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Abstract 

 
A Decision Support Tool to Improve Binational Water Quality Planning and 

Management in the Lower Rio Grande/Río Bravo 

Roger Menelik Miranda, Ph.D. 

The University of Texas at Austin, 2019 

 

Supervisor: David J. Eaton 

 
This dissertation describes the development of a decision support tool designed to facilitate and 

enhance collaborative binational decision making associated with integrated transboundary water 

quality planning and management in the Lower Rio Grande/Río Bravo.  The Lower Rio Grande 

Water Quality Initiative Decision Support System (LRGWQIDSS) is the result of a 

multidisciplinary effort to integrate the results of qualitative social science research and traditional 

and novel engineering and geographic information systems (GIS) methods associated with the 

modeling, analysis, and visualization of watershed, water quality and natural resources data.  The 

LRGWQIDSS incorporates information currently used by urban planning and natural resource 

management organizations working along the Texas-Mexico border area and provides a means to 

analyze and display the information in a way that is useful to institutional and noninstitutional 

actors involved in transboundary water quality planning efforts.  The analysis of the institutional 

arrangements currently in place to protect water quality in the Lower Rio Grande/Río Bravo played 

an important role in the design and development of the LRGWQIDSS and its successful 

application.  The tool’s development represents a case study in the importance of the role of 

institutional analysis in the successful development of decision support systems for transboundary 

water quality management.  
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CHAPTER 1: ADDRESSING WATER QUALITY DEGRADATION IN THE 
LOWER RIO GRANDE/RÍO BRAVO 

1.0 Introduction 

The Rio Grande, known as the Río Bravo in Mexico, is an important transboundary water 

resource for both the United States (US) and Mexico.  In recent years, this iconic river has 

become seriously threatened by the border region’s growing population and rapid industrialization.  

In addition to water availability issues, several persistent water quality problems threaten to limit 

the beneficial uses of the river. While water quantity is inextricably linked to water quality in the 

river, the primary focus of binational management efforts in the Rio Grande/Río Bravo has 

historically been on the apportionment of its water between the two countries.  Recently, 

however, the federal governments of the United States and Mexico have initiated a series of 

collaborative efforts aimed at addressing water quality problems, which are recognized by both 

countries as impediments to sustainable development along the border region on both sides of the 

river. 

Among the most common water quality problems faced by the Rio Grande/Río Bravo are 

elevated levels of bacteria, such as fecal coliform, E. coli and Enterococcus, which are commonly 

monitored as indicators of fecal contamination in surface water bodies.  Another common water 

quality problem in the Rio Grande/Río Bravo is increasing salinity due to high levels of dissolved 

salts entering the river.  In addition to these common water quality impairments, the Rio 

Grande/Río Bravo also suffers from a long list of other water quality problems and concerns, 

including elevated levels of metals, such as mercury, in fish tissue, unexplained ambient toxicity, 

elevated levels of nutrients and low dissolved oxygen. 

Recognizing the diversity of water quality problems plaguing the Rio Grande/Río Bravo, 

the federal governments of the United States and Mexico agreed to collaborate on a binational 

pilot project to study water quality problems in the portion of the river between Falcon Dam and 

the Gulf of Mexico, a section of the river where poor water quality affects a disproportionately 

high number of people living in the riparian areas of the river and its tributaries.  The pilot project, 

named the Lower Rio Grande/Río Bravo Water Quality Initiative (LRGWQI), was formally 

authorized under the US-Mexico Water Treaty of 1944 (i.e., Treaty on the Utilization of Waters 
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of the Colorado and Tijuana Rivers and of the Rio Grande, 1944) and was initiated in September 

of 2013.   

A unique feature of the LRGWQI is that, unlike other binational projects involving the 

United States and Mexico, this initiative did not originate as a result of bilateral interactions 

between the federal governments of the two countries.  Instead, the LRGWQI was initially 

conceived and proposed by the Texas Commission on Environmental Quality (TCEQ).  The 

project subsequently evolved as a result of interactions between state and federal institutional 

actors on both sides of the border.  

1.0.1 INSTITUTIONAL INTERACTIONS WITHIN THE UNITED STATES 

In 2007, the TCEQ began holding official discussions with the US Environmental 

Protection Agency (USEPA) and the US Section of the International Boundary and Water 

Commission (USIBWC) regarding persistent water quality problems in the Rio Grande/Río Bravo.  

Through these discussions, the TCEQ hoped to clarify the specific responsibilities of the three 

agencies under US federal law.  While the federal Clean Water Act clearly specifies the roles of 

the federal government and of sub-federal governments (i.e., states, territories, and Native 

American tribal lands) in the protection of surface water quality within the United States, the 

statute is less clear about the roles and requirements of these governmental entities with respect to 

transboundary water bodies such as the Rio Grande/Río Bravo.  

In the United States, the federal Clean Water Act gives the USEPA the power to regulate 

the release of pollutants into the environment.  For example, in 1972 the USEPA published rules 

that required industrial facilities and municipalities to obtain a permit to discharge treated 

wastewater into navigable surface waters.  Discharge requirements for wastewater permits are 

specified under the USEPA’s National Pollutant Discharge Elimination System (NPDES) 

authorized under Part 122 of Title 40 of the United States Code of Federal Regulations.  The 

federal Clean Water Act also allows the USEPA to delegate permitting authority to US states, 

territories and tribal governments.  The State of Texas was granted such authority in 1998 through 

the creation of the Texas Pollutant Discharge Elimination System (TPDES), which gave the state 

the authority to issue wastewater discharge permits in all waters of the state, including the Rio 

Grande.  With this permitting authority came the responsibility of ensuring that wastewater 
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discharges allowed under the TPDES program did not cause or contribute to the degradation of 

surface water quality in the state.  As a condition for delegation, the USEPA routinely scrutinizes 

the state’s permitting programs and can withdraw NPDES delegation if it deems the state is not 

adequately protecting water quality in surface waters within the state’s jurisdiction. 

In addition to outlining wastewater discharge permitting authority and associated 

responsibilities, the federal Clean Water Act also requires US states, territories and tribal 

governments to monitor the quality of their surface waters and to assess compliance with specific 

surface water quality standards and criteria.  Under section 303(d) of the act, sub-federal 

governments must also compile, and submit to the USEPA biennially, a list of surface water bodies 

of the state that do not meet the criteria specified in their surface water quality standards (i.e., lists 

of “impaired” water bodies) along with a schedule for establishing “Total Maximum Daily Loads” 

for each impaired water body placed on the lists.  Total Maximum Daily Loads (TMDLs) are 

essentially caps on the amount of a particular pollutant allowed to be discharged into a surface 

water body or allowed to wash into a surface water body from urban rainfall runoff.  

Under the institutional framework established by the federal Clean Water Act, the 

responsibility for protecting and restoring water quality in surface waters of the United States is 

placed first and foremost on the federal government.  However, under the regulatory framework 

established by the USEPA, the burden of achieving these goals is placed on the governments of 

US states, territories and Native American tribal lands.  States and other sub-federal governments 

that are unwilling or unable to comply with the regulatory requirements promulgated in the 

implementing regulations associated with the federal Clean Water Act (40 C.F.R. Parts 104-108, 

110-117, 122-140, 230-233, 401-471, and 501-503) risk losing control, to the USEPA, of 

wastewater permitting decisions as well as other aspects of environmental management associated 

with surface water bodies within their sub-federal jurisdictional boundaries (33 USC §1251 et seq. 

1972).  However, the clear institutional demarcations established by USEPA regulations are 

much less clear with respect to water bodies that cross state boundaries or are shared among states 

and the regulations are especially unclear with respect to transnational water bodies, such as the 

Rio Grande/Río Bravo. 

The State of Texas has conducted water quality monitoring in the Rio Grande since 1969 

and, following the requirements of the federal Clean Water Act and its implementing regulations, 
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the state has assessed water quality in the river since 1988.  The results of these assessments, 

along with official requests from the USEPA, prompted the TCEQ and its predecessor state 

agencies to include the Rio Grande in every list of impaired water bodies it has submitted to the 

USEPA (TCEQ 1992-2014).  However, fearing that the burden of restoring water quality in the 

Rio Grande would fall entirely on Texas stakeholders, the lists submitted by the State of Texas 

have not been accompanied by a schedule to establish TMDLs for the river.  For its part, the 

USEPA has not placed much regulatory pressure on Texas to establish TMDLs on any portion of 

the Rio Grande because it recognizes that a substantial amount of the pollutant loads impairing the 

river emanate from Mexico and there is currently no comprehensive binational agreement between 

the United States and Mexico to cooperatively control pollutant loadings to the river.  

The lack of coordinated binational efforts to control pollutant loads entering the Rio 

Grande/Río Bravo has likely helped perpetuate water quality problems in the river.  However, it 

would be inaccurate to state that the Rio Grande/Río Bravo lacks any institutional controls 

designed to protect water quality in that water body.  In fact, the TCEQ adheres to a de facto, 

self-imposed cap on the loading of certain pollutants entering the river from wastewater treatment 

facilities in Texas.  In 1995, the State of Texas estimated the assimilative capacity of the river for 

specific pollutants using a deterministic model of water quality it developed for the river (QUAL-

TX).  The state’s intent was to limit the pollutant loading allowed for Texas wastewater 

dischargers to half of the assimilative capacity calculated using the QUAL-TX model.  In 1998, 

the Texas Natural Resource Conservation Commission (TNRCC), a predecessor agency of the 

TCEQ, proposed, to the USEPA, this approach for determining wastewater discharge permit limits 

for Texas facilities discharging to the Rio Grande.  The USEPA concurred with the method 

proposed by the TNRCC and the two agencies signed a Memorandum of Agreement (MOA) 

agreeing to this permitting policy for the Rio Grande (MOA between the US Environmental 

Agency, Region 6 and Texas Natural Resource Conservation Commission Concerning the 

National Pollutant Discharge Elimination System, March 5, 1998).  The policy remains in effect 

to this day. 

The TCEQ recognizes that there are serious flaws associated with the unilateral approach 

to water quality management described above, the most obvious of which is its inability to control 

pollutant loads from Mexico.  Even if the assumption is made that Mexican regulatory measures 
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to control pollutant loads entering the river are adequate, the current lack of binational coordination 

with respect to water quality management casts serious doubts on the central assumptions of the 

policy.  First, it is difficult to evaluate whether the assimilative capacity estimated by the TNRCC 

for the Rio Grande/Río Bravo in 1995 is accurate, given the lack of data and physical information 

about the river available at the time the model was developed and the changes in flow that have 

occurred over the intervening 24 years. There is no guarantee that any Mexican estimates of 

assimilative capacity of the river would coincide with, or even be similar to, those of the TNRCC’s. 

Second, there is no guarantee that Mexican regulators would also limit the loadings of pollutants 

from Mexican dischargers to half of the assimilative capacity of the river.  Mexican regulators 

have not estimated the assimilative capacity of pollutants of concern to the Río Bravo officially 

(J.A. Rojas, personal communication, May 26, 2015). The uncertainties associated with the 

unilateral approach currently used to set wastewater discharge permit limits in the Rio Grande/Río 

Bravo render the approach inadequate for the protection of water quality in the river, even if the 

approach is better than no approach at all. 

The State of Texas’ motivation to restore, or at least improve, water quality in the Rio 

Grande/Río Bravo is not based on federal pressure to comply with the federal Clean Water Act or 

any other federal law or regulation.  The Rio Grande is an important natural resource for Texas 

stakeholders in the border region.  The government of State of Texas is keen to mitigate the 

degradation of the river’s quality, which is why the TCEQ initiated discussions with the USEPA 

and USIBWC in 2007 to explore the establishment of a binational approach to protect water quality 

in the river.  The State of Texas’ motive for clarifying the specific responsibilities of the three 

agencies (i.e., USEPA, USIBWC, and TCEQ) with regard to water quality management in the Rio 

Grande/Río Bravo was ultimately to enlist the help of these federal agencies in dealing with 

pollution sources on the Mexican side of the river.  During the interagency discussions, the TCEQ 

pointed to Section 102(c) of the federal Clean Water Act, which states: 

It is further the policy of Congress that the President, acting through the Secretary 
of State and such national and international organizations as he determines 
appropriate, shall take such action as may be necessary to insure that to the fullest 
extent possible all foreign countries shall take meaningful action for the prevention, 
reduction, and elimination of pollution in their waters and in international waters 
and for the achievement of goals regarding the elimination of discharge of 
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pollutants and the improvement of water quality to at least the same extent as the 
United States does under its laws.  

It should be noted that the IBWC is one of the agencies administered by the US State Department.  

During the aforementioned discussions, the TCEQ proposed to the USEPA and USIBWC 

that a collaborative binational initiative be established to study and address water quality 

impairments in the portions of the river that affected the most critical uses of the water body.  The 

official discussions between the TCEQ, USEPA and USIBWC resulted in a commitment by all 

three agencies to explore the establishment of a binational agreement with the Mexican 

government to develop a collaborative pilot project in a portion of the Rio Grande/Río Bravo of 

mutual interest to both countries.  The agencies envisioned a pilot project that would form the 

basis for wider binational cooperation between the two countries in addressing transboundary 

water quality problems and to serve as a model for addressing binational water quality issues 

elsewhere in the Rio Grande/Río Bravo.   

The TCEQ, USEPA and USIBWC agreed to propose to the Mexican government that the 

pilot study of water quality be conducted in the portion of the river downstream of Falcon Dam.  

The rationale was that: (1) the severity of the bacteria impairment was highest in the lower portions 

of the river at the time; (2) more monitoring data and physical information was available for the 

portion of the river downstream of Falcon Reservoir; and (3) the beneficial uses of the river were 

highest and most varied in the portion of the river flowing through the Rio Grande Valley of south 

Texas. 

The TCEQ also began committing internal resources to the pilot project and solicited 

financial support from another Texas state agency, the Texas General Land Office (TGLO).  

Since the Lower Rio Grande flows directly into the Gulf of Mexico and its watershed includes a 

portion of the coastal plain of South Texas, the TGLO suggested the TCEQ apply for funding 

under the Coastal Impact Assessment Program (CIAP), which was an environmental protection 

program funded by the US Fish and Wildlife Service (USFWS) and administered at the state level 

by the TGLO.  In 2011, the TCEQ submitted a proposal to TGLO for funding of the project under 

the CIAP program.  The TGLO, in turn, submitted the project to USFWS and was awarded 

$1,000,000 for the project in 2012.  In 2013, the TCEQ signed a sub-recipient agreement with 

the TGLO for funding of the Lower Rio Grande Water Quality Initiative (LRGWQI) Pilot Project. 
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1.0.2 INSTITUTIONAL INTERACTIONS WITHIN MEXICO 

Unilateral efforts to protect water quality in the Rio Grande/Rio Bravo are not limited to 

the efforts by US governmental entities, Mexican state and federal government agencies also have 

programs in place, which are designed to protect surface water quality in Mexican national waters, 

including the Río Bravo.  Since 2003, Mexico’s Comisión Nacional del Agua (CONAGUA), the 

country’s national water agency, has targeted the Río Bravo river for detailed study and has 

included the river in its list of priorities for water quality protection (E. Gutierrez, Personal 

Communication, May 25, 2015).  Like the United States’ federal Clean Water Act, Mexico’s Ley 

de Aguas Nacionales specifies the legal responsibilities, as well as the regulatory powers, of the 

Mexican federal government with respect to the protection of water quality in Mexican surface 

and subsurface water bodies.  Unlike its US counterpart, however, the law also grants the 

Mexican federal government the power to apportion surface water rights and create irrigation 

districts.  In combination with Mexico’s Ley Federal de Derechos, the Ley de Aguas Nacionales 

also grants broad powers to the Mexican federal government (and to CONAGUA in particular) to 

develop regulations designed to protect water quality in the country’s surface water bodies.  Also, 

in contrast to the United States’ regulatory framework, the responsibility for implementing 

CONAGUA’s water quality regulations is placed on the Mexican federal government 

(CONAGUA, SEMARNAT, and PROFEPA).  Although many of CONAGUA’s functions were 

decentralized in 2004 through the creation of regional basin authorities known as Organismos de 

Cuenca, implementation of water quality policy and resource allocation remain in the domain of 

CONAGUA’s central office in Mexico City. 

Wastewater treatment facilities in Mexico must obtain a permit from CONAGUA to 

discharge their effluent to surface waters in Mexico.  Under Mexican federal law, all wastewater 

treatment facilities must be designed, constructed and operated so as to treat wastewater to a level 

that will meet minimum federal criteria based on the “best available technology economically 

achievable,” referred to commonly as Best Practicable Technology (BPT).  The criteria are 

specified in the country’s federal regulation NOM-001-SEMARNAT-1996, which establishes the 

maximum permissible levels of contaminants in wastewater discharged to national surface waters 

according to the type of water body receiving the discharge and its established uses.  This 
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approach to wastewater permitting is known as a technology-based performance standard and is 

applied to entire categories of wastewater treatment facilities. 

In addition to technology-based performance standards, Mexican federal law provides for 

the establishment of individual discharge permits that stipulate effluent concentrations and flow 

limits for individual wastewater treatment facilities based on their effect on the water body 

receiving the discharge.  This more advanced approach to wastewater permitting is known as 

water quality-based performance standards.  It is commonly employed in situations where 

technology-based effluent limitations are deemed to be insufficient to adequately protect water 

quality in water bodies receiving wastewater treatment plant effluent.  The establishment of water 

quality-based effluent limits for individual facilities is often preceded by the development of a 

“Declaratoria de Clasificación,” which, among other things, includes a study of the pollutant 

assimilative capacity of the receiving water body.  In 2012, CONAGUA committed internal 

agency resources towards developing a Declaratoria de Clasificación for the Lower Río Bravo 

(referred to subsequently herein as the “Declaratoria” when in reference to the Lower Río Bravo).  

In 2013, CONAGUA applied for, and was granted, funding from Mexico’s Consejo Nacional de 

Ciencia y Tecnología (CONACYT) to fund the bulk of the Declaratoria study on the Lower Río 

Bravo.  Depending on the results of the study, CONAGUA could begin issuing individualized 

permits for new and existing wastewater treatment facilities discharging to the Lower Río Bravo 

following the completion and promulgation of the Declaratoria.  The Declaratoria, is scheduled 

to be completed by the end of 2019. 

 To carry out the technical work associated with the Declaratoria study, CONAGUA 

enlisted the help of the Instituto Mexicano de Tecnología del Agua (IMTA), a Mexican federal 

institute that specializes in the practical application of advanced water technology in the Mexico.  

CONAGUA signed a contract with IMTA in 2013 for the technical work associated with the 

Declaratoria.  The most important deliverable of the contract between CONAGUA and IMTA 

was the draft Declaratoria document itself.  In addition to IMTA’s services, CONAGUA also 

enlisted the help of the government of the Mexican State of Tamaulipas, securing a pledge of 

logistical and field operations support for the Declaratoria study from Tamaulipas’ state water 

commission, the Comisión Estatal del Agua de Tamaulipas (CEAT), and Tamaulipas’ secretariat 
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of development and the environment, Secretaría de Desarollo Urbano y Medio Ambiente 

(SEDUMA). 

A scientific study, such as a Declaratoria de Clasificación, necessarily involves the 

compilation and analysis of historical physical, chemical and biological information available for 

the subject water body and its associated watershed.  While much of the historical data and 

information needed for assimilative capacity studies, such as Declaratorias de Clasificación, are 

available from public sources, certain critical data and information are not accessible without 

special permissions (e.g., detailed flow diversion records, wastewater treatment facility discharge 

monitoring reports, etc.).  Access to these critical data usually requires the cooperation of a 

number of natural resource agencies and involves the navigation of significant bureaucratic 

hurdles.  This is especially true of transboundary water bodies, such as the Rio Grande/Río Bravo, 

where important data and information may not be available from entities inside a researcher’s 

national boundaries.  

Data collection efforts are also commonly part of the technical tasks associated with studies 

of assimilative capacity, especially if large data gaps are identified during the compilation of 

historical information.  Efforts to organize and coordinate data collection efforts in transboundary 

water bodies, such as the Rio Grande/Río Bravo can be even more challenging than acquiring 

historical information from foreign data sources.  In order to help facilitate access to US historical 

data and information and also to coordinate anticipated data collection efforts associated with the 

Declaratoria study, CONAGUA and IMTA researchers enlisted the help of the Comisión 

Internacional de Agua y Límites (CILA), which is the Mexican Section of the IBWC. 

1.0.3 BINATIONAL INSTITUTIONAL INTERACTIONS 

 Having come to agreement with its US federal partner agencies (USEPA and USIBWC) 

to propose, to the Mexican government, a binational pilot study of water quality in the portion of 

the Lower Rio Grande/Río Bravo downstream of Falcon Dam and with funding for the project 

awarded by the USFWS through the TGLO, the TCEQ drafted a proposal for the pilot project.  

The draft proposal underwent a number of revisions resulting from deliberations among the US 

partner agencies on the scope and language of the proposal before the USIBWC sent the proposal 
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to CILA.  CILA had already been in discussions with CONAGUA about securing US cooperation 

for CONAGUA’s Declaratoria study on the coincident portion of the river. 

CILA’s favorable response to the US proposal led to a series of binational meetings that 

included representatives of the TCEQ, CONAGUA, USEPA, CEAT, SEDUMA, CILA and 

USIBWC.  The meetings, which were held under the auspices of the International Boundary and 

Water Commission, culminated in a preliminary verbal agreement by all parties to establish a 

binational initiative to study the river and to develop a plan to improve and protect water quality 

the Lower Rio Grande/Río Bravo between Falcon Dam and the Gulf of Mexico.  Subsequent 

binational meetings served to reach binational agreement on the geographic scope and goals of the 

project and led to the development of Terms of Reference (TOR) for the initiative (Appendix A).  

The TOR document listed the participants, identified their roles, defined the processes and 

procedures that were to be followed, and described the results expected of the initiative.  Of note 

regarding the TOR, was the addition of language referencing the solicitation of participation by 

the Border Environmental Cooperation Commission (BECC) and the North American 

Development Bank (NADB), whose expertise in infrastructure investments on both sides of the 

US-Mexico border was deemed to be beneficial to the initiative.  Both the BECC and NADB 

subsequently agreed to participate in the initiative in a consultative role. 

On September 10, 2013, the governments of the United States and Mexico conducted an 

official Exchange of Letters which established the LRGWQI.  The agreement was signed by the 

Principal Engineers of the US and Mexican Sections of the International Boundary and Water 

Commission (USIBWC and CILA, respectively).  The agreement committed both countries to 

the procedures, scope, collaborative efforts and goals specified in the TOR for the LRGWQI.  

Although the LRGWQI TOR does not specify the manner in which an agreement resulting from 

the LRGWQI is to be institutionalized, it lays out three possible institutional mechanisms available 

under the US-Mexico Water Treaty of 1944: (1) a treaty Minute, (2) a Joint Engineering Report 

and (3) an Official Exchange of Letters. 

1.0.4 THE LOWER RIO GRANDE/RÍO BRAVO WATER QUALITY INITIATIVE (LRGWQI) 

From the perspective of the US participants in the LRGWQI, the pollutants of concern to 

be addressed by the initiative were the ones listed in the 2012 Texas Integrated Report of Surface 
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Water Quality (TCEQ, 1992-2014); these pollutants are shown in Table 1-6 (page 39).  In 

addition to the water quality impairment and concerns included in Table 1-6, the US and Mexican 

LRGWQI Partners agreed to investigate sources of salinity in the river upstream of the Gulf of 

Mexico’s tidal influence on the river (i.e., upstream of TCEQ Segment 2301).  In addition to the 

Declaratoria, Mexican interest in participating in the LRGWQI is also linked to the results of 

Mexican water quality monitoring, which showed elevated levels of fecal coliforms and chemical 

oxygen demand (Spanish acronym is DOC) in portions of the Lower Río Bravo. 

The TOR for the LRGWQI specify: (1) the legal framework and process under which the 

LRGWQI project would be conducted, (2) the IBWC decision-making process, (3) the general and 

specific objectives of the initiative, (4) the organization and management procedures to be used, 

(5) the communication and information sharing policies and protocols for the initiative, and (6) 

the performance measures for the initiative’s outcomes.  Cited, in the TOR, as the general 

objective of the LRGWQI is “to explore border sanitation issues and water quality management 

with potential binational benefits” (page 4 of the LRGWQI TOC document) and the first specific 

objective cited in the TOR is to “Address current and future water quality issues of the Lower Rio 

Bravo/Rio Grande” (page 4 of the LRGWQI TOC document).  Beyond these statements, the 

LRGWQI TOR do not specify the water quality “issues” that are to be “addressed” by the initiative. 

Seven agencies are named in the LRGWQI TOR, two US federal agencies (USIBWC and 

USEPA), two Mexican federal agencies (CILA and CONAGUA), one US state agency (TCEQ) 

and one Mexican state agency (CEAT).  The BECC is alluded to in the TOR, but only as 

participating in an advisory capacity.  Under the LRGWQI TOR, representatives of these 

agencies are to work under the LRGWQI Joint Cooperative Process shown in Figure 1.1 of the 

LRGWQI TOR (page 3 of the LRGWQI TOC document).  

The structure of the LRGWQI Joint Cooperative Process is designed to incorporate the 

objectives of stakeholders from both countries into the diplomatic process developed by the 

IBWC/CILA as part of the 1944 US-Mexico Water Treaty.  However, the TOR does not specify 

the precise mechanism by which these stakeholders are to be included in the process.  The 

structure of the LRGWQI includes separate national “Core” groups of individuals that ostensibly 

represent the respective interests of their national stakeholders. The following agencies make up 

the US and Mexican LRGWQI Core Groups: 



 

12 
 

US Core Group 

• US Section, International Boundary and Water Commission (USIBWC) 

• US Environmental Protection Agency (EPA) 

• Government of Texas, through the Texas Commission on Environmental Quality (TCEQ) 

Mexican Core Group 
• Mexican Section, International Boundary and Water Commission (CILA) 

• Commisión Nacional del Agua (CONAGUA) 

• Government of the State of Tamaulipas, through the Commisión Estatal del Agua de 

Tamaulipas (CEAT) 

 
Figure 1-1. The LRGWQI Joint Cooperative Process as Specified in the Lower Rio 

Grande/Río Bravo Water Quality Initiative Terms of Reference.  
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According to the LRGWQI TOR, representatives of the respective national Core Groups 

provide specific objectives to a Binational Core Group. The task of the Binational Core Group is 

to agree on common objectives for managing and protecting water quality in the Lower Rio 

Grande/Río Bravo and to assign technical tasks to a Binational Technical Work Group (BTWG), 

which is to conduct studies and carry out other technical tasks, thereby providing input back to the 

Binational Core Group.  The objectives agreed to by the representatives of the Binational Core 

Group are to be detailed in a draft agreement that is to be subjected to an institutionalization 

processes detailed in the 1944 US-Mexico Water Treaty and/or one of its pertinent treaty Minutes.  

Minutes to the 1944 US-Mexico Water Treaty are annexes that can be made to the treaty through 

consensus agreement between the two countries without the need for re-ratification of the treaty. 

The procedural structure of the LRGWQI, as defined in the TOR, and the lack of specificity 

of objectives of the LRGWQI affordes the participants of the Initiative the flexibility to jointly 

define the final objectives of the pilot project in the Lower Rio Grande/Río Bravo.  The specific 

objective of “addressing water quality issues” is worded in this way intentionally with the 

expectation that the water quality issues ultimately addressed by the LRGWQI will be agreed upon 

binationally during the course of the pilot project.  The US proposal for the pilot project was 

included as an Annex to the TOR.  The proposal contains details about the technical approach 

proposed by the US LRGWQI Partners, which included: (1) historical data review; (2) 

identification of data gaps; (3) data collection; and (4) data analysis and modeling.  This approach 

was followed by the BTWG, which also agreed to limit the period of record for historical data 

compilation and analysis to 2000-2015. 

1.0.5 PROBLEM STATEMENT 

Perceptions of poor water quality in the Lower Rio Grande/Río Bravo have been common 

for many years among the local population living within the river’s watershed as well as in the 

general population of the United States and Mexico (e.g., Satija, 2013).  While objective, 

evidence-based, assessments of water quality in the river have, in fact, revealed water quality 

impairments impacting the beneficial use of the river (IBWC, 1998; TCEQ, 1992-2013), these 

assessments have consistently failed to corroborate the types of water serious quality problems 

often publicized in the news media, such as contamination by toxic chemicals (e.g., Oko, 2002).  
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Instead, the only consistent impairments identified by official water quality assessments conducted 

since 1992 have been due to excessive concentrations of fecal bacteria (TCEQ, 1992-2014, 

USEPA, 2016a), which have affected the “contact recreation” use of the river at several locations.  

A binational analysis of pollutant sources in the Lower Rio Grande/Río Bravo watershed 

conducted in 2017 points to faulty and/or inadequate wastewater infrastructure as the main culprit, 

identifying several notable sources of raw and poorly treated sewage located along the river.  

These sources are in urban and rapidly developing areas on the Mexican side of the watershed and 

at several sites in the United States (Miranda & Harper, 2017). 

In addition to high levels of fecal bacteria, past assessments of water quality in the Lower 

Rio Grande/Río Bravo have identified concerns associated with other pollutants in the river, 

including mercury in fish tissue, excessive algal growth and low dissolved oxygen.  None of these 

concerns have ever risen to the level of an impairment affecting a beneficial use of the river 

(TCEQ, 1992-2014).  Nevertheless, analyses of water quality trends have identified an upward 

trend in the concentration of chloride and total dissolved solids, which contribute to an increase in 

the overall salinity of the river (IBWC, 2013; Miranda & Harper, 2017).  Increasing salinity of 

the Lower Rio Grande/Río Bravo has been an issue of great concern to local water users since, at 

least, the early 1960s.  In a stakeholder focus group conducted in 2016, agricultural producers 

and irrigation district managers identified increasing levels of salinity in the river as the highest 

water quality concern among members of agricultural sector in the Lower Rio Grande Valley 

(Texas A&M AgriLife Research, 2016).  

1.0.6 STUDY AREA1 

The Rio Grande/Río Bravo defines over half of the international border between the United 

States and Mexico.  In its 3051-kilometer journey from the southern Rocky Mountains of the 

United States to the Gulf of Mexico, the Rio Grande, known in Mexico as the Río Bravo, provides 

a vital life line to approximately 5.5 million people living in the Texas-Mexico Border Region 

(TCEQ, 2016).  The fifth longest river in the United States and among the top twenty longest 

                                                 
1Some of the content of this Sub-section of Chapter 1 was excerpted from the 2017 report titled “Watershed 
Characterization Report: Lower Rio Grande/Río Bravo Water Quality Initiative,” authored by Roger M. Miranda 
and Heidi E. Harper” 
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rivers in the world, the Rio Grande has a watershed that covers an area of approximately 924,300 

km2 (IBWC, 2016).  The river begins in the portion of the Rocky Mountains known as the San 

Juan Mountains, which are located in the southern portion of the US State of Colorado.  The river 

flows south, through central New Mexico, and then flows southeast as it becomes the southernmost 

portion of the interstate boundary between the United States of New Mexico and Texas.  The Rio 

Grande then becomes the international border between Mexico and the United States before it 

reaches the Gulf of Mexico (Figure 1-2). 

Flow in the upper portions of the river is sustained by snowmelt from the Rocky Mountains 

and inflow from the Pecos River and Devils River in the United States.  The Río Conchos in 

Mexico provide over two thirds of the water in the river flowing between the US State of Texas 

and Mexico.  In addition to supplying drinking water to more than 5.5 million people, the Rio 

Grande supplies enough water to irrigate approximately 2 million acres of agricultural land 

(IBWC, 2016).  It is also the principle water source for many multinational industrial facilities, 

known as Maquiladoras, which are located along the Texas-Mexico border. 

In the United States, due to the river’s interstate nature, the Rio Grande Compact of 1938 

was put into place to allocate water use and regulate interstate water sharing between the US states 

of Colorado, New Mexico, and Texas.  In 1944, the United States and Mexico signed the 

“Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande,” also known as 

the US-Mexico Water Treaty of 1944, which allocates water in the three transboundary rivers 

flowing between the two countries, including the Rio Grande/Río Bravo (IBWC 2016a).  In 1948, 

the Pecos River Compact was signed between New Mexico and Texas to apportion the water of 

the Pecos River, an important US tributary of the Rio Grande/Río Bravo, between the two US 

states.  In addition to the water sharing agreement, the Pecos River Compact also contains 

provisions to facilitate the development of water-saving construction initiatives on the river. 

The Lower Rio Grande/Río Bravo is the 450 km stretch of the Rio Grande that begins just 

downstream of Falcon International Reservoir Dam and ends in the Gulf of Mexico (Figure 1-3).  

This portion of the river of creates the southern boundary of three US counties in the state of Texas 

(Starr, Hidalgo, and Cameron) and the northern boundary of eight Mexican municipios in the state 

of Tamaulipas (Mier, Miguel Alemán, Camargo, Gustavo Díaz Ordaz, Reynosa, Río Bravo, Valle 

Hermoso, and Matamoros). 
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Figure 1-2. Study Area (Modified from Wikipedia, 2015). 

 

Study Area 
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Figure 1-3. The Lower Rio Grande/Río Bravo and its Watershed. 

In Texas and northern Tamaulipas, the region surrounding this portion of the river is commonly 

known as the Lower Rio Grande Valley, el Valle del Rio Bravo in Spanish. Several major “sister 

cities” are located in the Lower Rio Grande Valley.  These are urban areas located directly across 

the river or in close proximity across the international boundary from each other, including 

Reynosa-McAllen and Matamoros-Brownsville. Several other smaller sister cities are also located 

in the upper portions of the Lower Rio Grande/Río Bravo, including Camargo-Rio Grande City, 

and Miguel Alemán-Roma (Figure 1-4).  The maps in Figures 1-3 and 1-4 also show the extent 

of the Lower Rio Grande/Río Bravo watershed as delineated by the LRGWQI.  The total 

transboundary watershed area of the Lower Rio Grande/Río Bravo watershed is approximately 

7316.5 square kilometers (km2). 
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Figure 1-4. Major “Sister” Cities in the Lower Rio Grande/Río Bravo Watershed. 

The upper portion of the watershed is defined by Falcon Dam.  The headwaters of the two 

largest tributaries, the Río Alamo and the Río San Juan, are located in the mountains of the northern 

Mexican states of Nuevo Leon and Coahuila, respectively.  Therefore, even with the northern 

boundary of the watershed set at Falcon Dam, the natural watershed of the Lower Rio Grande/Río 

Bravo extends deep into the interior of Mexico (Figure 1-1).  However, both the Río Alamo and 

the Río San Juan are impounded by dams located within 20 kilometers (km) of the Lower Rio 

Grande/Río Bravo.  The resulting reservoirs, Las Blancas on the Río Alamo and Marté R. Gómez 

on the Río San Juan, provide a reliable source of fresh water to the northern portion of the Mexican 

state of Tamaulipas.  These Reservoirs also provide a western limit of the Lower Rio Grande/Río 

Bravo watershed on the Mexican side.  The western watershed limit on the US side is defined by 
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the natural catchment, which runs primarily along the western boundary of Starr County in south 

Texas.  The resulting transboundary watershed is an area with similar areal extent on both sides 

of the river, 4032 km2 on the US side and 3285 km2 on the Mexican side. 

1.0.6.1 Climate and Meteorology 
The Lower Rio Grande/Río Bravo watershed is located in a subtropical region of North 

America with hot, usually dry, summers and mild winters (Parcher, 2010).  The annual average 

high temperature in the watershed is 34.17 oC, the highest average temperatures typically occur in 

the month of August.  Average annual low temperatures range from 7.78 oC near Rio Grande 

City to 10.61 oC near Brownsville (NOAA, 2017). Occasional artic and pacific cold fronts bring 

short-term freezing temperatures to the watershed.  The climate in the Lower Rio Grande/Río 

Bravo watershed is classified as semi-arid to arid.  Annual average rainfall ranges from 410.4 

mm in the upper portion of the watershed near Falcon Reservoir to 649.7 mm near Brownsville 

(NOAA, 2017).  

PRECIPITATION 
Average annual precipitation varies significantly from one portion of the Lower Rio 

Grande/Río Bravo watershed to the other, increasing by approximately 40% from the headwaters 

near Falcon Dam to mouth of the river near Brownsville/Matamoros (Figure 1-5).  Tropical 

storms and hurricanes in the Gulf of Mexico and the Mexican Pacific Coast strongly influence 

yearly rainfall and climate patterns in the watershed.  The hurricane season lasts from June 1, 

until November 30 (Parcher, 2013).  During this portion of the year, storms can generate extreme 

amounts of precipitation in short periods of time, sometimes causing severe flooding in the 

watershed.  Figure 1-6 shows average annual rainfall totals measured in the Rio Grande Valley 

of south Texas. 
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Figure 1-5. Average Annual Precipitation in the State of Texas, 1981-2010. Source: Texas 

Historical Association (http://texasalmanac.com). 
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Figure 1-6. Average Annual Rainfall in the Rio Grande Valley, South Texas. 

Despite an average annual rainfall exceeding 600 mm, the Lower Rio Grande/Río Bravo 

watershed is subject to prolonged periods of drought.  The Texas Water Development Board 

defines drought conditions as those in which evapotranspiration rates are higher than precipitation 

rates causing overall water loss in a region.  Decreases in rainfall and/or increases in temperature 

can cause this to occur leading to lower levels in the reservoirs and in river channels (Parcher, 

2013).  The Palmer Drought Severity Index (PDSI) is a measure of drought that has a scale from 

-6.0 (extremely dry) to +6.0 (extremely moist) with zero being “normal” moisture for the area.  

On this scale, the Rio Grande Valley has an annual average of 0.5 below the normal (Figure 1-7).  

This means that, on average, the area has experienced more dry periods than wet periods and has 

typically been below normal moisture conditions since 1895.  Since 1994, alone, a series of 

droughts in the region has caused major economic loss on both sides of the border due to water 

shortages.  Besides economic loss, water shortages can impair biodiversity and damage the 

ecological health of a watershed. 
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Figure 1-7. Palmer Hydrologic Drought Index (PDHI) for Hidalgo and Cameron Counties. 

Source: National Climatic Data Center (2007). 

1.0.6.2 Land Use and Land Cover 
Figure 1-8 shows land use and land cover in the Lower Rio Grande/Río Bravo watershed.  

The seamless binational land cover dataset displayed in Figure 1-8 was developed jointly by the 

US Geological Survey (USGS) and Mexico’s Instituto Nacional de Estadística, Geografia, e 

Informática (INEGI) as part of the US-Mexico Border Environmental Health Initiative (BEHI).  

The BEHI was a collaborative effort between US and Mexican natural resource and health 

agencies to help examine, analyze and understand the linkages between environmental and human 

health along the US-Mexico Border.  Led by the USGS, the BEHI produced integrated geospatial 

datasets and documents depicting environmental quality along the US-Mexico border.  The BEHI 

binational land cover dataset combines the United States’ Multi-Resolution Land Characteristics 

Consortium (MRLC) land use/land cover classification scheme (a modified Anderson level I and 

II at a scale of 1:100,000) with INEGI’s Uso de Suelo y Vegetación Serie III classification 

(1:250,000). 
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Figure 1-8. Land Use and Land Cover in the Lower Rio Grande/Río Bravo Watershed. 

The resulting land use/land cover (LULC) classes are consistent across the international 

border and are comprised of eight different LULC classifications: developed, agriculture, forest, 

shrub, water, barren, grass/pasture, and wetland.  The source of the data are Landsat 5 and 7 

images taken in 2001.  Overall, 4.72 percent of the Lower Rio Grande/Río Bravo watershed is 

classified as developed or built-up urban land and 24.29 percent is used for agriculture (Table 1-

1).  Approximately 35 percent of the land cover in the watershed is composed of pasture, hay, or 

grasslands and 33 percent is composed of shrub or scrublands.  Wetlands comprise only 2 percent 

of the total watershed area.  Tables 1-2 and 1-3 provide country-specific detail regarding land use 

and cover in the Lower Rio Grande/Río Bravo watershed.  
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Table 1-1. Land Use and Land Cover in the Lower Rio Grande/Río 
Bravo Watershed (US and Mexico) 

Land Cover Category† Area (km2) Percent of Total 
Watershed Area (%) 

Agriculture 1,776.88 24.29 
Barren Land 14.26 0.19 
Developed/Urban 345.07 4.72 
Forrest 16.05 0.22 
Pasture Hay/Grasslands 2,548.82 34.84 
Shrub/Scrub 2,418.43 33.05 
Wetlands 156.26 2.14 
Water 40.68 0.56 

Total 7,316.45 100.00 
†Modified MRLC classification 

 
Table 1-2. Land Cover in the Mexican Portion of the Lower Rio Grande/Río Bravo 

Watershed 

Land Cover Category† Area (km2) 
Percent of 
Watershed on 
Mexican Side (%) 

Percent of Total 
Watershed Area 
(%) 

Agriculture 1,344.01 33.34 18.37 

Barren Land 2.82 0.07 0.04 

Developed/Urban 106.28 2.64 1.45 
Forrest 0.03 <0.01 <0.01 
Pasture Hay/Grasslands 1,572.77 39.01 21.50 

Shrub/Scrub 945.43 23.45 12.92 
Wetlands 37.40 0.93 0.51 
Water 22.94 0.57 0.31 

Total 4,031.67 100.00 55.10 
†Modified MRLC classification 
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Table 1-3. Land Cover in the US Portion of the Lower Rio Grande/Río Bravo 
Watershed 

Land Cover Category† Area (km2) 
Percent of 
Watershed on US 
Side (%) 

Percent of Total 
Watershed Area 
(%) 

Agriculture 432.88 13.18 5.92 

Barren Land 11.44 0.35 0.16 

Developed/Urban 238.79 7.27 3.26 
Forrest 16.05 0.49 0.22 
Pasture Hay/Grasslands 976.05 29.71 13.34 

Shrub/Scrub 1,473.00 44.84 20.13 
Wetlands 118.87 3.62 1.62 
Water 17.74 0.54 0.24 

Total 3,284.81 100.00 44.90 
†Modified MRLC classification 

1.0.6.3 Geology, Topography, and Soils 
The geology, topography and soils in a river’s watershed influence the physical, biological 

and ecological properties of the river.  The following is a summary of the geology, topography, 

soils, hydrology and biology of the Lower Rio Grande/Río Bravo watershed. 

GEOLOGY 

The Lower Rio Grande/Río Bravo watershed is located in the western Gulf of Mexico 

coastal plain at the base of outcropping tertiary geologic units of the Goliad, Catahoula, Frio and 

Vicksburg formations, which are composed mainly of Miocene sandstones and clays.  In the 

northern and western portions of the watershed coarser fluvial sedimentary formations of the 

Eocene Jackson and Wilcox groups are found, along with Oligocene conglomerates (Figure 1-9).  

Quaternary alluvial sediments and terrace/floodplain deposits dominate the riparian areas 

surrounding the river and its tributaries. 
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Figure 1-9. Geologic Rock Formations in the Lower Rio Grande/Río Bravo Watershed. 

TOPOGRAPHY 

The southern and eastern portions of the Lower Rio Grande/Río Bravo watershed lie in the 

ecological region classified by the USEPA as the Lower Rio Grande Alluvial Plain, while the 

northwestern parts lie in the Texas-Tamaulipan Thorn Scrub region.  The terrain is generally level 

and low in most of the watershed.  The elevation of the watershed varies from sea level at the 

Gulf Coast to approximately 300 meters (m) above mean sea level at its highest extent, with an 

average slope of only 40 cm/km, or 0.04% (Figure 1-10). 
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Figure 1-10. Topography and Hydrology in the Lower Rio Grande/Río Bravo 

Watershed. 

SOILS 
Figure 1-11 shows the predominant soil types in the Lower Rio Grande/Río Bravo 

watershed.  For the most part, soils in the watershed are primarily fine-textured and well drained.  

Aridisol and entisol soil types dominate the northern and western portions of the watershed, while 

vertisols are prominent in the southern and eastern portions of the watershed. 

Limited leaching in aridisol soil types often results in one or more subsurface soil horizons 

in which suspended or dissolved minerals have been deposited, including silicate clays, sodium, 

calcium carbonate, gypsum or other soluble salts.  Accumulation of salts on the surface can result 

in soil salinization.  Vertisol soil types in the southern portion of the watershed can have high 

water holding capacity, and very slow water permeability.  Together with the low and level 

topography, these soil properties give rise to scattered marshes and wetlands in the coastal portion 

of the Lower Rio Grande/Río Bravo watershed. 
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Figure 1-11. Soil Types in the Lower Rio Grande/Río Bravo Watershed. 

1.0.6.3 Hydrology 
The mainly fluvial hydrology of the Lower Rio Grande/Río Bravo is characterized by its 

coastal-deltaic nature.  For most of its length, the Lower Rio Grande/Río Bravo fluvial system 

meanders through large areas of relatively flat land, with a mean change in elevation of 

approximately 40 meters over a distance of 100 km (Figure 1-10).  As is the case with most large 

rivers approaching sea level, the coastal plain of the Lower Rio Grande/Río Bravo forms a natural 

web of distributary channels and oxbow lakes, which intensify in number and size as the riparian 

areas of the river enter the deltaic plain.  Many of these channels and lakes, known locally as 

“resacas,” are used for conveyance of water from the river for municipal and agricultural use. 
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Perennial contributions to flow in the Lower Rio Grande/Río Bravo are rare, with the only 

measurable natural tributary inflows coming from the Río Alamo and the Río San Juan.  In recent 

years, the natural flow from these two tributaries has diminished due to the relatively recent 

impoundments of these two contributing rivers into the Las Blancas and Marte R. Gómez 

reservoirs, respectively, and also to an increase in agricultural water use from these reservoirs.  

Flow contributions to the Lower Rio Grande/Río Bravo, from base flow, are likely, although the 

exact amount of these base flow contributions has not been well studied.  The Lower Rio 

Grande/Río Bravo also receives seasonal flow contributions from several large drains which carry 

return flows from irrigated agricultural land primarily on the Mexican side of the watershed. 

The final 79 km stretch of the river, prior to its confluence with the Gulf of Mexico, is 

influenced by tidal forcing and becomes increasingly brackish in a downstream direction.  The 

flow of seawater upstream is dependent on tidal conditions as well as on the flow conditions of the 

river.  Often in this portion of the river, the water column becomes highly stratified with fresh to 

brackish water near the surface flowing over strongly saline water at the bottom of the river 

channel.  The upstream extent of tidal influence is artificially halted near the eastern edge of the 

Matamoros-Brownsville urban area by a concrete block weir used, among other things, to increase 

the depth of the river on the fresh water side.  The El Jardín weir, as it is known, is the site of the 

last major irrigation district pump on the US side. 

1.0.6.4 Biology 
The Lower Rio Grande/Río Bravo watershed is home to a diverse array of wildlife 

including nearly 700 species of vertebrates and 1,200 plant species (Schmandt, et al., 2002).  

Vegetation cover in the Lower Rio Grande/Río Bravo watershed is dominated by native 

Tamaulipan Brushland, characterized by dense, thorny vegetation with a high degree of biological 

diversity (Parcher, 2010).  Sugar Hackberry is the most common tree species found throughout 

the watershed except where mesquite is dominant near the coast and near Falcon Reservoir 

(Lonard and Judd, 2002).  The riparian areas along the banks of the Lower Rio Grande/Río Bravo 

host tall, lush vegetation that provides important nesting and feeding habitats for local birds and 

animal life (Parcher, 2010; Lonard & Judd, 2002).  The tidal portion of the Lower Rio Grande/Río 

Bravo is dominated by subtropical and tropical vegetation, such as Mexican Palmettos.  At the 
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mouth of the river, the vegetation is similar to the barrier islands along the Laguna Madre to the 

north and to the south, which have shrub-like plants and grasses with very few trees present. 

According to Schmandt, et al. 2002, urban and agricultural development in the region has 

had an adverse effect on the natural environment and led to a considerable loss in biodiversity.  

The Lower Rio Grande/Río Bravo watershed has been identified as an area where wildlife habitat 

is rapidly vanishing and in immediate need of protection (Lonard & Judd, 2002).  It is a critical 

habitat for many animal species, some of which are listed as threatened or endangered by the US 

Fish and Wildlife Service.  Of the vertebrate species living in the watershed, more than 86 of 

them are listed as endangered, threatened, or are considered candidates for immediate action 

(Schmandt, et al., 2002).  The diminished woody brushland habitat in this region is of specific 

concern to biologists because it is the hunting and breeding ground for the endangered ocelot, a 

small wild feline species.  The ocelot’s numbers in the United States have dwindled down to 50 

individuals, largely due to habitat destruction, the single greatest threat they face.  It is estimated 

that since the 1900’s, 99% of native brush in the Lower Rio Grande/Río Bravo riparian zone has 

been destroyed (Jahrsdoerfer & Leslie, 1988). 

Migrating waterfowl and songbird populations have also declined due to habitat loss.  

However, since the 1980’s, the USFWS has been working to create a wildlife corridor by restoring 

patches of native riparian habitat and purchasing land to connect those land areas (USFWS, 2016).  

The USFWS Wildlife corridor program has helped preserve much of the existing native riparian 

environment in the Lower Rio Grande/Río Bravo watershed and the effort will continue to 

decrease habitat fragmentation and to increase the range of native habitat in the watershed, 

providing a refuge to species with declining populations.  Improving the natural habitat in a 

river’s watershed also benefits water quality in the river.  Improvements in the quality of riparian 

vegetation have been shown to decrease erosion along river banks and improve the pollutant 

assimilative capacity of the water body.  Rivers with healthy riparian areas often have higher 

levels of dissolved oxygen and less suspended sediment loads. 

As riparian zones can be an indicator of river health, so too can the state of fish 

communities.  In the Lower Rio Grande/Río Bravo, the number of native fish has declined by 

70% in the last two decades (Lacewell, et al., 2010).  Freshwater fish species have migrated 

further upstream and have been replaced in the mouth of the Rio Grande/Río Bravo by estuarine 
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and marine species.  This migration correlates with decreasing river flow, increases in nutrient 

concentrations, competition with non-native species for resources, and increasing salinity 

(Schmandt, et al., 2002).  These changes have ultimately resulted in fewer and less diverse 

freshwater aquatic fauna. 

Non-native and invasive species have also become a common problem in the region.  

Many invasive species were added to the ecosystem intentionally, such as saltcedar to reduce 

erosion and several fish species were introduced in the mid-20th century for game fishing 

(Lacewell, et al., 2010).  These non-native species compete with the native ones for habitat and 

resources and, when left unchecked, can overtake and damage an ecosystem.  Not only do 

invasive species jeopardize the functioning of natural ecosystems, they can also cause serious 

economic damage (Rauschuber, 2002).  In the Lower Rio Grande/Río Bravo, the giant reed 

(Arundo donax) and saltcedar (Tamarix aphylla) aggravate water availability problems by 

consuming an amount of water equivalent to about 11% of all irrigation water diverted by US 

irrigation districts in the watershed (Lacewell et al., 2010).  Invasive water plants, such as water 

hyacinth (Eichhornia crassipes) and hydrilla (Hydrilla verticillada), clog waterways and interfere 

with the movement of water for drainage and irrigation, ultimately affecting agricultural activities 

and urban water supply in the area.  

1.0.6.5 Demographics 
The following section is intended to provide a brief demographic profile of the Lower Rio 

Grande/Río Bravo watershed.  Demographic information compiled for this report was obtained 

from the 2010 Decennial Census of the United States, conducted by the US Census Bureau (US 

Census, 2010), and the 2010 Censo de Población y Vivienda, conducted by INEGI (INEGI, 

2010b).  

Despite the fact that rural areas predominate in the Lower Rio Grande/Río Bravo 

watershed, the majority of the approximately 2.5 million people living in the region live within 

urban areas in the 4 Texas border counties and the 11 Tamaulipas municipios included in the 

watershed (Figure 1-12).  The total population for the 4 counties on the US side of the watershed 

was 1,203,123 in 2010 and the total population for the 11 municipios included on the Mexican 

side of the watershed was 1,341,998, indicating an almost even split in the overall transboundary 
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watershed population between the United States and Mexico.  It should be noted that, although 

only a small fraction of Cameron and Hidalgo county residents live within the Lower Rio 

Grande/Río Bravo watershed, the service areas of public utilities that provide drinking water to 

county residents extend well north of the watershed boundary and the majority of the residents in 

these counties depend on the Lower Rio Grande/Río Bravo for drinking water.  Comparisons 

between US and Mexican census data are difficult to make because the two countries collect 

different demographic data.  The following sections provide separate descriptions of the 

demographic information collected in each country. 

US DEMOGRAPHICS 
The Lower Rio Grande/Río Bravo watershed on the US side includes portions of Starr and 

Jim Hogg Counties, which contain small, mainly rural populations.  The small portion of Jim 

Hogg County included in the watershed is particularly sparsely populated, with less than 50 

residents estimated to live in that portion of the Lower Rio Grande/Río Bravo watershed (US 

Census, 2010).  A significant portion of western Hidalgo County, also composed mainly of rural 

areas but containing a number of urban and suburban residential areas near the river, is also 

included in the Lower Rio Grande/Río Bravo watershed.  Narrow strips of land at the southern 

boundaries of Hidalgo and Cameron Counties complete the delineation of the Lower Rio 

Grande/Río Bravo watershed on the US side.  Table 1-4 shows the percentage of each US county 

included in the Lower Rio Grande/Río Bravo watershed. 

Cameron, Hidalgo, Starr and Jim Hogg counties share many common characteristics, but 

also exhibit some demographic differences.  Between 2000 and 2010, the total population of 

Cameron, Hidalgo, Starr and Jim Hogg counties increased by 29.2 percent from 978,369 to 

1,264,091 (US Census Bureau, 2010).  Hidalgo County is the most populated county in the US 

portion of the Lower Rio Grande/Río Bravo watershed with 774,769 inhabitants (in 2010), which 

amounts to 61.3 percent of the four-county population.  Starr County, the US County with the 

most land area in the watershed, contributes only 4.8 percent of the four-county population.  

Hidalgo County is the fastest growing county in the US portion of the Lower Rio Grande/Río 

Bravo watershed. 
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Figure 1-12. Portions of US Counties and Mexican Municipios Included within the 

Lower Rio Grande/Río Bravo Watershed. 

Table 1-4. Areas of US Counties Included within the Lower Rio Grande/Río Bravo 
Watershed 

US County Name Total Area (km2) Area within the 
Watershed (km2) 

Percent of Area within 
the Watershed (%) 

Jim Hogg 2,959.65 265.10 8.96 
Starr 3,154.85 2,455.28 77.83 
Hidalgo 4,128.74 431.55 10.45 
Cameron 2,463.92 154.99 6.29 

Between 2000 and 2010, Hidalgo County’s population increased by 36.1 percent, whereas 

population growth in Jim Hogg County over the same period increased by only 1.78 percent (US 

Census Bureau, 2010).  The population of all four US counties in the Lower Rio Grande/Río 
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Bravo watershed is predominantly Hispanic, ranging from 88.1 percent in Cameron County to 95.8 

percent for Starr County (US Census Bureau, 2010).  The population is young, with the median 

age for each county well below the national average of 37.2.   Hidalgo County’s median age is 

28.3 and one third of the population of Cameron, Hidalgo, and Starr Counties are under the age of 

18.  The region is considered economically depressed, by US standards with half of all residents 

under 18 years of age living below the United States’s annual income poverty level threshold of 

$22,050.  The median annual income in the four counties ranges from $22,418 for Starr County 

to $30,760 for Cameron County (US Census Bureau, 2010). 

In addition to total population and population growth, the demographic differences 

between the US counties in the Lower Rio Grande/Río Bravo watershed relate also to population 

density.  Hidalgo County’s population is not only 13 times greater than Starr County, 70 percent 

of people in Hidalgo County live in cities or towns, whereas in Starr County that figure is just over 

40 percent.  The population of Cameron County is also composed mainly of urban residents.  In 

2010 Cameron County had the greatest population density of the four watershed counties with 

75% of the population living in urban areas.  Residents living in the Brownsville and Harlingen 

areas make up the greatest portion of the urban population in Cameron County.  In Hidalgo 

County, the largest population centers are clustered around the cities of McAllen, Edinburg, 

Mission, and Pharr.  In Starr County, most of the urban population lives in the Roma and Rio 

Grande City urban areas. 

Despite living in an economically depressed area of the United States, over two thirds of 

US Lower Rio Grande/Río Bravo watershed residents live in owner-occupied homes. However, 

an unusually high number of households in the four-county area lack basic water and sewer 

services.  Many of these households are located in unincorporated suburban areas known as 

“colonias.”  In 2013, the Texas Attorney General’s Office listed 942 colonias in Hidalgo County, 

257 in Starr County and 195 in Cameron County, amounting to approximately 52 percent of all 

recognized borderland colonias in Texas (Texas Office of Attorney General, 2013). 

MEXICAN DEMOGRAPHICS 
Mexico’s Municipios are political subdivisions roughly equivalent to US counties. These 

sub-state political subdivisions encompass urban and rural communities known as localides.  
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Portions of 11 municipios located along the US-Mexico Border Region are within the Lower Rio 

Grande/Río Bravo watershed and are subdivisions of the Mexican states of Tamaulipas and Nuevo 

León, including Mier, Los Aldamas, Miguel Alemán, Camargo, Doctor Coss, General Bravo, 

Gustavo Díaz Ordaz, Reynosa, Río Bravo, Valle Hermoso and Matamoros (Table 1-5).   

Major population centers on the Mexican side of the Lower Rio Grande/Río Bravo 

watershed include Matamoros, Río Bravo, Reynosa, Gustavo Díaz Ordaz, Camargo, Miguel 

Alemán and Mier.  The total population for these cities in 2010 was 1,341,998. Reynosa, with a 

population of 608,891, accounts for 45 percent of this total, while Matamoros, at 489,193, 

comprises 36 percent (INEGI, 2010b).  The least populated municipios, Gustavo Díaz Ordaz, 

Camargo, Miguel Alemán, and Mier, together comprise only 4.7 percent of total population in the 

watershed.  As with the watershed population living north of the Lower Rio Grande/Río Bravo, 

the population of all 11 watershed municipios is predominantly Hispanic. 

The median age in the municipios of the watershed is 27, which is slightly higher than the 

25.8 estimated for the rest of Mexico.  This northern region of Mexico is considered economically 

prosperous by Mexican national standards, with an average annual per capita income of 62,400 

Mex$, more than 1.5 times the national average of 37,752 Mex$.  INEGI’s private dwelling data 

shows that the two most populated municipios in the watershed, Reynosa and Matamoros, have 

the lowest percentages of population with piped water, electricity, and sewage collection and 

treatment.  For example, the number of people in Reynosa without access to a public sewer 

service is estimated to be 12.5 percent of inhabitants, or 81,478.  In Reynosa, as many as 15 

percent of private dwellings do not have a water utility connection, 12.5 percent do not have 

electricity and 12.6 percent do not flush to an indoor toilet connected to a sewer system (INEGI, 

2010).  In actual numbers, an estimated 21,440 homes of Reynosa’s 170,171 private dwellings 

do not have access to a sewer system. 
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Table 1-5. Areas of Mexican Municipios within the Lower Rio Grande/Río Bravo 
Watershed 

Municipio Name Total Area 
(km2) 

Area within the 
Watershed (km2) 

Percent of Area within 
the Watershed (%) 

Mier  932.92 546.08 58.53 
Los Aldamas 695.71 16.43 2.36 
Miguel Alemán 634.63 190.98 30.09 
Camargo 932.74 571.95 61.32 
Doctor Coss 712.47 40.82 5.73 
General Bravo 1,906.30 712.47 37.37 
Gustavo Díaz Ordaz 429.20 429.20 100.00 
Reynosa 3,139.97 891.00 28.38 
Rio Bravo 1,571.70 236.97 15.08 
Valle Hermoso 899.43 10.87 1.21 

Matamoros 4,658.49 708.92 15.22 
 

1.0.7 A HISTORY OF POOR WATER QUALITY 

As mentioned in the introduction, a common perception among the general public, in the 

United States and in Mexico, is that water quality in the Lower Rio Grande/Río Bravo is very poor.  

One reason behind this collective view of poor water quality may be the negative coverage of this 

subject by the news media.  Objective technical assessments of water quality conducted by 

environmental agencies from both countries have found persistent water quality problems in this 

portion of the river, albeit perhaps not to the level meriting the portrayal presented by some news 

media outlets. 

A number of US and Mexican agencies and academic institutions have collected water 

quality in the Lower Rio Grande/Río Bravo over the last four decades, including the USIBWC, 

USGS, USFWS, USEPA, Texas Parks and Wildlife Department, TCEQ, CONAGUA, IMTA, 

University of Texas-Rio Grande Valley, Instituto Tecnológico de Monterrey and various local and 

regional public entities (e.g., Brownsville Public Utility Board, COMAPA-Reynosa, etc.), to name 

a few.  Only the USIBWC, USGS, CILA, CONAGUA and the TCEQ have performed systematic 

assessments of water quality in this portion of the river. 
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1.0.7.1 US Assessments of Water Quality  
As early as 1969, the Texas Water Commission (TWC), one of the precursor state agencies 

to the TCEQ, was compiling and analyzing water quality data the commission collected in Texas 

surface water bodies, including the Lower Rio Grande.  Although the requirements of the 1972 

federal Clean Water Act stipulate that states and territories must assess the quality of surface waters 

under their jurisdictions, it was not until 1992 that the first such assessment was published by the 

State of Texas.  Official assessments of surface water quality in Texas, which include lists of 

impaired water bodies of the state, are now known as the Texas Integrated Report of Surface Water 

Quality (TCEQ 1992-2014).  The reports are published by the TCEQ biennially and include a 

detailed analysis of the results of surface water quality monitoring conducted by the TCEQ in 

water bodies throughout the state of Texas.  The portion of the report that identifies water quality 

“impairments,” known as the 303(d) list (named after the section of the federal Clean Water Act 

that mandates its production), must be approved by the USEPA. 

To facilitate the assessment of surface water quality, the State of Texas designates Surface 

Water Quality Segments for waters of the state.  The segments, along with their uses and the 

standards and criteria assigned to each segment by the State of Texas, are codified in the state’s 

Administrative Code (30 TAC Chapter 307), referred to as the Texas Surface Water Quality 

Standards.  The river segments designated in the Texas Surface Water Quality Standards for the 

Lower Rio Grande are Segments 2302 (Rio Grande Below Falcon Reservoir) and 2301 (Rio 

Grande Tidal).   

The Texas Integrated Report of Surface Water Quality classifies the results of the TCEQ’s 

biennial assessment of water quality into several categories based on whether the results of the 

analysis show water bodies (i.e., segments) are meeting their designated uses.  In segments for 

which there is sufficient data for analysis, the TCEQ determines if these “Fully Support” or do 

“Not Support” a particular designated use, based on the data collected and relevant standards and 

criteria.  Segments that are deemed to not support one or more of their designated uses are 

considered “Impaired.”  Segments lacking sufficient data for analysis, but for which the existing 

data indicate a potential water quality problem, are deemed to have water quality “Concerns.”  

The analysis of water quality parameters for which the state has not yet developed standards, for 
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example nutrients such as phosphorus and nitrate, can also result in a segment being classified as 

having a Concern.  

Table 1-6 shows a history of all Impairments and Concerns documented in the Lower Rio 

Grande by the State of Texas since 1992.  As is evident from Table 1-6, the number and variety 

of water quality Concerns listed by the State of Texas has increased with time.  There is some 

evidence that this is due partly to the increase in the frequency and sophistication of surface water 

quality monitoring over time in Texas.  However, there is also evidence of an increase in the 

volume and type of pollutants entering the river, especially since the mid 1990’s (Miranda & 

Harper, 2017).  Also evident from Table 1-6 is the persistence of the Impairment of the Lower 

Rio Grande by fecal indicator bacteria (fecal coliform and E. coli).  Fecal indicator bacteria have 

also been listed as a Concern in both segments of the river, including fecal coliform and 

Enterococci. 

It should be noted that, at the time of this writing, the most recent Integrated Report of 

Water Quality published by the TCEQ was the 2014 report.  The TCEQ completed its assessment 

of surface water quality for the state in 2016 and in 2018 but has published the results of these 

(2016 and 2018) assessments only in draft form because the USEPA has not granted approval the 

2016 and 2018 State of Texas 303(d) lists.  Although not as extensive as the State of Texas’ 

surface water quality monitoring program, two US federal agencies, the USIBWC and the USGS, 

also maintain water quality monitoring programs in the Lower Rio Grande/ Río Bravo and have 

done so for several decades.  The water quality monitoring programs of both the USIBWC and 

the USGS are composed of independent and collaborative routine monitoring efforts.  That is, 

both agencies collect and internally archive data as part of their agency’s programs.  These 

agencies also collect and share water quality data with each other and with the TCEQ as part of 

collaborative monitoring efforts.  As part of its commitments under the US-Mexico Water Treaty 

of 1944, the IBWC measures flow continuously at seven hydrometric stations located along the 

Lower Rio Grande/ Río Bravo.  The IBWC also collects water quality data at those stations and 

at other locations along the Lower Rio Grande/ Río Bravo. 
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Table 1-6. Water Quality Impairments and Concerns Documented in Official 
Assessments of Surface Water Quality Conducted by the State of 
Texas. Source: TCEQ 1992-2014. 

Year Agency* Segment  Impairment Concern** 

1992 TWC 2302 Fecal Coliform Nutrients, Dissolved 
Oxygen 

1994 TNRCC 2302 
Ambient Toxicity, 
Chlorides, Fecal 

Coliform 

Nutrients, Excessive 
Algal Growth, 

Dissolved Oxygen 

1996 TNRCC 2301, 2302 Fecal Coliform Fecal Coliform 

1998 TNRCC 2302 Fecal Coliform NA 
1999 TNRCC 2302 Fecal Coliform NA 
2000 TNRCC 2302 Fecal Coliform NA 

2002 TCEQ 2301, 2302 Fecal Bacteria 
(Fecal Coliform) 

Excessive Algal 
Growth, Total 
Phosphorus 

2004 TCEQ 2301, 2302 
Fecal Bacteria 

(Fecal Coliform and 
E. coli) 

Excessive Algal 
Growth, Total 

Phosphorus, Chloride, 
Sulfate and Total 
Dissolved Solids  

2006 TCEQ 2302 Fecal Bacteria 
(E. coli) 

Dissolved Oxygen, 
Mercury in Fish 

2008 TCEQ 2301, 2302 Fecal Bacteria 
(E. coli) 

Chlorophyll a, Fecal 
Bacteria 

(Enterococci), 
Dissolved Oxygen, 

Mercury in Fish  

2010 TCEQ 2301, 2302 Fecal Bacteria 
(E. coli) 

Chlorophyll a, Fecal 
Bacteria 

(Enterococci), 
Dissolved Oxygen, 

Ammonia, Mercury in 
Fish  

2012 TCEQ 2301, 2302 Fecal Bacteria 
(E. coli) 

Chlorophyll a, Fecal 
Bacteria 

(Enterococci), 
Dissolved Oxygen, 

Ammonia, Mercury in 
Fish  

2014 TCEQ 2301, 2302 Fecal Bacteria 
(E. coli) 

Chlorophyll a, Fecal 
Bacteria 

(Enterococci), 
Dissolved Oxygen, 
Nitrate, Ammonia  

*TNRCC is the acronym for the Texas Natural Resource Conservation Commission a predecessor agency of the Texas Commission on 
Environmental Quality 
**NA is the acronym for Not Applicable 
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The water quality data collected under the IBWC’s monitoring program consists mainly of 

dissolved solids.  Although the agency does not provide an analysis of the data it collects under 

its independent monitoring program, the water quality data has been used to confirm the existence 

of several sources of high salinity to the Lower Rio Grande/ Río Bravo (IBWC, 1931-2006).  

Until 2006, these data were published annually in publications known as Water Bulletins.  While 

the IBWC continues to collect flow and water quality data on a regular basis, the information must 

be now be requested in order to be obtained by the public. 

In 1998, the USIBWC entered into a cooperative water quality monitoring agreement with 

the TCEQ under the TCEQ’s Texas Clean Rivers Program.  As a result of this agreement, the 

USIBWC began collecting and sharing a variety of water quality data in several locations along 

the Rio Grande/Río Bravo.  The water quality data collected by the USIBWC under the Texas 

Clean Rivers Program is used by the TCEQ to assess water quality in the Lower Rio Grande.  The 

USIBWC also publishes Basin Summary Reports annually, which contain a summary of all Clean 

Rivers data collected by the USIBWC during the previous year. 

 Like the USIBWC, the USGS also routinely collects water quality data in the Lower Rio 

Grande under its National Stream Quality Accounting Network (NASQAN).  Once a network of 

over 500 water quality monitoring stations distributed over 42 US states, the USGS’ NASQAN 

program has been significantly reduced.  Of the remaining 118 NASQAN monitoring sites, two 

are located on the Rio Grande/Río Bravo, the most downstream station of which is located on the 

Lower Rio Grande/Río Bravo near Brownsville, Texas (Station ID 08475000).  The main 

objective of the NASQAN program is to monitor long term trends in water quality, with specific 

emphasis on pollutants that are problematic nation-wide, such as nutrients and pesticides.  

Although the USGS monitors a wide set of water quality parameters at Station 08475000, its 

assessments of water quality are now focused on these parameters.  The most recent results of 

the USGS’ assessment of water quality trends in NASQAN Station 08475000 shows a significant 

upward trend in total nitrogen and total phosphorus (Figure 1-13 and Figure 1-14).  High nutrients 

levels in surface waters can cause excessive algal growth, which in turn can cause dissolved 

oxygen depletion negatively impacting aquatic life habitats. 
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In contrast to public perceptions, however, USGS monitoring at this station shows no 

exceedances of human health benchmarks for the 224 pesticides monitored at Station 08475000 

(Figure 1-15).  The findings of the NASQAN program agree well with the results of water quality 

assessments conducted by the TCEQ and IBWC and documented in the Texas Integrated Report 

of Surface Water Quality.  The lack of pesticide concerns also corroborates the results of a 1995 

study conducted jointly by the TNRCC, IBWC and USEPA, which showed only low levels of 

pesticide contamination in water, sediment and fish tissue in most portions of the Rio Grande, but 

especially low in the Lower Rio Grande/Río Bravo (IBWC, 1998).  

 

Figure 1-13. Total Nitrogen Trend in the Lower Rio Grande near Brownsville, Texas, as 
Reported by the NASQAN Program (USGS). Source: 
https://cida.usgs.gov/quality/rivers. 
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Figure 1-14. Total Phosphorus Trend in the Lower Rio Grande near Brownsville, 

Texas, as Reported by the NASQAN Program (USGS). Source: 
https://cida.usgs.gov/quality/rivers. 
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Figure 1-15. Pesticide Results in the Lower Rio Grande near Brownsville, Texas, 

as Reported by the USGS’ NASQAN Program. Source: USGS, 
https://cida.usgs.gov/quality/rivers. 

1.0.7.2 Mexican Assessments of Water Quality  
Unlike in the United States, official monitoring and assessment of water quality in the 

Lower Rio Bravo is conducted almost exclusively by CONAGUA.  Although some of the data 

collected by CILA in the Lower Río Bravo are included in these assessments, the analysis and 

interpretation of CILA data, within the context of official assessments of water quality, are 

conducted exclusively by CONAGUA.  The water quality data collected under Mexico’s Red 

Nacional de Monitoreo de la Calidad de las Aguas Nacionales, a nation-wide network of water 

quality monitoring stations located on Mexican water bodies, is the principal source of water 

quality data used by CONAGUA to assess the health of Mexican surface waters.  The network 
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consists of 4,926 monitoring stations, 16 of which are located along the Lower Río Bravo with 

another 7 situated on tributaries and ditches that contribute flow to the Lower Río Bravo. 

CONAGUA reports the results of its official assessment of water quality every two years 

in a national publication titled “Estadísticas del Agua en México” (i.e., the EAM report).  In 

addition to surface water quality, the biennial report includes a quantitative inventory of surface 

and ground water resources of the nation, meteorological data and climate projections, water usage 

and projected demand by sector, water infrastructure needs, and legal and institutional changes 

affecting water resources in Mexico (CONAGUA, 2016).    

The Mexican government’s approach to water quality assessment differs from that of the 

United States', in that water quality is assessed using an index of water quality indicators.  The 

overall health of surface water bodies and the protection of their uses is determined using three 

water quality parameters, which are assumed to indicate overall levels of contamination by all 

other associated parameters.  The indicator parameters are five-day biochemical oxygen demand 

(Spanish acronym: DBO5), chemical oxygen demand (Spanish acronym: DQO) and total 

suspended solids (Spanish acronym: SST).  CONAGUA reports the results of their assessment 

using these parameters, both by state and by hydrologic region, so, it is difficult to discern the 

status of water quality of individual water bodies from the biennial EAM report.  Nevertheless, 

the information provided in the report provides a coarse look at overall water quality in Mexican 

states and in large river basins (i.e., hydrologic regions).  

Figure 1-16 shows the results of CONAGUA’s 2016 assessment of water quality for the 

hydrologic region of the Río Bravo in northern Mexico.  Although, it is not possible to view the 

results for the Lower Río Bravo in isolation from the rest of the Rio Bravo Hydrologic Region, the 

EAM report shows that water quality in the Río Bravo Hydrologic Region is relatively good 

compared to that of many other Mexican hydrologic regions.  For example, the percentage of 

monitoring sites sampled in the Río Bravo Hydrologic Region found to be contaminated or 

strongly contaminated with the DBO5, DQO and SST indicators were 1.4, 16.2 and 4.7, 

respectively.  In contrast, the percentage of monitoring sites found to be contaminated or strongly 

contaminated for these indicators nationwide in Mexico were 8.5, 32.4 and 6.6, respectively 

(CONAGUA, 2016).  
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Figure 1-16. Results of CONAGUA’s 2016 Assessment of Water Quality in the Río 

Bravo Hydrologic Region. Source: CONAGUA, 2016 
(http://201.116.60.25/publicaciones/EAM_2016.pdf). 
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At a finer level of resolution, the results of CONAGUA’s assessment of water quality 

shows only few individual Lower Rio Bravo monitoring sites Contaminated under the DQO and 

SST indicator parameters (Figures 1-17 and 1-18) and none for DBO5.  

 
Figure 1-17. Assessment of the DQO Indicator in Monitoring Sites in the Lower 

Río Bravo and Associated Tributaries. Source: CONAGUA, 2016 
(http://201.116.60.25/publicaciones/EAM_2016.pdf). 



 

47 
 

 
Figure 1-18. Assessment of the SST Indicator in Monitoring Sites in the Lower Río 

Bravo and Associated Tributaries. Source: CONAGUA, 2016 
(http://201.116.60.25/publicaciones/EAM_2016.pdf). 

In addition to the three indicator parameters used by CONAGUA to assess the overall 

health of surface water bodies, CONAGUA also assesses bacterial water quality at selected 

monitoring stations by analyzing water samples for fecal coliform concentrations. While the results 

of CONAGUA’s bacterial assessments are not included in the EAM reports, the data are available 

for download from CONAGUA’s web site.  Figure 1-19 shows the results of assessments of 

bacterial water quality for the four water quality monitoring stations monitored by CONAGUA in 

the Lower Río Bravo.   

Based on monitoring conducted since 2000, three of the four sections of the Lower Río 

Bravo represented by these stations have been classified as “Contaminated” or “Strongly 

contaminated” in at least one or more of the years CONAGUA has assessed bacterial water quality 

in the Lower Río Bravo.  According to CONAGUA’s assessment, the contamination appears to 

be persistent and of relatively high magnitude in the sections of the river that flow along the two 

highly urbanized areas along the Lower Rio Grande/Río Bravo, Reynosa and Matamoros.  



 

48 
 

  

  
Figure 1-19. CONAGUA’s Assessment of Bacterial Water Quality in the Lower Río Bravo. Source: CONAGUA, 2018 
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Both these urban areas show contamination levels several times the concentration threshold 

used by CONAGUA to designate a water body as contaminated and, in the case of Reynosa, the 

threshold is exceeded by an order of magnitude as recently as 2015.  The only apparent trend is 

exhibited by the station near Matamoros, which shows increasing levels of bacterial contamination 

since 2014.  It should be noted that CONAGUA’s fecal coliform concentration threshold for the 

“Contaminated” designation is relatively high (1000 MPN/100ml) compared to the water quality 

standard used in US assessments (200 MPN/100ml)2. 

1.0.7.3 Local Water Quality Concerns  
In addition to the findings of official assessments of water quality performed by US and 

Mexican environmental agencies several persistent specific local concerns regarding water quality 

have been documented in the Lower Rio Grande/Rio Bravo watershed.  In many cases these 

concerns are the result of popular perceptions regarding the prevalence of pollution sources in the 

watershed, which are often bolstered by occasional occurrences of unexplained fish kills or disease 

clusters.  In other cases, local concerns are supported by historical data. 

