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Abstract

Synthetic biology o�ers a new horizon in designing complex systems. However,

unprecedented complexity hinders the development of biological systems to its full

potential. Mitigating complexity via adopting design principles from engineering

and computer science �elds has resulted in some success. For example, modulari-

sation to foster reuse of design elements, and using computer assisted design tools

have helped contain complexity to an extent. Nevertheless, these design practices

are still limited, due to their heavy dependence on rational decision making by

human designers. The issue with rational design approaches here arises from the

challenging nature of dealing with highly complex biological systems of which we

currently do not have complete understanding. Systematic processes that can al-

gorithmically �nd design solutions would be better able to cope with uncertainties

posed by high levels of design complexity. A new framework for enabling de-

sign automation in synthetic biology was investigated. The framework works by

projecting design problems into search problems, and by searching for design solu-

tions based on the dual-evolutionary approach to combine the respective power of

design domains in vivo and in silico. Proof-of-concept ideas, software, and hard-

ware were developed to exemplify key technologies necessary in realising the dual

evolutionary approach. Some of the areas investigated as part of this research in-

cluded single-cell-level micro�uidics, programmatic data collection, processing and

analysis, molecular devices supporting solution search in vivo, and mathematical

modelling. These somewhat eclectic collection of research themes were shown to

work together to provide necessary means with which to design and characterise

biological systems in a systematic fashion.
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A string of light pierced into a space �lled with what seemed like

eternal darkness. I chased the light, chased the light, and chased the

light. Still out of reach, but never out of sight was the light of

wisdom. Better not be an illusion, nor hallucination, as I have begun

to run out of breath. The Plato's cave, where I have been locked up

against my will for life, pulls me back into the safe harbour, into the

eternal bliss of ignorance. I have been adrift in the void for so long; I

wish to tell my olde days so long. I erected my petri�ed soul and

hurled it against the air in a paddling motion. Out of desperation

goes my wishful thought of making butter out of thin air; so one day,

I may be able to stand on the butter of wisdom and strut out of this

cave. For thee who shalt not doubt, making air taste like cream

would be as miraculous an act as making wine out of water. For

philosophers like I who question and reason, phenomena exist not in

miracle but in causality. So I keep on paddling my soul as yet, by

tuning into a coxswain's shout, toasting once to the art of doubting,

and twice to doubting my own doubts.

But there are some things I am determined never to doubt: that I

owe a debt of gratitude to my parents, my brother and my wife, and

that I love them.

I would like to dedicate this thesis to my parents Soonja and

Juhnguen who shaped me to dream my dream, to my brother

Moonshic who introduced to me the art of computing for chasing my

dream with, and to my wife Yeji who made the tortuous marathon

run of beating the butter of wisdom a bearable journey.



Shakespeare did a great job distilling my prose into poetry:

'Doubt thou the stars are �re;

Doubt that the sun doth move;

Doubt truth to be a liar;

But never doubt I love.'
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Chapter 1

Introduction

One of the most useful characteristics of humanity, di�erentiating us from other

high-order animals, is our capability to design complex systems. We have the

mental ability to abstract ideas, which has helped us create and expand sciences

and meta-sciences [59, 90]. Our abstracting and design capability is at the core of

how we could have built the civilisation as we know it today. Technological and

scienti�c advancements achieved so far have begun to open ways for us to read

and write the code of life - deoxyribonucleic acid (DNA) sequences. There is an

old saying that sums up quite nicely what is going to unravel with this newfound

capability of ours. The proverb, with a little twist, goes like this: where there

is a way, there is a will (to design). Brian Cox inadvertently proved the general

trueness of this proverbial eventuality, in his quantum theoretic perspective on

questioning the universal phenomenon: �why anything that can happen, does�

[43]. The �eld of synthetic biology has been born, and there are wills galore to

walk the way to take humanity to whole new levels of design feats. Designing

complex synthetic biological systems is, undoubtedly, the next frontier in science,

technology, engineering, and mathematics.

The primary thesis being set out here for discussion is about design in syn-

thetic biology. The topic's key concept, with respect to its semantics, needs to

be clari�ed, before the discussion can proceed any further though. It is the de-

ceivingly simple, yet di�cult, question of what it means by �design.� There are

a plethora of partial de�nitions on the meaning of design. Nevertheless, there
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1. INTRODUCTION

has not been any universally agreeable formal de�nition of design existing to date

[141]. In an article about the etymology of design [174], Terzidis re�ects on the

meaning of design the word's Greek root, �σχεδόν (pronounced schedon), meaning

nearly, almost, about, or approximately.� Terzidis explains, �From its Greek de�-

nition, design is about incompleteness, inde�niteness, or imperfection, yet it also

is about likelihood, expectation, or anticipation. In its largest sense, design sig-

ni�es not only the vague, intangible, or ambiguous, but also the strive to capture

the elusive.� This etymological de�nition associates design to some activity that

is intrinsically vague, trying to capture the vague. While such a de�nition may

inspire some philosophical thoughts, it is a rhetoric far from providing a tangible

de�nition as to what design really is in a practical sense.

According to Freeman and Hart [65], �Design encompasses all the activities

involved in conceptualizing, framing, implementing, commissioning, and ultimately

modifying complex systems.� This modern de�nition of software systems design

exhibits uncanny relevance to design in synthetic biology, and is connoting the idea

of engineering in its de�nition. Yet another interesting perspective on the meaning

of design relevant to synthetic biology comes from the �eld of engineering design. In

a book on engineering design [57], Dym explains design as part of a central activity

in engineering focused on the �nal goal of creating artefacts, and argues that �(the

meaning of) design incorporates both representation of the artifact being designed

as well as the process by which design is completed�. This de�nition suggests

that engineering design is more than just providing a conceptual blueprint for

the construction of artefacts or the artefacts per se. Dym's argument, by saying

�design incorporates . . . the process by which design is completed,� is de�ning the

scope of design to be inclusive of implementation level details, or documentation

unequivocally delineating how desired artifacts can be constructed.

That synthetic biology is a �eld of biological science harnessed with engineer-

ing principles is an argument we often hear [5, 82, 99, 115]. This argument en-

tails synthetic biology's unique need for modifying existing systems, contrasting

other bio-science �elds primarily focused on characterising existing systems. Mod-

i�cation as a purpose is what di�erentiates engineering from science. Such an

engineering-centric view of systems design in synthetic biology is also in line with

the prevalent use of speci�cations in discussing synthetic biological designs. The
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initiatives in Synthetic Biology Open Language (SBOL) [69], for instance, epit-

omise the importance of speci�cations in the �eld. The role of speci�cations in

design can be related to the following excerpt on di�erentiating engineering from

science. Kroes argues [103], �Whereas in science our ideas and beliefs are adjusted

to how things are in the world, the engineering attitude is precisely the opposite,

namely to adapt the world to our ideas, desires and needs.� The medium by which

�our ideas, desires and needs� can be captured is what a speci�cation is to design.

Within the context of this thesis, I would like to adopt the systems engineering

perspective on the meaning of design, where design encompasses all the activities

and artefacts needed in the realisation of functional properties. In this view,

design contains not only the `what' of the implementation but also the `how,' via

unequivocally documenting and constructing the mechanisms with which designed

artifects, whether they be ideas, aesthetics, data, energy, materials, or genetic

sequences, can possess intended functional properties. Such a de�nition of design

is also relevant to the repeatability of design, a quality necessary in achieving

automation.

To design is to solve design problems. Conventionally, the process of solving

design problems follows its Greek root in being nebulous, requiring highly cognitive

brain tasks by humans, and involving such obscure activities as brainstorming. I

believe the lack of clarity in this process, at least in part, stems from having to deal

with highly complicated data, leading to analysis paralysis. Choices made by the

human brain are heavily in�uenced by how options are presented [50]. According to

Herbert Simon's theory [75, p.1], the human mind has �bounded rationality� in that

�people reason and choose rationally, but only within the constraints imposed by

their limited search and computational capacities.� For problems with incomplete

or complex information, rational decision making by the human brain relies on

simpli�ed heuristics or rule-of-thumb principles that rather deviate from the laws

of probability [75, p.1].

Is complexity the major culprit in causing obscurity in design activities? If

so, can we make design problems more trivial to solve by making the process of

dealing with highly complex data more straightforward? Would there be ways

to employ a set of simple, well-de�ned processes, to make easily manageable any

given task and corresponding data a human designer or a computerised logic deals
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1. INTRODUCTION

with? Would it ever be possible to replace the good old-fashioned, enigma-laden,

and human-intelligence-driven design approach with a mindless systematic design

approach more amenable to automation? Ultimately, is achieving full automation

in designing synthetic biological systems a possibility?

In an attempt to shed light on these questions, my research aims to build sup-

porting technologies to enable design automation in synthetic biology. To this end,

the work presented here explores some of the key areas in the design process that

would greatly bene�t from automation. This work explores genetic and micro�u-

idic means to provide an interface to facilitate data exchange between the in vivo

and in silico domains. Among other important aspects of design automation, the

data exchange interface would allow for the programmatic execution of tasks such

as gathering and analysing measurement data, and would serve as the cornerstone

in building a full design automation stack.

1.1 How design is done

Traditionally, approaches to designing complex systems can be classi�ed into being

either top-down or bottom-up [44], depending on the �ow of design processes. The

use of such classi�cation is widespread across various design domains ranging from

integrated circuits [98], to software systems [137, 175], and to trade agreements [2].

This dichotomous classi�cation provides conceptual frameworks for understanding

how knowledge is organised in performing design. The former re�nes a design

through decomposition: breaking down broader concepts into narrower details.

This �ow can o�er relatively easy a transition from the initial speci�cation into

a design. There are clear downsides to this approach in that designed systems

may end up with no parts to ful�ll the need, and that testing cannot start until

the systems are decomposed into testable parts. The latter starts from identifying

available parts, and builds a system through composition, hence testing can start

early on in the design process. However, the �nal system may not necessarily

re�ect what was initially intended in the speci�cation. Neither approach cannot

be declared to be outright superior to the other. Often, designing complex systems

would need to incorporate both approaches. While these classi�cations can give

some indication as to the directionality of a design �ow, they do not provide clear
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methodological steps to be followed in terms of accomplishing a design.

Designing complex systems, synthetic biological systems included, requires

strenuous analyses involving various domains of knowledge. Without having a sys-

tem of methodologies to de�ne and govern such analyses, it would not be possible

to wield the complexity in design. Software engineering principles, such as those

advocated by the Agile Manifesto [14], provide insightful ideas about managing the

processes involved in the design of complex systems. Agile software development

uses iterative and incremental design approaches by working with manageably

small analyses and implementation tasks. Extreme programming (XP) [15] is a

type of agile software development methodologies that particularly stresses the

importance of testing as part of design and implementation cycles. According

to the proponents of XP, how software systems design is done depends on the

cost of change. One of the common assumptions about the cost of change taken

into consideration in design projects is that the cost would rise exponentially as

projects progress. XP proponents claim that trying to account for the future cost

of change in design would impose burdensome constraints in making design de-

cisions. Unnecessary design decisions are made early-on in the design process in

order to avoid any late changes. Such a strategy would be especially detrimental

to design problems with which only partial information is available upfront, as

are the cases in most synthetic biology design problems. If there is a strategy

that can make the cost of change a non-issue, critical decisions can be made as

late in the design process as possible. XP �nds the answer to the issue of cost

of change in systematic testing. Having a solid testing scheme would mean that

frequent changes can be applied to a design with relative ease. How costly it is to

introduce late design changes would dictate the applicability of iterative and in-

cremental design approaches to building complex systems. The more iterations of

changes a design is subject to, the more feedbacks the design can receive towards

satisfying the speci�cation. XP takes this argument further by adding that no

systems design can even start without �rst de�ning how to test the systems, and

that no design is complete without testing. Testing in XP is what makes possible

the decomposition of a complex systems design problem into as many manageably

small design elements and/or iterations as possible without losing the integrity of

the whole system. The notion that testing is an integral part of design is key to
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taking a systematic approach to design in synthetic biology. Testing is where in-

tended functionalities are veri�ed, where design criteria can be de�ned, and where

measurements and analyses can be translated into design elements. Furthermore,

systematic testing keeps the cost of change contained at a reasonably low and

predictable level in order to allow for late changes inevitable in synthetic biology

design problems.

1.2 Design by abstraction

In dealing with complex design tasks, it is not an option but a necessity to use

computer aided or automated design processes. Synthetic biology is certainly not

an exception to having the need for computerised design processes. Complex

designs have a lot to bene�t from model-driven engineering (MDE) approaches.

MDE is an approach pioneered in computer science with the aim of facilitating

computer-aided systems engineering through abstraction o�ered by the use of mod-

els [64]. The model checking community has long been advocating the value of

using abstraction in validating complex system designs. Abstraction in design al-

lows its systems or subsystems to be tested in isolation, which in turn facilitates

the achievement of higher degrees of design complexity [37]. MDE has enabled,

via abstraction, large-scale design projects in software [64] and automotives [23],

among others. MDE has also been adopted in synthetic biology with some success

in designing RNA devices [27] and engineering metabolic pathways [97]. MDE

enables the inspection of complex systems being designed via the versatile lens of

in silico models. Models allow the simulation of physical realities at the granu-

larity as �ne as required. Models, for instance, can be used to represent physical

reality at the molecular, or even lower levels, if need be. Models also provide a

highly organised and functionally active means for capturing experimental data

that tend to be structurally �at and functionally inactive in their original forms.

Without doubt, using MDE in synthetic biology will o�er to be of great help in

mitigating the challenges associated to design complexity. However, the current

lack of availability of well characterised biological parts from which to produce

models is a hindrance to the use of MDE in practice. Adopting a MDE approach

that would require minimal a priori knowledge is, therefore, crucial to the success
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of modelling in synthetic biology.

1.3 Design in synthetic biology

The �eld of synthetic biology arose from the development of technological advances

in molecular biology, electrical engineering and computer science. Many of the

principles of electrical engineering and computer science have been adopted in

synthetic biology, so much so that use of the term 'biological engineering' in the

design of novel biological systems is prevalent in the �eld. The synthetic biology

engineering life cycle includes many of the stages familiar to software engineering:

speci�cation, design, modelling, implementation, testing and maintenance. Some

of the technological developments concerning this �eld, including Next Generation

Sequencing and DNA synthesis, have begun to outpace Moore's law as witnessed

in the computer industry. It is not unimaginable to foresee the design complexity

of synthetic biological systems to eventually surpass that of electrical engineering

and the reasoning capacity of the human brain.

Natural evolution employs iterative selection and randomness as universal means

to solve complex genome-scale biological design problems. Nature's system of �nd-

ing design solutions has inspired me to pursue the investigation into an evolution-

ary approach to achieving genome-scale design in synthetic biology. The challeng-

ing nature of genome-scale design is intensi�ed by the computational complexity

and the large parameter space inherent to modeling approaches [139], heavily de-

pendent on kinetic [147, 176, 177], stochastic [143, 152], and cybernetic elements

[161, 167]. Furthermore, parameters in models could largely be unknown, and

are often costly or impossible to be characterised [148]. The dual-evolutionary

approach (DEA) as suggested by Hallinan and her colleagues [80] is an attempt

to provide a genome-scale design framework that can overcome the current lack

of availability of well characterised parts and computational power to handle com-

plex systems design. The approach employs solutions from two iterative search

domains, namely the in silico and the in vivo counterparts. The marriage of the

two poses promising capabilities with regards to facilitating large-scale engineering

of genome design.
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1.4 Motivation for design automation in synthetic

biology

Engineering microbial organisms under the paradigm of synthetic biology has a

huge potential for igniting a new era of industrial revolution. Designed organisms

will have impacts on our daily lives in the future soon to arrive. In the short

run, the idea of harnessing cell factories will be indispensable to the economical

production of pharmaceutical substances and renewable energy resources [127].

In the long run, designed organisms will eventually open ways to provide general

biocomputing platforms that can be programmed to solve problems deemed too

di�cult or costly for conventional silicon-based computing architectures.

Designing biological organisms de novo would require highly challenging engi-

neering feats. One of the major hurdles in the design of biological systems is that

molecular interactions at the genome-scale level are extremely complicated [182].

The lack of availability of well-characterised biological parts and tools in synthetic

biology further restricts the design �exibility at such complex levels. Most design

in synthetic biology today is done on an ad hoc and manual basis by domain ex-

perts [115]. This practice not only hampers genome-scale design but also involves

trial and error far too costly for achieving the economy of scale. For designing

large-scale biological systems, synthetic biologists can no longer rely on manual,

impromptu processes. Current design practice in synthetic biology, heavily reliant

on the intuition of domain experts, can only ful�ll the �eld's market potential

to a limited extent. Impending in synthetic biology, therefore, is a demand for

systematic design approaches, that are more amenable to automation.

1.5 Hypothesis, aims, and objectives

Given many uncertainties associated with engineering complex biological systems,

the synthetic biology engineering cycle would need to be highly iterative. Rational

design decisions would be ine�cient for any such iterative tasks, and would hinder

large-scale design. More promising is the use of an inherently iterative, heuristic

approach such as DEA, which would potentially be much easier to be automated
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and be more capable in handling design complexity. Having speculative arguments

thus far given about DEA, this research was based on the following hypotheses:

that design complexity would correspond to the time taken to �nd design solutions

or vice versa; that the DEA framework would be an e�ective means to shorten time

to design, subsequently mitigating design complexity; and that the framework

would be amenable to automation.

With respect to these hypotheses, the overarching aim of this project was to

establish a groundwork for DEA with which to further the investigation and the

development of methodologies for accomplishing design automation in synthetic

biology. One of the objectives, stemming from this aim, was to investigate the

feasibility of employing DEA as an e�ective framework to facilitate the design

of complex systems in synthetic biology. Another objective was to investigate

the duality of in silico and in vivo design domains, and to suggest how the two

can be integrated, minding the cross-domain gap. The �nal objective as part of

this research work was to investigate and suggest how process automation can be

achieved for streamlining the highly iterative design processes of DEA.

1.6 Contributions

Some of the original works done as part of this research contributed to the following

publications. The application of automated, iterative, dual evolutionary strategies,

which formed the basis of many ideas put together in this research work under the

umbrella term of DEA, was initially published as a positional piece [80] in which

I participated as a co-author. My work on modelling genome-scale enzymatic

pathways and analysing the �ux balance of ribo�avin biosynthesis in B. subtilis was

applied in the prediction of key metabolisms out of the pentose phosphate pathway

for ribo�avin production [156]. Some parts of my work on micro�uidics, including

the application of novel methods on fabrication, single-cell-level measurement and

analysis, were published as part of a book chapter [61].

9



1. INTRODUCTION

1.7 Thesis outline

Due to the interdisciplinary nature of the �eld of synthetic biology, multiple scien-

ti�c disciplines contributed to the writing conventions adopted as part of structur-

ing this thesis. Chapter 2 briefs on the subject �eld and the prior arts of synthetic

biology, and Chapter 3 gives an overview of the DEA framework. Immediately fol-

lowing this is Chapter 4 showing the wetlab methods used as part of this research

work. Placing the methods chapter before the body chapters (Chapter 5, 6, and 7)

was for abiding by the bioscience writing convention. This way of organising infor-

mation was deliberately chosen as a gentle reminder of the importance of wetlab

works in synthetic biology. The methods text taking precedence in the positional

order would also be more practical in serving its purpose as an immediate reference

point for any hands-on works in the wetlab.

The body part comprises three chapters. The �rst of which (Chapter 5) covers

the in vivo design domain, followed by the work on the in silico design domain

(Chapter 6). These two juxtaposed body chapters convey the details underpinning

the duality of the DEA framework. The last body chapter to follow (Chapter 7)

covers the research work on accomplishing process automation in synthetic biol-

ogy via using micro�uidics. Chapter 8 provides concluding remarks, in re�ection

of the project aims and objectives, with a comprehensive discussion about poten-

tial future works, based on speci�c details presented across the preceding body

chapters.
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Chapter 2

Background

2.1 Synthetic biology

Synthetic biology is an interdisciplinary research �eld that applies engineering prin-

ciples to the design and construction of novel biological systems [5, 82, 99, 115].

Having the word �engineering� as part of describing this emerging biology �eld

signi�es that it is not just about observation but more about modi�cation that

matters about the �eld. To pursue the modi�cation of biological systems in or-

der to make systems that can perform useful tasks is the de�ning characteristic

of synthetic biology. In fact, such an endeavour to alter biological systems is not

new to biology. Throughout history, we have long been using selective breeding

techniques to improve the yield, �avours, or aesthetics of various biological organ-

isms such as crops [117], cattle [145], and �owers [192]. More recently, the �eld

of genetic engineering has already opened ways to genetically modify biological

systems. What would then make synthetic biology distinguished from these pio-

neering attempts of other �elds in modifying the phenotypes and the genotypes

of biological systems? The answer to this question can be found by drawing a

parallel line in history and looking at the Industrial Revolution.

Steam engines are attributed to be one of the key elements that precipitated

the Industrial Revolution [125]. However, the idea of using steam power to make

a rotary movement had already been contemplated by ancient Greeks in the 1st

11



2. BACKGROUND

century AD (see Figure 2.11). Yet, harnessing steam power to its full potential

was not materialised till the 18th century. What di�erentiated industrialists and

engineers of the 18th century from ancient Greeks was the prevalent use of stan-

dardisation. Standardised parts during the Industrial Revolution made it easy to

document designs and to build artifacts from documentations in turn [53]. This

consequently allowed many engineers to easily share their ideas and build ideas on

top of one another. Standardised parts lowered technological barriers and fostered

modularisation and reuse of functional units. Engineers in the 18th century could

see further by standing on the shoulders of giants, by not having to build things

from scratch.

Figure 2.1: An illustration of the ancient Greek steam engine, aeolipile [101]

The idea of fully embracing standardisation is at the heart of what distin-

guishes synthetic biology from the old school of genetic engineering. This nascent

1The aeolipile illustration is an excerpt from Knights American Mechanical Dictionary([101]),
and its copyright is in the public domain.
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bio-engineering �eld is still premature and has yet to unravel its full potential.

Nevertheless, there have already been exciting achievements that exemplify the

revolutionary nature of synthetic biology. Perhaps, synthetic biology is the �rst

�eld to have the true potential of becoming the engineering counterpart of biology,

much like chemical engineering has been for the �eld of chemistry. That is to say

synthetic biology will bring about a new era of revolution to humanity.

2.2 Building blocks in synthetic biology: parts and

devices

There has been a recurring research theme in synthetic biology skewed to imple-

menting proof-of-concept biological equivalents of logic gates or the building blocks

of electronic engineering [124, 165, 170]. The popularity in building biological logic

gates [4] exempli�es the current trend of parts-based and bottom-up design ap-

proaches prevalent in synthetic biology. Such design approaches, if taken in an

attempt to replicate, verbatim, the functional complexity of electronic devices in

biological systems, would be fundamentally �awed. Unlike electronic systems, bi-

ological systems cannot be hardwired to construct networks of dense logic gates

functioning together. The use of chemical signals as a means to wiring gates, as

shown by Tamsir and his colleagues [170], can only be scaled to a limited design

complexity owing to the lack of available orthogonal signals that do not interfere

each other. Regot and others [142] have suggested a way to reduce wiring con-

straints in biological gate designs, using the concept of �distributed computing�

via multiple cells working in collaboration. Their approach allowed a successful

implementation of a 1-bit adder. Nevertheless, their approach would still su�er

from the scalability issue in building complex systems with practical real-world

applications.

2.3 Bio-design automation in synthetic biology

Bio-design automation (BDA) is critical to achieving the level of design complexity

necessary in solving real-world problems. There have been initiatives in synthetic
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biology communities with a consensus goal towards automating the process of bi-

ological systems design. However, the majority of these initiatives have so far

been centered in computer-aided design (CAD), as versus to BDA in its true sense

[115]. CAD evolves around software tools that can assist human designers with

their design tasks often in terms only of managing information in a bottom-up fash-

ion. BDA practices in synthetic biology have mainly been focused on what would

be considered low-hanging fruits, only capable of providing rudimentary forms of

�automation� as would CAD tools. Some of the software tools in this endeav-

our include TinkerCell [33] and GenoCAD [48]. TinkerCell provides a graphical

user interface where a human designer can drag and drop genetic parts such as

promoters, RBS, CDS, and terminators to put together a design construct. Tin-

kerCell allows the study of the dynamics of molecular interactions by allowing the

de�nition of cellular boundaries and types of molecular reactions using kinetic pa-

rameters. GenoCAD took a little more formalised approach to integrating genetic

parts by working with rules with which matching parts from databases such as

the Registry of Standard Biological Parts can be found. Tools such as GEC [135]

and Eugene [19] lean towards the programmatic exploration of genetic designs by

working with the concept of programming languages and abstraction to specify ge-

netic circuit designs. These tools can be used to convert abstract low-level designs

into genetic circuits with speci�c parts. However, they are still limited to o�ering

parts-based and bottom-up approaches to accomplishing genetic design.

Parts-based, bottom-up approaches would o�er design perspectives relatively

more straight-forward, not only in terms of developing software tools but also

in using such tools to document rationalised ideas by designers. However, the

subject in this design process is still the human experts. This means that rational

decision making is required on every critical details of a design on a manual basis.

Regardless of whether all the mental somersaults in rational decision making were

performed in perfection or not, the resulting design is still subject to errors in the

expert knowledge and limits in the reasoning capacity of humans. The current

bias toward bottom-up design approaches in synthetic biology software tool bases

is perhaps attributed in part by that fruit harvest competition and heavy reliance

on ad hoc, rational design processes. Lux and his collaborators have addressed the

concerns regarding the ad hoc nature of current design practice in synthetic biology
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[115], and urged for �the formalization of genetic design rules that determine the

complex relationships between genotype and phenotype.�

2.4 Metabolic engineering as an application of syn-

thetic biology

Metabolic engineering is an attempt to design and manipulate cellular metabolism

in order to facilitate the biosynthesis of molecules of interest, usually of high com-

mercial value [187]. Metabolism is an integral cellular process involving complex

sequences of chemical reactions that transport, convert and harness carbon and ni-

trogen �uxes for the maintenance of biological systems [36]. Metabolism provides

cells with pathways to convert nutrients into energy and base chemical species nec-

essary for making everything cells need. The kinds of chemical species or metabo-

lites required by cells, consequently made available by their metabolism, di�er

depending on the environmental niches to which the cells of any given organism

evolved to adapt [92].

While there are highly conserved metabolic constituents such as nucleic acids,

amino acids and various hydrocarbon chains that make up some of the essential

cellular components including DNA, RNA, proteins and lipids, there are whole

other spectrums of esoteric secondary metabolites unique only to a handful of

organisms in their wildtype conditions [93].

Metabolic engineering and recombinant DNA technologies have enabled us to

make cellular factories that can produce nearly any organic molecules [47]. In

that capacity, metabolic engineering seems to have a lot of common aspects with

synthetic biology. Metabolic engineering could be considered a subset of areas

in which synthetic biology can be applied. Nielsen and Keasling expressed in

their opinion piece [127] that there currently is some degree of disconnect as well

as overlap between three di�erent disciplines of metabolic engineering, systems

biology, and synthetic biology. They opined that di�erent endeavours from these

three �elds will eventually have to merge together in order to facilitate progress in

the engineering of biological systems.
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2.5 Current a�airs in synthetic biology

The �eld of synthetic biology is still at its infancy. While the big picture of this

nascent �eld is portrayed as being aimed at the genome-scale design of synthetic

organisms, the reality now is far from achieving designs of such a grandiose scale.

Many synthetic biology projects to date have investigated the bottom-up compo-

sition of genetic circuitries out of a handful of genetic elements such as promoters,

ribosome binding sites, coding sequences, and terminators. Even computer aided

design tools developed for applications in synthetic biology lean towards the same

bottom up approach, and are focused on providing visual means for building and

simulating models that are often represented by a serial juxtaposition of a limited

number of genetic elements. This approach has been moderately successful insofar

as domain experts with in-depth knowledge of the biological system of interest can

manually design the system. However, the interim success of CAD-based manual

design approaches is going to be short-lived for the following reason. The man-

ual, expert-driven practice of designing synthetic biological systems is not only

expensive but also limited in the level of achievable design complexity.

Large-scale engineering of entire genomes has been attempted, including the

de novo syntheses of poliovirus cDNA [31], bacteriophage genome [159], bacterial

genome [74], and a chromosome of Saccharomyces cerevisiae [6]. However, these

works have focused on the reconstruction of existing genomes. While the work of

Gibson and colleagues [74] did involve modi�cations to the existing genome, they

were con�ned to non-functional modi�cations, such as inserting watermark se-

quences into non-essential genes. There have been some synthetic biology projects

taking genome-scale modi�cation more seriously, rather than just tackling verba-

tim synthesis of wildtype genome. One faction of synthetic biologists has been

tinkering with the idea of eliminating nonessential genes for genome reduction in

Escherichia coli [138], and in Bacillus subtilis [172], while other faction has dealt

with genome refactoring in bacteriophage T7 [32], and in Klebsiella oxytoca [173].

Genome refactoring attempts are especially noticeable in that functional genes

are completely revamped, via forward engineering, to make synthetic strains that

are phenotypically better, and genotypically more organised. To date, however,

true genome-scale engineering for introducing appreciable, novel, and nontrivial
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functionality in a biological system has not been achieved yet. The di�culty in

reaching such a high level of engineering feat is due, in part to the heavy reliance

on domain experts' manual labour, and in part to the lack of a viable design

automation framework like that envisioned by DEA.
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Chapter 3

A dual-evolutionary strategy for

synthetic biology

There is an inherent limit to the use of domain expertise or rational decisions in de-

sign, since some design problems can harbour solution space much larger than our

mind can hold. A systematic framework that can harness evolutionary strategies

to design genome-scale synthetic biological systems was proposed to improve upon

the limit of rational approaches [80]. The framework, called dual-evolutionary ap-

proach (DEA), comprises two complementary evolutionary processes, respectively

running in in silico and in vivo domains. The idea of using DEA in exploring

the design space of biological systems initially stood on the speculation that dif-

ferences between in vivo and in silico evolutionary domains can be leveraged to

bring about a complementary e�ect towards increasing each domain's design ca-

pability. The initial advocates of the idea warned against a potential gap between

the two domains due to the dichotomy of the inter-domain di�erences, and called

for research that can close the gap.

Design is a search problem. To be more speci�c, it is a search problem that has

an inde�nitely large solution space to be explored. Evolutionary processes in vivo

have built-in mechanisms for �nding solutions to design problems encoded in DNA

as directed by environmental conditions. Solutions found by the in vivo search

operation are robust, so much so that they are guaranteed to work as advertised.

On the �ip side, they tend to be rather too speci�c, and may not easily o�er the
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3. A DUAL-EVOLUTIONARY STRATEGY FOR SYNTHETIC
BIOLOGY

generality required. Given enough time and the right prescription of environmental

conditions, solutions satisfying any criteria, as long as they conform to the law

of physics, will emerge. Di�culties arise when we try to harness evolutionary

processes in engineering biological systems. Firstly, there is a timescale dilemma.

The normal evolutionary timescale is not something for which synthetic biologists

trying to engineer genetic systems would have patience to wait. Also troublesome

is that there is no framework with which to manipulate environmental conditions

for directing evolution to �nd its ways to desired solutions.

DEA can come as a rescue in terms not only of reducing the evolutionary

timescale, but also of serving as a framework for genome-scale biological systems

design. Any data generated as a result of directed evolution in vivo can be stored

digitally, to serve as reference ingredients to be �ltered, mixed, and recombined

in variable combinations as directed by evolutionary processes in silico. The dual

evolutionary domains can run in iterative cycles towards reaching a design goal,

as depicted in Figure 3.1.

The solution space for a genome-scale design is hugely vast. The norm in

the current practice of engineering biological systems is still heavily dependent

on the use of scarce domain experts and manual labour. This manual approach

unnecessarily imposes on the designer a large portion of the burden of exploring

solution space, hence does not scale well to genome-scale designs hidden in com-

plex, high-dimensional solution space. The adoption of evolutionary algorithm

(EA) or EA-like principles in the exploration of solution space in DEA bodes well

with the framework's requirements for supporting the following aspects: general

applicability, �exibility, and scalability in handling a wide range of di�erent types

of problems. These aspects would o�er to be an e�ective arsenal against problems

lacking a priori knowledge, as is often the case in synthetic biology. DEA can

lessen designer's burden by providing a viable framework with which much of the

solution exploring endeavour can be delegated, in a standard manner, to the dual,

mutually complementary search domains. Due to its heavy reliance on the EA-

like principles, DEA would also be a�ected by the same drawbacks of EA. These

include the issue of premature settlement on local optima, or the lack of means to

determine if solutions at hand are local or global.

The DEA framework can overcome the issue of local optima, via supporting
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Figure 3.1: Overview of the DEA framework for synthetic biology

Functional speci�cation is used 1 to de�ne a desired model behaviour for in silico evolu-
tion, 2 to come up with an initial starting point of a design, or 3 to de�ne environmental
incentives for in vivo evolution. A design can be converted, as necessary, to 4 in silico

models, or 5 in vivo genetic implementations. 6 A model is simulated. 7 The character-
istics of genetic implementations, including any changes in the genome sequences and in
key phenotypes, are measured. 8 Model simulation predicts the potential behaviour of
a design. 9 Measured characteristics may reveal the in vivo behaviour (phenotype) of a
genetic implementation. 10 Model behaviour is compared to the desired behaviour. 11
In vivo behaviour is a�ected by environmental incentives de�ned by �tness landscapes
and vice versa. 12 In vivo behaviour is compared to in silico behaviour. 13 Di�erences
between the desired and model behaviours feed back into the Evolutionary Algorithm
(EA). 14 The dynamics between environmental incentives and phenotypes is the driving
force (f) for directing evolutionary changes. 15 The comparison between in silico and in

vivo behaviours can be used as a basis for parameter optimisation, and reasoning about
changes to the design, the model, or the measurement criteria. 16 The EA can a�ect
the model view of the design, and 16a its subsequent simulation. 17 Any evolutionary
changes are directly recorded in the genome, serving as a medium for genetic implemen-
tations in vivo. 17a Genetic changes may result in behavioural changes. 18 Parameter
optimisation, via studying the di�erences of the two domains can help re�ne the model.
Reasoning based on the comparison of the two domains can 19 lead to design changes
or 20 a�ect measurement criteria. 21 Information on meaningful mutations in genetic
implementations due to evolutionary changes can be used in the reasoning process to
re�ne the design, or 22 to re�ne the model. Note: The ∆ symbol denotes di�erence or
comparison in 10 and 12, and change or modi�cation in 4, 5, 16, 17, 18 and 19. The
thick arrows (20, 21, and 12) constitute cross-domain information exchange, indicating
the areas of concern for building a cross-domain data interface.
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e�ective means to assess the �tness of solutions in each domain (See Note 1, 3, 10,

and 11 in Figure 3.1). Successful �tness assessment would subsequently grant the

possibility of determining the validity of design solutions, and make the uncertainty

of whether a solution is local or global a nonissue.

There are key elements necessary in achieving genome-scale designs through

the dual evolutionary approach, as depicted and noted throughout Figure 3.1.

First, we need modeling schemes that would require as little parameterisation

(Note 15 and 18) as possible, as each parameter costs a substantial amount of

computation. Also needed are means by which solutions are encoded (Note 4 and

5), generated (Note 16 and 17), explored (Note 8 and 9), assessed (Note 10 and

11), and measured (Note 6 and 7) in either or both side(s) of the two domains.

And �nally, we need means to integrate the �ndings from the two domains (Note

15 and 21) in order to perform reasonably e�cient exploration of the solution space

via re�ning the model (Note 22); The integration of which requires a cross-domain

data interface as noted in thick arrows in Figure 3.1.

As hinted by the thick arrows being the only links constituting the cross-domain

data interface, the Measurement element, depicted in Figure 3.1, is of paramount

importance to the realisation of the in vivo domain, in terms of closing the in

silico-in vivo gap. Regarding theMeasurement element, a�ecting the measurement

criteria (Note 20) includes making changes not only in the measurement apparatus

level, but also in the growth condition level directly a�ecting mutant cells. The

latter case may induce some conditional behaviours in mutant cells, intended as

part of the controlling process of DEA in the evolutionary processes. It seems

as though, on the depiction in Figure 3.1, the comparison of in silico and in vivo

behaviours (Note 12) takes place directly between theMeasurement and theModel

behaviour elements. However, the comparison in actuality takes place inside the

Reasoning element. So the cross-domain data interface, in essence, only comprises

the two links between the Reasoning and the Measurement elements (Note 20 and

21).
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Chapter 4

Methods

4.1 Materials

Table 4.1: Bacterial strains used in this study:

Strain Genotype Source*

E. coli DH5alpha F- λ- Φ80lacZ∆M15 ∆(lacZYA-argF )U169 recA1 endA1 CBCB
hsdR17 ∆phoA8 supE44 thi-1 gyrA96 relA1

E. coli MC1061 str. K-12 F- λ- ∆(ara-leu)7697 [araD139 ]B/r ∆(codB-lacI )3 galK16 CBCB
galE15 e14- mcrA0 mcrA0 relA1 rpsL150 (StrR) spoT1 mcrB1 hsdR2

B. subtilis 168 trpC2 BGSC, CBCB

B. subtilis BSB1 str. 168 trp prototroph CBCB

B. subtilis EVOt2 str. BSB1 amyE ::pEVOt2 This study

* BGSC: Bacillus Genetic Stock Center at Ohio State University. CBCB: Centre for
Bacterial Cell Biology at Newcastle University. Among the CBCB acquired strains,
E. coli DH5alpha [171] was a gift from Wendy Smith, E. coli MC1061 [30] from Ling
Juan Wu, B. subtilis 168 [194] from Heath Murray, Aurelie Guyet and Wendy Smith,
and B. subtilis BSB1 [126] from Wendy Smith.
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Table 4.2: Plasmids used in this study:

Plasmid Description Usage Source*

pUC57 bla, ColE1/pMB1/pBR322/pUC ori, lacZα transformation Genscript

pMUTIN4 bla, erm, Pspac, spoVG_RBS-lacZ, lacI, ColE1 ori integration vector CBCB

pSG1729 spc, bla, ColE1 ori, amyE'-'amyE, Pxyl gfpmut1 integration vector CBCB

pET28 Kan, T7 promoter, His-Tags T7-Tag, expression CBCB
lacI, pBR322 ori, f1 ori

pUC57_evo pUC57::evo_insert transformation This study

pMUTIN4_evo pMUTIN::evo_insert integration vector This study

pEVOt2 pSG1729::EVOt2 integration vector This study

* CBCB: Centre for Bacterial Cell Biology at Newcastle University. Among the CBCB
acquired plasmids, pMUTIN4 [180] and pSG1729 [112] were a gift from Ling Juan
Wu, and pET28 from Jad Sassine.

Table 4.3: Reagents used in this study:

Reagents Source

dNTP Promega
PCR DNA oligos IDT
Q5 DNA polymerase NEB
Restriction digest enzymes NEB
Gibson assembly cloning kit NEB
QIAquick PCR puri�cation kit QIAGEN
QIAprep Spin Miniprep kit QIAGEN
DNA gel extraction kit QIAGEN
DNeasy Blood & Tissue kit QIAGEN
Ethidium Bromide Sigma-Aldrich
Bacto-trypton BD Biosciences
Bacto Yeast extract BD Biosciences
Bacto Agar BD Biosciences
Starch Fisher
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4.2 The construction of pMUTIN4_evo plasmid

vector

The FMN sensor construct together with other constructs for inducible hypermu-

tation, collectively dubbed the name the evo_insert as discussed in chapter 5, were

synthesised by Genscript (NJ, USA). The evo_insert sequence (See Appendix B.1

for sequence details) was designed to be �anked by two restriction sites, BamHI

and HindIII, and was inserted into the corresponding sites in the multiple cloning

site (MCS) of pUC57 (Genscript, USA). This pUC57 plasmid carrying the insert

sequence was named pUC57_evo (Figure 4.1).

