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Abstract

Ranked data are central to many applications in science and social science and arise when
rankers (individuals) use some criterion to order a set of entities. Such rankings are
therefore equivalent to permutations of the elements of a set. The majority of models
for ranked data rely on a strong assumption of homogeneity, such as all rankers sharing
the same view on preferences of the entities. The aim of this thesis is to develop a richer
class of models which can reveal any plausible subgroup structure within the data both

for rankers and entities.

We begin by looking at the Plackett—Luce model, an extension of the Bradley—Terry model
for paired comparisons. First this model is extended to cater for when rankers do not report
a full ranking of all entities. For example, they might only report their top five ranked
entities after seeing some or all entities. Amnother issue is that most work in this area
assumes that all rankers are equally informed about the entities they are ranking. Often
this assumption will be questionable and so we develop a model which allows rankers to
have differing reliability. This model, the Weighted Plackett—Luce model, allows for such
heterogeneity through a novel two component mixture model defined by augmenting the
Plackett—Luce model.

The idea that rankers may be heterogeneous in their beliefs about entities is not new.
However, there might be groups of rankers with each group sharing the same view about
entities. Generally the number of such groups will not be known and so we investigate
the possibility of such group structure by using a Dirichlet process mixture of Weighted
Plackett—Luce models. It can also be useful to assess whether some entities are exchange-
able, that is, whether there is also entity clustering within each ranker group, an issue
that has received little attention in the literature. We extend the model further to explore
both ranker and entity clustering by adapting the Nested Dirichlet process. The resulting
model is a Weighted Adapted Nested Dirichlet (WAND) process mixture of Plackett—Luce
models. Posterior inference is conducted via a simple and efficient Gibbs sampling scheme.
The richness of information in the posterior distribution allows for inference about many
aspects of the clustering structure both between ranker groups and between entity groups
(within ranker groups), in contrast to many other (Bayesian) analyses. The methodology

is illustrated using several simulation studies and real data examples.

Finally, we relax the assumption of a known ranking process underpinning these models
by looking at the recently developed Extended Plackett—Luce model. This model allows
inference for the order in which a homogeneous set of rankers assign entities to ranks.
Analysis of this model is challenging but we have found that using Metropolis coupled
Markov chain Monte Carlo (MC?) methods can provide adequate mixing over the high

dimensional space of all possible permutations when the number of entities is not small.
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Chapter 1

Introduction

1.1 Introduction

Although often unnoticed, rankings appear in many aspects of everyday life. People rank
objects all the time, be it based on personal preference or past experiences; perhaps its
our favourite movies, online games, sports teams or even which coffee shop we prefer to
visit, the list goes on. In the data age that we live, the ability to analyse ranked data
is becoming ever more important. For example, large organisations are interested in the
preferences of consumers for advertising purposes and online search engines aim to rank
their results in an optimal manner. Ranked data are also a common result of experiments
which aim to uncover the attitudes or preferences of a cohort to a particular set of items
(Vigneau et al., 1999; Yu et al., 2005; Gormley and Murphy, 2006; Vitelli et al., 2018).
Sporting events can also give rise to rankings, with this being particularly common in
horse/motor racing or round-robin tournaments where the outcome is an ordering of the
teams or individual competitors; see, for example, Henery (1981), Stern (1990) and Caron
and Doucet (2012).

This thesis is concerned with preference orderings which arise when rankers provide a
ranking or ordering for a set of entities according to some criterion. Typically, rankers
will be individuals although this framework is fairly general and groups, organisations or
even sensors could be regarded as rankers, amongst others. There exists almost infinite
possibilities for the entities, be it political candidates, world cuisines, universities and
so on. Two common representations of ranked data exist which, using the terminology
of Marden (1995), we call the rank and order vector. Both representations portray the
same information and so when modelling ranked data one must be careful about which
representation is used. Formally, a rank vector y = (y1,...,yx) of K entities is a list,

where the entry y; indicates the rank given to the ¢th entity. In contrast, an order vector
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Rank vector Order vector

Entity vy  Entity x
British 3  Indian 1
Chinese 2  Chinese 2
Italian 4  British 3
Indian 1 Italian 4
Thai 5 Thai 5

Table 1.1: Rank and order vector representations of the same ranking

x = (x1,...,xK) of K entities can be thought of as a preference list where the entry x;
contains the label of the entity in position 7 (with position 1 being most preferred). For
example, suppose we ask a ranker to order 5 popular world cuisines, British, Chinese,
Italian, Indian and Thai in terms of their preference. If the ranker prefers Indian, then
Chinese, then British, then Italian with Thai the least preferred then Table 1.1 shows the
corresponding rank and order vectors — note that the rank vector depends on the order in
which the entities are listed. We adopt the order vector representation and use the terms

ranking and ordering interchangeably to denote an order vector x.

Irrespective of the adopted format, rankings are multivariate observations and moreover
any particular ranking can be thought of as a permutation of the integers 1 to K; this
perspective can be useful for the development of models for such data. Marden (1995) and
more recently Alvo and Yu (2014) provide an overview of the models and statistical liter-
ature for ranked data. Many types of models for ranked data exist including parametric,
stagewise and distance-based models. Distance-based models rely on the assumption that
a modal ranking (of the entities) exists and that rankers are expected to report rankings
which are, in some sense, “close” to this modal ordering. Although the distance between
two permutations is not well defined, a choice must be made in order to fit this type of
model. Two common choices of distance are Kendall’s and Spearman’s distance and these
give rise to Mallows’ (1957) ¢ and Mallows’ § models respectively; details of these models
(amongst others) can be found in Flinger and Verducci (1986). Bayesian inference for
distance-based models can be problematic, especially when the modal ordering is assumed
to be unknown, due to the prohibitive nature of an intractable normalising constant which
must be approximated in most cases. Further, distance-based models become increasingly
more challenging to fit as the number of entities increases due to the explosion of the size
of permutation space. For these reasons we will not consider distance-based models and

instead consider parametric ranking models.

Several parametric distributions over the set of permutations have been developed. The

so-called stagewise ranking models are examples of parametric rankings models. Stage-
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wise models are underpinned by the idea that the ranking process, that is, how a ranker
constructs their ordering, can be decomposed into K — 1 (dependent) stages. In this thesis
we focus predominantly on the popular Plackett—Luce model (Luce, 1959; Plackett, 1975)
which assumes the forward order, that is, the assignment of entities to positions in the
ranking proceeds sequentially from the most-preferred to the least-preferred item. If the
forward ranking process assumption is not plausible then the Reverse Plackett—Luce model
provides an alternative choice and both Graves et al. (2003) and Henderson and Kirrane
(2018) found this model was more appropriate when modelling NASCAR and Formula 1
races respectively. Further, Mollica and Tardella (2014) proposed the Extended Plackett—
Luce model which allows the assumption of an explicit ranking process to be relaxed.
Inference for this model is challenging, particularly when the number of entities is not
small, as the posterior distribution is extended to also be over permutation space. The
current Bayesian solution proposed by Mollica and Tardella (2018) relies on a restricted

sample space.

Most models for ranked data treat the information provided by each ranker equally, that
is, they assume that each ranker is equally informative. This is a rather strong assumption;
it is easy to imagine a situation where some rankers are significantly more informed about
the entities in comparison to fellow rankers. Deng et al. (2014) aimed to address this issue
and used ranker reliability as part of their BARD (Bayesian Aggregation of Ranked Data)
solution. Further, the majority of models for ranked data rely on strong assumptions about
the homogeneity of ranked data; the idea that there is an overall consensus view is one such
example. More flexible models have been proposed with Gormley and Murphy (2008a,b,
2009) and Mollica and Tardella (2014, 2016) considering finite mixtures of Plackett-Luce
and related models to allow for different preferences between rankers. This approach was
also taken by Vitelli et al. (2018). However they adopted a distance-based model — namely
that by Mallows (1957) — rather than the Plackett-Luce model. More flexible infinite
mixture models have also been proposed and these approaches allow the number of groups
to be inferred rather than be fixed by the analyst; see, for example, Caron et al. (2014).
Although these types of models allow for rankers to express different beliefs they also
assume that each ranker group can distinguish between each of the entities. However, it
is possible that a (homogeneous) group of rankers may not be able to distinguish between
some entities, that is, they might believe that some entities are exchangeable. This is
an aspect which is often overlooked within the literature and although methods have
been proposed (de Leeuw and Mair, 2009; Choulakian, 2016) they often rely on ad-hoc

summaries as opposed to a model based approach.
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1.1.1 Thesis aims

The main aim of this thesis is to provide flexible models which allow the exploration of
(possible) subgroup structure within ranked data. More specifically we aim to identify
homogeneous groups of individuals who share similar beliefs along with discovering how
some, or indeed all, of these groups may struggle to distinguish between certain entities.
Further, we aim to construct models that allow for potential heterogeneity between the
abilities of rankers. Emphasis will be placed on efficient inference schemes which enable us
to fit our models, under the Bayesian paradigm, in a reasonable amount of computational
time. In later sections we increase modelling flexibility further by relaxing the assumption
of an explicit ranking process. This is achieved through considering the Extended Plackett—
Luce model which has a parameter (representing the ranking process) that is an element of
the set of all permutations. Constructing Bayesian inference schemes that can effectively
explore large discrete spaces is not straightforward. This problem is even more challenging
when such spaces do not exhibit a natural distance measure (permutation space) and so,
in this thesis, we aim to provide an effective solution to this issue for reasonably large

spaces.

As a starting point, we consider the standard Plackett—Luce model and show how infer-
ences from this model can be affected by even a modest amount of spurious rankings. This
result motivates the idea that a suitable model for ranked data should be flexible enough
to allow for (potential) heterogeneity between rankers abilities. We propose the Weighted
Plackett—Luce model (WPL) which is formed by augmenting the standard Plackett—Luce
model with an additional parameter that allows us to handle differing ranker abilities.
Taking the WPL model as our building block we then relax the common assumption
that the data come from a homogeneous group of rankers, in which each ranker only has
fairly minor differences from an overall consensus view. This is achieved by appealing to
Bayesian non-parametrics; specifically we propose a Dirichlet process mixture of Weighted
Plakcett-Luce models. We then consider the notion that a (homogeneous) group of rankers
may not be able to distinguish between some entities, that is, they believe some entities
are exchangeable. To allow for this we consider an alternative non-parametric prior dis-
tribution which allows entities to cluster together. Combining both of these aspects into a
single model requires a two-way clustering technique and we focus on the Nested Dirichlet
Process (NDP) (Rodriguez et al., 2008). The NDP is not quite suited to clustering en-
tities and so we propose the Adapted Nested Dirichlet process (ANDP) prior. Bayesian
inference proceeds under both marginal and conditional approaches, each of which has
associated pros and cons. Numerous analyses are preformed on simulated and real data
and these show that our model performs well in different scenarios. These studies also

highlight the rich (posterior) information available to the analyst as a result of fitting our
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model.

Until now each of the proposed models has relied on the underlying assumption of the
forward ranking process. In the final chapter we relax the assumption of a known ranking
process by looking at the Extended Plackett-Luce model (Mollica and Tardella, 2014). Af-
ter introducing the Extended Plackett—Luce model, a natural question arises: “is it possible
to identify the ranking process given a set of rankings?”. We motivate the identifiability
of the ranking process through several examples and consider a maximum likelihood ap-
proach to cement this idea further. Constructing suitable (Bayesian) posterior sampling
schemes for this model is challenging and, to the best of our knowledge, the only current
solution is given by Mollica and Tardella (2018) but this relies on a restricted parameter
space. Our aim is to develop MCMC methods capable of exploring the entire parameter
space and several sampling algorithms are presented, each of which has varying degrees of
success. We found that our final algorithm, which uses Metropolis coupled Markov chain
Monte Carlo (MC3), worked well and both the methodology and the MC? algorithm are

described in detail.

1.1.2 Outline of thesis

The remainder of this thesis is organised as follows. In the following sections we pro-
vide a brief introduction to Bayesian inference and Markov chain Monte Carlo sampling
techniques. A generic Metropolis-Hastings algorithm is outlined and the Gibbs sampler
is shown to be a special case. Methods for diagnosing convergence of a Markov chain are
discussed and we also consider sensible strategies for handling MCMC output to ensure
we obtain a reasonable number of samples from the density of interest. This chapter
concludes with a short discussion of data augmentation as this is a particularly useful
technique which allows us to use full conditional distributions in closed form when the

likelihood is non-standard.

In Chapter 2 we consider the analysis of homogeneous ranked data, that is, we assume
that all rankers share similar beliefs about the preference of entities. The Plackett—Luce
model (Luce, 1959; Plackett, 1975) and its underpinning assumptions are described in
detail. The vanilla Plackett—Luce model is then extended to cater for when rankers do not
report a full ranking of all entities (top and partial rankings) and the associated underlying
data generating mechanism is outlined. An efficient MCMC scheme is constructed and
we consider a brief simulation study to give a flavour for how posterior inferences can be
made. The second half of Chapter 2 is concerned with the notion of ranker reliability. Most
work in this area assumes that all rankers are equally informed about the entities they are
ranking. Often this assumption will be questionable and so we develop the novel Weighted

Plackett—Luce model as this allows us to model rankers with differing reliability through a
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two component mixture model. Several simulation studies are considered and we compare

posterior inferences from both the standard and Weighted Plackett—Luce models.

Chapter 3 focusses on increasing modelling flexibility so that we can effectively handle
heterogeneous ranked data. To do this we appeal to Dirichlet process mixture mod-
els which are explored in detail using two well-known representations. Two models are
presented. The first considers the idea that rankers may be heterogeneous in their be-
liefs about entities. This idea is not new and both finite and Dirichlet process mixtures
of (standard) Plackett—Luce models are well explored within the literature. We extend
this approach slightly by building a model that comprises a Dirichlet process mixture
of Weighted Plackett—Luce models. The second model we present is novel and aims to
explore whether some entities are exchangeable, that is, whether rankers find it difficult
(or impossible) to distinguish between certain groups of entities. This issue has received
little attention in the literature and we explore this idea by considering a Dirichlet process
mixture over the skill parameters where the Weighted Plackett—Luce model is taken to
be the ranking distribution. The effectiveness of our model to detect groups of entities is

assessed through simulation studies and these conclude the chapter.

In Chapter 4 we combine the aspects of each model presented in the previous chapter, that
is, we incorporate both ranker and entity clustering within a single model by appealing to
two-way clustering techniques. We focus on the Nested Dirichlet process (Rodriguez et al.,
2008) and make a necessary adaptation so that this prior distribution can be used within
a ranked data context. The resulting model is a Weighted Adapted Nested Dirichlet
(WAND) process mixture of Plackett-Luce models. Both a conditional and marginal
approach to posterior inference are considered with efficient algorithms provided in each
case. The methodology is illustrated using several simulation studies and in Chapter 5 we
consider two real data examples. For the first real data analysis we use a data set originally
collected in 1968 by Roskam and more recently studied by de Leeuw (2006). These data
consist of rankings obtained from psychologists within the Psychology Department at
the University of Nijmengen (Netherlands). Each psychologist was asked to rank each
of 9 sub-areas according to how appropriate they are to their work. The second real
data analysis considers a data set taken from Deng et al. (2014) which involved rankings
of NBA (National Basketball Association) teams. In their paper, Deng et al. propose a
model named “Bayesian Aggregation of Ranked Data” (BARD) and we compare inferences
from the WAND model to those from BARD.

In Chapter 6 we relax the assumption of a known ranking process by looking at the
recently developed Extended Plackett-Luce model (Mollica and Tardella, 2014). This
model contains an additional free parameter (which is a permutation) that allows us

to learn about the order in which a homogeneous group of rankers assign entities to
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ranks. Constructing a suitable (Bayesian) posterior sampling scheme for this model proved
challenging. However we found that using Metropolis coupled Markov chain Monte Carlo
(MC?) worked well and both the methodology and the MC? algorithm are described in
detail.

Finally, our conclusions are drawn in Chapter 7 and we also provide some suggested topics

for future work.

1.2 Bayesian inference

In this thesis we work almost exclusively within the Bayesian framework (Bernardo and
Smith, 1994). In this setting all unknown quantities (parameters, latent variables and
so on) are considered to be random variables. A joint probability distribution describes
the relationship between the unknown quantities and the (observed) data. The posterior
distribution is the (conditional) distribution obtained by conditioning on the observed
data and it is this distribution which allows us to make inferences about the unknown
quantities (given the data). The posterior is the result of our prior beliefs about the

unknown quantities being updated by the observed data through the likelihood function.

1.2.1 Bayes’ Theorem

Suppose we have some data D = {x1,...,®,} and we are interested in learning about a
collection of K unknown quantities A = (A1,...,Ax). The likelihood L(A|D) = 7(D|A)
is the probability density of the data given the parameters but regarded as a function of
the parameters for known data. Note that a “model” is typically specified by a partic-
ular likelihood function and this describes how the data are related to the parameters.
Given we are working within the Bayesian framework, we must also summarise our (prior)
beliefs about the unknown quantities through the choice of a suitably defined prior distri-
bution 7(A). The posterior w(A|D) is the density that reflects our updated beliefs about

the parameters A having observed the data D and follows from Bayes’ Theorem as

m(DIA)T(A)

m(AID) = T

(1.1)
Note that the denominator, m(D) = [ w(D|A)w(A)dA, is the marginal likelihood and is
obtained by integrating out (marginalising over) the parameters. Clearly the marginal
likelihood does not depend on the parameters A and so this is simply a normalising constant

which ensures the posterior density integrates to one. It follows that Bayes’ Theorem can
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be written as
m(A|D) x w(D|A)7(A) (1.2)

and so the posterior is proportional to the product of the prior and the likelihood.

Typically, the marginal likelihood 7(D), and therefore the posterior density 7(A|D), is not
available in closed form, that is, the posterior is not a standard distribution that can be
written down analytically with known marginal distributions and moments. In such cases
we must appeal to other methods which allow us to compute the posterior distribution.
One of the most popular methods, and the one we shall focus on, is Markov chain Monte

Carlo — this is the topic of the next section.

1.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a computational technique that can be used to
obtain realisations from the posterior density when it is not available in closed form.
In fact, MCMC can be used to obtain realisations from any distribution of interest and
so can also be useful for drawing samples from generic high-dimensional distributions.
The methodology underpinning MCMC is well studied with countless books and articles
published within the literature; see, for example, Chib and Greenberg (1995), Brooks
(1998) and Gamerman and Lopes (2006). The general idea is to construct a Markov chain
which has stationary distribution 7 (-), which is also known as the target distribution.
Then, given any initial starting point, providing we run the chain long enough so that
it converges (to the target distribution) we can repeatedly update the chain to generate
(dependent) samples from the target 7(-). Clearly within a Bayesian inference setting we
wish the target to be the posterior m(A|D). In what follows we discuss a fundamental
algorithm, and an associated special case, which allows us to construct Markov chains

where the target distribution is the posterior distribution.

1.3.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, first proposed by Metropolis et al. (1953) and then
further generalised by Hastings (1970), is considered to be the fundamental algorithm used
to construct MCMC schemes which target the posterior 7(A|D). The notion of a transition
kernel, or proposal density, is a key idea behind the Metropolis-Hastings algorithm. The
(arbitrary) proposal density is denoted g(A*|A) and describes, probabilistically, how to
move from a current state A to a proposed state A*. The (Metropolis-Hastings) algorithm
that follows will successively generate a sequence of values A, A@ .. which form a
Markov chain with target distribution 7 (A|D).
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1. Let the iteration counter be ¢ = 1 and initialise the chain to A(®) = ()\go), e )\gg))
which falls somewhere in the support of 7(A|D), that is, so that 7(A®|D) > 0.

2. Draw A* from the proposal density g(A*|A¢—D).

3. Evaluate the acceptance probability, p = min(1, A), where

(D) g(ACTIIAY)
r(AFI[D) © g(A7[AT)

4. Let A®) = A* with probability p; otherwise let A®) = A(=1),

5. Let t -t + 1 and return to step 2.

Typically we will not be able to evaluate the normalising constant 7(D) of the posterior
density (1.1) and so we might think that we are also unable to evaluate the acceptance
rate A. However, as the posterior density features in both the numerator and denominator
of the acceptance rate we only need to know the posterior distribution up to a constant of
proportionality. It follows that, by using (1.2), we can equivalently express the acceptance

probability from Step 3 as p = min(1, A) where

__ m(DA)r(AY) g(A“" VA%
- T DA(tfl) T A(tfl) A* A(tfl) :
(D q

Note that the choice of proposal density g(A*|A) is completely arbitrary and the Markov
chain will target the correct posterior irrespective of the choice made (assuming the support
of the proposal distribution is no smaller than the support of the posterior, that is, ¢(-|A) >
0V A where 7(A|D) > 0). However, some proposal distributions are better than others
in the sense that they lead to a chain which converges rapidly and mixes well, that is, a
chain that efficiently explores the support of 7(A|D). We now (briefly) describe some of the
more common choices of proposal distribution before moving on to discuss the “tuning”

of Metropolis-Hastings algorithms in Section 1.3.2.

Random walk Metropolis-Hastings

The random walk Metropolis-Hastings algorithm is where the proposed value is of the
form A* = A + w where w is a (vector) of random innovations. Generally w is chosen to
follow a (multivariate) normal distribution with 0 mean and diagonal covariance structure
and so q(A*|A) ~ Ng (A, 02Zk).
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Symmetric proposals

A symmetric proposal is any proposal distribution where q(A*|A) = g(A|A*) for all A*, A
in its support. It follows that, for this type of proposal distribution, the acceptance rate
simplifies to A = 7(A*|D)/n(A|D) and so the acceptance probability is independent of
the proposal density. Note that the random walk proposal (above) is an example of a

symmetric proposal distribution.

Log-normal random walk

A log-normal random walk proposal is particularly useful when the parameters of in-
terest are constrained to be strictly positive. The proposed value is of the form A* =
exp(log A + w) where w is a random innovation. It follows that, in this case, the proposal
distribution is q(A*|A) ~ LNk (log A, 02Tk ) where LNk denotes the K-dimensional log-
normal distribution. The log-normal distribution is not symmetric around its mean so
the proposal ratio q(A|A*)/q(A*|A) must be computed in order to evaluate the acceptance
rate A. It follows that

Independence proposals

An independence proposal is a mechanism for generating proposed values A* that are
independent of the current state of the chain A. It follows that ¢(A*|A) = ¢(A*) and the
proposal ratio simplifies to g(A)/q(A*). Further, the acceptance rate in Step 3 of the MH

algorithm can be written as

__7(A"[D) Xq(A“‘”)
r(ACD|D) T q(A)

under this proposal mechanism and so it is clear that we can increase the acceptance
probability by choosing ¢(A*) to be as similar as possible to 7(A*|D). Note that if
q(A*) = w(A*|D) then A = 1 and the proposed value will always be accepted — per-
haps not surprising given the proposed value is from the posterior. This idea leads to the

Gibbs sampler; further details are provided in Section 1.3.3.

Componentwise updates

In what has been discussed so far we have considered the proposal A* to contain pro-

posed values for all K unknown quantities. However, in practice, it can be difficult to

10
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construct a suitable (K-dimensional) proposal distribution, particularly when the num-
ber of (unknown) parameters is large. A solution to this issue is to consider com-
ponentwise updates, that is, to update each unknown quantity one-at-a-time (condi-
tional on the remaining unknown quantities remaining fixed at their current values).
Let Ay = (A,..oy Ak—1, Akt1,---, Ak) be the collection of all unknown quantities ex-
cluding \; then a Metropolis-Hastings algorithm to target the posterior w(A|D) using

componentwise updates is as follows.

1. Let the iteration counter be ¢t = 1 and initialise the chain to A(®) = ()\go), cee )\gg))
which falls somewhere in the support of w(A|D), that is, so that w(A®)|D) > 0.

2. Let A’ = A=Y be the current state of the chain, then for k =1,..., K

(a) draw A; from the proposal density qx(A;|A})-
(b) evaluate the acceptance probability, pr = min(1, Ag), where

(AL ALD)  ae (N AR)

A T X
k’ = * *
m(A'|D) k(AL A%)

(c) let X, = A; with probability py.
3. Let A) = A",

4. Let t = t + 1 and return to step 2.

Again each (now univariate) proposal distribution gx(-) can be chosen arbitrarily and so a
combination of the previously discussed proposal mechanisms can be used depending on

the unknown quantities of interest.

1.3.2 Tuning Metropolis-Hastings algorithms

Key to the implementation of an efficient Metropolis-Hastings algorithm is the choice
of proposal distribution(s). An efficient algorithm is one that results in a chain which
converges rapidly (to the target distribution) and also mixes well, that is, a chain that
efficiently explores the support of w(A|D). For proposal distributions that depend on the
current state of the chain (i.e. not independence proposals) it should be clear that the
variance of the proposal will determine how the Markov chain explores the sample space.
If the variance is too small then the chain will explore the space slowly as, although the
proposed values are likely to be accepted, they will only move the chain a small distance
from the current state. In contrast, if the variance is too large, then although the proposed

values will be a large distance from the current state only relatively few of the proposed

11
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values will be accepted — the chain will therefore remain “stuck” at the same value for

many iterations, which is inefficient.

Clearly there exists a trade off between the acceptance probability of proposed values
and the distance they allow us to move around the sample space. Given this it would
be useful if we could construct proposal distributions so that the proposed values are a
reasonable distance from the current state and are also likely to be accepted. Roberts
and Rosenthal (2001) suggest that, if the target distribution is Gaussian, the optimal
acceptance probability (that which maximises the expected squared “jumping” distance)
is 0.234. This result was extended to elliptically symmetric targets by Sherlock and Roberts
(2009) with Sherlock (2013) later providing a general set of sufficient conditions for which
the optimal acceptance probability is 0.234. Further, if the proposal distribution is a
normal random walk then it has been suggested by Gelman et al. (1996) amongst others

that the variance of w should be

2.38%Var(A|D)
— %
Of course, in general we will not know the posterior variance matrix Var(A|D), so an

estimate obtained by numerous pilot runs of the algorithm might be used.

Unfortunately there is no hard and fast rule which describes how best to construct suitable
proposal distributions in general. The form of the target distribution affects how proposal
mechanisms perform and so bespoke proposals are typically required for each scenario.
The strategy we suggest is to first choose a proposal distribution which seems sensible
a priori and then perform numerous iterations of the MH algorithm to calculate the
empirical acceptance rate (# proposals accepted/# iterations). If the acceptance rate is
too low/high then decrease/increase the variance of the proposal distribution until the

acceptance rate is ~ 23%.

At the beginning of this section we noted that it is only in scenarios where the proposal
distribution depends on the current state of the chain that the variance (of the proposal
distribution) affects how the Markov chain explores the sample space. By construction
independence proposals do not depend on the current state of the chain and so the optimal
acceptance probability for this type of proposal is not 0.234. In fact for independence
proposals it is advantageous to make the acceptance probability as large as possible, that
is, the optimal acceptance probability is one in this case. In other words, we should aim
to construct a proposal distribution which is as close to the target (posterior) distribution

as possible.

12



Chapter 1. Introduction

1.3.3 The Gibbs sampler

The Gibbs sampler is a special case of the (componentwise) Metropolis-Hastings algorithm
where each of the proposed values A}, are drawn from their corresponding full conditional
distribution. This technique was first proposed by Geman and Geman (1984) in the context
of image processing and only later was it brought to the attention of statisticians by
Gelfand and Smith (1990). The full conditional distribution of the kth unknown quantity
is m(Ag|A_g, D) and is the conditional distribution of Ay given all other unknown quantities,
and the data. It is often the case that, although the posterior 7(A|D) may be intractable,
we can obtain the full conditional distribution for each unknown quantity in closed form

(and therefore sample from them).

Suppose we are in the scenario where we have a complete set of full conditional distribu-
tions, that is, m(Ax|A_g, D) is available in closed form for k = 1,..., K. Let A denote the
current state of the Markov chain and recall from Step 2(b) in the (componentwise) MH

algorithm that the acceptance rate for each unknown quantity & is

New A_i|D) y Qe ( Ak A%)

_n(
A=T00m) )

which we can equivalently express as

T(Ak[A—p, D) (A—k[D)  a(AeAk)
T(A|A—g, D) (A—k|D)  qr(Ap[ k)
~ m(A D) g (Nl AL)
( D)

- X vk
(k) A—k, Qe (Nl Ak)

A =

Now if construct an independence proposal where the proposed value for each unknown
quantity is drawn from its corresponding full conditional distribution, that is, take i (\;) =
T(A;|A—g, D) then it follows that

_ A D) | 7(wfA-k, D)

A, =
P aOwlAE, D) T w(ALA_y, D)

=1

and so any proposed value \; is guaranteed to be accepted (for k =1,..., K).

Using this result we obtain the special case of the Metropolis-Hastings algorithm known
as the Gibbs sampler. If the full conditionals w(Ag|A_g, D) are available in closed form for
k=1,...,K then a Markov chain which targets the posterior 7(A|D) is as follows.

1. Let the iteration counter be ¢ = 1 and initialise the chain to A(®) = (}\go)’ cey )\gg))
which falls somewhere in the support of 7(A|D), that is, so that w(A®)|D) > 0.

2. Obtain a new realisation A(*) = ()\gt), . ,)\g?) from A~ by sampling from the full

13
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conditional distributions

A~ AT A 1y
A~ wa A AT A Dy

A rx AP AP AP D),

3. Let t -+ t+ 1 and return to step 2.

The Gibbs sampler (above) is particularly useful when it is infeasible to directly sample
from 7(A|D) but sampling from 7w(Ag|A_g, D) is straightforward. Moreover, unlike the
standard Metropolis-Hastings algorithm, we need not construct suitable proposal distri-
butions (which can be difficult in practice) as they are simply the full conditional distribu-
tions. The algorithm we have outlined is known as the fized sweep Gibbs sampler and is
often used in practice as it is straightforward to implement. Further generalisations such
as the random sweep Gibbs sampler also exist; see Chapter 5 of Gamerman and Lopes
(2006) for full details.

Metropolis-within-(ibbs

Of course, there is no reason why we need restrict ourselves to either implementing a
Metropolis-Hastings or a Gibbs sampling algorithm. The two sampling methods can be
combined and this gives rise to the so called Metropolis-within-Gibbs algorithm. This
algorithm is simply the componentwise MH algorithm from Section 1.3.1 where a full
conditional distribution is used as the proposal distribution for some unknown quantities
with (arbitrary) proposal distributions being used for the remainder. The Metropolis-
within-Gibbs algorithm is useful when full conditional distributions are only available in

closed form for a subset of the unknown quantities of interest.

1.3.4 Block updates

In practice it is common to update the unknown quantities within an MCMC chain one-
at-a-time, that is, by using either the componentwise MH or Gibbs sampling algorithms.
Although samplers of this kind are typically easier to implement, using single component
updates can give rise to convergence and mixing issues, particularly when some of the
unknown quantities have high posterior correlation. Intuitively if two unknown quanti-
ties A\; and A; (i # j) are highly correlated then constructing a proposal for A; needs to

account for the current value of ;. This could be achieved by using a proposal with a
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small variance but this will lead to a poorly mixing chain. A practical solution to this
problem is to use a block update of such highly correlated parameters, that is, update
numerous unknown quantities simultaneously. In the example above it may be advanta-
geous to generate the proposed “value” (A}, )\;‘) from a (bivariate) proposal distribution
q(A], )\;f|/\i, Aj) and either accept or reject the update to both unknown quantities. Of
course, this idea generalises straightforwardly to block sizes greater than 2 and further
details and discussion can be found in Gamerman and Lopes (2006) and Gelman et al.

(2014) amongst others.

1.3.5 Convergence

Recall that the general idea behind MCMC is to construct a Markov chain which has
the posterior m(A|D) as its stationary (target) distribution. Therefore, given we are only
interested in obtaining posterior realisations, we must ensure that the chain has reached
its stationary distribution before using further generated samples. Once a Markov chain
has reached its stationary distribution it is said to have converged. 1t is well known that
as the number of iterations increases the distribution of the Markov chain tends to the
posterior (stationary) distribution, that is, A®)|D LA A|D as t — oco. Obviously we can
not perform an infinite number of iterations and so it is useful instead to consider how
many iterations are required so that A®|D i A|D; this is known as the burn-in period.
The burn-in period required depends heavily on the form of the posterior distribution
and, to a lesser extent, on where the chain is initialised. Clearly this is going to depend
on the situation of interest. That said, there are methods for detecting when a Markov
chain has not converged. Typically this is done by visual inspection of trace plots showing
how the unknown quantities change over the iterations. If the unknown quantities show
a clear trend over the iterations then this indicates that the chain has not reached its
stationary distribution — in this case the number of iterations (the burn-in period) should
be increased. In contrast, if the trace plots show the unknown quantities moving around
the support of the distribution in a stable manner then this suggests that the Markov chain
has converged. Gelfand and Smith (1990) suggest some additional (informal) checks that
can be useful in assessing convergence and some more formal checks have been suggested
by Geweke (1992), Raftery and Lewis (1992, 1996) and Gelman (1996) amongst others.

Although these checks are useful it is still possible (and unfortunately fairly easy) to
incorrectly assume that a Markov chain has converged, particularly when the stationary
(posterior) distribution is multi-modal. It may be the case that, although the unknown
quantities show signs of stationarity, they are in fact “trapped” in a local mode and are
therefore not exploring the support of the posterior distribution. In an attempt to avoid

misdiagnosing convergence it is useful to run multiple Markov chains simultaneously —
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each of which should be initialised from a different starting value. If the trace plots from
each chain fail to overlap then this is indicative that the chains have not yet converged to

the target distribution and a longer burn-in period is required.

1.3.6 Analysing posterior samples

Once the Markov chain has converged to its stationary distribution it follows that any
generated samples will be from the posterior 7(A|D) by construction. However, as we noted
when first introducing MCMC at the beginning of this section, the samples generated from
the Markov chain will be dependent and successive draws are said to be autocorrelated. 1f
successive values are highly correlated then the amount of information (about the posterior
distribution) contained within consecutive samples is much less than if these values were
independent. An autocorrelation plot can be useful for assessing the amount of dependence
between consecutive samples. The R package coda (Plummer et al., 2006) provides a useful
function for generating an autocorrelation plot which is simply the autocorrelation function
at different lag times (in addition to many other MCMC convergence diagnostics). If the
generated samples are highly autocorrelated then it can be useful to thin the MCMC

output which is done by only considering every ith iterate.

When we have obtained a reasonable number of (almost) un-autocorrelated posterior real-
isations it is straightforward to compute estimates of posterior summary statistics such as
the marginal means and variances of the unknown quantities of interest. Further, we can
easily obtain plots of marginal (or joint) posterior distributions by using a kernel density

estimate.

1.4 Data augmentation

We conclude this chapter with a brief overview of data augmentation (Tanner and Wong,
1987) and highlight the main advantages of using such an approach. We begin with
the standard framework. Suppose the form of our likelihood is non-standard or indeed in-
tractable. Applying Bayes’ Theorem will often result in our posterior distribution, 7w(A|D),
taking a non-standard form. This is somewhat inconvenient as we wish to sample from this
distribution. Of course, we could appeal to the Metropolis-Hastings algorithm outlined
in Section 1.3.1 to obtain posterior realisations. However appealing to data augmentation

might allow us to do better.

The general idea behind data augmentation is to introduce some latent variables Z so that
the joint posterior density of these variables along with the unknown quantities of inter-

est (A) is of a convenient form, that is, 7(A, Z|D) is a well-known probability distribution.
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The joint posterior distribution of A and Z is
(A, Z|D) x w(D|A, Z)m(Z|N)7(A),
whence the posterior density of interest is
7(A|D) x /ZTr(D\A, Z)m(Z|AN)7(N)dZ,

that is, the marginal distribution of our augmented posterior. It follows that if we can gen-
erate samples from the augmented posterior distribution 7(A, Z|D) then we can trivially

obtain the posterior distribution over the unknown quantities of interest A.

Unfortunately in practice it is often difficult to construct latent variables Z so that the
joint posterior density m(A, Z|D) is a well-known probability distribution. However, in
some scenarios it can be reasonably straightforward to introduce latent variables which
result in the full conditional distributions 7(A|D,Z) and 7(Z|D,A) being of standard
form. In fact, it is often the case that the latent variables are introduced by defining their
full conditional distribution 7(Z|D, A). If all the full conditional distributions are known
then, from the results in Section 1.3.3, it should be clear that we can use a Gibbs sampler

to obtain realisations from the joint posterior, that is, repeatedly
e update A given D and Z by sampling from 7(A|D, Z)
e update Z given D and A by sampling from 7 (Z|D, A).

It follows that a judicious choice of latent variables might allow us to avoid the need to
implement a MH algorithm (which needs us to construct and tune proposal distributions)
and instead use a more straightforward Gibbs sampling approach if the full conditional

distributions are available.

17






Chapter 2

Analysis of homogeneous ranked
data

2.1 Introduction

We consider the popular Plackett—Luce model (Luce, 1959; Plackett, 1975) which is an
extension to multiple comparison (ranked) data of the model for paired comparisons pro-
posed by Bradley and Terry (1952). This model relies on strong assumptions about the
homogeneity of the ranked data, such as the idea that all rankers share an agreed overall
consensus view regarding the preference of the entities. This assumption is perhaps not
well justified in many real world scenarios. In this chapter, we begin by assuming that
all rankers share similar views and develop more flexible models which allow for hetero-
geneity between rankers’ beliefs in Chapters 3 and 4. Data typically consist of complete
and partial rankings (to be defined in Section 2.2) and we shall detail how the Plackett—
Luce model can be modified to allow for a much richer class of rankings such as top—M
and top—M partial rankings (defined in Section 2.2.1). Throughout the majority of the
literature it is assumed that any particular ranker is no more (or less) likely to share a sim-
ilar preference (of the entities) to the view expressed by the (assumed) overall consensus
group. In Section 2.5 we question this assumption and propose that some individuals may
be significantly more informed about the entities they are ranking, and so their opinion
should hold more weighting. Ranker reliability is introduced into the model by means of

a latent binary indicator within the Plackett—Luce likelihood.
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2.2 The Plackett—Luce model

We assume our data (rankings) are observations from the Plackett-Luce model (Luce,
1959; Plackett, 1975). We define the set of all entities to be L = {1,..., K} with K = |K]|.
Each entity has a “skill rating” Ay > 0 for £k = 1,..., K. Individual rankings need not
contain every entity and so we let n; < K be the number of entities contained within
ranking ¢. Thus, a typical observation from this model is &; = (21, ..., Zin,), where z;; is

the entity that has rank j in ranking i. The probability of such an observation is

Pr(X; = x;|A) = H ””A (2.1)

m =j Tim
nz—l
— 9523

H Aim
The Plackett—Luce probability above is said to be a multistage model (Marden, 1995) due
to the way it is constructed. This multistage construction is naturally highlighted if we
consider a simple example. Suppose we have a complete ranking of K = 4 entities, namely
= (1,2,3,4), and skill parameters A = (A1, A2, A3, A4). The probability of this ranking

under the Plackett—Luce model is

M B P VI Y
MAA+A3+M de+A3+M A3+ A\

Priz = (1,2,3,4)|A} =

From this we observe that the probability of a particular ranking is constructed as the
product of the individual (conditional) probabilities that each entity is ranked within their
respective position. Let |¢|, be an operator that takes an arbitrary length vector ¢ and
normalises (but maintains proportionality) the values such that ) .¢; = 1. It should
then be clear that the probability of any entity being allocated rank 1 is given by the
corresponding entry within |A|,. The conditional probability for an entity being allocated
rank 2 is given by the corresponding entry in [{A}\ {Az, }|n, that is, the normalised values
given that the entity assigned rank 1 is no longer available for selection. This iterative
conditioning (on positions which have already been assigned) continues until only a single
entity remains, at which point this entity is ranked last. It is often useful to think of this
construction in terms of a race containing K horses. Naturally the horse that crosses the
line first is awarded rank/position 1, that is, the strongest or most preferred entity within
a ranking context. Rank 2 is awarded to the horse which would have won the race if the
horse that finished first did not take part. Similarly rank 3 is awarded to the horse which
would have won given neither the winner nor the horse awarded rank 2 featured in the
race. This process continues until rank K is the only remaining rank to be assigned, at

this point the race only contains a single horse which will win by definition.
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As the Plackett—Luce probability is constructed using the method outlined above it is said
to follow the so-called “forward ranking process” (Mollica and Tardella, 2014). Although
this ranking process is intuitive, it results in a significant limitation for the Plackett—Luce
model. When choosing to model rankings under the Plackett—Luce probability we also
inherently make the assumption that each ranking is formed using the forward ranking
process. This assumption is one which is often overlooked and is perhaps not well justified
within a real world scenario. We might imagine a scenario where a particular ranker is
more confident (or equivalently more certain) about the ranks of entities which are their
most and least preferred and therefore chooses to allocate these ranks first. Thus in this
scenario a particular ranker might allocate entities to rank 1, then to rank K, then to
rank K — 1 and so on. This is not the forward ranking process. A necessary consequence
is that, in this case, the true underlying ranking distribution will not follow the Plackett—
Luce model. Indeed, as we shall see in Chapter 6, the choice of the (forward ranking)
Plackett—Luce model in such a scenario typically results in a poor approximation to the

true underlying ranking distribution and, as a result, potentially misleading inferences.

If the forward ranking process assumption is not plausible we could instead choose to
model rankings using the Reverse Plackett—Luce model. This model was suggested by
Marden (1995) and uses a similar multistage construction as the standard Plackett—Luce
model but on the reverse rankings. The probability of a particular ranking under this
model is Ko
TiK—j+1

Pr(X; = z;|A) Jl;[l Eg;{ﬂ /\xim.

Therefore, for the complete ranking = (1,2, 3, 4), the probability is

A4 o A3 o Ao Xﬁ
A+ A3+ X+ Ay A3+ Ao+ A\ Ao+ M )\1.

Pr{xz = (1,2,3,4)|A} =

Perhaps not too surprisingly this model is said to follow the so-called “backward ranking
process” (Mollica and Tardella, 2014), that is, each ranking is formed by first allocating
the entity which is least preferred (rank K') followed by that which is second least preferred
(rank K — 1) and so on. In terms of our horse race scenario, the horse which finishes first
is that which receives rank K, then the horse that would have won conditional on the
“winning” horse not being in the race receives rank K — 1, the final remaining horse is the
most preferred and receives rank 1. Graves et al. (2003) used this model in the context
of NASCAR races and more recently Henderson and Kirrane (2018) used the Reverse
Plackett—-Luce model when analysing Formula 1 races. Both these analyses found the
assumption of the backward ranking process resulted in better model fit than assuming
the forward ranking process. It is perhaps difficult to justify a priori which assumption

is more plausible. Indeed, a ranker could choose to allocate their ranks in any of the
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K orderings included within Sy, the set of all K! permutations of K elements. Mollica
and Tardella (2014) explored this idea and developed the Extended Plackett—Luce model.
This model relaxes assumptions on any explicit ranking process and the “choice ordering”
is instead inferred from the rankings themselves. In what follows we assume the forward
ranking process and so use the standard form of the Plackett—Luce model. We shall revisit
the Extended Plackett—Luce model in Chapter 6.

A further limitation of the Placket—Luce model is that it only defines a probability for
certain types of ranking. The model requires each ranker to report a position for each of
the entities they consider. This allows for two types of ranking: (a) Complete rankings,
which occur when a ranker considers, and assigns a rank to, all possible entities and
(b) Partial rankings, which occur when a ranker considers a subset of all the entities
but still reports a rank for each entity considered, and so n; < K in this scenario. A
paired comparison, that is, an ordered list of two entities is equivalent to a partial ranking
with n; = 2. This should come as no surprise given that the Plackett—Luce model is a
generalisation (to multiple comparison data) of the Bradley—Terry model which is defined
for paired comparison data (Bradley and Terry, 1952). We will also consider a special
case known commonly as top—M rankings. Here individuals report a rank only for those
entities which they classify as being positioned 1 to M (where they have considered more
than M entities). The Plackett—Luce model does not adequately capture the information
within data of this type. For example, if we naively chose to model top—M rankings (with
n; = M) using the Plackett—Luce model in (2.1) then the entity that is assigned rank M
would be treated as if it was ranked last. Furthermore the model would also behave as if
all the entities that did not appear within the ranking were not considered by the ranker,
that is, the model would treat this as a partial ranking. However, in the case of a top—-M
ranking, we have the additional information that, although they do not receive a particular
rank, the entities not featuring in the ranking are considered to have at least rank M + 1.
Note that the definition of a partial ranking varies within the literature with some authors
defining a partial ranking to be what we consider a top—M ranking. We therefore make
it clear that, within this thesis, the terms partial and top rankings are used to refer to

ranking types as defined above.

At first it appears that allowing for top—M rankings may be problematic as we wish
to marginalise over all possible (unknown) positions of the unranked entities. However,
the Plackett—Luce model (more specifically the distribution it induces over rankings) is
internally consistent, that is, the probability of a particular ranking is independent of
the subset of entities from which the ranking was formed; see Hunter (2004) for a proof
outline. It follows that, under the Plackett—Luce model, it is trivial to consistently combine
incomplete (top, partial) rankings. The following section details how the Plackett—Luce

probability can be extended to use all the information contained within top—M rankings.
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2.2.1 Top—M rankings

In real world scenarios we often encounter a much broader class of rankings which can
be classified as top—M and top—M partial rankings. A top—M ranking is obtained when
a particular individual considers all K entities but only assigns entities to ranks 1 to M
(their most preferred M entities) and leaves the remaining entities “unranked”. A top—M
partial ranking is a special case of a top—M ranking which is obtained when an individual
only considers a subset of all the entities (hence n; < K) and again proceeds to only assign

entities to ranks 1 to M (leaving the remaining ones they considered unranked).

A modification to the Plackett—Luce probability is required to allow for these additional
ranking types. Caron et al. (2014) detail a modification to allow for top—M rankings and
their result can be trivially extended to allow for top—M partial rankings. Recall the set of
all entities is defined by K = {1,..., K'}. Now suppose ranker ¢ considers K; < K entities,
and denote the set of these entities as IC; C K. Also let U; = IC; \ {x;} be the collection of
“unranked” entities (for ranker i), by which we mean the entities they considered but did
not feature in their ranking. From the definition of I; it is clear that any entity k € U; is
considered to be ranked at least (n; + 1)th. The probability of a particular ranking under
the (now modified) Plackett—Luce model is

Pr(Xi = il A) = Hzm (2.2)
m=j

xzm + Zmel/{

Note that

n;—1

Pr(X; = x;|A) # H Ao

m =j Izm + Zmeu

unless U; = &, the empty/null set. Therefore in a situation where we have only (a) Com-
plete or (b) Partial rankings (hence U; = @ V i) the modified Plackett—Luce probability
simplifies and we recover (2.1). Henceforth we shall maintain full generality and proceed
assuming that at least one ranker provides a top or top partial ranking, that is, there
exists an ¢ such that U; # @.

We also note that, unlike the standard Plackett—Luce model, simply analysing the reverse
rankings is no longer equivalent to analysing the standard (forward) rankings under the
Reverse Plackett-Luce model. Indeed analysing the reverse rankings under model 2.2
would be particularly challenging given that we do not have explicit ranks for those entities
judged to be ranked in at least position M + 1. This results in those entities effectively
being tied for “first” place (under the reverse rankings). Of course, data of this form

could be analysed by implementing methods for handling ties within ranked data — these
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methods are discussed in Section 2.2.4.

2.2.2 Identifiability issues

The Plackett—Luce model suffers from a fundamental problem of parameter identifiabil-
ity: the probability (2.2) is invariant to strictly positive scalar multiplication of the skill
parameters. More formally, if we let A} = CAg for £k = 1,..., K with C > 0 then (due
to the normalisation within the construction of the probability) we have Pr(X = x|\) =
Pr(X = x|A*) for any ranking . Numerous approaches can be taken to overcome this
issue. For example we could choose to constrain A so that it lies on the K — 1 dimensional
simplex. Alternatively, we could take an approach similar to that of a corner constraint
and fix A\ = 1. Both these methods reduce the number of free parameters to K —1. Caron
and Doucet (2012) noted that the identifiability issue can also result in poor mixing within
MCMC chains. Resolving the mixing (and identifiability) issue is of course desirable and
it turns out that, within the Bayesian solution we consider, this can be easily achieved
through a suitable rescaling strategy within the inference scheme. We now turn to dealing

with the rescaling issue.

2.2.3 Rescaling

Let us consider AT = Zszl Ak, the sum of all the K skill parameters. As discussed
in Section 2.2.2, the Plackett—Luce likelihood is invariant to scalar multiplication of the
parameters, and hence A is not likelihood identifiable. Indeed, if we let AL = Ak /AT for
k=1,..., K, we have that m(A*, AT|D) = 7(A\*|D) m(A1).

Caron and Doucet (2012) noted that without the addition of a rescaling step, MCMC
schemes for Plackett—Luce models can suffer from poor mixing. The idea is to rescale the
parameters so that the posterior distribution of A is the same as its prior distribution.
This is achieved by performing an appropriate rescaling step at each iteration of the
MCMC scheme. Of course, the rescaling required will be situation dependent as the prior

distribution on A' is induced by the prior choice for each of the skill parameters, \j.

2.2.4 Ties

Ties within ranked data can present particular modelling challenges. Most models for
ranked data, including the Plackett—Luce model, are built upon the assumption that only
a single entity can be assigned to a particular rank, that is, multiple entities can not be
“tied” for the same position. It is however possible to overcome this issue and indeed nu-

merous methods for incorporating ties within an analysis under the Plackett—Luce model
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have been discussed within the literature. Perhaps the most intuitive method is to evaluate
the exact contribution the tied entities make to the likelihood, that is, average over the PL
probabilities of all possible rankings formed by permuting the ranks of the tied entities.
Unfortunately this approach can significantly increase the amount computation required
even in scenarios where relatively few entities are tied. For example, when six entities
are tied for a particular position the likelihood of such a ranking contains an additional
6! = 720 terms. Furthermore if we envisage a scenario in which numerous entities are tied
for numerous different ranks then it is clear that the computation of the likelihood will
soon become infeasible. An alternative approach discussed by Breslow et al. (1974) uses
an approximation to the exact likelihood by assuming that each of the tied entities (within
a given rank) is preferred to all other entities ranked either in the same position or lower.
This approach significantly reduces the computational burden (compared to calculating
the likelihood exactly). However it does come at the cost of a non-exact likelihood func-
tion. Baker and McHale (2015) discuss a further (more exact) likelihood approximation
where they consider the likelihood of all possible rankings (formed by permuting the tied
entities). However the skill parameters for the tied entities are defined to be the mean of
the respective tied entity skill parameters, with some additional random noise. For exam-
ple, if there are ¢ tied entities then the likelihood under the ¢! possible rankings would be
evaluated subject to \; = fi +¢ (i = 1,...,t) where i = >i_; \i/t. Full details of this
schematic and details of inference on A; are discussed in Appendix A of Baker and McHale
(2015).

Our solution to the problem of ties is based on our MCMC solution to the inference
problem. Essentially, at each MCMC iteration, we simulate a ranking without ties from a
uniform distribution over all rankings consistent with the rankings with ties. For example,
suppose we have a ranking = (1,2,3,4,5) where entities 2 and 3 are tied for second
position (indicated by the bar). To incorporate this ranking into our analysis we would let
x = (1,2,3,4,5) with probability 0.5 and otherwise let = (1,3,2,4,5) at each iteration
of our MCMC scheme. This schematic can be trivially extended to incorporate rankings
with ties involving more than two entities, for example rankings such as = = (1,2, 3,4, 5).
Furthermore we can allow for the possibility of more than a single set of tied entities
within a single ranking, that is, a ranking of the form x = (1,2,3,4,5). In all scenarios
we sample, uniformly at random, from the discrete distribution over all possible rankings
formed by permutations of the tied entities. This method for incorporating ties within a

ranked data analysis is described further by Glickman and Hennessy (2015).
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2.2.5 Simulating data from the modified Plackett—Luce model

Having defined our modified Plackett—Luce probability (2.2) we are now in a position to
describe the process which allows us to simulate data under this model. We begin by
specifying “true” values for the skill parameters, namely Ay > 0 for k =1,..., K. These
values could be simulated from an appropriate distribution if desired. In Section 2.2.2
we discussed how the Plackett—Luce probability is invariant to (strictly positive) scalar
multiplication of the skill parameters; we must therefore be cautious when specifying values
for our skill parameters. It is important to remind ourselves that the skill parameters for
each entity can only be compared relative to one another. Hence the choice of A = (3,2,5)
specifies the equivalent distribution over rankings as the choice of A = (0.3,0.2,0.5) and
indeed the same distribution as CA for any C' > 0.

We describe the data generating process using the well-known exponential latent variable
representation of the Plackett-Luce model (Diaconis (1988), Marden (1995)). In this
representation we introduce latent variables v;, which are interpreted as the (latent) arrival
time of entity j (in a homogeneous Poisson process). These variables follow independent
exponential distributions with rate parameter A;. The latent arrival times are then trivially
converted into rankings by assigning rank 1 to the entity that arrived first, rank 2 to the
entity that arrived second and so on. Formally, the complete ranking x is generated via

the following process.

