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Abstract 

 

Improving Optical Access, Sampling Speed, and Resolution for In Vivo 

Multiphoton Microscopy 

 

Ahmed Moustafa Hassan, Ph.D. 

The University of Texas at Austin, 2020 

 

Supervisor:  Andrew K. Dunn 

 

Multiphoton microscopy is a powerful optical imaging modality renowned for its 

non-invasive nature and relatively affordable characteristics.   In particular, it has found 

its niche in neuroimaging due to its ability to probe in vivo biological processes in 

scattering brain tissue approaching millimeter depths with cellular resolution.  However, 

the brain is a large and complex organ, and in order to fully understand its heterogeneous 

architecture and associated functional roles, several distal regions must be imaged 

simultaneously.  Moreover, due to the critical implications of organelle features in 

various macroscale processes, whole-brain imaging at subcellular resolution scales 

presents itself as one of the outstanding challenges faced by the neuroscientific 

community today.  Primarily, this research aims to expand the depth, field-of-view, and 

temporal throughput of multiphoton microscopy to enable large volume imaging of 

microvasculature at greater acquisition speeds.  To accomplish this, we combine multi-

faceted efforts focused on the engineering and development of advanced multiphoton 

microscopy techniques and technologies. This includes the characterization of novel 

contrast agents, the optimization of scan system optics, and the integration of high-
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repetition rate lasers with a resonant galvanometer.  In addition, we develop a two-color 

imaging system capable of enhancing excitation efficiency, improving signal-to-

background ratio, and further extending imaging depth.  Finally, we present a novel 

application for two-color non-degenerate mode mixing to effectively circumvent the 

diffraction-limited nature of optical resolution and enable subcellular imaging.  

Collectively, these efforts advance the state-of-the art of multiphoton microscopy for 

routine cerebrovascular and neuroimaging. 
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Chapter 1: Background and Significance 

The overall goal of this study is to expand the optical access and imaging 

resolution capabilities of multiphoton microscopy for routine, non-invasive 

neuroimaging.  Multiphoton microscopy is inherently limited in its depth penetration 

capabilities, field of view, and temporal resolution [1–4].  Moreover, conventional 

multiphoton imaging resolution is fundamentally diffraction-limited due to the physical 

nature of light [5].  Despite these disadvantages, light microscopy has become a staple of 

bioimaging applications due to its non-invasive nature and relatively affordable 

categorization. In particular, multiphoton microscopy has found its niche in neuroimaging 

due to its ability to probe in vivo biological processes in scattering brain tissue at greater 

depths at high spatial resolutions [6–8].  However, the brain is a large and complex organ, 

and in order to fully understand its heterogeneous architecture and associated functional 

roles, several distal regions must be imaged simultaneously.  Moreover, due to the critical 

implications of organelle features in various macroscale processes – such as the role 

dendritic spines play in long-term potentiation, memory, and learning [9–12] – whole-

brain imaging with subcellular resolution presents itself as a one of the outstanding 

challenges faced by the neuroscientific community today [13]. A brute force approach to 

high-resolution, large field-of-view optical microscopy may involve scanning several 

smaller, overlapping regions at a small pixel size and tiling the individual 3D volumes 

together [14–16].  Unfortunately, many processes that unfold in vivo are highly transient 

[17–19], meaning that time-resolved studies which require image data from distinct 

localized regions at varying time points are unable to exploit these rather slow, 

conventional tiling methodologies.  Furthermore, there are structural and functional 

processes that play out well beyond a ~1 mm beneath the pial surface that neuroscientific 
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investigators demand insight to [20–22], and tiling deeper into brain tissue cannot be 

accomplished without cortical tissue excavation  [23–25] or sacrificing a specimen to 

harvest brain tissue slices [26,27]. Ultimately, these substantial limitations prevent the 

widespread adoption and research applications of multiphoton microscopy, and hinder its 

translation into clinical settings.  Nevertheless, the physical limits of multiphoton 

microscopy’s capabilities are rarely attained in practice, and it is our aim to rigorously 

explore these limits to identify regimes where multiphoton microscopy naturally excels 

(e.g. the near-infrared regime) and develop commensurate advanced imaging 

technologies to acquire large volumes of microvasculature at greater acquisition speeds. 

In addition, we detail a super-resolution two-color, mixed mode multiphoton microscopy 

technique that exploits non-degenerate excitation processes and mixed spatial modes to 

effectively overcome the diffraction-limited nature of optical resolution. Ultimately, this 

work will be used to develop a fully optimized super-resolution multiphoton imaging 

system with enhanced in vivo optical access to quantify chronic microvascular changes 

and visualize subcellular neurophysiological features.   

Specifically, the goals and design of the overall project can be divided into the 

following categories. Our first study explores novel contrast agent properties and 

culminates in the development of an imaging system that enables multiphoton 

microscopy of cerebrovascular architecture over large (i.e. millimeter scale) three-

dimensional volumes at high speeds.  This involves extending imaging depth through an 

investigation of the multiphoton properties of polymer dots, which we demonstrate the 

usage of for deep imaging of cortical microvasculature. We also increase the field-of-

view of multiphoton imaging by optimizing a microscopy system for maximum light 

throughput and diffraction-limited performance over large scan angles.  Moreover, we 

improve sampling speed by integrating high-repetition rate (i.e. 80 MHz) ultrafast lasers 
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with a resonant scanning mirror and a high-speed data acquisition system to achieve high 

throughput volumetric imaging.  We use this enhanced system to collect chronic, in vivo, 

large volume (> 1 mm3) images of microvasculature and vectorize the resulting data to 

attain a better understanding of the underlying morphology’s bulk longitudinal properties. 

As a follow-up to this vectorization, we present an in-depth effort to curate geometric 

strand information. 

In a subsequent study, we describe the development of a two-color imaging 

system that can be used to improve fluorescent excitation efficiency, and evaluate novel 

applications including extended imaging depth and fluorophore excitation in inaccessible 

spectral regions.  We also present a novel method for super-resolution non-degenerate 

multiphoton imaging using multiple independently tunable and synchronized ultrafast 

lasers.  For this study, we perform exhaustive computational modeling to identify optimal 

spectral combinations, spatial modes, and compatible fluorophores.  Finally, we delve 

into an experimental evaluation of various beam shaping technologies and full optical 

design of a non-degenerate mixed mode multiphoton super-resolution imaging system. 

1.1 NON-FLUORESCENT IN VIVO IMAGING  

Imaging the brain requires some mechanism to generate tissue contrast that may 

be either exogenous or intrinsic.  Fluorescence microscopy encapsulates both of these 

paradigms; naturally occurring structures can produce an autofluorescent signal when 

excited at appropriate wavelengths, or external fluorophores can be localized and tagged 

to targets of interest for fluorescent signal generation.  Non-fluorescent imaging 

modalities follow this same pattern, and this brief review focuses on four non-fluorescent 

modalities for brain or vascular imaging: magnetic resonance imaging (MRI), computed 

tomography (CT), positron emission tomography (PET), and ultrasound. Not covered are 
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other valid methods such as functional near-infrared spectroscopy (FNIRS) and less 

widely practiced methods such as magnetoencephalography and electroencephalography.  

MRI is a relatively nascent modality, initially demonstrated in 1973 by Paul 

Lauterbur [28].  Since its inception, its popularity has exploded for clinical imaging.  To 

provide images of the brain, MRI relies on no foreign contrast mechanism, and instead 

exploits the properties of hydrogen molecules in water and in lipids.  From a clinical 

perspective, a few main features distinguish MRI – it is non-ionizing, volumetric, and 

capable of imaging the entire brain [29]. Due to neurovascular coupling, functional MRI 

can detect changes in cerebral blood flow to report on cognitive brain function.  Broadly, 

MRI’s primary shortcomings are its temporal throughput, with prolonged acquisition 

times (30 – 40 minutes for a typical clinical session, or 5 – 10 minutes per scan) and its 

incompatibility with metallic objects [29].  From a research perspective, MRI shines in its 

capability to provide functional or anatomical images of the entire brain, but lacks in its 

spatial resolution (1 x 1 x 2.5 mm) and exorbitant expense [30].  In fact, a single voxel in 

an MRI image can integrate the activity of thousands of neurons – restricting our 

understanding of the brain to larger anatomical regions (e.g. cerebral cortex) and 

structures (e.g. tumor) while obscuring any interpretation of microvasculature or brain 

activity at a cellular level.   

CT, technically a non-fluorescent optical imaging technique, is a three-

dimensional extension of x-ray planar radiography that can be used to image both dense 

(e.g. bone) and soft (e.g. brain) tissue.  An X-ray tube is rotated relative to, and directed 

at, a specimen to generate a series of 2D images on the basis of X-ray and tissue 

interactions that can be back-projected into a 3D reconstruction.  X-ray and tissue effects 

proceed through photoelectric interactions and Compton scattering, which describe 

tissue-specific attenuation and X-ray deflections respectively [29].  With a sufficient 
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number of X-rays and minimal Compton scattering, signal-to-noise ratio can be quite 

large, but contrast-to-noise ratio remains largely dependent on the differential contrast 

between separate tissue types.  Thus, contrast-enhancing iodinated compounds must be 

injected intravenously in order to resolve cerebrovascular networks [31].  CT is a 

commonly used modality for cerebral scans, and is frequently used to understand 

traumatic brain injury, detect aneurysms, and image edemas.  However, like MRI, CT is 

mainly relevant in clinical applications for its sizeable anatomical access.  Although its 

spatial resolution is slightly better than MRI (125 µm in-plane resolution), CT still falls 

short of resolving individual neurons [32]. 

PET encapsulates a widely practiced form of nuclear medicine, an umbrella which 

also encompasses the nuclear analogs to planar X-ray/CT in planar scintigraphy/single 

photon emission computed tomography.  PET is recognized for its considerable 

anatomical access, ability to visualize glucose metabolism and therefore functional 

information, and superb sensitivity [29].  Briefly, PET requires the injection of a positron 

emitting radiotracer, which leads to the formation of two γ-rays with identical energies 

upon electron-positron annihilation. Radiotracers for PET like 18F-fluorodeoxyglucose 

(FDG) mimic biological molecules partially substituted by a radioactive atom, and 

become incorporated into cells after intravenous injection, then trapped [29].  The high 

glycolytic rate of tumor cells and seizure foci causes a disproportionate uptake and 

retention of FDG, making PET incredibly well suited for oncology and neuroimaging 

with respect to seizure activity [33].  More generally, this disproportionate uptake in 

highly metabolic regions allows PET to provide functional images of brain activation due 

to the coupling of blood flow and metabolism. Other radiotracers like 82Rb are more 

specific to myocardial tissue and therefore more applicable to cardiology.  Ultimately, the 

functional information captured by PET is derived from the activity of thousands of 
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neurons (1 – 2 mm spatial resolution) [34], which affect metabolic activity in aggregate.  

While this is a favorable characteristic with respect to systems neuroscience, PET is just 

as limited for fundamental single-cell studies as are MRI and CT.   Another significant 

drawback of PET is its dependency on a cyclotron to generate radiotracers, which are so 

prohibitively expensive that only very well funded hospitals can procure them.  Thus, the 

cost burden of PET is an enormous barrier towards its adoption as a biomedical or 

clinical research tool. 

Finally, ultrasound is distinct from the aforementioned non-fluorescent techniques 

in that it uses a mechanical wave to generate structural and functional images. Similar to 

CT, the primary contrast mechanism in ultrasound is the differential properties of 

heterogeneous tissue layers, with each interface reflecting a small fraction of incident 

acoustic energy determined by the relative tissue-specific properties [29]. Reflected 

waves are returned to and detected by a piezoelectric transducer, and the timing of 

received signals is used to construct an image. Ultrasound is favorable for its low-cost 

nature, portability, and non-ionizing characteristics as well its ability to measure blood 

flow velocity without any requirement for strong magnetic fields.  Moreover, flow 

measurements can be localized to individual vessels. Intravenous administration of 

microbubbles containing a fluorinated gas are commonly used to enhance vascular 

contrast, and are sufficiently sized (~6 – 7 µm) to traverse human capillaries [29].  Due to 

microbubbles’ compressibility, they are able to strongly absorb energy from incoming 

acoustic waves, and return a strong echo to the piezoelectric transducer.  Ultimately, 

ultrasound is superbly suited for high resolution vascular imaging deep into organs, but in 

vivo brain imaging is hindered by the inability of transmitted acoustic waves to penetrate 

the dense skull.  There is moderate optimism that dynamic images of deep human brain 

microvessels can be recorded at lower frequencies (~1 MHz), although there are no 
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convincing demonstrations to date [35].  Moreover, ultrasound is unable to record images 

of neurons, neither dynamically nor statically, disregarding photoacoustic imaging. 

Moreover, its fairly limited resolution (50 – 500 µm) eliminates the possibility of using 

ultrasound as a research tool to investigate microvasculature [34]. 

 

Modality Anatomical 
Access Penetration Depth Spatial Resolution 

MRI Excellent Excellent 1 x 1 x 2.5 mm [30] 

CT Excellent Excellent ~125 µm [32] 

PET Excellent Excellent 1 – 2 mm [34] 

Ultrasound Moderate Moderate 50 – 500 µm [34] 

Fluorescence 
Microscopy Poor Poor ~250 – 915 nm 

Table 1.1: Common in vivo imaging techniques contrasted. Anatomical access, 
penetration depth, and spatial resolution of non-fluorescent in vivo imaging 
modalities compared to fluorescence microscopy. 

1.2 FLUORESCENCE MICROSCOPY FOR NEUROSCIENCE 

Overall, the review on non-fluorescent imaging modalities in the previous section 

illustrates their inability to visualize microvasculature and neurons in spite of their 

moderate to excellent anatomical access and penetration depth.  In particular, neurons 

remain an opaque target to the aforementioned imaging techniques due to their 

incompatibility with the modality-specific contrast agents and, more importantly, those 

modalities’ poor spatial resolutions.  In this section, we will shift our focus to single and 

multiphoton fluorescence microscopy and discuss how it can circumvent these 

challenges. Simply stated, fluorescence is a photophysical process where the energy of 

one or more absorbed photons incites an electron transition in a specific molecule, which 
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then results in the emission of electromagnetic radiation at a lower energy. The difference 

in absorbed and emitted energy is a quantitative measure referred to as a Stokes shift.   

Fluorescence is distinct from phosphorescence with respect to its temporal dynamics - 

fluorescence occurs on a faster nanosecond time-scale, whereas phosphorescent decay 

proceeds much more slowly. 

The resolution of all microscopes, including fluorescent microscopes, is limited 

by diffraction and determined by the system’s point spread function.  To characterize a 

system’s point spread function, one must image a point source, i.e. a sub-diffraction 

limited object approximating an impulse function, and isolate the profile at focus to 

obtain an Airy pattern. The appearance of the Airy disk is determined by wavelength (!) 

and numerical aperture (NA), and 84% of its intensity is contained within the central 

lobe.  Resolution, which refers to the minimum distance between two features that can be 

visualized, is then defined by the radius of that central lobe. It is known that the first zero 

point of the Airy pattern is coincident at ! = 3.832, which allows us to derive the 

following expression for optical resolution: 

 ! = 2!!!"#$!"
! = 3.832 (1.1) 

 !!"#$ =
1.22!
2!"  (1.2) 

Thus, one can expect a transverse resolution of ~215 – 425 nm in the visible spectrum 

using a 1.0 NA objective.  For reference, the expected soma diameter of CA1 pyramidal 

cells in rat are 21 µm, and the diameter of basal dendrites in distal portions can range 

from 500 nm to 1 µm, meaning that fluorescence microscopy possesses ample resolution 

for neuroimaging [36] (Table 1.2).  With respect to microvascular imaging, smaller 

human venules are a comfortable 2.5 µm and capillaries range from 5 to 10 µm, which 
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reflects the size of red blood cells  (Table 1.2).  Axial resolution is generally three- to 

five-fold greater than the transverse Airy radius, and the depth of focus, !, is determined 

by the axial intensity distribution and can be calculated by wavelength, refractive index  

(!), and numerical aperture: 

 ! = ! !! − !!!
!!!  (1.3) 

The point spread function, or system impulse response, is an enormously useful metric as 

its Fourier transform is the optical transfer function, the magnitude of which is the 

modulation transfer function (MTF), which itself is an autocorrelation of the pupil 

function, all of which provide information about the spatial frequencies that can be 

passed through a system.  The inverse Fourier transform of the point spread function also 

yields the lens pupil function. For conventional, one-photon microscopy (1PM), the 

convolution of the system’s point spread function, !(!, !), with an object yields a 

resulting image, where  ! = (!,!) denotes the distance from the optical axis and ! is 

time. In the case of non-linear multiphoton microscopy (MPM), the same principle 

applies, except the point spread function is given by ! !, ! !, where ! describes the 

number of photons absorbed by the fluorescent target.   
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Neuronal Structures [36] Vascular Structures [37] 

 
Average 

Soma 
Diameter 

Proximal 
Dendrite 
Diameter 

Distal 
Dendrite 
Diameter 

Anatomical 
Structure (Human) 

Individual Vessel 
Diameter  

CA1 Pyramidal 
Cell Basal 

Dendrites (Rat) 
21 µm 1 µm 0.5 – 1 µm 

Aorta 2.6 cm 

Greater Arteries 8 mm 

Arterial Branches 0.6 – 3 mm  

Principal Cell of 
Globus Pallidus 

(Human) 
33 µm 3 µm 0.3 – 0.5 

µm 

Arterioles 20 µm 

Capillaries 9 µm 

Venules 2.5 µm 

Cerebellar 
Purkinje Cell 
(Guinea Pig) 

25 µm 3 µm 0.8 – 2.2 
µm 

Venous Branches 1.5 – 7 mm 

Great Veins 1.6 cm 

Venae Cavae 3.2 cm 

Table 1.2: Average diameters of neural architecture.  Typical diameters of neuronal 
and vascular structures fall within the resolution limits of multiphoton 
fluorescence microscopy [36,37]. 

Fluorescence microscopy can provide anatomical, spectroscopic, or functional 

information.  Anatomical, or structural imaging is the most readily understood of the 

three.  By relying on intrinsic fluorescence or introducing highly specific fluorescent 

probes to a specimen for excitation with an appropriate laser source, one can map out the 

physical architecture of a region of interest. Spectroscopic imaging refers to specialized 

implementations of fluorescence microscopy that enable investigators to uncover the 

optical properties and/or composition of those structures.  For example, early in vivo 

multiphoton spectroscopic studies of human dermis showed that reduced pyridine 

nucleotides, NAD(P)H, may strongly contribute to autofluorescence at 730 nm excitation, 

whereas flavoprotein was a more likely contributor at 960 nm excitation [38].  Functional 

imaging is less concerned with structural anatomy, and more directly refers to the 
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underlying function and behavior of certain anatomical regions.   

In the context of fluorescence functional imaging of the brain, there are three 

primary categories of functional information we endeavor to procure: metabolic, 

hemodynamic, and neuronal.  Metabolic imaging typically exploits weak endogenous 

fluorescent signals to trace cell activity before, during, and after critical events such as 

tissue development and differentiation.  Common targets for metabolic imaging are 

nicotinamide and flavin adenine dinucleotides (NADH and FAD), which are broadly 

implicated in the progression and regulation of nearly every major metabolic pathway 

[39].  Hemodynamic characteristics of interest include blood flow or flux, blood volume 

or hematocrit, and blood oxygenation levels, each of which can be garnered with unique 

fluorescent techniques.  For instance, intravenous injection of fluorescently-labeled red 

blood cells and video-rate imaging can be used to measure blood flow velocity [40].  

Alternatively, successive line-scans of a vessel injected with fluorescent dye can be used 

to track the spatial evolution of dark (i.e. non-fluorescent) red blood cells in time to 

assess their flux [mm/sec] and linear density [mm-1] to calculate flux [s-1] [41].  With 

knowledge of that vessel’s cross-sectional area, one can also infer hematocrit.  Finally, 

fluorescence microscopy is an attractive tool for measuring intravenous dissolved oxygen 

concentration due to its non-invasive nature, especially when compared to present 

alternatives.  The most common method of measuring pO2 in biological samples is the 

Clark electrode.  However, its tip must be inserted directly into the region of interest and 

three-dimensional approaches would thus be highly invasive, physiologically disruptive, 

and slow [42]. In contrast, electron paramagnetic resonance oximetry can produce three-

dimensional interstitial and intravascular pO2 maps non-invasively [43]. Problematically, 

its spatial resolution is limited to ~200 µm in vivo [43].  In principle, two-photon laser 

scanning microscopy (2P-LSM) and phosphorescence lifetime measurements could be 
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readily combined for deep, high-resolution oximetry.  Oxygen is one of the best-known 

collisional quenchers, and specific oxygen concentrations affect phosphorescent yields 

and lifetimes to varying degrees [44]. Probes with controllable quenching parameters and 

defined bio-distributions can thus be delivered directly to regions of interest and serve as 

site-specific molecular oxygen sensors.  However, phosphorescent probes are either 

largely uncharacterized for their two-photon spectra or exhibit weak two-photon 

absorption cross sections, meaning this work is still in its infancy [45]. Nevertheless, 

given the importance of oxygen consumption in dynamic in vivo processes and the rising 

adoption of multiphoton microscopy, the potential outlook of various molecular oxygen 

sensors for high-resolution non-invasive two-photon oximetry remains optimistic. 

Our final category of interest for functional optical brain imaging of interest is 

neural.  Structural neuroimaging is readily carried out using standard (e.g. green 

fluorescent protein; GFP) or slightly more exotic (e.g. tdTomato) genetically encoded 

contrast agents.   However, the development of more sophisticated probes can now 

provide functionality beyond simply providing contrast, and can be used to monitor the 

activity of distinct neurons in brain tissue [46]. Indicators of neural activity rely on 

sensitivity to calcium ions (a proxy for action potentials), membrane potentials, or 

neurotransmitters [47]. In particular, genetically encoded calcium indicators (GECIs) 

have garnered attention and popularity within the neuroscience community, despite 

challenges related to rapid calcium dynamics and low peak calcium accumulations [48].  

Advances in protein engineering, structure based-design, and mutagenesis has produced a 

family of ultrasensitive protein calcium sensors (GCaMP6) that vastly outperform other 

indicators in terms of both sensitivity and reliability [49–51].  These sensors can be used 

to visualize large groups of neurons in addition to smaller synaptic protrusions, and 

remain stable for months [52].  The GCaMP6 family will undoubtedly be used to answer 
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significant questions in neuroscientific research and recent work has even enabled in vivo 

functional imaging of the hippocampus at a ~1 mm depth in mice [53]. 

Altogether, when one considers the collective ability of fluorescence microscopy, 

which spans the anatomic, functional, and spectroscopic domains, it presents itself as a 

very attractive research tool.  Moreover, we believe that the fact that fluorescence 

microscopy can be used to capture hemodynamics, neural signaling, and metabolic 

activity makes it a particularly adept tool for in vivo brain imaging and neuroscientific 

studies in particular.  For instance, a single multiphoton microscope could sufficiently 

probe the coupling between synaptic reorganization and hemodynamic oxygen supplies, 

leading to a deeper understanding of oxygen delivery and consumption by dendritic 

spines at a high three-dimensional spatial resolution.  Longitudinal structural imaging 

experiments can be used to trace dendritic spine turnover in peri-infarct regions of the 

brain after stroke or traumatic brain injury while genetically encoded calcium indicators 

can indirectly report on the activity levels of the associated neurons.  A concomitant scan 

of a molecular oxygen sensor such as PtP-C343 can accompany these observations for a 

quantitative characterization of environmental oxygen and its association with neural 

microanatomy.  Ultimately, the richness and breadth of information gained from a simple 

uni-modal system (multiphoton microscopy) can tap into a nuanced understanding of 

hypoxic and anoxic environment on spine disappearance and regrowth.   Finally, we 

emphasize that fluorescent microscopy possesses the resolution required to carry out 

these studies at the single cell level, unlike MRI, CT, PET or the other non-fluorescent 

modalities assessed in the previous section. 

1.3 ADVANTAGES AND VARIATIONS OF MULTIPHOTON MICROSCOPY 

In this section we will further delineate between different categories of 
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multiphoton microscopy, but more fundamentally, we establish multiphoton 

microscopy’s inherent advantage to one-photon microscopy (1PM) in its ability to probe 

in vivo biological processes at greater depths at high spatial resolutions.  1PM is a non-

depth resolved technique, meaning that fluorescence is smeared along the optical axis. 

Thus, images recorded by upright or inverted epifluorescence microscopes will contain 

substantial background fluorescence from thick specimens. Confocal laser-scanning 

microscopy (LSM) enables optical sectioning by placing a spinning disk array of pinholes 

before the detector to reject out-of-focus light.  Even in the case of confocal LSM, one-

photon excitation is limited to visualization of superficial tissue layers due to the 

extensive scattering of shorter wavelength excitation sources.  In contrast, multiphoton 

microscopy, an LSM technique where a diffraction-limited, focused beam is raster-

scanned across a specimen [6], allows for inherent optical sectioning without a 

requirement for pinholes due to the highly improbable nature of two or more photons 

being simultaneously absorbed by the same fluorophore away from focus.  To elaborate, 

“simultaneous” refers to the maximum possible time period Δ! between photon 

absorption events in which their summed energy will incite an electronic transition, 

which can be determined by the Heisenberg uncertainty principle, where Δ! is the 

difference in photon energy and the electronic transition energy gap and ℎ is Planck’s 

constant. 

 Δ! = ℎ
4!Δ! (1.4) 

Using this formula, typical multiphoton excitation events require sub-

femtosecond absorption time differentials, which requires an unfathomably immense 

photon flux.  Therefore, multiphoton microscopy relies on two key technologies to ensure 

sufficient photon density.  First, high numerical aperture (NA) objectives are used to 
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tightly focus light into a condensed point spread function and ensure the spatial density of 

excitation power.  Second, pulsed ultrafast lasers, typically on the femtosecond scale are 

used to ensure the temporal overlap of excitatory photons.  Therefore, these ultrafast 

lasers are distinct from one-photon sources in that they feature high peak powers and 

pulse energies relative to their average powers.  Given the integration of high NA 

objectives with ultrafast lasers, multiphoton excitation is then an inherently localized, 

nonlinear process where fluorescence is given by !! and ! denotes the number of photons 

absorbed.   

A second advantage of multiphoton microscopy is the reduction of background 

autofluorescence.  Single-photon absorption usually occurs in the visible spectrum (~380 

– 740 nm) and a typical one-photon microscope is commonly equipped with a set of laser 

excitation sources at 405, 488, 561, and 647 nm.  Since multiphoton excitation relies on 

more than one photon to produce the same excited state, its laser sources are substantially 

lower energy or longer wavelength, most commonly in the near-infrared region of the 

spectrum (> 750 nm).  Near-infrared (NIR) excitation of fluorescence contrast agents has 

a few critical advantages, particularly for in vivo biological imaging.  Unwanted tissue 

autofluorescence, or excited light emanating from unintended structures, is markedly 

reduced by NIR light.  For instance, ‘green’ autofluorescence of the skin and viscera 

severely limits signal-to-background-ratio under blue light but not NIR light [54]. 

Moreover, ex vivo autofluorescence of fixed tissues is quite problematic in the visible 

regime.  Glutaraldehyde, an ubiquitous fixative used to preserve cellular structures by 

crosslinking protein functional groups, is an indiscriminant source of background with 

visible excitation, but indiscernible at longer wavelengths [55].  Overall, reduced NIR 

autofluorescence from intrinsic (e.g. dermis) or exogenous  (e.g. fixative) agents allows 

signal from fluorescent contrast agents to be collected in the absence of excessive 
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background, producing multiphoton images with greater signal-to-background ratios 

relative to conventional fluorescence microscopy.  Finally, longer multiphoton excitation 

wavelengths are less prone to scatter in biological tissue than visible single photon 

excitation wavelengths, which allows a greater fraction of excitation light to arrive to the 

focal plane.  

Multiphoton microscopy itself is a broad term that collectively describes any 

fluorescence process produced by the absorption of two or more photons.  In the 

remainder of this section we will differentiate between two- and three-photon microscopy 

as well as degenerate-, non-degenerate, and two-color multiphoton microscopy.   

1.3.1 Two- and Three-Photon Microscopy  

Both two- and three-photon microscopy are nonlinear process where fluorescent 

signal generation is given by !!, where ! is excitation intensity and ! denotes the number 

of photons absorbed.  However, two- photon microscopy remains limited in its maximum 

imaging depth relative to its higher order analogues by tissue scattering limits [56]. 

Three-photon excitation allows researchers to target fluorophores at longer wavelengths 

where absorption and tissue scattering events are minimized [46,56], thereby overcoming 

background limitations and improving depth penetration.  Of course, three-photon 

microscopy is not without its drawbacks.  For instance, few fluorophores have been 

characterized for their intrinsic three-photon properties, and fewer still have been 

engineered and optimized specifically for three-photon excitation.  Moreover, given 

comparable two- and three-photon cross sections, three-photon excitation requires higher 

pulse energies, which can lead to phototoxic effects in biological samples.  Even in fixed 

or non-living samples, high pulse energies can lead to heating, ablation, or even 

ionization.  Nevertheless, suppressed out-of-plane fluorescence, reduced scattering, and 
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increased signal-to-background ratio (SBR) remain significant motivators for the 

increased utilization rate of three-photon microscopy.   

To compare two- and three-photon (2P and 3P) microscopy SBR for deep, high 

resolution imaging in highly scattering biological tissue, we derive relative expressions 

using a set of equations laid out by Horton et al. (2013) [56]. If we first assume that 

imaging depth is significantly longer than the uniformly labeled specimen’s effective 

attenuation length, and that attenuation length is significantly longer than the objective 

focal length, such that ! ≫ !! ≫ ! then the time-averaged two- and three-photon signal 

generated by a diffraction-limited Gaussian beam is: 

 ! ! !! =  8!!!!
! !

!!!"
!
!!!
!!  (1.5) 

 ! ! !! =  3.5!!!!
!!! ! !

!!"!  !
!!!
!!  (1.6) 

where !" is objective numerical aperture, !! is refractive index, !  is average power, 

!!" is excitation wavelength, and !! are constants that capture fluorophore properties 

such as concentration and absorption cross section [56]. Meanwhile, background is 

dictated by the excitation order, !, time-average intensity, ! , and cross sectional beam 

area on the tissue surface, !: 

 ! ∝ ! !!!! =
! !

!!!! !! (1.7) 

Thus, two- and three-photon background levels, are approximated by:  

 !!! =  !!! ! ! !!!!!
!!!!!! (1.8) 

 !!! =  !!! ! ! !!!!!
!!!!!!! (1.9) 

We are then able to simply calculate SBR as a ratio using Equations 1.5 - 1.6 and 
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Equations 1.8 – 1.9. 

 !"#!! ≈
6 !" !!!
!!"!!

!
!!!
!!  (1.10) 

 !"#!! ≈
14.7 !" !!!

!!"! !!
!
!!!
!!  (1.11) 

Using Equations 1.10 and 1.11, we compare two- and three-photon SBR at a 750 – 3750 

µm imaging depth using 1.0 !" objective to show that three-photon SBR is significantly 

better at equivalent imaging wavelengths (Figure 1.1).  Attenuation lengths were 

obtained from Wang et al. (2018) and were specific to in vivo imaging of mouse brain 

[57].  The substantial improvement in SBR conferred by three-photon microscopy 

provides ample motivation to specifically engineer fluorophores for enhanced three-

photon absorption.  When one considers that two- and three-photon SBR is more 

realistically compared at different excitation wavelengths since three-photon absorption 

requires a lower energy for a given fluorophore, the advantages of three-photon 

excitation become even more apparent. For instance, three-photon SBR at 1300 nm 

excitation at a ~3 mm imaging depth rivals expected two-photon SBR at 920 nm 

excitation at a ~1 mm imaging depth. 
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Figure 1.1: Multiphoton signal-to-background ratio. Two- (2P) versus three-photon 
(3P) signal-to-background ratio (SBR) from a 750 – 3750 µm in vivo 
imaging depth in mouse brain.   Attenuation lengths: ~131 µm at 775 nm, 
~155 µm at 920 nm, ~312 µm at 1300 nm, and ~383 µm at 1680 nm [57]. 

1.3.2 Two-color, Degenerate-, and Non-Degenerate Multiphoton Microscopy 

Conventional, or degenerate, multiphoton microscopy (D-MPM) relies on the 

absorption of two or more spatiotemporally overlapped photons of identical energies to 

produce fluorescence [58]. Meanwhile, two-color imaging combines synchronized pulses 

from two lasers of different wavelengths (!! and !!) to excite a fluorophore transition 

[59,60].  Provided the two pulses arrive at the same location at the same time, the 

energies of the photons compound at an intermediate excitation wavelength given by: 

 !! = 2 !!!! + !!!! !! (1.12) 

Notably, the total excitation of the combined beams is: 

!! !, ! − ! +  !! !, ! ! = !!! !, ! − ! +  !!! !, ! + 2!! !, ! − ! !! !, !  (1.13) 

where r = (x,y) denotes the distance from the optical axis and τ refers to the temporal 

offset of the two beams [61].  !!! !, ! − !  and !!! !, !  are the degenerate excitation 
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profiles (i.e. point spread function, or PSF) at !! and !! respectively, whereas 2!! !, ! −
! !! !, !  dictates the non-degenerate PSF at !!. Existing literature has failed to 

distinguish between two-color multiphoton microscopy (2C-MPM) and non-degenerate 

multiphoton microscopy (ND-MPM), although there are significant distinctions that can 

be drawn.  2C-MPM yields the combined degenerate and non-degenerate excitation 

profiles, which typically results in a marked increase in fluorescence intensity [62] 

(Figure 1.2) and enables simultaneous multicolor imaging capabilities [63].   

 

Figure 1.2: Two-color multiphoton microscopy results in degenerate and non-
degenerate excitation processes.  (A) A two-color multiphoton microscopy 
(2C-MPM) schematic; NOPA, noncollinear optical parametric amplifiers; 
HWP, half wave plate; PBS, polarizing beam splitter; BD, beam dump; DM, 
dichroic mirror; SL, scan lens; TL, tube lens; EF, emission filter; PMT, 
photomultiplier tube. (B) 2C-MPM can result in the degenerate absorption 
of photons with equal energies (D-MPM) and the non-degenerate absorption 
of photons with distinct energies (ND-MPM). (C-D) Temporal overlap of 
the co-aligned two-color beams results in a pronounced increase in 
brightness as non-degenerate excitation pathways become available. 
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Meanwhile, ND-MPM is an implementation of 2C-MPM where the target 

fluorophore’s cross sections at !! and !! are negligible, resulting solely in the 2!! !, ! −
! !! !, !  excitation profile at the virtual excitation wavelength !! when ! ~ 0 fs. Thus, 

ND-MPM as defined herein cannot achieve multicolor imaging effects, and while it may 

potentially achieve a fluorescent intensity greater than conventional D-MPM at 

equivalent wavelengths in certain cases, it will always produce a dimmer signal than 

collective 2C-MPM.  Instead, ND-MPM is denoted by its own set of unique 

photophysical advantages, namely improved signal-to-background ratio [64] and 

improved spatial resolution for a given excitation wavelength (Figure 1.3).  To compare 

D-, 2C-, and ND-MPM resolution we modeled circularly polarized beam profiles in the 

transverse xy-plane at wavelengths ranging from 650 to 2000 nm as they propagate 

through a 20x objective using water immersion (NA = 1.0; 20 mm bandwidth; fTube Lens = 

200 mm). Time-invariant matched mode mixing with no optical delay at 2!! ! !! !  was 

performed at all possible wavelength combinations to generate ND-MPM point spread 

functions and central line profiles were extracted.  Gaussian fitting to the resulting line 

profiles and their corresponding full-width at half-maximum (FWHM) values were used 

to define resolution. D-, 2C-, and ND-MPM resolutions were directly compared at 

corresponding excitation wavelengths, λex, where the D-λex is the one color case, λD, and 

the 2C- and ND-λex is λ3. Since various combinations of λ1 and λ2 can result in identical λ3 

values, multiple 2C- and ND- data points are available at each discrete compound 

wavelength and direct comparisons were made at matching excitation wavelengths where 

λD = λ3 for the 1C (D-MPM) and 2C (2C-MPM and ND-MPM) cases respectively. It is 

observed that the condition λ1 = λ2
 results in identical transverse resolution for all MPM 

variants, as expected, whereas all other combinations where λ1 ≠ λ2 results in a resolution 

enhancement for ND-MPM.  Meanwhile, 2C excitation profiles, calculated according to 
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the combined PSFs I1
2(r) + I2

2(r) + 2I1(r)I2(r), were shown to suffer degraded resolution 

for all wavelength combinations, except where λ1 = λ2 as in the case above.  This entire 

process was repeated to assess axial resolution by modeling the beam profiles in the xz-

plane and once again ND-MPM resolution was found to be most optimal while 2C-MPM 

resolution was poorest (Figure 2(d)). We emphasize that ND-MPM’s inherent resolution 

enhancement capabilities are a novel discovery, made possible perhaps due to our 

distinction between 2C-MPM, which features non-negligible degenerate two photon 

absorption across sections, !!! (!!, !!), versus ND-MPM, where !!! (!!, !!) << 

!!"! (!!, !!). 
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Figure 1.3: Axial and transverse resolution comparisons of D-, 2C- and ND-MPM 
reveals that ND-MPM is inherently super-resolution. (A) Two-color 
multiphoton microscopy (2C-MPM) results in a combined 2C point spread 
function, PSF!"!!"!(!!,!!), comprised of degenerate-, PSF!!!"!(!!) and 
PSF!!!"!(!!), and non-degenerate PSFs, PSF!"!!"!(!!).  (B) Transverse 
cross section of a PSF!"!!"!(!!!!"" !", !!!!"## !") and its constituent 
PSF!"!!"!(!!!!"" !") compared to the matching PSF!!!"!(!!!!"" !"), 
where λ! denotes the direct one-color, degenerate excitation wavelength and 
λD = λ3. Solid lines denote intensity profile positions, plotted to the right 
with their Gaussian fits and full-width at half-maxima (FWHM).  (C) A 
comparison of 2C-, D-, and ND-MPM resolution in the transverse and (D) 
axial dimensions. 
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Chapter 2: Tools for Large-Scale, Chronic Multiphoton Imaging of 
Cerebrovascular Architecture1 

2.1 INTRODUCTION 

The ideal neuroimaging modality maximizes optical access, sampling speed, and 

spatial resolution with excellent signal-to-noise ratio and high contrast [65].  Optical 

access describes the physical extent or volume over which data can be recorded, which is 

a product of both depth and field of view.  Optical access is typically limited by optical 

aberrations and light scattering or attenuation [65].  Sampling speed refers to the rate at 

which these volumes can be recorded, and is directly constrained by the repetition rate of 

excitation sources [66], sample brightness [67], and the inertia of available 

instrumentation [65,66].  Finally, spatial resolution refers to the minimum spacing 

required by an imaging modality to differentiate two objects, and is dictated by a 

combination of physical characteristics (i.e. wavelength and numerical aperture), optical 

aberrations, and the number of pixels utilized in the construction of a digital image  [68–

70]. This chapter takes aim at improving optical access (i.e. imaging depth and field-of-

view) and throughput for large-scale chronic vascular imaging, while maintaining 

sufficient resolution for the capture and co-registration of neuron structures.   

                                                
1 Portions of Chapter Two are based on prior publications.  Ahmed Hassan conducted all 
experiments and independently wrote, “Hassan, A.M., Wu, X., Jarrett, J.W., Xu, S., Yu, 
J., Miller, D.R., Perillo, E.P., Liu, Y.L., Chiu, D.T., Yeh, H.C. and Dunn, A.K., 2019. 
Polymer dots enable deep in vivo multiphoton fluorescence imaging of microvasculature. 
Biomedical optics express, 10(2), pp.584-599.”  He also performed all sample preparation 
and imaging experiments from, “Miller, D.R., Hassan, A.M., Jarrett, J.W., Medina, F.A., 
Perillo, E.P., Hagan, K., Kazmi, S.S., Clark, T.A., Sullender, C.T., Jones, T.A. and 
Zemelman, B.V., 2017. In vivo multiphoton imaging of a diverse array of fluorophores to 
investigate deep neurovascular structure. Biomedical optics express, 8(7), pp.3470-3481.” 
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2.2 EXTENDING MULTIPHOTON IMAGING DEPTH 

Multiphoton microscopy’s ability to non-invasively provide depth-resolved 

images approaching millimeter depths has allowed it to emerge as a staple in 

neuroscientific investigations.  However, layers of anatomy beyond a millimeter depth 

remain highly desirable imaging targets, and the optical properties that influence imaging 

depth must be fully understood to access layers beyond the rodent cortex.  At the most 

fundamental level, scattering and absorption of both excitation and emission light 

restricts overall signal collection as well as the signal-to-background ratio of multiphoton 

images [71].  In certain cases, advanced surgical preparations such as polished skulls 

[72,73] or chronic cranial windows [74,75] can greatly reduce attenuation. In more 

extreme circumstances, embedded prisms [76,77] or gradient index lenses [78,79] can be 

used to bypass layers of anatomy entirely [65].  More recently however, several groups 

have exploited the decrease in light scattering with increasing wavelength to achieve 

imaging depths approaching 1.6 mm [80,81].  Moreover, three-photon excitation has 

been shown to reduce out-of-focus light to produce signal-to-background ratios that are 

orders of magnitude larger than conventional two-photon microscopy and thereby 

increase depth penetration [57,82–84].  These accomplishments are predicated on the 

development of high-power excitation sources at longer wavelengths and the availability 

of brighter, compatible fluorophores with large absorption cross sections and high 

quantum yields. Thus, characterizing the nonlinear properties and compatibility of 

existing contrast agents with longer-wavelength excitation sources is critical towards 

their adoption in multiphoton microscopy and evaluation for deep imaging applications 

[46]. In the following sections, we detail factors that influence and limit imaging depth 

and provide a thorough photophysical characterization of polymer dots, whose broad 

light absorption enables compatibility with multiple laser sources, allowing us to identify 
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ideal excitation wavelengths to minimize tissue scattering and water absorption for deep 

in vivo imaging.   

