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Abstract

Existing approaches to functional principal component analysis (FPCA) usually rely

on nonparametric estimation of the covariance structure. When function-valued processes

are observed on a multidimensional domain, the nonparametric estimation suffers from

the curse of dimensionality, forcing FPCA methods to make restrictive assumptions such

as covariance separability.

In this thesis, we discuss a general Bayesian framework on modelling function-valued

processes by using a Gaussian process (GP) as a prior, enabling us to handle nonsepa-

rable and/or nonstationary covariance structure. The nonstationarity is introduced by a

convolution-based approach through a varying kernel, whose parameters vary along the

input space and are estimated via a local empirical Bayesian method. For the varying

anisotropy matrix, we propose to use a spherical parametrisation, leading to unconstrained

and interpretable parameters and allowing for interaction between coordinate directions in

the covariance function. The unconstrained nature allows the parameters to be modelled

as a nonparametric function of time, spatial location and even additional covariates.

In the spirit of FPCA, the Bayesian framework can decompose the function-valued

processes using the eigenvalues and eigensurfaces calculated from the estimated covariance

structure. A finite number of the eigensurfaces can be used to extract some of the most

important information involved in data with complex covariance structure.

We also extend the methods to handle multivariate function-valued processes. The

estimated covariance structure is shown to be important to analyse joint variation in

the data and is further used in our proposed multiple functional partial least squares

regression model. We show that the interaction between the scalar response variable and

function-valued covariates can be explained by fewer terms than in a regression model

which uses multivariate functional principal components.

Simulation studies and applications to real data show that our proposed approaches

provide new insights into the data and excellent prediction results.
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Chapter 1

Introduction

In functional data analysis (FDA), data are seen as discretely observed functions (of

time, space, etc.) and are therefore called functional data. Such functions can be seen as

realisations of a function-valued stochastic process X(t), t ∈ T ⊂ RQ, which has mean

function µ(t) and covariance function Cov
[
X(t), X(t′)

]
.

Typical applications of FDA include data observed on the one-dimensional domain

T ⊂ R (e.g. time series, growth curves). Nowadays, there is an increasing interest

in data observed on two-dimensional (e.g. spatial data, 2D images), three-dimensional

(3D images), four-dimensional (fMRI data) or even higher dimensional domains. In the

multidimensional settings, the nonparametric estimation of the covariance function suffers

from the curse of dimensionality and FDA methods are often forced to make restrictive

assumptions such as covariance separability (e.g. in Chen et al. (2017)). This limits the

application to many types of data with complex covariance structure.

1.1 Aims

In this thesis, we discuss a general Bayesian framework on modelling function-valued

processes by using a Gaussian process or other heavy-tailed processes as a prior, allowing

nonseparable and/or nonstationary covariance structure.

Modelling nonstationary and/or nonseparable covariance struc-

ture

The nonstationarity is introduced by a convolution-based approach (Higdon et al., 1999)

via a varying kernel. In particular, the nonstationarity can be simply defined by a Q ×
Q varying anisotropy matrix Σ(t) and a standard deviation σ(t), both varying along

t ∈ T ⊂ RQ or along τ ∈ T ∗ ⊂ RQ∗ , where Q∗ ≤ Q. A local empirical Bayesian

1



Chapter 1. Introduction

approach is used to estimate the hyperparameters involved in the modelling of covariance

structure, including both fixed and varying coefficients. For the varying anisotropy matrix

Σ(t), we propose to use a spherical parametrisation in order to have unconstrained and

interpretable parameters. In addition, this parametrisation allows for interaction between

coordinates of t, thus producing a nonseparable covariance. The unconstrained nature

of the parameters allows them to be modelled as a nonparametric function of time (or

spatial location), time (or spatially) dependent covariates and even additional covariates.

The Bayesian framework provides an efficient approach for obtaining the predictive

distribution for the unknown underlying regression function of the processes; in the mean-

time, it can also decompose the function-valued processes using the eigenvalues and eigen-

surfaces calculated from the estimated covariance structure. In the spirit of functional

principal component analysis, a finite number of the eigensurfaces can be used to extract

some of the most important and interpretable information involved in different types of

data with complex structure.

Multivariate function-valued processes

Recent interest has been also given to the analysis of multivariate functional data, where

the samples consist of vectors of functional data and are modelled by a multivariate ran-

dom process X(·) =
(
X1(·), . . . , XM(·)

)>
. In the multivariate case, a major difficulty

consists in defining cross-covariance functions ensuring that resulting covariance matrices

for the multivariate process are positive definite. Multivariate functional principal com-

ponent analysis (MFPCA) (Happ & Greven, 2018) is a recent approach that addresses

joint variation of multiple functions. In order to explicitly model the cross-covariance

structure between multiple functions, we extend a bivariate convolved Gaussian processes

model (Boyle & Frean, 2004) to the multivariate case, called multivariate GP (MGP), en-

suring the positive-definiteness property. This is done by considering that each individual

random process is represented as the sum of an independent latent process and another

latent process common to all M random functions.

Multiple functional PLS regression model

The estimation of the covariance structure of multivariate random processes is also im-

portant for further statistical analysis, e.g. in a scalar-on-functions regression which in-

volves multiple function-valued covariates. This has motivated us to apply our MGP

methodology as a building block to extend the functional partial least squares regression

model (Delaigle & Hall, 2012) to the case of multiple functional covariates. Our proposed

model is hereafter called the multiple functional partial least squares regression (MF-
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PLSR) model and is an alternative to the multivariate functional principal component

regression (MFPCR) model.

1.2 Structure of the thesis

Chapter 2 provides an introduction to functional data analysis and related statistical

concepts used throughout the thesis. It also describes recent developments and challenges

of some FDA tools, namely the functional principal components and the scalar-on-function

regression model.

Chapter 3 introduces a nonparametric Bayesian framework which uses a Gaussian

process prior. Besides introducing Gaussian process regression (GPR) models and related

inference procedures, we discuss properties and interpretation of commonly used para-

metric covariance function families. Decomposition of GP and asymptotic theory are also

provided. The end of the chapter is dedicated to discussing approximate implementation

methods used to reduce computational costs, showing results in a simulation study. Via

another simulation study we discuss the decomposition of GP.

In Chapter 4, the focus is on modelling function-valued processes defined on a mul-

tidimensional domain. In order to avoid assumptions of stationarity and covariance sep-

arability, we propose a (semi)parametric approach for the estimation of the covariance

function. Numerical simulation studies and an application to Canadian temperature are

provided.

Chapter 5 presents the MGP to deal with multivariate function-valued processes.

Through simulation studies, we show that the joint modelling improves prediction perfor-

mance. In addition, we compare prediction results with the ones obtained by MFPCA.

Finally, an application to human fertility data is given.

In Chapter 6, we propose the MFPLSR model, where the covariance function of mul-

tiple function-valued predictors is estimated by MGP. A simulation study compares MF-

PLSR and MFPCR in terms of prediction of the scalar response variable.

In Chapter 7, we highlight the main contributions, conclusions and future work.
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Chapter 2

Statistical concepts for

function-valued processes

This chapter introduces the statistical concepts of functional data analysis framework

used in this thesis. It also discusses important tools, their recent developments and

challenges. Section 2.1 introduces the notion of functional data and related mathematical

tools. Section 2.2 explains how we interpret functional data as stochastic processes.

Finally, Sections 2.3 and 2.4 introduce two of the main tools of functional data analysis,

namely the functional principal component analysis and the scalar-on-function regression

model.

2.1 Functional data

Functional data analysis (FDA) deals with the analysis and theory of data that are in

the form of functions, images, shapes, or more general objects (Wang et al., 2016). We

assume that the observed data x1, . . . , xn are realisations of an underlying continuous

stochastic process X defined on T ⊂ RQ, Q ≥ 1. We will say that the functional data

is multidimensional when Q > 1. In FDA, the terminology multi-way functional data is

also used.

With the progress of technology, it has become common to find applications involv-

ing multiple functions (elements) per subject, and this has motivated the development

of methodologies to consider simultaneous variation in the multiple elements. We will

denote the M -variate functional data by X(t) =
(
X1(t), . . . , XM(t)

)>
, a topic discussed

in Chapters 5 and 6.

To conduct inference and develop theory, the functional objects are elements of the

space of all square integrable functions, L2, a space whose main concepts are defined in
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the next section.

2.1.1 Square integrable functions

We say that a function f is square integrable on T if
∫
T f

2(t)dt < ∞. The set of all

square integrable functions is denoted by L2. It is very convenient to work on the space

L2 because it is associated with the inner product of two functions, f and g, by

〈f, g〉 =

∫
T
f(t)g(t)dt, f, g ∈ L2(T ). (2.1)

This inner product is clearly analogous to the inner product of two vectors. If 〈f, g〉 = 0,

we say that functions f and g are orthogonal. The inner product (2.1) also provides the

induced norm

||f || =
√
〈f, f〉, f ∈ L2(T ),

which is analogous to the length of a finite dimensional vector. If f and g are orthogonal

and, in addition, ||f || = ||g|| = 1, they are said to be orthonormal.

Finally, the distance between two functions is the norm of their difference, that is,

d(f, g) = ||f − g||. Therefore, the inner product (2.1) allows us to use analogous concepts

of a finite dimensional Euclidean space to a function space.

2.1.2 Linear operators

In this section, we follow closely some definitions and understanding presented in Horváth

& Kokoszka (2012) and Kokoszka & Reimherr (2017).

Linear transformations, often called linear operators or simply operators, are impor-

tant in FDA because many types of regression involve linear transformations of functions

to functions, functions to scalars and vectors to functions. A commonly used operator in

FDA is the covariance operator Ξ, which transforms a function φ ∈ L2 to Ξ(φ) by solving

the integral

Ξ(φ)(t) =

∫
φ(t′)k(t, t′)dt′,

where k(·, ·) is called the kernel of the operator Ξ. If
∫ ∫

k2(t, t′)dtdt′ <∞, the operator

Ξ is called a Hilbert-Schmidt operator and is square integrable whenever φ is so.

Ξ is said to be symmetric if, for every φ and η, 〈Ξ(φ), η〉 = 〈φ,Ξ(η)〉, and it is positive

semi-definite if, for every φ 6= 0, 〈Ξ(φ), φ〉 ≥ 0. These two definitions must be satisfied to

show that the kernel k(·, ·) can be expanded into
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k(t, t′) =
∞∑
j=1

λjφj(t)φj(t
′), (2.2)

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and φ1, φ2, . . . are the eigenfunctions of Ξ,

that is, Ξ(φj) = λjφj. The result (2.2) is known as Mercer’s theorem (Adler & Taylor,

2007).

2.2 Function-valued stochastic processes

Let (Ω,F , P ) be a probability space, where Ω is the set of all possible outcomes, F is a

σ-algebra of subsets of Ω, and P is a probability measure over F (Bosq, 2000).

Let us consider a stochastic process {Xt(ω) : t ∈ T } defined on (Ω,F , P ), where

T ⊂ R for simplicity of exposition, and let S be a metric space. The mapping X : Ω→ S
is a random element in S. If S = R, the real line, then X is a random variable. If S = Rp,

the p-dimensional Euclidean space, then X is a random vector. If S is a function space

(e.g. L2), X is a random function.

The stochastic process {Xt(ω) : t ∈ T } can be thought of as random variables indexed

by t ∈ T . For a fixed t, Xt(ω) is a random variable. A stochastic process can also be

interpreted as a random variable taking values in a function space (Bosq, 2000). That is,

for a fixed ω, the random function (which is now observed as ω is fixed) is a realisation of

the stochastic process over t ∈ T . In this case, note that the index set T of the stochastic

process is the input space of the random function.

In this thesis, we use the terminology function-valued (stochastic) processes to high-

light that the random variable takes values in a function space.

Note that stochastic processes described as above are defined on a unidimensional

index set T ⊂ R but can also be defined on a multidimensional index set T ⊂ RQ, Q > 1,

where they are also known as random fields.

We say that the stochastic process X is integrable if E||X|| = E
[ ∫

X2(t)dt
]1/2

< ∞
and square integrable if E||X||2 = E

[ ∫
X2(t)dt

]
< ∞ (Horváth & Kokoszka, 2012).

These conditions ensure that the mean function and the covariance function exist and are

defined, respectively, by

µ(t) = E
[
X(t)

]
and

Cov
[
X(t), X(t′)

]
= E

[(
X(t)− µ(t)

)(
X(t′)− µ(t′)

)]
. (2.3)

We can estimate µ(t) by pooling the data from all individuals. If the sampling points
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are densely, regularly observed, a common strategy is to simply use the empirical mean

estimator, which is obtained by averaging over all the individuals and interpolating the

resulting points. For sparse designs, though, Yao et al. (2005) suggest using a local linear

smoother (Fan & Gijbels, 1996).

Likewise, for the covariance function (2.3), if the sampling points are densely, regu-

larly observed, we could use the empirical covariance estimator and proceed with smooth

interpolation of the sample estimates to estimate the covariance function in the entire

interval. This estimator cannot be used if data are irregularly sampled and, even if that

is not the case, its estimates are usually noisy. Therefore, other estimators for (2.3) have

been proposed.

Two-dimensional kernel smoothing is usually suggested to nonparametrically fit the

covariance function of functional data defined on T ⊂ R (e.g. in Yao et al. (2005); Hall

et al. (2006); Li et al. (2010)). A disadvantage is that smoothing estimates do not guar-

antee positive definiteness of the covariance function; to remedy this, eigendecomposition

is used and negative eigenvalues are set to zero. Moreover, if the input space is mul-

tidimensional (i.e. Q > 1), one needs to use to a high-dimensional kernel smoothing,

which results in slow computing and curse of dimensionality. To handle multidimensional

function-valued processes, Chen et al. (2017) propose a tensor product representation,

which will be discussed in Chapter 4. A parametric covariance function can also be used

and is selected from many existing families, as we will see in Chapters 3 and 4.

The accurate estimation of covariance function (2.3) is of crucial importance to func-

tional principal component analysis (FPCA), which is discussed in the next section.

2.3 Functional principal component analysis

According to the Karhunen-Loève (KL) orthogonal expansion (Wahba, 1990), the centred

random function Xc(t) = X(t)− µ(t) can be decomposed into

Xc(t) =
∞∑
j=1

φj(t)ξj, (2.4)

where ξj are uncorrelated random variables and φj(·) are the eigenfunctions of the covari-

ance operator of X. That is, φj(·) are the solutions to the eigenequations∫
k(t, t′)φj(t

′)dt′ = λjφj(t),

∫
φi(t)φj(t)dt = δij, (2.5)
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where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of k(·, ·) and δij is the Kronecker delta. Each

function φj(·) is called functional principal component (FPC) and the random variable ξj

is called its respective score.

As each deterministic function φj is normalised, the variance of X in the principal

direction φj is simply Var
[
ξj
]

= λj. In other words, λj quantifies how much variation of

X is explained by φj. We can also show that

E||Xc(t)||2 =
∞∑
j=1

λj,

which means that the variance of X is equal to the sum of the variances of the projections

of X onto φj’s.

Since λj’s are arranged in nonincreasing order, we can calculate the cumulative fraction

of variance explained (CFVE) by the first J eigenfunctions via

CFVEJ =

∑J
j=1 λj∑∞
j=1 λj

. (2.6)

In practice, as we can only estimate a finite number of FPCs, the denominator of (2.6) is

replaced by
∑J∗

j=1 λj, where J∗ is large.

One strategy to reduce eigenequation (2.5) to a matrix form is by representing the

observed data as a linear combination of fixed (known) J basis functions (Ramsay & Sil-

verman, 2005, Section 8.4). This provides estimated eigenvalues λ̂j and the corresponding

FPCs φ̂j, where the maximum number of FPCs is J , the dimension of the basis. Some

drawbacks of this strategy are clear: the estimated FPCs are sensitive to the basis func-

tions used to represent the data and to the sparsity level of the observed data. Another

strategy is to estimate the covariance function nonparametrically and take its eigenfunc-

tions as the FPCs (see e.g. principal component analysis through conditional expectation

(PACE) in Yao et al. (2005)).

2.3.1 Multivariate FPCA

Ramsay & Silverman (2005) propose the bivariate FPCA, which can be straightforwardly

extended to the multivariate functional principal component analysis (MFPCA). In this

approach, the functions Xl(t), l = 1, . . . ,M , are concatenated into a unique long curve for

each individual of the sample. Next, FPCA is performed on the concatenated curves. As

in FPCA, one obtains a vector of scores for each individual. However, this method might

not work well as we often encounter different degrees of variability in different functional

variables, which means that each functional variable may require a different number of
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components.

Chiou et al. (2014) propose an approach in order to cope with these problems: they

consider that each of the M functions may have different variation and extend FPCA

to the multivariate case by using cross-covariance functions estimated nonparametrically

through a local linear plane, so that their approach take into account the dependence

among the functions. Nevertheless, the nonparametric estimation may suffer from the

curse of dimensionality.

Berrendero et al. (2011) suggest an alternative way to reduce the dimension of multi-

variate functional data. The main aim is to summarize the vector of functions for each

individual employing a very small number of functions which retain most of the informa-

tion from M original functions. This is done by looking for curves which are obtained after

finding principal components based on the M ×M covariance matrix of the M functional

variables at each time t independently. As they show in their first simulation study, the

curves that summarise the data tend to be quite rough when the random functions are

weakly correlated, something which is difficult to explain. Therefore, time dependence

should be considered or some regularisation should be applied in order to obtain smooth

summary curves. In practice, this is important as we often encounter low correlated

functions in settings with a large M .

Chiou & Müller (2014) propose a linear manifold model which identifies linear combi-

nations of the components of multivariate functional data and is determined by varying-

coefficient functions that describe time varying relationships between those components.

However, as in Berrendero et al. (2011), they obtain curves that summarise the data,

rather than scores as in the Ramsay & Silverman (2005)’s FPCA approach.

A recent approach called MFPCA (Happ & Greven, 2018) can be applied to a more

general case, allowing to include functional variables irregularly sampled and also observed

on different dimensional domains. In this approach, each observation consists of M > 2

functions X1, . . . , XM , where each one may be defined on different domains, T1, . . . , TM ,

with possible different dimensions. The article suggests an estimation strategy to calculate

multivariate FPCs and scores based on their univariate counterparts.

In Chapter 5, we use a convolution-based approach where cross-covariance functions

are explicitly modelled. This is achieved by assuming that multiple functional variables

are constructed from the same source. Each functional variable, though, can also have

independent features. This framework is especially important to guarantee positive defi-

niteness of the covariance function of the multivariate response.
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2.4 Scalar-on-function regression model

We usually classify functional regression models into three types: scalar-on-function re-

gression (where there are a scalar response and functional covariates); function-on-scalar

regression (functional response and scalar covariates); and function-on-function regres-

sion (functional response and functional covariates). In this section, we focus on the first

type. Recent and comprehensive overviews of it can be found in Morris (2015) and Reiss

et al. (2016).

In the scalar-on-function regression model, we aim to predict a scalar response Y given

a functional covariate X(t), t ∈ T ⊂ R. Let Xc
i (t) = Xi(t) − µ(t), i = 1, . . . , N , be the

i-th realisation of the centred functional variable and Yi the corresponding scalar response

variable. Then the model is given by

Yi = a+

∫
T
b(t)Xc

i (t)dt+ εi, i = 1, . . . , N, (2.7)

where a is a scalar parameter, b(t) is the regression coefficient function (or slope function),

and ε is a scalar error term satisfying E
[
ε|X

]
= 0.

If each individual curve xi is observed at n time points ti,1, . . . , ti,n, then a first idea to

estimate (2.7) might be to use the discrete observed values of each functional observation

xi(t) and to fit the model

yi = a+
n∑
j=1

γjx
c
i(tij) + εi, i = 1, . . . , N.