TOXIC SUBSTANCES 
Concern over toxic substances has been a long-standing matter in the Rio Grande Valley 

of south Texas.  Anencephaly clusters (groups of infants born with neural tube defects [NTDs]) 

occurring in Brownsville in the early 1990s raised concern among local residents and prompted a 

series of studies funded by the US Centers for Disease Control and Prevention and the Texas 

Department of State Health Services.  While data collection associated with these studies 

concluded in 2000, scientific research into the possible causes of NTDs continues to be published 

by the Texas Department of State Health Services ([TDSHS], 2018).  These events coincided 

with the passage of NAFTA and the expansion of manufacturing facilities known as maquiladoras, 

which heightened local concerns over the release of toxic substances to the Lower Rio Grande/Río 

Bravo.  Several National Priorities List Superfund sites are also located in the Rio Grande Valley, 

including the Helena Chemical Hayes Sammons Site in Mission and the Donna Canal and 

                                                 
2 In 2000, to assess Contact Recreation Uses, the TCEQ began using E. coli in fresh water bodies and Enterococci 
in saltwater bodies as fecal indicator organisms. However, fecal coliform continues to be used by the State of Texas 
Surface Water Quality Standards as an indicator organism for assessment of beach advisories. 
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Reservoir PCB site, which are both within ten miles of the Lower Rio Grande/Río Bravo.  

Concerns over toxic substances in the river prompted the TCEQ and the IBWC to conduct a 

comprehensive binational toxic substances study of the entire Rio Grande/Río Bravo in the late 

1990s.  The study, found low, but measurable levels of toxic substances in the Lower Rio 

Grande/Río Bravo (IBWC, 1998).  

As late as 2014, the TCEQ included several Rio Grande Valley water bodies in its list of 

impaired water bodies of the state for excessive levels of PCBs and mercury in edible fish tissue 

(TCEQ, 1992-2014).  Two of these water bodies, the Arroyo Colorado and the Donna Canal are 

located within ten miles of the Rio Grande/Río Bravo.  Although the Lower Rio Grande itself 

(Segments 2301 and 2302) is not currently listed for toxic substances, the prevailing local 

perception is that toxic substances routinely enter the river and are present at harmful levels in 

water, sediment and fish tissue (Texas AgriLife Research, 2016; The University of Texas - Lyndon 

B. Johnson School of Public Affairs [UT-LBJ], 2016).  

SALINITY 
As mentioned in the introduction, another water quality problem that is often cited by local 

US water users is high salinity (i.e., chloride, sulfate and total dissolved solids) in Segment 2302, 

the non-tidally influenced portion of the Lower Rio Grande.  Dissolved solids have never been 

listed as an official Impairment by the TCEQ for this segment of Rio Grande and these parameters 

have been listed officially as water quality Concerns only once (in 2004) for Segment 2302.  The 

lack of official recognition of a salinity problem in this portion of the Rio Grande is due, in part, 

to the nature of the method used by the TCEQ to assess dissolved solids in surface waters and also 

to the nature of this water quality problem in the Lower Rio Grande.  Unlike the criteria used to 

assess other water quality parameters, the criteria used by the TCEQ to assess dissolved solids in 

Texas rivers is based on a long-term average of historical water quality data collected at surface 

water quality monitoring stations in the rivers being assessed.  As such, the criteria are designed 

to identify changes in the concentration of dissolved solids occurring over relatively long periods 

of time (e.g., 5-10 years).  However, salinity excursions in the Lower Rio Grande/Río Bravo tend 

to occur in sporadic pulses, which can last anywhere from 5 to 25 days (Miranda & Harper, 2017).  
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The routine surface water quality monitoring conducted by the TCEQ for official 

assessment purposes is typically performed on a quarterly basis.  Consequently, pollutant 

loadings of short duration (i.e., in the order of days) are often not detected.  In response to this 

problem, and as a result of requests from the local agricultural community, the TCEQ installed a 

network of continuous water quality monitoring (CWQMN) stations along the Lower Rio 

Grande/Río Bravo to record and document high salinity pulse events in the river.  Every fifteen 

minutes, the CWQMN stations measure the electrical conductance of water in the river, which is 

a surrogate measurement of salinity.  Since their installation in 2007, CWQMN stations have 

documented dozens of high salinity events at various locations along the Lower Rio Grande/Río 

Bravo.  The events occur though out the year, but most are common during the late Winter, 

Spring and early Summer (April-July), during the local irrigation season.  An example of a high 

salinity pulse event captured by a TCEQ CWQMN station is shown in Figure 1-20. 

  
Figure 1-20. High Salinity Pulse Event Recorded by TCEQ CWQMN Station C792 in June 

and July of 2011. Source: TCEQ, 2016. 

The problem of high salinity in the Lower Rio Grande/Río Bravo has been an issue of 

concern for US water users in the Lower Rio Grande Valley for decades (Lacewell et al., 2007).  

The principal causes of high salinity in the river have long been attributed to irrigation return flows 
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entering the river mainly through Mexican agricultural drains.  Evidence of these high salinity 

flows is documented in the Water Bulletins published by the IBWC.  In 1969, at the urging of 

local irrigation districts and agricultural producers, the governments of the United States and 

Mexico entered into a binational agreement, under the auspices of the of the IBWC, to construct a 

diversion structure and canal designed to divert high salinity flows from the largest of the Mexican 

agricultural drains in the watershed, El Morillo, and away from the Lower Rio Grande/Río Bravo 

(Lacewell et al., 2007).  However, poor maintenance of the diversion structure and associated 

canal have reduced the effectiveness of the El Morillo diversion works in the decades since its 

construction and an expansion in irrigated agriculture in the Mexican portion of the watershed has 

increase the volume of irrigation return flows entering the Lower Rio Grande/Rio Bravo in recent 

years, further exacerbating the problem. 

1.0.7.4 Pollutants of Concern in the LRGWQI  
As previously mentioned, the binational deliberations that culminated in the LRGWQI 

achieved consensus on the general goal of improving water quality in the Lower Rio Grande/Río 

Bravo.  Based on US and Mexican assessments of water quality (including the binational Toxics 

Substances study and USGS’ NASQN data) and also based on information available from the 

IBWC, the TCEQ’s CWQMN stations, and the LRGWQI synoptic surveys, the pollutants of 

concern included in the Annex to the LRGWQI TOR are indicator bacteria (Fecal Coliform, E. 

coli, Enterococcus) and salinity (i.e., dissolved solids).  However, TCEQ assessments of water 

quality have also identified concerns for dissolved oxygen (DO) and Nutrients (Ammonia nitrogen 

and nitrates).  Similarly, CONAGUA’s effort to develop a Declaratoria for the Río Bravo 

broadens Mexican interest in examining water quality constituents beyond fecal bacteria and 

dissolved solids.  The following section describes in more detail the causes and sources of water 

quality degradation in the Lower Rio Grande/Río Bravo, including a description of methods used 

to quantify point sources of pollution, such as wastewater discharges and steady state nonpoint 

sources of pollution, such as irrigation return flows. 
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1.0.8 CAUSES AND SOURCES OF WATER QUALITY DEGRADATION3 

Sources of pollutants that affect surface water quality are classified in accordance with the 

mechanisms by which the pollutants are generated and transported in the environment.  

Environmental scientists and regulators generally classify surface water pollutant sources as either 

point sources or nonpoint sources.  Point sources of surface water pollution emanate from 

distinct, well defined geographic locations or “points,” such as pipes or other conduits that 

discharge directly into a receiving water body.  These sources can include outfalls of untreated 

wastewater and outfalls of treated wastewater from municipal and industrial sources.  Point 

source discharges are regulated or otherwise controlled by regulatory agencies using specific 

discharge criteria designed to minimize their impact to receiving water bodies.  Other point 

source outfalls can emanate from unregulated or illicit activities or can be the result of faulty 

infrastructure at specific locations (e.g., malfunctioning sewer lift stations). 

Nonpoint sources of pollution are the result of processes that accumulate and concentrate 

pollutants generated from large geographic areas.  The resulting “diffuse” pollution can enter a 

receiving water body at multiple locations or through shallow groundwater base flow.  The most 

common natural process associated with nonpoint source pollution is rainfall runoff.  Some 

nonpoint sources, known as “steady state” nonpoint sources, can affect surface water bodies under 

dry weather conditions.  Steady state nonpoint sources include pollutant sources such as broken 

or leaking sewer pipes, malfunctioning septic systems, irrigation return flows or the direct 

deposition of untreated wastes into receiving water bodies (e.g., human or animal defecation into 

or near surface waters).  The mitigation of nonpoint source pollution is complicated by the 

paucity of regulation designed to control it.  In the United States, the federal Clean Water Act 

specifically exempts non-urban nonpoint source pollution from federal regulation.  While urban 

stormwater quality is currently regulated in the United States, the regulations were promulgated 

only after the USEPA classified stormwater runoff from urban areas as a point source of pollution.  

Nonpoint source pollution from agricultural activities is still largely unregulated in the United 

States.  Mexico does not currently regulate nonpoint source pollution of any kind. 

                                                 
3 Some of the content of this section of Chapter 1 was excerpted from the 2017 report titled “Watershed 

Characterization Report: Lower Rio Grande/Río Bravo Water Quality Initiative,” authored by Roger M. Miranda 
and Heidi E. Harper. 
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While negotiating the scope of the LRGWQI, US and Mexican agency representatives 

agreed to limit the scope of the initiative to the study of point sources and steady state nonpoint 

sources of pollution in the Lower Rio Grande/Río Bravo watershed. This is made clear in the 

LRGWQI’s TOR, which also leaves open the possibility of addressing pollution from rainfall 

runoff in subsequent efforts between the two countries. 

1.0.8.1 Point Sources of Pollutants 
A total of 19 known wastewater outfalls discharge directly to the Lower Rio Grande/Río 

Bravo or to one of its tributaries (Figure 1-21).  Ten of these outfalls are located on the US side 

of the river and the other 9 outfalls are located on the Mexican side.  Fourteen of the 19 outfalls 

are associated with municipal wastewater treatment facilities.  Three outfalls are discharges of 

untreated wastewater attributable to faulty sanitary sewer infrastructure on the Mexican side (i.e., 

one malfunctioning lift station and two broken sewer mains).  One outfall is a discharge of filter 

backwash water from the City of Roma’s drinking water treatment facility on the US side and 1 

outfall is an intermittent discharge of a power plant cooling water from the Brownsville Public 

Utilities’ (BPUB’s) Silas Ray Power Plant on the US side (Table 1-7). 

 
Figure 1-21. Locations of Point Source Discharges to the Lower Rio Grande/Río Bravo.  
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Table 1-7. Point Source Discharges to the Lower Rio Grande/Río Bravo 

Map 
No. Facility Name Discharge Type 

Design 
Flow 
(L/s) 

1 Nueva Ciudad Guerrero (Imhoff Tank) Treated Municipal Wastewater 12 

2 Ciudad Mier Treated Municipal Wastewater 20 

3 Ciudad Miguel Alemán Treated Municipal Wastewater 75 

4 City of Roma 3 
Drinking Water Treatment 

Facility Outfall 
(Treatment Filter Backwash) 

20 

5 City of Roma 2 Treated Municipal Wastewater 90 

6 Ciudad Camargo Treated Municipal Wastewater 30 

7 City of Rio Grande City Treated Municipal Wastewater 66 

8 Union Water Supply Corporation Treated Municipal Wastewater 34 

9 AGUA Special Utility District Treated Municipal Wastewater 61 

10 Ciudad Gustavo Diaz Ordaz Treated Municipal Wastewater 3 

11 La Joya Independent School District Treated Municipal Wastewater 0.5 

12 City of La Joya 
Drinking Water Treatment 

Facility Outfall 
(Filter Backwash) 

64 

13 City of Peñitas Treated Municipal Wastewater 33 

14 Descarga Municipal D2 Libramiento Luis 
Echeverría, Reynosa 

Untreated Municipal Wastewater NA* 

15 Descarga Municipal D3 Libramiento Luis 
Echeverría (International Bridge), Reynosa Untreated Municipal Wastewater 

NA* 

16 Ciudad Reynosa PTAR 1 Treated Municipal Wastewater 1000 

17 Brownsville Public Utility Board Power Plant Cooling Water 17 

18 Descarga Municipal D4 Colonia El Jardín, 
Matamoros Untreated Municipal Wastewater 

NA* 

19 Brownsville Public Utility Board Treated Municipal Wastewater 561 
* Not a wastewater treatment facility, therefore a design flow cannot be specified 
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Most of the point source discharges to the Lower Rio Grande/Río Bravo are relatively small 

(less than 100 L/s).  However, 2 facilities in the watershed (Ciudad Reynosa PTAR 1 and BPUB’s 

Southside Wastewater Treatment Facility) are designed to produce effluent flows exceeding 500 

L/s each.  The majority of point source discharges to the Lower Rio Grande/Río Bravo, or to one 

of its tributaries, occur in the middle and upper portions of the watershed (Figure 1-21). This is 

mainly due to the fact that wastewater from municipalities and several industrial facilities located 

in the lower third of the watershed is treated and discharged into drains that flow away from the 

river and thence to the US and Mexican portions of the Laguna Madre.  These flows include 

several municipal wastewater treatment facilities on the US side of the river and a number of 

industrial discharges associated with manufacturing facilities, known as “maquiladoras,” located 

mainly on the Mexican side.  The detailed information provided in the following sections, along 

with additional information collected in the field during five surveys of water quality conducted 

by the BTWG as part of the LRGWQI, forms an integral part of the Point Sources module of the 

LRGWQIDSS. 

US POINT SOURCES OF POLLUTION 
Figure 1-22 shows the location of US point source discharges to the Lower Rio Grande/Río 

Bravo. Nine of the 10 US point source discharges are associated with municipal wastewater 

treatment facilities.  The only industrial discharge to the Rio Grande/Río Bravo from the US is 

the cooling water outfall from BPUB’s Silas Ray Power Plant.  Eight of the 10 outfalls associated 

with these point source discharges are attributable to municipal wastewater treatment facilities 

located mainly in the upper portion of the watershed.  One outfall discharges filter backwash 

water from the City of Roma’s drinking water treatment facility.  One outfall discharges cooling 

water from BPUB’s Silas Ray Power Plant. 
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Figure 1-22. Locations of US Point Source Discharges to the Lower Rio Grande/Río 

Bravo 

Table 1-8 shows the effluent limits permitted under the Texas Pollutant Discharge 

Elimination System (TPDES) and National Pollutant Discharge Elimination System (NPDES) for 

each of the US point source discharges in the Lower Rio Grande/Río Bravo watershed.  The 

following sub-sections describe of each of the US point source discharges in the Lower Rio 

Grande/Río Bravo watershed.  The author compiled the information presented in the following 

sections as part of a comprehensive watershed characterization effort.  Sources of the information 

include BECC Environmental Information Documents, TPDES permit information and 

monitoring data collected during LRGWQI synoptic surveys conducted in 2014-2016. 
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Table 1-8. US Point Source Discharges to the Lower Rio Grande/Río Bravo and Permit Limits (daily averages) 

Map Number 1 2 3 4 5 6 7 8 9 10 

Facility Name City of 
Roma3 

City of 
Roma2 

City of Rio 
Grande City Union WSC AGUA SUD La Joya ISD City of La 

Joya 
City of 
Peñitas 

Brownsville 
PUB 

Brownsville 
PUB 

Discharge Type Municipal 
Wastewater 

Municipal 
Wastewater 

Municipal 
Wastewater 

Municipal 
Wastewater 

Municipal 
Wastewater 

Municipal 
Wastewater 

Municipal 
Wastewater 

Municipal 
Wastewater 

Industrial 
Wastewater 

Municipal 
Wastewater 

TPDES Permit Number WQ11212003 WQ11212002 WQ10802001 WQ14313001 WQ14415001 WQ13523006 WQ12675001 WQ14884001 WQ03096000 WQ10397003 

NPDES Permit Number TX0119709 TX0117544 TX0068764 TX0124613 TX0125598 TX0124559 TX0127337 TX0131491 TX0105651 TX0055484 

Flow (L/s) 19.7 87.6 65.7 33.9 61.3 0.6 64.4 32.9 17.1 560.8 

Biochemical Oxygen 
Demand – 5 Day (mg/L) - 20 20 10 10 20 20 20 - 10 

Ammonia Nitrogen (mg/L) - - - 3 3 - 3 - - 3 

Total Suspended Solids 
(mg/L) - 20 20 15 15 20 20 20 - 3 

Dissolved Oxygen (mg/L) - 4 2 4 4 2 4 4 - 4 

Temperature (oC) - - - - - - - - 115 - 

pH Minimum - 6 6 6 6 6 6 6 6 6 

pH Maximum - 9 9 9 9 9 9 9 9 9 

E. Coli (CFU/100ml or 
MPN) - 126 126 126 126 126 126 126 - - 

Enterococcus (CFU/100ml 
or MPN) - - - - - - - - - 35 

Sulfate (mg/L) - - - - - - - - 1893 - 

Total Aluminum (mg/L) - - - - - - - - 0.78 - 

Total Copper (mg/L) - - - - - - - - 0.11 - 

Total Dissolved (mg/L) - - - - - - - - 4400 - 

Free Available Chlorine 
(mg/L) - - - - - - - - 0.2 - 
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The City of Roma’s Drinking Water Treatment Facility 

Located less than 100 meters from the Lower Rio Grande/Río Bravo, the City of Roma’s 

drinking water treatment facility provides potable water to approximately 30,945 residents living 

within Roma’s city limits and surrounding area (Figure 1-23).  The facility uses conventional 

treatment technology, which consists of coagulation, flocculation, sedimentation, and filtration.  

Discharge monitoring reports show this facility discharges a daily average of between 1.3 and 8.5 

L/s of treatment filter backwash water to the river (minimum and maximum daily averages per 

month over the years 2000-2015) with an overall daily average discharge of 3.6 L/s. 

 
Figure 1-23. The City of Roma’s Drinking Water Treatment Facility. 

The City of Roma’s Wastewater Treatment Facility 

Located approximately 2 kilometers southeast of the City of Roma’s drinking water 

treatment facility and 568 meters from the Lower Rio Grande/Río Bravo, the City of Roma’s 

wastewater treatment facility provides wastewater treatment services for approximately 10,088 

residents living within Roma’s city limits and an additional 4,582 living in the surrounding area 
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(Figure 1-24).  The facility uses an extended aeration oxidation ditch system with activated 

sludge and chlorination.  Discharge monitoring reports show this facility discharges a daily 

average of between 48.2 L/s and 363.6 L/s, with an overall daily average discharge of 157.4 L/s.  

The outfall for the City of Roma’s wastewater treatment facility is located approximately 4 

kilometers downstream from the city’s drinking water treatment facility outfall. 

 
Figure 1-24. The City of Roma’s Wastewater Treatment Facility. 

The City of Rio Grande City’s Wastewater Treatment Facility 

The City of Rio Grande City’s wastewater treatment facility is located approximately 105 

meters from the Lower Rio Grande/Río Bravo (Figure 1-25).  The facility provides wastewater 

treatment services to approximately 13,834 residents living within the city limits of Rio Grande 

City.  Like the City of Roma, the City of Rio Grande City’s wastewater treatment facility is an 

oxidation ditch system with activated sludge and chlorination.  Discharge monitoring reports 

show this facility discharges a daily average flow of between 18.3 and 59.5 L/s, with an overall 

daily average discharge of 36.6 L/s. 
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Figure 1-25. The City of Rio Grande City’s Wastewater Treatment Facility. 
 
 

Union Water Supply Corporation’s Wastewater Treatment Facility 

The Union Water Supply Corporation’s wastewater treatment facility is located 

approximately 2.3 kilometers from the Lower Rio Grande/Río Bravo (Figure 1-26).  The facility 

provides wastewater treatment services to approximately 5,913 residents living in the largely rural 

communities of Garciasville, La Casita, and El Refugio and surrounding areas. The wastewater 

treatment facility is an oxidation ditch system with activated sludge and chlorination.  Discharge 

monitoring reports show this facility discharges a daily average flow of treated effluent of between 

3.0 and 14.5 L/s, with an overall daily average discharge of 7.7 L/s. 
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Figure 1-26. Union Water Supply Corporation’s Wastewater Treatment Facility. 

AGUA Special Utility District’s Wastewater Treatment Facility 

The AGUA Special Utility District’s (SUD’s) wastewater treatment facility is located 

approximately 1.4 kilometers from the Lower Rio Grande/Río Bravo (Figure 1-27).  The facility 

provides wastewater treatment services to approximately 3,250 residents living in the largely rural 

communities of Sullivan City, Los Ebanos and Cuevitas and surrounding areas.  A sequencing 

batch reactor (SBR) plant, AGUA SUD’s wastewater treatment facility discharges treated 

wastewater intermittently during the day.  Discharge monitoring reports show this facility 

discharges a daily average effluent flow of between 5.5 and 8.3 L/s, with an overall daily average 

discharge of 7.7 L/s. 
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Figure 1-27. AGUA Special Utility District’s Wastewater Treatment Facility. 

La Joya Independent School District’s Wastewater Treatment Facility. 

The La Joya Independent School District’s wastewater treatment facility is located 

approximately 2.0 kilometers from the Lower Rio Grande/Río Bravo (Figure 1-28).  This small 

“package plant” facility provides wastewater treatment services to approximately 500 students of 

the Sam Fordyce Elementary School near Sullivan City.  The facility uses an activated sludge 

process operated in the extended aeration mode with chlorination. Discharge monitoring reports 

show this facility discharges at highly irregular intervals during the year, with large intervals of 

little to no discharge, especially during the summer months and during other scholastic breaks in 

the school year.  Discharge monitoring reports show that daily average effluent flows range 

between 0.02 and 0.3 L/s, with an overall daily average discharge of 0.1 L/s.  Although 

considered a surface water discharge to the Lower Rio Grande/Río Bravo, the effluent flow from 

this outfall is unlikely to affect water quality in the Lower Rio Grande/Río Bravo, due to its small 

volume and distance from the river. 
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Figure 1-28. La Joya Independent School District’s Wastewater Treatment Facility. 

The City of La Joya’s Wastewater Treatment Facility 

The City of La Joya’s wastewater treatment facility is located approximately 1.0 kilometer 

from the Lower Rio Grande/Río Bravo (Figure 1-29).  Constructed in 1982, this facility is a 

facultative lagoon system that provides wastewater treatment services to approximately 3,985 city 

residents.  Discharge monitoring reports show that daily average effluent flows range between 

4.6 and 15.3 L/s, with an overall daily average discharge of 11.0 L/s.  In recent years, the ability 

of this wastewater treatment facility to meet its permitted discharge limits for 5-day carbonaceous 

biochemical oxygen demand (CBOD5), total suspended solids (TSS) and E. coli has diminished 

significantly due to a combination of several factors, including population growth and the facility’s 

advanced age.  During synoptic monitoring events conducted as part of the LRGWQI, 

participants in the monitoring event observed a significant accumulation of sludge in many of the 

facultative lagoons, which effectively diminishes the treatment capacity of the plant.  
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Figure 1-29. The City of La Joya’s Wastewater Treatment Facility. 

The City of Peñita’s Wastewater Treatment Facility 

The City of Peñitas’ wastewater treatment facility is located approximately 500 meters 

from the Lower Rio Grande/Río Bravo (Figure 1-30).  The facility provides wastewater services 

to approximately 4,632 residents of the city and surrounding areas.  The wastewater treatment 

technology used by the facility is an oxidation ditch system with activated sludge and chlorination.  

Daily average effluent flows range between 1.3 and 12.8 L/s, with an overall daily average 

discharge of 7.7 L/s.  
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Figure 1-30. The City of Peñitas’ Wastewater Treatment Facility. 

The Brownsville Public Utilities Board’s Silas Ray Power Plant Outfall 

Brownsville Public Utility Board’s (BPUB’s) Silas Ray Power Plant is a 181.4 MW gas 

powered steam turbine electric generating facility (Figure 1-31).  Originally built in 1947, this 

power plant serves as the primary source of electricity for the residents of the City of Brownville 

and also for residents living in portions of Harlingen and San Benito, Texas.  The facility is 

located approximately 660 meters from the Lower Rio Grande/Río Bravo and occasionally 

discharges blowdown water from its cooling towers.  Discharges from this facility flow into a dry 

oxbow lake prior to flowing into the Lower Rio Grande/Río Bravo.  The oxbow lake has a 

capacity of approximately 150,000 m3 and fills only on rare occasions.  Discharge monitoring 

reports show this facility discharges at highly irregular intervals (flows are reported for only 69 of 

the 180 months between 2000 and 2015).  Daily average flows during the months of discharge 

ranged between 0.003 and 16.3 L/s, with an overall daily average discharge of 0.9 L/s. 
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Figure 1-31. Brownsville Public Utility Board’s (BPUB’s) Silas Ray Power Plant. 

Brownsville Public Utilities’s (BPUB’s) Southside Wastewater Treatment Facility 

The Brownsville PUB’s Southside Wastewater Treatment Facility is located approximately 

880 meters from the Lower Rio Grande/Río Bravo (Figure 1-32).  The largest of the US wastewater 

treatment facilities discharging to the Lower Rio Grande/Río Bravo, the facility provides 

wastewater services to approximately 27,500 residents of the city using a complete mix activated 

sludge treatment system.  Daily average effluent flows range between 215.7 and 436.6 L/s, with 

an overall daily average discharge of 276.4 L/s.  The facility discharges directly to the tidally-

influenced portion of the Lower Rio Grande/Río Bravo.  



 

68 
 

 
Figure 1-32. BPUB’s South Side Wastewater Treatment Facility. 

MEXICAN POINT SOURCES OF POLLUTION 
Nine point source outfalls currently discharge wastewater to the Lower Rio Grande/Río 

Bravo from the Mexican side of the river (Figure 1-33).  Six of these outfalls are associated with 

municipal wastewater treatment facilities and 3 of the outfalls are discharges of untreated 

wastewater attributable to faulty sanitary sewer infrastructure at known locations.  Table 1-9 

provides further information on the point source outfalls currently discharging wastewater to the 

Lower Rio Grande/Río Bravo from the Mexican side of the river.  Like US wastewater treatment 

facilities, Mexican wastewater treatment facilities must obtain a permit from CONAGUA to 

discharge their effluent to surface waters.  While limits on flow rates and pollutant concentrations 

of effluent discharged from wastewater treatment facilities located on the Mexican side of the river 

are not water quality-based, all Mexican wastewater treatment facilities must be constructed and 

operated to meet Mexican federal criteria designed to protect surface water quality.  The criteria 

are specified in the country’s federal regulation NOM-001-SEMARNAT-1996, which establishes 

the permissible performance-based levels of contaminants in wastewater discharges to surface 

water. 
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Figure 1-33. Locations of Mexican Point Source Discharges to the Lower Rio 

Grande/Río Bravo 
 

Table 1-9. Mexican Point Source Discharges to the Lower Rio Grande/Río Bravo 

Map 
No. Facility Name Discharge Type 

Design 
Flow 
(l/s) 

1 Nueva Ciudad Guerrero (Imhoff Tank) Treated Municipal Wastewater 12 

2 Ciudad Mier Treated Municipal Wastewater 20 

3 Ciudad Miguel Alemán Treated Municipal Wastewater 75 

4 Ciudad Camargo Treated Municipal Wastewater 30 

5 Ciudad Gustavo Díaz Ordaz Treated Municipal Wastewater 3 

6 Descarga Municipal D2 Libramiento Luis 
Echeverría, Reynosa 

Untreated Municipal 
Wastewater 

NA* 

7 Descarga Municipal D3 Libramiento Luis 
Echeverría (International Bridge), Reynosa 

Untreated Municipal 
Wastewater 

NA* 

8 Ciudad Reynosa PTAR 1 Treated Municipal Wastewater 1000 

9 Descarga Municipal D4 Colonia El Jardín, 
Matamoros 

Untreated Municipal 
Wastewater 

NA* 

* Not a wastewater treatment facility, therefore a design flow cannot be specified 
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Table 1-10 shows the discharge criteria currently used to design Mexican wastewater 

treatment facilities in the Lower Rio Grande/Río Bravo.  Like the federal Clean Water Act in the 

United States, Mexican federal law provides for the establishment of water quality-based 

wastewater discharge permits with effluent concentrations and flow limits based on their simulated 

effect on ambient water quality.  The establishment of water-quality-based wastewater permit 

limits is often preceded by the development of a “Declaratoria de Clasificación,” which among 

other things, includes a study of the assimilative capacity of the receiving water body.  

CONAGUA has undertaken the task of developing a Declaratoria de Clasificación for the Lower 

Rio Grande/Río Bravo and anticipates completing it by the end of 2019.  Depending on the results 

of the Declaratoria de Clasificación, CONAGUA could begin requiring water-quality-based 

permit limits for new wastewater treatment facilities or for future upgrades to existing wastewater 

treatment facilities in the Lower Rio Grande/Río Bravo, if deemed warranted.  A brief description 

of each of the Mexican point source discharges to the Lower Rio Grande/Río Bravo is provided in 

the following sections. 

Table 1-10. Discharge Criteria Applied to Mexican Wastewater Treatment Facilities 

Parameter Maximum Daily Average* Maximum Monthly 
Average* 

Flow (L/s) - - 

Biochemical Oxygen Demand – 5 Day (mg/L) 150 75 

Total Nitrogen (mg/L) 60 40 

Phosphorus (mg/L) 30 20 

Total Suspended Solids (mg/L) 125  75 

Settable solids (mg/L) 2 1 

Temperature 40 40 

pH minimum (NTU) 6 6 

pH maximum (NTU) 9 9 

Fecal Coliform (MPN/100ml) 2000  1000  

Oil and Grease 25 15 
*NOM-001-SEMARNAT-1996 
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Nueva Ciudad Guerrero’s Wastewater Treatment Facility 

Located 5.1 Kilometers from the Lower Rio Grande/Río Bravo, the city of Nueva Ciudad 

Guerrero’s wastewater treatment facility provides wastewater treatment services to approximately 

4010 residents living within city limits and surrounding area (Figure 1-34).  The facility consists 

of an Imhoff tank located in the southern portion of the city.  The Imhoff tank is a relatively old 

facility and does not currently function in the way it was originally designed, providing only 

marginal primary treatment of influent wastewater.  LRGWQI researchers estimate this facility 

produces daily effluent flows of between 2.5 and 4.3 L/s (highest and lowest average values 

estimated by LRGWQI researchers), with an overall average daily effluent flow of 3.1 L/s. 

 

 
Figure 1-34. Ciudad Nueva Guerrero’s (Imhoff Tank) Wastewater Treatment Facility. 

Ciudad Mier’s Wastewater Treatment Facility 

Located 3.2 Kilometers from the Lower Rio Grande/Río Bravo, the city of Mier’s 

wastewater treatment facility provides wastewater treatment services to approximately 5,435 

residents living within its city limits (Figure 1-35).  The facility utilizes a natural/lagoon 

processes for treatment and consists of an anaerobic pond, an integrated facultative pond, and 
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polishing lagoons.  The treatment plant also includes headworks with a coarse screen and sand 

settling chamber.  Mier has experienced a negative population growth rate since 2008 and, 

although the city’s wastewater treatment facility is designed to treat 20 L/s of raw sewage, the 

actual average daily effluent flow is estimated to be in the order of 2.8 L/s. 

 
Figure 1-35. Ciudad Mier’s Wastewater Treatment Facility. 

 
Ciudad Miguel Alemán’s Wastewater Treatment Facility 

Located 630 meters from the Lower Rio Grande/Río Bravo, the city of Miguel Alemán’s 

wastewater treatment facility provides wastewater treatment services to approximately 23,500 

residents living within its city limits and in the nearby village of Los Guerra (Figure 1-36).  The 

facility consists of a dual lagoon system composed of three treatment levels, first anaerobic, then 

facultative, and finally polishing.  The treatment plant also includes headworks with coarse 

screens and sand settling chambers.  Although the facility is designed to treat 75 L/s of raw 

sewage, the average daily effluent flow is estimated to be between 27 and 45 L/s, with an overall 

average daily effluent flow of 37.3 L/s. 
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Figure 1-36. Ciudad Miguel Alemán’s Wastewater Treatment Facility. 

 
 

Ciudad Camargo’s Wastewater Treatment Facility 

Located 2.4 Kilometers from the Lower Rio Grande/Río Bravo, the city of Camargo’s 

wastewater treatment facility provides wastewater services to approximately 15,075 residents 

living within its city limits (Figure 1-37).  The facility consists of a four-celled oxidation and 

facultative lagoon system situated 0.88 kilometers north of the city.  Originally designed to treat 

20 L/s of raw sewage, the facility does not have a visible discharge of effluent.  However, due to 

its advanced age, poor working condition and proximity to the Río San Juan, LRGWQI researchers 

estimate that two thirds of the current influent flow to the plant reaches the Río San Juan through 

infiltration from its oxidation lagoon.  This volume amounts to an average daily effluent flow of 

between 2.3 and 4.3 L/s, with an overall average daily effluent flow of 3.3 L/s. 
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Figure 1-37. Ciudad Camargo’s Wastewater Treatment Facility 

 
 

Ciudad Gustavo Díaz Ordaz’s Wastewater Treatment Facility 

The wastewater treatment facility for the city of Gustavo Díaz Ordaz is located 680 meters 

from the Lower Rio Grande/Río Bravo (Figure 1-38).  The facility is a small (3.4 Ha) two-lagoon 

system which is currently non-functioning and essentially operates as an infiltration/evaporation 

basin.  The wastewater collection system for the city of Gustavo Díaz Ordaz services 

approximately 1,728 residents living within its city limits.  It is estimated that the city’s collection 

system generates an average daily flow of raw sewage of 27.6 L/s to the plant.  LRGWQI 

researchers estimate that, on average, at least 10% of the total volume of sewage conveyed to the 

wastewater facility reaches the Lower Rio Grande/Río Bravo (2.8 L/s). 
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Figure 1-38. Ciudad Gustavo Díaz Ordaz’s Wastewater Treatment Facility. 

 
 

Municipal Discharge D2 Libramiento Luis Echeverría, Reynosa 

Located on the south bank of the Lower Rio Grande/Río Bravo within the city limits of the 

City of Reynosa, this discharge of untreated wastewater is associated with faulty or inadequate 

wastewater conveyance (Figure 1-39).  The flow of untreated wastewater reaches the Lower Rio 

Grande/Río Bravo directly through a stormwater pipe.  It is estimated this highly variable 

discharge contributes a daily flow of untreated wastewater to the Lower Rio Grande/Río Bravo of 

between 0.01 and 0.58 L/s, with an overall daily average flow of 0.33 L/s. 

Municipal Discharge D3 Libramiento Luis Echeverría, Reynosa 

Also located on the south bank of the Lower Rio Grande/Río Bravo in the City of Reynosa 

just upstream of the Reynosa-Hidalgo International Bride and only 575 meters from Municipal 

Discharge D2, this discharge of untreated wastewater (D3) is also associated with faulty or 

inadequate wastewater conveyance (Figure 1-39).  Like Municipal Discharge D2, the flow of 

untreated wastewater from discharge D3 reaches the Lower Rio Grande/Río Bravo directly 

through a stormwater pipe.  It is estimated this highly variable discharge (D3) contributes a daily 



 

76 
 

flow of untreated wastewater to the Lower Rio Grande/Río Bravo of between 0.01 and 8.11 L/s, 

with an overall daily average flow of 4.1 L/s. 

 
Figure 1-39. Municipal Discharges D2 and D3 Libramiento Luis Echeverría, Reynosa. 

The City of Reynosa Wastewater Treatment Facility No. 1 (PTAR No. 1) 

Located less than 50 meters from the Lower Rio Grande/Río Bravo, the city of Reynosa’s 

Wastewater Treatment Facility No.1 (referred to by its Spanish acronym PTAR1) provides 

wastewater treatment services to approximately 247,000 residents living within its city limits 

(Figure 1-40).  Originally built in 1970, Reynosa’s PTAR No. 1 has undergone a number of 

expansions and rehabilitations over the last 46 years, the last of which occurred in 2001.  

Originally constructed as a large, multi-celled lagoon system, the facility now consists of an 

activated sludge unit with anaerobic ponds followed by aeration and facultative lagoon units 

arranged in sequence. The new mechanical treatment system was constructed adjacent to the 

original lagoon system. The average daily effluent flow from Reynosa’s PTAR No. 1 is estimated 

to be between 550 and 750 L/s, with an overall daily average flow of 616.7 L/s.  Although the 

Reynosa PTAR No. 1 facility is currently designed to treat 1000 L/s of influent raw sewage, a 

portion of the raw wastewater conveyed to the facility is occasionally diverted directly to the aged 
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lagoon system adjacent to the activated sludge unit in PTAR No. 1, bypassing the activated sludge 

treatment system. The lack of capacity to accommodate existing influent flows conveyed to 

Reynosa’s PTAR No.1 results in the discharge of untreated wastewater into the Lower Rio 

Grande/Río Bravo via a drainage canal known as Dren El Anhelo. 

 
Figure 1-40. Ciudad Reynosa’s Wastewater Treatment Facility No. 1 (PTAR No. 1). 

Municipal Discharge D4 Calle Ignacio Ramirez y Tamaulipas, Matamoros 

Located on the bank of the Lower Rio Grande/Río Bravo in the City of Matamoros, this 

discharge of untreated wastewater is associated with faulty wastewater conveyance (Figure 1-41).  

The flow of untreated wastewater reaches the Lower Rio Grande/Río Bravo directly through a 

stormwater culvert.  LRGWQI researchers visually estimated that this discharge contributes a 

daily flow of untreated wastewater to the Lower Rio Grande/Río Bravo of 0.75 L/s. 
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Figure 1-41. Municipal Discharges D4, Calle Ignacio Ramirez y Tamaulipas, 

Matamoros (the inset is a vertical, bird’s eye, view of the outfall). 

POINT SOURCE POLLUTANT LOADING ESTIMATES 
To estimate the average daily loadings, to the Lower Rio Grande/Rio Bravo, of LRGWQI 

pollutants of concern emanating from point source discharges in the watershed, the author used 

the daily average effluent flow information associated with the individual point sources of 

pollution described in the previous sections of this chapter, in combination with reported and 

estimated concentrations of pollutants of concern in the LRGWQI.  For US point sources, 

average daily loading data of pollutants of concern such as CBOD5 TSS are available from the 

USEPA’s Integrated Compliance Information System (ICIS) database, along with average daily 

effluent flow and bacteria concentrations (USEPA, 2016b).  The author downloaded data from 

ICIS for LRGWQI period of record (2000-2015).  To estimate loadings of pollutants not reported 

to the USEPA under the NPDES, such as total nitrogen (TN) and total phosphorus (TP), the author 

used pollutant concentrations derived from stoichiometric ratios of these constituents to the daily 

average CBOD5 concentrations in their wastewater effluent, as reported in ICIS. These 

stoichiometric ratios were conservatively established based on their relative concentrations in 
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wastewater of “weak” strength as reported in Metcalf and Eddy (1991).  The author also obtained 

the concentration of TDS in effluent from US wastewater treatment facilities that do not report this 

constituent to the USEPA from Metcalf and Eddy (1991).  Although the preferred indicator 

bacteria used by USEPA and the State of Texas to assess fecal contamination in surface waters are 

E. coli and Enterococcus, the fecal indicator bacteria common to both the United States and 

Mexico is fecal coliform.  Under some circumstances, the State of Texas continues to use fecal 

coliform to assess water quality.  Two of the US wastewater facilities in the Lower Rio 

Grande/Río Bravo watershed, the City of Roma and the City of Rio Grande City, reported more 

fecal coliform effluent data than any other indicator bacteria to the USEPA during the LRGWQI 

period of record (2000-2015).  Partly for these reasons, but mainly out of a preference to derive 

comparative pollutant loadings for the project, the LRGWQI’s BTWG agreed to use fecal coliform 

as the indicator bacteria for the LRGWQI.  For US facilities that exclusively report E. coli or 

Enterococcus in their discharge monitoring reports to USEPA, the author transformed the daily 

average concentrations of these parameters to fecal coliform using the ratio of their geometric 

mean criteria as specified in past State of Texas’ Surface Water Quality standards (126 MPN E. 

coli:200 MPN fecal coliform and 35 NPM Enterococcus:200 MPN fecal coliform). 

For Mexican point sources, the author used the estimated average daily effluent flow values 

for each Mexican wastewater outfall, as described in the previous section of this chapter, in 

combination with the maximum monthly average effluent criteria specified in the Mexican federal 

standard NOM-001-SEMARNAT-1996 (Table 1-10) to calculate average daily loadings of 

LRGWQI pollutants of concern.  The author calculated ammonia nitrogen loadings using effluent 

concentrations derived from the stoichiometric ratio of ammonia nitrogen to BOD from Metcalf 

and Eddy (1991) (weak strength).  The author also calculated total dissolved solids loadings using 

the concentration of TDS in wastewater from Metcalf and Eddy (1991).  Table 1-11 shows the 

results of the analysis of average daily point source loadings of constituents of concern to the 

Lower Rio Grande/Río Bravo.
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Table 1-11. Estimated Daily Loading of LRGWQI Pollutants of Concern from Point Source Discharges 

Facility Name 
Flow  

(L/day) 
CBOD5 
(kg/day) 

TSS 
(kg/day) 

TDS 
(kg/day) 

TP  
(kg/day) 

TN  
(kg/day) 

NH3-N 
(kg/day) 

Fecal 
Coliform 

(CFU/day) 

Nueva Ciudad Guerrero (Imhoff Tank) 268,704 20 20 134 5 11 2 2.69E+11 

Ciudad Mier 241,920 18 18 121 5 10 1 2.42E+11 

Ciudad Miguel Alemán 3,222,720 242 242 1,611 64 129 26 3.22E+12 

City of Roma 3 (Filter Backwash) 310,933 - 3 155 - - - - 

City of Roma 2 13,595,760 9 12 6,798 <1 2 1 2.46E+10 

Ciudad Camargo 285,984 21 21 143 6 11 2 2.86E+11 

City of Rio Grande City 3,163,449 21 25 1,582 1 4 2 4.53E+12 

Union Water Supply Corporation 667,305 3 3 334 <1 4 2 5.51E+09 

AGUA Special Utility District 631,551 2 4 316 <1 2 1 5.21E+09 

Ciudad Gustavo Díaz Ordaz 238,464 18 18 119 5 10 2 2.38E+11 

La Joya Independent School District 9,694 <1 <1 5 <1 <1 <1 1.93E+07 

City of La Joya 952,067 39 116 476 1 7 4 7.85E+11 

City of Peñitas 666,280 4 3 333 <1 1 <1 2.59E+09 

Descarga Municipal D2, Reynosa 28,080 2 2 14 1 1 <1 2.81E+10 

Descarga Municipal D3, Reynosa 354,326 27 27 177 7 14 2 3.54E+11 

Ciudad Reynosa PTAR 1 53,280,029 3,996 3,996 26,640 1,066 2,131 436 5.33E+13 

Brownsville Public Utility Board (Silas 
Ray Power Plant) 76,455 - - 38 - - - - 

Descarga Municipal D4, Matamoros 64,800 5 5 32 1 3 1 6.48E+10 

Brownsville Public Utility Board 
(Southside Wastewater Treatment Plant) 23,882,877 67 203 11,941 2 12 11 1.90E+11 

Total 101,941,398 4,494 4,719 50,971 1,165 2,350 494 6.35E+13 
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1.0.8.2 Steady State Nonpoint Sources of Pollutants 
The diffuse nature of nonpoint sources of pollution complicates their characterization and 

quantification.  Unlike point sources, which can be monitored at their point of discharge, 

nonpoint sources can affect a receiving water body over wide geographic areas making them hard 

to measure directly.  As previously discussed, the TOR for the LRGWQI limited the investigation 

of nonpoint sources in the Lower Rio Grande/Río Bravo watershed to steady state nonpoint 

sources, which excludes sources of pollutants entering the river under rainfall runoff conditions.  

Steady state nonpoint sources in the Lower Rio Grande/Río Bravo can be classified into three 

broad categories based on their origin; they include (1) residential nonpoint sources, (2) 

agricultural nonpoint sources, and (3) wildlife nonpoint sources. 

The most widely used method for characterizing nonpoint sources of pollutants is through 

geospatial analysis using GIS.  A description of the methods used to characterize the steady state 

nonpoint sources pollutants of concern to the LRGWQI, and to quantify their magnitude, is 

included in Sub-section 1.0.11.2 of this chapter.  The following sections provide the results of 

the geospatial and loading analyses. 

RESIDENTIAL NONPOINT SOURCES 
Due to wide disparities in sewage collection and treatment services provided in border 

communities on both sides of the Lower Rio Grande/Río Bravo, estimates of pollutant loadings 

produced by riparian populations must take into account levels of sanitation prevailing in each of 

these communities.  For this reason, the author and his Mexican collaborators focused the 

analysis of steady state residential nonpoint sources quantifying residents living in riparian 

communities (i.e., living within 500 m of the Lower Rio Grande/Río Bravo of a contributing 

tributary, drain or ditch) falling into one of three sanitation categories, (1) residents receiving 

centralized sewage disposal services (2) residents using septic systems, and (3) residents lacking 

any means of sanitation.  Table 1-12 summarizes the results of the geospatial analysis conducted 

by the author and his Mexican collaborators to estimate riparian residential populations with 

varying sanitation types on the US and Mexican sides of the Lower Rio Grande/Río Bravo.  Table 

1-13 shows the result of the estimates of potential daily loadings of LRWQI pollutants of concern 
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to the Lower Rio Grande/Río Bravo from steady state residential nonpoint sources in the 

watershed. 

 
Table 1-12. Estimated Number of Lower Rio Grande/Río Bravo Watershed Residents 

Living within 500 Meters of the Lower Rio Grande/Río Bravo or One of Its 
Tributaries, Distributed by Sanitation Type 

Country 

Total Number of 
LRG/RB* Watershed 

Residents Living 
within 500 m of the 

LRG/RB or a 
Tributary   

Number of LRG/RB 
Watershed Residents 

Living within 500 m of 
the LRG/RB or a 

Tributary Receiving 
Centralized Sewage 

Disposal Services 

Number of LRG/RB 
Watershed Residents 

Living within 500 m of 
the LRG/RB or a 
Tributary Using 
Septic Systems 

Number of LRG/RB 
Watershed Residents 

Living within 500 m of 
the LRG/RB or a 

Tributary Lacking 
Sewage Disposal 

Services 

US  10,641 7,290 3,065 286 

Mexico 44,449 31,732 8,580 4,137 
*LRG/RB is an acronym for Lower Rio Grande/Rio Bravo 

Table 1-13. Estimated Potential Daily Loading of Constituents of Concern to the 
LRG/RB from Steady State Residential Nonpoint Sources in the 
Watershed 

Pollutant Load US 
Subwatershed 

Mexican 
Subwatershed 

Total LRG/RB* 
Watershed 

BOD (kg/day) 32 202 234 

TSS (kg/day) 32 202 234 

TDS (kg/day) 73 460 533 

TP (kg/day) 1 7 8 

TN (kg/day) 6 37 43 

NH3-N (kg/day) 4 23 27 

Fecal Coliform (MPN/day) 9.29E+14 5.88E+15 6.81E+15 

*LRG/RB is an acronym for Lower Rio Grande/Rio Bravo 

AGRICULTURAL NONPOINT SOURCES 
Based on the pollutants of concern identified by the LRGWQI’s BTWG, steady state 

agricultural nonpoint sources in the LRG/RB watershed can be subdivided into two main 
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categories, (1) pollutant contributions from irrigation return flows and (2) pollutant contributions 

from livestock and domestic animals.  These two types of nonpoint sources of pollution result 

from distinctly different agricultural activities and their characterization and quantification 

requires different data sources and data analysis methods. 

Irrigation Return Flows 
During dry weather conditions (i.e., steady state conditions), agricultural activities 

associated with irrigated crop production can contribute to surface water pollution in the Lower 

Rio Grande/Río Bravo watershed through the production of irrigation return flows.  The most 

common irrigation method used on both sides of the watershed is flood irrigation, which 

commonly saturates soils producing excess irrigation water.  Excess irrigation water can flow 

directly from agricultural fields into drainage ditches as irrigation return flows.  Excess irrigation 

water also pools in the shallow subsurface below the root zone where it can travel laterally as 

phreatic groundwater, which also flows into agricultural drainage ditches or directly into the Lower 

Rio Grande/Río Bravo as base flow.  Excess irrigation water can leach dissolved salts from 

agricultural soils loading irrigation return flows and raising their salinity.  These flows can 

mobilize salts from the subsurface and concentrate them in the upper layers of the soil horizon, 

along with other constituents commonly produced during agricultural production, including 

dissolved organic matter, fertilizers, and pesticides.  As a result, irrigation return flows can be a 

substantial and persistent source of these pollutants in the Lower Rio Grande/Río Bravo watershed.  

A high percentage of agricultural land in the Lower Rio Grande/Río Bravo watershed is 

irrigated using water from the Lower Rio Grande/Río Bravo or from one of its two major 

tributaries, the Río Álamo or the Río San Juan.  Approximately 1770 km2 of the Lower Rio 

Grande/Río Bravo watershed (24.3%) is used for crop production (Miranda & Harper, 2017).  

However, not all this agricultural land is irrigated.  To estimate the area of irrigated agricultural 

land in the Lower Rio Grande/Río Bravo watershed, the author conducted a geospatial analysis 

using a binational land use/land cover GIS layer developed by the BEHI.  The analysis is 

described in detail in Sub-section 1.0.11.2. of this chapter. 

Figure 1-42 shows the estimated areas of irrigated agricultural land in the Lower Rio 

Grande/Río Bravo watershed.  Evident from this figure is the relatively uneven distribution of 

irrigated land between the two national sub-watersheds of the Lower Rio Grande/Río Bravo.  
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Irrigated agricultural land in the US portion of the Lower Rio Grande/Río Bravo watershed is 

estimated to total 227.24 km2.  The total amount of irrigated agricultural land on the Mexican 

side of the watershed is estimated to be 887.59 km2, nearly four times the area on the US portion 

of the Lower Rio Grande/Río Bravo watershed. 

 
Figure 1-42. Irrigated Agricultural Land in the Lower Rio Grande/Río Bravo 

Watershed. 

The disparity in the amount of irrigated agricultural land on either side of the Lower Rio 

Grande/Río Bravo watershed is due mainly to the difference in hydrology between the two national 

sub-watersheds.  Out of the approximately 2,392 km2 of irrigated land in the three Texas counties 

included as part of the US portion of the Lower Rio Grande Valley, less than ten percent (9.5%) 

are inside of the Lower Rio Grande/Río Bravo watershed (Miranda & Harper, 2017).  The 

remainder of the US agricultural land in the Lower Rio Grande Valley is in the Arroyo Colorado 

watershed, which is the adjacent watershed located to the north of the Lower Rio Grande/Río 

Bravo watershed.  Correspondingly, the majority of the irrigation return flows produced by US 

agricultural land in the Lower Rio Grande Valley flow into the Arroyo Colorado and three other 
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large drainage ditches that flow away from the Lower Rio Grande/Río Bravo watershed and into 

the Laguna Madre on the US side.  

Conversely, 98% of the irrigated land in the eight Mexican municipios that border the 

Lower Rio Grande/Río Bravo are within the Lower Rio Grande/Río Bravo watershed.  Over forty 

percent (44.2%) of the Mexican agricultural land in the Lower Rio Grande/Río Bravo watershed 

(392.49 km2) is in the Río San Juan Irrigation District (CONAGUA’s Distrito de Riego 026), 

which diverts water from the Marté Gómez Reservoir, an impoundment on the main tributary to 

the Lower Rio Grande/Río Bravo downstream of Falcon Reservoir, the Río San Juan (Rymshaw, 

2011).  Water from the Marté Gómez Reservoir and the Río San Juan is diverted for irrigation to 

agricultural land in the San Irrigation District through large irrigation canals.  The irrigation 

return flows produced from irrigating this land is collected by a network of drainage ditches and 

is transported directly to the Lower Rio Grande/Río Bravo through five large ditches that flow into 

the river upstream of the city of Reynosa. 

Irrigated Agriculture on the US side of the Lower Rio Grande/Río Bravo Watershed 
The bulk of the water diverted from the Lower Rio Grande/Río Bravo on the US side is 

pumped by irrigation districts that supply water from the river mainly for agricultural irrigation, 

but also for industrial and domestic use.  Twenty-nine independent irrigation districts supply over 

360,000 acre-ft of water for these uses annually (Huang et al. 2010) (Figure 1-43).  Originally 

established in the early part of the twentieth century, the irrigation districts in the Rio Grande 

Valley are largely governed by local boards of directors and operate much like public county or 

municipal utilities. 
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Figure 1-43. US Irrigation Districts in the Lower Rio Grande Valley. 

Source: Huang et al. 2010. 

The districts own large senior water rights which allow them, under Texas law, to pump 

water from the river at several pumping locations into elaborate irrigation canal systems that 

distribute the water to large areas of agricultural land within their districts.  The districts sell water 

to local agricultural producers, municipalities and industrial customers.  As previously 

mentioned, the bulk of the irrigated land on the US side drains away from the Lower Rio 

Grande/Río Bravo.  Smaller individual water rights owners, commonly referred to by the TCEQ 

as “minor” diverters, also pump water from the river for individual use.  The portion of the US 

irrigated land located in Starr County is irrigated by “minor” diverters.  The irrigation return 

flows from these agricultural areas are collected by non-perennial tributaries and drainage ditches 

that flow into the Lower Rio Grande/Río Bravo along the southern edge of Starr County on the US 
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side.  Although very little flow data are available for these ditches, their contributions to the 

Lower Rio Grande/Río Bravo are thought to be small compared to those of Mexican agricultural 

ditches (W. Halbert, Personal Communication, May 26, 2016). 

Irrigated Agriculture on the Mexican side of the Lower Rio Grande/Río Bravo Watershed 
In Mexico, CONAGUA authorizes and administers federal water rights.  Figure 1-44 

shows the two federal irrigation districts that are within the boundaries of the Mexican portion of 

the Lower Rio Grande/Río Bravo Watershed, the Distrito de Riego Bajo Río San Juan 

(CONAGUA’s Distrito No. 026) and the Distrito de Riego Bajo Río Bravo (CONAGUA’s Distrito 

No. 025).  

 
Figure 1-44. Mexican Irrigation Districts along the Lower Río Bravo. Source: 

Rymshaw, 2011 
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In Distrito No. 026, most of the water is diverted from the Marté R. Gómez reservoir, the 

second in a series of impoundments of the Río San Juan, in northern Tamaulipas.  The smaller El 

Cuchillo reservoir is the first impoundment.  Some irrigation water is drawn directly from the 

Río San Juan, downstream of Marté R. Gómez Reservoir (Figure 1-44).  Diversions from the 

Marté R. Gómez reservoir are conveyed mainly through open irrigation canals in Distrito No. 026 

and the water is used almost exclusively for agriculture.  In contrast, water in Distrito No. 025 is 

diverted from the Lower Rio Grande/Río Bravo at one of two in-stream dams on the river, 

Anzalduas Dam and Retamal Dam.  Irrigation water is diverted into large distribution canals that 

provide water for agricultural, municipal and industrial uses in the eastern portion of the watershed 

and in a large area of the coastal plain south of it.  Upstream of Anzalduas Dam, which is located 

near the Mexican city of Reynosa, five large agricultural drains collect irrigation return flows from 

these large agricultural areas in the Mexican portion of the Lower Rio Grande/Río Bravo 

watershed; they are the Rancherías, Los Fresnos, Puertecitos, Huizache and El Morillo drains. Four 

of these five drains flow directly into the Lower Rio Grande/Río Bravo upstream of Anzalduas 

Dam. The fifth drain, Los Fresnos, flows into the Río San Juan, a tributary of the Rio Grande/Río 

Bravo, approximately 4 km from the confluence with the Lower Rio Grande/Río Bravo (Figure 1-

45). 

CILA monitors water quality in these drains and, until 2006, the IBWC published these 

data in yearly Water Bulletins.  The data showed levels of total dissolved solids, often exceeding 

10,000 mg/L during the growing seasons.  There is general binational agreement that these 

agricultural drains are a major source of high salinity in the river (W. Belzer, personal 

communication, March 11, 2015).  Downstream of Anzalduas Dam, Mexican irrigation return 

flows are diverted away from the Lower Rio Grande/Río Bravo through a series of drains that flow 

in a southeast direction and ultimately empty into the marshlands that border the Mexican Laguna 

Madre, which effectively mitigates the contribution of pollutants from Mexican agriculture in this 

portion of the watershed.  Table 1-14 summarizes the results of the geospatial analysis conducted 

by the author to estimate the square kilometers of irrigated agricultural land on US and Mexican 

side of the Lower Rio Grande/Río Bravo watershed. 
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Figure 1-45. Tributaries and Drains of the Lower Rio Grande/Río Bravo
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Table 1-14. Irrigated Agricultural Land in US 
and Mexican Portions of the Lower 
Rio Grande/Río Bravo Watershed 

Country Irrigated Agricultural Land in the 
LRG/RB* Watershed (km2) 

US  227.24 

Mexico 887.59 

*LRG/RB is an acronym for Lower Rio Grande/Rio Bravo 

Table 1-15 shows the result of the estimates of daily loadings of pollutants of concern to 

the Lower Rio Grande/Río Bravo from irrigation return flows in the Lower Rio Grande/Río Bravo 

watershed.  The estimates were derived from the LRGWQI models of water quality. 

Table 1-15. Estimated Average Daily Loading Rates of Constituents of Concern to 
the Lower Rio Grande/Río Bravo from Agricultural Irrigation Return 
Flows*  

Pollutant Load US 
Subwatershed 

Mexican 
Subwatershed 

Total LRG/RB 
Watershed** 

BOD (kg/day) 284.36 826.33 1,110.69 

TSS (kg/day) 33,177.41 96,412.18 129,589.59 

TDS (kg/day) 589,652.93 1,713,506.93 2,303,159.86 

TP (kg/day) 12.09 35.13 47.22 

TN (kg/day) 386.90 1,124.31 1,511.20 

NH3-N (kg/day) 7.66 22.25 29.91 

Fecal Coliform (MPN/day) 2.25E+11 6.54E+11 8.79E+11 

* Irrigation return flows are seasonal. The daily loads represented in this table were derived from the LRGWQI models of water quality, 
which modeled water quality in the Rio Grande/Río Bravo during two irrigation season months and three non-irrigation season months, 
the average loads presented in this table include model output only for the months modeled. 

** LRG/RB is an acronym for Lower Rio Grande/Rio Bravo 
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Livestock and Domestic Animals 
Another steady state nonpoint source of pollutants of concern related to agricultural activity 

is livestock and domestic animals.  The contribution of pollutants from livestock and domestic 

animals to surface water, under steady state conditions, is limited to direct deposition of feces into, 

or directly adjacent to, the Lower Rio Grande/Río Bravo or a contributing tributary or ditch.  The 

population of animals of interest under this category include grazing animals such as cattle, horses, 

sheep and goats.  Domestic pigs, chickens, ducks and geese are excluded from this analysis, 

because, unlike grazing livestock animals that can defecate in or adjacent to surface water bodies, 

these species are generally confined to areas where direct deposition of feces into surface water 

does not occur (e.g., pens and coops).  Table 1-16 shows the estimated number of livestock and 

domestic animals in the US and Mexican Portions of the Lower Rio Grande/Río Bravo Watershed. 

Table 1-16. Estimated Number of Livestock and Domestic Animals in the US and 
Mexican Portions of the Lower Rio Grande/Río Bravo Watershed 

Country Cattle Horses Sheep Goats 

US  24,410 420 417 714 

Mexico 1,879 16 113 19 

 
Table 1-17 shows the result of the estimates of potential daily loadings of constituents of concern 

to the Lower Rio Grande/Río Bravo from livestock and domestic animals in the Lower Rio 

Grande/Río Bravo watershed. 
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Table 1-17. Estimated Potential Daily Loading of Pollutants of Concern to the 

Lower Rio Grande/Río Bravo from Livestock and Domestic Animals 
under Steady State Conditions  

Pollutant Load US 
Subwatershed 

Mexican 
Subwatershed 

Total LRG/RB 
Watershed 

BOD (kg/day) 254 20 274 

TSS (kg/day) 206 16 222 

TDS (kg/day) 69 5 74 

TP (kg/day) 15 1 16 

TN (kg/day) 23 2 25 

NH3-N (kg/day) 14 1 15 

Fecal Coliform (MPN/day) 4.37E+13 3.42E+12 4.71E+13 

WILDLIFE NONPOINT SOURCES  
Like agricultural livestock and domestic animals, grazing wildlife species are considered 

sources of pollutants in surface water because of the feces they produce which can be directly 

deposited into surface waters.  As is the case with livestock and domestic animals, the 

contribution of pollutants from wildlife to surface water under steady state conditions is limited to 

direct deposition of feces into the Lower Rio Grande/Río Bravo or a contributing tributary or ditch.  

Based on their relative abundance, and following the work of Lynch (2012), the author chose to 

concentrate his analysis of pollutant contributions from wildlife on three representative species; 

deer, feral hogs and waterfowl.  Table 1-18 shows the estimated populations, based on geospatial 

analysis, of representative wildlife species within the riparian corridors (91m buffer) on both sides 

of the Lower Rio Grande/Río Bravo watershed. 
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Table 1-18. Estimated Wildlife Populations 
within the Riparian Corridors (91m) 
on Both Sides of the LRG/RB 
Watershed   

Wildlife Species US Mexico 

Deer 72 174 

Feral Hogs 12 39 

Waterfowl 528 258 

 

Table 1-19 shows the result of the estimates of potential daily loadings of constituents of 

concern to the Lower Rio Grande/Río Bravo from these representative populations in the Lower 

Rio Grande/Río Bravo watershed. 

Table 1-19. Estimated Potential Daily Loading Rates of Constituents of Concern to 
the Lower Rio Grande/Río Bravo watershed, under Steady State 
Conditions, from Deer, Feral Hogs and Migratory Waterfowl 

Pollutant Load US 
Subwatershed 

Mexican 
Subwatershed 

Total LRG/RB 
Watershed 

BOD (kg/day) <0.5 <0.5 <0.5 

TSS (kg/day) <0.5 <0.5 0.5 

TDS (kg/day) <0.5 <0.5 <0.5 

TP (kg/day) <0.5 <0.5 <0.5 

TN (kg/day) <0.5 <0.5 <0.5 

NH3-N (kg/day) <0.5 <0.5 <0.5 

Fecal Coliform (MPN/day) 5.20E+10 9.05E+10 1.00E+11 
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COMPARISON OF POINT SOURCE AND NONPOINT SOURCE POLLUTANT LOADINGS 
While estimates of nonpoint source pollutant loadings are typically not as reliable as those 

of point sources, due primarily to the higher uncertainty associated with the geospatial and 

constituent analysis of the former, it is sometimes informative to compare the results of these 

estimates to gain some insight into the relative magnitude of each broad category of pollutant 

sources in a watershed.  Table 1-20 shows a comparison of estimated daily loading rates of 

constituents of concern form point and nonpoint sources in the Lower Rio Grande/Río Bravo 

watershed.  The table shows that, while point source loadings of BOD, TP, TN and NH3-N exceed 

those of steady state nonpoint sources, loadings of TSS, TDS and fecal coliforms from nonpoint 

sources exceed those of point sources by several orders of magnitude.   

Table 1-20. Estimated Daily Loading of Pollutants of Concern from Point Sources 
and Steady State Nonpoint Sources in the Lower Rio Grande/Río Bravo 
Watershed 

General 
Category of 

Pollutant Source 

BOD* 
(kg/day) 

TSS 
(kg/day) 

TDS 
(kg/day) 

TP 
(kg/day) 

TN 
(kg/day) 

NH3-N 
(kg/day) 

Fecal Coliform 
(CFU/day) 

Point Sources 4,494 4,719 50,971 1,165 2,350 494 6.35E+13 

Nonpoint 
Sourcesǂ 1,619 130,046 2,303,767 71 1,579 72 6.86E+15 

Total 6,113 134,765 2,354,738 1,236 3,929 566 6.92E+15 

*CBOD5 loading values were used to represent BOD for point sources 
ǂ Refers only to steady state nonpoint sources 

 
It is important to note that the portion of the total nonpoint source loading of pollutants of 

concern estimated from irrigation return flows shown in Table 1-20 were derived from the average 

loads of these pollutants resulting from water quality simulations conducted using the LRGWQI 

models of water quality in the Lower Rio Grande/Río Bravo using the LA-QUAL software. 
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1.0.9 OVERVIEW OF WATER QUALITY MANAGEMENT IN THE LOWER RIO GRANDE/ RÍO 
BRAVO 
The management of wastewater generated in the Lower Rio Grande/Río Bravo watershed 

is conducted by each nation through a combination of regulatory efforts, local and regional 

planning assisted through, national and binational financing.  In the United States, the federal 

Clean Water Act, administered by the USEPA, specifies the general regulatory requirements for 

wastewater management and treatment.  The USEPA delegates its authority to issue wastewater 

discharge permits to the State of Texas (TCEQ), which also sets surface water quality standards.  

In Texas, all entities wishing to build wastewater treatment facilities or systems (i.e., cities, 

counties, river authorities, private companies, nonprofit utility corporations, etc.) must first obtain 

a discharge permit from the TCEQ. 

The TCEQ bases its wastewater permitting decisions for the Lower Rio Grande on a waste 

load evaluation conducted using a deterministic computer model of water quality of the river 

(QUAL-TX).  The model estimates the maximum amount of pollutants the river can assimilate 

and still meet state surface water quality standards at steady state conditions.  The TCEQ 

evaluates each request for a new discharge permit by simulating the effects the discharges on water 

quality using the QUAL-TX model.  The TCEQ’s QUAL-TX model was calibrated, and is 

currently used, without including steady state nonpoint source pollutant contributions (e.g., 

untreated wastewater, irrigation return flows, etc.).  The TCEQ incorporates in its models only 

limited knowledge of pollutant contributions from Mexican discharges, which can result in a less 

than realistic simulation of water quality in the river. 

Under Mexico’s national water law (Ley Nacional de Aguas), local entities in Mexico, 

such as municipal potable water and drainage commissions (COMAPAs) or water and drainage 

boards (JADs), must obtain a permit from the Mexican federal water commission (CONAGUA) 

to discharge treated wastewater into surface water bodies.  As previously mentioned, 

CONAGUA currently relies on performance-based technological controls to issue wastewater 

discharge permits in the Lower Río Bravo watershed.  CONAGUA has declared its intention to 

base wastewater permits on a water quality-based criteria in a fashion similar to that used by the 

State of Texas (E. Gutierrez, Personal Communication, May 25, 2015). 
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Planning for potable water and sanitation services is conducted by local entities on both 

sides of the border.  Municipal governments, utility corporations, JADs, COMAPAS, etc., make 

infrastructure expenditure decisions, balancing the perceived needs of their communities with the 

budgetary constraints of their organizations.  In Texas, regional and state governments (i.e., 

county and state health departments and state environmental agencies) may put external pressure 

on municipal utility boards and utility districts to improve environmental infrastructure when 

sanitary conditions are thought to contribute to regulatory violations.     

Regional planning (i.e., coordinated infrastructure planning on a regional basis), occurs 

separately in both countries, primarily as a function of the financial mechanisms available to local 

entities for the funding of water and wastewater infrastructure projects. On the US side, low 

interest loans are made available through state and federal programs, such as the Texas Water 

Development Board’s (TWDB’s) State Revolving Fund Program or directly from federal agencies, 

such as the USDA’s Rural Development Program (USDA-RD).  Financing is also available 

through the North American Development Bank (NADB), although interest rates are typically 

higher for NADB loans than for those offered through the State Revolving Fund or from USDA-

RD.  Private sector loans for water and wastewater infrastructure projects in the Lower Rio 

Grande Valley are rare, probably due to the option, available to most municipal governments, of 

low interest loans from the TWDB and other public programs and the NADB.  However, even 

with the existence of these infrastructure financing programs, many communities in the Rio 

Grande Valley find it difficult to fund needed water and wastewater infrastructure projects due to 

depressed economic conditions that plague most of the Texas-Mexico border region, including the 

Lower Rio Grande Valley.   

As a condition for approval of infrastructure grants or low interest loans from the TWDB, 

NADB or USDA-RD, applicants must develop facility plans that demonstrate the technical and 

financial feasibility of the projects proposed for funding.  This planning includes the compilation 

of information used by state agencies to assess the impact the projects may have on human health 

and the environment.  In Texas, this assessment is conducted by the TCEQ’s Water Quality 

Division.  Loan and grant applicants are often directed to modify their facility plans based on the 

results of these assessments. 
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 Interestingly, Mexican wastewater projects certified by the BECC for funding under the 

NADB are also evaluated by the TCEQ for their impact on stretches of the river immediately 

downstream of the proposed discharge (M.A. Rudolph, personal communication, 2010).  

However, as alluded to earlier in this chapter, only discharges requiring permits from the TCEQ 

(i.e., TPDES permit applications) are evaluated.  Other regional entities such as local councils of 

government are contracted by the State of Texas to compile information about current and 

projected future water and wastewater needs for different regions of the state.  The state uses this 

information to plan its own state-wide infrastructure financing efforts.  

In a similar fashion to that described for the US side of the Lower Rio Grande/Río Bravo 

watershed, Mexican COMAPAS and JADs assess the water and wastewater infrastructure needs 

of the communities they serve.  However, unlike the US, regional water and wastewater 

infrastructure planning and financing is more centralized on the Mexican side of the border.  

Under federal programs administered by CONAGUA, such as the federal Urban Zone Potable 

Water and Drainage Program (APAZU) and the Sustainable Water and Sanitation for Rural 

Communities Program (PRODDER), low interest loans and some small grants are made available 

to local entities and also to Mexican state governments.  The NADB also can and does support 

Mexican wastewater collection and treatment systems.  Although significant regional planning is 

conducted by state agencies, such as CEAT, which assesses infrastructure needs in the Mexican 

state of Tamaulipas, the bulk of the funding made available for infrastructure projects in Mexico 

is provided by CONAGUA, which also prioritizes and approves disbursements of financial 

resources on a national level to all 31 of the Mexican states.  Some financial resources are 

available to local entities through some of the wealthier Mexican state governments.  However, 

the amount of state funding available for Mexican state agencies like CEAT for infrastructure 

financing is typically small compared to Mexican federal funding.  In recent years, the bulk of 

the financing of water and wastewater infrastructure projects on the Mexican side of the Lower 

Río Bravo has involved a combination of funding sources, including Mexican federal programs 

(APAZU and PRODDER), NADB, Mexican state and local funding and even US federal grants 

awarded through the EPA’s BEIF program, with much of the financing coming from NADB.  

Although the BECC certification process required assessment of the impact of each proposed 

project on the water bodies receiving treated wastewater, both CONAGUA and CEAT assess 
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regional infrastructure status and needs simply by estimating the percentage of the population in a 

specific region served by water and wastewater systems.    

Evident from these descriptions of wastewater infrastructure planning in the Lower Rio 

Grande/Río Bravo watershed is the fragmented nature of general sanitation and water quality 

planning efforts in this portion of the border region.  Planning efforts on the US side of the river, 

although coordinated regionally and evaluated using water quality information and regional water 

quality modeling, do not fully take into account the pollutant contributions emanating from the 

Mexican side of the watershed.  Mexican planning efforts for this region do not currently involve 

the use of regional water quality models at all. 

Under the current framework, it is conceivable that pollutant loads permitted to enter the 

Lower Rio Grande/Río Bravo could exceed the river’s capacity to assimilate them, despite 

individual efforts on the part of both countries to avoid this undesirable water quality condition.  

Ideally, infrastructure and water quality planning efforts should be integrated on a watershed scale 

to protect water quality and human health more effectively and efficiently.  Any watershed 

planning should involve key stakeholders and decision makers on a local, state and federal level.  

Such a task would be complex in watersheds located within the boundaries of a single nation, but 

is much more difficult in a transboundary situation, where sovereign regulatory controls over 

pollutant sources stop at the international border and local planning priorities are influenced by 

national interests. 

1.0.10  RESEARCH GOAL 
The research goal of this dissertation is to find answers to the following research 

questions: 

1. How does the insight gained form institutional analysis inform the development of 

decision support tools designed to facilitate and enhance transboundary water quality 

planning and management efforts such as the Lower Rio Grande/Río Bravo Water Quality 

Initiative? 

2. What aspects of a decision support system (DSS) developed using the insight gained form 

an analysis of existing institutional arrangements to protect water quality in the Lower Rio 

Grande/Río can be identified as transferable to other transboundary settings? 
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1.0.11 RESEARCH APPROACH 
The research conducted in support of this dissertation employed a combination of 

qualitative and quantitative methods.  Efforts to characterize and analyze unilateral and bilateral 

institutional arrangements (formal and informal) currently in place to manage and protect water 

quality in the Lower Rio Grande/Río Bravo employed standard qualitative methods, including 

review of printed and web-based materials, structured, semi-structured and unstructured key 

informant interviews, focus groups and surveys.  The author also used qualitative methods to 

conduct a comparative analysis of institutional arrangements to manage and protect surface water 

quality in other transboundary settings.  Efforts to construct a binational water quality model of 

the Lower Rio Grande/Río Bravo involved field collection methods of physical, chemical and 

biological parameters and quantitative laboratory analysis of surface water samples which 

generated empirical water quality data used to parameterize and calibrate a model of water quality 

in the river.  Parameterization of the model of water quality also involved the compilation and 

processing of data acquired from state and federal agencies involved in the regulation of water use 

from Lower Rio Grande/Río Bravo and from a series of binational synoptic surveys of water 

quality conducted in the Rio Grande/Rio Bravo watershed in 2014, 2015 and 2016.  The author 

used geospatial analysis methods to quantify the steady state loadings of pollutants and 

constituents of concern produced by human and non-human nonpoint sources in the Lower Rio 

Grande/Rio Bravo watershed, which the author and his collaborators also used to parameterize the 

binational water quality model of the Lower Rio Grande/Río Bravo. 

1.0.11.1 Qualitative Research Methods and Design 
A central hypothesis underlying the research presented in this dissertation is that, an 

analysis of the existing unilateral and bilateral institutional arrangements in place to manage and 

protect water quality in the Lower Rio Grande/Río Bravo would enhance the development of a 

decision support tool designed to facilitate bilateral decision making associated with water quality 

management in the river.  To this end, the author worked with David Eaton Ph.D., of the Lyndon 

B. Johnson (LBJ) School of Public Affairs at The University of Texas at Austin, and participated 

in a Policy Research Project (PRP) designed to investigate and analyze the existing formal and 

informal institutional arrangements in place to manage and protect water quality in the 

transboundary watershed of the Lower Rio Grande/Río Bravo (Falcon Dam to the Gulf of Mexico).  
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Titled “The Lower Rio Grande/Río Bravo Water Quality Initiative Policy Research 

Project” (LRGWQIPRP), the effort employed qualitative methods to acquire, compile and analyze 

information from various sources including published and unpublished written materials, 

community representatives (elected and appointed), representatives of the institutions and 

organizations currently involved in water quality protection of Lower Rio Grande/Río Bravo, and 

the water user community at large.  Additionally, the author collaborated with Dr. Eaton and the 

participants in the LRGWQIPRP to conduct research into existing governance of transboundary 

water bodies with an emphasis on investigating existing bilateral and multilateral institutional 

arrangements to manage and protect water quality in transboundary water bodies.  The 

LRGWQIPRP effort was funded by the Texas General Land Office through a grant from the 

National Oceanographic and Atmospheric Administration (NOAA) and involved the participation 

of 32 graduate students. 

The LRGWQIPRP was designed to address four major research goals, to: 

• characterize the existing institutional frameworks governing water quality management 

and protection in the Lower Rio Grande/Río Bravo, 

• characterize the informal institutional arrangements and networks associated with 

water quality management and protection in the Lower Rio Grande/Río Bravo, 

• examine and compare existing institutional arrangements to manage and protect water 

quality in transboundary surface water bodies, and 

• investigate attitudes and perceptions of the water user communities on both sides of the 

river, identifying preferences for mechanisms to protect water quality.  

COMPILATION AND REVIEW OF DESCRIPTIVE PRINTED AND WEB-BASED MATERIALS 
To address the first research goal (i.e., characterize the existing institutional frameworks 

governing water quality management and protection in the Lower Rio Grande/Río Bravo), the 

author and his collaborators first conducted an extensive search of printed documents and materials 

available on the world wide web.  The search targeted five general types of organizational 

sectors: governmental agencies, offices of elected and appointed officials, private companies, non-

governmental organizations, academic institutions, and water user associations/organizations (i.e., 

trade organizations, irrigation districts, water supply corporations, etc.).  The search targeted 
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information about agencies, organizations and individuals (1) associated with the management 

and/or protection of natural resources, (2) associated with the funding or construction of water and 

wastewater of infrastructure projects, (3) associated with the funding or implementation of 

agricultural best management practices, (4) associated with the regulation of drinking water or 

wastewater, (5) providing water and/or sewer services, (6) providing assistance (financial or other) 

to low income residents.  The search effort included entities operating on either side (or both 

sides) of the international boundary, at all levels of government, and in the nonprofit and private 

sectors.  Following the information gathering phase of this effort, the author reviewed the 

information gathered and used it to construct a generalized conceptual model of the formal 

unilateral and bilateral institutional framework(s) currently in place to manage and protect water 

quality in the Lower Rio Grande/Río Bravo. 

