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Abstract 

 

The United Kingdom (UK) government intends to end the sale of new conventional petrol 

and diesel cars by 2040, and Electric Vehicles (EVs) could emerge as the replacement. This 

is likely to increase the load on electrical distribution networks, while uncontrolled EV 

charging could increase load forecast uncertainty. Utilising sufficient Energy Storage System 

(ESS) power to maintain the networks within their power flow and voltage limits without 

needing to reinforce the network, while not over using the storage despite the uncertainty, 

remains a challenge. Similarly, the EVs themselves have been suggested as a flexible load 

however realising this flexibility also remains a challenge. This Thesis researches the ability 

of ESSs and EVs to mitigate load and generation uncertainty within urban microgrids. 

Initially, the technical and economic impacts of uncontrolled EV charging on distribution 

networks is investigated by combining an extensive real world dataset of EV charging events 

and domestic household load. It is found that distribution transformer power flow limits will 

be the first operational limit to be breached when EV penetration reaches 40%. The resulting 

reinforcement cost that Ofgem would allow Distribution Network Operators (DNOs) to 

recover from consumers is estimated at £60.81bn - £74.27bn up to 2040. 

A methodology is then proposed to forecast future uncontrolled EV charging load based on 

the ‘here and now’ load experienced on the network. In addition, a methodology is proposed 

to aggregate a number of smart charging EVs to form a Virtual Energy Storage System 

(VESS) able to deliver services to the distribution network with a high degree of 

controllability (~99%), while also guaranteeing the energy required by the EVs for their 

primary purpose of transportation. The VESS is combined with other forms of flexibility to 

deliver an Enhanced Frequency Response (EFR) service where a fuzzy logic control 

methodology is proposed to maximise power availability. 

Finally, a Robust Optimisation (RO) formulation is developed that balances the trade-off 

between the cost of protecting network operational limits from load and generation 

uncertainty, against the cost of failing to protect network operational limits. RO requires a 

linear representation of the power system, and the errors introduced through linearization via 

sensitivity factors are calculated as up to 1.6% when there is no load and generation 

uncertainty, and up to 4.0% when there is load and generation uncertainty.  
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Chapter 1 Introduction 

 

1.1 Background 

There is a global desire to reduce greenhouse gas emissions from human activity to lower the 

risks and impacts of climate change. The Paris Agreement sets out the responsibilities of each 

nation state in order for global average temperatures to remain below 2°C above pre-industrial 

levels [1]. Greenhouse gas emissions from within the United Kingdom (UK) are dominated 

(81%) by carbon dioxide (CO2) [2] and the country has a target of reducing carbon emissions 

to 80% of 1990 levels by 2050 [3].  In 2015, 24% of UK CO2 emissions came from 

transportation [2] however the UK government intends to end the sale of new conventional 

petrol and diesel cars by 2040 [4]. Electric Vehicles (EVs), which typically have emissions 

approximately 50% of an Internal Combustion (IC) vehicle when considering all energy 

conversion processes from oil-well to wheel [5], may replace IC and shift the transportation 

emissions onto the power system which itself represented 29% of all UK emissions in 2015 

[2]. In preparation for this shift the UK government has passed the Automated and Electric 

Vehicles Act 2018, giving the Department for Transport powers to create regulations 

surrounding the compatibility, availability and technical requirements of EV charging [6]. 

To achieve the UK’s carbon reduction targets, the carbon intensity of electricity needs to be 

below 50 gCO2/kWh by 2030 [7]. Achieving a low carbon solution is not the only 

consideration however. Energy must also be delivered economically with a high security of 

supply, leading to the idea of the energy trilemma [8]. Achieving any two elements of the 

trilemma is not difficult, however ignoring any one element of the trilemma is unsustainable 

[8]. 

Inspection of the range of carbon intensity and associated levelised cost of energy for a 

number of generating technologies [9] suggests that a significant proportion of the future low 

carbon generation mix is to come from technologies that are intermittent by nature and 

connected to the distribution network. Traditionally, generation has been centralised and 

connected at higher voltages. One technology likely to be connected to urban distribution 

networks, where 81.5% of the English and Welsh population resides according to the UK 

2011 census [10], is solar Photovoltaic (PV) which has experienced significant growth in 

recent years [11]. 
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1.2 Future distribution network challenges and solutions 

The challenges for future distribution networks to achieve the required power system 

decarbonisation are introduced in Section 1.2.1. The technologies that are seen as potential 

solutions to these challenges are introduced in Section 1.2.2. 

1.2.1 Challenges for future distribution networks 

The challenges associated with voltage control, power flow management, and the uncertainty 

surrounding load and generation forecasts within future distribution networks are introduced 

in Section 1.2.1.1, Section 1.2.1.2 and Section 1.2.1.3 respectively. 

1.2.1.1 Voltage control 

In the UK, the voltage in all locations within the network must remain within +10% and -6% 

of nominal for Low Voltage (LV) networks, and ±6% for voltages between 1 kV and 132 kV 

[12]. The voltage varies within the network dependent upon the load, or generation, and the 

network impedance. It has been estimated that when around 30% of houses in urban networks 

have a 2 kW solar array installed, the distribution network will experience unacceptable 

voltage rise and require network reinforcement [13]. The traditional approach to maintaining 

voltages within the limits is through network reinforcement to change the impedance, or to 

utilise locally controlled On-Load Tap Changers (OLTC) at primary substations. The 

reinforcement approach requires a high capital expenditure, while the OLTC approach applies 

the voltage to all feeders supplied by the primary substation. It is possible in future scenarios 

that one feeder might be heavily loaded with a cluster of EVs resulting in an under voltage, 

while another feeder is supplied by a cluster of solar PV resulting in an over voltage, thus the 

OLTC is unable to solve both voltage limit excursions concurrently. A smart solution to this 

scenario is utilising an Energy Storage System (ESS) [14], which also has significant cost 

associated with it.  

1.2.1.2 Power flow management 

Components in the power system, such as transformers and cables, all have a thermal rating. 

If the current passing through the component exceeds the rating, there is risk of overheating 

and reducing the life of the component [15]. It has been estimated that when EV deployment 

reaches 15%, rural distribution networks will experience thermal overloads and need 

reinforcing. Urban networks will need reinforcing when EV deployment reaches 60% [16]. 

The traditional approach to alleviate power flow overload is to reinforce the network, 

requiring significant capital expenditure. A smart solution utilising an ESS could also be 
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implemented such as limiting the power flow through a network component to its Real Time 

Thermal Rating (RTTR) [17], with an associated cost.  

1.2.1.3 Load and generation forecast uncertainty 

There is significant uncertainty in the load of individual houses on a domestic level that 

becomes increasingly predictable with increasing numbers of properties considered together 

due to their diversity [18]. Traditionally, the distribution network has been designed to the 

worst case extremes of operation, and thermal generation plants follow the load at 

transmission level with good forecasts available. In comparison, distributed renewable 

generation can be connected at distribution level with its output uncertain with the uncertainty 

of weather forecasts [19, 20]. Similarly, there is significant uncertainty over the arrival and 

departure times [21] and the initial State of Charge (SoC) [16] of individual EVs and their 

resulting load on the distribution network. This load is dependent on the rating of the EV 

charge point, summarised in Table 1-1, which is significant when compared to the existing 

UK domestic After Diversity Maximum Demand (ADMD) of 1.57 kW (for 100 customers) 

[18]. 

Table 1-1 Electric vehicle charge points [22] 

Charger Power rating 

Standard Up to 3 kW 

Fast 7-22 kW 

Rapid AC 43 kW 

Rapid DC Up to 50 kW 

 

Any smart solution responding to the needs of the network must appropriately take into 

account the load and generation uncertainty to ensure the robustness of the network with 

respect to its operational limits.  

1.2.2 Potential solutions to future distribution network challenges 

A number of technologies have been suggested as potential solutions to future distribution 

network challenges. These include microgrids and Virtual Power Plants (VPPs) introduced in 

Section 1.2.2.1, ESS introduced in Section 1.2.2.2, smart charging EVs introduced in Section 

1.2.2.3 and Demand Side Response (DSR) introduced in Section 1.2.2.4. This Thesis builds 

on these technologies to provide economically effective voltage control and power flow 
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management through utilising ESS and smart charging EVs when the distribution network is 

operated as a microgrid and subjected to load and generation uncertainty. 

1.2.2.1 Microgrids & Virtual Power Plants 

A microgrid consists of a combination of electrical or heat generation and load controlled in a 

single system [23]. To enable some flexibility in operational control to ensure the network 

remains within its operational limits despite the generation and load uncertainty, a form of 

ESS is often included in a modern microgrid [24].  

A VPP is similar to a microgrid, however there are some key differences [25]: 

• Microgrids can be grid-connected, or islanded, or able to disconnect and reconnect as 

required. VPPs however are always grid tied. 

• Microgrids normally include some kind of storage. In VPPs, storage is possible but 

not always required. 

• Microgrids encompass resources within a limited geographical area. VPPs can 

coordinate multiple resources over larger geographical areas. 

1.2.2.2 Energy storage 

An ESS can act as both a load and a generator in a controllable manner. It is a time limited 

resource dependent upon its SoC and thus must be controlled carefully to ensure it is available 

when required by the distribution network. 

There are two main components to an ESS; an energy storage medium and a power interface 

between the storage and the grid.  

There are numerous storage technologies, including vanadium redox flow batteries, super-

capacitors, lead acid batteries, sodium-ion batteries, sodium-sulphur batteries, pumped hydro 

storage, lithium-ion, compressed air storage, thermal storage, nickel based, flywheels, and 

hybrid systems. Each technology has different characteristics such as cost, power and energy 

density, round-trip efficiency, self-discharge rate, response time and lifetime making them 

suitable, or unsuitable, for a particular application. In a distribution network, an ESS can 

support location critical services such as power-flow management and voltage control [14, 

17]. 

1.2.2.3 Vehicle-to-grid and Smart Charging of Electric Vehicles 

EVs are typically parked around 96% of the time and could provide a valuable secondary 

function as a responsive charging load [26].  Further support to the grid can also be provided 

by exporting power from the battery of the vehicles to the grid [27]. Similarly to ESS, this is a 
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time limited resource requiring careful control, and sufficient energy also needs to be in the 

vehicle for its primary purpose of travel at the time of departure. 

1.2.2.4 Demand side response 

Customers can be encouraged to change their load pattern and reduce demand when needed 

by the distribution network. Such requests are Demand Side Response (DSR) calls, and one 

trial showed that nine out of 13 calls were successfully delivered by the customer [28]. 

Industrial and commercial loads with DSR potential include Heating, Ventilation, and Air 

Conditioning (HVAC), hot water, refrigeration, lighting, and water pumping. Domestic loads 

with DSR potential include electric resistive storage heating, heat pumps, wet appliances, and 

cold appliances [29]. 

1.3 Research objectives 

Urban microgrids with high penetrations of EVs and subjected to load and generation 

uncertainty is researched. The main objectives of the Thesis are: 

• To quantify the likely technical and economic impacts of wide scale uncontrolled EV 

charging within distribution networks. 

• To develop a methodology to forecast aggregated uncontrolled EV charging load on 

distribution networks and the uncertainty surrounding the forecast. 

• To investigate the available flexibility to control EV charging load. 

• To develop methods to balance the risk of failing to protect microgrids operating 

under load and generation uncertainty from exceeding power flow and voltage limits, 

against the cost of over protection through over use of ESS and the flexibility of smart 

charging EVs. 

1.4 Contributions to knowledge, publications and awards 

The main contributions to knowledge are summarised as follows: 

• A comprehensive study is undertaken to quantify the percentage uptake of EVs that is 

likely to cause distribution networks to exceed transformer power flow, under voltage 

and voltage unbalance limits. This is the first such study to utilise real EV charging 

load data rather than statistical distributions or assume that EVs would be utilised in a 

similar way to existing IC vehicles. 

• A study, taking into account the networks of all Distribution Network Operators 

(DNOs), is undertaken to estimate the expected network reinforcement cost that DNOs 

could expect to recover from consumers under a high EV uptake scenario. 
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• A methodology is developed to forecast future uncontrolled EV charging load and the 

uncertainty surrounding that forecast, based on the ‘here and now’ uncontrolled EV 

charging load experienced on the network. 

• A methodology is developed for smart charging EVs to appear to the grid in aggregate 

like traditional ESS with a high degree of controllability while ensuring the energy 

needed on departure for transportation, thus allowing EVs to be integrated into storage 

scheduling and control algorithms. 

• A methodology using fuzzy logic is developed to combine any number of flexible 

loads and through effective energy management coordination to maximise total power 

availability to deliver an Enhanced Frequency Response (EFR) service to the 

macrogrid. 

• Using a Robust Optimisation (RO) technique and the Budget of Uncertainty (BoU) to 

control the conservatism of ESS power set-points against load and generation 

uncertainty, a methodology is developed to balance the risk of failing to protect 

microgrids from exceeding power flow and voltage limits, against the cost of over 

protection. 

A number of journal and international conference papers have been published as a result of 

the work in this Thesis, and are listed below: 

• A. M. Jenkins, C. Patsios, P. Taylor, O. Olabisi, N. Wade, P. Blythe, (2017), 

“Creating virtual energy storage systems from aggregated smart charging electric 

vehicles”, CIRED – Open Access Proceedings Journal, Volume 2017, Issue 1, p. 

1664-1668. DOI: https://dx.doi.org/10.1049/oap-cired.2017.0937  

• A. M. Jenkins, C. Patsios, P. Taylor, A. Khayrullina, V. Chirkin, “Optimising virtual 

power plant response to grid service requests at Newcastle Science Central by 

coordinating multiple flexible assets”, CIRED workshop 2016, Helsinki. DOI: 

https://dx.doi.org/10.1049/cp.2016.0812  

• M. Neaimeh, R. Wardle, A. M. Jenkins, J. Yi, G. Hill, P. Lyons, Y. Hübner, P. 

Blythe, P. Taylor, (2015). “A probabilistic approach to combining smart meter and 

electric vehicle charging data to investigate distribution network impacts”, Applied 

Energy 157(0): 688-698. DOI: https://dx.doi.org/10.1016/j.apenergy.2015.01.144  

 

 

https://dx.doi.org/10.1049/oap-cired.2017.0937
https://dx.doi.org/10.1049/cp.2016.0812
https://dx.doi.org/10.1016/j.apenergy.2015.01.144
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A number of oral presentations have been made about the work presented in this Thesis, some 

of which are available to watch online, as listed below: 

• A.M. Jenkins, D. Greenwood, “Preparing the GB distribution system for the mass 

uptake of electric vehicles”, Institution of Mechanical Engineers, 11 October 2017 

• P. Agese, R. Fowler, V. Oldenbroek, A. M. Jenkins, I. Muller, “NEETS: What is 

Vehicle-to-Grid (V2G) and why should we care?”, NEETS live webinar 26 July 2017. 

Available to watch on YouTube online: 

https://www.youtube.com/watch?v=t3mvOkHb2Ns&t=3374s  

• A. M. Jenkins, “Creating virtual energy storage systems from aggregated smart 

charging electric vehicles”, CIRED conference 13 June 2017, Glasgow. Available to 

watch on IET TV online: https://tv.theiet.org/?videoid=10399 

A number of academic awards have been made during the study period, as listed below: 

• First place for ‘Best Presentation’ in the Electrical Power research group at the 

Newcastle University School of Electrical and Electronic Engineering Annual 

Research Conference 2017. 

• First place for ‘Best Paper’ in the Electrical Power research group at the Newcastle 

University School of Electrical and Electronic Engineering Annual Research 

Conference 2016. 

1.5 Thesis outline 

The Thesis outline is summarised in Figure 1-1, and structured as follows: 

Chapter 1 – This chapter. 

Chapter 2 – Literature review to identify the specific areas where a contribution to 

knowledge can be achieved and inform the research direction. 

Chapter 3 – An investigation into uncontrolled EV charging. First the technical impacts are 

investigated, followed by estimating the economic cost to upgrade the domestic distribution 

networks if uncontrolled charging becomes the norm. Finally, an uncontrolled EV charging 

load forecasting methodology is developed. 

Chapter 4 – A methodology is developed for smart charging EVs to appear to the grid in 

aggregate like more traditional ESSs, allowing EVs to be integrated into storage scheduling 

and control algorithms. The methodology is then used within a microgrid alongside other 

forms of flexibility and storage to deliver an Enhanced Frequency Response (EFR) service. A 

https://www.youtube.com/watch?v=t3mvOkHb2Ns&t=3374s
https://tv.theiet.org/?videoid=10399
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fuzzy control algorithm is developed to maximise power availability through intelligent 

energy management.   

Chapter 5 – A Robust Optimisation (RO) formulation is developed and used to balance the 

trade-off between the cost of protecting network operational limits from load and generation 

uncertainty, and the cost of failing to protect network operational limits. The algorithm 

requires a linear approximation to the non-linear power system equations, and the errors 

associated with linearization are quantified under both certain and uncertain load and 

generation scenarios.  

Chapter 6 – A discussion of the ideas and results presented in this Thesis. 

Chapter 7 – Conclusions and potential future research. 

 

Figure 1-1 Thesis overview 
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Chapter 2 Literature review 

 

2.1 Introduction 

This Chapter presents a review of relevant literature to identify the specific areas where a 

contribution to knowledge can be achieved and informs the research direction for later 

Chapters. Chapter 3 presents research regarding the impact of uncontrolled EV charging on 

distribution networks, Chapter 4 presents a methodology to aggregate smart charging EVs 

into a Virtual Energy Storage System (VESS), and Chapter 5 presents a risk based approach 

to voltage control and power flow management in urban microgrids. The literature associated 

with microgrids is presented in Section 2.2 and the literature associated with EVs is presented 

in Section 2.3. The flow of models and knowledge between Chapters is summarised in Figure 

2-1. 

 

Figure 2-1 How Chapter 2 fits into the wider Thesis 
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2.2 Microgrids 

The commercial market framework of microgrids is reviewed in Section 2.2.1 in order to give 

context for technological reviews. Section 2.2.2 reviews the different types of microgrid 

control that could be researched and how they interact with one another, before focusing on 

determining ESS power exchange with the network under load and generation uncertainty in 

Section 2.2.3.  

2.2.1 Microgrid market framework 

A review of microgrid demonstrators is included in [30]. All examples were either built by 

academic institutions demonstrating the technology, or developed when specific Low Carbon 

Technology (LCT) integration issues were encountered that could be solved through the 

deployment of a microgrid. In the UK, the majority of microgrids to date are owned and 

operated independent from a Distribution Network Operator (DNO) and there is a risk that the 

wide scale deployment of such microgrid systems could result in the duplication of the 

existing networks [31]. The existing network is a natural monopoly because it exhibits such 

strong economies of scale making it uneconomical to have active competition between 

numerous smaller networks [32]. Historically the winners of competing technologies are not 

necessarily the technologically superior, but the ones that are the more responsive to market 

conditions and requirements [33]. Therefore for the largescale deployment in the UK, 

microgrids must be retrofitted into existing networks by introducing microgrid control 

systems that operate within the existing market frameworks.  

The UK electricity market is separated into four licensed areas; Generators, Transmission 

System Operator (TSO), DNOs, and Suppliers [34]. The suppliers sell energy on behalf of 

generators to customers. Use of system charges are paid by suppliers on behalf of customers, 

and by generators, for the use of networks. Suppliers and DNOs are not allowed to be the 

same entity [34], making it difficult for DNOs to utilise flexible loads and generators to 

facilitate the development of microgrids without procuring services from or through other 

entities. Despite this, any and all actors could be the commercial benefactors of microgrids 

[35].  

It has been suggested by [35] that to achieve load flexibility the industry needs to move from 

being supplier-centric to being consumer-centric, in a similar way to mainframe computers 

becoming laptops, and conventional telephones became smart phones. However, only large 

consumers can influence the market giving rise to the need of aggregators to combine the 

services delivered by many small individual consumers to gain sufficient scale within the 
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market [36]. Similarly, Energy Service Companies (ESCos) sell energy services such as a 

warm home or illumination [37] and could develop to deliver this service while flexing their 

demand as procured by a DNO. To enable the power and energy load (or generation) 

flexibility, there needs to be high technological and social change, and thus it is expected that 

new innovative business models will emerge and develop [38]. 

On the generation side there have been some moves toward constrained connection offers in 

order to negate the need for network reinforcement. For one DNO the reduced cost of 

connection offers (and reinforcement) through constrained connections was £38m, or £32m 

when including the cost of the control system and generation curtailment [39]. Across the 

industry, smart technologies have been estimated to reduce the future required investment in 

distribution networks by 2050 from £46bn to £23bn-£27bn [40]. It is suggested in [41] that a 

trusted intermediary between DNO and generator is required to help facilitate constrained 

connections due to the commercial sensitivities involved.  Commercially, the generator will 

maximise energy delivery up until the point where the marginal cost of energy equals the 

price offered by the DNO to curtail output [42]. 

Based on the literature reviewed, the author envisages that microgrids will be implemented in 

existing networks by DNOs transitioning into Distributed System Operators (DSOs) and 

procure services from third parties (generators, aggregators, ESCos, ESS providers amongst 

others) for a contracted fee. The DSO would procure these services in the most economical 

way for themselves while ensuring power flows and voltages remain within limits such that 

reinforcement is not required. The loads and generators would see a commercial benefit 

through the difference between what the DSO pays for a particular service, and what it costs 

that entity to provide the service. This view is supported by the UK government energy 

system flexibility plan published in July 2017, which stated that Ofgem will “ensure that 

network operators cannot directly operate storage” because “if a network company owns or 

operates storage it could impede the development of a competitive market for storage and 

flexibility services” [43]. It is this market framework that is assumed throughout this Thesis. 

It must be noted however that there is uncertainty regarding what market framework will 

develop for DSOs to operate within. 

2.2.2 Microgrid control hierarchy 

There are three main control levels associated with the power export or import of flexible 

assets within microgrids; primary, secondary and tertiary control [44]: 
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• Primary control – This provides the fastest response and is implemented locally. It 

takes the power set-points provided by the Secondary control and ensures that each 

asset reaches its required operating state. 

• Secondary control – This controls the microgrid assets to ensure reliable and 

economical operation by determining the optimal unit commitment and dispatch of the 

flexible loads and generators. It is often referred to as the Energy Management System 

(EMS). 

• Tertiary control – This controls the upstream interactions with the microgrid in 

question, scheduling and coordinating the interaction of multiple microgrids. 

Microgrid secondary control is chosen to be the subject of this Thesis because of the 

challenges associated with load and generation uncertainty, and the time limited nature of the 

power and energy flexibility solutions available within urban microgrids. These challenges 

and solutions were discussed further in Section 1.2.  

Secondary control can be implemented as a centralised or decentralised system, or a 

combination of the two [44]. The centralised approach allows all relevant information to be 

utilised to develop an optimised solution, but can require re-configuring when alterations are 

made to the network. In contrast, the decentralised system is much more amenable to plug-

and-play, but can have difficulty in operating microgrids that require high levels of 

coordination. The decentralised system typically consists of some central control guiding 

local controllers [44]. This Thesis focuses predominantly on centralised systems due to 

considering future scenarios of high penetrations of EVs and the potential need for high levels 

of coordination to remain within distribution network operational limits for power flow 

(within thermal limits of cables and transformers) and voltage (LV: between -6% and +10% 

of nominal, 1 kV to 132 kV: ±6% of nominal). 

