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Abstract 

The integration of passive components such as inductors and capacitors has gained significant 

popularity in integrated drive research, and future power electronics systems will require more 

integrated and standardised packages. These give rise to better power density and improved 

performance. However, packaging techniques and passive components have been considered a 

technological barrier which is limiting advances in power electronics. The focus on size 

reduction should be turned towards the passive components, such as converter chokes, DC-link 

capacitors and electromagnetic interference (EMI) filters, and achieving greater power density 

depends on innovative integration concepts, flexibility in structures and extended operating 

temperature ranges while system integration and modularity are not mutually exclusive. 

This research considers the possibility of integrating input power filter components into electric 

machines. Particular attention is paid to the integration of electromagnetic line filter inductors 

to give better utilisation of the motor volume and envelope. This can be achieved by sharing 

the machine’s magnetic circuit. An LCL line filter has been chosen to be integrated with a grid-

connected permanent magnet synchronous machine. Machines have been proposed in this study 

for low speed (3000 RPM) and high speed (25000 RPM) operation. The two machines have 

similar dimensions, but the low-speed machine is less challenging in terms of losses and filter 

integration, so attention is directed more to the high-speed machine. Both are supplied with 

low- and high-power drives at power ratings of 4.5 kW and 38 kW respectively.  

Several novel techniques have been investigated to integrate filter inductors into the electrical 

machines to produce a single mechanically packaged unit without significant increases in size 

and losses. Different approaches have been simulated using finite element analysis (FEA) to 

assess the effectiveness of the integration of passives within the machine structure. Each design 

has been iteratively optimised to determine the best mass of copper and core for the integrated 

filter inductors, targeting parity in power density when compared to traditional separate 

packages. The research demonstrates that an approach utilising a double-slot stator machine 

(named the integrated double slot (IDS) machine) with input filters wound into the outermost 

slots is the most appropriate choice in terms of achieving higher power density. 

The integrated filter inductors mimic the electromagnetic behaviour of the discrete industrially 

packaged inductors but with a volume reduction of 87.6%. A prototype of the IDS machine 

design of a 38 kW, 25000 RPM, including filter inductors was manufactured and tested.  
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CHAPTER 1  

INTRODUCTION 

This research forms part of the integrated drives work package of the drive themes of the 

‘Underpinning Power Electronics (UPE) project’, which is a programme managed by the 

Engineering and Physical Sciences Research Council (EPSRC). The project focuses on 

enhancing the functionality of integrated approach to produce a single packaged unit with high 

power density, composed of a power electronics converter and controller, passive components 

(i.e. inductors and capacitors) and an electrical machine. This type of compact system is named 

an Integrated Motor Drive (IMD). As an IMD is a combination of different components 

requiring a multidisciplinary approach, the consortium consists of five UK universities searching 

different aspects to further improve the capability of high power density. In particular, 

Newcastle University focuses on structural integration, which in turn incorporates input filter 

components within a structure of an electrical machine and mainly focused on electromagnetic 

filter components without significant increases in size and losses. 

Miniaturisation and system integration in electric drives are mainly required for applications 

with limited installation space, such as in the automotive, aerospace and robotic fields. In view 

of a further reduction of costs and volume of the integrated system, the development of 

standardised power electronics and passive components merged with their mechanical 

environments is used [1]. An integrated drive may be considered to be a full mechanical 

integration of the base machine and electric drive components, including passive components, 

into a single package. This approach is important for applications when the motor and load are 

intimately connected to each other. 

The integrated approach aims to increase the performance of integrated systems and their 

reliability and manufacturability. It has been established that industrial sectors require 

improvements in the components of semiconductor devices [2, 3]. The future of power 

electronics essentially relies upon the use of integrated and standardised packages. These give 

rise to better power density and improved performance. However, packaging techniques and 

passive components have been considered a technological barrier which is limiting advances in 

power electronics [3, 4].  
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 Thesis overview 

In this thesis, various integrated motor drives (IMD) are described, with each packaged in a 

single unit which consists of a power electronics converter, power electronics controller, 

passive components (i.e. inductors and capacitors), an electrical machine and voltage and 

current sensing. From chapter four onward the thesis focuses solely on the integration of AC 

filter inductors located between the utility grid and active rectifier converter (grid-connected 

drives). To investigate the impact of drive power rating on the integration of passives, two 

similar base machines have been designed with low- and high-power ratings related to their 

base speeds. These two machines were taken as foundation motors for the purpose of integrating 

passive components into the low- and high-power machines which they described as follows: 

 Low-speed surface-mounted permanent magnet (PM) motor (3000 RPM / 4.1 kW). 

 High-speed surface-mounted PM motor (25000 RPM / 34 kW). This motor has been 

considered as a baseline with the low-speed machine for comparison. The final 

integrated high-speed motor, including passive filter components, has been built and 

tested where it is discussed in chapters five, six and seven. 

The structure of the thesis is as follows: 

 Chapter 1 introduces the concept behind integrated motor drives (IMDs) associated 

with passive components and discusses the varying size of filter inductors with drives 

of different power ratings. This leads to a description of the core of this research, which 

concerns integrating filter components into electrical machines. Some relevant technical 

examples are given of integrated filter inductors and capacitors within the structure of 

electrical motors. 

 Chapter 2 describes the different types of conventional input power filters and 

analytical approaches used to determine the parameters of different filter types. The 

most appropriate filter type is selected for the chosen drive systems. 2D FE models of 

the discrete low- and high-power inductors have been built and simulated. The optimal 

total volume achieved for the two sets of inductors was obtained via a simple iterative 

process. For the purpose of comparison, commercial industrial filter inductors are 

manufactured, which correspond to those of the chosen type of filter for the 38 kW 

drive. 

 Chapter 3 describes the design processes for the low- and high-speed machines which 

are identical but operate at different shaft speeds of 3000 RPM and 25000 RPM 
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respectively. The selection of advanced materials with different manufacturing 

techniques are discussed in order to achieve high power density and to enhance machine 

performance.  

 Chapters 4 describes the research and development of the integration of filter inductors 

surrounding the low- and high-speed machines. Different integration methods are 

investigated in order to examine the effectiveness of integrating filter inductors into the 

proposed machines. Finally, the high-speed specification drive is developed into a 

working demonstrator. 

 Chapter 5 presents the manufacturing processes utilised for the integrated machine 

demonstrator, including passive filter components.  

 Chapter 6 presents and discusses the experiments conducted and the test results for the 

integrated machine demonstrator. 

 Chapter 7 provides the overall conclusions of the study and possible avenues for future 

work. 
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 Objectives and contribution 

The work presented in this thesis focuses on the integration of input filters for AC grid 

connected integrated drives with a specific focus on the magnetic components.  

The objectives of the work are; 

 To investigate input filter topologies for grid-connected drives 

 To benchmark a traditionally constructed drive and filter arrangement 

 To design low- and high-speed machines (taken as base machines for the work) where 

the underlying machines have similar dimensions, but operate at two different rated 

speeds. 

 To examine various methods of integration of the magnetic components of the input 

filter and propose solutions which improve power density and minimise the envelope 

 To understand the impact of drive power and shaft speed on the relative size of the 

impact filter and electric machine and recognise the design implications for integrated 

drives 

 To design, simulate, build, test and evaluate an integrated filter demonstrator to be 

included in a fully functional integrated drive (other drive aspects such as the power 

electronic converter are beyond the scope of this thesis).  

The contributions to previously unpublished knowledge contained within this work are 

summarised as 

 Incorporation of three phase AC input filter inductors into a high-speed high power PM 

electrical machine to compose a single drive unit 

 Significant volume reduction in the integrated filter inductors compared to traditional 

industrial inductors of the same power rating 

 Validation of various integration methods of filter inductors into a base machine with 

different levels of drive power ratings 

 Suitability and determination of 3-phase filter winding configuration with respect to 

machine winding configuration to avoid magnetic coupling between filter to filter and 

filter to machine windings in which all share the same magnetic circuit 

 Electromagnetically compatible high frequency end windings management and the 

design of a power circuit embedded into the machine housing 
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 Motivation 

The chief motivation of this research is to reduce the size of essential input filters in high-speed 

drives, where the overall size of these filters would otherwise be larger than the machine itself. 

This must be achieved without affecting the base machine performance. 

In order to meet this requirement, a bespoke, integrated, high-performance machine has to be 

thoroughly researched and prototyped. The desired shaft speed of the base machine and its full 

torque capability across the speed range are chosen to be 25,000 RPM and 13 Nm respectively, 

delivering 34 kW at full speed.  

As can be noted from literature, this is the first time that the six, 3-phase inductors of an LCL 

input filter have been designed to share the machine’s magnetic circuit, producing a new 

topology of integrated machine. This type of passive integration into a machine is named an 

Integrated High Speed Double Slot (IHSDS) machine. The required performance specifications 

and the constraints of different winding arrangements present a challenging combination that 

has not yet been tackled in published literature. One of the key design factors is that the 

integrated AC filter inductors should share the machine cooling system, and this will help in 

the concept of compact systems in terms of further reductions in volume. This research into 

integrated passive components explores the capability of several integration techniques to be 

used for the construction of the IHSDS machine. Furthermore, this approach enhances the 

development of standardised filter inductors for use for future product requirements. 
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 The advantages of packaging of electric motors 

The vast majority of adjustable speed drives (ASDs) treat the various subsystems of the drive 

(electric machine, power electronics, passive converters etc.) as mechanically isolated entities. 

As a result of this, the power electronics converter and the motor are commonly packaged and 

installed separately. Machine drives can be categorised according to their power source: DC or 

AC grid-connected. In this research, a grid-connected AC power source is used. A conventional 

grid-connected power drive consists of several separate components such as an input power 

filter, rectifier, DC-link capacitor and an inverter (more details are in section 1.5.1). It is 

common practice for all of the drive components to be located in a standardised cabinet. Figure 

1-1 shows an example of a conventional cabinet of a variable frequency drive with an electrical 

machine and associated hardware.  

As ASD technology has matured, the trend has been towards the greater mechanical and 

functional integration of the various subsystems [3]. Vas and Drury in 1996 expected in the 

future that the power electronics and the motor would be integrated as a single packaged 

electronic motor unit [5]. 

The structural integration of all IMDs requires vigilant mechanical and thermal analysis of the 

machine and converter components collectively as a single unit. This packaged approach offers 

many advantages, as listed below [4, 6, 7]. 

 Volume/mass reduction over traditional, separately constructed systems resulting in an 

increased power density 

 Possible EMC reduction/elimination due to the reduced length of cable transferring HF 

power  

 Reduction in cooling system requirements incorporating a shared cooling system which 

also increases power density 

 The ability to replace direct on-line machines with variable speed machines within the 

same package size  

 Reduced installation time and cost due to single package construction 

However, there are some challenges with such these compact systems, for example, advanced 

thermal techniques are needed for the integrated single package unit so as to avoid excessive 

heat which might damage the whole system. The effect of parasitic capacitance should be 

avoided between integrated components in high frequency applications.  
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Figure 1-1 Standard cabinet of a variable speed drive with rated current 25 A 

However, the most serious barriers for integrated systems are packaging, system integration 

issues, thermal management and the lack of standardisation of power electronics devices. This 

results in a need for better integrated system and design tools [3, 8]. 

In order to realise these advantages, physical integration of the various structural and functional 

components of an electric drive should be further investigated. 

Power electronic 

devices 

Filter inductors 

Motor 
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1.5.1 Input power filters and associated IMDs 

Grid-connected drives are regulated by grid codes [9] which dictate the levels of total harmonic 

distortion (THD), power factor and sag sensitivity which the drives produce. In active power 

converters, supply current filtering is achieved using input filters which are responsible for 

reducing switching frequency ripple and suppressing voltage transients [2]. If unfiltered these 

converters would inject harmonic current distortions onto the supply current and hence input 

AC filters are used to mitigate these harmonics [2, 10]. Thus, an AC current filter is necessary 

for grid-connected, three-phase active rectifiers supplying ASDs. 

In the most basic case, the DC-link inductor is replaced with 3-phase AC inductors at the input 

of a front-end active rectifier. However, large iron chokes are needed to improve the interaction 

between the utility grid and active converters [11-13]. A general schematic is presented in figure 

1-2 to illustrate the power flow between the grid and an electrical machine via 4-quadrant 

drives. This diagrammatic presentation shows the location of input AC power filters and their 

function as an interface between the utility grid and a front-end active rectifier, which is part of 

the electric drive. 

 

Figure 1-2 Location of 3-phase input filters as an interface between a grid and ASDs system 

The block highlighted in figure 1-2 represents the 3-phase AC input filter which is the main 

target of this research for incorporation into an electrical machine.  

The input inductor is simply a passive two-terminal electrical component which acts as a high 

impedance to any load harmonics. Current harmonics are therefore attenuated to a level which 

is required by the regulations.  

The voltage at the terminals of the inductor is related to the current flowing as shown below:  
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𝑉𝐿 = 
𝐿 𝑑𝑖(𝑡)

𝑑𝑡
  →  

1

𝐿
 ∝  
𝑑𝑖(𝑡)

𝑑𝑡
 (1.2) 

As the power rating of a drive rises then so does the required energy storage of the inductor. 

Thus the physical size of the inductor will rise approximately linearly with drive power rating.  

Laminated iron cores are usually used for low frequency input filter inductors. Laminated cores 

are composed of punched steel sheets, with the surfaces of the sheets coated with insulating 

material, resulting in reduced eddy currents between the sheets. In practice, conventional 3-

phase filter inductors share the same magnetic core circuitry as EE and EI cores (Figure 1-3 (a 

and b)). Other shapes of transformer cores can be LL and UI,  as presented in figure 1.3 (c and 

d) [14].  

 

   (a) “E-I” laminations       (b) “E-E” laminations 

 

  (c) “L” laminations          (d) “U-I” laminations             

Figure 1-3 Different transformer core types 

As the size of the inductor is dictated by the demand of storage energy, an example from an 

industrial application shown in figure 1-4, which illustrates the physical size of a conventional 

input 3-phase AC reactor power inductor for an output power rating of 630 kW with a rated 

input current of 1600 Apk [15]. 

             

Figure 1-4 3-phase input power inductors for rated power 630 kW/1600 Apk [15] 
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Due to the required large size of these line inductors for high power applications and the demand 

for packaged electrical systems, integrating magnetic filter components into electrical machines 

is promising and can in turn achieve smaller sizes than with conventional inductors with a 

separate motor and drive with associated hardware [16, 17]. As a consequence, producing a 

single packaged unit along with achieving higher power density at low cost and installation 

time is feasible. 

 Passive components size and cost 

Major challenges regarding the integration of passive components and power electronics often 

arise from limited installation space along with, most frequently, problems of mechanical stress 

and high temperature. Passive components (i.e. inductors and capacitors) represent a significant 

proportion of material costs and volume compared to other components in a power electronics 

system, as shown graphically in figure 1-5. In addition, the mechanical requirements dictate the 

installation space without considering the standardisation of power electronics devices and 

passive components.   

 

Figure 1-5 Typical material cost and volume distribution in power electronics systems [1] 

The focus on size reduction should be turned towards the passive components, such as converter 

chokes, DC-link capacitors and electromagnetic interference (EMI) filters. The achievement of 

high power density depends on innovative integration concepts, the flexibility of the overall 

structure and extensions to the operating temperature range. Meanwhile, system integration and 

modularity are not mutually exclusive [1, 3]. 
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 Methodology    

Integrated drives are defined as the functional and structural integration of the power electronics 

converter with the machine as a single unit taking into consideration the electrical, thermal and 

structural impacts both components have on each other and the system as a whole. 

For the purposes of this work, low and high drive power ratings are considered to deliver the 

power from the grid to following proposed machines in which the two machines are identically 

dimensioned. 

 Low-speed surface-mounted permanent magnet synchronous motor (3000 RPM / 

4.1kW). 

 High-speed surface-mounted permanent magnet synchronous motor (25000 RPM / 

34kW). This motor has been considered to be the base machine for the prototype 

demonstrator since the passive components are much larger and consequently more 

challenging. 

Five different techniques are considered in this research in order to investigate the effectiveness 

of integrating input filter line inductors into the low- and high-speed machines. These 

techniques are as follows: 

 Inductor windings around the stator teeth 

 Inductor windings around the stator core back 

 Inner auxiliary slots placed radially outwards from the primary slots 

 Auxiliary slots around the outer surface of the stator in a double slot machine 

 Inductors placed at the corners of square laminations 

The best integration method would be selected in terms of achieving the smallest volume for 

the integrated 3-phase filter inductors compared to other suggested techniques. 

The proposed integration techniques only take into consideration the input power filter 

inductors, as the most challenging task in integration is to incorporate filter inductors into a 

machine without interfering with the electromagnetic characteristics of the original machine. 

However, advances in technology are required to improve the functionality of integration 

systems, such as the standardization of parts, increased level of integration and improvements 

in packaging techniques for enhanced thermal management and electrical performance.  
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 Prior work 

Over the last twenty years, fundamental concepts and pioneering solutions have been proposed 

which strive to accomplish high power densities. The fundamental approach to power 

conversion has shifted to aim for high switching speeds [3]. This, in turn, results in the reduction 

in size of passive components and improvements in the efficiency of the converter, volume, 

weight, and cost. However, this motivation is valid only if adverse thermal effects at these 

higher frequencies do not negate the benefit of size reduction, indicating the need for the 

development of materials to meet the functional requirements of integrated systems.  

The main trend in the industrial field towards passive elements, power electronics and electrical 

machines is the production of a single packaged system combining all of these different items 

of equipment. The efforts of researchers and industry aim to produce more efficient electrical 

and electronic components along with achieving lower volume and weight, lower installed 

system costs, and guaranteed electromagnetic compatibility. Figure 1-6 illustrates the 

development of components and functions and how the pace of progress steadily increased until 

the publication date of the reference (2004). These trends will have continued through to the 

present day. 

 

(a) 

 

(b) 

Figure 1-6 The development of 4 kW standard adjustable speed drive: a) number of components 

and functions; b) comparison of size and weight [18] 

Figure 1-6 (b) clearly shows that a high level of integration has been achieved with the aim of 

reducing manufacturing cost while producing the most reliable systems possible. A number of 

converter topologies, including passive filter elements, are presented in figure 1-7, some of 

which are attractive for use in integrated motor drives. The range of integrated filter components 

presented in the literature can be divided into two categories based on their applications as 

follows: 
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 Integrating separate passive filter elements 

 Integrating passive filter elements within the structure of electrical machines. 

The next two sections focus on a comprehensive literature review of different approaches taken 

to reduce the size of passive filter components, whether separately or by incorporating them 

into electrical machines. 

 

Figure 1-7 Different converter topologies suited for integrated motor drives with: a) electronic 

inductor in dc-link; b) a boost converter; c) two interleaved CCM parallel boost converter; d) 

three-level CCM boost converter; e) DCM boost converter; f) Vienna rectifier; g) three-level 

PWM rectifier with RB-IGBTs, h) three-phase buck converter; i) back-to-back VSI, j) matrix 

converter; k) two-stage DPEC; l) two-stage DPEC with RB-IGBTs [2] 
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1.8.1 Developing integrated passive components 

This section focuses on preliminary achievements in the size reduction of individual filter 

inductors. Three-phase PWM converters are essentially frequency conversion devices, 

converting input power of one frequency to output power of another frequency.  Because this 

is performed through digital switching, both low and high frequency harmonics are introduced 

and filters are introduced to comply with electromagnetic compatibility (EMC) requirements 

[2].  

In some cases, the size of the inductor has been reduced through choice of control scheme.  For 

example, the size of an inductor in a boost converter [19] has been significantly reduced by 

using chopped sinusoidal peak current control schemes. The proposed reference of peak current 

inductor is a chopped sinusoidal waveform for critical conduction mode in a PFC converter, 

and so the required inductance and peak current of the inductor can be reduced simultaneously. 

Integrated three-phase common mode inductors [20] have been proposed which achieve a 

reduction to half of the total weight compared to separate reactors. This magnetic core structure 

design is composed of a peripheral ring and three bridge legs which are evenly distributed 

within the core structure. Three-phase inductor windings share the same magnetic 

circumferential magnetic core, whilst the air gaps of the inductors are located in the centre of 

the circular magnetic core. The material weight savings using this design of copper windings 

and iron per phase are 40% and 60% respectively. Furthermore, it has been stated [21, 22] that 

common mode inductors are widely required for ASD, UPS, battery charging for electric 

vehicles and renewable energy applications and hence further work has been conducted to 

design a common mode inductor aiming to minimize volume, losses and commissioning cost 

compared to separate industrial inductors. 

For high frequency inductors a spiral integrated power passive structure has been enhanced 

over a number of years to introduce significant improvements in electromagnetic modelling, 

design and loss determination [23-26]. This integration approach has led to an integrated 

structure which can achieve high power densities in excess of 30 W/cm3 operated at frequencies 

up to 1 MHz [27]. The advantages of integrating high-density multi-functionality by using a 

planar integration technology have been introduced by Jacobus et al. [28]. This approach 

introduces two layers of simple spiral windings separated by a dielectric material, and this 

structure results in distributed inductance and capacitance to form a spiral integrated LC 

structure. This approach can be even more complex when forming an integrated resonant 
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transformer by adding additional layers of spiral windings. Figure 1-8, shows a converter circuit 

presents passive components which replaced by LLCT model and a 3D presentation of the 

construction of an integrated L-L-C-T respectively. 

 

 

 

(a) 
 

(b) 

Figure 1-8 Illustration of process of integrated L-L-C-T a) equivalent lumped parameters model 

of L-L-C-T, b) exploded view of construction of integrated L-L-C-T [28] 

However, the design of these integrated structures necessitates deliberate increases in and 

modifications to the existing impedance of the structure to satisfy the equivalent circuit 

functioning. The concept is applicable to very high frequency systems, but not to mains 

frequency filters. Where the frequency is 50 or 60Hz, as required in input filters, it is not feasible 

to introduce enough capacitance in this manner.  

The next section presents a survey concerning how the passive components of filters can be 

integrated into electrical machines. 

1.8.2 Integrated passive filter components within the structure of electric machines 

The evolution of integrated passive components is still continuing, urged on by the industrial 

demand for compact systems such as IMDs. As mentioned above, the demand for integrated 

passive filter components is steadily increasing for some applications where the motor and load 

are intimately connected to each other along with limited installation space. The following 

literature survey of integrated filter elements into electrical machines is divided onto two parts: 

electromagnetic passive filter components and capacitors used in converter modules.  
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1.8.2.1 Integrated inductors within the stator of the machines 

Work published by Garvey et al. [29] provides useful insights in to the integration of passive 

filter elements into an electrical machine. A dv/dt output filter is sometimes fitted between an 

inverter and motor so as to avoid sharp transient voltages caused by the speed of power 

electronics switching in variable-speed drive inverters, which in turn protects both the winding 

insulation of the motor and its bearings. In [29] the filter inductor windings are wound around 

the stator core back, returning around the bottoms of slots. The stator core back is utilized as a 

toroidal magnetic circuit which drives a ring flux and so forms the inductor, as 

diagrammatically presented in figure 1-9. 

 

Figure 1-9 Schematic view of shared stator core carrying integrated filter inductor and main 

machine windings [29]  

The inductor windings and main machine windings share the same machine stator core back, 

and so the ring flux caused by the inductor windings travels around the core back in the same 

direction at any instant. The direction of the main machine flux is dictated by the configuration 

of the base machine windings, and so at any instant there is as much flux rotating clockwise in 

the core back as is going counter-clockwise simultaneously. As a result of interaction between 

the two magnetic fluxes in the shared machine stator, the net magnetic flux at some points is 

high while at other points it is low. By far the most important constraint for integrating inductors 

into electrical machines following this type of integration is that the stator core back should not 

become saturated; in other words, the machine’s magnetic circuit should not be too heavily 

loaded. Because the core back has no gap in it, this above arrangement, in which the inductor 

creates a circumferentially flowing flux will saturate the core back with low inductor MMFs, 

which forms a serious drawback. 

A theoretical design study has been proposed [30] with the aim of integrating the output filter 

inductor into a permanent magnet synchronous motor. A part of the inductance of the motor 

windings is used to form the filter inductance, and thereby the filter capacitor and damping 

resistor are placed between the machine windings. This proposed integrated motor eliminates 
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the separate filter inductor, which in turn reduces the overall losses, weight and volume.  

However, the efficiency of the integrated motor is adversely affected by the integrated filter 

inductor because of the presence of switching components in the filter branch. In addition, based 

on the recommendations given to designers for the proposed motor with an integrated inductor, 

the filter branch should not occupy more than quarter of the entire motor windings, and 

therefore the remaining portion of the motor windings can carry the filtered current. 

A further integration step forward has been accomplished [31] aiming to integrate the passive 

filter inductor in high-speed AC drives. This work presented two proposed integration methods: 

a motor-shaped rotational inductor and a motor-shaped rotor-less inductor. The design of the 

integrated inductors has a stator and rotor similar to those in a conventional motor or generator, 

but the main machine shaft is used as the inductor’s rotor without any magnets, saliency or 

windings as shown in figure 1-10. 

 

Figure 1-10 Axial presentation of integrated motor-shaped inductor 

Since the inductor windings are inserted into the slots of an additional motor-shaped stator, slot 

opening gaps within the stator form the air gap of the integrated inductor. The advantages of 

this motor-shaped inductor are that it can share the same cooling system as the machine and so 

can operate at high current densities, in turn achieving lower volume. The other benefit of the 

proposed inductor shape is that it can share the same motor housing. However, both integration 

methods presented in this study [31] come at the value of 6.1% increase in weight. 

A further integration method has been conducted [32, 33] which is named a compact integral 

PMS motor. This method has used machine corners to integrate the coils of the input line-filter 

and that of the DC-link. Two different placements of 4 coils have been designed as either back-

to-back or side-by-side integration methods. Although these coils are incorporated into the 

stator core, they do not affect machine performance since the magnetic fluxes produced by these 

integrated coils have independent paths. This results in less iron being used, higher inductance 
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values are obtained, and the procedure for winding the filter coils is easier. Another patent [34] 

illustrates the possibility of integrating a transformer within the structure of a motor. This 

combination was utilized in a microwave oven to provide a step-down voltage for a fan. 

Auxiliary windings are wound around the stator lamination stack to share part of the motor’s 

magnetic circuit. This compact product offers smaller space and lower cost compared to the 

separate transformers and conventional motors. A 50kW permanent magnet machine with 

integrated power electronics and fault tolerance has also been presented [35]. This integrated 

single unit increases power density, where in the aerospace industry weight, volume and 

reliability are of primary importance. Figure 1-11 illustrates the proposed concept, where the 

inner ring acts as a motor housing (Figure 1-11 (a)) responsible for cooling the motor stator 

while the outer ring jacket has been used to mount and cool the power electronics and EMI 

filter components. Figure 1-11 (b) demonstrates a more complete integrated motor drive.  

 

 

(a) 

 

(b) 

Figure 1-11 Integrated motor drive: a) motor housing and power electronics heat sink; b) 

integrated 50kW, 50krpm PM motor and power electronics concept [35] 

As stated in previous publications [36-40], several integration techniques seek to produce a 

packaged single unit; for example, power electronics components may be attached in front of a 

segmented stator in what is known as an integrated modular motor drive. Another example of 

a compact system is named the integrated segmented inverter-motor for drive traction systems 

in which the inverter IGBTs, gate driver and control card and bus capacitor are mounted on 

three separate plates axially positioned with the motor shaft. Modular systems offer many 

advantages, such as fault tolerance, power rating scalability, and better thermal capability along 

with potential reductions in the overall size and manufacturing cost. This has led to active 

research and the development of smaller passive components and advanced power modules. 
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1.8.2.2 Filter capacitors integrated into the motor structure 

Capacitors are also used in ASDs as, for example, input/output filters and DC link capacitors. 

These entities represent a considerable amount of the volume and material cost of a power 

electronics system. The thermal limits of several common capacitor materials are also a 

challenge at high operational temperatures as they are typically considerably lower than the 

thermal limits of the magnetic components. A further issue concerning the operational 

temperature limits is that, at high temperatures, it is hard for a capacitor to hold charge due to 

leakage currents [41] effectively reducing the available capacitance at high temperatures. There 

are four main capacitors technologies available as listed below [1, 6]: 

 Multi-layer ceramic capacitors (MLCCs) 

 Aluminium electrolytic capacitors 

 Polymer film capacitors 

 Electro-chemical double layer (ECDL) capacitors 

Ceramic capacitors are mostly used for high temperature and high voltage applications. The 

most important features of MLCCs are their high capacitance along with compactness. High 

temperature ceramic capacitors can withstand temperatures up to 250 ºC along with achieving 

high energy density. Other types of capacitors are large and furthermore thermal limitations are 

a significant problem, especially in IMDs where the compact nature of the unit is essential [42]. 

The key technical advantage in integrating capacitors into the motor structure is to produce a 

single packaged unit with higher power density compared to separate motor-drive systems. 

However, the thermal limitations of the devices in conjunction with the restrictions of 

mechanical installation space are prominent issues. Consequently, the concept of integrating 

capacitors in IMDs has sparsely been considered in the literature. 

It has been shown [43] that it is possible to use stator laminations to form a capacitor. The 

structure of adjacent laminations with insulation layers between them offers the possibility of 

creating an integrated capacitor although the capacitance per unit would be relatively small.  

Gui-Jia et al. presented an inverter packaging scheme carried out for an integrated segmented 

traction drive system [38]. The system cost of a segmented traction drive is reduced due to 

segmenting the voltage source inverter, where the ripple currents and thus the size of the DC 

bus capacitor are significantly reduced. The ring-shaped segmented inverter design is shown in 
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figure 1-12 (a). The packaged inverter-motor drive system has six water channels in a toroidal 

heat exchanger which is capable of operating a single cooling system mainly used for the engine 

cooling loop. 

Due to the restrictions of physical installation space for power electronics and passive 

components inside or on the motor housing, research into complete structural integration can 

be divided into three major categories: stator iron mount integration, surface mount integration, 

and end-plate mount integration. One study [39], an integrated modular motor drive with GaN 

devices has been presented. A circle-plate shape is used for mounting the DC-link capacitor, 

while MOSFETs are distributed evenly and circumferentially on the integrated plate and 

mounted on the stator iron surface as shown in figure 1-12 (b). 

 

(a) 

 

(b) 

Figure 1-12 Integrated motor-drive system: a) design concept for an integrated segmented 

inverter-motor drive system [38]; b) integrated modular motor drive [39] 

However, integrating capacitors into the structure of electrical machines is still an embryonic 

area and is a considerable challenge in order to achieve a smaller volume compared to 

independent electric drives. It is sufficient here to note that advanced standardised design 

processes along with new materials are needed to satisfy future demands. 