4.2.1 Subcloning the evo_insert construct from pUC57_evo

into pMUTIN4

Using pUC57_evo as the donor plasmid, the insert sequence was subcloned into

pMUTIN4 [180]. This recipient plasmid with the insert in between its BamHI and

HindIII was named pMUTIN4_evo (Figure 4.2).

4.2.1.1 Restriction digests to prepare evo_insert and pMUTIN4 back-

bone fragments

A double restriction digest was performed as described in Table 4.4. A 100 mL

agarose gel (0.7 %) was made using the standard protocol (Section 4.5.3) with the

exception of not adding EtBr in the gel. A comb with the largest available well

size was taped to make two wells, large enough to accomodate 96µL of solutions

in each well. 80µL of each of the reactants ID'ed i and ii from Table 4.4 was

mixed with 16µL of 6X loading dye. An electrophoresis tray was prepared with

1X TAE bu�er without EtBr, and the gel was placed in. Each of the 96µL of

reactant solutions mixed with dye were loaded onto the gel. 80 V of electricity was

applied for 1.5 h. The gel was transferred into MilliQ water with 0.5 µg mL−1 EtBr

and was stained for 15 min, followed by resting 15 min in fresh MilliQ water for

destaining. The gel was then UV inspected, on low dose, long wavelength light, to

quickly excise the pUC57_evo's evo_insert band at around 3585bp region, and the
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Figure 4.1: The pUC57_evo plasmid map.

pMUTIN4 backbone band at around 8600bp region out of the gel, using a sterile

scalpel. The pUC57_evo and pMUTIN4 gel slices were weighed to be 160 mg and

100 mg respectively. The two gel slices were subject to the DNA gel extraction

protocol as detailed in Section 4.5.1. Nanodrop runs on the gel extracted DNA

resulted in:

4.2.1.2 Double Restriction Enzyme Digestion

E. coli DH5α cultures respectively transformed with pUC57_evo and pMUTIN4

were grown overnight on a shaking incubator at 37.0 ◦C. The overnight cultures
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Figure 4.2: The pMUTIN4_evo plasmid map.

were Miniprep'ed using the standard protocol described in Section 4.5.8 The double

digest was performed as summarised in Table 4.4.

A diagnostic gel electrophoresis was performed to verify the result of the re-

striction digest reactions. 0.7 % agarose gel was made by following the standard

protocol (Section 4.5.3). The gel was placed into an electrophoresis bu�er tray,

loaded with reaction samples (with 6X loading dye), and applied with 100 V for

1 h. The gel was UV imaged on a gel dock afterwards. Figure 4.3 shows that

pUC75_evo and pMUTIN4 were digested as expected, and resulted in correct
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evo_insert pMUTIN4 backbone
ng/µL 36.5 26.6
260/280 1.71 1.66
260/230 0.13 0.14

Table 4.4: Double restriction enzyme digest reaction, as a prestep to subcloning
evo_insert into pMUTIN4

Doner plasmid (main) Vector backbone (main) Doner plasmid (diagnostic) Vector backbone (diagnostic)
(pUC57_evo) (pMUTIN4) (pUC57_evo) (pMUTIN4)

Rxn ID i ii iii iv
Total rxn volume 100µL 100µL 20µL 20µL
pUC57_evo (288.9ng/µL) 38µL (11µg) N/A 1.7µL (0.5µg) N/A
pMUTIN4 (276.7ng/µL) N/A 39.8µL (11µg) N/A 1.8µL (0.5µg)
10X rxn bu�er 10µL 10µL 2µL 2µL
dH2O 50.0µL 48.2µL 15.8µL 15.7µL
BamHI (NEB) 1µL 1µL 0.5µL 0.5µL
HindIII (NEB) 1µL 1µL N/A N/A
Incubation 37°C for 4 hours 37°C for 4 hours 37°C for 4 hours 37°C for 4 hours
Inactivation 80°C for 20 mins 80°C for 20 mins N/A N/A

number of bands with right sizes.

4.2.1.3 Ligation assembly of evo_insert and pMUTIN4 vector back-

bone

A ligation reaction to assemble the evo_insert and pMUTIN4 backbone fragments

was performed as summarised in Table 4.5. Competent E. coli DH5alpha was

Table 4.5: The reaction setup of the ligation of evo_insert and pMUTIN4 frag-
ments:

evo_insert+pMUTIN4 backbone
Total rxn volume 20µL
300ng insert 8.2µL (36.5ng/µL)
100ng vector 3.8µL (26.6ng/µL)
10X rxn bu�er 2µL
T4 ligase 2µL
dH2O 4µL
Incubation 25°C for 2 hours

transformed (See the protocol in Section 4.5.7), by adding 15µL of the above lig-

ate in lieu of adding circular plasmid DNA. The transformant E. coli culture was

spread on ampicillin (100µg mL−1) LB agar plates pre-treated with a 200µL solu-

tion made of 20µL 1 M IPTG, 140µL MilliQ water, 40µL 4 % Xgal (40µg mL−1).

After overnight growth, two colonies survived and passed the blue/white colony
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Figure 4.3: A diagnostic gel electrophoresis image for the restriction digest from Table
4.4.

test1. Two overnight cultures in LB with 100µg mL−1 ampicillin were set up from

the two colonies. Only one of the two cultures turned turbid. This culture was

minipreped as per Section 4.5.8, and the resulting plasmid DNA was subject to

diagnostic restriction enzyme digest and gel electrophoresis as follow.

Table 4.6: Diagnostic restriction enzyme digest reactions, to determine the validity
of the putative pMUTIN4_evo

Rxn1 Rxn2 Rxn3
Total rxn volume 20µL 20µL 20µL
DNA (372.5ng/µL) 1.4µL (0.5µg) 1.4µL (0.5µg) 1.4µL (0.5µg)
10X rxn bu�er 2µL 2µL 2µL
dH2O 15.7µL 16.0µL 16.3µL
BamHI (NEB) 0.3µL 0.3µL 0.3µL
HindIII (NEB) 0.3µL 0.3µL N/A
SalI (NEB) 0.3µL N/A N/A

The diagnostic gel electrophoresis was run using 0.7 % gel, and the resulting

bands indicated the size of pUC57_evo, not that of pMUTIN4_evo (See Figure

1A successful insertion of the evo_insert fragment into the multiple cloning sites of the
pMUTIN4 backbone would result in the disruption of lacZ and result in white colonies.
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Figure 4.4: A diagnostic gel electrophoresis image for the above restriction digest reac-
tions: the bands are indicative of pUC57_evo, not pMUTIN4_evo.

4.4).

Transformation using the ligation product out of the gel-puri�ed fragments

(Section 4.2.1.1 and 4.2.1.3) revealed poor e�ciency resulting in only a single

transformant worthy of diagnostic inspection. In the following ligation method,

column puri�cation (QIAquick spin columns) instead of gel puri�cation was used

for preparing the restriction digested DNA fragments.

A triple restriction digest was performed as described in Table 4.9. The digest

solution was subject to column puri�cation as described in Section 4.5.9. Nanodrop

runs on the column puri�ed DNA resulted in:

evo_insert pMUTIN4 backbone
ng/µL 85.3 31.7
260/280 1.93 1.94
260/230 2.33 1.99

The assembly of pMUTIN4_evo using ligation was performed in a second trial.

DNA fragments resulting from restriction digests followed by column puri�cation

were used in the ligation assembly of pMUTIN4_evo. The second ligation reaction

was run as summarised in Table 4.7. Competent E. coli DH5alpha was transformed

(See the protocol in Section 4.5.7), by adding 15µL of the above ligate in lieu of

adding circular plasmid DNA. The transformant E. coli culture was spread on
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Table 4.7: The reaction setup of the second ligation of evo_insert and pMUTIN4
fragments:

evo_insert+pMUTIN4 backbone
Total rxn volume 20µL
300ng insert 3.5µL (85.3ng/µL)
100ng vector 3.2µL (31.7ng/µL)
10X rxn bu�er 2µL
T4 ligase 2µL
dH2O 9.3µL
Incubation 25°C for 2 hours

ampicillin (100µg mL−1) LB agar plates pre-treated with a 200µL solution made

of 20µL 1 M IPTG, 140µL MilliQ water, 40µL 4 % Xgal (40µg mL−1). After

overnight growth, there was an abundance of colonies surviving and passing the

blue/white colony test. Overnight cultures in LB with 100µg mL−1 ampicillin were

set up from nine colonies. The overnight cultures were minipreped as per Section

4.5.8, and their resulting plasmid DNAs were subject to diagnostic restriction

enzyme digests and gel electrophoresis as respectively shown in Table 4.8 and

Figure 4.5.

1-kb ladder
(kb)

10.0
8.0
6.0
5.0
4.0
3.0
2.5
2.0
1.5

1.0

0.5

1-i 1-ii 1-iii 2-i 2-ii 2-iii 3-i 3-ii 1-iii 4-i 4-ii 4-iii 5-i 5-ii 5-iii 6-i 6-ii 6-iii 7-i 7-ii 7-iii 8-i 8-ii 8-iii 9-i 9-ii 9-iii

Figure 4.5: The diagnostic restriction digest gel electrophoresis of putative
pMUTIN4_evo clones: all the screened colonies showed negative results.

According to the diagnostic gel electrophoresis (Figure 4.5), all of the nine

colonies were shown to be habouring pUC57_evo instead of the much anticipated

plasmid of pMUTIN4_evo. The ligation protocol without gel puri�cation could
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Table 4.8: Diagnostic restriction enzyme digest reactions, to determine the validity
of the putative pMUTIN4_evo, assembled from column puri�ed fragments:

colony ID 1 2 3
rxn ID i ii iii i ii iii i ii iii

0.4µg DNA 1.6µL (253.7ng/µL) 2.4µL (115.1ng/µL) 1.4µL (289.1ng/µL)
Total rxn volume 20µL 20µL 20µL 20µL 20µL 20µL 20µL 20µL 20µL
10X rxn bu�er 2µL 2µL 2µL 2µL 2µL 2µL 2µL 2µL 2µL
dH2O 15.5µL 15.8µL 16.1µL 14.7µL 15.0µL 15.3µL 15.7µL 16.0µL 16.3µL
BamHI (NEB) 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL
HindIII (NEB) 0.3µL 0.3µL N/A 0.3µL 0.3µL N/A 0.3µL 0.3µL N/A
SalI (NEB) 0.3µL N/A N/A 0.3µL N/A N/A 0.3µL N/A N/A
Incubation 37°C for 4 hours

colony ID 4 5 6
rxn ID i ii iii i ii iii i ii iii

0.4µg DNA 4.2µL (93.5ng/µL) 1.3µL (296.5ng/µL) 1.5µL (273.0ng/µL)
Total rxn volume 20µL 20µL 20µL 20µL 20µL 20µL 20µL 20µL 20µL
10X rxn bu�er 2µL 2µL 2µL 2µL 2µL 2µL 2µL 2µL 2µL
dH2O 12.9µL 13.2µL 13.5µL 15.8µL 16.1µL 16.4µL 15.6µL 15.9µL 16.2µL
BamHI (NEB) 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL
HindIII (NEB) 0.3µL 0.3µL N/A 0.3µL 0.3µL N/A 0.3µL 0.3µL N/A
SalI (NEB) 0.3µL N/A N/A 0.3µL N/A N/A 0.3µL N/A N/A
Incubation 37°C for 4 hours

colony ID 7 8 9
rxn ID i ii iii i ii iii i ii iii

0.4µg DNA 4.6µL (86.6ng/µL) 1.5µL (271.6ng/µL) 2.8µL (142.7ng/µL)
Total rxn volume 20µL 20µL 20µL 20µL 20µL 20µL 20µL 20µL 20µL
10X rxn bu�er 2µL 2µL 2µL 2µL 2µL 2µL 2µL 2µL 2µL
dH2O 12.5µL 12.8µL 13.1µL 15.6µL 15.9µL 16.2µL 14.3µL 14.6µL 14.9µL
BamHI (NEB) 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL 0.3µL
HindIII (NEB) 0.3µL 0.3µL N/A 0.3µL 0.3µL N/A 0.3µL 0.3µL N/A
SalI (NEB) 0.3µL N/A N/A 0.3µL N/A N/A 0.3µL N/A N/A
Incubation 37°C for 4 hours

have retained quite a large quantity of the unwanted pUC57 backbone as part of

the �nal ligation. As a counter-measure to having such impurity in the reaction,

pUC57_evo was digested with an extra enzyme XbaI (See Table 4.9) to remove

one of the two sticky ends in the backbone required for ligating it to evo_insert

fragments. However, there might have been enough intact unwanted backbone

fragments remaining to dominate the reactions.

One of the di�culties in subcloning pUC57_evo into pMUTIN4_evo was that

they both rely on a beta-lactamese-based antibiotics marker for screening E. coli

transformants. An intermediate plasmid o�ering a di�erent class of antibiotics
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marker could make the selection for valid clones easier. Among others, pET28

be�tted such a need as the plasmid has a kanamycin resistance cassette, and has

BamHI as well as HindIII as part of its multiple cloning site.

4.2.1.4 Triple Restriction Enzyme Digestion

Table 4.9: triple restriction enzyme digest reaction, as a prestep to subcloning
evo_insert into pMUTIN4

Doner plasmid (main) Vector backbone (main)
(pUC57_evo) (pMUTIN4)

Rxn ID i ii
Total rxn volume 50µL 50µL
pUC57_evo (277.1ng/µL) 18µL (5µg) N/A
pMUTIN4 (253.3ng/µL) N/A 19.7µL (5µg)
10X rxn bu�er 5µL 5µL
dH2O 25.5µL 24.3µL
BamHI (NEB) 0.5µL 0.5µL
HindIII (NEB) 0.5µL 0.5µL
XbaI (NEB) 0.5µL N/A
Incubation 37°C for 4 hours 37°C for 4 hours
Inactivation 80°C for 20 mins 80°C for 20 mins

E. coli DH5α transformed with pUC57_evo and pMUTIN4 were grown overnight

on a shaking incubator at 37.0 ◦C The overnight cultures were Miniprep'ed using

the standard protocol described in Section 4.5.8 The triple digest was performed

as summarised in Table 4.9. pUC57_evo was triple digested, in order to obtain a

larger separation between evo_insert fragments and pUC57 backbone fragments.

XbaI would break the pUC57 backbone into smaller pieces.

4.2.2 Subcloning the evo_insert construct from pUC57_evo

into pET28

In the following procedure, the evo_insert from pUC57_evo was subcloned into

pET28 to construct the intermediate plasmid named pET28_evo. The evo_insert

fragments were sourced from the gel-puri�ed double-restriction digest of pUC57_evo

(rxn i) as described in Table 4.4. The pET28 backbone was prepared by double

digesting it with BamHI and HindIII, followed by column puri�cation. A ligation

reaction was prepared based on a 1:3 molar ratio of the backbone (5.3 kb) and the

insert (3.5 kb) as in Table 4.10. Competent E. coli DH5alpha was transformed (See

the protocol in Section 4.5.7), by adding 5 µL of the above ligate in lieu of adding
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4. METHODS

Table 4.10: The reaction setup of the ligation of evo_insert and pET28 backbone
fragments:

evo_insert+pET28 backbone
Total rxn volume 10µL
198ng insert 5.4µL (36.5ng/µL)
100ng vector 3.2µL (49.3ng/µL)
10X rxn bu�er 1µL
T4 ligase 1µL
dH2O 0.6µL
Incubation 25°C for 3 hours

circular plasmid DNA. The transformant E. coli culture was spread on kanamycin

(50µg mL−1) LB agar plates. After overnight growth, there was an abundance of

colonies surviving. Overnight cultures in LB with 50µg mL−1 kanamycin were set

up from nine randomly chosen colonies. The overnight cultures were minipreped

as per Section 4.5.8, and their resulting plasmid DNAs were subject to diagnostic

restriction enzyme digests and gel electrophoresis as follow (See Table 4.11 and

Figure 4.6).

Table 4.11: Diagnostic restriction enzyme digest reactions, to determine the valid-
ity of putative pET28_evo clones:

rxn ID 1 2 3 4 5 6 7 8 9

Plasmid conc.(ng/µL) 79.5 114.4 85.8 79.5 126.6 200.6 101.4 98.5 114.5
0.2µg plasmid DNA (µL) 2.5 1.8 2.3 2.5 1.6 1.0 2.0 2.0 1.8
Total rxn volume (µL) 20 20 20 20 20 20 20 20 20
10X rxn bu�er (µL) 2 2 2 2 2 2 2 2 2
dH2O (µL) 14.5 15.2 14.7 14.5 15.4 16.0 15.0 15.0 15.2
BamHI (µL) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
HindIII (µL) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Incubation 37°C for 4 hours

The lanes labelled 2 and 9 in Figure 4.6 showed two bands approximately at

about 5.3 kb and 3.5 kb. These two bands were highly likely to be respectively

representative of pET28 and evo_insert, and indicated that the corresponding

clones may habour pET28_evo.
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Figure 4.6: The diagnostic restriction digest gel electrophoresis of putative pET28_evo
clones: lanes 2 and 9 showed positive results.

4.2.3 Subcloning the evo_insert construct from pET28_evo

into pMUTIN4

In the following procedure, the evo_insert from pET28_evo was subsequently

subcloned into pMUTIN4 to construct pMUTIN4_evo. Double restriction digests

were performed to source the ligation fragments as shown in Table 4.12.

Table 4.12: Restriction enzyme digest reactions, to obtain the evo_insert and
pMUTIN4 backbone fragments:

Doner plasmid Vector backbone
(pET28_evo) (pMUTIN4)

Rxn ID 1 2
Plasmid conc. 114.5ng/µL 253.3ng/µL
Total rxn volume 60µL 20µL
DNA amount 52µL (6µg) 11.8µL (3µg)
10X rxn bu�er 6µL 2µL
dH2O 0.0µL 5.2µL
BamHI (NEB) 1µL 0.5µL
HindIII (NEB) 1µL 0.5µL
Incubation 37°C for 4 hours 37°C for 4 hours

The restriction enzyme digest product of pET28_evo was gel puri�ed as per Sec-

tion 4.5.1, and the digest product of pMUTIN4 was column puri�ed as per Section

4.5.9.
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4. METHODS

Nanodrop readings of the respective puri�ed products were obtained as follow:

evo_insert pMUTIN4 backbone
ng/µL 20.8 26.7
260/280 2.04 1.99
260/230 0.10 1.79

A ligation reaction was prepared and was incubated at 25 ◦C for 3 hours, based on

a 1:3 molar ratio of the backbone (8.6 kb) and the insert (3.5 kb) as follows:

evo_insert+pMUTIN4 backbone
Total rxn volume 12µL
122ng insert 5.9µL (20.8ng/µL)
100ng vector 3.7µL (26.7ng/µL)
10X rxn bu�er 1.2µL
T4 ligase 1.2µL
dH2O 0.0µL

Competent E. coli DH5alpha was transformed (See the protocol in Section 4.5.7),

by adding 5 µL of the above ligate in lieu of adding circular plasmid DNA. The

pMUTIN4_evo candidate
Rxn ID 1
Plasmid conc. 122.2ng/µL
Total rxn volume 20µL
DNA amount 1.7µL (0.2µg)
10X rxn bu�er 2µL
dH2O 15.3µL
BamHI (NEB) 0.5µL
HindIII (NEB) 0.5µL
Incubation 37°C for 4 hours
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Figure 4.7: A diagnostic restriction di-
gest gel electrophoresis of the putative
pMUTIN4_evo clone: the bands indicate a
successful pMUTIN4_evo clone.

transformant E. coli culture was spread on ampicillin (100µg mL−1) LB agar plates

pre-treated with a 200µL solution made of 20µL 1 M IPTG, 140µL MilliQ water,

40µL 4 % Xgal (40µg mL−1). After overnight growth, there was a single colony

surviving and passing the blue/white colony test. An overnight culture in LB with

100µg mL−1 ampicillin was set up from that colony. The overnight culture was
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minipreped as per Section 4.5.8, and the resulting plasmid DNA was subject to a

diagnostic restriction enzyme digest followed by a diagnostic gel electrophoresis as

shown in Figure 4.7.

Figure 4.7 at lane 1 showed two bands approximately at about 8.6 kb and

3.5 kb. These two bands were highly likely to be respectively representative of

pMUTIN4 and evo_insert, and indicated that the corresponding clone may habour

pMUTIN4_evo.

4.2.4 Transformation of pMUTIN4_evo into B. subtilis BSB1

The overnight culture of E. coli DH5alpha with pMUTIN4_evo was minipreped.

Competent B. subtilis BSB1 cells were transformed by following the B. subtilis

transformation protocol (see 4.5.6). The transformation culture was spread onto

LB agar plates with 5 µg mL−1 erythromycin and 1 mM IPTG. The plates were

incubated at 37 ◦C overnight. One transformant plate had three colonies, another

transformant plate two colonies, and the negative control plate had zero colonies.

Five colonies were picked for colony PCR to verify their insert sizes. These colonies

were labelled i, ii, iii, iv, and v, together with a wildtype negative control (vi)

and a PCR negative control (vii). The primers were designed to amplify a 4.7 kbp

long band across the evo_insert between the 5-prime end and the 3-prime end of

target locus in the chromosome of B. subtilis. See Table B.4 for the information

on PCR primers used.

Table 4.13: pMUTIN4_evo B. subtilis transformation: colony PCR

Colony PCR table
evo_insert_fwd1 primer 1.25 µL
evo_insert_rev1 primer 1.25 µL
5X PCR bu�er 5 µL
dNTP 0.5 µL
Q5 0.25 µL
MilliQ H2O 13.75 µL
template DNA 3.0 µL
Total rxn volume 25 µL

PCR Thermocycler program
Initialisation 98°C (30s)
Denaturation 98°C (10s)
Annealing 72°C (30s)
Extension 72°C (200s)
Cycle count 30
Final extension 72°C (2min)

A diagnostic gel electrophoresis was performed to verify the result of the colony

PCRs. A 0.7 % agarose gel was made by following the standard protocol (Section
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4.5.3). The gel was placed into an electrophoresis bu�er tray, loaded with reaction

samples (with 6X loading dye, Promega), and applied with 100 V for 1 h. The gel

was UV imaged on a gel dock (BioRad) afterwards. Figure 4.8 shows that the
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Figure 4.8: A diagnostic gel electrophoresis image for the colony PCRs of putative B.

subtilis pMUTIN4_evo clones.

sample on lane v had a band appear little below the 1500 bp ladder, quite distant

from the expected size of successfully ampli�ed DNA fragments (i.e. 4.7 kbp).

Following the unsuccessful result, numerable attempts to transform B. subtilis

using pMUTIN4_evo had failed. Some of the likely explanations to this failure in

transforming B. subtilis with pMUTIN4_evo are as follows. Firstly, the size of the

plasmid is over 12 kb, and this could be too large for the transformation method

using the natural competency of B. subtilis. Transformation using electroporation

(results not shown) was tried with no avail either. Another potential culprit might

be to do with the 500 bp long sequence homologous to the chromosomal insertion

locus in that the homology might be too short with respect to the 12 kb vector to

be inserted as a whole using a single cross-over. The third possibility is that the

insertion of pMUTIN4_evo to the target locus might be fatal to the cell. After

all, I had to move on without �nding any de�nitive answers to these suggested

possibilities due to time constraints in the project.
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4.3 Constructing pSG1729_EVOt2 using Gibson

assembly

Using pUC57_evo as the donor plasmid, two parts of the evo_insert sequence from

the donor plasmid were PCR ampli�ed and subcloned into the pSG1729 backbone

via Gibson assembly. The two-part PCR ampli�cations of the evo_insert sequence

were aimed at excluding the sfGFP element in the evo_insert sequence. This

recipient plasmid with the two inserts assembled into the backbone's locus under

the regulatory control of the PxylR promoter was named pSG1729_EVOt2 or

pEVOt2 in short (Figure 4.9).

Table 4.14: Gibson primers used for the assembly of pSG1729_EVOt2

Primer ID Oligo sequence
pSG1729 FWD ACGAAAAGGAGGAATTCAAAATGAGTAAAGGAGAAGAACTTTTC
pSG1729 REV CCAACAACCACTCGCCGACGAGATGCATTTTATGTCATATTGTAAG
assembled_seq FWD 1 ATATGACATAAAATGCATCTCGTCGGCGAGTGGTTGTTGG
assembled_seq REV 1 CCATTACAGGCCGGCTTTTTGAATGCTTATTAAACAGCGTCTGCT
assembled_seq FWD 2 ACGCTGTTTAATAAGCATTCAAAAAGCCGGCCTGTAATGG
assembled_seq REV 2 AGTTCTTCTCCTTTACTCATTTTGAATTCCTCCTTTTCGTC

Primer ID Twholem (°C) T annealm (°C) T diffm (°C) Binding(bp) Overhang(bp) ∆Ghairpin(kcal)
pSG1729 FWD 71.0 58.9 0.49 24 20 -0.9
pSG1729 REV 75.3 58.4 0.49 26 20 -5.3
assembled_seq FWD 1 74.9 68.7 4.30 20 20 -4.4
assembled_seq REV 1 76.9 64.4 4.30 25 20 -2.8
assembled_seq FWD 2 74.6 63.7 4.92 20 20 -1.7
assembled_seq REV 2 70.8 58.8 4.92 21 20 0

The pSG1729 and pUC57_evo plasmids were diluted to the concentrations of

1 ng µL−1 PCRs were run as speci�ed in Table 4.15 and Table 4.14.

PCR samples were column puri�ed using QIAGEN PCR Puri�cation Kit. Nan-

odrop readings were obtained for PCR results (see Table 4.16) DpnI digestion was

performed on PCR samples (see Table 4.17) A 3-fragment Gibson assembly was

done (see 4.5.2) as per Table 4.18 Colony PCR was performed to identify trans-

formants with successful plasmid assembly. Five colonies were picked (samples

labelled i through v, in addition to a negative sample (vi)) using sterile pipette

tips and each picked colony was suspended in 20µL of cold MilliQ H2O. 1 µL

from each suspended sample was used as template DNA in PCR set up as in the

following Table 4.19. See Table B.4 for the information on PCR primers used.
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Figure 4.9: The pSG1729_EVOt2 plasmid map.

A diagnostic gel electrophoresis was performed to verify the result of the colony

PCRs. A 0.7 % agarose gel was made by following the standard protocol (Section

4.5.3). The gel was placed into an electrophoresis bu�er tray, loaded with reaction

samples (with 6X loading dye), and applied with 100 V for 1 h. The gel was UV

imaged on a gel dock afterwards. Figure 4.10 shows that samples i and ii had

bands appear in between the 1500 bp and 2000 bp ladders very close to the 2000

bp ladder. The expected size of successfully ampli�ed DNA fragment, as a result

of the colony PCR, is 1918 bp, and these two bands seem to be in correct sizes.
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Table 4.15: pSG1729_EVOt2 assembly PCR details:

PCR #1: backbone
pSG1729 FWD primer 1.25 µL
pSG1729 REV primer 1.25 µL
5X PCR bu�er 5 µL
dNTP 0.5 µL
Q5 0.25 µL
MilliQ H2O 16.25 µL
pSG1729 plasmid (1ng/µL) 0.5 µL
Total rxn volume 25 µL

PCR Thermocycler program
Initialisation 98°C (30s)
Denaturation 98°C (10s)
Annealing 61°C (30s)
Extension 72°C (154s)
Cycle count 30

PCR #2: insert 1
assembled_seq FWD 1 primer 1.25 µL
assembled_seq REV 1 primer 1.25 µL
5X PCR bu�er 5 µL
dNTP 0.5 µL
Q5 0.25 µL
MilliQ H2O 16.25 µL
pUC57_evo plasmid (1ng/µL) 0.5 µL
Total rxn volume 25 µL

PCR Thermocycler program
Initialisation 98°C (30s)
Denaturation 98°C (10s)
Annealing 61°C (30s)
Extension 72°C (20s)
Cycle count 30

PCR #3: insert 2
assembled_seq FWD 2 primer 1.25 µL
assembled_seq REV 2 primer 1.25 µL
5X PCR bu�er 5 µL
dNTP 0.5 µL
Q5 0.25 µL
MilliQ H2O 16.25 µL
pUC57_evo plasmid (1ng/µL) 0.5 µL
Total rxn volume 25 µL

PCR Thermocycler program
Initialisation 98°C (30s)
Denaturation 98°C (10s)
Annealing 61°C (30s)
Extension 72°C (20s)
Cycle count 30

Table 4.16: pSG1729_EVOt2 assembly: PCR Nanodrop results

Nanodrop readings
PCR #1 PCR #2 PCR #3

ng/µL 40.6 66.1 41.2
260/280 1.88 1.88 1.83
260/230 1.52 2.26 1.81

Table 4.17: pSG1729_EVOt2 assembly: DpnI digestion

Restriction Enzyme reaction table
PCR #1 PCR #2 PCR #3

DNA sample 8 µL (325ng) 6.9 µL (455ng) 6.3 µL (257.7ng)
RE bu�er (10X) 1 µL 1 µL 1 µL
MilliQ H2O 0 µL 1.1 µL 1.7 µL
DpnI (NEB) 1 µL 1 µL 1 µL
Total rxn volume 10 µL 10 µL 10 µL
Gibson: sample molar value 1X molar (100ng) 3X molar (45.5ng) 3X molar (12.6ng)
Gibson: sample volume 3.1 µL 1 µL 0.5 µL
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Table 4.18: pSG1729_EVOt2 assembly: Gibson reaction

Gibson reaction table
PCR sample #1 3.1 µL (100ng: 1X molar)
PCR sample #2 1.0 µL (45.5ng: 3X molar)
PCR sample #3 0.5 µL (12.6ng: 3X molar)
MilliQ H2O 5.4 µL
Gibson master mix (2X) 10 µL
Total rxn volume 20 µL

Table 4.19: pSG1729_EVOt2 assembly: colony PCR

Colony PCR table
pEVOt2_colpcr FWD primer 1.25 µL
pEVOt2_colpcr REV primer 1.25 µL
5X PCR bu�er 5 µL
dNTP 0.5 µL
Q5 0.25 µL
MilliQ H2O 15.75 µL
template DNA 1.0 µL
Total rxn volume 25 µL

PCR Thermocycler program
Initialisation 95°C (6min)
Denaturation 98°C (10s)
Annealing 59°C (30s)
Extension 72°C (58s)
Cycle count 30
Final extension 72°C (2min)
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Figure 4.10: A diagnostic gel electrophoresis image for the colony PCRs from Table
4.19.
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4.3.1 Resuspension of lyophilised DNA (Revised from the

Genscript protocol)

The vial containing lyophilised DNA was centrifuged at 6000x g for 1 minute.

20µL of deionised water (MilliQ) was added to the vial. The solution was heated

at 50 ◦C for 15 minutes.

4.3.2 Ampli�cation of plasmid DNA using E. coli transfor-

mation

Plasmid vectors (e.g. pMUTIN4 or pUC57_evo) were used in transforming chem-

ically competent E. coli culture (DH5alph or MC1061) via the heat-shock pro-

tocol (see 4.5.7). Ampicillin (100µg µL−1) LB agar plates were used for select-

ing E. coli transformants of pMUTIN4 and pUC57_evo. Approximately about

200 ng of circular plasmid DNA was used in each transformation reaction. 3 µL

of pMUTIN4 in 83 ng µL−1 was added per 100µL of competent cells. 1 µL of

pUC57_evo in 200 ng µL−1 was added per 100µL of competent cells. E. coli trans-

formants were cultured overnight and their plasmids were extracted. 10 mL of LB

with 100µg mL−1 of ampicillin was innoculated with a single colony from the E.

coli transformant plates (see 4.5.7). Three colonies from the plate of pMUTIN4

transformants and three colonies from the plate of pUC57_evo transformants

were picked, and used for respectively innoculating 10 mL ampicillin LB in 50 mL

polypropylene conical centrifuge tubes. The innoculated culture tubes were incu-

bated for 16 hrs at 37 ◦C on a shaker. Plasmid DNA from each overnight culture

was extracted using Miniprep (see 4.5.8).

4.3.3 Transformation of pSG1729 into B. subtilis BSB1

B. subtilis BSB1 was transformed using the same protocol as shown in Section 4.4

with the exception of using pSG1729 instead of pSG1729_EVOt2.
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4.4 Transformation of pSG1729_EVOt2 into B.

subtilis BSB1

The overnight culture of E. coli MC1061 with pSG1729_EVOt2 was minipreped.

Competent B. subtilis BSB1 cells were transformed by following the B. subtilis

transformation protocol (see 4.5.6). The transformation culture was spread onto

LB Spec agar plates. The plates were incubated at 37 ◦C overnight. Colonies were

picked and replica plated on a starch plate for checking the loss of amylase activity

on correct transformants. Colonies that have lost amylase activity were picked for

colony PCR to verify their insert sizes. These colonies were labelled i, ii, iii, iv,

v and vi, together with a negative control (vii). The primers were designed to

amplify a 1464 bp long band carrying a portion of the gene for spectinomycin

resistance (from pSG1729_EVOt2) and a portion of the 3-prime end of the amyE

gene (from the chromosome of B. subtilis). See Table B.4 for the information on

PCR primers used.

Table 4.20: pSG1729_EVOt2 B. subtilis transformation: colony PCR

Colony PCR table
colpcr_pSG_spec_spec_cds_fwd primer 1.25 µL
colpcr_amyE_3p_end_rev primer 1.25 µL
5X PCR bu�er 5 µL
dNTP 0.5 µL
Q5 0.25 µL
MilliQ H2O 15.75 µL
template DNA 1.0 µL
Total rxn volume 25 µL

PCR Thermocycler program
Initialisation 98°C (30s)
Denaturation 98°C (10s)
Annealing 58°C (30s)
Extension 72°C (44s)
Cycle count 30
Final extension 72°C (2min)

A diagnostic gel electrophoresis was performed to verify the result of the colony

PCRs. A 0.7 % agarose gel was made by following the standard protocol (Section

4.5.3). The gel was placed into an electrophoresis bu�er tray, loaded with reaction

samples (with 6X loading dye), and applied with 100 V for 1 h. The gel was UV

imaged on a gel dock afterwards. Figure 4.11 shows that samples iii, iv and vi

had bands appear little below the 1500 bp ladder, very close to the expected size

of successfully ampli�ed DNA fragment (i.e. 1464 bp). The mutant colony used

for the sample iv was named B. subtilis EVOt2.
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Figure 4.11: A diagnostic gel electrophoresis image for the colony PCRs from Table
4.20.

4.4.1 Sequence veri�cation of the B. subtilis EVOt2 mutant

The chromosomal DNA of B. subtilis EVOt2 was prepared using DNeasy Blood &

Tissue kit (QIAGEN), and was sequenced using Illumina MiSEQ at the sequencing

facility in CBCB. The raw sequence reads were stored in FASTQ format, and were

assembled using the sequence assembly pipeline shown in Section 5.3.2.1. The

EVOt2 sequence was blasted against the nucleotide sequences of contigs generated

from the de novo assembly in the pipeline, to �nd a contig that carried a chromo-

somally inserted copy of the EVOt2 sequence. The chromosomal copy of EVOt2

was compared against the original EVOt2 sequence for any anomalies. As shown

in Figure 4.12, the chromosomal EVOt2 sequence and its amyE insertion locus in

the B. subtilis BSB1 genome were examined to be 100 % accurate.

4.4.2 Flow cytometry of the B. subtilis EVOt2 mutant

B. subtilis EVOt2 clone was cultured overnight in LB with 50µg mL−1 spectino-

mycin. Four di�erent growth media as shown in Table 4.21 were innoculated from

the overnight culture and were incubated at 37 ◦C on a shaker. At 150 min into the
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Figure 4.12: An annotated sequence showing the region in and around the chromoso-
mally inserted copy of EVOt2.

incubation, 10µL of culture from each growth media was harvested and diluted

in 1 mL of chilled PBS. The PBS diluted samples were immediately placed in ice.

Flow cytometry was performed on each of the four samples. Flow cytometry was

repeatedly performed on samples harvested at 60 min intervals till 390 min using

the same PBS dilution ratio. The resulting raw cytometry data readings were

processed by the Python script1 to automatically generate Figure 5.8.

Table 4.21: B. subtilis EVOt2 growth conditions and expected outcomes.

Media ID Composition Expected �uorecence level
m0 LB with 1% xylose lowest
m1 LB with ribo�avin and 1% xylose higher than m0 and lower than m3
m2 LB higher than m0 and lower than m3
m3 LB with ribo�avin high

1Appendix A.3 shows an instruction to invoke a Docker container to use the Python script.

46



4.5 Standard lab protocols

4.5.1 DNA gel extraction using QIAGEN kits (modi�ed from

the original instructions)

An empty microcentrifuge tube was used to tare a scale. A gel slice was placed

into the microcentrifuge tube and weighed. Given the rough estimate of 100 µg =

100 µL, 3X gel volume equivalent of QG bu�er was added to the tube. With-

out any vortexing, the tube was incubated at 50 ◦C for 5 min to dissolve the gel.

1X gel volume equivalent amount of isopropanol was added to the tube and gen-

tly mix by �icking with a �nger. The disolved solution was added to QIAGEN

spin column(s) to be centrifuged at 13 000 RPM for 1 min. The �ow-through was

discarded. Each spin column was topped up with fresh 500µL QG bu�er, and

centrifuged to discard the �ow-through. 750µL Bu�er PE was added to each spin

column, to be incubated at room temperature for 4 min. All columns were cen-

trifuged and the �ow-throughs discarded. The columns were centrifuged for one

more run of 13 000 RPM to rid of residual bu�er. Each column was placed in a

sterile 1.5 µL microcentrifuge tube. 25µL EB, warmed to 50 ◦C, was added to the

center of each column's membrane. The columns were incubated at room tem-

perature for 5 min, centrifuged at 13 000 RPM for 1 min. 25µL of fresh EB was

added again before the tubes get incubated for 5 min in room temperature, and

centrifuged at 13 000 RPM for 1 min. The 50µL of elute in each collection tube was

run through the same column again, to be incubated and centrifuged under the

same conditions as before. The �nal step was repeated one more time to increase

the yield.

4.5.2 Gibson Assembly

Assembly reactions were set up as explained in Table 4.221. Reaction samples were

incubated at 50 ◦C for 1 hour using a thermocycler with the lid temperature set at

99 ◦C. Chemically competent E. coli cells were transformed using the heat shock

protocol (see 4.5.7).

1Based on NEB Gibson assembly protocol
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Table 4.22: Gibson Assembly reaction setup chart.

2�3 fragment assembly 4�6 fragment assembly
Total amount of fragments X µL (0.02 � 0.5 pmols) X µL (0.2 � 1 pmols)
Gibson Assembly master mix (2X) 10 µL 10 µL
MilliQ H2O 10 - X µL 10 - X µL
Total Volume 20 µL 20 µL

4.5.3 Making 0.7 % agarose gel for electrophoresis

For a 40 mL volume, 0.28 g of agarose was measured out, and poured into a 150 mL

�ask. 40 mL of 1X TAE was added into the �ask and microwaved up to about

1.5 min till the solution started to boil. The �ask was gently swirled until the

molten agarose solution was clear. The �ask was rested on a bench, till it cooled

to a level, warm to touch. 1.0 µL of stock EtBr solution (10 mg mL−1) was added

to the molten agarose and was gently swirled to mix. A well comb of chosen size

was placed onto an appropriately sealed casting tray. The agarose solution was

poured into the tray. A sterile pipette tip or a toothpick was used to remove any

impurities and bubbles. The gel was left in room temperature for about 30 min

till it �rmly solidi�ed.