However, as n is typically large, this may lead to multicollinearity problems. We actually

often have n > N , which makes it impossible to obtain estimates of the slope parameters

γj by standard linear regression techniques.

One way to reduce (2.7) is by taking the expansions of Xc
i and b in terms of orthogonal

basis functions φ1, φ2, . . . :

Xc
i (t) =

∞∑
j=1

ξijφj(t) (2.8)

and

b(t) =
∞∑
k=1

νkφk(t). (2.9)

In particular, for the first J elements of the expansion (2.8),

ξij =

∫
T
Xc
i (t)φj(t)dt, j = 1, 2, . . . , J,
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minimises ||Xi
c(t) −

∑J
j=1 ξijφj(t)|| (Weidmann, 1980, p.38). The term ξij is called the

j-th score for the i-th functional observation. Similarly, for expansion (2.9),

νk =

∫
T
b(t)φk(t)dt, k = 1, 2, . . . , J.

Hence, our model (2.7) becomes

Yi = a+

∫
T

∑
j,k

νkφk(t)ξijφj(t)dt+ εi

= a+
∑
j,k

νkξij

∫
T
φk(t)φj(t)dt+ εi

= a+
J∑
j=1

νjξij + εi,

since φ1, . . . , φJ are orthogonal functions. Therefore, the scalar response Yi can be written

simply as a linear combination of the scores ξi1, . . . , ξiJ . Once estimated those first J

scores, we can easily see that ν1, . . . , νJ can be obtained by regressing Yi on the scores.

We could use basis φj independently of the data (e.g. B-splines or Fourier basis

systems). However, we cannot guarantee that the first terms of those basis functions will

explain most of the variation in X and b(t). For this reason, one can instead use the

information available in the data to construct the basis functions.

A common alternative is to use FPCs φj, that is, the eigenfunctions of the covariance

operator of X obtained by eq. (2.5). This leads to what we call functional principal

component regression (FPCR).

As FPCs only take into account the variation of the functional predictor X, we cannot

guarantee that the first few terms will provide good predictions for a scalar response

Y . Therefore, functional partial least squares (FPLS) basis might be an appropriate

alternative as it considers the covariation between X and Y when constructing the basis

functions. The functional regression model that uses FPLS basis is called the functional

partial least squares regression (FPLSR). Theory about FPLSR is found in Delaigle &

Hall (2012), which we will discuss in Chapter 6.

In Chapter 6, we further propose an extension of model (2.7) to the case involving

M > 1 functional covariates, given by

Yi = a+
M∑
l=1

∫
T
bl(t)X

c
l,i(t)dt+ εi, i = 1, . . . , N.

Analogously to the case involving one functional covariate, this regression equation can be
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solved by expanding the M -variate X(·) =
(
X1(·), . . . , XM(·)

)>
in terms of multivariate

FPC basis or multivariate FPLS basis, which lead, respectively, to the multivariate func-

tional principal component regression (MFPCR) and to the multiple functional partial

least squares regression (MFPLSR).
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Chapter 3

Gaussian process regression model

In this chapter, we discuss a nonparametric Bayesian framework for modelling function-

valued processes by using a Gaussian process prior. We introduce the Gaussian process

regression model in Section 3.1, where we describe why they have become popular and cite

some recent developments. Inference procedures on the GPR model are shown in Section

3.2. Section 3.3 discusses commonly used families of parametric covariance functions,

their properties and their interpretable parameters. Asymptotic theory is provided in

Section 3.4. Approximate implementation methods to reduce computational costs and

implementation issues are discussed in Section 3.5. Section 3.6 presents a simulation study

for analysing the decomposition of a GP and for comparing approximate implementation

methods.

3.1 Introduction to Gaussian process regression

Let us consider the following nonlinear functional regression model or process regression

model:

X(t) = f(t) + ε(t), ε(t) ∼ N(0, σ2
ε), (3.1)

where t ∈ T ⊂ RQ and the unknown nonlinear regression function f is a mapping

f : RQ → R. We assume that the additive noise ε(t) has normal distribution, but we

could assume it has a different distribution (e.g. generalised Gaussian process regression

models in Wang & Shi (2014)).

A variety of models has been proposed to estimate the unknown function f . Popular

models are based on the approximation f(t) =
∑J

j=1 αjφj(t), where φj are, for example,

smoothing splines (Wahba, 1990). One of the major difficulties of these nonparametric

approaches is the curse of dimensionality problem in the estimation process when t is

multidimensional.
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From the Bayesian perspective, the function f is treated as an unknown process (an

unknown random function defined in a functional space analogue of a random unknown

parameter defined in a conventional Bayesian approach). Therefore, we need to specify a

prior distribution over the (random) function f to make probabilistic inference about f .

One way to do this is by using a Gaussian process (GP) prior.

The Gaussian process (O’Hagan, 1978; Rasmussen & Williams, 2006; Shi & Choi,

2011) is defined as a stochastic process parametrised by its mean function

µ(·) : T → R, µ(t) = E
[
f(t)

]
,

and its covariance function

k(·, ·) : T 2 → R, k(t, t′) = Cov
[
f(t), f(t′)

]
.

From now on, we will write the GP as

f(·) ∼ GP
(
µ(·), k(·, ·)

)
. (3.2)

GP can be seen as a generalisation of the multivariate Gaussian distribution to the

infinite-dimensional setting. When we use a GP prior (3.2) for the random function f ,

(3.1) is referred to as Gaussian process regression (GPR) model. In this case, for any

finite n and t1, . . . , tn ∈ T , the joint distribution of x =
(
x(t1), . . . , x(tn)

)>
is an n-

variate Gaussian distribution with mean vector µn =
(
µ(t1), . . . , µ(tn)

)>
and covariance

matrix Ψn whose (i, j)-th entry is given by
[
Ψn

]
ij

= k(ti, tj)+δijσ
2
ε , i, j = 1, . . . , n where

δij = 1 if i = j and 0 otherwise.

When it is difficult to specify a fixed mean function µ(·) in (3.2), we may use a mean

function µ(t) = h(t)>β, where h(t) contains a set of function-valued covariates and β is

inferred from the data (Rasmussen & Williams, 2006, Section 2.7); or a mean function

µ(t) = u>β(t), involving a set of scalar covariates and a varying coefficient (Shi et al.,

2007). However, as we will focus on the covariance structure, we will use the same mean

function estimated via local linear smoother (Yao et al., 2005) as it is commonly made in

FDA. Other mean models can also be used.

GPR models have become popular for a number of reasons. Firstly, a wide class of

nonlinear functions f can be modelled by choosing a suitable prior specification for k(·, ·).
Other prior distributions can be used for robust heavy-tailed processes (Shah et al., 2014;

Wang et al., 2017; Cao et al., 2018). This enables us to estimate the covariance structure

directly based on the data. In addition, the applicability of GPR models can be readily
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extended to random processes defined on dimensions higher than two. Finally, these

models allow to easily quantify the variability of predictions.

Many recent developments have been made in GPR analysis, including variational

GP (Tran et al., 2015), distributed GP (Deisenroth & Ng, 2015), manifold GP (Calandra

et al., 2016), linearly constrained GP (Jidling et al., 2017), convolutional GP (van der Wilk

et al., 2017), and deep GP (Dunlop et al., 2018). Some studies investigate connections

between GPs with frequentist kernel methods based on reproducing kernel Hilbert spaces

(Kanagawa et al., 2018). Finally, many extensions and adaptations have been suggested

to apply GPR models to different types of data, such as big data (Liu et al., 2018),

binary times series (Sung et al., 2017), large spatial data (Zhang et al., 2019), and mixed

functional and scalar data in nonparametric functional regression (Wang & Xu, 2019).

3.2 Inference

For a given set of observed data D = {x, t} = {(xi, ti1, . . . , tiQ), i = 1, . . . , n}, a GPR

model for (3.1) can be written as

xi|fi
i.i.d.∼ N(fi, σ

2
ε), (3.3)

(f1, . . . , fn) ∼ GP
(
0, k(·, ·;θ)

)
,

where k(·, ·;θ) contains the hyperparameter θ. Thus, the marginal distribution of x given

θ is

p(x|θ) =

∫
p(x|f)p(f |θ)df ,

where p(x|f) =
∏n

i=1 ζ(fi), with ζ(fi) denoting the normal probability density function

with mean fi and variance σ2
ε , and f =

(
f(t1), . . . , f(tn)

)> ∼ N(0,Kn), where
[
Kn

]
ij

=

k(ti, tj), i, j = 1, . . . , n.

Given that the marginal distribution of x is N(0,Ψn), where Ψn = Kn + σ2
εIn, the

marginal log-likelihood of θ is given by

L(θ|D) = −1

2
log |Ψn(θ)| − 1

2
x>Ψn(θ)−1x− n

2
log 2π. (3.4)

The estimates of θ obtained by maximising (3.4) are called empirical Bayes estimates as

they are obtained by using observed data (Carlin & Louis, 2008).

As we will see in the next section, the values of the hyperparameters in θ control

several properties of the covariance function and, consequently, determine the behaviour

of the regression curve. As discussed in (Shi & Choi, 2011, Chapter 3), unless we have
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a very good prior knowledge of the values of the hyperparameters, the selection of each

hyperparameter should be done carefully.

We can define a hyperprior distribution for θ. In this case, our knowledge about θ is

updated as more data are observed. In fact, finding the mode of the posterior density is

a way to find what we call the maximum a posteriori (MAP) estimate of θ. When we use

a non-informative or a uniform prior distribution, the MAP estimates are precisely the

same as the empirical Bayes estimates (Shi & Choi, 2011).

Instead of assuming a probability structure for the hyperparameters θ, in this thesis

we always use empirical Bayes estimates using the data to estimate them.

Predictive distribution

Let us consider the GPR model (3.3). The marginal distribution of x is N(0,Ψn), where

Ψn = Kn + σ2
εIn. Therefore, we can easily make predictions of test data at locations t

given the observed data D. The posterior distribution p(f(t)|D), for any arbitrary t, also

has multivariate normal distribution with

E [f(t)|D] = k>n (t)(Kn + σ2
εIn)−1x, (3.5)

Var [f(t)|D] = k(t, t)− k>n (t)(Kn + σ2
εIn)−1kn(t), (3.6)

where x =
(
x(t1), . . . , x(tn)

)>
, and kn(t) =

(
k(t1, t), . . . , k(tn, t)

)>
.

However, the predictive distribution becomes much more complicated for non-Gaussian

data (see e.g. Wang & Shi (2014)). Therefore, we may consider using the decomposition

methods detailed below.

Once the covariance function k(·, ·) is estimated, we can estimate the corresponding

eigenfunctions φ(·) via the Nyström method for approximating eigenfunctions. Then a

finite GPR approximation can be obtained as in (2.4) by using only the first J eigenfunc-

tions. This allows us to make predictions at any arbitrary location t given observed data

x and a finite number of components φj(·), j = 1, . . . , J , similarly as in FPCA.

3.3 Covariance functions

The specification of the covariance function in (3.2) is important because it fixes the

properties of the underlying function f that we want to infer. In this section, we discuss

properties and popular families of covariance functions and make interpretation on their

parameters. The selection of covariance functions is widely discussed in Rasmussen &

Williams (2006) and Shi & Choi (2011). The validity and further classes of covariance
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functions can be seen in many references (see, for example, Abrahamsen (1997); Shi &

Choi (2011)).

Properties

In this subsection, we again use the notation k(t, t′) = Cov
[
X(t), X(t′)

]
. In addition, let

h = t− t′ (or the unidimensional counterpart h = t− t′) be the separation vector (value).

A zero mean stochastic processX is strongly stationary if the distribution of
(
X(t1), . . . ,

X(tn)
)>

is the same as that of
(
X(t1 + h), . . . , X(tn + h)

)>
. It is weakly stationary if

k(t, t+h) only depends on the separation vector h. Strong stationarity implies weak sta-

tionarity. The converse in general is not true, but if X is a GP, then it will be. Therefore,

for GPs the weak stationarity and the strong stationarity are equivalent.

A covariance function is said to be isotropic if k(t, t+h) only depends on the distance

||h||. When it also depends on the direction of h, then we have a stationary process

with a anisotropic covariance function. For example, a separable covariance function

k(t, t+h) = σ2g1(h1)g2(h2), where g1 and g2 are valid correlation functions, is stationary,

but it can be anisotropic as it depends on the direction h = (h1, h2)
>.

For the two-dimensional setting t = (s, τ)> ∈ T ⊂ R2, if the covariance function

cannot be factorised as k(s, τ, s′, τ ′) = k1(s, s
′)k2(τ, τ

′), then it is called nonseparable.

The geometric anisotropic covariance function (Banerjee et al., 2015) given by

k(t, t′) = σ2g
(
(t− t′)>B(t− t′)

)
, (3.7)

where g is a valid correlation function, allows the covariance to be nonseparable. If the

off-diagonal elements inB are nonzero, the covariance function (3.7) is nonseparable. The

same idea of separability is extended to the cases of higher dimensions.

Varying the hyperparameters

Let us first discuss how different values for hyperparameters of a covariance function can

be used to model a rich variety of curves.

We illustrate this by taking as an example the commonly used squared exponential

covariance function, defined as

Cov
[
X(ti), X(tj)

]
= σ2 exp

{
− 1

γ
||ti − tj||2

}
+ σ2

εδij, γ > 0. (3.8)

The hyperparameters σ2, σ2
ε and γ are called the signal variance, the noise variance

and the length-scale, respectively. In spatial statistics, these hyperparameters are called
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the partial sill, the nugget effect and the range parameter, respectively. We will also use

ω = 1/γ (the decay parameter) to simplify notation.

By considering the noise variance σ2
ε , the covariance function (3.8) is used for the noisy

curves X(t) rather than for the underlying function f (see eq. (3.1)).

Whereas the value of σ2 controls the vertical scale of variation of f , the values of σ2
ε

and γ determine the smoothness of the sample paths. When we increase σ2
ε or decrease

γ, in both cases we have rougher curves. However, the estimated values of these two

hyperparameters can indicate whether the roughness degree comes from the underlying

function f (signal) or from the noise.

From now on, to simplify the exposition, we will show examples of covariance functions

without the measurement error term.

Powered exponential

The squared exponential covariance function (3.8) is a particular case of the powered

exponential class of covariance functions when γ = 2. This class has the form

k(t, t′) = ν exp
{
− ω||t− t′||γ

}
, ν > 0, ω ≥ 0, 0 < γ ≤ 2. (3.9)

and allows to model rougher curves than the squared exponential covariance function

does.

Rational quadratic

The rational quadratic class can be seen as a scale mixture of squared exponential covari-

ance functions with different length scale parameters (Rasmussen & Williams, 2006) and

is given by

k(t, t′) =
(

1 + sαω||t− t′||2
)−α

, α, ω ≥ 0. (3.10)

We can see that the squared exponential is a particular case of the rational quadratic

class as α → ∞. When sα = 201/α − 1, (3.10) is called Cauchy covariance kernel (Shi &

Choi, 2011).

Matérn

The Matérn class of covariance functions is given by

k(t, t′) =
1

Γ(ν)2ν−1

(√
2νω||t− t′||

)ν
Kν
(√

2νω||t− t′||
)
, ω ≥ 0, (3.11)
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where Kν is the modified Bessel function of order ν.

This class is very general and can accommodate several particular cases. For example,

as ν → ∞, we obtain a squared exponential covariance function. In machine learning,

we often encounter applications with using ν = 3/2 and ν = 5/2. This is due to the fact

that if ν = p+ 1/2, where p is a non-negative integer, the resulting covariance function is

a product of a polynomial of order p and an exponential (Rasmussen & Williams, 2006).

If ν = 1/2, we obtain an equivalent expression to the exponential covariance function.

Relaxing the anisotropy assumption

We can easily extend the last three families by including a different decay parameter

ωq for each coordinate direction. This is done by replacing the term ω||t − t′||γ by∑Q
q=1 ωq||tq − t′q||γ in eq. (3.9), and similarly in (3.10) and (3.11). This brings more

flexibility as it measures how quickly the surface varies along each coordinate direction.

In addition, as discussed in Shi & Choi (2011), a very small value of ωq can also indicate

that the input tq can be excluded from the model.

Moreover, we can use an even more general norm of the form (t − t′)>B(t − t′) (as

seen in (3.7)) to extend the covariance function to the anisotropic case, provided that B

is positive definite. Ecker & Gelfand (1999) and Banerjee et al. (2015) explain how to

model and conduct inference incorporating this extension.

The diagonal elements of B, bq, usually called decay parameters, control how quickly

the function f varies on each coordinate direction. The larger the value, the quicker is the

variation of f towards the related direction. The off-diagonal elements of B, bpq, p 6= q,

may be non-zero. If they are, we say that there exists interaction between the coordinate

directions tp and tq and covariance functions of the form (3.7) become nonseparable.

3.4 Asymptotic theory

In this section, we provide asymptotic theory for the decomposition and Bayesian predic-

tion based on a Gaussian process prior with a general covariance structure.

In eq. (2.4), ξj are independent random variables and φj(·) are the eigenfunctions of

the kernel function k(·, ·). Therefore, the eigenfunctions are orthonormal satisfying∫
k(t, t′)φj(t

′)dt′ = λjφj(t),

∫
φi(t)φj(t)dt = δij, (3.12)

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of k(·, ·) and δij is the Kronecker delta.

Let Xc(t) = X(t) − µ(t) and Ξ(f) =
∫
T k(t, ·)f(t)dt be an operator for f ∈ L2(T ).
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In fact,

ξj = 〈Xc(·), φj(·)〉 =

∫
Xc(t)φj(t)dt

has mean 0 and variance λj.

Theorem 1. For J ≥ 1, for which λJ > 0, the functions {φj, j = 1, . . . , J} provide the

best finite dimensional approximation to Xc(t) with respect to minimising criterion

argmin
g1,...,gJ∈L2(T )

E
[
||Xc(t)−

J∑
j=1

gj(t)ξ
∗
j ||2
]
, (3.13)

where g1, . . . , gJ ∈ L2(T ) are orthonormal and ξ∗j = 〈Xc(·), gj(·)〉 =
∫
Xc(t)gj(t)dt. The

minimised value is
∑∞

j=J+1 λj.

The proof is given in Section 3.9. This theorem is similar to Theorem 1 in Chen

et al. (2017); but the latter provides the best finite approximation under separability

assumption. The above theorem is true for a very general covariance structure even if it

is nonstationary or nonseparable (see detailed discussion in 4).

We are also interested in the convergence rates of kθ̂(·, ·), where θ̂ is the parameter

vector that maximises the marginal log-likelihood (3.4). The following theorem provides

the convergence rates of kθ̂(·, ·) (and the related terms of its decomposition) also under a

general covariance structure.

Theorem 2. Suppose conditions C1 - C3 in Section 3.9 hold, and µ̂(t) satisfies supt |µ̂(t)−
µ(t)| = Op

(
{log(n)/n}1/2

)
(see e.g. Chen & Müller (2012)), we have, for 1 ≤ j ≤ J ,

||kθ̂(·, ·)− kθ(·, ·)|| = Op({log(n)/n}1/2),

||λ̂j − λj|| = Op({log(n)/n}1/2),

||φ̂j(·)− φj(·)|| = Op({log(n)/n}1/2),

||ξ̂j − ξj|| = Op({log(n)/n}1/2).

The proof is given in Section 3.9.