1. Sample v; indep Exp()j) for j=1,... K.

2. Set xj; = argmin v, where S; = K\ {z1,...,zj1} for j=1,..., K.
qeS;
We note that the process described above is only designed to generate complete rankings.
Once we have obtained complete rankings it is possible to convert these to partial, top—M
or top—M partial rankings as required. Partial rankings are formed by removing (from the
complete ranking) those entities which were not considered by the ranker and preserving
the preference order of those entities which remain. Top—M rankings are trivially obtained
by only considering the first M positions of the complete ranking. Top—M partial rankings
are obtained from the complete ranking using a two step process. We begin by first
obtaining the corresponding partial ranking (as above), and then the ranking required
is given by taking the first M positions within the (newly formed) partial ranking. For
example, suppose we generate the complete ranking @ = (1,7,3,5,2,6,8,4) using the
process outlined above. Table 2.1 shows the corresponding top—5, partial, and top—5 partial
rankings formed from this complete ranking. The partial rankings were formed assuming
that entities 2 and 8 were not considered. The table also provides the number of entities

within each ranking, n;, and the total number of entities each ranker considered, Kj;.
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Rank
Ranking type |1 2 3 4 5 6 7 8|n; K; U; K \ IC;
Complete 1 7 3 5 2 6 8 4|8 8 %] (%]
Top-5 1 7 3 5 2 5 8 {4,6,8} I}
Partial 1 7 3 5 6 4 6 6 I} {2,8}
Top-5 partial |1 7 3 5 6 5 6 {4} {2,8}

Table 2.1: Ranking types

The sets U; and K \ K; containing the unranked entities and those entities that were not

considered by ranker ¢ respectively are also provided.

2.3 Bayesian inference

We now describe how Bayesian inference can be performed using rankings assumed to
follow the modified Plackett—Luce model (2.2). In order to make meaningful inferences
these data must contain numerous rankings (n). To formulate our likelihood concisely we
let D = {x;}!' | be the collection of all such rankings. The likelihood under the Plackett—
Luce model is then given as the product of the respective probabilities of each ranking,

and hence takes the form

m(D|A) = [ Pr(Xi = ai|A)
=1

n z
4 )\m”

N H H an )‘xim + Zmélx[i )\m .

i=1j=1 &m=j

(2.3)

Inference could proceed using a maximum likelihood approach such as the MM algorithm
(Hunter, 2004), to maximise this likelihood and obtain an estimate for our skill parame-
ters X. Here however we adopt the Bayesian approach to inference and therefore define a

suitable prior distribution along with an appropriate posterior sampling scheme.

2.3.1 Prior specification and latent variables

The choice of suitable prior distributions is a problem well discussed within the Bayesian
literature (Bernardo and Smith, 1994). Here our choice of prior distribution is mainly mo-
tivated by mathematical convenience. However, we believe our choice is sufficiently flexible
to allow for informative prior beliefs to be portrayed if desired. The skill parameters Ag
are required to be strictly positive and so it seems sensible to choose independent Gamma
prior distributions, namely Az ndep Ga(ag, by) for k =1,..., K. It has been shown that the
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rate parameters by are not likelihood identifiable (Caron and Doucet, 2012) and so we let
b, = b =1 as our skill parameters are invariant to (strictly positive) scalar multiplication.

This is done widely within the literature. Therefore our prior distribution for the skill

parameters is Ay indep Ga(ag, 1) for k =1,..., K and our complete model specification is
XA "L PL(A) i=1,....n,
e P Gaag, 1) k=1,.... K,

where X|A ~ PL(A) denotes that ranking X = « follows the Plackett—Luce model with
probability defined in (2.2).

Under this prior choice the form of the posterior distribution is highly non-standard and
so we adopt the sampling-based approach of Markov chain Monte Carlo (MCMC). It can
be desirable to implement a Gibbs sampler (if possible) rather than a Metropolis-Hastings
sampler, particularly if this benefits in increased sampling efficiency. Conditional on an
independent Gamma prior specification, Caron and Doucet (2012) showed that by ap-
pealing to data augmentation techniques it is possible to facilitate a conjugate update for
the skill parameters. Our sample space is augmented by introducing appropriate latent
variables (collectively denoted Z) which are interpreted as the hypothetical (exponential)
inter-event times of the entities in the homogeneous Poisson processes referred to in Sec-
tion 2.2.5. These latent variables are defined through their full conditional distribution

and are given by

g
2D, A P B Z Ao, + Z A | (2.4)
m=j meU;

fori=1,...,nand j=1,...,n,.
Aside

If we first let A denote the collection of all skill parameters then using the results from
Section 1.4 we can verify that we do indeed obtain the desired posterior of our skill

parameters when we integrate out these latent variables from the joint posterior as follows
m(A|D) = / (A, Z|D)dZ
z

o< /Z 7(Z|A, D)r(A|D)r(A)dZ
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n o n;

Aay Ao + Am
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mel;
Hl—l‘[)\xljxnﬂ/ exp | — Z)\mmﬁ—z)\ Zij ¢ dzij
i=1j=1 i=1j=1 melU;
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As we shall see in the section that follows, we are also able to obtain the full conditional

distribution for A in closed form under this latent variable specification.

Full conditional distributions

Our posterior distribution is formed by applying Bayes’ Theorem. As we have augmented

our sample space, the resulting posterior distribution is a joint distribution containing the

latent random variables Z and the skill parameters A. Before starting our derivation it is

useful to first construct the density of all stochastic quantities in the model; this is given

(AN D,Z) = w(Z|D,\)n(D|X\)7(X)

n n;

HH Z)‘IWJFZ)‘ exp Z)\xlerZ)\

i=1j=1 \'m=j mel; mEI/{
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We are now able to obtain the full conditional distributions (FCDs) by constructing the
conditional distribution of each unknown quantity given all other stochastic quantities and
the data. If we begin with the latent variables Z it should be clear that

n n;

w(Z|D, ) aHHexp —2ij Z)\xlm—i—Z)\ ,

i=1j=1 mel;

and so the full conditional distribution of the z;; is as in (2.4) (by construction). The full

conditional distribution for the remaining random quantities, A, is

(AP, Z) H A e HH/\IB” exp § —Zij Z Azim + Z Am
k=1 i=1j=1 mel;
K
H /\Zk-i-%—l expd— [1+ Zzéw Vi | e
k=1 =1 j=1
where
qk = Z ]I(k S {ml})a
=1
and
6ij(k) = I(k € {zij, ..., xin, } UUs), (2.6)

are the number of times entity k£ appears within a ranking and an indicator variable over
the event that entity k receives a rank no better than j in ranking ¢, respectively. It then
follows that

n uz
M, Z " Ga | ag + gy 1+ D 6i(k)zg |
i=1 j=1
fork=1,..., K.

As we now have a complete set of full conditional distributions we are in a position to
construct a sampling scheme to generate realisations from our posterior distribution. We
note that this is a straightforward modification of the Gibbs sampler of Caron and Doucet
(2012) where here the definition of §;;(k) in (2.6) has changed so that we can deal with
top—M rankings. This sampler is also somewhat similar to that detailed in Caron et al.

(2014) but here we consider a (fixed) finite number of entities K < oo.
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2.3.3 MCMUC - Gibbs sampling via latent variables

In Section 2.3.2 we derived a complete set of full conditional distributions assuming the
prior and latent variable specification as in Section 2.3.1. We can now construct a Markov
chain Monte Carlo scheme to generate realisations from our posterior distribution: this is

a Gibbs sampler. The algorithm outline is as follows.

1. Initialise the iteration counter to ¢t = 1.

Initialise the state of the chain, one option is as follows

e Fork=1,..., K, sample )\,(CO) indep Ga(ag, 1).

e Fort=1,...,n,j=1,...,n;, sample zz.(]Q) indep Exp i Agfﬂ}n + > )\52) .
m=j meU;

2. Obtain new realisations of )\(t), Z® from }\(t_l), Z#=1) as follows:

e For k=1,..., K, sample

AD, 20D " Ga | ag + gy 1+ D0 SRzt
i=1 j=1
e Fori=1,...,n,j=1,...,n;, sample
2D A0 " Exp | SO0 + 3 A0
m=j mell;

3. Rescale:

K
e Sample AT ~ Ga (Z ay, 1).
k=1

SIG
e Calculate ¥ = > A\.".
k=1

e Fork=1,...,K, let A" 5 AAt /%,

4. Set t =t + 1 and return to step 2.
With computational efficiency in mind, we note that g, and d;;(k) depend only on the
data and so remain constant throughout the Markov chain Monte Carlo scheme. These

values can therefore be computed at step 1 and reused within each iteration. We also note

that ¢ = n for all k if our data consists entirely of complete rankings.
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The rescaling in Step 3 follows from the discussion in Section 2.2.3 where it was noted that,
without the addition of a rescaling step, MCMC schemes for Plackett—Luce models can
suffer from poor mixing (Caron and Doucet, 2012). The idea was to rescale the parameters
so that the posterior distribution of the sum of all the K skill parameters is the same as
its prior distribution (as the data are not informative about this sum). Let AT = Zle Ak
be the sum of all the K skill parameters. Then as A indep Ga(ag,1) for k = 1,..., K
a priori it follows that the (induced) prior for At is a Ga(Y r_, ax, 1) distribution. The
posterior for At can therefore be kept the same as the prior by drawing a realisation of A
from a Ga(z:kK:1 a, 1) distribution and then multiplying the current (posterior) A\ values
by a factor of AT/, where ¥ = Zle )\,(f) denotes the current (posterior) sum of the K

skill parameters.

2.4 Simulation study

In this study we perform Bayesian inference on data which are simulated (generated) under
the Plackett—Luce model. The benefit of performing inference on data simulated from the
true model is that we know the parameter values from which these data were generated.
We can therefore assess how our model performs under these conditions before performing
inference on a real world scenario. Here we consider two datasets, both of which contain
(only) complete rankings of K = 20 entities. The set of all entities is therefore given
by K = {1,...,20}. Our first dataset (Dataset 1) contains n = 40 rankings which were
simulated using the process outlined in Section 2.2.5 subject to the “true” parameter

values
A1 = 20, Ak = A1 — 1, fork=2,..., K,

that is, A = (20,19,...,1). Under this parameter specification entities that are indexed
by smaller numbers are more preferred; these entities are therefore more likely to feature
towards the beginning of a ranking (be assigned a low numbered rank) in comparison to
those entities indexed by large numbers. This becomes clear if we consider the notion of
an optimal ranking. The optimal ranking, denoted &, is defined as the ranking such that
the Plackett—Luce probability is maximised (conditional on some fized skill parameters).

Mathematically such a ranking is given by

Z|A = argmax Pr(X = x|\), (2.7)
rESK
whence it should be clear that the optimal ranking is & = (1,2, ...,20) under our current

choice of skill parameters.
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The second dataset (Dataset 2) is comprised of n = 50 rankings, the first 40 of which are
those rankings from within Dataset 1 and the additional 10 rankings (numbered 41-50) are
random permutations of the K entities. Dataset 2 is therefore an extension of Dataset 1
and we make it clear that the rankings which are common amongst these datasets maintain
the same labels. The random permutations shall be referred to as uninformative or spam
rankings. The uninformative rankings are generated under the usual data generating
process (as in Section 2.2.5) with Ay = cfor k = 1,..., K, where c¢ is an arbitrary positive
constant. We note that this method of simulation is equivalent to sampling an element
uniformly at random from the set of all permutations Six. The purpose of analysing
a dataset such as this is to investigate how our posterior distribution (and therefore our
inference) is affected by these spam rankings. In some sense this is a sensitivity analysis to
determine how robust the Plackett—Luce model is to the addition of spurious rankings. The
rankings used within this study can be found within the appendices; Table B.1 contains
Dataset 1 and the additional 10 rankings which are included within Dataset 2 are provided
in Table B.2.

Before we can perform Bayesian inference on these data we must first specify suitable
prior distributions. In order to maintain conjugacy (and hence use the Gibbs sampler
outlined in Section 2.3.3) we choose independent gamma prior distributions for each of
our skill parameters as discussed in Section 2.3.1. In this scenario we also know the true
parameter values from which these data were simulated, however, we choose to perform
inference assuming we have no prior knowledge regarding the strength of each entity. We
therefore desire a prior specification such that each ranking is equally likely a priori. This
is achieved by choosing Ay indep Ga(a, 1), that is, setting ar, = a for k = 1,..., K. Without

loss of generality we take a = 1.

2.4.1 Posterior analysis

Before we begin our investigation into the posterior distribution we shall first give some
computational details. Our MCMC algorithm was initialised using a random draw from the
prior distribution. We then proceeded to perform 11K iterations; the first 1K of which were
discarded as a burn-in period. This left us with 10K (almost) un-autocorrelated samples
from our posterior distribution. The computational time required to perform inference
on these data is approximately 1 and 1.3 seconds for Datasets 1 and 2 respectively. This
inference scheme is implemented in C and computation is performed on a single thread of
an Intel Core i7-4790S CPU (3.20GHz clock speed).

Our posterior distribution is of high dimension, namely (n x K) 4+ K in these analyses.
Assessing convergence and mixing of each individual parameter is therefore problematic;

especially as it is easy to see that the dimension of our parameter space will increase
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Figure 2.1: Trace plots of the log complete data likelihood for Datasets 1 and 2 from left to right
respectively.

significantly for larger datasets. Consequently it is desirable to obtain a method for con-
veniently assessing the convergence and mixing of a Markov chain for high dimensional
sample spaces such as this. As opposed to considering each random variable in turn we
instead propose to consider an overall summary of our random variables, namely the com-
plete data likelihood, 7(Z, D|X) = w(Z|D, A)w(D|A). Gelman et al. (2014) advocate this
approach to assessing convergence (especially when implementing mixture models which
we consider in Chapter 3). Figure 2.1 depicts trace plots of the log complete data like-
lihood (after burn-in) for the analyses of both Datasets 1 and 2. We observe that our
chains appear to be mixing well and furthermore each chain appears to be sampling from
its stationary distribution. Convergence (to the stationary distribution) was also veri-
fied by initialising numerous chains at different starting values and checking the posterior

distributions are equivalent (up to stochastic noise) in all cases.

Given that we are satisfied that our MCMC scheme is generating realisations from the
posterior distribution (for both analyses) we can now begin our investigation into the
inferences on our skill parameters A. In order to ease comparison we perform (offline)
rescaling by letting A\, — Ax /Ao for £ =1,...,20 at each iteration of our MCMC output.
As Ay now takes its true value we can compare our posterior marginals (for the remaining
skill parameters) relative to the true values chosen at the beginning of this study, A =
(20,19,...,1). Figure 2.2 depicts boxplots of the marginal posterior distribution for each
log A. The distributions corresponding to the analyses of Datasets 1 and 2 are shown
in white and red respectively. The blue crosses denote the true values from which the
(informative) rankings were simulated. We also make it clear that, due to our rescaling,
Ao is constant and therefore omitted from the plot. Furthermore, outliers, defined as
those observations further into the tail than 1.5 times the inter quartile range (IQR) from

either the upper or lower quartiles, have also been omitted.

Under the analysis of Dataset 1 we observe that the posterior marginal distributions
typically have significant support for the true parameter values. This is not particularly
surprising given these data were simulated from the true model. There are of course some

exceptions; the marginal posterior distributions for entities 3, 5 and 16 show significant
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Figure 2.2: Boxplots summarising the marginal posterior densities for each log A given that Aog =
1. The densities in each case are shown in white and red for Datasets 1 and 2 respectively. The
blue crosses depict the true values from which these data were simulated (log scale).

support for larger values of A than the values from which these data were generated. In
other words the analysis suggests these entities are “stronger” (or more preferred) than we
know they actually are. We believe this is a feature of these data and had we analysed a
larger dataset consisting of say n = 1000 rankings we would expect our marginal posteriors
to be somewhat more focussed around the true values. From the analysis of Dataset 1
we can conclude that the Plackett—Luce model (and our associated sampling scheme) are

capable of making reasonable inferences from a set of ranked data.

We now consider the analysis of Dataset 2, it is interesting to see how the introduction
of an additional 10 uninformative rankings has a significant effect on our marginal pos-
terior distributions; see Figure 2.2. In this analysis the marginal posterior distributions
often show little support for the true values from which the 40 informative rankings were
simulated. However it is worth nothing that, for this analysis at least, the model is still
able to detect a similar (downward) trend in the preference of the entities as to that un-
der the analysis of Dataset 1. The trend however does appear less significant and the
uninformative rankings seem to have induced a “flattening” effect, that is, the (relative)
differences between our marginal posterior distributions are less compelling. The result of
this is that there is more (posterior) uncertainty on the preference order of the entities.
This is perhaps not surprising given the uninformative rankings each express a random

preference and therefore our model takes this into account by increasing uncertainty.

Often the aim/purpose of analysing ranked data is to obtain a so-called aggregate rank-
ing. An aggregate ranking is a single ranking that summarises the preferences across all
rankings contained within a particular dataset; to this extent it could be interpreted as an
“average” ranking. There are numerous ways in which to obtain such a ranking. Here we
choose to form our aggregate ranking by ordering the entities based upon their marginal

posterior mean. The aggregate ranking, which we denote 222, is therefore equivalent to
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Dataset 1 Dataset 2

& A 2™ A | A
1 20.00 3 27.47 3 11.67
2 19.00 1 25.83 1 11.44
3 18.00 5) 23.90 2 11.29
4 17.00 2 22.66 4 9.84
5 16.00 4 18.11 9 9.54
6 15.00 6 17.98 5 9.41
7 14.00 8 17.31 8 9.11
8 13.00 7 16.12 6 8.55
9 12.00 9 15.91 7 8.10
10 11.00 10 14.50 10 7.48
11 10.00 11 11.84 11 6.36
12 9.00 12 9.95 12 5.42
13 8.00 13 9.00 13 5.02
14 7.00 14 717 | 14 4.17
15 6.00 16 7.08 16 3.98
16  5.00 15 4.99 | 15 3.47
17 4.00 17 4.58 17 3.10
18 3.00 18 2.81 19 2.16
19 2.00 19 2.68 18 2.08
20 1.00 20 1.00 | 20 1.00

Table 2.2: Aggregate rankings under our analysis of Datasets 1 and 2 along with the corresponding
posterior means (denoted A). The value of A which was used to simulate these data is also
reproduced for ease of comparison.

the “optimal” ranking given A where A = (A1,..., Ax) is the parameter vector containing
the marginal posterior means for each entity. Formally 238 = &|X where |\ is as in
(2.7).

Table 2.2 provides the aggregate rankings for the analyses of Datasets 1 and 2 (denoted
x1®8 and z5% respectively) along with the corresponding marginal posterior means (A1
and Ag). To ease comparison the true values from which these data were simulated along
with the “optimal” ranking based upon the true values () are also given. We observe
how the aggregate rankings under both analyses are coherent with the optimal ranking;
particularly for the entities which are ranked at least tenth. The Kendall-tau distance,
K;(a,b), is a measure of distance which is defined for any two orderings, a and b. The
value of the Kendall-tau distance is equivalent to the number of adjacent (bubble sort)
swaps which must be performed to b such that it becomes aligned with a. It is therefore
a useful distance to use when comparing rankings (Marden, 1995). We can compute the
Kendall-tau distance between the optimal ranking and the aggregate rankings under each

analysis giving K, (z,x{®*®) = 6 and K. (z,x5®®) = 10. Therefore we conclude that the
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analysis of Dataset 1 results in an aggregate ranking that is, in some sense, more similar
to the true preference ordering in comparison to the equivalent summaries based upon
Dataset 2.

Another interesting feature of the posterior distributions is that although the aggregate
rankings are somewhat similar the marginal posterior means of the entities are significantly
different within each analysis; see Table 2.2 and the boxplots shown in Figure 2.2. In other
words, although A; and X define different distributions over rankings, the modal ranking is
similar under each parameter vector. However, as the marginal posterior means (of the skill
parameters) are significantly less dispersed under the analysis of Dataset 2, this suggests an
increased level of uncertainty about an entity’s position. To summarise this uncertainty
we look at the probability of the modal ranking (x®2), calculated using the posterior
means of the skill parameters (), relative to the same probability calculated under the
uniform distribution. The probability of any (complete) ranking @ under the uniform
distribution is 1/K! and so the quantity of interest is » = K!Pr(X = x*8|X). The idea is
that large values of r indicate that the modal ranking has much larger (posterior) support
than a uniform ranking and so we can conclude that the ranking distribution (defined by
A) is, in some sense, more concentrated around the modal ranking. In contrast, small
values of r suggest that the ranking distribution is not as concentrated around the modal
ranking and so there is more variation within the ranking distribution. In other words, the
differences between the probabilities of different rankings are much smaller. Small values
of r therefore indicate increased levels of uncertainty about the position of entities within
the ranking. Note that » = 1 corresponds to the uniform distribution over rankings and
so in this case each ranking is equally likely. For the analyses considered here we obtain
r1 = 103625 and o = 12364 for Datasets 1 and 2, and so the probability of the aggregate
ranking under the analysis of Dataset 1 is over one hundred thousand times larger than
the probability of a uniform ranking, with this reducing to around twelve thousand times
for the analysis of Dataset 2. It follows that, although the aggregate rankings under
both analyses are similar there is much more posterior support for the aggregate ranking
under the analysis of Dataset 1. This again highlights how the uninformative rankings in

Dataset 2 have weakened our inferences on the skill parameters.

To conclude, this study has shown how outlying rankings can have a significant effect on
our posterior distribution. This is a feature of our model which is not particularly desirable.
A more robust model would be one which was more flexible and had the capability to allow
for potential heterogeneity between the strength of particular rankings. In the next section
we shall detail an extension of the Plackett—Luce model which allows us to account for

such potential heterogeneity.
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2.5 The Weighted Plackett—Luce model

We have alluded to and indeed shown through our simulation study in Section 2.4 that con-
taminating our data with random permutations can have a significant effect on posterior
beliefs. This is a feature of the Plackett—Luce model which is not particularly desirable.
Ideally we would like a model where our posterior inferences are not significantly affected
by a few spurious rankings/observations. In this section we describe a novel extension to
the standard Plackett—Luce model which aims to allow for potential heterogeneity between

the amount of information contained within particular rankings.

Before outlining such a model it is natural to recast this problem in terms of ranker
reliability. From the form of the Plackett—Luce likelihood (2.3) it is clear how each ranking
makes an equally weighted contribution to the overall likelihood. In other words the
model considers each ranker to be equally informative/reliable. This is a rather strong
assumption. It is easy to conceive of a scenario in which some rankers are significantly
more informed about the entities they are ranking compared to other rankers. In the
remainder of this section we propose an extension to the Plackett—Luce model so that
rankings no longer make an equal contribution to the overall likelihood. The resulting
model is one which enables some rankings to have a larger influence over our parameter
inferences than others, and so allows for potential heterogeneity between the ability of

rankers.

We choose to model this potential heterogeneity between rankings via a mixture model
with two components: one for “informative rankings” and the other for “uninformative
rankings”. The mixture model is defined using latent binary indicator variables W; € {0, 1}
fori=1,...,n. We let W; = 0 if ranking 7 is uninformative and W; = 1 otherwise. The
probability of a particular ranking (conditional on the skill parameters and the latent

binary indicator variable) under this “Weighted Plackett—Luce model” is

Wy
Tij

Pr(X; = x|\, W; = w;) = H (2.8)
j=1

ng wy w;
— Z?’YZ:J )\xiZnL + Zmeuz )\ml

whence for an informative ranking (w; = 1) we recover (2.2), the standard Plackett—Luce

probability. However, for an uninformative ranking (w; = 0) we have

g )\0
Pr(X’L = mZ|A7 Wz = 0) = n; = )
jl_J; Zm: j )\-'[E)im + Zmeui )‘7er
K
1
R — 2.9
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that is, the reciprocal of the number of ordered permutations of n; entities from a set
of size K;. The implication of a ranking being deemed uninformative under this model
results in its contribution to the likelihood being constant regardless of the values of the
skill parameters — this should be clear as Pr(X; = x;|A, W; = 0) does not depend on A.
Therefore W; = 0 corresponds to there being no information in ranking ¢: essentially
ranker ¢ has picked a; uniformly at random from all possible rankings of n; out of K;

entities. We write this probability model using the notation X;|X, w; ~ PLw (A, w;).

At first glance taking w; to be binary may appear to be fairly restrictive as, with w; = 0,
the Weighted Plackett—Luce model assumes that the entire ranking x; is completely un-
informative. To allow more flexibility we did consider allowing each ranker to have a
different binary variable in each position of their ranking by introducing position depen-
dent binary indicators w;; for i = 1,...,n, j = 1,...,n;. However, we judged that this
would introduce far too many parameters and lead to identifiability issues, particularly
when we consider clustering rankers and entities in Chapters 3 and 4. We also considered
allowing the weight parameters w; to be continuous, such as in the unit interval. However
this too is problematic as it not only renders the weights uninterpretable (in terms of
ranker reliability) but also introduces problems of identifiability. To see this problem it is
useful to consider a simple example. We begin by noting that the Weighted Plackett—Luce
probability is simply the standard Plackett—Luce probability evaluated at the skill param-
eters AV, and so the probabilities of different entity rankings for ranker ¢ are described
by the PL(A"?) distribution. Now consider two rankers i and j and let the skill parameter
vector be A. Suppose these rankers have weight parameters w; = 0.8 and w; = 0.5 and
so here the ranking distributions are PL(A%i=%8) and PL(A“=%5). However equivalent
ranking distributions (and hence the same weighted Plackett—Luce likelihood) could be
obtained by using A* = A%® with w; = 1 and w; = 0.5/0.8 = 0.625. This simple example
shows an identifiability problem for (A, w). Also, the value of w; is not meaningful as
ranker ¢ would be classed as fairly informative in the X setting but extremely informative
in the A* setting. These issues do not occur if we choose w; to be binary. Also this choice
has the benefit that w; = 1 recovers the standard Plackett—Luce distribution and w; = 0

is meaningful in that it represents a uniform ranking distribution.

It is also clear that the Weighted Plackett-Luce (WPL) model (2.8) differs from the model
proposed by Benter (1994). The WPL model considers ranker-specific weights (w;, for
i =1,...,n) to allow for potential heterogeneity between rankers’ abilities, whereas the
Benter model considers position dependent “weight” parameters (wj, for j = 1,..., K)
that are common across all rankers and represent the “importance” of each stage in the
ranking process. In theory it would also be possible to introduce both sets of weight
parameters and hence consider a Weighted Benter model. However this is likely to give

rise to identifiably issues and so this model is not considered any further within this thesis.
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2.5.1 Simulating data from the Weighted Plackett—Luce model

Our underlying probability model has changed as a result of introducing binary indicator
variables to reflect the (latent) ability of rankers. It follows that the data generating
mechanism must also be adapted to allow for this additional (potential) heterogeneity.
We generalise the well-known exponential latent variable representation of the standard
Plackett—Luce model and, conditional on the skill parameters A and the indicator variable
w € {0, 1}, the corresponding latent arrival times under the Weighted Plackett—Luce model
are

v; P Exp(AY), (2.10)

forj=1,..., K.

A complete ranking ® can then be simulated from under the Weighted Plackett—Luce
model as outlined in Section 2.2.5 where v; is instead drawn from (2.10) in step 1. We
also note that, although Dataset 2 from the previous simulation study (Section 2.4) was
simulated from under the standard Plackett—Luce model, these data follow the underlying
ranking distribution defined by the Weighted Plackett—Luce model with A = (20,19,...,1)
and w; =1fore=1,...,40; w; =0 for ¢ =41, ...,50.

2.6 Bayesian inference

Bayesian inference for the parameters in the Weighted Plackett—Luce model is achieved in
a similar manner to that for the standard Plackett—Luce model (see Section 2.3). However,
here we assume that the latent binary indicators are unknown (note that we essentially
assumed w; = 1 V i for the standard Plackett—Luce model). It follows that we have
additional random quantities in the model, namely w = {w;}",, which are also to be
inferred from the data. As with the standard Plackett—Luce model, the likelihood is
formed by taking the product of the respective probabilities for each of the n rankings,

and so i i
(DI, w) i - 2.11
(D| H Hl A (2.11)

where D = {x;}" ; denotes the collection of all rankings.

Again, as with the standard Plackett—Luce model, a maximum likelihood approach could
be implemented if desired. For this model we would of course have to make appropriate
adaptations to the optimisation schemes within the literature to allow for our additional
latent indicator variables. However here we proceed within the Bayesian framework, define

a suitable prior distribution and apply Bayes’ Theorem to obtain our posterior distribution.
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2.6.1 Prior specification and latent variables

We elect to take the same prior specification for our skill parameters as in Section 2.3.1
for the reasons discussed therein. However, for this model we must also specify a suitable
prior distribution over our latent binary indicator variables w. As w; € {0,1} we choose
w; indep Bern(p;) where p; € (0,1] is the probability that ranking i is informative a priori.
Note that we omit the choice of p; = 0 as this implies that Pr(w; = 0|D) = 1; whence
the likelihood of ranking i is constant irrespective of A. The contribution to the likeli-
hood from ranking ¢ can therefore be absorbed into the constant of proportionality when
applying Bayes’ Theorem. It follows that, if we truly believe a ranking is uninformative
(with probability 1) it is sufficient to simply omit this ranking from our analysis. If defin-
ing probabilities p; a priori is not desired then a hierarchical model structure could be
constructed; given that p; is a probability, a Beta distribution would be a sensible choice

however this is not considered here. Our complete model specification is therefore

indep

XA w ~" PLw(X\, w;) i=1,...,n,
Ak indep Ga(ag, 1) k=1,....K,
w; indep Bern(p;) i=1,...,n.

As with the standard Plackett—Luce model, it is possible to augment our sample space
so that a conjugate update for our skill parameters A can be achieved. The form of the
likelihood has changed since we introduced our latent ranker weights and we must therefore
also modify our latent variable specification. The appropriate latent variables to introduce

for this model are

n;
25| D, A, w TP Exp Z Az T+ Z Amt | (2.12)
m=j melU;

fori=1,....,nand j=1,...,n,.
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2.6.2 Full conditional distributions

Again we proceed to derive the full conditional distributions for each of our random vari-

ables by first constructing the density of all stochastic quantities. This is given by

(N, D, Z,w) = 7(Z|D, A\, w)n (DX, w)m(A)7(w)

n n;
- HH Z Azim T Z Ami | €xp § —%ij Z Apt 4+ Z A
s Am melhi mel;
n o ng )\Zgl )\ak 1 */\k 1
ij | - .
" Hl]Hl ST et M kHl X Hp pi)
= s Aak_le_)\k o w. 1—w
kl;[l I'(ax) Xll:[lpi (1—pi)
n o n;
X HH)\wq exp § —Zij Z Agi 4 Z AW L (2.13)
=15=1 mel;

Unsurprisingly, given that the latent variables introduced are defined through their full
conditional distributions, we observe from (2.13) that the FCD for the z;; is as in (2.12)
fori=1,...,n,7=1,...,n,.

The full conditional distribution for X\ is

n n; i
(A|D Z w - H )\ak 1 _>\k H H )\glzj exp _Zij Z A;Ulzm + Z >\17’L;LZ
P i m=j mell;
K i - >
_ H )\ZkJqufl exp { — 1+ Z w; Z 6zj(k’)zz] /\k ;
Pl =1 j=1

where

Gk = sz‘ I(k € {z:}),

is the number of times entity k& appears in an informative ranking. As in our previous
analysis d;;(k) is an indicator variable over the event that entity k receives a rank no better
than j in ranking ¢ and is given by (2.6). From this we can obtain the FCDs for our skill

parameters as

n i
)\k|D,Z,wmf\l/€pGa ak—i—qk,l—i—g wiz&j(kz)zzj , fork=1,... K.
; =
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The Weighted Plackett—Luce model also contains the additional binary indicator vari-
ables. These variables follow a discrete distribution with two components. Let w_; =
(wi,...,Wi—1,Wit1,...,wy) denote the vector which contains all the indicator values ex-

cept that associated with ranker i. It follows that

Pr(w; = 1D, N\, Z,w_;) < Pr(w; = \)n(Z|w; = 1,D, A\, w_;) Pr(D|w; = 1, \,w_;)

n n;

=p; H H Afﬂij exp § —Zij i Az T+ Z Am
m=j

i=1j=1 mel;

g

n;
X Pi H Axij €XP § —<ij Z )\ac,-m + Z Am ,

j=1 m=j mell;
and

Pr(w; = 0|D, A\, Z,w_;) x Pr(w; = 0)n(Z|w; = 0,D, X\, w_;) Pr(D]w; = 0, A\, w_;)

n n;

=1 -pi) H H )‘g‘z'j R 2 Ao + Z A
m=j

i=1j=1 mel;
n;

oc(l—pi)Hexp —2ij Zl—i—Zl
i=1 '

=(1-p) 1_1 exp{—z;(K; —j+1)}.
j=1

Hence the (discrete) full conditional distribution for w; is

w;|D, A, Z indep Bern(p;),

where
PI“(’UJZ' = 1‘,D, A, Z, 'w_i)

" Pr(w; = 1D, X\, Z,w_;) + Pr(w; = 0|D, X, Z,w_;)’

pi (2.14)

is the probability that ranking 7 is informative (given the other quantities).

2.6.3 MCMC - Gibbs sampling via latent variables

In the previous section we derived a complete set of full conditional distributions for each
random quantity within our model. As with the standard Plackett—Luce model we are
able to implement a Gibbs sampler to generate realisations from our posterior distribution.
For brevity and clarity of reading we omit the iteration counter ¢ when outlining this

algorithm. However, the updates proceed in the same manner as the algorithm outlined
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in Section 2.3.3. The algorithm proceeds as follows.

1. Initialise the state of the chain. One possibility is as follows.
ind
e For k=1,...,K, sample A\, "~" Ga(ay, 1).
. ind
e Fori=1,...,n, sample w; "~" Bern(p;).
e Fori=1,...,n,j=1,...,n;, sample

g

Zij|)\, w iniep Exp Z AW Z )\%1

Tim

m=j mel;
2. Update the state of the chain by repeatedly performing the following steps.

e For k=1,..., K, sample

. n g
indep

el D, Z,w  ~" Ga ak+c]k,1+2w7;25ij(k)zij
=1 j=1

e Fort=1,...,n,j=1,...,n;, sample

n;
indep ) )
2| D, A, w ~" Exp g Al + E A
m=j meU;

e Fori=1,...,n, sample

w;| D, N, Z nds Bern(p;),
where p; is given by (2.14).
e Rescale:

K
— Sample AT ~ Ga (Z ag, 1).
k=1

K
— Calculate ¥ = > Ag.
k=1

—Fork=1,...,K,let \; = \; AT/3.

We note here that, unlike in the standard Plackett—Luce analysis, ¢ is no longer a func-
tion of the data alone. The value now depends on the random variables w and so the
computation of §j is required at each iteration of our MCMC scheme; specifically after
new realisations of w; have been drawn. On the other hand, the indicators d;;(k) remain
only a function of the data and therefore can be computed at step 1 and used throughout
the MCMC scheme.
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2.7 Simulation study

In this study we perform Bayesian inference assuming our rankings follow the Weighted
Plackett—Luce model. Primarily we focus on whether this model is able to (correctly)
identify uninformative rankings contained within a given dataset. In our previous study
(Section 2.4) we observed how our posterior beliefs were significantly altered by the con-
tamination of our dataset with random permutations. With this in mind it will be inter-
esting to see how our Weighted Plackett—Luce model performs given it has the flexibility

to down-weight the influence of particular rankings on our parameter inference.

Given these aims we revisit a dataset from our previous simulation study on the standard
Plackett—Luce model; namely Dataset 2 from Section 2.4. Recall that Dataset 2 contains
n = 50 complete rankings of K = 20 entities. Forty of the rankings (1-40) are informative
and thus follow the Weighted Plackett-Luce model subject to w; = 1. The remaining
rankings (41-50) are uninformative rankings, that is, random permutations of the K
entities. These are considered to follow the Weighted Plackett-Luce model subject to
w; = 0. We also remind the reader that the optimal ranking, that is, the ranking which
maximises the Plackett—Luce probability, is & = (1,2,...,20) under the parameters used
to simulate these data. Note that, strictly speaking, these data were not generated from
the data generating process for the Weighted Plackett—Luce model. However as discussed
within Section 2.5.1 the process used to generate Dataset 2 is equivalent to using the
data generating process for the Weighted Plackett—Luce model subject to the choice of
A=1(20,19,...,1), w; =1 fori=1,...,40 and w; = 0 for ¢ = 41,...,50.

Within this study we choose to use the prior specification as outlined in Section 2.6.1,
that is, independent Gamma prior distributions on our skill parameters and independent
Bernoulli distributions on our latent ranker weights. Furthermore we also wish to make
the same assumption regarding our skill parameters as in our previous analysis; namely
that each ranking is equally likely a priori. Given this welet axy =a=1fork=1,... K,
which gives A ndep Ga(1,1). We shall now consider two separate analyses of these data,
each of which has an alternative prior specification on our latent binary indicator variables.
In Analysis 1 we choose to assume that each ranking is equally likely to be informative as
it is uninformative; hence p; = 0.5. We note that this choice is not in line with these data
as the true proportion of informative rankings within this dataset is 40/50 = 0.8. Thus

we let p; = 0.8 a priori in Analysis 2.

2.7.1 Posterior analysis

Realisations from our posterior distribution (for both analyses) are obtained by imple-

menting the Gibbs sampler detailed in Section 2.6.3. For each analysis the Markov chain
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Figure 2.3: Trace plots of the log complete data likelihood for Analyses 1 and 2 (p; = 0.5,0.8)
from left to right respectively.

is initialised at a random draw from the prior distribution. Each chain runs for 11K it-
erations; the first 1K of which are discarded as burn-in. This results in 10K (almost)
un-autocorrelated realisations from our posterior distribution. As for previous analyses
our inference scheme is implemented in C and computation is performed on a single thread
of an Intel Core i7-4790S CPU (3.20GHz clock speed). The computational time required
to perform inference on these data is approximately 1.9 seconds for both analyses. The
mixing of our MCMC chains is assessed by inspecting the trace plots of the log complete
data likelihood; see Figure 2.3. From this we observe that our chains appear to be mixing
well over the sample space of the random quantities. Convergence has been verified by
initialising each chain at numerous starting values and checking the posterior realisations

are equivalent (up to stochastic noise) in all cases.

We begin our investigation into the posterior distribution by summarising the marginal
posterior distributions for each of our ranker weights w;. Figure 2.4 depicts the posterior
probability that each ranker is informative, that is, Pr(w; = 1|D). This probability is
obtained by taking the posterior mean of p; and not simply the posterior expectation
of w;. Our probability is therefore a result of a Rao—Blackwellized estimator which typically
provide us with a better estimate than simply taking the (posterior) mean of w; (Casella
and Robert, 1996). The Kendall-tau distance, K. (&, x;), between each of our simulated
rankings and the optimal ranking is also given in Figure 2.4. We observe that, with the
exception of ranking 42, all the uninformative rankings (41-50) receive a lower posterior
probability of being informative than specified a priori under each respective analysis.
As expected these rankings are also those which typically have a larger distance from the
optimal ranking. It is encouraging to see that those rankings which are informative (1—
40) almost always obtain large posterior probabilities of being informative, particularly
under Analysis 2 where p; = 0.8. That said, the posterior probabilities for (informative)
ranker 8 are not close to 1 in either analysis. Closer inspection of this ranking reveals
that it is somewhat atypical of this dataset: entities 2 and 4 both appear within the
bottom 5 positions and entities 13, 11 and 10 all feature within the top 5 positions. These

features are somewhat at odds with the true parameter values from which these data were
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Figure 2.5: Boxplots summarising the marginal posterior densities for each log Ay given that Ay =
1. The boxplots in each case are shown in white and red for Analysis 1 and 2 (p; = 0.5,0.8)
respectively. The blue crosses depict the true values, \g, from which these data were simulated.

simulated. Therefore it appears that the Weighted Plackett—Luce model is able to correctly
identify those rankings which are somewhat spurious and down-weight their contribution

to the likelihood appropriately.

Figure 2.5 depicts boxplots of the marginal posterior distribution of log A for Analyses 1
and 2 (shown in white and red respectively). As in our analyses under the standard
Plackett—Luce model we have rescaled our posterior realisations so that Aoy takes its true
value, that is, set A\ — Ar/Ago. It is clear that the posterior marginal distributions
are comparable across the two analyses; this does not come as a surprise given that
the posterior probabilities of each ranker being informative are similar under both prior
specifications. Furthermore the preference ordering of the entities has also been identified

by the model; this is clearly seen through the downward trend in Figure 2.5 as k increases.

Interestingly when we compare the marginal posterior distributions of the skill parame-
ters under the Weighted Plackett—Luce model to those under the analysis of Dataset 1

assuming the standard Plackett—Luce model we see significant similarities; see Figure 2.6.
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Figure 2.6: Boxplots summarising the marginal posterior densities for each log Ay given that Aoy =
1. The boxplots in each case are shown in white for Analysis 1 under our Weighted Plackett—Luce
model and in red for the analysis of Dataset 1 under the standard Plackett—Luce model. The blue
crosses depict the true values, A\, from which these data were simulated.

It is evident that by adopting the Weighted Plackett—Luce model our posterior distribu-
tion is significantly less affected by the incorporation of uninformative rankings within
our dataset. This becomes somewhat more clear if we consider the posterior aggregate
rankings. Table 2.3 provides the aggregate rankings for the analyses of Dataset 2 un-
der both prior specifications for our Weighted Plackett-Luce model; denoted x3*® and

agg

x,~° respectively. The corresponding marginal posterior means, A3 and A4, upon which

these aggregates are formed are also given. To ease comparison the aggregate rankings
(%8, £5%8) and the corresponding marginal posterior means (A1, A2) for the analyses
of Datasets 1 and 2 under the standard Plackett—Luce model are also reproduced here.
The true values from which these data were simulated along with the “optimal” rank-
ing based upon the true values also feature in Table 2.3. Considering our two separate
analyses under the Weighted Plackett—Luce model we observe how the aggregate rankings
are equivalent under both prior specifications. Furthermore this aggregate ranking is also
equivalent to that formed from the analysis of Dataset 1 under the standard Plackett—Luce
model, that is, the analysis containing no spam rankings. This is particularly interesting
as it shows how the effect of the spam rankings on our posterior beliefs has been negated

by introducing our binary indicators into the Plackett—Luce probability.

In Section 2.4.1 we noted that it can be useful to look at the relative probability of the
aggregate ranking in comparison to a uniform ranking (r = K!Pr(X = x?8|))) for each
analysis. This quantity provides insight into how concentrated the ranking distribution
is around the (posterior) modal ranking. Table 2.3 provides the r; for each analysis con-
sidered here, along with those for the analyses of Datasets 1 and 2 under the standard
Plackett—Luce model. We observe that the values of the r; under each of the Weighted
Plackett—Luce analyses are similar to that for the analysis of Dataset 1 under the stan-
dard PL model. Again this highlights how adopting the Weighted Plackett—Luce model
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PLw PL
Di = 0.5 Pi = 0.8
Dataset 2 Dataset 2 Dataset 1 Dataset 2
B A2 A | 2™ A2 A |22 A
1 20.00 3 28.83 3 25.55 3 27.47 3 11.67
2 19.00 1 24.60 1 22.41 1 25.83 1 11.44
3 18.00 5 24.19 5 21.96 5 23.90 2 11.29
4 17.00 2 23.40 2 21.43 2 22.66 4 9.84
5 16.00 4 19.35 4 17.32 4 18.11 9 9.54
6 15.00 6 17.73 6 16.19 6 17.98 5 9.41
7 14.00 8 17.62 8 16.17 8 17.31 8 9.11
8 13.00 7 15.93 7 14.70 7 16.12 6 8.55
9 12.00 9 15.31 9 14.46 9 15.91 7 8.10
10 11.00 10 14.06 | 10 13.40 10 1450 | 10 7.48
11 10.00 11 11.37 | 11 10.44 11 11.84 | 11 6.36
12 9.00 12 9.71 | 12 9.08 12 9.95 | 12 5.42
13 8.00 13 8.16 | 13 7.63 13 9.00 | 13 5.02
14  7.00 14 6.91 | 14 6.57 14 7.17 | 14 4.17
15  6.00 16 6.88 | 16 6.42 16 7.08 | 16 3.98
16 5.00 15 493 | 15 4.74 15 4.99 | 15 3.47
17 4.00 17 4.38 | 17 4.19 17 4.58 | 17 3.10
18 3.00 18 2.71 | 18 2.62 18 2.81 | 19 2.16
19  2.00 19 2.52 | 19 2.54 19 2.68 | 18 2.08
20  1.00 20 1.00 | 20 1.00 20 1.00 | 20 1.00
T 129768 93809 103625 12364

Table 2.3: Aggregate rankings under the Weighted Plackett—Luce model for the analysis of
Dataset 2 (for both analyses p; = 0.5,0.8) along with the corresponding posterior means. To
ease comparison, the results from Table 2.2 (standard Plackett—Luce analyses) are also given. The
table also contains the relative probability of the aggregate rankings in comparison to a uniform
ranking, r; = K!Pr(X = x%%|\;).

results in our posterior distribution being significantly less affected by the inclusion of

uninformative rankings within the dataset.
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2.8 Summary

This chapter has outlined the Plackett—Luce model and discussed the underlying assump-
tions along with some of its limitations. Identifiability issues, and several possible so-
lutions, were described with our preferred method of resolving this being to employ a
suitable rescaling strategy within our posterior sampling algorithm. The Plackett—Luce
probability was extended to deal with a much richer class of rankings (top and top partial
rankings). By appealing to data augmentation techniques, an efficient Gibbs sampling
strategy was made possible (subject to certain prior specifications) and a detailed outline

of the algorithm to sample from the posterior distribution was given.

Numerous simulation studies were considered which revealed how, under the standard
Plackett—Luce model, our (posterior) inferences can be substantially different if the data
contain unusual (spam) rankings. This is an undesirable feature of the model and therefore
in Section 2.5 we proposed the Weighted Plackett—Luce model which allows for the notion
of ranker reliability through a latent binary indicator. We saw through simulation studies
how inferences under the Weighted Plackett—Luce model are more robust to the addition
of spam rankings. Moreover our model was able to correctly identify those rankings that

were in some sense unusual.

Although the Weighted Plackett—Luce model allows for a certain level of ranker hetero-
geneity — namely that a small group of rankers that appear to have an alternative pref-
erence can be down weighted — the model is not sufficient to effectively handle a scenario
where numerous groups of rankers express different preferences. It follows that even when
modelling rankings using the Weighted Plackett-Luce model, we must still make the un-
derlying assumption that all rankers share similar beliefs/preferences about the entities
they are ranking. We believe however that this assumption is perhaps implausible in real
world scenarios and in the next chapter we build more flexible models which allow for the

assumption of homogeneous beliefs to be relaxed.
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Analysis of heterogeneous ranked
data

3.1 Introduction

Until now we have assumed that a single parameter vector A is sufficient to summarise the
beliefs of all rankers contributing to a dataset. Further we have also made the assumption
that each skill parameter \; (k = 1,..., K) is unique. We now suppose that there may
be groups of rankers, each group with their own beliefs about the true preference ordering
of the entities. To implement this structure each ranker has their own parameter vector
;. However, all rankers within the same ranker group share the same beliefs about the
entities, and so all rankers within the group have the same skill parameter values. We
further propose that particular ranker groups may not be able to distinguish between
certain entities, that is, there may be group structure in the entities in the ranker groups.
To allow for this we require the possibility that values within each parameter vector \;
are not necessarily unique. We appeal to Bayesian non-parametric clustering methods
to implement this structure, specifically by using Dirichlet processes. First however, we

review methods for finite mixtures.

3.2 Finite mixture models

A common approach when analysing heterogeneous data is to appeal to mixture models.
This rich class of models allow us to infer subgroups contained within data without (prior)
information on subgroup membership of individual observations. A subgroup can be
thought of as a cluster of individual observations which form a “homogeneous” group.

Individual observations within each subgroup are assumed to follow the same underlying
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distribution.

The simplest models within this class are finite mizture models; see, for example, Everitt
and Hand (1981) and Lindsay (1995). Note that, for ease of notation and exposition, we
write f(-|-) for a density (or probability) function (depending on whether the quantity is
continuous or discrete) but simply refer to these functions as densities. In finite mixture
models the parametric density that defines the model, denoted f(x), is comprised of a
fixed (finite) number N of mixture components. More formally we say a density f(z) is

an N-component mixture if it takes the form

:L‘|’l/), Z¢cfc x|>\ (3.1)
c=1
where fi1(x),..., fn(x) are component densities and the 1), are mizture weights for each

component. Each component density is also parameterised by a unique value A.. In order
for this density to be well defined the following constraints must hold: (a) the component
densities f.(x|\.) must all be valid density functions, that is, we require f.(x|\.) > 0 for all
z and [ fe(z|A) dv =1for c=1,...,N, and (b) the mixture weights ). must lie on the
(N — 1)-dimensional simplex, that is, ¢ > 0 for c=1,..., N and )__ 9. = 1. Assuming
these conditions hold this mixture distribution is defined for any choice of component
densities be they continuous or discrete. In practice however these densities are often

chosen from the same family.

If we have n observations, denoted « = (z1,...,x,), the (observed data) likelihood is

n

($|¢a = H {Z djcfc l'z|>\ } (3.2)

=1

which, in general, is very complicated. It is however possible to make the form of the
likelihood substantially more straightforward by appealing to data augmentation methods
— specifically by introducing latent component/cluster indicator variables which we now

discuss.

A common approach when implementing mixture models is to introduce latent cluster
indicator variables, here denoted ¢ = (¢1, ..., ¢,), where ¢; = j denotes that observation i
belongs to component/cluster j. Conditional on the latent cluster indicator variables, the
model is simplified significantly as the conditional density for observation x; is simply
fe.(xi|A¢;). These random (unobserved) variables follow a categorical distribution defined
asPr(c; =c¢) =t¢.fori=1,...,n,c=1,..., N and denoted ¢;|1p ~ Cat(¢p). Therefore the

joint (complete data) likelihood of the data @ and the latent cluster indicator variables ¢
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is
n
m(@,clp, A) = [ [ e, fe; (@il A,
i=1
as, given the parameters A, 1, the pairs (z;, ¢;) are independent. This form of the like-
lihood is substantially more straightforward than (3.2) and is the reason latent cluster

indicators are typically introduced when fitting mixture models.

It follows that Bayesian implementations of finite mixture models, given the latent indi-

cators, are generally of the form

X’i‘)\7cia ¢ ~ sz(x’L|)\Cz)

ci|yp ~ Cat () (3.3)

1 ~ Dir(a)
where ¢ = 1,...,n, and Dir(a) denotes the Dirichlet distribution with concentration pa-
rameters & = («1,...,ay) where a; > 0. Note that in the model definition above the

mixture components (and the latent cluster indicators) are exchangeable, that is, they can
be arbitrarily relabelled while maintaining the equivalent model specification (Stephens,
2000). Therefore, within an inference context, it is perhaps not sensible to favour a
particular mixture component a priori. This is achieved by choosing the concentration
parameters to be a; = o = 1 which gives @ ~ Dir(1), that is, the mixture component

weights 1 follow a uniform distribution over the (N — 1)—dimensional simplex.

Naturally we could choose to form an N—component mixture of Plackett—Luce models by
letting the component distributions be of Plackett-Luce form, with X;|A,¢; ~ PL(A.,)
where Ac = (Ae1,...,Ack) is the parameter vector associated with component (clus-
ter) ¢ and A = {A.}2; is the collection of all such parameter vectors. Indeed Gormley
and Murphy (2008a,b, 2009) and Mollica and Tardella (2014) propose finite mixtures of
Plackett—Luce and related models to allow for differing preferences between rankers. This
approach was also taken by Vitelli et al. (2018) but instead they chose a distance based
model, namely that of Mallows (1957). Of course, this approach could be trivially ex-
tended to form an N-—component mixture of Weighted Plackett—Luce models by letting
Xi|A, ¢; ~ PLyw(A.,, w). Under this setting the ranker weights w would be common across
all components with only the parameter vector A being cluster specific. In some sense the
models described in Chapter 2 could be considered to be a trivial case within the (finite)
mixture model framework, with N = 1 mixture components, that is, a single homogeneous

subgroup which contains the entire population of rankers.

Although finite mixture models give the flexibility to model heterogeneous data, specifying

an appropriate form of such a model is a non-trivial task. One of the main issues that
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arises when fitting finite mixture models is the constraint that a fixed number of mixture
components must be chosen a priori. This requires the analyst to decide how many
subgroups are contained within a population before performing their analysis. In an
attempt to overcome this issue many choose instead to fit numerous models, each with
differing numbers of components, and then appeal to model selection techniques (such as
Akaike information criterion (AIC) or Bayesian information criterion (BIC)) to determine
which model best fits the data. This solution however comes at the cost of performing
numerous analyses. The analyst is still also required to choose the (different) number of
components to consider. Ideally the mixture model would be defined so that the number
of components is not fixed a priori and instead allows the number of components to
be inferred using, for example, reversible jump methods (Richardson and Green, 1997).
Alternatively we can appeal to a more flexible class of models, namely infinite mixture
models. As the name suggests infinite mixture models contain an “infinite” number of
components and thus the underlying density f(x|i, A) can be thought of as the limiting
case as N — oo of a finite mixture (3.1). Note that an “infinite” number of components
only exists in theory and in practice the number of non-empty components can be at
most the number of observations. Given the form of a finite mixture model (3.3) it is
clear that we require an infinite dimensional Dirichlet distribution in order to define an
infinite mixture model. The generalised version (to infinite dimension) of the Dirichlet

distribution is the Dirichlet process — this the topic of the next section.

3.3 The Dirichlet process

In the previous section we discussed the need to increase modelling flexibility and relax
the requirement of a fixed number of components a priori by appealing to infinite mixture
models. Such models allow for full generality and furthermore allow the number of mixture
components to be inferred from the data. By their nature, infinite mixture models induce
an infinite dimensional parameter space and thus fall within the area of Bayesian non-

parametrics (Hjort et al., 2010).

The Dirichlet process is a conjugate prior for infinite dimensional categorical distributions
— a generalisation (to infinite dimension) of the result that the Dirichlet distribution is a
conjugate prior for the categorical (multinomial) distribution. We now provide an overview
and describe the common representations of the Dirichlet process before considering in-
finite mixture models. The overview provided here is somewhat brief and we refer the
reader to either Ferguson (1973) and Antoniak (1974) or the more recent book by Hjort

et al. (2010) for further details on the underlying measure theory for Dirichlet processes.

