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Abstract 

 

Information about how the risk of death varies with age within the 0-5 age range represents 

critical evidence for guiding health policy. This paper proposes a new model for summarizing 

regularities about how under-5 mortality is distributed by detailed age. The model is based on a 

newly compiled database that contains under-5 mortality information by detailed age in countries 

with high-quality vital registration systems, covering a wide array of mortality levels and 

patterns. The model uses a log-quadratic approach, predicting a full mortality schedule between 

age 0 and 5 on the basis of only 1 or 2 parameters. With its larger number of age groups, the 

proposed model offers greater flexibility than existing models both in terms of entry parameters 

and model outcomes. We present applications of this model for evaluating and correcting under-5 

mortality information by detailed age in countries with problematic mortality data. 

 

Keywords: under-5 mortality, neonatal mortality, model life tables, mortality models, age 

patterns of mortality, indirect methods. 
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Introduction 

 

The Under-5 Mortality Rate (U5MR) is a key and widely used indicator of child health (United 

Nations 2011; United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) 

2019b; Wang et al. 2016; You et al. 2015), but it conceals important information about how this 

mortality is distributed by age from birth up to the fifth birthday (Guillot et al. 2012; Hill 1995; 

Mejía-Guevara et al. 2019). For better understanding and monitoring of child health, it is critical 

to examine how the risk of death varies within the first five years of life. This includes age 

breakdowns beyond the standard cut-off points of 28 days (for neonatal mortality) and 1 year (for 

infant mortality). In many populations, however, the age pattern of under-5 mortality is not well 

known. Low- and middle-income countries, in particular, lack the high-quality detailed vital 

registration information necessary for the analysis of such age patterns (Mikkelsen et al. 2015). 

Sample surveys collecting retrospective birth histories, such as Demographic and Health Surveys 

(DHS), do not satisfactorily fill this gap, because they are subject to potential biases that are 

particularly consequential for estimating age patterns (Hill 1995; Lawn et al. 2008). This makes 

the need for high-quality information on age patterns of under-5 mortality even more critical, 

since regularities in these age patterns can be used as a powerful tool for evaluating and 

correcting estimates when data are deficient. 

 

The goal of this paper is to propose a new model for summarizing regularities about how under-5 

mortality is distributed by detailed age in human populations. This model is based on the Under-5 

Mortality Database (U5MD), a newly compiled database that contains under-5 mortality 

information by detailed age in countries with high-quality vital registration systems, covering a 

wide array of mortality levels and patterns. Building on previous work by Wilmoth et al. (2012), 
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this model uses a log-quadratic approach, predicting a full mortality schedule between age 0 and 

5 on the basis of only 1 or 2 parameters. We present applications of this model for evaluating and 

correcting under-5 mortality information by detailed age in countries with deficient mortality 

data. 

 

This paper builds on the model life tables literature. Model life tables summarize regularities in 

how mortality varies by age in human populations. They represent a useful framework for our 

purpose because they allow the estimation of arrays of age-specific mortality rates or 

probabilities on the basis of only one or two mortality indicators, chosen as entry parameters 

(United Nations 1988). Two sets of model life tables are considered classic in the field: one set 

was developed by Coale and Demeny (Coale & Demeny 1966; Coale et al. 1983) and the other 

by the United Nations Population Division (1982). These two sets are still commonly used today, 

including for estimating the infant mortality rate (IMR) on the basis of U5MR (United Nations 

Inter-agency Group for Child Mortality Estimation (UN IGME) 2019a). Current usage of the 

Coale and Demeny and the United Nations model life tables for estimating patterns of under-5 

mortality, however, is affected by several important drawbacks. First, these model life tables only 

offer 0 vs. 1-4 as an age breakdown for under-5 mortality. This is insufficient for most purposes, 

including for the estimation of neonatal mortality or mortality in non-standard age ranges. (One 

model that contains additional age details is Bourgeois-Pichat’s “biometric” model (Bourgeois-

Pichat 1951). This model, however, focuses on the first 12 months of age only and has been 

shown to poorly fit data in a variety of contexts (Galley & Woods 1998; Knodel & Kintner 1977; 

Lantoine & Pressat 1984; Lynch et al. 1998; Manfredini 2004).) Second, existing model life 

tables rely on rather old data, with the most recent information dating back to the early 1980s. 

Third, these model life tables summarize age patterns as “families,” based on regional groupings, 
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and thus have a discrete rather than continuous nature. More recent developments in the model 

life tables literature include Murrays et al.’s (2003) modified logit system, Wilmoth et al.’s 

(2012) log-quadratic model, and Clark’s (2019) SVD-component model. These models improve 

on many of the weaknesses of the classic model life tables, including the use of a continuous 

rather than discrete parameter for describing variations in mortality shapes, and the use of more 

recent data for deriving model coefficients. However, Murrays et al.’s (2003) and Wilmoth et 

al.’s (2012) models are still constrained by the 0 vs. 1-4 age breakdown for the under-5 age 

range, and Clark’s (2019) model does not provide details below single-year age groups. Our 

paper extends existing model life tables by: (1) using a newly compiled database that has greater 

age detail than the ones on which existing model life tables were derived; (2) explicitly 

expanding the number of age groups in the model, especially in the first year of life, allowing 

more flexibility than existing models both in terms of entry parameters and model outcomes. Our 

model offers a number of applications that are not feasible with existing model life tables, 

including the possibility of detecting and adjusting for underestimation of neonatal mortality. 

 

A New Database for Under-5 Mortality by Detailed Age 

 

Description of the Database 

 

The model proposed in this paper is based on the Under-5 Mortality Database (U5MD), a newly 

compiled database for under-5 mortality by detailed age drawn from high-quality Vital 

Registration (VR) data. This database contains 1,652 annual distributions of under-5 deaths by 

sex and detailed age (days, weeks, months, trimesters, and years), representing 25 countries over 

a time window spreading from the second half of the nineteenth century to recent years (1841-
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2016). The list of available country-years is provided in Table 1. This section summarizes how 

this database was built and harmonized. Full details are available in the Supplementary Materials. 

 

-- Table 1 about here -- 

 

Age distributions of deaths were obtained from two primary sources: (i) For historical periods 

(prior to 1970), these distributions were collected manually from archival sources such as 

national statistical yearbooks; and (ii) for periods from 1970 onwards, they were obtained 

electronically from a data repository compiled by the United Nations Statistical Division. 

 

Country-years were selected based on two criteria: (1) the quality of data; and (2) the availability 

of detailed age breakdowns. For the data quality criterion, the U5MD used the criterion of virtual 

completeness of death registration and census data determined by the Human Mortality Database 

(HMD) (Barbieri et al. 2015). This means that we only considered country-years available in the 

HMD for inclusion in the U5MD. The HMD comprises mostly European countries (31) but also 

some other industrialized countries (9). However, we did not include all HMD countries in the 

U5MD. As discussed in the Supplementary Materials, we excluded countries of the former 

Eastern bloc due to well-documented concerns about the quality of the mortality data at early 

ages. Greece was also excluded for similar reasons (Agorastakis et al. 2017). In addition, Iceland 

and Luxembourg were removed due to the small size of the population leading to many zero cell 

counts in the narrow age group we focus on in this paper. 

 

Regarding the detail of the age information, the minimum criteria for inclusion in the U5MD was 

the breakdown of infant deaths in terms of neonatal deaths (<1 month) vs. post-neonatal deaths 
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(1-11 months). The death distributions we collected typically included much finer age 

granularity, but the format of age intervals varied greatly across the primary sources of 

information. Deaths were tabulated unevenly by days, weeks, months, trimester, semester and 

years, and distributed over different age spans (first year of age only vs. larger age ranges up to 

the full first five years). In order to address this unevenness, we harmonized age groups into 22 

age intervals with the following exact-age cut-off points: 0, 7, 14, 21, 28 days; 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, 12, 15, 18, 21 months; 2, 3, 4, 5 years. The harmonization was carried out by 

interpolating cumulative age distributions of deaths using a method developed by Steffen (1990). 

We excluded 99 country-years at that stage due to insufficient age details during the first month 

for performing this interpolation (see Table 1 and the Supplementary Materials for details). 

 

Our database was complemented by two pieces of information obtained directly from the HMD 

for the country-years covered in the U5MD: (1) raw death counts between exact ages 1 and 5, 

which we used to fill potential missing information in our database in that age range; (2) 

exposures to the risk of dying in person-years, by calendar year and by single year of age, 

calculated by the HMD from census and birth data (Wilmoth et al. 2017). 

 

Age-specific deaths rates ( 𝑀𝑀𝑥𝑥𝑛𝑛 ) and corresponding probabilities of dying from birth to age x 

(𝑞𝑞(𝑥𝑥)) were computed for each of the 22 harmonized age intervals. Death rates were computed 

by dividing deaths by the exposure to the risk of death for each age interval and year. Since 

exposure terms were not available for age groups smaller than one year, we assumed a uniform 

distribution of exposure within each single-year age group. With this assumption, exposure terms 

are proportional to the length of the age interval n within each single-year age group. We then 
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calculated cumulative probabilities of dying q(x) with the assumption that mortality rates were 

constant within each age interval, in which case  𝑞𝑞(𝑥𝑥 + 𝑛𝑛) = 1 − (1 − 𝑞𝑞(𝑥𝑥)) ∙ 𝑒𝑒−𝑛𝑛∙ 𝑀𝑀𝑥𝑥𝑛𝑛 . This 

assumption is not very consequential given the small width of our age intervals. 

 

Evaluation of the Quality of the U5MD 

 

As discussed above, the U5MD includes a subset of country-years covered in the HMD, a source 

representing the gold standard in terms of VR mortality information. Nonetheless, when focusing 

on under-5 mortality by detailed age, questions remain about the quality of the reported 

information, especially for earlier periods (19th century and early 20th century) and for the 

neonatal age range. Neonatal deaths are known to be subject to underreporting, especially when 

they occur very soon after birth. This is due in part to ambiguities about what constitutes a live 

birth vs. a stillbirth. Discussions of international standards for defining live births vs. stillbirths 

started only in the 1920s under the impulse of the League of Nations (United Nations Department 

of Social Affairs - Population Division 1954), and distinguishing between live births and 

stillbirths remains a complex issue even today (Gourbin & Masuy-Stroobant 1995; Hug et al. 

2019). This raises questions about how correctly this distinction was made during the earlier 

years covered in our database. Another source of underreporting arises from the fact that when a 

child death occurs before the recording of the corresponding live birth, the incentive to report 

these two events in civil registers is low. This further questions the quality of the reporting of 

neonatal deaths during the earlier periods of the database, at a time when most deliveries 

occurred at home (United Nations Statistical Office 1955). 
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Due to these data quality concerns, we performed an evaluation of the quality of the U5MD prior 

to estimating our model. Specifically, we performed plausibility checks, focusing on mortality 

during the neonatal period. We examined the relationship between age-specific mortality rates for 

the first, second, third and fourth week of life (7M0(d), 7M7(d), 7M14(d) and 7M21(d), respectively, 

with the letter d indicating that age is expressed in days) vs. the probability that a 28-day child 

will die prior to reaching age 5 years (q(28d,5y)), i.e., a mortality indicator not affected by 

mortality rates for the neonatal period. These relationships are shown in Figure 1. 

 

--- Figure 1 about here --- 

 

Figure 1 shows that for weeks 2, 3 and 4, there is a clear positive – almost log-linear – 

relationship between each weekly mortality rate and mortality between 28 days and 5 years. 

There is no large change in slope at any point in the relationship, including when q(28d,5y) is 

high, i.e., during the earlier years of our database. The mortality rate for the first week, however, 

has a drastically different relationship with q(28d,5y). While the relationship starts with a clear 

upward slope, there appears to be a flattening of the relationship as q(28d,5y) reaches high levels. 

For some individual country trajectories, we even found reversals in the relationship, depicting 

situations where decreases over time in reported mortality between 28 days and 5 years coincide 

with increases in the reported mortality rate for the first week. 