We now look at the relationship between the Bayesian prediction and the decom-

position based on Karhunen-Loéve expansion. Using models (3.1) and (3.2), where

f ∼ GP (0, k) with k = kθ and ε(t) is a Gaussian error process GP (0, kε) with kε(t, t
′) =

σ2
εI(t = t′). Hence, X ∼ GP (0, k̃θ) with k̃θ = kθ + kε. Given f =

(
f(t1), . . . , f(tn)

)>
, we

use E [f(t)|f ] = k>n (t)K−1n f to estimate f(t). Given the observed data D, we use (3.5)

to estimate f(t).
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In addition, from Karhunen-Loéve expansion we have

f(t) =
∞∑
j=1

φj(t)ξj, X(t) =
∞∑
j=1

φ̃j(t)ξ̃j, (3.14)

where φj(·) and φ̃j(·) are the eigenfunctions of kθ and k̃θ, respectively, and their corre-

sponding eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ 0 and λ̃1 ≥ λ̃2 ≥ · · · ≥ 0, respectively. The

truncated sum of (3.14) will be

fn(t) =
n∑
j=1

φj(t)ξj, Xn(t) =
n∑
j=1

φ̃j(t)ξ̃j. (3.15)

Nyström method

We now briefly describe the Nyström method for approximating eigenfunctions, which is

used in the proof of Theorem 3. The Nyström method is presented by Williams & Seeger

(2001) to speed up kernel-based machines and further discussed by Williams et al. (2002).

Using a random sample {t1, . . . , tn}, the first integral of (3.12) can be approximated by

λjφj(t
′) =

∫
k(t, t′)φj(t)dt ≈

1

n

n∑
h=1

k(th, t
′)φj(th). (3.16)

If we plug in t′ = th for h = 1, . . . , n, into (3.16), we have a matrix eigenproblem

KnV n = ΛnV n,

where Kn = (k(ti, tj))n×n, Λn = diag
(
λ
(n)
1 , . . . , λ

(n)
n

)
, with λ

(n)
1 ≥ · · · ≥ λ

(n)
n ≥ 0, where

λ
(n)
j is the j-th eigenvalue of Kn and V j,n (the j-th column of V n) the corresponding

normalised eigenvector. Therefore, the eigenfunctions φj, j = 1, . . . , n, are approximated

by

φj(th) ≈
√
nVhj,n, and λj ≈

λ
(n)
j

n
, (3.17)

where Vhj,n is the h-th element of V j,n.

The Nyström approximation for the eigenfunctions extends the first equation of (3.17)

from the locations {t1, . . . , tn} to any arbitrary location t by

φj(t) ≈
√
n

λ
(n)
j

k>n (t)V j,n,

where kn(t) =
(
k(t1, t), . . . , k(tn, t)

)>
.
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Theorem 3 Under conditions in Theorem 2, we have E [f(t)|f ] = fn(t)+op(1). Moreover,

under model (3.1), E [f(t)|D] = Xn(t) + op(1).

The proof is given in Section 3.9. This theorem indicates that the Bayesian prediction

and Karhunen-Loéve expansion provide similar results. In the proof, we could have kept

the convergence rate of Op

(
1/
√
n
)

instead of op(1). However, the former convergence

rate is faster than the convergence rates of Op

(
log(n)/

√
n
)

shown in Theorem 2, and this

might cause some misunderstanding. This happens because in Theorem 3 we show the

convergence rates of the decompositions for a given covariance function, and therefore

convergence rates related to parameter estimation are not considered.

This theorem provides flexibility in functional data analysis. If we are mainly inter-

ested in a predictive model for Gaussian data, we may just use the Bayesian prediction.

The implementation is fairly efficient if the sample size is not very large. However, if we

are also interested in how the covariance is structured, we may study the eigenfunctions

and the eigenvalues. This also provides a way to develop efficient approximation for big

data (e.g. Nyström method (Shi & Choi, 2011, p.42)) or for non-Gaussian data.

3.5 Approximate implementation methods

The evaluation of (3.4) requires computational time O(n3) in order to invert Ψn. As

the number of sampling points n increases, the computational time becomes prohibitively

high and we may need some strategy to speed up computation. The log-determinant

log |Ψn| can easily be obtained as a by-product of the inverse and therefore is not a main

concern. We describe different approximate implementation methods in the next three

subsections and give a few remarks on implementation issues in the fourth subsection.

3.5.1 Nyström approximation for covariance matrices

When the sample size n is large, the Nyström method can be used to obtain an approxi-

mation to Kn. We first select a subset (of size m < n) of the rows/columns of Kn. This

subset is chosen to approximate the eigenfunctions at all n points. Then it is easy to

obtain the Nyström approximation for the Gram matrix as

Kn ≈KnmK
−1
m Kmn,

where Knm is the n ×m block of the matrix Kn and Km := Kmm for notation conve-

nience.
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Consequently, we obtain an approximation to Ψ−1n in (3.4):

Ψ−1n = (Kn + σ2
εIn)−1

≈ σ−2ε
[
In −Knm

(
σ2
εKm +KmnKnm

)−1
Kmn

]
, (3.18)

which involves a computational time of O(m2n) in the log-likelihood function evaluation.

Williams et al. (2002) point out that the Nyström approximation for Kn work well if its

(m+ 1)-th eigenvalue is significantly smaller than σ2
ε .

Plugging in (3.18) into (3.5) and (3.6), we obtain the mean and variance predictions

of the Nyström for approximating GPR.

3.5.2 Subset of Regressors

Silverman (1985) show that the posterior mean of the GP predictor can be obtained

from a regression model X(t) =
∑n

i=1 cik(t, ti) with a prior c ∼ N(0,K−1n ). If this

sum is truncated at m < n, setting all the remaining coefficients to zero, this results

in a GPR model with covariance function kSR(t, t′) = k>m(t)K−1m km(t′), where km(t) =(
k(t, t1), . . . , k(t, tm)

)>
. The resulting predictive mean and variance are, respectively,

E [fSR(t)|D] = k>m(t)
(
σ2
εKm +KmnKnm

)−1
Kmnx,

Var [fSR(t)|D] = σ2
εk
>
m(t)

(
σ2
εKm +KmnKnm

)−1
km(t).

This method was originally proposed by (Poggio & Girosi, 1990) in a regularisation frame-

work and was later called the subset of regressors (SR) method.

SR is recommended over the Nyström method for approximating GPR because the

latter might have bad performance for small n (Williams et al., 2002) and its predictive

variance can sometimes be negative.

3.5.3 Subset of Data

Another strategy to reduce computational time is by using the subset of data (SD) ap-

proximation method, which literally consists in selecting a subset of size m < n of the

training inputs, a subset called the active set, and discard the remaining observations.

This strategy clearly leads to a computational complexity O(m3).

Methods to select which observations belongs to the active set to minimise are usually

based on a loss of information measure. For example, the information gain criterion

(Seeger et al., 2003), a greedy selection method based on a Kullback-Leibler divergence,

and the differential entropy score (Lawrence et al., 2003), based on the concept of entropy
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of a Gaussian distribution. In our simulation studies, however, we have observed that these

methods usually require considerable computational cost and do not provide significantly

better results than if we simply randomly choose the subset of data points.

As we shall see in the simulation study in Section 3.6, for a fixed m, the SR approxima-

tion method usually provides better predictions than SD does. In our implementations,

we have noticed that the predictions of SD method, however, can be improved if we use a

subset of size m with observations closely located to the test set locations where we want

to predict.

3.6 Simulation study

We assume the two-dimensional random process

X(t) = f(t) + ε(t), ε(t) ∼ N(0, σ2
ε), (3.19)

f(t) ∼ GP
(
0, k(t, t′)

)
,

where k(t, t′) = ν exp
{
−0.5(t− t′)>A(t− t′)

}
, with A = diag(a1, a2). We set ν = 2 and

σ2
ε = 0.12. In addition, a1 = a2 = 0.1 are used to generate smooth data and a1 = a2 = 1

to generate rough data. We simulate N = 100 replicated surfaces on a two-dimensional

grid of size n = n1 × n2 = 50 × 40 = 2000 and analyse different levels of sparsity by

considering that the observed data are a subset of size nobs < n. For what we call ‘high

sparsity’, we only have nobs = 200 observations. For the ‘medium sparsity’, nobs = 1000,

and for ‘low sparsity’, nobs = 1800. The remaining ntest = n− nobs observations represent

the test set which we use to assess predictions.

Analysing the decomposition of GPR model

We are first interested in analysing the decomposition of the GPR model (assuming that

the parameters of the covariance function are known) in terms of CFVE and prediction re-

sults. To access predictions of test set values x∗ =
(
x(t∗1), . . . , x(t∗ntest

)
)>

of each replicated

curve, we use the standardised mean squared error (SMSE), defined as

SMSE =
1

ntest

ntest∑
i=1

(x∗i − x̂
∗
i )

2/Var [x∗] .

By normalising the MSE by the variance of the test set values, the GPR predictions can

be compared to the predictions made by the trivial sample mean estimator x̄∗, which will

have SMSE close to 1.

26



Chapter 3. Gaussian process regression model

The average SMSE prediction errors and the CFVE for smooth curves are shown in

Table 3.1, and for rough curves in Table 3.2. For each level of sparsity, the predictions

of Full GPR model can be obtained by either using (3.5) directly or using the truncated

sum f̃nobs
(t∗) =

∑nobs

j=1 φ̃j(t
∗)ξ̃j (see (3.15)), that is, using all the eigenfunctions available.

For a fixed sample size nobs, we can clearly see that when the dataset contains rough

curves, we need many more eigenfunctions to obtain small SMSE and high CFVE. Indeed,

for rough curves, the sequence of eigenvalues has a much slower decay, which means that

later eigenfunctions still has important contribution to explaining the variation in the

data.

For a fixed number of eigenfunctions, J , SMSE becomes slightly smaller as we

increase the sample size nobs for both degrees of smoothness. However, as nobs becomes

larger, although CFVE is not significantly reduced in the case of smooth curves, it is

reduced considerably when the curves are rough. We can also look at CFVE results in

Figure 3.1 and SMSE results in Figure 3.2. For each fixed J , we vary nobs. In this way,

we look at connected points from the right to the left for a given J to see what happens

as we increase nobs. In the rough data scenario, for a fixed J , the increase of nobs implies

a strong decay of CFVE (see Figure 3.1). This effect does not seem to be significant for

smooth data. Figure 3.2 shows that, for a fixed J , the increase of nobs basically do not

change the quality of the predictions.

In conclusion, the proportion J/nobs has to be larger for rougher data to explain most

of the variability in the data. On the other hand, for both smooth and rough data, as we

increase nobs for a fixed J , the predictions become only slightly better. In practice, for a

given sample size nobs, we usually choose J by looking at the CFVE for different values

of J .
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High Sparsity Medium Sparsity Low Sparsity

SMSE CFVE SMSE CFVE SMSE CFVE

Full GPR 0.065 - 0.007 - 0.006 -

J=10 0.796 0.312 0.778 0.253 0.763 0.261

J=30 0.498 0.666 0.466 0.583 0.453 0.587

J=50 0.322 0.836 0.274 0.766 0.268 0.764

J=100 0.134 0.978 0.083 0.940 0.076 0.937

J=150 0.077 0.997 0.028 0.982 0.025 0.981

J=200 0.065 1.000 0.013 0.993 0.011 0.992

J=300 - - 0.008 0.996 0.006 0.996

J=500 - - 0.007 0.998 0.006 0.997

J=750 - - 0.007 0.999 0.006 0.997

J=1000 - - 0.007 1.000 0.006 0.998

J=1350 - - - - 0.006 0.999

J=1800 - - - - 0.006 1.000

Table 3.1: Average SMSE and CFVE for the case of smooth data

High Sparsity Medium Sparsity Low Sparsity

SMSE CFVE SMSE CFVE SMSE CFVE

Full GPR 0.809 - 0.338 - 0.108 -

J=10 0.990 0.119 0.990 0.044 0.993 0.034

J=30 0.964 0.277 0.966 0.121 0.969 0.093

J=50 0.936 0.414 0.940 0.192 0.945 0.147

J=100 0.874 0.670 0.869 0.333 0.877 0.274

J=150 0.836 0.888 0.813 0.447 0.808 0.381

J=200 0.809 1.000 0.755 0.543 0.751 0.469

J=300 - - 0.656 0.697 0.637 0.610

J=500 - - 0.506 0.877 0.448 0.792

J=750 - - 0.390 0.971 0.307 0.905

J=1000 - - 0.338 1.000 0.224 0.958

J=1350 - - - - 0.163 0.989

J=1800 - - - - 0.108 1.000

Table 3.2: Average SMSE and CFVE for the case of rough data
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Figure 3.1: CFVEs for smooth curves (top) and rough curves (bottom) plotted for each ratio
J/nobs, with fixed J and varying nobs.
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Figure 3.2: SMSEs for smooth curves (top) and rough curves (bottom) plotted for each ratio
J/nobs, with fixed J and varying nobs.
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Assessing predictions made by approximate implementation methods

We are now interested in comparing predictions made by SD and SR approximation

methods with the ones made by the Full GPR. For the approximation methods, we will

use different subsets of size m.

In order to consider the predictive distribution (and not only the predictive mean as

the SMSE does) to assess predictions, we use the mean standardised log loss (MSLL),

defined by

MSLL =
1

ntest

ntest∑
i=1

[(
1

2
log
(
2πσ2

∗
)

+
(x∗i − x̂

∗
i )

2

2σ2
∗

)
−

(
1

2
log
(
2πs2∗

)
+

(x∗i − x̄∗)2

2s2∗

)]
,

where σ2
∗ = Var [f(t)|D] for the Full GPR in (3.6) or the corresponding predicting variance

for SR and SD methods as we have discussed above. Observe we subtract a quantity we

would have obtained by using a trivial Gaussian distribution model which uses the sample

mean x̄∗ and sample variance s2∗ of the training data to predict the test set values. A

negative MSLL means we obtain better results than the trivial model.

The data generating process (3.19) is used to simulate 50 datasets where each one has

N = 100 replicated surfaces. For each dataset we calculate the SMSE and MSLL results,

giving rise to the corresponding mean +/− one standard deviation plotted in Figure 3.3.

The SR and SD approximation methods use different subsets of size m and the Full GPR

model uses all the nobs = 1800 observations available in the training set.

Let us analyse the SMSE results first. For smooth data, we can clearly see that we

can use a m much smaller than nobs (for example, SD with m = 400 or SR with m = 200)

to have prediction performance very similar to the one of the Full GPR model. For rough

curves, however, we clearly need a larger m. Finally, for both types of data and for a

fixed m, the SR approximation outperforms the SD one. The MSLL results show that

SD and SR have similar performance for rough curves and that SR is only worse than SD

for very small m.
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Figure 3.3: Plot of SMSE and MSLL against m for smooth data (left) and for rough data (right).
The SR results are horizontally jittered for better visualisation.

It is important to highlight that SD involves a considerably smaller computational

time (and storage) than SR does for a fixed m as we can see in Figure 3.4. Therefore,

whereas the choice of a suitable m has to take into account the level of smoothness in the

data, the choice of the approximation method should consider the fact that SR method

requires a quite small ratio m/nobs to reduce the computational time significantly.
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Figure 3.4: Plot of mean CPU time (in seconds) used to evaluate the corresponding loglikelihood
function for each m.
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3.7 Implementation

The GPR methodology has been implemented in the R language and environment (R Core

Team, 2018), where we have written inlined C++ code. As C++ is a statically-typed

language, it helps us to reduce the likelihood of bugs. Moreover, the code is optimised

based on the memory storage and CPU features.

We can write C++ code in a .cpp file and use the R package Rcpp to embed and

compile the C++ code directly in an R script file. Alternatively, we can write a chunk

of C++ code in an R script file and use the function cxxfunction() the R package inline

(Sklyar et al., 2018) for compilation. We have implemented the latter procedure to make

our C++ code available in R.

Our programs use Armadillo C++ linear algebra library (Sanderson, 2010), which

provides efficient implementation of elementary operations such as matrix multiplication

and matrix factorisations. It also gives us a variety of trigonometric and statistics func-

tions. This library can be used through the R package RcppArmadillo (Eddelbuettel &

Sanderson, 2014).

As the computational complexity of evaluating (3.4) is of the order O(n3), rapid pro-

grams are required. Besides writing the code in C++ and use Armadillo C++ library, we

make below a few additional remarks.

Due to the symmetry of the n× n covariance matrix Ψn, we do not need to evaluate

the covariance function at all pairs of points. We only need to calculate n(n + 1)/2

elements (which correspond to the upper-triangular matrix including the main diagonal)

to populate Ψn.

In addition, we have used the Cholesky decomposition of Ψn for the following reasons.

Firstly, if we use this decomposition, the inverse Ψ−1n can be obtained by using the R

function chol2inv. This is much faster than applying the commonly used R function solve to

calculate the inverse. Secondly, the Cholesky decomposition provides a numerically more

stable solution than directly inverting the matrix (Rasmussen & Williams, 2006). Thirdly,

the log determinant of Ψn can easily be obtained as a by-product of the calculation of the

inverse: once the decomposition Ψ = L>L is obtained, where L is an upper-triangular

matrix, we can quickly calculate log |Ψ| since log |Ψ| = 2
∑n

i=1 logLii.

In practice, it is often necessary to add a small multiple of the identity matrix, ζI,

to Ψ to improve the numerical conditioning of Ψ (Rasmussen & Williams, 2006). As a

result, this has the same effect as including an additional independent noise of variance

ζ, which is not a problem as we usually need a very small ζ. In our implementations, we

set ζ = 10−8.

In order to save computational time, we can also suppose sparsity for the covariance
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matrix as follows:

Ψ(t, t′)← Ψ(t, t′) ◦M(t, t′),

where ◦ denotes the Schur product and the matrix-valued function M(t, t′) is a modu-

lating function (e.g., equal to 0 whenever ||t − t′||1 > γ and 1 otherwise, also known as

taper function). Figure 3.5 illustrates a covariance matrix of a given GPR model where

input t is unidimensional for illustration purposes. In practice, it is often acceptable to set

to zero the elements whose distance from the diagonal is large, with that distance being

determined by the tuning parameter γ. The choice of γ is discussed in (Pourahmadi,

2013, Chapter 6) and references therein. In our implementations, we only used tapering

of covariance matrices in simulation studies of stationary data where we knew that most

of the true elements were smaller than 10−8, elements which were set to zero.

−1

−0.5

0

0.5

1

t

t’

Figure 3.5: Sparsity assumed for a covariance matrix Ψ(t, t′). Values which are more distant to
the matrix diagonal than the black diagonal lines are set to zero.

3.8 Conclusion

As we have seen, the Nyström-based method for approximating a covariance matrix Ψn

is a reduced-rank method which uses only m < n eigenvectors and provide very good

approximation for a quite small m especially when the spectrum of Ψn decays fast, i.e.

when all except the very first few eigenvalues are very close to zero. Our results indicate

that SR approximation, in general, provides better predictions than SD does for the same

m. However, if the number of observations in each curve is too large, in such a way that

Nyström’s computational complexity of O(m2n) is still prohibitive, SD approximation

method might be a suitable alternative.

The asymptotic theory shows important results. Theorems 1 and 2 provide the best
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finite dimensional approximation and convergence rates under a very general covariance

structure of the function-valued process. Theorem 2 indicates that Karhunen-Loéve ex-

pansion may be used to analyse the eigenfunctions and eigenvalues as we do in FDA. As

our framework allows a general covariance structure, the eigenfunctions can provide us

new insights into the data as we do not need to assume covariance separability, a topic

which will be discussed in Chapter 4.

3.9 Appendix

Proof of Theorem 1

We show that

E
[
||Xc(t)−

J∑
j=1

gj(t)ξ
∗
j ||2
]

= E〈Xc(·)−
J∑
j=1

gj(·)ξ∗j , Xc(·)−
J∑
j=1

gj(·)ξ∗j 〉

= E
[
〈Xc(·), Xc(·)〉 −

J∑
j=1

〈Xc(·), gj(·)〉2
]

= E||Xc||2 −
J∑
j=1

E
[ ∫
T

∫
T
Xc(t)Xc(t′)gj(t)gj(t

′)dtdt′
]

= E||Xc||2 −
J∑
j=1

∫
T

∫
T
k(t, t′)gj(t)gj(t

′)dtdt′

= E||Xc||2 −
J∑
j=1

〈Ξ(gj), gj〉.