2.2.1 Tissue Optical Properties 

To collect signal deep within scattering medium, two basic factors must be 

considered.  First, sufficient excitation light must be delivered to the focal plane of 

interest.  Second, a sufficient number of fluorescent photons must be captured from the 

sample plane to maintain an appreciable signal-to-noise and signal-to-background ratio 

for image reconstruction.  Excitation light is mainly reduced by a complement of 

scattering and absorption events in heterogeneous biological tissue, where total 

attenuation at a depth ! is given by:  

 !"# − !! ! +  !! ! !  (2.1) 

where !! and !! [cm-1] are the bulk tissue absorption and scattering coefficients 

respectively.  Absorption is both wavelength- and chromophore-dependent, and each 

constituent in tissue (e.g. hemoglobin or water molecules) has a unique absorption 

profile, most accurately captured by its molar extinction coefficient, !’ [M-1cm-1], such 

that the absorption coefficient with respect to any single chromophore in tissue with a 

concentration ! is:  
 !! ! = !′ ! ! (2.2) 

In media with multiple species of chromophores, such as biological tissue, the total 

absorption coefficient is calculated by: 

 !! ! = !!! ! !!
!!!!"#"$!!"#$ 

!!!
 (2.3) 

and the mean free path of an excitation photon before absorption is !
!!(!).  To assess the 

attenuation of fluorescence traveling in the opposite direction, one can simply assume the 
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same tissue properties, only evaluated at the wavelength of the lower energy emitted 

light.  Similarly, the scattering coefficient !! is determined by the medium’s unique 

scattering cross section, which is a direct function of particle size and refractive index 

relative to the surrounding medium.  There are many paradigms and probability density 

functions that describe scattering, and the appropriate model strongly depends on the size 

of the scattering particles relative to interrogation wavelength and the physical properties 

of the interface(s) in question (e.g. specular, diffuse, lambertian, etc.).  Regardless of 

which scattering phase function is used, they generally assign a probability distribution to 

the direction of scattered light (i.e. scattering anisotropy) and the expected distance 

traveled between scattering effects.  Since chromophore refractive indices’ bearing on 

scattering probability depends on their relative difference with respect to their substrate, 

the more heterogeneous a tissue is, the greater the probability of a scattering event.     

For brain tissue in particular, absorption is predominantly influenced by the 

presence of hemoglobin and water content.  Typically, attenuation decreases with 

increasing wavelength although there are high absorption bands in water around ~1500 

nm and ~1900 nm (Figure 2.1).  Therefore, ideal biological imaging wavelengths present 

themselves around ~1300 nm and ~1700 nm, where photoattenuation is minimized [46].  

In theory, one can compensate for attenuation with increased laser power, particularly 

with amplified fiber lasers, but this becomes quite risky for in vivo contexts due to water 

absorption.  At excitation wavelengths where water absorption is greater, tissue heating 

becomes a salient concern due to its disruption of normal biological function and 

potential for acute damage in more extreme cases.  
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Figure 2.1: Hemoglobin and water’s effects on brain tissue absorption is 
wavelength dependent. (Left) Molar extinction coefficient of oxygenated 
(HbO2) and unoxygenated hemoglobin (Hb).  (Right) Absorption coefficient 
of water.    

2.2.2 Ultrafast Laser Sources and Deep Imaging 

The laser source properties used for multiphoton imaging unquestionably affect 

imaging depth.  Generally, one may describe a pulsed laser by its average power [W], 

pulse width full-width at half-maximum [fs], repetition rate [s-1], and wavelength [nm].  

Given this information, one is able to determine peak power, pulse energy, peak-to-peak 

time, and the number of photons per pulse.  Excitation wavelength influences imaging 

depth in two ways: (1) absorption and scattering in the specimen of interest is 

wavelength-dependent, as discussed in the previous section, and (2) fluorophore 

absorption cross sections vary by wavelength.  Excitation wavelengths less prone to 

scatter or absorption in tissue will ensure a greater fraction of excitation light arriving at 

the sample plane, while targeting a fluorescent probe at its peak multiphoton absorption 

cross section will yield a greater number of signal photons and help maximize signal-to-

background ratio.  As multichannel imaging experiments become more ubiquitous, a 

researcher is forced to either select a single excitation wavelength that produces a 
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reasonable compromise in terms of signal levels in all channels, or use several excitation 

wavelengths specific to each unique probe.  This latter option is preferred, but requires 

either the availability of multiple excitation sources or a single tunable excitation source. 

 

Figure 2.2: Properties of pulsed ultrafast lasers. Wavelength (not depicted), peak 
power (PPeak), average power (PAvg), peak-to-peak time (Pk-Pk Time), and 
pulse width (!) are all important considerations with respect to imaging 
depth.  Repetition rate, or the number of pulses per second can be inferred 
from peak-to-peak time.  Average power and repetition rate collectively 
determine pulse energy.  Typically, deep imaging setups require high 
average power and lower frequency repetition rates to ensure large pulse 
energies, along with the ability to compress pulses temporally to achieve 
high peak powers. Wavelength selection should be made with respect to 
both tissue and fluorophore properties. 

In addition, a laser source’s average power, repetition rate, and pulse duration 

collectively influence imaging depth in a strongly inter-related fashion.  Ultimately, the 

goal is to increase photon flux in order to improve multiphoton excitation efficiency.  

This can be achieved in a number of ways, but it is important to avoid large average 



 30 

powers that result in significant tissue heating or large peak powers that lead to acute 

damage like ionization or ablation.  At the most fundamental level, average power and 

repetition rate collectively determine pulse energy.  Given a fixed pulse energy, 

compression to reduce pulse duration will then maximize peak power and imaging depth.  

Compression can be achieved using prism pairs, diffraction gratings, or chirped dielectric 

mirrors.  Assuming an excitation source is at a known repetition rate and pulse duration, 

increasing average power will indeed increase peak power, but at the cost of increased 

tissue heating as pulse energy increases concomitantly.  Thus, deep imaging generally 

mandates a laser with high average power (several watts or greater, which can be 

attenuated to avoid tissue damage when needed) and smaller repetition rates (< 1 MHz) to 

ensure high pulse energies, and the ability to perform temporal pulse compression to then 

maximize peak power. Moreover, a tunable excitation source is highly desirable in order 

to capitalize on intrinsic fluorophore properties, such as their n-photon power dependence 

and cross section profiles.  Spectral and temporal pulse widths are inextricably linked 

through the time-bandwidth product.  For fully compressed transform-limited pulses, the 

time-bandwidth product is minimized and its exact value depends on the pulse shape.  

For example, the smallest achievable time-bandwidth products are ~0.315 and ~0.44 for 

sech2-shaped and Gaussian pulses, respectively [85].  Thus, broader spectral bandwidths, 

such as those observed from optical parametric amplifiers, benefit deep imaging by 

allowing for shorter pulse durations and ergo higher peak powers.  This highlights an 

important distinction between typical single-photon or laser speckle excitation sources 

and multiphoton lasers.  The former exhibit broad temporal pulse widths and are 

therefore spatially coherent, meaning that there is a fixed relationship at multiple spatial 

positions at any given time.  In contrast, multiphoton excitation sources are temporally 
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coherent, meaning they have shorter pulse widths and a defined correlation between 

waves at fixed locations at different points in time.  

When I first joined the Functional Optical Imaging Laboratory, available 

excitation sources included a tunable titanium-sapphire laser (Ti:S; !!" = 700 - 900 nm; 

repetition rate = 76 MHz) and an optical parametric amplifier (OPA; !!" = 1100 – 1400 

nm; repetition rate = 511 KHz). Through the PhD work of Dr. Evan Perillo, a high power 

ytterbium fiber laser was developed (Yb-fiber; !!" = 1060 nm; repetition rate = 80 MHz), 

along with a Raman diamond laser (!!" = 1240 nm; repetition rate = 80 MHz).  Each of 

these lasers had their own set of advantages and drawbacks.  The Ti:S laser excelled at 

shallow, surface tissue two-photon imaging.  However, its low pulse energies prohibited 

routine imaging depths beyond ~600 µm, and its limited tunability meant that the vast 

majority of fluorophores were incompatible for three-photon microscopy.  The higher 

pulse energy OPA was ideal for deep imaging around ~1250 nm, but its average power 

quickly tapered off as it was tuned above or below this wavelength.  In contrast, the fiber 

laser excelled for high average power imaging of fluorophores such as fluorescein and 

Texas Red, but its discrete spectral output at 1060 nm hampered its versatility.  The 

development of the diamond laser was intended to shift 1060 nm excitation further out 

into the near infrared regime, and its synchronization with the Yb-fiber laser meant that 

they could be used jointly for two-color excitation.  However, the diamond power output 

is quite limited (a few hundred milliwatts) and the meager Raman shift (<200 nm) is not 

only static, but less than ideal for two-color imaging which benefits from a wider 

wavelength discrepancy, and unworkable for non-degenerate imaging of most known 

fluorophores.     

Thus, these excitation sources left significant gaps in our multiphoton imaging 

capabilities that were addressed by the Spirit-NOPA system.  First, we required a laser 
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system that could encompass a broad tuning range spanning the visible and near infrared, 

which would serve useful for both two- and three-photon microscopy.  Second, we 

sought a system with high average powers across this entire spectrum, unlike the former 

OPA. Third, we desired a lower frequency repetition rate and a broad spectral bandwidth 

to ensure high pulse energies and large peak powers.  Fourth, it would be ideal if this 

laser system could accommodate two independently tunable and synchronized sources in 

order to perform two-color and non-degenerate multiphoton imaging.  The solution to 

these four requirements was the Spirit-NOPA laser system; two iterations of which were 

explored in the lab.   

The first iteration consisted of the Spirit laser pump (Spirit 1030-70, ∆! = 297 fs), 

a 70W fiber-based pump laser that is frequency doubled and used to pump two 

independently tunable non-collinear optical parametric amplifiers (NOPAs; Figure 2.3).  

A high-power resistant beam splitter is used to divide the pump laser output, which 

means that the NOPAs are synchronized, although their path lengths are not identical.  

The primary NOPA in the first iteration was a NOPA-VISIR (nicknamed “Batman”), 

with a signal tuning range from !!" = 650 – 950 nm and an idler tuning range from !!" = 

1150 – 2500 nm.  As the signal wavelength is shifted, the idler wavelength shifts 

concomitantly, and vice versa, as the lower frequency outputs of the signal (!!) and idler 

beam (!!) must sum to the higher frequency input of the pump laser, !! =  !! + !!, in 

the process of optical parametric generation. Therefore, the NOPA-VISIR can be used for 

two-color and non-degenerate imaging individually, but its outputs are not independently 

tunable.  To allow for independent tuning, a second NOPA-IR (nicknamed “Robin”) was 

integrated into the system, with a single output tuning range from !!" = 1200 – 1600 nm.  

The repetition rate of the entire set is orchestrated by the pump laser, which can be 

adjusted up to 4.3 MHz.  In order to maintain deep imaging capabilities with the system, 
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we opted for a 1 MHz repetition rate.  Seeing as the NOPA-VISIR would be used more 

frequently, 60 W of pump power or 60 µJ of pump energy were dedicated to this source.  

The remaining 10 W of pump power was diverted to the NOPA-IR, meaning that 10 µJ 

of pump energy is applied.  Overall then, the first Spirit-NOPA laser system consisted of 

three outputs, two of which can be independently tuned, and all of which are vertically 

polarized. 

 

Figure 2.3: Generation one of the Spirit laser system. The system consists of two 
non-collinear optical parametric amplifiers (NOPA), one that emits in the 
visible (NOPA-VISIR signal) and near-infrared spectrum (NOPA-VISIR 
idler), and one that emits from 1200 – 1600 nm (NOPA-IR).  (Left) Power 
as a function of wavelength is plotted for all three outputs.  (Right) Pulse 
width as a function of wavelength is plotted for both idler outputs. 

The second iteration of the Spirit laser system sought to replace the NOPA-IR 

with a more versatile NOPA-VISIR (Figure 2.4).  To accommodate this change, the 

Spirit pump laser was now split evenly with 35 W sent to the original NOPA-VISIR (now 

nicknamed “Klay”) and 35 W transmitted to the new laser (nicknamed “Steph”).  Steph 

was mostly identical to Klay, with the exception of a redesigned, thicker second 

harmonic generation crystal, granting it slightly better conversion efficiency.  
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Surprisingly, Klay’s properties were similar to Batman’s despite the 25 W drop in pump 

power.  This was an unexpected result, as pump conversion is believed to be a function of 

pulse energy, and the Spirit’s repetition rate was maintained at 1 MHz.  Ultimately, Steph 

and Klay teamed up to provide two major advantages over Batman and Robin.  First, the 

replacement NOPA now featured outputs spanning 650 – 2500 nm, rather than just 1200 

– 1600 nm.  Second, the new system provides two independently tunable outputs in the 

near-infrared and two independently tunable outputs in the visible spectrum (four outputs 

in total), whereas the former system only allowed independent tunablity in the near-

infrared with a single co-dependent visible line (three outputs in total).      

 

Figure 2.4: Generation two of the Spirit laser system. The system consists of two 
non-collinear optical parametric amplifiers (NOPA), both of which emit in 
the visible (NOPA-VISIR signal) and near-infrared spectrum (NOPA-VISIR 
idler).  (Left) Power as a function of wavelength is plotted for all four 
outputs.  (Right) Pulse width as a function of wavelength is plotted for all 
four outputs. 

2.2.3 Conventional Contrast Agents and Deep Imaging 

The discovery, development, and characterization of bright, biocompatible 

contrast agents that excite at longer wavelengths are crucial aspects to the advancement 
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of deep in vivo multiphoton microscopy [86].  Fluorophores that excite near 1300 nm or 

1700 nm are of particular interest due to minimal absorption by water and reduced 

scattering. The choice of contrast agents used for multiphoton microscopy can be 

categorized into two groups: organic and inorganic contrast agents.  The former class 

encompasses conventional organic dyes such as Texas red, fluorescein, and indocyanine 

green, which are extremely popular due to minimal aggregation issues and low 

cytotoxicity [87].  However, it is difficult to control the excitation and emission 

wavelengths of these dyes since their spectra are dependent on their chemical structure.  

In addition, fluorescent dyes commonly exhibit low quantum yields in aqueous 

environments, which reduces brightness in biological settings [54]. Moreover, organic 

dyes are problematic for immunolabeling assays, where detectability is a strong function 

of concentration.  Nevertheless, our experiments empirically demonstrate that organic 

dyes are a fantastic and versatile choice for deep imaging, particularly Texas Red (Figure 

2.5). Using an OPA to excite a 150 µl injection of 5% w/v of Texas Red in a C57 mouse 

prepped with an optical cranial window, we were able to achieve an imaging depth 

greater than 1.5 mm with excellent signal-to-background ratio even beyond 1350 µm 

(Figure 2.5(b)).  Approximately 292.5 mW of power was available at the objective back 

aperture and an emission filter of 609/181 was used.  The first half of the stack was 

recorded using an Olympus XLUMPLFLN20X and the bottom half was recorded using 

an Olympus XLPLN25XSVMP2 objective to circumvent working distance limitations. 



 36 

 

Figure 2.5: Deep imaging with intravenously injected organic dyes. (A) Tangential 
(left) and sagittal (right) maximum intensity projections of a 365 x 365 x 
1535 µm volume of a C57 mouse injected with 150 µl of 5% Texas Red and 
imaged at 1225 nm. (B) Tangential maximum intensity projections of stack 
shown in (A). Scale bar = 50 µm. 

Organic contrast agents also include fluorescent proteins, such as the omnipresent 

and well-heralded green-fluorescent protein (GFP).  Unlike fluorescent dyes, whose 

targeting is usually predicated on passive bonding interactions, fluorescent proteins can 

be engineered to express along highly localized structures, usually by functionalization or 

genetic fusion to another protein of interest.  Factors that influence the measured 

brightness of a fluorescent protein are quite unique relative to any other class of contrast 

agent.  For example, labeling density is a major concern, along with specificity, 

fluorophore maturation in the context of the specimen’s development, and the long-term 

stable expression of the fluorescent protein [88].  Moreover, fluorescent protein 

brightness is highly subject to environmental considerations; for example, anoxia can 

stunt fluorophore development and expression [88].  Beyond this, general brightness 

factors such as quantum yield, photostability, and the system’s commensurate collection 

efficiency remain salient concerns as well.  All in all, these characteristics make it quite 
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difficult to employ fluorescent proteins in a turnkey fashion, as each living organism is 

unique and certain environmental factors such as the presence of molecular oxygen 

cannot be well controlled.  In the past, the adoption of far-red variations of fluorescent 

proteins for multiphoton microscopy has been obfuscated by their low brightness, but 

mKate, the pseudo-monomeric tdKatuska2, and tdTomato collectively represent a newer 

generation of bright, far-red emitters with substantial potential for deep in vivo imaging 

[89,90].  In collaboration with the Jones Lab (The University of Texas at Austin; 

Department of Psychology), we were able to obtain two-photon images of vascular 

structures transgenically labeled with GFP (Figure 2.6(a-b)).  We found the appearance 

of the vasculature to be quite distinct from images generated with intravenous injections 

of organic dyes, as only the endothelial cell walls of the vasculature were subject to 

labeling, the end result being a series of hollowed out tube-like structures rather than 

filled vessels.  Moreover, we observed that the connectivity was lacking, as expression 

wasn’t continuous along the entirety of the vessel walls.   In contrast, vascular images of 

injectable dyes are extremely continuous, the only limiting factor being how well 

perfused a vessel is.  In fact, this may be considered an advantage for organic dye 

vascular imaging, as perfusion grants functional information which vascular imaging of 

fluorescent proteins fails to capture.  Furthermore, one cannot use fluorescent protein 

labeling done in this fashion to gather axial line scans and infer blood flow velocity.  

Overall, we found that imaging depth is severely stunted (z = 250 µm) relative to what 

we can typically accomplish with organic dyes at similar excitation wavelengths (!!" = 

790 nm).  However, fluorescent proteins possess a major advantage over organic dyes in 

that they can be used for both neural and cerebrovascular imaging. Of course, there is 

nascent work being done on blood brain barrier disruption to investigate the potential of 

dye delivery to extravascular structures; however, these typically require additional 
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instrumentation such as high intensity focused ultrasound (HIFU). Here, we demonstrate 

OPA imaging of YFP-labeled neurons in a perfusion fixed brain slice at 1300 nm 

excitation without any need for HIFU or other forms of blood brain barrier disruption 

(Figure 2.6(c)). We are able to image the entire axial thickness of the brain slice without 

limitations from poor signal-to-background ratio.  

 

Figure 2.6: In vivo imaging with genetically encoded fluorescent proteins. (A) 
Average intensity projections of a 365 x 365 x 250 µm volume of a C57 
mouse injected with (left) Texas Red and imaged at λex = 1300 nm or (right) 
transgenically labeled with GFP and imaged at λex = 890 nm. (B) Cropped 
insets corresponding to the yellow boxes in A show that GFP labeling is 
discontinuous, resulting in missing vessels.  However, Texas Red excitation 
at 1300 nm results in significant background signal from second harmonic 
generation imaging of collagen. (C) A maximum intensity projection (top) 
and a 3D rendering (bottom) of a 512 x 512 x 300 µm volume of yellow-
fluorescent protein labeled neurons from a perfusion fixed brain slice made 
in UCSF Chimera; λex = 1300 nm.   

Importantly, specially engineered adeno-associated viruses (AAVs) expressing 

fluorescent proteins can be used for highly-specific labeling and even functional control 
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of unique classes of neurons [91].  In collaboration with the Zemelman Lab (The 

University of Texas at Austin; The Center for Learning and Memory), we injected C57 

mice with AAVs expressing Arc/Cre tdTomato to broadly target all neuron layers in the 

cortex and hippocampus (Figure 2.7).  TdTomato is a bright red dimeric protein emitting 

at ~581 nm, a highly desirable emission wavelength for deep imaging.  The main 

advantage of Cre recombination is it enables knockout studies of genes that are required 

for embryonic survival. Since the vast majority of gene knockout assays cannot easily be 

controlled along the organism’s developmental cycle or by anatomical region, many 

knockout studies can be lethal.  However, localized AAV injections allow us to identify 

and target the anatomical region of interest, meaning that tdTomato expression is limited 

to an empirically determined ~300 µm radius from the site of injection.  Therefore, AAV 

injection was performed along vertical columns within the somatosensory cortex and 

underlying tissue at positions spaced 200 µm apart under control of a motorized three-

axis stage.  
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Figure 2.7: Adeno-associated viral injections for transgenic labeling with 
fluorescent proteins. (A) A surgical set up includes a microscope, a 
micromanipulator to actuate the glass capillary containing the viral 
injection, a drill, and an anesthesia delivery system. (B) A dashed yellow 
region-of-interest highlights a glass capillary being inserted into the cortex 
(left), and dashed-red circles demonstrate multiple injection sites, which are 
intentionally selected to be free of large surface vessels to prevent excessive 
bleeding (right).  (C) A second still image of a live injection (left), and an 
atlas of labeled regions (right) reinforces the critical nature of choosing 
areas with sparse vascular density. 

Briefly, Cre recombinase catalyzes DNA recombination between flanking loxP 

sites to turn gene expression on or off [92]. In our Arc/Cre tdTomato mice, Cre 

recombinase is associated with estrogen receptors and inactive in normal mice.  It is 

followed by a stop sequence flanked by loxP sequences, and injected Tamoxifen will 

bind to the estrogen receptors, inducing Cre recombinase activity and removal of the stop 

sequence, which in turn leads to expression of tdTomato.  In this manner, tdTomato 

levels are under the control of Tamoxifen dosage, and expression remains stable upon 

induction.  More sophisticated inducible Cre recombinase experiments can utilize photo-

activation as a stimulus in place of Tamoxifen [93].  Regardless of the stimulus, we found 

inducible expression to be a significant advantage of the Cre recombinase system since 

we were able to directly control labeling density, and fluorophore sparsity is a major 
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factor dictating imaging depth.  When expression reaches a critical density, out of plane 

excitation leads to insurmountably high background levels.   Unfortunately, there is 

compelling evidence that Tamoxifen introduces confounding effects to genetic activity 

and neurophysiological functions in mouse models, meaning that structural or functional 

studies performed on mice with Tamoxifen induced Cre-recombinase gene inactivation 

must be looked at critically and with suspicion [94]. Ultimately, with some 

experimentation we were able to find a balance of mouse age, which affects natural 

estrogen levels in the body, and Tamoxifen injection volumes to yield a sufficient level of 

expression and image down to 1160 µm beneath the pial surface of a C57 Arc/Cre 

tdTomato mouse brain using 1150 nm excitation from an OPA (Figure 2.8). 

 

Figure 2.8: In vivo multiphoton microscopy of neurons labeled with tdTomato via 
adeno-associated viral vectors. (A) A three-dimensional reconstruction of 
an 1160 µm stack of neurons within a C57 mouse brain. (B) Tangential 
maximum intensity projections from the stack shown in (A).  All scale bars 
= 50 µm. λex = 1150 nm.  
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The latter category of fluorescent contrast agents, inorganic probes, includes the 

well-established quantum dot, bright fluorescent semiconductor nanocrystals with broad 

absorption and discrete, tunable emission wavelengths that are highly resistant to 

photobleaching [95,96]. More recently, the polymer dot has emerged as an even brighter, 

comparable alternative to quantum dots with decreased cytotoxicity [97–99].  Regardless 

of their function or organic/inorganic classification, characterization of the nonlinear 

properties of existing contrast agents to determine their compatibility with longer-

wavelength excitation sources is a crucial first step towards their adoption as probes for 

multiphoton microscopy.  There are a myriad of properties by which one can evaluate 

fluorophores, but action cross section measurements, a product of absorption cross 

section and quantum yield, are a particularly useful metric to evaluate brightness [100].  

Unfortunately, accurate determination of cross sections is a complicated endeavor that 

requires detailed information of the spectral properties of a chromophore, sample 

concentration, and a well-characterized standard (Appendix I) [101,102].  As a result, the 

nonlinear properties of very few fluorophores have been reported, and in those limited 

instances, analysis has been limited to non-physiological solvents at wavelengths mostly 

within the Titanium:Sapphire range [103–107].  This wavelength limitation is in part due 

to the absence of reliable longer wavelength, ultrafast laser systems; however, given 

recent technological advances, two- and three-photon cross section measurements further 

out in the near-infrared is now achievable.  In the following section, we will detail our 

own effort to perform multiphoton characterization of the under-the-radar polymer dot 

and demonstrate its use for deep imaging.  
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2.2.4 Polymer Dots for In Vivo Vascular Imaging 

Multiphoton microscopy of vasculature requires the intravenous injection of 

bright, biocompatible contrast agents that preferably exhibit large absorption cross 

sections under near-infrared excitation and prolonged blood circulation times. Traditional 

exogenous contrast agents for in vivo multiphoton microscopy include organic dyes such 

as dextran-conjugated fluorescein and indocyanine green or inorganic semiconductor 

quantum dots [54,87]. Organic dyes, however, suffer from poor photostability and low 

quantum yields in aqueous biological environments [108–110]. Although quantum dots 

offer improved brightness and photostability, they present substantial toxicity concerns 

and are prone to bioaccumulation in organs and tissues [111–113]. Thus, the biological 

imaging community is eager for a safer, brighter, and more stable probe for deep, high-

resolution in vivo imaging.  

The highly fluorescent semiconducting polymer dot (pdot) is a promising 

candidate for in vivo multiphoton microscopy with material properties that can potentially 

overcome many of the limitations faced by other probes [97]. Although pdots are similar 

to quantum dots with respect to size (~10 – 100 nm, Figure 2.9) and quantum yield, 

pdots are brighter, more photostable, and present no clear evidence of biotoxicity 

[97,114]. A useful measure of fluorescence brightness is the action cross section, which is 

given by the product of the peak absorption cross section and the fluorescence quantum 

yield [97,115]. Pdots rival both quantum dots and organic dyes in that their two-photon 

action (2PA) cross sections are one to two orders of magnitude larger than inorganic 

quantum dots and three to five orders of magnitude greater than commonly used 

fluorescent dyes [97,98]. Moreover, polymer dots are readily amenable to 

functionalization and bioconjugation, enabling their use for tagged localization assays 

and molecular targeting [114,116]. Here we present evidence that we can take advantage 
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of pdots’ many favorable properties to produce high-quality in vivo multiphoton images 

of vasculature with excellent signal-to-background ratio (SBR) at depths exceeding 1 

mm. 

 

Figure 2.9: Polymer dot structures and spectra. (A) Molecular structures of three 
polymer dot variants: CNPPV (Left), PFBT (Center), and PFPV (Right). (B) 
Size distributions of CNPPV (21.89 nm), PFBT (31.47 nm), and PFPV 
(22.74 nm) as measured by dynamic light scattering. (B) Size distributions 
of CNPPV (21.89 nm), PFBT (31.47 nm), and PFPV (22.74 nm) as 
measured by dynamic light scattering.  (C) Absorption (Left) and emission 
(Right) spectra of CNPPV, PFBT, and PFPV [97]. 

Another advantage of pdots is their broad absorption, which enables multiphoton 

imaging with a variety of ultrafast laser sources, including ytterbium-fiber lasers (yb-

fiber, λex = 1060 nm) and longer wavelength optical parametric amplifiers (OPA). Such 

broadband compatibility takes advantage of the favorable photophysical characteristics of 

these unique laser sources to improve SBR beyond the capabilities of conventional two-

photon titanium-sapphire (Ti:S) microscopy. Moreover, the ability to excite pdots at 

longer wavelengths allows us to approach an ideal biological imaging wavelength 

situated around 1300 nm where absorption and tissue scattering events are minimized 

[46,84]. For instance, the photophysical advantages of longer wavelength excitation of 
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poly[{9,9-dioctyl-2,7-divinylene-fluorenylene-alt-co-{2-me-thoxy-5-(2-ethylhexyloxy)-

1,4-phenylene}] (PFPV; λex = 1060 nm) coupled with the ytterbium-fiber laser’s intrinsic 

pulse characteristics results in a 3.5-fold improvement in SBR, and an overall 50 µm gain 

in penetration depth in vivo. Multiphoton imaging of poly[2-methoxy-5-(2-

ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)] (CNPPV) labeled vasculature 

using an OPA (λex = 1225 nm) increases SBR by ~8.2 fold (z = 700 µm), and extends 

imaging depth 450 µm further into the brain. Notably, PFPV and CNPPV both exhibit a 

partial three-photon power dependence at these longer wavelengths, which contributes to 

a larger SBR by the suppression of out-of-focus fluorescence [84,117]. Overall, 

semiconducting pdots are ideal for MPM due their enhanced brightness over traditional 

fluorophores, and spectrally wide absorption range. These advantages coupled with their 

intrinsically low cytotoxicity help overcome the longstanding limitations of quantum dots 

and establish the immense potential of pdots for in vivo biological imaging.  

2.2.5 Multiphoton Power Dependence of Polymer Dots 

Two-photon excitation of pdots has been successfully demonstrated by other 

research groups, although it has been more generally referred to under the larger and less 

specific umbrella of multiphoton imaging [98]. With mounting evidence of the 

advantages of three-photon microscopy over 2P imaging for deep in vivo imaging, such 

as the suppression of out-of-focus fluorescence, reduced scattering, and improved SBR, 

the need to identify specific excitation wavelengths that produce two- versus three-

photon absorption becomes imperative [84,118]. Thus, we tested the excitation power 

dependence of various pdots including a CNPPV and two fluorene-based copolymers, 

PFBT and PFPV, at wavelengths ranging from 790 - 850 nm, 1060 nm, and 1200 – 1350 

nm (Figure 2.10). We find that all three semiconducting polymers exhibit a strong two-
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photon dependence at 800 nm. In the case of CNPPV and PFBT, this effect persists out to 

1060 nm whereas PFPV begins to demonstrate a partial three-photon power dependence 

at this wavelength. Pure three-photon fluorescence is most strongly demonstrated at 1300 

nm for CNPPV, 1350 nm for PFBT, and 1325 nm for PFPV (Figure 2.10). Within the 

1060 – 1300 nm excitation range, there is a clear rising transition from two-photon to 

three-photon excitation. This data is especially instructive in that it serves as a reference 

for the selection of appropriate excitation sources and wavelengths for MPM experiments 

with pdots.  

 

Figure 2.10: Polymer dot power dependence. (A) Logarithmic plots of the dependence 
of two- and three-photon induced fluorescence on excitation power. The 
excitation wavelength and fitted slope is indicated in the legend of each 
graph. The estimated uncertainty of each slope is reported as a standard 
deviation. Each plot corresponds to a distinct polymer dot species. (B) 
CNPPV (left), PFBT (middle), and PFPV (right) power dependence versus 
wavelength. The dashed and dash-dotted lines correspond to pure two- and 
three-photon power dependence, respectively. The blue shaded region 
represents the titanium-sapphire tuning range (λex = 700 – 1000 nm), the 
yellow shaded region represents the ytterbium-fiber laser’s bandwidth (λex = 
1060 nm; Δλ = 40 nm), and the green shaded region represents the optical 
parametric amplifier tuning range (λex = 1100 – 1400 nm).   



 47 

However, it is interesting to note that CNPPV undergoes a three-photon transition 

at a higher energy wavelength than either PFBT or PFPV, despite being the most red-

shifted of the three. This can potentially be explained by the unique chemical structure of 

poly(phenylene vinylene) polymers relative to fluorene-based co-polymers. The distinct 

molecular structures of the conjugated polymers affect the final energy levels of the pdot 

species in their excited states. Specifically, CNPPV has a donor-π-acceptor arrangement 

whereas PFBT and PFPV have donor-acceptor and donor-π-donor configurations, 

respectively, which leads to differences in the energy levels of their three-photon 

transitions. 

2.2.6 Polymer Dot Brightness Enhances Two-Photon Signal-to-Background Ratio  

The primary goal of this study is to evaluate the use of pdots for deep in vivo 

vascular imaging. C57 mice with intravenous injections of fluorescent dye, quantum dots, 

or pdots were imaged through an optical cranial window [119] using 800 nm excitation. 

All imaging experiments were performed in age-matched mice from the same litter to 

minimize any sources of variability in tissue properties that could potentially obscure 

depth comparisons. The C57 mice were prepared with cranial window implants and 

administered with retro-orbital injections of fluorescent contrast agents using methods 

previously described in Perillo et al. [120]. Dextran-conjugated fluorescein (λem = 524 

nm; FD2000S, Sigma-Aldrich) served as the organic dye of interest, chosen because of 

its prevalent usage as a contrast agent in biological experiments [95,115,121,122]. 

QD605 (λem = 605 nm; Q10001MP, ThermoFisher Scientific) was the selected 

semiconductor quantum dot, a probe known for its large quantum yield, atypically high 

brightness, and photostability [95,123]. Lastly, three pdot variants, PFBT (λem = 538 nm), 

PFPV (λem = 520 nm), and CNPPV (λem = 590 nm), were selected as they represent 
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different classes of polymers, including poly(phenylene vinylene) and fluorene-based 

copolymers [97]. Comparing 100 µm thick maximum intensity projections at the same 

cortical depths, the pdot data visually appears much brighter   than   either the fluorescein 

or quantum dot images, demonstrating an enhanced signal-to-background ratio given by 

pdots (Figure 2.11).  

 

Figure 2.11: Signal-to-background ratio is enhanced by polymer dots. (A) 
Logarithmic plots of the dependence of two- and three-photon induced 
fluorescence on excitation power. The excitation wavelength and fitted 
slope is indicated in the legend of each graph. The estimated uncertainty of 
each slope is reported as a standard deviation. Each plot corresponds to a 
distinct polymer dot species. (B) Normalized signal-to-background ratio 
(SBR) versus depth comparison of polymer dots relative to fluorescein and 
QD605; λex = 800 nm. SBR is diminished at the surface due to high 
background signal from the dura resulting from second harmonic generation 
of collagen. At ~150 µm SBR is at a maximum for all contrast agents and 
gradually decreases with depth. Relative to QD605 and fluorescein, all three 
polymer dots retain a higher SBR beyond ~150 µm. To ensure fair 
comparisons, the average laser power at each depth was maintained at 
consistent levels across the separate imaging experiments.   

A quantitative comparison of the contrast agents reveals that PFPV produces the 

largest signal-to-background ratio, followed by PFBT then CNPPV.  Relative to QD605 
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and fluorescein, pdot signal-to-background ratio is larger throughout the entire depth 

range. To ensure fair comparisons, the average laser power at each depth was maintained 

at consistent levels across the separate imaging experiments. Furthermore, appropriate 

filters were selected for all experiments to maximize the collection efficiency of each 

fluorophore and ensure fair comparisons of the separate image stacks. Vasculature in 

mice labeled by QD605 (Figure 2.11) appeared noticeably distorted and discontinuous, 

and imaging was limited to a 550 µm depth relative to the cortical surface. This is 

explained by the fact that the mouse did not survive the retro-orbital injection of 

inorganic quantum dots due to toxic effects, resulting in an absence of active circulation 

to evenly distribute the contrast agent in plasma. Meanwhile, chronic in vivo imaging 

experiments with repeated intravenous injections of pdots in the same mice over the 

course of several months showed no signs of cytotoxicity or deleterious effects on the 

animals, supporting several published claims of pdot biocompatibility [114,116,124,125]. 

An example of two-photon data collected from a mouse injected with 50 nM of PFPV 

showcases excellent signal-to-background ratio up to 650 µm deep and appreciable signal 

levels highlighting clearly delineated blood vessels from 750 – 850 µm (Figure 2.12). 

The enhanced signal-to-background ratio diminishes the requirement for increased frame 

averaging, enabling rapid data acquisition of dynamic processes. 
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Figure 2.12: Two-photon imaging of PFPV polymer dots intravenously injected in 
C57 mice. (A) Laser speckle contrast image of surface blood vessels. (B) A 
tangential (xy) maximum intensity projection of a 365 × 365 × 850 µm3 
image stack collected from the region of interest (ROI) delineated in red in 
panel A. (C) A max intensity projection of a 3D reconstruction from the 
same data. (D) 2D tangential (xy) projections over shorter depth ranges of 
the stack. Unlabeled scale bars = 100 µm. 

2.2.7 Longer Wavelength Excitation of Polymer Dots 

A distinct characteristic of pdots is their wide absorption range [97]. The broad 

excitability of pdots enables their compatibility with a number of excitation sources 

including long wavelength, tunable laser sources between λex = 1100 and 1400 nm. The 

maximum imaging depth of multiphoton microscopy is ultimately determined by signal-

to-background ratio (SBR), which is influenced by the scattering and absorption events 

that occur in biological tissue as well as the power dependence of an emitter.  Excitation 

light that is attenuated by scattering or absorption before reaching a contrast agent fails to 

produce any emitted fluorescence, and the fraction of attenuated photons is heavily 

dependent on wavelength. The fraction of excitation light reaching the focal volume at a 



 51 

depth, z, can be approximated as exp[-(µa(λ)+µs(λ))z], where µa(λ) and µs(λ) are 

wavelength-dependent absorption and scattering coefficients [46,126]. Experimental data 

of effective attenuation lengths in biological tissue between 1300 nm and 1700 nm 

supports the accuracy of this theoretical model [57]. Modeling of this function reveals 

that there is an ideal biological imaging wavelength situated around 1300 nm [46] where 

photo-attenuation is minimized in brain tissue (Figure 2.13). In addition, 1300 nm light 

can be used to achieve three-photon excitation of many fluorophores, which reduces out-

of-focus excitation and thereby decreases background [82,83,127] compared with two-

photon excitation.  

 

Figure 2.13: An ideal biological imaging wavelength is situated at 1300 nm [46,126]. 
The blue line indicates the photon fraction at a 1 mm depth in brain tissue 
versus wavelength. The red line indicates the percent of photon absorbed 
versus wavelength. The wavelength excitation regions of the titanium-
sapphire (beige), ytterbium-fiber laser (gray), and optical parametric 
amplifier (blue) laser systems are delineated by color. 
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Therefore, it is readily understood that brighter fluorophores such as pdots that 

exhibit a strong 3P power dependence in response to 1300 nm excitation should yield a 

markedly improved SBR and maximize imaging depth. Unfortunately, the three photon 

action cross section of a pdot such as CNPPV is quite low at 1300 nm. However, a 

suitable compromise for an optimal imaging wavelength is at 1225 nm where attenuation 

length remains relatively close to its maximum (Figure 2.13) and the slope of CNPPV’s 

power dependence is ~2.5 (Figure 2.10), representing a combination of two- and three-

photon excitation processes. Indeed, longer wavelength excitation of CNPPV-labeled 

vasculature (λex = 1225 nm) allows us to exploit these principles for optimized deep 

imaging and achieve a tissue penetration depth up to 1.3 mm beneath the pial surface 

(Figure 2.14).  In contrast, two-photon imaging (λex = 800 nm) of the same region of the 

same mouse only reached a maximum imaging depth of 850 µm (Figure 2.14(b)). A 

comparison of the CNPPV-labeled vascular networks imaged at the different wavelengths 

shows that SBR is vastly improved by 1225 nm excitation and a higher-order power 

dependence (Figure 2.14(c-d)). The effect is pronounced enough that the SBR of the 

1225 nm image stack at z = 900 µm (SBR ~ 7.8) exceeds the SBR of the 800 nm image 

stack near the cortical surface (SBR ~ 7.2; z = 350 µm). A plot of background signal 

versus depth shows that the difference in SBR is directly owed to the rapid increase of 

background introduced by 800 nm excitation relative to the modest rise of background 

seen from 1225 nm excitation (Figure 2.14(d)). Quantification of SBR and background 

throughout the superficial dura (z ~ 0 – 150 µm) is omitted from these plots due to high 

background caused by second harmonic generation of collagen. 
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Figure 2.14: Longer wavelength excitation (λex = 1225 nm) versus shorter 
wavelength excitation (λex = 800 nm) of CNPPV-labeled C57 
vasculature. (A) Sagittal (xz) projection of a 365 × 365 × 1300 µm3 image 
stack at λex = 1225 nm using an optical parametric amplifier source. (B) 
Sagittal (xz) projection of a 356 × 365 × 850 µm3 image stack of the same 
region show in A at λex = 800 nm using a titanium-sapphire source. (C) 2D 
tangential (xy) projections over shorter depth ranges of the stacks shown in 
A and B. (D) Comparison plots of signal-to-background ratio (SBR) versus 
depth (Left) and background intensity versus depth (Right). Scale bars = 100 
µm. 

In the two-photon laser system, a titanium:sapphire (Ti:S) oscillator (Mira 900, 

Coherent) beam is steered to a pair of galvanometer scanners (6125HB, Cambridge 

Technology) driven by servo driver amplifier boards (671215H-1HP, Cambridge 

Technology). A Keplerian telescope beam expander which consists of a B-coated scan 

lens (f = 80.0 mm, AC254-080-B, Thorlabs) and tube lens (f = 200.0 mm, LA1979-B-N-

BK7, Thorlabs) is used to fill the back aperture of the microscope objective 

(XLUMPLFLN20XW 0.95 NA or XLPLN25XSVMP2 25X 1.0 NA, Olympus). 
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Excitation and emission paths are separated with a 775 nm cutoff dichroic mirror (FF775-

Di01-52x58, Semrock). Fluorescence is epi-collected, transmitted through either a 510/84 

bandpass filter (FF01-510/84-25, Semrock) or a 609/181 bandpass filter (FF01-609/181-

25, Semrock), and detected by a photomultiplier tube (H10770PB-40, Hamamatsu 

Photonics). Image acquisition was controlled using custom software (LabVIEW, National 

Instruments) and image frames were collected at a 512 x 512 pixel size. Image stacks 

were collected at a z-resolution of 5 µm and three frames were averaged from 0 – 200 µm 

cortical depths, five frames from 200 – 500 µm, eight frames from 500 – 700 µm, and 

twelve frames beyond 700 µm. All mice specimens imaged by Ti:S were excited at λex = 

800 nm. 

The three-photon laser schematic for this study is provided below (Figure 2.15).  

A 5W laser is used to pump a λex = 800 nm mode-locked Ti:S oscillator (Mira 900, 

Coherent) which is stretched by an external stretcher/compressor to seed a regenerative 

amplifier (RegA 9000, Coherent). The amplified pulse is compressed and the spectrum of 

this 800 nm pulse can then be shifted and tuned by a customized optical parametric 

amplifier at 511 kHz (OPA 9800, Coherent) [81]. Three-photon in vivo imaging was 

performed at λex = 1225 nm using a 25x multiphoton objective (XLPLN25XSVMP2 25x 

1.0 NA, Olympus). Again, image stacks were collected at a z-increment of 5 µm and all 

frames were 512 x 512 pixels. Three frame running averages were recorded for the first 

500 µm and an additional two frames were averaged each 200 µm interval beyond that.  
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Figure 2.15: Three-photon imaging schematic. A 5W pump (Verdi, Coherent) is used 
to seed a Ti:Sapphire (Ti:S) oscillator (Mira 900, Coherent), which is then 
stretched by a modified external stretcher/compressor and amplified by a 
Ti:S regenerative amplifier (RegA, Coherent) seeded by a 18W pump (Verdi 
G18, Coherent). The amplified pulse is then converted to a longer 
wavelength by an optical parametric amplifier tunable over a 1100 – 1400 
nm range. The OPA output is compressed by a set of prisms before entering 
the scanning optics resulting in an objective-focused beam with a pulse 
width of ~45 fs. 