 

These flattenings and reversals are suspicious for a number of reasons. First, the changes in slope 

take place during the earlier years in our database, with turning points typically occurring 

between WWI and WWII. These earlier years are the years for which the sources of errors are 

most likely to apply. Second, the changes in slope occur only for the first week, which is the 
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week that is most subject to the sources of errors mentioned earlier. Weeks 2-4, which are less 

subject to these errors, show no such flattenings. Third, within the first week, changes in slope 

are most pronounced during days 0-3, which are the days most subject to errors (results not 

shown). The relationships are more log-linear for days 4-6, which are less subject to errors. 

Fourth, reversals and flattenings do not occur everywhere, suggesting that monotonic 

relationships between mortality for the first week (7M0(d)) and mortality between ages 28d and 5y 

are biologically possible. In Switzerland, for example, the level of 7M0(d) keeps increasing 

together with q(28d,5y) as we go further back in time, with no signs of decrease in slope. 

 

Taken altogether, these issues raise serious doubts about the quality of the early neonatal 

mortality data during the earlier years covered in the database. Rather than excluding all the data 

points above a given mortality level, we decided to take an intermediate approach that excludes 

long-lasting reversals in the 7M0(d) vs q(28d,5y) relationship. Specifically, we decided to remove, 

for a given country, all points to the right of a given point in the 7M0(d) vs q(28d,5y) scatterplot 

when there are 15 temporally consecutive points that are all below that one given point. This 

approach removes the most suspicious patterns while keeping the possibility of a decrease in 

slope at higher levels of q(28d,5y). 

 

This exclusion criteria removes 318 country-years, shown in Table 1. As expected, the excluded 

country-years pertain mostly to the early years covered by the database: 19th century and early 

20th century. 
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Final Database for Modeling Purposes 

 

The final U5MD that we use for our model includes 1,235 country-years, by sex and for both 

sexes combined. These country-years cover a wide range of time periods and levels of under-5 

mortality, from the late nineteenth century until today, with levels ranging from above 200 to less 

than 5 per 1000. A summary of the available country-years is available in Table 1 (last column), 

and full details are provided in Appendix Table A1. 

 

Log-Quadratic Model for Age-Specific Mortality by Detailed Age between 0 and 5 

 

Model Description 

 

We propose a model able to predict a full mortality schedule by detailed age between 0 and 5 

years with only two parameters, one depicting the overall level of under-5 mortality and the other 

depicting the shape of the age pattern of mortality within the 0-5 age range. This model is 

adapted from Wilmoth et al.’s (2012) log-quadratic model; it is based on the observation of log-

quadratic relationships between the cumulative probability of dying from birth to age 𝑥𝑥, q(x), and 

the under-5 mortality rate, q(5y), for each detailed age x within the under-5 age range: 

 

 ln[𝑞𝑞(𝑥𝑥)] = a𝑥𝑥 + b𝑥𝑥 ∙ ln[𝑞𝑞(5𝑦𝑦)] + c𝑥𝑥 ∙ ln[𝑞𝑞(5𝑦𝑦)]2 + v𝑥𝑥 ∙ 𝑘𝑘   (1) 

 

As shown in Equation (1), the model includes a set of age-specific coefficients {a𝑥𝑥, b𝑥𝑥, c𝑥𝑥, v𝑥𝑥}, 

whose estimation we describe below. When 𝑘𝑘 = 0, the model predicts a general pattern which is 
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the average mortality schedule of the set of country-years included in the final U5MD. When k ≠ 

0, the model adjusts the probabilities of dying in response to specificities in the age pattern of 

q(x) at a given level of q(5y), bearing in mind that 𝑞𝑞(𝑥𝑥) is a non-decreasing function of age. For a 

given level of 𝑞𝑞(5𝑦𝑦), depending on the value of 𝑘𝑘, the age pattern of mortality will be either 

“early”, with relatively high levels of neonatal and infant mortality; or “late”, when these levels 

are relatively low. 

 

Note that unlike the Wilmoth et al. (2012) approach, our model involves cumulative probabilities 

of dying, q(x), rather than age-specific mortality rates, nMx, in the left-hand side of Equation (1). 

There are four advantages in doing so: (1) the predicted set of q(x) and its corresponding values 

of nMx will always agree with the level of q(5y) that is chosen as predictor in the right-hand side 

of Equation (1); (2) the model will be more parsimonious, with 21 coefficients vs. 22 when using 

mortality rates; (3) the model will be less sensitive to fluctuations in the mortality schedule that 

could arise from misreported ages at death; (4) the model will directly predict classic mortality 

indicators such as early-neonatal, neonatal and infant mortality rates, which are in fact cumulative 

probabilities of dying (q(7d), q(28d) and q(12m), respectively). There is however one drawback 

in using cumulative probabilities of dying in this model: data errors at early ages such as 

underreporting of neonatal deaths will carry through the entire q(x) curve. This makes our rather 

conservative approach with respect to the inclusion of country-years in the final U5MD all the 

more important. Although our model predicts cumulative probabilities of dying rather than age-

specific mortality rates, corresponding mortality rates can be easily recovered from the predicted 

q(x) values using the assumption of a constant force of mortality within each of our 22 small age 

intervals: 
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𝑀𝑀𝑥𝑥𝑛𝑛 =  −
𝑙𝑙𝑛𝑛�1−𝑞𝑞(𝑥𝑥+𝑛𝑛)

1−𝑞𝑞(𝑥𝑥) �

𝑛𝑛
. 

 

While developing our model, we also explored the possibility of building a model based on 

Clark’s (2019) more general SVD-component model. One of the main differences between the 

log-quadratic model and the SVD-component model is that the latter does not include a 

parametric assumption relating age-specific mortality to a mortality indicator like q(5y) chosen as 

the main explanatory variable. Instead, the SVD-component model is a linear sum of 

independent, age-varying vectors, like in a Principal Component Analysis (PCA) decomposition. 

After exploring both approaches, we decided to follow the log-quadratic approach because the 

parametric assumption was appropriate for the narrower (0 to 5) age range that is the focus here. 

This parametric assumption makes the log-quadratic model more parsimonious and easier to use 

when focusing on this younger age range. 

 

Estimating the Coefficients {ax, bx, cx, vx} 

 

The model coefficients in Equation (1) were estimated in two steps. The first step involved the 

estimation for each age 𝑥𝑥 of the set of age-specific coefficients {a𝑥𝑥, b𝑥𝑥 , c𝑥𝑥} regressing 𝑞𝑞(𝑥𝑥) 

against 𝑞𝑞(5𝑦𝑦) with OLS. This is shown in equation (2), with the subscript 𝑖𝑖 indicating each 

country-year in our sample of 𝑁𝑁 = 1,235 observations. 

 

 ln[𝑞𝑞𝑖𝑖(𝑥𝑥)] = a𝑥𝑥 + b𝑥𝑥 ∙ ln[𝑞𝑞𝑖𝑖(5𝑦𝑦)] + c𝑥𝑥 ∙ ln[𝑞𝑞𝑖𝑖(5𝑦𝑦)]2 + 𝑒𝑒𝑖𝑖(𝑥𝑥)  (2) 
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The second step uses the age-covariance of the residuals 𝑒𝑒(𝑥𝑥) in Equation (2) which informs 

about systematic deviations from the general pattern of mortality, for estimating the set of 

coefficients v𝑥𝑥. For this purpose, we estimated the covariance matrix of the residuals Ψ, whose 

element (𝑧𝑧,𝑦𝑦) is given by: Ψ𝑧𝑧𝑧𝑧 = 1
𝑁𝑁−3

∙ ∑ 𝑒𝑒𝑖𝑖(𝑧𝑧) ∙ 𝑒𝑒𝑖𝑖(𝑦𝑦)𝑁𝑁
𝑖𝑖=1 . Following a common approach in 

demographic estimation (Clark 2019; Lee & Carter 1992; Wilmoth et al. 2012; Wilmoth 1990), 

we estimated the set of coefficients v𝑥𝑥 as the first-orthonormal eigenvector (of V) resulting from a 

Singular Value Decomposition (SVD) applied to the covariance matrix: Ψ = V ∙ Σ ∙ U. The SVD 

provides a least squares solution to the principal components of the residuals, hence the first 

vector will account for the higher proportion of the overall covariance. In our case, the first 

eigenvalue accounts for the 87% of the total sum of eigenvalues. 

 

Model Results 

 

Table 2 shows the model coefficients for males, females, and both sexes estimated using the final 

U5MD. This table shows that as age x increases, bx approaches 1 and cx approaches zero. This is 

expected given that as x increases, q(x) approaches q(5y). At younger ages, however, we find 

significantly negative values of cx. This reflects decreasing slopes in the relationship between 

q(x) and q(5y) at high levels of q(5y). Values of vx all have the same negative signs. This is due 

to the fact that when an age pattern of mortality is late or early relative to the average, the entire 

q(x) curve is shifted up or down. The comparison of male vs. female coefficients shows that 

while values of cx and vx are very similar for each sex, values of ax and bx present sizeable 

differences, with male coefficients being systematically higher than the female ones. This means 
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that at a given level of q(5y) and k, the model will produce and earlier age pattern of mortality for 

males.  

 

--- Table 2 about here --- 

 

These features of the model results are illustrated in Figure 2, which shows observed vs predicted 

values of q(7d), q(28d) and q(12m) when k=0 and when k=+/-1. Note that almost all data points 

used for estimating the model are included within this range of values for k. 

 

--- Figure 2 about here --- 

 

The model results are further illustrated in Figure 3, which shows how predicted values of q(x) 

(Panel A) and corresponding values of nMx (Panel B) vary in response to changes in the level of 

q(5y) at a given level of k (=0 in this example). As the level of q(5y) changes from 100 to 10 per 

1000, an increasing portion of under-5 mortality takes place below one year and below 28 days. 

This is a well-known regularity that reflects the transition from a situation with a high prevalence 

of infectious (“exogenous”) causes of death that have an older age pattern to one in which 

infectious diseases have been virtually eliminated and the only remaining causes are congenital 

anomalies and perinatal conditions, i.e., “endogenous” causes that have a younger age pattern 

(Drevenstedt et al. 2008; Galley & Woods 1999; Liu et al. 2012; Rao et al. 2011). Examining the 

shape of the mortality curves in the right panel, we see that our model produces mortality patterns 

that monotonically decrease with age. This also reflects the regularities present in our database. 

Indeed the country-years included in the database do not present any systematic age-specific 
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mortality reversals. As the level of q(5y) decreases, the entire mortality curve between 0 and 5 

shifts down, with larger relative declines at older vs. younger ages. 

 

--- Figure 3 about here --- 

 

Figure 4, Panel A shows the effect of varying k on the q(x) curve at a given level of q(5y) (=100 

per 1000 in this example). When k=+1, the entire q(x) curve is shifted down. This produces a 

“late” pattern of under-5 mortality, with lower levels of neonatal and infant mortality while q(5y) 

remains unchanged. Conversely, when k=-1, this produces an “early” pattern of under-5 

mortality, with higher levels of neonatal and infant mortality.  

 

--- Figure 4 about here --- 

 

Figure 4 also shows corresponding effects of changing k on nMx values between 0 and 5 (Panel 

B), with a zoom on the first 3 months (Panel C). The mortality curves in this figure all produce 

the same level of under-5 mortality (100 per 1000 in this example). Higher levels of mortality at 

some ages will thus necessarily have to be compensated by lower levels of mortality at some 

other ages. The resulting mortality crossover is visible in the right panel of Figure 4, which shows 

that the “tilting” age occurs during the second month of life. This implies that at this level of 

q(5y), the shape of the age pattern of mortality is entirely explained by the contrast between 

q(28d) vs. q(28d,5y). The age at which this crossover occurs in our model is however not 

constant but related to the level of under-5 mortality. The lower the level of q(5y), the earlier the 

crossing age. When q(5y) reaches a level around 50 per 1000, the crossover occurs during the 

second week, its lower limit. This means that at these lower levels of q(5y), the shape of the age 
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pattern of mortality in our model is entirely explained by the q(7d) vs. q(7d,5y) contrast. These 

shifts in the q(x) and nMx curves in response to changes in k also reflect regularities in our 

database. They show that a given level of q(5y) can be reached via a variety of routes, depending 

on a population’s unique set of environmental and behavioral conditions. Yet these routes are not 

unstructured and instead take place within a rather constrained set of possibilities. 

