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Introduction
Lung cancer is the second most common cancer among both 
men and women in the United States and the leading cause of 
cancer-related mortality all over the world. In 2016, an esti-
mate of 224 390 new cases and 158 080 deaths from lung can-
cer is expected.1 Lung adenocarcinoma, a subtype of non–small 
cell lung cancer, is the most common form of lung cancer in the 
United States. Clinical and pathologic features for prognosis 
have been studied extensively, including race, age at diagnosis, 
smoking status, tumour stage, performance status, liver metas-
tases, and comorbidity disease.2–4 Due to tumour molecular 
heterogeneity, patients with similar clinic-pathologic charac-
teristics may experience different disease outcomes. It suggests 
that molecular biomarkers are important in lung cancer prog-
nosis.5,6 Despite the long-term research, the understanding of 
the molecular mechanisms for lung cancer prognosis is still 
quite limited. Therefore, identification and the further study of 
prognosis biomarkers are critical in better understanding the 
disease progression, predicting patient disease outcome, defin-
ing patient subpopulation, and developing therapeutic targets.

Considerable efforts have been devoted to identifying bio-
markers that may be associated with lung adenocarcinoma 
prognosis. Single-marker strategies prevail especially in early 
days, where one or a small number of markers can be analysed 
at a time. The major genes identified include EGFR, RAS, P53, 

BCRA1, RRM1, beta Tubulin, and others, as summarized by 
Rose-James and Sreelekha5 and Sholl.6 These genes mostly are 
found to be proto-oncogenes and tumour suppressor genes and 
belong to mitogen-activated protein kinase (MAPK) pathway, 
cell cycle, DNA repair, and apoptosis pathways.5

Despite huge success, marginal analysis is limited, in that it 
ignores the joint actions of multiple genes and pathways for the 
progression of lung cancer. Pathway-based analysis, on the con-
trary, is a representative and most extensively investigated method 
that fully takes the advantage of the functional relatedness among 
genes.7 It can accommodate the joint association among genes 
and is considered to have greater power in the prediction of disease 
outcomes and produce more reliable results, compared with single 
marker strategies.7 The most popular pathway-based analysis 
method is gene set enrichment analysis (GSEA8,9). The related 
methods in this subject and available tools are summarized by Jin 
et al.10 Lee et al11 selects 11 pathways that are significantly associ-
ated with lung cancer using both GSEA and adaptive rank-trun-
cated product methods in genome-wide association study. Using a 
combined pathway-based risk score approach, Chang et al12 iden-
tified 15 pathways that are associated with survival in lung carci-
noma, and the top 3 pathways are HMGB1/RAGE signalling, 
beta-adrenergic receptor regulation of extracellular signal–regu-
lated kinase (ERK), and clathrin-coated vesicle cycle.
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A major limitation of the current pathway-based methods is 
that most of them only conduct pathway-level selection. 
Because not all genes are key drivers in the pathway, pinpoint-
ing important genes is also of great interest, in addition to 
pathways. We term the identification at both pathway level and 
gene level as bilevel selection in this article. Furthermore, the 
lung adenocarcinoma data analysed in many existing studies, 
such as Chang et al (2013), Lu et al,13 and Li et al,4 have been 
generated a decade or even 2 decades ago. Rigorous statisti-
cal analysis of most up-to-date, high-quality lung adenocar-
cinoma data is thus in pressing need.

In this study, we apply the Bayesian approach developed in 
Stingo et al14 to The Cancer Genome Atlas (TCGA) lung ade-
nocarcinoma data to identify prognostic pathways and the impor-
tant genes involved in the relevant biological processes. Our work 
may complement existing studies and be warranted in the follow-
ing aspects. First, it conducts a Bayesian analysis of the lung ade-
nocarcinoma data. The pathway and gene-gene interaction 
information has been incorporated in the Bayesian framework. 
Posterior inclusion probabilities of pathways and genes are avail-
able after Markov chain Monte Carlo (MCMC) converges, 
which provide us a solid ranking criterion according to impor-
tance. To the best of our knowledge, such analysis has not yet 
been carried out for lung adenocarcinoma. Second, we have per-
formed a timely analysis on the TCGA lung adenocarcinoma 
data. The Cancer Genome Atlas, organized and conducted by 
National Institutes of Health and the related participated research 
institute, is to ‘generate comprehensive, multidimensional maps 
of the key genomic changes’ in cancer. On the same subjects, mul-
tiple types of omics changes, such as messenger RNA (mRNA) 
gene expression, microRNA (miRNA), copy number alteration, 
and DNA methylation, have been profiled and made available in 
TCGA. For lung adenocarcinoma, the TCGA data have recently 
been collected with high quality and subsequently published by 
National Cancer Institute, making it possible to conduct analysis 
and more accurately describe its prognosis.