2.2.8 High Power Fiber Laser Imaging of Polymer Dots  

Pdots’ broad light absorption further permits excitation by a high average power 

ytterbium-fiber laser (yb-fiber; λex = 1060 nm). Fiber lasers are a lower-cost alternative to 

OPA imaging, and offer excellent pulse characteristics as well as ease-of-operability to 

the user [128]. Although the fiber laser’s fixed output wavelength (λex = 1060 nm) does 

not coincide with the ideal biological imaging wavelength (λex = 1300 nm), a comparison 

of in vivo image stacks of PFPV-labeled C57 vasculature collected at λex = 1060 vs 800 

nm clearly illustrates the advantages of the pdots’ excitability by a fiber laser (Figure 

2.16). Although the Ti:S penetration limit (z = 850 µm) is not significantly extended, the 

image quality (contrast and signal-to-background ratio) of the yb-fiber images is 

substantially improved under 1060 nm excitation, an effect which is most prominent 

beyond ~600 µm (Figure 2.16(a)). This corresponds to the z-position at which maximum 
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Ti:S output power was reached whereas the upper limit of fiber laser output power was 

not met before all signal was lost. In addition to the higher average power of the yb-fiber 

relative to the Ti:S source, two primary advantages can be attributed for the improvement 

in signal-to-background ratio. First, the number of photons lost to scattering and 

absorption events is reduced by longer wavelength excitation (λex = 1060 nm vs. 800 nm) 

(Figure 2.13). At an 850 µm depth, the remaining photon fraction at λex = 1060 nm is 

approximately five times greater than at λex = 800 nm. Second, PFPV exhibits partial 

three-photon power dependence at 1060 nm (n ~ 2.38 ± 0.08) versus a two-photon 

excitation signature at 800 nm (n ~ 1.93 ± 0.14) (Figure 2.10). This partial three-photon 

dependence at λex = 1060 nm further improves signal-to-background ratio through 

suppression of background fluorescence due to a higher-order nonlinear dependence on 

excitation intensity. Thus, longer wavelength excitation of PFPV is expected to improve 

both the signal  and background of images at  all  depths.  This expectation is empirically 

demonstrated by line profiles drawn across identical in-plane blood vessels located 700 

µm beneath the surface imaged separately at λex = 1060 and 800 nm (Figure 5(B-C)). 

The data reveals that the signal-to-background ratio of the λex = 1060 nm image is ~3.5 

times greater than the λex = 800 nm signal-to-background ratio. Signal-to-background 

ratio improvement at z-positions beyond the depth at which Ti:S excitation becomes 

power-limited demonstrates that the higher output power of the yb-fiber laser coupled 

with longer wavelength excitation is a critical advantage for deep in vivo imaging. We 

emphasize that similar improvements made by longer wavelength excitation cannot be 

achieved with conventional fluorophores such as fluorescein (!! = 0.31 at λex=1050 nm), 

which exhibits low action cross sections beyond the Ti:S range (>1000 nm) and are 

unlikely to undergo a three-photon transition at 1060 nm [81,129]. A major practical 

benefit of improved SBR is the ability to collect high-quality vessel line scans at greater 
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depths to quantify blood velocity. Vessel line scanning quantifies flow velocity along the 

central axis of blood vessels at high frequency, relying on the contrast between injected 

plasma fluorophores and red blood cells (RBCs) which remain dark [41]. Therefore, high 

signal-to-background ratio is essential to accurately differentiate RBCs and fluorescent 

plasma and obtain precise flow velocity measurements. Here, we show that vessel line 

scans of PFPV-labeled mice form an image containing distinct streaks that represent 

RBCs traveling at a mean velocity of 1.28 ± 0.20 mm/sec at a depth of 750 µm beneath 

the pial surface (Figure 2.16(d)).  

Fiber laser imaging was accomplished with a commercial fiber oscillator 

(Origami-10, OneFive GmbH) that was used to seed a custom-built ytterbium fiber 

amplifier [130]. The amplifier consisted of a 6-meter long segment of double-clad 

ytterbium-doped polarization-maintaining large-mode-area optical fiber with a core 

diameter of 25 µm and cladding diameter of 250 µm (YB1200-25/250DC-PM, Thorlabs), 

coiled to a radius of less than 7 cm to suppress higher-order modes and achieve single-

mode output. The fiber was pumped by a fiber-coupled laser diode emitting up to 30 W 

of 915-nm light (K915FA3RN-30.00W, BWT Beijing). With a pump power of 23W, the 

amplifier produced 6 W of output at 1060 nm with a repetition rate of 80 MHz, and a 

grating pair was used to compress the pulse width to ~120 fs in the sample plane. The 

laser power was adjusted using a Glan-type calcite polarizer/half wave-plate 

combination.  Line scans were acquired along vessel axes by collecting the fluorescence 

intensity while the galvo mirrors rapidly scanned a linear, user-defined path along a 

capillary. Each line consisted of 200 pixels imaged at a rate of 450 kHz, enabling a line 

rate of 940 Hz. To build a trajectory, the fluorescence intensity is plotted as a function of 

time (line number) and space (xy-coordinate, or pixel in one line). A sufficient number of 

lines were scanned along a trajectory to quantify the blood flow from analyzing the dark 
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streaks. A Radon transform was used to determine the inclination angle of the dark 

streaks which, when combined with the known temporal and length scales, allowed for 

calculation of the RBC velocity [41,131,132]. 

 

Figure 2.16: High power fiber laser imaging of PFPV-labeled vasculature improves 
the SBR of images. (A) Image stacks of the same cortical region collected 
using a 1060 nm ytterbium-fiber laser (left, 256 x 256 x 900 µm3) or a 800 
nm Ti:S excitation source (right, 256 x 256 x 850 µm3). The depth at which 
maximum power output from the Ti:S laser was reached is marked by a 
black line (z = 600 µm). Scale bars = 75 µm. (B) 50 µm thick maximum 
intensity projections of the images stacks shown in A centered at 700 µm. 
The blue and red lines denote the positions of analyzed 45 µm long line 
profiles. Scale bars = 75 µm. (C) A plot of normalized signal intensity 
relative to position. (D) Left, a vessel line scan collected at a depth of 750 
µm; scale bar = 75 µm. Right, the analyzed blood flow velocity is 1.29 ± 
0.20 mm/sec; scale bar = 25 ms and 20 µm. 
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2.2.9 Polymer Dot Discussion and Future Directions 

To evaluate pdots’ multiphoton properties, we prepared multiple polymer variants 

via nanoprecipitation, a simple and rapid procedure. The batch size could be easily varied 

to prepare ample amounts of the nanopolymers for vascular imaging of tens of mice per 

preparation. The polymer dots had the additional advantage of a long shelf life (upwards 

of 5 months) and easy storage, characteristics that allow them to be easily disseminated 

for broad use [133]. Through our imaging experiments, we demonstrate that pdots offer a 

wealth of optical properties that make them very well suited for deep, in vivo multiphoton 

fluorescence microscopy. However, the lack of knowledge surrounding their nonlinear 

excitation properties has prevented their widespread adoption as popular contrast agents 

in multiphoton fluorescence imaging. To remedy this, we have characterized the two- 

versus three-photon power dependence of three pdot variants (CNPPV, PFBT, and 

PFPV) representing different polymer classes including poly(phenylene vinylene) and 

fluorene-based copolymers. We found that all three pdot species demonstrate a two-

photon power dependence across the conventional Ti:S tuning range (λex = 780 – 850 

nm). Meanwhile, researchers who rely on the photophysical advantages that accompany 

three-photon microscopy, such as reduced out-of-focus fluorescence and diminished 

scattering, in order to improve the signal-to-background ratio in their imaging 

experiments can do so via excitation of CNPPV at 1300 nm, PFBT at 1350 nm, and 

PFPV at 1325 nm. In contrast, two of the conventional organic dyes evaluated, Texas 

Red and indocyanine green, remain rooted in the two-photon regime at comparable 

wavelengths (λex = 1350 nm and 1280 nm, respectively) whereas only fluorescein 

possessed a three-photon power dependence near this spectrum [81].  

Furthermore, we justify the use of pdots over conventional fluorophores for 

multiphoton imaging experiments in the 800 – 900 nm excitation range due to their 
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increased brightness relative to quantum dots, organic dyes, and fluorescent proteins. 

However, we were unable to measure absolute cross sections at longer wavelengths since 

excitation becomes a mixture of two- and three-photon absorption processes, which 

makes defining a cross section ambiguous. Nevertheless, previously reported cross 

section measurements demonstrate that pdots [98] are brighter than quantum dots, 

organic dyes, and fluorescent proteins [87,129] within a 770-870 nm excitation range 

with peak cross sections around ~2.02 to 5.50×105 GM, as illustrated in Figure 2.17. 

When compared to fluorescent dyes and proteins, pdot cross sections are three to five 

orders of magnitude larger. Most notably, this comparison includes organic molecules 

specifically engineered for enhanced two-photon absorption [95,134]. In particular, many 

fluorescent dyes can be problematic within in vivo biological settings due to a reduced 

quantum yield and poor photostability in aqueous environments [108–110]. In contrast, 

pdots composed of hydrophobic conjugated polymers are strongly resistant to this effect 

[97]. Of course, highly emissive quantum dots such as QD605 [95] and QD535 [129] do 

come close to matching a dimmer pdot such as MEH-PPV in brightness. Therefore, one 

might be tempted to employ quantum dots as their preferred class of contrast agents due 

to their well-regarded photostability and spectrally broad light absorption, an essential 

feature for multicolor imaging experiments. However, pdots share these same properties 

[114] as well as the critical advantage of exhibiting no evidence of cytotoxicity. There are 

conflicting reports regarding quantum dot biocompatibility which can most likely be 

attributed to physiochemical and environmental factors [113]; yet in our hands, 

intravenous injection of QD605 was acutely toxic and fatal to mice whereas identical 

chronic studies with pdots did not produce any observed health concerns. Nevertheless, a 

biological mechanism of pdot blood clearance has yet to be thoroughly assessed and 
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future research efforts should be directed to determine whether bioaccumulation in the 

spleen, liver, kidney or other major organs is a valid concern.  

 

Figure 2.17: Semilog plot of polymer dot brightness relative to quantum dots (QDs), 
organic dyes (ODs), and fluorescent proteins (FPs). The two-photon 
action cross sections of polymer dots are plotted as circles connected by a 
solid line (PFPV in green, and MEH-PPV in red-orange) [98]. The blue 
shaded region corresponds to the expected range of quantum dots’ two-
photon action (2PA) cross sections [87,95]. The wavelength-dependent 2PA 
cross section of an atypically bright quantum dot species, QD605, is 
represented by black triangles with a dashed and dotted line [95]. The red 
shaded region corresponds to the expected range of 2PA cross sections of 
fluorescent dyes and proteins [87]. The 2PA cross sections of two typical 
fluorescent dyes are represented by diamonds connected by dashed lines 
(rhodamine B in magenta, fluorescein in dark green) and the 2PA cross 
sections of two typical fluorescent proteins are represented by squares 
connected by dotted lines (eGFP in blue and YFP in black) [129]. 

Next, we were able to show that pdots’ brightness and excitability in the NIR 

regime improves SBR at considerable depths in mouse cortex at an 800 nm excitation 
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wavelength relative to identical experiments performed with an exceptionally bright 

quantum dot species, QD605, and a commonly used organic dye, dextran-conjugated 

fluorescein. As noted above, QD605 is cytotoxic when administered intravenously, 

particularly at the high concentrations necessitated by deep imaging experiments. Ex vivo 

animal studies may not be hindered by such a consequence; however, in the case of 

vascular imaging, continuous circulation and blood flow is essential to avoid distorted 

vessel appearance and photobleaching of the now stagnant probes.  The overall imaging 

depth of the fluorescein-labeled vasculature matched that of the pdot-labeled mice; 

however, the signal-to-background ratio of the fluorescein images were less satisfactory 

resulting in reduced vascular clarity (~1.8-fold at z = 550 µm). The implications of poor 

signal-to-background include obfuscated analysis and degradation of automated image 

segmentation schemes. In this case, signal-to-background improvement from brighter 

contrast agents implies that depth penetration and corresponding signal-to-background 

was signal-limited.  However, in contexts where background fluorescence becomes the 

limiting factor, such as in regions with large overlying blood vessels or high vascular 

density, background increases commensurately with signal, and signal-to-background is 

predicted only by numerical aperture, depth, wavelength, and attenuation length, rather 

than by the brightness of the contrast agent [84].  

Another substantial limitation of fluorescein and other conventional organic dyes 

is their narrow absorption range. At λex = 800 nm, fluorescein’s two-photon action cross 

section is ~36 GM and at λex = 1050 nm its cross section is a barely detectable 0.31 GM 

[129]. In contrast, pdots exhibit broad multiphoton absorption, meaning that they can be 

efficiently excited with a variety of laser sources all the way out to 1400 nm. We were 

able to demonstrate that the use of longer excitation wavelengths and higher-order 

nonlinear excitation allows us to improve signal-to-background ratio and overcome the 
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tissue scattering limits of imaging depth observed with conventional 2PM (Section 

2.2.7). Specifically, excitation at λex = 1225 nm attains a 1300 µm imaging depth whereas 

λex = 800 nm results in an 850 µm cortical depth (Figure 2.14). Moreover, the signal-to-

background ratio of the images collected at the longer wavelength excitation greatly 

exceed those recorded at an 800 nm excitation at all depths, producing a much higher 

quality three-dimensional volume. Through modeling and our power dependence 

characterization we are able to attribute this gain in penetration depth and signal-to-

background ratio to the reduced scattering and photo-attenuation of longer excitation 

wavelengths, and the ancillary reduction of background signal due to CNPPV’s partial 

three-photon power dependence at 1225 nm. In regard to the neuroscience community, 

the extended imaging depth with longer wavelength excitation enables researchers to 

investigate neural layers of anatomy beyond the cortex and corpus callosum, most 

notably the hippocampus [82]. In addition, the biological imaging community can take 

advantage of pdots’ overlapping broad absorption spectra, which permits several pdot 

species emitting at discrete bands to be excited simultaneously at a single wavelength. 

This characteristic coupled with the fact that pdots can be readily functionalized and used 

to tag unique cellular structures [116] allows researchers to design simple and effective 

multicolor imaging experiments. An important caveat to consider, however, is that pdots 

were delivered intravenously in our studies, and labeling neural structures located in 

high-density extravascular brain tissue could pose a challenge due to the relatively large 

diameters of pdots (~20-30 nm). Recent efforts have produced pdot nanoparticles with 

sub-5 nm diameters, yet the yield from these preparations is still quite low [135]. 

We also take advantage of pdots’ broad light absorption to image PFPV-labeled 

mice and resolve vasculature using a custom, home-built ytterbium-fiber laser (Section 

2.2.8) [130]. Again, we observe that reduced scattering of longer wavelength excitation 
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light and a partial three-photon power dependence improves imaging depth slightly 

(!!"" !" = 850 µm; !!"#" !" = 900 µm) (Figure 2.16). We note that the signal-to-

background ratio of the 1060 nm excitation images is improved most substantially 

beyond ~600 µm, an imaging depth which corresponds to the z-position at which the Ti:S 

output power was saturated.  

Future advances in polymer engineering, structure based-design, and mutagenesis 

can vastly improve pdot performance and enhance multiphoton absorption at 1300 nm for 

optimized deep imaging. Redesign and optimization of pdots’ molecular structure for 

improved three-photon imaging will involve an exploration of the effects of donor-π-

donor, donor-π-acceptor-π-donor, and acceptor-π-donor-π-acceptor conformations on 

absorption cross sections and quantum yield. Overall, pdots present an exciting new 

approach to multiphoton in vivo imaging due to their enhanced brightness, broad 

excitability, and nontoxic features. With brighter, biocompatible probes, researchers will 

be able to resolve vascular architecture in living organisms with improved clarity and 

depth, enabling critical insights into fundamental biological problems. 

2.2.10 Cranial Window Quality Impacts Imaging Depth 

Thus far, factors that influence imaging depth have been discussed scientifically 

and without much ambiguity.  Certainly, using a high power, short pulse duration, low-

repetition rate ultrafast laser to target a far-red fluorophore that has been engineered to 

exhibit a three-photon power dependence at its peak action cross section wavelength is a 

sound strategy for deep imaging.  Bonus points in the form of added penetration depth are 

awarded if that excitation wavelength resides within an ideal biological imaging band that 

minimizes tissue scattering and water absorption.  However, in this section I would like 

to acknowledge the surgical art that accompanies the science of deep imaging.  Given 
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that the aforementioned factors are all optimized, the clarity of an optical window can 

make or break a deep imaging experiment.   The density and thickness of rodent skull 

severely limits excitation and emission light transmission, meaning that “non-invasive” 

procedures that either thin or remove the skull cap overlying the cortex are needed for in 

vivo imaging.  Thinned skull procedures are perhaps the least disruptive surgical 

procedure, as they circumvent the activation of microglia and astrocytes seen with 

craniotomies, but limit access to small regions around ~0.2 mm2 [72]. Moreover, bone 

regrowth is a salient concern, especially in younger mice, leading to an inconsistency in 

imaging depth with younger mice in particular.  In contrast, polished and reinforced 

thinned skull (PoRTS) preparations achieve similar minimally invasive outcomes, with 

the added benefit of creating a larger and chronically stable window by fusing transparent 

glass-cement to the thinned skull [72].  However, imaging depth through thinned 

windows remains limited to a few hundred microns.  On the other extreme end of the 

spectrum, endoscopic insertions of embedded prisms or gradient index lenses represent 

viable methods to maximize imaging depth, but are extremely invasive.  These 

procedures generally rely on the excavation and removal of overlying tissue layers (e.g. 

cortex) to gain optical access to otherwise inaccessible anatomical regions (e.g. 

hippocampus).  Despite contrary claims received in personal communications, common 

sense dictates that surgical preparations that remove entire sections of brain matter cannot 

be considered non-invasive.  Moreover, resulting multiphoton images are lower in 

resolution due to the stunted numerical aperture of an optic like a gradient index lens (e.g. 

0.6 NA) [25] relative to that of a much larger diameter, specialized multiphoton objective 

(e.g. 1.0 NA) [81].   

A reasonable middle ground to skull thinning or pseudo-endoscopic procedures is 

the well-established optical cranial window, in which a circular bone flap is removed and 
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substituted with a coverslip.  The coverslip is then secured through a combination of 

cyanoacrylate and dental cement [74].  It has been my frustrating experience that the 

quality of the cranial window is perhaps the most important consideration with respect to 

imaging depth.  I will choose a skilled surgeon over an expensive laser system or a well-

designed microscope every time if my experimental goal is strictly to maximize imaging 

depth.  What follows then are lessons I’ve learned in the operating room, which I hope to 

impart to the future generation of surgeons to follow.   

First and foremost, imaging depth has an inverse association with mouse age and 

one should aim to procure ~18/21 gram (female/male) C57 mice which are approximately 

~five weeks old [136].  Younger mice are much more amenable to deep imaging, perhaps 

due to the reduced myelinization of their still developing brains [137].  However, for 

chronic imaging experiments, where the same specimen will be imaged for months, it is 

prudent to wait until the ~20/25 gram mark around ~eight weeks.  If a chronic window is 

implanted too early, the effects of bone regrowth will obscure the window.  More 

drastically, the physical growth of the mouse’s head can cause the non-pliable head stage 

to become insecure.  For non-chronic preparations of younger mice, where growth is 

irrelevant, an entirely different set of concerns take precedent.  Coverslips, which are 

generally circular and 5 mm diameter, become much harder to place within the confines 

of the coronal or lambdoidal sutures, off to either side of the sagittal suture, simply 

because the mouse’s skull is much smaller.  One option is to drill over the sagittal line, 

but this is quite risky due to the proximity of delicate and critical blood vessels.  Another 

option is to use a smaller diameter coverslip (e.g. 3 mm).  Although this avoids 

complications during surgery, it becomes extremely difficult to suspend water immersion 

media between the small coverslip and imaging objective at longer working distances.  

Moreover, a smaller window limits the anatomical imaging access. 
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Upon selecting an appropriately aged mouse for single or chronic imaging studies, 

good surgical technique then determines cranial window quality.  Please note that the 

following is not meant to be a substitute or alternative to approved animal protocols or 

institutional policies, which always take precedent to any information contained here.  

This documentation is simply meant to outline supplementary tips and tricks to ensure 

better outcomes for the patient and the experiment.  With that in mind, it is good practice 

to fully remove exposed periosteum and other remaining connective tissue following 

scalping procedure.  In the short-term, omitting this step introduces the risk of loose 

tissue catching the drill bit.  In the long-term, the periosteum acts as a semi-aqueous layer 

between the skull and the fixed head stage, resulting in an impermanent bond.  Once the 

periosteum is removed, I advise the surgeon to scuff the skull surface with a coarse dental 

burr at low speeds, apply a thin layer of cyanoacrylate, and allow it dry completely.  The 

additional grit and surface area introduced by the coarse drilling allows the cyanoacrylate 

to adhere to the parietal bone with greater strength and reduces the likelihood that the 

rodent is able to pry the head stage free in the following weeks or months.  Applying a 

thin layer of cyanoacrylate before drilling the cranial window has the added benefit of 

making a non-physiological layer available on which one can lightly trace an outline in 

order to guide the position and placement of the coverslip.  It is far easier to adjust this 

outline on cyanoacrylate than it is on skull.   

Once this layer is fully dry, it is time to drill through the skull.  It is extremely 

important to stabilize your wrists and forearms.  If your drill yielding limb is floating 

unsupported, your hand and arm will tire out more quickly, increasing the likelihood of a 

mistake.  A simple solution is to use a free hand to prop up your wrist, or to rest a 

forearm on the edge of the surgical table while being careful to maintain a sterile field.  In 

addition, it is wise to fully exhale prior to a delicate operation.  The intuitive action is to 
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take a deep breath; however, holding in a deep breath as carbon dioxide accumulates in 

your lungs is not advisable while holding a rapidly spinning dental burr just microns 

away from a live pulsating brain.  Also, this may seem obvious, but it is always best to 

use a fresh and sharp dental burr.  All burrs, used or new, must be sterilized, but an older, 

dull burr is decidedly less effective for craniotomies.  Considering the delicacy of the 

surgical procedure, the cost savings of reusing a dental burr is difficult to justify.  When 

creating the cranial opening, it is best to use low drill speed and more passes.  High drill 

speeds can actually result in charring of the skull surface, and this heat is eventually 

transferred to the cortex.  Even at lower drilling speeds, one should continually bathe the 

region of interest in sterile saline to keep the area lubricated and cool.  If the dental burr 

repeatedly snags onto rough edges during the passes, two remedies work well.  One is to 

change the direction of the circular passes – clockwise to counter-clockwise or vice versa.  

Another option is to change the direction of drill rotation if the model of drill being used 

has this feature.  Finally, be very aware of the age of the mouse specimen.  Young mice 

have much thinner skulls and it is all too easy to mistakenly drill through the parietal 

bone and into the brain if operating under the assumption that the mouse is older and 

thick-skulled.   

Once the skull incision starts to loosen, a flap should form.  Intuitively, a novice 

surgeon will attempt to pry or lever this flap to remove it.  This is ill-advised, as the see-

saw effect will drive the opposite end of the flap directly into the cortex.  Instead, one 

should pull this flap upwards and out to prevent lacerating the exposed tissue.  

Nonetheless, some bleeding is expected and it is important to have sterile surgifoam 

available to clot any active sites.  If ignored, these areas will scab up and remain 

permanent even when healed, since the scab is unable to fall free when trapped beneath a 

coverslip.  In addition, it is imperative to keep the exposed brain bathed in sterile saline, 
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otherwise the surface tissue will dry out quickly and fail to return to a healthy state.  

When placing the coverslip, I suggest that it should be embedded in the cranial opening, 

not on it.  This means the drilled opening will have to be slightly larger than the 

coverslip’s diameter.  Otherwise, an air gap will form between the cortical surface and 

the coverslip bottom.  Of course, this gap will eventually become imbued with 

cerebrospinal fluid; however, the more interfaces between the sample plane and the 

objective, the more scattering events that will take place to diminish imaging depth. In 

addition, this gap will unnecessarily detract from your objective working distance and 

further limit imaging depth.  Therefore, it is also critical to firmly apply pressure 

orthogonally to the coverslip to ensure even contact with the cortex until it is secured in 

place with cyanoacrylate.  Once the coverslip is attached, the rest of the head stage is 

formed using a layer of dental cement.  It is important to apply a layer of dental cement 

thin enough to avoid eating into the working the distance of the objective, but thick 

enough to create raised edges along the coverslip perimeter.  This rim will act as a well to 

hold immersion media beneath the objective.  Finally, it is prudent to apply a sealing 

layer of cyanoacrylate over the dental cement; this hardens the cement and lessens the 

probability that it will be scratched off or damaged by the specimen.  Once the cranial 

window is in place, it is tempting to commence imaging experiments.  However, it is best 

to give the subject at least ~two weeks to heal, and more if possible.  Otherwise, 

macrophages and microglia activated during surgery will roam the cortex and engulf any 

foreign contrast agents they encounter.  This results in fluorescent cells making an 

unwanted appearance in the vascular images, particular towards the dura (Figure 2.18).   
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Figure 2.18: Issues with cranial window preparation.  (A) An example of an (A1) 
intact cranial window, (A2) partial skull regrowth, and (A3) severe skull 
regrowth.  (B1) If the animal is not given at least two weeks of recovery 
time, activated macrophages and microglia will phagocytose fluorescent dye 
molecules and become visible in the dura. (B2) Inset of the 25 – 50 µm deep 
max intensity projection in B1. 

Securing the animal during an imaging session is yet another quagmire the 

researcher will encounter, as multiphoton microscopy is a highly motion-sensitive 

technique.  More specifically, two forms of pulsatile motion will introduce noticeable 

image artifacts.  First, pulsatile brain motion as a result of arterial expansion following 

heart muscle contraction is inevitable [138].  It is possible to devise data acquisition or 

image processing schemes to circumvent resulting image artifacts; however, passive 

correction techniques are sub-optimal due to the nonlinearity of pulsatile brain motion 

and more sophisticated correction methods seek to actively monitor cardiac activity.  This 

challenge reinforces the importance of firmly securing the coverslip against the brain 

surface rather than the parietal bone, since the additional compression serves to dampen 

pulsatile brain activity.  A second type of motion artifact arises from rodent respiratory 

activity.  In principle, image artifacts from this motion are easily eliminated by rigidly 
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securing the rodent head with a stereotaxic fixation.  Our lab uses two frames (SG-4N 

and SGM-4; Narishige), which use a three-point fixation clamping method of the mouth, 

nose, and ear.  In our experiments, we find that ear fixation is inconsistent and that 

respiratory motion artifacts are visible in smaller, higher resolution scans.  To remedy 

this, I developed a clamping method to directly secure the cranial window to the 

stereotaxic frame (Figure 2.19).  The main arm is compatible with the SG-4N and SGM-

4 base plates, and the forked cranial window attachment is implanted into the rodent’s 

head stage during surgery.  The design has the additional benefit of ensuring that the 

cranial window is centered with respect to the stereotaxic frame and normal to the 

imaging system’s optical axis.  In addition, a custom nose cone was designed featuring 

two valves, one inlet for isoflurane delivery and one outlet for exhaust sequestration 

using a charcoal canister.   

 

Figure 2.19: Secure stereotaxic frame.  (A) A comparison of the commercial (top) and 
custom (bottom three) stereotaxic frames.  Initial prototypes with ABS were 
more prone to warping than PLA.  (B) PLA frames with a low density infill 
were also prone to warping.  (C) A forked head-bar is cemented directly to 
the head stage during surgery, and then attached to the stereotaxic arm with 
two 4-40 screws.  (D) A custom nose cone is inserted into the notched 
stereotaxic arm. 
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2.3 EXPANDING MULTIPHOTON IMAGING FIELD-OF-VIEW 

 In addition to extending imaging depth, expanding the field of view of 

microscopy (i.e. mesoscale optical imaging) is an equally valid approach to increase 

optical access and sampling volume.  Conventional multiphoton microscopy is limited to 

fields of view on the order of 500 x 500  µm2, which fundamentally restricts observation 

of large-scale vascular and neural dynamics [139]. The ratio of an objective’s field 

number (!") and magnification (!) determines the scanning field of view radius, 

2!! = !"/! [139].  A smaller magnification increases field of view radius, which can 

be accomplished by either extending the objective focal length (!!) or decreasing the 

focal length of the tube lens (!!), ! = !!/!!.  The former usually comes with the tradeoff 

of reduced numerical aperture (NA), which is detrimental to efficient multiphoton 

excitation.  The latter, however, requires an increased field number or acceptance angle 

(!!) at the objective rear aperture to maintain the same field of view, sin !! =  !"/2!!.  
Thus, for a given NA, larger fields of view require custom, larger diameter objectives.  

Unfortunately, even with scaled up microscope objectives, larger scanning angles lead to 

extensive aberrations at the cost of reduced spatial resolution and lower excitation 

efficiency [140].  Even more problematic is the fact that the light throughput of an ideal 

objective that solves these design obstacles still remains restricted by the optical invariant 

of all associated optics.  Currently, effective mesoscale optical imaging remains an 

unsolved challenge limited by high magnification objective lenses, sub-optimal afocal 

relays, and small field collection optics [139].  In the following section we detail a 

comprehensive approach to multiphoton optical design to accomplish large field of view 

imaging of microvasculature. Ultimately, increasing optical access to the cerebral 

angiome beyond cubic millimeter volumes and producing vectorized vascular networks 
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enables a thorough understanding of vessel topology, connectivity, and blood flow 

patterns in healthy and disease states. 

2.3.1 The Case for Optical Invariant Analysis and Evaluating Objectives 

A standard multiphoton microscope consists of a high numerical aperture 

objective, a beam scanning system, an afocal relay that conjugates the objective and 

scanning planes, and a detection module [139]. A well-designed system can maximize 

optical access to large volumes by increasing its optical extent or light grasp; a concept 

understood as etendue in the field of optics.  Each component in a complete optical 

system can be optimized independently, but due to the conservation of radiant power, the 

overall light gathering properties of a system will be dictated by the component with the 

lowest optical invariant in isolation.  In an ideal optical system free of any aberrations, 

the optical invariant remains a conserved constant calculated by height and angle of the 

chief and marginal rays in any given transverse plane [139]. Because the component with 

the lowest optical invariant ultimately bounds the system’s performance, the best 

approach to designing an optimized scan engine, and the one utilized herein, is to select a 

high-throughput objective and identify optical components that exceed or support that 

invariant.    

Multiphoton microscopy requires the spatial and temporal overlap of two or more 

photons to incite a single excitation event.  The temporal overlap is achieved by use of 

ultrafast lasers, which deliver high pulse energies to increase the probability of a 

multiphoton event.  The spatial overlap of photons is accomplished with high numerical 

aperture objectives.  However, large numerical apertures are typically associated with 

higher magnification, which comes with specific tradeoffs [139]. First, higher 

magnification generally results in reduced multiphoton image contrast and a limited 



 74 

ability to probe deeply into heavily scattering environments.  Second, the field of view 

(FOV) radius is limited by increased magnification. Specifically, FOV is calculated by 

2F0 = FN/M, where Fo is the FOV radius, FN is the objective field number, and M is 

magnification.   This second attribute can help us better understand the former 

explanation of reduced signal deep in biological tissue - in scattering environments, 

emitted photons appear to originate over an expanded diffuse area, meaning an objective 

with a larger field of view can more efficiently capture these widely scattered photons. 

Therefore, it is generally advisable to select an objective with as low of a magnification 

and as large of a numerical aperture as possible for optimized multiphoton microscopy. 

The larger the NA, the more efficient the multiphoton excitation, at the cost of increased 

magnification.  The larger the magnification, the less efficient fluorescence collection 

becomes.  It is up to the researcher and their specific biological inquiry to balance these 

diametrically opposed trade-offs.  In my musings, I suppose an ideal microscope 

objective would be severely achromatic, and cause longer excitation light to refract 

strongly and shorter emission wavelengths to refract at more shallow angles.  This would 

result in efficient, high numerical aperture excitation and lower magnification 

fluorescence collection.  Alas, no such objective exists to the best of my knowledge.   

A third consideration in selecting the optimal objective is its transmission 

characteristics.  Higher-performance objectives are typically composed of more lenses, 

each of which compensates for the aberrations of the others in order to deliver a tight 

focal point spread function in the lateral and axial dimensions.  As the complexity of 

these objectives increases, the greater the number of total surfaces becomes.  If one 

considers loss through these objectives due to Fresnel reflections off of each individual 

surface, it becomes apparent that transmission is generally diminished with complex 

objectives.  Therefore, one must identify objectives with anti-reflective (AR) coatings 
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specific to the excitation wavelengths intended for use.  In our proposed aim to achieve 

deep vascular imaging, the Olympus XLPLN25XSVMP2 emerges as the clear candidate 

to maximize transmission at longer wavelengths due to its optimal coating 

characteristics.  However, its larger magnification relative to the Olympus XLUMPLFLN 

20X equates to reduced collection efficiency despite enhanced excitation 

efficiency.  Furthermore, its extremely large front aperture diameter and long working 

distance can create physical challenges in suspending immersion media between the 

objective tip and the sample meaning that there is great difficulty in using the 

XLPLN25XSVMP2’s full numerical aperture.  In contrast, the XLUMPLFLN 20X has a 

shorter working distance and smaller front aperture and avoids this set of problems 

entirely.  Therefore, we prioritize the use of the XLPLN25XSVMP2 as the best choice 

for large-scale multiphoton microscopy in laser power-limited contexts where 

transmission must be maximized, especially if there is a particular demand for longer 

wavelength, AR-coating compatible excitation. In contexts where we are not power-

limited, and more so directly limited by sample dimness due to low fluorophore quantum 

yield or strong scattering in the sample environment, or imaging at shorter wavelengths, 

we prioritize the use of the XLUMPLFLN 20X for best performance.  Since we 

encounter both contexts in performing our in vivo studies, we have designed a versatile 

imaging system able to accommodate both objectives.   

2.3.2 Galvanometer Scanning System 

The optical invariants of the selected objectives when calculated at either their 

rear aperture, ! = !!!"#!!, or front focal plane, !!"# = !!!!!, are 0.55 (20x, 

XLUMPLFLN) and 0.36 (25x, XLPLN25XSVMP2). Thus, it is was our goal to select a 

galvanometer mirror pair with an optical invariant that exceeds 0.55.  The invariant of a 
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scanner (!!) is calculated using the expression !! = !!!"#!!, which accounts for incident 

beam radius (!!) and maximum scan angle (!!). To satisfy the condition that !! ≥ !!"#, 
we use the previous equation to determine the minimum required scanning angle, !! = 

12.71º.  Our previous microscope’s mirror scanner (6215H, Cambridge Technologies) 

had a maximum scan angle of 40º and seemingly satisfied this requirement.  However, as 

the scan angle increases, a beam’s footprint on the scanner also increases.  Thus, 

maximum scan angle is typically limited by vignetting, rather than the physical scanning 

limit of the mirror. The footprint (W) of a beam with a known diameter (d) is calculated 

using elementary trigonometry, ! = ! !"#!!
!!

.  At !! = 12.71º, the expected footprint 

of a 5 mm diameter beam is ~8 mm, which exceeds the 7 mm clear aperture of the 

Cambridge scanning mirrors.  Thus, our optimized large field-of-view system was 

upgraded to include a large beam diameter dual-axis scanning galvanometer system 

(GVS012, Thorlabs) with a physical scan limit that exceeds the minimum required !!, 

and a 10 mm clear aperture that fully supports a 5 mm beam diameter’s footprint at that 

angle. With this mirror scanner, we are able to fully support the optical invariant of both 

objectives in the proposed system. 

The disadvantage of this larger diameter galvanometer system is that their larger 

format widens the coupling distance of the independent mirrors.  The small diameter 

galvanometers were coupled as well, which is generally a disadvantage since the 

conjugate point at the objective rear aperture extends to an imperfect, non-stationary 

point from the galvanometer pair.  However, this imperfection is dramatically heightened 

by the large diameter galvanometers.  The effect is a distortion that arises from the fact 

that the distance between the fast (i.e. first) scanning mirror and the image plane directly 

depends on the mechanical scan angles of both mirrors, where larger scan angles result in 

a longer distance (Thorlabs communication; Figure 2.20). Problematically, the distance 
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from the first scanning mirror to the image plane is nonlinear as a function of scan angle, 

and instead depends on the tangent of the scan angle.  Thus, without the use of custom, 

compensating lenses, the focus lies on a sphere rather than a plane.  If a perfect 

monolayer is imaged, then the point spread function’s size varies across the surface of the 

sample, with greater excitation efficiency where the monolayer intersects within the 

spherical ‘plane’ of focus.  Moreover, the actual scan pattern across the monolayer is not 

square, unlike a decoupled or close-coupled mirror system, but pillow-shaped due to the 

field distortion introduced by the decoupled arrangement of the large diameter 

galvanometers (Figure 2.20). Our acquisition software assumes a square image pattern 

for image reconstruction, which results in warped structures most prominently towards 

the borders of the image frame.  Overall, these issues only manifest noticeably at larger 

scan voltages (>1.5V) and future work can be implemented to minimize the effect of 

distortions.  For instance, a non-uniform sampling technique that is proportional to the 

tangent of the scan angle can be applied to avoid warping a pillow-shaped image field to 

a rectangular image frame.  Moreover, specialized optics (i.e. non-rectilinear lenses) can 

be used to correct for a spherical focus and ensure a minimal spot size at all portions of 

the two-dimensional image plane.   
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Figure 2.20: Coupled, large diameter galvanometer mirrors introduce significant 
field distortion.  The distance between scanner one and two varies as a 
function of a scan angle, with longer distances resulting at steeper scan 
angles.  This introduces a pillow-shaped field distortion.  Without the use of 
custom, compensating downstream lenses, laser focus lies on a sphere rather 
than a plane. 

2.3.3 Afocal Relay Selection  

Similar to our analysis that ensures the multiphoton system’s beam scanners fully 

support maximum light throughput, our design strategy must identify relay lenses with 

large optical invariants.  An afocal relay consists of a scan lens and tube lens, and the 

invariant of each lens is given by !! = !!!"#!!. The maximum scan angle of a relay lens 

is typically limited by vignetting at small input beam diameters and optical aberrations at 

large input beam diameters.  In practice, most scan optics are prone to aberration at 

shallow angles, which drives one to work with smaller beam diameters and identify 

various combinations of scan and tube lenses that minimize vignetting, where the 

minimum beam diameter is dictated by the rear aperture diameter of the imaging 

objective (20 mm) and the beam expansion of the relay lens combination.  Thus, our 
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overall design strategy for this segment employs Zemax to model various commercial 

scan and tube lenses using appropriately sized beams (!!) and evaluates the maximum 

angle (!!) attained before either vignetting occurs or optical performance is no longer 

diffraction limited to calculate the optical invariant !! of each relay pair, until the light 

throughput of the proposed imaging objectives are met.    

As a starting point, we evaluated the optical invariant of the relay in the former, 

suboptimal field of view multiphoton microscope, which consists of an f = 40 mm Plössl 

scan lens (2x AC254-080-B; Thorlabs) and a f = 200 mm plano-convex tube lens 

(LA1979-B; Thorlabs).  We found that it was aberration limited at all scan angles, 

including on-axis performance at a 1050 nm excitation wavelength.  Effectively, this 

means that the system had an optical invariant of zero, which indicates that the no portion 

of the visible field of view features sub-diffraction limited resolution.  Thus, we were 

determined to redesign our relay, and free to rethink our use of a 4 mm input beams and a 

5-fold beam expansion factor. 

As stated above, the initial beam diameter is constrained by the beam expansion 

of the relay lens combination and the objective rear aperture diameter.  Small beam 

diameters are typically limited by vignetting and larger input beam diameters are 

typically limited by optical aberrations [139].  Therefore, it is preferable to work with 

smaller beams with respect to relay optical performance.  However, unduly small beam 

diameters are quite difficult to align and are prone to Gaussian beam divergence.  This 

poses a delicate balance, where the use of high quality relay optics that minimize 

aberrations is preferred to reducing the beam radius.  Thus, we opted for a 5 mm diameter 

beam (!! = 2.5 mm) as a reasonable size, which represents a 1 mm increase to our 

previous multiphoton system and therefore mandates the selection of higher quality relay 

optics.  Further considerations must be paid with respect to the tube lens focal length, 
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which is determined by the objective manufacturer. For instance, Leica and Nikon 

objectives are designed to accommodate 200 mm focal length tube lenses, whereas 

Olympus objectives are meant to be used with 180 mm focal length tube lenses.  Given a 

5 mm beam and a 20 mm diameter rear aperture, this required a 45 mm focal length scan 

lens and a 180 mm focal length tube lens for compatibility with our Olympus objectives. 

Unfortunately, we were unable to identify a high performance scan lens with this 

specification, but previous research from lab alumni Dr. David Miller uncovered that the 

f = 50 mm SL50-2P2 scan lens offered ideal optical performance.  This left us with the 

decision of (1) continuing to use a 180 mm focal length tube lens, which would result in 

underfilling the 25x objective’s rear aperture without capitalizing on its full numerical 

aperture or (2) opting for a 200 mm focal length tube lens and thereby increasing 

objective magnification and reducing field of view radius slightly.  We opted for the 

latter, although this decision clearly detracts from ultra wide field of view imaging 

capabilities and has ambiguous effects on deep imaging.  In one sense, by utilizing the 

full objective NA, we may be able to image deeper due to optimal excitation efficiency. 

On the other hand, increased objective magnification limits our ability to collect scattered 

emission light, which may hinder imaging depth.  An alternative option is to use the 50 

mm focal length SL50-2P2 and a 180 mm focal length tube lens, and increase the input 

beam diameter from 5 to ~5.5 mm.  However, Zemax modeling showed that this resulted 

in non-diffraction limited optical performance at smaller scan angles than would a 5 mm 

beam, which had a more severe consequence with respect to limiting the relay’s overall 

optical invariant. 