4.5.4 Freezing B. subtilis competent cells

The starvation culture was centrifuged down and was concentrated by 10X. The

supernatant was used for resuspending the spun-down cells. Glycerol was added in

the culture to the 15 % (v/v) concentration (e.g. 300µL of 50 % glycerol in 700µL

culture). 100µL aliquots of the glycerol culture werepipetted to Eppendorf tubes.

The tubes were snap-frozen in liquid nitrogen, and stored in −80 ◦C.

4.5.5 B. subtilis transformation using frozen competent cells

Frozen competent cells would result in a lower transformation e�ciency compared

to freshly prepared competent cells. Competent B. subtilis cells in 100µL aliquot

was thawed at room temperature. 500 ng to 2 µg of plasmid DNA was added to the

cells. The tube was incubated at 37 ◦C for 1 hr. 200µL of the incubated culture

was plated on a selection plate, and incubated overnight at 37 ◦C.
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4.5.6 B. subtilis transformation using natural competency

This protocol worked for 168 and BSB1 with high e�ciency. A single colony was

scraped from a plate of B. subtilis wildtype strain, and was used to inoculate

5 mL of MM competence media (see B.5.2) in a 15 mL Falcon tube. The culture

was incubated at 37 ◦C, 180 RPM overnight. 0.3 mL of the overnight culture was

transferred into fresh 5 mL MM competence media in a 50 mL Falcon tube, and

incubated for 3 hrs at 37 ◦C, 180 RPM. 5 mL of pre-warmed (37 ◦C) Starvation

media (see B.5.3) was added, and incubated for 2 more hours at 37 ◦C, 180 RPM1.

0.4 mL of the culture was transferred to a 1.5 mL micro-centrifuge tube, and 1 µg

DNA was added. Nanodrop was used to measure the DNA concentration of the

plasmid Miniprep. Negative controls, such as a separate 0.4 mL culture without

adding plasmid DNA were included. The tubes were incubated at 37 ◦C, 180 RPM

for 1 hr. For each incubation culture, 200µL was plated to a selection plate,

and was incubated overnight. Plates with an appropriate antibiotics were used as

an initial screening. Replica plating on starch plates was performed to test for

transformants with the successful integration into the amyE locus.

4.5.7 E. coli transformation using heat shock

A heat block was preheated to 42 ◦C. LB agar plates containing appropriate an-

tibiotics (selection plates) were rested in room temperature, so the plates were not

too cold before plating transformed cells. 1.5 mL microcentrifuge tubes containing

100µL aliquots of chemically competent E. coli cells (e.g. DH5alpha or MC1061)

that had been kept frozen at −80 ◦C were taken out immediately before use. The

competent cell tubes were placed on ice and were incubated for 10 minutes to

slowly thaw. Approximately about 200 ng of circular plasmid DNA was added

into each tube. The tubes were incubated on ice for further 20 minutes. The

tubes were heated at 42 ◦C for 50 seconds using the preheated heat block. The

tubes were placed back onto ice, and were incubated for 2 minutes, in order to

reduce the heat shock damage. 1 mL of LB was added to each tube. Then the

1Competent cells were frozen after the starvation incubation. See the protocol for freezing B.

subtilis competent cells, 4.5.4. See 4.5.5 for the transformation protocol using frozen competent
cells.
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tubes were incubated in 37 ◦C on a shaker for 45 minutes. 100µL of the resulting

culture from each tube was pipetted onto a selection plate, and spreaded using

sterile beads. 400µL of the remaining culture from each tube was pipetted onto

another selection plate and spreaded using sterile glass beads. This second high-

cell-count plating was used as a contingency measure in case of low transformation

e�ciency. The plates were incubated at 37 ◦C overnight.

4.5.8 QIAprep Spin (Qiagen) Miniprep

The overnight cultures were pelleted by centrifugation at 6800x g for 3 minutes

at room temperature. After discarding the supernatant, the pelleted cell mass in

each tube was resuspended in 500µL resuspension bu�er (Bu�er P1), and vortexed.

The composition of the resuspension bu�er was 50 mM Tris-HCl at pH 8.0, 10 mM

EDTA, and RNAse A in 100µg mL−1 concentration. Due to the presence of RNAse

in the bu�er, the bu�er had been kept in 4 ◦C, and was chilled on ice prior to use.

Each 500µL cell resuspension was transfered to two 1.5 mL microcentrifuge tubes

in aliquots of 250µL. To each microcentrifuge tube, 250µL lysis bu�er (Bu�er P2),

with a composition of 200 mM NaOH and 1 % SDS, was added. All tubes were

inverted back and forth until the solutions were mixed well and turned clear. The

tubes were incubated at room temperature for 3 minutes. Immediately following

the previous step, 350µL neutralisation bu�er (Bu�er N3), with a composition of

4.2 M GuHCl and 0.9 M KAc at pH 4.8, was added to each tube, and thoroughly

mixed by inverting 5 times. The solution formed white precipitates out of SDS,

lipid and protein, and exhibited gooey consistency mostly due to the presence of

chromosomal DNA. The tubes were spun down for 10 minutes at 13000 rpm on

a benchtop centrifuge. The supernatant was transfered to respectively labelled

QIAprep spin columns. The spin columns were centrifuged for 60 seconds, and

the �ow-through was discarded. 500µL wash/binding bu�er (Bu�er PB), with

a composition of 5.0 M GuHCl and 30 % isopropanol, was added to each spin

column. The columns were centrifuged for 60 seconds at 13000 rpm to discard

the �ow-through. 750µL wash bu�er (Bu�er PE), with a composition of 10 mM

Tris (pH 7.5), and 80 % EtOH, was added to each spin column. The columns were

centrifuged for 60 seconds at 13000 rpm to discard the �ow-through. The columns
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were centrifuged for 1 additional minute to remove residual wash bu�er. Each

column was moved to a sterile 1.5 mL microcentrifuge tube, then was added 50µL

elution bu�er (Bu�er EB), with a composition of 10 mM Tris-HCl, pH 8.5. After

incubating the columns in room temperature for 5 minutes, they were centrifuged

for 1 minute at 13000 rpm to elute plasmid DNA. Then aliquots of the plasmid

DNAs were stored in 4 ◦C for a short-term storage, and in −20 ◦C for a long-term

storage.

4.5.9 Puri�cation of restriction digested DNA fragments us-

ing QIAquick spin columns

250µL Bu�er PB was added to each of 50µL restriction digested solution A spin

column was mounted per solution mix into a collection tube, and the mix was

pipetted into the spin column. Spin columns were centrifuge at 13000 RPM for

1 minute, and the �ow through was discarded. 750µL Bu�er PE was added to

each tube. Tubes were incubated at room temperature for 2 minutes, and were

centrifuged at 13000 RPM for 1 minute. The �ow through was discarded after-

wards. One more centrifugation was performed at 13000 RPM for 1 minute to rid

fo residual wash bu�er. Each spin column was moved to a sterile 1.5 mL centrifuge

tube. 30µL elution bu�er was added to the centre of each spin column's �ltering

membrane. Spin columns were incubated at room temperature for 5 minutes, and

centrifuged at 13000 RPM for 1 minute to collect the elute.
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Chapter 5

The in vivo evolutionary design

process

5.1 Introduction

Rationality is one of the underlying assumptions used in game theory to explain

how people make decisions [18]. Endowed with the propensity to reason, human

mind is inclined to make rational decisions. Our mind likes to secure the sense

of being in control so much so that all decisions taken need to make rational

sense, if at all possible. The pitfall in such a perfectionist's approach to decision

making is that it has heavy reliance on a priori knowledge. To make rational sense

of something requires having the knowledge to determine so [155]. For problem

domains that are novel and complex, the extent to which rational decisions can

hold as valid is severely limited. In the biomedicine �eld, for instance, drug design

based on trial and error is more likely to succeed than rational design approaches

[181]. The issue with rational design approaches here arises from the challenging

nature of dealing with highly complex biological systems of which we currently

do not have complete understanding. As such, rational decision making is only

capable of playing limited roles in engineering complex biological systems.

That a search process taking random walks in the solution space can accomplish

design is a notion wholly adopted by natural evolution. Nature employs DNA as

a medium to encode the solution space, and harnesses random mutagenesis as a
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vehicle to explore the space in search for sample solutions. Environmental niches

would provide selection pressure to reinforce small subsets of solutions that happen

to meet the needs of interest. The net result of which processes is so powerful

that there exist a plethora of genetic designs encoding proteins with incredibly

complex and diverse functions in nature. Charles Darwin, during his journey

around the world onboard HMS Beagle, marvelled at the diversity of species, and

their remarkably adapted functional features suitable for speci�c environmental

needs [49].

In the design of synthetic biological systems, the use of random solutions of-

fers a viable alternative to rational approaches [80]. The hurdle in going random,

however, is �nding ways to cope with the problem of search space explosion. The

volume of a given search space would exponentially expand and quickly become

unwieldy as more and more genes are combinatorially considered as part of a de-

sign. Richard Bellman, a mathematician, summed up this search space expansion

problem so elegantly by coining the term, �the curse of dimensionality,� to explain

the di�culty of dealing with high-dimensional solution spaces [16].

To a degree, the curse has negatively a�ected numerical sciences in that use

of the term is often associated with the justi�cation for going against the idea

of dealing with high dimensional spaces. In synthetic biology, with respect to

harnessing random solutions in design, the curse would need to be a subject not

to be avoided but to be embraced. In order to make signi�cant progresses in

the �eld, dealing with high-dimensional spaces is inevitable. To this end, there

are interesting research questions to be asked. Would it be possible to contain

the curse of dimensionality as a result of harnessing random design strategies in

synthetic biology? If so, how can this containment be articulated? What would

then be the limit to the complexity of genetic systems design, practically achievable

by employing random design?

5.1.1 Establishing the scope of design in synthetic biology

Often, the term �design� is perceived only by the �nal outcome or artefact of

design [59, 60]. With respect to the current discussion of design, the focus is not

on the design artefact per se but on the art of engineering design or the processes
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that lead into producing design artefacts. Crucial in the art of design engineering

is design documentation with which to capture information su�cient enough to

specify how the functional properties of �nal design artefacts can be achieved, as

explained in Chapter 1.

Design artefacts of biological systems in the context of synthetic biology are

functional properties of the systems being designed that can carry out meaning-

ful cellular processes. Therefore, biological systems design should ideally convey

unequivocal documentations on how to achieve desired cellular functions of the sys-

tems being designed. In agreement with the central dogma, generally regarded as

true [45], is the idea that cellular functions of biological systems are emergent prop-

erties of relevant genetic elements. This proposition makes genetic sequences well

positioned to be the documenting medium for design implementation in synthetic

biology. However, design in synthetic biology is not simply about documenting

genetic sequences. It is more importantly about how to evaluate the �tness level

of genetic sequences in ful�lling desired cellular functionalities. Design in synthetic

biology should, therefore, be inclusive of the means with which a particular genetic

sequence can be tested for the possession of intended functional properties.

5.1.2 Solution generation via random mutagenesis

Random mutagenesis of cellular DNA sequences can be induced from various

sources including chemicals [84, 166, 188], transposons [109, 157, 185], and stress

factors such as aging [20], starvation [26], UV irradiation [67], or oxidation [20].

Mutations can also occur spontaneously due to errors in the DNA replication ma-

chinery and the mismatch repair mechanism [56, 169, 179]. Aspects concerning

safety and automation were considered in this study as part of adopting a mu-

tagenesis strategy for use in the iterative design cycle of the dual-evolutionary

approach. Chemically induced mutagenesis strategies were excluded due to safety

concerns, and strategies involving transposons and stress factors were excluded

due to di�culties in automating their induction procedures. Adopting the sponta-

neous mutagenesis strategy be�tted the criteria as the strategy o�ered to be both

safe and amenable to automation.

Evaluating the spontaneous mutation of microbes provided some useful insight
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into the feasibility of using this mutagenesis strategy in directed evolution. Spon-

taneous mutation in E. coli for instance, is known to occur at a rate of about

1 × 10−3 per genome and generation [179]. The probability of a single point mu-

tation was assumed to be roughly equal to the mutation rate. This is a valid

assumption given the small value for the rate. This means that a single point

mutation is expected to occur every 1000 cells being replicated. Provided that the

bacterial genome has 4.22 × 106 base pairs, the mutation rate per base pair per

replication is 4.22−1 × 10−9. This number is largely based on the error rate of the

DNA replication machinery when cells are dividing. In order to �nd a cell that

ends up with a speci�c point mutation, it is expected that 4.22 × 109 cells need

screening1.

An E. coli culture at OD600 of 1.0 would roughly amount to a cell density of

about 8 × 108 cells/mL [153]. The ∆mutSL mutation in Listeria monocytogenes

was shown to result in 100- to 1000-fold increase in the spontaneous mutation

rate [119]. Assuming the same OD600 readings to cell density conversion, and a

1000-fold increase in mutagenesis via ∆mutSL in B. subtilis, 4.22 × 106 cells, or

roughly about 5.28 uL of B. subtilis cell culture at OD600 of 1.0 would contain a

cell with a speci�c point mutation. Extrapolating this thought experiment, 22.3 L

culture at OD600 of 1.0 would amount to approximately about 1.78× 1013 cells, a

cell population large enough to expect a cell with a speci�c double SNPs.

In nature, the hypermutation state resulting from the lack of mut genes re-

sponsible for DNA mismatch repair was shown to have signi�cant consequences in

facilitating bacterial adaptation, such as enhancing virulence and surviving in hos-

tile environments [13, 132, 189]. The possibility of successful bacterial adaptation

cases demonstrated in nature corroborates the idea that viable solutions to com-

plex problems can be generated from random solution pools driven by spontaneous

mutagenesis.

1Let a speci�c point mutation be an event that occurs with probability p = 4.22−1 × 10−9,
then the mathematically expected number of cells (E) to be screened before seeing the �rst
occurrence of a cell with the speci�c point mutation is E = 1/p
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5.1.3 Feasibility of �nding solutions in randomness

There are numerable factors, considerable, a�ecting the feasibility of using directed

evolution and random mutagenesis in genetic systems design. These include de-

sign complexity, microbial sample size, selection throughput and mutation rate.

Design complexity would be positively correlated to the volume of the search-

able solution space - the more complex a design is, the further the solution space

exponentially expands. As the solution space begins to explodingly expand, a

proportionately large population of cells is necessary to support enough random

solutions to harbour a �t solution. Having a large population of cells subject to

random mutagenesis, hence a large pool of solution candidates, would be bene-

�cial to counteracting the curse of dimensionality associated to complex designs.

However, there is a downside to having a large cell count. The larger the cell count

is, the more critical the selection throughput becomes, as the process of screening

and sorting cells based on measurements has costly overhead [35].

Fluorescence-activated cell sorting (FACS) devices, touted to o�er an ultra-high

throughput screening in today's standard, can perform at a rate of approximately

about 107 particles per hour [193]. While it seems as though a large number, such

a throughput is still far from being su�cient, at least for the purpose of employing

directed evolution in complex designs. For example, it would require screening

through a minimum of 4.22 × 106 cells in order to ensure that a speci�c point

mutation can be found in B. subtilis, assuming a mutation rate of 4.22−1 × 10−6

per base pair per replication (See Section 5.1.2). This means it would need about

half an hour1 of continuous operation of a FACS device, before a desired single

point mutation can be isolated, provided that the FACS device is error-free. In

reality, FACS-based screening and sorting would take longer.

The search time worsens exponentially as we enter the territory of multiple

point mutations. In screening for a speci�c double point mutations, the minimum

search space is as large as 1.78 × 1013 cells. This would amount to about 1.78

million hours of continuous operation of a single FACS device to ensure a desired

mutant to be found. Using multiple FACS machines for parallel search operations

would only be able to diminish the numbers in a linear fashion. While limited,

14.22× 106 cells divided by 107/60 particles per minute = 25.32 minutes
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increased mutation rates can take some load o� of the screening and sorting process

by reducing the total number of cells per point mutation. Increased mutation rates

would amount to higher solution densities per unit cell population, hence would

reduce the total number of cells to be screened per desired solution. Nonetheless,

the improvement o�ered by increased mutation rates would be limited, certainly

not meaningful enough to warrant the adoption of mechanical sorting in directed

evolution.

The process of random mutagenesis is indi�erent to which way changes are

made in the genome. It is only that the selection process is intrinsically biased by

the constant pressure of the need to sustain life, and ends up favouring one muta-

tion to another. Directed evolution can harness random mutagenesis and extrinsic

evolutionary pressure to drive random changes towards meeting certain �tness cri-

teria [9, 193], unessential to sustaining life. The biosynthesis of secondary metabo-

lites accounting for many commercially signi�cant high-value chemicals [11, 92]

are good examples relevant to the application of such extrinsic �tness criteria.

Whether intrinsic or extrinsic, evolutionary pressure is a type of a selection pro-

cess. In case of the intrinsic pressure, the selection process is the survival of the

�ttest, the end result of which is the enrichment of traits deemed advantageous or

necessary for sustaining life in the given environmental conditions. The selection

process concerning extrinsic pressure, on the other hand, can enrich groups with

traits, normally considered unessential for the purpose of sustaining life.

How can we enrich groups with unessential traits then? Cherry picking cells

after screening for desirable traits is one obvious way, albeit such a selection process

is limited by the throughput of the screening and sorting procedures as well as the

feasibility of trait quanti�cation. Alternatively, extrinsic selection processes can

take place by being coupled to the intrinsic selection process, so that the traits of

interest, that are otherwise unessential, become conditions for survival. Making

survival dependent on certain unessential traits can be challenging on its own

right. Nevertheless, the coupling approach o�ers an attractive means for e�ectively

exploring a large design space via random mutagenesis, since the approach does not

su�er as much from the bottleneck imposed by screening and sorting throughput

as the cherry picking approach.

What does it mean by being throughput limited in terms of the selection pro-

58



cesses in directed evolution? Given a �nite search time, it amounts to having a

limited coverage in the solution space, therefore having a reduced likelihood of

running into a solution. Adding more equipment, let alone the problem of doing

so not being economically viable an option, would not help much in an attempt to

increase the throughput, as the throughput gain in doing so only goes up linearly.

Simply put, such a linear gain cannot deal with solution space explosion.

What if each cell had the capability to screen itself in or out? Su�ce it to say,

the selection process would then no longer be the limiting factor. The bottleneck

would then be at the mutagenesis rate, or the rate of churning out solution can-

didates. The work described in Section 5.2 was an attempt to provide a viable

solution to the problem of developing an in vivo genetic device that can couple

the biosynthesis of a non-essential metabolite to a survival condition. The genetic

device was designed to confer the capability of self-screening or selecting for given

�tness criteria on individual cells.

5.1.4 Application of the in vivo evolutionary approach to a

metabolic engineering case in bacteria

A speci�c application case was needed, in order to explain implementation-level

details of the concept of harnessing the in vivo evolutionary approach to design.

A metabolic engineering case, more speci�cally the biosynthesis of ribo�avin, was

considered in this study as an example.

Ribo�avin is essential to the production of biologically critical coenzymes such

as FMN and FAD. Since higher organisms, such as mammals, have lost their ability

to naturally synthesize the metabolite in vivo, higher organisms rely on dietary

intakes for the supply of this essential nutrient, commonly known as vitamin B2.

Only microorganisms and plants can produce ribo�avin. The industrial ribo�avin

production is estimated to have exceeded 3000 metric tons per year, and about

80% of which is produced by employing microorganisms [114].

Taking the evolutionary design approach to the biosynthesis of ribo�avin would

o�er to be an exemplary synthetic biology application having potentials for imme-

diate industrial implications. Also, there already exist known genetic mutations

that would result in ribo�avin overproduction [40, 164] in a number of di�erent or-
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ganisms including B. subtilis. Those known mutations can act as reference points

for comparing potential solutions generated by the evolutionary approach.

5.1.5 Minimising testing overheads via automation

As previously pointed out, testing is one of the most important elements in design.

Its importance is especially pronounced in taking the evolutionary approach to

design where solutions are found in randomness. The evolutionary approach is an

iterative design scheme in which random solutions get repeatedly tested for their

�tness.

The in vivo device shown in Section 5.2 was in fact designed to embed a molec-

ular testing mechanism into individual cells. It is a form of automated testing

achieved at the cellular level. There are other levels of testing that necessitate

benchwork and data analysis in order to better understand putative genetic so-

lutions at hand. Tests of such kind have costly overheads. The work shown in

Section 5.3 addressed the subject of automating the analysis of data acquired

from routinely performed laboratory procedures such as cytometry and genome

sequencing.

5.2 Designing a genetic system to support in vivo

evolutionary design

If the phenotypic change introduced by a point mutation of interest confers resis-

tance to some substance that is otherwise fatal to the organism, its screening is

as easy as using intrinsic selection or conventional molecular biology techniques

in which survivors are picked from plates with selective growth conditions. In ex-

trinsic selection cases, such as �nding the trait of ribo�avin biosynthesis, the same

plate screening technique is not a viable option, as the production of ribo�avin is

normally considered unessential to survival.

In order to address this issue, an in vivo genetic system was designed to couple

intrinsic selection pressure to extrinsic selection. The trait of ribo�avin biosyn-

thesis can be coupled to the survival condition of B. subtilis via using a molecular

sensor capable of detecting the presence of ribo�avin in the organism. Bacillus
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subtilis possesses a negative feedback mechanism by which ribo�avin production

in vivo in the wildtype organism is regulated, as the microorganism only needs a

trace amount of ribo�avin in normal conditions.

FMN is a phosphorylated form of ribo�avin that is involved in the negative

feedback regulation of ribo�avin biosynthesis in some microoragnisms including B.

subtilis. B. subtilis uses a form of riboswitch that can have conformational changes

depending on the presence of FMN in the cytosol [110, 186]. In the presence of

FMN, the riboswitch forms a rho-independent termination loop at the 5-prime-

end untranslated region of the rib operon, resulting in the premature termination

of the operon's transcriptional events. In the absence of FMN, the termination

loop structure is disrupted to a level not stable enough to halt transcriptional

events. The endogenous FMN riboswitch of B. subtilis, used in the following

coupler design, was adopted from a part of the 5-prime-end untranslated region of

the rib operon1 of Bacillus subtilis 168.

5.2.1 Building a FMN sensor construct

The FMN riboswitch sequence was obtained from the 285bp leader sequence up-

stream of the start codon of ribD2 in B. subtilis 168. The strain's reference genome

sequence from which the leader sequence was obtained is accessible via Genbank

accession ID AL009126.3 [105]. The 285bp leader sequence should carry the native

promoter and RBS of ribD. The sequence's FMN dependent riboswitch property

provides a mechanism for the inhibition of the expression of any downstream genes

concatenated to the sequence in tandem.

Two di�erent ways to apply selection pressure was considered using this sensor

construct. One was to use selective activation of a kill switch, and the other was

to use selective activation of an antibiotic resistance. The former would need to

actively promote a death mechanism for the un�t, while the latter would need

a survival mechanism for the �t. Given the inhibitory regulation of the FMN ri-

boswitch, it would seem that concatenating a death mechanism downstream of the

sensor construct can be an e�ective measure to select for the population producing

1The rib operon expresses enzymes for metabolising nutrients into ribo�avin and FMN.
2The ribD gene is synonymous to ribG in B. subtilis.
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(or with the cytosolic presence of) FMN. It is true in a logical sense that �inhibiting

death� of the �t is equivalent to promoting the �t. However, this approach would

drive the fate of the un�t to plunge into death by default. This means that initially

un�t mother cells (lacking the target phenotype) would be deprived of any chances

to evolve. Therefore, it is imperative that the default status of mother cells not

be death but survival. This design requirement was achieved by concatenating a

NOT gate followed by an antibiotic resistance. By opting for the survival mech-

anism via antibiotic resistance, the time point in which selection takes place can

be controlled at will. Mother cells can then take as much time as needed before

being subject to antibiotic screening that selectively kills o� the un�t.

Figure 5.1: The sensor construct coupled to a survival mechanism via a NOT gate

5.2.2 A NOT gate coupled to the FMN sensor for positive

regulation

A NOT gate was introduced to reverse the logic of the inhibitory regulation of the

FMN riboswitch, so that the presence of FMN can be tied to survival (See Figure

5.1). The 285bp FMN riboswitch sequence was joined together with the coding

sequence of tetR from transposon Tn10 (BBa_C0040), sourced from the Registry

of Standard Biological Parts. The -35 and -10 regions of the xylA promoter of

B. subtilis 168 [71] were used together with O1 TetR operator sequence [72] in

building a B. subtilis promoter negatively regulated by TetR.
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Table 5.1: The truth table of FMN vs antibiotic resistance for survival.

FMN available TetR expressed resistance
True False True
False True False

Figure 5.2: An inducible mutSL operon to programmatically regulate mutagenesis
rates

5.2.3 A construct to regulate the mutagenesis rate

The mutagenesis rate of an organism is one of the most critical factors governing

the speed of evolution. For organisms in the wild, mutagenesis is a dual-edged

blade in that it is bene�cial for survival during the times of trouble, while it can

also destruct the integrity of genes. Evolution has worked out optimal mutagenesis

rates that best suit the varying natural needs of di�erent organisms. The usual

rule-of-thumb strategy taken by nature is to inhibit mutagenesis when cells are

happy, and to encourage mutagenesis when cells are under stress. In B. subtilis,

for example, there are molecular mechanisms in place to regulate mutagenesis rates

depending on cellular conditions via the mutS mutL operon [76, 158].

In light of directed evolution, mutagenesis is one of the critical bottlenecks in

the process of generating and �nding design solutions (See the discussion in Section

5.1.3). The wildtype spontaneous mutation rate would be too slow and ine�cient

in exploring large solution spaces of complex designs. For this reason, a genetic

device that can induce a hyper-mutant state was devised (See Figure 5.2). The

wildtype promoter of the mutS mutL operon in B. subtilis was replaced with an

inducible promoter that can be regulated by IPTG. Rudimentary though it may

be, the genetic device is a good example of how simple genetic modi�cations as

such can make in vivo cellular systems capable of interfacing in silico systems, via

a micro�uidics device programmatically modulating the IPTG concentration. The

rami�cation of having such an interface is quite signi�cant in terms of achieving
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design automation; this interface can enable programmatic modulation of the speed

of evolution in the host chassis.

5.2.4 The evo_insert construct

Pspac

IPTG

mutS mutL
PtetO

cattetR

FMN riboflavin
RibC

solution searchsolution generation

Figure 5.3: The evo_insert construct for insertion into pMUTIN4

See Appendix B.2 for the plasmid map of pMUTIN4.

The evo_insert construct was designed to have two functional modules mutu-

ally independent from each other (Figure 5.3). The �rst module is for regulating

the expression of mutSL operon, thus functions to switch random solution gener-

ation on or o�. The second module is for detecting the presence of FMN and for

coupling the detection event to the expression of an antibiotics resistance marker

(e.g. cat1). The second module would function to evaluate the �tness of randomly

generated solutions, and to select the �tter ones.

5.2.5 Testing the coupler system: the EVOt2 construct

The EVOt2 construct was designed for testing the FMN sensor together with the

NOT gate (Figure 5.4). The regulatory region of the FMN sensor in this construct

had an additional xylose inducible promoter so that the strength of the downstream

FMN-regulated promoter can be modulated by varying xylose concentration. The

construct was designed to detect the presence of FMN and couple the detection

1The cat gene is for the expression of chloramphenicol acetyltransferase which confers resis-
tance to the antibiotics, chloramphenicol.
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event to the expression of a �uorescence marker to assist in the characterisation

of the coupler system.

PxylR

xylose

PtetO
gfptetR

FMN riboflavin
RibC

FMN sensor + NOT gate test

Figure 5.4: The EVOt2 construct for insertion into pSG1729

5.2.6 Cloning strategy

In molecular biology, the term �cloning� refers to a series of processes involved

in introducing an exogenous genetic construct into a host organism. Various fac-

tors were needed to be taken into consideration in deciding on the appropriate

cloning strategy. These included the host strain of choice, the target insertion lo-

cus (chromosome vs plasmid), the availability of vectors compatible for the chosen

locus, etc. The evo_insert construct, being cloned into the host strain B. sub-

tilis BSB1, was accounted for many strain-speci�c design factors such as the use

of promoters and Shine-Dalgarno sequences (ribosome binding sites) compatible

with B. subtilis. Initially, the evo_insert construct's two functional modules were

designed to be inserted into a single chromosomal locus, at the 5-prime-end of

mutS. The construct was synthesised by Genscript, assembled into the plasmid

vector pUC57, and was collectively named pUC57_evo. pUC57 is a plasmid vec-

tor with a replication origin of E. coli, and is not intended for used in B. subtilis.

The evo_insert construct, or the payload without the plasmid vector, was sub-

cloned into the B. subtilis plasmid vector pMUTIN4 [180] (Appendix B.2), and

was named pMUTIN4_evo (Section 4.2.1). pMUTIN4 was chosen as the backbone

because the vector allows insertion at an arbitrary chromosomal locus depending
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on the sequence homology built into the payload sequence. The evo_insert pay-

load was designed with a sequence homologous to the 500bp sequence immediately

following the promoter region of mutS. Please refer to Section 4.2.3 for details on

how pMUTIN4_evo was constructed.

The EVOt2 construct was assembled using Gibson techniques (See Section

4.3). Its assembly fragments were ampli�ed out of the evo_insert (Appendix

B.1) in pUC57_evo (Figure 4.1), using the PCR primers listed in Table 4.14. As

part of the assembly, the EVOt2 construct was inserted into the plasmid back-

bone, pSG1729 (Appendix B.3), and the Gibson product was accordingly named

pSG1729_EVOt2 (Figure 4.9).

The EVOt2 construct was chromosomally integrated into the amyE locus of

B. subtilis BSB1 using pSG1729_EVOt2, and the mutant was named B. subtilis

BSB1 EVOt2 (Section 4.4). For use as an experimental control, the barebone

pSG1729 was used to transform B. subtilis BSB1 for the chromosomal insertion

of the vector's xylose inducible GFP expression circuitry at the amyE locus. The

control mutant was named B. subtilis BSB1 SG0.

5.3 Automation of the analysis of measurement

data

The evo_insert and EVOt2 constructs described so far are molecular devices de-

signed to facilitate information exchange between the in vivo and in silico domains.

By enabling single-cell-level phenotypic measurement coupled to selection, these

molecular devices can increase the information entropy (or information density)

per mutant population, consequently opening ways to increase the transfer rate

of useful information to the in silico domain. They are examples of how directed

evolution can be employed for �nding solutions in light of the DEA framework.

Solution search can take place in a massively parallel fashion given the power of

the selection coupling (See Section 5.1.3). However, such molecular devices, albeit

capable of achieving high throughput screening, are still subject to noise, resulting

in multitudes of putative solutions that require further scrutiny.

Systematic characterisation required to scrutinise mutants at this stage is costly
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and time-consuming. At the core of the DEA framework is the idea of harnessing

iterative design cycles, where it becomes necessary to repeat laborious character-

isation procedures over and over again. In this framework, the versatility o�ered

by the following two characterisation means was promising: �ow cytometry and

genome sequencing. They can generate copious amounts of data in raw format.

These data also need to be subject to postprocessing as well as downstream anal-

yses in order to extract any useful information. Dealing with experimental data

can be one of the most time consuming elements out of the characterisation e�ort.

The burden of characterising clones can be lessened to a large extent by employing

automation in this process.

Software pipelines were developed for postprocessing and analysing data ob-

tained in their raw formats from cytometry and genome sequencing. These data

pipelines were built as proof-of-concept examples of developing software compo-

nents that can readily participate in the design cycle of DEA, automated to involve

as little human intervention as possible. The pipelines were built as management

layers to invoke various open-source libraries [12, 21, 38, 108, 113, 118, 190], each

of which is good at handling speci�c data processing needs. There are useful

GUI-based software tools [8, 66] to assist the postprocessing and analysis of such

experimental data, primarily intended for occasional use by people on an ad hoc

basis. The pipelines developed in this study were meant not to be used directly

by people but to be used programmatically as part of an automated loop running

in parallel backend servers.

Firstly, a software script that can programmatically process raw �ow cytometry

data was built and tested on B. subtilis clones labelled BSB1 EVOt2 and BSB1

SG0, respectively transformed as per Section 4.4 and Section 4.3.3. Secondly,

software pipelines to automate the assembly and the analysis of whole-genome

sequence data were developed and tested on the B. subtilis 168 and BSB1 wildtype

strains as well as on the BSB1 EVOt2 clone.
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5.3.1 Processing �ow cytometry data for systematic analy-

sis

Flow cytometry o�ers an e�cient way to gather �uorescence-marker-based experi-

mental data. Data of this kind are useful in testing whether relevant genetic parts

function as intended. Due to large volumes of data typical cytometry experiments

would produce, one of the most cumbersome steps in using cytometry is process-

ing raw data into a form ready to be interpreted. Besides, postprocessing raw

cytometry data is often in�uenced by inaccurate gating polygons hand-drawn at

the whim of people. A Python script, that can programmatically postprocess raw

experimental cytometry data, was developed. It is a rudimentary script consisting

of procedures for simple data array manipulations and plotting operations. Yet,

this test case was introduced to serve as an example contrasting the e�ciency of

using process automation versus manual labour in performing downstream post-

experiment data analyses.

B. subtilis EVOt2 clone was cultured and subject to �ow cytometry as ex-

plained in Section 4.4.2. The resulting raw cytometry data readings were processed

by the Python script1 to automatically generate Figure 5.8 in a matter of seconds.

This process, if performed manually in a conventional wet-lab setup, would take

hours, if not days.

5.3.2 Post-evolution whole-genome sequence analysis

Whole-genome sequence analysis provides a way of faithfully capturing and in-

specting genetic solutions o�ered by selected clones. As part of such analysis,

clones with potential solutions can be evaluated against relevant �tness criteria

before their solutions can be accepted. The evo_insert circuitry, for instance, has

a FMN sensor with which �tness measurements can be taken in vivo at the single

cell level. The circuitry was designed for coupling measurement results with the

application of antibiotics selection pressure. The signi�cance of inspecting how

clones survived selection in this instance is to di�erentiate valid selections from

invalid selections. There are mainly two kinds of invalid selections: false negatives

1Appendix A.3 shows an instruction to invoke a Docker container to use the Python script.
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and false positives. False negatives are missed opportunities that would deem valid

solutions as invalid. False positives are the ones that would deem invalid solutions

as valid.

One possible cause to these problems is measurement error in the screening

process. Should measurement error be the culprit, these problems can be miti-

gated either by improving the quality of measurement systems (e.g. a better FMN

sensor) or by altering the �tness threshold (e.g. antibiotics concentration). While

improving measurement quality can reduce both kinds of problems, altering the

�tness threshold may only reduce one of the two depending on which way the

threshold is altered. Lowering the �tness threshold allows more sample solutions

to be screened in, and would result in the reduction of false negatives at the ex-

pense of increased false positives. On the other hand, raising the �tness threshold

restricts sample solutions from being screened in, and would result in the reduction

of false positives at the expense of increased false negatives.

Another possibility causing these selection problems is that the clones being

selected have anomalies in the evo_insert circuitry leading to conferring immu-

nity to selection pressure without having the primary trait of concern (i.e. FMN

biosynthesis). False positives as a result of the latter cause would need to be ac-

companied by a secondary screening scheme involving sequence analysis. As far

as synthetic biology and its application of DEA in metabolic engineering are con-

cerned, a secondary �tness evaluation via using whole-genome sequence analysis

is promising, owing to the ever-dropping Next Generation Sequencing (NGS) cost.

The caveat is that the secondary evaluation process would then need to be braced

for the challenges posed by the inundation of genome-scale sequence data.

The challenges posed by having to deal with overwhelming amounts of DNA

sequence data can be alleviated by using automation. The discussion to follow is

about automating post-evolution whole-genome sequence data maneuvers, such as

sequence data assembly and analysis. It is also worth noting that the discussion

of the following automated pipelines will be a preamble to discussing, in Section

6.4.3, how evolutionary solutions in vivo can be integrated to in silico solutions to

bridge the gap between the two domains.
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Execute NCBI blastn

on the command line

Blast EVO_insert

against contigs

Find a contig with EVO_insert

De novo NGS sequence assembly pipeline

Initialise

ContigBlaster object

Initialise

pre-processor object

Trimmomatic

Bioinformatics software tools & libraries

Assemble short-reads

de novo

Trim paired-end data 

using phred scroes

Trigger quality-based

short-reads trimming

Trigger paired-end

short-reads alignment

Spades Benchling BiopythonContigBlaster
NGS data

pre-processor

Sequence assembly 1

Sequence assembly 2

Insert EVO_insert in

sequence assembly #2

Make a new reference with EVO_insert

Assemble sequence

against reference

Figure 5.5: Overview of the hybrid sequence assembly pipeline

The pipeline consists of four main parts: sequence assembly de novo, locating the assem-
bled sequence of EVO_insert, sequence assembly against reference (assembly #2), and
combining assembly #2 and the assembled EVO_insert sequence.

5.3.2.1 NGS assembly pipeline

Automated NGS assembly pipelines can greatly reduce the burden of downstream

genomic analysis processes. The lessened burden would subsequently result in

an increase in the analysis throughput, key to success in the DEA framework.

NGS devices generate short sequence reads collated together into raw unassembled

sequence data formats, such as FASTQ. There are a series of steps involved in

converting the raw data into some form ready to be consumed by other high-

level bioinformatic analyses. Software pipelines were built, in order to automate

the assembly of NGS sequence data. Here, sequence assemblies can primarily be

done against a reference sequence of B. subtilis 168. However, de novo sequence

assemblies are also needed to incorporate the evo_insert construct as part of the
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�nal variant analysis. Figure 5.5 shows a sequence diagram of the hybrid assembly

pipeline to build a reference sequence using a sequence assembly done against a

gold-standard Bacillus subtilis 168 sequence (i.e. AL009126.3) together with an

evo_insert sequence assembled de novo. The hybrid assembly pipeline, developed

in Python 2.7, was packaged with all its dependent libraries to be provisioned

as a Docker image, ready to be deployed and tried out1. The Docker image has

an example demonstrating the hybrid assembly pipeline to build an annotated

sequence assembly �le out of NGS data obtained from a Bacillus subtilis BSB1

EVOt2 clone (Section 5.2.5).

The same hybrid assembly pipeline can also be used to build a base annotated

sequence for a DEA mother cell with the evo_insert construct (Section 5.2.4).

Such a base annotated sequence would function as a reference sequence in the

variant analysis pipeline, shown in Figure 5.6, for investigating the SNPs in random

mutants stemming o� of the mother cell.

5.3.2.2 Variant analysis pipeline

For the sake of using DEA in �nding genetic solutions to problems such as ri-

bo�avin biosynthesis in B. subtilis, it is imperative that experimental �ndings

resulting from evolution in vivo be bridged onto the EA in silico. Variant analysis

is appropriate for bridging such a gap, as the data made available by the anal-

ysis convey information on genetic variations among solution candidates readily

compatible to the type of data required in exploring the solution space of the EA

in silico. A further bene�t to the use of variant analysis is providing a solution

to decrease false positives. Information regarding SNP variants, speci�cally in

the chromosomally integrated evo_insert construct, can be leveraged in having

solution candidates checked against false positives. Candidates with signi�cant

mutations in the solution search module (Figure 5.3), as part of the evo_insert

construct, are prone to become false positives, therefore can be precluded from

further analysis. Signi�cant mutations include non-silent SNPs2 in the coding re-

1Please see the instructions in Appendix A.2 to gain access to the Docker image and to
execute the pipeline as part of a Docker container.

