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Abstract 

 

Design of Co-solute Formulations for Stable, Highly Concentrated 

Monoclonal Antibody Solutions with Low Viscosity 

 

Jessica Joy Hung, Ph.D.  

The University of Texas at Austin, 2018 

 

Supervisor:  Keith Johnston, Thomas Truskett 

 

Highly concentrated (> 200 mg/mL) monoclonal antibody (mAb) formulations with low 

viscosities are strongly desired for subcutaneous drug delivery for the treatment of diseases such 

as cancer, as well as for improved process performance and yield in the manufacture of biologic 

drug products using techniques such as tangential flow ultrafiltration (TFF). High solution 

viscosities and protein aggregation at high concentration lead to significant challenges in 

delivery and manufacture due to large injection forces, product loss to aggregation, and 

significant filter membrane fouling and flux decay. Small-molecule co-solutes such as arginine 

and various electrolytes have in some cases been shown to greatly reduce the viscosity of 

concentrated mAbs. However, the mechanism by which co-solutes modify mAb viscosity is not 

well understood. Herein, we investigate the effects of several amino acids and inorganic ionic co-

solutes on the viscosity of mAbs up to 250 mg/mL. We relate the viscosities to measurable 

changes in the protein-protein interactions (PPI), mAb structure and self-association behavior as 

assessed through small-volume techniques such as dynamic light scattering (DLS), static light 

scattering (SLS) and fluorescence correlation spectroscopy (FCS) in order to develop a 

hierarchical understanding of the co-solute effects on the mAb behavior. We demonstrate that the 
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viscosity reduction is correlated with the disruption of mAb self-association and attractive PPI, 

as directly probed by SLS, DLS, FCS and rheology. We also relate these changes in the PPI and 

viscosity to the physical properties of the co-solute, including the co-solute charge, size and 

shape. Finally, we demonstrate that the ability to mitigate aggregation and membrane fouling by 

the combined addition of viscosity-reducing co-solutes and selection of hollow fiber filter 

geometries resulted in a high-concentration transmembrane flux three-fold higher than that of 

conventional low co-solute buffer formulations. The reduced viscosities also led to more uniform 

axial transmembrane pressure and shear stress profiles, which led to reduce irreversible 

aggregation and solution turbidity during ultrafiltration. 
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Chapter 1:  Introduction 

1.1 CHALLENGES OF HIGH CONCENTRATION PROTEIN THERAPEUTICS 

The biophysical behavior of protein molecules in crowded environments is of great 

interest for advanced drug therapies, especially for the subcutaneous delivery of therapeutic 

proteins such as antibodies. Therapeutic proteins such as antibodies are of great interest for the 

treatment of chronic diseases and conditions such as cancer, arthritis and allergies, as well as 

acute life-threatening illnesses such as Ebola. The high selectivity of antibodies for recognizing 

pathogens and diseased cells are crucial to their role in the immune system. Due to their greater 

efficacy and milder side effects compared to more conventional small-molecule drugs, antibodies 

represent an already large and rapidly growing sector of the biopharmaceutical market, and 

addressing the challenges that limit their manufacture and delivery is of urgent interest. 

However, dosages on the order of several hundred milligrams are typically needed to achieve the 

desired therapeutic effect (1).  

Antibodies are typically administered by IV infusion as dilute solutions, which require 

large injection volumes (1 L), resulting in long injection times and need for specialized 

equipment. Instead, it would be preferable to deliver them via low-volume (~1.5 mL) 

subcutaneous injections. To administer the same dosage in such a small volume, however, the 

antibodies must be delivered at concentrations on the order of 100 – 200 mg/mL or higher (1). 

Such concentrated solutions present challenges for manufacturing and delivery due to high 

solution viscosities as well as protein instability against aggregation (1-4), leading to large 

injection forces (5, 6) as well as reduced fluxes and enhanced aggregation during filtration 

processes (3, 7, 8) that decrease product yield and process throughputs. 

In order to minimize the required injection force during drug administration (6, 9), as 

well as to reduce the loads on pumps during manufacturing (1, 3), it is desirable to maintain the 
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solution viscosity below 20 cP (10). However, the viscosities of antibody solutions increase 

exponentially with protein concentration (2), causing this viscosity limit to be exceeded at 

relatively low concentrations. In addition, the concentrated solutions often exhibit poor colloidal 

and conformational stability during long-term storage, resulting in protein unfolding and/or 

aggregation (1). The protein aggregates are especially problematic, as antibodies not only lose 

their therapeutic effect in the aggregated state, but can also provoke negative immunogenic 

responses (11). The challenges of high viscosities and protein instability must therefore be 

addressed to advance the development of concentrated antibody solutions for subcutaneous 

delivery of protein drugs. Highly detailed backgrounds and descriptions of the theory and 

developed understanding of protein biophysical behavior at high concentration in relation to 

viscosity are provided in the introduction section of each individual chapter, and are presented in 

a more concise form below. 

1.2 INFLUENCE OF SHORT-RANGED ATTRACTIVE PROTEIN INTERACTIONS AND SELF-

ASSOCIATION ON VISCOSITY  

Many studies have been undertaken to understand the cause of the large increases in 

viscosity and colloidal instability (aggregation) of highly concentrated protein solutions, as well 

as how formulation conditions such as pH, salt concentration and co-solutes affect those 

properties. Pioneering work on static and small-angle light scattering of concentrated (>200 

mg/mL) antibody solutions by Shire, Scherer and coworkers at Genentech (12-17), as well as 

Godfrin (18-20) and Fukuda (21) have shown that the increase in solution viscosity corresponds 

with the formation of transient, loose protein networks or reversible aggregates. Rheological 

models also suggest that the large viscosity increase in protein solution relative to colloidal 

solutions is disproportionately caused by the presence of oligomers in solution (22, 23). The 

presence of these networks at high protein concentration is also evident in the non-Newtonian 

response of concentrated solutions to shear; high shear rheological studies (5, 24) have found 
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that concentrated antibody solutions show significant shear-thinning behavior, whereas dilute 

solutions do not. Similarly, coarse-grained molecular dynamics simulations at high concentration 

of mAbs represented by 12-bead models (where each Fab and Fc domain are represented by 4 

beads) have demonstrated that viscous mAbs form larger, more loosely-expanded oligomers that 

may eventually span the system volume (25-27), consistent with the formation of larger 

oligomers and networks observed from rheological and light scattering studies of viscous mAbs. 

Protein self-association and resulting network formation at high concentration is 

mediated by strong, attractive short-ranged PPI, which dominate over the long-range electrostatic 

and steric repulsion at short interparticle separation distances (18-20, 28, 29). These short-ranged 

PPI include electrostatic attraction between oppositely charged sites and charge dipoles as well 

as between hydrophobic surface residues on adjacent protein molecules, in addition to hydrogen 

bonds, Van der Waals forces and other non-electrostatic interactions. However, due to charge 

and hydrophobicity heterogeneity on the protein surface, the net protein-protein interactions 

(PPI) are highly complex and hard to delineate into individual contributions from electrostatic, 

hydrophobic, steric, and hydrodynamic forces. Furthermore, empirical models to predict 

viscosities of concentrated mAbs a priori from their sequence have seen limited success given 

the complexities of how charge and charge asymmetries in the various domains along with other 

short ranged attraction influence self-association (25-27, 30). The complex protein topology also 

leads to coupling of the different forces (31). Since these interactions influence the rheological, 

conformational and colloidal properties of the protein solutions, an understanding of these 

interactions at high concentration and their dependence on solution conditions would be greatly 

beneficial for the development of protein therapeutics with desirable solution properties. 
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1.3 REDUCTION OF PROTEIN SOLUTION VISCOSITIES AT HIGH CONCENTRATION BY 

MODIFICATION OF PROTEIN INTERACTIONS USING CO-SOLUTES 

To mitigate the physical challenges associated with high concentration protein drug 

delivery and manufacturing, high solution viscosities and protein self-association may be 

reduced by engineering the sequence to remove hydrophobic patches or reduce charge anisotropy 

(28, 32-37). However, such approaches are time consuming and complicated. A simpler 

approach would be to mitigate the underlying attractive PPI that drive self-association and 

viscosity increases through formulation design (i.e. addition of co-solutes). In some cases, charge 

screening alone by addition of NaCl is sufficient to reduce viscosity (2, 38, 39), but in many 

cases organic acids and bases such as camphorsulfonic acid and arginine are more effective due 

to the additional screening of hydrophobic attraction (21, 28, 39-47). In our group’s previous 

work, organic electrolytes such as arginine (Arg), histidine (His) and imidazole (Im) have been 

shown to reduce the viscosity to a greater extent than traditional inorganic electrolytes such as 

NaCl and Na2SO4 (42). However, the efficacy of many of these co-solutes is protein-dependent, 

in some cases causing opposite effects on different antibodies (2, 44, 48). Correlations and 

predictions of high concentration viscosities with low concentration measurements of PPI, such 

as the second osmotic virial coefficient B22 and diffusion interaction parameter kD, have not 

always been consistent for a series of mAbs (28, 37, 49). The variability is likely due to the 

heterogeneous distribution of charged/hydrophobic surface residues and the balance of 

electrostatic, hydrophobic and steric forces, resulting in a net interaction profile unique to each 

protein as mentioned previously. In addition, the specific locations of the attractive sites with 

respect to the protein topology may also strongly influence the effective strength of the mAb 

interaction potential (31), potentially leading to large changes in self-association behavior for 

small changes in the overall (net) PPI strength. 

Previous light and X-ray/neutron scattering studies have provided further insight into 

how co-solutes modify the PPI and corresponding microstructure in relation to their influence on 
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the solution viscosity. Small angle X-ray (SAXS) studies (16, 17, 20) revealed that the addition 

of the salt NaCl reduced the viscosity of a highly viscous mAb at high concentration by 

suppressing self-association, as seen from the reduction in the intermediate-range order (IRO) 

peak (occurring at the length scale of dimers) in the scattering profile of that mAb (20). The 

concurrent reduction in viscosity and suppression of the IRO peak by the addition of NaCl 

strongly suggests that screening of the attractive electrostatic PPI led to dissolution of the protein 

microstructure (dimer network), which in turn caused the viscosity reduction. In contrast, the 

addition of the salt Na2SO4 was seen to cause an increase in self-association for another mAb, 

based on the increase in the protein hydrodynamic radius seen by dynamic light scattering and 

neutron spin echo, concurrent with a large increase in the mAb viscosity (50). These contrasting 

effects of salt on the mAb microstructure and viscosity reveal the complexity of protein 

interactions and co-solute effects on PPI. In addition, these more sophisticated biophysical 

characterization studies have been primarily limited to the inorganic salts NaCl and Na2SO4. As 

a result, the mechanism by which the more potent organic co-solutes (such as arginine, histidine 

and imidazole) modify the PPI and mAb static and dynamic structures in relation to viscosity at 

high concentration is still not well understood.  

1.4 OBJECTIVES 

Highly concentrated (> 200 mg/mL) monoclonal antibody (mAb) formulations with low 

viscosities are strongly desired for subcutaneous drug delivery for the treatment of diseases such 

as cancer, as well as for improved process performance and yield in the manufacture of biologic 

drug products using techniques such as tangential flow ultrafiltration (TFF). Small-molecule co-

solutes such as arginine and various electrolytes have in some cases been shown to greatly 

reduce the viscosity of concentrated mAbs, mitigating the physical challenges (large injection 

forces and low product yields from high viscosity, aggregation, etc.) encountered at high 

concentration. However, the mechanism by which co-solutes modify mAb viscosity is not well 
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understood. The goals of this dissertation are therefore to: (1) characterize the effects of 

viscosity-modifying co-solutes on the protein-protein interactions (PPI) and equilibrium 

microstructures in highly concentrated mAb solutions, (2) characterize the co-solute effects on 

the mAb dynamic (diffusion) behavior, and (3) relate the mAb solution rheology to the mAb 

biophysical behavior at high concentration in order to develop a fundamental understanding of 

how co-solutes modify mAb solution viscosity and stability to provide for more efficient, guided 

formulation design across a variety of mAbs. The improved viscosity and stability profiles will 

further be demonstrated to (4) improve the process performance of the tangential flow 

ultrafiltration process used in industry to manufacture highly concentrated mAb solutions. 

 In the course of the thesis, the objectives were generalized to understand the structure of 

protein solutions with static light scattering as a function of the strength of the shorted ranged 

attraction. In this approach, the co-solutes and ionic strength were used as tools to control the PPI 

over a wide range. The SLS studies provided important information to guide my collaborations 

with two other PhD students, Bart Dear and Amjad Chowdhury on SAXS of protein structure 

and dynamic light scattering studies in additional papers that will be completed after this 

dissertation.  

For the first objective of this dissertation, the effects of a range of viscosity-modifying 

ionic co-solutes on the static structure and PPI of two mAbs, mAb2 and mAb3, as a function of 

concentration (2 – 225 mg/mL) will be investigated by static light scattering (SLS) (12-14, 51). 

The strength of the net PPI in each co-solute formulation will be quantified by the zero-q 

structure factor S(q0) and Kirkwood-Buff integral G22 determined from the scattering profile 

measured by SLS. S(0) will also be fit to a single-attractive Yukawa interaction potential to 

quantify the strength of the short-ranged attractive interactions (K) reflected in the scattering 

behavior. The concentration-dependent scattering intensities will also be interpreted with the 

interacting hard sphere (IHS) model (52) to investigate the co-solute effects on the apparent self-
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association of both mAbs from low to high concentration, as quantified by an average apparent 

cluster size <Nc> and corresponding oligomer mass ratio moligomer/mmono+dimer.  

For the second objective of this dissertation, the effects of a range of ionic co-solutes on 

the dynamic behavior (namely the self-diffusion) of mAb2 from low to high concentration will 

be probed by fluorescence correlation spectroscopy (FCS). The diffusion retardation D0/Ds will 

be interpreted with the length-scale dependent viscosity (LDV) model to explain deviations from 

generalized Stokes-Einstein behavior and to obtain a quantitative measure of the PPI strength via 

the co-solute effects on D0/Ds. The LDV model will also be used to attempt to decouple the 

influence of hydrodynamic effects, structural length scale effects and PPI on the mAb self-

diffusion. In order to facilitate measurements of mAb self-diffusion at high concentration by 

FCS, for which there is very limited precedence in literature, the FCS methodology will also be 

optimized through a series of method development studies to enable high-quality, more 

reproducible measurements at high concentration and solution viscosities.  

For the third objective of this dissertation, the net PPI strength and self-association 

behavior determined from both SLS (static structure) and FCS (dynamic structure) will be 

correlated with the solution viscosity at high concentration for mAb2 and mAb3 to attempt to 

derive a more universal relation between the solution viscosity and underlying protein 

interactions and microstructure. Furthermore, the co-solute effects on the diffusion probe size 

and PPI, as interpreted from D0/Ds from FCS will be related to the measurements of PPI and self-

association from SLS to construct a more complete and consistent understanding of the co-

solutes’ effects on the physical behavior and corresponding solution viscosity for highly 

concentrated mAbs. Co-solute effects on the mAb viscosity and stability will also be investigated 

for a systematic set of co-solutes ranging from inorganic and organic ionic co-solutes (NaCl, 

arginine, histidine, imidazole, lysine) to neutral osmolytes (proline, glycine, trehalose) for three 

mAbs (mAb1 – mAb3) to develop a more general fundamental understanding of the relation 
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between the co-solutes’ physical properties (size, charge, shape) and their effects on PPI. The 

work supporting the development of this objective are closely interrelated with the work for the 

first two objectives. 

For the fourth objective of this dissertation, the influence of the solution viscosity on the 

performance (process throughput and yield) of high concentration tangential flow filtration 

(TFF) for the antibody mAb1 will be investigated. The addition of 320 mM histidine will be used 

to reduce the viscosity of the concentrated (~250 mg/mL) mAb solution. The viscosity reduction 

will be related to changes in the axial local transmembrane pressure (TMP) and wall shear stress 

profiles. The extent of protein aggregation and membrane fouling will be related to the 

uniformity and magnitude of the applied local TMP and wall shear stresses in order to develop a 

mechanistic understanding of how formulation design for lower viscosities influence the TFF 

process yield and throughput. The rate of flux decay as well as maximum achievable protein 

concentration will also be related to the viscosity to understand what the controlling factors in 

the TFF performance are, and how they can be tuned through formulation design. 

1.5 DISSERTATION OUTLINE 

The work represented in Chapters 2 to 5 of the dissertation are not presented in the 

chronological order of when the work was done. The actual chronological order was Chapter 4 to 

3 to 1 and finally to 2. To present a more strategic structure for explaining the logic behind the 

studies, the order of the chapters was chosen to evolve from more fundamental studies to more 

applied studies. The main experimental techniques in Chapters 2 and 3 were static light 

scattering (SLS) and fluorescence correlation spectroscopy (FCS) respectively. In contrast 

Chapters 4 used viscometry, size exclusion chromatography (SEC), and dynamic light scattering 

(DLS) to evaluate the effects of co-solutes on mAb stability and solution viscosity, while 

Chapter 5 used tangential flow filtration (TFF) in combination with the protein characterization 
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techniques from chapter 4 to understand the interrelation between TFF process parameters, mAb 

stability and viscosity, and TFF process performance.  

In chapter 1, this dissertation introduces the concept of tuning protein-protein interactions 

using co-solutes in order to modify the mAb self-association behavior and viscosity at high 

concentration, as investigated through the co-solute effects on the mAb static structure measured 

by SLS. In chapter 2, the strength of protein-protein interactions (PPI) of two IgG1 monoclonal 

antibodies (mAbs) from low to high concentration were determined by static light scattering 

(SLS) and used to understand viscosity data. The PPI were tuned using NaCl and five organic 

ionic co-solutes. The PPI strength was quantified by the normalized structure factor S(0)/S(0)HS 

and Kirkwood-Buff integral G22/G22,HS (HS = hard sphere) determined from the SLS data, and 

also by fits with (1) a spherical Yukawa potential and (2) an interacting hard sphere (IHS) model. 

The IHS model describes attraction in terms of hypothetical oligomers. For each descriptor of 

PPI, linear correlations were obtained between the viscosity at high concentration (200 mg/mL) 

and the interaction strengths evaluated both at low (20 mg/mL) and high concentration (200 

mg/mL) for a given mAb. However the only parameter that provided a correlation across both 

mAbs was the oligomer mass ratio (moligomer/mmonomer+dimer) from the IHS model, indicating the 

importance of self-association (in addition to the direct influence of the attractive PPI) on the 

viscosity. 

The investigation of the co-solute effects on the PPI and mAb self-association through 

measurement of the mAb static structure was complemented by evaluation of the co-solute 

effects on the mAb dynamic behavior (self-diffusion) obtained by fluorescence correlation 

spectroscopy. The data are interpreted using a length-scale dependent viscosity model. In chapter 

3, the suitability of fluorescence correlation spectroscopy (FCS) technique for measuring the 

self-diffusion of mAb2 from low to high concentration (60 – 250 mg/mL) across a range of co-

solute formulations with varying viscosities (ex. 10 cP to 100 cP at 200 mg/mL) was 
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demonstrated after initial method optimization. The self-diffusion D0/Ds was found to deviate 

from the generalized Stokes-Einstein (GSE) relation with respect to the macroscopic viscosity. 

Given that the probe (labeled mAb) was the same size as the crowding agent (unlabeled mAb), 

D0/Ds was fit to a length-scale dependent viscosity (LDV) model to partially decouple the effects 

of structure, hydrodynamic interactions and PPI on the diffusion. The lowest-viscosity 

formulations had the weakest attraction based on the interaction parameter b extracted from fits 

of D0/Ds, in agreement with measurements of PPI by SLS and SAXS for the same mAb. In 

contrast, the polydispersity of the solution as measured by FCS appeared to be decoupled from 

the viscosity, despite known differences in the mAb’s self-association behavior between 

formulations as assessed by SLS and SAXS. The apparent decoupling was hypothesized to be 

caused by the long time scale of the FCS measurements relative to the fast equilibrium exchange 

of the labeled mAb between monomer and oligomers. 

The influence of the ionic co-solutes investigated in chapters 2 and 3 (NaCl, arginine, 

lysine, imidazole, etc. for mAb2 and mAb3) was contrasted with the effects of neutral osmolytes 

(proline, glycine, trehalose) on the viscosity and stability for a different mAb (mAb1). Although 

the use of different mAbs for the different co-solutes prevented direct comparison of general co-

solute effects on PPI and stability, the comparison of the neutral osmolytes against histidine (an 

organic ionic co-solute similar to arginine and imidazole) in chapter 4 for the same mAb (mAb1) 

provided for a more developed fundamental understanding of the relation between the co-solute 

physical properties and the general co-solute effects on PPI seen from SLS and FCS. The choice 

of mAbs at various stages of the thesis was governed by availability of the mAbs from the three 

biopharmaceutical sponsors and this limited somewhat the flexibility in integrating the various 

thesis chapters, although important conclusions were obtained in all chapters. 

In chapter 4, the viscosity of ~225 mg/mL mAb1 solutions was measured with proline, 

glycine and trehalose as a function of pH and co-solute concentration up to 1.3M. The stability 
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was assessed via turbidity as well as size exclusion chromatography after 4 weeks storage at 

40°C. The PPI strength was assessed qualitatively via the high concentration diffusion rate by 

dynamic light scattering. Proline was found to significantly reduce the mAb viscosity and 

increase the colloidal stability at pH 6 with increasing proline concentration, but not at pH 5 

further from the mAb pI. In contrast, glycine and trehalose were found not to improve the 

viscosity nor stability. The greater efficacy for improving mAb viscosity and stability 

demonstrated by proline in contrast to glycine and trehalose was hypothesized to be due to its 

amphipathic structure and partial charge on the pyrrolidine side chain, which likely allow proline 

to screen the attractive electrostatic and hydrophobic interactions that promote self-association 

and high viscosities. 

To illustrate the importance of formulation development (based on the fundamental 

understanding of co-solute effects on protein biophysical behavior, as developed in chapters 2 – 

4) for protein drug manufacturing, two low viscosity formulations identified for mAb1 during 

formulation development were integrated with process development for TFF to demonstrate 

improved process performances as a result of the lower viscosity. In chapter 5, the co-solutes 

histidine or imidazole were added at high concentrations from 250 to 320 mM to reduce the 

viscosity of mAb1 by up to ten-fold relative to conventional low co-solute formulations, to as 

low as 40 cP at 250 mg/mL. At high mAb concentrations of up to 280 mg/mL, the 

transmembrane flux was increased threefold by adding high concentrations of co-solutes that 

also lowered the viscosity. Furthermore, the co-solutes also increased the mAb gel point 

concentration cg by up to 100 mg/mL mAb and thus enhanced concentration polarization-driven 

back-diffusion of the mAb at the membrane wall, which led to increased fluxes. The low 

viscosity and use of hollow fiber filter modules with straight flow paths enabled more uniform 

TMP and wall shear stress τw profiles, which mitigated the reversible flux decay that results from 



 12 

an axial decline in the local TMP. The concentrated mAb was found to be stable by SEC before 

and after extended storage at 4°C and 37°C. 
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Chapter 2:  Protein-Protein Interactions of Highly Concentrated Monoclonal 

Antibody Solutions via Static Light Scattering and Influence on the Viscosity1 

Jessica J. Hung, Barton J. Dear, Carl A. Karouta, P. Douglas Godfrin, Jonathan A. Bollinger, 

Maria P. Nieto, Logan R. Wilks, Tony Y. Shay, Kishan Ramachandran, Ayush Sharma, Thomas 

M. Truskett, Keith P. Johnston 

 

2.1 ABSTRACT 

The ability to design and formulate mAbs for weak attractive interactions at high 

concentrations is important for protein processing, stability and administration, particularly in 

subcutaneous delivery, where high viscosities are often challenging. The strength of protein-

protein interactions (PPI) of two IgG1 monoclonal antibodies (mAbs) from low to high 

concentration were determined by static light scattering (SLS) and used to understand viscosity 

data. The PPI were tuned using NaCl and five organic ionic co-solutes. The PPI strength was 

quantified by the normalized structure factor S(0)/S(0)HS and Kirkwood-Buff integral G22/G22,HS 

(HS = hard sphere) determined from the SLS data, and also by fits with (1) a spherical Yukawa 

potential and (2) an interacting hard sphere (IHS) model. The IHS model describes attraction in 

terms of hypothetical oligomers. For each descriptor of PPI, linear correlations were obtained 

between the viscosity at high concentration (200 mg/mL) and the interaction strengths evaluated 

both at low (20 mg/mL) and high concentration (200 mg/mL) for a given mAb. However the 

only parameter that provided a correlation across both mAbs was the oligomer mass ratio 

(moligomer/mmonomer+dimer) from the IHS model, indicating the importance of self-association (in 

addition to the direct influence of the attractive PPI) on the viscosity. 

                                                 
1 The first-author was responsible for method development for SLS measurements of viscous high concentration 

mAb solutions, the design of all experiments, ~70 % of the execution and data analysis (with direct supervision of 

the remaining ~30% conducted by Carl Karouta), and all of the data interpretation, intellectual development and 

writing of the manuscript, with theoretical support for the Yukawa model from Barton J. Dear, P. Douglas Godfrin 

and Jonathan A. Bollinger. 
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2.2 INTRODUCTION 

Highly concentrated monoclonal antibody (mAb) solutions up to 300+ mg/mL often have 

a tendency to aggregate and become highly viscous, presenting challenges in protein processing, 

storage and subcutaneous delivery (1).  These factors may influence safety and efficacy (1-4), 

and produce unacceptably large subcutaneous injection forces (5, 6) as well as reduced filtration 

fluxes and process yields (1, 7, 8). Strategies to mitigate these challenges may be based on 

reduction of the attractive short-ranged local anisotropic electrostatic (charge-charge; charge-

dipole) (9-12) and hydrophobic (13, 14) protein-protein interactions (PPI) that promote self-

association, as shown in simulations (15-17) and experimentally (18-23).While self-association 

may be reduced by engineering the sequence to remove hydrophobic patches or reduce charge 

anisotropy (9, 24-29), it may also be mitigated through formulation design. Empirical models to 

predict viscosities of concentrated mAbs a priori from their sequence have seen limited success 

given the complexities of how charge and charge asymmetries in the various domains along with 

other short ranged attraction influence self-association (16, 17, 30, 31). In some cases, charge 

screening alone by addition of NaCl is sufficient to reduce viscosity (21, 32, 33), but in many 

cases organic acids and bases such as camphorsulfonic acid and arginine are more effective (13, 

14, 28, 33-40). To better guide formulation design for ionic strength, pH and the addition of co-

solutes to lower viscosity and self-association, it would be beneficial to develop a deeper 

understanding of mAb higher-order structure and PPI from experimental measurements at high 

concentration. 

Correlations and predictions of high concentration viscosities with low concentration 

measurements of PPI, such as the second osmotic virial coefficient B22 and diffusion interaction 

parameter kD, have not always been consistent for a series of mAbs (9, 28, 41). These 

correlations are limited by the increasing influence of the anisotropic short-ranged PPI with 

decreasing interparticle spacings at high concentration. Thus, recent efforts have evaluated 

multibody interactions and resulting mAb orientations directly at high concentration. From well-
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known studies on three Genentech mAbs and derivative mutants, distinct classes of mAbs in 

terms of salt effects on mAb PPI, structure and viscosity at high concentration may be identified. 

Two of the mAbs, referred to as GmAb1 (Genentech “mAb1” (9, 12, 21, 29, 32, 42, 43)) and 

GmAbG (“mAb1,” (19, 44) “mAbG” (18)) were highly viscous, but with differing responses to 

salt addition. For GmAb1, strongly anisotropic attraction was observed from the structure factors 

from SANS (45) in agreement with formation of large clusters suggested by coarse-grained (CG) 

models (30). Dimer formation was seen even at dilute conditions by SAXS and DLS (20) and led 

to extensive self-association at high concentration as measured by SLS (22). Addition of NaCl 

suppressed self-association, seen by SLS (22) and by an increase in the self-diffusion (equivalent 

to a decrease in RH) from NSE (20), via charge screening and reduction of the significant charge 

anisotropy in the Fab region of the electrostatic potential surface (9). The reduced self-

association was correlated with a large decrease in viscosity (21, 32, 46) as well as shear-

thinning behavior (46). In contrast, GmAbG underwent self-association upon addition of 

Na2SO4, as seen by SAXS (18) and SLS (19), accompanied by a large increase in viscosity (18, 

19). In contrast with these two mAbs, the third mAb GmAb2 (“mAb2” (9, 21, 29)) had a low 

base viscosity, which was unchanged by addition of NaCl (20). This behavior was attributed to 

low charge anisotropy in GmAb2’s Fab region (9) resulting in weaker anisotropic electrostatic 

attraction, as seen from the smaller value of the structure factor S(q) that was well-described by a 

purely repulsive potential, in contrast with GmAb1 (45). Due to the weaker electrostatic PPI, 

GmAb2 did not self-associate, as seen from CG models (30) and DLS/NSE measurements of Rh 

(20). Mutation of the Fv region in GmAb1 to more closely resemble GmAb2 via charge 

swapping greatly reduced the viscosity (9, 29). Whereas these findings provide great insight into 

the effects of NaCl and Na2SO4 on PPI and viscosity as seen for other mAbs (23, 33, 34), much 

less is known about more potent organic co-solutes (13, 14, 34, 36, 40). To date, such studies of 

co-solute effects on high concentration PPI have been limited primarily to arginine, and only 
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provided qualitative correlations of viscosity with scattering intensities (proportional to S(q)) at 

high concentration from SAXS (39, 47). 

Static light scattering (SLS) is commonly used to measure protein interactions at dilute 

conditions via B22 (48) and also at high concentration (up to 200 mg/mL) (22, 49-51) at low q 

values, typically ~0.0018 Å-1. The small volume requirements (~20 µL) and potential for high-

throughput measurements using commercial instruments (52-55) are relevant for guiding mAb 

discovery and formulation. SLS provides a quantitative measure of the net interaction strength 

via the protein-protein Kirkwood-Buff integral G22 (49, 50, 56, 57) or zero-q static structure 

factor S(0) (56, 58). G22 is the multibody, high concentration analogue of B22 (Eqn. 2.1) (57) 

 

𝐺22 = 4𝜋 ∫ [exp (−
𝑊22(𝑟)

𝑘𝐵𝑇
) − 1] 𝑟2𝑑𝑟

𝑟
                          (2.1) 

where W22 is the concentration (c) dependent potential of mean force between two protein 

molecules as a function of the center-to-center separation distance r. In the low concentration 

limit (c  0), G22 becomes -2B22 (56). Analogous to the case for B22, increasingly negative 

(positive) G22 values indicate growing net repulsion (attraction). G22 can also be related to the 

structure factor S(0) (Eqn. 2.2 (56)) in the zero-q limit (experimental q = 0.0018 Å
-1

), 

                                    𝑆(0) = 1 + 𝑐 ∗ 𝐺22         (2.2) 

which can also be compared with S(0) from SAXS/SANS analysis of protein structure and 

interactions (18, 31, 45, 59, 60). 

The concentration-dependent S(0) and G22 may be fit to interaction potentials U(r) to 

quantify the strength and length scale of the short-range attraction and long-range repulsion. 

Initial efforts focused on fitting S(0)) across the entire tested concentration range with a single 

Baxter adhesion potential for a spherical model (22, 61-63), while more sophisticated models 

include mAb shape anisotropy with CG models (31, 56). For example, 12-bead models with bead 

charges determined from the mAb sequence have been used to accurately predict high 
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concentration scattering (R/K0) values from Yukawa-screened Coulombic (Eqn. 2.3a) and 

Lennard-Jones interaction potentials parameterized only from the low concentration scattering 

(50, 57, 64), 
𝑈(𝑟𝑖𝑗)

𝑘𝐵𝑇
=  𝜁𝜓𝑖𝜓𝑗𝑞𝑖𝑞𝑗 ∗

exp (−𝜅∗(𝑟𝑖𝑗− 𝜎𝑖𝑗)

𝑟𝑖𝑗[1+
1

2
(𝜅𝜎𝑖𝑗)]

2                     (2.3a) 

However, these approaches are successful primarily for repulsive or weakly attractive 

systems (22, 57) with limited charge anisotropy throughout the various Fab and Fc domains (9), 

where the net short-ranged attraction strength is not very sensitive to mAb concentration. For 

strongly attractive systems, such as GmAb1, the scattering cannot be predicted over a wide 

concentration range up to 200 mg/mL from a single potential (22, 57). The implication is that the 

net attraction strength changes with concentration, which is indeed seen for SAXS fits of S(q) for 

a mAb (31) as well as the model protein α-chymotrypsinogen (65).  

To describe the more complex scattering behavior of strongly attractive/anisotropic 

systems, Minton (66) treated the scattering solution as a three-component equivalent hard sphere 

mixture. In this approach, termed the “interacting hard sphere” (IHS) model by Scherer (22, 51, 

61), no knowledge of the mAb shape, sequence, or form of the interaction potential is needed. 

Instead, the behavior is represented by the relative concentrations of larger scattering species 

(formed by the reversible self-association of equivalent hard sphere ‘monomers’), where the 

attractive interactions are implicit in forming these multimers. Using this approach, Scherer was 

able to demonstrate that high concentrations of arginine completely suppress apparent 

oligomerization of GmAb1 through preferential binding of arginine to the mAb surface, in 

contrast to NaCl, which had a smaller binding affinity (51). More recently, this approach was 

also combined with rheological measurements to attempt to quantitatively describe the 

morphology of the oligomers formed across different mAbs and solution conditions, in order to 

relate the solution viscosity to the protein solution microstructure (67). Given the quantitative 
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insight gained with the Yukawa/Lennard-Jones (22, 50, 57) and interacting hard sphere models 

(19, 22, 51, 61) for low-q light scattering of mAbs at high concentration with simple salts (NaCl, 

Na2SO4, NaSCN) and arginine (67), it would be desirable to investigate additional co-solutes.  

Our objective were: (1) to tune short-ranged attraction over a wide range of concentration 

for two mAbs with co-solutes, and to quantify the PPI from fits of SLS data to two colloidal 

models; and (2) to measure and correlate viscosities in terms of SLS experimental data and 

interaction parameters obtained from those models. We investigate the effect of NaCl and five 

ionic organic co-solutes on S(0) (from SLS) and viscosity for two mAbs up to 230 mg/mL. We 

model the short-range attraction with a Yukawa model and the effective self-association behavior 

with the interacting hard sphere model. The co-solutes (lysine, arginine, guanidine, imidazole, 

and phenylalanine methyl ester) were chosen to selectively tune the electrostatic, hydrophobic 

and steric interactions based on systematic differences in the co-solute size and structure. 

Arginine, phenylalanine, guanidine and imidazole were chosen as they possess π-electron 

systems and have been shown in simulations (68-73) or from SAXS (74) to preferentially 

interact with aromatic residues on the mAb surface. S(0) was fit to a spherical Yukawa potential 

(Eqn. 2.3b)  
𝑈(𝑟)

𝑘𝐵𝑇
=  −

𝐾

𝑟
exp(−𝑍(𝑟 − 1))       (2.3b) 

where r is the center-to-center interparticle distance normalized by the particle diameter, K is the 

depth of the attractive well, and the characteristic length scale Z
-1

 of the short-ranged attraction. 

The scattering data were also fit to a three-component interacting hard sphere self-association 

model to shed further insight into the influence of the attractive interactions on the resulting 

average effective cluster size 〈Nc〉 and the mass ratio of oligomers to the amount of monomer 

and dimer (“oligomer mass ratio”). The viscosities were correlated with the measured net 

attraction strength (based on S(0), G22, K), 〈Nc〉 and the oligomer mass ratio in order to develop a 
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better understanding of the interrelation between viscosity, PPI strength, and oligomer formation 

and corresponding solution microstructure. 

2.3 MATERIALS AND METHODS 

2.3.1 Materials 

Stock solutions of the IgG1 monoclonal antibodies used in this study, mAb2 and mAb3, 

were provided by Merck at 25 mg/mL (pH 5.5) and 35 mg/mL (pH 5), respectively. L-arginine 

hydrochloride (Arg.HCl), guanidine hydrochloride (Gdn.HCl as a high-purity 8M solution), 

hydrochloric acid, imidazole, L-lysine hydrochloride (Lys.HCl), and sodium chloride were 

purchased from Thermo-Fisher Scientific (Waltham, MA). L-phenylalanine methyl ester 

hydrochloride was obtained from Bachem (Torrance, CA). The arginine hydrochloride, 

imidazole, and lysine hydrochloride were all BioReagent grade (> 98.5% purity). All co-solutes 

were dissolved in de-ionized water (Barnstead Nanopure Diamond, Thermo Fisher Scientific, 

Waltham, MA). 

2.3.2 Dialysis and sample preparation 

Ultra-concentrated (~280 mg/mL), unformulated mAb stocks were prepared in 21:30 mM 

Na:OAc (pH 5) buffer by dialysis followed by centrifugal ultrafiltration. The initial 25 – 35 

mg/mL mAb solutions as provided by Merck were dialyzed into 21:30 mM Na:OAc pH 5 buffer 

using 8-10 kDa Tube-A-Lyzer dynamic dialysis modules (Part #137046; Spectrum Labs, Rancho 

Dominguez, CA) as described in the Supporting Info. The dialyzed mAb was recovered and 

sterile filtered with 0.22 μm PES filters (CellTreat Scientific Products, Pepperell, MA) before 

being concentrated to ~280 mg/mL by centrifugal ultrafiltration at 4500 RCF using a 30 kDa 

MWCO Amicon Ultra-15 centrifugal filter unit (MilliporeSigma, Burlington, MA). The 

ultrafiltration was stopped at the target mAb concentration based on the retentate mass, as 

described previously (35). The final mAb stock concentrations were measured by UV-Vis 
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spectroscopy as described previously (7, 34, 35) with an extinction coefficient of 1.42 mL*mg
-

1*
cm

-1
 (mAb2) and 1.44 mL*mg

-1
*cm

-1
 (mAb3). 

The initial high-concentration (225 mg/mL) mAb solutions for static light scattering 

measurements were prepared by gravimetric dilution of the unformulated, ultra-concentrated 

mAb stock described above with concentrated co-solute and buffer stock solutions (prepared as 

described in Supporting Info) to generate ~1.5 mL of solution with the desired final formulation 

(50, 250 or 1000 mM co-solute in 21:30 mM Na:OAc pH 5 buffer). Intermediate concentration 

samples were prepared for scattering measurements by gravimetric dilution of the formulated 

mAb solution to 17 intermediate concentrations (between 1 and 200 mg/mL; ~120 uL each) in 

1.5 mL microcentrifuge tubes with solvent prepared at the same co-solute composition, such that 

the co-solute and buffer compositions remained unchanged. The gravimetric dilution process is 

described in the Supporting Info. Based on an error propagation analysis using the systematic 

instrument errors and average standard error in the concentration measurements of the ~225 

mg/mL formulated stock samples, the error in the concentration of the intermediate dilutions is 

expected to be less than 1.4% (~2.8 mg/mL) at high concentration (~200 mg/mL) and less than 

11% (0.22 mg/mL) at the lowest concentrations (~2 mg/mL). The error propagation calculations 

are described in detail in the Supporting Info. 

Dilutions below 150 mg/mL were mixed by a pipet (Research Plus, Eppendorf, Hamburg, 

Germany) set to 60 uL and pipetted until homogenous (~30 seconds) while dilutions above 150 

mg/mL were mixed by stirring with a needle due to the high viscosity preventing even mixing 

from pipetting alone. The samples were allowed to equilibrate overnight at 4°C prior to SLS 

measurements the following day. The dilution series for each co-solute was prepared in duplicate 

from the same concentrated formulated mAb stock. 
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2.3.3 Viscosity 

The viscosity of the initial, concentrated formulated mAb was measured using a custom 

syringe viscometer as described previously (7, 34, 35). Briefly, the flow rate of the mAb solution 

through a 25G needle attached to a 1 mL syringe under a constant pressure differential was 

converted to a viscosity following the Hagen-Poiseuille equation. The applied shear rate was 

~1000 s
-1

. 

The viscosity was fit to the Ross-Minton equation (19, 21)  

 

𝜂

𝜂0
= exp (

[𝜂]𝑐

1−
𝑘

𝜈
[𝜂]𝑐

)                   (2.4) 

where c is the mAb mass concentration, η0 is the solvent viscosity, [η] is the intrinsic viscosity, 

and k/ν is the combined packing/Simha shape parameter. The viscosity was also fit to a polymer 

entanglement/binding viscosity model (23), hereafter referred to as the reptation model, in order 

to obtain a measure of the attractive interaction strength from the viscosity behavior:  

 

𝜂 = 𝐴𝑐3 (3𝜈−1)⁄ (
2𝑘𝑐

√1+4𝑘𝑐−1
)

3

                              (2.5) 

Here, ν ~ 3/5 is the Flory exponent, k is the partition function over all potential intermolecular 

binding states, and A is a proportionality constant that was determined to be 5.38*10
-8

 cP by 

fitting the viscosity data across all co-solutes and mAb concentrations simultaneously. In this 

model the mAb is considered to form linear chains through Fab-Fab interactions only.  

2.3.4 Static light scattering (SLS) 

Static light scattering measurements of both mAbs as a function of concentration from 2 

– 225 mg/mL in each co-solute formulation were performed at 25°C with a laser wavelength λ of 

658 nm (q = 0.0018 Å-1) and a scattering angle of 90° using the miniDAWN TREOS from 
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Wyatt Technology (Santa Barbara, CA) run in batch mode with the microcuvette accessory at 

ambient temperature. The samples were centrifuged at 10,000g for 15 minutes to dissipate any 

bubbles and sediment any trace particulates that might be present in the sample prior to the SLS 

measurements. The excess scattering at each concentration was measured with duplicate or 

triplicate sample insertions in the SLS instrument. The scattering intensity was allowed to 

stabilize at the equilibrium value (typically requiring ~1 – 2 minutes), and the stable scattering 

intensity was recorded over a period of 1 minute per insertion. In all cases, the scattering 

between replicate insertions were in very good agreement, and the scattering intensity was 

therefore averaged over all 3 insertions. Each co-solute mAb concentration series (2 – 225 

mg/mL) was prepared and measured by SLS in duplicate. The co-solute refractive index 

increment dn/dcco-solute was measured using the Wyatt Technology Optilab T-rEX refractometer 

with a laser wavelength of 658 nm at room temperature. The co-solutes were treated as part of 

the solvent, following Scherer’s treatment (51, 61), and the solvent refractive index n0 was 

calculated from the co-solute refractive index increment as n0 = nwater + (dn/dcco-solute)*cco-solute. 

The light scattering data was collected and processed (baseline correction and conversion to 

Rayleigh ratios) using the Astra 6.1.2 software (Wyatt Technology, Santa Barbara, CA). Further 

analysis was conducted in Excel and with MATLAB scripts generously provided by Allen 

Minton and P. Douglas Godfrin, as will be described in later sections. 

Measurements of the dilute protein-protein interactions via the second osmotic virial 

coefficient B22 can be determined from the low concentration scattering (75, 76):  

 
𝐾𝑐

𝑅𝜃
=

1

𝑀𝑤
+ 2𝐵22𝑐                   (2.6) 

where Rθ is the excess Rayleigh ratio (35) calculated from the scattering intensity, Mw is the 

mAb molecular weight and K is an optical constant (77)  
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𝐾 =
4𝜋2𝑛2

𝑁𝐴𝜆4
(

𝑑𝑛

𝑑𝑐
)

2

                (2.7) 

Here n is the solution refractive index (n = n0 + (dn/dc)*cprot), λ is the incident laser wavelength 

(658 nm), and dn/dc is the protein refractive index increment, assumed to be 0.185 mL/g (66). 

The B22 in each co-solute formulation can be normalized against the hard sphere steric value 

(B22,HS = (2/3)
3
) (64, 65) with σ = 2Rh and  

 

𝑅ℎ = (
3

4𝜋
∗

𝑀𝑤

𝑁𝐴
∗ 𝑉𝑒𝑓𝑓)

1 3⁄

       (2.8) 

where Veff  is the partial specific volume. The best-fit average mAb Veff was obtained from fits of 

the scattering data across all co-solute formulations for a given mAb to the interacting hard 

sphere (IHS) model (66) described in the following section and the Supporting Info. As will be 

shown later in the Results and Discussion section, the average Veff was found to be 1.70 and 1.78 

mL/g for mAb2 and mAb3 respectively, corresponding to B22,HS of 6.80 and 7.15 mL/g for 

mAb2 and mAb3 respectively. 

The concentration-dependent net PPI can be quantified from the scattering by the zero-q 

limit structure factor S(0), which is calculated from the ratio of scattering intensities at a given 

concentration and at infinite dilution 

 

𝑆(0) = (
𝑅𝜃

𝐾0𝑐
) 𝑀𝑤⁄           (2.9) 

where K0 is the optical constant (Eqn. 2.7) calculated with the solvent refractive index n0 instead 

of the solution refractive index and Mw = Rθ/K0c as c  0 . The derivation of Eqn. 2.9 is 

provided in the Supporting Info. This relation is applicable (49, 50, 57, 64) given that the angular 

dependence of the scattering intensity in the low-q region (SLS) has previously been shown to be 

negligible for two mAbs (22), due to the small size of the mAb molecule relative to the incident 
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laser wavelength (658 nm). The S(0) can be normalized against the spherical steric value S(0)HS, 

which is calculated from the compressibility of a hard sphere following the Carnahan-Starling 

equation (78) 

 

𝑆(0)𝐻𝑆 =
(1−𝜙)4

(1+2𝜙)2+𝜙3(𝜙−4)
              (2.10) 

where the effective protein volume fraction ϕ is calculated from the best-fit mAb partial specific 

volume Veff obtained by the IHS model fit (ϕ = c*Veff), rather than by the traditional protein 

‘dry-weight’ specific volume of 0.73 mL/g (66) which does not account for protein hydration 

effects. The Kirkwood-Buff integral G22 was calculated from S(0) by Eqn. 2.2 and normalized 

against the steric G22,HS calculated from S(0)HS using Eqn. 2.2. 

2.3.5 Solution non-ideality and self-association with the interacting hard sphere (IHS) 

model 

The concentration-dependent light scattering of each mAb formulation could also be fit to 

a three-component interacting hard sphere model developed by Minton (66) in order to interpret 

the scattering in terms of apparent self-association and anisotropic distribution of site-specific 

attraction in the system. Previous applications of this model to describe the scattering of two 

mAbs are given elsewhere (19, 22, 51, 61). In this model, changes in the concentration-

dependent scattering are attributed to the formation of reversible oligomers, such that the 

scattering intensity at a given concentration corresponds to a characteristic oligomer size and 

distribution of monomer, oligomer (typically dimer) and higher-order oligomer. The attractive 

protein interactions are implicit in the formation of these multimer entities. Changes in the 

interaction strength are captured via the activity coefficient, which in this model is related only to 

the size of the equivalent hard sphere scatterers (22, 66). Although this model fits the scattering 

to a mixture of monomer and two oligomeric species (typically dimers and a higher-order 

oligomer), the oligomers are hypothetical to represent association, but are not necessarily actual 
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physical aggregates that could for example be measured by SEC or SAXS/SANS (66). However, 

they have in some cases been interpreted as physical aggregates (19, 22, 51, 53, 79). This model 

may be used to fit both low and high concentration scattering for more strongly interacting 

systems, such as GmAb1 (22). Another advantage of this approach is that the self-association 

and the strong short-ranged attraction are not “masked” by the repulsive net PPI (very small S(0) 

(31, 49, 64)) from steric effects (19), but are instead clearly seen from the model fit across the 

entire concentration range. The model is fully described by Minton (66) and Scherer (22), and 

key intermediate equations are shown in the Supporting Info. Briefly, the concentration-

dependent scattering is a function of fluctuations in the molar concentration of three equivalent 

hard sphere species with molar masses Mi corresponding to monomer (M1), m-mer (M2 = m*M1) 

and n-mer (M3 = n*M1): 

 
𝑅𝜃

𝐾0
=  (

𝑛

𝑛0
)

2

[𝑀1
2⟨∆𝑐1̅

2⟩ + 𝑀2
2⟨∆𝑐2̅

2⟩ + 𝑀3
2⟨∆𝑐3̅

2⟩ + 2𝑀1𝑀2⟨∆𝑐1̅𝑐2̅⟩ + 2𝑀2𝑀3⟨∆𝑐2̅𝑐3̅⟩ +

2𝑀1𝑀3⟨∆𝑐1̅𝑐3̅⟩]          (2.11) 

The molar concentration fluctuations ⟨∆𝑐�̅�⟩
2 and ∆𝑐�̅�∆𝑐�̅� are driven by the chemical potential 

gradients of each scattering species (Eqn. 2.25). For equivalent hard spheres with only steric 

interactions, the chemical potential gradient is a function of the sphere size only. Three sphere 

sizes and corresponding sphere density (assumed fixed across all three species) are fit to the 

scattering intensity across the entire concentration range under a closed monomer-unit mole 

balance at each concentration, yielding two characteristic ‘aggregate’ sizes m (typically m = 2) 

and n, along with the corresponding self-association equilibrium constants K1m and K1n (based 

on concentrations and activity coefficients) such that 

 

𝑐𝑡𝑜𝑡̅̅ ̅̅ ̅ =
𝑐

𝑀𝑤
= 𝑐1̅ + 𝑚 ∗ 𝐾1𝑚 ∗ 𝑐1̅

𝑚 + 𝑛 ∗ 𝐾1𝑛 ∗ 𝑐1̅
𝑛    (2.12) 
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where 𝑐𝑡𝑜𝑡̅̅ ̅̅ ̅ is the molar concentration of monomer-units, 𝑐1̅ is the molar concentration of free 

monomer, and the last two terms are the number of monomer-units incorporated into the two 

oligomer species. At high ionic strengths such that the electrostatic repulsion is fully screened (as 

is the case for all of the co-solute formulation conditions in this study), Vex becomes the mAb 

partial specific volume Veff (51). From the fitted m, n, K1m, K1n, and Veff, the mass fraction xi of 

each species at a given mAb concentration can be determined.  

 

𝑥𝑖 = (𝑀𝑖 ∗ 𝑐�̅�)  ∑ (𝑀𝑖 ∗ 𝑐�̅�𝑖⁄ )          (2.13) 

Non-linear regression of the scattering data to the interacting hard sphere model was performed 

using scripts and functions written in MATLAB (R2016b, Mathworks, Natick, MA) generously 

provided by Allen Minton (National Institute of Health, Bethesda, MD) (66).   

2.3.6 Solution non-ideality from fitting S(0) to the Yukawa interaction potential 

At low q, the concentration-dependent structure factor S(q) determined from the 

scattering data (Eqn. 2.9) may be approximated with a spherical single-term Yukawa interaction 

potential U(r) (Eqn. 2.3) via integral equation theory (18, 36, 56, 88)  in order to regress an 

effective length scale Z
-1

 and attraction strength K.  A long-ranged Yukawa term (18, 20) was 

not needed for long ranged electrostatic interactions given the high ionic strengths (50, 57, 64, 

81). Fits of S(0) to the U(r) interaction parameters K and Z were performed using a modified 

version of scripts written in MATLAB and generously provided by P. Douglas Godfrin (18). 

The Yukawa interaction parameters K and Z were assumed to remain constant over the 

entire concentration range (2 – 225 mg/mL) for simplicity, given the limited information 

available for a single q-vector. The best-fit parameters were obtained by minimizing the average 

relative deviation (ARD) (50, 57) of the fitted S(0) curve for each mAb and co-solute 

formulation. 
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𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 |𝑛

𝑖=1            (2.14) 

In order to simplify and improve the uniqueness of the fit, Z was fixed at 3 to reduce the 

model to a single-parameter fit (K). Z is the inverse characteristic length scale of the attractive 

well scaled by the equivalent hard sphere particle diameter d (~9 nm for a typical mAb) (22, 45) 

such that for Z = 3 the characteristic attraction length scale is d/Z = 3 nm. This Z value was 

chosen by minimizing the total ARD across the entire co-solute data set for mAb2 with respect to 

Z, where the individual ARDs for each co-solute at a given Z were minimized with respect to K. 

In order to facilitate comparisons of the attraction strengths between co-solutes as well as 

between mAbs, the best-fit Z determined for mAb2 was also applied to mAb3. In the cases 

where Z = 3 yielded a poor fit (i.e. ARD > 5%), S(0) was additionally fit with other Z values. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Co-solute effects on viscosity 

Relatively few studies have examined the effects of concentrated co-solutes on viscosity 

at high protein concentrations (13, 14, 28, 32, 33, 36, 38, 40), especially at high co-solute 

concentrations. The effects of up to six ionic co-solutes (NaCl, Arg.HCl, Gdn.HCl, Lys.HCl, and 

Imid(HCl) and PheOMe(HCl) at pH 5.5) at 250 mM on the viscosity of concentrated mAb 

solutions up to 240 mg/mL were measured for mAb2 (Fig. 2.1a) and mAb3 (Fig. 2.1b), where 

Gdn.HCl and PheOMe(HCl) were only evaluated for mAb2. Here 50 mM NaCl was also 

evaluated as a low ionic strength control to provide modest electrostatic screening. Imid was 

studied up to 1 M as an upper extreme co-solute concentration, given the high solubility and low 

molecular weight. In general, the viscosities of mAb3 solutions are consistently ~2x higher than 

those of mAb2 for the same concentration and co-solute formulation. Furthermore, the rank 

order of co-solute effects on viscosity appears to be comparable for each mAb: NaCl and Lys 

have a negligible effect relative to the 50 mM NaCl control, while Arg, Gdn and Imid (250 mM) 
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cause a 2x – 3x viscosity reduction. For mAb2, PheOMe is even more effective, causing a 4x 

reduction, and highly concentrated Imid at 1 M causes the largest reduction of 6x from ~120 cP 

at 225 mg/mL (50 mM NaCl) to ~20 cP. For both mAbs, the cosolute-free viscosity (not shown) 

is nearly identical to that of both the 50 and 250 mM NaCl systems indicating a minor salt effect. 

Arg’s greater effect compared to NaCl has been seen with other mAbs (14, 28, 33-38) and has 

been attributed to screening of the localized short ranged anisotropic attractive PPI (22, 34-37, 

72, 82, 83). 

    

  

Figure 2.1. Viscosity of (A) mAb2 and (B) mAb3 with various co-solutes, fit to the Ross-

Minton viscosity model. Symbols are measured values, and solid/dashed lines are 

fits of the viscosity data to the Ross-Minton equation. All co-solutes (with 

exception of NaCl) are titrated to, or already at pH ~5.5, and all samples are 

buffered with 30 mM (Na)OAc at pH 5. All co-solute concentrations are 250 mM 

unless specified otherwise. The model fit parameters are shown in Table 2.2. The 

corresponding fit of the viscosity to the reptation model is shown in Fig. 2.8. 

The relative viscosity (ηrel) profiles were fit to the Ross-Minton (54) (Eqn. 2.4) and 

reptation (23) (Eqn. 2.5) viscosity models, shown by the solid curves on Fig. 2.1 and Fig. 2.8 

respectively. As seen from the fit parameters for both mAbs (Table 2.2), Arg, Gdn, Imid and 

PheOMe reduce [η] and increase k/ν relative to the control. Thus, these co-solutes appear to 
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cause mAb2 to adopt more compact and/or more symmetric shapes. In contrast, the smaller k/ν 

and larger [η] for mAb3 may indicate greater shape asymmetry and possibly oligomer formation 

(18 - 20). Similarly, the four co-solutes reduce the interaction strength represented by the 

partition function parameter k and corresponding binding energy ΔGbind fit from the reptation 

model (23) in Eqn. 2.5, which will be discussed in the context of protein interaction strengths 

below. Whereas these relative viscosities provide a crude estimate of the net PPI strength, the 

viscosity is also influenced by the cluster size and fractal dimension (16-19, 22, 23, 30, 67, 84), 

especially at high volume fractions, as discussed in greater detail below. 

2.4.2 Co-solute effects on the static light scattering of mAb2 and mAb3 

The concentration-dependent scattering Rθ/K0 of mAb2 and mAb3 as a function of the 

co-solute formulation is shown in Fig. 2.2a and 2.2b, respectively, whereas the reproducibility of 

the scattering profiles is shown in Figs. 2.9 and 2.10. Typical uncertainties in Rθ/K0 were ~0.2 – 

0.5% at low concentrations and 0.1% at high concentrations. The properties of the formulated 

stock solutions (initial concentration, viscosity, pH) used to generate the dilution series for the 

SLS measurements are listed in Table 2.3. Interestingly, the scattering intensities of mAb2 and 

mAb3 are comparable for a given co-solute, despite large differences in their viscosities. 

