To answer this question we analyse these

data using the (Gibbs sampling) algorithm for the standard PL model from Chapter 2.

Figure 6.10 depicts boxplots of the marginal posterior distribution for each log λk under

the top choice order from the EPL model and those obtained under the standard PL in

white and green respectively. From this it is clear that the standard Plackett–Luce model

is not a good fit for these data and, under such an analysis, we would conclude that

the aggregate ranking is xagg = (2, 8, 5, 7, 4, 9, 6, 1, 3, 10) and there is little discrepancy

between the preference of the entities – which we know not to be true. It follows that the

standard Plackett–Luce model is not a good model for these data and we should expect

to obtain “better” inferences when using the EPL if the data are not generated from the

forward ranking process.
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Figure 6.9: Boxplots summarising the marginal posterior densities for each log λk given that λ10 =
1. The densities in each case are shown in white and red for those obtained under the choice order
with the largest posterior support and the true choice order, respectively. The blue crosses depict
the true values from which these data were simulated (log scale).
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Figure 6.10: Boxplots summarising the marginal posterior densities for each log λk given that
λ10 = 1. The densities in each case are shown in white and green for those obtained under the
EPL model (for the choice order with the largest posterior support) and those obtained under
the standard Plackett–Luce model (σ = (1, . . . ,K)) respectively. The blue crosses depict the true
values from which these data were simulated (log scale).

6.7 Summary

In this chapter we have described the Extended Plackett–Luce model which allows the

a priori assumption of an explicit choice order (ranking process) to be relaxed. The

choice order, which is an element of the set of all permutations SK , is instead represented

by an additional free parameter within the model. We described the proposed model

in detail and considered whether the choice order was identifiable given a collection of

rankings. In Section 6.3 we verified that each alternative choice order results in changes

to the (maximum) likelihood by means of a simulation study using maximum likelihood

estimation.

The remainder of this chapter focused on the challenging problem of performing a fully

Bayesian analysis of the Extended Plackett–Luce model. In Section 6.4.4 we considered

205



Chapter 6. The Extended Plackett–Luce model

numerous “swap” moves which we hoped would allow us to effectively explore the set of

all permutations when the number of entities is large. Unfortunately, the data augmen-

tation approach (to give Gibbs updates of the skill parameters) was ineffective which we

believe is caused by the large posterior correlation between the parameters within this

model. To overcome this we considered a Metropolis-Hastings sampling approach and

we saw through simulation studies in Section 6.4.10 that, although this approach showed

promise, the mixing of the Markov chains remained poor. The natural step was to then

consider Metropolis coupled Markov chain Monte Carlo (MC3) and in Section 6.5 we spent

time exploring this idea and gave a generic algorithm outline and discussed how parallel

computing can be used to increase the speed of inference schemes. In Section 6.6.2 we

considered a simulation study using a pMC3 sampling scheme which gave promising results

and the Markov chain appeared to effectively explore the posterior. That said, future work

is needed to verify that this approach will also work for larger datasets – our intuition

leads us to believe that the inference problem for the EPL may become too challenging

for more than say K = 20 entities. It would also be nice to increase modelling flexibility

by appealing to Dirichlet process mixtures of EPL models but this too will increase the

difficulty of posterior sampling.

In the next chapter we conclude this thesis and provide an overview of the main results

along with some potential directions for future work.
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Conclusions

The intention of this thesis was to explore flexible models which allow the identification

of (possible) subgroup structure within ranked data. Further, we wanted our modelling

framework to be able to capture potential heterogeneity between the abilities of rankers.

We have also investigated the effect of the ranking process and developed methods for

increasing modelling flexibility further by relaxing the assumption of an explicit ranking

process.

We first considered the (standard) Plackett–Luce model (Luce, 1959; Plackett, 1975).

Through simulation studies it was shown how inferences from this model can be affected

by even a modest amount of spurious rankings. It follows that this model is not well suited

to handle a scenario where some of the rankers are not well informed about the entities

being ranked. We extended the standard Plackett–Luce model to the novel Weighted

Plackett–Luce (WPL) model where the WPL model allows for (potential) differing relia-

bility through a two component mixture model. Bayesian inference for this model is made

straightforward by a slight extension of existing data augmentation approaches (Caron and

Doucet, 2012) that yields an efficient Gibbs sampling scheme. Simulation studies showed

that the Weighted Plackett–Luce model is able to correctly identify spurious rankers (when

present) within a collection of data. Further, in contrast to the standard Plackett–Luce

model, inferences from the WPL model were shown to be fairly robust to the addition of

uninformative rankings.

In Chapter 3 we presented models capable of exploring the (possible) subgroup structure

within ranked data. More specifically we aimed to identify homogeneous groups of indi-

viduals who share similar beliefs and also looked at how a single group of rankers may

struggle to distinguish between certain entities. To implement this structure we appealed

to Bayesian non-parametric clustering methods, specifically by using Dirichlet process

mixture models (Ferguson, 1973; Antoniak, 1974). We presented two models. The first al-
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lowed for the notion that rankers may be heterogeneous in their beliefs about the entities.