Method
TCGA lung adenocarcinoma data

The Cancer Genome Atlas is one of the largest cancer genomic 
studies providing comprehensive genomic characterization for 
a cohort of cancer and normal samples. We are interested in 
analysing the TCGA lung adenocarcinoma data with gene 
expression measurements. The data collection forms for patient 
enrolment and follow-up are available at http://www.nation-
widechildrens.org/tcga-clinical-data-forms-standard#j-l. 
Details about the TCGA genomics measurements, data  
collection, and preliminary analysis can be found in TCGA 
(2014).47 Both survival and gene expression data are down-
loaded from the Cancer Genomics Data Server using 
CGDS-R package on March 24, 2016.15

By the time of downloading the data, the total number of 
samples with gene expression measured by Illumina Hiseq 

RNAseq V2 platform is 517, whereas 32 samples have been 
analysed by Affymetrix microarray. To avoid bias, we only 
include samples measured by RNAseq in the analysis.  
The downloaded data set is ‘luad_tcga_rna_seq_v2_mrna_
median_Zscores’ with robust z scores as the main entries. 
The scores have already been lowess normalized, log trans-
formed, and median centred. The total number of genes is 
18 908.

To study the prognostic marker for patients with earlier 
stage of lung adenocarcinoma, a total of 388 qualified samples 
are identified. Details of the patient information are available 
in Supplementary Table 1. In this study, overall survival is our 
prognosis outcome of interest. This primary endpoint is defined 
as the time from diagnosis of lung adenocarcinoma to either 
last known date alive or death. Patients who are known to be 
alive have been censored at the time of last contact. Among the 
total 388 samples, 118 died during follow-up. The median sur-
vival time is calculated to be 40.3 months, with 95% confidence 
interval (33.8-50.0 months).

To determine the pathway membership of all the genes, we 
first downloaded the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways from Molecular Signature 
Database (MSigDB) (http://software.broadinstitute.org/gsea/
msigdb/collections.jsp#C2). The total number of pathways is 
186, with sizes ranging from 10 to 389 and a median of 53. The 
2 pathways that only have 10 genes are taurine and hypotaurine 
metabolism pathway, and limonene and pinene degradation 
pathway. The largest pathway is olfactory transduction.

After matching with the TCGA lung cancer genomics data 
sets, the total number of unique genes is 4994. Two genes that 
have identical measures for the sample are excluded, and they 
are ‘OR6K2’ and ‘FGF6’. There are a total of 4992 genes 
involved in the study.

Bayesian modelling

The goal of the analysis is to simultaneously identify important 
pathways and genes within those pathways for cancer survival. 
To make this article self-contained, we briefly summarize the 
Bayesian approach in a study by Stingo et al14 below.

Denote T as the survival time, C as the censoring time, and 
δ = I T( ⩽ C) as the censoring indicator. Then, we observe 
( min( , ), (Y T C I T= =δ ⩽ C)) under right censoring. Consider 
the gene expression measurements and denote X X X p= …( , , )1  
as the n p×  gene expression matrix for n i.i.d subjects. The 
accelerated failure time (AFT) model has been adopted for the 
survival outcome, and the data augmentation approach in 
Tanner and Wong (1987)16 has been taken to impute the cen-
sored outcomes. In particular, for the ith subject, let
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To select both prognostic pathways and important genes 
within the pathways at the same time, 2 binary indicator vec-
tors, a G ×1  vector α  and a p×1  vector β  for the inclusion 
of pathways and individual genes, respectively, have been cre-
ated. We assume the following AFT model:

