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Abstract

Parameter inference is the field concerned with estimating reliable
model parameters from data. In recent years there has been a trend
in the biology community toward single cell technologies such as flu-
orescent flow cytometry, transcriptomics and mass cytometry: pro-
viding a rich array of stochastic time series and temporal distribution
data for analysis. Deterministically, there are a wide range of param-
eter inference and global optimisation techniques available. However,
these do not always scale well to non-deterministic (i.e., stochastic)
settings — whereby the temporal evolution of the system can be de-
scribed by a chemical master equation for which the solution is nearly
always intractable, and the dynamic behaviour of a system is hard to
predict. For systems biology, the inference of stochastic parameters
remains a bottleneck for accurate model simulation.

This thesis is concerned with the parameter inference problem for
stochastic chemical reaction networks. Stochastic chemical reaction
networks are most frequently modelled as a continuous time discrete-
state Markov chain using Gillespie’s stochastic simulation algorithm.

Firstly, I present a new parameter inference algorithm, SPICE, that
combines Gillespie’s algorithm with the cross-entropy method. The
cross-entropy method is a novel approach for global optimisation in-
spired from the field of rare-event probability estimation. I then
present recent advances in utilising the generalised method of mo-
ments for inference, and seek to provide these approaches with a di-
rect stochastic simulation based correction. Subsequently, I present a
novel use of a recent multi-level tau-leaping approach for simulating
population moments efficiently, and use this to provide a simulation



based correction to the generalised method of moments. I also pro-
pose a new method for moment closures based on the use of Padé
approximants.

The presented algorithms are evaluated on a number of challenging
case studies, including bistable systems — e.g., the Schlögl System
and the Genetic Toggle Switch — and real experimental data. Exper-
imental results are presented using each of the given algorithms. We
also consider ‘realistic’ data — i.e., datasets missing model species,
multiple datasets originating from experiment repetitions, and datasets
containing arbitrary units (e.g., fluorescence values). The developed
approaches are found to be viable alternatives to existing state-of-
the-art methods, and in certain cases are able to outperform other
methods in terms of either speed, or accuracy.
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Chapter 1

Introduction

1.1 Background

Every living cell can be viewed as a complex network of biochemical pathways.
The core functionality of life, i.e., metabolism, signal transduction, and cellular
differentiation are robustly controlled by rich networks of genes and molecular
reactions. Through experimental evidence, molecular biology and bioinformatics
have uncovered large quantities of interacting, multifunctional elements — such
as RNA, proteins, and transcription factors — that often behave in a non-linear,
but coherent fashion. Forming a complete intuitive description of any complex
biological system is near impossible, thus a combination of experimental and
computational techniques are required [72].

1.1.1 Computational Systems Biology

Computational systems biology aims to construct mechanistic, dynamic models to
achieve a systems level understanding of biological processes [72]. Primarily, the
development of accurate, reliable simulations is an invaluable tool for the analysis
of cellular systems [128]. The primary goals of modelling are two-fold. Firstly
models can be used to validate our understanding of the underlying biochemical
mechanisms. Secondly, models can be used make informative predictions about
cellular behaviour. Ultimately, in silico (computational) experiments are a pow-
erful ally to achieving the goals of synthetic biology, which aims to provide safe
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1. INTRODUCTION

and reliably engineered organisms that satisfy model design requirements [39, 56].
At the highest level of complexity, a golden standard for systems biology is the so
called ‘whole-cell ’ model. A whole-cell model provides a complete account for the
molecular dynamics of a cell during its entire life cycle, and is able to predict phe-
notype from genotype — see for example, the Mycoplasma genitalium whole-cell
model [68]. In future, it is anticipated that such complex biological models will
pave way to a new generation of genetically optimised crops, drug-development,
biofuel synthesis, and personalised medicine [22].

1.1.2 The Emergence of Stochastic Modelling

Chemical reaction network models are central to systems biology, forming sets of
reaction rules that govern the temporal evolution of a system [128]. Tradition-
ally, these models have been deterministic — using continuous, coupled ordinary
differential equations. Only in recent years has the role of stochasticity, both
intrinsic and extrinsic, become better understood in the context of biological
processes. Experimental evidence has confirmed that gene expression can occur
in transient, stochastic bursts [14, 98], while low molecular counts and rare reac-
tion events can account for profound differences from deterministic dynamics [87].
It is reasonable to conceive that many, if not most biological systems, will consist
of autoregulatory network motifs that operate around unstable states — such that
they are able to adapt and respond to changes within their environment. Specific
examples of cellular phenomena that rely on stochastic noise include chemotaxis
and polarization [127], and oscillations within the MinCDE system used by E.coli
prior to cell division [63].

1.1.3 Parameter Inference

Parameter inference is the field concerned with estimating reliable model param-
eters from experimental data, and is vital to achieving the aims of computational
systems biology [116]. Given a well defined model and its parameters, producing
a time-series trajectory via forward simulation is an easy task. On the other
hand, inferring a stochastic parameter from time-series snapshot data is not so
easy: and remains a hard challenge for computational systems biology [128]. His-
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torically, obtaining high resolution time-series data accounting for the dynamics
of a molecular species within a single cell has been problematic. Recent years,
however, have seen a new generation of single cell technologies including fluo-
rescent flow cytometry, transcriptomics, and mass cytometry — providing a rich
array of stochastic temporal data for analysis.

For deterministic systems there exists a vast array of local and global opti-
misation techniques which have been adapted to perform parameter estimation
[90]. Unfortunately, these do not always apply well to non-deterministic systems
— whereby the dynamics are described by a probability distribution for which
the solution is intractable, and whose temporal evolution is hard to predict. For
computational systems biology, the estimation of reliable parameters remains a
challenge and bottleneck toward accurate model simulation.

Categorising Parameter Inference Current state-of-the-art methods for pa-
rameter inference fall into a wide range of categories. Broadly speaking, the key
properties of parameter inference routines for stochastic biological models can be
categorised as follows:

• Maximum-likelihood vs likelihood-free objective optimisation.

• Exact vs inexact solutions to the chemical master equation.

• Gradient-based vs gradient-free optimisation.

Maximum Likelihood and Likelihood Free Estimation Maximum like-
lihood estimation (MLE) is one of the most widely used approaches in the pa-
rameter inference paradigm. MLE routines aim to compute an estimate of the
unknown model parameters, such that the conditional probability of the param-
eters upon observed data is maximised. Given complete — ‘perfect’ — data,
whereby all the species and their temporal transitions are captured within a sys-
tem, the parameters that maximise the likelihood can be calculated analytically
[128]. In practice, MLE methods must deal with partially observed systems, and
use appropriately selected heuristics to compute approximate maximum likeli-
hood estimates. Computing the likelihood of parameters based on simulations
and experimental data can be an expensive challenge [128]. Furthermore, for
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1. INTRODUCTION

many systems the exact form of the likelihood function is not easy to compute.
This motivates the use of ‘likelihood-free’ objective functions (e.g., least squares
distances), which when optimised produce approximate parameters that converge
to the real maximum likelihood estimates under certain assumptions (e.g., nor-
mally distributed data).

Exact versus Inexact Simulation Central to all parameter inference tech-
niques for biological models is the ability to generate samples of the time-course
dynamics. ‘Exact’ samples (to the solution of the chemical master equation)
can be generated using stochastic algorithms such as Gillespie’s direct method
[44]. However, they are computationally intensive and do not scale well to larger
systems. Recent advances have seen a host of inexact approximations including
tau-leaping [20, 43], system size expansion [100], and moment-closure approxima-
tions [34].

Gradient and Gradient Free Descent Gradient-based methods are predom-
inantly used in deterministic, maximum-likehood estimation. The gradient-based
methods work by firstly (i) approximating the derivative of the likelihood in the
local landscape, and then (ii) using the gradient to take a step in parameter
state-space [7]. In stochastic systems, the gradient is often noisy and non-convex,
and care must be taken to avoid local minima. On the other hand, gradient-free
methods instead navigate the parameter state-space by other heuristics.

1.2 Related Work

An early method for parameter inference within stochastic chemical reaction net-
works is the simulated maximum likelihood (SML) approach by Tian et al. [123].
SML utilizes stochastic differential equations to compute an approximation of the
system dynamics, and a genetic optimisation algorithm to maximize a joint tran-
sitional likelihood function. More recently, efforts by Horvath et al. [62] have been
made to integrate the well-known 2-step Expectation-Maximisation (EM) algo-
rithm [30] with direct simulation via Gillespie’s stochastic simulation algorithm
[44]. One advantage of the EM method over SML is that the EM does not require
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prior bounds on the parameters. Another MLE method, the stochastic gradient
descent (SGD) [126], derives a general formula for calculating the gradient of the
likelihood function and combines Gillespie-type exact stochastic simulations [44]
with a reversible jump Markov Chain Monte Carlo sampler. However, much like
the SML, the SGD method requires prior bounds on the parameters. More recent
work by Daigle et al. developed a new Monte Carlo Expectation-Maximisation
with Modified Cross-Entropy Method (MCEM2) [26]. MCEM2 combines an effi-
cient, ascent-based EM algorithm [19] with the Cross-Entropy method [106] — a
recent advance in the field of rare event probability estimation [105, 125].

Another large category of parameter estimation techniques are those that
utilise Bayesian inference. Theoretical advantages of Bayesian methods over the
frequentist approaches such as the EM and SML are the ability to incorporate
notions of experimental error into the posterior distribution, the ability to yield
confidence intervals, and the better handling of unobserved model variables [15,
48]. Approximate Bayesian computation (ABC) expands on previous work by
becoming ‘likelihood-free’ [128], and recent advances in sequential Monte Carlo
(SMC) samplers have further improved these estimation techniques [118, 124]. In
addition, the methods developed by Toni et al. [124] and Liepe et al. [83] are able
to perform model selection, distinguishing between competing model descriptions.
A practical application of Bayesian inference can be seen in [36], where it was
used alongside model selection and single-cell fluorescent lineage data to study
the dynamics of Nanog regulation within mouse embryonic stem cells.

More recent classes of methodologies focus on using approximations to the
solution of the chemical master equation — which is otherwise intractable for all
but the simplest of systems. One approach taken is to use dynamic truncation of
the state space [5] or finite state projection methods [27] — methods which trun-
cate the infinite dimensions of the chemical master equations solution by ignoring
the lowest probability states. These methods still suffer from a large computa-
tional overhead and can add an integration bias that make the approximations
worse the longer the systems are simulated for. Other recent work includes the
moment-closure approximations [34, 38, 42, 55, 85, 132], which construct ODEs
describing the time evolution for the mean, variance, skewness (and so on) of the
underlying probability distribution [50]. These methods have provided promising
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1. INTRODUCTION

results in recent years, however, can fall victim to poor approximations when as-
sumptions made about the model are false, and where the data is insufficient to
approximate higher order moments. Finally, another noteworthy approximation
of the chemical master equation is system size expansion — using van Kampen’s
expansion [38, 100] and other solutions of the Fokker-Planck equation such as
the linear noise approximation [82]. All of the above simulation approaches can
be combined with parameter estimation frameworks, for example, Komorowski
et al. combine linear noise approximations with Bayesian inference [74].

1.2.1 Related Software and Tools

COPASI COPASI — the COmplex PAthway SImulator — is a stand-alone
software application that aids in the simulation and analysis of chemical reac-
tion networks [61]. It includes the ability to construct, simulate, and read file
standards such as Systems Biology Markup Language (SBML) models [64]. Of
particular interest is COPASI’s ability to perform simulations with a wide range of
stochastic methods and differential equations — and its range of commonly used
parameter estimation routines. The full list of implemented parameter inference
techniques are: Evolutionary Programming [9]; Evolution Strategy (Stochastic
Ranking) [110]; Genetic Algorithm [9]; Genetic Algorithm (Stochastic Ranking)
[110]; Hooke and Jeeves [60]; Levenberg-Marquardt [86]; Nelder-Mead [93]; Par-
ticle Swarm [70]; Praxis [16]; Simulated Annealing [71]; Steepest Descent [37];
Truncated Newton [92]. Many of these algorithms, especially those that navigate
the parameter space based on computing a gradient, are particularly suited to
optimisation in deterministic settings — and do not scale well to stochastic sys-
tems. However, they are nonetheless useful in computing parameter estimates
for robust models, and are used as the back-end to other modelling environments
such as Vcell [112]. Recent work has expanded the accuracy of COPASI by using
a multiple shooting technique for stochastic and deterministic simulation [12].

StochKit & StochSS StochKit [111] and StochSS [32] — part of the Stochastic
Simulation Service — is an integrated environment that allows for modelling and
simulation through a web-based user interface. Like COPASI, StochSS utilises
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XML (SBML) formatting, and provides a range of tools including parameter
sensitivity analysis, and parameter estimation. Parameter estimation, through
the StochOptim module, implements the Monte Carlo Expectation-Maximization
with Modified Cross-Entropy Method (MCEM2) algorithm [26], and yields a mul-
tivariate parameter estimate.

CERENA CERENA [69] — the ChEmical REaction Network Analyzer — is a
toolbox for simulating and analysing stochastic chemical reaction networks based
on using approximations of the chemical master equation. Specifically, CERENA
implements standard Gillespie-type simulations [44], alongside finite state projec-
tion [91], system size expansion [100], and moment closure approximations [34].
However, CERENA does not implement its own parameter estimation routines,
and acts as an intermediary tool.

Other Tools MEANS [1] — for Moment Expansion Approximation, iNference
and Simulation — is a python package that implements moment closure approxi-
mations and parameter inference through the IPython Jupyter environment. Pa-
rameter inference within MEANS is performed through the use of SciPy’s fmin
function. MOCA [115] — a MOment Closure Analysis tool — allows numerical
analysis of various moment closure approximations, while SHAVE [78] — Stochas-
tic Hybrid Analysis of markoV population modEls — aids in the construction of
hybrid moment-state based representations of the chemical master equation. An-
other tool, iNA [122] — the Intrinsic Noise Analyzer — allows for simulation
and analysis via van Kampen’s system size expansion of the chemical master
equation [100]. Similarly to iNA, a recent tool LNA++ [67] provides an efficient
implementation of the linear noise approximation, alongside first and second or-
der sensitivity estimates. Like CERENA, iNA and LNA++ act as generalised
intermediary tools and do not possess inference capabilities. Within more formal
frameworks, Bio-PEPA provides a modelling language enabling the abstraction
and analysis of biochemical networks, interfacing with tools such as the model
checker PRISM [23]. More recently, ProPPA — the Probabilistic Programming
Process Algebra — extends the work of Bio-PEPA and enables machine learning
tools to perform inference and uncertainty analysis [40]. Finally, BioNetGen [53]
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1. INTRODUCTION

— the Biological Network Generator — is a rule-based modelling environment
for chemical reaction networks. It includes a range of tools for simulation includ-
ing differential equations and stochastic simulation using Gillespie-type methods.
BioNetGen allows for Bayesian based inference [73] using the in-house tool PTem-
pEst — which stands for Parallel Tempering for Estimation. Parallel tempering
[33] is a global optimisation method closely related to simulated annealing [71]
and associated Markov Chain Monte Carlo sampling techniques.

1.3 Aims and Objectives

The aim of this work is to

investigate novel computational approaches to parameter inference for stochastic
biological models.

Specifically, the goals were to:

• investigate a novel approach for parameter inference based on the Cross-
Entropy method, and apply it to stochastic biological models.

• to investigate promising developments in scalable moment approximations,
for the use in generalised method of moments based inference techniques.

• to compare and evaluate the performance of the developed parameter infer-
ence approaches against other state-of-the-art methodologies on numerous
challenging case studies.

1.4 Thesis Outline

In this section I introduce the outline and contributions of this thesis.

• Chapter 2 provides an mathematical framework for modelling and describ-
ing stochastic chemical reaction networks.

• Chapter 3 introduces the Cross-Entropy method for generalised optimi-
sation, and extends the framework to stochastic chemical kinetics. Within
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this chapter I present SPICE, an algorithm for stochastic parameter infer-
ence using the Cross-Entropy method. Some of the material presented in
this chapter was published in [101].

• Chapter 4 introduces moment approximations, the generalised method
of moments, and its application to parameter inference within stochastic
chemical reaction network models. I propose a new method for parameter
inference, based on combining the generalised method of moments with a
novel adapative multi-level tau-leaping technique (MLGMM). Within this
chapter I also provide insight into the failure of some moment closure ap-
proximations, and propose a novel technique for constructing closures based
on using Padé approximants.

• Chapter 5 implements the new SPICE algorithm for inference on numerous
case studies — including a model of the Genetic Toggle Switch for which
real experimental data was used.

• Chapter 6 gives an overview of the conclusions, and final remarks for
future work.

1.5 List of Publications

Portions of the work within this thesis have been documented in the following
publications:

• Jeremy Revell and Paolo Zuliani. “Stochastic rate parameter inference
using the cross-entropy method”, in Computational Methods in Systems Bi-
ology, Češka, Milan and Šafránek, David, pages 146–164, 2018. Springer
International Publishing.
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Chapter 2

Stochastic Chemical Kinetics

In this chapter, I outline useful mathematical concepts and algorithms for the
modelling, simulation, and analysis of stochastic biochemical reaction networks.

• In Section 2.1, I present some background theory toward continous time
Markov chain processes.

• Within Section 2.2 I outline the framework for describing stochastic chem-
ical reaction networks.

• Section 2.3 presents the chemical master equation for describing the proba-
bility distribution of a stochastic process, and the methods used to sample
its solutions.

• Section 2.4 presents the complete data likelihood for exact stochastic sim-
ulation trajectories, which is used extensively in parameter inference.

2.1 Markov Chains, and Markov Processes

A Markov process within a discrete (or continuous) state-space is a stochastic
process satisfying the Markov property — i.e., the condition that all future states
are independent of the past states. A discrete-time Markovian process is called
a Markov chain and describes the temporal evolution of a sequence of random
variables. The transitions within the chain are stochastic — with future transition

11



2. STOCHASTIC CHEMICAL KINETICS

probabilities depending on only the current. Mathematically, these transitions are
described using a transition kernel, and is standard material in probability theory
[103].

Definition 2.1 (Transition Kernel). A transition kernel for a Markov process
{Xt} with state-space S ⊆ Rn is a map K : S ×B→ [0, 1] such that

(i) ∀x ∈ S, K(x, ·) is a probability measure;

(ii) ∀A ∈ B, K(·, A) is measurable,

where B denotes the Borel-σ-algebra on S.

For the finite or countable case, K is a transition matrix with elements

kij = P (Xt+1 = j|Xt = i), i, j ∈ S,

where each Xt is a random variable. For the continuous case, the kernel also
represents the conditional density K(x, y) of the transition K(x, ·) such that
P (Xt+1 ∈ A|Xt = x) =

∫
A
K(x, y)dy.

Definition 2.2 (Markov Chain [103]). The sequence of random variables
{X1, . . . , Xt} generated by a discrete-time Markov process together with a transi-
tion kernel, K, define a Markov chain, providing the Markov property has been
satisfied. Specifically for any finite sequence x1, x2, . . . , xt ∈ S,

P (Xt+1 ∈ A|X1 = x1, X2 = x2, . . . , Xt = xt) = P (Xt+1 ∈ A|Xt = xt)

=

∫
A

K(xt, dx).
(2.1.1)

Definition 2.3 (Invariance). A σ-finite measure π is invariant given the tran-
sition kernel K if

π(A) =

∫
S

K(x,A)π(dx), ∀A ∈ B. (2.1.2)

If π is an invariant probability measure with respect to a kernel, π is said to
be the stationary distribution of the homogeneous Markov chain. The resulting
Markov chain is also said to be stationary.

Definition 2.4 (Reversible). A stationary Markov chain (Xt) is said to be
reversible if the distribution of Xt+1 conditional upon Xt+2 = x is equal to the
distribution of Xt+1 conditional on Xt = x.

12



As a consequence, in the case of reversibility, the direction of time is inconse-
quential upon the dynamics of the chain.

Definition 2.5 (Detailed Balance). A Markov chain (Xt) satisfies the detailed
balanced condition if there exists a function π satisfying

K(y, x)π(y) = K(x, y)π(x) ∀x, y ∈ S (2.1.3)

Theorem 2.1. If a Markov chain with a kernel K satisfies the detailed balance
condition with a probability density function π then:

(i) The density π is the invariant (or stationary) density of the chain.

(ii) The chain is reversible.

Proof. Property (i) follows from the detailed balanced condition (2.1.3) for any
measurable set A,∫

S

K(y, A)π(y)dy =

∫
S

∫
A

K(y, x)π(y)dxdy

=

∫
S

∫
A

K(x, y)π(x)dxdy =

∫
A

π(x)dx,

since
∫
K(x, y)dy = 1. The appearance of the kernel K and an invariant density

π make it clear that detailed balance and reversibility are equivalent properties
[103].

Given the convergence to the stationary distribution π in a state space S,
Markov chains also have the interesting property that the empirical average for
a Lebesgue integrable function h,

1

T

T∑
t=1

h(Xt),

converges to Eπ[h(X)] almost surely. Thus the empirical averages for h() converge
to a probabilistic average of the function over the stationary distribution.

2.2 Stochastic Chemical Kinetics

Traditional models of chemical systems have used continuous descriptions of
molecular concentrations via deterministic reaction rate differential equations
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2. STOCHASTIC CHEMICAL KINETICS

(RRE). These form macroscopic approximations of the underlying system, which
in reality is composed of discrete-time events that occur probabilistically with a
rate dependent on the systems chemical properties [129]. For many systems, the
RRE approximation is inadequate, and fails to account for biochemical systems
with low molecular numbers [87], rare reactions, or transient burst behaviour
events — i.e., stochastic gene expression [14, 98]. A generalised stochastic de-
scription of biochemical kinetics is therefore required.

One general approach is to consider each particle in a system undergoing a
random walk due to Brownian motion. When two particles approach (or collide),
reactions occur stochastically according to a set of rules. However, such a system
is infeasible to solve in practice, and the computational burden of tracking all
particle positions and velocities can quickly exceed hardware limits [128].

For this thesis I will consider the standard description of stochastic chemical
kinetics using continuous-time Markov chains (CTMCs). Explicitly, I will assume
the system is well-mixed, dilute, contained within a compartment of fixed volume,
Ω, and in thermal equilibrium at an absolute temperature [45].

Definition 2.6 (Well-mixed). A system is deemed ‘well-mixed’ if the mean
free path — the average distance travelled by a moving molecule between succes-
sive collisions or reactions — is much less than the length scale of the hosting
compartment. Thus, the dynamics of the system depends only on the total number
of molecules and can be deemed roughly isotropic, i.e., the physical description of
the system is spatially invariant.

Definition 2.7 (Dilute). A ‘dilute’ system is one in which the total volume of the
compartment, Ω, is much greater than the combined volume of all the molecules
within it. Thus, we can treat all molecules as point particles.

Given a set of n species, the state of the system at any time within the CTMC
is represented by the random vector x(t) = (x1(t), . . . , xn(t)), where xi represents
the number of molecules of the i-th species, Si, at time t, for i ∈ {1, . . . , n}.
The probabilistic state transitions that occur within the CTMC are governed by
a set of reaction rules, which form a chemical reaction network (CRN) — see
Definition 2.8.