2.2.3 Determining power set-points of ESS under load and generation uncertainty 

A review of microgrid and VPP scheduling literature is given in [25]. In general the objective 

of the formulations is to minimise cost, or maximise profit, subject to various constraints. 

Linear Programming (LP) (after problem linearization) is advocated due to its simplicity and 

speed of calculation. The review, amongst other conclusions, found that greater emphasis has 

to date been placed on deterministic formulations that are not subject to uncertainty, rather 

than stochastic formulations that take into account the variability of the real world.  

Scheduling procured power services from flexible load and generation to prevent power flows 

and voltages from exceeding limits when using a DC representation to approximate the AC 
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network is considered a Mixed Integer Linear Programming (MILP) problem. This is 

classified as NP-hard, and consequently there can be computational challenges [45].  The state 

of the network is based on the forecasted status of constituent components such as renewable 

generators and EVs which are subject to uncertainty. One way of considering the load 

uncertainty during the optimisation is to undertake a Monte Carlo Simulation (MCS) based on 

Probability Distribution Functions (PDFs). In a MCS [46], the PDFs are sampled to develop a 

representative scenario of the uncertain problem which can then be evaluated. Through 

evaluating a sufficiently large number of representative scenarios, a probabilistic 

understanding can be obtained of the complex interactions between the uncertain load and 

generation and its non-linear impact on power flows and voltages within distribution 

networks. The greater the number of representative scenarios modelled, the more accurate the 

MCS becomes however so does the computational challenge. Even after introduction of 

scenario reduction techniques, the consideration of load uncertainty increases the 

computational challenge relative to not considering uncertainty [47]. It is noted in [48] that 

the computational challenge increases with the number of time steps considered during the 

optimisation. There is sometimes a trade-off between solution quality and computational time 

[45]. In [49] and [50] the compromise for including uncertainty in the formulation was 

achieved by not considering the power flows and voltages relative to their respective limits. A 

multi-objective formulation to minimise operational cost and maximise the minimum reserve 

under load uncertainty in a day ahead context was modelled in [51] to find the pareto front 

however 42 computer cores were required in order to execute the model within 30 minutes. 

The model consisted of a 180-bus distribution network with 90-load points over 24-time 

steps, and considered 116 diesel generation units, 7 ESSs and 1000 EVs. In [52], the authors 

undertook a traditional worst case analysis to define critical nodes that had the potential to 

exceed operational limits. Such analysis could be used to minimise the number of constraints 

needing to be modelled in a microgrid scheduling optimisation thus minimising the 

calculation time. 

Within the problem constraints, the optimisation is based upon the objective function 

formulation, which itself may be subject to uncertainty. A sensitivity analysis was undertaken 

in [45] where it was found that the energy value had the greatest impact on results. It was 

found in [53] that when the objective function was changed from minimising losses to 

maximising EV charging energy, the electrical losses increased by 19.5%. These electrical 

losses also have an economic value subject to uncertainty. Undertaking a new schedule on 
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every time-step was found in [50] to return an operational cost 8.6% lower than scheduling 

just once per day due to more accurate forecasts at the time of implementation.  

In practice it is very difficult to calculate PDFs for the various uncertainties making the 

stochastic optimisation techniques unrealistic, however it is often possible to determine an 

Uncertainty Interval (UI) in which it could be expected all values to fall within [54]. RO is a 

technique based upon LP that finds solutions protected against the uncertain values falling 

anywhere within the UI. A parameter called Budget of Uncertainty (BoU) is used to adjust the 

level of conservatism in protecting against the full UI bounds. In this Thesis, the term ‘robust’ 

refers to the ability of a control system to maintain the distribution network within its safe 

operational limits for power flow (within thermal limits of cables and transformers) and 

voltage (LV: between -6% and +10% of nominal, 1 kV to 132 kV: ±6% of nominal), despite 

load and generation uncertainty. 

The BoU was compared against the traditional unit outage criterion of reliability in [55], 

calculating the cost of robustly operating the network with different numbers of network 

components simultaneously out of service. A relationship between limit violation and BoU, 

allowing the calculation of optimal BoU for specified probabilistic risk, was proposed by 

[54]. The cost of operating the network and the number of constraint violations with and 

without RO was presented in [56] leading to the quantification of the cost to protect the 

network against each violation. No study found however has balanced this cost against the 

value of supply to the consumer and thus the cost penalty applied to the DNO. An adjustable 

interval was proposed by [57] to protect against changing uncertainties, however this was 

based upon the running of traditional generators on low loading and minimising the reserve 

cost which is not such a problem for ESS and EVs that can respond very quickly. The RO 

method was utilised by [45] to estimate the number of EVs that could be integrated into a 

Canadian network at differing levels of probabilistic risk of violating network constraints.  

With RO based upon LP, it is possible that the problem presented to the solver is infeasible. It 

was noted in [58] that as the BoU is set increasingly conservative, it is increasingly likely that 

the LP problem will become infeasible. It has been suggested when optimising demand 

response, that the most practical approach to rectify infeasibility in real time is to consider 

load shedding [56]. 

It is possible that there could be some cross-correlation of uncertainties. This was considered 

by [59] however the computational complexity resulted in only one time step being 

considered by the formulation. 
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It has been shown that by utilising a DC representation of the electrical constraints within the 

optimisation formulation, power flow and voltage constraints can be exceeded when 

implemented on the AC system [60]. Therefore the full AC system representation is required, 

but needs to be linearised in order to utilise the RO technique. This has been undertaken in the 

literature in two different ways. In [61] it was achieved by using a number of piecewise linear 

functions when a MILP solver is available. It allows a single optimisation to be undertaken, 

but with an increase in the number of constraints. In contrast, [62] uses a linear representation 

based upon the operating state of the network, allowing a LP solver to be used, and is 

recalculated following a generation power decision leading to an iterative process that 

continues until a stable generation power decision is achieved. 

2.3 Electric vehicles 

The primary purpose of EVs is transportation, and the needs of EV owners to achieve their 

primary objective is considered in Section 2.3.1. The literature is reviewed in Section 2.3.2 to 

consider the impact of uncontrolled EV charging on distribution networks. Section 2.3.3 then 

considers the various methods of controlling EVs to realise power flexibility that could be 

utilised by the energy system to generate value.     

2.3.1 Electric vehicle requirements 

In 2014, 96% of all UK car journeys were shorter than 25 miles [63], well within the range of 

many EVs [64-66]. Despite this, both actual and perceived range limitations are seen as a 

barrier to adoption of EVs [67-69].  

Rapid charge points are seen as more important than standard charging when a vehicle travels 

more than 240 km per day, which accounts for less than 2% of journeys [67]. The potential 

for queues to form at rapid charge points was investigated by [70], whereby the queue must be 

kept to a minimum in order to maintain the advantage of rapid charge points over slower, 

potentially cheaper, home standard charging. Queueing theory was utilised to propose reduced 

cost of rapid charging in exchange for a reduced time at the charge point and associated 

delivered energy. Such a business model would encourage utilising rapid charging only for 

the amount of energy required to get to a destination, where a standard charge point would 

then be used. This means there is little scope for energy system flexibility with regards to 

rapid charging. 

The majority of daily driving energy needs can be met by standard charging at locations such 

as at home or at work [67]. With EVs stationary around 96% of the time, there is potential 

that some control could be exercised by the grid in determining when the vehicles are 
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delivered the energy [26]. This flexibility can only be realised however, if EV owners are 

willing to plug their vehicles into smart charging posts. The willingness of consumers to 

utilise smart charging, or Utility Controlled Charging (UCC), overnight in Canada was 

investigated by [71]. A total of 53% were open to enrolling without any benefit (financial or 

increased renewable penetrations) provided 100% SoC was ensured by morning. As the 

guaranteed SoC by morning decreases, the acceptance of users also decreases as shown in the 

reproduced graph of Figure 2-2. The potential battery degradation was not considered by the 

survey and has an impact on Vehicle-to-Grid (V2G) viability, representing a cost [72-74]. The 

survey noted that if the cost of the energy reduced by 20% then adoption would increase by 

18 percentage points [71]. It follows therefore that if the cost of degradation is greater than the 

reduction in cost of energy, then the adoption of smart charging would be expected to reduce 

relative to that shown in Figure 2-2. Despite this, there is clearly potential for significant 

numbers of prosumers to partake in flexible charging. 

 

Figure 2-2 Respondent acceptance of guaranteed minimum charge assuming a pure EV with 

240 km range. Early mainstream consumers only, m = 530 [71] 

Many EV batteries are based on the Lithium-Ion chemistry [64-66, 75] whereby for a battery 

that is being utilized, cycling losses (from usage) are much more significant than calendar 

losses (from storage). Cycling losses are increased by [73, 74, 76-78]: 

• Additional cycling 

• Higher charge and discharge rates (through increased temperatures) 

• Higher SoC 

It has been suggested that V2G technology is best suited to high-value and time critical 

services [27] as opposed to generating value from energy trading [79] where algorithms 



 

17 

 

designed to extend battery life generate twice as much value [80]. Offering capacity as a 

back-up yet rarely utilising it also presents opportunities for EVs to earn additional revenue 

[81]. Every commercial EV battery has its own chemistry and resulting degradation 

characteristics which could impact on the suitability of each V2G revenue generating 

opportunity [72].     

2.3.2 Electric vehicle impacts on the distribution network 

Many of the studies investigating the impact of EVs on distribution networks did so as a 

baseline for proposing smart charging techniques. In this section, only the baseline studies are 

compared to understand the impact should uncontrolled charging become the norm. The 

majority of the studies focused on whether the charging would result in transformer or cable 

thermal overloads, or voltage limit excursions [26, 53, 68, 69, 82-97], some considered the 

impact on electrical losses [53, 68, 85, 87-90, 92, 93, 98], and a few studied the transformer 

life [85, 98] and voltage unbalance [68, 86, 93, 94]. The early studies made simple 

assumptions regarding the time when vehicles would all plug-in and charge at the same time 

[86, 89, 90, 95, 96]. Diversity was introduced by [87, 91] through implementing a couple of 

periods through the day that the vehicles would charge, and by [53, 69, 82, 85, 97] through 

making plug-in time statistical distribution assumptions. The diversity of charging was further 

improved through using travel surveys of conventional IC vehicles [26, 68, 83, 84, 88, 92-94, 

98]. The resulting synthesised diversified EV load was checked to have a similar profile to 

that observed as the diversified load from a trial of 94 EVs in [94]. It was noted in [68] 

however, that always topping up with charge when stationary is a significant shift in driver 

behaviour whereby end users may restrict daily range rather than extensively using standard 

charging infrastructure. Similarly, a rapid charge takes significantly longer time than present 

refuelling practices [70]. Therefore there is uncertainty over consumer behaviour under a 

widespread EV uptake scenario resulting in uncertainty over how transferable the travel 

surveys are for modelling high penetrations of EV load on distribution networks. 

Only one study was found to be based on data taken from EV usage trials [99]. This study 

used data mining and fuzzy logic to predict the risk to distribution networks based on the 

charging peak, growth of the peak over time, and weather predictability of the charging load. 

It looked only at geographical areas and did not consider the networks in those areas. 

Furthermore, it noted that there was no research to suggest what importance should be applied 

to the charging peak, growth of the peak, and weather predictability, to determine an 

appropriate risk factor. 
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The studies found, to varying degrees, that networks would need to be reinforced if 

uncontrolled changing would emerge as the norm while distribution losses would increase and 

transformer life decrease. All these impacts have a cost associated with them, which could 

indicate the potential financial value of smart charging. The cost of network reinforcement 

was only considered in two studies [68, 83]. It was estimated by [83] using representative 

networks from one DNO that the cost would be up to £36bn over 40 years, but could be 

reduced to £10bn with smart infrastructure. In comparison, [68] recognised that all networks 

have different levels of available capacity, making it difficult to extrapolate results. The 

authors assumed that 30% of UK distribution transformers would need reinforcing resulting in 

an estimated network upgrade cost of £2.6bn-£3.9bn. 

2.3.3 Realising flexibility from electric vehicles 

Price signals have been proposed to discourage charging at peak times, while still allowing 

consumers access to energy at all times if it is required. Setting two or three time periods 

during the day risks new peaks being formed by consumers delaying charging until a cheaper 

time period and all plugging in together [53, 88, 100]. More dynamic time of use tariffs have 

also been studied, allowing consumers to optimise their own charging locally with a greater 

diversity of charge time [84, 97, 100, 101]. Despite this, it was noted in [84] that as renewable 

penetration increases the method performs less favourably, and in [101] that greater economic 

value can be achieved through more centralised control approaches. 

Ensuring the network is kept within its power flow and voltage constraints under scenarios of 

high EV penetrations can be achieved by simply curtailing charging when the limit is reached 

[75, 88], and when capacity becomes available prioritise the re-connection of the vehicles that 

were curtailed first [88]. A similar method was proposed by [92], however the vehicles 

curtailed were chosen based on SoC required at departure, the expected departure time and the 

location of the vehicle within the network relative to the constraint. Curtailment was also 

utilised by [100] after local vehicle scheduling of charging based on time of use tariffs. 

Although the curtailment method enables greater numbers of vehicles to connect to the 

network, it could have adverse impacts on consumers not being able to get the energy they 

need by the time they need it. 

Both price signals and direct EV control is implemented in [95, 96, 102] via a hierarchical 

approach. Initially [95] undertakes an extensive search of possible charging schedules locally 

for each EV to determine its lowest cost acceptable charging schedule, [96] utilises price 

signals for EVs to determine via CPLEX their optimal charging profile locally, while a 
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microgrid auction is initially utilised in [102] to determine EV charging load based on the 

microgrid generation. If network limits are expected to be exceeded based on the reported 

charging plan, then the load is modified by a central agent in [95] based on a risk factor 

corresponding to the urgency of each EV to charge during the next time step, and in [96] 

based on a combination of network location and the number of idle charging hours within the 

schedule. If network limits are expected to be exceeded in [102] then the generation output is 

modified by an Optimal Power Flow (OPF). If network limits are still expected to be 

exceeded then the sensitivity of each EV within the system relative to the limit is established, 

and an iterative process is used to curtail or increase charging load as required to solve the 

network problem. 

It was shown by [75] that the increase in load from EV charging can have significant impacts 

on distribution transformer life, and thus should be modelled in any network wide smart 

charging formulations along with other distribution network costs such as losses [98]. 

Minimisation of losses was the objective function of the smart charging game theory 

formulation in [87], whereby it was shown that the losses and voltage deviations increased 

relative to no EV charging but were significantly less than the uncoordinated charging 

scenario. 

A non-linear solver within GAMS was used in [53] to control the charging load of each EV 

distributed throughout a network with four different objective functions, to investigate the 

value generation for consumers relative to the DNO: 

• Minimising total energy drawn from a substation over a day – results in the highest 

cost for consumers 

• Minimising total feeder losses over a day – results in a balanced cost for the DNO 

versus the consumer 

• Minimising total cost of energy drawn from the external grid over a day – results in a 

balanced cost for the DNO versus the consumer 

• Minimising total cost for each individual consumer assuming precise forecast of time 

of use pricing – results in increased losses and cost for the DNO 

LP was utilised by [90, 93] to determine the charging load of individual EVs while 

maximising the energy delivered to the vehicles subject to the network limitations. The 

charging period was limited to between 10pm and 7am in [90], and a weighting factor based 

on SoC was proposed to prevent the method prioritising vehicles closest to the substation at 

the expense of those located further away. A LP formulation with individual EV charging 
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loads as the decision variables was proposed in [93] whereby linearization of the power flow 

and voltage constraints was achieved through a DC load flow because of a high power factor 

throughout the network. When the resulting decisions were implemented with the full AC 

power system equations, the maximum error observed for the transformer power flow 

constraints was 4.46% while the error for the voltage constraints was minimal. 

A non-linear optimisation solver was utilised in [94] to centrally maximise EV charging load 

while maintaining voltage magnitude, voltage unbalance and power flow within the network 

operational limits. Due to the limitations of the solver used regarding the number of decision 

variables and constraints, an hourly resolution was initially utilised to determine network 

capacity in each location. A look-up table then interpolated these results to determine EV load 

despatch on a minutely basis. 

It was noted in [97] that not all EVs would be willing to partake in controlled charging. The 

study considered a number of responsive and unresponsive EVs to charging cost differentials, 

finding that forecasting the demand from uncoordinated EV charging is critical to the optimal 

scheduling of smart charging EVs. A similar approach was taken in [69] dividing EVs into 

two groups, aware and unaware, when modelling both electrical and road network congestion. 

The unaware EVs were early adopters with little knowledge of geographical variations in 

charging cost and the road network congestion causing travel delays. The aware EVs had 

perfect knowledge of charging cost, road network congestion and had greater trust in the 

expected range of the vehicle allowing them more choice over when and where to re-charge 

and by how much. It was observed that the unaware EVs contributed to the distribution 

network peak load while the aware EVs displayed a valley filling characteristic. The aware 

EVs spread the charging load relatively evenly across the charging network, while the 

unaware EVs concentrated their load on the charging infrastructure in the centre of the traffic 

networks. Similar results were observed regarding road traffic congestion. 

Whole system cost minimisation is achieved in [103] through a fuzzy logic approach to each 

vehicle choosing its driving route and associated charging locations, recognising that in a 

V2G world energy can be transported both by road and by electrical power systems. The 

study considered several large aggregations of EVs located electrically close to one another, 

separated by transmission lines and roads. The available upper and lower energy bounds of 

such a parking lot of 5000 EVs was calculated in [104] to optimise, via a MILP formulation, 

the day ahead system operation cost from the network operator perspective before the real 

time despatch of each individual vehicle. The formulation ensures that either all vehicles are 
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operating as V2G or G2V, without the ability to have some vehicles operating as V2G 

transferring energy to other G2V vehicles. With such a large number of vehicles aggregated, 

they are likely to be spread within the distribution network which could have limited capacity 

and was not considered in either of the studies [103, 104]. Similarly, [105] recognises a 

parking lot as potential storage, and optimises the individual EV schedules using CPLEX to 

maximise profit for the parking lot based on the energy value and reserve markets without 

consideration of distribution network impacts. The marginal cost of charging based on the 

cost of energy and the cost of parking is calculated for a parking lot with onside solar 

generation in [106] for each vehicle to make its own schedule using CPLEX. It was shown 

that rolling re-calculation of the formulation outperforms day-ahead schedules due to 

responding to new information regarding solar generation output and vehicle arrival and 

departure times. A fuzzy logic scheme was proposed by [107] for the internal energy 

management of the parking lot considering present SoC, SoC required on leaving, time 

remaining and the cost of energy, allowing the vehicles to charge with the lowest energy cost, 

resulting in valley filling and peak shaving. The parking lot algorithm proposed in [108] 

allowed vehicles to pass energy between one another via the grid to enable more flexibility 

but does not allow the aggregated vehicles to operate as V2G in a formulation that calculates 

virtual prices for each vehicle to determine its own charging schedule locally. The aggregator 

is responding to energy price signals, and the maximum power draw is limited as required by 

the capacity of the distribution network. Although this enables the parking lot aggregator to 

be integrated into the local distribution network, it does not enable the EV flexibility to be 

optimised in relation to other flexible elements of the power system, unless there is a major 

overhaul of the market framework whereby DNOs become responsible for setting the real-

time price of energy.  

In [109], a parking lot of EVs is considered as an uncertain storage medium where it’s 

aggregated output is optimised in a microgrid alongside a Combined Heat and Power (CHP) 

unit and heat storage. Kirchhoff’s law was used for the energy balance and thus no network 

modelling was undertaken, and the internal energy interaction of the parking lot between 

individual vehicles was not modelled; only the aggregated power and energy bounds were 

calculated via the total number of vehicles as an input to the wider microgrid optimisation. It 

is possible that if one vehicle has a low SoC and maximum V2G power is requested, then that 

vehicle may reach a zero SoC condition and thus the aggregated V2G available power 

becomes less than what the scheduler thinks is possible. An internal energy management 

scheme of the parking lot was proposed by [110] whereby a desired average SoC across the 
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whole EV fleet was calculated; those with a higher SoC discharged while those with a lower 

SoC charged. The method results in better internal energy management of the EV fleet, in 

terms of ensuring the maximum aggregate power that can be delivered, however also results 

in some EVs having a net energy loss over their time plugged in, conflicting with the needs of 

the users.  

The location and sizing of smart charging parking lots was investigated by [111]. LP was used 

to determine the schedules of the parking lots, inside a genetic algorithm determining their 

size and location. It was found that land cost was the most influencing factor on the parking 

lot location. Therefore it must be expected that parking lots could be added to any part of the 

electrical network, rather than where is best electrically, and microgrid algorithms must utilise 

the flexibility optimally wherever it may be on the network relative to other flexible loads. 

UCC has been implemented in the ‘My Electric Avenue’ trial [112], where a binary on-off 

decision is taken to ensure voltage and thermal limits are not exceeded on the feeders studied. 

This is being built upon with the “Electric Nation” project, running from January 2017 to 

December 2018, by expanding beyond one type of EV and managing the charging of 500-700 

EVs [113]. By expanding beyond one type of EV the project will have to manage different 

battery sizes and charging rates.  

The charging control model presented in [97] based on a virtual price enabling EVs to 

determine their charging schedule locally is being implemented at the Manchester Science 

Park, with the UKs first domestic V2G installed in May 2017 [114]. 

2.4 Chapter conclusions 

The following gaps have been identified in the literature, giving scope to make a contribution 

to knowledge: 

• Existing studies considering the technical impacts of uncontrolled EV charging make 

assumptions regarding charging times or assume that drivers would utilise EVs in a 

similar manor to conventional IC vehicles and charge whenever stationary. Chapter 3 

improves on these studies by estimating network impacts using an extensive data set 

of real uncontrolled charging events coupled with an extensive smart meter data set 

available at Newcastle University.  

• There is a large discrepancy between the two existing studies estimating UK network 

upgrade costs associated with largescale uptake of EVs. Chapter 3 estimates network 

upgrade costs considering the present network capacities of all UK DNOs. 
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• It has been found in the literature that understanding uncontrolled EV charging load is 

critical to the optimal scheduling of smart charging EVs, however no methodologies 

have been found to estimate aggregated uncontrolled EV charging load and the 

uncertainty surrounding the forecast. Chapter 3 develops a methodology to forecast 

uncontrolled EV charging load on distribution networks. 

• Very large aggregations of EVs have been considered similar to energy storage 

previously to provide flexibility to the energy system on a transmission level, 

however EVs are expected to charge at distribution level in smaller aggregations with 

larger uncertainty surrounding the aggregate power and energy availability of the 

fleet. At distribution level, EVs have either been considered individual actors within 

optimisation formulations leading to scalability computational challenges, or when 

considered in aggregate the internal energy management of the fleet does not 

adequately take into account the needs of users with respect to delivering sufficient 

energy for the EV’s primary purpose of transportation. Chapter 4 develops an EV 

charging aggregation algorithm, taking account of the uncertainty of when EVs will 

be connected and ensuring EVs have the energy needed on departure for 

transportation, such that the combined fleet of EVs can be used in coordination with 

other flexible loads to deliver services to the distribution system with a high degree of 

controllability. 

