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Abstract 

 

Biology in the information age:  

Computational methods to understand and engineer the central dogma 

 

Raghav Shroff, PhD 

The University of Texas at Austin, 2020 

 

Supervisor: Andrew Ellington 

 

The rise of NGS, big data, and ‘-omics’ has ushered biology into a new age, with the 

power to fundamentally change how research is approached. Rather than using a singular 

hypothesis, we can now incorporate more data-driven methods that drive new biological 

insights, explain emergent biological phenomena, and/or derive novel functionality. This 

thesis highlights the changing role of computation to both learn more about biological 

systems as well as leveraging data-intensive computational techniques to create new 

proteins and enzymes.  

The ability for computational approaches to drive biological understanding is 

presented in three studies. First, the laboratory evolution of DNA polymerases, the 

workhorses of replication, towards novel functionality is explored. In the three polymerases 

created, modeling and large scale approaches are used to demonstrate the additional 

capability of each new enzyme. Next, two independent studies in the genomic adaptations 

needed for E. coli cells to adapt a 21st amino acid (selenocysteine and nitrotyrosine) are 

presented. Next generation sequencing is used to better understand the mechanisms of how 

cells accommodate the increased fitness burden placed by an orthogonal translation system. 

Lastly, community-wide changes in the oral microbiome are studied in the progression 

towards periodontitis, with implications towards potential therapeutic targets.  

The capstone of this thesis leverages big data techniques to engineer novel proteins, 

the chief functional units within cells. Protein structural data is implemented into a 
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convolutional neural network to associate amino acids with neighboring chemical 

microenvironments at state-of-the-art accuracy. This algorithm enables identification of 

gain-of-function mutations, and subsequent experiments confirm substantive 

improvements in stability-associated phenotypes in vivo across three diverse proteins. This 

work is the first demonstration of using deep learning to empirically improve protein 

function and opens a new avenue for protein engineering. 
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Chapter 1 

 

Introduction 

Machine Learning and Proteins 

 

1.1  Data Driven Biology 

1.1.1 Introduction 

A new period of biology began in 2003 with the completion of a draft of the human 

genome. At the onset of this daunting task, it was believed that a curtain would be lifted from 

biology; the intricacies and complexities that have mystified molecular biology researchers 

would be unraveled. Like the Rosetta stone unlocking the secrets of early civilizations, so too 

would the genome provide the key to biology. But what happened was the exact opposite. 

Rather than shine light on the unknowns, the human genome draft opened up much more 

mysteries. The scientific community realized DNA is not the ‘end all, be all’ as originally 

thought, but a cog in a larger picture with transcriptional regulation, protein folding, and 

epigenetics among others all having an influence1. 

Where the human genome endeavor succeeded was in changing the biological narrative. 

Traditional biological approaches rely on interrogating a single gene or protein to gather a 

deep understanding of it behavior. However, in light of the human genome project, a bigger 

picture needed to be taken into account. A direct consequence of the draft human genome 

was the advent of next generation sequencing, which has fundamentally changed the way 

researchers attack their experimental hypothesis towards more data-driven approaches2. 

Sophisticated algorithms and tools can comb through very large amounts of data to derive 

knowledge from seemingly spurious information. This type of research forgoes an a priori 

hypothesis or assumption about what results may come out and instead relies on the data to 

form conclusions. At a first pass, this seems antithetical to the scientific method, where the 

cycle of formulating a hypothesis, designing an experiment to test, analyzing the results, and 

reformulating the hypothesis to explain the experiment is predominating. Instead, a bottom-

up, inductive approach is used where ganged together facts are used to generalize meanings. 
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1.1.2 Databases 

The explosion of data into biology can be highlighted by the sheer number of databases, 

both general and specialized, that have been created and, in turn, stimulated the breeding 

ground for machine learning tools. Presently, more than one thousand databases exist in 

biology addressing various different –omics approaches3. The biological information is 

synthesized in a standard format that eases readability and accessibility for machine 

learning researchers. The largest of these are classified into primary databases, which serve 

as computational archives with raw sequences of DNA or protein. Widely used examples 

include GenBank for genome sequences or Uniprot and the Protein Data Bank for protein 

sequences and structures, respectively. For tailored training tasks, secondary databases can 

be used which subdivide a primary database by an annotated feature. Of particular interest 

to the protein world are the SCOP and CATH databases which aim to classify subdomains of 

proteins based on structure and the PROSITE and Pfam databases where functional domains 

of various domains serve as the entries. Combining manually curated data is not without its 

challenges; differences and lab-to-lab variation can introduce unwarranted bias. As a 

solution, machine learning is employed to assess data quality and integrity, including 

Genbank and other widely used databases4. 

 

1.1.3 Artificial intelligence 

Along with sophisticated data curation, the other enabler of machine learning in biology 

is the maturing of artificial intelligence algorithms. First, a discussion on the difference 

between machine learning and artificial intelligence is presented. An umbrella term, artificial 

intelligence, refers to the use of machines to enable capabilities in perception, logic, and 

learning. Machine learning is a subfield of AI uses algorithms to learn from data to make 

predictions, with the accuracy of the model increasing with more data used. Typically, 

feature extraction is performed by the user to extract the relevant information to be fed into 

the model. This type of learning encompasses regressions, support vector machines, decision 

trees, and principal component analysis. On the other hand, deep learning, a further 

specialization of artificial intelligence, use many layered neurons to build algorithms that are 

capable of learning important and relevant features on its own to boost performance on a 
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training task. Because features are not user generated and the nature of layered neurons, 

model interpretation into why it is performing how it is remains a challenge. 

To give a more concrete example, imagine developing a model that could recognize a 

picture of a cat. In the machine learning approach, certain features of the cat would need to 

be first identified which could either be direct (notations for eyes, whiskers, fur, etc.) or 

metaphysical like a hypothetical cuteness index. The performance of the model would be tied 

to how well the extracted features generalize the idea of ‘catness’. More data could enable 

tweaking of the model, but the general algorithm remains the same. This could potentially 

limit detecting different breeds of cats or discriminating cats from other animals. Contrary, 

a deep learning approach is agnostic to the any features of a cat. Instead, it leverages 

thousands to millions of images of cats to be able to learn the discerning features. As long as 

the input data is of sufficient quality and integrity and the training task is initialized correctly, 

then this type of approach is powerful to gather insight without knowledge of the underlying 

or important features. To connect towards protein design, an analogous approach has 

dominated the field. Modeling protein interactions with energy and statistical based 

potentials are manually extracted features that are used by most in the field. Chapter 2 takes 

the other tact and supposes proteins can be better engineered through deep learning. 

Deep learning, surprisingly, is not a recent concept despite the recent hype and publicity. 

The idea of a neural network was first put forth by Frank Rosenblatt in the proposal of a 

perceptron5. Here, a neuron acts as a mathematical function and assigns a weight to the 

input. Multiple perceptrons are fed into a nonlinear activation function to capture complex 

phenomena. However, research was halted and entered an ‘AI winter’ as deeper networks 

lacked the necessary computing power. A revival occurred in 1986 with the idea of 

backpropagation6. Here, if a network misclassifies an input, then the weights are adjusted in 

the direction of the largest gradient such that a correct output is given if the input is shown 

again. Put more simply, the network is nudged in the direction to more correctly guess the 

desired output. This milestone enabled networks to be more computationally tractable, yet 

widespread adoption was still hindered by computational resources. In 2012, a network was 

reported on, AlexNet, that combined large computational power with these networks. In an 

image classification competition, this landmark model outperformed rival methods by 25%7. 

The key enabler was twofold; the use of graphical processing units (GPUs) enabled the 
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backpropagation which are fortuitously suited for performing the necessary, repetitive 

calculations.  Second, the network made use of large training sets to fine-tune the 60 million 

parameters. Despite the black box nature and inability to process complex inputs not present 

in the training data, deep learning quickly spread. Biological applications will be discussed 

in subsequent sections. 

  

1.2 Computational methods for enzyme annotation 

1.2.1 Generative approaches 

Novel technologies like NGS have exploded the number of observed sequences; the 

mining of genomes and metagenomics has become a viable strategy for searching for 

proteins with novel function. However, the majority of protein sequences are associated with 

an unknown function. For example, only 0.3% of discovered sequences have been manually 

curated with a function, indicating a need to identify the remaining ‘dark’ genes. Explicit 

experimental characterization of unknown enzymes is not feasible due to the scale and cost 

required.  Exploring more tractable manners of annotation will expand the protein 

knowledge base to find proteins that could provide new avenues for biotechnology. 

Traditionally, the practice of annotating proteins relied on alignment of sequences with 

known function. The first of these such methods was BLASTp8, which uses pairwise 

alignments to find the degree of similarity to a homologous, (but crucially) annotated 

protein. Though in some sense crude, BLASTp is still predominantly used, however, the 

algorithm fails when insufficient homologs exist at roughly about < 30% similarity9, thus 

limiting the utility towards not finding strikingly unique proteins but instead to compare 

against a known set. To illustrate this limitation, a study by Hess et al. utilized a 

metagenomics approach in cow rumen to identify biomass degrading enzymes and microbes 

adherent to plant fiber10. Of over 27,000 putatively identified enzymes, close to 43% of genes 

had < 50 % identity to any known protein in the NCBI database. Additionally, blast is 

computationally slow and scales linearly with search size. As the sequence world is growing 

exponentially, this method quickly becomes infeasible, underscoring the necessity to move 

away from homolog based searches. 
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The aforementioned and more traditional approaches to protein classification take a 

generative approach. A model is built for a single family or class of proteins, and a target 

sequence is evaluated for how well it fits that model. If the resulting score from the model is 

above a certain threshold, then that protein is labeled as such. The following sections 

describe a different tact using a discriminative approach. In this manner, proteins are labeled 

as positive or one for belonging to a class and negative or zero for not. The data 

representation then allows for a learning algorithm to infer the difference between classes 

as opposed to generative approaches which only necessitates a positive class. 

 

1.2.2 Discriminative approaches  

The first efforts into protein classification with a discriminative approach utilized 

support vector machines. This supervised method of learning draws a hyperplane through 

defined features to separate binary classes. In the protein classification problem, the first 

noted example was by Jaakkola et al., where a generative Hidden Markov model (HMM) was 

first used to establish a baseline model and extract similarity features from protein 

sequences11. A support vector machine algorithm is then applied to the set of feature vectors 

which was shown to outperform blast. However, because an HMM is used generating the 

features, the computational cost is limiting at roughly quadratic scale to the sequence length. 

Leslie et al. attempted to improve upon this work by eliminating the need for the generative 

step. Instead, features are provided in the form of sequence similarity with k-mers12. While 

the classification accuracy was slightly less with respect to less homologous protein families, 

the computational runtime was decreased to linear scale. Qiu et al. also explored using a 

support vector machine classifier but used structural feature kernels using the program 

MAMMOTH, outperforming other structural approaches13. Other machine learning methods 

have been ensembled together to further increase accuracy of classification14. 

Trending with the growth of deep learning, the next wave of work in protein functional 

prediction performed classification with neural networks, and most notably, without the 

need to explicitly identify features on which to train. A report by Cao et al. translated the k-

mers of protein into an analogous language format, allowing the reformulation of the 

problem to be answered by a previously developed recurrent neural network and reported 
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comparable results to other methods15. Similar endeavors have successfully predicted gene 

ontology, enzyme classification, or remote homology detection16–20. 

In an interesting approach by Strodthoff et al., a similar recurrent neural network is 

utilized21. However, their model was first pre-trained on unlabeled protein sequences to 

learn generalities and makeups of proteins. Once in hand, the model was fine-tuned towards 

the classification task of protein function. The performance here outperformed state-of-the-

art algorithms, highlighting that a more general approach may be the most fruitful. If 

inherent protein rules can be learned without a specific training task, then more data can be 

used to build this initial intuition in the model and provide a starting point for many diverse 

prediction tasks. 

The above works suffer from an unavoidable bias that exists in biological research. Most 

annotated or curated proteins are derived from well-studied protein classes. To generate 

diversity into a training set, Wan et al. used a generative adversarial network called FFPred-

GAN to learn the high-dimensionality features of protein space and apply that to augment 

their data set with high quality synthetic protein samples. Prediction accuracy for gene 

ontology was increased, highlighting a method where computer generated data can better 

inform training22. 

 

1.3 Machine learning and protein engineering 

1.3.1 Linear models 

Historically, the imparting of novel function or optimization into proteins is performed 

through directed evolution. In this experimental approach, multiple rounds of variant 

generation are selected for an intended function through screening. Despite recent success 

including the 2018 Nobel Prize in Chemistry, there is a need to make this process more 

efficient. Often, single mutations confer small, incremental improvements that in isolation 

are not enough for the threshold of success. Observed variants can be aggregated to identify 

improved variants, but selecting which mutations are truly beneficial and others that have 

hitchhiked (or may be deleterious) is cumbersome. Additionally, directed evolution 

inefficiently samples the total sequence space. As highlighted by Yang et al., for a 300 amino 

acid protein, there are 5,700 possible single amino acid substitutions and 32,381,700 
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possible variants with double mutations23. As this scale exceeds the capabilities of 

experimental approaches, more efforts in computation are being used to search sequence 

space in a more efficient manner. 

The first foray to inform directed evolution experiments with machine learning used a 

simple linear model with a concept borrowed from drug development. Quantitative 

structure-activity relationship (QSAR) seeks to discover causal relationships between the 

structures of interacting molecules or physio-chemical properties with a measured response 

to optimize potential drug candidates. Fox et al. adapted this strategy to guide improved 

protein function by applying a linear transformation to the presence or absence of a 

mutation at a given position as the input features24. In validating the method, a 4,000 fold 

improvement was shown in a bacterial dehalogenase to produce ethyl (R)-4-cyano-3-

hydroxybutyrate (HN). Extending on this work, Li et al. used a similar regression with 

features derived from sequence blocks in a chimeric library as opposed to single mutations25. 

Trying to improve the thermostability of P450, 184 chimeras were build and the melting 

temperature of each variant was measured. Their model was able to predict the contribution 

of each sequence fragment and generate novel chimeras with 108-fold increased thermal 

stability. Another report by Liao et al. evaluated 8 different regression models with different 

regularization methods to improve the activity of proteinase K. In designing and testing only 

95 variants, a 20-fold increase in activity was observed26. 

 

1.3.2 Nonlinear models 

These initial reports served to show that a simple model can streamline protein 

engineering experiments. Next, nonlinear models were explored soon after to capture added 

complexity not achievable by linear models with a particular focus on the use of Gaussian 

processes. This method is an alternative to regression models that creates probabilistic 

predictions by interpolating observations through Bayesian learning. In the protein context, 

this method aims to draw inference about unobserved mutants based on the distance from 

sampled mutants, thereby sampling greater sequence space without explicit measurements. 

Romero et al. first utilized this process to optimize proteins, using contacting residues as a 

kernel function to capture the distance between different sequences27. The model was able 

to correlate cytochrome P450 variants with different biophysical characteristics including 
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thermostability, enzyme activity, and binding affinity. In a similar manner, Bedbrook et al 

simultaneously optimized ChR for functionality, photocurrent amplitude, and light 

sensitivity28. Incorporating only 102 variants into the training set, this report showed how 

small amounts of data can be leveraged into a biologically useful new protein. Additional 

works show the utility of this method in improving fluorescence proteins by either shifting 

green fluorescence to yellow29 or increasing green fluorescence30. 

 

1.3.3 Deep learning models 

While these examples highlight the role of computational and statistical approaches to 

complement experimental evolution, it is limited in that the activity needs to be tied to a 

functional assay, affecting the throughput of variants that can be tested. In addition, Gaussian 

processes are unsuitable for large data (>103) as run time scales cubically with the number 

of training examples. Following the advent of next-generation sequencing, assays started to 

develop not towards a functional output but instead towards being tied to a sequencing 

output. The adaption of a NGS assay increases the number of variants that can be assayed 

and tested, thus creating data enrichment for deep learning methods. Deep learning tools are 

attractive as they require no foreknowledge of protein features, unlike in the previously 

described methods where the features needed to be explicitly stated. Khurana et al. reported 

the creation of a program, DeepSol which used convolution neural networks to predict 

protein solubility31. Using 58,689 known soluble proteins and 70,954 insoluble proteins to 

create a dataset, the framework extracted k-mer structure to perform binary classification 

of soluble/insoluble. Interestingly, raw sequence information was not enough to improve 

upon the state of the art methods. However, when explicit biophysical annotations were 

added into the model which included sequence features such as sequence length, molecular 

weight, alipathic index, average hydropathicity, charge, secondary structures, and solvent 

accessibility, the model outperformed all other classifiers. This work highlights how to build 

an accurate deep learning model in biology: local contextual filters learned by a 

convolutional neural network are complemented when aided by explicit structural and 

sequence annotations. 

Elsewhere neural networks have been applied towards the thermostability prediction, 

benefitted by the use of the ProTherm database, a curation of experimentally derived 
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changes in temperature from mutations. This database contains data on 647 proteins with 

22,713 variants tested32. When neural networks were in their relative infancy and yet to 

show broad application, Kwasigroch et al., created PopMusic to predict the effects of 

mutations on thermostability33. Here, a statistical potential function is generated that is 

governed by the fact that different functions show better ability at different parts of the 

protein (i.e. core vs surface). To improve upon their previous work, Dehouck et al. used 

neural networks to search and tune the parameters within their function34. When testing 

against the ProTherm database, a r squared value of 0.79 is obtained, beating previous 

attempts. Another developed method, NeEmo, used explicitly generated features to predict 

thermostability35. At a certain residue, evolutionary information from multiple sequence 

alignment and neighboring residues as well as biophysical environment are used for input 

features. Using a training set of 2300, a model was built with 5 hidden layer neurons. When 

outliers are removed from the test set (selected automatically as having the largest residuals 

when regressed against delta delta G), PopMusic shows the highest correlation in delta delta 

G. However, when the full dataset is used, NeEmo is the best performer. Though success has 

been shown, using a limited training set like the ProTherm databases biases results to only 

a handful proteins studied. Deep learning in biology excels when hundreds of thousands to 

millions of observed data are used with an associated labels. The next section will delve into 

representations of proteins as inputs to deep learning in a more global context. 

 

1.4 Deep learning representations for proteins 

1.4.1 Sequence based inputs 

As the role of sequencing becomes more and more prevalent through biological 

research, the number of novel genes and sequences vastly increases. However, many of these 

new sequences are not associated with any particular property or context. To leverage the 

sheer number of unlabeled data, researchers have started to use deep learning frameworks 

that can be applied to where the property of sequences is not known. The prevailing 

hypothesis is that because evolution biases sequences towards a degree of fitness, the 

underlying signature in the sequence record can be extracted in a manner analogous to 
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natural language processing where a given word’s semantics can be derived from the 

surrounding context. 

Patrick Ng explored the utility of this concept by representing DNA bases as variable k-

mers with the development of his model, dna2vec36. Common practice for this task is one-

hot encoding, however, as the length of the sequence grows, the dimensionality exceeds 

exponentially. An alternative proposed with the method word2vec is word embeddings, 

where a simple 2-layer network is trained on a word and its surrounding context37. When 

applied to DNA, variable length k-mers (between 3 and 8 nucleotides) are used for training. 

Interestingly, this representation recapitulates the summing of two k-mer vectors is equal to 

nucleotide concatenation and correlates to Needleman-Wunsch sequence similarity. 

DNA sequences abstract a level of information that is encoded into the protein sequence. 

To rectify this, Yang et al. used the k-mer embedding strategy to identify protein properties 

that are captured by their model38. A two stage training process is utilized. In the first, an 

unsupervised process is learning similar to the dna2vec approach described above where 

over 500,000 unlabeled protein sequences are used to train the latent embeddings. The 

second, supervised process aims to learn to predict the central k-mer given the surround k-

mers using a Gaussian process regression. To highlight the performance of their model, the 

authors show improved ability to predict mutational effects for channelrhodopsin 

localization and cytochrome P450 thermostability over sequence representations. 

The extension of this method towards a learning framework has been approached by 

three different reports. Alley et al. used a multiplicative RNN framework with 1900 nodes on 

24 million sequences to construct a hidden state for each amino acid, taking into account all 

previous amino acids39. The model, termed UniRep, clustered sequences based on 

phylogenetics, separated sequences based on structural fold, and predicted mutations that 

improved stability. However, the model treated proteins as unidirectional but in the context 

of proteins compared to other domains, forwards vs reverse does not matter. Using models 

that took this into account were Rives et al. and Heinzinger et al. with bidirectional adaptions 

of the LSTM. The former uses a complex type of architecture with a bidirectional transformer 

and the ability to capture both long range interactions40. The latter is a natural extension of 

Alley et al. with the use of a bidirectional LSTM, learning the probability distribution over a 
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protein sequence41. Taken together, these reports unlabeled data can be leveraged to learn 

relevant biochemical properties and subsequently tailored towards more specialized tasks. 

 

1.4.2 Structure based inputs 

The structures of proteins are being solved at an exponential rate. The wealth of 

structural data lends itself to deep learning methods as the richness and quality of data 

increases. A particular area of concern is the so-called inverse protein folding, where the 

corresponding protein sequence is derived from a three dimensional fold. Implications of 

such a scheme could lead to smarter library design for protein engineering by reducing the 

search space of variants needed to be screened. 

In attempting to achieve this task, Li et al. created a two-layer neural network that 

inputted protein structures and featurized local amino acids to 114 features with respect to 

backbone angles and energy-based parameters42. In determining the amino acid identity, the 

model achieved a classification accuracy of 30.3%. Interestingly, this report explored 

training against a second objective function based off PSSM to allow the model more 

flexibility in predicting similar types of amino acids, but did not appreciatively improve 

model performance. A second report by the same authors attempted to improve upon their 

initial results43. Additional features were included in the new model, accounting for density 

of atoms and alpha carbon angles and increasing the total extracted features by 54. With 

these additional model parameters, the accuracy of classifying amino acids was increased to 

roughly 34%. In investigating which features contributed to the increase in accuracy, it was 

discovered that the energy based amino acid profiles were the single biggest influence. 

A strength of deep learning is the ability to learn the important, discriminative features 

without explicitly providing them in the model. Torng and Altman took this tack in their 

approach to this problem of identifying wild type amino acids given local structural 

context44. Convolutional neural networks, popular in image recognition, are adapted in this 

work to treat protein as static images and learn how environments associate with each of 

the twenty amino acids. In their approach, a 20 angstrom cube is centered on the amino acid 

of interest. Analogous to image representation where RGB values are stored in three 

channels, the atoms within the cube are voxelized into separate channels based on oxygen, 

carbon, nitrogen, and sulfur identity, generate a 4D tensor for each amino acid with size 
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4x20x20x20. The neural network leverages 3D convolutions to extract features in a space 

tailored towards protein representation. In training their model on 600,000 distinct 

environments with equal amino acid representation across 32,000 protein structures, a 42% 

accuracy is achieved. The deep learning results are compared to an approach similar to the 

previous example where protein characteristics are hard-coded as inputs. This program, 

named FEATURE and also developed by the Altman lab, extracts 80 physiochemical features 

to describe a singular amino acid. The authors report a 42.5% accuracy in their deep learning 

framework, a close to 20% increase in the same task when using manually curated features. 

To show utilty of their model, the effect of mutations are analyzed on mutant T4 lysozyme 

structures. For mutations which have empirically shown to be destabilizing and disrupt the 

resulting protein structure, the 3DCNN more likely (85% accuracy) predicts these sites as 

wild-type, connecting the output of their model to real world data. Further trying to explain 

the black box model, the gradient of the weights can be used to determine which atoms 

strongly favor the presence of the wild type amino acid. This work is the first convincing 

report to tie biochemical interactions to deep learning. 

The majority of convolutional neural network applications relate to image processing, 

and thus using Cartesian coordinates makes translatable sense. As these sophicated 

networks are applied to more specialized fields, the representation of data may need to be 

changed in a way that normal operations no longer apply. Boosma and Frellsen posited that 

as atomic forces are predominantly distance based, than a radial parameteriztion may be 

more applicable45. Using the positional information, atomic mass, and the partial charge of 

each atom, the authors built a framework that utilized spherical convolutions on the input 

data. Two different types of convolution were explored, the first mapping coordinates into 

polar space and the second deconstructing a sphere into six neighboring cubes. In 

performance, both spherical representations had a higher accuracy than Cartesian 

representation, with the best spherical method outperforming by 6% and outperforming 

Torng and Altman by 8%, though it is difficult to draw a direct conclusion as the amino acid 

environment representations differ. 

The previous two methods provided a consistent orientation to the input data, but the 

models and the learned filters likely will not transfer to amino acids with slight rotational 

movements. To accommodate this increased generalization, Weiler et al., proposed using 
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modified architectures that is equivariant to rigid body motions46. In this manner, learning 

is more efficient as symmetries can be captured that in previous examples would not be able 

to. In building the network as Boomsma save for the steerable 3D convolutional filters and 

replicating the training data, Weiler et al increased classification accuracy of amino acid by 

environemtn by 2%. While this represents a minimal step increase from the previous report, 

the framework is perhaps more suited to other protein prediction tasks, including interface 

and ligand binding. 

 

1.5 Protein Folding 

Another application of deep learning on protein sequences is the task to predict 

structural features. As the number of known protein sequences are orders of magnitude 

larger than the number of protein structures solved, this task is one of the unsolved 

challenges in molecular biology. A landmark study by Jinbo Xu using deep learning occurred 

during the 12th version of the CASP competition, a biannual competition to predict three 

dimensional folds from only a given sequence. The previous prevailing approach was to infer 

residue contacts from evolutionary couplings. Xu’s point of departure was to instead predict 

distance prediction by way of a convolution neural network, changing from a binary 

classification (contact/no contact) to a discrete measurement47. In particular, distance 

prediction was divided into 25 bins spaced at 0.5 angstroms from 4 to 16 angstroms. Given 

an input sequence, multiple sequence alignments were used to derive sequence based and 

pairwise features. To further extract relevant features, a 1D network is first used to capture 

the sequence features of a residue or motif. The output is then combined with the related 

sequence information into a 2D network to learn pairwise contexts and eventual output a 

distance matrix for all atoms, secondary structure, and torsion angles with upper and lower 

bounds, which is then fed into a structure prediction algorithm. 

Mohammed AlQureshi also took the approach of using deep learning to predict 

structures in the absence of co-evolution data48. Instead, a protein sequence with a PSSM 

derived from a multiple sequence alignment is inputted into a recurrent bidirectional neural 

network to output the torsion angles of a particular residue. The set of angles per residue is 

than aggregated across the entire protein by sequentially building the backbone of a protein 
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with each residue before taken into account. The last unit in the network uses global 

information to create a 3D structure by minimizing a RMSD function. AlQureshi found that 

his approach outperformed other models when predicting novel folds and was comparable 

to other template-based methods in predicting known folds. 

Making waves in the next CASP competition was an entry by Google’s DeepMind with 

their algorithm AlphaFold, where the distance to second place was greater than the past four 

competitions49. Building upon the work by Xu, the AlphaFold method predicts distance as 

the final component of the network at discretized intervals. However, it deviates by using 

the entire distribution rather than the mean and variance as a statistical potential borrowing 

energy terms from Rosetta that is minimized to predict protein fold. Powered by the 

expertise of the DeepMind team, their approach also leveraged complex networks hundreds 

of layers deep with computational tricks to enable longer training and vast hyperparameter 

space searching to bolster performance50. 

 

1.6 Generative networks 

The discussion up to now has focused on classification tasks. More specifically, we have 

discussed the role that deep learning can identify anomalies associated with a given training 

task. An exciting and growing application of deep learning are generative models, which 

learn input representation and can output candidate proteins. Three different methods have 

been explored in relation to protein design—variational auto-encoders, autoregressive 

models, and generative adversarial networks. 

 

1.6.1 Variational auto-encoders 

Generative models generate random but new outputs that look similar to training data. 

In comparison with other types, variational auto-encoders are useful in exploring and 

varying the data already present in a specific desired direction. The hallmark of variational 

auto-encoders are two connected networks, an encoder and a decoder. The encoder takes an 

input and compresses it to a lower dimensional space with enough information to 

reconstruct an output. These latent encodings are trained to discriminate between protein 

features, thus providing the design space that can be transversed. Each latent variable has 
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an associated mean and standard deviation such that when generating new outputs through 

the inverse decoder network, the distribution can be kicked in a certain direction that makes 

sense in light of the inputs. 

The first proof of concept of this type of approach was put forth by Sinai et al. By use of 

this method, they hypothesized that given an input sequence and its associated multiple 

sequence alignment, their model could encode relevant features and assign a likelihood that 

new sequences could be explained by their model and indeed show clustering of sequences 

based on phylogenetic distance and the ability to predict if a new sequence is functional51. 

Expanding upon this work, Riesselman, Ingraham, and Marks build a similar type of model 

with an increased input data set and the use of Bayesian variational approximation for 

weight optimization, and showed their model could predict mutational effects better than 

supervised methods52. Costello and Martin further expanded the scope by training their 

variational auto-encoder, called BioSeq VAE, on all protein sequences within the SwissProt 

database and show generation of sequences that can fold and are functional53. Further 

highlighting the power of variational auto-encoders, two approaches apply this method 

though specialized conditioning towards the design of T cell receptors, where a VAE model 

could learn the rules of VDJ recombination and generalize to unseen reportoires54, and 

metalloproteins, where new metal binding sites are introduced into existing proteins55. 

Through these works, it is remarkable that a lower dimensional latent space can extract 

relevant protein features and be used to reconstruct new or altered proteins. 

 

1.6.2 Autoregressive models 

The previous models rely on homologous sequence alignment, which works well for 

well-defined protein families but not for those where not much information is known. To 

circumvent this constraint, another type of generative model for protein design is explored, 

autoregressive models. These models, commonly used to fill in gaps within images, attempt 

to predict the next input by taking into account every input that came before. In the context 

of proteins, this means that predicting residues with information from all preceding 

positions. Riesselman et al. employed this type of model to predict the effects of insertions 

and deletions in protein sequences, mutational types that are often ignored in protein design, 

and explained mutational effects within a therapeutically relevant nanobody56. 
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1.6.3 Generative adversarial networks 

One limitation in these methods is the enforced directionality of protein sequences. 

Generative adversarial networks are the next algorithms applied to generate in silico 

proteins that circumvents this constraint. In this type of deep learning architecture initially 

proposed by Goodfellow, two separate networks are created, a generator and a 

discriminator57. The generator network creates synthetic, realistic data by learning 

underlying characteristics from training data. The generated data is then fed into a 

discriminator network which aims to discriminate between real data and the data produced 

by the generator network. To iteratively improve performance, the loss of generator 

network is tied with the discriminator network such that increasingly more realistic data is 

generated. A perfect generative adversarial network would have an end result of the 

discriminator guessing randomly, thus the inability to distinguish real from generated data. 

In practice, generative adversarial networks are tricky to implement as they are sensitive to 

hyperparameters and requiring a delicate balance to train correctly. In Gupta and Zou, a 

generative adversarial network is created to generate small peptides with antimicrobial 

properties58. In their architecture, the top scoring peptides are kept while low scoring 

peptides are dropped from the training set, and the generator gets tasked to mimic these top 

results. While novel peptides were generated in this framework, the retention of 

antimicrobial activity is not shown. Additionally, the authors trained on DNA sequences 

rather than amino acid composition, thus abstracting a level of crucial information. In a 

second instance, Karimi et al., used a modified generative adversarial network to create 

novel protein folds59. They find that the use of a generative adversarial network 

outperformed variational autoencoders in both generating increased sequence diversity in 

protein folds and have better fold accuracy. Though in relative infancy, generative 

adversarial networks represent an intriguing new method to learn and generate novel 

protein features. 
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Chapter 2 

 

A structure-based deep learning 

framework for protein engineering 

 

The first chapter brings the forefront of artificial intelligence to synthetic biology. After 

observing the necessity of stabilizing mutations to promote new enzyme function as in 

Chapters 3, 4 and 5, we pondered if computation could be used to increase the overall 

stability of a protein before being subjected to selection. Most functional mutations tend to 

destabilize a protein; therefore, if the thermodynamic cost for the new mutation impedes the 

overall folding energetics, then the mutation will not fix and not be observed in a population. 