14



Definition 2.8 (Chemical Reaction Network). A chemical reaction network
is a set {Rj : j ∈ {1, . . . ,m}} where Rj denotes the j-th reaction of type:

Rj : v−j,1S1 + . . .+ v−j,nSn
θj−→ v+j,1S1 + . . .+ v+j,nSn, (2.2.1)

and the vectors v−j = (v−j,1, . . . , v
−
j,n) and v+j = (v+j,1, . . . , v

+
j,n) represent the stoi-

chiometry of the reactants and products respectively.

It is useful to let vj ∈ Zn denote the overall (non-zero) state change vector for
Rj, such that vj = v+j −v−j , for j ∈ {1, . . . ,m}. The vectors {vj : j ∈ {1, . . . ,m}}
form the state change matrix. Assuming standard mass action kinetics, the reac-
tion Rj proceeds at a rate directly proportional to the number of combinations
of reactant molecules, leading to a propensity function (also known as the hazard
function [128]) of the form:

hj(x,θ) = θjgj(x)

= θjΩ
n∏
i=1

xi!

(xi − v−j,i)! Ωv−j,i

= θjΩ
n∏
i=1

(
xi
v−j,i

)
1

Ωv−j,i
,

(2.2.2)

where θj is the deterministic rate constant, Ω is the total compartment volume,
and the time-dependence of x has been neglected [45, 128]. If {∃ i | v−j,i > xi}, then
the j-th propensity, hj = 0, and the reaction is unable to fire. See Example 2.1
for a demonstration of using Equation (2.2.2) for a generic CRN.

Example 2.1 (Mass-Action Propensity Calculations). Consider the follow-
ing four generic reactions ranging from zeroth to second order:

R1 : ∅ θ1−→ · · · (e.g., synthesis),

R2 : A
θ2−→ · · · (e.g., degradation),

R3 : A+B
θ3−→ · · · (e.g., binding),

R4 : A+ A
θ4−→ · · · (e.g., dimerisation),

where A and B are chemical species, θ = (θ1, . . . , θ4) denote the rate constants,
and ∅ is used to represent a null species. Using Equation (2.2.2), the correspond-
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2. STOCHASTIC CHEMICAL KINETICS

ing mass-action propensity functions are:

h1(x,θ) = θ1Ω, h2(x,θ) = θ2xA,

h3(x,θ) =
θ3
Ω
xAxB, h4(x,θ) =

θ4
Ω

xA(xA − 1)

2!
,

where x = (xA, xB) are the numbers of each species, and Ω is the volume.

In general, stochastic chemical kinetics are not restricted to mass action form,
and thus the propensity functions hj(x,θ) may be specified separately, where θ
can be any vector of input parameter values.

2.3 Chemical Master Equation

Let P (x(t)|x0(t0)) denote the probability distribution for the system to be in
state x at time t, given the initial state x0 at time t0. For an infinitesimal
change in t, dt, the distribution P (x(t + dt)|x0(t0)) is found by subtracting the
probability to leave state the x from the probability to transition to state x
from all other states x′ 6= x. The probability for a reaction Rj to occur within
a infinitesimally small time interval, dt, is hj(x(t),θ)dt — where hj(x(t),θ) is
defined as in Equation (2.2.2). This leads to the following expression for the new
distribution:

P (x(t+ dt)|x0(t0)) = P (x(t)|x0(t0)) + dt

(
m∑
j=1

hj(x(t)− vj,θ)P (x(t)− vj|x0(t0))

−
m∑
j=1

hj(x(t),θ)P (x(t)|x0(t0))

)
.

(2.3.1)

By rearranging Equation (2.3.1), dividing by dt, and taking the limit dt → 0,
we can derive the form of the chemical master equation (CME) — see [45] for a
rigorous approach.

Definition 2.9 (Chemical Master Equation [45]). The chemical master
equation is defined as:

∂tP (x(t)) =
m∑
j=1

hj(x(t)− vj,θ)P (x(t)− vj)−
m∑
j=1

hj(x(t),θ)P (x(t)) (2.3.2)
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where the shorthand notation P (x(t)) = P (x(t)|x0(t0)) has been used.

Analytically, Equation (2.3.2) is often intractable. Numerically, the first-order
differential equation in Equation (2.3.2) will generally belong to a very large state
space that typically exceeds the memory capacity for realistic systems, making
the computation infeasible. This can be seen by noting that the state-space is
generally unbounded, and thus the number of states x ∈ Nn is infinite for all
but the simplistic of systems. If the system is relatively simple and the dynamics
well understood, this curse of dimensionality can be combated by truncating the
state-space in regions of negligible probability — in an approximation known as
finite state projection (FSP) [91]. However, there exists a plethora of algorithms
that are designed to simulate ‘exact’ samples from the CME — whereby exact
means that these algorithms provably sample from stochastic chemical kinetics
that underpin the CME. These are known as stochastic simulation algorithms
(SSAs).

2.3.1 Chemical Master Equation - Exact Simulation

Gillespie’s direct method, or SSA, is a method for sampling exact paths of the
CME, which is often otherwise computationally intractable as explained above.

Suppose we are given the system state x(t) with the propensities hj ≡ hj(x(t),θ)

and state-change vectors vj for j ∈ {1, . . . ,m}. The probability of any individual
reaction Rj firing in the next infinitesimal time interval [t, t+dt) is given by hjdt.
Thus the total propensity function,

h0(x,θ) =
m∑
j=1

hj(x,θ)

=
m∑
j=1

hj = h0

(2.3.3)

can be used to sample a time, τ , that remains until any one of the reactions
fire. This is done by noting that the time, τ , is an exponentially distributed
random variable with mean 1/h0 [44, 128]. To select the reaction index j, the
SSA samples from the discrete distribution {h1/h0 . . . , hm/h0}. The system time
can then be updated (t = t + τ), and the system species are updated using the
corresponding state change matrix for reaction Rj, i.e., x(t + τ) = x(t) + vj.
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2. STOCHASTIC CHEMICAL KINETICS

This process is repeated until the system time, t, exceeds some fixed simulation
endpoint time T , or until no more possible reactions can occur (i.e., h0 = 0).
Gillespie’s SSA is outlined below in Algorithm 1 [44, 128]. Over recent years,

Algorithm 1 Gillespie Algorithm
1: procedure Forward Simulate
2: t← t0 // set the current system time
3: x(t)← x0 // set the initial state
4: while t < T do
5: h0 ←

∑m
j=1 hj // set the total propensity

6: if h0 = 0 then
7: then break
8: τ ∼ exp(1/h0) // time to next reaction
9: if t+ τ > T then

10: then break
11: rxn ← sample {h1/h0 . . . , hm/h0} // select reaction firing
12: x(t+ τ)← x(t) + vrxn // update state
13: t← t+ τ // update time

many improvements and variants of the SSA have arisen — some of which are
best suited to certain chemical systems over others. These include variations
on the direct method such as the Next Reaction Method [41], the Logarithmic
Direct Method [81], Optimised Direct Method [21], Sorting Direct Method [88],
and Partial Propensity Methods [96]. In addition, inexact methods such as tau-
leaping have been proposed to speed up simulation times [43]. In Section 2.3.2, I
outline the optimised tau-leaping algorithm [20].

2.3.2 Chemical Master Equation - Inexact Methods

Despite some advancements, Gillespie’s direct method often has the drawback of
scaling poorly in terms of performance for kinetic systems involving large molec-
ular copy numbers, as well as rapid reaction rates. Intuitively, this is because the
SSA works to track every reaction firing event, and is constrained to updating
every propensity function after reaction firing event [44].

Tau-Leaping The tau-leaping method, first proposed by Gillespie [44], aims to
trade off the accuracy of the stochastic simulation algorithm for computational
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speed. The key gain in speed comes from using the Poisson approximation to pick
a suitably large enough time step, τ , for which to fire multiple reaction events at
once. A leap is deemed acceptable if the time step, τ , satisfies the requirement
that the system dynamics during the interval [t, t+τ) suffer no appreciable change
[20, 43, 128]. This is usually termed the leap condition.

Suppose τ is a suitably sized leap for a biochemical reaction system in the
state x(t) = x with propensity vector h(x,θ). The tau-leaping state update is

x(t+ τ) = x+
m∑
j=1

vjY j, (2.3.4)

where Y j are Poisson random numbers with parameters hj(x,θ) ·τ . If it happens
that hj(x,θ) · τ � 1, then it can be shown that Equation (2.3.4) is analogous to
the Euler approximation method of the chemical Langevin equation [43].

The leap condition can be chosen via numerous procedures, which either re-
turn a fixed-sized [43] or adaptively-sized [20] time jump, τ . The original method
deemed the leap condition satisfied if the expected change in the propensity func-
tions, hj(x,θ), were bounded by some εh0(x,θ). Here, ε ∈ (0, 1) is called the
error control parameter. Later on, it was shown in [46] that the largest value of τ
at each time step to satisfy this requirement may be estimated using the following
m2 + 2m auxiliary variables:

fjj′(x) ≡
n∑
i=1

∂hj(x,θ)

∂xi
vij′ , j, j′ ∈ {1, . . . ,m}, (2.3.5)

µj(x) ≡
n∑
i=1

fjj′(x)hj′(x,θ), j ∈ {1, . . . ,m} (2.3.6)

σ2
j (x) ≡

n∑
i=1

f 2
jj′(x)hj′(x,θ), j ∈ {1, . . . ,m} (2.3.7)

where the final leap time is then calculated by [46]:

τ = min
j∈[1,m]

{
εh0(x,θ)

|µj(x)|
,
(εh0(x,θ))2

σ2
j (x)

}
. (2.3.8)

The downfall of this method is that it has the potential to reach non-physical,
negative states. This is particularly problematic if the system contains rapid
rates of reactions, or low molecular copy numbers. In [20], the authors devised
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2. STOCHASTIC CHEMICAL KINETICS

the following extensions for the tau-leaping method.

Non-negative Poisson tau-leaping [20] Primarily, the modification pro-
posed by Cao et al. is based on partitioning the reaction channels into two cat-
egories: the critical, and the non-critical reactions. Within the proposed frame-
work, any reaction is deemed critical if it is nc ≈ 10 firing events away from
exhausting any of its constituent reactants [20]. The number of possible firings
of a reaction, Lj, is calculated by

Lj = min
i∈[1,n];vij<0

[
xi
|v−ij |

]
. (2.3.9)

If a reaction is critical, it is prevented from firing multiple times during a given
leap — and negative populations can subsequently be avoided. As nc → 0,
the method becomes identical to the original method [20, 43]. As nc increases,
the method instead approaches the accuracy (and complexity) of the SSA. The
proposed leap, τ ′, is calculated from Equation (2.3.8) using only the set of non-
critical reactions. When there are no critical reactions, τ ′ =∞. Should τ ′ be less
than some factor of the total reaction rate 1/h0(x,θ), tau-leaping is postponed
nd steps in favour of the SSA. Otherwise, a second leap candidate τ ′′ is computed
from sampling an exponential distribution with a mean based on the critical
reactions only. The leap τ is taken to be min{τ ′, τ ′′}, and the reaction firings are
updated according to the following rules [20]:

• if τ ′ < τ ′′, set τ = τ ′. Generate kj firings of each non-critical reaction Rj

using a Poisson random variable of mean hj(x,θ)τ .

• if τ ′′ ≤ τ ′, set τ = τ ′′. Generate kj firings of each non-critical reaction Rj

using a Poisson random variable of mean hj(x,θ)τ . Then, sample one crit-
ical reaction that will fire once according to the propensities of the critical
reactions only hj(x,θ)/hc0(x,θ).

• if any population is negative after the proposed leap, take τ ′ = τ ′/2, and
repeat the above steps.

Bounding the Propensity Changes As mentioned previously, the tau-leaping
approximation is more accurate when the deviation within each propensity func-
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tion is bounded by a small fraction of the total propensity, i.e.,

|∆τhj(x,θ)| ≤ εh0(x,θ), (2.3.10)

where ∆τhj(x,θ) = hj(x(t + τ),θ) − hj(x(t),θ). However, this boundary con-
dition is not uniform across all propensity functions, especially for propensity
functions hj(x,θ)� h0(x,θ). In such cases, the relative change of hj(x,θ) that
is tolerable by the boundary condition can be too large [20, 46]. If instead, the
reaction channels were bounded proportionally, e.g.:

|∆τhj(x,θ)| ≤ εhj(x,θ), (2.3.11)

then problems occur when the reaction rate of the channel Rj tends toward zero.
[20, 46] note that as reactions are discrete, there is a minimum value by which
the propensity can change. Thus, the authors modify the bounds to

∆τhj(x,θ) ≤ max{εhj(x,θ), θj}, (2.3.12)

where θj is the rate constant. The new τ updating formula is given

τ = min
j∈[1,m]

{
max{εhj(x,θ), θj}

|µj(x)|
,
(max{εhj(x,θ), θj})2

σ2
j (x)

}
. (2.3.13)

In practice, this gives more accurate results but is also more computationally
intensive. As a result, [20] developed the following alternative approximate
population-based condition:

∆τxi ≤ max{εixi, 1}, ∀i ∈ Irs, (2.3.14)

where Irs is the set of indices of reactant species used in calculation of the cor-
responding propensity functions. The values εi are calculated using the auxiliary
variables gi(xi):

εi =
ε

gi(xi)
, ∀i ∈ Irs. (2.3.15)

Each gi(xi) is defined by considering the highest order of reaction (HOR) in which
the species Si occurs.

• if HOR(i)=1, gi = 1,

• if HOR(i)=2, gi = 2, unless any second-order reactions require two molecules
of Si to participate. In the latter case, compute:

gi =

(
2 +

1

xi − 1

)
.
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• if HOR(i)=3, gi = 3, unless any second-order reactions require two or more
molecules of Si to participate. In the case of 2 molecules of Si, compute:

gi =
3

2

(
2 +

1

xi − 1

)
.

In the case of 3 molecules of Si, compute:

gi =

(
3 +

1

xi − 1
+

2

xi − 2

)
.

The computation of the auxiliary variables [20, 46], used in computing the leap
τ , can now be modified to be taken over the set of reactant species:

µ̂i(x) =
∑
j∈Jncr

vijhj(x,θ), ∀i ∈ Irs, (2.3.16)

σ̂2
i (x) =

∑
j∈Jncr

v2ijhj(x,θ), ∀i ∈ Irs. (2.3.17)

The final leap computation is given by:

τ = min
i∈Incr

{
max{εixi/gi, 1}
|µ̂i(x)|

,
(max{εixi/gi, 1})2

σ̂2
i (x)

}
. (2.3.18)

The computational complexity grows linearly within the optimised tau-leaping
method, with the number of species, whereas the old method grew quadratically
with the number of reaction channels [20]. Therefore, large gains in performance
can be expected for systems with many species and reaction channels.

2.4 Complete-Data Likelihood for the SSA

To approach the problem of parameter inference for stochastic biochemical re-
action networks, it is often useful to obtain a likelihood function for continuous
sample paths [128]. With Gillespie’s stochastic simulation algorithm in mind,
this section aims to derive the complete-data likelihood for trajectories obtained
by the SSA. It is useful to consider the case where the given data is ‘perfect’ —
i.e., we know the state of model over a finite interval [0, T ] at all times, and the
entire sample path for each species is known [128]. The state of the system at
any given time may be written as X(t) = (X1(t), . . . , Xn(t))ᵀ, while the observed
sample path is given by x = {X(t) : t ∈ [0, T ]}. Given the data is complete, then
the time, and type, of each reaction event within the system that takes place
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is known. That is, the number of reactions rj of type Rj that occurred in the
path x, and the total number of reactions in a given interval [0, T ], defined as
r =

∑m
j=1 rj [128]. The time and type of each reaction event can be represented

by (tl, j), where l = 1, . . . , r, and tl are assumed to be in increasing order where
t0 = 0 and tl+1 = T . Considering the propensity functions, the joint likelihood of
an event can be written:

h0(x(tl−1),θ) exp{h0(x(tl−1),θ)[tl − tl−1]} ×
hj(x(tl−1), θj)

h0(x(tl−1),θ)

= exp{−h0(x(tl−1),θ)[tl − tl−1]}hj(x(tl−1), θj),

(2.4.1)

where hj(x(tl−1), θj)/h0(x(tl−1),θ) is the probability of Rj firing in x(tl−1). The
full likelihood is the product of the above terms together with the probability
that there is no event in the final interval (tr, T ], which given by [128]

exp{−h0(x(tl),θ)[T − tl]} = 1− Prob(any reaction firing). (2.4.2)

Thus the full combined likelihood is

L(θ;x) =

{
r∏
l=1

hj(x(tl−1), θj) exp{−h0(x(tl−1),θ)[tl − tl−1]}

}
× exp{−h0(x(tl),θ)[T − tl]}

=

{
r∏
l=1

hj(x(tl−1), θj)

}{
r+1∏
l=1

exp{−h0(x(tl−1),θ)[tl − tl−1]}

}

=

{
r∏
l=1

hj(x(tl−1), θj)

}
exp

{
r+1∑
l=1

−h0(x(tl−1),θ)[tl − tl−1]

}

=

{
r∏
l=1

hj(x(tl−1), θj)

}
exp

{
−

r∑
l=0

h0(x(tl),θ)[tl+1 − tl]

}
.

(2.4.3)

This is known as the complete-data likelihood. The separable nature allows Equa-
tion (2.4.3) to be rewritten as Equation (2.4.4).

Proposition 2.1 (Complete-date likelihood for a stochastic kinetic model
[128]). The complete-data likelihood for a stochastic kinetic model over the time
interval [0,T] takes the form

L(θ;x) = π(x|θ) =

{
r∏
l=1

hj(x(tl−1), θj)

}
exp

{
−
∫ T

0

h0(x(t),θ)dt

}
. (2.4.4)

This form is typical of all Markov jump processes where the first (product)
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term contains all the information of the transitions, and the second (integral)
term holds all the information in the period in which no jumps occur [128].
Equations (2.4.3) and (2.4.4) hold in the most general case for any form of
propensity function. For simple models, mass-action kinetic rate laws of the form
hj(x, θj) = θjgj(x) are often assumed. Using substitution within Equation (2.4.4)
derives the convenient form

L(θ;x) =

{
r∏
l=1

θjgj(x(tl−1))

}
exp

{
−
∫ T

0

m∑
j=1

θjgj(x(t))dt

}

∝

{
m∏
j=1

θ
rj
j

}
exp

{
−

m∑
j=1

∫ T

0

θjgj(x(t))dt

}

=
m∏
j=1

Lj(θj;x),

(2.4.5)

where the component likelihoods are defined by

Lj(θj;x) = θ
rj
j exp

{
−θj

∫ T

0

gj(x(t))dt

}
. (2.4.6)

Importantly, the factorisation means that each rate constant is independent of
the information regarding other rate constants. As a result, separate inference
may be carried out for each parameter, and their corresponding likelihoods can
be optimised simultaneously or independently. By partially differentiating Equa-
tion (2.4.6) with respect to each θj and equating to zero [128], the maximum
likelihood estimate of θj is

θ̂j =
rj∫ T

0

gj(x(t))dt

. (2.4.7)
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Chapter 3

Stochastic Parameter Inference
using the Cross-Entropy Method

3.1 Introduction

The Cross-Entropy (CE) method was first proposed by Rubinstein as an approach
to address the problems of rare event probability estimation, with applications
ranging from queueing models, to the analysis of network reliability, and that
of telecommunication systems [105]. Since then, the method has been extended
and applied to other domains [107], including the realm of optimisation [106].
Primarily, the CE method can be classed as a variance minimisation approach
for finding the parameters of an ‘optimal’ importance sampling distribution. In
the context of stochastic chemical kinetics, only previous work by Daigle et al. has
combined a stochastic Monte Carlo Expectation-Maximisation (EM) algorithm
[62] with a modified CE method (MCEM2) [26].

In this chapter I propose a novel approach for the inference of stochastic
chemical reaction network parameters. Specifically, I will present a new algorithm
— Stochastic Parameter Inference using the Cross-Entropy (SPICE) — which
combines the stochastic simulation approach (i.e., with Gillespie’s SSA or tau-
leaping) with the cross-entropy method for optimisation. The proposed method
aims to provide precise parameter estimates, while discarding the computational
burden that arises from the exactness of the traditional EM algorithm.
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3. STOCHASTIC PARAMETER INFERENCE USING THE
CROSS-ENTROPY METHOD

3.2 Cross-Entropy Method for Optimisation

One goal of global optimisation is to find the value γ∗ for which the performance of
a chosen objective function, J(x), is maximum over a given set x ∈ §. Given that
(i) the solution exists, and (ii) the solution is unique, the maximum is denoted

J(x∗) = γ∗ = max
x∈§

J(x), (3.2.1)

where x∗ is the input at which the maximum occurs. To solve Equation (3.2.1),
the cross-entropy method formulates and solves an auxiliary, associated stochastic
problem (ASP) [29].

Definition 3.1 (Associated Stochastic Problem [29]). The associated stochas-
tic problem aims to estimate the expectation, `, for varying choices of γ, such that

`(γ) = Pu(J(x) ≥ γ) = Eu
[
I{J(x)≥γ}

]
=

∫
I{J(x)≥γ}f(x;u)dx, (3.2.2)

where Pu and Eu represent the probability measure and expectation operator with
respect to the density f(x;u) for u ∈ V, and I{J(x)≥γ} denotes the indicator
function, i.e.,

I{J(x)≥γ} =

1, if J(x) ≥ γ,

0, otherwise.
(3.2.3)

Solving the ASP in Definition 3.1 requires (i) the calculation of the threshold
levels γ, and (ii) the estimation of the unknown parameter u. Supposing both (i)
and (ii) are possible, it is reasonable to assume that if γ ≈ γ∗ for a parametrisa-
tion, v∗ ∈ V, then the associated density, f(x;v∗), will place the majority of its
probability mass over x∗.

The CE method is a multi-levelled approach for constructing a sequence of
distribution parameters, {γ̂n, v̂n : n ∈ {1, . . . , N}}, that aims to converge to the
‘optimal’ parameters, γ∗ and v∗. In practice, γt is computed by taking the (ρ−1)-
th quantile of sample performances J(x) under vn−1. Choosing the reference
parameter vn is equated to finding the parameters that effectively minimise the
difference between two distributions based on the Kullback-Leibler divergence
(3.2.4) [76].
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Definition 3.2 (Kullback-Leibler Divergence [76]). The Kullback-Leibler
Divergence between two distributions g and h is

D(g, h) = Eg
[
ln
g(x)

h(x)

]
=

∫
g(x) ln g(x)dx−

∫
g(x) lnh(x)dx,

(3.2.4)

where x is a random variable (or vector).

Remark 3.1 (Distance Measures). It should be noted that Definition 3.2 is
not a distance measure in a formal sense, since in general it is not symmetric,
specifically D(g, h) 6= D(h, g). However, it is useful to think of Definition 3.2 as
a distance since

D(g, h) ≥ 0,

with equality if and only if g = h almost everywhere.

More specifically, the CE method aims to minimise the Kullback-Leibler di-
vergence in Equation (3.2.4) between an optimal sampling density, g∗(x), and
a candidate sampling density h(x). For most general purposes, the form of the
optimal sampling density is assumed to be derived from importance sampling,
i.e., g∗(x) = I{J(x)≥γ}f(x)/` [108]. Such a distribution has the property that
it places the majority of its probability mass over the mean value of the real
sampling distribution. Furthermore, it is convenient to restrict the problem to
examine cases where the candidate density h belongs to the parametric family
of densities {f(x;v),v ∈ V} that contain the nominal density f(x;u). This al-
lows the minimisation of Equation (3.2.4) to be restructured into a maximisation
problem.