• The literature has developed the RO technique to deterministically optimise the 

procurement of ESS power services under load and generation uncertainty, using the 

BoU to control the level of conservatism. Studies have considered how changing the 

BoU changes the probability of remaining within power flow and voltage constraints, 

however they have not determined what probability is economically optimal. A 

methodology to determine the Economically Optimal Probability of Success (EOPoS) 

of operating within power flow and voltage constraints is the subject of Chapter 5. 

• Previous studies have quantified the errors associated with using a DC load flow 

within an optimisation formulation when implementing the resulting power set-points 

with the full AC load flow equations. Other studies have used sensitivity factors 

calculated based on the full AC load flow equations in order to achieve a linear 

representation of the network for use within optimisation formulations, however no 

study was found that quantified the errors arising from use of sensitivity factors. 

Chapter 5 investigates the magnitude of the errors introduced through linearization of 

the AC power system through sensitivity factors for use in RO algorithms operating 

under load and generation uncertainty. 
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Chapter 3 Impact of uncontrolled electric vehicle charging on distribution 

networks 

 

3.1 Introduction 

In this Chapter, the likely impact of wide scale adoption of EVs is investigated whereby 

consumers have full choice over when they plug in and charge their vehicles. The technical 

impacts are investigated in Section 3.2, and the associated reinforcement cost to enable the 

uptake while maintaining the network within safe operating limits is investigated in Section 

3.3. Finally, a methodology to forecast uncontrolled EV charging is proposed in Section 3.4. 

The Chapter and how it fits within the Thesis as a whole is summarised in Figure 3-1. 

The work presented in Section 3.2 has been published in an Applied Energy paper in 2015 

[16]. The author took an existing PSCAD model of the test network and re-configured it to 

undertake the unbalanced analysis, and supported the preparation of the published paper 

manuscript. Others took the lead in the collection and preparation of load data. 

The work presented in Section 3.3 was undertaken in collaboration with colleagues from the 

National Centre for Energy Systems Integration (CESI) at Newcastle University with input 

from every DNO in the UK. The author undertook the Ofgem Model analysis after having 

taken the output of the TRANSFORM model from others. 

The methodology in Section 3.4 to forecast uncontrolled EV charging was developed by the 

author. 
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Figure 3-1 How Chapter 3 fits into the wider Thesis 

3.2 Technical impacts of uncontrolled electric vehicle charging 

In this section, the technical impacts of uncontrolled EV charging on domestic distribution 

networks is investigated. The technical impacts investigated include the distribution 

transformer power flow, feeder voltage drop and voltage unbalance. In this Thesis, 

uncontrolled EV charging refers to consumers having full choice over when and where they 

charge their EVs. The calculation methodology employed is described in Section 3.2.1 with 

the results presented in Section 3.2.2. 

3.2.1 Calculation methodology 

It was noted in Chapter 2 that there is uncertainty over the impact of EV charging on 

distribution networks, since no study has to date investigated the complex interactions 

between measured real world EV charging loads and measured real world domestic household 

loads for residential networks. Although computationally expensive, MCS can accurately 

handle complex uncertain variables [25] and have been used in this analysis. Non-residential 
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networks have not been studied because their loads are very industry, business-need and 

location specific [115] making it difficult to draw generalizable conclusions. 

An overview of the calculation methodology is presented in Figure 3-2. The distribution 

network model and software used in the analysis are discussed in Section 3.2.1.1, and the 

sources of data for both domestic household load and future EV load are discussed in Sections 

3.2.1.2 and 3.2.1.3 respectively 

 

Figure 3-2 Overview of calculation methodology 

3.2.1.1 Distribution network model and calculation method 

A generic network, based on [116] and shown in Figure 3-3, has been used in this study in 

order to draw broad and generalizable conclusions across the UK distribution networks as a 

whole. This network has been deemed to be representative of a heavily loaded UK 

distribution network by all UK DNOs, who were involved in specifying and creating it. It has 

also been utilised by a number of authors for modelling a generic UK distribution network in 

order to draw broad and generalizable conclusions [52, 92, 94]. It consists of a 33 kV source 

feeding two 15 MVA 33/11 kV transformers. There are six 11 kV feeders, each of which have 
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eight 500 kVA 11/0.4 kV transformers equally spaced along 3 km of underground cable. 

Downstream of each 500 kVA transformer are 4 LV feeders of 300 m in length with 96 

customers spaced equally along each feeder. The population parameters for the 386 customers 

under study on the generic network were assumed to be the same as that expected for an urban 

network as described in Table 3-1. 

 

Figure 3-3 UK Generic distribution network model 

The generic distribution network was modelled in PSCAD/EMTDC (See Appendix A for an 

image of the model), which is a commercial power systems analysis software package 

developed by the Manitoba HVDC Research Centre [117] and originally inspired by Dommel 

[118, 119]. It uses a time-domain based analysis (as opposed to frequency domain) and was 

used in this study primarily to allow the impact of unbalanced loads on the resultant voltages 

within the network to be determined. Due to a limitation on PSCAD model size, a number of 

load aggregations were made as shown in Figure 3-4 and described below: 

• Five of the 11 kV feeders were lumped into three single phase loads; Load A.  

• In the modelled 11 kV feeder, seven of the 11/0.4 kV transformers have their load 

lumped into three single phase loads, Load B. 

• Below the eighth 11/0.4 kV transformer, three LV feeders have been lumped into 

three single phase loads, Load C. 

• The most remote LV feeder has been modelled with 12 single phase loads each 

representing 8 customers (Loads D-O), separated by four modelled cables.  
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Figure 3-4 UK Generic distribution network modelled in PSCAD 
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Table 3-1 Summary of LV network and population parameters 

 Urban network 

Substation 
6.6 kV/400 V 

500 kVA 

Feeders 4 

Total LV customers 386 

Vehicle ownership 86.0% 

Number of vehicles in vehicle-owning 

households 
1.7 

ONS morphology code 1 (Urban) 

Household thermal efficiency Medium 

Percentage of households with under 

5s or over 65s 
44% 

Equivalent annual income (gross) 

60%: > £30k 

35%: £15-£30k 

5%: < £15k 

Tenure 
Effective 100% home 

ownership 

Household occupancy 97% 

 

Peak consumption of electricity is in winter in the UK. In order to assess the additional impact 

of EVs during an existing peak loading event, a single peak load test day corresponding to the 

DNO’s system peak load day in January is studied. MCS was used to build up a distribution 

of possible demands on the generic network as summarised in Figure 3-5. To reduce the 

computational burden in PSCAD, only the worst case hours of the peak day were assessed. 

This was 17:00-05:00 based upon a less computationally expensive frequency domain method 

calculated in IPSA2 and reproduced in Appendix B [16]. Load profiles for the simulation was 

produced by sampling the domestic load profile (discussed in Section 3.2.1.2) and EV 

charging profile (discussed in Section 3.2.1.3) populations. Individual households on the LV 

networks were randomly assigned load profiles in proportion to the local demographic 

makeup as defined in Table 3-1. A defined percentage of these users, corresponding to a level 

of EV penetration, were further assigned an EV load profile which was added to their base 

domestic profile. The EV penetration is defined as the ratio of EVs to the number of vehicle 

owning households. 
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 Figure 3-5 MCS sampling methodology to create load profiles for the PSCAD model 

Each load profile for 1000 simulated peak days was used in PSCAD and the transformer 

power flow, voltage magnitude and voltage unbalance was assessed once each simulation 

reached a steady-state. This was undertaken for different EV penetration levels ranging from 

0% to 100% in 5% steps. The voltage unbalance in a three-phase system is defined in 

Engineering Recommendation P29 [120] as the ratio (in per cent) between the rms value of 

the negative sequence component and the positive sequence component of the voltage. This 

can be approximated for the values of voltage unbalance of a few percent, as was the case for 

this study, as calculated by Equation ( 3.1 ): 

 

𝑉𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
(

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑝ℎ𝑎𝑠𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑠

)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑝ℎ𝑎𝑠𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑠
× 100% 

( 3.1 ) 
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1000 simulated peak days (i.e. 1000 simulation runs) were generated to ensure adequate 

variation of customer behaviour, EV charging profiles and customer location on the network. 

The generation of multiple random configurations naturally captures any spatial concentration 

of households with EVs (e.g. at the remote end of the longest feeder) which could cause 

additional voltage drops. This number of simulated days was deemed acceptable to produce 

stable and reliable estimates of simulated demand based on an analysis using the less 

computationally expensive IPSA2 in [16] and reproduced in Appendix B. For the Urban 

network with 60% EV penetration at 18.00 on the peak demand day, 1000 trials showed that 

the mean transformer demand had converged to a stable 385.8 kVA (standard error 0.29 

kVA). The standard deviation of the distribution of transformer demand had also stabilised to 

9.1 kVA.  

3.2.1.2 Domestic load data population 

The domestic household load is modelled based on the Customer Led Network Revolution 

(CLNR) project, which conducted a monitoring trial of over 9000 smart meters placed in 

residential locations in the UK. The smart meter dataset is classified by household income, 

presence of under 5 s or over 65 s, tenure, household thermal efficiency and area classification 

(urban/rural). UK Office for National Statistics (ONS) data was used to determine the 

characteristics of the study areas of this work, which are summarised in Table 3-1 along with 

the electricity network characteristics. Using the parameters in Table 3-1, a representative 

population of residential load profiles was extracted from the CLNR dataset representing the 

study areas.  

3.2.1.3 Future EV load data population 

The EV charging load is based on the SwitchEV project, which recruited different types of 

users (private and fleet drivers), who had access to an extensive charging infrastructure 

(home, work, public). The majority of vehicles used in the trial are production vehicles 

available on the market and were provided by Nissan (LEAF) and Peugeot (iOn). A total of 

125 different users were recruited for the duration of the project [121]. The dataset included 

the diversity of charge event starting SoC as a result of variables such as temperature, driving 

behaviour of users (i.e. speed) and driving conditions such as the topography of the road 

network and network conditions (i.e. free flow or congested), all affecting the driving energy 

efficiency of the vehicle and the residual energy at the end of a driving event [122]. As a 

result, the data collected from the SwitchEV trial captured how people would use an electric 

car in a real-world context. 
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The SwitchEV trial is distinctive because it collaborated with Charge Your Car (North Ltd) 

(CYC), the operator of the North East of England’s ‘‘Plugged in Places’’ project, which has 

provided one of the most extensive regional charging networks in Europe with more than 900 

charging posts installed in public, work and home locations in the region during the 

SwitchEV trial. As a consequence, the participants were not limited to one charging location 

and they had real and varied options about when and where to charge. Their homes and work 

places could be equipped with charging units; they could access charging posts on-street and 

in commercial places and public car parks; and there were twelve accessible 50 kW DC rapid 

chargers installed at strategic locations in the region. The analysis of the dataset collected 

identified the charging locations used and the energy transferred at each of these locations, 

allowing the extraction of home charging events that were used for this study.  

The EVs on the trial were leased as private and fleet cars. The charging profiles of private 

cars were used in this study. To determine the residence setting (i.e. urban vs rural) of the 

users on the SwitchEV trial, the Office for National Statistics Postcode Directory (ONSPD) 

was used. Postcodes on the ONSPD are assigned to urban or rural categories [123]. The 

postcode of the SwitchEV users were identified in the ONSPD and their residence setting was 

then determined. It was found that 70% of the SwitchEV users reside in urban areas while 

30% reside in rural Areas. 

3.2.2 Results 

Figure 3-6 shows the average and maximum loading on the transformer, and the probability 

that it remains within the transformer’s thermal limit, as EV penetration increases. The studies 

show that the maximum load is on the transformer thermal limit of this network prior to the 

addition of EVs, however due to the diversity between household load and EV charging the 

probability of remaining within the limit does not start to fall below 97.5% until an EV 

penetration of 40%. This is consistent with the frequency domain results calculated in IPSA2, 

reported in [16] and reproduced in Appendix B, and suggests that distribution networks in 

general are more robust than previous work has suggested because of the spatial, temporal and 

behavioural diversity of EV charging demand demonstrated in this study. Furthermore, the 

average demand remains well within the transformer thermal limit even at an EV penetration 

of 100%, suggesting that ESS, smart EV charging or V2G technology could potentially 

enable full electrification of the transport system without requiring traditional network 

reinforcement. 
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Figure 3-6 Maximum transformer loading magnitude observed for each EV penetration 

during all studies 

The worst case for voltage drop is at the furthest end of the feeder, and therefore the voltage 

and its unbalance were measured at the end of the 400 V feeder. Industry planning regulations 

state that the voltage unbalance should not exceed 2% when assessed over any one minute 

period, and when sustained the voltage unbalance should not exceed 1.3% for systems with a 

nominal voltage below 33 kV [120]. The minimum voltage magnitude experienced for each 

EV penetration level during all the studies is shown in Figure 3-7 and the maximum voltage 

unbalance during all the studies is shown in Figure 3-8. The results for minimum voltage are 

consistent with the maximum loading condition of the frequency domain IPSA2 study [16] 

(reproduced in Appendix B). The PSCAD results show a marginally lower minimum voltage 

than IPSA2 results as the unbalance in load and EV connections across the LV network is 

modelled. As the penetration of EVs increases the load increases and the minimum voltage 

experienced reduces, although it does not cause a statutory limit violation even with 100% EV 

penetration.  

Similarly an increase in charging load results in the unbalance of the network increasing. 

Using the 97.5% percentile, an EV penetration of 60% can be sustained on the generic 

network before the voltage unbalance would be considered an issue.  

It has been noted that during the CLNR field trials, networks have been observed to exhibit a 

voltage unbalance that frequently approaches or exceeds the 1.3% limit with no EVs charging 

at all [16]. Therefore, the impact of high EV penetrations on unbalance should not be ignored, 

however the first limit expected to be encountered as EV uptake increases is transformer 

power flow.  



 

35 

 

 

Figure 3-7 Minimum voltage magnitude observed for each EV penetration during all studies 

 

Figure 3-8 Maximum voltage unbalance observed for each EV penetration during all the 

studies 

3.3 Reinforcement costs to enable wide scale uncontrolled electric vehicle charging  

In this Section, the cost to reinforce the distribution networks to enable the largescale uptake 

of EVs is estimated. The uptake scenario studied, defined by industrial partners in 2016, is 

specified in Table 3-2. It should be noted that there is significant uncertainty surrounding the 

realised EV uptake relative to that forecast and defined in Table 3-2, since it is unknown what 

products and business models will be offered in a wide scale uptake scenario. Similarly, what 

is offered to consumers will depend on realised demand as the market develops. 

The four stages of cost estimation that were used are shown in Figure 3-9. 
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Table 3-2 Uptake scenario of EV cars and vans defined by industrial partners in 2016 
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2020 470,000 50% 93% 1% 0% 5% 1% 

2025 2,100,000 60% 87% 1% 2% 5% 5% 

2030 8,200,000 70% 80% 1% 5% 5% 10% 

2040 31,099,159 70% 80% 1% 5% 5% 10% 

 

 

Figure 3-9 Stages of cost estimation for EV uptake 

The author undertook the Ofgem model calculations presented in Section 3.3.3 within a 

Team, from CESI at Newcastle University with input from every DNO in the UK, that 

delivered the whole cost estimation. Since the Ofgem model’s input is dependent upon the 

output of the TRANSFORM model, this is briefly described along with its input data in 

Section 3.3.2. The charging point and customer connection costs are also briefly described in 

 
Charger costs, assuming 1 
charge point per vehicle 
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Sections 3.3.1. All costs are then brought together in Section 3.3.4. All values are calculated 

as of 2016. 

3.3.1 Charger and customer connection costs 

The charger costs for 2040 were extrapolated based on estimates until 2030, and the total 

capital cost is based on the uptake in Table 3-2 with an assumption of one charger per EV is 

shown in Table 3-3. 

Table 3-3 Charger capital and installation cost estimate 

 2030 2040 

All chargers £11.80bn £26.62bn 

 

Costs of single phase unbundling of looped connections and uprating some services to a three 

phase connection, to enable chargers to connect to the DNO networks were provided by 

industrial contacts within DNOs, and shown in Table 3-4. The costs do not include any 

protection or metering upgrades, or customer wiring.  

Table 3-4 Service cost estimate 

 2030 2040 

All chargers £0.74bn £2.79bn 

 

3.3.2 Distribution network at 33 kV and below (TRANSFORM model) 

The TRANSFORM model is a tool which combines network design data and future LCT 

assumptions to predict where reinforcement is required, and then completes a cost benefit 

analysis of which network technologies (conventional and smart) could be applied to 

overcome the constraint most economically. There is a brief overview of the functionality of 

the TRANSFORM model in EA Technology’s product brochure [124], and its modelling 

method and data are described in [125].  

Only networks of 33kV and below are considered in the TRANSFORM model. For network 

modelling, load flow is not used due to the scale of the model and only a parametric model is 

used. Load diversity and different types of buildings are considered by the model, and all 

profiles for LCTs are fully diversified. The lack of diversity that can occur on LV networks is 

dealt with via scaling factors in line with accepted industry practice. 
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The EV uptake scenarios were based on that presented in Table 3-2. Highly diversified EV 

load profiles were based upon data taken from the SwitchEV project similar to that used in 

Section 3.2. A less diverse profile might be appropriate for earlier periods of the model, and 

thus costs might be underestimated for the period 2016-2030. Therefore a TRANSFORM 

scenario was created with load profiles increased by 50%, to (very roughly) reduce the 

diversity of the load profile. Since the TRANSFORM model looks forward for the most 

economical solution over time, an estimation of the number of EVs for 2050 was required for 

the TRANSFORM model. This was done through extrapolation as shown in Table 3-2 and as 

a result the number of EVs for 2050 is very large. Therefore the later costs for the period 

2031-2050 could be an overestimation. 

Two scenarios, namely Business As Usual (BAU) and incremental, were studied. The BAU 

approach includes only conventional network reinforcement and does not include smart grid 

solutions. On the other hand, the incremental approach considers smart grid solutions such as 

meshing radial networks, RTTR and ESS. All DNOs agreed the appropriate technology 

solutions to include in the incremental case, and the year from which they could be applied in 

the model. 

A simplistic smart charging EV solution was implemented within TRANSFORM based on 

work done by the University of Manchester where they evaluated outputs from the My 

Electric Avenue project and assessed how much demand could successfully be constrained 

using smart charging [126]. These results were fed into the TRANSFORM model to provide 

an increase in capacity on those networks where the solution is applied, which is equal to the 

amount of demand that can be constrained. Therefore the maximum demand arising due to 

EV uptake is not altered in the TRANSFORM outputs, but the networks are assumed to have 

greater ability to cope with the demand levels. The maximum demand was then post 

processed to reduce it by the appropriate amount.  

Maximum demand in the BAU scenario is shown in Figure 3-10, and is the input to the 

authors work utilising the Ofgem model in Section 3.3.3. The blue curve is the maximum 

demand and the dashed line is the maximum demand in 2016, which is approximately 56 

GW. Despite the uptake of EVs, the peak demand decreases from 2016 to 2020 because the 

assumptions of improvements in energy efficiency outweigh the new EV load. Peak demand 

starts to increase from 2020. By 2025 and 2030, maximum demand is 56.8 GW and 62.4 GW, 

respectively. 
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Figure 3-10 Maximum demand in BAU scenario from 2016 to 2040 

The network reinforcement costs to facilitate the increased demand for the BAU scenario is 

shown in Figure 3-11 along with the cumulative number of EV cars and vans. By 2020, 2025 

and 2030, cumulative gross total expenditure is £0.36bn, £1.01bn and £2.61bn, respectively. 

Cumulative Totex and cumulative vehicle stocks follows an approximate linear relationship in 

Figure 3-11. 

 

Figure 3-11 Cumulative BAU gross Totex and cumulative cars and vans stock from 2016 to 

2040 

In the incremental scenario, smart grid solutions such as RTTR and meshing radial networks 

are considered. It is found that the use of smart grid technologies can reduce the total 

expenditure for network reinforcement. In 2020, 2025 and 2030, the savings achieved by the 
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use of smart grid solutions is £0.14bn, £0.28bn and £0.86bn respectively, as illustrated in 

Figure 3-12. 

 

Figure 3-12 Cumulative gross Totex for BAU and incremental scenarios 

A summary of the gross and discounted Totex between 2020 and 2040 is shown in Table 3-5, 

using a discount value of 3.5%. 

Table 3-5 Summary of gross and discounted Totex between 2020 and 2040 

Year 2020 2025 2030 2035 2040 

Gross Totex 

Baseline, BAU £0.36bn £1.01bn £2.61bn £8.04bn £14.94bn 

Baseline, Incremental £0.22bn £0.74bn £1.75bn £5.49bn £11.59bn 

Reduced diversity, BAU £0.36bn £1.05bn £3.71bn £13.30bn £23.28bn 

Reduced diversity, Incremental £0.22bn £0.76bn £2.81bn £7.65bn £16.53bn 

Discounted Totex 

Baseline, BAU £0.33bn £0.85bn £1.87bn £4.86bn £8.06bn 

Baseline, Incremental £0.20bn £0.60bn £1.26bn £3.32bn £6.14bn 

Reduced diversity, BAU £0.33bn £0.88bn £2.60bn £7.94bn £12.67bn 

Reduced diversity, Incremental £0.21bn £0.63bn £1.95bn £4.66bn £8.82bn 

 

3.3.3 Distribution network at 33 kV and above (Ofgem model) 

With advice provided by Iain Miller, Head of Innovation at NPg, the Ofgem model [127] is 

based upon the 33kV and above project specific upgrade costs that each DNO provided to 

Ofgem for the RIIO-ED1 price control. Ofgem compared these costs over a 13 year period 
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across all the 14 DNO license areas and specified, using the model, an acceptable upgrade 

cost level that can be passed onto the consumer.  

The model is based upon two main criteria; the capacity by which to upgrade, and the cost of 

those upgrades. These are considered in Sections 3.3.3.1 and 3.3.3.2 respectively, before the 

model is brought together to calculate the allowable costs in Section 3.3.3.3 and the results 

presented in Section 3.3.3.4. The limitations of the Ofgem model are then discussed in 

Section 3.3.3.5. 

3.3.3.1 Capacity by which to upgrade 

When a circuit gets close to its maximum capacity, a small growth in maximum load will 

require a network upgrade. In order to allow for further future load growth without 

continually requiring expensive upgrades; some additional capacity is installed on top of that 

causing the upgrade to take place. The ratio of capacity added against maximum demand 

growth is used within the Ofgem model and labelled, α. 

During the RIIO-ED1 review, each DNO specified what their expected maximum demand 

growth would be, and the resulting project specific upgrades required. This allowed for the α 

value to be calculated for each DNO. The cost that Ofgem allowed a DNO to pass onto 

consumers was based upon limiting α for each DNO by the median of all α values across the 

industry. By limiting the value, Ofgem ensured that excessive over-engineering is not taking 

place, while still allowing economically efficient network development over the long term. 