 

As discussed above, almost all data points used for estimating the model fall between k=-1 and 

+1. This means that predicted values of q(x) using values of k outside that range will represent 

extrapolations of the model. While the model can certainly tolerate some extrapolation, 

extrapolating k beyond the range of observed values (a range which spans between -1.1126 and 

+1.522, as we estimate using a procedure discussed in the next section) should not be performed 

as they will not have any empirical basis. Moreover, predicted values of q(x) when k<-1.5 will 

sometimes produce a non-monotonic progression in q(x), which is impossible. As a rule of 

thumb, users should use the model with k ranging from -1.1 and +1.5. 

 

Estimating the Value of k for a Given Population 

 

Our model can summarize a full set of observed q(x)’s between 0 and 5 years for a given 

population with only two parameters: q(5y) and k. The first parameter, q(5y), can be directly 

taken from the observed data. The second parameter k, however, needs to be estimated using 

model coefficients. 

 

One option consists of finding the value of k which, together with the observed value of q(5y) for 

a given population i, produces a predicted value of q(x) for a given age 𝑥𝑥 < 5𝑦𝑦 that exactly 
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matches the observed value of q(x) for that population. This value of k, which we call ki(x), is 

given in the following equation, derived from Equations (1) and (2): 

 𝑘𝑘𝑖𝑖(𝑥𝑥) =  𝑒𝑒𝑖𝑖(𝑥𝑥)
v𝑥𝑥

        (3) 

where ei(x) is the difference between the predicted and observed values of q(x) when the 

prediction is performed with k=0, and vx is taken from Table 2. Equation (3) implies that a value 

of k for a given population can be estimated on the basis of only one value of q(x) in addition to 

q(5y).  

 

The value of k can also be estimated using more than one observed value of q(x) in addition to 

q(5y). Several approaches are possible in this case. For example, one could simply use the mean 

or median of the ki(x) values calculated independently for each age using Equation (3). Another 

approach consists of finding the value of k which, together with the observed value of q(5y), 

minimizes the Root Mean Square Error (RMSE) of predicted values of all the q(x) values for that 

population. To derive the equation for this “best-fitting” value of k, which we denote ki*, we take 

into account the different lengths of the age intervals in the q(x) series by using a weighted least 

squares solution where the weights w(x) correspond to the length of the previous age interval 

ending with age x. The solution is given in Equation (4) (see Appendix 1 for more details): 

𝑘𝑘𝑖𝑖
∗ = ∑ 𝑤𝑤(𝑥𝑥)∙𝑒𝑒𝑖𝑖(𝑥𝑥)∙v𝑥𝑥𝑥𝑥∈𝑋𝑋

∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋
        (4) 

 

Compared to the solution based on averages of ki(x) values, this approach minimizes the 

uncertainty about the predictions of the model. This is a desirable condition, considering our goal 

to use this model for indirect estimation and for data validation purposes. 

 



19 
 

Figure 5 uses data from Finland in 1933 to illustrate how the model can fit an actual observed 

q(x) series using q(5y) and k*. In Panel A, the circles show the observed values of q(x) at 

different ages, with a q(5y) value of 107 per 1000. Predicted values of q(x) using the log-

quadratic model with this value of q(5y) and k=0 show a certain amount of prediction error. 

These prediction errors are minimized by calculating the value of k* (=0.99 in this example) 

using Equation 4. The two entry parameters for Finland in the log-quadratic model are 

q(5y)=0.107 and k*=0.99, producing a series of predicted q(x)’s that fit the observed data 

remarkably well, with a RMSE of 1.8%. Figure 5 (Panel B) also shows how the model fits the 

observed nMx series. 

 

--- Figure 5 about here --- 

 

The approach discussed above uses q(5y) as the first entry point, and one or several intermediate 

q(x) values as additional information for estimating k. For certain applications, it may be 

desirable to fit the model with input death probabilities that do not start at age 0 and/or do not end 

at age five years. One example of such configuration is when the only available input values are 

observed values of q(28d) and q(12m). In some other applications, it may be useful to estimate 

the model parameters after excluding information at neonatal ages, for example due to concerns 

about the quality of the data at these ages. In that case, q(28d,5y), rather than q(5y), would be a 

preferable input parameter. Another situation is when the available input values are mortality 

rates (nMx), rather than probabilities, over age groups that do not conform with the model’s 

harmonized age groups. For all these more complex applications, estimating the model 

parameters cannot be performed using the method described above because of non-linearities in 

the system of equations. These applications can be resolved using simple iterative procedures, or 
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using a more general approach based on the method of Lagrange. This more general approach is 

described in Appendix 2. 

 

Our log-quadratic model is a two-dimensional model, but it can be reduced to one dimension 

assuming k=0. In that case, any single mortality indicator within the 0-5 age range will be 

associated with one value of q(5y), and a full mortality schedule can be predicted using that q(5y) 

value and k=0. This corresponds to the model’s average prediction in the database given the 

chosen predictor. In order to take advantage of the two-dimensional feature of the model, at least 

two input mortality values are necessary. However not all pairs of mortality indicators within the 

0 to 5 age range will provide a solution. As discussed above, the shape of the q(x) function, as 

summarized by the parameter k, is to a large extent driven by the contrast between mortality 

before vs. after 28 days (or 7 days when q(5y) reaches low levels). This means that, for example, 

when the pair of input mortality values are both located within the 28d-5y age range, there may 

not be a solution for q(5y) and k values that produces an exact match for both input values, 

indicating in effect that the input information is insufficient for determining the shape parameter 

k. In this case, the two-dimensional model can be reduced to only one dimension assuming k=0, 

and the model parameter q(5y) can be estimated using either of the two input values, which in 

such situations will provide similar results. Among classic mortality indicators including q(7d), 

q(7d,28d), q(28d), q(28d,12m), q(12m), q(12m,5y), and q(5y), pairs that are both on the same 

side of the 28 days (or 7 days) threshold will most often not provide enough information for 

estimating the shape parameter k. The same conclusion applies when using 3 or more indicators 

and solving for the model parameters by minimizing RMSE: these multiple indicators need to 

combine mortality information before and after the 28 days (or 7 days) threshold to have enough 

traction for estimating k. When this is not the case, assuming k=0 will be the preferred solution. 
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How Does the Log-Quadratic Model fit the U5MD? 

 

We evaluated model fitting as the capacity to make q(x) predictions with minimum RMSE for the 

country-years included in the final U5MD. In order to prevent overfitting, we split our set of 

country-years into two random samples: one of 60% of the country-years for estimating the 

coefficients of the model {a𝑥𝑥, b𝑥𝑥, c𝑥𝑥, v𝑥𝑥} and another 40% for evaluating the error of the 

prediction. We first estimated prediction errors taking q(5y) as the only entry parameter in the 

model, assuming k=0. We then estimated how model fitting improves when using a second entry 

point for estimating the shape parameter k, comparing different choices of entry points for that 

purpose (q(7d), q(28d), q(3m), q(6m) and q(12m)). Finally, we examined model fitting when k is 

estimated on the basis of all q(x) values, i.e., using k* in Equation (4). 

 

Table 3 shows the RMSEs for both sexes combined selecting 60% of the country-years for 

estimation and the remaining 40% for evaluation. We report means of the estimates, after 

preserving the selection 60-40 for a total of 1,000 random samples (without replacement). Global 

results from 0 to 5 years were calculated as the weighted average of the RMSEs at different ages 

using the same age weights used in Equation (4). The overall adjustment of the model is 

satisfactory even if a value of 𝑘𝑘 = 0 is assumed, with an RMSE of only 4.04%. Choosing a 

second entry point and estimating the corresponding value of k improves fit substantially, with 

the largest improvement occurring with q(3m) as second entry point (RMSE=1.91% for both 

sexes combined). As expected, best results are obtained when estimating k optimally using k* 

based on all observed q(x)’s. Interestingly, this optimal solution is not substantially different, in 

terms of RMSE, from the one using q(3m) for estimating k. Table 3 also shows RMSE when 
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focusing on specific q(x) outcomes: neonatal and infant mortality, i.e., q(28d) and q(12m), 

respectively. The RMSE’s are higher in that case, in part because the global RMSE estimates 

include values of q(x) at higher ages which have smaller relative prediction errors. Nonetheless 

the results show that these indicators are relatively well predicted, with predictions that improve 

overall with the inclusion of the second parameter k. 

 

--- Table 3 about here --- 

 

We also evaluated the performance of the model for predicting mortality outcomes based on 

q(28d,5y). As mentioned earlier, this indicator excludes mortality information during the neonatal 

period, making it a useful predictor of neonatal mortality and other under-5 mortality indicators 

when there are concerns about undercount of deaths at neonatal ages in a given population. 

Indeed, in such situations, the model’s entry point cannot be q(5y), because that indicator is itself 

affected by undercount of neonatal deaths. Also, estimating k will be problematic, because k is 

determined to a large extent by the contrast between mortality before vs. after 28 days, which is 

missing in this configuration. 

 

Predicting a full q(x) schedule in this case can be done assuming k=0. This implies finding the 

level of q(5y) that matches the observed level of q(28d,5y) when k=0, using either simple 

iteration or the Lagrange option discussed on Appendix 2. The last row of Table 3 shows the 

RMSE of q(28d) and other mortality outcomes, here also selecting 60% of the country-years in 

the database for estimation and the remaining 40% for evaluation. Focusing on q(28d), RMSE are 

substantially higher than when using q(5y) as a predictor (31.50% vs. 14.48%). This is expected 

given that q(60m) is to a large extent determined by the level of q(28d), making it easier to 
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predict q(28d) on the basis of q(60m) than on the basis of q(28d,5y). RMSE for other mortality 

outcomes including q(5y) are substantially lower, due to the overlap in this case between 

predictor (q(28d,5y) and predicted (q(5y)) indicators. A practical example of using the log-

quadratic model for adjusting neonatal mortality based on VR data from Jordan is provided later 

in the paper. (Note that of all mortality indicators between 28 days and 5 years, q(28d,5y) is the 

one that produces the smallest predictions errors in q(28d) when assuming k=0. We thus 

recommend using it when available. Alternatively, neonatal mortality can be predicted using 

other mortality indicators after 28d, such as q(28d,12m) or q(12m,5y). In that case prediction 

errors will be slightly higher: 34.41% with q(28d,12m) and 31.79% with q(12m,5y) vs. 31.50% 

with q(28d,5y).) 

 

Estimating Uncertainty in Predicted q(x) Values 

 

Given q(5y) and k, the log-quadratic model predicts a series of q(x) values. These predictions are 

not perfectly accurate; the model will predict q(x) values with a certain degree of uncertainty that 

needs to be quantified. 

 

Our strategy for quantifying uncertainty in predicted values of q(x) values is derived from our 

approach for estimating 𝑘𝑘𝑖𝑖
∗, the optimal value of k for a given country i. Building on 

Equation (4), we obtain in Equation (5) an expression for the variance of 𝑘𝑘𝑖𝑖
∗ in terms of the 

prediction error 𝑒𝑒𝑖𝑖 (when 𝑘𝑘 = 0), the estimated coefficients for modeling the mortality pattern v, 

and the optimal value of 𝑘𝑘𝑖𝑖
∗ (see Appendix 1 for more details): 
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Var�𝑘𝑘𝑖𝑖
∗� = 22

21
∙ � ∑ 𝑤𝑤(𝑥𝑥)∙𝑒𝑒𝑖𝑖(𝑥𝑥)2𝑥𝑥∈𝑋𝑋

∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋
− 𝑘𝑘𝑖𝑖

∗2�.       (5) 

 

Equation (5) shows that the variance of 𝑘𝑘𝑖𝑖
∗ is an increasing function of the variance of the 

prediction error but a decreasing function of the absolute value of 𝑘𝑘𝑖𝑖
∗. In other words, the 

certainty in the value 𝑘𝑘𝑖𝑖
∗will depend on the extent to which the coefficients of the model 

effectively minimize the RMSE of the prediction. This estimated variance around 𝑘𝑘𝑖𝑖
∗ can then be 

used for calculating 95% confidence intervals around each q(x) values predicted by the log-

quadratic model. This involves calculating predicted values of q(x) in the log-quadratic model 

using k ± 1.96 �Var�𝑘𝑘𝑖𝑖
∗�. 