Hence, the minimising problem (3.13) becomes to maximise
∑J

j=1〈Ξ(gj), gj〉 with respect

to g1, . . . , gJ ∈ L2(T ). Since the operator Ξ is symmetric, positive definite Hilbert-

Schmidt, following Theorem 3.2 in Horváth & Kokoszka (2012) the proof is completed.

Proof of Theorem 2

Without loss of generality, we consider Q = 2. Then t = (s, τ)> with s, τ ∈ R. Let

{λ̂j, j = 1, 2, . . . } and {φ̂j(·), j = 1, 2, . . . } be the eigenvalues and eigenfunctions of the
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covariance function k̂(t, t′) = kθ̂(t, t
′), where t = (s, τ)>, t′ = (s′, τ ′)>, and

ξ̂j = 〈Xc(·), φ̂j(·)〉 =

∫
Xc(t)φ̂j(t)dt.

Let p(xcl ;θ) = p(xc1, . . . , x
c
l ;θ) be the density function of xcl . Let θ0 be the true value

of θ and pl(θ) be the conditional density of xcl for given xcl−1. Actually, for every l ≥ 1,

pl(θ) = p(xcl ;θ)/p(xcl−1;θ).

It shows that pl(θ) = N(µl|l−1, σ
2
l|l−1) with

µl|l−1 = klK
−1
l−1x

c
l−1, σ2

l|l−1 = k(tl, tl)− klK−1l−1k
>
l ,

where kl =
(
k(t1, tl), . . . , k(tl−1, tl)

)>
. Assume that pl(θ) is twice differentiable with re-

spect to θ. Let φl(θ) = log pl(θ), U l(θ) = φ̇l(θ) and V l(θ) = φ̈l(θ), where ġ and g̈ are

the first and second derivatives of function g(θ) with respect to θ, respectively. Without

loss of generality, we consider the parameter with one dimension. Then U l(θ) and V l(θ)

are scalars Ul(θ) and Vl(θ), and denoted by Ul = Ul(θ0) and Vl = Vl(θ0). For the proof of

Theorem 2, we need the following conditions:

(C1) sups,τ |µ(s, τ)| <∞.

(C2) The covariance function kθ(t, t
′) has thrice continuous derivative with respect to

θ, and is continuous, differentiable and square-integrable on t, t′. For eigenvalues and

eigenvectors of kθ, assume δj > 0 and φj(s, τ) is square-integrable, where δj = min{λ1 −
λ2, λj−1 − λj, λj − λj+1}.

Define ik(θ0) = Var[Uk|Fk−1] = E[U2
k |Fk−1], where Fk−1 = σ(xc1, . . . , x

c
l−1). Let

In(θ0) =
∑n

k=1 ik(θ0), Sn =
∑n

k=1 Uk and S∗n =
∑n

k=1 Vk + In(θ0). It shows that Sn and

S∗n are zero-mean martingales with respect to σ-filtration Fn. The third condition is

(C3) Assume

1. n−1|
∑n

k=1 Vk|
p→ i(θ0), and n−1/2Sn

L→ N(0, i(θ0)) for some non-random function

i(θ0) > 0,

2. For all ε > 0 and η > 0, there exists δ > 0 and n0 > 0 such that for all n > n0,

P{n−1|
∑n

k=1(V (θ)− Vk)| > η, |θ − θ0| < δ} < ε,

3. n−1
∑n

k=1 E|Wk(θ)| < M < ∞ for all θ and n, where Wk(θ) is the third derivative

of φk(θ) with respect to θ.

Under conditions (C2) and (C3), it easily shows that the conditions of Theorem 2.2

in Chapter 7 of Basawa & Prakasa Rao (1980) holds. Hence, θ̂ is a consistent estimator
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of θ0 and has asymptotically normality,

n−1/2(θ̂ − θ0)
L→ N(0, i(θ0)

−1),

which indicates that

||θ̂ − θ0|| = Op({log(n)/n}1/2).

Since covariance function kθ is thrice continuously differentiate on θ, we have

||kθ̂(·, ·)− kθ(·, ·)|| = Op({log(n)/n}1/2).

From Lemma 4.2 in Bosq (2000), it follows that for all j,

||λ̂j − λj|| ≤ ||kθ̂(·, ·)− kθ(·, ·)||, (3.20)

and similar to Lemma 4.3 in Bosq (2000), we have for fixed j,

||φ̂j(·)− φj(·)|| ≤ 2
√

2δ−1j ||kθ̂(·, ·)− kθ(·, ·)||, (3.21)

where δj = min{λ1 − λ2, λj−1 − λj, λj − λj+1}. Then (3.20) and (3.21) give that

||λ̂j − λj|| = Op({log(n)/n}1/2),

||φ̂j(·)− φj(·)|| = Op({log(n)/n}1/2).

For ξj, we show that

|ξ̂j − ξ| =
∣∣∣∣∫ (Z(s, τ)− µ̂(s, τ))φ̂j(s, τ)dsdτ −

∫
(Z(s, τ)− µ(s, τ))φj(s, τ)dsdτ

∣∣∣∣
≤
∣∣∣∣∫ (Z(s, τ)− µ(s, τ))(φ̂j(s, τ)− φj(s, τ))dsdτ

∣∣∣∣
+

∣∣∣∣∫ (µ̂(s, τ)− µ(s, τ))(φ̂j(s, τ)− φj(s, τ))dsdτ

∣∣∣∣
+

∣∣∣∣∫ (µ̂(s, τ)− µ(s, τ))φj(s, τ)dsdτ

∣∣∣∣ .
Hence, from condition C2, (3.20) and sups,τ |µ̂(s, τ) − µ(s, τ)| = Op[{log(n)/n}1/2], it

shows that

||ξ̂j − ξj|| = Op({log(n)/n}1/2).
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Proof of Theorem 3

Let Kn =
(
k(ti, tj)

)
n×n be a Gram matrix, and λ

(n)
1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
n ≥ 0 be the

eigenvalues of Kn, and V j,n, j = 1, . . . , n be the eigenvectors of Kn. Then from the

Nyström approximation method, we show that

√
nVhj,n = φj(th) +Op

( 1√
n

)
,

λ
(n)
j

n
= λj +Op

( 1√
n

)
,

√
n

λ
(n)
j

k>n (t)V j,n = φj(t) +Op

( 1√
n

)
, (3.22)

where Vhj,n is the h-th element of V j,n, and kn(t) =
(
k(t1, t), . . . , k(tn, t)

)>
. Due to

E [ξj] = 0 and Var [ξj] = λj → 0 as j →∞, it follows from (3.22) that

fn(t) =
n∑
j=1

φj(t)ξj =
n∑
j=1

√
n

λ
(n)
j

k>n (t)V j,nξj + op(1).

In addition, we show that

ξj =λj〈f, φj〉

=λj〈f,
√
n

λ
(n)
j

k>n (·)V j,n〉+Op

( 1√
n

)
=

√
nλj

λ
(n)
j

V >j,n〈f,kn(·)〉+Op

( 1√
n

)
=

√
nλj

λ
(n)
j

V >j,nf +Op

( 1√
n

)
.

Hence, we have

fn(t) =
n∑
j=1

√
n

λ
(n)
j

k>n (t)V j,n

√
nλj

λ
(n)
j

V >j,nf + op(1)

=k>n (t)
n∑
j=1

1

λ
(n)
j

V j,nV
>
j,nf + op(1)

=k>n (t)K−1n f + op(1),

which indicates that E [f(t)|f ] = k>n (t)K−1n f = fn(t) + op(1).

The Nyström approximation is also applied to X(t) and ε(t), respectively, and we
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have

Xn(t) = k̃
>
n (t)K̃

−1
n x+ op(1),

εn(t) = k>εn(t)K−1εn ε + op(1),

where x =
(
x(t1), . . . , x(tn)

)>
, ε =

(
ε(t1), . . . , ε(tn)

)>
, k̃ = k + kε,[

K̃n

]
ij

= k̃(ti, tj), k̃n(t) =
(
k̃(t1, t), . . . , k̃(tn, t)

)>
,
[
Kεn

]
ij

= kε(ti, tj), and

kεn(t) =
(
kε(t1, t), . . . , kε(tn, t)

)>
. From the definition of kε, we know that kεn(t) = 0

and K̃n = Kn + σ2
εIn. Hence, it follows that

fn(t) = Xn(t)− εn(t) = k>n (t)(Kn + σ2
εIn)−1x+ op(1),

which suggests that

E [f(t)|D] = k>n (t)(Kn + σ2
εIn)−1x = Xn(t) + op(1).
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Chapter 4

Modelling function-valued processes

with nonstationary, nonseparable

covariance structure

When t is multi-dimensional, a general nonparametric covariance cannot usually be used

due to the curse of dimensionality. One way to address the problem is to assume a

separable covariance function

k(t, t′) = k1(t1, t
′
1) · · · kQ(tQ, t

′
Q), (4.1)

that is, if it can be factorised into the product between covariance functions, each one

corresponding to one dimension, then it can be modelled nonparametrically (see e.g. Chen

et al., 2017; Rougier, 2017).

In this chapter, we propose a semiparametric approach for the estimation of a flexi-

ble covariance function in such a way we can relax the assumptions of stationarity and

separability. The nonstationarity over t is defined by a convolution-based approach via

a varying kernel, whose parameters are modelled nonparametrically. In particular, we

propose to use a suitable parametrisation for the varying anisotropy matrix, allowing for

unconstrained estimation.

Section 4.1 discusses the covariance separability assumption made in FPCA models. In

Section 4.2, we define a nonstationary covariance structure and propose to use a spherical

parametrisation for the varying anisotropy matrix. Simulation studies are presented in

Section 4.3 and an application to Canadian temperature data in Section 4.4.
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4.1 Function-valued processes with separable covari-

ance structure

The accurate estimate of the covariance function, which is important for FPCA and other

inference methods of functional data analysis (Ramsay & Silverman, 2005), is a challenging

task. When the dimension of the input space is Q = 2, the covariance function depends

on four arguments and, in the case of sparse designs, nonparametric estimation may

suffer from the curse of dimensionality and slow computing. These difficulties are rapidly

aggravated as Q becomes larger.

In order to address these issues, many models for two-way functional data (e.g. Chen

& Müller (2012); Allen et al. (2014); Chen et al. (2017)) and spatiotemporal data (Baner-

jee et al. (2015) and references therein) assume that the covariance function k(t, t′) is

separable. In other words, they assume that k(t, t′) can be factorised into the product

between Q covariance functions, each one corresponding to one coordinate direction.

Let us discuss the covariance separability assumption for the case t = (s, τ)> ∈ R2 to

simplify the exposition. According to Mercer’s theorem, the marginal covariance functions

can be decomposed as

k1(s, s
′) = lim

J→∞

J∑
j=1

λ1jφ1j(s)φ1j(s
′)

and

k2(τ, τ
′) = lim

J→∞

J∑
l=1

λ2lφ2l(τ)φ2l(τ
′),

analogously as the decomposition of the full covariance function k(t, t′) (see eq. (2.2)),

determined by the eigenvalues λj and eigenfunctions φj(t).

If the covariance function k(s, τ ; s′, τ ′) is separable, then

k(s, τ ; s′, τ ′) = k1(s, s
′)k2(τ, τ

′)

= lim
J→∞

J∑
j=1

J∑
l=1

λ1jλ2lφ1j(s)φ2l(τ)φ1j(s
′)φ2l(τ

′).

(Rougier, 2017). In this case, for every j and l, λ1jλ2l is an eigenvalue of k(t, t′) and

φ1j(s)φ2l(τ) the corresponding eigenfunction. Note that covariance separability implies

separability of eigenfunctions. If we observe nonseparable eigenfunctions, then the covari-

ance function must not be separable, and this is another reason to visualise the eigen-

functions. Note that multidimensional eigenfunctions can also be called eigensurfaces and

thus we can use these terms interchangeably.
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The covariance separability assumption allows efficient computation of the eigenfunc-

tions and functional principal components because we only need to compute the eigen-

functions of the marginal kernels. Moreover, it reduces the curse of dimensionality prob-

lem that is present when estimating nonparametrically the (2Q)-dimensional covariance

function. Based on these facts, Chen et al. (2017) suggest using tensor product representa-

tions. In the model that they called Product FPCA, the two-dimensional function-valued

process X is represented as

X(s, τ) = µ(s, τ) +
∞∑
j=1

∞∑
l=1

ξjlφ1j(s)φ2l(τ), (4.2)

where φ1 and φ2 are eigenfunctions of the marginal covariance functions. This model

implicitly assumes that the covariance structure is separable.

Chen et al. (2017) show that the Product FPCA model has nearly optimal solution in

terms of maximising (2.6) under appropriate assumptions. In the application to human

fertility data (Human Fertility Database, 2017), they also show that the model is useful

as it can be used to analyse the effects of the two inputs separately.

For a three-dimensional process X (see simulation study in subsection 4.3.2), we will

consider a natural extension of the Product FPCA model (4.2) and represent X as

X(τ, s1, s2) = µ(τ, s1, s2) +
∞∑
j=1

∞∑
l=1

∞∑
m=1

ξjlmφ1j(τ)φ2l(s1)φ3m(s2).

Besides reducing computational costs and offering attractive interpretation, the co-

variance separability assumption is also useful because it makes it easier to guarantee

positive definiteness of the covariance function. However, it does not allow any interac-

tion between the coordinate directions in the covariance, an assumption that may be too

strong for applications to data with complex covariance structure. This has motivated

recent development of hypothesis tests for separability (Aston et al., 2017; Constantinou

et al., 2017; Chen & Lynch, 2017; Cappello et al., 2018).

We can instead use GPR models with parametric covariance function which allows for

nonseparability. Although a parametric covariance function may not fit the covariance

structure very well, this can be overcome by selecting it from a variety of families of

flexible covariance functions.
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4.2 Function-valued processes with nonseparable

and/or nonstationary covariance structure

Although general classes of nonseparable covariance functions were proposed almost two

decades ago (Cressie & Huang, 1999; Gneiting, 2002; De Iaco et al., 2002; Stein, 2005), they

are usually restricted to the scope of stationarity, another assumption we wish to avoid.

We would like to implement an approach which not only offers attractive interpretation,

but which is also flexible to model complex, nonstationary covariance structure.

When using a stationary covariance function, we assume a constant variance for the

entire input domain. Suppose that there are two regions of the domain, each one having

data with different degree of variability. If the data show larger variability in the first

region, the variance estimate for the second region tends to be inflated, resulting in

predictions with too large variance for the second region.

In order to handle this, we need to employ nonstationary covariance functions which

desirably accommodate a wide class of nonstationary stochastic processes. In addition,

the choice of the covariance function k must be valid.

The linear covariance function (Shi & Choi, 2011) is an example of nonstationary

covariance function. Its simplicity, though, is of limited use for modelling complex covari-

ance structures and it is often used together with other covariance functions (e.g. Wang

& Shi (2014)). A popular strategy to deal with nonstationarity in spatial statistics liter-

ature is through deformation (Sampson & Guttorp, 1992). The idea is to transform the

geographical space into another space where stationarity holds. The choice of a suitable

transformation is a challenging task. In addition, this approach requires independent

replications of the spatial process (Banerjee et al., 2015). Another method called treed

GP (Gramacy & Lee, 2008) splits the input space into subregions. This requires the

choice of the number of subregions and the split locations, which might not be trivial.

Ba & Joseph (2012) propose to model X as a sum of a global GP and a local GP, where

the nonstationarity is introduced through scaling of the local stationary process. We may

wish to consider the case where the nonstationarity is defined by a varying anisotropy

matrix, as we will see in the next subsection.

4.2.1 Convolution-based covariance functions

Higdon et al. (1999) propose a constructive, convolution-based approach to account for

nonstationarity in the covariance function. They represent a spatial process as a moving
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average of Gaussian white noise processes z(·) as

f(t) =

∫
R2

kt(u)z(u)du, (4.3)

where the nonstationarity is achieved by considering a spatially-varying kernel kt. The

covariance function of (4.3) takes the form

Cov
[
f(t), f(t′)

]
=

∫
R2

kt(u)kt′(u)du (4.4)

and is positive definite provided that sup
∫
R2 kt(u)2du ≤ ∞.

The convolution-based approach has become popular mainly because specifying a ker-

nel which satisfies the above condition is much easier than specifying a covariance function

directly. Higdon (2002) suggests different process convolution specifications to build flex-

ible space and space-time models.

Paciorek & Schervish (2006) show that the covariance function (4.4) is valid in every

Euclidean space RQ, Q = 1, 2, . . . . They also note that if we assume a Gaussian kernel

kt(u) = (2π)−Q/2|Σ|−1/2 exp
{
−(1/2)(t−u)>Σ−1(t−u)

}
, the covariance function of f(·)

will be

Cov
[
f(t), f(t′)

]
= σ2|Σ(t)|1/4|Σ(t′)|1/4

∣∣∣∣Σ(t) + Σ(t′)

2

∣∣∣∣−1/2 exp{−Qtt′}, (4.5)

where

Qtt′ = (t− t′)>
(

Σ(t) + Σ(t′)

2

)−1
(t− t′).

A more general class for nonstationary covariance functions given by

Cov
[
f(t), f(t′)

]
= σ(t)σ(t′)|Σ(t)|1/4|Σ(t′)|1/4

∣∣∣∣Σ(t) + Σ(t′)

2

∣∣∣∣−1/2g(√Qtt′

)
, (4.6)

where g(·) is a valid isotropic correlation function.

Even if the anisotropy matrix is assumed to be constant (Σ(t) = Σ), the covariance

function (4.6) is nonstationary. In this special case, the nonstationarity is introduced

through scaling of a stationary process (Banerjee et al., 2015, Section 3.2). In other

words, if a stationary process V (t) has mean 0, variance 1 and correlation function ρ, then

Z(t) = σ(t)V (t) is a nonstationary process with covariance function Cov
[
Z(t), Z(t′)

]
=

σ(t)σ(t′)ρ(t− t′). The composite Gaussian process model (Ba & Joseph, 2012) also uses

this idea to allow for varying volatility in a local GP process.

The anisotropy matrix Σ(t) measures how quickly varying is the fluctuation of the
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random processes over t and one may want to allow it to vary over t. Both σ(·) and Σ(·)
can also vary over τ ∈ T ∗ ⊂ RQ∗ , where Q∗ ≤ Q. This τ can represent, for example,

time or spatial coordinates, accounting for time-varying or spatially-varying parameters,

or both. This provides a flexible way to model nonstationary and nonseparable covariance

structure. We will use the observed data to estimate the covariance structure nonpara-

metrically. The details will be discussed in the next subsection.

If g is, for example, a (squared) exponential function, it is easy to see that if and only

if we can factorise σ(t) = σ(t1) · · ·σ(tQ) and have zero off-diagonal elements in Σ(t), then

a separable covariance function (4.1) is obtained.

Parametrisation of the varying anisotropy matrix

We must ensure positive definiteness of the anisotropy matrix Σ(t) in (4.6). This can

be done by using different parametrisations. For example, Higdon (1998), Higdon et al.

(1999), and Risser & Calder (2017) use geometrically-based parametrisations which cap-

ture local anisotropy by rotating and stretching coordinate directions. Paciorek & Schervish

(2006) suggest using a spectral decomposition. However, these methods are either de-

signed for some special cases or are difficult to form interpretation about its elements.