Proposition 3.1 (Minimisation to Maximisation [108]). Minimising the
Kullback-Leibler divergence is equivalent to maximising the expectation

min
v

D(g∗, f(x;v)) = max
v
Eu
[
I{J(x)≥γ} ln f(x;v)

]
(3.2.5)

Proof. Following from Definition 3.2, the minimisation problem is given by

min
v

D(g∗, f(x;v)) = min
v

∫
g∗(x) ln g∗(x)dx−

∫
g∗(x) ln f(x;v)dx.
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Substituting for the optimal sampling density, g∗(x) = I{J(x)≥γ}f(x;u)/`, and
dropping the constant ` yields

min
v

∫
I{J(x)≥γ}f(x;u) ln I{J(x)≥γ}f(x;u)dx−

∫
I{J(x)≥γ}f(x;u) ln f(x;v)dx.

Noting that the first term drops dependence on v, the problem is only minimised
when the second term is maximised [108]. Therefore,

min
v

D(g∗, f(x;v)) = max
v

∫
I{J(x)≥γ}f(x;u) ln f(x;v)dx

= max
v
Eu
[
I{J(x)≥γ} ln f(x;v)

]
.

In practice, maximising Equation (3.2.5) is solved using Proposition 3.2.

Proposition 3.2 (General Cross-Entropy Solution [108, 109]). Given the
assumption that the form of D is often convex and differentiable with respect to
v [109], the optimal CE reference parameter for v, v∗, can be found by solving

Eu
[
I{J(x)≥γ}∇v ln f(x;v)

]
= 0 (3.2.6)

when the differentiation (∇v) and expectation (Eu) operators can be interchanged.

In practice, solving Proposition 3.2 is infeasible, so it normal to instead con-
sider the stochastic counterpart solution.

Remark 3.2 (General Monte Carlo Solution [108]). The equivalent Monte
Carlo sampling based counterpart of Equation (3.2.6) is given by

1

N

N∑
k=1

[
I{J(xk)≥γ}∇v ln f(xk;v)

]
= 0. (3.2.7)

Remark 3.3 (Maximum Likelihood Estimate). The updating rule for the
optimal reference parameter often coincides with the maximum likelihood estimate
of the system. This can be seen by taking the limit γ → γ∗ (or γ → 0 for
minimisation).

Remark 3.4 (Minimising the Objective Function). If instead the perfor-
mance function is to be minimised, the form of the indicator function is changed
to I{J(xk)≤γ}.
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Altogether, the construction of the ASP (Definition 3.1), joint with the solu-
tion from Proposition 3.2, motivates the stochastic Cross-Entropy approach for
optimisation [29, 75, 105] — which may be succinctly described by the following
iterative 2-step procedure:

1. Updating of γn: Generate K samples from the distribution parametrised
by a fixed vn−1. Rank the samples in order of their performances, i.e.,
J(x1) ≤ · · · ≤ J(xK). For a small fixed ρ, e.g., ρ = 10−2, let γ̂n be defined
as the ρth quantile of J(x), i.e.,

γ̂n = J(xdρKe). (3.2.8)

2. Updating of vn: Using the estimated level γ̂n, use the same K samples
taken from the candidate sampling distribution, x1, . . . ,xK , to derive v̂n
from the solution of Equation (3.2.7):

1

K

K∑
k=1

[
I{J(xk)≥γ}∇v ln f(xk;v)

]
= 0.

Figure 3.1 gives an intuitive visualisation toward the Cross-Entropy approach —
which aims to construct the sequence of distribution parameters {γn,vn} that
converges to an optimal (approximately point-mass) sampling distribution above
the mean x∗. Algorithm 2 outlines the simple CE procedure for the case of general
optimisation.

Algorithm 2 Cross-Entropy Optimisation
1: Select v̂0.
2: n← 0 (iteration counter).
3: repeat
4: n← n+ 1
5: Generate K samples, {x1, . . . ,xK}, from f(x; v̂n−1).
6: Compute sample performances J(xk), ∀k ∈ {1, . . . , K}.
7: Compute γ̂n from Equation (3.2.8).
8: Use the same sample, {x1, . . . ,xK}, to solve Equation (3.2.7) for vn.
9: until γ̂n = γ̂n−1 = γ̂n−2 = . . . for a fixed number (e.g., 3) iterations.

One key advantage of the CE method (Algorithm 2) is that a simple analytic
solution to Equation (3.2.7) may often be obtained [108]. In particular, should the
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x1 x2 x3 x *

Figure 3.1: Cross-Entropy optimisation: visualising the convergence of candidate
sampling distributions toward the ‘optimal’ sampling distribution. The most
optimal sampling distribution, with mean x∗, is a dirac δ function.

random variable x belong to a one-dimensional exponential family, the solution
is always analytic.

Proposition 3.3 (Analytic Solution for the Exponential Family [108]).
The solution for the optimal reference parameter of the one-dimensional exponen-
tial family is analytic, and given by:

v∗ =
Eu[I{J(x)≥γ}x]

Eu[I{J(x)≥γ}]
. (3.2.9)

Proof. A proof is given in [108].

Remark 3.5 (Exponential family Monte Carlo estimator). In general com-
puting the continuous case in Equation (3.2.9) is infeasible, so it is useful to in-
stead compute the corresponding Monte Carlo sampling based estimator, v̂, of v∗

is given by

v̂ =

∑N
k=1 I{J(xk)≥γ}xk∑N
k=1 I{J(xk)≥γ}

. (3.2.10)

30



3.3 The Cross-Entropy Method for Exact Stochas-

tic Chemical Kinetics

In this section I apply the Cross-Entropy method for optimisation presented in
Section 3.2 to the inference of parameters within stochastic chemical reaction
network models.

Recall from Chapter 2, Equation (2.4.6), that the components of the complete-
data likelihood for a probabilistic kinetic model, with states x(t), derived from
Gillespie’s stochastic simulation algorithm can be written in the following form:

Lj(θj;x) = θ
rj
j exp

{
−θj

∫ T

0

gj(x(t))dt

}
,

where θj is the stochastic rate constant for the reaction Rj, rj is the total number
firing events of reaction Rj over the time interval [0, T ], and gj is the propensity
function. For this section, I will denote the k-th complete trajectory by zk, such
that

zk = (x
(k)
0 , . . . ,x(k)

r )

where r =
∑M

j=1 rj is the number of states (or reaction events) within that trajec-
tory, and the shorthand xi = x(ti) is used to represent the i-th discrete-time state.
It is often useful to instead consider discrete-time dynamics — see Remark 3.6.

Remark 3.6 (Discrete-time Component Likelihood). In the discrete-time
case, we can rewrite Equation (2.4.6) as

Lj(θj; z) = θ
rj
j exp

{
−θj

r+1∑
i=1

gj(xi−1)τi

}
, (3.3.1)

where xi = x(ti), τi is the time between the ith and (i− 1)th reaction, and τr+1 is
the final time interval at the end of the simulation in which no reaction occurs.

Following the Cross-Entropy method in Section 3.2, the aim of this section is
to find the parameters of the optimal sampling distribution of stochastic chem-
ical kinetic models. Explicitly, the aim is to solve the optimisation program via
Equation (3.2.6) to derive the optimal kinetic rate parameters, θ̂ ≈ θ∗, which are
used to generate samples from the stochastic simulation algorithm. Conveniently,
it can be seen that the complete-data likelihood (Equation (2.4.4)) of a trajectory
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sampled from the chemical master equation using the SSA belongs to the expo-
nential family, and an analytic solution therefore exists — see Proposition 3.3.
The exact solution for the updating formula of a kinetic rate constant, θ̂j is given
below by Proposition 3.4 [26].

Proposition 3.4 (Exact Cross-Entropy Solution for Kinetic Rate Con-
stants). The exact solution of Equation (3.2.6) for a stochastic kinetic rate con-
stant, θj, belonging to a Gillespie-type model is given by the updating formula:

θ̂j =
Eθ∗

[
r
(k)
j I{J(zk)≥γ}

]
Eθ∗

[
I{J(zk)≥γ}

(∑r(k)+1
i=1 gj(x

(k)
i−1)τi

)] . (3.3.2)

Proof. The proof for Proposition 3.4 was not included in [26], so I have derived,
and provided it here. To prove Proposition 3.4, first consider the component like-
lihoods, Lj(θj; z), given by Equation (3.3.1). Substituting into Equation (3.2.6)
yields

Eθ∗
[
I{J(z)≥γ}∇θj lnLj(θj; z)

]
= 0.

Expanding Lj(θj; z) obtains the following formula:

Eθ∗

[
I{J(z)≥γ}∇θj ln θ

rj
j exp

{
−θj

r+1∑
i=1

gj(xi−1)τi

}]
= 0.

Performing the derivative yields

Eθ∗

[
I{J(z)≥γ}

(
rj
θj
−

r+1∑
i=1

gj(xi−1)τi

)]
= 0,

which in turn can be rearranged to obtain

Eθ∗
[
I{J(z)≥γ}

rj
θj

]
= Eθ∗

[
r+1∑
i=1

gj(xi−1)τi

]
.

Observing that θj is a constant, non-random variable, it can be taken outside of
the expectation operator. Rearranging thus yields the solution:

θ̂j =
Eθ∗

[
r
(k)
j I{J(zk)≥γ}

]
Eθ∗

[
I{J(zk)≥γ}

(∑r(k)+1
i=1 gj(x

(k)
i−1)τi

)] .

Remark 3.7 (Monte Carlo Solution for Kinetic Rate Parameters). Com-
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puting the continuous case as in Equation (3.3.2) is infeasible. Instead, θ̂j can be
obtained from the stochastic counterpart solution [26]:

θ̂j =

∑N
k=1 r

(k)
j I{J(zk)≥γ}∑N

k=1 I{J(zk)≥γ}

(∑r(k)+1
i=1 gj(x

(k)
i−1)τi

) . (3.3.3)

Remark 3.8 (Maximum Likelihood Estimator). The maximum likelihood
estimator for a stochastic rate parameter derived from a Gillespie-type model is
given by Equation (2.4.7). The Monte Carlo counterpart is as follows

θ̂j =

∑N
k=1 r

(k)
j∑N

k=1

(∑r(k)+1
i=1 gj(x

(k)
i−1)τi

) . (3.3.4)

It can be seen that Equation (3.3.4) approximates Equation (3.3.3) in the limit
γ → γ∗.

3.4 The Cross-Entropy Solution for Inexact Stochas-

tic Chemical Kinetics

The majority of methods seen in parameter estimation and inference rely on op-
timising an objective cost function, (e.g. mean squared difference between the
data and simulation). In this class of methods, nearly all either involve simula-
tion from (deterministic) ODE systems, or require stochastic simulations of the
chemical master equation using Gillespie’s direct method. While ODE systems
are very straightforward and fast to simulate, they often fail to capture realistic
dynamics of biological systems for which stochasticity plays an important role in
the observed behaviour. However, direct sampling from the CME using Gillespie’s
SSA is computationally intensive. Recent years have seen a new generation of
inexact methods, such as tau-leaping [20, 43]. By switching to an inexact method
such as tau-leaping, a degree of accuracy is traded off in favour of computational
performance. Interestingly, while the use of tau-leaping methods for robust pa-
rameter estimation is not novel, they have not been utilised (to my knowledge)
in the context of computing maximum likelihood estimates by solving stochastic
programs such as Equation (3.2.6) derived by the Cross-Entropy method. Nat-
urally, it is in our interest to explore how viable such an approach could be for
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systems with different kinds of dynamics.
In this section, I derive the Cross-Entropy solution for the optimal reference

parameters for inexact tau-leaping models, and propose its use for parameter
inference.

Suppose as usual we are interested in simulating a system with n species,
{Si : i ∈ {1, . . . , n}}, and m reaction channels, {Rj : j ∈ {1, . . . ,m}}, using
a tau-leaping approximation until a final time T . The complete-data likelihood
of a trajectory generated using tau-leaping dynamics is given below by Proposi-
tion 3.5.

Proposition 3.5 (Complete-data Likelihood for a Tau-leaping Trajec-
tory [128]). The complete-data likelihood of a tau-leaping trajectory z is given
by

L(θ; z) =
r∏
i=0

m∏
j=1

exp{−λji}(λji)rji
rji!

, (3.4.1)

where r ∈ Z+ is the number of discrete-time intervals taken, λji = θjgj(xi)τi is
the mean of the Poisson process for reaction Rj over the interval time [ti, ti + τi),
and rji the number of firings of reaction Rj.

Proof. A proof is provided in [128].

Remark 3.9. We can again conveniently factorise the complete-data likelihood in
Proposition 3.5 into component likelihoods associated with each reaction channel:

L(θ; z) =
m∏
j=1

Lj(θj; z), (3.4.2)

where each component Lj(θj; z) is given by:

Lj(θj; z) =
r∏
i=0

exp{−λji}(λji)rji
rji!

. (3.4.3)

Using Proposition 3.5, it is then possible to compute analytically the opti-
mal kinetic rate constants for a tau-leaping trajectory, obtained from solving the
Cross-Entropy optimisation program given by Equation (3.2.6).

Proposition 3.6 (Inexact Cross-Entropy Solution for Kinetic Rate Con-
stants). The inexact solution of Equation (3.2.6) for a stochastic kinetic rate
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constant, θj, belonging to a tau-leaping model is given by the updating formula:

θ̂j =
Eθ∗

[
r
(k)
j I{J(zk)≥γ}

]
Eθ∗

[
I{J(zk)≥γ}

(∑r(k)+1
i=1 gj(x

(k)
i−1)τi

)] . (3.4.4)

Proof. Using Equation (3.2.6) together with Remark 3.9, Equation (3.4.3), ob-
tains the following equation:

Eθ∗

[
I{J(z)≥γ}∇θj ln

r∏
i=0

exp{−λji}(λji)rji
rji!

]
= 0.

Expanding the Poisson process mean, λji = θjgj(xi)τi, yields

Eθ∗

[
I{J(z)≥γ}∇θj ln

r∏
i=0

exp{−θjgj(xi)τi}(θjgj(xi)τi)rji
rji!

]
= 0.

By rearranging, the exponential product can be factorised out, thus giving

Eθ∗

[
I{J(z)≥γ}∇θj ln exp

{
−θj

r∑
i=0

gj(xi)τi

}
r∏
i=0

(θjgj(xi)τi)
rji

rji!

]
= 0.

Noting that
∏r

i=0 θ
rji
j = θ

rj
j , where rj =

∑r
i=0 rji, gives

Eθ∗

[
I{J(z)≥γ}∇θj ln θ

rj
j exp

{
−θj

r∑
i=0

gj(xi)τi

}
r∏
i=0

(gj(xi)τi)
rji

rji!

]
= 0.

Taking the differential with respect to θj obtains:

Eθ∗

[
I{J(z)≥γ}

(
rj
θj
−

r+1∑
i=1

gj(xi−1)τi

)]
= 0.

Following the proof of Proposition 3.4, the above equation can be separated to
obtain

Eθ∗
[
I{J(z)≥γ}

rj
θj

]
= Eθ∗

[
r+1∑
i=1

gj(xi−1)τi

]
,

which can be rearranged to obtain the solution

θ̂j =
Eθ∗

[
r
(k)
j I{J(zk)≥γ}

]
Eθ∗

[
I{J(zk)≥γ}

(∑r(k)+1
i=1 gj(x

(k)
i−1)τi

)] .

Remark 3.10 (The Exact and Inexact Solutions). The only difference be-
tween Equation (3.3.2) (the exact solution) and Equation (3.4.4) (the inexact
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solution) is that the propensities gj and time intervals τi are calculated after ev-
ery reaction firing within the former, while they are calculated after every leap
within the latter. Within the exact SSA, a ‘reaction event’ is defined by the fir-
ing of a single reaction, while in tau-leaping, a reaction event consists of firing
multiple reactions simultaneously according to the Poisson distribution.

3.5 Variance of the Cross-Entropy Parameter Es-

timates

In this section, I outline how estimates for the variance of the Cross-Entropy
parameter estimates may be obtained. In the books [103, 121], a general formula
is provided for deriving the covariance matrix, Σ̂, of a Monte Carlo maximum-
likelihood estimate, θ̂ (e.g., obtained via the Expectation-Maximisation algo-
rithm).

Proposition 3.7 (Covariance Matrix of the Maximum-Likelihood Es-
timate [103, 121]). The inverse covariance matrix of a maximum-likelihood
estimate θ is given by

Σ̂−1 =

[
− 1

K

K∑
k

∂2

∂θ2
− 1

K

K∑
k

∂

∂θ
· ∂
∂θ

T

+
1

K2

( K∑
k

∂

∂θ

)
·
( K∑

k

∂

∂θ

)T]
(ln f(θ;x)) (3.5.1)

where the operator ∂2

∂θ2
returns a m×m matrix, ∂

∂θ
returns an m-dimensional

vector (m×1 matrix), and ∂
∂θ

T denotes matrix transpose. K represents the number
of Monte Carlo samples and f(θ;x) is the underlying probability distribution.

By substituting the expression for the complete-data likelihood in Equa-
tion (2.4.3), L(θ; z), an expression for the covariance matrix of the maximum-
likelihood estimates for stochastic kinetic rate parameters may be derived [26].
To ensure that the confidence bounds lie within positive state-space, Daigle et
al. take a log-transformed parameter ω, such that θ̂ = exp(ω̂).

Proposition 3.8 (Covariance Matrix of the Kinetic Rate Parameters
[26]). The inverse covariance matrix of the kinetic rate parameter estimates is
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given by

−Σ̂−1 =

 1

k′

K′∑
k′=1

r(k
′)+1∑
i=1

exp(ω̂)gj(x
(k′)
i−1)τi


j

+
1

k′

K′∑
k′=1

r(k′)j −
r(k
′)+1∑
i=1

exp(ω̂)gj(x
(k′)
i−1)τi


j

×

r(k′)j −
r(k
′)+1∑
i=1

exp(ω̂)gj(x
(k′)
i−1)τi

ᵀ

j

−

 1

k′

K′∑
k′=1

r(k′)j −
r(k
′)+1∑
i=1

exp(ω̂)gj(x
(k′)
i−1)τi


j

×

 1

k′

K′∑
k′=1

r(k′)j −
r(k
′)+1∑
i=1

exp(ω̂)gj(x
(k′)
i−1)τi

ᵀ

j

(3.5.2)

where Monte Carlo samples k′ (up to K ′) are taken from only those trajectories
that satisfy J(zk) ≥ γ. {·}j is a diagonal matrix with elements corresponding to
each kinetic rate constant, and (·)j is a column vector. rj and gj are as before
— representing the number of reaction firing events, and the propensity function,
within the time interval τi.

In practice, computing Equation (3.5.2) can be computationally heavy, how-
ever, it can be seen that the formula makes use of information already calculated
for the derivation of the optimal parameters in Equation (3.3.3). Thus, samples
can be reused for both calculations, optimising the process [26]. That said, com-
puting Equation (3.5.2) still relies on taking many Monte Carlo samples, and in
reality can suffer from numerical issues. Specifically, with too few samples the
retrieved covariance matrix is not always positive-definite. A simpler, numeri-
cally stable approximation of the variance can instead be derived straight from
the Cross-Entropy method [75, 108].

Proposition 3.9 (Variance of the Optimal Cross-Entropy Parameters).
The variance, Σ̂jj, of the j-th optimal Cross-Entropy parameter, θj, can be esti-
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mated via

Σ̂jj =
1

K ′

K′∑
k′=1

(
r
(k′)
j∑r(k

′)+1

i=1 gj(x
(k′)
i−1)τi

− θ̂j

)2

. (3.5.3)

Together, Equation (3.5.2) and Equation (3.5.3) can be used to compute the
variance of the estimates for stochastic kinetic rate parameters derived from the
Cross-Entropy method. These can be used to approximate a confidence interval
or bounds on the estimates. Furthermore, the Cross-Entropy method can be ex-
tended not to only update the mean of a candidate sampling distribution, i.e.,
θ, but to update the variance of the sampling distribution Σ. By estimating
the variance of the candidate sampling density, the Cross-Entropy method can
often better explore the parameter state-space. This is because if a parameter is
poorly estimated, or not well constrained, the variance of the candidate sampling
distribution is allowed to increase, thus exploring a larger parameter state-space.
Conversely, if the obtained parameter estimates are precise, the candidate sam-
pling density evolves toward a narrow probability mass over the optimal solution,
θ∗, — see Figure 3.1.

3.6 SPICE

In this section, I present the Stochastic Rate Parameter Inference with Cross-
Entropy (SPICE) algorithm [101]. SPICE is an approach that combines stochas-
tic simulation — either using Gillespie’s direct method or tau-leaping — with
the cross-entropy method for optimisation. As highlighted in Section 3.1, only
previous work by Daigle et al. [26] has combined a stochastic Expectation–
Maximisation algorithm [62] with a modified cross-entropy method (MCEM2) for
parameter inference. In this work, I instead develop the cross-entropy method
in its own right, discarding the costly EM algorithm steps in favour of other
heuristics. The material presented in this section contributed to [101].

Algorithm Overview The SPICE algorithm is an iterative process that fo-
cuses efforts on generating a sequence of distribution parameters {(γn,θ(n),Σ(n))}
— with the aim of converging to the optimal kinetic rate constants θ̂

∗
as follows:
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1. Generate Kn sample trajectories, {zk : k ∈ {1, . . . , Kn}}, using the SSA
with kinetic rate parameters θ(n−1)k sampled from the lognormal distribu-
tion. For the initial iteration, SPICE samples the parameter vector θ
within the given bounds [θ(0)min,θ

(0)
max] by using a quasi-random Sobol low-

discrepancy sequence [119] to ensure adequate coverage. See below for more
information.

2. Using the data, rank and sort the trajectories {zk} in order of their per-
formances {J(zk)}. See Eqs. (3.6.2) and (3.6.1) for the actual definition of
the performance, or score, functions adopted.

3. For a fixed number of ‘elite’ samples, e.g., Kelite = 10, let ρn = Kelite/Kn.

4. Let γ̂n be defined as the ρn-th quantile of {J(zk)}, i.e., γ̂n = J(zdρKne).

5. Using the estimated level γ̂n, use the same Kn sample trajectories {zk} to
derive θ̂

(n)
and Σ̂

(n)
from the solutions of Eqs. (3.3.3) and (3.5.3). The

trajectories that satisfy J(z) ≤ γ are termed the ‘elite’ samples.

6. Repeat until termination criterion is reached. A reasonable termination
criterion to take would be to stop if γ̂n � γ̂n−1 � . . . for a fixed number of
iterations (e.g., 3). In general, as the parameter estimates approach their
optimum values, increasing numbers of samples are required to distinguish
between their relative performances.

Remark 3.11 (Parameter State-Space Bounds). The motivation for placing
bounds on the parameter state-space stems from several reasons. The first is that
global optimisation is a difficult problem. Exhaustively searching too large a state-
space will be (i) computationally intensive, and (ii) more prone to finding local
minima. Often it is also the case that researchers modelling a system will have
an intuition of what order magnitudes the parameters should be. It should also be
noted that SPICE does not require bounds to work, and is able to start from a fixed
point — exploring the state-space by adaptively changing the parameters of the
candidate sampling distribution. This feature can be useful in local optimisation.