Both finite and Dirichlet process mixtures of (standard) Plackett–Luce models have been

explored within the literature and we extended this approach slightly by building a model

that comprises a Dirichlet process mixture of Weighted Plackett–Luce models. The second

model we presented allows for the notion that a homogeneous group of rankers may not

be able to distinguish between certain groups of entities, that is, they might consider some

entities to be indistinguishable (tied in strength). We allowed for this structure by consid-

ering a Dirichlet process mixture over the skill parameters in the Weighted Plackett–Luce

model. To the best of our knowledge this approach has not previously been considered

within the literature. Simulation studies showed that this model proved to be effective

at detecting groups of entities and also performed reasonably well when no entity groups

were present which was reassuring. Further, this model allowed us to quantify the level of

(posterior) similarity between entities in a principled manner; this would require an ad hoc

approach if using standard (no clustering) techniques. Bayesian inference for each model

proceeds via efficient marginal sampling schemes (Neal, 2000).

Chapter 4 presented the Weighted Adapted Nested Dirichlet (WAND) process mixture of

Plackett–Luce models. This model combines the aspects of each model presented in the

previous chapters. More specifically this model allows for both ranker and entity clustering

along with the possibility of (potential) differing ranker reliability. Allowing for both

ranker and entity clustering was achieved by appealing to two-way clustering techniques;

specifically by adapting the Nested Dirichlet process prior of Rodriguez et al. (2008) so

that it could handle ranked data. The (WAND) model was then formed by taking the

Adapted Nested Dirichlet process as the prior distribution over the skill parameters and the

Weighted Plackett–Luce model as the ranking distribution. Both conditional and marginal

approaches to posterior inference were presented for this model. The modelling framework

described also allows for inferences to be made using only incomplete rankings, such as top–

M or partial rankings. We saw through the simulation studies that reasonable inferences

can be made under the WAND model even when only limited (partial) information is

available. Although not considered here, in Section 2.2.4 we described how ties within

rankings can easily be accounted for within our simulation based inference approach. The

richness of information in the posterior distribution allows us to infer many details of the

structure both between ranker groups and between entity groups (within ranker groups),

in contrast to many other (Bayesian) analyses. The high dimensionality of the posterior

distribution can make the production of insightful but simple summaries quite difficult

and we explored different approaches, ranging from conditioning on the modal number

of groups to adopting a classification based on calculations from a dissimilarity matrix

summary. Chapter 5 contained analyses of several real datasets that have been analysed

in the literature, and we compared their conclusions with those obtained from fitting the
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WAND model. In general we found that the WAND model is well suited to modelling

ranked data and provides valuable insight into subgroup structure within ranked data

which would not be possible under other models.

We also considered relaxing the assumption of a known ranking process by looking at

the recently developed Extended Plackett–Luce model (Mollica and Tardella, 2014). In

this model the ranking process (“choice order”) is instead represented by an additional

free parameter which is an element of the set of all permutations SK . Some insight into

the model was provided and we also discussed the identifiability of the ranking process.

To motivate the identifiability of the ranking process further we considered a simulation

study which showed that alternative choice orders result in changes to the (maximised)

likelihood. We then considered the challenging problem of performing Bayesian inference

for the Extended Plackett–Luce model. Our aim was to extend the solution of Mollica and

Tardella (2018) by considering an unrestricted sample space for the choice order param-

eter. We presented several “swap” moves which we hoped would allow us to effectively

explore the set of all permutations when the number of entities is large. Unfortunately,

the data augmentation approach (to give Gibbs updates of the skill parameters) was in-

effective and we believe this was caused by the large posterior correlation between the

parameters within this model. In an attempt to overcome this problem, we removed the

latent parameters from the model and instead considered a Metropolis-Hastings sampling

approach and, although this approach showed promise, it was evident (through simulation

studies) that the mixing of the Markov chains remained poor. To improve mixing we

appealed to Metropolis Coupled Markov chain Monte Carlo (MC3). A simulation study

using a (parallel) MC3 sampling scheme gave promising results and it appeared that we

are able to explore the posterior distribution effectively. We note that, care must be taken

when performing Bayesian inference for the EPL as our solution is unlikely to scale well

to scenarios where the number of entities is large.

7.1 Future work

We believe this research offers plenty of opportunity for extension and future work within

the Bayesian analysis of ranked data. For example, it may be possible to remove the

binary ranker weights wi from the WAND model and instead introduce a “spam cluster”

to house the uninformative rankers. In the finite mixture setting this would be reasonably

straightforward to achieve. However, for infinite mixture models, it is somewhat more

complicated. To be equivalent to a specification of wi = 0, the spam cluster would need

to contain only a single entity cluster and this is unlikely to arise unless the concentration

parameter of the mixture distribution is chosen to be small. Of course, we would not want
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the (entity clustering) concentration parameter to be small within all ranker groups as we

would still want to learn about the entity subgroup structure for groups of rankers that are

informative. One strategy could be to choose the prior distribution of the concentration

parameters to be a mixture where one of the components is heavily concentrated on

small values. However, our intuition leads us to believe that this approach may result in

numerous “spam” clusters, making the identification of uninformative rankers somewhat

more complicated. It may therefore be more advantageous to handle this aspect with the

binary ranker weights. Nevertheless, this merits further research.

Although our work focused mainly on the (Weighted) Plackett–Luce model, the ANDP

prior is also well suited to other parametric ranking models. A natural model to consider

is the Benter model (Benter, 1994) given that it is a straightforward extension of the

(standard) PL model. The Benter model has additional parameters that represent the

“importance” of each stage in the ranking process. In theory it would also be possible

to introduce our binary ranker indicators and hence consider a Weighted Benter model.