The median α value was 7.69 across all DNOs. This is appropriate for the RIIO-ED1 period 

for BAU with small changes in maximum demand in isolated locations. With the large scale 

deployment of EVs adding significant maximum load growth over a short period of time, this 

may not be appropriate.  

With a large change in demand, it may be more appropriate for the consumer to fund the 

upgrades that would leave the network in the same overall state of utilisation that they are 

presently in. This could be defined as the same over capacity in MVA regardless of maximum 

demand, or the utilisation could be defined as a multiple of the maximum demand. The latter 

would result in a growth in spare capacity proportional to the increase in maximum demand. 

During this work, the ratio of total system capacity against total system maximum load, 2.58, 

has been used in place of α. If the networks were to be left in the same level of utilisation in 

MVA regardless of maximum demand then an α value of 1.00 should be used. 
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3.3.3.2 Cost of upgrades 

Once the capacity to be upgraded has been decided, the cost of those upgrades must be 

considered. There are two measures used within the model to calculate the allowable cost of 

upgrades: 

• The historical cost of the network per MVA based on the Modern Equivalent Asset 

Value (MEAV) 

• The DNOs forecast for the project specific upgrade costs 

The ratio of the DNO forecast upgrade costs divided by the historical cost of their network is 

calculated, and is labelled β. During RIIO-ED1, Ofgem limited this value for each DNO to the 

median of β across the industry.  

The median value of β, 0.94, has been utilised during this work. 

3.3.3.3 Allowable costs 

The allowable costs under the Ofgem model, for the purposes of this work, are described in 

equation ( 3.2 ). 

𝐶𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 = 𝐺 × 𝐻 × 𝛼 × 𝛽 ( 3.2 ) 

 

Where: 

𝐶𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 Allowable cost to the consumer, £m 

𝐺  Growth in maximum demand, MVA 

𝐻   Historic cost of the network based upon the MEAV, £m/MVA 

𝛼  Allowable ratio of capacity to be upgraded relative to the growth in maximum 

demand 

𝛽  Allowable ratio of expected upgrade costs relative to the historical network 

cost 

The model results in a linear relationship between growth in maximum demand and the 

allowable cost to the consumer of network upgrades. 

When there are small changes in maximum load growth and an α value of 7.69 is appropriate, 

the Ofgem model becomes equation ( 3.3 ). 
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𝐶𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 = 1.8922𝐺 ( 3.3 ) 

 

However, for the EV uptake scenarios proposed and a large increase in maximum load an α 

value of 2.58 is more appropriate, whereby the Ofgem model becomes equation ( 3.4 ). 

𝐶𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 = 0.6546𝐺 ( 3.4 ) 

 

3.3.3.4 Results of the Ofgem model 

The input to the Ofgem model is the maximum load growth in MVA, as estimated by the 

TRANSFORM model. Table 3-6 summarises the estimate of costs associated with this load 

growth as found using the Ofgem model for the time period up to 2030 and Table 3-7 for the 

time period up to 2040. 

Table 3-6 Results from the Ofgem cost model, estimating total network upgrade costs up to 

2030 

2030 Baseline Reduced diversity 

 BAU Incremental BAU Incremental 

TRANSFORM model 

maximum load growth (MVA) 

6,268 6,268 7,755 7,755 

Ofgem model cost 

[33 kV and above] 

£4.10bn £4.10bn £5.08bn £5.08bn 

 

Table 3-7 Results from the Ofgem cost model, estimating total network upgrade costs up to 

2040 

2040 Baseline Reduced diversity 

 BAU Incremental BAU Incremental 

TRANSFORM model  

maximum load growth (MVA) 

27,479 27,477 33,694 33,694 

Ofgem model cost  

[33 kV and above] 

£17.99bn £17.99bn £22.06bn £22.06bn 
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3.3.3.5 Limitations of the Ofgem model 

The Ofgem model project specific upgrades includes voltages of 33 kV and higher. The 

MEAV includes all voltages.  

The Ofgem model considers only the limited smart technologies that were proposed during 

the RIIO-ED1 business plans at present prices. Further expected innovation within the 

industry should enable new technologies to become available potentially reducing the costs, 

potentially involving the flexibility of the EVs being charged at the lower voltages. 

Rural and urban networks have varying operating costs associated with them; based on their 

different nature. The Ofgem model takes this into account by comparing expected costs with 

historical costs. By taking the allowable costs applied across the whole country, the 

assumption is being made that the load increase is proportional to the size of the existing 

network in each area of the country. This may not be the case, and a more detailed analysis of 

the location of the greatest load increase may be required for more accurate upgrade cost 

estimation. 

The model estimates the cost, at present values, to upgrade the networks by the growth in 

maximum demand such that the level of overcapacity remains similar to that observed within 

the network at the moment. It does not consider at what point in time those upgrades are 

undertaken and therefore the associated issues with cost of capital, change in costs for using 

the various upgrade technologies, or availability of labour to undertake the upgrades which 

may impact upon costs. Because of this, it is appropriate to compare Ofgem cost estimates 

with the discounted present value cost estimates of the TRANSFORM model, which is shown 

in Section 3.3.4. 

3.3.4 Total costs 

To obtain the total cost, the estimates for charger installation, service upgrades, LV & HV 

reinforcement (TRANSFORM model) and EHV (Ofgem model) must all be summated. In 

addition however, these costs do not include indirect costs such as training for technicians, 

design, project management and end to end procurement. Currently, technicians are not used 

to connecting three-phase supply to households. Necessary training needs to be provided to 

the technicians installing three-phase home chargers. During the implementation of network 

reinforcement, costs of design and project management should be considered as well. DNOs 

have estimated the indirect costs as a percentage of total cost. The mean value of DNOs’ 

estimations, 27%, is used as the percentage uplift of total cost. 
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All costs, including the indirect costs, are shown in Table 3-8 for 2030 and Table 3-9 for 

2040. 

Table 3-8 All estimated costs associated with EV uptake for 2030, present value, including 

indirect costs 

 LV+HV 

(<33 kV) 

EHV 

(≥33 kV) 
Services Chargers TOTAL 

Baseline,  

BAU 
£2.37bn £5.21bn £0.94bn  £11.80bn £20.32bn 

Baseline, 

Incremental 
£1.60bn £5.21bn £0.94bn  £11.80bn £19.55bn 

Reduced diversity, 

BAU 
£3.30bn £6.45bn £0.94bn  £11.80bn £22.48bn 

Reduced diversity, 

Incremental 
£2.48bn £6.45bn £0.94bn  £11.80bn £21.66bn 

 

Table 3-9 All estimated costs associated with EV uptake for 2040, present value, including 

indirect costs 

 LV+HV 

(<33 kV) 

EHV 

(≥33 kV) 
Services Chargers TOTAL 

Baseline,  

BAU 
£10.24bn £22.84bn £0.55bn  £26.62bn £63.25bn 

Baseline, 

Incremental 
£7.80bn £22.84bn £3.55bn  £26.62bn £60.81bn 

Reduced diversity, 

BAU 
£16.09bn £28.01bn £3.55bn  £26.62bn £74.27bn 

Reduced diversity, 

Incremental 
£11.20bn £28.01bn £3.55bn  £26.62bn £69.38bn 

 

3.4 Forecasting uncontrolled electric vehicle charging load 

In this Section, a methodology is developed to forecast aggregated uncontrolled EV charging 

load on distribution networks and quantify the UI surrounding that forecast. The methodology 

is developed considering standard charging in Section 3.4.1 before being applied to rapid 

charging in Section 3.4.2. 
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3.4.1 Uncontrolled standard charging 

The SoC at the start of a charging event, along with the arrival and departure time has been 

shown to be stochastic based on time of day and the number of charging events per vehicle 

per day [21]. The number of charging events per vehicle per day itself is also stochastic. 

Therefore the electrical load on the network is also stochastic based on time of day. Using the 

stochastic relationships reported from real world weekday trials in [21] a MCS of 1000 

simulated days has been undertaken, assuming a charge point rating of 3.6 kW, to gain a 

greater understanding of the uncertainty of aggregated uncontrolled EV standard charging 

dependent upon the time of day. The load of each individual vehicle was calculated with a 

minutely resolution, with the aggregated load on the network calculated as the average over 

each 30 minute settlement period. It was assumed that a parking bay was always available 

when an EV wanted to charge. The methodology used to calculate the uncertainty of 

aggregated uncontrolled EV standard charging dependent upon time of day is summarised in 

Figure 3-13.  

The results of this study, displayed in Figure 3-14, shows the mean aggregated uncontrolled 

EV charging load for 750 EVs per day, and the associated three times diurnal standard 

deviation. Three standard deviations either side of the mean creates a diurnal minimum and 

maximum and thus an UI, shown in Figure 3-15, for which it is expected 99.7% of values will 

fall within. It should be noted however that the distributions used [21] are of early adopters, 

and could change as the market develops to a wide scale EV uptake scenario. 
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Figure 3-13 Methodology to calculate the aggregated EV standard charging load uncertainty 
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Figure 3-14 Mean load and 3x standard deviation of 750 EVs standard charging per 

weekday, using the arrival time and SoC statistics in [21] 

 

Figure 3-15 Load UI of 750 EVs standard charging per weekday, using the arrival time and 

SoC statistics in [21] 

Figure 3-15 represents the range of aggregated diversified load for 750 EVs standard charging 

each day, without any prior knowledge of each individual vehicles’ intentions regarding when 

they intend to charge. However, it is possible to imagine through smart communications that 

there be knowledge regarding the existing load on the network from EV charging, which 

could influence future load in the short term based on the stochastic time that EVs remain 

connected to the network for, without requiring consumers to indicate their future intentions. 

This is investigated below. 
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All load values, and the time at which they were observed within the MCS, were saved and 

then post-processed. The difference between a value ‘here and now’ and 0-48 settlement 

periods ahead was calculated as shown by ( 3.5 ). Over the 1000 simulated days of the MCS, 

1000 different values of  ∆𝐿 𝑡,𝑗  are found for each t and j, allowing for a standard deviation to 

be calculated. Three times the standard deviation represents the short term UI relative to the 

existing ‘here and now’ load for which 99.7% of values will fall within at j settlement periods 

ahead.  

∆𝐿 𝑡,𝑗 = 𝐿𝑡 − 𝐿𝑡+𝑗  ( 3.5 ) 

Where: 

∆𝐿 𝑡,𝑗 Difference in uncontrolled EV charging load between settlement period t and 

settlement period t+j, kW 

𝐿𝑡  Uncontrolled EV charging load at settlement period t, kW 

𝐿𝑡+𝑗 Uncontrolled EV charging load at j settlement periods ahead of settlement 

period t, kW 

The short term UI was then normalised against the longer term diurnal UI (shown in Figure 

3-15) for the appropriate settlement period of the day. This gives 48 normalised values, one 

for each ‘here and now’ settlement period, for each horizon looking forward. The value 

represents the proportion of the longer term diurnal UI which is appropriate in the shorter 

term relative to the existing ‘here and now’ load. Therefore, a value greater than 1.0 becomes 

meaningless since it exacerbates the UI to be greater than that observed with no knowledge of 

the existing load. The minimum, maximum and mean of the normalised values for each 

horizon looking forward is shown in Figure 3-16, and demonstrates that reduced uncertainty 

based on existing ‘here and now’ load can be estimated up to 1.5 hours ahead for standard 

charging. 
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Figure 3-16 Proportion of the diurnal UI that can be reduced based on the existing ‘here and 

now’ known EV standard charging load and the forecasting horizon looking forward 

Therefore the minimum and maximum bounds for which all values are expected to fall within 

can be estimated by ( 3.6 ). 

𝑃𝑡,𝑗
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

= 𝐿𝑡 + 𝐷𝑡,𝑡+𝑗 ± 𝑛𝑗𝑊𝑡+𝑗
𝑑𝑖𝑢𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 ( 3.6 ) 

Where: 

𝑃𝑡,𝑗
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 Expected uncontrolled EV charging aggregated load range at 

settlement period t, looking forward by j settlement periods, kW 

𝐿𝑡  ‘Here and now’ uncontrolled EV charging load at settlement 

period t, kW 

𝐷𝑡,𝑡+𝑗  Difference between the longer term diurnal expected 

uncontrolled EV charging load at settlement period t and 

settlement period t+j, kW 

𝑛𝑗  Short term forecast UI of aggregated uncontrolled EV charging 

load as a proportion of the diurnal UI for a forecast horizon of j 

settlement periods, as shown in Figure 3-16, % 

𝑊𝑡+𝑗
𝑑𝑖𝑢𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 Three times the standard deviation of the longer term expected 

diurnal aggregated uncontrolled EV charging load at settlement 

period t+j, kW 
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The method results in a ‘cone’ of increasing uncertainty, from zero uncertainty at the ‘here 

and now’, up to the full diurnal UI 1.5 hours ahead. This is shown in Figure 3-17 for a ‘here 

and now’ load at the mid-point of the diurnal expected range at settlement period 0. 

 

Figure 3-17 Cone of increasing uncertainty looking forward from settlement period 0, 

assuming the ‘here and now’ load is the mid-point of the diurnal expected range 

To check the methodology and the formula given in ( 3.6 ), two forecasts have been 

developed using a ‘here and now’ load at the mid-point of the longer term diurnal expected 

range at settlement period 0 in Figure 3-18 and settlement period 30 in Figure 3-19. For each 

example, the maximum and minimum ∆𝐿 𝑡,𝑗  has been plotted relative to the ‘here and now’ 

value to demonstrate that the method works effectively when the ‘here and now’ load is at the 

mid-point of the diurnal expected range. 

The methodology proposed means that if the ‘here and now’ load is higher than the midpoint 

of the diurnal range, then the forecasted minimum and maximum will be higher than the 

diurnal minimum and maximum respectively when looking forward more than 1.5 hours 

ahead. The assumption being made here is that all stochastic decisions are independent, which 

is a valid assumption regarding new vehicles arriving and their initial SoC. However, it is not 

necessarily a valid assumption regarding when vehicles leave since this is in part dependent 

upon arrival time and initial SoC. Therefore the methodology is appropriate when the 

aggregate ‘here and now’ load is close to the mid-point of the diurnal range. When the ‘here 

and now’ load is close to the extremes of that expected by longer term diurnal analysis, the 

method is expected to become less accurate of the true uncertainty bounds.   
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Figure 3-18 Derived short term forecast looking forward from settlement period 0 and the 

maximum and minimum experienced load relative to the ‘here and now’ load during all 1000 

days of the monte-carlo simulation 

 

Figure 3-19 Derived short term forecast looking forward from settlement period 30 and the 

maximum and minimum experience load relative to the ‘here and now’ load during all 1000 

days of the monte-carlo simulation 
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3.4.2 Uncontrolled rapid charging 

To consider the uncertainty of forecasted rapid charging, the distribution of charge duration 

and the distribution of the time of arrival were taken from [128]. Similarly to Section 3.4.1 the 

analysis has been based on a MCS of 1000 days, however it is assumed that 100 EVs are 

rapid charging per day. 

The UI has been calculated at each time of the day based on three times the standard deviation 

as was the case with standard charging. If this was an UI around the mean aggregated load 

however, then the expected minimum load would regularly suggest significant negative load, 

or V2G, which is clearly not appropriate. This is because of a higher aggregated load 

uncertainty caused by the larger charge point rating of the rapid charger, and a lower 

aggregated mean load because of only 100 EVs per day instead of the 750 EVs studied for 

standard charging in Section 3.4.1. The midpoint between the maximum and minimum load 

observed within the MCS was chosen as appropriate since it results in the diurnal minimum 

load being approximately zero (as opposed to negative) throughout the day. The resulting 

diurnal expected aggregate load range for the 100 rapid charging EVs each day is shown in 

Figure 3-20. As with Section 3.4.1, the load of each individual vehicle is calculated on a 

minutely resolution, and the diurnal expected range is shown in Figure 3-20 is calculated 

based on the average aggregate load over each 30 minute settlement period. Furthermore, it 

should be noted that the time of arrival and charge duration probability distributions used 

[128] are of early adopters, and could change as the market develops to a wide scale EV 

uptake scenario. 

 

Figure 3-20 Load UI of 100 EVs rapid charging per day, using the arrival time and duration 

statistics in [128] 



 

54 

 

The same method used in Section 3.4.1 has been utilised to estimate the UI derating relative 

to the diurnal rapid charging load. This has been done on a 4 minutely resolution rather than 

30 minutes, since EVs come and go much more frequently when rapid charging than standard 

charging. A 4 minute resolution was chosen since it was the smallest time step that could be 

calculated with the 4 GB RAM of computing resource available at the time of the calculation. 

The resulting proportion of the diurnal UI that can be reduced based on the existing ‘here and 

now’ known EV rapid charging load and the forecasting horizon looking forward is shown in 

Figure 3-21. 

 

Figure 3-21 Proportion of the diurnal UI that can be reduced based on the existing ‘here and 

now’ known EV rapid charging load and the forecasting horizon looking forward 

It can be seen in Figure 3-21 that the reduced uncertainty based on existing ‘here and now’ 

load can be determined up to 24 minutes ahead for rapid charging. 

This analysis assumed that no queuing takes place which may not be the case in the future 

according to [70]. Knowledge regarding queue length may enable short term forecasting over 

a longer time period than 24 minutes. 

3.5 Chapter conclusions and contributions to knowledge 

A comprehensive study considering the complex interactions of real world measured domestic 

EV charging load and measured domestic household load has been investigated, for its impact 

on transformer thermal loading, voltage magnitude and voltage unbalance. This is the first 

such study that the author is aware of that has investigated these impacts using real world 

measured EV charging loads. It was identified that the first constraint likely to impact EV 

uptake is the thermal limit of the transformer, however it was also shown that the average load 
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at 100% EV penetration was below the transformers limit suggesting that ESS or smart 

charging could potentially be a solution. Furthermore, the cost of upgrading the network if 

smart charging was not implemented was estimated for wide-scale EV uptake in the UK. This 

is the first study to investigate the allowable cost to the consumer of upgrades associated with 

wide-scale EU uptake, taking into account the individual network characteristics of each 

DNO. This cost also represents the potential maximum value that is economical for DNOs to 

pay smart charging EV aggregators over the typical life of a reinforced network asset to 

compensate them for delivering services to offset the reinforcement. 

A methodology has been developed to forecast uncontrolled EV charging load, and the 

uncertainty around that forecast dependent upon the time looking forward. After around 1.5 

hours, the uncertainty is as wide as that which could be determined by long term diurnal 

analysis for standard charging. For rapid charging, the time at which the uncertainty is as wide 

as that which could be determined by long term diurnal analysis is 24 minutes. The smaller 

the forecast horizon, the smaller the UI was observed. For both standard and rapid charging, 

the analysis was undertaken for a set number of vehicles per day. If this were to change, the 

level of diversity would change resulting in different levels of uncertainty. It is unknown to 

what extent this would impact upon the reduced UI that can be determined from a short 

forecast horizon, and is an area for potential future research. 

 



 

56 

 

  



 

57 

 

Chapter 4 Available flexibility of electric vehicles 

 

4.1 Introduction 

The approach adopted in this Chapter is to determine the power range flexibility, and duration 

over which it can be maintained, that can be reliably called upon from EVs in aggregate to 

form a VESS. Using the VESS as an input to wider microgrid control systems has advantages 

over considering the EVs individually through reduced computational challenge leading to 

better scalability with EV uptake, while also enabling the microgrid control algorithms to 

optimise the EV power demand flexibility alongside other forms of power flexibility.  

The available power and energy flexibility that could be called upon from an EV fleet in 

aggregate is investigated in Section 4.2. An algorithm to control the energy management 

within the EV fleet to achieve the flexibility is developed in Section 4.3, before being tested 

in relation to a work based car park in a case study in Section 4.4. This work was presented at 

the CIRED conference in 2017 in Glasgow, with the oral presentation available to watch 

online on IET TV [129] and the associated paper was published in the subsequent CIRED 

journal [130]. 

An algorithm to utilise the work based car park within a VPP delivering an EFR service to the 

wider grid is then developed in Section 4.5. This work was published at the CIRED workshop 

in 2016 in Helsinki [131]. 

The Chapter and how it fits within the Thesis as a whole is summarised in Figure 4-1 
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Figure 4-1 How Chapter 4 fits into the wider Thesis 

4.2 Aggregated power and energy flexibility from an electric vehicle fleet 

In order for EVs to be considered as a VESS, the equivalent energy capacity and power rating 

of the fleet in aggregate must be established. Provided the energy management within the EV 

fleet ensures no vehicle reaches a SoC limit before any other vehicle, the aggregate maximum 

and minimum power and energy demands can be defined as follows: 

• The maximum potential power demand is the sum of all the charge point ratings where 

vehicles are plugged in. 

• The minimum potential power demand (or maximum V2G supply) is the sum of all 

the charge point V2G ratings. 

• The maximum potential energy demand is 100% minus the present SoC, multiplied by 

the battery capacity. 

• The maximum potential energy supply is the present SoC, multiplied by the battery 

capacity. 



 

59 

 

Since the arrival time, arrival SoC and departure time are all stochastic [21] for which the 

aggregate power and energy are dependent; the aggregate power and energy flexibility is also 

stochastic. 

4.3 Electric vehicle fleet energy management 

The algorithm developed to control the internal energy management of the EV fleet to form a 

VESS is shown in Figure 4-2 and described next. A deterministic rule based algorithm has 

been developed for fast real time implementation without requiring, or potentially in the 

absence of, certain knowledge of future grid requests. 

In any EV flexible charging algorithm, it must be ensured that all vehicles have sufficient 

energy at departure; otherwise consumers will not charge their EVs by plugging into a charger 

utilising the control strategy. How the EVs get to that minimum SoC at the time of departure 

is irrelevant (if neglecting battery degradation issues). Therefore, if a vehicle requires its 

charge point’s fully rated demand to achieve the minimum SoC in the time remaining before 

departure, this is allocated to those vehicles. The remaining power requirement to meet that 

requested of the VESS must then be shared between all other vehicles. 

In being sympathetic to battery degradation, the remaining power required should be shared 

between as many vehicles as possible. In that way both C-rates and V2G-induced additional 

cycles’ depths of discharge are kept to a minimum. The downside to this simple concept is 

that those vehicles that have an initially high SoC can easily reach 100% SoC resulting in 

them losing the ability to demand power. To reduce the occurrence of this situation, when the 

remaining required aggregate power is charging power, it is averaged between only the EVs 

that are presently below the SoC required at departure. Those vehicles with a SoC above the 

minimum at departure only demand power if additional aggregated power is required to meet 

the grid request. When V2G power is required in aggregate, the power is shared between all 

vehicles that do not require fully rated demand to meet the minimum SoC at departure, 

regardless of their SoC. 
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Figure 4-2 Algorithm deciding individual EV power exchange 

By actively controlling the charging process, there will inevitably be an impact on the EV 

battery degradation and consequentially an economic impact on the EV owner. This cost is 

very difficult to quantify, and an active area of research in its own right. A qualitative 

assessment of the impact is given below, based on the battery degradation characteristics 

described in Section 2.3.1. 