As most natural proteins exist to be only marginally stable, the threshold between a folded 

and unfolded protein can be razor thin. Hence, we used a data driven approach to find 

candidate sites in a protein that can increase overall stability with a downstream goal of 

increasing the chance of success for a selection. 

To address this, we use convolutional neural networks, which have recently become the 

preferred AI solution to a number of image recognition challenges, but are underutilized in 

biological applications. Proteins are exponentially being crystallized to solve their three-

dimensional structure into publicly available repositories. By making the analogy of image 

pixels to atomic coordinates, we utilize a 3D convolutional neural network to engineer 

proteins with improved stability associated phenotypes. Neural network training is 

performed on 1.6 million local environments surrounding a central amino acid to learn a 

structural consensus for every residue. When then applied to a protein of interest, the model 

can identify positions that deviate from this consensus and serve as candidates for 

mutagenesis to improve protein function. The strength of this work is underpinned by the 

large training set which allows the model to be generalizable and associate local 

This chapter is adapted from a draft manuscript Shroff R, Cole AW, Morrow BR, Diaz DJ, Donnell 

I, Gollihar J, Ellington AD, Thyer R. (2019).I shared first authorship with AWC and conceived the 

project, developed the code, designed and performed experiments, and wrote the manuscript. 
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environments with certain amino acids. These results forecast new biological tools at 

intersection of AI and molecular biology. 

 

2.1 Introduction 

Protein engineering is a transformative approach in biotechnology and biomedicine 

commonly used to alter natural proteins to tolerate non-native environments60, modify 

substrate specificity61, and improve catalytic activity62. Underpinning these properties is a 

protein’s ability to fold and adopt a stable active configuration. Currently, stability is 

engineered from sequence information by identifying mutations accrued through 

evolutionary drift and reverting those mutations to homologous consensus residues63, or 

alternatively, from structural information by simulating the dispersed chemical interactions 

throughout a protein to calculate the aggregate energetic effects of specific substitutions64. 

These structural methods vary in run time but are generally computationally expensive. 

Hydrophobic core repacking for a single substitution takes minutes, MD simulations for a 

single substitution take tens of minutes, and QM/MM methods take hours or days65–67. 

Alternatively, deep learning approaches taking seconds to minutes have been reported, 

however most models either predict empirically measured stability effects in biased datasets 

containing only thousands of annotated observations68 or require model training on the 

target protein39,69. Nonetheless, machine learning models present fast and accurate 

approximations to protein structural feature prediction and assessment without requiring 

structural simulations. 

Recently, three-dimensional convolutional neural networks (3D-CNNs) have been used 

to predict ligand pocket affinities70, categorize proteins71, and classify amino acids provided 

the surrounding local atomic environment44. In the latter application, a 3D-CNN was trained 

using high-resolution crystallographic data to map local protein microenvironments to their 

central amino acid and then asked to analyze every microenvironment-residue pair in a 

protein of interest. When presented with the local environment of empirically assayed 

positions, this model is able to identify wild-type residues at positions which disfavor 

substitutions and could assign a stable wild-type residue when presented with known 

destabilizing mutations44. With this framework, we sought to develop a novel approach for 
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engineering protein stability; we hypothesize that residues where the native amino acid is 

strongly disfavored are destabilizing such that protein folding and stability can be improved 

upon mutagenesis. 

  

2.2 Results 

2.2.1 Discrete modifications improve wild-type prediction accuracy 

As a starting point, we rebuilt the neural network architecture published by Torng and 

Altman with minor modifications (Figure 2.1a) and successfully replicated the reported 

classification accuracy of 41.2% using the original training and testing sets (32,760 and 1601 

structures, respectively)44. To improve the model’s performance of associating amino acids 

with their environment, we made several discrete changes towards more explicit biophysical 

annotations (Figure 2.1b). First, we added a new atomic channel containing the coordinates 

of hydrogen atoms, modestly increasing accuracy to 43.4%. We next added additional 

biophysical channels to accommodate the partial charge and solvent accessibility. Addition 

of these channels increased wild-type prediction to 52.4%.  

The sampling methodology for both protein structures and amino acid residues used to 

construct the original dataset was observed to introduce bias which resulted in non-optimal 

training data. The dataset contained multiple structures of closely related proteins which 

biased training towards overrepresented protein structures, where the 32,760 PDB IDs map 

to only 11,418 UniProtKB IDs. To improve dataset composition and uniformity, we gathered 

all PDB structures with less than 2.5 angstrom resolution and at most 50% sequence 

similarity, resulting in a training set consisting of 19,436 structures and 300 additional 

structures for out-of-sample testing. This improved dataset increased wild-type 

classification accuracy to 61%. We next wished to improve data consistency; deposited 

crystallographic structures are refined by algorithms of their time which are not necessarily 

the current state of the art. By drawing from structures in the PDB-REDO database, where 

existing protein structures are refined in a uniform manner, we increased accuracy to 63%.  

The original dataset geometrically sampled amino acids which heavily biased training 

environments for surface residues. We removed this bias by sampling amino acids randomly 

throughout each protein which increased wild-type classification accuracy to 66%. 
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Additionally, the original dataset represented each amino acid at equal frequencies thereby 

biasing the expectation of the neural network towards rare amino acids (Figure 2.2). 

Sampling was altered such that amino acid frequencies mirrored their relative abundance in 

the PDB. The new training set, consisting of 1.6 million amino acid environments, improved 

classification accuracy to nearly 70%; this represents a new state-of-the-art accuracy for 

amino acid assignment versus previously published deep learning programs42–44,72.  

 

2.2.2 Benchmarking neural network predictions  

To understand where errors from the neural network arose, we constructed a confusion 

matrix (Figure 2.1c). We noticed that similar amino acids are commonly misclassified, 

which suggests that the neural network recapitulates known biochemistry. Furthermore, 

proline and glycine, which have unique structures, are classified with above 96% accuracy 

while glutamine is classified at only 33% accuracy. We hypothesized that modifications 

increasing classification accuracy would disproportionately increase accuracy for amino 

acids that are well-matched to their environment. We tested this using previously published 

deep mutational scanning (DMS) data for the proteins TEM-1 β-lactamase, immunoglobulin 

binding domain of protein G (gb1), Aminoglycoside-3′-Phosphotransferase-Iia, ubiquitin, 

and Hsp9073. In this dataset, the effects of all possible single substitutions were quantified 

with a ceiling for activity set at wild-type function, i.e. no beneficial mutations were 

observable. We identified 292 positions where any substitution incurred a measurable 

fitness cost and benchmarked classification accuracy on this subset. The final version 

achieves a recall of 87.0%, signifying a 25.4% increase over the starting model (Figure 2.3 

and Figure 2.4).  

 

2.2.3 Neural networks identifies candidate sites to improve stability 

After establishing our ability to accurately classify wild-type amino acids, we next 

investigated where the wild-type expectation and our model most disagreed. Presuming the 

chemical and structural associations between amino acids and their microenvironments 

have been learned, then wild-type amino acids that are assigned a low probability to occur 

in their native environment could be substituted to increase conformity with the proteome 

and improve stability. We tested this hypothesis by building saturating libraries in 
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secBFP2.1, an engineered blue fluorescent protein74, at residues assigned either the lowest 

(disfavored) or highest (favored) wild-type probabilities by our model. We also mutagenized 

ten residues selected at random to establish a control. Six of nine disfavored residues, one of 

ten random residues, and zero of ten favored residues could be substituted to improve 

fluorescence of secBFP2.1 (p = 0.01 by a Fisher’s exact test for disfavored versus random 

subsets; Figure 2.5a and Figures 2.6 – 2.8). We amalgamated the beneficial substitutions 

into a single variant, designated BFP-Bluebonnet (BB), which improved florescence in E. coli 

by more than six-fold (Figure 2.5b-c). Furthermore, purified BFP-Bluebonnet exhibited 

improved thermal tolerance and chemical stability in guanidinium as compared to both 

secBFP2.1 and mTagBFP2 (Figure 2.9). To verify that our model was generalizable, we built 

site-saturation libraries at the ten most disfavored residues in each of two structurally and 

functionally unrelated enzymes, TEM-1 β-lactamase and Candida albicans phosphomannose 

isomerase (CaPMI). Seven of the ten residues in TEM-1 β-lactamase and six of the ten 

residues in CaPMI could be substituted to improve phenotypes associated with folding and 

stability (Figure 2.5d-e). Aggregating these stabilizing mutations improved the properties 

of CaPMI by five-fold without abolishing catalytic activity (Figure 2.10).  

 

2.2.4 Predicted substitutions can reduce screening load 

While site-saturation mutagenesis at candidate residues is a good option for identifying 

beneficial mutations, it relies on the ability to screen protein variants in at least moderate 

throughput. To simulate a situation in which screening at such a scale is not possible, we 

examined the ability of the model to directly identify beneficial substitutions at residues 

where it did not assign the highest probability to the wild-type amino acid. We built all 

unique single point mutations in the three proteins (secBFP2.1, TEM-1 β-lactamase and 

CaPMI) using the top ten substitutions generated by three different but largely overlapping 

interpretations of the model: the amino acid assigned the highest probability at the residues 

with lowest assigned probability of the wild-type amino acid (the residues selected for site-

saturation mutagenesis), the amino acid assigned the highest probability where it differed 

from wild-type (regardless of the wild-type probability),  and mutation to the amino acid 

assigned the highest probability differing from wild-type resulting in the greatest log-fold 

change over the wild-type probability (Figures 2.11 – 2.13). Using this approach, several 
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individual stabilizing mutations were identified for each protein and the effects were largely 

additive when combined. Although no single interpretation of the output data was clearly 

superior, this methodology resulted in at most 22 unique variants, which is a manageable 

number to synthesize and screen for all but the most challenging proteins.  

 

2.2.5 3DCNN can unravel biological mechanisms 

Although we focused on protein engineering applications for our model, it also has 

considerable potential as a tool to unravel fundamental biology. In particular, we sought to 

explain the model’s ability to flag the mutation M182T in TEM-1 β-lactamase, a global 

suppressor mutation that has been identified in many clinical isolates. Despite its 

identification decades ago, the mechanistic explanation for stabilization remains under 

debate. One model proposes that the threonine hydroxyl forms an N-cap H bond with Ala 

185 as determined through crystallographic analysis75, while a competing explanation 

determined through molecular modeling suggests a stabilizing hydrogen bond with Glu 63 

and/or Glu 6476–78. To find the contributing atoms that most favor a mutation to threonine, 

we systematically deleted every atom in the Met 182 microenvironment and used the used 

the model to analyze where the probabilities changed the most. Our method flagged two 

atoms, the backbone oxygen of Glu 63 and the amide hydrogen on Ala 185, in which the 

removal of either atom decreased the probability of observing a threonine by over 200 fold 

(Figure 2.14). Thus, a neural network framework can be used to suggest stabilization 

mechanisms in addition to identifying candidate residues for mutagenesis.  

 

2.2.6 Comparison to other computational approaches 

Two well-documented, alternative computational approaches to guide protein 

stabilization are Rosetta pmut_scan and FoldX PositionScan, both of which rely on energetics 

simulations. If our model learned inferences accessible by energetics calculations in either 

of these programs, we would expect significant overlap between the disfavored residues it 

identified and non-optimal positions predicted by either of these programs is expected. Only 

three of thirty positions identified by the model were also identified by either Rosetta or 

FoldX, which also largely identified separate residues. Furthermore, in TEM-1 β-lactamase, 

each of these methods uniquely identified stabilizing mutations reported elsewhere in the 
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literature (Figure 2.15). Therefore, our model can identify novel stabilizing loci not captured 

by other commonly used programs. 

 

2.4 Discussion  

Here we report a modified 3D CNN architecture with state-of-the-art classification 

accuracy for assigning wild-type residues throughout proteins. Where native amino acids 

deviate from their structural and chemical consensus, we demonstrate that these positions 

with low wild-type favorability are excellent targets for site-saturation mutagenesis and 

yield stabilizing mutants at frequencies that exceed random selection. Combining the 

stabilizing mutations identified in three model proteins improved variant phenotypes 

several fold relative to their ancestor. Furthermore, this model is synergistic with existing 

protein design tools by identifying sets of mutations that do not overlap with those derived 

from energetics simulations. This work is the one of the first demonstrations of using deep 

learning to empirically derive novel protein function and opens a new avenue for protein 

engineering.  

 

2.5  Methods 

2.5.1 Dataset and training 

To reduce any bias resulting from the differential abundance of protein families in the 

PDB, we sought to build a dataset of protein structures with balanced phylogeny. To achieve 

this, we took all structures in the PDB database and clustered to 50% similarity to avoid 

oversampling towards certain protein classes. We further reduced the variability in the 

dataset by cross-referencing the structures to the PDB-redo database79, which uses a 

consistent algorithm to refine, rebuild, and validate structures from raw crystallographic 

data.  Within each clustered set of sequences, we identified the structure with the lowest 

resolution. If no structure existed below a resolution of 2.5 angstroms the entire cluster was 

discarded. This process yielded 19436 structures, of which 300 were randomly set aside for 

out of sample testing and the remainder used to generate the training set.  

In addition to atomic annotations, our model adds additional channels for the partial 

charges and solvent accessibility associated with each atom. While all structure files label 
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oxygen, carbon, nitrogen, and sulfur, hydrogens may be missing depending on the resolution 

of the structure. Using the program pdb2pqr (v2.2.1)80, hydrogens were placed into the 

structure and optimized while partial charges were assigned with the CHARMM force field. 

Solvent accessibility was calculated with the program FreeSASA (v2.0.2)81. To avoid 

oversampling residues from larger proteins, we limited the number of sampled 

environments from an individual protein to either half of the length of the protein or 100 

amino acids, whichever number was less. Atomic environments consisting of a 20 angstrom 

cube centered around a single residue were generated as described in Torng and Altman44.  

The convolutional neural network was built using theano (v1.0.3) and consists of six 

layers, all with ReLu (rectified linear unit) activations. The first two convolutions were 

performed with a filter size of 3x3x3 with no padding and increased the depth to 200 

channels. We then performed a max pooling step, followed by two additional convolutions 

with a filter size of 2x2x2 and increasing the depth to 400. Max pooling was used again before 

flattening and feeding into two successive fully connected layers with dropout rates of 0.5 

and 0.2, respectively. Softmax activation was applied to the logits to obtain probability scores 

for each of the 20 amino acids. 

Neural network training was performed on TACC’s Maverick cluster with a NVIDIA Tesla 

K40 GPU. 1.6 million amino acid environments were generated with the abundance of 

individual amino acids mirroring the natural frequency observed in the PDB. As the dataset 

was too large to load entirely into memory, we split the data into 20,000 samples and 

randomly shuffled the order after loading. Batch sizes of 20 samples were used and the loss 

was calculated through RMSprop. Training was performed with an adaptive learning rate 

and lowered by 10% if validation accuracy did not decrease within 8000 training iterations.  

Four epochs were run, at which point overfitting was observed. Test and validation accuracy 

were measured in 6000 amino acid environments with equal representation of each residue. 

 

2.5.2 Confusion Matrix and Regression Bias 

To calculate the frequency at which wild-type residues were correctly predicted, 20,000 

amino acid environments were generated from out of sample PDBs (i.e. structures not seen 

during training) with an amino acid distribution mirroring natural frequencies. Regressions 

highlighting amino acid bias were created by plotting the sum of the predicted probability 
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values against the frequency in the test set. The confusion matrix was generated by plotting 

the single amino acid assigned the highest probability at each microenvironment sampled 

compared to the wild-type amino acid.  

 

2.5.3 Rosetta/FoldX Calculations 

The pmut_scan program within the Rosetta software suite (v3.9) was used to calculate 

the computational effect of mutations with a large ∆∆G cutoff value to output both stabilizing 

and destabilizing mutations. To perform the analogous operation in FoldX (ver. 4), the 

PositionScan module was used. In either program, the least favorable sites were found by 

summing values less than zero (the sign change of a stabilizing mutation) and identifying the 

ten sites with the most negative value.  

Recall and precision for each computational method was assessed through deep 

mutational scanning data sets from the corresponding structures: TEM-1 β-lactamase, 

PDB:1BTL; protein G, PBD:2QMT; aminoglycoside-3'-phosphotransferase-IIa, PDB:1ND4; 

ubiqutin, PDB:4XOF, and Hsp90, PDB:2BRC. Normalized fitness values were derived from 

Gray et al. (2018)73 with a threshold of 1.02 to determine if a variant greater than wild-type 

exists. Within this subset, a positive result was defined if no other variant empirically 

exhibited better fitness than wild-type and, for our model, the wild-type amino acid was 

assigned the largest probability, or, for Rosetta and FoldX calculations, the minimum ∆∆G 

value (i.e. the most stabilizing value) was greater than zero. 

 

2.5.4 Molecular biology 

Experiments described in this manuscript were performed using standard molecular 

biology techniques. Unless otherwise indicated, all plasmids, single point mutations in 

reporter genes and site-saturation mutagenesis libraries were constructed using Gibson 

assembly. For site-saturation mutagenesis libraries, 2 µL of the reaction mixture was 

transformed into 50 µL of chemically competent E. coli cells. Transformations were required 

to exceed 10-fold library coverage (> 320 single colonies). 

 

2.5.5 Protein Purification 
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To purify secBFP2.1 mutants, a 6xHis tag was appended to the C-terminus via a Gly-Ser-

Gly linker. BL21 DE3 cells were cultured in Superior Broth to mid-log phase (~ OD600 0.6) 

and induced with 1 mM IPTG for 16 hours at 18 ºC. Following induction, cells were harvested 

by centrifugation and lysed by sonication in 50 mM sodium phosphate, 300mM NaCl, 20mM 

Imidazole pH 7.4 buffer containing protease inhibitor (Pierce Protease Inhibitor) and 

Benzonase Nuclease (EMD Millipore). Cell lysate was clarified by centrifugation (40000 x g) 

and BFP variants purified using HisPur™ Ni-NTA Resin. Purified protein was dialyzed into 

50 mM sodium phosphate pH 7.4 buffer and analyzed by SDS PAGE to assess purity. 

 

2.5.6 BFP Fluorescence Assay and biophysical measurements 

SecBFP2.1 was cloned into a kanamycin resistant derivative of plasmid pQE flanked by 

a T7 promoter and terminator.  Site-saturation libraries were transformed into E. coli strain 

BL21 DE3 and a series of 10-fold dilutions (spanning two orders of magnitude) were plated 

on solid media to ensure sufficient discrete single colonies. 96-well deep-well plates were 

inoculated with 92 individual library transformants and four wild-type controls. Two plates 

were assayed for each library. Cells were cultured ON at 37 ºC in plate shakers at 850 rpm. 

20 µL of the ON cultures were diluted into 880 µL LB and incubated for two hours. Cells were 

induced by the addition of 100 µL media containing 0.5 mM IPTG, resulting in a final 

concentration of 50 µM. After a four hour induction, cells were harvested by centrifugation 

and resuspended in 1 mL PBS. Fluorescence was measured on a Tecan M200 Pro using 400 

nm for excitation and 460 nm for emission. A maximum of 12 individuals at each library site 

exhibiting fluorescence / OD600 values greater than wild-type were sequenced. Candidate 

mutations were re-cloned into the pQE plasmid and rephenotyped. Rephenotyping was 

performed in biological and technical triplicate. 

Purified blue fluorescent proteins were diluted to 0.01 mg.mL-1 in PBS pH 7.4 and 100 

uL aliquots were heat treated for 10 minutes in PCR strips on a thermal gradient using a 

thermal cycler. Fluorescence of thermally challenged variants and controls incubated at 

room temperature was assayed using excitation and emission wavelengths of 402 nm and 

457 nm respectively. Fluorescence readings were normalized to the mean of solutions 

incubated at room temperature e.g. a measurement of 0.8 indicates that a heat treated 

protein retained 80% of its untreated fluorescence.  
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Purified blue fluorescent proteins were diluted to 0.01 mg.mL-1 in 6 M guanidinium 

hydrochloride. 100 uL aliquots in technical triplicate were added to wells of a 96-well clear-

bottom black-walled plate and incubated at 25 ºC for 23 hours. These purified fluorescent 

proteins were assayed at 30 minute intervals using excitation and emission wavelengths of 

402 nm and 457 nm respectively. Plates were agitated preceding each measurement. 

Fluorescence values measured at time zero were used to normalize fluorescence through the 

remainder of the assay e.g. a measurement of 0.8 indicates that the protein retained 80% of 

its initial fluorescence.  

  

2.5.7 TEM-1 Assay 

The blaTEM-1 gene encoding TEM-1 β-lactamase, including the native promoter, was 

amplified from pETDuet-1 and cloned into pCDFDuet-1 immediately upstream of the second 

T7 terminator, replacing both T7 promoters and both polylinkers. The L250Q mutation was 

introduced into TEM-1 to destabilize the protein and enable easy identification of 

compensatory stabilizing mutations82. Site-saturation libraries were transformed into E. coli 

strain DH10B and recovered ON in liquid medium supplemented with spectinomycin. ON 

cultures were diluted and plated on a range of different carbenicillin concentrations (0, 50, 

125, 250 and 500 µg.mL-1). For each library, 12 single colonies from the plate containing the 

highest concentration of carbenicillin were isolated and the blaTEM-1 gene sequenced. Beta-

lactamase variants identified by library screening were recloned into pCDFDuet-1 and 

rephenotyped. Rephenotyping was performed by diluting overnight cultures, in biological 

triplicate, 100-fold and spotting 5 µL onto solid media containing a gradient of carbenicillin 

concentrations. 

 

2.5.8 PMI Assays 

Improved variants of CaPMI were identified using the split GFP reporter system 

described by Cabantous et al. (2008) with minor modifications83. Briefly, a fusion protein 

consisting of residues 173-238 of folding reporter GFP, a (GGGS)2 linker, residues 2-440 of 

CaPMI, a (GGGS)2 linker and residues 2-172 of superfolder GFP was assembled in a 

derivative of pACYCDuet-1 (SI Table 1). Site-saturation libraries were transformed into E. 

coli strain BL21 DE3 and a series of dilutions plated on solid media supplemented with 0.25 
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mM IPTG. Following ON incubation at 37 ºC, plates were further incubated at 4 ºC for eight 

hours at which point highly fluorescent colonies were manually selected. PMI variants were 

subcloned and the fusion protein ORF fully sequenced prior to rephenotyping to ensure that 

increased fluorescence was not the result of mutations in the GFP fragments, linker regions, 

or plasmid backbone. Transformants were screened as described for BFP in 96-well deep-

well plates in biological and technical triplicate. Fluorescence was measured on a Tecan 

M200 Pro using 475 nm for excitation and 535 nm for emission. 

The manA gene encoding phosphomannose isomerase was disrupted in E. coli strain 

BL21 DE3 using lambda red recombineering to introduce a kanamycin resistance marker. 

Successful deletions were confirmed by colony PCR of KanR colonies using primers which 

flanked the manA locus. The wild-type C. albicans manA gene or variants containing 

combinations of stabilizing point mutations were cloned into a derivative of pACYCDuet-1 

using Gibson assembly. BL21 DE3 ∆manA::kan cells were transformed with PMI expression 

plasmids and plated on LB agar with appropriate antibiotics. Single transformants, in 

biological triplicate, were transferred to liquid M9 minimal medium with 0.4% glucose and 

cultured ON. Cells were washed in a 1:1 volume of M9 medium without any carbon source 

and 2 µL streaked on M9 minimal medium plates supplemented with 0.4% mannose and 

0.25 mM IPTG. Wild-type BL21 DE3 cells and BL21 DE3 ∆manA::kan cells containing an 

empty expression plasmid were used as positive and negative controls respectively. Plates 

were incubated at 37 ºC for 24 hours. 

 

2.5.9 NGS and variant calling 

Purified plasmids encoding BFP variants were quantified using the QuantIT dsDNA 

Assay Kit (Thermo Scientific) and 50 ng of each plasmid was pooled by well position, 

resulting in 192 samples each with a different variant for each tested position. Samples were 

prepped for sequencing by amplifying two discrete ~350 bp regions of the BFP gene with 

primers containing Illumina adapters and dual indexes.  Sequencing was performed using 

Illumina MiSeq with paired end 2x300 bp reads.  

Following sequencing, paired end reads were joined together using fastq-join (v1.3.1). 

Raw sequences were aligned to the original gene sequence with bwa (v0.7.17). Read counts 

across a single position were normalized to the observed fraction of each codon. Variants 
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that contained at least 100 read counts and exceeding 1% of wild-type counts were labeled 

as such, while variants that failed were left unlabeled. Outliers were identified through the 

OPTICS algorithm in the scikit-learn package (v0.21.3). Each sample was normalized by 

dividing the fluorescence by the OD600 and as well as to the average wild-type value per plate. 

Significance was determined using a Fisher’s exact test where success of a position was 

defined as the mean fluorescence of the most fluorescent variant being at least three 

standard deviations higher than the wild-type mean.  

 

2.5.10 Statistical Methods and Data Presentation 

All data in the manuscript are displayed as mean ± s.e.m. unless specifically indicated. 

Bar graphs, regressions, confusion matrix, NGS variant graphs were plotted in R 3.4.1 using 

the package ggplot2 (v2.2.1).  

 

2.6 Conclusions 

As the wealth of biological resources grows, advanced computational tools will be 

increasingly common to make sense of data. We show here that one such resource, the 

Protein Data Bank, is amenable a deep learning architecture. While the results presented 

here are the first to use deep learning without a priori mutational knowledge to improve a 

protein, it is still unclear why the sites are being predicted. This is not unexpected as neural 

networks act as a black box between input and output, but there is potential to learn 

fundamental biology if the in-between layers could be parsed. Ongoing work is delving into 

this very notion, and could provide insight to better models and eventually a generative 

algorithm. 

  



30 
 

 

 

Figure 2.1 Design and performance of a deep learning program capable of classifying wild-
type amino acids with improved accuracy.  

a) Schematic of the model depicting the data pipeline and neural network architecture. b) Discrete 
changes made to the neural net framework described by Torng and Altman14 and their effect on 
classification accuracy. *Normalizing the amino acid abundance of the training data increased the 
size of the dataset by roughly 4-fold. While the number of epochs decreased, the number of training 
iterations needed for convergence remained similar to the other versions. c) Confusion matrix 
showing bias of wild-type amino acid classification. Structurally unique amino acids Gly and Pro are 
assigned as wild-type with very high probability.  

  



31 
 

 
 

Figure 2.2 Improvement in predictive accuracy of the model when training was normalized 
for amino acid abundance.  

a) Classification accuracy of the model trained for 84,000 iterations without normalization. The p-
value for a two-sided t-test against null hypothesis: 'the slope is equal to 1' is less than 10e-6. b) 
Classification accuracy of the model following training for 240,000 iterations correcting for amino 
acid abundance. The grey line depicts a line with slope 1 and the blue line is the regression for the 
observed amino frequencies compared to the natural abundance. Dotted lines delineate 95% 
confidence intervals for the regression. The p-value for a two-sided t-test against null hypothesis: 
'the slope is equal to 1' is 0.48. 
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Protein PDB n 4-Ch5 This work Rosetta FoldX 

TEM-1 β-lactamase 1BTL 110 0.627 0.936 0.773 0.440 

Protein G 2QMT 17 0.529 0.941 0.882 0.471 

Aminoglycoside-3'-

phosphotransferase-IIa 1ND4 77 0.727 0.870 0.610 0.493 

Ubiquitin 4XOF 30 0.567 0.767 0.467 0.172 

Hsp90 2BRC 58 0.500 0.776 0.569 0.379 

Combined - 292 0.616 0.870 0.664 0.426 
 

Figure 2.3 Classification accuracy with deep mutational scanning data. 

Accuracy of different computation tools for protein engineering using a dataset of true positive wild-
type residues. For the 4-channel model and the model presented in this work, classification was 
considered correct if the wild-type amino acid was assigned the highest probability. For Rosetta and 
FoldX, classification was considered correct if the wild-type amino acid was assigned the lowest ∆∆G. 

Figure 2.4 Precision recall curve for three computational methods. 

Positions where the wild-type residue exhibited the greatest normalized fitness were aggregated 
from five deep mutational scanning (DMS) datasets. Input data was drawn from DMS datasets and 
PBD files for the following proteins: TEM-1 β-lactamase, PDB:1BTL; protein G, PBD:2QMT; 
aminoglycoside-3'-phosphotransferase-IIa, PDB:1ND4; ubiqutin, PDB:4XOF, and Hsp90, PDB:2BRC. 
The ability of each computational method to identify these positions as wild-type was analyzed as 
the threshold for classification was varied.  
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Figure 2.5 Empirical validation of the model as a tool for protein engineering.  

a) Heatmap showing fold-change over wild-type for site-saturation mutants of secBFP2.1. The light 

grey, dark grey and black bars on the right indicate the series of disfavored, random and favored 

residues respectively. Note, L228 is only five residues away from the C-terminus. Substitutions at this 

position, including stop codons, have minimal impact on fluorescence. b) An improved variant of 

secBFP2.1 containing mutations T18W, S28A, S114V, V124T, T127P, D151G, N173T and R198L. was 

~6-fold more fluorescent in vivo than the parental protein. This variant was named BFP-Bluebonnet 

(BB). c) Plate assay showing increased in vivo fluorescence of BFP-Bluebonnet compared to 

secBFP2.1. d) Stabilizing mutations were identified in TEM-1 β-lactamase at N52, F60, Q88, Q99, 

T114, M182 and E197. WT* contains the destabilizing mutation L250Q. Residue Q88 was ranked as 

the 11th least favorable in TEM-1 β-lactamase and was included in place of D214 which lies in the 

active site.  e) Beneficial mutations were identified in CaPMI at residues D229, N272, L335, S368, 

N388 and S425. A combined mutant containing D229W, N272K, L335A, N388S and S425T was five-

fold more fluorescent than wild-type using the split-GFP assay. While S368P was identified as 
stabilizing by itself, it was deleterious in combination. 
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Figure 2.6  Fluorescence data for site-saturation libraries at disfavored residues in secBFP2.1. 
Raw fluorescence values were normalized to OD600 and to the average wild-type value. Outliers were 
identified through the OPTICS algorithm and removed. n/a represents variant calls that failed to meet 
the specified thresholds. 
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Figure 2.7 Fluorescence data for site-saturation libraries at random locations in secBFP2.1. 
Raw fluorescence values were normalized to OD600 and to the average wild-type value. Outliers were 
identified through the OPTICS algorithm and removed. n/a represents variant calls that failed to meet 
the specified thresholds. 
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Figure 2.8 Fluorescence data for site-saturation libraries at favored residues in secBFP2.1.              
Raw fluorescence values were normalized to OD600 and to the average wild-type value. Outliers were 
identified through the OPTICS algorithm and removed. n/a represents variant calls that failed to meet 
the specified thresholds. 
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Figure 2.9 BFP-Bluebonnet (BB) exhibited improved folding compared to parental proteins.  

a) Plot of residual fluorescence after a ten minute thermal challenge at the indicated temperatures. 
Quadratic terms were significant in the global linear model and lines correspond to a quadratic model 
fit for each blue fluorescent protein. Dotted lines delineate 95% confidence intervals for the 
regression. mTagBFP2 and secBFP2.1 were not significantly different from each other while first 
order and quadratic terms for BB were significantly different compared to either parental protein. 
The assay was performed with 4-fold replication. b) Guanidinium melt of BFP variants. This assay 
was performed with 3-fold replication. 
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Figure 2.10 Mutant CaPMI variants complement deletion of the E. coli manA gene.  