SEMI-STRUCTURED AND UNSTRUCTURED INFORMANT INTERVIEWS 
While the review of information gathered from print and web sources provides the means 

to construct a generalized view of existing formal institutional frameworks, operational details are 

often lacking in the documents and other materials available in the public domain, as are the 

interrelationships that often exist between formal institutional actors, between institutional and 

non-institutional actors, and within networks of interested individuals.  To fill in these knowledge 

gaps the LRGWQIPRP employed additional qualitative methods, including semi-structured and 

unstructured informant interviews, focus group discussions with selected individuals, and random 

and targeted surveys.  The information gathered from the interviews and focus groups was mainly 

recorded using hand-written notes.  However, some interviews were recorded using digital audio 

recording equipment and video cameras.  All interview and focus group participants provided the 

researchers informed consent prior to participating in the study and all standard anonymity and 

confidentiality protocols specified in the approved University of Texas Institutional Review Board 

(IRB) project were strictly followed, including those applicable to survey participants (UT IRB, 

2011).  

The author, in collaboration with Dr. David Eaton and the participants of the LRGWQIPRP 

project, initially selected interview subjects based on the subjects’ likely knowledge of local water 

issues.  However, the standard interview practice of “snowballing” was employed by the 
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interviewers.  Thus, many of the interview subjects were subsequently selected based on referral 

from other subjects previously interviewed. The interview subjects included professionals as well 

as everyday residents with knowledge deemed by the author, in consultation with Dr. David Eaton, 

to have the potential to fill the gaps in knowledge identified by the author and his collaborators in 

the LRGWQIPRP during the first phase of information collection (i.e., review of printed and web-

based material).  The research design included semi-structured interviews and open-ended 

unstructured interviews and was modeled after the interview procedures established by Dr. David 

Eaton (Eaton, 2007a, Eaton 2007b), additional details regarding the interview protocols can be 

found in UT IRB (2011). 

LRGWQIPRP interview team conducted fifty-eight interviews over a five-month period 

(November 16, 2011 through April 23, 2012). The team produced detailed transcripts of all 

interviews.  The information gathered through the interviews helped to answer many of the 

questions that arose during the first phase of information collection (i.e., the review of printed and 

web-based material) and played a crucial role in the filling of the knowledge gaps remaining after 

the first information collection phase of the project. 

FOCUS GROUP SESSIONS 
While, informant interviews proved a valuable tool for obtaining nuanced information 

about formal and informal institutional arrangements in the Lower Rio Grande/Río Bravo 

watershed, researchers must always keep in mind that the information conveyed during an 

interview is done so through the subjective filter of the interview subject.  One of the options 

available to qualitative researchers to reduce the subjectivity and potential inaccuracy of 

information gathered from verbal statements made by human subjects is the use of focus groups 

discussions.  Knowing that other participants knowledgeable in the discussion subject may have 

differing interpretations of facts, focus group participants tend to be more measured in their 

statements.  Participants in focus groups are often careful to be more accurate about facts and 

often signal when their statements are opinions and when they are stating facts.  Focus groups, 

though typically small and nonrandom samples, also offer the researcher a cursory means to assess 

consensus regarding certain facts or opinions among the participants.  The author conducted two 

focus groups in association with the research conducted to support this dissertation.  



 

103 
 

Agricultural Stakeholders Focus Group Session 
The participants in the first focus group discussion, conducted on August 9, 2016 at the 

Texas A&M AgriLife Research and Extension Center in Weslaco, Texas, were invited to 

participate based on previous interviews conducted between May and July of 2016.  For this 

focus group, the author purposely targeted participants considered to be agricultural stakeholders.  

The selection/invitation process resulted in the participation of a group of ten stakeholders.  The 

participant group was composed of agricultural producers, irrigation district managers and a 

representative of an agricultural trade organization; all were US citizens operating on the US side 

of the Lower Rio Grande/Río Bravo watershed.  The author contracted with A&M AgriLife 

Research to facilitate the focus group session.  Initially, the author considered including Mexican 

stakeholders as participants, but ultimately decided to limited participation in the focus group 

discussion to US stakeholders from fear that inviting Mexican stakeholders would breach protocols 

established under the LRGWQI TOR. 

The agricultural stakeholder focus group session followed four steps.  The author gave a 

short presentation about the project, including information about standard IRB informed consent 

and confidentiality protocols.  Participants were asked to fill out a short survey of water quality 

preferences and perceptions.  The facilitator initiated a discussion lasting approximately 1 hour 

and 45 minutes in which ten separate topics were discussed in an open-ended format, while the 

author took notes.  To close the focus group discussion, the facilitator thanked the participants. 

Public “Water and Wastewater” Stakeholder Focus Group 
The participants in the second focus group discussion, conducted on November 2, 2016 at 

the Offices of Lower Rio Grande Valley Development Council, in Weslaco, Texas, were invited 

to participate based on previous interviews conducted between May and July of 2016.  Unlike 

the first focus group session, no specific sector or stakeholder group was targeted for the second 

focus group session.  However, the majority of the participants of the focus group were 

individuals involved in providing or facilitating water and/or wastewater services in the Lower Rio 

Grande/Río Bravo watershed.  In all ten individuals participated in the focus group, including 

representatives of three local water/sewage utilities (four participants), the local council of 

governments (three participants), a federal natural resource agency (one participant), a public 

university (one participant), and a state agricultural services provider (one participant).  All 
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participants were US citizens operating on the US side of the Lower Rio Grande/Río Bravo 

watershed.  For this focus group, the author was offered and accepted the facilitation services of 

the Border Affairs Section of the Texas Commission on Environmental Quality, which also helped 

arrange the focus group session.  Dr. David Eaton of the LBJ School of Public affairs provided 

funding for the 2 hour and 30-minute session. 

The structure of the Public “Water and Wastewater” Focus Group session was similar to 

that of the previous Agricultural Stakeholder Focus Group session.  However, the order of the 

events was altered slightly.  First, the facilitator gave a brief introductory statement about the 

project and followed standard IRB informed consent and confidentiality protocols.  Participants 

were asked to fill out a short survey of water quality preferences and perceptions.  The author 

gave a short presentation about the project.  The facilitator initiated a discussion lasting 

approximately 1 hour and 45 minutes in which ten separate topics were discussed in an open-ended 

format, while the author took notes.  The facilitator then thanked the participants and closed the 

discussion. 

SURVEYS OF WATER QUALITY PREFERENCES 
In addition to the qualitative methods discussed in the previous sections, the LRGWQIPRP 

used written surveys to investigate the preferences and perceptions of water quality of residents 

living along the Lower Rio Grande/Río Bravo (Appendix C).  For example, the surveys asked 

questions such as: Do you believe the river is clean enough for swimming, fishing, or boating?  

How polluted is the Rio Grande/Río Bravo?  How important is it that the river be clean? However, 

the survey also solicited information on what residents thought was being done and should be done 

to decrease pollution and who, in their opinions, was or should be responsible for leading that 

process.  The premise behind the questions soliciting this information is that residents understand 

the political and social environment in which their community operates and can not only provide 

insight into current efforts to protect water quality but can also inform future efforts to develop 

water quality improvement programs. 

While the primary aim of the LRGWQIPRP survey effort was to produce information that 

could be used by decision-makers to determine water quality management priorities and develop 

effective transboundary water quality protection strategies, the information gleaned from the 
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survey effort also afforded the potential to investigate and characterize informal institutional 

arrangements currently in place to manage and protect water quality in the river by identifying 

commonalities in the answers to open-ended questions such as:  Who do you think should be 

responsible for making sure the Rio Grande is clean?  And, how do you get information about 

water quality in the Rio Grande?  The surveys served to augment the previously-described efforts 

associated with informant interviews and focus group discussions by providing a means by which 

to focus discussions on existing efforts to protect water quality in the river.   

Initial drafts of the survey were tested and refined by the participants of the LRGWQIPRP 

over a period of four months.  The survey was translated into Spanish to accommodate the 

language preferences of the respondents on both sides of the river and the final twenty-question 

bilingual survey was printed on a double-sided page, with the English language survey printed on 

one side and the Spanish version of the survey printed on the opposite side of the page.  The water 

quality survey was administered to three population samples; (1) a pseudo-random sample of 

residents, (2) a targeted sample of residents, and (3) leaders of organizations involved with water 

quality management and protection.  The geographic areas of survey distribution included 

Cameron, Hidalgo, Starr, and Willacy counties on the US side of the Lower Rio Grande/Río Bravo 

watershed and, with the help of CEAT personnel, the Mexican municipios of Guerrero, Mier, 

Miguel Alemán, Camargo, Gustavo Díaz Ordaz, Reynosa, Río Bravo, Valle Hermoso, and 

Matamoros on the Mexican side of the watershed, as the residents of these political subdivisions 

withdraw water from the river for municipal, industrial or agricultural uses,  have easy access to 

the river, or discharge wastewater to the river. 

Survey Data Collected from the US Portion of the Rio Grande/Río Bravo Watershed 
The LRGWQIPRP Survey Team distributed the survey to the three groups of US 

stakeholders via mail and in person.  These efforts included: (1) site-administered field surveys; 

(2) surveys mailed to a pseudo-random sample of residents; and (3) surveys mailed to 

representatives of organizations associated with water quality management or protection of natural 

resources.  Survey respondents were informed, verbally or in writing, that the goal of the survey 

was to gather information about perceptions of water quality in their area and to understand local 

attitudes about water quality in the Rio Grande. 
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In March of 2011, LRGWQIPRP Survey Team members conducted the site-administered 

survey effort over a 2.5-day period in the Rio Grande Valley of South Texas.  A team of four 

graduate students participating in the LRGWQIPRP traveled to various locations in Cameron and 

Hidalgo counties to administer the survey to local residents using structured interviews.  The 

team visited five locations in these two counties: (1) Nuestra Clinica del Valle in Pharr Texas; (2) 

a low-income community (colonia) meeting in San Juan, Texas; (3) a farmers’ market in 

Brownsville, Texas, (4) a street market in Harlingen, Texas; and (5) a Red Cross health services 

event in Harlingen, Texas.  At the clinic in Pharr, the research team surveyed patients who were 

waiting in the main lobby, almost all of whom responded to the Spanish-language survey.  Many 

of the Pharr respondents had lower incomes than participants surveyed later that week.  In San 

Juan, Texas, the team attended a colonia self-help meeting at La Union del Pueblo Entero (LUPE).  

Many of the respondents surveyed were colonia residents.  In Brownsville, the team surveyed 

vendors and shoppers at a farmers’ market.  The farmers’ market respondents had attained overall 

higher levels of education and reported higher incomes than the respondents surveyed in Pharr and 

San Juan.  In Harlingen, Texas, the graduate students surveyed individuals at a street market and 

a health event organized by the Southern Texas Chapter of the Red Cross.  The individuals 

surveyed in the Harlingen events reported a wide range of education and income levels.  

In addition to administering the LRGWQIPRP surveys using structured interviews, the 

LRGWQIPRP Survey Team conducted a random-sample survey distribution and collection effort.  

The bilingual survey was mailed to a sample of 1,000 residents of Starr, Willacy, Cameron, and 

Hidalgo counties, based on a pseudo-random sample generated from the US Postal Service’s 

Delivery Sequence File.  The file, which was purchased from a private company (Survey 

Sampling International [SSI]), covered 95 percent of households in the four-county area.  The 

survey was mailed on March 6, 2012.  The response rate of was 8 percent. 

On November 6, 2012, 185 surveys were mailed to representatives of US organizations 

involved in water quality management and/or natural resource protection of which 30 were 

returned (6.2%).  The organizations to which the surveys were mailed included state, county and 

municipal governments, local utilities, irrigation districts, local academic institutions, and local 

nonprofit organizations.  The LRGWQIPRP Survey Team coded the returned surveys and 

imported the coded data into the Statistical Packaging for the Social Sciences (SPSS) software for 
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analysis.  The results of the LRGWQIPRP US Survey efforts are included in The University of 

Texas - Lyndon B. Johnson School of Public Affairs PRP Report 117, (UT-LBJ, 2013a). 

Survey Data Collected from the Mexican Portion of the Rio Grande/Río Bravo Watershed 
In 2013, the LRGWQIPRP continued its survey efforts, collaborating with the Mexican 

State of Tamaulipas (CEAT), the City of Reynosa’s COMAPA, and the Centro de Bachillerato 

Tecnologico Industrial y de Servicios (part of the public-school system in the Mexican municipio 

of Reynosa).  It should be noted that the author was not involved in the data collection associated 

with the 2013 LRGWQIPRP survey efforts but was given access to the raw and processed data for 

use in this dissertation. 

In contrast to the surveys administered to US stakeholders in 2011 and 2012, the survey 

efforts associated with Mexican stakeholders did not include a pseudo-randomized mailing effort.  

All surveys distributed on the Mexican side of the Lower Rio Grande/Rio Bravo watershed were 

administered in person at nine separate sites.  The surveys were not distributed to representatives 

of Mexican organizations associated with water quality management or protection of natural 

resources. 

In 2013, during end-of-term parent-teacher conferences (June-July), representatives of the 

Centro de Bachillerato Tecnologico Industrial y de Servicios (Centro) hand-distributed 1,000 

surveys to the parents of high school students attending the Centro’s high schools.  The surveys 

were distributed at eight of the Centro’s high schools and, of the 1000 surveys distributed, 841 

were completed and returned (84.1%). 

In January of 2014, representatives of CEAT, agreed to distribute the surveys to Reynosa’s 

COMAPA.  The COMAPA made the surveys available to customers at five COMAPA payment 

centers located in portions of the city adjacent to the river.  In all, 275 surveys were completed 

by Reynosa COMAPA customers.  The Mexican survey responses were coded in a similar 

fashion as the US surveys and then imported into the Software for Statistics and Data Science - 

STATA for analysis. The results of the LRGWQIPRP Mexican Survey efforts are included in UT-

LBJ (2015). 
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1.0.11.2 Empirical Research Methods and Design 
An important part of developing a decision support tool effective in facilitating bilateral 

decision making associated with water quality management in the Lower Rio Grande/Río Bravo 

is the development of a binational model of water quality in the river. Binational discussions 

regarding the software that would be used in LRGWQI water quality modeling effort began in July 

of 2013, prior to the official Exchange of Letters that initiated the LRGWQI.  The water quality 

model developed for the initiative was parameterized and calibrated using a combination of field 

and surface water quality data collected during a series of binational synoptic surveys of water 

quality conducted between July of 2014 and April of 2016 by the LRGWQI’s BTWG and with 

data received from, or downloaded from databases supported by, TWDB, USIBWC, TCEQ, 

USEPA, CILA and CONAGUA.  The LRGWQI model of water quality in the Lower Rio 

Grande/Río Bravo is described in more detail in Sub-section 3.1.1.2 of this dissertation. 

SYNOPTIC SURVEYS OF WATER QUALITY 
  The LRGWQI’s synoptic surveys were a collaborative binational effort undertaken by 

the LRGWQI’s BTWG primarily to parameterized and calibrate the LRGWQI’s LA-QUAL model 

of water quality.  However, the surveys also provided the physical and biochemical data used by 

IMTA to characterize the Lower Rio Grande/Río Bravo watershed as part of their efforts to 

develop a draft Declaratoria de Clasificación, which was IMTA’s main deliverable to CONAGUA 

under the two agency’s agreement with CONACYT.  For their part, the US LRGWQI Partner 

agencies agreed to collaborate with Mexican LRGWQI Partners to conduct the binational synoptic 

surveys, primarily to advance efforts to develop a model of water quality for use in the initiative.  

The TCEQ used CIAP grant funds received from USFWS through the TGLO for this purpose and 

the USIBWC contributed funding for their collaboration in the binational synoptic surveys from 

its Texas Clean River’s Program. 

Planning efforts for the binational synoptic surveys began in March 2014 with binational 

reconnaissance excursions, conducted by members of the LRGWQI’s BTWG to identify potential 

sampling sites.  The BTWG also held binational meetings to agree on the measurement and 

analysis parameters, compare US and Mexican sampling techniques and analysis methods, and 

agree on the location of sampling sites that would be included in the final binational synoptic 
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sampling and analysis plan.  The BTWG finalized the plan in May 2014.  Details of the plan are 

included in separate quality assurance documents prepared by each country.  In addition to the 

reconnaissance efforts, representatives of each country provided training to survey personnel on 

field methods and sampling techniques necessary to meet the quality assurance protocols required 

by CONAGUA and USEPA, respectively.  The US LRGWQI Partners also enlisted the help of 

local US universities (Texas A&M University at Kingsville, The University of Texas Pan 

American and The University of Texas at Brownsville) to assist with monitoring activities on the 

US side of the watershed.  

The first synoptic survey, conducted July 21-30 of 2014, included only US personnel.  A 

delay in finalizing the financial and working arrangements between IMTA, CONACYT, and 

CONAGUA prevented IMTA personnel from participating in the 2014 synoptic sampling event.  

Despite advanced binational planning efforts for the survey, which began in March 2014, the 

Mexican LRGWQI partners did not notify the US LRGWQI Partners of the internal funding 

problem until the first week in July.  At that point, postponing the synoptic survey presented a 

serious problem to US participants.  Vehicles and equipment had already been leased, 

laboratories had been placed on standby for receipt of samples, and sampling personnel had been 

scheduled and assigned.  During the second week in July the US LRGWQI US Partners decided 

to proceed with the synoptic survey, without the participation of Mexican sampling teams. 

Consequently, the first LRGWQI synoptic survey, conducted in July 2014, did not include 

sampling sites located on the Mexican side of the Lower Rio Grande/Río Bravo watershed. 

Figure 1-46 shows the location of sampling sites included in the July 2014 LRGWQI 

synoptic survey, which included 16 sites located on the main stem of the Lower Rio Grande/Río 

Bravo, 1 US tributary (Arroyo Los Olmos) and the outfalls of 10 wastewater treatment facilities 

located on the US side.  Although there are only 10 US outfalls to the Rio Grande/Río Bravo, an 

additional monitoring site was added to the July 2014 synoptic survey downstream of the Union 

WSC wastewater treatment facility to gage attenuation of pollutants in the outfall ditch.   
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Figure 1-46. Type and Location of Sampling Sites; July 2014 Synoptic Survey. 

 
 

Table 1-21 shows the 9 field parameters measured by US monitoring personnel and 

Table 1-22 shows the 16 laboratory analyses conducted on the water samples collected by US 

monitoring personnel during the July 2014 synoptic survey; 2 parameters, Total Nitrogen and Total 

Organic Nitrogen are calculated from other analyses included in Table 1-22.  The US LRGWQI 

Partners, TCEQ and USIBWC, contracted with A&B Laboratories, Inc., a private NELAP-

accredited laboratory, to conduct the laboratory analyses shown in Table 1-22.  In addition to 

instantaneous field measurements, US monitoring personnel conducted measurements of water 

temperature, specific conductivity, dissolved oxygen, and pH every 15 minutes over a 24-hour 

period at all 16 main stem sites in the Lower Rio Grande/Río Bravo to investigate levels of 

eutrophication in the river.  US sampling personnel conducted vertical profiles of these 4 

parameters at 18 additional sampling sites located in the tidally-influenced portion of the Lower 

Rio Grande/Río Bravo to characterize the behavior of the tidal wedge in the river. 
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Table 1-21. Field Parameters Measured during the July 2014 Synoptic Survey 

Parameter Units Matrix Method 

Air Temperature °C Air TCEQ SOP, V1 

Water Temperature °C water SM 2550 B and TCEQ SOP, V1 

Specific Conductance, 
Field μS/cm water EPA 120.1 and TCEQ SOP, V1 

DO1 mg/L water SM 4500-O G and TCEQ SOP, V1 

pH Standard Units water EPA 150.1 and TCEQ SOP, V1 

Salinity ppt, marine only water SM 2520 and TCEQ SOP V1 

Transparency, Secchi 
depth meters water TCEQ SOP, V1 

Flow Stream, 
Instantaneous2 cfs water TCEQ SOP, V1 

Floating Debris/Scum 
Percent Cover %  NA NA 

1Dissolved Oxygen 
2Stream velocity and flow measurements only collected on tributaries, drains, and wastewater outfalls. IBWC flow gage 

measurements used for (6) main stem sites 
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Table 1-22. Laboratory Analyses Conducted on Water Samples Collected by US 
Sampling Personnel During the July 2014 LRGWQI Synoptic Survey 

Parameter Units Matrix Method Lab 

Total Ammonia as Nitrogen mg/L water SM4500-NH3D low level A&B 

Total Chloride mg/L water EPA 300.0 A&B 

Chlorophyll a - Spectrophotometric Acid Method μg/L water SM 10200-H A&B 

E. coli MPN/100 
mL water SM 9223-B A&B 

Enterococcus MPN/100 
mL water ASTM D-6503 A&B 

Fecal Coliform cfu/100 
mL water SM 9222-D A&B 

Total Kjeldahl Nitrogen mg/L water EPA 351.4  A&B 

Total Nitrite Plus Nitrate as Nitrogen mg/L water EPA 353.3 A&B 

Total Organic Nitrogen (Calculated) mg/L water EPA 351.4 - SM4500-NH3D 
low level A&B 

Total Nitrogen (Calculated) mg/L water EPA 351.4 + EPA 353.3 - 
SM4500-NH3D low level A&B 

Total Sulfate mg/L water EPA 300.0 A&B 

Total Phosphorous, Wet Method mg/L water EPA 365.2 A&B 

Total Suspended Solids                                
(Total Residue - nonfilterable) mg/L water SM 2540 D A&B 

Volatile Suspended Solids                           
(Total Residue-volatile - nonfilterable) mg/L water EPA 160.4 A&B 

Carbonaceous Biochemical Oxygen Demand  5-day, 
Nitrogen Suppressed (CBOD5) 

mg/L water SM 5210-B A&B 

Carbonaceous Biochemical Oxygen Demand  5- day, 
Nitrogen Suppressed, Dissolved  mg/L water SM 5210-B A&B 

Orthophosphate Phosphorus (field filtered <15 microns) mg/L water EPA 300.0 A&B 

Total Dissolved Solids                                 
(Total Residue - filterable) mg/L water SM 2540 C A&B 

 

Following the signing of the final financial and working agreements between IMTA 

CONACYT and CONAGUA, in October 2014, the Mexican LRGWQI Partners requested to 

revise the sampling plan for the binational LRGWQI synoptic surveys developed jointly by the 

LRGWQI’s BTWG in June 2014.  Specifically, the Mexican LRGWQI Partners requested 

changes to the location of 8 of the 16 main stem monitoring sites specified in the plan and sampled 

by US personnel in July 2014.  The Mexican LRGWQI Partners also requested the elimination 

of one sampling site included in the July synoptic survey, reducing the total number of main stem 
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monitoring sites to 15.  The Mexican LRGWQI Partners offered Mexican monitoring teams to 

conduct all water quality monitoring on the main stem of the river (15 sites) in addition to 

monitoring all Mexican tributary and wastewater outfall sites (8 sites and 11 sites, respectively).  

The US LRGWQI Partners accepted the Mexican LRGWQI Partners’ proposed changes to the 

sampling plan, as well as the offer to conduct the monitoring of all main stem sites, as long as US 

monitoring personnel were allowed to participate in, or at least observe, the monitoring activities 

on the main stem of the river.  The Mexican Partners agreed to this stipulation and also invited 

US monitoring personnel to participate in the monitoring conducted at all Mexican monitoring 

sites, including tributary and wastewater outfall sampling sites located in Mexico.  The US 

LRGWQI Partners accepted these terms and reciprocated, extended an offer to have Mexican 

personnel participate in monitoring activities conducted on the US side of the watershed, which 

included one US tributary site and 9 US wastewater outfall sites (by consensus, the BTWG agreed 

to drop the BPUB Silas Ray power plant outfall site due to its infrequent discharge and the high 

quality of its effluent).  

In February 2015, IMTA developed a final quality assurance document detailing the 

Mexican monitoring activities agreed to by all members of the BTWG.  With the agreement of 

the US LRGWQI Partners, the author revised the Quality Assurance Project Plan developed 

written for the July 2014 LRGWQI synoptic survey to incorporate the changes to the sampling 

plan agreed to by the BTWG.   Following revision of the sampling plan, the LRGWQI’s BTWG 

conducted binational synoptic surveys in March, August, and November of 2015, and in April of 

2016.  Figure 1-47 shows the location of sampling sites included in the binational surveys, which 

included 15 sites on the main stem of the Lower Rio Grande/Río Bravo, 8 Mexican tributary sites, 

6 Mexican wastewater treatment facility outfall sites, and 3 untreated wastewater outfall sites, 2 

additional suspected untreated wastewater outfalls and 2 drinking water intakes on the Mexican 

side of the river. 
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Figure 1-47. Type and Location of Mexican Sampling Sites; Synoptic Surveys 

Conducted March 2015 – April 2016. 

Table 1-23 shows the 10 field parameters measured by Mexican monitoring personnel at 

main stem, Mexican tributary and Mexican outfall sites (dissolved oxygen saturation was 

calculated from measurements of temperature and dissolved oxygen).  Table 1-24 shows 

the laboratory analyses conducted on water samples collected by Mexican monitoring 

personnel. 
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Table 1-23. Field Parameters Measured by Mexican Monitoring Personnel during 
LRGWQI Synoptic Surveys Conducted in 2015 and 2016  

Parameter Units Matrix Method 

Air Temperature 
 

°C 
 

 
NA1 NMX AA-007-SCFI-2013 

Water Temperature 
 

°C 
 

 
water  

NMX AA-007-SCFI-2013 

Specific Conductance, 
Field 

 
μS/cm 

 
water 

 
NMX AA-093-SCFI-2000 

 

DO2 
 

mg/L 
 

water 
 

NMX AA-012-SCFI-2001 
 

DO 
(Calculated) 

% Sat. water NMX AA-012-SCFI-2001 

pH 
 

Standard Units 
 

water 
 

NMX AA-008-SCFI-2011 
 

Flow Stream, 
Instantaneous3 

 
cfs 

 
water Molinete (Sección - Velocidad)4 

Chlorine Residual mg/L water NMX-AA-108-SCFI-2001 

Floating Material NA NA NMX AA-006-SCFI-2010 

Redox Potential Eh (mV) water SM 2580B 

1Not Applicable 
2Dissolved Oxygen 
3Stream velocity and flow measurements only collected on tributaries, drains, and wastewater outfalls. IBWC gage measurements 

were used for (6) main stem sites 
4Equivalent to TCEQ SOP, V1 
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Table 1-24. Laboratory Analyses Conducted on Water Samples Collected by Mexican 
Monitoring Personnel During LRGWQI Synoptic Surveys Conducted in 
2015 and 2016 

Parameter Units Matrix Method Lab 

Total Ammonia as Nitrogen mg/L water NMX AA-026-SCFI-2010 IMTA/A&B 

Total Chloride mg/L water NMX AA-073-SCFI-2001 IMTA 

E. coli MPN/100 mL water SM 9223-B UANL 

Fecal Coliform MPN/100 mL water NMX AA-042-1987 UANL 
Total Coliforms MPN/100 mL water NMX AA-042-1987 UANL/A&B 
Total Kjeldahl Nitrogen mg/L water NMX AA-026-SCFI-2010 IMTA 

Total Nitrite Plus Nitrate as Nitrogen (Calculated) mg/L water 
NMX-AA-099-SCFI-2006+ 
NMX-AA-079-SCFI-2001 

IMTA 

Total Nitrite as Nitrogen mg/L water NMX-AA-079-SCFI-2001  IMTA/A&B 

Total Nitrate as Nitrogen mg/L water NMX-AA-099-SCFI-2006 IMTA/A&B 

Organic Nitrogen mg/L water NMX AA-026-SCFI-2010 IMTA 

Soluble Organic Nitrogen mg/L water NMX AA-026-SCFI-2010 IMTA 

Total Nitrogen mg/L water NMX AA-026-SCFI-2010 IMTA 

Total Sulfate mg/L water NMX AA-074-1981 IMTA 

Total Phosphorous mg/L water NMX-AA-029-SCFI-2001 IMTA 

Total Inorganic Phosphorus mg/L water NMX-AA-029-SCFI-2001 IMTA 

Dissolved Inorganic Phosphorus mg/L water NMX-AA-029-SCFI-2001 IMTA 

Total Phosphate as Phosphorus (Calculated) mg/L water Calculated from NMX-AA-
029-SCFI-2001 IMTA 

Total Reactive Phosphorus (Orthophosphate) 
 

mg/L water NMX-AA-029-SCFI-2001 IMTA 

Dissolved Orthophosphate Phosphorus mg/L water NMX-AA-029-SCFI-2001/ 
EPA 365.1-1984 IMTA 

Total Organic Phosphorus mg/L water NMX-AA-029-SCFI-2001 IMTA 
 

Total Suspended Solids  
(Total Residue – nonfilterable) mg/L water NMX AA-034-SCFI-2001 IMTA 

Carbonaceous Biochemical Oxygen Demand  5-
day, Nitrogen Suppressed (CBOD5) 

mg/L water NMX-AA-028-SCFI-2001 IMTA 

Carbonaceous Biochemical Oxygen Demand  5-
day, Nitrogen Suppressed (CBOD5) Dissolved 

mg/L water NMX-AA-028-SCFI-2001 IMTA 

Total Dissolved Solids (Calculated from Specific 
Conductance values) mg/L water 

NMX AA-034-SCFI-2001 
(Calculated from NMX AA-

093-SCFI-2000) 
IMTA 

True Color U (Pt/Co scale) water NMX AA-045-SCFI-2001 IMTA/A&B 
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Table 1-24. Laboratory Analyses Conducted on Water Samples Collected by Mexican 
Monitoring Personnel During LRGWQI Synoptic Surveys Conducted in 
2015 and 2016 (Continued) 

Parameter Units Matrix Method Lab 

Turbidity NTU water NMX AA-038-SCFI-2001 IMTA 

Total Sediments ml/L water NMX AA-004-SCFI-2000 IMTA/A&B 

Total Solids mg/L water NMX AA-034-SCFI-2001 IMTA/A&B 

Phenothalein Alkalinity mg/L as CaCO3 water NMX AA-036-SCFI-2001 IMTA 

Total Alkalinity mg/L as CaCO3 water NMX AA-036-SCFI-2001 IMTA/A&B 

Total Bicarbonates mg/L as CaCO3 water NMX AA-036-SCFI-2001 IMTA/A&B 

Total Carbonate mg/L water NMX AA-036-SCFI-2001 IMTA/A&B 

Total Cyanide mg/L water NMX AA-058-SCFI-2001 IMTA/A&B 

Total Hardness mg/L as CaCO3 water NMX AA-072-SCFI-2001 IMTA/A&B 

Total Fluoride mg/L water NMX AA-077-SCFI-2001 IMTA/A&B 

Total Sulfides mg/L water NMX AA-084-1982 IMTA/A&B 

Chemical Oxygen Demand mg/L water NMX-AA-030-SCFI-2001 IMTA/A&B 

Total Organic Carbon mg/L water IMTA-CAQAO6-14 IMTA/A&B 

Methylene Blue Active Substances (Surfactants) mg/L water NMX-AA-039-SCFI-2001 IMTA 

Total Phenols mg/L water NMX-AA-050-SCFI-2001 IMTA 

Toxicity - Daphnia magna EC50 water NMX AA-087-SCFI-2010 IMTA 

Toxicity Daphnia magna UT water NMX AA-087-SCFI-2010 IMTA 

Toxicity Vibrio fischeri EC50 water NMX-AA-112-1995-SCFI IMTA 

Toxicity Vibrio fischeri UT water NMX-AA-112-1995-SCFI IMTA 

Total Arsenic mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Boron mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Cadmium mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Calcium mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 
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Table 1-24. Laboratory Analyses Conducted on Water Samples Collected by Mexican 
Monitoring Personnel During LRGWQI Synoptic Surveys Conducted in 
2015 and 2016 (Continued) 

Parameter Units Matrix Method Lab 

Total Copper mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Chromium mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Hexavalent Chromium mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Magnesium mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Mecury mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Nickel mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Lead mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Sodium mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Total Zinc mg/L water NMX AA-051-SCFI-2001 
IMTA/A&B 

Atrazine µg/L water EPA 8270 IMTA 

Alachlor µg/L water EPA 8081A IMTA 

Cyanazine µg/L water EPA 8081A IMTA 

Deltramethrin µg/L water EPA 8081A IMTA 

Endrin Aldahyde µg/L water EPA8081A IMTA/A&B 

Metolachlor µg/L water EPA 8081A IMTA 

Methoxychlor µg/L water EPA 8081A 
IMTA/A&B 

Mirex µg/L water EPA 8081A 
IMTA/A&B 

Pendimethalin, dissolved µg/L water EPA 8081A IMTA 

Simazine µg/L water EPA 8081A IMTA 

Toxaphene µg/L water EPA 8081A IMTA/A&B 

Terbuthylazine µg/L water EPA 8081A IMTA 

Trifluralin (Treflan), filtered µg/L water EPA 8081A IMTA 

Ϭ-Hexachlorocyclohexane (BHC) µg/L water EPA 8081A IMTA/A&B 

Bolstar µg/L water EPA 8141B IMTA 
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Table 1-24. Laboratory Analyses Conducted on Water Samples Collected by Mexican 
Monitoring Personnel During LRGWQI Synoptic Surveys Conducted in 
2015 and 2016 (Continued) 

Parameter Units Matrix Method Lab 

Bromacil µg/L water EPA 8141B IMTA 

Coumaphos µg/L water EPA 8141B IMTA 

Chlorpyriphos µg/L water EPA 8141B IMTA/A&B 

Diclorvos µg/L water EPA 8141B IMTA 

EPN µg/L water EPA 8141B IMTA/A&B 

Endosulfan Sulfate µg/L water EPA 8141B 
IMTA/A&B 

Ethoprop µg/L water EPA 8141B 
IMTA/A&B 

Fenitrothion µg/L water EPA 8141B IMTA 

Fensulfothion µg/L water EPA 8141B IMTA 

Fenthion µg/L  water EPA 8141B IMTA 

Forato µg/L  water EPA 8141B IMTA 

Imetoato µg/L water EPA 8141B IMTA 

Merphos µg/L water EPA 8141B IMTA 

Metilazinfos µg/L water EPA 8141B IMTA 

Metribuzin µg/L water EPA 8141B IMTA 

Mevinphos µg/L water EPA 8141B IMTA 

Molinate, dissolved µg/L water EPA 8141B IMTA 

Parathion µg/L water EPA 8141B 
IMTA/A&B 

Phorate µg/L water EPA 8141B 
IMTA/A&B 

Pyriproxyfen µg/L water EPA 8141B IMTA 

Ronnel µg/L water EPA 8141B IMTA 

Sulfotepp µg/L water EPA 8141B IMTA 

Terbufos µg/L water EPA 8141B IMTA/A&B 

Tokuthion µg/L water EPA 8141B IMTA 
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Table 1-24. Laboratory Analyses Conducted on Water Samples Collected by Mexican 
Monitoring Personnel During LRGWQI Synoptic Surveys Conducted in 
2015 and 2016 (Continued) 

Parameter Units Matrix Method Lab 

Triallate, dissolved µg/L water EPA 8141B IMTA 

Trichloronate µg/L water EPA 8141B IMTA 

Triclorfon µg/L water EPA 8141B IMTA 

Trialato µg/L water EPA 8141B IMTA 

Figure 1-48 shows the LRGWQI synoptic survey sites monitored by US monitoring 

personnel in 2015 and 2016; they include one tributary site (Arroyo Los Olmos) and 10 wastewater 

treatment plant outfall sites.  During the 2015-2016 binational LRGWQI synoptic surveys, two 

sampling sites were used to characterize the outfalls of the wastewater treatment facilities outfalls 

of the La Joya ISD and Union WSC facilities because of their distance from the river. 

 
Figure 1-48. Type and Location of US Sampling Sites; LRGWQI Synoptic Surveys 

Conducted March 2015 – April 2016. 

Except for the measurement of Chlorine Residual, which US monitoring personnel agreed 

to measure at the request of the Mexican LRGWQI Partners, the field parameters measured, and 
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sampling techniques used, by US monitoring personnel during the 2015 and 2016 binational 

LRGWQI synoptic surveys were the same as those measured during the July 2014 LRGWQI US 

synoptic survey (Table 1-23).  Mexican monitoring personnel accompanying the US monitoring 

teams measured Redox Potential in the field at US sites.  In addition to the parameters analyzed 

during the 2014 synoptic surveys (Table 1-22), US monitoring teams collected water samples for 

the additional nutrient, anion, metals, pesticides and other laboratory analyses requested by the 

Mexican LRGWQI Partners in 2015.  The US Partners agreed to perform these analyses on 

samples collected at US sites (shaded rows in Table 1-24).  Mexican monitoring personnel 

accompanying US monitoring teams collected additional water samples at US sites for analysis of 

other parameters of interest to the Mexican LRGWQI Partners (i.e., parameters in unshaded rows 

in Table 1-24 which are not included in Table 1-22).  Sub-section 3.1.1.2 of this dissertation 

describes in detail how the data collected during the LRGWQI synoptic surveys were used to 

parameterize and calibrate the LRGWQI models of water quality in the Lower Rio Grande/Río 

Bravo. 

COMPILATION AND PROCESSING OF IN-STREAM FLOW, FLOW CONTRIBUTIONS, FLOW DIVERSIONS 
AND METEOROLOGICAL DATA 

In addition to the physical, biochemical and bacteriological data collected during the 

synoptic surveys of water quality conducted in 2014, 2015 and 2016 the author and his 

collaborators used meteorological, instream flow, flow diversions, and self-reported effluent data 

measured and reported or provided by TWDB, TCEQ, USEPA, USIBWC, CILA and CONAGUA.  

Regional pan evaporation data were supplied by CILA (for locations in Mexico).  Pan 

evaporation were also downloaded from the TWDB’s web site https://waterdatafortexas.org (for 

US locations).  Time series of average daily in-stream flow, measured by the IBWC, at nine 

hydrometric stations located on the Lower Rio Grande/Río Bravo and two major tributaries, the 

Río Alamo and the Río San Juan were supplied to the BTWG by USIBWC.  Daily average flow, 

by month, measured by CILA at six major agricultural drains that contribute flow to the Lower 

Rio Grande/Río Bravo were supplied to the BTWG by CILA.  Time series of monthly flow 

diversions (i.e., authorized withdrawals of water from the river for municipal and agricultural 

purposes) were supplied by the TCEQ (Rio Grande Water Master program), USIBWC, CILA and 

https://waterdatafortexas.org/
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CONAGUA.  Daily average effluent discharge data, by month, reported by US wastewater 

treatment facilities were downloaded from USEPA’s ICIS database.  Sub-section 3.1.1.2 of this 

dissertation describes in detail how these data were used to parameterize and calibrate the 

LRGWQI models of water quality. 

 CHARACTERIZATION OF STEADY STATE NONPOINT SOURCES OF POLLUTANTS 
A model is most useful to decision makers when it incorporates as many aspects of the 

decision domain and the decision situation as is possible.  The LRGWQI’s focus on water quality 

in the Lower Rio Grande/Río Bravo dictates that the tools developed to support the initiative’s 

decision-making process be designed to address the sources of water quality impairment in the 

river in a comprehensive manner.  In addition to providing important empirical information for 

parameterizing and calibrating the LRGWQI water quality model, the synoptic data and historical 

data described in previous sections of this chapter, along with the inherent capabilities of the LA-

QUAL model, allow the user to simulate quantitative changes in pollutant loadings associated with 

point sources in the watershed.  However, these data provide only limited information about the 

steady state nonpoint sources of pollution affecting water quality in the river.  In order to 

construct a decision support tool that simulates the effects of steady state nonpoint sources on 

water quality in the river, additional information should be incorporated into a model.  Any 

model, or the decision support tool of which it is a part, must have the capability of simulating 

changes in nonpoint sources of pollution. 

To characterize steady state nonpoint sources in the Lower Rio Grande/Río Bravo 

watershed the author used a modified version of the geospatial analysis method developed by 

Lynch (2012).  The information presented in the following sections details the geospatial analysis 

methods used by the author and his collaborators to characterize and quantify the steady state 

nonpoint sources of pollutants addressed by the LRGWQI.  For all steady state pollutant nonpoint 

source types investigated as part of the LRGWQI, the author and his collaborators applied the 

geospatial methods described in this section to the area within the LRGWQI watershed. The 

LRGWQI watershed was derived from a synthesis of the transboundary watersheds of the Rio 

Grande/Río Bravo developed by the USGS, SEMARNAT and INEGI.  Development of the 

LRGWQI watershed is described in more detail in the following section. 
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Dividing the LRGWQI watershed into smaller sub-basins was necessary to allow users to 

vary the input of steady state nonpoint sources of pollutants.  Each sub-basin corresponds to the 

model reach to which it contributes steady state nonpoint source pollutant loading.  The creation 

of model sub-basins is described in more detail in the following sections.  It should be noted that 

the GIS work involved with the creation of the LRGWQI sub-watersheds was performed by Adam 

Torres of the TCEQ.  The author adapted the methods for creating the model sub-watersheds 

from established GIS techniques involving the manipulation of digital elevation raster grids 

(Environmental Science Institute [ESRI], Technical Article 000012346, 2013). 

Binational Watershed Delineation 
One of the first technical tasks undertaken by the LRGWQI’s BTWG was the delineation 

of the transboundary watershed for Lower Rio Grande/Río Bravo.  This task was important for 

defining of the geographic limits of the LRGWQI study for project management and administrative 

reasons.  The geospatial analyses also allowed the author to quantify steady state pollutant 

loadings for input and calibration of the LRGWQI water quality models.  

Creating a Harmonized Binational Watershed 
The watershed for the Lower Rio Grande / Río Bravo represents the land area that drains 

into the river.  The watershed encompasses some 924,300 km2 and includes areas in 3 US states 

and 4 Mexican states.  Using digital elevation models (DEMs) that cover most of North America 

at a scale of 1:24,000, the USGS, under its National Hydrographic Dataset (NHD) Program, has 

delineated the watersheds of US surface water bodies, including the Rio Grande/Río Bravo.  The 

USGS designates Hydrologic Unit Codes (HUCs) for the watersheds it delineates at different 

levels of detail.  Watershed delineations become better defined and smaller in size as HUC levels 

increase with stream order.  At the coarsest, basin wide level, the USGS assigns HUCs with only 

six-digit numbers (HUC Level 6); at the sub-basin level, the HUCs are eight digits (HUC Level 

8).  Figure 1-49 and Figure 1-50 shows the Lower Rio Grande/Río Bravo watershed at resolutions 

of HUC Level 6 and HUC Level 8, respectively.  At these resolutions, the transboundary 

watersheds for the Lower Rio Grande/Río Bravo are available from the USGS.  The effort to 

define the Lower Rio Grande/Río Bravo watershed for the LRGWQI began with the aggregation 
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of HUC Level 12 (catchment level) watersheds on the US side, downloaded from the USGS’ NHD 

website (Figure 1-51). 
 

 
Figure 1-49. Lower Rio Grande/Río Bravo Watershed, NHD Hydrologic Unit 

Code Level 6. 

 
Figure 1-50. Lower Rio Grande/Río Bravo Watershed, NHD Hydrologic 

Unit Code Level 8. 
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Figure 1-51. Lower Rio Grande/Río Bravo Watershed, NHD Hydrologic Unit 

Code Levels 12 (US side) and 8 (Mexican side). 

Like the USGS, Mexico’s federal environmental agency, SEMARNAT has delineated 

watersheds for surface water bodies in Mexico using 1:250,000 scale DEMs.  Figure 1-52 shows 

the southernmost portion of the watershed delineated by SEMARNAT for the Rio Grande/ Río 

Bravo (INEGI, 2007).  The initial outline of the Mexican portion of the Lower Rio Grande/Río 

Bravo watershed was a synthesis of USGS HUC Level 8 boundaries and SEMARNAT’s 1:250,000 

Cuenca Hidrográfica Río Bravo boundary (Figure 1-53).  The international boundary 

downloaded from the USGS’ BEHI website was used to provide a common boundary for the US 

and Mexico watersheds.  

During binational deliberations in 2013, the BTWG agreed to limit the LRGWQI 

watershed by excluding the area of the watershed upstream of Marté Gómez dam on the Río San 

Juan, which is already excluded from the NHD HUC Level 12 watershed, and upstream of Las 

Blancas dam on the Río Álamo.  Also, given the disparities in the shape of the NHD (HUC Level 

8) and SEAMARNAT (1:250,000) watersheds, the BTWG also decided to re-examine the  
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Figure 1-52. Lower Rio Grande/Río Bravo Watershed Delineated by SEMARNAT 

(1:250,000). Source: INEGI 2007. 

 
Figure 1-53. Geospatial Overlay of Transboundary Watersheds; USGS NHD 

HUC Levels 8 and 12 and SEMARNAT’s 1:250,000 Cuenca 
Hidrográfica Río Bravo. 
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hydrography of the coastal plain in the southeastern portion of the watershed.  To verify or 

modify the southeastern portion of the watershed, the LRGWQI Mexican Partners suggested using 

INEGI’s Simulador de Flujos de Agua de Cuencas Hidrograficas (SAITL), a flow direction model 

developed by INEGI for use in drainage area analyses (INEGI, 2015).  Using a LiDAR-based 

DEM provided by the USIBWC (Figure 1-54), the SAITL model (Figure 1-55), and the watershed 

delineation methods described in ESRI Technical Article 000012346 (ESRI, 2003), the TCEQ 

modified the Mexican portion of the synthesized watershed.  The TCEQ used the ArcGIS 10.1 

software with the Spatial Analyst extension, both from ESRI, to synthesize and revise the 

binational watershed.  Figure 1-56 shows the watershed resulting from the synthesis of the USGS 

NHD and SEMARNAT watersheds and the modifications requested by the BTWG.  The 

watershed shown in Figure 1-56 is the final transboundary watershed used for the LRGWQI. 

 
Figure 1-54. Bare Earth LiDAR Layer of the Lower Rio Grande/Río Bravo Watershed. 

Source USIBWC. 
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Figure 1-55. Image of Simulador de Flujos de Agua de Cuencas Hidrograficas 

(SAITL). Source: INEGI. 

 
Figure 1-56. Final Transboundary Watershed of the Lower Rio Grande/Río Bravo Used 

in the LRGWQI. 
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Binational Hydrography for the LRGWQI 
Of equal importance to the development of a harmonized transboundary watershed was the 

development of a harmonized binational hydrography of the Lower Rio Grande/Río Bravo for the 

LRGWQI.  Like the watershed development process, the development of a binational 

hydrography layer for the LRGWQI involved manipulation and revision of existing GIS layers 

guided by the binational deliberations of the BTWG.  The process is described in this sub-section 

for the purpose of explaining the division of the LRGWQI watershed into sub-basins for input of 

steady state nonpoint sources into the LRGWQI models of water quality.  The development and 

discretization of binational hydrography for the LRGWQI was also integral to developing the 

LRGWQI model of water quality for reasons beyond the input of steady state nonpoint sources. 

 The starting binational hydrography layer for this effort was downloaded by the author 

from the USGS’ BEHI web site (USGS, 2009).  The BEHI binational hydrography layer 

integrates medium resolution (1:100,000 and 1:250,000) streams from USGS’ NHD and INEGI’s 

Red Hidrográfica, where these were available.  In areas where medium resolution streams were 

not available, the BEHI consortium used lower resolution hydrography layers from USGS’ 

National Atlas 1:2,000,000 and INEGI’s 1:1,000,000 scale hydrography layers. An important 

advantage of using the BEHI binational hydrography layer as the starting hydrography layer for 

the LRGWQI was the fact that the layer had already been vetted by both national governments 

(USGS, 2009). Figure 1-57 shows the BEHI binational hydrography layer clipped to the NHD 

HUC 12 Lower Rio Grande/Río Bravo watershed. 

Developing the LRGWQI Model Hydrography 
The LA-QUAL software requires a user to discretize the water body being modeled into 

distinct computational elements of a size specified by the user.  The length of elements depends 

on the definition and accuracy desired in the model.  Shorter element lengths provide more 

accurate results, but more of them are needed for simulation, which requires longer computation 

times.  In the LA-QUAL software, computational elements are numbered and grouped into 

reaches, which are also numbered.  Computational element numbers increase from the most 

upstream point in the stream system to the most downstream point. 
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Figure 1-57. Binational Hydrography of the Lower Rio Grande/Río Bravo. Source: 

BEHI (USGS 2009). 

LA-QUAL reach numbers also increase in a downstream direction.  When a tributary 

junction is reached, the numbering order is continued from the most upstream point of the tributary.  

When a junction is encountered, the upstream reach must end and a new reach must begin 

immediately below the junction.  The LA-QUAL program is dimensioned for a maximum of 

4,000 computational elements and a maximum of 200 reaches.   

Figure 1-58 shows a portion of the LA-QUAL schematic for the LRGWQI models of water 

quality in the Lower Rio Grande/Río Bravo, which is composed of 1895 computational elements 

in 147 reaches.  Reach numbers are shown in the small boxes centered at the top of each reach 

bracket.  Computational element numbers are on the right side in the subdivisions of each reach 

bracket.  The stream distance from the headwater element of each waterbody represented in the 

model schematic is shown on the left side of each computational element, outside the reach 

brackets.  Reach, calibration points, and landmark descriptions are shown to the right of the 

computational element in which they are located, outside the reach brackets. 
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The model schematic shown in Figure 1-58 was developed concurrently with the 

development of the LRGWQI model hydrography through a collaborative process involving 

binational deliberations of the BTWG via email communications, simultaneous translation 

conference calls and face-to-face meetings held in 2014, 2015 and 2016 in Mercedes, Texas and 

Austin, Texas.  Due to the dimensional restrictions of the LA-QUAL software, only a portion of 

the BEHI binational hydrography could be discretized for use in the LRGWQI model (Figure 1-

59).  The simplification of the BEHI binational hydrography (i.e., the selection of tributaries, 

drains and ditches to include in the model), as well as the selection of computational element 

lengths, reach dimensions, landmarks, and model calibration locations was a deliberative process 

involving all members of the BTWG.  The author produced the final model schematic and the 

associated GIS hydrography and point location layers using the ArcGIS 10.1 software from ESRI. 

Discretizing the LRGWQI Model Hydrography and Developing of the LA-QUAL Model 
Schematic 

 In assigning computational elements, the author proposed dividing the portions of the 

Lower Rio Grande/Río Bravo and tributaries, drains and ditches selected by the BTWG for 

modeling, into 147 reaches consisting of 1895 computational elements.  The author determined 

the length of the computational elements, reach segmentation and location of landmarks and 

calibration points in accordance with the decisions of the BTWG.  In ArcGIS 10.1, the author 

first split the LRGWQI hydrography polyline segments into individual LA-QUAL reaches, each 

with its own attributes, by intersecting it with a point layer of reach boundary points.  The author 

then split each reach into computational elements using the ArcGIS Data Management command 

“Split a line in equal parts.”  Figure 1-60 shows the resulting point and polyline layers.  
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Figure 1-58. A Portion of the LA-QUAL Model Schematic of the LRGWQI Model of Water Quality in the Lower Rio 

Grande /Río Bravo. 
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Figure 1-59. Simplified Hydrography of the Lower Rio Grande/Río Bravo Showing the 

Tributaries, Drains, and Ditches Selected by the LRGWQI’s BTWG. 
Original Hydrography Source: BEHI (USGS 2009). 

 
Figure 1-60. LRGWQI Hydrography Discretized for Use in the LA-QUAL Water 

Quality Modeling Software. 
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Note the difference in computational element sizes in different reaches of the river (see 

inset in Figure 1-60). Balancing simulation accuracy, which requires tighter element spacing, and 

economy of elements, to stay within the 2000 model element maximum, the BTWG agreed to 

make model element spacings of 0.5 km downstream of known point source outfalls, dams, and 

tributary junctions.  The BTWG agreed to use larger element sizes (1-2.5 km) in other portions 

of the LRGWQI model. 

Dividing the LRGWQI Watershed into Sub-basins based on LA-QUAL Model Reaches   
The LA-QUAL water quality modeling software requires that all flow and pollutant inputs 

to the model be associated with specific spatial locations represented in the model as computational 

elements and reaches.  Point source inflows (i.e., headwaters and wastewater outfalls) and 

outflows (diversions and withdrawals) must be associated with specific computational elements in 

the model.  Referred to as “Wasteloads,” point source inputs consist of a flow component and a 

pollutant concentration at the point source outfall; headwaters are handled in the same manner.  

By contrast, nonpoint source pollutant inputs to LA-QUAL are associated with the model reaches 

and affect all computational elements within a reach equally.   

Some nonpoint sources, such as irrigation return flows, can be input into LA-QUAL as 

“incremental inflows,” for which flows and pollutant concentrations are specified on a reach basis.  

Other nonpoint sources of pollutants, for which flow is negligible or for which no flow can be 

specified, such as leaking septic systems or direct, or indirect, fecal deposition, are input into LA-

QUAL by specifying a pollutant loading, in units of mass (i.e., kg or lbs), also entering the model 

on a reach basis.  Steady state nonpoint source inputs must be estimated for each LA-QUAL 

reach of the model, including irrigation return flows, as incremental inflows with associated water 

quality, and human and animal loadings as mass-based nonpoint source inputs.  To do this, each 

model reach must be associated with a watershed area in which the pollutants are generated and 

introduced into the reach.  The process of dividing the LRGWQI watershed into smaller sub-

basins is therefore linked to the discretization applied to the LRGWQI hydrography.  As 

previously mentioned, the division of the LRGWQI watershed into LRGWQI model sub-basins 

was performed by Adam Torres of the TCEQ. 
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Using the upstream boundaries of the LA-QUAL model reaches (omitting headwaters) as 

the “pour points” for each sub-basin, flow direction and flow accumulation grids were created for 

each reach using a LiDAR-based DEM provided by the USIBWC and the watershed delineation 

methods described in ESRI Technical Article 000012346.  Due to the limited coverage of the 

USIBWC’s LiDAR layer some adjustment was necessary to the upper and lower boundaries of the 

binational sub-basins.  This was done using the 30-meter DEMs available from the USGS for the 

US HUCs and INEGI’s SAITL model for the Mexican portion of the watershed.  The upstream 

boundaries to all sub-basins were clipped to the LRGWQI watershed. Subsequently, the main stem 

of the Rio Grande/Río Bravo, selected from the LRGWQI hydrography, was used to split 

(intersect) the binational sub-basin polygon layer into two sub-basin layers, a US LRGWQI Sub-

basin layer and a Mexican LRGWQI Sub-basin layer.  Figure 1-61 shows the pour points for each 

of the 147 reaches LA-QUAL reaches of the LRGWQI models and the sub-basins delineated for 

each.  The inset in Figure 1-61 shows a closeup of the area of the river near its confluence with 

the Gulf of Mexico where sub-basins are relatively short and relatively narrow. 

  

 
Figure 1-61. Pour Points and Associated Sub-Basins Delineated for LA-QUAL Reaches 

of the LRGWQI Model of Water Quality. 
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Estimation of Residential Nonpoint Sources 
In accordance with the LRGWQI’s TOR, rainfall runoff is omitted from consideration as 

a pollutant transport mechanism.  The consensus within the BTWG, however, was that residential 

nonpoint sources of pollution affect surface water quality during steady state conditions through 

direct deposition of wastes into surface waters or through transport by concomitant aqueous waste 

streams (e.g., sewage and gray water from residential and commercial activities).  In view of this 

consensus, members of the BTWG agreed to limit the analysis to residents living in very close 

proximity to the Lower Rio Grande/Río Bravo or one of its contributing tributaries, drains or 

ditches.  After binational deliberations, the BTWG agreed, to quantify pollutants contributions 

for residents living within a 500-meter riparian buffer around the Lower Rio Grande/Río Bravo or 

one of its contributing tributaries, drains or ditches.  

The amount of raw sewage per capita reaching surface waters in riparian communities is 

dependent on the levels of sanitation that exist in those communities.  Therefore, to account for 

disparities in sewage collection and treatment services, the BTWG agreed on three main residential 

categories to quantify, (1) residents currently being provided centralized wastewater services, (2) 

residents using onsite sewage facilities (OSSF) and, (3) residents with no wastewater treatment.  

The associated geospatial analysis conducted by the author and his collaborators is described 

below.  The resulting US and Mexican riparian population values, categorized by wastewater 

treatment type, are used in the Human Loadings component of the Nonpoint Sources module of 

the LRGWQIDSS.   

To conduct the analysis, the author and his collaborators in the BTWG first quantified the 

number of watershed residents living within a 500-meter buffer of Lower Rio Grande/Río Bravo 

or one of its contributing tributaries, drains or ditches and then segregated this population based 

on ancillary information available from other sources.  The data used to make these estimates 

was a combination of the spatial LRGWQI sub-basin boundaries previously described and spatial 

census data from the 2010 Decennial Census of the United States (US Census Bureau, 2010), the 

Border Colonia Geographic Database (State of Texas Office of Attorney General, 2016), GIS 

layers and information about water and wastewater service areas in the Rio Grande Valley 

(obtained from local utilities), and Mexico’s 2010 Censo de Población y Vivienda (INEGI, 2010).  

To estimate per capita pollutant contributions, the author used typical per capita wastewater 
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production values used by the BECC (now NADB) for US and Mexican border residents and 

literature values of pollutant concentrations in raw sewage from Metcalf and Eddy (1991). 

US Residential Nonpoint Sources 
Figure 1-62 shows an image of 2010 US Census Blocks located within the Lower Rio 

Grande/Río Bravo watershed.  Using the census block polygon layer for the state of Texas, 

available from the US Census Bureau, the author extracted the census blocks included only within 

the US portion of the Lower Rio Grande/Río Bravo watershed.  The author then determined the 

number of residents living within each of the US LRGWQI sub-basins of the Lower Rio 

Grande/Río Bravo watershed by summing the number of residents in the resulting subset of US 

Census Blocks within each of the US sub-basins. For census blocks intersected by the sub-basin 

boundary, the author determined the total watershed population in those blocks by applying the 

relative proportion (i.e., ratio) of the census block area within the sub-basin to the total area of the 

intersected census block. 

 
Figure 1-62. US Census Blocks within the Lower Rio Grande/Río Bravo Watershed. 
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Using GIS layers of wastewater service areas in the US sub-basins of the LRGWQI 

watershed, the author then estimated the number residents living in the US sub-basins with access 

to centralized wastewater treatment systems, by estimating the number of residents living in the 

watershed census blocks that also lived within wastewater service areas.  

Next, the author used the Texas Attorney General’s Border Colonia Geographic Database, 

which contains information about unincorporated communities within the Texas side of the US-

Mexico border region, known as “colonias,” where residents lack centralized wastewater treatment 

services, including residents with no form of sanitation,  to determine the number of residents 

living in US census blocks within the LRGWQI watershed sub-basins who lacked any type of 

wastewater treatment (Figure 1-63).   

 
Figure 1-63. Unincorporated US Communities, Known as “Colonias,” which Lack 

Centralized Wastewater Treatment. 
 

As with the geospatial analysis determining total watershed population, the author used 

census block area ratios to determine the resulting 2010 population values for intersections of 

census blocks and colonia areas.  The author assumed that the remaining population living in the 
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US LRGWQI watershed sub-basins census blocks, that is, the US watershed census block 

population living neither within a service area nor within a colonia lacking sanitation, consisted of 

US watershed residents with OSSFs.  The final step in the geospatial analysis was to determine 

the sanitation-dependent subsets of residents, living within the 500-meter riparian buffers; that is, 

riparian buffer residents with (1) access to centralized sewer services, (2) access only to onsite 

wastewater treatment systems and (3) no access to wastewater treatment systems.  The author 

accomplished this by intersecting or “clipping” the subsets of the different residential populations 

in each sub-basin using a 500-meter riparian buffer polygon (Figure 1-64).   Figure 1-65 shows 

an example of the resulting GIS layers produced by the geospatial analysis.  

 

 
Figure 1-64. 500-Meter Riparian Buffer Applied to the LRGWQI Hydrography Layer.    
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Figure 1-65. Geospatial Analysis of US Residential Nonpoint Sources in the 

Lower Rio Grande/Río Bravo Watershed. 

The author adapted the method developed by Lynch (2012), for calculating residential 

nonpoint source pollutant loadings to each of the LA-QUAL model reaches using the population 

estimates for the two population subsets contributing residential steady state nonpoint source 

pollution to the river, (1) residents with no wastewater treatment and (2) residents using OSSFs.  

The method, described in more detail in the following sections, is an important part of the Human 

Loadings component of the Nonpoint Sources module of the LRGWQIDSS. 

Mexican Residential Nonpoint Sources 
While similar to the geospatial analysis conducted to estimate population values associated 

with US residential nonpoint sources, the geospatial analysis used by the author and his Mexican 

collaborators to estimate population values associated with Mexican residential nonpoint sources 

differed in several important aspects.  First, the author and his Mexican collaborators used data 

from INEGI’s 2010 Censo de Población y Vivienda at two separate levels: (1) the municipio level, 

and (2) the localidad level.  Second, unlike the 2010 US census data, the 2010 INEGI census data 
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contained sanitation and drainage information useful in categorizing the type of wastewater 

treatment received by residents living on the Mexican portion of the Lower Rio Grande/Río Bravo 

watershed. 

The 2010 INEGI census data, aggregated at the municipio level, categorizes municipio 

residents according to the type of sewage disposal available to them.  The categories include, (1) 

public sewer, (2) septic systems, (3) piping directly to a crevice or cliff, (4) piping directly to 

surface water bodies, and (5) no “drainage.”  However, the coarse aggregation of municipio level 

data renders it inadequate for estimating the number of Mexican municipio residents living within 

a 500-meter riparian buffer of a receiving water body.  The 2010 INEGI data aggregated at the 

localidad level, Principales Resultados por Localidad (ITER), available as a GIS point layer from 

INEGI (INEGI 2010c), provides sufficient geospatial detail for the analysis (Figure 1-66). 

 
Figure 1-66. Mexican Localidades and Municipios within the Lower Rio Grande/Río 

Bravo Watershed. 

However, these data include information on whether “drainage” is available to the residents 

but do not provide detailed information about the type of sewage disposal available to the residents 
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of each localidad.  To estimate the distribution of residents living within the 500-meter riparian 

buffer, by sewage disposal type, in each of the Mexican LRGWQI sub-basins, the author and his 

Mexican collaborators applied the proportions of municipio residents falling under each sewage 

disposal category to the numbers of residents of localidades within each municipio that were also 

located inside the 500-meter riparian buffer (Figure 1-67).  This calculation yielded values for 

Mexican riparian populations classified under one of the five sewage disposal categories available 

for the municipio level Mexican census data.  To represent Mexican riparian populations lacking 

wastewater treatment services, the last three categories, (3) piping directly to a crevice or cliff, (4) 

piping directly to surface water bodies, and (5) no “drainage, were combined for each Mexican 

LRGWQI sub-basin to represent residents with no sanitation (i.e., other). 

 
Figure 1-67. Geospatial Analysis of Mexican Residential Nonpoint Sources in the 

Lower Rio Grande/Río Bravo Watershed. 

Pollutant Loading Estimates for Residential Steady State Nonpoint Sources 
Using the estimated number of US and Mexican riparian populations (i.e., living within 

500 m of the Lower Rio Grande/Río Bravo, a tributary or a contributing drain or ditch) that (1) use 
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OSSFs for sewage treatment and (2) that lacked any wastewater treatment, the author estimated 

the potential daily loading of pollutants of concern from residential steady state nonpoint sources 

to each of the LRGWQI model reaches by applying average per capita wastewater production rates 

and typical concentrations of constituents in untreated domestic wastewater of weak strength, from 

Metcalf and Eddy (1991), to the population estimates in each LRGWQI sub-basin.  Based on 

information found in BECC project certification and environmental impact assessment documents 

for NADB projects in the Rio Grande/Río Bravo watershed, the author used different per capita 

wastewater production rates for US and Mexican residents (245 L/person/day for US residents and 

184 L/person/day for Mexican residents).  The value for typical fecal coliform concentrations in 

untreated wastewater was obtained from Schueler (2000).  This method of estimating pollutant 

loadings from US and Mexican riparian populations, categorized by wastewater treatment type, is 

coded into the LRGWQIDSS and forms the basis for the Human Loadings component of the 

system’s Nonpoint Sources module.    

 AGRICULTURAL NONPOINT SOURCES 
Within the context of the LRGWQI, steady state agricultural nonpoint sources in the Lower 

Rio Grande/Río Bravo watershed can be subdivided into two main categories, (1) pollutant 

contributions from livestock and domestic animals (2) pollutant contributions from irrigation 

return flows.  These two types of nonpoint sources of pollution result from distinctly different 

agricultural activities and their characterization requires different data sources and data analysis 

methods. 

Irrigation Return Flows 
The data sources used to characterize irrigation return flows in the Rio Grande/Río Bravo 

watershed include (1) the LRGWQI watershed boundary and (2) the binational land use/land cover 

GIS layer developed as part of the BEHI (USGS, 2009).  These GIS layers were used to estimate 

the hectares of irrigated agricultural land in the US and Mexican LRGWQI sub-basins.  It should 

be noted that the GIS work associated with this effort was conducted by Adam Torres of the TCEQ.  

The author estimated seasonal irrigation return flow yields per hectare of irrigated agricultural land 

using the daily average flow, by month, measured by CILA at five major agricultural drains that 
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contribute irrigation return flows to the Lower Rio Grande/Río Bravo (supplied to the BTWG by 

CILA).  The locations of CILA’s hydrometric stations in these drains are less than 1 kilometer 

from the confluence with the Rio Grande/Río Bravo (or, in the case of the Los Fresnos Drain, the 

Río San Juan).  Finally, the author estimated the average concentrations of LRGWQI pollutants 

of concern in return flows from irrigated agricultural land in the LRGWQI sub-basins using the 

average values reported in a 2012 study of the effectiveness of agricultural best management 

practices (BMPs) conducted by Texas Water Resources Institute on irrigated agricultural fields in 

the Rio Grande Valley (Enciso, 2012). 

Estimating Irrigated Agricultural Land Areas 
The Binational land use and land cover data obtained from the BEHI is an integrated 

binational land cover dataset developed from the 2001 USGS National Land Cover Database and 

INEGI’s 2001 Uso de Suelo y Vegetacion Serie III (1:250,000 Land Use Series 3) raster datasets.  

To integrate the datasets, the BEHI harmonized the land use and land cover (LULC) categories 

from each dataset into eight common categories:  developed, agriculture, forest, shrub, water, 

barren, grass/pasture, and wetland.  Figure 1-68 shows the BEHI binational landuse cover clipped 

to the LRGWQI watershed. 
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Figure 1-68. Binational Land Cover Layer of the Lower Rio Grande/Río 

Bravo Watershed. Source: BEHI (USGS, 2009). 

 
To isolate the areas of irrigated agricultural land in the LRGWQI watershed, the BEHI land 

use layer, clipped to the LRGWQI watershed, was sorted by the data value field corresponding to 

the agriculture code ID using ArcGIS 10.1.  This resulted in the binational agricultural land use 

layer (Figure 1-69). 
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Figure 1-69. Agricultural Land within the LRGWQI Watershed. Source: BEHI 

(USGS, 2009). 

To calculate the area (in hectares) of irrigated land within each LRGWQI sub-basin layer, it was 

necessary first to distinguish between irrigated agricultural land and non-irrigated agricultural land 

in the binational agricultural land use layer.  This was accomplished simply by assuming that 

most of the irrigated agricultural land contributing irrigation return flows to the Lower Rio 

Grande/Río Bravo is found adjacent, or in close proximity, to the Lower Rio Grande/Río Bravo or 

one of its tributaries or drains.  

Torres extracted the irrigated agricultural land within the binational agricultural land use 

layer by selecting (i.e., “clipping”), land areas located only within a 30 km buffer of the Lower 

Rio Grande/Río Bravo or one of its tributaries or drains.  Thirty kilometers was the distance 

agreed upon by the BTWG as the consensus buffer around the Lower Rio Grande/Río Bravo, Río 

Álamo, Río San Juan, and the Rancherías, Los Fresnos, Puertecitos Huizaches and El Morillo 
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agricultural drains, in which agricultural land was likely to be irrigated within the LRGWQI 

watershed (Figure 1-70).  For quality assurance, the resulting binational watershed irrigated land 

use layer was checked against satellite imagery to verify that prevalence of furrow irrigation in the 

areas designated as irrigated land use. 

 
Figure 1-70. Irrigated Agricultural Land within the LRGWQI Watershed. 

Once the binational irrigated land use layer was cross-checked with satellite imagery, the 

areas (in hectares) of irrigated agricultural land within each of the US and Mexican LRGWQI sub-

basins were estimated.  The first step was to “split” the binational irrigated land use layer with 

the US and Mexican LRGWI sub-basins, using the ArcGIS geoprocessing tools.  Then, from the 

attribute table of the resulting layer, the “Calculate Geometry” function was used to calculate the 

areas of irrigated agricultural land in the individual US and Mexican LRGWQI sub-basins (Figure 

1-71). 
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Figure 1-71. Splitting of Binational Irrigated Land Use Layer Using the LRGWQI 

Sub-basins Layer. 

The hectares of irrigated agricultural land determined for each of the US and Mexican 

LRGWQI Sub-basins using the methods described in this section are an essential part of the 

Agriculture Loadings component of the Nonpoint Sources module of the LRGWQIDSS. 

Determining LRGWQI Sub-basin Irrigation Return Flow Yields 
Determining the yield of irrigation return flows (in liters per hectare) for each of the US 

and Mexican LRGWQI sub-basins is important for two reasons.  First, it facilitates the modeling 

of irrigation return flows as “incremental inflows” in LA-QUAL.  Second, it enables the 

simulation of the effects, on flow and water quality, of implementing agricultural BMPs in the 

LRGWQI sub-basins.  As a starting point for estimating sub-basin yields, the author used the 

average daily flow values in the drains monitored by CILA, for the months in which the LRGWQI 

synoptic surveys of water quality were conducted, and divided these values by the area of irrigated 

land in the sub-basins corresponding to each of the Mexican drains in which the flow data was 

measured.  In some instances, the author used flow measured and reported by IMTA during the 

synoptic surveys for this purpose.   
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The author extrapolated the irrigation return flow yields calculated for the Mexican 

agricultural drain sub-basins to other LRGWQI watershed sub-basins by assigning drain-derived 

yield values to agricultural land located in the portions of the LRGWQI watershed bounded by one 

of the six IBWC hydrometric stations on the Lower Rio Grande Río Bravo. For example, the yields 

estimated for the Puertecitos drain sub-basin were assigned to sub-basins located between the 

IBWC hydrometric stations located at Rio Grande City and at Los Ebanos.  The (LA-QUAL) 

“incremental inflow” input into a particular LA-QUAL model reach is the product of the hectares 

of irrigated agricultural land in the sub-basin associated with that LA-QUAL reach and the “per 

hectare” return flow yield assigned to the LRGWQI sub-basin associated with that LA-QUAL 

reach.  Some of the sub-basin yield values were adjusted during hydrologic calibration of the LA-

QUAL model.  It should be noted that sub-basin irrigation return flow yields vary seasonally, as 

reflected by the CILA flow data used to estimate them.  Since the LA-QUAL model developed 

for the LRGWQI was calibrated using data collected during five different synoptic survey events 

(July 2014, March, August and November of 2015 and April of 2016), the author estimated five 

different sets of sub-basin yields using flow data measured during the months coinciding with the 

five synoptic survey events.  

The sub-basin irrigation return flow yields estimated using the methods described in this 

section are coded into the LRGWQIDSS.  To simulate the application of irrigation-related 

agricultural BMPs, the LRGWQIDSS applies factors to the sub-basin irrigation return flow yields 

of the land being treated in the US and/or Mexican LRGWQI sub-basins.  These factors, derived 

from the technical literature, are associated with the expected percent reduction in irrigation return 

flow production resulting from the application of one of two irrigation BMPs, land leveling and 

the use of polypipe.  Additional details about the Agriculture Loadings component of the 

Nonpoint Sources Module of the LRGWQIDSS is provided in Section 3.2.1.6 of this dissertation. 

Assigning Pollutant Concentrations to Irrigation Return Flows  
Irrigation return flows are simulated as “incremental inflows” in LA-QUAL, so pollutant 

concentrations must be assigned to “incremental inflows” into each of the LA-QUAL reaches in 

the LRGWQI model.  The pollutant concentrations in irrigation return flows, used in the 

LRGWQI model of water quality, were derived from Enciso (2012).  To evaluate the 
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effectiveness of agricultural BMPs, Texas A&M Agrilife Researchers documented the differences 

in the flow volume and concentrations of several pollutants of concern in irrigation return flows 

collected at the edge of several irrigated agricultural fields in the Arroyo Colorado watershed, a 

watershed adjacent to the Lower Rio Grande/Río Bravo on the US side.  The author and his 

collaborators made some adjustments of the initial literature-derived concentrations during the 

calibration of the LRGWQI models of water quality.  

Table 1-15 lists estimates of pollutant loads to the Lower Rio Grande/Río Bravo from 

irrigation return flows, as calculated by the author using the LA-QUAL output of the LRGWQI 

model.  The author averaged the load of pollutants of concern generated by the model for the 

calibration periods associated with the five synoptic surveys of water quality conducted in 2014, 

2015 and 2016 to represent the average daily load of pollutants of concern from irrigation return 

flows. 

Livestock and Domestic Animals 
The spatial analysis method used by the author and his Mexican collaborators to 

characterize livestock and domestic animal populations in the US and Mexican LRGWQI sub-

basins was modified from Lynch (2012).  The method relies on county and municipio level 

agricultural census values for animal populations of interest, which include cattle, horses, sheep 

and goats.  As decided by the BTWG, domestic pigs, chickens, ducks and geese were excluded 

from the analysis; unlike grazing livestock animals, these species are generally confined to areas 

where direct steady state nonpoint source pollutant contributions to surface waters do not occur 

(e.g., pens and coops).  The resulting estimates of livestock and domestic animal populations in 

the US and Mexican LRGWQI sub-basins, categorized by species, are used in the Animal 

Loadings component of the Nonpoint Sources module of the LRGWQIDSS. 

For each of the counties included in the US portion of the LRGWQI watershed, the author 

calculated the densities of the cattle, horses, sheep and goats per square kilometer using the county-

level animal population values reported in the USDA’s Census of Agriculture (USDA, 2007) and 

the area of each LRGWQI county. The author then calculated the area of land, that supports 

grazing, in each the US sub-basins of the LRGWQI watershed.  Lynch (2012) defines grazing 

animal habitats as being the forest, shrub, and grass/pasture land use categories, which were the 
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land use categories in the BEHI binational land use layer used by the author (Figure 1-72).  Using 

municipio-level Mexican agricultural census data (INEGI 2007a, INEGI 2007b), IMTA technical 

representatives used the same procedure to determine the density of animals in the Mexican 

municipios included in the Mexican portion of the LRGWQI watershed and they calculated the 

area of land, that supports grazing, in the Mexican sub-basins of the LRGWQI watershed using 

the BEHI binational land use layer. 

The author and technical representatives of IMTA used equation 1 (modified from Lynch, 

2012) to calculate the total number of grazing animals in US and Mexican LRGWQI sub-basins.  

The equation multiplies the area of grazing habitat in each sub-basin by the density of each of the 

four types of grazing animal in the county/municpios in which the sub-basins are located. 

ANj = ARj * ρij  (1) 

Where ANj is the total number of animals in each sub-basin j (animal count), ARj is the total area 

of grazing habitat (km2) in Sub-basin j, ρi is the density of animals in county/municipio i in which 

sub-basin j is located (animal count/km2).  The resulting counts of the five domestic animal 

species (cattle, horses, sheep and goats) are included in the Animal Loadings component of the 

Nonpoint Sources module of the LRGWQIDSS.  
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Figure 1-72. Grazing Habitat for Livestock and Domestic Animals in the Lower Rio 

Grande/Río Bravo Watershed (i.e., Forest, Shrub, and Grass/Pasture 
Land Use Categories in the Binational Land use/land cover GIS Layer 
Developed as Part of the BEHI [USGS, 2015]). 