However this may also give rise to identifiably issues. Further, given the forward ranking

process implicitly implies that there is more uncertainty within the early ranks of an

observation, the “position importance” parameter within the Benter model is unlikely to

be able to adequately handle a scenario where this is not the case, that is, when there is

more certainty about entities in the top ranks than those in the latter ranks. It would

however be interesting to see whether the Benter model is capable of mitigating this

artefact of the forward ranking process.

Our exploration of the Extended Plackett–Luce model has opened many potential avenues

for further research. The associated inference problem is challenging and, although our

inference scheme appears to be adequate for a modest number of entities, it is unlikely

to perform well in scenarios where the number of entities is large. It may be possible to

avoid explicitly considering the set of all permutations and instead consider a continuous

(multivariate) parameter that lies on the (K − 1)-dimensional simplex (with the implied

permutation being given by ordering the realisation). Constructing a suitable proposal

distribution is likely to be more straightforward in this scenario and, although multi-

modality could still be an issue, it may be possible to overcome this by appealing to

Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 2011). Once the inference problem has

been explored further it would be interesting to extend modelling flexibility by considering

finite or infinite mixtures of Extended Plackett–Luce models. We note however that the

ANDP prior is probably not well suited to this scenario as the entity clustering may render

the ranking process unidentifiable; further analytical/empirical work would be required

to verify this. Finally, a thought provoking topic of potential research is the notion of a

“Hierarchical Plackett–Luce” model. Instead of considering the ranking process parameter

in the Extended Plackett–Luce model to be a permutation, we could instead consider it
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to be a ranking itself. This ranking (the ranking process) could then be modelled using

a Plackett–Luce model and so each position in the ranking process would itself have a

corresponding skill parameter. If desired the ranking process could also be modelled by

another Extended Plackett–Luce model and so the nested layers of Plackett–Luce models

could keep going on and on . . .
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Miscellaneous

A.1 Derivation of the FCD for DP concentration parameter

α

Central to the implementation of a Dirichlet process mixture model is the choice of con-

centration parameter α. It is often the case that we wish to infer this parameter from the

data which is possible if we incorporate α into our analysis. Assuming we have n samples

and a continuous density π(α) it has been shown by Antoniak (1974) that the implied

prior on the number of clusters N c is

π(N c|α, n) = cn(N c)n!αN
c Γ(α)

Γ(α+ n)
(A.1)

for N c = 1, . . . , n.

The function cn(N c) is defined as the density of the number of clusters conditional on

α = 1, that is, cn(N c) = π(N c|α = 1, n) and hence does not involve α. If we suppose

we have sampled our parameters Λ then it should be clear that we have also obtained

a sample of N c (the number of clusters) which is given by the number of unique entries

within Λ. Furthermore we also assume we have a sample of our latent cluster indicators,

c, and thus the configuration of these data into the N c groups is also known. Now, given

that N c, Λ and c are known it can be shown that the data D are conditionally independent

of α. It follows that, for α > 0

π(α|N c,Λ,D) = π(α|N c) ∝ π(N c|α)π(α),
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and, substituting in (A.1) gives

π(α|N c,Λ,D) ∝ cn(N c)n!αN
c Γ(α)

Γ(α+ n)
π(α)

∝ αNc Γ(α)

Γ(α+ n)
π(α)

= αN
c (α+ n)B(α+ 1, n)

αΓ(n)
π(α)

∝ αNc−1(α+ n)B(α+ 1, n)π(α)

= αN
c−1(α+ n)

∫ 1

0
xα(1− x)n−1dx π(α). (A.2)

Fortunately we can construct a joint distribution of α and a quantity η ∈ (0, 1) which has

(A.2) as its marginal density. This joint density takes the form, for α > 0 and η ∈ (0, 1)

π(α, η|N c) ∝ αNc−1(α+ n)ηα(1− η)n−1π(α). (A.3)

Single component prior

In order to maintain conjugacy we assign α a mixture of Gamma distributions a priori.

If we first consider the simple case where there is only a single mixture component, that

is, α ∼ Ga(a0, b0), it follows that the joint density of α and η is, for α > 0 and η ∈ (0, 1)

π(α, η|N c) ∝ αNc−1(α+ n)ηα(1− η)n−1
ba00

Γ(a0)
αa0−1e−αb0

=
ba00

Γ(a0)
αa0+N

c−2e−αb0(α+ n)ηα(1− η)n−1. (A.4)

From (A.4) the marginal distribution for α is, for α > 0,

π(α|η,N c) ∝ ba00
Γ(a0)

αa0+N
c−2e−αb0(α+ n)ηα

∝ ba00
Γ(a0)

αa0+N
c−2e−α(b0−log η)(α+ n)

=
ba00

Γ(a0)
αa0+N

c−1e−α(b0−log η) + n
ba00

Γ(a0)
αa0+N

c−2e−α(b0−log η),

and so we have

α| · · · ∼ π0 Ga(a0 +N c, b0 − log η) + (1− π0) Ga(a0 +N c − 1, b0 − log η).
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The mixture weighting π0 is given by

π0 =
ba00

Γ(a0)

∫ ∞
0

αa0+N
c−1e−α(b0−log η)

=⇒ π0 =
ba00

Γ(a0)

Γ(a0 +N c)