Algorithm 3 presents a simplified pseudocode detailing the above approach of
SPICE toward parameter inference.
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Algorithm 3 SPICE — Stochastic Parameter Inference using the Cross-Entropy
Method (Generic Approach)
Inputs: Dataset represented by yi at times ti for 0 6 i 6 d, initial parameter

bounds
[
θ(0)min,θ

(0)
max

]
, minimum samples Kmin, number of ‘elite’ samples Kelite.

Output: Estimate of the parameters θ̂
(n)

, and their variances Σ̂
(n)

.
1: γ0 ←∞ // cost function value
2: n← 1 // iteration
3: K1 ← Kmin // initial sample size
4: S ←

[
θ̂
(0)

min, θ̂
(0)

max

]
// generate Sobol sequence hypercube

5: repeat
6: for k = 1→ Kn do
7: if n = 1 then
8: θ ∼ S(k) // sample the Sobol sequence
9: else

10: θ ∼ N
(
θ̂
(n−1)

, Σ̂
(n−1))

// sample the (log–)normal dist.

11: for i = 1→ d do // time intervals in the dataset
12: if i = 1 then
13: zk ←SSA(y0, 0, t1,θ) // forward simulate with the SSA
14: else
15: zk ←SSA(zk, ti−1, ti,θ)

16: jk ← J(zk) // compute the objective function, e.g., Equation (3.6.1)
17: Sort {zk} according to performances {jk}
18: ρn ← Kelite/Kn

19: γn ← ρn-th quantile of {jk}
20: if γn < γn−1 then
21: θ̂

(n)
← solution to Equation (3.3.3), using {zk}, and γn

22: Σ̂
(n)
← solution to Equation (3.5.3), using {zk}, and γn

23: n← n+ 1
24: else
25: Kn ← min(Kn +Kn/3, Kmax) // adaptive sampling
26: until convergence of {γn, γn−1, γn−2}
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(b) Sobol Sequence

Figure 3.2: A comparison between 2-dimensional sampling using (a) uniform
sampling, and (b) Sobol low discrepancy sequencing. Sobol sequencing provides
a better state-space coverage, while uniform sampling leads to under (and over–)
sampled regions.

It can be seen that Algorithm 3 is an extension of the generic Cross-Entropy
approach, presented in Algorithm 2, with adaptations made for stochastic bio-
chemical kinetics. In addition, SPICE incorporates various additional heuristics
to aid in the inference process. Each of these is detailed below.

Sobol Low Discrepancy Sequences In order to make parameter inference
routines more robust against local minima, it is essential to efficiently sample the
entirety of the desired parameter space, i.e., the bounded region [θ(0)min,θ

(0)
max]. A

simple naive approach would be to generate uniform samples within the specified
interval, i.e., θ(1) ∼ U [θ(0)min,θ

(0)
max], and use these parameter vectors as guesses

in the initial iteration. However, for a finite number of samples this leads to
an uneven coverage of the parameter state-space, with under (and over–) sam-
pled regions — see Figure 3.2a. The Sobol sequence [119] is a quasi-random
low-discrepancy sequence used for generating more favourable samples from a
uniform (multi-dimensional) interval — see Figure 3.2b. The Sobol sequence is
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closely related to Latin hypercube sampling [97] and can be shown to improve
the convergence of Monte Carlo methods.

Remark 3.12 (Log-Sobol Sampling). If logarithmic sampling is being utilised,
SPICE first generates the low-discrepancy Sobol sequence within the n-dimensional
unit hypercube [0, 1]n, and secondly applies the appropriate scaling factors and log-
transformations to match the input parameter search space.

Adaptive Sampling Adaptive sampling aims to update the number of sam-
ples Kn taken within each iteration. The motivation is to ensure that parameter
estimates improve with statistical significance as the rate of convergence (of the
cost function) stagnates. Adaptive sampling has previously been applied to the
Monte Carlo expectation-maximisation algorithm — in what was dubbed the
‘ascent-based MCEM’ [19]. The original ascent-based method was computation-
ally heavy, requiring the calculation of the system likelihood. However, the same
concepts can apply in principle to any likelihood-free cost function. The outline
of adaptive sampling is as follows:

1. Suppose we wish to update our parameters based on a fixed number of elite
samples, Kelite, satisfying J(zk) ≤ γ. The performance of the ‘best’ elite
sample is denoted γ∗n, and the performance of the ‘worst’ elite sample is
equivalent to the ρn-th quantile of {J(zk)}, γ̂n.

2. The quantile parameter ρn is adaptively updated each iteration as ρn =

Kelite/Kn, where Kelite is typically taken to be 1 − 10% of the starting
number of samples Kmin.

3. At each iteration, a check is made to see if there is improvement in either
the best, or the worst performing elite samples, i.e., if, γ̂∗n < γ̂∗n−1 or if
γ̂n < γ̂n−1. If there is an improvement then the samples are used to up-
date the parameters according to Equation (3.3.3). Otherwise, the number
of samples is increased by a fixed amount, i.e., Kn/3, and the iteration is
repeated. If the number of samples hits a predetermined maximum, Kmax,
for 3 successive iterations without improvement in the performance func-
tion, then the algorithm terminates — suggesting that no further significant
improvement can be made given the number of samples.
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Figure 3.3: An illustration of adaptive sampling at work. As the cost function
plateaus across iterations to a local minimum, the number of samples taken at
each iteration is adaptively updated to improve the accuracy of the estimates —
concentrating computation time near the solution.

Figure 3.3 shows adaptive sampling in action for a real run of SPICE. It can be
seen that as the cost function in Figure 3.3a converges to a minimum, the num-
ber of samples taken within each iteration within Figure 3.3b increases. Thus, a
secondary benefit of the adaptive sampling method is that it optimises the place-
ment of computation time across the iterations. Early iterations can find rapid
improvement in the parameters and therefore require less samples, while in latter
iterations it becomes increasingly hard to distinguish significant improvements of
the estimated parameters. SPICE is thus able to make fast evaluations early on,
and focus its computational efforts near the optimal solution.

Objective Function The SPICE algorithm has been developed to handle an
arbitrary number of datasets. Given N time series datasets (with d time points),
SPICE can associate N objective function scores with each simulated trajectory.
Each objective function score is typically taken to be the standard sum of L2

distances across the trajectory with respect to the corresponding dataset:

Jn(z) =
d∑
i=1

(yn,i − xi)2 1 ≤ n ≤ N (3.6.1)

where xi = x(ti) is the simulation, and yn,i is the data point at time ti in the
n-th dataset. To ensure no datasets are ignored, ‘elite’ samples are taken with
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respect to each dataset — i.e., the best performing quantile of trajectories for
each individual dataset (with scores Jn(z)).

In the absence of temporal correlation within the data (e.g., when measure-
ments between time points are independent or individual cells cannot be tracked
as in flow cytometry data), it is useful to instead construct an empirical Gaus-
sian mixture model for each time point within the data. Each mixture model at
time ti is comprised of N multivariate normal distributions, each with a vector of
mean values yn,i corresponding to the observed species in the n-th dataset, and
standard deviations (a diagonal covariance matrix σ2

n) corresponding to an error
estimate, or variance of the measurements on the species. In the absence of prior
information a default value of 10% error can be taken on all the species. The
objective score function can then be proportional to the negative log-likelihood
of the simulated trajectory with respect to the data:

J(z) ≈ −
d∑
i=1

ln

(
N∑
n=1

exp

[
−1

2
(yn,i − xt)ᵀσ−2n (yn,i − xi)

])
. (3.6.2)

Smoothed Updates SPICE implements the parameter smoothing update for-
mulae [29, 75]:

θ̂
(n)

= λθ̃
(n)

+ (1− λ)θ̂
(n−1)

, (3.6.3)

Σ̂
(n)

= βnΣ̃
(n)

+ (1− βn)Σ̂
(n−1)

, (3.6.4)

where βn = β−β
(
1− 1

n

)q, λ∈(0, 1], q∈N+, and β∈(0, 1) are smoothing constants.

θ̃
(n)

and Σ̃
(n)

are the outputs from the standard solution of the cross-entropy
in Equations (3.3.3) and (3.5.3). Parameter smoothing between iterations has
three important benefits: (i) the parameter estimate values are smoothed out
and therefore converge to a more stable value, (ii) it reduces the probability of a
parameter estimate tending toward a value of zero within the first few iterations,
and (iii) it prevents the distribution of parameter estimates from converging too
quickly to a degenerate point probability mass at a local minima.

Remark 3.13. Under certain constraints (i.e., discrete optimisation) there exists
a proof that the general Cross-Entropy method for parameter inference may con-
verge to an optimal solution with probability 1, but only in the case of smoothed
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updates [24].

Piecewise Approaches SPICE can optionally utilise two techniques for trajec-
tory simulation between time intervals: a piecewise ‘multiple shooting ’ approach
that treats time-intervals in the data with a degree of independence [133]; and a
‘multilevel splitting ’ (also termed Particle Splitting) approach as in [26]. Multiple
shooting has previously been shown to give an improvement of estimates and bet-
ter stability when using ODE approximations in place of the SSA [12, 133], and is
implemented in the tool COPASI [61] for both ODE and stochastic simulations.

Particle Splitting For particle splitting, I adopt a multilevel splitting ap-
proach as in [26], and the objective function in Equation (3.6.1) is instead calcu-
lated after the simulation of each piecewise segment from xi−1 to xi — or after
any other arbitrary division of the time interval [0, T ] (e.g., as in Figure 3.4b).
The trajectories zk satisfying J(zk) ≤ γ̂n are then re-sampled with replacement
Kn times before simulation continues (recalling that Kn is the number of samples
in the n-th iteration. This process aims at discarding poorly performing trajec-
tories in favour of those ‘closest’ to the data. This creates an enriched sample, at
the cost of introducing an aspect of bias propagation. A comparison between the
‘generic’ SPICE approach, and the approach of SPICE using multilevel splitting
approach is visualised in Figure 3.4. Previous work has also implemented the
particle splitting approach in the field of rare-event probability estimation [47].

Remark 3.14 (On the similarities between SPICE and ABC-SMC). The
particle splitting method within SPICE draws many comparisons to the Approxi-
mate Bayesian Computation with Sequential Monte Carlo sampling (ABC-SMC)
approaches [6, 118, 124]. Both methods draw samples from the candidate sampling
distribution in a sequential fashion — and both methods sample with replacement
those samples that are performing well according to the cost function, and dis-
card those that are performing poorly. The difference is that while the Bayesian
methods use this acceptance-rejection approach to build up an empirical posterior
distribution, SPICE instead uses the samples to compute the underlying parame-
ters (i.e., the mean and variance) of a posterior distribution.
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(a) Generic ‘elite’ sampling approach.
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(b) Particle splitting approach.

Figure 3.4: A visualisation of the difference between (a) the generic ‘elite’ sam-
pling approach, and (b) the particle splitting ‘elite’ sampling approach. Within
the generic approach, ‘elite’ trajectories are sampled after the complete time
interval has been simulated. Within the multilevel splitting approach, ‘elite’ tra-
jectories are replicated after a chosen number of intervals.
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Figure 3.5: A visualisation of the multiple shooting ‘elite’ sampling approach.
Simulation over the complete time interval is divided up according to the time
points within the dataset. At the beginning of each interval, the trajectories are
‘reset’ to the closest data point. The ‘elite’ samples are those trajectories with
the best performance across all time intervals.

Multiple Shooting For this implementation of the multiple shooting method,
SPICE constructs a sample trajectory comprised of T intervals matching the time
stamps within the data y. In their original paper [133], the authors simulate
each segment from xi−1 to xi using an ODE model with the initial conditions
set to the previous time point of the dataset, i.e., xi−1 = yi−1. In this work, I
instead treat the data as being mixture-normally distributed, thus aim to sample
initial conditions xi−1 ∼ N(yn,i−1, σ

2
n,i−1), where the index of the time series n

is first uniformly sampled. Using the SSA, each piecewise section of a trajectory
belonging to sample k is then simulated with the same parameter vector θ. An
illustration of the multiple shooting approach is presented in Figure 3.5.

Hyperparameters With additional modelling, SPICE allows for the inclusion
of hyperparameters φ — e.g., scaling constants, initial concentrations, volumes,
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and non kinetic-rate parameters. The hyperparameters are then sampled simul-
taneously (from a lognormal distribution) alongside their kinetic rate constant
counterparts, θ. Parameter inference can be carried out for these hyperparame-
ters by updating the parameters of their sampling distribution using the standard
Cross-Entropy approach for optimisation as in Algorithm 2.

Tau-Leaping With inexact, faster methods such as tau-leaping [43] a degree
of accuracy is traded off in favour of computational performance. Thus, for
computationally intensive systems, there is interest to be had in replacing the
SSA with tau-leaping within the SPICE algorithm. The updating formula for the
optimal kinetic rate parameters was derived in Proposition 3.5, and is given by
Equation (3.4.4).

3.6.1 Implementation & Usage Details

Overview SPICE is open source, and implemented within the Julia program-
ming language [13]. It is self-contained, implementing all sampling, optimisation,
and simulation within the Julia environment (via custom built Gillespie SSA and
tau-leaping algorithms). The key inputs given to SPICE are

• the chemical reaction network model specification,

• the data to be used for optimisation,

• initial parameter bounds.

Model Specification The model can be specified to SPICE within the Julia
environment by passing the core information about (i) the initial species, (ii) the
propensity functions for each reaction and (iii) the system’s state-change matrix.
For parameter estimation, prior parameter bounds [θ(0)min,θ

(0)
max], and the data (e.g.,

‘data.csv’) are also specified. An example of the input is given in Listing 3.1.
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#= This is a code sample for defining the

Lotka-Volterra Model in SPICE =#

using SPICE

# initial species & state-change matrix

x0 = [50, 50]

v = [1 0; -1 1; 0 -1]

# bounds on the initial search space for parameters

bounds = [[1e-6, 1e-6, 1e-6], [10.0, 10.0, 10.0]]

# hazard functions (mass-action)

function hazard(p)

p.a[1] = p.x[1] * p.θ[1]

p.a[2] = p.x[1] * p.x[2] * p.θ[2]

p.a[3] = p.x[2] * p.θ[3]

end

model = Model(x0, hazard, v, bounds)

system = System(model, "data.csv")

Listing 3.1: This is a code sample for defining the Lotka-Volterra Model in SPICE

The data within ‘data.csv’ can be comma– or tab– separated, with the indepen-
dent ‘Time’ variable in the first column, and each model species appearing in
each column thereafter.

Parameter Inference Given a fully specified chemical reaction network model,
complete with the data and parameter bounds, parameter estimation can be ran
as follows in Listing 3.2.
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kwargs Description Argument values

nSamples The initial number of samples to generate. Int (default=1,000)

mSamples The maximum number of samples to generate. Int (default=20,000)

nRepeat The number of repeat simulations to take. Int (default=1)

nElite The fixed number of ‘elite’ samples to take. Int (default=10)

maxIter The iteration limit. Int (default=250)

ssa The simulation method to use. :Direct or :Tau

sampling Type of sampling distribution to use. :normal or :log

smoothing The smoothing parameter. Float64 (default=0.7)

shoot Use the multiple-shooting approach? true or false

splitting Use the particle-splitting approach? true or false

Table 3.1: A table of variable keyword arguments that can be passed to SPICE
to customise the parameter inference routine variables.

# run estimation algorithm ‘n’ times

n = 1

estimate(system, n, "output")

Listing 3.2: This is a code sample for running parameter estimation on the model
defined in Listing 3.1

The output file is written to the specified ‘output.csv’, and contains the values
of the final parameter estimates, the estimation of their variance, and the total
CPU run time (in seconds). For each n-th run of the algorithm, a separate file
‘/traces/output-n-trace.csv’ is also generated for additional analysis — contain-
ing the values at each sub-iteration for: the parameter estimates; the objective
cost function; and the number of samples taken.

Advanced: Additional Options The SPICE algorithm can be tweaked via
a number of variable options, which can be given by the (optional) ‘routine =
CEM(kwargs . . . )’ argument — see Listing 3.3 for an example. The different
arguments that can be passed are presented in Section 3.6.1.
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#= Example Cross-Entropy method (CEM) setup with:

n -> 1000 initial samples

m -> 20000 maximum samples

SSA -> Tau-leaping =#

system = System(model, "data.csv",

routine=CEM(nSamples=1000, mSamples=20000, ssa=:Tau))

Listing 3.3: This is a code example for tweaking the Cross-Entropy method vari-
ables.
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Chapter 4

Moment Approximations and the
Generalised Method of Moments

4.1 Introduction

In this first portion of this chapter I will derive generalised equations to describe
the time evolution of moments within a stochastic chemical reaction network. As
in Chapter 2, I will make the assumption that the system is both well-mixed and
dilute [45]. Furthermore, I will assume all the kinetics are contained within a
closed compartment of constant volume Ω. Unless explicitly stated, all given ex-
amples will assume a practical, dimensionless volume of Ω = 1. In the midsection
of this chapter I discuss some of the present problems regarding the validity of
moment closure approximations. Later on, I will outline the application of these
moment equations to the paradigm of parameter estimation, and give an overview
of the generalised method of moments (GMM) for stochastic rate inference.

Within this chapter I will present two new approaches:

• Firstly, I propose a new method for generating moment equations for stochas-
tic chemical networks based on replacing the Taylor series approximation,
with Padé approximants.

• Secondly, I outline a new method that uses a novel adaptive multi-level tau-
leaping approach alongside the GMM (MLGMM) to perform population
moment-based inference.
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4. MOMENT APPROXIMATIONS AND THE GENERALISED
METHOD OF MOMENTS

4.2 Moment Equations for a Stochastic Chemical

Reaction Network

Let the moments of the distribution of the chemical species of a CRN be denoted
by E[xk], with xk =

∏n
i=1 x

ki
i , and let k =

∑n
i=1 ki denote the total order of

the moments. To derive the moment equations for a stochastic chemical reaction
network model, it is useful to first define the moment generating function [102].

Definition 4.1 (Moment Generating Function [102]). The generalised mo-
ment generating function of an n-dimensional random vector x = (x1, . . . , xn) is

Mx(φ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eφ
ᵀxP (x)dx1 · · · dxn = E

[
eφ

ᵀx
]
, (4.2.1)

where the expectation is taken with respect to the probability distribution of the
system, P (x), and φ is a fixed vector.

The moments E[xk], can be found by taking the k-th order derivatives of
the moment generating function in Equation (4.2.1) with respect to the auxiliary
variable φ, and by setting φi = 0, ∀i ∈ {1, . . . , n} [2].

Example 4.1 (Raw Moments of a 1D System). Given a one dimensional
system with species x, the moment generating function is

Mx(φ) = E
[
eφx
]
,

which can be expanded using the Taylor series to become

Mx(φ) = E
[
1 + φx+

φ2x2

2!
+
φ3x3

3!
+ · · ·

]
.

Taking the 1st, 2nd, and 3rd order derivatives with respect to φ, and setting φ = 0

yields the moments E[x],E[x2],E[x3], and so forth.

With a small amount of effort, it can be seen that the moment generating
function will readily yield the set of k-th order moments for multivariate systems
of any finite dimension.

To derive the time dependence of the moments d
dt
E[xk], we can recall the

chemical master equation in (Definition 2.9), and form the time dependent mo-
ment generating function [8].
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Definition 4.2 (Time Dependent Moment Generating Function [8]). The
time dependent moment generating function is given by

dMx(φ)

dt
=

m∑
j=1

[(
eφ

ᵀvj − 1
)∑

x

eφ
ᵀxP (x)hj(x,θ)

]
. (4.2.2)

where vj is the state change vector for reaction Rj, with the associated propensity
function hj(x,θ).

From Definition 4.2, it can be seen that the exact form of the moment equa-
tions d

dt
E[xk] can be found analogously to the methodology in Example 4.1, i.e.,

d

dt
E[xk] =

d

dφ

dMx(φ)

dt

∣∣∣∣
φ=0

, (4.2.3)

where the derivative has been taken with respect to φ1, . . . , φn, and evaluated at
zero.

Proposition 4.1 (Time Evolution of the Mean [2]). The time evolution of
the mean of species Si, E[xi], is given by:

d

dt
E[xi] =

m∑
j=1

vj,iE[hj(x,θ)] (4.2.4)

Proof. Using Equation (4.2.3), the evolution of the mean of species Si, is given
by

d

dt
E[xi] =

d

dφi

dMx(φ)

dt

∣∣∣∣
φ=0

.

From Definition 4.2, the time dependent moment generating function is given by
Equation (4.2.2). Taking the derivative with respect to φi yields

m∑
j=1

[∑
x

(
(vj,i + xi)e

φᵀx+φᵀvj − xieφ
ᵀx
)
P (x)hj(x,θ)

] ∣∣∣∣
φ=0

.

Simplifying the expression, and evaluating at φ = 0 gives
m∑
j=1

vj,iP (x)hj(x,θ) ≡
m∑
j=1

vj,iE[hj(x,θ)].

Thus, the evolution of the mean becomes a function of the propensity, and
the underlying state change matrix. Generalising for a multivariate system with
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species vector x, the following equations for the exact time evolution of the k-th
order moments can be obtained [34]:

d

dt
E[xk] =

m∑
j=1

E
[
((x+ vj)

k − xk) · hj(x,θ)
]
, (4.2.5)

where

(x+ vj)
k =

n∏
i=1

(xi + vj,i)
ki .

The expectations in both Equation (4.2.4) and Equation (4.2.5) can be computed
by taking a Taylor series expansion around the mean µ = (E[x1], . . . ,E[xn])

[2, 34, 42], i.e.,

d

dt
E[xi] =

m∑
j=1

vj,i

∞∑
k1=0

· · ·
∞∑

kn=0

∂k

∂xk
hj(x,θ)

k!

∣∣∣∣
x=µ

E[(x− µ)k], (4.2.6)

where E[(x− µ)k] are the central moments of order k, and multi-index notation
is used such that

∂k = ∂
∑n

i=1 ki ,

∂xk =
n∏
i=1

∂xkii ,

k! =
n∏
i=1

ki!,

E[(x− µ)k] = E

[
n∏
i=1

(xi − µi)ki
]
.

The relation between the central moments, E[(x−µ)k], and raw moments, E[xk],
can be found by considering the binomial expansion, i.e.,

E[(x− µ)k] =

k1∑
k′1=0

· · ·
kn∑
k′n=0

(
k

k′

)
(−1)(k−k

′)µ(k−k′)E[xk], (4.2.7)
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with the following defined (
k

k′

)
=

n∏
i=1

(
ki
k′i

)
,

(−1)(k−k
′) =

n∏
i=1

(−1)(ki−k
′
i),

µ(k−k′) =
n∏
i=1

µ
(ki−k′i)
i .

Conversely, the relationship between the raw moments and central moments are
given by the binomial expansion

E[xk] =

k1∑
k′1=0

· · ·
kn∑
k′n=0

(
k

k′

)
µ(k−k′)E[(x− µ)k].