Thus, we chose to proceed with a 5 mm input beam diameter and with knowledge 

of our scan lens choice (Thorlabs, SL50-2P2) and a requirement for a 200 mm focal 

length tube lens, we then endeavored to evaluate three tiers of tube lens options used in 
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conjunction with the SL50-2P2: low-cost (Thorlabs, LA1979-C), mid-range (Thorlabs; 

2x AC508-400-C Plössl Design), and expensive (Thorlabs, TL200-2P2).  Since the 

optical invariant is dictated by either vignetting or aberrations, we first sought to evaluate 

at which scan angle each relay exhibited vignetting as determined by our inability to no 

longer trace the chief ray in a Zemax model.  All three relays exhibited vignetting at 

>7.5º mechanical scan angle (Table 2.1), which reflects that the limiting factor is the 

SL50-2P2’s moderate clear aperture (24.4 mm) and not the tube lens options (47.0 mm 

clear aperture).  Surprisingly the low- (LA1979) and mid-cost (AC508-400-C Plössl) 

relays were aberration limited at all scan angles including 0º at 1050 nm (Figure 2.21).  

In contrast, the high-tier relay with the TL200-2P2 tube lens is only aberration limited 

beyond a ~6.87º mechanical scan angle at 1050 nm (Figure 2.21).  Ultimately, this 

means that the optical invariant of the final relay is ~0.647, and its diffraction limited 

invariant is ~0.594.  Notably, the mid-cost relay outperformed the less expensive 

alternative, as the former was not aberration limited below 5º scanning angles at 800 nm 

and 1300 nm excitation wavelengths. For this study, aberration was defined as a 

wavelength dependent RMS wavefront error greater than 0.072 waves [141].  To ensure 

fair comparisons across the three tiers, each relay was modeled, optimized, and evaluated 

in Zemax using a custom merit function corresponding to excitation wavelengths we 

expected to use frequently with the system (800, 1050, and 1300 nm). 
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Input Beam Angle 0º 3º 5º 6º 7º 8º 

! [nm] Relay 
RMS 

Wavefront 
Error 

RMS 
Wavefront 

Error 

RMS 
Wavefront 

Error 

RMS 
Wavefront 

Error 

RMS 
Wavefront 

Error 

RMS 
Wavefront 

Error 

800 

Low-
Cost 0.1080 0.2231 0.3945 0.5222 0.9201 N/A 

Mid-
Range 0.0078 0.0248 0.0534 0.0852 0.1013 N/A 

High-
Cost 0.0159 0.0267 0.0395 0.0337 0.1286 N/A 

1050 

Low-
Cost 0.2506 0.2664 0.3314 0.3965 0.6107 N/A 

Mid-
Range 0.0897 0.0895 0.0927 0.0981 0.1470 N/A 

High-
Cost 0.0114 0.0180 0.0268 0.0235 0.0984 N/A 

1300 

Low-
Cost 0.3078 0.3051 0.3285 0.3608 0.4597 N/A 

Mid-
Range 0.0663 0.0669 0.0709 0.0764 0.1208 N/A 

High-
Cost 0.0035 0.0118 0.0205 0.0239 0.0868 N/A 

Table 2.1: The root mean square wavefront error of three different afocal relays 
modeled at different excitation wavelengths as a function of mechanical 
scan angle. All three relays featured the same f = 50 mm specialized 
multiphoton scan lens (SL50-2P2; Thorlabs; 680 – 1300 nm). Low-Cost 
Relay: f = 200 mm plano-convex tube lens (LA-1979-C; Thorlabs).  Mid-
Range Relay: 2 x f = 400 mm achromatic doublet; Plössl  design (AC508-
400-C; Thorlabs).  High-Cost Relay: specialized two-photon laser scanning 
tube lens (TL200-2P2; Thorlabs).  Shaded orange regions indicate that the 
relay reached its scan limit due to vignetting and the chief ray could no 
longer be traced.  Shaded red regions indicate the relay is aberration limited 
at that wavelength and scan angle as determined by root mean square (RMS) 
wavefront error. 
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Figure 2.21: Multiphoton scan engine relay.  (A) Zemax models of three afocal relays 
at different price points. (B) Root mean square (RMS) wavefront error as a 
function of mechanical scan angle for all three relays at a 1050 nm 
excitation wavelength.  

In my own musings, I have given some thought as to what the ideal afocal relay 

would look like in a system unconstrained by some of the aforementioned practical 

requirements.  In a perfect world, we would be unhindered by the diameter of the optical 

elements nor by the optical path length between the scanning mirrors and objective.  

Thus, the ideal relay would feature very large diameter, long-focal length lenses.  Large 

diameter lenses are not only less prone to introducing vignetting, but offer an additional 

benefit in that the relatively small beam diameter would occupy a smaller footprint on its 

surface, and would therefore be less prone to aberration.  Moreover, longer focal length, 

moderately curved optics would minimize aberrations as well. Of course, a 

commensurately large diameter objective with an appropriate field number and focal 

length would need to be designed to accommodate this relay.  To better explain this, a 

longer focal length tube lens would result in a higher magnification objective in the 

absence of an adjustment to the objective focal length (! = !!/!!), and a larger 

magnification would reduce field of view radius in the absence of a larger field number.  

Assuming that field number and !! were increased, a longer focal length objective would 



 84 

need a very wide aperture to accomplish high numerical aperture focusing; hence the 

requirement for a large diameter objective.  Given an ideal large-diameter, longer focal 

length system a limiting factor would be Gaussian beam divergence over long scan paths 

and no longer the relay optical performance.  Moreover, the scan lens focal length could 

remain constrained by the galvanometer scanning motion since a very long focal length 

scan lens would quickly clip the incoming beam at even shallow scan angles.  Therefore 

an alternative solution would be to design large diameter doublet or triplet lenses with 

shorter focal lengths, with minimal aberrations.    

2.4 IMPROVING SAMPLING SPEED THROUGHPUT 

2.4.1 Resonant Scanner and High Repetition Rate Laser Integration 

There have been a number of advances that have taken aim at high-speed 

volumetric imaging, including random access scanning [142–144]  and remote focusing 

[145,146].  Arbitrary scanning neglects entire swaths of imaging real estate, which leaves 

structural and functional connectivity uncaptured, whereas the latter only increases 

sampling speed in a single dimension over a limited range.  Other approaches have used 

swept planar excitation to increase volumetric throughput, but the majority of these 

implementations are either incompatible with intact whole-brain imaging due to stringent 

sample thickness and mounting criteria, [147,148] or limited by depth and spatial 

resolution [149–151]. At its core, multiphoton microscopy is a point-scanning technique, 

meaning that information is collected voxel by voxel as xy scanners and z stages 

manipulate the relative position of a focused beam.  Thus, the most straightforward 

approach to increase temporal throughput is to use higher repetition rate lasers and faster 

beam scanners to improve acquisition line- and frame-rates. To address this first 

requirement, our lab is actively engaged in the development of low-cost, high-repetition 
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rate lasers [120,130]. Meanwhile, scan speed is restricted by the inertia of the oscillating 

mirrors [67].  Exotic methods to circumvent this include acousto-optic deflectors [4,152] 

or polygon-scanners [153].  Unfortunately, these come with their own tradeoffs, 

including dispersion in acousto-optic deflectors [154] and the inferior accuracy of 

polygon scanners for high-resolution, flat field applications [155]. Fortunately, resonant 

scanners, which oscillate at a fixed frequency, have been shown to provide a ~10-fold 

increase in sampling speed relative to conventional galvanometer mirrors and provide 

ample frame rates to capture transient neural activity for functional calcium imaging 

[140,156].  Thus, we have designed our system to integrate novel, high-repetition rate 

lasers with a resonant-scanning system for increased sampling speed and identified 

compatible data acquisition hardware.  

In brief, the microscope system is designed to accommodate three unique ultrafast 

laser sources: a ytterbium fiber amplifier (developed), a Raman diamond laser (version 

two in development), and a tunable optical parametric generator (to be developed).  

Collectively, these lasers provided 80 MHz repetition rates at wavelengths ranging from 

1050 – 1800 nm.  However, given these sufficiently fast lasers, the rate-limiting step on 

temporal acquisition throughput becomes scanning speed.  Therefore, we have substituted 

the slow scanning galvanometer mirror with a resonant mirror able to offer ultrafast 

speeds due to its fixed frequency oscillation and low inertia.  Specifically we opted for an 

8 kHz scanner (CRS-8kHz, Cambridge Technology), which provides some tradeoffs 

relative to the 4 and 12 kHz options.  The 4 kHz option offers a larger clear aperture (12 x 

9.25 mm vs 7.2 x 5.0 mm) meaning that its optical invariant is maximized, but does not 

offer a substantial upgrade in sampling speed.  Meanwhile, the 12 kHz model provides a 

modest throughput enhancement relative to the selected 8 kHz scanner with a matching 

clear aperture, but a severely stunted scan angle (10º vs 26º, peak to peak).  Ultimately, 
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the employed resonant scanner provides variable amplitudes at a fixed frequency, 

allowing us to vary our imaged field of view and maintain a high throughput sampling 

speed.  

This augmentation vastly improves our vessel image acquisition speed which 

previously featured a frame rate of ~1.4 Hz (small diameter galvo-galvo scanning; 

6215H, Cambridge Technologies) and ~0.7 Hz (large diameter galvo-galvo scanning; 

GVS012, Thorlabs) for 512 x 512 images to a frame rate of ~30 Hz for 512 x 512 images 

and  ~8 Hz for 1024 x 1024 images (resonant-galvo scanning).  To ensure full imaging 

flexibility, resonant-galvo and resonant-galvo-galvo configurations were both considered 

and compared relative to the benefits and capabilities of a basic galvo-galvo 

configuration. Since signal is expected to be much lower at deeper layers of anatomy, the 

ability to park the resonant galvanometer and reduce scan speed with a galvo-galvo pair 

helps ensure high signal-to-background ratio.  Moreover, a resonant galvo-galvo 

configuration allows for arbitrary scan patterns in two dimensions, whereas a simpler 

resonant-galvo does not.  Thus, we have opted for a more robust resonant-galvo-galvo 

set-up in our system. Critically, the resonant scanner enables functional imaging as well, 

meaning that neural activity using calcium indicators can be recorded in real time. 

Unfortunately, it bears mention that a resonant galvanometer’s position does not vary 

uniformly in time unlike conventional galvanometers.  This can lead to image 

compression artifacts if digital sampling corrections are not applied during image 

acquisition.  Some groups handle this by manufacturing variable spatial line grid masks 

that impose a temporally uniform acquisition trigger.  Instead, our method uses an open 

source MATLAB-based software (Scan Image, Vidrio Technologies) to sample at an 

extremely high rate and apply a greater binning factor at the edges of the image frame 

corresponding to slower scan speeds to eliminate compression artifacts.  Imaging 
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identical regions of C57 mouse Texas red injected vasculature with both resonant-

galvanometer and galvanometer-galvanometer scanning showed very good structural 

agreement across both volumes; an R2 correlation value of 0.9305 was achieved after co-

registration using image shifts and rotations (Figure 2.22).  

 

Figure 2.22: High-speed scanning of murine vasculature. 500 x 500 x 500 µm cubic 
volumes of C57 mouse vasculature imaging using a (A) resonant-galvo 
scanning configuration and a (B) galvo-galvo scanning configuration 
produce similarly high-quality renderings and present high levels of 
structural agreement (R = 0.9305).  

2.4.2 High Speed Data Acquisition Electronics 

Due to the high data collection speeds of resonant-galvanometer imaging, writing 

out this quantity of information is a not a trivial task.  To meet this demand, the data 

acquisition hardware (Figure 2.23) must be redesigned to achieve rapid signal collection.  

Specifically, a field-programmable gate array, or FPGA, (PXIe-7961R, National 

Instruments) is needed to process the photomultiplier tube (PMT) data stream following 

analog to digital (A/D) conversion (Digitizer NI-5731, National Instruments) of the 

amplified PMT voltage signal.  A chassis (PXIe-1073, National Instruments) provides 
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power to the data acquisition boards (DAQs) and FPGA-digitizer module, and enables 

communication with the acquisition computer via a PCI express communication card 

(PCIe-8361).  To handle analog outputs, two DAQs (PXIe-6341, National Instruments) 

are housed on the same PXI chassis.  The first is dedicated to driving an electro-optic 

modulator (EOM 350-80, Conoptics) and the resonant scanner (CRS-8kHz, Cambridge 

Technologies), split via a breakout box (BNC-2110, National Instruments).  The second 

DAQ is split using an identical breakout box, with one analog output dedicated to the fast 

galvanometer mirror and the other dedicated to the slow galvanometer mirror (GVS012, 

Thorlabs).  An automated laser shutter that is used to gate high-intensity beams during 

interruptions in image acquisition is also routed by this DAQ. Altogether, these scanning 

and data acquisition hardware upgrades allow our system to effectively take advantage of 

higher repetition rate lasers for rapid multiphoton sampling speeds.  

 

Figure 2.23: High-speed data acquisition schematic.  A central chassis powers two 
DAQ outputs and an FPGA-digitizer module, and serves as a PCI 
communication hub between hardware instruments and PC.  Scanning 
mirrors and an EOM attenuator receive analog outputs, and the PMT current 
stream is amplified into a voltage signal before A/D conversion and FPGA 
processing.  
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2.5 MICROSCOPE ENHANCEMENTS AND MODIFICATIONS 

2.5.1 Photomultiplier Tube and Pre-Amplifier Selection 

A well-designed collection optics system delivers as many fluorescent photons as 

possible to the photocathode window of the photomultiplier tube (PMT) sensor.  The 

PMT sensitivity should be as large as possible across the spectrum corresponding to the 

intended fluorophores’ emission wavelengths. Our former upright microscope contained 

a pair of Hamamatsu H7422P-40 PMTs for typical fluorophores such as Texas Red and 

fluorescein, which emit at ~610 nm and ~515 nm, respectively.  However, dyes that emit 

at much longer wavelengths, such as indocyanine green, elicit a low response from the 

H7422P-40 PMTs due to their reduced sensitivity beyond ~680 nm.  In these extreme 

cases, one of the H7422P-40 PMTs was substituted with the H7422P-50 PMT. However, 

that implementation of the H7422P-40 and -50 PMTs was quite susceptible to noise 

amplification.  Amplification is achieved with stand-alone pre-amplifiers (SRS570, 

Stanford Research Systems), and the current outputs of the PMTs were delivered to the 

pre-amplifiers via ~3 foot Bayonet Neill–Concelman (BNC) cables.  Ideally, 

amplification should be in close physical proximity to the transducer whenever possible 

in order to maximize signal-to-noise ratio. Thus, we initially considered a pair of GaAsP 

amplified PMT modules (PMT2101, Thorlabs) for our improved upright scanning 

system, which offered excellent sensitivity over conventional fluorophore emission 

ranges (300 – 720 nm) and, most importantly, included built-in amplifiers, allowing us to 

maximize signal-to-noise ratio.  More specifically, the package combined the Hamamatsu 

H10770PA-40 PMTs with a proximal high-frequency response, low-noise 

transimpedance amplifier.  Initially, we suspected this PMT option would perform well, 

especially in consideration to its clear aperture, since another crucial consideration in the 
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selection of an optimal PMT to detect low-intensity fluorescent signals is the size of its 

active area and aperture acceptance angle.  Our former multiphoton microscope’s PMTs 

(active area diameter = Φ5.0 mm) had been customized to maximize their entrance angle 

by removing their stock thermoelectric cooling units.  This effectively increased their 

clear aperture, granting a 10 mm diameter opening recessed by a 1.5 mm depth.  This 

corresponds to an entrance angle of ~59º, at the cost of increased thermal noise, which is 

a decidedly unfortunate tradeoff.  Notably, our proposed Thorlabs PMT upgrades 

maintained an identical active area diameter, Φ5.0mm, and clear aperture, 10 mm.  

However, the entrance angle is improved to 79.6º.  Overall then, it seemed clear that the 

Thorlabs PMTs would outperform the existing instrumentation in two key aspects: (1) the 

proximity of the transimpedance amplifier to the transducer minimizes noise 

amplification and thereby increases signal-to-noise ratio, and (2) they provide a larger 

acceptance angle without compromising on the size of the active area, and thereby 

increase signal collection.   

However, we quickly learned that the PMTs’ built-in transimpedance amplifiers 

lacked the sensitivity to sufficiently amplify dim fluorescent signals relative to the 

Hamamatsu PMTs and Stanford Research Systems amplifiers (Table 2.2).  We 

determined that we typically generated PMT current signals of around 2 µA and 

unfortunately required an amplified voltage signal of at least + 0.2 V and ideally + 1.0 V 

given the analog-to-digital (A/D) input of the data acquisition (DAQ) module being used.   

At this current level, using a 300 KHz bandwidth and a 2 µA/V gain setting  (i.e. 5.0 x 

105 V/A sensitivity) on the SRS570 results in an ample 1.0 V output.  In contrast, the 

PMT2101 gain setting (1.1 x 104 V/A sensitivity) results in a near 50-fold smaller voltage 

signal of 22 mV at the same current level. We attempted using voltage amplifiers in 

conjunction with the PMT2101, but found that the amplification introduced substantial 
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noise into the final image.  In the Thorlabs PMT and amplifier package’s defense, this 

gain sensitivity is fixed at all bandwidth settings (80, 2.5, 0.250 MHz), whereas the 

SRS570 sensitivity drops off dramatically as bandwidth is increased.  Moreover, the 

SRS570 bandwidth is capped at 1.0 MHz.  This suggests that neither system is suitable 

for a flexible upright scanning system intended for both galvo-galvo scanning (low 

bandwidth) and resonant-galvo scanning (high bandwidth).  Thus, we continued our 

search for a PMT and pre-amplifier combination that would maximize sensitivity at all 

bandwidths and identified the Femto DHPCA-100 as an ideal option.  At a 220 kHz 

bandwidth using the less noisy low gain setting (1.0 x 107 V/A sensitivity) we could 

easily generate 20 V signals for galvo-galvo scanning.  In practice, we are far more likely 

to use the 3.5 or 1.8 MHz bandwidths low gain settings (1.0 x 105 or 1.0 x 106 V/A 

sensitivity, respectively) in conjunction with an external 240 kHz low-pass filter (EF504, 

Thorlabs).  During resonant-galvo scanning, we are able to use the Femto DHPCA-100’s 

14 MHz bandwidth setting (1.0 x 105 V/A sensitivity) to generate + 0.2 V output signals, 

which does a sufficient job of filling out the high speed digitizer’s dynamic range (NI 

5732, National Instruments) voltage input range (0.5138 Vpk-pk when gain = 12 db).   
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Pre-
Amplifier 

Band-
width 

Gain 
Setting 

Sensitivity 
[V/A] 

Current 
Input 

[A] 

Output 
[V] 

1 V DAQ 
A/D Input 

Range 
Utilization 

0.2 V DAQ 
A/D Input 

Range 
Utilization 

SRS570 0.3 2 µA/V 5.0E+5 2.0E-6 1.0E+00 100% >100% 
TIA60 60 Fixed 3.0E+4 2.0E-6 6.0E-02 6% 30% 

PMT2101 
Variable 
[80, 2.5, 
0.250] 

Fixed 1.1E+4 2.0E-6 2.2E-2 2.2% 11% 

Femto 
DHPCA-

100 

200 
Low Gain 1.0E+2 2.0E-6 2.0E-4 0.02% 0.1% 
High Gain 1.0E+3 2.0E-6 2.0E-3 0.2% 1% 

80 
Low Gain 1.0E+3 2.0E-6 2.0E-3 0.2% 1% 
High Gain 1.0E+4 2.0E-6 2.0E-2 2% 10% 

14 
Low Gain 1.0E+4 2.0E-6 2.0E-2 2% 10% 
High Gain 1.0E+5 2.0E-6 2.0E-1 20% 100% 

3.5 
Low Gain 1.0E+5 2.0E-6 2.0E-1 20% 100% 
High Gain 1.0E+6 2.0E-6 2.0E+0 >100% >100% 

1.8 
Low Gain 1.0E+6 2.0E-6 2.0E+0 >100% >100% 
High Gain 1.0E+7 2.0E-6 2.0E+1 >100% >100% 

0.22 
Low Gain 1.0E+7 2.0E-6 2.0E+1 >100% >100% 
High Gain 1.0E+8 2.0E-6 2.0E+2 >100% >100% 

Table 2.2: Pre-amplifier sensitivities for photomultiplier tube current signal 
amplification. For low-bandwidth applications (i.e. galvo-galvo scanning), 
the Stanford Research Systems (SRS570) and Femto (DHPCA-100) pre-
amplifiers offer sensitivity settings that provide sufficiently large voltage 
signals to utilize a significant portion of the data acquisition (DAQ) 
module’s dynamic range. For high-bandwidth applications (i.e. resonant-
galvo scanning), the SRS570 lacks the frequency range and only the Femto 
pre-amplifier offers sensitivity settings that yield a high dynamic range 
utilization.  The Thorlabs PMT’s built-in amplifier (PMT2101) lacks 
sufficient sensitivity for either application, as does the standalone pre-
amplifier (TIA60). Red shaded regions indicate low (<50%) dynamic range 
utilization.   

2.5.2 Photomultiplier Tube Collection Optics 

A series of lenses must be positioned between the objective rear aperture and the 

PMT photocathodes to collect as much signal as possible.  Two specific challenges 
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present themselves in this task.  First, fluorescent light captured by the objective exits the 

objective aperture in a divergent state; more specifically, it emerges in a roughly isotropic 

fashion over a maximum angular distribution of ±12 to 15 degrees.  Second, the 

collection optics must minify the emerging light-field by a factor of 3.6 (Olympus 

XLUMPLFLN-20X) to 4-fold (Olympus XLPLN25XSVMP2) to successfully image the 

objective rear aperture onto the smaller photocathode sensor.  In this scenario, the four 

fold minification factor becomes the more limiting configuration, and it was therefore 

determined the collection optics lenses should generate a 0.25x magnification.   

To begin the design process, the original 60 mm upright collection optics were 

modeled in Zemax (designed by Dr. Arnold Estrada), with a simple revision to include 

our 25x objective (back aperture diameter = 20 mm) with an assumed 15º isotropic 

angular distribution, since this would represent the most extreme and stringent 

configuration in the optical system (Figure 2.24). Following the objective is a 76.2 mm 

dichroic cube, 23.8 mm of free space, and the first collection lens (achromatic doublet, f 

= 100 mm, AC508-100-A; Thorlabs).  Sufficient distance was added between the second 

dichroic cube, which is used to split red and green channel images, and the first collection 

lens to accommodate for the spatial requirements of the tube mounts.  The second 

collection lens system consisted of an f = 50 mm plano-convex lens (32971; Edmund 

Optics) and an f = 40 mm aspheric lens (023-2250; Optosigma), with a roughly ~22.22 

mm combined focal length.  Unfortunately, this lens system exhibits a few key 

shortcomings.  In practice the objective’s rear aperture must be the stop in the optical 

system to preserve maximum etendue through to the photocathode.  Unfortunately, in this 

former system, the distance of the first collection lens from the objective’s rear aperture 

means that the clear aperture of the initial achromatic doublet lens becomes the stop. The 

second issue is that fluorescent light exiting the second collection lens system focuses at a 
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distance that is less than the thickness of the emission filter mount (12.7 mm) and the 

photocathode recess meaning that the sensor plane is past the focal plane.  This second 

point was far less problematic with the original collection optics as designed by Dr. 

Estrada since the photocathode was only recessed by 1.5 mm (H10770PB-40; 

Hamamatsu) and not 8.6 mm (PMT2101; Thorlabs).  At the sensor plane, the out-of-

focus image of the 20 mm rear aperture constitutes a ~14.90 mm spot radius at 450, 550, 

and 650 nm emission wavelengths, which is well beyond the 5 mm photocathode size.  In 

total, vignetting on the achromatic doublet tube mount and photocathode aperture leads to 

a combined loss of ~55% of rays. Ultimately, this means that the collection optics on the 

former upright microscope were severely sub-optimal. 

 

Figure 2.24: Former collection optics design. (A) The former collection optics had two 
major shortcomings.  First, the distance of the initial collection lens was 
positioned far from the objective rear aperture, resulting in severe 
vignetting.  Second, the objective rear aperture is imaged at a plane several 
millimeters before the photomultiplier tube photocathode. Position 1: 
dichroic cube; 2: first collection lens system mount; 3: dichroic cube; 4: 
second collection lens system mount; 5: emission filter; 6: photocathode 
recess.  (B) Root mean square (RMS) spot radius of the former collection 
optics is ~14.90 mm weighted across 450 (blue), 550 (green), and 650 (red) 
nm wavelengths. 

To remedy the first issue of excessive vignetting on the initial achromatic doublet, 

the intuitive solution is to increase the clear aperture of this lens by adopting a three-inch 
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collection optics system.  However, this option proved unrealistic due to the availability 

of the off-the-shelf components, and we were restricted to a 60 mm cage cube system.  

An alternate solution is to move the first collection lens closer to the dichroic cube.  In 

fact, this has the ancillary benefit in that light will exit the first collection lens in a better 

collimated state.  Therefore, the Zemax model was revised, positioning the achromatic 

doublet as close to the first dichroic cube as possible and mounting it within a shortened 

lens tube (Figure 2.25(a)), which dramatically decreases the proportion of vignetted rays 

from ~55% to ~35%.  However, the shorter focal length of the second collection lens 

system still poses a significant issue considering the emission filter and recessed 

photocathode need to be accommodated within that focal distance.  As is, the 

photocathode rests 15.763 mm beyond approximate focus (solved by a marginal ray 

height of zero), and the root mean square (RMS) spot radius remains an excessively large 

~12.539 mm.     
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Figure 2.25: Redesigned collection optics system. (A) Moving the first collection lens 
closer to the first dichroic cube has a major benefit over the former design in 
that fewer rays vignette on its clear aperture. (B) Replacing the former 
second collection lens system with an f = 40 mm achromatic Plössl doublet 
successfully images the objective rear aperture onto the photomultiplier 
photocathode.  Both models correspond to the 25x objective 
(XLPLN25XSVMP2; Olympus)  

Our next goal is now to replace the second collection lens system consisting of the 

planoconvex and aspheric lenses with a longer focal length system (Figure 2.25(b)).  The 

thickness of the emission filter (12.7 mm) and the recessed photocathode (8.6 mm) 

constitute a 21.3 mm width, meaning that a ~25 mm focal length appears to be 

appropriate.  Empirically, however, a Plössl design with a 40 mm focal length was found 

to perform much better.  This discrepancy can be accounted for by the fact that the light 

does not exit the initial collection lens in a perfectly-collimated state, and is already 

converging. The Plössl design, which consists of two f = 80 mm achromatic doublets 

(AC508-080-A) performs satisfactorily at 450, 550, and 650 nm emission wavelengths, 
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successfully imaging the objective rear aperture onto the photocathode. Notably, the 

dimensions of the second collection lens system are quite important.  It is assumed that 

the first surface of the f = 80 mm achromatic doublet is 7.3 mm from the last surface of 

the second dichroic cube, and that the two achromatic doublets are flush with one 

another.  The last surface of the second doublet is separated from the emission filter by 

2.5 mm, which corresponds to the width of a retaining ring.  These widths are 

accomplished by mounting each doublet in a thick 60 mm cage plate (LCP01T; 

Thorlabs).  It is therefore clear that the collection optics are high performance in the case 

of the of the 25x objective.  However, it remains imperative that optical performance 

remains robust when the 20x objective is used, the major change being that aperture 

diameter decreases from 20 mm to 18 mm.  With no changes made to the collection lens 

system, the RMS spot radius remains smaller than the photocathode diameter with the 

20x model when weighted at equivalent wavelengths, which remains consistent with our 

prior assertion that the 25x objective represented the more stringent design condition. 

This new design intentionally uses achromatic doublets for all collection lenses, 

whereas the original design relied on the use of a hybrid lens system consisting of 

achromatic, a plano-convex, and aspheric lenses.  While a fully achromatic set-up may 

not be the best for imaging applications where aberrations lead to substantial performance 

degradation, for a point detection system employed with a PMT it is quite satisfactory.  In 

fact, the major advantage is that the RMS spot radius at the photocathode remains equal 

to or less than the photocathode diameter across all wavelengths, which is especially 

important in consideration of the diverse array of fluorophores to be used with the 

system.  To evaluate this, the collection optics were modeled with 450, 550, and 650 nm 

input wavelengths, representing fluorophores in the blue to red spectrum, and all 

wavelengths are within an acceptable range.    
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2.5.3 Folded Microscope Design 

Due to overhead lab shelves, a fully upright microscope design was physically 

unable to be mounted on a breadboard perpendicular to our optical table.  Thus, we were 

forced to consider a folded microscope.  There are several considerations to be weighed 

when introducing a folded design.  First, it is unwise to create a fold at any position 

where the beam is focused.  Doing so will result in any micro-defects in the fold mirror’s 

surface being propagated forward into the optical system.  Another option is to replace 

the scan lenses with scan mirrors, and to have those mirrors introduce the folds 

directly.  This minimizes the number of optical elements, conserves optical real estate, 

and minimizes effects of chromatic aberration, which can be considerable in thicker scan 

and tube lenses.  However, these mirrors can be highly astigmatic, although commonly 

the astigmatism introduced by one reflector is compensated for by the other. 

In our particular system, we prioritized a scan lens (SL50-2P2) and tube lens 

(TL200-2P2), which were low aberration and coated to maximize transmission in the 

near-infrared spectrum.  As mentioned above, we found it unwise to position a fold 

mirror between the scan lens and tube lens, where the beam was coming to a 

convergence.  Since our tube lens has a considerably long focal length (200 mm) and the 

beam emerges collimated beyond it, this becomes a natural position for a fold mirror.  

However, it is necessary to ensure that the introduction of this fold allows the beam to 

remain conjugated at a center position on the objective’s rear aperture.  Thus, a scan 

engine with (Figure 2.26(a)) and without a fold  (Figure 2.26(b)) was modeled in 

Zemax’s OpticStudio to evaluate this.  It was found that at severe tilt angles (5 degrees) 

that the beam does deviate slightly off position (~2.347 mm).  However, this value was 

the same for the unfolded design, and it was concluded that the fold did not individually 

contribute to any issues with optical alignment.  Rather, the deviation at severe tilt angles 
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could more likely be attributed to the imperfect coupling of the mirror pair in the 

galvanometer scanning system.    

 

Figure 2.26: A folded relay does not affect beam position on the microscope objective 
back aperture.  (A1) Three-dimensional viewer and (A2) spot diagram  of 
the folded relay design displayed with three configurations at 0º, 2.5º, and 5º 
scan angles. (B1) Three-dimensional viewer and (B2) spot diagram of the 
unfolded relay design displayed with three configurations at 0º, 2.5º, and 5º 
scan angles. 
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2.5.4 Microscope Mechanical Design 

The entire microscope design was prototyped in SolidWorks computer aided 

design (CAD) software to ensure that the final assembly would include fully compatible 

components and fit in the allotted space on our optical table.  For the vast majority of 

components, such as the periscope onto the optical breadboard platform, optical distance 

and precise dimensions were unnecessary.  However, for other modules, including the 

resonant-galvanometer relay and the galvanometer-objective relay, precision was 

paramount to optical performance (Figure 2.27(a-b)).   Thus, we capitalized on using 

CAD modeling to select mounts and fabricate shims that would ensure that prescribed 

optical path lengths determined in Zemax could be met in the final hardware assembly.  

Moreover, we took this opportunity to prototype experimental concepts for auxiliary 

modules and enhancements (Figure 2.27(c-d)), such as an autocorrelator that could 

enable pulse width measurements in the sample plane and a rotating objective turret that 

would maintain laser alignment and enable multiphoton scanning along an optical axis 

perpendicular to tilted specimens, such as live mice.   

The final microscope assembly (Figure 2.28) was primarily constructed from off-

the-shelf components purchased from Thorlabs, and relied on 60 mm and 30 mm cage 

assembly systems to ensure concentric alignment of optical and optomechanical 

components.  The microscope rests on a large optical table, but a smaller 18” x 36” 

breadboard is suspended to elevate the bulk of the microscope itself above the specimen 

(e.g. live rodent).  Importantly, the breadboard height is adjustable using a set of four 

adjustable rigid stand post holders (LPH150; Thorlabs).  The specimen itself is spatially 

manipulated using a three-axis stage in the XY (50.8 mm range; MTS50Z8; Thorlabs) 

and Z dimensions (50 mm range; MLJ050; Thorlabs).  A periscope is used to send the 

beam from the optical table onto the breadboard and into the resonant scanner. 
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Figure 2.27: Computer-aided design (CAD) modeling of the upright microscope.  
(A1) Dimensions for the resonant-galvanometer relay and a look at the 
corresponding (A2) 3D rendering.  (B) Dimensions of the galvanometer-
objective relay. (C) Using CAD to prototype an in-line autocorrelator for 
pulse-width measurements.  (D) An experimental CAD prototype for a two-
axis rotating objective turret. All distances in millimeters.  

For routine operation, an alignment jig before the resonant scanner ensures beam 

centering on the objective back aperture.  However, the resonant scanner is mounted to a 

three-axis XYZ stage as well as a three-axis pitch, roll, and yaw stage to enable precision 

alignment.  The scan lens and tube lens are easily swapped out with alignment modules to 

aid in guiding this precision alignment.  Moreover, a mirror can be flipped into place 

between the scan and tube lenses to record laser speckle contrast images; the illumination 
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module can be found mounted to the underside of the breadboard.  Meanwhile, a two-

channel photomultiplier tube (PMT) assembly is mounted to the side of the 

excitation/emission dichroic for multiphoton fluorescence collection.  An interesting 

feature of this microscope is its flexibility – the microscope head (i.e. fold mirror, 

dichroic cube, PMT module, and objective) can be rotated 180º for operation as an 

inverted microscope, which is necessary to image certain samples such as suspended 

liquid aliquots on glass slides un-sandwiched by coverslips.   

 

Figure 2.28: Final microscope assembly.  The wide field-of-view, high throughput 
microscope contains many modules of interest.  1) Adjustable post holders 
allow users to adjust the microscope’s height. 2) Periscope. 3) Alignment 
jig.  4) Resonant scanner with six adjustable axes. 5) Resonant-
galvanometer relay.  6) Galvanometer-galvanometer scanner.  7) 
Galvanometer-objective relay.  8a) Laser speckle diode.  8b) Laser speckle 
camera.  9) Fold mirror.  10) Dichroic mirror.  11) Two-channel 
photomultiplier tube detection module.  12) Objective.  13) Specimen.  14) 
Three axis stage to translate specimen.   
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Chapter 3: Automated Curation of Vectorized Cerebrovascular 
Networks 

3.1 INTRODUCTION 

Stroke is a shockingly common event that can lead to critical, chronic disability. 

In order to characterize the extent and severity of ischemic events, as well as recovery 

post-ischemia, cerebrovascular imaging is essential.  Repeated large field of view 

imaging and vectorization of the cortical angiome encompassing > 1 mm3 volumes will 

contribute to a refined understanding of the chronic topology, connectivity, and 

hemodynamics of vascular networks in healthy and disease states.  Resulting image data 

imposes a large computational burden and is difficult to analyze quantitatively, meaning 

that vectorization is required to transform the structural images into data sets that can be 

analyzed and manipulated more easily. More specifically, vascular vectorization is the 

process by which blood vessels are located, sized, and split into individual strands, 

allowing the investigator to efficiently filter and isolate regions and features of interest 

and quickly calculate corresponding descriptive summary statistics without the need for 

additional image analysis. Analytical metrics of interest used to understand the chronic 

evolution of healthy and diseased vascular morphology include geometric and spatial 

features such as strand length, tortuosity, and vessel radius as well as basic image 

characteristics, such as vessel brightness, which may be used to indicate perfusion.   

In particular, our lab has used Volumetric Image Data Analysis (VIDA) Suite to 

enable macroscale data analysis of morphological details and longitudinal changes [157]. 

VIDA accomplishes vectorization in a multi-step process that begins with matched 

filtering to 82 rods in various orientations to produce “rod-enhanced” sub-blocks [158]. 

Maximal responses across these volumes is used to identify a vessel enhanced grayscale 

volume, followed by local filtering and variable local thresholding to produce an 
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enhanced vascular mask. Next, connectivity-conserved thinning is applied to the mask to 

create a monofilament centerline. Additional transformations and auxiliary processes lead 

to the final set of strands, where each strand is a junction-to-junction, junction-to-

endpoint, or endpoint-to-endpoint set of vertices with a defined radius at each point. 

Given ideal low noise and high signal-to-background ratio images, VIDA segmentation 

performs admirably. However, border cut-off effects, image distortions, and sample 

dimness can lead to significant vectorization errors. Thus, a robust curation approach is 

required to accompany vectorization to ensure that bulk statistics are reliable and 

meaningful. Manual curation is infeasible due to the enormous number of strands that 

occupy a mere cubic millimeter volume of cortex. Therefore, an automated classifier was 

developed where more than 2,000 strands were manually classified for ground truth, and 

strand features describing the geometric, microscopic, and vascular characteristics of 

each strand were extracted. Exploratory data visualization was performed to gain insight 

on which features may function as viable predictors in a classifier, and to guide 

troubleshooting efforts. Subsequently, interrelated and non-significant features were 

removed using multicollinearity analysis and backwards feature elimination respectively. 

Two learning algorithms were trained using the remaining feature set: binary logistic 

regression and Adaboost. Model evaluation via receiver operating characteristics area-

under-the-curve showed acceptable performance (AUC > 0.85) without overfitting, as 

evidenced by similar performance on test and train fractions. Finally, data curation using 

a single decision threshold (fully automated curation) or multiple decision thresholds 

(semi-automated curation requiring manual intervention) was evaluated. For both 

approaches, Adaboost was shown to outperform binary logistic regression. For fully 

automated curation, logistic regression results in a ~0.78 classification accuracy relative 

to Adaboost’s modestly larger ~0.805. Using multiple decision thresholds to achieve a 
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0.90 classification accuracy, the logistic regression classifier required ~30% of strands to 

be manually curated compared to Adaboost, which required ~20% be subject to manual 

intervention. While these results are promising, the inclusion of a more robust initial 

feature set should improve model performance, and future efforts should examine how 

well trained classifiers perform across healthy and post-ischemic specimens. 

3.2 MANUAL CLASSIFICATION OF POSITIVE AND NEGATIVE STRANDS 

A curation approach requires ground truth, or hand labeled strands that are 

denoted as either “true” or “false.” Thus, a MATLAB program was developed to allow 

each vectorized strand to be overlaid onto max intensity projections of the vascular 

volume in the XY, XZ, and YZ planes. A 3D version of this graphical user interface was 

developed as well using UCSF Chimera scripting functions (Figure 3.1); however, this 

proved to be more computationally intensive without any clear advantages in terms of 

ease of identification or hand labeling accuracy, with the exception of being able to 

visualize vectorized vertex radius. By overlaying each strand with the raw data, the user 

is able to assess whether the VIDA Suite vectorization program appropriately (class = 1) 

or falsely (class = 0) identified the strand with a single keypress. In ambiguous cases, the 

user is instructed to enter (2), which denotes an uncategorized strand. Uncategorized 

strands were omitted from training data sets used for fitting the learning classifiers, and 

from test data sets used for model evaluation. With each keypress event, the manual 

classification is logged along with strand ID and general strand features, as elaborated 

upon in the following section.  
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Figure 3.1: A three-dimensional graphical user interface (GUI) for hand labeling 
strand vectorizations.  A 3D curator GUI allows (A) vectorized strand 
centerlines or (b) vectorized strand vertices with true radii to be overlaid 
with renderings of original multiphoton microscopic vascular density (light 
green) for manual classification. 

3.3 FEATURE EXTRACTION 

As each strand was manually classified, a variety of features were extracted and 

associated with each strand. These features could stem from the vectorized data 

(geometric and spatial characteristics) or the raw data (microscopy characteristics) (Table 

3.1). Geometric and spatial characteristics would describe the length, size, position, and 

travel of a specific vessel segment. In this case, travel refers to the tortuosity of a vessel, 

which is a descriptor of how entangled it is. In addition, the vectorized data could report 

on relational features of strands, including how many junctions or free endpoints they 

possessed. Finally, microscopy characteristics included brightness and signal-to-

background ratio. The rationale behind the inclusion of each of these features is that they 

may hold some predictive power with respect to differentiating the two classes of strands. 
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For instance, it was posited that a lower signal-to-background ratio might increase the 

likelihood of strand misidentification. Unfortunately, signal-to-background ratio was 

ultimately omitted as a feature from the final curation method. To calculate signal-to-

background ratio for a given strand, each z-plane encompassed by that specific strand was 

individually thresholded using Otsu’s method, and an intensity ratio was calculated from 

that binary thresholding. Finally, the collective z-plane intensity ratios were averaged to 

compute a single aggregate signal-to-background ratio for the entire strand. 

Unfortunately, manual inspection of the Otsu binarization revealed some inconsistencies 

stemming mainly from poor threshold placement. Thus, this method of signal-to-

background calculation was deemed to be unreliable and therefore omitted from inclusion 

as a strand feature.  
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General Features 
strandID Strand index number; corresponds to numbered output from 

VIDA Suite vectorization 
class Classification of each strand. 0: Faulty Vectorization; 1: 

Accurate Vectorization; 2: Unclassified, Ambiguous 
Vectorization 

Geometric and Spatial Features 
size Number of vertices in strand multiplied by voxel size in 

units of microns.  
minZ Minimum z position 
maxZ Maximum z position 
meanZ Mean z position 
minX Minimum x position 
maxX Maximum x position 
meanX Mean x position 
minY Minimum y position 
maxY Maximum y position 
meanY Mean y position 
meanRadius Mean radius of strand 
stdRadius A measure of radius uniformity for each strand 
length Distance from endpoint to endpoint of strand 
tangleFactor Size divided by length.  The larger the tangle factor, the 

more tortuous the vessel.   
junctionPoints Number of junction points per strand 
freeEndPoints Number of free endpoints per strand 
edgeX Mean distance from edge in x dimension 
edgeY Mean distance from edge in y dimension 

Microscopy Features 
strandBrightness Average intensity of pixels encompassed by each strand  
signalToBackgroundRatio Mean signal-to-background-ratio (SBR) of all z-planes 

encompassed by each strand. Note: this feature was omitted 
from remaining analysis due to inconsistencies in 
calculation, as discussed above in this section.  

Table 3.1: Summary of strand features. Three categories of features were extracted 
from each vectorized strand to aid prediction of false positives.  General 
features consisted of a strand identification number and a true class label 
from manual curation.  Geometric and spatial features were extracted from 
the vectorized set.  Microscopy features were calculated from the original 
multiphoton images at the locations of each strand. 
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3.4 EXPLORATORY DATA VISUALIZATION 

It is often useful to build an intuition for which features may help provide a 

descriptive analysis of good and bad strands and provide a basis for strand classification 

and differentiation.  Such an intuition will not only make it easier to interpret, optimize, 

and troubleshoot any developed classification algorithms, it also provides the additional 

benefit of highlighting what goes awry during vectorization and data collection. This 

awareness leads to better practices that will ultimately reduce the number of 

misidentifications and reduce the burden for data curation post-vectorization. One of the 

more effective methods for building such an intuition is exploratory data visualization. 