However, Rθ/K0 for mAb3 increases more rapidly in the low concentration region. Rθ/K0 is 

related to the osmotic compressibility d/dc by the relationship   

       
𝑅𝜃

𝐾𝑐
= 𝑀𝑤𝑘𝐵𝑇 ∗ (

𝑑𝜋

𝑑𝑐
)

−1

             (2.15) 

(see Eqn. 2.9) where S(0) is also an inverse compressibility (dπ/dc = kBT/S(0)) (85). The osmotic 

compressibility can be expressed as a virial expansion around the protein volume fraction (π/c = 

(RT/Mw)*(B1 + B22ϕ + B3* ϕ
2
 + …)) (37, 50). Stronger attraction (more negative B22) or a 

smaller dπ/dc corresponds to a faster increase in Rθ/K0. The steeper low-concentration slopes of 
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Rθ/K0 for mAb2 and for mAb3 with NaCl/Lys are therefore indicative of stronger attractive 

interactions than for the other co-solutes. However, at high concentration where steric repulsion 

(crowding) becomes dominant, Rθ/K0 decreases despite the higher concentration of scattering 

species and presence of short-ranged attractive interactions. 

 

  

Figure 2.2. Measured light scattering intensity (symbols), represented by the Rayleigh ratio R, of 

(A) mAb 2 and (B) mAb 3 as a function of mAb concentration for multiple co-

solutes. Solid lines indicate best fits of the scattering profile to the interacting hard 

sphere (IHS) model developed by Minton (57). The corresponding best-fit 

parameters are shown in Tables 2.7 and 2.8. 

The co-solute effects on the concentration-dependent Rθ/K0 are consistent between the 

two mAbs (Fig. 2.2) in the order: 1M Imid  PheOMe  Arg  Gdn  Imid  Lys  50 

mM NaCl  NaCl for mAb2; and Arg  Imid  50 mM NaCl/Lys  NaCl for mAb3. In 

particular, 250 mM NaCl causes a larger increase in scattering intensity relative to the 50 mM 

NaCl control. In addition for mAb2, Gdn reduces the scattering intensity similarly to 250 mM 

Imid, while PheOMe and 1M Imid reduce Rθ/K0 relative to even Arg. These trends largely 

correlate with those for viscosity (Fig. 2.1) (1M Imid  PheOMe  Arg/Gdn/Imid  Lys/50 
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mM NaCl/250 mM NaCl for mAb2; and Arg  Imid  Lys  50 mM NaCl/250 mM NaCl for 

mAb3). 

2.4.3 Low concentration interactions via the second osmotic virial coefficient 

The second osmotic virial coefficients B22 fit from the dilute scattering (Eqn. 2.6, Fig. 

2.11, 2.12) are reported in Table 2.4 for both mAbs in different formulations. B22/B22,HS (Table 

2.1) become less attractive with a decrease in the relative viscosity at 200 mg/mL for each mAb 

(Fig. 2.13), with the exception of the 50 mM NaCl system. The small B22 of 50 mM NaCl despite 

the high viscosity can instead be attributed to the more weakly screened long-ranged electrostatic 

repulsion (Debye length = 1.2 nm, compared to 0.6 nm for 250 mM monovalent co-solutes), 

which is more important at low mAb concentration. Overall, B22 values are more repulsive for 

mAb2 than mAb3, consistent with lower viscosities. Also Arg, PheOMe and 1M Imid greatly 

increase B22/B22,HS relative to the 50 mM NaCl control for both mAbs (Table 2.1). Remarkably, 

B22/B22,HS values of mAb2 with PheOMe and 1M Imid are very close to 1, indicating hard 

sphere-like interactions at low concentration, consistent with the smallest Rθ/K0 and the lowest 

viscosities. However, the dependence of the relative viscosity on B22 is much steeper for mAb3 

compared to mAb2. Furthermore, the effect of NaCl concentration on the net attraction is greater 

for mAb3. These observations will be discussed below with the Yukawa and interacting hard 

sphere models below.  

2.4.4 Quantification of high concentration net PPI by S(0) and G22 from static light 

scattering 

The co-solute effects on the net PPI of mAb2 and mAb3 were quantified by the structure 

factor S(0) determined from the ratios of concentration-normalized scattering intensities (Eqn. 

2.24) as shown in Fig. 2.3a and 2.3b, which is essentially identical to the S(0) values calculated 

from the regressed Mw (Eqn. 2.9) as shown in Fig. 2.14.  As discussed below, larger S(0) values 

may indicate greater solution microstructure interpreted as stronger attraction (18, 49) via a 
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smaller osmotic compressibility (dπ/dc = kBT/S(0)) (85). S(0) was also converted to the 

Kirkwood-Buff integral G22 by Eqn. 2.2 (Fig. 2.3c and 2.3d), which is more fundamentally 

related to the underlying PPI as it removes some of the effect of protein concentration (49, 50, 

56, 57, 64). The net PPI becomes increasingly repulsive (decreasing S(0)) with concentration, as 

steric repulsion from protein crowding at high concentration becomes stronger relative to the 

weaker short-ranged attraction (19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36 

  

  

Figure 2.3. (A, B) Structure factors S(0) and (C, D) Kirkwood-Buff integral G22 from SLS of (A, 

C) mAb 2 and (B, D) mAb 3 as a function of mAb concentration for multiple co-

solutes. Solid lines indicate best fits of S(0) (and corresponding G22) to a single-

Yukawa attractive pair potential, as described in the Materials and Methods section. 

The best-fit Yukawa parameter K (fixed Z = 3) is given in Table 2.1 and the 

corresponding error (ARD) is reported in Table 2.5. The hard mAb S(0) was 

obtained from Calero-Rubio et al.,(16) and is smaller than the hard sphere S(0) due 

to greater shape anisotropy resulting in less structured packing in solution. The 

mAb S(0) and G22 are compared against a hard sphere(35, 57) (---) and hard 

mAb(16) (―)model, where the mAb concentration was converted to ϕ using the 

average best-fit protein partial specific volume for each mAb. 
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However, despite the extremely repulsive net PPI at high concentration (S(0) << 1), 

differences in the short-range attraction strength can be seen as deviations from the hard sphere 

(HS) (Eqn. 2.10) and hard mAb (64) values (shown by the solid and dashed black lines, 

respectively). The order of the relative co-solute effects on S(0)/S(0)HS (Table21.1) match that of 

the scattering as expected from Eqn. 2.9, with the exception of PheOMe and 1M Imid for mAb2. 

The PheOMe system has a slightly smaller S(0) than 1M Imid due to small differences in the 

~zero concentration scattering (i.e. form factor) (Fig. 2.3a). S(0) exhibits a peak at low 

concentration (~30 mg/mL) for both mAbs with 250 mM NaCl and Lys, and to a smaller extent 

for the 50 mM NaCl and 250 mM Imid systems for mAb3 (Fig. 2.3b). The S(0) peak is 

characteristic of strong attraction (22, 66) where the initial increase in S(0) at low concentration 

is caused by the strong short-ranged attraction, while the downturn at higher concentrations 

reflects the growing influence of steric repulsion on the net PPI. Peaks in S(0) have been seen for 

other mAbs at high ionic strengths in correlation with elevated aggregation rates (49). For both 

mAbs, the S(0) peak and magnitude (corresponding to stronger attraction) are increasingly 

suppressed by the co-solutes in the order NaCl/Lys  Imid / Gdn  Arg  PheOMe/1M Imid, 

such that S(0) becomes significantly more hard sphere-like. 

The increasing suppression of the attractive PPI is also evident from the co-solute effects 

on G22 (Fig. 2.3c, 2.3d). For example, G22 of mAb2 falls on or near the HS curve with PheOMe 

and 1M Imid (mAb2) and 250 mM Arg (both mAbs). The effect of steric repulsion on the net 

PPI is more clearly seen from G22 relative to S(0), with G22 becoming negative (repulsive) at 

~100 mg/mL for mAb2 (Fig. 2.3c) and ~70 mg/mL for mAb3 (Fig. 2.3d). However, the relative 

co-solute effects on the attractive PPI are still evident from the consistent differences in G22 

between co-solutes across the entire concentration range, where the co-solute rankings for 

G22/G22,HS match that of S(0)/S(0)HS. The identical, strongly negative G22 values for mAb2 and 

mAb3 with Arg suggest that Arg greatly mitigates the short-ranged attractive PPI, consistent 
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with the relatively low viscosities. Interestingly, mAb3 exhibits much stronger net attraction than 

mAb2 at < 50 mg/mL, but also a much steeper increase in the net repulsion with increasing 

concentration. This difference in the concentration dependence of G22 (and to a lesser extent 

S(0)) may likely be attributed to differences in solution packing, as will be discussed in greater 

detail below. 
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Data 

Rept. 

Visc. 

model 

SLS scattering data 
Yukawa 

model
a 

SLS IHS (at 

200 mg/mL) 

Formulation 

ηrel 

at 

200 

mg/

mL 

ΔGbind 

(kJ/m

ol) 

B22/B22,H

S 

G22/G22,

HS at 20 

mg/mL 

G22/G22,

HS at 

200 

mg/mL 

S(0)/S(0

)HS at 

200 

mg/mL 

K  

(Z = 3) 

Oligom

ass 

ratio 
〈𝑵𝒄〉 

mAb2 

50 mM NaCl 58.3 -14.9 
-0.02 ± 

0.01 

0.00 ± 

0.03 

0.83 ± 

0.00 

3.24 ± 

0.03 
0.763 6.6 2.8 

250 mM NaCl 59.2 -15.7 
-0.21 ± 

0.02 

-0.39 ± 

0.02 

0.79 ± 

0.00 

3.76 ± 

0.02 
0.900 5.9

b
 3.6 

250 mM Lys.HCl 50.1 -15.4 
-0.21 ± 

0.13 

-0.24 ± 

0.02 

0.82 ± 

0.00 

3.37 ± 

0.01 
0.800 7.8 2.8 

250 mM Arg.HCl 26.9 -12.2 
0.53 ± 

0.01 

0.53 ± 

0.06 

0.93 ± 

0.00 

1.98 ± 

0.03 
0.401 0.0 1.8 

250 mM 

Imid(HCl) 
30.2 -12.3 

0.12 ± 

0.01 

0.10 ± 

0.01 

0.89 ± 

0.00 

2.51 ± 

0.01 
0.649 3.0 2.7 

250 mM Gdn.HCl 27.2 -10.7 
0.38 ± 

0.02 

0.11 ± 

0.01 

0.88 ± 

0.00 

2.55 ± 

0.01 
0.610 2.3 2.6 

250 mM 

PheOMe(HCl) 
18.7 -3.4 

0.91 ± 

0.03 

0.92 ± 

0.01 

0.95 ± 

0.00 

1.66 ± 

0.00 
0.100 0.0 1.8 

1000 mM 

Imid(HCl) 
13.1 17.1 

0.91 ± 

0.02 

0.66 ± 

0.03 

0.97 ± 

0.00 

1.97 ± 

0.01 
0.300 0.0 1.7 

mAb3 

50 mM NaCl 142.7 -17.3 
-0.13 ± 

0.11 

-0.57 ± 

0.01 

0.89 ± 

0.00 

2.64 ± 

0.00 
0.649 5.0 2.8 

250 mM NaCl 156.3 -17.8 
-0.43 ± 

0.02 

-0.73 ± 

0.06 

0.86 ± 

0.00 

3.1 ± 

0.04 
0.801 23.6

b
 3.9 

250 mM Lys.HCl 113.3 -17.7 
-0.31 ± 

0.06 

-0.60 ± 

0.02 

0.87 ± 

0.00 

2.83 ± 

0.01 
0.725 14.6 2.9 

250 mM 

Imid(HCl) 
72.8 -15.7 

-0.33 ± 

0.04 

-0.40 ± 

0.01 

0.90 ± 

0.00 

2.46 ± 

0.00 
0.610 10.8 2.9 

250 mM Arg.HCl 43.0 -13.6 
-0.20 ± 

0.03 

0.52 ± 

0.07 

0.94 ± 

0.00 

1.95 ± 

0.04 
0.305 0.0 1.8 

a. Fitted with Z held constant (Z = 3; see Materials and Methods section for how the Z value was chosen) 

b. Best-fit oligomer species is tetrameric (n = 4) 

Table 2.1. Relation between the viscosity of mAb 2 and mAb 3 with the PPI strengths 

measured by rheology and static light scattering. ΔGbind was calculated from k 

(Table 2.2). B22, G22, S(0) (normalized against the hard sphere value) were 

calculated directly from the scattering intensities. The corresponding Yukawa 

attractive well depth K is also shown, with the ARD listed in Table 2.5. The 

apparent average cluster size 〈𝑁𝑐〉 fit from the IHS scattering model represents the 

attraction as self-association, where 〈𝑁𝑐〉 is calculated from the oligomer distribution 

curves (Fig. 2.4, 2.5) calculated from the association constants log(K1m) and 

log(K1n) (Tables 2.7 and 2.8). 
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2.4.5 Describing S(0) with a single Yukawa potential model 

The structure factor S(0) was fit to a single Yukawa potential U(r) (Eqn. 2.3b) to quantify 

the co-solute effects on the short-range attraction via the attraction strength K. The fit S(0) and 

corresponding G22 (calculated from Eqn. 2.2) are shown as solid curves in Fig. 2.3a – 2.3d, with 

the corresponding fitted K and ARD value reported in Table 2.1 and Table 2.5 respectively. Even 

though the Yukawa potential is an isotropic model, it is able to describe the scattering of mAb2 

despite the inherently anisotropic mAb shape and interactions, as seen from the qualitatively 

good fits (Fig 2.3a, 2.3c) and the low ARDs of 5% and less (Table 2.5). In an SLS study with the 

protein α-chymotrypsinogen, an ARD of 5% and less for fits of Rθ/K0 to a screened Coulomb 

and Lennard-Jones potential was used as the metric for a ‘good’ fit, and was found to correlate 

with systems that had small charge dipoles, shallow attractive wells, and/or large net charges, all 

of which lead to more repulsive, isotropic interactions (57). Since S(0) is proportional to Rθ/K0 

(Eqn. 2.9), the S(0) ARD is numerically equivalent to Rθ/K0 ARD. The low ARDs of the mAb2 

S(0) fits thus suggest more isotropic attractive interactions. The K values follow the same co-

solute order as S(0) and G22, with 50 mM NaCl, Lys, and NaCl having the largest (most 

attractive) K’s, followed by Imid and Gdn. Finally, Arg, PheOMe and 1M Imid give extremely 

small K’s approaching zero, suggesting the near-complete suppression of the short-range 

attraction.  

In contrast, the single Yukawa potential is unable to describe the mAb3 scattering 

behavior for both S(0) and G22 at low concentrations (Fig. 2.3b, 2.3d) as evidenced by large ARD 

values (Table 2.5), especially for 250 mM NaCl and Lys. The fits were improved only modestly 

by using Z’s that were too small to be physically meaningful (Z ≤ 0.1), such as is shown for 250 

mM NaCl in Fig. 2.15a and Table 2.6, instead of the best-fit Z of 3 determined for mAb2 as 

described in the Methods section. Alternatively, the fit of S(0) of mAb3 with 250 mM NaCl 

could also be improved slightly by using a double Yukawa potential (Fig. 2.15a, 2.15b) with 

both a shorter and longer-ranged attractive term (best-fit Z1 and Z2 are both ~1). 
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𝑈(𝑟)

𝑘𝐵𝑇
=

1

𝑟
[−𝐾1 exp(−𝑍1(𝑟 − 1)) − 𝐾2 exp(−𝑍2(𝑟 − 1))]           (2.16) 

The longer attraction length scales implied by the mAb3 S(0) profiles have been 

suggested to indicate strong multipolar attraction (45). The under-prediction of the dilute S(0) for 

mAb3 by the Yukawa potential may also indicate non-specific attraction sites far from the mAb 

center of mass (45); mAbs have enough configurational freedom at low concentration to order 

themselves via anisotropic attractive pair contacts (in spite of reduced system entropy) that are 

not captured with a spherical potential, leading to more solution structure (larger S(0)) than 

expected. These attractive anisotropic interactions may drive formation of reversible linear or 

branched clusters at high concentration (84). At high concentration however the S(0) and G22 

curves become well-described by the spherical potential, even for the most strongly attractive 

systems (ex. mAb3 with 250 mM NaCl). The apparently more isotropic behavior results from the 

confinement of the mAb molecules, causing the pair interactions to become dominated by 

interactions between regions closer to the mAb center of mass and smoothing out the effects of 

any anisotropically distributed attraction sites on the overall interaction potential.  

2.4.6 Capturing solution non-idealities with the interacting hard sphere (IHS) model 

The significant non-ideality present in the mAb3 scattering may be captured with a 

simple interacting hard sphere (IHS) light scattering model (57) to describe apparent self-

association, via the formation of equivalent hard sphere ‘pseudo-oligomers’. The fits of Rθ/K0 to 

the IHS model are shown as solid curves in Figs. 2a and 2b. The corresponding fits of the 

‘oligomer’ sizes m and n, the self-association equilibrium constants K1m and K1n and mAb partial 

specific volume Veff are reported in Table 2.7 and 2.8. The equilibrium constants were used to 

generate oligomer distribution profiles as a function of mAb concentration with each co-solute, 

as shown in Figs. 4 and S10 (mAb2) and Figs. 5 and S11 (mAb3). A weighted average effective 
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cluster size 〈Nc〉 was also calculated from the oligomer distribution at 200 mg/mL (Table 2.1), 

〈𝑁𝑐〉 = ∑ (𝑥𝑖𝑁𝑖)𝑖=1,𝑚,𝑛 , where xi is the mass fraction of the equivalent oligomeric species with 

aggregation number Ni (which is either 1, m, or n). 
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Figure 2.4. Mass fraction distribution of mAb 2 “oligomers” as a function of mAb 

concentration as calculated from the IHS best-fit association constants (Table 

2.7) formulated with (A) 50 mM NaCl, (B) 250 mM NaCl, (C) 250 mm Arg.HCl, 

(D) 250 mM Gdn.HCl, (E) 250 mM PheOMe.HCl and (F) 1000 mM Imid(HCl). 

Additional distributions for 250 mM Lys.HCl and 250 mM Imid(HCl) are shown in 

Fig. 2.17. 
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Figure 2.5. Mass fraction distribution of mAb 3 “oligomers” as a function of mAb 

concentration as calculated from the IHS best-fit association constants (Table 

2.8) formulated with (A) 50 mM NaCl, (B) 250 mM NaCl, (C) 250 mm Imid(HCl) 

and (D) 250  mM Arg.HCl. The distribution for 250 mM Lys.HCl is shown in Fig. 

2.18. 

As can be seen from the IHS fits, mAb2 experiences strong local attraction in 250 mM 

NaCl, as seen from the extensive apparent tetramer formation (Fig. 2.4b, 2.17). 50 mM NaCl and 

250 mM Gdn, Lys and Imid (Fig. 2.4a, 2.4d, 2.17a, 2.17b) cause moderate attraction, as seen 

from the formation of trimers at intermediate to high concentration, with 50 mM NaCl and 250 

mM Lys exhibiting stronger attraction than Imid and Gdn based on the faster onset of trimer 

formation at low concentration (Fig. 2.17) Arg, PheOMe and 1M Imid greatly suppress the 

attractive PPI, seen from the complete suppression of higher-order oligomer formation (Fig. 2.4c, 

2.4e and 2.4f). This progressive reduction in the attraction leads to a decrease in 〈Nc〉 as seen in 

Table 2.1. Similarly, mAb3 also experiences strong attraction in 250 mM NaCl (Fig. 2.5b), 
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which is weakened by changing the co-solute to Imid (Fig. 2.5c) or reducing the ionic strength to 

50 nM NaCl (Fig. 2.5a). Similar to for mAb2, Arg significantly weakens the attractive PPI for 

mAb3, resulting in the complete suppression of higher-order oligomer formation (Fig. 2.5d). 

Although the mAb2 and mAb3 oligomer distribution profiles look similar, a steeper onset 

of oligomer formation at low concentration was observed for mAb3 (compare 250 mM Imid in 

Fig. 2.17b (mAb2) and 2.5c (mAb3)). The differences between mAb2 and mAb3 are more 

evident in the oligomer mass ratio (moligo/m(mono+dimer)) rather than the average cluster size 〈Nc〉 in 

Table 2.1, with mAb2 consistently having smaller oligomer mass ratios than mAb3 for the same 

co-solute system. Although the Yukawa and IHS models are quite different conceptually, the 

qualitative trends in K and 〈Nc〉 (Table 2.1) are somewhat similar with respect to the co-solute, 

whereby Arg, PheOMe and 1M Imid suppress the attractive PPI relative to NaCl and Lys. The 

oligomer ratio also increases with the attractive PPI strength as quantified by S(0), G22, and K 

(Table 2.1). The apparent self-association from the IHS fits of the most attractive mAb3 systems 

(250 mM NaCl, Lys) provides an important alternative interpretation of the S(0) deviations from 

the isotropic potential at low concentration, since the Yukawa model does not account for self-

association effects on scattering. Interestingly, while K and 〈Nc〉 did not change much between 

mAbs for a given co-solute, larger changes were observed in the oligomer mass ratio (Table 2.1).  

2.4.7 Categorization of mAb2, mAb3 classes from their viscosity and scattering response to 

NaCl 

Based on the viscosity and scattering response of mAb2 and mAb3 to the addition of 

NaCl from 50 to 250 mM, these two mAbs can be described in the context of the aforementioned 

mAb classes. Both mAbs appear to be similar to GmAb2 (20, 22): NaCl increases Rθ/K0 and S(0) 

(Fig. 2.2a-2.2b, 2.3a-2.3b) (where S(0) is proportional to Mw,app in Scherer et al., (22)) but has a 

negligible effect on viscosity (Fig. 2.1a, 2.1b). Interestingly, S(0) (i.e. Mw,app) of GmAb2 at 10 

mM ionic strength resembles the hard mAb S(0) determined from coarse-grain modeling (64), 
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indicating that the base mAb interactions (in the absence of charge screening or co-solutes) are 

already very weak and approaching the steric limit. However, while the net PPI was already 

sufficiently weak enough that NaCl had no effect on the viscosity for this mAb class, our work 

shows that the viscosity (as well as Rθ/K0 and S(0)) can still be further reduced with amphipathic 

co-solutes such as Arg and Imid, likely by additional screening of non-electrostatic interactions. 

Similarly, mAb4 in Scherer et al. (67) resembles mAb2 and mAb3 in scattering (Rθ/K0) and 

viscosity, and may provide some context for the behavior of both mAbs in terms of co-solute 

effects on viscosity. The mAb in Calero-Rubio et al. (50) also appears to fall into this class, 

based on the very repulsive, hard mAb-like S(0) (64) at minimal ionic strength, as well as the 

increase in Rθ/K0 and S(0) with NaCl addition. However, viscosities were not considered in that 

study.  

2.4.8 Protein-dependent correlation between viscosity and net PPI strength at high 

concentration  

To our knowledge, this is one of the first studies to demonstrate a quantitative correlation 

between viscosity and the net PPI strength (tuned with co-solutes) at high concentration as 

measured by light scattering. To begin, the system attraction energy fit from the mAb viscosity 

using the reptation model, ΔGbind, qualitatively trends with the system net PPI strength quantified 

by G22, S(0) and K determined from light scattering for a given mAb (Table 2.1).  

While S(0) and G22 closely approach the hard sphere curve at high concentration due to 

the dominant steric repulsion, their relative deviation from the hard sphere curve becomes 

increasingly different between co-solute systems with increasing mAb concentration (Fig. 2.19a, 

2.19b). This difference in PPI between systems (Table 2.1) explains the increasing relative 

deviation of the viscosity from the hard sphere viscosity (Fig. 2.19c, 2.19d). A linear correlation 

between S(0)/S(0)HS and the relative viscosity ηrel at 200 mg/mL was seen for each mAb (Fig. 

2.6a). A similarly strong correlation was seen for ηrel with G22/G22,HS at 200 mg/mL (Fig. 2.6b), 
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as well as with the short-range attraction strength K determined from fits of S(0) to the single-

Yukawa U(r) (Eqn. 2.3) (Fig. 2.6c). It is interesting that the viscosity is still correlated with K for 

mAb3 despite the poor fits of S(0) at low concentration, but is not altogether surprising, given 

that the mAb3 Yukawa fits described S(0) above 100 mg/mL well. However, the viscosity of 

mAb3 was significantly larger than for mAb2 at the same net PPI strength (i.e. same value of 

S(0)/S(0)HS or G22/G22,HS). Similarly, ηrel at 200 mg/mL was correlated with both S(0)/S(0)HS and 

G22/G22,HS at lower concentrations of 20 to 160 mg/mL (Fig. 2.20), although the correlation is 

significantly weaker for mAb3 (Fig. 2.20b, 2.20d) than mAb2 (2.20a, 2.20c). Both mAbs show 

increasing sensitivity of the high concentration ηrel to S(0)/S(0)HS and G22/G22,HS, as well as 

more divergent slopes for the correlation curves with increasing concentration, which may reflect 

stronger or more anisotropic interactions for mAb3.   
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Figure 2.6. Correlation of the relative viscosity ηrel at 200 mg/mL with (A) the normalized S(0), 

(B) normalized G22 at 200 mg/mL, (C) the attractive well depth K and (D) 

normalized G22 at 20 mg/mL for mAb2 and mAb3 across all co-solute systems. The 

HS values for S(0) were obtained from the Carnahan-Starling equation.(57) The 

filled orange symbols correspond to the 50 mM NaCl systems for both mAbs. 

These two points were excluded from the linear fits of the viscosity to S(0), G22 and 

K, as explained in the Results and Discussion section. 

The larger values of ηrel in Figs. 6a-6c for mAb3 versus mAb2 may indicate the influence 

of confounding factors such as mAb shape, flexibility and packing efficiencies on the rheological 

behavior. A study showed a power law dependence of ηrel on the cluster size (23), while others 

showed that high viscosities correlated with the formation of open, linear/branched clusters (19, 

67, 84) that in extreme cases may lead to expanded percolating networks (17), due in part to the 

inefficient packing and larger effective solute volume fraction. As a confirmation of the 

significant influence of cluster formation on viscosity, a roughly linear correlation between ηrel 
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(on a log scale) and average apparent cluster size 〈Nc〉 (Fig. 2.7a, Table 2.1) was seen for both 

mAbs, as a consequence of the attractive PPI strength implicit in the size and amount of 

oligomer formed. Interestingly, the two mAbs exhibited similar dependencies (slopes) of ηrel 

relative to 〈Nc〉, as opposed to the divergent slopes seen for the ηrel correlations with K and the 

experimental descriptors S(0) and G22. However, the viscosity of mAb3 is still consistently 

higher than mAb2 for comparable 〈Nc〉 (Fig. 2.7a).The failure of the ensemble properties S(0), 

G22 and 〈Nc〉 to differentiate between mAbs in terms of viscosity may potentially be caused  by 

their inability to account for mAb shape and packing effects as well as cluster formation. 

In contrast, the correlation for ηrel versus the oligomer mass ratio (moligomer/m(mono+dimer)) 

(Fig. 2.7b) was linear over a wide range, and was consistent across both mAbs, with the 

exception of the 50 mM NaCl point for mAb3. This unusual point (the filled orange circle) may 

be influenced by the more weakly-screened electrostatic repulsion at lower ionic strength. This 

more universal correlation for this descriptor relative to the others (S(0), G22, K), suggests that 

the formation of oligomers has a large influence on viscosity, as would be expected in a reptation 

model (23). A small difference in the mass fraction δ of oligomers formed will not perturb 〈Nc〉 

significantly, but will cause a much larger change in the oligomer mass ratio ((mtrimer,initial 

+δ)/(mmono+di,initial – δ)). The IHS model fits of the SLS data thus suggest that viscosity-reducing 

co-solutes work by improving the mAb packing efficiency by suppressing cluster formation. The 

amphipathic co-solutes Arg, Imid, Gdn and PheOMe are therefore likely more effective than 

NaCl and Lys because they may better shield the hydrophobic interaction sites via preferential 

interactions with aromatic residues through cation-π and π-π interactions (68, 71) in addition to 

screening the short ranged electrostatic attraction, as seen from the smaller (more repulsive) 

S(0)/S(0)HS, G22/G22,HS, K, 〈Nc〉, and oligomer mass ratio (Table 2.1) for both mAbs. 
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Figure 2.7. Correlation of the calculated relative viscosity at 200 mg/mL with (A) the average 

apparent cluster size 〈𝑁𝑐〉 and (B) mass fraction ratio of oligomer to monomer and 

dimer, (
𝑚𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟

𝑚𝑚𝑜𝑛𝑜+𝑚𝑑𝑖𝑚𝑒𝑟
), at 200 mg/mL calculated from the interacting hard sphere 

(IHS) model fits of the scattering R/K0 to oligomerization profiles (Figs. 4, 5) for 

both mAb2 and mAb3 across all tested co-solute systems. The filled orange 

symbols correspond to 50 mM NaCl for both mAbs.  The solid and dashed lines in 

(A) are linear fits of the viscosity to average apparent cluster size for mAb2 and 

mAb3 respectively. The dashed line in (B) is a single linear fit of the viscosity to 

the oligomer mass ratio across both mAbs, where the two 50 mM NaCl data points 

were excluded from the fit, as explained in the Results and Discussion section. The 

relative viscosities were calculated from the Ross-Minton equation (Eqn. 2.4) using 

the best-fit viscosity parameters (Table 2.2). 
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has also been suggested by numerous experimental (19, 67) and computational studies (15-17, 

30). The formation of these fractal clusters has been suggested to be caused by non-specific 

attractive interactions between local sites on the mAb surface, as shown with coarse-grained 

bead model simulations (15-17, 30) or from q-dependent scattering techniques such as SAXS or 

SANS (20, 44, 45). 12-bead mAb models have been used to show that the anisotropy of the mAb 

shape alone leads to steeper increases in Rθ/K0 and decreases in S(0) with concentration (64). 

Thus, the steeper concentration dependence of S(0) and G22 for mAb3 may also likely be 

attributed in part to shape anisotropy. The addition of domain-specific charges to each bead 

based on the mAb sequence, in combination with an interaction potential with short-range 

attraction and long-range repulsion, showed that increasing charge anisotropy relative to the net 

charge (dependent upon pH, ionic strength, etc.) is responsible for greater deviations in Rθ/K0 

relative to simple colloidal models (57), and eventually leads to phase separation. The greater 

deviation in the low concentration fits of S(0) to the single-Yukawa potential for mAb3 (Fig. 

2.3b) and the greater oligomer mass ratio in combination with the higher viscosity may therefore 

likely also be attributed to greater charge anisotropy or stronger multipolar attractive 

interactions. Similarly, Buck et al. (17) incorporated domain-specific charges into a 12-bead 

mAb model to demonstrate that a more dipolar charge distribution led to more domain-domain 

contacts between mAbs, resulting in a higher network density and elevated viscosities. Kastelic 

et al. (84) also found that branched oligomer assemblies contributed to higher viscosities relative 

to linear chains of associated mAbs. The insight from these bead models strongly suggests that 

the higher viscosity of mAb3 in combination with its scattering behavior is likely indicative of 

greater anisotropy in mAb3’s interaction sites, leading to more branched protein microstructures.  

2.4.10 Low concentration predictions of high concentration viscosity  

Interestingly, the net PPI quantified by G22 at low concentration (20 mg/mL) is still well 

correlated with the high concentration relative viscosity across both mAbs (Fig. 2.6d), and does 
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not exhibit the divergent viscosity behavior seen for correlations of viscosity with the net PPI at 

high concentration (Fig. 2.6a, 2.6b). This result may be understood in the context of minimal 

confinement at low concentration, such that any potential differences in the attraction site 

anisotropy between mAbs will not significantly influence the net PPI, allowing for a more 

accurate measurement of the mAb total attraction energy. SLS measurements of G22 at low 

concentration (ex. 20 mg/mL) thus provide a powerful tool for screening mAb candidates and 

formulations for low viscosities at high concentration, using as little as 0.4 mg of protein for a 20 

uL measurement.  

The low concentration SLS predictions of high concentration viscosity via G22 is a 

comparable approach to the small-scale SAXS screening experiments proposed by Fukuda et al. 

for a mAb formulated with NaCl or Arg (47), where a strong correlation was seen between the 

viscosity at high concentration (175 mg/mL) and the PPI strength measured at low concentration 

(15 mg/mL) through S(q0) from SAXS, using low temperatures to amplify the short-range 

attraction and make them more distinguishable at low concentration. However, the authors did 

not propose using S(0) to predict the viscosity due to the practical challenges of getting a good 

form factor P(q) by SAXS for calculating S(q) (47). In contrast, the dilute scattering Rθ/K0 as c 

 0, which is proportional to the zero-q form factor, is easily measured by SLS, removing the 

practical limitation of measuring P(0) and hence S(0) or G22 at low concentration. The ease of 

measuring S(0) by SLS at low concentration with low material usage, combined with the ability 

to automate this process using existing equipment (Calypso; Wyatt Technology Corporation etc.) 

(52, 53), creates a robust approach for high throughput screening of mAbs and formulations for 

weak PPI and low viscosities. With regards to the SAXS screening approach proposed in Fukuda 

et al. (47), the challenges associated with measuring S(0) prompted the authors to develop a 

correlation between the viscosity and the mAb molecular size instead, where the characteristic 

sizes Rg (radius of gyration) and Dmax (maximum particle diameter) were obtained from form 
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factor fits of the SAXS scattering at dilute conditions. Interestingly, the correlation of Rg and 

Dmax with viscosity were tighter than with S(0). Additionally, the systems with larger Dmax also 

exhibited broader peaks in their pair distribution function P(r) (47), suggesting a strong relation 

between self-association, shape anisotropy and the high concentration viscosity. 

2.5 CONCLUSIONS 

Static light scattering was used to quantitatively rank the strength of the short-ranged 

attractive PPI for six ionic co-solutes for each of two mAbs from low to high concentration (up 

to 230 mg/mL). The co-solute rankings by the SLS experimental descriptors (S(0)/S(0)HS, 

G22/G22,HS) were consistent with those by the fit parameters from the spherical Yukawa model 

(K) and the interacting hard sphere model (oligomer mass ratio moligomer/mmonomer+dimer and 

average cluster size 〈Nc〉). For the two mAbs, the relative order of the co-solute effects on the 

attractive PPI was the same: 250 mM Arg and PheOMe as well as 1M Imid greatly weakened the 

attractive PPI relative to the 50 mM NaCl control, resulting in a large decrease in S(0)/S(0)HS, 

G22/G22,HS, K, 〈Nc〉 and oligomer mass ratio. 250 mM Gdn and Imid modestly weakened the 

attractive PPI, while 250 mM NaCl and Lys increased them. The attraction range of Z
-1

 of 3 nm 

for the fit of mAb3 by the spherical Yukawa model was unusually long, suggesting the influence 

of longer-ranged anisotropic attractive interactions (not included in the model) (88). These 

stronger interactions were described somewhat more explicitly in terms of the higher oligomer 

mass ratios from the interacting hard sphere model.   

For a given mAb, strong correlations were seen between ηrel and the SLS descriptors of 

the overall and short-ranged PPI at high concentration (S(0)/S(0)HS, G22/G22,HS, K, and 〈Nc〉), as 

well as with low concentration properties such as B22/B22,HS and G22/G22,HS at 20 mg/mL. Thus, 

the short-ranged attraction has a major influence on ηrel as was also seen previously with SLS 

(22) and SAXS/SANS (18, 20) for systems without co-solutes. ηrel was more sensitive to nearly 

all of these experimental and model fit descriptors for mAb3 than mAb2, reflecting potential 
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differences in the mAb packing (fractal dimension), possible formation of reversible oligomers, 

or dynamic factors (18, 19, 67) that were not considered. The ηrel correlations with S(0)/S(0)HS 

and G22/G22,HS also showed increasing divergence between mAbs 2 and mAb3 with increasing 

concentration. The calculated average cluster sizes from the IHS fit, which accounts for oligomer 

formation, does a modestly better job of capturing the underlying physical behavior in that the 

slope of ηrel versus 〈Nc〉 was the same for both mAbs. However, the ηrel values were higher for 

mAb3. This failure of the ensemble properties (S(0), G22, 〈Nc〉) to differentiate between the 

viscosities of two mAbs may indicate the confounding influence of mAb packing efficiency and 

related microstructure (67). The only property that ηrel could be correlated with for both mAbs 

(excluding the less-screened 50 mM NaCl control systems) was the oligomer mass ratio. This 

ratio of oligomers to monomer and dimer emphasizes the larger oligomers much more than does 

〈Nc〉, and also emphasizes the relative polydispersity, both of which will influence the mAb 

packing efficiency and relative viscosity in solution. The large effect of oligomerization on ηrel 

may be anticipated from theoretical self-association models for both Fab-Fab and/or Fab-Fc 

interactions (19, 23, 84). 
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2.7 SUPPORTING INFORMATION 

2.7.1 Dialysis for buffer exchange 

30 mL of the 25 – 35 mg/mL starting mAb solutions as provided by Merck were dialyzed 

into 21:30 mM Na:OAc (pH 5) buffer by dynamic dialysis using 8 – 10 kDa MWCO Tube-A-

Lyzer dynamic dialysis modules (30 mL capacity) from Spectrum Labs (Rancho Dominguez, 

CA). The buffer was recirculated through the dialysis module at 300 mL/min, which prevents 

accumulation of the dissolved species (removed by dialysis) at the dialysis membrane surface 

and ensures even mixing of the buffer and dissolved solids, reducing the amount of time needed 

for the dialysis process to reach equilibrium. To ensure a complete buffer exchange, the mAb 

solution was dialyzed against 500 mL of the pH 5 sodium acetate buffer using 3 12-hour buffer 

exchanges at 10°C in order to remove undesired solutes from the original mAb solution. The 

final concentration of the dialyzed mAb solution was typically 20 mg/mL. 

2.7.2 Preparation of concentrated co-solute and buffer stocks 

Concentrated imidazole was dissolved in and titrated to pH 5 with 12N HCl, and 

phenylalanine methyl ester hydrochloride was titrated to pH 5.5 with 1N NaOH. Concentrated 

solutions of all other protonated basic excipients (Arg.HCl, Lys.HCl and Gdn.HCl) were used as 

is without further titration, corresponding to solution pH values of ~5.3 – 5.4. Concentrated (500 

mM) pH 5 sodium acetate buffer stock was prepared by mixing 500 mM Na.OAc and 500 mM 

acetic acid in a 7:3 volume ratio. All co-solute and buffer stock solutions were filtered with 0.22 

um filters (CellTreat Scientific Products, Pepperell, MA) prior to use. 

2.7.3 Gravimetric dilution for preparation of mAb samples 

Due to the challenges and inaccuracies of working with viscous solutions on a volumetric 

basis, the concentrated, formulated mAb solutions were prepared by gravimetric dilution instead. 

An approximate volume (~1.2 mL) of the concentrated, unformulated 280 mg/mL mAb stock 
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solution was transferred to an empty, tared microcentrifuge tube. The mass of the added mAb 

stock (weighed using a Mettler Toledo (Columbus, OH) NewClassic MS analytical balance) was 

converted to a volume using the mAb stock solution density calculated from the measured 

protein concentration and the known buffer composition: 

 

𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = (∑(𝑐𝑖𝑉𝑠𝑜𝑙𝑛) + 𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝑉𝑤𝑎𝑡𝑒𝑟) 𝑉𝑠𝑜𝑙𝑛⁄            (2.17a) 

where Vsoln is a volume basis (which cancels out), ci is the mass concentration of each solute/co-

solute (protein, buffer components, etc.), ρwater is the density of water, and Vwater is the volume 

(out of the volume basis) occupied by water. Vwater is given by 

 

𝑉𝑤𝑎𝑡𝑒𝑟 = 𝑉𝑠𝑜𝑙𝑛 − ∑ (𝑐𝑖𝑉𝑠𝑜𝑙𝑛 𝜌𝑖)⁄          (2.17b) 

where ρi is the anhydrous density of each solute/co-solute species, and the protein density was 

taken to be ~1350 mg/mL calculated from the dry-weight partial specific volume of 0.73 – 0.74  

mL/g (66). The remaining buffer and co-solute stock solutions were mixed with the 

concentrated, unformulated mAb stock at the appropriate volume ratios to achieve the desired 

solution composition (225 mg/mL mAb with 30 mM pH 5 sodium acetate buffer and 50, 250 or 

1000 mM co-solute). The co-solute/buffer stock solutions were added volumetrically given their 

low viscosities. Due to the small volumes of each co-solute stock solutions needed for each 

sample, the co-solute and buffer stocks were first mixed together (separately from the mAb 

stock) at the same volume ratio needed, but scaled to a larger volume in order to increase the 

accuracy of the volumetric addition (ex. 30:70 μL of buffer:co-solute would be scaled to 150:350 

μL, etc.). An aliquot of this pre-mixed buffer would then be added to the mAb stock at the 

correct mAb:buffer volume ratio to achieve the desired final solution composition. The final 

mAb concentration was then checked by UV-visible spectroscopy with 5 – 6 replicate 

measurements to ensure accuracy. 
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2.7.4 Error propagation analysis for concentration from gravimetric dilutions 

To determine the expected error in the calculated concentrations of the intermediate 

concentration SLS samples prepared by gravimetric dilution of the formulated ~225 mg/mL 

mAb stocks (with measured concentrations and standard errors), error propagation analysis was 

done on the dilution equation 

𝐶2 =
𝐶1𝑉1

𝑉2
=

𝐶1∗(
𝑚𝑝

𝜌𝑝𝑠
)

(
𝑚𝑝

𝜌𝑝𝑠
)+𝑉𝑏𝑢𝑓𝑓𝑒𝑟

              (2.18) 

with the systematic instrument errors reported by the instrument manufacturers. Here, C2 is the 

target mAb concentration for the gravimetrically-diluted sample, C1 is the initial concentration of 

the formulated mAb stock (~225 mg/mL), mp is the mass of the mAb stock used for the dilution, 

ρps is the density of the formulated mAb stock, and Vbuffer is the volume of same-composition 

solvent added to dilute the mAb stock to the desired concentration C2. The density of the 

formulated mAb stock is determined from C1, the background solvent density ρbuffer calculated 

from Eqn. 2.17a and 2.17b (no protein, only co-solute and acetate buffer), and the protein dry-

weight density of 1350 mg/mL (66).  

 

𝜌𝑝𝑠 = 𝐶1 +  𝜌𝑏𝑢𝑓𝑓𝑒𝑟 ∗ (1 −
𝐶1

𝜌𝑝𝑟𝑜𝑡𝑒𝑖𝑛,𝑑𝑟𝑦
)        (2.19) 

Applying error propagation analysis to Eqn. 2.18 gives the expected variance in the dilution 

concentration C2 as a function of the measurement error in C1 (σC1) as well as the systematic 

error of the mass balance used to measure mp (σmp) and of the pipette used to add the dilution 

solvent with volume Vbuffer (σV_buffer). 



 58 

𝜎𝐶2
2 = {

(
𝑚𝑝

𝜌𝑝𝑠
)

(
𝑚𝑝

𝜌𝑝𝑠
)+𝑉𝑏𝑢𝑓𝑓𝑒𝑟

∗ 𝜎𝐶1
}

2

+ {
(

𝐶1𝑉𝑏𝑢𝑓𝑓𝑒𝑟

𝜌𝑝𝑠
)

((
𝑚𝑝

𝜌𝑝𝑠
)+𝑉𝑏𝑢𝑓𝑓𝑒𝑟)

2 ∗ 𝜎𝑚𝑝
}

2

+ {
−𝐶1𝑉𝑏𝑢𝑓𝑓𝑒𝑟𝑚𝑝

𝜌𝑝𝑠
2 ∗((

𝑚𝑝

𝜌𝑝𝑠
)+𝑉𝑏𝑢𝑓𝑓𝑒𝑟)

2 ∗ 𝜎𝜌𝑝𝑠
}

2

+ {
−𝐶1𝑚𝑝

𝜌𝑝𝑠∗((
𝑚𝑝

𝜌𝑝𝑠
)+𝑉𝑏𝑢𝑓𝑓𝑒𝑟)

2 ∗

𝜎𝑉𝑏𝑢𝑓𝑓𝑒𝑟
}

2

         (2.20a) 

The variance in the calculated mAb stock density 𝜎𝜌𝑝𝑠
2 is also calculated by error propagation 

analysis. 

𝜎𝜌𝑝𝑠
2 = 𝜎𝐶1

2 ∗ (1 −
𝜌𝑏𝑢𝑓𝑓𝑒𝑟

𝜌𝑝𝑟𝑜𝑡𝑒𝑖𝑛,𝑑𝑟𝑦
)

2

              (2.20b)  

The known parameter values and uncertainties used to calculate the variance in C2 are reported 

in Table 2.9. Note that an average ρbuffer of 1010 mg/mL (representative of the 250 mM co-solute 

formulations) and ρps of 1070 mg/mL (corresponding to 225 mg/mL mAb in buffer with 250 mM 

Arg or Lys; density will be slightly smaller for NaCl, Gdn and Imid due to lower co-solute MW) 

were used, and that the systematic error for the pipette volume is a function of the pipette used (2 

– 20 μL vs 20 – 200 μL Research Plus adjustable volume pipetters from Eppendorf (Hamburg, 

Germany)), as reported by Eppendorf. The error/reproducibility of the mass measurements (σmp) 

was reported by the manufacturer (Mettler Toledo, Columbus, OH) to be within 0.1 mg. The 

known parameters mp and Vbuffer are listed for the two extreme cases (i) ultra-dilute dilution (2 

mg/mL) and (ii) highest-concentration dilution (200 mg/mL) to evaluate the expected error at the 

lowest and highest concentrations in the dilution series. The resulting standard error in C2 (σC2) is 

0.22 mg/mL at a target concentration of 2 mg/mL (11% error) and 2.8 mg/mL at a target 

concentration of 200 mg/mL (1.4% error). 

2.7.5 Calculation of the static structure factor S(q0) from static light scattering 

At low values of q, the generalized scattering intensity I(q) of non-spherically symmetric 

particles such as mAbs (18, 45) is given by 
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I(q) = c ∗ Veff ∗ (Δρ)2 ∗ ⟨P(q)⟩S(q)           (2.21a) 

where ϕ is the protein volume fraction (ϕ = c*Veff), q is the scattering vector (q=4π/λ*sin(θ/2)), 

Δρ is the scattering length density difference between the protein and the solvent, θ is the 

scattering angle, P(q) is the normalized particle form factor, and S(q) is the interparticle structure 

factor. The static light scattering measurements in this study were performed at a λ of 658 nm nm 

and a single θ of 90°, corresponding to q = 0.0018 Å
-1

, or a Bragg scattering length 2π/q (86) of 

350 nm. In the limit q  0, the decoupling function (18, 45) β(q) goes to 1 (not shown in Eqn. 

2.21a) (18, 45) and Seff(q) = S(0). For dilute concentrations (c < 5 mg/mL (18, 45)), the 

scattering becomes a function of the protein shape only, such that S(0) = 1. Eqn. 2.21a therefore 

becomes 

 

I(q) = (c → 0) ∗ Veff ∗ (Δρ)2 ∗ ⟨P(q)⟩                  (2.21b) 

The protein-solvent scattering length difference Δρ is assumed to be independent of the protein 

concentration. 

The value of S(0) for q = 0.0018 Å
-1

 can be obtained by dividing Eqn. 2.21a by Eqn. 

2.21b. SLS can therefore be used to directly measure S(0) by comparing the concentration-

normalized scattering intensity at low and high concentration (13) (Eqn. 2.22b).  

 
𝐼(𝑞→0,𝑐)

𝐼(𝑞→0,𝑐𝑑𝑖𝑙𝑢𝑡𝑒)
=

𝑐∗𝑆(𝑞→0)

𝑐𝑑𝑖𝑙𝑢𝑡𝑒
       (2.22a) 

     𝑆(𝑞 → 0) =
𝐼(𝑞→0,𝑐) 𝑐⁄

𝐼(𝑞→0,𝑐𝑑𝑖𝑙𝑢𝑡𝑒) 𝑐𝑑𝑖𝑙𝑢𝑡𝑒⁄
     (2.22b) 

In this study, the form factor was measured at ~2 mg/mL (cdilute). The scattering intensity I(q0) 

is directly proportional to the Rayleigh ratio Rθ (Eqn. 2.23) (87), where the incident laser 

intensity I0, illuminated scattering volume V and distance from the scattering volume to light 

detector r are constants specific to the SLS instrument configuration. 
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 I = (Rθ ∗ I0 ∗ V)/r2             (2.23) 

Using Eqn. 2.23, Eqn. 2.22b can be rewritten in terms of the Rayleigh ratio  

 

𝑆(𝑞 → 0) =
(𝑅𝜃 𝑐⁄ )ℎ𝑖𝑔ℎ 𝑐𝑜𝑛𝑐

(𝑅𝜃 𝑐⁄ )𝑑𝑖𝑙𝑢𝑡𝑒
            (2.24) 

Multiplying the numerator and denominator by the optical constant K0 (Eqn. 2.7 using the 

solvent refractive index n0), and recognizing that in the dilute limit Rθ/K0c = Mw, Eqn. 2.24 

becomes Eqn. 2.9 in the main text. 

2.7.6 Interacting hard sphere model of light scattering 

In the interacting hard sphere (IHS) model of light scattering developed by Minton (66) 

and summarized here, the light scattering of a concentrated protein solution can be described by 

a three-component equivalent hard sphere mixture as described in the main text. The Rayleigh 

ratio, calculated from the scattering intensity, is regressed to mole/mass fraction distribution of 

monomer and two oligomeric species of aggregation number m (typically m = 2) and n, as 

shown in Eqn. 2.11 in the main text. 

The concentration fluctuation of each species ⟨∆𝑐�̅�⟩ depends on the gradients 𝜁𝑖𝑗of their 

chemical potential, represented here by their thermodynamic activity coefficients γi (Eqn. 2.25a – 

2.25d): 

 

⟨∆𝑐�̅�
2⟩ =  𝑐�̅�

(1+𝜁𝑗𝑗)(1+𝜁𝑘𝑘)−𝜁𝑘𝑗𝜁𝑗𝑘

𝐷
           (2.25a) 

⟨𝛥𝑐�̅�𝛥𝑐�̅�⟩ =
𝑐𝑘̅̅ ̅𝜁𝑘𝑖𝜁𝑘𝑗−𝑐�̅�𝜁𝑖𝑗(1+𝜁𝑘𝑘)

𝐷
           (2.25b) 

𝐷 = (1 + 𝜁11)(1 + 𝜁22)(1 + 𝜁33) + 2𝜁12𝜁21𝜁31 − (1 + 𝜁11)𝜁32𝜁23 − (1 + 𝜁22)𝜁31𝜁13 − (1 + 𝜁33)𝜁21𝜁12   

(2.25c) 
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𝜁𝑖𝑗 =  𝑐�̅�
𝜕 ln(𝛾𝑖)

𝜕𝑐�̅�
=  𝜌𝑗

𝜕 𝑙𝑛(𝛾𝑖)

𝜕𝜌𝑗
         (2.25d) 

In the limit of steric-only interactions, such as in this scattering model, the activity coefficient of 

each spherical species is a function of the sphere size only (Eqn. 2.26a), where Q is defined in 

Eqn. 2.26b, ρi is the number density of each species (Eqn. 2.26c), and NA is Avogadro’s number. 

 

𝜕 ln(𝛾𝑖)

𝜕𝜌𝑗
=

4𝜋𝑟𝑖
3

3𝑄
+ [

4𝜋𝑟𝑖
2

𝑄
+

16𝜋2𝑟𝑖
3

3𝑄2
∑ 𝜌𝑖𝑟𝑖

2
𝑖 ] 𝑟𝑗 + [4𝜋 (

𝑟𝑖

𝑄
+

4𝜋𝑟𝑖
2 ∑ 𝜌𝑖𝑟𝑖

2
𝑖 +

4𝜋𝑟𝑖
3

3
∑ 𝜌𝑖𝑟𝑖𝑖

𝑄2 +

32𝜋2𝑟𝑖
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2
𝑖 )

2

3𝑄2 ) +

64𝜋3𝑟𝑖
3

3
(∑ 𝜌𝑖𝑟𝑖

2
𝑖 )

2

3𝑄3 ] 𝑟𝑗
2 +

4𝜋

3
[

1

𝑄
+

4𝜋𝑟𝑖 ∑ 𝜌𝑖𝑟𝑖
2

𝑖 +4𝜋𝑟𝑖
2 ∑ 𝜌𝑖𝑟𝑖𝑖 +

4𝜋𝑟𝑖
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𝑄2 +
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2

𝑖 )
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+
32𝜋2𝑟𝑖
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∑ 𝜌𝑖𝑟𝑖 ∑ 𝜌𝑖𝑟𝑖
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𝑄3 +

64𝜋3𝑟𝑖
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(∑ 𝜌𝑖𝑟𝑖

2
𝑖 )
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𝑄 = 1 −
4𝜋

3
∑ 𝜌𝑖𝑟𝑖

3
𝑖               (2.26b) 

 𝜌𝑖 =  𝑐�̅� ∗ 𝑁𝐴          (2.26c) 

The effective sphere radius ri is calculated from the molar mass of the spherical species (Mi = 

i*M1) and the protein specific exclusion volume Vex (Eqn. 2.27). As mentioned in the main text, 

in the limit of screened charge repulsion (as is the case for all of the co-solute formulations 

investigated in this study), Vex becomes the effective protein partial specific volume Veff. 

 

𝑟𝑖 = (
3𝑉𝑒𝑓𝑓𝑀𝑖

4𝜋𝑁𝐴
)

1

3
              (2.27) 

The thermodynamic self-association equilibrium constants 𝐾𝑖
0 for each oligomer species is 

calculated from the activity ai of each species, as shown in Eqn. 2.28a, where a1, γi and 𝑐1̅ are the 

activity, activity coefficient and molar concentration of the free monomer, respectively. The 
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thermodynamic equilibrium association constant is in turn related to the apparent equilibrium 

association constant 𝐾𝑖 =  
𝑐�̅�

𝑐1̅̅ ̅𝑖 by Eqn. 2.28b and 2.28c. 

 

 𝐾𝑖
0 ≡

𝑎𝑖

𝑎1
𝑖 =

𝛾𝑖𝑐�̅�

𝛾1
𝑖 𝑐1̅̅ ̅𝑖           (2.28a) 

𝐾𝑖
0 = 𝐾𝑖

𝛾𝑖

𝛾1
𝑖           (2.28b) 

ln(𝐾𝑖) = ln (
𝑐�̅�

𝑐1̅̅ ̅𝑖) = ln(𝐾𝑖
0) + 𝑖 ∗ ln(𝛾1) − ln(𝛾𝑖)       (2.28c) 

The scattering intensities (via the Rayleigh ratio Rθ) were fit across the entire concentration 

range simultaneously to Eqn. 2.11 for a single value of the fit parameters m, n, K1m, K1n, and Veff 

using Eqn. 2.25a through 1.28c, while also observing the closed mole/mass balance for the 

monomer-units (Eqn. 2.12). Due to the iterative process needed to simultaneously regress the 

five fit parameters across the entire mAb concentration range, the fits of the scattering data to 

this model were conducted using scripts and functions written in MATLAB (Mathworks, Natick, 

MA) and generously provided by Allen Minton (National Institute of Health, Bethesda, MA). 