CaPMI-comb1 contains mutations D229W, N272K, L335A, N388S and S425T. CaPMI-comb2 
contains mutations S56A, G119A, Q157I, Q193D, D229T, C295V, L335E, K347R, S368N, K402R and 
Q428T. Growth of CaPMI-comb2 was poorer than wild-type CaPMI and CaPMI-comb1. 
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Figure 2.11 Fluorescence assay of secBFP2.1 variants  

The combined BFP variant contains mutations S28A, S114T, T127L and N173H. While Y96F was 
identified as stabilizing by itself, it was deleterious in combination. 

 

Figure 2.12 Antibiotic resistance assay of TEM-1 β-lactamase variants  

Individual mutants N52K, F60Y, M182T, E197D and A294V singularly and a combined variant 
containing all five stabilizing mutations resulted in increased ampicillin resistance. WT* contains the 
destabilizing mutation L250Q. 
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Figure 2.13 Fluorescence assay of the split-GFP-CaPMI fusions. 

The combined CaPMI variant contains mutations S56A, G119A, Q157I, Q193D, D229T, C295V, L335E, 
K347R, S368N, K402R and Q428T. 
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Figure 2.14 Masking of atoms reveals the mechanism of a global stabilizing mutation.  

Each atom in the Met 182 microenvironment was systematically deleted and the atoms favoring a 
mutation to threonine were identified. Of these, the two atoms, O Glu 63 and H Ala 185, change in 
probability by over 200-fold and have been identified previously in the literature as stabilization 
pathways for M182T76. 
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Figure 2.15 Venn diagram showing overlap between different computational tools. 

Predictions of the 10 least favorable residues in model proteins made by different computational 
tools for protein design. Residues colored red indicate positions where we identified beneficial 
substitutions. Q39 in secBFP2.1 was not analyzed due repeated failure of our site-saturation library 
to assemble. D214 in TEM-1 β-lactamase was excluded due to its location in the enzyme active site. * 
Locations in TEM-1 β-lactamase where global suppressors and other beneficial substitutions have 
been identified84,85. 

  



43 
 

Chapter 3 

 

Directed Evolution of Polymerases  

 

Polymerases drive the majority of molecular biology research, and as a result of their 

ubiquity, are increasingly being tailored to perform more specific functions. This chapter 

explores how new functionality can be imparted into these remarkable enzymes. 

Despite being largely conserved through the tree of life, polymerases can exhibit 

different properties in different organisms. For example, the majority of DNA polymerases 

used in molecular biology research are derived from bacteriophages that take advantage of 

an inherent faster processivity or extremophilic organisms that can withstand the high 

temperatures needed for polymerase chain reaction (PCR) or tolerate unavoidable inhibitors 

in a reaction. Yet, these polymerases with slight differences functionally predominantly 

share the same conserved structural motifs: the ‘fingers’ position the incoming template, the 

‘palm’ domain contains the catalytic site, and the ‘thumb’ binds the DNA as it exits the 

polymerase. The following chapter first asks how novel function from conserved enzymes 

can be conveyed without requiring knowledge of the functionally critical regions. Put 

another way, in the context of a DNA polymerase how modular are the domains that give rise 

to unique functionality? 

To this end, we combine the functionality of two family A polymerases—the 

thermostability of DNA polymerase from Thermus aquaticus with the strand-displacing 

capabilities of the polymerase from Geobacillus stearothermophilus. Bst LF and its 

engineered homologues are the polymerases of choice for high temperature isothermal 

This chapter is adapted from Milligan, J. N., Shroff, R., Garry, D. J., & Ellington, A. D. (2018). 
Biochemistry, 57(31), 4607-4619., I shared first authorship with JNM. 

This chapter was in part adapted from Ellefson, J. W., Gollihar, J., Shroff, R., Shivram, H., Iyer, V. R., 

& Ellington, A. D. (2016). Science, 352(6293), 1590-1593. It is presented with modifications under 

the full permission of the original publishers.  

This chapter was also in part adapted from a draft manuscript: Ellefson, J. W., Shroff, R., 

Boulgakov, A. A., Hughes, R. A., Marcotte, E. M., & Ellington, A. D. (2019). I shared first authorship 

with JWE. 

My contributions are outlined in the text. 
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amplification reactions because of their high strand displacement activity86–89, but they are 

unstable at temperatures above 70 °C. In contrast, Klentaq has much weaker strand 

displacement activity but is more thermostable than full-length Taq, with a half-life of 21 min 

at 97.5 °C90. Through molecular breeding of these related but phenotypically different 

enzymes, we sought to select a chimeric variant that would combine both activities. 

Enabled by a directed evolution platform modified to work at mesophilic temperatures 

(termed HTI-CSR), the work presented here highlights the use of a high-throughput selection 

to test 107 different chimeras to successfully find a polymerase variant that can survive initial 

denaturation at high temperatures while retaining the strand displacing capability. In this 

scheme, libraries of polymerase variants are expressed in cells, and cells are ensconced 

within individual compartments in water-in-oil emulsions. However, genes that produce 

functional polymerases are not amplified via hyperbranched rolling circle amplification 

(hbRCA) and enriched for subsequent cycles. Though the end resulted in a useful diagnostic 

enzyme, the characterization of polymerase variants was performed at low throughput. 

Continuing the exploration into polymerases, this chapter next delves into the plasticity 

of a single DNA polymerase. As an essential cog in cellular integrity, DNA polymerases must 

exhibit a degree of robustness such that errors are not introduced in the genome and 

propagated to future generations. Often, this is ensured through a proofreading domain 

structured in a 3’-5’ exonuclease. With this consideration in mind, we chose to begin explore 

polymerase/substrate interactions with the Archaeal family-B DNA polymerase from the 

thermophile Thermococcus kodakarensis (KOD). Two studies are presented that evolve this 

polymerase to utilize two different nucleic acid templates. Interestingly, in both examples, 

the shift from DNA to a new template are accomplished through only a handful of point 

mutations, suggesting inherent promiscuity within DNA polymerases.  

First, KOD DNA polymerase is evolved with the capability to reverse transcribe RNA to 

DNA. This enzyme, branded as reverse transcription xenopolymerase (RTX) is the first 

reported thermostable, error-correcting reverse transcriptase, with a demonstrated higher 

fidelity than other reverse transcriptases. To show this polymerase’s use in molecular 

biology applications, compatibility with RT-qPCR and RNA-seq workflows is presented. The 

distinct phylogenetic lineage of RTX combined with its research utility suggests even highly 

conserved machinery with key molecular function are amenable to adding new functionality. 
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Next, the capabilities of RTX are further expanded by investigating if the evolution 

towards RNA templates was a unique evolutionary event or a harbinger of usage towards 

more exotic templates. In a similar manner, RTX is evolved to enable efficient utilization of 

2’-OMe templates. The utility of this new polymerase, RTX-Ome, is demonstrated through a 

novel DNA information encoding scheme where a layer of security is added by storing 

information by 2’OMe oligos. The directed evolution and encoding/decoding strategy can 

serve as a platform for custom storage security solutions.  

My contributions to this work follow after the directed evolution was performed. After 

seven rounds of evolution, I assayed the resulting variants to identify candidate polymerases 

that retained both desired properties defined at the onset of the project. Specifically, I 

purified polymerase variants from the evolution rounds and assayed for LAMP and RCA 

activity as well as thermal tolerance. For the subsequent manuscript, I assisted in writing 

and data presentation. For RTX, my contributions involved taking of advantage of next 

generation sequencing for a high throughput characterization platform. Traditionally, 

polymerase fidelity is assayed using plate-based phenotypes, counting bacterial colonies for 

which an error arising from misincorporation changes an observed phenotype. We wished 

to develop a higher throughput measure, leveraging the tens of millions sequences provided 

by NGS. For RTX, this embodied adapting a barcodes to ensure low error reads using this 

strategy to calculate the fidelity of multiple reverse transcriptases. In demonstrating the 

utility of RTX-Ome, I developed the bioinformatics pipeline necessary to decode the 

information from sequencing reads. The process was robust enough to allow for the 

systematic deletions observed to not corrupt the generated data out. In both resulting 

manuscripts, I contributed to data analysis and writing.  

 

3.1 Introduction 

Over the last several decades, isothermal nucleic acid amplification (IA) has become a 

transformative technology for point-of-care diagnostics that seek to deliver clinical results 

to patients in near real time91,92. Because IA methods often seek to amplify DNA or RNA via 

continuous replication at a single temperature, they obviate the need for thermal cyclers and 
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can reduce the time to result86,91,93–95. These assay advantages have in turn enabled the 

creation of a variety of fascinating and useful point-of-care devices86,91,92,95–98. 

While some IA mechanisms depend upon multiple enzymes, including nickases, 

recombinases, and ligases, to achieve continuous replication, rolling circle amplification 

(RCA) and loop-mediated isothermal amplification (LAMP) require only polymerases and 

primers87,93,99. RCA can proceed at mesophilic or higher temperatures, amplifying 

continuously around a circular template to generate long, concatenated DNA products100. 

When initiated from a nick or single primer, amplification is linear; when both forward and 

reverse primers are included, however, amplification becomes exponential, generating 109-

fold amplification in 90 min from as little as 10 copies of template in a reaction commonly 

called hyperbranched RCA (hbRCA)88,89,91,99. LAMP, which is also exponential, is currently an 

inherently higher-temperature reaction that uses four to six primers to generate 109-fold 

amplification of short (100−500 bp) DNA targets in an hour or less by creating ladder-like 

concatenated amplicons87,94,101. Overall, both methods are rapid, single-enzyme DNA 

detection systems that are comparable to PCR in terms of sensitivity yet are faster and can 

operate isothermally, likely explaining their prevalence in point-of-care assays and 

devices91,95. 

Like many IA strategies, LAMP and RCA rely upon the inherent strand displacement 

activity of a polymerase to displace downstream DNA, thereby enabling continuous 

replication without thermal cycling93,95. There are only a limited number of polymerases 

with strong strand displacement characteristics, primarily the large fragment (exo-) of 

Geobacillus stearothermophilus pol I (Bst LF) for high-temperature reactions (65−70 °C)102 

or the Bacillus subtilis phage phi29 polymerase (ϕ29) for low-temperature reactions (≤34 

°C)103. These polymerases are also highly processive102,104, a property that often coincides 

with strand displacement and that makes them useful for sequencing otherwise difficult DNA 

molecules105–107. 

Unfortunately, while many IA mechanisms depend upon an initial heating step (∼95 °C) 

for template denaturation91, ϕ29 and Bst LF are denatured at temperatures at or above 40 

and 80 °C, respectively. Thus, some IA reactions require opening reaction tubes and adding 

polymerase after the heating step, which is both cumbersome and risky because of the 

common issues of spurious amplification and cross-contamination inherent in ultrasensitive 
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IA strategies91,108. While many IA mechanisms, including LAMP and some versions of RCA, 

do not necessarily require template denaturation, pre-reaction heating can nonetheless 

improve the assay sensitivity109,110, reduce amplification inhibition from crude clinical 

samples111,112, and serve as a nucleic acid extraction method for detection of viruses and 

bacteria113,114. Thus, there is a pressing need for thermostable polymerases that possess 

significant strand displacement activity. 

Although Bst LF works at higher temperatures, it is not truly thermostable at 

temperatures that may be required for DNA denaturation and “hot-start” LAMP. There have 

been reports of two thermostable polymerases that could potentially be included in a 

denaturation step in IA reactions such as LAMP: OmniAmp, a viral polymerase from 

PyroPhage 3173 with DNA polymerase and reverse transcriptase activities115, and SD 

Polymerase, a mutant of the well-known Thermus aquaticus (Taq) polymerase116. However, 

neither of these polymerases has been validated for hot-start LAMP, because of either the 

lack of sufficient thermostability to survive denaturation steps (OmniAmp) or insufficient 

strand displacement activity for consistent LAMP performance (SD Polymerase). 

Directed polymerase evolution by compartmentalized self-replication (CSR) and other 

methods has previously been used to identify sequence variants of DNA and RNA 

polymerases that have altered phenotypes such as increased thermostability, incorporation 

of unnatural or modified bases, reverse transcription, orthogonal promoter recognition, and 

resistance to enzymatic inhibitors117–121. Recently, an isothermal CSR selection was used to 

evolve the ϕ29 polymerase122. While successful, this selection required freezing and thawing 

cycles for cell lysis to circumnavigate high-temperature reaction steps, which may limit the 

acquisition of thermostability or other novel phenotypes with enzymes like Bst LF that have 

higher polymerization temperatures. In addition, the use of random primers resulted in off-

target Escherichia coli genome amplification, which can limit selection efficiency. Therefore, 

we have developed a more robust method, high-temperature isothermal compartmentalized 

self-replication (HTI-CSR), for engineering thermostable strand-displacing polymerases. 

HTI-CSR retains the emulsion-based linkage of genotype and phenotype that was established 

in thermal-cycling CSR but replaces the emulsion PCR step with hbRCA of supercoiled 

plasmid DNA. This innovation necessitates that a polymerase must have excellent strand 

displacement activity in order to amplify its encoding gene from the plasmid. 
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We have demonstrated HTI-CSR by attempting to combine the robust strand 

displacement capability of Bst LF with the extreme thermostability found in Klentaq. These 

distantly related enzymes were recoded to ensure maximal overlap, and a shuffled library 

was created, from which a thermostable chimeric polymerase was selected that enabled one-

pot hotstart LAMP. The chimera was also capable of hbRCA amplification from a supercoiled 

plasmid template, an entirely novel phenotype. Strand displacement seemed to arise from a 

relatively short Bst substitution into a Klentaq backbone that may alter the conformation of 

the “thumb” domain common to DNA polymerases. The further development of HTI-CSR 

should more generally enable the selection of desirable phenotypes in the strand-displacing 

polymerases typically used for molecular diagnostics and genome amplification. 

The molecular basis for life rests on the information flow between DNA, RNA, and 

proteins123. Early notions of a unidirectional central dogma were amended after the 

discovery of the reverse transcriptase (RT) enzyme124,125. The RT family has a single ancient 

evolutionary origin based on amino acid homology and the presence of RT across multiple 

domains of life126. RTs are involved in processes such as telomere addition, mitochondrial 

plasmid replication, transposition, and the proliferation of retroviral genomes127. It is also 

hypothesized to be the catalyst in the transition of the RNA to DNA world by providing an 

avenue to copy RNA into more stable DNA genomes128. 

The progenitor of RT is postulated to be an RNA-dependent RNA polymerase. Because 

RNA polymerases generally lack an error-checking 3′-5′ exonuclease domain126,129, 

proofreading activity is also not present across the RT family, resulting in low-fidelity 

reverse transcription and characteristic quasispecies behavior in organisms that rely upon 

it for replication130. In contrast to RTs, other DNA polymerase families have evolved 

exquisite proofreading mechanisms to increase DNA synthesis fidelity during genome 

replication131. 

Here, we have directly evolved a reverse transcription xenopolymerase (RTX; Figure 

3.7a) from an error-correcting DNA polymerase using a modified directed evolution 

strategy117, reverse transcription–compartmentalized self-replication (RT-CSR) (Figure 

3.7b). RT-CSR enables the simultaneous screening of up to 109 polymerase variants for RT 

activity. We chose the Archaeal family-B DNA polymerases (polB) for directed evolution of 

the RTX as they are monomeric, hyperthermostable, highly processive, and contain 
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proofreading domains. We initiated evolution using low-stringency RT-CSR (10 RNA 

residues) with a random library (one or two amino acid mutations per gene) of KOD 

polymerase variants. As polymerases were enriched, we gradually increased RT-CSR 

stringency with the stepwise addition of RNA bases into primers. By cycle 18, primers were 

entirely composed of RNA—requiring reverse transcription of 176 residues to occur every 

thermal cycle to maintain exponential amplification in the emulsion polymerase chain 

reaction (PCR). 

To explore plasticity, we next evolved RTX in a similar manner as above towards a novel 

polymerase substrate interaction with the non-standard sugar 2’ O-methyl DNA (Figure 

3.12), which standard polymerases in thermophilic families cannot utilize as a template. 

Though enzymes that polymerize 2’ O-methyl have been engineered132,133 or derived from 

viral sources134, we nevertheless chose this target to show the utility of our directed 

evolution platform to evolve polymerases with modified DNA backbones. The utility of this 

novel enzyme is towards encrypted DNA data storage through modified sugar backbones 

that hinder standard DNA polymerases from reading encoded information. Information is 

retrieved through an evolved biochemical interaction between a polymerase and a modified 

DNA substrate. We employ non-canonical sugar analogs that make novel polymerase-

substrate pairs, both of which must be known by a receiver to decipher the secured 

information through replication into standard DNA. By mixing non-standard 

oligonucleotides containing a privileged, high value message into a population of standard 

DNA oligonucleotides encoding a deceptive sacrificial cover message, we not only make our 

hidden message difficult to read, but also conceal its existence (Figure 3.12a). Such a scheme 

may not only be used to secure archival information, but may enable an alternative strategy 

to covertly transmit information. By using a polymerase with error-correcting capabilities 

as the starting point for our platform, we ensure high fidelity propagation of encoded 

information. Apart from acting as a physical impediment, 2’ O-methyl DNA is an attractive 

medium for information storage since it is naturally stable against nucleases, thereby 

reducing the threat of contamination and integrity loss. 
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3.2 Results 

3.2.1 Variants from directed evolution can perform LAMP 

To test polymerases derived from directed evolution with HTI-CSR (Figure 3.1), 12 

variants from round 7 and six variants from round 5 were cloned into a protein expression 

vector with an N-terminal 6xHis for initial screening, Of the 18 polymerases we successfully 

cloned, five variants could not be expressed and purified in sufficient quantities for 

screening; these largely consisted of chimeric proteins that had a Klentaq backbone with a 

short, C-terminal Bst segment, suggesting that this protein configuration may not be 

compatible with the expression vector, E. coli strain, or purification protocol we utilized. 

We initially screened the 13 purified variants for thermostability and strand 

displacement activity using loop-mediated isothermal amplification (LAMP) with a well-

known GAPDH template as an assay. When monitored on a real-time instrument, these 

reactions yield readily interpretable qPCR-like exponential amplification curves that are 

widely regarded in the isothermal amplification field as the preferred reaction monitoring 

method over end-point measurements such as gel electrophoresis86,87,94,95,98,101. These real-

time LAMP reactions were assembled and monitored on a LightCycler 96 qPCR machine as 

described previously98,101, except that we used EvaGreen intercalating fluorescent dye rather 

than oligonucleotide probes. Amplicon homogeneity was monitored via postreaction melt 

curves, a strong indicator of amplicon specificity109. 

Initial screening identified two highly functional variants capable of LAMP, variant 5.9 

from round 5 (v5.9) and variant 7.16 from round 7 (v7.16) (Figure 3.2a). Cq values from the 

software, which represent the time at which fluorescence exceeds a determined threshold 

value, indicated that v5.9 was 24.7 min slower (66.56 min) than purified wild-type Bst LF 

(41.84 min), while v7.16 was 7.3 min faster (34.56 min). Thus, v7.16 has a higher 

polymerization rate in LAMP reactions than wild-type Bst LF, while v5.9 is slower. In 

addition, both polymerases were capable of RCA (Figure 3.3). We also attempted to compare 

v5.9 and v7.16 with SD Pol, a commercially available Taq mutant reportedly capable of 

LAMP116; however, we found that in our hands this enzyme was unable to amplify products 

via LAMP under the recommended conditions, though it was capable of RCA from a nicked 

plasmid template (Figure 3.4). Because they were capable of generating significant 
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amplification in multiple isothermal reaction formats, we chose to further investigate the 

properties of v5.9 and v7.16. 

 

3.2.2 Thermoresistance is enhanced in the evolved polymerase variant, v5.9 

One key advantage of a more thermostable strand-displacing polymerase would be the 

ability to carry out isothermal amplification reactions that rely on strand separation, such as 

LAMP, without the need to add polymerase after the initial template denaturation step. To 

that end, “one pot” reactions were set up with v5.9 and v7.16 in which the entire reaction 

mixture, including polymerase, was preheated for 1 min at 85, 89.5, or 95 °C prior to carrying 

out the remainder of the real-time LAMP amplification reaction. Remarkably, v5.9 

successfully performed LAMP after heating at all of the tested temperatures, while neither 

Bst LF nor v7.16 were able to amplify after any of the thermal challenges (Figure 3.2b). 

Variant 5.9 performed similarly after heating at 85 or 89.5 °C as in assays without preheating 

of the enzyme (Figure 3.2c). Interestingly, the threshold time was slightly shorter after 

heating at 89.5 °C than at 85 °C, possibly as a result of high temperature denaturation of an 

enzymatic inhibitor that carried over from purification. Variability within reactions with 

heat treated enzyme was notably higher; this is likely due to small variations in the heating 

procedure from run to run, as reactions had to be transferred by hand from the thermocycler 

to the qPCR machine in order to utilize a temperature gradient for heating. Thus, v5.9 

acquired novel functionality not seen in either parent enzyme used to generate the library: 

both the thermostability and strand displacement activity needed to perform one-pot LAMP. 

In order to further characterize the thermal tolerance of variant 5.9, we performed 

activity assays similar to radioactivity based assays previously described90,135,136. We 

determined the activity by measuring initial reaction rates after heating at 85, 89.5, or 92.5 

°C for 1−10 min and normalizing these to the activity without heating (Figure 3.5). This 

assay has previously been used to characterize the “thermal inactivation”, or 

thermoresistance, of Klentaq and Taq90. While not a direct measure of thermostability, this 

method is ideal for characterizing polymerase functionality within the context of diagnostic 

amplification reactions by measuring the activity after high temperature incubation steps 

that are typical of such reactions. Variant 5.9 retained 75% activity after heating at 85 °C for 

5 min, with a half-life of approximately 6.5 min. At 89.5 °C, the enzyme had a half-life of 
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approximately 3.2 min, while at 92.5 °C, the half-life was ∼1.5 min. This represents 

significantly less thermal tolerance than Klentaq, which has a half-life of ∼21 min at 97.5 °C 

and shares 97.5% protein sequence identity with v5.9.42 However, it is still significantly 

more thermostable than Bst LF, which loses all activity within 1 min at 85 °C (Figure 3.2). 

Thus, v5.9 is sufficiently thermotolerant to withstand short incubations at temperatures as 

high as 92.5 °C, such as those used for pre-reaction template denaturation in isothermal 

amplification applications. 

In the original crystal structure characterizations of Bst LF and Klentaq102,137, it was 

noted that increased ratios of certain amino acids (E:D, L:I, and R:K) and increased numbers 

of prolines can be indicative of higher thermal tolerance. Thus, it is notable that the 

mutations we observe in v5.9 shift most of these ratios toward decreased thermostability 

compared with Klentaq: three leucines were lost compared with only one isoleucine, three 

lysines were gained compared with a loss of one arginine, and two prolines were lost. This 

correlates with the observed loss of thermostability of v5.9 relative to Klentaq, though the 

relationship may not be causal. 

  

3.2.3 v5.9 has novel hyperbranched RCA activity 

The combination of thermostability and strand displacement characteristics found in 

v5.9 may prove useful for other reactions as well. We therefore tested v5.9 against its parent 

enzymes in high-temperature hbRCA reactions88. Reactions were monitored via EvaGreen 

incorporation on a LightCycler 96 qPCR machine. Real-time RCA analysis is much more 

sensitive and informative than end-point gel electrophoresis, which often requires the 

interpretation of concatemer smears138. In contrast, the real-time amplification plots allow 

us to measure the polymerization rate and product yield by monitoring the fluorescence 

signal and differentiate unique strand displacement characteristics on the basis of the 

observed enzyme kinetics. The use of an intercalating dye on a real-time quantitative PCR 

machine also enables melt curve analysis of reaction products, which can be used to 

characterize amplification specificity109. 

While some hbRCA reaction formats utilize relaxed circular DNA templates with 

multiple forward and reverse primers to enable exponential amplification100, those that 
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function with supercoiled templates typically utilize ϕ29 polymerase, known for its extreme 

processivity99,103,104,139,140. In order to effectively replicate within our HTI-CSR selections, 

however, polymerase variants must be able to replicate from supercoiled plasmids. In order 

to characterize this activity, we compared the polymerase activities of v5.9, Bst LF, and 

Klentaq using both supercoiled plasmid templates and plasmids that were nicked in order to 

relax their supercoiling. All three polymerases were able to replicate DNA using hbRCA with 

the relaxed template, producing similar amounts of product (Figure 3.6a). The reaction 

rates were similar for v5.9 and Bst LF using the relaxed template, both of which were 2- to 

3-fold faster than Klentaq (Figure 3.6b). This is likely due to increased strand displacement 

activity as observed in the LAMP reactions above. 

The results were dissimilar when supercoiled plasmids were used. Only v5.9 was able 

to replicate effectively (Figure 3.6c), with a yield comparable to that of the reaction 

containing the relaxed template. Additionally, v5.9 had a much higher reaction rate than the 

other enzymes under these conditions (Figure 3.6d), although all of the rates were 

significantly reduced compared with the relaxed template reactions. These data 

demonstrate that v5.9 has acquired the unique ability to replicate from supercoiled plasmid 

DNA via hyperbranched RCA, an activity that is not present in either of the polymerases used 

to generate the shuffled library. 

 

3.2.4 RTX proofreads on RNA and DNA templates 

To understand how our process reshaped KOD polymerase to use RNA templates, we 

deep-sequenced RT-CSR cycles to recapitulate the evolutionary path to RT activity (Table 

3.1). Mutations were identified throughout the polymerase and accumulated along the 

template-binding interface so as to progressively increase the length of RNA that could be 

accommodated. The mutated positions are hypothesized to be molecular checkpoints used 

to enforce strict DNA template utilization: as the template enters, near the active site, and at 

the nascent duplex. 

Given that RTX is capable of proofreading during reverse transcription, we hypothesized 

that it may have increased RT fidelity compared to natural polymerases. Barcoded primers 

used during RT of several human mRNAs allowed multiple reads of a single cDNA during 

deep sequencing—reducing background sequencing errors by several orders of 
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magnitude141 (Figure 3.10). Sequencing analyses revealed that the control retroviral RT 

[Moloney murine leukemia virus (MMLV)] had an error rate of 1.1 × 10−4 to 4.8 × 10−4, 

whereas RTX had an error rate of 3.5 × 10−5 to 3.7 × 10−5 (3- to 10-fold lower) (Figure 3.9b). 

The mutational spectra of RTX favored G-to-A transitions and G-to-T transversions, which 

accounted for nearly half the observed mutations. Inactivating the RTX’s proofreading 

capabilities increased error frequency nearly threefold, supporting evidence that active 

proofreading was occurring during RT. Inactivating the proofreading of RTX shifted the 

mutational bias (Figure 3.9b and Table 3.2). Given that the barcoding error detection limit 

is identical to the observed error of RTX141 (Table 3.2), we anticipate the true error rate for 

RTX to be even lower than reported. 

 

3.2.5 RTX can streamline established RNA workflows 

RTX has the potential to streamline workflows (combining RT and PCR steps) and 

increase the precision of transcriptomics, reducing biases and errors introduced in the 

reverse transcription step of RNA-sequencing protocols142. To demonstrate its utility, we 

introduced RTX into a commonly used platform for RNA sequencing. Analysis revealed 

nearly identical coverage and expression profiles (Figure 3.11), suggesting that RTX is 

compatible with established workflows. Accurate quantification of input RNA is achievable 

with RTX using a one-step qRT-PCR of Zika virus-derived RNA templates in a one-pot 

reaction (Figure 3.8). Despite the fact that a TaqMan probe was not involved, negligible non-

specific signal was observed with either of these approaches. Moreover, target-derived 

amplicons could be readily identified by their characteristic melting temperatures. 

 

3.2.6 RTX can be further evolved towards xDNAs 

Following RT-CSR process by increasing the number of challenge bases to 81 2’ O-

methyl bases at the final and 18th round, we used next-generation sequence to probe high 

frequency mutations after the final round of selection. Using the mutational information 

provided by next generation sequencing of the final library round (Table 3.3), we 

constructed a series of variants, composed of a high frequency of observed mutations and 

that were unlikely to inactivate the proofreading domain . 



55 
 

We next wished to demonstrate the utility of RTX-Ome in a cryptogenetic approach. In 

particular, we sought to store and recover privileged information, accessible only with a 

paired physical key. Using the previously reported encoding scheme DNA Fountain143, we 

transformed a series of innocuous text files into unmodified DNA to act as a sacrificial cover 

message (Figure 3.13a). In a similar manner, files apropos to information security and 

cryptography like the Zimmerman Telegram, Cryptographie Indechiffrable, and the Kryptos 

Panels among others were encoded into 2’Ome DNA (Figure 3.13a). In total, the cover and 

hidden files were encoded into 4000 and 2000 oligos, respectively, with only the hidden 

oligos containing a modulo 2000 seed to ease downstream recovery. Oligonucleotide pools 

were individually synthesized on a 12k Customarray oligonucleotide chip, with a 16 

nucleotide seed region for positional identification, 64 nucleotides of data containing 

payload, and 8 nucleotides containing a Reed-Solomon code. As redundancy is built in into 

the encoding scheme, our simulations revealed that we required an average of 2784 +/- 58 

oligonucleotides to recover the cover message and 1245 +/- 46 sequenced oligonucleotides 

to decode the hidden file (Figure 3.14).  

Our next goal was to show informatic recovery of the secure oligonucleotides. To 

accomplish this, we devised an experiment where the standard DNA and 2’Omethyl DNA 

were mixed in a 1:20 ratio. The pooled oligos were then subjected to an RT-PCR program to 

both amplify the nucleic acids, as well as append appropriate adapters for Illumina 

sequencing.  Four polymerases were assayed for their capabilities in recovering both the 

standard and hidden oligonucleotides. In addition to the evolved RTX-Ome, we tested KOD 

and RTX, the parental origins of our evolved polymerase as well as the two enzyme mix of 

MMLV/Taq to serve as a positive control. 

Unexpectedly, following sequencing of our oligonucleotide libraries we discovered 

deletions in virtually every sequencing read. Because deletions were systematic across all 

libraries, we attribute these errors arising from oligo synthesis (Figure 3.15) DNA decoding 

schemes currently do have error-checking mechanisms like the use of a Reed-Solomon code, 

yet these are only suitable for correcting substitutions and not indels where the majority of 

oligonucleotide synthesis errors occur. We sought to reconstruct the missing bases by 

assuming deletions appear randomly thus redundancy in oligonucleotide synthesis would 

yield intact regions where others are missing. We created bins of similar oligonucleotides 
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through sequence clustering and performed multiple sequence alignment within each bin to 

build a consensus sequence. If the length of the consensus sequence was less than the desired 

length, gaps were filled by inserting positions at which a non-gapped base occurs most 

frequently and iterated through to find a sequence that matched the designed GC content, 

homopolymer stretch, and Reed-Solomon code. This strategy generated a consensus 

sequence for each clustered bin (Figure 3.16). 