(b0 − log η)a0+Nc , (A.5)

and

(1− π0) =
nba00
Γ(a0)

∫ ∞
0

αa0+N
c−2e−α(b0−log η)

=⇒ (1− π0) =
nba00
Γ(a0)

Γ(a0 +N c − 1)

(b0 − log η)a0+Nc−1 , (A.6)

whence

π0
(1− π0)

=
a0 +N c − 1

n(b0 − log η)
. (A.7)

From (A.4) we also deduce the conditional distribution for η to be, for η ∈ (0, 1)

π(η|·) ∝ ηα(1− η)n−1,

that is

η|· ∼ Beta(α+ 1, n). (A.8)
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Datasets
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A
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en

d
ix

B
.
D
atasets

Ranker

Rank 1 · · · 10 · · · 20 · · · 30 · · · 40

1 3 12 4 6 3 9 19 3 2 11 14 6 3 16 6 10 7 5 11 5 11 3 3 16 2 3 6 10 2 5 2 18 1 6 6 5 12 13 19 3

2 4 19 1 3 6 1 15 13 5 4 1 11 18 18 5 7 9 16 1 3 5 4 5 1 11 1 9 17 3 19 11 6 3 4 12 11 10 3 9 1

3 1 6 8 5 7 17 4 5 10 14 3 7 6 9 12 1 1 13 3 2 8 2 2 9 10 4 8 5 5 10 3 4 8 1 1 2 9 5 1 7

4 13 11 15 2 4 2 2 11 3 1 13 3 4 4 10 8 2 4 5 18 7 9 19 3 3 5 4 2 4 7 1 14 7 9 7 10 5 9 10 13

5 2 13 5 14 8 12 1 10 16 13 12 4 5 2 3 5 4 6 8 13 2 8 1 14 1 2 12 7 14 1 7 8 4 2 2 1 1 12 17 6

6 7 10 9 8 10 3 8 12 9 3 9 5 2 5 14 13 11 7 6 11 14 5 6 6 8 13 1 1 10 6 8 7 10 8 14 19 2 8 18 9

7 8 3 13 9 17 8 10 1 15 7 2 10 1 8 20 3 19 2 17 17 12 12 7 10 14 16 7 8 1 16 13 1 11 7 13 4 15 11 7 5

8 9 4 19 11 9 10 6 6 1 6 17 1 12 1 8 2 18 3 4 4 17 15 10 17 16 6 3 9 18 2 9 5 9 11 5 7 13 2 8 2

9 11 2 12 19 12 4 5 19 4 5 8 8 8 3 11 15 6 1 7 8 3 10 11 7 5 7 16 13 16 11 6 3 5 13 3 18 14 6 13 12

10 12 16 2 15 1 11 3 14 18 2 7 15 11 7 2 4 10 17 2 9 6 17 9 4 9 9 5 4 7 4 5 12 12 10 19 9 8 7 16 15

11 6 9 14 17 11 6 17 15 12 9 4 2 9 6 4 9 12 11 9 12 1 6 4 5 13 8 13 15 6 3 16 15 6 14 8 14 7 1 3 8

12 20 8 6 16 5 5 9 16 6 10 15 13 14 13 16 16 8 8 15 10 15 11 8 15 6 10 14 11 12 18 4 2 15 3 16 3 19 10 6 10

13 17 5 7 10 16 7 11 9 14 8 5 12 13 17 9 11 14 10 14 1 13 13 14 2 4 12 2 6 13 12 12 9 19 5 4 17 11 16 2 11

14 10 7 3 4 13 20 7 7 11 12 6 16 16 12 7 6 15 20 13 7 10 18 15 8 12 11 11 3 11 9 18 10 13 12 10 6 4 4 4 4

15 16 1 10 7 2 14 12 8 7 15 20 14 10 10 1 12 5 9 10 14 4 7 17 13 18 15 10 14 8 8 10 19 16 16 17 15 3 17 5 16

16 5 15 16 12 19 16 14 2 8 17 10 9 17 19 17 14 16 14 12 16 9 1 16 11 17 14 18 12 15 15 14 16 2 15 9 12 20 20 11 18

17 14 14 17 1 20 13 13 18 17 16 16 18 7 11 18 17 3 15 16 15 16 14 20 20 7 18 15 16 9 13 17 11 14 17 11 8 6 14 12 14

18 15 20 18 13 18 15 18 17 19 18 11 17 20 14 13 20 13 12 18 6 19 16 13 18 20 19 19 20 17 14 15 17 18 19 18 13 17 18 14 19

19 19 17 11 18 15 19 16 4 13 19 19 19 15 15 19 19 17 18 19 19 18 19 12 12 15 17 20 19 19 17 19 13 17 18 15 16 16 15 15 17

20 18 18 20 20 14 18 20 20 20 20 18 20 19 20 15 18 20 19 20 20 20 20 18 19 19 20 17 18 20 20 20 20 20 20 20 20 18 19 20 20

Table B.1: Dataset 1 used in standard PL analysis.
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Ranker