Pollutant Loading Estimates for Livestock and Domestic Animals 
Using the number of livestock and domestic animals estimated in each US and Mexican 

LRGWQI sub-basin, the author calculated the potential daily loading of pollutants of concern from 

livestock and domestic animals to each of the LRGWQI model reaches by multiplying the animal 

counts estimated for each LRGWQI sub-basin by daily pollutant production rates estimated from 

literature-derived manure (urine and feces combined) production rates and manure pollutant 

composition values for each domestic animal species.  The manure production rates and manure 

composition values used in the calculations were derived from the American Society of 

Agricultural Engineers (ASAE) Standard D384.2 (2005).  For pollutants not listed in the ASAE 

standard D384.2, such as TSS, TDS and total nitrogen, the author used conversions of total solids 

values and stoichiometric ratios of pollutants to biochemical oxygen demand (BOD), respectively, 

found in ASAE (2005). 
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Since the LRGWQI characterizes water quality in the Lower Rio Grande/Río Bravo under 

steady state conditions, the initiative considered loadings of pollutants of concern from livestock 

and domestic animals in situations where direct deposition of these pollutants is occurring (i.e., 

direct defecation and urination into the river or one of its contributing tributaries, drains or ditches).  

This assumes that livestock and domestic animals spend a small fraction of their time directly in 

or very near the water, estimated in Lynch (2012) to be 1.4% of the time.  Following the method 

adapted from Lynch (2012), the author applied an attenuating factor, to the total daily pollutant 

loading values, equal to the maximum amount of time livestock and domestic animals are likely 

to spend directly in the Lower Rio Grande/Río Bravo or one of its tributaries (estimated).  The 

author and his collaborators adjusted this attenuation rate during the LRGWQI model calibration 

process.  This method of estimating pollutant loadings from livestock and domestic animals, is 

coded into the LRGWQIDSS and forms the basis for estimating steady state nonpoint source 

contributions from livestock and domestic animals in the Animal Loadings component of the 

LRGWQI’s Nonpoint Sources module.    

WILDLIFE NONPOINT SOURCES  
Like livestock and domestic animals, wild animals also contribute pollutants to the Lower 

Rio Grande Río Bravo.  While the magnitude of the wild animals’ potential contribution to water 

quality degradation is generally smaller than those of other pollution sources, pollutant 

contributions from wildlife must be taken into account to construct an accurate model of water 

quality in the river.  The analysis methods used by the author and his Mexican collaborators to 

characterize the populations of wild animals in the US and Mexican LRGWQI sub-basins was 

modified from Lynch, 2012. The data sources used include the binational land use GIS layer 

developed as part of the BEHI (USGS, 2009) and estimates of wildlife population densities from 

(1) Texas Parks and Wildlife Department (TPWD, 2010), (2) The Institute of Renewable and 

Natural Resource at Texas A&M University (Texas A&M, 2011), and (3) Smith, 2002.  Three 

wildlife species were chosen by the BTWG for the analysis, deer, feral hogs and migratory 

waterfowl, based on their abundance and impact on water quality. 
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Deer and Feral Hogs 
Unlike livestock and domestic animals, which graze openly and can often access surface 

water bodies at will within their grazing areas, wild animals tend to concentrate in riparian 

corridors.  Following Lynch (2012), LRGWQI the author defined a 300-foot (91 meter) riparian 

wildlife corridor to account for this tendency.  The author assumed a standard density of wild 

animals of interest in all the LULC types in which the species are typically found.  Following 

Lynch (2012), the author assigned the land use categories of forest, shrub, grass/pasture, 

agriculture, and wetlands as the habitats for both deer and feral hogs.  The author selected these 

land use categories from the BEHI binational land use layer and combined them into a single deer 

and feral hog habitat layer (Figure 1-73). 

 

 
Figure 1-73. Dear and Feral Hog Habitat in the Lower Rio Grande/Río Bravo 

Watershed. Source: BEHI (USGS, 2015). 
 

The spatial analysis used by the author to estimate deer and feral hog populations in the 

riparian wildlife corridors of each of the LRGWQI sub-basins required the intersection of three 

polygon layers, the combined binational land use layer obtained from the BEHI, intersected by the 
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91-meter riparian wildlife corridor buffer, and the resulting layer intersected by the LRGWQI sub-

basins polygon layer, which imputed the wildlife populations as attributes to the LRGWQI sub-

basins layer. 

 In Texas, deer populations are monitored according to Range Management Units, which 

are units of land in which deer concentrations are surveyed by the Texas Parks and Wildlife 

Department.  Resource Management Unit Number 8 includes the US portion of the Lower Rio 

Grande/Río Bravo watershed.  From the most recent surveys available at the time of analysis, 

2009 and 2010, the TPWD estimated that Resource Management Unit Number 8 had a deer density 

of 3.21 deer per square kilometer (TPWD, 2010).  For Feral Hog population densities, the author 

used values derived from Texas A&M University’s Institute of Renewable and Natural Resource, 

which estimates densities of feral hogs in Texas ranging between 0.51-0.95 hogs per square 

kilometer (Texas A&M Institute of Renewable Natural Resources, 2011). The author used a value 

of 0.95 hogs per square kilometer in the analysis.  

Equation 2 calculates the total number of deer and feral hogs in the riparian corridors of a 

given LRGWQI sub-basin (US and Mexican) as the product of the total area of suitable habitat for 

each animal of interest (deer or feral hogs) within the riparian corridors of that sub-basin and the 

population density of that species in TPWD Wildlife Management area 8. 

ANWj = HBj * ρ’ (2) 

Where ANWj is the total number of wildlife animals of interest in the riparian corridors of 

sub-basin j (#), HBj is the total area of suitable habitat in the riparian corridors of sub-basin j (km2), 

and ρ’ is the wildlife animal of interest population density (#/km2).  For deer, ρ’ is the animal 

density in TPWD in management unit 8 (which encompasses the entire US portion of the LRGWQI 

watershed). For feral hogs, ρ’ is the animal density estimated by Texas A&M University’s Institute 

of Renewable and Natural Resource (2011).  Since no deer or feral hog population estimates were 

available for the Mexican side of the LRGWQI watershed, the author used US wildlife animal 

population densities for the same suitable habitats in the riparian wildlife corridors of the Mexican 

LRGWQI sub-basins. 
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Waterfowl 
The Texas Gulf Coast is an important location for seasonal waterfowl migrations.  Many 

of the waterfowl in the Texas Gulf Coast stay in the wetland areas of the Rio Grande delta, defined 

by Tunnel (2002) as the area which divides the Laguna Madre in Texas from the Laguna Madre 

de Tamaulipas; from the coast to approximately the Brownsville/Matamoros urban area (Tunnel, 

2002).  The area is the favored wintering grounds for many types of wild geese, as well as mottled 

ducks and green-winged teal ducks.  Other types of migratory and coastal waterfowl can also be 

found in the Lower Rio Grande/Río Bravo watershed.  However, the dominant waterfowl species 

in the Lower Rio Grande/Río Bravo watershed are wild geese and ducks (Lynch, 2012).  

Following the method described in Lynch (2012), the author estimated population densities 

for waterfowl in the LRGWQI watershed using the percentages of the most abundant species in 

the Rio Grande Delta, from Smith (2002), and multiplying them by the waterfowl population in 

the Lower Texas Coast area, a value derived from a survey conducted by the USFWS during the 

1980-81 winter season (USFWS, 1981), and the four county area comprising Rio Grande Delta.  

The author then used the resulting population densities, 31.77 #/km2 for wild geese and 34.54 #/ 

km2 for wild ducks, in the analysis of waterfowl species in the Rio Grande Delta area. 

The land uses included in waterfowl habitat in the LRGWQI watershed are water and 

wetlands (Lynch, 2012).  As with the spatial analysis to characterize deer and feral hog habitats, 

the author selected these land use categories from the BEHI binational land use layer and combined 

them into a single waterfowl habitat layer (Figure 1-74).  The  spatial analysis to characterize 

waterfowl populations also required the intersection of three polygon layers, the combined water 

and wetland land use layer from the BEHI binational land use layer, intersected by the 91-meter 

riparian wildlife corridor buffer, and the resulting layer intersected by the LRGWQI sub-basins 

polygon layer, which imputed the waterfowl populations in each sub-basin as attributes to the US 

and Mexican LRGWQI sub-basins layers.  Of the approximately 197 km2 total water and 

wetlands area in the Lower Rio Grande/Río Bravo watershed, the author estimated a total of 22.4 

km2 of suitable habitat for waterfowl within the riparian corridors (91m buffer) in the Lower Rio 

Grande/Río Bravo watershed. 
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Figure 1-74. Waterfowl Habitat in the LRGWQI Watershed. 

 

Unlike the assumption of even population densities across suitable habitats made for the 

population analysis other wildlife species, spatial densities of waterfowl are considered more 

variable.  Following the method described in Lynch (2012), the author incorporated a migratory 

corridor distance factor, which decreases the population densities of wild geese and wild ducks 

with distance from the coast using an inverse distance weighting factor based on the distance from 

the Rio Grande Delta area (i.e., decreasing population densities from east to west).  The author 

applied the variable densities of waterfowl (geese and ducks) to the LRGWQI sub-basins based on 

the distance of the sub-basin centroids to the Gulf of Mexico coast.  

Equation 3 calculates the total number of waterfowl species in the riparian corridors of a 

given LRGWQI sub-basin (US and Mexican) as the product of the total area of suitable habitat for 

each animal of interest (wild geese or wild ducks) within the riparian corridors of that sub-basin 

and the population density of that species in (31.77 #/km2 for wild geese and 34.54 #/ km2 for wild 

ducks) adjusted based on the distance of the sub-basin centroid to the Gulf of Mexico Coast (i.e., 
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the distance from Falcon Dam to the Gulf Coast divided by the distance from the sub-basin centroid 

to the Gulf coast). 

NWFj = HBj * ρ* kj (3) 

Where NWFj is the total number of waterfowl of interest in the riparian corridors of sub-

basin j (#), HBj is the total area of suitable habitat in the riparian corridors of sub-basin j (km2), ρ 

is the density of waterfowl species in the Rio Grande/Rio Bravo Delta area (#/km2), and kj is the 

migratory corridor distance factor (unitless) for sub-basin j.  Figure 1-75 shows a visual example 

of the results of the geospatial analysis conducted by the author to estimate the number of domestic 

and wildlife animals of interest in the Lower Rio Grande/Río Bravo watershed. 

 
Figure 1-75. Geospatial Analysis of Domestic and Wildlife Animal Populations in the 

Lower Rio Grande/Río Bravo Watershed. 
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Pollutant Loading Estimates for Wildlife 
Using a method identical to that used for livestock and domestic animals, the author used 

the population numbers of wildlife species of interest found within the riparian corridors (91m) of 

the US and Mexican LRGWQI sub-basins in combination with best professional estimates of 

wildlife excrement composition and production rates to calculate the potential daily average 

loading rates of constituents of concern to the LRGWQI model reaches.  Since the author could 

not find excrement composition or production rates in the technical literature for deer, feral hogs 

and waterfowl, he used manure composition and production values associated with sheep and 

ducks, from ASAE Standard D384.2, as surrogates.  The author used sheep manure production 

rate and composition to represent deer and feral hogs.  However, the author multiplied sheep 

manure production rate values by a factor of 1.5 for use in feral hog loading calculations.  This 

was based on the assumption that feral hogs produce more excrement per day than sheep.  

Similarly, the author used half of the ASAE domestic duck manure production values to calculate 

daily loading rates of pollutants of concern for waterfowl based on the assumption that migrating 

waterfowl produce approximately half the waste produced by domestic ducks. 

As with the calculation of livestock and domestic animal loadings, the author assumed that 

deer and feral hogs spend only a small fraction of their time directly in the water, where direct 

defecation can occur under steady state conditions.  To account for this, the author applied the 

same attenuation factor, to the total constituent loading calculations as he did to livestock and 

domestic animal loading estimates (0.014).  The author and his collaborators adjusted to these 

attenuation rates moderately during the LRGWQI model calibration process.  The use of 

surrogate excrement composition or production values in the calculation of constituent loading 

rates for wildlife species introduces a higher level of uncertainty in these loading estimates.  

Consequently, the results of these calculations contain a higher level of uncertainty than the results 

of similar calculations associated with residential and agricultural nonpoint sources.  Fortunately, 

the number of deer, feral hogs and waterfowl thought to contribute pollutants of concern to the 

Lower Rio Grande/Río Bravo is small compared to the number of contributing livestock, domestic 

animals and residential nonpoint sources of pollution to the river.  This is reflected in the 

population and loading values estimated in Tables 1-18 and 1-19 (Page 93).  The method for 

estimating steady state nonpoint source pollutant loadings to the Lower Rio Grande/Río Bravo 
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from wildlife, described in this section, is coded into the LRGWQIDSS and forms the basis for 

estimating pollutant contributions from these animals in the Animal Loadings component of the 

LRGWQI’s Nonpoint Sources module. 
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CHAPTER 2: TRANSBOUNDARY WATER QUALITY MANAGEMENT 
AND DECISION SUPPORT 

2.1 Transboundary Water Quality Management 

Water quality management is an important component of the broader field of water resources 

management.  Traditionally, water resources management’s focus on water quality has been on 

ensuring the suitability of the resource for its intended uses, such as agriculture, industry, or human 

consumption, which entails evaluating the quality of source waters and protecting water resources 

from natural and anthropogenic sources of pollution.  With increasing industrialization, a growing 

urban population, and increasing scarcity of fresh water resources throughout the world, national 

governments and international institutions have placed a greater emphasis on water quality protection 

in recent decades.  In transboundary situations water resources management is complicated by 

issues associated with national sovereignty.  In some instances, depleted and degraded 

transboundary water resources may cause social unrest within and between countries.  To deal with 

the problems posed by the management of transboundary water resources, an integrated approach 

based on legal and institutional frameworks and shared benefits and costs, must be developed and 

implemented (United Nations Water Program [UN-Water], 2018). 

According to the UN-Water, there are 263 transboundary lake and river basins spread out 

over almost half the Earth’s surface; 145 nations have territory in these basins and there are 

approximately 300 transboundary aquifers helping to serve 2 billion people who depend almost 

entirely on groundwater from these aquifers (UN-Water, 2018).  Since 1948, 295 international 

water agreements were negotiated and signed, including the UNECE Water Convention, a legal 

framework for transboundary water cooperation worldwide; initially available only to countries in 

the pan-European region but globally available since 2003.  Approximately two-thirds of the 

world’s transboundary rivers currently do not have a cooperative management framework (UN-

Water, 2018). 

International agencies have consistently suggested a strong link between successful 

transboundary water resources management frameworks and the equitable governance of 

transboundary water bodies.  For example, the UN cites effective and resilient institutional 
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frameworks as a key factor in sustainable transboundary water resources management efforts (UN-

Water, 2018). 

2.1.1 TRANSBOUNDARY WATER RESOURCES MANAGEMENT FRAMEWORKS 
The legal and institutional frameworks under which transboundary decision-making is 

conducted dictate, at least in part, the operational boundaries under which transboundary water 

resources management occurs.  Therefore, it stands to reason that a review of transboundary water 

resources management agreements might yield valuable information about institutional factors that 

influence transboundary decision domains such as that of the LRGWQI.  It also stands to reason 

that the information obtained as a result of such efforts, in turn, could be useful in designing a 

transboundary DSS for water quality management such as the LRGWQIDSS.  A number of water 

resources management frameworks and protocols have been developed that incorporate institutional 

dimensions; some of these frameworks have been applied to transboundary water bodies. 

2.1.1.1 Integrated Water Resources Management (IWRM) 
First proposed in 1992 as a best practice concept for water resources management at the 

World Summit on Sustainable Development in Rio de Janeiro – Agenda 21, IWRM is based on 

the so-called “three pillars” of sustainable resource management (also known as the 3E principle): 

Economic Efficiency, Equity, and Environmental Sustainability (Figure 2-1).  Simply stated, the 

IWRM concept is based on the notion that water should be used to provide economic well-being 

to people, without compromising social equity and environmental sustainability (Hassing et al., 

2009).  The emergence of IWRM was largely in reaction to increasing scarcity and pollution in 

surface and subsurface fresh water systems all over the world and to the demonstrated linkage of 

these problems to fragmented and isolated sectoral water management practices. 
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Figure 2-1. Integrated Water Resources Management Component “Pilars.” Source: 

Modified from Hassing et al., 2009. 
 

Thus, beyond the broad 3E conceptual principals, IWRM advocates for the management of water 

resources in a basin-wide or aquifer-wide context, with robust stakeholder participation and under 

the prevalence of good governance.  Currently, IWRM is universally promoted by the 

environmental and resource conservation organizations of the UN as the framework for water 

resources planning and management efforts at virtually any jurisdictional scale, including 

transboundary settings.  The UN Environment Programme (UNEP) tracks the implementation of 

IWRM through its IWRM Indicator 6.5.1 database, which it makes available to the public 

(http://iwrmdataportal.unepdhi.org/). 

According to UNEP, to implement IWRM, a collective action environment must first be 

established in which appropriate policies, strategies and legislation can be enacted.  This is 
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followed by the building of an institutional framework through which these policies, strategies and 

legislation can be implemented.  Next, the management institutions and instruments can be 

established and empowered.  The concept is to combine the best land and water management 

practices through broad-based stakeholder participation to effect multiple co-benefits to 

stakeholders in a multitude of sectors and economic levels (UNEP-DHI, 2009).  Monitoring of 

progress is an important part of the IWRM process along with assessment, reform and adaptation 

to particular situations.  Though not explicitly stipulated in the literature, international guidelines 

for the implementation of IRWM promote the creation of river basin organizations, which are 

conducive to cooperation and encourage a holistic approach to water resources management. 

Despite concerted efforts, on the part of international organizations such as the UN, to 

promote the implementation of IWRM, the feasibility of the approach in transboundary settings 

has been questioned by some water resources management experts.   In the view of some 

researchers, the IWRM concept is overly broad and theoretical, making it difficult to implement.  

Some scholars regard IWRM’s attempt to simultaneously cover all water-related activities under 

one management structure as problematic in that orchestrating a system comprised of units having 

responsibilities for multiple aspects of water use is, at best, challenging and potentially infeasible 

in practice (Mohile, 2005).  Also, the competition for water among different sectors such as 

agriculture, industry, domestic use, navigation, and recreation is severe in many river basins.  In 

these situations, environmental and ecological considerations can be relegated to secondary 

priorities until these concerns begin to visibly affect the sustainability of the resource.  In 

transboundary river basins, IRWM becomes even more challenging, as the competing interests of 

the riparian governments come into play.   

In many cases IWRM plans are developed cooperatively by transboundary basin 

organizations only to encounter serious lags in implementation.  Researchers have suggested that 

implementation of IWRM plans covering multiple sectors and a wide variety of actors requires 

appropriate institutional capacities and a proper consideration of the political environment in the 

particular river basins where the plans are to be implemented (Mehtonen, Keskinen & Varis, 2008).  

For this reason, the establishment of effective and adaptable national and transboundary 

institutions is fundamental to the IWRM process in any transboundary river basin.   
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In transboundary settings, implementation of IWRM is often handled by transboundary 

commissions, which are tasked with coordinating the planning, management and financing 

activities among riparian countries, financial organizations and donor countries.  According to 

UNEP (2009), cooperation between the riparian countries, which is a prerequisite for IWRM in 

transboundary river basins, is possible only through the establishment of effective transboundary 

institutions. 

2.1.1.2 Community Based Natural Resource Management (CBNRM) 
Imbedded within the broader concept of IWRM, CBNRM seeks to address the apparently 

perennial problem of stakeholder disenfranchisement within centralized water resources 

management structures and especially in marginalized communities that have little or no political 

representation.  Proponents of CBNRM argue that community empowerment in the management 

of natural resources results in more effective and efficient institutional structures.  In this aspect, 

CBNRM is in line with the principal tenets of Institutional Rational Choice theory (Ostrom, 1990), 

which maintains that common pool resources are best managed by community-based collective 

choice arrangements and not by higher levels of government or the free market.  CNBRM builds 

on the IWRM concepts of economic efficiency, equity and environmental sustainability, but 

incorporates an institutional approach that favors the empowerment of local communities, 

encouraging the participation of local people in the identification of problems that affect their 

communities as well as in the design and development of strategies to address these problems. 

Most applications of CBNRM have been documented in developing countries, especially 

in the countries of southern Africa and the Ivory Coast, where CBWRM, has been successfully 

integrated and aligned with the national development and planning policies of the countries where 

the user communities are located (Jones, 2007; Tantoh & Simatele, 2015).  However, very few 

examples exist of CBWRM application to transboundary water resources.  Mohamed (2016) 

proposed a form of CBWRM for the Tigris-Euphrates Basin using the principles of the Human 

Integrated Management Approach (HIMA).  Interestingly, the approach proposed by Mohamed 

(2016) focuses on implementing CBWRM in a limited portion of the transboundary basin, the 

Kurdistan region in the headwater area of the basin.  This geographically limited approach is a 

departure from the basin-wide IWRM approach.  Nevertheless, Mohamed (2016) argues that 
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CBWRM can play an important role in transforming how water resources are managed in the 

Tigris-Euphrates Basin.  Schultz (2012) documented several community-based participation 

initiatives introduced by existing transboundary river basin organizations.  Although, it is unclear 

if the initiatives Schultz studied can be accurately classified as CBWRM, the study showed the 

willingness of established transboundary water resources management institutions to engage local 

communities in decision-making.  

2.1.1.3 Non-Integrated Water Resources Management Aproaches 
While the principles of IWRM are grounded in solid research into the factors that affect 

the effectiveness of policies and management strategies used to sustainably develop water 

resources, a growing number of scholars have criticized the rigidity by which international 

development organizations and financial institutions promote IWRM.  Their arguments are based 

mainly on case studies in which alternative methods have yielded functional management systems 

and, conversely, on case studies in which IWRM has failed to adequately manage water resources 

either by failing to provide access to the resources equitably or by failing to do so in a sustainable 

manner. 

CONTEXTUAL TRANSBOUNDARY WATER RESOURCES MANAGEMENT 
Contextual Water Resources Management portends that, while the principles of IWRM are 

indisputably effective in developing water resources in a sustainable manner, implementation of 

IWRM rarely occurs in a “blank slate” water resources management situation.  In most cases, the 

community of water users in catchments, watersheds, river basins and aquifers around the world have 

developed some form of water governance system which has evolved through time.  In some cases, 

the systems are not equitable, or protective of the resource, or resilient enough to manage their water 

resources sustainably.  In other cases, water quality management systems are effective and efficient 

enough to warrant careful consideration of the existing institutions, local knowledge, socioeconomics, 

and political and environmental conditions.  Therefore, advocates of Contextual Water Resources 

Management support a more flexible approach to IWRM implementation, including in transboundary 

situations. 

Some arguments for Contextual Water Resources Management challenge long held principles 

of IWRM.  For example, Shah (2014) argues that, while involving local input is advantageous in 
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reaching consensus about a particular management approach, sometimes local participation is not 

necessary for achieving viable solutions to the management of water resources.  As an example, Shah 

cites the outcome of a central government intervention in China’s Hubei Province, where increased 

water allocation to urban centers was offset by the construction of ponds to capture runoff in rural 

areas.  These actions also reduced the overall amount of water farmers used for irrigation, albeit out 

of necessity.  As a result, water production increased in rural areas of the province along with rice 

production.  An alternative approach, such as the involvement of local farmers in decision making, 

may or may not have yielded such benefits to both of the sectors involved.  The system appears 

sustainable as long as water reallocations continue to be offset by other actions that help competing 

sectors.  

Another argument for Contextual Water Resources Management involves the differing levels 

of economic modernization of riparian countries.  Developed countries tend to have water systems 

that work within well-defined legal and regulatory frameworks.  Less developed countries may have 

informal “water economies” that are poorly regulated and are influenced by socio-economic barriers 

to development (i.e., low education levels, government corruption, etc.).  Proponents of Contextual 

Water Resources Management suggest that formal approaches to water management, such as those 

advocated by IWRM through laws and higher-level institutions, do not work well in less developed 

countries without first establishing a basic level of infrastructure and intermediation (Giordano & Shah, 

2014).  This point is especially important in transboundary situations where one or more developed 

countries share water resources with less (or more) economically developed riparian neighbors. 

Proponents of IWRM often argue for the river basin to be the natural management unit for 

water resources management, especially in transboundary settings. However, of the 450 

international water treaties signed since 1820 only about a quarter of all treaties cover the entire 

basin to which they apply (Giordano et al., 2013).  In theory, the lack of participation of one or 

more riparian countries in a transboundary agreement can undermine the collective efforts of all 

riparian nations to manage the water resources of a shared water body.  From a practical 

perspective, sustainable development of water resources can be achieved in a variety of settings 

without a governance structure or agreement covering an entire river basin.   

Giordano and Shah (2014) make this argument by pointing to case studies in which 

bilateral and multilateral treaties have achieved success in managing water resources without 

covering the entire transboundary river basin.  Perhaps the case study most germane to the Lower 
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Rio Grande/Río Bravo is that of the Columbia River, a boundary water that crosses the US and 

Canada border.  Seven different agreements have been signed between the two nations regarding 

the management of boundary waters that straddle both countries.  Arguably, since 1944, the 

management of water allocation, hydroelectric power generation, navigation and environmental 

quality have been handled sustainably in the Columbia River Basin, despite the fact that the 

transboundary agreements signed by the US and Canada cover storage within the Canadian portion 

of the Columbia basin in general but are limited in the United States to the Columbia main stem 

and to a lesser extent the Kootenay tributary of the Columbia River (Giordano & Shah, 2014). 

It is important to reiterate that Contextual Transboundary Water Resources Management 

proponents do not argue against the principles of IWRM.  Their argument is to recognizethe 

inflexibility by which international organizations, world financial institutions, and donor countries 

implement the concept in practice.  They propose a more thoughtful consideration of the socio-

economic, cultural, and political situations existing in the riparian countries in which IWRM 

implementation is contemplated.  The ability of an existing institutional system or “water economy” 

to incrementally develop a management style that adheres more closely to the principles of IWRM is 

dependent on many factors, one of them being the ability of IWRM practitioners to develop a flexible 

approach to implementing IWRM.     

AMERICAN SOCIETY OF CIVIL ENGINEERS / ENVIRONMENTAL AND WATER 
RESOURCES INSTITUTE (ASCE/EWRI) STANDARD 33-09 

Within the realm of transboundary water resources management approaches that do not 

adhere strictly to the principles of IWRM are a number of suggested guidelines for developing 

bilateral and multilateral agreements for cooperation on the management of shared water 

resources.  These guidelines, while often comprehensive, sometimes allow the flexibility to 

develop agreements focusing on a particular aspect of water resources management or on a limited 

geographic area.  One such set of guidelines with particular relevance to the LRGWQI is the 

ASCE/EWRI Standard 33-09, “Comprehensive Transboundary Water Quality Management 

Agreement with Guidelines for Development of a Management Plan, Standards and Criteria.”  

Originally published in 2001 as ASCE/EWRI Standard 33-01, the standard was revised in 2013 to 
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include guidance on the development of water quality management plans for transboundary water 

bodies. 

ASCE/EWRI Standard 33-09 provides a comprehensive framework which can be adopted or 

modified by riparian governments seeking to undertake comprehensive, or more narrow approaches 

to, water resources planning and management of shared water resources. Based on the concept of 

“shared sovereignty,” the standard offers a template for developing legal agreements, between 

sovereign governments, to manage water resources in cooperation with one another.  The intent of 

the standard is to be sufficiently flexible to be used across borders of sovereign governments in a 

variety of geopolitical settings.  Although ASCE/EWRI Standard 33-09 itself is comprehensive in 

its scope, addressing all aspects of water resources management and advocating a basin-wide 

approach where appropriate, the standard offers the riparian governments involved the flexibility 

to define the geographic extent of the transboundary waters subject to the agreement, as well as the 

flexibility to define a limited purpose and scope for the agreement. 

At the conceptual center of ASCE/EWRI Standard 33-09 are several ideas that guide the 

development of transboundary water resources management agreements.  One of these ideas is the 

notion of bilateral/multilateral data collection and information sharing.  Riparian governments 

adopting the standard agree to “…provide sufficient data to the other Parties to verify beneficial use. 

The [standard for the] Agreement suggests that information acquisition costs be apportioned so that 

data collection, environmental assessment, and inventories of basin water user efforts should be 

systemic in nature…” (ASCE/EWRI 2009).  The standard further suggests an analysis be conducted 

prior to, or concurrently with, the development of the agreement to examine the factors that influence 

water resources management, including the identification of current and potential future sources of 

pollution and their impacts on transboundary water quality.  According to the standard, the analysis 

and supporting data are to be updated and shared among the parties to the agreement. 

Another central concept of ASCE/EWRI Standard 33-09 is the joint exercise of sovereignty 

over shared water resources (i.e., shared sovereignty).  Commonly, transboundary agreements 

reserve the sovereign right of each signatory to develop its own water resources, including 

transboundary waters.  However, a number of these agreements allow for some level of level of 

cooperation with allowances for certain uses that affect the industrial and commercial privacy of the 

signatory country or its national security.  Some scholars have pointed to the de facto establishment 

of shared governance of transboundary waters as an adaptive management process that evolves with 
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time under an existing international agreement, as the parties to the agreement develop a requisite level 

of trust and establish a good working relationship (Sherratt & Davies, 2018).  Article 1, Section 2 of 

ASCE/EWRI Standard 33-09 encourages parties to transboundary water resources management 

agreements to establish the institutional framework needed to build the trust and cooperation 

necessary for the evolution of shared sovereignty over transboundary water resources.  

ASCE/EWRI Standard 33-09 also provides guidelines for the development of water 

resources management plans, which it promotes as the basis for management of transboundary 

water resources.  As a subset of these guidelines, the standard provides a stepwise procedure for 

establishing a water quality management strategy (Figure 2-2). 

The procedure outlines the general steps that are to be taken to assess water quality, develop water 

quality goals, devise a plan to implement controls, monitor water quality and develop enforcement 

mechanisms.  As a general guide for strategy development, Standard 33-09 guidelines do not 

provide details on how a transboundary water quality management plan should be developed.  

However, the commentary included in the standard alludes to several important tools for decision 

support, including joint data collection, data sharing, and joint analysis.  It is in the crucial third 

step of the process outlined in Figure 2-2 that decision support tools would be most valuable. 

An important concept introduced in ASCE/EWRI Standard 33-09 is the concept of Total 

Maximum Daily Load or TMDL.  As mentioned in Section 1 of this dissertation, TMDLs are 

essentially limits on the amount of pollutants allowed to enter a water body on a daily basis.  

Introduced for the first time in the US federal Clean Water Act, TMDLs are essentially an estimate 

of the capacity of a water body to assimilate pollutants.  In this respect, TMDLs can be considered 

a beneficial use of a water resource which can be allocated much like flow or water volume.  

Accordingly, the ASCE/EWRI Standard 33-09 treats TMDLs essentially as an allocable 

component of transboundary water resources that must be negotiated in a manner similar to water 

allocation.  While TMDLs for some pollutants can be estimated using simple analytical methods, 

the analyses necessary to make these estimates can be technically complex, even for conventional 

pollutants such as fecal indicator bacteria or dissolved oxygen in ambient water.  Estimates of 

TMDLs typically involve the use of water quality models to predict water quality resulting from 

specific pollutant loading levels.  
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Figure 2-2. Guidelines for Transboundary Water Quality Management. Source: 

ASCE/EWRI, 2009.  
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Although flexibility is built into the ASCE/EWRI Standard 33-09, the standard is designed 

for transboundary water bodies which currently lack bilateral or multilateral water resources 

management agreements.  Much of the standard is devoted to outlining the institutional structure 

suggested for transboundary water resources management and the obligations and authorities 

associated with those institutional entities and associated organizations (i.e., Treaties, Agreements, 

and Commissions).  In the case of the LRGWQI, some of these components of transboundary 

water resources management have existed for over a century.  Nevertheless, the flexibility 

incorporated into ASCE/EWRI Standard 33-09, and the background it provides as an instrument 

that evolved from existing transboundary agreements, makes the standard a good template for 

developing a binational water quality management agreement under the LRGWQI.  

2.1.2 REVIEW OF TRANSBOUNDARY WATER RESOURCES MANAGEMENT AGREEMENTS4 

As part of the LRGWQIPRP, described in Sub-section 1.0.11.1 of this dissertation, the 

author reviewed summaries of 450 international, freshwater-related agreements, covering the years 

1820 to 2012.  The main source of the summaries and ancillary information was the International 

Freshwater Treaties Database, a comprehensive database of international treaties, protocols, and 

agreements on the use, allocation, and stewardship of transnational streams and lakes compiled 

and maintained by Oregon State University’s (OSU’s) Program in Water Conflict Management 

and Transformation (OSU, 2011).  Most transboundary river treaties in the OSU database are 

negotiated agreements on boundary disputes, water allocation, fishing, flood control, irrigation, 

hydro-electric power, or navigation of shared waters.  While the number of transboundary water 

treaties and agreements in the OSU database is extensive, the number of treaties that address 

transboundary water quality issues is very limited.  Of the 450 agreement summaries reviewed, 

cooperation on water quality was mentioned as a component or activity in only 90 agreements and 

very few examples where evident of two or more nations planning and/or implementing water 

quality improvements cooperatively.  The most common examples of bi-national collaboration 

                                                 
4 The content of this sub-section of Chapter 2 draws, in part, from the research conducted in support of the 2013 
Report titled “International Water Quality in the Lower Rio Grande/Rio Bravo,” co-authored by David Eaton and 
Roger Miranda. (See UT-LBJ, 2013a) 
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were limited exclusively to information exchange and bilateral and multilateral communications 

regarding unilateral efforts.  

Nevertheless, binational and multinational treaties and collaboration efforts can be 

considered case studies used to assess the effectiveness of various binational and international 

institutional arrangements in protecting transboundary water resources.   More importantly, 

these case studies can provide insight into the institutional factors that influence binational and 

multinational decision-making in transboundary water resources management. 

The author selected 6 case studies to examine in detail, from the 90 transboundary water 

agreements in the OSU database, in which cooperation on water quality was mentioned as a 

component or activity.   To develop the case studies, the author conducted additional research 

on the aspects of the selected transboundary agreements that shed light on the institutional factors 

affecting the decision domains in each transboundary situation and which are most relevant to the 

decision domain and decision situation represented by the LRGWQI. 

2.1.2.1 Case Studies 
The following sections describe seven selected cases in which nations manage 

transboundary rivers under international agreements that include some provision for water quality 

management.  The river basins in the case studies represent a wide spectrum of industrial, 

economic and political conditions existing in developed nations, such as the European nations of 

the Rhine and Danube River valleys, and also of developing nations, such as those of the Lempa 

watershed, and the Mekong, Nile and Zambezi River Basins.  Some of the knowledge gained 

from these case studies informed the design and development of the LRGWQIDSS. 

CASE STUDY 1: THE LEMPA WATERSHED (CENTRAL AMERICA) 
The Lempa is the longest river in Central America and one of the most important water 

resources for the people of the region (Lopez, 2009).  Located in the humid, tropical Trifinio 

region of Central American, at the intersection of El Salvador, Honduras, and Guatemala, the 

headwaters of the Lempa are located in the mountainous and volcanic region of southeastern 

Guatemala where four rivers, the Río Chacalapa, Río Tepoctún, Río La Planta, and Río Olopita 
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come together over a 30 km portion of an extensive tropical rain forest system that covers nearly 

the entire watershed (Figure 2-3).  

 

 
Figure 2-3. The Lempa River Watershed. Source: Modified from Ríos Del Planeta 

(2016); http://riosdelplaneta.com (Original Source: Ministerio de Medio 
Ambiente y Recursos Naturales de El Salvador). 

Through its 462 km journey to the Pacific Ocean, the Lempa crosses into Honduras and 

then into El Salvador where, over a 39 km stretch, it forms the border between these two countries 

after having traversed approximately 200 km through northern El Salvador.  The river then flows 

south through mainly agricultural land in El Salvador to the Pacific Ocean. 

A tri-national agreement among the governments of El Salvador, Guatemala, and 

Honduras, the Trifinio Plan Treaty established a Trinational Commission, composed of the vice 

presidents of the Republics of Guatemala and El Salvador, to oversee the implementation of the 

Trifinio Plan and its permanent updates with administrative, financial, technical and legal status.  

The Trifinio Plan began in 1986 as a pilot project for the reforestation of 6,000 hectares of the 

http://riosdelplaneta.com/
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Trifinio Ecological Zone, which was ravaged by the civil war in El Salvador.  Initially funded by 

the European Union, the plan was developed in phases and has been revised twice, in 1992 and 

2004.  Formalized by the creation of the Trinational Commission of the Trifinio Plan (the 

Commission), the trinational treaty that codified the institutional framework of the commission 

was ratified by all three governments in April 1999.  In addition to the Trinational Trifinio Plan 

Commission, the institutional framework of the Trifinio Plan includes a Trinational Technical 

Unit, a Consultative Committee of the region’s mayors, and a consortium of nongovernmental 

organizations from all three countries who assist the Commission in implementing the Plan.  The 

number of stakeholders involved with the Trifinio Plan has increased over the years, especially 

during the processes of revising the plan. 

The plan revisions completed in 2004 identify specific pollution problems in the watershed.  

The plan cites inadequate waste control and lack of education as significant risk factors to the 

health of residents in both urban and rural areas of the watershed.  Access to basic sanitation 

(water and waste disposal) is an especially pervasive problem in rural areas, which contributes to 

high levels of fecal coliform contamination.  The most recent Trifinio Plan revision includes 

goals for economic growth, infrastructure, social development, institutional development, and the 

support of ecosystem and watershed environmental needs through pollution control measures.  

Specifically, the plan revision listed the following additions as components of the plan in 2004: 

• Promotion of measures to reduce and control pollution of soil, water and air 

• Facilitation of pollution control in the three Trifinio countries and raising awareness to 

bring about change in attitudes towards the environment 

• Identification and implementation of technical and economic solutions for disposal of liquid 

waste, solid and gas concentrations generated by urban and industrial and mining activities  

• Construction of water and sewage treatment plants in rural and urban areas  

• Installation of solid waste disposal sites for major urban centers in the Trifinio Region 

Since 1987, the Trifinio Plan Tri-national Commission has approved and sought financing for 

28 tri-national studies and projects outlined in the Plan.  Funding for the projects has come from a 

variety of sources, including the Inter-American Development Bank, the United Nation’s Revolving 

Fund for Natural Resources Exploration, the Organization of American States (OAS), the International 
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Union for Nature Conservancy, the Norwegian Agency for Development Cooperation, the German 

Technical Cooperation Agency, the Japan Special Fund, the Central American Bank for Economic 

Integration, and the governments of the United States, Sweden, Spain, the Netherlands, Germany, 

Canada, and Japan.  Some funding for Trifinio Plan projects has come from the three Trinational 

Commission Governments, but the bulk of the funding for plan projects has come from loans and 

grants received from external sources.  

By all accounts, the Trifinio Plan has improved transboundary cooperation on water 

resources management among El Salvador, Guatemala, and Honduras.  The cooperation has, in 

turn, increased transnational stakeholder involvement, a fact widely credited with having helped 

the plan become more successful over time (Artiga, 2003).  While strides have been made in 

habitat conservation in the watershed, empirical assessments of water quality have shown little 

change in pollutant levels in the Lempa river since the Trifinio Plan was implemented.  An 

assessment of the Trifinio Plan Treaty conducted by the Global Water Partnership (GWP) in 2016 

concluded that the Trifinio experience “exposes the limitations of top-down processes not 

accompanied by strategies designed by local actors” (GWP, 2016).  The GPW assessment found 

a lack of efficiency and sustainability in the actions of the Trinational Commission and faulted the 

a top-down approach and centralized management structure, which relied solely on the decision-

making of the national ministries involved. 

Institutional Factors with Potential Relevance to LRGWQIDSS Design – Case Study 1 
The Trifinio Plan Treaty case study highlights several institutional factors with potential 

relevance to the LRGWQIDSS design, even though the setting in the Lempa river watershed 

differs in many ways from that of the Lower Rio Grande/Río Bravo.  For example, the treaty is a 

trilateral agreement between three developing countries with weak, unstable governments in 

nations which suffer from social unrest.  However, the decision situation shares some similarities 

with the LRGWQI, including a major pollutant of concern from a similar source (i.e., fecal bacteria 

from inadequate sanitation), a segment of the river that demarcates an international boundary 

between two countries, and a transnational commission that implements an established 

international treaty.  According to the assessments reviewed as part of the case study, three main 

institutional factors are pointed out as influencing decision making that affects the sustainability 
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and the effectiveness of Commission actions, (1) involvement of top-level government officials, 

(2) scant involvement of stakeholders at the local level, and (3) financial viability of proposed 

actions, which has attracted outside investment.  Especially relevant to the LRGWQI, is the 

criticism the Trifinio Plan Tri-national Commission has received for its top-down management 

practices, which is cited as contributing to unsustainable outcomes.  

CASE STUDY 2: THE NILE BASIN (EAST-CENTRAL AND NORTHEAST AFRICA) 
The Nile River has been cited as one of the longest rivers in the world (Liu et al., 2009). 

Fed by the Central African highland streams that sustain it, Lake Victoria has historically been 

cited as the headwaters of the iconic Nile River.  However, the hydrology of the Nile headwaters 

is much more complicated and includes a chain of smaller lakes and reservoirs connected by 

tributaries, including the Rutshuru, Semeliki, Albert Nile, and Victoria Nile Rivers which flow 

into the “Mountain Nile” portion of the White Nile in South Sudan.  The Blue Nile, a major 

tributary to the Nile, originates in the highlands of Ethiopia and joins the White Nile in Sudan at 

the capital city of Khartoum.  In all, the Nile River Basin includes territory in 12 countries, 

including Burundi, Chad, the Democratic Republic of Congo, Egypt, Eritrea, Ethiopia, Kenya, 

Rwanda, South Sudan, Sudan, Tanzania and Uganda (Figure 2-4).  In 1999, the ministries of 

water affairs (to use a generic term) of 10 of the 12 countries formed the Nile Basin Initiative 

(NBI), with Eritrea in an observer capacity; Chad did not participate in the agreement.   

The NBI is led by the Nile Council of Ministers and is assisted by a Technical Advisory 

Committee and a Secretariat based in Entebbe, Uganda.  The shared vision, as stated in its charter, 

is “achieving sustainable socio-economic development through the equitable utilization of, and 

benefit from, the common Nile Basin water resources.”  Motivated primarily by pervasive 

disputes over water appropriation, the original focus of the NBI was on establishing trust and 

building capacity among the participating governments.  With collaboration on large-scale 

storage, conveyance and hydroelectric projects as its main initial goal, the Initiative’s scope has 

expanded to include conservation, environmental protection, and socio-economic projects of 

mutual interest to participating riparian nations.  For example, the NBI’s Transboundary 

Environmental Action Project, proposed in 2003, established programs for basin-wide water 

quality monitoring. 
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Figure 2-4. The Nile River Basin. Source: Nile Basin 

Initiative (2010) http://www.nilebasin.org 
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As part of this effort, a set of common water quality indicators were developed, and 

baseline water quality assessments were conducted in the upper portions of the Nile and its 

tributaries.  In 2013, The NBI developed an Environmental and Social Policy Document, which 

outlined the initiative’s social and environmental policies and described the specific institutional 

arrangements ensuring environmental protection, including the role of the national agencies of the 

riparian nations in these efforts.  The document also declared that national-level measures, while 

playing critical roles in their own right, could not sufficiently address basin-wide and 

transboundary full-scale impacts and threats, which it stated must be addressed through 

cooperative efforts (NBI, 2013). 

Indeed, water quality remains an important concern in various parts of the Nile River and 

its tributaries.  Despite impressive efforts, recent evidence points to the ecological situation in the 

Nile Basin becoming more precarious than ever before (Paisley, 2017).  Water quality in the 

Lower Nile is especially poor, with assessments showing high levels of nutrients, including 

excessive levels of ammonia, BOD, and metals being among the most pervasive pollutants (Badr, 

El-Sonbati & Nassef, 2013).  Some researchers have pointed to Egypt’s one-sided domination of 

the hydropolitics in the basin as a cause for deteriorating cooperation and commensurately 

deteriorating of water quality (Swain, 2002). 

The NBI has been successful in its ability to fund important collaborative studies and 

projects.  Early in its development the NBI formed the Nile Basin Initiative Development 

Partnership, which included 17 bilateral and multilateral donors.  The Partnership is coordinated 

by the World Bank, which provides financial support and also facilitates the project development 

process. To meet the complex needs of the NBI, the World Bank and other national and 

international organizations use a range of financial mechanisms to support the Initiative’s activities 

and projects, including an existing $100 million multi-donor trust fund administered by the World 

Bank, in addition to direct unilateral and multilateral support (World Bank, 2016).  

Included among those projects is the development in 2013 of a state-of-the-art DSS and 

data warehouse.  The NBDSS is a multicriteria, environmental DSS with multiple water 

resources and socio-economic modeling capabilities.  The uses of the NBDSS, documented by 

the NBI, include supporting the development of the Lake Tana Basin Integrated Water Resources 

Plan in Ethiopia, modeling of the Sebeya dam for flood control in the Sebeya River Catchment of 
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Rwanda, addressing water management issues in the Nyando catchment in Kenya, and supporting 

the development of a water permitting system in the Mukungwa catchment of Rwanda.  Of the 

documented uses of the NBDSS, only the Lake Tana Plan involves aspects of water quality 

management and protection, and only within Ethiopia. 

Institutional Factors with Potential Relevance to LRGWQIDSS Design – Case Study 2 
Perhaps more so than with Case Study 1 (Trifinio Plan of the Lempa River Watershed), the setting 

in the Nile River Basin differs in many ways from that of the Lower Rio Grande/Río Bravo.  The 

number of riparian countries and water resources issues associated with the NBI makes it a poor 

institutional analogue to the LRGWQI.  While water quality issues appear important enough to 

have been addressed in detailed policy and institutional arrangements, they do not seem to have 

been the impetus for the formation of the initiative and appear to be secondary to other water 

resources management issues, especially development.  Nevertheless, some institutional factors 

in Case Study 2 do appear to have some relevance to the LRGWQI.  Like Case Study 1, the 

involvement of top-level, ministerial, officials and the financial viability of studies and projects 

are also evident in the Nile River Initiative operation.  The NBI, however, does not seem to place 

much emphasis on local stakeholder involvement.  Egypt’s power asymmetry with other riparian 

nations (Swain, 2002), which may arguably be a factor in the failure to mitigate water quality 

problems in the Nile River, as described by other researchers studying the relationship between 

riparian states sharing transboundary waters (e.g., Jägerskog & Zeitoun, 2009).  The disparity in 

economic power and global political status between the United States and Mexico also is a factor 

when evaluating the decision situation associated with the LRGWQI and in the design of the 

LRGWQIDSS. 

The most useful element of Case Study 2 is the NBDSS which was used to develop the 

Lake Tana Integrated Water Resources Plan.  The NBDSS is a versatile transboundary decision 

support tool used by a number of participating riparian nations for a variety of uses, including the 

development of a watershed plan that includes water quality management and protection (i.e., the 

Lake Tana Plan).  However, within the context of a discussion of the institutional factors 

incorporated into the design of the NBDSS, two important factors can be highlighted.  Although 

documented uses of the NBDSS are limited to national applications, the NBDSS provides access 
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to a multinational repository of water quality data.  The NBDSS development process was 

preceded by an effort to develop common water quality indices for the Nile River system.    

CASE STUDY 3: THE ZAMBEZI RIVER (SOUTH CENTRAL AFRICA) 
Zambezi River Basin is the fourth-largest river basin in Africa.  The Zambezi River flows 

3000 kilometers from its source in the central African highlands to the Indian Ocean.  The Basin 

includes a range of subtropical terrains in eight countries, including Angola, Botswana, Malawi, 

Mozambique, Namibia, Tanzania, Zambia and Zimbabwe (Figure 2-5). 

 
Figure 2.5. The Zambesi River Basin. Source: Modified from Wikimedia Commons (2019) 

https://commons.wikimedia.org/wiki/File:Zambezi_watershed_plain.png. 

A general lack of sanitation and environmental controls in the water courses in the basin 

fostered a concern on the part of the riparian nations of the Zambezi River Basin in the early 1980s.  

In 1987, all eight riparian countries of the Zambezi River Basin signed an Agreement on an Action 

Plan for the Environmentally Sound Management of the Zambezi River.  The plan focused on 

https://commons.wikimedia.org/wiki/File:Zambezi_watershed_plain.png
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addressing environmental issues identified by the riparian countries of the Zambezi River Basin.  

Implementation of the Zambezi River Basin Action Plan was very slow and ineffective and did 

not function to promote environmentally sound management of the river and its tributaries 

(Nakayama, 1999). Nakayama (1999) attributed political factors for the lack of effectiveness of 

the plan, including: (1) a reluctance on the part of riparian countries to implement the full plan for 

fear of negative economic consequences; (2) the plan received only limited support at high 

government levels; and (3) operational assistance was not given by the donor community.  The 

Zambezi River Basin Action Plan was, however, instrumental in promoting collaboration of the 

riparian countries in the basin, which inspired the development, in 1998, of the Protocol on Sharing 

Water Course Systems drafted by the South African Development Council (SADC).  The SADC 

is composed of 16 member countries, including all Zambezi Basin riparian states.  

The SADC Protocol was revised in 2000.  In July 2004, 7 of the 8 Zambezi River Basin 

riparian states signed the Agreement on the Establishment of the Zambezi Water Course 

Commission (ZAMCOM).  At the time ZAMCOM was created, Zambia, an important riparian 

nation, had not signed the agreement and the agreement lacked key institutions such as a Council 

of Ministers and a Permanent Secretariat.  In 2013, the Norwegian Government began financially 

supporting ZAMCOM.  In 2014, Zambia joined the agreement becoming a full member of the 

Commission.  ZAMCOM is composed of a Council of Ministers which provides direction for the 

ZAMCOM Secretariat, a professional body responsible for the day to day operations of 

ZAMCOM.  A Technical Committee (ZAMTEC) provides technical advice to both the Council 

of Ministers and the Secretariat.  In addition to overseeing Project Implementation Units and 

Working Groups, the ZAMCOM Secretariat receives input from a Basin-wide Stakeholders 

Coordination Committee and a National Stakeholders Coordination Committee, acting as a conduit 

for communication between these committees and the ZAMCOM Council of Ministers. 

ZAMCOM manages and develops the water resources of the Zambezi River, including 

water storage and conveyance and hydroelectric projects.  The commission also coordinates 

water quality monitoring in the water courses of the basin, compiling and disseminating data to 

riparian nations and the public.  However, aside from developing a strategic plan with general 

recommendations for water quality improvement, ZAMCOM has not conducted studies or 

implemented projects specifically targeting water quality improvement.  In 2010, the World Bank 
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reported that the incidence of waterborne disease attributed to untreated sewage effluent was still 

widespread in the Zambezi River Basin (World Bank, 2010).  There are few indications that this 

situation has improved in the subsequent decade.  

Institutional Factors with Potential Relevance to LRGWQIDSS Design – Case Study 3 
As with the previously discussed case studies, the setting in the Zambesi River Basin differs 

in many of the same ways from that of the Lower Rio Grande/Río Bravo watershed.  Again, the 

number of riparian countries and water resources issues associated with Case Study 3 make 

comparison to the LRGWQI challenging.  The literature available on the Zambezi River Basin 

Commission Agreement reveals that, while dating back to the mid 1980’s, the formation of the 

institutional framework for transboundary water resources management in the Zambezi River 

Basin is relatively recent.  In contrast, the IBWC has been in existence since 1889.  Notably, 

water quality issues appear to have been a driving force for the ZAMCON agreement, although 

the first concrete actions of the commission have been water resources development projects.  

Case Study 3 reinforces the importance of (1) the involvement of top-level, ministerial, officials 

and (2) financial viability.  In the case of ZAMCOM, however, the importance of financial 

viability is extended to include not only the institution’s outcomes (i.e., studies and projects), but 

of the institution itself.  

Of special relevance to the design of the LRGWQIDSS is the creation of the Zambezi 

Water Resources Information System (ZAMWIS), which is used by ZAMCOM to inform the 

decision-making and planning processes in the Zambezi Basin.  While not described as a DSS, 

the ZAMWIS is an interactive, web-based data and information system based on contemporary 

and historical spatial data, hydrological time series, earth observation information, knowledge 

products and other related information.  The system became operational in 2013, enabling 

riparian states to routinely share data and information, thereby helping to foster basin-wide 

cooperation.  To augment decision support efforts, ZAMCOM is developing a basin-wide 

Decision Support System (DSS) which will be added to the ZAMWIS system.  ZAMCOM 

describes the functions of the DSS simply as “supporting planning, operations, management and 

monitoring-related functions.”  The coupling of an information system with a decision support 

tool is a feature of ZAMCOM with relevance to the LRGWQI. 

http://zamwis.zambezicommission.org/
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CASE STUDY 4: THE DANUBE RIVER (CENTRAL AND SOUTHEAST EUROPE) 
Described as Europe’s second longest river, the Danube flows for 2,857 kilometers from 

the Alps to the Black Sea, draining a basin area of 817,000 km².  The basin incorporates territories 

in 19 riparian countries, including Albania, Austria, Bosnia and Herzegovina, Bulgaria, Croatia, 

the Czech Republic, Germany, Hungary, Italy, Macedonia, Moldova, Montenegro, Poland, 

Romania, Serbia, the Slovak Republic, Slovenia, Switzerland and Ukraine (Figure 2-6).  One of 

the most international river basins in the world, the Danube River Basin is home to an estimated 

81 million people. 

 

 
Figure 2-6. The Danube River Basin. Source: Modified from RAMSAR (2015) 

https://www.ramsar.org/news/new-ecological-expert-group-launched-
for-ramsar-management-in-the-danube-river-basin. 

By most objective measures, the Danube River is one of the most effectively managed 

transboundary rivers in the world.  Since 1948, 18 international water agreements have been 

signed for cooperation on water resources in the Danube River Basin (Schmueli, 1999).  While 

many of the agreements have focused on water allocation, flood control and the development of 

water resources, the institutional framework for environmental and ecological sustainability of 

https://www.ramsar.org/news/new-ecological-expert-group-launched-for-ramsar-management-in-the-danube-river-basin
https://www.ramsar.org/news/new-ecological-expert-group-launched-for-ramsar-management-in-the-danube-river-basin
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water resources has played an incrementally important role in many of the international agreements 

associated with the Danube River Basin since 1991.   

Water quality in the Danube river has been poor in the recent past.  A 1997 case study 

published by the World Health Organization cited serious water quality problems associated with 

microbiological contamination, oxygen-depleting substances, high nutrient loads and hazardous 

substances in the Danube Basin (E&FN Spon, 1997).  In 1991, the representatives of all Danube 

River Basin riparian nations, as well as some interested international organizations, developed the 

Environmental Program for the Danube River Basin to support and reinforce national actions to 

restore and protect of the Danube River.  In 1994, the Danube River basin riparian nations signed 

the Danube River Protection Convention (DRPC).  Four years later, in 1998, the International 

Commission for the Protection of the Danube River (ICPDR) was formed under the charter of the 

DRPC.  The DRPC provided the wherewithal for “setting priorities as appropriate and 

strengthening, harmonizing, and coordinating measures taken and planned to be taken at the 

national and international level throughout the Danube Basin aiming at sustainable development 

and environmental protection of the Danube River” (Wolf & Newton, 2008). 

Involved in the development of the DRPC in 1994 were the European Commission, the 

European Bank for Reconstruction and Development, the European Investment Bank, the Nordic 

Investment Bank, the United Nations Development Program (UNDP) and UNEP, the World Bank, 

the government of the Netherlands, the government of the US, the World Conservation Union, the 

World Wildlife Fund, the Regional Environmental Center, and the Barbara Guntlett Foundation.  

Public and NGO participation was an important factor in the development of the DRPC, as it 

served to reduce confrontations or conflicts among countries.  Organizing entities recognized that 

the link between internal politics among different sectors and political constituents within a nation 

was influenced by the strength and resilience of an agreement reached in the international realm.  

The ICPDR continues to rely on the participation of local stakeholders and NGOs in strategic 

planning and implementation, which has permitted the basin states of the Danube River Basin to 

move forward rather quickly with several initiatives (Schmueli, 1999). 

As part of the DRPC, and with the support of the UNDP Global Environmental Fund, 

convention members created the Danube Pollution Reduction Program (DPRP) to: define 

transboundary measures and actions; develop an investment program for national, regional and 
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international cooperation; and control and reduce water pollution and nutrient loads in the Danube 

River and its tributaries.  While the Program outlines several cooperative measures to protect the 

waters of the Danube, it does not establish specific transboundary water quality standards.  

Instead, it gives a general framework from which the signatories can devise appropriate water 

quality objectives and criteria (Schmueli, 1999). 

The structure of the ICPDR is similar to that of the transboundary water agreement 

commissions described for Case Studies 1-3.  The commission itself is composed of high-level 

representatives of the Danube River Basin riparian countries with territories of more than 2000 

km² within the Danube Basin (referred to as “Contracting Parties”), though some representatives 

are not ministerial heads.  One of the Contracting Parties is the European Union.  

Representatives of the Contracting Parties meet in what is termed the Ordinary Meeting Group to 

make “political decisions.”  The Ordinary Meeting Group is supported by a Standing Working 

Group, which provides political guidance.  Eight Technical Expert Groups provide technical 

advice and prepare technical background documents.  The Technical Expert Groups also oversee 

the work of technical Task Groups that perform various technical tasks. 

The ICPDR has developed an extensive, publicly accessible information system 

(DANUBIS), which it maintains and shares with all DRPC signatories and the European Union.  

DANUBIS offers access to information of many types, including detailed GIS data, commission 

reports, news articles, and other outreach materials.  The centerpiece of DANUBIS is the Danube 

River Water Quality Database, which contains data from ICPDR’s Trans National Monitoring 

Network (TNMN) as well as data collected by DRPC countries and other entities.  In addition to 

data, DANUBIS provides information on long-term trends in water quality and pollution loads in 

the major rivers in the Danube River Basin.  Surprisingly, ICPDR does not use a single machine-

based decision support tool, relying instead on a number of models and analytical tools and on 

expert advice from its internal and external technical and non-technical resources, including a 

sophisticated system of stakeholder and public involvement in decision making. 

Institutional Factors with Potential Relevance to LRGWQIDSS Design – Case Study 4 
  By far the transboundary water agreement with the most riparian countries of all the case 

studies presented in this dissertation, the institutional framework of the DRPC focuses intensely 
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on water quality issues, many of which are in common with the Lower Rio Grande/Río Bravo.  

As is the case with the other transboundary agreements studied for this dissertation, the history 

and structure of the ICPDR again reinforce the importance of the involvement of top-level 

officials, though not necessarily at the minister level, and of financial viability.  The ICPDR 

appears to have leveraged its integration of public, local stakeholder and NGO involvement in 

decision making to reduce controversy and enhance acceptance of commission decisions resulting 

in accelerated implementation of environmental programs and projects. 

An interesting institutional feature of the DRPC, which has an important bearing on the 

design of the LRGWQIDSS, is the convention’s intentional avoidance of specific transboundary 

water quality standards for water bodies of the Danube River Basin.  This feature of the DRPC, 

as well as other information gathered as part of the qualitative institutional analysis conducted for 

this dissertation, influenced the content of the TOR for the LRGWQI, which was originally drafted 

by David Eaton, Ph.D. of the UT LBJ School of Public Affairs, and highlighted the need for a DSS 

capable of supporting binational decision making related to water quality in the Lower Rio 

Grande/Río Bravo based on multiple numeric criteria.  As is the case with ZAMCOM (Case 

Study 3), the emphasis placed by ICPDR on data and information availability to decision makers, 

stakeholders and the general public, seemingly more so than on decision support tools, is also very 

relevant to the design of the LRGWQIDSS.      

CASE STUDY 5: THE RHINE RIVER (WESTERN EUROPE) 
Less than half the size of the Danube, the Rhine River flows 1,320 kilometers from its 

headwaters in the Alps to its confluence with the North Sea on the Dutch shore.  The river’s 

170,000 km2 catchment is home to 58 million people living in 9 riparian countries of Western 

Europe, including Austria, Belgium, France, Germany, Italy, Liechtenstein, Luxembourg, the 

Netherlands and Switzerland (Figure 2-7).  
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Figure 2-7. The Rhine River Basin. Source: Modified from Frijters & Jan Leentvaar 

(2003). 
 

High seasonal flow in the Rhine River motivated investment in extensive flood control 

measures in the basin, such as the construction of dikes along the Upper and Lower Rhine.  These 

actions have resulted in the loss of large stretches of natural floodplain and wetlands.  Water from 
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the Rhine is used for industrial production, agriculture, energy generation, municipal wastewater 

disposal, and drinking water, with more than 20 million people depending on the Rhine for 

drinking water (Frijters & Jan Leentvaar, 2003).  The Rhine is also Europe’s most densely 

navigated shipping route, connecting the world’s largest seaport, Rotterdam, in the Netherlands 

with the world’s largest inland port, Duisburg in Germany.  Vast industrial complexes were built 

along the river, such as the Ruhr, Main, and Rijnmond areas and most of Europe’s important 

chemical production plants are located along the Rhine.  Conflict between ecological concerns 

and beneficial uses of the river (above all in hydropower development) have been a common 

occurrence in the Rhine Basin (Frijters & Jan Leentvaar 2003).  Industrialization and population 

growth in the mid-nineteenth century lead to the discharge of large amounts of organic wastes into 

the river.  After World War II, water quality in the Rhine deteriorated further due to inflows of 

poorly treated sewage, industrial waste, drainage from salt mines, and agricultural chemicals.  

Large amounts of hydrocarbons, heavy metals, pesticides, and volatile organic compounds were 

discharged into the river, causing severe water quality problems in the 1950s and 1960s.  Since 

the 1980s water quality has improved in the Rhine River, although the river and some of its 

tributaries continue to suffer from water quality problems.  

Multinational accords in the Rhine River Basin are some of the oldest transboundary water 

agreements in the world, with some accords dating as far back as the 1815 Congress of Vienna, 

which established the Central Commission for Navigation on the Rhine (CCNR).  Revised in 

1868 through the Mannheim Act and re-chartered in 1963, the CCNR is the oldest active Pan-

European organization.  The main charge of the CCNR is to “ensure the freedom of navigation 

on the Rhine and its tributaries and maintain a uniform legal regime governing navigation along 

the full length of the river.”  In 1950, Switzerland, the Federal Republic of Germany, France, 

Luxembourg, and the Netherlands created the International Commission for the Protection of the 

Rhine against Pollution (ICPR) and, in 1970, the riparian countries of the Rhine Basin formed the 

International Commission for the Hydrology of the Rhine Basin (CHR) to develop joint 

hydrological measures for sustainable development of the Rhine Basin.  The three commissions 

operate independently of each other, but coordinate activities, cooperating on policy development 

and collaborating on projects. 
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Within the context of the LRGWQI, the ICPR is the institution with the most relevance to 

the LRGWQI, as it was formed specifically to address water quality concerns in Rhine Basin 

surface waters.  By design, the ICPR is only an adviser to the governments of the riparian 

countries of the Rhine Basin and the European Union.  The ICPR: formulates investigations into 

the type, source, and extent of Rhine pollution; recommends appropriate measures to reduce it; 

and prepares agreements between the participating countries.  Implementation and funding of 

measurements and activities are the responsibilities of the individual basin states.  The ICPR 

consists of the highest water officials from the different member states (Contracting Parties), which 

meet annually in a Plenary Assembly to decide on programs, finances, and formal procedures.  

Every three years, the presidency passes to another Contracting Party.  The Commission oversees 

the work of a Coordination Group, which meets quarterly to plan and coordinate the work of the 

ICPR.  The Commission is supported by a small international secretariat with a permanent base 

in Koblenz, Germany.  Three permanent Working Groups cover the areas of water quality, 

ecology, and emissions and a Special Project Groups address emerging issues of concern.  Expert 

Groups deal with specific problem areas related to the tasks of the Working Groups and Project 

Groups.  All groups consist of government experts from the ICPR member states.  Ministerial 

conferences are held every two to three years to formulate the policy goals of the ICPR and to 

assess and evaluate the activities of the Commission. 

The first years of the ICPR were dedicated to establishing a common understanding of 

pollution problems in the Rhine Basin and to creating a legal and institutional basis for 

cooperation, including development of joint monitoring programs.  The first common measures 

to protect the river against organic pollution were taken in 1970 with the elaboration of the 

Convention to Reduce Chemical Pollution.  Unlike the ICPDR in the Danube River Basin, which 

abstained from establishing transnational numeric water quality standards for the water bodies in 

the basin, the ICPR adopted a “Combined Approach” to water quality management.  In its Water 

Framework Directive, the ICPR established basic technology-driven source controls which were 

to be implemented as a first step.  The framework also: developed a list of priority substances for 

action at the EU level; prioritized the mitigation of substances on the basis of risk; and promoted 

the design of the most cost-effective set of measures to achieve load reductions of those substances 

taking into account both product and process sources.  The ICPR also: coordinates all the 
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environmental objectives in existing legislation; provides a new overall objective of good status 

for all waters; and requires action if measures taken to prevent or treat pollution are not sufficient 

to achieve these objectives. 

While public participation is an important feature of decision making in the Rhine Basin, 

public participation in the ICPR is highly structured and limited.  Public participation has been 

incorporated in recent conventions and regulations of many EU nations, including the riparian 

countries of the Rhine Basin.  For example, the UN Economic Commission for Europe’s 

(UNECE’s) Convention on Access to Information, Public Participation in Decision-Making, and 

Access to Justice in Environmental Matters (the Aarhus Convention) is based on three pillars: the 

right to access to environmental information; public participation in the making of environmental 

decisions; and access to justice in environmental matters.  Currently 34 states have ratified the 

Convention, while 46 states and the EU are signatories to it. 

The ICPR publishes and disseminates reports, organizes conferences and invites NGOs 

and the public as observers to some of its meetings.  NGOs have been invited to the Plenary 

Assembly and the meeting of the ministers of the ICPR as observers since 1998.  To qualify as 

an observer, an NGO must meet certain criteria, such as involvement with Rhine issues.  NOGOs 

must also be international in nature.  The Coordination Group decides on inviting recognized 

NGOs and external experts for Plenary Assembly meetings.  The ICPR also ensures different 

interests are represented equitably.  Although the ICPR Coordination Group is closed to NGOs, 

representatives of these organizations can participate in the Working Groups as observers or as 

external experts, if invited.  Only recently, have NOGs been allowed to contribute to all Working 

Group meetings. 

The ICPR maintains a website with information about the organization and about its 

activities.  Website visitors can access reports and submit requests for data and information on 

specific topics through the ICPR web portal.  The various Work Groups and Expert Groups also 

maintain databases used in carrying out assigned technical tasks.  However, the ICPR does not 

maintain a comprehensive data warehouse that is accessible to the public.  The ICPR also does 

not use a single DSS to aid the Water Quality Working Group, or any other permanent or Expert 

Working Group, on water quality-related issues. The ICPR does use a computer-based decision 

support tool to determine the effects of control measures on flood risks.  The GIS-tool named 
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“ICPR FloRiAn” (Flood Risk Analysis) enables the broad-scale assessment of the effectiveness of 

proposed flood risk management measures on the Rhine.  The tool uses flood hazard maps and 

associated recurrence periods for an overall damage and risk assessment for four receptors: human 

health; environment; cultural heritage; and economic activity.  For each receptor, a method is 

designed to calculate the impact of flooding and the effect of measures. 

The ICPR has been credited with improving the biological status and water quality of the 

Rhine and many of its tributaries by improving wastewater treatment.  For example, 96 percent 

of the population in the Rhine River Basin are now connected to a wastewater treatment facility 

((Frijters & Jan Leentvaar 2003).  These actions have enhanced the reach of migratory fish, 

restored riparian and wetland habitat, and reduced the negative impacts of Rhine River flood 

events.  Frijters and Jan Leentvaar (2003) conducted an assessment of the performance of the 

ICPR and produced a set of conclusions and recommendations (Table 2-1). 

Institutional Factors with Potential Relevance to LRGWQIDSS Design – Case Study 5 
From an institutional perspective, the ICPR a most mature organizations created as a result 

of a transboundary water agreement.  Its history and structure vary notably from that of other 

organizations studied as case studies for this dissertation.  With a mandate limited to scientific 

research and the proposal of evidence-based solutions to riparian countries, ICPR’s role in 

decision-making is relegated to persuasion and facilitation in external forums.  The ICPRs 

interaction with other organizations with similar and somewhat overlapping mandates sets it apart 

from other transboundary water commissions and affects its behavior.  The last two conclusions 

of Frijters and Jan Leentvaar (2003) subtly address these two points and their statements can be 

interpreted as suggestions for institutional changes that would grant more independence and 

decision-making capability to the organization.  The socioeconomic setting of the ICPR is also 

dissimilar to others.  Several comparable themes are also represented in this case study: the 

involvement of top-level officials, albeit not strictly as part of the ICPR, and financial viability of 

studies and projects, albeit also not strictly as part of the ICPR.  The ICPR itself does not put as 

much effort into public and local stakeholder participation as other transboundary institutions.  

This can be attributed lack of decision-making capacity and to the existence of alternative forums 

for public participation in decision making regarding water quality improvement in the Rhine 

River Basin.   
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Table 2-1. Conclusions and Recommendations for Improvement of the ICPR. 
 Source: Frijters and Jan Leentvaar (2003). 

Issue Conclusion/Recommendation 

Political involvement in technical matters  Too much political involvement can harm open discussion 
among experts and be injurious to flexibility in the search 
for common solutions.  The organization should seek to 
insulate technical panels from political influence. 

Poorly defined rules for conflict resolution A clear description of the rules on how to act in case of a 
(potential) conflict or disagreement between members 
should be included in the treaty of the organization. 

Lack of a coordination authority A coordination authority supported by a technical 
secretariat is valuable for continuity of work in the Rhine 
River Basin. 

Lack of Stakeholder involvement in 
planning and implementation 

The secretariat and the members of the organization should 
formulate clear and attractive common targets and organize 
stakeholder involvement in planning and implementation 
of measures. 

Lack of recognition and promotion of 
member country efforts 

The sharing of successes by the commission and each 
member state/institute will stimulate mutual confidence 
and enhance public and political support. 

Lack of institutional cooperation 

 

Scientific assessment of facts in the Rhine River Basin 
supports sustainable transboundary cooperation. 
Cooperation among the research-oriented CHR, ICPR, and 
CNR should be stimulated.  

Lack of basin-wide coordination 

 

To comply with the European Water Framework Directive 
and to avoid duplicating work among the existing 
organizations, the ICPR should seek to promote a 
sustainable Rhine River Basin approach for the whole 
catchment area, implementing IWRM as the task of one 
river basin organization. 

 
The recommendation by Frijters and Leentvaar (2003) that the ICPR “should formulate 

clear and attractive common targets and organize stakeholder involvement in planning and 

implementation of measures” can be interpreted as suggesting the ICPR has not placed sufficient 

emphasis on stakeholder involvement in decision making. 

The ICPR differs from other transboundary commissions in its lack of support for public 

access to data and information.  While the ICPR produces reports and provides information on 
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its web site, it only provides data and other specific information through data requests, which must 

be submitted and approved through a formal process, a reflection of the ICPR’s federated structure.  

While the ICPR uses ICPR FloRiAn to assess the effects of proposed control measures on flood 

risks, the organization does not use a single computer-based decision support tool to assess how 

new infrastructure could affect water quality.  Instead, the ICPR relies on external models, 

analytical tools, expert advice from its Working Groups, and the resources of its riparian member 

countries. 

CASE STUDY 6: THE MEKONG RIVER (SOUTHEAST ASIA) 
The Mekong River flows for 4,350 kilometers from its headwaters in the Tibetan Plateau 

to its confluence with the South China Sea at the Cambodian Coast.  Its drainage basin 

encompasses a total area of 795,000 km² and includes parts of Cambodia, China, the Lao 

Democratic Republic (Lao DPR), Myanmar, Thailand and Vietnam. (Figure 2-8).  In the most 

populous portion of the drainage basin, the Mekong River catchment includes a region of 

Indochina that is home to approximately 60 million people.  Over 100 different ethnic groups live 

within the boundaries of the Mekong River Basin.  

Regional cooperation between Cambodia, Lao PDR, Thailand and Viet Nam began in 1957 

with the creation of the Committee for Coordination of Investigations on the Lower Mekong Basin, 

also known as The Mekong Committee.  The United Nations endorsed the committee to address 

the financing, management and maintenance of water resources in the Lower Mekong Basin.  In 

1977, Cambodia left the Mekong Committee during rule of the Khmer Rouge.  This resulted in 

the establishment in 1978 of an Interim Mekong Committee comprised only of Lao PDR, Thailand 

and Viet Nam (MRC, 2011).  In 1995, the governments of Cambodia, Lao DPR, Thailand and 

Viet Nam established the Mekong River Commission (MRC) through an Agreement on the 

Cooperation for the Sustainable Development of the Mekong River Basin.  The MRC signatories 

agreed to manage jointly the share water resources and to develop the river’s economic potential.  

The People’s Republic China and Myanmar, the upstream countries of the Mekong River Basin, 

are “dialogue partners” of the MRC, but are not signatories to the treaty.  
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Figure 2-8. The Mekong River Basin. Source: Modified from Mehtonen, 

Keskinen & Varis, 2008. 
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The first activities of the MRC were to develop an IWRM strategy to shape a common 

transboundary understanding of the evolution of long-term planning, including a consultative 

process among the MRC countries.  The MRC set up procedures for exchanging and sharing data 

and information, monitoring water use, notifying and consulting among members about diversions 

and water uses, and developing use rules to protect water quality.  The MRC effectively applies 

the principles of IWRM, encouraging balanced and coordinated investments in the areas of 

irrigation and drought management, navigation, hydropower, flood management, fisheries, 

watershed management, tourism and environmental protection (MRC, 2011). 

The MRC consists of a governing council composed of the water or environment ministers 

of the four member countries, who convene annually to review the current state of the basin and 

seek agreement on management and development policies for water resources of the Mekong.  

The MRC Joint Committee, comprised of senior government agency (“line” agency) officials of 

the four signatory countries, can put into action any decisions.  The MRC Joint Committee is 

supported by the national line agencies of each riparian country.  The MRC Secretariat is the 

operational arm of the organization, carrying out technical and administrative functions under the 

management of a Chief Executive Officer.  The main functions of the MRC Secretariat are to 

provide technical advice on joint planning, coordination and cooperation.  The MRC Secretariat 

also facilitates regional meetings and works closely with the four countries’ coordinating bodies, 

the National Mekong Committees (NMCs), and other national agencies, including the 

governments of non-member states, such as the People’s Republic of China and Myanmar (MRC, 

2011). 

The MRC is funded by contributions from the four member countries and several major 

foreign aid donors. The World Bank and the Asian Development Bank (ADB) are the international 

financial organizations most heavily involved with project funding.  The MRC holds an annual 

Donor Consultative Group meeting to review project progress and present proposals for new 

projects.  Out of the transboundary water resources institutions studied for the case studies 

included in this dissertation, the MRC has perhaps the strongest connection with donors.  In 2008, 

over 90% of the MRC’s funding came from external donors (Mehtonen, Keskinen & Varis, 2008).  

Donors to the MRC include the governments of The Netherlands, Sweden, Germany and Finland, 

Denmark, Belgium and France.   
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Within the stated goals of the MRC are several important environmental and ecological 

objectives, including: 

• Monitoring of the basin’s environment, focusing on water quality, ecological 

health and social development 

• Increasing environmental and socio-economic knowledge in the Mekong River 

basin 

• Improving dissemination and accessibility of environmental information within 

the basin and between the basin and elsewhere 

• Ensuring that social, economic and ecological concerns are incorporated in 

basin-wide environmental policies and procedures in line with Article 3 of the 

1995 Agreement 

• Enhancing awareness and capacity of MRC and riparian government personnel 

to address transboundary and basin-wide environmental issues 

• Seek to plan and implement development initiatives with a view to minimize 

negative environmental impacts in the Mekong River Basin 

Despite these objectives, the Lower Mekong Basin waters continue to suffer from poor water 

quality, especially in heavily populated areas (MRC, 2011).  Evidence of water quality 

degradation has also been recently reported near the Mekong Delta and in some upstream 

tributaries in the lower basin, with high bacteria, nutrient and dissolved solids problems linked to 

population growth and agricultural development (Chea, Grenouillet & Lek, 2016). 