2Non-silent mutations are signi�cant mutations with possible alterations in the phenotypes of
the protein in which they occur. They occur in coding regions and involve changes to the amino
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gions of the solution search module, and mutations in the module's regulatory

elements such as promoters, operators, FMN riboswitch, and ribosome binding

sites. SNPs occurring in loci other than evo_insert can be used to help with the

in silico analysis as described in Section 6.4.2.

A software pipeline was developed (Figure 5.6) to enable variant analysis on

mutants in order to associate their SNPs to desirable mutant phenotypes such

as increase in the ribo�avin biosynthesis. In order to test the variant analysis

pipeline, Bacillus subtilis 168 and BSB1 strain collections independently main-

tained by di�erent research groups at the Centre for Bacterial Cell Biology in

Newcastle University were acquired, and sequenced via the in-house NGS service

using Illumina MiSeq. The resulting raw sequence data for each strain sample

were uniquely labelled, assembled against the reference (AL009126.3), and pro-

cessed through the variant analysis pipeline to respectively generate EMBL �les

with SNP annotations (See Table 5.2).

The test clone described in Section 5.2.5, a B. subtilis BSB1 with the EVOt2

construct chromosomally integrated at its amyE locus, was sequenced using a

NGS device (Illumina MiSEQ). A docker image (see Appendix A.2) was built

to demonstrate the application of the work�ow shown in Figure 5.6 for checking

if the transformation of the clone was done successfully. A reference sequence

was constructed by inserting the EVOt2 sequence at the amyE locus of the 168

reference sequence (AL009126.3), and was named AL009126_EVOt21.

acid sequence, or in non-coding regions and involve changes to critical regulatory sequences.
1The AL009126_EVOt2 sequence in Genbank format was made available via accessing the

Docker image sungshic/dea_hybrid_assembler:1.1 from Docker Hub. The Genbank �le was
named AL009126_EVOt2.gb and was placed in /root/workspace/evot2, accessible as part of
the Docker container upon instantiation. See Appendix A.2 for details on the Docker image.
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Figure 5.6: Overview of whole-genome sequence analysis pipeline

The pipeline consists of four main parts: sequence assembly, sequence pre-processing,
variant analysis, and sequence annotation.
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5.4 Results from running the pipelines for sequence

assembly, variant analysis, and plotting cytom-

etry data

Table 5.2: Variant analysis of genome sequencing samples against reference
genomes

Table 5.2 summarises a SNP analysis result made available by the NGS analysis

pipeline discussed in Section 5.3.2.2 and Figure 5.6. The example raw sequence

data used here were chosen for the purpose of demonstrating the capability of the
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software pipeline. Samples labelled 1, 13, 16 and 21 were B. subtilis 168 strains.

It was shown that their sequences did not deviate much from the B. subtilis 168

reference AL009126, with the exception of Sample 13 and Sample 21. Sample 13

was a 168 strain from Pasteur Institute, and Sample 21 was a 168 strain acquired

from Bacillus Genome Stock Center.

Figure 5.7: The trpDCF region of Sample 14 carrying the majority of its SNPs

Indicated in purple bars below the green CDS arrows were the SNPs skewed in the
trpDCF region, contributing to 75 of a total of 84 SNPs reported in Sample 14 (Table
5.2). The SNP pro�le and the corresponding EMBL annotated sequence generated by
the pipeline developed in this study was visualised using Unipro UGENE [131].

It was evident from the pipeline's variant analysis result that the 168 strains of

Samples 13 and 21 had many non-silent SNP variants with respect to the reference.

Samples labelled 14, 21 and BSB1_wendy were B. subtilis BSB1 strains, derived

from B. subtilis 168 by replacing its trp operon to �x 168's tryptophan auxotrophy.

The two trp operons were clearly di�erent, as the total SNP counts of BSB1 strains

exhibited striking di�erences between the counts including and excluding the trp

operon. As a control measure, the BSB1 strain (BSB1_wendy) was compared

against the old B. subtilis 168 reference sequence (SLR16.1) from Pasteur Institute.

Immediately noticeable in this comparison was how di�erent the old 168 reference

(SLR16.1) was from the new 168 reference (AL009126). It was also interesting

to see that the uvrX SNPs recurrent on other samples against AL009126 were

no longer there against SLR16.1. After all, the pipeline was able to successfully

automate the processes of assembling raw short sequence reads and analysing

SNP variants. The correctness of the variant analysis pipeline was evident in its

ability to detect the tryptophan auxotrophic allele of 168 (i.e. trpC2 [3]). Sample

14 shown in Table 5.2, for instance, was a BSB1 strain which is a prototrophic

derivative of 168. As visualised in Figure 5.7, Sample 14's SNP pro�le with respect
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to 168 had a great majority of them skewed within the trp operon, more speci�cally

within trpDCF. The trpDCF region carried 75 SNPs out of a total of 84 SNPs

reported in Sample 14.

(a) (b)

Figure 5.8: Time-lapse �ow cytometry results

There are four di�erent growth media: m0, m1, m2, m3. m0: LB 1 % (w/v) xylose.
m1: LB 1 % (w/v) xylose + ribo�avin. m2: LB. m3: LB + ribo�avin. Fluorescence
is calculated by dividing the �uorescence values measured by the �ow cytometer by
individual particles' forward scatter values. This division o�sets the high �uorescence
values due to bacteria forming chains. (a) BSB1 EVOt2 in four di�erent media conditions.
(b) BSB1 SG0 in the four di�erent media conditions.

The results in Figure 5.8, showing time-series boxplots of the �uorescence of

individual cells, were programmatically produced from raw cytometry data (See

Section 5.3.1). Figure 5.8a was based on the BSB1 EVOt2 clone, and Figure 5.8b

on the BSB1 SG0 clone1.

The expected behaviour of the EVOt2 clone in the m0 media was to have

the lowest �uorescence level. The lack of ribo�avin in the growth media would

mean the lack of FMN in the milieu. This would make the riboswitch in the

EVOt2 circuitry not to halt the expression of downstream genes (tetR in this

case). This ensues TetR to be available in the milieu, inhibiting the expression of

1BSB1 SG0 was cloned by transforming B. subtilis BSB1 with pSG1729 (See Appendix B.3)
to confer the clone with xylose inducible �uorescence (GFP).
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the �uorescent protein downstream of the promoter guarded by a tet operon. In

addition, having xylose in the media would increase the expression of tetR, further

intensifying its inhibitory role of the �uorescence level. The �ow cytometry result

(labelled m0 shown in blue) in Figure 5.8a con�rmed this expected behaviour by

exhibiting the lowest �uorescence out of the four conditions.

The m1 media given the presence of ribo�avin in addition to the media com-

position of m0 was expected to have �uorescence higher than that of m0. A high

concentration of ribo�avin would contribute to the rise of FMN concentration in

the milieu which consequently would inhibit the expression of tetR. A decrease

in TetR concentration would lower the inhibition of the �uorescence expression,

hence resulting in increased �uorescence.

The m2 media had neither ribo�avin nor xylose. The lack of ribo�avin, as

explained above, would contribute towards decreasing �uorescence, while the lack

of xylose would contribute towards increasing �uorescence. It was speculated that

the �uorescence due to m2 would be higher than that of m0, yet lower than that

of m3. This was con�rmed to be the case in the experimental results summarised

in Figure 5.8a.

The m3 media had ribo�avin (hence FMN) as the sole contributing factor

of �uorescence. The presence of which would increase �uorescence. Given the

lack of any inhibition factors, this media composition would result in the highest

�uorescence level out of the four conditions. This was also con�rmed to be the

case in Figure 5.8a.

While the expected behaviours versus growth conditions were shown to be

maintained throughout the observed growth time span, all four conditions exhib-

ited gradual increase in �uorescence over time. The likely explanation to this result

is that the host system's native rib operon would, over time, produce ribo�avin

in vivo contributing to the regulation of the EVOt2 circuitry. However, the veri-

�cation of this claim requires a negative control such as a separate EVOt2 clone

with a deletion of the ribo�avin synthase gene (ribB in Figure 6.3) involved in

producing ribo�avin in vivo. Due to time constraints in the project, making the

clone for negative control was not pursued.

In fact, the EVOt2 construct had a glitch in the design. The emission spectrum

of ribo�avin overlaps that of GFP, the choice of �uorescent protein in the EVOt2
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design. This clash attributed to the basal �uorescence levels in the measurements.

The side-e�ect of this design glitch was shown in Figure 5.8b generated from the

cytometry data of the BSB1 SG0 clone grown under the four growth conditions.

The BSB1 SG0 clone's �uorescence expression circuitry transformed from pSG1729

should normally be inducible only via xylose. Xylose was able to induce the

�uorescence expression of BSB1 SG0 to increase over time as shown in the m0 and

m1 conditions in Figure 5.8b. However, it was also evident that the m1 and m3

conditions, given the presence of ribo�avin, elevated the basal �uorescence level

compared to the non-ribo�avin conditions (i.e. m0 and m2). With the bene�t of

hindsight, this design mistake helped highlight the importance of having a means

to make design amendments easier: that is to have an automated testing to appease

the pain of repeating experiments as exempli�ed in this chapter.

5.5 Discussion

Evolution is a powerful problem-solving framework. Harnessed with random mu-

tagenesis and selection, evolution is universally applicable and elegantly simple

a genetic solver that can give rise to an amazing array of genetic solutions with

diverse functionalities. In natural evolution, as Charles Darwin had speculated in

his seminal work [49], the selection process is intrinsically welded into the survival

of organisms amid the peculiarities of given environmental niches. Provided with

the survival as its ultimate goal, how that goal is achieved by organisms is not

a matter of concern. In directed evolution, with respect to DEA, the survival of

organisms, extrinsically coupled to the selection process in vivo, is not the ultimate

goal but an intermediary step to isolate clones bearing potential genetic solutions.

Here, how organisms managed to survive the selection pressure does matter, ne-

cessitating the clones or solutions selected as part of the in vivo selection process

to be subject to further scrutiny. The research work presented here addressed

the question of how the solution search can be facilitated in the immense pool of

random in vivo solutions. Screening for mutants at the molecular level via genetic

devices in vivo, and streamlining the characterisation of mutants bearing putative

solutions via automation were this study's attempts to provide an answer to this

non-trivial question. As yet, this only constituted half an answer. How in silico
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modeling and virtual evolution can improve on the validity of solutions found in

vivo was as di�cult a question to be answered. Working on answering this resulted

in a signi�cant section on its own, expansive enough to warrant Chapter 6.

One of the primary challenges in the dual-evolutionary design framework was

how in vivo and in silico design domains can be integrated. DNA was one of the

most obvious common denominators between the evolutionary solution spaces of

the two design domains. The DNA sequence analysis hitherto shown in this study

was an e�ective means with which transitions to and from the two solution domains

can be achieved. The variant analysis of in vivo solutions, for instance, provided

information at an abstraction level suitable for �tting into in silico solutions in a

manner that is computationally simple yet analytically meaningful.
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Chapter 6

In silico model based design to

bridge the gap in the

dual-evolutionary domains

6.1 Introduction

To date, proponents of design automation have contributed in the research and de-

velopment of building various means to achieve automated assistance in designing

processes. As a result of such endeavour, the use of computerised design assistance

tools has become a routine practice across varying �elds of engineering [144]. These

tools, collectively termed Computer Aided Design (CAD) software, have made it

possible for humanity to achieve new levels of heights in wielding design complex-

ity [96]. Field experts claim that �No product is designed today without the use of

computer-aided design (CAD) technology� [22]. They are the means with which

the modern civilisation as we know it today has been technologically innovated.

CAD tools have helped raise the bar in the level of complexity manageable by

designers to a certain extent. Nevertheless, CAD tools are limited to providing

�islands of automation� [46], and are never intended for replacing human designers.

The use of automated assistance in CAD is still bottlenecked by the reasoning

capacity of designers. Given high degrees of complexity and uncertainty involved

in engineering biological designs, the validity of CAD tools [19, 33, 48, 135] will
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eventually reach a saturation point.

Biological systems, whose cryptic mechanisms have come about as a result of

natural evolution, are complex because of �the bewildering diversity of interactions

and regulatory networks� [182]. Our current lack of a total understanding of this

intricacy poses unprecedented challenges in engineering the design of biological

systems.

One of the primary hurdles in designing complex biological systems is the

current lack of methodological paradigms that can handle the scale of design com-

plexity in a signi�cantly meaningful manner. In fact, nature has already been

mindlessly carrying out design tasks. Nature, without relying on any intelligent

agents to mastermind design tasks, has always been able to precipitate design solu-

tions reaching complexity well above the reasoning capacity of human minds. The

making of Homo sapiens by nature [29], for instance, is an epitome in reaching the

height of design complexity far beyond that achievable by our own capability to

design at the moment. Nature's vehicle for such a design feat and autonomy is evo-

lution [29, 55]. Evolution employs randomness and selection [107] as the universal

tools to explore and search for solutions to design problems. Natural evolution

is a living proof that complex biological designs can be achieved autonomously

without human interventions.

In Chapter 5, the idea of adopting the methodological paradigm o�ered by evo-

lution was explored in the in vivo design domain. At the core of this evolutionary

approach was seeing design as a search problem that can be systematically ma-

neuvered via randomness and selection. It was hypothesised that a combination of

molecular devices and programmatically executed analytic pipelines can facilitate

the search for design solutions in random in vivo pools, consequently opening up

ways to enable design automation in synthetic biology.

In light of seeing design as a search problem, the size of solution spaces to be

explored is proportionate to design complexity. Complex designs hosting larger

solution spaces would hence require more time before solutions can be found.

With respect to the dual evolutionary design approach, it was suggested [80] that

delegating some of the in vivo domain's search burdens to the in silico domain

would result in a signi�cant reduction in time to solution. This claim was veri�ed

in the work described in Section 6.4.3, following the presentation of details on how
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cellular systems were modelled to serve as an interface between the two domains

in an attempt to reduce their gap.

In engineering, design complexity can be mitigated to an extent by introducing

modularity in design [134, 154] or by using mathematical modelling [63]. Modu-

larity helps break larger problems into smaller manageable ones and facilitate the

reuse of designs. The complexity of systems design can be reduced by modules

decoupling unnecessary interdependencies of underlying subsystems. Mathemati-

cal modelling, on the other hand, helps quantitatively describe and assess complex

designs in a systematic fashion. Using modularity and modelling has already been

a practice well established in software engineering for conquering complexity [86].

The idea of using these mitigators in engineering biological designs has also been

attempted with some success [39, 62].

In modelling the example of ribo�avin biosynthesis, two approaches, dynamic

versus static modelling, were respectively investigated in Section 6.3.2 and 6.3.3.

Each approach revealed di�erent pros and cons, but the static model was more

promising to be used as a �tness function for in silico evolution, and o�ered to

provide a more compatible interface between the dual-evolutionary domains.

In addition to this �nding, the extent to which the use of in silico evolution

can expand the searchable limit in the solution space was investigated in Section

6.4. This work con�rmed the initial hypothesis by Hallinan and her colleagues [80]

in proposing the dual-evolutionary framework as an e�ective measure to mitigate

design complexity in synthetic biology. As part of this work, a novel method that

can model the population-level dynamics of mutagenesis was necessary and was

developed (See Section 6.3.4).

6.2 The signi�cance of modelling

What is the signi�cance of in silico modelling in terms of seeing design as a search

problem? Models in silico are virtual reconstructions of certain real-world func-

tions [7]. Out of such functional reconstructions, computers can calculate the

predicted output as a consequence of a given input.

Mathematical modelling allows relatively cost-e�ective grounds for estimating

whether certain design choices can meet given design goals. It is a well estab-
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Figure 6.1: Some examples of the archetypal function of the form y = f(x)

lished methodology in a�ecting design choices in the software �eld of requirements

engineering [129], for example. The practice of using mathematical abstraction

in this work was particularly concerned with the establishment of a systematic

naming convention. Achieving a mathematical abstraction permits the conceptual

labelling of a physical reality such that di�erent aspects of the physical reality can

be systematically referred to by in silico processes.

Before things can be named anew, however, they would have to be de�ned �rst

[111]. How things can be de�ned is an open-ended question, highly dependent on

the context within which the de�nitions are to be used. Mathematical abstraction

o�ers an universal system of vocabularies, or a language, to allow things to be

de�ned in an unequivocal and consistent manner. It is a linguistic framework for

engineering [79]. Following is an archetypal mathematical equation that represents

the output y as a function f of the input x. Some arbitrary functions were plotted

in Figure 6.1 to exemplify this archetype.

y = f(x) (6.1)

Drawing a parallel with this functional archetype, biological systems can be
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de�ned with respect to the same three constituents, namely the input x, the output

y, and the function f de�ning the relationship between the input and the output.

For example, y can be the phenotypic outcome of a biological system or a function f

that responds to environmental conditions x. In the context of metabolic reactions,

for instance, x could be a set of metabolites subject to an enzymatic reaction f to

result in a di�erent set of metabolites y.

6.2.1 Modelling as a tool for design documentation and ex-

ploration

Integral to the design process is the means with which real-world properties can

be documented. The old-fashioned way of documenting designs, as exempli�ed

by Leonardo da Vinci's schematic drawings [96], has been in written and drawn

forms using carbon copies. These manual practices continued well into the �rst

half of the 20th century [96], while they evolved to o�er more accurate renderings

of engineering drawings compared to those of the Renaissance. CAD tools, since

the in�uential development of Sketchpad [168] in the sixties, have helped digitise

design documentations [25]. Often, CAD tools just provide authoring means to

help document design properties in digital formats, only allowing as much details

as carbon copies would contain. Digitising information, even at such a rudimentary

level, has immediate bene�ts, including the ease of archiving, sharing, editing, and

�nding information.

More substantial a bene�t from digitisation would be that designs can be rep-

resented using much more dynamic context via in silico models. Modelling allows

the documentation of a rich array of dynamic design properties unattainable by

the carbon-copy driven documentation of designs. However, the in silico modelling

of complex systems is inherently limited by �nite computer resources. This means

that the minute details of real-world properties cannot be represented in full by

models. It is imperative that only the properties pertinent to the modelling goal

of interest need consideration using the parsimonious principle of Occam's razor

[160]. Mathematical abstraction is a great ally in abiding by such principles [106],

playing an important role in the documentation of complex designs.

It is argued that facilitating the re-use of up-to-date design knowledge, infor-
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mation and data can help increase the e�ciency of producing novel designs [46]. In

the dual-evolutionary approach, as demonstrated in this work, functional in silico

models by expanding from Equation 6.1 were developed to serve as a means to

document and to share the complex fabric of biological systems and their designs.

This e�ort is in agreement with the e�ciency argument, in that it not only bolsters

the important role of documentation in design but also of mathematical models in

documenting the insight into the functions of design.

Dealing with in silico models is cost-e�ective in that models can be evaluated

repeatedly against various conditions. As such, models o�er ways to explore

the solution spaces of design problems without needing to implement solutions in

reality. Therefore, models are great means with which to search for �tting solutions

in design spaces. Being able to programmatically search for solutions is especially

useful in terms of mitigating design complexity.

Furthermore, in silico models can enable introspection into the realm that

are normally out of reach in reality. Such capability of models is a perfect �t

for exploring the solution spaces of designs involving aspects that are physically

infeasible to be measured in reality. It is a promising notion to use modelling as

an exploration tool in the quest to �nding design solutions.

6.3 Modelling cellular systems

Cellular systems have underlying molecular mechanisms that enable the systems

to function. The law of physics governing those molecular mechanisms can be

encapsulated using in silico modelling. Modelling allows the reconstruction of

functional behaviours of the systems in light of mathematical abstraction. Models

can be used to further the understanding of how cellular systems work, and to

predict their behaviours. In silico models can be broadly categorised into two

classes - dynamic and static models. Dynamic models address temporal changes in

systems, while static models evolve around time-invariant steady-state conditions

of systems in equilibrium. In the following, ribo�avin biosynthesis was used as an

example to explain how di�erent aspects of cellular systems can be modelled using

these two classes.
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Figure 6.2: The rib operon and its transcriptional regulation in B. subtilis

6.3.1 Ribo�avin biosynthesis and metabolic pathways in bac-

teria

In Bacillus subtilis, the ribo�avin biosynthesis and its metabolic pathway are

largely a�ected by a set of �ve genes (ribGBAHT, Figure 6.2) comprising the

rib operon [121, 184]. It has been postulated that the metabolism and transport

of ribo�avin are regulated via transcriptional attenuation in Gram-positive bacte-

ria, as opposed to the translational level regulation of ribo�avin in most Gram-

negative bacteria [184]. The �ve rib genes encode catalytic enzymes for converting

one molecule of guanosine-5-triphosphate (GTP) and one molecule of ribulose-5-

phosphate (R5P) into one molecule of 6,7-dimethyl-8-ribityl-lumazine (DMRL),

and for subsequently converting two molecules of DMRL into one molecule each of

ribo�avin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione [10, 114] (See

Figure 6.3). The two precursor metabolites, GTP and R5P, are sourced through

two distinct pathways, GTP via the purine metabolic pathway and R5P via the

pentose phosphate pathway. These precursors go through a series of enzymatic

reactions catalysed by the protein products of the rib operon, leading to DMRL,

the immediate precursor of ribo�avin in these pathways. The DMRL to ribo�avin
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Figure 6.3: Ribo�avin biosynthesis pathway in B. subtilis

GTP: guanosine-5-triphosphate DARPP: 2,5-diamino-6-ribosylamino-4(3H)-
pyrimidinone-5'-phosphate DArPP: 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone-
5'-phosphate ArPU: 5-amino-6-(5'-phosphoribitylamino)uracil ArU: 5-amino-6-
ribityl-aminouracil DMRL: 6,7-dimethyl-8-ribityl-lumazine R5P: ribulose-5-phosphate
DHBP: 3,4-dihydroxy-2-butanone-4-phosphate

reaction is catalysed by ribo�avin synthase (RibB in B. subtilis). The B. sub-

tilis genes ribA (DHBP synthase), ribG and ribB have di�erent names in E. coli,

respectively called ribB, ribD and ribE [184].

Most bacteria produce less than 10 mg/L of ribo�avin, while some clostridia

can yield up to 100 mg/L, some yeast such as Candida �areri up to 600 mg/L,

and molds such as Eremothecium ashbyii and Ashbya gossypii can yield well over

1000 mg/L depending on the fermenting conditions [52].

It has been reported that some �avinogenic species overproduce ribo�avin when
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FMN: flavin mononucleotide 
FAD: flavin adenine dinucleotideFigure 6.4: The bifunctional enzyme RibC in B. subtilis

Ribo�avin to FMN and FAD are catalysed by RibC. FMN: �avin mononucleotide FAD:
�avin adenine dinucleotide

purine derivatives are in abundance [10]. B. subtilis with mutations in the ribC

gene (putatively encoding �avokinase and FAD synthetase) was shown to overpro-

duce ribo�avin [40, 116, 136]. The combination of mutations in ribC as well as in

the leader sequence (i.e. regulatory region) of the rib operon could boost ribo�avin

production in B. subtilis beyond 10 g/L [136]; that is three orders of magnitude

higher a level of production compared to those of most naturally occurring bacte-

ria.

The e�ector molecule directly involved in the regulation of ribo�avin biosyn-

thesis had not been elucidated until recently. Experimental results have suggested

that ribo�avin biosynthesis is regulated not via employing ribo�avin as an e�ec-

tor molecule but via FMN [10]. It seems FMN has inhibitory e�ects on the rib

operon by binding to the conserved regulatory element in the 5' UTR called rfn

[128]. Moreover, FMN's being an e�ector molecule is congruent to the ribC mu-

tants exhibiting ribo�avin overproduction - The ribC mutations would probably

have some sort of inhibitory e�ect on �avokinase (an enzyme for ribo�avin to

FMN conversion) or activating e�ect on FAD synthetase (an enzyme for FMN to

FAD conversion), resulting in a lower overall intracellular FMN concentration (See

Figure 6.4).
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6.3.2 Constructing a dynamic model for ribo�avin metabolism

Dynamic models can o�er exciting possibilities for understanding metabolic path-

ways by allowing detailed inspection of the temporal dynamics of metabolites

and enzymatic reactions. The seminal work of Guldberg and Waage in the law of

mass action [78] initiated the developments of chemical kinetics, such as Michaelis-

Menten kinetics [120] in the area of enzyme catalysis. Michaelis-Menten kinetics

is probably one of the most popular enzyme kinetics models, still in prevalent use

after its inception more than a century ago [41].

The premise of the Michaelis-Menten kinetics model, as best described in the

work by Briggs and Haldane [73], is based on an enzyme (E) and a substrate (S)

associating at a rate of kf to form a complex (ES), or ES dissociating at a rate

of kr (See Equation 6.2). Formation of ES, subsequently catalyses the irreversible

conversion into product(s) (P ) at a rate of kcat.

E + S
kf−−⇀↽−−
kr

ES
kcat−−→ E + P (6.2)

v =
Vmax[S]

KM + [S]
(6.3)

The rate at which P forms (d[P ]
dt
) is given by Equation 6.3, where Vmax = kcat[E]0

and KM = kr+kcat
kf

. [E]0 is the initial concentration of the enzyme E. KM is also

known as the Michaelis constant indicating the substrate concentration ([S]) at

which the reaction rate reaches Vmax
2

. The Michaelis-Menten (or Briggs-Haldane)

kinetics would be applicable to all enzymatic reactions in Figures 6.3 and 6.4,

except the reaction catalysed by RibH. The RibH reaction has two substrates

(DHBP and ArU) producing one product (DMRL), which Equation 6.2 does not

support.

The following chemical equations show an example of two substrates going

through enzymatic reactions to produce one product. It is assumed that S1 and S2

are independent of each other in binding to the enzyme E. Hence, the association

(kf1) and dissociation (kr1) rates of S1 to E are una�ected regardless of whether
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the other substrate S2 is bound to E, and vice versa.

S1 + E
kf1−−⇀↽−−
kr1

S1E

S2 + E
kf2−−⇀↽−−
kr2

S2E

S1E + S2

kf2−−⇀↽−−
kr2

S1S2E

S2E + S1

kf1−−⇀↽−−
kr1

S1S2E

S1S2E
kcat−−→ P + E

(6.4)

The law of mass action [78] gives rise to the following ordinary di�erential equations

de�ning the rate of change of chemical species in Equation 6.4 with respect to time

t.

d[S1]

dt
= −kf1[S1][E] + kr1[S1E]− kf1[S2E][S1] + kr1[S1S2E]

d[S2]

dt
= −kf2[S2][E] + kr2[S2E]− kf2[S1E][S2] + kr2[S1S2E]

d[S1E]

dt
= kf1[E][S1] + kr2[S1S2E]− kr1[S1E]− kf2[S1E][S2]

d[S2E]

dt
= kf2[E][S2] + kr1[S1S2E]− kr2[S2E]− kf1[S2E][S1]

d[E]

dt
= −kf1[E][S1] + kr1[S1E]− kf2[E][S2] + kr2[S2E] + kcat[S1S2E]

d[S1S2E]

dt
= kf2[S1E][S2]− kr2[S1S2E] + kf1[S2E][S1]− kr1[S1S2E]

d[P ]

dt
= kcat[S1S2E]

(6.5)

Applying the Michaelis-Menten assumption of equilibrium between substrates and

substrate-enzyme complexes, the following equations are held true.

kf1[S1][E] = kr1[S1E]

kf2[S2][E] = kr2[S2E]

kf2[S1E][S2] = kr2[S1S2E]

kf1[S2E][S1] = kr1[S1S2E]

(6.6)
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The initial enzyme concentration at t0, denoted [E]0, can be given by the law of

enzyme conservation as follows.

[E]0 = [E] + [S1E] + [S2E] + [S1S2E]

→ [E] = [E]0 − [S1E]− [S2E] + [S1S2E]
(6.7)

Combining the equilibrium conditions from Equation 6.6 to 6.7 gives the following

equation:

[E] = [E]0 −
kr2
kf2

[S1S2E]

[S2]
− kr1
kf1

[S1S2E]

[S1]
− [S1S2E] (6.8)

The following set of equations can be derived from recombining Equation 6.6.

[S1S2E] =
kf2

kr2
[S1E][S2] =

kf1

kr1
[S2E][S1]

[S1E] =
kf1

kr1
[E][S1]

[S2E] =
kf2

kr2
[E][S2]

→ [S1S2E] =
kf1

kr1

kf2

kr2
[E][S1][S2]

(6.9)

Substituting [E] from Equation 6.8 into Equation 6.9 gives:

[S1S2E] =
kf1kf2

kr1kr2
[E]0[S1][S2]− kf1kf2

kr1kr2

(
kr2

kf2[S2]
+

kr1
kf1[S1]

+ 1

)
[S1S2E][S1][S2]

→ [S1S2E]

(
1 +

kf1[S1]

kr1
+
kf2[S2]

kr2
+
kf1kf2

kr1kr2
[S1][S2]

)
=
kf1kf2

kr1kr2
[E]0[S1][S2]

→ [S1S2E] =
kf1kf2

kr1kr2
· [E]0[S1][S2](

1 +
kf1

kr1
[S0] +

kf2

kr2
[S1] +

kf1kf2

kr1kr2
[S1][S2]

)
→ [S1S2E] =

[E]0[S1][S2]
kr1kr2
kf1kf2

+ kr2
kf2

[S1] + kr1
kf1

[S2] + [S1][S2]

∴ [S1S2E] =
[E]0[S1][S2](

kr2
kf2

+ [S2]
)
·
(
kr1
kf1

+ [S1]
)

(6.10)
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The terms kr1
kf1

and kr2
kf2

in Equation 6.10 respectively represent the dissociation

constants for substrate-enzyme complexes S1E and S2E. These terms can be

interchanged for KM values in light of the quasi-steady-state assumption made in

the Briggs-Haldane kinetics model (See Equation 6.3), giving:

[S1S2E] =
[E]0[S1][S2](

kr2+kcat
kf2

+ [S2]
)
·
(
kr1+kcat
kf1

+ [S1]
)

→ [S1S2E] =
[E]0[S1][S2]

(KM2 + [S2]) · (KM1 + [S1])

(6.11)

Provided with Equation 6.11, the rate of enzymatic reaction, denoted v, can be

derived from the ODE of product formation (Equation 6.5):

v =
d[P ]

dt
= kcat[S1S2E]

= kcat
[E]0[S1][S2]

(KM2 + [S2]) · (KM1 + [S1])

=
Vmax[S1][S2]

(KM2 + [S2]) · (KM1 + [S1])

(6.12)

, where Vmax = kcat[E]0. In its canonical form supporting an arbitrary number (n)

of substrates, the rate equation is

v =
kcat[E]0

∏n
i=1 ([S]i)∏n

i=1 (KMi + [S]i)
(6.13)

Equation 6.13 supports irreversible non-modulated non-interacting multi-reactant

enzymes. The rate laws expressed by Equation 6.13 and Equation 6.12 respec-

tively correspond to the Systems Biology Ontology (SBO) [42] catalogued terms

SBO:0000150 and SBO:0000151, a special case of SBO:0000150.

An enzyme database such as BRENDA [34] serves to be a good resource to

�nd out about experimentally veri�ed parameter values for KMi and kcat. Using

the parameter values from BRENDA along with the above derived rate equations,

a SBML [91] model encapsulating the ribo�avin metabolic pathway in B. subtilis,

as described in Figures 6.2, 6.3 and 6.4, was built in COPASI [87]. Figure 6.5

summarises the results obtained from simulating the model. It is shown that the
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Figure 6.5: SBML models examining �avin concentrations over time

Temporal changes in �avin concentration were examined with or without FMN inhibition
on the rib operon in B. subtilis: (a) Timecourse analysis with FMN regulatory feedback
enabled, (b) Timecourse analysis with FMN regulatory feedback disabled, (c) FMN
inhibiting the transcription of the rib operon corresponding to the result in (a), and (d)
Uninhibited transcription of the rib operon corresponding to the result in (b).

simulation exhibited approximately about a four-fold di�erence in the ribo�avin

biosynthesis depending on whether the inhibitory regulation of FMN on the rib

operon is available or not. The di�erence in the expression level of of the rib operon

corresponding to the FMN concentration further explains the e�ect of such an in-

hibitory feedback control. Evidently, the use of dynamic modelling discussed here

allows detailed investigation of molecular dynamics, otherwise unfathomable. Nev-

ertheless, the computational complexity of dynamic models restricts the number of

reactions to be considered together. This makes it extremely challenging to apply

dynamic modelling at the genome-scale level.
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6.3.3 Constructing a genome-scale static model for metabolic

pathways

Static models can o�er an alternative perspective to investigating metabolic path-

ways. Static modelling of metabolic pathways is epitomised by �ux balance anal-

ysis (FBA). In comparison to dynamic modelling, FBA can tremendously reduce

the computational complexity involved in analysing the biochemical system of

metabolic networks. The reduction in complexity is attributed to the steady-state

conditions, resulting in the mathematical simpli�cation, from considering the bio-

chemical system in equilibrium. This makes it reasonably possible, as opposed

to dynamic modelling, to apply FBA for modelling metabolic pathways in the

genome-scale level.

FBA de�nes a metabolic network using the following mathematical formalism:

S · v = 0 (6.14)

, where S denotes a stoichiometric matrix, v a vector of �uxes through all chemical

reactions, each of which �uxes is bound by vmini <= vi <= vmaxi . The value 0 on

the right hand side of the equation means that the metabolic network is in steady

state. A �ux vector v is said to be in the null space of S, if the vector provides a

solution to satisfy this equation [133].

The biggest advantage of using FBA in modelling cellular systems is probably

the fact that the technique relies solely on stoichiometric characteristics without

the need of involving di�cult-to-obtain kinetic parameters. The stoichiometry of

metabolic reactions can even be inferred bioinformatically by sequencing organ-

isms, blasting the sequence to identify proteins, and looking up the proteins on

databases such as KEGG, Uniprot, Reactome, or MetaCyc among others. The

downside of using FBA is that �uxes in FBA cannot be uniquely speci�ed as a

function of regulatory mechanisms, due to the lack of kinetic parameters necessary

in determining the concentration of metabolites involved in regulation.

A metabolic network would typically contain more reactions than metabolites.

With respect to FBA, this means that there are more variables (i.e. �uxes) to be
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Table 6.1: Genome-scale reconstruction of metabolic network in Bacillus subtilis

PMID Strain Genes Metabolites Rxns Reference Year
17573341 unspeci�ed 844 988 1020 [130] 2007
19555510 168 1103 1138 1437 [83] 2009

determined than there are equations (whose cardinality corresponds to the number

of metabolites), making the problem underdetermined. Underdetermined prob-

lems can be analysed by a technique called linear programming which can �nd

optimal solutions that satisfy certain objective functions. FBA's default choice

of objective function is the maximisation of biomass. Given such an objective

function, a linear solver can �nd a set of �uxes v leading to the maximisation of

biomass, representing the steady-state metabolic conditions of a cell undergoing

growth. FBA models should have a virtual reaction specifying the stoichiome-

try of metabolites (i.e. raw materials) needed in producing biomass. Alternative

objective functions can also be used including, for example, minimisation or max-

imisation of ATP production, energy currency production, or redox potential per

unit of glucose [102]. The energy currency involves metabolite species such as ATP

and NADPH, while redox potential involves NADH, NADPH, and FADH2. Often,

the values for vmini and vmaxi are unknown and set at arbitrary ranges. The lack of

precise ranges could a�ect the predictability of FBA, and it is sometimes needed

to �t models against the �ux ranges of experimentally measurable reactions, such

as those involved in nutrient uptake and excretion.

6.3.3.1 Modelling ribo�avin biosynthesis and metabolic pathways in

bacteria

Genome-scale metabolic models such as shown in Figure 6.6 enable two possibil-

ities. One is that they open the doors to using an uniform interface in taking a

holistic view on the entire metabolic reaction network that covers the biochem-

istry of both extracellular and cytosolic spaces. The other is that the uniform

interface can be manipulated programmatically. This would mean that extensive

numerical surveys can be conducted to elucidate the relationships between genes

and metabolic pathways, with respect to varying metabolic and nutrient condi-
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1103 genes, 
1138 metabolites 
and 1437 reactions

Figure 6.6: Graph-based visualisation of the metabolic network of B. subtilis 168

A reconstructed model of the genome-scale B. subtilis metabolic pathways from the
second entry in Table 6.1 was used in the visualisation. The green and red nodes in the
zoomed-in pane represent metabolites and reactions respectively, and the edges represent
the participation of connected metabolites in reactions.

tions. As such, FBA together with genome-scale metabolic models o�ers to be a

good framework for systematic investigation of the theoretical limits of metabolic

reactions, in the context of DEA.

6.3.3.2 Metabolic pathway model simulation

A proof-of-concept FBA was performed to compare the theoretical limits of ri-

bo�avin biosynthesis rates in B. subtilis under di�erent nutrient conditions1. Fig-

1Please refer to Appendix A.1 for details on the experimental setup, code bases, and access
to other archived resources.
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(a) (b)

Figure 6.7: Applying FBA on the genome-scale metabolic pathway model of B. subtilis

Flux balance analysis (FBA) was performed on the genome-scale metabolic pathway
model of B. subtilis 168 (Table 6.1), with minimal media (M9) and rich media (LB),
given biomass maximisation as objectives: (a) Shown in blue solid line is the result of
robustness analysis on the biomass vs ribo�avin �uxes in M9. The red-circled dot shows
a point where ribo�avin production is optimal, with approximate biomass and ribo�avin
�uxes of about 0.29 and 1.65 mmol

gDW ·h respectively. (b) Shown in green broken line is the
result of robustness analysis on the biomass vs ribo�avin �uxes in LB. The red-circled
dot shows a point where ribo�avin production is optimal, with approximate biomass and
ribo�avin �uxes of about 1.05 and 27.39 mmol

gDW ·h respectively. The M9 result shown in
solid blue is the same plot as in (a) at a di�erent scale to match that of LB.

ure 6.7 summarises the results of robustness analysis of biomass versus ribo�avin

�uxes under minimal (M9) and rich (LB) nutrient conditions. As expected, it was

shown that the rich media dwarfs the minimal media in the resulting ribo�avin

biosynthesis rates as well as the growth rates (Figure 6.7b).

It is noteworthy that the units used here for both the biomass and ribo�avin �uxes

are in mmol
gDW ·h , where gDW denotes grams of dry cell weight. In general, biomass

�uxes are bluntly declared to be growth rates in units of h−1 [1] without clear

explanations as to how that unit is determined to be so. While, it is true that the

�ux unit (mmol
gDW
· 1
h
) is a rate of a kind, hence the dimension h−1, the fractional term

mmol
gDW

should not be neglected as it bears a special meaning in interpreting any �ux

values. This fractional term indicates the amount of metabolite molecules (mmol)
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partaking in the corresponding metabolic reaction per unit biomass produced in

gram weights (gDW ). Given the relative molar mass1 of metabolites of concern,

mole units can be converted into weights. Such conversion cancels the fractional

term as part of the unit and reduces it to a scalar constant adjunct to a rate unit

(h−1).