The time evolution of the central moments are given by,

d

dt
E[(x− µ)k] =

k1∑
k′1=0

· · ·
kn∑
k′n=0

(
k

k′

)
(−1)(k−k

′) d

dt

(
µ(k−k′)E[xk

′
]
)

(4.2.8)

where using the chain rule yields
d

dt

(
µ(k−k′)E[xk

′
]
)

=
d

dt

(
µ(k−k′)

)
E[xk

′
] + µ(k−k′) d

dt

(
E[xk

′
]
)
, (4.2.9)

with
d

dt

(
µ(k−k′)

)
= µ(k−k′)

n∑
i=1

(ki − k′i)µ−1i
d

dt
E[xi], (4.2.10)

and
d

dt
E[xk

′
] =

m∑
j=1

∞∑
k1=0

· · ·
∞∑

kn=0

∂k

∂xk
((x+ vj)

k′ − xk′) · hj(x,θ)

k!

∣∣∣∣
x=µ

E[(x− µ)k]

(4.2.11)

Remark 4.1. Equation (4.2.11) is different from Eq. (11) presented in [2], which
is subtly incorrect as it includes an additional term of xk′ when expanded.

4.2.1 Moment Closure Approximations

In general, the moment equations in Equation (4.2.6) and Equation (4.2.11) form
an infinite set of coupled non-linear ODEs, due to the dependence of lower order
moments on higher orders. This motivates the use of moment closure approxima-
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tions (MAs), whereby the infinite set of equations obtained through Taylor series
expansions are truncated above a given order, and the system is closed based
on assumptions of the underlying distribution (e.g., multivariate normality [42],
lognormality [117], or a gamma distribution [77]).

Zero MA The ‘Zero MA’ is the most simple moment closure, in which the
Taylor series in Equations (4.2.6) and (4.2.11) are truncated at a given order k.
Thus, all central moments above order k are zero.

Normal MA A multivariate normal distribution [102] has the density function

f(x) =
1√

(2π)N |Σ|
exp

{
−1

2
(x− µ)ᵀΣ−1(x− µ)

}
. (4.2.12)

Given the first and second order moments, all higher order central moments up
to a chosen order k can be computed using Isserlis’ theorem.

Theorem 4.1 (Isserlis’ Theorem [66]). If x = (x1, . . . , x2n) is a zero-mean
multivariate normal random vector, then

E[(x− µ)k] = I(k)
∑∏

E[(xi − µi)ki(xi′ − µi′)ki′ ]

where the notation
∑∏

is used to denote summation over all distinct partitions
of x into pairs {xi, xi′}, and I(k) is the indicator function such that

I(k) =

0, if
∑n

i=1 ki is odd,

1, if
∑n

i=1 ki is even.

Remark 4.2. By Theorem 4.1, all odd-ordered central moments are set to zero
in the normal MA. The number of paired combinations of {xi, x′i} required to
compute the even orders is (k − 1)!!, i.e., the number of terms grows by a double
factorial.

Log-Normal MA A random variable x follows a lognormal distribution if its
logarithm is normally distributed, i.e.,

x = exp (Y ),
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and Y ∼ N(µ,Σ). All higher order moments of x up to a given order k can be
expressed in terms of µ and Σ using the following relationship ([77])

E[xk] = exp(kᵀµ+
1

2
kᵀΣk). (4.2.13)

The variables µ and Σ may be computed via

Σij = ln(1 +
E[(xi − E[xi])

2]

E[xi]2
),

µi = ln(E[xi])−
1

2
Σii.

4.3 On the Validity of Moment Approximations

The moment approximation methods provided within Section 4.2 can be used to
provide efficient (and scalable) descriptions of stochastic chemical reaction net-
works. However, there is no guarantee that the derived moment approximations
for a biochemical model are accurate, and no method exists that can predetermine
whether a given choice of closure is valid. A simulation is deemed valid if it gives
physically meaningful approximations of the CME— such that all species popula-
tions remain positive, finite, and reach a global steady state should the underlying
CME have a stationary solution as t→∞. In practice, moment approximations
can exhibit non-physical behaviour (e.g., negative populations [115], chaos, and
finite-time blowup [31]) and can even fail for simplistic low-dimensional systems
— for example, the Lotka-Volterra predator-prey model [28]. In [115], the authors
empirically analyse and compare the normal, Poisson [95], log-normal [117], and
the zero-MA (termed central-moment-neglect) moment closure approximations
by applying them to systems with bimodal, ultrasensitivity, and oscillatory be-
haviours. The authors find that in general, the normal moment approximation
is most favourable due to the simulations being more stable, on average, for a
larger portion of the state-space [115].

Remark 4.3. Many research papers stipulate that, theoretically, adding higher
order moments to a system will increase the accuracy of the resulting MA — at the
cost of additional computational complexity, and numerical stiffness (e.g., [28]).
However, this is only true if the model, and underlying moment approximations
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are valid. In general, adding additional moments to a poor approximation can in
fact, make the resulting simulations much worse.

In the following subsection, Section 4.3.1, I provide an illustrative case study
based on the Lotka-Volterra model for which the moment approximations fail.

4.3.1 Example: Collapse of the Lotka-Volterra Predator-

Prey Model

Consider the standard Lotka-Volterra CRN model,

X
θ1−→ X +X

X + Y
θ2−→ Y + Y

Y
θ3−→ ∅

with parameters (θ1, θ2, θ3) = (0.5, 0.0025, 0.3). The system comprises two popu-
lations, the prey X, and the predators Y — whose evolutions under the standard
(truncated, zero-closure) moment approximation is governed by a finite set of
coupled non-linear ODEs. For a Taylor-series expansion up to 2nd order, the
Lotka-Volterra model contains 5 moments [28], i.e., one ODE for each of: E[X],
E[Y ], Var(X), Cov(X, Y ), and Var(Y ). The moment equations are as follows:

dE[X]

dt
= E[X]θ1 − E[X]E[Y ]θ2 − Cov(X, Y )θ2,

dE[Y ]

dt
= E[X]E[Y ]θ2 + Cov(X, Y )θ2 − E[Y ]θ3,

dVar(X)

dt
= E[X]θ1 + 2Var(X)θ1 + Cov(X, Y )θ2

+ E[X]E[Y ]θ2 − 2E[X]Cov(X, Y )θ2 − 2E[Y ]Var(X)θ2,

dCov(X, Y )

dt
= Cov(X, Y )θ1 − Cov(X, Y )θ2 − Cov(X, Y )θ3

− E[X]E[Y ]θ2 + E[X]Cov(X, Y )θ2 + E[Y ]Var(X)θ2

− E[Y ]Cov(X, Y )θ2 − E[X]Var(Y )θ2,

dVar(Y )

dt
= Cov(X, Y )θ2 + E[Y ]θ3 − 2Var(Y )θ3

+ E[X]E[Y ]θ2 + 2E[Y ]Cov(X, Y )θ2 + 2E[X]Var(Y )θ2.

Remark 4.4. For a 3rd order approximation the total number of computed mo-
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ments is increased to 9, while more terms are added to the (above) lower order
ODEs.

Given the choice of initial populations (X, Y ) = (50, 50), the temporal evo-
lution of each species using the 2nd and 3rd order MAs are shown in Figure 4.1
alongside the ‘true’ solution obtained from averaging 1,000 exact SSA simulations.

It is readily seen that both the 2nd and 3rd order models do a good job
of recreating the system dynamics up until time t ≈ 21, at which point the
behaviour diverges. This divergence occurs regardless of the choice of integration
library (e.g. SUNDIALS CVODES [58], LSODA [57], FORTRAN RADAU [35])
and their respective absolute (and relative) tolerance settings. Choosing different
closures, such as the multivariate-normal moment closure, also results in non-
physical behaviour. In addition, Figure 4.1 shows that the problem actually
worsens when higher orders are taken into account.

One intuition behind the failure of the moment approximations for the Lotka-
Volterra model is that given the initial conditions (X, Y ) = (50, 50), the specified
model is ‘unable to deal’ with the level of stochasticity. In fact, the underlying
stochastic model possesses a very problematic ‘extinction’ event — where either
the population of the prey or predators can, in theory, reach zero. Should the prey
ever become extinct, the population of the predators will also die out. Conversely,
if all the predators are removed from the model, the number of prey will increase
exponentially without limitation. Thus, while the mean of the prey, E[X], may be
well defined, its variance Var(X) can diverge rapidly. This suggests the moment
approximation technique is not well equipped to handle ill-defined moments. In
Section 4.4, I suggest that many poor approximations can stem from the false
assumption that the Taylor series expansion is valid, and propose a new technique
that could improve moment approximations.

4.4 Padé-type Approximants for Better Moment

Closure Expansions

In this section, I propose a new approach to constructing moment approximation
equations based on Padé-type approximants. This was motivated, in part, by en-
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(a) Evolution of the prey population.
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(b) Evolution of the predator population

Figure 4.1: Comparison of the temporal evolution of the Lotka-Volterra model
using the SSA, 2nd order MA, and 3rd order MA, for the dynamics of (a) E[X] —
the prey population, and (b) E[Y ] — the predator population. Initial conditions
were (X, Y ) = (50, 50). Solutions diverge from t ≈ 21 s.
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counters with numerical instabilities, and poor approximations given by existing
techniques.

Presently all moment closure approximations that have been implemented for
stochastic chemical reaction networks use the Taylor series expansion, without
discrimination, to truncate infinite sets of ODEs up to a given order. However,
it is well known from various problems of mathematics, physics, and engineering
that the Taylor series approximation is not always valid, or viable — e.g., in
quantum mechanics calculations can often call for the summation of infinite series
with unknown terms [10]. It should be recalled that the Taylor series expansion
of a function is not valid beyond the radius of convergence [102], which itself can
be equal to 0 in many systems — i.e., for some systems it never converges. For
stochastic biochemical reaction networks, it can be reasoned that many models
— particularly those that exhibit large variance, or a heavy-tailed distribution —
will produce a non-convergent Taylor series expansion (for motivating examples
within the field of econometrics and expected utility, see [59, 84]). This can be
seen by noting that the rate at which the sequence of central moments increases,
{E[(x − µ)2], . . . ,E[(x − µ)k]}, is too great for such a heavy-tailed distribution
(i.e., by performing a simple ratio test on successive terms of the Taylor series
expansion).

Padé approximants have been widely used in practice to provide an effective
way of analytically continuing an approximated function beyond its radius of con-
vergence [120]. Mathematically, the Padé approximant of a function is the ‘best’
rational power series approximation up to a given order, and is closely related to
continued fractions, orthogonal polynomials, and Gaussian quadrature methods
[18]. Interestingly, even with few terms the Padé approximants often provide bet-
ter approximations than their counterpart Taylor series — for examples, see the
works of Bender [10, 11]. Furthermore, Padé approximants can often work in sys-
tems where the corresponding Taylor series is divergent. The Padé approximant
R[m/n](x) of a power series function f(x) is defined as follows:

Definition 4.3 (Padé Approximant of Order [m/n] [10]). For m ≥ 0, n ≥ 1,
the Padé approximant of a function f(x) up to order [m/n] is the rational function
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R[m/n](x) =

∑m
k=0 akx

k

1 +
∑n

k=1 bkx
k

=
a0 + a1x+ a2x

2 + · · ·+ amx
m

1 + b1x+ b2x2 + · · ·+ bnxn
. (4.4.1)

where the Padé has been normalised by choosing b0 = 1, without loss of generality
[10].

Remark 4.5 (Agreement of the Padé Approximants). Given f(x) is a
(Taylor) power series, the Padé approximant R[m/n](x) agrees with f(x) up to the
order m+ n, e.g.,

f(0) = R[m/n](0)

f ′(0) = R′[m/n](0)

...

f (m+n)(0) = R
(m+n)
[m/n] (0)

Construction of the rational Padé approximants is done by using the corre-
sponding terms of the Taylor series expansion. Suppose that f(x) =

∑∞
k=0 ckx

k

is a Taylor power series expansion. Let the coefficient b0 = 1 as in Definition 4.3.
The remaining (m + n + 1) coefficients, {a0, . . . , am; b1, . . . , bn}, can be derived
by solving a set of matrix operations [10]. The denominator coefficients, bk, are
obtained by solving:

cm cm−1 · · · cm−n+1

cm+1 cm · · · cm−n+2

...
... . . . ...

cm+n−1 · · · · · · cm

 ·

b1

b2
...
bn

 = −


cm+1

cm+2

...
cm+n

 . (4.4.2)

The numerator coefficients, ak, can then be found by solving

ak =
k∑
i=0

ck−ibi, 0 ≤ i ≤ m, (4.4.3)

where bk = 0 for i > n [10]. A simple example for the calculation of R[0/1](x) is
given in Example 4.2.

Example 4.2 (Computation of R[0/1](x) [10]). Suppose the aim is to compute
R[0/1](x) of a Taylor series, f(x) =

∑∞
k=0 ckx

k, such that

R[0/1](x) =
a0

1 + b1x
.
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With respect to Equations (4.4.2) and (4.4.3), this gives two equations: a0 = c0b0,
and −c0b1 = c1. With the normalisation b0 = 1, solving for the Padé coefficients
reveals the approximant

R[0/1](x) =
c0

1− c1
c0
x
.

Remark 4.6. It can be seen from Equations (4.4.2) and (4.4.3) that each coef-
ficient in the numerator and denominator of the Padé approximant is a function
(comprising sums, fractions and multiplications) of the original Taylor expansion
coefficients. Thus, no new information is required to be computed.

In general, there exists many algorithms for optimally computing Padé-type
approximants [17, 65], which are closely related to Shanks tranformations [4].
One particular algorithm, Wynn’s ε-algorithm [131], is well known to efficiently
compute the coefficients in a recursive manner.

To apply the Padé method to stochastic chemical kinetics, the standard Taylor
series (which generates the sequence of central moment corrections) is switched
out for the rational Padé-type approximant of desired order. For example, com-
puting the temporal evolution of the mean of a one-dimensional system (e.g.,
Equation (4.2.4)), obtains the following formula comprising a rational function
of the central moments, i.e.,

d

dt
E[x] =

m∑
j=1

vj
a0 + a1E[x− µ] + a2E[(x− µ)2] + · · ·
1 + b1E[x− µ] + b2E[(x− µ)2] + · · ·

, (4.4.4)

where vj is the j-th entry of the state-change matrix, and the coefficients, ak, bk,
can be analytically solved for prior to simulation. The same computations can be
analogously applied for the equations of higher order central moments. Within
Equation (4.4.4), the rational coefficients, ak, bk, are functions of the Taylor co-
efficients

∂k

∂xk
hj(x,θ)

k!

∣∣∣∣
x=µ

,

recalling that hj(x,θ) is the j-th propensity function. For generalised higher
order moments, the rational coefficients are functions of the following Taylor
coefficients

∂k

∂xk
((x+ vj)

k′ − xk′) · hj(x,θ)

k!

∣∣∣∣
x=µ

.
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In general, the coefficients of the rational Padé approximants can always be
uniquely determined for 1-dimensional systems. However, this is not the case
in multivariate systems, and care should be taken. In Section 4.4.1, I apply the
above method to the 1-dimensional Schlögl system.

4.4.1 Proof of Concept

In this subsection, I give a proof of concept for exploring the use of Padé ap-
proximants within the construction of moment closure approximation equations.
I consider as an example, the 1-dimensional Schlögl system [114].

2X + A
θ1−→ 3X B

θ3−→ X

3X
θ2−→ 2X + A X

θ4−→ B

In this thesis, I use the Schlögl model with kinetic rate parameters θ1 = 3e−7,
θ2 = 1e−4, θ3 = 1e−3, and θ4 = 3.5, and the initial population conditions
(X,A,B) = (250, 1e5, 2e5). Stochastically, the Schlögl system exhibits inter-
esting bimodal behaviour and is therefore frequently studied for its challenging
dynamics. Specifically, under stochastic simulation there exists a steady upper
state at approximately x ≈ 560 molecules, and a steady lower state at x ≈ 85

molecules. Using the above parameters, the system is very sensitive to stochastic
fluctuations, or small perturbations (e.g., 1-5 molecules) in the initial molecular
counts. Minor changes in parameters can also lead to one steady state dominating
the other.

In Figure 4.2, the upper and lower steady states of the stochastic solution are
shown, alongside their corresponding standard deviation, obtained from 10,000
stochastic simulations using Gillespie’s direct method [44]. For visualisation pur-
poses, the SSA data has been partitioned. Simulations performed using tradi-
tional reaction rate equation (RRE) ODE dynamics are presented in Figure 4.2a,
showing its (eventual) convergence to the steady states of the SSA solution. The
solid green line represents the normal ODE dynamics, whilst the green dashed
line has had the initial starting state perturbed (by 1 molecule) to show the
lower steady state. Within Figure 4.2b, the solution for the mean and standard
deviation of the 2nd order moment approximation (zero-MA) is shown. Under
the second order approximation, the system’s variance (and standard deviation)
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grows until it becomes very large with respect to the mean at ∼ 2s. At this point,
the approximation becomes poor and non-physical, with the variance exponen-
tially tending toward infinity. Within Figure 4.2c, the corresponding solution to
the 3rd order moment approximation is given. It can be seen that the numeri-
cal solution is very close to that of the 2nd order approximation until ∼ 2s, at
which point the numerical stability breaks down dramatically with computation
becoming infeasible after ∼ 6s. In Figure 4.2d, the results of the simulation using
the Padé approximation R[1/1](x) is depicted. The trajectory of the mean closely
follows the same path as the RRE in Figure 4.2a, for both the perturbed and
normal initial starting conditions. Using the R[1/1](x) approximation the stan-
dard deviation of the paths are finite, albeit larger than that of the SSA solution.
Unlike the standard moment approximation, an improvement is made by taking
the higher order R[2/2](x) Padé approximation. Figure 4.2e shows that the [2/2]

order approximation not only does a better job at reaching the exact mean of
the upper and lower steady states, but also makes significant improvements on
the magnitude of their respective standard deviations. In Table 4.1 I present the
relative errors and computation time of the RRE vs Padé approximation meth-
ods. Each of the methods provides excellent approximations of the means of the
upper and lower steady states. Naturally, the simple RRE approach is the fastest
technique on average, followed by the Padé methods which are approximately
twice as slow. For completeness, the average relative computation time taken by
the 2nd order moment approximation (2MA) is included. It is noted that the
CPU time is significantly higher (8×) for the 2MA. This is due to the integration
of the equations becoming more stiff as the variance of the system becomes (non-
physically) large. In general, it is anticipated that the 2MA should be slightly
faster for a well-behaved model.
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(a) The reaction rate equation (RRE) ODE dynamics of the Schlögl system.
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(b) 2nd Order Moment Closure Approxi-
mation (2MA).
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(c) 3rd Order Moment Closure Approxi-
mation (3MA).
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(d) Padé Approximation R[1/1](x)
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(e) Padé Approximation R[2/2](x)

Figure 4.2: A comparison of the Schlögl system dynamics for various moment
approximations, compared to the solution (of 10,000 simulations) of the SSA.
For visual aid, the SSA data has been partitioned into ‘upward’ and ‘downward’
states. Shown are the means (solid/dashed lines), and the standard deviation
(ribbons). To produce the downward states from the RRE (Figure 4.2a), and Padé
approximants (Figures 4.2d and 4.2e), the initial starting state was perturbed
very slightly. Perturbing the 2MA and 3MA (Figures 4.2b and 4.2c) has no
effect. In Figures 4.2b and 4.2c, the standard deviation exponentially increases
toward infinity. In Figure 4.2c, numerical instability occurs, and computation is
infeasible after ∼ 6s.
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Method Upper Mean Lower Mean Upper Std. Lower Std. Rel. CPU Time

Rel. Err. (%) Rel. Err. (%) Rel. Err. (%) Rel. Err. (%)

RRE 2.15 4.05 — — 1.00

Padé [1/1] 2.15 4.05 420 551 1.80

Padé [2/2] 0.46 3.16 7.19 39.3 2.44

2MA — — — — 8.08

Table 4.1: The relative error and CPU time of the Padé approximants vs the RRE. The relative errors (Rel. Err) are
taken with respect to the final upper- and lower- steady-state molecular means of X and their respective standard
deviations (Std.). The relative (Rel.) CPU time taken for each method is scaled according to the average time of the
RRE simulation. The RRE method does not include the standard deviation within its simulations. The relative CPU
time of the 2MA is included for completeness. The 3MA is not included due to the simulations halting prematurely.

69



4. MOMENT APPROXIMATIONS AND THE GENERALISED
METHOD OF MOMENTS

4.5 Generalized Method of Moments for Parame-

ter Inference

The generalized method of moments (GMM) for stochastic biological networks
is a fresh approach to the parameter inference problem, inspired by advances
in the field of econometrics [50, 51]. Recent developments in the construction
of moment closures (see Sections 4.2 and 4.2.1) have led to scalable methods
that are able to make ad-hoc approximations of the temporal evolution of the
underlying probability distribution up to a given order k. Returning a set of
ODEs, the attractiveness of these moment approximation methods is their inde-
pendence to the population size. However, the drawback is that these systems
readily become stiff, and their approximations poor for large k. Nevertheless,
reconstructions of complex distributions show that even for small orders k (e.g.,
k = 2), the moment approximations can provide sufficient information about the
model dynamics [5]. Recent advances include the use of conditional-moment ap-
proximations [54], which partition the state-space into two subregions. Within
[54], the subregions containing larger molecular populations are solved using stan-
dard moment closure approximations, while the low population species are solved
using the chemical master equation [89].

The principle behind the GMM for parameter inference is to use the observed
sample moments, within the data and simulations, to construct a cost function
to be minimised during optimisation. However, special care should be taken as:

• The cost function of low and high order moments need to be weighted
carefully — e.g., in the case of a least-squares cost function.

• Higher order moments are generally less accurate than their lower order
counterparts.

• There exists a degree of correlation between different order moments —
motivating the use of mixed moment cost functions [51, 85].

The general optimisation problem can be posed as a maximum likelihood estima-
tion problem (see e.g., [113]) defined by

θ∗MLE = arg max
θ

L(y,θ), (4.5.1)
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where L(y,θ) is the likelihood of the data, y, given the parameters θ. Exact com-
putation of Equation (4.5.1) is often expensive, and computationally infeasible,
motivating the use of approximations — such as least-squares distance measures
based on the observed sample moments of the data [85], or likelihood approxima-
tions based on the observed sample moments [113]. In this thesis, I consider the
use of least-squares distance measures due to their efficiency and ease of imple-
mentation. Let the k-th order observed sample moment of species Si be defined
as in Definition 4.4.

Definition 4.4 (Sample Moments [85]). The k-th order sample moment, at
time t, for species Si, can be computed from the data, y, by

Ŷ
(k)
i (t) =

1

N

N∑
l=1

yki (t), 1 ≤ i ≤ n, (4.5.2)

where N Monte Carlo samples are observed.

Remark 4.7. Given large N , Equation (4.5.2) tends toward an asymptotically
unbiased estimator of the true population moment.

Similarly, let the k-th order observed central moment be defined as in Defini-
tion 4.5.

Definition 4.5 (Sample Central Moments [50, 85]). The k-th order central
moment, at time t, for species Si, can be computed from the data, y, by

F̂
(k)
i (t) =

1

N

N∑
l=1

(
yi(t)− Ŷ (k)

i (t)
)k
, 1 ≤ i ≤ n, (4.5.3)

where N Monte Carlo samples are observed.

Remark 4.8 (Demean Estimator). Within [85], the form of the k-th order
sample central moment (Equation (4.5.3)) is termed the ‘demean’ estimator. Us-
ing the sample central moments, or demean estimator, often helps to remove
numerical inconsistencies obtained by approximating the covariance matrices.