 Outcome of the literature review 

Increasing demand for distributed power system approaches related to system integration has 

been demonstrated necessitating a step forward in standardized, decentralized power system 

components and integrated design technologies. The merits and advantages of new integration 

concepts compared to traditionally separated systems have been discussed, such as modularity, 

redundancy, serviceability and fault tolerance. Integrated motor drives or electronic motors 

designs seek to profit from these advantages in a trade-off with the challenges of mechanical, 



Introduction                                                                                                                                  Chapter 1 

22 

electromagnetic and thermal material capabilities. For integrated passive components, several 

integration methods have been proposed whether separately or within a machine structure. The 

relative size of the inductor within a drive has been reduced to a certain extent as identified in 

the literature, however, more advanced integration approaches are still needed to meet future 

demand for compact systems.  

There has been very little research into the integration of the AC input inductors within 

electrical machines. The author believes that the contribution made in this work has not 

previously been published by others. 
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CHAPTER 2  

Input Power Filter Design 

Summary_ In this chapter conventional input power filters and the principles of different filter 

designs are discussed. Specifications for low- and high-speed drives are chosen and the total 

filter inductance is calculated for each filter type. An overall comparison between these filters 

is conducted in terms of achieving the lowest inductance. The most appropriate type of input 

power filter is selected for the chosen drive systems. Finite Element Analysis (FEA) is been 

used to build and simulate the two sets of 3-phase LCL filters inductors for the low- and high-

power ratings. The optimal volume achieved for both low- and high-power inductors will then 

be used as a benchmark throughout this thesis to compare with cases when these inductors are 

integrated into electrical machines. 

 Introduction 

It is important to consider the effect of harmonic emissions from drives on other equipment, 

and their possible effect on the drive itself. Even when AC drives use a front-end active rectifier 

at their input, harmonics are still present in the current drawn from the supply, which need to 

be filtered. Harmonics currents flowing through the impedance of the supply cause harmonic 

voltages which can disturb or stress other equipment connected to the same supply point [44].  

There are regulations to protect a public power network from excessive harmonics. For 

installations such as variable-speed drives and uninterruptable power supplies, which contain a 

large proportion of power electronic equipment, they may have to meet the requirement of the 

supply authority’s guidelines before they have permission to be connected to the public 

network. For variable-speed drives, the subject of harmonics is generally considered 

independently from other EMC aspects, which are concerned with the effects of much higher 

frequencies and are created in a different manner.  

 Regulations  

Regulations exist to control the quality of power that is to be provided at the point of common 

coupling (PCC) with other power consumers, where the immunity to excessive harmonics is 
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granted [9, 44]. Detailed regulations may be found in the references: in this section the low- 

and high-frequency emissions are discussed in brief. 

 Low-frequency emissions 

There are two kinds of regulations, including regulations for installations and regulations and 

standards for equipment. These regulations tend to be based on achievable voltage distortion 

that can be tolerated by other equipment. This limitation of distortion can be specified in terms 

of total harmonic distortion (THD), which is expressed as a percentage of the ratio of harmonic 

voltage to the fundamental; more details can be found in [9, 44]. 

The accepted maximum THD in a low voltage system, named the compatibility level, is 8 per 

cent however, in order to achieve this with a high degree of confidence it preferable to aim for 

a lower level of typically 5 per cent. It is not recommended to allow the compatibility level of 

8 per cent to be exceeded [44], because it is then likely to affect other equipment, which will 

have been designed according to this standard of harmonic limitation. For example, regulations 

from the United Kingdom Energy Networks Association recommend clear strategies to permit 

connection, based on harmonic current data that can be easily obtained from the manufacturer’s 

technical data. The international standard of harmonic control for equipment at less than 16 A 

is IEC 61000-3-2 as adopted from [44]. The recommended current distortion limits (IEEE Std 

519-2014) applies to users connected to systems and is illustrated in table 2-1, where the rated 

voltage is 120 V to 69 kV at the PCC [9]. 

Table 2-1 Current distortion limits for systems rated 120 V through 69 kV 

Maximum harmonic current distortion in per cent of 𝑰𝑳 

Individual harmonic order (odd harmonics) 

𝐼𝑆
𝐼𝐿
⁄  

3 ≤ ℎ
< 11 

11 ≤ ℎ
< 17 

17 ≤ ℎ
< 23 

23 ≤ ℎ
< 35 

35 ≤ ℎ
< 50 

𝑇𝐷𝐷 

< 20 4.0 2.0 1.5 0.6 0.3 0.5 

20 < 50 7.0 3.5 2.5 1.0 0.5 0.8 

50 < 100 10.0 4.5 4.0 1.5 0.7 12.0 

< 20 12.0 5.5 5.0 2.0 1.0 15.0 

> 1000 15.0 7.0 6.0 2.5 1.4 20.0 

𝑰𝑺 = maximum short-circuit current at PCC 

𝑰𝑳 = maximum demand load current (fundamental frequency component) at the PCC under 

normal load operation conditions 

TDD= Total demand distortion 
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 High-frequency emissions 

The power stage of a variable-speed drive is a potentially powerful source of electromagnetic 

emission due to the high voltage and current in conjunction with rapid switching. Unwanted 

electromagnetic coupling is unlikely to occur below about 100 kHz. If the installation guidelines 

are ignored, interference predominantly occurs in the 100 kHz to 10 MHz range, where 

harmonic emission is strongest [44]. 

The most important standards for drive applications are listed below [9, 44, 45]. 

 IEC Standard 61000-4-7: a general guide on harmonics and inter-harmonics 

measurement and instrumentation, for power supply systems and equipment connected 

thereto. 

 IEC 61800-3 power drive systems (contains emission and immunity requirements). 

 IEC 61000-6-2 generic immunity standard for the industrial environment. 

 IEEE Standard 519-2014 recommended practice and requirements for harmonic control 

in electric power systems. 

As a consequence, it is important for users or designers of variable speed drives to know the 

authority’s guidelines in terms of maximum allowable THD and harmonic emissions range, to 

prevent interference and poor quality of public power network. 

 Use of an input power filter 

Input power filters are widely used with voltage source converters (VSCs) as this type of 

converter has well-known advantages in terms of improved energy efficiency and flexibility of 

control. A sizable proportion of grid-connected drives utilise an active front-end rectifier 

offering various advantages such as being able to work bi-directional power modes and having 

the capability to provide a unity power factor load [44, 46]. Voltage source active rectifiers 

become more attractive in industrial applications, such as the interfacing of power generation 

systems. Input power filters are generally necessary for all grid-connected drives of rating over 

1kW. 

A considerable amount of research effort has been devoted to attenuate the switching frequency 

ripple, using different types of input power filters, such as the L type, LC type and LCL type. 

As discussed in chapter one, the overarching role of input filters is to mitigate current harmonics 

distortions and to alleviate the burden upon the utility grid. The resonant frequency of LC filters 
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changes with varying grid inductance, and hence they are not the optimal choice to act as input 

power filters, especially for a weak grid [47, 48]. This type of filter is therefore not considered 

in this study. The European standard frequency range is 2-150 kHz and it might extend in future. 

Therefore, power grid filters should be designed to operate in this range or even at higher 

frequencies: as such the recommended interval of total harmonic distortion (THD) is up to 5 % 

[44, 46]. Capacitors are essential elements of the filters, but there is still a lack of standardisation 

[49]:  less efforts have been paid in this study to integrate them within electrical machines.  

Different topologies of input power filter types are identified in figure 2-1.  

The sizing of input filter inductors is dictated by the rated power of the drive they are connected 

to. For example, if the rated power drive is increased by a factor of 𝑥, the input current of the 

drive will increase by the same factor of 𝑥 and hence the storage energy required in the filter 

will increase by the same factor. Therefore the size of input filter inductors becomes 

significantly larger for high-power applications. 

 

                        (a)                                               (b)                                                  (c) 

Figure 2-1 Different topologies of input filters: a) L type; b) LC type; c) LCL type 

In the literature, it is shown that LCL filters offer optimum results in power ranges up to 

hundreds of kilovolt-amperes (kVA) [46].  

The LCL filter components per phase are the grid-side inductor, boost inductor (drive-side), 

capacitor and damping resistor. The grid-side inductor and capacitor are physically small 

compared to the drive-side inductor, which accounts for the largest proportion of volume among 

the LCL filter components. Figure 2-2 illustrates the schematic of a grid-connected drive with 

an input power filter to deliver power to an electrical machine. 

 

 

Figure 2-2 Schematic of a conventional electric drive system 
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 Specifications of low- and high-power drives 

Two different speed drives have been chosen with specific power ratings, driving two machines 

of similar dimensions and torque capability, operating at different speeds for comparison 

purposes. High and low power ratings result in very different filter sizes, despite the electrical 

machine sizes being effectively the same and due to the purpose of this research only 

winding/number of turns is adjusted for operation at different speeds.  The two machine ratings are 

given in Table 2-2: one of 4.5 kW drive is operating at 3000 RPM, whilst the other is 38 kW at 

25000 RPM. 

Table 2-2 Specifications of two prototype motor design 

Drive input 
power 

(assuming ƞ= 
90%) 
(KW) 

Machine 
output 
power 
(kW) 

Phase current 
of motor  
(assuming 

 530 V) 
(rms) 

Input current 
rms of VSC  
(assuming 

90% 
efficiency) 

Base machine 
power 
density 

(active area) 
(kW/l) 

Machine 
speed 
RPM 

4.56 4.1 5.7 6.34 7.46 3000 

38 34 47.35 53 61.8 25000 

In order to integrate passive filter elements (i.e. inductors and capacitors) into an electrical 

machine, the designer must first determine the specification of these passive components. The 

following consideration of L and LCL filters in terms of integration is sufficient to provide a 

comprehensive investigation of the effectiveness of different integration techniques for low- 

and high-power ratings. 

2.4.1 L type filter 

Three input line inductors have been used as an L type filter to reduce the current harmonics 

around the switching frequency. The higher the switching frequency of the converters, the 

higher the degree of attenuation which will be achieved [50]. Figure 2-3 shows three identical 

input line inductors acting as an interface between the grid and the inverter power circuit.  
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Figure 2-3 Schematic of permanent magnet machine ASD circuit including three-phase identical 

input line inductors (L filter type) 

For high-power applications these inductors are large and the system’s dynamic response can 

be poor [46]. 

2.4.1.1 Frequency response of L filter type 

In order to observe the behaviour of the L type filter across a wide range of frequencies, a Bode 

diagram should be obtained. The per-phase equivalent model of the L filter is shown in figure 

2-4, where L is a series line inductor per phase: an ideal sinusoidal grid voltage profile is 

assumed and for this analysis the grid voltage is shorted. The transfer function of the L filter 

assumes an ideal inductor with zero resistance as follows: 

                 

Figure 2-4 Equivalent circuit of L type filter including only the switching harmonic component 

The transfer function is given in the form: 

TL(j𝜔) =  
𝐼(ℎ)

𝑉𝑠𝑤
= 

1

𝑗𝜔𝐿
       

𝑆−𝑑𝑜𝑚𝑎𝑖𝑛
→              𝑇𝐿(𝑠) =  

1

𝑠𝐿
            (2.1) 

The frequency response of the L type filter between 1 Hz and 1MHz is plotted in figure 2-5 

with an arbitrary value of filter inductance. 
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Figure 2-5 Frequency response of L filter using Bode diagram 

Figure 2.5 shows that the L type filter provides an attenuation of -20 dB per decade for the 

whole range of frequencies due to its first order nature. 

Regarding the design of L filter type, the volt-ampere rating of the inductor has been estimated 

to be between 2% and 6% of the total volt-ampere of the drive [44]. In order to have an accurate 

comparison between L type filters and LCL filters, the L filter should achieve the same total 

harmonic distortion as the LCL filter. 

2.4.2 LCL Type Filter 

An LCL filter is constructed by adding an LC filter to a boost inductor. This type of filter is 

attractive and is widely used due to its smaller volume compared to other types of power filter. 

LCL filters can render better attenuation of switching harmonics and smaller total inductance 

than L filters [46, 51, 52], this will be further discussed in this study. The design of an optimal 

LCL filter can be accomplished with two different configurations: star-connected or delta-

connected capacitors, further details of which can be found in [52]. Figure 2-6 illustrates a three-

phase voltage source rectifier with an LCL star capacitor connection. 
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Figure 2-6 Three-phase voltage source rectifier with LCL filter 

2.4.2.1 Frequency response of the LCL filter 

An equivalent single-phase LCL filter including the fundamental input converter voltage (𝑣𝑐) 

and switching harmonics voltage (𝑣𝑠𝑤) components is shown in figure 2-7. 

 

Figure 2-7 Equivalent circuit of single-phase of LCL input filter showing switch harmonics and 

voltage fundamental components 

where 𝐿1 and 𝐿2 are the grid side and drive side inductors respectively, 𝐶𝑓 is the filter 

capacitance and the currents 𝐼𝐿1, 𝐼 and 𝐼𝐶  are grid current, input converter current and capacitor 

current respectively. Attenuation of the switching harmonics current is considered in figure 2-

8. 

 

Figure 2-8 Equivalent circuit of single-phase LCL input filter considering switch harmonics 

fundamental component 
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The transfer function of the LCL filter is given in the following form: 

𝑇𝐿𝐶𝐿 = 
𝐼𝐿1
𝑉𝑠𝜔

 (2.2) 

For this analysis all inductor resistances are once more ignored. For a short circuited grid the 

transfer function with and without a damping branch can be derived as follows1: 

 LCL transfer function derived without damping: 

𝑇𝐿𝐶𝐿(𝑠) =  
1

𝐿1𝐶𝑓𝐿2𝑠3 + (𝐿1 + 𝐿2)𝑠
 (2.3) 

 Transfer function taking into consideration the damping resistor 𝑅𝑑: 

𝑇𝑑𝐿𝐶𝐿(𝑠) =  
𝐶𝑓𝑅𝑑𝑠 + 1

𝐿1𝐶𝑓𝐿2𝑠3 + 𝐶𝑓(𝐿1 + 𝐿2)𝑅𝑑𝑠2 + (𝐿1 + 𝐿2)𝑠
 (2.4) 

The behaviour of these two transfer functions with and without damping has been examined 

using a Bode diagram. The Bode plots of the LCL filter are illustrated in figure 2-9. It can be 

seen that the series damping resistor with the capacitor is important to eliminate the spike at the 

resonance frequency where the impedance of the filter at this resonant frequency is zero [52] 

and it has rolled off to -180 degrees at higher frequencies. 

 

Figure 2-9 Bode diagram for LCL filter with (blue) and without (green) damping resistor 

                                                 
1 The derivation of the transfer function equations of LCL filter is illustrated in Appendix A. 
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2.4.2.2 Constraints on LCL filter parameters 

A higher harmonic attenuation factor can be achieved using LCL filters, allowing the use of 

lower switching frequencies and hence lower switching losses. However, the total inductance 

of the LCL filter should be appropriate for the required active and reactive power rating of the 

voltage source rectifier. LCL filters should be carefully designed to meet the standard range of 

harmonic constraints as given in IEEE-519 [45, 47, 53]. The phasor diagram given for the grid 

voltage and the input of the voltage source rectifier (VSR) has been derived elsewhere [52] as 

illustrated in figure 2-10. 

 

Figure 2-10 Illustration of the relationship between AC side vectors of VSR [52] 

Here 𝐸 is the grid phase voltage, 𝑉 is the input voltage of the VSR and 𝑉𝐿 is the voltage across 

the line inductor and 𝐼 is the peak value of phase current. 

The trajectory of the input voltage of the VSR around the circle is as given in equation (2.5). 

|𝑉𝐿| = ω 𝐿 |𝐼| (2.5) 

It can be seen in figure 2-10 that at points B and D the VSR is operating in rectifying and 

regeneration modes respectively and the power factor at these points is a unity power factor. As 

in figure 2-11 the total input filter inductance per phase at a unity power factor can be 

determined as follows: 

 

Figure 2-11 Phasor diagram at unity power factor  

(Rectifying mode) 

(Regeneration mode) 
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𝑉2 = 𝐸2 + 𝑉𝐿
2,     𝑤ℎ𝑒𝑟𝑒 𝑉(𝑝𝑒𝑟 𝑝ℎ𝑎𝑠𝑒) =

𝑉𝑑𝑐
2

 (2.6) 

(
𝑉𝑑𝑐
2
)
2

= 𝐸2 + (𝜔𝐿𝐼)2 (2.7) 

𝜔𝐿𝐼 = √(
𝑉𝑑𝑐
2
)
2

− 𝐸2 (2.8) 

Thus, the total input filter inductance per phase should be limited to be defined as given in 

equation (2.9). 

𝐿𝑇𝑜𝑡𝑎𝑙 ≤
√𝑉𝑑𝑐
4

2

−  𝐸2

𝐼 𝜔
 

(2.9) 

where 𝑉𝑑𝑐 is the DC bus voltage and 𝜔 is the angular frequency.  

Current harmonics of the switching frequency produced by an active rectifier might cause 

inductor saturation or filter resonance and hence current harmonic distortion should be within 

the recommended limit of THD (planning level) which is up to 5% [44]. The input filter 

inductor should be carefully designed with the optimal inductance value, taking into the account 

maximum peak-to-peak current ripple. Moreover, the value of 𝐿 should be small to give a 

suitable dynamic response of the system and the capability for current tracking. 

2.4.2.3 Design methodology for the LCL filter 

The procedure for designing the LCL filter has been carried out step by step to achieve an 

optimal filter design based on the desired power rating of the converter, line frequency, 

switching frequency and the applied line-to-line voltage. Indicative, stylised current waveforms 

for each of the LCL filter components are shown in figure 2-12. 

 
Figure 2-12 Current waveforms for each filter component [51] 
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In the following calculations, the filter values are a percentage of the base values as follows: 

𝑍𝑏 = 
𝐸𝑛
2

𝑃𝑛
 (2.10) 

 

𝐶𝑏 = 
1

𝜔𝑔𝑍𝑏
 

(2.11) 

where 𝐸𝑛 is the line-to-line rms voltage, 𝜔𝑔 is the grid angular frequency and 𝑃𝑛 is the rated 

power absorbed by the converter. 

The following equation can be used to find the maximum RMS input current, assuming a unity 

power factor: 

𝐼𝑚𝑎𝑥 =
𝑃𝑛
3 𝑉𝑝ℎ

 (2.12) 

2.4.2.4 Calculation of drive-side inductance (𝑳𝟐) 

The maximum current ripple is used to calculate the drive side inductor, which in turn gives a 

sensible size for the predicted boost inductor design. The minimum value of the drive side 

inductance 𝐿2 𝑚𝑖𝑛  per phase can be calculated as follows: 

Figure 2-13 shows a simplified equivalent circuit of the drive-side inductor as a part of the LCL 

filter.  

 

 

Figure 2-13 Illustration of a simplified equivalent circuit of single phase of drive-side filter 

inductor 𝑳𝟐 in generating mode 

The volt-ampere rating of the drive-side inductor, 𝐿2, has been estimated to be 1% of the total 

rating of the drive, and this estimation gives an acceptable value of THD on the grid-side which 

is consistent with that achieved with the L filter type. The comparison between the L and LCL 

filters is presented later in section 2.5, in terms of achieving the same value of THD and 
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different total inductance. A piecewise linear electrical circuit simulation (PLECS) is the tool 

of choice for high-speed simulations of power electronic systems developed by Plexim. A 

PLECS circuit was used to confirm that the designed LCL filter achieves the same value of 

THD as the L filter type with the same specifications of drive used. The minimum value of the 

drive side inductance 𝐿2 𝑚𝑖𝑛  per phase can be calculated as given in equations 2.13 – 2.15: 

𝑉𝐿2 = 1% 𝑉𝑝ℎ(𝑟𝑚𝑠) (2.13) 

𝑉𝐿2 = 𝜔 𝐿2 𝑚𝑖𝑛 𝐼 (2.14) 

𝐿2 𝑚𝑖𝑛 =
0.01 × 𝑉𝑝ℎ(𝑟𝑚𝑠)

2 𝜋 𝑓 𝐼𝑟𝑚𝑠
 (2.15) 

2.4.2.5 Calculation of filter capacitance (𝑪𝒇) 

In practice, the fundamental reactive power which is absorbed by the filter capacitor should be 

less than 5% of the rated power of the voltage source rectifier in order to avoid the system 

suffering from an excessive decrease in power factor [52, 53]. Therefore, the capacitance value 

is calculated based on equation (2.16), where 𝐶𝑏 is given in equation (2.11): 

𝐶𝑓 < 5% 𝐶𝑏 (2.16) 

2.4.2.6 Calculation of grid side inductance (𝑳𝟏) 

The LCL filter parameters should be designed based on the expected attenuation factor 𝐾𝑎 of 

the current ripple, which is recommended in literature to be set to 5 on the rectifier side. Further 

information can be found in [46, 53]. 

The grid-side inductance can be calculated based on the capacitance value and the angular 

switching frequency for the expected attenuation factor, as given in equation (2.17): 

(

 
 
 

   𝐿1= 

√
1

𝐾𝑎
2 + 1

𝐶𝑓 𝜔𝑠𝑤2
    

)

 
 
 

 (2.17) 
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2.4.2.7 Calculation of the damping branch 𝑹𝒅 and resonant frequency 𝒇𝒓𝒆𝒔 

As the filter impedance is zero at the resonant frequency, a series resistor is inserted with the 

shunt capacitor at this frequency so as to prevent resonance through passive damping and hence 

guarantee a stable system [46]. The Bode diagram in figure 2-9 illustrates the influence of 

passive damping. 

The value of damping resistance should be one-third of the filter capacitor’s impedance at the 

resonant frequency [51]. In order to avoid resonance problems in the lower and upper parts of 

the harmonic spectrum, the resonant frequency should be in a range between ten times the grid 

frequency and one-half of the switching frequency [51]. Thereby, the angular resonant 

frequency and damping resistance are derived as follows: 

The total impedance of the input filter is zero at the resonant frequency and from the equation 

for the transfer function of the LCL filter which is derived in Appendix A, the angular resonant 

frequency can be calculated at this specific condition by equations 2.18 and 2.19. 

𝜔𝑟𝑒𝑠
3𝐿1𝐿2𝐶𝑓 + 𝜔𝑟𝑒𝑠 (𝐿1 + 𝐿2) = 0 (2.18) 

𝜔𝑟𝑒𝑠 = √
𝐿1 + 𝐿2
𝐿1 𝐿2 𝐶𝑓

 (2.19) 

The values of grid and active converter inductances should then satisfy the following condition 

[46]: 

10 𝑓𝑔 < 𝑓𝑟𝑒𝑠  < 0.5 𝑓𝑠𝑤 (2.20) 

Thus the desired damping resistance can be calculated based on the resonant frequency as given 

in equation 2.21. 

𝑅𝑑 =
1

3𝜔𝑟𝑒𝑠 𝐶𝑓
 (2.21) 

 General comparison between the total inductance of L and LCL filters 

Calculation of the L filter inductance as given in equation 2.22 is based on the L filter design 

constraint in section 2.3.1, with the drop voltage across the filter inductor chosen to be 3%. 

𝑉𝐿 = 3% 𝑉𝑝ℎ (2.22) 
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𝑉𝐿 = 𝜔 𝐿 𝐼     
…………………
⇒           𝐿 =  

𝑉𝐿
2 𝜋 𝑓 𝐼

 (2.23) 

Comparison has been made for two different scenarios as follows. 

 Converter power rating and THD are fixed and the switching frequency of the 

rectifier varies 

In this case study, the values of different L and LCL filter types have been calculated based on 

a number of constraints. As shown in figure 2-14 the switching frequency of the active rectifier 

is altered for a wide range of frequencies up to 100 kHz, and the same converter power rating 

of 4.5 kW is considered for all different filter designs. For integrity of comparison in terms of 

achieving lower inductance, all filter designs achieved the same attenuation of THD of 3%. 

 

Figure 2-14 Comparison of L and LCL filters at different switching frequencies 

It can be seen from figure 2-14 that the total inductance of the L filter is almost double that of 

the LCL filter at different switching frequencies, showing that it is much less attractive for 

integration due to its larger physical size. 

 Rectifier switching frequency and THD are fixed and the converter power rating 

varies 

The second case of comparison between L and LCL type filters is conducted when the switching 

frequency of the active rectifier and the THD are fixed, and the converter power rating is varied 

up to 40 kW. Figure 2-15 illustrates different total values of inductance in different power rating 

ranges for L and LCL filters with respect to the shunt capacitor values for the LCL filter.  
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Figure 2-15 Comparison of L and LCL filter types at different power rating values 

Figures 2-14 and 2-15 show that the LCL filter has approximately half of the inductance of the 

L filter type. The size of shunt capacitor of the LCL filter is relatively large but the total 

envelope is still smaller than the L filter type. The highlighted powers of 4.56kW and 38 kW in 

figure 2-15 are the desired power ratings for the chosen grid-connected drives throughout this 

study. A brief summary of L and LCL filters types is given as follows. 

1. L type filter 

 An attenuation of -20 dB decay per decade for all frequency ranges. 

 For the effective attenuation of high order harmonics, the switching frequency needs to 

be high. 

 To reduce the current harmonics around the switching frequency a high value of input 

inductance should be used. 

2. LCL type filter 

The key advantages of using the LCL filter over an L type are as follows: 

 Attenuation of –60 dB decay of frequencies in excess of the resonance frequency. 

 It is possible to operate with relatively low switching frequency for the given harmonic 

attenuation. 

 Compared to the L filter type, LCL filters can provide better attenuation of switching 

harmonics using lower inductance. 
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Due to improved current harmonic attenuation of the LCL filter along with smaller physical 

size, it is considered the most appropriate choice for integrated drives. 

 Determination of lumped parameters for low- and high-power LCL filters 

The two electric drives have been specified with power ratings as shown in table 2-3. LCL 

filters for both these drives have been designed and analysed.   

Table 2-3 Specifications of two proposed electric drives 

Drive 
input 

power 
(kW) 

Machine 
output 
power 
(KW) 

Machine 
speed 
(RPM) 

Rectifier 
switching 
frequency 
𝑓𝑠𝑤  (𝐾𝐻𝑍) 

Input 
voltage 
(RMS) 

Input current 
(RMS)  

(assuming 
90% 

efficiency) 

Current 
density 

(A/mm2) 

DC-ink 
voltage 

(V) 

4.56 4.1 3000 40 415 6.34 12 750 

38 34 25000 40 415 53 12 750 

Although the power of the two drives is very different, both drives have the same torque rating 

and hence similar motor sizes. The approach of having two different power levels is to examine 

how the size of AC filter inductors may affect the integration approach.  

2.6.1 LCL filter parameters for the low-power drive of 4.56 kW at 3000 RPM 

Following the design steps for the LCL filter outlined in section 2.4.2.3, the low power filter 

parameters are calculated as follows: 

1.  

{
  
 

  
 𝑍𝑏 = 

𝐸𝑛
2

𝑃𝑛
= 

4152

4.56 × 103
= 37.77 Ω

𝐶𝑏 = 
1

𝜔𝑔𝑍𝑏
= 

1

2𝜋 𝑓𝑔 × 37.77
= 84.28 µ𝐹

𝐼𝑚𝑎𝑥 = 
𝑃𝑛
3 𝑉𝑝ℎ

= 
4.56 × 103

3 × 240
= 6.34 𝐴𝑟𝑚𝑠

 

 

2. Drive side inductance 𝐿2 𝑚𝑖𝑛 calculation: 

𝐿2 𝑚𝑖𝑛 =
0.01 × 𝑉𝑝ℎ(𝑟𝑚𝑠)

2 𝜋 𝑓 𝐼𝑟𝑚𝑠
=

0.01 × 240

2 × 𝜋 × 50 × 6.34
= 1310 𝜇𝐻 
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3. Shunt capacitor calculation 𝐶𝑓: 

𝐶𝑓 = 3% 𝐶𝑏 = 0.03 𝑥 84.28 µ𝐹 = 2.5284 µ𝐹 

4. Grid side inductance 𝐿1 (assuming that the attenuation factor 𝐾𝑎 is 20%): 

𝐿1 = 

√
1

𝐾𝑎
2 + 1

𝐶𝑓 𝜔𝑠𝑤2
=  37.56 µH 

5. The resonant frequency of the desired LCL filter is determined as follows: 

𝜔𝑟𝑒𝑠 = √
𝐿1 + 𝐿2
𝐿1 𝐿2 𝐶𝑓

= 104.07 𝑥103 

Then the effectiveness of the values of 𝐿1 and 𝐿2 must verify the condition of operation of the 

resonant frequency as follow. 

10 𝑓𝑔 < 𝑓𝑟𝑒𝑠  < 0.5 𝑓𝑠𝑤 

10 ×  50 <  𝑓𝑟𝑒𝑠  < 0.5 ×  40 𝑥 10
3 

6. Damping resistance calculation: 

𝑅𝑑 =
1

3𝜔𝑟𝑒𝑠 𝐶𝑓
=  1.27 Ω 

The parameters of the low power LCL filter are shown in table 2-4. 

Table 2-4 LCL filter parameters for input power drive 4.56 KW 

Parameter Variable Value Unit 

Grid side inductance 𝐿1 37.56 µH 

Drive side inductance 𝐿2 1310 µH 

Capacitor (Star connection) 𝐶𝑓 2.5284 µF 

Damping resistor 𝑅𝑑 1.27 Ω 
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The total LCL filter inductance should conform to equation (2.9) to guarantee adequate dynamic 

system response. 

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿1 + 𝐿2 = 1347.56 µH   
Should be satisfied

⇒         𝐿𝑇𝑜𝑡𝑎𝑙 ≤
√𝑉𝑑𝑐

2

4 −  𝐸𝑚
2

𝐼 𝜔
 

(2.24) 

 𝐿 𝑇𝑜𝑡𝑎𝑙 = 1347.56 𝜇𝐻 
……………

⇒     𝐿𝑇𝑜𝑡𝑎𝑙 <

√750
4

2

− (240 × √2)
2

6.34 × √2 × 2 × 𝜋 × 50
= 0.056 𝐻   (2.25) 

The computation of total filter inductance (𝐿𝑇𝑜𝑡𝑎𝑙) pursued in equation (2.25) satisfies the 

inductance limitation implying that the derived parameters of the LCL filter achieve the design 

constraints. 

2.6.2 LCL filter parameters for the high-power drive of 38 kW at 25000 RPM 

The parameters of the high power LCL filter have been calculated by following the same design 

procedures for the low filter design taking onto the account the specifications of the high power 

drive listed in table 2-3. The determined parameters for high power LCL filter are tabulated as 

shown in table 2-5.2 

Table 2-5 LCL filter parameters for drive input power 38 kW 

Parameter Variable Value Unit 

Grid side inductance 𝐿1 5 µH 

Drive side inductance 𝐿2 160 µH 

Capacitor (Star connection) 𝐶𝑓 21 µF 

Damping resistor 𝑅𝑑 0.4 Ω 

The total inductance of the designed LCL filter is 165 𝜇𝐻 in which the limit of filter inductance 

based on equation (2.9) is 56 𝑚𝐻. This means that the filter inductance does not affect the 

system dynamic response and the voltage drop across the filter is not significant, producing an 

acceptable filter design. 