Below, each of the included features has been plotted in a format (e.g. boxplot or scatter 

plot) that most naturally draws comparisons of the faulty and accurate strand 

vectorizations. 

3.4.1. Exploratory Data Visualization: Strand Size 

Here, the size in microns of class 1 and class 0 strands (i.e. number of 

vertices, multiplied by the voxel size) was compared using a boxplot (Figure 3.2). The 

box represents the interquartile range (IQR), which spans the Q1 (25th percentile) and Q3 

(75th) percentiles. The boxes’ midlines correspond to the median values for each class. 

Extended lines emanating from the boxes indicate the minima and maxima. In the event 

that there are outliers, depicted here as scatterpoints, the lines do not represent the true 

maxima or minima, but rather Q1 − 1.5 × IQR or Q3 + 1.5 × IQR, respectively.  Our first 

discovery is that misidentified strands tend to be very short, and correctly classified 

strands tend to be much longer. This makes logical sense, as many faulty strands seem to 

arise from Volumetric Image Data Analysis (VIDA) Suite detecting clusters of noise and 

creating one or two voxel “strands.” In some cases, VIDA Suite manages to misidentify 
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very long strands, even approaching 500 µm in length. However, these are clear outliers, 

as depicted in the boxplot on the left. Generally, these sort of errors correspond to VIDA 

Suite jumping across two or more adjacent vessels. For example, in a single plane or in a 

projection image, two distinct vessels may appear as continuous rather than contiguous, 

and VIDA will make a false interpretation. However, comprehensive curation by 

scanning several z-planes or maximum intensity projections along different axes quickly 

reveals these examples of vectorization to be erroneous.  
 

 

Figure 3.2: Size of true and false strand vectorizations.  Class 1 (true) strands tend to 
be a larger size then class 0 (i.e. false) strands.  Size is given by the number 
of vertices multiplied by the voxel size.   

3.4.2 Exploratory Data Visualization: Transverse Position 

Subsequently, I strived to determine whether or not transverse (i.e. xy) position 

had any bearing on whether a strand was classified correctly or not. A violin plot would 

prove to be more useful than a standard boxplot. Whereas a boxplot might show you 

where the bulk of the data lies and provide a very coarse sense of distribution, a violin 

plot behaves more similarly to a histogram in its ability to depict where several clusters 

of data points might group together. What we see by looking at the minimum, maximum, 
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and mean x position is that bad strands (class 0) overwhelmingly reside at the edges 

of the image planes, and that true strands are more evenly distributed, with a slight 

tendency to emanate from the centers of the images (Figure 3.3(a)). The same trends ring 

true for the y-dimension (Figure 3.3(b)). Interestingly, the class 1 strands do not 

appear to be symmetrically distributed in x and y. More specifically, properly vectorized 

strands are more often located at smaller x coordinates (i.e. left of image) and larger y 

coordinates  (i.e. top of image) than they are at larger x coordinates and smaller y 

coordinates. This may be an indicator of non-uniform illumination during multiphoton 

imaging. This hypothesis is supported by the fact that brightness emerges as a 

predictive feature of strand classification.  

Perhaps a more intuitive way of visualizing transverse spatial position trends is to 

plot each strand as an individual point, colored by class, where a good strand is shown as 

mint green and a misvectorized strand is colored red. With this plot, we immediately 

capture the general information conveyed by the violin plots - bad strands tend to reside 

near the borders of the microscopy volume (Figure 3.3(c)). This is a reasonable 

discovery, as we might expect Volumetric Image Data Analysis (VIDA) Suite to struggle 

with cut-off, border effects and to experience difficulty with tracing vessels that end 

abruptly. This suggests that an important actionable step to be taken during data 

acquisition is to first determine the volume of interest needed for analysis (e.g. 500 µm x 

500 µm x 1 mm), and to apply an overscan to ensure that a sufficient number of 

accurately vectorized vessels reside within that final analysis volume after curation. It 

may be worth noting that ease of interpretability of the xy scatter plot may imply that the 

less intuitive violin plots above were redundant and unnecessary. However, the violin 

plots contained valuable information in that they were able to capture the subtle 

asymmetry of the class 1 strands in a way that a cluttered scatter plot cannot.  
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Figure 3.3: Transverse position of true and false strand vectorizations.  Class 0 
(false) strands tend to reside at the image borders in the (A) x and (B) y 
dimensions.  (C) A scatter plot of class 0 (false) and 1 (true) strands’ 
minimum, maximum, and mean position.  

3.4.3. Exploratory Data Visualization: Stand Radius 

The next pieces of information that were explored visually were mean radius and 

radius standard deviation. To elucidate what each feature means, it must be understood 
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that each strand is composed of one or more vertices. While each vertex occupies a single 

voxel, the “radius” of each vertex denotes the vectorization software’s assessment of the 

blood vessel radius at that position. Vascular radius is quite heterogeneous, with surface 

vessels typically having larger radii, and deeper microvasculature typically exhibiting 

smaller radii. It was worth exploring whether Volumetric Image Data Analysis (VIDA) 

Suite had a tendency to make errors in identifying larger or smaller vessels. Ultimately, 

the distribution of faulty and accurate strands was very similar with respect to radius, 

indicating that VIDA Suite vectorization is not very sensitive to vessel size (Figure 

3.4(a)). However, if we instead look at the standard deviation in radius, stdRadius = 
!!!!!

!
!!!  

 
where xi is the ith vertex radius of N vertices, we do note some differences 

between properly and improperly vectorized strands (Figure 3.4(b)). The miscategorized 

strands tend to have a more constant radius (i.e. smaller stdRadius), whereas the 

properly categorized strands display a distribution that shows a more fluid radius along 

the vessel. In other words, accurately vectorized vessels can taper off, thicken, or 

otherwise have variability in their thicknesses. However, one thing this exploratory data 

visualization fails to determine conclusively is whether or not bad strands’ predilection 

for lower radii standard deviation is simply a consequence of bad strands’ greater 

likelihood of being shorter, as seen above in the section on size. Although this specific 

point is not directly address by these plots, later sections (multicollinearity analysis) will 

identify redundant or overlapping features and identify whether or not faulty strands’ 

tendencies to be shorter and more uniform are correlated.  
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Figure 3.4: Radii of true and false strand vectorizations.  (A) Class 0 (false) and class 
1 (true) strands exhibit similar radii distributions.  (B) False strands have a 
more constant radius (i.e. uniform tubes) than true strands.  

3.4.4. Exploratory Data Visualization: Strand Length 

Examining vessel length, i.e. endpoint-to-endpoint distance, the class trend 

echoes the observation made with size - erroneous vectorizations tend to be much 

shorter than accurate strands. By looking at bar histograms for various length bin sizes, 

we see that greater lengths predominantly correspond to true class 1 vectorizations, 
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and shorter ones are overwhelmingly false class 0 strands (Figure 3.5(a)). We can 

also look at length strictly in the x, y, and z dimensions. This is a valuable exercise, 

since we may discover that VIDA Suite has difficulties tracing descending arterioles with 

high fidelity for example. However, this suspicion is unfounded based on the plots shown 

below. Vessels that span the z dimension along considerable lengths are no more likely to 

be misclassified than longer vessels that span the transverse plane (Figure 3.5(b)). 

 

Figure 3.5: Length of true and false strand vectorizations.  (A) Length (i.e. endpoint-
to-endpoint) distribution of class 0 (false) and class 1 (true) strands.  (B) 
Length distribution of strands in the x, y, and z dimensions.  
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3.4.5. Exploratory Data Visualization: Strand Tangle Factor 

The next feature subject for visual analysis is tangle factor. Tangle factor is meant 

to be an assessment of tortuosity, which describes how curved, twisted, and convoluted a 

strand is. There are many ways to quantify tortuosity, but perhaps the simplest way is to 

calculate the ratio of the strands’ size (µm) to the endpoint-to-endpoint distance (µm), 

which yields the unitless arch-chord ratio, [13] here-on referred to as a tangle factor. 

Tangle factor yields some very promising results with respect to strand classification. 

Proper vectorizations seem to be slightly (tangle factor ~1.5) or moderately curved 

(tangle factor ~3.2) strands (Figure 3.6). Improper vectorizations can be slightly to 

moderately curved as well, but are unique in exhibiting severely twisted strands (tangle 

factor > 3.5). We immediately note that any strand with a tangle factor above 3.5 is 

unambiguously improperly vectorized in this data set. This suggests that naturally 

occurring cerebrovasculature is not excessively tortuous and that tangle factor will 

emerge as a critical feature for differentiation in automated curation efforts. If any 

successive steps eliminate tangle factor as a metric for differentiation, that model should 

be scrutinized more critically, as this visualization confirms it as an integral feature. To 

expand on the presence of highly tortuous misfires by Volumetric Image Data Analysis 

(VIDA) Suite - occasionally the vectorization software produces what I refer to as 

pigtails or corkscrews, where the vectorized centerline twists back and forth aimlessly 

within a pocket of noise or from overlapping vessel-to-vessel, leading to the inclusion of 

faulty strands with large tangleFactor values.  
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Figure 3.6: Tangle factor of true and false strand vectorizations.  The tangle factor, 
or arch-chord ratio (strand size to endpoint-to-endpoint distance), of class 0 
(false) and 1 (true) strands.   

3.4.6. Exploratory Data Visualization: Strand Brightness 

Finally, I was ready to look at microscopy image features, rather than raw 

geometric information derived from vectorization, as a predictor of vessel accuracy. 

Initial expectations were that strand brightness, which is closely related to signal-to-

background ratio, would inform curation, with a brighter strand more likely to be 

classified correctly. However, this data visualization informs us that the opposite is true - 

very bright image regions are more likely to produce an improper vectorized strand 

(Figure 3.7). When this piece of information is coupled with our earlier discovery that 

class 0 strands tend to be much smaller, we can surmise that misvectorized strands are 

often just bright specks of noise.  However, it will be important to use this feature in 

conjunction with geometric ones for an automated classifier.  Otherwise, we will simply 

threshold strands from high signal regions out of the final vectorized data set.  
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Figure 3.7: Multiphoton image brightness at the location of true and false strand 
vectorizations.  Mean brightness (arbitrary units) along the length of a 
strand is calculated, and used to construct a violin plot for class 0 (false) and 
1 (true) strands.  

3.4.7. Exploratory Data Visualization: Junction Points 

Junction points are an indicator of vascular connectivity. Every strand extends 

from endpoint-to-endpoint, junction-to-junction, or endpoint-to-junction. An endpoint 

denotes there is no contiguous vessel connected on that side of the strand. On the other 

hand, a junction point denotes that there is a neighboring strand perfused with a given 

strand. Inspecting the bar plot below, there are more faulty strands represented in each of 

the three categories (Figure 3.8). However, this difference can simply be attributed to the 

greater number of false strands in the data set (n = 1110) relative to true strands (n = 976) 

leading to their over-representation in each cell. Nevertheless, the proportion of bad-to-

good strands in the zero junction point category (i.e. misvectorized endpoint-to-endpoint 

vessels to properly vectorized endpoint-to-endpoint vessels ratio = 2.667) is much greater 

than the overall proportion of bad-to-good strands in the data set (1110/976 = 1.137). 

This suggests that an isolated, or low-connectivity, strand is much more likely to be a 

class 0 strand. This aligns with our earlier conclusions, that faulty strands tend to be 
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vectorizations of pocket of noise, which are randomly distributed and would not lead to 

continuously connected strand networks.  Therefore, junction point number should serve 

as a valuable identifier of improperly vectorized vessel segments. 

 

Figure 3.8: True and false strand vectorization junction points. Vectorized strands 
are either isolated (0 junction points), connected on one side (1 junction 
point), or both sides (2 junction points).  Class 0 = false vectorizations; 
Class 1 = true vectorizations.  

3.5 PARTITION DATA INTO TEST AND TRAINING FRACTIONS 

When fitting a model to your data, it is important to reserve some observations as 

a test fraction. That is, the weights and parameters of your fitted model should be trained 

on only a subset of the data, and the generalizability and transferability of that fitted 

model should be assessed using the test fraction. If sensitivity and specificity on the test 

fraction falls far behind corresponding metrics on the training fraction, then the model 

either suffers from high bias or high variance. In colloquial terms, this means the model 

is under- or over-fitted, respectively. In the case of high variance, or overfitting, the error 

of the parameters as measured on the training data is likely to be lower than the actual 

generalization error. In the case of high bias, or underfitting, the training and cross 
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validation errors are both likely to be above acceptable levels. In high variance contexts, 

getting more training data is helpful in reducing the gap between training and test 

metrics. Unfortunately, learning algorithms afflicted by high bias will not likely improve 

solely by the inclusion of more training data. However, bias is not aggravated by larger 

sample sets, thus, to reduce the likelihood of overfitting, one can include more 

observations in the training fraction. In a perfect world, where data is inexpensive to 

collect and abundantly available, as many observations as possible should be included in 

the both the test and training fractions, with the only tradeoff being increased 

computation time. However, due to the slower speed of vectorization and the manually 

intensive need for hand labeling, only 2,086 observations were available. Since there was 

no way of knowing a priori how many of those observations needed to be reserved for 

training to avoid high bias, the fractional split was heuristically determined to be 0.7:0.3, 

with roughly ~1,500 training examples.  To elaborate, this cutoff was determined at a 

threshold where test receiver operating characteristics area the curve approached training 

area the curve values. 

3.6 FEATURE SELECTION: MULTICOLLINEARITY ANALYSIS 

As noted above, the inclusion of more observations mainly benefits learning 

algorithms suffering from high variance, but is less likely to aid algorithms plagued by 

high bias. A prominent method to prevent high bias is to obtain additional features, or 

add polynomial transformations of existing features. Thus, we begin by fitting each 

model with our full set of predictors captured during feature extraction. Unfortunately, 

unlike the number of training examples where there is no concept of “too many”, the 

inclusion of too many features can actually lead to high variance or overfitting. For more 

advanced learning algorithms, this can be offset with regularization, which retains all 
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features, but reduces the magnitude of their weight parameters. This class of models is 

often successful in contexts where we have many weaker features, each of which would 

fail to independently predict outcomes of y. However, in most other contexts, each 

included feature must be carefully inspected to ensure it will not lead to overfitting. Thus, 

it is our goal in this section and the next to begin with as many features as possible to 

avoid high bias, then kick out non-predictive parameters individually.  

The first step of this approach is multicollinearity analysis, which specifically 

seeks to remove redundant, overlapping variables. Often times a researcher will find high 

intercorrelations amongst their features due to improper data collection or encoding. For 

example, one feature might be hours of sleep per day and a second might be hours of 

sleep per week. In other cases, seemingly benign and independent features will subtly 

reveal themselves be intercorrelated through multicollinearity analysis, and while the 

discovery may provide valuable insight, one of the two related features must be removed 

in order to properly fit the model. For example, if we are looking at predicted health 

outcomes for patients, and age is included as a feature along with blood pressure, we 

might find a severe degree of multicollinearity. Specific issues that arise from 

multicollinearity include an inability to fit regression coefficients precisely, numerically 

unstable least squares estimates, high standard errors, a change in coefficient signs fit-to-

fit, as well as difficulties in identifying the predictive power of individual features [16]. 

Finally, the failure to remove multicollinear features tends to produce wide confidence 

intervals for a given coefficient making it difficult to reject a stated null hypothesis.  If 

we conduct an analysis of variance (ANOVA) using more than two multicollinear 

predictors, it is often difficult to identify which are specifically intercorrelated. The 

overall F test may yield a significant p-value, but none of the individual coefficient p-

values are significant [17]. However, many methods are available to aid in making this 
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determination. For example, the sum of squares regression (SSR) is particularly useful for 

identifying multicollinear variables. If X1 and X2 are highly correlated, then the SSR for 

the model that includes both features, SSR(X1| X2), is approximately equal to SSR(X1). In 

this example SSR(X2|X1) ≈ SSR(X2). In addition, creating a correlation matrix of the 

predictors is a simple way to identify relationships between features.  

In this study, variance inflation factor (VIF) analysis was used to assess 

multicollinearity. Variance inflation factors are predicated on the fact that multicollinear 

variables hold a linear relationship. When conducting a general regression, R2 is the 

coefficient of correlation, and it explains the proportion of total variability in y explained 

by the predictors. When conducting VIF analysis, we instead regress individual 

predictors against all other predictors to calculate R2, which is then referred to as the 

coefficient of multiple determination. To elaborate, we can begin with the simple 

expression below.  

 !!" − !. .
! = !! !! .−!. . ! + !!" − !! .

!
 (3.1) 

or 

 SSTO = SSR + SSE (3.2) 

This tells us that the total variability in the data (SSTO) is comprised of the total 

variability explained by the predictors (SSR) and the total unexplained variability 

unaccounted for by the factor levels (SSE). If we define the coefficient of correlation for 

a standard regression as below, then we can intuitively understand the R2 value as a 

description of how much of the total variability is accounted for by the predictors.  

 !! = !!"
!!"# = 1− !!"

!!"! (3.3) 

 

Thus, if we substitute y with an individual feature Xk, and regress against the other 
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remaining features, the coefficient of determination will indicate how interrelated that Xk 

is to any or all of the others X’s, although it will not reveal to which specifically. A large 

value for R2, [0,1], indicates a greater degree of multicollinearity. If we then define the 

variance inflation factor, [1,∞], as...  

 !"# = 1
1− !!!

 (3.4) 

...then we can also interpret a larger value of VIF as heightened evidence for 

multicollinearity. As a general rule of thumb, any VIF greater than 10 for any given X is 

deemed to be multicollinear. In our own statistical analysis of multicollinearity we 

removed the redundant features in Table 3.2 and used the remaining features for positive 

and negative strand classification. 

 
Rejected Multicollinear 

Features 
Remaining Non-Collinear  

Features 
minZ 

maxZ 

minX 

maxX 

minY 

maxY 

length 

size 

meanZ 

meanX 

meanY 

meanRadius 

stdRadius 

tangleFactor 

brightness 

junctionPoints 

edgeX 

edgeY 

Table 3.2: Retained and rejected strand features following multicollinearity 
analysis. Each feature was regressed against all other features in the data 
set.  A variance inflation factor of 10 or greater was used to identify 
multicollinear features, which were rejected from subsequent analysis. 

3.7 FEATURE SELECTION: BACKWARDS FEATURE ELIMINATION 

As mentioned earlier, we would like to include as many features as possible to 

avoid high bias. However, we underlined the importance that all included features must 
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be meaningful in terms of their ability to help predict the outcome of the response 

variable, which we’ve defined as strand classification. Otherwise, we run the risk of 

overfitting to empty predictors and our trained model will fail to generalize to unseen 

observations in our test fraction or to new data. This brings us to the concept behind the 

second phase of feature selection. By paring our features down to the best subset, we also 

enjoy the added benefit of reduced computation time, a diminished requirement for a 

large training set sample size, improved model stability, and increased interpretability 

[18]. Broadly, there are three distinct approaches to feature selection: filter, wrapper, and 

embedded methods.  

Filter Methods: A selection criteria is defined (e.g. t statistic, p-value, chi-square, 

etc.) to rank individual features.  

Wrapper Methods: Various combinations of some or all features are used to train 

the model, the final model performance is evaluated using the preferred selection criteria 

for each combination (e.g. ROC-AUC), and the highest-performing combination is 

accepted as the final feature subset [19].  

Embedded Methods: A diverse class of feature selection techniques, united in that 

variable selection is directly incorporated into the training method. Common examples 

include decision trees, which generally have a built-in mechanism for feature selection. A 

more recent example is LASSO (least absolute shrinkage and selection operator) 

regression, which uses L1 regularization as a built-in function to penalize certain features 

[159].  

Of the above methods, wrappers are the most likely to require intensive 

computation, particularly with larger initial feature sets, due to the many permutations of 

feature combinations that can be trialed. However, efficient search strategies may be 

designed and applied without hurting prediction performance [160]. Filter methods, are 
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perhaps the most simple, least computationally burdensome, and the most robust for 

overfitting, although they may not lead to the most predictive set of features [160]. Two 

very common wrapper methods are forward selection and backwards elimination. With 

the former approach, predictors are successively added one at a time, and rejected if the 

model performance is not improved. With backwards elimination, all predictors are 

included initially, model performance is evaluated, and the worst performer is removed. 

This process is repeated until only the most promising features remain [22,23].  

In this study, I have used backwards feature elimination. I fit a generalized linear 

model (glm) using a logit link (family = binomial) to all noncollinear features using the 

training set, i.e. a logistic regression model. The scoring criteria for the predictors was the 

p-value for the z-statistic (Pr(<|z|)). Upon fitting each model, I evaluated which predictor 

was least significant, removed it, and fit the model to the reduced feature set. This 

process was then repeated until only significant features remained. The features that were 

removed were: meanY, meanRadius, meanX, and stdRadius. The features that 

remained were: size, meanZ, tangleFactor, brightness, junctionPoints, 

edgeX, and edgeY. 

3.8 LOGISTIC REGRESSION MODEL FITTING 

A simple linear model fits the following equation to the data, where the 

population parameters !! and !! are the intercept and parameter slopes, respectively:  

! !! = !! + !!!"#!! + !!!"#!! +  !!!"#$%&'"(!)!! + !!!"#$ℎ!"#$!!
+ !!!"#$%&'#('&#%)! + !!!"#!$! + !!!"#!!! + !! (3.5) 

The generalized linear model contains a fixed component, which specifies the coefficient 

or degree of association for each predictor and the response variable, along with a 

random component, which assumes some normally distributed random error term for 
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each observation. In the above equation, the link between the response and predictor is 

fully linear, or:  

 ! !! =  !! (3.6) 

This is quite useful for continuous variables; however, in the case of strand classification, 

where each outcome is a binary Bernoulli random variable - either the strand was 

vectorized correctly or it wasn’t - a nonlinear link function is more sensible.  

 ! ! = !"# !
!!!  (3.7) 

where: 

 ! = !"# !! + !!!"#!! +⋯+ !!!"#!!! + !!
1+ !"# !! + !!!"#!! +⋯+ !!!"#!!! + !!

 (3.8) 

In this manner we are directly determining the probability, !, that a strand was 

vectorized correctly or incorrectly based on the available predictors.  Odds are then used 

to compare the relative magnitude of two complementary probabilities, and are typically 

expressed as the probability that an event will occur (i.e. success) over the probability 

that an event will not occur (i.e. failure).  Unlike probability, odds ω are not bounded on 

the range [0,1]. For instance, if the probability of an event occurring is 0.99, the odds are 

equal to 99 (i.e. 0.99 / [1 - .99]). If for example, the probability of an event for a certain 

group is 0.80, then the odds are equal to 4, since the probability of that event happening is 

four times greater than the probability that it does not occur. Mathematically, this is 

denoted by:  

 ! = !""# !"!#$ =  !(!"!#$)!(!"!#$) =
!

1− ! (3.9) 

A logit is then a natural log transformation of odds. It seeks to solve two specific 

problems of the odds metric. One, a linear model for odds as a function of predictors can 

lead to nonsensical negative predicted values, since odds are bounded by 0 up to any non-
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negative value. Thus, the bounds are problematic where 0 < ω < ∞. Secondly, a simple 

odds scale is asymmetric, meaning that a constant Δ translates to non-constant effects. 

For instance, π = 0.5 corresponds to ω = 1, whereas π = 1.0 corresponds to ω = ∞. The 

natural logit transformation improves these challenges to make a more useful model, 

where log ! = log !
!!!  is bounded to −∞ ≤ log(ω) ≤ +∞. 

3.8.1 Logistic Regression: Model Evaluation  

Now, armed with a clear understanding of logistic regression, we can observe the 

fitted model.  Ideally all observations on both curves would be assigned a probability of 1 

(i.e. log(ω) ~ ∞) or 0 (i.e. log(ω) ~ −∞), and the characteristic sigmoid curve would not 

be visually evident. Such a result would indicate that our model was able to identify true 

and false strands with 100% certainty in all cases. Clearly, this is not the case, as there a 

few strands with π ≈ 1 values, and there are few strands with π ≈ 0 values, but the vast 

majority land somewhere between these values (Figure 3.9). Observing the “rugs” along 

the top and bottom, it seems that the log(odds) are between [0, 2.5] for a typical class 1 

strand and between [-2.5, 0] for a typical class 0 strand. However, when coloring the 

strands by their true class from the manual labeling, we can certainly see some overlap in 

the two categories along the fitted logistic regression. This overlap, presented as 

individual blue data points infiltrating the red half of the sigmoid curve, and vice versa, is 

an indicator of imperfect model performance, as there is no clearly delineated divide 

between faulty and accurate strands.  



 128 

 

Figure 3.9: Logistic regression curves on train and test data.  Sigmoid logistic 
regression probabilities versus predictions (i.e. log odds) on the train and 
test data, where class 0 (false) and 1 (true) strands are colored as red and 
green respectively.  

To evaluate the model performance quantitatively, we can use chi-square values, 

or information measures like Akaike or Bayesian information criteria, which provide 

insight on how parsimonious a model may be. However, a more robust application-

motivated evaluation of actual performance and generalization is receiver operating 

characteristics area under the curve (ROC-AUC). Briefly, a receiver operator 

characteristic curve is built up from pairs of sensitivity and sensitivity values calculated 

as a function of decision thresholds. If I was to place a threshold at log(ω) = 0 := π = 0.5, 

and assign all observations above or equal to that threshold as class = 1, and all 

observations below that threshold as class = 0, I could calculate sensitivity and specificity 

values for that threshold using a contingency table that tabulates the number of:  

• True Positives (TP): correctly identified accurate strands 

• False Positives (FP): faulty strands predicted as accurate 

• True Negatives (TN): correctly identified faulty strands 

• False Negatives (FN): accurate strands identified as faulty 

Sensitivity, or true positive rate, for a specific threshold is then calculated as the number 
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of true positives relative to all positives, !"
!"!!".  False positive rate is calculated as the 

number of false positives to all negatives, !"
!"!!", which is the same as 1− !"#$%&%$%'(, 

where specificity or true negative rate is calculated as !"
!"!!".  For each decision 

threshold, unique true and false positive rate values arise, and these can be plotted to 

form the receiver operating characteristics curve. The curve will always include the 

points (0,0) and (1,1). The (0,0) point arises from an absolute decision threshold that 

deems all observations as negative, which will result in zero true and false positives and 

therefore, null true and false positive rates as well. Conversely, an absolute decision 

threshold that assigns all observations as positive classifications will yield the maximum 

number of true and false positives possible, ensuring that both true and false positive 

rates are maximized as well. The area under this curve is a strong indicator of model 

performance. An AUC = 1 signifies perfect model performance, where each prediction 

matches with the true class label. An AUC = 0.5 means that the model is performing no 

better than random chance. Anything below this indicates a seriously flawed model, 

which would be better off being substituted with a coin flip.  

To summarize the process that has lead to these results thus far: first, the strand 

features data-set was loaded into RStudio and uncurated strands  (class = 2) were omitted 

from classifier training and model evaluation. Strands with a tangleFactor equal to 

infinity (i.e. strands that loop back to their original position) were filtered out as well 

because the infinity values would prevent the general logistic model from being able to 

converge. Next, 70% of observations were partitioned into training data and the 

remaining 30% were designated as test data. I then fit a logistic regression model on the 

training data set using features chosen based on the absence of multicollinearity and 

backwards feature elimination until only predictors with a significance level less than 

0.05 and a variance inflation factor less than 10 remained. I then used the model to 
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predict the outcomes on the test data set and plotted the resulting ROC curves for both the 

training and test data sets. An ROC analysis is justifiable for the question at hand, 

because it directly informs us if we are able to successfully predict strand classifications 

within these two groups solely based on their geometric properties (e.g. position in 3D 

space) and the gray values of their corresponding multiphoton image data.  

Visual interpretation of the ROC curves (Figure 3.10) show an initial, sharp 

increase in sensitivity (i.e. true positive rate) at low false positive rates, with additional 

modest gains in sensitivity at the cost of an increasing false positive rate. The individual 

ROC curves corresponding to the training and test sets generally appear to be very similar 

as expected due to the fact that they are random fractions of the same larger data set and 

we have minimized overtraining artifacts. The area under the curve provides a 

quantitative diagnostic summary of ROC analysis and informs us that the final predictors 

unsurprisingly provide a marginally better fit on the training dataset (~0.89) than on the 

test dataset (~0.86), but it is unlikely that this discrepancy is statistically significant. From 

the plot of fitted probability as a function of the linear predictor, colored by true 

classification, we see that most points are positioned towards the center of the logistic 

curve which suggests that the model cannot uniquely identify good versus bad strands 

with high confidence based on the predictors. Ideally, the two positions would be well 

separated by the linear predictor; however, we see a significant degree of overlap 

indicating that classification is imperfect.  

Ultimately, the ROC curves of the training and test datasets and their associated 

AUC values (~0.86 - 0.89) indicate that for the most part good and bad strands do possess 

unique characteristics that can be used as a basis for automatic differentiation (Figure 

3.10). However, examining the plot of fitted probability versus predictors colored by 

classification reveals that there are plenty of instances where good strands were classified 
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as bad strands and vice versa, suggesting that there are atypical instances for both 

categories that defy accurate categorization (Figure 3.9).  

 

Figure 3.10: Receiver operating characteristics curves of vectorized strand classifier. 
True positive fraction (i.e. sensitivity) versus false positive fraction (i.e. 1 – 
specificity) receiver operating characteristic curves reveal excellent 
classifier performance on the training data (area under the curve ~ 0.89) 
with very modest levels of overtraining on the test data (area under the curve 
~0.86).  

3.8.2 Logistic Regression: Data Curation – Single Decision Threshold 

Armed with a fitted model we hold ample confidence in (test data area under the 

curve ~ 0.86), we can now apply it to our data and automatically curate strand 

vectorization. Unfortunately, two factors still remain unclear. First, what decision 

threshold should we use to most reliably differentiate between the two strand categories? 

Second, what curation accuracy does this yield? At this point, sensitivity and specificity 

hold less meaning as individual metrics because our goal is to maximize both in order to 

include as many good strands in the data set as possible. Therefore, overall accuracy, 
!"!!"

!"!!"!!"!!", is the metric we would like to optimize. By using our test data to calculate 

curation accuracy as a function of decision threshold, we can identify the threshold that 

yields the greatest curation accuracy.  We find that curation accuracy peaks at around 
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~0.78, and that curation accuracy is relatively stable at any decision threshold between 

0.4 and 0.6 (Figure 3.11).  However, ~80% is an unacceptable level of accuracy and we 

may be able to achieve a better statistic by using more than one decision threshold and 

curating the observations between these thresholds manually, as further discussed in the 

following section. 

 

Figure 3.11: Logistic regression classifier curation accuracy. A plot of curation 
accuracy as a function of a single decision threshold shows that overall 
accuracy peaks at around 78% and is stable at a threshold value range from 
0.4 – 0.6.  

3.8.3 Logistic Regression: Data Curation – Multiple Decision Thresholds 

To illustrate the concept of blending multiple decision thresholds with manual 

curation, we construct a simple example where we have applied two thresholds such that 

any strand with a fitted probability of 0.55 or greater is given a class prediction of 1 

(green) and any strand with a fitted probability of below 0.30 is given a class prediction 

of 0 (red) (Figure 3.12). All other strands, π = [0.3, 0.55), are not given class predictions 

(N/A) and will require manual curation. Here, we have also shaped the data points by true 

class label, where a circle corresponds to false strands and a triangle maps to true strands. 
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Therefore, of our curated set, only red circles and green triangles were curated correctly 

based on these applied decision thresholds. By using two thresholds at 0.30 and 0.55, we 

automatically curate all 87% of strands in the data set, with a sensitivity and specificity of 

0.732 and 0.677 respectively. Since the remaining 13% of strands require manual 

labeling, we can assume that sensitivity and specificity is 100% for this remaining set, 

meaning that our overall accuracy is 0.834. This represents a modest improvement over 

our single decision threshold curator (0.78) at the cost of manual intervention. 

 

Figure 3.12: Two-sided decision threshold of a logistic regression-based strand 
classifier. A plot of probability (!) versus prediction (i.e. log odds) of class 
0 (false; circle) and 1 (true; triangle) strands after logistic regression 
classification.  Above a probability of 0.55, all strands are assigned a class 
prediction of 1 (green) and below a probability of 0.30, all strands are given 
a class prediction of 0 (red).  This leaves 13% of strands without a class 
prediction (blue), and thus in need of manual curation.  At these thresholds 
the overall curation accuracy is 0.834, compared to a max curation accuracy 
of 0.78 using a single decision threshold.  

Whereas our earlier question was where to place our single decision threshold to 

maximize curation accuracy, our question has now changed to where should we place our 

two decision thresholds to maximize curation accuracy and autocuration fraction. Below 

we can clearly see a trade off between these two desires; if more strands are curated 
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automatically, the overall classification accuracy decreases (Figure 3.13).  More 

specifically, if we accept an increased burden of manual intervention, then we can 

increase the overall classification accuracy. On the left, we see autocuration fraction as a 

function of overall classification accuracy for all combinations of low and high decision 

thresholds. If we are content with an ~80% overall classification accuracy, we can 

proceed with the autocuration with little to no manual intervention (Figure 3.13(a)).  

However, on the right, the same plot is cropped to show only results using decision 

thresholds that produced an overall classification accuracy of 90% or greater (Figure 

3.13(b)). The core idea is to select the logistic regression probability decision thresholds 

that maximize the autocuration fraction for a given classification accuracy.  For example, 

if we are targeting a ~90% classification accuracy we can use values of 0.20 and 0.70 for 

our two-sided decision threshold and curate 69% of strands automatically, or we could 

use decision thresholds of 0.40 and 1.00 for a very slight improvement in classification 

accuracy, but wind up needing to curate ~51% of the data manually. Clearly, given these 

two options, the first threshold value pair makes the most sense. For the sake of this 

research study, a ~95% classification accuracy is targeted. We can identify that our best 

choice for decision thresholds given this target are 0.15 and 0.85, where any strand with a 

logistic regression probability π = [0.2, 0.85) will need to be manually curated (~50% of 

data set) to maintain a 95% overall accuracy level.  
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Figure 3.13: Logistic regression classification accuracy and autocuration fraction 
tradeoff of a two-sided decision threshold. (Left) It is apparent that there is 
a negative association between autocuration fraction and overall logistic 
regression classification accuracy.  As the upper decision threshold 
(threshHigh) and lower decision threshold (threshLow) approach each other, 
autocuration fraction increases at the cost of a lower classification accuracy.  
(Right) By limiting our plot to only high accuracy results, we can clearly see 
that specific threshold value pairs will maximize autocuration fraction at a 
given logistic regression classification accuracy.  

3.9 ADABOOST MODEL FITTING 

3.9.1 Adaboost: Model Evaluation  

Unfortunately, the logistic regression model trained on our data did not produce 

the level of results we desired since we discovered that we would still need to manually 

curate every other strand to maintain a 95% classification accuracy level. While the 

ability to curate half of the data automatically reflects a substantial amount of time saved, 

it would be nice to reduce the amount of manpower needed further. As we found from 

our initial data exploration, no one single data feature seemed to be a strong predictor. 

This makes a strong case for using Adaboost, a learning algorithm that uses several weak 

linear classifiers and combines them together to build a single strong classifier. By 
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staging these classifiers (i.e. cascading) in such a way that if initial features reject a new 

input, remaining features are not calculated and predictions on new data are thereby sped 

up, saving a considerable amount of computational resources.  

We feed all non-collinear features into the Adaboost model for training and 

produce the following contingency table at a decision threshold of 0.5  (Table 3.3).  The 

top class labels are true class labels, and the class labels along the left side are the 

Adaboost predictions.  Thus our sensitivity is calculated as !"!
!"!!!" = 0.82 and specificity 

is calculated as !"#
!"#!!" = 0.782, respectively.   

  True Class Label 
 

  Positive (1) Negative (0) 

A
da

bo
os

t 
Pr

ed
ic

tio
n 

 
Positive (1) 
 

242 72 

 
Negative (0) 
 

53 259 

Table 3.3: Adaboost strand classifier contingency table. A table of true and 
predicted class labels of vectorized strands after Adaboost classification at a 
threshold of 0.5.  Sensitivity = 0.82, specificity = 0.782. 

3.9.2 Adaboost: Data Curation – Single and Dual-Sided Decision Thresholds 

Now, with a trained Adaboost model with high-level performance as tested by 

sensitivity and specificity, we are able to automatically curate our test data. As we did 

with the logistic regression model, we initially test it using a one-sided decision threshold 

to determine an ideal probability threshold and what classification accuracy this threshold 

would yield (Figure 3.14). We find that curation accuracy peaks at ~0.805, and that 

curation accuracy is relatively stable at any decision threshold between 0.4 and 0.6. This 

region of stability closely matches the logistic regression results, although the peak 
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curation accuracy of Adaboost is slightly better (~0.805 vs 0.78). However, ~80% is still 

shy of our ~95% classification accuracy target, meaning that we must pursue a two sided 

decision threshold curation accompanied by manual interventions.  

 

Figure 3.14: Adaboost classifier curation accuracy. A plot of curation accuracy as a 
function of a single decision threshold shows that overall accuracy peaks at 
around 80.5% and is stable at a threshold value range from 0.4 – 0.6.  

 
Adaboost multiple threshold results are very similar to the logistic regression 

classifier, with a slight performance edge given to the Adaboost classifier (Figure 3.15). 

On the left, autocuration fraction is plotted against classification accuracy for all decision 

threshold pairs, where data points are colored by the upper threshold value and sized by 

the lower threshold value. Whereas logistic regression was able to fully rely on 

autocuration with a classification performance just shy of 80%, Adaboost exceeds 80%, 

but not by a significant margin. On the right is the same plot cropped to show decision 

threshold pairs that results in a classification accuracy above 90% (Figure 3.15(b)). We 

can identify the threshold pairs that maximize autocuration for a given classification 
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accuracy. If we are targeting a 90% classification accuracy, threshold values of 0.30 and 

0.70 result in a 76% autocuration fraction, which is significantly better than the 69% 

autocuration fraction we were able to achieve with logistic regression at the same 

accuracy level. If we target a more stringent 95% classification accuracy, then Adaboost 

thresholds of 0.15 and 0.75 produce a ~56% autocuration fraction, which again reflects 

that Adaboost is able to outperform logistic regression, which was at 51% autocuration.  

 

Figure 3.15: Adaboost classification accuracy and autocuration fraction tradeoff of a 
two-sided decision threshold. (Left) Autofraction versus overall Adaboost 
classification accuracy.  As the upper decision threshold (threshHigh) and 
lower decision threshold approach (threshHigh) each other, autocuration 
fraction increases at the cost of lower classification accuracy.  (Right) 
Specific threshold value pairs maximize autocuration fraction at a given 
Adaboost classification accuracy. Here, lower and upper probability 
thresholds of 0.3 and 0.7 result in a 76% autocuration fraction and a 90% 
classification accuracy. 

3.10 CONCLUSION AND FUTURE DIRECTIONS 

A fully vectorized cerebrovascular network results in the creation of tens of 

thousands of strands. Unfortunately, each of these strands requires curation, as the 



 139 

vectorization algorithm is imperfect. In an effort to save undergraduate and graduate 

students from endless, painful hours of mind-numbing menial labor, I developed an 

automated strand classifier using statistics and data science. This was an eight-step 

process that began with manual classification, feature extraction and exploratory data 

visualization. Exploratory data visualization suggested that size, length, depth, position, 

radius, tortuosity, brightness, and junction points were all predictive features of 

vectorization accuracy. The following two steps of the statistical modeling pipeline - 

feature selection through multicollinearity analysis and backwards feature elimination - 

retained size, depth, transverse position, brightness, and junction points as significant 

features. With a sufficient number of features and training examples to ensure the model 

would not be susceptible to high bias or high variance, a logistic regression model was fit 

to the training data. A log link function for the generalized linear model was selected due 

to its applicability to binary outcome predictions. Upon model evaluation, the training 

data exhibited a large receiver operating characteristics area under the curve (ROC-AUC; 

0.89) and the test data AUC did not lag far behind (0.86), indicating the model was not 

severely overfit. Fully automated data curation with single decision thresholds and semi-

automated data curation with multiple decision thresholds were compared using the fitted 

logistic regression model, and the following classification accuracy to autocuration 

fraction splits were identified: 0.78/1.00, 0.90/0.70, 0.95/0.50. To improve upon these 

results further, an Adaboost learning algorithm was fit to the training data. Fully 

automated single decision threshold curation with Adaboost edged out logistic regression 

slightly (~0.805 vs 0.78 classification accuracy), whereas dual decision threshold 

curation with Adaboost was significantly better than logistic regression (0.76 vs 0.69 

autocuration fraction for a 90% classification accuracy).  

In our exploratory data visualization, we found that the vast majority of false 
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strands reside at the image border and greater depths. This begs the question: why not just 

crop out those strands and avoid the seemingly unnecessary hassle of developing a strand 

classifier? As it stands, this model is a great deal more sophisticated than just filtering out 

strands near the volume borders or deep beneath the cortical surface. While those features 

(edgeX , edgeY, and meanZ) are included as features in the final fitted model, they’re 

accompanied by features such as size, connectivity (junctionPoints), and tortuosity 

(tangleFactor). If a strand that seems likely to be misvectorized based on location 

features (e.g. near an image border and very deep) appears to be very continuous with 

surrounding vessels, the image brightness indicates decent signal-to-background ratio, 

and the vessel is not overly tortuous, then this algorithm will retain it in curation. First 

and foremost, this helps us include as much data in the final vectorization as possible. 

More importantly, this ensures that we don’t systematically filter out vessels stemming 

from specific regions of the rodent cortex in depth (e.g. layer-V) or in the transverse 

directions (e.g. periphery of the somatosensory-cortex).  