In the example case of ribo�avin biosynthesis catalysed by RibB in B. subtilis,

the metabolic reaction is de�ned as:

2 ·DMRL
RibB−−−→ RIBF + ArU (6.15)

, where DMRL: 6,7-dimethyl-8-ribityl-lumazine, RIBF: ribo�avin, and ArU: 5-

amino-6-ribityl-aminouracil.

When it is claimed that the unit of biomass �uxes is h−1, it would need to be

assumed that mmol
gDW

= 1. What this assumption entails is that the virtual metabolic

product of biomass, as part of the biomass reaction in a genome-scale metabolic

model, needs to be de�ned with the relative molar mass of 1000 g
mol

. This way,

the unit conversion of 1mmol = 1g holds true for the biomass reaction, to end up

reducing the �ux unit neatly into h−1.

In order to verify if this was the case with the genome-scale metabolic model

discussed here, the mass balance of the biomass reactions de�ned in that model

was assessed in full2. The biomass reactions were scrutinised in light of the relative

molar mass of all reactants and products de�ned. Table 6.2 enlists the information

on compounds that are part of the biomass reactions de�ned by the genome-scale

metabolic model. The estimated relative molar mass (RMM) for DNA, mRNA,

proteins, cell wall, lipid, and lipoteichoic acid compositions (LAC) were calculated

based on respective biosynthesis reactions (See Appendix A.6). According to

the calculation shown here, the biomass reaction of the genome-scale metabolic

pathway model was de�ned with a RMM value of 1100.78 g mol−1, instead of the

1The technically more proper term of relative molar mass was used in lieu of the more popular
term of molecular weight, as the old term is in the process of getting �deprecated.�

2Please refer to the following for the meanings of abbreviated terms used in Table 6.2. ACP:
Acyl-carrier protein, RMM: relative molar mass, NMW: normalised molecular weight. Nor-
malised molecular weight is the molecular weight of compounds required in producing 1mol of
the main product as part of the metabolic reaction, in this case, to produce biomass.
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Table 6.2: Composition of biomass reaction of B. subtilis genome-scale metabolic
model: information leading to estimation of biomass' relative molar mass.

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd00001 105 reactant metabolite H2O 18.02 1892.1
cpd00002 105.003371 reactant metabolite C10H13N5O13P3 504.16 52938.49952
cpd00003 0.01822 reactant metabolite C21H26N7O14P2 662.42 12.0692924
cpd00005 0.0002367 reactant metabolite C21H27N7O17P3 742.40 0.17572608
cpd00006 0.001053 reactant metabolite C21H26N7O17P3 741.39 0.78068367
cpd00010 0.000127618 reactant metabolite C21H33N7O16P3S 764.51 0.097565237
cpd00012 0.0008548 reactant metabolite H2O7P2 175.96 0.150410608
cpd00018 0.005253 reactant metabolite C10H13N5O7P 346.21 1.81864113
cpd00031 0.0002215 reactant metabolite C10H13N5O11P2 441.18 0.09772137
cpd00038 0.0004883 reactant metabolite C10H13N5O14P3 520.16 0.253994128
cpd00046 0.001153 reactant metabolite C9H13N3O8P 322.19 0.37148507
cpd00052 0.0006105 reactant metabolite C9H13N3O14P3 480.13 0.293119365
cpd00096 0.0002924 reactant metabolite C9H13N3O11P2 401.16 0.117299184
cpd00126 0.0005939 reactant metabolite C10H13N5O8P 362.21 0.215116519
cpd00201 0.000206831 reactant metabolite C20H21N7O7 471.42 0.09750427
cpd11451 0.00014977 reactant metabolite C46H66O2 651.01 0.097501768
cpd00063 0.002983 reactant metal ion Ca 40.08 0.11955864
cpd00205 0.6576 reactant metal ion K 39.10 25.71216
cpd00254 0.09474 reactant metal ion Mg 24.31 2.3031294
cpd10516 0.003209 reactant metal ion Fe 55.85 0.17922265
cpd11493 0.000273109 reactant ACP C11H21N2O7PS-R 356.33 0.09731693
cpd11461 0.026 reactant DNA N/A 955.24 24.83623204
cpd11462 0.0655 reactant mRNA N/A 950.99 62.28989327
cpd11463 0.5284 reactant Protein N/A 998.67 527.6992058
cpd15664 0.2242 reactant Cell wall N/A 997.32 223.5995288
cpd15670 0.0304 reactant LAC N/A 996.94 30.3068812
cpd15800 0.076 reactant Lipid N/A 995.92 75.69027691
cpd00008 104.9971 by-product metabolite C10H13N5O10P2 425.18 44642.66698
cpd00009 104.9866 by-product metabolite HO4P 95.98 10076.61387
cpd12370 0.000273109 by-product Apo-[ACP] HO-R 17.01 0.004645584
cpd11416 1 product Biomass N/A 1100.78 1100.783498

commonly assumed value of 1000 g mol−1. It is noteworthy that it would be tech-

nically correct to have this kind of aberration accounted for, for example via using

normalisation, when interpreting FBA results and their �ux values.

6.3.4 Modelling the dynamics of mutagenesis

Mutagenesis cannot be considered in full by means of simple rate values, as

the stochastic process gives rise to complex time-dependent population dynamics

among di�erent mutants. In order to gain further insight into the time-dependent

dynamics of mutant populations, a realistic bacterial growth model was needed.

Generally, the de facto mathematical model often discussed for bacterial growth
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takes the form of logistic curves, as given by Equation 6.16. Nmax is the limit of

the maximum population, referred to as the carrying capacity of the environment

representing an asymptote (See Figure 6.8a).

dN/dt = rN(1−N/Nmax) (6.16)

The pitfall in using the conventional logistic growth model (Eq. 6.16) is that it
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Figure 6.8: Comparison of growth curves by two logistic models

(a) A growth curve (shown in red) exhibited by the logistic model in Eq. 6.16, where
r = 2.2, and Nmax = 108.8. The blue horizontal asymptote represents log(Nmax). The
logistic model lacks the lag phase of growth typical in bacterial growth. (b) A growth
curve (shown in green) exhibited by the Fujikawa model (Eq. 6.17), where r = 2.2,
Nmax = 108.8, Nmin = 0.99999, and c = 0.74. There is a lag phase to the curve before
entering the logarithmic phase of growth.

lacks the lag phase of bacterial growth, rendering the model unrealistic at best.

Fujikawa and his colleagues introduced a modi�cation to the logistic model to

incorporate the lag phase into the growth curve [68] (See Equation 6.17 and Figure

6.8b):

dN/dt = rN(1−N/Nmax)(1−Nmin/N)c (6.17)
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, where c >= 0 is an adjustment factor. Fujikawa model as shown in Equation 6.17

can provide accurate growth patterns of bacterial culture as a whole, and be used

to predict the total population level after a certain time has elapsed. However, it

cannot be used to predict the population levels of individual mutants sprouting up

as a result of growth. A new growth model was needed to accommodate the notion

of mutagenesis and to model the dynamics of mutant populations as a function

of time. As opposed to Fujikawa model's use of Nmax as a constant, the new

model, dubbed the name Enveloped growth model, de�nes the maximum term as a

variable, denoted N
′
max (See Equation 6.18). N

′
max is a variable de�ning the limit

(or envelop) of growth of an individual mutant as a result of other competing cells

in the culture. The time-dependent nature of N
′
max is due to the term Nenv, an

integral of the ordinary di�erential equation of Fujikawa model (Equation 6.17)

with respect to time. Nenv de�nes the total population of the culture at any given

time tc.

N
′

max = Nmax −

(
Nenv −Nm

(
1−

(
Nm

1 +Nenv

)(1−Pf )
))

Nenv =

∫ tc

0

rN(1−N/Nmax)(1−Nmin/N)cdt

(6.18)

, where Nenv is the integral of Equation 6.17 with respect to time up to the current

time point tc, and Pf is a congestion factor used for adjusting the magnitude of

dampened growth of a mutant population Nm, and 0 6 Pf < 1.0. Given N
′
max, the

ordinary di�erential equation of Enveloped growth model for a mutant population

Nm is de�ned as follows (Equation 6.19).

dNm

dt
= rNm

(
1− Nm

N ′
max

)(
1− Nmin

Nm

)c
(6.19)

, where r is a growth rate, Nmin > 0, and c is an adjustment factor proportional

to the duration of the lag phase of growth.

Figure 6.10 shows how Enveloped growth model (Equation 6.19) improves upon

Fujikawa model (Equation 6.17) in that the predicted mutant population does not

end up representing 100 % of the total cell population, which would be un-natural

if so happened. This so-called mutant population saturation issue associated to
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Fujikawa model is evident in Figure 6.9.
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Figure 6.9: Mutant population prediction by applying Fujikawa model as is

The growth curve shown in broken red shows the total population as determined by
Fujikawa model in Eq.6.17, where t0 = 0, r = 2.2, Nmin = 0.99999, Nmax = 108.8,
and c = 0.74. The blue growth curve represents a mutant population shown in loga-
rithmic scale, log(Nm), where t0 = 3, and was calculated using Fujikawa model (i.e.
unenveloped). Due to the lack of enveloping to dampen the mutant growth as its curve
gets close to the total population, the mutant population ends up saturating the entirety
of the total population towards the end (t = 15.0). This saturation problem makes
the unenveloped growth model invalid for predicting mutant populations in a realistic
manner.

As per Section 5.1.2, the mutagenesis rate (θ) of bacterial cells can, for instance,

be de�ned as 10−3 mutation per replication, or a SNP per 1000 cells replicated.

Given θ, the number of mutation events Nθ at time t, denoted Nθ(t), can be

predicted by tracking the temporal change in the total cell population:

Nθ(t) = ∆N · θ

∆N = N(t)−N(t− 1)
(6.20)

, where N is the total cell population calculable by integrating Equation 6.17 with

respect to time. Figure 6.11 shows a plot of Nθ(t) based on the same Fujikawa

growth curve used in deducing the total cell population in Figure 6.10.

Now, Nθ(t) provides a ground for modelling the population dynamics of in-

dividual mutants, by suggesting a �rm numerical reference to how many SNP
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Figure 6.10: Dampened mutant populations in Enveloped growth model

(a) The growth curves at varying starting time points (shown in green) were calculated
using the enveloped growth model (Eq. 6.18), where r = 2.2, Nmax = 108.8, Nmin =
0.99999, c = 1.0, and Pf = 0.7. The larger value for c results in longer lag phases. Mutant
growth is further retarded as it reaches close to the total population, while the degree
of retardation is less when the growth level is farther away from the total population
level. For example, the curve with t0 = 7 at t = 15 is dampened less in comparison to
the curve with t0 = 1 at t = 15. (b) The growth curves with identical parameter values
except the congestion factor, Pf = 0.0. The dampening e�ect due to congestion is milder
in comparison to the curves with Pf = 0.7.

events may occur at any given time point. Combining the information from Nθ(t)

and the temporal estimation of mutant population from Nm(t) (Equation 6.19),

we have all the modelling elements necessary for materialising individual mutants

and calculating their contributions towards the total population at any time point.

Let's say a set of Nθ(t) mutants arising at time t is denoted Sθ(t) ∈ Sm, where
Sm is a set of all mutant sets Sθ(t) throughout a span of time from t0 upto the

current time tc. Any individual mutant mω ∈
⋃
Sm has the time of inception,

tα, associated with it. At any moment in time t > tα, the mutant population

continues to change due to growth. The estimated mutant population Nm at a

current time point tc of an individual mutant that was given rise to at tα is an
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Figure 6.11: Predicting the occurrence of mutation events.

The growth curve shown in broken red shows the total population as determined by
Fujikawa model in Eq.6.17, where t0 = 0, r = 2.2, Nmin = 0.99999, Nmax = 108.8,
and c = 0.74. This growth curve serves as the basis for calculating ∆N as shown in
Equation 6.20. The blue curve represents the number of occurrences of mutation events
as a function of time (Nθ(t)).

integral of Equation 6.19 with respect to a time duration tα 6 t 6 tc:

Nm(tα, tc) =

∫ tc

tα

rNm

(
1− Nm

N ′
max

)(
1− Nmin

Nm

)c
dt (6.21)

Any individual mutant mω ∈
⋃
Sm has its identity speci�ed by the cardinal

variable denoted by ω ∈ {0, 1, 2, · · · , NΩ}, where NΩ = |
⋃
Sm| − 1. In fact, the

mutant with ω = 0 represents a mother cell, or a wildtype cell with zero mutation,

hence m0 = ∅. The mutant set
⋃tc
t=0 Sm represents all the cell genotypes available

in the culture upto the time point tc, and any cell mω ∈
⋃tc
t=0Sm may serve as a

template for a new mutant genotype with the probability de�ned as:

P (X = ω)(t) =
Nm(tα, t)

Nenv(t)
(6.22)

, where X is a random variable such that 0 6 X ∈ Z 6 NΩ; ω is a positive integer
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representing the cardinal variable to specify an individual mutant mω, given rise to

at tα; Nenv(t) is the total cell population envelop from Equation 6.18; and Nm(tα, t)

is the population of mutant mω from Equation 6.21. P (X = 0), the probability of

a new mutant arising from the mother cell, is de�ned as:

P (X = 0)(t) = 1−
NΩ∑
ω=1

P (X = ω)(t) (6.23)

In this mutant population model, a mutant mω, once assigned a membership

to a cardinal value ω or a genotype, does not change its membership. Such a mem-

bership arrangement was based on the assumptions that mutations only happen

during replication, and only a�ect daughter cells. These somewhat naive assump-

tions, discounting mutagenesis factors other than replication errors, were enough

for a proof-of-concept modelling to study a simple mutagenesis dynamics.

The bar graph in Figure 6.12 shows the mean population levels versus SNP

counts per cell as a result of running simulations (n = 4) according to the novel

mutagenesis model discussed so far. Figure 6.10b shows the corresponding mutant

growth curves used in the simulations. The simulations were based on a single

mother cell grown on 1 mL media for 15 hours under conditions allowing a maxi-

mum growth upto about 108.8 cells. This cell density is a little less than an OD600

equivalent value of 1.0 which is about 8 · 108 E. coli cells/mL according to litera-

ture [153]. The results showed that mutants comprise only a small proportion of

the entire cell population, and that double SNPs with respect to the mother cell's

genotype seem to be the practical limit to the mutagenesis achievable in a single

mutant, within the given growth timeframe. The unique mutant count results

revealed that the mutagenesis covered on average 4261 di�erent kinds of unique

SNPs for the single-SNP mutants, and 444 unique double SNPs for the double-SNP

mutants. The number 4261 corresponds to the total number of CDSs available in

the B. subtilis 168 genome sequence (Genbank accession ID AL009126.3 [105])

used as part of the simulations here. This means that the given mutagenesis time-

frame was enough to explore all of the coding sequence basis in the organism of

interest, as far as single-SNP mutations are concerned. A spatio-temporal analysis
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Figure 6.12: Mean populations and unique mutant counts for cells with varying SNP
counts

of mutagenesis as a nested function of changing population such as shown here is

a novel attempt. This analysis method has a potential to be applied in estimating

optimal culture volumes and time lengths required in the evolutionary rounds of

the in vivo domain, for achieving a targeted SNP count. This estimation can pro-

vide the ground for determining an e�cient load share between the in vivo and in

silico evolutionary domains.
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6.4 Mitigating the curse of combinatorial explo-

sion

6.4.1 The grand challenge

One of the primary challenges in genome-scale design is the lack of e�ective ways

to mitigate the immensity of its combinatorial search space. The size of search

space can be estimated by looking at the number of SNPs (µ) out of the total

number of genes of interest (Ω). The µ combination of Ω genes, denoted C(Ω, µ),

is written as:

C(Ω, µ) =
Ω!

(Ω− µ)!µ!
(6.24)

Each SNP, for the example case of ribo�avin enzymatic pathways, may induce

di�erent �ux changes in the relevant metabolic pathway step. Let's say a SNP

may result in three di�erent e�ects in the relevant enzymatic �ux: �ux reduction,

�ux increase, or no change. The set of possible phenotypic changes in the �ux is

denoted Φ, and its cardinality |Φ|. Hence, |Φ| = 3 in this example case. For each

combination de�ned as part of C(Ω, µ), there are |Φ|µ possible permutations with
repetition to be considered in going over phenotypic changes in metabolic �uxes.

From these numbers, a simple metric to estimate the size of search space (NX)

was given by the following equation:

NX = |Φ|µ · C(Ω, µ) (6.25)

The problem of dealing with immense search space being addressed here is two-

fold. Firstly, the size of search space (estimated by NX) increases exponentially

as design complexity (i.e. the length of SNP combinations, µ, under considera-

tion) increases linearly (See Figure 6.13). Secondly, it becomes increasingly more

di�cult to introduce additional SNPs into a single cell, as evident in Figure 6.12.

The former problem cannot be bypassed as there is no way to change the physical

nature of combinatorial explosion. The latter is a throughput issue which can be
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Figure 6.13: Estimation of state space size with respect to SNP counts

The size of state space was estimated in terms of NX for varying SNP counts (µ) and
gene counts (Ω) per cell. The phenotype count of |Φ| = 3 was used in all calculations as
per Equation 6.25.

overcome, to a limited extent, by increasing the mutation rate (See θ in Equation

6.20). Nevertheless, such an in vivo level countermeasure alone is still far from

ameliorating the curse of combinatorial explosion.

6.4.2 Data exchange strategies for the cross-domain inter-

face

The premise of the e�ciency gain from harnessing the dual-evolutionary approach

requires that the cross-domain gap be bridged. The primary data medium, used by

the evolutionary process in the in vivo domain, is de�ned at the genotypic level.

This medium, once sequenced and analysed, can be transferred to the in silico

domain, in the form of SNP data, as explained in Chapter 5. On the contrary, the

primary data medium in the in silico domain is de�ned at the phenotypic level, as

a function of in silico �tness evaluation. The conceptual di�erences between geno-

typic and phenotypic elements attribute to the cross-domain gap in merging their
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data. The advantage of adopting a genome-scale FBA model, like that detailed

in this study, is that there is a model-level support to link phenotypes to genes.

The SNP data obtained from the in vivo domain can feed directly into the in

silico �tness evaluation model de�ned in terms of FBA. The in silico domain can

stipulate certain constraints on the �ux of relevant enzyme(s) (i.e. phenotypes) in

the FBA data model to re�ect potential implications of having a certain SNP on

a gene. Any downstream simulations of the in silico model would then be a�ected

by the SNP data from the in vivo domain.

Data can �ow in the reverse direction as well, going from the in silico domain

to the in vivo domain. A combinatorial exploration, by the in silico EA, of apply-

ing di�erent �ux constraints in the FBA model would result in optimal solutions

de�ned in sets of key enzymatic constraints. Such in silico �ndings can be trans-

lated to in�uence in vivo genetic manipulation decisions such as a gene knock-out,

or a random mutagenesis scheme targeted to a particular gene of interest. The

smorgasbord of genotypic manipulations on key target genes can be included in

the construction of the next mother mutant to start the subsequent round of it-

erations in the dual evolutionary cycle. The suggested cross-domain interface, by

means of enabling two-way data exchange, can help close the cross-domain gap.

6.4.3 Bridging the in vivo-in silico gap

As demonstrated in Figure 6.13, a higher number of SNP counts can harbour

exponentially larger solution space. At the SNP count of 9, for instance, the

number of di�erent solutions in the search space already outnumbers the total

number of stars in the observable universe [88] which is roughly estimated to be

around 1029. At the SNP count of 23, a �gure less than treble the former SNP

count, the search space can hold as many solutions as there are atoms in the

universe [183]. These are numbers rather too large for any search operations to

�nish going through within a reasonable time span. The in vivo search operation,

especially considering the throughput limiting nature of the mutation rate θ, a

�nite amount of culture volume and time given, can only explore so far in the

solution space.

Figure 6.12 illustrates this point further by showing that only a little number
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of unique double-SNP solutions (444) had been encountered within 15 hours of

evolution in 1 mL culture volume. That is to say, only a tiny fraction ( 444
1.8e7

) of

the available search space was explored. By increasing the volume, let's say by

about three orders of magnitude higher, to 1 L culture, the in vivo search operation

would still have only scratched the surface by covering about 2.5 % of the solution

space. Any numbers regarding triple-SNP solutions have not even been part of

the discussion yet. Though, it seems probable that double-SNP solutions are the

practical limit to the in vivo operation, searchable within reasonable amounts of

time and culture volume. The obvious question to be asked here, as far as DEA

is concerned, is whether it is possible for the in silico operation to help speed up

the solutions search. If so, how?

The variant analysis pipeline explained as part of the in vivo domain can in-

form the in silico EA domain about any non-silent mutations that may provide

signi�cant contribution towards meeting the design goal of interest. For the rea-

sons that have just been discussed, this information would be limited to double- or

single-SNP solutions. In order to �nd out if such information can be exploited to

reduce the search space of higher order solutions having SNP counts larger than

two, a hypothetical solution was considered, out of a total of 2000 hypothetical

genes in a cell (i.e. Ω = 2000), based on the following solution criteria.

Table 6.3: The criteria for a hypothetical solution, based on Ω = 2000 and µ = 9

Name solution SNP count (µ) hint pool size unit hint size limit upfront knowledge (µ0)
0to9 9 6 2 0

The numbers in Table 6.3 was designed to indicate, to a limited extend, the

search complexity of a target solution. The solution SNP count (µ) shows how

many SNPs any hypothetical solution be�tting the criteria may consists of.

The hint pool size shows an aggregate total number of SNPs that can be possi-

bly elucidated by the in vivo search domain, with respect to a given phenotype of

interest. It is a sum of of SNP set sizes, limited by unit hint size limit, hypothet-

ically made available by processes, such as variant analysis discussed in Chapter

5. The size limit of 2, here, corresponds to the information limit o�ered by sub-

optimal solutions comprising single- or double-SNP(s). The evolutionary domains

can potentially use these intermediary, local solutions, to help �nd higher order so-
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lutions, consisting of µ >> 2 SNPs. The upfront knowledge, µ0, shows the amount

of information at hand, before the solution search is initiated by either domain.

The distance to solution, µ − µ0, is a simple factor indicating the likely search

complexity.

Table 6.4: The hypothetical solution (iv) used in the study and its intermediary
hint pool (i,ii,iii)

Type µ solution id:{hypothetical solution}:�tness score

0to9 9 i:{(900,2),(995,1)}:0.2,
ii:{(1954,0),(940,0)}:0.2,
iii:{(1,1),(100,0)}:0.2,
iv:{(900,2),(995,1),(1954,0),(940,0),(998,1),(994,0),(1,1),(100,0),(200,1)}:1.0

Arbitrary choices were made, with respect to satisfying the above criteria,

namely '0to9', to come up with a hypothetical solution shown in Table 6.4. The

hypothetical solution featured sub-optimal solutions (i, ii, iii) embedded as part of

the global solution (iv), each of which was associated to a phenotype from the set

Φ = {0, 1, 2} explained earlier, and a �tness score. For example, the sub-optimal

solution i, had a double SNP, at genes {900, 995} ⊂ {1, 2, · · · ,Ω}, harbouring their
respective phenotypes (2 and 1). Each solution's �tness score was given by the

values following the second colons in the table. The partial solutions i, ii, iii were

given a �tness score of 0.2 each, and the global solution iv was given 1.0. These

scores were evaluated in an additive manner, so the maximum �tness scorable by

the solution iv would be 1.6, due to the partial solutions embedded within it.

A set of in silico experiments were devised to study the conceptual di�erences

between DEA and a single domain framework such as directed evolution, based

on a GA developed using Python and DEAP [51] (See Figure 6.14). The following

assumptions were made. That characteristic model bacterial organisms such as E.

coli or B. subtilis, when applying directed evolution without intermittent human

interventions and the conjugation factor, would be taking an evolutionary strat-

egy, functionally equivalent to a mathematical optimisation method known as Hill

Climbing (HC) [95]. Therefore, HC was used as a simulated proxy for directed

evolution in this experiments, constituting the in vivo half of the DEA framework.
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Speci�c values used in the simulation
N = 3000, M = 2000,
L = �ux phenotypes,
L ∈ {0,+,−, ∗},
where ∗ means 'any'

Ss =deap.tools.selTournament,
with a tournsize of 3.

Pc =

{
0.5 for EA
0.0 for HC

Pm =

{
0.01 or larger for EA
0.001 for HC as proxy

�tness criteria as per Table 6.4,
G = 100

Figure 6.14: Overview of GA steps, decisions, and models used in this study

The left half of the �gure is a �owchart showing the steps and decisions taken by the GA
used as part of simulating the proof-of-concept test scenario. The speci�c parameters
used in the simulation are shown on the right half. The Markov chain, shown in the lower
right corner, provided the mutagenesis policy for phenotypic as well as genotypic state
transitions in each gene as a function of the mutation probability Pm. Four phenotypes
were used in the study, namely 0,+,−, and ∗, respectively representing enzymatic �ux
constraints resulting from mutations: zero �ux, positive �ux, negative �ux, and 'any'
(to mean unconstrained). In this Markov chain, two types of transition probabilities, Pt
and Pr were de�ned. Pt was used to specify the probability of any given state to change
to a di�erent state, and Pr was used to specify the probability of any given state to
stay the same. The GA setup shown here was used for simulating the concept of both
Evolutionary Algorithm (EA) and Hill Climbing (HC). The EA simulations had the step
S4 in the �owchart enabled with Pc = 0.5, and the HC skipped S4 by setting the value
of Pc, the crossover probability, to zero.
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The experimental de�nition of HC:

exp_def_list = {

'HC': {

'tot_iteration ': 1,

'exp_cycle ':[{'seqid': 1, 'domain ':'invivo ', 'ngen': 100, 'pheno_threshold '

:1.0, 'geno_threshold ':0.9, 'CXPB':0.0, 'MUTPB':0.001 , 'domain_error '

:0.0} ,]

} }

The experimental setup of HC shown here de�ned the notion of directed evolu-

tion, upon using the GA framework depicted in Figure 6.14 as part of simulating

the DEA concept entirely in silico. One noteworthy parameter setting, in light of

directed evolution, was CXPB, the crossover probability. This �eld was set to zero

in all HC experiments, by de�nition of single-cellular systems taking evolutionary

strategies in solitude. Likewise, the domain_error �eld was as important a con-

cept to HC as it was critical to have the �eld switched o� in the simulated in vivo

domain. The domain_error parameter was used to account for any uncertainties

associated to �tness evaluation in silico due to potential knowledge errors in the

evaluation system. It would be a reasonable assumption to make that in vivo

systems do not su�er from errors in their �tness evaluation as a result of poor un-

derstanding of cellular dynamics. By virtue of HC being used here as a proxy for

an in vivo system, the domain_error �eld was set to zero for all HC experiments.

Other parameter settings, including tot_iteration, seqid, domain, ngen,

pheno_threshold, and geno_threshold, bore commonly needed functions and

usages, along with the experimental de�nitions of DEA. For example, ngen was

used to set the number of generations for which any mutant population was subject

to evolutionary changes. The respective parameters of pheno_threshold and

geno_threshold were used to set acceptable �tness levels in the phenotype and

the genotype of a mutant.

In light of the experimental setups introduced so far and in Figure 6.14, a data

model was designed to support the in silico state space representation of a single

mutant cell (See Figure 6.15). It was non-trivial, with respect to the research

questions being answered, to design an e�cient data model supporting the feature

completeness of the simulated DEA.
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Figure 6.15: The data model used in simulated DEA to represent the state space
of a single mutant cell supporting e�cient in silico �tness evaluation

A 4000-bit-long sequence of alternating eight 1's and eight 0's was arbitrarily chosen
as a genome sequence template. Nd denotes the number of mismatching bits against
the genome sequence template, obtained from taking XOR between two bitmaps. In this
hypothetical genome, a single gene was made of a single nucleotide, represented by using 2
bits. The 4000-bit-long sequence bitmap, therefore, accommodated 2000 2-bit-long genes
indexed by i0, i1, ..., iN , where N = 1999. The look-up-table (LUT) was a list of tuples
consisting of a gene index and an integer specifying the phenotypic state of the gene.
For simplicity, the bit patterns ({00, 01, 10, 11}) used for respectively representing four
phenotypic states ({0,+,−, ∗}) were directly converted to corresponding genotypes and
their bit patterns (A = 00, T = 01, G = 10, C = 11). For example, the nine genes making
up the pre-agreed solution in LUT, with the gene index values of 1, 100, 200, 900, 940,
994, 995, 998, and 1954, were respectively associated to T, A, T, G, A, A, T, T, and A, and
were respectively mapped to the phenotypic state combination [+, 0,+,−, 0, 0,−,−, 0].
The bitmap of a mutant can be compared to LUT and the genome sequence template
to determine the mutant's phenotypic �tness (Sf1) and genotypic �tness (Sf2). The
respective �tness evaluation functions, denoted f1 and f2 can accommodate random
errors speci�ed by Pe1 and Pe2.

As depicted in Figure 6.15, �tness evaluation was performed with respect to

the two functions f1 and f2, each of which respectively calculates the phenotypic

(Sf1) and the genotypic (Sf2) �tnesses. The �tness calculations can accommodate

random errors occurring with probabilities Pe1 and Pe2, or Pe, where Pe1 = Pe2.
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Each mutant was represented with a bitmap data structure that can minimally

encode the state space, using two bits per gene or phenotype (cf. |L| = 4, where

L ∈ {0,+,−, ∗}). For Ω = 2000, it required 4000 bits to encode 2000 genes (cf.

iN = 1999 in the bitmap) per mutant. Performing the bitwise XOR operation on

the bitmap data structure representing each mutant against two answer templates

enabled the �tness evaluation for both Sf1 and Sf2. The genome template, serving

the purpose of a hypothetical organism's genome sequence, was arbitrarily chosen

to be an alternating sequence of eight 1's and eight 0's, as depicted above. The

genotype to phenotype conversion, with respect to having the hypothetical solution

(LUT) encoded into this genome sequence, was done by assuming a direct one-to-

one match between the genomic and the phenotypic state spaces. For example,

each gene out of 2000 was assumed to consist of a single nucleotide (i.e. A, T, G,

or C). As far as the current study was concerned, the arbitrary genes 1, 100, 200,

900, 940, 994, 995, 998, and 1954 were the only ones with any signi�cance in their

speci�c phenotypes, as per LUT constructed from the pre-agreed answersheet in

Table 6.4. For the sake of simplicity, the four single nucleotides of their genes

were directly mapped to their four phenotypic states respectively representing

L ∈ {0,+,−, ∗}. The LUT and the total gene count, given by Ω, formed the

basis of calculating Sf1 and Sf2. Sf1 was a simple look-up-table (LUT) operation

against the answersheet values, and Sf2 = 2Ω−Nd
2Ω

, where Nd denotes the number

of mismatching bits against the genome sequence template.
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Non-converging �tnesses over generations by HC-based
policy akin to directed evolution
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Figure 6.16: 24 out of 24 mutant colonies failed to achieve the phenotypic objective,
by relying on an evolutionary strategy based on HC

The mean �tness scores of 24 mutant colonies were plotted over 100 generations. Each
mutant colony consisted of 3000 mutants that evolved based on the HC strategy. The
solid lines on the bottom half of the plot represent phenotypic �tness scores Sf1, and the
broken lines on the top part of the plot represent genotypic �tness scores. The mutant
populations' genotypic integrity was maintained to a high standard, but their phenotypic
�tnesses failed to reach the evolutionary objective. The pheno_threshold was set at 1.0,
and the geno_threshold at 0.9.

Figure 6.16 shows the result of HC experiments conducted on 24 mutant

colonies, each consisting of 3000 mutants evolved for 100 generations. These were

proxy experiments in lieu of directed evolution in vivo. All the mutant colonies

taking the evolutionary strategy provided by HC failed to achieve the pheno-

typic objective (i.e. the phenotypic �tness level above pheno_threshold). They

were all dwelling on the local optima of high genotypic �tness levels, driven by

geno_threshold.
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The experimental de�nition of error-free DEA:

exp_def_list = {

'DEA': {

'tot_iteration ': 1,

'exp_cycle ':[

{'seqid': 1, 'domain ':'invivo ', 'ngen': 30, 'pheno_threshold ':1.0, '

geno_threshold ':0.9, 'CXPB':0.0, 'MUTPB':0.001 , 'domain_error ':0.0} ,

{'seqid': 2, 'domain ':'insilico ', 'ngen': 40, 'pheno_threshold ':1.0, '

geno_threshold ':0.9, 'CXPB':0.5, 'MUTPB':0.01, 'domain_error ':0.0} ,

{'seqid': 3, 'domain ':'invivo ', 'ngen': 30, 'pheno_threshold ':1.0, '

geno_threshold ':0.9, 'CXPB':0.0, 'MUTPB':0.001 , 'domain_error ':0.0} ,

]

} }

The experimental de�nition of DEA assuming a probability of 0.3 for random in

silico �tness evaluation error:

exp_def_list = {

'DEA_err ': {

'tot_iteration ': 1,

'exp_cycle ':[

{'seqid': 1, 'domain ':'invivo ', 'ngen': 30, 'pheno_threshold ':1.0, '

geno_threshold ':0.9, 'CXPB':0.0, 'MUTPB':0.001 , 'domain_error ':0.0} ,

{'seqid': 2, 'domain ':'insilico ', 'ngen': 40, 'pheno_threshold ':1.0, '

geno_threshold ':0.9, 'CXPB':0.5, 'MUTPB':0.01, 'domain_error ':0.3} ,

{'seqid': 3, 'domain ':'invivo ', 'ngen': 30, 'pheno_threshold ':1.0, '

geno_threshold ':0.9, 'CXPB':0.0, 'MUTPB':0.001 , 'domain_error ':0.0} ,

]

} }

Di�erent to the HC experimental de�nition discussed earlier, the two simu-

lated DEA experiments had the experimental cycle (exp_cycle) de�ned in multi-

ple steps. Each step was given a seqid value for noting the sequential order of its

execution. In the three steps de�ned for both DEA categories, the domain �eld

was used to de�ne alternating evolutionary strategies, switching from taking the

HC, to taking the EA, and back to taking the HC again. This alternating domain

parameter setup was for simulating the iterative design cycle in the dual domains

of the DEA framework. Also, the MUTPB �eld was set to alternate between 0.001
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and 0.01. This was done to re�ect in the simulations the �exibility of the in sil-

ico domain in setting the mutation rate or the rate at which di�erent solutions

are explored. A higher mutation rate would enable a faster exploration of diverse

mutants in a population at the expense of the stability of desirable mutants. Bio-

logical systems in nature have evolved to put a hard limit on increasing this value,

as high mutation rates can pose an immediate threat to the functional integrity

of their genome base, limiting their survival chances. The primary objective of

biological systems is to maximise the chance of survival. The primary objective

of the in silico domain, in the context of DEA, is to �nd solution(s) conferring

desired phenotypes as quickly as possible. The survival of an organism of interest,

as far as the in silico domain is concerned, would only be secondary an objective.

The capability of e�ciently making crossover mutations is another useful fea-

ture o�ered by the in silico domain. Crossover mutations could unlock hidden

solutions via a mechanism known in the mathematical optimisation community as

implicit parallelism. The value of 0.5 was used for CXPB on all in silico simula-

tions. The error-prone DEA was de�ned with a probability of random errors in

the in silico system's assessment of �tness scores. This experimental setup was

introduced to serve not only as a control, but also as a main comparison point

to assess the potential feasibility of a real-world DEA system. This experimental

setup along with the corresponding results presented in Figure 6.18 formed the ba-

sis of discussing how errors in in silico �tness evaluation may a�ect the integrity

of the DEA framework.

Figure 6.17 shows the result of simulated DEA experiments conducted on 24

mutant colonies, each with 3000 mutants evolved for 100 generations. In the

DEA and the HC experiments, the duality of two �tness evaluation categories,

phenotypic and genotypic �tnesses introduced in Figure 6.15, was acting as a

push-pull driving force for directing mutations. The mutually con�icting dual

objectives biased selection events for directing mutants to acquire mutations that

would provide an optimal balance between the two objectives. The two types of

evolutionary pressure acting in opposite directions had more pronounced e�ects

in DEA experiments than they did in HC experiments. It can be seen in Figure

6.17 that the phenotypic objective a�ected mutants to take upward trajectories in

phenotypic �tnesses at the expense of decreasing genotypic �tnesses, while being
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Converging �tnesses over generations by error-free DEA
taking short interlaced evolutionary runs
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Figure 6.17: 7 out of 24 mutant colonies succeeded in achieving the phenotypic
objective, based on error-free DEA

The mean �tness scores of 24 mutant colonies, each consisting of 3000 mutants, evolved
based on the error-free DEA strategy, were plotted over 100 generations. The mutant
populations' genotypic integrity was somewhat challenged but was successfully main-
tained, while resulting in 7 phenotypically successful colonies.
The solid lines on the bottom half of the plot represent mean phenotypic �tness scores
Sf1, and the broken lines on the top part of the plot represent mean genotypic �tness
scores Sf2. The threshold values of 1.0 and 0.9 were respectively set for pheno_threshold
and geno_threshold.

resisted by the genotypic objective.

Also evident was the di�erent mode of evolutionary trajectories exhibited by

DEA in comparison to the results from HC. The modal change occurred when

mutant colonies switched from the simulated in vivo domain to the in silico evo-

lutionary domain in generation 30 (See Figure 6.17). The tug of war between

the two �tness criteria started tilting towards favouring phenotypic changes over

genomic stability. This was indicated by the fast paced decline in the genotypic

�tnesses and by the sudden appearances of fast converging mutant colonies mak-

ing steep turns upwards in the �tness landscape, between the generations of 30
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Converging �tnesses over generations by error-prone
DEA taking short interlaced evolutionary runs, amid

errors in �tness evaluation
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Figure 6.18: 6 out of 24 mutant colonies succeeded in achieving the phenotypic
objective, based on error-prone DEA

The mean �tness scores of 24 mutant colonies, each consisting of 3000 mutants, evolved
based on the error-prone DEA strategy, were plotted over 100 generations. Fitness eval-
uation errors, with a random occurrence probability of 0.3, were plaguing the in silico

evolutionary decisions. The mutant populations' genotypic integrity was severely chal-
lenged but was impressively defended and maintained, while also resulting in 6 phenotyp-
ically successful colonies. The solid lines on the bottom half of the plot represent mean
phenotypic �tness scores Sf1, and the broken lines on the top part of the plot represent
mean genotypic �tness scores Sf2. The threshold values of 1.0 and 0.9 were respectively
set for pheno_threshold and geno_threshold.

and 70. This period coincided with the generations governed by the evolutionary

strategies of the in silico domain, as speci�ed to be so in the experimental de�ni-

tion of the simulated DEA. It appears that the in silico domain, in contributing

to �nd converging mutants, took a full advantage of the higher mutation rate as

well as crossover mutations. The accelerated mutant maneuver went back to the

initial conservative characteristics of HC at generation 70, but only after optimal

converging solutions had been found by multiple mutant colonies.

Figure 6.18 shows the result of experiments on simulated DEA with the pres-
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ence of random errors in in silico �tness evaluation. The two mutually con�icting

�tness criteria were acting against each other just like in the previous two cases.