The least-squares estimator, θ̂, of a moment-based simulation, with respect to
the data, is given in Definition 4.6. Under the assumption that data is normally
distributed, Equation (4.5.4) coincides with the maximum likelihood estimator of
the system.
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Definition 4.6 (Least Squares Moments Estimator [50, 85]). The ordinary
least-squares estimator, θ̂, based on the sample moments of the data, Ŷ , is given
by

θ̂ = arg min
θ

r∑
k=1

(
Ŷ (k)(t)−X(k)(θ, t)

)2
, (4.5.4)

where X(k)(θ, t) are the moments for species derived from forward simulation with
θ̂. r is the maximal occurring order moment.

With analogy to Equation (3.6.1), one sub-element of the cost function (based
on species Si) can be constructed as

Jik(θ, t) = Ŷ
(k)
i (t)−X(k)

i (θ, t). (4.5.5)

As previously mentioned within this section, appropriate weights must be selected
for each moment condition, and steps need to be taken to minimise the correlation
between moment conditions. This motivates the use of mixed moment conditions
[51], and a weighting matrix, W , such that

θ̂ = arg min
θ
J(θ, t)ᵀWJ(θ, t), (4.5.6)

where J(θ, t) is a vector of elements {Jik(θ, t) : k ∈ {1, . . . , r}, i ∈ {1, . . . , n}}.
For the choice that W = I, i.e., the identity matrix, Equation (4.5.6) becomes
a straightforward least-squares estimator. Otherwise, if W is a positive semi-
definite weighting matrix, we obtain a weighted least-squares estimator. The
choice of W is often crucial to achieving optimal convergence, and estimating
W itself adds an additional level of complexity [50]. It can be shown that the
optimal weighting matrix is given by

W = E [J i(θ
∗, t)J i(θ

∗, t)ᵀ]−1 , (4.5.7)

where θ∗ is the optimal parameter, which is however, unknown.

Remark 4.9. Computation of Equation (4.5.7) is infeasible, calling for the Monte
Carlo sampling counterpart below

W =

(
N∑
i=1

J i(θ
∗, t)ᵀJ i(θ

∗, t)

)−1
. (4.5.8)

In practice, there are several methods that deal with estimatingW . The most
commonly used are (see [50])
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• The two-step GMM,

• The iterated GMM,

• The continuously updating GMM.

Two-Step GMM [50] The two-step GMM approach tackles the estimation of
θ∗ and W independently in the following iterative manner:

Step 1: UsingW = I, solve the optimisation routine (Equation (4.5.6)) to compute
a preliminary estimate θ̃.

Step 2: Using θ̃, compute the estimate Ŵ (θ̃) (from Equation (4.5.7)), and use the
estimated weighting matrix to compute the iteration estimate θ̂.

Iterated GMM [50] The iterated GMM approach is near identical to the two-
step approach, with the exception that step 2 is repeated over many iterations.

Continuously updating GMM [50, 52] The continuously updating GMM
estimates both θ∗ andW simultaneously, such that θ̂ and Ŵ are obtained using
the same parameters.

In general, it can be shown that both the two-step and iterated approach pro-
vide asymptotically efficient estimators, while the continuously updating GMM
achieves good results in practical applications [52].

4.6 Applying Multi-level Methods to the Gener-

alised Method of Moments

Only recently have state-of-the-art parameter inference techniques utilising the
generalised method of moments for stochastic biological models become estab-
lished. Primarily, the GMM has been popularized as a scalable alternative to
intensive (exact SSA) simulation approaches [113, 116]. However, the cost of us-
ing ODE moment approximations is the loss of accuracy of the underlying models
compared to their exact method counterparts — which may lead to bias, or be-
come detrimental to the quality of the obtained parameter estimates. In recent
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work, the authors of [113] perform parameter inference using ‘adaptive’ moment
closures. The core idea behind the adaptive closure method is to use small num-
bers of exact Gillespie stochastic simulations to automatically assess, and ‘choose’
the optimal moment closure within each region of the parameter search space.

Within this section I propose a new two-step approach to parameter inference
based on combining the traditional generalised method of moments with multi-
level approximation techniques (MLGMM). Specifically, I investigate the use of
adaptive multi-level tau-leaping (AMLT) [80] — a recent, and novel technique
that provides an efficient formulation for stochastically simulating the evolution
of population statistics.

• In Section 4.6.1, I outline the adaptive multi-level tau-leaping algorithm.

• In Section 4.6.2, I present a new approach for parameter inference based on
the GMM and AMLT algorithm.

4.6.1 Adaptive Multi-Level Tau-Leaping Algorithm

As discussed in Chapter 2, direct stochastic simulation using Gillespie’s direct
method [44] can be computationally burdensome — motivating the development
of approximate tau-leaping methods that trade computational efficiency for ac-
curacy [43]. In Section 2.3.2, I presented the optimised tau-leaping algorithm
from [20], which implements adaptive time steps that can be tuned via an error
controlling parameter ε. As ε increases, the time steps taken become (in general)
larger, and the computation more efficient — albeit at the cost of bias.

Multi-level Monte Carlo techniques for continuous time Markov chains [130]
attempt to efficiently estimate population moment statistics using stochastic sim-
ulations. The original multi-level tau-leaping method was proposed by Anderson
and Higham [3]. The key idea was to use tau-leaping with large (coarse) time
steps to quickly estimate base population statistics, and then to use a handful of
trajectories with finer time steps to add a ‘correction’ term to the coarse path.
More recently, the work has been expanded upon by Lester et al. within [80] to
include adaptive time steps — i.e., the optimised tau-leaping method (with the
error control parameter ε) discussed previously [20]. Thus, the adaptive multi-
level tau-leaping algorithm aims to generate many sample trajectories using a
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high tolerance (large ε), and then to correct the estimated statistics using fewer
follow-up trajectories of low tolerance [80].

Suppose the aim is to estimate the mean of the population, xi, of a species Si
at a time T . The base level estimator is given in Definition 4.7.

Definition 4.7 (Base Level Estimator [80]). The base level estimator is gen-
erated by sampling n0 tau-leaping paths with an error control parameter ε0,

Q0 ≡ E[x(ε0)] ≈
1

n0

n0∑
i=1

xi(ε0), (4.6.1)

where xi(ε0) is generated in the i-th simulated trajectory [80].

The subsequent levels of approximation, l ∈ {1, 2, . . .}, aim to reduce the bias
of Q0 by adding correction terms generated from nl paths with error tolerances
of εl and εl−1, e.g.,

Q1 ≡ E[x(ε1)− x(ε0)] ≈
1

n1

n1∑
i=1

[xi(ε1)− xi(ε0)]. (4.6.2)

The general l-th correction term is defined in Definition 4.8

Definition 4.8 (l-th Level Correction Term [80]). The general l-th level
correction term, generated using nl tau-leaping paths with control parameters εl
and εl−1 is given by

Ql ≡ E[x(εl)− x(εl−1)] ≈
1

nl

nl∑
i=1

[xi(εl)− xi(εl−1)]. (4.6.3)

Starting from the base level estimator, Q0, it can be shown that summing the
correction terms Ql forms a telescoping sum that reduces the bias. This can be
seen by noting that

Q0 +Q1 = E[x(ε0)] + E[x(ε1)− x(ε0)] = E[x(ε1)].

Thus, summing the first two estimators, Q0 and Ql has a bias equivalent to that
of a tau-leaping method with ε = ε1 [80]. By constructing multiple levels, a final,
L-level estimator Q can be obtained such that

Q = E[x(εL)] = E[x(ε0)] +
L∑
l=1

E[x(εl)− x(εl−1)] =
L∑
l=0

Ql. (4.6.4)

75



4. MOMENT APPROXIMATIONS AND THE GENERALISED
METHOD OF MOMENTS

Remark 4.10. Calibration is required to optimise the number of samples gener-
ated per level, nl, against the run time, cl, and estimator variance σ2

l from each
contributing level, Ql. This can be formulated as the minimisation of

∑
l≥0 cl · nl

subject to the constraint
∑

l≥0 σ
2
l /nl < α, for some fixed α, which can be achieved

in practice using prior simulations [3, 80].

For constructing the l-th level correction terms within Definition 4.8, the
trajectories produced with error control parameters εl and εl−1 are deliberately
simulated in a highly coupled, correlated fashion [3, 80]. This is because the
correction terms Ql only depend on the differences in the systems, not on the
actual copy numbers — and it is therefore beneficial if the systems are kept as
similar to one another as possible during forward simulation. This can be done
using the Poisson process thickening property.

Proposition 4.2 (Poisson Thickening Property [94]). Suppose we have the
Poisson variates P1,P2,P3 which are of rate parameters a, b, and a + b, respec-
tively. The thickening property states:

P1(a+ b) = P2(a) + P3(b). (4.6.5)

Using Proposition 4.2, it is possible to calculate the Ql-th correction term for
a system that is simulated until a final time T in the following manner:

1. Let zc(t) and zf (t) denote the coarse and fine paths at time t generated with
tolerances εl−1 and εl, respectively. Let h

(c)
j and h(f)j denote the propensity

vectors for the coarse and fine paths.

2. Let τ(ε, z) be a function that computes the size of the next leap (as in [20]),
and thus the next update times, Tc and Tf , for the coarse and fine paths re-
spectively. Define the next coupled update time as η(t) = min{Tc, Tf , T}−t.

3. At time η(t), compute the following auxiliary variables for each reaction
channel Rj [80]:

b
(1)
j = min{h(c)j , h

(f)
j },

b
(2)
j = h

(c)
j − b

(1)
j ,

b
(3)
j = h

(f)
j − b

(1)
j .
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4. Using Proposition 4.2, calculate the rate parameters of the thickened Pois-
son process, i.e.,

P(a
(c)
j · η) ∼ P(b

(1)
j · η) + P(b

(2)
j · η),

P(a
(f)
j · η) ∼ P(b

(1)
j · η) + P(b

(3)
j · η),

5. Update the state of the coarse and fine paths over the interval min{Tc, Tf , T}
by sampling from the above thickened Poisson distributions. Update the
system time, t → t + η. If t > Tc or t > Tf , update the propensity and
update time of the respective path.

6. Repeat steps 2–5.

The AMLT algorithm for the correction terms is outlined below in Algorithm 4.

4.6.2 Outline of the MLGMM

In this section, I outline the Multi-Level Generalised Method of Moments (ML-
GMM) — a new approach for parameter inference. At the simplest level of
abstraction, the MLGMM can be summarised as an adaptable two-component
optimisation method:

Step 1: For a given choice of moment closure (e.g., the normal 2nd order mo-
ment approximation), perform a quick, robust global optimisation of Equa-
tion (4.5.6) using the continuously updating GMM approach. Retrieve the
estimate θ̃.

Step 2: Given the estimated parameters θ̃ from step 1, use the adaptive multi-level
tau-leaping approach to perform a local optimisation of Equation (4.5.6) to
produce stochastically-corrected, refined parameter estimates, θ̂.

Remark 4.11. Because the outputs of both the moment approximation and adap-
tive multi-level tau-leaping methods are population moment statistics, switching
from one method to the other is relatively straightforward — and requires no need
for independent cost functions.

The above two-component approach is designed to exploit the fast, scalable nature
of moment approximations to produce good-enough estimates such that the more
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Algorithm 4 Adaptive Multi-level Tau-leaping Algorithm - Correction Terms
1: procedure Generate Ql-th correction term
2: t← t0 // set the current system time
3: xc(t)← x0(t) // set the coarse path at time t
4: xf (t)← x0(t) // set the fine path at time t
5: for 1 : j do
6: h

(c)
j ← hj(xc(t),θ) // set the propensities

7: h
(f)
j ← hj(xf (t),θ)

8: Tc ← t+ τ(εc,xf (t))
9: Tf ← t+ τ(εf ,xc(t))

10: while t < T do
11: η ← min{Tc, Tf , T} − t // next coupling time
12: for j = 1 : m do
13: b

(1)
j ← min{h(c)j , h

(f)
j } // auxilliary Poisson process variables

14: b
(2)
j ← h

(c)
j − b

(1)
j

15: b
(3)
j ← h

(f)
j − b

(1)
j

16: for r = 1 : 3 do
17: Y

(r)
j ← P(b

(r)
j · η) // random Poisson numbers

18: xc(t+ η)← xc(t) +
∑m

j=1(Y
(1)
j + Y

(2)
j )vj // update states

19: xf (t+ η)← xf (t) +
∑m

j=1(Y
(1)
j + Y

(3)
j )vj

20: t← t+ η
21: if t = Tc then
22: for 1 : j do
23: h

(c)
j ← hj(xc(t),θ) // update propensities

24: Tc ← t+ τ(εc,xc(t)) // compute next update time
25: else
26: if t = Tf then
27: for 1 : j do
28: h

(f)
j ← hj(xf (t),θ) // update propensities

29: Tf ← t+ τ(εf ,xf (t)) // compute next update time
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Figure 4.3: An overview of the components to the MLGMM approach to param-
eter inference. Given a model, the MLGMM approach automatically constructs
the moment closure approximations for ODE simulations and the underlying
stochastic chemical reaction network for the AMLT simulations. Global optimi-
sation for the GMM is performed using the NLopt libary. The retrieved estimates
θ̃ are then passed to the local optimisation routine which utilises AMLT for simu-
lation. The local optimisation routine then utilises the NLopt library to produce
the stochastically-corrected, refined estimates θ̂.

computationally intensive AMLT step is required to do less work. Figure 4.3
provides an overview of the MLGMM approach.

I implement the MLGMM approach within the Julia programming language
[13], utilising the DifferentialEquations and NLopt libraries for simulation and op-
timisation. In addition, I wrote a custom module, MeMo (Method of Moments),
to automatically construct moment closure approximations by interfacing with
SymPy, and implemented a version of the AMLT algorithm.

For the AMLT algorithm, the number of levels taken, and their respective
error control parameters can be fine-tuned. As default parameter values, I use
the 3 levels (ε0 = 0.08, ε1 = 0.06, ε2 = 0.03). The number of simulations at each
level, in general, depends on the model, and the solution to the minimisation
programme within Remark 4.10. In general, the number of simulations is greatest
for the first level, ε0, with fewer simulations at the higher levels ε2. This allows
computational effort to be efficiently distributed across the levels.

In Section 4.6.3 I present results for parameter inference using the MLGMM
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approach.

4.6.3 Lotka-Volterra Model

To test the MLGMM approach, I first investigate the Lotka-Volterra predator-
prey model, using parameters (θ1, θ2, θ3) = (0.5, 0.0025, 0.3), and the initial
population conditions (X1, X2) = (100, 100).

X1
θ1−→ X1 +X1

X1 +X2
θ2−→ X2 +X2

X2
θ3−→ ∅

Remark 4.12 (Initial Conditions). This model is different to that presented in
Section 5.3, due to the higher starting molecular counts. This is because the sys-
tem becomes more stable under moment approximations, allowing moment-based
parameter inference to be efficiently performed. Also, the Lotka-Volterra system
becomes more computationally heavy for the standard SSA when the populations
are higher — due to the increased number of reactions.

To construct the moment conditions, I artificially generated 1,000 datasets
using Gillespie’s direct method, and used them to construct the means and co-
variances of the species. The motivation behind using a larger number of datasets
was to (i) accurately approximate the moments within the data, and (ii) because
high-throughput data methods often provide vast quantities of data allowing for
such population statistics to be estimated in real practice. Explicitly, the moment
conditions used for parameter inference were

X̂1(t)− Z1(θ, t),

X̂2(t)− Z2(θ, t),

X̂1(t)X̂2(t)− Z1(θ, t)Z2(θ, t),

For the parameter search state-space, I provided bounds to the NLopt library of
θj∈[1e−6, 10], for j = 1, 2, 3. The NLopt method used was the COBYLA algo-
rithm [99]. For the AMLT stage, I used 3 levels, with error controls parameters
of ε = (0.08, 0.06, 0.03). The results of parameter estimates are presented in Ta-
ble 4.2. The mean relative error (MRE) is as defined within Chapter 5. It can be
seen that the GMM stage of the algorithm provides reasonable estimates, with
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errors less than 30% across all 3 parameters. Moreover, the GMM stage provides
the estimates in just 1.65s, eclipsing the times previously reported in Section 5.3.
The AMLT however, being based on running multiple tau-leaping simulations for
each parameter point within the state search-space, is significantly slower, taking
∼ 40 minutes. The retrieved parameters for the AMLT stage, however, have a
maximum error of 2%. It can be reasoned that the algorithm requires additional
heuristics to optimise the computation time spent within the GMM, and AMLT
stages.
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Phase θ1 θ2 θ3 θ1 MRE(%) θ2 MRE(%) θ3 MRE(%) CPU Time (s)

GMM 0.526 0.00322 0.345 5.18 28.6 16.6 1.65

AMLT 0.497 0.00253 0.306 0.569 1.10 2.08 2510

Table 4.2: The estimated parameters and their errors obtained from using the MLGMM for inference. The estimates
afer each phase of the algorithm have been shown, alongside the (single-core) CPU time.
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Chapter 5

SPICE: Experimental Results

5.1 Introduction

This section demonstrates the application of SPICE to several case studies. Specif-
ically, results are presented for four commonly investigated biochemical reaction
network systems:

• The Lotka-Volterra Predator–Prey Model. (Section 5.3)

• A Yeast Polarization Model. (Section 5.4)

• The Bimodal Schlögl System. (Section 5.5)

• The Genetic Toggle Switch. (Section 5.6)

For the first three models, (Lotka-Volterra, Yeast Polarization, Schlögl System), I
perform parameter inference using artifically generated synthetic data to evaluate
the performance of SPICE. Using the same datasets, I also perform parameter
inference on the same models using common state-of-the-art algorithms imple-
mented within the COPASI environment [61]. For these models, I also examine
the effects of using (i) Gillespie’s direct method vs. tau-leaping for simulation,
(ii) the particle splitting approach, and (iii) the multiple shooting method. For
the final model, the Genetic Toggle Switch, I perform parameter inference with
SPICE using real experimental data obtained from fluorescent flow-cytometry
experiments in [79].
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5.2 Algorithm Settings

All experiments were conducted on a Intel Xeon 2.9GHz Linux system without
using multiple cores. Thus, all reported CPU times are single-core.

COPASI Algorithms Within this section, the version of COPASI used to
perform parameter inference comparisons against was v4.16. For comparing the
efficiency of parameter inference routines, I compare SPICE to four of the best
performing inference routines within COPASI [61]. Specifically, I examine the
implementations of the following approaches, using the default parameters unless
stated otherwise:

• Evolutionary Programming (EP) [9]

using 250 generations, with a population of 1,000 particles.

• Evolutionary Strategy (ES) [110]

using 250 generations, with a population of 1,000 particles.

• Genetic Algorithm (GA) [110]

using 500 generations, with a population of 2,000 particles.

• Particle Swarm (PS) [70]

using 1000 iterations, with a population of 1,000 particles.

Remark 5.1. I tested each of the COPASI implementations using greater pop-
ulations and more iterations (not shown), but found little improvement for the
significant increase in computational cost.

SPICE Algorithm Unless stated otherwise, I used the standard implementa-
tion of Gillespie’s SSA for all simulations. When tau-leaping is used, I use the
optimised algorithm [20] with an error control parameter of ε = 0.1. For each
run of the algorithm I set the sampling parameters Kelite = 10, Kmin = 1,000,
Kmax = 20,000, and set an upper limit on the number of iterations to 250. The
parameter smoothing constants, (λ, β, q), were set to (0.7, 0.8, 5) respectively —
see Equations (3.6.3) and (3.6.4) for details. Logarithmic sampling was used for
all estimates.
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Mean Relative Error For each comparison between SPICE and the COPASI
parameter inference approaches, I define the mean relative error (MRE) as

MRE =
1

M

(
M∑
j=1

|θ̂j − θ∗j | × 100%

)
,

where θ∗j is the true j-th kinetic rate constant used to generate the synthetic data,
and θ̂j is the j-th parameter estimate.

5.3 Lotka-Volterra Predator Prey Model

The Lotka-Volterra model is a well known approach to modelling the dynamics
of ecological systems that are affected by: predator–prey interactions, resource
competition amongst species, and disease. The system comprises two species:
the prey, X1, and the predators, X2. In addition there are three interactions: (i)
the numbers of prey grow, (ii) the predators consume a prey to increase their
own population, and (iii) the predators die. I implement the standard Lotka-
Volterra model below with parameters (θ1, θ2, θ3) = (0.5, 0.0025, 0.3), and the
initial population conditions (X1, X2) = (50, 50).

X1
θ1−→ X1 +X1

X1 +X2
θ2−→ X2 +X2

X2
θ3−→ ∅

The stoichiometry matrices representing the reactants, v−, products, v+, and
state-change matrix, v, are given below:

v− =

1 0

1 1

0 1

 , v+ =

2 0

0 2

0 0

 , v =

 1 0

−1 1

0 −1

 .

For the purpose of parameter inference, I used Gillespie’s SSA to artificially gen-
erate 5 datasets consisting of 40 time-points. The evolution of the species X1 and
X2 are shown in Figure 5.1. It can be seen that the model exhibits the classic
oscillatory behaviour. These same 5 datasets were given to SPICE and each of
the parameter inference routines implemented within COPASI. For each method,
I specify bounds on the parameter search space of θj∈[1e−6, 10], for j = 1, 2, 3.

85



5. SPICE: EXPERIMENTAL RESULTS

0 10 20 30 40
Time (s)

-100
0

100
200
300
400
500

Nu
m

. M
ol

ec
ul

es
 X

1 data

(a) Temporal evolution of species X1

0 10 20 30 40
Time (s)

0

200

400

600

Nu
m

. M
ol

ec
ul

es
 X

2 data

(b) Temporal evolution of species X2

Figure 5.1: Lotka-Volterra Model: The temporal evolution of the mean of the 5
datasets (black markers and lines) is plotted across the time interval [0, 40]. The
respective standard deviations (represented by grey ribbons) of the species, X1

and X2, within the dataset are plotted alongside the mean.