We use the notation G ~ DP(a, Gp) to denote that a distribution G follows a Dirichlet
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process, where o and Gy denote the concentration parameter and base distribution respec-
tively. As the name suggests G is a distribution itself and can be a continuous or discrete
distribution. A realisation from a Dirichlet process however is almost surely a discrete
distribution regardless of the form of Gy. The realisations (distributions) are drawn from
around the base distribution in a conceptually similar way to how realisations from the
Normal distribution are draws from around the mean. Further the expectation of a Dirich-
let process is also the base distribution, that is, E(G) = Gy. The concentration parameter
controls the deviation of realisations from the base distribution, and in that sense behaves
similarly to a (inverse) standard deviation, and so, not surprisingly, G — Gy as @ — o0,
that is, realisations get increasingly similar to the base distribution as the concentration
parameter increases. As a — 0, the realisations G are discrete distributions concentrated
at a single point mass. It follows that the probability of two distinct components (of G)
being equal, Pr(\; = X;) for i # j, tends to 0 as & — oo (assuming Gy is continuous)
whereas Pr(\; = A\j) — 1 as @« — 0. Figure 3.1 illustrates this by depicting (on each
row) three independent realisations from a Dirichlet process with a = 1, 5, 10, 50, 100 from
top to bottom respectively. The base distribution chosen in this case is Go = N(0,1).
We observe that for the smaller values of o our (discrete distribution) realisations G are
defined over fewer atoms with some having large mass. It follows that (theoretically)
if & = 0 we would have a single point mass at some value A € R. For larger values of «
we observe that the realisations (distributions) have increasingly more unique atoms, each
having relatively small weight. In theory if @ = oo then this distribution would be defined
over infinitely many atoms each of which has mass 0, that is, the distribution would be
Go = N(0,1). The convergence of G to the base distribution as « increases is perhaps
more easily seen through Figure 3.2 which shows the empirical cumulative distribution
function (CDF) for each of the respective realisations shown within Figure 3.1. It is clear
that as « increases, the CDF of these realisations becomes more like that of a N(0,1)

distribution, that is, G — G as a — oo.

As the Dirichlet process is a distribution over distributions, its structure is somewhat
difficult to visualise. Sethuraman (1994) has shown that each Dirichlet process has a

corresponding stick-breaking representation: writing G ~ DP(«, Gg) is equivalent to
oo
G() = D vy () (3.4)
j=1
v = v [J(1—w)
1<j
v} indep Beta(1, a)

indep
A P Gy
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where 0(-) denotes the Dirac probability measure concentrated at x and j € N. The con-
struction of the weights dictates that > jUi=1 and so it follows that the stick-breaking
representation defines a discrete distribution G' with atoms \; that have respective prob-
abilities (weights) 1;. We also note that the weights are stochastically decreasing, that is,
E(¢;) = 0 as j — oo.

Although the stick-breaking representation provides the most intuitive insight in to how a
Dirichlet process is defined, there are alternative representations. Within the next section
we consider two common alternatives to the stick-breaking representation — the Chinese

restaurant process and the (related) Pélya urn scheme.
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Figure 3.1: Multiple realisations from a Dirichlet process with Go = N(0, 1) and o = 1, 5, 10, 50, 100
from top to bottom respectively.
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Figure 3.2: Empirical CDF from multiple realisations from a Dirichlet process with Gy = N(0, 1)
and a = 1,5,10,50,100 from top to bottom respectively.

3.3.1 Alternative representations of the Dirichlet process
Chinese restaurant process representation

An alternative way of visualizing a Dirichlet process is via the Chinese restaurant process
(Aldous, 1985). This analogy, attributed to Jim Pitman and Lester Dubins, describes the
distribution over the cluster allocations (more formally the distribution over partitions)
induced by the Dirichlet process and proceeds as follows. Suppose there is a Chinese

restaurant which contains an infinite number of tables, each of which have infinite seating
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capacity. The first customer to enter the restaurant sits at table number 1. The next
customer then has a choice: (a) they sit at an occupied table with probability proportional
to the number of people currently at that table or (b) they sit at a new (unoccupied) table
with probability proportional to . This process continues until all n customers have been
seated. At this point N¢ < n tables will be occupied, and the individuals at each table
are interpreted as being clustered together. It follows that N€¢ is the number of unique
clusters. From this metaphor it should be clear that a customer has higher probability
of sitting at a table with a large number of customers rather than one with only a few
customers. This is a feature of the Dirichlet process which is often summed up by the
phrase “the rich get richer”. Drawing independent realisations from Gg and assigning
a value to each table results in a discrete distribution with probabilities proportional to
the number of people seated at each respective table. This process is exchangeable, that
is to say, the order in which the n customers arrive does not affect the final probability

distribution.

Pélya urn representation

Another way to visualize a Dirichlet process (and the associated Chinese restaurant pro-
cess) is via a Pdlya urn scheme (Blackwell and MacQueen, 1973). For this analogy it
is useful to consider o € N although the probabilities of observations being assigned to
each cluster (to be defined) hold for any a € R~(. Suppose we have an urn filled with «
white balls. A realisation from the Dirichlet process is obtained by repeatedly drawing
balls from the urn subject to the following rules. If the ball drawn is white we generate
an additional uniquely coloured ball before proceeding to place both the white ball we
selected and the new coloured ball back into the urn. If the ball drawn is not white we
generate an additional ball of the same colour as the one drawn and return both back into
the urn. This process continues until n balls have been drawn. Once the nth ball has been
drawn (and the appropriate action taken) the white balls are discarded from the urn. At
this point there will be N¢ < n uniquely coloured balls within the urn and the distribu-
tion over these colours is equivalent to the distribution over the tables within the Chinese
restaurant process. Drawing independent realisations from Gy and assigning a value to
each unique colour results in a discrete distribution with probabilities proportional to the
number of each coloured ball. Again this process is also exchangeable, that is, if n people
each select one ball the order in which the people are arranged does not affect the final

probability distribution.
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The probability of assigning the ith person/ball to table/ball colour j under both of these

alternative representations is

nC

Pr(ci:j|cl,...,ci,1):T;J_1, forj=1,...,N¢,
«
PI‘(Cj = Nc+ 1|Cl,.. . ,Cifl) = m,

where nf; denotes the current number of observations assigned to cluster j (at iteration i),

and N€ is the number of unique clusters that currently exist (N¢ =0 when i = 1).

3.3.2 Generating a realisation of a Dirichlet process

In this section we describe how to obtain realisations of a Dirichlet process, that is, how
to obtain a realisation of the discrete distribution G where G|a, Gy ~ DP(«, Gp). The
stick-breaking representation, although straightforward, does come with inherent prob-
lems. In practice it is not possible to sample an infinite number of weights for each of
the corresponding atoms to define G as in (3.4). Unfortunately appealing to alternative
representations of the Dirichlet process such as the Chinese restaurant /Pdélya urn schemes
yields similar issues. These processes are designed to allow for direct sampling from G, as
opposed to generating a realisation of G itself. Perhaps, given a particular realisation of
cluster allocations ¢ and corresponding cluster parameters ()\; indep Gy for j=1,...,N°)
from GG, we might think that a realisation of the discrete distribution G is one with atoms /\;
whose weights are proportional to the number of observations within cluster j, that is,
with Pr(\ = )\;) x #(¢; =j) fori =1,...,nand j = 1,...,N° However, this is not
a true realisation of G as such a distribution is only defined over those atoms which are
currently assigned to one of the n observations. The remaining infinite number of atoms
(and corresponding weights) remain undefined until an observation is assigned to them.
Given this, a true realisation of G can only be generated using this method if we consider
the limit as n — oo, which is clearly infeasible. With no obvious solution to this problem
we instead return our focus to the stick-breaking representation. The main issue here
is how to sample the infinite number of weights for each of the corresponding atoms so
that we can define G as in (3.4). This is made feasible if we choose a suitable truncation

parameter N1 < oo so that the distribution
N1

G =) 1idx()
j=1

is a reasonable approximation to G so that then we need only sample N7 weights (and

atoms). Clearly G* L G oas N1 — oo and thus the level of approximation decreases
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as N increases. This truncation parameter needs to be chosen so that >N P ~ 0,
an equivalent constraint to >,y ¥; ~ 1. Ishwaran and Zarepour (2002) describe how
one might choose a suitable truncation parameter. We note however that this method of

sampling can become infeasible for large «. Recall that the weights are defined as

P =v; H(l — vp), where v ndsp Beta(1, a),

1<j

and so for increasing o we have that 1); ~ 0 for increasingly large values of j; this follows
from the result that E(v;) — 0 as a — oco. Therefore, in the situation where « is large it
may become infeasible to choose a suitably large truncation parameter Ny so the constraint

of > jen, Y= 1is satisfied. However, in practice it is often possible to choose a suitable

d
value of N so that G* ~ GG even for modestly large values of «.

An approximate realisation of GG is obtained by using an appropriate truncation of the

stick-breaking representation as follows:

e Choose Nj sufficiently large.

e Choose o > 0 or simulate from a suitable distribution.
e Simulate )\; indep Go for j=1,...,Ny.
e Simulate v; indep Beta(1l,«) for j =1,..., Ny.

Set Yj =v; [[(1 —v) for j=1,...,Ny.
0<j

The discrete distribution (realisation of G) is that defined over atoms )\}L- with weights v,
that is, Pr(A = A1) oc ¢ for j =1,..., Ny

Note that G* only defines a mixture distribution if the weights ¥ sum to one; see Sec-
tion 3.2. However, the weights above only satisfy this in the limiting case when Ny = co.
Of course we could simply rescale these weights so that Z;V:ll 1j = 1 however it is often
advantageous, particularly within an inference context, to construct the weights so that
they sum to one irrespective of the choice of (finite) truncation parameter Ni. This can
be achieved by simulating v; indep Beta(l,a) for j = 1,...,N; — 1 and fixing vy, = 1.
The weights are then constructed in the usual manner however in this setting we have
YN, = [[y;(1 — ve) and so ¢, contains all the remaining mass and this ensures that
Z;V:ll Y; = 1. It follows that, in this case, G* is a valid (discrete) mixture distribution
defined by the probabilities Pr(A = A1) = v; for j = 1,..., Ny.
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3.3.3 Generating model parameters consistent with a Dirichlet process

prior

In the previous section we considered how to obtain realisations of G where G|a, Gy ~
DP(a, Gg). We now suppose that the data are n observations and denote the parameter
for the ith observation by A;. The focus of this section is how to obtain a realisation of A =
(A1,-..,An) given A|G ~ G, that is, how to draw realisations (of the parameters) from G,
where G follows a Dirichlet process. Such realisations are reasonably straightforward to
obtain under the stick-breaking representation. However, any realisation obtained using
this method will only be from an approximation to the true distribution defined by the
Dirichlet process. This approximation is due to the need to truncate G so that it is
finite dimensional (see above). On the other hand, the Chinese restaurant/Pélya urn
representations allow for exact realisations to be drawn directly from G (we need not obtain
a realisation of G explicitly). Further, these samples remain from the true distribution

defined by the Dirichlet process irrespective of the value of .

To generate a realisation of A = (A1,...,\,) we appeal to the latent cluster indicators ¢,
where ¢; = ¢ denotes that observation 7 is within cluster c. Note that, given the (unique)
cluster parameters )\;f., the cluster indicators enable us to completely identify A and so
obtaining a realisation for the cluster indicators is equivalent to drawing a realisation
for A.  We now describe how to obtain realisations of ¢ (and therefore A) which are
consistent with the Dirichlet process prior under both the stick-breaking and the Chinese

restaurant /Pélya urn representations.

Stick-breaking representation

To generate a realisation of the cluster allocations consistent with a Dirichlet process prior
using the stick-breaking representation we must first obtain a (approximate) realisation
of the discrete distribution G. This can be obtained using the method described in the
previous section which gives a realisation of G defined by Pr(A = )\j) = o for j =
1,..., N1. Given a realisation of G, we can generate a realisation of the cluster allocations

for n observations as follows.
e Sample ¢; indep Cat(Ny,¢) fori=1,...,n.

The parameter vector A is then given by A\; = )\L fori=1,...,n.
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Chinese restaurant/Pdlya urn representation

Under the stick-breaking representation we need to first obtain a realisation of (the dis-
tribution) G before then drawing samples of the cluster allocations (from G). However,
under the Chinese restaurant/Pdélya urn representation this step is no longer needed and
we can instead draw realisations (of cluster allocations ¢ and therefore A) directly from G

using the following process:

e Choose a > 0 or simulate from a suitable distribution.
e Set ¢ = 1 and the (current) number of clusters as N¢ = 1.

e Fori=2,...,n simulate the allocation of observation ¢ to a cluster according to the

discrete distribution

n.
Pr(c; = jler, ... ci1) = —2—, for j=1,...,N°¢,
at+i—1
(%
Pr(Ci = Nc+ 1‘C1,.. . ,Ci_l) = m,

where nf; denotes the number of points currently within cluster j (at iteration i),
and N¢ — N¢+1if ¢; = N+ 1.

o Simulate ' "7 Gy for j = 1,..., N“.

Again, as for the stick-breaking representation, the parameter associated with observation 4

is given by )\L. It follows that the parameter vector A is given by A\; = )\L fori=1,...,n.

We now highlight a subtle but important difference between the two methods. Suppose
we are in the scenario where n < Nj, that is, the number of observations is significantly
smaller than the truncation parameter. In this case the error resulting from the approx-
imation used in the stick-breaking approach will be reasonably small (conditional on a
suitable choice of concentration parameter). However, in the stick-breaking approach,
the realisation of G is defined over a (fixed) finite number of atoms (Np), which, as a
result, constrains the maximum number of clusters to Ni. In other words, irrespective
of the number of observations n, the parameter vector A can contain at most N7 unique
values. It follows that this method of generating parameter realisations may result in a
poor approximation to the true distribution defined by the Dirichlet process in the limit as
n — 0o. However, the Chinese restaurant /Pélya urn method allows for the possibility that
each of the 7 observations can join a new cluster and is therefore assigned to a (unique)
parameter which is an independent draw from the base distribution. It follows that in this
case the upper limit on the number of clusters is theoretically infinite when considering

the limit as n — oo.
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3.3.4 Generalised Dirichlet process

The Pitman—Yor process is a generalised version of the Dirichlet process. This process
is accredited to Pitman and Yor (1997) for their work on the two—parameter Poisson—
Dirichlet distribution. However the name was coined by Ishwaran and James (2001) in
their review of stick-breaking priors. Here we let PY(a,d, Gy) denote the Pitman—Yor
process with governing parameters o (> —d), known as the strength parameter, a discount
parameter 0 < d < 1, and a base distribution Gy. As for the Dirichlet process, a realisation
from the Pitman—Yor process is a discrete distribution over an infinite set of atoms; also
these atoms are (independent) draws from the base distribution Gy. However, in contrast
to the Dirichlet process, the weight (probability) associated with each atom is drawn from
a two—parameter Poisson—Dirichlet distribution. This results in the Pitman—Yor process
being more flexible than the Dirichlet process with regards to tail behaviour and it is
often the preferred model for analysing data with power-law tails (the Dirichlet process

has exponential tails).

To visualise the relationship between the Pitman—Yor and the Dirichlet processes, consider

the stick-breaking representation of the former
oo
G() = D wion () (3.5)
j=1

v = v [J(1—w)

l<j
v; " Beta(l — d, a + jd)
\ Gy
Clearly the case d = 0, produces a distribution G from (3.5) that is equivalent to that
d
from the Dirichlet process (3.4), that is, PY(«,0,Gg) = DP(a,Gpy). For this reason
the Dirichlet process is considered to be a special case of the Pitman—Yor process. The

Normalised Inverse-Gamma process is another special case given by d = 0.5 and « = 0.

We need y 1j = 1 for G to be well defined, or equivalently, the atom weights must be on
the simplex. If we let a =1 —d and b; = a + jd, Lemma 1 of Ishwaran and James (2001)
shows that

ij =1 almost surely <= Zlog (1 + ;) = 00. (3.6)
j=1 Jj=1 J

It is trivial to verify that condition (3.6) holds for the Dirichlet process. Recall that the

Dirichlet process is a special case of the Pitman—Yor process with d = 0, and hence a =1
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and b; = . Given this we have

1
a>0 = 1+—=—>1
= log<1+>>0
oo
= Zlog(l—i—) = 00
j=1
o0
== ij = 1 almost surely

j=1
and so the distribution in (3.4) is well defined.

In what follows we focus on the Dirichlet process and note that this is a common choice of
stick-breaking prior; primarily due to the availability of efficient sampling schemes. Many
of these (efficient) inference schemes make use of the Chinese restaurant process represen-
tation. Unfortunately, such representations are typically unavailable for the Pitman—Yor
process and so the stick-breaking representation must be used and, under this represen-
tation, it is only possible to obtain an approximate posterior distribution (although the
approximation can be made arbitrarily small given sufficient computing power) — this is

discussed further in Section 3.4.1.

3.4 Dirichlet process mixture models

The development of the Dirichlet process mixture model (DPMM) is accredited to Fergu-
son (1973) and Antoniak (1974). Since their conception, DPMMs have become popular
within the Bayesian literature as they allow for both complex and flexible models to be
constructed with relative ease. A typical Dirichlet process mixture model is a mixture of

a distribution F' over its parameters. For example

xz\)\z ~ F()\z)7
\i|G ~ G,
G]a, G() NDP(@,GQ),

where DP denotes a Dirichlet process (formally defined by the stick-breaking representa-

tion in (3.4)) with concentration parameter o and base distribution Gj.
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3.4.1 Bayesian inference for DPMM

There are numerous ways to perform Bayesian inference for Dirichlet process mixture
models. The majority of methods can be classified as taking either a conditional or a
marginal approach, as summarised in, for example, Papaspiliopoulos and Roberts (2008).
The conditional approaches typically use truncation in order to approximate the infinite-
dimensional aspect of the stick-breaking prior, as pioneered by Ishwaran and James (2001).
However, avoiding approximations is beneficial and the slice and retrospective samplers
of Walker (2007) and Papaspiliopoulos and Roberts (2008) provide methods for achieving
this. Unfortunately, these methods can suffer from poor mixing and convergence as they
attempt to sample multimodal posterior distributions. One solution is the addition of
appropriate label switching moves (Hastie et al. (2015), Papaspiliopoulos and Roberts
(2008)) though, in general, further empirical work is needed to determine the number and

types of moves that give an effective solution.

For these reasons we avoid conditional methods here and instead implement a marginal
sampler. These samplers typically involve a Pdlya urn scheme and marginalise over the in-
finite dimensional distribution (Escobar and West (1995), MacEachern and Miiller (1998)),
and thereby avoid the need for approximation. Algorithm 8 of Neal (2000), hereafter re-
ferred to as Neal’s Algorithm 8, is one such sampler. This algorithm has been shown
to be one of the most efficient sampling methods for Dirichlet Process mixtures; see, for
example, Papaspiliopoulos and Roberts (2008). Also there is no need for additional label
switching moves. Efficiency is achieved by the algorithm only performing updates for the
unique components which are currently assigned to an observation. Each observation is
then assigned to either: (a) a component which is currently in use (“active”) or (b) to
one of m auziliary components whose parameters are (independent) draws from the base
distribution. The number of auxiliary components, m, is chosen by the analyst. We note
that this places little burden on the analyst as the choice of m is made solely for effi-
ciency purposes — the equilibrium distribution of the Markov chain remains exact for all
choices of m > 1 (Neal, 2000). From our experience we have found that taking m = 2
or 3 auxiliary components typically produces a well mixing Markov chain. Generally the
mixing improves as the number of auxiliary components increases due to the observations
having more opportunity to join an alternative cluster. Increasing m however does come
with additional computational cost as m (independent) draws are needed from the base
distribution for each observation at every iteration of our algorithm. Also the discrete

(full conditional) distribution over the cluster allocations will also increase in dimension.

Neal’s Algorithm 8 is closely related to other (marginal) sampling schemes within the
literature. When m = 1, Neal’s Algorithm 8 closely resembles the “no gaps” algorithm of

MacEachern and Miiller (1998). However, the probability that an observation moves from
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its current (active) cluster into an auxiliary cluster is larger under Neal’s Algorithm 8. At
first view this may not appear to be helpful given that the aim is to cluster observations
together. However, the Dirichlet process has the unfortunate property of “masking” small
clusters, that is, the penalty for creating an additional cluster to house a few observations
is larger than the penalty for placing them in a current active cluster — even if these
observations are somewhat different from the existing group. Clearly observations should
be encouraged to form new clusters (join auxiliary ones) whenever they differ sufficiently

from the existing clusters.

3.4.2 Allowing for uncertainty on the concentration parameter

Central to the implementation of a Dirichlet process mixture model is the choice of con-
centration parameter «. The choice of « results in an implied prior on the number of
clusters or unique values (N¢). Antoniak (1974) provides an implicit form of the condi-
tional prior distribution, 7(NN¢«,n), when we have n observations; see Section A.1 within

the appendices for full details.

Choosing a value of « is somewhat difficult unless we have substantial prior knowledge of
the number of subgroups within the data. It can therefore be helpful to express (uncertain)
beliefs about « in terms of a prior distribution and thereby infer its posterior distribution.
Escobar and West (1995) and West (1992) show that when using a marginal sampling
scheme and a finite mixture of Gamma distributions as a prior for «, it is possible to
derive a closed form full conditional distribution for «. It is fairly straightforward to
simulate from this full conditional distribution and so this can be incorporated within a

Gibbs sampling scheme.

In the simplest case where a has a (single component mixture of) Gamma distribution,

that is, a ~ Ga(aq, ba), the full conditional distribution is the two component mixture
al - ~mGa(ag + N by —logn) + (1 — m) Ga(aq + N — 1,b, — logn),

where the mixture weights are given by

T ao + N¢—1

(1—m)  n(bs —logn)’

and
n|--- ~ Beta(a+ 1,n).

Here 7 is a latent random variable which facilitates the conjugate update. This result is

derived within Section A.1 of the appendices.
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3.5 Uncovering heterogeneity between rankers

Until now our main aim has been to perform Bayesian inference and obtain a single
preference ordering of entities that summarises a collection of rankings and is a form of rank
aggregation. This aim is only appropriate if the rankers are homogeneous in terms of their
beliefs about the entities, that is, each individual ranking (within a collection) follows the
same underlying ranking distribution. Our current Weighted Plackett—Luce model does
allow for heterogeneity between ranker abilities which in some sense does allow for different
groups of rankers. However, this heterogeneity only allows for limited variability between
informative and uninformative groups of rankers. This model is therefore inadequate to
handle a scenario where several groups of rankers express alternative preferences regarding

the entities that they are ranking.

In this chapter we have thus far introduced both finite and infinite mixture models and
discussed how such models can be implemented to model heterogeneous data. We now
appeal to these methods to build a model capable of handling heterogeneous ranked data.
Within this section we suppose that there may be groups of rankers, each of which has their
own beliefs about the preference of entities. Under this scenario we wish to build a model
which allows each ranker group to have their own unique set of skill parameters which
summarise their beliefs about the entities. Previously our models have considered only a
single parameter vector which summaries all rankings, that is, we have only considered a
single ranker group. To implement a grouping structure we now need a parameter vector
associated with each ranker (A; for i = 1,...,n). These parameter vectors need not be
unique and indeed we desire that rankers with the same beliefs about the entities also
share the same parameter vector. Our model should therefore be built so that it allows
Pr(X; = Aj) > 0 for all 4 # j. This structure can be achieved by implementing a Dirichlet
process prior distribution where the atoms of the DP are (unique) parameter vectors A.
In this scenario (for a@ < oo) the Dirichlet process prior specifies a discrete distribution
over a range of parameter vectors, and therefore if we draw samples from this distribution
we will have Pr(A; = Aj) > 0 for all i # j.

In what follows we describe a new model consisting of an infinite mixture of Weighted
Plackett—Luce models with a Dirichlet process as the conjugate prior distribution. We
are able to derive a complete set of full conditional distributions for each parameter of
interest within our model by using latent variables. This allows us to form a Gibbs
sampling algorithm in which we appeal to Neal’s Algorithm 8 (Neal, 2000) to sample
the latent cluster indicator variables efficiently. We note that much of the literature
concerning modelling heterogeneous ranked data has been limited to finite mixture models
of standard Plackett—Luce models. However, here we allow for additional heterogeneity

between rankers’ abilities by assuming the Weighted Plackett—Luce model is the true
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underlying ranking distribution. We are also able to relax the assumption of a fixed
number of components a priori by constructing the model as a Dirichlet process mixture

model. The section is concluded with a simulation study.

3.5.1 The model

Suppose we have n rankers where each ranker reports positions for n; < K entities.
The main components of our complete model, the Dirichlet process mixture of Weighted
Plackett-Luce models (WDP), can be written as

Xi\)\,-,wi miep PLw(Ai,wi) 1= 1,...,n,
Pl SaE i=1,...n,

Gla,Gy ~ DP(a,Gy).

To make the form of the non-parametric prior distribution unambiguous we define the

stick-breaking representation which here is

G() = Y eoa()
1/15 = USH<1_U€)

I<s
ind
vs " ~7 Beta(1, @)

e
for s € Nand £ = 1,...,K. Note that under this model Ay now denotes the skill
parameter for entity k in group/cluster s whereas previously the skill parameter of each
entity was denoted A (as we only had a single group of rankers). Furthermore there is
no need to choose a single base distribution Ggy. Instead a unique base distribution can
be chosen for each of the K skill parameters, that is, we can let Ay indep Goi in the
stick-breaking representation above. That said, the choice of base distribution(s) must
be exchangeable across cluster labels given the inherent exchangeability of components

within the Dirichlet process prior, that is, G must not depend on s.

3.5.2 Simulating data from the Dirichlet process mixture of Weighted
Plackett—Luce models

In this section we describe how to simulate data from our Dirichlet process mixture of

Weighted Plackett—Luce models. It is useful to introduce latent cluster indicator variables

68



Chapter 3. Analysis of heterogeneous ranked data

when dealing with mixture models. Here we introduce ¢' = (ci,...,c,) where ¢ =
J denotes that ranker 7 is associated with parameter vector ;. For example, if ¢' =
(1,2,1,2) then rankers 1 and 3 are in cluster 1 and rankers 2 and 4 are in cluster 2; each
cluster has a unique parameter vector, here A; and Ay. Furthermore we let N* = [{c} }I" |
denote the number of unique ranker clusters, that is, the number of unique parameter

vectors, and let A = (Mg, ..., Ayr) denote the collection of these unique parameter vectors.

Given these latent cluster indicators we can now describe how to generate data under
the WDP model outlined in the previous section. First we need to specify a ranker
clustering structure and this can be achieved by either (a) explicitly defining values for the
latent cluster allocation variables ¢} and labelling these 1,..., N*, or (b) draw a realisation

(marginally) from the Dirichlet process prior distribution as follows.

e Choose a > 0 or simulate from a suitable distribution.
e Set ¢} =1 and the (current) number of clusters as N* = 1.

e For ¢ = 2,...,n simulate the allocation of ranker ¢ to a cluster according to the

discrete distribution given by

nI‘

Pr(cf =jlef, o) = —— =, for j=1,.,N,
o
PI‘(C;-" =N"+ 1‘65,.. . ,C}Lj,l) = m,

where n;; denotes the number of points currently within cluster j (at iteration 1),
and N* - N'+1ifc; = N" + 1.

Given a clustering structure of the rankers we now need to choose values for the (cluster
specific) skill parameters Ag;. Again these can either be chosen explicitly or alternatively
can be drawn from the prior distribution by sampling A indep Gog for s = 1,...,N*,
k=1,..., K. Recall that here we have a mixture of Weighted Plackett—Luce models and
we therefore need to choose whether each ranking is to be informative or not, that is,

choose (or sample) a value of w; € {0,1} fori =1,...,n.

After the parameters of the model are fully specified, we can use the exponential latent
variable representation of the Weighted Plackett—Luce model to generate rankings. A

collection of n complete rankings {a;}} ; can be generated via the following process.

For:=1,...,n

e Sample v;; indep Exp(Aa) for j=1,..., K.

e Set x;; = argmin v;, where S;; = K\ {z1,..., 251} for j=1,..., K.
q€S;;
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Alternative types of rankings (such as a top—b ranking) can be obtained from the complete

rankings simulated using the same process as discussed in Section 2.2.5.

3.5.3 Prior specification and latent variables

When first implementing the standard (or Weighted) Plackett—Luce model in Chapter 2
we discussed how it is advantageous to use Gamma prior distributions on the skill param-
eters as this gives conjugate updates; see Section 2.3. In this model the equivalent prior
specification is achieved by letting Gor = Ga(ag, 1) which gives Ag indep Ga(ag, 1) for
se€Nand k=1,...,K. Our prior beliefs about the strength of entity k& (relative to the
other entities) is then expressed through the parameter ai. Recall that the rate parameter
is not likelihood identifiable and so we take this to be 1. The prior distribution on the
latent binary ability indicators remains as before, with w; inde Bern(p;) where p; € (0, 1]
fori=1,...,n. We also wish to infer the DP concentration parameter from the data and

so we need to specify a prior distribution: we take a ~ Ga(aq, ba)-

Before we describe the (data augmentation based) posterior computation algorithm we
need to define the latent cluster indicator variables. We use the cluster indicators intro-
duced in the previous section, that is, ¢" = (¢}, ..., c},) where ¢; = j denotes that ranking i
is associated with parameter vector A;. Recall that N* = |{c}}i=1, . n| denotes the num-
ber of unique ranker clusters and A = (Aq,...,Anr) is the collection of the unique skill

parameter vectors.

We are now in a position to define the prior distribution over the skill parameters in this
model. The model contains N* ranker clusters, each of which has an associated parameter
vector A. The model contains N* x K unique skill parameters, whence, conditional on the

latent cluster parameters, the prior distribution of A is

Aak 1 7)‘ck

A ck
ey =TT T ¥
c=1k=1
The model assumes that each ranking follows the Weighted Plackett—Luce probability,
that is, X;|A, w,c" indep PLW()\Cg, w;). Therefore the probability of the ith ranking can
be expressed using the latent cluster indicator variables as
w;

Acr Tij
L — . =D
PT(X'L - mz|A,w,C H wi _1_2 sz Y
m =7 cg,wim meU;
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and so, as the rankings are (conditionally) independent, the likelihood of all n rankings is

ry __ Ci,l‘ij
i=1j=1 &—~m=j "¢}, Tim mel; “\ct,m

As discussed in Chapter 2, the Plackett—Luce likelihood does not admit conjugate Bayesian
inference. However, we saw that conjugate updates for the skill parameters can be achieved
by augmenting the parameter space with appropriate latent variables. Here the latent
variables are still defined in terms of the latent exponential inter-arrival times but now are

based on cluster-specific skill parameters, that is,

2
indep i ;
25D A w, ¢ TR Exp [ DO AEL + > A, | (3.7)

m=j mel;

fori=1,...,nand j=1,...,n,.

3.5.4 Full conditional distributions

The posterior distribution is formed by applying Bayes’ Theorem. The posterior distri-
bution 7(Z, A, w,c",«|D) is now a joint distribution of the latent random variables Z,
the collection of unique skill parameters A, the binary indicator variables w, the latent
cluster indicators ¢ and the DP concentration parameter . We can obtain realisations
from the posterior distribution using a Gibbs sampling strategy which samples from the
FCDs of each unknown quantity in turn. The latent cluster indicators can be drawn from
their respective full conditional distributions using Neal’s Algorithm 8 (Neal, 2000). Fur-
ther, the FCD of the DP concentration parameter « is also known; see Section 3.4.2. In
the remainder of this section we derive the FCDs for the remaining unknown quantities
(Z,A,w) and a complete outline of the MCMC scheme used to generate posterior samples

can be found in Section 3.5.5.

Before starting the derivation of the full conditional distributions it is useful to first con-
struct the density of all stochastic quantities. Note however that, given we already have
the FCDs for ¢ and «, it is sensible to only consider the conditional density of all the
remaining stochastic quantities given the latent cluster indicator variables and the DP

concentration parameter. This (conditional) joint density is

m(A, D, Z, w|c", o)
=7(A, D, Z,w|c")
=7(Z|D,\,w,c")n(D|A, w, c")m(A|c)7(w)
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n  n;
S 01{DITED SPTH PR S SR EHED SR

i=1j=1 \m=j meU; mel;

n o ng - )\ak 1 7>‘ck

w; ck 1 w;

<TTTIAe, Z Nlay + D N | X H H Ty [

i=1j=1 mel; c=1k=1 i=1

n n; A%k~ 1 e~ Ak

ck

D o d= (30, 3w ) < T

i=1j=1 mel,; c=1k=1 k

X Hp;”iu — )T
=1

(3.8)

The full conditional distributions (FCDs) can be obtained from this density by constructing
the conditional distribution of each random quantity given all other quantities. The latent
parameters Z = {z;;} are defined through their full conditional distribution and so it

should come as no surprise that we obtain

n o n;
(2D, A w, " o) o [[[[ exp § — Z Ay + > Nt | 7 ¢ s
i=1j=1 ' mell;
and therefore the full conditional distributions for z;; are as in (3.7) for i = 1,...,n,

ji=1....n

The full conditional distribution for the (cluster-specific) skill parameters Ao are derived

as follows:

7(A|D, Zw, ', «)

n ng /\ak 1 e~ Ak
w w k
OCHH)\l exp{ — cx”+E )\l Zij XHH Nk &
i=1j=1 m=j mel; c=1k=1
N K n o n; n;
ap+vek—1 _—Mep H H _ Z w; Z wz .
x H H Ao e ek x exp )\c o + )\ Zij
c=1k=1 i=1j=1 m=j mel;
NT K n ni
ap+ —1
= H H ApTreE " exp ¢ — | 1+ E w; g Gjle, k)zij | Ak ¢
c=1k=1 i=1 j=1

where

Vek = Zwe I(cp = o)I(k € {=e})

is the number of informative rankings associated with cluster ¢ in which entity k appears
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and
C:l'j(C, k‘) = H(C]Z-r = C) X ]I(k‘ e {l‘ij, - ,:L'mi} UZ/{Z'),

is an indicator function that entity k receives a rank no better than j in ranking ¢ where
ranking ¢ is also associated with cluster c. It follows that the FCD for A\, is available in

closed form and is

inde;

n ng
Ack‘ NpG‘a, Ak + Yeks 1—|—Z’wi2<¢j(c, ]{J)Zij , (39)
=1 7j=1

forc=1,..., N, k=1,..., K.

The only remaining random variables in the model are the ranker weights w. The full

conditional distribution for w; is the discrete distribution with

Pr(w; = 1D, A, Z,w_;, c", o)
& Pr(wl = ].)71'(2)’11)1 = 17A7w7i’cr)ﬂ-(z|wi = ]_,A,D,’I_U,Z‘,Cr)

n; U
X Pi H )\cg,:pij €XP § —%Zij § )\cg,zim + § )\c§,m
j=1 m=j melU;

and

Pr(w; = 0|D, A, Z,w_;, ¢, @)
o Pr(w; = 0)m(Dlw; = 0, A, w—;, " )w(Z|w; = 0,A, D, w—;, c")

o (1 —p;) ﬂexp{—zzj(Ki —-j+1)}.
j=1

Therefore, for i = 1,...,n, the full conditional distribution is given by
wy| - ndse Bern(p;), (3.10)

where
Pr(w; = 1|D, A, Z,w_;, ¢, @)

- Pr(w; = 1|D, A, Z,w_;, ¢, a) + Pr(w; = 0|D, A, Z,w_;,c", o)’

Pi

is the probability that ranking ¢ is informative (given the other quantities).

Recall that the latent cluster indicators ¢" can be sampled using Neal’s Algorithm 8 (Neal,
2000) which implements a Pélya urn scheme to marginalise out the infinite dimensional
parameters. The resulting full conditional distribution for the cluster allocations is a
discrete distribution over the clusters which are active and m auxiliary components. The

DP concentration parameter a can also be sampled from its full conditional distribution
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given in Section 3.4.2. The following section gives a complete outline of the Gibbs sampler

used to obtain posterior realisations.

3.5.5 MOCMUC using Neal’s Algorithm 8

We are now in a position to describe the algorithm used to sample from the posterior
distribution 7 (A, Z, ¢', w,a|D). First we define the contribution to the complete data

likelihood from ranker 7 to be

2z n;
. . r — Wy PV Wy w;
fxg, zi|A,w, ", a) = H )‘C§,xij exp Zij g )‘C§7xim + E >‘C§7m
7j=1 m=j mel;

We can now describe the algorithm concisely. Suppose we have n rankings of n; < K
entities. The state of the Markov chain has elements A = (A.: c € {c},....c.}), Z = (2i),
I I

¢’ = (c

"), w = (w;) andafori =1,...,n,j=1,...,n;. The algorithm repeatedly samples

as follows:

e For i =1,...,n: Let ¢~ be the number of distinct ¢} for j # i and h = ¢~ + m.

Label these ¢ values in {1,...,¢ }. If ¢} = cj for some j # i, draw A indep Gy, for

g <c<h k=1,....K. Ifcﬁ#c;Vj#i, let ¢; have the label ¢~ + 1, and draw

inde

Ao <P Gopforq +1<c<h k=1,...,K.
Draw a new value for ¢} from {1,...,h} using the following probabilities:
bn_; x;, zi|A,w,c, =c,c ,a), 1<c<q,
Pr(c; = ¢|D, Z, A, c";,w,a) = i £ (@i 2l ! @) 1
b%f(miwzﬂAaw?Cg20701;1'7&)» ¢ <c<h,
where A = {A1,..., A}, noic = #(cj = ¢, j # 1), and b is the appropriate normal-

ising constant. Change the state to contain only those A. that are now associated

with one or more observations, that is, let A = (Ac.:c€ {d},...,c,}).

Sample A from (3.9) forc=1,..., N k=1,..., K.

Sample z;; from (3.7) fori=1,...,n,j=1,...,n;.

Sample w; from (3.10) fori =1,...,n.

Rescale

K
— Sample AT ~ Ga (Nr > ag, 1>.
k=1
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N' K
— Calculate ¥ = )~ > Ae.
c=1k=1

—Forc=1,..., N, k=1,...,K, let At — Ao AT/Z.

e Sample « as in Section 3.4.2 with n = n and N¢ = N*.

Note that this rescaling step is a straightforward generalisation of that discussed in Sec-
tion 2.2.3. The generalisation is needed as we now have K unique skill parameters within

each of the NT ranker clusters.

3.5.6 Simulation study — revisiting Dataset 2

For our first simulation study we choose to revisit Dataset 2 introduced in Chapter 2.
Recall that this dataset contains n = 50 rankings, the first 40 of which are informative
rankings and the remaining 10 (labelled 41-50) are uninformative/random permutations.

Each ranking within this dataset is a complete ranking of K = 20 entities.

Before we can perform Bayesian inference we must first of course choose a suitable prior
distribution. As in our previous analyses of these data we choose to let each ordering of
the entities be equally likely a priori, that is, let ax = 1 for all k£ with the resulting prior
distribution over the skill parameters being Agj ndep Ga(1,1). Specifying a (prior) choice
for the concentration parameter of the Dirichlet process is somewhat difficult and so we
place a prior distribution over a. We choose ay, = by, = 1 so that o ~ Ga(1,1), which
gives a fairly weak prior distribution over the number of ranker clusters. Note that here
the modal prior number of ranker clusters is 1 (with probability 0.19) and thus seems
reasonable given the nature of this dataset — see Table 3.1 for the full prior distribution
over the number of clusters. We also need to choose prior probabilities that each ranker
is informative, that is, specify p; = Pr(w; = 1) for each ranker i. Here we consider 3
analyses, each defined by particular choices of the p;. Analyses 1 and 2 take the equivalent
specification to those studies considered within Section 2.7, that is, for Analysis 1 we let
pi = 0.5 (each ranker is equally likely to be informative as it is uninformative) and in
Analysis 2 we take p; = 0.8 (the true proportion within these data). For the final analysis
(Analysis 3) we assume the standard Plackett—Luce model which is achieved by taking
p; = 1. This choice is used to asses how robust our analysis is to assuming all rankers are
informative when, in fact, there are uninformative rankers in the dataset. Intuitively we
might think that the Dirichlet process mixture model would be flexible enough to cluster
together the informative rankings and form a separate cluster to house the uninformative
rankings. However, as we shall see, this turns out not to be the case. Analyses 1 and 2
allow us to compare how our DP mixture model performs in comparison to the (single

component) homogeneous model considered in Chapter 2.
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Posterior analysis

To generate realisations from the posterior distribution (for each analysis) we implemented
the sampling algorithm outlined in Section 3.5.5 with m = 2 auxiliary variables. Each
Markov chain was initialised at a random draw from the prior distribution. To obtain 10K
(almost) un-autocorrelated realisations from the posterior distribution we needed to thin
the output by factors of 60, 20 and 5 for Analyses 1-3 respectively. We therefore ran the
scheme for 600K, 200K and 50K iterations for each respective analysis and also allowed
each chain a burn-in period of 10K iterations after initialisation — these samples were
discarded. The computational time required to perform inference was (approximately)
126, 33 and 11 seconds for each analysis. The mixing of the MCMC chains was assessed
by inspecting trace plots of the log complete data likelihood; see Figure 3.3. This is
convenient not only because our state space is vast but also because the dimension of the
posterior distribution can change at each iteration (depending upon the number of unique
ranker groups). It is therefore not realistic to inspect trace plots of individual parameters
within the Markov chain, particularly as cluster labels can swap arbitrarily. Convergence
was assessed by initialising numerous chains at differing starting values and verifying that

the resulting posterior distributions were equivalent (up to stochastic noise).

We begin by determining the posterior distribution formed under Analysis 3 (p; = 1) —
assuming a Dirichlet process mixture of standard Plackett—Luce models. Our intuition a
priori led us to believe that our mixture model (outlined in Section 3.5.1) might allow
the formation of a cluster housing the informative rankers and a separate cluster to house

the uninformative rankers. The marginal posterior distribution for the number of ranker
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Figure 3.3: Trace plots of the log complete data likelihood for Analyses 1, 2: p; = 0.5,0.8 (top left
and right respectively) and Analysis 3: p; = 1 (bottom)
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Analysis 1 2 3 4 5 6 7 8 9 >10| E SD

1 0.86 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |1.16 0.42
2 0.75 0.19 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 |1.32 0.62
3 0.00 0.01 0.04 0.11 0.20 0.24 0.20 0.12 0.06 0.02 | 6.12 1.68

Prior 0.19 0.17 0.15 0.12 0.10 0.07 0.06 0.04 0.03 0.07 | 4.18 3.00

Table 3.1: Posterior probabilities of the number of ranker clusters, Pr(N* = i|D), for each of the
three analyses. The expectation and standard deviation of the marginal posterior distribution are
also shown along with the prior distribution. The modal values are highlighted in bold.

groups (Table 3.1) gives Pr(N' = 2|D) = 0.01 and so there is little posterior support for
this suggestion. Perhaps surprisingly the posterior modal number of ranker groups here
is six. However, we note that there is a large amount of uncertainty on this. In contrast,
for Analyses 1 and 2, we see significant posterior support for a single homogeneous group
with Pr(N* = 1|D) = 0.86 and 0.75 respectively. Clearly allowing for uncertainty on
ranker reliability results in a significant change in posterior beliefs about the ranker groups
contained within these data — this is a feature of the model which will be discussed in more
detail later.

The marginal posterior distribution for the number of ranker clusters provides a useful
insight into the posterior distribution; however, it does not tell the full story. A more in-
depth summary of the posterior distribution can be obtained if we consider the underlying
grouping structure of the rankers. The posterior distribution of the allocation of rankers
to ranker groups is, of course, quite complex. A common way to summarise ranker hetero-
geneity is through a single summary allocation to each ranker group, such as the mazimum
a posteriori (MAP) allocation or the improvements to the MAP allocation proposed by
Dahl (2006) and Lau and Green (2007). However, these summaries can be misleading
unless the posterior probability of the modal number of groups is fairly large. Note that
for the Analysis 3 posterior distribution this is certainly not the case. Instead we prefer
to summarise ranker heterogeneity using dissimilarity probabilities A;; = Pr(c] # c}|D),
that is, the posterior probability that two rankers (i and j) are not allocated to the same
cluster. The allocation of rankers to groups could then be determined by thresholding
these probabilities. However this too can suffer from inconsistent allocations of say ranker
triples, particularly when their dissimilarity probabilities are near the threshold. There-
fore, following Medvedovic and Sivaganesan (2002), we use a standard summary method
from cluster analysis, namely a dendrogram calculated from the dissimilarity probabili-
ties A;;. Note that we consider dendrograms formed using the complete linkage method,
also known as furthest neighbour clustering. This method tends to produce more densely

packed clusters and does not suffer from “chaining”; see Everitt et al. (2011) for further
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Figure 3.4: Complete linkage dendrograms based on the dissimilarities between each pair of rankers
for Analyses 1-3 from top to bottom respectively.

details on linkage methods. Of course many other methods could also be used to sum-
marise the heterogeneity between rankers, see, for example, Rastelli and Friel (2017) and

the references therein.

Figure 3.4 depicts the dendrograms computed from the dissimilarity matrices for each of
the analyses considered. The allocation of rankers to ranker groups for Analyses 1 and 2
is somewhat trivial given Pr(N' = 1|D) = 0.86 and 0.75 respectively. The corresponding
dendrograms confirm that all rankers are often grouped together; evident through the val-
ues of dissimilarity at which rankers join the main cluster. However it is encouraging to see
that the uninformative rankers (with the exception of ranker 42) are last to join the main

cluster: these rankers have the largest dissimilarity values. In Analysis 3 the allocation of
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rankers to groups is not quite as straightforward. The corresponding dendrogram shows
that there is a large cluster containing those rankers numbered {1, 2, ...,40,42}. This con-
clusion can be drawn since A;; < 0.30 = (1 —A;;) > 0.70 for i # j € {1,2,...,40,42},
that is, any pair of rankers within this set are clustered together at least 70% of the time.
Given the large proportion of the time that these rankers are co-clustered, it is reasonable
to conclude that they have similar beliefs about the entities. The remaining rankers, those
numbered 41,43, ...,50, typically have a dissimilarity greater than 0.5. It is clear from
looking at the left hand side of the dendrogram that there is no clear grouping structure be-
tween any of these rankers. This is perhaps not surprising given their associated rankings

are random permutations and are therefore likely to express contradicting preferences.

We now return to the point we noted earlier, namely that allowing for uncertainty on ranker
ability changes posterior beliefs about the number of ranker groups. After investigating
the posterior distribution for each analysis, perhaps this result is not as surprising as it
first seems. In Analysis 3 the standard Plackett—Luce model does not have the flexibility
to down weight the contribution uninformative rankers make to the overall likelihood, and
this leads instead to the formation of additional clusters to house those rankers which are
not consistent with others (the uninformative rankings); see Figure 3.4. Moreover, these
rankers do not even form a single homogeneous cluster due to the high variation in random
permutations (as mentioned previously). On the other hand, in Analyses 1 and 2 (mixture
of Weighted Plackett—Luce models) the model is able to down weight the uninformative
rankers; see Figure 3.5. Recall that when w; = 0 the likelihood of ranking ¢ is constant
(Pr(X; = x|\, w; = 0) = 1/P(K;,n;)) and does not depend on A. Thus a ranker who
is deemed to be uninformative is free to join a cluster regardless of their beliefs about
the entities as the likelihood is unaffected. Indeed, such a ranker will typically join the
largest “active” cluster — this follows from the rich get richer notion underpinning the
Dirichlet process (as mentioned in Section 3.3.1). Consequently it is not surprising that
the uninformative rankings (41-50) join the main cluster, that is, the cluster housing the

informative rankers under Analyses 1 and 2.

We conclude this section with a brief comparison of Analyses 1-3 and those where we
assumed all rankers were homogeneous in their beliefs about the entities in Chapter 2.
There are significant similarities between the posterior distributions of the ranker weights
under Analyses 1 and 2 in both this section and Section 2.7; see Figures 3.5 and 2.4. This
is perhaps not surprising given the ranker weights are not cluster-specific and we have
significant posterior support for a single ranker cluster in these analyses. Note that when
there is only a single ranker cluster, the analyses presented here are analogous to those in
Section 2.7. The aggregate rankings formed under Analyses 1 and 2 here are very similar
to those under the corresponding homogeneous analyses considered in Section 2.7; see

Tables 2.3 and 3.2. Note that here the aggregate ranking is determined by ordering the
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Figure 3.5: Pr(w; = 1|D) — Posterior probability that ranking ¢ is informative under each analysis
(Analysis 1: p; = 0.5, Analysis 2: p; = 0.8). Rankings which are random permutations (41-50)
are shown in red.

mean of the (fully) marginal posterior distribution for each entity (marginalised over ranker
clusters). Recall that, for the homogeneous analyses in Chapter 2 we observed that the
aggregate rankings for the analysis of Dataset 2 under the Weighted Plackett—Luce model
were equivalent to those formed by analysing Dataset 1 under the standard Plackett—Luce
model. This is the case as the WPL model is able to correctly identify the uninformative
rankers and down weight them. The same conclusion can be drawn here; see Figure 3.5
and Table 3.2. Unsurprisingly, for Analysis 3 (p; = 1; the standard Plackett—Luce model),
the aggregate ranking is affected by the misleading prior information that states that
the uninformative rankers are informative. This was also observed when considering the

homogenous analysis under the standard Plackett—Luce model; see Section 2.4.

The posterior distribution from Analysis 3 clearly suggests that there is significant het-
erogeneity between rankers beliefs; see Table 3.1. Summarising such heterogeneous data
through an overall aggregate ranking is perhaps not sensible. The differences in preferences
between the ranker groups is easily seen though the within-cluster aggregate rankings.
Such an aggregate is formed by first conditioning on an appropriate number of ranker
groups and then ordering the marginal posterior means of the skill parameters within
each group. For Analysis 3, conditioning on 6 ranker groups (the posterior mode), the
within-cluster aggregate ranking for ranker cluster 1 (that which typically houses infor-
mative rankers) is very similar to the overall aggregate under the other analyses. The
remaining within-cluster aggregates (those for ranker clusters 2-6) show little coherence
with the true entity preference order and instead appear to be random permutations of the
entities. This is perhaps not surprising as these clusters typically house the uninformative

rankers.
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Heterogeneous PLw Homogeneous PL
Pi = 0.5 Di = 0.8 Di = 1
Dataset 2 Dataset 2 Dataset 2 Dataset 1 Dataset 2
x A || x2es A | x2e8 A | x288 A (88 AL | 2588 Ao
1 20.00 3 30.91 3 25.94 3 7.20 3 27.47 3 11.67
2 19.00 1 26.27 1 22.70 2 6.41 1 25.83 1 11.44
3 18.00 5 25.73 5 22.28 1 6.36 5 23.90 2 11.29
4 17.00 2 24.94 2 21.59 5 6.10 2 22.66 4 9.84
5 16.00 4 20.73 4 17.58 4 5.21 4 18.11 9 9.54
6 15.00 6 18.97 6 16.41 9 5.06 6 17.98 5 9.41
7 14.00 8 18.72 8 16.35 8 5.02 8 17.31 8 9.11
8 13.00 7 16.94 7 14.85 6 4.82 7 16.12 6 8.55
9 12.00 9 16.10 9 14.59 7 435 9 15.91 7 8.10
10 11.00 10 1478 | 10 1347 | 10 4.14 10 14.50 | 10 7.48
11 10.00 11  12.14 | 11  10.58 | 11  3.38 11 11.84 | 11 6.36
12 9.00 12 10.20 | 12 9.20 | 12 2.86 12 9.95 | 12 5.42
13 8.00 13 8.68 | 13 774 13 2.72 13 9.00 | 13 5.02
14 7.00 14 728 | 14 6.60 | 16 2.25 14 717 | 14 4.17
15 6.00 16 728 | 16 6.48 | 14 2.19 16 7.08 | 16 3.98
16 5.00 15 5.17 | 15 4.77 | 15  1.90 15 499 | 15 3.47
17 4.00 17 4.57 | 17 421 | 17 161 17 4.58 | 17 3.10
18 3.00 18 2.85 | 18 267 | 19 1.57 18 2.81 | 19 2.16
19  2.00 19 2.62 | 19 259 | 18 1.34 19 2.68 | 18 2.08
20  1.00 20 1.00 | 20 1.00 | 20 1.00 20 1.00 | 20 1.00

Table 3.2: Aggregate rankings under the infinite mixture of Weighted Plackett—Luce model for
the analysis of Dataset 2 (for analyses 1-3; p; = 0.5,0.8,1) along with the corresponding posterior
means. The results from Table 2.2 (homogeneous standard Plackett—Luce analyses) are also given
to facilitate comparison.