Pinheiro & Bates (1996) present five parametrisations for a covariance matrix, one

of which is the spherical parametrisation, a particularly interesting strategy because it

provides direct interpretation of parameters in terms of variances and correlations. We

propose to use the spherical parametrisation for Σ(t) and interpret the parameters in

terms of length-scale (to assess how rapidly varying is the function f of eq. (3.1) in each

coordinate direction) and direction of dependence (to see potentially interaction between

the coordinate directions).

As discussed above, the off-diagonal elements of Σ(t) have to be zero to produce a

separable covariance function. Therefore, a value which is not zero indicates nonseparable

covariance structure due to the interaction between the coordinate directions of t in the

way the process fluctuates over t.

We will consider the Cholesky decomposition

Σ(t) = Σ(τ ) = L(τ )>L(τ ),

where L is an Q×Q upper triangular matrix (including main diagonal). Positiveness of

the main diagonal entries of L ensures that Σ is positive definite.

We will follow closely the exposition of Pinheiro & Bates (1996) to explain the spher-

ical parametrisation. Let Lq denote the q-th column of L and `q denote the spherical
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coordinates of the first q elements of Lq. Therefore, we have

[Lq]1 = [`q]1 cos([`q]2),

[Lq]2 = [`q]1 sin([`q]2) cos([`q]3),

. . . ,

[Lq]q−1 = [`q]1 sin([`q]2) · · · cos([`q]q),

[Lq]q = [`q]1 sin([`q]2) · · · sin([`q]q).

Let us define a diagonal matrix C whose diagonal entries are [Cqq] = [Σqq]
1/2. Then

we can write Σ in terms of a matrix R:

Σ = C1/2RC1/2,

where Rqq = 1, q = 1, . . . , Q, and Rpq = ρpq, p 6= q. The parameter ρpq ∈ (−1, 1)

measures the direction of linear dependence between the coordinates p and q. If ρpq 6= 0

for some pair (p, q), then the covariance function (4.6) is nonseparable. The value of

Σqq can be interpreted as the length-scale parameter and therefore measures how rapidly

varying is the function f in (3.1) towards the coordinate q.

We can show that Σqq = [`q]
2
1 and that ρ1q = cos([`q]2), q = 2, . . . , Q, with −1 <

ρ1q < 1. This means that we can interpret the values of L in terms of the length-scale

parameters and directions of dependence of Σ.

The spherical parametrisation is unique if

[`q]1 > 0, q = 1, . . . , Q,

[`q]p ∈ (0, π), q = 2, . . . , Q, p = 2, . . . , q.

We can then easily proceed with an unconstrained estimation by defining a new vector

of parameters α which includes log([`q]1), q = 1, . . . , Q, and log
(

[`q]p /(π − [`q]p)
)
, q =

2, . . . , Q, p = 2, . . . , q. Each element αj = αj(τ ), for j = 1, . . . , Q(Q+ 1)/2, depends on

τ if the covariance structure is nonstationary.

The unconstrained estimation of each element allows it to be modelled as a nonpara-

metric function of τ . The spherical parametrisation has some other advantages over other

parametrisations in that: (i) it is uniquely defined and can be readily extended for any

Q > 2, which is difficult when implementing geometrically-based parametrisations; (ii)

it has about the same computational efficiency as the Cholesky parametrisation applied

directly; (iii) we can make interpretation of the values of L in terms of the length-scale

parameters and directions of dependence of Σ; and (iv) we can account for uncertainty
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on α, and consequently conduct inference on length-scale and direction of dependence.

A geometrical interpretation of the spherical parametrisation can be seen in Rapisarda

et al. (2007). Other parametrisations based on Cholesky decomposition has been widely

discussed. Zhang et al. (2015) mention that unconstrained nature of the parametrisation

of the Cholesky factor allows to represent angles of the spherical parametrisation via

regression as functions of some covariates, an idea also used by Pourahmadi (1999) and

Leng et al. (2010) when parametrising covariance matrices using a modified Cholesky

decomposition.

If the covariance structure depends along one coordinate direction τ ⊂ R (i.e. Q∗ = 1,

e.g. time-varying parameters), many nonparametric methods can be used, e.g.

αj(τ) =
L∑
l=1

θjlBjl(τ), (4.7)

where B` form B-spline basis functions (de Boor, 2001). This representation ensures that

the resulting function is smooth and still very flexible as we can change the degree of the

piecewise polynomials and the number and location of knots. The locations of the knots

are usually the quantiles of τ , but they can be chosen differently; we can also allow for

discontinuities in derivatives by repeating knots at the same location. The gain of adding

more knots comes with the cost of increasing the number of parameters to be estimated.

Typically, the number of knots is chosen by cross-validation.

For multidimensional τ ∈ RQ∗ (useful to model spatially-varying parameters), we can

construct multivariate B-splines basis functions by taking the product of the Q∗ univariate

basis.

An alternative method is to use a Gaussian process to model each αj(τ ) using a

parametric covariance function. Let αji = αj(τ i), i = 1, . . . , n. Then we define

(αj1, . . . ,αjn) ∼ N
(
0,Kj(θj)

)
, (4.8)

where Kj is an n × n covariance matrix where its (i, i′)-th element is calculated by the

covariance function kj(τ i, τ i′ ;θj), depending on unknown parameter θj. In practice, we

may use the same covariance function for j = 1, . . . , Q, and for j = Q+1, . . . , Q(Q+1)/2.

This method can cope with the large dimensional cases, i.e. Q∗ > 1.

We now denote the covariance function constructed by (4.6) and the above parametri-

sation methods by k(t, t′;θ) for any t, t′ ∈ RQ, where θ includes all the unknown parame-

ters in (4.7) if B-splines are used or the unknown parameters in (4.8) if GPRs are used; in

addition, θ includes log(σ2) if we use (4.5). We will use an empirical Bayesian approach

to estimate the unknown parameters and thus the nonstationary covariance structure.
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Local empirical Bayes estimation of the covariance function

To reduce the computational costs when calculating the determinant and the inverse of

Ψn in (3.4), we can instead using the local likelihood estimation (LLE) (Tibshirani &

Hastie, 1987). In the LLE, instead of maximising (3.4) directly, we maximise

Lk(θk|Dk) = −1

2
log |Ψ(θk)| −

1

2
x′kΨ(θk)

−1xk −
nk
2

log 2π

locally, where k is the index of location tk. Estimates of θk are obtained by considering

only the data in the neighbourhood of tk, that is, Dk =
{

(xi, ti) : {||ti−tk|| < r}
}

, where

r is a predefined radius. Using the available observations in the neighbourhood of tk is

important as the behaviour of the covariance function near the origin determines prop-

erties of the process (Stein, 1999). Risser & Calder (2017) suggest a mixture component

approach in which they estimate the spatially varying parameters θk, k = 1, . . . , kmax,

locally and then, for any arbitrary location t, θk(t) is obtained by averaging, respectively,

θk, k = 1, . . . , kmax, with a weight function depending on the distance between tk and t.

A special case is when the nonstationarity depends on one coordinate direction as

discussed around equation (4.7). We can use B-spline basis functions and then estimate

the corresponding coefficients θjl. In practice, we may simply estimate αj locally for some

locations via LLE (i.e. assuming αj is a constant in a neighbourhood of the locations)

and then regress these estimates to obtain smooth functions αj(τ ) for any τ ∈ RQ∗ , using

a nonparametric approach, e.g. B-splines.

When we use all the data (not using local likelihood estimation (LLE)), this of course

requires a potentially high computational cost as we consider all the data rather than only

the data within a neighbourhood. However, if computational costs are not prohibitive,

this approach should be preferable to the local likelihood approach, whose performance

heavily depends on the neighbourhood size r. In the LLE, if a small neighbourhood is used

(e.g. in order to model very local features), one might obtain unstable local estimates.

On the other hand, if a large neighbourhood is used (something necessary when data

are sparse), then the local stationarity assumption is no longer appropriate and the local

estimates might be very biased.

4.3 Simulation studies

In this section, we show three examples of data with nonseparable, nonstationary covari-

ance structure. We discuss how directions of linear dependence between coordinates can

be visualised and show that nonseparable models can explain more variation in the data
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using less components than separable models do.

4.3.1 Simulation study 1

We simulate 30 realisations from a zero mean, two-dimensional function-valued process

X(t), t = (τ, s)>, observed at n1 × n2 = 25 × 25 = 625 equally spaced points on

[0, 1]2. We assume a measurement error with variance σ2
ε = 0.1 and the covariance func-

tion (4.6), with varying overall variance σ2(τ) = exp(τ) and varying anisotropy matrix

Σ(τ) = C1/2R(τ)C1/2, where C = diag(0.1, 0.1), R11(τ) = R22(τ) = 1 and different

specifications for R12(τ) = R21(τ): we set R12(τ) = 0 to produce a separable covariance

function and R12(τ) = 0.95τ and R12(τ) = 0.8 to produce nonseparable ones. Four dif-

ferent specifications for g(·) were used for generating the data: Matérn with ν = 1/2,

ν = 3/2, ν = 5/2, and ν = 5.

Then we estimate the covariance structure by the NSGP model with two specifications

for g(·) (squared exponential and exponential) and by the Product FPCA model. In the

NSGP model, the τ -varying parameters are estimated via B-splines with 3 knots.

Figure 4.1 and 4.2 show the CFVEs obtained when the data generating process is a

GP and a T -process (with 6 degrees of freedom), respectively. The conclusions made for

both figures are very similar, showing that the proposed NSGP approach is robust to

heavy-tailed data.

The top panel of the Figures 4.1 and 4.2 show the separable case; the middle panel

shows the case where the nonseparable feature is only strong when τ is large; and the

bottom panel show the case where the nonseparable feature is strong for any τ . Note that

the value of R12(τ) measures how distant is the covariance structure from the separability

assumption. The figures indicate very similar performance of the three methods when the

covariance is separable. However, when the nonseparable feature is strong, NSGP models

obtain better (or at least very similar) CFVEs than Product FPCA does. In other words,

when the covariance structure becomes more distant from the separability assumption,

then Product FPCA model seems to not capture important information about the vari-

ation in the data which are explained by nonseparable eigensurfaces. Observe, however,

that the first eigensurface estimated by each method have very similar contribution, even

in the strong nonseparability cases. This, of course, is because nonseparable features are

caused by interaction between the coordinate directions, and therefore we do expect to

see a clearer advantage of nonseparable models only in later eigensurfaces, not in the first

one.

Whereas Matérn with ν = 1/2 is equivalent to the exponential kernel, Matérn with

ν = ∞ converges to the squared exponential kernel. This explains why the exponential
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correlation kernel is preferable for data generated with small ν and the squared exponential

kernel provides better results for large ν.

The larger the value of ν the smoother are the random functions. Therefore, as we

can see in the Figures 4.1 and 4.2, the larger the value of ν, the smaller is the number

of components necessary to achieve a high CFVE. Each row of figures were not plotted

using the same scale in order to visualise better the difference between the methods.
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Figure 4.1: CFVEs of GP data for J = 1, . . . , 10, obtained by Product FPCA (red), NSGP with
squared exponential g(·) (green), and NSGP with exponential g(·) (blue). In each column, from
the top to the bottom, R12(τ) = 0, R12(τ) = 0.95τ , R12(τ) = 0.8. In each row, from the left to
the right, the data generating process follows a GP where g(·) is Matérn with ν = 1/2, ν = 3/2,
ν = 5/2, and ν = 5.
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Figure 4.2: CFVEs of T -process data for J = 1, . . . , 10, obtained by Product FPCA (red), NSGP
with squared exponential g(·) (green), and NSGP with exponential g(·) (blue). In each column,
from the top to the bottom, R12(τ) = 0, R12(τ) = 0.95τ , R12(τ) = 0.8. In each row, from
the left to the right, the data generating process follows a T -process where g(·) is Matérn with
ν = 1/2, ν = 3/2, ν = 5/2, and ν = 5.
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4.3.2 Simulation study 2

In this study, we simulate a three-dimensional function-valued process X(τ, s1, s2), where

τ, s1, s2 ∈ [0, 1], from (3.1), where f is zero-mean T -process with covariance function (4.6)

and squared exponential correlation kernel g(·). We also set σ2
ε = 0.1. We assume that

the parameters σ2 and Σ in (4.6) depend only on τ . This example is comparable to

spatiotemporal models which have time and spatial coordinates as input variables and

time-varying coefficients (e.g. dynamic linear models (Banerjee et al., 2015)).

We set σ2(τ) = exp(τ) and

Σ(τ) =


1 0 0

0 1 ρ23(τ)

0 ρ23(τ) 1

 ,
with ρ23(τ) = 0.95τ . That is, the process f has overall variance σ2(·) and the interaction

between coordinate directions s1 and s2, given by ρ23(·), increases over τ . This produces

a nonstationary, nonseparable covariance function.

As τ increases, ρ23 becomes more distant from zero, and thus models which assume

separable covariance structure might be not suitable. Figs 4.3 and 4.4, show, for τ = 0.25

and τ = 1, respectively, the true leading eigensurfaces φ(τ, s1, s2) and the corresponding

estimates obtained by nonstationary GP (NSGP) and Product FPCA.

The first eigensurface represents the direction of the largest variation in the data

relative to the mean function. The second eigensurface corresponds to the direction of

the largest variation which is orthogonal to the first eigensurface, and so forth. Covariance

separability implies separability of eigensurfaces. Therefore, if we observe nonseparable

eigensurfaces, this means that the separability assumption is not satisfied.

Although the data were simulated from a T -process, the NSGP model obtains esti-

mated eigensurfaces quite similar to the true ones. The model clearly identifies that the

interaction between s1 and s2 becomes stronger for higher values of τ – see how the di-

agonal orientation is clearer as τ increases from Fig. 4.3 to Fig. 4.4. This fact is not

detected by the Product FPCA model as this assumes separability of the eigensurfaces.

In practice, one eigensurface can often be interpreted as a size component; if the

corresponding countour plot is ellipsoidal with diagonal orientation, then a model which

assumes separability will not describe it well. The visualisation of eigensurfaces can also

identify, for example, a contrast between low-latitude and high-latitude; this contrast,

however, might not be constant over longitude. If we allow for nonseparability, we can

identify, for example, a contrast between between northwest and southeast (see e.g. the
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second true eigensurface in Fig. 4.4, assuming that s1 and s2 represent longitude and

latitude, respectively).
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Figure 4.3: First four leading eigensurfaces φ(0.25, s1, s2) of the true model (left column) and
the corresponding estimated eigensurfaces φ̂(0.25, s1, s2) from the NSGP model (centre) and
Product FPCA model (right).

55



Chapter 4. Function-valued processes with nonstationary, nonseparable covariance

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

True

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1
s

2

NSGP

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

Product FPCA

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

s1

s
2

−0.10

−0.05

0.00

0.05

0.10

Figure 4.4: First four leading eigensurfaces φ(1, s1, s2) of the true model (left column) and the
corresponding estimated eigensurfaces φ̂(1, s1, s2) from the NSGP model (centre) and Product
FPCA model (right).

The CFVEs of the first 16 leading three-dimensional eigensurfaces are illustrated in

Fig. 4.5. As expected, the advantage of the nonseparable model in terms of CFVE is clear

not in the first, but in later components. In addition, we can conclude that the NSGP

model requires less components to explain the same amount of variation in this dataset.
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Figure 4.5: Comparison of cumulative FVEs obtained by the true, and Product FPCA, and
NSGP models.

4.3.3 Simulation study 3

In this simulation study, we assume that the two-dimensional function-valued process

X(s1, s2) has zero mean and covariance function given by

Cov [X(s), X(s′)] =
20∑
j=1

αjφj(s1 + s2)φj(s
′
1 + s′2),

where φj(·) are Chebyshev polynomials, αj = j−3/2 and s ∈ [−1, 1]2. The basis functions

of the form φj(s1 + s2) are clearly nonseparable and produce a nonseparable covariance

structure.

We generate 100 surfaces observed at n1×n2 = 20×20 = 400 equally spaced points and

estimate the covariance structure by NSGP and Product FPCA models. Figure 4.6 illus-

trates that the NSGP model obtains more accurate estimates of the leading eigensurfaces.

The diagonal shapes of the true leading eigenfunctions indicate strong nonseparability fea-

tures in the covariance function, features which are not captured by the Product FPCA

model. The eigensurfaces have such diagonal shapes because they are polynomials of the

sum s1 + s2, and later eigensurfaces change faster along the input domain because they

are polynomials of higher order.

Finally, Figure 4.7 shows that, when using more than two components, NSGP is the

preferable model in terms of explaining better the main modes of variation in the data.
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Figure 4.6: First four leading eigensurfaces φ(s1, s2) of the true model (left column) and the
corresponding estimated eigensurfaces φ̂(s1, s2) from the NSGP model (centre) and Product
FPCA model (right). Chebyshev polynomials data.
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Figure 4.7: Comparison of CFVEs obtained by the true, and Product FPCA, and NSGP models.
Chebyshev polynomials data.

4.4 Application to Canadian temperature data

In this application, we model the daily mean temperature of 36 stations in Canada1

observed in all days from 01-01-1998 to 31-12-2005. The data corresponding to a year is

assumed to be a realisation of a random process, so that we have eight realisations.

We use equation (3.1) to model the daily mean temperature X, where f(·) follows a

GP with covariance function (4.6) and squared exponential correlation function g(·). The

coordinate directions are t = (τ, s1, s2)
>, corresponding to time, latitude and longitude,

respectively. For each realisation (year), the mean function µ(τ) was taken to be the

sample mean across the 36 stations. The parameters θ are assumed to be time-varying

and we use a B-spline basis system with six regularly spaced knots to model them.

The estimate of the overall standard deviation σ(τ) can be seen in Fig. 4.10, indicating

that in winter months there is a higher variation in the mean temperature data relative

to the mean function across the stations. This can be observed in the mean temperature

data (see Fig. 4.9).

The estimates for the elements of the varying matrix Σ(τ) are shown in Fig. 4.11.

The change of parameter values over time indicate that the fluctuation of the process

over each direction is different for different times of the year, something that stationary

1The dataset can be obtained by using the R package weathercan (LaZerte & Albers, 2018), which
was used to download the data from the Environment and Climate Change Canada (ECCC) website
<http://climate.weather.gc.ca/historical_data/search_historic_data_e.html>
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models cannot capture. Moreover, the departure from 0 of the directions of dependence

ρij, i 6= j, reveals the presence of interaction between the coordinate directions, showing

nonseparable features in the covariance structure.

Figure 4.8: Map of Canada and the location of 36 stations where the data were observed.
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Figure 4.9: Daily mean temperature of 36 canadian stations in 2005.
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Figure 4.10: Estimate of σ(τ).
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Figure 4.11: Estimates of diagonal elements of varying matrix Σ (left) and of directions of
dependence ρpq = Σpq/

√
ΣppΣqq (right).
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4.5 Implementation

In this section, we discuss a variety of implementation details to speed up computation

and describe the auxiliary functions of existing R packages.

In the simulation studies, we employed the R package mvtnorm (Genz et al., 2019) to

simulate data from GPs and T -processes using its random number generator for the multi-

variate normal distribution and multivariate t distribution, respectively. In all simulation

studies of this chapter, B-splines basis functions were obtained using the R package splines.

In the simulation study of subsection 4.3.3, the Chebyshev polynomials were computed

by using the R package orthopolynom (Novomestky, 2013).

When we implemented local likelihood estimation, we parallelised it over multiple

cores, substantially reducing the computational time.

We have used the R function nlminb for unconstrained and constrained optimisation

of the marginal likelihood functions. However, whenever it was possible, we converted

the constrained estimation problems to the unconstrained estimation case. For example,

instead of imposing the positivity constraint for σ2, we replaced σ2 by exp(log σ2) in the

function to be optimised and took the unconstrained value log σ2 as the input of the

function.