                                                 
2 The LCL filter parameters shown in table 2-5 have been calculated step by step in Appendix (A) based on the 

specifications of the high-power drive achieving an optimal filter design. 
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2.6.3 PLECS Simulation results for low-and high-power LCL filter 

The two designs of LCL filter for the low- and high-power drives have been analysed using a 

PLECS simulation of an appropriate converter and LCL filter parameters. The switching 

frequency of the converter is 40 kHz and a Space Vector Modulation (SVM) switching scheme 

is utilised. The drive side filter inductor is used as a boost choke to obtain higher DC link 

voltage which is an alternative solution fewer active components than using a DC-DC 

converter. 

The unfiltered drive input currents for low- and high-power drives are shown in figure 2-16 (a 

and b) giving a THD of 7.4 and 7.2 respectively while the grid-side three-phase current 

waveforms achieve an acceptable THD for both low- and high-power filters within the 

recommended interval of THD (which is limited to be up to 5%) as shown in figure 2-16 (c and 

d). 

     

 

(a) 

           

 

(b) 

THD ≈ 1.7% THD ≈ 2.8% 

 

(c) 

 

(d) 

Figure 2-16 Grid-side 3-phase current waveforms: a) and b) unfiltered currents of low- and high 

power drives of 4.56 kW and 38 kW respectively; c) and d) filtered currents of low- and high 

power drives of 4.56 kW and 38 kW respectively 
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 A conventional inductor design at low- and high-power ratings 

After determining the magnitude of the lumped parameters of LCL filters for the low- and high-

power ratings, some fundamentals of AC inductor design are now described. A single-phase 

inductor design is considered for simplicity and its magnetic equivalent circuit is presented. 

The geometry of a single-phase inductor is shown in figure 2-17 and its dimensions are defined 

as follows: 𝑑𝑐 is the core depth, 𝐿𝐻 is the inductor height, 𝐿𝑀 is the magnetic path length, 𝐿𝑊 

is the width of slot, 𝐴𝐶  is the cross-sectional area of the core and 𝐿𝑔 is the air gap length. 

 
(a) 

 

 

(b) 

Figure 2-17 Characteristics of AC inductor: a) geometry of single phase inductor; b) magnetic 

equivalent circuit 

Equations (2.27) to (2.30) help understand the influence of inductor dimensions upon the 

achievable inductance, the governing equation for inductor design is given in equation 2.26: 

N I = ɸ 𝑅𝑒𝑞 (2.26) 

It can be seen from figure 2-17 (b) that the equivalent reluctance, 𝑅𝑒𝑞, comprises that of the 

core and the air gap, denoted by 𝑅𝐶  𝑎𝑛𝑑 𝑅𝑔 respectively. In general, the reluctance is defined 

by the geometry of the inductor and the medium’s permeability as given in equation (2.27): 

𝑅𝑒𝑞  =  𝑅𝑔  +  𝑅𝐶  =  
1

(𝜇𝑜 𝐴𝐶)
(𝐿𝑔 +

𝐿𝑀
𝜇𝑟
) (2.27) 

To ensure linearity of inductance the design should avoid significant magnetic saturation. The 

magnetic flux density and inductance are given as follows: 

𝐵 = 
ɸ

𝐴𝐶
 (2.28) 

ψ̂ = N ɸ̂ = L Î (2.29) 

𝐿 =
ψ̂

Î
=
N2

R𝑒𝑞
 (2.30) 
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2.7.1 Design of drive-side 3-phase inductors (𝑳𝟐) for the low-power rating at 4.56 kW 

Since the LCL drive-side inductor 𝐿2 is much larger than that of the grid-side inductor 𝐿1 (see 

tables 2-4 and 2-5), the design of the 3-phase 𝐿2 inductor is addressed first. The following 

schematic shows the general features of conventional 3-phase AC inductors. 

 

Figure 2-18 Features of conventional 3-phase AC inductors 

For initial design, it can be assumed that all the inductors’ energy is stored in the air-gap. The 

air gap volume can be determined using this energy and the chosen air-gap flux density.  

The optimal air gap length is calculated using an iterative approach to give the optimal mass. 

The following design steps for the 3-phase boost inductor 𝐿2 on the drive side have been taken. 

The calculation of the air gap volume of the inductor which is essentially based on the filter 

parameters. The required storage energy can be directly calculated as given in equation 2.31 

and hence the volume of the air gap can be calculated from equation 2.32. 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 =  
1

2
 L 𝑖2𝑝𝑒𝑎𝑘 (2.31) 

(𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑) =  
1

2
 
𝐵2

𝜇𝑜
 × 𝑎𝑖𝑟𝑔𝑎𝑝 𝑣𝑜𝑙𝑢𝑚𝑒 (2.32) 

To avoid significant magnetic saturation in the iron circuit the magnetic flux density is limited 

to 1.2 T. This is based on the B-H curve of the chosen core material of 10JNEX-900.  

Figure 2.19 shows a simple iterative process in which the air-gap length is varied in an attempt 

to optimise the design. A relatively high current density of 12 A/mm2 and a slot fill factor of 

50% is assumed. Such a high current density is possible when integrated into the machine, 

which will be intensely cooled, but it should be noted that industrial drive filter inductors cannot 

work at such high current densities because they normally have only natural convection to cool 

them.  
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Figure 2-19 Optimisation chart loop of conventional inductors design  
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Figures 2-20 and 2-21 illustrate the effect of varying air-gap length upon the 3-phase inductor 

design for the low-power drive (4.56kW / 3000 RPM). 

Figure 2-20 illustrates the lowest achievable mass of the desired inductor at different lengths of 

the inductor air gap. The optimal total mass for the 3-phase inductors, including copper and 

core mass is achieved with an inductor air gap length of 1.2 mm.  

 

Figure 2-20 Optimisation process of the EE 3-phase inductor design for low power drive at 4.56 kW 

As the copper mass is determined, the total conduction losses can be simply calculated and 

are shown in figure 2-21. There are 24.6 Watts of winding loss with an air gap length of 1.2 

mm. 

 

Figure 2-21 Total conduction loss of the predicted design of the EE3-phase inductor for the low 

power drive at 4.56 kW 

The predicted parameters of a single inductor design for the low power drive are tabulated in 

tables 2-6 and 2-7. 
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   Table 2-6 Inductor dimensions per phase            Table 2-7 Inductor electrical characteristics 

 

Variable Value 

Core depth 10.75 mm 

LH 10.75 mm 

LW  (a) 8 mm 

Height of window (b) 16 mm 

LG 1.2 mm 

LM 97.85 mm 

𝐴𝐶 115.56 mm2 

 

Variable Value 

Inductance L 1310 𝜇𝐻 

N 97 turns 

Current 8.966 𝑨𝒑𝒌 

Current density 12 A/mm2 

Bair gap 1.2 T 

Bcore 1.3 T 

μeff ≈ 4050μo H/m 

The conventional 3-phase inductor design has been modelled using FEA MagNet software. A 

3D representation of the drive filter inductors 𝐿2 situated in the drive side is shown in figure 2-

22. The total volume of 3-phase inductors 𝐿2 for the low power drive is approximately 85.65 

cm3. 

 

Figure 2-22 3D presentation of the predicted design of the 3-phase drive-side inductors 𝑳𝟐 for 

the low power drive of 4.56 kW 

This design is taken as a benchmark for the low power filter inductors when they are integrated 

into the low-speed machine using different integration techniques. 
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2.7.1.1 FEA simulation results 

The 3D model of 3-phase drive side inductors shown in figure 2-22 has been simulated and the 

resultant inductance and voltage across the three-phase AC inductors 𝐿2 were determined. 

Figure 2-23 (a and b) illustrates the simulation results of the 3-phase voltage and flux linkage 

across the designed drive-side boost inductors 𝐿2. 

The predicted inductance and voltage per phase across 𝐿2 are verified, and as such the following 

fundamental equations (2.33) and (2.34) validate the FEA results. 

𝑉𝐿 = 𝜔  �̂�  = 100 𝜋 × 0.01175 = 3.7 𝑉 (2.33) 

𝐿 =
�̂�

𝐼
 =
0.01175

8.966
= 1311 𝜇𝐻 (2.34) 

It can be seen that the inductance per phase achieved by the 3D finite element model is 1311 𝜇𝐻, 

which is very close to the predicted inductance of 1310 𝜇𝐻 (see table 2-4). The simple 

predictions of the lumped parameter model tend to underestimate the inductance because they 

neglect all leakage and fringing flux.  

 
(a) 

 
(b) 

Figure 2-23 3-phase waveforms for 𝑳𝟐 for the power drive of 4.56 kW: a) voltage; b) flux linkage 

The grid side inductors, 𝐿1, are designed using the same optimisation loop and have a volume 

of 4.46 cm3. 

2.7.2 Design of drive side 3-phase inductors 𝑳𝟐 for the high-power drive at 38 kW 

The conventional 3-phase inductors 𝐿2 have been designed, optimised and simulated by 

following the same design procedures of the low-power drive inductor, taking into 
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consideration the specifications of the high-power drive. The predicted parameters of the single 

high-power inductor are tabulated in tables 2-8 and 2-9. 

        Table 2-8 Inductor dimensions/ phase             Table 2-9 Inductor electrical characteristics 

 

Variable Value 

Core depth 17.5 mm 

LH 17.5 mm 

LW  (a) 14 mm 

Height of window (b) 28 mm 

LG 3.3 mm 

LM 156 mm 

𝐴𝐶 306.25 mm2 

 

Variable Value 

Inductance L 160 𝜇𝐻 

N 33 turns 

Current 75 𝑨𝒑𝒌 

Current density 12 A/mm2 

Bair gap 1.2 T 

Bcore 1.35 T 

μeff ≈ 4050μo H/m 

Figure 2-24 illustrates the 3D geometry of the conventional 3-phase inductor 𝐿2 which forms 

the larger inductor within the LCL input filter. The total volume of the designed 3-phase 

inductors at the high power rating is 402.75 cm3
.  

 

Figure 2-24 Conventional 3-phase input AC inductor for the high-power drive of 38 kW 
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From FEA simulation, the voltage drop across the high-power filter inductor is the same as that 

of the low-power inductor at 3.77 V and the predicted inductance for the high-power filter 

inductor is approximately 160.85 𝜇𝐻 per phase, which is almost the same value predicted by 

the simple analytical method.  

The grid side inductors, 𝐿1, are designed in the same manner and have a total volume of 24.75 

cm3
. 

2.7.3 Manufacturing of LCL filter inductors for the high-power drive at 38kW 

For comparison purposes, some commercial input filter inductors were purchased. Figure 2-25 

shows these inductors, which correspond to those of the LCL type filter of the 38 kW drive. 

These are manufactured in the UK by the Majestic Transformer Company. 

 

Figure 2-25 Manufactured 3-phase LCL filter inductors for the drive of 38kW: a) drive-side 

inductors 𝑳𝟐; b) grid-side inductors  𝑳𝟏 

The volume of the 3-phase drive side inductors (𝐿2)  shown in figure 2-25 (a) is 2430 cm3 and 

the other set of grid-side inductors (figure 2-25 (b)) is 990 cm3. They are large because of the 

low current density necessitated by natural convection. 

 An overall comparison study of input LCL filters at different power ratings. 

Since the low- and high-power LCL filter inductors have been designed and optimised, the net 

volume of the grid- and drive-side inductors (𝐿1 and 𝐿2) are calculated. Three different 

conventional designs of input LCL filter are carried out in the previous section. The first two 

(a) (b) 
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filter designs are FEA models in which the third design is the industrial demonstrator of the 

high-power filter inductors. Table 2-10 illustrates these three different designs of the 3-phase 

LCL filter inductors. As shown in table 2-10, the industrial filter is designed with a low current 

density of 3.3 Arms/mm2 while the FE models designed with 12Arms/mm2 because those 

industrial inductors have to operate without any active cooling system. Industrial inductors are 

approximately five times physically larger than those designed in FE in this chapter. Also, table 

2-10 shows that filter inductors, 𝐿2, occupy a much larger volume than that of the grid-side 

inductors 𝐿1.  

Table 2-10 Comparison of low-and high-power conventional 3-phase inductors 

 Variable 

Low-power 

inductors 

(4.56 kW) 

FEA model 

High-power inductors (38 kW) 

Unit 
FEA model 

Industrial 

inductors 

(Demonstrator) 

Drive rated 

power 
𝑃 4.56 38 38 𝑘𝑊 

Rated 

peak current 
𝐼 8.966 75 75 𝐴 

Frequency 𝑓 50 50 50 𝐻𝑍 

Drive side 

inductance 

per phase 

𝐿2 1310 160 160 𝜇𝐻 

Grid side 

inductor 
𝐿1 37.56 5 5 𝜇𝐻 

Current density 𝐽 12 12 3.3 𝐴/𝑚𝑚2 

Winding fill 

factor (𝐿1 & 𝐿2 ) 
𝑓𝑓 50 50 𝐿1: 40,  𝐿2: 60 % 

Volume of 3-

phase inductor 

(𝐿1) 
VL1_3-phase 4.46 24.75 990 𝑐𝑚3 

Volume of 3 -

phase inductor 

(𝐿2) 
VL2_3-phase 85.65 402.75 2430 𝑐𝑚3 

Power loss 𝑃𝐿𝑜𝑠𝑠 73.5 367.05 561.8 W 

Energy density 𝐸 

𝐸𝐿1: 3.36 ×

10−4, 
𝐸𝐿2: 5.7 ×

10−4  

𝐸𝐿1: 5.65 ×

10−4, 
𝐸𝐿2: 1.12 ×

10−3 

𝐸𝐿1: 1.41 ×

10−5, 
𝐸𝐿2: 1.85 ×

10−4 

J/cm3 
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 Conclusion 

Input filters have been designed and simulated for the chosen low- and high-power drives. Due 

to improved current harmonic attenuation of the LCL filter, along with smaller dimensions, an 

LCL filter is chosen. The low- and high-power LCL filter inductors have been designed 

according to the chosen power ratings of drives. For each filter design, the optimal volume of 

copper and steel has been obtained. 

To give a baseline comparison with standard industrial input filters an industrial LCL filter 

inductor has been purchased, corresponding to that required for the high-power drive. The 

industrial filter is approximately five times physically larger than those designed in this chapter 

because it has to operate without any forced cooling.  
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CHAPTER 3  

High-Speed High-Power (HSHP) 

Electrical Machine Design 

Summary: In this chapter, low- and high-speed PM machines are identified and designed to 

form the foundation of an integrated motor drive. The proposed low- and high-speed machines 

are identically dimensioned, but operate at different shaft speeds of 3000 RPM and 25000 RPM 

respectively. The high-speed, high-power (HSHP) machine of 25000 RPM is manufactured in 

the final stage of this study, with the LCL filter inductors included in a single-packaged unit. 

Advanced materials have been chosen to reduce the machine’s size in terms of achieving high 

power density.  

The HSHP machine is chosen to be the base machine for this research due to the challenges 

with integration of passive filter elements into electrical machines of high power density. The 

losses from the high-speed machine and integrated filter inductors are analysed. 

 Background 

In recent years the demand to achieve higher torque density and more compact electrical motors 

has rapidly grown, particularly for applications which require high efficiency and smaller motor 

size [54]. Permanent magnet (PM) motors are widely used for various applications due to their 

merits of high torque-to-volume ratio, and high efficiency when operating in the constant torque 

region [54, 55]. Therefore, a PM type motor is chosen in this study to form the foundation of 

an integrated motor drive.  

 Permanent magnet machine 

There are different types of PM machines, including radial, axial and transverse flux machines 

and flux switching machines [56]. Due to the simplicity of its structure and manufacturing 

process, the surface-mounted permanent magnet (SMPM) motor, driven from a PWM voltage 

fed inverter (VSI), is chosen as a base machine type for this study. 
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Different winding configurations and the choice of slot/pole/phase have significant impact upon 

the contents of the space harmonics in the machine’s air gap and on the efficiency of the 

machine, including rotor losses, cogging torque and machine torque ripple. Different 

approaches have been implemented to determine the influence of stator teeth, magnet pole 

shape, magnet design with skewing and the arrangement of winding coils upon these unwanted 

effects [57-66]. 

Fractional-slot concentrated-winding (FSCW) synchronous PM machines have attracted 

interest due to their high power density, high efficiency and short end windings. However, one 

of the challenges of using FSCW is the rotor losses, particularly for high-speed machines which 

introduce large space-harmonic components of MMF that are not synchronised with the rotor. 

Parasitic effects such as vibration, noise, unbalanced magnetic forces and machine torque ripple 

are also potentially higher in FSCW PM machines because of the additional harmonic contents 

[66]. 

There are different topologies for the rotor design, including the magnet shape and location. 

The magnets can be placed either on the surface of the rotor body, inset or buried in the rotor. 

Figure 3-1 shows the general structures of PM machine rotors. 

                         

                                   (a)                                   (b)                                    (c) 

 

(d) (e) (f) 

  

(g) 

Figure 3-1 Some rotor possibilities: (a) and (b) surface PM; (c) inset PM; (d), (e), (f) and (g) 

interior permanent magnet (IPM) 

For applications with significant field weakening requirements the inset PM rotor topology is 

preferable due to the additional reluctance torque produced by the structure of the rotor. 
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However, this research focuses on the integration packaging techniques of passive filter 

components into electrical machines and the consideration of field weakening region is ignored, 

for the simplicity of machine design, the surface-mounted PM rotor type is chosen. With this 

choice, easily the magnet can be bounded to the rotor core where the manufacturing processes 

will be easier than the inset magnet rotor type. 

 Materials 

The choice of materials for any design depends on the type of application, including operating 

conditions, mechanical constraints and thermal aspects. In order to choose an electrical steel 

material for an electrical machine core, sleeve or magnets, the most important key factors are 

electromagnetic material properties, the strength to weight ratio, thermal capability and the side 

of cost. 

3.3.1 Stator material 

Magnetic steel materials vary in properties in terms of the ability to operate at different 

magnetic flux densities. This is based on the maximum achievable knee point which is dictated 

by the BH curve of each material. Laminated cores are widely employed in making the stators 

of electrical machines and the selection of lamination thickness depends on the machine’s 

electrical frequency, manufacturing processes and cost. Generally, for HSHP machines, the 

choice of a thin lamination is preferable, because the effect of eddy current losses are 

significantly reduced. However, the manufacturing cost and assembly of thin laminations in 

forming a machine stator are greater compared to that of thicker laminations. 

Powder metallurgy has evolved to produce consistent magnetic components for soft magnetic 

applications. This approach allows precise material control, the capability to have three-

dimensional magnetic flux distribution and the ability to build relatively complex shapes. Soft 

magnetic composite (SMC) materials now form a well-established process for producing 

powdered iron stators which offer performance levels approaching that of steel laminations. 

Furthermore, they offer design advantages due to the isotropic nature of the material [67, 68]. 

Super core (JNEX-Core) is the lowest loss non-oriented magnetic steel sheet of SiFe currently 

on the market: it is manufactured using an innovative process compared to conventional silicon 

steel sheets. The magnetic characteristics of silicon steel sheets are improved by increasing the 

silicon content, peaking at 6.5%. Figure 3-2 illustrates the principles of the manufacturing 
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process for 6.5% silicon steel sheets by chemical vapour deposition (CVD). The JNEX-Core 

material is widely used for high-frequency applications because of its low core loss and high 

permeability [69, 70]. Note, however, it does have a lower saturation flux density than 

lamination materials of lower silicon content. Figure 3-3 illustrates the manufacturing process 

of the silicon steel sheet, where the maximum permeability is achieved at a silicon content of 

6.5%.  

 

Figure 3-2 Illustration of enhancement of manufacturing process of siliconizing steel sheets [71] 

 

Figure 3-3 Magnetic characteristics of super core 10JNEX-900 [72] 
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Another electrical steel material is cobalt-iron based (CoFe) laminations which provide high 

performance at high electrical frequencies since laminations thickness of a CoFe can be thin up 

to 0.05 mm. However, this type of materials is expensive in terms of manufacture and material 

handling [73-75]. 

10JNEX-900 has been chosen in this study based on a comparison with more conventional 

electrical steel materials carried out later in this chapter. 

3.3.2  Magnet materials 

In order to achieve the desired magnetic loading of the machine and to sustain large armature 

currents without the possibility of demagnetisation, the designer should calculate and choose 

the maximum residual flux density of the magnet material. The residual flux density indicates 

the maximum magnetic loading which could be achieved with very deep magnets, though for 

high-speed machines where a rotor sleeve is needed, the effective air-gap is large and the 

achievable magnetic loading is much lower. The magnet’s tensile and compressive strength 

should also be considered when designing the stress requirements for the sleeve. The magnets 

are the most expensive component of all the materials in the HSHP machine.  

A significant factor in terms of the selection of magnet material is its ability to resist 

demagnetisation at high operating temperatures and stator current, at which point it has 

maximum exposure to a demagnetising field produced by the armature stator windings.  

In practice an encased high-speed rotor may need a high temperature to cure the chosen rotor 

sleeve and therefore the magnet strength of the chosen magnet type should be high enough to 

withstand the temperature used during the manufacturing process. 

3.3.3 Sleeve materials 

Rotor sleeve materials have evolved to be used at higher operating stress along with reduced 

mass. Inconel and stainless-steel sleeves were widely used in the past as they are simple to 

manufacture and assemble on the rotor. Carbon Fibre Reinforced Polymer (CFRP) sleeves have 

been introduced to push the limits of stress and self-stressing. The carbon fibre sleeve is a 

composite material which is commonly used for HSHP rotor machines to give better strength-

to-weight ratios compared to stainless steel and Inconel sleeves [76]. However, CFRP has low 

thermal conductivity, which adds challenges to rotor design in terms of high temperature impact 

on the rotor magnet’s performance. Note that, although metallic sleeve materials have better 
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thermal conductivity, they generally have a high electric conductivity and significant eddy 

currents may be generated in them which can itself increase the thermal challenge.  

The thermal conductivity of the sleeve material type used affects the capability to conduct losses 

to the rotor surface, where they can be removed by convection in the machine air gap. HSHP 

rotors which use CF sleeves often a forced convection cooling system to avoid any excessive 

temperature generated by rotor eddy currents.  

 Specifications of low- and high-speed PM machines 

The initial specifications of the low- and high-speed surface mounted machines are shown in 

table 3-1. The two machines have similar dimensions, but operate at different rated speeds. 

Table 3-1 Specifications of low- and high-speed machines 

Machine speed 
(RPM) 

Current density 
(Arms/mm2) 

DC-Link voltage 
(V RMS) 

Machine stack 
length 
(mm) 

Outer machine 
diameter 

(mm) 

3000 12 530 70 109 

25000 12 530 70 109 

Design of the HSHP machine at 25000 RPM is first presented in detail. Then, the low-speed 

machine at 3000 RPM is designed and optimised using the same approach. 

  Design optimisation of the HSHP machine at 25000 RPM 

The HSHP machine has been modelled using a Visual Basic Script (VBS) file, enabling to 

parameterise each vertex path of the machine geometry. The parametric model was used in 

electromagnetic finite element software  

Optimisation of the HSHP machine has been carried out using commercial FEA packages 

including Infolytica Magnet, OptiNet, Ansys and MotorSolve. In order to be certain that the 

final motor design is formally optimised, an evolutionary optimisation (i.e. Genetic algorithm) 

was used, aiming to achieve high torque density at fixed current density, machine stack length 

and stator outer diameter.  

The objective of the optimisation process is to obtain high power density. One of the key factors 

in achieving high power density is to operate near the capacity limits of each component in the 

design, including electromagnetic, thermal and mechanical limits.  
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An objective function aiming to achieve a high-power density under some machine constraints 

has been defined as given in equation 3.1. The objective function is targeted at maximising 

machine torque under some constraints: back-EMF, slot fill factor and current density. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 {𝐹(𝑧)} = {
𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑇𝑜𝑟𝑞𝑢𝑒

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑡𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥
} (3.1) 

where the machine torque is the highest achievable torque in relation to the machine torque 

(maximum value which is targeting by the optimisation). In equation (3.1) F(z) is a vector of 

optimisation variables including magnet dimensions and stator tooth, slot dimensions and stator 

core back depth. The details of optimisation including the initial variable and fixed parameters, 

intervals for the constraints are given in sections 3.5.1. 

3.5.1 Parameters and constraints for optimisation 

The optimisation process fixes the following parameters: 

 Axial lamination stack length (70 mm) 

 Air-gap length (1.5 mm – to accommodate a rotor sleeve) 

 Winding slot fill factor (0.6)  

 Current density (12 Arms/mm2) 

 Number of poles (8 poles) 

 Number of slots (12 slots) 

It is to be noted that, because both motor and filter losses have to pass through to the water 

jacket, the presence of the filter will reduce the thermal performance of the motor. The chosen 

current density of 12Arms/mm2 was still considered achievable, despite this effect. 

The variable parameters are as follows: 

 Stator inside diameter 

 Stator core back depth 

 Tooth width 

 Tooth-tip depth 

 Tooth-tip slant depth 

 Magnet arc 

 Magnet depth 

 Magnet insertion depth 

 Stator slot opening 
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 Slot depth 

 Rotor inner/outer diameter 

These variables are illustrated in figure 3.4. 

 

Figure 3-4 Illustration of parameters set for optimisation in 12 slot/8 pole HSHP PM motor 

The optimisation tends to make the magnet arc large, as shown in figure 3-4, in order to produce 

the maximum back EMF. The saliency effect was found to be insignificant. The tooth width 

and stator core back were minimised to give flux densities of around 1.4T and 1.3T respectively, 

which are consistent with the limits of the magnetic characteristics of the 10JNEX-900 material 

used. The choice of magnetic material of JNEX-core is based on work in section 3.5.5.2.1. 

All the varying machine parameters have an influence on the objective function which 

necessitates some constraints such as back EMF, current density and slot fill factor, targeting 

to limit key specifications. In the design of HSHP machine, the objective function searches the 

candidate machines under those constraints in user-defined intervals. The constraints have been 

implemented in OptiNet to achieve more acceptable design results. 

There are other considerations, including the following: 

1. The choice of a modular machine stator: as the chosen machine forms the foundation of 

an integrated motor drive, the choice of a modular stator is important in terms of the 

incorporation of other magnetic components which share the same machine stator 

geometry; this is covered in Chapter 4.  

2. The simplicity of design of the chosen base machine. 
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3.  A compressed coil approach: a high slot fill factor can be achieved and lower machine 

slot area is required for the same amount of MMF, which in turn can help in achieving 

a high power density. 

4. The avoidance of magnet demagnetisation at maximum armature current and high 

operating temperature. 

5. Good thermal design to permit a high current density and consequently a higher power 

density.  

Based on the optimised FE model after carrying out optimisation with OptiNet and MagNet, 

some key materials have been identified for further investigation as given in Table 3-2. At  

25000 RPM the fundamental electrical frequency is high (1.66 kHz), so AC losses in 

laminations and copper windings are likely to be high. The JNEX-Core lamination material has 

been chosen for the HSHP machine to reduce iron loss. For the windings copper Litz wire is 

chosen to reduce proximity losses; further details are included later in this chapter. 

Table 3-2 Chosen materials for HSHP machine 25000 RPM 

Item Chosen material Units 

Magnet material 
Neodymium iron boron 

(N42UH) 
--- 

Sleeve material: fibre AS4C Carbon Fibre --- 

Stator lamination material 10 JNEX-900 --- 

Rotor lamination material M-270–35A --- 

Non-magnet wedge insulation Hylomar ST574 --- 

Ground wall insulation Peek --- 

Shaft material High strength steel --- 

Type of copper wire Copper Litz wire 20 × 30 AWG 

Winding thermal class CA 200 ℃ 

Winding type 
Concentrated – double layer 

(parallel connection) 
--- 

Target slot fill factor (%copper 

in slot) 
60 % (in per cent) 

Because the carbon fibre sleeve is a poor thermal conductor, a forced cooling system is used 

for the rotor. A hollow shaft design utilising forced air cooling has been chosen and designed 

such as to be the only cooling for the rotor. The design of the hollow shaft is beyond the scope 

of this research. 



High-Speed High-Power (HSHP) Electrical Machine Design                                               Chapter 3 

62 

By increasing the pole number of the machine the end-winding length and core back depth can 

be reduced, giving a smaller machine.  However, the impact upon electrical frequency must be 

considered.  An 8 pole machine design is chosen to give a compromise: the peak fundamental 

electrical frequency is 1667Hz. Higher frequencies are difficult to achieve because of limits 

upon power electronic switching frequency and increased iron loss at very high frequency.  

The chosen winding layout for a 12 slot - 8 pole HSHP-PM machine is illustrated in figure 3-

5, showing that the proposed machine has a double layer concentrated winding configuration. 

 

Figure 3-5 12 slot - 8 pole HSHP machine windings layout 

3.5.2  Unbalanced magnetic pull in rotating electrical machines 

Unbalanced magnetic pull (UMP) tends to occur due to rotor eccentricity or from having an 

odd number of slots in the machine stator. Since the chosen machine design has an even number 

of slots and the effective air-gap including the sleeve, is large, the problem of UMP is not 

expected to be an issue in the base machine.  

3.5.3  FEA Results 

A 2D model of the proposed PM machine has generated and simulated over one full electrical 

cycle by using Infolytica-Magnet and it is solved using transient 2D with motion. There is an 

internal boundary condition of flux tangential is applied for the rotor shaft area, assuming 

magnetic material. The final machine geometry is given in figure 3-6, which presents the full 

load flux density with the meshes overlaid to illustrate the model. In order to gain more accurate 

results from the simulated 2D model, different mesh size regions were used in the model. Mesh 

size for the complete model was 0.75 mm except for the sleeve mesh size of 0.05 mm; this is 

considered suitable for a sleeve thickness of 0.35 mm. Further details are presented later in this 

chapter. 
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Figure 3-6 Illustrates FEA model with the mesh size elements and contour plot at 25000 RPM 

3.5.3.1 Machine torque prediction and back EMF 

A three-dimensional electromagnetic FEA model was built and simulated as shown in figure 3-

7, based on the final optimised parameters of the 2D model, in order to assess the torque 

capability and back EMF. The 3D generated model included all the enhancement techniques in 

terms of improving machine performance, such as a segmented magnet rotor, embedded 

nonmagnetic ring within the fixed magnetic collar built within the rotor shaft, and also uses 

copper Litz wire for a significant reduction in AC losses. Due to an asymmetry of the axial 

length of the complete design of the HSHP machine in the Z-axis direction, as shown in figure 

3-7, including the rotor shaft and front-end collars along with the influence of end windings on 

the machine performance, the full model design was simulated in a 3D time transient 

simulation. 