Firstly, in Table 5.1 I present the iteration-by-iteration breakdown (the output
of ‘trace.csv’ — see Section 3.6.1) of one run of the SPICE algorithm. The
breakdown contains the values of each parameter estimate, θ1, θ2, θ3, the cost
function of the worst performing elite sample (γn), and the number of samples
taken for each iteration. It can be seen that the estimated parameters (0.51610,
0.00263, 0.28618) converge within proximity to the true parameters (0.5, 0.0025,
0.3). In addition, the benefit of adaptive sampling can be seen as the algorithm
converges toward the optimal solution. In Figures 5.2a, 5.2c and 5.2e, I present
a graphical version of the iterative breakdown of the parameter estimates. In
Figures 5.2b, 5.2d and 5.2f, I show the lognormal distribution for each of the
parameters θ1, θ2, θ3 approximated by SPICE in the final iteration. It can be seen
that the variances are small, and the returned means lie over the true parameter
values — suggesting that SPICE can return both accurate and precise parameter
estimates. In Figure 5.3, I plot the fitted model trajectories — of species X1 and
X2, using the estimates returned from one example run of the SPICE algorithm
(where θ̂ = (0.501, 0.00257, 0.302)). It can be seen that the means (solid lines)
and the standard deviations (ribbons) of the fitted model closely match the 5
provided datasets. In Table 5.2, I present the minimum, maximum, and average
mean relative errors (MRE) (%) between the estimated parameters and the true
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Iteration θ̂1 θ̂2 θ̂3 Score γ̂n Num. Samples
1 0.14502 0.00137 0.01279 3844486 1000
2 0.15287 0.00127 0.01440 3452173 1000
3 0.17894 0.00147 0.01719 3383899 1000
4 0.18465 0.00147 0.02005 3332785 1000
5 0.21160 0.00159 0.02421 3312482 1000
6 0.21011 0.00158 0.02789 3289019 1000
7 0.21866 0.00162 0.03184 3261923 1333
8 0.21311 0.00160 0.03695 3291406 1333
9 0.20633 0.00155 0.04107 3249333 2369
10 0.22061 0.00158 0.04963 3219241 2369
11 0.23229 0.00170 0.05555 3239783 2369
12 0.23298 0.00169 0.05899 3225140 2369
13 0.21988 0.00159 0.06399 3202140 5616
14 0.26397 0.00187 0.07648 3170840 5616
15 0.40140 0.00269 0.10459 3194675 5616
16 0.47969 0.00282 0.16154 2292086 5616
17 0.51081 0.00288 0.23915 910918 5616
18 0.49897 0.00276 0.28900 832071 5616
19 0.50066 0.00271 0.29667 698974 9984
20 0.51211 0.00265 0.29423 543723 9984
21 0.51508 0.00259 0.29232 485302 9984
22 0.51631 0.00262 0.28718 438338 17749
23 0.51627 0.00266 0.28978 331472 17749
24 0.51037 0.00261 0.29693 392420 20000
25 0.51359 0.00261 0.29044 337080 20000
26 0.51610 0.00263 0.28618 313594 20000
Real Val. 0.5 0.0025 0.3

Table 5.1: Example output of a trace (.csv file) given for one run of SPICE
on the Lotka-Volterra Predator-Prey model. Displayed are the estimates of the
parameters θ1, θ2, θ3 for each iteration, alongside the score function (relative to
the 5 datasets), and the number of samples taken at each iteration.
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Figure 5.2: The returned parameter estimates for one run of the SPICE algo-
rithm on the Lotka-Volterra predator-prey model. In Figures 5.2a, 5.2c and 5.2e,
I present the iteration-by-iteration breakdown for the estimates of the 3 kinetic
rate parameters. The dashed orange line represents the true parameter values.
In Figures 5.2b, 5.2d and 5.2f, I show the obtained log-normal parameter distri-
butions for each parameter after the end of the final iteration.
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Figure 5.3: Lotka-Volterra Model: The temporal evolution of the mean of the
5 datasets (black markers and lines) is plotted across the time interval [0, 40].
The respective variances (represented by grey ribbons) of the species, X1 and
X2, within the dataset are plotted alongside the mean. The fitted mean and
variance of the fitted model for X1 and X2, using 1,000 SSA simulations, are
represented by the blue lines and ribbons respectively. In this plot, the model
was performed using the best fit parameter estimates from one run of the standard
SPICE algorithm, θ̂ = (0.501, 0.00257, 0.302).
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Lotka-Volterra Model

Alg. θ1 θ2 θ3 Min. MRE Av. MRE Max. MRE Av. CPU

(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 38.4 3.5 29.6 0.4 23.8 156.5 1200

ES 3.8 0.6 4.4 0.3 3.0 9.0 5763

GA 5.2 0.8 5.7 0.8 3.9 15.2 3640

PS 25.6 2.2 18.6 0.1 15.5 126.6 2689

SPICE 3.6 0.4 0.4 1.0 1.5 2.1 1025

Table 5.2: Lotka-Volterra Model: Comparison of the relative errors of parameter
estimates obtained using the COPASI implemented parameter inference algo-
rithms vs SPICE. Each algorithm was ran 100 times using the exact SSA for
simulation. Documented are the minimum, average, and maximum mean rela-
tive errors (MRE) across all 3 parameters, alongside the average computation
time. The selected algorithms are Evolutionary Programming (EP), Evolution
Strategy (ES), Genetic Algorithm (GA), and the Particle Swarm (PS).

parameters across 100 runs of each algorithm (in COPASI and SPICE). Also
shown are the averaged CPU run times. It can be seen that the error of the
parameter estimates across all algorithms varies, however, SPICE is always good
— with no relative error larger than 2.1% for SPICE. The next best performing
algorithm was the evolution strategy (ES), returning a maximum mean relative
error (across all 3 parameters) of 9%. Other algorithms such as the evolutionary
programming (EP) approach, produce an unpredictable variety of estimates, with
mean relative errors from 0.4–156.5%. For this model, the computation time
(single-core) was fastest for SPICE, coming in at under ∼ 20 minutes. The CPU
time for the ES approach — which produced the next most accurate estimates
— was ∼ 6× greater than SPICE. In Figure 5.4 I display box plots summarising
the distribution of the obtained parameter estimates across the 100 runs of each
parameter inference method. It can be seen that, in general, all the algorithms
can precisely estimate all 3 parameters. Both the evolutionary programming
(EP) and particle swarm (PS) approaches contain numerous outliers. SPICE
consistently has the most precise (least variance) estimates of all the methods.
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Figure 5.4: Box plots representing the parameter estimates obtained by SPICE
and COPASI for the Lotka-Volterra model. Results are presented for the evolu-
tionary programming (EP), evolutionary strategy (ES), genetic algorithm (GA),
and particle swarm (PS) methods. Highlighted in green are the results of SPICE.
It can seen that SPICE consistently has the least variance.

In Table 5.3, I present results for 100 runs of the alternative implementations
of SPICE using (i) tau-leaping (ε = 0.1) vs. the direct method, (ii) the multiple
shooting approach, and (iii) the particle splitting approach. It can be seen that
using the direct method without any of the tested heuristic retrieves the best
parameter estimates. Furthermore, it can be seen that the heuristics do not
improve the obtained parameter estimates, except for the case where tau-leaping
is used. Specifically, the second best performing approach was the use of tau-
leaping in conjunction with the particle splitting approach, with a maximummean
relative error of 5%. The use of tau-leaping improves the single-core computation
time ∼ 3×. Lastly, I also examine the Lotka-Volterra predator-prey example for
the case where there is an unobserved (latent) species. In this test case, SPICE

91



5. SPICE: EXPERIMENTAL RESULTS

Lotka-Volterra Model

Min. MRE Av. MRE Max. MRE Av. CPU

%ERR %ERR %ERR (s)

DM 0.2 1.2 2.7 983

DM + MS 1.6 6.2 12.2 1368

DM + SP 0.2 2.5 46.6 1171

Tau 0.6 19.7 221.4 329

Tau + MS 0.5 5.7 10.9 432

Tau + SP 0.4 2.3 5.0 303

Table 5.3: Lotka-Volterra Model: The averaged mean relative errors (MRE) for all
3 parameter estimates across 100 runs of the SPICE algorithm using the multiple
shooting (+MS), and particles splitting (+PS) routines. In addition, the impact
of using the direct method (DM) vs. tau-leaping (Tau), ε = 0.1, is assessed.

was only provided with the snapshot time-series data for species X1. For fitting
the model, X2 instead had to be inferred from the estimated parameters using
only species X1. The results for 100 runs of SPICE on the unobserved data case
is presented in Table 5.4. It can be seen that despite missing 50% of the data,
SPICE still produces good parameter estimates, with no error greater than 10%
on any one of the 3 parameters. In addition, the averaged mean relative errors
even outperform most of the COPASI algorithms, despite the removal of data.
In Figure 5.5, I present fitted model trajectories using the obtained parameter
estimates for one run of the algorithm on the unobserved data case. The results
show that the fitted model is still able to closely match the mean and variance of
the data.
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Figure 5.5: Lotka-Volterra (with X2 as a latent species): The mean of the
data (black markers) and the respective variances of the species X1 and X2 are
plotted alongside the mean and variance of 1,000 SSA simulations (blue lines
and ribbons) performed using the parameter estimates from one run of SPICE
(θ = (0.536, 0.00257, 0.271)). The data for X2 (shown for illustration) was not
provided to the SPICE algorithm, and treated as an unobserved latent species.
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Lotka-Volterra Model (with X2 unobserved)

Alg. θ1 θ2 θ3 Min. MRE Av. MRE Max. MRE Av. CPU

(%ERR) (%ERR) (%ERR) (%ERR) (s)

SPICE 9.4 0.41 6.4 4.1 5.4 6.8 1589

Table 5.4: Lotka-Volterra Model (with X2 unobserved): Results of the parameter
estimates obtained using 100 runs of SPICE. Shown are the mean relative errors
(MRE) and the average CPU time.
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5.4 Yeast Polarization Model

The second model I analyse is a Yeast Polarization model. The model ac-
counts for the temporal evolution of the G-protein cycle in budding yeast, Sac-
charomyces cerevisiae, and has been simplified to include the following species:
ligands (L), receptors (R), receptor-ligand complexes (RL), and G-protein sub-
units (Ga, Gd, Gbg). The model species and their interactions are shown graph-
ically in Figure 5.6. The real parameters of the model are (θ1, . . . , θ8) = (0.38,

R L

R L

G Gbg Ga

Gd

0

Figure 5.6: A graphical representation of the Yeast Polarization Model. Included
are the receptors (R), the ligands (L), their respective complex (RL), and the G
protein cycle including the subunits Gbg, Ga, and Gd.

0.04, 0.082, 0.12, 0.021, 0.1, 0.005, 13.21), and initial species population is
(R,L,RL,G,Ga, Gbg, Gd) = (500, 4, 110, 300, 2, 20, 90). The reaction equa-
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tions of the model are [26]:

∅ θ1−→ R RL+G
θ5−→ Ga +Gbg

R
θ2−→ ∅ Ga

θ6−→ Gd

L+R
θ3−→ RL+ L Gd +Gbg

θ7−→ G

RL
θ4−→ R ∅ θ8−→ RL

For the purpose of parameter inference, I generated 5 datasets consisting of 17
time-points using Gillespie’s SSA, and again provided each algorithm (in COPASI
and SPICE) the same data. For the initial parameter search space, I place bounds
of θj∈[1e−6, 10] for 1 6 j 6 7, and θ8∈[1e−6, 100] across all methods.

Firstly, in Table 5.5 I present the iteration-by-iteration breakdown (the output
of ‘trace.csv’ — see Section 3.6.1) of one run of the SPICE algorithm for the yeast
polarization model (in this case, using a starting number of 10,000 samples). The
breakdown contains the values of each parameter estimate, θ1, . . . , θ8, the cost
function of the worst performing elite sample (γn), and the number of samples
taken for each iteration. It can be seen that each parameter estimate (0.34696,
0.05728, 0.08981, 0.34202, 0.02039, 0.09714, 0.00461, 14.68639) converge within
very close proximity to the true parameters (0.38, 0.04, 0.082, 0.12, 0.021, 0.1,
0.005, 13.21). In Figure 5.7, I plot the fitted model trajectories of the 6 species
R,RL,G,Ga, Gbg, Gd using the estimates returned from one example run of the
SPICE algorithm where θ = (2.54, 0.0561, 0.0858, 0.198, 0.0210, 0.125, 0.00533,
17.0). The fitted models were produced by 1,000 SSA simulations. It can be seen
that the means (solid lines) and the standard deviations (ribbons) of the fitted
model closely match the 5 provided datasets. The species L is not plotted, as it
is conserved for all reactions.

In Table 5.6, I present the minimum, maximum, and average mean relative
errors (MRE) (%) between the estimated parameters and the true parameters
across 100 runs of each algorithm (in COPASI and SPICE). Also shown are the
averaged CPU run times. As is the case in the Lotka-Volterra predator prey model
(Section 5.3), it can be noted that the errors of the parameter estimates across
all algorithms varies greatly. Once again, SPICE provides the least-variance in
its obtained estimates. For parameters θ1, θ2, θ3, and θ8, the evolutionary strat-
egy (ES) provides the best estimates. For parameters θ4, θ5, θ6, and θ7, SPICE
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produces the most accurate estimates, with some errors less than 2% (for each
of θ5, θ6, θ7). In general, the genetic algorithm (GA), and the evolutionary pro-
gramming approaches (EP) perform poorly. The CPU times across all parameter
inference methods are very comparable at ∼ 20-30 minutes. In Figure 5.8 I
present box plots for the summary statistics of the first 4 kinetic rate parameter
estimates, θ1, θ2, θ3, θ4, across the 100 runs of each parameter inference method.
In Figure 5.9 I present box plots for the summary statistics of the remaining 4
kinetic rate parameter estimates, θ5, θ6, θ7, θ8. Once again, it can be seen that on
the whole, the majority of the parameters are well approximated by the inference
methods. As before, SPICE produces estimates with the lowest variance, and
greatest precision. The other best performing technique is again the evolutionary
strategy (ES). It should be noted that the scale of the y-axis is logarithmic, re-
vealing the vast discrepancy between estimates produced from the EP, GA, and
PS methods.

Finally, in Table 5.7, I present results for 100 runs of the alternative imple-
mentations of SPICE using (i) tau-leaping (ε = 0.1) vs. the direct method, (ii)
the multiple shooting approach, and (iii) the particle splitting approach. Unlike
the Lotka-Volterra model, the mean relative errors of the parameter estimates
(∼ 41%) for the Yeast Polarization model remain relatively unchanged regardless
of the heuristic approach taken. Interestingly, the best estimates were obtained
using tau-leaping in conjunction with the particle splitting method, again with a
reduction in CPU (single-core) time of ∼ 3×. However, it should noted that all
the parameter estimates are very close, and this could be down to chance, or bias
of the simulations.

The Yeast Polarization model was also studied in [26] — where the authors im-
plemented the MCEM2 algorithm, which combined a minimal cross-entropy step
with the well-known expectation-maximisation algorithm. MCEM2 is the routine
behind parameter inference within StochSS and StochKit [32]. Within [26], the
authors reported that the MCEM2 algorithm retrieved a MRE of 34.7% (based
on one run), after a simulation time of ∼ 30 days. SPICE, presented within this
thesis, achieved an average MRE of 43.3%, and overall minimum MRE of 27.6%
for the yeast model. The average computation time was ∼ 20 minutes. The dif-
ference in computation time, other than implementation-specific reasons, comes
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5. SPICE: EXPERIMENTAL RESULTS

down to the computational burden of the expectation-maximisation algorithm.
The EM algorithm requires heavy calculations of the systems likelihood, and also
requires more simulations to produce exact trajectories. SPICE on the other
hand circumvents the need to produce entirely consistent trajectories during its
search phase.
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Iteration θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7 θ̂8 Score γ̂n Samples
1 0.30980 0.05439 0.09814 0.70634 0.03037 0.05476 0.00342 11.13968 109463 10000
2 0.32035 0.05773 0.09870 0.60884 0.02109 0.06236 0.00372 10.98718 13338 10000
3 0.33282 0.06199 0.09537 0.50139 0.01927 0.06729 0.00378 10.56167 8141 10000
4 0.32444 0.06433 0.09389 0.47487 0.01922 0.07003 0.00383 10.67949 7039 10000
5 0.30990 0.06405 0.09236 0.44298 0.01932 0.07270 0.00387 10.67308 6560 10000
6 0.30119 0.06198 0.09217 0.42092 0.01943 0.07766 0.00402 10.95597 5984 10000
7 0.36016 0.06146 0.09185 0.40835 0.01927 0.08076 0.00408 11.29595 5670 10000
8 0.39162 0.05933 0.09205 0.39847 0.01939 0.08367 0.00416 11.79631 5208 10000
9 0.40393 0.05968 0.09171 0.38676 0.01964 0.08543 0.00419 11.86940 5153 17777
10 0.43008 0.05942 0.09147 0.38730 0.01982 0.08753 0.00429 12.49010 4889 17777
11 0.39261 0.05974 0.09108 0.37672 0.01989 0.08772 0.00434 12.75959 4699 17777
12 0.35909 0.05879 0.09026 0.36477 0.02001 0.08935 0.00439 13.13580 4839 17777
13 0.34793 0.05923 0.09086 0.36803 0.02009 0.09087 0.00444 13.53557 4587 17777
14 0.35902 0.05842 0.09063 0.36589 0.02012 0.09323 0.00446 13.89675 4541 17777
15 0.33620 0.05864 0.09064 0.36477 0.02023 0.09442 0.00455 14.24144 4616 20000
16 0.33728 0.05942 0.08930 0.34900 0.02031 0.09442 0.00457 14.68026 4425 20000
17 0.34696 0.05728 0.08981 0.34202 0.02039 0.09714 0.00461 14.68639 4700 20000
Real Val. 0.38 0.04 0.082 0.12 0.021 0.1 0.005 13.21

Table 5.5: Example output of a trace (.csv file) given for one run of SPICE on the Yeast Polarization model.
Displayed are the estimates of the parameters θ1, . . . , θ8 for each iteration, alongside the score function (relative to
the 5 datasets), and the number of samples taken at each iteration.
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Yeast Polarization Model

Alg. θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 Min. MRE Av. MRE Max. MRE Av. CPU

(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 662.9 138.4 1.7 235.4 1.7 25.3 3.4 357.0 56.2 178.2 316.9 405

ES 109.8 18.5 1.2 35.4 1.3 3.3 1.5 27.9 3.6 24.9 62.8 1650

GA 564.0 120.2 1.3 275.3 1.6 6.5 2.6 312.4 38.8 160.5 299.4 2696

PS 156.4 29.0 1.4 52.6 0.9 3.7 1.6 48.6 7.3 36.8 173.6 1755

SPICE 221.2 21.7 2.5 34.9 0.9 1.7 1.1 62.7 27.6 43.3 54.4 1116

Table 5.6: Yeast Polarization Model: Comparison of the relative errors of parameter estimates obtained using the
COPASI implemented parameter inference algorithms vs. SPICE. Each algorithm was ran 100 times using Gillespie’s
SSA for simulation. Documented are the minimum, average, and maximum mean relative errors (MRE) across all 8
parameters, alongside the average computation time. The selected algorithms are Evolutionary Programming (EP),
Evolution Strategy (ES), Genetic Algorithm (GA), and the Particle Swarm (PS).
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Yeast Polarization Model

Min. MRE Av. MRE Max. MRE Av. CPU

%ERR %ERR %ERR (s)

DM 27.6 43.3 54.4 1,116

DM + MS 28.1 41.9 51.3 1834

DM + SP 31.9 43.1 57.4 1183

Tau 31.2 41.5 56.3 303

Tau + MS 40.5 49.9 60.5 445

Tau + SP 25.7 41.0 47.7 330

Table 5.7: Yeast Polarization Model: The averaged mean relative errors (MRE)
for all 8 parameter estimates across 100 runs of the SPICE algorithm using the
multiple shooting (+MS), and particles splitting (+PS) routines. In addition,
the impact of using the direct method (DM) vs. tau-leaping (Tau), ε = 0.1, is
assessed.
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Figure 5.7: Yeast Polarization: The mean of the data (black markers) and the
respective standard deviations (ribbons) of the species R, RL, G, Ga, Gbg and Gd

are plotted alongside the mean and standard error of 1,000 SSA simulations (blue
lines and ribbons) performed using the parameter estimates from one run of the
standard SPICE algorithm with Gillespie’s direct method. The obtained param-
eters were θ = (2.54, 0.0561, 0.0858, 0.198, 0.0210, 0.125, 0.00533, 17.0). Species L
is always conserved, so it has not been plotted.
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(a) Boxplots of obtained estimates for θ1.
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(b) Boxplots of obtained estimates for θ2.
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(c) Boxplots of obtained estimates for θ3.
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(d) Boxplots of obtained estimates for θ4.

Figure 5.8: Boxplots comparing the distribution of parameter estimates for
θ1, θ2, θ3, θ4 obtained by SPICE vs. the COPASI parameter inference methods.
Each algorithm was ran 100 times using Gillespie’s SSA for simulation. The se-
lected algorithms are Evolutionary Programming (EP), Evolution Strategy (ES),
Genetic Algorithm (GA), and the Particle Swarm (PS). Outlier results are rep-
resented by pink markers.
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(b) Boxplots of obtained estimates for θ6.
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(c) Boxplots of obtained estimates for θ7.
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(d) Boxplots of obtained estimates for θ8.

Figure 5.9: Boxplots comparing the distribution of parameter estimates for
θ5, θ6, θ7, θ8 obtained by SPICE vs. the COPASI parameter inference methods.
Each algorithm was ran 100 times using Gillespie’s SSA for simulation. The se-
lected algorithms are Evolutionary Programming (EP), Evolution Strategy (ES),
Genetic Algorithm (GA), and the Particle Swarm (PS). Outlier results are rep-
resented by pink markers.
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5.5 Schlögl System

For the third case study, I implement the (reduced) Schlögl model [114] with
kinetic rate parameters (θ1, θ2, θ3, θ4) = (3e−7, 1e−4, 1e−3, 3.5), and the initial
population conditions (X,A,B) = (250, 1e5, 2e5). Stochastically, the model is
challenging and well studied due to its ability to produce bistable dynamics,
for example, as in Figure 5.10. The system is modelled by the following four
reactions:

2X + A
θ1−→ 3X B

θ3−→ X

3X
θ2−→ 2X + A X

θ4−→ B

To simplify the model, a common practice is to assume that the populations of the
species A and B remain fixed, acting as a non-depleting reservoir. For the purpose
of parameter inference, I artificially generate 10 synthetic datasets. The motiva-
tion behind using more datasets than the previous models (Sections 5.3 and 5.4)
is to partially capture a degree of the bistable dynamics. Each datasets consists
of 100 time-points, and the same 10 datasets were provided to all the algorithms
in COPASI, alongside SPICE. For the initial iteration, I placed bounds on the
parameter search space for all the methods of θ1∈[1e−9, 1e−5], θ2∈[1e−6, 0.01],
θ3∈[1e−5, 10], θ4∈[0.01, 100]. Unlike the previous case studies, I explicitly ran the
Schlögl System using tau-leaping for all inference algorithms, due to the computa-
tion time being largely infeasible under the same conditions — taking 4.5 hours
in SPICE, and 48+ hours in COPASI for just one run (with Gillespie’s direct
method). The reason for this is that the Schlögl system contains higher molec-
ular counts, and a dense number of reactions over the time course — negatively
impacting the simulation time with the direct method.