Rank 41 · · · 50

1 16 5 8 10 20 9 19 8 2 15

2 2 3 11 13 9 10 14 16 20 9

3 18 8 12 15 19 2 5 2 14 3

4 1 12 6 11 8 11 9 9 10 2

5 6 10 1 3 10 20 13 6 4 18

6 4 2 19 4 13 7 8 20 13 20

7 8 4 9 14 2 19 1 11 19 7

8 9 15 18 6 4 16 15 17 7 14

9 19 20 13 9 5 13 12 19 6 1

10 17 7 4 1 15 4 20 4 3 16

11 13 9 20 20 18 18 11 12 15 8

12 15 19 16 18 6 1 17 15 5 17

13 3 1 7 17 3 8 18 18 17 19

14 11 6 3 12 17 12 10 7 12 11

15 10 14 17 5 7 3 4 14 9 4

16 7 11 5 16 12 17 7 10 8 13

17 5 16 15 7 1 15 6 1 1 12

18 14 18 2 2 11 5 2 3 16 6

19 20 17 14 19 14 14 3 5 11 10

20 12 13 10 8 16 6 16 13 18 5

Table B.2: Additional 10 uninformative rankings used to form Dataset 2.
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A
p
p
en

d
ix

B
.
D
atasets

Ranker

Rank 1 · · · 10 · · · 20 · · · 30 · · · 40

1 13 4 12 16 3 4 2 15 1 1 4 7 1 7 3 12 2 1 7 16 13 2 19 10 1 13 13 1 11 7 6 4 16 10 3 4 7 10 3 3

2 5 14 2 12 2 3 1 2 3 4 1 9 4 1 1 3 16 11 4 11 2 5 3 3 8 14 6 4 9 2 3 6 1 1 8 13 16 3 10 4

3 2 13 3 1 12 2 5 1 5 3 2 2 3 4 9 2 3 2 2 4 10 13 8 9 5 15 4 12 13 1 1 1 6 11 4 2 13 14 16 2

4 8 5 15 9 4 1 15 6 4 6 8 5 16 6 10 1 5 3 1 13 3 7 4 14 3 6 1 7 6 8 15 5 9 4 15 1 11 11 1 14

5 9 7 1 2 1 8 12 3 14 8 10 1 6 12 2 8 13 6 3 3 14 1 12 1 9 8 2 10 4 3 8 15 3 2 6 5 1 12 4 7

6 6 2 7 7 5 10 4 4 7 10 6 11 9 10 4 7 1 10 15 9 1 15 6 12 2 4 3 3 7 6 10 3 10 3 1 8 10 1 11 1

7 1 6 6 4 7 13 3 7 2 2 14 10 2 8 11 4 14 9 8 10 11 4 1 6 12 1 7 5 2 4 2 2 2 8 16 3 4 16 2 10

8 7 1 14 14 15 9 9 9 6 5 12 3 12 3 6 9 15 16 12 1 4 11 5 11 6 5 11 14 1 5 5 7 4 6 2 16 15 8 8 13

9 16 3 9 3 6 15 13 19 9 12 3 6 7 2 19 10 4 15 5 2 5 10 2 13 4 3 5 13 5 14 4 8 5 12 5 9 3 2 9 16

10 10 8 16 5 11 11 7 13 10 9 13 8 13 11 13 6 8 7 10 12 6 6 13 4 11 10 12 8 12 9 12 14 8 13 11 10 14 5 13 8

11 11 12 5 6 16 5 16 16 13 7 5 4 15 5 8 16 10 14 6 5 8 3 10 2 13 11 14 2 14 12 9 16 14 5 7 7 5 4 6 6

12 12 11 4 11 14 12 6 11 12 13 9 15 11 9 12 5 6 4 14 6 9 12 14 5 7 2 20 6 8 10 14 11 12 16 12 14 8 7 15 11

13 4 15 8 8 13 16 11 14 11 14 7 13 18 13 14 11 7 13 11 14 16 14 20 16 10 16 16 15 3 11 13 9 11 9 10 6 2 13 19 12

14 15 19 13 10 18 14 14 5 8 15 11 16 5 16 5 18 11 8 17 7 7 9 16 7 17 9 10 11 10 15 7 10 7 15 9 15 6 17 14 5

15 14 10 10 13 8 17 8 12 16 11 17 14 8 15 16 14 20 12 16 8 12 16 15 15 18 12 8 20 16 13 11 13 13 14 13 12 9 6 5 15

16 13 9 11 15 9 6 10 10 15 20 15 12 14 14 20 15 9 5 9 15 15 8 7 19 15 7 15 9 15 16 16 12 15 7 17 11 20 9 12 20

17 18 16 20 19 10 7 18 8 19 17 16 18 10 18 18 13 12 20 19 19 17 20 11 8 16 20 9 16 17 20 17 20 19 18 14 18 12 20 7 17

18 20 17 18 18 17 19 20 20 18 16 19 17 17 20 7 17 18 17 13 18 20 17 9 17 14 19 19 17 20 19 19 19 18 19 19 19 17 19 18 9

19 17 20 19 20 20 20 17 17 17 18 20 20 20 19 15 19 17 18 20 17 19 19 18 20 19 17 17 19 19 18 18 17 20 20 20 20 18 15 17 19

20 19 18 17 17 19 18 19 18 20 19 18 19 19 17 17 20 19 19 18 20 18 18 17 18 20 18 18 18 18 17 20 18 17 17 18 17 19 18 20 18

Table B.3: Dataset 3 used in simulation study 1 under WAND.
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Ranker