 

An illustration of this approach for calculating confidence intervals around predicted q(x) values 

is provided in Figure 6, using data from Belgium in 1949. We chose this example because of its 

relatively large remaining prediction errors after estimating k* (RMSE=3.6%), making the 

calculation of confidence intervals particularly relevant. In Figure 6, each predicted q(x) value is 

presented with its corresponding 95% confidence interval. 

 

--- Figure 6 about here --- 

 

In one-dimensional uses of the model (i.e., assuming k=0), only one mortality indicator is used as 

an entry point. Uncertainty in k for a given population in that situation does not stem from 

variations in ki(x) across age groups, but instead from the overall lack of information about k. In 

such cases we propose to build confidence intervals around predicted values by examining 

patterns of prediction errors in the database when assuming k=0 instead of the best-fitting value 
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k*. We find that across all 1,235 country-year of the final U5MD, the central 95% of the 

distribution of k* lies between -0.6514 and +0.9362. Confidence intervals around predicted 

values of q(x) when k=0 can be derived using these bounds for k. An application of this approach 

is discussed in the next section. 

 

Using the Model for Adjusting Under-5 Mortality in Populations with Incomplete or 

Deficient Data  

 

Our log-quadratic model for under-5 mortality has many practical applications. It can be used, for 

example, to: (1) smooth noisy age schedules; (2) correct mortality estimates in the presence of 

age heaping or transfer; or (3) adjust mortality data for underreporting in specific age ranges. 

 

For the first application, we examine the case of age schedules of mortality estimated using full 

birth histories collected in the DHS. Mortality information based on this type of information is 

subject to more sampling error than VR-based information due to small sample sizes. This 

sampling error is particularly visible when examining age-specific deaths rates (nMx) over narrow 

age intervals. The flexible parametric assumptions of the log-quad model can be used to smooth 

this information: one simply needs to solve for the model’s parameters on the basis of the 

observed q(x) information, and then use these parameters to obtain predicted values of q(x) from 

which a smoothed nMx series can be derived. 

 

An illustration of this application is provided in Figure 7, with data from the 2011-12 DHS in 

Honduras. The left panel shows observed q(x) values as well as q(x) values predicted using the 

log-quadratic model given the observed q(5y) value of 28 per 1000 and the best-fitting k* value  
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of 0.06. The model fits the q(x) series extremely well, with a RMSE value of 1.8% and narrow 

confidence intervals. The right panel shows corresponding observed vs. predicted nMx values, 

illustrating the use of the loq-quadratic model for smoothing purposes. The confidence intervals 

around predicted nMx values are narrower than suggested by the random error in observed nMx 

values. This is explained by the fact that these confidence intervals reflect uncertainty in 

estimating k, assuming a known value of q(5y), while the observed values of nMx are affected by 

sampling error arising from small sample sizes in each narrow age interval. 

 

--- Figure 7 about here --- 

 

The second application deals with age heaping correction. In birth histories collected by DHS 

surveys, ages at death tend to be reported with a certain amount of heaping, most notably at age 

12 months. This raises concerns about the quality of DHS-based IMR estimates, since some 

infant deaths (i.e., at ages less than 12 months) may be misreported as occurring at 12 months and 

thus erroneously excluded from IMR calculations (Croft et al. 2018). In order to correct for this 

issue, we suggest fitting the model to observed q(x) points in a DHS survey after excluding ages 

most likely to be affected by heaping at 12 months due to their proximity, e.g., 8 to 21 months. 

The idea is to smooth out age heaping around 12 months while preserving the observed value of 

q(5y) which is not expected to be affected by such age heaping. 

 

To illustrate this application, we show in Figure 8 data from Bolivia’s 1989 DHS. In this 

example, the observed q(x) points display a large jump between q(12m) and q(13m), illustrating 

the extent of age heaping for deaths reported at age 12 months. The observed data suggest an 

IMR level of 90 per 1000, but this value is questionable given the presence of such age heaping. 
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Figure 8 also shows predicted values of q(x) with the observed q(5y) value of 140 per 1000 and k 

estimated on the basis of observed q(x) values excluding the problematic ages around 12 months. 

The model fits the retained points well (RMSE = 2.8%) and predicts an IMR value of 100 per 

1000, i.e., 10 points higher than the observed one. In this example, ages at death in the months 

preceding 12 months appear to be gradually misreported as occurring at 12 months, generating a 

substantial downward bias in the observed IMR value. 

 

In the third application, we show how the model can be used to adjust mortality information in 

situations where mortality may be under-reported at some ages for reasons other than age 

heaping, for example due to undercount of deaths. In this type of situation, it will not be possible 

to use the reported value of q(5y) as one of the model’s entry points, because that value will itself 

be biased by such under-reporting. However, as explained earlier, the model’s parameters can be 

estimated using entry points over age ranges that may not start at zero and/or may not end at 5. 

This allows users to estimate the model’s parameters on the basis of indicators within the 0-5 age 

range that may be less affected by under-reporting issues. 

 

We illustrate this type of application using recent (2015) vital registration data from Jordan, a 

country where VR-based under-5 mortality information appears largely underestimated (United 

Nations Inter-agency Group for Child Mortality Estimation (UN IGME) 2019b). As is often the 

case, concerns about undercount are particularly acute for neonatal mortality, as indicated in the 

Jordan VR data by an unusually low level of neonatal mortality given the observed level of 

under-5 mortality. We propose here to use the log-quad model for adjusting under-5 mortality in 

the country using the observed value of q(28d,5y) as the model’s entry point. As discussed 

earlier, this choice is based on the fact that q(28d,5y) is an indicator that remains unbiased in the 
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presence of underreporting of neonatal deaths. Unlike the previous applications, it will not be 

possible to solve for the model’s second dimension k, because as we saw earlier the estimation of 

k requires entry points situated on both sides of the 28 days threshold. However, assuming k=0, it 

is possible to solve for the value of q(5y) that corresponds to the observed value q(28d,5y) and 

then obtain a full series of predicted q(x) values, including neonatal, infant and under-5 mortality 

rates. We calculated confidence intervals around predicted values using bounds of k varying 

between -0.6514 and +0.9362 as discussed in the previous section. 

 

Results of this approach, shown in Figure 9, indicate that the model adjusts the VR estimates of 

neonatal mortality upwards by a factor of more than 2, from 4 to 10 per 1000, producing adjusted 

levels that are consistent with DHS estimates for the same period. Figure 9 also shows how this 

adjustment of neonatal mortality affects levels of infant and under-5 mortality. The adjusted level 

of q(5y) produced by the log-quad model is 17.5 per 1000, more than 50% higher than the 

unadjusted level and on a par with the DHS estimate. The consistency between our VR-adjusted 

estimates and the DHS estimates is reassuring about the ability of our approach to correct for 

deficiencies in the VR data. Confidence intervals between the two approaches have comparable 

sizes, although they arise from different reasons. In the case of DHS-data, uncertainty reflects 

sampling error, while in the case of the VR correction the confidence interval reflects the model’s 

prediction error in the neonatal mortality rate when k=0.  

 

 

-- Figure 9 about here --- 
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In order to further understand the mechanics of this adjustment, we show in Figure 10 observed 

vs. predicted values of nMx in Jordan with a focus on the first 12 months. This figure shows that, 

while there is close agreement between observed and predicted rates from the second week of life 

onwards, the model predicts much higher mortality for the first week. This suggests that under-

reporting in neonatal mortality in the VR data for Jordan comes primarily from under-reporting 

during the first week, which is indeed the age range most sensitive to data errors. Overall, this 

approach offers a promising solution for adjusting VR-based estimates of under-5 mortality in 

situations where issues of undercount are concentrated at neonatal ages. This solution is 

particularly useful given the renewed emphasis on using local vital registration information rather 

than international survey programs as a data source for estimating mortality. 

 

-- Figure 10 about here --- 

 

Discussion 

 

Mortality between 0 and 5 has features that make this age range unique over the human life 

course, including a particularly fast decline by age during the first weeks and months of life that 

has been interpreted using evolutionary and selection models (Chu et al. 2008; Lee 2003; Schöley 

2019). Over the history of mortality change, populations have experienced large changes in both 

the level and shape of under-5 mortality in response to epidemiological changes such as a shift 

from exogenous causes of under-5 death (e.g., infectious and parasitic diseases) to endogenous 

causes (e.g., congenital malformations, birth injuries) (Drevenstedt et al. 2008; Galley & Woods 

1999; Liu et al. 2012; Rao et al. 2011). As a tool for describing and summarizing these 

regularities, the new model developed in this paper has a number of strengths. First, with 22 age 
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groups between age 0 and 5, our model offers far more detailed age granularity than existing 

model life tables. This age detail is particularly relevant given the fast changes in age-specific 

mortality in that age range. Second, the model fits high-quality VR data remarkably well. Thus, 

the two-dimensional log-quadratic approach is well suited to describe changes in both the level 

and shape of under-5 mortality observed in the populations represented in our database. Third, 

our model provides a more flexible choice of predictors, beyond the typical infant vs. child 

mortality contrast embedded in classic model life tables. This allows users to predict mortality 

curves using various combinations of predictors depending on data availability and quality. 

Fourth, our model can be used for various data smoothing and adjustment applications, as shown 

in our empirical applications. Our application of the model to data from Jordan, in particular, 

shows how the model can be used for correcting incomplete VR data in situations where under-

reporting is concentrated during the neonatal period. Fifth, unlike most model life table 

approaches, our model provides solutions for estimating confidence intervals around predicted 

values. Finally, our model is simple and easy to use. The coefficients provided in Table 2 contain 

all the necessary information for using the model, and most applications can be solved using 

simple formulas such as Equations (3) and (4). 

 

The model’s main limitation is that its empirical basis does not include mortality data from low- 

and middle-income countries. This means that applications of the model to a low- and middle-

income populations need to rely on the assumption that the mortality regularities described by our 

model, representing mostly the experience of historical and contemporary Western countries, 

apply to that particular population. Our examples from Honduras, Bolivia and Jordan for recent 

periods suggest that the model’s applicability is broader than the geographical scope of the 
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U5MD. Indeed, in all three cases, there was a close fit between observed and predicted values of 

q(x) for the ages used as a basis for the prediction.  

 

There are cases, however, where the model is clearly not able to reproduce the observed age 

patterns for reasons that appear unrelated to data quality issues in the observed data. The most 

extreme cases are populations that exhibit a large age-specific reversal in mortality around age 6 

months, as was observed for example in the Niakhar surveillance site in Senegal in the 1960s and 

1970s (Abdullah et al. 2007; Cantrelle & Leridon 1971; Delaunay et al. 2001; Lalou & LeGrand 

1996). This unusual age pattern, which has been attributed to a combination of factors including 

inadequate weaning foods (Cantrelle & Leridon 1971; Garenne 1982), is absent from the Western 

experience, and thus our log-quadratic model is not able to reproduce it. Outside these extreme 

cases, many sub-Saharan African populations tend to display an unusually late age pattern of 

under-5 mortality (Guillot et al. 2012), which is not well fitted by the log-quadratic model 

(Romero et al. 2019). As an illustration, we show in Figure 11 observed q(x) values from the 

2011-12 DHS for Senegal against log-quadratic predictions given the same level of q(5y), with k 

varying between -1 and +1. Clearly the log-quadratic model is not able to reproduce this age 

pattern, which combines an unusually high level of neonatal mortality (associated with an “early” 

pattern of under-5 mortality in the log-quadratic model) with unusually low values of q(x) at later 

ages (associated with a “late” pattern). This lack of fit shows that while the log-quadratic model 

can be applied to various non-Western populations, it cannot be used indiscriminately 

everywhere. 