Notice that in our simulation studies the replicated surfaces are observed in the same

locations. This means we need not calculate different covariance matrices when eval-

uating the likelihood function. The covariance matrix is the same for all replicated

curves/surfaces and has to be calculated just once. Although replications in general are

not observed in the same locations, this is the case for some types of data (e.g. fertility

data).

We are often interested in the very first few eigenvalues and eigenvectors of a covariance

matrix. Therefore, we can use the R package rARPACK (Qiu et al., 2016) to obtain the

only first few elements instead of performing the eigendecomposition which may be time

consuming as it has complexity of O(n3). Consequently, CFVE results were not obtained

by (2.6). Instead, we regressed the data on each eigensurface and calculated the R2 to

see the proportion of variability in the data which is explained by that eigensurface.

To plot the eigensurfaces, we have used surface approximation from bivariate scattered

data using multilevel B-splines. This was implemented using the R package MBA (Finley

et al., 2017). The package fields (Nychka et al., 2017) was used to divide up the graphics

window into a matrix of plots and to produce a legend strip for the figures of eigensurfaces.
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4.6 Conclusion

Our Bayesian modelling framework can handle function-valued processes defined on multi-

dimensional domains without assuming covariance separability. Moreover, the covariance

structure is very flexible, where the nonstationarity is achieved by allowing its parameters

to vary along the input domain. Our proposed spherical parametrisation for the varying

anisotropy matrix enables us to have unconstrained, interpretable parameters. This is

important for many applications. For example, if random trajectories fluctuate over time

more quickly in the winter than in other seasons (see, for example, the application to

Canadian temperature data), then time (or a time-dependent covariate) seems a natural

input for the corresponding length-scale parameter. In addition, whereas the visualisation

of separable eigensurfaces can identify, for example, a contrast between low-latitude and

high-latitude, the visualisation of nonseparable eigensurfaces can be useful to detect a

contrast between between northwest and southeast.

Due to the unconstrained parametrisation, we can model the parameters using a non-

parametric model, and this flexibility is crucial for the covariance function fitting when the

data have complex covariance structure. The popular parametric families of covariance

functions in spatial statistics literature do not have such flexibility as they are usually

stationary or separable.

Based on the decomposition of GPs in Chapter 3, the leading eigensurfaces of the

estimated covariance structure can be used to extract some of the most important infor-

mation of the variation in the data. Unlike models which assume covariance separability,

the simulation studies have shown that interactions between coordinate directions can be

identified in the covariance structure, leading to new interpretation of the data. In addi-

tion, unlike stationary parametric models, the varying parameters of the semiparametric

approach can identify how some features vary along the input domain.
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Multivariate Gaussian Processes

In this chapter, we consider the modelling of multivariate function-valued processesX(·) =(
X1(·), . . . , XM(·)

)>
. The main difficulty is to define cross-covariance functions such that

the full covariance function of the multivariate functional response is positive definite.

A popular approach is to assume that each of the M random functions has the same

covariance function k(·, ·) and that the full covariance is given by Ψ = P ⊗ k(·, ·), where

P is a M ×M matrix describing the dependence between the outputs.

This strong assumption has lead us to consider a bivariate convolved GP model

(Boyle & Frean, 2004) and extend it to the M -variate case, a model that we call the

multivariate Gaussian process (MGP) model. In this approach, each random function

Xl, l = 1, . . . ,M , is modelled as a sum of an independent latent process and another

latent process common to all M random functions.

In Section 5.1, we present our proposed extension to the multivariate case and illustrate

their better prediction performance when compared to the independent GP model for

each random function. The section also gives two simulation studies which show that

MGP can provide similar or better results than MFPCA (Happ & Greven, 2018) does for

multivariate functional data. In Section 5.2, an application to human fertility data shows

new insights provided by the visualisation of the leading eigensurfaces and prediction

results of MGP model.

5.1 Multivariate Gaussian process model

Boyle & Frean (2004) suggest a model which includes two dependent outputs by consid-

ering four GPs constructed via convolution. Each GP constructed in this way is called

convolved GP (CGP). Inspired by that model, in this section we propose an extension to

the case involving M outputs.
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For illustration purposes, let us see how cross-covariances can be constructed by defin-

ing trivariate dependent GPs. Let γ0, γ1, γ2, and γ3 be independent Gaussian white noise

processes and h10, h20, h30, h11, h21, and h31 be smoothing kernels. Analogously to eq.

(4.3), we can construct a convolved GP from ξ(t) =
∫
h(t − u)γ(u)du and denote it as

ξ(t) ∼ CGP
(
h(t), γ(t)

)
.

Consider that

ξ1(t) ∼ CGP
(
h10(t), γ0(t)

)
, η1(t) ∼ CGP

(
h11(t), γ1(t)

)
,

ξ2(t) ∼ CGP
(
h20(t), γ0(t)

)
, η2(t) ∼ CGP

(
h21(t), γ2(t)

)
,

ξ3(t) ∼ CGP
(
h30(t), γ0(t)

)
, η3(t) ∼ CGP

(
h31(t), γ3(t)

)
.

(5.1)

Then we can define trivariate dependent GPs as follows:

X1(t) = η1(t) + ξ1(t) + noise1,

X2(t) = η2(t) + ξ2(t) + noise2,

X3(t) = η3(t) + ξ3(t) + noise3.

In this way, we can see that ξ’s are dependent because they are affected by γ0. However,

η’s are independent. Therefore, the dependence between the functions X’s is defined

through ξ’s, whereas individual characteristics are modelled by η’s. Figure 5.1 illustrates

this example.
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Figure 5.1: Scheme to construct MGP with three dependent outputs: X1, X2, and X3.

Suppose the smoothing kernel functions in (5.1) are given by

h10(t) = ν10 exp
{
− 1

2
t>A10t

}
,

ha0(t) = νa0 exp
{
− 1

2
(t− µa)>Aa0(t− µa)

}
, a = 2, 3,

ha1(t) = νa1 exp
{
− 1

2
t>Aa1t

}
, a = 1, 2, 3.

Therefore,
(
X1(t), X2(t), X3(t)

)>
defined in (5.1) defines a trivariate Gaussian process

regression model with zero means and covariance function given by

k(ti, tj) =


Cov

[
X1(ti), X1(tj)

]
Cov

[
X1(ti), X2(tj)

]
Cov

[
X1(ti), X3(tj)

]
Cov

[
X2(ti), X1(tj)

]
Cov

[
X2(ti), X2(tj)

]
Cov

[
X2(ti), X3(tj)

]
Cov

[
X3(ti), X1(tj)

]
Cov

[
X3(ti), X2(tj)

]
Cov

[
X3(ti), X3(tj)

]


=


k11(ti, tj) k12(ti, tj) k13(ti, tj)

k21(ti, tj) k22(ti, tj) k23(ti, tj)

k31(ti, tj) k32(ti, tj) k33(ti, tj)

 ,
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where

kaa(ti, tj) = kξaa(ti − tj) + kηaa(ti − tj) + δijσ
2
a, a = 1, 2, 3,

kab(ti, tj) = kξab(ti − tj), a 6= b,

and

kξaa(ti − tj) = πQ/2ν2a0|Aa0|−1/2 exp
{
− 1

4
(ti − tj)>Aa0(ti − tj)

}
, a = 1, 2, 3,

kξab(ti − tj) = (2π)Q/2νa0νb0|Aa0 + Ab0|−1/2 exp
{
− 1

2
(ti − tj − µab)>Σab(ti − tj − µab)

}
,

a 6= b,

kηaa(ti − tj) = πQ/2ν2a1|Aa1|−1/2 exp
{
− 1

4
(ti − tj)>Aa1(ti − tj)

}
, a = 1, 2, 3,

where Σab = Aa0(Aa0 + Ab0)
−1Ab0, and µab = µa − µb.

Suppose that Xa(t) has na observations, a = 1, 2, 3, and we want to construct the co-

variance matrix containing the autocovariances functions and cross-covariances functions

between X’s. Considering that xa(t) has training inputs ta,1, . . . , ta,na , we construct the

covariance matrices

Ψab = Kab + δabσ
2
aI =


kab(ta,1, tb,1) · · · kab(ta,1, tb,nb

)
...

. . .
...

kab(ta,na , tb,1) · · · kab(ta,na , tb,nb
)

 , a, b = 1, 2, 3,

and take these matrices together to define a matrix Ψn such that

Ψn =

Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33

 . (5.2)

Let stack the sequences of observed data points of the three functions into a unique

vector x = [x1(t1,1), . . . , x1(t1,n1), x2(t2,1), . . . , x2(t2,n2), x3(t3,1), . . . , x3(t3,n3)]
>. Then we

assume that

x ∼ N(0,Ψn),

where n = n1 + n2 + n3, and learn the model by maximising the log-likelihood function

given by

L = −1

2
log |Ψn| −

1

2
x>Ψ−1n x−

n

2
log 2π,

where Ψn is a function of the data and the smoothing kernel parameters.
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Although we illustrated the case of just M = 3 outputs, the extension to the case

of M > 3 is straightforward. In addition, the method is flexible in the sense it can

handle inputs with dimension Q > 2. The difficulty of having several outputs and/or

higher dimension of the inputs may be the computational cost and the large number of

parameters to estimate.

Comparison between Independent GPs vs MGP

We generated the data as follows:

Xa(t) = µa(t) + fa(t) + εa, εa ∼ N(0, σ2
a), a = 1, 2, 3,

where t ∈ [−5, 5] and t ∈ R, with

µ1(t) = exp{t/2}, µ2(t) = 10 sin(t), µ3(t) = 10 cos(t).

The terms f1(t), f2(t) and f3(t) are Gaussian processes with zero mean and auto- and

cross-covariance functions given by

Cov
[
fa(t), fb(t

′)
]

= ρab exp
{
− 1

2γ2ab
(t− t′)2

}
, a, b = 1, 2, 3.

In other words, if we consider that the length-scale parameter γab = γ, ∀(a, b), then

we are actually simulating the data from a model where each element ot the multivariate

function-valued process has the same covariance kernel k(·, ·). This is achieved by assum-

ing that the covariance matrix K is the product between a matrix P , which measures

the pairwise dependence between the outputs X’s, and a common kernel function k(t, t′)

for the input space:

K = P ⊗ k(t, t′)

=

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⊗ k(t, t′),

where ⊗ is the Kronecker product between two matrices and, in our example,

k(t, t′) = exp
{
− 1

2γ2
(t− t′)2

}
.

To generate the multivariate Gaussians, equations (5.1) are evaluated elementwise to
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construct a covariance matrix K which contains the information of both autocovariance

and cross-covariance functions.

When generating the data, we set γab = 0.5, ∀(a, b), and

P =

 1 0.5 0.3

0.5 1 0.8

0.3 0.8 1


in eq. (5.1), so that all the functions are positively correlated. We generated all the

random functions at randomly chosen points located in [−5, 5].

We have used training sets of 50 individual curves for each random function. First, we

modelled each process as an independent GP using the covariance function (3.8). Next,

we used the MGP model described above to model the multivariate case. We assumed a

zero mean function for both methods.

In Figures 5.2 and 5.3, we drawn from the posterior after simulating 25 and 15 obser-

vations, respectively, from the prior – with the realisations of X2 of the interval (−1, 2)

removed. Observe that the true behaviour of X2 is captured better by using the MGP

approach.

To assess the prediction performance of both methods, we have repeated all the above

procedures 100 times and calculated the prediction RMSE for the three functions consid-

ering the 50 equally spaced points in [−5, 5] – see Tables (5.1) and (5.2).
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Figure 5.2: Random functions drawn from the posterior. We generated 25 observations of each
random function and then we excluded the observations of X2 belonging to the interval (−1, 2).

Independent GPs MGP

X1 1.066 1.050

X2 3.637 1.714

X3 1.154 1.117

Table 5.1: RMSE of the predictions made after 25 given observations
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Figure 5.3: Random functions drawn from the posterior. We generated 15 observations of each
random function and then we excluded the observations of X2 belonging to the interval (−1, 2).

Independent GPs MGP

X1 1.321 1.501

X2 4.800 2.622

X3 1.501 2.094

Table 5.2: RMSE of the predictions made after 15 given observations
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5.1.1 Simulation study 1

We simulate bivariate functional data X(t) =
(
X1(t), X2(t)

)>
based on a truncated mul-

tivariate Karhunen-Loève expansion representation

X(t) =
J∑
j=1

ξjφj(t), t ∈ T ⊂ R, (5.3)

where T = [0, 1]. The multivariate basis functions φj = (φ
(1)
j , φ

(2)
j )> ∈ R2 are constructed

as follows. We use orthonormal Legendre polynomials of degree 0, . . . , J − 1, on the

domain [0, 2] and split this domain into M = 2 parts. The first part represents the

basis functions φ
(1)
j on [0, 1] and the second part is shifted to form the second basis

functions φ
(2)
j also on [0, 1]. Therefore, all the basis functions are defined on T = [0, 1].

The scores ξj are simulated independently from a Gaussian distribution with zero mean

and decreasing variance (in our example, the variance decrease linearly towards 0). The

R package funData (Happ, 2018a) was used to simulate these data and the R package

MFPCA (Happ, 2018b) was used to implement MFPCA.

Figure 5.4 show noise-free, dense data generate via (5.3) for J = 7 components. Then

we remove observations (randomly selected) to consider different levels of sparsity: low

sparsity (10% missing), medium (50%), high (80%) and very high (90%) sparsity. The case

of medium sparsity can be seen in Figure 5.4. We are interested in evaluating predictions

of the missing values by different models estimated by using only the observed data.
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Figure 5.4: Noise-free bivariate functional data generated by using J = 7 components (orthonor-
mal Legendre polynomials of maximum degree 6). Dense data are shown on the top. Medium
sparsity case is shown on the bottom.

We use root standardized mean squared error (RSMSE) to evaluate the quality of the

predictions and analyse scenarios with different number of replicated curves (N = 15, 30,

and 50) and different noise variance for the measurement error (σ2
ε = 0.12 and 0.52). The

simulation study for each scenario is based on 50 datasets. For each scenario, therefore,

we have 50 RSMSE values which we use for producing the boxplots in Figure 5.5. We can

clearly observe that, mainly in settings of high sparsity, MGP predictions can be more

accurate than those made by MFPCA using the same number of components.

Settings of less (J = 4) and more (J = 10) components were also considered and can

be seen in Section 5.5.
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Figure 5.5: Boxplots of the prediction RSMSE using MGP (first group of four boxes) and
MFPCA (last group of four boxes) calculated from datasets with different number of replicated
curves: N = 15 (first column) N = 30 (second column), and N = 50 (third column), all
generated from orthonormal Legendre polynomials of maximum degree 6 with measurement
error whose variance is σ2ε = 0.12 (first row), and σ2ε = 0.52 (second row). From left to right,
each group of four boxplots corresponds to the cases of very high, high, medium, and low sparsity.

5.1.2 Simulation study 2

We now simulate data from a function-valued processX(t) =
(
X1(t), X2(t)

)>
, t ∈ T ⊂ R,

defined by the sum of a global GP and a local GP, as follows:

X(t) = Xglobal(t) +X local(t), (5.4)

Xglobal(t) ∼ GP
(
µ, g1(t, t

′)
)
,

X local(t) ∼ GP
(
0, σ(t)σ(t′)g2(t, t

′)
)
,

where g1(·, ·) and g2(·, ·) are squared exponential covariance functions constructed by

the MGP model, that is, they have blocks of auto- and cross-covariance functions as

in eq. (5.2). The univariate model for function-valued processes defined similarly as

above was proposed by Ba & Joseph (2012) and called composite GP model. Note that
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the nonstationarity is defined by the varying standard deviation σ(t). Whereas the global

process is stationary, the local process can be seen as a particular case of the nonstationary

covariance model (4.6) with constant anisotropy matrix.

To simulate data, we assume that g1(·, ·) is the standardised covariance function con-

structed as above with smoothing kernel parameters ν10 = −1, ν20 = 1, ν11 = ν21 = 0.1,

A10 = A20 = 30, A11 = A21 = 20. The covariance kernel g2(·, ·) is equal to g1(·, ·) except

all the A parameters, to which we added 2000 to produce more local fluctuation in the

local process. An additional measurement noise with variances σ2
ε = 0.12 and σ2

ε = 0.52

are used. Finally, we use a local standard deviation σ(t) ∝ exp{−20t}, so that the vari-

ance of the local bivariate random process is large near t = 0 and decreases exponentially

as t increases (see Figure 5.6).
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Figure 5.6: Bivariate nonstationary functional data simulated with a measurement error of
variance σ2ε = 0.12.

We estimate the covariance structure of the data generated from (5.4) via the station-

ary MGP model, introduced in the beginning of this chapter. This is equivalent to use

only the global part in (5.4). In addition, we consider to model the sum of a global and

a local process as in (5.4), and call this the nonstationary MGP (NSMGP) model, where

both covariance functions g1(·, ·) and g2(·, ·) are estimated via MGP. Ba & Joseph (2012)

estimate σ(t) by using a Gaussian kernel regression model based on the residuals obtained

for a given global trend. We estimate σ(t) via B-splines basis functions as we have done

in Chapter 4. Finally, MFPCA model was also used.

After learning the covariance structure by using both stationary MGP, NSMGP and

MFPCA models, we access predictions of values of entire curves given a small subset of

observed data points. Figure 5.7 illustrates the MGP and NSMGP predictions for a single

bivariate curve. As the stationary model assumes constant variance of the multivariate

process over t, the estimated variance of the process where t > 0.2 is overestimated because
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of the large variability near t = 0. This is why the stationary model obtains predictions

with large variance even when there is no much uncertainty in the true process (low

variation after t = 0.2). Note how the NSMGP model improved predictions after learning

that the process has different variance for different locations. In addition, we can also

observe that the disadvantage of assuming stationarity is accentuated when the observed

datapoints are sparse.
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Figure 5.7: Predictions (100 grey curves) obtained by MGP (first row) and NSMGP (second
row) given a few observations (black points). The true realisations are represented by the dashed
lines.

We repeat the procedure 50 times. The predictions of each repetition are assessed

by the prediction RSMSE and the 50 RSMSE values are used to produce the boxplots

in Figure 5.8. As in the previous simulation study, MGP method provides much better

predictions than MFPCA does, but the predictions are even more accurate when we

consider the nonstationary version (NSMGP).

Figure 5.9 shows the CFVEs obtained by the three methods. Note that when nonsta-

tionarity is considered, one can obtain competitive results compared to the ones obtained

by MFPCA.
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Figure 5.8: Boxplots of the prediction RSMSE using stationary MGP (first group of four boxes),
NSMGP (second group of four boxes), and MFPCA (third group of four boxes) calculated from
datasets with N = 30 replicated curves which have measurement error with variance σ2ε = 0.12

(first column) and σ2ε = 0.52 (second column). From left to right, each group of four boxplots
corresponds to the cases of very high, high, medium, and low sparsity.
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Figure 5.9: CFVEs obtained by MGP (blue squares), NSMGP (green triangles), and MFPCA
(orange points) for nonstationary data with N = 50 replicated curves and high sparsity (left)
and low sparsity (right).

5.2 Application to Human Fertility Data

In this section, we apply the Standard 2d FPCA model (following Yao et al. (2005)), the

Marginal FPCA model (Chen et al., 2017), and the NSMGP model to age-specific fertility
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rates (ASFR) (Human Fertility Database, 2017). Firstly, eigensurfaces estimated by each

model are analysed. Next, we will assess prediction results.

We estimate µ(s, τ) in the same way as Chen et al. (2017) have done: for each age

and year, we calculate the sample mean across the fertility rates of all countries. In this

way, we suppose that the countries have a common mean function and then we analyse

the variability across the countries.