Rank 41 · · · 50

1 11 7 20 13 17 8 15 19 18 18

2 1 11 15 12 13 7 17 10 20 6

3 18 20 16 2 10 1 5 4 1 19

4 15 19 17 17 6 11 7 3 11 1

5 12 15 1 19 18 19 6 12 7 16

6 13 14 14 20 9 6 18 9 2 10

7 20 12 7 6 15 9 14 7 10 14

8 10 2 9 10 1 16 9 15 6 20

9 6 18 13 4 14 14 1 18 15 8

10 7 3 10 16 20 17 4 8 5 13

11 19 9 5 18 16 5 13 6 3 2

12 14 8 19 3 5 13 19 17 4 3

13 4 5 6 9 19 12 2 13 13 15

14 16 4 3 8 2 4 12 14 9 11

15 8 6 2 7 3 20 16 20 19 17

16 2 10 18 5 8 18 3 5 12 5

17 17 1 4 14 11 10 10 11 16 7

18 3 16 12 11 12 2 8 2 14 9

19 9 17 8 15 4 3 11 16 17 12

20 5 13 11 1 7 15 20 1 8 4

Table B.4: Additional 10 uninformative rankings used to form Dataset 4.
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Ranker

Rank 1 · · · 24 25 · · · 36 37 · · · 40

1 1 2 1 13 13 18 1 14 7 9 10 19 1 1 1 13 1 10 7 5 9 1 20 18 1 2 8 9 12 3 16 14 12 5 16 8 7 10 10 7

2 20 1 6 1 6 13 13 4 2 4 1 14 10 11 20 6 10 1 14 15 11 12 14 7 3 8 1 16 8 11 18 12 3 9 13 7 10 19 9 17

3 7 15 10 10 1 1 15 10 1 7 15 3 18 13 3 17 20 18 12 1 1 5 10 13 5 1 5 4 2 8 2 13 8 14 2 4 3 18 6 16

4 2 3 12 15 15 3 5 1 5 14 12 1 7 3 2 20 13 3 11 10 5 13 1 5 11 7 3 7 16 4 5 16 13 4 5 2 6 2 2 18

5 17 18 14 7 16 17 2 15 18 18 14 17 15 7 7 5 9 13 6 12 10 18 13 4 2 4 17 17 20 2 8 5 17 2 20 3 12 7 3 6

6 10 19 13 4 9 20 7 6 6 13 6 10 9 18 17 14 2 20 13 9 19 4 18 12 12 9 4 11 3 1 1 2 2 7 1 9 1 17 5 8

7 4 20 4 9 7 4 10 7 12 1 17 4 14 14 13 12 6 12 2 7 14 7 3 10 10 5 2 5 5 16 3 7 9 13 4 11 17 9 19 2

8 19 7 18 11 11 15 6 13 3 15 13 20 20 6 14 1 15 5 1 14 6 9 15 6 6 3 16 2 1 5 7 11 4 3 18 10 15 4 20 12

9 12 14 3 17 4 6 9 17 14 16 9 9 3 9 4 11 7 9 17 2 4 17 6 14 7 14 11 1 6 9 20 4 10 16 11 5 13 3 16 3

10 14 10 19 20 17 19 4 20 10 6 7 13 13 15 6 19 12 19 4 3 7 15 4 9 9 12 7 12 10 14 10 8 1 12 3 16 2 13 1 19

11 9 12 15 12 20 16 14 9 13 12 4 7 5 12 19 10 18 7 19 6 13 6 7 11 15 16 20 8 11 12 11 9 16 8 10 1 18 8 15 13

12 15 4 5 6 3 7 8 12 17 5 19 12 17 4 12 4 19 14 15 20 12 14 17 1 8 11 12 3 13 7 4 15 5 15 19 14 8 6 12 10

13 6 13 2 2 10 10 20 19 16 20 3 5 2 2 9 18 11 2 3 13 15 3 12 2 4 17 15 19 4 6 14 3 18 18 14 19 11 5 7 14

14 5 6 7 3 12 12 11 3 20 2 18 2 6 5 18 9 4 6 9 11 2 10 2 20 14 15 9 14 14 10 13 6 14 6 8 20 19 14 18 5

15 18 11 20 14 14 11 12 2 4 3 2 6 12 10 11 16 5 11 10 4 3 11 9 15 17 13 14 20 9 19 6 1 7 1 9 12 9 15 11 1

16 13 5 17 18 2 14 18 5 9 10 20 15 4 19 10 15 14 15 18 17 18 2 5 3 20 19 10 18 7 15 15 18 11 19 12 13 5 20 17 20

17 3 9 9 5 18 5 17 11 11 19 11 11 19 20 15 2 17 17 5 18 17 19 11 17 18 18 6 10 17 20 9 10 15 11 7 17 20 16 14 9

18 11 17 11 19 19 2 19 16 15 17 5 18 11 17 5 7 3 4 20 19 16 16 19 19 16 10 18 6 19 17 12 19 20 10 17 15 16 12 4 11

19 16 16 16 16 5 9 3 18 19 11 8 16 16 8 16 3 16 8 16 8 8 8 16 16 19 20 13 15 15 13 17 20 19 17 15 6 14 11 13 4

20 8 8 8 8 8 8 16 8 8 8 16 8 8 16 8 8 8 16 8 16 20 20 8 8 13 6 19 13 18 18 19 17 6 20 6 18 4 1 8 15

Table B.5: Dataset 5 used in simulation study 2 under WAND. Vertical lines separate the rankings within each different ranker group.
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Appendix B. Datasets