Z a U b N I
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g g= + + ( )
=

( ) ( )∑
1

2∼ 0
α

β β ε ε σ, ,

where G gg

G

α α=
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 is the number of chosen pathways, and 
U g ( )β  is the first latent principal component analysis (PCA) 
component produced from the expressions of selected genes in 
pathway g . The effect of the PCA latent component from 
pathway g  on the response is measured by regression coeffi-
cient bg . Prior distributions have been assigned to the 2 indi-
cator vectors, respectively. The prior distribution takes into 
consideration not only the pathway membership of genes but 
also gene-gene interactions using a Markov random field 
(MRF). We need to obtain the pathway and gene-gene inter-
action information to fully characterize the prior distributions. 
For all the p genes in our study, a G p×  matrix T  with binary 
entries has been generated to indicate the pathway member-
ships, where entry t g G j pgj ( ),1 1⩽    ⩽       ⩽   ⩽  is 1 if gene j is in 
pathway g, and 0 otherwise.

Different from constructing gene dependence structure 
using known biological information from KEGG as suggested 
in the original paper, we build the prior for MRF via gene net-
works. In a gene network, a node is corresponding to the 
expression of a gene. Two nodes are connected if the 2 gene 
expressions are associated statistically or biologically. The most 
important element for constructing a network is the adjacency 
matrix which quantifies the strength of connection between 
any 2 nodes.17 Let ⩽       ⩽R r i j pij= ( , , )1  be the adjacency 

matrix and cij be the Pearson correlation coefficient between 
nodes (gene expressions) i and j. We propose r c c cij ij

d
ij= >( )  

with d = 5 to measure the connection intensity. Such measure 
retains the strong correlations while downweighing the weak 
ones. Furthermore, it guarantees that rij  and cij  have the same 
sign. c  is the cut-off computed from Fisher transformation. 
The gene network is weighted and sparse. Note that in Stingo 
et al,14 the adjacency matrix R has been constructed using the 
biological information. That is, the matrix R describes whether 
there is a direct link between 2 genes with a 0/1 based on the 
information extracted from KEGG database. We expect that 
generating network from the data-driven perspective is equally 
applicable. We also acknowledge that there are multiple ways 
to generate the adjacency matrix R statistically. As our purpose 
is not to compare different network measures, we focus on this 
particular network structure in this article.

Gene and pathway identif ication

The aforementioned data-driven approach has been adopted to 
specify the MRF prior. We run 2 MCMC chains in the data 
analysis, each chain with a total number of 150 000 iterations, 
where 50 000 are burn-ins. The starting numbers of included 
pathways are 20 and 5, respectively. The first principal compo-
nent for each pathway has been used in the analysis, and the 2 
chains are combined for posterior inference. We set the hyper-
parameter of the MRF as −3.5 to control the sparsity of the 
model. The hyperprior that controls the smoothness of the dis-
tribution of gene selection is set as .04. The marginal posterior 
inclusion probability for pathway and the conditional posterior 
gene inclusion probability are calculated accordingly.

To evaluate the performance of the methods used in  
this study, we compare the proposed method with 2 alterna-
tive approaches: (1) pathway and gene selection without 

Table 1.  Top 11 pathways selected in lung adenocarcinoma.

Name of the pathways No. of genes Posterior probability

Purine metabolism 154 1

MAPK signalling pathway 260 1

Cytokine-cytokine receptor interaction 254 1

Ubiquitin-mediated proteolysis 134 1

Lysosome 118 1

Aminoacyl tRNA biosynthesis 41 .99879

Neuroactive ligand-receptor interaction 268 .995925

ABC transporters 44 .982115

Spliceosome 122 .985495

Endocytosis 172 .98706

Peroxisome 78 .982835

Abbreviation: MAPK, mitogen-activated protein kinase; tRNA, transfer RNA.
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incorporating network information, which is equivalent to 
using 0 as prior for MRF, and (2) pathway and gene selection 
incorporating prior information based on KEGG pathway 
introduced by Stingo et  al.14 We randomly split the whole 
data set into training data set and testing data set using a 3:1 
ratio. The training data set (n = 291) is analysed using the 3 
methods. The testing data set is used to compute the pre-
dicted survival time and mean squared error (MSE). All the 
analysis is conducted in MATLAB, using code modified 
from http://www.stat.rice.edu/~marina/software.html.