Additional cycling: With the proposed control algorithm, it is expected that an individual 

vehicle will rarely give up energy to charge another vehicle via the grid, and in most cases 

will only act as V2G when the aggregate power requirement of the grid is from the VESS and 

to the grid. Therefore additional charging cycles, causing additional degradation, are likely to 

only be created when the aggregate power required is V2G. 

Charging rates: At present, vehicles charge at the rating of the charge point. In the proposed 

algorithm, the averaging of power across all vehicles reduces the charge rate meaning that the 
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battery degradation through charging could be expected to reduce, relative to present charging 

arrangements. 

State of charge: By charging at a rate lower than the charge point rating, or using V2G, the 

SoC will be at a lower level relative to uncontrolled charging. This results in a reduced 

degradation effect on the battery. 

Overall impact: It is expected that charging flexibility can be realised, using the algorithm 

presented, with reduced degradation in the majority of situations relative to uncontrolled 

charging. If the VESS is supplying power to the grid then an increase in degradation could be 

expected. 

4.4 Case study: work based car park 

In this case study, the VESS is applied to a work based car park and the response to two grid 

defined power set-point profiles is tested. The car park characteristics are described along 

with the resulting power and energy availability of the VESS in Section 4.4.1. The response to 

the two power set-point profiles is then tested in Section 4.4.2.  

4.4.1 Characteristics of the work based car park 

Consider an EV charging station with 50 spaces at a work-based site. The number of vehicles 

arriving in a day is assumed to follow a normal distribution, with a mean of 45 and standard 

deviation of 3. The arrival time for each vehicle is established using a normal distribution, 

with the average car arriving at 09:00 with a standard deviation of 1.2 hours. Similarly for 

departure time, a normal distribution is used with the average car departing at 18:00 with a 

standard deviation of 1.2 hours. This is consistent with the weekday modelling approach used 

in [107]. A more detailed statistical analysis of EV charging times was undertaken in [21]. 

The SoC on arrival is based on the SwitchEV project [16] and is established using a normal 

distribution with an average of 53% and a standard deviation of 15%. The battery capacity of 

all vehicles was assumed to be 24 kWh, with a requirement for 80% SoC on departure. It was 

assumed that the charge rating is 7 kW and V2G rating is 3 kW.  

A model of the work based car park was developed in Python based on the statistical 

distributions described and calculated based on a time-step of 1 minute. Based on a MCS of 

1000 days, the stochastic maximum and minimum aggregate power demand percentiles of the 

parked EV fleet is shown in Figure 4-3 and Figure 4-4 respectively. 



 

62 

 

 

Figure 4-3 Maximum aggregate power demand percentiles of the VESS on the grid 

 

Figure 4-4 Minimum aggregate power demand (or maximum power supply) percentiles of the 

VESS on the grid 

If the higher level controller of VESS output can handle uncertainty, such as that proposed in 

[54], then a greater level of flexibility can be utilised than if the VESS alone is being relied 

upon to ensure the robustness of the network against thermal and voltage limit violations. In 

such a situation where the EVs are being fully relied upon, then the VESS power should be 

limited to the region bounded by the minimum of Figure 4-3 and the maximum of Figure 4-4. 

This could be considered somewhat pessimistic and in this Chapter the 5th and 95th percentiles 

have been used as the maximum and minimum bounds, respectively, giving a 90% 
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confidence. A 90% confidence interval was chosen as it corresponds to the qualitative term 

‘almost certain’ [132]. 

Figure 4-3 and Figure 4-4 assume that no vehicles have reached their SoC limits and can 

contribute their fully rated power. This may not be the case depending on the internal energy 

management of the EV fleet, and the previously called services of the VESS by the grid 

controller. 

The percentiles of maximum and minimum aggregate energy available based on the arrival 

SoC as determined by the stochastic modelling and a departure SoC of exactly 80% for all 

vehicles is shown in Figure 4-5 and Figure 4-6, respectively. To achieve a 90% confidence of 

delivering to the grid what is requested, the energy exchange should remain within the region 

bounded by the 5th percentile in Figure 4-5 and the 95th percentile in Figure 4-6. These two 

lines cross shortly after 18:00, however making it impossible to achieve. This is due to the 

assumption that all vehicles leave with exactly 80% SoC in the figures, which may not be 

exactly true depending on the internal energy management of the EV fleet and the number of 

vehicles parked on any particular day. Instead the range should consider the potential for 

some vehicles to leave with more than the minimum 80% SoC and as such the 5th percentile 

in Figure 4-5 is taken to not reduce once it reaches its maximum value and corresponds to all 

the vehicles having 100% SoC or less on leaving, 95% of the time, assuming the internal 

energy management ensures all EVs would reach 100% SoC at the same time. 

 

Figure 4-5 Maximum aggregate energy demand percentiles of the VESS on the grid 
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Figure 4-6 Minimum aggregate energy demand (or maximum power supply) percentiles of the 

VESS on the grid 

4.4.2 Response of the VESS 

Using the power and energy bounds defined from the probabilistic analysis in Section 4.4.1, 

two possible VESS service requests have been developed within MS Excel. Profile A is 

shown in Figure 4-7 and displays a low constant load while profile B shown in Figure 4-8 

displays higher load variability while reaching the defined power and energy bounds 

numerous times throughout the day. 

 

Figure 4-7 Grid power decision, Profile A: Low constant load 
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Figure 4-8 Grid power decision, Profile B: High variability load reaching both power and 

energy bounds 

For each VESS power profile, 1000 days of MCS was undertaken using the Python model as 

described previously in Section 4.4.1 and the internal energy of the EV fleet is managed using 

the control logic of Figure 4-2. The realised percentiles of power delivered to the grid within 

the MCS is shown in Figure 4-9 for profile A and in Figure 4-10 for profile B. In both 

profiles, the grid demanded output is realised in the majority of cases, and when it is not then 

the value delivered is often close to that requested. Over the full day, the probability of 

realising profile A was 99.98% and the probability of realising profile B was 98.83%. 

 

Figure 4-9 Resulting power percentiles delivered to the grid, Profile A: Low constant load 
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Figure 4-10 Resulting power percentiles delivered to the grid, Profile B: High variability load 

reaching both power and energy bounds 

In Figure 4-9 at around 16:20, there are some days within the MCS that the VESS was unable 

to deliver the service requested by the grid. It is unlikely to be as a result of vehicles leaving 

earlier than normal because the power demanded is significantly below the maximum power 

bound in Figure 4-7. The energy delivered to the VESS is, however, relatively close to the 

maximum energy bound and as such the loss of control is due to some vehicles reaching 

100% SoC and being unable to demand any further energy. Additional power is demanded on 

some days within the MCS at around 20:00. This is because the SoC of some EVs are below 

the minimum at departure when the desired VESS demand is zero. 

In Figure 4-10, the power delivered around mid-day is less than that requested of the VESS. 

This is likely to be due to some days within the MCS having either too few EVs, or EVs 

reaching 100% SoC, or a combination of the two, since both desired power and energy are 

close to the bounds at this point in time in Figure 4-8. In a similar way to that described for 

profile A, there is a limited loss of control at around 19:30 when the EVs start to leave, where 

the VESS request is close to both the power and energy bounds. 

From these studies, it can be concluded that there is a high degree of controllability of the 

VESS for the majority of the day. When vehicle numbers reduce to very low numbers, the EV 

fleet becomes less reliably controllable. If the car park was located where new EVs were 

always arriving as suggested in [21] then this limited loss of control would be reduced, 

however new vehicles always arriving would make it more difficult to know the available 

energy, or Virtual State of Charge (VSoC). In the case study shown there is always a 

recalibration point at the start and end of the day when there are zero vehicles in the car park. 
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The closer the energy delivery is to the mid-point of the upper and lower energy bounds in 

Figure 4-7 and Figure 4-8, the less likely and severe the reduced controllable period becomes. 

To consider an extreme case of the reduced controllable period of the day, one further study 

has been conducted whereby the VESS is requested to demand no power throughout the full 

day. It results in the EVs all waiting until the last moment to charge, and then do so at full 

charge point rating. The resulting power demand percentiles of the VESS are shown in Figure 

4-11. This is similar to the load profile that could be expected from uncontrolled charging for 

the work based car park, but at the end of the day rather than at the start when the vehicles 

arrive. 

 

Figure 4-11 Uncontrolled charging demand percentiles at the end of the day resulting from 

no energy delivered throughout the day 

4.5 Case study: VESS of EVs within a VPP delivering frequency response services 

In this section, the ability of the VESS developed in Section 4.4 to support frequency 

response services is investigated within the context of a real VPP being developed in 

Newcastle-Upon-Tyne, UK. The required response of the VPP is described in Section 4.5.1 

and the VPP is described in Section 4.5.2. A control algorithm for the VPP is developed in 

Section 4.5.3, before its ability to deliver the EFR service from the VPP is investigated in 

Section 4.5.4 using a MATLAB Simulink model replicated in Appendix C. 

4.5.1 Response required of the VPP to deliver an EFR service 

EFR is a new market to help maintain system frequency and started operating Winter 

2017/18. The required response is dependent upon system frequency, as shown in Figure 

4-12. The service allows an envelope of deviation from the set point curve, widening around 
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the normal operating frequency. This is designed to enable SoC management, however in 

2016 when this work was undertaken the magnitude of this range was still to be determined 

by National Grid. The output must be delivered within 1 s of being called, and support the 

grid for at least 9 s until the primary FFR service can take over. 

 

Figure 4-12 Service requirements for EFR (as of 2016) [133] 

4.5.2 VPP description: Newcastle Science Central 

Newcastle University and Newcastle City Council, are collaborating to redevelop a 24 acre 

city centre brownfield site to be an exemplar sustainable urban environment encompassing 

Smart Grid technologies throughout [134]. Electrically, the site will contain an ESS [135], an 

EV charging station, a CHP plant, solar PV generation and both residential and commercial 

buildings with the potential to provide DSR [134]. The proposed electrical distribution of the 

site is shown in Figure 4-13. 

 

Figure 4-13 Proposed electrical distribution of phase 1 of Science Central, Newcastle, UK 
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There is considerable choice in how to control each of these flexible assets in order to provide 

services to the grid at the point of connection whilst also providing value to the various 

stakeholders on the site. The characteristics of the ESS is described in Section 4.5.2.1, the 

CHP in Section 4.5.2.2, the smart charging EVs in Section 4.5.2.3 and the DSR potential of 

the Core and Urban Sciences Building (USB) are described in Section 4.5.2.4. The 

characteristics of all flexible assets on the site are summarized in Table 4-1. These 

characteristics are based on the expectations of the site when this work was undertaken in 

2016, and since then there has been considerable development of the site. 

Table 4-1 Summary of flexible asset characteristics on Science Central 

 

Min power 

(kW) 

Power to 

maintain 

constant 

VSoC 

(kW) 

Max power 

(kW) 

Energy 

capacity 

(kWh) 

Time to 

charge 0% 

to 100% 

VSoC 

(minutes) 

 

ESS 

 

-360 0 360 100 17 

 

CHP 

 

0 - 2000 - - 

EV charging  

(at 12:00) 

 

-120 

 

0 280 1077 231 

 

The Core DSR 

 

0 31 70 9 14 

 

USB DSR 

 

0 240 500 69 16 

Aggregation of 

the whole site 

(at 12:00) 

-480 271 3210 1255 - 
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4.5.2.1 Energy storage 

The ESS will be built to allow different cell chemistries to be evaluated in response to real 

grid disturbances and new control algorithms. The inverter is rated at 360 kVA, and is 

assumed to have a storage capacity of 100 kWh.  

4.5.2.2 Combined Heat and Power 

A gas turbine CHP plant will be built with an electrical rating of 2000 kW and heat rating of 

6000 kW. Since the gas will be supplied via the national gas networks, it is assumed that this 

power can be supplied at all times. The heat generated will supply a heat network on the site 

which is not the subject of this Thesis. 

4.5.2.3 Electric vehicle charging station 

The site is to have six rapid EV chargers, and it is possible that adjacent to these will be a 

smart EV charging station, similar to the VESS proposed in Section 4.4. The individual 

vehicle modelling is not modelled in this Section, and it is assumed that the EV fleet in 

aggregate can deliver what is requested provided the power and energy remain within the 

defined aggregated power and energy bounds. 

4.5.2.4 Building demand side management 

As the site progresses, numerous commercial and residential buildings will be erected to 

include HVAC DSR capabilities. The first two building on site have now been opened; The 

Core, and the USB. 

Both buildings are to be heated using electrical pumps and the site heat network. The heat 

model of Figure 4-14 was implemented in MATLAB Simulink for both buildings to control 

the electrical demand of the heating system while calculating the temperature response from 

DSR calls to be estimated. It was assumed the air condition deterioration takes place at the 

same rate as the heat energy dissipates to the external atmosphere. 

For the purposes of this study, it was assumed that the Core needs 31 kW and the USB needs 

240 kW to maintain a constant temperature and air condition, based on an engineering 

judgement that HVAC DSR can achieve up to 33% reduction in a buildings demand [136]. 

The minimum power for each building was set to 0 kW (representing an effective generating 

power of 31 kW and 240 kW respectively). The maximum power demand was set to 70 kW 

for the Core and 500 kW for the USB.  For an allowable temperature variation of 4°C, the 

model estimated the Core and USB to have an effective storage capacity of 9 kWh and 23 

kWh respectively. 
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Figure 4-14 MATLAB Simulink heat model 

4.5.3 VPP control to maximise aggregate power availability 

The EFR service requires full requested output to be delivered for at least 9 seconds with just 

one second of notice. Despite this short duration, National Grid’s initial analysis of frequency 

data indicates that the optimal battery capacity is that which corresponds to a 45 minute 

duration (0%-100%) [133]. It can be seen in Table 4-1 that only the EVs, which are not 

available at all times, have a duration above this. All the other assets have a duration 

significantly below 45 minutes. A control scheme has been developed to combine the high 

power ratings of the DSR and ESS with the high energy rating of the EVs, through intelligent 

energy management to ensure that the aggregate maximum power of the site is realisable, 

with little to no notice. The control scheme is designed to be scalable such that any flexible 

asset can be utilised. Each asset is considered in a form similar to ESS and the equivalent 

VSoC is used as a common currency across the different types of assets with varying 

characteristics, that could otherwise be difficult to compare like for like. 

In order to realise a power request, an asset must have energy available within its storage. By 

targeting 50% VSoC, an asset without any prior knowledge of the service can maximise the 

amount of time a power request can be delivered for. During the service however, the VSoC 
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will deviate from 50% at varying rates for each asset dependent upon their power and energy 

ratings. To maximise the power availability, all assets should approach their energy capacity 

limits at the same time. To implement these ideas, the time each asset can deliver maximum 

(positive or negative) power for is considered. The asset that can deliver for the longest period 

of time is used primarily for its energy and no target VSoC is set. All other assets are used 

primarily for their power and assigned a 50% VSoC target, unless the energy asset is 

approaching its VSoC limits in which case the energy of these assets is needed. In this 

situation, the power assets are assigned a VSoC target that would result in reaching their 

VSoC limit at the same time as the energy asset. 

A single fuzzy logic control surface is used multiple times, once for each asset as shown in 

the block diagram of Figure 4-15. Fuzzy logic allows multiple variables to be considered at 

once, similarly to human thinking, and an intelligent decision to be made [137]. In this 

implementation, it ensures the overall requested microgrid power is delivered whilst 

managing the internal energy of individual assets to be as close as possible to their respective 

VSoC targets. Each controller has three inputs: 

• Output power – the output of the asset’s fuzzy logic controller is fed back as a 

reference signal to be increased or decreased based on the error and SoC difference. 

• Error – the power outputs of all assets are summated and compared against the total 

microgrid desired power output. The resulting error is fed into all fuzzy logic 

controllers. 

• SoC difference – the difference between an assets VSoC and its target VSoC. 

Fuzzy logic rules were created to prioritise the reduction of the error so the correct power 

output is delivered. At high power requests the error is picked up faster or slower depending 

on the SoC difference. When the power request and error are both low, the rules try to reduce 

the SoC difference. Therefore, a secondary control brings all assets towards their target VSoC 

if possible. The 4-dimensional control surface, with axes in per unit, is shown in the three 3-

dimensional figures of Figure 4-16. 
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Figure 4-15 Block diagram of the scalable fuzzy logic based control 
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A: Output power based on error and SoC difference, when feedback output power is at 0 pu 

      

B: Output based on error and the output power feedback, when SoC difference is 0 pu 

 

C: Output power based on SoC difference and the output power feedback, when error is 0 pu 

Figure 4-16 Fuzzy logic 4-dimendisonal control surface displayed as three 3-dimensional 

control surfaces; A, B, C (all axes per unit) 
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4.5.4 Ability of the VPP to deliver the EFR service using the developed control algorithm 

In order for potential EFR providers to demonstrate their offering, National Grid has 

published system frequency data at a one second resolution. One representative day has been 

simulated using this data, in conjunction with Figure 4-12 and the proposed control algorithm. 

The aggregate load of the VPPs flexible assets is shown in Figure 4-17 along with each assets 

VSoC. The same study was undertaken without managing the VSoC of the assets, shown in 

Figure 4-18. During the day of simulation there were 11 minutes when a service could not be 

realised, during which the service was requested for 5 minutes. The deadband of Figure 4-12 

could have been used to ensure VSoC when the assets are operating individually and without 

coordination, however with the proposed algorithm this is not required meaning the deadband 

could be used to layer other commercial services, thus increasing revenues. Furthermore, it 

can be observed in Figure 4-17 that the VSoC for the ESS, Core and USB remain close to 

50% with a relatively large headroom of storage capacity unutilised. This suggests that by 

using the proposed control algorithm either; the storage capacities could be minimised 

reducing initial capital expenditure, or power ratings increased maximising potential EFR 

revenues. 

 

Figure 4-17 Aggregate load of the VPPs flexible assets and their VSoC 
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Figure 4-18 VSoC of assets delivering the service without coordination 

The proposed algorithm successfully maximizes power availability, however it does this 

without considering the economical or environmental costs associated with the use of each of 

the assets.  

4.6 Chapter conclusions and contributions to knowledge 

The stochastic nature of EV charging requirements has been considered and the aggregate 

flexibility calculated for the grid. When aggregated to form a VESS, a higher level controller 

can consider the vehicles as a more traditional ESS but with varying power and energy limits 

in time. An internal energy management control scheme has been developed to realise the grid 

requested demand within the advertised flexibility, prioritising at the highest level the EVs 

SoC to be at a minimum level at the departure time. MCS has been used to show the resulting 

aggregate power exchange delivered by the VESS to the grid for two fictitious grid requested 

demand profiles. Over the full day, the probability of realising profile A was 99.98% and the 

probability of realising profile B was 98.83%. 

An example of how the VESS could be used within a real VPP at Newcastle Science Central 

has also been proposed, to deliver the new EFR service. It was shown that through 

coordination, the various flexible assets within the VPP could appear in aggregate to have a 

larger energy capacity than if operating individually. This suggests that either the storage 

capacities could be minimised reducing initial capital expenditure, or power ratings increased 

maximising potential EFR revenues. 

The Science Central site was considered as a VPP, rather than microgrid, because the flexible 

assets can operate anywhere within their controllable power range without causing power 

flow or voltage constraint issues within the network. The EFR service was delivered to the 

wider macrogrid, rather than the local electrical network. It was shown in Section 3.2 however 
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that power flow constraint violations are expected in domestic distribution networks when EV 

penetrations reach 40%, and therefore the ability of the VESS to respond to the local needs of 

the network should also be considered. This is investigated in Chapter 5 where a formulation 

is developed to determine the optimal level of conservatism of determining ESS and VESS 

power set-points to protect network constraints against the load and generation uncertainty 

caused by uncontrolled EV charging and solar generation respectively. 
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Chapter 5 Risk based approach to voltage control and power flow 

management in urban microgrids 

 

5.1 Introduction 

It was determined in Chapter 3 that largescale uptake of uncontrolled EV charging could 

cause distribution networks to exceed their operational limits without mitigation measures 

implemented. One way of mitigating voltage and power flows limit excursions within 

networks is to utilise ESS, where a methodology was developed in Chapter 4 to enable a 

VESS from controlled EV charging. Determining the economically optimal power set-point 

of ESS and VESS to prevent voltage and power flow limits from being exceeded when the 

network is under load and generation uncertainty is the subject of this Chapter. The links of 

model and information flow from previous chapters is summarised in Figure 5-1. 

 

Figure 5-1 How Chapter 5 fits into the wider Thesis 
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When a network is operating under load and generation uncertainty, the exact power required 

of an ESS or VESS to mitigate voltage and power flow constraint violations is unknown. A 

control system could over protect thus ensuring the limits are maintained while also costing 

more than necessary through battery degradation. On the other hand, a control system could 

under protect causing a limit violation with an associated cost. This Chapter takes a risk based 

approach, using a RO LP formulation and the BoU that controls conservatism, to balance the 

costs associated with over protecting against the costs associated with under protecting the 

network against power flow and voltage limitations while operating under load and generation 

uncertainty. In this Chapter, the term ‘optimal’ refers to the level of conservatism displayed 

when determining the power output of the ESS and VESS, despite the load and generation 

uncertainty, to appropriately balance the costs associated with failing to protect the network 

from power flow and voltage limit violations with the costs of procuring services from the 

ESS and VESS to achieve the lowest overall network operating cost. 

The modelled urban microgrid utilised during this Chapter is introduced in Section 5.2 along 

with the uncertainty associated with the load and generation connected to the network. The 

RO LP formulation to determine the power set-points of the ESS and VESS is developed in 

Section 5.3, with the methodology used to determine the cost of operating the network 

following implementation of the ESS and VESS power set-point developed in Section 5.4. 

The economically optimal level of conservatism, and associated probability of ensuring 

voltages and power flows remain within their respective limit, is determined in Section 5.5.  

5.2 Urban microgrid under test 

The microgrid studied during this Chapter is shown in Figure 5-2, with numerous network 

constraints that would be violated without smart control. It is likely that the microgrid will 

have been built over time to have such constraints, whereby it has been economical to utilise 

smart technologies rather than reinforce the network at each expansion. The progression of 

the microgrid from initial build to its constrained state is described below. 

1. Initially only the large building is fed from the Transformers. The building peak load 

is within the thermal capacity of the cable supplying it from the Transformers. The 

Transformers are over rated with the expectation of further feeders being added with 

the re-development of the local area where the electrical network supplies. 

2. A small solar system is installed with its exporting cable rated sufficient for the peak 

export. 
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3. An extension to the building load pushes its peak load above the capability of the 

supplying cable. It was economical to install a peak shaving ESS rather than reinforce 

the network. 

4. An extension to the solar system is installed, which results in an overload of the 

supplying cable at peak export. A smart EV charging car park VESS is built next to 

the extended solar system to ensure that the power flow remains within the cable 

thermal limit. 

5. An uncontrolled EV charging car park is built consisting of both rapid and standard 

charge points. This additional load means there is a risk of transformer overload and 

building under voltage in a transformer N-1 scenario. Due to the presence of the ESS 

and VESS, a smart solution was employed to protect the transformer and building 

under voltage in an N-1 condition. 