3.6 Uncovering entity subgroups within a ranker group

We begin by noting that so far within this thesis we have assumed that the preference
(strength) of each entity is summarised by a unique skill parameter ;. However in this
section we now consider the notion that a (homogeneous) group of rankers may not be
able to distinguish between some entities, that is, they believe some entities are tied in
strength. To allow for this we consider an alternative non-parametric prior distribution
which allows entities to cluster together. To achieve clustering on the entities we consider
a Dirichlet process prior on the skill parameters, that is, we take a (infinite dimensional)
discrete distribution over Aj such that Pr(\; = ;) # 0 for i # j. Note that in what
follows we only consider the scenario where there is a single group of rankers (¢' = 1);
we relax this assumption in Chapter 4. Therefore, unlike the previous section, we assume

that all rankers share similar beliefs about the entities.
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3.6.1 The model

Suppose that we have rankings from n rankers where ranker i reports positions (ranks)
for n; < K entities. Here we only consider a single group of rankers and therefore the skill
parameter of entity k is denoted by Ax. The rankers are assumed to be homogeneous and
so their rankings follow the same underlying ranking distribution, defined by the Weighted
Plackett—Luce model. The model described here is therefore akin to that considered within
Section 2.5. However, unlike this previous scenario (where each skill parameter followed a
unique continuous distribution) all K skill parameters now follow an infinite dimensional
discrete distribution G, where G follows a Dirichlet process. This model can be summarised

as

indep

XA ~" PLw (A, w;) 1=1,...,n,
|G P k=1,... K,

G!Oz, G() ~ DP(Oé, Go)

To make the form of the non-parametric prior distribution unambiguous we define its

stick-breaking representation, and this is

G() = D wada()
s=1
1/}3 = USH(l_UE)

I<s
ind
v "'~7 Beta(1, o)

inde
A RP Gy

for s € N. Given the form of the stick-breaking construction it is clear that the atoms of the
Dirichlet process are in fact scalar quantities and not parameter vectors as in Section 3.5.
Indeed this model only considers a single parameter vector A. However, unlike the normal
implementation of the Weighted Plackett—Luce model its elements need not be unique.
Another important feature of this model (in comparison to the model which accounts
for ranker heterogeneity) is that we no longer have the freedom to specify a unique base
distribution for each of the K entities. This follows from the exchangeability of the atoms
within the Dirichlet process and thus Gy must not depend on s. The implication of this

constraint on our prior specification will be discussed further in Section 3.6.3.
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3.6.2 Simulating data from the Weighted Plackett—Luce model with en-
tity clustering

In this section we describe how to simulate data from the Weighted Plackett—Luce model
with a Dirichlet process prior on the entity skill parameters. As mentioned previously,
introducing latent cluster indicator variables is helpful when dealing with mixture models.
Here we adopt similar latent cluster indicators and notation as in Section 3.5 where we
considered clustering on rankers. We suppose there are N° entity clusters, that is, the
parameter vector for the K skill parameters contains N¢ unique values. The collection of
these unique parameters is denoted A = (Aq, ..., Ane). Further we also use latent cluster
membership indicators ¢® = (cf,¢5,...,c%) with ¢f € {1,2,...,N¢} for k =1,2,..., K.
For example, if ¢® = (1,2, 1,2) then entities 1 and 3 are in cluster 1 and entities 2 and 4
are in cluster 2; the two clusters have the unique parameters A; # Xo. This is equivalent
to saying that entities 1 and 3 are equivalent, and are deemed to be tied in strength; the
same is also true for entities 2 and 4. Using these latent cluster indicators, the full skill

parameter vector, here denoted )\T, that contains the parameter for each entity is given
by AL = A for k=1,... K.

We can now describe how to generate data under this model (outlined in Section 3.6.1).
Again first we must specify a cluster structure but this time for the entities and not the
rankers. This can be achieved by either (a) explicitly defining values for the latent cluster

(S

allocation variables ¢ and making sure these are labelled 1,...,N¢, or (b) drawing a

realisation (marginally) from the Dirichlet process prior distribution as follows.

e Choose a > 0 or simulate from a suitable distribution.
e Set ¢ =1 and the (current) number of clusters as N¢ = 1.

e For k = 2,..., K simulate the allocation of entity k to a cluster according to the

discrete distribution

Pr(CZ:]|C§7...,CZ_1):ﬁk‘7—1, fOI' j:].,...,Ne,
o
Pr(c, = N°+1]c5,...,cf_y) = —
I‘(Ck + ’017 7ck—1) a—l—k:—l’

where nzj denotes the number of points currently within cluster j (at iteration k),
and N® — N®+1if ¢f = N°+ 1.

Once we have a clustering structure of the entities we now choose values for the (cluster-
specific) skill parameters As. These can either be chosen explicitly or alternately drawn

from the prior (base) distribution by sampling As indep Go for s =1,..., N°. We also must
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choose whether each ranker is informative or not, that is, choose (or sample) a value of
w; € {0,1} fori=1,...,n.

The parameters of the model are now fully specified and so we can now use the exponential
latent variable representation of the Weighted Plackett—Luce model to generate rankings.

A collection of n complete rankings {a;}" ; is generated via the following process.

Fori=1,....n

e Sample v;; indep Exp(\) for j=1,... K.
J

e Set x;; = argmin v;; where S;; = K\ {z1,..., 251} for j=1,..., K.
qES;;
Note that the process outlined above is equivalent to the data generating process for the
(no clustering) Weighted Plackett—Luce model as in Section 2.5.1 but here the parameter
vector A is replaced with AT = (Acey .. s Acs, ). Alternative types of rankings, for example,
a top—b ranking, can be obtained from the complete rankings simulated using the same

process as discussed in Section 2.2.5.

3.6.3 Prior and latent variable specification

We now outline our prior distribution and the likelihood under this model and appeal to the
notation and latent cluster indicators introduced in the previous section. We suppose there
to be N® entity clusters and let A = (A1, ..., Ane) denote the collection of the unique skill
parameters. The latent cluster membership indicators are given by ¢® = (c{,c5,...,c%)
with ¢f, € {1,2,..., N} for k =1,2,..., K where ¢} = j denotes that entity k belongs to

cluster j.

We noted earlier that choosing a value for the Dirichlet process concentration parameter «
can be difficult. Therefore, as for when we considered ranker clustering, we instead take
a ~ Ga(aq,bs) so that we can infer this parameter from the data. We also choose a
Gamma prior distribution for the skill parameters so that a conjugate update can be
performed (after data augmentation). Recall that for this model we must choose a single
base distribution for all skill parameters, that is, Gg can no longer depend on k. Here
we take Gg = Ga(a, 1) which gives \q indep Ga(a, 1) a priori. Note that not being able
to specify a unique prior for each of the k entities has a significant effect on how much
information can be fed into the analysis through the prior distribution. Indeed given
that Go = Ga(a, 1), the only choice we have is to place an uninformative prior on the
skill parameters; namely that each ordering of the entities is equally likely. This is a
consequence of the skill parameters \; being a random sample for any choice of a € RT
and therefore Pr(\; > A\;) = Pr(\; > \;) for all ¢ # j. Given this we might think it is
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sufficient to let a = 1. However, the value of a still provides information about the variance
of the skill parameters, for example. The limited flexibility of the prior distribution for the
skill parameters is somewhat of a drawback of this model. Unfortunately there is no way
to resolve this given the exchangeability assumption of the Dirichlet process. However, we
note that in a real world scenario we might well wish for the data to be the main driving
force behind inference and therefore the inability to place strong prior information into
the model is perhaps not too important. Indeed we have seen in our previous analyses

that taking ap = a = 1 still enables informative inferences on the skill parameters.

Using Gy = Ga(a, 1) and recalling that the model contains N¢ unique skill parameters,

the prior distribution for A (conditional on the cluster indicators ¢®) has density

Ne
o TN
c=1

Also the model assumes that each ranking follows the Weighted Plackett—Luce probability,
that is, X;|A, w, c® indep PLW(/\T, w;). Therefore we also need a prior distribution for the
latent ranker weights, w. Here we choose the prior specification used in previous analyses,
that is, w; inder Bern(p;) where p; € (0,1] fori = 1,...,n. We now construct the likelihood
under this model. The probability of the ith ranking, expressed in terms of the latent

cluster indicator variables, is

.
A

n;
Pr(X; = x;|A, c° w):H . % .
A & SENPY S NPV

and therefore, as the rankings are (conditionally) independent, the likelihood is

n  n; Wi

cgi.
rei et = s = S
=J Tim meit; ™m

i=1j=1 &m

Unsurprisingly, and as we have seen previously, the form of the likelihood does not ad-
mit conjugate Bayesian inference. We can however use data augmentation techniques by
introducing appropriate latent variables so that the full conditional distributions for the
skill parameters are simple. Here the latent variables required are again those which cor-
respond to the latent exponential inter-arrival times and (expressed in terms of our latent
cluster indicators) are
n;
2D, A, w, c® indep Exp Z )\ggim + Z )\qclén; , (3.11)

m=j meU;

fori=1,...,nand j=1,...,n,.
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3.6.4 Full conditional distributions

We can now use Bayes’ Theorem to obtain the posterior distribution. The posterior
distribution (A, Z, ¢®, w, a|D) is now a joint distribution of the latent random variables Z,
the collection of unique skill parameters A, the binary indicator variables w, the latent
cluster allocations ¢® and the DP concentration parameter «. Again we can sample the
latent cluster indicators using Neal’s Algorithm 8 (Neal, 2000) and the FCD of the DP
concentration parameter « is as in Section 3.4.2. The remainder of this section is concerned
with deriving the FCDs for the remaining unknown quantities (Z, A, w) and a complete
outline of the Gibbs sampling scheme used to generate posterior samples can be found in
Section 3.6.5.

Before starting the derivation of the full conditional distributions it is useful to first con-
struct the density of all stochastic quantities. Note however that, given we already have
the FCDs for ¢® and «, it is sensible to only consider the conditional density of all the
remaining stochastic quantities given the latent cluster indicator variables and the DP

concentration parameter. This (conditional) joint density is

(A, D, Z,w|c’, a)
=7(A,D, Z,w|c)
= w(Z|D, A, w, c®)w(D|A, w, c®)n(A|c®)m(w)

n ng T
=1111 Z”’i:,,ﬁ DN e = DoNE DN )
i=1j=1 \'m=j meU; m*j meU;
n n; n; )\a 1e n
T, (S« xH R | R
x” ] Tim m
i=1j=1 m=j meU;
n ng w g w w, Ne )\a—le—kc
g 7 7 C
TTTT o, g (o o 3 e | o p o T ™
zzg zzm F(a)
i=1j=1 m=j mel; c=1

n
X Hp;”"(l — pi)l_wi.
i=1

(3.12)

The derivation of the full conditional distributions (FCDs) for our parameters follows in
a similar way to that used for ranker clustering in Section 3.5.4. We now construct the
conditional distribution of each random quantity given all other stochastic quantities. By
construction, the full conditional distribution for the latent variables Z are as in (3.11)

fori=1,...,n,j7=1,...,n;. This result can also be derived directly from (3.12) as this
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gives
n n; g
7(Z|D, A, w, c’, o) o HHexp - Z Aed + Z Aet | 2
i=1j=1 m=j mel;

The full conditional distribution for the unique skill parameters \. is derived as follows.
We have

n n; Ne )\a—l Y
(A\DchaocHH)\ A Z)\ +Z)\ 2 XHL
i=1j=1 T mel; " c=1 I'(a)
n o n; n;
S EERETS 111 (O3 S O SPEES wp vy I
=1j=1 m=j i mel; "
Ne n n;
= [t expq = [ 14+ wid wijle)zi; | A g
e=1 =1 j=1

where
n

n;
- sz’ ZH(C?% =¢),
=1 =1

is the number of times that an entity in cluster ¢ appears within an informative ranking

vij(c ZH (cg,,, =¢)+ Z]I(cfn:

meU;

and

is the number of times that entities in cluster ¢ are ranked no better than jth in the i¢th
ranking. It follows that the full conditional distribution for A. is available in closed form

as
- n ng
mae
PERE ~* Ga a+ B, 1+Zwiz’}/ij(c)2ij ) (3.13)
=1 =1

fore=1,...,N°.

The only remaining random quantities in the model that we do not currently have a
full conditional distribution for are the latent ranker weights w. Recall that we de-
note the collection of latent ranker weights excluding that associated with ranker 7 by
w_; = (W1,...,Wi—1,Wit1,--.,Wy). The full conditional distribution for w; is the discrete

distribution
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Pr(w; = 1D, A, Z,w_;, c°, a)
o Pr(w; = 1)m(Dlw; = 1, A, w—;, ) (Z|w; = 1, A, D, w_;, c°)

n; n;
X Pi H )\cgij €XPp § —Zij E Acgim + E )\cfn )
j=1 m=j mel;

Pr(w; =0|D, A, Z, w_;, c%, )
X PI'('LUZ = O)W(D‘wl = 07 A7 W, ce)ﬂ-(Z|w’i = 07 A7 Da w-—;, ce)
o (1=pi) [ exp{—zj(K:i —j+1)}.
j=1
Therefore, for i = 1,...,n, the full conditional distribution is

wil - ndse Bern(p;), (3.14)

where

B Pr(w; = 1|D, A, Z,w_;, ¢, o)
~ Pr(w; = 1|D, A, Z,w_;,c®, ) + Pr(w; = 0D, A, Z,w_;,c, )’

Pi

is the probability that ranking ¢ is informative (given the other quantities).

Recall that the latent cluster indicators ¢® can be sampled using Neal’s Algorithm 8 (Neal,
2000) which implements a Pélya urn scheme to marginalise out the infinite dimensional
parameters. The resulting full conditional distribution for the cluster allocations is a
discrete distribution over the clusters which are active and m auxiliary components. The
DP concentration parameter a can also be sampled from its full conditional distribution
given in Section 3.4.2. The following section gives a complete outline of the Gibbs sampler

used to obtain posterior realisations.

3.6.5 MCMC using Neal’s Algorithm 8

Before outlining the Gibbs sampling scheme to generate realisations from the posterior
distribution, m(A, Z, c®, w, a|D), it is useful to first define the contribution to the complete

data likelihood from ranker 7 to be

n; n;
f(zci,z,-]A,w,ce,a):H)\g? exp § —Zij E Aed + E Ave!
Jj=1 m=j

Tim
meU;
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We can now describe the algorithm concisely. Suppose we have n rankings of n; < K
entities. The state of the Markov chain has elements A = (A\. : c € {c{,...,c%}), Z = (2i),
€

c = (), w=(w;) and afori=1,...,n,5=1,...,n;, k =1,..., K. The algorithm

repeatedly samples as follows:

e Fori=1,..., K: Let ¢~ be the number of distinct ¢ for j # {and h = ¢~ +m. Label
these ¢} values in {1,...,¢ } If ¢ = ¢; for some j # i, draw values independently
from Gy for those A. for which ¢~ < ¢ < h. If ¢f # ¢§ V j # i, let ¢ have the label

g~ +1, and draw values independently from Gy for those A, for which g7 4+1 < ¢ < h.

Draw a new value for ¢§ from {1,...,h} using the following probabilities:

PI’(Ce . C|D 7 A w. a) . bn—i,c f(xi7zi|A7wac? =, Ce_iaa)v 1 <c< q ,
T ) Ly ddy ’ -

—7
’ b e fx,zilA,w,cf =c,cy,a), g <c<h,
where A = {A1,..., \n}, noic = #(c§ = c: j # i) and b is the appropriate normal-
ising constant. Change the state to contain only those A, that are now associated

with one or more observations, that is, let A = (A : c € {cf,...,c%}).

Sample A, from (3.13) for c=1,..., N°.

e Sample z; from (3.11) fori=1,...,n,j=1,...,n;.
e Sample w; from (3.14) for i =1,...,n.
e Rescale

— Sample AT ~ Ga (N¢a, 1).

— Calculate ¥ = g)\c.

=

— Forc=1,...,N® let Ao — A\, AT/%.

e Sample « as in Section 3.4.2 with n = K and N¢ = N°€.

The rescaling step given here is akin to that mentioned in Section 2.2.3.

3.6.6 Simulation study — revisiting Dataset 1

For our first simulation study we revisit Dataset 1, introduced in Chapter 2. Recall that
this dataset contains n = 40 complete rankings of K = 20 entities, whence n; = K for
1 =1,...,n. Also note that these data were simulated from the standard Plackett—Luce

model. Under our current setting we therefore consider these data to contain N® = K = 20
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entity clusters with each entity within its own cluster. Alternatively, and equivalently, we
could consider these data as being from the Weighted Plackett—Luce model with a Dirichlet
process prior on the skill parameters using the process outlined in Section 3.5.2 with ¢ = k
fork=1,..., K, A=(20,19,...,1)) and w; =1 fori=1,...,n.

The purpose of re-analysing these data is to see how this model performs in a scenario
where the collection of rankings to be analysed contains a large number of entity clusters;
specifically the scenario where each entity is in its own cluster (N¢ = K). It will be
interesting to see if we obtain significant posterior support for 20 entity clusters and if
not, how inferences are affected by the introduction of our entity clustering structure.
We also take this opportunity to perform a prior sensitivity analysis, and consider how
sensitive the posterior distribution is to the choice of prior distribution on the concentration

parameter «.

Before we can perform Bayesian inference we must first describe a suitable prior distribu-
tion. As in previous analyses of these data we choose to let each ordering (of the entities)
be equally likely a priori; note that the DP prior also requires this uniform distribution
on orderings. As before we let a = 1 and so the prior distribution over the skill parameters
is A\ indep Ga(1,1) for k = 1,..., K. As discussed when considering clustering rankers,
specifying a (prior) value for the concentration parameter of the Dirichlet process is some-
what difficult. Therefore instead we allow « to be uncertain and assign a suitable prior
distribution. We assess how the posterior distribution is affected by the choice of prior
for a by considering 4 separate analyses. For Analyses 1 and 2 we use the priors com-
monly used within the literature (e.g. Rodriguez et al., 2008), namely a, = b, = 1 and
ao = by = 3 respectively. In Analyses 3 and 4 we take b, = 1 and consider a, = 3 and
aq = 5 for each analysis respectively; the posterior distribution under these analyses will
allow us to investigate the effect of increasing the prior mean for . Table 3.3 (top) shows
the (induced) prior distribution for the number of entity clusters for each of the analyses
considered. Note that in each case the prior probabilities were obtained by simulation
as a closed form of m(N€|a, K) only exists when « is a fixed constant. The prior means
and standard deviations of both the number of entity clusters along with the concentra-
tion parameter itself are also given in Table 3.3 (bottom) for each analysis. Finally we
also need to specify the prior probability that each ranker is informative. Although, in
general, it might be pragmatic to use a conservative choice of the p; we suppose that, for
this analysis at least, we are fairly confident that the rankers are informative — these data
were simulated from under the standard Plackett—Luce model (equivalent to the Weighted

Plackett—Luce model with w = 1) — and so take p; = 0.9 for each ranker.
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J
aq bo| 1 2 3 4 ) 6 7 8 9 10 11 12 13 14 2>15
1 1/0.24 0.21 0.17 0.13 0.10 0.06 0.04 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00
3 31011 0.21 0.23 0.19 0.12 0.07 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
3 1]0.02 0.05 0.09 0.12 0.14 0.15 0.13 0.11 0.08 0.05 0.03 0.02 0.01 0.00 0.00
5 1/0.00 0.01 0.02 0.05 0.08 0.11 0.14 0.15 0.14 0.12 0.08 0.05 0.03 0.01 0.01

aa  ba | E(C°) SD(C°) | E() SD(a)

1 1] 318 2.07 1 1

3 3| 345 1.76 1 1/V3
3 1| 623 2.53 3 V3
5 1| 8.04 2.70 5 V5

Table 3.3: Prior probabilities, Pr(N¢ = j), of the number of entity clusters for each analysis (top)
and the prior expectations and standard deviations of both the number of entity clusters and the
concentration parameter (bottom). Modal values are highlighted in bold.

Posterior analysis

We generate realisations from the posterior distribution (for each analysis) using the Gibbs
sampling algorithm outlined in Section 3.6.5. After performing a few pilot runs it appeared
that choosing m = 3 gave good mixing over the cluster labels. Note that, for this model,
increasing m does not effect the computational burden as significantly as when we con-
sidered the ranker clusterings as here we are only required to draw m auxiliary entity
clusters (scalars) and not ranker clusters (parameter vectors). That said, as when consid-
ering ranker clustering, the discrete (full conditional) distribution over the cluster labels
also increases in dimension. Each Markov chain was initialised at a random draw from
the prior distribution. We ran the MCMC scheme for 110K iterations, discarding the
first 10K samples as burn-in and thinning the remaining iterates by a factor of 10. This
left a posterior sample of 10K (almost) un-autocorrelated realisations from the posterior
distribution. The computational time required was (approximately) 215, 196, 223 and 249
seconds for Analyses 14 respectively. Figure 3.6 shows the trace plots of the log complete
data likelihood for all analyses. The chains appear to be mixing reasonably well in each
case. Again assessing convergence and mixing in this way is convenient not only because
the state space is vast but also because the dimension of the posterior distribution changes
at each iteration (depending upon the number of unique entity clusters). Convergence has
been assessed further by initialising numerous chains at different starting values and veri-
fying that the posterior distribution obtained from each chain is the same up to stochastic

noise.
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Figure 3.6: Trace plots of the log complete data likelihood for Analyses 1 and 2 (top left, right)
and Analyses 3 and 4 (bottom left, right).
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Figure 3.7: Pr(w; = 1|D) — Posterior probability that ranking ¢ is informative under each analysis
(Analysis 1: a, = by, = 1, Analysis 2: a, = b, = 3). Colours distinguish between the different
priors on «.

Under each analysis we observe in Figure 3.7 that the posterior probability of each ranker
being informative is large with Pr(w; = 1|D) > 0.8 for ¢ = 1,...,n. This comes as no
surprise as these data were simulated under the standard Plackett-Luce model (which
has w; = 1) and we expressed high confidence in each ranker being informative a priori.
Note that ranker 8 has a lower posterior probability than specified through the prior
(pi = 0.9). Closer inspection of this ranking reveals that it is somewhat atypical of this
dataset: entities 2 and 4 both appear within the bottom 5 positions and entities 13, 11
and 10 all feature within the top 5 positions. These features are somewhat at odds with
the true parameter values from which these data were simulated, and were noted when
we analysed these data under the Weighted Plackett—Luce model with no clustering in
Section 2.7.
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Figure 3.8: Pr(N°® = 4|D) — Marginal posterior distribution of the number of entity clusters for
each analysis.

We now turn our attention to the entity clustering. Figure 3.8 shows the marginal posterior
distribution of the number of entity clusters for each analysis (as frequency polygons). The
first striking observation we note is the fairly large difference in the marginal posteriors
between analyses. Of course, this aspect of the posterior distribution was always quite
likely to be affected given that the concentration parameter a controls the level of entity
clustering. It appears, for these data at least, that the prior beliefs for « play an important
role in the analysis. This might be due to there being little information in these data about

the number of entity clusters: recall that these data only contain 40 rankings of 20 entities.

If we compare the marginal posterior distributions of the number of entity clusters for
Analyses 1 and 2, that is, those which specify a unit mean on the concentration parameter
a priori, we note that there is less posterior variation for the latter. This suggests that,
for these data, information about the variation on the number of entity clusters contained
within the prior also plays an important role in the analysis — recall the prior distributions
for these analyses specify standard deviations of 1 and 1/3 for « respectively. Further,
and perhaps not surprisingly, we observe that as the prior mean for « increases, so does

the posterior mean on the number of entity clusters; see Analyses 1, 3 and 4 in Figure 3.8.

As with ranker clustering, the marginal posterior for the number of clusters does not tell
the full story. Again we use complete linkage dendrograms formed from the dissimilarity
matrix with entries A;;, where A;; = Pr(cj # ¢§|D) is the posterior probability that
entities ¢ and j are not clustered together. Figure 3.9 shows the dendrograms of entity
clustering for each analysis. It is clear that the clustering structure shown within the
dendrograms is similar for each analysis and so this aspect of the posterior distribution is
fairly robust to the choice of prior on « (unlike the marginal posterior over the number of
entity clusters). As the prior mean for « increases we observe that the dissimilarity values
at which clusters form increases, that is, rankers are co-clustered together less often. This is

consistent with observing an increased number of entity clusters. The only notable change
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Figure 3.9: Dendrograms of entity clustering for Analyses 1, 2 (top left and right) and Analyses 3,
4 (bottom left and right).

in clustering structure from the dendrograms is that entity 11 has changed allegiance from
entities {4, 6, ...,10} to entities {12,13, 14,16} under Analysis 2 (top right). It is pleasing
to see that although our model is unable to detect each entity is within its own cluster
(they have unique values with A = (20,19,...,1)) those entities which form groups are

typically those with labels that are most similar.

It is interesting to see how inferences on the skill parameter values are affected by incor-
porating entity clustering into the model. Table 3.4 shows the marginal posterior means
for each of the K entities under all analyses considered. Note that to ease comparison the
skill parameters have been rescaled (offline) so that Agg takes its true value, that is, we let
A — Ak/Agg for each realisation from our posterior distribution. The aggregate rankings
(formed by ordering entities by their posterior mean) are the same for each analysis and
therefore this is only given once in the table. It follows that this aspect of the posterior
appears to be fairly robust to the choice of prior for c. The (posterior) aggregate rank-
ing(s) are fairly similar to the optimal ranking, & = (1,2,...,20), formed conditionally
on the true parameter values. Recall the optimal ranking is that which maximises the
Plackett—Luce probability and is formally defined in (2.7). Further if we compare poste-
rior inferences here to those when we assumed the (no clustering) standard Plackett—Luce
model in Section 2.4.1, we notice striking similarities. The aggregate rankings are the
same and there is little discrepancy between the posterior means of the skill parameters
for each model. Therefore, for these data, the posterior inferences are robust to incorpo-
rating entity clustering structure within the model. We note however that the posterior

distribution formed under the model that allows for entity clustering is much richer in
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Analysis
Rank x?88 1 2 3 4
1 3 24.76  23.83 25.39 25.88
2 1 24.03 23.34 24.57 24.85
3 5 23.10 22.56 23.44 23.71
4 2 22.56 22.04 22.75 22.95
5 4 19.66 19.68 19.61 19.61
6 6 19.50 19.45 19.39 19.34
7 8 19.04 19.09 18.91 18.84
8 7 18.24 18.36 18.04 17.95
9 9 18.08 18.19 17.85 17.69
10 10 16.75 16.84 16.55 16.36
11 11 13.02 12.97 1298 13.04
12 12 10.18 10.01 10.24 10.32
13 13 9.21 910 9.28 9.33
14 14 766 7.66 7.60 7.59
15 16 7.61 758 7.56 7.55
16 15 540 541 538 5.36
17 17 4.95 492 492 491
18 18 3.02 3.02 299 297
19 19 295 296 292 289
20 20 1.00 1.00 1.00 1.00

Table 3.4: Marginal posterior means of the skill parameters for each analysis. The aggregate
ranking is the same under all analyses.

information. For example, we can quantify, in a principled manner, the (posterior) level
of similarity between entities — something that would require an ad hoc approach under a

standard (no clustering) analysis.

3.7 Summary

In this chapter we have shown that it is possible to reveal latent group structure contained
within ranked data by appealing to Dirichlet process mixture models. In Section 3.5 we
explored the area given much attention in the literature, namely revealing differences
between rankers’ preferences. We used an infinite mixture of Weighted Plackett—Luce
models which, through simulation studies, was shown to be an appropriate model for
analysing such data. In Section 3.6 we considered the notion that rankers may not be
able to distinguish between certain groups of entities, that is, they consider some entities
to be indistinguishable (tied in strength). The analysis used a novel (Dirichlet process)

prior distribution over the skill parameters themselves — something which, to the best of
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our knowledge, has not previously been considered within the literature. This allowed for
the exploration of (potential latent) clustering structure within the entities. Further the
richness of information within the posterior distribution allows us to quantify the level of
similarity between entities — this would require an ad hoc approach if using standard (no
clustering) techniques. Efficient (marginal) posterior sampling schemes were discussed and
a Gibbs sampling strategy (made possible by appealing to data augmentation techniques)

was outlined for each model.

We acknowledge that the simulation studies within this chapter consider data which were
simulated from homogeneous models. However, we believe our models performed suffi-
ciently well and gave reasonable inferences even in the scenario where no ranker or entity
clustering was present. It was particularly interesting to see that incorporating our DP

prior on the skill parameters had little effect on posterior inferences.

In the next chapter we explore two-way clustering techniques with the aim of building
a single model which can explore not only heterogeneity between rankers but also the
clustering structure of entities within ranker groups. As part of this we consider simulation
studies on data where (true) clustering structure is present and therefore the effectiveness
of our models (in recovering both ranker and entity group structure) will be examined
within the latter part of Chapter 4.

96



Chapter 4

The Bayesian WAND

4.1 Introduction

In Chapter 3 (Sections 3.5 and 3.6) we presented two different non-parametric prior dis-
tributions which allowed for either clustering of rankers or clustering of entities. In this
chapter we develop a non-parametric prior distribution which allows for the clustering of
both rankers and entities. We do this by appealing to other Bayesian non-parametric
priors used for two-way clustering. We begin by reviewing briefly some of the existing
methods within the literature before describing the non-parametric prior distribution we

shall use for clustering both rankers and entities.

4.2 Two-way clustering

There are a few Bayesian non-parametric priors which allow for multiple layers of clustering
via Dirichlet processes. Two of these are the Hierarchical Dirichlet Process (Teh et al.,
2006) and the Nested Dirichlet Process (Rodriguez et al., 2008) which, for conciseness, we
refer to as the HDP and NDP respectively.

The HDP has the typical model specification

G Gy, i=1,....n,
Gi‘a,Go iniep DP(a,Gg), 1= 1,...,n,

Golv, H ~ DP(y, H).

Under this prior each sample is drawn from a distribution over a common set of atoms

(which is a realisation of a Dirichlet process) whose base distribution is in turn another
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Dirichlet process realisation (with associated base distribution H). In our setting a typical
realisation from this prior is an n x K matrix A containing the skill parameter vectors
for each of the n rankers. The skill parameter vectors for each ranker are drawn from the
same set of atoms. However, these atoms have different weights for each of the n rankers.
One way to think about this is that each ranker is first assigned their own unique DP

before drawing a sample from this DP for their K skill parameters.

The NDP is slightly different and under this NDP prior there is a single Dirichlet process
whose atoms are themselves unique Dirichlet processes. As with the HDP, a typical
realisation (in our context) from this prior is the parameter matrix A containing the skill
parameter vectors. However, unlike the HDP, the NDP stipulates that two realisations of
the skill parameter vector, say A; and Ag, are either drawn from a distribution (realisation
of a DP) over the same atoms with the same weights, or alternatively, a distribution over
different atoms with different weights. Formally the NDP is defined through its stick
breaking representation and we let Q|c,y, H ~ NDP(«,~y, H) denote that @ follows the

Nested Dirichlet Process prior distribution with stick-breaking representation

Q) = S wdn(A),
s=1

Vs mf\lfpvsH(l—vg), s=1,2,...,
£<s

Vs indep Beta(1, a), s=1,2,...,

Ps(A) = Zwstdﬂ (A1), s=1,2,...,
=1 st

wee = ug [J(1-us), s=12,..., t=12,..,
<t

ugt " Beta(1,v), s=1,2,..., t=1,2 ...,

AL P s=1,2,..., t=1,2,...

A typical model specification for the NDP is therefore

Xi|Gi ~ Gy, 1=1,...,n,

Gi|Q ~ Q, 1=1,...,n,
Q|o,v, H ~ NDP(a,v, H),

where @ follows a Nested Dirichlet Process prior with concentration parameters «,~y and
base distribution H.
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Unfortunately neither of these priors are appropriate for our problem. They are designed
for situations where x;; is itself an observation. However, for ranked data, this is not the
case as an observation is the entity ranking (vector) @;. In our setting both of these priors
assign a distribution (realisation of a DP) to each ranker and then draw samples for the K
skill parameters (one for each entity) based solely on the information contained within
that single ranking. However, in order to cluster entities (within each ranker group) we
require information from numerous rankers. The properties of the NDP are somewhat
desirable and we therefore adapt this prior distribution so that it can be applied in a
ranked data context. The adaptation required is fairly straightforward and is discussed in

detail within the next section.

4.3 The Adapted Nested Dirichlet Process (ANDP) prior

As mentioned we need to adapt the Nested Dirichlet Process prior so that it can be used
within a ranked data context and enable clustering of both the rankers and entities. Under
the standard NDP, rankers are first assigned to a distribution (realisation of a DP) before a
sample of the K skill parameters is then drawn (independently) for each ranker. However
we adapt the prior so that we first assign all rankers to a distribution (realisation of a DP)
before then proceeding to draw a single sample (of the K skill parameters) from each of
the unique DP realisations that rankers are assigned to. These samples are drawn based
on the information from all rankers which are assigned to each respective DP realisation.
Further the single sample (drawn from each respective DP realisation) is shared between
all rankers within that “cluster”. This results in a slightly different prior to the NDP,
which we call the Adapted Nested Dirichlet Process (ANDP) prior, and this dictates that
those rankers who are assigned to the same DP realisation (cluster) have the ezact same
skill parameter vector A. Recall that the NDP only requires that the parameter vectors
for each of the rankers (assigned to the same cluster) are drawn from the same distribution

(realisation of a DP).

The Adapted Nested Dirichlet Process prior distribution has a “top level” Dirichlet process
whose atoms are parameter vectors A. Each of these parameter vectors is a sample from a

unique realisation of a “low level” Dirichlet process. We let G|a, vy, Gy ~ ANDP(a, 7, Go)
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denote that G follows the ANDP prior distribution with stick-breaking representation

oo
G(A) = ) ¥bx:(NY), (4.1)
s=1
(I8 mievaH(l—w), s=1,2,...,
1<s
Vs indep Beta(1, a), s=1,2,...,
oo
P(XY) = Zwstcsﬂtw), s=1,2,..., (4.2)
t=1
we = ug [JA—us), s=1,2,..., t=12..,
i<t
st P Beta(1,7s), s=1,2,..., t=12,...,
AL P G, s=1,2,..., t=12,

It is worth noting that the NDP (and therefore the ANDP) priors are usually specified
using two concentration parameters, one controls the top level clustering (in our case
rankings) and the second corresponds to the lower level clustering (the entity clustering).
However, for the ANDP we choose to instead introduce an infinite dimensional space
for our low level concentration parameters, that is, we introduce v, for s € N and let
v = (71,72, - - - ) be the collection of these concentration parameters. Although this change
might seem somewhat incidental it means that the ANDP prior now has more flexibility
to handle differing levels of entity clustering within each ranker group. Note that as the
low level Dirichlet processes are themselves atoms of the high level Dirichlet process, the
associated concentration parameters s must be exchangeable (with respect to the cluster
label s). This has the consequence that if these parameters are chosen to be fixed constants,
they must all be equal, that is, 75 = v with v > 0 and s € N. In this scenario the additional
modelling flexibility is lost and the concentration parameter (for the entity clustering) is
the same across ranker groups. Alternatively «5 can be given a prior distribution which
does not depend on the cluster label s. In other words, we can choose 7, indep f() a priori
but not ~s indep fs(+) due to the exchangeability requirement of the top level Dirichlet
process. We note that if the density f(-) is a mixture of Gamma distributions then,
as was the case when we considered one-way clustering (of either rankers or entities),
the full conditional distribution for each ~s is straightforward. Of course, other prior
specifications could be chosen but come at the cost of a loss of conjugacy. We also note
that the concentration parameter of the top level Dirichlet process («)) remains a scalar

and controls clustering of the rankers.
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HDP NDP ANDP
GO ~ DP(’% H) Q ~ NDP(O[7’Y7 H) Q‘O&,"}’, GO ~ ANDP((LF% GO)
G,‘ ~ DP((Y,G()) Gt ~ Q (Al., .. .,)\,L)|Q ~ Q
: GT | \‘ | GT \‘\‘ | G ‘ ‘
: Bl . ;
T Gyl e Gl ‘
| [
A3 Al
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Figure 4.1: Comparison of non-parametric prior distributions for two-way clustering

Figure 4.1 gives a graphical representation of the HDP, NDP and ANDP (based on Figure 1
in Rodriguez et al. (2008)) and thus clarifies the differences between these non-parametric

prior distributions.

4.3.1 Generating prior samples (stick-breaking representation)

We now describe how to obtain realisations from the ANDP prior distribution when the
data contain n rankers and K entities. Recall that a typical observation from this prior

distribution is the matrix A which holds the parameter vectors for each of the n rankers.
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Such a realisation can be obtained fairly trivially using the stick-breaking representation
outlined by (4.1) and (4.2). A marginal method using an appropriate Pélya urn scheme will
be considered later within this chapter. When implementing the stick-breaking approach
for a single Dirichlet process we noted that we must first choose a suitable truncation
parameter which results in a reasonable approximation to the infinite dimensional dis-
tribution defined by the Dirichlet process. It is perhaps not surprising that the ANDP
requires two truncation parameters, N1 and N, so that the distributions G and P defined
in (4.1) and (4.2) are reasonably approximated. These truncation parameters must be

chosen so that

0o N- oo
> wy~0  and 21: > wa 0, (4.3)

s=N1+1 s=1t=Na+1

or, equivalently, so that

N1 N2
qus:l and Zwstzl fors=1,..., Nq.
s=1 t=1

We can then generate a prior realisation using the following process.

e Choose N; and Ny sufficiently large.
e Choose a > 0 or sample from an appropriate prior distribution.

e Choose 75 = 7 > 0 or sample 7, (independently) from an appropriate prior distri-

bution which is exchangeable in s for s = 1,..., V;.
e Sample )\it indep Gofors=1,...,Ni,t=1,...,No.
e Sample ug indep Beta(l,7s) for s=1,...,Ni, t=1,..., Na.

o Set wg = ug [[(1 —ug) for s=1,...,Nj, t=1,..., No.
<t

e Sample X% from the discrete distribution(s) with atoms Al and weights w,. for
k=1,...,Kands=1,..., N;.

e Sample v, indep Beta(l,a) for s =1,..., Ny.

e Set s =wvs [[(1 —wy) for s=1,..., Ny.
{<s
e Sample A; from the discrete distribution with atoms {A],..., A}, } and weights

fori=1,...,n.

We now explore this prior distribution further in the next section by investigating the

effect of the concentration parameters on prior realisations.
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4.3.2 Exploring the ANDP prior

We now investigate how the concentration parameters affect realisations from the ANDP
prior distribution. Suppose we have n = 50 rankers and K = 20 entities. It follows that
the maximum number of unique parameter values that could be used to summarise these
data is n x K = 1000; this scenario would arise when each ranker is assigned to their own
cluster and each entity (within each ranker group) is also within its own cluster. Also the
maximum number of unique parameter vectors (ranker clusters) is n = 50. Figure 4.2
shows the number of unique values of A (total number of unique skill parameters across
all ranker clusters) along with the number of ranker clusters (unique parameter vectors)
there are for varying values of o and y. Here we fix the concentration parameters in ranker
groups to be constant and so set 75 = for s = 1,..., N1. Note that Figure 4.2 shows the
empirical prior probabilities calculated from one million (independent) prior realisations

drawn using the method described in Section 4.3.1.

For fixed «, the prior distribution of the number of ranker clusters (the number of unique
parameter vectors A) is the same for all v values; see Figure 4.2 (top left). This follows
as the DP (4.1) whose atoms are skill parameter vectors is conditionally independent of ~
given A} for s € N. The consequence of this is that - plays no role in the level of ranker
clustering and this aspect of the prior distribution is controlled by « alone. As when we
considered clustering rankers (Section 3.5), the number of unique ranker clusters increases
as « increases; see Figure 4.2 (top right). It follows from our first observation that, for
any particular choice of «, the prior distribution of the number of ranker clusters is the
same irrespective of . Therefore, for this aspect of the prior distribution, allowing both «
and « to vary is equivalent to only considering variation on «. Before we consider the level
of entity clustering, recall that here we are considering the total number of entity clusters
across all ranker clusters, that is, the total number of unique skill parameters A, and not
the number of entity clusters within individual ranker clusters. As expected, for fixed «,
the number of entity clusters increases as «y increases; see Figure 4.2 (bottom left). Note
that here we have larger prior uncertainty for the number of entity clusters compared to
when we had clustering on entities alone. This follows as we have additional uncertainty
on the number of ranker clusters with the ANDP prior. Also, with fixed -, the number
of unique entity clusters increases as « increases; see Figure 4.2 (bottom right). This is
perhaps counter-intuitive as, for fixed =, the prior distribution of the number of entity
clusters (within a ranker group) remains unchanged. However, as « increases, the number
of ranker clusters increases and each unique ranker cluster contains at least one entity
cluster. Therefore, as the number of ranker clusters increases (and therefore the number
of parameter vectors A) so too does the number of unique A values. This follows as the

skill parameter vector for each different ranker cluster is drawn from a unique distribution
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Figure 4.2: Number of ranker and entity clusters under the Adapted Nested Dirichlet Process prior
for various values of concentration parameters o and ~.

(realisation of a DP) and therefore Pr(A;; = Ac,;) = 0 for two unique cluster labels ¢; # ¢z
and all 4,5 € {1,...,K}.

4.4 The model

We now describe the full model which incorporates both the ranker reliability parameter
and the two-way clustering of both rankers and entities (within ranker groups). The
model is an infinite mixture of Weighted Plackett—Luce models with the ANDP chosen as
the prior distribution. We refer to this model as the Weighted Adapted Nested Dirichlet
(WAND) process mixture of Plackett—Luce models. The main components of this model

can be written as

Xi|)\i,wi~PLW()\i,wi), izl,...,n,

(AL, A @~ @
Qla, v, Go ~ ANDP(a, v, Go),

where the stick-breaking representation of the ANDP prior is as in Section 4.3.
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4.5 A conditional sampling approach

In Section 3.4.1 we discussed different methods of implementing MCMC sampling algo-
rithms for Dirichlet Process mixture models. When considering one-way clustering (Chap-
ter 3) it was fairly straightforward to implement a marginal sampling scheme based on
Neal’s Algorithm 8 (Neal, 2000). However this non-parametric prior distribution is more
complex due to the two-way clustering it induces. Although there are inherent problems
with implementing conditional sampling schemes (such as the choice of truncation param-
eters and the requirement of label switching moves) these methods are often the most

intuitive and so we consider them a good place to start in this case.

4.5.1 Simulating data from the WAND model

In this section we describe how to simulate data from the Weighted Adapted Nested
Dirichlet (WAND) process mixture of Plackett—Luce models. Again it is helpful to first
introduce latent cluster indicators. Let ¢ = (c1, ..., c,) where ¢; = j denotes that ranking i
is associated with parameter vector A;. We also need indicators to denote the entity
clustering within each ranker group (parameter vector). Let d;; = ¢ denote that entity j
within parameter vector i is allocated to entity cluster ¢ and let D = (d;;) denote the
matrix of latent entity cluster indicators. In this notation, the value of the skill parameter

assigned to entity j from ranking ¢ is A, 4

cird
Note that under the (vanilla) NDP, the skill parameter corresponding to Aci’d%’j would
be A, 4, ;- Although subtle, the difference is that under the NDP each ranker would have
their own entity clustering structure, that is, the (entity) cluster indicators within d; need
not be the same as those within d; even if rankers ¢ and j are within the same ranker
cluster (¢; = ¢j). The ANDP on the other hand requires that if two rankers are in the same
cluster then they also have the equivalent entity clustering, whence the clustering structure
for a ranker in cluster ¢; is given by d.,. Recall that this constraint is made so that entity
clustering can be inferred as there is no information (about the entity clustering) contained
within a single ranking and therefore we must use all the information from those rankers

within cluster ¢ to get information about d..

We now describe how to generate ranked data from this model. We first need to specify
both the ranker clustering structure and the entity clustering structure within each (active)
ranker cluster. We could, of course, just choose these structures by giving values to the ¢;
and d.;. Note that, as we are using a conditional sampling approach there is no longer a
requirement for the active (entity or ranker) clusters to be labelled incrementally from 1
as our state space (over cluster indicators and the collection of unique skill parameters A)

remains of fixed dimension, namely N7 X No. The cluster labels are therefore only required
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to be chosen so that ¢; € {1,..., N1} and do, € {1,..., Na}. Alternatively we could draw
cluster structures for both the rankers and entities from the ANDP prior distribution as

follows.

e Choose N; and Ny sufficiently large.

e Choose a > 0 or sample from an appropriate prior distribution.
ind

e Sample v; '~ Beta(l,a) for s =1,...,N; — 1 and let vy, = 1.

o Set s =vs [[(1 —wy) for s=1,...,Ny.
{<s

e Sample ¢; indep Cat(Ny,vp) fori=1,...,n.

e Choose vs = v > 0 or sample 7, (independently) from an appropriate prior distri-

bution which is exchangeable with respect to s for s € {c}.
indep
e Sample ugy; ~ Beta(l,v;) for s € {c}, t=1,...,Na — 1 and let usn, = 1.

o Set wg = ug [[(1 —uge) for s € {c},t=1,..., No.
<t

e Sample dg indep Cat(No,w;) for s € {c}, k=1,..., K.

Once we have a clustering structure of both the rankers and entities we need to choose
values for the (cluster-specific) skill parameters Ag;. Again these can either be chosen
explicitly or drawn from the prior distribution by sampling A indep Gy for s € {c},
k € {ds}. Finally we need to specify whether rankers are informative or not and so must

choose a value of the binary w; or sample them independently from Bern(p;) distributions.

Now all the parameters of the model are given, we can use the exponential latent variable
representation of the Weighted Plackett—Luce model to generate rankings. A collection

of n complete rankings {x;}!" ; is generated via the following process.
For:=1,...,n
ind . ,
e Sample v;; 3 EXP()\ZZdC, j) forj=1,..., K.

e Set x;; = argmin v;q where S;; = K\ {z1,..., 251} for j=1,..., K.
q€S;;

Alternative types of rankings, such as a top—5 ranking, can be obtained from the complete

rankings simulated using the same process as discussed in Section 2.2.5.
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4.5.2 Prior specification and latent variables

Again we choose a Gamma prior distribution for the skill parameters so that a conjugate
update can be performed (after data augmentation). As in Section 3.6 our model allows
for entity clustering and so we need to choose a single base distribution Gy for all skill
parameters. This follows from the exchangeability requirement of the DP prior over the
entity parameters as discussed previously. Here we take Gy = Ga(a, 1), giving Ay ndep
Ga(a, 1) a priori; recall that the rate parameter is not likelihood identifiable and so is fixed
at one. Note that as we are using a conditional sampling approach, we must also choose
truncation parameters to approximate the infinite dimensional aspect of the Dirichlet
processes. The state space of the skill parameters therefore remains of fixed dimension
(N1x Ny). Let A = (\g) denote the collection of all unique skill parameters (s = 1,..., Ny,

t =1,...,Ng). The prior distribution over the skill parameters is therefore

We choose the prior distribution for w; to be as before, with w; inder Bern(p;), p; € (0,1]
for i = 1,...,n. Recall that the prior choice p; = 0 is not allowed. We could specify the
concentration parameters « and s as fixed constants but making specific choices can be
difficult. Also the ANDP prior requires that these entity concentration parameters must
be the same for all ranker clusters. Instead we choose to place a prior distribution over
the concentration parameters for both ranker and entity clustering and let o ~ Ga(aq, by)
and s indep Ga(ay,by) for s =1,..., Ny a priori.

We also introduce the latent cluster indicators from the previous section: recall that
¢; = j denotes that ranker ¢ is associated with parameter vector A; and d;; = £ denotes
that entity j within parameter vector ¢ is allocated to entity cluster £. The value of the

skill parameter assigned to entity j from ranking ¢ is therefore given by A, 4. .. Using

CiyJ

these latent variables, the likelihood is

n NG )\C»L', c; z)wz
~(DIA, e, D,w) = [[T] = ( — oo
i=1j=1 Z ()\ciydci,zim>wl + Z (Aci’d%”")wZ

m=j mel;

Unsurprisingly, given what we have seen previously, the form of the likelihood does not
admit conjugate Bayesian inference. The implementation of a Gibbs sampler to maintain
computational efficiency without the need for multiple tuning parameters is however highly

desirable. To facilitate this we appeal to the same technique as for previous models, that
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is, data augmentation. A Gibbs sampling solution can be obtained using a straightforward

generalisation of the latent variables in Caron and Doucet (2012), namely

Zij |D7 A7 (& D? w ”L'El"ep Exp Z ()\Ciydci,zim) + Z ()\Ciyd(:i,m) (45)
m=j melU;

fori=1,...,n,5=1,...,n;.
Using these latent variables, the complete data likelihood is

(D, Z|A, e, D,w) = w(D|A, ¢, D,w)n(Z|D, A, ¢, D, w)

n  ng n;

_ HH ( c“dcl @i ) iexp - Z ()\ci,dci’wim> + Z < Cz,dc m) ' Zij
i=1j=1 m=j meU;
N1 No n ng n;

= H H )\fgt H H exXp § — Z (Aci7dci’zim) + Z ( ciyde; m) Zij
s=1t=1 i=1j=1 m=j mel;
N1 N2 n ng

= H H Afgt exp _)\st Z W Z Cij(s, t)zij s (4.6)
s=1t=1 i=1 j=1

where " n;
Bst = Zwi I(c; = s) Z [(de;,ai; = 1) (47)
i=1 J=1

is the number of times that the random variable Ay is assigned to an entity within an

informative ranking, and

Cij(svt) =1I(ci =) Z H(dciyxim ) + Z de;m = (4.8)
m=j meU;

is the number of times that the random variable A represents an entity within an infor-

mative ranking and is ranked no higher than jth in the ith ranking.

4.5.3 Full conditional distributions

Previously, when applying a marginal sampling approach, we used Neal’s Algorithm 8
(Neal, 2000) to sample the latent indicators from their full conditional distributions. The
full conditional distribution for the DP concentration parameter was also known; see
Section 3.4.2. It follows that we could obtain the FCDs for the remaining parameters by
considering the density of all (remaining) stochastic quantities conditional on the latent

indicators and the concentration parameter. However, when implementing a conditional
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sampling approach, we must derive the full conditional distributions for all of the unknown
quantities (including the latent indicators and the concentration parameter). Here the
posterior distribution of interest is (A, Z, v, ¢, u, D, o, 7y, w|D) and in the remainder of this
section we derive the full conditional distributions for each of the unknown quantities. A
complete outline of the MCMC scheme used to generate posterior realisations is described
in Section 4.5.7.

We begin by constructing the density of all stochastic quantities as

(A, D, Z,v,c,u, D, a,y,w)

=7(Z|D,A, e, D,w)m(D|A, ¢, D,w)r(D|u)m(uly)r(c|lv)r(v|a)m(A)r(a)m(y)7(w)
N1 Na

n n;
= HH/\B“ exXp —)\StZwiZQ;j(s,t)zij
s=1t=1 =1 7j=1
N; No— 1 1+
LT S 0w < T oo,
s=1 t=1 s=1j5=1
Ny 1, N1—-1 n
A I(1+a) B
% st 1— a—1 % _
HH H F(l)F(a)( US) chl
s=1t=1 s=1 i=1
paa N1 ba.y . n
% «a aaa—le—aba % Y ,}/a'y_ e—%bW % pw7(1 _p,)l—wi
[(a) vt 1o =n

I e - (1SS )
- =1 =l

s=1t=1
Ny Na—1 N1 No Mst
xH H Vo(1 —ug )™ 1xHH{u5tH 1 —ug) }
s=1 t=1 s=1t=1 o<t
Ni—1 s paa
X H (1 — ) XH{USH 4)} Xﬁaaa_le—aba
s=1 (<s @

by a1 . .
Ysb. (o _ 1w
A e

I IETEE R (D SP IR B

s=1t=1
No
Ni—-1 a 1+Zm N1 Na—1 ’Ys*l“l’z Mmsy
S I | DT S
s=1 s=1 t=1
bga o -1 —ab ’Y a'y 1 —vsb 1 —wj;
X a I H VsOy X Hp 17 (49)
I‘(aa)
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where

and

K
Mgt — ZH(dS =
7j=1

are the number of rankers assigned to ranker cluster s and the number of entities assigned

to entity cluster ¢ within ranker cluster s respectively.

The derivation of the full conditional distribution (FCD) for each random quantity within

the model follows a similar procedure to that seen previously. Each full conditional dis-

tribution is obtained by taking the appropriate parts of (4.9). The FCDs are as follows.

e A: Fors=1,....Ni,t=1,..., Ny,
)‘St|D7 Z,'U,C,’U,,D,Oé,’)/, nd pGa' a+/85t71+zwlz<w S, t ZZ] (410)
=1 7=1
e 7: As defined in (4.5) fori=1,...,n,j=1,...,n;,
nd ni ws w
SRERS R DY OIS T DN COP (4.11)
m=) meT;
e v: Fors=1,...,N; —1,
d aE
U5| L dep Beta (1 +ms, o+ Z mz) (412)
l=5+1
e U: Fors=1,...,Ni,t=1,..., Ny — 1,
o N2
] - P Bt (1 +ma, Vet Y m55> . (4.13)

e c:Fori=1,...