 

In a recent paper, Mejía-Guevara et al. (2019) specifically modeled age patterns of under-5 

mortality in sub-Saharan Africa using DHS data calibrated on estimates from the United Nations 
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Inter-agency Group for Child Mortality Estimation (UN IGME) (2019b). This study, like ours, 

recognizes the importance of age patterns of mortality as a device for mortality estimation, but it 

pursues objectives that are substantially different from ours, and thus is not directly comparable. 

Its goal is primarily to smooth and forecast existing data on under-5 mortality by detailed age; by 

contrast, our study follows a model life table approach, which consists of extracting regularities 

from a reference dataset via coefficients that may then be used for evaluating and correcting data 

in populations not included in that dataset. Nonetheless, Mejia-Guevara et al.’s (2019) study 

raises the question of whether DHS data may be used as a source for modeling age patterns in 

low- and middle-income countries, including sub-Saharan Africa. In our study, we chose not to 

include DHS data due to data quality concerns that are particularly consequential given the 

specific goals of our model, including age heaping and concerns about the quality of the reporting 

of neonatal deaths (Helleringer et al. 2020). This does not mean that our model’s inability to fit 

patterns such as the one shown in Figure 11 for Senegal is indicative of data errors in the DHS. 

There are many reasons to believe that age patterns of under-5 mortality in many sub-Saharan 

African populations are truly different from those observed in Western countries. However, we 

believe that our goal to derive a model that can be used as a reference for data evaluation and 

correction requires a thorough evaluation of all the available sources of under-5 mortality 

information in low- and middle-income countries, an exercise that is beyond the scope of this 

paper. We provide here a model that describes age patterns based on gold-standard, newly 

compiled vital registration data spanning a large number of countries and time periods. 

Nonetheless more research is needed augment the geographical scope and generalizability of this 

model. 
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Conclusion 

 

This paper proposes a new model for summarizing regularities about how under-5 mortality is 

distributed by detailed age. This model is based on a newly compiled database that contains 

under-5 mortality information by detailed age in countries with high-quality vital registration 

systems, covering a wide array of mortality levels and patterns. This model uses a log-quadratic 

approach, predicting a full mortality schedule between age 0 and 5 on the basis of only 1 or 2 

parameters. 

 

Results show that our model is able to accurately describe variations in both the level and shape 

of under-5 mortality across a variety of contexts. We believe that our model, with its innovative 

features relative to existing models, contributes to better estimating and understanding levels and 

age patterns of under-5 mortality. Future research should focus on increasing the geographical 

scope of the model by gathering the best possible data on under-5 mortality by detailed age in 

low- and middle-income countries. 
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Table 1: List of country-years in the original Under-Five Mortality Database (U5MD) and in the 
final U5MD used for modeling purposes 

 

Original U5MD  
Excluded country- 

years due to  
insufficient age 

breakdowns 

 

Excluded country- 
years due to 

reversals  
in the 7M0(d) vs.  

q(28d,5y)  
relationship 

 
Final U5MD  
for modeling  

purposes 

Country 
Year 

interval n   
Year 

 interval n   
Year 

interval n   
Year 

interval n 
Australia 1921-2014 93        1921-2014 93 
Austria 1970-2016 46        1970-2016 46 
Belgium 1841-2014 98  1841-1861 21  1878-1945 29  1946-2014 48 
Canada 1929-2006 71        1929-2006 71 
Chile 1992-2007 14        1992-2007 14 
Denmark 1890-2015 120  1890-1920 30  1921-1928 8  1929-2015 82 
Finland 1878-2015 124     1878-1921 44  1926-2015 80 
France 1855-2015 138     1855-1952 87  1953-2015 51 
Germany 1991-2015 19        1991-2015 19 
West Germany 1956-1990 24        1956-1990 24 
Ireland 1970-2011 39        1970-2011 39 
Israel 1983-2016 33        1983-2016 33 
Italy 1872-2013 99  1872-1889 18  1926-1945 15  1946-2013 66 
Japan 1947-2014 53        1947-2014 53 
Netherlands 1850-2008 49  1850-1864 15     1970-2008 34 
New Zealand 1970-2013 43  1972 1     1970-2013 42 
Norway 1876-2012 127     1876-1935 53  1936-2012 74 
Portugal 1940-2015 61  1940-1954 14  1955-1970 7  1971-2015 40 
South Korea 2004-2015 12        2004-2015 12 
Spain 1976-2013 30        1976-2013 30 
Sweden 1891-2012 121     1891-1933 43  1934-2012 78 
Switzerland 1877-2016 60        1877-2016 60 
UK 1982-2012 25        1982-2012 25 
England and Wales 1905-1985 81     1905-1936 32  1937-1985 49 
United States 1933-2015 72        1933-2015 72 
Total 1841-2016 1,652   1841-1972 99   1855-1974 318   1877-2016 1,235 

 

  



Table 2: Coefficients of the log-quadratic model estimated with the final U5MD, by sex and for 
both sexes combined 

 Female  Male  Both sexes 
x ax bx cx vx  ax bx cx vx  ax bx cx vx 
7d -3.5756 -0.2551 -0.1406 -0.4749  -3.1419 -0.1484 -0.1378 -0.4708  -3.3460 -0.2033 -0.1399 -0.4745 
14d -2.9909 -0.0176 -0.1115 -0.4226  -2.6246 0.0735 -0.1087 -0.4228  -2.7955 0.0276 -0.1106 -0.4237 
21d -2.5866 0.1510 -0.0915 -0.3909  -2.2642 0.2317 -0.0889 -0.3930  -2.4135 0.1916 -0.0905 -0.3927 
28d -2.3579 0.2425 -0.0807 -0.3672  -2.0521 0.3207 -0.0779 -0.3703  -2.1931 0.2822 -0.0796 -0.3695 
2m -1.8380 0.4305 -0.0594 -0.2865  -1.5462 0.5153 -0.0543 -0.2905  -1.6780 0.4751 -0.0569 -0.2884 
3m -1.6142 0.4897 -0.0536 -0.2324  -1.3426 0.5698 -0.0486 -0.2345  -1.4654 0.5318 -0.0511 -0.2329 
4m -1.4530 0.5294 -0.0500 -0.1946  -1.2041 0.6028 -0.0454 -0.1953  -1.3171 0.5677 -0.0478 -0.1940 
5m -1.3079 0.5718 -0.0457 -0.1685  -1.0778 0.6406 -0.0412 -0.1665  -1.1818 0.6080 -0.0435 -0.1662 
6m -1.1751 0.6131 -0.0416 -0.1482  -0.9586 0.6802 -0.0369 -0.1464  -1.0556 0.6489 -0.0392 -0.1461 
7m -1.0544 0.6520 -0.0377 -0.1330  -0.8512 0.7172 -0.0329 -0.1305  -0.9421 0.6869 -0.0353 -0.1304 
8m -0.9529 0.6850 -0.0344 -0.1205  -0.7587 0.7500 -0.0293 -0.1178  -0.8451 0.7200 -0.0318 -0.1178 
9m -0.8634 0.7146 -0.0315 -0.1092  -0.6763 0.7798 -0.0261 -0.1076  -0.7587 0.7502 -0.0286 -0.1073 
10m -0.7803 0.7433 -0.0285 -0.1007  -0.6063 0.8049 -0.0234 -0.0987  -0.6831 0.7769 -0.0258 -0.0986 
11m -0.7077 0.7688 -0.0258 -0.0931  -0.5453 0.8273 -0.0209 -0.0916  -0.6167 0.8009 -0.0232 -0.0911 
12m -0.6436 0.7914 -0.0235 -0.0868  -0.4891 0.8484 -0.0186 -0.0857  -0.5570 0.8226 -0.0209 -0.0850 
15m -0.4887 0.8459 -0.0178 -0.0710  -0.3554 0.8985 -0.0129 -0.0706  -0.4130 0.8753 -0.0151 -0.0696 
18m -0.3857 0.8831 -0.0136 -0.0598  -0.2724 0.9293 -0.0093 -0.0593  -0.3213 0.9089 -0.0112 -0.0583 
21m -0.3107 0.9104 -0.0104 -0.0510  -0.2160 0.9499 -0.0067 -0.0502  -0.2569 0.9324 -0.0084 -0.0495 
24m -0.2507 0.9311 -0.0081 -0.0429  -0.1698 0.9657 -0.0047 -0.0424  -0.2044 0.9506 -0.0062 -0.0417 
36m -0.1254 0.9674 -0.0040 -0.0204  -0.0759 0.9907 -0.0015 -0.0221  -0.0968 0.9806 -0.0026 -0.0211 
48m -0.0466 0.9897 -0.0013 -0.0083  -0.0302 0.9974 -0.0005 -0.0086  -0.0370 0.9941 -0.0008 -0.0084 
60m 0.0000 1.0000 0.0000 0.0000   0.0000 1.0000 0.0000 0.0000   0.0000 1.0000 0.0000 0.0000 

 

  



Table 3: Root Mean Square Error (RMSE) of predicted q(x)’s using the log-quadratic model 
applied to the final U5MD with various combinations of outcomes and entry points for 
estimating k, both sexes combined. 

 
  RMSE for the following outcomes: 
Entry point(s) all q(x) q(28d) q(12m) q(5y) 
q(5y) only, k=0 0.0404 0.1448 0.0463 0.0000 
q(5y)  and q(7d) 0.0248 0.0452 0.0387 0.0000 

 q(28d) 0.0226 0.0000 0.0376 0.0000 
 q(3m) 0.0191 0.0549 0.0300 0.0000 
 q(6m) 0.0226 0.1103 0.0183 0.0000 
 q(12m) 0.0325 0.1634 0.0000 0.0000 

  all q(x) ✻  0.0176 0.0571 0.0253 0.0000 
          
q(28d, 5y) only, k=0 
 

0.1908 0.3150 0.2022 0.1687 

Reported values correspond to the mean of 1,000 random samples: 60% of the life tables were used for estimation 
and 40% for evaluation. 
RMSE calculated from the relative error of 494 life tables (40% of sample). 
✻ Using k = k* (Equation (4)) 

 



Figure 1: Relationship between age-specific mortality rates (nMx) and the probability of dying 
between age 28 days and 5 years (q(28d,5y)) for each of the first four weeks of life (7M0(d), 
7M7(d), 7M14(d) and 7M21(d)) in the original Under-5 Mortality Database (U5MD), both sexes 
combined. 

 

 

  



Figure 2: Relationship between q(x) and q(5y) for x=7d, 28d and 12m, with observed values in 
the final U5MD vs. values predicted using the log-quadratic model with k=0±1 

 

 

 

  



Figure 3: Effect of varying q(5y) on q(x) and nMx when k=0 in the log-quadratic model 

 

Panel A: Effect of varying q(5y) on q(x) Panel B: Effect of varying q(5y) on nMx 

 
 
 

 

 

 

 

 

 

 

 

  



Figure 4: Effect of varying k on q(x) and nMx when q(5y)=100 p.1000 in the log-quadratic model 

 

Panel A: Effect of varying k on q(x) 

 
Panel B: Effect of varying k on nMx (between 
0 to 5 years) 

Panel C: Effect of varying k on nMx (between 
0 and 3 months) 

  
 

 

 

 

  



Figure 5: Observed and predicted values of q(x) and nMx for Finland, 1933, both sexes. 

Panel A: q(x) Panel B: nMx 

  
 

 

 

 

  



Figure 6: Observed and predicted values of q(x) and nMx for Belgium, 1949, both sexes, with 
95% confidence intervals 

 

Panel A: q(x) Panel B: nMx 

  
 

  



Figure 7: Observed and predicted values of q(x) and nMx for Honduras 2011-12 DHS survey, 
both sexes. 

 

Panel A: q(x) Panel B: nMx 

  
 

 

 

  



Figure 8: Observed and predicted values of q(x) in the 1989 DHS for Bolivia, both sexes. 

 

 

 

Note: k* is estimated here on the basis of observed q(x) points excluding ages between 8 months 
and 21 months.  

 

 

  



Figure 9: Levels of neonatal (q(28d)), infant (q(12m)) and under-five (q(5y)) mortality rates for 
Jordan in 2015, both sexes, with 95% confidence intervals. 