We then used DNA Fountain to decode the messages from our consensus sequences. Due 

to the widespread deletion errors, we utilized the aggressive decoding flag where input 

sequences are shuffled and run for many trials. We modified the native functionality slightly 

by only randomizing sequences that required more than 20 iterations to find a consensus 

sequence matching our given parameters rather than the full consensus sequence list. RTX-

Ome, along with the other three control polymerases, successfully amplified the standard 

oligonucleotide sequences and decoded the cover files. In decoding the hidden message, 

MMLV-Taq and RTX-Ome, the only of the three Archeal family B polymerases, were able to 

correctly recover the secured files (Figure 3.13b). In cases where trials produced different 

checksums as with KOD and RTX-Ome, the correct checksum was observed most frequently 

and no other checksum appeared more than once (Table 3.4). To show robustness of our 

decoding strategy, we performed random 10% down sampling of the total sequencing reads 

and observed fully correct recovery as with the full reads. These results highlight the ability 

to recover secure information with a xDNA/polymerase physical encryption.  

 

3.3 Discussion 

Compartmentalized self-replication117 typically relies on multiple thermal cycling steps 

and has been used primarily with thermophilic polymerases to evolve novel functionalities 

that can improve PCR. We now describe how a variant of CSR (HTI-CSR) can be adapted to 

the directed evolution of strand-displacing polymerases for isothermal amplification 

reactions. HTI-CSR is notable for being an emulsion-based selection that can allow large 

libraries to be sieved but requires only a single thermal lysis step to accommodate both 

thermostable and mesothermophilic polymerases. Recently, Povilaitis and co-workers 

developed a similar isothermal, emulsion-based directed evolution scheme that relied on 
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whole genome amplification (WGA) at low temperatures to evolve a ϕ29 polymerase mutant 

with improved thermostability (up to 42 °C) and increased amplification rate122. In contrast, 

our HTI-CSR selection requires only a single heating step to accomplish lysis, leaving cells 

intact prior to compartmentalization. Moreover, the use of specific primers in our 

thermostable selections provided added specificity, and the reduction of the number of 

primers used in a given round led to an increased stringency of selection, as the polymerase 

had to reproduce its gene via ever longer extensions. 

We applied HTI-CSR to a library of chimeras generated by shuffling the Family A 

polymerases Bst LF and Klentaq. Bst LF is a well-known strand-displacing enzyme that is 

often used in isothermal amplification reactions, while Klentaq is very thermostable and is a 

mainstay for PCR; it was hoped some sequence combination of the two would yield an 

enzyme with both properties.  

Selection of the overlap library did indeed lead to enzymes with a variety of phenotypes. 

For example, sequencing data suggested that our polymerase library had become errorprone 

by round 7 and as a consequence accumulated polymerases like v7.16 that survived the 

selection despite lacking thermostability, likely as a result of an increased replication rate at 

the expense of fidelity. This phenomenon has been observed in other CSR selections119,121. In 

contrast, v5.9 did not contain mutations known to decrease fidelity and proved to be a 

thermostable polymerase with greatly improved strand displacement capabilities. 

Interestingly, modeling of v5.9 based on the structures of its two parent enzymes yielded an 

interesting new insight into the poorly understood process of strand displacement. While 

Klentaq is not normally a strand-displacing enzyme, a small Bst LF substitution may lead to 

changes in the secondary structure at the base of Klentaq’s thumb subdomain that in turn 

fully enable a versatile strand displacement phenotype. 

The v5.9 chimera proved to be useful for carrying out hotstart LAMP and a variety of 

high-temperature RCA reactions. The enzyme survived 1−2 min template denaturation steps 

at ∼90 °C, which were sufficient for complete template denaturation in our LAMP assays. 

The ability to subject preassembled isothermal amplification reactions to high temperature 

incubations will certainly be useful for diagnostic applications, as pre-reaction heating can 

improve assay sensitivity109,110, reduce amplification inhibition from crude clinical 

samples111,112, and serve as a nucleic acid extraction method for the direct detection of 
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viruses and bacteria113,114. This is in stark contrast to typical isothermal amplification 

protocols, which require opening tubes to add enzyme following thermal denaturation to 

protect the enzyme, creating an unwieldy and complicated workflow. Such “one pot” 

reactions may be especially useful for point-of-care applications, where the high-

temperature step could now be included in lab on a chip devices144–149. Furthermore, v5.9 

performed similarly or better than Bst LF in all of the isothermal mechanisms we tested; its 

superior performance in hyperbranched RCA from supercoiled templates may make v5.9 

preferable for many applications. 

In order to provide a preliminary structural context for the observed functional 

properties of variant 5.9, we compared the crystal structures of its ancestors, the large 

fragments of Bst and Taq polymerases (Bst LF and Klentaq)150,151. When the Bst LF and 

Klentaq structures are aligned, we see that the structures are quite homologous, especially 

in the finger and thumb subdomains. Sanger sequencing had revealed that variant 5.9 is a 

chimera consisting mostly of Klentaq (97.5% sequence identity) with a small 14 amino acid 

chimeric section identical to Bst LF and two nonsynonymous mutations, E322G and L484S. 

We mapped this chimeric region of v5.9 onto the structures of Klentaq and Bst LF for 

comparison. The inserted region was located in the polymerase domain at the base of the 

thumb subdomain, just below the I helix, an essential structure of the thumb subdomain, 

forming an antiparallel coiled-coil structure with the neighboring H helix that is dependent 

on hydrophobic interactions between leucine residues on the two helices102. We hypothesize 

that the Bst LF substitution and additional mutations observed in v5.9 may be stabilizing a 

particular conformer of the thumb subdomain that is important for the observed strand 

displacement characteristics. 

Before v5.9, the only polymerase known to be capable of hyperbranched RCA from 

supercoiled plasmids was ϕ29, which amplifies DNA ∼160-fold in 6 h using unmodified 

random hexamer primers99. Others have shown that gene-specific primers can improve 

hyperbranched RCA amplification as much as 15-fold with ϕ29149, suggesting that ϕ29 is 

capable of roughly 2400-fold amplification in 6 h using assay conditions similar to ours. This 

is comparable to the 1500-fold amplification in 4 h we observed with v5.9 in our fluorescence 

assay, suggesting that these polymerases have similar hyperbranched RCA activities. In view 
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of this, v5.9 may also be useful for similar applications, such as rapid amplification of plasmid 

DNA for sequencing applications99. 

HTI-CSR may now allow the directed evolution of many different polymerase 

phenotypes, including altered nucleotide specificity, resistance to inhibitors, and the 

utilization of new templates. Our initial selection optimization with wildtype Bst LF also 

suggests that lysozyme-mediated HTI-CSR could be used to optimize multi-enzyme 

reactions, such as the polymerase and nickase together for RCA. Such co-optimizations might 

greatly improve isothermal amplification reactions for diagnostics, where efficiency can 

often be stymied by something as simple as a dissonance in buffer conditions between 

enzymes95,138. 

Using RT-CSR, we have altered the substrate specificity of a high-fidelity DNA 

polymerase, highlighting the plasticity of highly conserved molecular machinery. Only a 

handful of mutations were required to impart RT activity, suggesting that the evolutionary 

hurdle for forming high-fidelity reverse transcription is relatively low. Nevertheless, all 

known retroelements use proofreading-deficient RTs, suggesting that high error rates are 

either a historical coincidence or an evolutionary strategy to promote diversity. Another 

possible explanation is that high fidelity was never required simply because RNA genomes 

are small as a result of their inherent instability152. Given the plasticity of these polymerases 

for modified templates and the adaptability of the RT-CSR framework (as primers are simply 

programmed to contain modified bases), RTX evolution should be compatible with many 

base and sugar analogs153–156. Combination with previously evolved XNA polymerases could 

enable synthesis of genomes entirely composed of artificial nucleic acids157. 

The xDNAs have a number of advantages over storage of information in DNA. For 

instance, most xDNAs have remarkable stability towards nucleic acid degrading enzymes 

due to their non-natural chemical structure. This minimizes the need for sterile conditions 

in future DNA storage centers which should greatly reduce costs. Perhaps most importantly, 

xDNA provides a high layer of security due to having to know the chemical composition of 

the DNA and the significant effort and expertise required to generate polymerases which are 

capable of reverse transcribing the xDNA. This platform benefits from using error-correcting 

polymerases, which when dealing with encoded information, ensures faithful replication of 

data. 
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3.4 Methods 

3.4.1 Polymerase purification 

Wild-type Bst LF and Klentaq as well as individual variants isolated from selection were 

cloned into pATetO 6xHis (see Strains, Primers, Plasmids, and Cloning). Products were 

amplified using primers JNM316 and JNM309 for the Bst LF 5′ and 3′ ends and primers 

JNM317 and JNM310 for the Klentaq 5′ and 3′ ends, respectively. Plasmids were transformed 

into BL21 cells. Single colonies were inoculated into 5 mL of Superior Broth (Athena Enzyme 

Systems) supplemented with 100 μg/mL ampicillin and grown overnight at 30−37 °C. 

Cultures were diluted 1:200 into 250 mL to 1 L of fresh medium, cultured to OD600 0.5−1, 

induced with a final concentration of 200 ng/mL ATc, and further cultured for 3−7 h for 

expression. Cells were harvested (4000g, 15 min, 4 °C), frozen in liquid nitrogen, and stored 

at −80 °C. Cells were resuspended in 20−40 mL of lysis buffer (20 mM Tris, pH 7.4, 300 mM 

NaCl, 0.1% Tween-20 (Thermo Fisher Scientific), 10 mM imidazole) supplemented with 

EDTA-free Protease Inhibitor Tablets (Thermo Fisher Scientific) and 0.5 mg/mL lysozyme 

and mixed end-over-end for 30 min at 4 °C. Cells were further lysed using sonication. 

Supernatants were cleared (40000g, 30 min, 4 °C), heated for 65 °C for 20 min with shaking 

(400 rpm), and cleared again (20000g, 20 min, 4 °C). Polymerases were purified by metal 

ion chromatography. Briefly, lysates were added to 1 mL of preequilibrated HisPur Ni-NTA 

resin and incubated for 30 min at 4 °C with end-over-end mixing for batch binding. These 

were applied to gravity columns, allowed to drain, washed with 3 × 10 mL of wash buffer 

(lysis buffer with 40 mM imidazole), and eluted with 4 × 1 mL of elution buffer (lysis buffer 

with 250 mM imidazole). 

For LAMP screening, elutions were pooled, dialyzed into storage buffer (10 mM Tris, pH 

7.4, 100 mM KCl, 1 mM DTT, 0.1 mM EDTA, 0.5% Tween-20, 0.5% Triton-X100, and 50% 

glycerol), and stored at −20 °C. For thermoresistance characterization and RCA assays, 

elutions (Bst LF, Klentaq, v5.9) were further purified and instead dialyzed into buffer A (20 

mM Tris, 150 mM NaCl, 1 mM DTT, 1 mM EDTA, and 0.1% Tween-20), then diluted with 14 

mL of buffer A1 (buffer A without Tween-20). The eluate was applied to a gravity column 

with 1 mL of type I heparin agarose resin (Sigma) preequilibrated with 10 mL of buffer A1 

and then washed with 2 × 10 mL of buffer A1. Proteins were eluted on a 0.15 to 0.8 M NaCl 
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gradient, with polymerases typically eluting at 470−575 mM NaCl. The elutions were pooled, 

dialyzed into storage buffer, and stored at −20 °C. For nickel affinity chromatography, the 

protein purity was 50−90% (typically ∼80%), as indicated by SDS-PAGE electrophoresis. For 

sequential nickel and heparin affinity chromatography, proteins were ≥99% pure. For all 

assays, protein concentrations were equilibrated to commercial Bst LF (New England 

Biolabs) using SDS-PAGE densitometry, which has a concentration of 8 units/μL (1 unit is 

defined at the amount of enzyme that will incorporate 10 nmol of dNTP into acid-insoluble 

material in 30 min at 65 °C). We chose to normalize to concentration rather than activity in 

order to accurately compare the functionalities of our variants to those of their wild-type 

ancestor polymerases, Bst LF and Klentaq. 

 

3.4.2 Real-time LAMP screening  

LAMP reactions contained 1× Thermopol buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 

10 mM KCl, 2 mM MgSO4, 0.1% Triton X-100, pH 8.8) (New England Biolabs), an additional 

2 mM MgSO4 (4 mM final concentration), 0.4 mM dNTPs, 20 pg of template (GAPDH, Table 

S2), 1× primer mix (FIP = 1.6 μM, BIP = 1.6 μM, LR = 0.8 μM, F3 = 0.4 μM, B3 = 0.4 μM; Table 

S2), 1 M betaine, 1× EvaGreen fluorescent DNA intercalating dye (Biotium) to monitor 

amplification, and 2.5 μL of polymerase in a total reaction volume of 25 μL. The reactions 

used five primers instead of the typical four or six as in previous studies101. Fully assembled 

reactions were heat-denatured at times and temperatures indicated in the text prior to LAMP 

with or without polymerase included (as noted) on a gradient thermal cycler. For SD Pol 

LAMP tests, SD Polymerase Hotstart (Bioron) was purchased, and reaction mixtures were 

assembled according to the manufacturer’s recommendations (1× SD Reaction Buffer, 3.5 

mM MgCl2, 15−50 units of SD Pol) with the addition of primers, template, and fluorescent 

dye as mentioned above; these reaction mixtures were heated for 2 min at 92 °C to activate 

hotstart before assaying. 

The reactions were monitored using a LightCycler 96 quantitative PCR machine (Roche) 

by incubating at 68 °C and taking FAM fluorescence measurements every 4 min, followed by 

a post-amplification melt curve analysis to determine product specificity. The curves were 

analyzed using the accompanying software with absolute quantitation and Tm calling 

analyses. Thus, Cq values produced by the software (where indicated) represent crossing a 
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fluorescence threshold value determined by the software and correspond to a time point 

(multiply by 4 min) rather than a cycle number as in qPCR. Where present, error bars 

represent the standard error of the mean from three experimental replicates. 

 

3.4.3 Thermoresistance assay 

Thermoresistance assays were performed according to previously validated methods 

used to characterize Klentaq and Taq polymerases90. Kinetic activity assays were performed 

according to the manufacturer’s instructions using the EvaEZ fluorometric polymerase 

activity assay kit (Biotium). The v5.9 polymerase (nickel- and heparinpurified) was diluted 

1:4 from its working concentration and incubated at 85, 89.5, or 92.5 °C for 0, 1, 2, 5, or 10 

min, followed immediately by snap cooling on ice. Polymerase (1 μL) was mixed with with 

10 μL of 2× Polymerase Activity Mix and 9 μL of H2O and monitored on a Light Cycler 96 

machine with readings every 30 s. Initial slopes, indicating reaction rates, were measured. 

Activities of samples were averaged across three experimental replicates for each 

temperature/incubation time, normalized to the no-heating control, and expressed as 

percentages. The error for each data point was derived from triplicate runs. 

 

3.4.4 Rolling circle amplification assays 

RCA reactions contained 1× Thermopol buffer , 0.4 mM dNTPs, 100 ng of pATetO 

plasmid template (excepting no template controls), 1× EvaGreen fluorescent DNA 

intercalating dye to monitor amplification, and 2.5 μL of polymerase (nickel- and 

heparinpurified) in a total reaction volume of 25 μL. Where indicated, reaction mixtures also 

included 20 primers (10 forward and 10 reverse, each 0.5 μM) for exponential amplification 

(JNM264−283; see Table S1). For reactions containing nicked template, 2.5 μg of plasmid 

pATetO was nicked in a 50 μL digestion reaction mixture containing 1× NEBuffer 3.1 (100 

mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 100 μg/mL BSA, pH 7.9) and 20 units of Nb.BsmI 

(New England Biolabs) by incubation at 65 °C for 1.5 h followed by 80 °C for 20 min to heat-

kill the nickase. Aliquots (2 μL) of this reaction mixture or 50 ng/μL non-nicked pAtetO in 1× 

NEBuffer 3.1 were added to reaction mixtures containing template in order to maintain 

consistency. 
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Reactions were monitored using a LightCycler 96 machine by incubating at 68 °C and 

taking FAM fluorescence measurements every 4 min. Fluorescence measurements were 

exported from the instrument software and normalized to start at a fluorescence value of 0 

at t = 0 by subtracting the initial fluorescence value from all subsequent measurements of a 

given reaction. The data set was then transformed by a multiplication factor of 1000 for 

easier visualization of the data. Maximum slope values represent the highest slope observed 

in a given curve between two measurements (4 min apart). All calculations were executed in 

Excel. Error bars represent the standard error of the mean from two experimental replicates. 

 

3.4.5 Reverse transcriptase fidelity 

Templates for single stranded consensus sequences (SSCS) were prepared by first 

strand reverse transcription or primer extension (plasmid DNA template) with a barcoded 

primer. Polymerization reactions were carried out according to manufacturer's 

recommendations for recombinant MMLV (New England Biolabs). For experimental 

polymerases, reverse transcription or primer extension was performed in 1x Assay Buffer, 

200 μM dNTPs, 1 mM MgSO4, 400 nM barcoded reverse primer (HSP.seqBAR.R or 

pol2.SeqBar.R), 40 units RNasin Plus, 0.2 μg polymerase, and template (1 μg Human heart 

total RNA or 1ng plasmid). Reactions were incubated at 68◦C for 30 minutes (cDNA 

synthesis) or 2 minutes for DNA primer extension. Single stranded products were PCR 

amplified using Accuprime Pfx polymerase (ThermoFisher) with nextSeq.R and 

corresponding indexed forward primer. Samples were submitted for Illumina miseq PE 

2x250. Targeted DNA sequencing reads were aligned and grouped based on unique 

molecular barcodes tagging individual reverse transcription events using ustacks (v1.35). 

Using a modified version of the SSCS program, only groups containing three or more reads 

were analyzed. From these reads, a consensus sequence was built if more than sixty-six 

percent of the bases at each position were in agreement, otherwise the base was called as N 

and disregarded in the remaining analysis. Consensus reads were then aligned to the 

reference sequence using BWA-MEM (v0.7.7), which allowed the detection of errors that 

derived from polymerase misincorporation as opposed to sequencing errors. Using this 

approach single nucleotide variants and indels were identified. The polymerase fidelity was 
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calculated as the sum of indels and erroneous bases as a fraction of the total number of 

aligned bases.  

 

3.4.6 RT-PCR Assay 

50 μL reverse transcription PCR (RTPCR) reactions were set up on ice with the following 

reaction conditions: 1x Assay Buffer, 1 mM MgSO4, 1 M Betaine (Sigma-Aldrich), 200 μM 

dNTPs, 400 nM reverse primer, 400 nM forward primer, 40 units RNasin Plus (Promega), 0.2 

μg polymerase and 1 μg of Total RNA from Jurkat, Human Spleen or E. coli (Ambion). Primer 

sets used: PolR2A (PolII.R, PolII.F1/F2/F4), p532 (p532.R, p532.F1/F2/F5), rpoC (rpoC.R, 

rpoC.F1/F2/F4). Reactions were thermal-cycled according to the following parameters: 

68◦C - 30 min, 25x (95◦C- 30 sec, 68◦C (63◦C for rpoC) - 30 sec, 68◦C - 30 s/kb).  

 

3.4.7 RNA sequencing and analysis 

RNA from U87MG glioblastoma cells (ATCC® HTB-14) were harvested using trizol LS 

following manufacturer’s instructions (10296-028, Thermo fisher scientific). Ribosomal 

RNAs were then removed from the RNA samples using Ribozero rRNA removal kit 

(MRZH11124, Epicentre) and cleaned using RNeasy MinElute Cleanup Kit (Qiagen). rRNA 

depleted RNAs were fragmented using NEBNext Magnesium RNA Fragmentation Module 

(E6150S, NEB) to 200-300bp size range followed by kinase treatment to prepare for adaptor 

ligation. Illumina libraries were prepared using NEBNext Multiplex Small RNA Library Prep 

kit (E7580, NEB) and size selected to remove adaptor dimers using Ampure XP beads. 6 

Illumina libraries were prepared from the same pool of RNA using experimental reverse 

transcriptases and ProtoScript II Reverse Transcriptase from the library prep kit. RNASeq 

libraries were sequenced on Illumina HiSeq 2000, 2x100bp by the genome sequencing and 

analysis facility at the University of Texas at Austin. 

The evaluation of RNA-seq quality control metrics was performed via RNA-SeQC 

(v1.1.8). For transcript abundance analysis, fpkm values were generated through the 

cufflinks/cuffnorm pipeline (v2.2.1) and transformed both by log2 and to fit the range [-3,3]. 

Sanger sequencing reactions were set up by preparing 1x Assay Buffer, 1 mM MgSO4, 10 

pmol RT.Probe, 50 pmol SangerGATC Template, 0.4 ug RTXexo- , and 50 μM dNTPs. For the 

indicated terminator nucleotide, a 25:1 ratio of 3' dideoxy terminator to unmodified NTP 
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was used. Reactions were thermal cycled 6x (68○C - 20sec, 85○C - 5sec). Reactions were 

terminated by the addition of EDTA to a final concentration of 25 mM. The labeled primer 

was removed by heating sample at 75◦C for 5 minutes in 1x dye (47.5% formamide, 0.01% 

SDS) and 1 nmol of unlabeled SangerBlocker oligonucleotide. 

 

3.4.8 Encoding of information into oligonucleotides 

We first combined each set of documents into a tar.xz file and padded the tail end with 

zeroes such that the final filesize was a multiple of 16 bytes. We then used DNA Fountain143 

to generate 4000 oligonucleotides encoding the cover message. We confirmed that none of 

these 4000 nucleotides had a DNA Fountain seed modulo 2000, a fact that will be used below 

to distinguish the hidden oligonucleotides from the cover set upon sequencing. For the 

hidden message, we first generated 2,000,000 DNA Fountain oligonucleotides, and kept only 

2000 out of the 8933 whose DNA fountain seed was modulo 2000. We then computationally 

tested each oligonucleotide set, cover and hidden, to see how many sequences we required 

to recover each message. For each set, the oligonucleotides were shuffled into a random 

order and fed into DNA Fountain until the message was recovered (DNA Fountain terminates 

upon successfully recovering the message). This was repeated 1000 times. We recorded the 

number of oligonucleotides DNA Fountain required from each permutation before the 

message was decoded. 

 

3.4.9 Synthesis of DNA and Omethyl DNA for Cryptogenetic Storage 

The encoded oligonucleotide pools were each randomly arrayed on a 12,472 feature 

chip using the Customarray rearrayer software to give a ~3 fold sequence coverage for the 

standard unencrypted DNA pool (4,000 unique oligonucleotides) and ~6 fold sequence 

coverage for the encrypted 2’-O-Methyl-DNA oligonucleotide pool (2,000 unique 

oligonucleotides). The unencrypted DNA oligonucleotides were synthesized on the 

Customarray B3 oligonucleotide array synthesizer following standard phosphoramidite 

chemistry protocols.  For the synthesis of the encrypted, 2’-O-Methyl oligonucleotides, 5 

grams of each of the 2’-O-methyl phosphoramidites (2’-Ome Bz A, Cat. # 27-1842; 2’-Ome Ac 

C, Cat. # 27-1823; 2’-Ome U, 27-1825; 2’-Ome iBu G, Cat. # 27-1846) were purchased from 

Thermo Scientific and resuspended in 100mL anhydrous acetonitrile and used for 
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oligonucleotide synthesis on the chip following standard DNA synthesis protocols.  

Following the completion of the synthesis, the oligonucleotide pools were cleaved and 

deprotected directly from the chip surface using aqueous ammonia at 65°C for 4 hours.  The 

cleaved and deprotected oligonucleotide pools were resuspended in TE buffer and purified 

on a Micro Bio-spin column (Biorad) following the manufacture’s protocol.  The column 

purified oligonucleotide pools were then used for further analysis.            

 

3.4.10 Preparation of DNA for NGS Sequencing 

Synthesized oligonucleotides were pooled in a ratio of 1 part DNA to 10 parts O-methyl 

DNA prior to amplification. To prepare oligonucleotides for NGS the pools were PCR 

amplified to add adaptor sequences. Reactions were indexed using Illumina small RNA 

primers (RPI1-KOD, RPI2-RTX, RPI3-RTX-Ome, RPI4-OneTaq One Step RTPCR (NEB)). For 

KOD, RTX, and RTX-Ome: 50µL PCR reactions were prepared with 1x Assay buffer, 200 µM 

dNTPS, 1 M Betaine, 400 nM RP1 primer, 400 nM RPI (1-3), 10 ng oligonucleotide pool, and 

0.2 µg of KOD, RTX, or RTX-Ome polymerase (polymerase added after temperature reached 

94°C). Reactions were cycled on using a program: 94°C - 30s; 12x cycles (94°C - 15s, 65°C (-

1°C/cycle) - 15s, 68°C - 10 minutes). For OneTaq One-step RTPCR kit, the manufacturers 

recommended protocol was used with the same concentration of pooled oligonucleotides. 

After thermalcycling, products were cleaned using Wizard SV PCR purification kit (Promega) 

and eluted in 15 µL H2O. A secondary PCR was used to further amplify products from the 

RT-PCR before submission to the UT GSAF facility. Accuprime PFX PCR (Thermo Scientific) 

was used to amplify 5 µL of the eluted primary amplification with universal outnested 

primers (Universal F/Universal R) for 25 additional cycles. 

 

3.4.11 Informatic recovery 

Starting with raw sequencing reads, we first trimmed adapters and filtered reads to be 

between 50bp and 90bp using flexbar. We clustered the resulting reads using cd-hit at a 70% 

sequence similarity. For each cluster, we performed multiple sequence alignment using 

mafft with a gap penalty of zero and weighted bases according to the read’s original length. 

A consensus sequence is built based off the most common base and gaps are filled until the 

sequence reaches our target length. Using knowledge of the Reed-Solomon code, GC content, 
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and homopolymer constraints, we ensured that the constructed consensus sequence 

matched the initial design parameters and if not, iterated through the gaps until such a 

sequence was found. Sequences were inputted into a modified DNA fountain program, where 

sequences needing less than 20 iterations were fixed and the remaining shuffled. The 

aggressive flag in DNA fountain was utilized and run 1000 times, with the most commonly 

occurring md5 checksum used as the basis for decoding.  

 

3.5 Conclusion 

This chapter first describes our work in creating a DNA polymerase chimera combining 

two unique properties—thermostability derived from Taq and strand displacing properties 

inherently found in Bst. Random recombination via gene shuffling was used to generate 107 

chimeras with an average of 1.8 crossover events per variant. While this molecular biology 

technique has long been established, its use in conjunction with high throughput selections 

particularly in the polymerase realm is underdeveloped. Two novel variants were identified 

in rounds 5 and round 7 that could perform LAMP assays; however, only the variant from 

round 5 retained polymerase activity after a thermal challenge. Interestingly, a new 

capability, performing hbRCA from supercoiled plasmids, was found in this polymerase 

variant which neither parent enzymes could perform. Upon sequencing of this new variant, 

we found that the sequence was majority originating from Taq. The mutations responsible 

for endowing strand displacing activity arose primarily through a small 14 amino acid 

insertion extending a loop on a single helix in the thumb domain highlighting minor domains 

can confer unique properties.  

The power of the method used in this chapter to derive novel properties comes from the 

agnostic approach to understanding functional residues. Rather than having prior 

knowledge of the strand displacing domain in Bst and subsequently try to rationally 

introduce the sequence into Taq, we instead relied on randomly combining the two genes 

and pulling out variants with the intended function using a novel selection scheme. As the 

unknown very much still prevails through biology, these mechanism-agnostic methods hold 

weight in delivering novel function where the mechanism of function is not known.  
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We next used a modified CSR method, but to inform the plasticity of a polymerase 

towards multiple evolution goals and show that an error-correcting thermophilic 

polymerase, KOD, is evolved to utilize two other nucleic acid substrates—RNA and 2’Ome. 

The culmination of both works highlight the extraordinary plasticity of the enzyme. RTX was 

created with only 16 single step mutations, amalgamated after paring down the mutations 

observed after next generation sequencing. Utilization for 2’Ome utilization was further 

evolved with another 11 mutations, two of which were reversions to wild-type KOD residues. 

In an enzyme with function critical to cellular viability, one could envision reaching an 

evolutionary cul-de-sac. However, the results presented here show that a degree of plasticity 

exists with perhaps a greater expansion of functionality than previously believed. Utility of 

RTX has been highlighted in this chapter and has since been used for immune repertoire 

analysis158, RNA cycling, and low resource research settings159. RTX-Ome can provide a 

solution for information security in the burgeoning field of DNA storage. 

Taken together, these studies underscore the notion that new functions within enzymes 

can be a relatively short evolutionary distance away. Owing to high-throughput screening 

methodologies, the feasibility of sampling large sequences can be accomplished in the lab in 

a manner that cannot be done in nature.  In other chapters, we will see how laboratory 

evolution enforces organisms to adopt new translational machinery (Chapter 4) and how 

point mutations and short evolutionary distances can be more efficiently sampled using data 

driven methods (Chapter 2).  
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Figure 3.1 Schematic of HTI-CSR.  

In HTI-CSR, E. coli cells expressing a plasmid-encoded polymerase library are suspended in a water-
in-oil emulsion with a single cell per compartment, preserving the genotype−phenotype linkage. Each 
compartment contains primers for heat-initiated lysis and RCA in thermostable HTI-CSR. Following 
lysis, functional polymerases replicate their own plasmids via isothermal RCA at 65 °C, which is 
dependent upon a polymerase having strong strand displacement activity. The most active 
polymerases (green) produce more DNA, while less active variants (yellow) produce less; 
nonfunctional variants (red) produce none. After the hbRCA reaction, emulsions are broken, DNA is 
pooled, and the library is recovered by PCR, enriched for functional variants by the positive feedback 
loop. The library can be further recloned into the expression vector for subsequent rounds as needed. 
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Figure 3.2 Isothermal screening of evolved variants.  

(A) Real-time LAMP activities of two functional variants isolated from HTI-CSR compared with Bst 
LF. (B) Real-time LAMP activity after heating fully assembled LAMP reactions for 1 min at a range of 
temperatures. Solid and dashed lines indicate the temperatures at which the reaction was heated 
prior to LAMP. (C) Mean time to threshold for LAMP reactions with Bst LF or v5.9 with or without 
preheating of the enzyme. Each datum represents the average of replicates from three separate runs. 
Error bars represent the standard error of the mean. For v5.9 heated at 95 °C for 1 min, the average 
and standard deviation represent two replicates, as one replicate was not called positive by the 
software despite generating a curve (see B, v5.9−95C). 
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Figure 3.3 Nicked RCA reactions with variants isolated from HTI-CSR selections.  

In addition to our stringent qLAMP screening, we also screened some variants with nicked RCA. 
These reactions included the nicking enzyme (Nb.BsmI, New England Biolabs) directly in the 
reactions rather than using pre-nicked plasmid template. While this type of screening still reveals 
highly functional polymerases like v5.9 and v7.16 seen in the main text, the increased resolution also 
identifies variants with limited function like v7.5. 
 
 
 
 
 
 

 
Figure 3.4 LAMP amplification with Bst LF and SD Pol.  

We attempted to compare SD Pol (Bioron), a commercially available Taq mutant reportedly capable 
of LAMP (10), with our other variants in our initial qLAMP screening (A). Template is included as 
indicated. Using manufacturer recommended conditions, we were unable to generate amplicons with 
SD Pol. Other templates were also attempted (data not shown). SD pol is capable of Rolling Circle 
Amplification from a nicked plasmid template (B). 
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Figure 3.5 Thermoresistance kinetics of v5.9.  

The thermoresistance of variant 5.9 was characterized by examining the polymerase’s reaction rate 
in an extension assay after the polymerase was preheated at various temperatures and times. The 
activity for each time and temperature pair is averaged across triplicate runs and normalized to the 
enzyme activity without heating. Error bars indicate the standard error of the mean. A light-gray line 
indicates the half-life (50% activity). 
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Figure 3.6 Hyperbranched RCA with v5.9, Bst LF, and Klentaq.  