=¢l-)

ms
{ 1 — ’Ul)}
I<s
n

~ v+ T (s

i'=1j=1

X exp

I=t+1

,n, ¢; has a discrete distribution with probabilities given by

N1 No n Uz
Bst
% H H)\S; exp { — st E w; § Gij(s,t)zij
s=1t=1 =1 7=1
wi/
c Tl >
nir w;r w,r
_Zi'j (Aéi/’déi/’zi’m) + E (Aci/,dci/,m>
m:j mel/li/
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g g

o<11)aiH ()\ai,déi%)wi exp | —zij Z ()xa“dEi,ZW) + Z ( &.dz, >

7j=1 m=j mel;
(4.14)
where 1 < s < Ny, and ¢; , has ¢; = ¢; for j # i and ¢; = 5. Note that this is simply

the complete data likelihood for ranker i given that they are in (ranker) cluster s.
Also note that if w; = 0 then

Pr(¢; = sjw; =0,---) =Pr(c=¢lw; =0,---)

n;
xt J] () 0 |2 d 3 () + 2 O’
j=1 m=j mell;
n;
:wsnlxexp ZZU Zl—i—z
j=1 meU;
—%HGXP{ zz] ]+1)}
7j=1
X Ps,

and so when a ranker is deemed uninformative, the computational cost is reduced
as there are no likelihood evaluations needed.

e D: Fors=1,...,N1, j=1,..., K, dyj has the discrete distribution given by

Pr(dgj =t|---) = Pr(ds = dyg| - )

N1 No Mgry n n;
By /
x H H Ugrt H(l — Ugrp) Ayt exp —)\S/tZwi E Gij(s',t)zij
s'=1t=1 o<t =1 j=1
N1 K n o n; w;
=TI M wva, I (M., )
s'=1j'=1 i=1j/=1 !
n;
X exp | —z;jr E ()\C“J%xim) + Z ( i dclm)
m=j' mel;
n; w;
xwox ITTT (M)
i€eF j/'=1
ni
X exp | —zjj! Z (Acidc~z~ ) + E ( eide m) , (4.15)
m:j/ K2 m meu 17
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where 1 <t < Ny, F ={i : ¢ = s} and dg is given by dg = dg for ¢ # j and
Jsj = t. Note that for any ranker ¢ € F', if wy = 0 then

g w; n;
I () o |20 {5 )5 3 ()

j'=1 m=j’ meU;

= H exp {—zi (Ki —j' + 1)}
ji=1

and is therefore constant with respect to changes in the value of dy;. It follows that
we can redefine the set as ' = {i : (¢; = s) N (w; = 1)} which will help to reduce

the computational burden.

e w: Fori=1,...,n, w; has the discrete distribution given by

Pr(w; = llw_;,--+)
o Pr(w; = D)m(Dlw—j, w; = 1, )w(Z|w—j,w; = 1,---)

" w; w;
X Pi H H ( C“dcz z”> exXp _ZU Z (Aci’dciﬁzim> + Z <Aci7dcivm>
i=1j=1 m=j meU;
X pl H )\C'L,dpl VT eXp _ZZ] E )\C'Lyd(‘l Tim + § AC'udc2 m

melU;
Pr(wi = O]w_i, ce )
x Pr(w; = 0)n(D]jw_;,ws =0, )7 (Z|w_;,w; =0,--)

n
=TT (et,) 0 | 2] 35 (i) 5 3 ()™

i=1j=1 m=j mel;
n; n;
oc(l—pZ)Hexp —2ij 21—1—21
Jj=1 m=j mel;
x (1 —p;) exp Z’ZU i—J+1)
Therefore, for i = 1,...,n, the full conditional is
wil - P Bern(p;), (4.16)
where o Pr(w; = 1jw_;,---)
P Prlw; = 1w, ) + Pr(w; = 0fw_;, )’

is the probability that ranking i is informative (given the other quantities).
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e a: From (4.9) we have

haa Ni—1
ﬂ(a|...) = 1"(3 ) aa_l —O[ba X H 1_U3
(o3
Ni—1
ox qtetNi=2g—aba H exp{(a—1)log(1l —vs)}

s=1

Ni—1
oc @t tN1=2 oxpy {—a (ba - Z log(1 — vs)> } ,
s=1

Ni—1
al---~ Ga (aa+N1 —1,by — Z log(l—vs)) (4.17)
s=1

as b, — ZNl ! log(1 — vg) > 0 since the vs € (0,1).

whence

e ~: From (4.9) we have

N baw . N1 No—1
) = V0Tl —vsby 1 — ug) ™!
o Hl D)™ © 7 Hl tl_[l B
Ni No—1
~ H ay+N2—2 e Vsby H H exp { (s — 1) log(1 — ug)}
s=1 t=1
N No—1
2
~ H’yaw—l— 22 exp {% (bv — Z log(1 — ust)> } ;
t=1
whence for s =1,..., Ny,
. No—1
78’ . an\;ep Ga, (a,y -+ N2 — 17 b/y — Z ].Og(l - ust)) (418)

as by — Zi\i"fl log(1 — ugt) > 0 since the ug € (0,1) for all s =1,..., V7.

We note in passing that, although perhaps counter-intuitive, the most computationally
expensive FCDs to evaluate are the discrete distributions over the ranker and entity cluster
labels ¢ and D. This follows as numerous likelihood calculations are needed (each involving

many terms) in order to sample each cluster allocation, particularly for entity labels.

To generate realisations from the posterior distribution (A, Z, v, ¢, u, D, o, v, w|D) we
could employ a Gibbs sampling strategy and repeatedly sample from the FCDs given in
(4.10-4.18) in turn. However, this strategy could lead to the Markov chain becoming
stuck in a local mode (of the stationary distribution). This follows as the full conditional

distributions in (4.14) and (4.15) allow for updating the (ranker and entity) cluster alloca-
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tions, ¢ and D, using one-at-a-time updates. Therefore a large cluster containing numerous
rankers or entities will have difficulty in changing its allocation variable. Initially this may
not appear to be a significant issue as the likelihood (4.4) is invariant to permutations
of the latent cluster indicator variables. However, if we consider the full posterior distri-
bution 7(A, Z,v, ¢, u, D, a, v, w|D), it becomes clear that the value of the density will be
affected by changes to the cluster labels through the construction of the weights of the
atoms (for both rankers and entities within each ranker cluster). The weights are defined
to be stochastically decreasing and therefore the weights of the clusters with larger labels
have smaller expectation. It follows that, for example, if we had two clusters occupied,
we would rather them be labelled 1 and 2 as opposed to N1 — 2 and N; — 1 as the first

labelling has an increased value of posterior density.

Thankfully it is possible to overcome this issue by introducing appropriate label switching
steps which improve the mixing of the chain over the latent cluster indicators. We now
describe these moves before outlining a full MCMC scheme that can be used to generate

posterior realisations in Section 4.5.7.

4.5.4 Label switching moves

Papaspiliopoulos and Roberts (2008) and more recently Hastie et al. (2015) noted that
when using a conditional sampling scheme for Dirichlet process mixture models (derived
from the stick-breaking construction), the Markov chain can suffer from poor mixing
of the cluster allocations. Initially this does not appear to be much of a concern as
the likelihood (4.4) is invariant to permutations of the cluster labels. However, the full
posterior distribution 7(A, Z,v, ¢, u, D, a, v, w|D) is affected by changes to the labels. In
particular, inferences on the concentration parameters a and « can be significantly affected
if the Markov chain fails to mix well over cluster labels; see Hastie et al. (2015) for details.
The poor mixing of cluster labels is an issue for both ranker cluster allocations ¢ and the

entity cluster allocations in each row of D.

As the weights of the atoms within each Dirichlet process are stochastically decreasing,
the cluster allocation with highest posterior support is the one where the largest cluster
has label 1, the second largest is labelled 2, and so on. However, our proposed Gibbs
sampling scheme performs one-at-a-time updates to the cluster allocations. This results
in cluster allocations swapping very rarely and could therefore be overly influenced by
the (possibly random) initialisation of the sampler. To improve mixing, Papaspiliopoulos
and Roberts (2008) proposed two label switching moves, here called Swap 1 and 2. In
addition it has recently been noted by Hastie et al. (2015) that although these two swaps
encourage movement to the cluster allocation of highest posterior support, once this state

is reached the mixing becomes poor. They propose a further label switching move, which

114



Chapter 4. The Bayesian WAND

we call Swap 3. All three of these swaps are accepted or rejected though Metropolis-
Hastings proposals. In the following section we describe how these label switching proposal
moves are implemented within our model setting. As our model contains nested Dirichlet
processes we pay particular attention to the required state space swaps within the Markov

chain when a label switching move is accepted.

4.5.5 Ranker allocations

We begin by considering proposed swaps to the latent ranker cluster allocations. Due to
the nested nature of the Dirichlet processes, if we change a ranker cluster label we also
need to change the labels of all parameters corresponding to the low level DP associated
with the ranker clusters. We now describe the required state space swaps along with their

proposal mechanisms.

Swap 1

Recalling that ms = > ;" I(¢; = s) denotes the number of rankers assigned to ranker
cluster s we let C(@) = {s:ms >0, 1 < s < Ni} be the set of ranker cluster allocation
labels for those clusters which are populated, that is, the labels of clusters to which one
or more rankers are assigned. This label switching step proposes to swap the labels of two

random “alive” clusters j,l € C (@) and is accepted with probability

min {1, (Zjl.)ml_mj} .

If the swap is accepted then we need to make a number of changes to the state space of
the Markov chain. Of course, we must swap the ranker cluster labels within the allocation
vector ¢ and also the skill parameters associated with each ranker cluster, that is, swap
the appropriate rows of A. However, in order to preserve the entity clustering within each
ranker cluster we must also swap the corresponding rows of D, u and w, that is, swap the
low level Dirichlet processes associated with each ranker cluster. Finally we must swap ~;
with +; as the unique concentration parameter for each of the low level DPs must also be

preserved. The details of the changes required are given by (4.19)—(4.23) below.

Firstly swap the labels in the ranker allocation vector ¢:

l i:Ci:j,
¢ = joiie =1, (4.19)

¢; otherwise.
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Secondly swap the rows in the parameter matrix A:

A;. otherwise.

Also, to maintain the entity clustering structure (within the ranking clusters) the rows in

the entity clustering allocation matrix D are swapped:

d. 1=1j,
d, ={d; i=1I, (4.21)

d;. otherwise.

Recall that we also need to swap the Dirichlet process associated with each of the ranker
clusters. This requires the swapping of the rows within the matrix v and recalculating the
weights w for each (ranker) cluster. However, as the values of u (on which the values of w

are based) do not change it is more convenient to simply relabel these too:

uj. 1= j7 wi. 1= ja
/ . / .
U, =§u;. 1= l, Wi = Jw;. 1= [, (4.22)
u;. otherwise. w;. otherwise.

Finally we also change the value of the concentration parameters for the DPs corresponding

to clusters j and I:
" i = j:
V=S =1, (4.23)

~; otherwise.
The state of the Markov chain is then updated by letting ¢ — ¢/, A — A', D — D/,
u—u,w—w and v =«
Swap 2

The second label switching move we consider was also derived by Papaspiliopoulos and
Roberts (2008) and proposes to swap the labels of two neighbouring ranker clusters, re-
gardless of whether they are occupied or not. First we randomly sample a ranker cluster
label j € {1,...,N; — 1} and then let [ = j 4+ 1. The cluster allocation variables j and [
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EPPRY Y
min {1, (L= w)™ 1
(1 —wvj)m™
If accepted, the state space of the Markov chain needs to be changed in the same way as

for Swap 1, that is, by the swaps in (4.19)—(4.23). In addition, for this proposal, if the

swap is accepted we also swap the corresponding values of the beta random variables v

are swapped with probability

associated with the ranker clusters:

v; otherwise.

We must also now recalculate the “weights” for each ranker cluster by recomputing . It

is not possible to simply relabel the corresponding weights due to their construction.

Swap 3

The final label switching proposal we implement is that of Hastie et al. (2015); this also
proposes swapping the ranker cluster labels of two neighbouring clusters. Let C* = 11??31 G
be the largest label of a ranker cluster which is occupied. We then sample a random cluster
label j € {1,...C* — 1} and let | = j + 1. Before giving the acceptance probability it is

useful to define the following terms:

E E(¢;|c’, ) 1—i_o‘"i_ml+zq>l Mg
1 pu— pu—
E(|c, a) My Y My

9

_ E(pld,a)  at+mj+ D q>1Myg
E(¢jlc,a) 14+ a+m; +Zq>l my’
Yt =9+,
) = Y By + 1, Bo.

Ey

The ranker cluster labels j and [ are then swapped with probability

s m+my s
min < 1, (1;) E’l”’LlEZJ .

Again, if accepted, the state space swaps given in (4.19)—(4.23) must be applied. Further

we also need to update the weights v (for the ranker clusters) and values for the beta
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random variables v:

( ¢le_E1 i =7, w; 1=7
¥ H(l — Vg) ’
q<j
W= By vj = Ui i=1
0 ’ (1 =) [T = vy ’
q<j
P; otherwise. v; otherwise.

4.5.6 Entity allocations

We have found that the proposed cluster label swaps outlined in the previous section are
sufficient to ensure adequate mixing over the ranker cluster labels. For this model however
we also need to ensure adequate mixing over the latent entity cluster variables within each
of the ranker groups. We do this by using the same three swapping mechanisms as for
the ranker allocations. However each of these swaps needs to be performed within each
of the Ni low level Dirichlet processes. The changes required to the state space of our
Markov chain are somewhat more straightforward for the entity labels as we are dealing
with a typical Dirichlet process (whose atoms are scalars) and therefore the details (given
below) are more similar to those described in Papaspiliopoulos and Roberts (2008) and
Hastie et al. (2015).

Swap 1

Recall first that mg = Z]K:1 I(ds; = t) denotes the number of entities assigned to entity
cluster ¢ within ranker cluster s. For s = 1,..., Ny, let Dgal) ={t:mg >0,1<t< Ny}
be the set of entity cluster labels which are populated within Dirichlet process s. Note
that there is no requirement for a ranker to be assigned to ranker cluster s and we only
consider the entity clusters here. This label switching step proposes to swap the labels of

two random alive clusters j,[ € Dgal). This swap is accepted with probability

Wen Mg —Msgj
min < 1, < SJ) .
Wsl

If the proposal is accepted then we need only make two changes to the state space of our

Markov chain. We must, of course, swap the entity cluster labels within row s of the entity

cluster label matrix D but also must swap the skill parameter values for entities j and .
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Formally we swap the labels in row s of our entity allocation matrix, D, by letting

I i:dg =],
dy=147 i:dg=1I, (4.24)

ds; otherwise.

We then swap the skill parameters for the entity clusters within row s of A by letting

M, i=g,
AL = A=, (4.25)
)\L otherwise.

The state of the Markov chain is then updated by letting A — A’ and D — D’. All other

quantities remain unchanged.

Swap 2

Recall that for this swap changes are made to the labels of neighbouring clusters whether
they are occupied or not. For s = 1,..., N1, we randomly sample an entity cluster label
je{l,...,Ny — 1} and let [ = j + 1. The entity cluster labels j and [ are swapped with

_ Msj
min{l, MSl)j}

(1 — ;)

probability

If accepted we update the state space of our Markov chain as in (4.24) and (4.25). Recall
that when applying this move for the ranker labels we also swapped the corresponding
values of the beta random variables for these two clusters. The equivalent swap here is

done within row s of the matrix u and we let

Uug; otherwise.

Note that the entity cluster weights within DP s (ws.) must also be recalculated given
their (inherent) dependence on the values of u. These can not simply be swapped due to

their construction.
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Swap 3

Finally we implement the label switching move described by Hastie et al. (2015). For

s=1,...,N; let D} = 12ni>%dsj be the largest label of an active entity cluster within
J

DP s. We sample a random cluster label je{l,...Df —1},set l = j+ 1 and calculate

E(wsj’dla"%) . 1+ Vs + Ml + Zq>l Msq

Ei = =
E(Wsl |d7 'Ys) Vs + Mg + Zq>l Msq

)

E(Wsj|d,7’78) o Vs + msj + zq>l msq
E(wsl|d7 ’YS) 1+ Vs + M + Eq>l Msq 7

Ey =

+
W = Wsj + wst,

w=wgk + wsjEQ.

The acceptance probability for this proposal is

w+ msj+msl

. . Mgq

min 1,< - > E" By 5
w

Again, if accepted, the state space swaps given in (4.24) and (4.25) must be applied.

Further we must update the weights w and the corresponding values for the beta random

variables wu:

+ ( /
wgw " E C Wi .
sl - 1 4= 7, 5J =7,
w H(l — Usq)
q<j
+ 1
1 _ ) wsiwT B . I w .
Wgj = § =2L——= " 2 1= l, Ugj = S sl 1= l,
o (1= ul) J](1 = )
q<j
Wai otherwise. Ug; otherwise.

4.5.7 MCMC — a conditional sampler

We now describe an algorithm for generating samples from the posterior distribution
(A, Z,v,¢c,u, D, a,v,w|D). In Section 4.5.3 we derived a complete set of full conditional
distributions for each random quantity of interest so that we could use a Gibbs sampling
scheme by repeatedly sampling from these distributions. However, as discussed, there are
problems with mixing over the latent cluster indicator variables ¢ and D. To remedy this
issue we employ additional label switching moves with proposed changes assessed through
Metropolis-Hastings steps as described in the previous section. The algorithm we use is

therefore a Metropolis-within-Gibbs sampler.
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Given a suitable choice of truncation parameters, N; and N, the posterior samples can
be generated by repeatedly performing the following steps.

e Sample Ay from (4.10) for s =1,..., Ny, t =1,..., No.

e Sample z;; from (4.11) fori=1,...,n,j=1,...,n;

e Sample w; from (4.16) fori =1,...,n.

e Sample v, from (4.12) for s =1,...,N; — 1, and let vy, =1

e Compute v, that is, let s = vs [[ (1 —vy) for s =1,..., Ny.
l<s

e Sample ¢; from (4.14) fori =1,...,n.
e Sample ug from (4.13) for s=1,..., Ny, t=1,..., Ny — 1, and let ugpn, = 1.

e Compute w, that is, let wg = ug [[(1 — uge) for s=1,...,Ni, t=1,...,Na.
<t

e Sample dg; from (4.15) for s=1,..., Ny, j=1,..., K.
e Sample « from (4.17).
e Sample 7, from (4.18) for s =1,..., V7.
e Propose ranker label swaps as in Section 4.5.5.
e Propose entity label swaps (for s = 1,..., Nj) as in Section 4.5.6.
e Rescale

— Sample AT ~ Ga (N1 N a,1).

N2 Nz

— Calculate ¥ = > > A
s=1t=1

—Fors=1,...,Ni,t=1,..., Ny, let Ayt — Agt AT/%.

A note on the choice of truncation parameters

As the algorithm employs truncation (using N7 and N2) any posterior samples generated
are from an approximation of the true posterior. The level of approximation depends on
the choice of truncation parameters N7 and N, with the samples increasingly being from
the true posterior as N1, No — 0o. The choice of N1 and Ny a priori is somewhat difficult
as the level of truncation required heavily depends on the value of the concentration

parameters, a and «. The strategy we advocate is to perform a few pilot runs of the
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MCMC scheme to gauge plausible values of the concentration parameters. The truncation
parameters will then need to be changed so that the conditions in (4.3) hold. Of course, it
would be helpful to make the truncation parameters as large as possible but increasing Ny
and Np has a major effect on the computational burden and can lead to considerable
redundant prior sampling. The choice of truncation is therefore rather situation specific

and perhaps limited by the computational resources available to the analyst.

4.5.8 A brief summary

So far this chapter has outlined the Adapted Nested Dirichlet process prior (ANDP) dis-
tribution and explored some of its features through simulation. We then described the
Weighted Adapted Nested Dirichlet Process mixture of Plackett—Luce models (WAND).
This took the ANDP as the prior distribution and used it to mix over Weighted Plackett—
Luce models. Using the stick-breaking representation of the ANDP prior and truncating
the infinite dimensional aspect we were able to derive a complete set of full conditional
distributions. Additional label switching moves were then introduced to improve mix-
ing over cluster labels. The resulting algorithm was a Metropolis-within-Gibbs sampling
scheme. Adopting the (conditional) sampling approach outlined here does however have
some drawbacks, the most notable of which is that we can only obtain samples from an
approximate posterior distribution. A further issue is that it is difficult to determine
what a priori choices of the truncation parameters lead to a reasonable approximation to
the true posterior. Ideally, as for the one-way clustering in Chapter 3, we would avoid
truncation methods and appeal to a marginal approach to inference. In the section that
follows we discuss how to improve the MCMC scheme to avoid such approximations by

implementing a two-way marginal sampling scheme.

4.6 A marginal sampling approach

Implementing marginal sampling methods for two-way clustering models which use Dirich-
let processes can be somewhat challenging. For example, the construction of the standard
NDP results in a “fully” marginal scheme being computationally infeasible (Rodriguez
et al., 2008). The real crux when designing such a marginal sampling scheme is obtaining
(posterior) realisations of the top level cluster labels, ¢. For the standard Nested Dirichlet
process, sampling ¢; requires the evaluation of 7(x;|Gs) (for all s), that is, the likelihood of
observation x; given it is in cluster s. The issue here is that G is itself a Dirichlet process
(recall that under the NDP the atoms of the top level Dirichlet process are themselves
Dirichlet processes). It follows that obtaining a value of 7(x;|Gs) requires the evaluation

of an infinite sum — something which is clearly problematic. Given this, it is perhaps now
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clear that a “single truncation” sampling scheme could be designed to obtain posterior
realisations under the NDP prior. If the low level Dirichlet processes G are truncated at
a finite value, say Na, then the evaluation of 7(x;|Gs) is straightforward. The resulting
posterior sampling scheme would then comprise a marginal scheme (based on a Pdlya
urn) to sample the top level cluster indicators ¢, and a conditional sampling approach to
approximate the posterior over the low level indicators D; see Rodriguez (2007) for full
details. Such a sampling scheme would not only increase computational efficiency but
also reduce the approximation to the posterior distribution in comparison to a “double
truncation” approach akin to that discussed in Section 4.5. Further, the additional label

switching moves would no longer be required for the ranker cluster labels.

Given the Adapted Nested Dirichlet process is inherently related to the NDP it follows that
we too could implement a single truncation approach. It transpires, however, that a fully
marginal approach is possible as a result of the adaptation made to the prior distribution.
Recall that for the NDP, unless the low level DPs are truncated, a marginal approach
to sample the indicator variables ¢; is infeasible due to the need to evaluate m(z;|Gs).
However, for the ANDP we are instead required to evaluate 7(x;|As) where As ~ G,
that is, As is a realisation from a Dirichlet process and not a DP itself (as it is for the
NDP). In other words, the subtle difference which allows for marginal schemes under the
ANDP is that the top level Dirichlet process is fairly standard, with the atoms being
parameter vectors which are realisations from (independent) DPs, whereas, for the NDP,
the atoms of the top level DP are themselves (infinite dimensional) discrete distributions.
The evaluation of 7(x;|As) is therefore trivial — it is simply the (Plackett—Luce) likelihood

of ranking 7 conditional on the skill parameters for ranker cluster s.

In what follows we develop a marginal sampling algorithm which can be used to generate
posterior samples under the Bayesian WAND model. Although the conditional sampling
algorithm outlined in Section 4.5.7 is capable of generating approximate posterior samples
(subject to the addition of label switching moves) it is still advantageous to appeal to
a marginal approach — not least to reduce the computational burden when performing
inference but also so that we can generate realisations from the true posterior distribu-
tion. As discussed in Section 3.4.1, marginal sampling algorithms typically involve the
use of a Pdlya urn scheme which enables the marginalization of the infinite dimensional
distribution (Escobar and West (1995), MacEachern and Miiller (1998)) and thus avoid
approximations. We discussed in Section 4.5 how conditional samplers rely on truncation
parameters to define the maximum size of the state space (N7, N2 in our case). When per-
forming inference this entire state space needs to be updated at each iteration and causes
a substantial amount of redundant prior sampling. To produce our marginal sampler we
again appeal to Neal’s Algorithm 8 (Neal, 2000). Recall that this algorithm only performs

updates for the unique components (clusters) which are currently populated and the re-
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maining (theoretically infinite) unpopulated clusters are not considered to be within the
sample space. Each observation is then assigned to either a component which is currently
in use or to one of m auxiliary components which are independent draws from the prior
distribution. Our model has nested clustering and so under the conditional method, the
state space for the skill parameters A is dimension N; x Na. If we let N* and NS be the
number of ranker clusters and the number of entity clusters within ranker cluster s respec-
tively (for s = 1,..., N*) then the size of our state space is reduced to Zi\/:rl N$ < N1 x Ny
under marginal methods. It is clear therefore that marginal methods have the potential to
reduce the number of operations required per iteration quite substantially. Neal’s Algo-
rithm 8 is designed to sample from a single DP mixture and so we design a nested version

which will enable inference to be performed under the Bayesian WAND model.

Recall that the WAND model comprises an infinite mixture of Weighed Plackett—Luce
models with the ANDP chosen as the prior distribution. As in Section 4.4, the main

components of the model are

XZ'|)\¢,’U)Z‘NPLw(AZ',wZ'), i:1,...,n,

()\171An)‘Q ~ Q
Q‘Oé,")’, GO ~ ANDP(O(,‘}’, G0)7

where the stick-breaking representation of the ANDP prior is as in Section 4.3.

4.6.1 Sampling marginally from the ANDP prior

We begin by first outlining how we can (marginally) simulate a realisation from the ANDP
prior distribution via a Pélya urn scheme. To outline this process concisely we make use
of the latent cluster indicators introduced in Section 4.5.1. Recall that ¢; = j denotes that
ranking 7 is associated with parameter vector A; and ¢ = (cy, ..., ¢y) is defined to be the
collection of these latent ranker cluster labels. For our entity clustering we let d;; = £
denote that entity j within parameter vector i is allocated to entity cluster £ and D be the
collection of all latent entity cluster labels. Note that, unlike for the conditional sampling
approach, under the marginal sampling approach the cluster labels are required to be
labelled incrementally from 1, that is, we require ¢; € {1,..., N'}, (fori = 1,...,n) where
N denotes the number of ranker clusters and also dg; € {1,...,N¢}, (for j =1,...,K)
where N¢ denotes the number of entity clusters within ranker cluster s € {¢}. A prior

realisation from the ANDP is obtained using the following process.

e Choose a > 0 or sample from an appropriate prior distribution.

e Set ¢; =1 and the (current) number of ranker clusters N" = 1.
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e For i =2,...,n simulate the allocation of ranker ¢ to a ranker cluster according to
n’.
Pr(c; = jle1,...,ci1) = —2—_ for j=1,...,N",
(= dletsvein) = e for
Q@
Pr(c; =N+ 1ley,...,c-1) = ————,
(ci o1 i-1) a+i1—1

where nfj denotes the number of rankers currently within ranker cluster j (at itera-
tion i), and N* = N"+ 1if ¢; = N" + 1.

e For each ranker cluster s =1,..., NT

— Choose 7 = 5 > 0 for all s or sample from an appropriate prior distribution

(note the choice of prior distribution must be exchangeable with respect to s).

— Set ds1 = 1 and the current number of entity clusters within ranking cluster s

N¢ = 1.
— For k = 2,..., K simulate the allocation of entity k to an entity cluster accord-
ing to
. s .
Pr(ds, = jldst, ... dsp—1) = r/i’—l’ for j=1,...,Ng,
Pr(dg = N+ 1ldy, .. dg 1) = ﬁ

where N s denotes the number of entities currently within entity cluster j (at
iteration k in ranker cluster s), and NS — NS + 1 if dg; = NS + 1.

e Simulate A indep Gofors=1,...,N*",j=1,...,N¢.

4.6.2 Simulating data from the WAND model

In Section 4.5.1 we outlined how data can be generated from the WAND model using
a conditional sampling approach. The mechanism for the marginal approach is almost
identical and differs only in how we generate a realisation (of the cluster structure) from
the ANDP prior. It follows that if the clustering structure is chosen explicitly, that is, it
is not drawn from the ANDP prior, then the data generating process is the same as that
outlined in Section 4.5.1. However, if we instead wish to sample a cluster structure from the
prior distribution then using the marginal method given in Section 4.6.1 is advantageous
as it allows the simulation of ezact realisations from the prior distribution (in contrast
to the approximation provided by the conditional sampling approach). Conditional on
a prior sample (generated using the method in Section 4.6.1) a collection of n complete

rankings of K entities is generated using the same method as in Section 4.5.1:

125



Chapter 4. The Bayesian WAND

For:=1,...,n

ind ) ;
e Sample v;; s EXP(}‘thC.,j) forj=1,... K.

e Set z;; = argmin v, where S;; = K\ {zj1,..., x5} for j=1,... K.
q€ESi;

Alternative types of rankings for example, a top—5 ranking, can be obtained from the

complete rankings simulated using the same process as discussed in Section 2.2.5.

4.6.3 Prior specification and latent variables

Before we perform Bayesian inference we must first of course choose a suitable prior
specification for our model. We consider the same prior specification as when we considered
the conditional sampling approach in Section 4.5.2. We let Gy = Ga(a, 1) which gives
dep
)\St n

and therefore chosen to be 1). Again we define A to be the collection of all unique skill

Ga(a,1) a priori (recall that the rate parameter is not likelihood identifiable

parameters and note that the dimension of the parameter space (over A) is Ziv:rl N¢ and
therefore is now dependent on the number of both ranker and entity clusters. It follows

that the prior distribution over A is

A?t '
m(Ale, D) HH

s=1t=1
. . e ind
Furthermore we choose the prior on the latent binary ability indicators to be w; g
Bern(p;) with p; € (0,1] for ¢ = 1,...,n. Recall that the prior choice of p; = 0 is
not allowed; in this scenario ranker ¢ has constant likelihood and therefore this ranker
has no information about the parameters and so should not be considered. The prior

N . . d
distributions on the concentration parameters are a ~ Ga(aq, by) and s g Ga(ay,by)

fors=1,...,N".

Of course, the likelihood under the Bayesian WAND model is the same irrespective of
the sampling method used. However, we note that when augmenting the likelihood it is
helpful for the distribution of the skill parameters to be of dimension Zi\z 1 IN¢ rather than
of dimension N7 X N> as in the conditional approach. The likelihood, conditional on the

latent cluster indicators, is

W(D]A,C,D,w):ﬂﬁ = (Ad> | . (4.26)
i=1j=1 Z (ACijdcmm> 4 Z ( oo, m)

m:j meU,;
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Again it is useful to use latent variables as in (4.5) as these give semi-conjugate updates

for the skill parameters. The latent variables are

; i w; w;
Zij |D7 A? C7 DJ w znf(iep Exp Z (Aci,dci,zim) + Z ()\Ciydci,m) (427)
m=j mell;

fori=1,...,n,7=1,...,n,.

Before we construct the density of all stochastic quantities (and subsequently derive the
full conditional distributions for each random variable within the model) it is useful to

define the complete data likelihood as

m(D,Z|\, ¢, D, w,a,v) = n(D|A, ¢, D,w)n(Z|D, A, ¢, D, w)

= H H (Acz‘,dci,zij>wl €Xp § — Z (ACiydci,zim e) . + Z (Aci,dci,m)wz Zij
i=1j=1 m=j meU;
N* N¢ 5 n n; n; w; w;
- H H )\StSt H H Xpy— Z ()\Ci’dciamim> + Z (Acivdﬂi«m) “ij
s=1t=1 i=1j5=1 m=j meU;
Nt N n n;
= H H)\f;t exp *)‘stzwizc—ij(sat)zij 5 (428)
s=1t=1 i=1 j=1
where
n n;
Ba=Y willci=5)> Wdeay; =1),
i=1 j=1

is the same as that under the conditional approach (4.7) and gives the number of times

that the random variable Ay is assigned to an entity within an informative ranking, and

ng

Cij(svt) = H(Ci = 5) Z H(dci,xim = t) + Z I[(dci,m = t) s

m=j meU;

is also as defined under the conditional approach in (4.8) and gives the number of times
that the random variable g represents an entity which is ranked no higher than jth in

the ith ranking.

4.6.4 Full conditional distributions

The posterior distribution is formed by applying Bayes’ Theorem. The posterior distribu-
tion w(A, Z, ¢, D,w, a,y|D) is now a joint distribution of the latent random variables Z,

the collection of unique skill parameters A, the binary indicator variables w, the latent
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cluster indicators ¢, D and the DP concentration parameters «, . Posterior realisations of
the latent indicators can be sampled from their respective full conditional distribution via
a nested version of Neal’s Algorithm 8 (Neal, 2000) which is described in the next section.
Further the full conditional distribution for the DP concentration parameters are akin to
those in Section 3.4.2 and are given in Section 4.6.5 when we provide a complete out-
line of the MCMC scheme used to generate posterior samples. Conditional on the latent
cluster indicator variables and DP concentration parameters, the density of all remaining

stochastic quantities is

(A, D, Z, wle,D,a,v) = n(A,D, Z,w|e, D)
=7(Z|D,A, e, D,w)m(D|A, ¢, D,w)r(Ale, D)m(w)

Nl‘

= HH/\EE% exXp _Astzwizgij(s,t)zij
s=11=1 =1 j=1
P\ 1
XHH = pr (1—p) ™
s=1t=1
s n n;
- H H S;TQXP -1+ sz‘ ZQ‘]’(S,t)ZZ'j Ast
= i=1  j=1
n
X sz-ui(l — pi)t T
i=1

The full conditional distributions are then as follows.

e At Fors=1,... N, t=1,...,N¢,

n g
At DA, Z,¢, D, w0,y "=F Ga a+ B L+ wi Y G, )z
~ =

e Z: The latent variables are defined by their full conditional distribution (4.27).

Hence fori=1,...,n,5=1,...,n;,
DA 2 Dy B | 3 (N, )+ D ()
m=j mell;
e w: This has the same FCD as under the conditional approach. Hence fori =1,...,n,

w; follows the discrete distribution given by
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Pr(w; = llw_;,--+) x Pr(w; = D)n(D]w_;,w; =1, )n(Z|lw_;,w; = 1,- )

ng
OCpiH)\Ciydci,zij : :Aczydc z; + z : )\C“ c ,m
Jj=1

meU;

Pr(w; =0lw_;,--+) « Pr(w; = 0)n(D|w_;,ws =0, )n(Z|w_;,w; =0,--)

x (1 —p;)exp Z zij (K —j+1)

Therefore the full conditional is

wi| - - indse Bern(p;),

fori=1,...,n where

o Pr(w; = 1w_;,--+)
pi= Pr(w; = llw_;,--+) 4+ Pr(w; = 0|lw_;,---)

is the probability that ranking i is informative (given the other quantities).

4.6.5 MCMC — a marginal sampler

We are now in a position to describe the algorithm used for sampling from the posterior dis-
tribution 7(A, Z, ¢, D, w, ., y|D) under the WAND model. Recall that N* = [{c¢;}i=1,.. n]
is the current number of ranker clusters and N§ = |{ds;};=1,. x| denotes the number of
entity clusters within ranker cluster s. The state of the Markov chain then consists of
c=(c), D=(dg), A = (Ast), Z = (255), w = (w;), ¥ = (7s) and « for s = 1,...,N",
t=1,...,NS,i=1,....,n, 5 =1,...;n; and [ = 1,..., K. Now if we first define the

contribution to the complete data likelihood from ranker ¢ to be

n; n;
. — Wi — Wi §
f($27zZ|A7C7D7w7a7’Y) - Aci’dci L. exp c“dcl Tim + ci, dc m

sTig

j=1 m=j mel;

then the updates proceed as follows.

e Fori=1,...,n: Let ¢"~ be the number of distinct ¢; for j # i and h" = ¢~ + m'.

Label these ¢; values in {1,...,¢"7}. If ¢; = ¢; for some j # i, draw A, indep

DP (v, Go) for ¢= < c < h'. If ¢; # ¢; V j # 14, let ¢; have the label ¢"~ + 1, and

draw A, nds DP(v., Go) for ¢"~ +1 < c < h".
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Draw a new value for ¢; from {1,...,h"} using probabilities

Pr(ci = C’D7A7 Za C_g, Da w, Ck,")/)

i bni@g f(mi,Zi|A,Cfi,Ci:C,D,w,a,’)’), 1 chqr—’

b% (acz-,z,-\A,c_i,ci:c,D,w,oz,’y), qri <C§hr7

where n”; . is the number of ¢; for j # i that are equal to ¢, and b is the appropriate
normalising constant. Change the state to contain only those A. that are now

associated with one or more observations. i.e. let A = (A.:c € {c1,...,cn}).
e Relabel ¢ so that ¢; € {1,...,N'} fori=1,...,n.

e Fors=1,...,N",i=1,...,K: Let ¢;~ be the number of distinct dy; for j # ¢ and
h = ¢~ + m°. Label these dg; values in {1,...,¢5"}. If dg; = dg; for some j # i,
draw A &P Gy for ¢ < d < . If dy; # ds; ¥ j # i, let dg; have the label ¢¢~ +1,
and draw A " Gy for ¢¢~ +1 < d < RS,

Draw a new value for dg; from {1,...,hS} using probabilities

Pr(dsi = d|D7 A7 Z7 cC, D—8i7 w, &, 7)

s

bni,—i,d H f(xivzi’Aa (& D—siaDsi = d,w,oz,’y), 1< d < qei
i€ER

ble T1 f(xi,ziA,e,D_gi, Dy = d,w, o, 7y), q5~ <d<he,
i€ER
where ng’fﬁ

b is the appropriate normalising constant. Change the state to contain only those A

4 1s the number of d; for j # i that are equal to d, R = {i : ¢; = s} and

that are now associated with one or more observations, that is, let A = (Ag : s =

1,...,N", t € {ds1,...,dsk}).
e For s =1,..., N" relabel ds such that dg; € {1,..., NS} for j =1,... K.

e Fors=1,...,N', t=1,..., N sample

n ng
ind
Aet|DyA i, Zye, Dyw, vy "SF Ga | a+ B, 1+ ZWiZCij(Sat)zij 5
=1 j=1

e Fort=1,...,n,5=1,...,n; sample

ng
indep w; w;
zij|D,A,Z,ij,c,D,w,a,'7 ~ EXp E )\C“dcwim + E )\Ci,dci,m .
m*] mGZ/{i
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e Fori=1,...,n, sample w; from the discrete distribution given by

PI'(’LUZ' - 1‘D7A7Z7 C,D,w_i,Oé,’)’) X Pi f(wi,Zi‘A, C7D7w—i7wi - 170‘77)7
Pr(w; =0|D,A, Z, e, D,w_;,a,y) < (1 —p;) f(xi, zi|A, e, Dyw_j, w; = 0, a,7)
n;

x (1 —p;)exp —Zzij(Ki —-Jj+1)
j=1

e Rescale

NI'
— Sample AT ~ Ga (a > NE, 1>.
s=1

N© Ng
— Calculate ¥ = " > Ag.
s=1t=1

—Fors=1,...,N" t=1,...,N¢ let \yy = A\gt AT/%.

Conditional on the prior distribution described in Section 4.6.3, the concentration param-

eters can be sampled from the following mixtures

e Sample
ol -+ ~ 7w Ga(ag + N', by — logn) + (1 — 7) Galaq + N* — 1, b, — logn),

where N1
T Qo + —
= ) and -+~ Beta(a+ 1,n).
07 b logn) ’7’ (@b

e For s=1,..., N" sample

ind
Yo - - TP Ga(ay + Ng, by —logns) + (1 — ms) Ga(ay + N — 1,by, — logns),

where

Ts _ ay+Ng—1
(1—-ms) K(by—logns)’

and Ns| -+ nder Beta(vys + 1, K).
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4.7 Simulation studies

In this section we present two illustrative simulation studies based on simulated data which
highlight the flexibility of the Bayesian WAND for the analysis of ranked data.

4.7.1 Study 1

In this study we consider two (new) datasets with complete rankings of K = 20 entities.
The first dataset (Dataset 3) contains complete rankings from n = 40 informative (w; = 1)
rankers in a single ranker group (N* =1 and ¢; = 1). The distinct “skill” parameters Ay
were sampled from the prior distribution with «; = 1 and base distribution Gy = Ga(1,1).
This simulation gave six unique entity clusters (Ny = 6). The entity clusters are {1} >
{2} = {3,4} = {5,6} = {716} = {17-20} where > means “is preferred to” and the
distinct skill parameters are 3.07,1.83,1.47,0.85,0.45,0.04 for each cluster respectively.
The simulated data are given in Table B.3 within the appendices. Note that, for ease of
interpretation, we applied a permutation to the entity labels so that the A\; were decreasing,

with the most preferred entity being labelled 1 and the least preferred labelled 20.

The second dataset (Dataset 4) contains complete rankings from n = 50 rankers, consisting
of those in Dataset 3 and an additional set from 10 uninformative rankers, with w41.50 = 0.
The addition of these random rankings will allow us to investigate the extent to which
the model both identifies and handles uninformative rankings. These additional (random)

rankings are given within the appendices in Table B.4.

We investigate the effect of incomplete rankings by comparing the analysis of the complete
rankings with those of top—M rankings for M = 5,10,15. That is, we analyse the data
assuming rankers see K; = K = 20 entities and report their top n; = 5,10, 15, 20 entities.
These analyses will allow us to investigate the level of uncertainty introduced by only
observing truncations of the rankings. It will also be interesting to explore whether a
collection of complete rankings is required if we only wish to infer, say, the top—5 entities.
Another scenario we consider is that of a so-called “restricted” analysis in which any entity
not ranked by any ranker is removed from the dataset. The intuition behind this scenario
is that our beliefs about the orderings of entities that appear in at least one ranking should
not be affected by whether non-appearing entities are included or not. One example of
this is in Dataset 3 where, under the top—5 and top—10 scenarios, entities 17, 18 and 20
do not appear in any of the rankings. Thus we also consider restricted top—5 and top—10
analyses of Dataset 3 which use K; = K = 17.

We will adopt the same base distribution as for previous analyses and take Gy = Ga(1,1).

Further we choose the prior distributions for the concentration parameters to be a ~
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Ga(1,1) and vs ~ Ga(3,3) for s € N, noting that these are common choices within the
literature (Rodriguez et al., 2008). Here we consider two scenarios of an exchangeable prior
for the ranker reliability parameters w: one in which we are unsure about their ability
(taking p; = 0.5) and the other where we are quite confident that they are informative
(taking p; = 0.9).

To generate realisations from the posterior distribution (for each analysis) we implemented
the (marginal) sampling algorithm outlined in Section 4.6.5 with m" = 2 and m® = 3
auxiliary (ranker and entity) variables. Each Markov chain was initialised at a random
draw from the prior distribution. To obtain 10K (almost) un-autocorrelated realisations
from the posterior distribution we allowed each chain a burn-in period of 10K iterations
then ran the scheme for a further 1M iterations and thinned the output by a factor of 100
in each case. The most computationally expensive analyses were those of Dataset 4 with
p; = 0.9 and the computational time required to perform inference was (approximately)
7, 16, 21 and 26 minutes for the top—5, top—10, top—15 and complete cases respectively.
The mixing of the MCMC chains was assessed by inspecting trace plots and convergence
was assessed by initialising numerous chains at differing starting values and verifying that

the resulting posterior distributions were equivalent (up to stochastic noise).

Figure 4.3 shows the posterior probability Pr(w; = 1|D) that ranker ¢ is informative for
each information scenario and for both choices of prior probabilities p; = Pr(w; = 1).
It is not surprising that the restricted analyses, due to the loss of information, produce
results which are less consistent with the “known” abilities of the rankers (wj.490 = 1 and
wq1:50 = 0) than the full (unrestricted) analyses which consider all entities. This finding
is clear for both choices of the p; but is more noticeable for the p; = 0.5 case. The results
correctly show that the the majority of rankers have been identified as informative (middle
row). Unsurprisingly this identification becomes clearer as more comprehensive rankings
are used (going from top—5 up to complete). It is also interesting to see that the most

data—poor (top—5) analysis does reasonably well.

The analyses for Dataset 4 show that the uninformative (random) rankers have been
identified quite clearly, particularly for the p; = 0.5 case where the posterior probability
that rankers 41 to 50 are informative are very close to zero (bottom left plot). The
probabilities for rankers 1 to 40 remain similar to those found when analysing Dataset 3.
This (and other analyses not given here) suggests that the identification of informative
rankers using this model is fairly robust to the addition of rankings from uninformative
rankers. The bottom row of plots show the influence of the choice of the p; in the prior
distribution. Here we see that having a high level of confidence that uninformative rankers
are informative can potentially mask their identification. It is clear here that the posterior

probabilities Pr(w; = 1|D) for the uninformative rankers are well separated from those for
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Figure 4.3: Plots of the posterior probability Pr(w; = 1|D) that ranker ¢ is informative for both
scenarios of prior on their ability: p; = 0.5 (left column) and p; = 0.9 (right column). The
top row of plots show the comparison between the restricted (*) and full (unrestricted) analyses
for Dataset 3. Plots in the middle row are those for the full analyses using Dataset 3, with the
corresponding plots using Dataset 4 in the bottom row.

informative rankers but nevertheless they might be identified as informative if this choice
were made by thresholding these posterior probabilities at say 0.5 or even higher. This
suggests that the analyst should use a fairly conservative choice of the p; and should be

careful about expressing over confidence in ranker abilities a priori.

Table 4.1 gives the posterior distribution of the number of ranker clusters N' under each
analysis. For Dataset 3, we see much more posterior support for a single ranker group
under the full (unrestricted) analyses compared to their restricted equivalents, with little
dependence on the choice of the p;. Also, for the analyses of Dataset 4, the posterior
support for a single ranker group reduces, particularly for the p; = 0.9 case. Indeed for
this case, the high prior confidence that all rankers are informative changes the modal
number of ranker clusters from one to two, though this comes with a higher level of
posterior uncertainty. Also, as before, the probability of the correct number of ranker

clusters increases as more comprehensive rankings are included within the analysis.

In Chapter 3 we noted that determining the allocation of rankers to ranker groups can be
problematic. For example, conditioning on the modal number of ranker clusters and allo-

cating ranker ¢ to ranker cluster k£ using only an MCMC estimate of Pr(¢; = k|N*, D) can
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p=20.5 p=0.9
Dataset 3| 1 2 3 4 >5 Dataset 3| 1 2 3 4 >5
Top—5* 0.73 0.20 0.05 0.02 0.00 Top-5* 0.65 0.23 0.08 0.02 0.01
Top-10* |0.88 0.11 0.01 0.00 0.00 Top-10* |0.88 0.11 0.01 0.00 0.00
Top—5 0.87 0.11 0.02 0.00 0.00 Top—5 0.87 0.11 0.02 0.00 0.00
Top—-10 0.98 0.02 0.00 0.00 0.00 Top—-10 0.99 0.01 0.00 0.00 0.00
Top—-15 0.99 0.01 0.00 0.00 0.00 Top—-15 1.00 0.00 0.00 0.00 0.00
Complete | 1.00 0.00 0.00 0.00 0.00 Complete | 1.00 0.00 0.00 0.00 0.00
Dataset 4| 1 2 3 4 >5 Dataset 4| 1 2 3 4 >5
Top—5 0.74 0.20 0.05 0.01 0.00 Top—5 0.06 0.29 0.29 0.19 0.10
Top-10 0.88 0.10 0.02 0.00 0.00 Top-10 0.09 0.38 0.30 0.16 0.06
Top-15 0.89 0.10 0.01 0.00 0.00 Top-15 0.15 0.36 0.28 0.14 0.05
Complete | 0.89 0.10 0.01 0.00 0.00 Complete |0.16 0.35 0.28 0.14 0.06

Table 4.1: Posterior distribution of the number of ranker clusters N* for restricted (*) and full
(unrestricted) analyses. Numbers in bold indicate modal values.

fail to give an adequate description of the joint posterior distribution of the allocations c,
particularly if there is not overwhelming posterior support for the choice of N*. Instead
we prefer not to condition on a particular N* and to use the full MCMC output to look
at co-clustering probabilities Pr(c; = ¢;|D). We define a dissimilarity matrix A = (A;j),
where A;; = Pr(¢; # ¢;|D) measures how dissimilar rankers i and j are, and then consider
the corresponding dendrogram when forming the allocation of rankers to ranker clusters,
whilst also accounting for the posterior distribution of N*. We use the complete link-
age method, also known as furthest neighbour clustering, as this tends to produce more

densely packed clusters and does not suffer from “chaining”.

The posterior distribution for the number of ranker clusters in the Dataset 3 analysis
gives overwhelming support for the true number N* = 1 for each case, and particularly
for the complete, top—15 and top—10 cases. Therefore the allocation of rankers to ranker
clusters is trivial. However, the allocation is not quite as straightforward in the Dataset 4
analysis. Note that here we have retained the same prior for the upper level concentration
parameter « rather than amend it to reflect the known heterogeneity in ranker beliefs in
Dataset 4.

Figure 4.4 gives the complete linkage dendrograms for both p; = 0.5 and p; = 0.9 cases in
the (complete ranking) analysis of Dataset 4. The method clearly picks out the informative
and homogeneous rankers (numbered 1-40) and puts them into a single ranker group. The
posterior probabilities that these rankers are co-clustered is 0.997 and 0.979 respectively —
these probabilities are straightforward to obtain from the (posterior) realisations of cluster
allocations and are given by Pr(c; = ca = -+ = ¢49|D). When p; = 0.5 we see that the

uninformative ranker most “similar” to the informative group is ranker 42. This ranker
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Figure 4.4: Dendrograms for ranker clustering within Dataset 4 under a complete analysis for
p; = 0.5 (left plot) and p; = 0.9 (right plot).

is co-clustered with each of the informative rankers at least 98.5% of the time. The other
uninformative rankers also have high co-clustering probabilities and this is consistent with
the very high posterior support for a single group of rankers, Pr(N' = 1|D,p; = 0.5) =
0.89. This result occurs as a consequence of the model down-weighting the influence of the
uninformative rankers: Pr(w; = 1|D,p; = 0.5) < 0.1 for i = 41,...,50. On the other hand
when we are much more confident in the ability of the rankers (with p; = 0.9) the most
“similar” uninformative ranker to the informative group is co-clustered with informative
rankers at least 68.6% of the time, a much smaller proportion than in the p; = 0.5 case.
Also the uninformative rankers do not separate themselves into a single distinct cluster,
with 0.311 < A;; < 0.555 for any i # j € {41-50}, that is, any pair of uninformative
rankers are co-clustered between 44.5%-68.9% of the time. It is perhaps not surprising
that the model is not able to detect significant similarities between any pair of the ten
uninformative rankers as their rankings are random permutations and they are few in

number.

Table 4.2 gives the marginal posterior distributions of the number of entity clusters condi-
tional on a single ranker cluster (for all analyses of each dataset). Note that the p; = 0.9
analysis of Dataset 4 gives very low posterior support for a single ranker cluster, with
Pr(N* = 1|D,p; = 0.9) = 0.16, and so later in Section 4.7.1 we look at results when
conditioning on two ranker clusters (the posterior modal number). The table also shows
that posterior support for the correct number of entity clusters (N7 = 6) increases as the
information provided within each ranking increases. The cost of performing a restricted
analysis is especially visible in the top—5 case. As was the case for ranker clustering, the
inclusion of complete rankings in comparison to top—10 rankings does not have a significant

effect on our posterior beliefs.

Figure 4.5 shows dendrograms of the entity grouping structure for each of the complete
analyses, conditional on a single ranker cluster. Note that the entity clusters are similar
under both p; = 0.5 and p; = 0.9 analyses, particularly for entities 1-6 and 15-20. The

other entities (on the right hand side of each dendrogram) also have a similar grouping
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p=20.5
Dataset 3 1 2 3 4 5 6 7 8 9 > 10
Top—5* 0.00 0.11 0.23 0.27 0.18 0.12 0.06 0.02 0.01 0.00
Top-10* | 0.00 0.00 0.05 0.19 0.28 0.23 0.15 0.06 0.02 0.02
Top—5 0.00 0.00 0.15 0.27 0.24 0.17 0.09 0.04 0.02 0.02
Top—10 0.00 0.00 0.03 0.13 022 0.25 0.19 0.11 0.05 0.03
Top-15 0.00 0.00 0.00 0.07 021 0.29 0.22 0.13 0.05 0.03
Complete | 0.00 0.00 0.00 0.09 0.24 0.29 0.21 0.11 0.04 0.02

Dataset 4 1 2 3 4 5 6 7 8 9 > 10
Top—5 0.00 0.00 0.14 0.26 025 0.17 0.10 0.05 0.02 o0.01
Top—-10 0.00 0.00 0.03 0.12 0.22 0.24 0.19 0.12 0.05 0.03
Top-15 0.00 0.00 0.00 0.08 0.22 0.29 0.23 0.12 0.05 0.01
Complete | 0.00 0.00 0.00 0.10 0.24 0.28 0.21 0.11 0.04 0.02

p=20.9

Dataset 3 1 2 3 4 5 6 7 8 9 > 10
Top—5* 0.00 0.10 0.28 0.29 0.20 0.08 0.03 0.02 0.00 0.00
Top-10* 0.00 0.00 0.04 0.18 0.28 0.25 0.15 0.07 0.02 0.01
Top—5 0.00 0.00 0.21 0.31 024 0.14 0.06 0.02 0.01 0.01
Top-10 0.00 0.00 0.03 0.11 0.22 0.24 0.20 0.12 0.05 0.03
Top-15 0.00 0.00 0.00 0.08 0.22 0.28 0.23 0.13 0.05 0.01
Complete | 0.00 0.00 0.00 0.08 0.22 0.30 0.22 0.11 0.05 0.02

Dataset 4 1 2 3 4 5 6 7 8 9 > 10
Top-5 0.00 0.00 0.17 0.24 0.25 0.18 0.08 0.05 0.02 0.01
Top-10 0.00 0.00 0.02 0.10 024 0.24 0.21 0.11 0.05 0.03
Top-15 0.00 0.00 0.00 0.06 0.22 0.28 0.25 0.13 0.05 0.01
Complete | 0.00 0.00 0.01 0.07 0.23 0.28 0.23 0.12 0.05 0.01

Table 4.2: Posterior distribution of the number of entity clusters, conditional on a single ranker
cluster, for restricted (*) and full (unrestricted) analyses. Numbers in bold indicate modal values.

structure with only minor discrepancies in the order that entity pairs cluster together
(and clustering taking place at similar levels of the dissimilarity measure A;;). Thus the
dendrograms are fairly robust to the addition of the uninformative rankings. This can
partly be explained by the dendrograms being conditional on a single ranker cluster and

the Dataset 4 analysis correctly identifying the uninformative rankers (with w41.50 = 0).

We can explore our posterior distribution further by investigating where specific entities
are likely to be ranked. Consider the posterior probability that a specific entity is ranked
at most ith, that is, P; = Pr(entity in top i|D). Figure 4.6 displays P for all analyses, Pjg
for all except the top—5 case and Pj5 for the top—15 and complete analyses. Interestingly
the posterior probabilities under the restricted top—5 and top—10 analyses are very similar
to those under the unrestricted analysis (especially when p; = 0.5). This suggests that,
for these data, this aspect of the posterior distribution is robust to whether or not the

unobserved entities (in the restricted analysis) are included in the analysis. The two left
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Figure 4.5: Dendrograms for entity clustering for Dataset 3 (top) and Dataset 4 (bottom) condi-
tional on a single ranker cluster under both prior specifications for the complete analyses.
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hand plots within Figure 4.6 shows considerable similarity between the full (unrestricted)
analyses of the two datasets (when p; = 0.5). Here the WAND model has been able
to identify the so-called spam rankings within Dataset 4 (see Figure 4.3) and so these
rankings have little effect on the analysis. However, this is not the case when we take

= 0.9. In this case, the high level of confidence that the rankers are informative
results in the WAND model being reluctant to classify any rankers as uninformative;
again see Figure 4.3. This leads to the uninformative rankers contaminating the posterior

distribution of the entity A—parameters.