The decision-making process of the MRC is supported by a Basin Development Plan, 

which is the centerpiece of a joint, basin-wide planning process involving the four riparian 

countries of the lower basin.  The Plan seeks to implement the development principles of IWRM 

and engage in participatory planning that involves an expanding range of stakeholders.  The MRC 

has made data and information available to its member countries and to the general public for 

decades.  In 2010, the organization developed the MRC Toolbox which contains a knowledge 

base with hydrologic and meteorological data (Hydro-met), water quality data, GIS layers, and 

completed reports.  The toolbox is part of a broader Decision Support Framework (DSF), which 

was developed with funding from the World Bank.  The DSF has important components designed 
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to aid in decision making, including a Basin Modeling Package and various Impact Assessment 

Tools.  The DSF System was developed as a transparent modeling and analysis system that could 

be used by the member countries and financing organizations to check the effectiveness and impact 

of proposals and strategies for water resources developments.  The main purpose of the DSF is 

to assist planners in assessing the impacts of man-made interventions on people’s livelihoods and 

the environment.  A more comprehensive DSS is currently under development, with the 

hydrological component already in place.  In addition to simulating major hydrological aspects 

of river basin behavior, which can in turn support and inform negotiations on water-sharing issues, 

the DSS will be capable of assessing water quality impacts (World Bank, 2017). 

There have been institutional problems noted in the MRC.  One such problem noted by 

researchers is the absence of upstream riparian countries as signatories to the Mekong Agreement 

(Mehtonen, Keskinen & Varis, 2008). An important basic principle of cooperation in 

transboundary water resources management is that it must involve all participants, which is not 

the case in the Mekong, as China and Myanmar are important upstream riparian countries that are 

not signatories.  Departure from the full participation principle manifests itself in important ways, 

including inequitable water allocation and persistent pollution problems.  Regional cooperation 

among MRC countries can be undermined by upstream interests (i.e., China’s and Myanmar’s).  

Researchers have reported the MRC does not place sufficient emphasis on so called “vertical” 

cooperation (Mehtonen, Keskinen & Varis, 2008).  While horizontal cooperation among 

signatory governments usually functions rather well, vertical cooperation with lower governance 

levels is far more challenging.  Due to the centralization in decision making, cooperation between 

the different governmental levels in the lower Mekong is difficult (Mehtonen, Keskinen, & Varis, 

2008).  Also, in the Mekong region, most riparian countries continue to struggle with stakeholder 

participation efforts, making only feeble attempts to achieve the important IWRM goal of local-

level participation in planning and decision-making. 

Institutional Factors with Potential Relevance to LRGWQIDSS Design – Case Study 6 
Case Study 6 focuses on another multi-nation water agreement, the 1995 Mekong 

Agreement, which governs a transboundary river basin in many ways dissimilar to the Rio 

Grande/Río Bravo.  However, the case study reinforces several institutional themes presented in 
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the previous analyses of transboundary agreements.  While the lack of success in reducing water 

quality problems is always a concerning factor, available analysis of the MRC attributes this 

outcome to a consensus-based preference for development over ecological and environmental 

concerns on the part of the riparian member countries and, to some extent, also on the part of the 

financial and donor organizations (Mehtonen, Keskinen & Varis, 2008).  The same analyses, 

however, recognize the success in cooperative planning efforts with regard to development 

projects, which the MRC works hard to make financially viable.   

The MRC’s administrative capacity and strong relationship with international financial 

organizations and donor countries also has resulted in an impressive technical infrastructure for 

cooperative decision making, including the development of the MRC’s DSF system, which has 

been credited with enhancing decision making in important policy and offering transparency in 

multilateral cooperation on technical projects.  It is conceivable that the MRC’s technical and 

administrative infrastructure, along with the working relationships and trust built over the years 

among MRC member countries, could yield better environmental results, including water quality 

improvement, if the focus is directed more towards sustainable development and increased local 

stakeholder involvement in decision making (Mehtonen, Keskinen & Varis, 2008). 

As with the many of the other case studies presented the MRC’s DSF system is, first and 

foremost, a highly accessible knowledge repository for decision making.  The evolution of this 

system to include dedicated decision support tools follows a pattern of information provision 

before the development of dedicated decision support tools.  This pattern is an important insight 

for the design and development of the LRGWQIDSS. 

2.1.2.2 Summary of Institutional Factors with Potential Relevance to LRGWQIDSS Design 
Deduced from Case Studies of Transboundary Water Resources Management 
Agreements 
For the purposes of this dissertation, the main rationale for analyzing case studies of 

transboundary water resources management agreements was to investigate institutional factors that 

have a bearing on the design of the LRGWQIDSS.  The geographic and socioeconomic settings 

in the transboundary watersheds of the case studies analyzed for this purpose differ in many ways 

from that of the Lower Rio Grande/Río Bravo.  However, the circumstances faced by decision 

makers in these case studies share some similarities with the participants in the LRGWQI.  In 
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many of the case study settings, bacteria contamination from inadequate sanitary sewer 

infrastructure was an important water quality issue in need of planning and management.  

Notably this was the case not only for transboundary waters shared by developing countries, but 

also for case studies involving more developed nations, such as those in the Danube and Rhine 

River Basins.  In all cases, the transboundary basin commissions created under the transboundary 

agreements were mandated to develop plans to address issues affecting water resources 

management including water quality management.  Hence, for decision making associated with 

infrastructure planning, decision support tools capable of simulating the effect on water quality of 

factors such as population growth, industrial development and wastewater treatment, are 

important, especially within spatial and economic contexts.  Tools to estimate infrastructure 

needs and to help plan the location, size and treatment capacity of effective sanitary sewer 

infrastructure as well as tools to help estimate the cost of different infrastructure scenarios are 

useful to planners and decision makers developing transboundary water quality management plans 

like the one described in the LRGWQI TOR. 

An important theme that surfaces in the case studies of the institutions created under 

transboundary basin agreements is the role of local stakeholder input in decision making.  In the 

case of the DRPC, researchers credited local stakeholder participation for reducing disputes among 

the different parties and sectors involved and for increasing the efficiency and rapidity by which 

basin projects are implemented in the Danube River Basin.  Of the established transboundary 

basin commissions with underdeveloped stakeholder participation forums, such as the ICPR, 

scholars lament the lack of a more robust local stakeholder participation process, labeling as 

insufficient the access by local Rhine River Basin stakeholders to other pan-European public 

participation forums.  Accordingly, local stakeholder input in decision making, although 

narrowed by its description in the LRGWQI TOR, could be incorporated in some capacity into the 

LRGWQIDSS.  The case studies document that in each basin commission, senior government 

officials from each country participate in decision making.  Therefore, in addition to 

incorporating features that facilitate local stakeholder input in decision-making, the LRGWQIDSS 

should probably also be useful for engaging top-level government officials in decision making.    

An operational aspect of transboundary commission functions, rooted in the international 

agreements that establish them, is the way in which environmental and ecological goals are 
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established and measured in transboundary waters.  In particular, assessment of water quality 

(i.e., water quality standards and criteria) plays an important role in decision making associated 

with wastewater infrastructure planning and water quality planning in general. Each case study 

documents different institutional approaches to transboundary water quality assessment, from the 

NBI’s set of transboundary water quality indicators in the Nile and its tributaries, to the DRPC’s 

intentional lack of specific transboundary water quality standards for water bodies of the Danube 

River Basin. 

As previously mentioned, the LRGWQI TOR, takes an approach similar to that of the 

DRPC, opting to characterize water quality goals in broad narrative terms to avoid potential 

impasses stemming from disputes over which nation’s water quality criteria will dominate.  The 

LRGWQI approach leaves open the question of what numeric water quality targets to use during 

binational decision making associated with transboundary water quality planning and management 

in the Lower Rio Grande/Río Bravo.  While not directly addressing this problem, a DSS capable 

of supporting multiple or, in the case of the LRGWQI, dual numeric water quality criteria would, 

at least, not hamper progress in assessing planning and management scenarios, albeit assessed 

using different criteria.  Use of dual water quality criteria during transboundary decision making 

also helps to mitigate the perception of power asymmetry between the United States and Mexico, 

as was pointed out by Swain (2002), in the case of the Nile River Basin and as a general problem 

in transboundary waters by Jägerskog and Zeitoun (2009).   

An interesting observation made by UNESCO researchers in their 2003 assessment of the 

ICPR was the commission’s interaction with other organizations with similar, and somewhat 

overlapping, mandates.  According to these researchers, other Pan-European organizations affect 

the behavior and politics of the ICPR, which in turn affects the commission’s activities associated 

with water resources planning and management.  Like the ICPR, the IBWC is also a mature 

transboundary water commission and shares similar mandates with other transnational 

organizations such as the BECC (now part of the NADB) and the USEPA’s/SEMARNAT’s Border 

2020 Program, especially on issues associated with sanitation.  Consequently, the IBWC’s 

behavior and the activities associated with water quality planning are affected by these and 

possibly other organizations.  It follows then, that decision support tools that take into account 

the regulations and processes, not just of the six agencies participating in the LRGWQI, but also 
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of organizations such as the NADB, would be advantageous to decision makers involved in the 

LRGWQI.  The fact that some of the organizations not directly participating in the LRGWQI are 

also potential financiers of sanitation projects in the Lower Rio Grande/Rio Bravo watershed only 

adds to the saliency of this point.    

These studies illustrate the value of transboundary decision support tools. The case studies 

show that transboundary commission use of DSSs can be advantageous in water resources 

planning and management, including restoration and protection of water quality.  In the case of 

the NBDSS, uses of the system appear to be limited, for now, to national applications by NBI 

riparian countries.  In the case of the ICPR’s FloRiAn and (though not yet classified as DSSs) 

also the MRC’s DSF system and ZAMWIS have been applied in transboundary decision-making 

situations.   With the exception of the ICRP’s FloRiAn, all these decision support tools include 

a component that provides access to a multinational repository of transnational data.  A robust 

technical infrastructure for cooperative decision making is often credited for the development of 

sound policies as well as providing transparency in multilateral cooperation on water resources 

management projects, which are made more financially viable through this process.  Decision 

support tools that provide wide access to transnational data can also facilitate trust and enhance 

working relationships among riparian countries resulting in better environmental and development 

outcomes, including increased sanitation and water quality improvement. 
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2.2 Decisions, Decision Makers and Decision Support 

In order to develop coherent theories about DSSs or to develop effective decision support 

tools, scholars and researchers must first understand the basic nature of the decision-making 

process.  Merriam-Webster defines the term “decision” simply as “a determination arrived at 

after consideration.”  However, as Herbert Simon pointed out in his 1976 book Administrative 

Behavior (quoting Chester Barnard) "the decisions that an individual makes as a member of an 

organization are quite distinct from his personal decisions" (Simon, 1976, p.202).  Similarly, the 

decision-making process associated with groups of individuals, whether within a single 

organization or as part of a consortium of organizations, differs from that of individuals.  

Although computer-based decision support tools exist to aid individual decision making, this 

dissertation focuses on DSSs that support the decision-making processes associated with a group 

or groups of individuals. 

The concept of the DSS cannot be ascribed to a single researcher, as the notion of 

computer-based decision support developed simultaneously among a community of management 

science researchers.  However, development of the modern concept of the DSS is often ascribed 

to the work of Gorry & Morton (1971), who built and expanded on, Herbert Simon’s work on 

organizational decision-making in the 1950s.  Simon (1960) distinguished three main 

organizational decision-making phases: (1) the gathering of “intelligence” to identify changes 

needed for problem solving or system improvement (also referred to as “agenda setting” by Rogers 

[2003] and others); (2) the development of strategies, plans, or options for solving the problem or 

identification of needed improvement during the intelligence gathering phase; and (3) the 

evaluation of alternatives and “choosing,” which culminates in a solution choice.  The innovation 

developed by Gorry and Morton (1971) was to distinguish between structured, semi-structured, 

and unstructured decision contexts, and then to define DSSs as computer-aided systems that help 

to deal with decision-making where, at least one phase (intelligence, design or choice) was semi-

structured or unstructured (McIntosh et al., 2011).  

2.2.1 DECISIONS AND DECISION MAKING 
Whereas Simon and others approached organizational decision-making from a hiearchical, 

business admintration perspective, researchers in the DSS field, especially those involved in the 
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development of effective computer-based decision support tools, emphasize the nature and role of 

the inputs used and the outputs generated by the group decision making process.  Bonczek, et al. 

(1981) define decisions as “the output of a productive activity whose inputs include the intellectual 

efforts of an individual or group of individuals.”  The inputs and outputs mentioned in this 

definition are facilitated by elements such as data and information, expert opinion, computing 

hardware and software and other factors, situations, or tangible (or intangible) elements which 

contribute to the intellectual efforts made during the group decision-making process.  Of these 

facilitating elements, pertinent data and information are perhaps the most widely recognized 

factors supporting decisions resulting in outputs considered beneficial by the individuals or groups 

of individuals tasked with decision-making. 

Humans are information processors.  In the present era, which has come to be known as 

the “information age,” our ability to collect, share and process information has transformed the 

way decisions are made.  Among other technical innovations, human-machine information 

processing systems have contributed dramatically to the number, type and complexity of human 

activities and enterprises.  Computers not only make information available, they also have the 

ability to transform, store and display information for the benefit of decision-makers.  Computers 

can process high volumes of complex information with speed and precision, which has greatly 

contributed to the efficiency and effectiveness of decision-making.  This efficiency and 

effectiveness can be harnessed to facilitate human accomplishments, including the creation of 

numerical models of natural systems or models of artificial, human-made systems and even models 

of human thought processes and behaviors (Simon, 1976). 

The broad problem is how to integrate human decision-making capabilities with the 

capabilities of human-machine information systems to produce outputs that are deemed “good 

decisions.”  The treatment of this problem depends not only on advances in computer technology, 

but also on the methodology of “information-decision systems” (Kami, 1958).  Therefore, the 

primary focus of machine-based DSSs is in the interaction between decision-makers and 

computers.  Relatively unstructured decision activities, such as those involved in strategic 

planning, can benefit disproportionately from computerized support systems because the decisions 

contemplated are rarely binary or even easily evident. 
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Researchers studying organizational structures often cite an individual’s inability to 

process large amounts of information as the reason for the emergence of organizational coping 

mechnisms, such as division of labor and compartmentalization as key characteristics of 

organizational structures (Barnard, 1948, Simon, 1960).  Similarly, a modular structural design 

appears to be necessary in decision support mechanisms in order to construct a system capable of 

processing large amounts of information of various types (Bonczek, et al., 1981).  Modular 

systems possess the flexibility necessary to serve a variety of decision situations and to adapt to a 

number of contexts.  Furthermore, modular decision support structures increase the lifespan of 

DSSs by making it easier to improve or upgrade certain portions of a system without having to 

replace the system entirely. 

It is important to point out that information processing is only one component of decision-

making and, therefore, only one function of decision support.  In order to be useful as decision 

support tools, information processing systems need to be imbedded within a a more comprehensive 

information processing “procedure” system.  Bonczek, et al. (1981), refer to an information 

processing system that is imbeded in an information processing procedure system as a DSS. 

Designers of DSSs have the task of creating tools that transform raw information 

(quantitative or qualitative) into information that is useful to decision makers.  Often this involves 

discovering mathematical descriptions and/or algorithms that accomplish this task.  An algorithm 

is a step-by-step procedure for solving a problem or accomplishing some end (Merriam-Webster, 

2019).  Algorithms can also be described as formal information processing models or submodels 

that specify process patterns according to the inputs supplied and the type of outputs desired 

(Bonczek et al., 1981).  The term “model” is used in this context to describe a consistent 

mechanism or strategy by which information is transformed to gain insight about observed 

phenomena. 

The author has, so far, described the terms “data” and “information” as important elements 

which facilitate decision making.  However, it is useful to distiguish between these two terms and, 

in doing so, explain the connection between them.  One of the most widely used definitions of 

“data” is “a collection of facts which can be used as a basis for reasoning” (Mitra, 1990; p. 238), 

whereas the definition(s) of “information” most comonnly used in the decision support literature 

involve a characterization of information as processed or transformed data (Johnson et al., 1967, 
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Davis, 1974).  In other words, data can be used to convey information when it is assembled in a 

specific pattern or transformed in a way that makes it more comprehensible to the user.  Data can 

be used as a basis for reasoning; when used for reasoning, they become information.  How data 

are transformed into information and how information, in turn, is used in decision making are two 

topics that are at the center of decision support tool development. 

Earlier in this section, the author mentioned that unstructured decision activities benefit 

disproportionately from computerized DSSs. The reason for this lies in the nature of unstrutured 

decision making.  Whereas structured decision making refers to decision making that is routine 

and repetative, unstructured decision making deals with complex or illusive situations, the nature 

of which can be hard to comprehend (Simon, 1977).  These situations are not commonplace, so 

there is no time-tested strategy available to address them.  Unstructured decision-making 

situations may benefit from a customized treatment tailored to the specific situation. 

Ebert and Mitchell (1975) described psychological mechanisms for human processing of 

information as part of the decision-making process.  To the extent that information processing 

mechanisms or strategies can be precisely stated as an algorithm or set of algorithms, they can be 

incorporated into a machine-based routine (i.e., a computer program/application).  Hence, part of 

the information processing needed for decision making can be automated, thereby making 

unstructured decision situations more structured (Bonczek et al., 1981).  This is illustrated in 

Figure 2-9, which depicts decision-making situations as a linear spectrum between the 

“structuredness” and “unstructuredness” of decision making.  The principal goal of DSSs can be 

viewed as an effort to push the boundary between structured and unstructured decision making. 
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Figure 2-9. Decision-Making Spectrum. Source: modified from Bonczek et al., 1981. 

2.2.1.1 The Role of Decision Support in Decision Making 
Beyond the abstract concepts of structured and unstructured decision making, DSSs can be 

thought of as tools designed to relax the cognitive, temporal, spatial and/or economic limits often 

faced by decision makers.  DSSs allow a decision episode to unfold in more productive ways, 

with greater agility, innovatively, reputably and with higher satisfaction on the part of decisional 

stakeholders (Holsapple, 2008).  These concepts are illustrated in Figure 2-10.  

According to Holsapple (2008), the decision sponsor, participants in decision making, the 

decision implementer, and the consumer of the decision outcome can be separate individuals or 

several of these roles can be played by a single individual.  Use of a DSS in a decision situation 

has the effect of influencing the outcome of the decision-making process in at least one of the ways 

indicated by productivity, agility, innovation, reputation, satisfaction (PAIRS). 
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Figure 2-10. Role of DSSs in Decision Making. Source: Holsapple, 2008. 

DECISION MAKERS AND STAKEHOLDERS 
The term stakeholder is used often in the literature on DSSs, as well as in other research and non-

research publications.  Although used in a variety of contexts, the term’s meaning can be 

consistent across different fields of study.  With the exception of the gambling world, where the 

term stakeholder is used to describe a person who is entrusted with the stakes of bettors, the term 

stakeholder is used to describe an individual involved in or affected by a course of action (Meriam-

Webster, 2019).  The Global Water Partnership defines a stakeholder as “people and 

organisations who may impact or be impacted by the outcomes of a decision” (GPW, 2018).  

Applying these definitions to a decision situation, a stakeholder is an individual or group of 

individuals that experience(s) the effects of a particular decision.  Hence, within the context of a 

decision process, stakeholders are the consumers of the decision outcome(s) produced from a 

decision process (Figure 2-10). 

Decision makers or those who participate in the decision process may or may not be 

stakeholders.  Decision makers may or may not experience the effects of their decisions.  

Depending of the level of accountability to stakeholders, decision makers may experience varying 

levels of, or no perceptible, consequences as a result of their decisions.  Users of decision support 
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tools, even if involved in the decision process, may lack decision-making authority.  Sub-section 

2.4.1 provides a more detailed discussion of stakeholders, decision makers and users of decision 

support tools. 

2.2.1.2 History of Machine-based DSSs 
According to Bonczek et al. (1981), the term “decision support” first began to appear in 

technical articles in the early 1970s.  Following the concepts derived from the theoretical studies 

of organizational decision making that originated at the Carnegie Institute of Technology during 

the late 1950s and early 1960s, and the psychology and economics research done at the University 

of Chicago in the late 1960s and early 1970s.  The discipline is considered an outgrowth of the 

management information system (MIS) field, which was itself derived from database management 

study. 

Through its evolution, the DSS discipline underwent a broadening of scope, crossing over 

and incorporating other areas of study such as psychology, linguistics and computer science.  The 

DSS field of study differs from the MIS field in the emphasis it places on three specific issues: (1) 

incorporating models into information software; (2) providing useful information to higher level 

decision-makers to support comparatively unstructured decision-making; and (3) providing the 

user powerful, yet simple-to-use tools for decision making (Bonczek et al., 1981).  Another 

attribute that has contributed to the success of DSSs has been the ability to provide interactive and 

timely queries.  That is, the system ought to provide the user a means to interrogate the system 

easily, intuitively and in a timely fashion.  A query facility that permits nonroutine, nonstandard 

queries for data retrieval provides added value to the user and the ability of a DSS to perform ad 

hoc analysis of data is of value to a decision maker for providing information for decision making 

that would not otherwise be considered available. 

Early computer-based DSSs were referred to by a number of acronyms that reflected their 

multi-termed names, including executive information systems (EIS), group DSSs (GDSSs), and 

organizational DSSs (ODSSs). The names and acronyms given to these early systems were, in 

effect, the names given to the software used to query and retrieve data from a diverse array of 

databases.  Like most software of the time, decision support software ran on large main frame 

computers which were designed for single users.  In the late 1980s, DSSs began to incorporate 



 

210 
 

data analysis and modeling capabilities and the software started to become more interactive. 

However, few applications beyond managerial and business planning efforts were available at the 

time.  The mid-1980s also saw the proliferation, first of intelligent work stations and later 

personal computers which advanced the sophistication of DSSs in general. 

The development of the Gate Assignment Display System (GADS) by Texas Instruments 

in 1987 is one of the first recorded examples of a DSS application designed to improve the 

efficiency of a business process rather than organizational management or business planning.  

Designed for United Airlines, GADS is credited with significantly reducing travel delays by 

improving the management of ground operations at various airports (Turban et al., 2008).  In the 

1990s, advancements in computer hardware and software, including early forms of artificial 

intelligence, such as expert systems and neural networks, saw the broadening of the application of 

machine-based DSSs.  Likewise, the advent and widespread public use of the internet in the late 

1990s gave rise to web-based DSSs, which greatly increased the use of these systems throughout 

a variety of sectors and fields.  By the turn of the millennium, DSS software was being developed 

for applications as diversified as agronomy, the military, oil and gas production, and medicine.  

Although there is currently no single focus in the DSS discipline, most of the cutting-edge research 

being conducted at this time has seen a shift away from developing better analytical, and 

visualization tools or more interactive and intuitive user interfaces and towards gaining a better 

understanding of the nature and needs of the DSS users themselves as exemplified by the work of 

Douglas Engelbart.  

2.2.1.3 DSS Architecture and Design Frameworks 
Early classifications of machine-based DSSs identified six basic types of systems based on 

their use in decision making: (1) retrieval of isolated data values; (2) performance of ad hoc 

analyses; (3) production of standard reports; (4) estimation of consequences of proposed decisions; 

(5) proposal of decisions; and (6) decision making (Bonczek et al., 1981).  More recently, DSSs 

are generally expected to incorporate most, if not all, of these uses.  As early as the 1980s, special 

emphasis began to be placed on logic, linguistics and artificial intelligence as areas of advancement 

in DSS research.  Determining the data and information processing strategies that are appropriate 

for any given decision-making situation (i.e., logic) and properly communicating the meaning of 
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the results of the information processing efforts to the user (i.e., linguistics) are still the subject of 

intense research.  While basic functions associated with data base management continue to play 

a role, automation of logic and linguistics now forms the core of DSS research. 

Bonczek et al. (1981) proposed a generic description of DSSs which included three 

principal components: a language system (LS); a knowledge system (KS); and a problem 

processing system (PPS).  More recently (2008), Clyde Holsapple added a fourth component, 

which he termed a presentation system (PS).  Figure 2-11 illustrates how these components are 

typically arranged and interact within a generic DSS.  

 
Figure 2-11. Generic Structure of a DSS. Source: Modified from Bonczek et al., 

1981. 

Within the context of a DSS, the LS is comprised of the total of all linguistic facilities 

available to the decision maker by the system, which may include data retrieval languages as well 

as computational languages.  The user need not be cognizant of which of these two functions the 

DSS is performing as a result of a particular request or command. A system may react to a specific 

user request or command through a combination of these and other functions.  The user is, 

however, limited by the statements, commands or expressions they are allowed to make while 

using the system.  Thus, a language system provides the means by which decision makers are 

allowed to express themselves, but only in the ways provided by the DSS. 

DSSs must contain, or at least provide access to, facts (i.e., data and information) relevant 

to the decision problem domain.  These decision-facilitating elements are collectively referred to 

as the DSS’s problem domain knowledge.  A DSS’s ability to produce problem domain 
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knowledge, either from its own local databases or from remote databases, is referred to as its 

knowledge system or KS.  The KS of a DSS must be able to organize problem domain knowledge 

in a systematic manner.  This is typically done through a set of rules developed according to the 

manner in which the knowledge is represented or used in the system. 

The interface between expressions of knowledge in the KS and expressions of problems in 

the LS is referred to as the problem-processing system or PPS.  The PPS translates the relatively 

simple high-level language(s) of the LS into actionable requests.  In addition to “understanding” 

the user’s statements, the PPS must be able to provide relatively abstract, and often complex, 

representations of knowledge originating in the KS to the decision maker through the LS.  The 

capabilities of a DSS’s PPS are limited only by the imagination and the abilities of its designers 

and by the software and hardware used by the DSS itself.  An effective PPS must, at a minimum, 

take into account the boundaries of the problem domain faced by the decision-maker.   

Typical PPS capabilities can include information collection, data analysis, model 

formulation, modeling and even, problem recognition.  In all cases the capabilities of the PPS rely 

on information supplied by the user (i.e., required inputs, requests, commands, etc.) and data and 

information (i.e., raw and processed data) stored locally or remotely.  Figure 2-12 illustrates some 

of the potential capabilities of a PPS within the context of the decision support linkage schema and 

structure presented previously in Figure 2-11. 

Finally, the PS of a DSS consists of all the messages the system can emit (Holsapple, 2008).  

In this context, the term “message” refers to a host of potential visual and/or linguistic elements 

available for presentation to the user.  
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Figure 2-12. Generic DSS Schema Illustrating Typical PPS Capabilities. Source: 

Bonczek et al., 1981. 

The PS is, therefore, closely associated with the LS of the system, in that it must be able to present 

knowledge-conveying elements in a manner that is pertinent and easily understood by the user.  

Building on the research conducted in the late 20th century, Holsapple elaborated on 

different aspects and dimensions of the basic components of machine-based DSSs.  Through his 

own research, he developed an early classification system for DSSs and proposed basic 

architectural frameworks for each of the DSS types included in his classification schema.  

Holsapple is careful to point out that the architecture of DSSs does not necessarily define what the 

system is, but instead functions as an ontology that gives a common language for design, 

discussion, and evaluation of DSSs regardless of their variation in style and function.  

Recognizing that a DSS may contain, or at least provide access to, multiple types of knowledge, 

Holsapple began by classifying three different types of knowledge provided by these systems: 

descriptive knowledge, procedural knowledge, and reasoning knowledge (Holsapple, 1995).  

These are briefly described as follows: 

Descriptive knowledge – describes the state of the world of interest in a past state, present state, 

future state, expected state, speculative state or any other conceivable state.  It refers to the world 
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of interest, as conceived by the decision maker.  It could be actual, potential, hypothetical, 

symbolic, fixed, dynamic, physical, intellectual, or emotive. 

Procedural knowledge – characterizes how to do something; a stepwise specification of the 

process by which to accomplish a specific task or explore some procedural path or direction. 

Reasoning Knowledge – specifies what conclusions are valid given a known situation.  

Reasoning knowledge specifies the logic that links a premise with a conclusion. The nature of this 

linkage can include causal, correlative, associative, definitional, advisory, or analytical. 

Figure 2-13 shows the three types of knowledge described by Holsapple (1995). The 

vertical divisions within the KS indicate the three knowledge orientations that cut across 

knowledge types: domain, relational and self.   

 
Figure 2-13. Basic Architecture for a DSS. Source: Holsapple, 2008. 

According to Holsapple, knowledge oriented towards a domain is the descriptive, 

procedural and/or reasoning knowledge used by the PPS in dealing with the subject matter of the 

decision domain.  Relational knowledge is the knowledge the DSS has about the system user, 

including preferences, capabilities, behaviors, etc., and knowledge it has about the LS and PS used 
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to interact with the user.  Self-knowledge is simply the knowledge the DSS has about its own 

capabilities and behaviors, including KS content, organization, and what is allowed into, and out 

of, the KS through the PPS.   

In addition to the knowledge types and knowledge orientations in the KS, the DSS structure 

depicted in Figure 2-13 also illustrates two basic types of problem processing abilities within the 

PPS, first and second order abilities.  Holsapple defines first order problem processing abilities as 

the primary front-line capabilities of the DSS that contribute to a decision outcome, which include 

knowledge acquisition, assimilation, selection, generation and emission.  Second order abilities 

are concerned with oversight and governance of first order abilities and include coordination, 

control, and measurement functions.  The control and measurement functions of a DSS are 

involved in the manipulation of the five first order PPS abilities.  These functions may be 

specified by the user or may be built into the system.  A DSS’s PPS may also use a combination 

of user-specified and built-in control and measurement functions.  

The coordination abilities of a DSS‘s PPS govern the arrangement of knowledge 

manipulation tasks and the knowledge flows that connect these tasks to create configurations and 

sequences that are in the interest of the decision process (Holsapple, 2008).  Multi-participant 

DSSs require vastly more sophisticated coordination abilities to accommodate joint decision-

making situations.  These multi-user systems may also require a partitioning of the KS, LS and 

PS into private and public partitions to prevent the accidental release of confidential information.  

As with all other functions of the PPS, second order PPS abilities are governed by the LS of the 

system. 

Variations in the basic architecture shown in Figure 2-13 are related to the typology of 

DSSs.  Holsapple (2008) identified six categories of DSSs based on the knowledge management 

methods used by each type of system. The categories include: (1) text-oriented DSSs; (2) database-

oriented DSSs; (3) spreadsheet-oriented DSSs; (4) solver-oriented DSSs; (5) rule-oriented DSSs; 

and (6) compound DSSs.  The knowledge management techniques used by these systems dictates 

the character of the PPS included in each system.  Each management technique may emphasize a 

particular ability or set of abilities within the PPS.  Some of PPS abilities shown in Figure 2-13 

may be completely absent in some DSS types.  Knowledge management techniques used by DSSs 

influence the structure, organization and content of the KS of a DSS.  Each technique for 



 

216 
 

processing knowledge has access to the knowledge in a manner that is compatible with the 

processing technique.  Thus, the knowledge processing method characterizes each class of DSS 

by restricting the PPS abilities to the processing allowed by the method’s techniques and by 

limiting the content of the KS to representations that are compatible with the processing 

technique(s) used by the system.  The following sub-sections provide a brief description of the 

six DSS categories proposed by Holsapple based on knowledge management methods. 

TEXT-ORIENTED DSSS 
As the name implies, text-oriented DSSs make use of (digital) written materials as 

repositories of knowledge.  The KS of a text-oriented DSSs is composed of electronic versions of 

published and/or unpublished documents or written passages that are potentially useful to the user.  

This may include entire, or only portions of, books, periodicals, technical journals, reports, letters, 

memos, instructions manuals, transcriptions, or any other visual expression of language.  The 

knowledge contained in these repositories can be descriptive (e.g., examples of similar decision 

situations), procedural (e.g., mathematical formulae), or reasoning (e.g., proven remedies for 

unwanted situations).  The PPS of text-oriented DSSs is typically software that helps the user 

make requests, such as key word searches, or the manipulation of contents possible (e.g., language 

translations). 

The LS of text-oriented systems facilitates the PPS’s functions and often resembles 

established human languages.  Text-oriented DSSs provide the user with problem domain 

knowledge in a manner many times more efficient than would otherwise be possible, even when 

the decision maker has access to the same problem domain knowledge outside of a DSS.  

The PS of text-oriented DSSs can be simple in nature, as the content of the KS is typically 

limited to alpha-numeric or other language-expressing symbols.  However, recent innovations in 

software development and DSS design are pushing the limits of PS and PPS abilities in text-

oriented systems by incorporating text mining and content analysis. 

HYPERTEXT-ORIENTED DSSS 
Considered an extension of text-oriented DSSs, hypertext-oriented DSSs allow the flow of 

ideas through separate pieces of text.  This is possible through the use of hyperlinks.  Hypertext 
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DSSs first became popular as stand-alone applications used mainly by scientists in the mid-1990’s, 

but their use became common place with the spread of the world wide web.  Though not officially 

considered a DSS, a familiar example of a hypertext system is the on-line encyclopedia, Wikipedia.  

Using Wikipedia, a user can access additional or related information on a particular subject by 

clicking on hyperlinks dispersed throughout the text contained within each Wikipedia web page. 

As with virtually any web-based document or application available today, the PPS of a 

hypertext-oriented DSSs allows the user to create or delete hyperlinks of interest, thereby creating 

a flow of knowledge that is tailored to the interests and thought rationale of the decision maker.  

Hypertext-oriented DSSs can offer links to non-text based knowledge components such as graphs, 

diagrams, photographs and videos.  Hosapple et al. (2000) described the world wide web itself as 

a form of a DSS composed of a vast, distributed KS and a variety of untailored and also distributed 

PPS and PS. 

DATABASE-ORIENTED DSSS 
The relational database is a time-tested, and still common, method of knowledge 

management.  Relational databases contain data and/or information arranged in a highly 

structured, tabular format.  Database-oriented DSSs help the decision maker by tracking and 

selectively recalling knowledge pertinent to the decision domain.  The knowledge provided by 

these systems is typically descriptive and is arranged in a systemized fashion, often tailored to the 

decision domain.  In addition to, sometimes, very large amounts of data and information, the KS 

of database-oriented DSSs also contain detailed information about the type and volume of the data 

tables found in the system as well as details pertaining to the structure of each table (i.e., field 

names, types, linkage keys, etc.). 

The PPS of database-oriented DSSs typically has two basic abilities, a database control 

function that can manipulate or transform existing tables and/or create new ones and an interactive 

query system capable of fulfilling standard types of user requests for data extraction and 

presentation.  User requests must be made through a query language, which is part of the system’s 

LS.  The requested data/information is provided to the user through the PS of the system. 

Database-oriented DSSs often possess custom-built processing systems that provide non-

standard knowledge processing abilities which can be tailored to the decision domain or decision 
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situation.  Depending on the sophistication of the DSS, custom-built processors (application 

programs) can be made available to the user as part of the DSS’s standard abilities or the DSS may 

offer the capability, to the user, of building a custom processing application using other tools 

available within the DSS.  

Although the main focus of database-oriented DSSs is on the storage of relational data and 

the interactive search of existing and new data, database-oriented systems may also have the ability 

to analyze and/or transform data and information.  This can be accomplished through simple 

calculations or through more complex mathematical procedures or models.  Advanced versions 

of database-oriented DSSs can also draw from various sources of data/information contained in 

multiple operational systems.  These systems are referred to as data warehouses and are 

characterized by their ability to permanently assimilate content which is time-stamped and linked 

to specific types of metadata (Immon, 2002). 

SPREADSHEET-ORIENTED DSSS 
Like data-base-oriented DSSs, spreadsheet-oriented support systems contain 

data/information arranged in a highly structured fashion.  Although not generally focused on the 

relatability of the data contained with them, spreadsheet-oriented DSSs offer additional 

dimensions of data storage and processing not typically available in database-oriented systems.   

Spreadsheet-oriented systems are composed of “flat” table files (i.e., spreadsheets). The 

spreadsheets are comprised of cells that resemble the records in tables or simple databases. But, 

unlike the records in a simple database, the cells of a spreadsheet are arranged in a two-dimensional 

grid; each cell having its own unique name, which is based on its location on the spreadsheet grid.  

Spreadsheet cells have a definition and a value; a cell’s definition (either a constant or a formula) 

determines its value.  The formulas within spreadsheet cells can reference other cells within the 

same spreadsheet or in other spreadsheets.  In this sense, the KS of spreadsheet-oriented DSSs 

provide descriptive knowledge in the form of constant-associated values and procedural 

knowledge in the form of formulae that inform the system’s PPS how to derive a cell’s value.  The 

formulae contained in spreadsheet cells can be simple mathematical functions or more complex 

mathematical operations involving statistical or deterministic procedures and/or models. 
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In addition to descriptive and procedural knowledge, many spreadsheet-oriented DSSs 

have the ability to present information to the user in a variety of ways that facilitate comprehension 

of decision domain knowledge and which stimulate the development of useful ideas. Most standard 

spreadsheet programs include powerful and user-friendly graphing and illustration packages 

capable of presenting information in a variety of useful ways.  Spreadsheet oriented DSSs may 

contain PSs that automate the creation of visual representations of data and information that are 

tailored to a particular decision domain or decision situation. 

Spreadsheet-oriented DSSs can also hold linguistic knowledge by facilitating user requests.  

A good example of this ability is the use of macros, which are algorithms constructed within the 

spreadsheet environment.  Macros facilitate user requests by automating the sequence of key 

strokes necessary to make the request of the DSS.  The macros can be made available to the user 

as a standard part of the LS or may be custom-built by the user through other features of the LS. 

SOLVER-ORIENTED DSSS 
Solver-oriented DSSs derive their name from the concept of the solver.  The term “solver” 

can be defined as a procedure consisting of instructions that a computer can execute in order solve 

any member of a particular class of problems (Holsapple, 2008).  The problems addressed by 

solvers include a wide variety of subjects, such as accounting (e.g., net present value, depreciation, 

etc.), economics (e.g., demand elasticity, marginal costs, etc.), engineering (e.g., concrete failure 

analysis, predictions of dissolved oxygen in surface water, etc.) and many other subjects in a 

variety of fields.  Each solver is specific to each type of problem and the problems can include 

varying degrees of complication from simple formulae to complex mathematical procedures. 

Solver-oriented DSSs typically include more than one solver and so, by necessity, multiple-solver 

DSSs include a management system for the storage and use of the solvers contained within the 

system. 

There are generally two types of solver-oriented DSSs, fixed and flexible.  Fixed solver-

oriented DSSs incorporate all solvers within the DSS into its PPS, making it difficult for the user 

to add, delete or modify any of the solvers available.  Under a fixed solver-oriented system, a user 

is relegated to choosing and executing single solvers, or sets of solvers, from the fixed number of 

solvers available to the user in the PPS.  The PPS can acquire, assimilate select, and emit 
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descriptive knowledge in the KS as data sets, problem statements or reports.  Depending on the 

function of each solver, the descriptive knowledge in the KS can be shared by several of the solvers 

available to the user (e.g., two solvers using the same data set or presentation templates as input 

and outputs).  The LS of a solver-oriented DSS provides the user a means to express problem 

statements and requests, including which solver, or set of solvers, the PPS should use as well as 

the mode of presentation the PS should provide.  

Under a flexible solver-oriented system, the PPS is designed to manage and/or manipulate 

solvers in response to a user’s request.  In this sense, the KS of these DSSs contains procedural 

knowledge not otherwise available in the fixed solver-oriented DSS.  In addition to data residing 

in the KS, some solvers in flexible solver-oriented DSSs may require additional data to perform 

their functions, which can be provided either by the user or by other solvers that form the PPS of 

the system.  

The solvers in a flexible solver-oriented system may be arranged in solver partitions known 

as modules.  The user may choose to run a single module or a sequence of modules.  Modules of 

a flexible solver-oriented DSS require data generated by another module, or several other modules 

within the DSS, to solve a particular problem.  The user may or may not be aware of this 

requirement.  As a result, the DSS may or may not alert the user of the need to run other modules, 

depending on the sophistication of the LS and PS of the DSS.  In advanced flexible solver-

oriented systems, the PPS may select the appropriate module or modules and the proper run 

sequence needed to fulfill a user request without requiring instructions from the user.  

Alternatively, the PPS of advanced flexible solver-oriented DSSs may allow the user to modify, 

combine, or delete existing solver modules, or create new modules for customized use.  The 

capabilities of the PPS of flexible solver-oriented DSSs are reflected in the language available to 

the user in the system’s LS, which may also allow the user to request customized presentation of 

solver results. 

RULE-ORIENTED DSSS 
Based on a knowledge management method involving the processing of rules and rule 

sequences, rule-oriented DSSs incorporate reasoning knowledge into their KSs.  Given certain 

decision situations, which can be defined through objective qualifications, rule-oriented DSSs 
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provide conclusions considered valid if the information provided by the user is also valid.  The 

rules in a rule-oriented DSS take the familiar form of if-then statements, often supplemented by 

an accompanying explanatory statement.  Thus, rule-oriented DSSs are straight-forward advice 

producing tools that use information about decision situations as input and produce advice to the 

user as output. 

The KS of a rule-oriented DSS contains a set of rules associated with some reasoning about 

potential recommendations that a user might seek given a defined decision situation.  The KS of 

these systems may also contain a description of the current state of affairs within the decision 

domain.  The description of the current state of affairs in the KS may be inherent to the KS (i.e., 

built-in) or it may be supplied by the user, or it may be derived from another process within the 

PPS of the DSS.  In any case, rule-oriented DSSs often require a base case from which to start. 

In addition to advice or determinations, rule-oriented DDSs often also have the ability to 

provide reasons for the resulting advice or determination, basing the justification(s) for these on 

the input used by key rules in the rule sets that define the reasoning process.  The PPS of a user-

oriented DSS possess the ability to create, revise, or delete descriptions of the decision situations.  

When the PPS of a rule-oriented DSS establishes a premise (i.e., “if x is the case…”), it follows 

the action specified in the rule (i.e., “…then y is the conclusion”).  Actions resulting from one 

rule may clarify the decision situation further and provide direction for further forward reasoning, 

allowing premises for other rules to be determined as true.  The forward reasoning continues until 

some action is taken that produces the advice requested by the user or the PPS determines there is 

insufficient knowledge in the KS to yield a valid answer.  

In the case of “expert systems,” the PPS evaluates rules in a pertinent rule set, searching 

for those whose premise is true for the decision situation presented by the user.  In simple expert 

systems, the problem processing flow may depend on very limited LS elements available to the 

user (e.g., inputs of “true” or “false”).  In more advanced expert systems, the PPS may determine 

if a premise is true using various forms of knowledge, but the flow of reasoning is confined to a 

binary choice.  

Expert systems evolved from the field of artificial intelligence and are often cited as one 

of the first techniques employed by researchers in that field (Holsapple, 2008).  However, the 

binary nature of the forward reasoning approach used by expert systems is a serious limitation to 
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decision making.  The advent of “neural networks” in the early 1990s greatly improved the 

capabilities of rule-oriented DSSs.  With neural networks, the flow of reasoning is in various 

directions, and hence the establishment of premise within the PPS, does not depend on a binary 

choice.  Instead, neural networks are comprised of a system of interconnected nodes linked by 

simple rules and the system can create its own rules by using examples.  Neural networks are 

considered to be at the cutting edge of DSS research and represent the future of rule-oriented 

decision support. 

COMPOUND DSSS 

With increasing complexity in decision making there often comes a need for multiple 

knowledge management methods.  To satisfy this need, decision makers may opt to use separate 

tools that provide decision support using different knowledge management techniques or, if 

available and affordable, decision makers may use a DSS that incorporates multiple knowledge 

management techniques.  DSSs that incorporate multiple knowledge management techniques are 

referred to as compound DSSs. 

Use of multiple DSSs for complex decision making requires the decision maker to be 

familiar with the LS and PS of each system.  Moreover, the results of requests made in one system 

may be needed by the PPS of another system that uses a different knowledge processing technique.  

This places the burden on the user of translating the results, or result elements, of one DSS into a 

format that is compatible with other DSSs used for decision making.  This burden is lessened and, 

in some cases, eliminated through the use of compound DSSs. 

Holsapple and Whinston (1996) identify three approaches to knowledge management 

integration across DSSs: conversion, clipboard and confederation.  The conversion approach 

requires a method or tool capable of converting the output of one DSS into a form that can be 

processed by the PPS of another DSS.  The conversion tool, usually computer code, can be 

available as a stand-alone program/application or it may be incorporated into the PPS of either the 

knowledge-emitting or knowledge-acquiring DSS.  In either case, the conversion approach 

requires the overt, and sometimes cumbersome, transfer of output files from one DSS to another. 

The clipboard approach is similar to the conversion approach in that there may still be a 

need for conversion of one output format to a separate input format.  However, with the clipboard 
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approach, the transfer of knowledge from one PPS to another is accomplished through a shared 

intermediary repository known as a clipboard.  With the clipboard approach, needed conversions 

of output knowledge are accomplished seamlessly and the shared clipboard knowledge can be 

added to or discarded from a single clipboard, saving file storage space.  As in the case of some 

single-technique DSSs with built-in conversion software, developers of DSSs that use the 

clipboard approach must consider, in advance, the formats used by the PPSs of other potentially 

knowledge-acquiring DSSs. 

Confederated DSSs, while separate single-technique systems, share a common KS.  The 

confederation approach eliminates the need for both import/export translation software and 

clipboard repositories.  The KS of confederated DSSs contains representations of decision domain 

knowledge that can be processed by each system’s PPS.  Confederated DSSs are not common as 

single-technique DSSs that use conversion or clipboard integration approaches.  This is partly due 

to the difficulty of constructing KSs capable of accommodating different knowledge management 

techniques.  Faced with the challenge of constructing a KS capable of accommodating different 

knowledge management techniques, DSS developers may opt to design a compound DSS. 

In compound DSSs, there is one LS and one PS, which makes the system easier to learn 

and less demanding on the user, as the processes involved in import and export of knowledge 

across PPSs is typically automated.  Holsapple and Whinston (1996) identify two approaches to 

knowledge management integration within a compound DSS, nesting and synergy.  With the 

nesting approach, one or more knowledge management methods may be nested within the 

capabilities of a more global knowledge management method.  For example, a database-oriented 

technique may be nested within a primarily solver-oriented DSS or a spreadsheet-oriented 

technique and a rule-oriented technique may be nested within an a DSS possessing an overall 

solver-oriented knowledge management method.   

A compound DSS can eliminate the need to switch back and forth from PPSs contained in 

separate, single-technique DSSs.  This is done by providing one PPS that has the ability of using 

multiple knowledge management techniques, all of which are accessible to the user through a 

unified LS and PS.  When a compound DSS is synergistically integrated, its KS may be composed 

of a number of different elements of varying types (e.g., spreadsheets, database tables, solver 

modules, graphing modules, documents, images, rules, etc.).  The PPS of these systems may be 
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“intelligent” enough to ascertain the proper knowledge management method or set (and sequence) 

of methods to use to fulfill a request received through the LS from the user.  It may also have the 

ability to interpret requests well enough to choose the elements of the PS most useful to the user, 

or at least offer the set of choices of PS elements that are most likely to present knowledge to the 

user in the most useful way. 

Figure 2-14 shows an example of a compound DSS with synergistic integration.  In this 

example the first order abilities of the PPS include five different knowledge management 

techniques, as well as post-processing capabilities associated with the system’s PS. 

  

 
Figure 2-14. Example of a Compound DSS with Synergistic Integration. 

Source: Holsapple, 2008. 

The KS of the DSS depicted in Figure 2-14 contains elements or objects that represent all 

three types of knowledge previously discussed (i.e., descriptive, procedural, and reasoning).  The 

objects are manipulated by the system’s PPS which has the ability to employ any of the five 

knowledge management techniques in whatever sequence needed to fulfill the user’s request.   

Depending on the user’s request, the PPS may use a single knowledge management technique, or 
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multiple knowledge management techniques without the user necessarily being aware what 

technique the PPS is using to arrive at its response(s).  This is referred to as a “black box” 

approach in which significant effort is expended by developers to automate DSSs for the 

convenience of the user. 

The desire on the part of DSS designers to create DSSs that not only provide the benefits 

outlined in the PAIRS acronym, but are also, flexible, easy to use, and inexpensive, is 

understandable and should always be part of the overall goals of DSS design.  However, in 

striving to fulfill these goals, it is possible to overreach for one or more of these goals, creating a 

situation in which overemphasizing one of these qualities diminishes another to an unacceptable 

degree.  For example, an effort to automate (or over-automate) the PPS and associated LS of a 

DSS may increase the ease-of-use of the system, but it may also decrease the DSS’s flexibility or 

it’s acceptability.  Criticism of the black box approach centers around this the problem (Todd & 

Benbasat, 1987; Limayen, Banergee, & Ma, 2006).  To ensure the proper balance in design 

elements, DSS developers should adhere to established best practices in DSS design.  Best 

practices in DSS design are discussed in more detail in Sub-section 2.2.1.9 of this dissertation. 

2.2.1.4  DSS Focus and Specialization 
As advances in DSS research continue to identify common attributes of effective decision 

support systems, so too have researchers identified qualities that are desirable in DSSs used in 

specific types of decision domains or decision situations.  In the last decade (2010-2019), 

references to a number of focus-based DSS categories have become commonplace in the technical 

literature, along with the acronyms used to designate their specializations.  The following sub-

sections provide a brief description of some commonly referenced focus-based DSS categories. 

MULTI-PARTICIPANT/GROUP DSSS (MDSSS / GDSSS) 
As the name implies, MDSSs, also referred to as GDSSs, are machine-based systems 

designed specifically for joint use by multiple decision-making entities.  The number of 

participants in the decision-making group can be very large (e.g., participants using web-based 

systems) or very small (e.g., a group of four or five agency representatives).  The makeup of the 

groups can also vary with respect to participant background, interests and role in the decision-



 

226 
 

making process.  Specialization is necessary within the GDSS category to accommodate these 

and other variables, but most GDSSs share certain hallmarks that distinguish them from DSSs 

designed for single users.  These include a PPS with strong coordination capabilities, for handling 

and/or guiding participant interactions, and also advanced first order capabilities, for acquiring 

knowledge from, and emitting knowledge to, participants.  A second GDSS hallmark is a KS 

capable of assimilating, categorizing and storing this knowledge and serving as a group memory 

(Holsapple, 2008). 

Certain types of GDSSs also concentrate on cooperative aspects of group decision making 

by supporting participant negotiations.  These GDSSs are characterized by PPSs with second 

order capabilities designed to support problem-processing associated with participant groups that 

are typically organized into complex structures of authority, influence, and/or representation, 

which require specialized forms of communication and knowledge-sharing.  Recent advances in 

GDSS software are producing systems that enable the partial automation of group facilitation 

tasks, thus increasing the ability of facilitators to monitor and control the meeting process (Alda et 

al., 2011).  Future advances in the development of GDSSs could produce systems that provide 

indicators that suggest when additional information is needed to advance the decision-making 

process along or that make recommendations on mechanisms to help the group move towards 

agreement (Alda, Zarate, & Soubie, 2011). 

ENVIRONMENTAL DSSS (EDSS) 
DSSs developed for use in environmental decision domains are referred to in the decision 

support literature as EDSSs.  Some early definitions of EDSSs specify that these systems 

integrate models, or databases, or other decision aids, and package them in a way that decision 

makers can use (Rizzoli & Young, 1997).  This implies that EDSSs can be structured in a number 

of different ways, including solver-oriented DSS architectures, data-base oriented DSS 

architectures, or as compound DSSs that blend these and/or other knowledge processing 

techniques into a single integrated DSS structure.   

The proliferation of EDSSs in the past thirty years has resulted in the incorporation of a 

multitude of features and functions designed not only to increase the efficacy and efficiency of 

these systems, but also to broaden the range of decision domains in which they can be used.  
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Cortés et al. (2000) describe EDSSs as intelligent information system[s] that ameliorate the time 

in which decisions can be made as well as the consistency and the quality of decisions, expressed 

in characteristic quantities of the field of application.  Elmahdi and McFarlane (2009) describe 

an EDSS as an intelligent analysis and information system that pulls together, in a structured a but 

easy-to-understand platform (i.e. DSS), the different key aspects of the problem and system: 

hydrological, hydraulic, environmental, socio-economic, finance-economic, institutional and 

political-strategic.  Implicit in this definition is that EDSSs should combine database 

management, engineering, modeling, and group facilitation tools in a platform that can be used in 

a participatory decision-making framework.  

Decision support system developers argue that EDSSs can and do play an important role 

in helping to reduce the risks of environmental degradation resulting from human activities (Cortés 

et al., 2000).  However, despite the perceived value of EDSSs in informing environmental and 

natural resource management, these tools often fail to be adopted by intended end users (McIntosh 

et al., 2011).  McIntosh et al. (2011) reviewed the existing documentation associated with twenty 

EDSSs described in the DSS literature and reported that the extent to which the systems had been 

used operationally by the intended users was variable and not always clear.  The researchers 

noted that no clear relationship was evident between the extent/success of use and the actual 

characteristics of the EDSSs reviewed.  The lack of a correlation pattern between tool 

characteristics and tool use might indicate that the use of developed EDSSs is linked more to the 

tool development process than to the end product or to the targeted use itself.  Their paper went 

on to describe a set of recommendations for best practices in EDSS development.  Best practices 

in DSS development are discussed in more detail in Sub-section 2.2.1.9 of this dissertation. 

SPATIAL DSSS (SDSS) 
 SDSSs are a class of DSSs designed to aid decision makers whose decision domain 

includes a geographic or spatial component.  Applications of SDSSs can be found in a wide 

variety of decision situations, including (but by no means limited to) construction, transportation, 

urban planning, emergency/disaster response, agriculture, natural resource exploration, 

environmental protection, etc.  Decision situations involving environmental problems often have 
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a geographic or spatial component.  Therefore, while only some SDSSs can also be categorized 

as EDSSs, the vast majority of EDSSs are also SDSSs.   

The capabilities of SDSSs can vary from simple systems that are limited to providing static 

maps of different aspects of a decision domain to fully interactive web-based systems with 

sophisticated LSs, PPSs, KSs and PSs capable of: (1) acquiring and storing large volumes of 

knowledge from a large number of sources; (2) providing high levels of knowledge processing to 

a varied community of users; and (3) offering customized access to processed knowledge in 

nuanced and novel ways. 

Since the coining of the term spatial decision support system, the platforms over which 

most of these systems have been developed has been primarily geographic information systems or 

GIS (Yeh, 2000; Keenan, 2003).  GIS are essentially database management programs that include 

a geospatial interface, which allows analysis and visualization of georeferenced data.  Since their 

appearance in the late 1980’s, the capabilities and accessibility of GIS has been improving.  The 

direct contribution of GIS to decision making has been in the ability of these systems to store, 

manipulate and analyze data based on the data’s spatial location.  In this sense, much of the 

architecture of SDSSs is based on the database-oriented DSS model. 

Keenan (2003) has argued that, from an academic point of view, most GIS already meet 

the requirements of a DSS, as these systems contain an interface (i.e., LS and PS), a database (i.e., 

a KS) and some data manipulation and modeling components (i.e., a PPS), albeit mostly limited 

to spatial applications.  Hence, the techniques needed for a SDSS are already within most 

currently available GIS programs.  This view relegates SDSSs to being applications of GIS 

software that use a subset of the techniques available in these systems to support decision making.  

GIS also incorporate a pseudo-modular approach to problem solving by allowing the visualization, 

analysis and manipulation of different geospatial layers within the same area or view, thereby 

supporting different types of decision making or helping to navigate through different aspects of 

the decision domain.  A simple example, offered by Keenan (2003), is illustrative of this 

capability: a developer or financial institution may be interested in knowing if a parcel of land is 

within a 100-year floodplain to decide whether to invest or build on that land; these decision 

makers would likely be interested in superimposing the 100-year floodplain layer over the map 

layer that shows the location of the proposed development.  An emergency response or disaster 
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planning official may be interested in superimposing the same floodplain layer over a map or 

satellite image showing existing dwellings and/or a layer of streets and highways to evaluate 

evacuation routes. 

Among the impediments for the use of SDSSs is the expense involved.  Commercially 

available GIS software can be expensive.  The price of customizing commercially-available GIS 

software raises the expense of using these tools for decision support.  The cost of maintaining 

commercially available software (e.g., upgrading for use in new operating systems releases) locks 

the users into a cycle of additional expense, which in many cases is difficult to assess at the start 

of a project.  

Another potential impediment to the use of commercially available software for decision-

support is the proprietary aspect of the products used; a factor which may contribute to the “black 

box” problem discussed in previous sub-sections.  The source code for commercial software is 

almost never made available to users, or anyone else outside of a software company for that matter, 

for fear of the company losing competitiveness.  This not only creates a dependency on the 

software company for modifications and upgrades, it also obscures the algorithms and other DSS 

knowledge processing methods from the decision makers.  This lack of transparency has the 

potential of sowing distrust among the users/decision makers and could contribute to a loss of 

reputability, and ultimately acceptability, of outputs and associated potential outcomes.  As part 

of their standard operating policies, some government agencies require the use of non-proprietary 

software for analyses conducted, by permitted entities, in support of permitting decisions. 

The use of open-source GIS software, such as QGIS, and associated non-proprietary 

software libraries, can serve to mitigate the financial and transparency concerns linked to the use 

of proprietary software for the development of SDSSs.  Some open source software products are 

also associated with a robust community of users that often offer advice, and even support, for the 

use of these products.  To be sure, the use of open source software for SDSS development does 

not come without risks.  For example, some open source software products can contain malicious 

software or spyware.  Also, the level of support may not be adequate for long-term software 

maintenance.  Users of open source software are advised to conduct extensive research on the 

products they are considering for use in SDSS development and to stay current with the 

information made available by the pertinent user communities.  Nevertheless, the use of open 
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source software is a growing trend in the development of DSSs and especially in the development 

of SDSSs, despite the associated risks. 

MULTI-CRITERIA DSSS (MCDSS) 
An emerging area of high interest in DSS research is multi-criteria decision analysis 

(MCDA).  Multi-criteria decision making refers to decision making in the face of multiple, often 

confounding or conflicting, decision criteria.  The problems faced by decision makers, under 

circumstances in which multiple criteria are used to evaluate potential decision outcomes, share 

the following characteristics: (1) potential decision outcomes are evaluated using multiple criteria 

[attributes or objectives]; (2) the decision evaluation criteria, at the very least, interfere with one 

another [but, more often confound one another or conflict with one another]; (3) the criteria used 

to evaluate potential decision outcomes have different units of measurement or may not be 

reconcilable in other ways; and (4) measurement of some or all decision criteria is illusive 

(Baizyldayeva et al., 2013). 

Two major types of multi-criteria decision making are identified in the MCDA literature: 

multi-attribute decision making and multi-objective decision making.  The former concentrates 

on discrete or finite decision spaces (i.e., decision domains) and the later concentrates on 

continuous decision domains.  There are a number of mathematical methods that can be used to 

optimize solutions to both types of multi-criteria decision problems and several of these methods 

have been incorporated into specialized DSS software designed for specific multi-criteria decision 

situations.  These include methods such as the analytic hierarchy process (AHP), the multi-

attribute adaptive utility (MAAU) method, the multi-variate value (MAV) method, fuzzy goal 

programing (FGP) and Compromise Programming, just to name a few.  Razmak and Aouni 

(2014) conducted a review of 75 papers documenting the use of MCDA in DSSs in various fields 

and sectors and found that, in general, applications of MCDSSs was most frequent in addressing 

environmental problems.  They also found that the most commonly used method of analysis were 

AHP (24%) and MAAU (20%).  The following paragraphs provide a brief description of these 

two methods. 

The goal of all MCDA methods is to structure decision problems by systematically 

representing and quantifying the objective and subjective elements of the problem in a way that 



 

231 
 

allows these elements to be simultaneously related to each other and to the overall decision goals.  

The first step in the AHP method is to decompose a decision problem into a hierarchy of more 

easily comprehended sub-problems, each of which can be analyzed independently.  Having 

established this hierarchy, the decision makers evaluate the sub-problem elements, comparing 

them in pairs over multiple comparison rounds.  If objective information is available (e.g., cost-

benefit relationships), it can be used to compare sub-problem elements.  Otherwise decision 

makers must develop a consensus judgment about the relative meaning and importance of each 

element using their informed opinions and/or using expert advice.  The next step in AHP is the 

conversion of these evaluations into numerical values representing weights or priorities.  

Decision alternatives and associated scenarios are scored based on a mathematical aggregation of 

element weights.  This allows the decision makers to make an objective or semi-objective 

comparison of often incommensurable problem elements in a consistent manner.  

The MAAU method is based on the well-established economics principle of utility. The 

method uses the attributes of the decision options available to the decision makers to calculate the 

overall utility of those options to the decision maker(s) or stakeholders, under a specified or 

unspecified amount of uncertainty.  In this sense, the MAAU method is less flexible than AHP, 

as it leaves little room for the quantification of decision attributes for which rational utility cannot 

be easily assigned.  However, the computational aspect of the MAAU method is considered by 

proponents of quantitative MCDA methods to be more robust than AHP. 

The underlying presumption of the MAAU method is that a person's preference can be 

represented by a numeric function.  Under conditions of absolute certainty, economics theory 

postulates that consumer preferences can be expressed in terms of an ordinal utility function.  

Under conditions of uncertainty, the bundling of the goods/benefits and costs/risks becomes more 

complex and the calculation of utility becomes more complicated.  To estimate utility for the later 

cases, economists use cardinal utility functions or scales, which can serve to order preferences by 

creating utility indices for the value of goods bundles.  Assuming the number of possible bundles 

is finite, and that absolute satisfaction exists, utility indices differ only with respect to scale and 

origin.  A diminishing marginal utility then is a function of fixed constants assigned to the affine 

transformation that relates the indices. 
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At the center of the MAAU method is the construction of utility functions associated with 

the goods bundles, which incorporate both preferences and uncertainty.  The simplest form of 

the process is a two-step procedure by which the goods bundles are ordered least preferred to 

most preferred, assigning utility 0 to the former and utility 1 to the latter, and assigning, to each 

bundle in between, a fractional utility equal to the probability of an equivalent lottery (Keeney 

and Raifa, 1993). The difficulty with this approach lies in the difficulty in assessing utility in 

terms of value to the decision maker when combining potential benefit and probability.  

As with SDSSs, many of MCDA-DSS programs are proprietary and suffer from the same 

impediments for use (i.e., high cost and “black box” problems).  An additional impediment to 

MCDA-DSSs is the lack of flexibility inherent in the commercial programs currently available in 

the software market.  These impediments notwithstanding, the incorporation of MCDA into DSS 

development offers practitioners the ability to integrate policy preferences with technical 

evaluations of future conditions.  In the case of EDSSs, MCDA methods can be used to assist 

decision makers in making difficult tradeoffs between stakeholder interests and the environment.  

It should be noted that the term “MCDA methods” need not be confined to the various quantitative 

methods available for decision analysis.  Any DSS which addresses multiple decision criteria can 

be thought of as a type of multiple-criteria DSS.  MCDSSs can be helpful tools in situations of 

significant uncertainty and data scarcity.  

2.2.1.5 The Role of Models 
If decision makers could see into the future to assess, a priori, the outcome of their 

decisions, there would be little need for DSSs or for the decision domain knowledge these systems 

are designed to provide.  Unfortunately, or perhaps fortunately, human beings are not (yet) 

capable of observing future conditions.  But, decision makers can gain some insight into possible 

future conditions through the use of predictive models. 

Models are “description[s] or analog[ies] used to help visualize something (such as an atom 

[or future water levels in an estuary]) that cannot be directly observed” (Merriam-Webster, 2019).  

As such, models are representations of reality based on prior observation.  In addition to 

prediction, models can be used for explanation (e.g., identifying the factors that cause river levees 

to break), retrodiction (e.g., modeling the creation of our moon through planetoidal impact), and 
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emergence explanation (e.g., game theoretical accounts of cooperative human behavior [Eason et 

al., 2007]).   

While there are many kinds of models, including physical models (e.g., building mockups), 

conceptual models (e.g., process models or workflow diagrams) and numerical models (e.g., 

statistical regressions, deterministic environmental models), DSSs tend to include primarily 

process models and/or numerical models.  EDSSs, in particular, tend to include mostly numerical 

models, either of the deterministic or probabilistic types.  For the purpose of this discussion, the 

author will use the term “model” to refer exclusively to numerical models that produce outputs by 

transforming the information input into them.  Within this context, models can be conceptualized 

using a tripartite structure consisting of input conditions, mechanism, and output conditions (Grim 

et al., 2013). 

Having created a model of a particular process or decision situation, the decision maker 

can use the model to assess future conditions by altering model inputs and examining the 

associated model outputs.  The specific advantages of incorporating models into DSSs includes: 

(1) a decrease in analysis time required for manipulating data; (2) greater accuracy of analyses 

than is otherwise possible using individual calculations; (3)  standardization of forecasting logic 

leading to more universal acceptance of results; (4) a decrease in the amount of time needed for 

overall planning activities; and (5) production of more nuanced analyses based on factual 

information (Bonczek et al., 1981). 

A DSSs ability to formulate and employ models that are useful in decision making is not 

only reflected in the sophistication of the language available to the user for directing modeling 

functions and retrieving model output (i.e., the user-model interface and the user-data interface), 

but also in the internal language the DSS uses to ensure proper access, by the model, to pertinent 

data (i.e., the model-data interface). Figure 2-15 illustrates these generic interfaces. 

The decision maker may use the user-data interface (see b in Figure 2-15) to provide data, 

or other information, needed by the model or to retrieve data generated by the model, either as a 

standard data output generated by the DSS or, if available through the LS, as a customized data 

output in a user-specified format (i.e., reports, graphs, tables, etc.). 
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Figure 2-15. Basic Modeling Interfaces in a Generic DSS. Source: Bonczec et al., 1981. 

Through the user-model interface (a in Figure 2-15), the decision maker can request the 

model functions or sub-models (i.e., modules) they desire, and which are made available through 

the LS.  Depending on the system, the user may have the option of requesting some model 

functions without invoking others.  The information produced by executing one model or module 

may be immediately available for use by another model in the system.  The user may be required 

to specify the sequence of model or module execution or the system may choose the model 

execution sequence based on the user’s request.  The model-data interface (c in Figure 2-15) 

requires accessibility to one or more databases and/or to a linkage between models or modules. 

The degree to which a DSS provides modeling capabilities can vary from one system to 

another.  At one extreme, the user of the system may perform a large share of the model design.  

At the other extreme, model building may be automated to the point of being limited only by the 

language available to the user (e.g., type of output desired, kinds of input the model should have, 

etc.).  Systems with highly developed model formulation capabilities may possess well developed 

information collection capabilities.  For example, if a user provides ambiguous or erroneous 
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information through the LS, the system will reject the information, perhaps also providing an 

explanation of why the information is being rejected and suggesting an alternative. 

It is important to remember that models are only one potential component of a DSS and 

that with the rising sophistication and automation of model-centric DSSs comes a commensurate 

decrease in the flexibility of these systems.  As early as the 1970s, researchers noted that many of 

the models used in decision support frequently fell into disuse.  According to Sprague and Watson 

(1979), this is not typically due to the lack of the models’ mathematical validity or ease-of-use, 

but instead tends to be due to an insufficient amount of attention given, by the model designers, to 

data sources and, more importantly, to the utilization of model outputs by the model users.  In 

answer to this problem, researchers began advocating a more participatory approach to model 

development for decision making and a higher focus on the overall decision-making process rather 

than on the models themselves.  It is currently considered standard practice for DSS design to 

emphasize stakeholder involvement in the design, implementation and execution of models used 

in DSSs (McIntosh et al., 2011).   

Another early recommendation for the enhancement of DSS model design is the use of 

modular DSS modeling systems.  Modular systems were briefly discussed in Sub-section 2.2.1.3 

within the context of generic DSS architecture types.  Within the narrower context of model 

design and usage in DSSs, a modular design is advantageous because it facilitates model extension 

and/or modification, thereby increasing the flexibility, usefulness and durability of model-based 

DSSs.  Bonczek et al. (1981) defined modules as models that are capable of being used in some 

configuration with other modules to form a larger or more comprehensive model.  Modules can 

be thought of as “building blocks” for a model.  However, a model may or may not be used as a 

module.  The use of modular frameworks for decision support design is discussed in more detail 

in Sub-section 2.1.1.3. 

No model is a perfect representations of reality or “models are always wrong but sometimes 

useful” (an aphorism commonly attributed to the statistician George Box).   In a meta-analysis of 

technical papers on modeling, Grim et al. (2013), explored how model simulations fail and 

described the factors that contribute to model failure.  Grim and his co-authors conducted their 

analysis by exploring failures occurring during each part of the tripartite modeling structure 

described earlier in this section (i.e., input conditions, mechanism, and output conditions).  They 
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found that, for predictive models, the realization of failure usually comes at the point of 

“correspondence;” that is, when the model is tested against a known reality, and that the failures 

were rooted primarily in the uncertainty inherent in each component of the tripartite modeling 

structure. 

Uncertainty in input data, either measured, derived from previous work or assumed, can 

lead to uncertainties in model configuration (i.e., wrong model set up).  Uncertainties in the data 

used to calibrate a model can lead to the use of inadequate values of calibration variables.  

Similarly, uncertainty in the representation of the processes or situations being modeled can lead 

to errors in the model mechanism, either because the process is not well understood or because the 

abstractions used to simulate reality are too simplistic, or because the model is focused on facets 

of the processes or situations that are not relevant to the decision domain.  Uncertainty in the 

representation of output conditions leads to errors in correspondence with reality, present and/or 

future, either because model outputs cannot be interpreted correctly, yielding misleading 

outcomes, or because the outputs are the result of uncertainty/error propagation from the first two 

tripartite modeling parts, input conditions and/or the model mechanism. 

Voinov et. al. (2016) used the term “epistemic uncertainty” to collectively describe the 

sources of uncertainty outlined above. The term generally refers to uncertainty due to a lack of 

knowledge of the “true system” being modeled, which can manifest itself in various forms 

previously discussed.  Bijlsma et al. (2011) further identified three distinct categories of epistemic 

uncertainty: substantive, strategic and institutional. 

2.2.1.6 Participatory Modeling 
The role of modeling in GDSSs has been the subject of extensive research since the 1980s 

(e.g., Liang, 1988; Davey and Olson, 1998; Chen et al., 2018). More recently, there is a growing 

trend among model-centric DSS developers to place as much emphasis on the human dimensions 

of the modeling process as on the technical aspects of the models themselves (Voinov et al., 2016).  

Experts in the DSS field have developed a consensus regarding the value of stakeholder 

involvement, not only in group decision making itself, but also in the development and usage of 

decision support tools, and especially in the models used for group decision support (van Eeten et 

al., 2002; Jones et al., 2009, Voinvov and Bousquet, 2010).  The term “participatory modeling” 
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or PM is used to describe a form of model development and usage that incorporates the implicit 

and explicit knowledge of the stakeholders associated with a decision situation.  In the PM 

process, multiple participants co-describe the problem at the center of a decision situation, co-

develop a model of that situation, and use the model collaboratively to simulate the outcome of 

proposed solution(s), including planning scenarios, structural controls, policy interventions, etc.  

PM produces models that have a higher degree of ‘ownership’ by the participants involved in 

model development.  In addition to producing better decisions, the decisions produced though 

PM are more likely to be implemented.  The PM process itself is thought to reduce obstacles to 

the acceptance of the changes brought about as a result of the policies or interventions 

recommended through the PM modeling effort. 

 Voinov et al. (2016) conducted a review of over 200 technical articles that refer to 

stakeholder involvement in environmental modeling.  The authors identified a consensus among 

researchers regarding levels of participation or engagement in PM, the most passive of which was 

simply to inform stakeholders of the modeling efforts being conducted, which does not involve 

what the authors termed “true” stakeholder engagement.  The next level of participation, which 

the authors termed “extractive use,” limited stakeholder involvement to providing data and 

information used to develop and calibrate environmental models.  Higher levels of participation 

involved the collaboration of stakeholders in various activities associated with the modeling 

efforts.  The most intense participation cited by the authors occurred when local stakeholders 

actually initiated the PM process and were engaged in all aspects and stages of the PM process, 

including problem identification, model design, parameter selection, data collection, data 

validation, model application etc., up to, and including, decision formulation based on model 

outputs.  By most accounts this last, and highest, level of PM engendered high degrees of 

ownership of all aspects of the modeling effort.  Voinov et al. (2016) also identified seven general 

domains or components that present opportunities for stakeholders to engage in the PM process, 

these are presented in Figure 2-16. 
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Figure 2-16. Components of the PM Process. Source: Voinov et al., 2016. 

The two components of the modeling process in which stakeholders most commonly 

participate are supplying data for model development and calibration and evaluation of model 

results.  The second of these two components (evaluation of model results) sometimes includes 

aspects of PM that go beyond objective assessment of model outputs, especially when dealing with 

a heterogeneous group of participants (e.g., stakeholders of different ethnic backgrounds or 

nationalities).  In these situations, the credibility and acceptability of modeling results may be 

affected, both by the verifiable accuracy of model results and also by social values, national 

identity or, even international relations, all factors that intrinsically affect trust in the PM process 

and in its outcomes.  When intrinsic levels of trust are low, there is much greater need to build up 

two-way, shared communications slowly and sensitively; this is most likely to happen through 

trusted intermediaries (Voinov et al., 2016).  This notion was tested in the development of the 

LRGWQIDSS and is discussed in more detail in Chapter 4 of this dissertation.   

It should be noted that model outputs and the outcomes associated with model results are 

separate and distinct facets of the modeling process and the evaluation criteria for each differs in 

substance.  While model outputs are typically evaluated using technical measures (e.g., fecal 

bacteria or dissolved oxygen concentrations in surface water, etc.), modeling outcomes are often 



 

239 
 

evaluated based on long-term, broader scale results (e.g., water treatment costs, aquatic habitat 

loss, etc.).  In most cases, the evaluation criteria for the former (model outputs) is closely related 

to the later (simulated outcomes).  However, while the evaluation of model outputs typically 

assesses the accuracy of model results, the evaluation of simulated outcomes assesses the adequacy 

or desirability of the situations or scenarios represented by the model outputs.  

While both of these types of evaluations benefit from stakeholder participation, it is 

important to consider the internal and external factors that constrain the decision domain. 

According to Voinov et al. (2016), in addition to technical considerations, evaluation criteria need 

to be used in a way that is politically feasible, both locally and at other political levels.  For 

example, a locally developed conservation plan may need government agency approval before it 

can be implemented.  Hence, a comprehensive understanding of the internal and external factors 

that constrain the decision domain can be a useful part of any DSS-associated modeling effort. 

Participation in group modeling efforts associated with decision support can never be all 

inclusive, and so there is inevitably a balance between “breadth” to engender inclusivity, and 

“depth” to include experience and expertise.  Finding such a balance can be challenging and 

laborious and there is currently no guaranteed procedure for ensuring adequate stakeholder 

engagement in PM.  

Efforts to identify modeling participants with an understanding of the internal and external 

constraints affecting the decision domain may have the effect of reducing the epistemic uncertainty 

associated with DSS modeling (Sahin et al., 2014).  Bijlsma et al. (2011) identified three 

categories of epistemic uncertainty associated with PM: substantive, strategic and institutional.  

Substantive uncertainty refers to uncertainty associated with the “substance” of policy problems; 

for example, fecal bacteria contamination in surface water or aquatic habitat loss.  Strategic 

uncertainty refers to the uncertainty associated with how actors act or react to specific situations; 

for example, land owners’ reaction to a new land use policy or the reaction of public utilities to 

new planning procedures.  Institutional uncertainty refers to uncertainty associated with formal 

competencies, procedures and conventions; for example, the feasibility of implementation of new 

immigration policies or binational water quality planning efforts. 

In addition to including key participants in the modeling process, there are several technical 

and nontechnical approaches to reducing uncertainty in PM, including methods that employ 
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statistical theory (e.g., O’Hagan, 2012; Rinderknecht, et al., 2012), possibility theory (e.g., Page 

et al., 2012) and qualitative methods (Uusitalo, et al. 2015).  And, while these and other methods 

have focused on reducing, or at least characterizing, substantive and strategic epistemic 

uncertainty, few examples exist of methods designed to characterize and/or reduce institutional 

uncertainty in PM.  However, recent research has suggested the use of institutional analysis as a 

means of reducing uncertainty in environmental decision making (Cowie & Borrett, 2005; Maier 

et al., 2008; Primmer et al., 2016).  The use of institutional analysis in the design of EDSSs is 

discussed in more detail in Section 2.4. 

2.2.1.7 Visual Analytics 
As decision making becomes less centralized and more inclusive, the use of innovative 

communication and visualization tools becomes as important as the development of advanced data 

acquisition and processing tools normally associated with modeling.  Data is central to decision 

making and transforming data into useful information is an important part of decision support.  

Whereas a scarcity of data can limit the choices of decision makers or compel them to take risks, 

an overabundance of data can sometimes overwhelm decision makers, confounding their ability to 

process and make sense of large volumes of abstract facts and figures.  In recognition of this 

problem, Information Visualization became an important topic of research among database 

scientists in the 1980s and 1990s (Card et al., 1999).  While the emphasis of Information 

Visualization is on methods to present data in a more understandable manner, more current 

research focuses on simplifying and clarifying the actual transformation of data.   