Enzymes were incubated with a nicked template with forward and reverse primers (A and B) or 
supercoiled plasmid with forward and reverse primers to mimic the RCA reaction in our selections 
(C and D). End-point fluorescence, indicative of reaction yield, is depicted in (A) and (C), while 
maximum slopes corresponding to reaction rate are depicted in (B) and (D). Polymerase colors are 
coordinated between graphs for comparison. Mean values across two experiments are indicated, 
with error bars corresponding to standard error of the mean. 
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Figure 3.7 Evolution of a synthetic family of reverse transcriptases by RT-CSR. 

(A) Polymerase phylogeny depicts reverse transcription xenopolymerases (RTX) as a second, 
evolutionarily distinct, origin of RT function. (B) Framework for the directed evolution of 
hyperthermostable RT using reverse transcription compartmentalized self-replication (RT-CSR). 
Libraries of polymerase variants are created, expressed in Escherichia coli, and in vitro 
compartmentalized. During emulsion PCR, primers flanking the polymerase enable self-replication 
but are designed with a variable number of RNA bases separating the plasmid annealing portion from 
the unique recovery tag. 
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Table 3.1 Deep sequencing of RT-CSR libraries.  
 
Amino acid residues with mutations occurring in 10% of the population are shown in order of 
frequency. Some positions contained several amino acid possibilities and the sum of frequencies 
were totaled. Synonymous mutations are not shown.   
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Figure 3.8 EvaGreen qRT-PCR analysis using RTX.  
 
Indicated copies of synthetic Zika virus derived RNA template were amplified by RT-PCR using 80 ng 
of purified RTX polymerase. Amplicon accumulation was assessed in realtime by measuring increase 
in EvaGreen fluorescence. Representative amplification curves using 108, 107, 106, 105, 104, 103,102, 
101, and 0 template RNA copies are shown in panel a. These curves were generated using the 
“Absquant” analysis protocol in the LightCycler 96 software. ‘NTC’ refers to no template control. The 
corresponding amplicon melting temperature analyses performed using the “Tm calling” protocol in 
the LightCycler 96 software are shown in panel b. The melting temperature of non-specific amplicons 
generated in the absence of templates is distinct from target-derived amplicons. Standard curve 
analyses performed using the “Absquant” protocol in the LightCycler 96 software are depicted in 
panel c. Standard curve analyses data for comparing amplification efficiency, linearity,and error are 
tabulated as insets. 
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Figure 3.9 RTX polymerase proofreads during reverse transcription.  

Deep sequencing of reverse transcription reaction on HSPCB gene. The overall error rate was 
determined by dividing the sum of base substitutions and insertions or deletions by the total number 
of bases sequenced.The error profile of MMLV, RTX, and RTX exo- is shown as frequency of errors 
per million bases sequenced.    
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Figure 3.10 The SSCS method for reverse transcription.  
 
In step 1, total mRNA is isolated. Step 2, barcoded gene specific primers are used to perform first 
strand cDNA synthesis. Step 3, the cDNAs are amplified with primers amplifying the cDNAs while 
preserving the barcodes. Step 4, Illumina miseq 2x250 paired end reads are performed enabling 
multiple reads of the same initial cDNA. Step 5, identical barcodes are binned and used to create a 
consensus sequence. Only barcodes that were read over 3 times were used in the alignment, reducing 
illumina derived mutations by >99%.    
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Table 3.2 Fidelity for reverse transcription and replication.  

 
(A) Fidelity profile for reverse transcription on two human genes, HSPCB and PolR2A. The error rate 
is calculated by dividing total mutations (mismatch + indel) by the total number of bases sequenced. 
The frequency of each possible mutation is listed as a percentage of total mutations. (B) Fidelity 
profile for DNA template (cloned plasmid DNA) polymerization using cloned HSPCB.    
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Figure 3.11 RTX in an RNA-seq workflow.  
 
(A) Relative coverage of intracellular RNAs from gliobastoma cells for each reverse transcriptase. (B) 
Clustergram of relative expression for the top 500 most expressed RNAs for MMLV, RTX, and RTX 
exo-.  
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Figure 3.12 Evolution of a xDNA/polymerase pair creates a secire platform for DNA 
information.  
 
A) Overview on cryptogenetics. Only with a paired DNA/xDNA pair can information be secured. B) 
Evolution strategy to create RTX-Ome 
  



82 
 

 
 

 

 

Table 3.3 NGS sequencing of the Ome RT-CSR Round 18 pool  

Mutations are mapped to the parental RTX polymerase. Only mutations with over 10% frequency 

are shown. 
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Figure 3.13 Encoding and decoding of information into oligonucleotides.  

A) The listed files were encoded into DNA. B) Recovery performance of each tested polymerase in 

DNA (unsecured) and Ome (secured) oligos. The dotted line indicates the average number of oligos 

needed for decoding based on our simulations.   
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Figure 3.14 Information storage encoding schematic. 

A) The cover file is encoded. First, it is padded to a multiple of 16 bytes for compatibility with DNA 

Fountain. We then let DNA Fountain generate 4000 oligos encoding it.  
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Figure 3.15 Distribution of NGS read sizes. 

Following sequencing, analysis reveals the vast majority of sequences are less than the designed 

length of 88 bases.  
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Figure 3.16 Decoding workflow of secured and unsecured oligos. 
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Table 3.4 Decoding trials. 

Number of trials out of 1000, where decoding produced the correct md5 checksum for 4 tested 

polymerases. Of the incorrect checksums observed in unsecured KOD and secured RTX-Ome, none 

were observed more than once. 
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Chapter 4 

  

Bacterial adaptations towards the adoption of expanded genetic codes 

 

The genetic code has fixated to 20 amino acids. While this number seems somewhat 

arbitrary, the three branches of life (bacteria, archaea, and eukarya) largely obey this 

constraint. Amino acids outside the canonical twenty have the potential to introduce novel 

chemical interactions within a protein and recent efforts have expanded the genetic code 

through engineering of the underlying translational machinery and suppression of the 

amber codon. However, these systems often experience fitness deficits as proteins 

terminated by an amber codon can be unnaturally extended or biosynthesis of the new 

amino acid adds unintended toxicity. Retention of the orthogonal translation machinery can 

be enforced through an ‘addiction’ mechanism whereby the function of an antibiotic 

resistance element depends on the incorporation of the noncanonical amino acid.   

This chapter explores two examples of how a cell might adapt to an expanded genetic 

code, the first two reports on a longitudinal study on 21st amino acid adoption. Both reports 

incorporate a noncanonical amino acid through suppression of the amber codon albeit in 

different strains. The first section centers on selenocysteine evolved in the context of an 

‘amberless’ E. coli. The second section focuses on nitrotyrosine incorporation in an 

‘amberful’ E. coli. Both experiments were grown for 2000-2500 generations, and the 

resulting genomic changes needed to efficiently accommodate a 21st amino acid were 

analyzed. 

My contributions in both projects were to analyze the genomic changes that more 

efficiently enabled incorporation of each noncanonical amino acid. For selenocsyteine 

This chapter is adapted in part from Thyer, R., Shroff, R., Klein, D. R., d'Oelsnitz, S., Cotham, V. C., 

Byrom, M., ... & Ellington, A. D. (2018). Nature biotechnology, 36(7), 624. It is presented with 

modifications under the full permission of the original publishers.  

This chapter is also adapted in part from Tack, D. S., Cole, A. C., Shroff, R., Morrow, B. R., & 

Ellington, A. D. (2018). Scientific reports, 8(1), 3288. It is presented with modifications under the 

full permission of the original publishers.  

My contributions are outlined in the text. 
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adoption, this included going a step further and making the identified mutations into the 

wild-type strain and characterizing the fitness effects. In the resulting manuscripts, I 

contributed to data presentation. 

 

4.1 Introduction 

Since the fixation of the genetic code evolution has been confined to the 20 canonical 

amino acids, with some incursions by selenocysteine and pyrrolysine. Alternative codon 

tables (e.g. mitochondrial genomes) are likely evolved from the standard codon table and 

provide evidence that the canonical genetic code can evolve160. A number of theories for the 

evolution of codon assignment and re-assignment have been proposed161–163, and directed 

evolution experiments have demonstrated the code is not as frozen as once believed164–166. 

However, a full accounting of how a cell might adapt to an expanded genetic code has yet to 

be presented. 

Expanding the standard set of proteinogenic amino acids can be accomplished through 

changes to the underlying translational machinery. Orthogonal translation systems (OTSs) 

comprising aminoacyl-tRNA synthetase (aaRS)/suppressor tRNA pairs have been developed 

that do not significantly interact with the host translational machinery or interfere with 

already occupied portions of the genetic code167–169. Typically, these OTSs allow the 

incorporation of noncanonical amino acids (ncAAs) by suppressing the amber stop codon 

(UAG). 

Unsurprisingly, cells containing an active OTS often exhibit fitness deficits170, possibly 

because any protein terminated by an amber codon can be unnaturally extended. Efforts to 

knockout the protein responsible for termination at amber codons, release factor 1 (prfA), 

support this claim: some strains lacking prfA were found to be viable only when essential 

genes terminating with an amber stop codon were recoded to terminate with an alternative 

stop codon171. In order to avoid these fitness impacts upon adopting a new code that would 

otherwise result in its rejection, previous studies with expanded genetic codes have either 

relied on bacteriophage, where the fitness of the host organism is irrelevant166,172, or have 

relied on strains that entirely lack amber codons173, allowing ready capture of the eliminated 

codon to create a 21 amino acid genetic code174. 
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Here, we present two reports analyzing longitudinal adoption of expanded genetic 

codes. First, we explore selenocysteine which has long been exploited by nature for its 

unique biophysical properties, such as increased nucleophilicity and low pKa and is a 

promising candidate for incorporation into engineered proteins by synthetic biologists. 

Previously, the Ellington lab evolved an E. coli tRNASec variant175 that enabled efficient, site-

specific selenocysteine incorporation at amber stop codons, but despite efforts to improve 

selenoprotein yield, encountered substantial toxicity from selenocysteine biosynthesis and 

low viability. Improving the recoded E. coli host (RTΔA175, which is derived from C321.ΔA176) 

to the effects of genomic recoding176 on regulation and synthesis of the proteome, could 

attentuate fitness burdens. Second, we explore the ncAA 3-nitro-L-tyrosine (3nY), which 

experiences similar fitness costs. This system models the ‘ambiguous intermediate’ 

hypothesis of genetic code evolution, which proposes that translation of a specific codon can 

change by first becoming ambiguously translated before losing ambiguity and gaining 

specificity for a different amino acid. 

To improve fitness defects, we perform whole genome evolution, which has been used 

to optimize bacterial fitness, most notably in the laboratory evolution of E. coli over 60,000 

generations by the Lenksi group177 and resulted in complex genetic adaptations that 

supported the ability to metabolize a carbon source it couldn't previously use178. To facilitate 

the adaptation using genome evolution, we coupled cell survival to ncAA incorporation, by 

creating conditional dependence on an expanded genetic code and ensuring cells always 

exceed a minimum threshold of incorporation required for survival. 

 

4.2 Results 

4.2.1 Establishing selenocysteine dependence in E. coli 

We produced a selenocysteine-dependent host strain by transforming E. coli RTΔA cells 

with two plasmids encoding a synthetic selenocysteine biosynthesis pathway consisting of 

tRNASecUX, selenocysteine synthase (SelA), selenophosphate synthase (SelD), and O-

phosphoseryl-tRNASec kinase (PstK)175. Strains with different degrees of selenocysteine 

dependence were established by integrating one of three different variants of the blaNMC-A 

gene (disulfide-dependent β-lactamase from Enterobacter cloacae) into the chromosome179. 



91 
 

The three variants were a wild-type β-lactamase containing the native disulfide bond 

between C69 and C238 (CC), which did not enforce dependence on selenocysteine, a U69-

C238 variant (UC) containing an essential selenyl-sulfhydryl bond, and a U69-U238 variant 

(UU) containing an essential diselenide bond (Figure 4.1a). Selenocysteine-dependent β-

lactamase activity of the UC and UU variants was confirmed by sensitivity to carbenicillin 

when grown in selenium-free defined media, which could be rescued by the addition of 1 μM 

sodium selenite (Na2SeO3). A wild-type blaNMC-A gene was also integrated into RTΔA cells 

containing empty plasmids (Δ strain) to provide a control to identify mutations that accrue 

independently of selenocysteine incorporation. 

We selected for selenocysteine tolerance and improved fitness by serial passage of the 

four parental strains (CC, UC, UU, and Δ) for 2,500 cell doublings. All experiments were 

carried out in triplicate, under two different growth conditions that we hypothesized would 

elicit different adaptive responses. Growth of parental strains was either in an increasing 

concentration of a β-lactam antibiotic (β populations) or increasing temperature (T 

populations) (Figure 4.1b). These conditions were chosen because: (1) they are mildly 

mutagenic, through induction of DNA polymerase IV, thereby increasing the chance of an 

adaptive response180,181; (2) both conditions have previously been used, thus enabling us to 

compare our results with those already published; (3) both conditions impose stress on 

selenocysteine biosynthesis and incorporation, but in different ways. Increasing β-lactam 

antibiotic concentration exerts selective pressure for increased production of NMC-A β-

lactamase, which in turn requires an increase in selenocysteine incorporation. Elevated 

temperature reduces tRNASec stability, which in turn decreases selenocysteine 

incorporation182, and might result in evolution of more stable or more active selenocysteine 

incorporation machinery. 

 

4.2.2 Genetic analysis of selenocysteine evolved strains 

In order to analyze the genetic basis of evolved growth phenotypes, we carried out 

whole genome sequencing on evolved populations and their parental strains, including 

RTΔA. Single clonal isolates were also sequenced from each of the β_UC and β_UU 

populations and were found to be highly representative of the evolved population sequences, 
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containing the same fixed single-nucleotide polymorphisms (SNPs) and no genomic 

rearrangements. Whole genome sequencing indicated that the selenocysteine biosynthesis 

and incorporation machinery was maintained throughout evolution, that there was no loss 

of TAG codons in the blaNMC-A gene and no contamination between the populations. We did 

not find any genomic suppressor tRNAs via whole genome sequencing. We detected several 

new in-frame TAG codons in all sequenced genomes, including β_Δ and T_Δ populations, 

which contained no suppressor tRNAs (Table 4.1), likely decoded as glutamine as it is the 

most efficient near-cognate UAG suppressor183. 

Genome sequencing identified clusters of SNPs in genes conferring antibiotic resistance 

(blaNMC-A, ftsI, and ompR), genes mediating oxidative stress or selenite resistance (oxyR and 

cysK), genes mutated during construction of C321.ΔA (ftsA, hemA, pta, and yeeJ), genes 

involved in plasmid replication (pcnB), and the prfB gene, which codes for release factor 2 

(Figure 5.8a). Genes enriched with SNPs were defined as having acquired SNPs with >50% 

frequency in four or more independent populations evolved under the same conditions. 

Notably, no mutations were observed in the selA, pstK, tRNASecUX, or selD genes which form 

the synthetic selenocysteine biosynthesis pathway. 

The impact of these mutations on fitness was evaluated by introducing a subset of the 

most enriched SNPs in genes not related to multidrug resistance back into the parental RTΔA 

strain, using multiplex automated genome engineering (MAGE)184. SNPs that we engineered 

into the parental strain included oxyR A233T, cysK T69I, T73A and H153Y, prfB T246A, 

N276D, and K282R, and also reversion of the mutations in ftsA, hemA, pta, and yeeJ to the 

wild-type sequence present in E. coli strain MG1655, the parental strain of C321.ΔA. The 

growth of MAGE-engineered strains was compared with that of RTΔA, and four mutations 

were identified that simultaneously decreased time spent in lag phase and increased the final 

culture density (Figure 4.2b-e). These mutations included three reversions of SNPs that 

were acquired during construction of the C321.ΔA strain, and the prfB T246A mutation, 

which repairs a defect in release factor 2 that is only present in E. coli K12 strains185,186. 

Although most of the SNPs we identified either compensated for metabolic defects in the 

parental recoded E. coli or broadly improved cell growth, cysK and pcnB directly affected 

selenocysteine tolerance and incorporation.  
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The number of mutations acquired by the populations (mean ± SD), defined as SNPs 

occurring in coding regions at >50% frequency, was highly variable (between 35 and 351), 

and while the T populations acquired more mutations on average (136 ± 83.8 versus 96.1 ± 

35.6) the difference was not statistically significant. If the T_UC1 and T_UC3 populations 

which acquired mutations in mutM and seem to exhibit a hypermutator phenotype 

(acquiring 253 and 351 SNPs respectively) are excluded, the average number of mutations 

in the thermal populations decreases to 102 ± 26.1. The CC, UC and UU populations did not 

acquire more mutations than the Δ populations (97.4 ± 32.6 versus 103 ± 26.2), indicating 

that under these conditions selenocysteine biosynthesis was not inherently mutagenic.  

Genome sequencing of the evolved populations revealed SNPs clustered in genes 

conferring antibiotic resistance, genes mediating ROS or selenite resistance, genes mutated 

during construction of C321.ΔA, genes involved in plasmid replication and the prfB gene 

encoding release factor 2. Genes which acquired mutations in more than four populations 

(and were present in >50% of the population) are listed in Table 4.2 and Table 4.3.   

Genes which may confer antibiotic resistance include ompR, which acquired the known 

activating mutation Y102C in 19 of the 24 evolved populations and regulates expression of 

the major porins (OmpC and OmpF) through which β-lactam antibiotics gain entry187, and 

ftsI which encodes the penicillin binding protein III, the direct target of carbenicillin. Both 

the P311S and V545I mutations which were detected in ftsI in multiple populations have 

previously been reported to confer β-lactam resistance in S. enterica188. The integrated 

blaNMC-A gene was also a frequent site of mutation, with numerous SNPs observed at residues 

F105 and the N216-T217-T218 region. Mutations in these genes were not characterized 

further as the SNPs were observed in all populations as a specific response to the growth 

conditions, and have no bearing on the selenocysteine incorporation trait. 

SNPs expected to affect ROS and selenite resistance included constitutively activating 

mutations in oxyR (A233T and likely C199R)189 and cysK mutations predicted to abolish 

substrate and cofactor binding (P68L, T69I, T73A, R100H, F144S and H153Y) preventing the 

production of free selenocysteine190. To characterize the effect of these genes on cells fitness, 

the A233T mutation in OxyR and the T69I, T73A and H153Y mutations in CysK were 

introduced into the genome of RTΔA cells using MAGE and growth curves performed in the 

presence and absence of Na2SeO3 (Figure 4.3). All four mutants were either slightly 
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deleterious or no different from wild-type RTΔA cells under the various growth conditions. 

To confirm the growth assays, which were performed in 96-well plates, were representative 

of the culture conditions during the serial passaging experiment, we performed a 

competition experiment between the three cysK mutants and wild-type RTΔA cells. Cell 

populations containing 50% wild-type cells and 50% mutant cells were passaged in 

triplicate in LB media ± 10 μM Na2SeO3 for 125 generations and the change in frequency of 

the mutant alleles measured by qPCR (Figure 4.4). In agreement with the growth curves, the 

T69I mutant which was deleterious to cell growth in both the presence and absence of 

Na2SeO3 was lost from all cell populations (Figure 4.4b). Similarly, the T73A and H153Y 

mutants which were only deleterious in the absence of Na2SeO3, were only lost in these 

populations, and were retained in populations passaged in LB with 10 μM Na2SeO3 (Figure 

4.4d, f). Despite strong enrichment of mutations in cysK over the course of the evolution 

experiment, most of which are known (or predicted) to abolish activity, these data do not 

provide a clear explanation of the selective pressures on the cysK gene or its role in selenite 

resistance.  

In the case of OxyR, given mutations were only observed in populations exposed to β-

lactam stress, it is possible that the transcription factor is mediating increased β-lactam 

resistance by enhancing expression of the blaNMC-A gene, rather than an oxidative stress 

response. While mutations in oxyR were also observed by Wannier et al. during continuous 

evolution of genomically recoded E. coli strains, the authors report that all mutations were 

functional knockouts191. This contrasts with the constitutively activating mutations 

observed in this work, indicating that they were derived under very different selection 

pressures. The blaNMC-A gene was integrated at the ahpC locus which is positively regulated 

by OxyR and much of the regulatory architecture upstream of the integration site is intact. 

Populations evolved under thermal stress also enriched for mutations in the cpxR and iscR 

genes. The cpxR gene encodes the regulatory protein of the CpxA-CpxR two-component 

system which modulates a variety of stress responses and also regulates expression of the 

OmpF porin which plays a role in β-lactam sensitivity192. The iscR gene encodes a repressor 

for the iscRSUA operon, of which iscS encodes cysteine desulfurase193. Cysteine desulfurase 

is a multifunctional protein responsible for selenide delivery during selenocysteine 

biosynthesis and also degradation of free selenocysteine. 
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Multiple SNPs were observed in four genes which acquired mutations during the MAGE 

process used to construct strain C321.ΔA176; hemA, pta, yeeJ, and ftsA. Of particular interest, 

three populations directly reverted the L196P mutation in hemA and four populations 

reverted the L673P mutation in pta, with a fifth acquiring a P673S mutation. To determine 

their influence on cell fitness we individually reverted the SNPs in the genome of the parental 

RTΔA strain (Figure 4.5a-d) to the wild-type sequence of MG1655. While no differences 

were observed in rich media for any of the genes, hemA and yeeJ significantly improved 

growth of RTΔA under more stringent growth conditions in defined media, and ftsA showed 

minor improvement. Interestingly, despite extremely high rates of mutation in pta, which 

was the most frequently mutated gene in both the β and T populations, we did not observe 

growth improvement when reverting P673 to the wild-type sequence. Deletion of pta is 

known to impair use of amino acids as a carbon source194 and also survival in stationary 

phase, both of which are required during serial passage in LB media195. 

In recent work by Kuznetsov et al., out of the 355 SNPs known to have occurred during 

construction of the parental genomically recoded E. coli strain C321.∆A, the authors reverted 

127 'high-priority' SNPs back to the wild-type sequence and selected for combinations which 

improved cell growth rate196. In contrast, we found 49 highly enriched genes with sequence 

substitutions. Between these two sets of data, only hemA and ftsA overlap. Kuznetsov et al. 

found the hemA reversion to be one of the strongest drivers of improved fitness, and likewise 

it was highly enriched in our experiment. However, while neither Kuznetsov et al. nor we 

observed any growth improvement due to the ftsA reversion in rich media, we measured a 

mild fitness improvement under more stringent growth conditions in a defined medium. 

Thus, it is interesting that we also observed the accumulation of ten different second site 

mutations in the ftsA gene across nine independent populations. Similarly, in Wannier et al. 

the authors identify 52 genes which are enriched for SNPs during passaging on glucose 

minimal media191, of which seven were also observed in our evolution experiment; prfB, 

oxyR, pta, yeeJ, yneO, yfhM and rpoC. Interestingly, the pta and yeeJ loci which were not 

reverted in Kuznetsov et al., were identified in Wannier et al., and were also found to be 

highly enriched for reversions and potential second site suppressors in our experiment. 

Taken together, the fact that different approaches identify different subsets of important 



96 
 

sequence substitutions with different functionalities highlights the complementary nature 

of our evolutionary approach to evolve functional protein-producing strains. 

Evolved β populations also acquired mutations in the polA and pcnB genes which encode 

DNA polymerase I and poly(A) polymerase I respectively. Mutations in both genes are known 

to affect plasmid maintenance and copy number, including the S446F mutation which we 

observed197. Interestingly, the R105C mutation in the pcnB gene occurred independently 

during construction of the CC, UC and UU parent strains. This mutation is not present in the 

parental RTΔA strain, did not occur during construction of the parental control (Δ) strain 

and was not acquired during evolution of any of the control populations, which only 

contained empty plasmids. The polA S446F, T666A and M768V mutations and the R105C 

mutation in pcnB were introduced into the genome of RTΔA cells and their influence on 

plasmid copy number was measured by qPCR (Figure 4.4g, h). All mutations dramatically 

lowered plasmid copy number, consistent with literature reports for S446F. That the R105C 

mutation in pcnB occurred independently during construction of the strains containing 

plasmids pRSF-SelA-PstK and pCDF-SelD-UX indicates an extremely strong selective 

pressure to lower the toxicity or metabolic burden associated with highly active 

selenocysteine biosynthesis and/or incorporation. 

Evolved populations also strongly enriched for mutations in the prfB encoding release 

factor 2 (RF2), particularly a T246A substitution, which was observed in 10 of the 24 

populations. T246 is unique to K12 E. coli strains185, with either alanine or serine found at 

that position in all other E. coli strains and related bacteria, and strongly decreases 

termination in response to UAA stop codons186. To validate the impact on translation 

termination, we introduced all observed RF2 mutations (T246A, T246A-N276D and K282R) 

into the genome of RTΔA cells and performed growth assays (Figure 4.5e-h). In addition, 

the N276D mutation was added individually. We observed a large improvement in cell 

growth rate and culture density when cells were grown in defined media for the T246A and 

T246A-N276D mutants and minor improvement for the K282R mutant. The N276D mutation 

alone was mildly deleterious and presumably co-enriched in cells which had acquired 

T246A. The prfB T246A mutation was also observed by Wannier et al. during passaging of 

recoded E. coli strains in glucose minimal media191. In agreement with our growth assay data 

(Figure 4.5e-h), the authors also report improved growth of strains carrying the prfB T246A 
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mutation in minimal media. Collectively these data support previous work which identified 

a requirement for efficient termination when E. coli cells were cultured in defined media with 

poorer carbon sources186, and indicates that recoded E. coli strains suffer global defects in 

translation termination due to deletion of RF1. 

 

4.2.3 Experimental evolution of bacteria in the presence of 3nY 

We wished to examine the long-term adaptation and evolution of E. coli addicted to a 

ncAA, 3nY. We assembled an OTS for the incorporation of 3nY comprised of a 

Methanocaldococcus jannaschii tyrosyl-aaRS variant that had previously been engineered to 

be specific for 3-iodo-L-tyrosine169 but was also compatible with 3nY198, and the 

corresponding M. jannaschii tyrosyl-tRNA in which the anticodon was complementary to the 

UAG amber stop codon. This OTS enabled ‘addiction’ via a β-lactamase variant (blaTEM-1.B9) 

that had been previously selected to be dependent upon 3nY incorporation at amino acid 

position 162198. However, since blaTEM-1.B9 with 3nY already conferred resistance to high 

levels of ampicillin we further engineered blaTEM-1.B9 to use ceftazidime (CAZ) as a 

substrate199,200. The new β-lactamase, blaAddicted, conferred moderate resistance to CAZ in a 

3nY-dependent manner at concentrations commonly used in bacterial cultures, with a 

measured minimal inhibitory concentration (MIC) of ceftazidime of 3–10 μg mL−1 

(Figure 4.6). This lower MIC allowed us to both retain and challenge the 3nY incorporation 

by progressively increasing CAZ concentrations during culture. We also constructed a 

control plasmid (pCONTROL) by replacing the 3nY codon (UAG) at position 162 in blaAddicted 

with a phenylalanine codon (UUU), generating blaControl. Phenylalanine is the only canonical 

amino acid that produces a functional β-lactamase when replacing 3nY162 in blaTEM-1.B9198. 

As expected, the control lines conferred CAZ resistance in a 3nY-independent manner 

(Figure 4.6). 

As a chassis for evolution, we chose to use E. coli strain MG1655 because it is well-

characterized, with a sequenced and annotated genome201. MG1655 is autotrophic for all 20 

canonical amino acids allowing for robust growth in amino acid knockout media. MG1655 

was transformed with pADDICTED or pCONTROL, and lines were passaged in three different 

mixtures of amino acids in MOPS-EZ Rich Defined Medium (RDM). The first mixture 

contained all 20 standard amino acids (RDM-20), the second mixture lacked tyrosine (RDM-
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19), and the third mixture lacked seven amino acids; serine, leucine, tryptophan, glutamine, 

tyrosine, lysine, and glutamate (RDM-13) (Figure 4.7). These seven amino acids represent 

all amino acids encoded by codons accessible through single nucleotide mutations from the 

UAG stop codon; by limiting the charging of the tRNAs for these amino acids, it should prove 

more difficult for any single mutation in a codon to be readily suppressed by mutations to 

tRNA anticodons or by mis-pairing. The RDM-13 media condition also proved a more 

stringent challenge to growth and evolution. Each media condition was supplemented with 

10 mM 3nY, matching the concentration of L-serine, the most abundant amino acid in RDM. 

We initiated selections with six independent clones, three containing pADDICTED, and 

three containing pCONTROL. These lines were denoted as Addicted(i), Addicted(ii), 

Addicted(iii), and Control(i), Control(ii), Control(iii) (Figure 4.7). Each clone was passaged 

in the three different amino acid environments described above, and evolved lines are 

identified by the evolutionary media condition and the progenitor clone from which it was 

initiated (e.g. Addicted-20(i), Addicted-19(i)…Control-13(iii)). Growth cultures were 

passaged daily by inoculating 5 mL of RDM with 1 µL of overnight growth. This resulted in 

approximately 12.5 generations per daily passage. While passaging, CAZ concentration was 

increased at a rate of 1 µg mL−1 per 100 generations to a final concentration of 22 µg mL−1 to 

provide evolutionary pressure and ensure enforcement of 3nY dependence. At the 

conclusion of 160 passages, corresponding to approximately 2000 generations, we selected 

a single clone from each evolved line and sequenced the bacterial genomes of the single clone 

as well as the entire bacterial culture using the HiSeq 4000 Illumina platform. Selected cells 

were, in general, genotypically representative of the average bacterial population. We 

further characterized phenotypic parameters of the selected evolved cells, as well as the 

progenitor cells. 

 

4.2.4 Genetic analysis of 3nY adaption 

During the course of passaging, CAZ concentrations were increased to levels beyond the 

MIC of the progenitor cells (the initial MIC of lines was approximately 2–6 µg mL−1, while the 

final CAZ concentration challenge was 22 µg mL−1). Bacterial survival at increasingly higher 

CAZ concentrations indicated that CAZ resistance was evolving in the lines. All nine of the 

addicted cell lines acquired at least a single mutation in blaAddicted during evolution 
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(Table 4.4). Several of these mutations are known or expected to be stabilizing mutations, 

while others are known to expand substrate specificity of blaTEM-175,82,202–205. Other mutations 

are specific to blaTEM-1.B9, which originally included a number of substitutions relative to the 

wild-type blaTEM-1 that addicted it to 3nY. The substitution T139I in Addicted-20(iii) and 

Control-19(ii), is more similar to the original wild-type residue, leucine, but does not reduce 

the 3nY dependence of the enzyme. In contrast, only five control lines acquired mutations in 

blaControl: Control-20(i), -20(ii), -20(iii), -19(i), and -19(iii). The higher rate of mutation for 

blaAddicted relative to blaControl (p = 0.0054) indicates that the enzyme dependent upon the 

ncAA was not initially as fit as its non-addicted counterpart, especially in the presence of 

increasing antibiotic concentrations. 