Earlier we questioned whether a collection of complete rankings is required if we only wish
to infer, say, the top—5 entities. Looking at the results for Dataset 3 (in the top plots in
Figure 4.6), if we consider P; we can see how the top—5 analysis is able to detect that
entities 1-4 are highly likely to be within the top—5, however there is some doubt about
which is the 5th strongest entity. In contrast, the other analyses (top—10, top—15 and
complete) indicate that entity 6 is much more likely to be within the top—5 in comparison
to the remaining entities. Furthermore notice how Py decreases significantly for entities 7—
20 under the top—15 and complete analyses in comparison to the top—10 scenario. Similar
results are obtained for Py and Pi5, that is, as we increase the information contained
within the rankings, we become more certain about those entities which are the most
preferred. In conclusion, although it is possible to identify the most preferred entities
without complete rankings, it has been advantageous to incorporate as much information

as possible.
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Figure 4.6: Posterior probabilities Ps for all analyses, Pjg for all except the top—5 case and Pi5
for the top—15 and complete analyses. The analyses of Dataset 3 and Dataset 4 are shown on the
upper and lower row respectively for each prior choice of p.

Dataset 4 analysis conditional on two ranker clusters

Here we revisit the analysis of Dataset 4 under the choice of p; = 0.9 a priori. In the
previous section we looked at the posterior entity clustering structure conditional on a
single ranker cluster. However there was little posterior support for a single ranker cluster,
with Pr(N* = 1|D, p; = 0.9) < 0.16 under all analyses considered, and the modal posterior
number of ranker clusters was two. Therefore we now look at the (posterior) clustering
structure conditional on this modal number of ranker groups (as would be done if we had

no knowledge of the generating mechanism for these data).

Table 4.3 gives the marginal posterior distributions of the number of entity clusters within
each ranker group (conditional on two ranker clusters) for all analyses. Note that, within
ranker cluster 1, the posterior support for the correct number of entity clusters (N7 =
6) increases as the information provided within each ranking increases — this was also
observed when conditioning on a single ranker group. For ranker cluster 2 we see increased
uncertainty within the marginal posteriors (in comparison to ranker cluster 1) with only
two or three entity clusters being most probable under all analyses. Clearly the rankers
in ranker cluster 2 are less able to distinguish between the entities — and this is perhaps

not surprising as this cluster typically houses the uninformative rankers.

Figure 4.7 shows dendrograms of the entity grouping structure within ranker clusters 1
and 2 (left and right respectively) for the complete analysis of Dataset 4 with p; = 0.9,
conditional on two ranker clusters. Note that the entity clusters within ranker cluster 1

are very similar to those when conditioning on a single ranker cluster; see Figure 4.5. This
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Dataset 4 Cluster 1 2 3 4 5 6 7 8 9 >10
Top-5 1 0.01 0.01 0.16 0.26 025 0.17 0.09 0.03 0.02 0.00
2 0.14 0.23 022 0.18 0.12 0.06 0.03 0.01 0.01 0.00
Top-10 1 0.00 0.00 0.02 0.11 021 0.23 0.21 0.12 0.06 0.04
2 0.11 021 0.24 0.19 0.13 0.07 0.03 0.01 0.01 0.00
Top-15 1 0.00 0.00 0.00 008 0.21 0.28 023 0.12 0.06 0.02
2 0.18 0.25 021 016 0.10 0.05 0.03 0.01 0.01 0.00
Complete 1 0.00 0.00 0.00 0.08 0.25 0.28 0.20 0.12 0.05 0.02
2 0.20 0.24 0.23 0.15 0.10 0.05 0.02 0.01 0.00 0.00

Table 4.3: Posterior distribution of the number of entity clusters, conditional on two ranker clusters,
for each analysis of Dataset 4 with p; = 0.9. Numbers in bold indicate modal values.
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Figure 4.7: Dendrograms of entity clustering (conditional on 2 ranker clusters) in ranker cluster 1
(left) and ranker cluster 2 (right) for the analysis of Dataset 4 with p; = 0.9.

is probably due to ranker cluster 1 containing all informative rankers in both cases (of
one or two ranker groups). For ranker cluster 2 we see that any two entities are clustered
together at least 49% of the time (A;; < 0.51). Also entity clusters are formed at similar
levels of dissimilarity, again highlighting the uncertainty on the entity clustering within

this ranker group.

4.7.2 Study 2

In study 2 we look at a single dataset with n = 40 complete rankings of K = 20 entities
from informative (w; = 1) rankers. We also simulate the cluster allocations (for both
rankers and entities) marginally from the prior. The distinct skill parameters and cluster
allocations were simulated using o = s = 1 for s € N, and a = 1 so that our base distri-
bution is Go = Ga(1l,1). The simulation gave three ranker clusters (N* = 3) containing
24, 12 and 4 rankers, which we label as rankers 1-24, 25-36 and 37-40. Also the ranker
clusters contained 8, 6 and 3 entity clusters (N} =8, N5 =6, N5 = 3).

Table 4.4 shows the entity clustering (within each ranker cluster) along with the associated
true values of the skill parameters on the log scale. For ease of interpretation, the entities

are labelled according to the size of their “true aggregate” skill parameter, largest to
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Entity cluster

cr ‘ Rankers 1 2 3 4 5 6 7 8
1 1-24 1 6 10,13 3,4,7,9,12,15 2 5,11,14,17-20 16 8
2.47 0.65 0.52 0.40 0.34 0.24 0.02 0.01
2 25-36 [ 258 1,7,9,11 14,16 2 6,10,15,17 13,18 20
1.72 0.76 0.68 0.42 0.21 0.15
3 37-40 [ 2,6,10 7 1,3-5,8,9,11-20
1.54 1.16 0.64

Table 4.4: True allocation of entities in to clusters, along with the corresponding true parameter
value for each of the entity clusters.

smallest, so that they are labelled with the most preferred entity overall first, down to the
least preferred entity overall last. Here the true aggregate values are an average of the true
parameter values within each ranker cluster, weighted by the size of the ranker clusters.
The complete (simulated) rankings analysed within this study can be found in Table B.5

within the appendices.

The purpose of this study is to investigate the ability of our WAND model to (correctly)
identify different ranker groups and the associated preferences therein. The analysis given
here uses the same base distribution and prior distribution for the entity concentration
parameters as in Section 4.7.1, that is, Go = Ga(1,1) and v, ~ Ga(3,3) for s € N. To
reflect the known ranker heterogeneity within these data we now take a, = b, = 3, that
is, a ~ Ga(3,3). We also consider the case where we have only moderate confidence in

our rankers being informative by taking p; = 0.5.

Realisations from the posterior distribution were obtained using the (marginal) sampling
algorithm outlined in Section 4.6.5 with m" = 2 and m® = 3 auxiliary (ranker and entity)
variables. The Markov chain was initialised at a random draw from the prior distribution.
To obtain 10K (almost) un-autocorrelated realisations from the posterior distribution we
performed a burn-in period of 10K iterations and then ran the scheme for a further 1M
iterations and thinned the output by a factor of 100. The computational time required to
perform inference was (approximately) 17 minutes. The mixing of the MCMC chain was
assessed by inspecting trace plots and convergence was assessed by initialising numerous
chains at differing starting values and verifying that the resulting posterior distributions

were equivalent (up to stochastic noise).

The left plot in Figure 4.8 shows the posterior probabilities, Pr(w; = 1|D), that ranker i
is informative. The plot shows that, in general, the rankers in (true) ranker clusters 1
and 2 (rankers 1-36) are well identified to be informative. However the rankers in (true)
ranker cluster 3 are identified as uninformative. The reason for this misidentification
is perhaps due to the (true) entity clustering structure present within ranker cluster 3.
Table 4.4 shows that this ranker cluster contains only 3 entity clusters, with one of these

containing 16 out of the 20 entities, and so it is very likely that rankings in this cluster
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Figure 4.8: Plot of the posterior probability Pr(w; = 1|D) that ranker 7 is informative (left), colours
distinguish between the “true” ranker clusters. Dendrogram (complete linkage) computed using
the dissimilarity A;; between rankers ¢ and j (right).

resemble a random permutation of the K entities.

The right plot in Figure 4.8 shows the complete linkage dendrogram determined using
dissimilarities A;;. The dendrogram suggests there are two ranker clusters (taking dis-
similarity € (0.53,1)) which separates those rankers numbered {25 — 30, 32,33, 34,36}
from the remaining rankers. That there are two ranker clusters is supported further by
the marginal posterior distribution of the number of ranker clusters: Pr(N* = i|D) =
0.68,0.25,0.06,0.01 for ¢ = 2,3,4,5. It is not surprising that the analysis has not iden-
tified the third ranker cluster as this cluster only contains rankers whose rankings are
virtually indistinguishable from random permutations; rather the model prefers to deem

such rankers as uninformative and place them within clusters of informative rankers.

Table 4.5 gives the marginal posterior distribution for the number of entity clusters within
each ranker cluster, conditional on the posterior modal number of ranker clusters. The
modal number of entity clusters within ranker clusters 1 and 2 is six and four respectively
(the corresponding true values are eight and six). Here the analysis has correctly identi-
fied that ranker cluster 1 is the stronger cluster, in that these rankers are more able to
distinguish between entities. The dendrograms in Figure 4.9 suggest that there are five
entity clusters within ranker cluster 1 (taking dissimilarity € (0.58,0.83)) and three entity
clusters in ranker cluster 2 (taking dissimilarity € (0.50,0.69)). Notice that in ranker clus-
ter 1, the most preferred entity in this cluster (entity 1) has its own cluster, and entities 16
and 8 (in true entity clusters 7 and 8) also form a single cluster; perhaps these are not sur-

prising given the “true” values of the skill parameters for these entities within this ranker

Cluster | 1 2 3 4 5 6 7 8 9  >10
1 0.00 0.00 0.00 0.07 020 0.25 021 0.14 0.08 0.05
2 0.00 011 025 0.26 0.8 0.11 0.05 002 0.01 0.01

Table 4.5: Posterior distribution of the number of entity clusters, conditional on two ranker clusters.
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Figure 4.9: Dendrograms showing the dissimilarity between entities within ranker clusters 1 (left)
and 2 (right), conditional on two ranker clusters (N" = 2).

cluster (see Table 4.4). True entity cluster 6 is fairly well identified with only entity 14
not being included and entity 3 (from true cluster 4) joining the cluster. The remaining
two entity clusters identified by the dendrogram house the other entities from true entity
clusters 2-5. Within ranker cluster 2 the “true” entity clustering structure from which
the data were simulated is largely preserved but the inferred clusters are groups of the
“true” clusters, with all entities in “true” cluster 1 being clearly identified in one cluster
and those in clusters 2, 3 and 4 in another cluster and those in clusters 5 and 6 in another
cluster. That these entity clusters have merged is perhaps not too surprising given the

true values (see Table 4.4) and the limited number of rankings observed.

We now investigate the preference ordering of the entities within each ranker group and an
overall preference ordering; see Table 4.6. Here the preference ordering within each ranker
group has been determined by the posterior mean of the “skill” parameters, averaged
over both the entity clustering and the allocation of rankers to each ranker group. The
overall preference ordering has been further averaged over all ranker clusters. Comparing
these preference orderings with the truth (in Table 4.4) we see that the WAND model
has performed fairly well in recovering the true preferences expressed in ranker clusters 1
and 2, especially for those entities which are the most and least preferred within each ranker
group. Not surprisingly there is an increased level of misidentification in the middle ranks
of the preference ordering for both ranker clusters, and particularly so for ranker cluster 1.
This is perhaps due, in part, to the true values of the skill parameters in entity clusters
2-6 within each ranker cluster being fairly similar, with those in ranker cluster 1 being

the most similar; see Table 4.4.

The entities in Table 4.6 are listed in order of their overall “true” skill parameter. Even
though the WAND model has allowed for differences between rankers, the inferred overall
ordering is very different from the “true” order. That said, the inferred orderings within
the ranker clusters are very similar to the “true” orderings and give a much better account
of the heterogeneity within the model underpinning the data. This illustrates how inferring

preference orderings using overall (population level) summaries of heterogeneous rankers
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Ct Cy Aggregate
Rank | Entity Mean (SD) | Entity Mean (SD) | Entity Mean (SD)
1 1 354(157) | 2 101 (111) | 1 2.93 (1.15)
2 7 1.02(054) | 8 177 (L08) | 7 1.13(0.47)
3 13 1.02(054) | 5  173(1.07) | 4 1.02(0.41)
4 10 091(0.46) | 4  171(1.06) | 2 0.97 (0.40)
5 14 0.89 (0.45) 3 1.65 (1.05) 14 0.96 (0.40)
6 6 0.87 (0.44) 16 1.51 (1.02) 12 0.95 (0.39)
7 12 0.83 (0.42) 1 1.44 (0.99) 9 0.89 (0.38)
8 15 0.76 (0.39) 7 1.41 (0.98) 3 0.82 (0.35)
9 4 0.75 (0.40) 9 1.36 (0.96) 13 0.80 (0.39)
10 9  0.70(0.38) | 11  131(095) | 5  0.78 (0.34)
11 2 0.60(0.35) | 12 1.23(0.92) | 10  0.73 (0.33)
12 3 0.49 (0.28) 14 1.13 (0.87) 6 0.69 (0.31)
13 20 0.44 (0.24) 10 0.25 (0.21) 11 0.64 (0.29)
14 18 044 (0.24) | 17 022(0.17) | 15  0.62 (0.29)
15 17 041(0.21) | 15  022(0.16) | 8 052 (0.31)
16 5 041(0.21) | 20  022(0.16) | 16  0.47 (0.29)
17 11 0.37 (0.19) 13 0.21 (0.15) 20 0.39 (0.18)
18 19 0.37 (0.18) 19 0.21 (0.15) 18 0.38 (0.18)
19 16 0.05 (0.07) 6 0.21 (0.15) 17 0.36 (0.16)
20 8  0.03(0.08) | 18  020(0.14) | 19  0.33(0.14)

Table 4.6: Posterior preference orderings within ranker clusters 1 and 2 (conditional on two ranker
clusters) and the overall/aggregate ranking, with mean (and standard deviation) of their skill
parameters.

can be very misleading even when knowing the skill parameters, let alone when attempting

to infer their values.

4.8 Summary

In this chapter we have described the Adapted Nested Dirichlet process prior which facil-
itates two-way clustering on both rankers and entities (within ranker groups). We then
used this prior to form the WAND model by taking the underlying ranking distribution to
be the Weighted Plackett—Luce model. Two approaches to inference for the WAND model
were then considered. In Section 4.5 we appealed to a conditional sampling approach. Al-
though intuitive, this approach to inference for DP mixtures comes with drawbacks when
compared to marginal sampling schemes, as discussed in Chapter 3. In Section 4.6 we
discussed how a marginal scheme for posterior sampling can be constructed for this adap-
tation of the NDP. The marginal posterior sampling scheme we outlined in Section 4.6.5

allows for fast and efficient inference under our WAND model.

We saw through the simulation studies in Section 4.7 that reasonable inferences can be

made under the WAND model even when only limited (partial) information is available.
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The richness of information in the posterior distribution allows us to infer many details
of the structure both between ranker groups and between entity groups (within ranker
groups). The high dimension of the posterior distribution can make the production of
insightful but simple summaries quite difficult and we have explored different approaches,
ranging from conditioning on modal number of groups to adopting a classification based

on calculations from a dissimilarity matrix summary.

In the next chapter we consider two real datasets that have been analysed in the literature,

and compare their conclusions with those obtained from fitting the WAND model.
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Real data analyses

5.1 Roskam’s data set

In this section we consider a dataset originally collected in 1968 by Roskam, more recently
studied by de Leeuw (2006). The data are available in the R package homals (de Leeuw
and Mair, 2009) and are also given in Table B.6 within the appendices. The data consist
of rankings obtained from n = 39 psychologists within the Psychology Department at
the University of Nijmengen (Netherlands). FEach ranker gives a complete ranking of
K =9 sub-areas (entities), listed according to how appropriate the sub-areas are to their
work. The sub-areas are: SOC - Social Psychology, EDU - Educational and Developmental
Psychology, CLI - Clinical Psychology, MAT - Mathematical Psychology and Psychological
Statistics, EXP - Experimental Psychology, CUL - Cultural Psychology and Psychology
of Religion, IND - Industrial Psychology, TST - Test Construction and Validation, and
PHY - Physiological and Animal Psychology.

The heterogeneity within these data has been analysed by de Leeuw (2006) using a non-
linear principal component analysis to detect groupings within the rankings. Their anal-
ysis supported the idea that there are two groups of rankings: one group which favours
the qualitative fields and the other favouring the quantitative fields of psychology. A
homogeneity analysis was later performed by de Leeuw and Mair (2009) which exposed
groupings of entities within the rankings. More recently Choulakian (2016) performed a
Taxicab correspondence analysis to look at structure both between the rankings and the
entities within ranker groups. Their results support the conclusions of de Leeuw (2006)
and suggest that the psychologists comprise two homogeneous groups with 23 and 16 mem-
bers respectively. Within the larger ranker group they obtain the entity clustering {MAT,
EXP} > {IND, TST} » {PHY, SOC, EDU} >~ CLI > CUL, where > means “is preferred

to”, and quantitative areas of psychology appear to be preferred. The corresponding clus-
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tering of entities for the other ranker group is {EDU, CLI, SOC} - {CUL, MAT, EXP}
>~ {TST, IND} > PHY, and here qualitative areas of psychology appear to be preferred.
They also conclude that the larger ranker group is somewhat more homogeneous than the

smaller group.

We now use our WAND model to investigate subgroup structure in these data and take
our prior specification for the base distribution and concentration parameters to be a = 1
and ay, = by, = 1, ay, = by, = 3. These data contain orderings of individual preferences
which we believe to be informative and so take p; = 0.75. The posterior distribution is
fairly robust to this choice; a sensitivity analysis follows in Section 5.1.1. We report the
results from a typical run of our MCMC scheme initialised from the prior, with a burn-in
of 10K iterations and then run for a further 1M iterations and thinned by 100 to obtain
10K (almost) un-autocorrelated realisations from the posterior distribution. Convergence
was assessed by using multiple starting values, inspection of traceplots of parameters and
the log complete data likelihood, and standard statistics available in the R package coda
(Plummer et al., 2006). The MCMC scheme runs fairly quickly, with C code on a single
thread of an Intel Core i7-4790S CPU (3.20GHz clock speed) taking around 5 minutes.

Table 5.1 shows both the prior and posterior distribution for the number of ranker clusters.
The data clearly have been informative and suggest that it is likely that there are between
two and four ranker groups, with two groups being most plausible. Note that there is
almost no posterior support to suggest there is a single (homogeneous) ranker group and
so an aggregate ranking from this dataset may be misleading. Figure 5.1 shows the den-
drogram of rankers along with the posterior probability that each ranker is informative.
The dendrogram suggests that there are two ranker groups (taking dissimilarity > 0.60),
and this is consistent with the posterior distribution in Table 5.1 and the conclusions of
previous analyses. We note that the data are consistent with most rankers being infor-
mative (with Pr(w; = 1|D) > 0.8), an increase from their prior probabilities (p; = 0.75).
Also the rankers whose probabilities have decreased (rankers 1,5,8,10,13,14,15,31) are
those with (slightly) different preferences and hence late to join the right-hand cluster in

the dendrogram.

We now turn to the subgroup structure of entities within the ranker clusters, and here we
condition on there being two ranker clusters. Figure 5.2 shows the (marginal) posterior

distribution for the number of entity clusters within each ranker cluster together with the

|1 2 3 4 5 6 7 >8
Posterior [ 0.00 0.43 0.33 0.16 0.06 0.02 0.00 0.00
Prior ~ |0.20 0.18 0.16 0.13 0.10 0.08 0.05 0.10

Table 5.1: Prior and posterior distribution of the number of ranker clusters (to 2 d.p.).
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Figure 5.1: Roskam’s dataset: Dendrogram (left) showing the ranker cluster structure along with
the posterior probability, Pr(w; = 1|D), for each ranker 4 (right).

prior distribution. The dendrograms in Figure 5.3 show the entity clustering structure
in each ranker cluster. We define entity clusters at dissimilarities in ranges (0.45,0.95)
and (0.63,0.89) for rankers groups 1 and 2 respectively and form a preference ordering of
these entity clusters by examining the marginal posteriors for the skill parameters )\Cidcij
within each ranker group ¢;. Conditioning on these allocations to both ranker and entity
groups and ordering by posterior mean, we obtain {EXP, MAT} >~ {TST, PHY, IND}
= {EDU, SOC, CLI} > {CUL} (with entity cluster means 3.02,0.72,0.22,0.06) in ranker
cluster 1 and {SOC, EDU, CLI, MAT} > {CUL, IND, EXP, TST} >~ {PHY} (with entity
cluster means 1.96,0.82,0.12) in ranker cluster two. These entity clusters (within ranker
groups) are similar to those given by Choulakian (2016). Also if we use the average value
of Pr(w; = 1|D) as a measure of homogeneity within a ranker cluster then we obtain 0.68
and 0.56 for clusters 1 and 2 respectively, which again agrees with the Choulakian (2016)
conclusion that ranker cluster 1 is more homogeneous than ranker cluster 2. Note that,
for this data analysis, we obtain a very similar entity ordering using marginal posterior
means of the skill parameters within each ranker group (marginal over the distribution of
entity clusters); see Table 5.2. Indeed the table suggests that the ranker groups almost

have opposite (reverse) preferences to each other.

We looked at the sensitivity of the posterior distribution (and inferences) to modest

changes to the prior distribution. The posterior distribution was fairly insensitive to

Py ---- Ranker Cluster 1
oo === Ranker Cluster 2

— Prior

02 03 04

Posterior probability

0.0 0.1

Number of entity clusters

Figure 5.2: Prior and marginal posterior densities for the number of entity clusters within each
ranker cluster (conditional on two ranker clusters).
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Figure 5.3: Roskam’s dataset: Dendrograms showing the entity clustering structure within ranker
cluster 1 and 2 (left and right respectively) conditional on two ranker clusters.

Ranker Rank
cluster 1 2 3 4 5 6 7 8 9
1 EXP MAT TST PHY IND EDU SOC CLI CUL
3.13 2.68 0.76 0.70 0.63 0.27 0.22 0.20 0.07
2 SOC EDU CLI MAT CUL IND EXP TST PHY
1.95 1.75 1.49 1.32 0.94 0.90 0.87 0.87 0.10

Table 5.2: Roskam’s dataset: entity rankings by posterior mean within ranker cluster (conditional
on two ranker clusters). Rank 1 corresponds to the entity most preferred within each cluster.

changes in the index (a) of the gamma base distribution and to changes in the parame-
ters (aq, ba, ay, by) of the gamma prior distributions for the concentration parameters.
The posterior distribution was most sensitive to changes in the prior probabilities (p;)
of rankers being informative. Not surprisingly most affected by such changes were their
posterior equivalents Pr(w; = 1|D) though the conclusion of two ranker groups and the
membership of these groups was robust. The allocation of entities to groups (within each
ranker cluster) was also fairly robust, with only a minor change in the allocation in the
p = 0.85 case. Section 5.1.1 contains the (ranker and entity) dendrograms and plots of
Pr(w; = 1|D) for p; = 0.65 and p; = 0.85 in addition to the choice p; = 0.75 used in this

analysis.

5.1.1 Prior sensitivity analysis

Here we look at the sensitivity of the posterior distribution to changes in the prior prob-
ability that a ranker is informative. We consider two alternative choices to the one used
in our previous analysis (p; = 0.75), namely p; = 0.65 and p; = 0.85. For ease of reference

we also include the results for the p; = 0.75 case.

Overall, we found that the posterior distribution was fairly robust to the choice of p;
a priori. Perhaps unsurprisingly the aspect of our posterior distribution most sensitive
to changes in the p; was their posterior equivalents Pr(w; = 1|D); see Figure 5.4 (right

column). However we note that the rankers whose informative probability decreases (prior
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— posterior) remain the same in each case: these are rankers {1,5,8,10,13,14,15,31}.

The dendrograms of the ranker clustering structure are similar for each prior choice and

clearly indicate that there are two groups of rankers.

clusters is similar in each case; see Figure 5.4 (left column).

Also the allocation of rankers to

Interestingly we observe

increasing posterior support for two ranker clusters as the p; decrease — this is also the

posterior mode in each case; see Figure 5.5. In addition, conditional on there being two

ranker clusters, the marginal posterior of the number of entity clusters NS (within each

ranker cluster s = 1,2) remains fairly robust to the prior choice; see Figure 5.5. Also the

dendrograms of the entity clustering structure are similar in each case; see Figure 5.6.
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Figure 5.4: Roskam’s dataset: Dendrogram (left) showing the cluster structure of the rankers along
with the posterior probability Pr(w; = 1|D) for each ranking i (right) for p; = 0.85,0.75,0.65 (from

top to bottom respectively).
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Figure 5.5: Roskam’s dataset: Prior and marginal posterior densities for the number of rankers
clusters (left plot) and the number of entity clusters within each ranker cluster, conditional on two
ranker clusters, (right plot) for p; = 0.85,0.75,0.65.
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Figure 5.6: Roskam’s dataset: Dendrograms of entity clustering structure within ranker cluster 1
(left) and ranker cluster 2 (right). These are shown for each prior specification, p; = 0.85,0.75, 0.65,
from top to bottom respectively.
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5.2 NBA study

We now consider another dataset of ranks, studied by Deng et al. (2014) and involving
rankings of NBA (National Basketball Association) teams. In their paper, Deng et al.
propose a model (named “Bayesian Aggregation of Ranked Data”, BARD) which aims to
aggregate rankings and identify the “relevant entities”. Their model also accommodates
the possibility that rankings may not be equally reliable. One drawback of the BARD
model is that it assumes that all rankings come from a single homogeneous group. We
now investigate this assumption by using the WAND model and also produce an aggregate

ranking to compare with the BARD aggregate ranking.
In 2011/12 the NBA league contained K = 30 teams (entities) and the dataset we consider

has a ranking of these teams from each of n = 34 rankers. The first six complete rankings
were obtained from odds given at “professional” websites and the other top—8 rankings
obtained from amateurs. Further, each amateur was asked to classify themselves into one
of the following groups: “Avid fans” (never missed an NBA game), “Fans” (watched NBA
games frequently), “Infrequent watchers” (occasionally watched NBA games) and “Not
interested” (never watched an NBA game). Each ranker considered all teams and so we
have K; = K for i = 1,...,n. The rankers are numbered as follows: Professionals (1-6),
Avid fans (7-12), Fans (13-18), Infrequent watchers (19-25) and Not interested (26-34).
Therefore we have n; = K =30 fori=1,...,6 and n; =8 for ¢ = 7,...,n. The data are
given in Table B.7 within the appendices. Further details on how these data were collected
can be found in Deng et al. (2014).

We now analyse these data using our WAND model and see whether it is plausible that
these rankers are homogeneous or whether the self-assessed groups behave differently. We
take the same prior for the base distribution (a = 1) as in the previous example. However,
to reflect weak prior beliefs that there are several ranker groups, we take a, = b, = 3
in addition to the previous choice for entities, a, = b, = 3. The prior we choose for
each ranker’s ability is based on how much attention they reportedly pay to the NBA,
with professional rankers likely to be most informative, followed by the Avid fans, then
Fans and so on. We do this by giving the same p;-value for each ranker in the same
“ability” group, with p; = 0.9 for professionals, p; = 0.7 for Avid fans, p; = 0.5 for Fans,
p; = 0.3 for Infrequent watchers and p; = 0.1 for Not interested. We appreciate that,
in general, this type of information is unlikely to be available to the analyst and so in
Section 5.2.1 we consider an analysis where p; = 0.5 for each ranker (a sensible choice
when no information is available). Generally, we found that the posterior distribution is
fairly robust to the choice of p; a priori which is perhaps not surprising given what we have
seen in the previous simulation studies and (other) real data analysis. Unsurprisingly the

aspect of the posterior distribution most sensitive to changes in the p; was their posterior

153



Chapter 5. Real data analyses

equivalents Pr(w; = 1|D) although the inferences under each analysis were robust.

As in the previous analysis, we report the results from a typical run of our MCMC scheme
initialised from the prior, with a burn-in of 10K iterations and then run for a further 1M
iterations and thinned by 100 to obtain 10K (almost) un-autocorrelated realisations from
the posterior distribution. Convergence was assessed by using multiple starting values,
inspection of traceplots of parameters and the log complete data likelihood, and standard
statistics available in the R package coda. Again the MCMC scheme runs reasonably
quickly, with C code on a single thread of an Intel Core i7-4790S CPU (3.20GHz clock

speed) taking just under 18 minutes.

Our analysis of the posterior realisations reveals very little posterior support for a single
homogeneous group of rankers, with most support for two ranker groups (Pr(N" = 1|D) =
0.00, Pr(N" = 2|D) = 0.80 and Pr(N" = 3|D) = 0.17). Figure 5.7 (left) shows a den-
drogram of the posterior clustering structure of rankers and confirms the conclusion that
there are two distinct groups of rankers: one with rankers 1-10, 12, 15 and the other with
rankers 11, 14, 17-26, 28 and 32. Nearly all the other rankers are classed as uninformative,
with Pr(w; = 1|D) < 0.25, except informative ranker 16 who is (roughly) equally likely
to be allocated to each cluster; see Figure 5.7 (right). Note that obtaining a clustering
by using the MAP allocation would be misleading as the MAP allocation occurs in only
60 of the 10K iterations in the MCMC chain. Unsurprisingly, uninformative rankers are
typically those who pay less attention to the NBA, with average values of Pr(w; = 1|D)
for rankers in the self-certified groups (from professionals down to the not interested indi-
viduals) of 1, 1, 0.87, 0.88, 0.34 respectively. A similar conclusion was found under BARD
through its ranking quality parameters; see Figure 8 in Deng et al. (2014).

Figure 5.8 shows the marginal posterior distribution for the number of entity clusters
within each ranker cluster (conditional on there being two ranker clusters) together with
the prior distribution. The posterior mean number of entity clusters for ranker clusters 1

and 2 is 8.88 and 4.58 respectively, with corresponding standard deviations 1.55 and 1.29.
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Figure 5.7: NBA dataset: Dendrogram (left) showing the clustering structure of rankers and
highlighting those rankers with Pr(w; = 1|D) < 0.25. Plot (right) of the posterior probabilities
Pr(w; = 1|D) for each ranker, with vertical lines separating the self-certified groups.
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Figure 5.8: Prior and marginal posterior densities for the number of entity clusters within each
ranker cluster (conditional on two ranker clusters).

These distributions suggest that rankers within cluster 1 are able to distinguish between
many more entities than those in cluster 2. Again this should come as no surprise as ranker
cluster 2 mainly consists of rankers who typically pay little attention to the NBA. The
dendrograms in Figure 5.9 show the entity clustering in each ranker cluster, and suggest
that there are six distinct entity clusters within ranker cluster 1 (taking dissimilarity
> 0.81) and three entity clusters in ranker cluster 2 (taking dissimilarity > 0.61). We note
that the MAP clustering gives six and two entity clusters respectively, though there are
relatively few MCMC iterations contributing to the MAP allocation for either cluster.

It is also of interest to look at the differences in preferences between the two ranker clusters
by examining the within-cluster aggregate rankings; see Table 5.3. As before, these are
determined by the marginal posterior mean for each entity (within each ranker cluster).
The horizontal lines in this table show the MAP entity clustering described above and the
(quite small) number of occurrences of the MAP is also given. So that our results can
be compared to those of Deng et al. (2014), the table also includes the overall aggregate
ranking, determined by ordering the mean of the (fully) marginal posterior distribution

for each entity (marginalised over ranker clusters).

The entity rankings in ranker cluster 1 strongly favour the Heat (entity 1) and Thunder
(2), with the Bulls (10) as the 3rd most preferred team. Ranker cluster 2 also favours

the Heat but differs in their preferences for second and third positions — here being the
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Figure 5.9: NBA dataset: Dendrograms showing the entity cluster structure within ranker clus-
ters 1 and 2 (left and right respectively) conditional on two ranker clusters.
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Ranker cluster 1 Ranker cluster 2 Aggregate
Rank | Entity Mean (SD) | Entity Mean (SD) Entity Mean (SD)
1 1 5.63 (2.17) 1 3.18 (1.73) | 1  Heat 4.35 (1.38)
2 2 5.22 (2.38) 6 3.03 (1.77) | 2 Thunder 2.61 (1.20)
3 10 1.48 (1.24) 4 2.23 (1.73) | 6 Lakers 1.99 (0.95)
4 6 0.92 (0.54) 8 0.20 (0.16) | 4  Celtics 1.52 (0.92)
5 9 0.86 (0.54) 10 0.20 (0.16) | 10 Bulls 0.81 (0.57)
6 4 0.75 (0.44) 9 0.19 (0.16) | 9 Mavericks 0.52 (0.26)
7 3 0.74 (0.43) 3 0.19 (0.15) | 3  Spurs 0.46 (0.22)
8 5 0.53 (0.36) 18 0.19 (0.15) | 5 Clippers 0.28 (0.17)
9 11 0.32 (0.23) 11 0.18 (0.15) | 11  Knicks 0.26 (0.13)
10 12 0.20 (0.16) 20 0.18 (0.14) | 8  T76ers 0.13 (0.09)
11 7 0.05 (0.04) 2 0.17 (0.15) | 18 Rockets 0.12 (0.08)
12 13 0.05 (0.04) 26 0.15 (0.13) | 12  Grizzlies 0.12 (0.08)
13 14 0.05 (0.04) 14 0.12 (0.12) | 20 Suns 0.10 (0.08)
14 17 0.05 (0.03) 27 0.10 (0.10) | 14 Magic 0.09 (0.07)
15 8 0.04 (0.03) 15 0.09 (0.10) | 26 Kings 0.08 (0.07)
16 15 0.04 (0.03) 29 0.07 (0.08) | 15 Hawks 0.07 (0.06)
17 18 0.03 (0.02) 23 0.07 (0.08) | 13 Nuggets 0.07 (0.05)
18 19 0.02 (0.02) 13 0.07 (0.08) | 7 Pacers 0.06 (0.04)
19 20 0.00 (0.00) 22 0.06 (0.07) | 27 Wizards 0.05 (0.06)
20 22 0.00 (0.00) 25 0.06 (0.07) | 17 TBlazers  0.05 (0.03)
21 21 0.00 (0.00) 21 0.05 (0.06) | 23 Twolves 0.04 (0.05)
22 23 0.00 (0.00) 7 0.05 (0.06) | 29 Cavaliers  0.04 (0.05)
23 25 0.00 (0.00) 19 0.05 (0.06) | 19 Bucks 0.04 (0.04)
24 24 0.00 (0.00) 30 0.05 (0.06) | 22 Warriors  0.04 (0.04)
25 16 0.00 (0.00) 28 0.05 (0.05) | 25 Pistons 0.04 (0.04)
26 26 0.00 (0.00) 16 0.04 (0.04) | 21 Nets 0.03 (0.04)
27 27 0.00 (0.00) 24 0.04 (0.05) | 30 Bobcats 0.03 (0.03)
28 28 0.00 (0.00) 5 0.04 (0.04) | 28 Raptors 0.03 (0.03)
29 29 0.00 (0.00) 17 0.04 (0.04) | 16 Jazz 0.03 (0.03)
30 30 0.00 (0.00) 12 0.04 (0.04) | 24 Hornets 0.03 (0.03)
MAP: 24 MAP: 67

Table 5.3: NBA analysis: Posterior preference orderings within ranker clusters 1 and 2 (conditional
on two ranker clusters) and the overall/aggregate ranking, with mean (and standard deviation)
of their skill parameters. The horizontal lines indicate the MAP entity clustering within ranker
clusters. The numbers at the bottom are the number of occurrences in which the MAP clustering
was observed (out of 8038 iterations with two rankers clusters).

Lakers (6) and Celtics (4). There are many differences in preference orderings between
the ranker clusters, for example, the Thunder and Bulls appear in positions 11 and 5 in

ranker cluster 2.

The analysis given in Deng et al. (2014) looks at the so-called “relevant entities”, defined
to be those entities within the top—16, and concludes that these are {1,2,...,15,18}.
The overall aggregate ranking reported under our WAND model gives the top—16 as
{1,2,...,6,8,...,12,14,15,18,20,26}; see Table 5.3. Perhaps surprisingly, despite the
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Figure 5.10: The probability P that each entity is in the top—16 under the WAND (x) model, and
the probabilities that each entity is a relevant entity under BARD (-). The vertical line separates
out the teams that actually reached the top—16 playoffs.

BARD analysis assuming only a single ranker cluster, there is considerable overlap be-
tween the WAND and BARD top—16 lists — the differences being that entities 20 and 26
feature in our list whereas entities 7 and 13 are omitted, with entities 7 and 13 just missing
out from our top—16 and appearing in positions 18 and 17. However, this can be explained
by the WAND overall aggregate ranking being formed by a consensus between the very

discriminating ranker cluster 1 and the much less discriminating ranker cluster 2.

If we now compare the BARD top—16 with the rankings in the WAND ranker clusters,
we see that the entity rankings in ranker cluster 1 are consistent with the BARD results,
with the only differences being that entity 18 is ranked 17th and entity 17 moves into
the top—16. The entity rankings in ranker cluster 2 are much less consistent with the
BARD results, and this is partially explained by the larger uncertainty on entity positions
within this cluster. The closeness of the entity posterior means (in ranker cluster 2) helps
to explain this level of rank uncertainty as these rankers clearly struggle to distinguish

between entities.

The BARD analysis also reports a probability for each entity being a relevant entity which
is similar to the probability Pjg that each entity is in the top—16 under the WAND model.
The values for these probabilities under both BARD and WAND models are shown in
Figure 5.10; the vertical dashed line separates entities 1-16 from the remainder, that is,
separates the teams that actually reached the top—16 playoffs that season from the others.
It is interesting to see that the WAND model places much more uncertainty on many
top—16 teams than under BARD, in the sense that their Pjg values are smaller — BARD

values are essentially zero or one.
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5.2.1 Prior sensitivity analysis

In Section 5.2 we used the (self declared) ranker abilities to form a relatively “informative”
prior on the ranker weights w;. In general this information is unlikely to be available to
the analyst and so here we look at the sensitivity of the posterior distribution to changes
in the prior probability that a ranker is informative. From our experience using WAND
we have found that, in a scenario where there is little information regarding the ranker
abilities, it is best to make conservative choices of p; a priori. We consider an alternative
choice to the “staggered” p; used previously and let p; = 0.5 for all ¢ so that each ranker
is equally likely to be informative/uninformative and compare the posterior under each

analysis.

Generally, we found that the posterior distribution is fairly robust to the choice of p; a
priort which is perhaps not surprising given what we have seen in the previous simulation
studies and (other) real data analysis. As before, it came as no surprise that the aspect of
the posterior distribution most sensitive to changes in the p; was their posterior equivalents
Pr(w; = 1|D); see Figure 5.11 (right column). Unsurprisingly the largest discrepancies are
for those rankers whose prior p; has been increased the most (rankers 19-25 and 26-34).
We note however that the rankers who obtain Pr(w; = 1|/D) < 0.25 are similar under
both analyses with only rankers 31 and 33 no longer under this threshold for the p; = 0.5
analysis (note Pr(ws; = 1/D) = 0.26). The dendrograms of the ranker clustering structure
are similar for each prior choice and clearly indicate that there are two groups of rankers.
Also the allocation of rankers to clusters is similar in each case; see Figure 5.11 (left
column). This is further supported by the marginal posterior distribution of the number
of ranker groups which shows that these data have clearly been informative and suggest
2 ranker groups under both prior choices; see Figure 5.12 (left). Interestingly, conditional
on there being two ranker clusters, the marginal posterior of the number of entity clusters
N¢ (within each ranker cluster s = 1,2) suggests there are slightly more entity clusters
within ranker group 2 under the p; = 0.5 analysis; see Figure 5.12 (right). This is perhaps
an artifact of additional information being available within this cluster as Pr(w; = 1|D)
has increased for some of the rankers within this group. The dendrograms of the entity
clustering structure in ranker group 1 are similar in each case; see Figure 5.13 (left column).
Although the corresponding dendrograms of the entity clustering for ranker group 2 may
appear to be slightly different for each analysis upon closer inspection it becomes clear
that only the Magic and the Wizards have changed association from the right hand group
to the central group for the p; = 0.5 analysis.
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Figure 5.11: NBA dataset: Dendrogram (left) showing the clustering structure of rankers and
highlighting those rankers with Pr(w; = 1|D) < 0.25. Plot (right) of the posterior probabilities
Pr(w; = 1|D) for each ranker, with vertical lines separating the self-certified groups. The top row
shows the results for the “staggered” choice of p; and the bottom row shows the corresponding
results when p; = 0.5 for all rankers.

Posterior probability

Figure 5.12: NBA dataset: Prior and marginal posterior densities for the number of rankers clusters
(left plot) and the number of entity clusters within each ranker cluster, conditional on two ranker
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clusters, (right plot) for “staggered” choice of p; and p; = 0.5.
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Figure 5.13: NBA dataset: Dendrograms showing the entity cluster structure within ranker clus-
ters 1 and 2 (left and right respectively) conditional on two ranker clusters for “staggered” choice
of p; and p; = 0.5, top and bottom respectively.

5.3 Summary

In this chapter we fitted the WAND model to two real datasets that have been previously
analysed in the literature. In general we found that the inferences under the WAND
model were similar to those obtained under other models. However, the richness of the
information within the posterior distribution (under WAND) allows us to infer additional
information about the structure between both ranker and entity groups. Our analysis
of the NBA data also revealed strong signs of heterogeneity between the rankers’ beliefs
about the entities. It follows that the BARD model may not be well suited to these data

given the underlying (ranker) homogeneity assumption.

In the next chapter we consider relaxing the assumption of an explicit ranking process by
appealing to the Extended Plackett—Luce model (Mollica and Tardella, 2014).
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Chapter 6

The Extended Plackett—Luce

model

6.1 Introduction

In this chapter we revert to considering homogeneous ranked data and consider the Ex-
tended Plackett—Luce model proposed by Mollica and Tardella (2014). This model is an
extension to the standard Plackett—Luce model which relaxes the a priori assumption of
an explicit ranking process. Recall that the standard Plackett—Luce model (and also the
Weighted Plackett—Luce model) assumes that each ranker forms their ranking using the
forward ranking process; see Section 2.2. Here each ranker forms their ranking by first
allocating their most preferred entity, then their second most preferred entity and so on
until their least preferred entity is allocated last. This is a rather strong assumption. It
is easy to imagine a scenario where an individual ranker might assign entities to positions
in an alternative way. For example, it is quite plausible that rankers may find it easier to
identify their most and least preferred entities first rather than those entities they place in
the middle positions of their ranking. In such a scenario rankers might form their ranking
by first assigning their most and then least preferred entities to a rank before completing
their ranking (by filling out the middle positions) through a process of elimination using
the remaining (unallocated) entities, that is, they use a different ranking process. The
effect of the (assumed) underlying ranking process is somewhat unknown with, to the
best of our knowledge, only the standard (forward ranking) Plackett—Luce model and the
(backward ranking) Reverse Plackett—Luce model receiving significant attention within
the literature. The Extended Plackett—Luce model allows the underlying ranking process
to be further explored as it instead allows for all possible ranking processes and allows the

data to inform us which is most plausible.
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The remainder of this chapter is outlined as follows. We begin with a discussion of the
Extended Plackett—Luce model and describe the associated data generating process. In
Section 6.2.2 we consider the identifiability of the ranking process and provide some in-
sight as to where the information about the ranking process is contained within the data.
The remaining sections focus on inference for the Extended Plackett—Luce model and
we consider both maximum likelihood and Bayesian approaches with efficient inference
algorithms presented in both cases. Throughout this chapter we perform several simula-
tion studies to demonstrate how insightful inferences can be obtained using the Extended
Plackett—Luce model.

6.2 The Extended Plackett—Luce model

Mollica and Tardella (2014) propose the Extended Plackett—Luce (EPL) model which
allows the a priori assumption of an implicit ranking process to be relaxed. It follows
that for this model we can learn about both the (possibly unobserved) underlying ranking
process and the parameters of the entities. Before we describe the Extended Plackett—Luce
model it is natural to recast the underlying ranking process in terms of a “choice order”
where the choice order is the order in which rankers assign entities to positions/ranks. For
example, a choice order of (1, K,2,3,..., K —1) corresponds to the ranking process where
a ranker first assigns their most preferred entity, then their least preferred entity before
then assigning the remaining entities in rank order from 2nd down. In other words, the
rankers choose their most and least preferred entities and then assign the remaining entities
using the forward ranking process. Note that the choice order is just a permutation of the
ranks 1 to K. The EPL model is defined through the introduction of an additional (free)
parameter to represent the choice order within the Plackett—Luce model. Suppose there
are K entities and let o denote the (possibly unknown) choice order then the probability

of a particular ranking under the Extended Plackett—Luce model is

K *
)\[Eiom

Pr(X; =z 0) = [ cg—2— (6.1)
j=1 Zm:] )\;‘igm

where A* € RI;O are the entity parameters and o € Sk, the set of all possible permu-
tations of the ranks 1 to K. Note that, to maintain notational consistency, we have
adopted an alternative representation to that of Mollica and Tardella (2014): here x; =
(241, ®42, . . ., xix ) represents the preference of the entities reported by ranker i and so, as
before, entity x;1 is their most preferred entity, x;o is the second most preferred entity and
so on. In what follows, the rankings x; are often referred to as preference orderings to

make it clear that we are considering the preference of the entities expressed by ranker 4
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irrespective of the choice order. Further, under the Extended Plackett—Luce model the
parameters have a different interpretation from those under the standard (forward rank-
ing) Plackett—Luce model (discussed below) and so we let A* be the parameters of the
entities to make this distinction clear. We also note that the Extended Plackett—Luce
model is only well defined for complete rankings (Mollica and Tardella, 2014) and so each
ranker must provide a preference ordering of all the entities. Hence for the Extended

Plackett—Luce model we require n; = K fori=1,...,n.

The form of the Extended Plackett—Luce probability is naturally quite similar to that
of the standard Plackett—Luce probability. Indeed, the standard and reverse Plackett—
Luce models are special cases of the EPL. The standard (forward ranking) Plackett—Luce
model is recovered from the EPL model when o is the identity permutation, that is, when
oj =jfor j =1,...,K. Also, the (backward ranking) Reverse Plackett-Luce model is
obtained when o = (K, K — 1,...,1). Given this it is perhaps now clear that although o
is nominally a model parameter, each unique o € Sk defines a different Plackett—Luce

model.

A key aspect of analysing ranked data using a Plackett—Luce model is the interpretation
of the parameters A*. Although perhaps not obvious, for the Plackett—-Luce model the
interpretation of the parameters depends on the underlying ranking process. It follows that
for the Extended Plackett—Luce model, the interpretation of the parameters depends on
the choice order parameter o. This becomes clear if we consider an example conditional on
known (fixed) choice orders: suppose we have two entities (labelled 4, j) with parameters \*
and A} where A\; > Aj. For the standard (forward ranking) Plackett-Luce model (o =
(1,2,...,K)) the interpretation is that entity i is preferred to entity j. However, for the
(backward ranking) Reverse Plackett-Luce model (o0 = (K, K—1,...,1)) these parameters
are interpreted as entity j being preferred to entity ¢. It follows that the preference order of
entities must be read with respect to the choice order. In general, the entity with the largest
parameter is the entity most likely to be ranked in position o;. Also, conditional on an
entity being assigned to rank oy, the entity with the largest parameter of those remaining
is that most likely to be assigned rank g2. Although for the forward and backward ranking
processes this leads to a natural interpretation of the skill parameters, the interpretation
for other ranking processes can be tricky. For example, again suppose that A} > )\j-, and
now consider the choice order to be o = (5,3,2,1,4). It follows that, for this choice order,
entity ¢ is more likely to be ranked fifth than entity j. Further, if another entity ¢ # ¢, j, is
assigned rank 5 then entity ¢ is preferred for rank 3 (o2) over entity j. This interpretation
is not exactly intuitive. Given the Extended Plackett—Luce model considers all o € Sg it
would be helpful if we could devise a method for consistently interpreting the preference

of entities (via the parameters) irrespective of the choice order.
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In what follows we discuss how the probability for the EPL model can be rewritten in
such a way so that the parameters maintain a preference order interpretation irrespective
of the choice order. Recall that the probability of a particular preference ordering x; for
the EPL model is

K A
Pr(X; = x;|A\*,0) = H#
(2 3 ? K *
j=1 m=3 " Tiop,

Note that the numerator of the jth product A, is the parameter for the entity in rank o;
of preference order i. However, to maintain thé preference ordering interpretation of the
parameters we require that the numerator of the jth product corresponds to the parameter
for the entity in rank j as opposed to that in rank o; (as above). If we let a “permuted
ranking” be * = x o o, that is, z}; = i, for j = 1,..., K then it follows that the
probability of a preference ordering & under the EPL model can be written in terms of

the permuted ranking «* as

K PN

Pr(X; =i\, 0) = [[ o t—
j:l m:.] Liom
K )\*
I R (6.2)
K * ’
Jj= 12 >‘

and this is simply the standard (forward ranking) Plackett—Luce probability defined over
the permuted rankings. Indeed we have already seen a special case of this result in Chap-
ter 2 when we noted that the Reverse Plackett—Luce model is equivalent to the forward
ranking PL model applied to rankings which have been permuted in to reverse order. Note
however that under this representation the parameters A* must still be interpreted with
respect to the choice order as we are analysing the permuted rankings and so the entity in
rank 1 of the permuted rankings (the entity most likely to be chosen first) is that which
has preference o;. It follows that although the probability has been rewritten the skill
parameter A}, is still the parameter for the entity in position o; of the preference ordering.
The consequelilce of this is that, for this model, the largest parameter will correspond to
the entity which has preference oq. Ideally the entity with the largest parameter would
be that which has preference 1 (as in the standard Plackett—Luce model). This can be

achieved by considering the inverse permutation o~! which is defined so that

coo! :a'_loa':o'z
where O'I is the identity permutation, that is, o7 = (1,2,..., K). It is therefore clear
that o, = 1 by definition. Now let A = (A1,...,Ak) with Ay = A7 fork=1,..., K bea
collectlon of skill parameters then, by construction, we have A = A -1 for k=1,..., K.
k
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It follows that A7, = A_-1 and so we can write the probability of a preference ordering

©J x

for the Extended PlackettziLuce model in terms of the skill parameters A as

KA
Pr(XZ—a:Z])\,a)—H o
j=1 Zm:] A:r:jm
K Ay
K
7=1 Zm:] )\0'_,'}
K )\U;_l
[ =r—— (6.3)
K )
o1 2am=j Aot

so that the largest skill parameter will be for the entity which has preference 1, as desired.
Hence by considering the skill parameters A (as opposed to A*) and using formulation (6.3)
we maintain the preference order interpretation of the skill parameters, that is, A\; > A;
indicates that entity ¢ is preferred to entity j (irrespective of the choice order). That
said, we make it clear that, although A\, represents the preference of entity k, our usual
intuition about the probabilities they specify over the ranking no longer holds; A no longer

represents the probability that entity k is given rank 1, unless o7 = 1.

6.2.1 Simulating data from the Extended Plackett—Luce model

The method for generating data from the Extended Plackett—Luce model is similar to that
for the standard (forward ranking) Plackett—Luce model. However there is a subtle but
yet important difference. For the standard PL model, the entity which is chosen first is
also that which is the most preferred. However, for the Extended Plackett—Luce model
this is no longer the case and the entity that is chosen first is instead considered to have
rank o;1. Recall that * = a o o denotes a permuted ranking where x is the correspond-
ing preference ordering and o is the choice order. Now noting that, by construction, a
permuted ranking x* is an ordering of entities according to the order in which they were
chosen (and not the preference of the entities) it follows that we can simulate these order-
ings from the standard PL model as they follow the forward ranking process by definition.
Then given a (simulated) permuted ranking * we can obtain the corresponding preference

order trivially by recalling that = * o o~ 1.

When simulating data consistent with the Extended Plackett—Luce model additional at-
tention must be placed on the choice of the skill parameters. Although Ay, still corresponds
to the strength/ability of entity k, our usual intuition about the probabilities they specify
over the ranking no longer holds. Recall that for the standard Plackett—Luce model the
probability that entity k is given rank 1 is proportional to A;y. Now given that the EPL
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model is actually the standard Plackett—Luce model defined over the permuted rankings
with parameters X* it follows that the parameter A} is proportional to the probability that
entity k is ranked first within «*, or equivalently, the probability that entity k is ranked

in position oy of the preference ordering x is Pr(z,, = k) x A} for k=1,... K.

A collection X* = {x}}! | of n permuted rankings using permutation o are generated from
the standard (forward ranking) Plackett—Luce data generating mechanism conditional on

the parameters A* as follows.

Fori=1,...,n,

1. Sample v;; indep Exp()\fj) forj=1,...,K.

2. Set zj; = argmin v;, where S;; = KA\ Az, ... ,x;‘j_l} forj=1,...,K.
q€S;;

The preference orderings are then obtained by letting x; = x; o o tfori=1,...,n.

Example

To provide additional clarity we now consider a brief example which shows how the data
generating mechanism works in practice. Suppose we have K = 5 entities and let K =
{a,b,c,d,e} denote the collection of all entities. Further, let A = (Mg, Ap, Aey Agy Ae) =
(10,8,6,4,2) and so entity a is most preferred, entity b is second most preferred and so
on. Note that, for the standard (forward ranking) Plackett—Luce model, o = (1,2, 3,4,5),
and with this choice of skill parameters, the optimal ranking that maximises the standard
PL probability is &1 = (a,b,¢,d,e). Now let o = (5,3,2,1,4) so that rankers first choose
their least preferred entity, then choose their 3rd, 2nd, 1st and 4th most preferred entities
respectively. Recall that A} = )\0;1 fork=1,...,K andso A* = (4,6,8,2,10) given o~ ! =
(4,3,2,5,1). It follows that, with respect to A*, entity e is the “strongest” entity and
therefore the most likely to be selected first. Therefore, given A*, the optimal permuted
ranking is * = (e, ¢,b,a,d) and so the corresponding optimal preference order is &9 =
2" oo~ ! = (a,b,c,d,e), that is, the optimal ranking is the same as that for the standard
forward ranking process given A, which seems sensible. The permuted rankings «; are then
generated by repeatedly performing Steps 1 and 2 above and the corresponding preference

. : ok -1
orderings are given by x; = x; oo™ .