 

 

 

Legend: VR=Vital registration (VR); DHS=Demographic and Health Survey;  

obs. = unadjusted VR values 

adj. = adjusted VR values using the log-quadratic model with the observed VR-based value of 
q(28d,5y) and k=0 as inputs 

  



Figure 10: Observed and Predicted values of nMx in Jordan, 2015 (both sexes) 

 

 

Observed = unadjusted VR-based nMx values 

Predicted = nMx values predicted on the basis of the log-quadratic model with the observed VR-
based value of q(28d,5y) and k=0 as inputs 

 

  



Figure 11: Observed values of q(x) in the 2011-12 DHS for Senegal (both sexes), vs. values of 
q(x) predicted by the log-quadratic model with the same level of q(5y) and k=0±1. 
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Appendix 1: Best linear estimation of 𝒌𝒌 (analytical solutions) 
 

Given a set of cumulative probabilities of dying 𝑞𝑞𝑖𝑖(𝑥𝑥) and the level of mortality ℎ𝑖𝑖 = ln[𝑞𝑞𝑖𝑖(5𝑦𝑦)] of a 
population 𝑖𝑖: 

ln[𝑞𝑞𝑖𝑖(𝑥𝑥)] = a𝑥𝑥 + b𝑥𝑥 ∙ ℎ𝑖𝑖 + c𝑥𝑥 ∙ ℎ𝑖𝑖
2 + 𝑒𝑒𝑖𝑖(𝑥𝑥),       (A1) 

𝑒𝑒𝑖𝑖( ) represents the residual at the specific age 𝑥𝑥, using the coefficients of the model life table 
{a𝑥𝑥, b𝑥𝑥, c𝑥𝑥}, as shown by equation A1. These residuals from the average pattern of mortality can be 
defined as a function of the shape-related coefficient v𝑥𝑥 and the scale-parameter 𝑘𝑘𝑖𝑖, as shown by 
equation A2: 

𝑒𝑒𝑖𝑖(𝑥𝑥) = v𝑥𝑥 ∙ 𝑘𝑘𝑖𝑖 + 𝜖𝜖𝑖𝑖(𝑥𝑥).         (A2) 

The optimal value of 𝑘𝑘𝑖𝑖 minimizes the Mean Squared Error (MSE) of 𝜖𝜖𝑖𝑖( ), as a weighted function 
responding to unequal age intervals. In particular, 𝑤𝑤( ) is assumed proportional to the last age 
interval before the age 𝑥𝑥, weighting the marginal contribution of an additional equation in the model. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 =  ∑ 𝑤𝑤(𝑥𝑥) ∙ 𝜖𝜖𝑖𝑖(𝑥𝑥)2𝑥𝑥∈𝑋𝑋 .         (A3) 
As a least squares’ solution, the MSE is minimized by making the first derivative of equation A3 
with respect to 𝑘𝑘𝑖𝑖 equal to zero, as shown: 
𝜕𝜕𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
𝜕𝜕𝑘𝑘𝑖𝑖

: − 2 ∙ ∑ 𝑤𝑤(𝑥𝑥) ∙ 𝑒𝑒𝑖𝑖(𝑥𝑥) ∙ v𝑥𝑥𝑥𝑥∈𝑋𝑋 + 2 ∙ 𝑘𝑘𝑖𝑖∗ ∙ ∑ 𝑤𝑤(𝑥𝑥) ∙ v𝑥𝑥2𝑥𝑥∈𝑋𝑋 = 0. 

The resulting estimator of 𝑘𝑘𝑖𝑖 is given by equation A4:  

𝑘𝑘𝑖𝑖∗ = ∑ 𝑤𝑤(𝑥𝑥)∙𝑒𝑒𝑖𝑖(𝑥𝑥)∙v𝑥𝑥𝑥𝑥∈𝑋𝑋
∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋

.          (A4) 

The uncertainty of the model is measured by the variance of the estimator. The first step is to 
contrast the estimated value of 𝑘𝑘𝑖𝑖∗ with the expected value of 𝑘𝑘𝑖𝑖, given that: 

𝑘𝑘𝑖𝑖∗ = 𝑘𝑘𝑖𝑖 + ∑ 𝑤𝑤(𝑥𝑥)∙𝜖𝜖𝑖𝑖(𝑥𝑥)∙v𝑥𝑥𝑥𝑥∈𝑋𝑋
∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋

. 

Hence, the estimated variance of 𝑘𝑘𝑖𝑖∗ is defined as: 

Var[𝑘𝑘𝑖𝑖∗] = E�(∑ 𝑤𝑤(𝑥𝑥)∙𝜖𝜖𝑖𝑖(𝑥𝑥)∙v𝑥𝑥𝑥𝑥∈𝑋𝑋 )2�
(∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋 )2

. 

Assuming that prediction errors of different ages are not correlated, the expected value of 𝜖𝜖𝑖𝑖(𝑥𝑥) ∙
𝜖𝜖𝑖𝑖(𝑦𝑦) is zero for each 𝑥𝑥 ≠ 𝑦𝑦. Hence, the variance of the estimator can be simplified to be: 

Var[𝑘𝑘𝑖𝑖∗] = ∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2∙E�𝑤𝑤(𝑥𝑥)∙𝜖𝜖𝑖𝑖(𝑥𝑥)2�𝑥𝑥∈𝑋𝑋
(∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋 )2

. 

Under the assumption of homoscedastic errors, E[𝑤𝑤(𝑥𝑥) ∙ 𝜖𝜖𝑖𝑖(𝑥𝑥)2] = 𝜎𝜎𝑖𝑖2 for all 𝑥𝑥; and the variance of 
the estimator is a function of the variance of the error of prediction 𝜖𝜖𝑖𝑖( ), to the form: 

Var[𝑘𝑘𝑖𝑖∗] = 𝜎𝜎𝑖𝑖2

∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋
. 

The variance of the error of prediction is estimated from the equation A3 increased by a factor 22
21

, 
considering the 22 ages (or equations) in the model and the degree of freedom lost after estimating 
𝑘𝑘𝑖𝑖∗: 

𝜎𝜎𝚤𝚤�
2 =  ∑ 𝑤𝑤(𝑥𝑥) ∙ 𝜖𝜖𝑖𝑖(𝑥𝑥)2𝑥𝑥∈𝑋𝑋 , 
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As a result, the variance of 𝑘𝑘𝑖𝑖∗ is given by equation A4: 

Var[𝑘𝑘𝑖𝑖∗] = 22
21
∙ ∑ 𝑤𝑤(𝑥𝑥)∙𝜖𝜖𝑖𝑖(𝑥𝑥)2𝑥𝑥∈𝑋𝑋

∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋
.         (A5) 

After some additional steps, the variance of the estimator is redefined as a function of the residuals 
of the model when the pattern of the mortality is ignored 𝑒𝑒𝑖𝑖(𝑥𝑥) and the optimal value of 𝑘𝑘𝑖𝑖: 

Var[𝑘𝑘𝑖𝑖∗] = 22
21
∙ � ∑ 𝑤𝑤(𝑥𝑥)∙𝑒𝑒𝑖𝑖(𝑥𝑥)2𝑥𝑥∈𝑋𝑋

∑ 𝑤𝑤(𝑥𝑥)∙v𝑥𝑥2𝑥𝑥∈𝑋𝑋
− 𝑘𝑘𝑖𝑖∗

2�.       (A6) 

Given the standard deviation of 𝑘𝑘𝑖𝑖∗, 95% confidence intervals where calculated assuming a normal 
distribution, to the form: 

𝑘𝑘𝑖𝑖∗ ± 1.96 ∙ sd[𝑘𝑘𝑖𝑖∗]. 

 
Appendix 2: General estimation of 𝒉𝒉 and 𝒌𝒌, using the method of Lagrange (nonlinear 
approach for numeric solutions) 
 

The best linear estimation of 𝑘𝑘𝑖𝑖 (application of equation A4) assumes that the level of under-5 
mortality (qi(5y)) and at least one other qi(x) value between 0 and 5 are given. However, some 
applications require a general solution of 𝑘𝑘𝑖𝑖, when: i) qi(5y) is unknown; and/or ii) the log-quad 
model is used for matching/fitting specific functions that are not represented in the estimation, such 
as mortality rates, durations, and probabilities of dying that do not cumulate from zero (e.g., starting 
at some point after birth). 
Inasmuch as some applications involve a transformation of the log-quadratic model, matching/fitting 
the log-quad model to some relevant data is a problem of optimization subject to nonlinear 
constraints. Hence, in the most general case the relevant parameters ℎ𝑖𝑖 and 𝑘𝑘𝑖𝑖 would result of solving 
the problem of constrained optimization through numerical methods. From this perspective, the 
Lagrangian  ℒ( ), represents a general problem of matching and optimization, using nonnegative 
multipliers to add nonlinear constraints to the objective function, to the form: 

ℒ(ℎ𝑖𝑖 , 𝑘𝑘𝑖𝑖 , 𝜆𝜆𝑖𝑖) = 𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖) − 𝜆𝜆𝑖𝑖 ∙ [𝑔𝑔(ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖) − �̅�𝑔𝑖𝑖],      (A7) 

where 𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖) is the mean squared error of a population 𝑖𝑖, 𝑔𝑔(ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖) is the value to be matched 
as a function of the parameters of the model, �̅�𝑔 is the numerical value of the constraint, and 𝜆𝜆𝑖𝑖 > 0 is 
the Lagrange multiplier. 

The general estimation of the model implies finding the values of (ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖 , 𝜆𝜆𝑖𝑖) that will make the 
partial derivatives of equation A7 equal to zero. Using the Newton-Raphson approach, we multiply 
the gradient (vector of first derivatives) by the inverse of the Hessian (matrix of second derivatives) 
to adjust the values of an initial approximation. Assuming this approximation is relatively close to 
the true solution, the optimal values of (ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖 , 𝜆𝜆𝑖𝑖) can be iteratively calculated by equation A8: 

�
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 ,     (A8)  

given a set of partial derivatives are calculated by: 
𝜕𝜕ℒ( )
𝜕𝜕ℎ𝑖𝑖

≈ ℒ(ℎ𝑖𝑖+∆,𝑘𝑘𝑖𝑖,𝜆𝜆𝑖𝑖)−ℒ(ℎ𝑖𝑖−∆,𝑘𝑘𝑖𝑖,𝜆𝜆𝑖𝑖)
2∙∆

,          
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and 
𝜕𝜕2ℒ( )
𝜕𝜕ℎ𝑖𝑖𝜕𝜕𝑘𝑘𝑖𝑖

≈ ℒ(ℎ𝑖𝑖+∆,𝑘𝑘𝑖𝑖+∆,𝜆𝜆𝑖𝑖)−ℒ(ℎ𝑖𝑖−∆,𝑘𝑘𝑖𝑖+∆,𝜆𝜆𝑖𝑖)−ℒ(ℎ𝑖𝑖+∆,𝑘𝑘𝑖𝑖−∆,𝜆𝜆𝑖𝑖)+ℒ(ℎ𝑖𝑖−∆,𝑘𝑘𝑖𝑖−∆,𝜆𝜆𝑖𝑖)
4∙∆2

.      