 

Figure 5-2 Urban microgrid under analysis 

The electrical network presented in Figure 5-2 was modelled in the IPSA2 software, and the 

impedance parameters are described in Section 5.2.1. IPSA2 is a commercial power systems 

analysis software package developed initially by the University of Manchester Institute of 

Science and Technology (UMIST) in 1975 and is now supported by TNEI Services Ltd [138]. 

The IPSA2 load flow algorithm is based on the Fast Decoupled Newton–Raphson algorithm 

[139]. In this work, IPSA2 has been scripted using Python to apply a load profile, run a load 

flow, and to extract the calculated voltages, power flow and electrical losses at all locations of 

the network. This allows the full AC load flow calculation to be utilised during control 
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algorithm decision making under uncertainty as described in Section 5.3, and for determining 

the network state once that decision has been made as described in Section 5.4. 

The modelling of the large city centre office building load is described in Section 5.2.2. The 

model of the ESS is described in Section 5.2.3. The modelling of the solar PV generation is 

described in Section 5.2.4. The model of both uncontrolled and controlled EV load is 

described in Section 5.2.5. The value of the energy consumed within the urban microgrid is 

described in Section 5.2.6. 

5.2.1 Electrical network parameters 

The electrical network model consists of a source supplying two transformers which in turn 

supplies three cable feeders and the load of the microgrid. The source is described in Section 

5.2.1.1, transformers in Section 5.2.1.2 and the cables in Section 5.2.1.3. 

5.2.1.1 Grid connection 

The grid connection is modelled as the slack bus with a fault level of 180 MVA, based on the 

Corporation Street 11 kV incomer to Science Central, Newcastle-Upon-Tyne, UK [140].  

5.2.1.2 Transformers 

Both transformers are of the same type, as described in Table 5-1. A replacement 11/0.4 kV 

1.4 MW transformer was assumed to cost £40,000 based on discussions with contacts within 

industry. 

Table 5-1 Transformer parameters in urban microgrid model 

HV (kV) LV (kV) 
Rating 

(MVA) 

Impedance 

(pu) 
X/R 

Tap setting 

(%) 

11.0 0.433 1.4 0.11 6.33 -2.5 

 

5.2.1.3 Cables 

The cables within the model are as described in Table 5-2. The impedance parameters are 

listed in Table 5-3 and based on the Universal Cable XLPE Cable Catalogue [141]. A 

replacement cable was assumed to cost £75/m based on [142, 143]. 
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Table 5-2 Cable types in urban microgrid model 

From To 
Cable type 

(mm2) 

Number of 

cables 

Cable length 

(m) 

Transformer Building 120 5 250 

Transformer Solar 95 1 100 

Transformer EV charging 300 5 100 

 

Table 5-3 Cable parameters 

Cable type 

(mm2) 
Voltage (kV) Ampacity (A) 

Resistance 

(Ω/km) 

Reactance 

(Ω/km) 

95 0.4 319 0.247 0.073 

120 0.4 363 0.197 0.073 

300 0.4 592 0.080 0.072 

 

5.2.2 Large city centre office building 

Load data was taken from the Newcastle University Business School for a single 

representative day, 22 July 2013, and scaled to an average daily peak load of 750 kW. A 

summer day is chosen in order to be consistent across the network and is required in order to 

obtain a large uncertainty in solar generation. With regular repeat business operations based 

on time of day, it was assumed that this load profile could be forecasted with small variations, 

assumed to be within 5% of the load experienced on the representative day. The load for a 

particular settlement period is determined by sampling a normal distribution assuming 3 

standard deviations between the nominal forecast value and the largest variation expected. 

Therefore 99.7% of all sampled values should fall within the modelled UI. 

5.2.3 Energy storage 

The ESS is assumed perfectly controllable with no uncertainty. It is appropriately sized such 

that its power and energy constraints are sufficiently large (1.0 MVA, 5.0 MWh) to not place 

additional constraints on the power set-points determined by the RO LP formulation 

developed in Section 5.3. It is assumed the ESS is based on Vanadium Redox Flow 

technology, where the half cycle degradation cost was assumed to be £12/MW over a 30 

minute settlement period with a round trip efficiency of 80% based on [144-146].  
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5.2.4 Solar PV generation 

Assuming clear skies and a solar collector produces it’s rated power when the sun is directly 

overhead, and that solar collectors are on average placed facing normal to the earth’s surface, 

the maximum available power can be calculated using the cosine of the solar zenith angle, in 

per unit on the system’s rated power. The solar zenith angle is the angle between the ray 

normal to the earth’s surface at the point of interest and the ray that points directly at the sun 

[147]. The minimum generation of a solar collector is always zero. Based on this analysis, the 

nominal forecast value and largest variation expected around that forecast can be set equal to 

one another and to half the maximum generation calculated by the solar zenith angle based on 

time of day and time of the year. The load for a particular settlement period is determined by 

sampling a normal distribution assuming 3 standard deviations between the nominal forecast 

value and the largest variation expected. Therefore 99.7% of all sampled values should fall 

within the modelled UI. 

5.2.5 Electric vehicle load 

The smart charging EV car park is a VESS based on the analysis presented in Chapter 4 

however the maximum and minimum power and energy bounds are considered uncertain and 

an appropriate UI is applied in this Chapter. Similar to the ESS described in Section 5.2.3, the 

power and energy bounds of the VESS are such that they do not place additional constraints 

on the power set-points determined by the RO LP formulation developed in Section 5.3. The 

VESS parameters were based on li-ion technology [144-146] since this is used for the 

majority of EVs [64-66, 75]. The degradation cost was applied only when discharging and 

thus the full cycle degradation cost of £30/MW over a 30 minute settlement period was used. 

The degradation cost associated with charging was assumed zero since the vehicles must 

charge anyway. A round trip efficiency of 95% was assumed. 

The uncontrolled standard charging EVs are based on the analysis presented in Section 3.4.1. 

When considering the uncertainties associated with a 30-minute-ahead forecast, the developed 

forecasting model is employed. When considering the uncertainties associated with day-ahead 

forecasts, the longer term diurnal analysis uncertainty is applied.  

The uncontrolled rapid charging EVs are based on the analysis presented in Section 3.4.2. 

Since the time-step of 30 minutes used in this Chapter is longer than the 24 minutes identified 

in Section 3.4.2 as that where the uncertainty can be reduced from the long term diurnal 

analysis, the long term diurnal uncertainty is applied regardless of whether considering the 

uncertainties associated with 30-minute-ahead or day-ahead forecasts. 
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5.2.6 Value of energy 

The value of energy was assumed at £45/MWh based on UK wholesale spot prices observed 

during 2016-2017 [148]. 

5.3 Linear programming formulation 

The general form of LP is discussed in Section 5.3.1, before Section 5.3.2 builds upon the 

general form to create an uncertain LP problem. Section 5.3.3 then introduces the RO 

technique which turns an uncertain LP problem into a certain LP problem such that it can be 

solved deterministically. Turning the urban microgrid presented in Figure 5-2 into the form 

required for LP is the subject of Section 5.3.4. Since the power system is non-linear, it is 

important to use an appropriate network operating state when undertaking the linearization for 

LP, which is discussed in Section 5.3.5. It is possible that the LP will experience infeasibility 

and this is discussed in Section 5.3.6. 

5.3.1 General form of linear programming 

A LP problem can be generalised by ( 5.1 ) [54]. In this Thesis, the Python function 

“scipy.optimize.linprog()” [149] was utilised to solve the LP problem once it was transformed 

into a form described by ( 5.1 ). 

 

min 𝒄′𝒙 

subject to: 

 

𝑨𝒙 ≤ 𝒃 

𝑫𝒙 = 𝒆 

𝒍 ≤ 𝒙 ≤ 𝒖 

( 5.1 ) 

 

Where: 

𝒄  The vector of coefficients for the cost function 

𝒄′
    The inverse of 𝒄 

𝒙 The array of decision variables or control variables 

𝑨 The matrix of constants for constraints 

𝒃 The right hand side vector of constraints 

𝑫 The matrix of coefficients for equality constraints 
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𝒆 The right hand side vector of equality constraints 

𝒍 The lower limit of decision variables 

𝒖 The upper limit of decision variables 

5.3.2 Uncertainty in the linear programming formulation 

Uncertainty could exist in any part of the generalised LP form of ( 5.1 ), however the 

uncertain LP problem can be simplified by transferring all the uncertain elements to be 

described within the 𝑨 matrix as shown below [54]. 

Through introducing an additional control variable, 𝑑 = 1, the inequality constraints can be 

reformulated as ( 5.2 ). 

min 𝒄′𝒙 

subject to: 

 

𝑨𝒙 − 𝒃𝒅 ≤ 𝟎 

𝒙 − 𝒖𝒅 ≤ 𝟎 

−𝒙 + 𝒍𝒅 ≤ 𝟎 

 

( 5.2 ) 

Therefore all inequality constraints can be represented by a new constraints coefficient matrix 

described by ( 5.3 ). 

𝑨′ = [
𝑨 −𝒃

𝑫𝒏 −𝒖
−𝑫𝒏 𝒍

] ( 5.3 ) 

 

Where 𝑫𝑛 is a diagonal matrix and for 𝑖 = 1,2, … , 𝑛, 𝐷𝑖𝑖 = 1, 𝐷𝑖𝑗,𝑖≠𝑗 = 0 as shown in ( 5.4 ). 

𝑫𝑛 = [

1
1

⋱
1

] ( 5.4 ) 

 

The equality constraints of ( 5.1 ) can be reformulated as two inequality constraints as shown 

in ( 5.5 ), allowing the equality constraints to also be included within the 𝑨′ matrix. 

−𝒆 ≤ 𝑫𝒙 ≤ 𝒆 ( 5.5 ) 
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Uncertainty in control variables, 𝒙, can be transferred so the uncertainty is applied on the 

appropriate coefficients within the 𝑨′
 (described fully in Section 5.3.4.2) which allows the 

control variable to be modelled certain within the formulation. 

Therefore the generalised uncertain LP problem can described by ( 5.6 ) where the accent 

character (~) stands for uncertainty. 

min 𝒄′𝒙 

subject to: 

 

�̃�𝒙 ≤ 0 

( 5.6 ) 

 

In order to utilise RO, the uncertainty is described by a range within which the true value will 

fall. This can easily be determined from historical data. Utilising a range of uncertainty is 

beneficial in contrast to other uncertainty methods which would require a PDF and is difficult 

to derive in reality. The uncertainty of each entry 𝑎𝑖𝑗 ∈ 𝑨 can be described by ( 5.7 ). 

 

𝑎𝑖𝑗 − �̂�𝑖𝑗 ≤ �̃�𝑖𝑗 ≤ 𝑎𝑖𝑗 + �̂�𝑖𝑗  ( 5.7 ) 

 

Where: 

𝑎𝑖𝑗    The nominal value of one element within matrix 𝑨 

�̃�𝑖𝑗    The real value of 𝑎𝑖𝑗 

�̂�𝑖𝑗    The maximum variation of 𝑎𝑖𝑗 

5.3.3 Transformation into robust optimisation 

RO is a process that transforms an uncertain LP problem into a certain LP problem such that 

it can be solved deterministically, and the formulation used in this Thesis was proposed by 

Bertsimas and Sims in 2004 [150]. The method introduces three additional control variables 𝒛, 

𝒑 and 𝒚, and the BoU, Γ. The value of BoU represents the number of uncertain coefficients 

that the constraints are protected against, although its value does not need to be an integer. 

The RO formulation is described by ( 5.8 ). 
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min 𝒄′𝒙 

subject to 

 

∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑧𝑖Γ

𝑗

+ ∑ 𝑝𝑖𝑗 ≤ 𝑏𝑖

𝑗∈𝐽𝑖

 

 

𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑖  

 

−𝑦𝑖 ≤ 𝑥𝑗 ≤ 𝑦𝑗  

 

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗  

 

𝑝𝑖𝑗 ≥ 0 

 

𝑦𝑗 ≥ 0 

 

𝑧𝑗 ≥ 0 

 

( 5.8 ) 

For the remainder of this Thesis, the BoU will be normalised against the number of uncertain 

coefficients and quoted in per unit terms, which is more intuitive.  

When the BoU is at a value of 1.0, the RO formulation protects against the worst case of all 

uncertainties which is very pessimistic. It is likely that there will be some diversity as to the 

value of �̃�𝑖𝑗 relative to its maximum or minimum value, and thus a lower BoU than 1.0 can 

achieve a high Probability of Success (PoS) in terms of maintaining the system within the set 

constraints. The BoU can therefore allow the level of conservatism (and resulting cost of 

failure to protect against the constraints) to be balanced against the cost of the formulation 

objective function. 

5.3.4 Modelling the urban microgrid as an uncertain linear programming problem 

In order to utilise LP; the decision variables, constraints and optimisation objective function 

must be defined for the urban microgrid. The decision variables are defined in Section 5.3.4.1. 

The powerflow constraints and voltage constraints are defined in Section 5.3.4.2 and Section 

5.3.4.3 respectively. The SoC management of the ESS and VESS are discussed in Section 

5.3.4.4. The optimisation objective function is defined in Section 5.3.4.5. 
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5.3.4.1 Decision variables 

In this formulation, all load and generation elements are considered a decision variable, within 

an upper and lower bound set as a constraint. For the microgrid controllable elements, such as 

ESS and the VESS, the upper and lower bound are set based upon the inverter power limits. 

For non-controllable loads and generation, such as the large office building, solar PV and 

uncontrolled EV charging, the upper and lower bounds are set at the nominal forecast value 

expected.  

An additional decision variable fixed with a value of 1.0 is also introduced, to enable network 

calibration when considering the power flow, voltage and electrical loss sensitivity factors, 

which are described in full in the following sections. 

5.3.4.2 Power flow constraints 

The power flow through each transformer and cable is dependent upon the network state of 

load and generation. With the load and generation considered decision variables within a LP 

optimisation, their impact upon the power flow through each component must be calculated 

and included as a constraint.  

Using scripted IPSA2, the nominal forecast value for all load and generation is applied to the 

network and a load flow undertaken, providing the nominal forecast network state. The 

influence of each decision variable against each cable and transformer is calculated through 

undertaking two load flows for each decision variable; one with the load increased slightly 

and one with the load decreased slightly. This results in the calculation of a power flow 

sensitivity factor, as shown in ( 5.9 ). 

𝜑𝑑𝑏 =
𝜕𝑆𝑏

𝜕𝑃𝑑
 ( 5.9 ) 

 

Where: 

𝜑𝑑𝑏 Power flow sensitivity factor between decision variable, d, and 

branch (cable or transformer), b, kVA/kW 

𝑆𝑏    Apparent power through the branch (cable or transformer), kVA 

𝑃𝑑    Real power of the decision variable, kW 

The sensitivity factors allow the change in power flow through a transformer or cable to be 

calculated based on a change in a decision variable however in order to compare to a 
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transformer or cable power flow limit, it must be calibrated against the existing power flow 

through the transformer or cable. The calibration values are calculated by ( 5.10 ).  

 

 

𝑹 = 𝑺 − 𝝋′𝒙 ( 5.10 ) 

 

Where: 

𝑹 Array of calibration values, kVA 

𝑺 Array of apparent power flow through each branch (cable or 

transformer) for the nominal forecast network state, kVA 

𝝋′ The inverse of the matrix of power flow sensitivity factors, 

kVA/kW 

𝒙    The array of decision variables, kW 

The full AC load flow calculated by IPSA2 is a non-linear system, while the power flow 

sensitivity factors are a linear approximation to the non-linear system. As a result the nominal 

forecast network state and choices made regarding the controllable decision variables 

influences the sensitivity factors, and thus the load and generation uncertainty causes 

uncertainty in the sensitivity factors. The sensitivity factor uncertainty is assumed small 

relative to the impact of the load uncertainty itself on causing a limit violation. To account for 

this and rounding errors, a per unit derating is applied to each constraint. 

By utilising the additional decision variable of 1.0 introduced in Section 5.3.4.1 in 

combination with the calibration value, and the constraint derating factor to account for errors 

during linearisation, the resulting power flow constraints for use in the LP optimisation are 

shown in ( 5.11 ). 

𝛾𝑺𝒍𝒊𝒎𝒊𝒕
− ≤ [𝝋′ 𝑹] [

𝒙
1.0

] ≤ 𝛾𝑺𝒍𝒊𝒎𝒊𝒕
+

 ( 5.11 ) 

Where: 

𝛾 Constraint derating value, per unit 

𝑺𝒍𝒊𝒎𝒊𝒕    Array of power flow limits, kVA 
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𝝋′ The inverse of the matrix of power flow sensitivity factors, 

kVA/kW 

𝑹    Array of calibration values, kVA 

𝒙    Array of decision variables, kW 

As discussed in Section 5.3.2, to ensure that the decision variables remain certain within the 

optimisation, the load uncertainty with regard to causing a limit violation is transferred to the 

sensitivity matrices. This is achieved through ( 5.12 ).  

�̂�𝑑𝑏 =
𝜑𝑑𝑏�̂�𝑑

𝑥𝑑
 ( 5.12 ) 

Where: 

𝜑𝑑𝑏 Calculated power flow sensitivity factor between decision 

variable, d, and branch, b. 

�̂�𝑑𝑏 Maximum variation of 𝜑𝑑𝑏to model the maximum variation of 

�̂�𝑑within the constraints matrix 

�̂�𝑑 Maximum variation of 𝑥𝑑 

𝑥𝑑    The nominal forecast value of the decision variable 

5.3.4.3 Voltage constraints 

The voltage constraints are modelled through voltage sensitivity factors, calculated and 

implemented as constraints in the same way as described for the power flow constraints in 

Section 5.3.4.2. 

5.3.4.4 State of charge of energy storage and smart charging electric vehicles 

The power set-point of both the ESS and VESS are controllable decision variables that are 

time limited based on SoC. The subject of the study however is the level of conservatism to 

use when determining how much power is required to appropriately protect against the load 

and generation uncertainty. With this in mind and to reduce simulation time, only one time 

step is considered in the LP formulation and therefore the optimisation does not take the SoC 

into account when determining the power set-point. To ensure SoC feasibility, the energy 

capacity of the ESS and VESS have been appropriately sized for their role within the urban 

microgrid under test, and the ESS re-charges to 100% SoC during a period of the day when 

the re-charging would not cause any power flow or voltage constraint violations.  
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5.3.4.5 Optimisation objective function 

The objective function is the minimisation of network operating costs, based on the cost 

associated with each controllable decision variable as defined in ( 5.13 ). In order to achieve 

an increase in the cost of ESS degradation regardless of whether the storage is charging or 

discharging, a different cost function is required dependent upon charging or discharging. The 

cost associated with uncontrollable decision variables is zero. 

Charging: 

𝑐𝑑 = 𝐷𝑑 + ∑(𝐾𝑡𝜗𝑑𝑡 + 𝐾𝑒𝜖𝑑𝑡)

𝑇

𝑡=0

+ ∑(𝐾𝑓𝜃𝑑𝑓 + 𝐾𝑒𝜖𝑑𝑓)

𝐹

𝑓=0

 

 

Discharging: 

𝑐𝑑 = −𝐷𝑑 + ∑(𝐾𝑡𝜗𝑑𝑡 + 𝐾𝑒𝜖𝑑𝑡)

𝑇

𝑡=0

+ ∑(𝐾𝑓𝜃𝑑𝑓 + 𝐾𝑒𝜖𝑑𝑓)

𝐹

𝑓=0

 

( 5.13 ) 

 

Where: 

𝑐𝑑 Network operating cost associated with the controllable 

decision variable, d 

𝐷𝑑 Degradation cost associated with using the controllable decision 

variable, d 

𝐾𝑡 Cost associated with replacing transformer, t 

𝐾𝑓 Cost associated with replacing cable, f 

𝐾𝑒 Value of energy 

𝑇 Number of transformers in the network 

𝐹 Number of cables in the network 

𝜗𝑑𝑡 Loss of life sensitivity factor between transformer, t, and 

controllable decision variable, d, % life/kW 

𝜃𝑑𝑓  Loss of life sensitivity factor between cable, f, and controllable 

decision variable, d, % life/kW 

𝜖𝑑𝑡 Electrical losses sensitivity factor between transformer, t, and 

controllable decision variable, d, kWh/kW 
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𝜖𝑑𝑓 Electrical losses sensitivity factor between cable, f, and 

controllable decision variable, d, kWh/kW 

The storage degradation cost is assumed linear with real power exchange, however due to the 

change in sign between charging and discharging, the degradation cost applied within the cost 

function becomes non-linear. This is shown diagrammatically in Figure 5-3. For example if 

the fully linear dotted line of Figure 5-3 were implemented in a linear programming 

formulation targeting minimum cost, then the maximum possible ESS supply would be 

returned; thus not minimising ESS usage and its associated degradation.  

 

Figure 5-3 Non-linearity of ESS cost function 

In the case of the VESS of smart charging EVs, charging is assumed to have no cost since the 

vehicles need to charge anyway. If discharging, then a linear cost with real power exchange is 

assumed to compensate for the additional charge-discharge cycles experienced.   

Similar to the power flow sensitivity factors calculated by ( 5.9 ) the influence of each 

decision variable against the electrical loss and loss of life of each cable and transformer is 

calculated through undertaking two load flows for each decision variable; one with the load 

increased slightly and one with the load decreased slightly. The electrical loss sensitivity 

factor between each network component and each decision variable can be calculated directly 
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from the results of the load flow. The loss of life for the cables and transformers however 

must be estimated based on their loading as reported from the load flow.  

The transformer loss of life is estimated based on the model proposed in IEEE standard 

C57.91-1995 Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage 

Regulators  [15]. The cable loss of life has been estimated based on [151] and plotting a linear 

fit through the four values for estimated life and operating temperature. It is assumed that at 

rated current the cable operates at 70°C and that the operating temperature is proportional to 

per unit loading squared. The resulting relationship between cable loading and expected cable 

life is shown in ( 5.14 ). 

𝐿𝑓 = 𝜁0𝑝𝑓
2 + 𝜁1𝑝𝑓 + 𝜁2 ( 5.14 ) 

 

Where: 

𝐿𝑓 Life cable expectancy, years 

𝑝𝑓 Loading of the cable, f, per unit 

𝜁0 Coefficient constant, −32.854 

𝜁1    Coefficient constant, 2.2737 × 10−13 

𝜁2    Coefficient constant, 50.028 

5.3.5 Appropriate network state for linearisation 

In Section 5.3.4, sensitivity factors were introduced to linearize the problem, however due to 

the non-linear system the sensitivity factors are dependent upon the operating point of the 

network. It was identified in the literature that two methods exist to ensure that the sensitivity 

factors used are appropriate for the network operating state; a piecewise approach [61], and an 

iterative approach [62]. 