Firstly, in Table 5.8 I present the iteration-by-iteration breakdown (the out-
put of ‘trace.csv’ — see Section 3.6.1) of one run of the SPICE algorithm for
the Schlögl system model using tau-leaping with an error control parameter of
ε = 0.1 (in this case, using a starting number of 10,000 samples). The break-
down in Table 5.8 contains the values of each parameter estimate, θ1, θ2, θ3, θ4,
the cost function of the worst performing elite sample (γn), and the number
of samples taken for each iteration. It can be seen that the returned parame-
ter estimates are worse than in Sections 5.3 and 5.4, but of the right order of
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Figure 5.10: Schlögl: From the left: Solid black lines: the 10 datasets generated
using the SSA direct method and the real parameters, and used as input for
SPICE. Blue lines: 100 model runs with estimated parameters sampled by the
final parameter distributions obtained by SPICE using Gillespie’s direct method.
The parameters means were (2.14e−7, 7.63e−5, 4.54e−4, 2.18); and the variances
were (7.81e−16, 2.81e−10, 4.05e−8, 0.13). Fitted: empirical distribution of 1,000
model simulations with sampled parameters from SPICE output. Real distribu-
tion: empirical distribution of 1,000 model simulations with the real parameters.

magnitude. In Figure 5.10, I plot the fitted model trajectories of the species X
using the estimates returned from one example run of the SPICE algorithm where
(2.14e−7, 7.63e−5, 4.54e−4, 2.18). Also plotted are the individual datasets (black
lines), and histograms representing the empirical distribution of X at t=10s (gen-
erated by producing 1,000 additional datasets). Figure 5.10 shows that SPICE
finds estimates which are able to reproduce the bimodal behaviour of the system
to a very good degree — considering the limitations of the snapshot time-series
data. In Table 5.9, I present the minimum, maximum, and average mean
relative errors (MRE) (%) between the estimated parameters and the true pa-
rameters across 100 runs of each algorithm (in COPASI and SPICE), alongside
the averaged (single-core) CPU run times. The mean relative errors are across all
parameter inference methods are fairly good, with SPICE and the evolutionary
strategy (ES) once again coming out on top. For θ1, θ2, θ3, the estimates of the
kinetic rate parameters obtained by SPICE have an error of less than 15% (less
than 20% for the ES). The CPU times are comparable, with SPICE taken ∼
20 minutes, the ES taking ∼ 30 minutes. The evolutionary programming (EP)
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Iteration θ̂1 θ̂2 θ̂3 θ̂4 Score γ̂n Samples
1 0.000000071 0.0000670 0.000493 0.42 64593314 10000
2 0.000000083 0.0000434 0.000511 0.82 52834621 10000
3 0.000000111 0.0000366 0.000388 1.19 31660966 10000
4 0.000000104 0.0000295 0.000333 1.18 28341940 10000
5 0.000000125 0.0000381 0.000258 1.32 15650099 10000
6 0.000000146 0.0000480 0.000242 1.49 13781427 10000
7 0.000000153 0.0000539 0.000213 1.50 9446324 10000
8 0.000000155 0.0000539 0.000220 1.50 7619867 10000
9 0.000000157 0.0000557 0.000239 1.52 7296086 10000
10 0.000000162 0.0000574 0.000211 1.53 6704515 10000
11 0.000000158 0.0000570 0.000194 1.49 6383915 10000
12 0.000000161 0.0000576 0.000182 1.50 6651584 10000
13 0.000000159 0.0000572 0.000171 1.47 6368436 17770
14 0.000000156 0.0000559 0.000154 1.45 6094335 17770
15 0.000000154 0.0000552 0.000163 1.42 5952402 17770
16 0.000000156 0.0000568 0.000138 1.42 5766036 17770
17 0.000000155 0.0000559 0.000129 1.42 5732842 17770
18 0.000000160 0.0000575 0.000145 1.46 5634765 17770
19 0.000000160 0.0000575 0.000145 1.46 5646560 20000
20 0.000000161 0.0000580 0.000146 1.46 5526336 20000
21 0.000000162 0.0000581 0.000171 1.48 5471566 20000
22 0.000000162 0.0000581 0.000180 1.50 5471514 20000
23 0.000000164 0.0000595 0.000179 1.50 5415429 20000
24 0.000000169 0.0000613 0.000183 1.56 5225612 20000
25 0.000000169 0.0000613 0.000183 1.56 5466029 20000
Real Val. .0000003 0.0001 0.001 3.5

Table 5.8: Example output of a trace (.csv file) given for one run of SPICE on the
Schlögl system model. Displayed are the estimates of the parameters θ1, θ2, θ3, θ4
for each iteration, alongside the score function (relative to the 10 datasets), and
the number of samples taken at each iteration.
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approach has the fastest computations at just under 10 minutes.
In Figure 5.11, I present the box plots summarising the distribution statistics

of the parameter estimates obtained over the 100 runs of each of the inference
algorithms. Once again, SPICE has the most precise estimates with small vari-
ances, and only SPICE and the ES approach produce satisfactory estimates on
average. The EP, GA, and PS approaches produce estimates which span over
several orders of magnitude.

In addition, it is well known that the Schlögl system dynamics are very sensi-
tive to the initial conditions — where even slight perturbations of its parameters
can cause the system to fail in producing bimodality. In Figure 5.12, I provide
fitted model distributions using the best obtained parameter estimates from each
inference algorithm. Interestingly, only SPICE, the ES and PS approaches are
able to recover the bimodal dynamics. Furthermore, it is clear that SPICE does
the best job at reconstructing the real data distribution.
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Schlögl System Model

Alg. θ1 θ2 θ3 θ4 Min. MRE Av. MRE Max. MRE Av. CPU

(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 12.2 9.7 15.1 142.9 24.4 45.0 60.5 307

ES 3.3 15.5 19.0 40.3 11.5 19.3 31.7 1505

GA 13.7 11.0 14.0 159.7 32.2 49.6 66.3 987

PS 12.0 8.5 11.4 141.4 18.7 43.3 60.0 1095

SPICE 4.6 14.6 6.3 73.0 18.5 24.6 30.9 1054

Table 5.9: Schlögl System Model: Comparison of the relative errors of parameter estimates obtained using the
COPASI implemented parameter inference algorithms vs. SPICE. Each algorithm was ran 100 times using Tau-
leaping (ε = 0.1) for simulation. Documented are the minimum, average, and maximum mean relative errors
(MRE) across all 4 parameters, alongside the average computation time. The selected algorithms are Evolutionary
Programming (EP), Evolution Strategy (ES), Genetic Algorithm (GA), and the Particle Swarm (PS).
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(a) Boxplots of obtained estimates for θ1.
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(b) Boxplots of obtained estimates for θ2.
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(c) Boxplots of obtained estimates for θ3.
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(d) Boxplots of obtained estimates for θ4.

Figure 5.11: Schlögl System parameter estimates: box plots comparing the pa-
rameter estimates across 100 runs of COPASI’s methods and SPICE (all simu-
lated using tau-leaping, ε = 0.1). Again, SPICE shows the smallest variance,
with mean estimates quite close to the real values of θ1 and θ3. For θ2 and θ4, all
the best mean estimates have variance much larger than SPICE estimates.

110



Real Distribution

EP Fitted

ES Fitted

GA Fitted

PS Fitted

0 200 400 600 800
X molecules

SPICE Fitted

Figure 5.12: Model distribution fits for the Schlögl system. Each of the above
distributions are reconstructed by using the best-fit parameters obtained from
each parameter inference routine. Simulations for model reconstruction (post-
inference) were conducted using Gillespie’s SSA. The real data distribution is
plotted on top. The selected algorithms are Evolutionary Programming (EP),
Evolution Strategy (ES), Genetic Algorithm (GA), and the Particle Swarm (PS).
SPICE is the stochastic parameter inference using the Cross-Entropy method
presented within this thesis.
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5.6 Toggle Switch Model

The final case study is a Genetic Toggle Switch model. The genetic toggle switch
is a well studied bistable system, with particular importance toward synthetic
biology. The toggle switch is comprised of two repressors, and two promoters,
often mediated in practice through IPTG1 and aTc2 induction. For this model, I
perform parameter inference based on real high-throughput data (see Fig. 5.13).
The implemented model was based on an extension of the model proposed in
[39]. Explicitly, I define the genetic toggle switch model via the following four
propensity functions:

h1 = θ1 ·GFP h3 = θ3 ·mCherry

h2 =
θ2 · φ1

1 + φ1 + φ2 ·mCherry2 h4 =
θ4 · φ3

1 + φ3 + φ4 ·GFP2

where GFP and mCherry are the two model species (fluorescent reporter molecules),
and the stochastic kinetic rate parameters are represented by (θ1, . . . , θ4). The
data used for parameter inference was obtained using fluorescent flow cytometry
in [79]. The dataset, comprising the GFP and mCherry reporters, consists of
a total of 40,731 measurements across 7 time-points. I specifically investigate
the case where the genetic toggle switch starts in the low-GFP (high mCherry)
state, and switches to the high-GFP (low-mCherry) state over the time course of
6 hours after aTc induction to the cells.

The inclusion of real, noisy data requires a degree of additional care. Firstly,
the data needs to be rescaled from arbitrary fluorescent units (a.u.) to discrete
molecular counts. To do this, I assume a linear multiplicative scale, e.g., such
that GFP (a.u.) = n×GFP molecules. I make the simplifying assumption that
each molecule contributes evenly to the total fluorescence values. Furthermore, I
no longer assume that all the cells begin at the same initial starting conditions.
Specifically, I model the initial states of GFP and mCherry according to the log-
normal distribution, with mean and variance parameters to be simultaneously
estimated alongside the kinetic rate constants. This introduces extra so-called
‘hyperparameters’, specifically the GFP molecule count to fluorescent (a.u.) scale

1Isopropyl β-D-1-thiogalactopyranoside
2anhydrotetracycline
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factor φ5, and the respective mCherry scale factor φ6. In addition, the model
now contains 4 additional (non-kinetic rate) parameters, φ1, . . . , φ4, which in
turn are required to be estimated. Each hyperparameter is initially sampled as
before using the low-discrepancy Sobol sequence, and then from the log-normal
distribution using the means and variances of the generated elite samples (as per
the generic Cross-Entropy method for optimisation in Algorithm 2).

The placed bounds on the initial kinetic parameter search space were θ1,3∈[1, 50],
and θ2,4∈[1e−3, 1]. The respective bounds on the search space for the hyperpa-
rameters were φ1,2,3,4∈[1e− 3, 10], and φ5,6∈[50, 500]. To generate the parameter
estimates, I used SPICE with the tau-leaping approach (ε = 0.1). The total
CPU time taken was 4,293s. The resulting fitted model against the data for pa-
rameters sampled from SPICE’s output distribution can be seen in Figure 5.13.
The obtained parameter estimates are given in Table 5.10. Figure 5.13 reveals
that SPICE does an excellent job at fitting the initial GFP-mCherry distribution
(at time t=0.5hr). Despite the noise within the data, SPICE generally does a
good job at reconstructing the overall dynamics of the system — with all simu-
lation points over the time course lying within the data being fitted. The final
steady-state distribution is very well-approximated.

For the genetic toggle switch model, I did not make direct comparisons with
COPASI. Firstly, the real parameter estimates are unknown. Secondly, COPASI
exists within a modelling ecosystem that cannot be easily customised to deal with
the additional hyperparameters, such as the fluorescence scaling. Additionlly,
the way datasets are passed to COPASI meant the use of real experimental data
(without tedious processing) was unviable.
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Figure 5.13: Toggle Switch Model: Blue circles: the experimental data with the
log10(GFP) fluorescence plotted against the log10(mCherry) fluorescence, across
all timepoints up to 6hr. Orange circles: 1,000 model simulations using the direct
method, with parameters sampled from the final distribution obtained by SPICE
using tau-leaping (ε = 0.1).
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Est. Rate Parameters θ̂1 θ̂2 θ̂3 θ̂4
mean-log 4.22 0.46 3.16 0.44
var-log 0.077 0.081 0.19 0.0027

Est. Hyperparameters φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6

mean-log 16.5 -5.42 7.72 -2.74 6.04 4.48
var-log 2.81 1.60 1.84 0.77 0.042 0.10

Table 5.10: Estimated parameters for the Genetic Toggle Switch model, obtained
from real experimental data. Presented are the means and variances of the log-
transformed parameters. No error estimates are provided as the true identity of
the parameters is unknown.

115



5. SPICE: EXPERIMENTAL RESULTS

116



Chapter 6

Conclusions

6.1 Summary

Computational systems biology is one of the most rapidly developing fields of
research over the last two decades [72]. The emergence of DNA sequencing, an-
notation, and advances in cell technologies such as microscopy, and fluorescent
flow cytometry, are providing greater insights into the underlying biochemical
mechanisms upon which important biological processes are built. Understand-
ing how these processes operate and fit together is important to achieving the
goals of synthetic biology which aims to engineer organisms capable of satis-
fying their respective model design requirements [39, 56]. Biological processes
are often non-linear in behaviour, making computational modelling an efficient
and crucial component to the understanding, analysis, and design of the system.
The generation of reliable and accurate models is therefore required — making
it necessary to use and investigate parameter inference techniques for stochastic
biological systems. Parameter inference is the field concerned with using data to
find parameters for which a model is valid.

This thesis was focused on the problem of parameter estimation, with the
specific research aim to

investigate novel computational approaches to parameter inference for stochastic
biological models.
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6.2 Evaluation of Research Aims

In this thesis I presented my work on parameter inference for stochastic biolog-
ical models. I have presented contributions theoretically, and applied them to
numerous case studies to show applicability to realistic problems, addressing the
needs of systems biology. A summary of key contributions is given below.

Chapter 2 features the mathematical framework for describing stochastic bio-
chemical reaction networks. Within this chapter, I present the chemical master
equation, which describes the temporal evolution of the underlying probability
distribution of the system. I also present the two commonly used methods to
sample solutions from the CME: (i) Gillespie’s stochastic simulation algorithm,
and (ii) the (optimised) tau-leaping algorithm. I also present useful theory toward
parameter inference regarding the complete-data likelihood of SSA trajectories.

Chapter 3 presents the application of the Cross-Entropy method toward global
optimisation problems. Investigating the novel use of Cross-Entropy method was
one of the main goals of this thesis toward addressing the problem of param-
eter estimation for stochastic biological models. Within this chapter, I apply
the Cross-Entropy method for parameter inference within stochastic chemical
reaction networks, deriving unseen solutions for the optimal kinetic rate param-
eters given the underlying distribution of either Gillespie’s stochastic simulation
algorithm, or the tau-leaping algorithm. I then present SPICE, the stochastic
parameter inference using the Cross-Entropy algorithm. Within the SPICE al-
gorithm, I implement various heuristics that can be used for inference, such as
low-discrepancy Sobol sequencing, and adaptive sampling which aim to optimise
convergence. These heuristic methods introduce additional hyperparameters. For
the context of this thesis, I chose nominal hyperparameter values within ranges
given by previous literature. However, it is anticipated that future research should
optimise these values. I also demonstrate the multiple shooting approach (pre-
viously used for ODE systems), and particle splitting approaches that can be
used alongside the inference routine. I remark that the use of particle splitting
can draw comparisons between SPICE and ABC-SMC approaches. Both SPICE
and ABC-SMC are able to improve the speed of convergence by sampling with
replacement those simulations (or trajectories) that are performing well based on
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the objective function, whilst discarding those performing poorly. The difference
is that while Bayesian approaches use acceptance-rejection criterion to formulate
an empirical distribution for the parameters, SPICE updates the underlying pa-
rameters of the posterior distribution of known form. As a consequence, Bayesian
methods may be better suited to estimating parameters whose distribution shape
is awkward or multi-modal, while the Cross-Entropy approach can be applied to
any well known statistical distribution.

The Cross-Entropy method presented in this thesis relies on stochastic simu-
lations which are known to be computationally expensive. With this in mind, I
decided to investigate the use of moment approximations to further address the
research question. Moment approximations are ODE systems derived from the
chemical master equation that try to recreate the mean, variance, and higher
order moments of stochastic models. Because ODEs are quick and efficiently
evaluated, the method of moments for parameter inference promises speed gains
over other CTMC simulation approaches. Chapter 4 presents the theory of mo-
ment approximations for stochastic biological networks, outlining the standard
moment closure approximations. In this section, I provide comments and new in-
sight on the validity of the moment approximations. In particular, I address the
use of Taylor series within moment approximations, and propose a new method
based on constructing Padé approximants. Padé approximants rational approxi-
mations of a given function, but can often converge in a radius far beyond their
Taylor series counterparts. In this thesis I demonstrate the Padé approxima-
tion in one-dimension, laying the grounds for future research into multivariate
approximations for stochastic biological models.

To further address the research aims, in Section 4.6 I propose an approach
for parameter inference that combines the generalised method of moments with
recent advances in multi-level simulation techniques. The use of the multi-level
tau-leaping algorithm aims to provide a stochastic correction to parameter es-
timates retrieved from using robust method of moment approximations. Whist
preliminary results show the proposed approach can be very accurate, it was of-
ten found that the method of moments was often sufficient enough to produce
reasonable parameter estimates. Furthermore, the time spent in the multi-level
method phase was significantly greater than that in the moment approximation
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phase, raising questions on the overall benefits of the approach compared to di-
rect simulation. This may in part be due to poor optimisation of the introduced
hyperparameters within the presented MLGMM algorithm. Specifically, deciding
the number of simulations to take at each level of the multi-level approach is not
a straightforward problem that can be easily generalised across all models.

In Chapter 5 I provide results and analysis for the implementation of SPICE
for various challenging case studies. Specifically, I performed parameter esti-
mation for the Lotka-Voltera model, the Yeast Polarization model, the Schlögl
system, and a Genetic Toggle Switch model using real experimental data. Within
Chapter 5 I also provide comparisons between SPICE and commonly used pa-
rameter inference routines within the modelling environment COPASI. It was
shown that SPICE can produce parameter estimates on par, and better to ex-
isting state-of-the-art approaches, given the same amount of computation time.
Additionally, the presented SPICE algorithm is able to significantly outperform
its EM-algorithm cousins, such as MCEM2 [26], in terms of computation time
[101]. However, SPICE’s reliance on direct simulation means that newer infer-
ence methods based on the method of moments are able to outperform SPICE in
terms of computational speed. Finally, it was shown that SPICE is able to han-
dle unobserved data scenarios, alongside noisy experimental data in the Toggle
Switch example which required additional hyperparameters to be optimised.

6.3 Limitations and Scalability

Stochastic Simulation In Chapter 3 I presented SPICE — Stochastic Param-
eter Inference using the Cross-Entropy — an algorithm that can be used for esti-
mating parameters for stochastic chemical reaction networks. The method com-
bines Gillespie’s stochastic simulation algorithm with the Cross-Entropy method
for optimisation. Gillespie’s SSA is used to sample exact trajectories of the chem-
ical master equation and provides the highest level of accuracy beyond solving
the equation directly, which is often infeasible. Unfortunately, it is computational
intensive as it tracks the numbers of each species over the complete time course,
performing propensity calculations after every reaction firing. This means that
inference can become very slow, especially when models are large and dense. This
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could be problematic as research time schedules are often limited. In the field of
synthetic biology, it could be anticipated that quick parameter estimation across
multiple models may be vital to an efficient design work-flow, or real-time experi-
mental feedback. This motivated the choice to investigate the use of tau-leaping,
and to derive its Cross-Entropy method solution. It was shown in Chapter 5 that
the use of tau-leaping can achieve significant gains in computation speed, while
remaining just as accurate. However, tau-leaping can still be computationally
slow. Furthermore, the models used in this thesis generally not very large —
either in the numbers of species involved, or the number of reaction types avail-
able to the system. These models are, however, the standard models that are
frequently analysed within the field — a fact that motivated their choice. The
criticism of the models thus applies to the wider field of parameter inference for
stochastic chemical reaction networks. For parameter inference, it would be ben-
eficial to introduce larger standard models to test SPICE and other algorithms
upon.

One-Dimensional Padé Approximations Within Section 4.4 I motivated
and demonstrated the use of Padé approximations as an alternative to the Taylor
series for moment expansions. The Padé approximant aims to provide a rational
approximation of a function using the original terms of the Taylor series. It was
shown (Figure 4.2: the one-dimensional Schlögl system) that the Padé approxima-
tion can avoid non-feasible solutions obtained when using normal moment closure
approaches, and could improve the accuracy (for both the mean and variance)
of the resulting simulations. However, the methods presented within Section 4.4
do not immediately transition well to multivariate settings. Specifically, using
the matrix operations given by Equations (4.4.2) and (4.4.3) will yield uniquely
determinable Padé coefficients for the univariate case — whilst this is not true for
the multivariate scenario. Firstly, for the multivariate case, the number of linear
equations is often not sufficient to constrain the solution of the coefficients. Sec-
ondly, the multivariate Padé approximations can sometimes have poles near the
point of expansion. The presence of poles can make the application of the multi-
variate Padé approximation to a modelled system difficult, or invalid. Thus, the
method presented within this thesis is at present limited to the one-dimensional
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case. Unfortunately, the majority of biological systems require more than one
variable to be modelled usefully. However, the work in this thesis is important
in sowing the seed for future research, and acts as a natural step toward the
construction of alternative moment closure techniques. In Section 6.4.2, I outline
possible research starting points to overcome these difficulties.

6.4 Future Work

Different future research steps can be taken based on the work presented within
this thesis. In the following subsections, I present guidance for future research
directions.

6.4.1 Cross-Entropy Method

In Chapter 3 I introduced the Cross-Entropy method for parameter inference
within stochastic biological models. As discussed within Section 6.3, one key
limitation of the Cross-Entropy approach presented within this thesis is the poor
scaling (in terms of computational time) to larger models. This is due to the
vast number of calculations required by Gillespie’s stochastic simulation algo-
rithm [44]. To partially address this, I provided motivation for the use of the
stochastic tau-leaping simulation algorithm [21] in conjunction with the Cross-
Entropy method, and derived its solution in Section 3.4. For SPICE, the results
shown in Chapter 5 reveal that the use of tau-leaping can yield parameter esti-
mates within error of those derived from using Gillespie’s exact algorithm, but
in a fraction of the time — with the greatest time saving in the Schlögl system
model where the number of reactions is the greatest. However, to address the
goals of systems biology — one of which is to construct complete mechanistic
‘whole cell’ models — larger models will inevitably become available in future.
For these large models the time savings gained from using tau-leaping may not
be sufficient enough. This motivates the search for alternative stochastic simu-
lation techniques that are not only accurate, but fast, and compatible with the
general Cross-Entropy approach. One such recent technique that is not yet well
known is that of δ-leaping [104]. δ-leaping is aimed at improving the efficiency of
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stochastic simulations of large chemical reaction networks. The technique models
the biological system using Petri nets, and applies discrete time leaps in a similar
manner to tau-leaping, generating reactions according to a maximum firing rule.
Furthermore, evidence suggests that the method scales much better in terms of
computational time than both Gillespie’s SSA and tau-leaping [104]. Given the
dependence of the discrete time steps and reaction firings on the hazard function
(or propensity), and convenient CTMC form of the simulation, it could be well
suited for parameter inference using the Cross-Entropy method approach, and
SPICE.

6.4.2 Multivariate Padé Approximations

Within Section 4.4 I introduced the Padé approximation method for moment
expansions. The Padé approximant provides the best possible rational approx-
imation of a function, and is easily derived from the numerical terms of the
original Taylor series that it replaces. For the case of a one-dimensional, univari-
ate system, the coefficients within the numerator and denominator of the Padé
approximant are uniquely determinable. However, as stated in Section 6.3, this
is not necessarily true in the multivariate case. More explicitly, there does not
exist a formula that can always derive the correct number of linear equations to
determine the coefficients. However, there have been many efforts within com-
putational and applied mathematics to provide a generalization of multivariate
Padé approximations that are able to yield good convergence properties [49]. In
particular, my suggestion would be to use a generalisation of Wynn’s ε-algorithm
[131] based on the work of Cuyt [25]. Within Cuyt’s work, the links between the
terms of Wynn’s ε-algorithm are shown to coincide with certain degree orders of
the Padé approximants, with extension to multivariate examples.

Importantly, the use of the Padé approximations within moment closure ex-
pansions can extend well beyond the scope of biological modelling, as it can be
applied to a multitude of domains. For example, econometric models often use
moment approximations to analyse trends, risks, and make predictions based on
time series data.
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