The increase in the mutation rate upon entering the in silico domain was re�ected

on the accelerated decline in the genomic �tness by all mutant colonies. The in

silico �tness evaluation error, due to the domain switch at generation 30, had

severely a�ected the �tness scores, causing huge drops among all mutant colonies

between generations 30 and 70. The sudden drops in mean �tnesses happened

in both genotypic and phenotypic categories. At �rst, it seemed as though the

�tness evaluation error only had adverse e�ects on both �tness categories in the

short run. However, the error must have also induced some positive e�ects on

some mutant colonies, perhaps by nudging them out of stagnation, or by forcing

them to take uncharted evolutionary trajectories. After all, the in silico domain

seemed to have primed mutants in such a way that some colonies started achiev-

ing the phenotypic objective shortly after switching back to the in vivo domain in

generation 70. The accelerated mutant maneuver went back to the initial conser-

vative characteristics of HC, as expected. However, the error-prone DEA exhibited

remarkable resilience not only in terms of error recovery but also in its success in

driving mutant colonies to achieve the dual objectives in the hands of the in vivo

step supposedly taking a conservative evolutionary stance. Given the fact that a

real-world DEA would most likely su�er from errors in in silico �tness evaluation,

the results shown here further corroborated the idea that DEA can be useful in

facilitating in vivo solution search.

6.5 Discussion

This chapter covered a wide range of ideas with respect to the focus on their

modelling aspects. Be it concepts from in silico or in vivo domains, the emphasis

was given to their modelling aspects.

A comprehensive model was developed to convey many of the concepts compris-

ing the DEA framework. The plausibility of the DEA framework was investigated

using the simulation of the model. The simulated DEA resulted in converging

mutant colonies. This can be interpreted as the framework's capability of �nding

solutions within the limited timeframe. This result was contrasted by the simu-
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lated directed evolution not beig able to solely resolve any solutions given the same

timeframe. These results were in agreement with the idea that hiring the in silico

domain can increase the search e�ciency of the in vivo domain, or vice versa, like

that envisioned by DEA. Given the assumption that time to solution is positively

correlated to design complexity, this study successfully corroborated the idea that

the DEA framework o�ers to be an e�ective means to mitigate design complexity.

Throughout the study involving the in silico domain, many novel methods were

developed. These include the enveloped growth model (Equation 6.19) and the

novel way of analysing the spatio-temporal population dynamics of mutants. These

methods can potentially be used in the estimation of parameters such as optimal

culture volume and evolution time, crucial to in vivo experiments in minimising

evolutionary overheads. Minimising evolutionary overheads as such is directly

relevant to reducing the time to solution, to closing the cross-domain gap, and to

the capability of dealing with complex designs.

With hindsight, the gap between the dichotomous evolutionary domains was

bridged in various angles. The use of variant analysis to make the information

exchange compatible between the two domains was one such angle. The decision to

adopt the genome-scale FBA, as a suggested means for in silico �tness evaluation,

was for addressing the primary concern of using a model as closely compatible to

SNP data as possible. This suggestion was driven by the thought that the adoption

of in silico models closely resembling the real world would be the only e�ective

way to minimise errors that may potentially plague the cross-domain interface to

end up exacerbating the gap. Without doubt, the point being made was rational.

However, the error-prone DEA experiments cast an interesting view point with

respect to maintaining the cross-domain integrity, amid errors in in silico �tness

evaluation. It is a view point suggesting that in silico errors can be e�ectively

mitigated, in a more systematic manner, via in situ corrections provided by the

in vivo evolutionary domain. The results presented in Figure 6.18 hinted at this

possibility, where the error-prone DEA was able to cope with in silico �tness

evaluation error, upon switching the domain to the in vivo counterpart. This is

suggestive of the idea that the resilience of the in vivo domain may render the

cross-domain gap a non-issue, at least to a certain extent.

Now, these discussions about seemingly eclectic subject matters involving evo-
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lution and design appear excessively intertwined. Yet, they also converge at

the focal point of achieving design automation. One principle adamantly held

up throughout this study was concerning automation, such that methodological

choices deemed un�t for automation were simply ruled out. Automation is per-

haps the single most important element in increasing the data exchange through-

put between the two domains. The throughput increase would in turn contribute

towards bridging the gap from whole another angle, let alone the contribution it

would have on reducing the time to solution. In Chapter 7, the discussion will shift

gears more towards bolstering the automation aspect of realising the DEA frame-

work, via introducing a series of ideas underpinning single-cell-level micro�uidics.

These micro�uidic techniques certainly attributed towards closing the gap from a

perspective di�erent to what had been discussed so far.

124



Chapter 7

Developing micro�uidics-based

platforms for automating

single-cell-level phenotypic

measurements

7.1 Introduction

Synthetic biology is aimed at developing organisms with novel functionalities. As

part of realising this aim, DEA was suggested [80], and its proof-of-concept imple-

mentation ideas were tested in Chapter 5 and 6. In the DEA framework concerning

phenotypic characterisation, however, there still exists a disconnect between the

two domains in the properties perceivable by measurement. Such discrepancy

arises, in part, from the incompatibility of phenotypic data obtainable in the two

domains. For instance, measurable properties in the in silico domain are often

modelled on a single-cell basis as shown in Chapter 6, whereas actual measure-

ments in the in vivo counterpart are usually taken on populations of cells due

to limitations in conventional lab techniques. Colony- or population-level mea-

surements may end up obscuring the identi�cation and characterisation of rare,

stochastic cellular events occurring at single-cell levels [163]. Single-cell based in

vivo measurement and analysis techniques are needed to close this gap.
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While �ow cytometry can o�er single-cell-level measurements, it is limited to

measurements at a single time point, and therefore is incapable of measuring single-

cell-level events in a time series. Studies claiming time-series measurement of single

cells using �ow cytometry [162] are, in fact, based on time-series measurements

of populations of cells and reporting single-cell-level statistics by calculating the

population mean values.

Synthetic biology and systems biology have constantly increasing needs for

true single-cell-level time-lapse measurements, as temporal variation is integral to

cellular properties. Micro�uidics is promising in terms of developing novel

measurement systems that can measure the temporal dynamics of single-cell-level

cellular events, prone to cancelling out in population based measurement systems.

Photolithography techniques [191] as well as programmatic image analysis [81, 149]

underpin the development of sub-micron scale micro�uidic systems for carrying out

time-lapse measurements at �ne granularities. Synthetic biology, especially with

respect to DEA, is an area of research that can greatly bene�t from this kind of

novel measurement systems.

However, the current practice of designing single-cell-level micro�uidic devices

relying on designers' ad-hoc intuition is subject to expensive trial-and-error cycles.

It is not unusual for human designers to mistakenly apply their understanding

of the macroscopic world to the micro�uidic world where liquid behaves rather

strangely due to the physics of low Reynold number conditions [24]. A model-based

approach [146] to designing micro�uidics devices would help reduce such human

errors. Working with models before �nalising device designs not only improves the

validity of designs but also reduces the overall production cost.

Discussed in the following are a number of micro�uidic designs that support

single-cell-level measurements. The purpose of presenting these design examples

are mainly two fold. Firstly, they exemplify the usecases of single-cell-level mi-

cro�uidics to assist with design automation in light of DEA in synthetic biology.

Secondly, they show the successful application of model-based engineering of mi-

cro�uidic devices.
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7.2 Fabrication of sub-micron features

One of the biggest challenges in this work in producing micro�uidic designs capable

of single-cell level analysis was achieving sub-micron sized features as part of the

fabrication process. The fabrication of submicron-level, high-resolution features

can be directly achieved by using electron-beam lithography (e-beam). However,

applying e-beam is not cost-e�ective for lengthy and repetitive feature types span-

ning a large surface area, due to low-throughput sequential e-beam head movement

[178]. A photolithography method along with etching was successfully applied

in building lengthy and repetitive sub-micron features, in the fabrication of the

single-cell chemostat by Cluzel's group [123]. While the use of photolithography

was more suitable for the feature types this work involved, the minimum feature

width reliably attainable by photolithography in the multiple foundries consulted

for the work was only about 2.0 µm, due to the di�raction limited nature of their

photolithography setup. Apart from the need for achieving submicron feature

widths, the micro�uidics design introduced here also required a uniform feature

depth of 1.5 µm across all small features. Etching is a common technical choice

in the fabrication process to attain these features [89, 123]. However, it was not

possible to reliably control etching to terminate at a depth of 1.5 µm in practice

without rounds of costly optimisation runs. The etching rate can vary depending

on how exposed the surface area of a feature is due to etching anisotropy [89],

leading to variable etching depths - the wider the feature width, the higher the

etching rate.

The photolithography method used in fabricating the single-cell chemostat [123]

was adapted to develop a new method as illustrated in Figure 7.1. The use of

Deep Reactive Ion Etching (DRIE) along with SiO2 was desirable for meeting

the design requirements in this study. Using DRIE, the etching process can be

controlled to be substrate speci�c. For example, the etching can be selective only

towards SiO2, or towards Si, depending on the choice of a gas mixture. Given such

control and the use of SiO2, instead of Si, as the substrate of choice for micro�uidic

structures, it was immediately possible to reliably etch the depth of 1.5 µm without

optimisation, regardless of feature widths. The etching depth control was achieved

by depositing a 1.5 µm silicon oxide layer on silicon wafers (Figure 7.1a step 1).
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The SiO2 deposition is much easier a task than directly controlling the etching

depth of Si.

Oxide back�ll was used as a measure for improving upon the 2.0 µm resolution

limit arising from the use of contact photolithography (Figure 7.1a steps 11 and

12). The combination of these methodological choices, as described further in the

following, enabled the fabrication of lengthy submicron features in a manner that

is not only cost-e�ective, but also reliable. The micro�uidics fabrication process

consisted of three main parts, and was performed by Lionix BV, The Netherlands.

The �rst part was the lithography of small features having a minimum feature

width of 2.0 µm, and a uniform feature height of 1.5 µm. The second part was the

lithography of large features having feature widths between 50µm and 100µm, and

a feature height of 40µm. Lastly, the third part was the back�ll steps for reducing

the 2.0 µm minimum feature width to a submicron level.

7.2.1 Lithography of small features

Thermal oxidation was used to introduce a 1.5 µm layer of SiO2 on 4-inch silicon

wafers (See Figure 7.1a step 1). The wafers were spin coated with photoresist

Fuji�lm Oir 906/12, at a thickness of 1.2 µm and were soft baked (step 2). The

photoresist layer acts as a protective layer from DRIE. For each wafer, a small-

feature photo mask was overlaid on the photoresist layer using a vacuum to tighten

the contact (step 3). The wafer was then exposed to UV light (step 4), and

developed (step 5). A post-exposure hard baking was performed in order to densify

the developed photoresist on the wafers (step 6). DRIE was performed to etch

small features using a CHF3 and O2 gas mixture, (step 7). After exhausting the

gas chamber (step 8), O2 plasma followed by HNO3 gas was used for stripping the

photoresist layer (step 9). The gas was exhausted afterwards. (step 10).

7.2.2 Lithography of large features

The lithography of large features was done by repeating steps 2 through 10 (Figure

7.1a) as in the lithography of small features, using a variation of the photoresist

and gas mixtures. In step 2, a Fuji�lm Oir 908/35 layer was spin-coated at the

thickness of 3.5 µm. In step 3, a separate photo mask for large features was used.

128



(a)

(b)

(c)

Figure 7.1: Fabrication protocol of submicron-scale micro�uidic structures

(a) Fabrication processes: 1. Thermal oxidation for introducing 1.5 µm of SiO2 2. Spin
coating of photoresist, followed by soft baking. 3. Contact overlay of the photo mask
(shown in brown) using vacuum. 4. Exposure to UV light. 5. Development 6. Hard
baking to densify the developed photoresist 7. DRIE of the oxide layer. 8. Exhaust 9.
O2 plasma followed by 100% HNO3 gas for stripping the photoresist layer. 10. Exhaust
11. Deposition of TEOS for 0.8 µm back�ll. 12. Thermal treatment for conversion to
SiO2 (b) A low magni�cation SEM image from the top of a chip fabricated using this
protocol. (c) A high magni�cation SEM image of the chip at a tilted angle. The dark
cavity feature is 40 µm deep, and the small trench features are 1.5 µm deep.

In step 7, a gas mixture of C4F8 and CH4 was applied for stripping the 1.5 µm

layer of SiO2, and a mixture of C4F8 and SF6 for etching 40µm deep cavities into

the silicon material (See Figure 7.1b,7.1c).

7.2.3 Oxide back�ll for reaching submicron resolutions

Tetra-ethyl orthosilicate (TEOS) was deposited on the wafers at a thickness of

0.8 µm, reducing the overall feature widths by a total of 1.6 µm (step 11). For
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example, a 2.0 µm wide feature would become 0.4 µm wide. The TEOS deposition

does not a�ect the depths of features. The deposited TEOS was then thermally

treated to be converted into SiO2 (step 12).

7.3 Micro�uidics for single-cell-level measurement

and analysis

Discussed in the following are designs for micro�uidics to support the measurement

of cellular properties at the single-cell level. These designs exemplify micro�uidic

elements to form the basis of building automated measurement and analysis sys-

tems. Automation at this level will play vital roles in closing the gap between the

in vivo and in silico domains discussed as part of the DEA framework, and in

achieving the ultimate goal of design automation in synthetic biology.

7.3.1 Growth rate vs marker �uorescence chip

The micro�uidic designs shown in Figure 7.2b and 7.2c have structural support for

promoting bacterial growth in the direction of channels. Together with a software

component to automate the microscopy and image analysis, they can be used

in measuring single-cell-level growth rate and �uorescence as part of the DEA

framework.

A silicon wafer fabricated using the method in Figure 7.1 was cast with Poly-

dimethylsiloxane (PDMS) to make intermediate moulds. The intermediate moulds

were used, in turn, to cast agarose gel slabs replicating the imprints of the submi-

cron channels of the initial wafer. The gel slabs and their channel imprints were

used to trap and grow bacterial cells. The gel slabs were encased in a PDMS

chamber to which de�ned growth media were programmatically delivered via a

pneumatic pump control unit. The agarose-based micro�uidic chip can accom-

modate a large number of uniquely labelled locations, each of which hosts the

growth of a small number of cell clusters. Figure 7.11e shows one of many such

locations in a single micro�uidic chip at two di�erent time points t0 and t1. A

motorized microscope stage (Nikon Ti-E) and motorized shutters (Sutter) were

programmatically controlled by using the Micro-Manager core API [58], in order
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(a)

(b)

(c)

Figure 7.2: SEM images of agarose-based micro�uidics chip designs

Agarose-based micro�uidics chips were designed for (a) investigating bio�lm formation,
and for (b,c) growth rate vs marker �uorescence measurement.

to acquire multi-dimensional (bright �eld and �uorescent �eld) images in multiple

locations and time points. The images were processed via a sequence of steps

to determine cell boundaries, as shown in Figure 7.11f. In this case the process-

ing steps involved the Fiji commands, sharpen, contrast, log, contrast, make

binary, erode, dilate, watershed, and analyze particles (for �nding regions

of interest or ROIs). However, the processing steps may vary depending on cell

types and imaging conditions.

For each segmented cell in each image, a cell node was created in a local graph-

based database (Rexster Tinkergraph). Cells that form clusters were grouped

together into a cluster node. Each cell node stored properties such as a bounding

polygon, a cluster membership and references to the bitmap data of relevant phase

contrast and �uorescence images. Pairs of temporally corresponding cluster nodes

were connected by edges indicating relationships. Finding temporal correspon-
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dences between images required that the images be spatially aligned across time.

This image-to-image alignment was implemented by including a temporally invari-

ant landmark as a cue to map local coordinate space to global coordinate space.

Temporal correspondence between single cells was established in consecutive time

frames according to the algorithm described in Section 7.4.1. The same steps can

be repeated for an arbitrarily long temporal image series. Given a time series of

length N , for example, information about the temporal correspondence of single

cells can be obtained by repeating the calculation of pair-wise connections at time

points [t1, t2], [t2, t3] . . . [tN−1, tN ].

Single-cell-level time-series data were extracted (as detailed in Section 7.4.1)

and stored in the database. Important statistics regarding the analysis of cellular

events over time can then be gathered by querying the database (See Figure 7.13).

The software to perform this analysis was customised for the characterisation of

�uorescent markers in bacterial cells, including Escherichia coli and Bacillus sub-

tilis, but can be applied to the analysis of any other cell types, once the appropriate

image processing steps for segmentation are identi�ed.

7.3.2 Model-driven design of micro�uidics

The versatile lens of model-driven engineering (MDE) also proved its worth in

designing micro�uidics chips in this study. The micro�uidics designs featured in

Section 7.3.3, 7.3.4, and 7.3.5 were subject to model checks before �nalising their

designs for fabrication. This design practice was cost-e�ective in minimising the

fabrication cost. The modelling was done using a multi-physics simulation software

package (COMSOL v4.2), based on the parameter settings in Table 7.1.

7.3.3 Chemical gradient generator

The micro�uidic device shown in Figure 7.3 was designed to generate a chemical

gradient out of two input liquids in laminar �ow. Liquids exhibiting laminar �ow

do not mix well, as modelled1 in the blue and red liquids �owing in parallel without

lateral mixing between the y-axis segment of 310µm and 380µm in Figure 7.3a.

1The liquid-structure dynamics was modelled using COMSOL
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Table 7.1: COMSOL parameters used in this study:

Category Property Settings

Material de�nition Water Standard library de�nition
(Entire domain)

Silicone [solid] Standard library de�nition
(Boundaries except inlet and outlet)

Physics packages Laminar Flow Temperature (T); 293.15[K]
Fluid properties: Water

Compressible �ow (Ma<0.3)

Transport of Dilute Species Velocity �eld u = spf/fp1
Di�usion coe�cient[m2/s] Dc = 1e− 10

Global de�nitions inlet pressures p1 = 70000[Pa]
two inlet concentrations pure water and 1mM chemical solution

Mesh de�nition size Extra �ne
type free triangular

Linear solver Solver type PARDISO
Preordering algorithm Nested dissection multithreaded
Scheduling method Auto
Row preordering Enabled
Bunch-Kaufman Disabled

Multithreaded forward and backward solve Disabled
Pivoting perturbation 1.00E − 08
Nonlinear method Automatic (Newton)

Initial damping factor 0.01
Minimum damping factor 1.00E − 06

Shown in the y-axis segment of 240µm and 310µm of Figure 7.3a is a gradient

generator model designed to disrupt the laminar �ow and expedite the mixing of

the two liquids. The liquid-structure dynamics due to the gradient generator model

successfully formed a chemical gradient, as evidenced by the spread of rainbow

colours in Figure 7.3a towards the bottom of the y-axis. After the model-based

veri�cation of expected behaviours of the design, an actual chip was fabricated

using the method from Section 7.2. In order to verify the quality of fabrication

results, Scanning Electron Microscopy (SEM) (Tescan Vega 3LMU) was performed

at Electron Microscopy Research Services, Newcastle University.

It was qualitatively shown in the SEM image in comparison to the CAD image

of the corresponding design in Figure 7.3b that the sub-micron features of the chip

design resolved as expected. This SEM result warranted that the fabrication of
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(a) (b)

Figure 7.3: Gradient Generator model vs end-product

the chip as far as structural elements are concerned was successful. The successful

fabrication of sub-micron features was con�rmed quantitatively via measurements

of control features (Appendix C.2).

A gradient generator chip was made by curing PDMS directly on the silicon

wafer, followed by plasma bonding the PDMS layer onto a glass coverslip (#1

thickness) for use in microscopy. The chip was tested for �uid dynamics to see if the

structural design could function as a gradient generator as predicted in the model.

0.1 % (w/v) solution of �uorescent brightener 28, also known as Calco�uor White

M2R, was made by dissolving 0.01 g of Calco�uor White in 10 mL of MilliQ water.

The solution was titrated using NaOH till the solution turned from opaque white

to clear champagne colour. The �nal pH of the solution reached approximately

about 11. Excitation light in the wavelength range of 365 nm and 395 nm incident

on Calco�uor White produces emission light at the wavelength of 420 nm. The

chip was staged on an epi-�uorescence microscopy (Nikon Ti-E) set up with a

DAPI �lter. DAPI can pick up �uorescence at the emission wavelength of the

Calco�uor White solution. The excitation UV light was generated by using Nikon
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Intensilight C-HGFI. MilliQ water was injected into the left inlet of the chip at 1

psi of pressure, and the 0.1 % (w/v) Calco�uor White solution into the right inlet

at 1 psi of pressure. The chip was left running for 30 min at room temperature in

order to give it some time to form a stable laminar �ow. Images were acquired

in the bright-�eld and �uorescent channels, using an image acquisition software

(MicroManager), a 40x objective (Nikon) and a CCD camera (QImaging Retiga

2000R).

Figure 7.4 summarises the characterisation results of the gradient generator

chip from analysing the �uorescence of the Calco�uor White solution. The PDMS

pillar structures visible throughout the bright �eld image (a) were used as ref-

erences to make a mask for �ltering out background �uorescence in (c) due to

PDMS structures. The (b) was the resulting mask showing pillars with elevated

levels of background �uorescence. The overall background �uorescence in (c) was

estimated by �tting the entire �eld of view against the background �uorescence

from (b). The �tted result was shown in (d). The raw �uorescence image (c)

was normalised against the estimated background �uorescence (d), to result in (f).

Normalised �uorescence levels across the x-axis in (f) were sampled on four y-axis

locations (the red horizontal lines numbered 0, 1, 2, and 3). These �uorescence

levels were plotted in (e) for all labelled y-axis locations. The y-axis of the plot

shows �uorescence in arbitrary unit (AU) and the x-axis shows horizontal loca-

tions matching those of the image �eld in micrometre unit. Going from right to

left along the x-axis of the plot in (e), the �uorescence level at the y-axis location

labelled 0 showed a sharp drop, because the �uorescent solution injected from the

right would exhibit a laminar �ow against the water injected from the left. Upon

nearing the bottom (y-axis locations 2 and 3), the �uorescence gradient became

much less steep, indicating that the laminar �ow started mixing well to form a

continuous gradient �eld. The �uctuation of �uorescence levels in y-axis loca-

tion labelled 3 was caused by the honeycomb structures in the gradient generator.

Overall, the gradient generator chip seemed to function as intended, according to

this simple experiment. More extensive characterisation was left for future studies,

due to time constraints in the project.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Gradient generator characterisation

(a) Bright �eld, (b) PDMS channel support pillars with elevated background �uores-
cence, (c) Fluorescence �eld (DAPI), (d) A heat map showing background �uorescence
across the chip �tted from the background �uorescence of the support pillars, (e) Nor-
malised �uorescence (AU) pro�les across x-axis (µm) of four y-axis locations, (f) Nor-
malised �uorescence �eld.
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7.3.4 Chemical-gradient-passthrough decision tree

Micro�uidic channels resembling a decision tree as shown in Figure 7.5 was de-

signed for measuring bacterial chemotaxis-like behaviours. The design can be used

for testing if cells would prefer growing in the direction of increasing or decreasing

chemical concentrations. One of the obstacles in the design of the micro�uidic

decision tree was that the structure resembles that of the chemical gradient gen-

erator. This means that the decision tree structure would disrupt the chemical

gradient of the �uid �owed into it as the �uid travels further down the tree.

As a remedy to this issue, channels in the shape of waves running down verti-

cally were introduced into the decision tree structure (See the SEM image in Figure

7.5). The decision tree structure featuring these wavy passthrough channels was

dubbed the name chemical gradient passthrough decision tree.

Figure 7.5: Passthrough decision tree

In fact, this chemical gradient passthrough channel design was �nalised by mod-

elling numerable structural variations. The COMSOL simulation result shown in

Figure 7.6 revealed that this passthrough channel design is e�ective in neutralising

the adverse e�ect of the decision tree structure on chemical gradient.

With respect to automation, there was another critical design aspect to be
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Figure 7.6: Modelling of the passthrough decision tree

considered in the making of the decision tree. The dimensions of the area occupied

by the decision tree channels were approximately about 1000µm by 1000µm. An

area this size is rather too large to be covered as a whole by microscopy using

high magni�cation objectives (e.g. 100x or 40x). At the same time, using high
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magni�cation objectives is necessary in acquiring microscopy data suitable for

image analysis. Microscopic barcodes were designed as shown in Figure 7.7 for

labelling multiple micro�uidic locations. Each labelled location was designed to

be small enough to �t into the �eld of view of high magni�cation microscopy. This

would allow for the use of high power microscopy along with this chip design.

The area of the structural feature representing one bit was designed to be 1 µm2.

Given that the chip design was already crowded with small features, fabricating

the wafer to cleanly resolve all those tiny details was non-trivial. This kind of

tiny features in micro�uidics design was putting the fabrication method discussed

in Section 7.2 to a truly stringent test. The success in fabricating those features

using this method, as can be seen in the SEM image of Figure 7.5, was a signi�cant

achievement. A microscopic barcode design such as this would become one of

the essential features in the design of sub-micron-scale micro�uidic devices for

supporting lab automation.

Figure 7.7: Microscopic barcodes to label locations in micro�uidics
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7.3.5 Quorum communication tester

(a) (b)

Figure 7.8: COMSOL simulation of �uid dynamics in the quorum sensing assay
chip

A PDMS-based micro�uidics assay chip was designed to be used in experiments for
investigating microbial quorum sensing. The COMSOL simulation showed liquid velocity
and concentration gradient pro�les with respect to the chip's liquid-structure interaction
dynamics. (a) The liquid velocity pro�le of the �uidic channels, given 70,000 Pa of
pressure on the two inlets. (b) The concentration gradient of the �uidic channels when
water was injected through inlet1 and 1 mM concentration of inducer molecule was
injected through inlet2.

Yet another class of micro�uidics-based measurement device was designed to

allow for experiments involving quorum communication behaviours in cellular sys-

tems. As were the cases in previous micro�uidics designs, �nalising this chip design

was a result of subjecting di�erent structural variations to extensive modelling and

simulation. Figure 7.8 shows a �uid dynamics simulation result of the quorum com-

munication tester chip. The chip was designed to accept two input �uid �ows with

di�erent chemical compositions, and to form chemical interfaces between the two
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�uids at the perpendicular channels connecting the two main inlets. The perpen-

dicular channels were designed to allow the exchange of chemicals via di�usion.

The result shown in Figure 7.8b assured that the chemical concentration injected

into the right hand side channel (inlet2) does not a�ect the left hand side channel

(inlet1). The only places in the chip where the two �uid types exchanged chemical

compositions were the perpendicular channels.

(a) (b)

Figure 7.9: COMSOL simulation of concentration gradients in the quorum sensing
assay chip

A comparison of the COMSOL simulation of concentration gradients was performed to
see if there are location speci�c di�erences in the gradient pro�le of the micro�uidics
assay chip. The given design was con�rmed to support the desirable property of exhibit-
ing a consistent concentration gradient pro�le invariant to the di�erence in the y-axis
coordinate locations. (a) A close-up view of the concentration gradient �eld shown in
Figure 7.8b. (b) Comparison of the concentration gradient across the x-axis between
two locations (Top & Bottom) separated by about 6000µm in the y-axis direction.

Figure 7.9 shows close-up views of the perpendicular channels exhibiting di�u-

sive chemical exchange between the two inlets. In the experimental setup of this

simulation, a glucose solution in 1 mM concentration was injected into inlet2, and
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Figure 7.10: An SEM image showing the fabrication result of the quorum commu-
nication tester chip

water was injected into inlet1. Figure 7.9b shows a graph comparing the glucose

concentration pro�le across the x-axis of perpendicular channels in two di�erent

y-axis locations separated by about 6000µm (Top vs Bottom). The graph con-

�rmed three desired properties of the micro�uidic design: that the inlet2 glucose

concentration did not a�ect inlet1, that the perpendicular channels provided an

interface for di�usive chemical exchange, and that the y-axis location of perpen-

dicular channels did not a�ect the chemical di�usion characteristics.

The quorum communication tester chip was fabricated using the methods in

Section 7.2. Figure 7.10 shows an SEM image of the fabrication result. Disre-

garding the minor blemishes visible on the top part of the image, likely to be

dirt particles inadvertently introduced in preparing for the SEM samples, the sub-

micron features of the chip design were successfully fabricated, from inspecting

the SEM image qualitatively. The in vitro characterisation of the chip was not

attempted due to time constraints in the project. However, the same experimental
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setup used in the in vitro characterisation of the gradient generator chip (Section

7.3.3) can be used for the characterisation of this chip as well.

7.4 Programmatic image processing and analysis

Using a micro�uidic platform for observing bacteria at single-cell and single-lineage

levels typically involves time-lapse microscopy, which can generate a large amount

of image data. Image data in their raw form require much pre-processing before

any quanti�able data can be extracted for analysis. Typical image processing

steps involve, for instance, the identi�cation of cell boundaries (segmentation),

gathering statistics on cell sizes and �uorescence levels, and tracking temporally

corresponding cells in time series. Not only are these tasks computationally ex-

pensive, they also generate large amounts of single-cell data, making manual data

curation cumbersome and error-prone. Dealing with large volumes of data as such

necessitates the use of integrated and automated image analysis pipelines that can

process image data as they are generated with accuracy and speed.

There are many tools available for image analysis in the biological sciences,

including MicrobeTracker [70], TLMTracker [100], CellPro�ler [28], and ImageJ

[151]. While these tools are widely used, they require signi�cant manual interven-

tion in the analysis process, and they are not designed to process large numbers

of images in a systematic, parallel and automated fashion. MicrobeTracker is

popular among biologists for image analysis. However, the software is GUI-based

and primarily intended for manual use. Furthermore, MicrobeTracker is written

in Matlab, requiring a commercial license to be able to use its code base. CellPro-

�ler is probably one of the strongest contenders for providing �exible, parallelisable

pipelines. However, this tool is still primarily intended for manual use, with a GUI-

based interface. Although CellPro�ler provides a headless operation mode without

the GUI interface, the mode is intended, not for being integrated as part of auto-

mated microscopy, but for a postexperimental batch image processing. There is no

API-level support that would allow other software to easily invoke CellPro�ler and

retrieve results in a modular fashion. The architecture of ImageJ and its sibling

Fiji [150] is noteworthy as it allows the software's core library full of useful image

processing algorithms to be readily reused.
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An image analysis pipeline, employing Fiji's core library for much of the image

processing needs, was developed with the goal of having the pipeline integrated

as part of the micro�uidic platform for automated time-lapse microscopy. One

of the key advantages of using an integrated system such as this is that a full

automation, from image acquisition to analysis, can be achieved. This also means

that the results of image analysis can be used to determine the way in which

image acquisition is done, as part of an active feedback loop. This capability

is especially useful in dealing with large sample sizes. If need be, a rule-based

�ltering algorithm can be implemented depending upon analysis results, to reduce

the number of samples being observed to those exhibiting phenotypes of interest.

7.4.1 Correspondence algorithm: an overview

Dealing with time-series cellular microscopy data via using a computerised logic is

non-trivial, largely due to the di�culty in establishing the spatio-temporal cor-

respondence between cellular data sets. A pattern recognition algorithm was

needed in order to extract cellular image features suitable for uniquely identi-

fying cells undergoing growth in space and time. Introduced in the following is

a novel correspondence algorithm that can process time-series images featuring

bacterial growths. The algorithm can extract single cell data, and track each cell

spatio-temporally. The algorithm consists of two parts: establishing cluster-level

correspondence followed by establishing single-cell level correspondence.

7.4.2 Establishing cluster correspondence

Consider a set B consisting of single cells from multiple time points, and a set P

consisting of subsets of single cells from B satisfying the condition L. The condition

L, used to qualify cells for belonging to the same subset, is a predicate for testing

cells to see if they coincide in the same spatio-temporally isolated cluster. These
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sets can be de�ned1 as:

B = {x | x is a single cell at time points t ∈ {1, 2, 3 . . . }}

P = {x ⊆ B | x satis�es L} is a partition set of B, ful�lling

∀x1, x2 ∈ P, x1 6= x2 6= ∅, x1 ∩ x2 = ∅, and
⋃

P = B

L : ∀y ∈ x is in the same spatio-temporally isolated cluster

(7.1)

P (t) is a subset of P , de�ning a set of cell clusters co-occurring at time t, hence

corresponding to the collective information of single cells captured by microscopy

image(s) at time t. In addition, E(t) is a set of ordered pairs of clusters having

temporal correspondence from time t to t+ 1, de�ned as:

P (t) = {x ∈ P | x is a cluster of cells at time t}

E(t) = {(x, y) ∈ P (t)× P (t+ 1) | x temporally corresponds to y}
(7.2)

, where the cluster temporal correspondence is de�ned by clusters x and y having

spatial overlap with respect to the global coordinate space.

The transitive closure of E(t), denoted ET (t) can be de�ned as,

ET (t) = {(x, z) ∈ Pp(t)× Pp(t) | ∃Y ⊆ Pp(t) satisfying W},

where (x, z) = (z, x) and Pp(t) = P (t) ∪ P (t+ 1)

W : ∀y, y′ ∈ {Y ∪ {x, z}}, y 6= y
′ 6= ∅ → fd(y, y

′
) > 0

(7.3)

Here, fd(y, y
′
) denotes the degree of relatedness in cluster correspondence between

clusters y and y
′
, or the minimum number of corresponding pairs p ∈ E(t) required

1The convention for mathematical notations used here adheres to that of Set Theory and
Logic.

⋃
P , for example, refers to the union set of all members of set P . The notation ∅ refers

to an empty set, unless noted otherwise.
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to associate cluster y to cluster y
′
, as de�ned in Eq.7.4.

fd(y, y
′
) = min

(∣∣∣{(x, x′
) ∈ E(t) | ∃R ⊆ Pp(t), satisfying K}

∣∣∣)
K : ∀x ∈ {R ∪ {y, y′}},∃x′ ∈ {R ∪ {y, y′}}, such that

x 6= x
′ ∧ (x, x

′
) = (x

′
, x) ∧ (x, x

′
) ∈ E(t)

fd(y, y
′
) =


0, if R = ∅ ∧ (y, y

′
) 3 E(t)

1, if (y, y
′
) ∈ E(t)

2 or greater, otherwise

(7.4)

fd(y, y
′
) = 0 means clusters y and y

′
are not associated in terms of cluster

correspondence. fd(y, y
′
) = 1 means a single cluster, y, at time t, is directly

associated with a single cluster at time t+1, namely y
′
(Figure 7.11a). fd(y, y

′
) = n,

where n > 1, means cluster y at time t is associated with cluster y
′
at time t+ 1,

via a minimum of n number of cluster pairs p ∈ E(t). Having the number n > 1

signi�es one of the following events: multiple clusters at time t merged to a single

cluster at time t + 1 (Figure 7.11c), a single cluster at time t split into multiple

clusters at time t+ 1 (Figure 7.11b), or both (Figure 7.11d).

It can be said that clusters y ∈ P (t) and y
′ ∈ P (t + 1) have cluster corre-

spondence if the binary relation, y ET (t) y
′
exists, by evaluating the predicate Q

(See Eq.7.5). In the events of clusters merging or splitting, ET (t) can also be used

to decide, for instance, if clusters y and y
′
at the same time frame t have cluster

correspondence, by asserting the predicate Q.

Q
[
y ET (t) y

′
]

=

True, if ∃(y, y′
) ∈ ET (t)

False, otherwise
(7.5)

C(t) is a partition set of P (t) consisting of a set of non-empty, mutually exclu-
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sive subsets of P (t):

C(t) ={x ⊆ P (t) | x satis�es J}, ful�lling

∀x1, x2 ∈ C(t), x1 6= x2 6= ∅, x1 ∩ x2 6= ∅,
⋃

C(t) = P (t)

J : (∀xi, xj ∈ x,Q[xiET (t)xj] is True) ∨ (| x |= 1)

(7.6)

Establishing one-to-one temporal correspondences between members of C(t)

and C(t+1) can be provided by the injective function fc : x ∈ C(t) 7→ y ∈ C(t+1)�

de�ned in terms of a set of mapping pairs,

fc : x ∈ C(t) 7→ y ∈ C(t+ 1) =

{(x, y) | ∀xi ∈ x & ∀yj ∈ y,Q[xiET (t)yj] is True}
(7.7)

7.4.3 Establishing single-cell-level correspondence

Provided that C1 ∈ C(t) and C2 ∈ C(t+1) have a temporal correspondence via fc :

C1 7→ C2, it becomes relatively trivial to establish single-cell-level correspondences

between ci ∈
⋃
C1 and cj ∈

⋃
C2, as follows:

Let a single cell c (e.g. ci or cj) have a geometrical representation of a bounding

polygon cP given by a set of NV vertices,

cP ={v0, v1, . . . , vNV −1} (7.8)

The minimum bounding box of cP , denoted B(cP ), is a set of four vertices that

forms a rectangle to enclose the polygon in two-dimensional coordinate space:

B(cP ) ={v̂0, v̂1, v̂2, v̂3}, where

v̂0 = [xmin ymin], v̂1 = [xmax ymin]

v̂2 = [xmin ymax], v̂3 = [xmax ymax]

(7.9)

Given the minimum bounding boxes of cP (i) and cP (j), cP (j) is scaled to match

the dimensions of cP (i) by �nding the dot products of the individual vertices of
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cP (j) and the transformation matrix A:

c
′

P (j) = cP (j) · A, A =

[
w(i)
w(j)

0

0 h(i)
h(j)

]

, where w = (v̂1 − v̂0) ·

[
1

0

]
h = (v̂2 − v̂0) ·

[
0

1

] (7.10)

Now that B(cP (i)) and B(c
′
P (j)) have the same dimensions sizewise, cP (i) and

c
′
P (j) can be directly compared to evaluate the geometrical di�erences between

the two polygons (See Figure 7.11g).

Sweeping a horizontal line across the y-axis to scan and sample NL number of

lines that �ll a polygon can be done for both cP (i) and c
′
P (j). The sweeping line

S0S1k at position k is de�ned by two vertices S0 and S1 with respect to k and the

polygon's minimum bounding box:

S0 =
(NL − 1− k)v̂0 + kv̂2

NL − 1
S1 =

(NL − 1− k)v̂1 + kv̂3

NL − 1

, where 0 ≤ k ∈ Z ≤ NL − 1

(7.11)

The line segment S0S1k intersects a polygon cP at two vertices P0 and P1, where

P0 may or may not coincide with P1. Given two polygons cP (i) and c
′
P (j), there

exists a sequence of four intersecting vertices, (P0(i), P1(i), P0(j), P1(j)), at y = k.

When sorted in the descending order of the vertices' x-axis coordinate component,

the ordered sequence can be re-labelled and de�ned as (vk(0), vk(1), vk(2), vk(3)).

Then, the MSE of geometrical di�erences between the polygons cP (i) and c
′
P (j)

can be calculated by:

fMSE(cP (i), c
′
P (j)) =

1
NL

NL−1∑
k=0

(
(vk(0) + vk(2)− vk(1)− vk(3)) ·

[
1

0

])2
(7.12)

Given Eq.7.12 as a cost function, the problem of �nding temporal correspon-
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(a) (b) (c) (d)

(e)

(f)

(g)

Figure 7.11: Overview of the image processing pipeline to compare cells for tem-
poral correspondence

(a,b,c,d) Clusters at two timepoints having di�erent geometrical patterns. (e) Two pairs
of phase contrast and �uorescence images, at time points t0 (left) and t1 (right), of
E. coli constitutively expressing GFP. The cell cluster highlighted in cyan at t0 cor-
responds to the cluster in cyan at t1. (f) From left to right: a series of Fiji's com-
mands sharpen, contrast, log, contrast, make binary, erode, dilate, watershed,
and analyze particles. (g) Two cell clusters from successive time points are shown.
The upper half shows the image processing steps involved in sampling polygonal data
representative of a single cell at time t0, and so does the bottom half for a single cell at
time t1. The single cell being sampled at time t1 is subject to an extra step of scaling its
dimension to match that of the cell at time t0 before data sampling and comparison can
take place.
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dence can e�ectively be considered in light of the general assignment problem.