6.2.2 Identifiability of the ranking process

In this section we discuss the identifiability of the ranking process. Indeed, it is perhaps not
obvious that the data contain any information to identify the choice order parameter o.
Again suppose that we have K = 5 entities with K = {a,b,¢,d,e} and skill parameter
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vector A = (Ag, A\py Ac, Ad, Ae).  If we now consider a single preference ordering x; =
(1,2,3,4,5) = (a,b,c,d,e) and two different choice orderings o1 = (1,...,K) and o3 =
(K,...,1) then the probability of the preference ordering for each choice order is
Pr(zi|\,01) = Aa X A X Ac X Ad X Ae
PRI TN M At At A T Mt A dat AT At At AT AdaFAe A
Pr(zi|\, 02) = Aa X A X Ac X Ad X ﬁ

>\a+)\b+)\c+)\d+)\e )\b+)\c+)\d+)\e )\0+Ad+)\e >\d+)\e )\e

Therefore, in this scenario, there is clearly no information in the single preference order-

ing &1 with which to identify the choice order as the probability of x; is the same for
all A € ]Ri(o under both choice orders. However, let us instead consider the likelihood of
several preference orders. Given that the preference orders are conditionally independent,
the likelihood under the Extended Plackett—Luce model is

(DI, o) HPr |\, o)

_ H H (6.4)

zl]l ot

U
Tiom

where D denotes a collection of preference orders {x;}7 ;. Now suppose that n = 2 and the
additional preference order is xo = (3,2,1,4,5) = (¢,b,a,d,e) then from (6.4) it follows
that the probability of D = {x1, 22} under the choice order o is

>

7(DIA, 01) = Aa Ao X Ac M A
VA VNS VARG WIS WIS VLA VNI WV WD WLl WEFID WNES WO WANES WLARS W

X Ac X Ao X Aa X Ad X
Ae + X+ g + Ag + e Ao+ Ao+ Ag+ Ae Aa + g+ e Ad+ Ae

2|

and under the choice order o5 is

>

(DX, 02) = Aa A X Ac X Ad x =2
ZZENS VNS VNS VNS WIS Wl WIS WIS WS WL RS WIS WAV WRAIS WIS WIS W

>
S

X Aa X b X Ae X Ad x =<
At X+de+ A+ A M+HAe+da+ A AetAa+ A Aa+ A A

It is clear that the two probabilities are only equal when A, = A. = ). and so
71'(1)’A7 0'1) = W(D‘)HUQ) = A= A= Ae

As more (unique) preference orderings are introduced into the likelihood it is clear that

additional constraints on the skill parameters will be required in order for the likelihood
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Entity
Rank a b c d e
1 0.33 0.27 0.20 0.13 0.07
0.28 0.26 0.22 0.16 0.08
0.21 0.23 0.24 0.20 0.12
0.13 0.17 0.22 0.28 0.20
0.04 0.07 0.12 0.23 0.54

U = W N

Table 6.1: Probabilities that each entity is assigned to a specific rank for the standard Plackett—
Luce model with A = (5,4,3,2,1).

to be the same under different choice orders. Indeed for sufficiently large n we have that
W(D’)\,O’Z‘) = W(’D’)\,O’j) = A=A

for i # jand k = 1,..., K. Mollica and Tardella (2014) provide a proof to this effect
which shows that each choice order o; € Sk defines a unique distribution over rankings. It
follows that the choice order is identifiable given a reasonably large number of rankings n.
Unfortunately providing theoretical justification for a sufficient value of n is difficult as
this will not only depend on the number of entities K but also on the positions of entities
within the preference orderings. We suppose however that in the scenario where n > K
the choice order is likely to be identifiable.

We now take this opportunity to provide some insight into where the information about
the choice order is contained within the data (preference orderings). It turns out that it is
the variation within the positions of the preference orderings that allows us to determine
the choice order. To see this it is useful to first consider the probabilities of each entity
being assigned to a specific rank for the standard (forward ranking) Plackett—Luce model.
Suppose we have K = 5 entities with skill parameters A = (5,4,3,2,1). Again we denote
the complete set of entities as I = {a, b, ¢, d, e} and so entities a and e are the most and
least preferred entities respectively. We can describe the variation within the preference
orderings by calculating the probabilities that each entity is assigned to a specific rank; see
Table 6.1. Note that Table 6.1 is not symmetric and so the probability of the most preferred
entity being ranked last is not the same as the probability of the least preferred entity
being ranked first. Interestingly we also see that the least preferred entity (e) is ranked
last the majority of the time (probability 0.54). In contrast, the most preferred entity (a)
is only ranked first a third of the time. This suggests that there is more uncertainty about
which entities are assigned to the ranks at the beginning of the preference ordering in
comparison to the latter ranks with this choice of A. In other words, the weaker entities

are often clearly identified and appear near the bottom of the preference orderings whereas
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Entity Entity
Rank a b c d e Rank a b c d e
<1 [033 027 0.20 0.13 0.07 >1 | 1.00 1.00 1.00 1.00 1.00
<2 [0.61 0.53 042 0.29 0.15 >2 | 0.66 0.73 0.80 0.87 0.94
<3 | 082 0.76 0.46 0.49 0.27 >3 | 038 0.47 0.58 0.71 0.86
<4 [095 093 0.88 0.77 0.47 >4 | 0.17 024 0.34 0.51 0.74
<5 | 1.00 1.00 1.00 1.00 1.00 >5 |0.04 0.07 0.12 0.23 0.54

Table 6.2: Cumulative probabilities of each entity being ranked no lower than (left) and no higher
than (right) or equal to each position. Entry ¢, 7 corresponds to Pr(j € z1.;) (left) and Pr(j € x;.x)
(right).

the stronger entities are more susceptible to appearing lower than they perhaps should in
the preference orderings. What we are actually seeing here is an artifact of the forward
ranking process. Recall that the forward ranking process dictates that a ranker first assigns
an entity to rank 1 and so they choose their most preferred entity from the full set I,
that is, from the K entities that are available for selection when they make this choice.
The ranker then chooses an entity for rank 2 where this choice is made conditional on the
entity they placed in rank 1 no longer being available for selection and so, at this stage
of the ranking process, there are only K — 1 possible entities from which to choose. It
is clear that at each step in the ranking process there is one fewer entity to choose from
than in the previous step. It follows that when a ranker is allocating their least preferred
entities, most of the other entities will have already been allocated and so there are only a
few to choose from and this results in the reduced variation on which entities are assigned
to these ranks. The level of variation within each rank is further highlighted in Table 6.2
which shows the cumulative probabilities of each entity being ranked no lower than (left)

and no higher than (right) each rank.

We now look at the probabilities that entities are assigned a specific rank for the Extended
Plackett—Luce model. Suppose the choice order is o = (5, 3,2,1,4) and as before let the
skill parameters be A = (5,4, 3,2,1), that is, we keep the preference of entities as before,
with entity a being the most preferred and entity e the least preferred. Table 6.3 (top left)
shows the probabilities that each entity is assigned to a specific rank (within the preference
ordering). By comparing these probabilities to those from the standard (forward ranking)
Plackett—Luce model in Table 6.1 it is clear that the distribution (of entities) over the
ranks is not the same for the Extended Plackett—Luce model, that is, the EPL model
defines a different ranking distribution. However, as we shall now see, these distributions
are inherently related. Recall that when outlining the data generating mechanism for
the EPL model we noted that the skill parameters A are no longer proportional to the
probability that an entity is ranked first within the preference ordering and instead the
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Entity Entity
Rank a b c d e Rank a b c d e
1 0.28 0.22 0.17 0.20 0.13 o1 0.13 0.20 0.27 0.07 0.33
2 0.20 0.24 0.23 0.12 0.21 09 0.16 0.22 0.26 0.08 0.28
3 0.16 0.22 0.26 0.08 0.28 o3 0.20 0.24 0.23 0.12 0.21
4 0.23 0.12 0.07 0.54 0.04 04 0.28 0.22 0.17 0.20 0.13
5 0.13 0.20 0.27 0.07 0.33 o5 0.23 0.12 0.07 0.54 0.04
Entity

Rank e c b a d
o1 0.33 0.27 0.20 0.13 0.07
o9 0.28 0.26 0.22 0.16 0.08
03 0.21 0.23 0.24 0.20 0.12
04 0.13 0.17 0.22 0.28 0.20
o5 0.04 0.07 0.12 0.23 0.54

Table 6.3: Probabilities of each entity being ranked within each position. Entry 4, j corresponds
to Pr(z; = j), that is, the probability entity j receives rank i.

“original” parameters \j are proportional to the probability that entity k is ranked in
position o1. Given this it seems sensible to instead consider the probabilities that each
entity is assigned rank o;. Table 6.3 (top right) shows these probabilities and we note these
are obtained by simply applying the permutation o to the rows of the table in Table 6.3
(top left). Note that these probabilities are actually the probabilities that each entity is
ranked first within the permuted rankings x*. Now by recalling that the choice order is
o = (5,3,2,1,4) it follows that the entity most likely to be first in «* is that which is
the fifth (o1th) preferred entity. If we therefore permute the columns of the table so that,
with respect to x*, the entities are the most to least preferred from left to right then
the probabilities for the Extended Plackett—Luce model become the same as those for the
standard (forward ranking) Plackett—Luce model; see Table 6.3 (bottom) and Table 6.1. It
is therefore clear that the data contain information in which to identity the choice order o .
In the following section we examine how informative the likelihood function is about the

choice order o before we then consider Bayesian analysis in Section 6.4.

6.3 Likelihood information about the choice order

Before we consider a fully Bayesian analysis of the Extended Plackett—Luce model, we
examine how informative the likelihood function is about the choice order o. In this
section we verify that the choice order is not only identifiable but the likelihood function

can also be quite informative. We examine this issue by looking at the maximised likelihood
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function as a function of the choice order o. The likelihood is maximised at the maximum

likelihood estimate A(e) and this estimate will depend on the choice order.

Recall from Section 2.2.2 that the standard Plackett—Luce probability is invariant to scalar
multiplication of the skill parameters. Also, we saw in Section 6.2 that the Extended
Plackett—Luce model is simply the standard Plackett—Luce model evaluated over the per-
muted rankings * = x o o (with parameters A*). Thus the EPL probability is also
invariant to scalar multiplication of the parameters A* (and therefore also the skill param-
eters A), that is, Pr(D|A, &) = Pr(D|CA, o) for any C' € Rsq and so A cannot be identified.
However, this issue is resolved by constraining the skill parameters so that >, Ay = 1,

that is, placing the skill parameter vector A on the (K — 1)-dimensional simplex .

We now examine the information in the likelihood function by looking at the max-
imised log-likelihood for a given choice order o. Hunter (2004) proposed a Minorisa-
tion/Maximisation (MM) algorithm which enables the maximum likelihood estimate of
the parameters of the standard Plackett—Luce model to be obtained. Here, by again not-
ing that the Extended Plackett—Luce model is simply the standard Plackett—Luce model
given the permuted rankings * = x o o and with parameters \*, it follows that we can
obtain the MLE A" given a fixed choice order o by applying the standard MM algorithm
to the permuted preference orderings. Note that, if desired, the MLE X of the skill pa-
rameters is straightforward to obtain with N = 5\* for k=1,..., K. It follows that, for
any o € S we can let D = {x]}' | be the collectlon of permuted rankings and use the
MM algorithm to obtain A so that the standard Plackett-Luce likelihood

7p1,(D|AY) HH SE A* (6.5)

i=1j=1 m =j "z},
is maximised. We now describe the MM algorithm which enables us to obtain the MLE A

of the parameters given a fized choice order.

6.3.1 MM Algorithm

The collection of skill parameters X which maximise the Extended Plackett-Luce likeli-
hood for a given choice order o can be obtained from the parameters A" that maximise
the standard (forward ranking) Plackett—Luce model given a collection of permuted rank-
ings X* = {x; o o} ;. Specifically A = 5\2‘% for k =1,...,K where A" is obtained as

follows.

1. Initialise: Let ¢t = 0 and A*(©) = (Xlk(o), A;(O)a cee )\Féo))
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2. Let A = W, L fork=1,... K.

K
SN oyt | Dot
. P

3. Rescale:
(D)
o calculate () = $° A7V
k=1
o let XD 5 XD s® for k=1,..., K.

4. Set t =t + 1 and return to Step 2.
Here the quantity wy = S STh [(z;; = k) is the number of times the parame-
ter A; represents an entity in the collection of permuted rankings and §;;(k) = I(k €
{z}; ... 27, }) is an indicator variable over the event that entity k appears no higher
than position j in the permuted ranking 7. Note that w, = n given we only consider

complete rankings for the Extended Plackett—Luce model.

The number of iterations to perform is an important issue to consider when implementing
the above MM algorithm. Hunter (2004) shows that in the limit as ¢ — oo the (true)
MLE X" is obtained almost surely. Of course, in practice we must consider only a finite
number of iterations so that A*®) is a reasonable approximation to the (true) MLE A
Choosing a finite number of iterations to perform a priori is difficult as there is no guar-
antee that the algorithm will have converged by this point. To avoid making this choice
it is sensible to instead implement a stopping rule. A stopping rule is a (mathematical)
logical statement which is evaluated at each iteration and the algorithm proceeds until
this logical statement is satisfied. Although there is a wealth of possible stopping rules we
could consider, for the purpose of this thesis, we implement the straightforward stopping
rule used by Hunter (2004) and take A*® to be the MLE when the Ly-norm of the change

in the value of the parameter vector is less than 1079, that is, when

K
2
IO =N = TN - AY) < 10 (6.6)
k=1

is satisfied.

6.3.2 Simulation study

In this study we look at a single dataset with n = 5000 complete rankings (preference
orderings) of K = 5 entities. We consider a large number of preference orderings so that the
MLE X" for each of the K! = 120 different possible choice orders is obtained after relatively
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few iterations of the MM algorithm. The preference orderings were simulated from the data
generating mechanism described in Section 6.2.1 with skill parameters A = (5,4,3,2,1)
and choice order o = (5,3,2,1,4). The primary focus of this study is to verify that the
choice order is identifiable and to investigate maximised values of the log-likelihood for
different choice orders. Here the actual values of the MLEs A" (under the different choice
orders) is not a primary concern but nevertheless these parameters must be interpreted
with respect to the choice order o as we are working with the standard (forward ranking)

Plackett—Luce model given permuted rankings.

Recall from Section 6.3 that we can use the MM algorithm to obtain the MLE 5\: that

~

maximises 7pr,(D = {x}}"_,|A") for any permutation o, and so obtain the MLEs /\;
given o; for all possible permutations j = 1,..., K!. Each MM algorithm is initialised
with A} = A\* = 1/K and proceeds until the stopping rule (6.6) is satisfied. Figure 6.1
shows log W(D|5\j,o'j), that is, the log-likelihood of the Extended Plackett—Luce model
evaluated at the MLE of the skill parameters ;\j for each choice order o;. Clearly the
log-likelihood is not constant and indeed the assumed choice order can have a large affect
on the overall log-likelihood. Table 6.4 shows (a subset of) the ranking of choice orders
(permutations) based on the value of the log-likelihood under the corresponding MLE for
the skill parameters. The Kendall-tau distance between each choice order and the true
permutation o = (5,3,2,1,4) is also given. Interestingly each of the top 5 choice orders
have 04 = 1 and 05 = 4 and so we have clearly identified that the most preferred entity
is chosen 4th and the fourth preferred entity is chosen last. Also, perhaps surprisingly,
the reverse choice order (o = (4,1,2,3,5)) to the one these data were simulated from
results in the ninth largest log-likelihood. By definition this permutation is the furthest in
(Kendall-tau) distance from the “true” choice order and so it is clear that local modes can

be separated by large distances within permutation space. This is a key observation and

) x
S | % X X
N %< x x
g « »
:g ] y % X X x XxX ><X
5 x x
g § x XX X X XX XX X x
g’ &) X XX X X X X& X x
- X " X X X X X x
] X X X X X X x XX Xx Xx o %*s@x
) x x
S X o K XX B R x XX x X
< T T T T T T T
Q
0 20 40 60 80 100 120

Permutation index

Figure 6.1: 71'(D|5\j,0'j): maximised log-likelihood given each choice order o; and the respective
MLE X, for j=1,...,K!.
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Rank | Log-likelihood Choice order Kendall-tau distance
1 -21613.95 (5,3,2,1,4) 0
2 -21689.21 (3,5,2,1,4) 1
3 -21760.05 (5,2,3,1,4) 1
4 -21914.95 (2,5,3,1,4) 2
5 -21920.27 (3,2,5,1,4) 2
9 -22131.35 (4,1,2,3,5) 10
84 -23750.71 (1,2,3,4,5) 7

116 -23900.67 (1,5,2,4,3) 5
117 -23904.19 (2,5,1,4,3) 4
118 -23905.65 (2,5,4,1,3) 5
119 -23912.46 (5,1,2,4,3) 4
120 -23914.28 (5,2,4,1,3) 4

Table 6.4: A subset of the ranking of choice orders (permutations) based on the value of the
log-likelihood evaluated at the corresponding MLE for the skill parameters (7(D|A;, 0;)).

will play an important role when we consider a Bayesian inference scheme for the EPL

model in the following section.

We note in passing that the choice order o = (5,3,2,1,4) from which these data were
simulated is that which gives the largest maximised log-likelihood, that is, it is also the
MLE for o for these data. However, in general, it is problematic to determine the MLE for
o as this requires a search over all possible (K!) choice orders, and this may be prohibitive

when K is not small.

6.4 Inference — a Bayesian approach

In this section we consider a Bayesian approach to inference as opposed to the maximum
likelihood approach taken previously. By taking a Bayesian approach we are able to
obtain the posterior distribution 7(o|D) and, as a consequence, quantify the uncertainty
on the choice order parameter in a principled manner. To the best of our knowledge,
the only current Bayesian solution is given by Mollica and Tardella (2018) but this relies
on a restricted sample space for . Here we aim to develop MCMC methods capable of
exploring the entire sample space. This is not straightforward given that o € Sk and
so particular attention must be placed on how we can construct a Markov chain Monte
Carlo sampling scheme capable of effectively exploring this space and targeting the correct

posterior distribution.
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6.4.1 Prior specification and latent variables

Before we perform Bayesian inference we must first choose a suitable prior specification
for our model. We consider the same prior specification for the skill parameters as when
we considered the standard Plackett—Luce model in Chapter 2, that is, we let A\g ndep
Ga(ag, 1) a priori (recall that the rate parameter is not likelihood identifiable and therefore

chosen to be 1). It follows that the prior distribution over X is

K )\ZkileiAk

=1 5
Note that here we are free to choose a unique shape parameter aj for each entity as we do
not consider entity clustering (and so there are no exchangeability constraints). However,
for the Extended Plackett—Luce model, additional attention must be placed on the choice
of aj as the ranking distribution is not solely specified by A but also by the choice order
o. Recall from Section 6.2.1 that the probability of entity k receiving rank o; in the
preference ordering is proportional to A}, that is, Pr(z,, = k) oc A\ where A} = A U};lfor
k=1,...,K. It follows that specifying an informative prior for the skill parameters is
tricky unless the choice order o is fixed and so in practice it is often useful to instead
let ar = a so that all preference orders are equally likely a priori (irrespective of the

choice order o).

We must also choose a suitable prior distribution over the possible choice orderings. Each
choice ordering o; is an element of Sk and so there are K! possible choice orderings
given K entities. It follows that the prior distribution over the choice orderings is a discrete
distribution with K'! possible values. We assume that each choice order (permutation) is

equally likely a prior: and so
1

K!
fori=1,..., K!. Note that, if desired, it is possible to consider a subset of all the possible

Pr(oc =0;) =

choice orderings by making an appropriate choice of prior probabilities.

Recall from Section 6.2.2 that the likelihood under the Extended Plackett—Luce model is

T(DIA, o) = HH K I:_

i=1j= 1 m=j U%wm

and so is of similar form to that of the standard Plackett—Luce model. It follows from
what we have seen previously that the form of the likelihood does not admit conjugate
Bayesian inference. The implementation of a Gibbs sampler to maintain computational

efficiency without the need for multiple tuning parameters is however highly desirable.
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To facilitate this we appeal to the same technique as for previous models, that is, use
data augmentation. A Gibbs sampling solution can be obtained using a straightforward

generalisation of the latent variables in Caron and Doucet (2012), namely

K
inde
2ij|D, N, o ~? Exp g A -1
i iom,

fori=1,...,n,5=1,..., K.

Using these latent variables, the complete data likelihood is

7(D, Z|\, o) = 7(D|\, o) (Z|D, A, o)

n K
H H or L exp § —Zij Z A

9j

(6.7)

Oz
Ilﬂm

Further, given our choice of prior distribution, the density of all stochastic quantities is

(N, D, Z,0) =n(D|A\, o)n(Z|D, A, o)r(A)n(0)
/\a’“ fee

n K
= H H )\%1 exp | —Zij Z )\%w X H K (6.8)

U
i=1j=1

6.4.2 Full conditional distributions for \, Z

From (6.8) we can obtain the full conditional distributions of the skill parameters A and

the latent variables Z as

e \: Fork=1,... K,

n K
inde
Mgl -+ <P Ga ar + B, 1+225ij(k)zij

i=1 j=1

where .
Br = ZZH(O—;; =k) and &;(k)=> I(o xw
m=j

are the number of times A represents an entity within the data and an indicator
variable over the event that A; represents an entity which appears in a position
no higher than j in permuted ranking ¢, respectively. Note that 8y = n (for k =
1,..., K) given we only consider complete rankings for the Extended Plackett—Luce

model.
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e Z:Fori=1,...,n,5=1,..., K,

Ox.;
Tiom

inde
ZU’ NpEXp E A -1
m=j

6.4.3 Full conditional distribution for o

The full conditional distribution for the choice order o is also straightforward and is the

discrete distribution with probabilities
Pr(c =0y ) xw(D, Z|\, 0 = ;) Pr(o = 0;)

for i = 1,..., K!. Clearly sampling from this full conditional will require K! complete
data likelihood evaluations and so a Gibbs update for o is probably only plausible if K is
sufficiently small; perhaps not much greater than 5. Of course, the probabilities Pr(o =
oi|---) and Pr(o = oj|---) are conditionally independent for i # j and so could be
computed in parallel which may facilitate this approach for slightly larger values of K.
The computational burden will also increase with n due to the evaluation of 7(D, Z|A, o =
o). However, the complete data likelihood could also be computed in parallel (for each
choice order) as a consequence of the preference orderings being conditionally independent.
Although parallel computing can be beneficial this approach probably remains infeasible
for even a modest number of entities and so in the next section we consider an alternative

approach capable of generating posterior realisations when Gibbs sampling is infeasible.

6.4.4 Metropolis-Hastings proposals for o

Suppose we are in a scenario where performing a Gibbs update for o is not computation-
ally feasible. Of course, we still wish to obtain the posterior distribution 7 (o, A, Z|D) and
so we instead consider a Metropolis-Hastings update for o which will allow us to target the
posterior distribution (in addition to the full conditionals for A and Z from Section 6.4.2).
Given o € Sk, it follows that we must construct a suitable proposal mechanism that allows
the Markov chain to efficiently explore the (discrete) space of all K! possible permutations.
From our investigation into the likelihood of the Extended Plackett—Luce model given dif-
ferent choice orders in Section 6.3.2 it is clear that (D], o) is multi-modal. Further, local
modes can be large distances from one another within permutation space. Our proposal
mechanism must therefore be capable of making large jumps within permutation space
as only proposing small moves (in terms of distance) may result in our chain becoming
stuck in a local mode and not exploring the entire space. With this in mind our proposal

distribution ¢(of|o) will comprise 5 alternative proposals mechanisms which occur with
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prop prop

probabilities pP*P = (p7""",...,ps =) which are to be specified a priori. More formally

our proposal distribution is the 5 component mixture distribution
g(o'lo) = pr Pgi(ol|o) (6.9)

where ¢;(o'|o) denotes the ith component. We now describe each component of the

mixture distribution in further detail.

Proposal 1 — the random swap

For our first proposal mechanism we consider a “random swap”. We sample (uniformly)
at random, and with replacement, two positions p1, p2 € {1,..., K} and let the proposed
choice order o be the current choice order o where the elements in positions p; and py

have been swapped. More formally we sample two positions p; and ps from the discrete

distributions
1
Pr(p1 =p1) = I7a for 1<p <K
1
Pr(ps = p2) = e for 1<py <K
and let
U)le = 0p,, 02:2 =0,, and Jg =o; for ie{l,...,K}\ {p1,p2}.

The fact that the two positions are sampled with replacement may seem incidental however
there is good reason for this. Recall that we require our proposal mechanism to be capable
of proposing large jumps around permutation space. Clearly if we only consider swapping
two positions within o then the number of unique proposals will be small; specifically
(KCy+1) < K! (including the “null swap” p; = p2). Therefore to increase the number of
possible proposals it is sensible to consider swapping two positions s > 1 times. However,
by not allowing the null swap we limit the possible proposals substantially depending
on whether s is chosen to be odd or even. For example, suppose o = (1,2,3,4,5) and
swapping positions p; = pg is not allowed. In this scenario it is impossible to obtain
ol =(2,1,3,4,5) if s > 1 is even, and, in contrast, if s > 1 is odd then o = (2,1,3,5,4)
can not be obtained. However, by allowing the null swap this issue is avoided as swapping
positions p; = po effectively changes s from being odd or even without altering the current

state of o; this notion is discussed further in Section 6.4.5.

A key feature of implementing a Metropolis-Hastings proposal is the so-called proposal

ratio g(o|o)/q(at|o). Of course, the proposal ratio is going to involve the ratio of the
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mixture distribution (6.9) however it is useful if we first consider each proposal in turn, that
is, gi(o|oT)/q;i(af|e). Consider first the case when s = 1. For this proposal mechanism it
is clear that there are two possible ways in which the proposal o can be formed; either
by swapping positions (p1,p2) or by swapping positions (ps,p1). The proposal ratio is
formed by considering the probability of obtaining o given the proposed value o' along
with the probability of the “reverse move”, that is, the probability of obtaining o' given
the current state o. It follows that, given

1

Pr(p1 = p1,p2 =p2) = e Pr(p1 = p2, p2 = p1),

the proposal ratio is

q1(olo’)  Pr(pr =p2,p2 = p1) + Pr(p1 = p1, p2 = p2)
q1(atlo)  Pr(pr = p1,p2 = p2) + Pr(p1 = pa, p2 = p1)
_ 2Pr(p1 = p1,p2 = p2)
~ 2Pr(p1 = p1,p2 = p2)
=1

and so this proposal mechanism is clearly symmetric. A straightforward generalisation of
this result shows that this proposal remains symmetric when considering swapping two

positions s > 1 times; this is discussed further in Section 6.4.5.

Proposal 2 — the Poisson swap

The second proposal mechanism is what we refer to as the “Poisson swap”. As for the
random swap (Proposal 1) we form the proposed choice order by swapping two positions
(p1, p2) of the current permutation o, however, the positions we swap are no longer chosen
uniformly at random. Here we instead consider swapping positions p; and ps = p1 +m
where m follows a Poisson (mixture) distribution. The idea here is that swapping positions
closer to one another (small m) will lead to greater acceptance rates and so we are able

to tune this proposal mechanism through the choice of the distribution for m.

Formally, we sample the position p; uniformly at random, that is, from the discrete dis-

tribution

1
Pr(pr =p1) = I3 for 1<p; <K.
Then, in contrast to Proposal 1, we swap position p; with a position that is a certain
number of positions away, namely m = (—1)?f where p ~ Bern(0.5), f ~ Po(7) and

so po = p1 + m. It follows that the parameter 7 is considered to be a tuning parameter
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which allows us to alter the distribution of the distance between proposed swaps so that
we obtain reasonable acceptance rates. Of course, we require that ps € {1,..., K} and
so we define the choice order to be cyclic, that is, we suppose that oy is next to ox. It

follows that we can let po — p2 Mod K where Mod is the upper modulus given by
x Mod K = {(z — 1) mod K} + 1.
The proposed choice order o is then formed as for Proposal 1, that is
O'Zl = Opys 022 =0y, and O'Z =o; for i e {l,...,K}\{p1,p2}.

Before we consider the proposal ratio for this swap it is useful to note that the distribution
of m is symmetric about 0, that is, Pr(m = ¢) = Pr(m = —c¢) for all ¢ € N. The proposal

ratio for this swap is therefore

g2(alo’) _ Pr(p1 = p2) Pr(p2 = pi|p1 = p2)
¢@(otle)  Pr(pr = p1)Pr(pz = p2|p1 = p1)
_ K Pr(p1 +m = pi|p1 = p2)
~ KPr(py+m=pzlp1 =p1)
Pr(m p1— pilp1 = p2)
Pr(m = pa — p1|lp1 = p1)
_ Pr(m =p; —p2)
- Pr(m=p;—p1)
(
(

"U

r(m = p; — p2)
r\m = ( —p2))

Il
= "CJ

and so this swap is clearly symmetric. Again a straightforward generalisation of this result

shows that this proposal mechanism remains symmetric when applying s > 1 swaps.

Proposal 3 — random insertion

The third proposal we consider is a “random insertion” proposal (Bezdkova et al., 2006).
In contrast to the previous (swap based) proposals here the proposed choice order ol is
instead formed by taking the value in position p; and inserting it back into the permutation
so that it is instead in position po. It follows that this mechanism moves numerous positions
within the permutation unlike the swap moves considered previously. To see this it may
be useful to consider permuting (“shuffling”) a deck of playing cards. Under this proposal
mechanism the new permuted deck is formed by removing the card that is currently in

position p; and then reinserting it into the deck so that is has position ps. Clearly the
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cards in the positions between p; and ps must also move to accommodate this. These

cards will move either up or down a position depending on the value of the pair (p1, p2).

Formally, we sample two positions (p1, p2) from the discrete distributions

1
Pr(py =p1) = e for 1<p <K
1
Pr(p2 = polp1 = p1) = -1 for 1<po#p <K
and let
o — (O1, e 0p1—1,Opi41s -3 Opas Oprs Opotly - -5 0K ), if p1 < pa
(O1,-30py—1,0p1,0pss -+ 0p1—1,0p1+1,- - -, 0K ), otherwise.

For example, suppose the current choice order is o = (1,2, 3,4,5) and we have (p1, p2) =
(2,4) then the proposed choice order is o = (1,3,4,2,5), or, if instead (p1,p2) = (4,2)
then the proposed choice order would be o = (1,4,2,3,5).

As for the previous proposal mechanisms the proposal ratio for this move is straightfor-
ward. Suppose the proposed permutation is formed by applying the moves above given
(p1 = p1, p2 = p2) then it is clear that the current choice order can be recovered from the

proposed o by considering (p1 = pa2, p2 = p1) and so

as(olo’)  Pr(pi = p2) Pr(ps = p1|p1 = p2)
g3(oflo)  Pr(p1 = p1) Pr(p2 = p2|p1 = p1)
KK - 1)
- K(K —1)

Proposal 4 — prior proposal

The fourth proposal mechanism we consider is a “prior proposal”. Here o' is simply an
independent draw from the prior distribution 7(o). Formally this is an independence
proposal as the proposal distribution is independent of the current state of the Markov
chain, that is, ¢(o|o) 4 q(aT). It follows that the proposal ratio is straightforward and
is given by
qga(alo’) _ m(o)
q(o*lo)  w(af)
Pr(o =o)
- Pr(o = of)
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as our prior distribution is uniform over all permutations. Of course, this proposal may

not be symmetric if an alternative prior choice is specified.

Proposal 5 — reverse proposal

Our final proposal mechanism is the “reverse proposal”. Here we let ot be the reverse
ordering of the current permutation o, that is, if ¢ = (1,2,3,4,5) then the proposed
choice order is ot = (5,4,3,2,1). Note that, in general, the reverse permutation is not
the inverse permutation. This proposal mechanism is motivated by our observation from
the investigation into the likelihood of the EPL model (under all possible choice orders)
in Section 6.3.2 where we saw that the reverse of the “true” choice order featured quite
highly in the ranking of choice orders; see Table 6.4. Further, the reverse of the current
choice order is unlikely to be proposed by any of the previous proposal mechanisms as,
by construction, the reverse permutation is a large distance away from the current state.

Formally we let

ol =og1=(0K,...,00).

with probability 1. Tt follows that the proposal distribution is g5(o'|o) = 65, wWhere d,

denotes the Dirac probability measure concentrated at x and so the proposal ratio is

LA NS

g5(0t|o)  do,

(6.10)

The acceptance probability

In general, the acceptance probability of o is min(1, A) where

n(of]--)  alole’)

m(of---)  qlofle)’

From the density of all stochastic quantities (6.8) it is clear that

m(o|--) x (DN, o)n(Z|D, A, o) (o)
=7(D,Z|\ o)r(o),

and so, unsurprisingly, the posterior distribution of o is proportional to the complete data

likelihood times the prior.
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Recall our proposal distribution is the 5 component mixture distribution (6.9) and by

noting that ¢;(ef|o) = ¢;(a|a’) for i = 1,...,5 it follows that the proposal ratio is

prmp (oloh) zppmp oflo)
pr“’p (o|or) prmp (o'o)

q(oloh)

4(otlo) -

Clearly the acceptance probability simplifies substantially and can be written as min(1, A)

where

_ 7(D,Z|A, o) Pr(c =0o') (D, Z|\, o)

(D, Z|\, o) Pr(c =)  7w(D,Z|\ o)

which is simply the ratio of the complete data likelihood given the proposed and the

current permutation (assuming each choice order is chosen to be equally likely a priori).

6.4.5 Further considerations

Exploring large discrete spaces such as the set of all permutations Sx with a Metropolis-
Hastings algorithm is a non-trivial task. The proposal distribution discussed in Sec-
tion 6.4.4 comprises a mixture of “local” (Proposals 1-3) and “global” (Proposals 4 and
5) proposal mechanisms for the choice order parameter in an attempt to facilitate ef-
fective exploration of this large discrete space. Although reasonably straightforward to
implement, it is useful to first consider the proposal distribution in more detail as a naive
implementation may result in an inefficient proposal distribution due to the subtleties

involved within some of the proposal mechanisms; particularly the swap moves.

The first thing to note is that, by construction, both Proposal 4 and 5 have the potential
to propose large jumps (in terms of distance) from the current permutation. Although
useful for escaping local modes large jumps typically result in smaller acceptance prob-
abilities. Given this it is perhaps sensible to only consider constructing o' from either
Proposal 4 or 5 relatively infrequently in comparison to the more local proposals. This
can be achieved through an appropriate choice of the mixture component weights in the
proposal distribution (6.9). At first glance we might also think that Proposal 3 could suffer
from poor acceptance rates given the proposed permutation is formed by moving numer-
ous positions within the current permutation. However the construction of this proposal
mechanism dictates that much of the structure that is present in the current permutation
is also present within the proposed permutation. It follows that, in terms of distance, the
proposed permutation will not be that far away from the current permutation as much of

the order is preserved.
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Perhaps surprisingly it is Proposals 1 and 2 that have potential to cause issues within this
proposal distribution. Note that by swapping only two positions within o the number of
unique proposals that can be generated is (XCs + 1) < K! (including the “null swap”
p1 = p2) and so we could easily become stuck in a local mode. Therefore, as alluded to in
Section 6.4.4, it is perhaps sensible to instead consider swapping two positions s > 1 times
to allow our proposal mechanism to propose larger jumps around permutation space. Each
of the s swaps should be performed iteratively. For example, suppose we have s pairs of
positions to swap (p1, p2)1,-- -, (p1,p2)s which are samples from the appropriate discrete
distributions. The proposed choice order o is obtained by first forming a “temporary
proposal” o-J{ by swapping positions (p1, p2)1 within the current state o, then by consid-
ering O'J{ to be the current state of the chain we obtain another temporary proposal 0'£ by
swapping positions (p1, p2)2 within UJ{ . This process continues and the proposed choice
order is of = Ul. Naturally as s increases so does the number of possible proposals, N,,.
The distance between the current and proposed choice orders will also typically increase
with s and so the number of swaps is nominally a tuning parameter and can be adjusted
to increase acceptance rates. Of course, we must consider how performing s > 1 swaps
affects the proposal ratio. We consider this for Proposal 1 and note that similar arguments
apply for Proposal 2. Recall that each of the s swaps is performed iteratively and so we

can write the proposal distribution as

T

qi(ollo) = qilollel_1,....0l) x - x qi(ol]o)

s—17"

= qi(ollol_ ) x - x q(o]|o)

given the proposal distribution for each swap s is conditionally independent given the

temporary proposal Ul_l. Further, it is also clear that
CI1(0’UT) = Q1(Ul_1|0i) Xoeoe X Q1(U|UD

and so the proposal ratio ¢;(o|o')/q1(o|o) = 1 for all s > 1 which follows from the result

that ¢1(oilo;) = qi(oj|o1) for any 0,0, € Sk; see Section 6.4.4.

We now briefly return our attention to why it is sensible to allow the null swap when
generating proposed permutations using a swapping mechanism (Proposals 1 and 2) as
mentioned in Section 6.4.4. Naturally we expect the number of possible proposals (V)
to increase as we consider more swaps, more specifically we might imagine that N, — K!
as s — oo. However, if we suppose that swapping positions p; = p2 is not allowed then
N, = K!/2 for large s. Moreover the set of possible permutations that can be proposed
depends on whether s is chosen to be even or odd. If we let £°9d and £V denote the sets
of possible permutations that can be generated when s is odd and even respectively then
it can be shown that Sx = {X°ddyxeven} and Leddnyeven = g, It follows that if s > 1 is
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fixed a priori then repeatedly swapping two positions p; # po only enables us to explore
half of the possible permutations — those with either even or odd parity (depending on
the parity of the current permutation). Although here we have considered the asymptotic
result it is clear from our example in Section 6.4.4 that not allowing the null swap results
in the proposal mechanism being unable to propose some permutations which are close in
distance depending on the choice of s. One strategy to avoid this problem is to consider s
to be a random variable as opposed to a fixed constant. Choosing s ~ Geom(py) is perhaps

sensible however we opt to instead consider fixed s and allow the null swap.

6.4.6 A Metropolis-within-Gibbs algorithm for the EPL model

A Metropolis-within-Gibbs algorithm can be constructed to target the joint posterior
distribution of the skill parameters A, the choice order parameter o, and the latent vari-

ables Z. Posterior samples are generated as follows.

1. Initialise: choose o € Sk, )\ERI;O and z;; >0fori=1,...,n,j=1,... K.

2. Repeatedly perform the following steps:

i=1j=1

. n K
e Sample A\g|:-- P Ga ag+mn, 14+ > > 6ij(k)zij> for k=1,..., K, where

9i; (k) is as in Section 6.4.2.

. K
.Samplezl‘]|...znf£l¢epEXp<Z)\o_l )forizlj...7n7j:1,...’K.
m=j

e Sample ¢ from the discrete distribution with probabilities Pr(¢ = i) = p>™? for
i=1,....5

— propose o using proposal mechanism ¢
(D, Z|\, o) Pr(o = o)

_ 1- . o1 . —
let o — o' with probability min(1, A) where A =D, Z», o) Prlo = o)

e Rescale

K
— sample At ~ Ga <Z ay, 1>.
k=1

K
— calculate ¥ = > Ag.
k=1

—let \p = M AT/ S fork=1,...,K .

If K is sufficiently small, or we have the computational power to do so, we could instead
sample o from its full conditional distribution as discussed in Section 6.4.3 in which case

we would have a straightforward Gibbs sampler.
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6.4.7 Simulation study — Metropolis-within-Gibbs

In this study we consider a new dataset (Dataset 6) with n = 100 complete rankings of
K = 10 entities. The skill parameters used to simulate these data are A = (10,9,...,1)
and the choice order (ranking process) is chosen to be o = (3,10,9,1,7,4,5,6,8,2). The
simulated data are given in Tables B.8 and B.9 within the Appendices.

We will adopt the same prior distribution for the skill parameters as used in previous

nds Ga(1,1) and so ax = a = 1. Further we assume that each

analyses, that is, take Ag
choice order is equally likely a priori and so Pr(e = ;) = 1/K! for all o; € Sk. Given
this prior distribution we use the Metropolis-within-Gibbs algorithm from Section 6.4.6
in an attempt to obtain posterior realisations from 7(\, o, Z|D). Of course, we must
also choose suitable tuning parameters for the proposal distribution (6.9) of the choice
order parameter o. From our discussion in Section 6.4.5 we believe it is sensible to let
pP°P = (0.3,0.3,0.3,0.05,0.05) so that the “local” proposals (swaps and insertion) are
favored over the global proposals (prior and reverse) given the former are perhaps more
likely to be accepted. We also choose to perform s = 2 swaps when using proposals 1
and 2 and take 7 = 3 within the latter so the expected distance between positions being

swapped is 3.

To investigate the convergence and mixing properties of our Metropolis-within-Gibbs sam-
pler we consider 5 chains; each of which is initialised at a different choice order parameter o
as shown in Table 6.5. Naturally we hope that the MCMC scheme has been constructed
such that it is capable of (efficiently) exploring the set of all permutations and (quickly)
converging to its stationary distribution irrespective of the initial choice order. We report
the results from a typical run of our MCMC scheme initialised as described, with a burn-in
of 10K iterations and then run for a further 1M iterations and thinned by 100 to obtain
10K (“posterior”) samples. The MCMC scheme runs reasonably quickly, with C code on
a single thread of an Intel Core i7-4790S CPU (3.20GHz clock speed) taking around 1

minute 35 seconds (for each chain).

Chain Initial permutation
1 = (1, 10) Identity permutation
2 (10 9 1) Reverse identity permutation
3 = (3,10, 9 1 7,4,5,6,8,2) True permutation
4 =(2,8,6,5,4,7,1,9,10,3) Reverse true permutation
5 =(8,10,7,4,3,1,2,6,5,9) Random permutation

Table 6.5: Permutations (choice orders) used for the initialisation of each chain
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Figure 6.2: Trace plots of the log complete data likelihood (left) and the marginal posterior 7(o|D)
(right) for chains 1 to 5 from top to bottom respectively (Metropolis-within-Gibbs approach).

Inspection of the trace plots showing the log complete data likelihood (log (D, Z|A, o)) for

each chain shows that the MCMC scheme appears to be mixing fairly well and indeed shows

signs of convergence; see Figure 6.2 left. However, if we look at the marginal posterior

.)) then it is clear that the

O'i’ ..
chains have not reached their stationary distribution; see Figure 6.2 right. Of course, given

distribution of o (defined by the probabilities Pr(o

the MCMC scheme runs fairly quickly we could perform further iterations in the hope that

the chains reach convergence. However, in our experience, this is often difficult to achieve.

From Figure 6.2 (right) it is clear that chains 1, 4 and 5 have become stuck in the local

Although we introduced Proposal 5 (the

mode around the reverse “true” choice order.
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Proposal mechanism

1 2 3 4 5
# proposed | 302995 302982 303379 50246 50399
# accepted 1867 1921 1383 0 0
Pr(accept) 0.006 0.006 0.005 0 0

Table 6.6: Acceptance rates for each of the 5 proposal mechanisms for the choice order o.

reverse proposal) in the hope of avoiding this it appears that, in this scenario, this proposal
move does not allow the chain to move to the other mode (around the “true” choice order).
This observation is further supported if we consider the acceptance rates of the proposal
distribution for . The overall acceptance rate of o is less than 1% and Table 6.6 shows
the acceptance rates for each of the 5 proposal mechanisms (components of the mixture
proposal). Note that the results shown are those obtained from chain 1, however, these
results are indicative of the other chains. From Table 6.6 we see that neither the reverse
nor the prior proposal (Proposals 4 or 5) are accepted and so our chains struggle to escape

local modes. Clearly this is an issue which needs to be resolved.

From further investigation of the posterior distribution (and also the MLEs 5\j from Sec-
tion 6.3 which maximise the Extended Plackett—Luce probability for each choice order
o ;) it is clear that there is large correlation between A and o, that is, between the skill
parameters and the choice order. Moreover throughout this thesis we have seen that, for
a fixed choice order, Gibbs sampling via data augmentation leads to rapid convergence of
the Markov chain to the stationary distribution 7(\, Z|D, o). It follows that, given a fixed
choice order o, if the skill parameters A (and the latent parameters Z) are sufficiently
optimised then it is going to be difficult to propose a reasonable alternative choice order
(given these A, Z) and so our chain is going to become stuck in this mode. A typical
strategy to improve mixing in such a scenario is to consider a joint update of the highly
correlated parameters (Gamerman and Lopes, 2006). Unfortunately performing a joint
update of (A, Z,0) is not straightforward — the difficulty is how to construct a suitable
proposal mechanism. Of course, we could use q(a’”a’) to generate a proposed choice order
as before, then, given the proposed choice order of, draw the skill parameters and latent
variables from their full conditional distributions. By using this strategy we have the

following options

1. drawo'|o 2. draw o'|o
draw Af|Z, o' draw ZT|\, o
draw ZT|AT, o draw Af|ZT, o

188



Chapter 6. The Extended Plackett—Luce model

however, neither option is likely to generate reasonable proposals ()\T, AR O'T) given that,

clearly, A and Z are going to be highly correlated.

Given this we must therefore consider an alternative strategy in an attempt to break the
correlations and obtain an MCMC scheme that exhibits good mixing with respect to the
choice order o. We propose to remove the latent variables Z from the parameter space
and instead consider Metropolis-Hastings updates for both the skill parameters A\p and

the choice order o; this is the topic of the next section.

6.4.8 Metropolis-Hastings proposals for A

From the previous section it is clear that our Metropolis-within-Gibbs sampling scheme
is inadequate to generate realisations from the posterior distribution for the Extended
Plackett—Luce model. We now instead consider a Metropolis-Hastings update for the skill
parameters and so need not introduce the latent variables Z into the sample space. First
note that, given we are not considering the latent variables Z, the density of all stochastic

quantities is now

(N, D,0) = (DA, o)1 )\) (o)

K K yap—1_—)
Izcr )\kk e k 1
:HH SE [ F——x == (6.11)
i1 j1 2 =izl k2 T(ax) K
and so
zz::J' )\ak_le_Ak
)\k| OC H H X k
1] ome Aot I (a)
m(D|A, o)m (k) (6.12)

fork=1,..., K.

Clearly, this is a non-standard distribution and so we use a Metropolis-Hastings step to
target this distribution. Given A\ > 0 it is sensible to consider a Log-normal proposal
distribution centered at the current value for the skill parameters, that is, take )\L])\k indep
LN(log )‘k’a?\k)‘ For this choice of proposal distribution the acceptance probability is

min(1, A) where

_ A )aQwlAD
LICYA R VIOVAPYS

B W(D’)\,k, Ak = )\La U) % )‘7;2 ’ e()\k_)‘Z)
(DA, o) A '

189



Chapter 6. The Extended Plackett—Luce model

Further, because the density of all stochastic quantities has now changed (given we no
longer consider the latent variables Z) it is clear that the acceptance probability of o
must also change. From the form of the density of all stochastic quantities (6.11) it is
clear that m(o|...) o« 7(D|\,o)7(o) and so, given the proposal mechanism described in

Section 6.4.4, the acceptance probability for o' is min(1, A) where

B (DX, o) Pr(o = o)
 7(D|A,o)Pr(e =0)

which is simply the ratio of the EPL likelihood given the proposed and the current per-

mutation (assuming each choice order is chosen to be equally likely a priori).

6.4.9 A Metropolis-Hastings algorithm for the EPL model

Using the results from Section 6.4.8 we can construct a Metropolis-Hastings algorithm
to target the joint posterior distribution of the skill parameters A and the choice order

parameter o as follows.

1. Initialise: choose o € Sk and A € RE
2. Repeatedly perform the following steps:

e Fork=1,... K
— draw Al |\, ~ LN(log Ay, 03, )
— let A\ — )\L with probability min(1, A) where

ag
4= TDIAk, A = o) y M =21
7(DI\, o) Ak
e Sample ¢ from the discrete distribution with probabilities Pr(¢ = i) = p?™" for
i=1,....5

— propose o using proposal mechanism ¢
(DX, 01) Pr(o = o)
m(DIA,o)Pr(oc =0) °

— let o — o with probability min(1, A) where A =

e Rescale

K
— sample AT ~ Ga <Z ay, 1>.
k=1

K
— calculate X = >~ Ag.
k=1

—let \p = M AT/ S fork=1,... K.
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6.4.10 Simulation study — Metropolis-Hastings

In this study we revisit Dataset 6 which was first introduced in Section 6.4.7. However, here
we perform Bayesian inference using the Metropolis-Hastings algorithm from Section 6.4.9
as opposed to the Metropolis-within-Gibbs sampler considered previously. Recall that
Dataset 6 comprises n = 100 complete rankings of K = 10 entities. The skill parameters
and choice order (ranking process) used to simulate these data are A = (10,9,...,1) and
o =(3,10,9,1,7,4,5,6,8,2) respectively.

We choose the same prior distribution as in Section 6.4.7 and so ap = a = 1 and each
choice order is equally likely a priori, that is, Pr(ec = o;) = 1/K! for all o; € Sk.
Further, we take the same tuning parameters for the proposal distribution of the choice
order, that is, we choose to perform s = 2 swaps when using proposals 1 and 2 and
take 7 = 3 in the latter. Again the probabilities of each proposal mechanism being used
are pP™P = (0.3,0.3,0.3,0.05,0.05). As for the previous analysis we consider 5 chains,
each of which is initialised at a different choice order parameter o as shown in Table 6.5.
Note that for this analysis we must also both initialise and tune the proposal mechanism
for X. Here we initialise by taking independent draws from the prior (A indep Ga(1,1))
and let the tuning parameter be oy, = o) = 0.75 which we determined to be sensible after
performing numerous pilot runs. The results reported are from a typical run of our MCMC
scheme initialised as described, with a burn-in of 20K iterations and then run for a further
2M iterations and thinned by 200 to obtain 10K (“posterior”) samples. The MCMC
scheme runs reasonably quickly, with C code on a single thread of an Intel Core i7-4790S
CPU (3.20GHz clock speed) taking around 24 minutes 30 seconds (for each chain). Note
that this algorithm requires more computational time than the corresponding Metropolis-
within-Gibbs algorithm from Section 6.4.6 due to the additional likelihood evaluations

required to compute the MH acceptance rates for the skill parameters \j.

Figure 6.3 (left) shows the trace plots of the log-likelihood (log w(D|A, o)) for each chain
from which we see that some of the chains exhibit signs of poor mixing. In spite of the
potential mixing issues it will be interesting to see what the posterior distribution looks
like under each chain. Recall that when we considered a Metropolis-within-Gibbs sampler
it became clear from the marginal posterior over the choice order o that the chains had not
reached their stationary distribution. However, in contrast to our previous analysis, our
MCMC scheme appears to be mixing fairly well over o with none of the chains becoming
stuck in the local mode around the reverse “true” permutation; see Figure 6.3 (right).
Indeed, although only a small number of choice orders are labelled on the plots, there is
a significant increase in the number of choice orders which have posterior support under

this analysis; see Figures 6.2 and 6.3 (right).
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Figure 6.3: Trace plots of the log complete data likelihood (left) and the marginal posterior 7 (o |D)
(right) for chains 1 to 5 from top to bottom respectively (Metropolis-Hastings approach).

To further investigate the marginal posterior distribution of & is it useful to look at which

choice orders receive high posterior support. Figure 6.4 shows the 25 choice orders with

highest posterior support (and their corresponding posterior probabilities) from chains 1

to 5, that is, a subset of the marginal posterior. Although there are discrepancies between

the posteriors produced from each chain it is clear that the Metropolis-Hastings approach

is performing substantially better than the Metropolis-within-Gibbs algorithm. It is clear

however that mixing over the choice orders must be improved further as, although reason-

able here, this issue will only worsen as K increases. To help us better explore Sk, the set
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Figure 6.4: Subset of the marginal posterior m(o|D) showing the 25 choice orders with highest

posterior support from chains 1 to 5 (read from left to right)

of all permutations, we appeal to Metropolis coupled Markov chain Monte Carlo which is

the topic of the next section.

6.5 Metropolis coupled Markov chain Monte Carlo

Metropolis coupled Markov chain Monte Carlo (Geyer, 1991), or parallel tempering as it is

also known within the Bayesian literature, is a sampling technique that aims to improve the

mixing of Markov chains in comparison to standard MCMC methods (Gilks and Roberts,

1996). Although Metropolis coupled Markov chain Monte Carlo (MC?) methods can be

applied in many scenarios this sampling technique is particularly useful when the target

distribution is multi-modal (Brooks, 1998). The general idea behind Metropolis coupled

Markov chain Monte Carlo is to consider multiple “Markov” chains — one of which targets

the density of interest and the remaining chains target “ftempered” densities which are

constructed so that they are easier to explore. The multiple chains are then Metropolis

It follows that

samples from the better mixing chains (those targeting the tempered densities) can filter

coupled through the proposal of state space swaps between the chains.

in to the chain targeting the density of interest and thus improve the exploration of this

density. We note that, strictly speaking, each of the chains is not Markovian as, due to the
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(Metropolis) coupling of the chains, each chain no longer depends only on the previous
value within this chain but also on the previous values of all the other chains. In the
next section we discuss how it is easier to construct a Markov chain to efficiently target
a tempered density as opposed to the non-tempered density. We conclude this section by
describing the methodology underlying parallel tempering and give a generic algorithm

outline.