B≈ 1.3 T 

B≈ 1.45 T 

Mesh size 

0.75 mm 

Sleeve mesh size 

0.05 mm 
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Figure 3-7 3D Magnetic FEA model of the HSHP machine at 25000 RPM 

The predicted mean torque performance using the model in figure 3-7 is shown in figure 3-8 

for one mechanical revolution, with an output of 13.2 Nm at normal operating conditions, the 

machine rated current and base speed are 47.4 Arms and 25000 RPM respectively. Since the 

machine torque is affected by cogging torque and back EMF harmonics, the mean torque was 

calculated over an electrical cycle. 

The line-line back EMF at a shaft speed of 25000 RPM is shown in figure 3-9, while the 

harmonic spectrum for the chosen design derived from FE results is shown in figure 3-10. 

The simulated design torque (Ideal currents) 

 
Figure 3-8 3D torque performance prediction at 25000 RPM 

60 120 180 240 300 360
0

3

6

9

12

13

14

15

Source phase angle [electrical degree]

T
o

rq
u

e
 [
N

m
]

 

 



High-Speed High-Power (HSHP) Electrical Machine Design                                               Chapter 3 

65 

 

Figure 3-9 3D Back EMF voltages at 25000 RPM 

 

Figure 3-10 Harmonic spectrum of Line-Line back EMF at a fundamental frequency of 1.67 kHz 

In figure 3-9, the line-line back EMF voltage achieved is about 83% of that of the maximum 

line voltage available from the drive used. The contents of the back-EMF harmonics were 

investigated and are presented in figure 3-10. The most troublesome low order harmonics are 

the 5th and 7th harmonics [56]. 

3.5.3.2 Machine inductance 

Using the 2D and 3D models shown in figures 3-6 and 3-7, an estimate of machine inductance 

for both models, including the effect of end windings was derived. Due to the non-salient rotor, 

the inductances in the q and d axes are approximately the same. In order to investigate the 

influence of machine excitation upon the machine inductance, the method of frozen 

permeability was carried out. Different methods of estimating machine inductance were 

employed as follows: 
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 A static simulation was performed by applying DC currents in the windings and setting 

the magnets residual flux density to zero. The 2D model gave a result of 0.249 mH, 

while the 3D model including the end windings effect gave a result of 0.2522 mH. It is 

noticeable that the contribution of the inductance by the end windings is 0.0032 mH. 

 A frozen permeability solution was carried out in order to estimate the machine 

inductance under saturation conditions representative of the loaded condition. The first 

nonlinear simulation was performed with the machine at normal operating conditions 

(i.e. the machine at load). A frozen permeability solution was conducted where element 

permeabilities were taken from the original nonlinear solution. In the second simulation, 

the contribution of phase currents solely was considered by turning off the magnets, and 

in this case the coercivity (Hc) of the PM materials was set to zero. Thus, in the second 

simulation, the resulting field effect in the machine stator from the previous nonlinear 

simulation is included in the calculation of the machine inductance. The machine phase 

inductance was calculated using a 2D FEA model, giving a result of 0.2411 mH. 

Table 3-3 shows the results for predicted machine inductance using the static and frozen 

permeability solutions. 

Table 3-3 Validation the HSHP machine inductance (25000 RPM) 

Static solution 

3D FEA model (mH) 

Frozen permeability solution 

2D FEA model (mH) 

0.2522 0.2411 

It can be seen that the influence of stator permeability associated with magnetic flux density on 

machine inductance is small. The frozen permeability solution should be applied when a 

machine is heavily loaded, and hence the side effect of saturation in this case could be 

determined. 

3.5.4 Rotor stress analysis validation 

Rotor stress prediction was performed using the Ansys software package. A 2D rotor model 

including the CFRP sleeve was modelled: the complete rotor model and mesh are shown in 

figure 3-11. For this mechanical analysis, all magnet segments are assumed to be bonded to the 

rotor core. Therefore, bonded contact was used in mechanical FE software between the magnets 

and rotor core. The magnets must be resistant to centrifugal forces (remain attached to the rotor) 

at all operational speeds: a safety factor was introduced to ensure that the rotor could operate at 
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20% above the maximum designed speed i.e. at 30,000 RPM. The segmented magnets were 

constructed by bonding them to the rotor core and all the gaps between the magnets poles to be 

filled with a resin epoxy material. A CFRP sleeve with a final thickness of 0.35 mm was then 

wrapped at a tension of 700 MPa (room temperature) over the full assembly. The machine air 

gap is fixed in the optimisation process based on the electromagnetic machine design and as it 

is large enough to accommodate the sleeve. However, the sleeve thickness has been chosen 

based on the construction limitation advised by Arnold Magnet company. 

 

 

 

Figure 3-11 Rotor components including sleeve with mesh overlaid 

The results of the predicted deformation and stress models are shown in figure 3-12, showing 

that the CFRP sleeve at 30,000 RPM is still capable of keeping the rotor structure safe. 

 

         (a) 

Mesh size  

0.05 mm 
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                        (b) 

Figure 3-12  Rotor structure analysis: a) deformation on sleeve; b) equivalent von-Mises stress 

on rotor structure 

Figure 3-12 (a) shows that the maximum deformation is 0.825 𝜇𝑚, while the maximum stress 

occurring on the sleeve is approximately 5.03 MPa while the ultimate tensile strength of the 

CFRP is over 4600 MPa [77]. Due to the chosen sleeve thickness, the stress on the sleeve is 

very small. In figure 3-12 (b), the equivalent von-Mises stress on the rotor structure is 24.92 

MPa, while the tensile strength of the rotor material (M-270–35A) lamination is 450 MPa. As 

a consequence, the mechanical integrity of the rotor structure, including the magnets and sleeve 

is considered secure. Clearly the sleeve is operating at only a tiny percentage of its stress 

capability. However, it is not possible to further reduce sleeve thickness because of construction 

limitation. 

3.5.5 Loss estimation 

High-speed high-power machines introduce significant sources of loss. High electrical 

frequencies cause significant additional AC losses in the armature windings, along with 

introducing large iron losses, so forced cooling systems are required to maintain safe operating 

temperatures. The low inductance of the machine, in conjunction with low switching 

frequencies in the associated drive tend to cause significant time harmonics in the machine 

current waveforms, which can lead to large losses in armature conductors and the rotor. 

Windage and friction losses lead to additional other sources of losses. 
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3.5.5.1 Rotor losses 

Rotor losses are a major problem because they are difficult to remove. Generally, there are two 

techniques that employed to reduce these losses: stator based methods and rotor based methods. 

Stator based methods reduce the MMF harmonics by changing the winding configuration, altering 

the dimensions of the machine slot opening or increasing the air-gap length. Rotor based methods 

are focused on reducing the impacts of the harmonics by altering the conductivity of rotor elements 

such as magnet segmentation, using eddy current shields and bonded magnets that have low 

conductivity [78-81]. 

For the proposed HSHP machine, the rotor magnets were segmented axially to reduce the flux 

driving eddy currents around any one path. The predicted magnet loss was reduced by 83%. 

This achievement was accomplished by segmenting the magnet axially into 34 slices in each 

pole. Another attempt was then made to achieve lower magnet losses. The rotor magnets were 

segmented radially and axially at the same time, but the additional reduction in losses was only 

1% as shown in figure 3-13. In addition, this is not a cost-effective method because extra 

manufacturing processes would be needed, so this was not considered further. Generally, 

magnet segmentation is also very costly, particularly at low segment widths, as material 

removed by the cutter becomes a large proportion of the final magnet. Figure 3-13 illustrates 

the different losses in one pole of the rotor magnet which obtained from the 3D model at normal 

operating conditions, full armature current and the base rotor speed 47.4 Arms and 25000RPM 

respectively. 

 
Figure 3-13 Effect of magnet segmentation on losses at rated current and shaft speed 

Figure 3-14 (a) illustrates an eight-pole rotor assembly modelled using the PM material grade 

N42UH3, laminated axially in 34 slices which were cylindrically ground and contained in a 

                                                 
3 The B-H curve of the magnet material used is presented in Appendix B. 
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filament-wound carbon fibre sleeve. The eddy currents in each individual magnet are 

demonstrated in figure 3-14 (b). The manufactured segmented magnet for one pole is shown in 

figure 3-14 (c).  

 

(a) 

 

(b) 

 

      (c) 

 

(d) 

Figure 3-14 High rotor speed: a) rotor assembly, showing segmented magnets; b) effect of 

segmentation on eddy current paths; c) manufactured segmented rotor magnet for one pole; d) 

representation of the wedge filled by the resin 

Utilising an eddy current shield [82] to reduce the magnet losses has been investigated. The 

machine rotor including the magnets was surrounded by a copper sheet and then an Inconel 

sleeve, as shown in figure 3-15. The main function of the copper shield is to prevent the major 

harmonics in the machine air gap from reaching the magnets. However, the loss caused by the 

copper shield is over five times the magnet losses and hence the eddy current shield was not 

considered further. As a consequence, the method chosen to reduce the magnet losses for the 

proposed machine rotor was magnet segmentation. 
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Figure 3-15 Eddy current shield applied to the high-speed rotor 

MMF time-harmonic losses in magnets 

The three-phase drive to power the motor used in this work produces phase current with a THD 

of 7.18%. The resulting phase current waveform is shown in figure 3-16. These time harmonics 

increase the magnet loss to 11.58 W per pole. 

 

Figure 3-16 Drive phase current with 7.18%THD 

3.5.5.2 Stator losses 

The various components of stator losses are studied in this section. 

3.5.5.2.1 Iron losses 

Different approaches have been introduced by various authors in relation to improving the 

accuracy of iron loss estimation and the literature in this field is extensive. The prediction of 
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core losses in rotating electrical machines proposed by Bertotti et al. [83, 84] has been 

developed as a frequency domain model which separates the losses into three components: 

hysteresis, eddy current (or classical), and anomalous (or excess, or dynamic) losses, as shown 

in equation 3.2. 

𝑃𝐼𝑟𝑜𝑛 𝐿𝑜𝑠𝑠 = 𝑃𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 + 𝑃𝐸𝑑𝑑𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑃𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 (3.2) 

 Eddy current loss density 

The magnetic flux variation in a solid stator creates induced voltages which produce eddy 

currents circulating within the stator steel. These eddy currents will have a negative impact on 

the reaction magneto-motive force (MMF) towards any useful MMF. A previous study [83] 

investigated many factors which affect eddy current limitations, as given in equation (3.3). The 

eddy current loss density is proportional to lamination thickness squared (𝑡2), operating 

machine frequency squared (𝑓2), and flux density squared (𝐵2), while it is inversely 

proportional to material resistivity as illustrated in equation (3.2). 

𝑃𝐸𝐶 =
𝑡2 𝜔2 𝐵2

24 𝜌
 (3.3) 

Consequently, Bertotti’s equation can be rewritten as adopted elsewhere [9] in the following 

form: 

Eddy current loss (in watts per kilogram) 𝑃𝐸𝐶 = 𝐾𝑒 𝑓
2 𝐵2 (3.4) 

where 𝐾𝑒 is a function of lamination thickness squared and material resistivity. 

 Hysteresis and anomalous losses 

The hysteresis loss in a stator core is caused by localised irreversible changes through the 

process of magnetisation [85]. The domain structure of magnetic material with an external 

magnetic field where the domains are aligned with the applied field is as shown in figure 3-17. 

 

Figure 3-17 Behaviour of domain alignment for an external magnetic field [86]. 
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This type of loss is known as hysteresis power loss (𝑃𝐻𝑦) and it can be calculated as given in 

equation 3.5: 

Hysteresis loss (in watts per kilogram) 𝑃𝐻𝑦 = 𝐾ℎ 𝑓 𝐵
𝛼   (3.5) 

The external magnetic field of an application will accelerate the domains and increase the 

velocity, resulting in a micro-eddy current loss, and this is known as anomalous or excess loss 

(𝑃𝐴𝑛) as given in equation 3.6. 

Domain loss (in watts per kilogram) 𝑃𝐴𝑛 = 𝐾𝑎 𝑓
1.5 𝐵1.5   (3.6) 

Losses of the machine core are a function of machine frequency and the magnitude of flux 

density, where 𝐾ℎ, 𝐾𝑒, 𝐾𝑎 and α are material dependent constants [42]. The total iron loss can 

be calculated as given in equation 3.7. 

𝑃𝐼𝑟𝑜𝑛 𝐿𝑜𝑠𝑠(in watts per kilogram) = 𝐾ℎ 𝐵
∝ 𝑓 + 𝐾𝑒 𝐵

2 𝑓2 + 𝐾𝑎 𝐵
1.5 𝑓1.5 (3.7) 

However, it has been stated [83] that measured core losses will be about 20% higher than 

predicted. In addition, the discrepancy between finite-element analysis predictions and real 

measurements can ultimately be attributed to the additional losses caused by eddy currents in 

the stator cage and the degradation of material properties due to manufacturing processes, 

including cutting, material-handling and machine core assembly. Since the electrical frequency 

of the proposed high-speed machine is relatively high, it was important to employ an efficient 

magnet steel material which would give as low iron losses as possible. Different magnet 

materials have been simulated at the same operating conditions, as shown in figure 3-18. 

 

Figure 3-18 A comparison of iron loss for different core materials 
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The 10JNEX-900 material achieved the lowest iron losses compared to the other candidates 

and was therefore chosen in this research. 

3.5.5.2.1.1 Prediction of iron losses based on the Steinmetz equation for the HSHP 

machine 

The operating electrical frequency of the proposed HSHP machine is 1.666 kHz, and the super-

core 10JNEX-900 has low core loss around the fundamental machine frequency [69]. The 

material constants of the JNEX-Core are given in table 3-4 along with a negligible anomalous 

loss which is very small compared to the eddy and hysteresis losses and is therefore ignored. 

Table 3-4 Material dependent constants for the super-core of 10JNEX-900 

Material constant Value 

𝐾ℎ 0.00475872 

∝ 1.14821 

𝐾𝑒 5.41279e-006 

Figure 3-19 shows different components in the machine stator where the losses in each part 

have been calculated individually. In order to assess the accuracy of this method, the peak value 

of flux density in each iron component was obtained from a 2D FE model of the machine as 

shown in table 3-5. In order to investigate the variation of magnetic flux density within the 

machine stator, the resulting full load flux densities for each stator part (figure 3-19) are shown 

in table 3-5. The electric load flux density is obtained at full armature current when the magnets 

are turned off and then the strength of electric load flux density can be noticeable. The resultant 

flux density values are used in order to calculate iron losses using Steinmetz equation. 

 

Figure 3-19 Different stator components 
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Table 3-5 Magnet and electrical load flux densities in the stator regions 

 Stator components 

Core back tooth Tooth tip 

Electrical-load flux 

density (T) 

0.77 0.72 0.65 

Magnet-load flux 

density (T) 

1.14 1.36 0.92 

Resultant flux 

density (T) 

1.35 1.5 1.08 

The resulting full load flux densities were applied in equation 3.7. Figure 3-20 illustrates the 

calculated iron losses compared to those obtained from the 2D FE model. Although the resultant 

flux density is obtained from the FE model, the results calculated from the Steinmetz equation 

are still valid for those obtained from the FE model. The rotor losses, which are about 0.6W, 

are not included in the calculation, because the magnetic flux is synchronised with the rotor 

speed. 

 

Figure 3-20 Composition of full load iron losses for the HSHP machine stator 

The percentage error between the theoretical and FE results is about 7%. The total losses 

calculated theoretically are 242 W while the FE model gives a result of 225 W.  

In practice, the measured values of iron losses might be slightly different from the FE results 

due to bearing friction losses, effects of the stator casing and the manufacturing process of the 

machine.  

Further information about other practical measurements of iron losses can be found in [87].  
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3.5.5.2.2 Copper losses 

The composition of copper losses in high-speed high-power machines includes not only purely 

resistive loss. Elevated frequencies in high-speed, high-power machines lead to proximity and 

skin phenomena which cause significant additional losses. The windings losses consist of two 

components as follows: 

1. DC losses, which are mainly caused by the RMS current; 

2. AC losses, due to the proximity and skin effects at the high operating frequency caused 

by the currents flowing in the conductors; 

The operating frequency of the HSHP machine is 1.666 kHz, and the AC losses will, therefore, 

add a significant additional loss to the overall machine losses. 

 DC winding loss 

The HSHP PM machine has 36 bundles per coil and each bundle has 20 strand Litz wire, where 

each phase has 4 parallel coils. The approximate mean length of the end windings 𝑙𝐸𝑛𝑑 𝑤. in one 

side of a tooth is 28 mm with a slot axial side-length 𝑙𝑎 of 70 mm. The copper resistivity 𝜌 is 

1.68 × 10−8 Ωm at a temperature of 20°C, the cross-sectional area (𝐶. 𝑆. 𝐴) of each strand is 

0.0509 𝑚𝑚2, and the predicted resistance per phase of the armature windings is 29.11 mΩ, as 

can be calculated as shown in equation 3.8: 

𝑅𝐷𝐶 =
𝜌𝑐 × 2 (𝑙𝐸𝑛𝑑_1𝑠𝑖𝑑𝑒 + 𝑙𝑎_1𝑠𝑖𝑑𝑒) 𝑁

𝐶. 𝑆. 𝐴 × 20𝑠𝑡𝑟𝑎𝑛𝑑 × 4𝑐𝑜𝑖𝑙𝑠 𝑝𝑒𝑟 𝑝ℎ𝑎𝑠𝑒
 (3.8) 

The total estimated DC loss of the armature 3-phase windings (PM machine windings) based 

on Ohm’s law equation 𝐼2𝑅 is 195.8 W. 

A feature of the DC losses in conductors that must be considered in the design of high-speed 

machines is the variation in the resistivity of copper with temperature. The temperature 

coefficient of the resistivity of a conductor material has a significant impact on DC losses in 

the winding corresponding to the operating temperature. Since the expected machine winding 

temperature under normal operating conditions is 80°C and the temperature coefficient is 

0.00399𝐾−1, the DC resistance at the specified operating temperature is 36.08 mΩ, as 

calculated from equation 3.9 [56]. Although, the expected winding operating temperature is 

below the thermal class of copper winding used in the costruction demonstrator, this would help 

protect machine coils from an exccesive thermal stress when they work closer to the thermal 
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limit. In the meanwile, the type of copper Litz wire which was bought for the prototype is met 

with the required specifications such as the crossectional area of wire and number of strands 

and it is enhanced with a high thermal class up to 200 C. Therefore, it was accepted to be used 

for the constructed prototype. 

𝑅 = 𝑅𝑟𝑒𝑓[1+∝ (𝑇 − 𝑇𝑟𝑒𝑓)] (3.9) 

where 𝑅 is the conductor resistance at temperature T, 𝑅𝑟𝑒𝑓 is the conductor resistance at the 

reference temperature 𝑇𝑟𝑒𝑓, and ∝ is the temperature coefficient of resistance for the conductor 

material. 

As a result, the predicted total DC loss at the specified operating temperature is 242.67 W. 

 AC winding losses 

The AC losses in most low-speed machines are very low as the electrical machine frequency is 

not very high. The additional AC loss in HSHP machines is caused by proximity due to the 

type, shape and arrangement of coils within the machine slots associated with skin effect. 

The skin effect describes the depth for high frequency currents to flow close to the surface of a 

conductor, as illustrated in equation 3.10. If the skin depth is larger than twice the conductor 

diameter, then the effect can be ignored. The electrical frequency of the HSHP machine is 1.666 

kHz and hence the skin depth is 1.598 × 10−3m, as calculated from equation 3.10 [56, 88]. 

𝛿 = √
2

𝜔𝜎𝜇𝑜
 (3.10) 

where 𝛿 is the skin depth, 𝜔 is the electrical angular velocity, 𝜎 is the copper conductivity and 

𝜇𝑜 is the permeability of free space. 

In this analysis, a 0.25 mm diameter of a copper strand is approximately 6 times smaller than 

the skin depth and hence the skin-effect is not significant. 

In order to predict AC losses, a method called the squared field derivative has been introduced 

by Charles [89] for calculating eddy current losses due to the proximity effect. The current 

flowing through each conductor will produce a magnetic field which crosses other conductors 

in the slot and causes an induced eddy current circulating in each conductor, subsequently 

producing heat loss in the slot. Figure 3-21 illustrates the closed loops of the magnetic strength 

field (H-field) within a machine slot. 
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Figure 3-21 MMF flow chart within a slot with conductors 

In the slot shape shown in figure 3-21, the MMF is assumed to be evenly distributed across the 

slot cross-sectional area and the MMF drop in the stator iron is assumed negligible. Utilising 

Litz wire results in uniform current density distribution, J, and hence the leakage field across 

the slot at a given depth of ℎ (shown in figure 3-21), from the stator iron can be related to 

current distribution within the slot.  

𝑀𝑀𝐹𝑠𝑙𝑜𝑡(𝑡) = ∮𝐻(𝑡) 𝑑𝑙 = ∬𝐽𝑑𝑆 (3.11) 

𝐵(ℎ) =
𝜇𝑜 ×𝑀𝑀𝐹𝑠𝑙𝑜𝑡
𝑠𝑙𝑜𝑡 𝑤𝑖𝑑𝑡ℎ 𝑎𝑡 ℎ

=
𝜇𝑜 𝐽 𝑙𝑠𝑤 ℎ

𝑙𝑠𝑤
 

(3.12) 

𝐵(ℎ) = 𝜇𝑜 𝐽 ℎ (3.13) 

This approach is that of a mainly time-dependent magnetic field varying within each conductor 

due to the conductors in the slot carrying current, and the instantaneous AC loss can be 

calculated in each layer, m, as given in equation 3.14 where 𝑁𝑚 is the number of conductors in 

each layer at a slot depth of ℎ𝑚 [89] 4. 

𝑃𝐴𝐶(𝑡) =  
𝑁𝑚 𝜋 𝑙𝑎 𝐷𝑐

4

64 𝜌𝑐
(
𝑑𝐵𝑚(𝑡)

𝑑𝑡
)

2

 (3.14) 

where    𝐵𝑚(𝑡) = 𝜇𝑜 𝐽 ℎ𝑚sin (𝜔𝑡) (3.15) 

                                                 
4 The analytical derivation of the AC losses equation is illustrated in Appendix A. 
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Here 𝜇0 is the permeability of free space, 𝐵 is the flux density in the conductor, 𝜔 is the 

electrical frequency, 𝑙𝑠𝑤 is the slot width, 𝐷𝑐 is the conductor diameter, 𝑙𝑎 is the conductor axial 

length, and 𝜌𝑐 is the resistivity of copper. 

The above formula assumes there are no circulating currents between strands. This is an 

accurate assumption for Litz wire, where transposition of superconductors should virtually 

eliminate this effect. 

Although the accuracy of this analytical approach is sufficient with an open slot, this method 

will not be adequate when slot closure features are considered. The fringing magnetic fields 

between tooth tips will affect the concentration of flux density in the bottom of the slot, and 

therefore the estimated flux density given in equation 3.15 is no longer be correct. The AC 

losses have been extensively investigated in literature in order to derive power losses in Litz 

wire [90-95]. 

In the proposed machine design, the slot is a conventional slot shape as shown in figure 3-22 

and the slot closure effect must be taken into the account with regards to estimating AC losses 

accurately along with avoiding any design concessions. 

 

Figure 3-22. Geometry of the proposed machine slot 

As a result, a 2D FE model has been simulated with the rated machine input current to determine 

the contribution of fringing flux between slot tips in the lower windings layers. This simulation 

initially examined the AC winding loss conversion factor which is defined as: 

𝐴𝐶 𝐿𝑜𝑠𝑠 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 ( 𝐾𝐴𝐶) =  
𝑅𝑎𝑐
𝑅𝑑𝑐

 (3.16) 

It can be seen from the definition of 𝐾𝐴𝐶 that the highest AC resistance gives the highest 

conversion factor. Therefore, reducing the cross-sectional area of the conductors will reduce 
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the AC losses as the proximity losses and skin effect will be reduced. This argument leads to 

the use of Litz wires with an appropriate diameter and number of strands in each bundle. The 

advantages of using compressed Litz coils are that they have the following characteristics: 

 Higher efficiency 

 Limited proximity and skin effects 

 Mitigated eddy current loss 

 Lower heat windings 

 Significant weight reduction 

 High slot fill factor 

Due to the flexibility of litz wires, the coil shape within the machine slot can be easily formed 

and positioned using the technique of compressed coils associated with impregnation glue 

process. The machine coil has been designed and simulated in a 2D FE model (shown in figure 

3-23) as it can be practically performed. Firstly, all copper conductors within the machine slot 

were simulated in a case of stranded type, then DC loss was obtained by solving the model in 

transient 2D with motion. Secondly, in order to calculate the DC loss and AC losses 

collectively, all copper conductors simulated again in a case of solid type. Different numbers 

of strands in each bundle have been simulated to achieve minimised AC winding losses as 

shown in table 3-6, in which end windings losses are not included.      

Table 3-6 Improvement in AC winding loss conversion power factor 𝑲𝑨𝑪 via 2D FEA 

Type of wire 
DC loss/phase 

(W) 

AC loss/phase 

(W) 

𝑹𝒅𝒄/phase 

mΩ 

𝑹𝒂𝒄/phase 

mΩ 
𝑲𝑨𝑪 

36 solid turns 49.67 55.65 20.79 47 2.26 

36 bundle/4 strands 49.67 10.78 20.79 27 1.29 

36 bundle/20 strands 49.67 5.5 20.79 24 1.18 

The results for AC losses conversion ratios reveal that the contribution of the AC winding losses 

is reduced by a ratio of 1.08 when using the Litz wire of 20 strands × 30 AWG. Figure 3-23 

illustrates the effect of fringing flux on the bottom bundles of the chosen Litz wire, where the 

effect of magnetic fringing flux is obvious in the lower windings which are near to the closure 

of the machine slot.  
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Figure 3-23 Field and current contributions of adjacent conductors within the slot 

The strength of the electric fields produced by the current flowing through each conductor 

reduce gradually with the height of coil because of there are fewer turns remaining towards the 

top of the coil. 

As the total winding power loss is known, the AC resistance can be calculated from equation 

3.17, which gives a result of 1.18 Ω: 

𝑅𝐴𝐶 = 
𝑃𝑇𝑜𝑡𝑎𝑙

𝐼2𝑅𝑀𝑆
⁄  (3.17) 

It is important to note that the AC effects in the winding active length are dominant as compared 

with the end winding region. Therefore, the end winding resistance was considered only in the 

calculation of DC resistance. 

3.5.5.3 Windage losses of a rotating machine 

High-speed machines with relatively large rotor diameters will have significant windage losses. 

The windage loss is the power absorbed by the air that flows between the stationary stator and 

the moving rotor (shearing stress). This type of loss depends on various operating conditions 

and contributes to the overall machine efficiency. 

Another undesirable characteristic is where the dissipated power in the air is converted into 

heat, which may overheat the rotor and increase the stator bore surfaces which are in contact 

with the air gap. Thus, the prediction of windage loss in the proposed machine is widely 

accepted to be important in order to determine its workability. The presence of windage loss is 

dictated by several different conditions, such as the speed of the rotor and the properties of the 
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air such as temperature and pressure and the roughness of the rotor and interior stator surfaces. 

An analytical approach for predicting the windage power loss has been presented [96], where 

basic equations have been developed to calculate power loss in the air gap of an alternator. To 

determine the windage loss of a rotating machine with a concentric cylinder, various 

assumptions should be satisfied as follows: 

1. The windage loss is generated in the air gap between the rotor and stator with laminar 

flow. 

2. The air filling the gap is homogeneous. 

3. The gap between the rotor and stationary part is small compared to the length and radius 

of the cylinder.  

The windage loss of the HSHP machine which is generated between the stationary cylinder and 

rotating cylinder with no axial flow was estimated from the following equations [96, 97]: 

 Shaft rotational speed: 

𝜔 = 
2𝜋𝑁

60
 (3.18) 

 Reynold number: 

Re =  ωr
𝜌

𝜇
 𝑙𝑟𝑔 (3.19) 

 Skin friction coefficient (𝐶𝑑) for turbulent flow: 

1

√𝐶𝑑
 =  2.04 +  1.768 ln (Re √𝐶𝑑) (3.20) 

 Windage power loss: 

𝑊 = 𝐶𝑑𝜋𝜌𝜔
3𝑟4 𝑙𝑎 (3.21) 

where 𝜌 is the density of air surrounding the machine rotor (in 𝑘𝑔/𝑚3), 𝜔 is the angular velocity 

(in rad/s), 𝑟 is the radius of the rotor (in m), 𝑙𝑎 is the rotor axial length (in m), 𝑁 is the rotor 

speed (in rpm), 𝑙𝑟𝑔 is the radial air gap length between rotor and stator and 𝜇 is the viscosity of 

the air (in 𝑚2/𝑠). 

An air gap temperature of 100 °C has been assumed as a worst case giving by a research staff 

who working on the thermal side of the integrated motor drive, the air density and viscosity are 

0.9413 kg/m3 and 2.317 × 10−5 m2/s respectively. The predicted windage loss is therefore 

calculated as follows: 
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Re =  ωr
𝜌

𝜇
 𝑙𝑔 = 2617.994 ×  0.031 𝑥 

0.9413

2.317 𝑥 10−5
 ×  0.0015 = 4945.65 𝑟𝑎𝑑/𝑠 

𝐶𝑑 = 2.384𝑥 10−3 

𝑊 = 𝐶𝑑𝜋𝜌𝜔
3𝑟4 𝑙𝑎 = 8.18 𝑊 

The key results for the 12 slot / 8 pole PM machine at rated operating conditions are summarised 

in table 3-7. 

Table 3-7 Results for 12 slot/8 pole PM machine at 25000 RPM 

Main Machine Specifications: 

Diameter of stator 109 𝑚𝑚 

Diameter of rotor 62 𝑚𝑚 

Tooth width 10 𝑚𝑚 

Core back depth 6 𝑚𝑚 

Magnet depth 3 𝑚𝑚 

Magnet span angle 38 degree 

Sleeve thickness 0.35 𝑚𝑚 

Number of turns 36 turns 

Winding type 
Concentrated - double layer / parallel 

connection 

Torque: 

Mean torque 13.2 𝑁.𝑚 

Torque ripple ≈ 1 % (in per cent) 

Cogging torque (peak) 0.021 𝑁.𝑚 

Losses: 

Copper loss (DC + AC) 165.5 𝑊𝑎𝑡𝑡 

Magnet ohmic loss 92.6 𝑊𝑎𝑡𝑡 

Iron loss (Hysteresis + Eddy current) 225 Watt 

Windage loss 8.18 Watt 

Efficiency 98 % 

Machine inductance and power factor 

𝐿𝑑 , d-axis inductance 0.158 𝑚𝐻 

𝐿𝑞 , q-axis inductance 0.163 𝑚𝐻 

Power factor 0.886 --- 

Fundamental winding factor (Kw) 0.866 --- 

Least common multiple 24 --- 
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It was important to check that the design would not cause demagnetisation of the magnets. The 

worst scenario for the magnet to be demagnetised, along with its high operating temperature, is 

when the full armature current is in the negative d-axis, where the armature magnetic flux is 

opposed to the flux produced by the rotor magnets. Using the 2D FEA model, a prediction of 

demagnetisation over time was determined at 25000 RPM with a magnet temperature of 80 °C, 

as shown in figure 3-24. Demagnetisation could be an issue when the magnet experiences a hot 

spot due to elevated operating temperature inside the magnet, this might cause partial 

demagnetisation but it is greater when the armature current fully lie on the negative d-axis. 