Beyond mutations in the bla gene itself, increases in MIC may have also been the result 

of other plasmid or genomic mutations that altered antibiotic resistance through other 

mechanisms. For example, the plasmid from Addicted-13(iii) has a mutation in repC, which 

can affect copy number and in turn antibiotic resistance206,207. In addition, genomic 

mutations occurred in genes that are known to have a role in antibiotic tolerance. Four lines 

(Addicted-20(i), -20(iii), -19(iii), and Control-20(iii)) had mutations in envZ (Table 4.5), a 

histidine kinase that regulates ompF and ompC expression, which in turn alter membrane 

porosity and have been tied to β-lactam resistance208,209. In the same vein, Addicted-13(iii) 

has a mutation directly in ompF. Mutations to cyaA or crp, two related proteins directly or 

indirectly involved in transcriptional regulation, occurred in eight evolved lines (Addicted-

20(ii), -19(ii), -19(iii), -13(i), -13(iii) and Control-19(i), -19(iii), -13(iii)), and inactivation of 

these genes has been shown to produce resistance to β-lactams210,211. The opgG gene was 

mutated in Addicted-20(iii), -19(i), and Control-20(ii), and is involved in conferring 

resistance to antibiotics212. Finally, lipopolysaccharide (LPS) expression has been tied 

ceftazidime treatments, especially at or near MIC levels, and several lines had mutations in 

LPS biosynthesis and maintenance genes. Notably, seven lines had IS insertions in the waa 

operon that encodes the core oligosaccharide of LPS, including waaO (Addicted-20(ii), -19(i), 

and Control-20(ii), -20(iii)), waaQ (Control-20(i)), waaP (Addicted-13(i)), and waaB 

(Control-19(ii)). Also, three lines had mutations in the LPS-related gene galU, (Control-19(i), 

-13(i), -13(iii)), and one line had a mutation in lptD, which is involved in the assembly of LPS 

at the surface of the cell (Control-13(ii))213,214. 
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Full genome sequencing and analysis revealed several trends among evolution 

conditions and the genes affected during evolution. (Table 4.5). Strikingly, the most 

commonly mutated or deleted ORFs were amino acid transporters in the hydroxyl and 

aromatic amino acid permease (HAAAP) family. The most commonly affected HAAAP protein 

was tyrP, a tyrosine-specific permease215,216 that was inactivated or deleted in 10 of the 

evolved lines, including all six evolved in RDM-13, and four of the six lines evolved in RDM-

19, including all three control lines, as well as Addicted-19(iii). The most common 

mechanism (9 of 10 cultures) used to inactivate tyrP was an IS1 mediated deletion of a large 

genomic fragment that excised twelve to fourteen genes, including a portion or the entirety 

of tyrP. The second most commonly mutated HAAAP protein was mtr, a tryptophan-specific 

permease217. The mtr mutations were found exclusively in lines evolved in RDM-13, with five 

of the six lines evolved in RDM-13 having a mutated mtr gene, and the final line, Control-

13(iii), having an intergenic mutation near the mtr ORF. The third most common HAAAP 

protein that was inactivated was sdaC, a serine specific transporter, which was inactivated 

in four of the six lines evolved in RDM-20; a mutation of unknown consequence appeared in 

a fifth line (A384V). Surprisingly, sdaC was unaffected in all RDM-19 and RDM-13 evolved 

lines. 

We hypothesized that deactivation of HAAAPs may have played a role in reducing the 

fitness burden of 3nY in the media. We sequenced the genomes of the six RDM-13 lines after 

125 generations of growth in the enriched RDM-13 to determine which mutations had 

occurred early in experimental evolution, and found that five of the six populations had 

mutations in mtr or the mtr promoter. These mutations were fixed in three of the five lines, 

and for the remaining two lines some 22.8% of the Control-13(i) population had a mtr 

mutation, while 44.2% of the Addicted-19(iii) had mutations in mtr; both mutations were 

fixed by generation 2000. Additionally, the tyrP region was excised from the genomes of 

Addicted-13(i) and Control-13(ii). These mutations were the only identifiable mutations in 

the population after 125 generations, and were likely responsible for the ability to grow in 

pure RDM-13 after this point. This data supports the hypothesis that aromatic amino acid 

transporter deactivation (specifically mtr and tyrP) reduced the fitness burden imposed by 

the noncanonical aromatic amino acid, 3nY. 
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All eighteen lines were initially capable of utilizing 3nY in their proteome, and after 2000 

generations of evolution four clones had each acquired a single in-frame amber codon in 

protein coding sequences. In three of these four instances, the strains did not require 3nY for 

growth. The clone from Addicted-20(iii) had acquired a SNP resulting in Q314tag in opgG, an 

osmoregulated peptidoglycan biosynthesis protein218,219. The other three in-frame amber 

codons appeared in clones from the Control lines, including Control-20(ii) and Control-

19(iii), which acquired a W18tag mutation in sdaC and a W357tag mutation in tyrP, 

respectively. These amber substitutions likely down-regulated the expression of these 

HAAAP genes, consistent with our findings that these loci were frequently deleted or 

otherwise compromised. Control-19(iii) had deactivated the OTS entirely, indicating 

W357tag of tyrP was a truncation, while in Control-20(ii) the OTS remained partially active. 

As mentioned above, two lines showed an unexpected dependence on 3nY for growth. 

When we assayed the ceftazidime MIC for the clone chosen from the Control-13(ii) line there 

was minimal to no growth on plates without 3nY, but appropriate growth on 3nY 

supplemented plates. Later, multiple replicates consistently resulted in a no growth 

phenotype for line Control-13(ii) in the absence of 3nY during amber suppression assays. 

Sequencing of this genome revealed an in-frame UAG codon in lptD, a Q557tag substitution. 

lptD is an essential gene involved in LPS biosynthesis218,220. Comparison to the full culture 

sequencing revealed this mutation was not representative of the bacterial population in the 

evolving culture Control-13(ii). Despite being a minor component of the full population, this 

mutation demonstrates the additional mutational space available to the evolving bacteria. 

An amber stop codon in lptD in a wild-type E. coli would result in a nonviable phenotype, yet 

with the expanded genetic code this clone has survived. 

While the clone from the Control-13(ii) line was found to have an amber stop codon in 

an essential gene that may explain the lack of growth in the absence of 3nY, we cannot point 

to a similar rationale for why Addicted-19(ii) shows reduced growth rates in the absence of 

3nY. Genome sequencing of the Addicted-19(ii) clone revealed six SNPs had arisen during 

evolution, four of which caused single amino acid substitutions, a fifth that resulted in a silent 

mutation, and a sixth that occurred in an intergenic region. As with other strains that had 

adapted to 3nY toxicity, Addicted-19(ii) contained a 10 kb genomic deletion surrounding the 

tyrosine permease tyrP. 
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4.4 Discussion 

Previously, two different approaches have been used to generate organisms with altered 

or expanded amino acid genetic codes; a bottom-up approach where components of the 

organism were engineered to function with a ncAA, or a top-down approach, where an 

organism was allowed to evolve in the presence of a ncAA221. Advances in genome editing 

and protein structural modeling have made the bottom-up approach feasible, with two 

recent reports of E. coli successfully engineered to depend on a ncAA for survival222,223. It 

should now be possible to make fully synthetic genomes224 that are designed to have a 

chemical dependence on an ncAA throughout the genome using the ‘amberless’ E. coli176. 

Alternatively, top-down approaches have previously been used to generate organisms that 

preferentially function with a ncAA substituting for tryptophan164,225. Using mutagens and 

selective growth conditions, Bacillus subtilis became dependent on a normally toxic 

tryptophan analog, 4-fluorotryptophan, with only 106 genomic mutations required to 

change amino acid preference225. In contrast, an E. coli tryptophan auxotroph evolved in the 

presence of 4-fluorotryptophan in place of tryptophan226 could tolerate high levels of the 

ncAA, but in the end still required tryptophan for growth. A similar approach using long-

term evolution in E. coli allowed for cells to grow using a sulfur-containing tryptophan analog 

in place of tryptophan165. Another recent report shows that the bacteriophage T7 will adopt 

ncAAs into its genetic code to reach new fitness peaks166. 

The work described herein can be considered a hybrid approach, resting between 

bottom-up and top-down. We used a single engineered addiction element, to preserve an 

active OTS over evolutionary timeframes within an otherwise unmodified organism. We first 

engineered an improved bacterial host for selenoprotein expression by endowing E. coli 

strains with conditional dependence for incorporation of selenocysteine using an amber 

suppressor tRNASec variant and an engineered β-lactamase containing an essential 

diselenide bond. Dependence on selenocysteine incorporation was maintained for more 

than 2,500 generations, allowing cell populations to evolve tolerance to constitutive 

selenocysteine biosynthesis and acquire several mutations that improved cell fitness. This is 

the first demonstration, to our knowledge, of enforcing an expanded genetic code to facilitate 

host adaptation and improve recombinant protein production. We anticipate that selected 
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mutations identified in our study could be integrated into recoded E. coli strains196 that have 

been optimized using different methods. With recent advances in orthogonal translation 

systems227 and protein design, this type of approach should prove generalizable to other 

amino acids in other proteins198,222,223. 

Previous attempts to improve genomically recoded E. coli strains have focused 

exclusively on growth rate191,196 but have found less substantial improvements in the 

suppression of UAG codons by non-canonical amino acids. Using our evolved strains, we have 

greatly expanded the number of selenocysteine residues that can be site-specifically 

incorporated into recombinant or endogenous proteins, enabling the production of 

selenoproteins containing multiple diselenide bonds, such as seleno-antibody fragments. 

Evolved β_CC and β_UC populations showed five- to sevenfold increases in selenoprotein 

expression compared to the parental cells. Evolved β_UU populations showed less change 

from the parental cells, which had much higher fluorescence than either the β_CC or β_UC 

parental cells. In addition to the increased fluorescence (normalized to cell density), the 

evolved β_UC and β_UU strains achieved several fold higher cell density , increasing overall 

selenoprotein yield in some populations up to 20-fold.  

Diselenide bonds have been used to improve the stability and biological half-life of 

therapeutic peptides, such as insulin228 and oxytocin229, which are manufactured using solid-

phase synthesis. The ability to efficiently introduce diselenide bonds into recombinant 

proteins extends this stabilizing motif to previously inaccessible classes of protein 

therapeutics, and provides a high-throughput approach to improve existing therapeutics. 

In addition to enabling the incorporation of diselenide bonds as a protein engineering 

tool230, a reliable host for recombinant selenoprotein expression will find broad utility 

among the wider protein biology community. Replacing catalytic cysteine residues in 

enzymes with selenocysteine has enabled advances in mechanistic enzymology231,232, but 

progress has been hindered by inefficient protein expression in cysteine auxotrophs or by 

specialized protein ligation strategies233. In addition, these approaches have inherent 

limitations, requiring either the removal of native cysteine residues or accepting 

indiscriminate selenocysteine incorporation, or maintaining the solubility of truncated 

enzyme fragments. 
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Similarly, efforts to characterize the human selenoproteome (comprising 25 proteins of 

which half are uncharacterized) have relied on auxotrophic selenocysteine incorporation234, 

or replacement of catalytic selenocysteine residues with cysteine to overcome the difficulty 

of expression at the cost of producing proteins with low activity and unknown biological 

relevance235. Recent attempts to produce two of these proteins have been successful using 

complete chemical synthesis of entire selenoproteins236. Expression in a bacterial host will 

enable easier analysis of these proteins. Furthermore, selenocysteine-dependent 

conjugation chemistries237, methods currently employed by peptide chemists, can now be 

expanded to recombinant proteins using our strains, making orthogonal drug conjugation 

easier by removing the need to eliminate other reactive surface residues. We envision that 

the tools and host strains for highly efficient site-specific selenocysteine incorporation that 

we report here will serve as a platform for exploring the potential of the selenoproteome and 

seleno-stabilized therapeutics. 

Over the described 2000 generations, 3nY-addicted bacteria have remained dependent 

on 3nY for survival in evolutionary conditions, and cells have evolved to overcome the fitness 

burdens initially seen from the expanded genetic code. This was not a foregone conclusion: 

in order to re-establish the canonical 20 amino acid code, lines could have evolved blaAddicted 

to no longer require 3nY, or acquired genomic mutations leading the CAZ resistance without 

blaAddicted. Even though 326 genomic amber codons were a single mutational step from stop 

codons that would not be suppressed by the OTS, in over 2000 generations addicted 

populations fixed no mutations that led away from amber stop codons used for translational 

termination, despite previous evidence that recoding amber codons to alternative stop 

codons reduces the fitness effects of obligate UAG suppression166. 

Instead it became clear that the most important adaptations to the ambiguous genetic 

code we had imposed were ones that alleviated either the toxicity of an unnatural amino acid 

and/or that better optimized the composition of the 20 amino acids normally used for 

growth. Growth in 3nY clearly led to fitness deficits, and to compensate if the media lacked 

tyrosine (RDM-19 and RDM-13), the tyrosine permease tyrP was inactivated, and if the 

media also lacked tryptophan (RDM-13), the tryptophan permease mtr was inactivated. In 

contrast, if all 20 amino acids were present (RDM-20), the serine permease sdaC was 

inactivated. Since serine is the most abundant amino acid in RDM conditions (10 mM), it is 
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possible that the amino acid pool is better balanced through deletion of sdaC, while still 

relying on other serine transporters (sstT) for serine uptake. 

Once strains had evolved to the point where they could accommodate an ambiguous 

genetic code that could accept suppression with either tyrosine or 3nY, they were positioned 

for further evolution to specify a new code. After 2000 generations of evolution with 3nY, 

the existence of three in-frame amber codons in clones with active OTSs, and the fact that a 

clone from the Control-13(ii) line had adopted an in-frame UAG codon in the essential gene 

lptD, provides evidence that populations are exploring the 3nY mutational space. 

Additionally, the reduced doubling time of a second line, Addicted-19(ii), in the absence of 

3nY may indicate some preference for the new media condition containing 3nY, even though 

no genomic in-frame amber codons had arisen. In this regard, the evolution of Addicted-

19(ii) may resemble the evolution of a B. subtilis strain that could preferentially utilize 4-

fluoro-tryptophan in place of tryptophan164. 

Overall, our method provides one of the first experiments investigating how a new 

genetic code is adopted by an organism, and evolved lineages may represent evolutionary 

intermediates to the adoption of a new amino acid.  

 

4.5 Methods 

4.5.1 Molecular biology 

To perform MAGE, 100 μL of RTΔA cells containing pKD78 from a saturated culture was 

diluted into 3 mL of LB supplemented with 33 μg/mL chloramphenicol and grown to mid-

log phase at 30 °C. To induce the lambda red-recombination machinery, 100 μL of 10% w/v 

L-arabinose was added to give a final concentration of 0.3% and the cells transferred to 37 

°C and incubated for 1 h. One mL of the induced culture was removed and centrifuged at 

8,000g for 1 min to pellet the cells. Cell pellets were resuspended in 10% glycerol and 

washed three times to prepare electrocompetent cells. Mutagenic oligonucleotides were 

added to a final concentration of 1 μM each. Cells were electroporated at 1.8 kV, 25 μF 

capacitance and 200 ohms (Bio-Rad E. coli Pulser) and recovered in three mL LB 

supplemented with chloramphenicol. Cells were grown to mid-log phase and an additional 

two MAGE cycles were performed as described above. Following a final 3-h recovery, tenfold 
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serial dilutions were plated on LB supplemented with 33 μg/mL zeocin to obtain single 

colonies. Mutants were identified using multiplex allele-specific colony (MASC)-PCR, after 

which the target genes were amplified by PCR and mutations confirmed by Sanger 

sequencing. 

 

4.5.2 Bacterial passaging and growth assays 

To passage bacterial cells, 5-mL cultures of LB supplemented with 25 μg/mL kanamycin, 

50 μg/mL spectinomycin, 10 μM Na2SeO3, and 100 μg/mL carbenicillin were inoculated in 

triplicate with the Δ, CC, UC, and UU parent strains. Following growth to stationary phase, 

cells were diluted 5,000-fold into fresh media resulting in ∼12.5 doublings every passage. 

Glycerol stocks were prepared from all cultures every five passages and the selection 

stringency was increased every ten passages. During the β-lactam resistance experiment, 

stringency was adjusted by increasing the carbenicillin concentration by 100 μg/mL. This 

continued evenly until 2,500 cell doublings had occurred. For the thermal tolerance 

experiment, the temperature was increased by 0.5 °C (and the carbenicillin concentration 

kept constant at 100 μg/mL). At an incubation temperature of 43.5 °C, some cultures could 

no longer be passaged reliably when the freshly diluted cells were immediately incubated at 

43.5 °C. To overcome this problem, all cultures in the thermal experiment were pre-

incubated at 43 °C for 3 h and then the incubation temperature elevated to the correct level. 

At 45.5 °C several cultures had poor viability even with a 43 °C pre-incubation, and all 

remaining passages were performed at 45 °C. For the competition experiment between wild-

type RTΔA cells and those carrying mutant cysK alleles, strains were initially grown to 

saturation, diluted to OD600 0.1 and mixed in a 1:1 ratio. 5-mL cultures of LB supplemented 

with 33 μg/mL zeocin and ± 10 μM Na2SeO3 were inoculated in triplicate with 1 μL of the 

RTΔA:mutant cell mix. Cultures were incubated at 37 °C and serially passaged to saturation 

ten times (125 generations). 

Parental and evolved E. coli strains were characterized by growth assays in both rich 

and defined media. For characterization in rich media, 5-mL cultures of LB containing 25 

μg/mL kanamycin, 50 μg/mL spectinomycin, and 10 μM Na2SeO3 were inoculated from 

glycerol stocks and grown to saturation. Aliquots of each culture were diluted to OD600 1.0 

and 1 μL used to inoculate 100-μL cultures, in triplicate, comprising four different 
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carbenicillin concentrations in a 96-well plate. The growth assay media consisted of LB 

containing 25 μg/mL kanamycin, 50 μg/mL spectinomycin, 10 μM Na2SeO3, and the four 

carbenicillin concentrations were 0, 100, 1,000, or 10,000 μg/mL. Plates were sealed with 

an optically clear, gas-permeable membrane and incubated with constant orbital agitation 

(amplitude of 3 mm) at 37 °C. OD600 measurements were taken at 5-min intervals for 24 h 

(Tecan Infinite M200 Pro). Populations evolved with β-lactam stress were assayed using all 

four carbenicillin concentrations. Populations evolved with thermal stress were only 

assayed at 100 μg/mL carbenicillin. All growth curves are plotted as the mean of three 

biological replicates performed in technical triplicate ± s.e.m. represented as ribbon. 

For characterization in defined media, cultures were started in MOPS EZ containing 0.5 

μg/mL D-biotin, 25 μg/mL kanamycin, and 50 μg/mL spectinomycin. Parental strains were 

observed to grow poorly in MOPS EZ and cultures were diluted to OD600 0.1 rather than 1.0. 

Growth assays were performed as previously described using four variations of the MOPS 

EZ media used for overnight growth; media only, media containing 100 μg/mL carbenicillin, 

media containing 1 μM Na2SeO3 and media containing both carbenicillin and Na2SeO3. 

Mutant strains generated by MAGE were assayed as described above in either LB 

supplemented with 33 μg/mL zeocin or MOPS EZ containing 33 μg/mL zeocin and 0.5 μg/mL 

D-biotin. Na2SeO3 was supplemented at 10 μM in LB and 1 μM in MOPS EZ. Growth curve 

data are representative of two or three repeated experiments. 

 

4.5.3 Whole genome sequencing and bioinformatic analysis. 

Genomic DNA from RTΔA cells, the parental Δ, CC, UC, and UU stocks and each evolved 

bacterial population was extracted from ∼5 × 109 cells using a Zymo Research 

Fungal/Bacterial DNA Kit according to the manufacturer's instructions. DNA was prepared 

for sequencing with a 300 base-pair target insert size using standard methods. Samples were 

sequenced on an Illumina HiSeq 2500 system using 125 base-paired-end reads at the 

Genome Sequencing and Analysis Facility (University of Texas at Austin). Across all 

sequenced bacterial lines, an average coverage of 144.4× was obtained with a s.d. of 43.0. 

Raw sequencing reads were processed by trimming and removing adapters using 

trimmomatic (v0.32). The sequence of the RTΔA genome was assembled using the De novo 

Assembly Module in Geneious. Variant detection was performed using breseq (v0.27.0), with 
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the assembled RTΔA genome and plasmid sequences as references. Mutations occurring at 

or above 20% in the Δ, CC, UC, and UU parental strains were removed in their respective 

evolved populations. Genes enriched with SNPs were defined as having acquired SNPs with 

>50% frequency in four or more independent populations evolved under the same 

conditions. 

 

4.5.4 qPCR and mutant allele detection 

RTΔA cells along with the polA and pcnB mutants were transformed with the pRSF and 

pCDF empty plasmids. Replicates of each of the three clones for each mutant/plasmid pair 

were grown to saturation and then diluted 1:100 in a 96-well plate. Plates were incubated in 

a plate reader (BioTek Cytation 5) at 37 °C for 4 h with constant agitation, where OD600 was 

monitored. Following incubation the plates were removed and put on ice, where a 2-μL 

aliquot from each well was added to a qPCR reaction mix containing EvaGreen double-

stranded DNA dye, and qPCR primers specific for either the aphA1 or aadA genes from pRSF 

and pCDF, respectively. Purified plasmid DNA was quantified, diluted, and used as a standard 

on each qPCR plate for quantification. Fluorescence was read and analyzed using a Roche 

Lightcycler 96. Absolute quantifications of each sample were normalized to the OD600 of the 

well corresponding to the sample. 

For detection of mutant cysK alleles, cultures were inoculated from glycerol stocks taken 

from the final serial passage for each sample and incubated at 37 °C with 225 r.p.m. agitation. 

For samples passaged with selenite, the medium was supplemented with 10 μM Na2SeO3 for 

any further growth. Saturated cultures were diluted 1:50 in LB and incubated for 3 h until 

reaching mid-log phase. 1.5-mL aliquots of each culture were normalized to the highest 

OD600 (∼0.4) and centrifuged at 3,500g for 5 min, then resuspended in 100 μL of LB. Cells 

were then boiled for 15 min at 95 °C to prevent PCR inhibition. Cell debris was pelleted by 

centrifugation and the supernatant was recovered. Primers specific for wild-type and mutant 

alleles at T69, T73, and H153 were designed as previously described238. Oligos were 

purchased from IDT (Coralville, IA). Triplicate qPCR reactions (20 μL) were set up using 500 

nM Forward and Reverse primer, 10 μL of 2× Fast EvaGreen qPCR Master Mix (Biotium, Inc., 

Fremont, CA), and 2 μL of cell supernatant from each sample. Reactions were run on the 
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Roche LightCycler 96 and analyzed using the manufacturer's software. qPCR data shown are 

representative of three experiments. 

 

4.5.5 Statistical analysis and reproducibility 

All data in the manuscript are displayed as mean ± s.e.m. unless specifically indicated. 

Bacterial growth curves and bar graphs were plotted in R 3.1.2 using the package ggplot2. 

The ELISA curves were estimated in R using a general asymmetric five parameter logistic 

model with the package drm and plotted using ggplot2. 

 

4.5.6 Evolutionary set up 

Plasmid backbone from pMMB67EH239 was amplified using DNA oligos (Integrated DNA 

Technologies) DT01 and DT02. The M. jannaschii OTS and blaTEM-1.b9 were amplified from a 

plasmid described previously198 using oligos DT03 and DT04. To convert the penicillinase 

blaTEM-1.B9 to the cephalosporinase blaAddicted, residues 165–167 were converted from WEP to 

YYG using oligo DT05 with either DT06 or DT07 for blaAddicted or blaControl respectively. 

Reaction mixtures were transformed into E. coli TOP10 and selected on LB-agar with 

2 μg mL−1 CAZ for blaControl, and the same conditions with 10 mM 3nY for blaAddicted. Samples 

were sequence verified at University of Texas core facilities using Sanger sequencing. 

Properly sequenced plasmid of blaControl and blaAddicted were used as pCONTROL and 

pADDICTED respectively, and transformed into E. coli MG1655. Three colonies from each 

were selected as clones i, ii, and iii for passaging. 

MOPS-EZ Rich Defined Media (RDM, TEKnova) with the full complement of amino acids 

(RDM-20), as well as the knockout medias (RDM-19 and RDM-13), were prepared according 

the manufacturers specification. For media preparation, 3-nitro-L-tyrosine or 3-iodo-L-

tyrosine (Sigma-Aldrich) was added to ultrapure deionized water to a final concentration of 

17.24 mM. The 3nY or 3iY supplemented water was used to complete RDM, and the entire 

preparation was filter sterilized with Nalgene Rapid-Flow SFCA filtration units. Prepared 

media was stored at 4 °C, and moved to room temperature 16–24 hours before use. 

Selected colonies i, ii, and iii, from each transformation were picked and grown in RDM-

20 supplemented with 10 mM 3nY and 2 μg mL−1 CAZ for 16 hours. Each culture was then 
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used to inoculate three subcultures of RDM-20, RDM-19, and RDM13. Initially, cultures were 

incapable of growth in RDM-13, but were capable of growth when 25% of media was 

replaced with RDM-19. This supplemented RDM-13 was used for the first 125 generations 

for RDM-13 evolved cultures, after which cultures were capable of growth in RDM-13. 

Cultures were passaged every 16–24 hours by transferring 1 μL of culture into 5 mL of fresh 

media, and grown shaking at 37 °C. A 500 μL sample from each line was preserved at 

generation 0, 125, 250, and every 250 generations for the duration of evolution, samples are 

stored in 25% glycerol at −80 °C. 

 

4.5.7 Genome sequencing and assembly 

After the 2000 generations, 1 μL from each line was streaked onto RDM-agar 

supplemented with 10 mM 3nY. Two single colonies from each line were selected and grown 

in 3 mL RDM-20 with 10 mM 3nY with 22 μg mL−1 CAZ. Simultaneously, samples from the 

progenitor cells were grown in similar conditions using 2 μg mL−1 CAZ. After overnight 

growth, glycerol stocks were made of clonal cultures, and genomic DNA was isolated from 

one of the two cultures using bacteria genome miniprep kit (Sigma-Aldrich). Genomic DNA 

from mixed cultures were also prepped. Genomes were sequenced using the HiSeq. 4000 

platform, 150 bp paired ends, achieving greater than 100× coverage across all samples. Raw 

reads were processed through trimming and adapter removal using trimmomatic (v0.32)240. 

Alignment of sequencing reads and variant calling was performed through the breseq 

workflow (v0.27.2)241. 

  

4.5.8 Data availability 

All data generated or analyzed during this study are available from the corresponding 

author on reasonable request. Sequence data is available as NCBI, BioProject ID 

PRJNA430697. 

 

4.6 Conclusion 

Here, we show two reports of improved bacterial fitness in response to the addition of 

new translation machinery. While the orthogonal translation system and bacterial context 
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differed between the two experiments presented in this chapter, we did observe notable 

similarities. Both long term evolution experiments enforced retention of the OTS through an 

ncAA dependent beta-lactamase, and mutations were observed within this gene showing 

selection pressure on the antibiotic. In nitrotyrosine, the mutations were demonstrated to 

improve stability, but the mutational role observed in selenocysteine evolution was unclear. 

Both long term evolution experiments experienced toxicity burdens with unique solutions. 

To ameliorate the metabolic cost tied to selenocysteine incorporation and synthesis, E. coli 

cells reduced plasmid copy number. Addition of nitrotyrosine to the growth media was toxic, 

and the cell’s response was to inactivate the amino acid transporters. In addition, mutations 

in both studies were observed in the EnvZ/OmpR regulatory system, a modulator of 

osmolality and the global stress response.  

Mutations in the translation machinery were also common among the two experiments, 

though the likely effects both increased and decreased functionality of the translation 

apparatus in order to balance the complex system. Incorporation of nitrotyrosine in non-

addicted cell lines mutated the suppressor tRNA to alleviate fitness burden. The 

selenocysteine dependent lines improved release factor 2, presumably to accommodate the 

increased ochre and opal burden. While grown for ~2500 generations, both evolved lines 

did not readily adopt the new amino acid or take advantage of the new chemistry provided. 

Selenocysteine addicted E. coli showed few mutations to amber, though these likely arose 

from drift and are overall, neutral. The new ambers in the evolved nitrotyrosine addicted 

cells follow a similar pattern, save for one which inserted into the essential gene, lptD.  

While nonstandard amino acids have been engineered, the associated burdens and 

resulting fixes had not been studied in depth nor longitudinally. This chapter provides 

answers in two parallel experiments. With a top-down approach, we rely on laboratory 

evolution for solutions, letting the nature find optimality to a challenging task. Unlike 

Chapters 2 and 3 where the solution space is confined to a single gene, here we sought 

changes at a genome-wide scale. Many of the mutations crucial to increased fitness can be 

rationalized after identification through next generation sequencing, but would be near 

impossible to do from the onset of the experiment.  
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Figure 4.1 Evolution of selenocysteine-dependent E. coli strains improves fitness.  

(a) A recoded E. coli strain deficient in selenocysteine incorporation (RTΔA) was made conditionally 

dependent on selenocysteine by integrating NMC-A β-lactamase variants containing either an 

essential selenyl-sulfhydryl (UC) or diselenide (UU) bond and supplying the biosynthesis and 

incorporation machinery in trans. Control strains contained a wild-type β-lactamase containing a 

disulfide bond, lacking either selenocysteine dependence (CC) or the entire incorporation trait (Δ). 

(b) The four populations were serially passaged, in triplicate, 200 times to saturation (~2,500 

generations) in two different environmental conditions: increasing β-lactam stress (β populations) 

or increasing temperature (T populations). Note, at 43.5 °C (*) passaging technique was adjusted for 

the T populations. Curves are plotted with a line showing the mean and shading representing ± s.e.m., 

where n = 3 independent biological replicates.  
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Table 4.1 Amber mutations in evolved lines.  

Genes containing in-frame TAG codons enriched in several populations. Gene marked in blue are 

essential for E. coli viability. 

  

gene T_D1 T_D2 T_D3 T_CC1 T_CC2 T_CC3 T_UC1 T_UC2 T_UC3 T_UU1 T_UU2 T_UU3

xseB Q50*

mhpA Q68*

ygcB W406*

araD Q8*

yfeR Q31*

yhdP W511*

hfq Q41*

ftsK Q767* Q648*

macB Q20*

mdtM Q410*

fetA Q9*

pgpB Q152*

yahG Q85*

rfbA Q210*

rapA Q952*

sbmA W99*

ilvB Q68*

wzc Q553*

hrpA Q495*

yfcU W381*

slyA W16*

bcsE W482*

opgB Q261*

ecpD Q393*

proA Q295*

marR W83*

yffS W89*

yfbK Q301*

murF W224*

folA W30*

wecC Q398*

purL Q166*

mutM W157* Q212*

mlrA Q225*

betT Q580*

yedF Q45*
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Figure 4.2 Genes mutated during continuous evolution.  

(a) Mutations were identified by whole genome sequencing of all evolved populations after 2,500 

generations. Genes that contained SNPs with >50% frequency in at least 4 of the 12 independent 

subpopulations are reported using a circular representation. From innermost to outermost, the rings 

represent the genome location with a scale in megabase pairs (Mb), the Δ populations, the CC 

populations, the UC populations, and the UU populations. The yellow, orange, and red bars represent 

one, two, or three mutant alleles in a given set of triplicate subpopulations, respectively. (b–e) 

Growth curves of ftsA G124E, hemA P196L, yeeJ S1467P, and prfB T246A mutants compared to the 

parental RTΔA strain. Curves are plotted with a line showing the mean and shading representing ± 

s.e.m., where n = 3 independent biological replicates. Note, ftsA G124E and yeeJ S1467P represent 

reversions to wild-type MG1655 sequence, which were not directly observed. 