While these results are promising, they’re certainly not perfect and there is much 

room for improvement. I believe a major reason for the logistic regression and Adaboost 

models’ shortcomings relate to the available feature set. The entire curation pipeline is a 

multi-step process, and it’s unclear which feature selection procedure or learning 

algorithm should be applied. But what is clear is that if we fail to extract features that 

adequately differentiate true and false strands in the first place, then the curation process 

has a very little chance of being successful, regardless of how sophisticated any 

downstream procedures may be. Thus, the need to extract variables that provide real 

insight on why vectorization may have failed is essential to building a proper curation 

classifier. For instance, signal-to-background ratio (SBR) should most certainly be an 

included feature. Early attempts at automatically quantifying SBR were unsuccessful. 
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Perhaps mean subtracted contrast normalized value distributions for each z-plane, which 

have been used to gauge image distortion in literature [161] may be useful in the absence 

of a robust SBR measure. In addition, strands with a tangleFactor of ∞ (i.e. strands that 

looped back on themselves) were omitted from data analysis. This was simply because 

the ∞ values prevented the fitted models from converging. However, instead of omitting 

these strands, it may be useful to coerce their ∞ values to the largest real-valued 

tangleFactor measured in the data set during preprocessing, as these close-looped 

strands were distinctly misvectorized and their inclusion would help strengthen the 

classifier. Finally, future work should focus on characterizing how robust the fitted model 

is. For instance, a classifier trained on a healthy rodent specimen may find that a highly 

tortuous vectorized strand is most likely suspect. Perhaps in an unhealthy specimen, 

highly tortuous vessels are expected to be found in abundance post-ischemia. If it is 

found that classifiers for a certain disease state, rodent gender, or specimen age are non-

transferrable, then it will be necessary to fit several models to data representing each 

condition, and apply the appropriate trained model to respective future data for curation. 
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Chapter 4: Super-Resolution and Non-Degenerate Multiphoton 
Microscopy2 

4.1 SUPER-RESOLUTION OPTICAL IMAGING 

Synaptic communication is dictated by neural architecture, and structural 

alterations and changes in density are believed to be substrates of underlying cognitive 

function [162,163]. Two-photon fluorescence microscopy has become the standard 

modality in neuroscience due to its ability to image neural tissue at greater depths with 

high resolution [6,8,164]. However, the technique remains diffraction limited, meaning 

that its spatial resolution cannot exceed ~400 nm at standard imaging wavelengths.  

Meanwhile, dendritic spines, the tiny protrusions decorating the surfaces of neurons, have 

neck diameters as small as 70 – 300 nm in size [165]. Thus, optical visualization of 

spines necessitates a super-resolution system.  The neuroscientific significance of such an 

endeavor cannot be overstated due to the instrumental role spines play in learning and 

memory, in addition to their being host to over 90% of the excitatory synapses found in 

the central nervous system [165]. Of course, it is already possible to obtain three-

dimensional reconstructions of these small protrusions via serial-section electron 

microscopy [166]. Unfortunately, electron microscopy limits observation to relatively 

small volumes and introduces significant distortions through fixation, dehydration, and 

resin embedding [167]. In addition, only light microscopy enables live cell imaging to 

gain qualitative and quantitative descriptions of dynamic conditions and changes as they 

occur.  Thus, a non-invasive super-resolution optical technique would be highly 

beneficial to advancing our in vivo understanding of dendritic spines. 

                                                
2 Portions of Chapter Four are based on a previous publication.  Ahmed Hassan 
conducted all experiments, analysis, and independently wrote, “Hassan, A.M., 
Engelmann, S. and Dunn, A.K., 2019. Improved nondegenerate multiphoton microscopy 
and axial registration with a reflective objective. Optics letters, 44(20), pp.5017-5020.” 
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Over the past two decades, many super-resolution imaging methods have emerged 

to overcome the diffraction limit [168–170]. Some of these techniques rely on the 

sequential activation and time-resolved localization of photo-activated fluorophores to 

build an image (e.g. STORM and PALM) [171,172]. Other methods rely on the concept 

of point spread function engineering where a donut shaped depletion beam is 

spatiotemporally overlapped with an excitation beam to confine fluorescence to a smaller 

focal spot [173,174]. The most widely recognized example of this is stimulation emission 

depletion (STED) microscopy in which the depletion beam decreases the size of the 

excited region through stimulated emission [169]. Several variations of STED exist, but 

they are limited by the requirement of a high intensity depletion beam which risks sample 

damage and photobleaching [168,175,176]. To circumvent this destructive requirement, 

fluorescence emission difference (FED) microscopy uses excitation and donut beams at 

lower intensities to alternately excite fluorophores and collect two sequential images 

[174]. Digital subtraction of the donut point spread function from the excitation point 

spread function results in a super-resolution difference image. 

The size of the hollow spot in FED dictates the resolution-enhancement, with a 

smaller hole conferring improved resolution.  Switching laser mode (SLAM) microscopy 

attempts to reduce the central dark region by using the smaller dimensions of azimuthally 

polarized TEM01 modes and improves the resolution of conventional fluorescence 

imaging by a factor of two [177]. Moreover, this technique has been demonstrated as 

being compatible with two-photon excitation.  It is the goal of this project to extend 

SLAM beyond this two-fold resolution enhancement by creating improved, smaller-

diameter null spots from mixing different spatial modes of two synchronized lasers at 

distinct wavelengths in a photophysical process termed non-degenerate multiphoton 

excitation [64].  This improvement would harness STED’s spatial resolution capability to 
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visualize dendritic spines, yet minimize the risk of introducing photobleaching and 

photodamage effects to the sample.  In the section that follows, an exhaustive review of 

existing super-resolution modalities will be presented in order to better explain their 

limitations and provide context for the significance of a non-degenerate FED-based 

modality.   

4.2 A REVIEW OF SUPER-RESOLUTION OPTICAL IMAGING MODALITIES 

4.2.1 Localization Based Nanoscopy  

A major branch of super-resolution fluorescence microscopy includes localization 

based approaches.  Within this umbrella, stochastic optical reconstruction microscopy 

(STORM) and photoactivated localization microscopy (PALM) are widely recognized 

examples, both of which are implementations predicated on the principle of single 

molecule detection.  The localization precision and effective resolution of single 

molecule detection is theoretically unlimited and determined by the number of collected 

photons (N) and the numerical aperture (NA) of the imaging system: 

 !"#$%&'($) =  1.22!2!" ! (4.1) 

Therefore, these modalities rely on bright, high efficiency fluorophores and the use of 

sensitive detectors that minimize dark noise. A major caveat to STORM and PALM is 

they do not provided true structural images.  Rather, the relative locations (i.e. centroids) 

of emitters are recorded and reconstructed into a time-resolved image that can come to 

resemble a true structural image.  

For a single emitter, it is relatively simple and straightforward to identify the 

centroid position with high localization accuracy provided ample signal-to-noise ratio.  In 

typical fluorescent images, however, we deal with multiple emitters and often have 
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thousands of overlapping point spread functions.  Since the turn of the millennium, 

several techniques have taken advantage of the principles behind single molecule 

detection to obtain super-resolution maps of multiple emitters.  One such technique 

known as Single-Molecule High Resolution Imaging with Photobleaching (SHRimP) 

takes advantage of the quantum photobleaching of fluorescent molecules to resolve two 

or more fluorophores in the x-y plane, separated by distances as small as 10 nm [178]. 

Images are recorded continuously, and a plot of integrated image intensity with respect to 

time is used to identify signal reductions corresponding to the photobleaching of an 

individual molecule.  Digital subtraction of post-bleaching frames from pre-bleaching 

frames can be used to isolate individual emitters whose point spread functions can be fit 

to a Gaussian distribution in order to localize its position.  This relatively simple 

technique was made possible by the advent of low-noise, high quantum yield CCD 

cameras. A similar technique was developed in 2005 that relied on the photoblinking, 

rather than the photobleaching, of quantum dots and subsequent component analysis of 

independent frames to precisely localize and thereby resolve groups of closely spaced 

quantum dots [179].  Notably, both SHRImP and independent component analysis of 

photoblinking quantum dots are limited to the localization of only a few emitters within a 

single frame.  This paved the way for more mature techniques like STORM and PALM, 

which can work successfully with thousands of fluorescent molecules within a single 

field of view.   

STORM and PALM are both super-resolution imaging techniques that use 

sequential activation and time-resolved localization of fluorophores to create super 

resolution images.  They can, in principle, reach molecular-scale resolution.  Both are 

conceptually identical and were developed and published on independently around the 

same time.  Their major differentiating factor is the applied fluorophore; STORM was 
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originally described using Cy5 and Cy3 dyes attached to nucleic acids or proteins [170] 

and PALM was described using photoactivated fluorescent proteins [172]. In each 

imaging cycle, only a fraction of fluorophores are turned on, allowing their positions to 

be determined with nanometer accuracy.  The fluorophore positions obtained from a 

series of imaging cycles are used to reconstruct the overall image and the super-

resolution image can be thought of as a map of the coordinates found in particle 

detection.  With wide-field approaches such as STORM and PALM, the trade-off 

between spatial and temporal resolution arises from the fact that a sufficiently large 

number of localizations need to be detected in order to build the super-resolution image.  

More localizations require more imaging cycles, which takes more time.  Currently, a 40 

– 70 nm spatial resolution can be achieved with STORM/PALM with a 30 – 60 second 

long acquisition window, although it’s possible to achieve a ~20 nm resolution with 

several minutes of data collection.  The major limitations of temporal resolution are the 

switching rate of dyes and camera frame rates.  However, faster blinking/switching 

reduces the number of collected photons and would therefore sacrifice spatial resolution.  

Thus, the major limitation on spatial resolution is fluorophore brightness and collection 

efficiency.   

4.2.2 Stimulated Emission Depletion Microscopy 

Stimulated emission depletion (STED) microscopy is a powerful point-scanning 

approach to super-resolution imaging that presents notable distinctions to wide-field 

localization based approaches.  With both paradigms, there is a fundamental tradeoff in 

spatial versus temporal resolution.  In point-scanning techniques, higher spatial resolution 

is achieved using smaller pixel sizes, which results in a slower imaging speed given a 

matching field-of-view.  Unlike localization based approaches where resolution is 
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determined by the number of collected photons, STED resolution depends on the 

intensity of the depletion beam (!) relative to saturation intensity (!!"#), and numerical 

aperture (NA). 

 !"#$%&'($) = 1
1+ !

!!

1.22!
2!"  (4.2) 

STED uses a solid spot for excitation, typically of a Gaussian beam profile, and a 

red-shifted hollow spot for stimulated emission, where a single image is produced.  The 

hollow spot depletion beam effectively decreases the size of the excited region through 

stimulated emission.   Because STED is a direct, photophysical effect the super-

resolution image is created in real time unlike fluorescence emission difference 

microscopy. Several variations of STED exist including continuous wave and pulsed 

implementations, but they are mostly limited by the requirement of a high intensity 

depletion beam which risks sample damage and photobleaching [168,176].  In the 

following section we will provide a critical examination of in vivo STED neuroimaging 

applications. 

4.2.3 In Vivo STED Neuroimaging 

Perhaps the most striking examples of two-photon stimulated emission depletion 

(2P-STED) microscopy for neuroimaging applications emerge from the lab Dr. Valentin 

Nägerl at the University of Bordeaux.  In one study, his lab synchronized a 

Titanium:Sapphire (Ti:S) excitation laser (!!" = 900 nm; 80 MHz) with a pulse-stretched  

optical parametric oscillator (OPO) depletion laser (!!" = 598 nm; 80 MHz) to collect 

2P-STED images of the CA1 hippocampus in transgenic mice [180].  Mice were 

implanted with a specialized hippocampal window, where the outer somatosensory cortex 

is excised and substituted with a metal cylinder then sealed with a coverslip.  A long 
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working distance is then used to image through this window and into the hippocampus.  

His results demonstrated that spine density in this region was two-fold greater than 

previously published reports, a discrepancy which may be explained by the super-

resolution detection sensitivity of 2P-STED.  Moreover, he found that 40% of spines 

imaged at t = 0 had turned over after four days, suggesting a high level of neuroplasticity 

in the CA1 region. By measuring the diameters of these spines, Nägerl was able to show 

that smaller spines were disproportionately more likely to be affected by spine turnover.  

It is this last discovery that really highlights the advantage of STED and, more broadly, 

super-resolution optical imaging.  With conventional, diffraction-limited 2P microscopy, 

spines would appear as amorphous blobs and size measurements would only serve to 

characterize the imaging system’s point spread function rather than the dimensions of the 

spines themselves.  By using 2P-STED, Nägerl is not only able to delineate the structural 

dynamics of spines more clearly from a qualitative standpoint, he is able to provide more 

reliable quantitative descriptions as well.  Concretely, spine neck widths were measured 

at 147 + 8 nm using 2P-STED and 369 + 6 nm with conventional 2P microscopy.   

Nägerl does take care to note a critical disadvantage of 2P-STED is susceptibility 

to image distortions caused by breathing and pulsatile motion, which become more 

apparent on account of STED’s high spatial resolution.  Furthermore, this STED 

implementation was limited to super-resolution in the plane orthogonal to the optical 

axis, meaning that spines along the axial direction remained obscured.  Notably, all 

spines imaged in this study stemmed no further than 20 µm away from the coverslip.  At 

greater depths, 2P-STED image quality degraded rapidly, and the authors posit that was 

owed to index mismatches in the coverslip, immersion media, and brain tissue (n ~ 1.37).  

They note that adaptive optics may play a role in overcoming this limitation, although no 

follow-up studies using adaptive optics for STED spine imaging has emerged from this 
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lab or others at the time of this writing.  Finally, it is worth noting that a discussion of 

average depletion laser power was noticeably absent in the description of this imaging 

study.  It is mentioned, however, that excitation laser power ranged around 5-20 mW for 

2P and 5 – 15 mW for 2P-STED.  I hypothesize that the reduced excitation laser power 

for 2P-STED was intended to compensate for the high power of the depletion laser.  

Moreover, we can refer to similar imaging studies to estimate power levels used by 

Nägerl. For instance, Wang et al.’s 2015 continuous wave STED imaging of actin 

cytoskeleton used 25 µW and 200 mW of excitation and depletion beam power, 

respectively. Admittedly, an advantage of pulsed STED is its lower threshold for average 

depletion power; nevertheless, depletion power is typically two orders of magnitude 

larger than excitation power using this STED variation [181].  Direct comparisons of 

STED and FED in integrated microscopy systems show that dark FED imaging reduces 

STED depletion power intensities anywhere from 200 – 427 fold at commensurate 

resolution scales [182]. Regardless of the exact ratio, it is well established that STED 

resolution is a function of depletion laser power, meaning that achieving the ~two-fold 

resolution enhancement seen here likely risked substantial photobleaching.  This calls 

physiological conclusions drawn from the imaging results into question as spine turnover, 

particularly spine disappearance, may have been externally triggered by phototoxic laser 

levels.    

4.2.4 Fluorescence Emission Difference Microscopy 

Localization based super-resolution imaging techniques like stochastic optical 

reconstruction microscopy (STORM) and photoactivated localization microscopy 

(PALM) require time-resolved image reconstruction, which hinders its application to live 

cell or large volume imaging.  On the other hand, stimulated emission depletion (STED) 
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microscopy’s super-resolution point scanning implementation requires the use of a high 

intensity depletion laser, which can produce symptoms of phototoxicity in live samples.  

To remedy this, fluorescence emission difference (FED) microscopy serves as a point-

scanning approach that mimics the underlying principle of STED where a hollow spot is 

used to confine fluorescence to a sub-diffraction limited focal spot, without the need for a 

high intensity depletion beam [174].  Specifically, FED eliminates its reliance on a high 

power depletion beam by substituting photophysical stimulated emission with digital 

subtraction.  Similar to STED, a TEM00 beam is used to initially excite a fluorescent 

molecule, where TEM denotes transverse electromagnetic mode.  Following this step, 

STED uses a hollow TEM01 laser to suppress fluorescence at the periphery of this excited 

region through stimulated emission.  Since depletion efficiency is a function of laser 

intensity, the TEM01 STED laser line is typically multiple orders of magnitude higher in 

power than its TEM00 line.  The advantage of FED is that the depletion laser is not 

intended to confine fluorescence through stimulated emission.  Rather, it is used to 

produce a second “dark” excitation image at low powers matching the initial excitation 

image, and digital subtraction of the dark image from the former is used to accomplish a 

similar effect to STED, only digitally.  This is expressed in Equation 4.3 below, where 

PSF denotes point spread function. 

 !"!!"# = !"!!"#$%&%$'( − !"#!!"#$ (4.3) 

 Similar to how one can vary STED depletion laser power to alter final image resolution, 

one can digitally adjust the FED dark image subtraction factor (!) to achieve the same 

result.   

The instrumentation of FED is considerably more straightforward than a typical 

STED set-up.   Conventional STED systems rely on two unique laser sources, such as the 
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one used by Valentin Nägerl in the study discussed in Section 4.2.3.  The initial 

excitation laser is tuned to match the fluorophore of interest’s peak action cross section, 

and an independent depletion laser is tuned to be coherent with the fluorophore’s 

approximate emission and allow for stimulated emission.  Of course, sophisticated two-

photon (2P) STED variations do allow for a single laser source that is then split into two 

excitation pathways.  The first excitation pathway stimulates a fluorophore with a 

considerably large Stokes shift, such that one-photon (1P) stimulated emission depletion 

is possible at the same wavelength as 2P excitation.  However, the pool of fluorophores 

that are compatible with this technique is extremely meager and even when a promising 

candidate is identified, the possibility of unintended excitation with the depletion 

pathway remains salient if the selected fluorophore’s cross section profile exhibits a 

longer tail.  Moreover, pulsed STED imposes a strict requirement for temporal alignment 

of the two beams.  Incident photons from the depletion beam must strike the fluorescent 

molecule after initial excitation, and before excited electrons relax back down to ground 

state. Achieving this temporal alignment is technically complex and can require 

expensive equipment such as a time-correlated single photon counting board.  

Alternatively, the depletion beam can stem from a continuous wave source although this 

is less efficient and requires greater average power.  In contrast, FED instrumentation is 

quite simple.  A single excitation source is tuned to the fluorophore’s peak action cross 

section and split into two pathways.  The first pathway is used for fluorescent excitation 

as is. A beam shaping element is introduced to the second pathway, termed the “dark” 

beam, to introduce a hollow spot at focus.  Typical beam shapers include vortex phase 

plates, azimuthal polarizers, and spatial light modulators.  To alternate between excitation 

and dark imaging, a pair of digital shutters are used.  Of course FED does have its own 

limitations. Since FED requires sequential excitation and dark imaging, it lacks the 
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temporal throughput of STED.  Whereas STED images are created in real-time, FED 

images are reconstructed digitally, which imposes additional computational burden.  In 

spite of this, FED is capable of matching the resolution enhancement of STED, 

significantly reduces the risk of phototoxicity, employs a simpler optical system, and 

provides far greater flexibility and compatibility with respect to fluorophore selection.   

4.3 DEVELOPMENT OF A TWO-COLOR IMAGING SYSTEM 

The advantages of non-degenerate multiphoton microscopy (ND-MPM) relative 

to conventional MPM are well chronicled, including multicolor imaging [63], reduced 

background fluorescence [64], and improved excitation efficiency [183].  However, it is 

our belief that the benefits of ND-MPM have yet to be fully explored, and we endeavored 

to build a two-color imaging system to develop novel non-degenerate use cases and 

applications. The system relies on the integration of three beam paths to achieve non-

degenerate multiphoton excitation of various contrast agents at the sample plane. To 

achieve ND excitation, the synchronized two-color pulses must overlap in both space and 

time.  To achieve spatial integration, the independent beam paths are made collinear 

using dichroic mirrors or 50:50 beam splitters depending on the beams’ spectral 

properties.  Temporal overlap is straightforward, although technically challenging, and 

mandates the use of optical delay lines, which can advance or delay a pulse train in time 

without compromising optical alignment.  To assess crude temporal overlap, a variety of 

equipment was evaluated, including digital- (DPC230; Becker & Hickl GmbH) and time-

correlated single photon counting boards (TCSPC-150; Becker & Hickl GmbH) and 

short- (LNR25ZFS, Thorlabs), as well as long-range travel stages.  Empirically, it was 

determined that the improved temporal resolution of the TCSPC board and the extended 

optical delay of the long-range travel stage served as a better combination for actuating 



 153 

coarse temporal overlap. To more precisely evaluate temporal alignment, autocorrelative 

interference (matching wavelengths) or cross correlation (non-matching wavelengths) is 

observed using a GaAsP photodiode sensor (G117; Hamamatsu) and oscilloscope. 

Due to chromatic aberration, we found that the precise spatial overlap of different 

beam lines was compromised in the focal plane.  In our early efforts, we attempted to use 

a corrective telescope to impart convergence or divergence to one beam path and thereby 

reduce focal offset.  An initial telescope pair was used to expand and collimate the beam 

(LA1131C f = 50.0 mm, LA1509C f = 100.0 mm; Thorlabs), and a second pair was used 

to actuate collimation (2x LA1509C f = 100.0; Thorlabs) using a z-axis translation stage 

(SM1Z; Thorlabs).  To measure axial color shift severity as a function of telescope offset, 

a photodiode (G117l; Hamamatsu) was mounted to either a horizontal (Z825B; Thorlabs) 

or a vertical (MLJ050; Thorlabs) translation stage and swept through the wavelength-

dependent position of the focal plane using a home-built LabVIEW program.  Voltage 

was then recorded as a function of stage position. The results informed us that, in 

principle, adjustments to a single excitation beam with a Keplerian telescope can be used 

to impart divergence or convergence that compensates for the chromatic focal offset and 

improve two-color overlap. In practice, however, the combined magnification of a 

complete objective scan engine (~40 – 160x) requires severe acollimation to achieve 

precise overlap in the objective focal plane. This becomes infeasible because such a 

divergent beam cannot be successfully transmitted through a microscope’s scan path due 

to vignetting. Moreover, as telescope offset is increased, the objective optical power is 

effectively reduced, resulting in a focal point spread function broadening and reduced 

multiphoton excitation efficiency. We found that reflective objectives could successfully 

circumvent chromatic aberration and after rigorous characterization and evaluation, chose 
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to employ the LMM-40X-P01 reflective objective from Thorlabs (0.5 NA).  Section 4.4 

details characterization of this optic relative to traditional refractive objectives.  

Results using the two-color imaging system have shown it to be capable of 

increasing excitation efficiency and extending multiphoton imaging depth.  Our lab has 

demonstrated that ND-MPM imaging of Texas Red-labeled rodent vasculature with a 

diamond (1240 nm) and fiber laser (1050 nm) enables a cortical imaging depth of  ~1 

mm, relative to a shallower ~800 µm accomplished by D-MPM imaging solely with a 

fiber laser, even when total excitation powers are matched [120].  This system is also able 

to use ND-MPM’s unique virtual excitation wavelength properties to efficiently target 

substrate incompatible fluorophores.  Total light attenuation in neural tissue is a 

complement of scattering and absorption processes, which can be reasonably 

approximated at a depth (z) using the expression exp[-(µa(λ)+µs(λ))z], where µa(λ) and 

µs(λ) are wavelength-dependent, tissue-specific absorption and scattering coefficients 

[46]. Water absorption constitutes a prominent portion of total light attenuation and is 

highest from 1400 - 1600 nm and above 1800 nm [71].  In fact, greater than 50% of 

excitation light is lost solely to water absorption in brain tissue in these spectral regions, 

which results in a potentially harmful thermal heating and a significant loss in 

fluorescence due to the quadratic nature of two-photon absorption.  Thus, there is no way 

to effectively target fluorophores with peak absorption cross sections in these high 

absorption zones without risking considerable damage to vasculature and cortical tissue.  

However, our two-color system can use direct excitation wavelengths λ1 and λ2 that 

straddle high-absorption bands to minimize attenuation and maintain a large photon 

fraction in the focal plane, while still exciting previously inaccessible substrate-

incompatible fluorophores at a virtual excitation wavelength λ3. Ultimately, this 

methodology can unlock the utility of a whole class of fluorophores previously 
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unavailable to the in vivo multiphoton imaging community.  

4.4 CHARACTERIZATION AND CORRECTION OF TWO-COLOR AXIAL FOCAL SHIFT 

Traditional multiphoton objectives are composed of a series of refractive lenses 

that compensate for one another’s aberrations. High quality objectives are commonly 

corrected to improve image quality by minimization of spherical aberration, coma, 

astigmatism, and distortion. Unfortunately, chromatic aberration is unavoidable with 

refractive objectives, meaning that distinct wavelengths are focused at mismatched 

optical z-planes.  Achromat objectives tailored to minimize this undesired effect can only 

provide chromatic correction over a limited range of wavelengths (e.g. the visible regime) 

and are ill-suited for non-degenerate multiphoton microscopy (ND-MPM), which can 

demand the spatial overlap of wavelength combinations spanning both the visible and 

near-infrared (NIR) spectrum. While electrically tunable lenses and remote focusing 

enables variable axial focus [184], modulation by these elements is common to both ND 

scan paths and cannot be used to achieve mutual overlap. In principle, a simple lens pair 

telescope can be used to apply defocus to a single excitation beam and compensate for 

chromatic focal offset. In practice, however, it is challenging to avoid vignetting an 

acollimated beam through an optical system, and this defocus directly broadens the 

beam’s point spread function, which thereby reduces multiphoton excitation efficiency. 

An effective and simple solution to entirely circumvent chromatic aberration and 

successfully overlap the focused profiles of the independent laser sources for ND-MPM 

is to employ a reflective objective. Typical reflective objectives use a pair of curved 

mirrors to achieve near- or diffraction-limited focusing and image magnification [185]. 

Reflective objectives eliminate the adverse effects of chromatic aberration and dispersion 

entirely [186],  yet despite this advantage have yet to be adopted for ND-MPM, perhaps 
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due to obscuration and their relatively low numerical apertures (NA).  Obscuration refers 

to mechanical light attenuation from mirror design, where a significant portion of light 

entering a reflective objective fails to reflect to a secondary mirror, and an additional 

fraction of light is obstructed by thin suspensions used to mount the primary mirror. 

However, the superior transmission properties of reflective objectives (>99% from 450 

nm to 20 µm) vastly outperform traditional refractive objectives with NIR coatings, 

including optimized multiphoton objectives (~70% from 1100 – 1400 nm) [187].  

Recalling that ND-MPM enhances excitation efficiency relative to D-MPM, allowing one 

to trade excitation efficiency for laser power [183], taken with reflective objectives’ 

improved transmission properties, obscuration becomes a minor drawback.   However, 

the low NA of reflective objectives still poses a major concern. Here we demonstrate that 

the improved ND axial overlap of reflective objectives increases ND excitation efficiency 

relative to even higher NA refractive objectives.  

4.4.1 Axial Focal Shift Measurements of Refractive and Reflective Objectives 

To evaluate the severity of the axial focal shift of refractive versus reflective 

objectives, a tunable non-linear optical parametric amplifier (Spirit-NOPA-VISIR, 

Spectra-Physics) was focused onto a photodiode (G1117, Hamamatsu) using a 10x 

refractive objective (MRL00102, 0.25 NA, Nikon), a 20x refractive objective 

(XLUMPLFLN, 1.0 NA, Olympus), and a 40x reflective objective (LMM-40X-P01, 0.5 

NA, Thorlabs).  The 10x is a plan achromat objective whose low NA increases the axial 

point spread functions (PSFs) of the focused beams, which can be advantageous for two-

color overlap. On the other hand, the 20x objective is specialized for multiphoton 

microscopy (MPM) [188], and offers semiapochromat performance from the visible to 

infrared range at a high numerical aperture (NA). Thus, it was determined that each 
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refractive objective could serve as a distinct use case comparison to the reflective 

objective. The photosensor material, GaAsP, was selected due to its broad multiphoton 

excitation spectrum, allowing color shift to be evaluated over a wide wavelength tuning 

range. Fluorescence intensity of the GaAsP film was recorded as a function of axial 

position, which was dynamically adjusted using a motorized labjack platform (MLJ150, 

Thorlabs) at excitation wavelengths ranging from 1150 to 1550 nm.  Interpolated fits to 

the resulting fluorescence intensity curves were computed, the peaks of which were used 

to indicate axial focus at each wavelength (Figure 4.1(a)). Axial color shift is most 

severe with the 10x objective (±80 µm, ∆! = 400 nm), followed by the 20x objective 

(±10 µm, ∆! = 400 nm), whereas the reflective objective exhibits less than ~2 µm of 

axial color shift.  Since the reflective objective is expected to be free of chromatic 

aberration, it is possible that this modest shift is owed to refractive effects in the scan and 

tube lens relay and wavelength-dependent Gaussian beam divergence.  

When these results are placed into context with the modeled axial PSF length of 

each objective [189], it is evident that efficient non-degenerate (ND) MPM is precluded 

by either refractive objective (Figure 4.1(b)). Maximally efficient ND-MPM demands 

minimal color shift and a smaller PSF.  However, in the presence of substantial color 

shift, a larger PSF can compensate to improve ND overlap and hence relative non-

degenerate excitation, at the tradeoff of reduced overall MPM excitation efficiency. 

However, the severe color shift of the refractive 10x objective overwhelms even its 

relatively large PSF, and the small PSF of the refractive 20x objective prevents effective 

ND overlap in spite of a moderate color shift.  It is observed that the axial dimension of 

the reflective objective’s PSF exceeds the expected axial shift across the 400 nm spectral 

range, suggesting that its ND-MPM efficiency would be superior to the refractive 

objectives.   
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Figure 4.1: Axial color shift measurements of refractive and reflective objectives.  
(A) Fluorescence intensity curves versus axial focal position characterizes 
axial focal shift for refractive (i. 10x and ii. 20x) and reflective (iii. 40x) 
objectives.  (B) Axial focal shift values versus excitation wavelength plotted 
against modeled axial point spread function full-width at half-maxima 
(shaded regions). 

4.4.2. Structural-Similarity Index Measurements of Chromatic Axial Focal Shift 

A byproduct of axial color shift is that imaged structures must be refocused as 

excitation wavelength is tuned.  To confirm this effect and ensure that the previously 

observed axial color shift was not a possible artifact of stratified layers in the GaAsP 

photosensor exhibiting wavelength-dependent absorption cross sections, a monolayer of 

quantum dots (QD605, Thermofisher Scientific) was prepared and imaged at 50 nm 

wavelength increments ranging from 1150 – 1500  nm.   Quantum  dots  were  chosen  
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due  to  their brightness, photostability, and broad absorption spectrum. For each 

objective, a reference image was chosen from a focused slice of the λex = 1150 nm z-stack 

and its structural similarity index measure (SSIM) was calculated relative to all other 

images (Figure 4.2) by computing correlation as a product of luminance, contrast, and 

structural similarity [190]. A larger SSIM score for an image indicates a higher degree of 

similarity to the reference image.   

For the 10x refractive objective, roughly ~125 µm of axial color shift is evidenced 

by the SSIM scores between 1150 and 1500 nm, with the color shift being linear and 

consistently offset at each wavelength increment (Figure 4.2(a)).  Calculated SSIM 

scores of images collected by the 20x objective reveal a similar, but muted effect with 

approximately ~18 µm of axial color shift across the same spectral range (Figure 4.2(b)). 

Interestingly, the direction of axial shifts in the SSIM heat maps are reversed for the two 

refractive objectives, indicating the lower and higher magnification objectives introduce 

dispersion in opposite directions. Finally, the 40x objective reveals a very slight color 

shift.  The non-linearity of the shift suggests that it cannot be solely explained by 

wavelength-dependent Gaussian beam divergence, which itself is linear. In addition, the 

bright bands, which indicate focused regions with a high degree of image similarity, 

narrow as excitation wavelength increases with the 40x data. This is an unexpected result 

with respect to axial point spread function (PSF) length, which increases at longer 

excitation wavelengths. This observation highlights a critical point of clarification – the 

widths of these bands do not reflect direct measurements of the axial PSF length. Rather, 

the SSIM magnitude at each plane, and thus the apparent widths of each band, is the 

complement of many wavelength-dependent effects including spectral bandwidth, 

absorption cross section, scattering length, and n-photon power dependence, in addition, 

but not limited to axial PSF length.  
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Figure 4.2: Structural similarity index measurements of a monolayer sample 
imaged at distinct wavelengths.  Structural-similarity index measurements 
(SSIM) of individual slices from z-stacks recorded at discrete excitation 
wavelengths with (A) a 10x refractive objective, (B) a 20x refractive 
objective, and (C) a 40x reflective objective.  For each objective, the SSIM 
scores were recorded relative to a well-focused reference image from the λex 
= 1150 nm stacks. 

4.4.3 Axial Focal Shift’s Effects on Multi-Channel Imaging 

Modern day biological microscopy studies are often highlighted by the variety 

and number of structures that are targeted, labeled, and imaged. Such multiplexed 

imaging experiments typically feature two distinct approaches: multispectral and 

multicolor. Emission-based multispectral imaging uses a single excitation wavelength to 
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simultaneously excite unique fluorescent targets that are separated by the appropriate 

emission filter sets. In excitation-based multicolor imaging, distinct populations of 

fluorophores with overlapping emission spectra can instead be resolved separately by 

targeting discrete populations individually using highly specific excitation wavelengths.  

Both are widely used techniques, along with other hybrid approaches. However, 3D 

imaging experiments that employ the latter excitation-based multiplexed imaging 

technique unveil the risk of an axial misregistration of the separate excitation channels 

when refractive objectives are used, especially at longer excitation wavelengths. To 

demonstrate this, matching regions of a fixed human brain microvascular endothelial cell 

monolayer sample with Alexa Fluor 488-labeled junction adhesion molecule (Alex Fluor 

488-Ab-JAM) and Alexa Fluor 594-labeled occludin (Alexa Fluor 594-Ab-Occludin) 

were imaged with both refractive and reflective objectives (Figure 4.3).  Alexa Fluor 488 

was excited at 790 nm and detected through a 510/84 bandpass filter (FF01-510-25, 

Semrock), and Alexa Fluor 594 was excited at 1300 nm and detected through a 610/75 

bandpass filter (HQ610/75M, Chroma Technology Corp). Due to the specific 

combination of excitation wavelength and emission filter used to target Alexa Fluor 594, 

second harmonic generation (SHG) of collagen fibers could be seen along with the 

occludin. 3D stacks of the cellular samples were recorded and the mean intensity of each 

2D image was calculated as a function of depth to delineate the axial misregistration of 

the separate channels. Maximum intensity z-projections reveal there is no lateral shift 

between the separate excitation stacks and that identical regions were imaged across the 

10, 20, and 40x objectives (Figure 4.3(a-c)).  The intensity versus depth curves denote 

that axial misregistration with the 10x objective is significantly pronounced such that 

there is no evidence of cellular colocalization between the JAM and occludin structures, 

each occupying regions that falsely appear to be ~175 µm apart, despite the specimen 
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being a monolayer (Figure 4.3(d)).  However, the misregistration caused by the 20x 

objective is much more subtle, mean image intensity versus depth reveals that the Alexa 

Fluor 594 signal is shifted ~ 10 µm relative to the Alexa Fluor 488 signal, whereas the 

multichannel data recorded with the reflective objective presents perfect overlap. This 

high magnification objective’s shift is less acute than the GaAsP and QD605 results, 

which were evaluated at longer excitation wavelengths, suggesting that its achromat 

performance is improved at the shorter end of the NIR spectrum.  Lastly, the 20x 

objective’s axial shift direction is opposite to the 10x, an effect that remains consistent 

with prior results. 

 

Figure 4.3: Multicolor imaging of a cellular sample at distinct excitation 
wavelengths results in axial misregistration when using refractive 
objectives.  Transverse max intensity projections of a cellular monolayer 
recorded with (A) a 10x refractive objective, (B) a 20x refractive objective, 
and (C) a 40x reflective objective.  (D) Mean image intensity versus depth 
for the 10x (dashed lines), 20x (finely-dashed lines), and 40x (solid lines) 
objectives.  The green channel contains Alexa Fluor 488 signal, λex = 790 
nm, and the red channel denotes Alexa Fluor 594 signal and second 
harmonic generation, λex = 1300 nm. Scale bar = 75 µm. 
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4.4.4 Two-Color Excitation Efficiency Comparison of Refractive and Reflective 
Objectives 

The efficiency of non-degenerate multiphoton microscopy (ND-MPM) is directly 

determined, at least in part, by the precise overlap of the two synchronized laser sources’ 

point spread functions (PSFs) in the focal plane. Results thus far suggest that the 

refractive objectives’ axial color shift hinders accurate ND overlap relative to the 

reflective objective. To quantify the impact of this effect on ND-MPM efficiency, a 

GaAsP photosensor was simultaneously excited with the shorter and longer wavelengths 

of the signal and idler outputs of the NOPA, respectively (Figure 4.4). Idler excitation 

wavelength ranged from λ1 = 1150 to 1350 nm and signal excitation wavelength was 

maintained at λ2 = [(515 nm)-1 - λ1
-1]-1 to achieve a constant virtual excitation wavelength 

λ3 = 1030 nm. To evaluate ND-MPM excitation efficiency at various combinations of λ1 

and λ2, the signal beam was aligned through an optical delay line, allowing the beam to be 

temporally swept through the idler without affecting spatial overlap (Figure 4.4(a)).  The 

peak of the fluorescence emission as a function of delay line position is the result of 

precise temporal overlap of the two focused excitation pathways, the total excitation of 

which is given by I1
2 + I2

2 + 2I1I2. As the optical delay line deviates from this position, 

the resulting fluorescence intensity is solely a consequence of the individual D-MPM 

events at λ1 and λ2, PSFD-MPM = I1
2 + I2

2, in the absence of the ND-MPM event at λ3, given 

by PSFND-MPM = 2I1I2. Thus, ND-excitation efficiency can be calculated for each objective 

by subtracting fluorescent intensity values at a 500 fs optical delay from intensity values 

at precise temporal overlap to isolate the ND-MPM excitation profile, then normalizing it 

relative to the delayed D-MPM intensity. Since non-degenerate emission intensity is 

proportional to the power of each beam [62], absorbed power in the GaAsP photosensor 
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was measured as a voltage signal and set constant for all excitation wavelengths and each 

objective.  

 

Figure 4.4: Reflective objectives enhance non-degenerate excitation efficiency.  
Fluorescence emission versus optical delay line position normalized relative 
to baseline degenerate excitation signal (dashed line). (b) Non-degenerate 
excitation efficiency comparison of the refractive and reflective objectives; 
scatter points denote raw data, solid lines indicate regression fits, and shaded 
regions demarcate corresponding 95% confidence intervals. 

For all three objectives, ND efficiency remains consistently small between 1150 

to 1250 nm, before a substantial increase at 1300 nm (Figure 4.4(b)).  This suggests that 

the GaAsP cross section at 1030 nm is similar to the 1150 to 1250 nm or 876 to 933 nm 

cross sections, but quite high compared to the >1250 and <876 nm cross sections.  More 

importantly, we observe that the ND efficiency of the 40x objective is larger than the 10x 
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and 20x objectives’ ND efficiency at all excitation wavelength combinations, 

demonstrating that the improved axial overlap of the reflective objective confers 

enhanced properties for ND-MPM. Yet another factor that may contribute to the 

refractive objectives’ deficient excitation efficiency is pulse broadening caused by group 

velocity dispersion, which was not pre-compensated for in this work. Notably, the 

outperformance of the reflective objective relative to the refractive objectives increases as 

∆λ = λ1 – λ2 widens. This suggests that an increase in the refractive objectives’ axial focal 

shift severity with larger ∆λ further degrades refractive ND efficiency.   

However, it remains surprising that the refractive objectives exhibit any non-

degenerate excitation signal with respect to the results shown in Figure 4.1, which 

strongly indicate that there is little overlap between the ND focal profiles. This may be 

explained by the broad spectral bandwidth of the short pulse excitation sources, which 

helps maintain spectral, and therefore axial, overlap.  Furthermore, due to random scatter 

of the ND photons and the probabilistic nature of multiphoton excitation, the likelihood 

of a non-degenerate excitation event remains non-zero even in cases of completely non-

overlapping PSFs. This is visibly evident in the SSIM results (Figure 4.2), where 

similarity bands at different wavelengths exhibit a significant degree of overlap.  This is 

further supported by the ND efficiency plot, which shows that the 10x objective slightly 

outperforms the 20x objective, possibly due to the 10x objective’s enlarged PSF allowing 

for an expanded scattering radius. Of course, sophisticated ray tracing and modeling are 

needed to fully support this claim. Collectively, these experiments demonstrate that a 0.5 

numerical aperture (NA) reflective objective can outperform a higher NA refractive 

objective for ND-MPM, despite the latter’s precedence in conventional MPM. Moreover, 

direct comparison to a lower NA refractive objective demonstrates that reflective 

objectives’ advantage for ND-MPM applications stems from their minimal axial focal 
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shift, rather than an enlarged axial PSF, although both qualities help to improve two-color 

overlap. Continued development in reflective objective technology to increase their NA 

while maintaining achromatic capabilities will undoubtedly lead to further gains in this 

area. 

4.5 DEMONSTRATION OF TWO-COLOR AND NON-DEGENERATE IMAGING 

4.5.1 Two-Color Multiphoton Excitation Can Extend Imaging Depth 

To demonstrate deep imaging with two-color two-photon microscopy, an adult 

C57 mouse injected with 50 µl of 5% weight/volume dextran-conjugated Texas Red dye 

(D1830, ThermoFisher Scientific) was imaged with a synchronized pair of ytterbium 

fiber and diamond ultrafast laser sources.  The ytterbium fiber laser is used to pump the 

diamond laser in order to ensure synchronization, and spatiotemporal overlap of the two 

sources at focus is accomplished using a combination of alignment mirrors and optical 

delay lines.  The specimen was initially imaged using one-color two-photon (1C2P) 

excitation from solely the fiber laser, and power modulated from 20 mW at the dura (z = 

0 µm) to 150 mW at z ≥ 400 µm, as measured at the objective rear aperture (Figure 

4.5(a)).  An imaging depth of approximately ~800 µm was achieved before signal-to-

background ratio approached a value of ~1.0.  Subsequently, the fiber and diamond laser 

were coaligned and used to excite the Texas Red infused vasculature (Figure 4.5(a)).  

Combined power from the synchronized lasers was modulated to match the conditions 

from the fiber laser imaging session with a 50:50 contribution from each excitation 

source (e.g. 10 mW of fiber power and 10 mW of diamond power at the pial surface).  

Imaging depth was extended significantly by two-color two-photon (2C2P) excitation; 

signal-to-background ratio did not approach 1.0 until an imaging depth of approximately 

950 µm.  Following this imaging stack, the fiber laser was delayed in time relative to the 
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diamond pulses at ! = 600 fs such that non-degenerate two-photon (ND-2P) excitation 

would not be possible (Figure 4.5(a)).  Instead, this condition represents simultaneous 

1C2P excitation by the fiber and diamond lasers, each at half of the power used in the 

first imaging stack.  Total imaging depth achieved here (z ~ 800 µm) was very similar to 

that of the fiber laser excitation volume.  Please note, frame averaging, sampling speed, 

and all other acquisition settings were kept constant for each of the three imaging 

volumes, and the same region of interest was imaged each time to ensure a consistent 

comparison of one- and two-color excitation.  Ultimately, these results demonstrate that 

2C2P excitation of Texas Red at !! = 1055 nm and !! = 1240 nm increases imaging 

depth by a factor of ~20% relative to 1C2P excitation at !! = 1055 nm. 