Using a piecewise approach requires a MILP solver, and a large number of constraints to 

bound the piecewise steps. In contrast, an iterative method uses a simpler LP solver and 

updates the linearised sensitivity factors based on the LP determined decision variables and 

re-runs the optimisation, continuing until a pre-defined convergence criteria. It is the iterative 

method that has been implemented within this Thesis. 
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On the first iteration, it is not known if the degradation cost should be applied positive or 

negative, because it is not known if the decision variable will be determined to be positive or 

negative. Therefore on the first iteration no cost is applied within the cost function and a 

viable starting network operating state within the constraints set is found. The cost function is 

then populated with the appropriate sign for the degradation cost, and the decision variable 

bounded as necessary, to minimise the network operating cost. It is possible however that 

from one iteration to the next, the decision variable may need to cross the bound and the sign 

of the degradation cost be swapped based on the new sensitivity factors. This happens for the 

next iteration if the decision variable reaches the bound. The iterative process continues until 

the sum of the absolute error between each decision variable on one iteration to the next is 

below a pre-defined value, or until a maximum number of iterations. This pre-defined 

stopping criteria was set as 0.001 MW multiplied by the number of controllable decision 

variables. Similarly, the accuracy of the linear programming function was set at 0.001 MW, 

and as such all decision variable results were rounded to this same accuracy. The iterative 

process is summarised in Figure 5-4. 
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Figure 5-4 Iterative method used to determine network operating state 

The method used allows the formulation to determine for itself whether storage should charge 

or discharge and to determine suitable sensitivity factors. This is a key improvement over and 

above that proposed in [54] where the charge or discharge decision and the network operating 

state for the calculation of sensitivity factors for each point in time was determined by 

intelligent human interaction in advance of executing the RO algorithm.  

A counter was used in the iterative method of Figure 5-4 to prevent the potential scenario of 

non-convergence and entering an infinite loop. This was observed in two scenarios; including 

reactive power as a controllable decision variable, and when the degradation element of the 

controllable decision variable cost function was small relative to the cost of losses and 

equipment replacement. 
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When reactive power is included in the formulation as a controllable decision variable, its 

apparent power flow sensitivity factor is lower than that of its real power controllable decision 

variable. Assuming negligible cost to utilise reactive power since it does not impact battery 

degradation, the apparent power flow cost sensitivity factor is negligible for utilising reactive 

power while a cost is applied for utilising real power. This results in the LP formulation trying 

to solve apparent power flow constraint violations using the reactive power decision variable. 

When the feeder gets close to zero reactive power, without the apparent power close to its 

constraint limit, the reactive power overshoots and changes its sign resulting in a change of 

sign for the apparent power flow sensitivity factor. This causes the iterative method to 

oscillate around zero reactive power through the feeder while never achieving the required 

reduction in apparent power flow to meet the network constraint. The need to control reactive 

power in LV distribution networks, such as the test network used in this Thesis and presented 

in Section 5.2, is low due to the X/R ratios in such networks. Having said this, the algorithm 

presented is general to voltage level where the need to control reactive power might be more 

prevalent. Furthermore, LV microgrids could control reactive power flows at the point of 

common coupling to provide ancillary services to their supplying distribution networks. 

If the degradation cost of a controllable decision variable is negligible, for example when the 

VESS demands real power, then the cost of electrical losses and equipment replacement in 

relation to the decision variable dominates. The optimal operating point for a single feeder in 

such a situation is on zero load. It is possible that progressive iterations result in the decision 

variable overshooting the desired zero load operating state of the feeder, thus changing the 

sign of the power flow sensitivity factor for the next iteration leading to non-convergence and 

an infinite-loop. 

5.3.6 Potential for problem infeasibility 

It was found in testing that the LP solver could fail to calculate and return a flag indicating an 

infeasible problem, even in networks that were provably feasible. Bland’s anti-cycling 

algorithm [149] was tested due to the large number of zeros within the formulation after 

conversion to RO, however the probability of calculation success and time taken did not 

provide superior results over simply running the standard LP solver multiple times. To 

achieve an appropriate balance between calculation time and high probability of returning a 

feasible solution to a feasible problem, the solver was run multiple times as defined in Figure 

5-5. 
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Infeasibility was a particular problem when the nominal forecast network state had a feeder 

on, or close to, no-load (observed in the test microgrid on the solar PV and VESS feeder). In 

this situation the charging current of the cable means a significantly larger reactive power 

than real power while calculating the apparent power flow sensitivity factors. The resulting 

apparent power flow sensitivity factors suggest that a much larger real power is needed than 

in reality to protect against the power flow constraints, which could be larger than the power 

capability of the VESS at that point in the day and thus the problem appears infeasible. 

If the problem was concluded to be infeasible during the studies then the ESS and VESS 

power set-point was set to zero. 

 

Figure 5-5 Ensuring a high probability of the solver returning a feasible solution to a feasible 

problem 
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5.4 Determining the long term average cost of network operation 

It was defined in Section 5.3 how the formulation determines the ESS and VESS power set-

point, where it was noted that the BoU controls the conservatism. Section 5.4.1 defines how 

the cost of network operation has been modelled following the implementation of the power 

set-points on the network for any particular point in time. Section 5.4.2 then defines the 

probabilistic methods used to estimate the network operating cost over the longer term. 

5.4.1 Cost model 

The cost function presented in 5.3.4.5 is used, however it is calculated directly from a load 

flow of the load and generation experienced rather than via a linear approximation of costs 

around the nominal forecasted network state. In addition, cost is borne if the system fails to 

protect the network from its power flow and voltage operational constraints. 

If a network constraint is violated, it is recognised that customers downstream of that point 

could have a service interruption during the period of the violation. In the case of the large 

office building feeder and the uncontrolled EV charging feeders, this is quantified in this 

Thesis from the viewpoint of the DNO in ( 5.15 ) as twice the value of the energy not 

delivered; thus compensating both the upstream generator unable to sell their energy and the 

downstream customer unable to purchase energy. In the case of the VESS and solar PV 

feeder, this is quantified in ( 5.16 ) as the value of energy being consumed by the EVs plus the 

value of the energy being exported by the solar PV system; thus compensating both customers 

of that feeder. 

𝑐𝑙𝑜𝑎𝑑 𝑜𝑛𝑙𝑦 𝑓𝑒𝑒𝑑𝑒𝑟 = 2𝐾𝑒𝜏𝑃𝑙𝑜𝑎𝑑 𝑜𝑛𝑙𝑦 𝑓𝑒𝑒𝑑𝑒𝑟  ( 5.15 ) 

 

Where: 

𝑐𝑙𝑜𝑎𝑑 𝑜𝑛𝑙𝑦 𝑓𝑒𝑒𝑑𝑒𝑟 Cost of constraint violation on a load only feeder, £ 

𝐾𝑒 Value of energy, £/kWh 

𝜏    Time duration the constraint violation is experienced, hours 

𝑃𝑙𝑜𝑎𝑑 𝑜𝑛𝑙𝑦 𝑓𝑒𝑒𝑑𝑒𝑟  Real power load of the feeder, kW 

 

𝑐𝑙𝑜𝑎𝑑 & 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑒𝑒𝑑𝑒𝑟 = 𝐾𝑒𝜏(|𝑃𝑙𝑜𝑎𝑑| + |𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛|) ( 5.16 ) 
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Where: 

𝑐𝑙𝑜𝑎𝑑 & 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑒𝑒𝑑𝑒𝑟 Cost of constraint violation on a feeder containing both load and 

generation, £ 

𝐾𝑒 Value of energy, £/kWh 

𝜏    Time duration the constraint violation is experienced, hours 

𝑃𝑙𝑜𝑎𝑑    Real power load on the feeder, kW 

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛   Real power generation on the feeder, kW 

Each time step is based on a settlement period with a duration of 30 minutes. For each 

modelled day, the following is calculated: 

• The PoS of protecting against the network constraints 

• The cost to utilise the ESS due to degradation 

• The cost to utilise the VESS due to additional degradation over uncontrolled charging 

• The cost associated with loss of life of transformers and cables 

• The cost of electrical losses 

• The cost of not delivering energy due to excursion of limits 

• The total cost of operating the microgrid (the sum of all other costs).  

5.4.2 Monte-carlo modelling 

A sequential MCS has been used with the probabilistic load and generation distributions as 

described in Section 5.2 to model the microgrid and the response given by the developed RO 

formulation over a period of time. Although computationally expensive, MCS modelling 

captures the complex interactions between the various PDFs and the non-linear response of 

the electrical power system.  

To ensure SoC feasibility, the ESS re-charges to 100% SoC between the hours of 00:00 and 

06:00. During this time period charging the ESS is not expected to cause any power flow or 

voltage constraint violations. At the start of the simulation, it is not known what the previous 

day’s usage would have been and consequently the appropriate cost associated with re-

charging. Therefore, the simulation starts with 100% SoC and the first day, with an 

unrepresentative low degradation cost, is discarded.  

The accuracy of the MCS increases with the number of days being modelled, as does the 

computational time. Therefore there is a trade-off between accuracy and calculation time. A 
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study has been undertaken to quantify the accuracy and to determine the shortest acceptable 

period of time to use for the studies in this Thesis.  

Assuming the daily cost is normally distributed, Student’s T distribution was used to 

determine the maximum error of the mean cost per day with a defined confidence interval.  A 

90% confidence interval was chosen as it corresponds to the qualitative term ‘almost certain’ 

[132]. The resulting relationship between results accuracy and time taken is shown in Figure 

5-6. 

 

Figure 5-6 Maximum error and simulation time as the number of days simulated increases, 

for a confidence interval of 90% 

Based on Figure 5-6 an appropriate balance between simulation time and accuracy of result 

was chosen as 30 simulated days. This suggests that the true mean value for PoS and total 

daily cost over the long term are almost certain to be within 0.22% and 3.24% of the values 

quoted in this Thesis respectively. 

Following the decision regarding number of days to simulate, the load and generation 

determined from the respective PDFs modelling them for 30 simulated days was saved, and 

used for all other studies in this Thesis. This means that comparative studies can be compared 

like for like against the same load and generation scenarios making it easier to draw 

conclusions regarding the RO formulation performance. 

5.5 Performance of robust optimisation under load and generation uncertainty 

It was recognised in Section 5.3.4.2 that there are errors introduced through the linearization 

methods used and a constraint derating value was implemented in the formulation to take 

account of this and ensure 100% PoS is achievable. An investigation into the derating value 
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required is presented in Section 5.5.1. It was also recognised in Section 5.3.3 and Section 

5.4.1 that there is a balance between the cost of protecting the network against the adverse 

impacts of uncertainty and the cost having failed to adequately protect the network, leading to 

the idea of an Economically Optimal Probability of Success (EOPoS) achieved through 

implementing an associated Economically Optimal Budget of Uncertainty (EOBoU). This is 

investigated in Section 5.5.2.   

Two different levels of uncertainty are considered; that associated with 30-minute-ahead 

forecasts and that associated with day-ahead forecasts. When considering the uncertainty 

associated with 30-minute-ahead, the UI of uncontrolled EV charging is that determined using 

the forecasting methodology developed in Section 3.4. When considering the uncertainty 

associated with day-ahead forecasting, the UI of uncontrolled EV charging is based on the 

long term diurnal analysis within Section 3.4.  

The network under test, shown in Figure 5-2, has four different constraints that could be 

violated. Each of these constraints have been studied independently as well as all together, 

and the isolation was achieved through changing network parameters as summarised in Table 

5-4. 

Table 5-4: Network parameters used to isolate each constraint 

  Transformer 

Large office 

building 

feeder cable 

VESS and 

Solar PV 

feeder cable 

Description 

Source 

voltage 

(pu) 

Number in 

parallel 

Number of 

250m 120mm2 

cables in 

parallel 

Number of 

100m 95mm2 

cables in 

parallel 

Power flow on the large 

office building feeder 
1.00 2 5 2 

Under voltage on the large 

office building feeder 
0.97 2 7 2 

Power flow on the VESS 

and solar PV feeder 
1.00 2 7 1 

Power flow through the 

11/0.4 kV transformer 
1.03 1 7 2 

All constraints 1.00 1 5 1 

 

5.5.1 Investigating the accuracy of AC power system linearization with sensitivity factors 

The constraints de-rating value has been investigated in two scenarios: 

• When there is uncertainty over future load and generation, assuming 30-minute-ahead 

forecasts 
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• When there is perfect knowledge of future load and generation, and thus no 

uncertainty 

When there is no uncertainty, the derating value is used to mitigate against rounding errors 

within the LP solver and the accuracy of the iterative method’s stopping criteria. When the 

load and generation uncertainty is modelled, the de-rating value is used to mitigate against the 

uncertainty in sensitivity factors as well as rounding errors and the iterative method’s 

stopping criteria. In this uncertain situation there is a choice of BoU. If the BoU is too low 

then the derating value would be the parameter determining the robustness of the network 

rather than the BoU while constraining the solution space of the optimisation potentially 

resulting in a sub-optimal solution. If the BoU is too high then the over protection provided 

might over compensate for an inadequate derating. During this study, a BoU of 0.5 was used. 

The relationship between PoS and constraint derating value for both the uncertain and certain 

cases is shown in Figure 5-7 for the power flow on the large office building feeder, Figure 5-8 

for under voltage on the large office building feeder, Figure 5-9 for power flow on the VESS 

and solar PV feeder, Figure 5-10 for power flow through the 11/0.4 kV transformer and 

Figure 5-11 for when all constraints are included. The derating value required to achieve 

100% PoS in all situations is summarised in Table 5-5. 

For certain loads in Figure 5-7 to Figure 5-11, the PoS is lowest at a constraint derating of 

1.00. This is caused by rounding errors within the LP solver and the accuracy of the iterative 

method’s stopping criteria. As the constraint derating reduces, the probability of the algorithm 

accuracy resulting in a constraint violation reduces and thus the PoS increases. In the case of 

uncertain loads however, it is not known what the BoU needs to be. The BoU was set 

intentionally high to ensure that 100% PoS is possible, however this could also result in the 

BoU over compensating for an inadequate constraint derating. This can be seen in Figure 5-7 

to Figure 5-11 where at a constraint derating of 1.00 the PoS is higher for uncertain loads than 

certain loads in all cases. It was particularly visible in Figure 5-9 where the uncertain loads 

have a 100% PoS regardless of constraint derating.  
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Table 5-5 Summary of derating required to achieve 100% PoS 

 Required derating 

Description Certain loads Uncertain loads 

Power flow on the large office building feeder 0.992 0.960 

Under voltage on the large office building feeder 0.994 0.980 

Power flow on the VESS and solar PV feeder 0.990 1.000 

Power flow through the 11/0.4 kV transformer 0.996 0.980 

All constraints 0.984 0.990 

 

 

Figure 5-7 Relationship between probability of success and derating value for the power flow 

constraint of the large office building feeder 

 

Figure 5-8 Relationship between PoS and derating value for the voltage constraint of the 

large office building 
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Figure 5-9 Relationship between PoS and derating value for the power flow constraint of the 

VESS and solar PV feeder 

 

Figure 5-10 Relationship between PoS and derating value for the power flow constraint of the 

11/0.4 kV transformer 
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Figure 5-11 Relationship between PoS and derating value for all the constraints 

Based on Table 5-5 and Figure 5-7 to Figure 5-11, it is concluded that for the network under 

test a derating value of 0.99 is required when there is no load uncertainty, and 0.98 when there 

is load uncertainty. In both the certain and uncertain load cases only one study needed a 

derating value lower than this to achieve 100% PoS, by a very small margin.  

For the remainder of this Thesis, a derating value of 0.98 has been applied to all studies. 

5.5.2 Determining the economically optimal probability of success of remaining within 

power flow and voltage limits when deciding ESS and VESS power set points under 

load and generation uncertainty 

In this Section the trade-off between over utilising the ESS and VESS to mitigate the 

uncertainty, and the cost of failing to protect the network adequately, is investigated. This has 

been achieved by progressively changing the BoU and seeing the impact on network 

operation and the associated costs.   

When all network constraints are included in the formulation and the uncertainty is that 

associated with 30-minute-ahead forecasts, the relationship between BoU and PoS is shown in 

Figure 5-12, and the relationship between BoU and average daily total operational cost is 

shown in Figure 5-13. As the BoU increases, the PoS increases also. Initially the increase in 

BoU reduces overall cost since the cost in utilising the ESS and VESS is smaller than the 

saving that is delivered through reduced violation of the network constraints. At a larger BoU 

however, the increased over protection results in greater ESS and VESS procurement cost that 

is not outweighed by the benefit in network reliability and thus overall costs increase.  
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Figure 5-12 Relationship between BoU and PoS for all the constraints when using 30-minute-

ahead forecasts 

 

Figure 5-13 Relationship between BoU and total operational cost all the constraints when 

using 30-minute-ahead forecasts 

The resulting relationship between PoS and average daily total operational cost is shown in 

Figure 5-14, alongside the relationship that would result from the formulation when 

modelling the uncertainty associated with day-ahead forecasting. It can be seen that the PoS 

with the lowest operational cost, the EOPoS, for the test network with all constraints included 

is 0.985 when using 30-minute-ahead forecasts and 0.976 when using day-ahead forecasts. 

The associated average daily network operating cost is £191/day when using 30-minute-ahead 

forecasts and £185/day when using day-ahead forecasts. These values can be compared 
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against the average daily network operating cost when the BoU is very large1, representing the 

cost associated with taking a traditional worst case approach to mitigating uncertainty rather 

than a risk based approach, of £272/day when using 30-minute-ahead forecasts and £456/day 

when using day-ahead forecasts. Therefore the risk based approach has a cost 70.2%, and 

40.6%, of the traditional worst case approach when using 30-minute-ahead, and day-ahead 

forecasts, respectively. To achieve this cost reduction, a small increase in risk has been 

accepted. 

Similar studies for the isolated constraints are shown in Figure 5-15 for the power flow 

through the large office building feeder, Figure 5-16 for the voltage at the large office 

building, Figure 5-17 for the power flow through the VESS and solar PV feeder, and Figure 

5-18 for the power flow through the 11/0.4 kV transformer. The EOPoS and average daily 

network operating cost for both a risk based approach and traditional worst case approach are 

summarised for 30-minute-ahead forecasts in Table 5-6 and for day-ahead forecasts in Table 

5-7. 

 

Figure 5-14 Relationship between PoS and total operational cost for all the constraints when 

using 30-minute-ahead and day-ahead forecasts 

                                                 
1 When all the constraints were included in the formulation, very large BoU values resulted in the formulation 

displaying infeasibility issues which in turn resulted in an unacceptably low PoS to represent the traditional 

worst case approach. A BoU value of 0.249 was used to estimate the cost associated with the traditional worst 

case approach when all constraints were included in the formulation. For the scenarios where the constraints 

were isolated, a BoU value of 0.990 was used to estimate the cost associated with the traditional worst case 

approach. 
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Figure 5-15 Relationship between PoS and total operational cost for the power flow 

constraint of the large office building feeder when using 30-minute-ahead and day-ahead 

forecasts 

 

Figure 5-16 Relationship between PoS and total operational cost for the voltage constraint of 

the large office building when using 30-minute-ahead and day-ahead forecasts 
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Figure 5-17 Relationship between PoS and total operational cost for the power flow 

constraint of the VESS and solar PV feeder when using 30-minute-ahead and day-ahead 

forecasts 

 

Figure 5-18 Relationship between PoS and total operational cost for the power flow 

constraint of the 11/0.4 kV transformer when using 30-minute-ahead and day-ahead forecasts 
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Table 5-6 Summary of average daily network operating cost and EOPoS for using a risk 

based approach and a traditional worst case approach, using 30-min-ahead forecasts 

 EOPoS 

(%) 

Average daily network 

operating cost (£/day) 

Risk based approach 

/ traditional worst 

case approach (%) 

  
Risk based 

approach 

Traditional 

worst case 

approach1 

 

Power flow on the large 

office building feeder 
99.7  107.46   107.68  99.8 

Under voltage on the large 

office building feeder 
98.3  116.84   125.71  92.9 

Power flow on the VESS 

and solar PV feeder 
100.0  37.45   37.50  99.9 

Power flow through the 

11/0.4 kV transformer 
99.0  95.27   306.36  31.1 

All constraints 98.5  191.10   271.89  70.3 

 

Table 5-7 Summary of average daily network operating cost and EOPoS for using a risk 

based approach and a traditional worst case approach, using day-ahead forecasts 

 EOPoS 

(%) 

Average daily network 

operating cost (£/day) 

Risk based approach 

/ traditional worst 

case approach (%) 

  
Risk based 

approach 

Traditional 

worst case 

approach1 

 

Power flow on the large 

office building feeder 
99.9 107.06 108.41 98.8 

Under voltage on the large 

office building feeder 
98.7 115.39 135.54 85.1 

Power flow on the VESS 

and solar PV feeder 
100.0 37.45 37.50 99.9 

Power flow through the 

11/0.4 kV transformer 
99.1 94.63 386.84 24.5 

All constraints 97.6 184.92 455.56 40.6 
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It can be seen in Table 5-6 and Table 5-7 that in all scenarios tested the risk based approach 

provides superior results with a lower network operating cost than using a traditional worst 

case approach. It can be observed however that to achieve this lowest cost operating point 

within the risk based approach, each constraint has its own EOPoS. When all the constraints 

are included in a single optimisation, there is no differentiation between the PoS of one 

constraint against another when deciding the EOPoS of the whole network and thus it may 

result in a sub-optimal solution relative to splitting the network into multiple microgrids of 

singular constraints all targeting their own EOPoS. Delivering an algorithm to optimise the 

PoS of each individual constraint could be difficult since the flexible element could be 

protecting against multiple constraints each with their own EOPoS, or each constraint could 

be protected by multiple flexible elements. This is the subject of potential future research. 

When considering the EOPoS of each constraint independently; the constraints can be split 

into two distinct groups: 

1. Constraints that the studies suggest should target 100% PoS  

o The power flow of the large city centre office building feeder 

o The power flow of the solar PV feeder 

2. Constraints that the studies suggest should target a PoS less than 100% 

o The voltage at the large city centre office building 

o The power flow through the transformer 

The uncertainty in power flow through the large office building feeder is almost entirely 

influenced by the uncertainty in the load of the building and the uncertainty in power flow 

through the solar PV feed is almost entirely influenced by the uncertainty in solar generation. 

In comparison, the uncertainty in voltage at the large office building is dominated by the 

uncertainty of the building load, but is influenced by all load and generation uncertainties 

within the network. The uncertainty in power flow through the transformer is influenced by 

the uncertainty in all load and generation within the test network. These results suggest that 

when there is only one source of uncertainty there is little benefit in using the RO risk based 

approach relative to traditional worst case methods. When there is a greater number of 

uncertain load and generation sources then the studies suggest an EOPoS lower than 100% 

results, with the risk based approach providing value.  

The UI associated with day-ahead forecasts is larger than the UI associated with 30-minute-

ahead forecasts. This results in the network operating cost for traditional worst case being 

larger for day-ahead forecasts than 30-minute-ahead forecasts. Despite this, the cost at the 
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EOPoS within the risk based approach is very similar (within the confidence bounds specified 

in Section 5.4.2) regardless of the forecast type, albeit at a different EOPoS. The studies 

indicate that by using a risk based approach, at some PoS values the uncertainty associated 

with day-ahead forecasts can result in lower network operating cost than when using the 

uncertainty associated with 30-minute-ahead forecasts. Previous studies in the literature 

suggested that rolling re-calculation with updated more accurate forecasts result in lower cost 

[50]. The claim in the literature is supported in Figure 5-14 however, when all constraints are 

modelled and operating at a high PoS; there is a clear benefit to using 30-minute-ahead 

forecasts over day-ahead forecasts. When considering these insights, it should be remembered 

that the ESS and VESS are time limited resources based on SoC. The ESS and VESS were 

appropriately sized in the studies such that they always had sufficient SoC to deliver the 

power set-point determined by the formulation. If this were not the case, then some 

forecasting over a horizon longer than 30 minutes would likely be required to ensure the SoC 

is at an acceptable level. 