 

 

Figure 3-24 Demagnetisation obtained at full rated current and speed 

As shown in figure 3-24 under the worst case scenario for demagnetisation the magnet retails a 

flux density of around 1 T meaning demagnetisation is not expected to occur anywhere within 

the magnet.           

3.5.6 Axial location of rotor magnets 

The original rotor design had retaining collars, giving axial location of the magnets, as shown 

in figure 3-25. The back collar was proposed to be integral with the shaft, which was specified 

to be constructed from a magnetic steel, with the front collar a removable disk. It was postulated 

that the collars could act as a magnetic short-circuit to the magnets and consequently reduce the 

mean air-gap flux density. For this reason an alternative design was considered in which the 

back collar was cut back and replaced with an additional nonmagnetic ring of 6mm radial depth 

and 3mm axial length.  Non-magnetic steel was also considered for the removable front collar. 

Figure 3-25 (b) is a pictorial view of the rotor magnetic flux with magnetic collars. 

q-axis d-axis 
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(a) 

 

(b) 

Figure 3-25 The effect of front-end rotor collars: a) assembly of rotor; b) contour plot 

demonstrating the shorting of the end magnets 

The effect of collar material on the machine torque capability was modelled in 3D and is shown 

graphically in figure 3-26. Non-magnetic collars gave 6% greater performance than their 

magnetic counterparts, with a mean torque of 13.2 Nm and so the choice to modify the design 

was justified. 

 

Figure 3-26 Effect of collars on torque performance at 25000 RPM 
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 Design of the low speed machine 

The design procedures of the HSHP machine have been explained in the previous section, the 

low-speed machine design has followed with the same process. The main difference between 

low- and high-speed machines is that, as the shaft speed is decreased by a ratio of 25000 

rpm/3000 rpm the number of turns is increased by the same ratio in order to maintain the 

armature back EMF. Although the low-speed machine design has been conducted in parallel 

with the HSHP machine in order to validate the effectiveness of different integration techniques, 

the low-speed machine design was not built because of its simplicity in terms of integrating 

passive filter components into electrical machines.  

The rotor design differs from that of the high-speed machine as at low speeds there is minimal 

rotor stress and so a rotor sleeve is not required. Two simple magnets shapes were considered, 

as shown in figure 3-27. As the simplicity of the design leads to an applicable machine design 

at low cost, the chosen option for the magnet shape is as shown in figure 3-27 (b).  

 

(a) 

 

(b) 

Figure 3-27 Suitable rotor topologies for low-speed machines: a) SPM rotor with offset; b) inset 

SPM rotor 

However, the “bread loaf” magnet shape of figure 3-27 (a), can be dimensioned to produce a 

more sinusoidal air-gap field, reducing both EMF harmonics and cogging torque. Although 

many efforts to design a simple low speed machine and for the purpose of this research, the 

low-speed machine design is as same as that of the high-speed design by modifying number of turs. 

The final machine geometry is given in figure 3-28, showing the full load flux density with 

mesh overlaid. 

Offset 
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Figure 3-28 FEA model with mesh size elements and contour plot at 3000 RPM 

Although the shaft design for the low-speed machine design is simple compared to that of the 

encased high rotor speed, as here is no need for a rotor cooling system, the shaft design process 

is not included in this research. The heat generated by magnets for the low-speed rotor is easily 

removed at the air-gap. 

The performance results at rated operating conditions for the 12 slot / 8 pole low-speed PM 

machine are summarised in table 3-85. 

 

 

 

 

 

 

 

                                                 
5 FE simulation results of the low-speed machine design are including in Appendix D. 

Mesh size 

1 mm 

B≈ 1.33 T 

B≈ 1.5 T 
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Table 3-8 Performed results for 12 slot/8 pole PM machine at 3000 RPM 

Main Machine Specifications: 

Diameter of stator 109 𝑚𝑚 

Diameter of rotor 62 𝑚𝑚 

Tooth width 10 𝑚𝑚 

Core back depth 6 𝑚𝑚 

Magnet depth 3 𝑚𝑚 

Magnet span angle 38 degree 

Sleeve thickness 0.35 𝑚𝑚 

Number of turns 75 turns 

Winding type 
Concentrated / 

series connection 
--- 

Torque: 

Mean torque 13.3 𝑁.𝑚 

Torque ripple 2 % (in per cent) 

Cogging torque (peak) 0.0225 𝑁.𝑚 

Losses: 

Copper loss 171.24 𝑊𝑎𝑡𝑡 

Magnet ohmic loss ≈ 8 𝑊𝑎𝑡𝑡 

Iron loss (Hysteresis + Eddy current) 12.15 Watt 

Efficiency 95.7 % 

Machine inductance and power factor 

𝐿𝑑 , d-axis inductance 17.6 𝑚𝐻 

𝐿𝑞 , q-axis inductance 17.9 𝑚𝐻 

Power factor 0.898 − 

3.7 Conclusion 

In this chapter, two machines have been proposed: one for high speed operation and one for 

low speed. Since the two machines have similar dimensions, and the low speed machine is 

much less challenging in terms of loss and filter integration, more attention is directed to the 

high speed machine design. The two machines are supplied with low- and high-power drives at 

power ratings of 4.5 kW and 38 kW respectively.  

The prototype high-speed, high-power permanent magnet synchronous motor (PMSM) has 

been designed to form the foundation of an integrated motor drive. The machine is fed by an 

active, three-phase two-level inverter, and it has a surface-mounted neodymium-iron-boron 

permanent magnet rotor.  The following conclusions can be made: 
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(a) A 0.35 mm carbon fibre sleeve is required to give mechanical integrity to the rotor. 

(b) Single tooth windings minimise overall volume, but introduce spatial harmonics of flux: 

axial segmentation of the magnets is needed to reduce the resulting rotor eddy current 

losses to a manageable level. 

(c) A (20 × 30 AWG) Litz copper wire is needed to give AC losses winding conversion 

factor, 𝐾𝐴𝐶, up to 90%.   

(d) A 6.5% silicon, 0.1mm lamination material (JNEX-900) will result in relatively low 

iron loss. 

(e) Axial location of the rotor magnets should be undertaken using non-magnetic steel 

rings. 

 The following research in this thesis mainly concerns how the AC filter inductors can be 

integrated into the proposed low- and high-speed machines without significant increases in 

size and losses. 
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CHAPTER 4  

The Integration of LCL Filter Inductors in 

Electrical Machines 

Summary: The aim of this chapter is to investigate the effectiveness of integrating input filter 

inductors into electrical machines, to mimic conventional filter inductors in the same manner 

as in separate drive systems but with lower volume and losses to give a smaller envelope 

compared to that of conventional systems. In particular, the approach reported in this chapter 

relates to two drives where the underlying machine in each is identically dimensioned, but they 

operate at two different rated speeds. A drive with 38 kW input power at 25,000 RPM is identified 

as the baseline, with a 4.6 kW drive operating at 3,000 RPM for comparison. 

  Introduction 

The first generations of ASDs produced during the latter part of the 20th century traditionally 

treated the various subsystems of the drive (electric machine, power electronics, passive 

converters etc.) as mechanically isolated entities. As ASD technology has matured, the trend 

has been towards greater mechanical and operational integration of the various subsystems. 

Integrated motor drives promise higher power density, and lower production and 

commissioning costs through single package installations [2]. With specific reference to the 

topic of this work, there are previous examples in literature where considerable effort has been 

developed to integrating and reducing the size of passive components in integrated drives [20, 

29, 98, 99].  

In particular, the results from the preliminary calculation of LCL filter parameters described in 

Chapter 2 are used in different integration techniques in this chapter. Figure 4-1 illustrates the 

first of the LCL filter elements to be considered for integration into the two proposed low- and 

high-speed machines which are the larger inductors (𝐿2) located on the drive side. The larger 

inductors are considered first as they have the greatest impact on the volume of the integrated 

system. 
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Since the filter inductors will share the machine’s magnetic circuit, a brief summary of the 

specifications of the designed low- and high-speed machines at 3000 RPM and 25000 RPM 

respectively (for more details, see Chapter 3) is provided in table 4-1 along with the parameters 

of the LCL filter inductors. 

 

Figure 4-1 Electrical drive configuration with the highlighted 3-phase inductor in the drive side 

Table 4-1 A summary of proposed machine specifications 

Parameter Variable 

Value 

(4.56kW 

drive) 

Value 

(38kW 

drive) 

Unit 

Shaft speed 𝑵𝒔𝒉𝒂𝒇𝒕 3000 25000 RPM 

Pole number 𝒏𝒑 8 8 poles 

Machine torque T 13 13 Nm 

Tooth number 𝒏𝒕 12 12 teeth 

Rotor diameter 𝒅𝒓 62 62 mm 

Machine 

lamination 

diameter 
𝑶𝑫𝒎 109 109 mm 

Winding type --- Concentrated Concentrated --- 

Parameters of LCL filter inductors 

Drive side 

inductance 
𝑳𝟐 1310 160 𝜇𝐻 

Grid side 

inductance 
𝑳𝟏 37.56 5 𝜇𝐻 

Grid-input current 𝒊𝒈 6.34 53 Arms 

Active rectifier 

switching 

frequency 
𝒇𝒔𝒘 40 40 kHz 
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The energy stored in the filter inductor to be integrated scales with the power rating of the drive. 

Therefore, a higher power rating will result in a drive with a larger input filter inductor. The 

demand for storage energy for the high power inductor is scaled by a factor of 8.33 compared 

to that of a low power inductor based on the variance in the input power of drives: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 =  
1

2
 𝐿 𝐼2 (4-1) 

where 𝐿 is a phase filter inductance and 𝐼 is the peak fundamental current in 𝐿. 

Although the underlying machine size remains the same in the two drive specifications, the 

integration of filter inductors for the high power drive is more challenging as the physical size 

of the filter inductors might even be larger than the original machine size. 

 Study of balanced and unbalanced magnetic pull for integrated machines 

The first two integration methods presented in this chapter (see figures 4-6 and 4-8) make use 

of the machine air gap in the magnetic circuit for the inductors. In these cases, the pole number 

combinations must be considered as they can produce unbalanced rotor forces (identical pole 

numbers cannot be used as the machine and filter fields would couple directly). The governing 

equation 4-2 for balanced magnetic flux density in the machine’s air gap is defined as follow: 

∫ 𝐵2 𝑑𝜃

2𝜋

0

= 0 (4-2) 

The following sections present an investigation into balanced and unbalanced rotor force cases 

resulting in a general case statement for achieving balanced magnetic forces where multiple 

three-phase airgap fields exist. The arbitrary flux value was used as a reference to normalised 

results for the following balanced and unbalanced cases is 2T. 

4.2.1 Unbalanced magnetic pull (UMP) 

As shown in figure 4-2, different combinations of possible pole numbers for the main machine 

and inductor windings give unbalanced total air gap flux density (blue wave) for both cases. 
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Angle (radians) 

(a) 2-pole inductor windings / 4-pole main machine windings 

 

Angle (radians) 

(b) 12-pole inductor windings / 6-pole main machine windings  

Figure 4-2 Unbalanced total flux density for different machine and filter inductor pole numbers 

Figure 4-2 shows that, for these examples of pole combinations, the total flux density is 

unbalanced, where the value of the total flux density is different after 180 radians. The 

governing equation for balanced magnetic flux density is not satisfied in these two different 

examples.  

4.2.2 Balanced magnetic pull (BMP) 

In figure 4-3, two further examples of different pole combinations for the main machine and 

inductor windings give balanced air gap flux density in each case. 
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Angle (radians) 

 (a) 8-pole inductor windings / 4-pole main machine windings 

 

Angle (radians) 

(b) 6-pole inductor windings / 2-pole main machine windings 

Figure 4-3 Balanced total flux density for different machine and filter inductor pole numbers 

In order to achieve a balance total flux density in the air gap, the machine and inductor pole 

numbers must be separated by a multiple of two pole pairs, and hence the pole number for the 

inductor windings 𝑛𝑖𝑛𝑑. and the original machine windings 𝑛𝑚𝑎𝑐ℎ. are governed by the general 

equation 4-3 where 𝑥 is an integer: 

𝑛𝑖𝑛𝑑. − 𝑛𝑚𝑎𝑐ℎ. = 4𝑥 (4-3) 

Table 4-2 shows different cases of pole combinations for the inductor and armature winding 

configurations and hence some cases of balanced and unbalanced magnetic pull (BMP and 

UMP) act on a machine rotor are determined. 
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Table 4-2 Different BMP and UMP cases for different pole numbers of the filter inductor and 

main machine windings 

Pole number of 
inductor 
windings 

Pole number of armature windings 

2 4 6 8 10 --- 

2 X X   X   --- 

4 X X X   X --- 

6   X X X   --- 

8 X X X X X --- 

10   X   X X --- 

--- --- --- --- --- ---  X 

 Constraints of preliminary integrated design and fundamental equations  

Since, for the first two proposed integration methods, the filter inductor windings are integrated 

into the machine stator and share the machine stator core back or stator teeth, the original 

dimensions of the base machine stator must be amended to avoid saturation in the stator and to 

maintain the main machine performance while the inductor air gap is fixed by the machine 

design.  

1. Calculation of stator core back depth 

Due to the extra flux produced by incorporating inductor windings ɸinductor in the machine 

stator core along with the main magnetic flux of the armature windings ɸ𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒, the total 

magnetic flux per phase in the stator core can be calculated as follows.   

a) The magnetic flux of the filter inductor per phase can be calculated as stated in equation 

4-5 [56, 88]: 

ɸ̂𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟  =  
𝐿 𝐼

𝑁𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟
 (4-5) 

where 𝐼 is the peak value of the filter inductor current and 𝑁𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 is the number of turns per 

phase inductor. 

b) The main machine flux can be calculated based on the following parameters: 

 Stator pole pitch (𝝉𝐏): the circumferential length of the stator bore is divided equally 

among the number of machine poles, where the actual length along the stator bore 
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between two borders for one pole represents the stator pole pitch as shown in figure 

4-4 (b).  

 

                                      (a) 

 

                   (b) 

              Figure 4-4 Stator pole pitch and the effective magnet width 

The stator pole pitch can be calculated as given in equation 4-6: 

𝜏𝑃  =   
𝜋 𝐷𝑠

2 𝑃𝑜𝑙𝑒 𝑝𝑎𝑖𝑟𝑠
 (4-6) 

where 𝐷𝑠 is the diameter of the stator bore. 

 The relative magnet width (𝜶𝑷𝑴): As shown in figure 4-4 (a), this is the percentage 

of effective magnet span angle compared to the magnet pole angle as given in equation 

4-7: 

𝛼𝑃𝑀 =
𝑀𝑎𝑔𝑛𝑒𝑡 𝑠𝑝𝑎𝑛 𝑎𝑛𝑔𝑙𝑒

𝑀𝑎𝑔𝑛𝑒𝑡 𝑝𝑜𝑙𝑒 𝑎𝑛𝑔𝑙𝑒
  (4-7) 

Therefore, the magnetic flux produced by the main machine windings can be calculated as given 

in equation 4-8: 

ɸ𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒 = 𝛼𝑃𝑀 𝜏𝑝 𝐵𝑔𝑚𝑎𝑥 𝑆𝐿 (4-8) 

where 𝐵𝑔𝑚𝑎𝑥 is the maximum air gap flux density of the base machine, 𝑆𝐿 is the machine stack 

length and the effective magnet width (𝑊𝐶) is equal to (𝛼𝑃𝑀 𝜏𝑝). 

As a result, the total magnetic flux which travels in the machine stator core is given by 4-9: 

ɸ̂𝑇𝑜𝑡𝑎𝑙/𝑝ℎ𝑎𝑠𝑒  =  ɸ̂𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒  + ɸ̂inductor (4-9) 

The new depth of the core back is therefore given by equation 4-12, where the total flux passing 

the machine tooth divides into two in the core back as shown in equations 4-10 and 411 (more 

details can be found elsewhere [88]: 
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1

2
× ɸ𝑇𝑜𝑡𝑎𝑙/𝑝ℎ𝑎𝑠𝑒 = 𝐵𝑇𝑜𝑜𝑡ℎ  𝐴𝑐𝑜𝑟𝑒 𝑏𝑎𝑐𝑘  (4-10) 

1

2
× ɸ𝑇𝑜𝑡𝑎𝑙/𝑝ℎ𝑎𝑠𝑒 = 𝐵𝑇𝑜𝑜𝑡ℎ 𝑑𝑐𝑏 𝑆𝐿 (4-11) 

𝑆𝑡𝑎𝑡𝑜𝑟 𝑐𝑜𝑟𝑒 𝑏𝑎𝑐𝑘 𝑑𝑒𝑝𝑡ℎ =  
ɸ𝑇𝑜𝑡𝑎𝑙/𝑝ℎ𝑎𝑠𝑒

2 × 𝐾𝑓𝑒 × 𝑆𝐿 × 𝐵𝑇𝑜𝑜𝑡ℎ
  (4-12) 

where: 𝑑𝑐𝑏 is the stator core back depth, 𝐾𝑓𝑒 is the space factor of the stator core, 𝐵𝑇𝑜𝑜𝑡ℎ is the 

flux density in the stator tooth, and 𝐴𝑐𝑜𝑟𝑒 𝑏𝑎𝑐𝑘 is the stator core back area. 

2. Calculation of stator tooth width 

 New air gap flux density: since the total magnetic flux has been calculated, the new 

peak value of the flux density in the machine air gap can be determined by rewriting 

equation 4-8; 

𝐵𝑔𝑚𝑎𝑥 = 
ɸ𝑇𝑜𝑡𝑎𝑙/𝑝ℎ𝑎𝑠𝑒 

𝛼𝑃𝑀 𝜏𝑝 𝑆𝐿
 (4-13) 

 The stator slot pitch (𝝉𝒔): Figure 4-5 illustrates the length of the stator slot pitch and 

the stator tooth width. The stator slot pitch can be defined as given in equation 4-14 [88]:  

𝜏𝑠 = 
𝜋 𝐷𝑠

𝑄
 (4-15) 

𝑄 =  2 ×  𝑃𝑜𝑙𝑒 𝑝𝑎𝑖𝑟𝑠 × 𝑚(𝑛𝑜.𝑜𝑓 𝑝ℎ𝑎𝑠𝑒𝑠) × 𝑞(𝑛𝑜.  𝑜𝑓 𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑝𝑜𝑙𝑒 𝑝𝑒𝑟 𝑝ℎ𝑎𝑠𝑒)   (4-16) 

where Q is the number of stator slots. 

 

Figure 4-5 Stator slot pitch definition and tooth width 

Due to the contribution of inductor flux within the main machine stator, the stator tooth width 

must be increased to avoid saturation in the tooth. The new width of the stator tooth can then 

be calculated from equation 4-17 [56, 88]: 
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𝑇𝑜𝑜𝑡ℎ 𝑤𝑖𝑑𝑡ℎ =
𝐵𝑔𝑚𝑎𝑥 𝜏𝑠

𝐵𝑇𝑜𝑜𝑡ℎ
 (4-17) 

The copper slot area should accommodate both the windings of the main machine and the filter 

inductors. Assuming identical fill factors for the different coils this results in a greater required 

slot area. The outer diameter of the machine stator must be increased to accommodate the larger 

slots. 

In conclusion, where the machine air gap forms part of the inductor winding magnetic circuit 

two design considerations are paramount: 

 The possible pole number combinations are limited to remove cross-coupling and 

unbalanced rotor forces 

 The original machine stator must be resized to accommodate additional magnetic flux 

due to the addition of the integrated inductors. 

 Integration of 3-phase filter inductors 𝑳𝟐 into the HSHP machine at 25000 RPM 

In order to combine filter inductors and an electrical machine in a single packaged unit, the 

structural integration design should be simple to comply all other constraints such as simplicity 

of manufacturing and assembly processes, evenly distributed thermal paths, sufficient for 

offering high power density. For example, symmetrical integrated design is suitable for the 

simple design of housing and cooling system. 

Five methods of integrating the larger 3-phase LCL filter inductors (𝐿2) into the proposed 

HSHP machine have been investigated in a drive specified at 38 kW/25000 RPM. The 

specification for this machine is described in table 4-1. As the drive side inductor is dominant 

this has been considered first. In all cases, the electrical performance of the integrated filter 

inductors has been designed to match conventional separate filter inductors with traditional E-

core structures. 

4.4.1 Method 1: filter inductor windings 𝑳𝟐 around the stator core back 

This concept is illustrated in figure 4-6 and is driven by a desire to maintain the basic structure 

of the machine’s magnetic circuit by utilising the same slots as the machine windings. The 

inductor windings are wound around the stator core-back of the machine where the magnetic 

flux path includes the machine air gap and rotor. The ring flux produced by the inductor 

windings travels around the machine stator core back and in the same physical volume as the 
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machine flux and as described above creates the necessity for not-insubstantial additional sizing 

of the teeth and core-back. In this method, only dimensions can be amended are tooth width 

and core back depth while the inductor air gap is fixed by the machine’s air gap design, more 

details are in section 4.3. 

 

    (a)                                                                   (b)                    

Figure 4-6 General schematic of the AC inductors integrated into a motor: a) 2D FEA model; b) 

3D representation 

Equations 4-18 to 4-21 have been used to calculate the number of turns required in the inductor 

in order to achieve the desired value of filter inductance per phase. Thereby, the 2D FE model 

shown in figure 4-6 (a) was simulated with one turn in each phase inductor (𝑁 = 1 𝑡𝑢𝑟𝑛) 

carrying the full MMF. In equation 4-21 the flux linkage and input current per phase obtained 

represent the magnetic flux (ɸ) and the magneto-motive force (MMF) respectively. 

�̂�  =  𝐿 𝐼  =  𝑁 ɸ (4-18) 

𝑀𝑀𝐹 = 𝑁 𝐼 (4-19) 

𝐿 =  
𝑁2 ɸ

𝑀𝑀𝐹
,       𝑤ℎ𝑒𝑟𝑒  (𝑀𝑀𝐹 =  𝐼  &  ɸ =  𝜓) 𝑎𝑡 𝑁 = 1 𝑡𝑢𝑟𝑛 (4-20) 

𝑁 = √
𝐿 𝐼

ɸ
 (4-21) 

Due to the inductor and main machine windings sharing the same stator slot, the final slot area 

can be calculated as given in equation 4-21 [56]: 

𝑆𝑙𝑜𝑡 𝑎𝑟𝑒𝑎 =  
(𝑁𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒/ 𝑠𝑙𝑜𝑡 + 𝑁𝑎𝑢𝑥./𝑠𝑙𝑜𝑡) 𝐼𝑟𝑚𝑠

𝐽 ×  𝑓𝑖𝑙𝑙 𝑓𝑎𝑐𝑡𝑜𝑟
 (4-22) 

Rotor 

Inductor air gap 
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Figure 4-7 illustrates the final geometry for a ten-pole inductor winding field (the machine has 

an 8-pole field) after the core back and tooth resizing exercise is complete. The geometry clearly 

shows that the additional tooth-width and core back required renders this method unusable.  

 

Figure 4-7 Illustration of the effect of integrating AC inductor into the HSHP machine 

Additionally, Table 4-3 indicates that inductor windings with 2 and 8-pole fields (which have 

been investigated to examine the effectiveness of this approach regardless of rotor force 

considerations) are equally impractical for this drive specification however, this method may 

be worth exploring for larger machines at lower shaft speeds as this would result in a lower 

ratio between the required filter and machine magnetics sizes. 

 

 

  

Main machine 

windings 

Inductor windings 
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Table 4-3 Illustration of the integration of 3-phase filter inductors around the stator core back in 

a 38 kW drive 

Pole number 
(𝑳𝟐) 

Amended stator geometry due to integration Parameters 
Increase OD 

(original motor 
OD = 109 mm) 

 
2 poles 

 

 

N/A 

OD: 156 mm 

+ 43.12 % 
N: 4turn 

𝐿: 0.16 mH 

𝑉𝐿: 4.7 V 

 
8 poles 

 

N/A 

OD: 177 mm 

+ 62.38 % 

N: 9 turn 

𝐿: 0.16 mH 

𝑉𝐿: 4.7 V 

 
10 poles 

 

N/A 

OD: 179 mm 

+ 64.22 % 

N: 8 turns 

𝐿: 0.16 mH 

𝑉𝐿: 4.7 V 

Symbol: OD: outer diameter of the PM motor; N: number of turns per phase; 𝑉𝐿: voltage per phase 

across the filter inductor (𝐿2); N/A: not applicable 

Note: The highlighted slots form a single phase in each case. 
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4.4.2 Method 2: inductor windings around stator teeth 

In this case, the inductor windings are wound around the teeth of the machine stator in the same 

way as the main torque producing windings, the concept is shown in figure 4-8. The same pole 

combinations have been considered as in the previous approach. The method used to calculate 

the increased dimensions of the integrated machine stator is the same as that applied for the first 

integration method as in this approach, the additional magnetic flux which is produced by the 

incorporated 3-phase filter inductor windings 𝐿2 also shares the machine air gap.  

 

Figure 4-8 Layout of auxiliary windings into the PM motor 

Table 4-4 illustrates three 2D FE models representing three different pole combinations of 

inductor windings which share the machine stator teeth. As for the previous integration method 

this approach proves unsuitable for a drive of this specification (although again, it may be worth 

considering for a lower speed larger machine). 

  

Rotor 

Inductor air gap 
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Table 4-4 Illustration of the integration of 3-phase filter inductors around the stator teeth in a 38 

kW drive. 

Pole number 
(𝑳𝟐) 

Amended stator geometry due to integration Parameters 
Increase OD 

(original motor 
OD = 109 mm) 

2 poles 

 

N/A 

OD:153.44 
mm 

+ 40.77 % 

N: 3 turn 

L: 0.16 mH 

VL: 3.72V 

8 poles 

 

N/A 

OD:  
163.28 

mm 

+ 49.8 % 

N: 6 turn 

L: 0.16 mH 

VL: 3.72V 

10 poles 

 

N/A 

OD: 165 
mm 

+ 51.37 % 

N: 5 turn 

𝐿: 0.16 mH 

𝑉𝐿= 3.72 V 

Symbol: OD: Outer Diameter of the PM motor; N: number of turns per phase; VL: voltage per 
phase across the filter inductors 𝐿2; N/A: not applicable 

Note: The highlighted slots form a single phase in each case. 
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4.4.3 Method 3: additional interior slots forming 3-phase inductors  𝑳𝟐 

In the first two methods, the air gap between rotor and stator formed part of the magnetic circuit 

for the integrated inductors. As the effective magnetic air gap is relatively large and is restricted 

by the machine design, this severely limits the design choices available for the optimisation of 

integration methods and results in a far higher number of turns than is the case for the separate 

inductor. This leads to a significant volume increase compared to the separate inductor case.  

In this proposed integration method, additional interior slots within the machine stator geometry 

form the 3-phase filter inductors as shown in figure 4-9. These extra slots are located radially 

outwards from the main machine slots. The primary goal of forming these extra slots is to 

remove the machine air gap from the main inductor magnetic circuit path and to utilise separate 

slots with geometries not dictated by the requirements of the machine. This method gives 

greater control over the inductor magnetic circuit reluctance, as the inductor air gaps can be 

modified without affecting the performance of the base machine and therefore the amount of 

inductor copper and hence ultimately the increase in volume is more controllable. In this 

approach, the chosen pole numbers for the filter inductors 𝐿2 and the main machine windings 

are 10 and 8 poles respectively.  

 
Figure 4-9 Geometry of the extra slot forming the 3-phase filter inductors 

Some geometries of this method remain restricted by the machine design; the stack length of 

the original machine is fixed and is part of the inductor’s dimensions. However, the airg ap 

volume is fully adjustable as the radial length and circumferential gap remain free from 

restriction. 
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The machine stator has twelve main slots and the extra inductor slots have been designed 

similarly to lie radially outward of the main machine slots to aid manufacturability. Similarly, 

as the main machine is wound with concentrated windings the same principle is used for the 

inductor windings. The design can be broken down into single slot analysis as shown in figure 

4-10. The design dimensions are SL, the machine stack length; 𝑊𝑐 the inductor core width; 𝐿𝑀 

the magnetic path length; 𝑑𝑠𝑙𝑜𝑡 the inductor slot depth; and 𝐿𝑔 the air gap length.   

 

Figure 4-10 A single tooth of interior extra slots demonstrating a part of the phase inductor 

geometry 

In this approach, the upper portion of the tooth and core-back are shared by the main machine 

and inductor magnetic circuits. Figure 4-11 shows a simple iterative process varying the air-

gap length in an attempt to arrive at an optimal design. It should be noted that the width of the 

extra slot is assumed to be equal to that of the main machine slot, as shown in the text box 

highlighted in figure 4-11. The values of current density and the slot fill factor are 12 A/mm2 

and 50% respectively, which are similar to those of the conventional discrete 3-phase inductor 

design described in Chapter 2. Since the filter inductors are integrated into the machine, 

working at such high current densities is accepted since the base machine and filter inductors 

can be cooled down by a common unique cooling system. 
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Figure 4-11 Flow chart of optimisation process for the integration of 3-phase filter inductors into 

the machine stator as extra slots  

Drive RMS input current, RMS input voltage, 

desired flux density, frequency, current 

density, slot fill factor, the desired inductance, 

and machine axial length 

Air gap length 

(𝐿𝑔) 

Storage energy 

Air gap volume 

C.S.A of air gap 

Core width (𝑊𝐶) 

Required reluctance (S) 

Number of turns per phase 

Slot area of the inductor 

Slot height (a),  

where inductor slot width = 

machine slot width 

Core volume Copper volume 

Total volume 
Check volume 

< initial volume 
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True 

Smallest volume of 

inductor 

Stop 
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As a result, the optimal air gap length of the integrated filter inductors is 2 mm, as shown in 

figure 4-12, which gives the lowest mass of copper and steel. 

 

Figure 4-12 The required masses of copper and steel at different air gap lengths in a power drive 

of 38 kW 

The dimensions obtained for inductor slot geometry are specified in table 4-5. 