Visual Analytics (VA) can be defined as the interactive visualization of automated analysis 

techniques to facilitate effective understanding, reasoning, and decision making on the basis of 

very large or complex data sets (Keim et al., 2008).  VA integrates information visualization with 

fundamental disciplines related to data management and analysis, spatio-temporal data, and human 

perception and cognition, all within an appropriate infrastructure and evaluation framework 

(Figure 2-17).   
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Figure 2-17. The Visual Analytics Framework. Source: Keim et al., 2008. 

In addition to visualization methods for contextualizing and clarifying data VA adds a 

dimension of transparency to the decision-making process.  The level of trust participants have 

in the methods, processes, and outputs of a multi-actor decision-making forum can influence its 

success.  The more transparent the data analyses and data transformations used as part of the 

decision-making process, the higher the levels of trust that are achieved among the participants 

(Voinov et al., 2016).  VA can create what Voinov et al., (2016) termed “boundary objects” which 

are items on which opposing or conflicting interests can agree without compromising their core 

stands of key positions.  VA can therefore be a conduit to achieving consensus among decision 

makers and stakeholders.   

VA has become an integral component of digital EDSSs, which are commonly used to 

support natural resource management efforts.  At the center of these efforts is the development 

of EDSSs that combine traditional scientific and engineering methods with geovisual analytical 

features that provide a means for the decision makers to perceive and understand the 

transformation of data into useful information.  Of particular interest to researchers is the 



 

242 
 

professed ability of EDSSs with geovisual analytical features to enhance the co-management of 

natural resources (Romañach et al., 2014, Grainger et al., 2016, Schütz et al., 2017). 

2.2.1.8 Co-management 
Co-management is defined as a “situation in which two or more social actors negotiate, 

define and guarantee amongst themselves a fair sharing of the management functions, entitlements 

and responsibilities for a given territory, area or set of natural resources” (Borrini-Feyerabend et 

al., 2007, p.1).  This form of natural resource management has been recognized by academics, 

analysts and natural resource management agencies as an alternative to traditional centralized, top-

down natural resource management approaches, as shared governance is thought to enhance the 

efficiency and long-term sustainability of natural resource planning and management efforts 

(Berkes et al., 1991).  Predating the promulgation of IWRM by almost a decade, the concept of 

co-management was instrumental in the development of the 3-E Principle of IWRM, which 

advocates inclusivity in decision making at multiple levels.  Co-management approaches, such 

as those associated with implementation of IWRM, have also been instituted in planning and 

management efforts involving transboundary water resources. 

Water resources co-management arrangements are often codified in legal agreements, with 

different degrees of power sharing, for joint decision making by the state, other forms of 

government, and/or communities, including transboundary settings.  However, research has 

shown that successful co-management of natural resources is a not a fixed-state solution, but rather 

a continuous problem-solving process, involving extensive deliberation, negotiation and, most 

importantly, joint learning within decision making networks (Carlsson & Berkes, 2005).  The 

role of joint learning is paramount in successful co-management situations (Armitage et al., 2008; 

Berkes, 2009).  Some case studies documenting IWRM-based efforts in transboundary water 

bodies highlight the importance of decision support tools with advanced geo-visual analytics for 

collaborative decision making and co-management. 

2.2.1.9 Best Practices in DSS Design 
Decision making is a complex process under most circumstances, but decision making 

within the context of natural resources management is often complicated by situations which 

require consensus building among a group of diverse stakeholders with differing views and, often, 
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with opposing interests.  Consequently, researchers involved in the development of DSSs for 

natural resources management have developed a set of best practices obtained through several 

decades of experience building GDSSs, SDSSs and EDSSs. 

An overriding theme when discussing best practices for the development of any type of 

DSS, but especially EDSSs, is to ensure user participation throughout the development process.  

For example, a DSS fails if it does not fulfill the needs of the end user, but successful DSS 

development is judged by whether the users adopt the DSS for decision making and user adoption 

has been shown to be influenced by user participation in the development process (McIntosh et 

al.,2011).  It follows then, that the focus of DSS and EDSS development efforts should not only 

be on understanding how to create more functional and useful systems for decision-making, but 

also on building a sense of ownership on the part of the user community.  This necessarily 

involves a design process that ensures an active role for the user in the design of the DSS as well 

as a good understanding of: (1) the scope of the problems that are to be addressed; (2) the needs 

and behaviors of the users working in their respective organizations; (3) the roles of users in those 

organizations; and (4) the roles the organizations have in the overall decision domain.   

BEST PRACTICES IN ENVIRONMENTAL MODELING 
Environmental modeling is a well-established area of research and practice.  As early as 

1925, engineers working for the US Public Health Service were developing numerical fate and 

transport models for common surface water pollutants, such as biochemical oxygen demand in 

urban sewage (Streeter & Phelps, 1925).  In the 1970s and 1980s a set of guidance documents 

developed by the USEPA sought to standardize the development of environmental fate and 

transport models (USEPA 1978, USEPA 1985).  In the late 1990s and early 2000s environmental 

modeling practitioners published journal articles on best practices for environmental modeling 

(e.g., Risbey et al., 1996; Van der Sluijs et al., 2005; Jakeman et al., 2006).  While these efforts 

concentrated on building better models, the current trend expands the focus of model development 

to include factors that increase the acceptability of environmental models as tools for planning, 

management, and policy development. 

One of the biggest concerns associated with model development has been the issue of 

uncertainty.  For model developers, the quantification of uncertainty in environmental models is 
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a technical exercise used primarily to qualify model results.  The study of the types and sources 

of uncertainty in environmental models is a complex subject beyond the scope of this dissertation.  

However, a great deal of model uncertainty is related to scarcity or incompleteness of the data 

needed for model input, calibration and verification.  Data collection to fill data gaps may either 

be impossible or impractical because of resource and/or time constraints, so modelers must resort 

to using assumptions and best professional judgement in lieu of hard data. 

Uncertainty in model output translates to uncertainty in predicted management outcomes.  

Therefore, the subject of model uncertainty touches on many aspects of decision support, including 

transparency, communication and accessibility, all of which influence user perception and trust of 

models used as tools in decision support.  Risbey et al. (1996) advocate a policy of actively 

exposing all “dirty laundry,” reasoning that, by completely exposing a model’s shortcomings, 

modelers not only display an attitude of complete transparency, which builds trust in the modeling 

process, but may also engender a sense of ownership in the model, as the user community sees that 

the feedback they provide the modelers helps improve the model.  Van der Sluijs et al. (2005) 

propose complementing mainstream technical methods of uncertainty analysis with qualitative 

approaches, such as investigations of alternative problem framings and the relative assessment of 

alternatives under consistent uncertainty.  These techniques promote further reflection and 

collective learning, which may help mitigate controversy and help to uncover inadequacies in 

existing institutional arrangements. 

Of course, it also makes sense to reduce uncertainty as much as possible prior to, and 

during, model development.  Jakeman et al. (2006) advocate establishing some sort of quality 

assurance procedure that documents important modeling elements, such as the source of the data 

used for model input and calibration, as well as the rates, constants, state variables and calibration 

procedures used in model development.  Beginning in 2005, the USEPA began requiring all 

environmental models developed for the purpose of guiding wastewater permitting decisions or 

other official agency actions, such as TMDLs, be preceded by the development of a quality 

assurance project plan (QAPP).  QAPPs not only detail the important modeling elements 

previously mentioned, but also provide detailed quality assurance information associated with the 

data used in the model.  QAPPs also specify the quantitative and or qualitative performance 

criteria for the model.  The USEPA also requires separate QAPPs for any data collection efforts 
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used for official purposes, including model development for the support of permitting decisions or 

TMDLs. 

Decision makers invariably possess knowledge that is useful to modelers and other 

decision makers.  Decision makers may have different perspectives on the same problem and may 

perceive and interpret model output in different ways.  These points all highlight the importance 

of communication between: (1) the modeler and the broader planning/management community; 

(2) between modelers and other researchers involved in providing decision support for that 

community; and (3) among the members of that community within the context of decision support.  

This communication between participants in a decision forum is most effective when it is 

reciprocal; that is, when all parties are motivated by the knowledge gained from their interactions. 

Model development for decision support should also be iterative.  It is unrealistic to 

expect to discover, process and understand all the knowledge needed to construct a model useful 

for decision support without a process of trial-and-error.  Especially once the preliminary 

structure of an environmental model is established, the use of conceptual demonstrations and 

prototypes can be helpful in guiding further model development.  Hence, flexibility and 

adaptability are important in the design of environmental models for decision support.  

Conversely, a lack of clear modeling objectives can lead to frustration and wasted effort on the 

part of both decision makers and modelers.  Sometimes modeling objectives change, as decision 

makers gain a more thorough understanding of the decision domain.  This can result in what 

modelers and project managers refer to as ‘scope creep.’  To avoid scope creep a modeler can 

seek to facilitate a collective understanding of the objectives of the modeling effort among all 

participants. 

In addition to scope creep, there are other modeling pitfalls familiar to most experienced 

modelers, including ignoring data limitations, overpromising, overelaboration, oversimplification, 

failing to select the right model for the right purpose, overlooking or dismissing existing 

knowledge, failing to accurately assess modeling resources and/or time constraints, and 

unintentional (or intentional) obfuscation.  To mitigate these and other modeling hazards, 

Jakeman et al. (2006) developed a set of 10 iterative steps for the development and evaluation of 

environmental models, including: 
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1. Defining the purpose of the model (definition of the problem and possible solution) 

2. Specifying the modeling context (specification of scope and resources) 

3. Conceptualizing the system (specification of data and other prior knowledge) 

4. Selecting of model families and features 

5. Choosing how model structure and model parameter values are to be found 

6. Choosing estimation performance technique and criteria  

7. Identifying model structure and parameters 

8. Conditionally verifying the model including diagnostic checking 

9. Quantifying uncertainty 

10. Evaluating the model or testing it (with other models, with simpler algorithms, with 

comparisons with alternatives) 

Jakeman et al. (2006) provide further advice on how to best carry out these steps and avoid 

costly missteps.  The following is a condensed summary of the advice offered by Jakeman et. al. 

(2006).  For the sake of brevity steps 4, 5 and 7 have been combined into a single category labeled 

“model selection.”  Also, some of the terminology has been modified to better fit the LRGWQI 

context. 

General Advice for the Development and Evaluation of Environmental Models   
1. Defining the purpose of the model: 

a) Beyond a quantitative assessment of the physical system, make efforts to gain a 

good qualitative understanding of the non-physical system(s). 

b) Elicit existing knowledge.  This not only makes the subsequent model more 

accurate, but it will focus discussion on topics relevant to model development and 

will spur engagement, engendering trust from decision makers. 

c) Identify what is known, but more importantly, identify what is not known, what is 

assumed and what decision makers say they would like to know; this begins a data 

gap analysis. 

d) Encourage discussion among decision makers.  Identify areas where there is 

agreement and areas where there is no agreement. 

e) Make a concerted effort to understand the decision situation(s) and the decision 

domain. 
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2. Specifying the modeling context (Identifying the Scope and Resources): 

a) Identify who will be the users of the model. 

b) Identify what questions the model must answer. 

c) Identify what model output is required to answer the questions. 

d) Identify the forcing variables (drivers). 

e) Identify the accuracy needed (e.g., level of aggregation of output). 

f) Identify the spatial and temporal scopes, scales and resolution needed and under 

what conditions. 

g) Identify the time frame for model completion. 

h) Identify the resources available (human, financial, temporal). 

i) Identify how flexible the model must be (this task is very difficult; it requires 

qualitative input; it affects resources and time constraints; it cannot always be 

determined at the start of a project). 

3. Conceptualization of the System (Physical, Social and Economic): 

a) Closely linked to Problem Definition but is more detailed. 

b) The effort placed in this step can save time and effort in subsequent steps. 

c) Define system boundaries and acceptable degree of aggregation of input (very 

difficult but essential; requires significant trial-and-error).  

d) Refine data gap analysis begun in step 1 (What input data are available? Are the 

data in the appropriate spatial and temporal intervals?). 

e) Assess the possibility of additional data collection. 

f) Identify the modeling assumptions that must be made. 

g) Identify simplifications and their acceptability to decision makers. 

h) Refine forcing variables and outputs identified in Step 2. 

4. Model Selection: 

a) Recognize that a deterministic model or stochastic model is not always needed. 

b) Recognize that model structure has a big influence on the data needed for input 

and calibration and vice-versa (i.e., the available data often limits the choice of 

models). 
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c) Always build on existing knowledge, but do not abstain from questioning. 

d) Complexity should be commensurate with needs (a good overarching principle is 

“simpler is better”). 

e) Trial-and-error is a proven vehicle for success, but time and resources can limit 

the viability of this approach. 

f) Make maximum use of the knowledge gained from Steps 1-3. 

g) Keep acceptable levels of uncertainty in mind when aggregating or disaggregating 

inputs. 

h) Freely elicit advice and opinion from users and other experts. 

i) Choice of models should not be influenced by the preferences of the developer, or 

compatibility with previous practice, or peer pressure, or fashion within technical 

communities. However, recognize that user/decision maker preferences, 

availability of software tools, agency policies, and shortage of time and resources 

are valid considerations in model choice. 

5. Choosing estimation performance technique and criteria: 

a) Performance technique and criteria should be commensurate with the expectations 

of the user (but, recognize that user expectations of accuracy and acceptable levels 

of uncertainty are not always clear at the outset). 

b) Technical considerations should, at a minimum, include assessment of prediction 

performance, robustness to outliers, bias, statistical efficiency, and power. 

c) Recognize that rounding errors, numerical instability and ill-conditioning of data 

will affect performance measures. 

d) Beware of parametric estimation algorithms, as they are output correctors that can 

mask problems with the model. 

e) Recognize that overparameterization can be problematic (i.e., can lead to 

overfitting to noise, ill-conditioning and misinterpretation of output). 

f) As with environmental models themselves, simpler model performance 

measurement methods are always preferred over complex ones. 
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g) There should be a contingency plan for what to do when the model does not meet 

the performance criteria. 

 6. Conditionally [calibrating and] verifying the model: 

a) The answer to the following questions should be conveyed openly and honestly to 

decision makers: How well does the model fit the observed data temporally, 

spatially and both temporally and spatially simultaneously? Does the model meet 

the performance criteria? If not, why not? How far from the performance criteria 

is the model output?  Where/when does the model perform well and not so well? 

b) If possible, use more than one verification data set. 

c) Understand that for some purposes, particularly increased understanding of the 

system and data, the modeling exercise may be useful even if the final model is 

poor in many respects. An inaccurate model may still shed light on how an 

environmental system works. 

d) Assess whether the results of the model make sense to you, to the user/decision 

maker, to other technical experts. 

e) Resist correcting model output; do not ignore potential problems with the model 

or input data. 

f) Check and recheck assumptions, input data, preprocessing of input data and 

postprocessing of output. 

6. Quantifying Uncertainty: 

a) Determine the level of uncertainty analysis expected by the user.  Present choices 

for uncertainty analysis. 

b) Error bars and confidence intervals make good visual tools but the modeler should 

be confident (and honest) about confidence ranges. 

c) Sometimes sensitivity analyses are as important as error analyses.  At the very 

least sensitivity analyses can focus attention on the most relevant aspects of model 

uncertainty. 

d) Recognize the nested and compounding nature of uncertainty in environmental 

models (e.g., theoretical error, measurement error, aggregation/disaggregation 
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error, rounding error, error associated with assumptions and simplifications, etc.).  

Explain, to the user, the relevant components of uncertainty propagation 

associated with the environmental model. 

e) Acknowledge that the full degree of uncertainty can never be represented as a 

single statistical value. 

7. Evaluating the model: 

a) Model evaluation should not be dominated by traditional measures of model 

accuracy, but rather by whether the objectives of the model were accomplished. 

b) Model validation should be a collective exercise among modelers and users.  

However, there should be a quantitative aspect to the exercise (i.e., 

spatial/temporal performance evaluation with data not used to construct the 

model). 

c) Model calibration and validation need not be completely consistent with all 

available knowledge. 

d) As with all modeling steps, but especially with model evaluation, transparency is 

of utmost importance. 

e) Unfavorable evaluations must necessarily be followed by assessment of input and 

calibration data, testing of assumptions, searches for processing or coding errors 

and, if necessary, reconceptualization of the model domain. 

f) Attention should be paid to “soft” performance criteria (e.g., speed, flexibility, 

etc.).   

Jakeman et al. (2006) also make several recommendations for operational performance of 

modeling tasks.  Modelers strike a balance between the resolution of model output, including 

accuracy, and the often resource-intensive computational efforts need for such output, reasoning 

that the level of user acceptance of uncertainty is dependent as much on decision outcomes as it is 

on cost-benefit relationships; decision makers may be willing to live with a certain degree of error, 

as long as it is consistent across a rank order of alternatives or modeling scenarios.  Jakeman et 

al. (2006) discuss minimum standards for model acceptability and the importance of pre- and post-

model documentation.  They advocate conducting as thorough analysis and testing of the models 
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as time and resources will allow.  They promote the production of a priori quality assurance 

documents that clearly state the quality objectives of the model, describe the rationale for model 

choice, provide justification for the methods used to assess model performance, and provide 

information about the source and quality of input and calibration data. 

BEST PRACTICES IN EDSS DEVELOPMENT 

Following sound professional advice and best practices for the development of 

environmental models can help overcome the challenges faced by environmental modelers.  

However, the task of embedding analytical tools, such as environmental models, into broader 

decision support applications presents its own set of challenges.  Because user participation can 

improve the development of both environmental models and DSSs, as previously discussed, many 

of the best practices discussed in the previous section are also applicable to the successful design 

and implementation of EDSSs. 

The influence of organizational factors on the design, adoption, and use of decision and 

information support tools was studied by Diez and McIntosh (2009), who found that the most 

relevant implementation factors appeared to be user participation, computer experience, perceived 

effectiveness, system quality, management support, and user support/training.  Subsequently, 

McIntosh et al. (2011) elaborated on the best practices in EDSS design and development.  The 

authors of McIntosh et al. (2011), a group of 27 experienced EDSS researchers and developers 

from academia, government, and business, analyzed 19 EDSS applications, assessing the systems’ 

strengths and weaknesses.  Applying their collective experience and judgement, the group 

developed a set of 25 best practice recommendations for designing, developing and implementing 

EDSSs.  The recommendations focused on four areas of design challenges related to: 1) user 

engagement; 2) system adoption; 3) cost and technology issues; and 4) evaluation.  The following 

is a summary of the advice offered by McIntosh et. al. (2011) to help EDSS developers overcome 

these challenges in a methodical manner. 
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General Advice for Design, Development, Implementation and Evaluation of EDSSs   
1. Addressing Engagement Challenges: 

a) Create a robust forum for end user participation in system development.  Ensure 

user feedback can be supplied easily, equitably, and free of admonishment. 

b) Investigate the bounds of decision making.  Beyond problem identification, 

define the decision domain surrounding the problem.   

c) Identify outcomes, incorporating considerations for values, attitudes and 

behaviors. 

d) Identify the end users and their roles and relationships.  Understand that users, 

decision makers and stakeholders may not always be the same individuals and that 

EDSS development and implementation may involve different participants.  

There may also be different types of users with different roles in decision making. 

e) Consider use of the EDSS at different organizational levels.  Ensure participation 

in EDSS development at all pertinent organizational levels identified. 

f) Dedicate resources for a requirements analysis and/or a usability survey. 

g) Work with the users to define clearly what constitutes success. 

h) Provide opportunities for users to discuss and challenge analytical assumptions 

and methods. 

i) Be as transparent as possible about how inputs are used and how outputs are 

generated. 

j) Discuss resource constraints and timelines with the users/decision makers.  

k) Provide feedback and confirmation of user input.  Discuss the viability and cost 

of design features and system modifications suggested from user input.   

l) Ensure that the expectations of funding organizations are in harmony with those 

of the end user.  Due to the iterative nature of EDSS development, the scope and 

timing of grant or contract deliverables are difficult to detail at the outset of a 

EDSS development project.  Competing commitments can sometimes interfere 

with the developer’s efforts to engage the users. 

m) Use prototypes and system demonstrations early and often. 
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2. Addressing Adoption Challenges: 

a) Ensure that EDSS development is user driven.  Guide, but do not direct system 

development.  Successful engagement with end users lays the foundation for 

adoption. 

b) Ensure user interfaces are commensurate with the roles and tasks of the users.  

Use vocabulary, navigation controls and look-and-feel attributes that are familiar 

to the user. 

c) Follow the principles of Human-Computer-Interaction (Schneiderman, 1998).  

Strive for consistency, minimize opportunities for input error, avoid user mental 

overload, etc. 

d) EDSSs must be easy to use.  Complexity should be reduced as much as possible 

and the systems should not require the user to acquire new skills or expertise to 

operate. 

e) Ensure the knowledge contained in the system can be easily updated.  

f) Provide good documentation (i.e., detailed user’s manuals) and electronic help 

capabilities.  Ensure the user does not rely on the developers for technical 

support. 

g) EDSSs should be flexible enough to be used, at least, in the specific ways that fit 

with the users and their organization and or to be modified without an inordinate 

amount of effort. Try to accommodate multiple uses. Anticipate changes in scope. 

h) Develop representatives or “champions” embedded within targeted organizations.  

This ensures responsiveness and improves the probability of initial adoption. 

i) Create a plan for continuity of system support, including a strategy for 

transitioning from development to support. 

j) Strive for broader organizational adoption.  Build capacity through training and 

long-term support.  Develop a means to accept and incorporate suggestions for 

continual improvement.  This will not only improve the system but will help gain 

wider adoption. 

k) Provide frequent demonstrations and use prototypes during development. In 

addition to enhancing end user engagement, these practices improve the 
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probability of adoption.    The testing of system capabilities should begin as 

soon as possible. 

l) Do not oversell the system.  Be open and honest about the system’s weaknesses 

and shortfalls. 

m) Uncertainty must be addressed prior to completion of the system because it affects 

adoption.  The output from EDSS tools must be trusted before efforts are made 

to better present it to the user. 

3. Addressing Business Costs and Technology Challenges:   

a) Perform a thorough assessment of resources and time constraints (i.e., a business 

plan); include costs of training and long-term support and maintenance.  

Developers often underestimate project costs and fail to plan for unforeseen 

delays, both of which can threaten adoption and longevity of the final EDSS. 

b) Develop and maintain scoping documents and produce progress reports.  Record 

the input received and development decisions made. 

c) Endeavor to use familiar operating platforms.  Assess the advantages and 

disadvantages of using open source versus proprietary software.  Proprietary 

software can be expensive but is often well documented and tends to be more 

reliable for long-term support and training.  Open source software can be an 

inexpensive alternative, free of licensing commitments; open source consortia can 

also provide, at least, passive support. 

d) Develop analytical tools incrementally.  Use an iterative approach allowing 

refinement of functionality only when needed.  Avoid high risk or unproven 

methods and technologies.  Make extensive use of user feedback. 

e) Minimize costs by avoiding scope creep and reducing the need for user training. 

Agree on clear objectives and functionalities at the outset and ensure these are met; 

provide detailed user’s manuals and embedded help tools. 

f) Incorporate modularity in the system design.  Flexibility is highly linked to 

longevity. 

g) Cultivate organizational commitment to long term support, both financial and 

logistical. 
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4. Addressing Evaluation Challenges: 

a) Establish the context for evaluation. Users, decision makers, project funders, and 

stakeholders often have different notions of success.  Ensure the proper 

measurement of pertinent outcomes. 

b) Assess the analytical capabilities of the system.  Evaluate not just the accuracy 

of analysis, but also the level of user satisfaction with the system outputs.  Ensure 

the accuracy of system data and system knowledge. 

c) Assess the application of the EDSS, including the role of the system in the 

decision-making process and the degree to which the system was, and is still, used.   

d) Assess the non-analytical contributions of the system.  Did the system help frame 

the problem(s) in a useful manner?  Did the EDSS advance learning?   

e) Be mindful of causality. Attribution of success is not an easy task.  Good 

questions to ask are: Could this outcome have occurred in the absence of the 

EDSS?  How did the EDSS contribute to this outcome? 
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2.3 Institutional Analysis 

Section 2.2 of this dissertation addressed the value of user participation in the design of 

EDSSs (see 2.2.1.9 Best Practices in DSS Design).  Section 2.2 also described the role 

users/stakeholders can play in the development of decision-support tools such as environmental 

models.  Sub-section 2.1.2 (Review of Transboundary Water Resources Management 

Agreements) reported that a lack of meaningful stakeholder participation is a common criticism 

not just of some river basin commissions established under transboundary water resources 

management agreements but also of the processes used to develop EDSSs for use by these 

commissions.  Common sense alone suggests that effective and efficient water resources 

management, including water quality planning and management, can benefit from participation of 

those who are responsible for taking actions, implementing measures and influencing behaviors 

that affect the quantity and quality of water resources.  Correspondingly, a great deal of research 

has gone into the dynamics of stakeholder participation in decision making associated with water 

resources management, including the development of decision support tools for this purpose (e.g., 

Jones et al., 2009; Sahin et al., 2014; Voinov et al., 2016).  While this research has centered 

around methods to identify, engage and involve relevant stakeholders in the design and 

development of EDSS tools, some EDSS and environmental model development efforts have 

focused on understanding how the internal and external organizational constraints affecting the 

decision domain ultimately affect the use and longevity of EDSSs (Elmahdi & McFarlane, 2012; 

Kuhn et al., 2016).   

Case studies illustrate that if institutional problems associated with water quality 

management are not addressed, progress on technical and management issues that commonly 

plague water quality planning and management efforts may not occur (Grigg, 2005).  

Development of tools designed to support decision making associated with these efforts would 

benefit from an assessment of the institutional arrangements currently in place to manage and 

protect water quality and of the interactions of the institutional actors involved in carrying out 

these tasks.  However, institutional analysis is not commonly mentioned among the methods used 

to enhance the development of effective decision support tools.   
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Planning and management associated with transboundary water resources such as those of 

the Rio Grande/Río Bravo involves a set of challenges unique to transboundary situations.  

Beyond issues of political boundaries and legal jurisdictions, economic, cultural and normative 

issues affect the interaction of actors involved in transboundary water resources management, 

including water quality management.  An analysis of the institutional arrangements currently in 

place to manage and protect water quality in the Lower Rio Grande/Río Bravo and of the 

interactions of the institutions and institutional actors involved in these endeavors not only informs 

efforts to develop a comprehensive plan to effectively and sustainably protect water quality in this 

portion of the river but also informs the design of tools created to support decision making in such 

settings.  In keeping with the observations of Voinov et al., (2016), understanding the interactions 

of the institutions and institutional actors involved in water quality planning in the Lower Rio 

Grande/Río Bravo reduces the epistemic uncertainty associated with the development of these 

tools.  The following sub-sections describe a systematic investigation of the formal and informal 

institutional arrangements currently in place to manage and protect water quality in the Lower Rio 

Grande/Río Bravo, including a qualitative study of the interactions between institutional actors 

currently involved in these efforts.   

2.3.1 INSTITUTIONS, INSTITUTIONALISM AND INSTITUTIONAL ANALYSIS  

 Merriam-Webster currently defines an institution as “a significant practice, relationship, 

or organization in a society or culture” or, as a second definition, “an established organization or 

corporation (such as a bank or university) especially of a public character.” Significantly, the term 

“organization” appears in both of these generic dictionary definitions of the term institution.  The 

fact is that defining the term “institution” has been controversial in virtually all disciplines that 

have aspired to study what the term represents, including history, political science, sociology, 

economics, psychology, business and other fields of study.  One of the most quoted definitions 

of the term “institution” was proposed by the Nobel Prize-winning economist Douglass North who 

succinctly defined institutions as the formal and informal rules that organize social, political and 

economic relations (North, 1990).  North further describes formal institutions as the codified 

constraints on human behavior and informal institutions as uncodified constraints on such 

behaviors, including mores, conventions, taboos, customs, traditions, and codes of conduct.  
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Notably absent in North’s descriptions is the term “organization.”  Nevertheless, insofar as 

organizations invariably formulate, promulgate and enforce certain sets of formal and informal 

rules, these entities can arguably be included in North’s broad definition(s) of institutions.  

Alternatively, political scientist, Oran Young, a contemporary of Douglass North, defines 

institutions as “social practices consisting of easily recognized roles coupled with clusters of rules 

or conventions governing relations among the occupants of these roles.” (Young, 1989, 32).   

Young’s conception of institutions distinguishes, sometimes ambivalently, between 

institutions and organizations, the latter of which he describes as “material entities possessing 

physical locations (or seats), offices, personnel, equipment, and budgets.”  To exemplify this 

distinction, the market would be considered the institution, while individual companies would be 

considered organizations.  Similarly, under Young’s definition(s) marriage is an institution, while 

the family would be the organizational manifestation of that institution.  This distinction is not 

always upheld in the political science literature and the terms “institution” and “organization” are 

frequently used interchangeably, even within Young’s own writings.  In any case, for all 

contemporary definitions of the term “institution,” regardless of discipline, formal and informal 

constraints on human behavior (i.e., rules, conventions, mores, etc.) and the individuals to which 

these apply feature prominently in the various conceptual interpretations of an institution.  

Accordingly, the study of institutional influences on natural resources management, including 

water quality planning and management, should focus on these two definitional components. 

A variety of analytical methods have been used to study the role of institutions in the 

management of surface water resources (e.g., Lubell, et al., 2002; King, 2006; Rahaman, 2009; 

Imperial, 2012; Burright, 2012).  A number of these analytical methods have been used to 

investigate institutional arrangements and the behavior of institutional actors and their effects in 

transboundary water bodies (e.g., Frisvold & Caswell, 2000; Schlager & Heikkila, 2009; 

VanNijnatten et al., 2016).  Similar institutional analysis methods, both quantitative and 

qualitative, have been applied more narrowly to study water quality management in transboundary 

water bodies (e.g., Bennet, 2000, Bernardo & Gerlak, 2012; Frisvold 2012).  These studies 

provide a rich source of background information for the type of research conducted for this 

dissertation.  In collaboration with David Eaton, Ph.D. and graduate students participating in the 

LRGWQIDSS, the author conducted the qualitative research detailed in Sub-section 1.0.11.1 of 
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this dissertation to investigate the institutional factors that influence decision-making associated 

with water quality planning and management of the Lower Rio Grande/Río Bravo.  The goal of 

the research was to use the inferences and insights gathered from this research to guide the design 

and development of the LRGWQIDSS.  The following sub-sections detail how the findings from 

the research were used in the design of the LRGWQIDSS. 

2.3.1.1 Institutionalism and Institutional Analysis Methods 
Contemporary institutional analysis is rooted in the institutionalist movement of the 1970s 

and 1980s.  Prior to these decades, the analysis of institutions was conducted primarily under 

formal legal and administrative approaches and was subsumed under theoretical frameworks 

associated with public administration (i.e., public administrative theory in the US and 

administrative science in European countries).  Influenced heavily by Common Law and Roman 

Law, respectively these approaches to the study of institutions have collectively been referred to 

as ‘old institutionalism’ (Thoenig, 2003).  In the decades following the social upheavals of the 

1960s, in the US and other western countries, scholarly interpretation of perceived institutional 

failures coincided with the nascent field of policy analysis, which brought the study of institutions 

back into the research agendas of several social science disciplines.  The result has been described 

as the “new institutionalism” movement (March & Olsen, 1984), which generated a variety of new 

theoretical approaches to the study of institutions.  Classification of the various new 

institutionalism schools into specific disciplines is confounded by the disciplinary admixture and 

ambiguity of the different approaches.  For example, both rational choice institutionalism and 

historical institutionalism have been described as being rooted in the field of economics. 

An exhaustive discussion of institutional analysis methods is beyond the scope of this 

dissertation.  However, it is instructive to present an overview of institutional analysis methods 

used to study institutional arrangements associated with water resources management.  These can 

be categorized into methods developed within rational choice institutionalism, historical 

institutionalism, and normative institutionalism schools. 
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RATIONAL CHOICE INSTITUTIONALISM METHODS 
Institutional analysis methods classified under the rational choice institutionalism school 

are informed by rational choice economic theory, which assumes that utility maximizing 

individuals are the central actors in a given socioeconomic process.  Under this view, institutions 

emerge, and are perpetuated, because they fulfil functions that maintain or advance the self-

interests of the actors affected by these institutions.  The methods used to analyze institutions 

under a rational choice framework make use of theoretical concepts such as transaction costs, 

principal-agent and game theory.   

Transaction Costs Analysis 
Originally introduced in 1937 by economist Ronald Coase, the concept of transaction costs 

and their role in organizational economics was expanded into the study of institutional dynamics 

in the 1980s by authors such as Oliver Williamson and Douglass North.  Underpinning the 

conceptual framework of transaction cost theory is the notion that factors such as measurement 

costs, enforcement costs, the costs incurred by ideological attitudes and perceptions and the size 

of the “markets” (or in the case of natural resources, the size of the resource itself), shape the 

institutional arrangements that emerge and prevail.  Under rational choice economic theory, the 

institutional equilibrium reached is a product of the minimization of the costs associated with these 

factors.  Hence, an analysis of these costs yields valuable insight into the behavior and interaction 

of institutional actors. 

Used primarily to analyze the feasibility of implementation and/or to predict the 

effectiveness of proposed policies, transaction cost analysis has also been used to investigate the 

costs and benefits of existing, or potential changes in, institutional arrangements governing water 

resources management.   Thompson (1999) examined the institutional transaction costs of two 

water quality control policies to gage the feasibility of their implementation.  Similarly, Rees & 

Stephenson (2014) analyzed the transaction costs of instituting a nonpoint source water quality 

credits program in the Chesapeake Bay watershed.  In theory, transaction cost analysis could be 

used to understand the motivations and interactions of institutional actors under existing 

institutional arrangements associated with water resources management in the Lower Rio 

Grande/Río Bravo.  Transaction costs, though a factor in institutional dynamics, is only one of 
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many motivations driving institutional actions, institutional change, and interactions among 

institutional actors (Lubell, et al., 2002).  Consequently, to help guide the development of tools 

designed to support decision making in water resource management, transaction cost analysis 

should be coupled with other institutional analysis methods in order to provide the insight needed 

to understand decision making and thereby aid DSS design.  

Principal-Agent Analysis 
The principal-agent theoretical framework emerged in the 1970s out of the exploration of 

the principal-agent problem, also known as the agency dilemma, which occurs when an entity (the 

“agent”) is in the position of making decisions, taking actions on behalf of, or that impact, another 

entity (the “principal”).  In these situations a difference in motivation between agent and principal 

can lead to agents acting in their own self-interests, which may be contrary to those of the principal.  

This inherent conflict of interest arises when activities useful to the principal are costly to the agent 

and observing the activities of the agent is costly to the principal.  These opposing interests 

coupled with information asymmetry between principal and agent lead to an intrinsic moral hazard 

rooted in rational choice economic theory.  The conceptual framework of principal-agent theory 

has been extended to the study of institutions.  Under this framework, power dynamics is 

emphasized over the dynamics of collective action (Martimort, 1996; Moe, 2005).   

Within the context of water resources management, institutional analysis based on 

principal-agent theory has been employed as a means to analyze or evaluate water-related policies.  

For example, Hartje (2008) used a principal agent framework to analyze the institutionalization of 

IWRM as a prevailing policy within the World Bank.  Similarly, Seppälä (2002) analyzed 

barriers to stakeholder participation in water and sanitation policy development in complex 

institutional environments using a principal-agent conceptual approach.  While principal-agent 

analytical frameworks can provide valuable insight into the motivations and constraints that 

influence the actions of institutional players, the framework is typically focused narrowly on 

interactions defined by contractual or intra-organizational structures and is not easily applied to 

the analysis of inter-institutional interactions or informal institutional arrangements.  This narrow 

focus can limit its usefulness in providing insight into multi-organizational decision making, which 

in turn limits its usefulness in LRGWQIDSS design. 
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Game Theoretical Analysis 
Game theory emerged in the 1930s as researchers applied mathematical models to the study 

of strategic interactions between rational decision makers.  As such, game theory is rooted in the 

wider theory of rational choice.  Originally conceived as the mathematical representation of zero-

sum interactions (i.e., games) between two individuals, game theory was expanded in the 1940s to 

include cooperative games between several players.  The theory has been used extensively in the 

fields of economics and political science and has also been applied to the study of organizations, 

contracting, and general decision making.  Beginning in the 1990s, game theory began to be 

applied to the study of institutions; initially as extensions of the application of game theoretical 

concepts to organizational theory and decision making within organizations and later to include 

the study of collective strategic behavior in general.  In the 2000’s, the concepts of cooperative 

game theory, which deal with the structure, strategies and payoffs of coalitions of individuals, were 

used to develop empirical analytical methods applicable to the study of institutions (e.g., Greif, 

1992; Walliser, 2006; Binmore, 2010; Ambrosino, 2013). 

Since cooperative game theory explores decision-making among multiple players in 

strategic situations, which depends not only on an individual’s behavior but also on the expected 

behavior of others, it enables the examination of institutional elements exogenous to each of the 

interacting individuals and these elements’ influence on the behavior of individuals in interactive 

situations.  In principle, game theoretical analysis can capture features of the decision-making 

environment such as asymmetric information situations, hidden actions, uncertainty, and the 

importance of knowledge.  Having evaluated and accommodated assumptions regarding human 

cognitive and computational abilities, as well as economic, social, and coercive considerations, 

researchers can use game theory to model the behavior of institutional actors as players in a given 

decision situation.  Less common, but also established, is the use of game theory to model the 

collective behavior of groups of individuals, such as organizations or sovereign governments.  

For example, Chambers & Jensen (2002) used a two-stage game framework to evaluate the 

effectiveness of untied aid, from a donor country, in reducing transboundary air emissions from 

the emitting country.  More pertinent to the LRGWQI, Frisvold and Caswell (2000) used a game 

theoretical framework to analyze institutional arrangements associated with water resources 
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management along the US-Mexico border.  Firsvold (2012) expanded this research to include 

environmental management along the US-Mexico Border. 

Practitioners of game theory approaches to institutional analysis make the case that 

considerations of moral, and even cultural, motivations can and have been included in these 

analyses and that the framework is well suited for large and small subject populations (e.g., Greif, 

1992 and Binmore, 2012).  However, critics of the game theory approach point to the infrequent 

validation of game theory-based models, citing a general lack of concurrence with observed reality.  

Much of the discordance is thought to be the result of inadequate representation in the models of 

the complexity of multiagent interactions, which is thought to be rooted in a lack of understanding 

of endogenous motivating factors often “assumed away” in game theory models (Moss, 2001).  It 

follows from this criticism of game theory models that a detailed understanding of the motivating 

factors, both exogenous and endogenous, would improve the structure, and therefore the accuracy, 

of the models.  To the extent that the motivations of decision makers can be identified using 

qualitative methods, qualitative institutional analysis may help increase the accuracy of game 

theoretical modeling of institutional actors. 

Agent Based Modeling 
A practical quantitative application that combines aspects of game theory with elements of 

other subfields, such as computational sociology, systems theory and computer programing, is 

agent-based modeling (ABM).  ABMs are computational models used to simulate the actions and 

interactions of autonomous agents in decision making situations.  They can be used to model 

individual behavior or the behavior of collective entities such as groups of individuals or 

organizations.  ABM uses Monte Carlo methods to introduce randomness into complex systems 

composed of multiple autonomous agents and uses evolutionary numerical algorithms to simulate 

the behavior of multi-agent systems using the principle of emergence.  

The process of emergence can be described as the development of higher-level system 

properties from the interactions of lower-level subsystems.  In the case of ABM, macro-scale 

state changes in complex multi-agent systems are thought to emerge from micro-scale agent 

behaviors.  ABM models the behaviors of individual agents through the application of simple 

decision rules, then simulates the aggregation of these behaviors into complex system-level 
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behaviors using numerical algorithms that incorporate randomness into the analysis.  The 

decision rules used to model the behavior of individual agents, in ABM, assume bounded 

rationality.  That is, individuals are presumed to be acting in what they perceive is their own best 

interests with allowances for factors such as social learning and adaptation. 

ABM can create models of complex multi-agent systems that seek to explain current 

behavior or predict behavior in the face of exogenous change, including changes in the physical or 

social environment (e.g., resource depletion, increased natural risks, human migration, etc.) or 

changes in policy/governance (e.g., changes in public transportation, power generation and 

distribution, land management, etc.).  ABM has been used to analyze institutions that govern the 

management of natural systems.  For example, Abebe et. al. (2016) used a coupled agent-based - 

hydrological model to conduct an institutional analysis of the rules, norms and strategies used for 

flood mitigation.  ABM is also used to test the outcomes of proposed policy alternatives using 

models based on simple decision rules applied to individual agents.  So, the predictive capacity 

of ABM can hinge on a modeler’s ability to construct realistic decision rules for individual agents 

in the model.  Whereas the ABM input and simulation processes are based on empirical methods 

that allow for the specification of multiple agents at various scales, as well as the interaction 

topology and decision environment, the methods for identifying the decision-making heuristics, 

learning rules and adaptive processes are less well defined and commonly rely on qualitative 

methods similar to those of other non-empirical policy analysis methods.  

HISTORICAL INSTITUTIONALISM METHODS 
Whereas institutional analysis approaches rooted in the tenets of rational choice theory 

assume individual and collective strategic behavior based on the preservation and advancement of 

self-interests, both historical and normative institutionalism approaches focus on the moral and 

cultural factors that bound human rationality and influence the behavior of individual actors and 

their interactions with others.  Under these alternative investigative lenses, institutions “provide 

moral or cognitive templates for interpretation and action” (Hall & Taylor, 1996: 939).  The 

distinguishing characteristic of historical institutionalism is its use of history as an explanatory 

variable. 
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Historical institutionalism emphasizes the influence of historical factors such as path 

dependency, which presents a barrier to institutional change by upholding the historical status quo, 

and punctuated equilibrium, which explains the observed patterns of institutional stasis interrupted 

by abrupt change.  From a historical institutionalism perspective, institutions are products of the 

cultural and political history of a community or society.  Understanding the cultural and political 

elements that lead to the formation and preservation of institutions can help identify institutional 

elements and predict institutional change.  Historically based analysis has been used to 

investigate and evaluate institutional arrangements associated with water resource management.  

For example, Harris, Kooy & Jones (2011) used a historical institutionalism framework to analyze 

the political economy of governance structures managing water and sanitation service delivery.  

Historical Institutionalism frameworks have also been used to analyze the political evolution of 

river basin organizations around the world (Huitema & Meijerink, 2017).  Soliev, Wegerich & 

Kazbekov, (2015) used a historical institutionalism framework to analyze shared water 

development in the Ferhana Valley of the Syr Darya Basin and Drombowsky (2008) used a 

historical institutionalism approach to analyze the effectiveness of a water quality management 

regime in the (transboundary) Elbe River Basin (2008). 

Relying mainly on qualitative methods and using guidance derived from its literature base, 

historical institutional analysis seeks to illuminate the behavior of institutional actors and their 

interactions by characterizing the contextual environment around which institutions emerge and 

by investigating their political and cultural evolution.  Unlike rational choice-based methods, 

historical political economy analysis and historical institutional analysis methods in general lack 

a consistent, systematic analytical methodology.  Instead, elements of historical institutional 

analysis are often subsumed under more structured methods and theoretical approaches, such as 

those associated with institutional rational choice theory, which combines elements of rational 

choice institutionalism, historical institutionalism and normative institutionalism. 

NORMATIVE INSTITUTIONALISM METHODS 
As its name implies, normative institutionalism emphasizes the role of norms and values 

as prime motivating factors behind institutional formation and resilience.  Like historical 

institutionalism, normative institutionalism focuses on the bounds placed on human rationality by 
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non-instrumental factors.  In the case of normative institutionalism, rationality is bounded by the 

so called “logic of appropriateness,” which posits that the norms and rules of institutions shape the 

actions of the individuals operating within them.  Rooted in the subfield of organization theory, 

normative institutionalism is a sociological interpretation of institutional arrangements.  The 

approach views institutional formation as legacy of collective social experience and conceptualizes 

institutional change as an expression of social learning (Peters, 1999). James March, an 

organizational behaviorist, characterizes the logic of appropriateness as being "matched to 

situations by means of rules organized into identities" (March, 1994: 57-58). Thus, in the view of 

normative institutionalism, norms and rules form part of the identities of institutional actors.  The 

behaviors of the actors are based on the recognized situation they encounter and its relation to their 

perceived identity in the situation.  The analysis, by the actor, of the rules that generally govern 

behavior for a particular situation govern the decisions made and/or actions taken by the actor in 

that situation. 

Normative institutionalism frameworks have been used to analyze transboundary water 

resources management institutions.  For example, Kliot, Schmueli and Shamir (2001) used a 

normative institutionalism analytical framework to examine the evolution, structure and 

characteristics of the management systems of 12 transboundary river basins, including the 

Mekong, Indus, Ganges–Brahmaputra, the Nile, Jordan, Danube, Elbe, Rio Grande and Colorado, 

Rio de la Plata, Senegal and Niger.  Like historical institutionalism frameworks, normative 

institutionalism approaches to institutional analysis also rely heavily on qualitative analytical 

methods and lack a consistent, systematic analytical methodology.  As previously mentioned, 

elements of normative institutional analysis have been incorporated into more structured methods 

such as the institutional analysis development (IAD) framework, which is based on institutional 

rational choice theory.   

THE IAD FRAMEWORK 
In recent years, a growing number of scholars and researchers have focused their efforts 

on viewing institutional analysis through the lens of institutional rational choice (IRC) theory, 

especially researchers studying institutions that govern or affect natural resource management.  

Many of these researchers have adopted the IAD framework, developed by Elinor Ostrom and her 
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colleagues at the University of Indiana, to analyze institutions that govern water resources 

management (Cowie & Borrett, 2005; Schlager and Heikkila, 2009; Burright, 2012; Imperial, 

2012).  In fact, Integrated Water Resources Management (IWRM), the standard by which the 

Global Water Partnership and the United Nations base their rating of best water resources 

management policies and practices, incorporates many of the key principals of IRC and the IAD 

framework (Hassing et al., 2009).  Many of the concepts associated with IAD were published in 

conference and workshop proceedings as early as the mid-1990s and also appeared in scattered 

form in a number of political science and public policy publications (Ostrom, Feeney & Picht, 

1993; Crawford & Ostrom, 1995).  However, IAD’s debut as a detailed framework for 

institutional analysis did not occur until 2007 when Elinor Ostrom published a detailed description 

of the framework in the public policy compilation publication titled Theories of the Policy Process, 

edited by Paul Sabatier (Ostrom, 2007). 

The IAD framework is deeply rooted in the concepts of IRC theory, which posits that the 

most effective and efficient institutional arrangements to sustainably manage common pool 

resources, such as surface water resources, are not found in governmental regulation or in the free 

market, but in the agreements that emerge from the interactions of the users of the resource 

themselves.  This hypothesis implies that one-size-fits-all governance formulas for managing 

common pool resources are inherently less efficient than those that emerge “locally” from the 

community of resource users.  Common pool resources management institutions that originate 

within the user community are tailored to the unique circumstances associated with the resources 

they govern, including cultural, environmental and socioeconomic factors.  To function 

sustainably, these institutions must also have the ability to adapt to changes in these factors.  

Ostrom studied common pool resources management institutions to try to identify the universal 

elements that any theory relevant to the same kind of phenomena would need to include. 

In developing the IRC theory, Ostrom built on elements of rational choice, historical and 

normative institutionalism frameworks, as previously discussed in this sub-section.  Under the 

IRC conceptual framework, actors are described as boundedly rational individuals, self-interested 

and acting to achieve their highest benefit, but constrained in this pursuit by social conventions 

and norms that form part of their identities and, thereby, also influence their decision-making 

patterns.  Actors are also bounded by a lack of access to complete information and by the 
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transaction costs associated with acquiring such information.  Some actors may have access to 

more information than others, leading to the type of information asymmetries that characterize 

principal-agent interactions.  Under these circumstances, some actors must make decisions about 

a range of alternatives based on one level of knowledge while others are advantaged by greater 

access to information.  If the interaction between actors is repeated, as is the case in most common 

pool resource situations, learning becomes an equalizing factor, which partially neutralizes the 

effects of initial information asymmetries; a feature of repeated cooperative games.  IRC theory 

includes other aspects of game theory, such as the role of reciprocity and coalition building. 

Ostrom and her colleagues used the conceptual foundations of IRC to construct 

a systematic approach for analyzing institutions established to govern any number of collective 

action arrangements, including natural resource management.  The IAD framework defines 

institutions as a set of prescriptions and constraints (i.e., rules) that members of a community use 

to organize a set of repetitive and structured interactions.  The arrangements can be formal, 

informal or, more often a combination of both  The associated rules can be characterized as rules-

in-form, as is the case in formal codified arrangements, or rules-in-use, as is the case in actual 

operational situations.  By focusing on rules, norms, and strategies, the IAD framework identifies 

the factors that structure human interactions and decision-making.  IAD also explicitly calls 

attention to the specific contextual factors that influence resource decisions at multiple levels 

(Ostrom, 2007). 

The Action Arena  
The IAD framework guides researchers in the identification and evaluation of institutional 

factors that affect the interaction of stakeholders and influence decision-making in collective 

action situations by first identifying and describing the specific “action arena” associated with a 

situation (sometimes a conflict, other times a cooperative forum) in which social choices are made.  

Action arenas are composed of an action situation and the actors themselves (Figure 2-18).   
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   Figure 2-18. The IAD Framework for Institutional Analysis. Source: Burright, 2012 

(Adapted from Ostrom 2007). 

According to the IAD framework, action situations, also referred to as “decision spaces” 

(Burright, 201, p. 30), are characterized by the following clusters of internal variables: 

1) The set of participants (i.e., stakeholders or their representatives); they could be 

individual actors or groups of actors; they could be in conflict or in coalitions or both; 

2) The positions; reflect the nature of the interests of the participants (e.g., agency 

representatives, irrigation district managers, city mayors, etc.) as well as the participant’s 

role in the decision space;  

3) The set of actions and their linkages to perceived outcomes (e.g., wastewater treatment 

levels, agricultural practices, etc.);  

4) The Outcomes (or potential outcomes) and the linkages between these and the 

decisions/actions of the participants; 

5) The level of control over choice; typically varies among participants; dependent on 

established practice; 

6) The information available; about the resource; about the costs and benefits of actions (the 

participants’ own actions and that of other participants); about the linkage between 

cumulative actions and cumulative outcomes. 
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These clusters of internal variables, referred to subsequently in this sub-section as 

“elements” of the decision space, influence an action situation (i.e., decision space) to produce 

potential outcomes (Figure 2-19). 

 
Figure 2-19. The Internal Structure of an Action Situation. Source: Ostrom, 2011. 

Elements of the decision space are themselves influenced by a set of external variables.  

A more detailed explanation of these exogenous variables, as conceived by the IAD framework, is 

presented in the following sub-section. 

In addition to identifying the action situation/decision space, the IAD framework further 

defines the action arena by characterizing the actors themselves.  Actors can be individuals or 

groups of individuals that have a regularized way of making decisions, such as a firm or a government 

agency.  Actors can be characterized by the following variables:  

1) The resources that an actor brings to a situation (e.g., time, financial resources, etc.); 

2) The valuation, actors assign to states of the world (i.e. cost-benefit bounded by internalized 

norms); 

3) The way actors “acquire, process, retain and use” contingencies and information; and  
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4) The process actors use for selection of particular courses of action (i.e., decision-making and 

action-taking strategies).  

According to the IAD framework, the contextual factors that influence action arenas can 

be classified into three main categories: (1) the physical and material conditions [later re-

characterized by Ostrom as the biophysical world] within which the group of actors interact; (2) 

the attributes of the community[ies] or group[s] involved in the action arena; and (3) the rules (i.e, 

rules-in-use) that incentivize and constrain actors in the action arena (Ostrom, 2007).  More 

recently Burright (2012) incorporated historic antecedents and precipitating events as an additional 

component of the context under which action arenas exist (Figure 2-18).  Contextual factors 

affecting action arenas include geographic, social, economic and cultural elements that frame the 

action arena and help to characterize it from a perspective of institutional design, implementation 

and performance.  

Qualitative methods can be used to investigate the elements depicted in Figure 2-18.  The 

patterns of interaction can be traced to the incentives/disincentives, as perceived by the actors (i.e., 

perceived costs and benefits), as well as the rules-in-use, available information, and the sense of 

control experienced by the actors.  Repeated interactions offer opportunities for learning, as 

actors ascertain how their decisions and actions affect outcomes, as they perceived them.  The 

measures of effectiveness and efficiency in IAD focus not only on the institutional outcomes, but 

also on the patterns of interactions among the actors, which according to IRC theory, largely 

govern the outcomes. 

Rules and Rule Types 
Within the context of IAD, Ostrom defines rules as “shared understandings among those involved 

that refer to enforced prescriptions about what actions (or states of the world) are required, 

prohibited, or permitted” (Ostrom, 2007; page 36).  Reflecting on human rule making in general, 

Ostrom recognized the process of formal rule making at different levels of human organization, 

from legal codes and agency rules to the bylaws of local voluntary associations; Ostrom 

categorized these formal rules as rules-in-form.  Ostrom also described the frequency of informal 

human rule making using examples such the division of labor and collaboration procedures 
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developed by colleagues participating in a work team.  Ostrom (2007) accepts the tendency of 

humans to sometimes flout formal and informal rules as a common occurrence in human societies.  

With these complicating factors in mind, Ostrom and her colleagues acknowledged the 

difficulty in examining the “working rules” under which action arenas operate.  Ostrom lamented 

the endless cataloging of rules unrelated to any method of classification useful for theoretical 

explanations (Ostrom, 2007).  Consequently, she and her colleagues set out to develop a rule 

classification system that was consistent with IRC theory and could be useful to analyze 

institutional arrangements.  They tackled this challenge by classifying rules according to their 

impact on the elements of the decision space.  According to the IAD framework “the set of 

working rules that affects these [decision space] variables should constitute the minimal but 

necessary set of rules needed to offer an explanation of actions and results used by participants to 

order their relationships within an action arena” (Ostrom 2007, p. 37).  Table 2-2 lists the rule 

types described in the IAD framework along with a brief description of each rule type and an 

explanation of how its use informs institutional analysis. 

The IAD rule types presented in Table 2-2 are generalized abstractions of the specific rules-

in-use manifested as the “working rules” in specific action situations.  Ostrom makes a point of 

stating that “the set of working rules is a configuration in the sense that the effect of a change in 

one rule may depend upon the other rules-in-use” (Ostrom, 2011, p. 20).  In the IAD framework, 

the working rules of an action situation/decision space are depicted as exogenous variables that 

affect the elements of the decision space (i.e., they affect the internal variables of the action 

situation).  Each rule type directly affects specific elements of the decision space and, through 

the internal linkages of the decision space, indirectly affects all others (Figure 2-10).   To 

investigate these rule types, the IAD method focuses on a series of questions intended to help the 

analyst uncover the rules-in-use that structure the decision space. 
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Table 2-2. IAD Framework Rule Types*  

Rule Type Description Use in Institutional Analysis 

Boundary Rules (Entry 
and Exit Rules) 

Determine which individuals/entities are 
allowed to participate in the action arena and in 
what position  

Evaluation of fiscal equivalency, 
equity, conformance to general 
morality, and adaptability 

Position Rules Specify a set of positions with corresponding 
resources, opportunities and responsibilities and 
how individuals/entities are assigned to these 
positions 

Evaluation of fiscal equivalency, 
equity, efficiency, accountability, 
conformance to general morality, 
and adaptability 

Scope Rules Delimit the potential outcomes that can be 
affected by actions (typically, but not always, 
specified in terms of measurable units) 

Evaluation of efficiency and 
adaptability 

Choice Rules Determine the shape of the decision tree that 
links actions to outcomes 

Evaluation of efficiency and 
adaptability 

Aggregation Rules Determine how interactions between 
participants within the action situation 
accumulate to final outcomes (voting schemes, 
etc.); they affect the level of control a 
participant in a position exercises in the 
selection of an action 

Evaluation of fiscal equivalency, 
equity, efficiency, accountability, 
conformance to general morality, 
and adaptability 

Information Rules Affect what information is available to actors 
about which actions are available and the link 
between actions and outcomes  
 

Evaluation of fiscal equivalency, 
equity, efficiency, accountability, 
conformance to general morality, 
and adaptability 

Payoff Rules Affect the benefits and costs that will be 
assigned to combinations of actions and 
outcomes, and they establish the incentives and 
deterrents for action  
 

Evaluation of fiscal equivalency, 
equity, efficiency, conformance to 
general morality, and adaptability 

* Modified from Ostrom, 2011 
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Figure 2-20. Rules as Exogenous Variables Directly Affecting the Elements of an 

Action Situation / Decision Space. Source: Ostrom, 2011. 

Multi-Level Analysis 
One of the defining features of the IAD framework is its conceptualization of rules as 

components of hierarchical institutional structures.  Viewed through the lens of IRC theory, “all rules 

are nested in another set of rules that define how the first set of rules can be changed” (Ostrom, 

2007, p. 44), which implies that rules, even those codified at their highest (constitutional) level, 

do not exist as solitary, unconnected instruments of order, but rather they are invariably nested 

within hierarchical institutional levels (Figure 2-21). 
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Figure 2-21. Levels of Analysis Within IAD. Source: Ostrom, 2007. 
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The IAD framework identifies four levels of analysis consistent with the hierarchical rule 

levels depicted in Figure 2-21.  Although the labels placed by Ostrom and her colleagues on 

different levels of analysis correspond roughly with the hierarchical levels normally associated 

with rules-in-form (e.g., constitutional, operational, etc.), the rules investigated at the different 

levels of analysis are typically a mixture of rules-in-form and rules-in-use.  In fact, Ostrom 

observes that the rules investigated at the metaconstitutional level, which are not frequently 

analyzed, consist almost exclusively of social norms and conventions from which constitutional 

“rules” are derived.  The idea behind analyzing rules hierarchically is to supply a template for 

analysis of the working rules, of a decision space, at multiple levels. 

Because of the influence of rules on the decision space, the IAD framework extends the 

concept of the hierarchical institutional structure to the action arena, portraying action arenas as 

connected through the tiered configuration of the working rules that influence them.  For 

example, Ostrom states that “Policymaking (or governance) regarding the rules that will be used 

to regulate operational-level choices is usually carried out in one or more collective-choice 

arenas.” (Ostrom 2007, p. 46).  Figure 2-22 illustrates these connections and also shows how 

outcomes of an action arena can, in turn, affect rule changes at multiple levels. 

Multilevel institutional analysis is a time and resource intensive effort.  Moreover, the 

complexity of such efforts often leaves lingering doubts as to the thoroughness of the final analysis.  

High level constitutional and collective-action arenas, in particular, are difficult to analyze, as the 

outcomes associated with these arenas are typically not obvious or immediately apparent and require 

analysis in, and of, themselves.  On the other hand, focusing the analysis on operational situations 

may obscure the influence of higher-level institutional constraints and barriers on lower-level action 

arenas.  When applying the IAD framework to analyze action arenas and their relationship to each 

other, a first step is to analyze how individual decisions/actions are made at the operational level 

and build an understanding of the connected decision space(s) by working in an “upward” 

hierarchical direction across the different levels of analysis portrayed in Figures 2-21 and 2-22 

(Cowie & Borrett, 2005).
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Figure 2-22. Levels of Analysis Within IAD. Source: Cowie & Borrett, 2005 (adapted from Sabatier, 1991).
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Individual decisions/actions which affect the physical world, are typically made at the 

operational level and are controlled by institutional arrangements and decisions made at the 

collective choice level.  Constitutional choice decisions, in turn, constrain those made at the 

collective choice level.  The research approach adopted by the author follows this pattern: first 

analyzing how decisions/actions are made at the operational level, and then examining how decision 

making at this (operational) level is enabled and/or constrained by rules established in higher level 

action arenas (e.g., collective choice action arenas). 

Application to Transboundary Water Resources 
In theory, institutional arrangements crafted to manage transboundary water resources 

possess the same basic characteristics as other institutional arrangements intended to manage water 

resources.  Hence, the institutional “grammar” of IAD (e.g., action arenas, decision space, actors, 

rules as exogenous variables, etc.) is also applicable in transboundary situations.  Indeed, several 

researchers have applied the IAD framework to analyze transboundary water resources 

management institutions.   

Examples of these applications include the work performed by Schlager and Heikkila 

(2009) on interstate water compacts in the United States5; Malmros (2014) on the Mara River 

Basin Initiative; Hartely (2015) on the governance of water supplies in Hong Kong and the 

southern Chinese province of Guangdong; Huitema and Meijerink (2017) on institutional design 

choices, coalitions and the associated consequences of the politics of river basin organizations; 

and Garrick et al. (2018) on institutional adaptation to manage drought risks in transboundary 

water bodies.   Of these examples, only the work by Albin Malmros (2014) includes an 

assessment of institutional arrangements to manage transboundary water quality.  Nevertheless, 

through these efforts a methodology has emerged for the analysis of institutional arrangements and 

actors involved in transboundary water resources management that can be applied to the LRGWQI. 

                                                 
5Although the research by Schlager and Heikkila (2009) on interstate water compacts in the United States does not 
relate directly to water bodies shared by sovereign countries, many of the water resources management issues faced 
by water bodies shared by regional and provincial entities are the same as those faced by international transboundary 
water bodies. 
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Institutional Analysis and Institutional Change  
Applications of the IAD framework have included institutional analyses to study the 

emergence of new institutions, to identify strengths and weaknesses of existing institutional 

arrangements, to predict institutional change, and to identify cause-and-effect relationships between 

institutional structures and natural resources management outcomes.  In her seminal publication 

“Governing the Commons,” Ostrom (1990) describes the importance of recognizing the difference 

between the emergence of new institutions and the transformation/evolution of existing institutions.  

While both instances involve changes in rules, new institutions face lower levels of community 

resistance than does the modification of existing institutions.  Existing institutions and the rules they 

embody create socioeconomic incentives for actors to maintain the status quo, a phenomenon known 

as “path dependency.”  Rules at the higher levels of rule-making (i.e., constitutional and meta-

constitutional levels) are usually more difficult and costlier to modify, as they tend to have deeper 

connections to cultural norms and wider socioeconomic impacts (Ostrom, 2007).  Nevertheless, 

higher level rulemaking exerts a suppressing influence on the modification of rules made at lower 

levels of rulemaking due to the nested nature of rules and action arenas.  As a result of path 

dependency, institutional transformation, at all levels, typically occurs in an “incremental, sequential, 

and self-transforming” manner in a process that involves revisiting and revising rules in an iterative 

manner (Ostrom, 1990, p. 139). 

A question relevant to this dissertation is whether the analysis to identify institutional factors 

relevant to the development of the LRGWQIDSS should be conducted as an analysis of existing 

institutional arrangements or as an analysis of potential institutional change.  Keeping in mind that 

the goal of the LRGWQI is improvement of water quality in the Lower Rio Grande/Río Bravo, an 

argument can be made that, since the LRGWQI seeks a different institutional outcome from that of the 

status quo, an analysis to identify institutional factors relevant to the development of the LRGWQIDSS 

could be considered an analysis of institutional change.  Certainly, one of the capabilities envisioned 

for a decision support system such as the LRGWQIDSS is to simulate the (water quality) outcomes of 

changes in a variety of factors, including changes in one or more of the rule types shown in Table 2-2 

and Figures 1-22 and 2-22 (e.g., information rules at the operational level). 

On the other hand, the research goals of this dissertation do not include the evaluation of the 

actual outcomes of any rule or policy changes resulting from the LRGWQI, including any institutional 

changes facilitated by the LRGWQIDSS.  The decision support process seeks to evaluate of the 
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benefits that can be derived from developing transboundary decision support tools (e.g., efficiency, 

effectiveness, frequency of use, longevity, etc.), from analysis of existing institutional arrangements.  

In other words, the goals of this dissertation are to demonstrate how institutional analysis can aid the 

development of better transboundary decision support tools in general, not how such analysis can 

predict, evaluate or guide specific institutional changes. 

In the opinion of the author, both of these viewpoints are valid.  Ostrom defines institutional 

change as “a change in any rules affecting the set of participants, the set of strategies available to 

participants, the control they have over outcomes, the information they have, or the payoffs” (Ostrom, 

1990, p. 140).  So, if development of the LRGWQIDSS is considered a change in the information 

rules of any of the action arenas analyzed, then the effort constitutes an analysis of institutional change 

conducted using the IAD framework.  Alternatively, since analysis of the change in information rules 

is not a stated goal of this research and, conversely, the analysis of exiting institutional arrangements 

to enhance the development of the LRGWQIDSS is a stated goal of the research, the analysis can also 

be considered an analysis of existing institutional arrangements using the IAD framework. 

2.3.2 STAKEHOLDERS, DECISION MAKERS AND DSS USERS 
In Sub-section 2.2.1.1, the author characterized stakeholders as “consumers of the decision 

outcome(s) produced from a decision process.”  The author also argues in Subsection 2.2.1.1 that 

the roles of the decision maker, stakeholder, and user of a decision support tool do not always 

coincide and are frequently played by different individuals.  This fact is an important 

consideration when applying the IAD framework to the research detailed in this dissertation.  As 

discussed in Sub-section 2.2.1.6 (Participatory Modeling) and Subsection 2.2.1.9 (Best Practices 

in DSS Design), the involvement of stakeholders in the development of EDSSs is a practice that 

is commonly advocated among environmental modelers and EDSS developers.  However, even 

after years of concerted efforts to involve stakeholders, EDSS developers struggle to produce 

effective and, most importantly, persistently-used EDSSs (McIntosh et al., 2011). 

Practitioners in the field of EDSS design have employed numerous techniques for ensuring 

the widest level of stakeholder participation possible in the development of EDSSs, including 

various methods of stakeholder analysis.  Stakeholder analysis refers to a set of systematic 

procedures designed to achieve effective and inclusive stakeholder participation.  The Global 

Water Partnership considers stakeholder analysis to be part of the modeling and decision-support 
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tool development process because it is a key part of these and other technical efforts associated 

with IWRM (GWP, 2018).  Methods for conducting stakeholder analysis vary widely.  

However, many stakeholder analysis methods follow a procedure involving stakeholder 

categorization using one of many stakeholder classification schemes; typical attributes used to 

categorize stakeholders include, power, influence, interest, needs, support and attitude (Kimmich, 

et al. 2012). Typically, this information is subsequently used in “stakeholder mapping,” in which 

a didactic matrix is constructed with the intent of helping the analyst navigate complex 

participatory forums.  Knowledge acquisition in these efforts is generally conducted using 

qualitative methods.  Examples of stakeholder analysis conducted in transboundary water 

resources management forums include the cases documented by Ganoulis, et. al., (2008); 

Hernandez (2011); and Van Ingen et al., (2010).   

More recently, institutional analysis has been used as a tool to conduct stakeholder analysis 

in transboundary settings (e.g., Schreiner et al., 2015) and some researchers have even applied the 

IAD framework to conduct stakeholder analyses in transboundary settings (e.g., McFadden, et al., 

2010; Wang et al., 20176).  However, the purpose of these efforts has been to improve stakeholder 

participation in decision making in general, not to produce better environmental models or more 

effective EDSSs.  Fueled in part by the proliferation of institutional analysis in IWRM and other 

natural resource management fields, researchers have begun integrating institutional analysis into 

environmental modeling and EDSS design, primarily as a way to refine, expand, and in some cases 

focus stakeholder involvement in these efforts (e.g., Grigg, 2005; Cowie and Borrett, 2005; Abebe 

et al., 2016).  The authors of at least one of these research efforts (Cowie and Borrett, 2005) 

attributes the success of applying the IAD framework to the analysis of stakeholder participation 

to the focus this (IAD) framework places on the rule types and rules that govern the pertinent 

action arenas, a conclusion that the author of this dissertation proposes to test with his research. 

                                                 
6 Although the research conducted by Wang et al., (2015) centers around water governance technically within the 
sovereign borders of the Chinese state, Hong Kong is one of China’s few Special Administrative Regions (SARs), 
having been a British Dependent Territory until July 1997. Governance of the Hong Kong SAR, as well as its 
physical and organizational infrastructure, differs markedly from that of other mainland Chinese regions, which do 
not enjoy similar levels of autonomy. Hong Kong receives 80% of its water from the Dongjiang River in China’s 
Guangdong province. The relationship between Hong Kong SAR stakeholders and Guangdong Province 
stakeholders of the Dongjiang River is essentially that of transboundary stakeholders. 
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In essence, the main hypothesis of this dissertation is that institutional analysis, and in 

particular institutional analysis conducted using the IAD framework, results in a superior 

stakeholder analysis, which is itself essential for the development of useful and enduring 

transboundary DSSs. 

2.4.2 INSTITUTIONAL ANALYSIS AND THE LRGWQIDSS 
This sub-section (2.4.2) describes the institutional analysis conducted to support the 

development of the LRGWQIDSS.  The sub-section is divided into four smaller sub-sections that 

describe the setting, methods, results, and conclusions of the analysis. 

2.4.2.1 Preface 
Several previous sub-sections of this chapter have described the role of stakeholder 

participation in the development of more relevant, more useful and more durable EDSSs.  The 

subject of stakeholder involvement was an issue that was discussed among the representatives of 

the six agencies that negotiated the LRGWQI TOR.  While the final language in the TOR 

document states that “each of the binational partner agencies involved in water quality will 

determine the appropriate stakeholder involvement,” (LRGWQI TOR, p. 4) the TOR document 

also states that “Due to the complexity and the numerous stakeholders involved, both sections of 

the Commission will establish the necessary framework to allow for the joint evaluation of 

proposed cooperative measures that could benefit both nations” (page 1 of LRGWQI TOR). 

These statements taken together were meant to convey the following operating “policy” 

for LRGWQI participants (in this author’s words): each individual partner agency participating in 

the LRGWQI was free to interact with whomever it perceived to be its stakeholders, but any 

interaction of the LRGWQI committees, as entities established under the LRGWQI TOR, was to 

be regulated by the IBWC.  The USIBWC/CILA understanding was that Mexican individuals or 

representatives of Mexican organizations, or communities, could not reasonably be expected to 

qualify as stakeholders of US agencies and vice versa.  Since development of the LRGWQIDSS 

was a US-funded effort (i.e., funds were awarded to the TCEQ by USFWS and USEPA for the 

development of the LRGWQIDSS), the US partner agencies (USIBWC, USEPA and TCEQ) were 

free to interact with US stakeholders, without prior approval from IBWC, as long as project data 

collected in Mexico was not shared with US stakeholders.  However, approval by IBWC was 
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needed before any LRGWQI-related interaction between US partner agencies and Mexican 

stakeholders took place.  This operational policy presented a barrier to LRGWQIDSS developers 

for accessing stakeholders to seek their input in the development of the LRGWQIDSS, as all three 

Mexican partner agencies (CILA, CONAGUA and CEAT) opposed the sharing of any data 

collected as part of the LRGWQI with US or Mexican stakeholders prior to the promulgation of 

the Declaratoria de Clasificación for the Lower Río Bravo.  Also, Mexican partner agencies 

opposed any direct LRGWQI-related interaction between US partner agencies and Mexican 

stakeholders in general. 

This barrier was partially overcome by the participation, in the qualitative data collection 

efforts associated with this research, of UT’s LBJ School of Public Affairs, as CEAT agreed to 

distribute, collect and forward completed stakeholder surveys that were developed by the UT LBJ 

School as part of the knowledge acquisition efforts associated with LRGWQI.  Also, the IBWC 

and the LRGWQI Mexican partners allowed the UT LBJ School to contract with a local Mexican 

university (Universidad Autónoma de Tamaulipas) to conduct key informant interviews and focus 

group sessions of Mexican stakeholders, also in support of LRGWQI knowledge acquisition 

efforts.  This effort was funded by the BECC through a grant from the USEPA. 

The constraints placed on information sharing and binational stakeholder involvement 

limited the choices available to the LRGWQIDSS developers for acquiring stakeholder input 

during the development of the software.  Given these constraints, the author proposed developing 

a web-accessible decision-support tool with accessibility limited by password-protected user 

accounts.  Although this choice would have prevented open access to project information, which 

was a restriction under the LRGWQI TOR operating policy enforced by the IBWC, several 

important operational questions had to be addressed under this initial proposal, such as: what 

organization(s) would host the web-based tool? What criteria would be used to grant web access 

to the tool?  What organization(s) would be responsible for maintaining the tool?  These and 

other questions proved difficult to address and, with the exception of the TCEQ, the other 

LRGWQI participants (i.e., IBWC, CILA, EPA, CONAGUA [through IMTA] and CEAT) 

considered other tasks and discussion issues associated with the LRGWQI to be more urgent, such 

as watershed characterization, identification of data gaps and data collection, all of which are 

technical tasks specified in the Annex to the LRGWQI TOR.  The creation of a web-based tool, 
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though advantageous in many ways, including wider stakeholder participation in its development, 

increased the cost of development by an amount that was outside the funds budgeted for this task 

by the TCEQ.  In view of these obstacles and in the interest of time, the author, in consultation 

with the LRGWQIDSS development team, developed a second proposal, which included the 

development of a software tool installable through a downloadable, self-extracting executable. 

2.4.2.2 Action Arenas and the LRGWQIDSS 
As described in Sub-section 2.4.1.1, action arenas are at the center of the IAD framework.  

As such, they constitute the unit of analysis in the institutional analysis effort undertaken for the 

research described in this dissertation. 

IDENTIFICATION OF ACTION ARENAS 
To identify the action arenas relevant to LRGWQIDSS development, the author followed 

the procedure advocated by Cowie and Borrett (2005), in which the decision spaces where 

individual decisions/actions are made at the operational level are identified and analyzed first to 

build an understanding of other decision space(s) connected to them at higher hierarchical levels 

of analysis.  The first step in doing this is to identify the analytical context under which decision 

spaces exist (Burright, 2012).  Because the reason for collaboration on the LRGWQI was 

ostensibly a binational impetus to improve water quality in the Lower Rio Grande/Rio Bravo and, 

in particular, to reduce levels of fecal bacteria and dissolved solids in this portion of the river, the 

author placed the analytical focus on the conditions that affect these water quality impairments 

and, on the decision/actions that influence current water quality conditions.  Another reason for 

proceeding in this manner was the likelihood that the actors in the action arenas identified using 

this analytical focus would, in fact, be users of the LRGWQIDSS. 

For analytical convenience and because the institutional environments under which these 

decision/actions occur are different in the United States and in Mexico, decision spaces linked to 

the water quality impairments specified in the LRGWQI TOR are separated into US and Mexican 

counterparts.  To avoid speculation about how the development of the LRGWQIDSS tool would 

benefit from stakeholder involvement, the author concluded that the action arenas analyzed for 

this research would include, if not be composed entirely of, the intended users of the EDSS. 
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There are many factors that affect water quality, including pollutant load, flow volume, 

water temperature, turbidity, etc.  However, two factors, pollutant loads and flow volume, 

contribute disproportionately to water quality in rivers.  In fact, many of the other factors that 

influence water quality in rivers can be considered “pollutants” and can also be related to flow.  

Thus, in the language of the IAD framework, flow volume and the sources of fecal bacteria and 

dissolved solids are important physical and material conditions that frame the contexts of 

LRGWQI-associated action arenas.  Other important factors are rules-in-use, community 

attributes, and historic antecedents/precipitating events (Figure 2-18). 

Even a cursory analysis of the factors that define the context affecting LRGWQI-associated 

action arenas reveals that these factors are linked though complex cause-and-effect relationships.  

For example, watershed characterization efforts have shown that the physical and material 

conditions of the river (i.e., flow and water quality) are the result of a combination of natural 

factors (e.g., rainfall patterns [both local and upstream], natural-occurring pollutant loads [e.g., 

sedimentary evaporite salt contributions, fecal bacteria contributions from wildlife, etc.), the 

decision/actions of stakeholders, which are linked to rules-in-use (e.g., water allocation [both local 

and upstream], wastewater treatment requirements, agricultural practices, etc.), community 

attributes (e.g., nationality, economics, water usage patterns, sanitation, etc.) and antecedent events 

(e.g., droughts, floods, outbreaks of waterborne diseases, high salinity events in the river, fish kills, 

results of past pollution mitigation efforts, etc.). 

The physical and material conditions of the Lower Rio Grande/Rio Bravo, in turn, have an 

effect on other contextual factors influencing the LRGWQI-associated action arenas, sometimes 

prompting changes in community attitudes and stakeholder opinions, which build pressure for 

changes in rules-in-use and can even affect community attributes.  For example, in the late 1990s, 

poor water quality in the river motivated local agricultural stakeholders in the Lower Rio Grande 

Valley of South Texas to pressure the TCEQ to install continuous water quality monitoring stations 

in the river to alert irrigation districts in advance of high salinity events in the river; this action, in 

essence changed the information rules in that local action arena.  One stakeholder interviewed 

stated:  

“But that system has helped us to be able to project what is getting ready to come 

to us.  It takes four days for water to reach my plant from Falcon. So, we know 
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that if the salinity is building in the upper stretches in the river, in a few days it’s 

going to be high for us.  So, we look at that on a daily basis to see how it’s going 

to affect us and we alert our farmers as to what to expect.  Those kinds of things 

have been very beneficial to us.” 