The NSMGP model used was basically the same as the one used in the previous

simulation study. We model the fertility rates as a function of two arguments (woman’s

age s and calendar year τ). Since t = (s, τ)> is two-dimensional, we estimate the local

standard deviation σ(s, τ) via cubic regression splines for each marginal basis and a tensor

product smooth, allowing for smooth interaction between the components of s and τ .

5.2.1 Analysing eigensurfaces

We are first interested in comparing the eigensurfaces obtained by FPCA models with

those obtained by the NSMGP model using the fertility rates of the four following coun-

tries: Canada, United States, Spain and Netherlands. We intentionally choose these

countries because there seems to be a high correlation between the first two and between

the last two, as we can see in Figure 5.10.
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Figure 5.10: Human fertility rates of Canada, USA, Spain, Netherlands.
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Standard 2d FPCA

We first perform FPCA on the ASFR data following (Yao et al., 2005), which is im-

plemented in the PACE package1. We call this model the ‘Standard 2d FPCA’. Each

country is observed over a grid of 44× 56 points. We first rearrange the M = 4 matrices

(each one with dimension 44 × 56) into a big matrix with dimension (44 · 56) ×M , and

then perform FPCA on this resulting matrix. In this way, each column represents one

realisation (country) of the function-valued process X. To obtain the eigensurfaces, we

rearrange the resulting eigenfunctions (stored as vectors of length 44 · 56) into matrices

of dimension 44× 56. As we are using only four countries, we cannot estimate more than

two components using Standard 2d FPCA. These two components are plotted in Figure

5.11. As we can see, it is rather difficult to make interpretation about the inputs (age and

year) separately.
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Figure 5.11: Leading eigensurfaces estimated by the Standard 2d FPCA model for ASFR of
Canada, USA, Spain and Netherlands.

Marginal FPCA

We also apply the Marginal FPCA model (Chen et al., 2017). In Figure 5.12, we can see

the separable eigensurfaces estimated by Marginal FPCA. The first component seems to

represent a contrast between fertility before and after the age of 27 years. The second

component shows a contrast betweeen fertility rates in the period 1965–1985 and the other

years of the sample. The third one can be interpreted as a size component, where the

fertility variation between the countries is larger in the first two decades of the sample.

Finally, the fourth component seems to capture the baby boom in 1960’s in USA and

Canada.

1http://www.stat.ucdavis.edu/PACE
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Figure 5.12: Leading eigensurfaces estimated by the Marginal FPCA model for ASFR of Canada,
USA, Spain and Netherlands.

Nonstationary MGP

Finally, we apply the nonstationary version of our proposed MGP to learn the covariance

structure in the ASFR data. Whereas Standard FPCA and Marginal FPCA models

consider that the countries are independent realisations of the same process, our approach

models each country as a different process and learns the cross-covariance function between

them. For these data, we could not compare our model with MFPCA because the surface

(age × year) of each country is observed just once.

The eigensurfaces estimated by the nonstationary MGP model are shown in Figures

5.13–5.16, from where we draw the following conclusions.

1st NSMGP eigensurface: highlights that there is a contrast between the first two

countries and the last two, mainly for the 1960s’ and 1970s’ and for young women.

It also shows that although USA and Canada covary positively about the mean

across countries, USA have bigger contrast with Spain and Netherlands.

2nd NSMGP eigensurface: the white regions shows a contrast between between early

ages and early year with late age and late year. As the white regions have diagonal

shape, we can observe that this contrast is not constant over women’s age or calendar

year, and this feature could not be observed if one assumed covariance separability.

3rd NSMGP eigensurface: this seems to represent precisely the baby boom in 1960’s
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in Canada and USA, whose young women had high fertility rates. In other words,

there was a young fertility concentration in those calendar years.

4th NSMGP eigensurface: this seems to highlight the mature fertility concentration

in Spain and Netherlands in the first calendar years (compared to the Canada and

USA).
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Figure 5.13: NSMGP’s estimated eigensurface 1. ASFR of Canada, USA, Spain and Nether-
lands.
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Figure 5.14: NSMGP’s estimated eigensurface 2. ASFR of Canada, USA, Spain and Nether-
lands.
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Figure 5.15: NSMGP’s estimated eigensurface 3. ASFR of Canada, USA, Spain and Nether-
lands.
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Figure 5.16: NSMGP’s estimated eigensurface 4. ASFR of Canada, USA, Spain and Nether-
lands.

5.2.2 Assessing predictions

The ASFR dataset has several other countries with missing data. For example, the ASFR

of some countries were not recorded in some calendar years. Therefore, the researcher

might be interested in imputing values where there are missing data by using a model

learnt from the observed data. In this situation, FPCA models would not take into

account the information available of other (possibly similar) observed countries in those

calendar years to predict those missing values.

To mimic the fertility rates, Chen et al. (2017) simulated fictitious countries by taking

the Marginal FPCA model estimated from their application to ASFR data and then added

an independent noise to mimic the noise level of those real data.

We used 24 sets of four fictitious countries each and evaluated the predictions of test set

values made by Marginal FPCA, Product FPCA and NSMGP. For each set of countries,

in each replication, the test set contains one (randomly selected) year ti of a (randomly

selected) country Xa, while the training set contains all the other available information.

This procedure was repeated 100 times.

The prediction RMSE results are summarised in Table 5.3. In order to save compu-

tational time, we use different m in Nyström method in the estimation process. Next, we

make predictions conditional only on the training data close to the test data we want to

predict. For example, r = 3 means that we make predictions for Xa(ti) using only the
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neighbourhood observations, i.e. at calendar years {ti−3, . . . , ti+3}, of the training data.

We can see that even generating data from the Marginal FPCA model, NSMGP has

better prediction performance and there is no need to use more than m = 500 samples

in Nyström method. In addition, the cases where r = 3 or r = 5 already provide good

predictions while saving computational time. Therefore, the results indicate that NSMGP

method has had good prediction performance even when we used fairly small m and r to

reduce computational time.

Marginal FPCA 1.1440

Product FPCA 1.0000

NSMGP Nyström (m = 200) Nyström (m = 500)

r = 1 0.9342 0.7365

r = 2 0.9120 0.7144

r = 3 0.9152 0.7132

r = 5 0.9262 0.7262

Table 5.3: Prediction RMSEs, relative to Product FPCA model, for simulated human fertility
data.

5.3 Implementation

When modelling multivariate function-valued processes, the number of parameters to es-

timate may be quite large. In this case, optimisation algorithms might be sensitive to the

initial values of parameters. In order to obtain faster and more stable results in the like-

lihood maximisation, it is ideal to start with good initial values for the parameters which

are being optimised. As we may have no idea about the true values of the parameters, we

suggest evaluating the likelihood function for a reasonable number of different values of

the parameters and starting the optimisation with the vector which provided the highest

value for the likelihood function. In general, we used 500 different vectors, but when there

were many parameters (more than 10) to be optimised, then we evaluated 2, 000 different

vectors before starting the optimisation process.

We should be careful when trying to interpret the parameters estimates of the smooth-

ing kernel used to construct the convolved GPs. This is because different parameters may

have similar effects in the likelihood function L(θ|D). For example, in equations (5.1),

a kernel of the form h20(t) = ν20 exp
{
− 1

2
(t − µ2)

>A20(t − µ2)
}

can be used to model

lag dependence between the processes X1 and X2, where the lag distance is described by
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µ2. Suppose X1 and X2 are weakly correlated. There might be basically no difference

between choosing a small value for ν20 or a very large value for µ2, and this makes the op-

timisation algorithm choose arbitrarily between the combination of parameter values. In

our implementations, we have assumed that there is no lag effect. This assumption makes

the interpretation of the parameters simpler and is reasonable for many applications.

In addition to the computational strategies mentioned in Section 3.7, we have taken

advantage of the symmetry and positive-definiteness properties of covariance matrices to

speed up their inversion. This was done by using functions provided by the Armadillo

C++ library.

In the nonstationary model, in order to use multivariate B-splines, we used the R

package mgcv (Wood, 2018). This enabled us to implement cubic regression splines for

each marginal basis and a tensor product smooth.

5.4 Conclusion

Unlike FPCA, MGP does not assume independent realisations of the same function-valued

process; MGP explicitly models the cross-covariance function between the processes. MF-

PCA would be a more natural competing model for dealing with multivariate functional

data. However, MFPCA requires multiple realisations of each function, whereas MGP

needs only one. This is an important feature of the MGP method, since many applica-

tions involve a unique observation (e.g. geostatistics data, fertility and mortality data).

By modelling the cross-covariance functions between elements of the multivariate

function-valued process, we show that MGP can be helpful to analyse joint variation

in the data, as we have seen in the application to human fertility data. This can be fur-

ther used in clustering analysis. Finally, the estimated cross-covariance functions can be

useful to improve predictions of missing values of one function by borrowing information

from dependent functions.
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5.5 Appendix
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Figure 5.17: Noise-free bivariate functional data generated by using orthonormal Legendre poly-
nomials of maximum degree 3 (first row), 6 (second row), and 9 (third row).
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Figure 5.18: Boxplots of the prediction RSMSE using MGP (first group of 4 four boxes) and
MFPCA (last group of four boxes) calculated from datasets with different number of replicated
curves: N = 15 (first column) N = 30 (second column), and N = 50 (third column), all
generated from orthonormal Legendre polynomials of maximum degree 3 (first row), 6 (second
row), and 9 (third row) with measurement error with variance σ2ε = 0.12. From left to right, each
group of four boxplots corresponds to the cases of low, medium, high and very high sparsity.
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Figure 5.19: Boxplots of the prediction RSMSE using MGP (first group of 4 four boxes) and
MFPCA (last group of four boxes) calculated from datasets with different number of replicated
curves: N = 15 (first column) N = 30 (second column), and N = 50 (third column), all
generated from orthonormal Legendre polynomials of maximum degree 3 (first row), 6 (second
row), and 9 (third row) with measurement error with variance σ2ε = 0.52. From left to right, each
group of four boxplots corresponds to the cases of low, medium, high and very high sparsity.
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Chapter 6

Multiple Functional PLS regression

model

In Section 6.1, we closely follow the notation and exposition of Delaigle & Hall (2012)

to introduce their explicit formulation of PLS basis for functional data and to explain

their proposed algorithm. In a simulation study, under different scenarios we compare

prediction results obtained by FPLSR and FPCR models using different numbers of com-

ponents.

In Section 6.2, we propose an extension to the case involving multiple function-valued

covariates. The estimation of the covariance structure of the multiple functional covariates

is estimated as we proposed in Chapter 5. Therefore, Chapter 5 is used as a building-block

for this chapter. In a simulation study in the end of the chapter, we compare MFPLSR

and MFPCR in terms of prediction of a scalar response variable.

6.1 Functional Partial Least Squares regression

In order to estimate the scalar-on-function regression model, we can use FPLS basis

functions. Until recently, due to the iterative nature of standard PLS algorithms, it

was difficult to create intuition and to unveil properties of FPLS basis functions in an

explicit way. Thus, Delaigle & Hall (2012) develop a new theory for PLS method, the

‘alternative PLS’ (APLS), in which the FPLS basis functions can be expressed only in

terms of functions that are explicitly computable.

Let D = {(x1, y1), . . . , (xN , yN)} be a sample of independent data pairs of the scalar

random variable Y and the random function X which is defined on the compact interval
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T satisfying
∫
T E [X(t)2] dt <∞. Thus, the functional regression model is given by

Y = a+

∫
T
b(t)X(t)dt+ ε. (6.1)

Therefore, to predict the value of Y given a known value x of the curve X, we estimate

the function

g
(
x(t)

)
= E

[
Y |X(t) = x(t)

]
= a+

∫
T
b(t)x(t)dt. (6.2)

As a is constant, from (6.1) we obtain that a = E
[
a
]

= E
[
Y
]
−
∫
T b(t)E

[
X(t)

]
dt and

therefore (6.2) becomes

g
(
x(t)

)
= E

[
Y
]

+

∫
T
b(t)E

[
x(t)− E [X(t)]

]
dt.

Therefore, we need to estimate the scalar a and the function b from the data. Let us

write x and b in terms of an orthonormal basis φ1, φ2, . . . defined on T :

x(t) =
∑
j

(∫
T
x(t)φj(t)dt

)
φj(t),

b(t) =
∑
j

νjφj(t), νj =

∫
T
b(t)φj(t)dt.

As the basis functions are orthonormal, we can see that
∫
T b(t)x(t)dt =

∑
j νj
∫
T x(t)φj(t)dt.

We now have to choose the basis functions φ1, φ2, . . . and determine ν1, ν2, . . . given

those basis functions. Note that∫
T
b(t)E

[
x(t)− E [X(t)]

]
dt =

∫
T

(∑
j

νjφj
)
E
[
x(t)− E [X(t)]

]
dt

=
∑
j

νj

∫
T

(
x(t)− E [X(t)]

)
φj(t)dt.

We define β1, . . . , βJ to be the sequence ν1, . . . , νJ that minimises

sJ(ν1, . . . , νJ) = E

[ ∫
T
b(t)
(
x(t)− E [X(t)]

)
dt−

J∑
j=1

νj

∫
T

(
x(t)− E [X(t)]

)
φj(t)dt

]2
.

Therefore, as in practice we can only calculate a finite number of terms, the functions

bJ(t) =
J∑
j=1

βjφj(t),
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and

gJ
(
x(t)

)
= E [Y ] +

∫
T
bJ(t)E

[
x(t)− E [X(t)]

]
dt

= E [Y ] +
J∑
j=1

βj

∫
T

E
[
x(t)− E [X(t)]

]
φj(t)dt (6.3)

are approximations to b(t) and g
(
x(t)

)
, respectively.

Once the functions φj are known (or chosen), we find β̂1, . . . , β̂J by solving

β̂1, . . . , β̂J = argmin
ν1,...,νJ

1

N

N∑
i=1

{
yi − ȳ −

J∑
j=1

νj

∫
T

(xi(t)− x̄(t))φj(t)dt

}2

and use these as estimates of β1, . . . , βJ in (6.3) to obtain the approximation to g.

They can be chosen to be independently of the data (e.g. B-splines), However, as

discussed in Section 2.4, there is no guarantee that the first J elements of such bases

should explain the most important variation about the regression function g. Using FPC

basis functions (see Section 2.3) is a common strategy to use the information of the data,

but we cannot ensure that g is well explained by first few principal components of X. For

example, important terms to explain the variation of g might come from later FPCs.

The orthonormal PLS basis

We might be interested to capture some information about the interaction between the

functional predictor and the response when we construct the basis. The standard PLS

basis adapted to the functional context is defined iteratively by choosing φJ in a sequential

manner. In summary, at each step J , we maximise the covariance functional

fJ(φJ) = Cov

[
Y − gJ−1(X),

∫
T
X(t)φJ(t)dt

]
, (6.4)

subject to ∫
T

∫
T
φj(s)k(s, t)φJ(t)dsdt = 0, for 1 ≤ j ≤ J − 1, (6.5)

and

||φJ || = 1, (6.6)

where φ1, . . . , φJ−1 have already been determined.

We are going to explain the theoretical PLS basis defined by the last three equations

and describe the space generated by the first J PLS basis functions φ1, . . . , φJ . These

properties motivate an alternative approach of functional PLS, the APLS.
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It can be shown that the function φJ that maximises f in (6.4), given φ1, . . . , φJ−1

and subject to (6.5) and (6.6), is determined by

φJ = c0

[
K

{
b(t)−

J−1∑
k=1

(∫
T
b(t)φj(t)

)
φj(t)dt

}
+

J−1∑
k=1

ckφk

]
,

where, for 1 ≤ k ≤ J − 1, the constants ck are obtained by solving the linear system of

J − 1 equations ∫
T

∫
T
φj(s)k(s, t)φJ(t)dsdt = 0, j = 1, . . . , J − 1,

and where c0 is defined uniquely, up to a sign change, by the property

||φJ || = 1.

We can show that, for each J ≥ 1, given φ1, . . . , φJ−1, the function φJ is a linear

combination of J explicitly defined functions (K1(b), . . . , Kp(b)) and is unique up to a

sign change. Therefore, for each J , the space generated by φ1, . . . , φJ is the same as the

space generated by K1(b), . . . , KJ(b).

In addition, if we define γ1, . . . , γJ to be the sequence ω1, . . . , ωJ that minimises

E

[∫
T

E
[
x(t)− E [X(t)]

]
b(t)dt−

J∑
j=1

ωj

∫
T

E
[
x(t)− E [X(t)]

]
Kj(b)(t)dt

]2
,

then the slope function approximation bJ at (6.3) has two equivalent expressions:

bJ(t) =
J∑
j=1

γjK
j(b)(t) =

J∑
j=1

βjφj(t).

Stabilised algorithm for empirical APLS

In order to estimate K1(b)(t), . . . , KJ(b)(t), we first estimate K1(b)(t) = Cov
[
Y,Xc(t)

]
.

Next, we estimate Kj+1(b)(t) by

K̂j+1(b)(t) =

∫
T
K̂j(b)(s)k̂(s, t)ds,

where k̂(s, t) is the estimator for the covariance function Cov
[
X(s), X(t)

]
.

Finally, after obtaining K1(b)(t), . . . , KJ(b)(t), we define γ̂1, . . . , γ̂J to be the values of
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ω̂1, . . . , ω̂J which minimises

UJ(ω1, . . . , ωJ) =
1

N

N∑
i=1

{
yi − ȳ −

J∑
j=1

ωj

∫
T

(xi(t)− x̄(t))K̂j(b)(t)dt

}
.

As pointed out above, the non-orthonormal sequence K1(b), . . . , KJ(b) generate the

same space as that obtained by the orthonormal sequence φ1, . . . , φJ . Therefore, we

can transform our estimated sequence K̂1(b), . . . , K̂J(b) into an orthonormal sequence

φ̂1, . . . , φ̂J using the modified Gram-Schmidt algorithm (Lange, 2010) and use it to esti-

mate the regression coefficient function bJ .

[1] Obtain K̂1(b)(t), i.e. estimate Cov
[
Y,Xc(t)

]
.

[2] Obtain k̂(s, t), i.e. estimate Cov
[
X(s), X(t)

]
.

[3] Calculate K̂j+1(b)(t) =

∫
T
K̂j(b)(s)k̂(s, t)ds for 1 ≤ j ≤ J − 1.

[4] Transform K̂1(b), . . . , K̂J(b) into an orthonormal sequence φ̂1, . . . , φ̂J using the mod-

ified Gram-Schmidt algorithm.

[5] Find β̂1, . . . , β̂J by solving

β̂1, . . . , β̂J = argmin
ν1,...,νJ

1

N

N∑
i=1

{
yi − ȳ −

J∑
j=1

νj

∫
T

(
xi(t)− x̄(t)

)
φj(t)dt

}2

.

[6] Estimate g by

ĝJ(x) = ȳ +
J∑
j=1

β̂j

∫
T

(
x(t)− x̄(t)

)
φ̂j(t)dt.

When the sampling points of curves are dense and observed at the same locations for

all subjects, we can estimate K1(b)(t) by

K̂1(b)(t) =
1

N

N∑
i=1

{xi(t)− x̄(t)}{yi − ȳ}. (6.7)

and k(s, t) by

k̂(s, t) =
1

N

N∑
i=1

{xi(s)− x̄(s)}{xi(t)− x̄(t)}. (6.8)
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6.1.1 Simulation study

Our first simulation exercise is to evaluate predictions provided by FPLSR and FPCR em-

ploying a functional linear regression model which includes only one functional covariate,

X(t), for explaining a scalar response Y :

Yi = α0 +

∫
β(t)Xi(t)dt+ εi, i = 1, . . . , N, (6.9)

where εi ∼ N(0, σ2
ε).