6.5.1 The advantage of targeting tempered densities

Here we discuss how the mixing (and therefore the sampling efficiency) of Markov chains
whose target densities are multi-modal is improved when they instead target an appro-
priate tempered density. Suppose we are interested in designing a standard Markov chain

Monte Carlo scheme to target the density 7(6) where
1 2y, 1 2
6 ~ 5N(—27 0.5%) + iN(Q’ 0.5%),

that is, the density of interest is an equally weighted two-component normal mixture with
component means of +2 and common standard deviations 0.5. It follows that the target
density 7(f) is multi-modal by construction; see Figure 6.5. Of course, given that we
know the target density it is straightforward to generate realisations of #, however, for
argument’s sake, let us suppose that the distribution of 6 is unknown. In this scenario a
sensible strategy would be to use a Metropolis-Hastings algorithm to target the density.
Given that # € R, a Normal random walk is a plausible proposal distribution, that is,
6*160 ~ N(6,02%). However, it should be clear that if such an algorithm is initialised at one
of the modes of the target distribution then the Markov chain will struggle to “bridge”
the area of low probability and explore the other mode. Of course, for this example, we

could invent a proposal distribution which encouraged the algorithm to jump between the

<
3
2 |
B
c
[ N
o o ]
o _|
© T T T T T
-4 -2 0 2 4
0

Figure 6.5: 7(0): density plot of an equally weighted two-component normal mixture with compo-
nent means of +2 and standard deviations of 0.05.
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modes (e.g. q(6%|0) = d_p) as we know the form of the target. However, in general this
will not be the case and so constructing a suitable proposal will be non-trivial; especially
if the target contains a large number of modes.

YT wwhere T > 1 is known as the

Let us now instead consider the tempered density 7(0)
temperature. Clearly the target density of interest is recovered when T' = 1. Figure 6.6
shows the tempered densities for temperatures T € {1,2,4,8,16,32,64,128}. From this
we observe that as we increase the temperature (“heat”) the tempered density becomes
“fatter” and it follows that m(6)*/7 is completely flat (uniform) when 7' = co. It there-
fore becomes increasingly more straightforward to construct a Markov chain capable of
effectively targeting w(#)"/7 as T — co. Of course, we are only interested in targeting the
density 71'(0)1/ T when T = 1. However, as all the tempered densities are inherently related,

we can use the accepted samples from a chain targeting a tempered density to improve the

0.8
I
0.8

0.0

Density
0.4
T
Density
0.4
T
4
1]
N}

0.0

-10 -5

Density
0.0 0.4 0.8
T N N
Density
0.0 0.4 0.8
T T N N

T T
-10 -5 0 5 10 -10 -5 0 5 10
¢] 2]
T=16 T=32
o | o |
S S
2 - 2 -
2 2
g < T <
[sI= o o
o o
< T T T T T < T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
2] 2]
T=64 T=128

0.8
I
0.8

Density
0.4
[
Density
0.4 .
T

0.0
0.0

-10 -5 0 5 10 -10 -5 0 5 10

Figure 6.6: Tempered densities 7(8)Y/7 for T € {1,2,4,8,16,32, 64, 128}.

195



Chapter 6. The Extended Plackett—Luce model

mixing within the chain targeting the density of interest. In the next section we discuss

how we can take advantage of this technique within a Bayesian inference setting.

6.5.2 Parallel tempering

Parallel tempering (or MC?) is the notion of using tempered densities within a Bayesian
inference context. Suppose that we are interested in targeting a (possibly) multi-modal
posterior distribution 7(68|x). Now, in contrast to standard MCMC schemes, we construct

)

multiple “Markov” chains. One chain targets the true posterior m(f|z) and the other
chains target tempered posteriors 7(6|z). The multiple chains are then Metropolis coupled
through a (Metropolis-Hastings) proposal involving state space swaps between the chains
and so samples from better mixing chains (targeting the tempered posteriors) can filter in
to the chain targeting the true posterior. We now formally define the tempered posteriors

and then consider the proposal mechanism for the state space swaps between chains.

Recall from Bayes’ Theorem that the true posterior is
m(0|x) < w(x|0)mw(0)
and let the cth tempered posterior be
#e(Oc]z) o m(2]0:)"/ T (0)

where T, > 1 is the temperature of chain ¢. We note that the tempered posteriors are
formed by only tempering the likelihood component of the true posterior as, given we are
working within the Bayesian paradigm, our a priori beliefs should be consistent irrespec-

tive of the posterior we are targeting.

The issue now is how to swap the states of the chains without affecting their respective
target distributions. Suppose we have C chains, that is, a chain to target the true posterior
and a further C' — 1 chains targeting tempered densities. Noting that 7.(6.|x) = 7(0|x)
when T, = 1 it is useful to let T' = (1,75, T3,...,T¢) so that the chains being considered
are given by 7.(0.|z) for ¢ = 1,...,C. Now if we consider all C chains to be evolving
together then it follows that, as the posteriors 7.(f.|x) are conditionally independent

given x, together the chains are targeting the joint posterior
C
7(01,...,0clz) = [ ] Felbelx). (6.13)
c=1

As a brief aside we note that the joint target (6.13) is preserved irrespective of the within-

chain updates to the parameters as a consequence of 7; and 7; being conditionally inde-
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pendent. Indeed using different within-chain updates is a sensible strategy given the form
of the target density is different for each chain. Returning to the proposal of state space
swaps between chains it should be clear that we are simply proposing to swap 0; and 6;
for some ¢ # j within the joint target (6.13). Let 8 = (01,...,0¢) denote the current
state of the joint chain and so the proposed state of the chain is 8* = (0], ...,60;) where
07 =0;, 05 =0; and 0; = 0, for ¢ = 1,j. Assuming a symmetric proposal mechanism, that
is, that the probability of proposing to swap the states of chains (7, j) is the same as the
probability of proposing to swap the states of chains (j,), the acceptance probability of

the state space swap is min(1, A) where

(9*133)

A= ol

)
Te(Oc]x)
(6

1 C

I
:Qr\
>]z M

S
Q

m(x|0%) 1/T07r(¢9)
7(z]0.)/ Ter(9)
0;)"/ im([0:)

Z)l/Tzﬂ'(gj|0 )I/Tj '

I
':1

c:l
(x| 1/T;
- m(a]

m(x

(6.14)

Of course, if the proposal mechanism is not symmetric then the probability A must be
multiplied by the proposal ratio ¢(0]0%)/q(6*|0). Further, it is straightforward to gen-
eralise the proposal mechanism above to allow for scenarios where the proposal involves
swapping the parameters of more than 2 chains. This should typically be avoided however
as such a proposal can have poor acceptance rates; this will be discussed further in Sec-
tion 6.5.4 where we consider the tuning of proposal distributions within an MC? sampling
scheme. In the next section we consider a general algorithm outline for a MC? sampling

scheme before discussing tuning and a further generalisation of this method.

6.5.3 General algorithm outline

A general algorithm outline of a Metropolis coupled Markov Chain Monte Carlo sampling

scheme using C' chains is as follows.

e Initialise:

— let 71 =1 and choose T, > 1 for c=2,...,C
- 1€t9=(91,...,90)

e Repeatedly perform the following steps:

197



Chapter 6. The Extended Plackett—Luce model

1. Fore=1,...,C,

— draw 6, from 7.(0c|z) oc w(x|0.)"/Tem () using standard MCMC techniques
2. Sample a pair of chain labels (i,j) where 1 <i# j < C
— let §; — 6; and 0; — 6; with probability min(1, A) where

m(2]0;)"/ i (w]0) /T
m(x]0:) 1/ T (] 0) /75

A=

The posterior realisations of interest are 1, that is, the accepted draws from chain 1. Given
each of the remaining chains target a tempered posterior density the draws from these

chains are of no interest and so the collection of samples (6s,...,0c) may be discarded.

6.5.4 Tuning a MC? sampling scheme

Recall that Metropolis coupled Markov chain Monte Carlo schemes consider C' chains;
each of which targets an alternative (tempered) density. Further, as these chains are
conditionally independent given z, each chain can be considered to be an independent
standard MCMC scheme targeting its respective density. It follows that each chain should
therefore be tuned in a typical fashion, that is, as discussed in Section 1.3.2. Note however
that as each chain is targeting an alternative density it is sensible to consider different
proposal distributions for each chain. Intuitively we expect larger jumps around the sample
space to be more plausible for large T', this follows as the target density becomes “flatter”

as the temperature of the chain increases; see Section 6.5.1.

Tuning the between chain proposal (Step 2 of the MC? algorithm) can be tricky in gen-
eral. The acceptance rate of swaps between chains is not only affected by the choice of
temperatures T, but also by the mechanism which determines which chains to propose
a swap between. Atchadé et al. (2011) show that, when targeting a normal density, the
optimal acceptance rate (that which maximises the expected squared jumping distance)
between chains is 0.234. Of course, in any realistic scenario we are unlikely to be targeting
a normal density using MC? as more standard techniques would be sufficient to generate
samples from a normal target. It is generally accepted that between chain acceptance
rates of around 20% to 60% provide reasonable mixing (with respect to the joint den-
sity of 61,...,0¢); see for example Geyer and Thompson (1995) or more recently Altekar
et al. (2004). The question is therefore how to choose the temperatures and the swapping
mechanism to achieve such acceptance rates. The strategy we suggest, also advocated by
Wilkinson (2013), is to choose the temperatures so that 7; < Tj for ¢ < j and consider
swaps between adjacent chains. The intuition behind this strategy is that the target den-

sities become increasingly dissimilar as |T; — Tj| increases and so swaps are less likely to
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be accepted. Further, the temperatures should be chosen so that they exhibit geometric
spacing, that is, T,41 /T, = r for some r > 1. Note that this reduces the problem of choos-
ing C' — 1 temperatures to that of choosing 75 (or equivalently r) as given 77 = 1 and 7%
the remaining temperatures are completely determined. Typically it is sensible to perform
a few pilot runs of the MC? scheme to determine a suitable temperature ratio. Of course,
this is only a general strategy and each temperature may need adjusting depending on the

situation.

6.5.5 Parallel Metropolis coupled Markov chain Monte Carlo

A notable drawback of using Metropolis coupled Markov chain Monte Carlo sampling
schemes is the significant increase in the amount of computation required in comparison
to standard MCMC samplers. Recall that an MC? sampling scheme considers C' chains;
each of which needs to be updated in order to generate a single sample from the desired
target density (note that for standard MCMC schemes only a single chain needs to be up-
dated to generate the same number of samples from the target). It is therefore clear that
for MC? schemes the amount of computation required to generate (posterior) realisations
increases linearly with C'. However, although it is not possible to reduce the amount of
computation per se, it is possible to reduce the time required to perform these computa-
tions by appealing to Parallel Metropolis coupled Markov chain Monte Carlo (pMC?) —
this method is also known as Multi-core Metropolis coupled Markov chain Monte Carlo
or MC* within the literature. From Step 1 in the general algorithm given in Section 6.5.3
it should be clear that standard MC? considers updating of each chain in serial, that is,
we sequentially draw 6, for ¢ = 1,...,C, from their respective targets .. Typically this
step is the most computationally expensive part of the algorithm as it involves multiple
(tempered) likelihood evaluations by construction. However, by exploiting the conditional
independence of the chains we can reduce the amount of time required to perform this step;
this is the idea behind Parallel Metropolis coupled Markov chain Monte Carlo (pMC?).
Recall that 7; and 7; are conditionally independent given x and so it follows that we
can perform within-chain updates of the chains targeting these densities independently
without affecting the joint target distribution 7 (61, ...,0¢c|z). Clearly these updates can
be performed in parallel across multiple cores. It is important to note however that Step 2
of the MC? algorithm can only be performed once all of the individual chains have been

updated, that is, we must wait until the last chain is updated before we proceed.

is an important factor when using pMC?3; especially

The number of cores to use (n°)

given that all C' chains must be updated before we proceed to Step 2 of the MC? algorithm.
Naturally we might think that increasing the number of cores will reduce the amount of

time it takes to update the C chains and, although this is true in general, it is not quite
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Core Time
noe | 1 2 3 4 5 6 | Total Relative
1 n - - - - - 6 1
0 - - - - =
s - - - - =
0, - - - - =
0 - - - - -
Og - - - - =

2 0 6 - - - - 3 1/2
03 0, - — - -
05 O - - - -

3 0L 6, 65 - — - 2 1/3
0, 05 6 — — -

4 0, 0, 63 04 — - 2 1/3
s 0 - - - -

5 0 O, 63 04 05 - 2 1/3
Og - - - - -

6 0 02 63 04 05 b 1 1/6

Table 6.7: Theoretical optimal job allocation across cores with total and relative execution time
(assuming job takes a unit time).

that straightforward. To see this we consider an example: suppose we choose to use
C = 6 chains within a pMC? sampling scheme and so we must update 61, ..., 0 at each
iteration. If we assume that updating 6. takes unit time then the total time taken to

€ore can be seen in Table 6.7.

update all C = 6 Markov chains for different values of n
Of course, this is a theoretically optimal job schedule which is not achievable in practice
(due to additional overheads such as memory allocation and initialisation of cores/jobs)
however it illustrates the general idea. Note that when n®™ = 1 pMC3 is the same as
standard MC3, that is, each chain is updated in serial. From Table 6.7 it is clear that
we can halve the time required to update the C' chains simply by considering two cores.

core

Further, for this example, by taking n = 3 we reduce the updating step to a third of

the time in comparison to standard MC3. Note however that we do not improve on this

core = 45 as although we can update more chains in the first unit time this is of little

if n
benefit as the entire update step is only complete when all C' chains are updated. Clearly
taking n®"® > C will provide no additional gains. It follows that, in general, the best

core

strategy is to choose n®"® = C' however this may not be possible when considering a large

number of chains. In this scenario it is sensible to choose the largest possible number of

cores ncore

which is also a divisor of C, that is, choose the largest possible n®*¢ so that C'
mod n®" = 0. Altekar et al. (2004) provide further computational details and give more
realistic relative performance gains of pMC? (against MC?) as opposed to the theoretical

gains considered here.
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6.6 Inference — a Bayesian approach (revisited)

We now return to constructing a Bayesian inference scheme which is capable of generating
posterior realisations of both the skill and choice order parameters by implementing a par-
allel Metropolis coupled Markov chain Monte Carlo algorithm to target the joint posterior
distribution. This section will then conclude with a simulation study where we show that
the mixing of our Markov chains is improved considerably by using MC? as opposed to
standard MCMC techniques developed in Section 6.4.

6.6.1 A pMC? algorithm for the EPL model

A parallel Metropolis coupled Markov chain Monte Carlo algorithm to target the joint
posterior distribution of the skill parameters A and the choice order parameter o is as

follows.

1. Tune:

e choose the number of chains (C') and the number of cores (n")

e let 731 = 1 and choose T, > 1 forc=1,...,C
2. Initialise: choose . € Sk and A, € RI>(0 forc=1,...,C
3. For ¢ =1,...,C perform, in parallel, the following steps:

e Fork=1,....K
— draw Aikp‘ck ~ LN(log Ak, a/z\ck)
— let A\gp — )\ik with probability min(1, A) where

1/T. a
A— T(PAc,—ks Ack = )\Zk’ o) % Lik’ ' e()‘ck_)‘lk)
T(D|A¢, 0¢) Ack

e Sample £ from the discrete distribution with probabilities Pr(£ = i) = p}. " for
i=1,....5
— propose O'Jcr using proposal mechanism /

— let 0. — o} with probability min(1, A) where

1/Te
(DA, o)) Pr(o = o)
A= ——71% X ——.
m(D|A¢, 0¢) Pr(o =o¢)
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e Rescale

K
— sample Ai ~ Ga <Z a, 1>.
k=1

K
— calculate ¥, = > Ack.
k=1

— let Ay = Ak AE/S for k=1,... K.
4. Sample a pair of chain labels (i, 7) where 1 <i # j < C
o let (A;,05) = (Aj,05) and (Aj, o) — (As, o) with probability min(1, A) where

_ m(DAj, o) Tim (DA, 04) T
 w(D|Ai, )V Tin(D|A;, o)V

5. Return to Step 3.

6.6.2 Simulation study

For this study we again revisit Dataset 6 which we analysed previously using standard
MCMC techniques in Section 6.4. Recall that these data comprise n = 100 complete
rankings of K = 10 entities. The skill parameters and choice order (ranking process) used
to simulate these data are A = (10,9,...,1) and o = (3,10,9,1,7,4,5,6, 8, 2) respectively.
Here we perform Bayesian inference using the pMC? algorithm described in Section 6.6.1

with C = 5 chains running across n®re

= (C = 5 cores. We adopt the same prior
distribution as for previous analyses of these data, that is, az = a = 1 and each choice
order is chosen to be equally likely a priori. The motivation behind this choice of prior
distribution is given in Sections 6.4.7 and 6.4.10. Also the proposal distribution for the
choice order parameter is chosen to be the same as before; namely s = 2, 7 = 3 and

pP™P = (0.3,0.3,0.3,0.05,0.05) within each chain.

Before we can perform Bayesian inference using the pMC3 algorithm from Section 6.6.1
we must also choose appropriate temperatures for each chain along with a suitable mech-
anism for proposing the between-chain swaps. We choose the temperatures to be T =
(1,0.7571,0.671,0.571,0.471) which were determined after making some manual adjust-
ments (guided by pilot runs) to the temperatures obtained using geometric spacing with
ratio 4/3, that is, Te41/T. = 4/3. Further, as discussed in Section 6.5.4, we consider
it sensible to only consider swaps between two adjacent chains and we sample the chain
labels (7,7 + 1) uniformly at random. The resulting between-chain acceptance rates are
around 50% to 60% which we consider acceptable and should allow us to benefit from using
an MC? scheme. Of course, we must also choose a tuning parameter for the Log-normal

random walk proposal which generates the proposed skill parameters. As in the previous
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analyses we choose o), = o) = 0.75 which gives acceptance rates around 19% to 25%

(within each chain).

In this study we initialise each of the C' chains (within our single inference scheme) from
the prior distribution, that is, we draw A indep Ga(1,1) and uniformly sample o, from
the set of all permutations Sk for c =1,...,C and kK = 1,..., K. The results reported
are from a typical run of our pMC? scheme initialised as described, with a burn-in of 20K
iterations and then run for a further 2M iterations and thinned by 200 to obtain 10K
(almost) unautocorrelated posterior samples. The pMC? scheme runs reasonably quickly,
with C code on n®"* = C' =5 cores of an Intel Core i7-4790S CPU (3.20GHz clock speed)
taking around 35 minutes 20 seconds. Note the equivalent analysis takes around 123

minutes and 45 seconds under a standard (serial) MC? implementation (n and

cores — 1)
so clearly using parallel computing is advantageous. Also, due to the additional likelihood
evaluations required to propose the between chain swaps the pMC? scheme requires more
CPU time than the standard Metropolis-Hastings MCMC scheme from Section 6.4.10

where the equivalent analysis took approximately 24 minutes 30 seconds.

Figure 6.7 shows a trace plot of the log-likelihood (left) and also the marginal posterior
distribution of the choice order o (right). Here, in contrast to the previous Bayesian
analyses, the marginal posterior distribution for o obtained from numerous pMC? schemes
(initialised at different values) are consistent up to stochastic noise (not reported here)
and so, for this example, MC? has enabled us to generate posterior realisations. Figure 6.8
shows the 25 choice orders with highest posterior support and their corresponding posterior
probabilities. Note that the choice order used to simulate these data is shown in red and
has posterior probability Pr(e = (3,10,9,1,7,4,5,6,8,2)|D) = 0.011. It is perhaps not
surprising that we do not see large posterior support for the choice order used to simulate
these data (or indeed any choice order) given we are only considering n = 100 observations
and there are 10! possible choice orderings. That said, it is pleasing to see that the choice
orders with largest posterior support are fairly similar to that which was used to simulate
these data. Another interesting observation from Figure 6.8 is that it appears we can

clearly identify the lower positions within the choice order and much of the uncertainty

-

resides within the first 4 entries of o.
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Figure 6.7: Trace plot of the log-likelihood (left) and the marginal posterior 7(o|D) (right).
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Figure 6.8: Subset of the marginal posterior m(o|D) showing the 25 choice orders with highest
posterior support (red denotes choice order used to simulate these data)

Figure 6.9 depicts boxplots of the marginal posterior distribution for each log Ay condi-
tional on both the posterior modal choice order (o = (3,1,10,9,7,4,6,5,8,2)) and the
“true” choice order (o = (3,10,9,1,7,4,5,6,8,2)) in white and red respectively. The blue
crosses denote the true values from which these data were simulated and we note that we
have rescaled the values so that A\jg = 1 is constant and therefore omitted from the plot
along with any outliers. Clearly there is large posterior uncertainty on the values of the
skill parameters, however this is perhaps not surprising given the associated uncertainty
on the choice order (and the small number of observations). Further, these boxplots are
constructed based on a relatively small number of (posterior) realisations due to the con-
ditioning on a particular choice order. However, it is pleasing to see that the marginal
posterior for the skill parameters are coherent under both of the selected choice orders
and the aggregate rankings (formed by ordering the skill parameters on their posterior
mean) are x*%¢ = (4,3,1,2,5,6,8,7,9,10) under the posterior modal permutation and
x?88 = (2,1,3,4,5,6,7,8,9,10) under the true permutation — recall the true preference of
entities is (1,...,10).

It is also of interest to see if there is any benefit to using the complicated EPL model
and whether we can instead draw reasonable inferences about these data by using the
standard (forward ranking) Plackett—Luce model. To answer this question we analyse these
data using the (Gibbs sampling) algorithm for the standard PL model from Chapter 2.
Figure 6.10 depicts boxplots of the marginal posterior distribution for each log A\ under
the top choice order from the EPL model and those obtained under the standard PL in
white and green respectively. From this it is clear that the standard Plackett—Luce model
is not a good fit for these data and, under such an analysis, we would conclude that
the aggregate ranking is x*%¢ = (2,8,5,7,4,9,6,1,3,10) and there is little discrepancy
between the preference of the entities — which we know not to be true. It follows that the
standard Plackett—Luce model is not a good model for these data and we should expect
to obtain “better” inferences when using the EPL if the data are not generated from the

forward ranking process.
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Figure 6.9: Boxplots summarising the marginal posterior densities for each log Ay given that Ajp =
1. The densities in each case are shown in white and red for those obtained under the choice order
with the largest posterior support and the true choice order, respectively. The blue crosses depict
the true values from which these data were simulated (log scale).
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Figure 6.10: Boxplots summarising the marginal posterior densities for each log A; given that
Ao = 1. The densities in each case are shown in white and green for those obtained under the
EPL model (for the choice order with the largest posterior support) and those obtained under
the standard Plackett—Luce model (o = (1,..., K)) respectively. The blue crosses depict the true
values from which these data were simulated (log scale).

6.7 Summary

In this chapter we have described the Extended Plackett—Luce model which allows the
a priori assumption of an explicit choice order (ranking process) to be relaxed. The
choice order, which is an element of the set of all permutations Sk, is instead represented
by an additional free parameter within the model. We described the proposed model
in detail and considered whether the choice order was identifiable given a collection of
rankings. In Section 6.3 we verified that each alternative choice order results in changes
to the (maximum) likelihood by means of a simulation study using maximum likelihood

estimation.

The remainder of this chapter focused on the challenging problem of performing a fully

Bayesian analysis of the Extended Plackett—Luce model. In Section 6.4.4 we considered
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numerous “swap” moves which we hoped would allow us to effectively explore the set of
all permutations when the number of entities is large. Unfortunately, the data augmen-
tation approach (to give Gibbs updates of the skill parameters) was ineffective which we
believe is caused by the large posterior correlation between the parameters within this
model. To overcome this we considered a Metropolis-Hastings sampling approach and
we saw through simulation studies in Section 6.4.10 that, although this approach showed
promise, the mixing of the Markov chains remained poor. The natural step was to then
consider Metropolis coupled Markov chain Monte Carlo (MC?) and in Section 6.5 we spent
time exploring this idea and gave a generic algorithm outline and discussed how parallel
computing can be used to increase the speed of inference schemes. In Section 6.6.2 we
considered a simulation study using a pMC? sampling scheme which gave promising results
and the Markov chain appeared to effectively explore the posterior. That said, future work
is needed to verify that this approach will also work for larger datasets — our intuition
leads us to believe that the inference problem for the EPL may become too challenging
for more than say K = 20 entities. It would also be nice to increase modelling flexibility
by appealing to Dirichlet process mixtures of EPL models but this too will increase the

difficulty of posterior sampling.

In the next chapter we conclude this thesis and provide an overview of the main results

along with some potential directions for future work.
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Chapter 7

Conclusions

The intention of this thesis was to explore flexible models which allow the identification
of (possible) subgroup structure within ranked data. Further, we wanted our modelling
framework to be able to capture potential heterogeneity between the abilities of rankers.
We have also investigated the effect of the ranking process and developed methods for
increasing modelling flexibility further by relaxing the assumption of an explicit ranking

process.

We first considered the (standard) Plackett-Luce model (Luce, 1959; Plackett, 1975).
Through simulation studies it was shown how inferences from this model can be affected
by even a modest amount of spurious rankings. It follows that this model is not well suited
to handle a scenario where some of the rankers are not well informed about the entities
being ranked. We extended the standard Plackett—Luce model to the novel Weighted
Plackett—Luce (WPL) model where the WPL model allows for (potential) differing relia-
bility through a two component mixture model. Bayesian inference for this model is made
straightforward by a slight extension of existing data augmentation approaches (Caron and
Doucet, 2012) that yields an efficient Gibbs sampling scheme. Simulation studies showed
that the Weighted Plackett—Luce model is able to correctly identify spurious rankers (when
present) within a collection of data. Further, in contrast to the standard Plackett—Luce
model, inferences from the WPL model were shown to be fairly robust to the addition of

uninformative rankings.

In Chapter 3 we presented models capable of exploring the (possible) subgroup structure
within ranked data. More specifically we aimed to identify homogeneous groups of indi-
viduals who share similar beliefs and also looked at how a single group of rankers may
struggle to distinguish between certain entities. To implement this structure we appealed
to Bayesian non-parametric clustering methods, specifically by using Dirichlet process
mixture models (Ferguson, 1973; Antoniak, 1974). We presented two models. The first al-
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lowed for the notion that rankers may be heterogeneous in their beliefs about the entities.
Both finite and Dirichlet process mixtures of (standard) Plackett—Luce models have been
explored within the literature and we extended this approach slightly by building a model
that comprises a Dirichlet process mixture of Weighted Plackett—Luce models. The second
model we presented allows for the notion that a homogeneous group of rankers may not
be able to distinguish between certain groups of entities, that is, they might consider some
entities to be indistinguishable (tied in strength). We allowed for this structure by consid-
ering a Dirichlet process mixture over the skill parameters in the Weighted Plackett—Luce
model. To the best of our knowledge this approach has not previously been considered
within the literature. Simulation studies showed that this model proved to be effective
at detecting groups of entities and also performed reasonably well when no entity groups
were present which was reassuring. Further, this model allowed us to quantify the level of
(posterior) similarity between entities in a principled manner; this would require an ad hoc
approach if using standard (no clustering) techniques. Bayesian inference for each model

proceeds via efficient marginal sampling schemes (Neal, 2000).

Chapter 4 presented the Weighted Adapted Nested Dirichlet (WAND) process mixture of
Plackett—Luce models. This model combines the aspects of each model presented in the
previous chapters. More specifically this model allows for both ranker and entity clustering
along with the possibility of (potential) differing ranker reliability. Allowing for both
ranker and entity clustering was achieved by appealing to two-way clustering techniques;
specifically by adapting the Nested Dirichlet process prior of Rodriguez et al. (2008) so
that it could handle ranked data. The (WAND) model was then formed by taking the
Adapted Nested Dirichlet process as the prior distribution over the skill parameters and the
Weighted Plackett—Luce model as the ranking distribution. Both conditional and marginal
approaches to posterior inference were presented for this model. The modelling framework
described also allows for inferences to be made using only incomplete rankings, such as top—
M or partial rankings. We saw through the simulation studies that reasonable inferences
can be made under the WAND model even when only limited (partial) information is
available. Although not considered here, in Section 2.2.4 we described how ties within
rankings can easily be accounted for within our simulation based inference approach. The
richness of information in the posterior distribution allows us to infer many details of the
structure both between ranker groups and between entity groups (within ranker groups),
in contrast to many other (Bayesian) analyses. The high dimensionality of the posterior
distribution can make the production of insightful but simple summaries quite difficult
and we explored different approaches, ranging from conditioning on the modal number
of groups to adopting a classification based on calculations from a dissimilarity matrix
summary. Chapter 5 contained analyses of several real datasets that have been analysed

in the literature, and we compared their conclusions with those obtained from fitting the

208



Chapter 7. Conclusions

WAND model. In general we found that the WAND model is well suited to modelling
ranked data and provides valuable insight into subgroup structure within ranked data

which would not be possible under other models.

We also considered relaxing the assumption of a known ranking process by looking at
the recently developed Extended Plackett—Luce model (Mollica and Tardella, 2014). In
this model the ranking process (“choice order”) is instead represented by an additional
free parameter which is an element of the set of all permutations Si. Some insight into
the model was provided and we also discussed the identifiability of the ranking process.
To motivate the identifiability of the ranking process further we considered a simulation
study which showed that alternative choice orders result in changes to the (maximised)
likelihood. We then considered the challenging problem of performing Bayesian inference
for the Extended Plackett—Luce model. Our aim was to extend the solution of Mollica and
Tardella (2018) by considering an unrestricted sample space for the choice order param-
eter. We presented several “swap” moves which we hoped would allow us to effectively
explore the set of all permutations when the number of entities is large. Unfortunately,
the data augmentation approach (to give Gibbs updates of the skill parameters) was in-
effective and we believe this was caused by the large posterior correlation between the
parameters within this model. In an attempt to overcome this problem, we removed the
latent parameters from the model and instead considered a Metropolis-Hastings sampling
approach and, although this approach showed promise, it was evident (through simulation
studies) that the mixing of the Markov chains remained poor. To improve mixing we
appealed to Metropolis Coupled Markov chain Monte Carlo (MC?). A simulation study
using a (parallel) MC? sampling scheme gave promising results and it appeared that we
are able to explore the posterior distribution effectively. We note that, care must be taken
when performing Bayesian inference for the EPL as our solution is unlikely to scale well

to scenarios where the number of entities is large.

7.1 Future work

We believe this research offers plenty of opportunity for extension and future work within
the Bayesian analysis of ranked data. For example, it may be possible to remove the
binary ranker weights w; from the WAND model and instead introduce a “spam cluster”
to house the uninformative rankers. In the finite mixture setting this would be reasonably
straightforward to achieve. However, for infinite mixture models, it is somewhat more
complicated. To be equivalent to a specification of w; = 0, the spam cluster would need
to contain only a single entity cluster and this is unlikely to arise unless the concentration

parameter of the mixture distribution is chosen to be small. Of course, we would not want
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the (entity clustering) concentration parameter to be small within all ranker groups as we
would still want to learn about the entity subgroup structure for groups of rankers that are
informative. One strategy could be to choose the prior distribution of the concentration
parameters to be a mixture where one of the components is heavily concentrated on
small values. However, our intuition leads us to believe that this approach may result in
numerous “spam” clusters, making the identification of uninformative rankers somewhat
more complicated. It may therefore be more advantageous to handle this aspect with the

binary ranker weights. Nevertheless, this merits further research.

Although our work focused mainly on the (Weighted) Plackett—Luce model, the ANDP
prior is also well suited to other parametric ranking models. A natural model to consider
is the Benter model (Benter, 1994) given that it is a straightforward extension of the
(standard) PL model. The Benter model has additional parameters that represent the
“importance” of each stage in the ranking process. In theory it would also be possible
to introduce our binary ranker indicators and hence consider a Weighted Benter model.
However this may also give rise to identifiably issues. Further, given the forward ranking
process implicitly implies that there is more uncertainty within the early ranks of an
observation, the “position importance” parameter within the Benter model is unlikely to
be able to adequately handle a scenario where this is not the case, that is, when there is
more certainty about entities in the top ranks than those in the latter ranks. It would
however be interesting to see whether the Benter model is capable of mitigating this

artefact of the forward ranking process.

Our exploration of the Extended Plackett—Luce model has opened many potential avenues
for further research. The associated inference problem is challenging and, although our
inference scheme appears to be adequate for a modest number of entities, it is unlikely
to perform well in scenarios where the number of entities is large. It may be possible to
avoid explicitly considering the set of all permutations and instead consider a continuous
(multivariate) parameter that lies on the (K — 1)-dimensional simplex (with the implied
permutation being given by ordering the realisation). Constructing a suitable proposal
distribution is likely to be more straightforward in this scenario and, although multi-
modality could still be an issue, it may be possible to overcome this by appealing to
Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 2011). Once the inference problem has
been explored further it would be interesting to extend modelling flexibility by considering
finite or infinite mixtures of Extended Plackett—Luce models. We note however that the
ANDP prior is probably not well suited to this scenario as the entity clustering may render
the ranking process unidentifiable; further analytical/empirical work would be required
to verify this. Finally, a thought provoking topic of potential research is the notion of a
“Hierarchical Plackett—Luce” model. Instead of considering the ranking process parameter

in the Extended Plackett—Luce model to be a permutation, we could instead consider it
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to be a ranking itself. This ranking (the ranking process) could then be modelled using
a Plackett—Luce model and so each position in the ranking process would itself have a
corresponding skill parameter. If desired the ranking process could also be modelled by
another Extended Plackett—Luce model and so the nested layers of Plackett—Luce models

could keep going on and on ...
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Appendix A

Miscellaneous

A.1 Derivation of the FCD for DP concentration parameter

(81

Central to the implementation of a Dirichlet process mixture model is the choice of con-
centration parameter «. It is often the case that we wish to infer this parameter from the
data which is possible if we incorporate a into our analysis. Assuming we have n samples
and a continuous density m(«) it has been shown by Antoniak (1974) that the implied

prior on the number of clusters N¢ is

I'(a)

W(NC’CK, n) = Cn(Nc)n!OéNC m

(A1)

for N¢=1,...,n.

The function ¢, (N€) is defined as the density of the number of clusters conditional on
a = 1, that is, ¢,(N¢) = 7(N¢a = 1,n) and hence does not involve a. If we suppose
we have sampled our parameters A then it should be clear that we have also obtained
a sample of N¢ (the number of clusters) which is given by the number of unique entries
within A. Furthermore we also assume we have a sample of our latent cluster indicators,
¢, and thus the configuration of these data into the N¢ groups is also known. Now, given
that V¢, A and ¢ are known it can be shown that the data D are conditionally independent
of a.. It follows that, for a > 0

m(a| N, A, D) = m(a|N°) xx 7(N€|a)m(a),
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and, substituting in (A.1) gives

c c ¢ F(a)
7(a|N¢, A, D) o ¢ (N)nla™ mﬂ(@)

ne I(a)
o+ n)ﬂ(a)
_ N (o +n)B(a+ 1,n)7r(a)
al'(n)
x a¥ " Ha+n)Ba+1,n)r(a)

X @

1
= Ha+n z%(1 — )" Ydz 7 ().
=™ Matn) [ a1 - ey w(o)

(A.2)

Fortunately we can construct a joint distribution of o and a quantity n € (0, 1) which has

(A.2) as its marginal density. This joint density takes the form, for & > 0 and n € (0, 1)

(o, n|N) oc o™ o+ n)n*(1 = n)" ().

Single component prior

(A.3)

In order to maintain conjugacy we assign « a mixture of Gamma distributions a priori.

If we first consider the simple case where there is only a single mixture component, that

is, a ~ Ga(ag, bp), it follows that the joint density of o and 7 is, for a > 0 and 7 € (0,1)

c bag
(o, |N¢) oc aN (@ + n)n®(1 — p)* =L _qto—lemabo
I(ao)

05" 4o+ N°—2 —ab 1
—0 a0t e Na+n)n*(l—-n)""".
T (ag) ( (1 —mn)

From (A.4) the marginal distribution for « is, for a > 0,

b0 ¢
7"(04|777 NC) x 0 aa0+N erfozbo(a 4 n)na

I'(ao)

bgo ag+N¢—-2 — —
ot e—a(bo—logn) at+n
Mao) e+ n)
ao

ao
b[) aaoJrNCflefoz(boflogn)_‘_n bO aaoJrchQefa(boflogn)

- T(ao) ['(ao) ’

and so we have

al - ~m Ga(ag + N¢ by —logn) + (1 — m) Ga(ag + N¢ — 1,by — logn).
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The mixture weighting mg is given by

b(lo )
o = 0 / o tN=1,—a(bo—logn)
['(ao) Jo
bgo I'(ag + N°)
e e
™= Tap) (bo — log )@+ N’
and
(1 - m) = 2 / otV gatologn)
['(ao) Jo
nby®  T'(ag+ N°¢—1)
1—mp) = =2
ﬁ ( 770) F(ao) (bo o 10g n)a0+NC,1 )
whence

o ag+ N¢—1

(1—m)  n(bo—logn)

From (A.4) we also deduce the conditional distribution for n to be, for n € (0,1)

m(n)-) o< n®(1 —n)" 1,

that is

n|- ~ Beta(a + 1, n).
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Ranker

Rank || 1 10 20 30 40
1 312 4 6 3 919 3 2114 6 316 610 7 511 511 3 316 2 3 610 2 5 218 1 6 6 51213 19 3
2 419 1 3 6 11513 5 4 1111818 5 7 916 1 3 5 4 1111 917 31911 6 3 4121110 3 9 1
3 1 6 8 5 717 51014 3 7 6 912 1 113 3 2 8 2 910 4 8 5 510 3 4 8 1 2 9 5 1 7
4 131115 2 4 2 211 3 113 3 4 410 8 2 4 518 7 919 3 3 5 4 2 4 7 114 7 9 710 5 9 10 13
5 213 514 812 11016 1312 4 5 2 3 5 4 6 813 2 8 114 1 212 714 1 7 8 4 2 2 1 11217 6
6 7 10 § 100 3 812 9 3 9 5 2 5141311 7 61114 5 6 6 813 1 110 6 8 710 8 14 19 2 8 18 9
7 § 313 917 810 115 7 210 1 820 319 217 17 12 12 7 10 1416 7 & 116 13 111 713 4 1511 7 5
8 9 4191 910 6 6 1 617 112 1 8 218 3 4 41715101716 6 3 918 2 9 5 911 5 713 2 8 2
9 1 2121912 4 519 4 5 8 8 8 3115 6 1 7 8 31011 7 5 716 1316 11 6 3 5 13 3 18 14 6 13 12
10 |j12 16 215 111 3 14 18 2 71511 7 2 41017 2 9 617 9 4 9 9 5 4 7 4 512121019 9 8 7 16 15
11 6 9141711 6171512 9 4 2 9 6 4 91211 912 1 6 4 513 813 15 6 3 16 15 6 14 8 14 7 3 8
12 |20 8 6 16 5 5 916 6 10 15 13 14 13 16 16 8 8 15 10 15 11 8 15 6 10 14 11 12 18 4 2 15 3 16 3 19 10 6 10
13 |1 5 71016 71 9 14 8 512 13 17 9 11 14 10 14 1 13 13 14 2 412 2 6 13 12 12 9 19 5 4 17 11 16 2 11
14 |j10 7 3 41320 7 711 12 6 16 16 12 7 6 15 20 13 7 10 18 15 8 12 11 11 3 11 9 18 10 13 12 10 6 4 4 4 4
15 |j16 110 7 21412 8 7 1520 14 10 10 112 5 9 10 14 4 7 17 13 18 15 10 14 8 8 10 19 16 16 17 15 3 17 5 16
16 515 16 12 19 16 14 2 8 17 10 9 17 19 17 14 16 14 12 16 9 1 16 11 17 14 18 12 15 15 14 16 2 15 9 12 20 20 11 18
17 |14 14 17 1 20 13 13 18 17 16 16 18 7 11 18 17v 3 15 16 15 16 14 20 20 7 18 15 16 9 13 17 11 14 17 11 8 6 14 12 14
18 ||15 20 18 13 18 15 18 17 19 18 11 17 20 14 13 20 13 12 18 6 19 16 13 18 20 19 19 20 17 14 15 17 18 19 18 13 17 18 14 19
19 |j19 17 11 18 15 19 16 4 13 19 19 19 15 15 19 19 17 18 19 19 18 19 12 12 15 17 20 19 19 17 19 13 17 18 15 16 16 15 15 17
20 |{18 18 20 20 14 18 20 20 20 20 18 20 19 20 15 18 20 19 20 20 20 20 18 19 19 20 17 18 20 20 20 20 20 20 20 20 18 19 20 20

Table B.1: Dataset 1 used in standard PL analysis.
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Ranker
Rank || 41 50
1 16 5 8 10 20 919 8 2 15
2 2 311 13 9 10 14 16 20 9
3 18 8 121519 2 5 2 14 3
4 112 611 8 11 9 9 10 2
5 6 10 1 3 10 20 13 6 4 18
6 4 219 413 7 8 20 13 20
7 8 4 914 219 11119 7
8 9 15 18 6 16 15 17 7 14
9 19 20 13 9 5 13 12 19 6 1
10 (|17 7 4 115 4 20 4 3 16
11 (|13 9 20 20 18 18 11 12 15 8
12 (|15 19 16 18 6 1 17 15 5 17
13 3 717 3 8 18 18 17 19
14 (|11 6 3 12 17 12 10 7 12 11
15 ||10 14 17 5 7 3 4 14 9 4
16 711 516 12 17 7 10 8 13
17 516 15 7 115 6 1 1 12
18 (|14 18 2 2 11 5 2 3 16 6
19 (|20 17 14 19 14 14 3 5 11 10
20 ||12 13 10 8 16 6 16 13 18 5

Table B.2: Additional 10 uninformative

219

rankings used to form Dataset 2.



0¢c

Ranker

Rank || 1 10 20 30 40
1 13 41216 3 4 215 1 1 4 7 1 7 312 2 1 71613 21910 11313 111 7 6 416 10 3 4 710 3 3
2 514 212 2 3 1 2 3 4 1 9 4 1 1 3161 411 2 5 3 3 814 6 4 9 2 3 6 1 1 81316 3 10 4
3 213 3 112 2 1 5 3 2 2 3 4 9 2 3 2 41013 8 9 515 41213 1 1 1 611 4 2 13 14 16 2
4 8§ 515 9 4 115 6 4 6 8 516 610 1 5 3 113 3 7 414 3 6 1 7 6 815 5 9 415 111 11 1 14
5 9 7 1 2 1 812 314 810 1 612 2 813 6 3 314 112 1 9 8 210 4 3 815 3 2 6 5 112 4 7
6 6 2 7 7 510 4 4 710 61 910 4 7 11015 9 115 612 2 4 3 3 7 610 310 3 1 810 111 1
7 1 6 6 4 713 3 7 2 21410 2 811 414 9 8101 4 1 612 1 7 5 2 4 2 2 2 816 3 416 2 10
8 7 1141415 9 9 9 6 512 312 3 6 91516 12 1 411 511 6 51114 1 5 5 7 4 6 216 15 8 8 13
9 6 3 9 3 6151319 912 3 6 7 21910 415 5 2 510 213 4 3 513 514 4 8 512 5 9 3 2 916
10 |j10 8 16 511 11 7 13 10 913 8131113 6 8 71012 6 6 13 4 11 10 12 8 12 9 12 14 8 13 11 10 14 5 13 8
11 |j11 12 5 6 16 516 16 13 7 5 415 5 816 1014 6 5 8 310 213 11 14 2 14 12 916 14 5 7 7 5 4 6 6
12 (|12 11 4 11 14 12 6 11 12 13 9 1511 912 5 6 4 14 6 9 12 14 7T 220 6 8 10 14 11 12 16 12 14 8 7 15 11
13 415 8 813 16 11 14 11 14 7 13 18 13 14 11 7 13 11 14 16 14 20 16 10 16 16 15 3 11 13 9 11 9 10 6 2 13 19 12
14 |15 19 13 10 18 14 14 5 8 15 11 16 516 5 18 11 8 17v 7 7 916 7 17 9 10 11 10 15 7 10 7 15 9 15 6 17 14 5
15 ||14 10 10 13 8 17 8 12 16 11 17 14 8 15 16 14 20 12 16 8 12 16 15 15 18 12 8 20 16 13 11 13 13 14 13 12 9 6 5 15
16 |13 911 15 9 6 10 10 15 20 15 12 14 14 20 15 9 5 9 1515 8 719 15 7 15 9 15 16 16 12 15 7 17 11 20 9 12 20
17 ||18 16 20 19 10 7 18 8 19 17 16 18 10 18 18 13 12 20 19 19 17 20 11 8 16 20 9 16 17 20 17 20 19 18 14 18 12 20 7 17
18 |j20 17 18 18 17 19 20 20 18 16 19 17 17 20 7 17 18 17 13 18 20 17 9 17 14 19 19 17 20 19 19 19 18 19 19 19 17 19 18 9
19 (|17 20 19 20 20 20 17 17 17 18 20 20 20 19 15 19 17 18 20 17 19 19 18 20 19 17 17 19 19 18 18 17 20 20 20 20 18 15 17 19
20 |{19 18 17 17 19 18 19 18 20 19 18 19 19 17 17 20 19 19 18 20 18 18 17 18 20 18 18 18 18 17 20 18 17 17 18 17 19 18 20 18

Table B.3: Dataset 3 used in simulation study 1 under WAND.
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Ranker

Rank || 41 50
1 11 7 20 13 17 8 15 19 18 18
2 111 15 12 13 7 17 10 20 6
3 1820 16 210 1 5 4 119
4 15 19 17 17 6 11 7 3 11 1
5 12 15 1 19 18 19 6 12 7 16
6 13 14 14 20 9 6 18 9 2 10
7 20 12 7 615 9 14 7 10 14
8 10 2 910 116 915 6 20
9 6 18 13 4 14 14 1 18 15 8
10 7 310 16 20 17 4 8 5 13
11 ||19 9 5 18 16 5 13 6 3
12 (|14 8 19 3 5 13 19 17 4
13 4 5 6 919 12 2 13 13 15
14 (|16 4 3 8 2 4 12 14 9 11
15 6 2 7 320 16 20 19 17
16 2 10 18 5 8 18 3 5 12 5
17 (|17 1 4 14 11 10 10 11 16 7
18 316 12 11 12 8 214 9
19 9 17 8 15 4 3 11 16 17 12
20 513 11 1 71520 1 8 4

Table B.4: Additional 10 uninformative

221

rankings used to form Dataset 4.
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Ranker

Rank || 1 24|25 36|37 40
1 1 2 1131318 114 7 91019 1 1 113 110 7 5 9 120 18} 1 2 8 912 316 14 12 5 16 8| 7 10 10 7
2 20 1 6 1 61313 4 2 4 114 1011 20 610 1 14 15 11 12 14 7 3 8 116 8 11 18 12 3 9 13 7|10 19 9 17
3 151010 1 11510 1 715 31813 317201812 1 1 510135 1 5 4 2 8 213 814 2 4| 3 18 6 16
4 2 312151 3 5 1 51412 1 7 3 22013 31110 513 1 5|11 7 3 716 4 516 13 4 5 21 6 2 2 18
5 17 18 14 7 16 17 2 15 18 18 14 17 15 7 7 5 913 6 12 10 18 13 4| 2 4 17 17 20 2 8 5 17 2 20 3|12 7 3 6
6 10 19 13 4 920 7 6 613 6 10 918 17 14 2 2013 919 418 12|12 9 411 3 1 1 2 2 7 1 9| 117 5 8
7 420 4 9 7 410 712 117 414 14 1312 612 2 714 7 3 10(10 5 2 &5 516 3 7 913 4 11|17 9 19 2
8 19 718 11 1115 6 13 3 15 13 2020 6 14 115 5 114 6 915 6|/ 6 316 2 1 5 711 4 3 18 10|15 4 20 12
9 1214 317 4 6 9171416 9 9 3 9 411 7 917 2 417 6 14| 71411 1 6 920 4 10 16 11 5|13 3 16 3
10 |14 10 19 20 17 19 4 20 10 6 7 13 1315 6 19 1219 4 3 715 4 9| 912 7 12 10 14 10 8 1 12 3 16| 2 13 1 19
11 912 1512 20 16 14 9 13 12 4 7 51219 10 18 719 6 13 6 7 11|15 16 20 8 11 12 11 9 16 8 10 1|18 8 15 13
12 |15 4 5 6 3 7 8 12 17 519 12 17 4 12 4 19 14 15 20 12 14 17 1| 8 11 12 3 13 7 4 15 5 15 19 14| 8 6 12 10
13 13 2 21010201916 20 3 5 2 2 91811 2 31315 312 2| 417 1519 4 6 14 3 18 18 14 19|11 5 7 14
14 5 6 7 3121211 320 218 2 6 518 9 4 6 911 210 2 20|14 15 9 14 14 10 13 6 14 8§ 20|19 14 18 5
15 ||18 11 20 14 14 11 12 2 4 3 2 6 12 10 11 16 5 11 10 4 3 11 9 15|17 13 14 20 919 6 1 7 1 9 124 9 15 11 1
16 (|13 5 17 18 2 14 18 5 9 10 20 15 4 19 10 15 14 15 18 17 18 2 5 3|20 19 10 18 7 15 15 18 11 19 12 13| 5 20 17 20
17 39 9 518 517 11 11 19 11 11 19 20 15 2 17 17 5 18 17 19 11 17|18 18 6 10 17 20 9 10 15 11 7 1720 16 14 9
18 |11 17 11 19 19 2 19 16 15 17 5 18 11 17 5 7 3 4 20 19 16 16 19 19|16 10 18 6 19 17 12 19 20 10 17 15|16 12 4 11
19 ||16 16 16 16 5 9 3 18 19 11 8 16 16 8 16 3 16 8 16 8 8 8 16 16|19 20 13 15 15 13 17 20 19 17 15 6|14 11 13 4
20 § 8 8 8 8 816 8 8 816 8 816 8 8 816 8 16 20 20 8 8|13 6 19 13 18 18 19 17 6 20 6 18] 4 1 8 15

Table B.5: Dataset 5 used in simulation study 2 under WAND. Vertical lines separate the rankings within each different ranker group.
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Table B.6: Roskam’s psychology data
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Professionals Avid Fans Fans Infrequent Watchers Not-interested Individuals
Entity No Team 1 6 7 12 13 18 19 25 26 34
1 Heat 1 911111146 16 6 1 416 1 6 1 6 1 9 6 1 622 6228 1 1 110
2 Thunder 9 1.2 9 210 2 2 1 2 4 2 4 6 1 211 618 6 4 2 4 1 2 1 5 411 225 4 6 1
3 Spurs 2 2 9 210 2 611 2 1 6 110 410 4 1 4 119 9 4 318 610 9 10 10 18 8 8 21 16
4 Celtics 10 10 10 10 9 9 4 10 11 4101026 8 2 3 4 210 4 1 6 111 4 414 123 8 9 6 5 23
5 Clippers 4 513 3 5 410 3 3 311 41826 31521 9 3 14 26 26 6 8 14 18 6 18 15 10 7 10 9 21
6 Lakers 6 11 5 6 5 3 5 61022 314 318 9 9 8221820 330 3 829 7 8 819 14 14 27 11
7 Pacers 3 6 61211 315 6 9 927 52418 6 6 229 20 20 23 23 13 27 11 15 8 27 21 23 20 11 11 18
8 76ers 512 12 11 3 6 7 410 513 9 16 20 9 28 8 10 26 9 3 20 20 25 15 11 28 25 12 11 6 7 13 15
9 Mayvericks 11 13 11 4 4 13 - - - - - - - - - - - - - - - - - - - - - - . - - .-
10 Bulls 12 3 513 12 - - - - - - - - - - - - - - - - - ... e e . e
11 Knicks 14 4 3 14 12 14 - - - - - - - - - - - - - - - .- .- e e
12 Grizzlies 15 14 15 17 15 7 - - - - - - - - - - - - - - - - .- - .- e e
13 Nuggets 17 7 813 7 11 - - - - - - - - - - - - - - - - .- - - - e e e
14 Magic T1T 7T 7T 1417 - - - - - - - - - - - - - . o .. .. e .- e o e
15 Hawks 8 18 17 8 8 8 - - - - - - - - - - - - - - - .o ..o o e o e
16 Jazz 19 8 18 18 17 19 - - - - - - - - - - - - - - - - - - - .- e e
17 TrailBlazers 21 19 14 19 18 18 - - - - - - - - - - - - - - - - - - - - - - . e e
18 Rockets 16 15 24 15 24 15 - - - - - - - - - - - - - - - - - - oo -
19 Bucks 13 21 20 22 20 16 - - - - - - - - - - - - - - - - - oo oo e
20 Suns 20 23 19 21 19 22 - - - - - - - - - - - - - - - - - - .- e e
21 Nets 18 22 26 20 26 20 - - - - - - - - - - - - - - - - .o .o e e
22 Warriors 22 20 23 23 22 25 - - - - - - - - - - - - - - - - - - - e
23 Timberwolves [[23 16 22 24 23 21 - - - - - - - - - - - - - - - - 4 - - - - - - - -
24 Hornets 28 26 21 25 21 23 - - - - - - - - - - - - - - - - - - .- . e e e
25 Pistons 25 25 25 27 25 24 - - - - - - - - - - - - - - - - - - o oo oo
26 Kings 29 28 16 26 29 26 - - - - - - - - - - - - - - - - - - oo oo oo
27 Wizards 24 27 29 16 27 27 - - - - - - - - - - - - - - - - - - .o .- . e
28 Raptors 27 24 27 28 16 28 - - - - - - - - - - - - - - - - oo - oo oo e o
29 Cavaliers 26 29 28 29 30 29 - - - - - - - - - - - - - - - - o - oo - .o e o e
30 Bobcats 30 30 30 30 28 30 - - - - - - - - - - - - - - - - o - - oo oo o e
Table B.7: NBA data
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Ranker
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Table B.9: Additional 20 rankings used to form Dataset 6
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