Table 4-5 Specifications of a single inductor slot within IDS stator 

Parameters Value Unit 

Air gap length (𝐿𝑔) 2 mm 

Core width (𝑊𝐶) 3.6 mm 

Slot depth (𝑑𝑠𝑙𝑜𝑡) 5 mm 

Slot fill factor (𝑓𝑓) 50 % 

Number of turns (𝑁) 5 turns 

Current density (𝐽) 12 A/mm2 

Figure 4-13 presents the structure of an integrated interior slot machine and shows where the 

machine and inductor coils are positioned in the machine stator. 
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Figure 4-13 3-phase filter inductors sharing the HSHP machine stator 

The outer diameter of the base machine is increased by approximately 23%, (increasing the 

volume by 51%) while the volume of the integrated 3-phase inductors, 𝐿2, is reduced by 

approximately 35% compared to that of the discrete 3-phase filter inductor described in Chapter 

2, section 2.7.2 resulting in a net decrease in volume of 24.3% along with working at the same 

current densities of 12 A/mm2.  

4.4.3.1 FE Simulation results for interior extra slot technique 

Figure 4-14 illustrates the shared parts of the stator which could be heavily saturated and hence 

adversely affect machine performance. 

Figure 4-15 shows the flux density plot for the FE model of the integrated machine, including 

the filter inductors windings, carrying a rated current of 53 𝐴𝑟𝑚𝑠 and the original HSHP 

machine is at full load (47.35 𝐴𝑟𝑚𝑠 / 25000 RPM). The saturated regions in the integrated stator 

(see figure 4-15) show the shared magnetic paths of the main machine and filter inductors. 

 

Figure 4-14 Magnetic coupling behaviour between the filter inductors and the HSHP machine   
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Figure 4-15 Contour plot of integration technique using interior extra slots 

It is clear that this method poses significant potential saturation problems in the areas of the 

teeth and core back which are shared by both magnetic circuits. 

4.4.3.2 Magnetic cross-coupling between the fields of the filter inductors and the HSHP 

machine 

Further investigation of cross-coupling has been carried out for the integrated high-speed 

machine considering different operating conditions as shown in figures 4-16 to 4-19 by 

simulating passing a rated current in one of the windings and inspecting the voltage induced on 

the other; 

Case 1: the base machine’s magnetic circuit, including magnets and armature windings are 

active while a zero current in the filter inductor windings. 

 

       (a) 3-phase armature voltages                                

 

(b) Induced inductor voltages 

Figure 4-16 Voltage induced in inductor windings due to rotor magnets and armature fields 
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Case 2: the rotor magnets of the base machine is turned off with a zero current in the armature 

winding while the filter inductor windings are energised. 

 

(a) 3-phase induced armature voltages                                
 

(b) 3-phase inductor voltages 

Figure 4-17 Voltage induced in armature windings solely due to the inductor magnetic field 

Case 3: the rotor magnets of the base machine is active with a zero current in the armature 

windings while the filter inductor windings are energised. 

 

(a) 3-phase back EMF voltages 

 

(b) 3-phase inductor voltages 

Figure 4-18 Magnetic flux cross-coupling between rotor magnets and filter inductor windings 

Case 4: the magnetic circuits of the base machine and filter inductors are active. 

 

(a) 3-phase armature voltages                               

 

(b) 3-phase inductor voltages 

Figure 4-19 Magnetic flux cross-coupling at full operation condition 

Figure 4-16 indicates that the induced voltage in the filter coils due to the presence of the rotor 

magnets is approximately 0.1 V, showing there is minimal coupling with the PM field when 

there is no inductor excitation. Equally, Figure 4-17 demonstrates that current in the inductor 

winding does not induce a voltage in the main machine winding, however, as shown in Figures 

4-18 and 4-19 there is a significant interaction between the PM and inductor fields when both 

are energised. 

0 5 10 15 20
-0.04

-0.02

0

0.02

0.04

time (ms)

V
o

lt
a

g
e

 (
V

)

2 4 6 8 10 12 14 16 18 20
-5

0

5

time (ms)

V
o

lt
a

g
e

 (
V

)

0.5 1 1.5 2 2.5
-400

-200

0

200

400

time (ms)

V
o

lt
a

g
e

 (
V

)

5 10 15 20
-40

-20

0

20

40

time (ms)

V
o

lt
a

g
e

 (
V

)

0.5 1 1.5 2 2.5
-400

-200

0

200

400

time (ms)

V
o

lt
a

g
e

 (
V

)

0 5 10 15 20
-40

-20

0

20

40

time (ms)

V
o

lt
a

g
e

 (
V

)



The Integration of LCL Filter Inductor in Electrical Machines                                                 Chapter 4 

111 

4.4.4 Method 4: additional outer slots (double slot machine) 

The investigation of the first three proposed methods results in the conclusion for these drive 

specification methods which share the machine air gap and have significant potential coupling 

should be avoided. Whilst method three removed the machine airgap it retained the potential 

for inter-field interference. This integration method introduces a superior solution which 

attempts to decouple the machine and filter inductor windings. In this case, the extra slots have 

been redistributed to the outer surface of the stator effectively removing the shared tooth 

segment and utilising a shared inner core back as shown in figure 4-20. 

 

Figure 4-20 Geometry of a half model of a double slot machine with the incorporation of 3-phase 

AC inductors into the HSHP machine at 25000 RPM 

As this method can be thought of as moving the main core back inboard it is clear that the 

dimensions of this proposed method will be largely similar to the previous method (it actually 

gives a wider inductor slot which slightly reduces the outer diameter). The reduced shared steel 

also reduces coupling capability. 

The winding layout for the two different pole combinations of the main machine and filter 

inductor windings with 8 and 10 poles respectively is illustrated in figure 4-21. 

 

Figure 4-21 Winding layout of the IDS machine 

A 3D representation of the outer slot design is shown in figure 4-22. 
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Figure 4-22 3D representation of integrated double slot (IDS) machine 

4.4.4.1 FEA results 

This integration method has been simulated using Infolytica MagNet software with both the 

machine’s torque-producing windings and the auxiliary windings energised. The whole stator 

arrangement is considered to be uniform material -10JNEX-900. Figure 4-23 shows a magnetic 

flux density plot. 

 

Figure 4-23 Contour of dual magnetic flux of 8 pole machine and 10 pole inductors windings  

For this geometry, the outer slot arrangement can initially be considered independently of the 

main machine geometry simplifying analysis. Figure 4-24 represents a single coil of the phase 

inductor where the flux behaviour within the proposed geometry can be observed. 

B=1.23 T 

B=1.45 T 
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Figure 4-24 Magnetic flux behaviour within a single inductor slot 

The inductance and reluctance values for one coil as shown in figure 4-24 can be calculated as 

given in equations 4-23 and 4-24 respectively: 

𝐿 𝑖 = 𝜓 =
1

2
 𝑁 ɸ =

1

2
 𝑁 𝐵 𝐶𝑆𝐴 (4-23) 

𝑅𝑒𝑞 = 
1

2 𝜇0 𝐶𝑆𝐴
 [𝐿𝑔 + 

𝐿𝑀
𝜇𝑟
] (4-24) 

This geometry has been simulated with a drive current of 53 𝐴𝑟𝑚𝑠. The resulting inductor 

voltage and flux linkage are 4.77 V and 0.0147 Wb respectively as shown in figure 4-25. The 

phase inductance 𝐿2 can then be calculated from equation 4-23, resulting in a value of 0.196 

mH which is 22.5% greater than that predicted by the simple analytical method. This difference 

relates to the difficulty in achieving the exact predicted inductance with an integer number of 

turns within the FE model, and therefore it was preferable to achieve a higher inductance with 

7 turns rather than achieving lower inductance with 6 turns in each coil of the phase inductor. 

 

(a) 

 

(b) 

Figure 4-25 FE results for integrated 3-phase filter inductors 𝑳𝟐: a) voltage; b) flux linkage 

Figure 4-26 shows the rated machine torque before and after incorporating the filter inductors 

𝐿2 into the HSHP machine, where the mean torque is 13.2 Nm for the two cases. This indicates 

that, the performance of the original HSHP motor is not affected by the integration. 
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Figure 4-26 Machine rated torque before and after integrating 3-phase AC inductors 

Further investigation has been carried out in order to observe the influence of integrating drive-

side inductors 𝐿2 into the HSHP machine. Different cases of operating conditions have been 

considered for the IDS machine to investigate the possibility of induced voltage in the inductor 

windings as explained below. 

Case 1: magnets rotor of the base machine is active and zero current in both armature and filter 

inductor windings. 

 

(a) 3-phase back EMF voltage 

 

   (b) 3-phase inductor induced voltage 

Figure 4-27 Induced voltage in inductor windings due to the magnetic field of rotor magnets 

Case 2: the rotor magnets of the base machine is turned-off with a zero current in the armature 

winding while the filter inductor windings are energised. 

 

(a) 3-phase armature induced voltage 
 

(b) 3-phase inductor voltage 

 Figure 4-28 Voltage induced in armature windings due to energising filter windings only 
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Case 3: the rotor magnets of the base machine are turned-off and the armature windings are 

energised while the filter inductor windings are open. 

 

(a) 3-phase armature voltages 

 

(b) 3-phase induced inductor voltage 

Figure 4-29 Voltage induced in inductor windings due to the magnetic field of armature fields 

only 

Case 4: the magnetic circuits of the base machine and filter inductors are active. 

 

(a) 3-phase armature voltages 

 

(b) 3-phase filter inductor voltage 

Figure 4-30 Magnetic cross-coupling between integrated filter inductors and the HSHP machine 

The outer slot approach achieves the goal of reducing the overall volume whilst maintaining 

drive performance. 

4.4.4.2 Modularity option for the IDS machine. 

Segmented stator construction significantly increases manufacturability of the windings and 

helps to improve the fill factor [67]. The additional outer slots have not affected the rotational 

symmetry of the stator hence the stator can be constructed from twelve identical segments with 

interlocking mating geometries.  A single tooth 3D representation of the proposed geometry is 

shown in figure 4-31. 
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Figure 4-31 Integration of 3-phase drive-side inductors with stator modularity option: a) double 

slot tooth; b) double slot tooth with pressed coils; and c) assembly of stator of integrated double 

slot (IDS) machine 

4.4.5 Method 5: corner inductors  

In this approach, the circular form of the stator laminations is converted into a square and each 

phase inductor is formed of discrete coils each situated in a corner of this square as shown in 

figure 4-32. In this technique, the filter inductors 𝐿2, have an independent air gap for each phase 

and hence they have magnetic flux paths which are totally independent of each other and from 

the machine magnetic circuit. The design has been optimised using the same iterative method 

that was used for the previous two methods. The proposed method is promising in terms of ease 

of manufacture, where the inductor coil can be wound to the independent tooth and then easily 

fitted to the motor’s corner. 
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Figure 4-32 Utilization of motor corners for integrating AC inductors 

The fourth corner can feasibly be utilised to integrate the grid-side inductors, 𝐿1, as these 

inductors are much smaller than the drive side inductors. A 3D representation of this proposed 

method is shown in figure 4-33. 

                             

Figure 4-33 A 3D representation of integrated 3-phase filter inductors 𝑳𝟐 within motor corners 

The required diagonal profile for the required drive specification in this work is 153.11 mm, 

while the outer diameter of the base motor is 109 mm. This gives a rise in the total volume of 

1052.52 cm3, which is large compared to those achieved in the double slot proposed method. 
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However, this technique is likely to be an improvement on the overall volume for slower, larger 

machines. 

4.4.5.1 FE Results 

The 3-phase filter inductors within the square motor profile were simulated with a current of 

53 𝐴𝑟𝑚𝑠and the main machine operating at full load. Figure 4-34 shows the resulting inductor 

voltage and flux linkage, where the achievable peak value of the latter per phase is 0.0115 Wb 

giving a phase inductance 𝐿2 of 0.153 mH, while the value of the analytical predicted 

inductance is 0.16 mH. 

 
(a) 

 
(b) 

Figure 4-34 FE Results for 3-phase filter inductors 𝑳𝟐: a) 3-phase voltages; b) 3-phase flux 

linkage 

The desired filter inductance is achieved along with maintaining the base machine performance. 

It can be seen in figure 4-34 (a) that the 3-phase voltages of the filter inductors are magnetically 

independent from the base machine’s magnetic circuit. 

 Integration of drive-side filter inductors 𝑳𝟐 in a power drive of 4.56 kW at 3000 RPM 

 The same proposed integration techniques have been studied in a low-power drive of 4.56 kW 

where the base machine is identical but with a rated speed of 3000RPM. 

 The results of the first two methods of integration (inductor windings around stator core 

back and around stator teeth) are presented in brief in tables 4-6 and 4-7. Since the size 

of the inductors at this power level is significantly smaller, as noted in the FEA design 

presented in chapter 2, the integration of these inductors at the specified drive power is 

mechanically feasible. For these integration methods, the main machine stator 

accommodates the windings of the main machine and the filter inductors, but the 

original stator slot has been amended resulting in increased machine outer diameter. 
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 The fourth integration method (additional outer slots) is still promising, giving good 

windings management which prevents magnetic cross-coupling between the filter 

inductor and machine windings compared to that of the interior double-slot stator.  

 The fifth integration technique with corner motor inductors is judged the best method 

for this power level as the filter inductors fit into the motor’s corners profile without 

increasing the original machine diameter. This method's main advantages (e.g. no end-

winding interconnections) can be fully realised at this power level. 

Table 4-6 Illustration of the integration of 3-phase filter inductors around the stator core back at 

4.56 kW drive: Method 1 

Number of 

inductor 

poles (𝑳𝟐) 

Integrated AC inductor geometry wound 

around the core back 
Parameters 

Increase 

OD 

(original 

motor OD 

= 109 mm) 

2 poles 

  

OD: 120.4 

mm 

 

 

 

+ 10.46 % 
N:10 turn 

𝐿:1.37 mH 

𝑉𝐿: 3.86 V 

8 poles 

  

OD: 124.86 

mm 

 

 

 

+ 14.55 % 
N:24 turn 

𝐿: 1.34 mH 

𝑉𝐿: 3.77V 

10 poles 

  

OD: 126 

mm 

 

 

 

+ 15.59 % 
N: 22 turn 

𝐿: 1.36 mH 

𝑉𝐿: 3.8 V 

Symbol: OD: outer diameter of the PM motor; N: number of turns per phase; 𝑉𝐿: voltage per 
phase across the filter inductors 𝐿2. 

Note: The highlighted slots form a single phase in each case. 
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Table 4-7 Illustration of the integration of 3-phase filter inductors around the stator teeth at 4.56 

kW drive: Method 2 

Number of 

inductor poles 

(𝑳𝟐) 

Integrated AC inductor geometry wound 

around the core back 
Parameters 

Increase 

OD 

(original 

motor OD 

= 109 mm) 

 

 

 

2 poles 

  

OD: 119.46 

mm 

 

 

 

+ 9.59 % N: 6 turn 

𝐿:1.3 mH 

𝑉𝐿: 3.7V 

 

 

 

8 poles 

  

OD: 121.6 

mm 

 

 

 

+ 11.56 % N:14 turn 

𝐿:1.38 mH 

𝑉𝐿: 3.88V 

 

 

 

10 poles 

  

OD:  123.6 

mm 

 

 

 

+ 13.39 % N: 13 turn 

𝐿: 1.3 mH 

𝑉𝐿: 3.7V 

Symbol: OD: outer diameter of the PM motor; N: number of turns per phase; 𝑉𝐿: voltage per 
phase across the filter inductors 𝐿2. 

Note: The highlighted slots form a single phase in each case. 

 Discussion 

The first two integration methods have been examined for different inductor pole numbers 

which mainly govern the number of turns. Here the size of inductor air gap is dictated by the 

machine design. The magnetic flux of the integrated filter inductors which shares the machine’s 

air gap affects the net forces acting upon the rotor. Table 4-8 shows that these two methods are 

not applicable for the integration of the specified high-power inductors into the proposed HSHP 

machine, while they are feasible for low-power inductors but would give poor power density 

compared to the benchmark volume (discrete 3-phase filter inductors).  
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In method 4, the approach using the double slot machine offers significantly less coupling 

between the two magnetic paths and achieves higher power density for either the high- or low-

power inductors compared to the specified benchmark and other integration methods, as shown 

in table 4-8. This technique is applicable for the proposed low- and high-speed machines in 

order to integrate the input filter inductors without affecting the base machine performance, 

however, the level of shared magnetic path produces unwanted coupling between the different 

fields. 

Method 5 for the integration of filter inductors at low-power ratings gives a better envelope 

associated with the square profile of the original machine, while the high-power inductors 

exceed the main machine dimensions due to their large size as shown in figure 4-35. 

 

(a) 

 

(b) 

Figure 4-35 Illustration of the final motor profile associated with the 3-phase filter inductor 𝑳𝟐 

in: a) low-power drive of 4.56 kW; b) high-power drive of 38 kW 

Table 4-8 gives an indication of the size and copper loss for each option for both power ratings. 
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Table 4-8 Different topologies for integrating low and high power electric drives 

Method Methods of integration 

Outer diameter 

(mm) 
Volume (cm3) 

Copper loss 

(W) 

L. P. 

4.1kW 

H. P. 

34 kW 

L. P. 

4.1kW 

H. P. 

34kW 

L. P. 

4.1kW 

H. P. 

34kW 

Discrete 

inductors 
 

--- --- 85.65 402.75 32.73 367.05 

1 

 

2 poles 119.46 N/A 131.38 N/A 15.36 --- 

8 poles 121.6 N/A 159.74 N/A 30.6 --- 

10 poles 123.6 N/A 186.7 N/A 30.73 --- 

2 

 

2 poles 120.4 N/A 143.77 N/A 21.88 --- 

8 poles 124.86 N/A 203.91 N/A 52.68 --- 

10 poles 126 N/A 219.63 N/A 48 --- 

3 

 

10 poles 115 134.2 73.89 336.94 21.6 110.4 

4 

 

10 poles 115 134.2 73.89 336.94 21.6 110.4 

5 

 

109 127.3 

86.05 399.33 30.45 114.48 
125.8 147.31 

(Diagonal) 

As a result, although the first two methods do not appear to be promising, it can be seen that 

the corner and double slot techniques achieve the lowest volumes with the smallest outer 

diameters for these scaled drives.  

In addition to the previous comparison, which considers theoretical maximum power densities 

of the discrete E-core filter, a commercially, bespoke manufactured E-core inductor, is 
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compared with the most promising proposals in table 4-9. The commercial inductor is 

significantly larger than the theoretical high power case in table 4-9. It should be noted that the 

net volume of both conventional and integrated inductors are solely considered in which 

packing factors are ignored such as housing, the necessary foundation for inductors and 

surrounded space for ventilation. 

Table 4-9 Comparison of integrated and discrete commercial filter inductors 

Method 
Methods of 

integration 

Outer 

Diameter 

(mm) 

Volume 

(cm3) 

Copper loss 

(W) 

H. P. 

34 kW 

H. P. 

34kW 

H. P. 

34kW 

Discrete 

high power 

inductors  

--- 402.75 367.05 

Discrete 

commercial 

inductors 

 

--- 2430 561.8 

4 

 

134.2 336.94 110.4 

5 

 

127.3 

399.33 114.48 

147.31 

(Diagonal) 

It can be seen from table 4-9 that the volume achieved by the method of the double-slot machine 

(method 4) is approximately 86.13% and 16.34% smaller than that achieved by industrial filter 

inductors and high power inductors respectively, while integration method 5 gives a reduction 

in the volume of 86.04% and 8.49%. This significant reduction in volume is possible because 

these industrial filter inductors cannot work at such high current densities since they usually do 

not utilise an active cooling system. 
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 Summary of design options  

The integration of additional outer slots in method 4, the integrated double slot (IDS) machine, 

is the best candidate to integrate the specified filter inductors into the proposed machines. The 

higher speed drive of 38 kW presents a greater design challenge and hence the greater potential 

for performance gain. Therefore, the remaining work in this thesis concentrates on the 

integration of input LCL filter inductors in the higher-power specification (38 kW / 25000 

RPM).  

The following section demonstrates the addition of the smaller grid-side inductor into the same 

generic geometry without significantly altering it dimensionally. 

 Design of integrated magnetic filter (grid-side inductors 𝑳𝟏) 

In the previous chapter it was shown that using an integrated “double-slot” (IDS) geometry 

[100], the integration of the (larger) drive side inductors (𝐿2) achieved lower volume and losses 

compared to traditional discrete 3-phase drive side inductors.  This integration method requires 

the modification of the base machine stator laminations to include a further slot radially outward 

from the main machine windings. In the chosen method of the IDS machine, the second slot 

held the drive side inductor and it was shown that such an arrangement, with prescribed pole-

pair combinations, decouples the main machine and filter winding coils.  

The small grid-side filter inductors (𝐿1) are subsequently incorporated into the same slots as the 

drive-side inductors requiring a slightly larger depth of the inductor slot by 1 mm and the copper 

slot fill factor was increased which is achieved through coil pressing as described in Chapter 5. 

The proposed geometry for IDS machine, including both filter inductors 𝐿1 and 𝐿2 is illustrated 

diagrammatically in figure 4-36. 
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Figure 4-36 3D presentation of the general schematic of the IDS machine 

4.8.1 Winding configuration of integrated filter inductors 

As in the previous chapter the winding arrangements are further carefully selected so that the 

main machine windings, grid-side and drive-side inductors all have different numbers of poles 

so as to avoid cross-coupling and they are selected in such a way as to avoid unbalanced 

magnetic forces. 

The integrated geometry of the filter inductors is intended to minimise the volume of the filter 

and to combine it with the machine structure in a single envelope. As the coils of both inductors 

𝐿1 and 𝐿2 of the LCL filter share the same outer slots, and hence magnetic paths, magnetic 

cross-coupling between the filter inductors is still possible. A case study of different pole 

combinations for 𝐿1 and 𝐿2 summarised in figure 4-37 illustrates that the phenomenon of mutual 

coupling between filter inductors is due to the rotational magnetic field caused by the coil 

arrangements of the 3-phase filter inductors 𝐿1 and 𝐿2 which are distributed among 12 stator 

upper slots. In this case, the directions of magnetic fields for the arbitrary pole combinations 

chosen (𝐿1 is 14 poles and 𝐿2 is 10 poles) are opposite to each other and hence give 100% 

coupling between the integrated filter inductors. 
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  (a) Windings configuration of 𝐿1 (10 poles)          (b) Windings configuration of 𝐿2 (14 poles) 

Figure 4-37 Example of mutual coupling between 𝑳𝟏 and 𝑳𝟐 located in the same slots 

Different pole combinations for 𝐿1 and 𝐿2 have been simulated using FE analysis to investigate 

the degree of undesired mutual coupling between 𝐿1 and 𝐿2. Figure 4-38 shows the simulation 

results of the study of coupling between 𝐿1 and 𝐿2. Here the number of poles of the larger 

inductor, 𝐿2, was fixed at 10 poles while the number of poles of 𝐿1 was varied. The rated current 

was applied to 𝐿2 and the induced voltage on 𝐿1 is observed (with an 𝐿1 open circuit). The 

induced voltages on 𝐿1 for single phase LCL filter inductors are presented in figure 4-38. 

 
(a) 𝐿1 is 2 pole & 𝐿2 is 10 pole 

 
(b) 𝐿1 is 10 pole & 𝐿2 is 10 pole 

 
(c) 𝐿1 is 14 pole & 𝐿2 is 10 pole 

 
(d) 𝐿1 is 16 pole & 𝐿2 is 10 pole 

Figure 4-38 Results of cross-coupling investigation between integrated filter inductors with 

different numbers of poles in the stator 

Normalizing for the turns ratio, the four pole combinations studied were 2:10, 10:10, 14:10 and 

16:10, which have coupling factors of 22%, 100%, 100% and 0% respectively (10:10 and 14:10 

are essentially the same pole combinations). These conclusions can be verified analytically by 

observing the space harmonics created by the 16 pole and 10 pole windings.  Unlike most other 
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winding combinations, the 10 pole winding wound onto the 12 tooth stator does not have a 16 

pole space harmonic and so there should be no mutual coupling between them.  

As well as demonstrating the lack of coupling between the two filter windings, it must also be 

shown that the inclusion of the filter windings in the second slot does not lead to coupling with 

the main machine windings. A finite element simulation was used to observe the base machine 

open circuit voltage at the rated speed (i.e. back-EMF) as shown in figure 4-39 both before and 

after integrating the AC filter inductors into the machine (where the filter windings are 

conducting the rated current). 

 

Figure 4-39 The original machine back-EMF line voltage before and after integration 

As shown in figure 4-39, the machine circuit is proven to be magnetically isolated from the 

filter windings, with the machine back-EMF profile almost unaffected by the filter currents. 

Note, however, that the common part of the stator core back is not heavily loaded, and a 

reduction in the size of this core back may yield a greater power density for the overall drive. 

However, the higher magnetic saturation may result in a greater share of the core back material 

between the various flux paths and therefore greater coupling. Based on the pole combinations 

given in figure 4-38 (d) for the filter inductors, the IDS machine windings configuration is 

selected to have 16, 10 and 8 poles respectively for the 𝐿1, 𝐿2 and the main machine windings. 

The various coils carry currents of differing fundamental frequencies (50 Hz and 1.666 kHz for 

LCL filter inductors and the base machine respectively), and hence comprise of different 

conductor types. Table 4-10 gives the winding configuration for the IDS machine coils. 
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Table 4-10 Winding configurations for direct on-tooth compressed IDS machine coils 

Integrated motor 

parameters 

Base machine 

windings 

LCL filter inductor windings 

𝑳𝟏 (Grid side) 𝑳𝟐 (Drive side) 

Type of copper 

wire 
Litz wire Stranded solid wire Stranded solid wire 

Winding type Concentrated Concentrated Concentrated 

Coil connection Parallel Series Series 

Number of 

turns/phase 

36 per coil, 4 coils in 

parallel per phase 

(144) 

1 per coil, 4 coils in 

series per phase (4) 

7 per coil, 4 coils in 

series per phase (28) 

Conductor 

diameter 
20 strands × 30 

AWG 
6 strands × 18 AWG 6 strands × 18 AWG 

Fill factor 60% 50% (same slot-concentrated windings) 

Phase resistance 0.029 Ohms 0.0025 Ohms 0.022 Ohms 

Phase inductance 0.24 mH 5µH 160µH 

Number of poles in 

the stator 
8 16 10 

The windings layout per phase of the IDS machine, including the filter and base machine 

windings, is shown in figure 4-40. 

 

Figure 4-40 24 slots - 8 pole base machine windings and 16 and 10 poles for filter inductors  𝑳𝟏 

and  𝑳𝟐 respectively 

Figure 4-40 shows that the IDS stator has 36 coils and hence 72 end terminals in a very small 

area. Chapter 5 details the method employed to correctly connect these terminals using space-

efficient bus-bar arrangement. 

As described in table 4-10, the inductor winding type is solid stranded wire and each turn 

consists of 6 strands of solid copper wire connected in parallel to increase the fill factor, as 

shown in figure 4-41. Each solid strand wire was wound around the inductor tooth to form 7 

turns individually in the radial direction. A fill factor of approximately 50% was achieved 

through the careful winding of the individual conductors. However, due to the variation in 

magnetic flux throughout the inductor slots, the flux linkage in each strand is slightly different 

for 𝐿1 and 𝐿2, as shown in figure 4-42. 
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Figure 4-41 Filter winding arrangements in a single inductor slot 

 

(a) 

 
(b) 

Figure 4-42 Flux linkage in single coil strands: a) grid-side inductor; b) drive-side inductor 

Figure 4-42 (a) shows that the variation in flux linkage by single coil strands of 𝐿1 is 

approximately 3.6%, while this magnetic variation between the strands of 𝐿2 is almost 7%. As 

there are seven series turns, it is assumed that most strands occupy a range of locations, and 

that there remains good current sharing between strands.  

4.8.2 Verification of mutual coupling for the IDS machine 

A 2D FE model of the IDS machine has been simulated with different conditions in order to 

verify the mutual inductance between the base machine winding and filter inductors in the 

double slot stator design. In each case, one of the three coils in each tooth is energised and the 
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other 2 coils are open and hence the resulting mutual inductance was obtained. Table 4-11 

shows the mutual inductances between the three coils in the design of IDS machine. 

Table 4-11 Verification of mutual inductance in the design of IDS machine 

The base Machine at full load 𝑳𝟏 is energised 𝑳𝟐 is energised 

Mutual 

inductance on 

𝐿2 (open) 

Mutual 

inductance on 

𝐿1 (open) 

Mutual 

inductance on 

the base 

machine 

(open) 

Mutual 

inductance on 

𝐿2 (open) 

Mutual 

inductance on 

the base 

machine 

(open) 

Mutual 

inductance on 

𝐿1 (open) 

0.23 𝑛𝐻 4.47 𝑛𝐻 8.1 𝑛𝐻 106 𝑛𝐻 57.3 𝑛𝐻 92.8 𝑛𝐻 

It can be seen that the mutual inductances of the filter inductors 𝐿1 and 𝐿2 which caused by the 

machine’s magnetic circuit are very small compared to the self-inductances for both filter 

inductors while the machine inductance is unsusceptible to the influence of filter’s magnetic 

circuit. 

 DC loss of integrated 3-phase filter inductors 

The inductor windings work with a grid frequency of 50 Hz and hence the AC losses are very 

small and it is ignored in the analysis. In order to calculate the DC loss, the same method used 

for calculating DC loss of armature windings (Chapter 3) was applied. The mean length of one 

side of end windings is 34 mm, with the machine axial length 70 mm, the number of turns for 

𝐿1 and 𝐿2 per tooth are 8 turns × 6 solid strands carrying 53 𝐴𝑟𝑚𝑠, the diameter of each strand 

is 1 mm and the C.S.A of the strand is 0.785 𝑚𝑚2. The copper resistivity 𝜌 is 1.68 × 10−8 Ωm 

at a temperature of 20°C and the total strand length of the 3-phase filter inductors is 19.968 m. 

The total resistance of the 3-phase filter windings is 0.0712 Ω which gives a result of the total 

DC loss for the 3-phase filter inductors of 200W. The effect of temperature on the copper 

resistivity as the expected filter winding temperature under normal operating conditions is 80°C 

(clarification of expecting temperature value is stated in Chapter 3, section 3.5.5.2.2) is 

calculated which gives a result of 0.0882 Ω and the resulting DC loss of winding filter at this 

specific temperature is 248W. 
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 Iron Losses of the IDS machine including the 3-phase filter inductors 

The proposed IDS machine has two different frequencies which are sharing the same magnetic 

circuit, the first frequency is the machine operating frequency and the second is the integrated 

filter frequency (grid frequency). The core losses have been calculated for each stator region as 

shown in figure 4-43. The following schematic illustrates different stator regions for the base 

motor and the integrated filter inductors collectively. 