Since matching two inputs is also a problem of optimization, equation A7 can be redefined to have 
two multipliers (one per matching constraint) and no minimization part involved 𝑀𝑀𝑀𝑀𝑀𝑀 = 0, to the 
form: 

ℒ�ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖 , 𝜆𝜆1,𝑖𝑖 , 𝜆𝜆2,𝑖𝑖� = −𝜆𝜆1,𝑖𝑖 ∙ �𝑔𝑔1(ℎ𝑖𝑖 ,𝑘𝑘𝑖𝑖) − �̅�𝑔1,𝑖𝑖� − 𝜆𝜆2,𝑖𝑖 ∙ �𝑔𝑔2(ℎ𝑖𝑖 , 𝑘𝑘𝑖𝑖) − �̅�𝑔2,𝑖𝑖�   (A9) 

Optimal solution of equation A9 is feasible using the same iterative procedure of equation A8. 
However, the gradient and the Hessian are augmented in one dimension in order to include the 
partial derivatives of the second multiplier. 
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Appendix Table A1: List of country-years included in the final Under-5 Mortality Database (U5MD) 
used for estimating the coefficients of the log-quadratic model 
 

Country Years              n 
Australia 1921-1971 1973-2014           93 
Austria 1970-1994 1996-2016      46 
Belgium 1946-1954 1956 1961-1992 2007-2010 2013-2014   48 
Canada 1929-1942 1944-1975 1977-1986 1988-1990 1992 1995-1997 1999-2006 71 
Chile 1992-2004 2007      14 
Denmark 1929-1993 1997 2000-2015     82 
Finland 1926-1940 1946-1990 1994 1996-1998 2000-2015   80 
France 1953-1966 1975-1992 1996-1999 2001-2015    51 
Germany 1991-1994 1996-1997 2001-2007 2010-2015    19 
West Germany 1956-1960 1970-1971 1973-1977 1979-1990    24 
Ireland 1970-1988 1990-1999 2001-2006 2008-2011 2000-2015   39 
Israel 1983-1998 2000-2016      33 
Italy 1946-1955 1957-1985 1987-2013     66 
Japan 1947-1950 1954-1956 1958-1959 1963 1970-1994 1996-2000 2002-2014 53 
Netherlands 1970-1994 1996 1998 2000-2001 2004-2008   34 
New Zealand 1970-1971 1973-1975 1977-2013     42 
Norway 1936-1992 1995-2001 2003-2012     74 
Portugal 1971-1993 1996-1997 2001-2015     40 
South Korea 2004-2015       12 
Spain 1976-1983 1987-1991 1995-1998 2001-2013    30 
Sweden 1934-2002 2004-2012      78 
Switzerland 1877-1879 1882-1883 1920-1930 1970-1982 1984-1994 1996 1998-2016 60 
UK 1937-1985       49 
England and Wales 1982-1991 1993 1996-2001 2005-2012    25 
United States 1933-1944 1946-1993 1995-1998 2000-2003 2008-2009 2014-2015  72 
Total               1,235 
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1. Introduction  
The Under-Five Mortality Database (U5MD) used in our paper provides detailed distributions of 
deaths from birth to age 5 by sex. These distributions were retrieved from vital registration records 
for 25 Western countries and for a time window spreading from the second half of the 19th century 
to very recent periods.  

These Supplementary Materials document: (1) the criteria for selecting countries; (2) the sources 
of information and the methods used to generate the database; (3) the procedure for harmonizing 
age intervals; and (4) the methods for estimating mortality indicators. 

2. Selection of country-years  
We selected countries primarily on the basis of a data quality criterion, with the Human Mortality 
Database (HMD) as a reference. The HMD represents the gold standard for mortality estimates 
in terms of data quality, and thus we decided to select in our database only country-years available 
in the HMD. Moreover, the overlap between the HMD and our database allowed us to use some 
of the relevant HMD information in our estimation procedure (see section 3.2).  

One difference, however, is that we did not include countries from the former Eastern Bloc even 
though they are part of the HMD. Numerous authors have pointed out the departure from 
international standards for defining and reporting live births and infant deaths in the Soviet Union 
(Anderson et al. 1994; Anderson & Silver 1986; Davis & Feshbach 1980; Velkoff & Miller 1995). 
Problems include restricted definitions in terms of weight and gestation time period requirements 
(and thus undercount of live births), but also misreporting of live births and stillbirths, and 
underregistration of infant deaths. This has led to significant amounts of understatement in the 
infant mortality rate within the Soviet Union but also in several European countries from the 
Eastern Bloc aligned on those definitions and practices (Gourbin & Masuy-Stroobant 1995). 
Studies have shown that underestimation of infant mortality continued after 1990, including after 
adopting international standards for the definition of a live birth (Aleshina & Redmond 2005; Guillot 
et al. 2013; Kingkade & Sawyer 2001). Despite recent improvements in the quality of infant 
mortality information in the region, we adopted the conservative decision of discarding all the 
countries of the former Eastern Bloc due to the critical importance of the mortality information at 
early ages for our model. 

We also discarded Greece for similar reasons. According to the HMD report (Agorastakis et al. 
2017), the country was affected by significant undercount of neonatal deaths at least until the 
1980s. Finally, we removed Iceland and Luxembourg due to small population sizes leading to 
many zero cell counts in the narrow age intervals used in our database.1  

As a result of these country exclusions, the U5MD includes 25 countries, instead of 40 for the 
HMD. The list of countries included in the U5MD is presented in Table SM1. 

3. Sources of information 
In this section, we describe the sources of information used to build the database. These include 
two primary sources providing raw death counts: (1) historical demographic yearbooks; and (2) 

                                                            
1 After 2000, the number of deaths between 0 and 5 years tends to be less than 10 deaths per year in 
these two countries. By contrast, the average number of deaths tends to be higher than 100 in 
Scandinavian countries and higher than 1000 in other countries. 
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the UN repository of vital statistics. These two sources were merged as a single dataset. In 
addition, we used the HMD as a secondary source to fill potential gaps in the primary sources 
and supply information about exposure to the risk of death for mortality estimation (i.e., 
denominators of mortality rates). 

3.1 Primary sources of information 
We extracted age distributions of deaths from the UN repository of vital statistics and the historical 
demographic yearbooks. As raw data, death counts are integers. Table SM1 shows the country-
years from each of these two sources included in the U5MD. In total, the U5MD contains 1,652 
country-years. 

3.1.1 Sex 
We collected age distributions of deaths for each sex. Country-years for which the breakdown by 
sex was not available were not included in the database. Results for both sexes combined were 
obtained by summing sex-specific deaths.   

3.1.2 Time periods  
Age distributions of deaths are period-specific and annual. (Few exceptions with longer periods 
are indicated in Table SM1.) The UN repository supplied 734 age distributions from 1970 to 2015. 
The historical demographic yearbooks provided 1008 age distributions on a broader period going 
from 1841 to 2001. When both sources provided the same country-year information, we kept the 
one with more detailed information. 

The merged sources have a long time span, covering most of the Western experience of mortality 
transition, with a decline from levels of under-five mortality from around 400 to less than 5 deaths 
per 1000 births. 

3.1.3 Heterogeneity and harmonization of age intervals 
3.1.3.1 Heterogeneity of the length of age intervals 

We selected only tabulations providing at least the information for the first month and the rest of 
the first year. However, in most cases the information has greater age detail. The UN repository 
covers the first year of life with harmonized age intervals: by days for the first week, by weeks 
until the 28th day, and by month for the rest of the first year. By contrast, the tabulations of deaths 
in the historical yearbooks are highly heterogeneous. The tables span the first five years of age 
unevenly and age intervals were reported through a multiplicity of formats across yearbooks.2  

For example, in 1905, the yearbook of England and Wales reported neonatal deaths by weeks of 
age, and postneonatal deaths by months of age. Since 1906, deaths occurring during the first day 
of life were tabulated separately. More details were introduced in 1931, when deaths occurring in 
the first week were reported by days of age. (The information also included the number of deaths 
occurring within the first half hour of life.) However, postneonatal deaths have been grouped in 
trimesters of age since 1926, with the exception of the period 1952-64 tabulated again by months. 
Figure SM1 shows the age distribution of deaths for the first year of life as it appears in The 
Registrar General's Statistical Review of England and Wales for the year 1946. 

In Belgium and France, for many years in the 19th and 20th centuries, deaths were reported by 
5-day age groups for the first 10 or 15 days, and then by 5, 10, or 15-day age groups for the rest 
                                                            
2 625 age distributions of deaths cover the first year of life only; 170 the first two years; and 223 the first 
five years. 
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of the first month. In both countries, the postneonatal information was tabulated unevenly by 
months, trimesters or semesters. Figure SM2 shows the age distribution of deaths for the first 
year of life provided by France’s Statistique annuelle du mouvement de la population for 1906. 

In some cases, few or no details were reported regarding neonatal deaths. For example, from 
1890 to 1920, the only detail of Danish yearbooks at neonatal ages was the number of deaths in 
the first day of life (with the exception of the period 1896-1900 where the yearbooks did not 
provide any detail). From 1921 onwards, the information for the first week was added. Figure SM3 
shows the age distribution of deaths provided for two first years of age by Denmark’s Statistisk 
Tablevierk for that year. 

There is complete absence of detailed information for the first month of life in Belgium (1841-
1861), Italy (1872-1889), New Zealand (1972), Portugal (1940-1954), and The Netherland (1850-
1864).  

For the postneonatal period, the sources always include at minimum information by trimesters 
and semesters. After the first year, deaths were mostly reported by single year of age. However, 
for the second year, the information was tabulated by months in Australia (1921-1924) and by 
trimesters in Belgium (1841-1861), The Netherlands (1850-1864), Norway (1876-1975), and 
Sweden (1891-1967). 

Both the historical yearbooks and the UN repository have tabulations that include some death 
counts with unknown age. However, age was always identified at least by single year of age. In 
total, there were 203 country-years with some unknown-age deaths within single year age groups. 
Among these, 158 country-years were from Norway. The proportion of deaths with unknown age 
was less than 1% on average. We redistributed these deaths proportionally across the available 
detailed age intervals within single-year age groups.  

3.1.3.2 Heterogeneity of the format of age intervals 
In addition to the diversity of the length of age intervals, the age format also varied across sources. 
For example, in the UN repository, death counts were uniformly formatted by days with months 
of 28, 60, 90, etc. days, that is with a year of 360 days. In the historical yearbooks, deaths were 
reported as integer by “hours’’, “days’’, “weeks”, “months” or “years.”  

3.1.3.3 Harmonizing age intervals 
Against this backdrop of heterogeneity, we harmonized the U5MD in two ways. First, we recoded 
the original formats of age. In order to estimate the precise exposure time to the risk of mortality, 
we assumed that the average duration of a year was 365.25 days (considering leap years of 366 
days). Therefore, we set the average duration of a month to 30.4375 days (365.25/12). However, 
when the exact number of days of the first month was available (for example 28 days in Figure 
SM1 or 30 days in Figure SM2), we kept that exact duration and adjusted the duration of the 
second month accordingly. 

Second, we harmonized the lengths of age intervals by weeks for the first 28 days, by months for 
the rest of the first year, by trimester for the second year, and by year for the three last years. The 
interpolation method we used for the harmonization is explained in section 4. 

3.1.4 Live births, stillbirths, and false stillbirths 
The definition of a live birth has evolved over the 20th century. The early recommendation of the 
League of Nations in 1925 was the presence of breathing as the vital sign to define a live birth. 
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From 1950 onwards, the WHO replaced this recommendation by the “any sign of life” criterion, 
making it more inclusive. This recommendation was progressively but unequally adopted by 
countries until today.3 Naturally, the definition of stillbirths varied in concomitance, becoming less 
inclusive over time. 

In addition to signs of life, the League of Nations and WHO also recommended a restricted viability 
criterion for making the distinction between a stillbirth and  a miscarriage. The 1950 WHO 
definition restricted the viability criteria to a minimum gestational age of 28 weeks or a body length 
of 35-cm. However, since 1975, the WHO has added and reinforced the use of the birthweight as 
viability criteria (500g or 1000g for international comparisons). This definition is useful for 
distinguishing stillbirths from miscarriages but should not have an impact on the estimation of live 
births and their subsequent mortality. 

However, in Belgium and France, a specific definition for stillbirths, adopted under the First French 
Empire, affected the measurement of mortality for certain time periods. In both countries, live 
births that had died before civil registration (legally within the first three days after delivery) were 
registered as stillbirths but tabulated separately from actual stillbirths. These “false stillbirths” were 
registered in Belgium (by sex) from 1879 to 1955 and from 1958 to 1960 (Glei, Devos, et al. 2017), 
and in France from 1899 to 1974 (by sex from 1953 to 1974) (Glei, Wilmoth, et al. 2017). However, 
for these periods, we did not find all the necessary death counts nor all the false stillbirth counts. 
Among the detailed-age death counts that we found, we only included in the U5MD those for 
which the sex-specific false stillbirths were also available, that is from 1879 to 1954 in Belgium, 
and from 1953 to 1966 in France. We added these false stillbirths to the number of registered 
early-neonatal deaths (first week of age). These false stillbirths are thus taken into account in the 
estimation of mortality for those periods. 