Flow in the Rio Grande/Río Bravo is highly regulated, both binationally, through the US-

Mexico Water Treaty of 1944 (IBWC) and through the systems of water rights, which are 

implemented and enforced unilaterally by each country within its respective jurisdiction.  The 

LRGWQI TOR does not mention water allocation or usage as a subject to explore under the 

LRGWQI.  Instead, the TOR limits the purview of the Initiative to the authorizations specified 

for IBWC/CILA under Minutes 261 and 289 of the US-Mexico Water Treaty of 1944, which deal 

with sanitation and water quality.  Therefore, though some overlap with water allocation issues 

is inevitable when dealing with water quality issues, the identification of LRGWQI-associated 

action arenas for this analysis is limited to those in which the decision spaces relate directly to 

actions affecting pollutant loads. 

ACTION ARENAS RELEVANT TO LRGWQIDSS DEVELOPMENT 
The author identified three action arenas with direct relevance to the development of the 

LRGWQIDSS; two of which function at the local operational level: (1) the US wastewater 

treatment action arena(s), composed of five public utilities, one water supply corporation, a special 

utility district, and an independent school district; and (2) the Mexican wastewater treatment action 

arena(s), composed of five municipal water and drainage commissions (COMAPAs ) and one 

municipal water and drainage board (JAD).  These are presented in Figure 2-23 (shaded boxes) 

along with their hierarchical associations to higher level action arenas based on rules-in-use.  The 

arrangement of action arenas in Figure 2-23 follows the method of Cowie and Borrett, (2005), with 

lower operational rule level action arenas depicted at the bottom of figure.  Under Mexican law, 

only CONAGUA has authority to issue permits to discharge wastewater into Mexican national 

waters.  However, CEAT, the environmental and water commission for the State of Tamaulipas 

has some nominal regulatory authority over wastewater operations in the state; CEAT is also a 

named participant in the LRGWQI.  Conversely, through the federal NPDES delegation process, 

the State of Texas has sole permitting authority over wastewater dischargers in the state. 
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Figure 2-23. Local Operational Action Arenas with Relevance to the Development of the 

LRGWQIDSS and Their Hierarchical Associations to Higher Level Action 
Arenas Based on Rules-in-use (colored boxes denote the action arenas 
analyzed for this dissertation). 

USEPA can and does issue NPDES permits for wastewater discharges, but to do so the federal 

agency would have to revoke NPDES delegation. 

Even though agricultural practices are identified as potential sources of pollutants to the 

river, action arenas that include agricultural producers are excluded from this analysis because 

agricultural activities associated with pollutant loading are not regulated in the United States nor 

in Mexico.  This makes it unlikely that US and Mexican agricultural producers would have an 

incentive to use the LRGWQIDSS, at least for operational purposes.  Use of the LRGWQIDSS 

for simulating scenarios involving agricultural practices is likely to be conducted by participants 

in the LRGWQI as part of efforts to develop a binational watershed-based plan. 

The third action arena identified as part of this analysis is that of the LRGWQI forum itself 

(Figure 2-24), which functions in a dual collective choice/constitutional choice level, except for 

the operational rule relationship between USEPA and TCEQ.  That is, the individual actors, as 
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representatives of federal and state agencies, function under the collective choice rules passed 

down to them from the collective choice action arenas that respectively govern them (i.e., state 

and federal executive and legislative branches of governments).  The LRGWQI functions 

internally under at a constitutional choice rule level (i.e., the LRGWQI TOR).  CEAT is included 

in Figure 2-24 because it is a named participant in the LRGWQI TOR and because it is considered 

a potential user of the LRGWQIDSS.  Although having only nominal regulatory authority, CEAT 

is instrumental in the planning, financing, and management of water and wastewater infrastructure 

projects in the Mexican state of Tamaulipas.  Possessing trained technical staff, CEAT plays an 

important role in assessing the potential impact, on the quality of surface water bodies, of proposed 

wastewater infrastructure projects.  In this capacity, CEAT is an important intermediary between 

the local COMAPAS and CONAGUA in the federal infrastructure financing process. 

 
Figure 2-24. The LRGWQI Action Arena and Its Hierarchical Associations to Higher 

Level Action Arenas Based on Rules-in-Use. 

It should be noted that the action arenas presented in Figures 2-23 and 2-24 have 

associations with numerous other action arenas that are neither included in the figures nor are 

substantively included in the study, even though they are process stakeholders.  The author 
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recognizes that organizations not included in this institutional analysis may become future users 

of the LRGWQIDSS.  The lack of input, from these unidentified potential future users, in the 

elaboration of the LRGWQIDSS, may constitute a weakness in the tool’s development.  The 

weaknesses in DSS functionality related to use of the tool by individuals not originally envisioned 

as users during the development phase can be overcome by incorporating flexibility, such as 

modularity, in the DSS design. 

The author chose to begin the institutional analysis by examining action arenas that 

function at an operational level because “actions at the operational level are the ones that directly 

affect resources and the distribution of outcomes of resource use” (Cowie & Borrett, 2005, p. 472).  

In addition to identifying and characterizing the individual actors and their roles (i.e., positions) 

within and outside of the action arena, a fuller understanding of the incentives and constraints that 

influence these actors can be gained by: (1) identifying and examining the contextual factors (i.e., 

exogenous variables) that affect the decision space (i.e., elements of the action situation); (2) 

identifying the working rules of the action arena; and (3) identifying and analyzing the 

interconnections of the action arena with other action arenas at different hierarchical levels, as 

discussed in the following sub-sections.  

Operational Level Action Arenas 
   For the purpose of this analysis, LRGWQI-associated action arenas identified as 

functioning at the operational level are better described as groups of action arenas functioning in 

similar ways for similar purposes at the operational rule level.  Thus, there is no single US 

wastewater treatment action arena, as there is, for example, a single Texas State Legislature, but 

rather eight different US wastewater treatment action arenas, with decision spaces of similar 

character, operating on the US side of the Lower Rio Grande/Rio Bravo watershed.  To be sure, 

there are associations between the individual local US wastewater treatment arenas.  For 

example, most of the US wastewater treatment arenas are affiliated with larger trade organizations 

such as the Rio Grande Valley Chapter of the American Water Works Association, which represent 

local forums of interaction.  However, except for exchanges of high-level information, these local 

forums of interaction themselves do not function like action arenas as described in the IAD 

framework. 
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It is useful also to recall that the purpose of this analysis is to identify institutional factors 

relevant to the development of the LRGWQIDSS, which is why these action arenas are classified 

as functioning at an operational level.  Each action arena functions under unique internal working 

rules which also interconnect with working rules in action arenas that exist at other hierarchical 

levels.  For example, the Brownsville Public Utility Board (BPUB) operates under an (1960) 

amendment to the City Charter, which details the institutional structure of the BPUB, including 

how members are appointed by elected city officials (one board member is elected) and how 

decisions are made by the board.  In contrast, the La Joya ISD, which operates the Sam Fordyce 

Elementary School wastewater treatment facility, functions under the administrative rules and 

procedures established by the La Joya ISD Board of Trustees. These rules allow the creation of an 

operations department, headed by a superintendent of operations who is in charge, among other 

things, of wastewater treatment and disposal for six large school facilities located in rural Hidalgo 

and Starr Counties. 

US Wastewater Treatment Action Arena(s) 
The Context 

Chapter 1 of this dissertation provides a detailed description of the US sources of 

wastewater to the Rio Grande as well as a summary of the demographics in the US portion of the 

watershed.  The information provided in Chapter 1 helps to outline the physical and material 

conditions that characterize the US wastewater treatment action arenas.  This information is 

augmented by the knowledge obtained from the qualitative research conducted as part of this 

dissertation.  For example, while Chapter 1 emphasizes that, with the exception of Brownsville 

which is located at the distal end of the river near the confluence with the Gulf of Mexico, most of 

the wastewater generated by the US urban population living near the Rio Grande/Río Bravo is 

discharged to the Arroyo Colorado, an adjacent watershed to the north that flows into the Laguna 

Madre on the US side.  Thus, most of the US wastewater discharged to the river emanates from 

the small, relatively economically distressed communities located in the upper portions of the 

watershed (in Starr County and western Hidalgo County) and which are arguably the local US 

communities that can least afford expenditures in infrastructure.  Stakeholders in these areas 

lamented recent cut backs in state and federal infrastructure funding resources available to them 
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in the past highlighting the importance of economics in local decision making, including decisions 

on infrastructure spending.  From stakeholder interviews:  

“And even though there is funding out there for these types of projects, the biggest 

issue that we have at Starr County is that Starr County is very economically 

deprived.  In fact, something that I’m not proud of and we have to improve is that 

we are one of the poorest counties in the nation.  So, when these funds are made 

available to the public they usually come with portions that must be matched by the 

entity.”  

“And, we don’t have the funding we used to from EPA, not from NADBank 

anymore unfortunately.  EPA gave out hundreds of millions of dollars for that, 

and they’re not doing that anymore.” 

An important historic antecedent/precipitating event that surfaces often in the information 

collected during the qualitative knowledge gathering efforts was the Texas drought of 2010 and 

2011.  The year 2011 was the driest year ever in Texas (NOAA, 2011), occurring in the middle 

of one of the most severe droughts in Texas history.  Consequently, the attention paid to water 

issues, not just in the Rio Grande Valley but throughout Texas, was extraordinary at the time of 

the qualitative data collection effort.  Although water availability issues were at the forefront of 

state and local governance discussions, water quality issues were also elevated to unprecedented 

ranks, especially in action arenas such as the US and Mexican water and wastewater treatment 

arenas.  Alternatives for wastewater “treatment,” such as direct reuse, which would normally not 

gain a place on discussion agendas at utility board meetings, suddenly surged as a discussion topic 

in such forums.  From stakeholder interviews:  

“Reuse water for the Valley, to me, is the key.  The City of (omitted to protect 

confidentiality), once again, is looking at how do we plan for this?  Well, we just 

finished doing a master plan for reuse water.  And once again the key is, it might 

take me ten years, but I gotta figure out a way to end up making sure that my citizens 

aren’t gonna go through the drought situations that were going through now.  In 

the 13 years that I’ve been here, this is the first year, in 2011, that I actually ran out 

of water.” 
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Problems with infrastructure funding also acquired a sudden urgency at the local and state level 

during and after the Texas drought of 2010-2011. 

Community attributes are difficult to investigate, especially those pertinent to the 

assessment of normative bounds on individual utility.  However, certain themes are discernable 

from the qualitative data and information gathered for this research. For example, a full 70% of 

the US respondents to the UT LBJ survey of water quality preferences were willing to pay extra 

each month to make sure the Rio Grande is clean enough to swim in and 28% answered “everyone” 

to the question: “Who do you think should be responsible for making sure the Rio Grande is 

clean?”  This responses was the most frequent by US respondents (UT-LBJ, 2013a).  The 

transcripts of the stakeholder interviews and focus groups sessions are also filled with statements 

invoking the importance of water quality to the local community.  From the stakeholder 

interviews: 

 “And that’s just it; at the end of the day it’s how much are you willing to spend 

and making an investment, and not only for your present needs but for those down 

the road. For our children and their children.”  

The Decision Space 

According to the IAD Framework, the decision space of an action arena is characterized 

by clusters of internal variables referred to as the “elements” of the action situation (Figure 2-19).  

They include the set of participants, the positions they occupy, the set of possible decisions/actions 

linked to outcomes, the level of control participants have over decision choices, and the information 

available to the participants for decision making.  These elements are influenced by exogenous 

variables that are addressed in the decision space through a set of working rules.  The following is an 

interpretation of these elements as they relate to the US wastewater treatment action arena. 

The participants in the of the US wastewater action arena are US entities that discharge 

wastewater to the Lower Rio Grande/Rio Bravo; these actors are described in more detail in the 

following sub-section.  Their positions and roles in the action arena are reflect their resources, 

interests, and individual needs, which determine their official category among the participants.  While 

all participants have a need for water, sanitation, and wastewater treatment and an interest in acquiring 

these resources and services, the individual needs, degrees of desired services, and resource levels vary 
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from participant to participant.  Participants compete with each other for financial resources for 

wastewater services and, to a degree, for assimilative capacity of the resource they rely on for disposal 

of their wastewater (i.e., the Rio Grande/Río Bravo).  In theory, participants in the US wastewater 

treatment action arena also compete for these resources with the participants of the Mexican 

wastewater treatment action arena, but in practice (at least currently), the participants in the US 

wastewater action arena do not compete with their Mexican counterparts for assimilative capacity and 

only marginally for funding. 

As explained in Chapter 1, US regulators do not currently take Mexican discharges into account 

when assessing the impact of proposed US wastewater discharges to the river.  Participants in the US 

wastewater action arena only compete with their Mexican counterparts for funding from NADB.  But, 

evidence from interviews and focus group sessions with US stakeholders indicate NADB strives to 

split its funding evenly between the United States and Mexico and US stakeholder do not appear to 

view NADB as a first-choice financing option for infrastructure projects.  From stakeholder 

interviews: 

“The 52 wastewater treatment plants [funded by NADB] that we have implemented 

through the US-Mexico border, half have been in the United States and half have 

been in Mexico.” Also, “EDAP [a TWDB financing program] is one of the primary 

funding sources for the Rio Grande Valley for the colonias.”  And, “EDAP is on 

a first-come-first-served basis, depending on applications received.” 

While the representatives of the participants in the US wastewater action arena may vary 

in terms of decision-making capacity (e.g., head of city planning departments, general managers, 

superintendents, etc.), the roles of all actors is similar.  Each participates to help make decisions 

about certain actions associated with wastewater infrastructure, such as expanding a wastewater 

treatment facility or providing first time sewer service to portions of their communities.  These 

actions result in a set of perceivable outcomes, some of which are more clearly foreseeable than 

others.  In the case of the US wastewater treatment action arena, the level of control the 

participants have over the choices of actions is constrained by a number of factors, including state 

requirements for environmental and public health protections and the requirements associated with 

project funding.  For example, water supply corporations do not have taxing authority and must 

rely on revenues from other sources, mainly service fees, to expand services.  All participants 
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must adhere to pertinent environmental regulatory requirements, as well as the financial 

requirements of funding organizations.    

One factor that constrains participants’ ability to make decisions about actions on 

wastewater infrastructure is information.  Knowledge about the physical resources (e.g., 

assimilative capacity of the intended receiving stream), the costs and benefits of actions being 

taken or contemplated, the actions by their fellow participants in the US wastewater treatment 

action arena and of Mexican dischargers could influence decisions.  While greater availability of 

information benefits all participants in the US wastewater arena, it benefits the entities of more 

modest means disproportionately. 

The Actors 

The author identifies the actors within the US wastewater treatment action arena as the 

members of municipal planning, utility and/or engineering departments of several entities (such as 

the engineering departments of four cities [City of Roma, City of Rio Grande City, City of La 

Joya, and City of Peñitas]; the engineering department of an independent municipal utility board 

[BPUB]; the general managers of a water supply corporation [Union WSC] and a special utility 

district [AGUA SUD]; and the superintendent of operations of an independent school district [La 

Joya ISD]) in charge of planning and management of wastewater treatment services for these 

organizations.  In the case of Union WSC, AGUA SUD and the La Joya ISD, the general 

managers and superintendent of operations delegate day-to-day wastewater management and 

planning activities to private engineering firms but oversee these activities and approve proposals 

(or approve the forwarding of proposals to a higher decision-making body), for infrastructure 

expenditures.   

The decisions made by these actors make them accountable to other individuals in three 

ways: (1) the decisions they make regarding wastewater infrastructure proposals must be in 

accordance with the needs and expectations of the stakeholders receiving the wastewater services; 

(2) the recommendations/decisions they make regarding wastewater infrastructure expenditures 

must be in accordance with the authorizations delegated to them, and the constraints placed on 

them, by their respective governing bodies and constraints placed upon them by the providers of 

funding and/or financial assistance; and (3) the decisions they make regarding wastewater 
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infrastructure project proposals must adhere to the regulations in place to protect human health 

and the environment. 

Actors in this action arena can be assessed by examining the four general characteristics 

explored when applying the IAD framework: Resources, Information Availability, Decision-making 

Strategies, and Norm-bounded Cost-Benefit.  Applying the framework reveals notable divergences 

among the actors in this action arena.  For example, the human and financial resources available to 

BPUB are much greater than those available to to any of the other actors in the US wastewater action 

arena.  Thus, the type of wastewater problems experienced by the City of La Joya, for example, are 

not common in more financially healthier utilities, such as BPUB.  Similarly, with greater financial 

resources, more economically stable entities have greater access to information on current and future 

infrastructure needs, alternatives, and costs than actors of more modest financial means.  In fact, the 

information asymmetry identified in this action arena is considerable when one compares the financial 

and human resources available to each actor.  These factors (resources and information availability) 

have a visible effect on the decision-making strategies of the actors in this action arena; more 

financially-capable actors tend to make decisions based on more and better information, which reduces 

the chances of mismanagement due to a lack of planning or simply from mistakes made due to lack of 

expertise or due to incompetence. 

Cost-benefit analysis is a well-established field of study and there would be great value in 

conducting a rigorous quantitative cost-benefit analysis with respect to the use of the LRGWQIDSS 

for each of the entities represented by the actors in the US wastewater action arena.  However, such 

a study is beyond the scope of this dissertation.  For the purposes of this research, it will suffice to 

acknowledge that the requirements of classical economic utility are satisfied if the actors and the 

entities they represent receive a measurable benefit at an affordable cost within the norms considered 

acceptable to the average member of the community. 

Within the context of the IAD framework, the investigation of norm-bounded cost-benefit is 

usually in reference to the outcomes of decisions made within the decision space of an action arena.  

Using the IAD framework to analyze the action arena, cost-benefit is relevant only from the perspective 

of a particular decision or set of decisions, the author has chosen to investigate this aspect of the actors 

in this action arena from the perspective of the cost-benefit associated with use of the LRGWQIDSS.  

With this in mind, the benefits identified by the author for the US wastewater action arena are the 

savings in engineering and planning cost involved in assessing the impacts, to water quality of the 
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receiving stream, of proposed infrastructure projects and of gaging the preliminary costs of those 

projects (e.g., upgrading and expanding wastewater treatment facilities, building new wastewater 

treatment facilities, installing wastewater connections to unsewered communities, etc.).  A second 

benefit would be the availability of additional information about the activities of other dischargers to 

the river, including Mexican dischargers, and a broader picture of assimilative capacity and water 

conditions in the river.  This second benefit would be especially valuable to downstream actors such 

as BPUB.  This is, of course, assuming the LRGWQI partner agencies agree, at some point, to allow 

the release of the LRGWQIDSS for use by this action arena (perhaps once the Declaratoria for the 

Lower Rio Bravo is promulgated in Mexico). 

At least at this time, neither the author nor the LRGWQI development team envisions a cost to 

the user of the LRGWQIDSS other than the time involved in using the software and, perhaps supplying 

input to the developers for improvement of the LRGWQIDSS.  Similarly, the author cannot identify 

any normative impediments to the use of the LRGWQIDSS by the US wastewater action arena, as 

defined in this research.  This leads to the conclusion that the norm-bounded cost-benefit of using the 

LRGWQIDSS in the US wastewater treatment action arena is slanted heavily towards benefit at 

minimal cost.  This conclusion is subject to change if the usage parameters of LRGWQIDSS were to 

change from those originally envisioned by the author and the LRGWQIDSS development team.  

The Working Rules 

According to the IAD framework, the working rules of an action arena are the rules-in-use 

in the decision space of the arena.  These are a combination of enforced rules-in-form, which are 

typically codified in some way, and self-enforced uncodified rules of order, norms or conventions 

adhered to by the actors.  It should be noted that the set of 

working rules in an action arena is a configuration in the sense that the effect of a change in one 

rule may depend upon the other rules-in-use and the change may also affect other rules-in-use 

(Ostrom, 2011). 

The author used the IAD framework to identify the working rules of the decision space of 

the US wastewater treatment action arena using guidance provided in the framework (Table 2-2).  

Due to the nature of the action arena being analyzed (i.e., a group of action arenas with similar 

functions) and the inherent difficulty in identifying and characterizing uncodified rules-in-use, the 
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analysis presented in this sub-section is focused primarily on identifying and characterizing codified 

and enforced rules-in-use utilizing the categorization of rule types described in the IAD framework. 

Boundary Rules  

Boundary rules determine which individuals/entities are allowed to participate in the action 

arena.  Using this definition, entry of entities as participants in the US wastewater treatment action 

arena is limited to those organizations that qualify as providers of wastewater services under the 

regulations of the State of Texas (Texas Water Code, Chapters 13.016, 13.043, and 13.187).  

These rules specify the registration, certification and reporting requirements for providers of 

wastewater services in the state of Texas.  In Texas, unless an entity providing wastewater 

services is a non-profit water supply corporation with less than 15 connections, the entity is 

required to apply for a Certificate of Convenience and Necessity (CCN).  The holders of these 

certificates must comply with a number of regulatory requirements, which vary depending on the 

type of and size of the utility.  Once certified by the Texas Public Utilities Commission, the entity 

must also apply for a permit, from the TCEQ, to discharge, or otherwise dispose of wastewater.  

Failure to comply with these requirements, including permit requirements, leads to legal action 

such as fines, administrative actions (e.g., receivership), and, in extreme cases, criminal 

prosecution.  Hence, the exit rules for participants in the US wastewater treatment action arena are 

also specified in the Texas Water Code and the applicable implementing regulations in the Texas 

Administrative Code. 

A second source of boundary rules for the US wastewater treatment action arena relates to the 

scope rules of its decision space.  Entry and exit of entities into the US wastewater treatment action 

arena is also determined by where and how the utility choses to treat and dispose of its wastewater.  

For example, the utility could choose not to discharge to the Lower Rio Grande/Río Bravo and thus 

would cease to be part of the US wastewater treatment action arena.  The reality is that, except for 

BPUB, the US utilities which are participants in the US wastewater treatment action arena are all 

located in the uppermost portion of the watershed, which leaves them with limited options for 

wastewater treatment and disposal, as all riverine water bodies in the upper portion of the watershed 

flow to the Lower Rio Grande/Río Bravo.  Options such as no-discharge permits are difficult to 

implement and unconventional wastewater treatment options, such as wastewater reuse, are expensive 
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and human resource intensive.  Therefore, discharge to the Lower Rio Grande/Río Bravo must be 

mentioned as one of the boundary rules for the US wastewater treatment action arena.  

Position Rules  

Position rules specify a set of positions (i.e., functional ranks) within the action arena.  Each 

position comes with corresponding resources, opportunities and responsibilities.  The position 

rules specify how individuals/entities are assigned to these positions.  This conceptualization is 

based on a model of the classic IRC stakeholder forum (i.e., irrigation districts, watershed 

partnerships, etc.) and is difficult to apply to the analytical construct represented by the US 

wastewater treatment action arena.  While, different types of wastewater providers occupy 

different positions in the US wastewater treatment action arena, based on their nature and size 

(e.g., large public utility v. small municipality v. water supply corporation v. school district, etc.), 

the positions reflect the statutory authorizations and constraints placed externally on the actors by 

the regulatory and infrastructure financing community, action arenas to which the US wastewater 

treatment action arena is interconnected at a higher hierarchical levels.   

The positions in the US wastewater treatment action arena do not directly affect the internal 

deliberations of the arena(s), as would the traditional functional ranks in a classical IRC 

stakeholder forum (e.g., a chairman or a ranking committee member or a treasurer, etc.).  

However, there are differences in opportunities and responsibilities associated with the different 

classifications of the utilities, as described in the Texas Water Code.  For example, under Texas 

Public Utility Commission rules, a district or municipality may not provide services within an area 

for which another utility holds a CCN unless the district or municipality has a CCN itself for that 

area.  And, a CCN holder is required to demonstrate financial, managerial, and technical 

capability to provide continuous and adequate service to any requested area within the CCN as a 

condition for retaining the CCN.  In some cases, entities can lose control of their utility service 

areas to a bigger, more financially stable utility.  So, while position rules in decision spaces, as 

originally conceptualized in the IAD framework, are not directly applicable to the US wastewater 

treatment action arena, the classifications of utilities specified in the Texas Water Code create 

virtual position rules in the US wastewater treatment action arena. 
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Scope Rules  

Scope rules bound the potential outcomes that can be affected by decisions/actions made 

by the actors in the decision space of an action arena.  The outcome boundaries are typically, but 

not always, tangible (i.e., measurable) domains.  An obvious source of scope rule for the decision 

space associated with the US wastewater treatment action arena is represented by the boundaries 

of the service areas and the CCNs of the eight entities included in the US wastewater treatment 

action arena.  The physical domain comprised of these geographic areas effectively bounds the 

outcomes of the decision space of the US wastewater treatment action arena.  An equally 

discernable source of scope rules affecting the US wastewater treatment action arena is the water 

body receiving the treated wastewater from these entities, the Lower Rio Grande/Río Bravo.  As 

previously mentioned, the scope and boundary rules of the US wastewater treatment action arena 

are related through the choice of wastewater treatment and disposal made by the actors in this 

action arena.  However, assuming the boundary rules apply, the scope rules for actors in the US 

wastewater treatment action arena are related directly to the available pollutant assimilative 

capacity of the Lower Rio Grande/Río Bravo or the amount of pollutants a utility is allowed to 

discharge to the Rio Lower Rio Grande/Río Bravo.    

Choice Rules  

Choice rules assign sets of actions that actors, in their positions at particular decision situations, 

may, must, or must not take.  Combined with the scientific laws about the relevant decision 

subject being acted upon (e.g., collection, treatment and disposal of wastewater), choice rules 

determine the shape of the decision tree that links actions to outcomes (Ostrom, 2011).  Choice 

rules, more than any other working rule in the decision space, constrain the operational actions of 

the participants in an action arena.  In the stakeholder forums studied by Ostrom, choice rules 

govern the actual management of the common pool resource.   

As was the case with position rules, the concept of choice rules does not fit neatly into the 

analytical construct of the US wastewater treatment action arena.  Choice rules that govern the 

operational behavior of the actors in the US wastewater treatment action arena are largely imposed 

exogenously by the State of Texas and, indirectly, by the US federal government (Figure 2-24).  

There are differences in the choice rules that apply to different types of utilities based on their legal 
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classification.  A utility can change the choice rules under which it operates if it changes its 

classification.  Also, a change in the classification of a utility may occur involuntarily and could 

result in more restrictive choice rules under which it must operate. 

Aggregation Rules  

Aggregation rules affect the level of control an individual actor, in a position within the 

action arena, exercises in the selection of an action during a particular decision situation.  These 

rules aggregate the interests of stakeholders by placing conditions on the activities of individual 

actors not just to protect the resource, but to protect the interests of other stakeholders.  Within 

the context of the US wastewater treatment action arena, the source of aggregation rules is a 

combination of external rules and internal rules.  An example of internal aggregation rules are 

the rules used by the individual utility boards for decision making.  This includes how 

infrastructure needs are determined by engineering or planning departments; how proposals for 

infrastructure projects are developed and promoted; how decisions are made internally to finance 

infrastructure projects, etc.  Examples of external aggregation rules affecting the US wastewater 

treatment action arena include the permitting procedures used by regulatory agencies, such as the 

TCEQ, and prioritization and approval procedures used by infrastructure financing organizations, 

such as the TWDB, USDARD or NADB.  

Information Rules  

Information rules affect the knowledge-contingent information sets of the participants in an action 

arena (Ostrom, 2011).  The immense importance the role information plays in decision making 

is not only intuitive but well-documented (Barnard, 1948; Gorry & Morton, 1971; Simon, 1976).  

Information, however, also plays an important role in the strategic behavior of the participants of 

action arenas.  In game theory, certain types of information are determining variables in the 

strategic behavior of the players in a game.  Similarly, participants in an action arena may find 

advantages and disadvantages in sharing information with other participants or with 

individual/entities outside of the action arena.  Because they can constrain the information made 

available to participants in the action arena, information rules also have an impact on other types 

of working rules in the action arena. 
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In the case of the US wastewater treatment action arena, participants are required to provide 

operational and economic information to state and federal agencies, which are action arenas to 

which the US wastewater treatment arena is interconnected, but which exist at higher hierarchical 

levels.  For example, utilities must report effluent flows and concentrations to the TCEQ and 

USEPA and must provide economic information to funding organizations such as the TWDB 

which is used for rate studies and financing formulas.  Although it is to the advantage of utilities 

to keep some information confidential, such as annexation or CCN expansion plans, these entities 

typically have difficulty keeping information from the public domain due to obligations associated 

with public accountability and legal requirements.  In general, for local utilities, the limiting 

factor in acquiring information useful in decision making is financial in nature.  Economically 

distressed communities, especially, may lack the means to obtain the kind of information they need 

to make better informed decisions.  

As discussed in the previous sub-section titled “Preface,” information rules in action arenas 

connected to the US wastewater treatment action arena at a higher hierarchical level (i.e., the 

LRGWQI action arena), effectively limit the information available to the participants in the US 

wastewater treatment action arena.  Information such as the location and nature of existing 

Mexican wastewater outfalls, the quality of water in Mexican tributaries and the expansion and 

upgrade plans of Mexican wastewater treatment facilities could become valuable knowledge to the 

participants in the US wastewater treatment action arena.  A decision support system that could 

provide access to some of this information would improve the decision-making capabilities of all 

participants in the US wastewater treatment action arena.  As information rules can affect other 

working rules in an action arena, access to the aforementioned information could affect operational 

controls specified in the scope rules and choice rules and may also affect other working rules of 

the US wastewater treatment action arena. 

Payoff Rules  

Payoff rules affect the benefits and costs that will be assigned to combinations of actions 

and outcomes.  They establish the incentives and deterrents for action (Ostrom, 2011).  To guide 

the analyst in identifying payoff rules, the IAD frameworks suggests the following questions be 

asked: How large are the sanctions that can be imposed for breaking any of the [working] rules? 
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How is conformance to rules monitored?  Who is responsible for sanctioning nonconformers?  

How reliably are sanctions imposed?  The vast majority of sanctions, compliance monitoring, 

and enforcement of sanctions are effected by external entities, such as the TCEQ and the TWDB; 

again, action arenas to which the US wastewater treatment arena is interconnected, but which exist 

at a higher hierarchical level. 

The costs to participants of providing sewer services to the communities they serve include 

the costs of wastewater collection, treatment, conveyance, and discharge, along with the 

engineering and administrative costs of planning and regulatory compliance.  The benefits 

include improved quality of life, which typically translates to increased economic opportunity, 

public support of local government, and in rare cases, increased revenues.  The balance of costs 

and benefits is dependent on variables that affect the payoff rules.  These include, ostensibly on 

the cost side, the multi-faceted repercussions resulting from breaking any of the working rules 

previously discussed.   

To identify payoff rules directly affecting benefits to participants in the US wastewater 

action arena, Ostrom includes the following question in her set of suggested questions for 

characterizing pay off rules: Are any positive rewards offered to appropriators for any actions they 

can take?  As mentioned, many of the payoff rules affecting costs in the US wastewater action 

arena are imposed externally.  However, payoff rules that enhance benefits are not necessarily 

tied to the rules exogenously imposed on the US wastewater action arena.  For example, an 

increase in the effectiveness and/or the efficiency of wastewater collection and treatment systems 

can increase the benefits to the utilities providing these services.  Participants in wastewater 

treatment action arenas can derive benefits indirectly by lowering of the costs of providing sewer 

services to their communities.  If costs of planning and general decision making were to be 

lowered through increased access to information, this would affect the cost-benefit balance, 

effectively redefining the payoff rules in the action arena. 

Institutional Factors Relevant to the Development of the LRGWQIDSS 

Several contextual factors identified during the analysis of the US wastewater treatment 

action arena are relevant to the design of the LRGWQIDSS.  Assuming participants in the US 

wastewater treatment action arena are also users of the LRGWQIDSS, the context within which 
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the actors in this action arena make decisions about wastewater infrastructure includes depressed 

economic conditions, substantial geographic areas lacking centralized wastewater services, and 

extremely dry conditions.  It stands to reason that a DSS designed to aid decision makers in this 

action arena include capabilities such as the simulation of the costs of options for providing and/or 

improving wastewater services to low income communities in their service areas or CCNs.  These 

costs include the price of providing wastewater collection and treatment services to new customers.  

Because flow in the Lower Rio Grande/Río Bravo affects its pollutant assimilative capacity and 

thus determines the level of treatment needed, it stands to reason that the LRGWQIDSS be able to 

simulate the effects of wastewater discharges under variable flow conditions, including drought 

conditions. 

Certain kinds of information provide specific benefits.  For example, the level of control 

the participants have over the choices of actions is constrained by state requirements for 

environmental and public health protections and the requirements associated with project funding.  

Therefore, the LRGWQIDSS should provide information that helps the actors in this action arena 

make decisions within these constraints (e.g. simulation thresholds pegged to state water quality 

criteria and displays of the geographic locations of outfalls and drinking water intakes).  Another 

kind of information determined to be useful to actors in the US wastewater treatment action arena 

is operational information about other actors in the arena, which would help each individual actor 

to better plan and manage of their systems.  Including information of this type in the 

LRGWQIDSS, would be useful to participants in the US wastewater treatment action arena.  

Beyond a commitment to serve their communities and to comply with pertinent state 

regulations and requirements, the actors in the US wastewater action arena understand the value 

of a healthy Lower Rio Grande/Río Bravo.  Although the TCEQ currently does not adequately 

take into account the effect on water quality of pollutant loading from Mexican sources, actors in 

the US wastewater treatment action arena would be concerned enough about water quality in the 

river to want to include this loading in simulations of water quality using the LRGWQIDSS. 

Finally, an examination of the rules-in-use in the US wastewater treatment action arena 

reinforces the need to design the LRGWQIDSS to provide information that helps the actors in this 

action arena make decisions within the regulatory constraints that so intensely influence the arena’s 

decision space.  The analysis of the working rules of the US wastewater treatment action arena 
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also shows how a change in the information rules (in this action arena and in action arenas 

connected to it), prompts changes in other types of working rules within the action arena; 

particularly affected by changes in information rules are scope rules, choice rules and, most 

importantly, payoff rules. 

Mexican Wastewater Treatment Action Arena(s) 
The Context 

Analogous to the US wastewater treatment action arena, the Mexican wastewater treatment 

action arena shares many functional similarities with its US counterpart.  However, there are also 

differences in the context within which the two action arenas operate.  The volume of wastewater 

discharged to the Rio Grande/Río Bravo from Mexican wastewater outfalls is greater than that 

which emanates from US outfalls.  Loadings of fecal bacteria and biochemical oxygen demand 

from Mexican point source is several orders of magnitude greater than that of US point sources 

(Table 1-11; Page 80).  This is mainly due to the wastewater outfalls located near the Mexican 

city of Reynosa, but also from those of other Mexican riparian communities located in the upper 

portion of the Lower Rio Grande/Río Bravo watershed.  In fact, the riparian population on the 

Mexican side of the watershed exceeds that of the United States by a factor of four (see Table 1-

12; Page 82).  On the US side of the watershed, most of the wastewater generated by the US 

urban population is discharged to a water body other than the Lower Rio Grande/Río Bravo (i.e., 

the Arroyo Colorado).  A large portion of the wastewater emanating from Mexican urban 

communities is discharged to the river.  

 There are also substantial demographic differences between the communities living on 

either side of the river.  The median income of the Mexican population in Northern Tamaulipas 

is well below the US poverty level and is only 11% of the median income on the US side.  The 

need for wastewater services is also much higher on the Mexican side, especially in large urban 

areas, such as Reynosa, where as much as 12.5 percent of the urban population lacks adequate 

sanitation (INEGI, 2010).   Mexican utilities also rely more heavily on government funding 

sources for expenditures on infrastructure, with 61% coming from the federal government, 23% 

from state governments and only 11% from local municipalities on average (CONAGUA, 2012).  

While US utilities rely on government funding for infrastructure, they also rely on customer fees 
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to pay for infrastructure projects and, for large projects, US municipalities rely on their constituent 

tax base to issue bonds.  Mexican utilities, on the other hand, rarely are as fiscally efficient.  For 

example, as of 2012, Reynosa’s COMAPA recovered only 62% of its costs from customer rates 

and CONAGUA rated the Reynosa COMAPA’s overall fiscal efficiency at only 57% 

(CONAGUA, 2012). 

Qualitative information collected as part of this research indicates that this difference in 

efficiency may be due to dissimilarities between US and Mexican normative attitudes towards the 

role of government.  From interviews: 

“In Mexico, you talk to any Mexican, and they tell you right away that water 

belongs to the nation, it’s derived from Article 27 of their constitution.” 

“I would also say that in Mexico, and this has been a big problem in financing 

wastewater infrastructure on the Mexican side, as there is this culture of not paying 

for your water.”  

“There’s a lot greater expectation along the whole range of services in Mexico, for 

the government to intervene and do things.” 

The conditions of high demand, scarce financial means, and systematic fiscal inefficiency 

relegate the Mexican wastewater treatment action arena to physical and material conditions that 

are substantially less favorable to success the than those of the analogous US wastewater treatment 

action arena.  It should be noted, however, that in this portion of the US-Mexico border region, 

several large wastewater infrastructure projects were completed, on the Mexican side of the 

watershed between 2000 and 2018, including new wastewater treatment facilities for the Mexican 

cities of Mier, Miguel Alemán, Reynosa, Rio Bravo and Matamoros.  These projects were 

financed largely through a combination of funding from the NADB and the Mexican federal 

government. 

Although arid conditions are the norm for all of northern Mexico, the drought of 2010 and 

2011 that so drastically affected Texas also had a lasting effect on northeastern Mexico.  As with 

their neighbors to the north, water availability issues were at the forefront of discussions among 
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professionals in the COMAPAS of northern Tamaulipas.  Consequently, alternatives for 

wastewater “treatment,” including direct reuse, also featured prominently in these discussions.   

As far as community attributes affecting the Mexican wastewater treatment action arena, 

the aforementioned Mexican normative attitudes towards water and sanitation present a challenge 

to the participants of this action arena, in that there is a public expectation that the COMAPAS and 

JADs provide water and sanitation services without necessarily a commensurate sense of 

obligation on the part of the public to pay the real costs of such services.  There is also a general 

reluctance, on the part of utilities and the state and federal government, to rely on the rate payer 

and tax payers to fully finance infrastructure projects.  This is reflected in the lower percentage 

of Mexican respondents (67%) that were willing to pay extra each month to make sure the Rio 

Grande is clean enough to swim in.  A lower percentage of Mexican survey respondents (18.8%) 

also answered “everyone” to the question: “Who do you think should be responsible for making 

sure the Rio Grande is clean enough to swim in?” Surprisingly, “Local Government” ranked only 

as the third highest response to this question among Mexican respondents.   

In 2012, CONAGUA rated the Reynosa COMAPA’s overall functional efficiency at 37% 

(CONAGUA, 2012).  Functional inefficiency in the Mexican wastewater treatment action arena, 

is related to the fiscal inefficiency of COMAPAS and JADs, as the need to reduce infrastructure 

debt burdens often leads decision makers, especially those in interconnected action arenas at higher 

hierarchical levels, to call for a reduction in local COMAPA staffs and/or salaries (Torres, 2019).      

The qualitative information gathered for this research indicates that the Mexican riparian 

communities share, with the riparian US communities, an appreciation of the Lower Rio 

Grande/Río Bravo as a valuable natural resource, with 79.8% of respondents to the UT LBJ survey 

of water quality preferences choosing the highest option (5), “very important,”  to the question: 

“On a scale of 1-5, how important is it to you that the Rio Grande/Rio Bravo be clean?” 

The Decision Space 

Like their US counterparts, the participants in the of the Mexican wastewater action arena 

hold different positions in the arena based on their resources and individual needs and interests 

and also compete with each other for financial resources.  However, unlike their US counterparts, 

participants in the of the Mexican wastewater action arena do not currently compete for 
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assimilative capacity of the water bodies receiving their wastewater.  This is because the effluent 

limitations placed on the outfalls for which these actors are responsible are based on technology-

based performance standards (BPT), not on the effects the outfalls have on the ambient water 

quality of the receiving stream (i.e., the Rio Grande/Río Bravo and its tributaries).  This is a 

significant policy difference between Mexican and US regulatory frameworks that not only 

obviates competition between participants in the Mexican wastewater treatment action but 

effectively shields them from competition with US dischargers for assimilative capacity of the 

river.  There rules fail to adequately protect water quality in the Lower Rio Grande/Río Bravo. 

In terms of funding, participants in the Mexican wastewater action arena have fewer 

choices at than US counterparts; their decision-making ability is also limited within the more 

centralized Mexican governance system.  CONAGUA selects and approves financial resources 

for wastewater infrastructure funding on a national level under its two main federal infrastructure 

programs APAZU and PRODDER.  Some regional planning is conducted by state agencies, such 

CEAT, which assesses infrastructure needs in the State of Tamaulipas and also provides limited 

financial resources for infrastructure funding.  As previously described, the bulk of the financing 

of wastewater infrastructure projects on the Mexican side of the Lower Río Bravo since 2000 has 

involved a combination of CONAGUA programs and NADB loans, with some grant funding 

provided by the BECC though the USEPA’s BEIF program. 

Like the categorization scheme used to classify Texas utilities, the prioritization process 

used by CONAGUA and CEAT places COMAPAS and JADs in certain funding categories, which 

within the context of the IAD framework, can be thought of as “positions.”  These positions 

afford a certain leverage in obtaining funding for infrastructure.  However, Mexican wastewater 

treatment action arena participants have less control over their positions as compared to US utilities 

because they have less options at their disposal for the infrastructure funding.  Nevertheless, 

participants in the Mexican wastewater treatment action arena are responsible for making decisions 

about certain actions associated with wastewater infrastructure, such as prioritization of repairs 

and treatment options.  These actions, like those of their US counterparts, result in a set of 

perceivable outcomes.  As with their US counterparts, the level of control the participants have 

over the choices of actions is constrained by regulatory and funding requirements.  Furthermore, 

regulatory requirements are likely to change after the promulgation of the Declaratoria, as the 
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effluent limits for Mexican wastewater treatment facilities discharging to the Lower Rio 

Grande/Río Bravo will change from technology based performance standards to water quality-

based limits.  As in the US wastewater treatment action arena, information is perhaps the most 

important factor that constrains the ability of the participants in the Mexican wastewater treatment 

action arena to make decisions about actions on wastewater infrastructure, especially after 

promulgation of the Declaratoria. 

The Actors 

The actors within the Mexican wastewater treatment action arena are the representatives of 

the COMAPAs of the Nueva Ciudad Guerrero, Ciudad Mier, Ciudad Miguel Alemán, Ciudad 

Camargo, Ciudad Gustavo Díaz Ordaz, Reynosa, and of the JAD of Matamoros.  COMAPAs 

were created as an indirect result of the 1988 reforms to Mexican water law, which also created 

CONAGUA (Piñeda, 2002).  Following these federal reforms, CONAGUA issued a series of 

recommendations aimed at strengthening the decentralization process and promoting rate 

autonomy, based on the actual costs of the service provision.  These recommendations prompted 

Mexican state governments to introduce new laws or amended existing ones, partly following 

CONAGUA's guidelines. By 1996, 21 Mexican states had transferred service provision to 

municipal service providers known as COMAPAs. 

The structure of COMAPAs is similar for all Mexican municipalities under which they 

operate. Commissioners are appointed by elected city officials, but the number of commissioners 

on the boards can vary depending of the size of the municipality.  Typically, one commissioner 

is assigned the duty of reporting to city government on the activities of the COMAPA, which is 

operated by hired administrative and professional staff.  Small COMAPAs often lack licensed 

engineering or planning staff, in which cases the general manager (genrente) is often tasked with 

performing these functions.  JADs generally operate much the same way as COMAPAs, but they 

predate COMAPAs, so their structure can vary depending on their pre-1988 reform history.  

Matamoros’ JAD is composed of utility board members that are appointed by elected city officials 

much the same way as COMAPAs.  The participants in the Mexican wastewater treatment action 

arena are accountable to other individuals in the same ways as their US counterparts.  

Both the JAD for the City of Matamoros and Reynosa’s COMAPA have significantly more 

resources than the COMAPAs of the other smaller utilities that make up the Mexican wastewater 
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treatment action arena, including planning and engineering departments staffed with dozens of 

professional, administrative, and operations employees.  The greater human and financial 

resources of these utilities give them the ability to acquire and access more information, which 

allows decision makers in these utilities to make better informed decisions.  Due to the higher 

population densities, coupled with the fiscal and operational inefficiency problems discussed in 

the previous sub-sections, the greater human and financial resources of these utilities do not always 

translate to better sewer services for the communities they serve.  Nevertheless, an information 

asymmetry similar to that of the US wastewater treatment action arena also exists in the Mexican 

wastewater treatment action arena. 

Upon the promulgation of the Declaratoria, Mexican utilities will be expected to plan for 

compliance with new water quality-based effluent requirements.  Therefore, access to 

information helpful in these assessments would have the same cost-benefit effects as they will 

have on the US utilities participating in the US wastewater treatment action arena, such as savings 

in engineering and planning costs involved in assessing the water quality impacts and costs of 

proposed infrastructure projects. Information about the activities of other dischargers to the river 

and a broader picture of assimilative capacity in the river under various conditions.  A tool such 

as the LRGWQIDSS would disproportionately benefit smaller, less financially capable Mexican 

wastewater treatment action arena participants and those located farthest downstream, such as 

Matamoros.   

Assuming use of the LRGWQIDSS is made available to the participants of the Mexican 

wastewater treatment action arena for free, the author cannot identify any normative impediments 

to the use of the LRGWQIDSS by such actors, which leads to the same conclusion about the norm-

bounded cost-benefit of users of the LRGWQIDSS in the Mexican wastewater treatment action 

arena.  However, as with the US wastewater treatment action arena participants, this conclusion 

is subject to change if the usage parameters of LRGWQIDSS were to change from those originally 

envisioned by the author and the LRGWQIDSS development team.  

The Working Rules 

The author used the IAD framework to identify the working rules of the decision space of 

the Mexican wastewater treatment action arena using guidance provided in the framework.  As 
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with the analysis of the US wastewater treatment arena, the analysis focuses primarily on 

identifying and characterizing codified and enforced rules-in-use. 

Boundary Rules  

Entry of entities as participants in the Mexican wastewater treatment action arena is limited 

to those organizations that qualify as operating organisms (organismos operadores [OOs]) under 

Mexican federal law.  Although Article 115 of the Mexican constitution places responsibility for 

sewage collection and treatment on Mexican municipios, Mexico’s 1992 National Water Law (Ley 

de Aguas Nacionales) and its 2004 reauthorization specifies the role of OOs in the provision of 

sanitation services and places oversight responsibility of OOs on the federal government, 

represented by CONAGUA.  There exists a hierarchical classification system for OOs based on 

geographic service area and population served.  However, OOs can be publicly owned, privately 

owned or a combination of these two (e.g., publicly owned but privately administered).  OOs can 

serve an entire municipio, a portion of a single municipio, or portions of two or more minicipios.  

In some instances, Mexican state agencies have been certified as OOs and provide water and 

wastewater services to municipios.  

In addition to federal certification and reporting requirements, OOs must comply with 

federal requirements for financial viability.  OOs are also subject to federal health and 

environmental regulations and must be permitted under federal discharge regulations administered 

by CONAGUA.  As in the United States, failure to comply with these requirements can lead to 

legal action at the federal level by the Mexican agency in charge of enforcement of environmental 

laws, PROFEPA.  Therefore, the exit rules for participants in the Mexican wastewater treatment 

action arena are specified in the Mexican National Water Law and the Mexican Federal Code of 

Civil Procedures (Código Federal de Procedimientos Civiles).  Another other source of boundary 

rules for the Mexican wastewater treatment action arena is the location of its wastewater discharge.  

If a participant in the Mexican wastewater treatment action arena decides to relocate its wastewater 

outfall to a water body that is not the Lower Rio Grande/Río Bravo or one of its tributaries, they 

will automatically exit the Mexican wastewater treatment action arena.  Conversely, any Mexican 

OO discharging to the Lower Rio Grande/Río Bravo or one of its tributaries is a participant in the 

Mexican wastewater treatment action arena.  Thus, as is the case with the US wastewater 
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treatment action arena, the boundary rules for the Mexican wastewater treatment action arena are 

linked to its scope rules. 

Position Rules  

Position rules in the Mexican wastewater treatment action arena are analogous to those of the US 

wastewater treatment action arena.  The positions reflect the statutory authorizations and 

constraints placed externally on the arena participants by Mexican federal law (i.e., the Mexican 

national water law administered by CONAGUA).  It is useful to point out that CONAGUA 

represents an institutional action arena to which the Mexican wastewater treatment action arena is 

interconnected at a higher hierarchical level.  As with their US counterpart, the positions of the 

participants in the Mexican wastewater treatment action arena do not directly affect the internal 

deliberations of the individual wastewater arena(s).  However, there are differences in 

opportunities and responsibilities associated with the different classifications of the OOs, as 

described in the Mexican national water law. 

The higher federal influence in the financing of water and wastewater infrastructure 

projects creates a difference in the positional dynamics of the Mexican wastewater treatment action 

arena, as compared to its US counterpart.  For example, CONAGUA has been known to place 

conditions of financial assistance to Mexican OOs it deems overly financially inefficient (Torres, 

2019).  Although some COMAPAs have wider access to financial resources than others, 

especially those in Mexico’s northern border region where NADB financing is available to some 

OOs, the majority of water and wastewater infrastructure projects financed using non-

governmental resources also rely on some Mexican federal and/or state funding. 

Scope Rules  

Like the US wastewater treatment action arena, the first source of scope rules in the 

Mexican wastewater treatment action arena is the geographic boundary of the combined service 

areas of the seven OOs included in the Mexican wastewater treatment action arena.  Under 

Mexican law the activities of these actors are confined to this boundary.  As the wastewater 

effluent limitations currently enforced by CONAGUA are established by technology-based 

performance standards, the second source of scope rules affecting the US wastewater treatment 

action arena, the assimilative capacity of the Lower Rio Grande/Río Bravo, does not currently 
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constrain the participants of the Mexican wastewater treatment action arena.  That is, in terms of 

the discharge of wastewater, the participants in the Mexican wastewater treatment action arena are 

not currently constrained by the pollutant assimilative capacity of the Lower Rio Grande/Río 

Bravo.  This situation is likely to change once the Declaratoria for the Lower Río Bravo is 

promulgated, as effluent limitations for participants of the Mexican wastewater treatment action 

arena will cease to be granted on technology-based performance standards and will instead be 

based on the effect of effluent discharges on ambient water quality.    

Choice Rules  

Like in the US wastewater treatment action arena, the choice rules applicable to the 

Mexican wastewater treatment action arena are imposed exogenously under Mexican federal law, 

which is administered by CONAGUA and enforced by PROFEPA.  There are differences in the 

choice rules that apply to different types of OOs based on their legal classification. Mexican OOs 

have little control over their classification under Mexican federal law, and thus less control over 

the choice rules under which they operate.  The choice rules for Mexican wastewater treatment 

action arena participants are also likely to change as a result of the promulgation of the Declaratoria 

for the Lower Río Bravo.  As the volume and quality of treated wastewater is evaluated against 

the assimilative capacity of the Lower Rio Grande/Río Bravo, adjustments will likely be necessary 

in the choice rules governing the activities of the participants in the Mexican wastewater treatment 

action arena, including conditions and constraints on wastewater collection efficiency and 

treatment levels. 

Aggregation Rules  

The source of aggregation rules in the Mexican wastewater treatment action arena is a 

combination of internal rules that govern decision making in the local OOs and external rules, 

which in this case are imposed directly by the Mexican federal government and also the Mexican 

state of Tamaulipas.  The internal rules for decision making in local COMPAPAS and JADs are 

similar to those used by US utility boards, although in many small Mexican COMAPAS the 

number of people involved in decision making regarding infrastructure projects is typically smaller 

and their level of accountability to the public is also generally less than that of their US 

counterparts.  
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As is the case on the US side of the watershed, many administrative rules and procedures 

used by CONAGUA to issue wastewater discharge permits and to prioritize and finance 

wastewater infrastructure projects for local OOs are specified in the operational choice rules that 

originate from the collective choice rules that authorize CONAGUA to develop and implement 

them.  In the case of CONAGUA these collective choice rules are Mexican federal law.  

However, in addition to CONAGUA’s operational choice rules, Mexican wastewater treatment 

action arena participants are affected directly by regulations administered and enforced by CEAT.  

Both sets of operational rules, federal and state, include administrative procedures for wastewater 

permitting as well as selection for financing of infrastructure projects under federal and state 

programs.  The same aggregation rules that apply to participants in the US wastewater treatment 

action arena also apply to the participants in the Mexican wastewater treatment arena when seeking 

financing of infrastructure projects through NADB.   

Information Rules  

The sharing of information within the Mexican wastewater treatment action arena follows patterns 

similar to those of the US wastewater treatment action arena.  Participants in the action arena may 

find advantages and disadvantages in sharing information with other participants or with 

individuals and entities outside of the action arena.  The scarcer resources of smaller OOs prevent 

these actors from obtaining information useful in decision making.  Larger OOs may have the 

resources to acquire or access more and higher quality information to make better informed 

decisions. 

In a similar fashion as that of their US counterparts, participants in the Mexican wastewater 

treatment action arena are required to provide operational and economic information to Mexican 

federal and state authorities.  These authorities operate in action arenas existing at higher 

hierarchical rule levels (e.g., the LRGWQI action arena) but are connected to the Mexican 

wastewater treatment action arena though their influence on the working rules of the Mexican 

wastewater treatment action arena.  One of the ways these agencies influence the working rules 

of the Mexican wastewater treatment action arena is by providing access to information.  As 

previously discussed, CONAGUA currently restricts the access to the information collected and 

acquired as part of the LRGWQI project.  Ostensibly, this information will be made available to 
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the participants of the Mexican wastewater treatment action arena once the Declaratoria for the 

Lower Río Bravo is promulgated.  Information such as the location and nature of existing 

Mexican wastewater outfalls, the quality of water in Mexican tributaries and the expansion and 

upgrade plans of Mexican wastewater treatment facilities would be valuable knowledge to the 

participants in the Mexican (and US) wastewater treatment action arena(s). 

A decision support system such as the LRGWQIDSS could provide information that could 

improve the decision-making capabilities of all participants in the Mexican wastewater treatment 

action arena. 

Payoff Rules  

As is the case with the US wastewater treatment action arena, the rules that affect the costs 

incurred and benefits received by the actors in the Mexican wastewater treatment action arena are 

tied to the commitments these actors make to provide adequate water and sanitation services to the 

communities they serve.  This includes material costs as well as the administrative and 

engineering costs of wastewater collection and treatment, including the costs of planning for these 

services in the future.  Costs to the participants of the Mexican wastewater treatment action arena 

also include the consequences of non-compliance with the other working rules of the action arena 

(i.e., scope rules, choice rules, etc.), including the consequences of fiscal and operational 

inefficiencies.  To the participants of the Mexican wastewater treatment action arena, the benefits 

of effective and efficient provision of sanitation services are the same as those for the participants 

in the US wastewater treatment action arena, improved quality of life, increased economic 

opportunity and increased public support of local government.   

The balance of costs and benefits to the participants of the Mexican wastewater treatment 

action arena is dependent on variables that affect the payoff rules in this arena.  In the case of the 

US wastewater treatment action arena, these variables were largely limited to reductions in the 

cost of providing sanitation services.  While this is also the case in the Mexican wastewater 

treatment action arena, the difference in operational and, especially fiscal efficiency between 

Mexican OOs and US utilities introduces an additional variable that could also affect the payoff 

rules of the participants of the Mexican wastewater treatment action arena.  To be sure, an 

increase in efficiency would affect the payoff rules in both the United States and Mexican 



 

315 
 

wastewater treatment action arenas.  However, this variable would affect the payoff rules in the 

Mexican arena in a disproportionate manner.  

Increased access to information could reduce the costs of planning and general decision 

making and can also increase the efficiency of wastewater collection and treatment systems.  

Thus, increased access to information can affect the cost-benefit balance, effectively redefining 

the payoff rules in the Mexican wastewater treatment action arena.   

Institutional Factors Relevant to the Development of the LRGWQIDSS 

Many of the contextual factors affecting the US wastewater treatment action arena also 

affect the Mexican wastewater treatment action arena, including depressed economic conditions, 

substantial geographic areas lacking centralized wastewater services, and extremely dry 

conditions.  However, these factors are magnified in the Mexican portion of the watershed by the 

greater numbers of people living in the riparian areas and the higher volume of wastewater being 

generated by the urban communities on the Mexican side.  Of particular importance is the large 

and dense urban population living in the city of Reynosa, which contributes the biggest share of 

the wastewater emanating from the Mexican side of the watershed (Table 1-11; Page 80).   

A contextual factor that is magnified on the Mexican side of the watershed is the size of 

the riparian population receiving inadequate wastewater collection or lacking sanitation services 

altogether.  The average fiscal and operational efficiency of Mexican OOs is lower than that of 

their US counterparts.  With these contextual factors in mind, it stands to reason that the 

simulation of water quality in the Lower Rio Grande/Río Bravo would need to take into account 

the contributions not only of the wastewater discharged to the river from specific wastewater 

outfalls, but also of partially treated and untreated wastewater produced from underserved Mexican 

riparian populations and associated with conveyance losses in wastewater collection systems.    

Following the promulgation of the Declaratoria for the Lower Rio Bravo, the participants 

in the Mexican wastewater treatment arena will be required to treat the wastewater they discharge 

to the Lower Rio Grande/Río Bravo, or one of its tributaries or contributing drains or ditches, to 

water quality levels that are commensurate with the assimilative capacity of the river.  Initially, 

these new treatment levels will be communicated to existing dischargers by CONAGUA, which 

will have determined them from water quality simulations.  However, for future planning 
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purposes, participants in the Mexican wastewater treatment arena would benefit from having at 

their disposal a means to simulate the effect, on water quality in the Lower Rio Grande/Río Bravo, 

of proposed increases in effluent flows, or of new wastewater outfalls, using the same model of 

water quality used by CONAGUA.  Assuming the participants in the Mexican wastewater 

treatment action arena will be given access to the LRGWQIDSS, it stands to reason that the system 

be designed to provide this capability as well as the ability to estimate the costs of options for 

providing and/or improving wastewater services to low income communities in their service areas.   

The LRGWQIDSS should provide information that helps the actors in Mexican wastewater 

treatment action arena make decisions within their regulatory constraints (e.g. simulation 

thresholds that reflect Mexican water quality criteria and loading limits commensurate with the 

Declaratoria).  As is the case for participants in the US wastewater treatment action arena, 

participants in the Mexican wastewater treatment action arena would also benefit from operational 

information about other wastewater dischargers, which would help each individual actor to better 

plan and manage their systems.  As the Declaratoria will take all wastewater dischargers into 

account in the estimates of assimilative capacity of the river, information about US dischargers 

would need to be included in the LRGWQIDSS. 

As with the US wastewater treatment action arena, an examination of the rules-in-use of 

the Mexican wastewater treatment action arena reinforces the need to design the LRGWQIDSS to 

provide information that helps the actors in this action arena make decisions within the Mexican 

regulatory constraints.  The stronger financial constraints, as compared to their US counterparts, 

and the changes in scope rules and choice rules likely to be brought about by the promulgation of 

the Declaratoria for the Lower Río Bravo make the benefits of a tool such as the LRGWQIDSS a 

factor that could help offset negative changes in payoff rules. 

The Lower Rio Grande Water Quality Initiative Action Arena 
The Context 

Section 1.0 of this dissertation (Introduction) describes the motivation of the actors, the 

legal backdrop, and the institutional interactions that led to the establishment of the LRGWQI. As 

a binational decision-making forum where decisions are made by institutional actors to “address 

water quality issues” in a shared transboundary water resource, the LRGWQI action arena, at least 
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superficially, reflects aspects of a classical IRC stakeholder forum.  The physical and material 

conditions that concern the decision space of the LRGWQI action arena are directly related to the 

quality of the shared resource.  Participants enter the LRGWQI forum with the explicit goal of 

working cooperatively to protect the resource.  However, unlike classical IRC stakeholder 

forums, the participants in the LRGWQI action arena not only represent the interests of the 

resource users (i.e., local stakeholders), but also the interests of the agencies they represent, which 

may include interests related to national sovereignty, agency-specific legal and regulatory 

requirements, and strategic bureaucratic concerns.  In this sense, the LRGWQI diverges from the 

theoretical architype of the IRC stakeholder forum, as the influence of governmental authority, or 

at least government oversight, is superimposed on the resource management process which, 

according to IRC theory, is not an optimal common pool resource management situation. 

In the LRGWQI action arena, each participant’s evaluation of the physical and material 

conditions concerning the decision space is framed by the processes each actor uses to assess the 

resource.  These processes are based on the legal standards and regulatory procedures under 

which each actor operates (e.g., the federal Clean Water Act, the Texas Surface Water Quality 

Standards, the Ley Nacional de Aguas, the 1944 US-Mexico Water Treaty, etc.).  Consequently, 

each actor’s notion of acceptable water quality is based on self-selected standards and the 

processes used by the actors to determine compliance with these standards is based on each actor’s 

regulatory procedures.  This situation is not a common circumstance in archetypical IRC 

stakeholder forums and,  in fact, presents a barrier to cooperative decision-making in 

transboundary water resource management.  According to IRC theory, one of the goals of 

common pool resource management institutions is to create common understandings among 

stakeholders about how to manage the resource sustainably.  In order to move in a direction that 

advances sustainability, it is advantageous for the LRGWQI action arena to seek ways to create 

common understandings among the participants about how to protect water quality in the Lower 

Rio Grande/Río Bravo.  This is an important insight for developers of transboundary DSSs, as is 

an acknowledgement of the institutional individualities associated with the participants’ 

assessment of the physical and material conditions concerning the decision space of the action 

arena. 



 

318 
 

In the discussion earlier in this chapter about contextual water resources management (Sub-

section 2.1.1.3), the author mentions that implementation of water resources management rarely 

occurs in “blank slate” situations where no prior institutional form of management exists.  In the 

case of the LRGWQI, a number of historic antecedents frame the initiative’s efforts to protect 

water quality.  Foremost is the cooperative relationship that has existed for over a century 

between the United States and Mexico with regard to the allocation of water from the Lower Rio 

Grande/Rio Bravo, under the 1944 US-Mexico Water Treaty.  Article 3 of the treaty and Minutes 

261 and 289 of the treaty compel the IBWC and CILA to cooperate to resolve sanitation issues 

and other problems affecting water quality in the river.  The sense of responsibility the treaty 

confers on these two agencies, to address water quality problems in the river, coupled with local 

stakeholder concerns (on both sides of the border) about increasing salinity in the river motivates 

both sections to reach a binational agreement to protect water quality. 

In addition to this antecedent, other precursor events, such as CONAGUA’s decision to 

establish a Declaratoria for the Lower Río Bravo and the TCEQ’s listing of the Rio Grande as an 

impaired water body, also frame the LRGWQI by identifying the factors that motivate participants 

beyond general protection of water quality.  These precursors compel the developers of the 

LRGWQIDSS to ensure that the specific legal and regulatory requirements associated with these 

antecedents are taken into account in the design of the DSS. 

In the AID framework, the purpose of exploring the attributes of the community 

undergirding an action arena is to identify the contextual factors, shared by the actors, that 

influence the cultural and normative bounds of the decision space.  In the case of the LRGWQI 

action arena, it is difficult to conceptualize the community or communities that underly the action 

arena.  As a forum composed of agency representatives, many of whom have never been residents 

of the Lower Rio Grande/Río Bravo watershed, the LRGWQI action arena is not reflective of a 

particular community or set of communities, as the term is used in the IAD framework.  

Nevertheless, as a binational group of actors, a basic community grouping applicable to the 

LRGWQI action arena is nationality. 

As previously mentioned, it is difficult to characterize the pertinent attributes of any 

community, much less a country.  However, it would be fair to say that issues of sovereignty play 

an important role in the LRGWQI action arena.  That is, cooperation among participants is 
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affected by factors associated with the difference in sovereignty of the actors; a lack of trust or 

respect or, simply, strategic behavior between actors of different nationalities can present potential 

barriers to cooperation.  Some of the qualitative information acquired for this research yields 

helpful insights into how these attributes may affect the decision space of the LRGWQI action 

arena.  From interviews: 

“I think historically the big issue with Mexico has been, what I call, sovereignty. 

This comes from when we took away 2/3 of their natural territory in the Mexican–

American war.  Mexicans have always been very concerned about sovereignty.  

Though (sic), when we tried to take some issue and shove it down their throat, they 

get upset.” 

Overcoming cooperation barriers associated with issues of sovereignty is a distinctive 

challenge which developers of transboundary DSSs must confront and the LRGWQI development 

team is no exception. 

The Decision Space 

The LRGWQI action arena participants are identified in the TOR document, which 

specifies, by name, the agencies participating in the US and Mexican Core Groups.  The TOR 

also describes the operational structure of the initiative’s decision-making forum and details the rules 

for participation in the forum.  In doing so, the TOR also outlines the roles of the participating 

agencies, each country’s “stakeholders,” and other potential participants in the initiative, such as other 

agencies, nongovernmental organizations, and technical experts.  The description of these roles 

effectively assigns positions to each of the participants, or potential participants, according to their 

respective designations in the TOR.  For example, the TOR designates the US and Mexican Principal 

Engineers of the IBWC, or their representatives, as chairpersons of the LRGWQI.  Thus, the IBWC 

presides over a Binational Core Group, the main decision-making body of the LRGWQI, composed of 

federal and state government representatives.  Two additional groups, the US and Mexican Core 

Groups, set the decision-making agenda for the Binational Core Group.  US and Mexican Core 

Groups ostensibly base their agenda recommendations on input from their respective stakeholders. The 

stakeholders, which may include local government officials or non-governmental organizations 

(NGOs), may participate in the Binational Core Group, but only by invitation of the Binational 
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Core Group and approval of the IBWC.  Except for the participation of David Eaton, Ph.D., who 

was invited by the IBWC to participate in an advisory capacity, only representatives of the six 

agencies that form the US and Mexican Core groups have participated in the LRGWQI’s Binational 

Core Group meetings. 

The structure of the LRGWQI action arena creates a two-tiered decision-making process, 

where proposals for binational deliberation are generated by the respective national core groups.  

The decision-making dynamics in the national core groups is between entities operating at different 

hierarchical levels, whereas that of the Binational Core Group is between parties represented at 

one level (i.e., the national level).  Differences between actors in the national core groups are 

expected to be worked out prior to elevating proposals to the Binational Core Group.  

The LRGWQI TOR describes, only in general terms, the set of possible actions that can be 

linked to the outcomes described in the TOR document.  The expected outcomes of the LRGWQI 

are also described only in general terms, namely as “significant and sustainable improvements in 

ambient water quality within the main stem of the Lower Rio Grande/Rio Bravo from the Falcon 

Reservoir to the Gulf of Mexico.”  The set of possible actions include those that advance the 

following objectives specified in the TOR:  

a) Addressing current and future water quality issues of the Lower Rio Grande/Río 

Bravo; 

b) Implementing management procedures and programs that enable affected parties to 

manage wastewater discharges and improve water quality conditions; 

c) Evaluating current wastewater discharge infrastructure and management strategies for 

the potential for improving the quality of effluent discharges into the Lower Rio 

Grande/Río Bravo; 

d) Evaluating new mechanisms and strategies for system operations that could improve 

ambient water quality and address border sanitation concerns; 

e) Improving salinity management for return flows into the Lower Rio Grande/Río 

Bravo; and 

f) Based on the results of the evaluations carried out, implementing programs and 

projects to meet these objectives as appropriate 
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The range of specific decisions/actions that are feasible for each participant in the 

LRGWQI action arena is related to the set of rules that allow and constrain the actions of each 

participant, and which generally dictate the manner in which the actions can be carried out.  This 

is important knowledge for the design of a DSS, as these rules and procedures bound the 

decisions/actions of the participants in the LRGWQI action arena.  For example, both TCEQ and 

CONAGUA have the authority, within their respective jurisdictions, to set surface water quality 

standards and to grant or deny wastewater discharge permits.  Both agencies also have the 

responsibility of monitoring surface water quality and of taking measures to restore water quality 

in surface water bodies in which water quality is impaired.  CONAGUA is compelled to carry 

out these actions by the mandate and authority granted it by the collective choice rules enacted by 

the Mexican federal government.  The TCEQ carries out its actions following the operational 

rules laid out by the USEPA, which receives its mandate and authority via collective choice rules 

from the US federal government. 

Of course, the level of control these agencies have is limited to their respective 

jurisdictions.  For example, the TCEQ cannot use its authority to control wastewater discharges 

emanating from Mexico any more than CONAGUA can control wastewater discharges from the 

United States.  Any influence either entity wishes to have on sources of pollution in foreign soil 

must be negotiated by international agreement.  One of the barriers in reaching these types of 

agreements is the difference in the mandates and obligations stemming from the collective choice 

rules of each country.  For example, the EPA delegates authority for controlling pollutant 

loadings from stormwater to the TCEQ, which issues TPDES permits to manage these loadings.  

US water quality restoration plans, such as TMDLs or watershed-based plans, must take into 

account pollutant loadings from stormwater.  In contrast, Mexico’s lack of stormwater 

regulations consigns CONAGUA to evaluate pollutant loadings to surface water bodies only under 

steady state conditions, including Declaratorias de Clasificación for surface water bodies.  It 

should be noted that, as part of its adaptive management approach, USEPA allows the phasing of 

TMDLs or equivalent water quality restoration plans.  That is, USEPA will suspend some of the 

requirements it imposes on water quality restoration plans, as long as there is a commitment by 

the stakeholders participating in these plans to eventually comply in full with the all USEPA 

requirements. 
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Another factor that affects decision making in the LRGWQI action arena is the information 

available to participants.  One of the first activities of the LRGWQI’s BTWG was an official 

exchange of data and information between the US and Mexican Partners.  In 2012, technical 

representatives from both countries exchanged historical data compiled for the period 2000-2011.  

These data included geospatial, meteorological, environmental, and demographic data and also 

information on water and wastewater infrastructure on both sides of the river.  The IBWC and 

TCEQ provided CONAGUA 12 years of water quality data collected quarterly by the TCEQ and 

IBWC at 16 water quality monitoring stations located along the Lower Rio Grande/Río Bravo and 

1 tributary; a total of over 11,000 individual water quality measurements.  CONAGUA, in turn, 

provided the LRGWQI US Partners water quality data it had collected since 2000 at 16 surface 

water quality stations located along the river and in 7 tributaries and contributing drains and 

ditches; a total of over 2,400 individual water quality measurements.  Following the technical 

approach outlined in the Annex to the TOR, the data were reviewed and analyzed jointly by the 

members of the BTWG to identify data gaps.  While the US members of the BTWG deemed the 

historical data sets adequate for model calibration, Mexican technical representatives in the BTWG 

insisted on the need for binational synoptic data collection efforts to collect flow and water quality 

data for the Declaratoria study. 

An important aspect of the LRGWQI action arena is how it influences the US and Mexican 

wastewater treatment action arenas.  Although there is no mention in the LRGWQI TOR of any 

specific local stakeholder, the structure of the joint cooperative process outlined in the TOR 

document makes reference to US and Mexican stakeholders other than the participants in the 

national Core Groups and the Binational Core group.  The TOR document states that “Other 

stakeholders, which may include local government officials or non-governmental organizations 

(NGOs), may be invited to participate in the [Binational] Core Group.”  However, their 

participation must be approved by the Principal Engineers of the IBWC and CILA.  The TOR 

further states that “non-governmental organizations or local government institutions may 

participate if invited by the [Binational] Core Group, but not as members of the US [or Mexican] 

Core Group[s]. 

The TCEQ and CONAGUA have undertaken separate efforts to involve local stakeholders 

in the LRGWQI.  For example, the TCEQ, convened a set of meetings with local stakeholders to 
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describe the initiative and to gather their input on issues related to water quality and wastewater 

infrastructure.  CONAGUA conducted similar efforts with Mexican stakeholders.  The TCEQ’s 

US stakeholder outreach efforts included demonstrations of prototypes of the LRGWQIDSS to 

members of planning and engineering departments of local utilities, who provided invaluable input 

for the development of the software.  

To date, however, the LRGWQI’s Binational Core Group has not invited stakeholders 

other than those named in the TOR to participate in the LRGWQI action arena.  This aspect of 

the LRGWQI action arena further dissociates it from classical IRC stakeholder forums, as the 

distance between the decision makers and the resource users is widened by the LRGWQI action 

arena’s boundary rules-in-use and the lack of invitations to local stakeholders to participate in the 

arena.  The influence the LRGWQI action arena has on the US and Mexican wastewater 

treatment action arenas is exercised through the operational choice rules administered and enforced 

by the TCEQ and CONAGUA, respectively.  These rules are likely to change, most notably for 

the Mexican wastewater treatment action arenas, following the promulgation of the Declaratoria 

for the Lower Río Bravo.  Effluent requirements for participants in the US wastewater treatment 

action arena may also change if, as a result of the LRGWQI, the TCEQ begins evaluating permit 

requests using a model or decision support system, like the LRGWQIDSS, that takes into account 

pollutant loading from all dischargers to the Lower Rio Grande/Río Bravo, including contributions 

from Mexican wastewater discharges. 

 
The Actors 

The actors in the LRGWQI are currently the representatives of the US and Mexican LRGWQI 

partner agencies identified in the LRGWQI TOR document (i.e., IBWC, CILA, CONAGUA, 

USEPA, CEAT, and TCEQ).  In the US and Mexican Core Groups, these agencies are 

represented by mid-level managers and in the Binational Core Group, the agencies are represented 

by upper level managers.  While, the structure of the LRGWQI action arena places the 

stakeholders at the top of the diagram in Figure 1-1 (Page 12), the qualitative information collected 

as part of this study helps to frame the actor’s specific incentives for participating in the LRGWQI 

action arena.  In addition to improving water quality in the Lower Rio Grande/Río Bravo (a goal 

very much in the interest of the local US stakeholders) other related and unrelated utilitarian 
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motivations can be identified for the participation of IBWC, CILA, CONAGUA, USEPA, CEAT, 

and TCEQ in the LRGWQI action arena. 

Concerns over increasing salinity in the Lower Rio Grande/Rio Bravo caused local 

stakeholders on both sides of the river to complain directly to the IBWC about this problem.  

From interviews: 

“For agricultural purposes, our biggest problem with water quality is salinity.  

And the salinity is controlled more than any other reason by the inflows into the 

river and most of those are controlled by how much water is diverted into the river 

from Mexico from the El Marin (sic) [Morillo] drain.” 

Agricultural stakeholders in particular, realizing that this type of problem would require binational 

cooperation to properly address it, appealed to the upper echelons of the IBWC for a binational 

solution.  From Interviews: 

“So when we’re talking about our issues and really talk about bi-national issues and 

any, uh, remedy any solution will obviously have to involve a bi-national solution, 

because we only have, uh, I don’t want to use the word control, but we, um, we 

have influence over one half of that river.” 

For the IBWC, the LRGWQI is not just a means to address these local stakeholder concerns, 

thereby relieving some of the pressure placed on it by these complaints but is also a means to 

achieve a success story with the IBWC as a major part of the solution.  

As small federal agencies, the resources available to the IBWC and CILA are primarily 

diplomatic.  The two sections possess the ability to create a binational forum to address water 

problems using protocols established under the 1944 US-Mexico Water Treaty.  Another 

important resource of the IBWC is the information it routinely gathers on flow and water quality 

in the river, including its tributaries on both sides of the watershed.  This information is critical 

to both sections of the IBWC for decision making and, through the long relationship between the 

IBWC and CILA, a system of information sharing has evolved that benefits both agencies.  

Decision making strategies for these entities tend to result from a need to balance their obligations 

to address stakeholder’s concerns with their obligations under the 1944 US-Mexico Water Treaty, 

with this balance strongly affected by the domestic politics of each nations.  For this reason, the 
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USIBWC and CILA often play the roles of brokers of agreements between US and Mexican 

stakeholders. 