 

Figure 4-43 Full load flux plot of the double slot machine 

The Steinmetz equation has been used to calculate the iron losses in the specified regions shown 

in figure 4-43 considering the operating frequency for the regions within the IDS stator. The 

2D model of the full IDS machine at full load has been simulated which gives results of losses 

combinations as described in figure 4-44. 

 

Figure 4-44 The composition of non-load iron Losses for double slot machine 
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The FE results shown in figure 4-44 illustrate that the total iron losses caused by the filter’s 

magnetic circuit are about 16.5W which is a small value compared to the base machine losses. 

The low iron losses occurred in the filter’s magnetic circuit refers to the low operating 

frequency (Grid frequency) and relatively low flux densities in these regions. It can be noticed 

that the losses of the machine tooth tip and stator tooth are more or less the same losses achieved 

in the original base machine (before the integration) while the core back losses of the IDS 

machine (FE result: 44W) are decreased by approximately 58% (FE result: 105W, Chapter 3). 

This significant losses reduction occurred in the core back of the IDS machine increased volume 

in the core-back reduces the magnetic flux density and hence the loss. 

 Conclusion 

The 3-phase drive-side inductors of an LCL filter 𝐿2 have been integrated into the two proposed 

machines using various different integration techniques. Two electric drive specifications with 

identical base machines have been considered for five integration methods. Volumes and 

copper loss associated with the integrated inductors have been compared to with those of the 

convectional discrete component cases (FEA models and industrial filter inductors) and shown 

to be comparable for the case of outer additional slots (the integrated double-slot (IDS) 

machine) to house the inductor windings. The inductor winding design has been analytically 

generated and validated via FEA.  

The 3-phase grid-side LCL filter inductors have been successfully integrated into the high-

speed machine by sharing the same slots with the drive-side inductors without affecting the 

performance of the original base machine nor coupling with each other. The resulting envelope 

is a single package which achieves a significant reduction in volume by 87.6% compared to a 

design with discrete filter components. Further details are presented in section 5.2.2. The final 

dimensions of the double slot stator are illustrated in figure 4-45. The challenges related to 

magnetic interactions between the three different fields resulting from the main machine 

winding and the two filter windings have been discussed in a careful study of the field 

interactions of various pole-pair combinations as well as from a finite element analysis of flux 

paths in the stator core. 
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Figure 4-45 Drawing of full segment tooth 
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CHAPTER 5  

Machine and Filter Construction 

The manufacturing of the prototype IDS machine was accomplished with the assistance of four 

different companies, chosen according to their expertise in specific technical fields. Each of the 

companies manufactured components to the author’s specification. 

 The rotor magnetic assembly and composite wrap were made by Arnold Magnetic 

Technologies Ltd (UK).  

 The rotor shaft was manufactured by Newcastle Tool and Gauge Ltd. 

 The stator core was manufactured and assembled by the JFE steel company in Japan, 

which specialises magnetic materials manufacturing. 

The stator windings were wound, impregnated and compressed by the author at Newcastle 

University and there is also a technical staff who conducted the assembling process of the 

bearing packages, cooling systems, shaft and couplings. The mounted drive electronics 

were assembled by research staff at the university. Final assembly of the IDS machine as 

part of the integrated motor drive was also undertaken within the university. 

 Rotor construction 

The detailed design of the rotor magnets and sleeve was undertaken in conjunction with a 

specialist magnetic materials supplier and handler, who provided useful feedback on some 

practical processes in the rotor assembly and their effect on machine performance. The 

magnetic assembly was constructed independently from the rotor shaft to give access in the 

machining of the shaft. 

Figures 5-1 and 5-2 show the construction of the rotor, including collars. The figures show the 

shaft (1), non-magnetic back collar (2), rotor core (3), non-magnetic front collar (4) and 

threaded retaining ring for the front collar (5). 
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Figure 5-1 Different components for the high-speed rotor 

 

Figure 5-2 Assembly of rotor magnets showing the effect of front-end collars 

As shown in figure 5-3 (a), the shaft was shrunk using liquid Nitrogen at a temperature of -196 

°C for approximately 3 minutes to allow the rotor core to fit the shaft. The shaft was pre-

assembled with lamination stack and collars fitted in place, as shown in figure 5-3 (b). 
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(a) 

 

(b) 

Figure 5-3 Assembly of the rotor core and collars to the machine shaft 

As the rotor axial length is 70 mm, the overall magnet length is 70 mm +0.00 mm/-0.10 mm, 

made up from 34 pieces of equal length electrically isolated with a bond line thickness of 0.050 

mm. Each segment of magnet was wire-eroded from a pre-magnetised block of Neodymium 

iron boron N42UH, and the bread loaf magnet shape of each segment, including flat sides, was 

cut to the required design dimensions and tolerance while the curved outer surface was larger 

than these dimensions to allow the magnet to be ground back to the correct tolerance.  

The first stage of the assembly process of the rotor magnets is shown in figure 5-4, where an 

appropriate adhesive material was applied to the magnet’s flat surfaces on the rotor core.  

 

Figure 5-4 Assembly process of the rotor magnets 

After the magnet was placed on the rotor core, Hylomar epoxy putty ST574 was applied to fill 

the gaps between the 8 rotor magnetic poles, as shown in figure 5-5. The Hylomar material was 

originally developed for use in high speed military aircraft and it has been utilised successfully 
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across industry [101]. This material has to be cured and then it can be ground and generally 

treated as a metal. 

After the magnets and the Hylomar epoxy putty were positioned and ground, the processes of 

cylindrical grinding and CFRP tension filament winding (sleeve thickness is 0.35 mm) were 

undertaken to give the final assembly of the high speed rotor, which is shown in figure 5-6. The 

CFRP sleeve was cured at a temperature of 150 °C.  

 

Figure 5-5 Process of filling gaps between the rotor poles 

 

Figure 5-6 HSHP final rotor assembly 

Figure 5-7 shows the high speed rotor on a balancing machine. The balancing of the rotor was 

achieved to enable a safe operation at 30,000 RPM, where the retained flanges have sufficient 

material to be removed when correcting for balance. 

Hylomar epoxy putty 

CF sleeve 
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Figure 5-7 Rotor on balancing machine 

 Stator construction of the IDS machine 

5.2.1 Construction of the stator laminations 

The manufacturing of the stator lamination stack was contracted to the manufacturer of the 

specialist laminations. The 10JNEX-900 laminations were cut in a short 70 mm stack with a 

lamination thickness of 0.1 mm. Figure 5-8 shows the double slot stator core of the IDS machine 

without the copper windings.  

 

Figure 5-8 pre-assembly of the double slot stator 
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The initial assembly of the stator segments shown in figure 5-8 illustrates an early step of the 

assembly of the stator to ensure that all its segments fit each other with an acceptable tolerance 

between them before starting to wind the stator. As the copper slot areas for both of the main 

machine and filter inductor windings have been designed with a relatively high slot fill factor, 

the coils in each tooth have been compressed. 

5.2.2 Direct On-Tooth compressed coils 

All the stator coils of the IDS machine have concentrated windings, which allows a segmental 

stator design. The main machine windings are located in the inner slot, with the two filter coils 

located in the second outer slot, as shown in figure 5-9. 

 

Figure 5-9 Single tooth stator segment 

As discussed in the previous section, high fill factors are required to attain the power density 

required for this design example. In the literature, high fill factors have been achieved by pre-

pressing coils into a solid form and then inserting them over the tooth structure [67, 102]. The 

double slot geometry of the IDS machine does not allow for a simple stator design which can 

utilise this manufacturing process. Moreover, thermal resistance between the coil and the stator, 

which is the main thermal path for copper losses, significantly increases as the gap between the 

coil and the stator material grows larger. Thus, a direct on-tooth coil compression has been 

utilised whereby the coils are directly wound onto a tooth segment, and then compressed onto 

the stator tooth to create a precise coil formation for each of the three coils. The pressing 

operation achieves a fill factor of up to 60%; this gives enhanced thermal conductivity between 

the copper windings and machine stator. The on-tooth pressing method is outlined in figure 5-

10. 
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(a) The stator tooth segment is loaded into the winding jig seat 

 

(b) The winding jig is fitted to the tooth segment and the coils wound. Locating hooks hold the 

wire in place once wound 

 

(c) Coils are impregnated with a thermally activated bonding agent, Ultimag 2002L 
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(d)  The pressing punch is applied and coils are forced into a regular shape and annealed at 165̊C. On-

tooth pressing method and tooling 

Figure 5-10 The on-tooth pressing method 

The main machine and filter coils have been impregnated using epoxy resin (Ultimag2002L) 

[103]. This type of electrical insulation glue should be cured at temperature of 160°C for 4 

hours. An added advantage of being able to precisely form the coils in a repeatable and 

controlled manner is that the coil shaping can be designed to minimize leakage and losses 

resulting from effects such as fringing at the slot opening. Figure 5-11 shows how precisely 

shaping the base of the coil helps to alleviate this. 

The pressing tool has been designed to force the coil away from the slot opening, thus reducing 

the losses created from the slot opening fringing effect (figure 5-11). The assembled 

compressed coils for one double slot tooth segment are shown in figures 5-11 and 5-12. 

 

Figure 5-11 On-tooth pressed coils with a gap to reduce fringing 
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Figure 5-12 The full assembly of compressed coils of double slot tooth 

Finally, the full double slot stator has been assembled and is shown in figure 5-13 [104]. A 

temporary plastic motor housing was used to verify the ease of assembly as well as the total 

filter inductances achievable for both sides of the grid and drive filter inductors (𝐿1 and 𝐿2), 

and all test results are presented in chapter 6. The temporary plastic housing is replaced with 

metal housing made from Aluminium in the final design.  

 

Figure 5-13 Fully assembled integrated double slot stator 

Figure 5-14 shows the achievement of volume reduction by integrating the 3-phase filter 

inductors (𝐿1 + 𝐿2), which is 87.6% compared to the total volume of the conventional discrete 

LCL filter inductors. The physical volumes of industrial inductors of LCL input filter were 

measured along with calculating the volume of the integrated inductors which shared the 

structure of the HSHP machine. Table 5-1 shows the volumes of discrete and integrated filter 

inductors and the achievable total volume reduction by the design of IDS machine. 
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Table 5-1 Volume comparison between the integrated and discrete 3-phase LCL filter inductors 

Integrated filter inductors 

(𝑳𝟏 𝐚𝐧𝐝 𝑳𝟐) 

𝐱 𝟏𝟎𝟑 mm3 

Discrete 3-phase LCL 

filter 

𝐱 𝟏𝟎𝟑 mm3 

Total volume 

reduction 

(%) 
𝟑𝒙 𝑳𝟏 𝟑𝒙 𝑳𝟐 

424.374 990 2430 87.6 

The primary reasons for the mass reduction are twofold: 

a) The filter inductances are now much better cooled and hence operate with a much 

greater current density. 

b) The motor and filter are now in a single package and share a common mechanical 

structure and cooling source.  

Although the filter and motor now share parts of their magnetic circuit, there is little reduction 

in the magnetic volume as a direct result of this. The magnetic circuit has to be enlarged to 

accommodate both sources of flux at the same time. The industrial inductors of the input LCL 

filter (𝐿1 and 𝐿2) shown in figure 5-14 were built based on the same voltage and current rating 

which has been considered for the integrated LCL filter inductors. 

 

Figure 5-14 A comparison in volume between the discrete and the integrated AC inductors of 

the LCL input filter 

3-Phase 𝐿1 

3-Phase 𝐿2 
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The machine stator presented in figure 5-14 is a part of fully packaged integrated motor drive, 

which is beyond the scope of this research including all of the other components of the drive 

such as the power electronics, DC-link capacitors, the shunt capacitors of the input filter, and 

control electronics. These aspects are described by other authors in different publications. 

 Interconnection power board for the IDS machine 

According to the integrated inductors of the input LCL filter into the machine, each phase of 

the grid and drive side inductors (𝐿1 and 𝐿2) is comprised of four coils, and therefore 24 coils 

are located in the 12 inductor slots, with a further 12 coils in the inner slots for the main machine 

windings. Therefore, 72 end terminals of windings need to be connected to the integrated active 

converter and the 3-phase power supply. In order to achieve high-power density with these 

crowded end terminal connections, it was necessary to find an acceptable method of connection 

for the IDS stator terminals.  

Figure 5-15 illustrates the layout of the winding connection required for the LCL filter and the 

base machine windings for the IDS stator. 

 

Figure 5-15 Layout of windings in the IDS machine 

The diameter of the stator of the IDS machine is 140 mm, and all connections of the coils should 

be performed within the stators’ periphery. The proposed method of interconnection of 

windings is accomplished using a four-layer busbar design. All connections of the LCL filter, 
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the 3-main input power supply and the main machine windings are included within the four-

layer design.  

Table 5-2 shows the parameters of the integrated power board design. 

Table 5-2 Parameters of four-layer design 

Double slot stator diameter (mm) 140 

Rotor shaft diameter (mm) 20 

PCBs outer diameter(mm) 136 

PCB inner diameter(mm) 30 

Current rating of inductors(𝑨𝒓𝒎𝒔) 53 

Current rating of main windings(𝑨𝒓𝒎𝒔) 47.35 

Current rating of the neutral point(𝑨𝒓𝒎𝒔) 83 

Figure 5-16 illustrates the four-layer busbar method which was designed using Autodesk 

Inventor software. Due to its ease of assembly, the outer diameter of the four-layer design is 

limited to 136 mm, which in turn allows the motor housing to be assembled easily. 

 

 

                           (a) 

 

(b) 

Figure 5-16 3D presentation of the four-layer busbar design: a) a complete assembly; b) the 

assembly of the four layers in order 
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In order to design a power board, including high voltage copper busbars, the clearance and 

creepage distances between busbars was taken into consideration. The clearance is defined as 

the shortest line or path measured through the air between two conductive parts, as shown in 

figure 5-17 (a), or between a conductive part and the housing of the equipment. In figure 5-17 

(b), the creepage is the shortest path measured along the surface of the insulation between two 

conductive parts or between a conductive part and bounding surface (housing) of the equipment. 

 

(a) 

 

(b) 

Figure 5-17 Illustration of clearance and creepage: a) clearance (in air); b) creepage (along a 

surface) 

Spreading parts out to meet the required clearance and creepage distances is not a sensible 

solution in view of the packaging needs. A significant reduction in the distance required 

between high voltage nodes can be achieved by selecting an appropriate sheet barrier of 

insulating material between them. 

The board material used is PTFE (Poly Tetra Fluoro Ethylene) which has very high dielectric 

strength up to 800 MV/m [105]. For the four-layer busbar design, the thickness of the chosen 

insulation barrier between the copper busbars is 1 mm. The PTFE dielectric strength for the 

chosen barrier thickness is 80 KV/mm, while the rated operating voltage is 750 V. The required 

creepage distance between copper busbars under the rated voltage is about 5 mm [106]. 

The power board design has different operating frequencies. The grid-side frequency is 50 Hz 

which gives a skin depth of 9.23 mm, as calculated from equation 3-9, while the operating 

frequency of the main machine is 1.666 kHz which gives a skin depth of 1.598 mm.    

In order to alleviate the burden of high temperature within the four-layer busbar design, all 

copper busbars were designed radially with a width of 4 mm and a depth of 3 mm. The effect 

of clearance and creepage was avoided by fully embedding the copper busbars into the board 

to 3 mm, as shown in figure 5-18. This method enhances the functionality of the design in order 

to meet the needs of packaging.  
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(a) 

 

(b) 

Figure 5-18 Specifications of power board design: a) thickness of barrier and copper busbars; b) 

external connections from different layers 

The dimensions of the copper busbars selected for the design of the four-layer busbars are 

shown in table 5-3. 

Table 5-3 Parameters of four-layer busbar design 

 
Radial 

thickness 

(mm) 

Axial 

thickness 

(mm) 

Diameter

(mm) 

Current 

Density 

J(A/mm2) 

Busbar of the inductors 4 3 --- 4.42 

Busbar of the main machine 4 3 --- 3.95 

Neutral busbar 4 6 --- 3.42 

Copper wire --- --- 4.5 2.98 – 3.3 

Holes (inductor busbars) --- --- 3.3 --- 

Holes (Neutral busbar) --- --- 1.8 --- 

Holes (Main windings busbars) --- --- 1.8 - 4.6 --- 

The four-layer design was manufactured at Newcastle University. A plastic PTFE sheet has 

been used with a thickness of 4 mm. Figure 5-19 shows the milling CNC machine which was 

used to engrave the tracks for the copper busbars at a depth of 3 mm. A thickness of 1 mm was 

left at the back of each board to form an insulation sheet between the power boards. 



Machine and Filter Construction                                                                                   Chapter 5 

148 

 

Figure 5-19 Manufacturing process of power board design 

Figure 5-20 shows the four manufactured power boards, including the copper busbars of the 

main machine and filter inductors. The arrangement of end winding connections for the IDS 

machine within the four-layer design was chosen as follows: 

 The first board consists of all connections of the main machine windings, the 3-phase 

filter inductors 𝐿1 and the external connections of the shunt filter capacitors.  

 The second board is for the connections of the 3-phase filter inductors 𝐿2. 

 The third and fourth boards are for the external connections of  𝐿1 and  𝐿2. 

In order to start assembling the first power board, the end terminals of the main machine and 

filter inductors were bared to the right length along with the use of heat shrink insulation tubes 

to protect the wires in between the machine stator and the first power board, as shown in figure 

5-21 

 
Figure 5-20 Manufactured copper busbars and the PTEF boards 
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The temporary plastic housing which made earlier for the initial assembly of the machine stator 

is made from Aluminum for the final design shown in figure 5-21. Due to the flexibility of 

movement of the machine end terminals (Litz wire) and the likelihood of the risk of contact 

with the machine shaft, a perforated PTFE ring was fitted to the bottom of the stator to form a 

shield surrounding the rotor shaft and hence to stop any of the copper wires from having access 

to touch the shaft. 

Figure 5-22 illustrates the management of the end terminals of the main machine windings. An 

adhesive material (Araldite-instant type) has been used to attach the four thermocouples to the 

end windings of the IDS stator in order to measure the temperature of the main machine and 

filter inductor windings. 

 

Figure 5-21 Arrangement of end terminal 

 

Figure 5-22 Management of the end terminals of the main machine windings 
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The assembly processes of the four-layer design have been carried out as follows: 

1. As shown in figure 5-23, the end terminals of the 3-phase machine windings have been 

soldered to the three small busbars and extended using three flexible copper wires to be 

connected to the main power supply (the utility grid). The joint points of the copper 

busbars were first abraded. There are 12 end terminals of Litz wire connected to the ring 

copper busbar (the star point connections). In order to work at low current density so as 

to avoid excessive temperature within the board, the thickness of the neutral copper ring 

was extended to be part of the design of board 2, with dimensions of 4 mm (radially) × 

6 mm (axially). 

The copper ring was designed with a groove depth of 2.8 mm, as shown in figure 5-23 

(b), where the end terminals were soldered inside the copper ring instead of having bulky 

soldered points on the top of the ring. The second board can, therefore, be placed very 

close to the first board, enhancing integration of the power board. 

 

(a) 

 
 

(b) 

Figure 5-23 Board 1: a) front view; b) the neutral ring copper with groove and the 

process of filling with solder 

It can be noted in figure 5-23 (a) that the copper busbars were polished and then painted 

with insulation varnish to enhance the dielectric strength between these busbars. A 

dummy rotor was made from a plastic material and fitted into the machine, as shown in 

figure 5-24 (a), to ensure that the four boards were concentric with the machine shaft 

centre.  

Neutral copper ring 
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2. Figure 5-24 (a) shows the assembly of the second power board, where all copper busbars 

of the 3-phase drive-side inductors, 𝐿2, have been soldered. The axial second half of the 

neutral copper ring was embedded in the back of the second board, as shown in figure 

5-24 (b). 

 

(a) 

 

 

(b) 

Figure 5-24 Board 2: a) soldered busbars of 𝑳𝟐; b) 3D inventor model (the back side of the 

second board showing the assembly of the neutral copper ring) 

3. The third and fourth boards are shown in figures 5-25 and 6-26 respectively, consisting 

of the external busbar connections, including the 3-phase grid power supply, the grid-

side filter inductors (𝐿1), the drive-side filter inductors (𝐿2), and the 3 knee connections 

of the shunt capacitors. Due to the restrictions of space available in the third board, one 

of the external wire connections had to be placed in board 4. 

 

Figure 5-25 Board 3: assembly of busbars and external connections of the LCL filter inductors 
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Neutral copper ring 



Machine and Filter Construction                                                                                   Chapter 5 

152 

 

Figure 5-26 Board 4: process of assembly with a single busbar in the last board 

An extra precaution was taken in order to ensure that all busbars are insulated from each 

other, and therefore small pieces of Nomex paper were inserted as extra insulating 

support between some of the copper busbars, as shown in figure 5-26. 

Figure 5-27 shows the complete assembly of the four-layer design associated with the 

external copper wires. The fourth board was fully insulated from the machine housing 

using a Nomex insulation sheet with a thickness of 0.25 mm. The total achievable axial 

thickness of the four-layer design is 16.25 mm, which meets the needs of the compact 

system. 

 

Figure 5-27 The final assembly of the four-layer design associated with external connections 
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The complete assembly of the machine housing is shown in figure 5-28, including the inlet and 

outlet of the cooling water system. 

 

Figure 5-28 The final assembly of the machine housing 

 Manufacturing of shunt capacitors of the LCL filter 

Figure 5-29 (a) shows the arrangement of the 3-phase shunt capacitors of the LCL filter. A film 

capacitor type was chosen for the design. Due to the lack of standardisation of such capacitors, 

each phase capacitor was split onto two capacitors which are connected in parallel to give 22 

𝜇𝐹 per phase.  

The complete design of the integrated motor drive is shown in figure 5-29 (b). The integrated 

drive part has been designed and assembled by research staff at Newcastle University. The 

shunt capacitors of the LCL filter are mounted axially with the machine and the drive. 

Inlet 

Outlet 
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(a) 

 

(b) 

Figure 5-29 Capacitors and full design: a) 3-phase shunt capacitors of the LCL filter; b) the 

complete design of the integrated high power drive 

 Test stand assembly 

The 100kW Dynamometer test rig has an AC load machine coupled to the integrated motor 

drive via a metal bellow coupling and an extension shaft. The main test rig machine is capable 

of spinning at up to 30,000 RPM. 

The integrated high-speed high-power machine was mounted on to an endplate and it was back-

driven by the AC load machine, as shown in figure 5-30. The base speed of the integrated motor 

drive is 25,000 RPM and the rated shaft power is 34 kW.  
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Figure 5-30 High speed no-load test rig 
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CHAPTER 6  

Test Results and Evaluation 

This chapter discusses the results of the testing of the IDS machine, including the LCL filter 

inductors and the basic HSHP machine. As the IDS machine has been fully assembled, the 

testing was carried out as follows: 

1. LCL filter measurements 

 The inductance of the grid and drive-side inductors (𝑳𝟏 and 𝑳𝟐). 

 The 3-phase current waveforms of the grid and drive-side inductors and the THD 

achieved. 

 Mutual coupling between the integrated filter inductors in the machine. 

2. HSHP base machine  

 Back-EMF measurement 

 Coil testing (including groundwall insulation and inter-turn) 

 Influence of impregnation on the lifetime of the machine coils 

 Measurements of the integrated LCL filter 

6.1.1 Initial experimental results 

A three-tooth motorette, as shown in figures 6-1 and 6-2 has been constructed to assess the 

performance of the outer slot concept for integrated filter inductors.  
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Figure 6-1 Three-tooth motorette used to test single-tooth inductor coil inductance 

 

Figure 6-2 Three tooth motorette with test leads 

Figure 6-3 shows the test rig set up where the motorette is connected to the utility grid via 

VARIAC and an isolating transformer. In order to test the constructed motorette shown in figure 

6-2, the inductance of a single tooth was calculated by passing a 50Hz current through the 

inductor windings and observing the coil voltage. The design requires a per-phase inductance 

of 0.16 mH. Each phase is formed from four parallel connected coils, and thus the total 

inductance for a single tooth should be 0.64 mH. 

Figure 6-4 shows the theoretical and experimental results for the constructed motorette (figure 

6-2). The measured results show that the inductance of the single tooth motorette at the 

maximum applied current is 0.65 mH while the predicted inductance value is 0.64 mH. 

Experimental procedures are explained in the Appendix. 
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Figure 6-3 Set up of the test rig 

 

Figure 6-4 Single tooth inductance measurements of motorette 

Another one-quarter machine motorette as shown in figures (6-5 and 6-6) was constructed 

including both the LCL filter inductors (𝐿1 and 𝐿2) sharing the same slots to assess the 

effectiveness of the integrated inductors of the LCL filter (𝐿1 and 𝐿2). Various magnitudes of 

50 Hz current were applied to the filter inductors to compare the measured inductances with the 

FEA simulation results.  
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Figure 6-5 Three-tooth fully assembled IDS machine motorette 

 

Figure 6-6 Three-tooth motorette with test leads 

The values of inductances for both filter inductors 𝐿1 and 𝐿2 were measured for the middle 

tooth (experimental procedures are as same as those conducted for prthe evious motorette, 

figure 6-3) and compared with results obtained from FEA simulation as shown in table 6-1. 

Table 6-1 Simulated and measured inductances for the IDS machine filter windings in the stator 

motorette 

Grid input 

current 

(𝑨𝒓𝒎𝒔) 

FEA results 

Inductances of LCL filter 

(µH) 

Measured results 

Inductances of LCL filter 

(µH) 

𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 

1.5 1.03 42 0.99 34 

2.5 1.03 42 0.99 35 

3.5 1.03 42 0.99 36 

4.5 1.03 42 0.99 36 
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It can be seen that the measured inductances for the drive side inductors 𝐿2 are smaller than the 

FE results by approximately 14% while the measured grid-side inductance 𝐿1 is very close to 

that achieved by FE simulation. It is noticeable that the deviation of measurement of drive side 

inductances is large, this might be caused by a non-perfect connection for all end terminals of 

copper wires of 𝐿2  with clips used. However, these measurements for filter inductors have been 

obtained at a very low current compared to the full rated current which is 53 𝑨𝒓𝒎𝒔. Equally, the 

motorette is mounted in a 3D-printed housing so the poorer tolerances may account for the 

difference. 

6.1.2 Mutual coupling between filter inductors (𝑳𝟏 and 𝑳𝟐) 

The initial assembly of the IDS stator shown in figure 6-7 has been examined to discover the 

cross-coupling between the integrated filter inductors 𝐿1 and 𝐿2 in the machine stator. As shown 

in figure 6-7, the phase inductor winding 𝐿2 was energised with a 50Hz current of 4.7 𝑨𝒓𝒎𝒔 in 

which the grid-side inductor winding 𝐿1 is an open circuit.  

  

Figure 6-7 Initial examinations of mutual coupling between the integrated filter inductors 

It can be seen in figure 6-7 that any coupling which exists cannot be discerned above the system 

noise. This gives confidence that any coupling between the assembled integrated filter inductors 

𝐿1 and 𝐿2 is extremely low. The addition of the rotor to the assembly would not be expected to 

influence this in any way. 

Further testing has been conducted with the constructed integrated drive package in order to 

confirm again that the likelihood that grid- and drive-side inductors are magnetically 

independent of each other. Figure 6-8 shows that the drive-side inductor, 𝐿2, for one phase is 

energised with a peak current up to approximately 21A, and the induced voltage in a phase of 
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the grid-side inductor, 𝐿1, has a non-measurable value. This gives confidence that any coupling 

between the assembled integrated filter inductors 𝐿1 and 𝐿2 is extremely low along with the 

presence of rotor magnetic flux and verifies that 16 pole (L1) and 10 pole (L2) combination are 

decoupled. 

 

Figure 6-8 Final examination of cross-coupling between the integrated filter inductors 

6.1.3 Measurements of filter inductance (𝑳𝟏 and 𝑳𝟐) 

The assembly of the double slot stator with the four-layer busbar boards has been carried out 

(see Chapter 5, section 5.3), the phase inductances of the grid and drive-side were measured 

using an LCR bridge instrument, as shown in figure 6-9. The measurement setup for phase A 

of the LCL filter inductors is shown in figure 6-9.  

 

(a) 

 

(b) 

Figure 6-9 Measurement of filter inductance per phase: a) drive-side; b) grid-side 
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Table 6-2 shows the measured inductance and resistance values of the six integrated inductors 

of the LCL filter. 

Table 6-2 Measurements of inductance and resistance for the six LCL filter inductors 

Grid-side 

coils 

Measured 

resistance 

(𝒎Ω) 

Measured 

inductance 

(𝜇𝐻) 

Drive-side 

coils 

Measured 

resistance 

(𝒎Ω) 

Measured 

inductance 

(𝜇𝐻) 

Phase A 8.3 5.06 Phase A 29.76 182.6 

Phase B 8.66 5.3 Phase B 29.1 180 

Phase C 8.4 5.2 Phase C 29.7 184 

The average measured inductance of the grid-side inductor, 𝐿1, is approximately 5.18 𝜇𝐻 while 

the predicted value is 5 𝜇𝐻. The average measured resistance per phase is 8.45 mΩ which is 

about 60% greater than the analytical predicted value. This discrepancy might be attributed to 

the length of the external connection, since the exact lengths of the wires had not yet been 

determined at the time of the measurement. In addition, the resistance of the copper busbars 

and solder connections included in the four-layer power boards will contribute to the measured 

resistance in which the number of turns per phase is just 4 turns and the length of external wire 

connections is about 1 meter. This extra length of the external wire connections will be cut and 

it is unlikely to affect the performance of the filter inductors. 

 The average drive-side inductance is measured as 182.2 𝜇𝐻 while the predicted value from FE 

simulation is 196.4 𝜇𝐻. The measured phase resistance of the drive-side inductor, 𝐿2, is 

29.52 𝑚Ω which is 48.82% greater than the predicted analytical resistance value. As there is 

only one turn on the 𝐿1 coil the proportion of the resistance attributed to the flying leads will 

be higher hence the greater percentage underestimation in the resistance of the grid-side coil.  

6.1.4 The measurement of the 3-phase current waveforms of the grid- and drive-side 

inductors  

The integrated motor drive was assembled, including its power electronics, controller and 

cooling circuit. The drive was mounted on to a dyno test rig as shown in Chapter 5, figure 5-

28. The specifications of the dyno rig are given in table 6-3. 
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Table 6-3 Specifications of the dyno test rig 

Name Electric motor / Drive test rig 

Machine type 3-phase induction motor 

Supplier Torquemeters / Germany 

Rated speed 30,000 RPM 

Rated power 100 kW 

cos 𝝋 0.86 

Approximate weight 2500 kg 

The dyno machine was driven to rotate the integrated drive at a shaft speed of 3000RPM. The 

drive was operated in the fourth quadrant providing a braking torque of 4Nm to the dyno. The 

simulation results shown in section 2.6.3 predict a resulting THD of less than 5% of the grid 

current.  