2.7.7 Viscosity of hard sphere solutions 

The mAb viscosity can be normalized by the viscosity of a reference hard sphere solution 

at the same volume fraction ϕ. The hard sphere solution viscosity was determined from the Ross-

Minton equation (
𝜂

𝜂0
= exp (

2.5ϕ

1−1.56ϕ
)) (41, 88) assuming random close packing of the spheres 

(ϕmax = 0.64) (89), where the equivalent ϕ at a given mAb concentration c was calculated from 

the average best-fit mAb density as determined from the interacting hard sphere (IHS) model fit 

of the mAb scattering across all co-solute formulations (ϕ = c*Veff). 
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2.7.8 Comparison of single (short-range attraction only) and two-term (short-range 

attraction + long-range repulsion or attraction) interaction potential fits of the mAb light 

scattering  

While the scattering of mAbs is typically fit with interaction potentials that describe both 

the short-range attraction and long-range repulsion (18, 45, 49, 50, 56, 57, 64, 65), this work 

demonstrates that in the limit of moderate to high ionic strengths (≥ 50 nM), a single short-range 

attraction term (ex. Yukawa) is sufficient to describe the mAb scattering from low to high 

concentration. Two-parameter models such as the screened Coulomb + Lennard-Jones U(r) have 

been used with coarse-grained mAb bead models to increase the accuracy of model predictions 

of the high concentration scattering by better capturing the effects of shape and charge 

anisotropy on S(0) and consequently the scattering. However, these models carry the cost of 

greater complexity in data fitting, requiring at least two fit parameters in addition to knowledge 

of the mAb domain-specific charges (obtained from the mAb sequence) (50, 57, 64). In addition, 

these models still required the inclusion of a short-range attraction term, even for more ideal 

systems with more uniform and net repulsive PPI, such as the model protein α-

chymotrypsinogen in buffer conditions promoting minimal charge dipoles and high net charge 

(57). The single attractive Yukawa potential therefore has the advantage of being able to describe 

S(0) across the entire concentration range for mAb2 and to a smaller extent mAb3 without the 

added analytical complexity of the two-term models, Thus in the interest of simplicity for 

screening co-solutes and understanding their effect on PPI, operating at higher ionic strengths 

may be sufficient for quantification of the short-range attraction from light scattering using a 

single-parameter (K) model without prior knowledge of the mAb sequence or domain-specific 

charges.  



 64 

  

Figure 2.8. Viscosity of (A) mAb2 and (B) mAb3 with various co-solutes at 250 mM (unless 

otherwise specified), fit to the reptation model. Symbols are measured values, and 

solid/dashed lines are fits of the viscosity to the reptation model. All co-solutes 

(with exception of NaCl) are titrated to, or already at pH ~5.5, and all samples are 

buffered with 30 mM (Na)OAc at pH 5. Model fit parameters are shown in Table 

2.2. 
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Ross-Minton Reptation 

Co-solute formulation η0 (cP) [η] (mL/g) k/ν k 

mAb2 

50 mM NaCl 0.91 14.63 0.0957 410.0 

250 mM NaCl 0.94 14.23 0.1064 555.1 

250 mM Lys.HCl 1.05 14.50 0.0893 500.1 

250 mM Arg.HCl 1.05 11.97 0.1141 134.7 

250 mM Imid(HCl) pH 5.5 0.95 12.60 0.1033 143.3 

250 mM Gdn.HCl 0.91 11.01 0.1514 75.5 

250 mM PheOMe(HCl) pH 5.5 1.02 8.96 0.2167 3.9 

1000 mM Imid(HCl) pH 5.5 1.04 7.25 0.3008 0.001* 

mAb3 

50 mM NaCl 0.91 17.86 0.0783 1071.0 

250 mM NaCl 0.94 18.24 0.0761 1297.6 

250 mM Lys.HCl 1.05 19.27 0.0481 1248.8 

250 mM Imid(HCl) pH 5.5 0.95 16.05 0.0783 570.4 

250 mM Arg.HCl 1.05 12.01 0.1505 242.4 

* Reptation model cannot accurately capture the low viscosity in the 1000 mM Imid(HCl) formulation. Best fit k 

approaches zero (infinite repulsion). 

Table 2.2. Regressed parameters for fits of the mAb2 and mAb3 viscosities with different 

co-solutes to the Ross-Minton and reptation viscosity models. The parameter A 

in the reptation model was fitted across multiple data sets and held fixed at 5.38*10
-

8
 cP. 
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Protein Formulation 
mAb conc 

(mg/ml) 

η  

(cP) 

η0  

(cP) 

ηinh 

(mL/g) 
pH 

Solvent 

RI 

q  

(Å
-1

) 

mAb 2 50 mM NaCl 222.5 ± 2.3 103.3 ± 3.6 0.91 21.3 5.4 1.334 0.00180 

mAb 2 250 mM NaCl 228.1 ± 2.1 113.4 ± 1 0.94 21.0 5.4 1.336 0.00180 

mAb 2 250 mM Lys.HCl 233.9 ± 3.5 137.3 ± 4.3 1.05 20.8 5.4 1.339 0.00181 

mAb 2 250 mM Arg.HCl 228.9 ± 1.8 76.8 ± 3.7 1.05 18.7 5.3 1.344 0.00181 

mAb 2 250 mM Imid(HCl) 226.7 ± 0.2 51.1 ± 2.6 0.95 17.6 5.9 1.337 0.00181 

mAb 2 250 mM Gdn.HCl 230.3 ± 1.8 50.1 ± 0.7 0.91 17.4 5.6 1.338 0.00181 

mAb 2 250 mM PheOMe.HCl 222.6 ± 7.2 27.5 ± 2.1 1.02 14.8 5.4 1.343 0.00181 

mAb 2 1000  mM Imid(HCl) 222.9 ± 5.8 22.6 ± 0 1.04 13.8 6.3 1.351 0.00182 

 
mAb 3 50 mM NaCl 218.6 ± 4.1 191.6 ± 4.3 0.91 24.5 5.3 1.334 0.00180 

mAb 3 250 mM NaCl 217.6 ± 0.7 220.5 ± 11.6 0.94 25.1 5.4 1.336 0.00180 

mAb 3 250 mM Lys.HCl 218.2 ± 3 260.5 ± 17 1.05 25.2 5.6 1.339 0.00181 

mAb 3 250 mM Imid(HCl) 220.2 ± 0.4 125.1 ± 5.5 0.95 22.2 6.1 1.337 0.00181 

mAb 3 250 mM Arg.HCl 233.4 ± 0.3 77.4 ± 1.7 1.05 18.4 5.4 1.344 0.00181 

Table 2.3. Physical properties of original high-concentration mAb 2 and 3 solutions with 

different co-solutes used for SLS dilution series. 

 

Protein Co-solute formulation Mw (Da) B22 (mL/g) 

mAb 2 50 mM NaCl 162059 ± 789 -0.14 ± 0.07 

mAb 2 250 mM NaCl 166804 ± 1987 -1.43 ± 0.11 

mAb 2 250 mM Lys.HCl 161324 ± 3312 -1.46 ± 0.85 

mAb 2 250 mM Arg.HCl 156900 ± 87  3.59 ± 0.05 

mAb 2 250 mM Imid(HCl) pH 5.5 172265 ± 210 0.80 ± 0.07 

mAb 2 250 mM Gdn.HCl 164629 ± 1476 2.58 ± 0.11 

mAb 2 250 mM PheOMe.HCl(NaOH) pH 5.5 181161 ± 5497 6.20 ± 0.17 

mAb 2 1000 mM Imid(HCl) pH 5.5 139667 ± 800 6.20 ± 0.16 

 

mAb 3 50 mM NaCl 169180 ± 5926 -0.94 ± 0.77 

mAb 3 250 mM NaCl 194176 ± 587 -3.10 ± 0.13 

mAb 3 250 mM Lys.HCl 163802 ± 3699 -2.22 ± 0.44 

mAb 3 250 mM Imid(HCl) pH 5.5 160850 ± 549 -2.37 ± 0.26 

mAb 3 250 mM Arg.HCl 155051 ± 2770 -1.41 ± 0.22 

Table 2.4. Mw and B22 values for mAb2 and mAb3 in different co-solute formulations 

measured by static light scattering. The linear fits of the scattering profiles used 

to determine Mw and B22 are shown in the Supporting Info (Fig. 2.11, 2.12). 
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Figure 2.9. Reproducibility of SLS measurements for mAb2 with (a) 50 mM NaCl, (d) 250 mM 

Arg.HCl, (b) 250 mM NaCl, (d) 250 mM Imid(HCl) pH 5.5, (c) 250 mM Lys.HCl, 

(f) 250 mM PheOMe(HCl) pH 5.5, (g) 250 mM Gdn.HCl and (h) 1M Imid(HCl) pH 

5.5; all buffered with 30 mM (Na)OAc at pH 5. The second replicate of 1M Imid 

was only measured up to 50 mg/mL mAb2. Both replicates of each co-solute 

formulation were prepared by parallel gravimetric dilution of the same 

concentrated, formulated original sample (Table 2.3). 
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Figure 2.9, cont. Reproducibility of SLS measurements for mAb2 with (a) 50 mM NaCl, (d) 250 

mM Arg.HCl, (b) 250 mM NaCl, (d) 250 mM Imid(HCl) pH 5.5, (c) 250 mM 

Lys.HCl, (f) 250 mM PheOMe(HCl) pH 5.5, (g) 250 mM Gdn.HCl and (h) 1M 

Imid(HCl) pH 5.5; all buffered with 30 mM (Na)OAc at pH 5. The second replicate 

of 1M Imid was only measured up to 50 mg/mL mAb2. Both replicates of each co-

solute formulation were prepared by parallel gravimetric dilution of the same 

concentrated, formulated original sample (Table 2.3). 
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Figure 2.10. Reproducibility of SLS measurements for mAb3 with (a) 50 mM NaCl, (b) 250 

mM NaCl, (c) 250 mM Lys.HCl, (d) 250 mM Imid(HCl) pH 5.5 and (e) 250 mM 

Arg.HCl; all buffered with 30 mM (Na)OAc at pH 5. Both replicates of each co-

solute formulation were prepared by parallel gravimetric dilution of the same 

concentrated, formulated original sample (Table 2.3). 
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Figure 2.11. Best-fit lines of the scattering profiles to Eqn. 2.6 for determining Mw and B22 for 

mAb2 in different co-solute formulations (see individual labels, same 

formulations/samples as in Fig. 2.9).  
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Figure 2.12. Best-fit lines of the scattering profiles to Eqn. 2.6 for determining Mw and B22 for 

mAb3 in different co-solute formulations (see individual labels, same 

formulations/samples as in Fig. 2.10).  
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Figure 2.13. Correlation between the normalized B22 calculated from the low concentration 

scattering (Fig. 2.11, 2.12) and viscosity at 200 mg/mL for mAb2 and mAb3 across 

all co-solutes. The normalizing hard sphere term B22,HS was calculated(11, 37) to be 

6.8 mL/g (mAb2) and 7.1 mL/g (mAb3) using the average Rh of ~4.7 nm, which 

was determined from the average best-fit density across all co-solutes by the 

interacting hard sphere model fits for each mAb (Table 2.7, 2.8). The filled orange 

symbols correspond to 50 mM NaCl, which has a Debye length of 1.2 nm, 

compared to 0.6 nm for the 250 mM co-solute systems and 0.3 nm for the 1M Imid 

system; the 30 mm (Na)OAc buffer in all formulations contributes 16 mM ionic 

strength. The best-fit lines (solid and dashed curves) do not include the 50 mM 

NaCl data points in the fit, given the less-screened, longer-ranged electrostatic 

repulsion. 
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Figure 2.14. Structure factor S(0) calculated from the best-fit Mw (Table 2.4) instead of the 

lowest-concentration data point. 

 

 

 

 

Protein Co-solute formulation ARD (%) 

mAb 2 50 mM NaCl 3.4 

mAb 2 250 mM NaCl 3.7 

mAb 2 250 mM Lys.HCl 4.4 

mAb 2 250 mM Arg.HCl 1.4 

mAb 2 250 mM Imid(HCl) pH 5.5 2.5 

mAb 2 250 mM Gdn.HCl 5.0 

mAb 2 250 mM PheOMe.HCl(NaOH) pH 5.5 3.5 

mAb 2 1000 mM Imid(HCl) pH 5.5 1.5 

 

mAb 3 50 mM NaCl 8.0 

mAb 3 250 mM NaCl 9.9 

mAb 3 250 mM Lys.HCl 8.7 

mAb 3 250 mM Imid(HCl) pH 5.5 10.1 

mAb 3 250 mM Arg.HCl 3.1 

Table 2.5. Average relative deviation (ARD) of S(0) fits to the single-Yukawa potential for 

fixed Z = 3 and variable K. 
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Figure 2.15.  (A) Single-Yukawa (“SY”) best fits of S(0) of mAb3 with 250 mM NaCl using 

different Z’s, compared against the double-attractive Yukawa (“DY”) fit. (B) 

Convergent behavior of the best-fit double-Yukawa (DY) fits of S(0) of mAb3 with 

250 mM NaCl for different fit parameter combinations (values shown along with 

ARDs in Table 2.6). The corresponding best-fit K’s are shown in the legend. A Z of 

3 was used for mAb2 in Fig. 2.3a, and also for mAb3 in Fig. 2.3b for comparison 

against mAb2. 

 

 

 

 

 

 

Fit Model K1 Z1 L1 (nm) K2 Z2 L2 (nm) ARD (%) 

SY Z = 3 Single 0.801 3.00 3 --- --- --- 9.9 

SY Z = 1 Single 0.236 1.00 9 --- --- --- 5.6 

SY Z = 0.1 Single 0.022 0.10 90 --- --- --- 4.6 

SY Z = 0.01 Single 0.014 0.01 900 --- --- --- 5.0 

DY fit 1 Double 0.028 1.06 8.5 0.14 0.71 12.7 5.0 

DY fit 2 Double 0.070 0.72 12.5 0.08 0.67 13.4 5.1 

DY fit 3 Double 0.102 0.83 10.8 0.08 0.79 11.4 5.3 

Table 2.6. Best-fit parameters and error (ARD) for mAb3 with 250 mM NaCl fit to the single-

term Yukawa (SY) or the double-attractive term Yukawa (DY). The corresponding 

fits of S(0) are shown in Fig. 2.15. The best-fit values for the DY model are 

confounded, as shown in Fig. 2.16. 
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Figure 2.16. Confounded fits of K1, K2, Z1 and Z2 for the double Yukawa fits of S(0) for mAb3 

with 250 mM NaCl (Table 2.6). 

 

 

 

“Oligomer” size log(K1m) log(K1n) Vex (mL/g) 

Formulation m n Avg Std Error Avg Std Error Avg Std Error 

50 mM NaCl 2 3 2.12 +0.61 / --- 6.56 +0.1 / -0.09 1.59 +0.02 / -0.02 

250 mM NaCl 2 4 3.11 +0.22 / -0.25 10.31 +0.21 / -0.18 1.68 +0.02 / -0.01 

250 mM Lys.HCl --- 3 NA NA 6.43 +0.08 / -0.07 1.65 +0.02 / -0.02 

250 mM Arg.HCl 2 3 3.05 +0.04 / -0.04 3.67 +0.34 / -1.06 1.67 +0.02 / -0.02 

250 mM Imid(HCl) 2 3 3.08 +0.12 / -0.13 6.55 +0.07 / -0.06 1.76 +0.01 / -0.01 

250 mM Gdn.HCl 2 3 2.94 +0.11 / -0.14 6.17 +0.06 / -0.06 1.76 +0.01 / -0.01 

250 mM PheOMe.HCl 2 --- 2.74 +0.09 / -0.10 NA NA 1.70 +0.02 / -0.02 

1000 mM Imid(HCl) 2 --- 2.44 +0.13 / -0.13 NA NA 1.79 +0.04 / -0.04 

Table 2.7. Best-fit parameters for mAb 2 light scattering data (1 – 225 mg/mL) fit to the 

IHS model with different co-solutes. The upper and lower standard errors of 

estimate for the fit parameters were evaluated for a P value of 0.5.  A finite lower 

standard error could not be obtained for 50 mM NaCl and 250 mM Lys.HCl. The 

1000 mM Imid(HCl) data was best fit by a monomer-dimer equilibrium (no third 

species). 
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“Oligomer” size log(K1m) log(K1n) Vex (mL/g) 

Formulation m n Avg Std Error Avg Std Error Avg Std Error 

50 mM NaCl 2 3 3.51 +0.39 / -0.51 7.44 +0.31 / -0.24 1.77 +0.03 / -0.03 

250 mM NaCl --- 4 NA NA 11.10 +0.12 / -0.12 1.77 +0.02 / -0.02 

250 mM Lys 2 3 2.00 +1.1 / --- 7.18 +0.17 / -0.1 1.77 +0.03 / -0.02 

250 mM Imid 2 3 2.71 +0.49 / --- 7.08 +0.17 / -0.13 1.89 +0.03 / -0.02 

250 mM Arg 2 --- 3.15 +0.09 / -0.08 NA NA 1.73 +0.02 / -0.02 

Table 2.8. Best-fit parameters for mAb 3 light scattering data (1 – 225 mg/mL) fit to the 

IHS model with different co-solutes. The upper and lower standard errors of 

estimate for the fit parameters were evaluated for a P value of 0.5.  A finite lower 

standard error could not be obtained for 250 mM Lys.HCl and 250 mM Imid(HCl). 

The 250 mM NaCl data was best fit by a monomer-tetramer equilibrium, and the 

250 mM Arg.HCl data by a monomer-dimer equilibrium (no third species). 

 

 

 

  

Figure 2.17. Mass fraction distribution of mAb 2 “oligomers” as a function of mAb 

concentration as calculated from the IHS best-fit association constants (Table 2.7) 

formulated with (A) 250 mM Lys.HCl and (B) 250 mM Imid(HCl). 
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Figure 2.18. Mass fraction distribution of mAb 3 “oligomers” as a function of mAb 

concentration as calculated from the IHS best-fit association constants (Table 2.8) 

formulated with 250 mM Lys.HCl. 
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Figure 2.19. Concentration dependence of the (A, B) structure factor S(0) and (C, D) relative 

viscosity ηrel normalized against the hard sphere (HS) value for mAb2 (A, C) and 

mAb3 (B, D). Solid curves indicate fits of S(0) to the single-Yukawa interaction 

potential (Eqn. 2.3b) with a fixed Z = 3. 

 

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250

S
(0

) 
/ 

S
(0

) H
S

 

mAb conc (mg/ml) 

(A) 50 mM NaCl

250 mM NaCl

250 mM Lys.HCl

250 mM Arg.HCl

250 mM Imid(HCl)

250 mM Gdn.HCl

250 mM PheOMe(HCl)

1M Imid(HCl)

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

S
(0

) 
/ 

S
(0

)  
H

S
 

mAb conc (mg/ml) 

(B) 50 mM NaCl

250 mM NaCl

250 mM Lys

250 mM Imid

250 mM Arg

1

3

5

7

9

11

13

15

0 50 100 150 200 250

η
re

l 
/ 
η

re
l,
H

S
 

mAb conc (mg/ml) 

(C) 50 mM NaCl

250 mM NaCl

250 mM Lys.HCl

250 mM Arg.HCl

250 mM Imid(HCl)

250 mM Gdn.HCl

250 mM PheOMe(HCl)

1M Imid(HCl)

1

3

5

7

9

11

13

15

0 50 100 150 200 250

η
re

l 
/ 
η

re
l,
H

S
 

mAb conc (mg/ml) 

(D) 50 mM NaCl

250 mM NaCl

250 mM Lys

250 mM Imid

250 mM Arg



 79 

  

  

Figure 2.20. Concentration-dependent correlation of the viscosity at 200 mg/mL with S(0)/S(0)HS 

for (A) mAb2 and (B) mAb3, as well as with G22/G22,HS for (C) mAb2 and (D) 

mAb3 evaluated at 20, 60, 125 and 160 mg/mL. The 50 mM NaCl data points for 

mAb3 were omitted from the correlation, as explained in the Results and Discussion 

section and following the analysis used for Fig. 2.6. The graphs are scaled 

identically between mAbs in order to aid visual comparison. 
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Fixed parameters/uncertainties 

Parameter Value Source 

C1 225 mg/mL Methods 

ρbuffer 1010 mg/mL Eqn. 2.17a + 2.17b 

ρps 1070 mg/mL Eqn. 2.17a + 2.17b evaluated 

at 225 mg/mL with 250 mM 

Arg/Lys 

σC1 3 mg/mL ~Mode of stdev of conc. 

measurements in Table 2.3 

σmp 0.1 mg Mettler Toledo NewClassic 

MS – Technical Specifications 

Concentration-dependent values and uncertainties 

σVbuffer 1.3 μL (low concentration; 20 – 200 μL pipet) 

0.26 μL (high concentration; 2 – 20 μL pipet) 

Eppendorf Research Plus 

adjustable volume – Technical 

Specifications 

mp 0.5 mg (low concentration) 

90 mg (high concentration) 

Methods 

Vbuffer 96 μL (low concentration) 

10 μL (high concentration) 

Methods (assuming basis of 

100 μL samples in SLS 

dilution series) 

Table 2.9. Known parameters values and uncertainties for calculating the propagated error in the 

calculated mAb concentration C2 after gravimetric dilution. 

 

2.8 REFERENCES 

1. Shire SJ, Shahrokh Z, Liu J. Challenges in the Development of High Protein 

Concentration Formulations. J Pharm Sci. 2004;93(6):1390-402. 

2. Amin S, Barnett GV, Pathak JA, Roberts CJ, Sarangapani PS. Protein 

aggregation, particle formation, characterization & rheology. Current Opinion in Colloid & 

Interface Science. 2014;19(5):438-49. 

3. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. 

Trends in Biotechnology. 2014;32(7):372-80. 

4. Roberts CJ. Protein aggregation and its impact on product quality. Current 

Opinion in Biotechnology. 2014;30:211-7. 

5. Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F. 

Rheological and syringeability properties of highly concentrated human polyclonal 

immunoglobulin solutions. Eur J Pharm Biopharm. 2010;76(3):351-6. 

6. Allmendinger A, Fischer S, Huwyler J, Mahler H-C, Schwarb E, Zarraga IE, et al. 

Rheological characterization and injection forces of concentrated protein formulations: An 

alternative predictive model for non-Newtonian solutions. Eur J Pharm Biopharm. 

2014;87(2):318-28. 



 81 

7. Hung JJ, Borwankar AU, Dear BJ, Truskett TM, Johnston KP. High concentration 

tangential flow ultrafiltration of stable monoclonal antibody solutions with low viscosities. J 

Membr Sci. 2016;508:113-26. 

8. Baek Y, Singh N, Arunkumar A, Borys M, Li ZJ, Zydney AL. Ultrafiltration 

behavior of monoclonal antibodies and Fc-fusion proteins: Effects of physical properties. 

Biotechnol Bioeng. 2017;114(9):2057-65. 

9. Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The Influence of Charge 

Distribution on Self-Association and Viscosity Behavior of Monoclonal Antibody Solutions. 

Mol Pharmaceutics. 2012;9(4):791-802. 

10. Roberts CJ, Blanco MA. Role of Anisotropic Interactions for Proteins and Patchy 

Nanoparticles. J Phys Chem B. 2014;118(44):12599-611. 

11. Chari R, Jerath K, Badkar AV, Kalonia DS. Long- and Short-Range Electrostatic 

Interactions Affect the Rheology of Highly Concentrated Antibody Solutions. Pharm Res. 

2009;26(12):2607-18. 

12. Yadav S, Liu J, Shire SJ, Kalonia DS. Specific Interactions in High Concentration 

Antibody Solutions Resulting in High Viscosity. J Pharm Sci. 2010;99(3):1152-68. 

13. Du W, Klibanov AM. Hydrophobic salts markedly diminish viscosity of 

concentrated protein solutions. Biotechnol Bioeng. 2011;108(3):632-6. 

14. Guo Z, Chen A, Nassar R, Helk B, Mueller C, Tang Y, et al. Structure-Activity 

Relationship for Hydrophobic Salts as Viscosity-Lowering Excipients for Concentrated 

Solutions of Monoclonal Antibodies. Pharm Res. 2012;29(11):3102-9. 

15. Li L, Kumar S, Buck P, Burns C, Lavoie J, Singh S, et al. Concentration 

Dependent Viscosity of Monoclonal Antibody Solutions: Explaining Experimental Behavior in 

Terms of Molecular Properties. Pharm Res. 2014;31(11):3161-78. 

16. Chaudhri A, Zarraga IE, Yadav S, Patapoff TW, Shire SJ, Voth GA. The Role of 

Amino Acid Sequence in the Self-Association of Therapeutic Monoclonal Antibodies: Insights 

from Coarse-Grained Modeling. J Phys Chem B. 2013;117(5):1269-79. 

17. Buck PM, Chaudhri A, Kumar S, Singh SK. Highly Viscous Antibody Solutions 

Are a Consequence of Network Formation Caused by Domain-Domain Electrostatic 

Complementarities: Insights from Coarse-Grained Simulations. Mol Pharmaceutics. 

2015;12(1):127-39. 

18. Godfrin PD, Zarraga IE, Zarzar J, Porcar L, Falus P, Wagner NJ, et al. Effect of 

Hierarchical Cluster Formation on the Viscosity of Concentrated Monoclonal Antibody 

Formulations Studied by Neutron Scattering. J Phys Chem B. 2016;120(2):278-91. 

19. Lilyestrom WG, Yadav S, Shire SJ, Scherer TM. Monoclonal Antibody Self-

Association, Cluster Formation, and Rheology at High Concentrations. J Phys Chem B. 

2013;117(21):6373-84. 

20. Yearley Eric J, Godfrin Paul D, Perevozchikova T, Zhang H, Falus P, Porcar L, et 

al. Observation of Small Cluster Formation in Concentrated Monoclonal Antibody Solutions and 

Its Implications to Solution Viscosity. Biophys J. 2014;106(8):1763-70. 

21. Liu J, Nguyen MDH, Andya JD, Shire SJ. Reversible Self-Association Increases 

the Viscosity of a Concentrated Monoclonal Antibody in Aqueous Solution. J Pharm Sci. 

2005;94(9):1928-40. 



 82 

22. Scherer TM, Liu J, Shire SJ, Minton AI. Intermolecular Interactions of IgG1 

Monoclonal Antibodies at High Concentrations Characterized by Light Scattering. J Phys Chem 

B. 2010;114(40):12948-57. 

23. Schmit JD, He F, Mishra S, Ketchem RR, Woods CE, Kerwin BA. Entanglement 

Model of Antibody Viscosity. J Phys Chem B. 2014;118(19):5044-9. 

24. Nichols P, Li L, Kumar S, Buck PM, Singh SK, Goswami S, et al. Rational design 

of viscosity reducing mutants of a monoclonal antibody: Hydrophobic versus electrostatic inter-

molecular interactions. mAbs. 2015;7(1):212-30. 

25. Chow C-K, Allan BW, Chai Q, Atwell S, Lu J. Therapeutic Antibody 

Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure. Mol 

Pharmaceutics. 2016;13(3):915-23. 

26. Geoghegan JC, Fleming R, Damschroder M, Bishop SM, Sathish HA, Esfandiary 

R. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody 

by rational, structure-guided Fv engineering. mAbs. 2016;8(5):941-50. 

27. Kuhn AB, Kube S, Karow-Zwick AR, Seeliger D, Garidel P, Blech M, et al. 

Improved Solution-State Properties of Monoclonal Antibodies by Targeted Mutations. J Phys 

Chem B. 2017;121(48):10818-27. 

28. Connolly Brian D, Petry C, Yadav S, Demeule B, Ciaccio N, Moore Jamie MR, et 

al. Weak Interactions Govern the Viscosity of Concentrated Antibody Solutions: High-

Throughput Analysis Using the Diffusion Interaction Parameter. Biophys J. 2012;103(1):69-78. 

29. Yadav S, Sreedhara A, Kanai S, Liu J, Lien S, Lowman H, et al. Establishing a 

Link Between Amino Acid Sequences and Self-Associating and Viscoelastic Behavior of Two 

Closely Related Monoclonal Antibodies. Pharm Res. 2011;28(7):1750-64. 

30. Chaudhri A, Zarraga IE, Kamerzell TJ, Brandt JP, Patapoff TW, Shire SJ, et al. 

Coarse-Grained Modeling of the Self-Association of Therapeutic Monoclonal Antibodies. J Phys 

Chem B. 2012;116(28):8045-57. 

31. Corbett D, Hebditch M, Keeling R, Ke P, Ekizoglou S, Sarangapani P, et al. 

Coarse-Grained Modeling of Antibodies from Small-Angle Scattering Profiles. J Phys Chem B. 

2017;121(35):8276-90. 

32. Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible Self-Association of a 

Concentrated Monoclonal Antibody Solution Mediated by Fab-Fab Interaction That Impacts 

Solution Viscosity. J Pharm Sci. 2008;97(10):4219-27. 

33. Wang S, Zhang N, Hu T, Dai W, Feng X, Zhang X, et al. Viscosity-Lowering 

Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal 

Antibodies. Mol Pharmaceutics. 2015;12(12):4478-87. 

34. Dear BJ, Hung JJ, Truskett TM, Johnston KP. Contrasting the Influence of 

Cationic Amino Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal 

Antibody. Pharm Res. 2017;34(1):193-207. 

35. Borwankar AU, Dear BJ, Twu A, Hung JJ, Dinin AK, Wilson BK, et al. Viscosity 

Reduction of a Concentrated Monoclonal Antibody with Arginine·HCl and Arginine·Glutamate. 

Ind Eng Chem Res. 2016;55(43):11225-34. 

36. Inoue N, Takai E, Arakawa T, Shiraki K. Specific Decrease in Solution Viscosity 

of Antibodies by Arginine for Therapeutic Formulations. Mol Pharmaceutics. 2014;11(6):1889-

96. 



 83 

37. Binabaji E, Ma J, Zydney A. Intermolecular Interactions and the Viscosity of 

Highly Concentrated Monoclonal Antibody Solutions. Pharm Res. 2015;32(9):3102-9. 

38. Whitaker N, Xiong J, Pace SE, Kumar V, Middaugh CR, Joshi SB, et al. A 

Formulation Development Approach to Identify and Select Stable Ultra–High-Concentration 

Monoclonal Antibody Formulations With Reduced Viscosities. J Pharm Sci. 2017;106(11):3230-

41. 

39. Fukuda M, Moriyama C, Yamazaki T, Imaeda Y, Koga A. Quantitative 

Correlation between Viscosity of Concentrated MAb Solutions and Particle Size Parameters 

Obtained from Small-Angle X-ray Scattering. Pharm Res. 2015;32(12):3803-12. 

40. Larson AM, Weight AK, Love K, Bonificio A, Wescott CR, Klibanov AM. Bulky 

Polar Additives That Greatly Reduce the Viscosity of Concentrated Solutions of Therapeutic 

Monoclonal Antibodies. J Pharm Sci. 2017;106(5):1211-7. 

41. Yadav S, Shire SJ, Kalonia DS. Factors Affecting the Viscosity in High 

Concentration Solutions of Different Monoclonal Antibodies. J Pharm Sci. 2010;99(12):4812-29. 

42. Yadav S, Shire SJ, Kalonia DS. Viscosity behavior of high-concentration 

monoclonal antibody solutions: Correlation with interaction parameter and electroviscous 

effects. J Pharm Sci. 2012;101(3):998-1011. 

43. Yadav S, Scherer TM, Shire SJ, Kalonia DS. Use of dynamic light scattering to 

determine second virial coefficient in a semidilute concentration regime. Analytical 

biochemistry. 2011;411(2):292-6. 

44. Lilyestrom WG, Shire SJ, Scherer TM. Influence of the Cosolute Environment on 

IgG Solution Structure Analyzed by Small-Angle X-ray Scattering. J Phys Chem B. 

2012;116(32):9611-8. 

45. Yearley EJ, Zarraga IE, Shire SJ, Scherer TM, Gokarn Y, Wagner NJ, et al. 

Small-Angle Neutron Scattering Characterization of Monoclonal Antibody Conformations and 

Interactions at High Concentrations. Biophys J. 2013;105(3):720-31. 

46. Zarraga IE, Taing R, Zarzar J, Luoma J, Hsiung J, Patel A, et al. High shear 

rheology and anisotropy in concentrated solutions of monoclonal antibodies. J Pharm Sci. 

2013;102(8):2538-49. 

47. Fukuda M, Watanabe A, Hayasaka A, Muraoka M, Hori Y, Yamazaki T, et al. 

Small-scale screening method for low-viscosity antibody solutions using small-angle X-ray 

scattering. Eur J Pharm Biopharm. 2017;112:132-7. 

48. Minton AP. Recent applications of light scattering measurement in the biological 

and biopharmaceutical sciences. Analytical biochemistry. 2016;501:4-22. 

49. Ghosh R, Calero-Rubio C, Saluja A, Roberts CJ. Relating protein-protein 

interactions and aggregation rates from low to high concentrations. J Pharm Sci. 

2016;105(3):1086-96. 

50. Calero-Rubio C, Ghosh R, Saluja A, Roberts CJ. Predicting protein-protein 

interactions of concentrated antibody solutions using dilute solution data and coarse-grained 

molecular models. J Pharm Sci. 2017. 

51. Scherer TM. Role of Cosolute–Protein Interactions in the Dissociation of 

Monoclonal Antibody Clusters. J Phys Chem B. 2015;119(41):13027-38. 



 84 

52. Fernandez C, Minton AP. Automated measurement of the static light scattering of 

macromolecular solutions over a broad range of concentrations. Analytical biochemistry. 

2008;381(2):254-7. 

53. Esfandiary R, Parupudi A, Casas-Finet J, Gadre D, Sathish H. Mechanism of 

Reversible Self-Association of a Monoclonal Antibody: Role of Electrostatic and Hydrophobic 

Interactions. J Pharm Sci. 2015;104(2):577-86. 

54. Arora J, Hu Y, Esfandiary R, Sathish HA, Bishop SM, Joshi SB, et al. Charge-

mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster 

formation, and elevated viscosity. mAbs. 2016;8(8):1561-74. 

55. Some D, Pollastrini J, Cao S. Characterizing Reversible Protein Association at 

Moderately High Concentration Via Composition-Gradient Static Light Scattering. J Pharm Sci. 

2016;105(8):2310-8. 

56. Blanco MA, Sahin E, Li Y, Roberts CJ. Reexamining protein–protein and 

protein–solvent interactions from Kirkwood-Buff analysis of light scattering in multi-component 

solutions. The Journal of Chemical Physics. 2011;134(22):225103. 

57. Woldeyes MA, Calero-Rubio C, Furst EM, Roberts CJ. Predicting Protein 

Interactions of Concentrated Globular Protein Solutions Using Colloidal Models. J Phys Chem 

B. 2017;121(18):4756-67. 

58. Bucciarelli S, Casal-Dujat L, De Michele C, Sciortino F, Dhont J, Bergenholtz J, 

et al. Unusual Dynamics of Concentration Fluctuations in Solutions of Weakly Attractive 

Globular Proteins. J Phys Chem Lett. 2015;6(22):4470-4. 

59. Inouye H, Houde D, Temel DB, Makowski L. Utility of Solution X-ray Scattering 

for the Development of Antibody Biopharmaceuticals. J Pharm Sci. 2016. 

60. Mosbaek CR, Konarev PV, Svergun DI, Rischel C, Vestergaard B. High 

Concentration Formulation Studies of an IgG2 Antibody Using Small Angle X-ray Scattering. 

Pharm Res. 2012;29(8):2225-35. 

61. Scherer TM. Cosolute Effects on the Chemical Potential and Interactions of an 

IgG1 Monoclonal Antibody at High Concentrations. J Phys Chem B. 2013;117(8):2254-66. 

62. Hoppe T, Minton AP. Incorporation of hard and soft protein-protein interactions 

into models for crowding effects in binary and ternary protein mixtures: Comparison of 

approximate analytical solutions with numerical simulation. J Phys Chem B. 

2016;120(46):11866-72. 

63. Fine BM, Lomakin A, Ogun OO, Benedek GB. Static structure factor and 

collective diffusion of globular proteins in concentrated aqueous solution. The Journal of 

Chemical Physics. 1996;104(1):326-35. 

64. Calero-Rubio C, Saluja A, Roberts CJ. Coarse-Grained Antibody Models for 

"Weak" Protein-Protein Interactions from Low to High Concentrations. J Phys Chem B. 

2016;120(27):6592-605. 

65. Blanco MA, Perevozchikova T, Martorana V, Manno M, Roberts CJ. Protein–

Protein Interactions in Dilute to Concentrated Solutions: α-Chymotrypsinogen in Acidic 

Conditions. J Phys Chem B. 2014;118(22):5817-31. 

66. Minton AP. Static Light Scattering from Concentrated Protein Solutions, I: 

General Theory for Protein Mixtures and Application to Self-Associating Proteins. Biophys J. 

2007;93(4):1321-8. 



 85 

67. Wang W, Lilyestrom WG, Hu ZY, Scherer TM. Cluster Size and Quinary 

Structure Determine the Rheological Effects of Antibody Self-Association at High 

Concentrations. J Phys Chem B. 2018;122(7):2138-54. 

68. Heyda J, Mason PE, Jungwirth P. Attractive Interactions between Side Chains of 

Histidine-Histidine and Histidine-Arginine-Based Cationic Dipeptides in Water. J Phys Chem B. 

2010;114(26):8744-9. 

69. Vondrášek J, Mason PE, Heyda J, Collins KD, Jungwirth P. The Molecular 

Origin of Like-Charge Arginine−Arginine Pairing in Water. J Phys Chem B. 2009;113(27):9041-

5. 

70. Du Q-S, Meng J-Z, Liao S-M, Huang R-B. Energies and physicochemical 

properties of cation–π interactions in biological structures. J Mol Graphics Modell. 2012;34:38-

45. 

71. Liao SM, Du QS, Meng JZ, Pang ZW, Huang RB. The multiple roles of histidine 

in protein interactions. Chem Cent J. 2013;7. 

72. Shukla D, Trout BL. Interaction of Arginine with Proteins and the Mechanism by 

Which It Inhibits Aggregation. J Phys Chem B. 2010;114(42):13426-38. 

73. Shukla D, Schneider CP, Trout BL. Molecular level insight into intra-solvent 

interaction effects on protein stability and aggregation. Adv Drug Deliv Rev. 2011;63(13):1074-

85. 

74. Ito L, Shiraki K, Matsuura T, Okumura M, Hasegawa K, Baba S, et al. High-

resolution X-ray analysis reveals binding of arginine to aromatic residues of lysozyme surface: 

implication of suppression of protein aggregation by arginine. Protein Engineering Design and 

Selection. 2011;24(3):269-74. 

75. Heimenz PC, Rajagopalan R. Principles of Colloid and Surface Chemistry. 3rd 

ed. New York: Marcel Dekker, Inc.; 1997. 

76. McQuarrie D. Statistical Mechanics: University Science Books; 2000. 

77. Tanford C. The physical chemistry of macromolecules. New York: John Wiley & 

Sons; 1961. 

78. Banchio AJ, Nägele G. Short-time transport properties in dense suspensions: 

From neutral to charge-stabilized colloidal spheres. The Journal of Chemical Physics. 

2008;128(10):104903. 

79. Esfandiary R, Hayes DB, Parupudi A, Casas‐finet J, Bai S, Samra HS, et al. A 

Systematic Multitechnique Approach for Detection and Characterization of Reversible Self-

Association during Formulation Development of Therapeutic Antibodies. J Pharm Sci. 

2013;102(1):62-72. 

80. Castellanos MM, Clark NJ, Watson MC, Krueger S, McAuley A, Curtis JE. Role 

of Molecular Flexibility and Colloidal Descriptions of Proteins in Crowded Environments from 

Small-Angle Scattering. J Phys Chem B. 2016;120(49):12511-8. 

81. Blanco MA, Sahin E, Robinson AS, Roberts CJ. Coarse-Grained Model for 

Colloidal Protein Interactions, B-22, and Protein Cluster Formation. J Phys Chem B. 

2013;117(50):16013-28. 

82. Inoue N, Takai E, Arakawa T, Shiraki K. Arginine and lysine reduce the high 

viscosity of serum albumin solutions for pharmaceutical injection. J Biosci Bioeng. 

2014;117(5):539-43. 



 86 

83. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, et al. 

Suppression of protein interactions by arginine: A proposed mechanism of the arginine effects. 

Biophys Chem. 2007;127(1–2):1-8. 

84. Kastelic M, Dill KA, Kalyuzhnyi YV, Vlachy V. Controlling the viscosities of 

antibody solutions through control of their binding sites. Journal of Molecular Liquids. 2017. 

85. Pecora R. Dynamic Light Scattering: Applications of Photon Correlation 

Spectroscopy. New York: Springer 1985. 

86. Myers HP. Introductory solid state physics. 2 ed. Boca Raton, FL: CRC Press; 

1997. 

87. ASTRA 6 User's Guide. Santa Barbara, CA: Wyatt Technology Corporation; 

2015. 

88. Sun Y, Li X, Düzgüneşν N, Takaoka Y, Ohi S, Hirota S. The Shape Parameter of 

Liposomes and DNA-Lipid Complexes Determined by Viscometry Utilizing Small Sample 

Volumes. Biophys J. 2003;85(2):1223-32. 

89. Torquato S, Truskett TM, Debenedetti PG. Is Random Close Packing of Spheres 

Well Defined? Phys Rev Lett. 2000;84(10):2064-7. 

90. Grünberger A, Lai P-K, Blanco MA, Roberts CJ. Coarse-Grained Modeling of 

Protein Second Osmotic Virial Coefficients: Sterics and Short-Ranged Attractions. J Phys Chem 

B. 2013;117(3):763-70. 

  



 87 

Chapter 3:  Protein-protein interactions and length-scale dependent viscosities 

assessed by the self-diffusion of highly concentrated monoclonal antibodies via 

fluorescence correlation spectroscopy2 

Jessica J. Hung, Amjad Chowdhury, Barton J. Dear, Wade F. Zeno, Kishan Ramachandran, 

Maria P. Nieto, Tony Y. Shay, Carl Karouta, Thomas M. Truskett, Jeanne C. Stachowiak, Keith 

P. Johnston 

3.1 ABSTRACT 

The dynamic behavior of mAbs at high concentration plays a crucial role in protein 

processing and delivery, and provides insight into the length scales of protein microstructure and 

protein interactions (PPI) that influence the overall solution viscosity and protein stability. 

Measurements of the collective-diffusion coefficient Dc at high concentration by DLS are 

routine, but interpretation is complicated due to the dependence on steric effects, hydrodynamic 

interactions, and the osmotic compressibility. Self-diffusion is simpler to understand but more 

difficult to measure given the need to quantify the dynamics of a single molecule in a crowded 

solution. High concentration studies of mAb self-diffusion are currently limited to challenging 

techniques such as neutron spin echo or pulsed-field gradient NMR. Herein, we demonstrate the 

suitability of the simpler fluorescence correlation spectroscopy (FCS) technique, after method 

optimization, for measuring the self-diffusion of mAb2, which has previously been studied by 

SLS and SAXS, from low to high concentration (60 – 250 mg/mL) across a range of co-solute 

formulations with varying viscosities (ex. 10 cP to 100 cP at 200 mg/mL). The self-diffusion 

D0/Ds was found to deviate from the generalized Stokes-Einstein (GSE) relation with respect to 

the macroscopic viscosity. Given that the probe (labeled mAb) was the same size as the 

                                                 
2 The first-author was responsible for the design and execution of all of the FCS experiments and the preparation of 

~50% of the mAb samples, but was assisted in the preparation of the dry-passivated slides and the other ~50% of the 

mAb samples by the co-authors. The first-author directly supervised the preparation of samples that were made by 

the co-authors. The first-author was also responsible for all method development activities, the majority of data 

analysis, and all of the data interpretation, intellectual development and writing of the manuscript. The first-author 

received assistance from the co-authors to write and execute code to facilitate the fitting of large quantities of raw 

data, and also had intellectual discussion with the co-authors that contributed to the GDM portion of this work. 
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crowding agent (unlabeled mAb), D0/Ds was fit to a length-scale dependent viscosity (LDV) 

model to partially decouple the effects of structure, hydrodynamic interactions and PPI on the 

diffusion. The lowest-viscosity formulations had the weakest attraction based on the interaction 

parameter b extracted from fits of D0/Ds, in agreement with measurements of PPI by SLS and 

SAXS for the same mAb. In contrast, the polydispersity of the solution as measured by FCS 

appeared to be decoupled from the viscosity, despite known differences in the mAb’s self-

association behavior between formulations as assessed by SLS and SAXS. The apparent 

decoupling was hypothesized to be caused by the long time scale of the FCS measurements 

relative to the fast equilibrium exchange of the labeled mAb between monomer and oligomers. 

 

3.2 INTRODUCTION 

The dynamic behavior of proteins in highly concentrated solutions have significant 

implications for the stability and viscosity of protein drug products, especially for monoclonal 

antibody (mAb) solutions that are increasingly frequently formulated at high concentrations (100 

– 300+ mg/mL) for subcutaneous delivery. At such high concentrations, reversible self-

association of proteins may lead to irreversible and/or non-native aggregation (1, 2) that may 

raise concerns of safety and efficacy (3), as well as high solution viscosities that pose challenges 

for manufacturing (4-6) and drug delivery (7-9). There is extensive growing evidence for the 

strong correlation between reversible self-association and high viscosities, as seen from 

simulations (10-14), light scattering (15-18) and rheological models (19). Self-association is in 

turn driven by short-ranged attractive protein-protein interactions (PPI) (2, 17, 18, 20-25), which 

include anisotropic electrostatic attraction (26-28), hydrophobic attraction (29-31), Van der 

Waals dispersion forces and hydrogen bonds (32, 33). These attractive PPI can be tuned using 

co-solutes in order to modify the viscosity (18, 34-38) and stability (16, 17, 34, 39-44), for which 

hydrophobic and/or organic acids and bases such as arginine, histidine and camphorsulfonic acid 
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have received increasing attention for their greater efficacy relative to more conventional salts 

such as NaCl (23, 29, 30, 41, 44-49).  

There is a growing understanding of how these diverse co-solutes influence the viscosity 

of highly concentrated mAbs through their effects on the mAb microstructure and PPI, using 

techniques that probe the static protein structure such as small-angle X-ray scattering (SAXS), 

small-angle neutron scattering (SANS) and static light scattering (SLS). Through a combination 

of simulations with measurements of protein structure, high viscosities were linked to the 

formation of extended or rigid dimers and oligomers that occupy large volumes (14-18, 50). The 

formation of viscosity-raising oligomeric microstructures were correlated with strong attractive 

PPI as quantified by the static structure factors S(q) and S(0) from SAXS/SANS and SLS 

respectively (24, 25, 41, 47, 48, 51).  

While the influence of the protein static structure on the solution viscosity has been 

extensively studied using SAXS/SANS and SLS, there is less understanding of how the PPI 

affects the solution viscosity and protein stability through its influence on the protein dynamic 

behavior. Protein transport through the solution medium, as quantified by the diffusion rate, 

plays a critical role in determining the performance of common manufacturing processes such as 

membrane filtration via mechanisms such as back-diffusion and concentration polarization (4-6, 

52). The diffusion coefficient also reports on the effective viscosity experienced by the diffusing 

probe, as seen by the generalized Stokes-Einstein equation (Ds = kBT/(6πηR)) (53), and has also 

been correlated in one study with the critical shear rate of a shear-thinning concentrated 

lysozyme solution (54). Thus the diffusion rate may provide insight into the relevant length 

scales of PPI and structure that influence the mAb solution viscosity. 

The diffusion coefficients of mAbs from low to high concentration are routinely 

measured by dynamic light scattering (DLS) in order to quantify the dilute PPI using the 

diffusion interaction parameter kD (22, 27, 28, 34, 36, 44, 55, 56), as well as to attempt to 
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quantify the PPI and protein stability and structure at high concentration (37, 54, 57-59). Given 

that DLS measures the concentration gradient fluctuations of the ensemble average of the protein 

molecules rather than of intensity fluctuations from individual particles, the diffusion coefficient 

measured by this technique at higher concentrations is the collective diffusion coefficient Dc. 

Interpretation of Dc is challenging, as Dc is influenced both by the osmotic compressibility of the 

protein in a given formulation condition (58, 60, 61), as well as by concentration gradient 

fluctuations of both the protein and dissolved co-solutes/counterions (56). In contrast, the 

mechanism of self-diffusion (coefficient = Ds) is much simpler to understand, as it depends 

mainly on steric interactions (crowding/occupied volume) and to a lesser extent hydrodynamic 

interactions (62-66). As such, one of the long-term objectives of this study is to use the mAb 

self-diffusion behavior to better understand the collective diffusion behavior, especially at high 

concentration. 

A common application for measuring particle diffusion rates in protein solutions is 

microrheology, where the effective solution viscosity is measured indirectly through application 

of the generalized Stokes-Einstein (GSE) relation to the measured diffusion of a probe molecule 

in the protein solution. In conventional microrheology done using DLS, the probes of interest are 

typically large polymer beads such as polystyrene on the order of 0.1 – 1 μm (59, 67-69), which 

are much larger than both the solvent and protein, and therefore sample (and report on) the 

macroscopic solution viscosity (53). However, there is considerable evidence in the literature for 

the apparent breakdown of the GSE relation for nanoprobes (dyes, proteins, etc. on the order of 1 

– 10 nm) diffusing in polymer solutions or complex media (53, 59, 70, 71). This breakdown was 

attributed to the nanoprobe experiencing a length-scale dependent local microviscosity rather 

than the macroscopic viscosity, due to the small size of the probe relative to the polymer matrix 

and/or colloidal crowder molecules that constitute the fluid the probe diffuses through (53, 71-

74). In this framework, dubbed the “length-scale dependent viscosity (LDV) model” by Holyst 
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and co-workers (53, 73), the GSE relation is seen to hold for the diffusion of probes of all length 

scales, but with respect to the length-scale dependent microviscosity rather than the 

macroviscosity. The GSE relation then becomes 

 
𝐷0

𝐷𝑠
=

𝜂𝑒𝑓𝑓

𝜂0
                        (3.1a) 

where D0 is the self-diffusion coefficient of the probe at infinite dilution, Ds is the measured self-

diffusion coefficient at finite concentration, η0 is the solvent viscosity and ηeff is the effective 

local microviscosity, which is a function of both the probe and crowder/solvent matrix sizes. 

Therefore, for measurements of mAb self-diffusion in concentrated mAb solutions, several 

questions must be answered to obtain a meaningful interpretation of the diffusion behavior, 

especially in systems with known or suspected self-association: (i) what is the probe that is being 

measured? Is it monomeric or oligomeric? Does the probe size change over time due to 

equilibrium exchange between monomer and oligomer? (ii) What is the probe diffusing through? 

Does it experience the solvent viscosity, the macroscopic viscosity, or an intermediate viscosity? 

Both the probe size and effective local microviscosity will affect the diffusion retardation D0/Ds 

independent of other effects (crowding, PPI, etc.), so care must be taken to account for the 

length-scale effects on Ds in the interpretation of the mAb diffusion behavior. 

The local microviscosity and diffusion D0/Ds are also both further perturbed by the PPI, 

as seen from significant differences in the GSE scaling (coupling/decoupling of the macroscopic 

viscosity and self-diffusion) observed with FCS and NMR using nanoprobes for proteins that 

range in PPI profiles from hard sphere-like (α-crystallin) to strongly anisotropic and attractive 

(lysozyme, mAbs) (43, 72, 75). The effective viscosity was found to follow an Arrhenius-like 

scaling law (76), such that the effective viscosity retardation factor ηeff/η0 (and by extension, the 

diffusion retardation factor D0/Ds) is related to an ‘activation energy’ Ea for viscous flow (72, 73) 

or alternatively for diffusion (76).  
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𝐷0

𝐷𝑠
=

𝜂𝑒𝑓𝑓

𝜂
= exp (

𝐸𝑎

𝑅𝑇
)       (3.1b) 

The activation energy for flow is a function of the interparticle interactions and structural/ 

hydrodynamic screening effects (72, 73, 76), 
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        (3.2) 

where Reff is an effective hydrodynamic radius that accounts for the relative sizes of the diffusion 

probe rp to the particles/polymer chains that constitute the diffusion medium Rh (Reff=((rp
2
 

*Rh
2
)⁄((rp

2
+Rh

2
)))^0.5) (73), and ξ is the screening length for hydrodynamic interactions and is 

related to the solution network structure (71).  
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              (3.3b) 

ξ is also considered the characteristic length scale of flow and is a function of the protein radius 

of gyration Rg, the protein volume fraction φ, the maximum volume fraction in random close 

packing (φrcp = 0.638) (72). The physical meaning of a is still not well-understood (72, 76, 77), 

but was found to be < 1 for entangled polymer systems and ~1.29 for hard sphere-like systems 

(71, 72). The parameter b (b = γ/RT) is related to the interparticle interaction strength (72, 76). 

Thus the influence of the PPI on D0/Ds can be partially decoupled from the effects of 

hydrodynamic effects and structural confinement (the length-scale effects) via the LDV model. 

This influence of the PPI on D0/Ds was also observed directly by NSE, where the relative 

diffusion of a protein with known patchy attraction (γB-crystallin) exhibited a drastic slowdown 

compared to its hard sphere-like complement (α-crystallin) (78). Similarly, noticeable 

differences in the PPI parameter b based on fits of D0/Ds from FCS were seen for different model 
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proteins with known differences in the magnitude and anisotropy of their attractive PPI (72). 

Beyond local microviscosity and PPI effects, the mAb diffusion may also be influenced by shape 

or steric effects (79) as well as hydrodynamic interactions (65, 80). However, all four of these 

factors are confounded to some degree, and work is ongoing to better separate and understand 

their individual influences on self-diffusion. 

Investigation of the effects of the length-scale dependent viscosity on the self-diffusion of 

proteins in relation to PPI at high concentration has until recently been mostly limited to globular 

proteins such as bovine serum albumin (BSA) (75, 81-83), lysozyme (75, 81, 84), and α (78, 81) 

and γ-crystallin (78). Furthermore, among the limited studies available for mAbs using 

techniques such as neutron spin echo (NSE) and neutron back scatter (NBS) (85, 86), pulsed-

field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) (43), and fluorescence 

correlation spectroscopy (FCS) (79), only one study attempted to address the influence of co-

solutes (arginine glutamate) on the PPI, viscosity and stability of highly concentrated mAbs 

through their effects on the mAb translational and rotational self-diffusion (43). It would 

therefore be of great interest to investigate how viscosity-reducing co-solutes modify the mAb 

self-diffusion and length-scale dependent microviscosities to complement the growing 

understanding of co-solute effects on the bulk mAb solution properties from a static structure 

perspective. 

Among the techniques available for measuring protein self-diffusion, FCS offers great 

ease of access and reduced complexity compared to NSE/NBS and NMR. FCS is a single-

molecule technique that tracks the fluctuations in fluorescence intensity originating from 

fluorescently labeled mAb molecules (present at ultradilute concentrations of ~1 nM) diffusing 

in a concentrated solution of unlabeled mAb molecules, allowing for direct measurement of mAb 

self-diffusion even at high concentration (87, 88). This technique is commonly used to measure 

protein diffusion in crowded medium such as cell cytoplasm (89, 90) as well as on cell 
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membranes (91-93) to investigate the driving forces for many biological processes. FCS is more 

experimentally accessible than NSE and NBS, but measures diffusion on much longer time 

scales (> 100 µs for FCS, compared to < 600 ps for NSE/NBS) (78, 81, 82), and so provides 

information on structure and PPI on longer length scales than NSE/NBS. PFG-NMR is more 

comparable to FCS in that it also measures long-time diffusion (81), but interpretation of NMR 

traces is difficult for mAbs given the complexities of the relaxational processes for high MW 

proteins (43). As such, FCS was chosen for the high concentration measurements of mAb self-

diffusion in this study. To our knowledge, only one other study has used FCS to probe the high 

concentration dynamics of mAbs (79), but did not attempt to investigate the influence of co-

solutes or relate the diffusion to viscosity. One of the objectives of this study was therefore to 

extend FCS to systematically investigate the dynamic behavior of mAbs at high concentration in 

the presence of PPI modifying co-solutes. 