Results
We obtain the marginal posterior probability for all  
the pathways. The number of visited pathways by MCMC 
samplers is shown to be around 95, and the number of  
genes is around 190. The 2 chains show high agreement 
(Supplementary Figure 1), and the correlation between mar-
ginal posterior probabilities of pathway selections is .93. The 
results from the 2 chains are combined and summarized in 
Supplementary Figure 2. Among the 186 pathways, there are 
11 pathways with the posterior marginal probability larger 
than .98. The selected pathways are presented in Table 1. 
Conditional on the selected pathways, we further evaluate 
the gene selections with a marginal probability cut-off .98. 
The conditional posterior probabilities for each gene are 
shown in Supplementary Figure 3. We choose 2 pathways, 
the amino-acyl transfer RNA (tRNA) biosynthesis pathway 
and the ABC transporters pathway, from the 11 representa-
tive examples and show their gene networks in Figure 1A 
and B, respectively. The top-ranked genes in terms of condi-
tional posterior probabilities are marked in red. Using train-
ing and testing data sets, the predictive MSE is 6.98 using 
network-constructed MRF, 8.27 without prior information 

(MRF = 0), and 12.68 using KEGG pathway information as 
prior for MRF, which indicates that the proposed method 
outperforms the alternatives of prediction.

Using the proposed method and the 2 alternative approaches, 
we compute each subject’s posterior predicted survival time 
and dichotomize it to create 2 risk groups: high-risk group and 
low-risk group. The difference in the survival of the 2 risk 
groups has been compared by log-rank test. Figure 2 shows the 
survival curves of 2 risk groups predicted by the proposed 
model. The 2 risk groups have a very different survival func-
tion. The survival of high-risk group has a much lower survival 
probability compared with low-risk group. The log-rank statis-
tic is 272, and the P-value is1.39e−39. The log-rank statistics 
obtained by the other 2 methods are both 269.

Figure 1.  (A) The genes (dots, the identified genes are in red) and network of amino-acyl transfer RNA biosynthesis pathway and (B) the genes (dots, the 

identified genes are in red) and network of ABC transporters pathway.

Figure 2.  Survival curves for the low-risk (red lines) and high-risk (blue 

lines) samples using the proposed methods. The P-values are from the 

log-rank test.

http://www.stat.rice.edu/~marina/software.html
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There are 5 pathways chosen with a posterior marginal 
probability of 1. They are MAPK signalling pathway, purine 
metabolism, cytokine-cytokine receptor interaction, ubiquitin-
mediated proteolysis, and lysosome. It is not surprising that the 
MAPK pathway has been identified critical in the survival of 
lung cancer. The MAPK pathway consists of the family of ser-
ine/threonine protein kinase that links extracellular signal to 
fundamental cellular processes, such as cell proliferation and 
differentiation, stress response, and apoptosis.18 In this path-
way, the top-ranked genes are RELB, MAP4K1, MAP3K2, 
RASGRF2, NTF3, ATF4, MAP4K4, NFATC2 PLA2G2D, and 
PLA2G10. Among these genes, RELB is an NF-κB family 
member and has been found to suppress cigarette smoke–
induced COX-2 through miR-146a.19 MAP4Ks, a family of 
MAPK, play important roles in cell transformation, adhesion, 
migration, and invasion.20 MAP4K1 has been reported to 
stimulate NF-κB signalling, which in turn inhibits the process 
of apoptosis. Higher relative copy number of MAP4K1 has 
been related to the increased risks of death in colon cancer 
patients treated with oxaliplatin-based chemotherapy.21 A 
study in stage II pancreas cancer has discovered that overex-
pression of MAP4K4 is associated with poorer survival.22 
MAP4K has also been shown to be a prognostic maker in 
patients with hepatocellular carcinoma.23 Among the most 
selected 10 genes, 2 genes, PLA2G2D and PLA10, are from 
phospholipase A2 family. The major function of PLA2 is to 
hydrolyse glycerol phospholipids and produce lysophospholip-
ids and free fatty acids. The PLA2 proteins are important in 
inflammation and immune response. Elevated serum group 
PLA2 has been observed in patients with advanced cancer.24 
Higher expression of group IIa secretory phospholipase A2 has 
been found to be positively associated with metastasis in 
patients with lung adenocarcinoma and shorter survival time.25