Figure 6-10 illustrates the 3-phase unfiltered, 𝑖𝐿2(𝑡), and filtered current, 𝑖𝐿1(𝑡), waveforms of 

the integrated input filter inductors at a shaft speed of 3000 and a machine torque of 4 Nm. 

 

(a) Unfiltered drive-side currents 𝑖𝐿2(𝑡) 

 

(b) Filtered grid-side currents 𝑖𝐿1(𝑡) 

Figure 6-10 3-phase currents of the integrated LCL input filter at 3000 RPM 
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As shown in figure 6-10, the THD achieved on the grid-side is 3.29% which is still lower than 

the recommended limit of harmonics [9, 44], while it is 17.5% greater than the predicted 

simulated value. This additional THD may result from control factors in the power electronic 

drive which were not included in the simulation such as dead time. 

As shown in figure 6-11, further test measurements have been carried out in order to measure 

the LCL filter currents 𝒊𝑳𝟐(𝒕) and  𝒊𝑳𝟏(𝒕) at a shaft speed 15000 RPM producing the rated 

torque. 

 

(a) Drive-side, 𝒊𝑳𝟐(𝒕), (unfiltered currents)     

 

(b) Grid-side, 𝒊𝑳𝟏(𝒕), (filtered currents) 

Figure 6-11 3-phase currents of the integrated LCL input filter at 15000 RPM 

The LCL filter works effectively: it reduces the THD from 5.2% to 2.1% at the rated input 

current of 66 Apk without affecting the normal operation of the PM machine. Due to greater 

measured L2 inductance, the experimental THD is better than the normal expected grid THD 

of 3.0%. Although the machine is not at rated speed in this test, it is unlikely to have magnetic 

coupling between filter inductors and the PM machine unless the machine is heavily loaded. 

6.1.5 Magnetic cross-coupling between the base machine and filter windings 

In order to investigate the decoupling between the machine winding and the integrated filter 

inductors, the PM machine is firstly driven by an 80.0 V DC power supply at 2500 rev/min with 

the inverter in which the rectifier was disconnected. Producing an average torque of 3.2Nm  at 

2500 RPM and a peak motor phase current of 20A. The induced voltages of the filter inductor 

windings 𝐿1 and 𝐿2 are very small as shown in figure 6-12, which indicates no coupling between 

the base machine and the integrated filters. 
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Figure 6-12 Examination of magnetic cross-coupling between the base machine and filter 

windings 

Therefore, it is concluded that the base machine’s magnetic circuit is magnetically independent 

of the circuit of the integrated filter inductors. 

 HSHP machine measurements 

6.2.1 Open circuit voltages (back-EMF) 

The back-EMF represents the voltage induced in the stator windings caused by the rotor 

magnets at a certain rotational speed. As testing, the whole system is achieved in incremental 

steps an initial test has been conducted to measure the back-EMF at low speed to confirm the 

validity of the FE simulation results. Figure 6-13 shows the line back-EMF voltages for both 

the FE simulation projected and measured values achieved at a speed of 7000 RPM. 

 
Figure 6-13 Line back-EMF measured and predicted at 7000 RPM 
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The peak value of the measured line EMF is approximately 4.62% smaller than that of the 

predicted line voltage. The difference in voltage between the measured and predicted values 

may be attributed to the temperature rise of the magnets during measurement, which in turn 

reduces the magnets’ flux.  

Table 6-4 shows the values of the projected and measured back-EMF voltages. The deviation 

from the average of the measured voltages is less than 1%, which gives an indication that the 

machine is well balanced electromagnetically. 

Table 6-4 Measured and projected back-EMF at 7000 RPM 

Measured line back EMF 
3D FEA 

prediction 
Phase A-B Phase B-C Phase C-A 

97.41 96.71 96.5 101.91 

The machine inductance was validated for the final constructed machine by measuring the 

phase inductance using RLC bridge at zero armature current. The measured value is 0.241 mH 

which is almost the same as those predicted values in table 3-3. 

6.2.2 Coil testing (resistance, groundwall insulation and inter-turn) 

The coil testing process for the IDS machine has been performed using two different 

instruments, which are the Megger-Ohm tester and the Baker instrument (manufactured by an 

SKF group company). The Meg-Ohm test is used to check for any DC leakage current at ≤ 

1kV, and in this test the dielectric strength of the slot liner is checked to ensure that the ground 

wall insulation can withstand the maximum line voltage and can prevent any coil-to-ground 

wall fault. The Baker company has produced a new coil testing equipment which offers several 

tests that include the HiPot test (to inspect the motor’s slot liner) and a surge test (to detect 

insulation damage between turns within the machine’s windings). In particular, it is important 

to conduct the surge test where there is a compressed coil because the wire enamel might be 

affected by the compression process. 

To adequately test the machine, the following test sequence has been performed. 

6.2.2.1 Balance resistance test 

For the resistance measurement, the two leads (red and black) of the Baker test instrument 

were connected to the coil terminals as shown in figure 6-14. The resistance of each coil 
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was measured individually. If a large imbalance in resistance between the coils is found, 

further Meg-Ohm or surge testing is not necessary.  

 

Figure 6-14 Measurement of resistance for the high-speed machine coils 

The predicted analytical resistance calculation for each HSHP machine coil is 0.117 Ω, and 

table 6-5 shows the measured resistance values for the constructed 12 coils belonging to the 

HSHP base machine. 

Table 6-5 Measured resistance values for the HSHP machine coils 

Number 

of coils 

Measured 

resistance (Ω) 
Number 

of coils 

Measured 

resistance (Ω) 

Number 

of coils 

Measured 

resistance (Ω) 

1 0.177 5 0.171 9 0.181 

2 0.195 6 0.17 10 0.174 

3 0.191 7 0.19 11 0.196 

4 0.172 8 0.183 12 0.182 

The differences between the analytically predicted resistance of a coil and the measured 

values shown in table 6-5 are due to a safety margin length taken for the machine end 

terminals during measurement, as shown in figure 6-14. There is another reason for this 

slight deviation of measured values which is the end terminals of copper wires are not 

tinned, thereby it is expected a number of strands will not be measured.  It is noticeable that 

all measured resistance values shown in table 6-5 are more or less the same and there is no 

Two end terminals of 

a base machine coil 
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large imbalance in values of resistance between the machine coils. Therefore, the testing 

processes can proceed to the next step. 

6.2.2.2 Mega and surge test 

These two tests have been carried out successfully where all machine coils have been passed 

the tests. For further details, all the procedures are explained in Appendix A. 

 Conclusion  

The results for the constructed IDS machine, including the base machine and the 3-phase LCL 

filter inductors, have been presented. A good correlation was found between the projected FE 

simulation and measured results.  

The filter inductance per phase (𝐿1 and 𝐿2) was measured, indicating a small difference 

compared to the FE results. The reduction in the value of the harmonics on the grid-side filter 

inductor is by 2.1% at a shaft speed of 15000RPM, which proves that the integrated filter 

inductors mimic the discrete filter inductors but with significant lower volume and a better final 

envelope associated with the base machine’s structure. The examinations of mutual coupling 

between the filter inductors 𝐿1 and 𝐿2 and also between the base machine and filter inductors 

have been performed. 

The initial no-load test showed that the deviation between the measured line back-EMF and the 

predicted value is approximately 4.6%. The balance resistance test has been performed using 

Baker equipment. The groundwall insulation test and surge test have also been carried out. 

Although the experiment was limited in scope the results suggest that impregnation greatly 

increases the lifetime of even a compressed coil. 
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CHAPTER 7  

Conclusion and Future Work 

The question highlighted at the start of this work was whether or not it is possible to integrate 

passive filter components into electrical machines without significant increases in size and 

losses. This chapter summarises the work described in this thesis and offers recommendations 

for future work. 

8.1 Background 

Reduced size and system integration are required in electric drives for applications with limited 

installation space, such as in automotive, aerospace and robotics fields. An integrated drive may 

be defined as the functional and structural integration of the power electronics converter with 

the machine, including the passive components, as a single unit taking into consideration the 

electrical, thermal and structural impacts the components have on each other and the system as 

a whole. For further cost and size reductions in an integrated system, standardised power 

electronics and passive components such as inductors and capacitors can be merged with their 

mechanical environment. The main challenges in the integration of systems are packaging, 

system integration issues, and the lack of standardised power electronics devices. Passive filter 

components represent a significant proportion of material costs and volume in grid-connected 

drives. The envelope of the filter components is rarely congruent with that of the machine, 

leading to poor utilization of the volume available in which to install the drive. Thus a more 

fully integrated system and better design tools are required.  

Given the considerable size of line inductors used for high power applications and the demand 

for packaged electrical systems, the integration of magnetic filter components into electrical 

machines could achieve size reductions compared with conventional inductors with a separate 

motor and drive plus associated hardware. This study illustrates the limitation of previous 

integration methods in integrating passive input filter components into electrical machines. 

Various integration methods have been introduced in this thesis in order to enhance the 

functionality of passive integration into electrical machines. 
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8.2 Summary of work 

The six objectives set out at the beginning of this research have been successfully met. The 

intent of this work is to reduce the overall volume of the combination of the machine and 

electromagnetic filter components through the better utilization of the available volume and 

envelope. The resulting envelope is a single package which achieves a significant volume 

reduction compared to the use of discrete filter components. 

The prototype high-speed, high-power permanent magnet synchronous motor (PMSM) has 

been designed to form the foundation of an integrated motor drive. The machine is fed by an 

active, three-phase two-level inverter, and it has a surface-mounted neodymium-iron-boron 

permanent magnet rotor. A 0.35 mm carbon fibre sleeve will give mechanical integrity to the 

rotor. Single tooth windings minimise overall volume, but introduce special harmonics of flux 

and axial segmentation of the magnets is required to reduce the resulting rotor eddy current 

losses to an acceptable level. The employment of 20 × 30 AWG Litz copper wire is needed to 

give losses winding conversion factor, 𝐾𝐴𝐶, up to 90%. The use of 6.5% silicon, 0.1mm 

lamination material (JNEX-900) will provide relatively low iron losses. The rotor magnets 

should be axially located using non-magnetic steel rings where it helps to prevent shorting 

magnets’ ends and consequently increase the machine efficiency.  

This work presents five integration methods in order to integrate line filter inductors into 

electrical machines. The high speed electric machine with integrated magnetics in an LCL filter 

has been presented where the resulting design is the IDS machine. The integrated drive has 

been designed to take full advantage of sharing the machine stator structure in order to achieve 

a reduction in volume. This work shows the ability to integrate all six LCL filter inductors into 

the proposed machine sharing the original machine’s magnetic circuit without magnetic cross-

coupling between the integrated filter inductor windings or with the main machine’s magnetic 

circuit.  

On-tooth pressed windings have been introduced and demonstrated in the IDS machine, 

showing that the main machine and filter inductor coils are compressed directly onto the double 

slot stator teeth to form a solid component with fill factors for the main machine and filter 

windings of 60% and 50% respectively. A unique manufacturing method for multi-slot direct 

on-tooth pressing has been shown to give reliable and repeatable coils formed in such a way as 

to mitigate poor thermal contact as well as leakage losses due to poor conductor placement. 

This thesis presents a number of novel electromagnetic design and manufacturing processes 
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which enhance the performance and functionality of the integrated drive. The manufacturing 

method described allows the simple assembly of the stator and has been shown to yield 

measured inductances which correlate with the expected values from FEA simulation. 

A prototype demonstration has been constructed using the best available materials and production 

processes and partially tested. An acceptable THD value of 3.29% was obtained on the grid-side 

LCL filter which confirms that the integrated LCL filter inductors mimic those of discrete industrial, 

achieving 87.6% lower volume. The back EMF waveforms and the 3-phase current waveforms of 

the integrated filter inductors collected from the preliminary tests give confidence in the design 

process. 

8.3 Future research possibilities and recommendations 

 There are many unknown factors concerning passive integration methods in HSHP 

machines that would be worth looking at in further research. Chief among these 

techniques is to integrate capacitors in electrical motor drives where more advanced 

standardised techniques are needed. The commercial capacitor shape shown in this work 

is not sufficient to achieve better utilisation of the available volume and motor envelope. 

A potential solutions can be further investigated in the future in order to reduce the size 

of filter capacitors when they are integrated in electrical machine drives; for example, a 

new capacitor design as a circular disk consistent with the outer diameter of the 

integrated base machine can be designed in which the thickness of the disk will be 

dictated by the required capacitance value. The circular capacitor disk could then be 

divided into three pieces to form the 3-phase shunt capacitors of the LCL filter. Thereby, 

most of the circumferential area within the suggested disk shape will be used and hence 

this will reduce the total size of the filter capacitors. 

 Further experimental work should be carried out regarding the thermal behaviour of the 

integrated motor drive at rated speed and input current.  

 Additional work should be conducted in order to validate the predicted value of THD 

achieved by the integrated input filter at rated speed and full input current of 25000 

RPM and 75 Apk respectively. This will validate the integrity of the design of double 

slot stator at full operating conditions. In this case, the magnetic circuit of both filter 

inductors and PM machine should be magnetically independent. 

 Further integration can be achieved with the two options of corner inductors and a 

double slot stator in order to integrate the grid-side inductors 𝐿1 into the machine. Figure 
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7-1 illustrates the arrangement of the 3-phase inductors 𝐿1 for both of these integration 

methods.  

 

       (a)                                                                       (b) 

Figure 7-1 Illustration of the integration of grid-side inductors using two different methods 

The main drawbacks introduced in these suggested methods, as demonstrated in figure 

7-1, are that, firstly, there is poor thermal contact due to free space within the stator 

structure caused by the incorporation of the grid-side inductors 𝐿1. Secondly, the degree 

of complexity of the geometry shown in figure 7-1 (b) is relatively high compared to 

that of the chosen method for the IDS machine where both filter windings 𝐿1 and 𝐿2 are 

incorporated into the same slots to achieve a better thermal path to the machine’s cooling 

system. 

 Additional work can be further conducted to examine the effectiveness of impregnated 

coils with different types of epoxy resin and ground-wall insulation. It is preferable to 

examine a number of identical compressed coils in each case by ageing them in an oven 

at a relatively high temperature, which can be increased to see when the coil insulation 

in the slot liner and enamel copper wire starts to be degraded.  
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Appendix A – Analytical calculation and 
further integration method 

1. The derivation of the transfer function equation of the LCL filter 

 The filter transfer function, including damping branch: 

For this analysis, all inductor resistances are ignored. Figure A1 shows a single-phase 

LCL filter, including the fundamental switch harmonics component, for a short-

circuited grid. 

 

Figure A1 Equivalent circuit of single-phase LCL filter taking into consideration the 

fundamental component of the switch harmonics 

The total filter impedance can be calculated as follows: 

𝑍1 = 𝜔𝐿1//(
1

𝜔𝐶𝑓
+ 𝑅𝑑) 

𝑍1 =
(
𝐿1
𝐶𝑓
⁄ ) +𝜔𝐿1𝑅𝑑

𝜔𝐿1 +
1
𝜔𝐶𝑓

+ 𝑅𝑑

=
𝜔𝐿1 + 𝜔

2𝐿1𝐶𝑓𝑅𝑑

𝜔2𝐿1𝐶𝑓 + 𝜔𝐶𝑓𝑅𝑑 + 1
 

 

The total impedance of the LCL filter is: 

𝑍𝑇𝑜𝑡𝑎𝑙 = 𝑍1 + 𝜔𝐿2 =
𝜔𝐿1 + 𝜔

2𝐿1𝐶𝑓𝑅𝑑

𝜔2𝐿1𝐶𝑓 + 𝜔𝐶𝑓𝑅𝑑 + 1
+ 𝜔𝐿2 

 

𝑍𝑇𝑜𝑡𝑎𝑙 = (
𝜔𝐿1 + 𝜔

2𝐿1𝐶𝑓𝑅𝑑 + 𝜔
3𝐿1𝐿2𝐶𝑓 + 𝜔

2𝐿2𝐶𝑓𝑅𝑑 + 𝜔𝐿2

𝜔2𝐿1𝐶𝑓 + 𝜔𝐶𝑓𝑅𝑑 + 1
) 

Using the formula below, the grid-side current, 𝐼𝐿1, is given by: 
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𝐼𝐿1 = 𝐼𝐿2 ×

1
𝜔𝐶𝑓

+ 𝑅𝑑

1
𝜔𝐶𝑓

+ 𝑅𝑑 + 𝜔𝐿1

= 𝐼𝐿2 ×
𝜔𝐶𝑓𝑅𝑑 + 1

𝜔2𝐿1𝐶𝑓 + 𝜔𝐶𝑓𝑅𝑑 + 1
 

where the drive-side current is: 

𝐼𝐿2 =
𝑉𝑠𝑤
𝑍𝑇𝑜𝑡𝑎𝑙

 

Therefore, the transfer function of the LCL filter with a damping branch in the time domain can 

be derived as follows: 

𝑇𝐿𝐶𝐿 =
𝐼𝐿1
𝑉𝑠𝑤

=
1

𝑍𝑇𝑜𝑡𝑎𝑙
×

𝜔𝐶𝑓𝑅𝑑 + 1

𝜔2𝐿1𝐶𝑓 + 𝜔𝐶𝑓𝑅𝑑 + 1
 

𝑇𝐿𝐶𝐿 =
𝜔2𝐿1𝐶𝑓 + 𝜔𝐶𝑓𝑅𝑑 + 1

𝜔𝐿1 + 𝜔2𝐿1𝐶𝑓𝑅𝑑 +    𝜔3𝐿1𝐿2𝐶𝑓 +𝜔2𝐿2𝐶𝑓𝑅𝑑 + 𝜔𝐿2
×

𝜔𝐶𝑓𝑅𝑑 + 1

𝜔2𝐿1𝐶𝑓 + 𝜔𝐶𝑓𝑅𝑑 + 1
 

𝑇𝐿𝐶𝐿 = (
𝜔𝐶𝑓𝑅𝑑 + 1

𝐿1𝐿2𝐶𝑓𝜔3 + (𝐿1 + 𝐿2)𝐶𝑓𝑅𝑑𝜔2 + (𝐿1 + 𝐿2)𝜔
) 

The transfer function in the state space is as follow: 

𝑇𝐿𝐶𝐿 = (
𝜔𝐶𝑓𝑅𝑑 + 1

𝐿1𝐿2𝐶𝑓𝑆3 + (𝐿1 + 𝐿2)𝐶𝑓𝑅𝑑𝑆2 + (𝐿1 + 𝐿2)𝑆
) 

 The transfer function without the damping branch is: 

𝑇𝐿𝐶𝐿 = (
1

𝐿1𝐿2𝐶𝑓𝜔3 + (𝐿1 + 𝐿2)𝜔
) 

𝑇𝐿𝐶𝐿 = (
1

𝐿1𝐿2𝐶𝑓𝑆3 + (𝐿1 + 𝐿2)𝑆
)  → 𝑆𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 

 

2. LCL power filter design for 38 KW and 25000 RPM 

 

The parameters of LCL filter are dictated by the rated power converter and they are derived as 

shown below: 

 The input filter parameters will be derived as a percentage of the base values as shown: 
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{
  
 

  
 𝑍𝑏 = 

𝐸𝑛
2

𝑃𝑛
= 

4152

38 × 103
= 4.53 Ω

𝐶𝑏 = 
1

𝜔𝑔𝑍𝑏
=  

1

2𝜋 𝑓𝑔 × 4.53
= 702.67 µ𝐹

𝐼𝑚𝑎𝑥 = 
𝑃𝑛
3 𝑉𝑝ℎ

= 
38 × 103

3 ×  240
= 53 𝐴𝑟𝑚𝑠

 

 Drive side inductance 𝐿2 𝑚𝑖𝑛 calculation: 

𝐿2 𝑚𝑖𝑛 = 𝐿2 𝑚𝑖𝑛 =
0.01 × 𝑉𝑝ℎ(𝑟𝑚𝑠)

2 𝜋 𝑓 𝐼𝑟𝑚𝑠
=

0.01 × 240

2 × 𝜋 × 50 × 53
= 0.16 𝑚𝐻 

 

 Shunt capacitor calculation 𝐶𝑓: 

𝐶𝑓 = 3% 𝐶𝑏 = 0.03 × 702.67 µ𝐹 ≈ 21 µ𝐹   

 

 Grid side inductance 𝐿1 (assuming that the attenuation factor 𝐾𝑎 is 20%): 

𝐿1 = 

√
1

𝐾𝑎
2 + 1

𝐶𝑓 𝜔𝑠𝑤2
≈ 5 µH  

 The resonant frequency of the desired LCL filter is determined as follows: 

𝜔𝑟𝑒𝑠 = √
𝐿1 + 𝐿2
𝐿1 𝐿2 𝐶𝑓

= 104.02 𝑥 103 𝑟𝑎𝑑/𝑠 

𝑓𝑟𝑒𝑠 = 16.56 𝐾𝐻𝑍 

 Then the effectiveness of the values of 𝐿1 and 𝐿2 must verify the condition of operation 

of the resonant frequency as follows: 

10 𝑓𝑔 < 𝑓𝑟𝑒𝑠  < 0.5 𝑓𝑠𝑤 

10 𝑥 50 <  𝑓𝑟𝑒𝑠  < 0.5 𝑥 40 𝑥 10
3 

 Damping resistance calculation: 

𝑅𝑑 =
1

3𝜔𝑟𝑒𝑠 𝐶𝑓
=  0.4 Ω 
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3. Derivation of the AC loss equation 

The derivation of the AC loss equation in the time domain can be conducted based on a 

conducting cylinder with a uniform flux density, B, perpendicular to the axis of the cylinder as 

shown in figure A2. This assumes an eddy current loop at position 𝑥 with a thickness of 𝑑𝑥, 

which is returning in the corresponding path of the cylinder at – 𝑥 as shown in figure A2. 

 

Figure A2 Calculation of eddy current loss in a conducting cylinder with uniform flux density 

As the EMF induced around the loop in the conductor is caused by the flux perpendicular to the cylinder 

axis, the derivative of this magnetic flux is: 

𝑑ɸ

𝑑𝑡
= 2𝑥𝑙𝑐

𝑑𝐵(𝑡)

𝑑𝑡
 

where 𝑙𝑐 is the length of the cylinder.  

The resistance of the specified eddy current path as shown in figure A3 is: 

𝑅 =
𝜌 𝑙𝑐
𝐴𝐶
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Figure A3 calculation of eddy current area 

The shaded area of the eddy current section can be calculated as follows: 

Shaded area (𝐴𝐶) = 𝑎 × 𝑑𝑥 

1

2
𝑎 = √𝑅2 − 𝑥2 × 𝑑𝑥       → 𝑎 = 2 × √

𝐷𝐶
2

4
− 𝑥2 × 𝑑𝑥 

As a consequence, the resistance of this path is:  

𝑅 =
𝜌 × 2 × 𝑙𝑐

2√
𝐷𝐶
2

4 − 𝑥2 × 𝑑𝑥

 

 The instantaneous total power dissipated in the cylinder ((𝑑ɸ 𝑑𝑡)⁄ 2 /𝑅) is approximately integrated 

with these differential elements, as given in the following equation. 

𝑃(𝑡) = ∫ (2 × 𝑥 × 𝑙𝑐 ×
𝑑𝐵

𝑑𝑡
)
2

×

√𝐷𝐶
2

4 − 𝑥2 × 𝑑𝑥

𝜌 𝑙𝑐

𝑑
2

0

 

𝑃(𝑡) =
𝜋 𝑙𝑐 𝐷𝐶

4

64 𝜌
 (
𝑑𝐵(𝑡)

𝑑𝑡
)
2
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4. Measurements of the integrated LCL filter 

The constructed motorette has been tested by applying a number of AC voltages to the middle 

tooth and hence an Oscilloscope has been used to calculate the phase shift between the applied 

voltage and current. As a consequence, the method of calculation middle tooth inductance is as 

follows: 

 𝑉, 𝐼 𝑎𝑛𝑑 ∅ (𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡)𝑎𝑟𝑒 𝑘𝑛𝑜𝑤𝑛 

 𝑍𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 =
𝑉

𝐼
 ∠ − ∅ = 𝑥∠ − ∅ 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 𝑍𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 = 𝑥 cos(−∅) + 𝑗𝑥 sin(−∅) 

Therefore, the inductance value is in the reactance part of the equation 

𝑌 = 𝑥 sin(∅) = 𝜔𝐿 

 The middle tooth inductance is:  

𝐿 =
𝑌

𝜔
 

5. Additional methods for integrating grid-side inductors (𝑳𝟏) into the HSHP 

machine 

Triple slot machine method: this approach involves three different coils (for the machine and 

filter inductors 𝐿1 and 𝐿2) with an independent slot for each coil within a stator tooth, as shown 

in figure A4. The filter inductors have separate air gaps and hence there is a likelihood of 

independent magnetic paths for each filter inductor along with the independence of the main 

machine’s magnetic circuit. 
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Figure A4 Triple slot machine 

However, this approach to integration is might be complicated in terms of the assembly of the 

filter windings 𝐿1 and 𝐿2 and it is not a cost-effective method compared to the method of the 

IDS machine.   

6. Procedures of Mega test 

A Meg-Ohm test has been performed using a Megger tester with a test voltage of 500 V 

based on the operating phase voltage of the machine of 433 V at peak voltage. The dielectric 

strengths of different components in the constructed IDS machine have been tested, 

including the ground wall insulation in the double-slot stator, the four-layer busbar boards, 

the shunt capacitor connections, and the machine housing. Table A-1 shows different cases 

of the possible testing of end terminals. 

 

 

 

 

(a) Triple slot tooth 

(b) 2D FE model overlaid 

with contour plot 
(c) 3D representation 
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Table A-1 Ground wall insulation test for the IDS machine 

  
Expected Meg-Ohm test results 

  

𝐿1𝑎 𝐿1𝑏 𝐿1𝑐 𝐿2𝑎 𝐿2𝑏 𝐿2𝑐 𝐶𝑎 𝐶𝑏 𝐶𝑐 𝑀𝑎 𝑀𝑏 𝑀𝑐 Housing 

M
ea

su
re

d
 M

eg
-O

h
m

 t
es

t 
re

su
lt

s 

𝐿1𝑎 S.C     0     0             

𝐿1𝑏   S.C     0     0           

𝐿1𝑐     S.C     0     0         

𝐿2𝑎 
0.21

Ω     S.C     0             

𝐿2𝑏   
0.28

Ω     S.C     0           

𝐿2𝑐     
0.3

Ω     S.C     0         

𝐶𝑎 
0.28 

Ω     
0.28 

Ω     S.C             

𝐶𝑏   
0.25 

Ω     
0.28 

Ω     S.C           

𝐶𝑐     
0.26 

Ω     
0.34 

Ω     S.C         

𝑀𝑎                   S.C 0 0   

𝑀𝑏                   
0.33 

Ω 
S.C 0   

𝑀𝑐                   
0.35 

Ω 

0.28 

Ω 
S.C   

Housing                         S.C 

Symbols:  𝐿1 (𝑎,𝑏,𝑐): grid-side phase inductor, 𝐿2 (𝑎,𝑏,𝑐): drive-side phase inductor, 𝐶(𝑎,𝑏,𝑐): phase filter 

capacitor, 𝑀(𝑎,𝑏,𝑐): phase machine coils, S.C: short circuit,     : successful insulation test (no fault). 

According to the results obtained in the strength of the insulation test shown in table A-1, 

the IDS machine has an adequate dielectric strength to withstand the maximum operating 

voltage. 

7. Procedures of surge test 

The principle of the surge test is that it applies a high current impulse to a coil using a 

fast rise time in order to create a potential voltage across the wire of the winding. These 

short high-current pulses produce a momentary voltage stress between adjacent 

conductors. In this case, the coil becomes one of the two elements in an LC circuit which 

is made up of the coil’s inductance (L) and the internal capacitor of the surge tester (C). 

The voltage present across the test leads of the tester is a representation of the surge 

waveform. The coil inductance is basically dictated by the number of copper turns and 

the type of iron core in which it rests. In the case of turn-to-turn fault the voltage 
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potential is greater than the dielectric strength of insulation of turn and thereby one or 

more turns might short out of the circuit. The inductance of coil will be reduced with 

fewer working turns. Therefore, the indication of a turn-to-turn fault is a jump to the left 

of the surge waveform pattern, which can be seen on the screen display of the Baker 

instrument.  

The wave pattern frequency which decays with time is determined by the following 

equation. 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

2𝜋 √𝐿𝐶
 

The surge test process for the IDS machine has been conducted using a test voltage of 

1000 V, which is more than double the operating machine voltage and is based on the 

appropriate standards and company guidelines [107]. A preliminary surge test was 

performed on a master coil which is likely to be in a fully healthy state, where the surge 

waveform was stored as a reference master waveform for all other coils tested. 

Figure 6-15 shows a series of tests which can be carried out on the coil, including the 

waveform of the surge test for a healthy coil. The method of determining the pulse-to-

pulse error area ratio (PP-EAR) is applied in the coil testing to be compared to the saved 

waveform of the master coil, indicating a healthy or failed coil. The PP-EAR method 

applies a voltage impulse to the coil and measures the differences between pulses. An 

acceptable error (PP-EAR %) should be less than 10% of the saved master coil 

waveform [107]. Furthermore, the measurement of coil resistance and Meg-Ohm and 

HiPt tests have all been carried out with different levels of voltages, as shown in figure 

6-15. The 24 coils (of the base machine and filter inductors) of the IDS machine were 

tested and they all passed the surge test successfully. 
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Figure A5 Complete test of coil with the surge test waveform compared to the master 

coil 
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8. Demagnetisation curves of the utilised magnet material 

The following figure A5 illustrates the B-H curve of the PM material grade N42UH which is 

used for the rotor magnets. 

 

Figure A6 Demagnetisation curves of the magnet material used of N42UH 

  



Appendix 

192 

Appendix B – 34kW/25000 RPM 
machine drawings 

Figure B1 Drawings of rotor magnets and non-magnetic wedge 
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Figure B2 Drawings of full rotor assembly 
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Figure B3 Drawings of front-end plastic insulation for the stator teeth  
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Appendix C – Drawings of pressing tools 

 

 
 

Figure C1 Drawings of parts of pressing tools  



Appendix 

196 

 

 

 

 
 

Figure C2 Drawings of the foundation of the pressing tools 
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Figure C3 Drawings of temporary housing 
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Appendix D – 4.56kW/3000 RPM - FE 
results 

FEA Results for the low-speed machine at 3000 RPM: 

 

Figure D1 2D torque performance prediction at 3000 RPM 

 

Figure D2 2D line back-EMF voltages at 3000 RPM 

 

Figure D3 Harmonic spectrum of line-to-line back-EMF 

 