To facilitate high concentration measurements of mAb diffusion by FCS, several 

experimental and analytical challenges associated with highly concentrated and viscous protein 

solutions must be addressed to ensure accurate, reproducible measurements. To prevent protein 

adsorption on the imaging surface (cover slip, etc.), which leads to inaccurate measurements of 

the correlation function decay time (and therefore incorrect measurements of Ds), the imaging 

surface is typically passivated to resist protein adsorption. A common passivation technique is 

the adsorption of a thin vesicle layer on the glass cover slip (93, 94). The resulting thin liquid 

film in the imaging well creates some difficulties, as the concentrated, viscous mAb sample has 

to be mixed with the liquid film to ensure a homogenous sample inside the imaging well for 

reproducible measurements. However, mixing two liquids with greatly differing viscosities 

inside a confined space is difficult, and a poorly mixed sample will result in non-ergodicity and 

irreproducible measurements. As an alternative to this liquid-based passivation technique, the 

imaging surface can also be passivated with a dry protein-resistant film (95-97), bypassing the 
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need to mix the mAb sample during loading. Furthermore, due to the non-negligible change in 

the solution refractive index across the range of co-solutes and mAb concentrations investigated 

(60 – 250 mg/mL), possible artifacts in the data resulting from potential distortion of the 

confocal molecular detection function (MDF) or confocal volume (98-102) have to be addressed. 

Finally an appropriate form of the autocorrelation function (ACF) must be chosen for 

interpreting the FCS data. Given the likely presence of oligomers and polydispersity, two 3D 

diffusion models were chosen to account for the polydispersity of the probe diffusion coefficient: 

(i) the anomalous diffusion model (73, 103), which captures the polydispersity with an anomaly 

coefficient α, and (ii) the Gaussian distribution model (GDM) (104, 105), which directly fits a 

polydispersity index from the variance of the fitted Gaussian distribution. 

The objectives of this study were (1) to develop FCS methodologies further to address the 

technical challenges mentioned earlier in order to extend FCS to mAbs at high concentration and 

viscosity; (2) advance our understanding of what information is obtained from FCS with respect 

to the identity of the probe (given the reversible self-association) as well as the length scale of 

the structure and viscosity experienced by the probe; and (3) relate the long time self-diffusion 

retardation factor D0/Ds and polydispersity measured by FCS to the macroscopic viscosity of a 

given mAb, mAb2 (24, 25), in order to quantify the co-solute effects on the self-association 

behavior and the PPI via the b parameter from the LDV model for mAb2. The available 

knowledge on mAb2’s macroscopic viscosity, PPI (quantified by the structure factor S(0) and 

short-range attraction strength K) and self-association behavior (quantified by the cluster size 

distribution and oligomerization profile) from previous SLS (24) and SAXS (25) studies with the 

same co-solute formulations will also be used to guide understanding of the self-diffusion 

behavior and length-scale dependent viscosity measured by FCS. This study will also attempt to 

contribute to the ongoing developing understanding of how length-scale dependent structure, 

viscosity and PPI influence protein self-diffusion at high concentration.  
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3.3 MATERIALS AND METHODS 

3.3.1 Materials 

The IgG1 monoclonal antibody used in this study, mAb2, was provided by Merck at 25 

mg/mL (pH 5.5) and is the same mAb described previously (24, 25). Glacial acetic acid, L-

arginine hydrochloride (Arg.HCl), hydrochloric acid, imidazole, and sodium chloride were 

purchased from Thermo-Fisher Scientific (Waltham, MA). Anhydrous (99.8%, extra dry) 

isopropanol was obtained from Acros Organics (Morris Plains, NJ). Hellmanex III cleaning 

detergent concentrate was purchased from Thermo Fisher Scientific (Waltham, MA). The 

arginine hydrochloride and imidazole were BioReagent grade (> 98.5% purity). DOPC (1,2-

dioleoyl-sn-glycero-3-phosphocholine) was purchased from Avanti Polar Lipids, Inc (Alabaster, 

AL). mPEG-silane-5000 (item # MPEG-SIL-5000-1g) was purchased from Laysan Bio (Arab, 

AL). Atto-488 NHS ester (λabs = 500 nm; λem = 520 nm) from Sigma-Aldrich (St. Louis, MO) 

was used to fluorescently label the mAb. Glass microscope cover slips (No. 1.5; 0.17 mm) were 

obtained from VWR International (Radnor, PA), and 0.8 mm thick silicone gaskets were 

obtained from Grace Bio-Labs (Bend, OR). Centri-Spin 20 miniature SEC columns were 

purchased from Princeton Separations (Adelphia, NJ). All co-solutes were dissolved in de-

ionized water (Barnstead Nanopure Diamond, Thermo Fisher Scientific, Waltham, MA).   

3.3.2 mAb sample preparation 

Concentrated (~250 mg/mL) solutions of mAb2 were formulated in the desired co-solute 

composition (50 – 250 mM NaCl, 50 – 250 mM Arg.HCl and 1 M Im(HCl) titrated to pH 5.5) 

via gravimetric dilution of ~280 mg/mL unformulated mAb stock solutions with concentrated 

co-solute stock solutions, as described previously (24). Briefly, the mAb2 stock as provided was 

buffer exchanged into 21:30 mM Na:OAc (pH 5) buffer by centrifugal diafiltration at 4500 RCF 

using a 30 kDa MWCO Amicon Ultra-15 centrifugal filter unit (MilliporeSigma, Burlington, 

MA), and then sterile filtered using 0.22 μm PES filters (CellTreat Scientific Products, Pepperell, 
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MA). The stock was then further concentrated to ~280 mg/mL by centrifugal ultrafiltration. The 

final mAb stock concentration was measured by UV-Vis spectroscopy (4, 44, 45) with an 

extinction coefficient of 1.42 mL*mg
-1

cm
-1

. Aliquots (~300 uL) of the ~280 mg/mL mAb stock 

was diluted with appropriate amounts of concentrated co-solute stock solutions to achieve the 

final desired co-solute composition at ~250 mg/mL mAb. Intermediate concentration samples 

were prepared for diffusion measurements by dilution of the formulated ~250 mg/mL samples 

with solvents prepared at the same co-solute composition. The concentration and viscosity of all 

samples (both original and intermediate concentration) were checked with UV-Vis spectroscopy 

and custom syringe viscometers, as described previously (24).  The concentration-dependent 

viscosity was also fit to the Ross-Minton equation (16, 38)  

 

𝜂

𝜂0
= exp (

[𝜂]𝑐

1−
𝑘

𝜈
[𝜂]𝑐

)                     (3.4) 

where c is the mAb mass concentration, η0 is the solvent viscosity, [η] is the intrinsic viscosity, 

and k/ν is the combined packing/Simha shape parameter. 

3.3.3 Dynamic light scattering (DLS) 

The diffusion coefficient of the mAb at infinite dilution, D0, in each co-solute 

formulation was measured by DLS using a ZetaPALS zeta potential analyzer (Brookhaven 

Instruments, Holtsville, NY; λ = 660 nm, θ = 90°). mAb samples at 2, 5, 10, 15 and 20 mg/mL 

were sterile-filtered with 0.22 μm PES filters prior to DLS measurements (to remove dust and 

particulates) and measured in triplicate, where each run consisted of 4 15-second scans that were 

averaged together. The DLS autocorrelation functions (ACFs) were fit using Brookhaven 

Instruments’ Dynamic Light Scattering software using the quadratic cumulant algorithm (106) to 

obtain the collective diffusion coefficient Dc as a function of mAb concentration. Dc was fit to 

Eqn. 3.5 (20, 28, 36) to obtain D0, where kD is the diffusion interaction parameter. 
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𝐷𝑐(𝑐) = 𝐷0(1 + 𝑘𝐷𝑐)                  (3.5) 

3.3.4 Fluorescent labeling of the high concentration mAb solutions 

~25 µM stock solutions of mAb2 labeled with Atto-488 were prepared as described in the 

Supporting Information and frozen at -20°C for longer-term storage. Prior to FCS measurements, 

a 20 µL aliquot of the thawed labeled mAb was ultracentrifuged (Sorvall MX 120+ floor micro-

ultracentrifuge; Thermo Fisher Scientific, Waltham, MA) at 400,000g for 10 minutes to sediment 

any aggregated mAb probes. The top 90% of the solution was recovered, and the labeled mAb 

stock was then diluted to 50 nM and added at the appropriate volume to unlabeled, concentrated 

mAb FCS samples in small-volume low-binding tubes (USA Scientific, Ocala, FL) to achieve a 

final label concentration of 1 nM, resulting in a 2% dilution of the unlabeled mAb. The unlabeled 

mAb samples were therefore prepared at 102% of the desired mAb concentration, such that the 

final concentration after addition of the labeled mAb was the desired level (i.e. 60, 125, 150, 200 

and 250 mg/mL). Due to the high viscosity of the concentrated mAb solutions preventing even 

mixing using pipettes, the labeled mAb was mixed into the unlabeled sample by stirring with 

25G needles (Becton & Dickinson, Franklin Lakes, NJ) for ~1 – 2 minutes until homogenous. 

The labeled samples were then measured in sets of 8 samples by FCS over a ~3 hour time period 

per set, with the first sample measured within 10 – 15 minutes after addition of the labeled mAb. 

3.3.5 Sample assembly and loading for fluorescence correlation spectroscopy  

The glass microscope cover slips used for creating the FCS imaging wells were first 

cleaned and passivated using either a dry passivation technique (RCA (Radio Corporation of 

America) clean, followed by silane-PEGylation) or wet passivation (cleaned with Hellmanex, 

followed by adsorption of a DOPC vesicle film) as described in the Supporting Information. The 

imaging wells were created by gently pressing cleaned 0.8 mm thick 1 cm x 1 cm silicone 
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gaskets (with a hole diameter of ~0.5 cm) onto the cleaned, passivated cover slips to create a 

temporary water-tight seal. In the case of wet passivation, the slides were passivated after 

assembling the gaskets on the cleaned cover slip, as described in the Supporting Information. 

The gaskets were soaked in a hot (lightly steaming) solution of 2% v/v Hellmanex III detergent 

for 10 minutes to remove residual protein and other adsorbed organic matter, individually rinsed 

under running ultrapure water to remove all residual detergent and dried under a N2 stream prior 

to use. 

For the dry passivation technique, which produced the best results and was used for the 

majority of the experiments in this work, 40 µL of labeled mAb sample was added to the 

imaging well using an adjustable volume pipet (ResearchPlus, Eppendorf, Hauppauge, NY). To 

minimize changes to the sample due to evaporation, the samples were loaded into the imaging 

wells and measured in triplicate within 10 – 15 minutes of loading. For the highest concentration 

samples (≥ 200 mg/mL), the imaging well was also sealed with a second dry-passivated cover 

slip (with the passivated side facing down towards the imaging well) to further prevent sample 

evaporation. For the wet passivation technique, the labeled mAb sample was added to the 

imaging well using a serial addition scheme to bring the final (unlabeled) mAb concentration in 

the well to 95.83% of the original mAb sample concentration, as described in the Supporting 

Information. 

3.3.6 Fluorescence correlation spectroscopy (FCS) 

The self-diffusion of mAb2 was measured by FCS using a home-built system based on a 

modified Zeiss Axio Observer.A1 inverted fluorescence microscope equipped with a Zeiss Plan 

Apochromat 100x 1.4 NA oil immersion lens and a time-correlated single-photon counting 

(TCSPC) correlator card from Becker and Hickle GmbH (Berlin, Germany), as described 

previously (92-94). The sample was illuminated with a 486 nm diode laser (Becker and Hickl), 

and the laser was focused through a Di02-R488 dichroic mirror (Semrock, Lake Forest, IL) into 
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the solution 3 – 20 μm above the sample cover slip. The distance between the lens focal point 

and the cover slip was controlled by adjusting the height of the sample stage with a precision 3-

axis piezoelectric stage from Mad City Labs (Madison, WI) using home-built control software. 

Sample fluorescence collected with the microscope objective was split into separate Hamamatsu 

GaAsP photomultiplier tubes (Hamamatsu, Japan) equipped with different emission filters (510 

nm with a 42 nm width; 511 nm with a 20 nm width) for cross-correlation using the Becker and 

Hickl software. FCS autocorrelation function (ACF) traces were collected in triplicate per 

sample for a minimum of 120 seconds per replicate. For the high concentration (≥ 200 mg/mL) 

samples, the individual FCS traces were collected over 180 – 300 seconds improve the signal-to-

noise ratio and smoothness of the FCS traces. The individual ACF traces were then fitted to the 

anomalous diffusion model and Gaussian distribution models described below. 

3.3.7 Anomalous diffusion model 

Anomalous diffusion behavior was seen from the stretched nature of the exponential 

decay in the autocorrelation function (ACF), potentially arising in part from the refractive index 

mismatch between the aqueous sample and immersion oil, but also likely from the greater extent 

of crowding and self-association commonly seen in concentrated mAb solutions (10, 15-18). The 

ACF was therefore fit to the 3D anomalous diffusion equation (72, 73, 89, 90, 103, 107, 108)  
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where G(τ) is the autocorrelation value, α is an anomaly coefficient, N is the number of 

fluorescent probes detected in the confocal volume at a given time, T is the fraction of probes in 

the triplet (dark) state, τT is the triplet lifetime (fixed at 5 µs (109)), S is the aspect ratio of the 

confocal volume and was fixed at 5/3 (S = ωz/ωxy, where ωz is the length of the axial waist and 

ωxy is the length of the radial waist of the confocal volume) and τD is the diffusion crossover 
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time. Due to instrument noise at short delay times, and given that the characteristic τD was on the 

order of 1000 – 10,000 µs, the ACFs were fit for τ from 100 to 1,000,000 µs. The autocorrelation 

value G(τ) was determined from the fluctuations of the fluorescence intensity (87, 88) 

(G(τ)=⟨δF(t)*δF(t+τ)⟩/⟨F(t)⟩2
). The self-diffusion coefficient Ds is determined from the diffusion 

crossover time (79, 87, 88, 107, 110)  
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                         (3.7) 

and can further be converted into an apparent hydrodynamic radius Rh via the Stokes-Einstein 

equation 
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where η is the solution viscosity.  

3.3.8 Gaussian distribution model 

The stretched ACF decay can also be described via a Gaussian distribution model (GDM) 

to explain the anomalous diffusion behavior in terms of solution polydispersity. In this model, 

the ACF is essentially fit to an infinitely multi-component model, where the probability 

(weighting factor) of each possible diffusion crossover time τD,i follows a Gaussian distribution. 

The ACF then becomes (104, 105)  
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where the normalized distribution probability ai(τD,i) is a Gaussian distribution in terms of ln(τD), 
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]                  (3.10) 

centered around an average characteristic value ln(τp) with standard deviation ln(σ). A is a 

normalization constant such that the sum of the probability distribution ai(τD,i) is 1. The ACFs 
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were fit to the GDM equation through χ
2
 minimization, where the variance was determined from 

the mean value of G(τD,i) at each τD,i smoothed over an interval of 10 τD,i values for multiple 

intervals around τD,i. 

The width of the probability distribution in terms of ln(τD) was converted to a full-width 

at the half-maximum (fwhm) of the probability distribution peak for the corresponding Rh to 

better quantify the solution polydispersity from the fitted σ. The derivation of Eqn. 3.11 is shown 

in the Supporting Information. 

 

𝑓𝑤ℎ𝑚 =  𝑅ℎ
̅̅̅̅ ∗ (exp (√2 ln(2) ln(𝜎)) − exp (−√2 ln(2) ln(𝜎)))      (3.11) 

3.3.9 Deviation from hard sphere diffusion and viscosity 

The mAb self-diffusion and viscosity can be normalized against the hard sphere behavior 

at the same volume fraction (φ=c*�̅� where �̅� is the mAb partial specific volume determined from 

fits of mAb2’s static light scattering behavior to the interacting hard sphere model (24)), where 

the hard sphere system represents the behavior in the absence of protein-protein interactions.  

The long-time self-diffusion retardation of hard sphere solutions as a function of volume 

fraction is given by Eqn. 3.12 (65, 81).  

 
D0

DHS
=

1+1.5φ+2φ2+3φ3

(1−φ)3         (3.12) 

The corresponding viscosity is given by the Ross-Minton viscosity equation (Eqn. 3.4), 

where for hard sphere solutions [η] is 2.5 (in terms of φ) and k/ν was determined assuming 

random close packing of the spheres (φmax = 0.64) (111).  

3.3.10 Length-scale dependent viscosity model 

The diffusion retardation factor D0/Ds was related to the local microviscosity to explain 

deviations from generalized Stokes-Einstein behavior in terms of length-scale dependent effects, 
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as described with the length-scale dependent viscosity (LDV) model developed by Holyst (53, 

70-73) and detailed in the Introduction section. For the application of the LDV model (Eqn. 3.1a 

– 2.3b) to protein diffusing in protein solutions (the non-entangled colloidal case described in 

Kalwarczyk (72)), the value of Reff is taken to be the rp  ∞ limit (i.e. Rh) (72). In the current 

study, Rh = 4.5 nm and Rg = 3.5 nm. (25)  

Combining Eqn. 3.1a – 3.3b results in the following expression for relating diffusion 

retardation D0/Ds to an interaction parameter (b, γ) and a hydrodynamic/structure parameter (a) 

for non-entangled systems. 

 ln (
𝐷0

𝐷𝑠
) =

∆𝐸𝑎

𝑅𝑇
= 𝑏 ∗ (

𝑅ℎ

𝑅𝑔
∗

𝜓

𝜓𝑅𝑐𝑝
)

𝑎

              (3.13) 

Eqn. 3.13 can also be plotted in a linearized form to facilitate linear regression of a and b, 

while also somewhat separating the influences of the hydrodynamic/structure effects and PPI 

effects on the self-diffusion retardation behavior. 
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3.4 RESULTS 

3.4.1 Method development – fluorescence correlation spectroscopy at high concentration 

for mAbs 

The FCS experimental technique was modified from the methodology previously used 

(92-94) for measuring protein diffusion on membrane surfaces, and was further optimized for 

mAbs diffusing in solution at high concentration. To minimize any complicating effects of the 

high viscosities that arise from the high mAb concentration, method development experiments 

were done with mAb2 (described previously by SLS (24) and SAXS (25)) formulated with 1 M 

Im(HCl) and 250 mM PheOMe(HCl) at pH 5.5, as these systems have relatively low viscosities 

(24) (~10 – 15 cP at 200 mg/mL). The key challenges that had to be addressed for the high 
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concentration FCS measurements were (i) possible changes in the confocal volume waist radius 

ωxy from the change in refractive index from low to high concentration and between different 

co-solute systems, (ii) complexity due to polydispersity from the presence of reversible 

oligomers, (iii) low G(0) values resulting in poorer signal-to-noise ratios given the high N (Eqn. 

3.6), and (iv) uniform sample loading for viscous solutions in the FCS imaging well while 

minimizing or eliminating sample dilution and/or sample heterogeneity from uneven mixing. 

To examine the influence of the refractive index (RI) on the confocal waist radius, ωxy 

was determined from calibration measurements using 3 nM holo-transferrin (Tf) labeled with 

Atto-488 in solutions of either 50 mM NaHCO3 (RI = 1.33) or 50 wt% glycerol in 50 mM 

NaHCO3 (RI = 1.41) (loaded on dry-passivated slides). These two values cover the RI range 

from the lowest mAb concentration (10 mg/mL) in pure buffer (21:30 mM Na:OAc) to the 

highest concentration (250 mg/mL) in the most optically-dense co-solute solution (1 M 

Im(HCl)). The solution RI was determined from the mAb and co-solute concentrations with 

previously-measured co-solute dn/dc values (24) and an assumed protein dn/dc of 0.185 mL/g 

(112) as described previously (24). The change in RI caused a shift in the Tf τD (Fig. 3.11, Table 

3.4). The corresponding expected diffusion coefficients Ds were calculated from the literature 

value (113) of D0 = 6.7*10
-7

 cm
2
/s for Tf in water at 25°C and corrected for the measured solvent 

viscosities (Table 3.4) using the generalized Stokes-Einstein (GSE) equation (Eqn. 3.8). The 

ACFs were measured in triplicate for each solution condition, and the waist radius was then 

determined from the measured τD and known Ds using Eqn. 3.7, resulting in ωxy values of 432 ± 

8.8 nm for RI = 1.33 and 421 ± 8.3 nm for RI = 1.41. Based on the very small change, ωxy was 

assumed to remain constant across the RI range relevant to the mAb diffusion measurements, 

and the average of the two ωxy values (427 ± 6.1 nm) was used for all future calculations of Ds. 

To ensure measurement of the diffusion of representative equilibrated mAb structures 

(monomer and possible oligomers) at high concentration, the labeled monomeric mAb was 
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added to the mAb solution either at low concentration before ultrafiltration to ~200 mg/mL 

(“pre-spiked”) or after ultrafiltration (“post-spiked”). The two approaches were used to 

determine if there were any time-dependent effects relating to mixing of labeled and unlabeled 

mAb between monomer and oligomer. In the “pre-spiked” case, the probe mAb undergoes 

possible self-association and exchange with oligomers in solution as it is concentrated from ~25 

mg/mL to 200+ mg/mL.  In the “post-spiked” case, it was not known if the monomeric probe had 

sufficient time to exchange into the unlabeled oligomers in the viscous solution over a time scale 

of 10 – 15 minutes. However, an examination of the results for the two cases shows that there is 

no significant difference in terms of the ACF (Fig. 3.1) or the fit parameters G(0), τD (Ds) or α 

(Table 3.1), suggesting that the exchange of the labeled mAb between monomer and oligomer 

reaches equilibrium in the time frame between the probe addition and the FCS measurements 

(~10 minutes). This result is consistent with the short lifetimes of dynamic protein clusters, 

which have been suggested to be on the order of 25 ns (114). Another possibility is that the 

fraction of reversible oliogomers is too low to be measurable by FCS, as discussed below in the 

section on polydispersity. Thus for the remaining experiments, the labeled mAb was added to the 

formulated samples at high concentration (“post-spiked” case) for simplicity, as well as to 

minimize the amount of time the labeled mAb spends in the liquid state to minimize the risk of 

dye hydrolysis. 
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Figure 3.1. Measured normalized ACF of mAb2 at 200 mg/mL in buffer (21:30 mM 

Na:OAc pH 5) where the fluorescently-labeled mAb was added at low 

concentration before diafiltration (“pre-spiked”) or at high concentration after 

ultrafiltration (“post-spiked”). The solid and dashed lines are fits of the ACF to the 

3D anomalous diffusion equation, and the corresponding fit parameters are reported 

in Table 3.1. The samples were loaded on wet-passivated slides. 

 

Label addition 
Final mAb conc 

(mg/mL) 
G(0) τD (μs) Ds/D0 α 

Before diafiltration 

(“pre-spiked”) 
195 1.22 22000 ± 3638 0.028 ± 0.005 0.64 ± 0.07 

After ultrafiltration 

(“post-spiked”) 
200 1.19 21780 ± 5543 0.028 ± 0.007 0.69 ± 0.13 

Table 3.1. ACF fit parameters (3D anomalous diffusion) for mAb2 at ~200 mg/mL in buffer 

(21:30 mM Na:OAc pH 5), where the Atto488-labeled mAb2 was added either at 

low concentration before diafiltration (“pre-spiked”) or at high concentration after 

ultrafiltration (“post-spiked”). The corresponding ACFs are shown in Fig. 3.1. 

The G(0) value has been shown to decrease with increasing crowder (protein, polymer, 

vesicles, etc.) concentration (99) to very small values (un-normalized << 2 or normalized << 1) 

(107, 115), which may potentially lead to poor signal-to-noise ratios. Based on Eqn. 3.6, the low 

G(0) may be caused by the detection of large number of fluorophores N in the confocal volume. 

Interestingly, G(0) decreased with increasing mAb concentration for the 250 mM PheOMe 
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system, as seen in Fig. 3.13 and Table 3.5, despite the fact that the labeled mAb concentration 

was held fixed at 1 nM. This unexpected increase in apparent N has been attributed in part to an 

enlargement in the effective confocal volume (molecular detection function, “MDF”) due to 

multiple scattering effects by the surrounding unlabeled protein (99), but is still not fully 

understood. The distortion effects are minimized by working close to the cover slip, where the 

multiple scattering effect was shown in simulations to be eliminated at focal depths less than 50 

µm from the cover slip (99). Similarly, while RI mismatch effects are known to distort the MDF 

under certain conditions (98, 102), they were also shown from simulations to be minimized at < 

20 µm from the cover slip (98, 102). To optimize G(0) and minimize the MDF distortion effects, 

the ACFs and corresponding G(0) of mAb2 at 200 mg/mL in 1 M Im(HCl) were measured as a 

function of focal depth from the cover slip between 3 and 20 µm (precisely controlled using the 

piezoelectric stage). As can be seen in Fig. 3.2, G(0) increased with decreasing focal depth, with 

negligible effects on the corresponding τD and α within measurement error. Given that both G(0) 

is maximized and MDF distortion effects are minimized closest to the cover slip, the focal depth 

was fixed at 3 µm from the cover slip for subsequent measurements. The ACFs G(τ) were fit in 

the un-normalized form (Eqn. 3.6 and Eqn. 3.9). However, to facilitate easier visual comparison 

of ACFs between mAb concentrations and co-solute systems given the wide range of G(0)’s, 

they are shown in the Supporting Information as normalized G(τ)’s where the normalized G(0) = 

1. Similarly, the normalized G(τ)  0 as τ  ∞, since the un-normalized G(τ)  1 as  τ  ∞. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐺(𝜏) =
𝐺(𝜏)−1

𝐺(0)−1
           (3.15) 

In Eqn. 3.15, G(0) is the initial value of the un-normalized G(τ), and is reported (un-

normalized) for all mAb concentrations and co-solute systems in Table 3.6. 
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Figure 3.2.(a) Dependence of G(0) of the ACF for mAb2 at 207 mg/mL in 1M Im(HCl) pH 

5.5 on the focal depth (distance of focal point from coverslip) from 3 to 20 μm. 
Also, relative independence of the (b) fitted anomaly coefficient α and (c) diffusion 

cross-over time τD on the focal depth. These measurements were made using wet-

passivated slides. For clarity, the ACFs at 5 and 7 μm focal depth have been omitted 

from part (a). Solid and dashed black lines in part (a) show fits of the ACFs to the 

anomalous 3D diffusion model. 

To ensure reproducible, meaningful measurements of the mAb diffusion at high 

concentration and viscosity, the sample loading technique was refined in conjunction with the 

slide passivation strategy to eliminate sample heterogeneity introduced by the loading technique. 

In the wet passivation technique (92-94) as well as for the method development experiments 

described in previous sections, the mAb sample was added to the imaging well which already 

contains a thin layer of fluid. A serial addition/mixing scheme was utilized to bring the final 

mAb concentration in the well back to ~96% of the initial sample concentration. For relatively 

non-viscous samples such as 250 mM Arg.HCl (~20 cP at 200 mg/mL), the sample is easy to 
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mix evenly, resulting in good reproducibility of the ACF between replicate measurements (Fig. 

3.3b). However, for viscous samples such as 250 mM NaCl (60 – 70 cP at 200 mg/mL), the 

confined geometry of the sample well and the high viscosity resulted in uneven mixing of the 

sample and poorer reproducibility between replicate ACF measurements (Fig. 3.3b). In contrast, 

the dry passivation technique demonstrated superior reproducibility even for viscous samples 

(Fig. 3.3a), since the mAb sample is loaded directly onto the dry, passivated slide without any 

mixing or sample dilution needed, resulting in consistent mAb concentrations and homogenous 

samples in the imaging well. The dry-passivated slides were therefore used for the remaining 

samples examined in this study. 

 

  

Figure 3.3. Reproducibility of the autocorrelation function for high concentration (~200 mg/mL) 

FCS measurements of mAb2 at pH 5.5 using glass slides passivated with a (a) dry 

passivation technique (silane-PEGylation) or (b) a wet passivation technique 

(adsorbed DOPC vesicles). The concentrated mAb sample was loaded as-is on the 

dry-passivated slide, and was added to the wet-passivated slide via serial addition 

and mixing with the wet passivating film. 
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3.4.2 Co-solute effects on the viscosity of mAb2  

The survey of co-solute effects on the viscosity of mAb2(24) was expanded to include 

150 mM NaCl, 50 mM Arg.HCl and 150 mM Arg.HCl in this study to systematically tune the 

PPI, including physiologically relevant co-solute concentrations (150 mM) as well as a more 

extreme attraction-suppressing (1 M Im(HCl)) system. As seen in Fig. 3.4a, increasing ionic 

strength from 50 to 250 mM with NaCl has no effect on viscosity, while Arg causes a 

progressive reduction in viscosity from 50 to 150 to 250 mM. The Arg solution viscosities were 

also consistently lower than NaCl at the same co-solute concentration, although the difference 

was small at 50 and 150 mM co-solute. The viscosity was also normalized by the hard sphere 

(HS) value at the same concentration (Eqn. 3.4). The mAb viscosity in 1 M Im was nearly HS-

like (Fig. 3.4b). These viscosities will later be related to the mAb diffusion behavior in the 

context of the GSE relation in order to gain more insight on the local PPI, as described below 

and in the Discussion section. 
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Figure 3.4. (a) Relative viscosity of mAb2 as a function of mAb concentration and co-solute 

formulation, and (b) relative viscosity of mAb2 normalized by the hard sphere 

relative viscosity at the same concentration (calculated with the Ross-Minton 

equation
1-2

 with the hard sphere values [η] = 2.5 and φmax = 0.64
3
), where the 

equivalent hard sphere volume fraction was calculated from the mAb concentration 

and mAb2’s partial specific volume determined from SLS.
4
 The solid and dashed 

curves are fits of the viscosity to the Ross-Minton equation.
5-6

 The viscosity data 

and fits for 50 mM NaCl, 250 mM NaCl, 250 mM Arg and 1M Im are reproduced 

from Hung et al.
4
  

3.4.3 Co-solute effects on the self-diffusion and diffusion retardation of mAb2 

The diffusion coefficient of mAb2 at infinite dilution (D0) and the corresponding 

hydrodynamic radius Rh,0 at infinite dilution in the different co-solute formulations were 

measured by DLS (Table 3.2) to normalize the long-time self-diffusion coefficients Ds measured 

at high concentration by FCS. The evolution of the long-time diffusion retardation factor D0/Ds 

is shown as a function of mAb concentration in Fig. 3.5a and solution relative viscosity ηrel in 

Fig. 3.5b and 3.5c). For all co-solute systems, the retardation factor increases exponentially with 

concentration. Furthermore, a clear separation is seen between groups of co-solutes in terms of 

concentration (Fig. 3.5a), with the greatest Ds retardation for NaCl (50 – 250 mM) (nearly 
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identical) systems, and less retardation for Arg (similar retardation factors between 50 and 250 

mM). Remarkably, 1 M Im reduced the diffusion retardation all the way to the hard sphere value 

(where the hard sphere D0/Ds was calculated at the volume fraction φ corresponding to the same 

mAb concentration, as described in the Methods section). As a function of the relative 

macroscopic viscosity (Fig. 3.5b), the retardation factors become more convergent between all 

co-solute systems, but fall below the generalized Stokes-Einstein (GSE) line (i.e. D0/Ds = η/η0; 

Eqn. 3.8) at the higher concentrations. Here, the hard sphere D0/Ds is still calculated at the same 

φ as for Fig. 3.5a, but is plotted against the corresponding HS viscosity calculated at that φ (Eqn. 

3.4; Supporting Info). The deviations from the GSE relation are more apparent on a linear plot 

(Fig. 3.5c).  

 

Formulation 
D0  

(cm
2
/s) 

Rh,0 from 

D0 (nm) 

η0 

(cP) 

[η]  

(ml/mg) 
k/v 

50 mM NaCl 5.03E-07 4.8 0.91 0.0146 0.0957 

150 mM NaCl 4.80E-07 4.9 0.93 0.0137 0.1191 

250 mM NaCl 4.68E-07 5.0 0.94 0.0142 0.1064 

50 mM Arg.HCl 4.88E-07 4.6 0.98 0.0115 0.1907 

150 mM Arg.HCl 4.57E-07 4.6 1.03 0.0117 0.1588 

250 mM Arg.HCl 4.39E-07 4.7 1.05 0.0120 0.1141 

1 M Im(HCl) 3.88E-07 5.4 1.04 0.0073 0.3008 

Table 3.2. D0 from DLS and Ross-Minton viscosity fit parameters of mAb2 with different 

co-solutes. The Ross-Minton parameters (with the exception of 5 mM ZnSO4) are 

reproduced from Hung et al.
4
 All formulations are at pH 5.5. The linear fits of Dc vs 

mAb concentration from DLS to Eqn. 3.5 to obtain D0 are shown in Fig. 3.14. 
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Figure 3.5. Dependence of D0/Ds for mAb2 in different co-solute formulations on (a) the 

mAb concentration and (b) the solution viscosity. (c) Zoomed-in version of (b) 

plotted on a linear time scale. Ds was fit from the τD obtained from the Gaussian 

distribution model
7-8

 (GDM) 3D diffusion fit of the ACFs measured using dry-

passivated slides at 3 μm focal depth. D0 was obtained from DLS (Table 3.2). (d) 

Heat map of D0/Ds as a function of both mAb concentration and solution viscosity. 

An alternative version of part (b), where D0/Ds is grouped by mAb concentration 

instead of by co-solute formulation, is shown in Fig. 3.17. The raw, normalized 

autocorrelation functions (ACFs) corresponding to the Ds measurements are shown 

in Fig. 3.15, and fits of the 200 mg/mL ACFs to both the 3D anomalous diffusion 

model and the Gaussian distribution model are shown with residuals in Fig. 3.16. 
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The diffusion retardation factor D0/Ds is a function of both concentration and solution 

viscosity, as can be seen experimentally in Fig. 3.5d. It is known that even in the absence of 

interparticle interactions, the long-time self-diffusion of colloids slows down with increasing 

concentration (increasing D0/Ds) simply due to crowding effects (65, 81), as seen from the hard 

sphere curve in Fig. 3.5a calculated from Eqn. 3.12. At the same time, the self-diffusion also 

slows down with increasing solution viscosity, as seen from the GSE equation (Eqn. 3.8). Since 

the viscosity is influenced both by the concentration (Eqn. 3.4) as well as PPI and solution 

structure (10, 15-18, 20, 24), the mAb diffusion retardation factor was normalized by the HS 

retardation factor at the same concentration in an attempt to decouple the effects of crowding and 

PPI/structure on mAb diffusion. As seen from HS-normalized retardation factor Ds,HS/Ds )which 

normalizes out the steric effects on Ds) in Fig. 3.6a, the mAb solutions show increasing deviation 

from HS behavior with mAb concentration, likely due to attractive PPI and self-association. 

However, Arg (50 – 250 mM) reduces the deviation relative to NaCl, while 1 M Im appears to 

completely remove all deviation and causes the mAb to diffuse like hard spheres (seen from the 

ratio of 1 across the entire concentration range). This behavior qualitatively agrees with previous 

studies of mAb2 by SLS and SAXS, where it was seen that 250 mM Arg and 1 M Im weakened 

the PPI and suppressed self-association relative to 250 mM NaCl (24, 25). The deviation from 

HS diffusion however appears to directly follow the viscosity deviation from the HS viscosity 

with the exception of 1 M Im, as seen in Fig. 3.6b. 
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Figure 3.6. Dependence of the hard-sphere normalized self-diffusion coefficient Ds,HS/Ds of 

mAb2 on the (a) mAb concentration and (b) solution  relative viscosity (normalized 

by the hard sphere viscosity at the same concentration) in different co-solute 

formulations. Ds,HS/D0 and ηrel,HS were calculated following Roos et al. (81) and the 

Ross-Minton equation (Eqn. 3.4) respectively for each point at the same 

corresponding mAb concentration (i.e. volume fraction φ), where the concentration 

was converted to φ using the average partial specific volume of mAb2 determined 

from fits of the mAb static light scattering (24) to the IHS model (112). The mAb 

concentration groups and the corresponding normalizing HS values D0/D,HS are 

shown in Fig. 3.17. 

3.4.4 Deviation from generalized Stokes-Einstein behavior 

The apparent deviation of the mAb diffusion from the GSE relationship seen in Fig. 3.5b 

may further be expressed in the form of a normalized hydrodynamic radius (Rh/Rh,0 = 

(D0/Ds)/(η/η0)) (Fig. 3.7). The mAb samples follow the shape of the HS curve, showing a 

systematic positive deviation from GSE (Rh/Rh,0 > 1) at low ηrel and increasing negative 

deviation (Rh/Rh,0 < 1) at large ηrel > ~10. However, the NaCl (i.e. higher viscosity) systems 

showed less deviation from the GSE line compared to the other systems, while 1 M Im (lowest 

viscosity) showed the greatest deviation from GSE behavior. The differing degrees of deviation 

from the GSE relation between co-solute systems will be discussed in the context of self-

association and PPI through viscosity scaling theories later in the Discussion section. The 
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unusual negative deviation of the 1 M Im system relative to even the hard sphere system is 

caused by the differences in concentration between the two systems at a given viscosity. As seen 

previously in Fig. 3.6a, the 1 M Im system shows the same diffusion retardation behavior as hard 

spheres as a function of concentration. However, at the same concentration the 1 M Im mAb 

solution is more viscous than the HS solution (Fig. 3.4b), such that at the same viscosity, the HS 

system is more concentrated than the 1 M Im mAb solution. Since D0/Ds increases with 

concentration (Eqn. 3.12), the HS system is expected to have a higher D0/Ds than the 1 M Im 

mAb solution at the same viscosity solely on the basis of the larger φ. 

 

 
Figure 3.7. Viscosity dependence of the normalized apparent hydrodynamic radius Rh/Rh,0 of 

mAb2 in different co-solute formulations. Rh,0 is the apparent radius at infinite 

dilution, and Rh is calculated from the solution viscosity and τD obtained from fits of 

the FCS ACFs to the Gaussian distribution model for 3D diffusion. Measurements 

were done in triplicate on dry-passivated glass slides at a focal depth of 3 μm. 
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3.4.5 Measurement of the mAb solution polydispersity by FCS 

 

 
 

Figure 3.8. (a) Variance σ from the GDM model and (b) anomaly coefficient α from the 3D 

anomalous diffusion model fits of the mAb2 FCS ACFs as a function of mAb 

concentration for 250 mM Arg.HCl and 250 mM NaCl. The remaining co-solute 

formulations are shown in Fig. 3.18. All samples were measured in triplicate using 

dry-passivated slides at a focal depth of 3 μm. 

The polydispersity of the mAb probe (which ostensibly represents the polydispersity of 

the mAb solution) was quantified by the anomaly coefficient α and variance σ obtained from fits 

of the ACF to the 3D anomalous diffusion and Gaussian distribution models respectively. The 

fitted σ and α of mAb2 are shown in Fig. 3.8a and 3.8b respectively as a function of 

concentration for 250 mM Arg and 250 mM NaCl only (for clarity), with the fitted values for the 

remaining co-solute systems show in Fig. 3.18a and 3.18b. The corresponding polydispersity 

quantifiers (σ and α) as well as the τD values from both fits correlate one-to-one (Fig. 3.19a, b). 

Similar, both fits give comparable residuals (Fig. 3.16), indicating that both the anomalous 

diffusion and Gaussian distribution model are equally suitable mathematical models for 

describing the polydispersity of the solution as seen from the ACFs. Further information about 

solution composition, such as from SAXS or SLS, would be needed to determine which model is 

the more physically relevant description of the solution. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 100 200 300

σ
 

mAb concentration (mg/mL) 

(a) 

250 mM NaCl

250 mM Arg
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

α
 

mAb concentration (mg/mL) 

(b) 

250 mM NaCl

250 mM Arg



 118 

As seen from Fig. 3.18a and 3.18b, there is a weak upward trend in σ and downward 

trend in α (both indicate increasing polydispersity or heterogeneity) with increasing 

concentration for all co-solute formulations. Additionally, for 250 mM Arg, the consistently 

smaller σ and larger α indicate lower polydispersity relative to 250 mM NaCl at the higher 

concentrations of 100 – 250 mg/mL (Fig. 3.8a, 3.8b), in correlation with the lower viscosities 

(Fig. 3.4a). However, there does not appear to be a significant correlation between either σ or α 

and the solution viscosity across the broader set of co-solute systems (Fig. 3.18c, 3.18d). 

Similarly, the polydispersity as quantified by the probability distribution of the diffusion 

crossover time a(τD) (shown only for 200 mg/mL in Fig. 3.20) calculated from σ (Eqn. 3.10) and 

the corresponding full-width at half-maximum (fwhm) for the probability distribution of the 

corresponding hydrodynamic radii Rh (Eqn. 3.11, Fig. 3.20) do not appear to differ significantly 

between co-solute systems whether in terms of the mAb concentration (Fig. 3.22a) or the 

solution viscosity (Fig. 3.22b).  

3.5 DISCUSSION 

3.5.1 Breakdown of the generalized Stokes-Einstein relation: PPI and the length-scale 

dependent viscosity  

The apparent deviation of mAb2’s long-time translational self-diffusion D0/Ds from the 

generalized Stokes-Einstein (GSE) relation (D0/Ds ≠ ηrel) is in contrast with the behavior seen for 

the model proteins αB-crystallin, bovine serum albumin (BSA) and lysozyme in previous studies 

using FCS (81) and NMR (75, 81). In measurements of the three model proteins using the same 

protein as both the probe and crowder, the long-time self-diffusion followed the GSE relation 

with respect to the macroscopic viscosity (81). However, when a much smaller protein (CI2, 

MW = 7.4 kDa) was used as the probe, both BSA and lysozyme exhibited mild to significant 

positive deviation of D0/Ds from GSE (75). mAb2 (which served as both the probe and the 

crowder) differed from both of these cases in that it exhibited a negative deviation from the GSE 
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relation across all tested co-solute formulations. This disparate behavior may be partially 

understood in the context of the local microviscosity from the length-scale dependent viscosity 

model developed by Holyst (53, 71-73).   

As described earlier in the Introduction section, the apparent breakdown of the GSE 

relation is commonly seen for nanoprobes diffusing in complex media such as concentrated 

polymer or colloidal fluids (53, 70, 71) and polymer meshes (117). The decoupling of the 

diffusion and macroscopic viscosity was attributed to the nanoprobe experiencing a length-scale 

dependent local viscosity rather than the macroscopic viscosity (53, 71-73). Here the GSE 

relation may be modified, but with respect to the effective (length-scale dependent) 

microviscosity ηeff rather than the macroscopic viscosity η (71-73). In this empirical approach, 

ηeff is defined through the diffusion retardation factor (D0/Ds = ηeff/η0), and is a function of the 

size of the probe molecule relative to that of the particles that make up the fluid (polymer, 

protein, etc.). It also depends on the solution structure length scale ξ and interactions between the 

fluid particles, quantified by the parameter b in Eqn. 3.2 (72, 76). In the FCS measurements in 

this work, the probe is the same size as the mAb if the probe remains monomeric, but may 

become larger than the mAb if the probe self-associates (either labeled or unlabeled). The size 

ratio rp/Rh is therefore equal to or slightly greater than 1. In this size ratio range, the probe still 

experiences the microviscosity rather than the macroviscosity (73, 76), leading to the negative 

deviation from GSE behavior. However, the microviscosity approaches the macroviscosity with 

increasing probe size. In this size regime, D0/Ds also reports on the short length-scale PPI via b 

fit from this model, rather than simply following the macroscopic viscosity. 
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Figure 3.9. Scaling of the (a) micro (effective) relative viscosity and diffusion retardation factor 

and (b) macroscopic relative viscosity with the length-scale dependent model fits 

using an average a value (0.80 for the microscopic viscosity and 0.99 for the 

macroscopic viscosity) (Table 3.7) and formulation dependent fits of b (Table 3.3). 

 

 

 
Fit to microviscosity (D0/Ds) Fit to macroviscosity Micro/macro 

b ratio 

nrel at 

200 

mg/ml Formulation b γ (kJ/mol) R
2
 of fit b γ (kJ/mol) R

2
 of fit 

50 mM NaCl 10.35 25.64 0.988 13.63 33.76 0.999 0.76 57.4 

150 mM NaCl 10.38 25.71 0.999 13.79 34.17 1.000 0.75 57.7 

250 mM NaCl 10.82 26.81 0.970 13.90 34.43 1.000 0.78 59.4 

50 mM Arg.HCl 8.66 21.44 0.999 12.33 30.54 0.998 0.70 39.2 

150 mM Arg.HCl 8.65 21.43 0.993 12.92 32.01 0.998 0.67 42.4 

250 mM Arg.HCl 7.90 19.57 0.948 11.31 28.01 1.000 0.70 27.0 

1 M Imid(HCl) 4.91 12.16 0.966 9.21 22.82 0.993 0.53 14.5 

Table 3.3. Co-solute effects on the interaction parameter b and corresponding interaction 

energy γ of mAb2 fit from the diffusion retardation factor D0/Ds and 

macroscopic viscosity with the length-scale dependent viscosity model. The 

hydrodynamic parameter a was held fixed at 0.80 and 0.99 for the microviscosity 

and macroviscosity fits, respectively, based on the average value of a obtained from 

fits of the linearized length-scale dependent viscosity model (Eqn. 3.13) across all 

the co-solute formulations (Table 3.7) 
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The effects of both the mAb concentration and formulation on the deviation of ηeff from η 

can be seen from the ratio ηeff/η in Fig. 3.23. ηeff became increasingly smaller relative to η with 

increasing mAb concentration for all formulations, as well as with decreasing viscosity (i.e. co-

solute formulation from most (NaCl) to least viscous (1 M Im)) for a given mAb concentration. 

The increasing degree of decoupling between ηeff and η reflects a combination of (i) the growing 

influence of the short-ranged PPI on the mAb dynamics with concentration and (ii) the probe 

size ratio r0/Rh under the influence of self-association. To decouple the relative contributions of 

these two factors to the retardation of Ds, additional characterization of the concentrated mAb 

solutions from orthogonal techniques is needed, in combination with fits of the macroscopic and 

microviscosities to the LDV model.   

The LDV model (Eqn. 3.13) was first applied to the macroscopic viscosity to determine 

the scaling parameter a for the hydrodynamic and structural contributions to the viscosity. No 

significant differences were seen for a between systems (Table 3.7, Fig. 3.24a), so a was 

averaged across all co-solute systems (excluding 1 M Im and 250 mM Arg, given the unusual 

diffusion behavior of 1 M Im, as well as the uncertainty and bias in the 250 mM Arg fit caused 

by the ultralow concentration (10, 30 mg/mL) data points) and held fixed at 0.99 for refitting the 

macroscopic viscosity to the LDV model to better isolate the influence of the PPI via the b 

parameter. Similarly, the a’s fit from the microscopic viscosity (D0/Ds) were comparable across 

all formulations (Table 3.7, Fig. 3.24b) and a was therefore held fixed at the average value of 

0.80 for subsequent refits. All of the co-solute systems were well-described by the model, as seen 

from the universal slope of 1 for the viscosity scaling plot for the micro and macro viscosities in 

Fig. 3.9a and 3.9b, respectively, as well as from the good fits of the calculated microscopic and 

macroscopic relative viscosities to the data seen in Fig. 3.25a and 3.25b. To determine whether 

the macroscopic a might still suitably describe the microviscosity, the microviscosity was also fit 

to the LDV model using the macroscopic a value of 0.99. However, it is clear from Fig. 3.25c 
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that the macroscopic scaling is unsuitable, given the large errors in the calculated microviscosity 

relative to the experimental values. Separate a values of 0.99 and 0.80 were therefore used for 

the comparisons of the LDV fits of the macro and microviscosities, respectively, in the 

remainder of this Discussion. The best-fit value of a close to 1 is consistent with macroscopic 

behavior, while fitted a of 0.80 for the microviscosity is comparable to the values obtained for 

entangled polymer systems (71, 72). Given that proteins behave more like colloids than 

polymers, it is likely that the cause of the stretched exponential (a < 1) is weak attractive 

interactions that perturb the diffusion behavior, rather than physical entanglements which slow 

diffusion. 

Assuming that the probe remains monomeric (rp is constant), a clear separation between 

co-solutes consistent with the macroscopic viscosity was seen in terms of the interaction 

parameter b (Table 3.3) for both the macro (ηrel) and micro-viscosity (= D0/Ds) fits, reflecting 

the differences in PPI that contribute to the viscosity increase. The three NaCl formulations gave 

the largest b (strongest attraction), followed by the Arg formulations, and finally 1 M Imid with 

an attraction strength nearly 1/2 that of NaCl. The b parameter was larger for the macroscopic 

viscosity fits in general, which is consistent with the probe experiencing a macroscopic viscosity 

larger than the microviscosity. As this model is able to partially separate the combined structure 

and hydrodynamic effects (the (Reff/ξ)
a
 term) on D0/Ds from those of the PPI effects (the b term) 

(72, 73, 76), the nearly identical values of a (Table 3.7) and corresponding hydrodynamic / 

structure term (Reff = Rh and ξ is the same between all co-solute systems for a given mAb 

concentration) therefore strongly suggest that the differences in the measured D0/Ds between co-

solute systems were caused by differences in the PPI rather than simply by steric or 

hydrodynamic effects. 

This hypothesis is supported by the correlation between the HS-normalized Ds and the 

HS-normalized PPI quantified by the static structure factor S(0) measured previously for this 
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mAb (24) for 50 mM NaCl, 250 mM NaCl, 250 mM Arg (Fig. 3.26a). 1 M Im proved to be an 

exception with anomalously fast diffusion. It is important to note that S(0) is a thermodynamic 

quantity measured independently of dynamic behavior or hydrodynamic effects. At the same 

time, S(0)/S(0)HS is also correlated with the high concentration viscosity (Fig. 3.26b), similar to 

the correlation between the interaction energy γ (=b/RT) and the solution viscosity (Fig. 3.10a). 

Furthermore, the PPI strength (using a single parameter to describe the low-to-high concentration 

dynamic and structural behavior) quantified by b is monotonically correlated with the short-

range attraction strength K obtained from fits of the concentration-dependent S(0) to the Yukawa 

interaction potential (Fig. 3.10b) for the mAb2 co-solute systems for which SLS S(0) data was 

available (24). Since FCS and SLS measure fundamentally different properties (dynamics vs 

static structure), the relation between b and K, as well as the similar dependence of ηrel on 

S(0)/S(0)HS strongly suggests that the correlation between D0/Ds and macroscopic ηrel (Fig. 

3.5b) is likely causal (i.e. D0/Ds is influenced by PPI, which also influences viscosity) rather than 

incidental or self-referential. Again, it is important to note that D0/Ds is not only reporting on the 

macroscopic viscosity, given the growing decoupling of ηeff and η with increasing concentration 

(Fig. 3.23). 

Interestingly, the ratio of the microscopic to macroscopic b increased approaching 1 with 

increasing viscosity (Table 3.3), where a smaller ratio (< 1) corresponds to greater deviation of 

the microviscosity from the macroscopic viscosity. Since the microviscosity deviates from the 

macroviscosity due to length-scale effects (72), the increase in the b ratio (corresponding to the 

diffusing probe approaching macroscopic behavior) may indicate an increase in the probe size 

(73, 76) from self-association, as an alternative or complementary explanation for the varying 

degrees of deviation from GSE behavior between the different co-solute formulations. If the 

probe (labeled) mAb is incorporated into an oligomer, the probe size rp increases. In contrast, the 

crowding agents (unlabeled mAb) will consist of a mix of monomer and oligomer, such that rp > 
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Rh,avg. According to the LDV model, at rp/Rh,avg > 1, the probe will experience a larger solution 

viscosity, closer to the macroscopic viscosity, than for a probe where rp/Rh,avg = 1. The more 

GSE-like scaling of the mAb2 diffusion D0/Ds with respect to the macroscopic viscosity for the 

more viscous systems (50 and 250 mM NaCl) would therefore be consistent with an increase in 

probe size, which may in turn be attributed to the greater degree of self-association seen for 

mAb2 previously in those formulation conditions, based on the larger effective average cluster 

sizes <Nc> and larger oligomer mass ratios determined from SLS and SAXS (24, 25). This 

relation between self-association and more Stokes-Einstein like diffusion behavior can be seen in 

Table 3.4, where the larger ηeff/η (less deviation from GSE) for 50 and 250 mM NaCl correspond 

with larger <Nc> and oligomer mass ratios from SLS (24). In contrast, the near complete 

suppression of the attractive PPI and corresponding self-association by 1 M Imid results in the 

probe mAb remaining monomeric (rp/Rh,avg < 1) and experiencing the smallest possible 

microviscosity. Thus the smaller D0/Ds and greater deviation from GSE behavior of the least 

viscous formulations (1 M Im, 250 mM Arg) may be attributed to a combination of weaker PPI 

(smaller b) and less self-association (smaller rp/Rh,avg). However, the current level of information 

available is insufficient to decouple the contributions of these two factors to D0/Ds further. Future 

studies with non-associating probes (such as eGFP and molecular dyes) in combination with this 

work may better provide insight into the independent influences of self-association vs PPI on 

D0/Ds. 
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Figure 3.10. Correlation between (a) the relative macroscopic viscosity of mAb2 at 200 mg/mL 

and the interaction energy γ calculated from fits of D0/Ds to the length-scale 

dependent viscosity model (72) across all tested co-solute formulations, and (b) the 

short-range attraction strength K from fits of the structure factor S(0) from SLS (24) 

to the interaction parameter b (b = γ/RT) from the length-scale dependent viscosity 

model fit of D0/Ds. SLS data was only available for mAb2 with 50 mM NaCl, 250 

mM Nacl, 250 mM Arg.HCl and 1 M Im(HCl) at pH 5.5. 

 

Formulation ηeff/ηmacro <Nc> Oligomer mass ratio 

50 mM NaCl 0.70 2.8 6.6 

250 mM NaCl 0.95 3.6 5.9
* 

250 mM Arg.HCl 0.46 1.8 0.0 

1 M Im(HCl) 0.34 1.7 0.0 

Table 3.4. Correlation of the deviation of the microviscosity from the macroscopic viscosity 

(ηeff/ηmacro) from FCS (Fig. 3.23) with the average effective cluster size <Nc> 

and oligomer mass ratio (relative to monomer and dimer) determined 

previously from SLS (24). All properties are evaluated at 200 mg/mL. All 

oligomer species are trimer, except for 250 mM NaCl, which is tetramer (24). SLS 

data was only available for selected co-solute formulations. The average cluster size 

for 250 mM Arg.HCl from SLS is comparable to the average aggregation number 

obtained under the same conditions (2.3 at 200 mg/mL) by SAXS (S(q) fit to the 

ALL4 association model for K = 0.7) (25).  

The astute reader may notice that this analysis is very similar to conventional 

microrheology, where the diffusion coefficient of a large, inert probe such as polystyrene is 

measured by DLS or nanoparticle tracking in order to obtain the viscosity of concentrated protein 
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solutions (67, 68) via the GSE relation. Due to the large size ratio (the polymer bead probes used 

are typically an order of magnitude or more larger than the protein of interest), these probes 

experience the macroscopic viscosity (76). In contrast, the advantage of the FCS approach is that 

small probes on the same length scale as the crowder mAb can be used (i.e. the mAb is also the 

probe), allowing for access to the PPI on much smaller length scales. Furthermore, the 

differences in PPI between systems is magnified and more easily seen at the short length scales 

accessed by using small probes (size ratio << 1) (76), allowing for a deeper investigation and 

understanding of co-solute effects on the protein structure, dynamics and PPI on the time scales 

relevant to self-association and bulk viscosity. 

3.5.2 Apparent decoupling of the viscosity from polydispersity measured by FCS 

The seeming insensitivity of the mAb solution viscosity to the solution polydispersity, as 

measured by FCS, is surprising given the strong correlation between oligomer formation and 

high viscosities (10, 12, 13, 15, 16, 18). Specifically, the viscosity of mAb2 was found to 

correlate with the degree of self-association, as quantified by the oligomer mass ratios and 

average cluster sizes measured previously by SLS (24) as well as the cluster size distributions 

obtained previously from SAXS (25) as a function of co-solute formulation. Although it might 

be tempting to argue that perhaps there is no significant polydispersity in the solution, given the 

very small change in both α and σ with concentration from 60 – 250 mg/mL, it is also very likely 

that FCS is simply unable to detect polydispersity due to the combination of the transient nature 

of the reversible protein oligomers (60, 114, 118-121) and the long time scale of the FCS 

measurements. Reversible protein oligomers have been shown by neutron scattering experiments 

to be extremely short-lived, with lifetimes on the order of ns (18, 114). Given that the typical 

diffusion crossover time for a single probe is on the order of 1000 – 10,000 μs, a single mAb 

probe may exchange into multiple oligomer species and sample a wide range of configurations 

(monomer, dimer, oligomer) in the time it takes to cross through the confocal volume. However, 
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each mAb probe only reports a single, average crossover time τD. As such, while the solution 

itself may be highly polydisperse, the polydispersity may not be evident from the overall τD if the 

solution is uniformly polydisperse. Each probe may sample a similar distribution of monomer, 

dimer and oligomer as the other probes and report a similar (consistent) overall average τD, 

leading to an apparently monodisperse distribution of τD’s. The relative solution composition 

(fraction monomer vs dimer vs oligomer) will influence the overall τD (solutions with more 

aggregates will have a larger τD), but may not significantly influence the polydispersity of the 

overall τD due to the fast equilibrium exchange process relative to the FCS measurement time 

scale. Furthermore, FCS has been shown to be relatively insensitive to small amounts of 

polydispersity, as seen from the large α’s near 1 for polymer probes with known polydispersity 

(confirmed by GPC) (103) as well as for BSA and IgG (79), where anomalous diffusion was 

detected on the time scale of 1 μs from Brownian dynamics simulations, but not experimentally 

by FCS. 