Assignment problems, in general, can be solved by the algorithm known as the

Hungarian method [104].

In order to minimise the calculation of paring costs, the potential assignment

of a single cell ci ∈
⋃
C1 at time t can be limited to a subset of

⋃
C2, where

the two cluster sets C1 ∈ C(t) and C2 ∈ C(t + 1) have an one-to-one temporal

correspondence according to Eq.7.7. For example, if
⋃
C1 = {ci | i ∈ {0, 1, 2, 3}}

and
⋃
C2 = {cj | j ∈ {0, 1, 2, 3, 4, 5}} are sets of corresponding cells in time t and

t + 1 respectively, four cells in
⋃
C1 need to be matched to six cells in

⋃
C2 (See

Figure 7.12b). Provided that images are taken at intervals small enough to ensure

the cell divisions for cells in
⋃
C1 at time t to occur at most once at time t + 1,

the following cost matrix can be constructed for solving the assignment problem

via the Hungarian algorithm, where c[i][j] = fMSE(cP (i), c
′
P (j)) and c

′
P (j+ j+1) =

c
′
P (j) ∪ c′P (j + 1).



c[0][0] ∞ ∞ ∞
c[0][0+1] ∞ ∞ ∞
∞ c[1][1] ∞ ∞
∞ c[1][1+2] ∞ ∞
∞ c[1][2] c[2][2] ∞
∞ c[1][2+3] c[2][2+3] ∞
∞ ∞ c[2][3] c[3][3]

∞ ∞ c[2][3+4] c[3][3+4]

∞ ∞ c[2][4] c[3][4]

∞ ∞ c[2][4+5] c[3][4+5]

∞ ∞ ∞ c[3][5]



Cell pairs with the in�nity sign (∞) are invalid matches that would leave unmatch-

able cells in the clusters, and hence are given the maximum cost value without any

calculation. The cost functions highlighted in red denote cell pair matches that

would leave unmatchable cells in the clusters due to boundary conditions, and

therefore can also be given the maximum cost value without any calculation. The

cost functions shown in black are the possible matches that would result in success-

ful correspondence matches satisfying all cells in the clusters, and therefore need

to be calculated. Unfortunately, the Hungarian algorithm does not scale well. Its

most e�cient implementation known to date has a time complexity of O(n3) [94].
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(a) (b)

Figure 7.12: A graph-encoded assignment problem, and its Dijkstra path as a
solution

(a) The assignment problem of corresponding cells can be encoded into a weighted,
directed graph. Currently shown is an example of a cluster of four cells at time t0 being
matched to a cluster of six cells at time t1. Nodes represent possible correspondence
matches, and weighted edges the costs of respective matches. For instance, the node
labelled [0][0 + 1] represents the assignment of the cell c0 at time t0 to the cells c

′
0 and

c
′
1 at time t1. Each edge connecting two nodes carries a weight, whose value indicates

the cost of the next matching pair of cells between the two clusters. The nodes and
edges highlighted in red represent the best matches, or the matches with the smallest
total MSE, searchable by �nding the Dijkstra's shortest weighted path of the graph. (b)
The phase contrast images of E. coli cell clusters at time t0 and t1 used for building the
weighted directed graph. The black arrows connecting the segmented cells between the
two clusters are deduced from the graph path highlighted in red.
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In the cell to cell matching case, the cardinal number n in discussing the time

complexity can be determined by adding the cell count at time t (|
⋃
C1|), and the

counts of individual cells (|
⋃
C2|) and merged cells (|

⋃
C2|−1) at time t+1, hence

n = |
⋃
C1|+ 2 · |

⋃
C2| − 1 [140].

In fact, the assignment problem can also be encoded into a weighted graph,

where the cost function (Eq.7.12) provides the weights. Having the problem en-

coded in a graph allows graph search algorithms such as Dijkstra's algorithm to

be used to �nd solutions for the assignment problem, at a more scalable time com-

plexity of O(|E|+|V |log|V |). This approach is di�erent from applying the shortest

augmenting paths based approach [94] in solving an assignment problem, in that

the algorithm shown here only needs a single calculation of Dijkstra's shortest

path per assignment problem as opposed to many iterations of path calculations

required by the augmenting paths method.

For example, in the case of four cells being matched to six cells (Figure 7.12b),

a weighted graph representing all permutations of possible cell matches (nodes)

along with the costs of the matches (edges) can be constructed (Figure 7.12a). Us-

ing Dijkstra's algorithm [54], the graph can then be solved for the shortest path,

or the path with the minimum total cost (highlighted in red), from which single-

cell-level temporal correspondences can easily be deduced. Interestingly, Dijkstra's

explanation of using graph structures in shortest path problems [54] is in agreement

with Richard Bellman's idea of Principle of Optimality [17], a necessary condition

for dynamic programming. Bellman's concept of dynamic programming is a math-

ematical optimisation achieved by breaking down a complex problem into simpler

sub-problems, via o�ering a simple incremental handle to deal with combinatorial

complexity. Having such an element of algorithmic compatibility would mean that

the graph search problem can be transformed to an optimisation problem de�ned

in terms of dynamic programming, or vice versa. For problems requiring small

input sizes, such as that demonstrated here, adopting dynamic programming in

lieu of Dijkstra's graph-based method would have no dire consequences. However,

doing so in a general sense, shall need to be approached with caution. Dynamic

programming may end up with performance penalties, as it is known to exhibit

a pseudo-polynomial time complexity with respect to the input bit length, unlike

Dijkstra's graph-based approach regardlessly o�ering a polynomial time complex-
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ity.

7.4.4 Application of the correspondence algorithm in syn-

thetic biology

A set of time-lapse images were acquired using the micro�uidic system as described

in Section 7.3.1, and were analysed via the image processing pipelines and algo-

rithms as detailed in Section 7.4.2 and 7.4.3. Bacillus subtilis 168, chromosomally

modi�ed to constitutively express GFP, was used to test the system. Figure 7.13a

shows an example of the generations of a cell lineage, with respect to a mother cell,

being tracked using the system developed in this study. It was possible for the sys-

tem to gather statistics much like those o�ered by �ow cytometry (Figure 7.13b).

Statistics available from �ow cytometry lack temporal dimensions at the single-cell

level. The only possible way to incorporate a temporal dimension into the mea-

surements in �ow cytometry is to use biological replicates from di�erent static time

points. In doing so, however, �ow cytometry loses single-cell-level details in the

temporal dimension, and is restricted to gathering population-level statistics. This

micro�uidics-based system was capable of tracking single cells over time, including

cellular events such as the growth and splitting of cells. The stochastic nature

of single cells may result in inter-cellular variabilities in the time of occurrence of

certain cellular events. For example, the cellular event of reaching the �fth gen-

eration from the mother cell took place at di�erent time points for di�erent cells

(See the cells highlighted in red in Figure 7.13a). Therefore, for single-cell-level

analyses involving temporal dimensions, it is important to di�erentiate the kinds

of statistics based on static time points (i.e. when measurements were taken) from

those based on cellular events (i.e. when something important happened). The

measurements shown in Figure 7.13c were from the cells �ve generations away from

those of Figure 7.13b. The collection of these generation-based statistics demon-

strate that this novel system was successful not only in incorporating temporal

dimensions into single-cell-level statistics, but also in capturing statistics based on

cellular events rather than on static time points.
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(a)

(b)

(c)

Figure 7.13: Single-cell-level statistics based on cell lineages and generations

(a) An example lineage of B. subtilis cells. The cells highlighted in red are in their �fth
generation. (b) An example analytic data showing the scatter plot of �uorescence vs
size of single cells (B. subtilis) at their �rst generation. (c) An example analytic data
showing the scatter plot of �uorescence vs size of single cells (B. subtilis) at their �fth
generation.

7.5 Discussion

One of the primary achievements worthy of mentioning as part of this research

work in micro�uidics was the development of a fabrication protocol that can pro-

duce submicron features without relying on costly etching optimisation runs. This

fabrication protocol was a product of extreme scrutiny of various intermediate pro-
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tocols given the constrains of the budget and time in the project. The protocol

was what made it possible, in the �rst place, to successfully fabricate all the chip

designs featured in this study. The innovations shown here would not have been

possible without this fabrication protocol.

As a rewarding consequence, the single-cell-level micro�uidic measurement de-

vices shown in this work opened up many possibilities in terms of achieving lab

automation. The possibilities were especially promising as the programmatic im-

age analysis was demonstrated to work successfully in conjunction with single-cell

level measurements. As much as the single-cell level measurements are useful, they

can generate copious amounts of data, rendering manual analysis infeasible. To

this end, the programmatic analysis of measurement data using the software de-

veloped in this research work played a crucial role. In the real-world automation

scenario, there would be a need for the mass acquisition of single-cell-level mea-

surement data from many di�erent coordinate points on a micro�uidics chip. In

order to be braced for such highly parallel experimental cases, a one of a kind mi-

cro�uidic barcode system was invented to help label and identify the coordinates

of locations on chips.

Another major achievement in this work was the development of a micro�uidic

measurement system capable of performing true time-lapse measurements of the

�uorescence of individual cells. The bene�t of having such a measurement system

is quite a signi�cant one in that the system allows the investigation of rare cellular

events at the single-cell-level with which direct comparisons to the �ndings from

single-cell-level in silico models can be made. This is yet another realisation of an

idea that can close the gap in the dual evolutionary approach.

The novelty in introducing such a single-cell-level measurement system in con-

junction with the programmatic data analysis necessitated the development of a

novel algorithm to calculate spatio-temporal correspondences at the single-cell-

level. The development of the correspondence algorithm was based on the clever

concept of transforming an assignment problem into a graph search problem. This

was a noteworthy achievement in such a way that the general principles of the

algorithm could potentially �nd other uses in di�erent �elds of science or engi-

neering. Another achievement as part of this work in micro�uidics was that it

served to be a good example of MDE in designing micro�uidic systems, forming
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an uncanny counterpoint to the maxim of DEA: �using models to help better the

reality.�

As it stands at the current moment, however, it takes a considerable amount

of e�ort just to have a micro�uidics chip made to be ready for a time-lapse mi-

croscopy run. What this entails is a call for future studies centered towards an

integration e�ort to develop, based on the working pieces shown here, a measure-

ment apparatus that is readily deployable with ease.
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Chapter 8

General Discussion

Proof-of-concept implementations of various research ideas shown throughout Chap-

ter 5, 6, and 7 were a concerted e�ort in an attempt to accomplish enabling tech-

nologies for the dual evolutionary approach. This work resulted in a well-de�ned

methodological framework that can be extended for exploring the two solution do-

mains to �nd converging solutions in a format the two domains can readily share.

Implementations involving molecular devices and programmatic sequence analysis

pipelines, shown in Chapter 5, addressed many important aspects with respect

to realising the in vivo half of the framework. The work detailed in Chapter 6

provided comprehensive modelling methods that can be used in bridging the gap

between the two domains. Micro�uidics techniques detailed in Chapter 7 explored

areas in which process automation can be achieved to gain automated control of

experimental processes at the single cell level. The collective research work de-

tailed in these chapters would serve to be an example to suggest how DEA can

be realised in the future not only for an e�cient exploration of the in vivo solu-

tion space, but also for facilitating cross-domain data transfer in a manner highly

amenable to automation. While there were drawbacks in some implementations,

other more successful aspects of the work showed promising results, enough to

demonstrate the plausibility of the suggested methodological framework.

I believe the research work presented here established a good starting point

for adopting the DEA framework to address the ultimate concern of dealing with

design complexity in synthetic biology as well as of achieving automation. One

of the key aspects explored in this study, was to de�ne the search space of design.

157



8. GENERAL DISCUSSION

The two domains of DEA rely on di�erent conceptual perspectives to see design,

hence their search spaces had to be de�ned from di�erent conceptual elements.

For instance, the in vivo domain would use genetic sequences as a primary handle

to explore di�erent genotypic possibilities (See Note 17 in Figure 3.1). So the

unknown here are the phenotypes to be unveiled after applying changes to genetic

sequences. On the contrary, the in silico domain would take the opposite direc-

tion, by working on model parameters that can change phenotypes (See Note 16

in Figure 3.1) before reasoning about genetic constructs that conform to the phe-

notypic changes. So the unknown are the sequences. These conceptual di�erences

were re�ected in the adoption of the molecular device for controlling random mu-

tagenesis (i.e. the solution generator) as a primary means to explore the in vivo

genotypic solution space (Section 5.2.3), and that of the genome-scale FBA as a

primary means to explore the in silico phenotypic solution space (Section 6.3.3).

These di�erences attributed to the gap in interpreting and consolidating their

search results. The cross-domain gap can be bridged by building compatible data

interfaces between the two domains to make the task of resolving the di�erences

in their search results straightforward. I investigated measurement technologies

combining molecular biology, software and micro�uidics to provide a way to merge

these di�erences. This resulted in the development of variant analysis pipelines

(Section 5.3.2.2) for measuring genotypes, and the micro�uidic (Chapter 7) or the

molecular (Section 5.2.2) means for measuring phenotypes. The consolidation of

genotypic measurements (i.e. SNPs) and phenotypic measurements was brie�y

discussed in Section 6.4.2. However, a further investigation is still needed to sug-

gest implementation-level details, as to how conclusions can be drawn on potential

correlations between genes and phenotypes. This was left for future studies.

The molecular phenotypic measurement device was designed to enable a high-

throughput assessment of �tness criteria in random in vivo solutions (Section 5.2).

The molecular device was used to incorporate the function of evaluating environ-

mental incentives or �tness landscape (Note 3, 11 in Figure 3.1) into a single

mutant cell. Such a molecular technique can enable the screening of putative in

vivo solutions in a massively parallel manner. Sequencing the genomes of putative

solutions, in turn, can transfer the solutions resident in vivo to the in silico design

domain (Note 21 in Figure 3.1). To help streamline this important, yet time-
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consuming process, software pipelines were developed to automate the genome

sequence assembly (Section 5.3.2.1).

In fact, the design of the molecular phenotypic measurement device suggested

in this study has a huge drawback, in that its design is highly prone to false-positive

measurements due to accumulating mutations on the measurement device. While

the automated assembly and variant analysis pipelines can, in principle, be used

to weed out false positives, having to deal with many false positives would be

severely burdensome in practice. This shortcoming could potentially be overcome

if a plasmid-based device was used instead of the chromosomally integrated de-

vice featured in this study. The stability of plasmid-based devices, unlike that

of chromosomally integrated devices, is short-lived allowing mutant cells to lose

the molecular device over a number of generations. Gram positive cells such as B.

subtilis are known to exhibit low plasmid retention rates, and are naturally compe-

tent. This means that the cells can easily be made to lose or to take up plasmids by

adjusting growth conditions. Such bacterial properties can be exploited to replen-

ish mutant cells with fresh plasmids free of undesirable false-positive mutations

during the course of evolutionary cycles. The investigation of this promising idea

was left for future studies.

It was shown that bridging the gap between the two domains can increase the

search e�ciency of design problems in synthetic biology (Section 6.4.3). The in-

crease in search e�ciency would, in e�ect, amount to the reduction of search space

or time to design. The DEA framework, as a consequence of such gain, would have

a higher capacity for dealing with design complexity and provide a ground for mit-

igating the search space explosion issue discussed earlier. Having said this, one of

the main argument points in this study was that partial solutions made available

via in vivo evolutionary processes could be combined in silico, and vice versa, to

achieve design optimisation requiring more complex solutions (Figure 6.18). It

might be argued, though, that DEA is too cumbersome without o�ering any gains

over directed evolution, given the discussion in Chapter 5 which presented directed

evolution as an e�cient means to facilitate the in vivo solution search. However,

employing such an in vivo strategy alone is conceptually equivalent to the mathe-

matical optimisation strategy called Stochastic Hill Climbing [95]. Such a strategy,

according to the simulations presented in Chapter 6, would be a poor choice for
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complex time-constrained problems that have combinatorially challenging search

spaces.

In a similar vein, it is worth noting that the advantage of using EA over

Hill Climbing (HC) was discussed in the mathematical optimisation context by

Mitchell, Holland and Forrest [122]. Holland postulated [77, 85] that the power of

EA lies at implicit parallelism, whereby making crossovers in the population can

reduce the time to search for optimal solutions compared to only using random

mutations. While the initial discussion of Holland was con�ned to the theory of

mathematical optimisation in the context of computing science, the idea, in my

opinion, can be transposed to synthetic biology without loss of generality. My

research, at least in part, demonstrated that the general principle of Holland's

argument about EA over HC still holds to be true in the context of adopting DEA

over directed evolution in �nding synthetic biological design solutions (Section

6.4.3).

In light of this argument, the DEA framework is a real-world case of EA,

in which the concept of implicit parallelism was incorporated into the in vivo

domain via the capability of recombining solutions in the in silico domain. This

theorisation is also directly in line with the reasoning behind the idea that DEA

would o�er to be a more e�cient platform than employing directed evolution in the

in vivo domain alone. As such, this study established a groundwork for bolstering

the premise that DEA is a powerful framework for design automation in synthetic

biology.

Accomplishing the integration of di�erent working concepts shown in this study

to function together is signi�cantly challenging a project in and of itself. Due to

time constraints, much of the integration e�ort was reserved for future studies.

For example, the �tness evaluation to guide the in silico domain, in the real-

world scenario, would need to take the form of executing FBA on the genome-

scale metabolic pathway model, as shown in Section 6.3.3.2. In lieu of FBA, the

�tness evaluation in the proof-of-concept experiments was done by using a look-

up table (LUT) out of the pre-agreed answersheet from Table 6.4. Nevertheless,

this test case was enough for evaluating the validity of the DEA framework. It

was evident from the simulation results (Figure 6.17) that the in silico domain

could o�er an e�cient means to conduct population mating, which the in vivo
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domain lacked. The in silico search could e�ectively recombine partial solutions

to successfully explore the search space, leading to a high SNP count solution,

otherwise unachievable. The in silico domain was able to reach SNP counts that

the in vivo domain alone could not reach given the limited timeframe (Figure 6.18

vs 6.16). The results shown here are strongly suggestive of the possibility that the

dual-evolutionary strategy, if its two domains were bridged to exchange SNP-level

information in short iterative cycles, can mitigate the combinatorial explosion of

solution space to a signi�cant degree.

Single-cell-level spatio-temporal measurements demonstrated in this study would

play an important role in evaluating the exit condition in the iterative design cy-

cle of the DEA framework. The caveat is that single-cell-level measurements can

produce high volumes of data, too cumbersome for manual curation and analysis.

Motivated by this, the micro�uidic measurement and analysis platform developed

in this study was designed with an end-to-end lab automation in mind. To this

end, I believe lab automation will serve to be one of the most important enabling

technologies for design automation in synthetic biology in the future soon to come.

Lab automation would be accomplished not by building micro�uidic devices alone,

but by incorporating software intelligence for the programmatic execution of device

control and data analysis. This led to the development of micro�uidic devices with

structural features, such as microscopic barcode (Figure 7.7), specially designed

to facilitate the development of software intelligence for use in highly parallel ex-

perimental automation. The micro�uidics research done as part of this study was

a clear demonstration that software research is indispensable to achieving lab au-

tomation. Hence, software should be an integral part of micro�uidics research

aimed at design automation in synthetic biology.

It was argued throughout this study that we need to shift gears in synthetic

biology towards pursuing design automation. This study successfully highlighted

some of the key technologies with which to envisage an automatic platform for

designing complex synthetic biological systems. Driven by strong commercial in-

terests, synthetic biology has been gravitating towards applications in metabolic

engineering. Such a trend has made the line between metabolic engineering and

synthetic biology quite blurry. My investigation too looked at an example of

metabolic engineering in discussing design automation in synthetic biology. It
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needs to be clari�ed though, that metabolic engineering is not synthetic biology

but a subset of which. Synthetic biology, as a ground for a greater set of biological

design problems, should be bracing for a higher level of complexity than that suited

for metabolic engineering. To this end of supporting yet higher levels of design

complexity, a fully automated synthetic biology design cycle is not an option but

a necessity. This requisite calls for future studies on a plethora of subjects that

have not been addressed in this study.

Some of the future works needed regarding this include, but are not limited

to, the following. DNA sequence data, at the whole-genome scale, can be over-

whelming, and the analysis of which requires signi�cant amounts of computing

power. Dealing with complex designs will necessarily result in the inundation of

sequence data, pouring out of the in vivo design domain. It will be critically im-

portant to be able to support parallelism in the data analysis pipelines in order to

help increase the data exchange throughput between the two evolutionary design

domains. Also, a micro�uidic platform supporting the programmatic execution

of general-purpose lab protocols such as Gibson assembly would be highly desir-

able. As part of such a platform, it would greatly help to have a software control

stack providing an API-level access to the platform. Building a micro�uidics plat-

form that supports automated execution of a suite of experiments required by the

DEA framework would be considered a signi�cant milestone to be achieved in the

future. Provided with such a feature-complete lab automation platform together

with a well-de�ned API, the design practice in synthetic biology will be completely

rede�ned as envisioned in my research work.

In closing, the signi�cance of this research work lies in developing and demon-

strating key technologies that can, when extended and put together, embody

what's ultimately envisioned by the DEA framework for accomplishing design au-

tomation in synthetic biology.
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A Appendix A

A.1 The genome-scale FBA in B. subtilis

The source code used in the study of genome-scale FBA was made available via

the git repository: https://bitbucket.org/sungshic/mpa.git.

Downloading the source code:

$ git clone https :// bitbucket.org/sungshic/mpa.git

Installing library dependencies on Ubuntu 14.04:

$ sudo apt -get update

$ sudo sh -c "echo 'deb http :// download.opensuse.org/repositories/home:/ fbergman :/ libsbml/xUbuntu_14 .04/ /'

>> /etc/apt/sources.list.d/python -libsbml.list"

$ sudo apt -get update

$ sudo apt -get install python -libsbml

$ sudo apt -get install libglpk -dev

$ sudo apt -get install python -glpk

$ sudo apt -get install python -matplotlib

$ sudo apt -get install python -numpy

$ sudo apt -get install python -scipy

$ sudo pip install cobra

$ sudo sh -c "echo 'deb http :// downloads.skewed.de/apt/trusty trusty universe

deb -src http :// downloads.skewed.de/apt/trusty trusty universe ' >> /etc/apt/sources.list"

$ sudo add -apt -repository ppa:ubuntu -toolchain -r/test

$ sudo apt -get update

$ sudo apt -get install python -graph -tool

$ sudo apt -get install python -reportlab

$ sudo pip install PyPDF2

$ sudo pip install pdfrw

$ sudo pip install rdflib

$ sudo apt -get install openjdk -7-jre -headless # need this for installing CPLEX

#install CPLEX package v12 .6.3 # it is available from IBM , free for academic use.

$ cd /opt/ibm/ILOG/CPLEX_Studio1263/cplex/python /2.6/x86 -64 _linux/

$ sudo python setup.py install

165



A.2 NGS assembly and variant analysis pipelines

The source code used in the study of NGS assembly and variant analysis was made

available via the following git repository:

https://bitbucket.org/sungshic/dea_hybrid_assembler.git.

Downloading the source code:

$ git clone https :// bitbucket.org/sungshic/dea_hybrid_assembler.git

ADocker image (sungshic/dea_hybrid_assembler:1.1) was created to demon-

strate how the assembly and variant analysis pipelines shown in Section 5.3.2 can

be used for verifying the genomic correctness of the EVOt2 clone (Section 5.2.5).

Executing the following in bash shell would pull the Docker image from Docker

Hub to a local host, and make a folder (assembly) under the home directory.

Docker version 1.12.3 (build 6b644ec) was used for the following tutorial.

Invoking a docker container for NGS assembly and variant analysis pipelines:

$ sudo docker pull sungshic/dea_hybrid_assembler :1.1

$ cd # go to the home directory

$ mkdir assembly # and make a folder to store assembly results

The following command will run the bash command-line prompt on a docker

container from the base image sungshic/dea_hybrid_assembler:1.1 located at

Docker Hub. This command, with the -v option, will also mount the local host

folder ~/assembly to the working directory in the container.

$ sudo docker run -it -v ~/ assembly :/root/workspace/dea_hybrid_assembler/genomeassemblypipeline/data/gandalf/

basespace/bsb1_evot2/assembly sungshic/dea_hybrid_assembler :1.1 /bin/bash

A.3 Processing cytometry data

The source code used in the study of programmatic processing of cytometry data

was made available via the following git repository:
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https://bitbucket.org/sungshic/fcs_analysis.git.

Downloading the source code:

$ git clone https :// bitbucket.org/sungshic/fcs_analysis.git

A.4 Evolutionary algorithm in silico

The source code used in the study of applying evolutionary algorithm in the in

silico design domain was made available via the following git repository:

https://bitbucket.org/sungshic/idea_silico.git.

Downloading the source code:

$ git clone https :// bitbucket.org/sungshic/idea_silico.git

A.5 Graph-based image analysis for single-cell-level micro�u-

idics

The source code used in the study of applying graph-based image analysis tech-

niques in single-cell-level micro�uidics was made available via the following git

repository:

https://bitbucket.org/sungshic/gbimageanalyzer.git.

Downloading the source code:

$ git clone https :// bitbucket.org/sungshic/gbimageanalyzer.git
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A.6 Estimating relative molar mass of macro-molecules in

biomass reaction

Table A.1: Composition of peptidoglycan polymer reaction of B. subtilis genome-
scale metabolic model

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd03495 1 reactant met polymer C95H152N8O28P2 1916.20 1916.2
cpd15666 1 reactant met polymer C40H63N8O21R 991.97 991.97
cpd02229 1 by-product met polymer C55H90O7P2 925.24 925.24
cpd15665 1 product met polymer C80H125N16O42R 1982.93 1982.93

Table A.2: Composition of cell wall synthesis reaction of B. subtilis genome-scale
metabolic model

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd11459 0.0145 reactant met polymer C420H692N30O391P30 13347.14 193.53353
cpd15665 0.453 reactant met polymer C80H125N16O42R 1982.93 898.26729
cpd15667 0.016 reactant met polymer C191H359N10O259P46R 8364.59 133.83344
cpd15668 0.0112 reactant met polymer C326H584N55O304P46R 11563.08 129.506496
cpd15669 0.00808 reactant met polymer C461H809N10O484P46R 15660.90 126.540072
cpd15666 0.48828 by-product met polymer C40H63N8O21R 991.97 484.3591116
cpd15664 1 product Cell wall N/A 997.32 997.3217164

Table A.3: Composition of protein synthesis reaction of B. subtilis genome-scale
metabolic model

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd00023 0.4928 reactant L-glu C5H8NO4 146.12 72.007936
cpd00033 0.7723 reactant L-gly C2H5NO2 75.07 57.976561
cpd00035 0.5051 reactant L-ala C3H7NO2 89.09 44.999359
cpd00039 0.6114 reactant L-lys C6H15N2O2 147.19 89.991966
cpd00041 0.2801 reactant L-asp C4H6NO4 132.09 36.998409
cpd00051 0.3653 reactant L-arg C6H15N4O2 175.21 64.004213
cpd00053 0.4928 reactant L-gln C5H10N2O3 146.14 72.017792
cpd00054 0.4091 reactant L-ser C3H7NO3 105.09 42.992319
cpd00060 0.2145 reactant L-met C5H11NO2S 149.21 32.005545
cpd00065 0.1028 reactant L-trp C11H12N2O2 204.22 20.993816
cpd00066 0.3329 reactant L-phe C9H11NO2 165.19 54.991751
cpd00069 0.2097 reactant L-tyr C9H11NO3 181.19 37.995543
cpd00084 0.1073 reactant L-cys C3H7NO2S 121.16 13.000468
cpd00107 0.6555 reactant L-leu C6H13NO2 131.17 85.981935
cpd00119 0.1546 reactant L-his C6H9N3O2 155.15 23.98619
cpd00129 0.3041 reactant L-pro C5H8NO2 114.12 34.703892
cpd00132 0.2801 reactant L-asn C4H8N2O3 132.12 37.006812
cpd00156 0.5807 reactant L-val C5H11NO2 117.15 68.029005
cpd00161 0.3526 reactant L-thr C4H9NO3 119.12 42.001712
cpd00322 0.5107 reactant L-ile C6H13NO2 131.17 66.988519
cpd11463 1 product Protein N/A 998.67 998.673743
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Table A.4: Composition of lipid synthesis reaction of B. subtilis genome-scale
metabolic model

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd15529 0.01816 reactant metabolite C33H66NO8P 635.85 11.547036
cpd15531 0.07327 reactant metabolite C37H74NO8P 691.96 50.6999092
cpd15533 0.02483 reactant metabolite C41H82NO8P 748.06 18.5743298
cpd15536 0.005699 reactant metabolite C34H66O10P 665.85 3.79467915
cpd15538 0.02308 reactant metabolite C38H74O10P 721.96 16.6628368
cpd15540 0.007846 reactant metabolite C42H82O10P 778.07 6.10473722
cpd15695 0.05369 reactant metabolite C39H78NO8P 720.01 38.6573369
cpd15696 0.1262 reactant metabolite C39H78NO8P 720.01 90.865262
cpd15697 0.008684 reactant metabolite C33H66NO8P 635.85 5.5217214
cpd15698 0.1459 reactant metabolite C35H70NO8P 663.90 96.86301
cpd15699 0.2473 reactant metabolite C35H70NO8P 663.90 164.18247
cpd15700 0.0341 reactant metabolite C37H74NO8P 691.96 23.595836
cpd15707 0.008709 reactant metabolite C53H98O20 1055.33 9.19086897
cpd15708 0.002095 reactant metabolite C49H90O20 999.22 2.0933659
cpd15709 0.003029 reactant metabolite C57H106O20 1111.44 3.36655176
cpd15710 0.006468 reactant metabolite C55H102O20 1083.38 7.00730184
cpd15711 0.0152 reactant metabolite C55H102O20 1083.38 16.467376
cpd15712 0.001002 reactant metabolite C49H90O20 999.22 1.00121844
cpd15713 0.0171 reactant metabolite C51H94O20 1027.28 17.566488
cpd15714 0.02897 reactant metabolite C51H94O20 1027.28 29.7603016
cpd15715 0.004053 reactant metabolite C53H98O20 1055.33 4.27725249
cpd15722 0.01694 reactant metabolite C40H78O10P 750.01 12.7051694
cpd15723 0.03982 reactant metabolite C40H78O10P 750.01 29.8653982
cpd15724 0.002726 reactant metabolite C34H66O10P 665.85 1.8151071
cpd15725 0.04589 reactant metabolite C36H70O10P 693.91 31.8435299
cpd15726 0.07776 reactant metabolite C36H70O10P 693.91 53.9584416
cpd15727 0.01074 reactant metabolite C38H74O10P 721.96 7.7538504
cpd15728 0.01447 reactant metabolite C47H88O15 893.19 12.9244593
cpd15729 0.003517 reactant metabolite C43H80O15 837.08 2.94401036
cpd15730 0.004989 reactant metabolite C51H96O15 949.30 4.7360577
cpd15731 0.0107 reactant metabolite C49H92O15 921.24 9.857268
cpd15732 0.02515 reactant metabolite C49H92O15 921.24 23.169186
cpd15733 0.001682 reactant metabolite C43H80O15 837.08 1.40796856
cpd15734 0.02855 reactant metabolite C45H84O15 865.14 24.699747
cpd15735 0.04838 reactant metabolite C45H84O15 865.14 41.8554732
cpd15736 0.006735 reactant metabolite C47H88O15 893.19 6.01563465
cpd15737 0.01119 reactant metabolite C41H78O10 731.05 8.1804495
cpd15738 0.00276 reactant metabolite C37H70O10 674.94 1.8628344
cpd15739 0.003807 reactant metabolite C45H86O10 787.15 2.99668005
cpd15740 0.008216 reactant metabolite C43H82O10 759.10 6.2367656
cpd15741 0.01931 reactant metabolite C43H82O10 759.10 14.658221
cpd15742 0.00132 reactant metabolite C37H70O10 674.94 0.8909208
cpd15743 0.02224 reactant metabolite C39H74O10 703.00 15.63472
cpd15744 0.03768 reactant metabolite C39H74O10 703.00 26.48904
cpd15745 0.005208 reactant metabolite C41H78O10 731.05 3.8073084
cpd15782 0.002845 reactant metabolite C44H88N2O11P 852.15 2.42436675
cpd15783 0.0006934 reactant metabolite C40H80N2O11P 796.04 0.551974136
cpd15784 0.0009777 reactant metabolite C48H96N2O11P 908.25 0.887996025
cpd15785 0.0021 reactant metabolite C46H92N2O11P 880.20 1.84842
cpd15786 0.004935 reactant metabolite C46H92N2O11P 880.20 4.343787
cpd15787 0.0003316 reactant metabolite C40H80N2O11P 796.04 0.263966864
cpd15788 0.005621 reactant metabolite C42H84N2O11P 824.09 4.63220989
cpd15789 0.009523 reactant metabolite C42H84N2O11P 824.09 7.84780907
cpd15790 0.001324 reactant metabolite C44H88N2O11P 852.15 1.1282466
cpd15791 0.0005977 reactant metabolite C73H140O17P2 1351.82 0.807982814
cpd15792 0.0001484 reactant metabolite C65H124O17P2 1239.61 0.183958124
cpd15793 0.0002022 reactant metabolite C81H156O17P2 1464.04 0.296028888
cpd15794 0.0004375 reactant metabolite C77H148O17P2 1407.93 0.615969375
cpd15795 0.001028 reactant metabolite C77H148O17P2 1407.93 1.44735204
cpd15797 0.001192 reactant metabolite C69H132O17P2 1295.72 1.54449824
cpd15798 0.002019 reactant metabolite C69H132O17P2 1295.72 2.61605868
cpd15799 0.0002781 reactant metabolite C73H140O17P2 1351.82 0.375941142
cpd15800 1 product Lipid N/A 995.92 995.9246962
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Table A.5: Composition of LAC synthesis reaction of B. subtilis genome-scale
metabolic model

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd15746 0.004866 reactant metabolite C119H232O135P24 4566.40 22.2201024
cpd15747 0.001122 reactant metabolite C115H224O135P24 4510.29 5.06054538
cpd15748 0.001761 reactant metabolite C123H240O135P24 4622.50 8.1402225
cpd15749 0.003687 reactant metabolite C121H236O135P24 4594.45 16.93973715
cpd15750 0.008667 reactant metabolite C121H236O135P24 4594.45 39.82009815
cpd15751 0.0005365 reactant metabolite C115H224O135P24 4510.29 2.419770585
cpd15752 0.009356 reactant metabolite C117H228O135P24 4538.34 42.46070904
cpd15753 0.01585 reactant metabolite C117H228O135P24 4538.34 71.932689
cpd15754 0.002264 reactant metabolite C119H232O135P24 4566.40 10.3383296
cpd15755 0.002269 reactant metabolite C263H472O255P24 8457.76 19.19065744
cpd15756 0.0005201 reactant metabolite C259H464O255P24 8401.66 4.369703366
cpd15757 0.0008257 reactant metabolite C267H480O255P24 8513.87 7.029902459
cpd15758 0.001724 reactant metabolite C265H476O255P24 8485.81 14.62953644
cpd15759 0.004053 reactant metabolite C265H476O255P24 8485.81 34.39298793
cpd15760 0.0002488 reactant metabolite C259H464O255P24 8401.66 2.090333008
cpd15761 0.00435 reactant metabolite C261H468O255P24 8429.71 36.6692385
cpd15762 0.00737 reactant metabolite C261H468O255P24 8429.71 62.1269627
cpd15763 0.001056 reactant metabolite C263H472O255P24 8457.76 8.93139456
cpd15764 0.002032 reactant metabolite C311H544N24O255P24 9443.00 19.188176
cpd15765 0.0004655 reactant metabolite C307H536N24O255P24 9386.90 4.36960195
cpd15766 0.0007401 reactant metabolite C315H552N24O255P24 9499.11 7.030291311
cpd15767 0.001545 reactant metabolite C313H548N24O255P24 9471.06 14.6327877
cpd15768 0.003631 reactant metabolite C313H548N24O255P24 9471.06 34.38941886
cpd15769 0.0002227 reactant metabolite C307H536N24O255P24 9386.90 2.09046263
cpd15770 0.003895 reactant metabolite C309H540N24O255P24 9414.95 36.67123025
cpd15771 0.006599 reactant metabolite C309H540N24O255P24 9414.95 62.12925505
cpd15772 0.0009457 reactant metabolite C311H544N24O255P24 9443.00 8.9302451
cpd15773 0.006441 reactant metabolite C191H352N24O159P24 6272.26 40.39962666
cpd15774 0.00148 reactant metabolite C187H342N24O159P24 6214.14 9.1969272
cpd15775 0.002339 reactant metabolite C195H360N24O159P24 6328.37 14.80205743
cpd15776 0.004889 reactant metabolite C193H356N24O159P24 6300.31 30.80221559
cpd15777 0.01149 reactant metabolite C193H356N24O159P24 6300.31 72.3905619
cpd15778 0.0007078 reactant metabolite C187H344N24O159P24 6216.16 4.399798048
cpd15779 0.01236 reactant metabolite C189H348N24O159P24 6244.21 77.1784356
cpd15780 0.02094 reactant metabolite C189H349N24O159P24 6245.22 130.7749068
cpd15781 0.002997 reactant metabolite C191H352N24O159P24 6272.26 18.79796322
cpd15670 1 product LAC N/A 996.94 996.9368815

Table A.6: Composition of DNA synthesis reaction of B. subtilis genome-scale
metabolic model

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd00115 0.884 reactant dATP C10H13N5O12P3 488.16 431.53344
cpd00241 0.6692 reactant dGTP C10H13N5O13P3 504.16 337.383872
cpd00356 0.6684 reactant dCTP C9H13N3O13P3 464.13 310.224492
cpd00357 0.8807 reactant dTTP C10H14N2O14P3 479.14 421.978598
cpd00012 3.1023 by-product PPi H2O7P2 175.96 545.880708
cpd11461 1 product DNA N/A 955.24 955.239694

Table A.7: Composition of mRNA synthesis reaction of B. subtilis genome-scale
metabolic model

Cmp ID Stoichiometry Rxn role Kind Molecular formula RMMg/mol NMWg/molprod
cpd00002 0.7706 reactant ATP C10H13N5O13P3 504.16 388.505696
cpd00038 0.9496 reactant GTP C10H13N5O14P3 520.16 493.943936
cpd00052 0.5853 reactant CTP C9H13N3O14P3 480.13 281.020089
cpd00062 0.6331 reactant UTP C9H12N2O15P3 481.12 304.597072
cpd00012 2.9386 by-product PPi H2O7P2 175.96 517.076056
cpd11462 1 product mRNA N/A 950.99 950.990737
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3/23/2017 7:37:03 PM

https://benchling.com/sungshic/f/1wM77uAw-pmutin_evo/seq-j1oEsqcs-evo_insert/edit 1/5

evo_insert (3579 bp)
AGCTTATCCTTTGGTACACCAGCGACCCCGCCAAAACATTCGACGGGAAAATAGAAACGTTGATACATAGTGAGGGATTAAACAATGGCCGGTTATACGCCTATGAT