Another pathway with marginal posterior probability 1 is 
cytokine-cytokine receptor pathway, which is critical in the 
regulation of immune response. The top-ranked genes accord-
ing to inclusion probabilities are as follows: EDA, IL18RAP, 
EPOR, TNFRSF19, TNFRSF11A, BMP7, CXCL9, IL12RB2, 
IL4R, and IL-19. EDA, ectodysplasin A, TNFRSF19, and 
TNFRSF11A all belong to tumour necrosis factor (TNF) 
receptor family proteins. These receptors can bind to various 
TNF receptor-associated factor (TRAF) family proteins, 
through which they will induce the activation of NF-κB  
and MAPK8/c-Jun N-terminal kinase ( JNK) pathway. 
Overexpression of TNF receptor proteins has been shown to 
positively correlate with bone metastasis and poor survival in 
various cancers.26,27 Interleukins are cytokines that involve in 
cell immunity. IL18RAP encodes a protein receptor for IL-18 
and plays a key role in IL-18 signalling. Higher levels of 
inflammatory cytokine IL-18 in the serum of patients with 
hepatocellular carcinoma is positively associated with worse 
survival.28 IL-19 expression has been reported to be prognostic 
in breast cancer, and it is related to increased mitotic figures, 
advanced tumour stage, higher metastasis, and poor survival.29

Ubiquitin-mediated proteolysis pathway also has mar-
ginal posterior probability 1. Modification of ubiquitin in a 
number of protein targets within cells is indispensable to a 
diversity of biological processes, including regulation of gene 
expression, DNA repair, assembly of ribosomes, and pro-
grammed cell death.30 According to inclusion probabilities, 
the top genes are KLHL13, HERC1, UBE2C, UBE3B, 
UBE2QL1, CUL7, SAE1, FZR1, MID1, and RNF7. 
Increasing lines of evidence have shown that the HERC 
family proteins are the essential components of a broad spec-
trum of cellular functions. Among these are cell growth, 
DNA damage repair, immune response, and neurodevelop-
ment.31 Ubiquitin includes 3 classes of enzymes, ubiquitin-
activating enzymes (UBE1), ubiquitin-conjugating enzymes 
(UBE2), and ubiquitin-protein ligases (UBE3). UBE2C 
encodes a protein in the E2 ubiquitin-conjugating enzyme 
family, which plays critical roles in the destruction of cyclins 
in mitosis. UBE2C-transfected lung cancer cells have a 
higher percentage in S phase and increased cell proliferation 
and enhanced cell invasion.32 It is suspected that the regula-
tion of UBE2C on cell growth and apoptosis is coupled with 
ERK pathway.33 The gene expression of UBE2C is found to 
increase in lung cancer tissues34 and has been identified as 
one of the prognostic markers in lung adenocarcinoma by Li 
et  al.4 UBE3B is a member of ubiquitin-protein ligases, 
which functions in transferring ubiquitin from ubiquitin-
conjugating enzyme to target substrates. UBE3 is indispen-
sable in cell proliferation, apoptosis, and DNA repair.35

Purine metabolism pathway is also among the pathways 
with marginal posterior probability 1. The most frequently 
selected genes in this pathway are NUDT9, PDE7B, NUDT2, 
PDE6A, IMPDH1, AK5, and AMPD2. This is a metabolic 
pathway for the synthesis and breakdown of purines in many 
organisms. Weber36 has reported the connection between 
transformation and progression in cancer cells and the imbal-
ance in the enzymic pattern of purine metabolism. In particu-
lar, PDE7B is a new therapeutic target in glioblastoma (GBM). 
The overexpression of PDE7B leads to the growth of a stem-
like cell subpopulation in vitro and facilitates the tumour 
expansion in an in vivo intracranial GBM model.37