To interrogate the dynamics of individual oligomers and better quantify the solution 

polydispersity, ultrafast measurements of short-time self-diffusion using techniques such as 

neutron spin echo (NSE) and neutron back scattering (NBS) may be more conducive than 

measurements of long-time self-diffusion using FCS. The time scale of NBS/NSE measurements 

is on the order of 0.03 to 600 ns (78, 82), which is faster than the lifetime of the transient 

reversible oligomers (ranging from ~20 ns for small proteins such as α- and γ-crystallin (78) to 

~50 ns for mAbs (18)) and therefore allows for direct observation of the caged dynamics of the 

oligomers. Although the availability of quasi-elastic neutron spin echo measurements is rare (18, 

78, 82, 85, 86, 114, 119), this approach is of great value for probing small length scales d ~ 2π/q 

where the scattering vector q = (4π/λ)sin(θ/2) varied from 0.1 to 2.3 nm-1 (78). For α-crystallin, 

which behaved as a hard sphere, cage effects slowed down the short-time diffusion. A marked 

effect was observed for the influence of attractive patches on short-time diffusion (< 600 ns) at 
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these small length scales for γB-crystalline at high concentration. However, in some cases, the 

influence of direct interactions (tuned with the ionic strength) on the short-time self-diffusion 

was found to be negligible (80, 82). The lower limit of short-time diffusion is the time scale for 

hydrodynamic interactions, whereas the upper limit is the structural relaxation time, or R
2
/Do 

where R is the particle radius and Do is the diffusion coefficient (78, 82). This upper limit was 5 

µs, far below the time scale for FCS (> 100 µs), such that the diffusion measured by FCS is 

much longer ranged where the cage effect in the first coordination sphere is no longer important. 

Thus, FCS lacks the short-time resolution needed to probe the local protein microstructure inside 

the nearest-neighbor cage, but is instead more sensitive to the influence of interparticle 

interactions on the protein dynamics and local viscosity on the intermediate or long length scales 

relevant to the bulk solution behavior. 

3.6 CONCLUSIONS 

Reproducible measurements of mAb diffusion at high concentration (up to 250 mg/mL) 

and high viscosities (up to ~200 cP) in a range of co-solute formulations were successfully 

achieved by FCS after optimization of experimental methods to overcome the challenges 

associated with these conditions. Use of a dry slide passivation technique (silane-PEGylation) 

over wet passivation with lipid vesicles eliminated the challenges of sample heterogeneity from 

uneven mixing of highly viscous mAb solutions into the imaging well. Maintaining the focal 

depth close to the cover slip (3 µm) was sufficient to minimize optical distortion effects arising 

from the change in refractive index between samples (concentration and/or co-solute change) 

while also maximizing G(0) (which drastically decreases at high concentration) to improve the 

signal-to-noise ratio. The measured diffusion times was also shown to be insensitive to whether 

the labeled mAb probe was added to the mAb solution at low or high concentration (i.e. before 

or after large oligomers form), suggesting that the equilibrium monomer-oligomer exchange 

occurs on a fast-enough time scale that the probe is able to become incorporated into oligomers 
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and report on their diffusion in the time frame between probe addition and FCS measurements, 

even when the probe is added as a monomer to the concentrated mAb solution. 

FCS was used to measure the retardation of the long-time self-diffusion D0/Ds of mAb2 

(24, 25) from low to high concentration (60 - 250 mg/mL) in the presence of NaCl or Arg (50, 

150 or 250 mM), as well as 1 M Im(HCl) as a low viscosity extreme. The generalized Stokes-

Einstein (GSE) relation was seen to break down for mAb2 with respect to the macroscopic 

viscosity, with the least viscous co-solute systems (1 M Im and 250 mM Arg) showing the 

greatest negative deviation from the GSE relation. The breakdown was attributed to length-scale 

dependent viscosity effects, given that the probe (labeled mAb) was the same size as the crowder 

(unlabeled mAb) (72, 74), causing the probe to experience a local microviscosity less than the 

macroscopic viscosity. The greater deviation of the solution microviscosity from the 

macroscopic viscosity for the lowest viscosity systems was attributed to a combination of weaker 

PPI (seen from the smaller interaction parameter b from fits of D0/Ds to the length-scale 

dependent viscosity (LDV) model) and reduced self-association (based on previous SLS 

measurements of oligomer mass ratios and average cluster sizes for the same mAb and co-solute 

formulations) (24) leading to smaller rp/Rh,avg probe size ratios. The more GSE-like scaling 

between D0/Ds and the macroscopic viscosity for the viscous formulations (50 – 250 mM NaCl) 

was consistent with the LDV model, given the larger probe size as a consequence of the greater 

degree of self-association seen previously by SLS and SAXS (24, 25) for those systems. 

However, while D0/Ds was found to correlate with both the viscosity and PPI (as measured by 

orthogonal techniques such as SLS), the polydispersity obtained from fits of the FCS ACFs to 

both the anomalous diffusion and Gaussian distribution models appeared to be decoupled from 

the viscosity, despite evidence of greatly contrasting degrees of oligomer formations in the 

different formulations as seen by SLS (24) and SAXS (25) for the same mAb. The apparent 

inability of FCS to detect significant differences in the solution polydispersity is likely because 
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the dynamic behavior of the oligomers is averaged out, given the fast equilibrium monomer-

oligomer exchange process relative to the time scale of the FCS measurements. 
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3.8 SUPPORTING INFORMATION 

3.8.1 Preparation of labeled mAb stock solution  

Stock solutions of fluorescently labeled mAb2 were prepared by conjugation of Atto-488 

NHS ester to primary amines on the mAb surface. Briefly, a 5 mg/mL stock solution of mAb2 

was buffer-exchanged into 150:150 mM NaHCO3:NaCl (pH 8.3) solution using Centri-Spin 20 

SEC columns (Princeton Separations, Adelphia, NJ) that had been hydrated in advance in the pH 

8.3 NaHCO3:NaCl buffer for 30 minutes. The mAb concentration was measured after buffer 

exchange using a NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). Atto-488 was dissolved in DMSO at 10 mM and stored at -80°C prior to use. 

The thawed dye was added to the pH 8.3 buffer-exchanged mAb solution at a 1:1 dye:mAb 

molar ratio for the labeling reaction. The amount of DMSO in the labeling reaction mixture 

(from the dye stock) did not exceed 1% v/v. The dye-mAb mix was kept in a dark environment 

(to avoid photobleaching) and allowed to react for 30 minutes at room temperature. Unreacted 

dye was then removed by buffer exchanging the labeled mAb solution (containing the unbound 

dye) back into the 21:30 mM Na:OAc (pH 5.5) solution with Centri-Spin 20 SEC columns.  
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The dye and mAb concentrations after buffer exchange were checked with the NanoDrop 

spectrophotometer. The dye absorbance was measured at 501 nm with an extinction coefficient 

of 90000 M
-1

cm
-1

, and the mAb absorbance was measured at 280 nm with an extinction 

coefficient of 213,000 M
-1

cm
-1

 (1.42 mL*mg
-1

cm
-1

 converted to molar concentration units). The 

absorbance at 280 nm was also corrected for contributions from the dye fluorescence (A280,mAb = 

A280,total – 0.1*A501) prior to calculating the mAb concentration. The typical labeled mAb 

concentration after buffer exchange was ~25 µM, and the typical dye to mAb molar ratio was 

0.7:1. 

The labeled mAb solution was split into 20 μL aliquots in PCR tubes, frozen in liquid 

nitrogen, and kept frozen at -20°C prior to use. Aliquots were individually thawed up to 3 – 4 

hours prior to their addition to unlabeled, concentrated mAb samples for fluorescence correlation 

spectroscopy (FCS) measurements. 

3.8.2 Slide cleaning and passivation – wet passivation 

Due to the high sensitivity of FCS measurements to optical artifacts introduced by dust 

and protein adsorption to the imaging surface, the glass cover slips used to hold the mAb 

samples were cleaned and passivated to resist protein adsorption. In the wet passivation 

technique (93, 94) (used only for the initial method development experiments), a thin liquid film 

of adsorbed DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) vesicles was used to prevent 

protein adsorption on the glass surface. A stock solution of DOPC vesicles was prepared by first 

drying the DOPC solution as received from the vendor (dissolved in chloroform at 0.0127 M) 

under a N2 stream and subsequently under vacuum for two hours. The dried DOPC was then 

reconstituted at 500 µM in the same buffer as the mAb samples (21:30 mM Na:OAc, pH 5) and 

probe sonicated in an ice bath to form small unilamellar vesicles. The DOPC solution was then 

centrifuged at 17,000g for 6 minutes to sediment metal particulates shed by the sonicator probe, 
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and the supernatant was filtered using 0.22 µm filters into low-adhesion microcentrifuge tubes. 

The DOPC stock solution was stored at 4°C for up to 1 week prior to use.  

The glass cover slips were cleaned by soaking in a hot (lightly steaming) solution of 2% 

v/v Hellmanex III cleaning detergent for 30 minutes in glass carafes. The cover slips were then 

flushed with an excess of ultrapure water (drain/refill the carafe 10 times with water) to remove 

the detergent. The cover slips were then individually washed under running ultrapure water and 

dried under a N2 stream. The cleaned silicone gaskets (as described in the Methods section) were 

gently pressed onto the top of the cleaned cover slips to create a temporary water-tight seal to 

form the imaging well. 20 µL of the 500 µM DOPC stock solution was added to the well and 

allowed to sit for 5 minutes to generate a thin layer of adsorbed DOPC vesicles. Excess DOPC 

vesicles were removed by by serially rinsing the liquid in the imaging well with excess mAb 

buffer (21:30 mM Na:OAc), resulting in a dilution of ~16,000-fold. 

3.8.3 Slide cleaning and passivation – dry passivation 

An alternative dry passivation technique was used in later experiments due to its superior 

performance for high concentration measurements relative to the wet passivation used in earlier 

method development experiments. 

In the dry passivation technique, the glass cover slips were cleaned using a modified 

RCA protocol (95, 122) and passivated with a coupled silane-PEG layer to prevent protein 

adsorption (95, 97). Briefly, the cover slips were first soaked in ethanol for 10 minutes and 

simultaneously sonicated to dislodge organic contaminants. The cover slips were then flushed 

with an excess of ultrapure water to remove all organic solvents. The cover slips were then 

soaked in a hot (70 - 80°C) solution of 30% hydrogen peroxide in 1.5 M KOH for 10 minutes in 

glass carafes to etch the glass surface. IT IS CRITICAL that all trace organic solvent (ethanol) be 

removed prior to addition of the peroxide/KOH mixture, as peroxide will react with the ethanol 

and cause explosive boiling. Similarly, the KOH/peroxide mixture should be prepared by slowly 
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adding the peroxide to the KOH solution in order to prevent rapid, uncontrolled boiling of the 

mixture. The KOH/peroxide solution was then drained, and the cover slips were flushed with an 

excess of ultrapure water. The cover slips were then soaked in a hot (70 - 80°C) bath of 30% 

hydrogen peroxide in 2.4 M HCl for 10 minutes as a second, polishing etching step. The 

HCl/peroxide mixture was similarly prepared by slow addition of the peroxide to avoid rapid 

boiling of the solution. The HCl/peroxide solution was then drained, and the cover slips were 

flushed with an excess of ultrapure water. The slides were then dried under a N2 stream. 

The dried RCA-cleaned cover slips were passivated by coupling of a PEG-silane layer to 

the glass surface. Briefly, a 5 mg/mL solution of mPEG-silane-5000 was prepared in anhydrous 

isopropanol, where both the isopropanol and mPEG-silane (which is oxygen-reactive) were 

handled under a pure N2 atmosphere (using a Spilfyter “Hands-in-bag” artificial atmospheric 

chamber purchased from VWR International (Radnor, PA) to prevent contact with air). 1% v/v 

glacial acetic acid was added to catalyze the coupling reaction between the silane group and the 

OH- groups on the etched glass surface. 50 µL drops of the PEG-silane solution were placed on 

one cover slip, and a second cover slip was placed over the first one to sandwich the PEG-silane 

liquid film between the two cover slips, spreading out the PEG-silane solution evenly over the 

entire slide surface. The back (un-passivated) sides of the slides were marked for easier 

identification of the passivated surface. The cover slip/PEG-silane ‘sandwiches’ were then dried 

at 70°C for ~30 minutes to remove the isopropanol. The slides were then separated from each 

other by immersing the slide ‘sandwiches’ in ultrapure water and gently prying them apart 

underwater with tweezers. The passivated slides were then individually rinsed 2 – 3 times with 

ultrapure water and dried under a N2 stream, before being stored in glass carafes under air prior 

to use. The passivated slides were used within 1 week of preparation. 
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3.8.4 Serial addition scheme for loading mAb samples onto wet-passivated slides 

Due to the presence of 20 μL buffer present from DOPC passivation, it was necessary to 

add the labeled mAb sample to the imaging well using a serial addition scheme to minimize 

dilution. The mAb sample was added in a 4-step addition scheme to bring the final mAb 

concentration in the well to 95.83% of the original sample concentration. In this scheme, 20 µL 

of mAb sample was mixed into the imaging well by pipetting, and 20 µL of the mixed solution 

(out of the total 40 µL now in the well) was withdrawn. This step was repeated two more times, 

and in a final (4th) addition, 40 µL of the original labeled sample was added. This scheme can 

alternatively be seen as serial dilution of the original buffer in the imaging well to 4.17% v/v of 

the final solution in the imaging well, with the remaining 95.83% of the solution volume 

corresponding to the original (undiluted) mAb sample. Due to the high viscosity of the mAb 

solutions, the viscous mAb solution had to be gently mixed with the non-viscous buffer by 

pipetting over several minutes until the solution in the well was homogenous.  

3.8.5 Converting the probability distribution of τD to the fwhm of the Rh probability 

distribution 

The width of the probability distribution in terms of ln(τD) can be converted to a full-

width at the half-maximum (fwhm) of the probability distribution peak for the corresponding Rh. 

Briefly, the normalized probability for a given τD,i must be numerically equal to the normalized 

probability for the corresponding Rh,i. Thus 𝑎𝑖(𝜏𝐷𝑖) = 𝑎𝑖(𝑅ℎ,𝑖) and  

 

𝐴 ∗ exp [− (
(𝑙𝑛(𝜏𝐷𝑖)−𝑙𝑛(𝜏𝑝))

√2 ln(𝜎)
)

2

] =  𝐴′ ∗ exp [− (
(𝑙𝑛(𝑅ℎ,𝑖)−𝑙𝑛(𝑅ℎ̅̅ ̅̅ ))

√2 ln(𝜎′)
)

2

]     (3.16) 

Combining with Eqn. 3.7 and 3.8 gives 

 

 𝐴 ∗ exp [− (
(𝑙𝑛(𝜏𝐷𝑖)−𝑙𝑛(𝜏𝑝))

√2 ln(𝜎)
)

2

] = 𝐴′ ∗ exp [− (
(𝑙𝑛(𝜏𝐷𝑖)−𝑙𝑛(𝜏𝑝))

√2ln (𝜎′)
)

2

]   (3.17) 
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which can only hold if A = A’ and σ = σ’. The fwhm in terms of ln(Rh) can then be calculated 

directly from σ as √2 ln(2) ln(𝜎). However, the fwhm in terms of Rh must be determined from 

the difference (Rh,2 – Rh,1), where the two Rh’s are the upper and lower endpoints respectively of 

the distribution curve at half maximum height, centered around the average value 𝑅ℎ
̅̅̅̅ =  

4𝑘𝐵𝑇𝜏𝑝

6𝜋𝜂𝜔𝑥𝑦
2   

calculated from τp. The two endpoints can be determined as 

 

ln(𝑅ℎ,2) = ln(𝑅ℎ
̿̿̿̿ ) + √2 ln(2) ln(𝜎)         (3.18) 

ln(𝑅ℎ,1) = ln(𝑅ℎ
̿̿̿̿ ) − √2 ln(2) ln(𝜎)     (3.19) 

leading to the fwhm in terms of Rh (Eqn. 3.11). 

 

 

Figure 3.11. Effect of the solution refractive index (RI) on the normalized ACF of Atto488-

labeled holo-transferrin in 50 mM NaHCO3 (pH 8.3). The RI were chosen to 

replicate the solution refractive index at the lowest (~1 mg/mL) and highest (~250 

mg/mL) mAb concentrations. The transferrin ACFs were used to calibrate the 

confocal volume waist radius (Table 3.4) and determine if there were RI effects on 

the waist radius across the range of RI values relevant to the high concentration 

mAb FCS measurements. The samples were loaded on dry-passivated slides. 
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Focal depth 

(μm) 

Glycerol 

conc (wt %) 

Solution 

RI 

η0 

 (cP) 

τD  

(μs) 
α 

Calc ωxy from lit 

value of Tf D0 (nm) 

3 0 1.33 0.89 696 ± 28 0.81 ± 0.01 432 ± 8.8 

3 50 1.41 4.97 3284 ± 130 0.84 ± 0.01 421 ± 8.3 

Table 3.4. Dependence of the calibrated confocal volume waist radius on the solution 

refractive index (RI). The waist radius ωxy was calculated from τD obtained from 

the 3D anomalous diffusion fits of the ACF of Atto488-labeled holo-transferrin in 0 

and 50 wt% glycerol (Fig. 3.11) using the known value
6
 of D0 of 6.7*10

-7
 cm

2
/s for 

holo-transferrin at 25°C in water, corrected for the solvent viscosity η0. The samples 

were loaded on dry-passivated slides. ωxy was taken as the average value 427 ± 6.1 

nm. 

 

 

Figure 3.12. Normalized ACF of 1 nM Atto488-labeled mAb2 in buffer (21:30 mM 

Na:OAc, pH 5) measured in triplicate using wet-passivated slides. The ACF was 

fit to the 3D anomalous diffusion model (α = 0.81 ± 0.03), and the fitted τD of 846 ± 

25 μs was used as the monomer diffusion time for calculating Ds/D0 of mAb2 at 

high concentration in 250 mM PheOMe(HCl) (Fig. 3.13) 
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Figure 3.13. Concentration dependence of the (a) non-normalized and (b) normalized FCS 

ACFs of mAb2 in 250 mM PheOMe(HCl) at pH 5.5. Samples were loaded on 

wet-passivated slides. The corresponding τD, α and Ds/D0 fit from the ACFs are 

reported in Table 3.5. Smoothed solid/dashed black curves show fits of the ACFs to 

the anomalous 3D diffusion model. 

 

 

 

 

 

mAb conc 

(mg/mL) 

G(0) 

(Not normalized) 
τD (μs) Ds/D0 α 

98 1.26 3872 ± 195 0.22 ± 0.01 0.85 ± 0.01 

147 1.18 8211 ± 666 0.10 ± 0.01 0.83 ± 0.03 

188 1.15 15262 ± 918 0.06 ± 0.00 0.74 ± 0.04 

208 1.09 23640 ± 875 0.04 ± 0.00 0.71 ± 0.00 

 

Table 3.5. Concentration dependence of the diffusivity Ds/D0 and corresponding anomaly 

coefficient α of mAb2 in 250 mM PheOMe(HCl) at pH 5.5 fit from the ACFs in 

Fig. 3.13 to the anomalous 3D diffusion model. Ds/D0 was calculated from the ratio 

of the monomer τD,0 of 846 μm (Fig. 3.12) to τD. 
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Figure 3.14. Dependence of Dc (~Dz) of mAb2 from 2 – 20 mg/mL in different co-solute 

formulations as measured by DLS. D0 was obtained from linear fits of Dc vs 

concentration to Eqn. 3.5. The formulations are (a) 1 M Im(HCl) titrated to pH 5.5, 

(b) 50 mM NaCl, (c) 150 mM NaCl, (d) 250 mM NaCl, (e) 50 mM Arg.HCl, (f) 

150 mM Arg.HCl, (g) 250 mM Arg.HCl.  
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Figure 3.15. Normalized autocorrelation function (ACF) replicates of mAb2 for all co-

solute systems at 60, 125, 150, 200, ~225 and ~250 mg/mL. The ACFs were 

normalized by the G(0) values of the raw ACFs (Table 3.6). ACFs are shown for 5 

mM ZnSO4 at (a) 60 mg/mL, (b) 125 mg/mL, (c) 150 mg/mL, (d) 200 mg/mL; 50 

mM NaCl at (e) 60 mg/mL, (f) 150 mg/mL, (g) 200 mg/mL, (h) 250 mg/mL; 150 

mM NaCl at (i) 60 mg/mL, (j) 150 mg/mL, (k) 200 mg/mL, (l) 250 mg/mL; 250 

mM NaCl at (m) 60 mg/mL, (n) 125 mg/mL, (o) 150 mg/mL, (p) 200 mg/mL, (q) 

219 mg/mL; 50 mM Arg.HCl at (r) 60 mg/mL, (s) 125 mg/mL, (t) 200 mg/mL; 150 

mM Arg.HCl at (u) 60 mg/mL, (v) 125 mg/mL, (w) 200 mg/mL, (x) 250 mg/mL; 

250 mM Arg.HCl at (y) 60 mg/mL, (z) 125 mg/mL, (aa) 150 mg/mL, (ab) 200 

mg/mL, (ac) 225 mg/mL, (ad) 250 mg/mL; 1 M Imid(HCl) (ae) 60 mg/mL, (af) 

125 mg/mL, (ag) 150 mg/mL, (ah) 200 mg/mL, and (ai) 241 mg/mL. 
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Figure 3.15 cont. Normalized autocorrelation function (ACF) replicates of mAb2 for all co-

solute systems at 60, 125, 150, 200, ~225 and ~250 mg/mL. The ACFs were 

normalized by the G(0) values of the raw ACFs (Table 3.6). ACFs are shown for 5 

mM ZnSO4 at (a) 60 mg/mL, (b) 125 mg/mL, (c) 150 mg/mL, (d) 200 mg/mL; 50 

mM NaCl at (e) 60 mg/mL, (f) 150 mg/mL, (g) 200 mg/mL, (h) 250 mg/mL; 150 

mM NaCl at (i) 60 mg/mL, (j) 150 mg/mL, (k) 200 mg/mL, (l) 250 mg/mL; 250 

mM NaCl at (m) 60 mg/mL, (n) 125 mg/mL, (o) 150 mg/mL, (p) 200 mg/mL, (q) 

219 mg/mL; 50 mM Arg.HCl at (r) 60 mg/mL, (s) 125 mg/mL, (t) 200 mg/mL; 150 

mM Arg.HCl at (u) 60 mg/mL, (v) 125 mg/mL, (w) 200 mg/mL, (x) 250 mg/mL; 

250 mM Arg.HCl at (y) 60 mg/mL, (z) 125 mg/mL, (aa) 150 mg/mL, (ab) 200 

mg/mL, (ac) 225 mg/mL, (ad) 250 mg/mL; 1 M Imid(HCl) (ae) 60 mg/mL, (af) 

125 mg/mL, (ag) 150 mg/mL, (ah) 200 mg/mL, and (ai) 241 mg/mL. 

 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(j) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(k) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(l) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(m) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(n) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(o) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(p) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(q) 

0

0.2

0.4

0.6

0.8

1

1.2

100 10000 1000000

N
o

rm
a
li
z
e
d

 G
(τ

) 

τ (µs) 

(r) 



 141 

   

 
  

   

Figure 3.15 cont. Normalized autocorrelation function (ACF) replicates of mAb2 for all co-

solute systems at 60, 125, 150, 200, ~225 and ~250 mg/mL. The ACFs were 

normalized by the G(0) values of the raw ACFs (Table 3.6). ACFs are shown for 5 

mM ZnSO4 at (a) 60 mg/mL, (b) 125 mg/mL, (c) 150 mg/mL, (d) 200 mg/mL; 50 

mM NaCl at (e) 60 mg/mL, (f) 150 mg/mL, (g) 200 mg/mL, (h) 250 mg/mL; 150 

mM NaCl at (i) 60 mg/mL, (j) 150 mg/mL, (k) 200 mg/mL, (l) 250 mg/mL; 250 

mM NaCl at (m) 60 mg/mL, (n) 125 mg/mL, (o) 150 mg/mL, (p) 200 mg/mL, (q) 

219 mg/mL; 50 mM Arg.HCl at (r) 60 mg/mL, (s) 125 mg/mL, (t) 200 mg/mL; 150 

mM Arg.HCl at (u) 60 mg/mL, (v) 125 mg/mL, (w) 200 mg/mL, (x) 250 mg/mL; 

250 mM Arg.HCl at (y) 60 mg/mL, (z) 125 mg/mL, (aa) 150 mg/mL, (ab) 200 

mg/mL, (ac) 225 mg/mL, (ad) 250 mg/mL; 1 M Imid(HCl) (ae) 60 mg/mL, (af) 

125 mg/mL, (ag) 150 mg/mL, (ah) 200 mg/mL, and (ai) 241 mg/mL. 
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Figure 3.15 cont. Normalized autocorrelation function (ACF) replicates of mAb2 for all co-

solute systems at 60, 125, 150, 200, ~225 and ~250 mg/mL. The ACFs were 

normalized by the G(0) values of the raw ACFs (Table 3.6). ACFs are shown for 5 

mM ZnSO4 at (a) 60 mg/mL, (b) 125 mg/mL, (c) 150 mg/mL, (d) 200 mg/mL; 50 

mM NaCl at (e) 60 mg/mL, (f) 150 mg/mL, (g) 200 mg/mL, (h) 250 mg/mL; 150 

mM NaCl at (i) 60 mg/mL, (j) 150 mg/mL, (k) 200 mg/mL, (l) 250 mg/mL; 250 

mM NaCl at (m) 60 mg/mL, (n) 125 mg/mL, (o) 150 mg/mL, (p) 200 mg/mL, (q) 

219 mg/mL; 50 mM Arg.HCl at (r) 60 mg/mL, (s) 125 mg/mL, (t) 200 mg/mL; 150 

mM Arg.HCl at (u) 60 mg/mL, (v) 125 mg/mL, (w) 200 mg/mL, (x) 250 mg/mL; 

250 mM Arg.HCl at (y) 60 mg/mL, (z) 125 mg/mL, (aa) 150 mg/mL, (ab) 200 

mg/mL, (ac) 225 mg/mL, (ad) 250 mg/mL; 1 M Imid(HCl) (ae) 60 mg/mL, (af) 

125 mg/mL, (ag) 150 mg/mL, (ah) 200 mg/mL, and (ai) 241 mg/mL. 
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Figure 3.16. Comparison of fits (with residuals) of the 200 mg/mL mAb2 ACFs to the 

Gaussian distribution model (GDM) and anomalous 3D diffusion model 

(Anom). The fits and residuals are shown respectively for (a, d) 5 mM ZnSO4, (b, 

e) 50 mM NaCl, (c, f) 150 mM NaCl, (g, j) 250 mM NaCl, (h, k) 50 mM Arg.HCl, 

(i, l) 150 mM Arg.HCl, (m, o) 250 mM Arg.HCl and (n, p) 1M Imid(HCl) at pH 

5.5. 
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Figure 3.16 cont. Comparison of fits (with residuals) of the 200 mg/mL mAb2 ACFs to the 

Gaussian distribution model (GDM) and anomalous 3D diffusion model 

(Anom). The fits and residuals are shown respectively for (a, d) 5 mM ZnSO4, (b, 

e) 50 mM NaCl, (c, f) 150 mM NaCl, (g, j) 250 mM NaCl, (h, k) 50 mM Arg.HCl, 

(i, l) 150 mM Arg.HCl, (m, o) 250 mM Arg.HCl and (n, p) 1M Imid(HCl) at pH 

5.5.  
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Un-normalized G(0) 

Formulation 60 125 150 200 225 250 

50 mM NaCl 1.93 ± 0.12   1.3 ± 0.03 1.15 ± 0.02   1.05 ± 0.01 

150 mM NaCl 1.39 ± 0.02   1.14 ± 0.03 1.10 ± 0.00   1.05 ± 0.04 

250 mM NaCl 2.56 ± 0.38 1.17 ± 0.04 1.36 ± 0.06 1.11 ± 0.02 1.09 ± 0.01   

50 mM Arg.HCl 1.87 ± 0.10 1.82 ± 0.21   1.32 ± 0.02     

150 mM Arg.HCl 1.27 ± 0.02 1.21 ± 0.07   1.11 ± 0.01   1.06 ± 0.01 

250 mM Arg.HCl 1.88 ± 0.15 1.31 ± 0.04 1.36 ± 0.04 1.20 ± 0.03 1.08 ± 0 1.04 ± 0.00 

1 M Im(HCl) 1.12 ± 0.01 1.14 ± 0.03 1.09 ± 0 1.14 ± 0.00   1.02 ± 0.00 

Table 3.6. Average G(0) of the un-normalized ACFs in Fig. 3.15. The G(0) values were 

calculated from the average N obtained from fits of the un-normalized ACFs 

(measured in triplicate) to the 3D anomalous diffusion model (Eqn. 3.6).  

 

 

 

Figure 3.17. Dependence of the self-diffusion retardation factor D0/Ds on the solution 

relative viscosity ηrel, grouped by the mAb concentration. Each concentration 

group was normalized by the corresponding hard sphere diffusion retardation factor 

D0/Ds,HS (glowing symbols) at the same concentration to generate Fig. 3.6a and 

3.6b.  
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Figure 3.18. (a, c) Standard error σ from the GDM model and (b, d) anomaly coefficient α from 

the 3D anomalous diffusion model fits of the mAb2 FCS ACFs as a function of (a, 

b) mAb concentration and (c, d) solution viscosity for all tested co-solute 

formulations. All samples were measured in triplicate using dry-passivated slides at 

a focal depth of 3 μm. 
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Figure 3.19. Correspondence of (a) the diffusion cross-over time τD and (b) anomaly coefficient 

α or standard deviation σ between the 3D anomalous diffusion and GDM models 

fits, respectively, of the mAb2 FCS ACFs across all tested mAb concentrations and 

co-solute formulations. All samples were measured in triplicate using dry-

passivated slides at a focal depth of 3 μm, and correspond to the same data in Fig. 

3.18. 
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Figure 3.20. Probability distribution of τD for mAb2 at 200 mg/mL with (a) NaCl at 50, 150 and 

250 mM, (b) Arg.HCl at 50, 150 and 250 mM and (c) 1 M Im(HCl) at pH 5.5, as 

determined from the Gaussian distribution model fit of the FCS ACFs. 
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Figure 3.21. Dependence of the apparent hydrodynamic radii Rh on the relative viscosity 

for mAb2 in different co-solute formulations.  Rh was calculated from the 

measured self-diffusion coefficient Ds fit from the τD obtained from FCS (GDM fit; 

3 μm focal depth; dry-passivated slides) and from the solution viscosity using the 

Stokes-Einstein relation.  

 

 

  

Figure 3.22. The full-width at half-maximum (fwhm) of the probability distribution function for 

Rh of mAb2 as a function of co-solute formulation versus (a) the mAb concentration 

and (b) the solution relative viscosity. The fwhm was calculated from σ (Fig. 3.18) 

obtained from the Gaussian distribution model fits of the FCS ACFs. 
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Figure 3.23. Concentration dependence of the effective viscosity normalized by the 

macroviscosity (ηeff/η) of mAb2 in different co-solute formulations. The 

effective viscosity ηeff was calculated from D0/Ds following the length-scale 

dependent viscosity model
7
 (D0/Ds = ηeff/η0) using Ds obtained from fits of the FCS 

ACFs to the Gaussian distribution model for 3D diffusion. Measurements were 

done in triplicate on dry-passivated glass slides at a focal depth of 3 μm. 

 

 

  
 

Figure 3.24. Linearized fits of the activation energy for viscous flow (Ea/RT = ln(η/η0)) to the 

LDV model, where Ea/RT was calculated from the (a) macroscopic relative 

viscosity ηrel and (b) microscopic relative viscosity (= D0/Ds) for mAb2 in different 

co-solute formulations. These fits were used to obtain the hydrodynamic parameters 

a and interaction parameters b reported in Table 3.7.  
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Fit to microviscosity (D0/Ds) Fit to macroviscosity (ηrel) 

Formulation a b R
2
 of fit a b R

2
 of fit 

50 mM NaCl 0.750 9.89 0.995 0.950 13.30 1.000 

150 mM NaCl 0.777 10.21 1.000 0.986 13.99 1.000 

250 mM NaCl 0.869 12.02 1.000 0.969 13.81 1.000 

50 mM Arg.HCl 0.822 9.06 1.000 1.031 13.36 1.000 

150 mM Arg.HCl 0.794 8.76 0.996 1.032 13.76 1.000 

250 mM Arg.HCl 0.596 5.94 0.995 0.971 11.31 1.000 

1 M Imid(HCl) 0.657 4.07 0.960 1.076 10.37 1.000 

Table 3.7. Fit parameters from the the length-scale dependent viscosity model for both the 

microscopic and macroscopic viscosity for Fig. 3.24. Given the nearly identical 

slopes between formulations, an average a value 0.80 ± 0.05 and 0.99 ± 0.04 were 

used for further fits of the microscopic viscosity (ηeff/η0 = D0/Ds) and macroscopic 

viscosity, respectively,  to the length-scale dependent viscosity model with fixed a 

(Table 3.3, Fig. 3.25, Fig. 3.8). The value of a was obtained by averaging over the 

first 6 rows in the table. Due to the unusual diffusion behavior of 1M Im, as well as 

the uncertainty and bias in the 250 mM Arg fit caused by the ultralow concentration 

(10 – 30 mg/mL) data points, the two systems were excluded from the average. 
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Figure 3.25. (a) Macroscopic relative viscosity and (b) micro (effective) relative viscosity and 

diffusion retardation as a function of the scaled concentration ψ/ψrcp for mAb2 in 

different co-solute formulations. The solid lines are fits of D0/Ds to the length-scale 

dependent viscosity model with a fixed a of 0.99 and 0.80 for (a) and (b) 

respectively (Table 3.7) and formulation-dependent fitted values of b (Table 3.3). 

(c) Poor agreement between the best-fit of the microviscosity (D0/Ds) to the LDV 

model using the average a fit from the macroscopic viscosity (0.99) and the 

experimental data. 
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Figure 3.26. Correlation between the mAb2 hard-sphere normalized self-diffusion Ds,HS/Ds 

and the normalized structure factor S(0)/S(0)HS measured by SLS8 across multiple 

co-solute formulations and mAb concentrations from 60 – 200 mg/mL. The 1M Im 

data was excluded from the linear fit due to the ultrahigh ionic strength and 

resulting diffusion behavior. (b) Co-solute dependent relation between mAb2’s 

solution relative viscosity ηrel and structure factor S(0), both normalized by the 

hard sphere (HS) values evaluated at the same concentration (volume fraction) as 

the mAb solution.  
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Chapter 4:  Improving viscosity and stability of a highly concentrated 

monoclonal antibody solution with concentrated proline3 

Jessica J. Hung, Barton J. Dear, Aileen K. Dinin, Ameya U. Borwankar, Sumarth K. Mehta, 

Thomas T. Truskett, Keith P. Johnston 

 

4.1 ABSTRACT 

Purpose. To explain the effects of the osmolyte proline on the protein-protein interactions (PPI), 

viscosity and stability of highly concentrated antibody solutions in contrast to other neutral 

osmolytes. 

Methods. The viscosity of ~225 mg/mL mAb solutions was measured with proline, glycine and 

trehalose as a function of pH and co-solute concentration up to 1.3M. The stability was assessed 

via turbidity as well as size exclusion chromatography after 4 weeks storage at 40°C. The PPI 

strength was assessed qualitatively via the high concentration diffusion rate by dynamic light 

scattering. 

Results. Increasing proline significantly reduced the mAb viscosity and increased the colloidal 

stability at pH 6, but not at pH 5 further from the mAb pI. In contrast, glycine and trehalose did 

not improve the viscosity nor stability. The normalized diffusion coefficient at high 

concentration, which is inversely proportional to the attractive PPI strength, increased with 

proline concentration but decreased with increasing glycine. 

Conclusions. Proline demonstrated greater efficacy for improving mAb viscosity and stability in 

contrast to glycine and trehalose due to its amphipathic structure and partial charge on the 

pyrrolidine side chain. These properties likely allow proline to screen the attractive electrostatic 

and hydrophobic interactions that promote self-association and high viscosities. 

 

                                                 
3 The first-author was responsible for the design and execution of the experiments, data analysis and interpretation, 

intellectual development and writing of the manuscript.  
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4.2 INTRODUCTION 

Formulation strategies to reduce the viscosity and enhance the stability of highly 

concentrated monoclonal antibody solutions are of great interest in the field of drug delivery. For 

the preferred delivery route of subcutaneous injection, antibodies often must be formulated at 

concentrations of 200 mg/mL or higher in order to deliver the required dosage in a limited 

injection volume of 1 – 1.5 ml (1). However, attractive short-ranged protein-protein interactions 

(PPI) become dominant at these concentrations (2, 3) due to small spacings between protein 

molecules on the order of the molecular diameter (2). These interactions can lead to self-

association (3) and high viscosities above the 15 – 20 cP limit for subcutaneous injection (1). 

The concentration-dependent viscosity increase is thought to arise from reversible protein self-

association via attractive multibody interactions mediated by short-ranged PPI (4, 5). Strategies 

to modify or disrupt these oligomers and reduce the solution viscosity therefore require an 

understanding of the complex landscape of PPI at high concentrations (6).  

The viscosity and colloidal stability of concentrated protein solutions is determined by an 

intricate balance of long-ranged and local anisotropic electrostatic and hydrophobic interactions. 

In addition to long-ranged electrostatic repulsion between molecules due to the protein net 

charge (7), protein molecules in close proximity also experience strong, short-ranged anisotropic 

electrostatic attraction from the alignment of local charges and dipoles (8, 9) or via charge-dipole 

and dipole-dipole interactions (7, 10). As the magnitude of the difference between the pH and 

isoelectric point increases, the long ranged electrostatic repulsion becomes stronger. The local 

electrostatic attraction also becomes weaker, as more of the charges on the protein surface have 

the same sign, resulting in a smaller probability of attractive electrostatic contact between 

oppositely charged residues (7). Unfavorable hydrophobic interactions also promote self-

association that may result in higher solution viscosities (11). 

A strategy for lowering the solution viscosity is to weaken the attractive PPI and disrupt 

protein self-association. In some cases this has been accomplished by charge screening via salt 
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addition (10). For example, chaotropic salts have been found to afford greater viscosity 

reductions than neutral salts such as NaCl (12), as the greater disorder in the water structure 

weakens hydrophobic PPI (13). Similarly, hydrophobic salts in some cases have produced 

marked viscosity reductions in concentrated antibody solutions (11) by charge screening and also 

weakening of the hydrophobic interactions. It is also possible to reduce the viscosity by 

modifying the hydrophobic interactions with uncharged hydrophobic amino acids such as 

glycine, alanine and phenylalanine (14). Charged amino acids such as protonated arginine and 

histidine have been found to markedly improve the viscosity of antibodies at high concentration 

(2, 15) in addition to suppressing self-association (16, 17). It appears that arginine and histidine 

interact with hydrophobic residues on the protein surface via cation-π interactions (18) as well as 

with charged residues via their guanidyl (9) and imidazole functionalities (19). In this manner, 

arginine and histidine are able to modify both electrostatic and hydrophobic interactions to 

reduce protein viscosity and self-association. Furthermore, hydrophobic interactions can be 

minimized by stabilizing proteins in the native folded state at high concentration by depletion 

attraction (20) via the addition of osmolyte depletants such as polymers and polysaccharides. The 

addition of preferentially-excluded osmolytes such as proline, glycine and trehalose would 

therefore favor the folded state of the protein to minimize the excluded volume, surface area and 

thus free energy at high concentration (20, 21). Similarly, the attachment of protein or peptide 

tags, such as Cherry-RedTM can improve the thermal stability and solubility of proteins, which 

was demonstrated from molecular dynamics simulations to be due to modification of the protein 

surface net charge and hydrophobicity along with steric hindrance effects (22).  

Proline has been shown to solubilize poorly-soluble proteins and suppress aggregation 

during protein refolding (23, 24). Interestingly, proline is the most water-soluble of the common 

amino acids (7 M) at room temperature (25) and is often found on the solvent-exposed protein 

surface, despite possessing a cyclic side chain structure with three hydrophobic CH2 groups (26). 
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Additionally, proline has been observed to cause a sharp increase in emission intensity and 

strong blue-shift in the emission spectra of ANS (8-anilinonaphthalene-1-sulfonic acid) dye at 

high concentrations, suggesting the creation of hydrophobic surfaces (24). Based on these 

observations, proline has been hypothesized to form amphipathic supramolecular assemblies (23, 

24). As a result of its amphipathic nature, proline can act as a hydrotrope in solubilizing 

hydrophobic proteins (23). Proline is excluded from the protein backbone (21, 27) but also 

interacts favorably with the protein side chains (21, 27), allowing it to improve protein stability 

by promoting refolding of chemically-denatured protein (27) and suppressing aggregation during 

refolding events (27). Although proline has been seen in some instances to reduce the viscosity 

of commercial antibodies (14, 28), this effect has received little attention, and to our knowledge 

has not been studied systematically versus pH and co-solute concentration. 

Herein, we compare the efficacy of the nonelectrolyte osmolytes proline (Pro), glycine 

(Gly) and trehalose (Tre) for reducing the viscosity and increasing the colloidal stability of 

concentrated mAb 1 solutions. Trehalose was chosen over the more widely used sucrose in order 

to facilitate comparison with our previous studies of depletant effects (using trehalose) on the 

viscosity of the mAb in this study (29, 30). We demonstrate that proline improves the viscosity 

and colloidal stability of mAb 1 solutions (measured by size exclusion chromatography) as a 

function of pH and Pro concentration between 250 and 1300 mM. In contrast, these 

improvements are not observed for the common osmolytes glycine (up to 1300 mM) and 

trehalose (up to 580 mM). Proline may thus bind more strongly to the mAb than glycine and 

trehalose due to its more favorable interactions with the protein side chains (21) and weaken 

local anisotropic electrostatic attraction and hydrophobic interactions more effectively. Unlike 

the protonated bases arginine, histidine and imidazole, a potential advantage of the neutral co-

solute proline is that it does not influence the ionic strength and does not require added 

counterions. Notably, we show that a binary system with Pro and His at a total co-solute 
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concentration of 500 mM generates a greater viscosity reduction than 500 mM His alone, while 

greatly reducing the solution osmolarity and ionic strength due to reduced counterion levels. 

4.3 MATERIALS AND METHODS 

4.3.1 Materials 

The monoclonal antibody used in this study (mAb 1) is an IgG1 antibody with an 

isoelectric point (pI) of 9.3. mAb 1 was supplied by AbbVie at ~120 mg/mL in a proprietary 

buffer composition, and is the same mAb as in Hung et al. (31), Borwankar et al. (32) and Dear 

et al. (33). L-glycine, L-histidine, L-histidine hydrochloride monohydrate, hydrochloric acid, and 

imidazole were purchased from Fisher Scientific, Fairlawn, NJ. L-proline was purchased from 

Alpha Aesar, Ward Hill, MA. α-trehalose dihydrate (Tre) was purchased from Ferro Pfanstiehl 

Laboratories Inc., Waukegan, IL. Amicon Ultra-15 Ultracel – 30K centrifugal filters were 

purchased from Merck Millipore Ltd. Ireland. Disposable 0.22 μm polyethersulfone (PES) bottle 

top filters and 13 mm syringe sterile filters were obtained from Celltreat Scientific Products, 

Shirley, MA (product codes 229717 and 229746). 

4.3.2 Centrifugal Diafiltration and Ultrafiltration (CF) 

The concentrated mAb solutions were prepared by centrifugation filtration as described 

previously (31-33). The co-solute buffers were prepared as described previously (33), where the 

reported co-solute concentration in the retentate, CC,R, depends on the concentration in the buffer 

feed, CC,F as a result of volume exclusion effects. 

 

𝐶𝐶,𝑅 = 𝐶𝐶,𝐹 ∗ (1 − �̅�𝑝 ∗ 𝐶𝑃)          (4.1) 

Here, CP is the targeted mAb concentration (230 mg/mL) and �̅�𝑝 is the protein partial 

volume (0.7407 mL/g (34)). Consequently, in this study the final co-solute concentrations 

reported as 250, 400, 750 and 1300 mM correspond to feed concentrations of 300, 480, 905 and 
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1565 mM respectively. The buffers were sterile filtered with the Celltreat bottle top PES filters 

and then degassed under vacuum for 30 minutes.  

4.3.3 Lyophilization Dilution (LD) 

Lyophilized mAb 1 powder was prepared as described previously (33) with Pro or Tre 

added as a cryoprotectant and osmolyte in a 0.25:1 osmolyte:mAb mass ratio. The mAb powder 

was then reconstituted in concentrated aqueous buffers of His, Im or additional Pro to obtain 

~100 μL of a 250 mg/mL mAb dispersion at the desired co-solute concentration.  

4.3.4 mAb concentration determination and turbidity by UV-Vis spectroscopy 

The mAb concentration was measured in duplicate at 500x dilution using a Cary 60 UV-

Vis spectrophotometer (Agilent Technologies, Santa Clara, CA), as described previously (31-33)  

with an extinction coefficient of 1.42 ml/mg/cm. The turbidity of the concentrated, unfiltered 

mAb solutions was measured at 350 nm in a micro volume size cell (A54094; Beckman Coulter, 

Indianapolis, IN) with a 0.2 cm path length. The turbidity was determined by subtracting the 

A350 of the protein-free solvent from the A350 of the sample and normalized to a 1 cm path 

length.  

4.3.5 Viscosity measurements 

The solvent viscosity was measured in triplicate at 25°C using a size 50 Cannon-Fenske 

routine viscometer (Cannon Instrument Company, State College, PA) and averaged. The mAb 

viscosity was measured in triplicate using a customized capillary syringe viscometer as described 

previously (31-33).  

The viscosity of protein solutions increases exponentially with protein concentration as 

described by colloidal viscosity models such the Ross-Minton equation (4, 35). Due to small 

differences in sample mAb concentration between the different co-solute systems in this work, 



 168 

the viscosities were instead normalized by the protein concentration through the inherent 

viscosity  

𝜂𝑖𝑛ℎ ≡
ln (𝜂 𝜂0)⁄

𝑐
        (4.2) 

in order to more directly compare the effects of different co-solute formulations on the viscosity. 

Here η is the solution viscosity, η0 is the solvent viscosity and c is the protein concentration (36). 

Unlike η, ηinh increases linearly with concentration. Reported errors in ηinh were calculated from 

propagation of error in concentration and viscosity measurements. Qualitatively, the inherent 

viscosity increases with the strength of the PPI. Given the modest variation in mAb 

concentrations in this study, the results were also normalized and presented as a calculated 

viscosity at a reference mAb concentration of 225 mg/mL, as determined using Eqn. 4.2. 

Although ηinh is expected to change by up to about 1.5 mL/g over the concentration range 205 to 

230 mg/mL (31), for simplicity we assume a constant ηinh for predicting the viscosity. 

4.3.6 Dynamic light scattering 

The collective diffusion coefficient Dc of mAb 1 at high concentration in the different 

formulation conditions was measured by DLS using a Malvern Zetasizer Nano ZS equipped with 

a 633 nm laser (Malvern Instruments, Malvern, Worcestershire, United Kingdom). The Dc was 

determined by fitting the autocorrelation function (ACF) with the quadratic cumulant algorithm. 

However, the 750 and 1300 mM proline measurements were fit with a stretched double 

exponential function (37) (Eqn. 4.3) due to the presence of a visible second decay mode, with the 

first (fast) decay mode attributed to the diffusion of the protein. 

 

𝐺2(𝜏) =  𝜎2 ∗ (𝐴1 ∗ exp (−
𝜏

𝜏1
) + (1 − 𝐴1) ∗ exp (−

𝜏

𝜏2
)

𝛽

)
2

   (4.3) 
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Here, σ
2
 is an instrument-specific prefactor, A1 is the weighting factor by intensity for the fast 

decay mode, τ1 and τ2 are the characteristic relaxation times of the fast and slow decay modes 

respectively, and β is a stretch exponent to capture the shape of the slower exponential decay. 

The diffusion coefficients Di were determined from τi via Eqn. 4.4, where q is the scattering 

vector (Eqn. 4.5) of the DLS measurement (36):  

 
1

𝜏
= 𝑞2𝐷       (4.4) 

  𝑞 =
4𝜋𝑛

𝜆
sin (

𝜃

2
)                        (4.5) 

where λ is the incident laser wavelength, n is the solvent refractive index (RI), and θ is the 

scattering angle. The samples were sterile filtered through a 0.22 μm PES syringe filter (Celltreat 

Scientific Products, Shirley, MA) prior to DLS. The DLS measurements were made at 25°C in 

the back-scattering mode (scattering angle of 173°). Each sample was measured in triplicate for 

one minute per replicate, consisting of four 15-second scans which were averaged. 

4.3.7 Accelerated storage stability study 

50 μL aliquots of the final mAb solution were stored in capped 300 µL HPLC vial inserts 

inside 1 ml HPLC vials (Thermo Fisher Scientific, Waltham, MA).  The vials were sealed with 

three alternating layers of Parafilm and aluminum in order to minimize evaporative losses. The 

sealed vials were stored in a Boekel convection oven (model number 107905; Boekel Industries, 

Feasterville, PA) at 40°C for 4 weeks. The samples were diluted to 2 mg/mL for SEC analysis.  

4.3.8 Size exclusion chromatography (SEC) 

The relative level of irreversible soluble aggregates in the final solutions before and after 

accelerated storage stability studies was quantified by SEC after dilution of the mAb solution to 
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2 mg/mL in the mobile phase (200 mM NaHPO4, 50 mM NaCl (pH 7)) and sterile filtration 

through a 0.22 μm PES syringe filter (Celltreat Scientific Products, Shirley, MA). As sterile 

filtration removes large insoluble aggregates, this method only quantifies the level of soluble 

aggregates, rather than total aggregates. The standard solution was prepared by diluting freshly-

thawed mAb monomer stock (as provided at 120 mg/mL) in the mobile phase. A 10 μL injection 

of each sample was analyzed with a Waters Breeze HPLC (Waters Corporation, Milford, MA) 

equipped with a Tosoh Biosciences TSKgel3000SWXL column (Tosoh Corporation, Tokyo, 

Japan), operating at a flow rate of 0.5 ml/min. The eluate was monitored by the UV absorbance 

at 214 nm and 280 nm using a Waters 2489 UV/Visible detector (Waters Corporation, Milford, 

MA), which has a baseline noise level of < 5 µAU. Typical peak heights in the spectrograph 

were 0.20 AU. The soluble aggregate level (“% soluble aggregates”) was quantified by the peak 

area ratio of the aggregate peak to the monomer + aggregate peaks for the diluted samples, which 

is equivalent to the mass fraction of soluble protein that is incorporated in the irreversible soluble 

aggregates. Throughout the rest of this study, the terms “monomer retention” or “percent 

monomer” refer specifically to the mass fraction of soluble protein that remains monomeric, and 

is not equivalent to the total monomer recovery after incubation, as this method does not account 

for the monomer loss to formation of insoluble aggregates. Due to limited sample amounts, 

measurements were made without duplicates. However, the systematic instrument error was 

confirmed to be very small, as the standard deviation in the measured percent monomer (relative 

to total soluble protein content) for the mAb standard solution across 9 replicate measurements 

from multiple sample sets was less than 0.1% (for an average value of 99.7%). 
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4.4 RESULTS  

4.4.1 Increasing viscosity reduction with increasing proline concentration 

In order to investigate the effect of co-solutes on mAb 1’s viscosity, control experiments 

were first performed at 50 mM His-HCl (pH 5, 6). As seen in Table 4.1, 205 and 208 mg/mL 

mAb 1 solutions had viscosities of 21 and 57 cP at pH 5 and 6, respectively, corresponding to 

inherent viscosities of 15.0 and 20.0 mL/g (Fig. 4.1a, Table 4.1). In order to more directly 

compare different formulations, the mAb viscosity was calculated for a reference concentration 

of 225 mg/mL from Eqn. 4.2 using the empirical inherent viscosity (measured at 200 –230 

mg/mL mAb 1). Although ηinh increases modestly with mAb concentration (Eqn. 4.9), by up to 

1.7 mL/g between 190 and 230 mg/mL (31), we assumed that ηinh for a given formulation 

remains constant between 200 – 225 mg/mL for comparison purposes. As seen in Fig. 4.1b, the 

viscosity was calculated to increase to >80 cP at 225 mg/mL and pH 6. For a phosphate (Phos) 

buffered system at the same pH, a higher viscosity of 80 cP was observed at 209 mg/mL mAb 1 

(Table 4.4) with a calculated viscosity of 110 cP at 225 mg/mL (Fig. 4.1b). 
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Figure 4.1. Dependence of (A) measured inherent viscosity of concentrated 200 – 250 mg/ml 

mAb solutions and (B) calculated viscosity at 225 mg/mL mAb on proline 

concentration. Samples are buffered with 50 mM of histidine HCl or phosphate 

buffer. The corresponding viscosity data is shown in Table 4.1 and Table 4.4, and 

the colored lines are a guide to the eye. 

 

mAb conc 

(mg/ml) 
pH 

Proline conc 
η  

(cP) 

η0  

(cP) 

ηinh  

(ml/g) 

A350 

(AU*cm
-

1
) 

mg/ml mM 

pH 5 

208 ± 4.3 4.93 0 0 21 ± 2.1 0.93 15.0 ± 0.6 0.293 

225 ± 2.2 5.12 29 250 26 ± 3.2 1.00 14.5 ± 0.6 0.272 

239 ±1.0 5.15 86 750 29 ± 1.0 1.19 13.4 ± 0.2 0.427 

209 ± 0.9 5.27 150 1300 21 ± 0.9 1.42 12.8 ± 0.2 0.431 

pH 6 

205 ± 9.6 5.96 0 0 57 ± 2.4 0.93 20.0 ± 1.0 0.327 

205 ± 0.4 5.94 29 250 45 ± 1.9 1.00 18.6 ± 0.2 0.380 

205 ± 2.9 6.05 86 750 33 ± 2.7 1.19 16.2 ± 0.5 0.511 

195 ± 1.3 6.07 150 1300 20 ± 1.6 1.42 13.5 ± 0.4 0.525 

Table 4.1. Dependence of mAb viscosity on proline concentration at pH 5 and 6 with 50 mM 

His(HCl) for mAb solutions formed by centrifugation filtration. 

In an attempt to reduce the mAb viscosity at pH 6 to acceptably low levels for 

subcutaneous injection, Pro was added at concentrations from 250 to 1300 mM. The highest 

concentration of 1300 mM was chosen to approach the threshold concentration of 1.5 M, above 
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which proline has been shown to solubilize poorly-soluble proteins and suppress aggregation 

during protein refolding (23). While the highest co-solute concentration of 1300 mM is too high 

to be practical, the intermediate Pro concentration of 750 mM used here is still within the 

osmolarity threshold for acceptable levels of pain during injection (2x – 3x iso-osmolarity, 

according to various biopharmaceutical experts, and corresponding to 600 – 900 mM Pro). Given 

the small variation in mAb concentrations between samples, and considering the exponential 

dependence of viscosity on protein concentration, it is more meaningful to compare ηinh rather 

than absolute viscosities, as explained in the Methods section on viscosity. As the Pro 

concentration was increased, similar large decreases in ηinh of up to 6 mL/g for the mAb solution 

were observed in both the 50 mM His and Phos buffers (Fig. 4.1a; Table 4.1; Table 4.4). The 

corresponding mAb viscosity in His and Phos buffer decreased by 3-fold to 20 cP at 195 mg/mL 

and 48 cP at 224 mg/mL, respectively (Fig. 4.1b; Table 4.1; Table 4.4). In contrast, at pH 5 the 

addition of Pro in 50 mM His buffer caused a smaller reduction in ηinh (Fig. 4.1a, Table 4.1). As 

a consequence of the simultaneous increase in solvent viscosity and decrease in inherent 

viscosity with increasing Pro concentration, the calculated mAb viscosity at 225 mg/mL 

remained constant at ~25 cP over the entire concentration range (Fig. 4.1b). It is interesting to 

note that the addition of high concentrations of Pro at pH 6 reduces the mAb viscosity and 

inherent viscosity to approach the same value as at pH 5.   