TCGAATAGGAAACCATGTGGTCGCTGGGGCGGTTTTGTAAGCTGCCCTTTTATCTTTGCAACTATGTATCACTCCCTAATTTGTTACCGGCCAATATGCGGATACTA

mutS_5p_homology

sequencewasher

primer

primer

20 40 60 80 100

ACAGCAATATTTAAAAATAAAGGCAGAGCACCAGGATGCCTTTTTATTTTTTCGCCTGGGTGATTTTTATGAAATGTTTTTTGAGGACGCCAAAAAAGCGTCACAAG

TGTCGTTATAAATTTTTATTTCCGTCTCGTGGTCCTACGGAAAAATAAAAAAGCGGACCCACTAAAAATACTTTACAAAAAACTCCTGCGGTTTTTTCGCAGTGTTC

mutS_5p_homology

sequence

120 140 160 180 200

AGCTGGAAATTACGTTAACGAGCAGAGACGGCGGTGCGGCTGAAAAAATACCGATGTGCGGTGTGCCGTATCATTCTGCTTCCGCGTATATCGAACAGCTTATTAAA

TCGACCTTTAATGCAATTGCTCGTCTCTGCCGCCACGCCGACTTTTTTATGGCTACACGCCACACGGCATAGTAAGACGAAGGCGCATATAGCTTGTCGAATAATTT

mutS_5p_homology

sequence

220 240 260 280 300 320

AAAGGATACAAAGTGGCGATCTGTGAACAGACGGAAGATCCGAAAGCCGCAAAGGGCGTTGTGAAAAGAGAAGTAGTTCAGCTGATTACGCCCGGAACTGTAATGGA

TTTCCTATGTTTCACCGCTAGACACTTGTCTGCCTTCTAGGCTTTCGGCGTTTCCCGCAACACTTTTCTCTTCATCAAGTCGACTAATGCGGGCCTTGACATTACCT

mutS_5p_homology

sequence

340 360 380 400 420

CGGCAAAGGCATCCATGAGTCGGAAAATAATTTTATCGCATCTGTTTCAGCCTGCTCGAACGGATACGGACTTGCTCTGTCTGATTTAACAACGGGAGAAAATTTGG

GCCGTTTCCGTAGGTACTCAGCCTTTTATTAAAATAGCGTAGACAAAGTCGGACGAGCTTGCCTATGCCTGAACGAGACAGACTAAATTGTTGCCCTCTTTTAAACC

mutS_5p_homology

sequence

440 460 480 500 520

CTGTTTTGATATCCCGTACGGGTCATCCAGAAGCCTTGCATATCCTGCAAGGTTTTTTTGTTTTTATAAATCATGATATGTCTAGGACGCCGCCAAGCTAGCTTAAA

GACAAAACTATAGGGCATGCCCAGTAGGTCTTCGGAACGTATAGGACGTTCCAAAAAAACAAAAATATTTAGTACTATACAGATCCTGCGGCGGTTCGATCGAATTT

sequence

rrnB_term

540 560 580 600 620 640

CCCAGCTCAATGAGCTGGGTTTTTTGTTTGTTAAAAATGAAGAAGAAACTGTGAAGCGTATTCGTCGGCGAGTGGTTGTTGGCCGGTGGACAAGTAGGGCATGATCC

GGGTCGAGTTACTCGACCCAAAAAACAAACAATTTTTACTTCTTCTTTGACACTTCGCATAAGCAGCCGCTCACCAACAACCGGCCACCTGTTCATCCCGTACTAGG

rrnO_term_AAGCTT_TAGCTT

sequence

washer

primer

primer

660 680 700 720 740

B Appendix B

B.1 The evo_insert construct
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3/23/2017 7:37:03 PMevo_insert (3579 bp) (from 750-1498 bp)

https://benchling.com/sungshic/f/1wM77uAw-pmutin_evo/seq-j1oEsqcs-evo_insert/edit 2/5

AAATAAAAAACTAGTTTGACAAATAACTCTATCAATGATAGAGTGTCAACAATGTACCCCCCTTATCGCTTCCCACAGACTTGGAAGCCCTCTGAATAAAGATTGTA

TTTATTTTTTGATCAAACTGTTTATTGAGATAGTTACTATCTCACAGTTGTTACATGGGGGGAATAGCGAAGGGTGTCTGAACCTTCGGGAGACTTATTTCTAACAT

PtetR_noRBS

PtetR_noRBS washer

primer

primer

760 780 800 820 840

TCCTTCGGGGCAGGGTGGAAATCCCGACCGGCGGTAGTAAAGCACATTTGCTTTAGAGCCCGTGACCCGTGTGCATAAGCACGCGGTGGATTCAGTTTAAGCTGAAG

AGGAAGCCCCGTCCCACCTTTAGGGCTGGCCGCCATCATTTCGTGTAAACGAAATCTCGGGCACTGGGCACACGTATTCGTGCGCCACCTAAGTCAAATTCGACTTC

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

ribD_fmn_sensor

860 880 900 920 940 960

CCGACAGTGAAAGTCTGGATGGGAGAAGGATGATGAGCCGCTATGCAAAATGTTTAAAAATGCATAGTGTTATTTCCTATTGCGTAAAATACCTAAAGCCCCGAATT

GGCTGTCACTTTCAGACCTACCCTCTTCCTACTACTCGGCGATACGTTTTACAAATTTTTACGTATCACAATAAAGGATAACGCATTTTATGGATTTCGGGGCTTAA

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

ribD_fmn_sensor

980 1,000 1,020 1,040 1,060

TTTTATAAATTCGGGGCTTTTTTGACGGTAAATAACAAAAGAGGGGAGGGAAACAAATGTCCAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAGCTGCTT

AAAATATTTAAGCCCCGAAAAAACTGCCATTTATTGTTTTCTCCCCTCCCTTTGTTTACAGGTCTAATCTATTTTCATTTCACTAATTGTCGCGTAATCTCGACGAA

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

ribD_fmn_sensor tetR

1,080 1,100 1,120 1,140 1,160

AATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTCGCCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAAAAATAAGCGGGCTTTGCTCGA

TTACTCCAGCCTTAGCTTCCAAATTGTTGGGCATTTGAGCGGGTCTTCGATCCACATCTCGTCGGATGTAACATAACCGTACATTTTTTATTCGCCCGAAACGAGCT

tetR

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

1,180 1,200 1,220 1,240 1,260 1,280

CGCCTTAGCCATTGAGATGTTAGATAGGCACCATACTCACTTTTGCCCTTTAGAAGGGGAAAGCTGGCAAGATTTTTTACGTAATAACGCTAAAAGTTTTAGATGTG

GCGGAATCGGTAACTCTACAATCTATCCGTGGTATGAGTGAAAACGGGAAATCTTCCCCTTTCGACCGTTCTAAAAAATGCATTATTGCGATTTTCAAAATCTACAC

tetR

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

1,300 1,320 1,340 1,360 1,380

CTTTACTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTACACGGCCTACAGAAAAACAGTATGAAACTCTCGAAAATCAATTAGCCTTTTTATGCCAACAAGGT

GAAATGATTCAGTAGCGCTACCTCGTTTTCATGTAAATCCATGTGCCGGATGTCTTTTTGTCATACTTTGAGAGCTTTTAGTTAATCGGAAAAATACGGTTGTTCCA

tetR

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

1,400 1,420 1,440 1,460 1,480
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3/23/2017 7:37:03 PMevo_insert (3579 bp) (from 1499-2247 bp)

https://benchling.com/sungshic/f/1wM77uAw-pmutin_evo/seq-j1oEsqcs-evo_insert/edit 3/5

TTTTCACTAGAGAATGCATTATATGCACTCAGCGCTGTGGGGCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAGTCGCTAAAGAAGAAAGGGAAAC

AAAAGTGATCTCTTACGTAATATACGTGAGTCGCGACACCCCGTAAAATGAAATCCAACGCATAACCTTCTAGTTCTCGTAGTTCAGCGATTTCTTCTTTCCCTTTG

tetR

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

1,500 1,520 1,540 1,560 1,580 1,600

ACCTACTACTGATAGTATGCCGCCATTATTACGACAAGCTATCGAATTATTTGATCACCAAGGTGCAGAGCCAGCCTTCTTATTCGGCCTTGAATTGATCATATGCG

TGGATGATGACTATCATACGGCGGTAATAATGCTGTTCGATAGCTTAATAAACTAGTGGTTCCACGTCTCGGTCGGAAGAATAAGCCGGAACTTAACTAGTATACGC

tetR

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

1,620 1,640 1,660 1,680 1,700

GATTAGAAAAACAACTTAAATGTGAAAGTGGGTCCGCTGCAAACGACGAAAACTACGCTTTAGTAGCTGCGGGCAAAACTAACAGTTTTAACCAAAACGTAGCAGAC

CTAATCTTTTTGTTGAATTTACACTTTCACCCAGGCGACGTTTGCTGCTTTTGATGCGAAATCATCGACGCCCGTTTTGATTGTCAAAATTGGTTTTGCATCGTCTG

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

tetR ssrA_AGKTNSFNQNVADAV

1,720 1,740 1,760 1,780 1,800

GCTGTTTAATAAGCATTCAAAGGAGGAATTCAAAATGAGCAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGC

CGACAAATTATTCGTAAGTTTCCTCCTTAAGTTTTACTCGTTTCCTCTTCTTGAAAAGTGACCTCAACAGGGTTAAGAACAACTTAATCTACCACTACAATTACCCG

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

sfGFPgsiB_RBS

1,820 1,840 1,860 1,880 1,900 1,920

ACAAATTTTCTGTCCGTGGAGAGGGTGAAGGTGATGCTACAAACGGAAAACTCACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCGTGGCCAACACTT

TGTTTAAAAGACAGGCACCTCTCCCACTTCCACTACGATGTTTGCCTTTTGAGTGGGAATTTAAATAAACGTGATGACCTTTTGATGGACAAGGCACCGGTTGTGAA

sfGFP

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

1,940 1,960 1,980 2,000 2,020

GTCACTACTCTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACG

CAGTGATGAGACTGGATACCACAAGTTACGAAAAGGGCAATAGGCCTAGTGTACTTTGCCGTACTGAAAAAGTTCTCACGGTACGGGCTTCCAATACATGTCCTTGC

sfGFP

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

2,040 2,060 2,080 2,100 2,120 2,140

CACTATATCTTTCAAAGATGACGGGACCTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAGGGTATTGATTTTAAAG

GTGATATAGAAAGTTTCTACTGCCCTGGATGTTCTGCGCACGACTTCAGTTCAAACTTCCACTATGGGAACAATTAGCATAGCTCAATTTCCCATAACTAAAATTTC

sfGFP

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

2,160 2,180 2,200 2,220 2,240

173



3/23/2017 7:37:03 PMevo_insert (3579 bp) (from 2248-2996 bp)

https://benchling.com/sungshic/f/1wM77uAw-pmutin_evo/seq-j1oEsqcs-evo_insert/edit 4/5

AAGATGGAAACATTCTTGGACACAAACTCGAGTACAACTTTAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATT

TTCTACCTTTGTAAGAACCTGTGTTTGAGCTCATGTTGAAATTGAGTGTGTTACATATGTAGTGCCGTCTGTTTGTTTTCTTACCTTAGTTTCGATTGAAGTTTTAA

sfGFP

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

2,260 2,280 2,300 2,320 2,340

CGCCACAACGTTGAAGATGGTTCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGAC

GCGGTGTTGCAACTTCTACCAAGGCAAGTTGATCGTCTGGTAATAGTTGTTTTATGAGGTTAACCGCTACCGGGACAGGAAAATGGTCTGTTGGTAATGGACAGCTG

sfGFP

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

2,360 2,380 2,400 2,420 2,440 2,460

ACAATCTGTCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAAT

TGTTAGACAGGAAAGCTTTCTAGGGTTGCTTTTCGCACTGGTGTACCAGGAAGAACTCAAACATTGACGACGACCCTAATGTGTACCGTACCTACTCGAGATGTTTA

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

sfGFP

2,480 2,500 2,520 2,540 2,560

GATGAAAAAAGCCGGCCTGTAATGGGCCGGCTTTTTTCTTACTTGCAATGAATTTCGCAGCTGTTCCATATCCTGCGCATCAAGCTGAGGAACCTGGTAATAGCCGT

CTACTTTTTTCGGCCGGACATTACCCGGCCGAAAAAAGAATGAACGTTACTTAAAGCGTCGACAAGGTATAGGACGCGTAGTTCGACTCCTTGGACCATTATCGGCA

ribD_fmn_sensor__tetR_ssrA__term_licBCAH__term_yhcP_ shim_xhoI

term_yhcPterm_licBCAH

2,580 2,600 2,620 2,640 2,660

GTTTGTTTTGGTATAGCTCGAGTACCTGACCCGTCAACTTTGTGCCAGAGCCGGTCTCAACCTCGAGTTCATGAAAAACTAAAAAAAATATTGAAACTCTATCATTG

CAAACAAAACCATATCGAGCTCATGGACTGGGCAGTTGAAACACGGTCTCGGCCAGAGTTGGAGCTCAAGTACTTTTTGATTTTTTTTATAACTTTGAGATAGTAAC

sequencewasher

primer

primer

term_yhcP

2,680 2,700 2,720 2,740 2,760 2,780

ATAGAGTAAGATGAAAATGAGCAGGGGAAGAGTGGCCGCCTAGTTGCATTATTGGACGAAAAGGAGGAATTCAAAATGAACTTTAATAAAATTGATTTAGACAATTG

TATCTCATTCTACTTTTACTCGTCCCCTTCTCACCGGCGGATCAACGTAATAACCTGCTTTTCCTCCTTAAGTTTTACTTGAAATTATTTTAACTAAATCTGTTAAC

washer

cat CDS

sequence

cat geneprimer

primersequence sequence

2,800 2,820 2,840 2,860 2,880

GAAGAGAAAAGAGATATTTAATCATTATTTGAACCAACAAACGACTTTTAGTATAACCACAGAAATTGATATTAGTGTTTTATACCGAAACATAAAACAAGAAGGAT

CTTCTCTTTTCTCTATAAATTAGTAATAAACTTGGTTGTTTGCTGAAAATCATATTGGTGTCTTTAACTATAATCACAAAATATGGCTTTGTATTTTGTTCTTCCTA

cat CDS

sequence

cat gene

2,900 2,920 2,940 2,960 2,980
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3/23/2017 7:37:03 PMevo_insert (3579 bp) (from 2997-3579 bp)

https://benchling.com/sungshic/f/1wM77uAw-pmutin_evo/seq-j1oEsqcs-evo_insert/edit 5/5

ATAAATTTTACCCTGCATTTATTTTCTTAGTGACAAGGGTGATAAACTCAAATACAGCTTTTAGAACTGGTTACAATAGCGACGGAGAGTTAGGTTATTGGGATAAG

TATTTAAAATGGGACGTAAATAAAAGAATCACTGTTCCCACTATTTGAGTTTATGTCGAAAATCTTGACCAATGTTATCGCTGCCTCTCAATCCAATAACCCTATTC

cat CDS
sequence
cat gene

3,000 3,020 3,040 3,060 3,080 3,100

TTAGAGCCACTTTATACAATTTTTGATGGTGTATCTAAAACATTCTCTGGTATTTGGACTCCTGTAAAGAATGACTTCAAAGAGTTTTATGATTTATACCTTTCTGA

AATCTCGGTGAAATATGTTAAAAACTACCACATAGATTTTGTAAGAGACCATAAACCTGAGGACATTTCTTACTGAAGTTTCTCAAAATACTAAATATGGAAAGACT

cat CDS
sequence
cat gene

3,120 3,140 3,160 3,180 3,200

TGTAGAGAAATATAATGGTTCGGGGAAATTGTTTCCCAAAACACCTATACCTGAAAATGCTTTTTCTCTTTCTATTATTCCATGGACTTCATTTACTGGGTTTAACT

ACATCTCTTTATATTACCAAGCCCCTTTAACAAAGGGTTTTGTGGATATGGACTTTTACGAAAAAGAGAAAGATAATAAGGTACCTGAAGTAAATGACCCAAATTGA

cat CDS
sequence
cat gene

3,220 3,240 3,260 3,280 3,300

TAAATATCAATAATAATAGTAATTACCTTCTACCCATTATTACAGCAGGAAAATTCATTAATAAAGGTAATTCAATATATTTACCGCTATCTTTACAGGTACATCAT

ATTTATAGTTATTATTATCATTAATGGAAGATGGGTAATAATGTCGTCCTTTTAAGTAATTATTTCCATTAAGTTATATAAATGGCGATAGAAATGTCCATGTAGTA

cat CDS
sequence
cat gene

3,320 3,340 3,360 3,380 3,400 3,420

TCTGTTTGTGATGGTTATCATGCAGGATTGTTTATGAACTCTATTCAGGAATTGTCAGATAGGCCTAATGACTGGCTTTTATAATATGAGATAATGCCGACTGTACT

AGACAAACACTACCAATAGTACGTCCTAACAAATACTTGAGATAAGTCCTTAACAGTCTATCCGGATTACTGACCGAAAATATTATACTCTATTACGGCTGACATGA

sequence
cat CDS

cat gene

3,440 3,460 3,480 3,500 3,520

TTTTACAGTCGGTTTTCTAATGTCACTAACCTGCCCCGTTAGTTGAAG

AAAATGTCAGCCAAAAGATTACAGTGATTGGACGGGGCAATCAACTTC

sequence
primer

primer

3,540 3,550 3,560 3,570
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B.2 The pMUTIN4 plasmid vector

October 2, 2016 7:42:19 PM GMT+1

https://benchling.com/sungshic/f/rAbar4R2-my-project/seq-wpMESbQx-pmutin4/edit 1/1

pMUTIN4 (8622 bp)

pMUTIN4
8622 bp

lacZ

lacI

er
mA
M

RBS (spoVG)

Pspac

source

HindIII,BamHI,AfeI,EcoRI,TspMI,XmaI,SmaI,+4
FspI,Bsu36I

BaeI

Bpu10I
ZraI,AatII

BfuAI,BspMI
BspDI
ClaI

DraIII
PflMI
BsaBI
BclI
+1
MauBI
PflMI

AfeI

+1
SacI

BfuAI,BspMI
PciI

BsiWI

PfoI,BlpI
SwaI

BsiWI,SnaBI,AjuI
BstAPI

BclI
BstEII,BstEII,PspOMI,ApaI

BssHII,KasI,NarI,SfoI,PluTI,+1
PfoI

PflFI,Tth111I
BstAPI,BspQI,SapI

PciI
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Figure B.1: The pMUTIN4 plasmid map
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B.3 The pSG1729 plasmid vector

October 2, 2016 7:37:41 PM GMT+1

https://benchling.com/sungshic/f/rAbar4R2-my-project/seq-6SJn6E9w-psg1729/edit 1/1
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Figure B.2: The pSG1729 plasmid map
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B.4 Primers used for colony PCR

Table B.1: Primers used for colony PCR of B. subtilis BSB1 with pMUTIN4_evo

Primer ID Oligo sequence Length GC(%) Tm(°C)
evo_insert_fwd1 AGCGTTACATGGAGCTGGTGCG 22 59 73
evo_insert_rev1 CGTCCAATAATGCAACTAGGCGGC 24 54 71

Table B.2: Primers used for colony PCR of B. subtilis BSB1 with pSG1729_EVOt2

Primer ID Oligo sequence Length GC(%) Tm(°C)
pEVOt2_colpcr_fwd AGAGTGTGATGATAAGTGG 19 42 56
pEVOt2_colpcr_rev TTGAATTCCTCCTTTTCGTC 20 40 58
colpcr_pSG_spec_cds_fwd CTGAACCAAATAGATATACTCC 22 36 56
colpcr_amyE_3p_end_rev AAGTATTTCACATTTATATTGTGC 24 25 55

B.5 Media recipes

B.5.1 Spizizen Minimal Media (SMM) - per 1 L solution

� 2.0 g ammonium sulphate ((NH4)2SO4)

� 14.0 g dipotassium hydrogen phosphate (K2HPO4)

� 6.0 g potassium dihydrogen phosphate (KH2PO4)

� 1.0 g sodium citrate dehydrate (trisodium citrate), (Na3.citrate.2H2O)

� 0.2 g magnesium sulphate, (MgSO4.7H2O)

� Make up to 1 L using MilliQ H2O, and use a hotplate-stirrer to mix and

dissolve the ingredients.

� Split the solution into 5X 200 mL bottles, and autoclave them using a sensi-

tive cycle.
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B.5.2 MM competence media - per 5 mL

This media needs to be prepared just prior to use.

� 5 mL SMM media (see B.5.1)

� 62.5 µL Solution E (40 % glucose)

� 50µL tryptophan solution1

� 30µL Solution F (1 M MgSO4 or MnSO4)

� 5 µL casamino acid

� 2.5 µL Fe�NH4 �citrate

B.5.3 Starvation media - per 5 mL

This media needs to be prepared just prior to use.

� 5 mL SMM media (see B.5.1)

� 62.5 µL Solution E (40 % glucose)

� 30µL Solution F (1 M MgSO4 or MnSO4)

1Necessary for 168, a tryptophan auxotroph strain
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C Appendix C

C.1 Analysis of sub-micron micro�uidics wafer design and

production

The production of micro�uidics chips requires a complex design and manufacture

process. This process is increasingly more complex when sub-micron features are

required within the chip. Designs for micro�uidics chips were produced using

L-edit software, with a constant channel depth across the designs of 1.4 µm. The

designs were used to manufacture a wafer mask and subsequently produce a silicon

wafer with the design etched upon it with lithography techniques.

In order to achieve sub-micron scale features two masks were prepared: one for

shallow features (i.e. 1.4 µm) and one for deep features (i.e. 40µm). The wafers

were then prepared using the process described in Figure 7.1 and Section 7.2.

This novel production process was meticulously designed to minimise the costly

optimisation need at the foundry. One of the fabricated silicon wafers was charac-

terised using electron microscopy, in order to determine whether this novel process

can successfully produce the intended feature dimensions of my sub-micron scale

micro�uidics design.

The silicon wafer was cleaned by soaking in the order of isopropanol, acetone,

and isopropanol. An intermediate mould was made using a thin layer of hard-

PDMS for the micro�uidic features and a thick layer of soft-PDMS as a support.

Please refer to Section C.3 for the details on the wafer cleaning and the mould

making protocols. Then, the intermediate mould was surface salinized, and cast

with soft-PDMS to make a reverse mould. This reverse mould was prepared for

analysis on the scanning electron microscope (SEM). Micro�uidics designs to be

analysed were selected from across the wafer as shown in Figure C.1.

The reverse mould was diced up using a scalpel and samples with a maximum

size of 15 mm by 15 mm were cut out. Chip samples were cut diagonally across

the design to expose a cross section, for depth measurements. Samples were gold

plated after being mounted onto circular SEM stubs using carbon tapes (Electron

Microscopy Research services, Newcastle University). The samples were mounted
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Figure C.1: The SEM sample locations on the wafer: a bird's eye view

into the SEM (Cambridge Stereoscan 240) and images taken of the top surface of

the samples. SEM samples were then tilted to allow images showing the channel

depths to be taken. Sample images were then measured using ImageJ software.

The scale bar was measured �rst and the scale applied to the rest of the image.

Features of interest were then measured by applying lines to the image at high

magni�cation and using the measurement function.

For depth measurements, measured lines from the corresponding �at image

were transposed onto the same feature in the tilted image to compare the distortion

caused by perspective when looking at a three dimensional image (the scale bar at

the top of the tilted images is only accurate at the point of focus, due to the e�ect

of perspective). A series of lines were then drawn to assist with the measurement

and the measurement function used for �nal measurements. All lines drawn and

measurements taken appear on the images in the following section.
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(a) (b)

Figure C.2: Chip 1: design view vs product SEM view

(a) Design of one square repeat panel within Chip 1, including measurements of expected
�nal channel widths. (b) Overview SEM image showing the square panels repeating
across Chip 1, with deep gutters between rows of square panels.

C.2 Measurements of wafer mould samples

C.2.1 Chip 1

The width of the channels was designed to be 2.2 µm, 2.3 µm and 2.4 µm in a

repeating pattern. The back�ll depth was 0.8 µm of oxide from each surface. This

gives �nal channel widths of 0.6 µm, 0.7 µm and 0.8 µm (Figure C.2). The depth

of the shallow channels was designed to be 1.4 µm.

The SEM images in Figure C.3 shows the channel width and depth measure-

ments. The depth of channels within Chip 1 was measured at 1.2 µm. The width

measurements were summarised in Figure C.4 to have respective mean channel

widths of 0.63µm, 0.71µm and 0.78µm.
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(a) (b)

Figure C.3: Chip 1: SEM images with line overlays

The lines were overlaid in ImageJ to show measurements of channel widths (a) and
depths (b) using a tilted view.
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Figure C.4: Chip 1: comparison of fabricated vs designed channel width lengths

C.2.2 Chip 7

The width of the channels was designed to be 3.4 µm, 3.6µm and 3.8 µm in a

repeating pattern, with one closed end and the other opening onto the channel.
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(a) (b)

Figure C.5: Chip 7: design view vs product SEM view

(a) Design of one square repeat panel within Chip 7, including measurements of expected
�nal channel widths. (b) Overview SEM image showing the square panels repeating
across Chip 7, with deep gutters between rows of square panels.

The back�ll depth was 0.8 µm of oxide from each surface. This gives �nal channel

widths of 1.8 µm, 2.0 µm and 2.2 µm (Figure C.5). The depth of the channel was

designed to be 1.4 µm. The large �uid �ow gutter depth is designed to be 40µm.

The SEM image in Figure C.6 shows the measurements of channel width and

depth. The depth of channels within Chip07 was measured at 1.1 µm. Figure

C.7 summarises the respective mean channel widths to be 1.54µm, 1.64µm and

1.80µm. The channel depths and widths in Chip 7 resolved to be less than the

intended lengths.
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(a) (b)

Figure C.6: Chip 7: SEM images with line overlays

The lines were overlaid in ImageJ to show measurements of channel widths ((a)) and
depth ((b)) using a tilted view.

test1 test2 test3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

le
n
g
th

(u
m

)

1.54
1.64

1.801.80
2.00

2.20

Fabricated length
Designed length

Figure C.7: Chip 7: comparison of fabricated vs designed channel width lengths

C.2.3 Chip 8

The width of the channels was designed to be 2.2 µm, 2.3µm and 2.4 µm in a

repeating pattern, with one closed end and the other opening onto the channel.
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(a) (b)

Figure C.8: Chip 8: design view vs product SEM view

(a) Design of one square repeat panel within Chip 8, including measurements of expected
�nal channel widths. (b) Overview SEM image showing the square panels repeating
across Chip 8, with deep gutters between rows of square panels.

Circular features are present at the closed end of the channels and at intervals along

the channel. The diameter of the circle was designed to be 4.0 µm. The back�ll

depth was 0.8 µm of oxide from each surface. This gives �nal channel widths of

0.6 µm, 0.7 µm and 0.8 µm, and a circle diameter of 2.4 µm (Figure C.8). The

depth of the channel was designed to be 1.4 µm. The large �uid �ow gutter depth

is designed to be 40µm. The SEM image in Figure C.9 shows the measurements

of channel width. The circle diameter measured between 1.9 µm and 1.962µm.

Channel widths in this case measured as expected, though the circular features

diameters measured less than expected. Some damage can be seen to the circular

features in Figure C.9a It is not clear whether this is as a result of a blemish in the

original wafer or if it occurred during the production of the intermediate wafer.

The depth of channels within Chip08 could not be measured due to the lack of

appropriate SEM images. Figure C.9b summarises the respective mean channel

widths to be 0.60µm, 0.73µm and 0.72µm.
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(b)

Figure C.9: Chip 8: SEM images with line overlays

(a) SEM images with line overlays from ImageJ to show measurements of channel widths.
(b) Comparison of fabricated vs designed channel width lengths.

C.2.4 Chip 10

The width of the channels was designed to be 2.2 µm, 2.3µm and 2.4 µm in a

repeating pattern, with one closed end and the other opening onto the channel.

The dimensions of the diamond were designed to be 6.0 µm by 10.0 µm. The

back�ll depth was 0.8 µm of oxide from each surface. This gives �nal channel

widths of 0.6 µm, 0.7 µm and 0.8 µm, and diamond dimensions of 4.4 µm by 8.4 µm

(Figure C.10). The depth of the channel was designed to be 1.4 µm. The large �uid

�ow gutter depth is designed to be 40µm. The SEM image in Figure C.11 shows

the measurements of channel width. The shorter of the two diamond dimensions

measured between 3.417µm and 3.473µm. The depth of channels within Chip

10 could not be measured due to the lack of appropriate SEM images. Figure

C.11b summarises the respective mean channel widths to be 0.66µm, 0.76µm and

0.83µm.
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(a) (b)

Figure C.10: Chip 10: design view vs product SEM view

(a) Design of one square repeat panel within Chip 10, including measurements of ex-
pected �nal channel widths. (b) Overview SEM image showing the square panels re-
peating across Chip 10, with deep gutters between rows of square panels.

(a)

test1 test2 test3
0.0

0.5

1.0

1.5

le
n
g
th

(u
m

)

0.66
0.76

0.83

0.60
0.70

0.80

Fabricated length
Designed length

(b)

Figure C.11: Chip 10: SEM images with line overlays

(a) SEM images with line overlays from ImageJ to show measurements of channel widths.
(b) Comparison of fabricated vs designed channel width lengths.
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C.2.5 Wafer fabrication control features

Test features with a range of sizes and shapes were included in four corner positions

on the wafer. Two of these test features were assessed using SEM.
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(a) (b)

(c) (d)

Figure C.12: SEM images of control features for wafer fabrication and their mea-
surements

(a) SEM images with line overlays from ImageJ to show measurements of the rectangular
test features. (b) Comparison of fabricated vs designed control feature lengths. (c) SEM
images with line overlays from ImageJ to show measurements of the square test features.
(d) Comparison of fabricated vs designed control feature lengths.
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C.3 Wafer cleaning and micro�uidics mould production pro-

tocols

The following protocols were adapted from that of Cluzel's lab [123].

Reagents and items:

� Copolymer 1: (7-8% Vinylmethylsiloxane)-(dimethylsiloxane) copolymer; Gelest;

VDT-731

or Vinylmethylsiloxane-dimethylsiloxane copolymer, trimethysiloxy termi-

nated cSt 800-1200; Fluorochem Ltd.; VDT-731

� Copolymer 2: (25-30% methylhydrosiloxane) - dimethylsiloxane copolymer,

hydride terminated, 30-50 cst; Gelest; HMS-H271

or Methylhydrosiloxane- dimethylsiloxane copolymer, hydride terminated

cSt 30-50; Fluorochem Ltd.; HMS-HM271

� Modulator: 1,3,5,7-Tetramethyltetravinylcyclotetrasiloxane; Sigma; 396281

or 1,3,5,7-Tetravinyl tertamethylcyclotetrasiloxane; Fluorochem Ltd; S16500

� Catalyst: Platinum divinyl-tetramethyl-disiloxane; Gelest; SIP6839.3

or Platinum-divinyltetramethyldisiloxane complex in vinyl terminated poly-

dimethylsiloxane; Fluorochem Ltd; SIP6830.3

� Solvent: Hexane

� Sylgard 184 PDMS; Ellsworth

� Trideca�uoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane; United Chemical Tech-

nology;T2492

or 1H,1H,2H,2H-per�uorooctyltricholosilane; Fluorochem Ltd; S13125

� Isopropanol; VWR; BDH1133-4LP

� Acetone; VWR; BDH1101-4LP

� 200 mL glass Borosilicate bottle

� 200µL Pipette-man and tips
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� Disposable, plastic pipettes

� Electronic pipette controller

� Vacuum chamber

� Digital timer

� Hot plate

� Printed silicon wafers

� Large glass petri dish to hold wafer

� Large glass petri dishes for chemical baths

� Kim wipes or lens cleaning tissue

� Plastic petri dish

� Dremmel drill with co�ee frother adapter

� Scalpel

� Aluminum foil

� 70 % Ethanol spray

� Blue tack

C.3.1 Preparing the wafer

Protocol:

� Rinse wafer in order with isopropanol, acetone, and then isopropanol in large

glass petri dishes. Take care not to let the residue from the gloves deposit

on the wafer.

� Let the wafer sit in room temperature to dry (optionally using an N2 air

blow gun).
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� Stick the wafer onto the inverted cap of a 14 mL culture tube using blue

tack and then onto the �oor of the vacuum chamber in the fume hood. By

balancing the wafer on the cap, both sides of the wafer will be silanized. This

step prevents PDMS from sticking to the bottom of the wafer.

� Place 40µL of Trideca�uoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane on a

kim wipe placed in the bottom of a plastic petri dish. Place within the

vacuum chamber. This compound is corrosive, so take appropriate precau-

tions. Only silanize within the dedicated vacuum chamber in the hood.

� Apply vacuum using a vacuum pump, taking extra caution not to knock o�

the wafer. If wafer tilts, stop and secure it.

� Allow the wafer to incubate for 30 minutes.

� Turn o� house vacuum and slowly reintroduce air to the chamber. If air is

introduced too quickly, the wafer can be thrown against the chamber and be

damaged.

C.3.2 Preparing the aluminium wafer holder

Protocol:

� Clean any dust or residual PDMS from the glass dish to be used as a holder.

� Place a layer of aluminum foil (one piece) dull side up, on the bottom and

up the side walls of the holder. The layer of aluminum foil allows the PDMS

coated wafer to be easily removed from the holder, reducing the risk of

cracking the wafer in later steps.

C.3.3 Preparing the h-PDMS

Quantities are for a 6 inch wafer, though making this amount for a 4 inch wafer

allows for any leftover in the bottle to be spared in making sure the coverage is

even.

Protocol:
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� Add the following to a 200 mL Borosilicate bottle and mix well using the

Dremmel and co�ee frother adapter at the lowest speed setting (5000 RPM).

� 13.6 g copolymer 1 (pour directly from bottle).

� 72µL catalyst (pipette slowly from bottle with 200µL tip; watch the

meniscus to make sure that the tip is �lled.

� Add the following to the above mixture and mix well using the Dremmel and

co�ee frother adapter at the lowest speed setting (5000 RPM).

� 0.4 g modulator (use a disposable pipette to transfer this from the bot-

tle).

� 4 g copolymer 2 (use a disposable pipette).

� 2 g hexane (use a disposable pipette).

� Degas this mixture in the vacuum chamber for 5 minutes, increasing

and decreasing the pressure to pop the bubbles.

� A thin layer of bubbles may remain on the surface, as they will eventu-

ally disappear.

C.3.4 Creating the h-PDMS layer

Protocol:

� Heat hot plate to 65 ◦C (outside the vacuum chamber).

� While the h-PDMS is degassing, mount the wafer on the spin coater.

� Use the largest spin chuck.

� The aluminum foil from previous users may need to be removed to �t

the wafer in place.

� Following the instructions on the spin coater, create the following program:

� Speed: 100 RPM; Duration: 1 minute (Named program T)

� When the h-PDMS is done degassing, remove it from the vacuum chamber.
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� Start the spin coater, and gently pour the h-PDMS onto the spinning wafer.

� Start in the center and move outwards until the entire wafer is coated.

� Stop the spin coater when the wafer is completely coated.

� Gently remove the wafer and place it on a circular piece of paper towel.

� Place the wafer and towel in the vacuum chamber and degas for 3 minutes.

� After 1 minute bubbles should form on the surface of the wafer and

migrate to the surface.

� Take care not to spread PDMS on the bottom of the wafer as this will

interfere with the vacuum seal needed by the spin coater. PDMS can

be removed from the bottom of the wafer with a kim wipe.

� While the wafer is degassing, reprogram the spin coater with the following

program:

� 500 RPM for 5 s followed by 1000 RPM for 40 s (Named program S)

� When the wafer is done degassing (3 minutes), place it on the spin coater

and run the above program, with the lid on.

� During the 3 minute degas step, the h-PDMS may have slowly withdrawn

from some of the external chips. Make a note of these chips on the blemish

chart, and at the end of the process discard the PDMS intermediates created

from them.

� Place the wafer in the glass petri dish and place the holder on the 65 ◦C hot

plate.

� Bake the wafer for 45 minutes.

� Begin the next step whilst baking is underway.
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C.3.5 Creating the s-PDMS support layer

Quantities are for a 6-inch wafer, if making a 4-inch wafer use the quantities in

brackets.

Protocol:

� Mix 70 g (50 g) of Sylgard 184 base with 7 g (5 g) of the Sylgard 184 curing

agent in a 200 mL Borosilicate bottle using the Dremmel and co�ee frother

attachment.

� Degas for 30 minutes in a vacuum chamber.

� While the s-PDMS is degassing, place the wafer, in the aluminum wafer

holder, on a hot plate set at 65 ◦C.

� After the s-PDMS has degassed, remove the wafer holder from the hot plate,

and gently pour the s-PDMS onto the wafer.

� Allow the s-PDMS to settle and coat the wafer ( 5 minutes), and then place

the wafer holder back on the hot plate.

� Cover with the Pyrex cover and bake overnight. A more solid mould can be

obtained by extending the bake step to 24 hours.

C.3.6 Removing the PDMS intermediate mould from the wafer

Protocol:

� When done baking, remove the wafer holder from the hot plate and allow to

cool to room temperature.

� In the following steps be very careful to never bend or apply pressure to the

silicon wafer. It will crack under gentle pressure.

� Gently remove the side wall of the wafer holder. The PDMS intermediates,

the wafer, and the bottom layer of aluminum foil will come o� with the side

wall.

196



� Gently �ip over the side wall/wafer/PDMS intermediate and slowly remove

the aluminum foil.

� Gently insert a scalpel between the PDMS intermediate and the aluminum

side wall. Run the scalpel around the edge of the intermediate to dislodge

the intermediate from the side wall.

� Remove any PDMS that has leaked under the wafer by running the scalpel

along the edge of the wafer.

� Flip the intermediate and the wafer over so that the wafer is lying �at on

the table.

� Gently peel the PDMS intermediate from the wafer.

� Move very slowly. The entire process should take at least 5 minutes. Re-

moving the intermediate too quickly will damage the intermediate and will

leave residual PDMS on the surface of the wafer.

� Once the intermediate has been removed, wash the wafer with isopropanol,

acetone, and isopropanol, as above, and dry with N2. Return the wafer to

its plastic storage disk.

� Dice the PDMS intermediates and place in a labeled container.
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Glossary (Abbreviations)

CAD Computer Aided Design. 81, 85, 133

NGS Next Generation Sequencing. 69�72

SBO Systems Biology Ontology. 93
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Glossary (Abbreviations)
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Glossary (Nomenclature)

DEA Dual-evolutionary algorithm or dual-evolutionary approach. 7�10, 17, 19�

22, 66, 67, 69�71, 78, 97, 111, 112, 114, 115, 118�126, 130, 156�162

DNA Deoxyribonucleic acid. 19, 53, 56, 69, 79, 162, 170

DRIE Deep Reactive Ion Etching. 127�129

EA Evolutionary algorithm. 20, 71, 110, 111, 118, 160

EtBr Ethidium bromide. 25, 48

FAD Flavin adenine dinucleotide. 59

FBA Flux Balance Analysis. 95�98, 110, 123, 160

FMN Flavin mononucleotide. 59, 61, 62, 64, 68, 69, 72

GA Genetic algorithm. 112

LAC Lipoteichoic acid. 170

MDE Model-driven engineering. 6, 132, 155

mRNA Ribonucleic acid. 170

MSE Mean Squared Error. 148, 151

ODE Ordinary Di�erential Equation. 93
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Glossary (Nomenclature)

PDMS Polydimethylsiloxane. 130, 180, 193�197

RBS Ribosome binding site or Shine-Dalgarno sequence. 61

ROI Region of interest. 131

SEM Scanning Electron Microscopy. 129, 133, 137, 139, 142

SNP Single-nucleotide polymorphism. 56, 71, 72, 103, 106�112, 123, 161

TEOS Tetra-ethyl orthosilicate. 129, 130
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