 



115 
 

 

 

 

 

 

 

 

gene b_D1 b_D2 b_D3 b_CC1 b_CC2 b_CC3 b_UC1 b_UC2 b_UC3 b_UU1 b_UU2 b_UU3

pta A119T W373R W373R W373R/G533D P673S/V286A/A294T S535P A119V S535P H515R/W373R P673L P673L

ftsI A257T K483R/A537T M471T A228V/P311S V545I D76G A537T A537T A3V/P311S V545I

ompR Y102C Y102C Y102C Y102C Y102C Y102C Y102C Y102C Y102C Y102C Y102C

prfB T221A N251D/T221A T221A K257R T221A T221A T221A

acrB M902I L591P/A183T F358L A999T A457T L344P

dnaE T470M G925D E916G Y938H R860H E781G

yphG A735V E199G S112F T126A P978L

hemA V183A A173V P196L A173V V183A

oxyR C199R V300A M193I A233T L124P

yeeJ A352T/G374S V1184A S1730N G1888D

pdxB C220R V212I D162N T299A

arcB V21A Q39** T652A T655A

mrdA A271T T52A A599T Y520H

ftsA Q155R T115A G386R A136V

yfdE A308V F53L Y143C V21I

polA S446F T666A M768V N430S

cysK H153Y I45N G271D T73A

bla NMC-A N216S F105S/S2P/T217A L169S/T218A N216S/S2P N216S S2P S2P/F105S S2P/F105S F105L F105S/T217A F105L

Table 4.2 SNPs enriched in populations evolved under β-lactam stress. 

Red genes were mutated during construction of C321.dA and red SNPs directly reverse the mutation. The 
P673S SNP marked in orange indicates reversion to a non wild-type sequence. 
A single asterisk indicates mutation to a TAG codon and a double asterisk indicates mutation to a TAA or TGA 
stop codon. TAG codon identity is dependent on the strain. 
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gene T_D1 T_D2 T_D3 T_CC1 T_CC2 T_CC3 T_UC1 T_UC2 T_UC3 T_UU1 T_UU2 T_UU3

pta E359K/N519DS263N/P673L W373R S535P S535P T662I D601A A119T P673L W373R E103K G31D

ompR R15C Q30R/Y102C Y102C Y102C Y102C Y102C Y102C G236S/F29L Y102C Y102C

cysK T73A A281V/F144S P68L T69I/R100H T73A I45V T73A L284P T73I

yeeJ A704T M1084I D1233N D1502E E470K/A939T V2034I/L1669F

ygcB A522V R389H/F257S W406**/A142V Q130* R665C I24L

ftsK A97T Q767* Y217S Q648* Y638C/A870V

ftsA V112A E201A/P98S A294T N145D H159Y

cpxR D137N V52A H70Y/M76I I4T T220A

hemA I176N A173V P196L P273L A5V P196L

arcA T34I G227S P58S L236P D84G

mhpA R392H Q68* K329E P395L/R271C

ydbA R1001Q A422T T612A/G564D K3R

iscR T125A Q44* T125A D88G T4I

yneO V574I T816A L1142R G707E T87A

paaA Y94C R138C P24S D248G

rpoC T1328A D248G R220H A182V

gyrA V644A A271T H185Y I590V

secD S207G A574V P198S E271G

eptC V60A Q248R V155I E374G

yfhM A1337V G1122S A787V W450**

prfB T221A T221A T221A T221A

mutM N99S P243S W157** Q212*

emrA V83A A55T L125W W253R

arcB Y234C R271W S507L L386P

lplA V34I A19V A19V F148L

bla NMC-A S263A F105S T245A T136A

Table 4.3 SNPs enriched in populations evolved under thermal stress. 

Red genes were mutated during construction of C321.dA and red SNPs directly reverse the mutation. 
A single asterisk indicates mutation to a TAG codon and a double asterisk indicates mutation to a TAA or TGA 
stop codon. TAG codon identity is dependent on the strain. 
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Figure 4.3 Growth curves of RTΔA cells containing point mutants in oxidative stress and 
selenite resistance. 

Growth curves of RTΔA cells containing point mutants in oxidative stress and selenite resistance 
genes in rich and defined media ± 1 μM Na2SeO3. The curves are plotted with a line showing the 
mean and shading representing ± S.E.M. where n = three independent biological replicates. (a) 
Growth curves of RTΔA containing a constitutively active variant of OxyR (A233T) observed during 
evolution. The A233T mutation does not provide any clear benefits to cell fitness compared to a wild-
type control. (b-d) Growth curves of RTΔA containing T69I, T73A or H153Y mutations respectively 
in CysK, which are expected to strongly inhibit cysteine biosynthesis, compared to a wild-type 
control. Mutations are not observed to have a significant impact on cell growth. 
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Figure 4.4 Mutant cysK allele retention and plasmid copy number determination. 

Analysis of mutant cysK allele frequency by qPCR in cell populations passaged for 125 generations in 
the presence of 10 μM Na2SeO3. At generation 0 (purple bars), cell populations contained 50% wild-
type cysK and 50% mutant cysK. (a) Detection of wild-type cysK (T69) in WT:T69I populations ± 
Na2SeO3. Wild-type cysK is detected at a similar frequency in both the presence and absence of 
Na2SeO3. (b) In contrast, mutant T69I undetectable (Cq = ~ 35) after 125 generations in all 
populations. (c) Detection of wild-type cysK (T73) in WT:T73A populations does not change ± 
Na2SeO3. (d) The cysK T73A mutant is lost from the populations when cultured in the absence of 
Na2SeO3 (light blue). In contrast, in the presence of Na2SeO3 (dark blue) the mutant allele is 
retained. (e) Detection of wild-type cysK (H153) in WT:H153Y populations is not affected by 
Na2SeO3 treatment. (f) Similar to T73A, the H135Y mutant is undetectable after serial passage in 
media without selenite (light blue), but is partially retained when selenite is present (dark blue). 
Abundance of pCDF (g) and pRSF (h) plasmids in RTΔA cells with mutations in poly(A) pol I (pcnB) 
and DNA pol I (polA). All mutations significantly decreased plasmid abundance compared to wild-
type cells. 
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Figure 4.5 Growth curves of C321.ΔA and prfB (release factor 2) single point mutants in RTΔA 
cells in rich and defined media. 

The curves are plotted with a line showing the mean and shading representing ± S.E.M. where n = 
three independent biological replicates. (a) Growth of RTΔA ftsA G124E shows minor improvement 
in defined media. (b) Growth of RTΔA hemA P196L shows significant improvement in defined media. 
(c) No improvement was observed in either rich or defined media for RTΔA pta P673L. (d) Growth 
of RTΔA yeeJ S1467P shows significant improvement in defined media. (e) The T246A mutation in 
release factor two significantly improves growth of RTΔA cells in defined media. (f) No improvement 
was observed in either rich or defined media for RTΔA prfB N276D. (g) A T246A-N276D double 
mutant was generated to investigate potential synergy between T246A and N276D which co-
occurred in one evolved population. Observed growth improvement is due to T246A mutation only. 
(h) Growth of RTΔA prfB K282R shows minor improvement in defined media. 
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Figure 4.6 Ceftazidime MICs.  

MICs of progenitor cells (gray and black) and evolved lines in the absence and presence of 1 mM 3nY. 
All lines increased MICs during evolution (upper panels, compare gray/black to colored bars). Lines 
addicted to 3nY remained dependent on 3nY for ceftazidime resistance after 2000 generations 
(upper left) while control lines never required 3nY for ceftazidime resistance (upper right). Plasmids 
extracted from evolved lines and transferred to wild-type E. coli strain MG1655 showed smaller 
increases in ceftazidime resistance (lower graphs). Values are the average of biological triplicates, 
error bars represent s.e.m. 
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Figure 4.7 3nY evolution set up.  

 
Wild-type E. coli strain MG1655 containing either pADDICTED or pCONTROL was evolved in 
biological triplicates (i, ii, and iii) for 2000 generations in one of three rich defined media conditions 
each supplemented with 10 mM 3nY. The first (RDM-20) contained all 20 canonical amino acids, the 
second (RDM-19) lacked tyrosine, and the third (RDM-13) lacked seven amino acids (serine, leucine, 
tryptophan, glutamine, tyrosine, lysine, and glutamate). During evolution ceftazidime concentration 
was increased to provide a fitness burden and enforce OTS activity.
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Figure 4.8 Growth rates of parental and evolved strains  

Doubling time (in minutes) of wild-type E. coli strain MG1655 (black bars), and MG1655 containing 
the plasmid pADDICTED or pCONTROL (gray bars). Doubling times were measured in all three 
media conditions (RDM-20, 19, and 13) and with no ncAA (none), with 10 mM 3-iodo tyrosine 
(3iY), or with 10 mM 3-nitro-tyrosine (3nY) before evolution (gray bars). Doubling times of each 
evolved lineage (i, ii, and iii for each condition) were measure after 2000 generations of evolution 
(red, blue, yellow, respectively) in the media in which they were evolved, without ncAA, with 10 
mM 3iY, or with 10 mM 3nY. Reported values are based on a minimum of two growth curves from 
biological replicates, error bars represent s.e.m. 
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Mutation Lines Effect Previously Identfied 

V33I Addicted-13(ii) ― 202,242 

Q39K Control-20(ii) Expanded Substrate Activity 205 

G92D Addicted-20(i), -20(ii), -19(ii) Stabilizing 202,243 

T139I Addicted-20(iii), Control-19(ii) blaTEM-189 specific ― 

T140K Addicted-19(ii), -19(iii), -13(iii) ― ― 

M152I Control-20(i) blaTEM-189 specific ― 

H153R Addicted-20(ii) Stabilizing 85,244 

M155I Control-20(iii) ― 202,245,246 

M182T Addicted-19(i) Stabilizing 75,82,205 

A184V Addicted-13(i) Expanded Substrate Activity 247,248 

T200P Addicted-20(i) ― ― 

A224V Control-19(i) Stabilizing 75 

 

Table 4.4 Mutations found in blaAddicted and blaControl in evolved lines. 
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Table 4.5 Genomic Mutations of Evolved Lines.  

Genomic mutations which occurred after 2000 generations of evolution. Mutations which appeared 
after 125 generations in RDM-13 are underlined. The four in-frame amber codons which arose in 
ORFs are bold. 
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Chapter 5 

 

Microbiota and Metatranscriptome Changes 

Accompanying the Onset of Gingivitis 

 

The advent of next-generation sequencing has enabled better disease understanding at 

an unprecedented resolution. Genome scale mutations and global transcriptome 

quantification are now performed routinely, a stark contrast to the more traditional 

reductionist approach predominate as recently as a decade ago. One consequence of this 

increase in scale is that experiments can be more of a fishing expedition with no set 

expectation or outcome. That is, rather than requiring a priori hypothesis of the underlying 

molecular biology, deep sequencing provides a more comprehensive view and allows for the 

resulting data to guide the conclusions. Perhaps no medical subfield has benefitted more 

from a richer understanding at the nucleic acid level than the microbiome. The importance 

of bacterial communities is becoming more and more prevalent in not only maintaining 

homeostasis but also the role it plays in the onset of disease phenotypes. This chapter 

explores just that, analyzing the bacterial community changes that signal the onset of 

gingivitis. 

Over half of adults experience gingivitis, a mild yet treatable form of periodontal disease 

caused by the overgrowth of oral microbes. Left untreated, gingivitis can progress to a more 

severe and irreversible disease, most commonly, chronic periodontitis. While periodontal 

diseases are associated with a shift in the oral microbiota composition, it remains unclear 

how this shift impacts microbiota function early in disease progression. We initiated this 

study in order to better characterize the progression from oral health to disease. We first 

analyzed changes in the abundances of specific microorganisms in dental plaque collected 

from teeth during health and gingivitis, the mildest form of periodontal disease. We found 

that clinical score of disease and patient from which the sample originated but not tooth 

brushing are significantly correlated with microbial community composition. While a 

This chapter is adapted from Nowicki, E. M., Shroff, R., Singleton, J. A., Renaud, D. E., Wallace, D., 

Drury, J., ... & Scott, D. A. (2018). mBio, 9(2), e00575-18. I shared first authorship with EMN, and 

specific contributions are outlined in the text. 



126 
 

number of virulence-related gene transcripts are differentially expressed in gingivitis 

samples relative to health, not all are increased, suggesting that overall activity of the 

microbiota is dynamic during disease transition. Better understanding which microbes are 

present and their function during early periodontal disease can potentially lead to more 

targeted prophylactic approaches to prevent disease progression. 

I contributed to this project by performing the bioinformatics analysis, data 

presentation, and writing of the manuscript. 

 

5.1 Introduction 

Oral microbes are found as an organized and complex polymicrobial biofilm community 

potentially containing at least 750 unique bacterial species with varying genetic potential249–

253. While these microbes normally co-exist within the mouth as commensals, infrequent or 

inadequate cleaning can lead to periodontal disease in a susceptible host253,254. The mildest 

form of periodontal disease, gingivitis, is characterized by plaque buildup in the subgingival 

crevice of teeth255 and inflammation of the gums256,257. Gingivitis symptoms can be 

eliminated and the gums restored to a healthy state through professional dental cleaning. 

Untreated gingivitis, however, can progress to chronic periodontitis258, an irreversible 

periodontal disease characterized by chronic inflammation, destruction of gum tissue, and 

ultimately loss of both tooth attachment and alveolar bone257,259 (Figure 4.1). 

A number of studies have harnessed the power of next-generation sequencing 

technology to characterize both the composition and function of the oral microbiota during 

health or periodontitis260–269. A distinct phylogenetic structure in health relative to 

periodontitis has been revealed through 16S rRNA gene and shotgun metagenomic 

sequencing260,265,267. Other studies have performed metagenome261,262,266,268 or 

metatranscriptome analyses263,264,267,269 to examine the functional potential of the oral 

microbiota in health and disease. Several of these studies have revealed the presence and 

expression patterns of genes associated with pathogenesis during periodontal disease. 

Although the genomes of many commensals found during periodontal health contain 

virulence-related genes, many of these genes are either uniquely present or more highly 

expressed in samples collected from patients with chronic periodontitis262.  Additionally, 
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several studies have revealed that gene expression patterns of the oral microbiota are 

patient-specific despite matched patient health status, suggesting that factors unique to each 

individual can shape microbial community structure and activity262,264. These studies have 

collectively expanded our understanding of how both community structure and function 

differ between periodontitis and health as well as across individuals. 

Several other studies have focused on understanding changes in microbial community 

structure during health relative to early periodontal disease, gingivitis254,256,257,270. For 

example, Huang et al. reported that unique taxonomic groups are found in plaque samples 

from either healthy patients or those with gingivitis270. In another study, 50 adults with 

naturally occurring gingivitis were restored to “baseline” dental health and then subjected 

to a three-week experimental gingivitis treatment. Researchers found that 27 bacterial 

genera were differentially distributed between baseline and gingivitis, with 5 of these 

showing elevated abundance in health and 22 having elevated abundance in gingivitis256. 

While these studies have helped to elucidate the community-level shifts that occur during 

the transition from health to gingivitis, the functional changes that occur during the 

progression of periodontal disease have not yet been examined.  

Understanding the functional contributions of the oral microbiota as periodontal 

disease develops is critical in order to develop more effective prophylactic treatments for 

preventing this all too common disease. The work herein assesses both community and 

functional changes of the human oral microbiota during the transition from health to an 

inflammatory periodontal disease. Analysis of subgingival plaque from a three-week 

experimental gingivitis treatment cohort revealed that similarity of microbiota composition 

between samples is significantly correlated with both clinical severity of gingivitis and 

patient, but not oral hygiene status. The relative abundances of seven of the most highly 

represented genera were found to differ significantly between patient-matched samples 

from teeth at different stages of gingivitis. With few exceptions, relative genus abundance as 

determined by 16S rRNA sequencing and relative transcript abundance determined by 

RNAseq were in agreement. Metatranscriptome sequencing of the plaque samples revealed 

that many genes significantly differentially expressed during gingivitis relative to health 

have virulence-related functions, and that while many of these functions serve to potentially 

promote tissue destruction and disease, the role of other virulence-related gene products 
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during early stages of disease is less clear. These data provide the characterization of 

changes in microbial activity that occur during the early stages of periodontal disease, which 

can potentially serve as targets to prevent further disease progression. 

 

5.2 Results 

5.2.1 Microbiota composition is correlated with clinical gingivitis index and patient 

Subgingival plaque samples pooled from two brushed or unbrushed teeth in 10 

individuals were collected at three different timepoints (as described in section 5.4.1), and 

were analyzed based on clinical disease parameters and community composition. Table 4.1 

shows the day after study onset the sample was collected as well as two clinical 

measurements: the MGI (Modified Gingival Index) score, or clinical index of gingivitis 

severity of sampled teeth (depicted in Figure 4.1), and PD (probing depth), which measures 

the severity of tooth-gum attachment loss associated with periodontal diseases271,272. While 

MGI score increased over time in all teeth regardless of oral hygiene status (i.e. brushed or 

unbrushed), the magnitude of this increase was patient-specific. Although there were, on 

average, higher MGI scores for unbrushed teeth at each visit than for brushed teeth, this 

difference was not statistically significant (Table 4.1). Similarly, no significant difference in 

PD was found between brushed and unbrushed teeth between the start (visit 2) and end 

(visit 6) of the study (Table 4.1). 

We first assessed the microbial composition and diversity within the collected plaque 

samples through 16S ribosomal RNA sequencing, allowing us to focus on organisms actively 

producing protein and thus with the greatest potential to influence community activity273. 

We performed alpha (within-sample) diversity analysis of sequenced 16S rRNA reads from 

subgingival plaque samples obtained from either brushed or unbrushed teeth. This revealed 

no statistically significant difference in Shannon index, which measures both species 

evenness and abundance, between samples originating from brushed or unbrushed teeth 

(Figure 4.2a). In contrast, samples grouped by clinical index of patient gingivitis severity 

(MGI score) showed significant differences in alpha diversity in both the high and medium 

MGI samples when compared to the low MGI group (Figure 4.2b, p < 0.005). While Shannon 
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index did not differ among most of the samples grouped by patient, samples collected from 

patients 6 and 14 did have higher diversity (Figure 4.2c).  

Beta (between-sample) diversity was also assessed via a Bray-Curtis dissimilarity 

analysis of 16S rRNA reads and visualized using a Principal Coordinates Analysis (PCoA). 

Surprisingly, this analysis revealed no significant differences between samples collected 

from teeth with different oral hygiene status, suggesting that in our study brushing had no 

meaningful impact on the composition of the subgingival plaque microbiota (Figure 4.3a, 

p=0.685). Similarly, no significant phylogenetic similarity was found between samples when 

grouped by the net changes in pro-inflammatory cytokines IL-8 or MMP-8, and MMP-9 

(Figure 4.4) between day 1 and day 21 of the experimental gingivitis study. Importantly, 

beta-diversity analysis revealed significantly different clustering of all collected samples by 

MGI score (Figure 4.3b, p=.001). This clustering was most distinct between samples 

collected from teeth with the lowest and highest MGI scores in the dataset (MGI=0 and 

MGI=2). Significant or marginally significant clustering by MGI score was also found when 

controlling for visit at which the sample was collected (Figure 4.5, visit 2 p=0.025, visit 3 

p=0.012, visit 6 p=0.08) and for patient (Figure 4.3c, PERMANOVA, p=.001), though some 

study subjects did display tighter clustering than others (i.e. patients 6 and 14). Together, 

these data suggest that the strongest predictor of microbiota phylogenetic similarity 

between samples are the clinical index of disease severity (MGI score) and the patient from 

which the sample originated.  

 

5.2.2 Shifts in relative genus abundance occur during health to gingivitis transition 

In light of our beta-diversity results, patient-matched samples collected from teeth with 

the lowest MGI score (MGI=0; clinically healthy) or highest MGI score (MGI=2; clinical 

gingivitis) were assessed to determine the changes in relative abundance of microbial genera 

during disease progression. Patients 1, 3, 4, 5, and 15 had plaque samples collected from 

teeth that met this criterion (i.e. teeth with an MGI score of 0 and an MGI score of 2), and thus 

were included in this analysis; patients with samples collected from teeth that did not have 

an MGI score of 0 were excluded from this analysis. Samples collected from teeth with an 

MGI score of 0 at visit 3 were selected for further analysis due to increased amounts of 

nucleic acids in these samples relative to those from visit 2. Since our beta-diversity analysis 
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revealed no significant effect of brushing on sample clustering, data from samples with from 

both brushed and unbrushed teeth both with an MGI score of 0 were averaged when 

possible. Operational taxonomic units (OTUs) with low (<1%) relative abundance were 

filtered from the samples analyzed, and the remaining OTUs were pooled by genus. Clear 

shifts in the relative abundance of specific genera between health and gingivitis occurred 

within each patient analyzed (Figure 4.6a).  

The mean count of genera in samples collected from teeth at times of health and 

gingivitis in these same five patients analyzed in Figure 4.6a was analyzed for statistically 

significant changes using a Kruskal-Wallis non-parametric ANOVA test, revealing 7 bacterial 

genera with significantly different abundance between samples at different stages of 

gingivitis in the same patients. Of these, Streptococcus, Neisseria, and Lautropia had 

significantly higher relative abundance in samples collected from healthy teeth (MGI=0, Visit 

3), while Oribacterium, Leptotrichia, Tannerella, and Lachnoanaerobaculum were 

significantly more abundant during gingivitis (Figure 4.6b). This suggests a potential 

dysbiosis of microbial composition and increased abundance of periodontal pathogens 

occurs during the early transitional disease state.  

 

5.2.3 Overall RNAseq transcript data correlates with 16S rRNA sequencing data 

We next wanted to elucidate changes in the specific activities of the subgingival plaque 

communities during disease progression. As a proxy for functional activity, we used a 

metatranscriptome sequencing approach (RNAseq) to compare gene expression changes in 

plaque samples collected from teeth during a state of clinical gingivitis relative to health 

(MGI=2 vs. MGI=0 samples). Of the 5 study participants (patients 1, 3, 4, 5 and 15) from 

which samples were obtained from teeth with an MGI score of 0 at visit 3 and MGI score of 2 

at visit 6, patients 3, 4 and 15 were selected for RNA sequencing. These three samples were 

chosen because they had higher RNA concentration and quality scores than samples from 

patients 1 and 5. Thus, we compared gene expression in samples collected from teeth during 

health (MGI=0) and gingivitis (MGI=2) that were both patient and timepoint (visit) matched. 

The total number of reads obtained after trimming and read mapping statistics and average 

coverage for each sample are shown in Figure 4.7c. Given the number of samples, minimum 
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average sequencing depth and effect size fold cutoff of 2.75, we calculated our statistical 

power to be greater than 0.8.  

We first compared bacterial activity from transcriptomic data by plotting the within-

sample normalized activities from both disease types after aggregating counts to common 

genera (Figure 4.8a). The most abundant genera in averaged plaque samples at MGI=0 or 

MGI=2 were identified and are indicated in Figure 4.8a by red points. In health, these genera 

were found to be Streptococcus, Neisseria, and Capnocytophaga with the former two having 

been identified in the 16S taxonomic analysis. We observed the genera favoring disease to 

be Leptotrichia (observed in 16S analysis) and Prevotella, and also Fusobacterium, for which 

metatranscriptomic influence in promoting gingivitis has been previously reported274.  In 

addition to looking at changes in transcriptomic activity or read counts, which essentially 

measure the overall abundance of each genus in disease compared to health, we also 

analyzed the fold change of each genus during progression to periodontitis. While fold 

change is more sensitive to lower expressing genera, we can use this metric to characterize 

the largest relative community changes. We identified the most discordant genera in our 

transcriptomic analysis in diseased samples as Tannerella, Treponema, and Leptotrichia 

while Haemophilus, Granulicatella, and Neisseria were most discordant in healthy samples 

(Figure 4.9a). We next employed PCA to dissect the sample-level trends and observed well-

defined clustering of the MGI=0 and MGI=2 patient samples (Figure 4.8b), thus showing 

distinct transcriptomic differences between samples during health and disease.  

We next wanted to analyze the relationship between the taxonomic abundances and 

transcriptomic activity in samples collected from the same teeth during health or disease. To 

achieve this, we generated a rank-abundance plot to compare the bacterial community 

diversity (Figure 4.8c). Briefly, the counts to each genus were normalized by dividing by the 

most abundant/active genus within each sample and ordering by rank. We observe that, 

after averaging across three patients for each disease state (MGI=0 vs. MGI=2) and 

sequencing type, diseased patients exhibit greater bacterial diversity than healthy patients, 

and this trend is preserved through both the 16S and transcriptomic analyses. To more 

directly compare specific genera between abundance and activity, we performed regression 

analysis of average normalized genera in both MGI=0 and MGI=2 samples of the 25 most 

abundant genera (Figure 4.10). We find that microbial genus activity and abundance in 
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samples collected from teeth at a clinically healthy disease state are more correlated when 

compared to samples collected from teeth at a clinically diseased state. When analyzing the 

fold change of genera in healthy and disease samples, we find similar trends in the fold 

changes of each genus from disease relative to health in both the taxonomic and 

transcriptomic data (Figure 4.9a). Altogether, our data show that while the total abundance 

of certain genera differs when analyzed by either 16S rRNA sequencing or 

metatranscriptome sequencing, the overall trends in abundance fold change and rank 

demonstrate high concordance between the two datasets.   

 

5.2.4 Virulence-related expression is elevated during the transition from health to gingivitis 

We began our functional analysis by pooling read counts across all transcriptomes 

present in our samples by combining counts for transcripts with the same Enzyme 

Commission (E.C.) number. By pooling gene expression data for gene products involved in 

the same biochemical reaction, we were able to assess the overall activity of the microbial 

community. Further, previous work from our laboratory has shown that the expression of 

genes pooled by common metabolic function (E.C. number) is considerably less variable than 

the expression of individual organismal gene264. Differential gene expression between 

samples collected from the same teeth during health (MGI=0) and gingivitis (MGI=2) was 

analyzed using the R package DESeq2 275. Of the 2241 unique E.C. numbers analyzed 

(representing 111,778 of the 625,371 total unique ORFs with mapping reads in our reference 

dataset), 191 (8.5%) enzymes were significantly (p < 0.05) upregulated by 2.75-fold or 

greater in gingivitis relative to health while 180 (8.0%) were significantly downregulated. 

Overall, our data show that metabolic pathways more strongly associated with health 

(downregulated during disease) include genes involved in ascorbate and aldarate 

metabolism, porphyrin and chlorophyll metabolism, carbon-fixation in prokaryotes, the 

pentose phosphate pathway, antibiotic biosynthesis, and pyruvate metabolism. Metabolic 

pathways more strongly associated with disease (upregulated during disease) include genes 

involved in pyrimidine metabolism, vitamin B6 metabolism, glycolysis and gluconeogenesis, 

and propanoate and butanoate metabolism. 

We then directed our attention to genes with virulence-related activities with significant 

changes in expression in gingivitis relative to health. We defined virulence-related gene 
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products as those involved in colonization, enhanced survival within, or evasion of host; or 

those that directly cause pathological damage associated with disease276. In addition to 

products commonly associated with virulence such as adhesins and antibiotic resistance 

genes, additional gene products found during periodontal disease that meet these criteria 

include those involved in bone resorption and tissue destruction277. 30 of the 191 

significantly upregulated E.C. enzymes had virulence-related functions (Figure 4.11). Fold 

changes in expression for these genes within each patient and across all sequenced patients 

are shown in Figure 4.11, with peptidases, nucleases, and hydrolases shown in Figure 

4.11a, and those involved in chemotaxis, cell surface modifications, and other virulence 

activities shown in Figure 4.11b. 

The majority of non-specific peptidases were upregulated during disease transition, 

supporting the idea that expression of these potentially destructive enzymes can promote 

periodontal disease (Figure 4.11a). While some genes involved in the biosynthesis of cell 

surface features were significantly upregulated during gingivitis, others were significantly 

downregulated, including four genes involved in peptidoglycan biosynthesis. This suggests 

that changes to the cell surface or growth in general are dynamic during this early stage of 

disease. Genes involved in iron acquisition were similarly variably up or downregulated in 

our dataset. While Vibrio-specific siderophores were found to be downregulated during the 

early stages of periodontal disease, two other genes involved in iron acquisition were 

significantly upregulated across the entire metatranscriptome. Although the magnitude of 

gene expression changes varied among the three individuals sequenced as seen in other 

studies262,264, collectively our data suggest that changes in the overall activity of oral 

microbiota during the early stages of periodontal disease progression promotes enhanced 

destruction of host tissue and survival within the oral cavity. 

 

5.2.5 Individual periodontal pathogens upregulate expression of both specific and general 

virulence-related genes during gingivitis relative to health 

Our next aim was to analyze the virulence-related activities of specific periodontal 

pathogens or opportunistic pathogens. We focused our analysis on representative species 

from the five most highly abundant genera present in our samples during disease (Figure 

4.8a): Leptotrichia (L. buccalis), Prevotella (P. nigrescens), Streptococcus (S. constellatus), 
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Fusobacterium (F. nucleatum), and Actinomyces (A. israelii). We first normalized the total 

read counts for each transcript in the metatranscriptome across the three patients analyzed 

(patients 3, 4 and 15), pooling samples collected from the same teeth during health (MGI=0, 

visit 3) and during gingivitis (MGI=2, visit 6). We then analyzed differential gene expression 

between health (samples collected from teeth with MGI=0) and gingivitis (samples collected 

from teeth with MGI=2). This gave an overview of differentially expressed genes within the 

entire microbial community during gingivitis relative to health. We then looked at both 

known, characterized virulence-related genes associated with oral microbiota (collagenase, 

gingipain, hemagglutinin)264 along with generalized virulence-related gene products known 

to promote bacterial colonization and survival in the oral cavity and to exacerbate 

periodontal disease (non-specific peptidases or proteases, stress response proteins). 

Criteria for virulence traits selected were the same as described in the overall 

metatranscriptome analysis in the previous section; virulence-related genes with the highest 

fold-changes in expression are shown. The differential expression data from the 

representative oral pathogens analyzed show a variety of virulence-related activities from 

these 5 organisms alone (Table 4.2). 

L. buccalis virulence-related gene products upregulated during gingivitis include several 

genes involved in antibiotic resistance, non-specific proteases, as well as the response 

regulator MprA (Table 4.2). This gene has been shown in other organisms to play a role in 

regulation of genes crucial for pathogenesis278, and thus may also play a role in L. buccalis 

pathogenicity. Both P. nigrescens and F. nucleatum significantly overexpressed a wide variety 

of virulence-related genes in plaque samples from teeth at a timepoint showing clinical 

indications of disease, including those involved in antibiotic resistance, proteolysis, 

breakdown of collagen, and iron uptake (Table 4.2). Of note, several gene products found to 

be increased in expression during gingivitis in our E.C. number analysis were found to be 

highly upregulated by P. nigrescens, including virulence factors endothelin-converting 

enzyme 1 and a gingipain. S. constellatus and A. israelii upregulated fewer genes across their 

entire genome and also fewer virulence-related genes compared to the other three 

organisms analyzed (Table 4.2). In addition to upregulating genes involved in general 

survival mechanisms or nucleic acid degradation, however, these organisms also 

upregulated gene products specifically shown to be involved in virulence in other organisms; 
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the Spx regulatory protein279 (S. constellatus), and Virulence-associated protein 1280 (A. 

israelii). 