Rank

Ranker 1 9

1 1 5 4 6 2 7 3 9 8

2 1 3 2 6 7 5 4 8 9

3 1 6 4 7 3 2 8 5 9

4 1 6 7 3 2 5 4 8 9

5 2 7 4 3 9 5 1 6 8

6 2 3 5 8 4 1 6 7 9

7 2 1 5 3 4 7 8 6 9

8 2 3 5 1 6 8 9 4 7

9 2 8 3 1 4 6 5 7 9

10 2 3 1 4 9 5 8 6 7

11 2 7 4 1 8 6 5 3 9

12 3 2 1 8 4 5 7 6 9

13 3 1 6 7 8 4 9 5 2

14 3 1 5 4 7 8 2 9 6

15 3 2 4 8 5 9 1 6 7

16 4 8 5 7 1 9 2 3 6

17 4 5 8 9 1 7 6 3 2

18 4 8 5 9 3 2 6 7 1

19 5 4 7 8 9 2 3 6 1

20 5 4 2 7 8 9 3 1 6

21 5 2 9 8 4 7 1 3 6

22 5 7 4 9 8 3 2 1 6

23 5 4 9 7 3 2 8 1 6

24 5 4 9 8 3 7 2 1 6

25 5 4 2 8 9 3 1 7 6

26 5 7 8 1 4 9 2 6 3

27 5 4 9 7 1 2 8 3 6

28 1 4 5 8 9 7 6 2 3

29 6 1 8 4 2 3 7 5 9

30 6 1 4 3 2 5 8 7 9

31 6 3 2 5 1 7 8 9 4

32 7 4 8 1 2 3 6 5 9

33 7 5 4 8 1 9 2 6 3

34 7 4 2 8 6 1 3 5 9

35 7 5 8 4 2 9 3 1 6

36 7 1 5 4 3 2 6 8 9

37 7 4 5 8 1 9 6 2 3

38 9 5 3 4 7 8 2 1 6

39 9 4 8 5 1 2 3 7 6

Entity No 1 2 3 4 5 6 7 8 9

Area SOC EDU CLI MAT EXP CUL IND TST PHY

Table B.6: Roskam’s psychology data
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Professionals Avid Fans Fans Infrequent Watchers Not-interested Individuals

Entity No Team 1 · · · 6 7 · · · 12 13 · · · 18 19 · · · 25 26 · · · 34

1 Heat 1 9 1 1 1 1 1 1 4 6 1 6 6 1 4 1 6 1 6 1 6 1 9 6 1 6 22 6 26 28 1 1 1 10

2 Thunder 9 1 2 9 2 10 2 2 1 2 4 2 4 6 1 2 11 6 18 6 4 2 4 1 2 1 5 4 11 2 25 4 6 1

3 Spurs 2 2 9 2 10 2 6 11 2 1 6 1 10 4 10 4 1 4 1 19 9 4 3 18 6 10 9 10 10 18 8 8 21 16

4 Celtics 10 10 10 10 9 9 4 10 11 4 10 10 26 8 2 3 4 2 10 4 1 6 1 11 4 4 14 1 23 8 9 6 5 23

5 Clippers 4 5 13 3 5 4 10 3 3 3 11 4 18 26 3 15 21 9 3 14 26 26 6 8 14 18 6 18 15 10 7 10 9 21

6 Lakers 6 11 5 6 6 5 3 5 6 10 22 3 14 3 18 9 9 8 22 18 20 3 30 3 8 29 7 8 8 19 14 14 27 11

7 Pacers 3 6 6 12 11 3 15 6 9 9 27 5 24 18 6 6 2 29 20 20 23 23 13 27 11 15 8 27 21 23 20 11 11 18

8 76ers 5 12 12 11 3 6 7 4 10 5 13 9 16 20 9 28 8 10 26 9 3 20 20 25 15 11 28 25 12 11 6 7 13 15

9 Mavericks 11 13 11 4 4 13 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 Bulls 12 3 4 5 13 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

11 Knicks 14 4 3 14 12 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

12 Grizzlies 15 14 15 17 15 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

13 Nuggets 17 7 8 13 7 11 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

14 Magic 7 17 7 7 14 17 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

15 Hawks 8 18 17 8 8 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

16 Jazz 19 8 18 18 17 19 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

17 TrailBlazers 21 19 14 19 18 18 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

18 Rockets 16 15 24 15 24 15 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

19 Bucks 13 21 20 22 20 16 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

20 Suns 20 23 19 21 19 22 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

21 Nets 18 22 26 20 26 20 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

22 Warriors 22 20 23 23 22 25 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

23 Timberwolves 23 16 22 24 23 21 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

24 Hornets 28 26 21 25 21 23 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

25 Pistons 25 25 25 27 25 24 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

26 Kings 29 28 16 26 29 26 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

27 Wizards 24 27 29 16 27 27 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

28 Raptors 27 24 27 28 16 28 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

29 Cavaliers 26 29 28 29 30 29 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

30 Bobcats 30 30 30 30 28 30 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Table B.7: NBA data
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Ranker

Rank 1 · · · 10 · · · 20 · · · 30 · · · 40

1 7 10 5 9 2 3 1 6 10 4 7 9 1 4 3 5 7 1 9 9 1 4 8 3 7 10 9 10 8 1 2 10 1 7 9 9 4 9 6 10