4.4.2 Lack of viscosity reduction from preferential exclusion with glycine and trehalose 

To further probe the effects of neutral, preferentially excluded (20, 21) osmolytes on 

protein viscosity, glycine and trehalose were studied. Glycine in some cases can greatly reduce 

the viscosity of mAb solutions (14). However, we found that at pH 5 Gly mildly increased ηinh 

for mAb 1, by up to ~3 mL/g at the highest concentration of 1300 mM relative to the 50 mM His 

control (Fig. 4.2a, Table 4.2). At pH 6, 250 mM Gly appears to cause a modest reduction in ηinh 

relative to the control, even at a higher mAb concentration (Table 4.2, 4.5). However, further 
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increasing the Gly concentration to 1300 mM increased ηinh relative to the control, even at a 

lower mAb concentration (Table 4.2, 4.5). Consequently, whereas the addition of Pro caused a 

large reduction in the calculated mAb viscosity at pH 6, Gly caused a significant increase in the 

calculated viscosity at both pH 5 and 6, as seen in Fig. 4.2b.  

 

  
 

Figure 4.2. Dependence of (A) measured inherent viscosity of concentrated 200 – 250 mg/ml 

mAb solutions and (B) corresponding calculated viscosity at 225 mg/mL mAb 

on co-solute choice (proline, glycine) and co-solute concentration. The proline 

data from Fig. 4.1 is reproduced here for visual comparison against the glycine 

viscosity data. Samples are buffered with 50 mM histidine HCl. The corresponding 

viscosity data is shown in Table 4.1 and Table 4.2, and the colored lines are a guide 

to the eye. 
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mAb conc 

(mg/ml) 
pH 

Glycine conc 
η  

(cP) 

η0  

(cP) 

ηinh  

(ml/g) 

A350 

(AU*cm
-

1
) 

mg/ml mM 

pH 5 

232 ± 3.6 5.11 19 250 49 ± 3.8 0.94 17.0 ± 0.4 0.318 

233 ± 4.1 5.12 30 400 49 ± 0.8 1.05 16.5 ± 0.3 0.286 

207 ± 0.0 5.38 98 1300 45 ± 0.8 1.16 17.6 ± 0.1 0.397 

pH 6 

223 ± 1.9 5.96 19 250 74 ± 8.7 0.94 19.6 ± 0.6 0.318 

193 ± 1.3 6.10 98 1300 59 ± 2.8 1.16 20.4 ± 0.3 0.401 

Table 4.2. Dependence of mAb viscosity on glycine concentration at pH 5 – 6 with 50 mM 

His(HCl). 

Similar to the case for Gly, the addition of Tre up to 580 mM did not reduce the mAb 

viscosity at pH 6 (Table 4.5, 4.6). For mAb solutions buffered in 30 mM His, the addition of up 

to 220 mM Tre produced a mild increase in ηinh relative to the Tre-free control (Table 4.5; 

control in row 1). However, the modest increase in ηinh of up to ~1.0 mL/g may be accounted for 

in part by the higher corresponding mAb concentrations. Similarly, the addition of up to 580 mM 

Tre did not significantly change ηinh for mAb solutions buffered with 50 mM Phos (Table 4.6) 

relative to the Tre-free phosphate control (row 1 in Table 4.6). Unlike for Gly, which modestly 

reduces the viscosity at pH 6 and low Gly concentration, Tre does not appear to reduce the 

viscosity at any concentration between 150 – 580 mM. 

The results for Gly and Tre indicate that depletion attraction produced by a neutral co-

solute does not produce a general viscosity reduction, as was proposed in an earlier study based 

upon a theoretical model (30). The greater viscosity reduction for Pro versus Gly or Tre may be 

influenced by the stronger interactions between the Pro and protein side chains. Furthermore, the 

larger size of Pro compared to Gly may also contribute to greater depletion attraction at the same 
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co-solute concentration, which in turn promotes a more compact, folded conformation for the 

mAb (20) and minimizes the number of solvent-exposed self-association sites. 

4.4.3 Viscosity reduction with binary co-solutes: proline with histidine or imidazole 

To attempt to modulate the electrostatic and hydrophobic PPI to further reduce the 

viscosity, we also examined binary systems of Pro with protonated His or Im. Histidine is a 

pharmaceutically-acceptable co-solute that has been shown to reduce the viscosity of several 

mAbs (33, 38, 39), likely through preferential interactions of His with aromatic residues via its 

imidazole side chain as has been seen in simulations (18, 19), which may screen hydrophobic 

interactions. Imidazole was also investigated for its same favorable preferential interactions with 

aromatic residues, but was also chosen due to its smaller size compared to His (it lacks the amino 

acid backbone of His). Due to the similar mechanisms by which the two co-solutes modify 

protein interactions, at 250 mM both reduced the mAb inherent viscosity at ~230 mg/mL and pH 

6 by 3 – 4 mL/g relative to the 50 mM His control (Table 4.7), indicating a weakening of 

attractive PPI. The reduction in inherent viscosity is slightly greater for His compared to Imid, 

but the higher solvent viscosity for His caused the net change in viscosity to be identical between 

His and Imid (Table 4.7). The addition of 250 mM Pro further reduced ηinh at ~230 mg/mL from 

16 – 17 mL/g without Pro (Table 4.7) to 14.8 and 14.3 mL/g at ~225 mg/mL for the His and Im 

systems, respectively (Fig. 4.3a, Table 4.8), with the corresponding calculated viscosity at 225 

mg/mL decreasing by nearly 1.5-fold from 40 – 45 cP without Pro to 25 – 30 cP (Fig. 4.3b). 

However, the addition of Pro in the binary systems at pH 5 did not further reduce ηinh (Fig. 4.3a, 

Table 4.8) or viscosity (Fig. 4.3b) significantly. A summary of the lowest-viscosity proline 

formulations are presented in Fig. 4.4. 
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Figure 4.3. (A) Measured inherent viscosity and (B) calculated viscosity of 225 mg/mL mAb 

solutions containing 250 mM histidine or imidazole with no proline (blue bars) or 

an additional 250 mM proline (red bars).  

Impressively, the use of binary Pro-His systems will now be shown to lower viscosities 

more than His-only formulations at the same ‘active’ co-solute concentration (i.e. not counting 

the counterions) but at a lower solution osmolarity. For example, the calculated viscosity of this 

mAb at 225 mg/mL and pH 6 was 40 cP in 250 mM His (Fig. 4.3b; also Fig. S11 from Dear et al. 

(33)). Further increases in His concentration to 500 mM led to a small reduction in the calculated 

viscosity to 35 cP (Table 4.10), but at a total co-solute osmolarity of 810 mM. In contrast, the 

250:250 mM His:Pro binary system reduced the expected (calculated) viscosity at 225 mg/mL to 

31 cP, at a lower total co-solute osmolarity of 655 mM. An intermediate His concentration of 

360 mM (osmolarity = 583 mOsm/L), closer to the osmolarity of the binary Pro-His system, 

actually caused a small increase in the calculated viscosity (Table 4.10) to 44 cP, but the change 

is small and may be caused in part by the sample drift to a slightly higher final solution pH. 
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Figure 4.4. Viscosity reductions for select 200 – 230 mg/mL solutions at pH 6 after the 

addition of high concentrations of proline to the mAb solution in histidine or 

imidazole buffer. The exact mAb and buffer concentrations are listed in mg/mL 

and mM, respectively. 

While binary systems of Pro with His offer larger viscosity reductions that His-only at the 

same total co-solute concentration, both co-solutes are much less effective than Arg for the 

reducing the viscosity of mAb 1 at pH 6. As seen from Fig. S11 of an earlier study with this mAb 

(33), the addition of 250 mM Arg.HCl at pH 6 reduces the viscosity at 225 mg/mL to 26 cP. 

Increasing the Pro conc at pH 6 does reduce the viscosity to this same low value, but requires 

over 1300 mM to do so (Fig. 4.1b). Similarly, the same study showed that over 800 mM His 

would be needed at pH 6 to reduce the viscosity to ~26 cP. It is clear that at least for this mAb at 

pH 6, Arg is far more effective on a molar basis for reducing the mAb viscosity.  

For practical formulation development applications, Pro as the main viscosity modifier 

may thus not be as desirable or advantageous as Arg due to its lower molar efficacy for reducing 

viscosity. However, there may be certain situations where Pro may be advantageous over Arg 

due to its neutrality, as will be explained in the Discussion section below. Furthermore, the 

fundamental insight gained from contrasting the effects of Pro on the mAb viscosity and stability 
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relative to Arg and His may provide guidelines for the future selection and design of highly 

potent viscosity-reducing co-solutes for a wide variety of mAbs. 

4.4.4 Effects of osmolytes on mAb stability against aggregation 

To characterize the mAb colloidal stability under thermal stress, the level of irreversible 

soluble aggregates after 4 weeks of storage at 40°C was quantified by SEC. The pre-storage 

stability of the mAb was excellent across all tested formulations, with a monomer content of over 

99% (relative to the total soluble protein content), as seen from Fig. 4.5a. However, mAb 1 

showed a significant loss in soluble monomer content after 4 weeks of storage at 40°C at both 

pH 5 and 6 in 30 mM His(HCl) control buffers, as seen in Dear et al. (33) and Fig. 4.5b, 4.5c. 

The monomer content of the mAb 1 pH 5 and 6 controls were 92.0 and 88.2% respectively. The 

addition of 220 mM Tre suppressed aggregation of mAb 1, yielding 99.5% monomer (33), 

consistent with protein stabilization by a general osmotic depletion effect to favor folding (20, 

21). Similarly, both Pro and Gly suppressed soluble mAb aggregation at all tested co-solute 

concentrations. As seen in Fig. 4.5b and 4.5c, the relative monomer content of the mAb 1 

solutions in 50 mM His with 250 – 1300 mM Pro or Gly were greater than 96.5% after storage, 

compared to the 30 mM His controls with less than 92.0% monomer content. Increasing Pro 

concentration between 250 and 1300 mM progressively inhibited post-storage aggregation at 

both pH 5 (Fig. 4.5b) and 6 (Fig. 4.5c; Table 4.11). However, the overall effect of Pro on both 

viscosity and stability at pH 5 is weak. The pH 6 Pro systems are all at comparable mAb 

concentrations of 195 – 205 mg/mL, and show a clear correlation between higher Pro levels and 

increased storage stability.  
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Figure 4.5. Accelerated storage stability of 193 - 232 mg/mL mAb solutions with addition of 

proline, glycine or histidine. (A) Monomer fraction (of total soluble protein content) 

before storage as a function of co-solute and pH. The intermediate co-solute 

concentration is 750 mM for both Pro systems (pH 5 and 6), and 400 mM for Gly (pH 

5). No initial stability measurements were made for 250 or 400 mM Gly at pH 6. (B) 

Monomer fraction after 4-weeks storage at 40°C as a function of co-solute formulation 

at pH 5. (C) Monomer fraction after 4-weeks storage at 40°C as a function of co-solute 

formulation at pH 6. The 30 mM His(HCl) 4-week storage controls shown by black 

bars were reproduced from an earlier study on the same mAb, as reported in Dear et al. 

(33), where the pH 5 control was at 242 mg/mL, and the pH 6 control was at 224 

mg/mL. (D) Monomer fraction before (blue bars) and after (red bars) 4 weeks of 

storage with histidine at pH 5 and 6 with an additional 250 mM proline. All sample 

concentrations are shown in Tables 3.S8 – 3.S10. The approximate sample 

concentrations for each pH/co-solute concentration pair in (B) and (C) are also shown 

in text boxes on each figure. The monomer fraction was measured by SEC after 

dilution of the storage samples to 2 mg/mL in the SEC mobile phase.  
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In contrast, the stabilizing effects of Gly at pH 5 were diminished at 1300 mM relative to 

250 mM (Fig. 4.5b, Table 4.12). Similarly, 1300 mM Gly at pH 6 did not increase the post-

storage stability as much as 1300 mM Pro (Fig. 4.5c, Table 4.11, 4.12). Thus, while both Pro and 

Gly imparted overall stabilizing effects on mAb 1 relative to 30 mM His, Gly addition beyond 

250 mM proved to be less beneficial. These differing trends can be explained in the context of 

the net effect of Gly and Pro on the protein stability resulting from a competition between 

stabilization of the peptide backbone through crowding effects and destabilization of the 

hydrophobic residue side chains through preferential co-solute interactions, which lead to 

favorable solvation energies for the side chains (20, 21, 40). CH-π interactions between Gly/Pro 

and aromatic residues create favorable solvation energies for hydrophobic side chains (40, 41) 

and destabilize them (conformational instability). However, Pro may contribute more steric 

repulsion or crowding for greater colloidal stability due to its larger size and rigid side chain 

structure, which helps to compensate for the increased conformational instability. In contrast, 

Gly’s small size results in less steric repulsion to counteract the increased conformational 

instability, such that the net effect is reduced overall protein stability relative to 250 mM Gly 

(but still more stable than the 30 mM His control). 

Interestingly, the enhancement of mAb 1’s stability with increasing Pro concentration 

was more pronounced at pH 6, with a 12-fold reduction in monomer loss from 2.4% down to 

0.2% at the highest Pro concentration of 1300 mM (Fig. 4.5c, Table 4.11). Proline at the same 

concentration also nearly eliminated aggregation at pH 5, with a monomer loss of 0.01% (Table 

4.11). However, aggregation was less of an issue overall at pH 5, given the much smaller 

monomer loss at pH 5 relative to pH 6 at each Pro concentration studied (Table 4.11). 

Similar to Pro, His improved mAb 1’s stability with increasing co-solute concentration, 

as seen in Fig. 4.5d. An increase in His concentration from 50 to 250 mM in the presence of 250 

mM Pro caused a nearly five-fold reduction in monomer loss at both pH 5 and 6, down to as low 
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as 0.2% and 0.4% respectively (Table 4.12). As was also the case for the Pro systems (Fig. 4.5b, 

4.5c), the increased His concentration had a much larger effect on mAb stability at pH 6 than at 

pH 5, maintaining 99% monomer retention (relative to the total soluble protein content) after 4 

weeks of accelerated storage, as opposed to 96.5% at 50 mM His (Fig. 4.5d). Furthermore at pH 

6, 250 mM His stabilized the protein more effectively than Pro at the same concentration.  

4.4.5 Contrasting effects of proline and glycine on mAb dynamics at high concentration 

The collective diffusion coefficient Dc of the mAb at high concentration, as measured by 

DLS, is strongly influenced by protein-protein interactions via the osmotic compressibility dπ/dc 

(Eqn. 4.6), where ϕ is the mAb volume fraction and fspcs is a protein-solvent friction term (42).  

 

 𝐷𝑐 =
(1−𝜙)2

𝑓𝑠𝑝𝑐𝑠
∗

𝑑𝜋

𝑑𝑐
                      (4.6) 

As such, osmolyte effects on Dc can be related to change in the strength of the protein-protein 

interactions, where dπ/dc is inversely proportional to the PPI strength (43). The effects of proline 

and glycine on Dc (Table 4.3) and viscosities (Tables 4.1-4.2) were correlated. The parameters 

used to fit Dc are given in Table 4.14.  

 
Co-solute 

conc (mM) 

mAb conc 

(mg/mL) 

D0*10
7
 

(cm
2
/s) 

Dc*10
7
 

(cm
2
/s) 

Dc/D0 PDI β 

Proline 

250 228 4.16 3.70 ± 0.11 0.89 ± 0.03 0.191 ± 0.004 --- 

750 236 3.50 3.54 ± 0.03 1.01 ± 0.010 --- 0.37 ± 0.03 

1300 228 2.92 3.53 ± 0.01 1.21 ± 0.005 --- 0.37 ± 0.05 

Glycine 

250 241 4.44 3.31 ± 0.12 0.75 ± 0.027 0.188 ± 0.007 --- 

750 243 3.95 3.18 ± 0.03 0.81 ± 0.007 0.192 ± 0.006 --- 

1300 235 3.60 2.56 ± 0.03 0.71 ± 0.008 0.212 ± 0.003 --- 

Table 4.3. Dc/D0 of mAb1 at pH 6 with Pro or Gly in 50 mM His(HCl). The ACFs were fit 

with the quadratic cumulant algorithm except for 750 and 1300 mM proline, which 

showed secondary decays and were fit to a double exponential (with stretch 

exponent β). The DLS fit parameters are given in Table 4.12. 
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Interestingly, a prominent second decay mode was observed for 750 and 1300 mM 

proline (Fig. 4.9) even though the samples had already been filtered through 0.22 um filters prior 

to DLS to remove large aggregates. The origin of the second decay mode is unclear, although 

measurements of the mAb-free Pro solvents suggest that the decay mode may correspond with 

entities formed only at ultrahigh Pro concentrations, as discussed in the Supporting Info. The 

ACFs were therefore fit to a stretched double exponential function (Table 4.14). To account for 

differences in mAb 1’s diffusivity due to the formulation solvent viscosities, Dc was normalized 

as Dc/D0, where D0 is measured at infinite dilution in the given solvent. The value of D0 was 

determined from a previous measurement for the same mAb in a 30 mM His buffer (33) and 

corrected for η0 of each formulation using the Stokes-Einstein relation (Eqn. 4.7). 

 

𝐷0 =
𝑘𝐵𝑇

6𝜋𝜂0𝑅𝐻
           (4.7) 

The Dc/D0 of mAb 1 increased with proline concentration to above 1.0, whereas it decreased 

very slightly from 0.75 to 0.71 with increasing glycine concentration (Table 4.3). The PDI of Dc 

also increased with glycine concentration, although the values for proline and glycine at 250 mM 

were comparable. The second decay mode of 750 and 1300 mM proline corresponded to a very 

slow-moving entity/relaxation mode, with Deff/D0 of ~0.006 (Table 4.14). However, the relative 

contribution of this slower decay mode to the overall ACF was small (~30% by intensity; Table 

4.14). This secondary decay was not observed for glycine (Fig. 4.9b) even at the highest glycine 

concentration of 1300 mM. At the same mAb concentration, the increasingly faster Dc/D0 with 

proline can be attributed to more repulsive (or less attractive) protein-protein interactions via the 

dπ/dc contribution to Dc (42). The increase in Dc with proline concentration therefore suggests a 

progressive weakening of the attractive protein-protein net interactions, which is in line with the 

observed reduction in mAb viscosity. In contrast, the negligible change in Dc/D0 with increasing 

glycine concentration suggests that glycine has no discernible effect on the protein interactions. 
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The possible causes for the greatly differing effects of proline and glycine on the mAb 

interactions, viscosity, and stability will be explored further in the Discussion section below. 

4.5 DISCUSSION 

4.5.1 Proline as an alternative viscosity modifier to ionic co-solutes such as Arg and His 

The high concentrations of Pro needed to achieve an acceptable level of viscosity 

reduction for this mAb at pH 6 are impractical, but it will be shown below to be practical in 

mixtures with histidine and imidazole. Since cryoprotectants are already included in most 

lyophilized formulations, proline can be used in place of other cryoprotectants (such as sucrose, 

mannitose, etc.), with the added benefit of improving the viscosity and stability of the 

reconstituted protein at high concentration. Using a cryoprotectant that also functions as a 

viscosity modifier will help to reduce the total osmolality of the mAb drug product, as less Arg, 

His etc. is needed to maintain low viscosities. Pro has also been approved for use in parenteral 

formulations (12), and thus it would be helpful to compare its performance as a viscosity 

modifier against other co-solutes such as Arg and His. Pro shares some physical characteristics 

with Arg – it is an amphipathic molecule whose side chain (pyrrolidine) has been shown in 

simulations to preferentially interact with hydrophobic residues via CH-π interactions (13).  

An important advancement of this work is the demonstration of greater reductions of 

viscosity for a Pro-His(HCl) mixture relative to pure His(HCl). As discussed earlier, the 250:250 

mM His(HCl):Pro binary system was able to reduce the calculated mAb viscosity at 225 mg/mL 

and pH 5 even relative to 500 mM His(HCl) (same total co-solute concentration, not including 

the Cl- counterions), while also providing for a lower co-solute osmolarity of 655 mOsm/L, 

compared to 810 mOsm/L for 500 mM His(HCl) (Table 4.10). An osmolarity of 655 mOsm/L 

may be low enough for injection based on various biopharmaceutical experts. Since Pro is a 

neutral molecule, it is compatible with other ionic co-solutes, creating a large formulation space 
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for binary Pro systems. However, binary Pro-Arg systems were not explored in this work since 

Pro-Arg systems require a third solvent component (a buffering agent), as Arg is a poor buffering 

agent at clinically relevant pH values (pH 5 – 6), leading to a more complicated formulation.  

Furthermore, there are some situations where Pro may be advantageous over ionic co-

solutes such as Arg and His. For example, in formulation conditions where the mAb has a strong 

net charge (ex. low pH far from the pI), increasing the ionic strength may screen out the 

electrostatic repulsion and actually increase the net attraction (1, 17, 18), which has in one case 

led to phase separation (1). It may therefore be preferable to use a neutral viscosity modifier such 

as Pro instead of ionic co-solutes such as Arg and His in order to weaken the non-electrostatic 

PPI without screening out the beneficial electrostatic repulsion. 

4.5.2 Inferring protein-protein interaction from viscosity and stability 

Although protein-protein interactions are commonly measured at low concentration, they 

have rarely been measured at concentrations above 200 mg/mL, even without added co-solutes. 

More recently, neutron scattering (44) and light scattering (3, 4, 45) at high concentration have 

given some insight into how charged co-solutes modify mAb self-association to lower the mAb 

viscosity, as well as demonstrated differences in co-solute binding to the protein surface (46). 

Despite the limited information, it may also be possible to begin to infer how co-solutes 

influence PPI from the degree by which they modify the viscosity, presumably by weakening the 

PPI. For example, Arg+ is known to bind to hydrophobic sites (47). Arg+ is also known to 

reduce the viscosity of highly concentrated mAbs significantly more than inorganic salts such as 

NaCl (15), which do not modify hydrophobic interactions.  

The pH-dependent effect of His and Im on viscosity and stability (Table 4.7, Fig. 4.5d) 

can be explained in terms of the protein net charge and charge distribution, which change with 

pH. Since the mAb pI is 9.3, the mAb has a smaller net positive charge and a greater degree of 

charge anisotropy at pH 6 than at pH 5, where the charge distribution balance is shifted towards 
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positive charges. As a result, the increase in pH from 5 to 6 both weakens the long-ranged 

electrostatic repulsion between mAb molecules and strengthens the local anisotropic electrostatic 

attraction (due to a higher number and probability of attractive electrostatic contacts between 

oppositely-charged sites on neighboring mAb molecules), leading to stronger protein self-

association and higher viscosities. Protonated His and Im may be able to neutralize negative 

residues via ion pairing, and may also make neutral and positive residues more strongly positive 

via interactions between the imidazole functionality and the imidazole/guanidyl side chains of 

the His and Arg residues, respectively (19). As a result, His may be able to increase the protein 

net charge and reduce surface charge anisotropy, thus strengthening global electrostatic repulsion 

while weakening local anisotropic electrostatic attraction. Changes in the mAb net charge at high 

concentration caused by co-solute binding may be quantified in future studies from zeta potential 

measurements, although extremely low protein electrophoretic mobilities at high ionic strength 

and/or concentration may prove challenging for obtaining meaningful measurements. Since the 

mAb has a smaller net charge and greater charge anisotropy at pH 6, modification of the mAb 

charge and charge distribution by His is expected to have a larger effect on the mAb viscosity 

and stability than at pH 5, where there are fewer anisotropic attractive interactions to neutralize. 

The significant differences in the reduction of aggregation and viscosity (ηinh) by His at pH 5 and 

6 (Table 4.7, Fig. 4.5d) are in agreement with this hypothesis, and are indicative of histidine’s 

effect on the electrostatic PPI. The modestly larger reduction in inherent viscosity by His 

compared to Imid may potentially be attributed to its larger molecular size, which allows it to 

contribute more steric repulsion and molecular crowding than Imid at the same molar 

concentration, favoring a more compact folded mAb conformation (20) that leads to fewer 

surface-exposed attraction sites. Correspondingly, the larger reduction in ηinh for Imid with added 

Pro, compared to for His, may likely be attributed to the smaller size of Imid which results in less 

steric hindrance for Pro molecules to approach and interact with the attractive sites on the mAb 
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surface. In addition, the relative increase in added steric repulsion from Pro is greater for Imid 

compared to His, given the smaller occupied volume by Imid. However, the differences in 

viscosity between His and Imid with Pro are not significant enough to support any conclusive 

statements regarding differences in the two co-solutes’ effects on the PPI. 

We now address the pH-dependent effects of Pro on the mAb viscosity and stability. 

Polyol and sugar osmolytes are known to have a pH-dependent effect on protein conformational 

stability at low pH (~2 – 5) (48) due to changes in the protonation state of the carboxylic acid 

side chains (pKa ~ 4) in the aspartic acid and glutamic acid residues. The resulting change in 

protein hydrophobicity (49) modifies the degree of osmolyte exclusion due to repulsion between 

the polar osmolyte OH- groups and hydrophobic protein surface. However, given the lack of 

OH- groups in Pro and the higher pH (5 – 6) in this study, the preferential exclusion mechanism 

cannot explain proline’s pH-dependent effects on the mAb viscosity and stability. Instead, it is 

likely that Pro reduces mAb viscosity and aggregation by modifying the local attractive 

hydrophobic and/or electrostatic interactions directly. Although the pH dependence may reflect 

changes in protein hydrophobicity with pH, the similarity between proline and histidine’s 

beneficial effects on these properties with increasing pH may also indicate modification of the 

electrostatic PPI by Pro, despite proline’s net neutrality between pH 5 and 6. 

 It is possible that the partial positive charge on the pyrrolidine ring side chain (41) as 

well as the polar groups in Pro may interact with charged mAb residues. The greater molar 

efficacy of His for reducing viscosity and aggregation relative to Pro may be due to the larger 

positive charge on its side chain.  For example, nearly three times as much Pro as His (750 vs 

250 mM respectively; Fig. 4.1b; Table 4.7) is needed to reduce the viscosity at 225 mg/mL and 

pH 6 to 40 cP. Similarly, the addition of 1050 mM Pro to a reference condition (50:250 mM 

His:Pro; pH 6) was needed to achieve the same level of aggregation suppression as adding 200 

mM His (Fig. 4.5c, 4.5d). However, although Pro reduces viscosity and aggregation at a lower 
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molar efficiency than His, the observation that it does so in a similar pH-dependent basis 

(suggesting modification of electrostatic PPI) is surprising given its zero net charge.  

4.5.3 Proline amphipathic behavior and modification of hydrophobic PPI 

Proline has been observed to bind to aromatic residues by X-ray crystallography (50). 

Simulations show that Pro interacts with (and binds to) those residues through its pyrrolidine ring 

side chain via CH-π interactions (41). As a result, Pro can potentially shield aromatic residues 

and disrupt hydrophobic PPI via preferential hydration of the protein surface through its 

zwitterionic functionality (51). The stabilization and twofold viscosity reduction of a 200 mg/mL 

polyclonal IgG solution by 250 mM Pro observed in literature (28) has been attributed to this 

effect. However, Pro lowered the viscosity of two other mAbs at low concentration but increased 

the viscosity for one mAb at > 200 mM Pro (52), in contrast to the monotonic behavior (up to 

1300 mM Pro) for the mAb in this study. This variability likely reflects the different distributions 

of hydrophobic and charged interactions sites between the different mAbs. Once the interacting 

sites are saturated or fully screened by the Pro molecules, the addition of further Pro only serves 

to increase the solvent viscosity and therefore the solution viscosity. 

At high proline concentration, proline’s ability to disrupt hydrophobic interactions may 

also be enhanced by the hypothesized formation of dimers with hydrophobic “pockets” (26) or of 

supramolecular aggregates (23, 24) via alignment of the pyrrolidine rings. In both cases, the 

resulting Pro aggregate is strongly amphipathic, with a hydrophilic face (the carboxyl and amino 

groups) and a hydrophobic face (the stacked pyrrolidine rings). This amphipathic structure may 

explain why Pro at 2 M or higher has been shown to be a potent hydrotrope (23), as Pro may act 

as a surfactant to bridge the exposed hydrophobic mAb residues and the solvent molecules, 

subsequently weakening the attractive hydrophobic PPI. The unexpected observed increase in the 

mAb solution turbidity with decreasing viscosity at high Pro concentration (Supporting Info) 

may be attributed in part to the potential formation of Pro aggregates. Similarly, the development 



 189 

of a much slower secondary relaxation mode in the DLS ACFs for 750 and 1300 mM proline, 

which was not present for glycine at the same co-solute concentration nor at 250 mM proline, 

may also indicate structuring of the proline at high concentration and interactions of the mAb 

with the proline superstructure. It is unlikely that this second decay mode is caused by large mAb 

aggregates, as the samples were filtered in order to remove aggregates prior to DLS. There was 

also less irreversible aggregation observed by SEC (Fig. 4.5c) than at 250 mM proline, where the 

second decay was not present. Similarly, although a secondary decay mode is often indicative of 

glassy fluids (53) or percolating networks (54), it is unlikely that the high proline mAb solution 

is approaching a glassy state, given the low viscosities. Instead, the appearance of the secondary 

slow decay mode corresponds to a large reduction in mAb viscosity and increase in 4-week 

storage stability, suggesting that this decay mode corresponds to a beneficial entity/mechanism, 

such as the proposed formation of proline supramolecular aggregates at ultrahigh co-solute 

concentration. However, further investigation with spectroscopic and other orthogonal 

techniques would be warranted to validate this hypothesis in future studies. 

4.5.4 Favorable side-chain interactions: relation to viscosity and stability 

The larger viscosity reductions for Pro relative to the other two osmolytes may be 

explained in part by the strength of the interactions between the osmolytes and protein residue 

side chains. Although all three osmolytes are preferentially excluded from the protein backbone, 

they interact differently with the side chains (21). Trehalose is considered to have the weakest 

side chain interactions of the three, given the small overall free energy change for side chain 

transfer into a 1 M osmolyte solution. In contrast, Pro exhibits strongly favorable side chain 

interactions given the large negative transfer energies (21). More specifically, the transfer 

energies for apolar (hydrophobic) side chains into Tre solutions are positive (unfavorable), 

whereas they are significantly negative (favorable) in Pro solutions (21). The favorable side 

chain interactions of Pro are due to the pyrrolidine ring, which preferentially interacts with 
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aromatic residues and may allow Pro to shield the hydrophobic residues (26, 41). Glycine can 

also interact with aromatic residues via CH-π interactions (41), but to a much weaker extent than 

Pro given the fewer CH-groups available. The stronger side chain interactions may contribute to 

proline’s greater efficacy for weakening local attractive PPI and reducing the mAb viscosity 

compared to Tre and Gly. 

The differences in Pro and Gly’s interactions with the protein side chain may also explain 

their different effects on the colloidal stability of mAb 1. An increase in osmolyte concentration 

is expected to improve mAb conformational stability due to osmotic depletion (20), which in 

turn maintains the mAb in the native folded state and minimizes self-association between 

hydrophobic sites. However, at high total solute (protein + osmolyte) concentrations, the 

increased proximity of the protein molecules to each other in the crowded system may enhance 

local electrostatic and hydrophobic attraction, leading to increased self-association despite the 

greater conformational stability. Proline appears to weaken these attractive interactions, 

evidenced by its efficacy for reducing the viscosity. In contrast, Gly does not appear to do so, as 

indicated by its unfavorable effect on the viscosity. This difference may explain why Pro 

progressively stabilizes mAb 1 with increasing osmolyte concentration (Fig. 4.5b, 4.5c; Table 

4.11), while Gly has the opposite effect (Fig. 4.5b, 4.5c; Table 4.12).  

4.6 CONCLUSIONS 

Proline reduces the viscosity of a concentrated 225 mg/mL mAb 1 solution by up to 3-

fold down to 25 cP at pH 6, but has no effect at pH 5. More interestingly, a 250:250 mM 

His(HCl):Pro binary system causes a greater viscosity reduction at pH 6 (from 84 cP to 31 cP at 

225 mg/mL (calculated)) compared to a His system at the same total co-solute concentration 

(500 mM; 35 cP at 225 mg/mL). Notably, the osmolarity of the His-Pro binary system is 655 

mOsm/L, which may be considered within the acceptable range, below that of the His-only 

system (810 mOsm/L), as Pro does not contribute any counterions to the solution. The lack of 
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charge or counterions for Pro may also make it more advantageous than ionic viscosity-modifiers 

such as Arg and His in certain systems with strong electrostatic repulsion (ex. pH far from pI; 

strongly repulsive B22’s etc.), where increasing the ionic strength through addition of ionic co-

solutes may lead to stronger attraction and eventual phase instability (55). Pro similarly 

progressively increases the protein 4-week 40°C storage stability in terms of the soluble 

monomer content from 92.0% and 88.2% without added co-solute at pH 5 and 6 respectively, to 

≥99% at 1300 mM Pro for both pH values. The reductions in viscosity and aggregation are not 

simply due to osmotic depletion, as two other neutral osmolytes, Gly and Tre, raise both 

properties. The viscosity of the mAb solution decreased from pH 6 to pH 5 without added co-

solute, which may be attributed to the mAb’s larger positive net charge, reduced surface charge 

anisotropy, and weaker local anisotropic electrostatic attraction. It is likely that at pH 6, proline 

also weaken these interactions by modifying charged sites on the protein surface, given the large 

dipole moment of its zwitterionic functionality.  Furthermore, the hydrophobic part of the 

pyrrolidine ring may bind to hydrophobic sites on the protein surface and weaken hydrophobic 

attraction. The faster normalized collective diffusion of mAb 1 at high proline concentration also 

suggests a weakening of attractive protein interactions.  Although co-solute effects on protein 

morphology have rarely been studied at high protein concentrations, they would be warranted in 

the future to better understand how changes in morphology and PPI influence viscosity.  
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4.8 SUPPORTING INFORMATION 

4.8.1 Capillary syringe viscometry 

150 uL of the mAb solution was transferred into a 0.1 ml conical glass vial (Wheaton, 

Millville, NJ), and the flow rate of the solution through a 25-gauge (0.26 mm ID), 1.5” (4 cm) 

Precision Glide needle attached to a 1 ml Luer-LokTM syringe (Becton Dickinson & Co., 

Franklin Lakes, NJ), with the syringe plunger held at the 1 ml mark, was captured by video 

(Kodak Z812 IS zoom digital camera at a frame rate of 30 frames per second) and determined 

from ImageJ image analysis (56). The derivation of the correlation between the liquid volume 

and liquid height in the vial, as well as ΔP across the needle was described previously (31). The 

applied shear rate during each measurement depends on the viscosity of the sample, as described 

previously (31). For the range of viscosities measured in this study (20 – 100 cP), the 

corresponding applied shear rates range from 1300 to 260 s
-1

, respectively. 

4.8.2 Dependence of inherent viscosity on mAb concentration 

The inherent viscosity increase is expected to increase with the mAb concentration, as 

can be seen from Eqn. 4.9, derived from combining the definition of the inherent viscosity (Eqn. 

4.3) with the Ross-Minton viscosity model (35, 57) (Eqn. 4.8) 

 

𝜂

𝜂0
= 𝑒𝑥𝑝 (
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𝜈
𝑐
)        (4.8) 
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[𝜂]

1−[𝜂]
𝑘

𝜈
𝑐
               (4.9) 

where [η] is the mAb intrinsic viscosity, c is the mAb concentration, k is the crowding factor, 

and ν is the Simha shape parameter (35, 57, 58). 
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The dependence of the inherent viscosity on the mAb concentration has also been 

observed experimentally, with the inherent viscosity increasing by between 0.02 to 0.06 mL/g 

per 1 mg/mL mAb (31). The rate of increase in inherent viscosity depends strongly on the co-

solute composition, as seen in previous studies with mAb 1 (31, 33).  

4.8.3 Binary co-solute systems with proline and histidine/imidazole 

The binary 250:250 mM Im:Pro and His:Pro systems afforded the second lowest inherent 

viscosities for pH 6 in the entire study, with corresponding viscosities of 24 cP and 30 cP at 230 

mg/mL, respectively (Fig. 4.4). The lowest ηinh of 13.5 mL/g was obtained at a high Pro 

concentration of 1300 mM buffered with 50 mM His. However, although the addition of 1300 

mM Pro yielded the greatest reduction in ηinh, the binary His-Pro and Im-Pro systems at half the 

co-solute concentration are more practical for subcutaneous injection in terms of tonicity.  

A second process, dilution of lyophilized powder (LD), was utilized to complement the 

above data (from centrifugation filtration, CF) at pH 6. The LD process has an advantage in that 

the final co-solute composition is fully defined from gravimetric analysis. In the CF process, 

there is some uncertainty in this composition due to excluded volume effects, Donnan 

equilibrium and membrane/co-solute interactions during filtration (59, 60). As seen for binary 

co-solute systems with Pro and 240 mM His produced by LD (Table 4.9), ηinh decreased 

modestly by 0.5 mL/g with the increase in Pro concentration between 435 to 870 mM, but 

remained relatively constant between 870 and 1300 mM. The inherent viscosities are comparable 

to that of the binary system with 250:250 mM Pro:His made by CF (Table 4.8). We chose to 

study higher protein concentrations by LD, which may explain in part the slightly higher inherent 

viscosities of the LD systems (Table 4.9), as ηinh may be expected to increase about 0.5 – 0.75 

mL/g at 250 mg/mL mAb versus 225 mg/mL (Supporting Info).   
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4.8.4 Dynamic light scattering of the 1300 mM Pro (mAb-free) buffer 

To determine whether the secondary relaxation mode in the ACFs of the 750 and 1300 

mM Pro system indicated any unusual structures in the mAb solution, or if it arose from the 

concentrated proline itself, the ACF of a placebo buffer with 1300 mM Pro and 50 mM His (to 

replicate the solvent conditions of the highest-Pro conc mAb sample, where the secondary decay 

was most prevalent) was measured in triplicate. As can be seen from Fig. 4.10, the buffer-only 

ACF is very noisy due to the low count rates (~7 kcps), and there is no clear decay. However, an 

approximate, extremely depressed correlation relaxation mode may be discerned, with a possible 

relaxation time of ~1000 us, in the same delay time range as the second relaxation mode in the 

ACFs of the 750 and 1300 mM Pro systems with mAb. It is possible that the ultraconcentrated 

Pro forms some unusual structures, such as the supramolecular Pro aggregates proposed in the 

literature (23, 24), that are responsible for the second decay in the 750 and 1300 mM Pro mAb 

samples. However, the placebo buffer count rates are extremely low (~7 kcps, even at max laser 

power with no attenuation) on the order of solvent background scattering. In contrast, the mAb 

scattering contributes count rates on the order of 500 kcps. As such, it is unclear whether the 

concentrated Pro would have any significant effects on the ACF of the mAb solution, as the 

photon count rates from the Pro is on the same order of magnitude as the background noise.  

4.8.5 Effect of high concentrations of proline, glycine and histidine on mAb turbidity 

Unlike the case for SEC, which is performed at dilute conditions, protein self-association 

may be characterized at high concentration in terms of the solution turbidity (61). An elevated 

turbidity is typically correlated with increased protein aggregation (61, 62) and subsequent 

viscosity increase (4, 63-65). As shown in Table 4.1 at pH 5 and 6, the A350 values (normalized 

to 1 cm) were higher at 500 and 1300 mM Pro than for either 0 or 250 mM Pro, despite the lower 

corresponding viscosities. However, even the highest measured turbidity of 0.5 cm
-1

 at 195 

mg/mL and pH 6 with 1300 mM Pro (Table 4.1) is relatively low, comparable to the turbidity of 
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70 – 100 mg/mL mAb solutions formed by tangential flow ultrafiltration under optimized 

conditions (66-68). Given the expected increase in turbidity with mAb concentration (62), the 

comparable turbidities in this study but at much higher concentrations (>200 mg/mL) indicate a 

low level of insoluble aggregates. Due to small variations in the mAb concentrations, the A350 

was also normalized by the protein concentration (A350/c), as shown in Fig. 4.6. The shapes of 

the A350/c versus proline concentration curves were similar, reaching a plateau. However, the 

values were modestly higher at pH 6 (Fig. 4.6), which may indicate greater aggregation (61, 62). 

At a given proline concentration, the A350/c, the corresponding amount of aggregates from SEC 

and viscosities were higher at pH 6 than at pH 5. However, at a given pH, the slight increase in 

A350/c with proline concentration was unexpected, given the corresponding decrease in inherent 

viscosity (Fig. 4.7a) and increase in % monomer from SEC (Fig. 4.7b), as discussed below.  

In contrast, the elevated inherent viscosities and reduced mAb stability of the glycine-

containing formulations were found to correlate directly with the initial (pre-storage) normalized 

solution turbidity, as seen in Figs. S3a and S3b respectively. The concurrent viscosity and 

aggregation increase with elevated solution turbidities is consistent with the formation of protein 

aggregates (4, 61-65, 69).  

The elevated turbidities observed for the systems with 750 and 1300 mM Pro (Table 4.1, 

Fig. 4.6), relative to 250 mM Pro (Table 4.1, 4.5), Gly (Table 4.2) or His (Table 4.7), are 

suggestive of the presence of Pro aggregates in the mAb solution, which are hypothesized to 

form at high Pro concentration based on simulations (26) and indirect evidence (23, 24, 70). As 

mentioned earlier, the unexpected inverse correlation between the turbidity and viscosity (Fig. 

4.7a) or stability (Fig. 4.7b) of the high Pro concentration solutions is the opposite of the 

correlation seen for Gly (Fig. 4.8a, 4.8b), which exhibits a typical increase in turbidity with 

viscosity due to the presence of viscosity-raising reversible oligomers (4, 63). It is thus possible 
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that the elevated turbidity of the 750 and 1300 mM Pro solutions was caused by the formation of 

viscosity-lowering amphipathic Pro aggregates rather than by protein self-association.  

The formation of Pro super-aggregates is hypothesized to occur at concentrations of 1.5 M or 

higher, based on indirect experimental evidence (23, 24, 70). As such, it may seem unlikely that 

proline aggregation occurs at the concentrations (0.25 – 1.3 M) in this study. However, proline 

aggregates may potentially still form due to the crowded environment in the concentrated 

proline-protein solution, given that the protein contributes to the osmotic depletion of Pro. 

Previously, a sharp and unusual change in proline’s physical properties and its potency as a 

protein solubilizer and stabilizer (as assessed by turbidity reduction for denatured protein 

solutions) was observed at ~1.5 M (23, 24, 70), corresponding to mass concentration and volume 

fractions of 170 mg/mL and 0.17, respectively. In our ~220 mg/mL mAb solutions with 750 – 

1300 mM Pro, the combined mass concentration and volume fraction of the mAb and Pro were 

300+ mg/mL and 0.30, respectively. Thus, the total solute concentration may be sufficient to 

produce enough osmotic depletion to form proline aggregates at 750 and 1300 mM Pro. 

 

 

Figure 4.6. ‘Normalized’ turbidity of ~220 mg/mL mAb solutions with proline or glycine as a 

function of the co-solute concentration and pH. The normalized turbidity was 

calculated by dividing the measured solution turbidity by the mAb concentration. 

The colored lines are a guide to the eye. 
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Figure 4.7. (a) Inherent viscosity and (b) monomer retention after 4 weeks of storage at 40°C as 

a function of initial (pre-storage) concentration-normalized turbidity for mAb 

solutions with 250 – 1300 mM proline in 50 mM His(HCl) buffer at pH 5 – 6. The 

normalized turbidity was calculated by dividing the solution turbidity at 350 nm by 

the mAb concentration. The colored lines are a guide to the eye. 

 

  

Figure 4.8. (a) Inherent viscosity and (b) monomer retention after 4 weeks of storage at 40°C as 

a function of initial (pre-storage) concentration-normalized turbidity for mAb 

solutions with 250 – 1300 mM glycine in 50 mM His(HCl) buffer at pH 5 – 6. The 

normalized turbidity was calculated by dividing the solution turbidity at 350 nm by 

the mAb concentration. The colored lines are a guide to the eye. 
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(a) (b) 

Figure 4.9. DLS ACFs of mAb1 with (a) 250, 750 and 1300 mM proline or (b) 250, 750 and 

1300 mM glycine at pH 6 in 50 mM His(HCl). The data is shown as discrete points, 

while the double exponential fits (750 and 1300 mM proline) and quadratic 

cumulant fits (all others) are shown by the dashed lines. 

 

 

Figure 4.10. DLS autocorrelation function of the 50:1300 mM His(HCl):Pro (pH 6) background 

buffers. The average photon count rate was ~7 kcps across all replicate 

measurements. 
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mAb conc 

(mg/mL) 
pH 

Proline conc η  

(cP) 

η0  

(cP) 

ηinh  

(mL/g) 

A350 

(AU*cm
-1

) mg/mL mM 

209 ± 0.3 6.07 0 0 80 ± 4.6 0.93 21.3 ± 0.3 0.530 

226 ± 0.5 6.15 29 250 106 ± 2.3 0.94 20.9 ± 0.1 0.806 

214 ± 1.9 6.06 86 750 60.0 ± 1.3 1.15 18.5 ± 0.2 0.963 

224 ± 0.3 6.04 138 1200 48 ± 2.9 1.31 16.1 ± 0.3 0.352 

Table 4.4. Dependence of mAb viscosity on proline concentration at pH 6 with 50 mM sodium 

phosphate for mAb solutions formed by centrifugation filtration. 

 

 

mAb conc 

(mg/mL) 
pH 

Tre conc η  

(cP) 

η0  

(cP) 

ηinh  

(mL/g) mg/mL mM 

225 ± 0.1
a 

6.04 0 0 102 ± 1.1 0.93 20.9 ± 0.0 

248 ± 3.8 6.13 56 147 277 ± 43.4 1.10 22.3 ± 0.7 

243 ± 2.2 6.10 51 134 176 ± 1.8 1.08 21.0 ± 0.2 

261 ± 5.6
a 

6.05 83 220 329 ± 18.8 1.05 22.0 ± 0.5 

196 ± 2.0
a 

6.05 83 220 58 ± 4.1 1.05 20.5 ± 0.4 

a. Data from Dear et al ., Pharm. Res. (2017) (33) 

Table 4.5. Dependence of mAb viscosity on trehalose concentration at pH 6 with 30 mM 

His(HCl). The sample in row 5 was obtained by diluting the 260 mg/mL solution in 

row 4 with same-formulation buffer. 

 

 

mAb conc 

(mg/mL) 
pH 

Tre conc η  

(cP) 

η0  

(cP) 

ηinh  

(mL/g) mg/mL mM 

209 6.1 0 0 80 0.93 21.3 

219 6.4 100 264 151 1.22 22.0 

244 6.3 200 529 356 1.40 22.7 

218 6.4 220 582 94 1.46 19.1 

Table 4.6. Dependence of mAb viscosity on trehalose concentration at pH 6 with 50 mM sodium 

phosphate buffer. The mAb solutions were formed by the lyophilization dilution 

(LD) technique. 
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mAb conc 

(mg/mL) 
pH Buffer 

Buffer 

conc 

(mM) 

η  

(cP) 

η0  

(cP) 

ηinh  

(mL/g) 

A350 

(AU*cm
-1

) 

pH 5 

208 ± 4.3 4.93 His 50 21 ± 2.1 0.93 15.0 ± 0.6 0.293 

210 ± 4.0 5.00 His 250 18 ± 0.4 1.06 13.4 ± 0.3 0.422 

pH 6 

205 ± 9.6 5.96 His 50 57 ± 2.4 0.93 20.0 ± 1.0 0.327 

234 ± 5.0 6 His 250 48 ± 0.1 1.06 16.2 ± 0.3 0.293 

230 ± 0.2 6.17 Im 250 47 ± 0.4 0.95 17.0 ± 0.0 0.369 

Table 4.7. Dependence of mAb viscosity on the concentration of buffer species, histidine or 

imidazole (titrated with HCl to pH 5 - 6) for mAb solutions formed by 

centrifugation filtration. 

 

 

mAb conc 

(mg/mL) 
pH Buffer 

Proline conc η  

(cP) 

η0  

(cP) 

ηinh  

(mL/g) 

A350 

(AU*cm
-1

) mg/mL mM 

pH 5 

201 ± 1.0 4.96 His 29 250 17 ± 2.1 1.06 13.7 ± 0.6 0.338 

pH 6 

227 ± 0.8 5.92 His 29 250 31 ± 0.6 1.06 14.8 ± 0.1 0.342 

223 ± 0.3 6.11 Im 29 250 24 ± 0.4 0.98 14.3 ± 0.1 0.393 

 

Table 4.8. Viscosity of binary co-solute systems at pH 5 – 6 with 250 mM proline and 250 mM 

His(HCl) or Im(HCl) for mAb solutions formed by centrifugation filtration. The 

results for His and Im without proline are given in Table 4.7. 

 

 

mAb conc 

(mg/mL) 

Proline conc η  

(cP) 

η0  

(cP) 

ηinh  

(mL/g) mg/mL mM 

260 ± 4.0 50 435 59 ± 0.4 1.12 15.2 ± 0.2 

257 ± 0.8 100 870 55 ± 2.9 1.29 14.6 ± 0.2 

265 ± 0.7 100 870 64 ± 3.3 1.29 14.7 ± 0.2 

238 ± 1.0 150 1300 48 ± 2.6 1.53 14.5 ± 0.2 

246 ± 0.3 150 1300 68 ± 3.8 1.53 15.4 ± 0.2 

Table 4.9. Dependence of mAb viscosity on proline concentration at pH 6 with 240 mM 

His(HCl) for mAb solutions made by lyophilization dilution. 
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Formulation 
Meas. 

pH 

His 

buffer 

pH 

Osmolarity 

(mOsm/L) 

Meas. 

mAb conc 

(mg/mL) 

ηinh  

(mL/g) 

η0  

(cP) 

Calc visc at 

225 mg/mL 

(cP) 

250:250 mM His(HCl):Pro 5.9 6.0 655 227 14.8 1.06 31 

360 mM His(HCl) 6.2 6.0 583 236 15.1 1.25 44 

500 mM His(HCl) 6.0 6.0 810 232 14.2 1.3 35 

Table 4.10. Comparison of the binary Pro-His system (pH 5.9; Table 4.8) with His-only systems 

for the same mAb from Dear et al. at high osmolarities and pH ~6. The samples 

were prepared in pH 6 His(HCl) buffer, with a HCl:His mole ratio of 0.62. The co-

solute osmolarity was calculated using the known His and Pro concentrations, along 

with the HCl concentration calculated with the buffer HCl:His mole ratio. The 

expected viscosity at 225 mg/mL for each system was calculated from the measured 

ηinh (at 219 – 246 mg/mL) (Eqn. 4.2). The first row (Pro-His binary system) is 

replicated from Table 4.8 of this work. All remaining inherent viscosity data is 

reproduced from Table SIII and Figure S14 of Dear et al. (33). 

 

 

 

mAb conc 

(mg/mL) 
pH 

Proline conc 
% monomer by SEC 

after storage at 40°C  % monomer loss 

after 4 weeks 
mg/mL mM 0 weeks 4 weeks 

pH 5 

225 ± 2.2 5.12 29 250 99.4% 98.7% 0.7% 

239 ±1.0 5.15 86 750 99.4% 98.9% 0.5% 

209 ± 0.9 5.27 150 1303 99.4% 99.4% 0.0% 

pH 6 

205 ± 0.4 5.94 29 250 99.1% 96.7% 2.4% 

205 ±  2.9 6.05 86 750 99.0% 97.5% 1.5% 

195 ± 1.3 6.07 150 1303 99.2% 99.0% 0.2% 

 

Table 4.11. mAb soluble aggregation rate and monomer retention under accelerated storage at 

40°C and pH 5 – 6 with 50 mM His(HCl) as a function of proline concentration. 
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mAb conc 

(mg/mL) 
pH 

Glycine conc 
% monomer by SEC 

after storage at 40°C  % monomer loss 

after 4 weeks 
mg/mL mM 0 weeks 4 weeks 

pH 5 

232 ± 3.6 5.16 19 250 99.3% 98.8% 0.5% 

233 ± 4.1 5.18 30 400 99.1% 98.3% 0.8% 

207 ± 0.0 5.38 98 1300 99.1% 97.9% 1.2% 

pH 6 

223 ± 1.9 5.96 19 250 --- --- --- 

193 ± 1.3 6.10 98 1300 99.1% 96.5% 2.5% 

Table 4.12. mAb soluble aggregation rate and monomer retention under accelerated storage at 

40°C and pH 5 – 6 with 50 mM His(HCl) as a function of glycine concentration. 

 

 

 

mAb conc 

(mg/mL) 
pH 

His 

conc 

(mM) 

Proline conc 
% monomer by SEC 

after storage at 40°C  

% 

monomer 

loss after 4 

weeks mg/mL mM 0 weeks 4 weeks 

pH 5 

225 ± 2.2 5.12 50 29 250 99.4% 98.7% 0.7% 

201 ± 1.0 4.96 250 29 250 99.6% 99.4% 0.2% 

pH 6 

205 ± 0.4 5.94 50 29 250 99.1% 96.7% 2.4% 

227 ± 0.8 5.92 250 29 250 99.2% 98.8% 0.4% 

Table 4.13. mAb soluble aggregation rate and monomer retention under accelerated storage at at 

40°C and pH 5 – 6 with 250 mM proline as a function of histidine(HCl) 

concentration. 
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Co-solute 

conc 

(mM) 

η0 

(cP) 

Solvent 

RI 
q (cm

-1
) τd (μs) τslow (μs) A1 Dslow/D0 

Proline 

250 1.00 1.338 265087 38 ± 1.2 --- --- --- 

750 1.19 1.347 266992 40 ± 0.4 6346 ± 1115 0.66 ± 0.02  0.0063 ± 0.0011 

1300 1.42 1.358 269087 39 ± 0.2 7194 ± 501 0.68 ± 0.01 0.0066 ± 0.0005 

Glycine 

250 0.94 1.336 264797 43 ± 1.5 --- --- --- 

750 1.05 1.343 266121 44 ± 0.4 --- --- --- 

1300 1.16 1.350 267577 54 ± 0.6 --- --- --- 

 

Table 4.14. DLS autocorrelation fit parameters for mAb 1 at pH 6 with proline or glycine in 50 

mM His(HCl). All formulations were fit with the quadratic cumulant algorithm 

(with associated polydispersity index PDI), except for 750 and 1300 mM proline, 

which were fit to a double exponential function. 
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Chapter 5: High Concentration Tangential Flow Ultrafiltration of Stable 

Monoclonal Antibody Solutions with Low Viscosities4 

Jessica J. Hung, Ameya U. Borwankar, Barton J. Dear, Thomas M. Truskett and Keith P. 

Johnston 

 

5.1 ABSTRACT 

During production of concentrated monoclonal antibody formulations by tangential flow 

ultrafiltration (TFF), high viscosities and aggregation often cause extensive membrane fouling, 

flux decay and low product yields. To address these challenges, the co-solutes histidine or 

imidazole were added at high concentrations from 250 to 320 mM to reduce the viscosity by up 

to ten-fold relative to conventional low co-solute formulations, to as low as 40 cP at 250 mg/mL. 

At high mAb concentrations of up to 280 mg/mL, the transmembrane flux was increased 

threefold by adding high concentrations of co-solutes that also lowered the viscosity. 

Furthermore, the co-solutes also increased the mAb gel point concentration cg by up to 100 

mg/mL mAb and thus enhanced concentration polarization-driven back-diffusion of the mAb at 

the membrane wall, which led to increased fluxes. The low viscosity and hollow fiber filter 

modules with straight flow paths enabled more uniform TMP and wall shear stress τw profiles, 

which mitigated the reversible flux decay that results from an axial decline in the local TMP. The 

concentrated mAb was stable by SEC before and after extended storage at 4°C and 37°C. 