To better understand these results, it is important to note the two-photon action 

cross section profile of the fluorophore target.  Texas Red’s two-photon action cross 

section peaks at approximately 1150 nm (Figure 4.5(b)), which closely matches the 

virtual !! excitation wavelength conferred by the fiber and diamond laser combination, 

2(1055!! + 1240!!)!! = 1140 nm [81,120].  Thus, the non-degenerate excitation 

pathway made accessible by temporally overlapped two-color diamond and fiber imaging 

corresponds to an energy level where two-photon absorption by Texas Red is nearly at a 

maximum.  This results in greater signal levels, thereby extending imaging depth.  It is 

important to note that these results may not have been as successful with a different 

choice in contrast agent or a different pair of imaging wavelengths.  For instance, a dye 

whose peak action cross section resides closer to 1055 nm may have yielded a shallower 

imaging depth under the 2C2P condition.  With respect to Texas Red, 2C2P at !! = 1140 

nm and !! = 1240 nm is expected to fare worse than 1C2P at !! = 1140 nm.  Overall, this 

shows that maximizing the benefits of 2C2P microscopy requires a comprehensive 

understanding of the available fluorophores and excitation sources.  For a typical lab that 
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lacks the financial luxury to purchase tunable synchronized dual output sources and is 

confined to using standalone non-tunable lasers, 2C2P may provide the most efficient 

method for excitation of certain fluorophores.  As illustrated here, given the limited 

availability of fiber and diamond lasers and Texas Red labeled vasculature, 2C2P is the 

most favorable excitation regime to maximize signal and extend imaging depth.   

 

Figure 4.5: Two-color (2C) and non-degenerate (ND) multiphoton microscopy 
(MPM) of Texas Red murine vasculature. (A) 2C- and ND-MPM with no 
temporal offset extends imaging depth in C57 mouse cortex injected with 
Texas Red relative to temporally offset 2C imaging and one-color (1C) 
MPM, even when total excitation powers for each stack are held constant.  
(B) Action cross section profile of dextran conjugated Texas Red [81]. 

4.5.2 Two-Color Non-Degenerate Excitation Boosts Fluorescence Intensity 

To demonstrate that our two-color two-photon (2C2P) system is able to produce 

an expected rise in fluorescent intensity, we compared signal levels using one-color (1C) 

2P excitation at a degenerate excitation wavelength !! = 1220 nm to 2C2P excitation at a 

non-degenerate wavelength !! = 1220 nm comprised of equal powers of  !! = 1150 nm 

and !! = 1300 nm.  GaAsP film was selected as the fluorescent target of interest due to its 

broad light absorption.  When a reflective objective is used with the two-color imaging 
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system, we see the marked increase in signal intensity using two-color non-degenerate 

excitation relative to 1C2P degenerate excitation at !! = !! = 1220 nm, approximately 

1.8 fold (Figure 4.6(a)).  This increase is fairly modest using the 20x refractive objective 

(~1.1 fold) and actually reduced using the 10x refractive objective (~0.42 fold), 

suggesting that the axial color shift hinders non-degenerate excitation efficiency in both 

cases (Figure 4.6(b)).  This hypothesis is confirmed by plotting intensity as a function of 

axial position.  We see that fluorescent signal peaks at the same axial position regardless 

of excitation wavelength for the reflective objective, whereas signal curves are 

substantially offset at different axial positions in the case of the refractive objectives.  

This offset is most severe for the 10x refractive objective, which is consistent with the 

drop in non-degenerate excitation efficiency we observe in that case. Revisiting the 

reflective objective results, we see that 2C2P signal intensity drops dramatically from 

18,000 counts to 8,000 counts [A.U.] when we apply a temporal offset between the two 

beams; ! = 10 ps.  This is explained by the loss of non-degenerate excitation at 

2!! ! !!(!), limiting signal to the point spread functions at !! (!!! ! ) and !! (!!! ! ).   
To validate this assertion, we can confirm that total signal from time-delayed 2C2P at !! 

= 1150 nm and !! = 1300 nm is equivalent to the summed signal levels of 1150 nm 1C2P 

excitation and 1300 1C2P excitation, which indeed it is: 7,000 + 1,000 = 8,000 [A.U.].  

Ultimately, these results demonstrate a few key discoveries.  First, axial color shift is 

eliminated by the reflective objective which results in a sharp increase of two-color non-

degenerate excitation relative to direct 1C2P excitation at !! = !!.  Moreover, we 

validate that this was a true non-degenerate effect by showing a drop in signal intensity 

when the beams were temporally mismatched.  Finally, we confirmed that 2C2P intensity 

with time delay is equivalent to summed 1C2P excitation at each of the direct excitation 

wavelengths.  
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We consider these results to be critical towards espousing the virtues of two-color 

non-degenerate multiphoton excitation and would like to more succinctly summarize 

these results to highlight key information.  

Primary Conclusions: 

1. Reflective objectives improve two-color axial overlap and thereby improve non-

degenerate signal intensity relative to refractive objectives (Figure 4.6(a) vs 

Figure 4.6(b-c)). 

2. Two-color non-degenerate mixing (! ~ 0 fs) enhances multiphoton excitation 

signal relative to two-color degenerate imaging (! >> 0 fs) and can enhance 

multiphoton excitation relative to one-color degenerate imaging (!! = !!). 

Secondary Conclusions 

1. Two-color non-degenerate signal (! ~ 0 fs; Figure 4.6(a) purple; 18k counts) 

exceeds one-color degenerate signal (Figure 4.6(a) yellow; 10k counts) when !! 

= !!. 
a. Note, this does not hold true for all fluorophores nor for all combinations 

of !! and !!, but does apply in this case. 

2. Two-color non-degenerate mixing (! ~ 0 fs; Figure 4.6(a) purple; 18k counts) 

enhances multiphoton excitation signal relative to degenerate two-color imaging 

(! >> 0 fs; Figure 4.6(a) green; 8k counts) 

a. This is a photophysical fact for all fluorophores and combinations of !! 

and !!, unless !!!"
(!) ~ 0, in which case signal levels would be identical.  

3. Degenerate two-color imaging signal (! >> 0 fs; Figure 4.6(a) green; 8k counts) 

is identical to summed one-color !! signal (Figure 4.6(a) blue; 7k counts) and 

one-color !! signal (Figure 4.6(a) red; 1k counts). 
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Figure 4.6: Two-color and non-degenerate signal enhancement. Signal intensity 
versus axial position for one-color two-photon (1C2P) microscopy at λ1 = 
1150 nm, λ2 = 1300 nm, and λ3 = 1220 nm relative to two-color two-photon 
(2C2P; ! >> 0 fs) and 2C2P non-degenerate (ND, ! ~ 0 fs) excitation at 
identical λ1 and λ2 such that the virtual non-degenerate excitation 
wavelength equals degenerate λ3 using (A) a 10x refractive objective 
(MRL00102, 0.25 NA, Nikon), (B) a 20x refractive objective 
(XLUMPLFLN, 1.0 NA, Olympus), and (C) a 40x reflective objective 
(LMM-40X-P01, 0.5 NA, Thorlabs). Total excitation power for 2C2P and  
1C2P at !! was held constant across each condition, and degenerate 1C2P 
excitation power at λ1 and λ2 was halved. 
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4.5.3 Non-Degenerate Signal-to-Background Ratio Improvements 

A two-color non-degenerate laser system is able to improve signal-to-background 

ratio (SBR) in two fairly expected ways: (1) enhancing excitation efficiency and thereby 

improving signal and (2) reducing background fluorescence.  We have successfully 

demonstrated the first effect with our two-color system (Figure 4.6), and we note that 

this benefit is expected for any fluorophore with a non-negligible non-degenerate cross 

section at !!, and especially pronounced for fluorophores with relatively small 

degenerate cross sections at !! and !!, (!!"! !! > !!! !!  and !!"! (!!) > !!! !! ).  

However, a substantial reduction of background fluorescence depends on an atypical 

optical set-up, where the independent beam paths are no longer aligned collinearly, and 

instead in a manner that allows them to coincide only at focus in the sample plane.  To 

better understand, we must recall that scattered photons reduce excitation efficiency, 

whereas ballistic photons contribute the bulk of multiphoton signal [64].  Thus, incident 

excitation power !! at a depth ! is subject to exponential decay that depends on the 

specimen’s scattering mean free path !!, such that effective excitation power at focus is 

described as ! ! =  !!(!!!/!!) [64].  By this same token, at greater depths, !, laser 

intensity at the surface of the sample approaches focal intensity, which results in 

substantial background signal that is collected indiscriminately in multiphoton 

microscopy [64].  To approximate fluorescence for multiphoton excitation at degenerate 

wavelengths !! = !! or !!, we use the following expression where S(r) denotes the 

spatial profile of the beam: 

 !! !, ! =  !!! !! !!! !, ! !!!!/!! !!! ! !"!#
!

!!
 (4.4) 

Meanwhile, fluorescence for non-degenerate multiphoton excitation at !!" = !! is given 

by a slightly more complex expression: 
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 !!" !, ! =  2!!"! !!" !!! !, ! !!! !, ! !!!!/!! !!! ! !!! ! !"!#
!

!!
 (4.5) 

In a typical two-color excitation schematic, the degenerate and non-degenerate 

integral terms remain non-negligible along the optical axis, meaning that background 

fluorescence, !!,!" ! ≠ !"#$%, ! , can be substantial.  However, using a split-beam 

system (Figure 4.7(a)), the non-degenerate integral term approaches zero at !-planes 

away from focus, meaning that !!" ! ≠ !"#$%, !  ~ 0.  Thus, two-color, split-beam 

excitation of a fluorophore with negligible cross sections at !! and !! can result in a 

significant increase in SBR relative to one-color degenerate excitation at !! =  !!.  Even 

in the absence of a split-beam system, two-color non-degenerate excitation can help to 

reduce background fluorescence, since the non-degenerate axial point spread function is 

diminished relative to the degenerate axial point spread function as previously shown 

(Figure 1.3).   

Altogether we can conclude that two-color non-degenerate imaging enhances 

SBR relative to one-color degenerate multiphoton imaging through two passive 

mechanisms, increased excitation efficiency and reduced axial point spread function, with 

further room for improvement using a split-beam system.  Unfortunately, our research did 

not progress to a point where we were able to demonstrate split-beam two-color 

excitation, but we were able to see a substantial SBR benefit using a simpler optical set-

up that relies on the two passive non-degenerate SBR enhancement mechanisms 

nonetheless.  For this study, a 40x reflective objective (LMM-40X-P01; 0.5 NA; 

Thorlabs) was used to image Texas Red saturated filter paper using degenerate one-color 

multiphoton excitation at !! = 800 nm (D-1CMP800nm) or !! = 1445 nm (D-1CMP800nm), 

and non-degenerate two-color multiphoton excitation at !! = 1030 nm (ND-

2CMP800+1445nm) (Figure 4.7(b)).  In all cases, total incident excitation power !! was 
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constrained to 6 mW to ensure fair comparisons of the separate image stacks.  To 

calculate SBR, an image mask was computed at each z-plane, and mean intensity of the 

thresholded region was divided by mean intensity outside of the thresholded region.  We 

find that at all depths, two-color non-degenerate excitation results in a larger SBR than 

either of the degenerate cases.  Notably, two-color SBR peaks at a shallower depth than 

the either of the one-color image stacks.  This might possibly reflect a diminished spatial 

overlap of the two excitation beams as optical path length increases due to unique, 

wavelength-dependent refractive interactions.  On the whole, longer wavelength 

degenerate SBR is worse than shorter wavelength degenerate SBR, which is expected due 

to a reduced action cross section.  However, the 1500 nm one-color SBR does overtake 

800 nm one-color SBR around ~110 µm.  This may reflect that Texas Red exhibits a 

three-photon power dependence at 1500 nm, which has inherent SBR advantages relative 

to two-photon excitation at greater imaging depths.  Finally, it would have been prudent 

to include a one-color degenerate excitation comparison at 1030 nm to address the !! = 

!! condition; alas, only one of the two non-collinear optical parametric amplifiers was 

operational.   
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Figure 4.7: Non-degenerate multiphoton microscopy enhances signal-to-
background ratio. (A) Non-degenerate two-color multiphoton (ND-2CMP) 
signal-to-background ratio (SBR) at !! = 800 nm and !! = 1445 nm, 
compared to degenerate one-color multiphoton (D-1CMP) SBR at those 
discrete wavelengths.  Total excitation power is 6 mW for each condition.  

In further modeling experiments using fast focused field calculations [189] we are 

more carefully able to predict the advantages of a split-beam system with !! = 1050 nm 

and  !! = 1240 nm (Figure 4.8).  We note that split-beam non-degenerate two-color two-

photon microscopy enhances SBR relative to conventional (i.e. non split-beam) one-color 

two-photon microscopy at the shorter of the two excitation wavelengths (Figure 4.8(a)). 

If we compare conventional and non-degenerate two-color two-photon microscopy to one 

another, we immediately surmise that the split-beam system enhances SBR substantially 

(Figure 4.8(b)).  However, split-beam two-color two-photon and split-beam degenerate 

two-color two-photon microscopy would yield a poorer resolution than short-wavelength 

conventional one-color two-photon microscopy, and one-color three-photon SBR is 

superior to all three (Figure 4.8(a)).  Finally, a split-beam system is not advantageous 

with respect to SBR relative to a conventional optical set-up for two-color or degenerate 

two-color two-photon excitation (data not shown).   
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Figure 4.8: Signal-to-background ratio using conventional or split-beam optical 
systems. (A) Modeled fluorescence intensity versus axial position for a split-
beam (SB) degenerate (D) two-color two-photon (2C2P), a SB-2C2P, a 
conventional (Con) one-color (1C) 2P, a SB-ND-2C2P, or a Con-1C three-
photon (3P) system. (B) A comparison of modeled fluorescence intensity 
versus axial position for ND-2C2P using conventional or split-beam 
systems.  

4.5.4 Non-Degenerate Straddling of High Absorption Excitation Bands 

Indocyanine green (ICG) is a widely used organic contrast agent, most commonly 

recognized for its use in clinical settings and approval for human use by the U.S. Food 

and Drug Administration.  It is also quite advantageous for multiphoton microscopy due 

to its longer wavelength absorption and emission.  For one-photon microscopy, its 

excitation peak is situated around 780 nm, whereas its emission peaks at 830 nm [191].  

Its peak two-photon action cross section is not well characterized, although independent 

studies from our lab suggest it is at or beyond 1450 nm [81].  Recall that longer near 

infrared wavelengths are less prone to scatter than visible light, suggesting that ICG 

emission is more easily collected by multiphoton microscopes in scattering thick media 

than conventional blue, green, or red dyes.  While this same principle holds true for 

excitation light with respect to scatter, aqueous biological samples pose significant 
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hurdles in conjunction with ICG imaging with respect to absorption.  To elaborate, 

wavelengths ranging from approximately ~1390 – 1580 nm are highly subject to water 

absorption; assuming typical brain tissue properties, water will absorb >50% of photons 

at a millimeter imaging depth (Figure 4.9(a)) [71].  Therefore, ICG maximizes 

neuroimaging collection efficiency, but results in poor multiphoton excitation efficiency.  

It was our hypothesis that we could effectively use two-color two-photon microscopy 

with direct excitation wavelengths at !! = 1350 and !! = 1600 to non-degenerately excite 

ICG at its presumed peak cross section near 1450 nm (!! = 1464 nm). 

To test this we prepared a 1 mg/ml (1.29 mM) solution of ICG (TCI0535-100MC; 

VWR) dissolved in double distilled water and used a 50 µl aliquot to saturate a square 

centimeter of filter paper positioned on a glass slide.  We intentionally used water in 

place of saline solution as the solvent to prevent ICG aggregation [192].  This filter paper 

was allowed to air dry overnight in a light-tight chamber in order for water to evaporate 

completely without causing the ICG to photobleach. A cover-slip bottom six channel well 

(µ-Slide VI 0.4; Ibidi) was then sandwiched on top of the filter paper, with one of the 

wells positioned directly over the center of the filter paper.  The relative brightness of this 

sample was then characterized using a non-collinear optical parametric amplifier at a 

tuning range of 1200 – 1600 nm at a constant excitation power of 4.5 mW.  To account 

for the longer wavelength emission of ICG, an 830 nm bandpass filter (RT-830, Edmund 

Optics) was positioned in front of the wider spectral range photomultiplier tube (H7422P-

50; Hamamatsu).  This curve, which reflects ICG’s relative brightness in the absence of 

water corresponds to our initial expectations that its peak cross section is situated around 

1450 nm (Figure 4.9(b)).   Our next step was to evaluate how water would diminish the 

delivery of excitation light and thereby reduce ICG brightness.  The µSlide well was 

filled with a 3 mm column of water, and our imaging was repeated at a greater excitation 
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power through the objective (10.5 mW; MRL00102, Nikon).  We find that ICG 

brightness peaks at 1300 nm under this condition.  Specifically, it seems like the effect of 

water slightly diminishes 1350 nm excitation and 1600 nm excitation, while strongly 

suppressing 1400 - 1550 nm excitation (Figure 4.9(b)).  This corroborates our 

expectations from modeling, which reveals that water absorption is substantial across this 

range, particularly around 1450 nm.  This data suggests that, indeed, ICG is a suitable 

candidate for non-degenerate two-color multiphoton microscopy at 1350 nm and 1600 

nm.  While both of these direct excitation wavelengths are hindered by water absorption, 

the relative impact on direct 1450 nm excitation is much more severe.  Thus, we expect 

ICG imaging to be much more efficient in aqueous neurophysiological environments 

using virtual, non-degenerate excitation at 1450 nm.  Once again however, we found 

ourselves unable to test this hypothesis directly due to the non-operational status of one 

of our non-collinear optical parametric amplifiers (“Steph”), but it is our hope that this 

preliminary data will benefit the next generation of graduate students who work on this 

problem in our lab once it returns to working order.   
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Figure 4.9: Water absorption hinders efficient degenerate multiphoton excitation of 
indocyanine green. (A) Modeled photon fraction at a depth of 1 mm (blue 
line) and percent of photons absorbed (red line) using average brain tissue 
optical properties [71].  Shaded red regions denote regions in which > 50% 
of photons are absorbed.   (B) Relative non-degenerate multiphoton 
brightness of indocyanine green in the absence (black) or presence (blue) of 
water.  

4.6  NON-DEGENERATE MIXED MODE SUPER-RESOLUTION MULTIPHOTON 
MICROSCOPY 

Yet another unexplored application of non-degenerate multiphoton microscopy 

(ND-MPM) is its potential for imaging sub-diffraction limited neurophysiological 

features. Specifically, our work here will lead to the development of an advanced and 

unique microscopy technique that utilizes non-degenerate two-photon excitation with 

improved mode mixing for super-resolution imaging. This technique combines elements 

of fluorescence emission difference (FED) microscopy, otherwise known as switching 

laser mode microscopy (SLAM), with non-degenerate multiphoton excitation to approach 

the super-resolution capabilities of stimulated emission depletion (STED) microscopy 

without the risk of photodamage or photo-destruction.  As previously noted, STED 

utilizes a doughnut shaped depletion beam that is made concentric with a Gaussian 

excitation beam at a slight temporal delay to confine fluorescence to a reduced focal spot.  

Regrettably, STED requires a high power depletion beam to achieve this effect, which 
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may cause thermal damage and photobleaching.  FED solves this problem by alternately 

exciting a given specimen with a Gaussian excitation beam (TEM00) and a doughnut 

shaped dark beam (TEM01), then digitally subtracting the dark image from the excitation 

image to produce a ~two-fold resolution enhancement over traditional fluorescence 

microscopy.  Specifically, the final image resolution of FED is determined by the 

diameter of the doughnut shaped beam’s central null spot.  The primary goal of our 

proposed super-resolution system is to produce a dark beam with a reduced central null 

spot to enhance the resolution of difference images beyond a mere two-fold improvement 

by non-degenerate mixing of spatial modes (Figure 4.10).  This requires the 

spatiotemporal overlap of TEM00 and TEM01 beams at distinct wavelengths, λ1 and λ2. 

With precise synchronization, fluorescent excitation occurs at a combined wavelength λ3 

= 2/(1/λ1 + 1/λ2). Recalling that the total excitation of the combined two-color beams is 

(I1(r)+I1(r))2 = I1
2(r)+I2

2(r)+2I1(r)I2(r), provided that a fluorophore of interest’s cross 

section is negligible at λ1 and λ2 relative to λ3, the dark beam excitation profile is given 

solely by 2I1(r)I2(r) where I1
2(r) and I2

2(r) correspond to the TEM00 and TEM01 point 

spread functions, respectively.  Thus, the spatial product of these two modes at λ3 results 

in the creation of a dark beam with a reduced central null spot.  Our modeling shows that 

the proposed technique, non-degenerate fluorescence emission (ND-FED) microscopy, 

can produce sub-200 nm image resolution, which is well beyond a 150 nm resolution 

enhancement relative to conventional D-MPM at near infrared excitation wavelengths. 

It is unclear a priori which polarization states for the TEM00 (linear or circular 

polarization) and TEM01 (vortex or azimuthal polarization) beams will confer the dark 

beam with the smallest central null spot for the greatest resolution enhancement. 

Moreover, it is unknown which polarizations (linear or circular) would produce excitation 

beams that minimize oversubtraction in difference imaging.  In order to evaluate the 
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utility of the ND-FED system for sub-diffraction limited imaging, it is necessary to 

computationally assess and optimize its resolution enhancement capabilities. To 

accomplish this, virtual point spread functions (PSFs) of the incident beams modes I1(r) 

and I2(r) dependent on polarization, wavelength, refractive index, numerical aperture, and 

bandwidth at the back aperture are generated from mathematical descriptions of 

electromagnetic diffraction in optical systems [193]. Mode mixing is subsequently 

performed in MATLAB via a straightforward multiplication procedure to produce the 

combined excitation beam and dark beam PSFs at λ3, 2I1(r)I2(r). Next, virtual excitation 

and dark images are formed by the convolution of the beam PSFs with virtual objects.  

Finally, the super-resolution difference image is calculated by digital subtraction, 

PSFDIFFERENCE = PSFEXCITATION - !PSFDARK, where ! is an adjustable weighting factor. By 

varying the polarization and wavelength of the incident beam modes given a fixed 

refractive index, numerical aperture, and beam diameter, this optimization identifies the 

ideal parameters for high-resolution ND-FED microscopy. Yet another crucial advantage 

of computational modeling includes an optimization of ! factors that maximize resolution 

enhancement and minimize over-subtraction given the size and spacing of the image 

features of interest.  With a better sense of appropriate subtractive ! factors and the 

corresponding resolutions from computational simulation, we are better able to design, 

operate, and troubleshoot the ND-FED system during data collection.  In addition, ND-

FED imaging requires fluorophores with small cross sections at λ1 and λ2 and a large 

cross section λ3. Thus, another major goal accomplished here is analysis of the brightness 

cross sections of popular contrast agents across a wide NIR spectral range to determine 

the ideal non-degenerate excitation wavelengths for each fluorophore.  Ultimately, this 

computational modeling serves as an invaluable resource towards the development of a 
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well-optimized super-resolution system and helps to identify ideal fluorophore targets 

and appropriate excitation wavelengths for unambiguous experimental design.   
 

 

Figure 4.10: Overview of non-degenerate fluorescence emission difference 
microscopy. (A) Initial beam modes are non-degenerately mixed to produce 
(B) excitation and dark beams at λ3. Beam convolution with the (C) virtual 
object generates (D) excitation and dark images.  Weighted subtraction of 
the dark image from the excitation image results in a (E) super-resolution 
difference image.  
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4.6.1 Non-Degenerate Mode Mixing Enhances Conventional Fluorescence Emission 
Difference Microscopy Resolution 

To assess the advantages of non-degenerate (ND) mode mixing relative to 

degenerate fluorescence emission difference microscopy (D-FED), both are compared 

where the direct degenerate excitation wavelength λD is equivalent to the virtual ND 

excitation wavelength λ3 (λD = λ3 = 1080 nm) (Figure 4.11).   The first step for both 

processes is the generation of initial beam modes.  Given the target fluorophore’s peak 

cross section wavelength, λex, D-FED relies on two initial TEM00 and TEM01 modes from 

a single excitation source at λD = λex. In this example, circular and azimuthal polarization 

states were evaluated. Two-photon imaging with these individual modes results in 

inherent mode mixing where the excitation and dark beam PSF are solely comprised of 

the TEM00 or TEM01 modes, respectively.   Convolution of the excitation and dark beams 

with an imaged object produces the excitation and dark images.  Digital subtraction of the 

dark image from the excitation image results in a super-resolution difference 

image.  Notably, a subtractive γ factor can be used to weight the dark image before 

difference imaging, where larger γ factors lead to greater resolution with the tradeoff of 

increased over-subtraction.  This problem of over-subtraction producing negative 

sidebands is a well-chronicled and fundamental flaw of conventional FED [194,195], but 

can be mitigated by the proposed ND-FED technique (Figure 4.12).  More specifically, 

we observe that in spite of the fact that D-FED may lead to a lower proportion of over-

subtracted regions at a given γ factor (Figure 4.12(d)), ND-FED yields a lower 

proportion of over-subtracted pixels for a given difference image resolution (Figure 

4.12(e)). 
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Figure 4.11: Continued on next page. 
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Figure 4.11: Non-degenerate mode mixing improves the super-resolution capabilities 
of fluorescence emission difference microscopy. (A) A comparison of 
degenerate (D-) and non-degenerate fluorescence emission difference (ND-
FED) microscopy procedures with circular and vortex polarizations used for 
TEM00 and TEM01 modes, respectively.  A single wavelength is selected for 
D-FED (λD = 1080 nm) and two wavelengths are selected for ND-FED (λ1 = 
900 nm, λ2 = 1350 nm), which compound at λ3 = λD.  ND-FED employs one 
more initial transverse electromagnetic (TEM) mode than D-FED in the 
construction of the excitation and dark beams, which are independently 
convolved with a virtual object (FWHM = 250 nm) to generate excitation 
and dark images.  Digital subtraction of a γ weighted dark image from the 
excitation image results in the super-resolution difference. TEM00 = circular, 
TEM01 = vortex.  (B) D- and ND-FED excitation beam full-width at half-
maxima (FWHM) are similar.  (C) ND-FED dark beam null spots are much 
smaller, conferring a greater resolution enhancement.  (D) Using the same γ 
factor (γ = 0.535), both D- and ND-FED result in sub-diffraction limited 
images, although only ND-FED manages to achieve the true size of the 
imaged object  

Meanwhile, ND-FED requires not two, but three beam modes at two separate 

wavelengths from synchronized laser sources which combine at λ3 = λex. The individual 

component wavelengths λ1 and λ2 are selected to lie within a spectrum in which the 

fluorophore of interest’s absorption cross section is negligible.  Matched TEM00(λ1) 

and  TEM00(λ2) mode mixing produces the ND-excitation beam, and unmatched 

TEM00(λ1) and TEM01(λ2) mode mixing produces the ND-dark beam with a greatly 

reduced central null spot relative to the D-dark beam. In this specific example, where λ1 = 

900 nm, λ2 = 1350 nm, and λD = λ3 = 1080 nm, ND mode mixing of the dark beam using 

circular and vortex polarization states reduces the degenerate null spot FWHM from 462 

nm to 233 nm (Figure 4.11(c)).  The remaining ND process is identical to D-FED, but 

results in larger resolution enhancements; sequential convolution of the beams with an 

object creates excitation and dark images that are used for digital subtraction to visualize 

sub-diffraction limited features in super-resolution.  Here, a 250 nm Gaussian object was 
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modeled and FED was performed with a γ = 0.535, resulting in a 68 nm advantage for the 

ND-FED difference image relative to D-FED (Figure 4.11(d)). 
 

 

Figure 4.12: Non-degenerate fluorescence emission difference microscopy can 
mitigate the extent of over-subtraction. (A) Degenerate (D-) and non-
degenerate fluorescence emission difference images (ND-FED) of a 250 nm 
object before and after zeroing negative pixel values. λ1 = 900 nm, λ2 = 
1350 nm, λ3 =  λD =1080 nm, γ = 0.535, TEM00 = circular; TEM01 = vortex. 
(B) Central line profiles of the D- (solid black) and ND- (dashed red) 
difference (left) and zeroed difference (right) images.  (C) Line profiles of 
D- (left) and ND-difference (right) images using various γ factors. (D) 
Negative pixel proportion for D- and ND-FED as a function of γ factor. (E) 
Negative pixel proportion for D- and ND-FED as a function of zeroed 
difference image FWHM.  
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4.6.2 Optimal Polarization States for Non-Degenerate Fluorescence Emission 
Difference Imaging  

In order to fully maximize the utility of non-degenerate fluorescence emission 

difference (ND-FED) microscopy for sub-diffraction limited imaging, it is necessary to 

computationally assess and optimize its resolution enhancement capabilities. For 

instance, it is unclear a priori which TEM00 and TEM01 polarization states construct the 

dark beam with the smallest central null spot for most favorable resolution.  To evaluate 

this, ND-excitation, dark, and difference beams were evaluated at wavelength 

combinations spanning 650 to 1350 nm, using either linear or circularly polarized TEM00 

beams in conjunction with azimuthal or vortex TEM01 beams (Figure 4.13).  Due to the 

anisotropic behavior of ND-FED combinations using linear polarization [177], resolution 

was measured in the orthogonal axis to the plane of polarization to report optimal 

resolution.  Notably, difference beams were calculated by direct subtraction of the dark 

beam from the excitation beam, thereby simulating the difference image of a point source 

object and thus reporting on the maximum effective resolution expected for each set of 

wavelengths and polarization conditions characterized.  

It is observed that circularly and azimuthally mode mixed dark beams’ null spots 

are minimized relative to other TEM mode mixes for any given wavelength combination, 

which results in a higher-resolution difference beam (Figure 4.13(b)).  Specifically, 

circular and vortex combinations’ null spots are ~5-12 nm larger (Figure 13b(ii)) 

resulting in difference beams that are ~5 nm larger (Figure 13c(ii)).  Linear and vortex or 

azimuthal mode mixing performs considerably worse, with null spots up to 25 nm larger 

(Figure 13b(iii-iv)) and difference images up to ~20 nm lower in resolution, depending 

on the wavelength combination (Figure 13c(iii-iv)).  Notably, this study further examines 

potential ND-FED resolution enhancement with TEM00(λ1) and TEM01(λ2) dark beams in 
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cases where λ1 is lower or higher energy than λ2.  It is shown that in all cases, regardless 

of which specific TEM modes are used, dark beam null spot diameter, and hence final 

difference image resolution, is minimized when λ2, the TEM01 wavelength, is longer than 

λ1, the TEM00 wavelength. 

 

Figure 4.13: Non-degenerate fluorescence emission difference microscopy resolution 
using various polarization states. (A) Excitation beam full-width at half-
maximum (FWHM), (B) dark beam null spot FWHM, (C) and difference 
image FWHM using either (i) circular and azimuthal, (ii) circular and 
vortex, (iii) linear and azimuthal, (iv) or linear and vortex TEM modes for 
non-degenerate mode mixing. Difference images were calculated by directly 
subtracting dark beams from excitation beams to simulate difference 
imaging of a point source and thereby reporting maximum effective 
resolution expected for each set of wavelengths and polarization conditions 
characterized.  Scaling for (i) is absolute, whereas scaling for (ii-iv) is taken 
relative to the corresponding circular and azimuthal beam or image from (i).  

4.6.3 Non-Degenerate Fluorescence Emission Difference Imaging Over-Subtraction  

A shortcoming that is consistent to both degenerate and non-degenerate 

fluorescence emission difference (D- and ND-FED) microscopy is the possibility of over-
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subtraction, where negative sidebands appear upon dark image subtraction.  These 

negative lobes represent a potential loss of information, and an ideal ND-FED image will 

maximize resolution and minimize over-subtraction.  Thus, we evaluated over-

subtraction with respect to magnitude and proportion for all beam mode and wavelength 

combinations, where magnitude is defined as the mean value of negative pixels in the 

resulting difference image and proportion is the ratio of negative to positive value pixels 

after difference imaging (Figure 4.14). Unsurprisingly, the magnitude of over-subtraction 

is most severe with circular and azimuthal TEM modes, followed by circular and vortex, 

then linear and vortex combinations. This is a reasonable finding if one intuits that the 

dark beam mode combination that results in optimal resolution enhancement will also 

result in heavier over-subtraction.  However, when we evaluate over-subtraction with 

respect to negative pixel proportion, we find a converse trend, where circular and 

azimuthal mode mixing results in a similar proportion of over-subtracted pixels to linear 

and azimuthal mode mixing and a significantly lower proportion relative to all other 

TEM mode combinations. In FED microscopy, negative pixels are conventionally zeroed 

out in difference images regardless of their magnitude [196], suggesting that the 

proportion of negative pixels is a greater concern with respect to information loss than 

their absolute value.  Thus, we can surmise that the ideal TEM mode combination should 

minimize the spread of over-subtraction, but maximize the magnitude of over-

subtraction, as these traits reflect well-concentrated difference imaging.  This criteria 

identifies circular and azimuthal beam modes as an ideal set for ND-FED imaging, which 

corroborates the previous conclusion made by evaluating TEM polarizations solely with 

respect to resolution enhancement (Figure 4.13). 
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Figure 4.14: Non-degenerate fluorescence emission difference imaging over-
subtraction using various polarization states. Over-subtraction quantified 
by (A) negative pixel mean and (B) negative pixel proportion using either (i) 
circular and azimuthal, (ii) circular and vortex, (iii) linear and azimuthal, 
(iv) or linear and vortex TEM modes for non-degenerate mode mixing.  

4.6.4 Resolution and Over-Subtraction of Degenerate Versus Non-Degenerate 
Fluorescence Emission Difference Microscopy 

Now that circular and azimuthal polarization states are identified as the ideal 

transverse electromagnetic modes (TEM) for non-degenerate fluorescence emission 

difference (ND-FED) microscopy, we sought to generate a direct comparison of 

degenerate (D-) and ND-FED imaging resolution and over-subtraction using these 

defined modes.  D-FED was performed using TEM00(λD) and TEM01(λD) modes where λD 

= 650 - 1350 nm, and ND-FED was performed using TEM00(λ1), TEM00(λ2), and 

TEM01(λ2) modes, where λ1 = λ2 = 650 - 1350 nm and all λ3 = 2(λ1
-1 + λ2

-1)-1 = λD 

combinations were directly compared to D-FED.  With respect to transverse resolution, 

we discovered that ND-FED universally produces higher resolution images for λ3 = λD 

than D-FED regardless of which λ1 and λ2 wavelength combination was applied (Figure 

4.15(a)). Specifically, ND-FED results in a  ~65 nm resolution enhancement relative to 

D-FED at a 650 nm excitation wavelength, and widens to a  ~135 nm advantage at a 1350 
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nm excitation wavelength.  Despite this advantage, one can potentially over-subtract 

more heavily with ND-FED than with D-FED, although not in all cases (Figure 4.15(b)).  

This begs the question, which ND wavelength combinations minimize the severity of 

over-subtraction? If we segregate negative pixel proportion data into cases where λ1 > λ2 

and vice versa in the construction of TEM00(λ1) and TEM01(λ2) non-degenerate mode 

mixing, we find that the final difference image contains a lower over-subtracted pixel 

proportion if the TEM00 dark  beam mode wavelength is longer than the TEM01 

wavelength (Figure 4.15(b)).  However, it is also evident that using longer TEM01 

wavelengths, such that λ2 > λ1 improves resolution enhancement (Figure 4.15(a)).  To 

summarize, over-subtraction is minimized by longer TEM00 wavelengths (λ1 > λ2), 

whereas difference image resolution is maximized with longer TEM01 wavelengths (λ2 > 

λ1).  This evidence supplements our earlier comparison of the various polarization state 

combinations’ effects on over-subtraction (Figure 4.14), which lead to the 

conclusion that TEM mode combinations that lead to maximal difference image 

resolution resulted in over-subtraction over a smaller region, both of which are favorable 

outcomes.  In contrast, these present results add that for a selected, given beam mode 

combination, longer TEM01 wavelengths lead to maximal difference image resolution at 

the cost of over-subtraction over a larger region. Ultimately, this provides valuable 

information for researchers who, upon selecting a certain set of beam-mode 

combinations, can prioritize between enhanced resolution and minimized over-

subtraction, which are shown to be at odds with respect to TEM00(λ1) and TEM01(λ2) 

wavelength selection. 



 192 

 

Figure 4.15: Non-degenerate (ND) mode mixing enhances degenerate fluorescence 
emission difference (D-FED) image resolution and can reduce the 
proportion of over-subtraction. (A) Transverse point spread function 
(PSF) full-width at half-maxima (FWHM) of FED images of point source 
objects as a function of excitation wavelength (λex) for D-FED (blue, λex = 
λD; the degenerate excitation wavelength) and ND-FED (λex = λ3). ND-FED 
FWHMs are distinguished by mode combinations of TEM00(λ1) and 
TEM01(λ2) where λ1 > λ2 (red) and λ2 > λ1 (green).  (B) The proportion of D- 
and ND-FED over-subtraction, with color symbols corresponding to panel 
A.  

4.6.5 Ideal Difference Imaging Gamma Weighting Factor is Object Size Dependent. 

Fluorescence emission difference (FED) images are generated by digital 

subtraction of the dark image from the excitation image, JExcitation - γ JDark = JDifference, 

where γ is a weighting factor of the dark image. If the applied γ factor is excessively 

large, one can begin to over-subtract from the excitation image and generate virtual 

structures that are smaller than the features of the intended target.  By performing circular 

and azimuthal mode FED modeling of virtual Gaussian objects with full-width at half-

maximum (FWHM) diameters ranging from 50 to 1500 nm where λ1 = 650 nm and λ2 = 

1040 nm, we are able to observe that the appropriate subtractive γ factor depends on the 

size of the object being imaged (Figure 4.16).  The larger the object, the more easily it 

can be over-subtracted, even at smaller γ factors.  The smaller the object, the more 

difficult it becomes to over-subtract; in fact, over-subtraction is precluded from object 
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sizes smaller than the dark beam’s central null spot (i.e. point-source 

objects).  Comparing non-degenerate (ND-) to degenerate (D-) FED (λ3 = λD = 800 nm), 

we find that γ factors up to 1.0 can be used for objects up to ~150 and ~180 nm, 

respectively without risk of over-subtraction (Figure 4.16(b)).  This reveals that ND-

FED is incredibly valuable for visualizing smaller structures (<180 nm), which cannot be 

easily resolved at true size with D-FED due to its larger dark beam null spot. Notably, 

resolving features between ~150 - 220 nm with ND-FED requires considerable γ factor 

tuning. For contexts in which several targets of interest across this size distribution are 

imaged, multiple difference images must be produced with a range of γ factors specific to 

the expected size of each target.  While this is certainly a drawback of ND-FED, this 

limitation is magnified by D-FED, which requires extensive γ tuning for objects over an 

even larger size distribution spanning ~180 nm - 800 nm.  In contrast, ND-FED is quite 

robust when it comes to resolving objects between ~220 and 1500 nm using a single γ 

factor (0.4) without risk of over-subtraction, whereas the same statement only applies to 

D-FED for objects between ~800 - 1500 nm (γ ~ 0.265), a range in which super-

resolution microscopy has very little to no value.   
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Figure 4.16: The appropriate fluorescence emission difference imaging subtractive γ 
factor is object-size dependent. (A) Zeroed non-degenerate fluorescence 
emission difference (ND-FED) microscopy difference image full-width at 
half-maximum (FWHM) as a function of subtractive γ factor for various size 
objects.  (B) The subtractive γ factor at which a true object becomes over-
subtracted (i.e. empty resolution benefits) as a function of initial, true object 
size.  

4.6.6. Fluorophore-Specific Wavelength Combinations for Non-Degenerate 
Fluorescence Emission Difference Microscopy 

For non-degenerate fluorescence emission difference (ND-FED) microscopy to be 

effective, fluorescence intensity should only appear at the virtual wavelength λ3 where 

the combined beam point spread function (PSF) is given by 2I1(r,t-τ)I2(r,t).  If 

fluorescence is stimulated by either of the direct excitation wavelengths λ1 or λ2, then 

degenerate excitation profiles will be seen, resulting in a two-color excitation profile, 

I1
2(r,t) + I2

2(r,t) + 2I1(r,t-τ)I2(r,t).  Two-color (2C-) FED cannot be used for super-

resolution imaging due to the absence of a central null spot in the dark beam.  Thus, it is 

imperative to first characterize the cross section profile of the fluorophore of interest and 

identify excitation wavelengths λ1 and λ2 that result in negligible degenerate cross 

sections relative to the non-degenerate cross section at λ3, !!! !!, !! ≪
 !!"! !!, !! .  Fainman et. al (2019) shows that if the number of molecules excited by 

2C-MPM is given by: 
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!!" !, !, ! = !
! !!! !! ! !, ! !!! !, ! − ! + !

! !!! !! ! !, ! !!! !, ! +⋯ 

2!!"! !!, !! ! !, ! !! !, ! − ! !!(!, !) 
(4.6) 

where ! !, !  is the fluorophore concentration and all other terms have been previously 

defined, then we are able to apply a few key assumptions to arrive at an expression for 

time averaged fluorescent signal, ! !  [197].  Specifically, if we presume that 

fluorophore distribution is spatially and temporally invariant and that both excitation 

sources output transform limited Gaussian pulses, then paraxial beam approximation 

dictates: 

! ! =  !! !!!
!!!!"#!! !!

4!"!ℎ!Γ!!
+  !! !!!

!!!!"#!! !!
4!"!ℎ!Γ!!

+⋯ 

2 !! !!! !!! !! !!!"#!"! !!, !!
!"!ℎ!Γ! !!! + !!!

exp −!!
2Γ!

 

(4.7) 

In the above expression, ! represents the optical system’s collection efficiency, ! gives 

the fluorophore quantum efficiency, ! is the laser repetition rate, ! is the speed of light, ℎ 

is Planck’s constant, !  is average laser power, and Γ is the pulse’s temporal standard 

deviation [61]. If we further assume that average laser powers at λ1 and λ2 are equivalent, 

then the ratio of non-degenerate to degenerate signal when the temporal offset of the two-

color beams is !  = 0 simplifies to:  

! ! = 0 !" !!,!!
! ! !! + ! ! !!

= 8Γ!!Γ!!!! !!!!"! !!, !!
Γ! !!! + !!! Γ!!!!!!