2 6 8 2 8 5 8 8 2 8 2 6 5 8 2 5 8 6 8 2 2 8 6 4 2 5 8 2 2 2 2 1 8 8 5 2 8 2 2 7 8

3 10 1 3 7 9 10 10 9 3 10 5 4 5 10 9 9 1 9 10 1 9 7 3 9 10 7 3 1 1 7 3 9 5 10 5 6 9 3 3 1

4 3 6 1 3 8 4 2 1 5 6 4 1 9 1 2 4 4 4 7 5 5 9 7 1 1 6 6 7 7 9 8 3 4 3 3 3 5 5 1 5

5 1 5 6 2 1 1 6 10 6 7 1 6 6 8 6 1 8 6 8 3 3 5 10 4 2 3 8 4 4 4 6 1 2 4 6 5 10 8 8 4

6 5 9 8 6 4 7 9 4 4 5 2 8 7 5 4 10 2 2 5 6 4 3 6 10 3 2 10 5 3 5 10 4 9 8 7 10 7 4 5 2

7 4 7 10 1 10 9 7 5 1 8 8 10 3 7 8 6 9 10 3 4 7 1 5 5 6 4 4 3 10 8 7 7 10 1 1 7 3 7 9 9

8 2 2 4 5 6 2 5 8 2 1 9 2 2 6 7 2 3 7 4 8 2 2 2 8 8 5 7 8 9 6 4 2 6 2 8 2 8 6 4 6

9 8 3 7 10 7 5 4 3 9 9 3 3 10 9 10 7 5 3 1 10 6 8 1 6 4 1 1 9 5 10 9 6 3 9 10 4 1 1 10 3

10 9 4 9 4 3 6 3 7 7 3 10 7 4 3 1 3 10 5 6 7 10 10 9 7 9 9 5 6 6 3 5 5 7 6 4 1 6 10 2 7

Ranker

Rank 41 · · · 50 · · · 60 · · · 70 · · · 80

1 7 6 1 9 1 4 7 10 5 7 1 3 1 9 7 2 1 3 4 9 7 3 4 9 9 4 6 3 7 9 10 9 10 8 3 10 9 2 1 7

2 2 2 5 8 6 2 6 8 2 2 8 2 2 2 8 8 2 2 8 10 8 6 6 7 2 6 2 2 4 8 4 2 8 2 2 6 1 6 6 6

3 5 3 6 10 5 10 3 3 9 3 3 7 9 5 3 4 10 7 9 5 4 10 10 10 7 1 8 9 1 1 9 7 3 10 5 7 7 4 10 3

4 3 5 3 4 4 3 4 9 7 1 9 10 8 4 2 9 3 8 7 3 6 7 1 4 8 9 1 5 3 7 1 4 9 6 4 5 2 1 8 10

5 1 8 8 7 2 5 1 6 8 10 6 4 5 3 5 5 5 1 10 2 9 9 9 3 4 7 10 7 2 5 6 5 2 9 8 2 10 5 5 2

6 6 4 7 6 7 7 9 2 4 4 7 9 7 6 6 7 8 5 5 8 2 4 8 8 6 5 9 4 5 4 3 6 7 5 10 1 3 7 7 8

7 4 9 4 3 9 6 2 5 1 5 5 5 3 7 9 3 7 10 6 1 3 1 2 2 1 8 3 1 8 3 8 1 4 7 7 4 8 3 2 4

8 8 1 2 2 8 8 5 7 6 6 2 6 6 10 10 6 6 6 2 4 5 2 7 6 5 2 4 8 9 6 5 8 6 4 6 8 6 8 4 5

9 9 7 10 1 3 1 10 1 3 8 4 8 4 8 1 10 4 4 3 7 10 5 3 5 10 3 5 6 10 10 2 3 5 1 9 3 4 10 3 9

10 10 10 9 5 10 9 8 4 10 9 10 1 10 1 4 1 9 9 1 6 1 8 5 1 3 10 7 10 6 2 7 10 1 3 1 9 5 9 9 1

Table B.8: Dataset 6 used in the simulation studies for the Bayesian analysis of the Extended Plackett–Luce model.

225



Appendix B. Datasets

Ranker

Rank 81 · · · 90 · · · 100

1 9 6 9 9 10 4 9 3 7 10 10 5 9 5 7 3 5 10 7 8

2 8 8 8 2 2 2 2 2 2 5 8 6 2 8 9 2 2 2 2 10

3 7 5 1 4 9 6 1 6 4 8 9 1 7 7 1 10 4 5 8 9

4 10 1 5 6 5 3 5 4 6 4 6 9 6 4 3 5 1 4 4 6

5 5 3 2 3 8 7 6 9 3 2 1 8 10 10 8 8 8 7 1 7

6 2 10 3 1 4 8 7 1 1 9 4 7 1 6 2 7 7 8 6 4

7 3 2 10 5 1 10 3 10 5 1 2 3 5 9 10 6 9 9 10 2

8 1 4 7 7 7 5 8 8 8 7 3 2 8 2 5 4 6 6 5 5

9 4 7 4 8 6 9 4 7 9 6 5 4 4 3 4 9 10 3 9 1

10 6 9 6 10 3 1 10 5 10 3 7 10 3 1 6 1 3 1 3 3

Table B.9: Additional 20 rankings used to form Dataset 6
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