5.2 INTRODUCTION 

For subcutaneous (subQ) delivery of monoclonal antibodies (mAb) and other protein 

therapeutics, the desired dosage often requires protein concentrations of 150 mg/mL or higher 

                                                 
4 This chapter was previously published as Hung, JJ, Borwankar AU, Dear BJ, Truskett TM, Johnston KP. “High 

concentration tangential flow ultrafiltration of stable monoclonal antibody solutions with low viscosities” J. Membr. 

Sci., 2016; 508:113-126. The first-author was responsible for the design and execution of the experiments, data 

analysis and interpretation, intellectual development and writing of the manuscript. 
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given the small injection volume of 1.5 mL (1). At these concentrations, attractive short-ranged 

interactions between proteins may produce aggregation (2) and/or high viscosities (3, 4) above 

the desired limit of 20 – 50 cP for subQ injection (5). Even though tangential flow filtration 

(TFF) is used commonly for manufacturing concentrated proteins, relatively few publications 

have reported results for concentrations above 150 mg/mL. Here, low fluxes in TFF and 

concentration polarization resulting from high viscosities (3, 4, 6) may result in protein gelation, 

membrane fouling and protein aggregation (7). Thus, novel concepts would be highly beneficial 

for weakening protein interactions to reduce viscosity and aggregation, both to improve TFF 

ultrafiltration and to advance subcutaneous injection at high concentrations.  

Several studies of TFF have optimized the transmembrane pressure (TMP), cross-flow 

rates and shear stress to reach concentrations of 150 to 200 mg/mL (6, 8-12). These studies have 

attempted to minimize protein aggregation during filtration (6, 8, 13) and to avoid large viscosity 

increases and the associated flux decay (6, 8, 14-17) and large axial pressure drops ΔP (3, 12), 

both of which limit the maximum achievable mAb concentration. The large pressure drops may 

exceed pump capacity (3, 4) and increase axial variation in TMP, with undesirably high TMP 

values at the influent port (12, 15, 16) and back-filtration near the effluent port where the TMP is 

negative (12). The TMP is typically optimized based on the transition point between the 

pressure-dependent and pressure-independent regions of the flux-TMP profile, which is also 

known as the ‘knee-point TMP.’ To maximize the membrane flux while minimizing the risk of 

protein gelation, the TMP should be maintained near this optimal value (6).  As protein 

concentration increases, it was found that the optimal TMP decreases (6). The low optimal TMP 

is problematic since high TMPs would be desirable to overcome losses in protein fluxes at high 

concentrations resulting from concentration polarization and fouling. In an alternative approach, 

single-pass TFF has been used to reach a final mAb concentration of 225 mg/mL by eliminating 

the recirculation loop to minimize mAb exposure to high shear stresses in the pump head (13). 
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In TFF, fouling and concentration polarization may be mitigated by applying an 

appropriate wall shear stress τw or shear rate γw to sweep protein molecules near the wall back 

into the bulk flow (14, 18). If the shear stress is too large, it may cause protein denaturation and 

aggregation (19), especially in the presence of air-solution and solution-solid interfaces (20, 21). 

For proteins, flat sheet cassettes (filter modules) are typically used for TFF due to facile 

scalability and high fluxes (6, 8-10, 13, 22, 23). However, given the serpentine flow path, a high 

local τw is required in the stagnation zones in the 90-degree bends to mitigate protein fouling 

and concentration polarization, but this may cause protein denaturation and aggregation. For 

example, an average τw of 200 – 300 Pa is recommended for ultrafiltration of concentrated mAb 

solutions at typical feed flow rates of 300 – 400 LMH (liters per square meter per hour) with the 

flat sheet geometry (6, 8). In contrast, more uniform flow in the hollow fiber geometry may 

avoid the possibility of high local values of τw to minimize shear-induced protein aggregation, 

particularly at high concentrations. Recent advancement in the design of asymmetric hollow 

fiber membranes make them more attractive for protein separations given improved fluxes (14, 

24). 

The design of mAb formulations with lower viscosities at high concentrations would be 

highly beneficial for advancing ultrafiltration in TFF. In TFF, lower viscosities would enable 

higher fluxes, lower axial ΔP, and better control of the TMP for lower values of τw. The solution 

viscosity exhibits an exponential dependence on the mAb concentration, as described by the 

Ross-Minton equation (4, 25) (Eqn. 5.1),  

                                    η = η0*exp((c[η])/(1-k/v*c[η]))                         (5.1)  

where η is the solution viscosity, η0 is the solvent viscosity, c is the mAb concentration, [η] is the 

intrinsic viscosity, k is the crowding factor and ν is the Simha shape factor. To first order, the 

intrinsic viscosity [η] is an effective specific volume of the mAb molecule at infinite dilution (4, 

26), whereby the viscosity increases with [η]. Furthermore, the effect of pair-wise interparticle 
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interactions on η may be captured by [η], as described in a virial expansion of viscosity as a 

function of mAb concentration (4). The level of the exponential increase in viscosity may be 

ameliorated by weakening attractive intermolecular interactions at higher concentrations to lower 

[η]. Even when protein-protein interactions are repulsive at dilute conditions, they may become 

attractive at high concentrations (2, 4) due to anisotropic short-ranged electrostatic and 

hydrophobic interactions (27) at small protein separation distances <5 nm (28). The anisotropic 

nature of these interactions arises from the heterogeneous distribution of charged and 

hydrophobic residues on the protein surface (29-31).  

Recently, strategies to lower the solution viscosity and improve mAb stability by the 

addition of high concentrations (150 – 1000 mM) of co-solutes are gaining attention. In some 

cases, electrostatic interactions can be modulated by the addition of salts to screen the protein 

charge and minimize attractive local anisotropic interactions (4, 11, 32-35). Furthermore, 

hydrophobic salts have been hypothesized to adsorb on hydrophobic sites and further screen 

hydrophobic interactions, resulting in large viscosity reductions (36, 37). The amino acids 

arginine (5, 28, 38-43) and histidine (44) in the protonated form have been shown to produce 

significant viscosity reductions at high co-solute concentrations without adversely impacting the 

mAb stability. The two are hypothesized to screen both electrostatic and hydrophobic 

interactions via a similar binding mechanism (39, 45, 46). Alternatively, we introduced a concept 

of adding a high concentration of a nonionic crowding agent, for example the disaccharide 

trehalose (47, 48) to provide a depletion attraction force (49, 50) to osmotically compress 

proteins to attempt to raise the stability. According to a free energy model, the compression 

generates nanoclusters of primary colloidal charged spheres, whereby the protein may adopt a 

more stable conformation through a self-crowding mechanism (51, 52). Despite the benefits of 

co-solutes on protein viscosity and stability, to our knowledge, protein solutions with elevated 

concentrations of co-solutes have not been formed by TFF. 
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Herein we utilize high concentrations of histidine or imidazole with trehalose as co-

solutes to form stable solutions of a human IgG1 mAb by TFF with viscosities as low as 70 and 

40 cP at 280 and 255 mg/mL, respectively. Histidine at low concentrations is a common 

pharmaceutical buffer that may preferentially bind to and shield interaction-prone mAb residues 

to mitigate protein network formation (reversible aggregates) and possibly reduce the viscosity 

significantly. In control experiments with low co-solute concentrations, the solutions gelled and 

were ~10 times more viscous than the formulations with high concentrations of co-solute, 

resulting in poor transmembrane fluxes. The low viscosities of the solutions and the choice of the 

hollow fiber geometry are shown to provide for low axial ΔP, resulting in a relatively uniform 

and small wall shear stress and more uniform TMP. The high concentrations of co-solute also 

enhance concentration polarization-driven back-diffusion of the mAb near the membrane wall at 

high mAb concentration by increasing the mAb gel point concentration cg. Because these factors 

mitigate flux decay from stagnation at the membrane wall and from axial decline in the local 

TMP, it became possible to achieve relatively low losses in membrane flux (low permeation 

resistance). A secondary objective was to show that the TFF process is well suited for forming 

concentrated protein solutions with high co-solute levels and low viscosities to complement 

previous techniques (11, 36, 37, 41-43, 47, 48). The mAb solutions were diluted and studied by 

SEC before and after extended storage at 4°C to show that the formation of irreversible 

aggregates was minimal. 

5.3 MATERIALS AND METHODS 

5.3.1 Materials 

The IgG1 mAb used in this study was provided by AbbVie as a concentrated solution at 

130 mg/mL in a proprietary buffer containing 10 mM histidine, 4% mannitol and 0.1% Tween-

80 at pH 5.8 (referred to as the “freezing buffer”). The mAb solution was aliquoted into 5 ml 
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sub-samples into 5-mL cryogenic vials (Corning Incorporated, Corning, NY) and frozen using a 

dry ice-ethanol freezing mixture for extended storage at -80°C. α-trehalose dihydrate (Tre) was 

purchased from Ferro Pfanstiehl Laboratories Inc., Waukegan, IL. All other chemicals (L-

histidine (His), imidazole (Im), citric acid monohydrate (CitrA), hydrochloric acid (HCl), o-

phosphoric acid (PhosA)) were purchased from Thermo Fisher Scientific, Fair Lawn, NJ. 

Disposable 0.22 μm polyethersulfone (PES) bottle top and 13 mm syringe sterile filters were 

obtained from Celltreat Scientific Products, Shirley, MA (product codes 229717 and 229746). 

Disposable 50 kDa PES MidiKros hollow fiber filter modules with a length of 20 cm and an ID 

of 0.5 mm (36 fibers and 115 cm2 area, part no. D02-E050-05-N) or 1.0 mm (12 fibers and 75 

cm2 area, part no. D02-E050-10-N from Spectrum Labs, Rancho Dominguez, CA) were utilized 

for TFF. Amicon Ultra-15 Ultracel – 30K centrifugal filters were purchased from Merck 

Millipore Ltd. Ireland.  

5.3.2 Diafiltration and ultrafiltration to 250 mg/mL by TFF 

Buffers were prepared at the desired co-solute composition and sterile filtered with the 

Celltreat bottle top PES filters and then degassed under vacuum for 30 minutes. The frozen mAb 

stock (25 mL in 5 vials) was thawed in a 4°C water bath and diluted with an equal volume (25 

mL) of the buffer, resulting in a mAb concentration of 65 mg/mL. The diluted mAb solution was 

gently mixed in a 50-mL centrifuge tube, which served as the retentate reservoir during the TFF 

experiments. In two of the experiments, the buffer exchange was done at a lower concentration 

of 20 mg/mL to attempt to form less turbid solutions. In one of these experiments, the diluted 

mAb solution was additionally sterile-filtered using the 0.22 µm bottle top filters and degassed 

prior to buffer exchange. 

The diluted mAb solution was buffer-exchanged at constant concentration with 

permeation of six diavolumes (150 mL) of the desired formulation buffer with a KrosFlo 

Research II TFF system (Spectrum Labs, Rancho Dominguez, CA) operated in a constant-
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volume mode. A schematic of the TFF setup is given in Fig. 5.6. The TMP was maintained at 

0.80 bar using a KrosFlo automatic backpressure valve (Spectrum Labs, Rancho Dominguez, 

CA), which regulated the pressure by constricting the retentate line. The feed cross-flow rate was 

set at 100 mL/min for the 1.0 mm ID filter module and 220 mL/min for the 0.5 mm ID filter 

module, corresponding to calculated wall shear rates inside each fiber of 1415 and 8300 s
-1

 

respectively. The retentate reservoir was gently mixed throughout the process using a Vari Mix 

Platform Rocker (Thermo Fisher Scientific, Fair Lawn, NJ) set at the maximum speed and 

rocking angle along with periodic hand swirling. The buffer-exchanged solution was recovered 

and sterile filtered, then stored overnight at 4°C, after which it was concentrated to ~250 mg/mL 

the following day using the 1.0 mm ID filter module.  

When the 1.0 mm ID filter module was used during diafiltration, the filter membrane was 

cleaned between diafiltration and ultrafiltration to recover membrane performance. When the 0.5 

mm module was used for the diafiltration step, the corresponding ultrafiltration was performed 

with a new 1.0 mm ID module. The new filters were first flushed with 200 mL of DI water 

without recirculating or permeating any material in order to flush out residual glycerin 

impurities. Both the new and used membranes were then cleaned prior to filtration by permeating 

4 mL DI water/cm
2
 membrane area, circulating 0.5N NaOH for 30 minutes to decompose 

adsorbed protein, followed by permeating another 4 mL DI water/cm
2
 membrane area to flush 

the residual NaOH and degraded protein out of the membrane pores. A normalized water 

permeability (NWP) test was then conducted to check the performance of the regenerated 

membrane prior to ultrafiltration. The NWP was also determined for the fouled membrane after 

both diafiltration and ultrafiltration. 

The buffer-exchanged mAb solution was concentrated from 65 mg/mL to 250 mg/mL by 

ultrafiltration using the 1.0 mm ID hollow fiber module. The feed cross-flow rate was initially 

kept at 100 mL/min (corresponding to a cross-flow flux of 800 LMH) and the TMP was 
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maintained at 0.80 bar. When the mAb solution became too viscous (> 150 cP, the TMP could 

no longer be regulated. At this point, the TMP was maintained at 0.80 bar by partially restricting 

the permeate line (to increase the permeate back-pressure) and decreasing the feed cross-flow 

rate (to decrease ΔP across the filter module). The retentate was kept well-mixed using the 

rocker set at the maximum speed. The rocker angle for the Vari Mix Platform Rocker was 

gradually reduced over time as the fluid level in the retentate reservoir decreased in order to keep 

the feed and retentate return lines submerged. The retentate concentration at any given time was 

estimated based on the permeate mass, which was monitored in real time, assuming no 

permeation of mAb through the membrane, and was subsequently verified by UV-Vis 

spectroscopy via 150 μL aliquots. The instantaneous flux was also determined by the change in 

permeate mass in one-minute intervals. The final 250 mg/mL solution was recovered and mixed 

by gentle pipetting to homogenize the solution prior to characterization by DLS, UV-Vis 

spectroscopy and syringe capillary viscometry. 

Low co-solute controls were also prepared by centrifugation filtration, as described in the 

Supporting Information, to place the results from TFF in perspective.  

5.3.3 TFF membrane fouling characterization 

The extent of membrane fouling at the end of ultrafiltration was assessed by measuring 

the percent reduction in the normalized water permeability (NWP). The DI water flux of the 

cleaned membrane was measured at room temperature (20°C) and a TMP of 0.25 bar, 0.50 bar 

and 0.8 bar before the start of ultrafiltration. The pre-ultrafiltration NWP in LMH (liters per 

square meter membrane area) per bar of applied TMP was calculated from the slope of the water 

flux vs TMP curve. The NWP of the fouled membrane after ultrafiltration was measured in the 

same way after the membrane was first washed by recirculating 200 mL DI at a cross-flow flux 

of 800 LMH for 10 minutes to recover reversibly adsorbed protein. 
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5.3.4 mAb concentration determination and turbidity by UV-Vis spectroscopy 

The mAb concentration in the intermediate and final solutions was measured in duplicate 

at 500x dilution using a Cary 60 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, 

CA). The concentrated mAb solution was diluted in 50 mM pH 6.4 sodium phosphate buffer, and 

the absorbance at 280 nm was measured in a QS quartz cuvette (Hellma GmbH and Co, 

Mullheim, Germany) with a path length of 1 cm. The absorbance was converted to a mass 

concentration via the Beer-Lambert law using the provided mAb extinction coefficient of 1.42 

mL/mg/cm. The turbidity of the buffer-exchanged 20 mg/mL mAb stock as well as of the 

concentrated mAb solution was measured undiluted using a Cary 60 UV-Vis spectrophotometer 

(Agilent Technologies, Santa Clara, CA) as described in the Supporting Information. 

5.3.5 Syringe capillary viscometry 

The viscosity of the mAb solution was measured at room temperature in triplicate using a 

custom syringe capillary viscometer as described previously (47).  Briefly, a 25G (ID = 0.1 mm; 

L = 1.5”) Precision Glide needle (Becton Dickinson & Co.) was attached to a 1.0 mL Luer-

LokTM syringe (Becton Dickinson & Co.). A 100 – 125 μL aliquot of the solution was placed in 

a 0.1 mL conical vial (catalog no. 03-341-15; Wheaton, Millville, NJ). The solution was warmed 

to 25°C with a heating block (Thermo Scientific, Waltham, MA) and drawn into the syringe, and 

the flow rate of the solution through the needle was determined by ImageJ image analysis (53) of 

a video taken with a Kodak Z812 IS zoom digital camera. The change in the solution column 

height was tracked over time and correlated to the sample volume based on an established 

calibration curve, as described in the Supporting Information. The flow rate was correlated to a 

viscosity based on the Hagen-Poiseuille equation, using a calibration curve determined from a set 

of viscosity standard solutions. The viscosities measured at high concentration by the capillary 

viscometer correspond to an estimated shear rate of 25 - 500 s
-1

, as demonstrated in the 
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Supporting Information, assuming a Newtonian shear response to fluid flow (n = 1 power-law 

dependence between viscosity and shear rate) (54).  

5.3.6 Size exclusion chromatography 

For characterization of soluble irreversible aggregate levels in the final solutions, the 

mAb solution was diluted to 2 mg/mL in the mobile phase (92 mM NaHPO4, 211 mM Na2SO4, 

pH 7). The standard solution was prepared by diluting freshly-thawed mAb monomer stock (as 

provided in the original freezing buffer at 130 mg/mL) in the mobile phase. The diluted samples 

were sterile filtered through a 0.22 μm PES syringe filter (Celltreat Scientific Products, Shirley, 

MA). Duplicate 10 μL injections of each sample were analyzed with a Waters Breeze HPLC 

(Waters Corporation, Milford, MA) equipped with a Tosoh Biosciences TSKgel3000SWXL 

column (Tosoh Corporation, Tokyo, Japan) and operated at a mobile phase flow rate of 0.5 

mL/min. The eluate was monitored by the UV absorbance at 214 nm and 280 nm. The soluble 

(small, irreversible) aggregate content was quantified by the percentage monomer as determined 

from the ratio of monomer and aggregate peak areas for the diluted samples. The insoluble 

(large, irreversible) aggregate content was quantified by the monomer recovery, which was 

determined from the ratio of the monomer peak areas for the dilute and concentrated solutions 

for the post-ultrafiltration samples, and for the pre and post-storage solutions for the storage 

stability tests.  

5.3.7 Sample storage stability study 

Small 150 μL aliquots of the final mAb solution were stored in capped 0.1 mL conical 

vials (Wheaton, Millville, NJ) sealed with Parafilm. The sealed vials were stored in a -40°C 

freezer, in a refrigerator at 4°C and in a water bath at 37°C for up to 8 weeks. To minimize 

evaporative losses, the samples stored at 37°C were additionally sealed with three additional 

alternating layers of aluminum foil and Parafilm. Individual aliquots were removed from storage 
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at 4 days, 1 week, 2 weeks, 4 weeks and 8 weeks and characterized by UV-Vis spectroscopy, 

syringe capillary viscometry and DLS measurements at a scattering angle of 90°. The samples 

were discarded after characterization, so that a fresh aliquot was used for each time point. 

 

5.4 RESULTS AND DISCUSSION  

5.4.1 Addition of high concentrations of co-solute reduces solution viscosity at 250 mg/mL 

mAb 

We begin by describing control experiments with low co-solute concentrations. As seen 

in Table 5.1, these solutions formed by centrifugation filtration (CF) buffered with 10 mM His 

(freezing buffer) or 30 mM His were extremely viscous, exceeding 200 cP at 240 mg/mL and 

400 cP at 270 mg/mL. These low co-solute controls had a large inherent viscosity  

 

                                                          𝜂𝑖𝑛ℎ =
ln(

𝜂

𝜂0
)

𝑐
                       (5.2) 

of ~22 mL/g. To some extent, ηinh normalizes the solution viscosity η for the mAb concentration 

c and solvent viscosity η0 (55). The inherent viscosity qualitatively reflects the strength of 

attractive interactions that raise the viscosity in a similar manner as for [η]. The addition of 150 

mM NaCl lowered ηinh to 18.0 mL/g, likely indicating a weakening of attractive interactions by 

electrostatic screening, as observed for certain mAbs previously (4, 11, 32). The same low co-

solute solution in the freezing buffer was significantly more viscous when manufactured by TFF 

(Table 5.2), as will be explained below, increasing to 550 cP with a ηinh of 26 mL/g at 240 

mg/mL mAb. Similarly high viscosities were obtained for a co-solute-free control mAb solution 

in DI water (Table 5.2, Fig. 5.1).  
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mAb 

conc 

(mg/mL) 

Exc 

1 

Exc 1 

conc 

(mM) 

Exc 2 

Exc 2 

conc 

(mM) 

Exc 

3 

Exc 3 

conc 

(mM) 

pH 
η  

(cP) 

η0  

(cP) 

ηinh 

(mL/g) 

Turbidity 

(AU*cm-

1) 

DF 

time 

(min) 

UF 

time 

(min) 

281 ± 8.7 Freezing buffer (replicate 1) 6.1 424 0.98 21.6 0.376 0 75 

271 ± 0.5 Freezing buffer (replicate 2) 6.1 460 0.98 22.7 0.388 0 75 

238 ± 3.3 His 30 HCl 19 --- --- 6.2 188 0.98 22.1 0.388 70 54 

230 ± 2.8 His 30 HCl 19 NaCl 150 6.0 61 0.98 18.0 0.581 85 69 

Table 5.1. Viscosity (η) and filtration times for low co-solute control solutions made by 

centrifugation filtration (CF). The diafiltration (DF) time corresponds to buffer 

exchange into 6 diavolumes and subsequent concentration to ~80 mg/mL mAb. The 

ultrafiltration (UF) time corresponds to concentration from ~80 mg/mL to 250 

mg/mL. No diafiltration step was required for the controls in the freezing buffer. 

The inherent viscosity ηinh was calculated from η and the measured solvent 

viscosity η0. 

 

mAb conc 

± stdev 

(mg/mL) 

Tre 

conc 

(mg/

mL)  

Base 

Base 

conc 

(mg/

mL)  

Acid 

 Acid 

conc 

(mg/

mL) 

pH 
η 

(cP) 

η0 

(cP) 

ηinh 

(mL/

g) 

[η] 

(mL/g) 
k/ν 

DF 

time 

(min) 

UF 

time 

(min) 

242±2.5 Freezing buffer 6.4 559 0.98 26.2 16.3 0.095 0a 99 

245±3.6 DI water 6.7 729 0.93 27.2 20.6 0.047 150 96 

282±3.7b,c 40 His 50 CitrA 17 6 66 1.11 14.5 12.1 0.041 68d 373e 

241±0.3b 40 His 50 CitrA 17 6 50 1.11 15.8 6.2 0.403 253 136 

251±18.5 50 His 50 PhosA 12 6 80 1.12 17.0 13.5 0.056 270 100 

252±0.5 50 Im 17 CitrA 10 7 86 1.07 17.4 11.1 0.132 284 145 

262±4.5 50 Im 17 HCl 7 6.4 133 0.99 18.7 11.9 0.112 243 147 

a. No diafiltration step was needed for the freezing buffer solution 

b. The mAb solution was buffer exchanged at 20 mg/mL instead of 60 mg/mL 

c. The mAb solution was additionally degassed before diafiltration and ultrafiltration (optimized TFF procedure) 

d. Buffer exchanged using a 115 cm2 area membrane (all other rows buffer exchanged with 75 cm2 membrane), leading to 

faster permeation rate 

e. Larger sample volume (250 mL at start of ultrafiltration) compared to other rows (50 mL at start of ultrafiltration) 

Table 5.2. Viscosity (η) and filtration times of low and high co-solute solutions made by 

tangential flow filtration (TFF). The inherent viscosities (ηinh) were evaluated at 

the final mAb concentration (~250 mg/mL), while the intrinsic viscosity [η] and 

combined crowding-Simha shape factor k/ν were fit from the viscosity profile. 

Alternating shaded rows indicate different formulations. The 280 mg/mL replicate 

of the 40:50:17 mg/mL Tre:His:CitrA solution corresponds to Replicate 4 and the 

241 mg/mL replicate corresponds to Replicate 1 (Fig. 5.2). 
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Figure 5.1. mAb solution viscosities during ultrafiltration to 250 mg/mL mAb by TFF 

plotted on a (a) linear and (b) log scale. The numbers in the formulation names 

represent concentration of each excipient in mg/mL.  The solid lines represent two-

parameter fits to the data by the Ross-Minton equation. 

We now show that the addition of high concentrations of histidine (50 mg/mL = 320 

mM) combined with trehalose (40 to 50 mg/mL = 105 – 130 mM) to the mAb solution resulted 

in a large reduction of the solution viscosity (η), particularly at the highest mAb concentrations. 

Remarkably, the high co-solute solutions manufactured by TFF were significantly less viscous 

than the low co-solute controls made by both TFF and CF. The high co-solute solutions remained 

below 50 cP with phosphoric acid (PhosA) up to 220 mg/mL and with citric acid (CitrA) all the 

way to ~260 mg/mL, corresponding to ηinh of 17.0 and 14.5 mL/g respectively (Fig. 5.1a, Table 

5.2). On a semi-log plot (Fig. 5.1b), the slope of the viscosity profile gives a qualitative measure 

of [η] of the mAb in the given buffer, as described by the Ross-Minton model in Eqn. 5.1. The 

noticeably smaller slope for the high co-solute solutions (Fig. 5.1b) and two-parameter fits of the 

viscosity profiles to the Ross-Minton model (Fig. 5.7) both indicated a significant reduction in 

ηinh and [η] by the addition of high concentrations of co-solute (Table 5.2). Although the two 

formulations with high concentrations of His both resulted in low η at 250 mg/mL, the solution 

with CitrA as the counteracid was slightly less viscous, as shown in Fig. 5.1. Similarly low 
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viscosities were also observed when a structurally-analogous base, imidazole (Im), was used 

instead of His as the crowding agent, as shown in Fig. 5.1 and Table 5.2.  

 To further investigate whether trehalose or histidine generated the significant viscosity 

reduction, additional centrifugation filtration experiments were performed at pH 6 with high 

concentrations of either trehalose (Tre) alone or His-CitrA alone. The addition of 220 mM Tre to 

the formulation buffered with 30 mM His did not affect the mAb inherent viscosity, which was 

22 mL/g (Table 5.1, 5.3). In contrast, the solutions with 320:80 mM His:CitrA had significantly 

lower inherent viscosities of 14.5 – 15.5 mL/g (Table 5.3), comparable to that of the Tre-His-

CitrA solutions made by both CF (Table 5.3) and TFF (Table 5.2). Thus the large viscosity 

reductions observed by TFF in the high co-solute systems may be attributed to the His (and by 

extension, Im) rather than Tre. Histidine’s effect on mAb viscosity has also been seen in a study 

by Chen et al. (44), where up to 60 mM His decreased the viscosity of an IgG2 mAb by up to 2x 

at 150 mg/mL mAb. However, although His and Im reduced the viscosity for the mAb’s in 

Chen’s study and ours, it does not mean that this effect may be generalized to other mAbs. Note 

that the large deviation in viscosity seen for the freezing buffer solutions prepared by TFF versus 

CF is not observed for the Tre-His-CitrA solution (Table 5.2, 5.3). It is likely that the low level 

of reproducibility for the freezing buffer solutions is caused by the ultrahigh viscosities at high 

mAb concentration, which results in significant pathway-dependent aggregation and gelation. In 

contrast, the much less viscous Tre-His-CitrA solutions that do not gel show better 

reproducibility between filtration techniques. 
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mAb 

conc ± 

stdev 

(mg/mL) 

Exc 

1 

Exc 1 

conc 

(mM) 

Exc 

2 

Exc 2 

conc 

(mM) 

Exc 

3 

Exc 3 

conc 

(mM) 

pH  
η  

(cP) 

η0 

(cP) 

ηinh 

(mL/g) 

Turbidity 

(AU*cm
-

1
) 

DF 

time 

(min) 

UF 

time 

(min) 

261 ± 5.6 His 30 HCl 17 Tre 220 6.1 329 1.05 22.0 0.421 90 75 

267 ± 2.0 His 322 CitrA 79 --- --- 5.9 69 1.10 15.5 0.427 73 50 

270 ± 0.5 His 322 CitrA 79 --- --- 6.0 54 1.10 14.5 0.409 30 42 

265 ± 6.1 His 322 CitrA 79 Tre 106 5.8 85 1.11 16.4 0.341 73 75 

242 ± 0.2 His 322 CitrA 79 Tre 106 6.0 48 1.11 15.6 0.405 30 42 

Table 5.3. Viscosity (η) and filtration times for high co-solute solutions made by 

centrifugation filtration (CF). The diafiltration (DF) time corresponds to buffer 

exchange into 6 diavolumes and subsequent concentration to ~80 mg/mL mAb. The 

ultrafiltration (UF) time corresponds to concentration from ~80 mg/mL to 250 

mg/mL. The inherent viscosity ηinh was calculated from η and the measured solvent 

viscosity η0. 

The marked reduction in [η] and ηinh by addition of high concentrations of histidine and 

imidazole will now be shown to be consistent with a weakening of local attractive protein 

interactions. In the low co-solute (freezing buffer) and DI water formulations, the mAb exhibited 

an [η] of 16 and 20 mL/g, respectively, with a sharp increase in viscosity with mAb 

concentration. The viscosity was similar to that of an ‘ill-behaved’ viscous mAb with strong 

local protein-protein interactions from a study by Liu et al., where a sharp deviation from the 

Ross-Minton model (4) was observed with an assumed [η] of 6.3 mL/g. In contrast, the fits of the 

viscosity profiles of two ‘well-behaved’ non-viscous mAbs in the same study were excellent 

with this value of [η]. However, if both [η] and k/ν were fit by non-linear regression, [η] was 

found to be approximately 9 mL/g for the well-behaved antibodies, while the ill-behaved 

antibody exhibited a large [η] of 30 mL/g (4), similar to our results in the low co-solute and DI 

formulations. The addition of high concentrations of His and Im reduced [η] to 11 – 13 mL/g 

(Table 5.2), more closely approaching the [η] values of 8.4 – 8.6 mL/g seen in earlier studies for 

a non-viscous human IgG antibody (56) and a polyclonal antibody (26). Polyclonal antibodies 

are known to exhibit weaker interactions and lower viscosities in some cases than monoclonal 
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antibodies (11). On the basis of these studies, the reduction of [η] from 20 mL/g to as low as 11 

mL/g in this study suggests that the addition of the co-solutes His/Im with Tre significantly 

weakened the attractive protein interactions. The viscosity behavior can be further characterized 

by the parameter k/ν (Table 5.2), which varied markedly between the low and high co-solute 

solutions, as discussed in the Supporting Information. 

A gradual increase in ηinh with concentration was also observed for all of the mAb solutions, as 

seen in Fig. 5.8. However, the ηinh of the high co-solute solutions were consistently nearly two-

fold lower than that of the low co-solute solutions at all mAb concentrations (Table 5.2, Fig. 

5.8), likely indicating a significant reduction in attractive protein interactions by co-solute and 

mAb interactions, leading to the lower viscosities. 

 

  

Figure 5.2. Relative reproducibility and reversibility of the 40:50:17 mg/mL Tre-His-CitrA 

mAb solution viscosity at pH 6. (a) Viscosity of the Tre-His-CitrA system as a 

function of four diafiltration conditions as described in Table 5.4. (b) Reversibility 

of Replicate 4 mAb solution viscosity between 150 and 280 mg/mL during 

concentration by TFF (—) and dilution in buffer (---). The colored lines are guides 

to the eye. 

Low viscosities were obtained by ultrafiltration with four different TFF diafiltration 

conditions for the high co-solute Tre:His:CitrA formulation as shown in Table 5.4 and Fig. 5.2a. 

In replicates 2 and 3, buffer exchange was done at 65 mg/mL mAb with a wall shear rate of 1405 
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or 8200 s
-1

, as indicated in Table 5.4. Replicate 3 was not relevant as it was highly turbid due to 

spallation from new tubing. Replicates 1 and 4 were buffer exchanged at the same shear rates as 

for 2 and 3, but with a lower concentration of 20 mg/mL and thus lower viscosity and shear 

stress. The concentration-normalized post-diafiltration turbidity of replicates 1, 2 and 4 increased 

linearly with the tubing wall shear stress*time, independent of the mAb concentration and 

applied wall shear stress (Fig. 5.9). The low turbidity of replicate 4 (due to the small tubing shear 

stress*time) indicates less irreversible aggregation during diafiltration; furthermore, it was the 

least viscous of the four replicates (Fig. 5.2a). There was also little hysteresis in the viscosity of 

replicate 4 upon dilution (Fig. 5.2b, Table 5.10), suggesting little gelation and irreversible 

aggregation during ultrafiltration, consistent with the lower turbidity (8). Since soluble low-MW 

aggregates may not be fully removed by sterile filtration of the buffer-exchanged stock before 

ultrafiltration, these oligomers could lead to enhanced protein network formation during 

ultrafiltration. Thus, the reduction in irreversible aggregation during diafiltration, as indicated by 

the lower turbidity, may contribute to less pathway-dependent gelation during ultrafiltration. 
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Sample 

mAb 

conc 

during 

buffer 

exchange 

(mg/mL) 

TMP 

(bar) 

Filter 

wall 

shear 

rate  

(s
-1

) 

Hollow 

fiber 

ID 

(mm) 

Membrane 

mAb 

loading 

(g/m
2
) 

Tubing 

ID (mm) 

Tubing 

wall shear 

rate  

(s
-1

) 

Turbidity 

pre-sterile 

filtration 

(AU*cm
-1

)  

Replicate 1 22 0.8 1405 1.0 390 1.6 4145 0.380 

Replicate 4 20 0.8 8200 0.5 407 3.1 1254 0.131 

Replicate 2 65 0.8 1405 1.0 390 1.6 4145 0.953 

Replicate 3 66 0.8 8250 0.5 254 3.1 1254 1.771 

Table 5.4. Different TFF buffer exchange conditions for Replicates 1 – 4 of the 40:50:17 

mg/mL Tre:His:CitrA solution (Fig. 5.2) and resulting turbidity. The thawed 

mAb stock was additionally sterile-filtered and degassed before diafiltration in 

Replicate 4. The 0.5 mm fiber ID modules have a higher water flux than the 1.0 mm 

fiber ID modules, as seen in Fig. 5.15, which may contribute to the higher permeate 

flux observed in the high-shear experiments (Replicates 3 and 4). The turbidity of 

the buffer-exchanged solution was measured as the absorbance at 350 nm for a 1 

cm path length and corrected for the absorbance of the protein-free buffer. 
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5.4.2 TFF membrane flux decay at high concentration  

  

  

Figure 5.3. TFF membrane flux (in L/m
2
h) as a function of (a) mAb concentration and (b) 

solution viscosity; and permeation flux resistance Rt (in m
-1

) as a function of (c) 

mAb concentration and (d) solution viscosity during ultrafiltration to 250 

mg/mL mAb for low co-solute (- - -) and high co-solute (−−) solutions. The 

numbers in the formulation names represent concentration of each excipient in 

mg/mL. The flux and resistance curves for the 40:50:17 mg/mL Tre:His:Citr 

solution corresponds to Replicate 1. The colored lines are a guide to the eye, and 

correspond to the data series of the same color. 
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The high co-solute solutions will now be shown to exhibit significantly slower decay in 

membrane flux with increasing mAb concentration than the low co-solute solutions. The 

instantaneous flux was measured at the operating TMP of 0.80 bar. The permeate flux J of the 

low co-solute and His high co-solute solutions is plotted against the mAb concentration in Fig. 

5.3a, and for the analogous Im high co-solute solutions in Fig. 5.10a. The low co-solute solutions 

started with a higher membrane flux than the high co-solute solutions, likely due to a lower η0. 

However, a crossover in the flux between the low and high co-solute formulations was seen at 

130 mg/mL due to the slower flux decay of the high co-solute systems. At the final mAb 

concentration of 250 mg/mL, the membrane flux for the high co-solute solutions was three times 

higher than that of the low co-solute systems. The flux decay from 60 to 250 mg/mL mAb was 

only 5-fold for the high co-solute solutions compared to the much larger 32-fold reduction for 

the low co-solute case. The membrane flux, J, was also normalized for differences in η0 and 

plotted as the overall permeation resistance Rt according to Eqn. 5.3. 

 

𝑅𝑡 =
𝑇𝑀𝑃

𝐽∗𝜂0
        (5.3) 

The resistance was found to increase exponentially with the mAb concentration, as seen 

in Fig. 5.3c and Fig. 5.10c. The smaller slopes of the resistance curves for the high co-solute 

formulations (plotted on a log scale in Fig. 5.3c; Fig. 5.10c) are consistent with the slower rate of 

flux decay. The crossover in Rt occurred at a slightly earlier mAb concentration of ~110 mg/mL 

than the flux crossover, and Rt was found to increase at a significantly slower rate for the high 

co-solute solutions. 

Surprisingly, the low and high co-solute solutions were found to give similar fluxes as a 

function of the solution viscosity, as shown in Fig. 5.3b (imidazole shown in Fig. 5.10b). The 

low co-solute solutions again start at a higher flux at low viscosity, but no flux crossover is 

observed. Instead, the low and high co-solute flux profiles approximately converge at high 
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viscosities. When the flux was normalized for η0 via the permeation resistance, the resistance 

curves nearly collapsed into a universal curve, as shown in Fig. 5.3d and Fig. 5.10d. This result 

is interesting since a given viscosity corresponded to greatly different mAb concentrations for 

the low and high co-solute solutions. The apparent correlation between the solution viscosity and 

flux may also reflect the effect of viscosity on the axial TMP profile and resultant flux, as will be 

discussed later. 

 The difference in flux decay between the low and high co-solute solutions will now be 

examined in terms of the components of flux decay – membrane fouling (pore blocking and cake 

formation) and concentration polarization. To investigate membrane fouling, we compared the 

post-ultrafiltration reduction in the membrane normalized water permeability (NWP) caused by 

irreversibly-adsorbed mAb. The fouled membrane was first flushed with DI water for ten 

minutes to wash off reversibly adsorbed mAb and remove the concentration polarization gel 

layer before the NWP measurement. For the low and high co-solute solutions, the NWP 

reduction due to fouling by irreversibly adsorbed mAb was comparable at ~60 – 70%, as seen in 

Table 5.5, with the exception of the Tre:His:CitrA solutions. The Tre:His:CitrA formulation, 

which was the least viscous formulation, consistently exhibited a smaller NWP reduction of ~ 

30%. No clear trend was found between the mass of mAb lost to irreversible adsorption on the 

membrane (which varied between 100 and 300 mg mAb, based on the mass that was 

unaccounted for after recovery of the mAb in the solution and filter wash water) and the NWP 

reduction. The comparable NWP reductions suggest that the TFF filter membrane underwent 

similar degrees of fouling under both low and high co-solute conditions. Consequently, the large 

differences in the flux decline of the two types of solutions must be explained in part by 

concentration polarization. 
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Formulation 

Pre-UF 

NWP 

(LMH/

bar) 

Post-UF 

NWP 

(LMH/ 

bar) 

% NWP 

reduction 

post-

fouling 

mAb 

recovered 

from filter 

wash (mg) 

mAb 

recovered 

in soln 

(mg) 

mAb in 

UF 

feed 

(mg) 

mAb lost 

to filter 

adsorpt. 

(mg) 

% mAb lost 

to irrevers. 

adsorption 

on filter 

Freezing buffer 298 80 62 758 1565 2624 301 11.5 

DI water 213 78 63 775 1480 2232 -23 -1.0 

40:50:17 mg/mL 

Tre:His:CitrA 

(Replicate 4) 

232 166 29 674 3080 4121 367 8.9 

40:50:17 mg/mL 

Tre:His:CitrA 

(Replicate 1) 

221 141 36 522 1445 2131 164 7.7 

50:50:12 mg/mL 

Tre:His:PhosA 
289 107 63 600 1745 2327 -18 -0.8 

50:17:7 mg/mL 

Tre:Im:HCl 
277 138 50 707 1503 2284 74 3.2 

50:17:10 mg/mL 

Tre:Im:CitrA 
267 57 79 573 1769 2606 264 10.1 

Table 5.5. Membrane fouling and protein adsorption after ultrafiltration by TFF. The 

membrane normalized water permeability (NWP) was measured at room 

temperature (20 °C). The mass of mAb recovered during the filter wash was 

determined from the mAb concentration in the wash water after recirculation. The 

small calculated negative mAb mass losses for some formulations may be due to 

minor experimental error in concentration measurements. 

The similar flux decay rates between the low and high co-solute solutions as a function of 

viscosity, η, (Fig. 5.3b) will now be explained in terms of concentration polarization. The 

expected transmembrane flux after accounting for concentration polarization is given by (6, 57) 

 

𝐽 =
𝐷𝑣

𝛿
ln (

𝑐𝑤

𝑐𝑏
) = 𝑘𝑐 ln (

𝑐𝑤

𝑐𝑏
) = 𝑘𝑐 ln(𝑐𝑔) − 𝑘𝑐 ln(𝑐𝑏)    (5.4) 

where kc is the mass transfer coefficient, cb is the bulk protein concentration and cw is the protein 

concentrations at the membrane wall, which at high protein concentrations is generally assumed 

to be equal to the gel limit cg (58). As is apparent from Eqn. 5.4, the constants kc and cg may be 

obtained from a linear fit of the flux as a function of ln(cb), where the slope is equal to -kc and 

the y-intercept is equal to kcln(cg). 
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Figure 5.4. (a) TFF membrane flux (in L
2
/m

2
h) as a function of the natural logarithm of the mAb 

concentration. (b) Fitted gel point concentration cg and corresponding mAb inherent 

viscosity at ~250 mg/mL. (c) Fitted mass transfer coefficient kc and corresponding 

protein-free solvent viscosity. The lines are a guide to the eye. 

From the linearized flux profiles (Fig. 5.4a), the cg’s were greater than 315 mg/mL (Table 

5.6) for high co-solute concentrations compared to only 250 mg/mL at low concentrations. The 

cg increased with a decrease in the inherent viscosity (Fig. 5.4b), as co-solutes weakened 

attractive PPI, reducing network formation and mAb viscosity. Interestingly, the kc decreased 

slightly with increasing co-solute concentration as the solvent viscosity increased (Fig. 5.4c). As 

such, the larger flux of the high co-solute systems at high mAb concentration can be attributed in 
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part to the enhanced rate of back-diffusion near the membrane wall, which is directly correlated 

with the filtrate flux at system equilibrium (59), as a result of the higher cg and therefore 

concentration polarization. 

 

 

Sample Slope y-intercept cg (mg/ml) kc (cm/s)*10
5
 

Freezing buffer -3.617 20.0 254 10.0 

DI water -4.952 27.5 258 13.8 

Tre-His-Citr, Rep 1 -2.739 15.9 335 7.6 

Tre-His-Citr, Rep 4 -2.696 15.6 330 7.5 

Tre-His-Phos -2.401 14.2 365 6.7 

Tre-Im-HCl -2.591 14.9 315 7.2 

Tre-Im-CitrA -2.334 13.6 344 6.5 

Table 5.6. Mass transfer coefficient kc and gel point cg from linear fit of flux decay profile. 
The slope and y-intercept were obtained from linear fits of the flux decay profiles in 

Fig. 5.4a and used to calculate cg and kc (Eqn. 5.4) 

 

 

  
Figure 5.5. Time evolution of (a) pressure drop and wall shear stress and (b) mAb 

concentration during TFF ultrafiltration for low co-solute (---) and high co-

solute solutions (―). The numbers in the formulation names represent conc of each 

excipient in mg/mL. The concentration and pressure/shear stress curves for the 

40:50:17 mg/mL Tre:His:Citr solution corresponds to Replicate 1. 
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We now demonstrate that the low viscosity, high co-solute solutions additionally resulted 

in improved control of the wall shear stress, τw, during ultrafiltration. The τw was calculated from 

the measured ΔP (Eqn. 5.5) 

𝜏𝑤 =
𝑑𝐻∆𝑃

4𝐿
       (5.5) 

where dH is the hydrodynamic diameter of the flow channel and L is the axial length of the filter 

module. As seen in Fig. 5.5a, ΔP slowly increased from 0.04 bar to 0.05 – 0.12 bar during the 

first 60 minutes of ultrafiltration due to the increase in viscosity as the mAb was concentrated 

from 60 to 100 mg/mL (Fig. 5.5b), as follows from the Hagen-Poiseuille equation 

 
∆𝑃

𝐿
=

8𝜂𝑄

𝜋𝑅4        (5.6) 

where Q is the volumetric cross-flow rate and R is the diameter of the individual hollow fiber. 

The ΔP then increased rapidly to 0.35 bar due to the exponential viscosity increase between 100 

and 200 mg/mL mAb. Once ΔP reached 0.35 bar, the cross-flow rate was gradually reduced to 

maintain a constant ΔP to prevent the pressure at the filter inlet from exceeding the module 

pressure rating. The corresponding τw increased slowly from 5 to 15 Pa, as seen in Fig. 5.5a, and 

then rapidly rose to a maximum value of 40 Pa before leveling off. In contrast, the τw for the low 

co-solute solution (freezing buffer) and DI water quickly increased to a maximum of 50 Pa at 

150 – 160 mg/mL before decreasing with further increases in the mAb concentration, as 

discussed in the Supporting Information. The shear and concentration profiles of the Im systems 

are similar to those of the His systems, as seen in Fig. 5.11a and 5.11b. With the low viscosity of 

the high co-solute systems, τw stayed below 40 Pa up to 200 mg/mL, whereas this threshold was 

exceeded at only 150 – 160 mg/mL for the viscous, low co-solute systems.  

The hollow fiber filter geometry will now be shown to enable a more uniform TMP and 

low wall shear stress τw for maintaining a high transmembrane flux. A low τw of 5 – 50 Pa was 

maintained throughout ultrafiltration to 250 mg/mL with the hollow fiber module (Fig. 5.5a), and 
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was sufficient to prevent rapid flux decline. In contrast, in TFF studies utilizing flat sheet 

cassettes, a higher τw of 200 – 400 Pa was applied to maximize membrane flux at mAb 

concentration greater than 50 mg/mL (6, 8) and maintain a high initial TMP. As described in the 

Supporting Information, the lower τw in this study may be attributed to the use of hollow fibers 

with a large inner diameter of 1.0 mm. In general, for the same bulk velocity and flow channel 

cross-sectional area in open flow channels, the hollow fiber may be expected to have higher 

pressure drops and wall shear stresses than cassettes by factors of 4.19 and 1.67 respectively. 

However, in screened cassettes, such as the commonly used Pellicon (Millipore) modules, 

additional parasitic pressure losses due to the screens as well as sharp turns in devices with 

serpentine flow paths may significantly increase ΔP and τw by up to a factor of ~5 relative to an 

open channel device (12, 60). As such, hollow fiber devices may actually offer comparable or 

potentially smaller overall ΔP and τw to screened cassette devices for the same flow velocity and 

channel cross-sectional area. Additionally, screened flat sheet cassettes have greater non-

uniformity in their ΔP, τw and TMP profiles, given the serpentine flow path, which may create 

local areas of high TMP and τw that can contribute to protein aggregation. Since the soluble 

aggregate population was found to increase with τw between 100 and 300 Pa (6, 8), a method was 

developed for ‘programming’ the TMP throughout ultrafiltration. In this method, the TMP was 

maintained at its optimal value (the ‘knee point’) at any given mAb concentration. The optimal 

TMP was found to decrease with the mAb concentration (6). Concurrently, the cross-flow flux 

was adjusted between 290 and 450 LMH over the concentration range 5 - 90 mg/mL to maintain 

an appropriately low TMP and τw (6). However, it becomes difficult to maintain a sufficiently 

low optimal TMP at higher mAb concentrations, given the large η and ΔP, as shown in Eqn. 5.7, 

 

                                    𝑇𝑀𝑃 =
(𝑃𝑖+𝑃𝑜)

2
− 𝑃𝑝 = 𝑃𝑜 +

∆𝑃

2
− 𝑃𝑝           (5.7) 
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where Pi and Po are the filter inlet and outlet pressures, respectively, and Pp is the permeate 

pressure. In our case, the low viscosities of our concentrated solutions as well the hollow fiber 

geometry resulted in a small ΔP (Fig. 5.5a). Since ΔP was the controlling parameter for tuning 

the TMP and τw (Eqn. 5.5; Eqn. 5.7), the low ΔP led to a small τw, and more uniform axial TMP 

profile (Fig. 5.12). Consequently, we were able to maintain the TMP at a low level without the 

need to adjust the cross-flow rate throughout ultrafiltration.  

The more uniform axial TMP profiles may also contribute to the higher fluxes for the 

high co-solute systems. As described by Binabaji et al. (12), a significant portion of the 

reversible flux decline at high concentration can be attributed to a steep decline in the local TMP 

near the back end of the filter device, resulting in reduced local fluxes. When the local TMP falls 

below the osmotic back-pressure, back-filtration significantly reduces the overall flux. In this 

study, the local TMP remained above the osmotic pressure at all mAb concentrations (Fig. 5.12), 

but a noticeable difference in the normalized TMP (TMPlocal/TMPaverage) profile can be seen 

between the high and low co-solute systems between 100 and 200 mg/mL mAb (Fig. 5.12a, 

4.S7b). The local normalized TMP declined more quickly for the viscous, low co-solute systems 

below 1.0 (local TMP = average TMP when the normalized TMP = 1.0). The average TMP was 

set at the knee-point value of 0.8 bar, as described in the Supporting Information. Consequently, 

the local TMP for the low co-solute systems fell below the pressure-independent region 

(corresponding to normalized TMP < 1.0) more steeply in the rear section of the hollow fiber, 

which may explain the lower flux above 100 mg/mL mAb. However, while hollow fibers offer 

the advantage of more uniform flow paths and TMP profiles, they still have lower fluxes than 

flat sheet devices. The longer filtration times may be detrimental for maintaining protein quality. 

5.4.3 Turbidity of high concentration mAb solution 

 The solution turbidity of the 40:50:17 mg/mL Tre:His:CitrA solution (replicate 4) was 

measured after 3 months of storage at 4°C, during which mild evaporative losses caused an 
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increase in the mAb concentration to 300 mg/mL. For a path length of 0.2 cm, the absorbance at 

300 mg/mL at 350 nm was 0.165, corresponding to a turbidity of 0.826 AU*cm
-1

 and a 

concentration-normalized turbidity of 0.0027 AU*mL*mg
-1

cm
-1

, as reported in Table 5.7. The 

relatively low turbidity at 300 mg/mL in the current study likely resulted from the low solution η, 

axial ΔP and τw, which minimized the tendency for protein aggregation. The low levels of 

irreversible aggregation may also be favorable for reducing pore blocking and cake formation 

(61). 

 

Sample 

ID 

mAb 

conc 

(mg/mL) 

η 

 (cP) 

ηinh 

(mL/g) 

Absorbance 

at 350 nm 

(AU) 

Turbidity 

at 350 nm    

(AU*cm
-1

)  

Turbidity/c 

(AU*mL*mg
-

1
cm

-1
) 

Before 

filtration 
307 138 15.7 0.174 0.868 0.0028 

After 

filtration 
223 22 13.4 0.083 0.414 0.0019 

Table 5.7. Turbidity (0.2 cm path length), turbidity/concentration (c) and viscosity (η) 

before and after syringe sterile filtration of Replicate 4 of the 40:50:17 mg/mL 

Tre:His:CitrA solution. The turbidity was corrected for the absorbance of the 

protein-free buffer.   

Sterile filtration of the 300 mg/mL mAb solution resulted in a decrease in concentration 

to 223 mg/mL, due to the presence of entrained water in the washed syringe filter membrane. 

The resulting absorbance at 350 nm was 0.0743 AU, corresponding to a turbidity of 0.372 

AU*cm
-1

 and a concentration-normalized turbidity of 0.0017 AU*mL*mg
-1

cm
-1

 (Table 5.7). The 

two-fold reduction in turbidity corresponded with a decrease in ηinh from 15.7 to 13.4 mL/g, 

which may be explained in part by the dilution of the mAb. The normalized effective Dv from 

DLS increased from 0.26 to 0.31 after sterile filtration as indicated in Table 5.11, which may be 

due in part to the lower mAb concentration (62), but which may also suggest removal of larger 

aggregates, consistent with the smaller contribution to the DLS autocorrelation function at long 

times (Fig. 5.16). Although the removal of large aggregates by sterile filtration has been seen in 



 236 

literature to reduce the low-shear (< ~300 s
-1

) viscosity and eliminate the shear-thinning behavior 

of a concentrated IgG1 mAb (63) this does not appear to be the case for the Tre:His:CitrA 

solution. Both large irreversible (63) and small reversible aggregates (4, 11, 29, 30, 32, 64-66) 

are thought to promote protein network formation which leads to high viscosities. It is likely that 

in this case, network formation was sufficiently suppressed by the high His/Im levels (as will be 

described in the Discussion section), given the relatively low mAb viscosity. 

5.4.4 pH shift during ultrafiltration 

The high co-solute solutions underwent a negligible pH shift during ultrafiltration 

compared to the low co-solute solutions, remaining essentially constant during ultrafiltration 

from 60 to 250 mg/mL as shown in Fig. 5.13. Additionally, intermediate pH measurements 

during ultrafiltration of a representative high co-solute solution (50:17:10 mg/mL Tre:Im:CitrA) 

revealed a negligible difference in the pH of the retentate and permeate streams (shift of ~0.02 

units), both of which remained constant at 7.0 as seen in Table 5.12. The matching, unchanging 

pH in the permeate and retentate streams over the entire mAb concentration range suggests that 

the charged buffer species (His, Im, counteracids) did not partition significantly across the 

membrane during filtration (9). The solution pH was in good agreement with the initial pH of the 

protein-free buffer, although a small shift of < 0.1 units was observed for the buffers prepared at 

pH 6.5 and 7 as seen in Table 5.13 due to the self-buffering capacity of the mAb (67). In 

contrast, a more noticeable pH shift of 0.2 units from 60 to 240 mg/mL was observed during 

filtration of the low co-solute solutions, suggesting partioning of the buffer species across the 

membrane due to the Donnan effect (9) or electrical double-layer volume exclusion (10, 68).  

5.4.5 mAb stability in the ultraconcentrated solutions 

The high co-solute solutions will now be shown to be stable against irreversible 

aggregation during manufacture and storage at 4°C, as assessed by size exclusion 
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chromatography (SEC). The monomer content was assessed as both (i) the ratio of monomer to 

monomer + soluble aggregates (“% monomer”) and (ii) the mass ratio of recovered monomer for 

the post-TFF/storage to the pre-TFF/storage samples (“monomer recovery”). SEC measurements 

of the 250 mg/mL solutions after 2 – 4 weeks of storage at 4°C show similarly low levels of 

soluble irreversible aggregates for both the low and high co-solute solutions, with less than 1% 

soluble aggregates upon dilution to 2 mg/mL, as seen in Table 5.8. The only exception was the 

Tre:Im:CitrA solution, which showed 2.6% soluble aggregates when measured after 7 months of 

storage at 4°C. However, a significant difference in the insoluble aggregate content was seen 

between the low and high co-solute solutions, with monomer recoveries of ~90% with high co-

solute and 60 – 80% with low co-solute formulations. Visible gel-like aggregates were observed 

during dilution of the concentrated low co-solute solutions. These large irreversible aggregates 

were filtered out during SEC sample preparation, but account for the significantly lower 

recoveries. The ultrahigh viscosity of the low co-solute solutions may explain the low monomer 

recoveries, as the viscous solutions may undergo greater pathway-dependent gelation and 

irreversible aggregation during ultrafiltration. 
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Formulation % Monomer 
Monomer 

recovery (%) 

Concentrated solution from TFF 

mAb control (130 mg/mL) 99.7 100.0 

40:50:17 mg/mL Tre:His:CitrA, pH 6 (280 mg/mL) 99.5 93.6 

40:50:17 mg/mL Tre:His:CitrA, pH 6 (240  mg/mL) 99.9 88.9 

50:50:12 mg/mL Tre:His:PhosA, pH 6 (250 mg/mL) 99.9 86.2 

50:17:7 mg/mL Tre:Im:HCl, pH 6.3 (260 mg/mL) 99.0 91.8 

50:17:10 mg/mL Tre:Im:CitrA, pH 7 (250 mg/mL) 97.4
a
 89.2 

Freezing buffer (235 mg/mL) 99.5
b
 83.7 

DI water (245 mg/mL) 99.4
b 

62.6 

Dilution of 40:50:17 mg/mL Tre:His:CitrA solution (original 280 mg/mL) 

256 mg/mL dilution 99.5 90.8 

237 mg/mL dilution 99.5 95.8 

183 mg/mL dilution 99.5 97.2 
a. After 7 months storage at 4°C 

b. Visible ~1 mm gel-like clumps (aggregates) observed upon dilution to 2 mg/mL in mobile phase; 

removed by sterile filtration prior to SEC analysis 

Table 5.8. Initial stability of mAb solutions by SEC. Samples were analyzed by SEC within 

two weeks of when the samples were manufactured except for the Tre:Im:CitrA 

solution, which was measured seven months after the solution was manufactured. 