Upon analysis of the number of reads mapping to each of these species, we determined 

that upregulation of virulence-related genes in P. nigrescens was not necessarily induced, as 

an increase in both the number of active cells (as measured by rRNA sequences) and 

transcript abundance of this species occurred in teeth experiencing gingivitis (MGI=2) 

relative to the same teeth during health (MGI=0) (Figure 4.9b, c). Similarly L. buccalis 16S 

rRNA v4-v5 amplicon levels were also significantly elevated during gingivitis (Figure 4.9b), 

although transcript abundance of this species was not significantly different between the 

two disease states (Figure 4.9c). Despite the fact that increased expression of virulence-

related genes is possibly due to an overall increase in the abundance of P. nigrescens and L. 

buccalis, it is still worth noting the changes in the overall functional repertoire of the oral 

metatranscriptome that can potentially promote periodontal disease progression; thus, we 

have included these genes in Table 4.2. On the other hand, relative 16S rRNA v4-v5 amplicon 

or transcript abundance of S. contellatus, F. nucleatum, and A. israelii did not significantly 

increase in samples collected from teeth with gingivitis relative to health (Figure 4.9b, c), 

suggesting that virulence-related gene products of these organisms are upregulated in their 

expression levels during disease as opposed to being elevated as a result of increased species 

abundance. 

 

5.3 Discussion 

In our analysis of dental plaque samples during the transition from health to gingivitis, 

we began by first analyzing community composition through a beta-diversity analysis. 

Composition and diversity of our samples was found to be significantly correlated with 

clinical index of disease severity (MGI score) (Figure 4.3b). Samples collected from teeth 

with no visible evidence of periodontal disease (MGI=0) cluster distinctly from those 

originating from teeth with the highest clinical disease score in our study (MGI=2). The 

clustering of our metatranscriptome sequencing data by MGI score (Figure 4.8b) along with 

our identification of differentially expressed virulence-related genes between samples from 

teeth with an MGI score of 0 vs. 2 lends support to the efficacy of MGI score as an indicator 
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of disease progression. We also found that samples originating from the same patient were 

statistically more similar in composition than those from different patients (Figure 4.3c), 

although samples still clustered by MGI score despite this patient effect. Our data do suggest 

that certain patients have more stable microbiota community structure while others were 

subject to greater community changes over the time course in which this study took place 

(Figure 4.3c). This implies that patient-specific factors not considered in this analysis, such 

as host genetics, co-morbidities, age, or gender could play an important role in shaping oral 

microbiota community structure. 

Surprisingly, our beta-diversity analysis revealed that the oral hygiene status (i.e. 

whether or not teeth were brushed) had no significant impact on microbial community 

composition (Figure 4.3a). This is in contrast to at least one previously published study that 

found a significant decrease in plaque (as measured by gingival index) after brushing256. 

These patients, however, were subjected to a rigorous oral hygiene regimen to obtain this 

decrease. As it was not possible to ensure patient compliance with all study parameters 

during the course of the experimental gingivitis study, it is plausible that some patients did 

not adhere to the prescribed oral hygiene regimen. In agreement with this, Kistler and 

colleagues have published that many individuals do not self-apply oral hygiene techniques 

that are sufficient to prevent the onset and progression of gingivitis257. Although we were 

unable to accurately quantify the total raw number of bacteria present at any given time 

point (data not shown), it is also possible that brushing can affect the total number of 

microbes present rather than the diversity and relative abundances of different taxa. The net 

changes in levels of three different pro-inflammatory cytokines (IL-8, MMP-8 and MMP-9) 

measured in the gingival crevicular fluid of sampled teeth also had no significant 

contribution to microbial community composition (Figure 4.5b, c, d). As one report found 

that the levels of most inflammatory cytokines vary significantly between individuals281, 

quantification of these particular cytokines may not be a reliable predictor of subgingival 

plaque community structure.  

Our analysis of relative genus abundance within the subgingival plaque communities 

through both 16S rRNA sequencing and metatranscriptome sequencing revealed significant 

shifts during disease transition, although the two methods showed differences in the specific 

genera found to be most abundant (Figures 4.6b and 4.8a). For example, while both 16S 
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rRNA and metatranscriptome sequencing revealed Streptococcus and Neisseria to have 

higher abundance in samples collected from teeth at a point of clinical health, Prevotella was 

reported as a highly abundant genus during gingivitis based on metatranscriptome 

sequencing only (Figure 4.8a). This finding underscores the limitations of either method at 

determining genus abundance with total accuracy. Despite these differences, rank 

abundance analysis and ratios of composition (16S data) to activity (RNAseq data) of genera 

show similar trends in both datasets (Figure 4.8c, Figure 4.10). In addition to analyzing 

relative abundance in our plaque samples, we also analyzed fold-changes in genera (Figure 

4.9a). The most discordant genera in total abundance between samples collected from teeth 

during health and gingivitis are not necessarily the highest in abundance (Figure 4.8a) 

according to our metatranscriptome data. While it would be interesting to further analyze 

specific functional contributions of these highly discordant genera during disease relative to 

health, limitations in total reads obtained made this difficult or impossible. For example, the 

lack of reads obtained for the genus Tannerella during health made further analysis of 

differential gene expression within this genus impractical, as virtually all genes show an 

increase in expression. 

When analyzing our metatranscriptome data, we first wanted to get an overall idea of 

the general functional properties of the plaque communities during the transition from 

health to gingivitis. We thus began by pooling gene products (by E.C number) across all taxa 

and found that 8.5% of pooled gene products were significantly upregulated during 

gingivitis, while 8.0% were significantly downregulated. Genes involved in ascorbate and 

aldarate metabolism were upregulated during health, as seen in several previous 

studies282,283. Other metabolic pathways more strongly associated with health carbon-

fixation in prokaryotes, the pentose phosphate pathway and pyruvate metabolism. 

Interestingly, porphyrin and chlorophyll metabolic gene products were also found to be 

associated with health. Genes involved in metabolic pathways including vitamin B6 

metabolism and glycolysis and gluconeogenesis were found in our data analysis. As seen in 

other studies, metabolic pathways more strongly associated with disease were pyrimidine 

metabolism265, and propanoate and butanoate metabolism264,274,280. 

We then focused our attention on significantly differentially expressed genes with 

virulence-related activity (Figure 4.11). These enzymes were involved in a variety of 
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activities including hydrolysis or proteolysis, degradation of nucleotides, chemotaxis, 

synthesis of cell surface structures (adhesion, motility, protection), and a variety of other 

virulence functions (Figure 4.11). Increased proteolytic and nucleolytic activity as seen in 

our data likely leads to the destruction of gum tissue and disturbance of the host immune 

system characteristic of periodontal disease, and have been noted as potential drivers of 

periodontal disease in other recent metatranscriptome studies263,269,274. Two different 

gingipains, or proteases that have previously been associated with periodontal disease in 

several studies264,284–286, were significantly upregulated in our data. While general 

proteolytic, nucleolytic, and several chemotaxis related gene products showed increased 

expression, a number of other virulence-related gene products were downregulated in our 

data, suggesting the variable and unstable state of the microbiome during the early stages of 

gingivitis onset. Interestingly, several virulence-related gene products downregulated 

during disease relative to health may play a role in exacerbating the diseased state. For 

example, leukotriene A-4 hydrolase is typically involved in alleviating inflammation287; thus 

downregulation of this gene could lead to the promotion of an inflammatory state typical of 

periodontal disease. Downregulation of starvation-sensing protein RspA leads to an increase 

in the production of metabolites that signal starvation288, and thus can lead to increased 

survival during nutrient limitation. 

Finally, we wanted to analyze the contributions of specific pathogens to virulence. We 

chose to focus on representative pathogens or opportunistic pathogens from the 5 most 

abundant genera during clinical disease (MGI=2) (Figure 4.8a): P. nigrescens from 

Prevotella, F. nucleatum from Fusobacterium, L, buccalis from Leptotrichia, S. constellatus 

from Streptococcus, and A. israelii from Actinomyces. P. nigrescens and F. nucleatum were 

selected as representative pathogens because of their frequent presence in periodontal 

infections289,290. Other oral metatranscriptome studies have also shown that both of these 

organisms increase expression of virulence factors during periodontal disease269,274. From 

the genus Leptotrichia, we chose to look at L. buccalis as it is the most well-studied species of 

the genus and primary causative agent of opportunistic Leptotrichia oral infections291,292. 

Although many members of the Streptococcus genus are commonly occurring commensals, 

S. constellatus an opportunistic periodontal pathogen that is well-documented in periodontal 

disease, and thus our choice for a representative of the genus Streptococcus. Along with other 
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oral Streptococci, S. constellatus can also be synergistically pathogenic with Porphyromonas 

gingivalis289,290. Finally, although most members of the genus Actinomyces are associated 

with oral health, we selected Actinomyces israelii for further analysis because it is the 

causative agent of a rare but severe infection actinomycosis293. 

Within these 5 species, L. buccalis, P. nigrescens, and F. nucleatum overexpressed a 

variety of virulence-related genes and thus likely actively contribute toward disease 

progression, while S. constellatus and A. israelii overexpressed a more limited number of 

virulence genes during gingivitis (Table 4.2). Of note, P. nigrescens overexpressed a 

gingipain and several arginine/lysine-specific proteases during gingivitis (Table 4.2). In 

addition to degrading hemoglobin, these enzymes are able to degrade host cytokines and 

thus dampen the immune response to pathogens294,295. Interestingly, the 

metalloendopeptidase endothelin-converting enzyme was significantly overexpressed by P. 

nigrescens during gingivitis (Table 4.2). This enzyme can serve as a potent vasoconstrictor 

during cardiovascular disease296, a common co-morbidity that can result following 

periodontal disease297. Other gene products with more generalized virulence-related 

activities that increased in expression among these organisms included peptidases, 

proteases, nucleases, and iron uptake proteins, gene products well-known to be involved in 

virulence in all organisms.  

This study is unique in that we have assessed changes in both subgingival microbiota 

community structure and function associated with the transition from health to periodontal 

disease. Our findings regarding both the shifts in community structure as well as functional 

changes seen between health and gingivitis are largely corroborated by similar findings in 

previous work analyzing samples from healthy and diseased (periodontitis) teeth. These 

data therefore characterize how microbial activities change during the early stages of 

periodontal disease. Our hope is that the virulence-related genes identified here will serve 

as candidates in future studies for prophylactic targets that can potentially prevent 

progression from gingivitis to more severe forms of periodontal disease. 

 

5.4 Methods 

5.4.1 Patient population and study design 
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Samples were analyzed from a total of 10 patients that completed the present study. All 

patients were consulted and treated in the Graduate Periodontics Clinic at the University Of 

Louisville School Of Dentistry. The study was conducted in compliance with modern ethical 

guidelines, as approved by the local ethics board (Study # 14.0230). The study protocol was 

explained both verbally and in writing, and written informed consent was obtained from 

each participant prior to dental examination and sampling. The following were inclusion 

criteria in order for a patient to participate: 1) At least 18 years of age and in good general 

and oral health, 2) At least 20 natural teeth present, and 3) Baseline mean gingival index of 

less than or equal to 1 (according to the scoring by the Modified Gingival Index, or MGI).  

Conditions that would exclude an individual from participating were: 1) History of 

conditions requiring prophylactic antibiotic coverage prior to this study, 2) Use of antibiotic, 

anti-inflammatory, or anti-coagulant medication within one month prior to the study, 3) 

History of tobacco use, 4) Participation in another oral study involving oral care products 

concurrent or within 30 days of beginning this study, 5) Pregnancy or lactation, 6) Significant 

oral tissue pathology (excluding gingivitis), 7) Moderate to advanced chronic periodontitis 

or other form of periodontal disease, and 8) An underlying genetic or immunological 

condition that may influence the study (e.g. diabetes, immunodeficiency). 

Patients that met all inclusion criteria during the first visit underwent a thorough 

periodontal examination by a trained dental hygienist. A professional dental cleaning was 

conducted, and instructions for proper oral hygiene were provided. Participants returned 

for a second visit (visit 2) within 2 weeks of the initial visit, at which time the study began. 

At visit 2, baseline clinical data was recorded, and both plaque and gingival crevicular fluid 

(GCF) samples were collected from the first molars. If the first molar was missing, samples 

were collected from the second molar. When patients brushed and flossed during the study, 

an acrylic stent was worn on either the top or bottom arch of teeth; these teeth were 

considered unbrushed (Figure 4.1). Whether the stent was worn on the top or bottom was 

randomly decided for each participant; half of the patients wore the stent on the top arch 

while half wore the stent on the bottom arch. The function of the stent was to prevent 

‘unbrushed’ teeth from being cleaned during the study, and thus the stent was only worn 

during brushing and flossing. Patients were instructed not to use any other oral care 

products (such as gum, interdental cleaning aids, mouthwash, or chewing gum) during the 
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course of the study. After the baseline visit, subgingival plaque and GCF were collected two 

more times, at 3 days after visit 2 (visit 3) and up to ~3 weeks after visit 2 (visit 6). The day 

of the third sampling was determined by the amount of gingivitis progression; patients 

continued with the study until their MGI score was at or above 2. 

 

5.4.2 Clinical assessment of gingivitis.  

In addition to collecting plaque samples, calibrated examiners performed periodontal 

evaluations on the study participants. Examiners were calibrated to a gold standard 

examiner for probing depths (PD), plaque index (PI), and gingival index (GI). The examiners 

were calibrated until the agreement coefficient (Kappa statistic) is at least 0.90 for the PD, 

PI, and GI with the gold-standard examiner. Calibrated examiners scored patient teeth for 

experimental gingivitis using the Modified Gingival Index (MGI) on both the buccal and 

lingual marginal gingiva. Scores were given according to the following criteria: 0=Normal 

(absence of inflammation), 1=Mild inflammation of a single portion of the gingival unit 

(characterized by a slight change in color, but little change in texture), 2=Mild inflammation 

of the entire gingival unit, 3=Moderate inflammation (moderate glazing, redness, edema, 

and/or hypertrophy) of the gingival unit, 4=Severe inflammation (marked redness and 

edema/hypertrophy, spontaneous bleeding, ulceration of the gingival unit). Probing depths 

were measured (in mm) at a total of six sites per tooth on both the buccal and lingual 

marginal gingiva, and average measurements were recorded. 

Gingival crevicular fluid sampling (GCF) samples were collected from 8 sites by inserting 

paper strips into the sulcus of each site for a total of 30 seconds. GCF volume was measured 

using an electronic measuring device. Subgingival plaque samples from two brushed or two 

unbrushed teeth from each individual were collected at the three timepoints after the onset 

of the experimental gingivitis study. The two brushed or unbrushed plaque samples at each 

timepoint were pooled prior to nucleic acid extraction and then immediately frozen at -20 

ᵒC until further sample processing. Subgingival plaque samples were collected from the same 

sites during the course of the study by inserting one sterile endodontic paper point (Dentsply 

Caulk, Milford, DE) into the sulcus of each tooth for 10 seconds, followed by scraping with a 

curet. Upon collection of subgingival plaque, samples were immediately placed into a 
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microcentrifuge tube containing RNALater (Invitrogen) and stored at -20 ᵒC until further 

sample processing. Samples from two brushed or two unbrushed teeth were pooled to 

ensure that enough microbial cells were collected in order to have sufficient amounts of DNA 

and RNA for downstream analyses, and also to account for the inherent differences seen from 

tooth to tooth within the same individual. 

 

5.4.3 Cytokine analysis.  

Paper strips used to collect GCF were thawed on ice and GCF was eluted by adding 200 

-HCl + 5 mM CaCl2, 0.2 M NaCl (pH 7.6), 1 mg/L antipain, 1 

mg/L aprotinin, 125 mg N-ethylmaleimide, and 50 mg detergent (Zwittergent 3-12, EMD 

Millipore)). Elution was achieved by vigorous vortexing for 15-minute intervals for a total of 

1 hour. Cytokine analysis was performed using a commercially available multiplexed bead-

based assay designed to quantitate multiple cytokines. IL-8, MMP-8, and MMP-9 were 

measured using Luminex technology in pooled GCF samples. 

 

5.4.4  RNA isolation and preparation.  

Total RNA was prepared from frozen subgingival plaque samples stored in RNALater 

(Invitrogen) as described previously [22]. One half of the purified RNA was used for rRNA 

sequencing of the v4-v5 region of 16S rRNA cDNA, while the other half of the sample was 

saved for subsequent treatment with RiboZero and RNA-seq library preparation. 

Pro- and eukaryotic ribosomal RNAs were removed from total RNA using the RiboZero 

Epidemiology kit (Epicentre). mRNA was purified, fragmented, and precipitated as 

previously described264. RNA-seq libraries were constructed using the NEB Next Multiplex 

Small RNA Library Prep Set for Illumina following the manufacturer’s protocol. The cDNA 

libraries obtained at the end of this prep were stained using SYBR gold nucleic acid stain 

(Invitrogen) and visualized using a GBox imaging system. cDNA between ~150 and 300 bp 

was extracted according to the NEB QC Check and Size Selection protocol (protocol E7300), 

and resuspended in RNase-free water. Library cDNA concentration was determined using a 

Qubit fluorometer (Thermo-Fisher), and size distribution was analyzed on an Agilent 
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Bioanalyzer. Single-end 50-bp sequencing was performed at the UTGSAF on an Illumina 

HiSeq2000 system. 

rRNA sequencing of the v4-v5 region of 16S rRNA was performed as previously 

described264. Briefly, total RNA was reverse-transcribed into cDNA using the random primer 

16S926RT. The ~500bp v4-v5 region of the 16S rRNA gene was then PCR-amplified from 

cDNA using primers 16SV4515F and one of the 24 uniquely barcoded reverse primers. 

Custom primers were then used for sequencing on the Illumina MiSeq platform. All samples 

have been uploaded to the NCBI Sequence Read Archive (SRA) under BioProject ID 

PRJNA387475.  

 

5.4.5 Bioinformatic analysis 

The 16S rRNA V4/V5 MiSeq sequencing reads were assembled, mapped and analyzed 

using python scripts within the open-source phylogenetic DNA analysis pipeline, Qiime298. 

Paired-end reads were assembled and then quality filtered using the Qiime python scripts 

multiple_join_paired_ends.py and multiple_split_libraries_fastq.py. Reads were mapped to 

the HOMD 16S rRNA reference (v14.51) to determine the number of reads mapping to each 

distinct OTU using the Qiime python script pick_closed_reference_otus.py. Relative 

abundances of each OTU were then summarized and visualized using the Qiime python 

scripts summarize_taxa.py and summarize_taxa_through_plots.py. Sequencing reads were 

rarefied 10 times at each step with a step size of 500-sequences from 500 to 5,000 sequences 

using the Qiime python script multiple_rarefactions.py. Mean alpha diversity (within-sample 

diversity) was calculated using the Qiime python scripts alpha_diversity.py and 

collate_alpha.py. These scripts were used to determine the Shannon index for each sample 

or group of samples, which is a measure of species richness within samples. Beta diversity 

(between sample) analysis was performed by running the Qiime python script 

beta_diversity.py using Bray-Curtis dissimilarity analysis as a measure of beta diversity. 

Samples were then clustered by principal coordinate analysis using the Qiime python script 

principal_coordinates.py. Samples were categorized, and significant differences between 

categories were determined by PERMANOVA statistical analysis using the Qiime python 

script compare_categories.py. For analysis of relative genus abundance in samples, OTUs not 

present in at least 2 samples or less than 1% abundance in any sample were filtered from 
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the data using the Qiime python script filter_otus_from_otu_table.py. Relative abundance 

data was then calculated using the summarize_taxa_through_plots.py script. To calculate 

genera with significant changes in abundance between sample groups, relative abundances 

were first converted to absolute read counts using the summarize_taxa.py script with the –a 

flag. The Qiime python script group_significance.py was the used to calculate significant 

changes, using the Kruskal-Wallis analysis as the significance test. 

Following RNA-seq, HiSeq reads were downloaded, concatenated and adapters were 

removed using Flexbar (v2.34)299, as described previously264. Raw sequencing reads have 

been uploaded to the NCBI Sequence Read Archive (SRA) under BioProject ID PRJNA387475. 

Reads were trimmed to a minimum length of 18-bp or 30-bp, depending on the analysis. An 

absolute minimum length of 18-bp was selected for the pooled reads to minimize the 

likelihood of random, non-specific mapping to our reference metagenome. Since these 

functional data are pooled across all species by E.C. number and did not aim to detect specific 

species-level reads, this amount of random mapping would affect our results only minimally 

(Figure 4.7B). For species-specific functional analysis, 30-bp trimmed reads were used to 

obtain a minimum of 10X coverage of the reference metagenome (Fig. 4.7A). For samples 

lacking enough 30-bp trimmed reads to obtain 10X coverage, reads between 18 and 30bp 

were used to ensure adequate coverage of the search space. 

The reference metagenome was generated as previously described264. All annotated 

human oral microbiome genome sequences and annotations were downloaded in both Fasta 

and GFF formats from the open-access, online Human Oral Microbiome Database (HOMD)300. 

Genome sequences were downloaded, concatenated, and processed to remove non-protein 

coding genes using the Perl scripts GenomeMerge.pl and HOMDpull.sh to create an 

annotated metagenome to map our sequencing reads to. If an E.C. number was associated 

with a gene, it was downloaded from KEGG301 using the custom Perl scripts PullEC.pl and 

HOMD_GenomeMerge.pl. Custom scripts are available at the following web address: 

http://github.com/khturner/metaRNA-seq. 

Trimmed RNA-seq reads were mapped against the reference metagenome using a 

Bowtie2 end-to-end alignment, very-sensitive parameters302. The species read match with 

the highest MAPQ score for each read was kept; other potential matches of lower quality 

score were discarded. In the event of multiple matches with equal quality score, bowtie2 
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selected the match to be kept at random. After mapping with bowtie2, reads with >2 

mismatches and unmapped reads were discarded using the UNIX grep command. To 

compare samples across the same condition, within-sample normalization was performed 

by dividing the counts to each genera by the most highly activity genus for that sample. The 

statistical power of our study, and thus the likelihood of identifying a true positive, was found 

to be 0.8 when the effect size is set at 2.75 fold cutoff, calculated using the R program 

RNASeqPower (v3.5)303 within the Bioconductor package using a sample size of 3, a false 

discovery rate of 0.05, and the lowest sequencing depth in all libraries (determined through 

samtools mpileup).  

After removing unmapped or highly mismatched reads and sorting the remaining reads, 

the number of reads mapping to each ORF was determined using the open source python 

library, HTSeq304. To analyze reads corresponding to specific species-level ORFs, genus, 

species and product data were overlaid with the count matrix resulting from HTSeq using 

UNIX commands. To analyze reads pooled across all organisms by E.C. number, E.C. numbers 

corresponding to ORFs were overlaid with the count matrix, and genes without an E.C. 

number were removed from the list using UNIX commands. Counts for ORFs from different 

species but corresponding to the same E.C. number were then combined using the 

data.groupby command within the open source python library, pandas. For both species-

specific ORF read counts and pooled E.C. number counts, count tables were imported into 

Rstudio. Differential expression was then assessed using the open source R package, 

DESeq2275. Low vs. high MGI score samples were analyzed in a paired manner, to account for 

differences between patients. Differential gene expression across all patients was analyzed 

by grouping the individual patient read counts into MGI=0 or MGI=2 categories in DESeq2, 

treating each patient as a replicate in each category. Differential gene expression for 

individual patients was calculated from patient raw read counts normalized using DESeq2; 

read counts for specific E.C. numbers analyzed obtained for MGI=2 samples were divided by 

counts for MGI=0 samples. For samples with <1 read for a particular gene, a minimum read 

count of 1 was used in order to calculate fold changes. 

 

5.5 Conclusions  
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While the other chapters in this work provide insight into how biology can be leveraged 

to engineer improved or novel properties, the study presented here differs in that a top-

down approach is used to better understand disease progression. We narrow our focus to 

analyze the microbiota changes in both oral community abundance and transcript activity in 

the progression towards gingivitis. The study was conducted with a unique design, as healthy 

and disease were stratified within each patient, greatly reducing the person-to-person 

variation in the oral microbiome composition. Enabled by high throughput sequencing, 

interest in the microbiome has prompted numerous similar studies at different stages of 

disease severity, and our results are largely corroborative. Repetition and external 

confirmation are necessary to develop a more robust view of periodontal disease 

progression. Hopefully, the virulence-related genes identified here will serve as candidates 

in future studies for prophylactic targets that can potentially prevent progression from 

gingivitis to more severe forms of periodontal disease 
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Figure 5.1 Study design and visualization of the progression from health to periodontal 
disease.  

On the left, the covered or uncovered teeth depict the study design utilized, in which an acrylic stent 
(shown in blue) was worn to cover either the entire top or bottom set of teeth during brushing 
throughout the course of the treatment. The images on the right illustrate the clinical symptoms 
associated with gingivitis that were scored by trained dental professionals in this study. An MGI score 
of 0 represents a healthy tooth with no indication of inflammation (shown by increasing redness at 
the gum) or plaque (tan color on tooth). Healthy teeth progress through varying degrees of gingivitis 
as depicted by the MGI 1, MGI 2, and MGI 3 panels, and can eventually progress to the chronic gum 
disease periodontitis shown on the far left. 
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Table 5.1 Patient clinical plaque sample data.  

Patient number and demographics, oral hygiene status (brushed or not brushed) of teeth, MGI score 
(Modified Gingival Index), and PD (Probing depth, mm) are indicated. MGI scores progressed from 
healthy (0) to mild gingivitis (2)—see Materials and Methods (and Figure 1) for an expanded 
definition of MGI score. MGI and PD measurements represent the average of 2 sampled teeth for each 
condition. The average measurements and standard errors of the mean for brushed and unbrushed 
samples across all patients at each visit are indicated. Student’s T-test revealed no significant 
differences in MGI score and PD between brushed and unbrushed teeth. 
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Figure 5.2 Shannon index of within sample (alpha-diversity) of 16S rRNA sequencing reads 
from all samples.  

 
Samples are grouped by A) Oral hygiene status of the tooth (i.e. whether or not tooth was brushed), 
B) MGI score (Low MGI=0-0.5, Med MGI=1-1.5, High MGI=2; both Med and High MGI were 
significantly higher than Low MGI, p < 0.005) and C) Patient. Error bars show standard deviation in 
samples. 
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Figure 5.3 PCoA analysis of subgingival plaque sample 16S rRNA sequencing reads. 

16S rRNA sequencing reads were categorized into distinct operational taxonomical units (OTUs) by 

mapping to the HOMD (v14.51) Reference database using standard Qiime scripts.  Beta diversity 

between samples was measured through a Bray-Curtis dissimilarity analysis, and the principle 

coordinates (PCo) are plotted and colored by A) Brushed/not brushed plaque samples (p=0.68); B) 

MGI score (p=0.001) (samples chosen for RNAseq are highlighted); and C) Patient of origin (highly 

clustered patients are highlighted) (p =0.001). 
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Figure 5.4 PCoA clustering of 16S rRNA sequencing samples by changes in cytokine levels.  

16S rRNA sequencing reads were categorized into distinct operational taxonomical units (OTUs) by 

mapping to the HOMD (v14.51) Reference database using standard Qiime scripts. Beta-diversity 

between samples was measured through a Bray-Curtis dissimilarity analysis of the different OTUs 

within samples, and the principle coordinates plotted and colored by: A) Net fold change in IL-8 

concentration during study, p=0.347; B) Net fold change in MMP-8 concentration during study, 

p=0.831; C) Net fold change in MMP-9 concentration during study, p=0.067. 
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Figure 5.5 PCoA clustering of 16S rRNA sequencing samples by MGI score and visit.  

16S rRNA sequencing reads were categorized into distinct operational taxonomical units (OTUs) by 
mapping to the HOMD (v14.51) Reference database using standard Qiime scripts. Beta-diversity 
between samples was measured through a Bray-Curtis dissimilarity analysis of the different OTUs 
within samples. Coloring indicates severity of gingivitis by MGI score while the shape of each point 
relates the day on which sample is collected for A) Visit 2 (MGI p=0.025); B) Visit 3 (MGI p=0.012, 
timepoint p=0.007); and C) Visit 6 (MGI p=0.08, timepoint p=0.122). 
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Figure 5.6  Composition of microbial communities from dental plaque samples assessed by 
16S rRNA sequencing analysis.   
 
A) Relative abundance of genera in the oral subginigival plaque community representing  ≥ 1% within 
each subgingival plaque sample based on 16S rRNA sequencing. Samples further analyzed via 
RNAseq metatranscriptome analysis are indicated with an asterisk. B) Changes in average genus 
percent abundance across 5 patients (Patients 1, 3, 4, 5 and 15) from samples collected from teeth 
with an MGI score of 0 (clinical health) or an MGI score of 2 (clinical disease). Error bars represent 
standard error. Genera that change significantly from MGI=0 to MGI=2 samples are indicated with an 
asterisk (p < 0.05). 
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Figure 5.7 Simulated mapping analysis and mapping statistics.  

One million single end simulated reads were generated through wgsim from either A) the entire 

metatranscriptome; or B) a subset of genes with E.C. annotations. Mapping was performed using 

Bowtie2 with parameters used in the study to the entire transcriptome in both cases. Correct reads 

were identified by right mapping to the gene in which the simulated read originated. For species-

level simulation, increasing the read length from the 30bp used in the analysis would only marginally 

increase reads for downstream analysis. For EC-level simulation, we achieve >80% correct mapping 

with read lengths of 18bp. C) Table showing read mapping statistics for each sample. 

  



155 
 

 

Figure 5.8  Comparison of transcriptomic data between disease states, patients, and 
taxonomic abundance.  

A) Transcriptomic activity is normalized within-sample to the highest activity genus and 

aggregated by genus across the three samples for MGI0 samples (X-axis) and MGI2 samples (Y-

axis), allowing a comparison of relative sample abundance between teeth at states of clinical health 

(MGI0) and clinical disease (MGI2). Red-colored data points indicate genera with the highest 

relative abundance in either MGI=0 or MGI=2 samples B) PCA analysis of RNAseq reads originating 

from each patient sample colored by MGI score. C) Rank abundance curves are shown for MGI=0 

and MGI=2 samples for both taxonomic and transcriptomic analyses. 
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Figure 5.9 Genera and species level comparison for 16S rRNA and RNA sequencing data.  

A.) Genera comparison using log2 fold change from patient-matched healthy and periodontitis 

sample in both 16S (red) and RNAseq analyses (blue). B) taxonomic abundances from MGI=0 and 

MGI=2 samples and C) transcriptomic abundances from MGI=0 and MGI=2 samples. (*) indicates 

significant difference (p < 0.05). Reads were mapped to genes and aggregated based upon species of 

origin. Relative abundance was calculated by dividing each species count by the highest count species 

within each sample and averaged across all three samples. 
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Figure 5.10 Genera abundance comparison between 16S rRNA and RNAseq data.  

Shown in A) is the average relative abundance of the most abundant genera in MGI=0 samples are 

plotted for both 16S rRNA and RNAseq data; shown in B) is the average relative abundance of the 

most abundant genera in MGI=2 samples are plotted for both 16S rRNA and RNAseq data. 
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Figure 5.11 Virulence-related genes with significant differential expression between health 
and disease.  

Differential expression between samples collected from clinically diseased (MGI=2, visit 6)  and 

cliinically healthy (MGI=0, visit 3) teeth were compared, and reported as significant if p≤0.05. Log2 

fold change in gene expression was calculated for patients 3, 4 and 15 individually, or pooled across 

all three patients. Shown here are A) Hydrolytic enzymes or B) other virulence-related genes that are 

significantly up- or downregulated in samples from clinically diseased individuals relative those from 

healthy patients. 
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Table 5.2 Upregulated virulence-related genes of representative periodontal pathogens from 
the five most abundant genera during gingivitis (MGI=2).  

Species analyzed include L. buccalis, P. nigrescens, S. constellatus, F. nucleatum, and A. israelii. Read 

counts were normalized for all ORFs within the metatranscriptome, and significantly differentially 

expressed genes pooled across three patients (3, 4 and 15) were determined by DESeq2. The Log2 

Fold changes in gene expression shown here represent differential expression between samples 

collected from teeth with gingivitis (MGI=2, visit 6) relative to healthy teeth (MGI=0, visit 3).  
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