! !! + Γ!!!!!!
! !!

 (4.8) 

Therefore, to evaluate ideal ND-FED wavelength combinations for various 

fluorophores, we assume that all pulses are transform limited with Γ!! = Γ!! = 65 fs, 

where Γ!! =  Γ!!! + Γ!!! , and use known degenerate absorption cross sections [129] to 

calculate expected ND-FED efficiency.  We emphasize that ND-FED efficiency is 
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distinct from ND-MPM efficiency [197], which seeks to compare degenerate (D-) and 

ND-MPM signal where !! = !!, which results in a distinct expression:  

! ! = 0 !" !!,!!
! ! !!

= 8 P!! P!! !! !!!!"! !!, !! Γ!
Γ! P! !!!!!! !! !!! + !!!

 (4.9) 

Thus, we are able to use Equation 4.8 to approximate ND-FED efficiency and 

identify suitable 2C-excitation wavelengths for various fluorophores using action cross 

section data obtained from a online repository [129] (Figure 4.17).  Please note that this 

data only serves as a crude approximation of relative brightness as both λ1 and λ2 beam 

profiles are assumed to be Gaussian, whereas FED mandates the use of different spatial 

modes.  Nevertheless, these plots remain quite instructive as a visual guide to ND-FED 

wavelength pair selection, with brighter regions representing ideal candidates and darker 

portions denoting that brighter degenerate excitation profiles would hinder the efficacy of 

ND-FED.  Individual plots of two-color action cross section profiles for !"!! !!, !! and 

!"!"! !!, !!  are provided in for each fluorophore for a more comprehensive overview, 

where !!!! !!, !! =  !! !"!
! !! +  !! !"!

! !!  and !!!"! !!, !! =  !"!! !!  

(Figure 4.17(b-d)).  Finally, a more thorough derivation is provided in Appendix II. 
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Figure 4.17: Ideal wavelength combinations for non-degenerate fluorescence 
emission difference (ND-FED) microscopy are dependent on the 
fluorophore’s cross section profile. (A) Each plot indicates a unique 
fluorophore’s normalized ND-FED efficiency, 
! ! = 0 !" !!,!! ! ! !! + ! ! !!

!!
, as a function of !! and !!.  

Ideal wavelength combinations for ND-FED microscopy minimize (B) 
degenerate two-photon action cross sections (TPACs, !!!! ) and maximize 
(C) non-degenerate TPACs (!!!"! ).  (D) Source data for TPACs !"(!)  

[129] of (i) Alexa Fluor 488, (ii) Ca Green, (iii) fluorescein, (iv) Lucifer 
Yellow, and (v) mCFP.  

4.6.7 Digital Non-Degenerate Fluorescence Emission Difference Imaging of 
Dendritic Spines 

Neuronal architecture influences synaptic communication, and structural 

modifications and changes in density to dendritic spines are believed to be substrates of 

functional activity [162,163].  Multiphoton microscopy is commonly used to visualize 

neuronal and axonal protrusions at greater depths with high resolution, as well as provide 
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functional information through imaging of calcium dynamics [46]. In spite of this, 

dendritic spines, whose necks range from 70 – 300 nm in diameter, remain sub-

diffraction limited, which hinders a comprehensive association of structure with cognitive 

function [165].  Non-degenerate fluorescence emission difference (ND-FED) microscopy 

may present itself as an ideal modality for in vivo spine imaging, due to its super-

resolution capabilities and reduced need for high-power lasers.  To test this, we 

performed a degenerate (D-) and ND-FED simulation of dendritic spines to compare the 

resolution benefits of the two approaches (Figure 4.18).  A dendritic spine phantom 

image was used to generate a target (Figure 4.18(a)) for convolution with the D- and 

ND-excitation and dark beams (TEM00, circular; TEM01, azimuthal; λ1 = 650 nm; λ2 = 

1350 nm, λD = λ3 = 878 nm) to simulate FED microscopy (Figure 4.18(b)).  Digital 

subtraction was performed at a range of γ factors (Figure 4.18(c)), and it is immediately 

apparent that structures begin to disappear at smaller γ factors using D-FED, which 

remains consistent with Figure 4.12(d). When we control for matching levels of 

information loss in the D- and ND-difference images, the measured diameter of a 

prominent spine is 212 and 185 nm, respectively, which reflects a greater degree of 

similarity to the true spine diameter in the ND image (Figure 4.18(d)). To elaborate, in 

this case we have identified a proportion of over-subtraction, p = 0.5, computed the 

appropriate ND- and D-γ factors that meet this threshold, performed FED deconvolution, 

and measured the corresponding spine full-width at half-maximum (FWHM) in the 

resulting difference images.  
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Figure 4.18: Degenerate (D-) and non-degenerate fluorescence emission difference 
(ND-FED) imaging simulation of dendritic spines. (A) A phantom image 
[198] of dendritic spines to serve as a virtual object for FED simulation. (B) 
D- and ND-FED microscopy excitation and dark images of (A), where  λ1 = 
650 nm; λ2 = 1350 nm, λ1 = λD = 878 nm; TEM00 = circular, TEM01 = 
azimuthal.  (C) D- and ND-difference imaging at a range of γ factors using 
excitation and dark images in (B). (D) D- and ND-difference image insets 
from the region demarcated in (A) with a 50% over-subtraction level where 
the blue and red lines denote the location of intensity profiles plotted as 
normalized signal intensity relative to position.  

When we perform this exercise over a broad range of values for information loss 

(Figure 4.19), ND-FED’s advantage is even more pronounced.  Direct comparison of D- 

and ND-FED images at the same thresholds reveals that we can more clearly resolve 

adjacent structures with ND-FED than D-FED, where those same structures either 

overlap or disappear completely.  To substantiate this qualitative observation, the 

correlation, ρ, of object, D-, and ND-intensity profiles was computed as a function of 

information loss and ρ(Object Profile, ND-Profile) was found to be significantly larger 

than ρ(Object Profile, D-Profile).  If we instead control for the final difference image 

resolution to compare D- and ND-FED difference images, we are able to attain the true 
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diameter of the spine analyzed in Figure 4.18(d) at D-γ = 0.812 and ND-γ = 0.755.  In the 

case of the ND image, this represents a 10.87% reduction in global information loss 

relative to the degenerate case.  This corroborates our earlier findings that ND-FED 

yields a lower proportion of over-subtracted pixels for a given resolution (Figure 4.12(e)). 

Overall, these findings directly demonstrate the utility of ND-FED for dendritic spine 

imaging and its unique advantage over conventional FED microscopy.   
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Figure 4.19: Object and fluorescence emission difference image correlation as a 
function of information loss. (A) Phantom dendritic spine image [198]; the 
positions of intensity profiles one (solid) and two (dashed) are denoted in 
magenta. (B) Correlation of raw intensity profiles with corresponding 
degenerate (D-, blue) and non-degenerate fluorescence emission difference 
(ND-FED, red) image intensity profiles one (left) and two (right) as a 
function of global information loss. (C) D-FED (left) and ND-FED (second 
to left) images at matching levels of information loss and their 
corresponding intensity profiles one (second to right) and two (right) plotted 
against the object intensity profiles from A.  
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4.8 NON-DEGENERATE SUPER-RESOLUTION SYSTEM DESIGN AND EVALUATION 

4.8.1 Evaluation of Beam-Shaping Technologies 

A fundamental component to the construction of the non-degenerate super-

resolution microscopy system is the integration of a beam shaping element.  A few 

options presented themselves: a vortex phase-plate (RCP-Photonics; VPP-1C), an 

azimuthal polarizer (ARCoptix; Radial-Polarization Converter), or a freely 

programmable spatial light modulator  (SLM).  The first two components were already in 

possession of the lab, whereas the latter required some investigation.  We initially 

referred to a publication from Bashkansky and Fatemi [199], where azimuthal and radial 

point spread functions were generated using a nematic SLM (Meadowlark Optics; P512 

SLM).  However, we found that the newer 1920 x 1152 pixel SLM was not only higher 

resolution, it was more compact, it had higher bit depth (12 bits vs 8 bits), and it was less 

expensive.  Both SLMs are parallel-aligned nematic SLMs, so optically both would work 

the same way.  Unfortunately, the Meadowlark SLM is not capable of working over the 

entire non-collinear optical parametric amplifier (NOPA) wavelength range – there is a 

600 – 1300 nm model, and an 850 – 1650 nm model.  At a larger range of wavelengths, 

the liquid crystal layer would be far too thick at the shorter wavelengths to support the 

longer wavelengths.  Meadowlark also provided twisted nematic SLMS, which provide 

higher contrast ratio amplitude modulation at the cost of a slower response time, and are 

typically reserved for display applications.  However, twisted nematic SLMs can’t be 

used for pure phase modulation, whereas parallel-aligned SLMs are for more flexible.  If 

the incident polarization is vertical and linear, the parallel configuration can be used as a 

phase modulator.  If the incident polarization is linear and at 45 degrees to the SLM, then 

it acts as a polarization rotator, and a downstream analyzer can convert this polarization 
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rotation into amplitude modulation. However, as we began to investigate the principle 

and operation of parallel SLMs, it occurred to us that their function was redundant to the 

radial polarization converter from ARCoptix, which also produced stable radial or 

azimuthal modes, depending on the orientation of the device with respect to the linearly 

polarized input beam.  Moreover, the optic is also able to rotate the orientation of linearly 

polarized light, just as the Meadowlark Optics SLM.  While the inner workings of the 

radial polarization converter are a bit of a black box, our discovery that the device is a 

liquid crystal based polarization converter lead us to conclude that it is in fact in all 

likelihood a parallel aligned SLM. 

 

Figure 4.20: Azimuthal and vortex polarizers. (A) A radial polarization converter can 
transform a linearly polarized input beam into radially or azimuthally 
polarized beams depending on input polarization.  (B) A vortex phase plate 
converts a Gaussian input into small donut-shaped beam; the appropriate 
grid square to use is wavelength dependent.  
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We proceeded to then compare azimuthal and vortex point spread functions 

experimentally to empirically assess their potential for resolution enhancement in a non-

degenerate nanoscopy system (Figure 4.20).   Azimuthal modes were generated using the 

radial polarization converter from Arcoptix and vortex modes were generated using the 

phase plate from RCP Photonics.  Initially, five slides of <200 nm diameter nanoparticles 

were prepared to measure the system’s point spread function: blue (Thermofisher; 

F8781), yellow-green (Thermofisher; F8787), red (Thermofisher; F8786), dark red 

(Thermofisher; F8807), and crimson (Thermofisher; F8806).  As expected, point spread 

function measurements did not vary as a function of nanoparticle, as all were sub-

diffraction limited in size.  The red and dark red fluospheres were then prioritized for 

quantification due to their relative brightness at 1050 nm ytterbium fiber excitation. 

Azimuthal mode purity was found to be a strong function of the beam’s linear 

polarization orientation relative to the converter and of the voltage applied to the liquid 

crystal device, and required extensive optimization and alignment.  Vortex mode purity 

was a bit more straightforward, and only required using the correct region on the phase 

plate, then precise centering in the x and y axes, which was readily achieved with 

orthogonally mounted linear translation stages. Once each optic was fully optimized, 

several images of distinct beads were recorded, and image processing techniques were 

developed to collect radially averaged line profiles to which Gaussian profiles were fitted 

in order to estimate the outer and inner full-width half-maxima (FWHM) of the donut 

shaped point spread function.  Ultimately, it was concluded that the azimuthal donut’s 

outer FWHM was larger than the vortex donut’s, whereas the azimuthal null spot’s null 

spot FWHM was smaller than the vortex’s (Table 4.1).   
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Objective 
AZP VPP 

Outer FWHM Null FWHM Outer FWHM Null FWHM 

10x 2,976 + 49 nm 1,273 + 39.2 nm 2,818 + 9.6 nm 1,449.6 + 48.9 nm 

20x 1457 + 112.7 nm 574 + 122.2 nm 1,425 + 48.2 nm 698 + 22.1 nm 

Table 4.1: TEM01 Dimensions. Outer and null-spot full-width at half-maxima 
(FWHM) of azimuthally polarized (AZP) and vortex phase plate (VPP) 
shaped donuts, using a 10x (Nikon; MRL00102, 0.25 NA) or 20x objective 
(Olympus; XLUMPLFLN, 1.0 NA). 

A qualitative comparison of the polarization converters clearly reveals that the 

vortex phase plate results in a “coffee bean” like point spread function, rather than a clean 

donut ring as seen with the azimuthal polarizer.  It was hypothesized this might be due to 

the linear input polarization of the fiber laser.  However, rotation of a half-wave plate 

positioned directly before the polarizer did not alter the orientation of the “coffee bean” 

lobes, nor did pre-conversion to circular polarization.  It is plausible that the aberrant 

donut may be a result of inappropriate phase matching to the ytterbium fiber laser – the 

closest match on the phase plate was 1081 nm. When we compare our experimental point 

spread functions to our modeled point spread functions, we find some discrepancies.  The 

null FWHM of a 20x magnification 1.0 numerical aperture objective vortex point spread 

function is expected to be 476 nm at 1050 nm excitation.  The null FWHM of an 

azimuthal point spread function is expected to be 441 at the same excitation wavelength, 

magnification, and numerical aperture.  While these numbers are not in precise agreement 

with our experimental values, they are reasonably close. Discrepancies may be attributed 

to the noisiness of the experimental point spread function images and resulting radially 

averaged profiles, as well as imperfect Gaussian fitting, especially with respect to the 
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outer FWHM.  Examples of these images, processing, and fitting are shown in Figure 

4.21. 

 

Figure 4.21: Azimuthal and vortex point spread functions. (A) Representative point 
spread functions using an azimuthal polarizer (AZP) or a vortex phase plate 
(VPP) as imaged with a 10x (Nikon; MRL00102, 0.25 NA) or 20x objective 
(Olympus; XLUMPLFLN, 1.0 NA).  Scale bar = 10 µm; yellow circle 
denotes region of radial average profile corresponding to plots in B.  (B) 
Radially averaged profiles from individual point spread functions (black), as 
well as Gaussian fits to the outer donut (red) and null spots (blue).  Full-
width at half-maxima (FWHM) of the Gaussian fits are provided in the 
legend.  

4.8.2 One-Color Fluorescence Emission Difference Microscopy 

As a prelude to non-degenerate fluorescence emission difference microscopy 

(ND-FED), we endeavored to first achieve one-color degenerate (D-) FED.  A stock 

solution of 200 nm dark red fluospheres (Thermofisher; F8807) was sonicated for a 
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period of 10 minutes in order to fragment aggregated clusters and ensure that single beads 

were imaged.  A 5 µl aliquot was then diluted into a 1.495 ml sterile saline solution, 

which was vortexed for 30 sec at 2,000 RPM.  A 10 µl aliquot of the dilute preparation 

was spread out over a glass slide and sandwiched with a glass coverslip and imaged using 

a 0.25 numerical aperture 10x objective (Nikon; MRL00102, 0.25 NA) and a 1050 nm 

ytterbium fiber laser excitation laser.  Initial excitation images (TEM00; TEM = 

transverse electromagnetic mode) entailed passing the fiber laser path through a spatial 

filter, whereas dark images (azimuthal; TEM01) required that the spatially filtered 

Gaussian beam was transmitted through a radial polarization converter (Arcoptix).  To 

alternate between excitation and dark imaging, the radial polarization converter was 

mounted to a linear translation stage (Thorlabs; PT1).  Laser power was adjusted using a 

reflective neutral density filter for each excitation and dark image such that the highest 

intensity signal in the frame was on the cusp of saturation (counts ~ 30,000 – 32,000; 

Figure 4.22(a-b)).  A processing script was developed to preform digital subtraction of 

excitation and dark image pairs at a range of subtractive γ factors (Figure 4.22(c-d)).  

Radially averaged line profiles of individual beads were extracted and Gaussian fitting to 

the profiles was used to determine the full-widths at half-maxima (FWHM) of the zeroed 

difference image as a function of γ factor (Figure 4.22(e)).  Each image was recorded at a 

0.05 V and a 0.10 V scan size. The smaller scan size is expected to yield more accurate 

estimates of super-resolution FWHM due to the smaller pixel size; however, the error 

bars were seen to be larger.  A potential explanation for this unexpected observation is 

that slight image shifts or sample perturbations between excitation and dark imaging 

results in a relatively larger misregistration at the smaller scan size.  
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Figure 4.22: Degenerate fluorescence emission difference microscopy.  (A) Excitation 
image of a 200 nm dark red fluosphere using a spatially filtered Gaussian 
1050 nm beam (TEM00).  (B) A dark image of the same region in A using 
azimuthally polarized 1050 nm excitation (TEM01). (C) A difference image 
after digital subtraction of B from A, using a subtractive γ weighting factor 
of 1.0.  (D) The same image in C, except all negative pixel values have been 
coerced to zero.  (E) Average full-width at half-maximum measurements of 
multiple beads as a function of gamma factor, using a 0.05 V (red) or a 1.0 
V (black) scan size. All scale bars = 10 µm. 

All super-resolution FWHM measurements were performed on the zeroed 

difference images, where negative over-subtracted pixel values were set to zero.  

Diffraction limited imaging at 1050 nm using this objective yields a theoretical maximum 

resolution of approximately ~2.56 µm.  At a γ factor of 0.1 (FWHM ~ 1.6 µm), D-FED 

yields a ~1.6-fold resolution enhancement, and a >2.5-fold resolution enhancement using 

γ = 1.0 (FWHM ~1 µm).  Notably, resolution measurements were not made on the raw 

difference image, as we can see a strong increase in negative pixel values with increasing  

γ values (Figure 4.23(a-d)) and corresponding radially averaged profiles exhibit growing 

side lobes as a result (Figure 4.23(e)). 
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Figure 4.23: Non-zeroed degenerate fluorescence emission difference microscopy 
images.  Difference images after digital subtraction using a γ weighting 
factor for the dark image of (A) 0.25, (B) 0.5, (C) 0.75, or (D) 1.0.  (E) 
Radially averaged line profiles corresponding to the position of the dashed 
lines in (A-D) demonstrate increasing negative side lobes with increasing γ 
values.  Scale bars = 10 µm. 

4.8.3 Non-Degenerate Fluorescence Emission Difference Microscopy 

To evaluate non-degenerate fluorescence emission difference (ND-FED) 

microscopy in comparison to degenerate (D-) FED microscopy, resolution enhancement 

using a two-color ytterbium fiber and diamond laser system was benchmarked relative to 

the independent use of either source independently.  As an initial step, TEM00 (Gaussian) 

and TEM01 (azimuthal) profiles were recorded using both excitation sources with a 20x 

objective (Figure 4.24(a)).  Multiple regions of interest of sub-diffraction limited 

diameter fluospheres (n > 10) were recorded and the highest quality point spread 

functions were used for analysis (fiber laser, n = 5; diamond laser, n = 7).  In this case, 

high quality was defined as a well centered null spot, well-registered regions of interest 

across the excitation and dark images, and a lack motion artifacts in the higher resolution 

0.03 V scans.  These higher quality point spread functions were then averaged to 

construct representative point spread functions for the independent ytterbium fiber (I1
2) 
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and diamond laser (I2
2) modes to obtain critical measurements (Figure 4.24(b-c)).  The 

excitation PSF at ! = 1050 nm full-width at half-maximum was smaller than the ! = 1240 

nm PSF full-width at half-maximum, 682 nm versus 807 nm, as expected.  Theoretical 

resolution limits are 640.5 nm and 756.4 nm for these two sources, respectively, which 

indicates that we are on the cusp of diffraction limited performance with our imaging 

system.  The dark beam null spots were 549 nm at 1050 nm and 644 nm at 1240 nm 

excitation; which again reflects a greater resolution enhancement capability at shorter 

degenerate excitation wavelengths.   

 

Figure 4.24: Continued on next page. 



 211 

Figure 4.24: Individual beam modes for degenerate- and non-degenerate 
fluorescence emission difference microscopy. Representative regions of 
interest of sub-diffraction limited fluospheres at decreasing scan sizes with 
and without azimuthal polarization when excited by (A1) ytterbium fiber 
laser (1050 nm) or (A2) diamond laser (1240 nm).  0.10 V scale bar = 10 
µm; 0.05 V scale bar = 5 µm; 0.03V scale bar = 3 µm.  (B1) Individual 
radially averaged profiles (black) of ytterbium fiber laser TEM00 point 
spread functions (PSFs) are aggregated to construct a representative PSF 
profile (dashed red), shown in 2D on the right. The same process is repeated 
for (B2) ytterbium fiber laser TEM01 PSFs, (C1) diamond laser TEM00 PSFs, 
and (C2) diamond laser TEM01 PSFs. B-C Scale bars = 150 nm. 

To compare ND-FED (1050 nm and 1240 nm) to D-FED (1050 nm or 1240 nm), 

mode mixing was performed as depicted in Figure 4.25.  Briefly, D-FED excitation beam 

generation involves inherent, degenerate TEM00 matched mode combinations at a single 

wavelength, whereas ND-FED excitation beam generation requires non-degenerate 

TEM00 matched mode mixing at two discrete wavelengths.  Meanwhile, D-FED dark 

beam generation requires inherent, degenerate TEM01 matched mode mixing at a single 

wavelength, whereas ND-FED dark beam generation requires non-degenerate unmatched 

TEM00 and TEM01 mode mixing at independent wavelengths. The ND-excitation beam 

FWHM was larger than the D-excitation beam at 1050 nm, but smaller than the D-

excitation beam at 1240 nm.  However, the ND-dark beam null spot (308 nm) was 

significantly smaller than either of the D-dark beam null spots (628 and 737 nm), as 

measured by their full-width at half-maxima. 
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Figure 4.25: Degenerate- and non-degenerate mode mixing for excitation and dark 
beam generation. (A)  Degenerate mode mixing with a ytterbium fiber laser 
(λex = 1050 nm). (A1) Degenerate TEM00(λex = 1050 nm) matched mode 
mixing results in a 682 nm full-width at half-maximum (FWHM) excitation 
beam.  (A2) Degenerate TEM01(λex = 1050 nm) matched mode mixing 
results in a 549 nm FWHM dark null spot. (B) Degenerate mode mixing 
with a diamond laser (λex = 1240 nm).  (B1) Degenerate TEM00(λex = 1240 
nm) mode mixing results in a 807 nm FWHM excitation beam.  (B2) 
Degenerate TEM01(λex = 1240 nm) mode mixing results in a 644 nm FWHM 
dark null spot. (C)  Non-degenerate mode mixing with a ytterbium fiber 
laser (λex = 1050 nm) and a diamond laser (λex = 1240 nm).  (C1) Non-
degenerate TEM00(λex = 1050 nm, λex = 1240 nm) matched mode mixing 
results in a 743 nm FWHM excitation image.  (C2) Non-degenerate 
TEM00(λex = 1050 nm) and TEM01(λex = 1240 nm) unmatched mode mixing 
results in a 293 nm FWHM dark image. All scale bars = 1.5 µm. 

ND- and D-FED imaging of different size objects with their corresponding 

excitation and dark beams corresponds to disparate resolution capabilities and levels of 

information loss (Figure 4.26).  In this case, information loss is reported as the 

proportion of negative pixels after difference imaging within a 1024 x 1024 pixel frame 
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at a given subtractive γ factor. For a 200 nm object, we are able to resolve it at a γ factor 

of approximately ~0.95 using ND-FED microscopy, whereas D-FED is unable to resolve 

these objects at even a γ factor of 1.0 using either the ytterbium laser or the diamond 

laser.  In fact, D-FED at 1050 nm isn’t able to resolve objects less than ~350 nm at true 

size, and D-FED at 1240 nm isn’t able to resolve objects less than ~400 nm in diameter at 

true size.  ND-FED at a true size γ factor (i.e. the γ factor required to achieve difference 

image resolution at the object scale) results in less information loss than ytterbium fiber 

laser D-FED at comparable γ factors for 250 nm objects or greater.  Meanwhile, 

information loss at a true size γ factor is mitigated by ND-FED relative to diamond laser 

D-FED for objects 400 nm or larger.  Recall, that diamond laser D-FED is unable to 

provide sufficient difference imaging resolution for objects smaller than 400 nm, 

meaning that it is outrivaled by ND-FED within the resolution range where it finds any 

value.   
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 Figure 4.26: Degenerate- (D-) versus non-degenerate (ND-) fluorescence emission 
difference (FED) microscopy. D-FED versus ND-FED resolution (left) and 
information loss (right) as a function of subtractive γ factor for (top) 200 nm 
(middle) 350 nm and (bottom) 400 nm objects.  Blue denotes D-FED at 
1050 nm with an ytterbium fiber (Yb) laser, red denotes D-FED at 1240 nm 
with a diamond (Dmnd) laser, and black denotes ND-FED at a compound 
excitation wavelength of ~1137 nm.  Filled squares indicate the requisite 
subtractive γ factor needed to achieve a difference imaging resolution 
matching the object size.  The absence of a filled square indicates an 
imaging technique with insufficient resolution to visualize the given object 
size.  
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4.8.4 Non-Degenerate Fluorescence Emission Difference Microscope Design 

The design and assembly of the super-resolution non-degenerate microscope 

underwent two iterations.  A schematic of the first iteration can be seen below (Figure 

4.27).  At the time, only two excitation sources were available: a regenerative amplifier 

(RegA; λ1 = 800 nm) and an optical parametric amplifier (OPA; λ2 = 1100 - 1400 nm).  

Since the system only offered two outputs, and ND-FED requires three modes, two beam 

paths had to be split from the single OPA path.  The RegA TEM00 line simply traversed 

the perimeter of the optical table before combining with the remaining modes at a 

dichroic mirror in a circular polarization.  Meanwhile, the OPA path is first attenuated 

with an electro-optic modulator before being split into two arms.  The first TEM00 arm 

goes through an optical delay line to enable temporal overlap with the RegA, then 

circularly polarized, and combined with all paths at the final dichroic mirror. The second 

OPA TEM01 arm splits off orthogonally to the first and passes through a delay line of its 

own.  The beam is expanded with an initial telescope pair, linearly polarized with a glan-

laser calcite polarizer, and then transmitted through the Arcoptix azimuthal polarization 

convertor.  The beam is then shrunk back down to original size with a Keplerian 

telescope and reunited with the RegA at the dichroic mirror.  The microscope can be seen 

in Figure 4.27(b-c) before and after flood damage. 
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 Figure 4.27: Generation one of the non-degenerate fluorescence emission difference 
nanoscope. (A) A schematic of the super-resolution system’s first 
generation.  OPA: optical parametric amplifier; RegA: regenerative 
amplifier; H/QWP: half-/quarter-waveplate; PBS: polarizing beamsplitter; 
M: mirror; EOM: electro-optic modulator; L: lens; GLP: glan-laser calcite 
polarizer; DM: dichroic mirror. Snapshots of the system (B) before and (C) 
after the lab flooded, which resulted in irreparable damage. 

While the flood was devastating, it offered an opportunity to rebuild with the 

revamped non-collinear OPA (NOPA) system (Figure 4.28).  This laser system initially 

consisted of a visible-infrared (VISIR) and a near-infrared (NIR) NOPA, containing three 

outputs in total.  A refined version consisted of two VISIR NOPAs, which granted four 

outputs.  Regardless only three of the four outputs were needed for non-degenerate 
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nanoscopy.  While the overall microscope was similar to the pre-flood version, spatial 

filters were added to ensure the purity of the expected beam modes.  Moreover, no 

individual paths needed to be split into two arms unlike its predecessor, meaning that we 

were able to use full output power from both lasers.  

 

 Figure 4.28: Generation two of the non-degenerate fluorescence emission difference 
nanoscope. Unlike its predecessor, generation two contained a laser output 
for each of the three arms of the super-resolution system. 

4.9 CONCLUSION 

The work herein represents the wide array of advantages granted by the 

construction of a two-color imaging system.  Using synchronized excitation sources such 

as the Spirit-NOPAs or the ytterbium fiber and diamond laser system, we were able to 

demonstrate that two-color excitation has a myriad of photophysical advantages related to 

signal intensity and signal-to-background ratio, and that specialized non-degenerate 

implementations of the two-color system can yield significant resolution advantages.  
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Specifically, two-color non-degenerate (i.e. spatially and temporally overlapped two-

color excitation) imaging with the ytterbium fiber laser and diamond laser is able to 

extend imaging depth relative to two-color degenerate (i.e. spatially overlapped two-color 

excitation) and one-color non-degenerate imaging by approximately ~20%.  Through 

rigorous characterization of two-color, non-degenerate signal levels with a reflective 

objective, we were able to prove that not only do reflective objectives improve axial 

overlap to boost non-degenerate signal relative to refractive objectives, but that two color 

non-degenerate mixing (! ~ 0 fs) universally enhances multiphoton excitation relative to 

two-color degenerate excitation (! > 0 fs) for fluorophores with a non-degenerate cross 

section !!!
(!) >  0.  We also provide evidence that in some cases, two-color non-

degenerate signal exceeds one-color degenerate signal when !! = !!. 
Finally, we distinguish that the primary advantage of two-color non-degenerate 

multiphoton excitation (i.e. I1
2 + I2

2 + 2I1I2) is an increase in signal intensity whereas non-

degenerate multiphoton excitation alone (i.e. 2I1I2) has a unique advantage in its inherent 

resolution benefits.  Building off this premise, we establish the framework for a novel 

super-resolution imaging method termed non-degenerate fluorescence emission 

difference microscopy (ND-FED).  We are able to demonstrate that ND-FED has 

substantial resolution benefits over degenerate (D-) FED, which is a strong function of 

the specific transverse electromagnetic (TEM) modes, excitation wavelengths, and 

subtractive γ factor.  For instance, comparing D-FED and ND-FED using circular and 

vortex polarizations where λD = 1080 nm and two wavelengths are selected for ND-FED 

(λ1 = 900 nm, λ2 = 1350 nm) which compound at λ3 = λD; ND-FED improves resolution 

by ~68 nm when γ = 0.535.  We acknowledge that a broad limitation of FED is the ability 

to oversubtract structures and yield missing information, and demonstrate that ND-FED 

mitigates the extent of over-subtraction relative to FED for a given resolution scale.  
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Moreover, we provide guidance to researchers that circular and azimuthal polarizations 

are appropriate choices for ND-FED beam modes with respect to both resolution and 

information loss.  In this same context, we show the nuanced subtleties of ND-FED, 

illustrating that reversing two-color excitation wavelengths between TEM00 and TEM01 

poses distinct tradeoffs with respect to resolution enhancement and information loss for a 

given set of polarizations.  In addition, we navigate perhaps the biggest complexity of 

FED, which is identifying an appropriate γ factor.  We provide evidence to show that γ 

factor influences resolution scale, and needs to be increased for finer resolution, at the 

detriment of over-subtracting larger objects in the super-resolution difference image.  

Despite this shortcoming of FED, we are able to show that ND-FED γ selection is 

significantly more constant with respect to resolution scale than D-FED, limiting the 

negative consequences of this shortcoming for non-degenerate implementations.  Finally, 

we are able to provide a guide to two-color wavelength pair selection for ND-FED for 

five specific fluorophores given their cross section profiles.  Ultimately, we believe that 

we have rigorously characterized the benefits and criteria for ND-FED and, more 

broadly, two-color multiphoton microscopy.  It is our hope that this will lay a strong 

foundation for future work and adoption of some of these techniques as the availability of 

synchronized, tunable lasers increases and this technology becomes more ubiquitous in 

academic and commercial laboratories.    
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Appendix I: Fluorophore Cross Section Determination 

Please note, two- and three-photon cross section formulations are derived from 

equations established in Cheng et al. (2014) [118].  Any conclusions regarding these 

expressions and their units stem from theoretical foundations in their work.  We begin 

with time-averaged fluorescence signal ! ! ! , which is given by: 

! ! ! = 1
!

!!!
!" !!! !"!!!!!

!! !" !!!! ! ! !

8!!!!!!!!!  (I.1) 

The definition and categorization (i.e. known or unknown) of each term is given below. 
 

Known Constant Terms 
! laser repetition rate [s-1] 
! fluorophore concentration !"#

!
!.!""×!"!"

!"#
!

!"""!!! = !!!!  
!! refractive index [unitless] 
!! constant term [!! = 64; !! =28.1; !! = 18.3; unitless] 
NA numerical aperture 

! !  incident power ! !
!! =

!
!
!
!"!!  =

!!!"!#$
!  

! wavelength [cm] 
Unknown Variable Terms Attained Through Metrology 

!(!)(!)  Time-averaged fluorescence photon flux [photons/sec] 
! nth-order excitation [unitless] 

!!!  
nth-order temporal coherence of the excitation source [Gaussian temporal profile pules: 
!!(!) = 0.664, !!(!) = 0.51, !!(!) = 0.415; hyperbolic-secant-squared pulse:  !!(!) = 0.587, 

!!(!) = 0.413, !!(!) = 0.312; unitless] 
! pulse width [variable, s] 
! system collection efficiency [unitless] 
! fluorescence quantum efficiency [unitless] 
!! n-photon absorption cross section [2P = !!!!

!!!"!#$; 3P = !!!!!
!!!"!!"!] 

Table I.1: Cross section equation terms. Fluorophore cross section determination 
requires known constant terms as well as variables that must be measured 
directly. 
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Equation I.1 can be used to derive two-, three-, and four-photon excitation in 

thick samples, and our primary metric of interest is the absorption cross section, !!, or 

the action cross section, !!!.  

!"! =
!(!)(!) (!")!!!8!!!!!!!!!
!!(!)!!!!! !" !!!! !(!) !

!
! (I.2) 

For the sake of this research, we will limit ourselves to a two-photon and three-

photon action cross section derivation. The two-photon action cross section, by definition 

exhibits a two-photon power dependence.  Thus, we can fill in all necessary terms as 

needed.   

!"! =
!(!)(!) (!")8!"

0.664!!!64 !(!) !
2
! (I.3) 

!"! =
!(!)(!) (!")!
!!! !(!) !

0.377!
!  (I.4) 

It follows that the dimensions of two-photon action cross sections are !!! ∙ ! ∙ !ℎ!"!#!!. 

!"! =
!ℎ!"!# ∙ !−1 ∙ !−1 ∙ ! ∙ !"
!!!! !ℎ!"!# ∙ !−1 2 =  !ℎ!"!# ∙ !

−1 ∙ !!4

!ℎ!"!#2 ∙ !−2 = !!4 ∙ !
!ℎ!"!# (I.5) 

We repeat this process for the three-photon action cross section, !"!!. 

!"! =
!(!)(!) (!")!8!!

0.51!!!28.1 !" ! !(!) !
3
! (I.6) 

!"! =
!(!)(!) (!")!!!
!!! !" ! !(!) !

1.674
!  (I.7) 

The dimensions of the three-photon action cross section are then !!! ∙ !! ∙ !ℎ!"!#!!. 

!"! =
!ℎ!"!# ∙ !−1 ∙ !−2 ∙ !2 ∙ !!3

!!−3 ∙ !ℎ!"!!3 ∙ !−3 = !!3 ∙ !2
!!−3 ∙ !ℎ!"!!2 =

!!6 ∙ !2
!ℎ!"!!2 (I.8) 

This unit comparison of the two- and three-photon action cross sections exposes a 

fundamental flaw of comparing relative fluorophore brightness.  Since the underlying 
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units differ across the different excitation regimes, it is difficult to compare the brightness 

of shorter wavelength excitable dyes to fluorophores with cross sections further out in the 

near infrared that are far more likely to exhibit a three-photon power dependence.   
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Appendix II: Non-Degenerate Excitation Efficiency 

The final expression for non-degenerate fluorescence emission difference (ND-

FED) efficiency hinges on foundational work established in Sadegh et al. (2019) [197].   

Note our final derived expression is unique from the one documented in this manuscript, 

which instead compares the ratio of ND fluorescence to D- fluorescence at matching 

excitation wavelengths, !! = !!.  But please be aware that all initial equations and 

assumptions are taken directly from this work.  We first establish that the combined 

signal from a two-color two-photon imaging system where both beams are of equal 

intensities and are temporally delayed by an offset ! is given by: 

!!" !, !, ! = !
! !!! !! ! !, ! !!! !, ! − ! + !

! !!! !! ! !, ! !!! !, !  

+2!!"! !!, !! ! !, ! !! !, ! − ! !!(!, !) 
(II.1) 

If we next assume each of the two-color beams is a Gaussian pulse and use a paraxial 

approximation for their cross-sections, we are able to parse the spatial (S) and temporal 

(T) components of their profiles independently. 

!! !, !, ! = ! !; !! !(! −  !; !!) 

!! !, !, ! = ! !; !! !(! −  !; !!) 
(II.2) 

The spatial and temporal components can be furthered decomposed into: 

! !; ! = !!(!)exp −!!
2Γ!!

 (II.3) 

! !; ! = !!(!)
!(!; !)

!
exp −2 !

!(!; !)
!

 
(II.4) 

From hereon, we assume each pulse is transform-limited with a temporal standard 

deviation Γ! with an intensity !!(!). Gaussian optics tell us that: 

!! !; ! = !!! ! 1+ !
!!(!)

!
 

(II.5) 
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!! ! = !!!! !
!  

(II.6) 

!! ! = !
!"# 

(II.7) 

Where !! !  is the wavelength-dependent beam waist, !! !  is the Rayleigh length (i.e. 

the distance across which the beam waist radius increases by a factor of 2), and NA is 

numerical aperture.  We combine this information into expression II.1, again parsing the 

spatial and temporal components separately.  It is important to note that we have also 

assumed that fluorophore distribution is spatially and temporally constant, allowing us to 

move the concentration term outside of the integrals.   

!!" !, !, ! = !
!!!

! !! !!!(! −  !; !!) ! !; !! !
!

!" 

+ !!!!
! !! !!!(!; !!) ! !; !! !

!
!" 

+ 2!!"! !!, !! !"(! − !, !!)!(!, !!) ! !; !! ! !; !!
!

!" 

(II.8) 

The shading in the above expression denotes factors that we believe were omitted in 

Sadegh et al.’s publication. If we proceed under the assumption that the beam point 

spread functions are much smaller than the fluorescent target, and that the system NA is 

common to both paths, the multi-beam spatial term is given by:  

! !; !! ! !; !!
!

!" = !!! !!!
2 2!"!! !!! + !!!

 (II.9) 

In the case where !! =  !!, this further simplifies to:  

! !; !! ! !; !!
!

!" = !!
4!"!! (II.10) 
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Xu and Webb et al. (1996) provide the basis for relating fluorescence photon flux to the 

number of excited molecules, where ! is collection efficiency and ! is quantum yield 

[127]. 

!(!, !) = !"!!"(!, !) (II.11) 

If we substitute Equations II.8 and II.9 into Equation II.11, we arrive at the following. 

! !, ! = 
!"#!

! !! !!!!!! !! !;!!
!!"!!  

+  !"#!
! !! !!!!!! !;!!

!!"!!  

+!"#!"
! !!, !! !!!! !!!! ! −  !; !! ! !; !!

2!"!! !!! + !!!
 

(II.12) 

We note, that our formulation of II.12 is identical to Sadegh et al., which indicates that 

we were correct in retaining the coefficients in II.8. Next, the ultimate measured 

photomultiplier tube signal is non-instantaneous, which means the time average of the 

previous equation must still be calculated.  The time overlap integral is: 

! ! −  !, !! !(!; !!) = ! !(!! −  !; !!)!(!!; !!)!!′
!/!!

!!/!!
 (II.13) 

Where ! is the laser repetition rate.  If the temporal bandwidth and delay time is much 

smaller than the temporal pulse separation and delay time is negligible, as is the case for 

high-repetition rate lasers, the integration can be given over an infinite period. 

!(!! −  !; !!)!(!!; !!)!"′
!/!!

!!/!!
 ≈ !(!! −  !; !!)!(!!; !!)!"′

!

!!
 (II.14) 

Substitution of Equation II.3 into II.14 shows that this time overlap integral is simply the 

convolution of two Gaussians, which can be computed using the convolution theorem: 

ℎ ∗ ! = ℑ!!{ℑ ℎ ∙ ℑ ! } (II.15) 

Thus: 
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!!(!!)!!(!!) exp
− ! − ! !

2Γ!!!
exp −!!!

2Γ!!!
!" = 2!

!

!!
!!(!!)!!(!!)

Γ!!Γ!!
Γ!

exp −!!
2Γ!

 (II.16) 

Γ!! =  Γ!!! + Γ!!!  is the convolution’s standard deviation. In the degenerate case where 

!! =  !!, Γ!!! =  Γ!!! , !!(!!) = !!(!!), and ! = 0, this expression simplifies to !"!!Γ.  Finally, 

we redefine fluorescence over time using time-averaged laser power (mW). 

!! = !!!!! (II.17) 

In this case, !! is the total photon flux at focus, and !! is simply photon energy ℎ!!!!. 

!! = !! !,!, ! !"!#!$
!

!!
=  !!(!) !!/2Γ!!!! (II.18) 

If we use Equation II.7, we describe laser photon flux using the expression: 

!!(!) =
2! !!

! 2!Γ!!ℎ!!!!
=   2!!!! !!

Γ!!ℎ!"
 (II.19) 

Therefore, our time averaged fluorescence by combining Equations II.12, II.16 (including 

the degenerate case), and II.19 is: 

! !, ! =
!! !!!

! !!!"#!! !!
4!!!!ℎ!Γ!!

 

+  
!! !!!

! !!!"#!! !!
4!!!!ℎ!Γ!!

 

+ 2 !! !!! !!! !!!!!"#!"
! !!, !!

!!!!ℎ!Γ! !!! + !!!
exp

−!2

2Γ!
 

(II.20) 

Again, we arrive at slightly different expressions from Sadegh et al., denoted in shading.  

The authors go on to derive an expression for non-degenerate two-photon excited 

fluorescence relative to degenerate fluorescence where !! and !! compound at !! =  !! .  
! ! = 0 !" !!,!!

! ! !!
 (II.21) 
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However, we are interested in comparing non-degenerate to degenerate signal 

contributions when performing non-degenerate two-photon imaging. 

! ! = 0 !" !!,!!
! ! !! +  ! ! !!

 (II.22) 

If we assume that !!!
! =  !!!

!: 

! ! !! +  ! ! !! = !! ! !!"
4!!!!ℎ!

Γ!!!!!!
! !! + Γ!!!!!!

! !!
Γ!!Γ!!

 (II.23) 

Therefore:  

! ! = 0 !" !!,!!
! ! !! + ! ! !!

= 8 !Γ!!Γ!!!! !!!!"! !!, !!
!Γ! !!! + !!! Γ!!!!!!

! !! + Γ!!!!!!
! !!

 (II.24) 

If we relied on the published formulation of II.20 to perform this calculation, we’d omit 

the shaded ! factor in the denominator.  
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