In addition, we have chosen σ2
ε in such a way that the signal-to-noise ratio (SNR) is

3, 10 or 100.

We simulated a functional covariate which follows a Gaussian process for each indi-

vidual. Basically, we generated samples from a multivariate normal distribution where

the mean function was

E [X(t)] = sin(c t) + t cos(c t),

where c = 10 in our example.

The covariance function we used was

Cov [X(ti), X(tj)] = exp
{
− 1

γ
(ti − tj)2

}
, ti, tj = 0.01, 0.02, . . . , 1.00,

as we wish to simulate 100 points of the time domain.

We have analysed different values for γ. Figure 6.1 illustrates 40 simulated realisations

of the functional predictor for γ = 0.1, γ = 0.01 and γ = 0.001.

Figure 6.1: Plots of 40 realisations of the simulated functional covariate using γ = 0.1 (left),
γ = 0.01 (middle) and γ = 0.001 (right).
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The regression coefficient function β(t) was simulated in the same way but always

using γ = 0.1. Figure 6.2 shows one realisation of it.

Figure 6.2: Plots of one realisation of simulated function β(t) using γ = 0.1.

We have simulated training sets with different sample sizes (N = 20, 60, or 200) and

test sets whose sample sizes are equal to 20. Next, we estimated regression equation (6.9)

for each N . The estimated model was then used to predict the 20 observations of the test

set. We repeated this procedure 100 times.

Let us first analyse the results for the case where the training sample size is N =

60. The results of this case are showed in illustrated in Figure 6.4. When γ = 0.01

and SNR = 10, FPLSR and FPCR obtain quite similar results when employing a large

number of components; however, for one or two components, FPLSR performs much

better than FPCR. For example, when employing two components, FPLSR obtains a

prediction RMSE of 0.1696, while FPCR obtains a much worse result: 0.3676.

Also in the case of N = 60, observe that, for very smooth curves (γ = 0.1), FPCR

has very similar prediction performance in comparison to FPLSR when using three or

more components, but the latter is much worse than the former if they work with less

components. For rougher predictor curves (γ = 0.001), FPCR needs too many compo-

nents to try to achieve the same performance that FPLSR obtains by employing only 2–4

components.

By still analysing different values of γ, we can observe another interesting finding: the

rougher are the predictor curves, the better is the prediction performance of both methods.

In other words, both methods are able to extract more information from rough curves

than from very smooth curves. It makes sense, since observations of very smooth curves

are highly correlated and therefore most of them do not make any relevant contribution

to explain the variation in the response Y . At this point, a problem appears: for real

datasets, we can only observe discrete data points and since we do not know how is

the true predictor curve, we do not know whether the roughness of the observed data
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is explained by the curve structure itself or by the measurement error. Therefore, this

discussion might lead to a potential new topic to be studied, where we could apply, for

example, the measurement error model.

Still for the case of sample size N = 60, we can observe that, essentially for rough

curves, the higher the SNR value, the bigger is the advantage of FPLSR in comparison

with FPCR (in terms of providing good predictions employing as less components as

possible). This reveals that FPLSR, which takes into account the interaction between the

response Y and the covariate X(t) when constructing components, is indeed better than

FPCR when X(t) helps to explain most of the variation y.

Finally, analysing different sample sizes, we can see that both methods perform slightly

better as the sample size increases (see Figures 6.3 – 6.5). However, the above comments

used to compare both methods for case of sample size 60 can also be used for the other

cases.

In conclusion, essentially for rougher predictor curves, we can say that FPLSR seems

to be preferable to FPCR as the former leads to a more parsimonious model than the

latter when trying to provide the best (or at least nearly the best) prediction results.
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Figure 6.3: Prediction RMSE of FPLSR (solid lines) and FPCR (dotted lines) per number of
components. Training sets have size N = 20.
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Figure 6.4: Prediction RMSE of FPLSR (solid lines) and FPCR (dotted lines) per number of
components. Training sets have size N = 60.
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Figure 6.5: Prediction RMSE of FPLSR (solid lines) and FPCR (dotted lines) per number of
components. Training sets have size N = 200.
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6.2 Multiple Functional PLS regression

We can extend the functional regression model (6.1) to the case involvingM > 1 functional

covariates, so that

Yi = a+
M∑
l=1

∫
T
bl(t)X

c
l,i(t)dt+ εi, i = 1, . . . , N.

Analogously to the case where the functional covariate is univariate, this regression

equation can be solved by expanding the M -variate X(·) =
(
X1(·), . . . , XM(·)

)>
in terms

of multivariate FPC basis or multivariate FPLS basis, which lead, respectively, to the

multivariate FPCR (MFPCR) and to the multiple FPLSR (MFPLSR).

We propose to adapt the algorithm for empirical APLS, described in the previous sec-

tion, to the case involving the multivariate functional covariateX(·) =
(
X1(·), . . . , XM(·)

)>
.

Although each element Xl can be observed in a different domain Tl, they can be shifted

to have the same domain T = [0, 1]. Therefore, without loss of generality, we assume a

common domain.

Let us describe the steps of the adapted algorithm. The implementation consists in

concatenating the M functional covariates into a unique long function. Therefore, in the

below algorithm, X (and the corresponding observations x) should be interpreted as the

concatenated function and proceed as if it were a unique functional covariate defined on

T = [0,M ]. Similarly, basis functions φ̂j are also defined on T = [0,M ].

The difference is in the estimation of Cov
[
X(s),X(t)

]
. We suggest using the MGP

method, proposed in Chapter 5, to estimate the auto- and cross-covariance functions. The

adapted algorithm has the following steps:

[1] Obtain K̂1(b)(t), i.e. estimate Cov
[
Y,Xc(t)

]
.

[2] Obtain k̂(s, t), i.e. estimate Cov
[
X(s),X(t)

]
.

[3] Calculate K̂j+1(b)(t) =

∫
T
K̂j(b)(s)k̂(s, t)ds for 1 ≤ j ≤ J − 1.

[4] Transform K̂1(b), . . . , K̂J(b) into an orthonormal sequence φ̂1, . . . , φ̂J using the mod-

ified Gram-Schmidt algorithm.

[5] Find β̂1, . . . , β̂J by solving

β̂1, . . . , β̂J = argmin
ν1,...,νJ

1

N

N∑
i=1

{
yi − ȳ −

J∑
j=1

νj

∫
T

(
xi(t)− x̄(t)

)
φj(t)dt

}2

.
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[6] Estimate g by

ĝJ(x) = ȳ +
J∑
j=1

β̂j

∫
T

(
x(t)− x̄(t)

)
φ̂j(t)dt.

When the data are not observed regularly at the same locations for all individual

functions, the empirical estimators (6.7) and (6.8) cannot be used. Therefore, we suggest

using functional singular component analysis (Yang et al., 2011) to estimate K1(b)(t),

obtaining a smooth cross-covariance between the scalar response and the concatenated

functional predictor. The covariance function k(s, t) can be estimated nonparametrically

(Yao et al., 2005) or by using our proposed MGP model in Chapter 5.

6.2.1 Simulation study

We want to predict a scalar response Y given multiple functional variables X1, . . . , XM ,

for M = 2, 5, and 10.

Similarly as we do in eq. (5.3), we simulate M -variate functional data

X(t) =
(
X1(t), . . . , XM(t)

)>
based on a truncated multivariate Karhunen-Loève expan-

sion representation

X(t) =
J∑
j=1

ξjφj(t), t ∈ [0, 1] . (6.10)

The multivariate basis functions φj = (φ
(1)
j , φ

(2)
j , . . . , φ

(M)
j )> ∈ RM are constructed from

the first 15 orthonormal eigenfunctions of the Wiener process on the domain T = [0,M ],

which are then split into M parts. All the parts are shifted to have common domain

T = [0, 1]. The scores ξj are simulated independently from a Gaussian distribution

with zero mean and variance decreasing linearly towards 0. The elements of X, i.e.

Xl, l = 1, . . . ,M, are sampled on an equispaced grid of n1 = n2 = · · · = nM = 100

sampling points.

Figure 6.6 shows bivariate noise curves generated via (6.10) using J = 15 components.

The curves have SNR = 100.
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Figure 6.6: Bivariate functional data generated by using Wiener processes.

Then we generate a fictitious scalar response Y from

Yi =
M∑
l=1

∫
βl(t)Xil(t)dt+ εi, i = 1, . . . , N, (6.11)

where σ2
ε is chosen in such a way that SNR = 100.

The functional coefficients βl are constructed in the following way. We first esti-

mate the leading 12 multivariate functional principal components (MFPCs) of X(t) (i.e.

φ̂
PC

1 (t), . . . , φ̂
PC

12 (t)) and extract the parts corresponding to the M elements, namely

φ̂PCl,1 (t), . . . , φ̂PCl,12(t), l = 1, . . . ,M . Next, we generate y using (6.11) by assuming βl(t) =∑K
k=1 al,kφ̂

PC
l,k (t), where we consider four different cases:

(i) al,k = sign(k) · 1{1 ≤ k ≤ 3};
(ii) al,k = sign(k) · 1{4 ≤ k ≤ 6};
(iii) al,k = sign(k) · 1{7 ≤ k ≤ 9};
(iv) al,k = sign(k) · 1{10 ≤ k ≤ 12},

where sign(k) = −1 or 1 with equal probabilities. In this way, case (i) represents a setting

where the interaction between y and X is represented by the first three MFPC basis

functions. Therefore, in this case we expect to see good performance of MFPCR by using

a small number of components. However, as we go the cases (ii), (iii), and (iv), in this

order, MFPCR should find more and more difficult to explain the interaction between Y

and X by using few components.

We simulate N = 200 observations
(
(y1,x1), . . . , (yN ,xN)

)
. Next, we randomly choose

a training sample of size Ntrain ∈ {30, 100} and a test sample of size Ntest = N−Ntrain and
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evaluate the predictions of y values in the test set given the model with J = 1, 2, . . . , or

12 components estimated by using only the training data. We use the prediction RSMSE

error given by

RSMSE =

[
N−1test

Ntest∑
i=1

(ŷi − yi)2/Var [y]

]1/2
.

The standardisation is required to compare settings in which the scale of y is different.

In addition, RSMSE is approximately 1 when we use the sample mean of the training

observations y as the predictor ŷ.

This procedure was repeated 100 times, that is, we simulate 100 datasets and obtain

the prediction error for each. The boxplots of these prediction errors are shown in Figures

6.7, 6.8, and 6.9, which illustrate the cases of M = 2, 5, and 10 functional predictors,

respectively.

The results indicate that MFPLSR needs fewer components than MFPCR does to

capture the interaction between the scalar response and the functional predictors, espe-

cially when we go from case (i) to case (iv). The results are very similar for M = 2, 5,

and 10.
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Figure 6.7: Boxplots of the prediction RSMSE using MFPLSR (first group of 12 boxes) and
MFPCR (last group of 12 boxes) calculated from 100 datasets of sizes Ntrain = 30 (first column)
and Ntrain = 100 (second column), all generated from bivariate functional data simulated
using eq. (6.10), where γj are eigenfunctions of Wiener processes. The functional coefficients
βl corresponding to the cases (i),(ii),(iii), and (iv), are shown in rows 1,2,3, and 4, respectively.
From left to right, each group of 12 boxplots corresponds to the cases where the methods used
J = 1, . . . , 12 components.
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Figure 6.8: Boxplots of the prediction RSMSE using MFPLSR (first group of 12 boxes) and
MFPCR (last group of 12 boxes) calculated from 100 datasets of sizes Ntrain = 30 (first column)
and Ntrain = 100 (second column), all generated from 5-variate functional data simulated
using eq. (6.10), where γj are eigenfunctions of Wiener processes. The functional coefficients
βl corresponding to the cases (i),(ii),(iii), and (iv), are shown in rows 1,2,3, and 4, respectively.
From left to right, each group of 12 boxplots corresponds to the cases where the methods used
J = 1, . . . , 12 components.
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Figure 6.9: Boxplots of the prediction RSMSE using MFPLSR (first group of 12 boxes) and
MFPCR (last group of 12 boxes) calculated from 100 datasets of sizes Ntrain = 30 (first column)
and Ntrain = 100 (second column), all generated from 10-variate functional data simulated
using eq. (6.10), where γj are eigenfunctions of Wiener processes. The functional coefficients
βl corresponding to the cases (i),(ii),(iii), and (iv), are shown in rows 1,2,3, and 4, respectively.
From left to right, each group of 12 boxplots corresponds to the cases where the methods used
J = 1, . . . , 12 components.
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6.3 Implementation

In this section, we make a few remarks about some steps in the MFPLSR algorithm.

Implementation details related to the covariance structure estimation are discussed in

Section 5.3.

The MFPLSR algorithm, shown in Section 6.2, requires the calculation of integrals to

obtain the estimates of K1(b), . . . , Kp(b) and of gJ(x). We used numerical integration by

trapezoidal rule. This is also used in the well developed R package fda (Ramsay et al.,

2018).

The modified Gram-Schmidt algorithm, used to transform K̂1(b), . . . , K̂J(b) into an

orthonormal sequence φ̂1, . . . , φ̂J , can be implemented by using the R package pracma

Borchers (2018). However, we have written an inline C++ version of this algorithm for

efficiency purposes.

6.4 Conclusion

The numerical simulation study in Section 6.2 shows that our extension of the FPLSR

model (Delaigle & Hall, 2012) to the case which involves multiple function-valued covari-

ates can estimate more accurately the slope functions than MFPCR does. Therefore, it

can use fewer components than MFPCR does to provide excellent prediction results for

the scalar response. MFPLSR can be applied to many applications in which the data

are sparsely, irregularly sampled. In addition, it can be more appropriate than variable

selection methods for functional covariates especially when these functional covariates are

cross-correlated.
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Chapter 7

Conclusions and future work

In this chapter, we discuss the main contributions and conclusions in Section 7.1 and

future work in Section 7.2.

7.1 Contributions and conclusions

GPR models enable us to model a wide class of nonlinear functions, including those defined

on multidimensional domains, and to easily account for uncertainty on predictions. The

two major difficulties are the potentially high computational costs and the choice of the

covariance function family. We have investigated approximate implementation methods

that reduce dramatically the computational costs while keeping good prediction ability.

The performance of these approximations mainly depends on how smooth the sample

paths are, which is determined by the decay of eigenvalues of the covariance function.

Although the subset size m in the Subset of Regressors and Subset of Data should be as

large as possible, we have shown that we can choose a m significantly smaller than the

sample size n when the sample paths are smooth. On the other hand, if the sample paths

are rough, we should not use too small a value of m.

We have also shown that the decomposition of GPs, in the spirit of FPCA, is useful

to describe the main modes of variation in the data by using only leading components,

namely the eigenfunctions or eigensurfaces. The visualisation of eigensurfaces can indi-

cate interactions between coordinate directions, revealing nonseparability features in the

covariance function.

Whereas nonparametric models for the covariance function are flexible but difficult

to estimate in multidimensional domains due to the curse of dimensionality problems,

parametric models can be easily estimated but their flexibility is limited by the choice of

parametric covariance function, which is usually either stationary or separable. In Chapter
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4, we propose to use a flexible, convolution-based approach which allows for nonstation-

arity and nonseparability, crucial properties to achieve good fit of the covariance function,

extract the most important modes of variation in the data and obtain better estimates of

uncertainty in predictions. This approach is readily applied to multidimensional domains.

The nonstationarity is defined by the Q×Q varying anisotropy matrix Σ(t) and the

standard deviation σ(t), both varying along t ∈ T ⊂ RQ or along τ ∈ T ∗ ⊂ RQ∗ , where

Q∗ ≤ Q. The nonseparability is achieved by allowing non-zero off-diagonal entries in

Σ(t).

The unconstrained estimation of the parameters enables us to model them as a function

of time (or spatial location) easily. They can be further modelled as a function of time (or

spatially) dependent covariates and even additional covariates which bring information

for each subject. In any of these cases, the function can be represented by a variety of

basis functions, among which we have found B-splines basis very suitable for ensuring

smoothness and being flexible.

In particular, our proposed spherical parametrisation for ΣQ×Q(t), which allows us

to easily deal with input dimensions higher than two, is specified by a decomposition

whose parameters have statistical interpretation. This is important for many applications.

For example, if random trajectories fluctuate over time more quickly in the winter than

in other seasons, then time (or a time-dependent covariate) seems a natural input for

the corresponding length-scale parameter. The spherical parametrisation should also be

helpful if we wish to conduct inference on those parameters.

Chapter 5 is dedicated to the modelling of the covariance structure of multivariate

function-valued processes X(·) =
(
X1(·), . . . , XM(·)

)>
. We extend a convolution-based

model proposed for the bivariate case to the multivariate case. In this approach, each

element Xl(·) has covariance function with different parameter values and can be defined

on different domains. Finally, the cross-covariance functions are explicitly modelled and

can be important for predictions and analysis of multivariate functional data. Via simula-

tion studies we have shown that predictions of individual elements Xl(·) can be improved

by using the available information of other elements at nearby locations where Xl(·) has

missing data. The numerical results have also shown that MGP can provide similar or

better predictions than MFPCA does using the same number of sampling points. Fi-

nally, the application to human fertility data gives interesting insights by visualising the

eigensurfaces, which can reveal nonseparability features of the covariance structure.

The estimation of the covariance structure of X(·) is used as a building block in

Chapter 6, where we discuss scalar-on-functions regression models. We extend the PLS

algorithm for a scalar response and a function-valued covariate (Delaigle & Hall, 2012) to

the case involving multiple function-valued covariates and call this the MFPLSR model.
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This is especially useful when the covariates are not regularly sampled, which makes im-

possible the use of the empirical covariance estimator, and not densely sampled, which

makes nonparametric estimation difficult. Numerical simulation studies show that MF-

PLSR can provide better predictions for a scalar response variable Y using less components

than MFPCR does, indicating that it is worth to consider the linear dependence between

Y and the functional predictors when constructing the basis functions to represent the

slope functions. This is particularly important when Y is explained by later FPCs of the

functional covariates.

We should also highlight that our modelling framework for both uni- and multivari-

ate function-valued processes can easily deal with sparsely sampled functional data and

measurement error.

7.2 Future work

The decomposition of GPs may be important for developing efficient approximation for

big data, non-Gaussian data (Wang & Shi, 2014) and heavy-tailed data (Shah et al.,

2014; Wang et al., 2017; Cao et al., 2018). For non-Gaussian and heavy-tailed data,

the decomposition might be used instead of their predictive distributions which are usu-

ally complicated. It can also be important for further analysis of scalar-on-functions or

function-on-functions regression models, where we try to reduce the dimension of data by

using a small number of components.

Another topic for future research is considering varying kernels in MGP similarly as

we have seen for univariate GP. One major difficulty will be the potentially large number

of hyperparameters and the need for a more parsimonious model. We have assumed

that each function-valued process is a sum of two convolved GPs. One way to deal with

nonstationarity is by using an additional GP with a nonstationary covariance function,

such as the linear covariance function (Shi & Choi, 2011), and assuming some constant

parameters (e.g. constant anisotropy matrices).

Further investigation can be made on clustering and classification methods for func-

tional data. In clustering of functional data, taking mean functions as cluster centres may

not be adequate when the covariance structure is important to distinguish clusters (Wang

et al., 2016). Therefore, learning the covariance structure is crucial and (semi)parametric

models may be used when nonparametric estimation is complicated. Classification of

functional data are usually based on functional regression models which have a binary

response variable and functional predictors (e.g. functional generalized linear models in

Müller et al. (2005), Wang et al. (2016) and references therein). In this context, methods

which take into account the covariance between the response and the functional predictors
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when constructing basis functions, such as FPLS (Delaigle & Hall, 2012), can be prefer-

able and may use a covariance structure of the multiple functional predictors estimated

by a (semi)parametric model.
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