The fifth pathway that has marginal posterior probability of 
1 is the lysosome pathway, with the top genes GM2A, SUMF1, 
NPC2, CTSA, CD63, ASAH1, ACP2, ABCA2, SLC11A2, and 
GGA1. This pathway mainly includes arsenal of degradative 
enzymes. GM2A encodes protein ganglioside GM2 activator, 
which works together with lysosomal enzyme beta-hexosami-
nidase to catalyse the degradation of the ganglioside GM2 in 
breast cancer cell lines.38 The major function of Niemann-Pick 
type C2 (NPC2) is to regulate the transport of cholesterol 
through the lysosomal system. A recent study shows that 
NPC2 can be secreted by early-stage lung tumours. In return, 
it interferes with the tumour microenvironment.39 Overall, 
more and more attention has been paid to this pathway, and it 
is becoming an area of interest in oncology.40
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Aminoacyl tRNA pathway biosynthesis has a marginal pos-
terior probability of .999, with the top genes DARS2, HARS2, 
KARS, RARS2, CARS, VARS, TARS2, PARS2, AARS2, and 
TARS. Neuroactive ligand-receptor interaction has a marginal 
posterior probability of .996, and NPBWR1, DRD3, CYSLTR1, 
MAS1, NMUR1, AGTR2, LPAR3, CHRNA10, AGTR1, and 
F2RL3 are the top genes in the pathway. Another pathway 
selected is endocytosis, with selected genes TSG101, CHMP2B, 
PDCD6IP, STAM2, RAB11FIP3, CHMP2A, EPN2, VPS37C, 
and PSD. The last 2 pathways are ABC transporters and spli-
ceosome. We provide a list of explanations for all the afore-
mentioned gene symbols in Supplementary List 1.

Discussion
In this study, we conduct analysis on the recently published 
TCGA lung adenocarcinoma with gene expression measure-
ments. The main conclusion is that incorporation of the path-
way and gene correlation information significantly improves 
the prediction precision. We provide a data-driven alternative 
to build the prior for gene dependence, which yields satisfac-
tory results. In the data analysis, we identify 11 pathways that 
are important for lung adenocarcinoma prognosis. Among the 
selected pathways, MAPK pathway has been studied exten-
sively in many types of cancers in TCGA. Subsets of MAPK 
pathways, such as signalling through ERK and JNK, have also 
been reported in other pathway analyses.11 The identified 
genes and pathways are worth further investigation as bio-
markers for lung adenocarcinoma progression.

The Bayesian approach adopted in this article achieves 
bilevel selection on the pathway and gene levels, or group and 
individual levels in a more general sense, by ranking according 
to posterior probabilities. Bilevel selection has been investi-
gated intensively under the frequentist penalization frame-
work. Breheny and Huang41 developed a composite group 
minimax concave penalty (MCP) penalty which applies an 
outer MCP penalty to the sum of a group of inner MCP pen-
alties to achieve selection at the individual level and group 
level simultaneously. Friedman et  al42 proposed the sparse 
group lasso criterion by adding the lasso penalty to the group 
lasso. The sparsity at and within group can consequently be 
attained at the same time. Multiple studies trail behind the 
innovative works, as reviewed in Huang et  al43 and seen in 
papers thereafter. Existing studies on penalized bilevel variable 
selection perform well when covariates in the same group are 
strongly correlated, whereas the correlations are moderate or 
even low when they belong to different groups. However, such 
situation is not common in practice as genes not in the same 
pathway may also exhibit high correlations. In the literature, 
multiple penalization approaches have been developed to 
identify important genes while incorporating the interconnec-
tions among genes, namely, gene-gene interactions or gene 
networks, as shown in Li and Li44 and the following papers. 
As integrating these gene correlation information in the 
simultaneous selection of pathways and genes has not been 

fully examined in the penalization framework, we turn to the 
Bayesian formulation.

Our analysis can be potentially improved in the following 
aspects. First, as multiple types of omics measurements in addi-
tion to gene expressions are available in TCGA for lung adeno-
carcinoma, integrative analysis can be conducted. It is 
worthwhile to examine whether inclusion of one or several 
more types of omics features, such as methylation or copy 
number alteration, will lead to better prediction or identifica-
tion results. Second, as contamination of prognosis data is 
common in genetics studies,45 it is necessary to develop robust 
models to select important pathways and markers. We can 
robustify the adopted approach by assigning heavy-tailed error 
distributions to the AFT model, like Sha et al.46 Furthermore, 
as the Bayesian method is computationally intensive, it is 
urgent to develop penalized bilevel variable selections taking 
the gene-gene interaction into consideration.

We acknowledge that more extensive bioinformatics and 
functional studies are needed to fully understand the identified 
results. The approach can also be applied to other cancer types 
from TCGA or different databases. Those investigations will 
be postponed to future studies.
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