3.2 The Human Mortality Database 
We used the Human Mortality Database (HMD) as secondary source (Human Mortality Database 
2018). The HMD is a public database that provides annual mortality and population data from 
birth to oldest ages by single year of age, for the purpose of studying human longevity.4 The HMD 
provides data for 40 countries. The selection of countries was “limited by design to populations 
where death registration and census data are virtually complete, since this type of information is 
required for the uniform method used to reconstruct historical data series. As a result, the 
countries and areas included here are relatively wealthy and for the most part highly 
industrialized”. Our database follows that criterion of virtual completeness by selecting, among 
the available data in the primary sources of information, only the country-years present in the 
HMD. 

We used death counts from the HMD to fill potential missing information in the vital registration 
data after the first year of life or later. We also used the HMD exposures to the risk of dying for 
estimating mortality rates (see section 5). 

We thus extracted annual death counts and annual exposures to the risk of dying for each of the 
first five years of life and for each country-year shown in Table SM1. Note that, for both the deaths 
                                                            
3 For example, during the Soviet period, countries of the Eastern bloc often included the viability criteria of 
gestational duration and weight, in addition to signs of life, for identifying live births (Gourbin & Masuy-
Stroobant 1995; Guillot et al. 2013). 
4 Therefore, the U5MD can be seen as a complement to the HMD with greater age granularity at the 
earlier ages of life. 
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and the exposures, we added up the data of England and Wales, Scotland, and Northern Ireland 
to obtain the total counts of UK.5 For consistency, we also aggregated the HMD data for the few 
periods larger than one year in the U5MD (see Table SM1). 

3.2.1 Death counts 
We extracted death counts by sex for the first five years of life from the “input data files”, that is, 
the published raw deaths. These data were available in different Lexis areas (squares, triangles, 
and parallelograms) in the HMD primary sources. Therefore, we adopted the following rules to 
compute death counts by single year of age and single one-year period (i.e., 1x1 in the HMD 
terminology): 

• When deaths were classified in lower and upper triangles, we summed them up to obtain 
1x1 Lexis squares. 

• When deaths were classified by cohort in parallelograms centered on exact age (“VV” in 
HMD notation), we divided them into two triangles under assumption of uniform 
distribution. We then summed lower and upper triangles to obtain 1x1 Lexis squares. 

• Some age intervals were not available by single year in the raw data. In these cases, we 
used the split age intervals of the HMD “complete data series” (adjusted death counts). 
More specifically, we used the relative age distributions of those adjusted deaths. 

• We excluded data with LDB variable = 0. These correspond to data marked as “not used 
to create the Lexis database” in the HMD. 

• When several death counts exist for Lexis areas within the same 1x1 Lexis square, we 
summed them up to obtain the full 1x1 count. 

• We ignored deaths with unknown age, which in the case of the HMD apply to the entire 
age range (0 to 100+). We instead used information on deaths with unknown age available 
in the death tables that we collected for the U5MD and that are specific to the under-five 
age range. 

3.2.2 Exposure to the risk of death 
All exposure terms used in our database are taken from the HMD “complete data series” with 1x1 
Lexis squares. These exposures are expressed in person-years. In most cases, they correspond 
to mid-year population estimates derived from census enumerations assuming uniformity in the 
distribution of events (Wilmoth et al. 2017). However, when data on monthly births were available, 
the HMD team estimated person-years using this more detailed information instead of making the 
assumption of uniformity in the distribution of births within a calendar year. 

4. Harmonization of age intervals 
All mortality estimates were computed for the same harmonized age intervals that are specific to 
the U5MD. These intervals are weeks for the first 28 days, months for the rest of the first year, 
trimesters for the second year, and years for the three last years (22 age intervals in total). 

The typical approaches for harmonizing age groups rely on interpolation methods. For example, 
the HMD adopted the cubic spline interpolation of McNeil et al. (1977) applied to cumulative 
distributions of deaths for splitting nx1 aggregated death counts into 1x1 format within a calendar 
year. As noted in the HMD methods protocol (Wilmoth et al. 2017), the drawback of the spline 

                                                            
5 The total count for UK is only available from 1982 onwards. Before, the database provides the counts for 
England and Wales only (see Table SM1). 
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approach is that the curve may not be monotonically increasing over all ages. Since the curve 
depicts the cumulative deaths over age, a decreasing function between ages x and x+1 implies 
negative death counts at age x. The decreasing function is generally due to spurious oscillations 
created by the splines because of strong gradient in the data or non-equidistant points. Negative 
counts occurred at the oldest ages in the HMD, and in some cases in the U5MD. In the case of 
the HMD, different constraints were used to address this issue, but they did not produce 
satisfactory results for the U5MD. We thus adopted an alternative interpolation method based on 
piecewise cubic interpolation or Hermite-type interpolation (Steffen 1990). This method 
guarantees a monotonic function in every case. 

The method constructs a piecewise cubic interpolation function that passes through N given data 
points. It uses parabolas to determine the slope of the curve at an interval point i passing through 
points (xi-1, yi-1; xi, yi; xi+1, yi+1). Then a piecewise cubic function is constructed for each interval (xi, 
xi+1). That way the slope of curve has automatically a continuous first-order derivative over the 
whole set of points. To ensure the interpolation curves behaves monotonically, the method verifies 
if the parabolas are monotonic. When it is not the case, the method takes for the slope the smallest 
of the two secants crossing either (xi-1, yi-1; xi, yi) or (xi, yi; xi+1, yi+1).6 

We apply the Steffen's method to cumulative distributions of deaths by sex and for both sexes 
combined. In order to make the procedure more robust, we only applied the method to country-
years that had at least one cut-off point at exact age 7 days or later but before 1 month (28 days 
or 30 days depending on the data format). We removed 99 country-years at the stage due to the 
absence of such a cut-off point (already identified in section 3.1.3.1). 

5. Mortality estimation 
In this section, we explain the methods used for estimating age-specific mortality rates nMx and 
cumulative probabilities of dying q(x). Using conventional notations, nMx[t, t+1) is the mortality 
rate in the age interval [x,x+n) and for the period [t,t+1). q(x)[t, t+1) is the probability of dying 
between age 0 and x for the same period. Estimates are period-specific and annual, that is 
describing the mortality experience of a synthetic cohort in a given year. (As discussed above, 
there are a few exceptions with estimates pertaining to periods of more than one year.)  

We estimated the age-specific mortality rates nMx by dividing the number of deaths at each age 
interval nDx in the time period [t, t+1) by the exposure to the risk of dying in person-years nEx for 
the same age interval and period, as shown in the following equation: 

 𝑛𝑛𝑀𝑀𝑥𝑥  =  
 𝑛𝑛𝐷𝐷𝑥𝑥  
 𝑛𝑛𝐸𝐸𝑥𝑥  

 

As explained in section 3.2, we extracted exposures to the risk of dying from the HMD by single 
year of age 1Ex’ where x' is the lower bound of the age interval. In order to estimate the 
exposure for the subintervals of age of the U5MD (such as weeks and months), we assumed a 
uniform distribution of exposure by detailed age within each single-year age group. With this 

                                                            
6 For boundaries, the method uses the same approach but estimating the slope for the first (or last) point 
with parabolas fitted on the two next (or previous) points, and only using one secant. 
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assumption, the exposure term is proportional to the length of the age interval n, as shown in 
the below equation: 

 𝑛𝑛𝐸𝐸𝑥𝑥[t, t + 1) =   1𝐸𝐸𝑥𝑥′[t, t + 1)  ∙  𝑛𝑛  

 where x' ≤ x < x'+1 and n < 1. 

We then computed cumulative probabilities of dying q(x) under the assumption that mortality 
rates were constant within each detailed age interval: 

𝑞𝑞(𝑥𝑥) =  1 − 𝑒𝑒
−�  𝑛𝑛𝑖𝑖𝑀𝑀𝑖𝑖 𝑛𝑛𝑖𝑖 

𝑥𝑥−1

𝑖𝑖=1  

A total of 22 estimates of nMx and q(x) were calculated for each country-year, by sex and for both 
sexes combined: four estimates by week of age for the neonatal period; 11 estimates by month 
of age at postneonatal ages; four estimates by trimester of age for second year of life; and three 
estimates by single year of age for the remaining three years. This gives the following arrays: 

For age-specific mortality rates, nMx: 
7M0(d), 7M7(d), 7M14(d), 7M21(d), 
1M1(m), 1M2(m), 1M3(m), 1M4(m), 1M5(m), 1M6(m), 1M7(m), 1M8(m), 1M9(m), 1M10(m), 1M11(m), 
3M12(m), 3M15(m), 3M18(m), 3M21(m), 
1M2(y), 1M3(y), 1M4(y) 
 

For cumulative probabilities of dying from birth to age x, q(x): 
q(7d), q(14d), q(21d), q(28d), 
q(2m), q(3m), q(4m), q(5m), q(6m), q(7m), q(8m), q(9m), q(10m), q(11m), q(12m), 
q(15m), q(18m), q(21m), q(24m) 
q(3y), q(4y), q(5y) 
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Table SM1. Country-years included in the original Under-5 Mortality Database (U5MD) 

Country Years 
Sources 

Statistical 
Yearbooks 

UN 
database 

Australia 1921-71, 1973-2014 51 42 
Austria 1970-94, 1996-2016 - 46 
Belgium 1841-60, 1861-70*, 1878-84, 1924-54, 1956, 

80 18  1961-92, 2007-10,2013-14 
Canada 1929-42, 1944-75, 1977-86, 1988-90, 

41 30 1992, 1995-97, 1999-2006 
Chile 1992-2005, 2007 - 14 
Denmark 1890-94, 1896-1993, 1997, 2000-2015 79 41 
Finland 1878-1920, 1921-25*, 1926-40, 1946-90, 

91 33 1994, 1996-98, 2000-15 
France 1855-68, 1877-89, 1891-1947, 1950-66, 

101 37 1975-92, 1996-99, 2001-15 
Germany 1991-94, 1996-97, 2001-07, 2010-15 - 19 
West Germany 1956-60, 1970-71, 1973-77, 1979-90 5 19 
Ireland 1970-88, 1990-99, 2001-06, 2008-11 - 39 
Israel 1983-98, 2000-16 - 33 
Italy 1872-89, 1926-33, 1939-55, 1957-85, 

85 14 1987-2013 
Japan 1947-50, 1954-56, 1958-59, 1963, 1970-94, 

10 43 1996-2000, 2002-14 
Netherlands 1850-64, 1970-94, 1996, 1998, 2000-01, 

15 34 2004-08 
New Zealand 1970-75, 1977-2013 - 43 
Norway 1876-1900, 1901-05*, 1906-26, 1927-30*,  

93 34 1931-92, 1995-2001, 2003-12 
Portugal 1940, 1942-59, 1962, 1970-93, 1996-97, 

20 41 2001-15 
South Korea 2004-15 - 12 
Spain 1976-83, 1987-91, 1995-98, 2001-13 - 30 
Sweden 1891-02, 2004-12 111 10 
Switzerland 1877-79, 1882-83, 1920-30, 1970-82, 

16 44 1984-94, 1996, 1998-2016 
UK 1982-91, 1993, 1996-2001, 2005-12 - 25 
England & Wales 1905-1985 65 16 
United States 1933-44, 1946-93, 1995-98, 2000-03, 

60 12 2008-09, 2014-15 
Total   923 729 
* Deaths aggregated over the indicated range of years   
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Figure SM1. Age distribution of deaths in The Registrar General's Statistical Review of 
England and Wales for the year 1946 
 

 
 

 

 

 

Figure SM2. Age distribution of deaths in France’s Statistique annuelle du mouvement 
de la population for the year 1906 
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Figure SM3. Age distribution of deaths in the Denmark’s Statistisk Tablevierk for the 
year 1921 
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