At present, DNOs achieve a very high PoS because they are mandated to do so as a 

requirement of their licence to operate [152], regardless of the cost that would apply for a loss 

of load. When domestic customers are left without power during normal weather conditions 

for more than 12 continuous hours, the customer can apply for compensation from the DNO 

of £100 [153], equating to £19,770/MWh lost load assuming the average UK domestic load 

[154]. No information has been found to quantify how many customers know they are entitled 

to this compensation, and what percentage actually claim the compensation when they are 

entitled to it. This makes it difficult to ascertain with confidence the true cost of lost load to 

the DNO in the present regulatory environment. 

The Value of Lost Load (VoLL) to the customer and wider economy has been estimated for 

different load types as summarised in Table 5-8 [155]. There is significant uncertainty over 

VoLL and UK government and regulatory decisions have used a figure of £16,940/MWh in 

the past [155]. 

Table 5-8 Range of VoLL to the customer and wider economy [155] 

Customer type Low VoLL (£/MWh) High Voll (£/MWh) 

Domestic customers 700 59,000 

SME customers 9,700 225,000 

Larger commercial and industrial customers 423 12,336 
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In this Section, the EOPoS was proposed based on a cost applied to the DNO when the power 

flow or voltage exceeded their respective limits. The cost each time this happened was 

£90/MWh based on twice the wholesale value of energy; thus compensating both the 

generator and load customers. This value is substantially lower than both the estimates for 

VoLL in Table 5-8 and the present cost to the DNO through compensation. 

The EOPoS is determined through the BoU associated with the lowest total operational cost; a 

combination of flexibility procurement cost, electrical losses, degradation of network assets 

and the cost of lost load. The formulation developed achieves this lowest operational cost as 

an alternative to traditional reinforcement which has a high capital cost. The developed 

formulation should not be viewed as replacing traditional reinforcement altogether however. 

Determining whether a smart solution or traditional reinforcement is the most economical will 

depend on the reinforcement cost, the smart solution operational cost, the internal cost of 

capital of the DNO and their required payback period for investment capital. 

5.6 Chapter conclusions and contribution to knowledge 

A RO formulation has been developed to determine ESS and VESS power set-points that can 

effectively mitigate against load uncertainty, appropriately balancing the replacement costs of 

network components (storage, transformers, cables) that can be degraded based on how they 

are utilised. 

The modelling environment employed has enabled an assessment of the errors introduced 

through linearization of the problem via sensitivity factors calculated based on load flows of 

the full AC power system equations. The errors have been quantified as up to 1.6% when 

there is no load and generation uncertainty, and up to 4.0% when there is load and generation 

uncertainty. To mitigate against the errors introduced and to allow the simpler linear 

optimisation methods to be utilised on the non-linear power system, a constraint derating 

factor has been proposed. 

A methodology to determine the EOPoS has been proposed using the BoU variable within 

RO. It has been shown that by using a risk based approach, a lower network operating cost 

can be realised relative to using a traditional worst case approach; as low as 24.5% of the cost 

associated with the traditional worst case approach. The benefit was seen as negligible when 

there was only one source of uncertainty affecting a constraint, and significant benefit was 

achieved when there are multiple sources of uncertainty affecting a constraint. It has also been 

shown that different parts of a network can have a different EOPoS. At high PoS when 
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multiple network constraints are considered, using the uncertainty associated with 30-minute-

ahead forecasts out performed using the uncertainty associated with day-ahead forecasts. 
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Chapter 6 Discussion 

 

6.1 Introduction 

This Thesis has investigated ESS and EVs as a means of mitigating uncertainty in urban 

microgrids in order to maintain safe operation within the distribution system voltage and 

power flow constraints without needing to reinforce the network. Chapter 2 reviewed the 

literature to find the state-of-the-art within the field and to inform the research direction. This 

led to researching the impacts of uncontrolled EV charging and proposing a methodology to 

forecast demand in Chapter 3, which is discussed further in Section 6.2 in relation to the 

research presented in later chapters. The available flexibility of EV charging demand was 

aggregated to form a VESS in Chapter 4 and is discussed further in Section 6.3. Chapter 4 

also considered a VPP delivering frequency response services, and is discussed further in 

Section 6.4 in relation to when a microgrid has power flow and voltage constraints limiting 

the contribution each individual flexible asset can provide to the frequency response services, 

similar to that studied in Chapter 5. Section 6.5 discusses further the benefits and drawbacks 

of the various power system linearization techniques relative to the insights presented in 

Chapter 5.  

6.2 Uncontrolled electric vehicle charging 

The technical impacts of uncontrolled EV charging presented in Section 3.2 and the 

associated reinforcement cost presented in Section 3.3 were based upon domestic 

uncontrolled charging. In the case of the technical impacts this was because the existing 

industrial and commercial load is very business specific making it difficult to draw 

generalizable conclusions. The reinforcement cost was based on domestic uncontrolled 

charging to understand the cost that Ofgem would allow DNOs to recover from consumers 

through the socialised Distribution Use of System (DUoS) charging mechanism. It is expected 

however that significant charging will take place in public and work locations that were not 

considered within the scope of the Chapter 3 methodology. There is little concern among 

DNOs regarding the costs associated with non-domestic uncontrolled charging induced 

network reinforcement, because such connection offers are made on a commercial basis and 

thus the costs are recoverable. On this basis, the non-domestic charging business models are 

expected to pass on the cost of network reinforcement, or reduced cost through smart 

charging, to the consumer where appropriate. Therefore the consumer is expected to 

ultimately determine the appropriate charge point rating and associated levels of network 
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reinforcement and charging duration in the non-domestic setting through natural economic 

market forces regarding which business models emerge as successful. 

It was found in the literature surveyed in Chapter 2 that although a significant number of 

consumers would be willing to partake in smart charging, not all would be willing [71]. 

Previous studies in the literature also found that forecasting uncontrolled charging is critical to 

utilising the flexibility of smart EV charging [97], and thus Section 3.4 proposed a 

methodology to forecast the uncertainty of uncontrolled EV charging load. The methodology 

proposed is most accurate when the existing uncontrolled charging load is central to that 

expected from long term diurnal analysis. When the existing uncontrolled charging load is on 

the extremes of that expected from long term diurnal analysis, the methodology is 

significantly less accurate and therefore there is scope for further research. The forecasting 

methodology was utilised for standard charging in Chapter 5 when modelling the uncertainty 

surrounding 30-minute-ahead forecasts, where it was shown that a higher network PoS could 

be achieved for the same network operating cost relative to the uncertainty surrounding day-

ahead forecasts when all constraints are considered. Despite this, the day ahead uncertainty 

for rapid uncontrolled EV charging was used because it was shown in Chapter 3 that when the 

forecast horizon is greater than 24 minutes then the uncertainty surrounding uncontrolled 

rapid EV charging cannot be improved relative to that calculated using long term diurnal 

analysis. The higher the charge point rating, the shorter forecast horizon needs to be to gain 

value from short-term forecasting uncontrolled EV charging relative to using the long term 

diurnal analysis.  

6.3 Flexibility of electric vehicle charging 

In Chapter 4, a methodology was developed to utilise the flexibility of EV charging to 

develop what appears to the grid as a VESS, allowing the EV flexibility to be optimised 

relative to other power system flexibility such as ESS. It was shown that EVs can reliably be 

called upon (~99%), in aggregate, to supply services to the electrical distribution network 

while also ensuring that the vehicles have sufficient energy within them for their primary 

purpose of transport by the time the energy is needed. There is a period of the day when there 

is a limited loss of controllability when the numbers of vehicles becomes low, due to the 

prioritisation of the vehicles need for energy over the grid request. This could be accepted as 

part of the price to pay to leverage the high level of controllability during the majority of the 

day, since without the guarantee of prioritising the EVs need for energy the number of 

consumers willing to use the smart charging system would be reduced.  
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The ability of the VESS to deliver a power request is dependent upon the SoC of each 

individual vehicle and thus based upon the control algorithm and previous grid requests of the 

algorithm. Therefore there is scope to improve upon the reliability of the VESS to deliver grid 

power requests through forecasting future power requests and optimising the internal energy 

management of the fleet. Having said this, optimising the VESS to improve reliability of 

delivering power requests may increase the additional charge-discharge cycles imposed on 

some vehicles causing an impact on battery degradation. Minimising degradation is not in 

itself single vector. The objective could be to minimise the maximum degradation within any 

one vehicle thus sharing the cost. Alternatively, the objective could be to minimise the total 

degradation to minimise operational cost for the VESS operator. Investigation into these 

multiple objectives and identification of the pareto front may inform the optimal business 

model for a VESS, and is the subject of potential future research. 

6.4 Delivering frequency response services 

A methodology was developed in Chapter 4 to successfully deliver an EFR service through 

utilising numerous flexible assets that individually would not have been able to deliver the 

service. The methodology centred around maximising power availability through maintaining 

a SoC as close to 50% as possible during normal operation, and when all assets are close to 

their SoC limits then aiming for all assets to reach their limit at the same time. Through this 

SoC management it was shown that only a small proportion of the available energy capacity 

was utilised meaning that the power rating could be increased to maximise revenue, or energy 

capacity reduced to minimise costs; both increasing profitability of the system. Having said 

this, the methodology did not consider the relative cost of utilising the flexibility of one asset 

relative to another when controlling the internal energy management and could be the subject 

for potential future research. Including the cost to utilise a flexible asset within the control 

could impact on the energy capacity required. A methodology could also be developed in 

future research to optimise the extent to which the VPP system delivering an EFR service 

tries to maximise power availability relative to minimising operational cost. 

During Chapter 4, the EFR service was delivered from a VPP where there were no network 

constraints limiting the available power flexibility that could be delivered from any one 

flexible asset. In the future however, the flexibility could be embedded within a distribution 

network with power flow and voltage constraints similar to that studied in Chapter 5. It was 

observed in Chapter 5 that each constraint could be considered independently resulting in an 

understanding that the EFR service could be split between multiple flexible assets; some able 

to demand additional power but not supply, while others are able to supply additional power 
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but not demand. Through intelligent coordination, a full frequency response service could be 

provided to the wider network from within a constrained microgrid and is the subject of 

potential future research. This would increase the number of flexible assets able to partake in 

frequency response services increasing competition and reducing costs for the TSO while 

concurrently adding an additional layer of potential revenues for the flexible asset operator 

helping their business case as an alternative to network reinforcement.  

These ideas can be discussed further by taking the microgrid under test in Chapter 5 as an 

example. At the times when there are no constraint limitations both the ESS and VESS of 

smart charging EVs could deliver the full EFR service. When the feeder supplying the large 

city centre office building is constrained by power flow or voltage limitations the ESS is 

required to supply a minimum amount of real power generation to the network, and thus could 

supply a greater amount of real power generation for frequency response. In contrast, when 

the feeder supplying the solar PV system is constrained by power flow, the VESS is required 

to demand a minimum amount of real power load, and thus could demand a greater amount of 

real power load for frequency response. Together, despite these limitations, the ESS and 

VESS could work together to provide a full EFR service. The microgrid under test in Chapter 

5 however has one further limitation of the power flow through the transformer when in N-1 

condition; in this situation the microgrid would have times when the full EFR service could 

not be provided to the wider macrogrid, and another microgrid elsewhere within the network 

would need to work collaboratively in a similar manner. Such a system of constrained 

frequency response would rely on the diversity of flexibility availability.  

6.5 Linearisation of the power system 

The linearization of the power system allows the use of deterministic optimisation algorithms 

such as LP and can be transformed through RO to operate effectively under uncertainty. It 

was noted in the literature that through utilising a DC load flow within the linear optimisation 

could result in power flow and voltage constraint violations when modelled on the AC system 

[60], with errors up to 4.46% [93]. It has been shown in this Thesis however that linearization 

through calculating power flow and voltage sensitivity factors based on the full AC power 

system equations can display reduced linearization errors. Without load and generation 

uncertainty the maximum error observed was 1.6% and with load and generation uncertainty 

the maximum error observed was 4.0%. Furthermore, by basing the linearization on the full 

AC power system equations instead of a DC load flow enables the sensitivity factors to be 

calculated for both real and reactive power relative to the voltage and apparent power flow 

through each part of the network. In theory, this should mean that reactive power could be 
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implemented as a decision variable within the uncertain deterministic optimisation 

methodology as well as real power. Since reactive power does not impact upon the 

degradation of an ESS battery, its use to solve a network constraint violation could be more 

cost effective than utilising real power. It was found during development of the formulation 

used in this Thesis that reactive power as a decision variable within an iterative method, to 

ensure representative sensitivity factors are used, could become unstable and result in non-

convergence. This issue could be mitigated by using a more complex MILP solver and a 

piecewise approach similar to that proposed in [61] where load and generation certainty was 

assumed. The transformation to RO to account for load and generation uncertainty vastly 

increases the number of decision variables and constraints and implementing this within a 

MILP solver is the subject for potential future research.  

The non-convergence when using reactive power as a decision variable was caused because 

the cost function assumed zero cost to utilising the reactive power. Regardless of the 

magnitude of the real power decision variable to apparent power flow sensitivity factor 

relative to the reactive power decision variable to apparent power flow sensitivity factor, the 

cost function meant the LP always utilised the reactive power. This was unable to achieve the 

required reduction in apparent power flow resulting in the non-convergence. There are two 

potential modifications that could prevent this situation while still using a LP solver. One 

option is to implement a cost to utilise the reactive power; small enough to be representative 

to ensure an optimal solution is achievable, yet large enough that a real power decision 

variable is used when it is more appropriate. Another option is to consider the results of 

Chapter 5 in that each network constraint could be considered independently to achieve its 

own EOPoS. In this situation, it would be an easier task to intelligently select the appropriate 

decision variable for a particular network constraint; generally a real power decision variable 

for an apparent power flow constraint, and a reactive power decision variable for a voltage 

constraint. Exploring these ideas is the subject of potential future research. 
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Chapter 7 Conclusions and future work 

 

7.1 Overview 

A literature review was undertaken in Chapter 2 to find the state-of-the-art within the field of 

urban microgirds and EV charging. From this, Chapter 3 considered the technical and 

economic impacts of uncontrolled EV charging, and developed a methodology to forecast 

uncontrolled EV charging load. Chapter 4 developed a methodology to aggregate a number of 

smart charging EVs into a VESS, which was then utilised with other flexible loads within a 

VPP to deliver an EFR service to the wider grid. In Chapter 5, an algorithm was developed to 

utilise flexible loads to mitigate uncertainty within the power system and prevent, with 

economically optimal probability, power flow and voltage limits from being exceeded. 

Finally, all chapters were compared, contrasted and discussed in Chapter 6. 

The specific conclusions and contributions to knowledge from the research are listed in 

Section 7.2, and the areas of potential future research are listed in Section 7.3. 

7.2 Conclusions and contributions to knowledge 

• A study has been undertaken to quantify the EV penetrations that would result in 

domestic distribution networks exceeding statutory power flow, under voltage and 

voltage unbalance limits. It was found that: 

o Transformer power flow limits in a heavily loaded generic network are 

expected to be exceeded when EV penetration reaches 40% 

o Average load is within the power flow limits of the transformer within a 

heavily loaded generic network even at 100% penetration, suggesting ESS or 

smart charging could be an alternative solution to transformer reinforcement 

o Under voltage limits are not expected to be exceeded even when EV 

penetration reaches 100% in a heavily loaded generic network 

o Voltage unbalance limits are expected to be exceeded when EV penetration 

reaches 60% in a heavily loaded generic network 

• A study has been undertaken to estimate the expected network reinforcement cost that 

Ofgem would allow DNOs to recover from consumers under a largescale uptake 

scenario. Total present value costs are expected to be within the range: 

o  £19.55bn - £22.48bn to 2030, assuming 8.2m EVs by 2030 

o £60.81bn - £74.27bn to 2040, assuming 31.1m EVs by 2040 
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• A methodology has been developed to forecast future uncontrolled EV charging load 

and the uncertainty surrounding that forecast, based on the ‘here and now’ 

uncontrolled EV charging load experienced on the network. Using the methodology 

and historical charging probability distribution functions of early adopters, it was 

found that the UI could be reduced relative to that developed from long term diurnal 

analysis by looking ahead no more than: 

o 1.5 hours for standard charging of 750 EVs per day 

o 24 minutes for rapid charging of 100 EVs per day 

• A methodology has been developed to aggregate a number of smart charging EVs to 

form a VESS able to deliver services to the distribution network with a high degree of 

controllability (~99% for the two power request profiles under test), while also 

guaranteeing the EVs with the energy they need by the time it is needed for their 

primary objective of transportation. 

• A methodology has been developed to combine any number of flexible loads and 

through effective energy management coordination maximise their individual power 

availability to deliver an EFR service to the macrogrid. Through utilising the 

algorithm and an example based on Newcastle Science Central, it was shown that 

storage capacities could be reduced minimising initial capital cost or power ratings 

increased maximising potential EFR revenues, relative to the flexible loads operating 

in isolation from one another. 

• A RO formulation has been developed to calculate the power set-point that an ESS 

and VESS should operate at in order to protect a microgrid from power flow and 

voltage limit violations caused through load and generation uncertainty. Using this 

formulation, a specific LV test network and associated load and generation profiles: 

o The errors introduced through linearization of the power system via sensitivity 

factors calculated based on load flows of the full AC power system equations 

were calculated as: 

▪ Up to 1.6% when there is no load and generation uncertainty 

▪ Up to 4.0% when there is load and generation uncertainty 

o A lower network operating cost can be realised by taking a risk based approach 

relative to using a traditional worst case approach. The benefit was larger when 

there were multiple sources of uncertainty impacting upon a constraint. The 

greatest benefit found was: 

▪ The risk based approach costing 31.1% of the traditional worst case 

approach cost, when using 30-minute-ahead forecasts 
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▪ The risk based approach costing 24.5% of the traditional worst case 

approach cost, when using day-ahead forecasts 

o A methodology was developed to determine the EOPoS, where it was shown 

through the studies that different parts of a network can have different EOPoS. 

o At high PoS when multiple network constraints are considered, using the 

uncertainty associated with 30-minute-ahead forecasts out performed using the 

uncertainty associated with day-ahead forecasts. 

7.3 Areas of potential future research 

• Improve the ability to forecast uncontrolled EV charging: 

o When the existing charging load is not close to the centre of the long term 

diurnal UI. 

o When the numbers of EVs charging per day changes and consequently there 

are different levels of diversity to that studied in this Thesis 

• Investigate the multiple objectives that the internal energy management of a VESS of 

smart charging EVs could be optimised for, and investigate the viability of potential 

business models for each point on the pareto front. 

• Develop new control algorithms to improve the coordination of flexible loads to 

deliver EFR services to the macrogrid: 

o Include the individual flexible load procurement cost within the formulation, 

and investigate the impact this has on reduced power availability and resulting 

revenue generation. 

o Develop algorithms that allow multiple sources of flexibility, all constrained 

through power flow and voltage limits within a microgrid, to deliver an EFR 

service through intelligent coordination. 

• Investigate RO formulations to calculate ESS and VESS power set-points further: 

o Investigate how a RO formulation could be implemented within a MILP solver 

to improve reliability of solution convergence and to enable the use of reactive 

power decision variables 

o Investigate the potential to split the problem into numerous sub-problems, 

despite the potential for multiple sources of flexibility that could apply to each 

constraint, and for multiple constraints that could apply to each source of 

flexibility: 

▪ To allow appropriate decision variables to be intelligently selected for a 

particular constraint 
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▪ To allow each constraint to target its own EOPoS 
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Appendix A Images of PSCAD model used in Chapter 3 

 

Screen shots of the PSCAD model used in Chapter 3 are shown in Appendix Figure A-1, 

Appendix Figure A-2, Appendix Figure A-3 and Appendix Figure A-4. 

 

Appendix Figure A-1 PSCAD model 33/11 kV transformers, 11 kV lumped loads and link to 

the model shown in Appendix Figure A-2 
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Appendix Figure A-2 PSCAD model 11/0.4 kV transformers and link to the LV model shown 

in Appendix Figure A-3 and Appendix Figure A-4 

 

 

Appendix Figure A-3 PSCAD model LV lumped load and start of LV cable feeder 
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Appendix Figure A-4 PSCAD model LV feeder remote end 
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Appendix B Frequency domain IPSA2 results associated with the 

PSCAD analysis presented in Chapter 3 

 

This appendix reproduces the frequency domain IPSA2 results that were referred to in the 

PSCAD analysis of the impact of uncontrolled EV charging on distribution networks 

presented in Chapter 3. These figures were produced by others in the development of the 

journal paper co-authored by the author of this Thesis [16]. 

Appendix Figure B-1 displays the convergence of the MCS simulation, giving justification of 

the 1000 simulated days used in Chapter 3, using the urban test network with an EV 

penetration of 60%.  

Appendix Figure B-2 displays the demand on the 11/0.4 kV transformer, as calculated in 

IPSA2, for a number of EV penetrations. This result gives justification for focusing on the 

worst case period 17:00-05:00 in the PSCAD analysis of Chapter 3. 

Appendix Table B-1 displays the voltage drops calculated by IPSA2 for the generic network 

for a number of EV penetrations. 

 

Appendix Figure B-1 Convergence of the MCS with number of simulated days, for 60% EV 

penetration on the urban test network. The average values (blue curve) and standard error 

(red curve) of the apparent power on the transformer under study. 
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Appendix Figure B-2 Test day critical demand for the generic network, using IPSA2 

calculation 

 

Appendix Table B-1 Maximum voltage changes in the generic LV network (negative is a 

voltage drop), using IPSA2 calculation 

Lowest voltage 15% EVs 30% EVs 60% EVs 

ΔV –Mean -1.58% -1.64% -1.73% 

ΔV –Max -2.67% -2.79% -3.02% 
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Appendix C MATLAB Simulink model of Newcastle Science Central 

and associated control for Section 4.5 

 

Screen shots of the MATLAB Simulink model used in Section 4.5 are shown in Appendix 

Figure C-1, Appendix Figure C-2, Appendix Figure C-3, Appendix Figure C-4, Appendix 

Figure C-5 and Appendix Figure C-6. 

 

Appendix Figure C-1 MATLAB Simulink model of the Newcastle Science Central electrical 

distribution system 
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Appendix Figure C-2 MATLAB Simulink fuzzy logic control system 

 

 

Appendix Figure C-3 MATLAB Simulink target SoC calculation 
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Appendix Figure C-4 MATLAB Simulink heat model overview for building DSR 

 

 

Appendix Figure C-5 MATLAB Simulink heat energy storage model 
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Appendix Figure C-6 MATLAB Simulink building heat model 
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