All samples were stored at 4°C between manufacture and SEC measurements. The 

% monomer was determined from the ratio of the monomer to the combined 

monomer and aggregate peak areas, whereas the monomer recovery was determined 

from the ratio of the monomer peak areas for the post-ultrafiltration sample and the 

mAb control (unstressed 130 mg/mL mAb starting material in freezing buffer). 

To more extensively test storage stability, Replicate 4 of the Tre:His:CitrA solution was 

stored over 8 weeks at -40°C, 4°C and 37°C. Due to evaporative losses during storage, especially 

at 37°C, the concentrations increased in some cases. Despite the high mAb concentrations, η 

remained below 100 cP for a majority of the stored samples and changes in Dv/Dv,o were 

negligible as indicated in Table 5.14. The ηinh of the samples stored at -40°C and 4°C was 

relatively constant as seen in Fig. 5.14a, whereas ηinh at 37°C decreased from 16.9 mL/g at 4 

days to 14.5 mL/g at 28 days (Table 5.9). At each temperature, the soluble aggregate content was 
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≤0.8% even after up to 4 weeks at 37°C and 8 weeks at -40°C and 4°C (Table 5.9; Fig. 5.14b). 

The monomer recovery after storage was also assessed relative to the original concentrated 

dispersion before accelerated storage tests. As seen in Table 5.9, the monomer recovery 

remained high at ~90% throughout the entire storage period of up to 8 weeks, even at the highest 

storage temperature of 37°C. 

The concentrated high co-solute solutions also remained clear at low temperature, even 

after up to four months of storage at 4°C as shown in Fig. 5.14c. In contrast, the low co-solute 

solutions became cloudy and formed a rigid, opaque gel within minutes of exposure to the 4°C 

environment, as shown in Fig. 5.14d. Although the gelled solution returns to a liquid state upon 

being warmed to room temperature, irreversible phase separation was evident. It is likely that the 

concentrated co-solute shielded various charged patches and hydrophobic sites on the protein to 

inhibit gelation and the formation of aggregates during storage.  
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Time 

(days) 

Storage 

temp 

(°C) 

mAb conc 

(mg/mL) 

η  

(cP) 

ηinh  

(mL/g) 
pH 

% 

monomer 

by SEC 

Monomer 

recovery 

(%) 

4 -40 278 ± 5.3 92 ± 3.7  15.9 5.99 99.6 93.3 

4 4 274 ± 6.6 88 ± 5.5 16.0 5.96 99.5 92.2 

4 37 330 ± 2.7 297 ± 3.9 16.9 5.95 99.4 91.8 

7 -40 263 ± 2.7 82 ± 3.7 16.4 5.98 99.5 97.7 

7 4 266 ± 10.0 88 ± 2.3 16.4 5.97 99.6 84.3 

7 37 260 ± 10.9 77 ± 0.6 16.3 5.97 99.4 98.3 

14 -40 287 ± 5.1 101 ± 0.9 15.7 5.95 99.5 103.9
a 

14 4 288 ± 3.4 98 ± 5.7 15.6 5.98 99.5 96.7 

14 37 454 ± 34.8 ---
 b

 
 

---
 b

 ---
 b

 99.2 96.3 

28 -40 291 ± 3.5 132 ± 0.8 16.4 5.92 99.5 93.9 

28 4 302 ± 6.4 133 ± 1.9 15.8 5.94 99.5 93.8 

28 37 299 ± 4.2 86 ± 2.4 14.5 5.99 99.2 90.7 

56 -40 279 ± 1.4 106 ± 2.6 16.3 5.95 99.4 85.0 

56 4 272 ± 0.5 114 ± 6.1 17.1 5.96 ---
c
 ---

c
 

a. Monomer recovery greater than 100% likely due to experimental error resulting in SEC sample being slightly 

more concentrated than 2 mg/mL    

b. Sample became too concentrated and viscous to characterize by rheometry 

c. Remaining sample volume after viscometry and concentration measurements was insufficient for SEC 

measurements  

Table 5.9. Viscosity (η), inherent viscosity (ηinh) and SEC stability of Replicate 4 of the 

40:50:17 mg/mL Tre:His:CitrA solution after up to 4-weeks of  storage at -

40°C, 4°C and 37°C. No 56-day sample at 37°C was available due to evaporative 

losses which rendered the sample too concentrated and viscous even for 

concentration measurements. The % monomer was determined from the ratio of the 

monomer to the combined monomer and aggregate peak areas, whereas the 

monomer recovery was determined from the ratio of the monomer peak areas for 

mAb solution before and after accelerated storage. 

5.4.6 Mechanism of Viscosity Reduction 

At concentrations of 250 mg/mL (~20% volume fraction) when the spacing between 

proteins is on the order of the molecular diameter (69), the relationship between viscosity and 

protein interactions is highly complex and not very well understood.  Even with a range of 

techniques including SANS (32, 65, 70-73), SAXS (32), SLS (2), DLS (74-76), simulation (77-

80), rheological studies (4, 11, 27-29, 63, 73, 81-84) and combinations thereof, relatively little is 



 241 

known about the interactions and structure of protein solutions at high concentrations. From a 

rheological point of view, the significant reduction in [η] and ηinh of the concentrated mAb the 

high co-solute systems (Tables 5.1 – 5.3) may offer insight into the weakening of attractive 

protein interactions that contribute to high solution viscosities. 

The significant reduction in viscosity for the mAb in this study resulting from the 

addition of histidine and imidazole (Fig. 5.1, Table 5.2 – 4.3) will now be examined in terms of 

modifications in the protein-protein interactions modified by these two co-solutes. The viscosity 

of antibody solutions has been shown to increase with the formation of small reversible low-

density clusters or networks of interacting (28, 32, 64, 65) or physically entangled (85) mAb 

molecules. Network formation and aggregation may be mediated by local anisotropic attractive 

electrostatic and hydrophobic interactions. The addition of co-solutes may generate significant 

viscosity reductions by disruption of these interactions through shielding of charged (32, 65) and 

hydrophobic sites (36) on the protein surface. Inorganic salts such as NaCl have been shown in 

some cases to reduce mAb viscosity by weakening local attractive electrostatic interactions (4, 

11, 32), but have also been found to increase the viscosity (41), likely by amplifying the strength 

of hydrophobic interactions (86). The charged amino acid arginine (Arg) is also known to both 

stabilize (87) and greatly reduce the viscosity for some proteins (28, 37, 41-43, 88) by shielding 

both electrostatic and hydrophobic residues on the protein surface (46, 87, 89, 90). The 

significant viscosity reduction from the addition of 300 mM His in this study (Fig. 5.1, Tables 

4.2 – 4.3) may be caused by a similar mechanism as Arg, given their similar charge and 

molecular structure. In contrast, the addition of 150 mM NaCl caused a much smaller reduction 

in viscosity (Table 5.1), despite comparable solution ionic strengths. Recent membrane 

osmometry (43) and light scattering studies (45) suggest that co-solute effects on the viscosity of 

highly concentrated mAb occurs through modification of local rather than global interactions, 

and in some cases via co-solute binding to the mAb surface (45). The preferential interaction of 
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some co-solutes with the mAb may therefore explain the differences in co-solute effects on 

viscosity for co-solutes with similar charge and solution ionic strength. 

The potent ability of histidine and imidazole to mitigate attractive protein-protein 

interactions and reduce the concentrated mAb viscosity by up to ten-fold (Fig. 5.1) will be 

explained in terms of their unique specific interactions with charged and hydrophobic residues 

on the protein surface. Histidine is positively charged below pH 6 and slightly hydrophobic with 

a Hopp-Woods hydrophobicity index of -0.5, where a negative index indicates an apolar residue 

in a protein sequence (91). Below pH 6, the cationic imidazole group is capable of shielding 

negatively-charged sites on the mAb surface via ion-pairing. Both His and Im also exhibit strong, 

selective binding affinities for the Arg and His residues on the protein surface (46). Molecular 

dynamics (MD) simulations have shown that positively-charged His is capable of pairing with 

both neutral and positively-charged His and Arg residues on the protein surface despite the 

Coulombic repulsion between like-charged pairs (46). The ability of His to form like-charged 

pairs with itself and Arg is thought to be due to stacking of the conjugated imidazole and 

guanidyl side chains respectively (46). As a result, His is capable of neutralizing negatively-

charged residues through Coulombic attraction while blocking neutral and positively-charged 

His and Arg residues through stacking of the conjugated side chains, leading to its efficacy in 

screening anisotropic attractive electrostatic interactions. Beyond charge-shielding effects, His 

has also been shown via simulations to interact with hydrophobic aromatic residues via ion-π 

interactions through the imidazole group (92, 93). Due to the zwitterionic functional groups on 

His, the imidazole-aromatic interaction is effectively able to convert a hydrophobic surface patch 

to a hydrophilic one (94), weakening the hydrophobic interactions. In contrast, the inorganic salt 

NaCl does do not undergo specific binding with the protein and cannot mitigate local anisotropic 

interactions. The significantly greater viscosity reduction by His and Im (Fig. 5.1, Table 5.2 – 

5.3), versus NaCl at comparable ionic strength (Table 5.1), therefore likely arose from more 
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efficient modulation of the local anisotropic attractive electrostatic and hydrophobic interactions. 

The very high concentrations of His and Im along with Tre also further perturb the electrostatic 

and hydrophobic interactions by the high degree of depletion attraction. In addition, the 

preferential exclusion of Tre from the surface favors folding for enhanced protein stability (95, 

96). 

5.5 CONCLUSIONS 

For concentrated 250 to 280 mg/mL mAb solutions formed by TFF, the solution viscosity 

was reduced from 300 cP to 40 – 80 cP in systems containing high concentrations of the co-

solutes histidine or imidazole. At the highest protein concentrations, the transmembrane fluxes 

were two to threefold higher with the high co-solute concentrations. This gain in transmembrane 

flux was due in part to a significant increase in the protein cg (gel point concentration) and the 

consequent enhancement of concentration polarization-driven back-diffusion near the membrane 

wall. The difference in the flux at high protein concentrations was not attributable to membrane 

fouling, as the normalized water permeability reductions were similar for high and low co-solute 

systems. For all co-solute concentrations, similar slopes were obtained for a wide range of 

systems on a log-log plot of permeation resistance (flux normalized by η0 at constant TMP) 

versus viscosity over three orders of magnitude in viscosity, indicating the important role of 

viscosity in regards to flux decay.  

With the low viscosities for high co-solute concentrations, the smaller axial ΔP resulted 

in a smaller and more uniform τw, as well as a more uniform TMP. An advantage of the hollow 

fiber geometry is the uniform flow path, unlike the serpentine channels with 90° bends found in 

flat sheet cassettes that can generate high local ΔP and shear stresses. The more uniform τw and 

TMP are expected to be beneficial for minimizing the rate of reversible flux decline. 

Furthermore, the concentrated protein solutions with either concentrated histidine or imidazole as 

co-solutes had less than 1% soluble aggregates by SEC and a high monomer recovery of ~90%, 
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in contrast with the low recoveries of 60 – 80% for the low co-solute solutions. The high 

monomer recovery corresponded with slower reversible flux decline. Under extended storage at -

40°C, 4°C and 37°C, the soluble aggregate content remained below 1% after 4 weeks at all three 

storage temperatures for the trehalose-histidine-citric acid system. The high histidine 

concentration also solubilized the mAb and prevented precipitation of the 250 mg/mL solution at 

4°C, whereas the onset of gelation and precipitation was almost immediate for the concentrated 

low co-solute solutions.  
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5.7 SUPPORTING INFORMATION 

5.7.1 Diafiltration and ultrafiltration to 250 mg/mL by centrifugation filtration to form low 

co-solute controls 

Buffers were sterile filtered with the Celltreat bottle top PES filters and then degassed 

under vacuum for 30 minutes. Centrifugal filters were washed before use by permeating 2 mL DI 

water through the membrane at 4500 rcf using a Centrifuge 5810R (Eppendorf, Hamburg, 

Germany). The frozen mAb stock (130 mg/mL) was thawed in a 4°C water bath, and 1.3 mL of 

the thawed stock was diluted to 13.5 mg/mL with 10.7 mL of the filtered and degassed buffer. 

The diluted mAb solution was then buffer exchanged by discontinuous diafiltration until the 
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original buffer constituted less than 1% by volume of the total solution volume. Briefly, the mAb 

solution was filtered at 4500 rcf for 15 minutes using a Millipore Amicon centrifugal filter with a 

capacity of 12 mL and a regenerated cellulose membrane with a molecular weight cutoff of 30 

kDa. The mAb solution was concentrated to a volume of ~2 mL and a concentration of 80 

mg/mL. Additional buffer was added to dilute the retained mAb solution to a volume of 12 mL 

and a concentration of 13 mg/mL, reducing the volume fraction of the initial buffer to 1.8% 

(10.8% of 2 mL out of 12 mL). The mAb solution was then concentrated again by centrifugal 

filtration to a volume of ~2 mL, and the process was repeated 2 -3 more times until the permeate 

volume was approximately 40 mL, corresponding to less than 1% by volume of the initial buffer 

in the final solution, assuming ideal mixing. The mAb solution was then concentrated to 80 

mg/mL (~2 mL) and transferred to a new Amicon centrifugal filter (with the same capacity and 

MWCO) for concentration to 250 mg/mL. 

The tare weights of the individual filter assembly components (filter, permeate tube and 

retentate tube) of the second set of Amicon centrifugal filters were recorded before the start of 

concentration to 250 mg/mL mAb. The mass of mAb loaded into the second set of centrifugal 

filters was determined from the mass and exact concentration of the buffer-exchanged mAb 

solution (~80 mg/mL). The desired retentate volume at 250 mg/mL and corresponding mass of 

the solution plus filter assembly was determined assuming a recovery of 80% of the mAb by 

mass. The filter assembly was then centrifuged at 4500 rcf in 10 – 15 minutes increments for 60 

– 70 minutes. The mass of the retentate/filter assembly was monitored between increments, and 

filtration was stopped when the combined retentate/filter assembly mass reached the desired 

mass as calculated earlier. The concentrated mAb solution was then transferred to 0.1 mL conical 

V-vial (catalog no. 03-341-15; Wheaton, Millville, NJ) for further characterization.   



 246 

5.7.2 Turbidity measurements by UV-Vis spectroscopy 

The turbidity was measured as the absorbance of the mAb solution at 350 nm, where the 

chromophores in the mAb do not absorb. The absorbance was normalized for the path length, 

yielding a dimensional turbidity in cm
-1

. Dilute mAb solutions (≤ 65 mg/mL) were loaded into a 

1 cm path length QS quartz cuvette (Hellma GmbH and Co, Mullheim, Germany), while the 

concentrated (>150 mg/mL) solutions were loaded into a 0.2 cm path length cuvette (Beckman 

Coulter, Indianapolis, IN). Turbidity measurements were made on both the unfiltered solutions 

as well as solutions sterile filtered with 0.22 µm PES bottle top (20 mg/mL stock) and 13-mm 

syringe filters (>150 mg/mL solution). Before sterile filtration, the syringe filters were washed 

by passing 100 µL DI water through the filter membrane to remove residual impurities in the 

membrane. Due to the ~100 µL hold-up volume of the syringe filter, around 100 µL of DI was 

entrained in the filter, causing some dilution of the 250 mg/mL mAb solution during sterile 

filtration by syringe filters. 

5.7.3 Dynamic light scattering of concentrated mAb solutions 

An effective average diffusion coefficient of the species in the mAb solution was 

measured by dynamic light scattering (DLS) on a Brookhaven BI-9000AT (Brookhaven 

Instruments, Holtsville, NY) at detector angles of 150° and 173° using a 632.8 nm laser. 

Additional samples were analyzed by DLS on a Brookhaven ZetaPALS at an angle of 90° using 

a 660 nm laser. The effective diffusion coefficient Dv was determined from the decay time of the 

DLS autocorrelation function (ACF), which was fit using the CONTIN algorithm. All reported 

values of Dv are the average of three replicate DLS measurements of 2 minutes each. Samples 

were not filtered prior to loading into the DLS cuvette due to high losses from filtering viscous 

material (path length = 0.2 cm; Beckman Coulter, Indianapolis, IN). 

The diffusion coefficient of the mAb in the high co-solute solutions will now be shown to 

be lower than the expected value for the monomer in the same buffer, indicating a change in the 
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mAb interaction length scale. The autocorrelation function (ACF) from the DLS measurements 

was fit to a single average effective Dv using the CONTIN algorithm, where the decay time for 

the first exponential decay was converted to Dv, assuming Stokes-Einstein diffusion of the mAb 

through buffer. The viscosity η was set equal to η0 in the Stokes-Einstein equation for the first 

decay, assuming that the first decay corresponds to a short enough time scale that diffusing 

protein molecules do not encounter neighboring protein molecules (76). In light of the possible 

polydispersity of the mAb solution, as well as the complexities involved in fitting the ACF (97), 

the fitted Dv only represents an effective average diffusivity. The theoretical diffusion coefficient 

of the monomer Dv,0 in the given buffer was calculated from the Stokes-Einstein equation (Eqn. 

5.8) using η0 for η and an assumed hydrodynamic radius Rh of 5.5 nm, typical for an IgG mAb.  

 

𝐷𝑣 =
𝑘𝐵𝑇

6𝜋𝜂𝑅𝐻
               (5.8) 

As can be seen in Table 5.15, the ratio of the measured Dv to the theoretical Dv,0 (Dv/Dv,0) 

was 0.24 – 0.36 for the high-co-solute solutions at 250 mg/mL mAb. In contrast, the values for 

the low co-solute solutions were 0.7 – 0.8 at 250 mg/mL, closer to the value of 1.0 for a purely 

monomeric dilute solution. Smaller Dv/Dv,0 values of 0.42 – 0.64 were obtained for the low co-

solute solutions made by centrifugation filtration (0.23 for the 150 mM NaCl dispersion), as seen 

in Table 5.16. However, the resolution of DLS is too low to be able to distinguish diffusion 

coefficient differences under a factor of 3-4 (98) and thus to discriminate between protein 

monomer and aggregates up to about 40 nm. The values of Dv/Dv,0 less than unity for the high 

co-solute solutions may suggest restricted molecular motion relative to monomer diffusing 

through the solvent due to crowding(62) or stronger attractive interactions with co-solute (99) or 

other protein molecules, resulting in the diffusing species encountering a medium viscosity 

greater than the solvent viscosity. With the exception of the DI water mAb solution, the Dv/Dv,0 

ratio also slowly decreased with increasing mAb concentration between 50 and ~150 mg/mL 
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before reaching a plateau, as shown in Fig. 5.17. The corresponding DLS ACF’s used to obtain 

the Dv values reported are shown in Fig. 5.16 and Fig. 5.18 – 5.20. The gradual decrease in 

Dv/Dv,0 with mAb concentration could indicate the continuous growth of protein entities larger 

than monomer or an increase in attractive interparticle interactions leading to restricted motion at 

higher levels of depletion attraction (crowding) (62, 99). However, it is unclear how to choose a 

medium viscosity for converting the diffusion coefficient to a hydrodynamic diameter, given the 

diffusing species may contact multiple protein molecules during the long diffusion times of 100 

µs. In contrast, self-diffusion of protein through solvent may be measured by neutron spin echo 

where the correlation time is only 50 ns (32).  

5.7.4 Viscosity calibration 

5.7.4.1 Liquid volume correlation 

The volume of liquid in the conical vial used for viscosity measurements was determined 

from the height of the liquid meniscus. 200 µL of DI water was pipetted into six different vials in 

5 or 25 µL increments using an Eppendorf Research Plus adjustable volume pipette (Eppendorf 

AG, Hamburg, Germany). The meniscus height was measured for each incremental volume 

addition by ImageJ analysis of a photo of the liquid column inside the vial, measured from the 

vial bottom to the bottom of the meniscus. The correlation between the meniscus height and 

liquid volume was determined from quadratic regression of the average of the volume-height 

measurements for all six vials, as shown in Fig. 5.21.  

5.7.4.2 Determining pressure drop across needle capillary 

The axial pressure drop ΔP across the needle capillary of the syringe viscometer was 

determined using the viscosity standards S60, N44, N35 and N10 (Cannon Instrument Company, 

State College, PA) as well as DI water. At room temperature (25°C), these solutions have 

viscosities of 102.4, 70.92, 55.75, 15.39, and 0.986 cP, respectively. The volumetric flow rate of 
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100 µL of each solution was measured in triplicate in five different vials for an assumed fixed 

ΔP across the needle capillary, totaling 15 measurements per sample. The ΔP was assumed to be 

fixed since the needle tip is exposed to atmospheric pressure, while the end of the needle 

attached to the syringe is assumed to be at a constant lower pressure (established by pulling the 

syringe plunger up to the 1 mL mark quickly to establish a lower internal pressure), which is 

unaffected by liquid flow inside the needle during measurement since the liquid does not enter 

the syringe in the time frame of the measurement. The flow rate was averaged over the 15 runs 

and plotted against the known viscosity of the liquids. ΔP was then determined from fitting the 

Hagen-Poiseuille equation to the viscosity data, giving a ΔP of 7942 Pa across the needle, as 

shown in Fig. 5.22. The viscosity of the actual samples were then determined from the measured 

volumetric flow rate and the fitted ΔP using the Hagen-Poiseuille equation. 

5.7.5 Relevant shear rate regime for capillary syringe viscometer measurements 

The wall shear rate, γw, applied to the mAb solution during viscosity measurements can 

be estimated from the fitted ΔP/L and measured viscosity with Eqn. 5.9, assuming Newtonian 

flow: 

𝛾𝑤 =  
𝑟𝛥𝑃

2𝜂𝐿
(

3𝑛+1

4𝑛
)          (5.9) 

where r is the needle radius, L is the needle length and n is equal to 1 for a Newtonian liquid. As 

indicated by the dashed black lines in Fig. 5.23, the minimum and maximum viscosities 

measured at high concentration in this study correspond to a shear rate range of 25 – 500 s
-1

.  

5.7.6 Fits of the mAb viscosity profiles for the crowding-shape factor k/ν (Ross-Minton 

equation) 

The fitted k/ν was comparable between the freezing buffer (10 mM His with ~40 mg/mL 

mannitol) and the two histidine high co-solute solutions with a value of ~0.04 – 0.06, whereas 

the DI water solution had a much smaller k/ν of 0.026 and the two imidazole solutions had a 
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higher k/ν of 0.09 and 0.13. The combined parameter k/ν accounts for the effect of both self-

crowding (k = 1/Φmax (26), where Φmax is the maximum packing fraction) as well as the particle 

shape (where a sphere corresponds to ν = 2.5 and elongated shapes have ν > 2.5) on viscosity 

(26, 64). Since k/ν is fit as a single parameter, the two effects cannot be easily deconvoluted from 

a single value for k/ν, making quantitative interpretation difficult (4). However, the crowding 

factor k is not expected to change significantly between the low and high co-solute solutions at 

the same mAb concentration/volume fraction. The modestly higher fitted values of k/ν for the 

high co-solute solutions therefore suggest a small decrease in ν approaching a more spherical 

mAb molecule. A decrease in ν suggests the adoption of a more compact and folded 

conformation which would be beneficial for stability and lower viscosities. A smaller value of 

Dv/Dv,0 below unity was also observed for the high co-solute solutions as well as the low co-

solute solutions with the extremely high protein concentrations, as discussed in the Supporting 

Information. Although the mechanism of protein diffusion at high concentrations is highly 

complex, these results may indicate an influence of depletion attraction on the configuration of 

reversible protein aggregates or clusters (47, 48, 62, 72, 75, 76, 100). 

5.7.7 Decline in wall shear stress for low co-solute mAb solutions 

The unexpected decrease in τw for the low co-solute solutions (Fig. 5.4a; Fig. 5.5a) arose 

from the decrease in the axial ΔP as seen in Fig. 5.4a, Fig. 5.5a, and Eqn. 5.6. The ΔP is expected 

to increase with η and the feed cross-flow rate, as described by the Hagen-Poiseuille equation for 

flow through a cylindrical geometry. Since η increases with the mAb concentration, the reduced 

ΔP and τw likely arose from a decrease in the cross-flow rate. The settings on the TFF pump were 

unchanged throughout the ultrafiltration experiment, so the theoretical cross-flow rate remained 

constant. Instead, it is likely that the actual cross-flow rate decreased when the ultraviscous low 

co-solute solutions exceeded the capacity of the TFF pump to accurately regulate the feed flow-

rate. Alternatively, the large ΔP arising from the high viscosity may have caused a negative local 
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TMP near the back end of the filter module, leading to back-filtration and an increase in Po and 

subsequent decrease in ΔP. 

5.7.8 Selection of TMP for TFF ultrafiltration 

To minimize pressure-driven membrane fouling while maximizing membrane flux during 

ultrafiltration, the TMP should be maintained at the transition point, known as the knee point (6), 

between the pressure-dependent and pressure-independent flux regimes. The knee point TMP 

was identified for our TFF system in a representative high co-solute buffer (40:50:17 mg/mL 

Tre:His:CitrA) at a cross-flow flux of 750 LMH from flux-TMP profiles generated at 40, 120 

and 190 mg/mL (Fig. 5.24). At the lower concentrations of 40 and 120 mg/mL, the knee point 

TMP appeared to remain between 0.5 and 0.6 bar. The knee point shifted upward to 0.8 bar with 

the increase in mAb concentration to 190 mg/mL. Above 0.8 bar, a slight decrease in the flux 

was observed. Due to large axial pressure drops arising from high viscosities at high mAb 

concentration, the increase in global TMP above 0.8 bar corresponds to a large increase in the 

inlet pressure, which may have increased the local TMP at the inlet to excessively high values 

and lead to increased gelation and membrane fouling. Since concentration of the mAb from 100 

to 250 mg/mL constituted the majority of the ultrafiltration process based on time (Fig. 5.5b; Fig. 

5.11b), we chose to maintain the TMP at 0.8 bar (the knee-point TMP at high mAb 

concentration) throughout the filtration process. 

5.7.9 Comparison of shear stress and pressure drop for hollow fibers and flat sheet 

cassettes 

We report lower shear stresses and pressure drops in our work with hollow fiber TFF 

modules compared to values seen in literature for flat sheet cassettes (6). The use of the 1 mm ID 

fibers generates smaller pressure drops and wall shear stresses relative to cassettes with smaller 

characteristic dimensions of 3.2 cm x 0.5 mm, as seen in literature (6). However, for the same 

bulk velocity v = Q/A (Q = volumetric flow rate) and flow channel cross-sectional area A, 
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hollow fibers inherently exhibit larger pressure drops and wall shear stresses than open-channel 

cassettes, as shown below.   

For laminar, Newtonian flow of a fluid with viscosity η through a cylindrical channel 

(such as a hollow fiber) of radius R, the pressure drop and wall shear stress are given by Eqn. 5.6 

and 4.10 respectively. 

𝜏𝑤 =
4𝜂𝑄

𝜋𝑅3              (5.10) 

For a corresponding flat sheet cassette with an open, rectangular flow channel of width H and 

height 2H, the pressure drop and wall shear stress are given by Eqn. 5.11 and 5.12 respectively. 

 
∆𝑃

𝐿
=

3𝜂𝑄

2𝐻4         (5.11) 

𝜏𝑤 =
3𝜂𝑄

2𝐻3        (5.12) 

Combining Eqn.’s 5.6 and 5.10 – 5.12 and assuming a fixed v (v=Q/(πR
2
)=Q/(2H

2
)) reveals that 

 

(
∆𝑃

𝐿
)

𝑓𝑖𝑏𝑒𝑟

(
∆𝑃

𝐿
)

𝑠ℎ𝑒𝑒𝑡

=
8

3
(

𝐻

𝑅
)

2

            (5.13) 

and that 
𝜏𝑤,𝑓𝑖𝑏𝑒𝑟

𝜏𝑤,𝑠ℎ𝑒𝑒𝑡
=

4

3
(

𝐻

𝑅
)            (5.14) 

To compare between hollow fiber and open-channel flat sheet cassettes with both the same bulk 

velocity v and the same channel cross section A, the ratio H/R must be fixed at √(π/2)=1.253. 

Substitution of this value for H/R into Eqn. 5.13 and 5.14 results in ΔP and τw ratios of 4.19 and 

1.67, respectively, for the hollow fiber relative to the open-channel flat sheet cassette. 

For screened cassette devices, an additional correction factor, a, must be introduced for 

the pressure drop and shear stress to account for parasitic pressure losses from the presence of 

the screen and sharp bends in the serpentine flow path (12, 60):  
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∆𝑃

𝐿
=

3𝑎𝜂𝑄

2𝐻4
                   (5.15) 

𝜏𝑤 =
3𝑎𝜂𝑄

2𝐻3
        (5.16) 

Consequently, for the same bulk velocity and channel cross-sectional area, the ΔP and τw ratios 

are 4.19/a and 1.67/a, respectively, for the hollow fiber relative to the screened cassette, where a 

has been found from simulation to vary between ~1.5 and 5 for a range of flow channel 

geometries and flow rates (60). 

 

 

Figure 5.6. Flow path schematic of the Spectrum KrosFlo Research II TFF system.  
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Figure 5.7. Two-parameter fits (−) of the mAb solution viscosity (○) to the Ross-Minton 

equation during ultrafiltration to 250 mg/mL mAb by TFF for: (a) 40:50:17 

mg/mL Tre:His:CitrA, pH 6.0 (Replicate 4); (b) 50:50:12 mg/mL Tre:His:PhosA, 

pH 6.0; (c) 50:17:10 mg/mL Tre:Im:CitrA, pH 7; (d) 50:17:7 mg/mL Tre:Im:HCl, 

pH 6.3; (e) freezing buffer; (f) DI water. 
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Figure 5.8. Inherent viscosity of mAb solutions during ultrafiltration to 250 mg/mL by 

TFF. The numbers in the formulation names represent concentration of each 

excipient in mg/mL. The colored lines serve as guides to the eye and correspond to 

the data series of the same color. 

 

 

Figure 5.9. Concentration-normalized post-diafiltration turbidity as a function of shear 

stress*time for the 40:50:17 mg/mL Tre:His:CitrA solution replicates in Table 

5.4. The wall shear stress was calculated for flow inside the silicon tubing 

(Masterflex), rather than the hollow fibers. 
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(a) (b) 

  
(c) (d) 

Figure 5.10. TFF membrane flux (in L/m
2
h) as a function of (a) mAb concentration and (b) 

solution viscosity; and permeation flux resistance Rt (in m
-1

) as a function of (c) 

mAb concentration and (d) solution viscosity during ultrafiltration to 250 

mg/mL mAb for low co-solute (- - -) and high co-solute (−−) solutions. The 

numbers in the formulation names represent concentration of each excipient in 

mg/mL. The flux and resistance curves for the 40:50:17 mg/mL Tre:His:Citr 

solution corresponds to Replicate 1. The colored lines are a guide to the eye, and 

correspond to the data series of the same color. 

 

0

1

2

3

4

5

50 100 150 200 250 300

P
e
rm

e
a
te

 F
lu

x
 (

L
M

H
) 

mAb conc (mg/mL) 

Freezing buffer, pH 6.3

DI water, pH 6.6

40:50:17 Tre:His:Citr, pH 6

50:50:12 Tre:His:Phos, pH 6

50:17:7 Tre:Im:HCl, pH 6.3

50:17:10 Tre:Im:Citr, pH 7

0

1

2

3

4

5

1 10 100 1000

P
e
rm

e
a
te

 F
lu

x
 (

L
M

H
) 

Viscosity (cP) 

Freezing buffer, pH 6.3

DI water, pH 6.6

40:50:17 Tre:His:Citr, pH 6

50:50:12 Tre:His:Phos, pH 6

50:17:7 Tre:Im:HCl, pH 6.3

50:17:10 Tre:Im:Citr, pH 7

3E+13

3E+14

50 100 150 200 250 300

P
e
rm

e
a
ti

o
n

 R
e
s
is

ta
n

c
e
 R

t 
 (

m
-1

) 

mAb conc (mg/mL) 

Freezing buffer, pH 6.3

DI water, pH 6.6

40:50:17 Tre:His:Citr, pH 6

50:50:12 Tre:His:Phos, pH 6

50:17:7 Tre:Im:HCl, pH 6.3

50:17:10 Tre:Im:Citr, pH 7

3E+13

3E+14

1 10 100 1000

P
e
rm

e
a
ti

o
n

 R
e
s
is

ta
n

c
e
 R

t 
 (

m
-1

) 

Viscosity (cP) 

Freezing buffer, pH 6.3

DI water, pH 6.6

40:50:17 Tre:His:Citr, pH 6

50:50:12 Tre:His:Phos, pH 6

50:17:7 Tre:Im:HCl, pH 6.3

50:17:10 Tre:Im:Citr, pH 7



 257 

   
(a) 

  
(b) 

Figure 5.11. Time evolution of (a) pressure drop and wall shear stress and (b) mAb 

concentration during TFF ultrafiltration for low co-solute (---) and high co-

solute solutions (―). The numbers in the formulation names represent 

concentration of each excipient in mg/mL.The concentration and pressure/shear 

stress curves for the 40:50:17 mg/mL Tre:His:Citr solution corresponds to Replicate 

1. 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.12. Calculated axial dimensionless TMP profiles at (a) 100 mg/mL, (b) 200 mg/mL 

and (c) 250 mg/mL mAb during ultrafiltration, assuming constant pressure 

gradient ΔP/L throughout filter module. ΔP/L was calculated from the measured ΔP 

at the corresponding mAb concentration during ultrafiltration.  
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Figure 5.13. pH shift of mAb solutions during ultrafiltration by TFF. The numbers in the 

formulation names represent concentration of each excipient in mg/mL. The pH of 

the low co-solute (---) and high co-solute (−−) mAb solutions were measured with a 

Mettler Toledo InLab Micro pH probe (Mettler Toledo, Columbus, OH). The pH 

shift for the 40:50:17 mg/mL Tre:His:Citr solution corresponds to Replicate 4. 
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(a) (c) 

  

(b) (d) 

Figure 5.14. Storage stability of Replicate 4 of the 40:50:17 mg/mL Tre:His:Citr solution 

(Figure 4.2) as characterized by the (a) inherent viscosity and (b) percent 

monomer by SEC upon dilution to 2 mg/mL mAb. (c) The Replicate 4 solution 

remained as a clear liquid during prolonged storage at 4°C, whereas (d) a low co-

solute solution (235 mg/mL mAb in DI water, Table 5.2) gelled and phase separated 

within 20 minutes of 4°C storage. Although not pictured, the 240 mg/mL mAb 

solution in freezing buffer (low co-solute; Table 5.2) also resembled the gelled 

solution in (d) within minutes of storage at 4°C.  
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Figure 5.15. New membrane water permeability of the hollow fiber modules used in the 

TFF experiments. The 0.5 mm ID hollow fiber module had a surface area of 115 

cm
2 

and a MWCO of 50 kDa. The water permeability test was conducted at a cross-

flow flux of 1150 LMH. The 1.0 mm ID hollow fiber module had a surface area of 

75 cm
2 

and a MWCO of 50 kDa. The water permeability test was conducted at a 

cross-flow flux of 800 LMH. 

 

 

  
(a) (b) 

Figure 5.16. Raw (red discrete points) and fitted (blue curve) DLS ACFs of Replicate 4 of 

the 40:50:17 mg/mL Tre:His:CitrA solution formulation in Fig. 5.2 (a) before 

and (b) after sterile filtration. The unfiltered solution was stored at 4°C over 3 

months after manufacture by TFF. DLS measurements were made at a scattering 

angle of 170°, and the corresponding detection count rates were 4200 and 1100 

kcps respectively. The fitted diffusion coefficients were used to calculate the Dv/Dv,o 

values reported in Table 5.11. 
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Figure 5.17. Effective diffusion coefficient of mAb solutions during ultrafiltration to 250 

mg/mL by TFF. The numbers in the formulation names represent concentration of 

each excipient in mg/mL. The effective diffusion coefficient Dv was obtained from 

fitting the DLS autocorrelation function (measured at 150° scattering angle) with 

the CONTIN algorithm. The theoretical diffusion coefficient of monomer in the 

same buffer (Dv,0) was calculated from Stokes-Einstein at 25°C assuming a RH of 

5.5 nm and the solvent viscosity of the buffer. The Dv/Dv,o for the 40:50:17 mg/mL 

Tre:His:Citr solution corresponds to Replicate 4.  The colored lines serve as guides 

to the eye and correspond to the data series of the same color. 
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

 
(g) 

Figure 5.18. Raw (discrete red points) and fitted (blue curve) DLS ACFs of the unfiltered 

final ~250 mg/mL mAb solutions listed in rows (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 

6, (g) 7 of Table 5.15. The corresponding scattering angle and count rates for each 

measurement are indicated in Table 5.17. 
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(a) (b) 

  
(c) (d) 

Figure 5.19. Raw (discrete red points) and fitted (blue curve) DLS ACFs of the unfiltered 

low co-solute mAb solutions listed in rows (a) 1, (b) 2, (c) 3, and (d) 4 of Table 

5.16. DLS measurements were made at a scattering angle of 170°, and count rates 

varied between 600 and 1800 kcps.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5.20. Raw (red discrete points) and fitted (blue curve) DLS ACFs of selected 

unfiltered intermediate mAb solutions at concentrations between 50 and 220 

mg/mL. DLS measurements were made at a scattering angle of 150°. The fitted 

diffusion coefficients were used to calculate the Dv/Dv,o values reported in Fig. 5.17. 

The corresponding sample information (formulation, mAb concentration, count 

rates) is indicated in Table 5.18. 
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Figure 5.21. Liquid volume as a function of meniscus height for six different conical vials 

used in viscosity measurements. The first number in the legend is the incremental 

volume added (in µL) per addition, and the second number is the replicate number 

for each incremental volume addition. The quadratic fit of the data is V = 0.426*h
2
 

– 1.135, where V is the liquid volume in µL and h is the meniscus height in mm. 

 

 

 

  

Figure 5.22. Viscosity of known standards (S60, N44, N35, N10 and DI water) versus 

measured volumetric flow rate. The solid line (—) shows the fit of the data to the 

Hagen-Poiseuille equation, where ΔP was fit to be 7942 Pa. Error bars shown are 

the measurement standard deviation for each viscosity standard; some error bars are 

too small to be seen. 
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Figure 5.23. Predicted applied wall shear rate during capillary syringe viscometry as a 

function of solution viscosity 

 

 

 

Figure 5.24. TMP-flux profiles at 40, 120 and 190 mg/mL mAb in 40:50:17 mg/ml 

Tre:His:CitrA for a cross-flow flux of 750 LMH. 
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mAb conc 

(mg/mL) 
pH 

η  

(cP) 

ηinh 

 (mL/g) 

Effective CONTIN 

Dv/Dv,0 (cm
2
/s) 

284 ± 1.84 6.01 76 ± 6.2 14.9 0.25 

256 ± 3.39 6.03 39 ± 1.7 13.9 0.24 

237 ± 1.77 6.02 31 ± 1.0 14.0 0.25 

183 ± 0.02 6.01 15 ± 1.1 14.2 0.24 

Table 5.10. Reversibility of mAb solution viscosity (η) and inherent viscosity (ηinh) upon 

dilution of Replicate 4 of the 40:50:17 mg/mL Tre:His:CitrA (pH 6) 

formulation in the same buffer. The pH of the pure buffer was 6.00. The 

normalized effective CONTIN diffusion coefficient Dv/Dv,0 of the unfiltered 

solution was measured by DLS at a scattering angle of 90°. 

 

 

Sample ID mAb conc (mg/mL) Dv/Dv,o 

Before filtration 300 0.26 

After filtration 223 0.31 

Table 5.11. Normalized effective Dv for Replicate 4 (Fig. 5.2a) before and after syringe 

sterile filtration. Dv was determined from fitting the DLS ACF measured at 170° 

with the CONTIN algorithm and normalized by the theoretical Dv of mAb monomer 

diffusing through pure buffer (Dv,0; calculated assuming Stokes-Einstein diffusion 

and solvent viscosity η0 = 1.27 cP). 

 

mAb conc (mg/mL) Retentate pH Permeate pH 

66 7.03 --- 

95 7.02 --- 

142 7.02 7.04 

194 7.01 7.03 

227 7.02 7.03 

252 7.00 7.03 

Table 5.12. Retentate and permeate pH of 50:17:10 mg/mL Tre:Im:CitrA mAb solution 

during ultrafiltration to 250 mg/mL mAb by TFF. The retentate and permeate 

pH were measured using a Mettler Toledo InLab Micro pH probe. The measured 

permeate pH is an average value for the cumulative permeate collected. The 

measured retentate pH is an instantaneous value as a small amount of retentate was 

periodically withdrawn and characterized at intermediate mAb concentrations 

during ultrafiltration. The permeate volume at the first two intermediate 

concentrations (66, 95 mg/mL) was insufficient for measuring the pH. 
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Sample Initial buffer pH 
Solution pH post-

diafiltration 

40:50:17 Tre:His:CitrA 6.01 6.01 

50:50:12 Tre:His:PhosA 6.00 5.97 

50:17:7 Tre:Im:HCl 6.47 6.38 

50:17:10 Tre:Im:CitrA 7.09 7.03 

Table 5.13. Change in buffer pH after diafiltration. The pH of the initial protein-free buffer 

was measured before the start of diafiltration. The pH of the protein solution (~60 

mg/mL mAb) was also measured after diafiltration into six diavolumes of the 

buffer. 

 

 

Time 

(days) 

Storage 

temp (°C) 

mAb conc  

(mg/mL) 

Viscosity  

(cP) 

Effective Dv/Dv,o 

(cm
2
/s) 

4 -40 278 ± 5.3 92 ± 3.7 0.26 

4 4 274 ± 6.6 88 ± 5.5 0.25 

4 37 330 ± 2.7  297 ± 3.9 ---
a 

7 -40 263 ± 2.7 82 ± 3.7 0.24 

7 4 266 ± 10.0 88 ± 2.3 0.25 

7 37 260 ± 10.9 77 ± 0.6 0.24 

14 -40 287 ± 5.1 101 ± 0.9 0.24 

14 4 288 ± 3.4 98 ± 5.7 0.24 

14 37 454 ± 34.8 --- ---
 b

 

28 -40 291 ± 3.5 132 ± 0.8 0.25 

28 4 302 ± 6.4 133 ± 1.9 0.25 

28 37 299 ± 4.2 86 ± 2.4 0.25 

56 -40 279 ± 1.4 106 ± 2.6 0.24 

56 4 272 ± 0.5 114 ± 6.1 0.24 
a. Remaining sample volume after viscometry and concentration measurements was insufficient for DLS 

measurements. 

b. Sample became too concentrated and viscous to characterize by viscosity and DLS.  

Table 5.14. Viscosity and effective normalized Dv of Replicate 4 of the 40:50:17 mg/mL 

Tre:His:CitrA solution after up to 4-weeks storage at -40°C, 4°C and 37°C. Dv 

was determined by fitting the DLS ACF measured at 90° with the CONTIN 

algorithm and normalized by the theoretical Dv of mAb monomer diffusing through 

pure buffer (Dv,0; calculated assuming Stokes-Einstein diffusion with the solvent 

viscosity η0). 
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mAb conc 

± stdev 

(mg/mL) 

Tre conc  

Base 

Base conc  

Acid 

 Acid conc  
η0 

 (cP) 

Effectiv

e Dv/Dv,0 
mg/mL mM mg/mL mM mg/mL mM 

242±2.5 Freezing buffer 0.98 0.67 

245±3.6 DI water 0.93 0.80 

282±3.7
a 

40 105 His 50 320 CitrA 17 80 1.11 0.24 

241±0.3
 

40 105 His 50 320 CitrA 17 80 1.11 0.30 

251±18.5
b 

50 130 His 50 320 
Phos

A 
12 120 1.12 0.36 

252±0.5
b 

50 130 Im 17 250 CitrA 10 50 1.07 0.25 

262±4.5 50 130 Im 17 250 HCl 7 190 0.99 0.26 
a. The DLS ACF was measured at 90° 

b. The DLS ACF was measured at 173° 

Table 5.15. Normalized effective Dv for low and high co-solute solutions made by TFF. Dv 

was determined from fitting the DLS ACF measured at 150° (unless indicated 

otherwise) with the CONTIN algorithm and normalized by the theoretical Dv of 

mAb monomer diffusing through pure buffer (Dv,0; calculated assuming Stokes-

Einstein diffusion with the solvent viscosity η0). 

 

 

 

 

mAb conc 

(mg/mL) 
Exc 1 

Exc 1 

conc 

(mM) 

Exc 2 

Exc 2 

conc 

(mM) 

Exc 3 

Exc 3 

conc 

(mM) 

η0 (cP) Dv/Dv,0 

281 ± 8.7 Freezing buffer (replicate 1) 0.98 0.42 

271 ± 0.5 Freezing buffer (replicate 2) 0.98 0.47 

238 ± 3.3 His 30 HCl 19 --- --- 0.98 0.64 

230 ± 2.8 His 30 HCl 19 NaCl 150 0.98 0.23 

Table 5.16. Normalized effective Dv for low co-solute control solutions made by 

centrifugation filtration. Dv was determined from fitting the DLS ACF measured 

at 170° with the CONTIN algorithm and normalized by the theoretical Dv of mAb 

monomer diffusing through pure buffer (Dv,0; calculated assuming Stokes-Einstein 

diffusion with the solvent viscosity η0). 
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Figure number Scattering angle (°) Count rate (kcps) 

4.S13a 150 254.9 

4.S13b  150 111.4 

4.S13c 90 371.1 

4.S13d 150 52.4 

4.S13e 173 5000 

4.S13f 173 3633.3 

4.S13g 150 178.3 

Table 5.17. Scattering angle and count rates for DLS ACF’s shown in Fig. 5.18. 

 

 

 

 

Figure number Sample 
mAb conc 

(mg/mL) 

Count rate 

(kcps) 

4.S15a 
Freezing buffer 

158 294 

4.S15b 116 617.5 

4.S15c DI water 196 582.1 

4.S15d 
40:50:17 mg/mL 

Tre:His:Citr 
219 47.1 

4.S15e 
50:50:12 mg/mL 

Tre:His:Phos 
195 4500 

4.S15f 
50:17:7 mg/mL Tre:Im:HCl 

196 77.1 

4.S15g 51 909.5 

4.S15h 50:17:10 mg/mL 

Tre:Im:Citr 

227 50.5 

4.S15i 194 104.8 

Table 5.18. Corresponding formulation, mAb concentration and count rates for DLS 

ACF’s shown in Fig. 5.20. 
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Chapter 6:  Conclusions and Recommendations 

6.1 CONCLUSIONS 

6.1.1 Co-solute effects on protein-protein interactions and self-association probed by static 

structure 

Static light scattering was used to quantify the effects of six ionic co-solutes on the 

attractive PPI strength and extent of self-association for two mAbs (mAb2 and mAb3) from low 

to high concentration (up to 230 mg/mL). For both mAbs, the PPI strength (quantified by the 

structure factor S(0)/S(0)HS, G22/G22,HS, and Yukawa attraction strength K) and oligomer 

formation (oligomer mass ratio moligomer/mmonomer+dimer and average cluster size 〈Nc〉) fit from the 

SLS scattering profiles were consistent with the mAb viscosity across all co-solute systems, with 

arginine and imidazole causing the largest reductions in both viscosity and attractive PPI 

strength. However, ηrel was more sensitive to nearly all of these experimental and model fit 

descriptors for mAb3 than mAb2, reflecting potential differences in the mAb packing (fractal 

dimension), possible formation of reversible oligomers, or dynamic factors (3, 5, 6) that were not 

considered. The influence of self-association on viscosity could be seen from the more universal 

correlation between both <Nc> and the oligomer mass ratio with the viscosity across both mAbs. 

The mass ratio of oligomers to monomer and dimer emphasizes the larger oligomers much more 

than does 〈Nc〉, and also emphasizes the relative polydispersity, both of which will influence the 

mAb packing efficiency and relative viscosity in solution. The large effect of oligomerization on 

ηrel may be anticipated from theoretical self-association models for both Fab-Fab and/or Fab-Fc 

interactions (6-8). 

6.1.2 Co-solute effects on PPI and self-association probed by length-scale dependent 

dynamic structure 

Reproducible measurements of mAb2’s diffusion at high concentration (up to 250 

mg/mL) and high viscosities (up to ~200 cP) in a range of co-solute formulations (50 – 250 mM 
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Arg or NaCl, 1 M Im) were successfully achieved by FCS after optimization of experimental 

methods (via choice of slide passivation strategies, microscope focal depth and labeling strategy) 

to overcome the challenges associated with these conditions. The generalized Stokes-Einstein 

(GSE) relation was seen to break down for mAb2 with respect to the macroscopic viscosity, with 

the least viscous co-solute systems (1 M Imid and 250 mM Arg) showing the greatest negative 

deviation from the GSE relation. The breakdown was attributed to the use of the labeled mAb as 

a nanoprobe, resulting in measurement of the local microviscosity (11, 12). The greater deviation 

of the microviscosity from the macroscopic viscosity for the lowest viscosity systems was 

attributed to a combination of weaker PPI (seen from the smaller interaction parameter b from 

fits of D0/Ds to the length-scale dependent viscosity (LDV) model) and reduced self-association 

(based on previous SLS measurements of oligomer mass ratios and average cluster sizes for the 

same mAb and co-solute formulations) (9) leading to smaller rp/Rh,avg probe size ratios. The more 

GSE-like scaling between D0/Ds and the macroscopic viscosity for the viscous formulations (50 

– 250 mM NaCl) was consistent with the LDV model, given the larger probe size as a 

consequence of the greater degree of self-association seen previously by SLS and SAXS (9, 10) 

for those systems.  

6.1.3 Contrasting the influence of proline on the viscosity and stability of a highly 

concentrated mAb with other neutral osmolytes 

In contrast to the ionic co-solutes investigated in chapters 2 and 3, the neutral osmolyte 

proline was found to reduce the viscosity and increase the stability (against aggregation) of a 

concentrated mAb in a pH-dependent manner, but with a lower molar efficacy than the ionic co-

solutes. The reductions in viscosity and aggregation were not simply due to osmotic depletion, as 

two other neutral osmolytes, glycine and trehalose, raised both properties. The large dipole 

moment of proline’s zwitterionic functionality, in combination with its pyrrolidine ring (which 

has been shown in simulations to preferentially interact with aromatic residues) may explain its 
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greater efficacy for reducing protein viscosity and aggregation relative to glycine and trehalose, 

These properties may allow proline to mitigate attractive electrostatic and hydrophobic 

interactions, similar to arginine and imidazole, which were shown in the previous chapter to 

reduce the solution viscosity and self-association by weakening the attractive PPI. 

6.1.4 Improved TFF process performance from integration of low-viscosity formulation 

development 

The 10x reduction in viscosity of a concentrated (250 mg/mL) mAb solution by the 

addition of histidine or imidazole translated to direct gains in the process performance for 

tangential flow ultrafiltration. The low viscosity histidine/imidazole formulation generated 2x – 

3x higher membrane fluxes at high concentration relative to more conventional buffer 

formulations as well as maintained high protein stability during ultrafiltration despite the 

prolonged exposure of the mAb to high mechanical stress (high shear flow). The respective gains 

in process throughput and yield were determined to result from a significant increase in the 

protein gel concentration cg and more uniform axial transmembrane pressure (TMP) and shear 

stress τw profiles, as a direct consequence of the weaker PPI and lower viscosities. The large 

increase in cg of ~100 mg/mL enhanced the concentration-polarization back-diffusion at the 

membrane wall, leading to higher membrane fluxes and greater process capability (higher 

maximum achievable protein concentration). The smaller viscosities led to a reduction in the 

axial pressure drop ΔP leading to smaller and more uniform τw and TMP profiles, both which 

reduce the extent of protein aggregation and membrane fouling.  

6.2 RECOMMENDATIONS AND FUTURE RESEARCH 

6.2.1 Relating protein microstructure to viscosity to explain mAb-dependent PPI-viscosity 

correlations 

The divergent viscosities seen for mAb2 and mAb3 as a function of PPI strength (chapter 

1) indicates the confounding influence of additional factors beyond PPI strength on mAb 
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solution viscosity, and may explain the poor correlations between PPI indicators (such as B22 and 

kD) and viscosity across different mAbs, as is commonly seen in the literature (14). The 

improved universality of the correlation between the apparent average oligomer size and 

oligomer mass ratio (determined from fits of the SLS data to the interacting hard sphere self-

association model) suggests that self-association, which is influenced by the PPI attraction 

strength, also plays a significant role in determining the solution viscosity. It would therefore be 

of interest to extend the investigation of the mAb’s biophysical behavior at high concentration 

(chapter 2, 3) to additional mAbs, and to attempt to derive a physical property that universally 

explains/predicts the solution viscosity across a variety of mAbs with different PPI profiles and 

self-association behavior. One factor that has not been investigated in much depth is the 

microstructure of the protein oligomer. Based on colloidal viscosity models, the viscosity is a 

strong function of the volume occupied by the solute. For the same mass concentration and 

oligomer aggregation numbers, the solution volume occupied by the protein may depend 

strongly on the oligomer microstructure. Future work may therefore investigate the combined 

influence of the microstructure, quantified by parameters such as the cluster fractal dimension, 

and the PPI strength and self-association on viscosity, to potentially arrive at a more universal 

correlation across all mAbs. 

6.2.2 Decoupling the influence of hydrodynamic and thermodynamic interactions (PPI) on 

protein diffusion and viscosity 

The structural and dynamic information obtained from SLS and FCS respectively can be 

used to better understand the collective dynamics of mAbs at high concentration, such as the 

collective diffusion coefficient Dc routinely measured by DLS. Furthermore, the viscosity, static 

structure and diffusion behavior of mAbs may be interpreted in the context of the generalized 

Stokes relation to attempt to decouple the effects of thermodynamic interactions (PPI) on the 

mAb’s biophysical behavior at high concentration from those of the hydrodynamic interactions. 
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Both types of interactions may enhance or retard the mobility of the mAb, and will consequently 

influence both the solution viscosity and the mAb diffusive behavior. It would be of interest to 

compare the relative contributions of the two types of interactions to the mAb viscosity and 

diffusion at high concentration across different mAbs and co-solutes, to attempt to develop a 

more fundamental, general understanding of how each factor influences the macroscopic solution 

behavior of highly concentrated mAbs, and how they are in turn modified by the choice of 

formulations (co-solute, co-solute concentration, etc.). 

6.2.3 Decoupling length-scale effects from PPI influence on mAb self-diffusion and 

microviscosity 

While the length-scale dependent viscosity (LDV) model analysis of the retardation of 

the mAb self-diffusion (chapter 3) provides some insight into the effects of the PPI and 

surrounding protein microstructure on the local dynamics and microviscosities experienced by a 

diffusing mAb, the analysis is complicated by the reversible self-association of the mAb probe. 

As the microviscosity (defined by the diffusion retardation factor) is a function of both the PPI 

and length-scale dependent solution structure, uncertainty in the probe size (due to possible self-

association) complicates the interpretation of the PPI strength from the LDV model. It would be 

of interest to attempt to further decouple the effects of PPI from (changing) probe sizes by using 

other non-associating probes with known size, such as eGFP (enhanced green fluorescent 

protein). The use of non-associating probes may also provide more insight into the polydispersity 

of the mAb solution, as the diffusion of these probes would not be complicated by the 

equilibrium exchange of the probe between monomer and various oligomer states during the 

duration of the diffusion measurements. 
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