The interests of the USEPA and the TCEQ are aligned through the provisions of the federal 

Clean Water Act.  Although addressing water quality problems in the Lower Rio Grande/Río 

Bravo is a strong motivating factor for both agencies, the river’s status as a transboundary water 

body and the abundance of binational information indicating large pollutant contributions from 

Mexico cause local US stakeholders to direct their complaints about water quality in the river more 

toward the IBWC.  Thus, much of the motivation for TCEQ and EPA to participate in the 

LRGWQI is the delisting of Segment 2302 from the state’s list of impaired water bodies and the 

reduction of “concerns” in the state’s Integrated Report of Surface Water Quality.  There are 

economic and bureaucratic costs to both agencies when water bodies linger on these lists/reports 

and economic and bureaucratic benefits gained when water bodies are removed from the lists 

and/or appear favorably in assessment reports.  Under the federal Clean Water Act, the EPA is 

compelled to ensure states address impaired water bodies through the development of TMDLs or 

other comparable restoration mechanism. 

In 1995, the USEPA introduced the concept of watershed-based plans (WBPs).  Unlike 

TMDLs, which characteristically focus on a water quality impairment, WBPs are comprehensive 

water quality restoration plans which holistically address the health of entire watersheds.  The 

development of TMDLs and WBPs typically opens the door to federal programs designed to fund 

water quality restoration efforts.  In 2007, the TCEQ completed the development of a WBP for 

the Arroyo Colorado; as of 2019, more than $4.8 million in federal grant funding has been spent 

on water quality restoration projects in the Arroyo Colorado watershed (Cawthon, Personal 

Communication, June 1, 2019).  Most of the funding comes from federal programs dedicated to 

the implementation of the Clean Water Act that are awarded to the state.  Some of this funding 

can be used to develop the plans themselves. 

In addition to substantial financial resources, mainly through access to federal funding, the 

TCEQ also has at its disposal a comprehensive database of water quality information, including water, 

sediment and fish tissue data for over 1,800 surface water quality monitoring stations on 1,407 water 

bodies in the state, including 16 active stations in the Lower Rio Grande/Río Bravo.  The TCEQ also 

collects information about water diversions from its major rivers, including the Lower Rio Grande, in 
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its Rio Grande Water Master database.  The USEPA’s ICIS database contains daily average effluent 

flow and pollutant concentrations for all permitted wastewater treatment facilities in the United States, 

including the facilities with outfalls to the Lower Rio Grande/Río Bravo.  The decision-making 

strategies of the TCEQ and the USEPA are influenced by the federal-state relationship that exists 

between the two agencies.  The familiar carrot-and-stick approach used by US federal regulatory 

agencies to incentivize states to collect data manifests itself in the granting or withholding of federal 

dollars to the TCEQ by the USEPA, which influences the state agency’s decision making.  USEPA 

approval or disapproval of state actions, such as the lists of impaired water bodies or water quality 

management plans, are strong incentives for TCEQ decision making, as they are tied to federal funding 

and also to the conditions for federal delegation of permitting programs to the state. 

One of the largest and most powerful Mexican federal agencies, CONAGUA holds significant 

financial resources; CONAGUA’s annual budget was $1.2 billion in 2005.  CONAGUA also 

manages several important national databases with information on water quantity and water quality, 

including some ten years of semi-annual water quality data collected at 16 sites on the Lower Río 

Bravo and in 7 tributaries and contributing drains and ditches.  In addition to this information, 

CONAGUA has access to effluent flow quality data collected by its wastewater permittees and by state 

environmental commissions (CEAs).  Because of its wide-ranging national authority and resources, 

CONAGUA occupies an outsized position among the Mexican LRGWQI Partners.  However, 

CONAGUA’s decision to develop a Declaratoria in the Lower Rio Bravo means it must rely on CILA 

to facilitate the acquisition of relevant information.  It should be noted that, although CONAGUA 

counts with resources of a magnitude not equaled among other Mexican federal agencies, most of 

CONAGUA’s budget goes to fund the myriad functions under its responsibility.  For special projects 

such as Declaratorias de Clasificación, CONAGUA often seeks grant funding from Mexican 

government grant sources, such as CONACYT. 

The balance of costs and benefits of CONAGUA’s participation in the LRGWQI action arena, 

and of the decisions CONAGUA makes in this arena, are connected to the success of the Declaratoria 

for the Lower Río Bravo.  The TCEQ and the USEPA enter the LRGWQI having fulfilled important 

requirements under the Clean Water Act, such as designating beneficial uses, developing standards 

and criteria, and developing water quality-based wastewater effluent limits.  CONAGUA is relying 

on the Declaratoria to fulfill similar requirements under the Ley Nacional de Aguas; the most important 

of these requirements being the development of water quality-based effluent limits. 
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CEAT is included in the LRGWQI TOR by name as one of the Mexican LRGWQI Partner 

agencies and is therefore a participant in the LRGWQI action arena.  With an annual budget of just 

over $35.8 million (in 2010), CEAT is one of the most active CEAs in Mexico.  CEAT operates under 

the State of Tamaulipas’ Ley de Aguas del Estado de Tamaulipas, which is described in the CEAT 

web site as a state law “assisting” (ley coadyuvadora) the federal Ley Nacional de Aguas.  While 

CEAT has some operational authority over OOs in Tamaulipas, the bulk of the regulatory authority 

over these organizations rests with CONAGUA.  The role of CEAT is that of facilitator of water and 

wastewater infrastructure in the state, while also acting to increase the efficiency of the state’s OOs.  

CEAT puts its substantial technical resources to use on engineering and planning efforts.  The 

information collected by the agency is often relied upon by CONAGUA and the state’s OOs to 

prioritize the expenditures of federal infrastructure financing under the APAZU, PROSSAPyS, and 

PROTAR programs.  CEAT also has a small state budget that it uses to finance small scale 

infrastructure projects. 

CEAT maintains a database, Sistema Estatal de Información, which contains, for each 

municipio and region of the state of Tamaulipas, the current status of the availability of water, the 

volumes used for each of the uses, as well as the operational status of OOs and user associations 

within each CONAGUA irrigation district within Tamaulipas.  Although lacking considerably in 

regulatory authority, as compared to the TCEQ, CEAT enjoys a significant amount of autonomy 

with regard to decision making, as CEAS are not under direct regulatory control by CONAGUA 

unless they provide water or wastewater services.  Even though CEAT does not provide those 

services in the Rio Grande/Río Bravo watershed, it is likely that CEAT would find a decision 

support tool such as the LRGWQIDSS useful especially following the promulgation of the 

Declaratoria, as CEAT is and will be a key player in water and wastewater infrastructure planning 

in the Lower Rio Grande/Río Bravo watershed.  As is the case for OOs in the watershed, it is 

conceivable that CEAT could reduce the costs of planning using the LRGWQIDSS. 

The Working Rules 

The analysis of the working rules of the LRGWQI action arena presented in this sub-

section, while focusing primarily on identifying and characterizing codified rules, also identifies a 

number of unenforced rules and uncodified, informal, rules-in-use. 
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Boundary Rules  

Under the LRGWQI TOR, the current participants in the main decision-making body of the 

LRGWQI, the Binational Core Group (USIBWC, CILA, CONAGUA, USEPA, TCEQ and CEAT) 

have the discretion to invite other actors to participate in the LRGWQI action arena, but the 

participation of the invitees is conditioned on the approval of their participation by the Principal 

Engineers of the IBWC.  The other LRGWQI groups are the US and Mexican Core Groups, which 

are the participant groups that set the agenda for the Binational Core Group.  The TOR stipulates that 

no stakeholders other than those specified in the TOR may participate in the US and Mexican Core 

Groups (page 5 of the LRGWQI TOR).  This is, ostensibly because the US and Mexican Core Groups 

are designed to receive input separately from their stakeholders and are expected to advance the 

interests of these stakeholders through the groups’ agenda-setting capabilities. 

This institutional structure gives federal and state agencies the ability to identify, filter and 

consider their own stakeholders’ input and it effectively gives the IBWC the authority to regulate the 

participation of stakeholders in the LRGWQI action arena other than those actors currently in the US 

and Mexican Core Groups.  As previously mentioned, the boundary rules and operational policy 

regarding stakeholder interactions of the LRGWQI action arena present a barrier to the direct 

involvement of local stakeholders in decision making within the arena.  These rules and policy also 

make it difficult for developers of a DSS to properly design a system for use by stakeholders other than 

those currently participating in the LRGWQI action arena. 

The TOR does not specify the exit rules for the LRGWQI action arena and it is difficult to 

envision a circumstance or condition in which any of the current participants would be removed from 

the LRGWQI action arena involuntarily.  However, given the authority conferred the IBWC to 

approve or disapprove the participation of stakeholders other than the current participants in the 

LRGWQIDSS, which are constitutionally entitled to participate as codified in the TOR, the exit rules 

in the TOR hinge on the IBWC’s approval authority.  

Position Rules 

The LRGWQI TOR creates three positional levels in the LRGWQI action arena.  At the 

highest level, the IBWC presides over the action arena, with discretion over what actors participate 

in the main decision-making body of the LRGWQI, the Binational Core Group.  The IBWC also has 

approval authority over the choice of technical advisors to the Binational Core Group (LRGWQI TOR, 
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Page 4) and also schedules, convenes and leads the proceedings of the LRGWQI action arena.  At the 

middle positional level, the US Core Group, composed of the USEPA and TCEQ, and Mexican Core 

Group, composed of CONAGUA and CEAT, have the ability to set the agenda for the Binational Core 

Group, which is ostensibly based on the input received from local stakeholders who occupy the most 

basic level of participation in the LRGWQI action arena. 

Unless invited to participate by the LRGWQI’s Binational Core Group, and their participation 

approved by the IBWC, local stakeholders must rely on the advocacy of their representatives in their 

respective national Core Group and Binational Core Group to advance their issues in the LRGWQI 

action arena. 

Scope Rules  

The scope of the LRGWQI is described in general terms in the main TOR document.   

The TOR describes the subject of the initiative only as “the Lower Rio Grande/Rio Bravo” and it 

outlines the six general objectives previously listed in the portion of this sub-section titled 

“Decision Space.”  The scope of the LRGWQI is defined in more detail in the Annex to the TOR 

titled “The Lower Rio Grande/Rio Bravo Water Quality Initiative Pilot Project,” in which: (1) the 

geographic extent of the Lower Rio Grande/Río Bravo is detailed (i.e., the Lower Rio Grande/Rio 

Bravo from below Falcon Dam to the Gulf of Mexico); (2) the water quality issues to be addressed 

are specified (i.e., fecal bacteria and salinity); (3) the technical approach that is to be followed is 

described; (4) the mechanism for identifying feasible options to improve water quality is outlined; 

(5) a commitment is made to develop a binational plan to restore and protect water quality; (6) 

options are described for institutionalizing and implementing the plan; (7) a schedule is proposed 

for developing and completing the plan; and (8) a commitment is made to sustain the effort beyond 

the development and implementation of the initial plan (Appendix B). 

Despite the specificity in scope found in the Annex to the TOR, the potential scope rules 

represented by several of the specifications in the Annex are not actually enforceable and do not 

confine participant’s activities.  For example, despite a stated focus on fecal bacteria and salinity, 

and a determination by the BTWG that enough historical data was available to calibrate a water 

quality model of the Lower Rio Grande/Río Bravo, the LRGWQI Mexican Partners insisted on 

conducting binational synoptic surveys of water quality in the river that included some 105 water 

quality parameters.  The purpose of the data collection effort proposed by IMTA and promoted 
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by CONAGUA was to fulfill requirements of the Declaratoria for the Lower Rio Bravo.  Another 

specification of scope in the Annex to the TOR that did not, in the end, constrain the actors was 

the schedule for development of the binational plan, which as of this writing, is still in 

development.  With the exception of the geographic limits and the focus on improving water 

quality in the Lower Rio Grande/Río Bravo, the scope rules proposed in the Annex to the TOR 

have not been enforced in the LRGWQI action arena. 

Sovereignty is an important scope rule of the LRGWQI action arena that is not codified in 

the TOR.  It is understood among the participants of the LRGWQI that the limit of the 

jurisdictions of the participants in the LRGWQI action arena includes the international border. 

Aggregation Rules  

No aggregation rules for the core groups within the LRGWQI are defined in the LRGWQI 

TOR.  The TOR document states only that “The co-chairing Principal Engineers will make every 

effort possible to achieve a consensus among the Binational Core Group for all those activities 

under consideration” (page 6 of the LRGWQI TOR).  Neither the TOR document nor the Annex 

to the TOR describe how this consensus is to be achieved and the general (International Boundary 

and Water) commission process outlined in the TOR does not describe the procedures of the 

“Commission Joint Work” normally followed by the IBWC when addressing binational issues.  The 

casual mention in the TOR of the US Department of State and the Mexican Foreign Ministry 

implies that the IBWC will elevate matters for which consensus cannot be reached to action arenas 

that exist at higher hierarchical political and diplomatic levels.  However, unless an issue or 

dispute is deemed critical to the mission of the Commission, IBWC commissioners are generally 

reluctant to elevate issues to action arenas above that of the IBWC. 

Information Rules  

No restrictions regarding the internal sharing of information among the actors named as 

participants of the LRGWQI action arena are apparent in the LRGWQI TOR.  In fact, formal and 

informal exchanges of information are a common occurrence in the LRGWQI forum, especially 

within the BTWG.  In general, there are few documented instances of restrictions in the exchange 

of data or of the withholding of information among the participants of the LRGWQI action arena.  

However, the TOR specifies that the IBWC must approve the invitation of technical experts to 
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advise the Binational Core Group.  The TOR also states that the two sections of the IBWC are 

official repositories of records generated by the national or Binational Core Groups and work 

groups, which gives the IBWC the sole discretion to release or not release information compiled 

and generated as part of the Initiative.  Furthermore, the Mexican LRGWQI Partner agencies’ 

insistence that data collected as part of the LRGWQI efforts not be shared with US or Mexican 

stakeholders prior to the promulgation of the Declaratoria for Lower Río Bravo currently limits 

the ability of US and Mexican Core Group members to interact with their respective stakeholders, 

and thereby diminishes the role of these stakeholders in decision making in the LRGWQI action 

arena.  While these information rules are subject to change in the near future, there are currently 

no indications as to what the extent of those changes will be. 

Coupled with the operational policy against the interaction of US agency representatives 

with Mexican stakeholders, the insistence that data collected as part of the LRGWQI efforts not 

be shared with either US or Mexican stakeholders presents a serious barrier to the proper 

development of the LRGWQIDSS. 

Payoff Rules  

The working rules of the LRGWQI action arena appear to create asymmetries in the payoff 

rules for current and potential participants in the arena.  An analysis of the boundary, position, 

and information rules of the LRGWQI action arena show a clear advantage for the IBWC, giving 

it approval authority over participation, partial control over the flow of information, and almost 

complete control over the conduct of the proceedings of the action arena.  This situation reduces 

the risks of negative outcomes to the IBWC and enhances the potential benefits to the IBWC of 

producing an agreement designed to improve water quality in the Lower Rio Grande/Río Bravo.  

CONAGUA is also a beneficiary of the payoff rules of the LRGWQI action arena.  Although not 

codified in the TOR, the agreement by the participants of the LRGWQI action arena not to share 

data collected as part of the LRGWQI efforts with US or Mexican stakeholders and the other 

participants’ deference to CONAGUA’s opposition to interactions between US agency 

representatives and Mexican stakeholders creates two informal rules that minimize risks of 

interference with CONAGUA’s objectives and enhance CONAGUA’s opportunity to achieve its 

goal of developing a Declaratoria for the Río Bravo.  The formal information rules also advance 



 

332 
 

this objective by providing CONAGUA access to information about the US portion of the Lower 

Rio Grande/Río Bravo watershed, including pollutant loads, surface water flow and water quality; 

information it needs for the Declaratoria study.  The technical work on the Declaratoria was 

completed in 2017 and the Declaratoria is expected to be promulgated in 2019. 

The TCEQ also benefits from the information rules of the LRGWQI, having received 

information about pollutant loads, surface water flow and water quality in the Mexican portion of 

the Lower Rio Grande/Río Bravo watershed; information to which it would not normally have had 

access.  However, absent a binational WBP institutionalized as a part of the 1944 US-Mexico 

Water Treaty, the benefit to the TCEQ and USEPA is only marginal, unless data sharing with 

CONAGUA continues.  It should be noted that the TOR document, as well as the Annex to the 

TOR, make it clear that the LRGWQI is “intended to serve as a pilot project for the development of 

binational mechanisms to improve water quality throughout the Rio Grande/Rio Bravo.”  In view of 

this, the working rules for the LRGWQI action arena can be considered to still be in development, 

including the scope rules, information rules and, most importantly, the payoff rules for each participant. 

Institutional Factors Relevant to the Development of the LRGWQIDSS 

The physical and material conditions that concern the decision space of the LRGWQI 

action arena are directly related to the quality of the shared resource (i.e., water quality in the 

Lower Rio Grande/Río Bravo).  Although the participants enter the LRGWQI forum with the 

goal of working cooperatively to protect the resource, the means by which the different actors 

assess these conditions are based on different legal standards and regulatory procedures.  This 

presents a serious barrier to cooperation that is unique to transboundary settings, where national 

sovereignty is an important contextual factor affecting the decision space of stakeholder action 

arenas.  The literature on transboundary agreements that involve water quality shows that much 

effort and time can be spent on efforts to harmonize water quality standards and that these efforts 

are not necessarily a prerequisite for cooperation on transboundary water quality protection 

(Schmueli, 1997). 

This notion is reinforced by other qualitative information gathered for this dissertation.  

From interviews:  



 

333 
 

“And so if we say, this is the way we do things: we have these surface water quality 

standards, all you have to do is adopt them – and everything will be fine – we are 

doing the same sort of thing. So, if we don’t do that; if we say, this is the way we 

do things, how do you do things? And we work together to improve our respective 

standards or try to meet our standards. We’re not going to say we’re going to adopt 

yours, you’re going to adopt ours, I think that’s what does it. When we tell them, 

you gotta do what we say, and do it from the barrel of a gun, that’s when things 

don’t work.”   

“If we can just come to this agreement to say, we are going to do things a certain 

way, you guys are going to do things a certain way and lets just work towards 

progress” 

“But we are also recognizing that loads from the river enter from both sides and we 

need to respect the sovereignty of both countries. And that’s where the most critical 

work becomes, how is it that we find a way to make that happen? And we have a 

partner project that we’re working on for the lower Valley where we would assess 

the load that each country is providing below Falcon to the Rio Grande, the water 

quality impacts and impairments that are associated with that loading, and what is 

it that each country could do under their own regulations to be able to go forward 

and try to address and mitigate the impairments.” 

Case studies of other transboundary water quality agreements show that fostering a 

common understanding of the physical and material conditions of the resource can be 

accomplished successfully in an incremental manner.  For example, consider the case study for 

the Danube River Basin in which a common understanding of water quality among riparian nations 

evolved over time.   A first step in creating this common understanding is cooperation at basic 

levels under the existing national standards and criteria.  In the case of the LRGWQI action arena, 

even this approach is complicated by CONAGUA’s efforts to develop the Declaratoria for the 

Lower Río Bravo.  The Declaratoria effort represents a transition in Mexico’s understanding of 

the physical and material conditions of the Lower Rio Grande/ Río Bravo.  Since the decision-

making ability of Mexican LRGWQI action arena participants depends on this understanding, any 



 

334 
 

decision support tool designed for their use must include standards and criteria commensurate with 

the Declaratoria.  So, the LRGWQIDSS, in addition to including the standards and criteria needed 

by the US decision makers, must also include Declaratoria-compatible criteria. 

Analysis of the decision space of the LRGWQI action arena leads to an examination of the 

set of possible actions that can be linked to outcomes.  Although, the expected outcomes of the 

LRGWQI are described only in general terms in the TOR, this general outcome information 

confines the set of possible actions the actors can undertake.  The LRGWQIDSS ought to include 

the ability to link a set of potential actions to these general outcomes (e.g., increase in provision 

of wastewater services, improvements in wastewater collection, conveyance and treatment, 

increase in the use of agricultural practices that minimize saline return flows, diversion of saline 

irrigation return flows, etc.).  As funding constrains the range of potential actions, the 

LRGWQIDSS ought to be able to assess the financial feasibility of the potential actions.  Any 

link between potential actions and outcomes ought to take into account the constraints under which 

each actor operates and, in the case of the LRGWQI action arena, also the regulatory processes of 

each participant.  An in-depth analysis of these processes was instrumental in the development 

of the LRGWQIDSS, which is presented in Chapter 3. 

Another subject of analysis in the decision space of the LRGWQI action arena is the 

availability of information, which was also assessed in the analysis of its actors and of its working 

rules.  While a conclusion of the analysis is that the participants of the action arena had ample 

access to existing information from US and Mexican sources and that US participants felt the 

existing data was adequate for the calibration of a water quality model to assess the assimilative 

capacity of the Lower Rio Grande/Río Bravo, the Mexican participants displayed a preference for 

collecting binational synoptic data for use in the water quality model.  This preference is a 

manifestation of both, the regulatory processes that influence the Mexican participants and the 

contextual influence of sovereignty on the Mexican actors.  Accordingly, the successful design 

of the LRGWQIDSS is dependent on its ability to incorporate all data pertinent to the decision-

making process of the LRGWQI action arena.  

Understanding how the internal and external organizational constraints that affect a 

decision domain can serve to enhance the use and longevity of EDSSs (McIntosh et al., 2011).  

The knowledge gained from an analysis of the rules enabling and constraining the actions of the 
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participants of the LRGWQI action arena, and of the processes by which the actors in that arena 

can carry out these actions, not only enhances efforts to design a transboundary EDSS tailored to 

the LRGWQI but can identify opportunities to institutionalize its use.  Chapter 3 describes in 

more detail how such knowledge was used to design the LRGWQIDSS as an institutional tool.
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CHAPTER 3:  THE LRGWQIDSS: DECISION SUPPORT TOOL 
DEVELOPMENT  

3.1 LRGWQIDSS Design 

3.1.1 EVOLUTION OF LRGWQIDSS DEVELOPMENT 
In addition to the six general objectives stated in the LRGWQI TOR, the Annex to the TOR 

cites, as a specific goal of the Initiative, the identification of potential feasible pollution prevention and 

control options that will result in the improvement of the water quality in the Lower Rio Grande/Rio 

Bravo (Appendix B).   The Annex to the TOR also specifies the technical approach for achieving 

this goal, outlining a set of four technical tasks that include: (1) historical data review; (2) 

identification of data gaps; (3) data collection; and (4) data analysis and modeling (Appendix B).  

Over the three-year period that followed the formation of the LRGWQI’s BTWG in September 2013, 

the participants of the BTWG developed detailed plans and technical procedures for accomplishing the 

technical tasks outlined in the Annex to the TOR.  During that period of binational technical 

cooperation, the author, representing the TCEQ in the BTWG, proposed the development of a decision 

support system to aid the participants of the BTWG and members of the Binational Core Group in 

decision making associated with the identification of potential feasible pollution prevention and control 

options.  The author’s proposal was accepted by members of the BTWG in October 2013.  

Following best practices for DSS design and development, the author’s proposal included the 

development of scoping and system requirement documents for the LRGWQIDSS.    

In 2013, the TCEQ authorized the author to submit a Proposal for Grant Activities (PGA) to 

the University of Texas at Austin’s Bureau of Economic Geology (UT-BEG) for the development of a 

System Design Description and System Requirement Specifications for the LRGWQIDSS.  In 

November 2013, the TCEQ approved a Grant Activities Description (GAD) authorizing UT-BEG 

to develop the Description and Specifications requested under the PGA for the LRGWQIDSS.  

The GAD was funded through the CIAP grant awarded to the TCEQ by USFWS for the LRGWQI.  

Dr. Alex Sun was named the UT-BEG Project Manager for the GAD.  The author had previously 

collaborated with Dr. Sun on a project to develop an EDSS for the Arroyo Colorado (Sun, Miranda 
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& Xu, 2014).  The final System Requirement Specifications (Appendix D) and System Design 

Description (Appendix E) were completed in December 2013. 

3.1.1.1 Functional Requirements of the LRGWQIDSS 
The System Requirements Specifications document defines the purpose of the LRGWQIDSS as 

“improve[ing] partner access to critical data and facilitate[ing] use of the water quality model 

developed by the partner agencies.”  The document further states that “The users will use the 

DSS to examine the effect of different wastewater management scenarios on instream water 

quality.”  The System Requirements Specifications document defines the geographic scope of the 

LRGWQIDSS in terms of the assessment unit designations given by the TCEQ and the names of 

Mexican water bodies as they are named in the BEHI hydrography layer: 

• Rio Grande Tidal, Segment 2301 – Assessment Units 2301_01, 2301_02 

• Rio Grande below Falcon Reservoir, Segment 2302 – Assessment Units 2302_01, 

2302_02, 2302_03, 2302_04, 2302_05, 2302_06, 2302_07 

• Arroyo Los Olmos, Segment 2302A (unclassified water body) – Assessment Unit 

2302A_01 

• Various Mexican tributaries, arroyos and drains that contribute flow to Segments 

2301 and 2302, including (but not limited to), Rio San Juan, Rio Alamo, 

Puertecitos Drain, Rancherías Drain, El Morillo Drain, and Anhelo Drain” 

The System Requirements Specifications document for the LRGWQIDSS describes the intended 

users of the LRGWQIDSS as the “binational group of stakeholders involved with LRGWQI 

project,” including: 

• International Boundary and Water Commission – US Section (IBWC) 

• Comisión Internacional de Límites y Agua (CILA)  

• US Environmental Protection Agency (EPA) 

• Comisión Nacional del Agua (CONAGUA) 

• Texas Commission on Environmental Quality (TCEQ) 

• Comisión Estatal del Agua de Tamaulipas (CEAT) 
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• Border Environmental Cooperation Commission (BECC)  

• Local US and Mexican municipal and county governments  

Although the BECC is neither a participant in the LRGWQI’s national Core Groups nor in the 

Binational Core Group and did not officially participate in the LRGWQI’s BTWG, it was included 

in this list of “users” of the LRGWQIDSS because it is mentioned by name in the LRGWQI TOR.   

The decisional framework and general functionality of the LRGWQIDSS are based on the 

six general objectives stated in the LRGWQI TOR and the project goal, cited in the Annex to the 

TOR, of identifying “potential feasible pollution prevention and control options.” Therefore, the 

System Requirements Specifications states 

“The DSS will help stakeholders examine options for improving instream water 

quality.  Examples of such options may include (a) emplacement of infrastructures 

(e.g., installation of collection lines and lift stations, repair of existing collection 

system components such as broken collection lines and leaking lift stations); (b) 

non-urban best management practices (e.g., keeping livestock and wildlife away 

from ditches, tributaries, or the river itself).” 

The conceptual design of the LRGWQIDSS was intended to facilitate the simulation and 

evaluation of scenarios in which these activities are implemented, thereby facilitating and 

accelerating decision making by system users.  This is stated in the System Requirements 

Specifications document as the “main scope” of the LRGWQIDSS: “The main scope of the DSS 

is to provide necessary software tools with graphic user interface (GUI) for LRGWQI partners to 

(a) Develop nonpoint source loading scenarios (b) Perform computer simulations of water quality 

and (c) Visualize modeling outputs for each scenario.” 

To further describe “scenarios” assessed using the LRGWQI, the System Requirements 

Specifications document states that a “scenario may be created to model the effect of 

improvements in urban collection infrastructures such as the installment of wastewater treatment 

facilities or other infrastructures along Rio Grande/Río Bravo that can potentially improve water 

quality in the Lower Rio Grande/Río Bravo.  Other examples may include installation of 

collection lines and lift stations, repair of existing collection system components, such as broken 

collection lines and leaking lift stations. Scenarios can also be created to model the effect of non-
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urban best management practices, such as keeping livestock and wildlife away from ditches, 

tributaries or the river itself.”  The net effect of the scenarios described in the System 

Requirements Specifications document is to alter the point and/or nonpoint source loading rates of 

specific pollutants at specific locations on the Lower Rio Grande/Río Bravo.  The System 

Requirements Specifications document describes the information needed for in-stream water 

quality simulation when creating a scenario as: 

(a) Pollutant loading rate (or changes in loading rate) due to each individual control action 

or management measure), for example, 

Ammonia, nitrate, and organic nitrogen loading rates  

Phosphorous loading rates  

Bacteria (mainly fecal coliform) loading rates 

Dissolved and suspended solids loading rates 

(b) Pollutant Sources: 

Irrigation return flow volumes 

Population served by public sewage system 

Population incompletely served by public sewage system 

(c) Sub-basin-specific collection system infrastructure failure rate 

The System Requirements Specifications document describes the different categories of 

pollutant sources of human waste, stating that:  

“Loading due to human waste is divided into four types of waste treatment (treated 

sewage, partially treated sewage, untreated sewage, and other) and two types of 

communities (rural and urban).  In theory, a household that has access to a public 

sewer system does not pollute rivers or stream beyond what is permitted by the 

regulating entity.  Households with septic systems are assumed to pollute only 

when the septic system fails; only septic systems near rivers or streams or their 

tributaries are assumed to pollute (a riparian corridor or buffer around pertinent 

rivers or streams or their tributaries will be used).  Populations lacking any sewage 

treatment are assumed to contribute waste directly to the river if they live within 

the riparian corridor of a relevant river, stream or tributary.” 
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The System Requirements Specifications document stipulates that the methods for 

estimating pollutant loading rates, would use information from Lynch (2012).  However, Lynch 

(2012) addresses only human and animal pollutant sources.  Therefore, the methods for 

estimating pollutant loading rates from other important sources, such as dissolved solids from 

irrigation return flows were addressed in the System Requirements Specifications document by 

stating that these loadings would be estimated based on user specified parameters.  As the 

development of the LRGWQIDSS progressed and additional stakeholder input was received, it 

became clear that the loadings of pollutants from nonpoint sources were best processed by separate 

modules within the DSS, each with its own set of inputs and pollutant loading estimation method.  

A more detailed description of the design of the LRGWQI is provided in Sub-section 3.1.1.5 and 

in Section 3.2 of this chapter.   

As discussed in Sub-section 2.4.2.1, (Preface to Sub-section 2.4.2, Institutional Analysis 

and the LRGWQIDSS), by necessity the DSS was designed to be a standalone application to be 

downloaded from a file transfer protocol site (ftp) site and deployed on a Microsoft Windows-

based operating system. The final product was to be a self-contained installation file with all 

necessary components included.  It was developed using open source software and packaged 

using a Python-based graphical user interphase (GUI).  Although the Python programming 

language is platform independent, the development team tested the functionalities of the DSS only 

on Microsoft Windows Operating Systems.  It should be noted that the LRGWQIDSS 

development team is exploring options for converting the LRGWQIDSS into a web-based 

application, which the author considers an important step in increasing the functionality of the 

LRGWQIDSS.  However, under the scope of the current effort, the LRGWQIDSS is designed to 

be distributed as a self-extracting Microsoft Windows Operating System-based executable.       

3.1.1.2 Model Selection 
The importance of the role of models in DSSs was discussed in detail in Sub-section 2.2.1.5 

(The Role of Models).  Because predictive models provide decision makers the ability to, at least, 

formulate educated guesses about the outcomes of their decisions, models are considered 

fundamental components of most decision support tools.  Modeling is mentioned, in the Annex to 

the LRGWQI TOR, as one of the four main tasks in the technical approach of the Initiative.  It 
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therefore follows that the principal model used for decision making in the action arenas associated with 

the LRGWQI be a central component of the LRGWQIDSS.  One of the first major decisions of the 

BTWG was the choice of models to be used in the LRGWQI.    

The eventual choice of modeling software used by the LRGWQI was the result of weeks of 

deliberations by the members of the BTWG.  During those deliberations, the LRGWQI US Partners 

made a series of proposals that were based partly on the institutional analysis conducted by the author 

and his collaborators at the UT LBJ School of Public Affairs.  In November of 2013, the BTWG 

unanimously approved the use of the LA-QUAL surface water quality simulation software for use in 

the LRGWQI.  LA-QUAL was the water quality modeling software proposed by the TCEQ in the 

final proposal submitted by the LRGWQI US Partners to the BTWG.  The following Sub-section 

describes how the qualitative knowledge obtained by the author and his co-researchers at the UT LBJ 

School of Public Affairs, and the associated institutional analysis conducted by the author, was used 

to develop the final LRGWQI US Partner modeling software proposal to the BTWG. 

INSTITUTIONAL ANALYSIS AND MODEL SELECTION  

The examination of the context, decision space, actors, and working rules of the LRGWQI 

action arena and the US and Mexican wastewater treatment action arenas detailed in Chapter 2 

were instrumental in providing insight and guidance to the LRGWQI US Partners during their 

development of model selection proposals to the BTWG.  The analysis of the components of the 

IAD framework were used to guide the process that culminated in the choice of LA-QUAL as the 

modeling software proposed by the TCEQ and its US partners and accepted by the participants of 

the BTWG. 

Insights Provided by the Analysis of Context 
As discussed in Sub-section 2.4.2.3, the institutional actors’ assessment of the physical and 

material conditions of the resource are based on the rules and procedures under which each actor 

operates.  In the case of the LRGWQI, the differences in collective choice and operational choice 

rules between USEPA/TCEQ, on the US side, and CONAGUA, on the Mexican side, present a 

barrier to cooperative decision-making.  CONAGUA’s insistence on using a steady state water 

quality model to determine assimilative capacity of the Lower Río Bravo as part of their efforts to 
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develop the Declaratoria is based on the lack of stormwater regulations under Mexican collective 

choice rules.  However, this insistence runs counter to the USEPA’s requirement that TMDLs 

and WBPs take stormwater pollutant loadings into account, which under typical circumstances 

would require a dynamic watershed modeling approach.  However, under its adaptive 

management approach, USEPA will allow the phasing of water quality restoration efforts such as 

WBPs. 

This insight opened a negotiation path in the LRGWQI in which members of the BTWG 

presented to their respective representatives in the national Core Groups a trade off.  The US 

participants in the LRGWQI action arena were presented with the prospect of approving the use 

of a steady state model to assess the assimilative capacity of the Lower Rio Grande in return for a 

commitment on the part of the Mexican participants to assess pollutant loadings from stormwater 

in the future.  While such a commitment had the potential to mitigate USEPA opposition to using 

a steady state model for the current effort, the commitment did not mitigate the USIBWC’s concern 

over how the use of a steady state model would affect the investigation of dissolved solids loads 

from Mexican irrigation return flows, one of the historic antecedents compelling the USIBWC to 

establish the LRGWQI.  After deliberations within the US and Mexican Core groups CONAGUA 

signaled that it would be willing to commit to eventually assess pollutant loadings from stormwater 

under a separate effort.  Also, IMTA committed to developing separate steady state models 

covering a range of flows, including “wet weather-related” flows. The outcome of these 

deliberations was an acceptance, by all participants in the LRGWQI, of the use of a steady state 

model for the simulation of water quality in the Lower Rio Grande/Rio Bravo as part of the 

LRGWQI. 

Insights Provided by the Analysis of the Actors 
The elimination of dynamic water quality models from consideration narrowed the realm 

of modeling choices to steady state models.  An appealing category of steady state models that 

immediately came under consideration by the BTWG is the QUAL family of models.  This is 

because these models are currently used as part of the decision-making strategies of several of the 

participants.  As previously mentioned, the interests of the USEPA and the TCEQ are aligned 

through their regulatory relationship under the provisions of the federal Clean Water Act.  Unlike 
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water quality restoration efforts, such as TMDLs and WBPs, routine evaluations of wastewater 

discharge permit requests under the TCEQ’s TPDES program are assessed (i.e., simulated) under 

critical low flow conditions.  Critical condition analysis is needed because the capacity of the 

receiving water body to assimilate point source pollutant discharges is at its lowest under critical 

low flow conditions.  The TCEQ’s permitting procedures, including the determination of 

assimilative capacity for the Lower Rio Grande described in the MOA between the TCEQ and 

USEPA, are part of the TCEQ’s Water Quality Management Plan (WQMP), which must be 

approved quarterly by the USEPA.  To conduct these routine permit reviews, the TCEQ uses the 

QUAL-TX modeling software, which is a one-dimensional, steady state surface water quality 

modeling software of the QUAL family of water quality modeling tools.  In 2013, the version of 

QUAL-TX used by the TCEQ was version 3.4, which could be run on a windows operating system 

using the “command” DOS simulation prompt.   

In Texas, wastewater discharge permits must be acquired by utilities during the facility 

planning phase of infrastructure projects.  The TWDB and the USDA’s Rural Development 

Office (USDA-RD) require these permits be issued prior to the approval of project financing.  

Permit reviews by the TCEQ often involve the use of the QUAL-TX model.  In addition to state 

requirements, the North American Agreement on Environmental Cooperation (NAAEC) 

agreement requires the BECC (now part of NADB) to submit Environmental Information 

Documents (EIDs) detailing infrastructure project plans to the TCEQ for review prior to project 

certification.  The EID documents often contain QUAL-TX modeling results showing how 

effluent flows and concentrations proposed for projects involving wastewater treatment facilities 

affect surface water quality. 

As part of its decision-making strategies, CONAGUA uses procedures similar to those 

used by the TCEQ to determine the capacity of streams to assimilate pollutants from point sources.  

For this purpose, CONAGUA routinely uses QUAL2E, which is also a one-dimensional, steady 

state surface water quality modeling software of the QUAL family.  QUAL2E uses many of the 

same deterministic equations used in QUAL-TX.  QUAL2E is largely considered a legacy water 

quality modeling software tool in the United States, as it is one of the first generations of models 

to evolve from the QUAL-I code, originally developed in 1970 by the Texas Water Development 

Board in collaboration with Frank D. Masch & Associates.  In fact, in 2005, the USEPA’s Office 
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of Science and Technology (OST) stopped supporting QUAL2E, opting instead to distribute and 

support more advanced versions of the QUAL-based modeling tool, such as QUAL2K.  For this 

reason, USEPA was reluctant to use QUAL2E as the principal modeling tool for the LRGWQI.  

It should be noted that, despite the fact that the TCEQ routinely uses QUAL-TX to assess permit 

requests, the USEPA was also reluctant to allow the use of QUAL-TX as the principal modeling 

tool for the LRGWQI for the same reason (i.e., QUAL-TX is also not supported by OST). 

The most advanced version of the QUAL-based modeling tools, QUAL2K incorporates a 

semi-dynamic dissolved oxygen feature that is capable of simulating dissolved oxygen over a 

diurnal period.  Although this feature did not disqualify it from consideration, use of this 

modeling software would have been a significant procedural departure for both the TCEQ and 

CONAGUA.  A slightly older version of the QUAL-based modeling tool, LA-QUAL retains 

much of the same features of both QUAL2E and QUAL-TX.  In fact, the TCEQ has used LA-

QUAL to conduct permit evaluations for water bodies in east Texas prior to 2013.  Moreover, 

USEPA’s OST continues to support the LA-QUAL model.  Figure 3-1 shows graphically how 

the LA-QUAL water quality modeling software suits the decision strategies of the actors in the US 

and Mexican wastewater action arenas and the LRGWQI action arena. 

Insights Provided by the Analysis of the Decision Space and Working Rules 
In addition to selecting a model that suits the decision strategies of the participants of the 

LRGWQI action arena, the model choice was also dependent on the capabilities offered by the 

modeling software selected for use by the Initiative.  In analyzing the decision space of the 

LRGWQI action arena the author examined the set of possible actions available to the actors.  

These were identified first by examining the objectives specified in the TOR and then by 

examining the set of rules that both authorize and constrain the actions of each participant.  These 

include the internal working rules of the US and Mexican wastewater treatment action arenas and 

the LRGWQI action arena and the collective choice and operational choice rules imposed on these 
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Figure 3-1. The Conceptual Role of LA-QUAL in the Decision Strategies of Institutional 

Actors in the Action Arenas Associated with LRGWQI 

action arenas by action arenas existing at hierarchically higher levels and the operational 

procedures developed to comply with these rules.  The rules and procedures most observably 

pertinent to the objectives of LRGWQI are those associated with the issuance of permits, for which 

the QUAL-based modeling tools are well suited.  However, as described in the earlier sub-

sections, the range of possible actions available to the participants of the LRGWQI extends well 

beyond these activities. 

Constrained by the Mexican collective choice rules which omit stormwater pollutant 

loading, the set of possible actions by participants in the LRGWQI action arena is confined, at 

least in this phase of the LRGWQI, to scenarios in which steady-state nonpoint source pollution is 

addressed; these sources are detailed in Chapter 1 and Sub-section 3.1.1.1 (Functional 
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Requirements of the LRGWQIDSS).  All available modeling tools of the QUAL family have the 

capability to input flows from nonpoint sources as incremental inflows.  In addition to this 

capability, QUAL-TX and LA-QUAL have data types dedicated to the input of nonpoint source 

pollutant loadings.  This makes these two modeling tools preferable options to accommodate the 

set of possible actions potentially included in the scenarios to be simulated by the participants in 

the LRGWQI.  While irrigation return flows can be simulated as incremental inflows, steady state 

flows from human and animal sourced pollutant are not measurable and are not well suited for 

simulation as incremental inflows; the dedicated nonpoint source data types available in QUAL-

TX and LA-QUAL can be used for this purpose.        

At least in the case of the LRGWQI, the IAD rule type most pertinent to model selection 

were the scope rules.  The TOR and Annex to the TOR identify (and “codify”) salinity (i.e., 

dissolved solids) and fecal bacteria as the pollutants of concern to be addressed as part of the 

LRGWQI.  Informally, however, the LRGWQI participants are actually addressing a wider 

pollutant set associated with the CONAGUA’s Declaratoria effort and the water quality concerns 

included in the Texas Integrated Report of Surface Water Quality (Chapter 1).  The LA-QUAL 

modeling software has the capability of simulating all water quality parameters of interest to all 

participants in the action arenas associated with the LRGWQI.  A more detailed description of 

the capabilities of the LA-QUAL model is presented in Sub-section 3.1.1.3. 

 As part of the LRGWQI US Partner’s proposal to the BTWG, the TCEQ arranged a series 

of demonstrations of the LA-QUAL software and presented additional technical proposals for 

estimating pollutant loadings from steady state nonpoint sources and for incorporating those 

loadings into a water quality model of the Lower Rio Grande/Río Bravo using the LA-QUAL 

software.  The Mexican LRGWQI Partners evaluated the proposals and suggested a number of 

modifications.  In December 2013, the BTWG approved the final LRGWQI US Partner technical 

modeling proposal, which included the use the LA-QUAL model and the methods described in 

Sub-section 1.0.11.2 (Characterization of Steady state Nonpoint Sources of Pollutants) for 

estimating and incorporating steady state nonpoint source pollutants into a water quality model of 

the Lower Rio Grande/Río Bravo using the LA-QUAL software.  
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3.1.1.3 The LA-QUAL Surface Water Quality Modeling Software 
LA-QUAL is a surface water quality simulation program developed by the Louisiana 

Department of Environmental Quality (LDEQ) and Wiland Consulting, Inc.  The program is 

considered open source software and can be downloaded free of charge from the TMDL home 

page of the LDEQ (http://deq.louisiana.gov/page/tmdl).  Like its predecessors, QUALII, 

QUAL2E and QUAL-TX, the base FORTAN code of LA-QUAL was derived from the QUAL-I 

water quality simulation software developed in 1971 by the TWDB in cooperation with Frank D. 

Masch & Associates.  In 1999, the LDEQ and Wiland Consulting, Inc. developed LA-QUAL 

based on Version 3.4 of the QUAL-TX software.  During its development, the base code for 

QUAL-TX was converted from running on a DOS-based operating system to running on a 

Windows-based operating system.  A graphical user interface with enhanced graphics was added 

to the program. Other enhancements made in subsequent years to LA-QUAL include the addition 

of features that enable assessment of model performance.  The capabilities of LA-QUAL include 

the simulation of constituents and biochemical processes associated with dissolved oxygen 

dynamics (i.e., BOD, nitrification, eutrophication, etc.) and the fate and transport of conservative 

constituents (i.e., constituents that do not undergo biochemical decay in the environment, such as 

dissolved salts), and non-conservative constituents, which decay in the environment (i.e., organic 

chemicals, metals, pesticides, etc.).  LA-QUAL is capable of simulating fecal indicator bacteria 

and biochemical nutrient interactions in the water column.  Simulations involving denitrification 

and algal dynamics are also possible with LA-QUAL.  Figure 3-2 shows in schematic form the 

biochemical constituents and their interactions as they are simulated in LA-QUAL. 

Although the LRGWQI TOR mentions only two constituents of common concern among 

the participants, fecal indicator bacteria and salinity, LA-QUAL is capable of simulating the 

physical and biochemical processes that affect the in-stream behavior of chlorophyll a, dissolved 

oxygen, nitrate nitrogen, and ammonia, which are cited as water quality concerns for the Lower 

Rio Grande/Río Bravo in the 2014 Texas Integrated Report on Surface Water Quality. 

http://deq.louisiana.gov/page/tmdl
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Figure 3-2. Water Quality Constituents and Constituent Interactions in LA-QUAL. 

Source: LA-QUAL User’s Manual. 
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The Declaratoria conducted by IMTA and CONAGUA on the Lower Río Bravo also 

requires simulation of constituents associated with dissolved oxygen, in addition to the fate and 

transport of conservative and non-conservative constituents, such as dissolved and suspended 

solids, pesticides, toxic organic compounds and water column nutrient interactions (e.g., organic 

and inorganic forms of nitrogen and phosphorus).  All these constituents can be simulated using 

LA-QUAL.  LA-QUAL simulates water quality processes in one dimension under steady state 

conditions.  This means that the model’s output is a “snapshot” of water quality in the river at a 

specified flow condition and temperature. 

Water bodies modeled using LA-QUAL are discretized into computational elements and 

reaches (Figure 3-3).  Each computational element is assumed to be instantaneously mixed and 

homogenous with respect to vertical and horizontal dimensions.  The volume of water in each 

computational element is the result of the balance of inflow from the computational element 

upstream of it, the outflow to the computational element immediately downstream and the gains 

and losses in volume to the element specified in the model, including evaporation.  Flow can be 

contributed to, or diverted from, any element as a point source using the “waste load” data types 

or as a nonpoint source using “incremental” inflows and outflows.  In a single time step, LA-

QUAL calculates the water volumes and the mass of water quality constituents in each 

computational element, from boundary and initial conditions, using a finite difference solution 

method to solve deterministic differential equations which mimic the physical and biochemical 

processes shown in Figure 3-2, in addition to advective and dispersive transport. 

The LA-QUAL surface water quality simulation software is used by the LDEQ and 

environmental protection agencies in other US states to evaluate municipal and industrial 

wastewater discharge permits and for general water quality planning and management purposes, 

such as the development of TMDLs and watershed-based plans under critical flow conditions.  

From a technical perspective, LA-QUAL has advantages over more sophisticated water quality 

modeling software precisely because of its simplicity, low data requirements and ease of use.  

More sophisticated modeling software, although affording additional capabilities, require much 

higher levels of parameterization, which often forces the user to make assumptions and 

“guestimations” of critical parameters. 
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Figure 3-3. Volume and Mass Balance LA-QUAL Computational Elements. Source: 

Brown & Barnwell, 1987. 

The relative simplicity of LA-QUAL extends to its file management system (i.e., 

production and storage of input and output files) which, unlike more sophisticated software, can 

be incorporated seamlessly into the LRGWQIDSS GUI with relatively less effort.   The focus of 

the design of the LRGWQIDSS is largely on the production of LA-QUAL input files by the user 
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through the LRGWQI’s GIS-based GUI and on the visualization of LA-QUAL output using the 

LRGWQI’s visualization tools.  To sharpen this focus, the LRGWQIDSS development team 

worked with the developer of LA-QUAL, Bruce Wiland of Wiland Consulting, Inc.  Mr. Wiland 

also provided advice and support to the author during the set up and calibration of the LRGWQI 

models of water quality in the Lower Rio Grande/Rio Bravo. 

3.1.1.4 The LRGWQI (LA-QUAL) Water Quality Model(s) 
To parameterize and calibrate the LRGWQI model, the members of the BTWG agreed to 

use existing data, including historical data and common literature values for some parameters, and 

data collected as part of a series of binational synoptic surveys of water quality conducted 

cooperatively by the participants of the LRGWQI between June 2014 and April 2016. 

MODEL SCHEMATIC 
The process of developing and discretizing the hydrography used in the LRGWQI model is 

detailed in Sub-section 1.0.11.2 (Empirical Methods and Research Design).  The author based 

the lengths of the computational elements and reach segments, in part, on the locations of: (1) 

major confluences of tributaries, drains and ditches to the main stem or to other drains or ditches; 

(2) major diversion points, such as diversion dams or irrigation pumps; (3) wastewater outfalls; 

(4) historical and synoptic water quality monitoring stations; and (5) flow gages.  In building the 

schematic diagram of the model (i.e., the model schematic), the author arranged, whenever 

possible, to begin and end LA-QUAL reaches at these features.  Also, to increase model 

resolution, the author minimized the sizes of computational elements in the reaches receiving 

wastewater from point source outfalls and directly downstream of the confluences with tributaries 

and agricultural drains and ditches.   

The spatial attributes of the features and other landmarks used by the author to develop the 

LRGWQI model schematic were acquired and compiled as part of a binational exchange of 

information conducted by the BTWG in 2013.  The author created a GIS point layer of these 

features which he overlaid on the LRGWQI polyline hydrography layer to discretize the 

hydrography layer into LA-QUAL reaches (Figure 3-4) using the “Split Line at Point” command 

in ArcGIS.  At this stage, the hydrography layer is only discretized to the LA-QUAL reach level, 
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but this intermediate stage can provide the reach lengths needed to discretize the hydrography 

further into the computational elements required by LA-QUAL.  

 
Figure 3-4. Discretization of the Lower Rio Grande /Río Bravo Hydrography Using a 

Binational Instream Feature Point Layer 
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The LA-QUAL reach lengths can be determined using the “Calculate Geometry” command 

in ArcGIS, which populates the attribute tables with this information.  The detailed information 

from the attribute tables is then exported out of ArcGIS and used to develop the numbering and 

the kilometer distances of each element and reach of the model schematic; this can be done in 

Microsoft EXCEL.  The information produced during the development of the model schematic 

is used to populate the Reach ID Block of the LA-QUAL input file (Data Type 8).  The Reach 

ID Block (Data Type 8) essentially internalizes the model schematic in the LA-QUAL input file 

(Figure 3-5). 

  
Figure 3-5. Parameterization of the LA-QUAL Reach ID Block with Information 

Exported from the Model Schematic Discretization Effort in ArcGIS. 

MODEL PARAMETERIZATION FOR HYDROLOGY AND HYDRAULICS 
Advective Hydraulic Coefficients and Exponents 

The estimation of advective transport parameters is an important component of water 

quality modeling.  In order to achieve an overall water balance in LA-QUAL, steady state water 

volumes and flows must be estimated accurately for each reach.  Flow velocities and water depths 
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must also be simulated accurately, as these affect deterministic processes associated with water 

quality, such as dilution, reaeration, and residence time for decay and settling, etc.  LA-QUAL 

offers two methods for simulating advective transport processes: Method 1 uses stream velocity 

and depth and Method 2 uses stream widths and depths.  Based on the advice received from the 

developer of LA-QUAL, Bruce Wiland, advective transport was simulated in the LRGWQI water 

quality model using LA-QUAL’s Hydraulic Calculation Method 2.  Using this method, in-stream 

flow (Q) is related to stream width and stream depth using the following power equations: 

W = aQb + c   (4) 
D = dQe + f     (5) 

Where: 

W = average surface width of reach 
D = average depth per reach 
Q = average flow per reach 
a = width coefficient 
b = width exponent 

c = width constant  
d = depth coefficient 
e = depth exponent 

f = depth constant 

Method for Deriving Width-related Coefficient “a” and Exponent “b”  
To estimate the width-related coefficient “a” and exponent “b” in Equation 4, the author 

made measurements of stream widths on georeferenced satellite images using ArcGIS (Figure 3-

6).  The author paired these width measurements with measurements of average daily flow made 

on the days the satellite images were taken.  The flow measurements come from an IBWC dataset 

of daily average flow from six hydrometric stations (flow gages) in the main stem of the Lower 

Rio Grande/Río Bravo and two other stations located on the major tributaries of the river, the Río 

Alamo and Río San Juan.  The coefficients “a” and exponents “b” were adjusted in the HYDR-1 

block of LA-QUAL (Data Type 9) for each reach during the hydraulic calibration phase to match 

the average reach widths measured from the satellite images. 
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Figure 3-6.  Estimating Surface Width Measurements from Satellite Images in ArcGIS. 

Method for Deriving Depth-related Coefficients “d” and Exponents “e” 
The USIBWC provided the BTWG a dataset, in Microsoft EXCEL, of cross-sections it 

measured on the Lower Rio Grande/Río Bravo in MSEXCEL format.  The data was originally 

collected for the development of a comprehensive floodplain model of the river using the FLO-2D 

software.  Consequently, all cross sections measured included areas outside the banks and bed of 

the river.  The author used the channel width measurements made from satellite images to extract 

the portion of the cross-sections that delineated the wetted perimeter of the stream under various 

flow conditions (Figure 3-7).   
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Figure 3-7. IBWC (FLO-2D) Cross-Section Data Used to Derive Depth-Related 

Hydraulic Coefficients and Exponents for Use in LA-QUAL. 

From these flow-specific cross-sections the author estimated average depths for all reaches at 

various flow conditions. The coefficients “d” and exponents “e” in Equation 5 were adjusted in 

the HYDR-1 block of LA-QUAL (Data Type 9) for each reach during the hydraulic calibration 

phase to match the depths estimated in this manner. 
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Dispersive Hydraulic Coefficients and Exponents 
Dispersion is also an important transport mechanism in water quality modeling because it 

affects the residence time of pollutants in the river system.  Dispersive pollutant transport, 

however, is multidirectional.  It can, at once, enhance and counteract advective pollutant transport 

and it is used in LA-QUAL primarily to simulate tidal forcing.  Dispersive hydraulic coefficients 

and exponents are specified in the HYDR-2 block of LA-QUAL (Data Type 10).  LA-QUAL 

offers three options for simulating tidal dispersion; each option uses a different equation to 

estimate dispersion: 

E =a (6) 

E = aDbQc VT
d,  (7) 

E = aDbQc Vm
d,  (8) 

Where: 

E = dispersion 
D = average depth  
Q = Flow 
Vt = shear tidal velocity 
Vm = mean tidal velocity 
a = depth coefficient for dispersion 
b = depth exponent for dispersion 
c  = flow exponent for dispersion and  
d  = velocity exponent for dispersion 

Most of the input data needed to simulate tidal dispersion in LA-QUAL is entered in the 

Program Constants (Data Type 3) which determines the base values for the major components of 

the dispersion equation; the information needed to derive these values (e.g., tide height) are 

available from the NOAA (2014-2017).   Unless there is detailed quantitative data on tidal 

hydrodynamic behavior in the tidal portion of the Rio Grande/Río Bravo, however, the coefficients 

and exponents in equations 7 and 8 cannot be easily estimated.  As part of the binational synoptic 

monitoring events conducted between 2014 and 2016 by the BTWG, the TCEQ and its 

collaborators conducted a series of salinity profiles in the tidally-influenced portion of the Lower 
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Rio Grande/Río Bravo (Figure 3-8).  The author used the data collected during these salinity 

profile monitoring events to set the salinity values for the lower boundary condition (Data Type 

27) and to derive initial values of the tidal dispersion coefficient (a) in the equation for option 1, 

Equation 6, two values which highly influence the salinity gradient in the tidal portion of the Rio 

Grande/Río Bravo.  The adjustment of hydraulic coefficients and exponents associated with 

advection and dispersion were components of the hydraulic calibration of the model to ensure the 

physical parameters affecting water volume, reaeration, time of travel, sedimentation and organic 

decay are properly represented in each computational element of the model.      

WATER BALANCE AND HYDROLOGIC CALIBRATION 
As is common practice in water quality modeling, calibration of hydraulic parameters is 

performed concurrently with hydrologic calibration.  While the main objective of hydraulic 

calibration is to ensure the physical characteristics of the river channel are properly represented in 

the model, the main objective of hydrologic calibration is to achieve a water balance in the river 

system.  Hydrologic calibration is achieved when observed flow values are matched at all flow 

gage stations after accounting for all known flows into, and out of, the river system.  The water 

balance begins with the specification of headwater flows (Data Type 20 in LA-QUAL).  In terms 

of headwater flows, initial conditions should be set at the steady state flow condition that is being 

modeled.   
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Figure 3-8. Longitudinal Salinity Profiles Measured During the LRGWQI’s 

Binational Synoptic Surveys of Water Quality in the Lower Rio 
Grande/Río Bravo 

 

As previously mentioned, the IBWC maintains nine flow gage stations located in the 

LRGWQI study area (Figure 3-9).  Table 3-1 shows the IBWC gage numbers and the official 

IBWC location descriptions for the gages. 

 



 

360 
 

 
 Figure 3-9. Location of IBWC hydrometric stations (flow gages) in the LRGWQI Study 

Area. 

Table 3-1. IBWC Flow Gages Located on the Lower Rio Grande/Río Bravo and 
Two of Its Major Tributaries (Río Álamo and Río San Juan)  

IBWC 
Gage No. Gage Location Description 

08-4613.00 Rio Grande below Falcon Dam near Falcon, TX and Nueva Cd. Guerrero, Tamaulipas 

08-4620.00 Rio Alamo at Cd. Mier, Tamaulipas 

08-4642.00 Rio San Juan at Camargo, Tamaulipas 

08-4647.00 Rio Grande at Rio Grande City, TX near Camargo, Tamaulipas 

08-4663.00 Rio Grande at Los Ebanos, TX near Cd. Díaz Ordaz, Tamaulipas 

08-4692.00 Rio Grande below Anzalduas Dam near Reynosa, Tamaulipas and Mission, TX 

08-4725.30 Rio Grande near Progreso, TX and Nuevo Progreso, Tamaulipas 

08-4637.00 Rio Grande near San Benito, TX and Ramirez, Tamaulipas 

08-4650.00 Rio Grande near Brownsville, TX and Matamoros, Tamaulipas 
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The nine flow time series of average daily flows for each of these gage stations were part 

of the binational dataset exchanged in 2013 and the USIBWC and CILA.  In addition to using 

these time series to derive advective and dispersive hydraulic coefficients and exponents for 

hydraulic and hydrologic calibration, the IBWC also provided average daily flows measured at 

these flow gage stations during the binational synoptic surveys conducted by the BTWG in 2014-

2016.  For the water balance exercise, headwater flows are set in the main stem according to the 

average daily flow value measured at IBWC gage 08-4613.00 located directly downstream from 

Falcon Dam.  Headwater flows for the Río Álamo and Río San Juan are set at a value that yields 

the observed average daily flow values measured at IBWC gages 08-4620.00 and 08-4642.00, 

respectively, after known upstream inflows and outflows are applied.   

The TCEQ supplied information on the pump locations of US irrigation districts and 

municipal water supply pumps from the TCEQ’s Rio Grande Water Master database.  Similarly, 

CONAGUA provided the location of municipal water supply pumps drawing water from the river.  

Along with major diversion points, such as Anzalduas Dam, this diversion and withdrawal location 

information was compiled into a GIS point layer (Figure 3-10) used to specify, in the WSTLD-1 

block of LA-QUAL (Data Type 24), the computational elements in the model schematic from 

which these points withdraw water from the river. 

Flow Diversions and Withdrawals (gaged) 
The model input for major US point diversions (i.e., irrigation district pumps and municipal 

pumps) also comes from the TCEQ’s Water Master’s database (Figure 3-10).  These data are 

reported to the IBWC along with pumpage data from minor US diverters.  The IBWC compiles 

the data and builds time series of daily US diversions which it aggregates into values of total US 

diversions over certain portions of the river which coincide with the IBWC’s reach designations. 
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Figure 3-10. Location of Major US and Mexican Diversion points on the Lower Rio 

Grande/Río Bravo. 
 
 

The author processed the TCEQ Water Master diversion data to derive model inputs for 

major US point diversions and he input these values into the WSTLD-1 block of LA-QUAL.  

Since the minor US diversions are too numerous to include in the WSTLD-1 block (Figure 3-11), 

the author instead subtracted the large and municipal point diversions from the IBWC time series 

of total US diversions and modeled the resulting small US diversions as incremental outflows 

(INCR-1; Data Type 16) distributing them amongst the LA-QUAL reaches according to the 

density of small pumps found along each LA-QUAL reach. 
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Figure 3-11. Location of Minor US Diversion Points on the Lower Rio Grande/Río Bravo. 

Inputs associated with major Mexican diversions come from information supplied by 

CONAGUA (i.e., municipal withdrawals) and by the IBWC (e.g., Mexican diversions at 

Anzalduas Dam), which the author entered as point diversions in the WSLD-1 block of LA-QUAL.  

Minor Mexican diversion data originates from the IBWC Mexican reach diversion dataset.  Like 

the US minor diversions data, the author subtracted the major Mexican diversions from this dataset 

and distributed the processed values amongst the LA-QUAL reaches within each IBWC reach 

proportioned according to the amount of irrigated land found in the sub-basins associated with 

each of the appropriate LA-QUAL reaches.  These minor Mexican diversions do not amount to 

a great deal of flow diverted from the Lower Rio Grande/Río Bravo, as most of the water from the 

Lower Rio Grande used by the Mexicans for irrigation is diverted from the two reservoirs on the 

tributaries (i.e., Las Blancas and Marte R. Gómez) and from the Lower Rio Grande/Río Bravo at 

Anzalduas Dam, near the city of Reynosa.  
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Flow Contributions (gaged) 
Point flow contributions data come from three main sources, (1) Mexican wastewater 

outfall flow values measured during the synoptic surveys (2) US wastewater treatment facility 

outfall flow values observed during the synoptic surveys and (3) data from US Discharge 

Monitoring Reports downloaded from the EPA’s ICIS database.  The author used ICIS data in 

instances where effluent flows or concentrations were missing from the US synoptic survey data.  

These values are not as accurate as the values measured during the synoptic surveys, as the ICIS 

values represent daily averages. 

Although there are two sources of data on large scale flow contributions, separate datasets 

of IBWC reach level contributions from the United States and Mexico and a dataset of monthly 

flow measurements conducted by CILA on tributaries and drains that contribute flow to the Lower 

Rio Grande/Río Bravo, the Mexican data is the same and comes from CILA’s flow gages on the 

large Mexican drains and tributaries.  The IBWC converts the monthly flow volumes from the 

various drains into daily time series, dividing by the days in each month and using conversion 

factors, then aggregating the daily flows into two IBWC-CILA reaches.  For the purpose of model 

setup, the CILA data is much more useful because it is more geographically detailed.  The IBWC 

data is helpful for distributing inflows in the INCR-1 block of LA-QUAL.  The author used the 

CILA drain and tributary data in two ways, for flow calibration in the major Mexican tributaries 

and ditches and as a starting point for estimating irrigation return flows as sub-basin yields.  

Estimation of sub-basin irrigation return flow yields 
Sub-basin irrigation return flow yields are important mainly for use in the LRGWQIDSS.  

Without these yields, users would not be able to simulate the effects, on flow and water quality, of 

implementing agricultural BMPs to particular agricultural areas within the sub-basins associated 

with each of the reaches being modeled using LA-QUAL.  As a starting point for estimating sub-

basin yields, the author used the average flow values from the CILA drain and tributary data for 

the synoptic months and divided these values by the irrigated land in the sub-basins of the 

corresponding Mexican drains.  In some instances, the author used the flow measurements 

reported by IMTA for synoptic surveys for this purpose.  The author extrapolated the sub-basin 

yields calculated for the Mexican drains to other non-drain sub-basins using the distributions used 
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by IBWC for their larger reaches (e.g., Puertecitos yields also used for the non-drain reaches 

between Rio Grande City and Los Ebanos). Yields were also extrapolated to US sub-basins in the 

IBWC reaches.  Some of the sub-basin yield values were adjusted during the hydrologic 

calibration process. 

Hydrologic and Hydraulic Calibration Processes 
The primary hydrologic calibration data comes from the seven IBWC flow gage stations 

on the Lower Rio Grande/Río Bravo and the two IBWC flow gage stations on the major tributaries 

(Río Alamo and Río San Juan).  As the synoptic surveys were conducted over a period of several 

days, the flow at the gages show the range of flow occurring over the span of each synoptic survey.  

In addition to flow data from these gages, the author also used instantaneous flow measurements 

measured in the field during the synoptic surveys.  These instantaneous field flow measurements 

were important for hydrologic calibration of ungagged water bodies.  The two main parameters 

were instrumental in the hydrologic calibration process to estimate adjustments to the 

subwatershed yields (upwards or downwards and within reason – see explanation below) and for 

applying “ungagged” diversions in the IBWC reaches where instream flows were too high even 

after reducing subwatershed yields to zero.  As mentioned previously, adjusting headwater flows 

was also one of the calibration methods, but this parameter was used sparingly and only when 

warranted. 

The author used certain rules of thumb to ensure parameter adjustments were within the 

reasonable range.  The first rule was keeping the volume of ungagged diversions applied to the 

models to a minimum.  Secondly, keeping the sub-basin yields (on a flow/area basis) within the 

boundaries of the scant values found in the agricultural technical literature (e.g., Enciso, 2012).  

It is important to remember, however, that irrigation return flow yields (flow/area) represented in 

the LRGWQI model cannot be compared directly with any edge-of-field measurements, as what 

is represented in the model is an average value for all irrigated land in the subject sub-basins.  That 

is, one cannot make the assumption that all irrigated land parcels in a given sub-basin are being 

irrigated at the same time, at any given time.  In fact, it is extremely unlikely that this can ever be 

the case, so what the model represents is an average instantaneous yield per hectare in the subject 

watersheds, which changes predictably on a seasonal basis.  Nevertheless, whereas the downward 
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limit of the per-hectare yield can be zero (i.e., no or minimal irrigation occurring), the upward limit 

of irrigation return flow yield per hectare must be within the bounds established by edge-of-field 

measurements found in the agricultural BMP technical literature. 

Concurrently with the hydrologic calibration, the hydraulic calibration consisted of 

adjusting the original coefficients in the HYDR-1 and HYDR-2 blocks until simulated stream 

depths and surface widths matched those estimated from satellite imagery and cross-section data.  

A scant amount of instantaneous depth, width and flow velocity data were also available from the 

flow measurements conducted during the synoptic surveys. 

Calibration Results 
For the most part, the hydrologic calibrations adhere well to the ranges of the gaged 

instream flows (Figure 3-12).  Simulated flows matched the flows observed at the IBWC gage 

stations better than those measured in the field during the synoptic surveys.   Average absolute 

percent error between simulated and observed flow ranged from 3.6% in the model of the July 

2014 synoptic survey to 20.6% in the model of the August 2015 synoptic survey.  With regard to 

hydraulic calibration, the models appear to match the widths measured from satellite images for 

days with similar flows (Figure 3-13).  Average absolute percent error between surface widths 

ranged from 1.3% in the model of the July 2014 synoptic survey to 18.3% in the model of the 

August 2015 synoptic survey.  The models perform less well with the simulation of depths, 

mostly under-simulating these.  Using the rating curve depths for calibration, the average percent 

absolute error between simulated and “observed” hydraulic depths ranged from 60.8% in the 

model of the November 2015 synoptic survey to 104% in the model of the July 2014 synoptic 

survey. 
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Figure 3-12. Flow Calibration Curves for the Main Stem of the Rio Grande/Río Bravo; 

Synoptic Survey Data from November 2015 (upper) and August 2015 
(lower).  
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Figure 3-13. Hydraulic Calibration Curves for the Main Stem of the Rio Grande/Río 

Bravo for Widths (April 2016 [upper]) and Depths (August 2015 [lower]). 

 
While the model performance results for simulation of depth are less than ideal, it is 

important to point out that the average absolute difference between simulated and “observed” 

depths in the LRGWQI models was less than 2 meters.  The depth coefficients and exponents 

were initially estimated for the models using the Flo2D cross sections, which often include as few 

as five points per cross section.  The author adjusted many of these parameters during the 
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hydraulic calibration process, testing the simulated depth against depths extracted from the rating 

curves of the IBWC flow gages, which only supplies calibration points for nine locations in the 

river.  An important measure of the fidelity of hydraulic model parameters is how well the model 

simulates flow velocity.  One source of this hydraulic data, albeit scarce, are the flow 

measurements conducted during the synoptic survey.   IMTA provided the author the velocity 

data gathered during IMTA’s field flow measurements.  Though scant, this information shows 

the models reproduce, at least, the IMTA-measured velocities with reasonable accuracy.   

The models were generally able to simulate the range of salinity gradients observed during 

the synoptic surveys (Figure 3-14).  the average percent absolute error between simulated and 

“observed” salinity ranged from 23.3% in the model of the July 2014 synoptic survey to 55.8% in 

the model of the November 2015 synoptic survey.  The model calibration process is always a 

compromise.  Parameter adjustments made to alleviate one concern create other concerns, so 

modelers tend to split the difference on decisions involving calibration parameter adjustments.  

Of course, field measurement error is often a source of uncertainty in water quality modeling. 

MODEL PARAMETERIZATION FOR WATER QUALITY 
The main sources of water quality data used to parameterize the LRGWQI models include 

the binational synoptic surveys conducted as part of the LRGWQI, binational geospatial and 

census data.  Published literature values provided additional information used in the calculation 

of steady state nonpoint source loadings.  

 Data Used for Initial Conditions 
The temperature and chlorophyll a values entered in the initial conditions block of LA-

QUAL (INITIAL; Data Type 11) were measured at the sampling locations during the synoptic 

surveys.  Chlorophyll data was only available for the July 2014 synoptic model and only for the 

main stem of the river and one US tributary, Arroyo Los Olmos. 
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Figure 3-14. Simulation of Salinity at the Tidal Boundary of the Lower Rio Grande/Río 

Bravo (Synoptic Survey Data from April 2016 [upper] and August 2015 
[lower]). 

Chlorophyll a data for Mexican tributaries and for the main stem of the river in March, 

August and November of 2015 and April of 2016 was estimated based on the difference between 

filtered and nonfiltered BOD, organic nitrogen and organic phosphorus values. 
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Point Source Inputs 
The results of the four synoptic surveys, provided values of temperature, salinity, chlorides, 

TDS, DO, BOD, organic nitrogen, ammonia nitrogen, organic phosphorus, inorganic phosphorus, 

chlorophyll-a, fecal coliforms, and TSS used to specify the concentrations and values of these 

parameters in the effluent of the 17 waste water outfalls used in the model.  The values are entered 

in the WSTLD-1, WSTLD-2 and WTSLD-3 blocks (Data Types 24-26) of the LA-QUAL input 

files.  The models include an outfall for the wastewater treatment facility in Gustavo Díaz Ordaz, 

but it is not used in the models because it is not functional.  In addition to the primary outfall, at 

the Reynosa wastewater treatment facility No. 1, the models include four additional outfalls for 

this facility.  The additional outfalls at the Reynosa wastewater treatment facility No. 1 were not 

sampled during the LRGWQI synoptic surveys, but information provided by CONAGUA 

indicated these outfalls were used periodically when influent volumes exceed the facility’s 

treatment capacity.   One of these additional outfalls (L4/5) is used in the preliminary 

calibrations of the July and March synoptic models.  The author used a combination of indirect 

information, such a flow balance in the El Anhelo Drain, and professional judgement to represent 

the flow and water quality characteristics of outfall L4/5, as no actual monitoring information was 

available.  The July 2014 synoptic survey did not include the sampling of Mexican wastewater 

outfalls; the values used to represent them in the July synoptic model are the values measured for 

these inputs in August 2015.  

Nonpoint Source Inputs 
The methods used to estimate nonpoint source loadings for the LRGWQI were explained 

in detail Sub-section 1.0.11.2 (Empirical Research Methods and Design) of Chapter 1.  The 

author used the result of geospatial analyses conducted jointly by the TCEQ and IMTA to estimate 

the number of residents living in a 500 meter riparian buffer around the Rio Grande/Río Bravo or 

one of its tributaries/ditches to estimate the riparian populations into those served by centralized 

sanitary sewer systems, those using septic systems and those with no sanitation, each grouped into 

the subwatersheds associated with each model reach for use in NPS loading estimates. 

To estimate human-derived NPS loadings to each modeled reach, the author calculated the 

human per-capita generated loadings of chlorides, TDS, DO, BOD, organic nitrogen, ammonia 
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nitrogen, organic phosphorus, inorganic phosphorus, fecal coliforms, and TSS using estimates of 

human wastewater production and composition derived from the technical literature.  Differences 

in loading rates between US and Mexican populations are mainly due to a difference in population 

and water usage rates across the border with a commensurate difference in per-capita wastewater 

production.  

Sub-section 1.0.11.2 (Empirical Research Methods and Design) of Chapter 1 details the 

methods used to estimate domestic and wild animal-derived NPS loading from the US side of the 

watershed to each modeled reach.  The values of animal populations are also the results of 

geospatial analyses conducted jointly by the TCEQ and IMTA to estimate the number of domestic 

animals potentially contributing to NPS loadings to each reach.  To estimate animal-derived NPS 

loadings to each modeled reach, the author calculated the per-animal generated loadings of 

chlorides, TDS, DO, BOD, organic nitrogen, ammonia nitrogen, organic phosphorus, inorganic 

phosphorus, fecal coliforms, and TSS using values of animal waste production and waste 

composition derived from the technical literature.  The NPS loading values estimated for humans 

and animals are combined and entered in the NONPOINT block of the LA-QUAL input file (Data 

Type 19).  

Loadings from irrigated agriculture are simulated using incremental flows in the INCR-1, 

INCR-2, and INCR-3 blocks of LA-QUAL (Data Types 16, 17 and 18, respectively).  The 

estimates of the return flows entered in INCR-1 are the product of the sub-basin yield rates 

estimated during the hydrologic calibration effort and the area of irrigated agricultural land in the 

sub-basins corresponding to each LA-QUAL reach.  The author assigned concentrations of 

pollutants in the irrigation return flows, deriving them originally from Enciso (2012).  The author 

adjusted the literature-derived concentrations when warranted during the water quality calibration 

effort. 

Water Quality Calibration Data 
To calibrate the LA-QUAL simulations of water quality in the LRGWQI models, the 

author used the values measured during the binational synoptic surveys at 16 main stem sites, in 

July of 2014, and 15 main stem and 7 tributary sites in March, August, November of 2015 and 

April of 2016.  The synoptic survey conducted in July 2014 did not include the sampling of 
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Mexican tributaries.  For the LA-QUAL simulation of water quality during that survey, the author 

used values of water quality parameters measured during the August 2015 synoptic survey to 

compare to the simulation output values.  All calibration data are entered into LA-QUAL overlay 

files, which are used by the LA-QUAL input file to display over simulation output curves and to 

estimate model performance. 

Water Quality Calibration Process 
Model calibration for water quality is performed through the adjustment of state variables 

in the deterministic equations that govern the various processes affecting water quality constituents 

in the water column of the modeled water body and by adjusting inputs within the range of 

uncertainty associated with each of the water quality constituent sources.  Following hydrologic 

and hydraulic calibration, the author followed a standard water quality calibration sequence, first 

calibrating conservative water quality constituents (i.e., chlorides, TDS and salinity) then 

calibrating nonconservative constituents, such as nutrients, BOD, DO, chlorophyll a and finally 

TSS.   

Water Quality Calibration Results  
Calibration results varied depending on the water quality constituent and the synoptic 

period simulated.  Table 3-2 shows the ranges in average absolute percent errors for simulations 

of water quality constituents in the LRGWQI model calibration effort.  In general, the models 

performed better when simulating conservative water quality constituents than when simulating 

non-conservative constituents.  Model performance was least effective with organic phosphorus 

and coliforms. 
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Table 3-2. LRGWQI Model Performance Results  

Water Quality Constituent Average Absolute 
Percent Error Range (%) 

Salinity 24.7 – 60.6 

Chloride 12.2 – 49.1 

TDS 6.7 – 52.1 

DO 13.1 – 24.2 

Ammonia Nitrogen 59.2 – 76.6 

Inorganic Nitrogen 28.1 – 53.6 

Dissolved Inorganic Phosphorus 45.6 – 89.9 

Chlorophyll a 8.8 – NA* 

Coliforms 103.9 – 152.7 

Effective CBOD 16.8 – 64.5 

Effective Organic Nitrogen 23.9 – 54.2 

Effective Organic Phosphorus 71.4 – 103.6 

Effective TSS 19.6 – 81.5 

NA signifies not applicable 
* Chlorophyll data a were only collected during the July 2014 Synoptic Survey 

The average absolute difference between simulated and observed values of organic 

phosphorus in the model that yielded the highest absolute percent difference for this constituent 

(i.e., November 2015 Synoptic Survey) was only 0.06 mg/l, which is a very small value.  The 

value is approximately equal to the average observed value of organic phosphorus measured during 

the November 2015 Synoptic Survey (Figure 3-15).     
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Figure 3-15. Calibration Curve for Effective Organic Phosphorus in the Lower Rio 

Grande/Río Bravo (Synoptic Survey Data from November 2015). 

 
Model performance is the least robust with regard to the simulation of coliforms.  The 

dataset used to calibrate the models for bacteria contained a number of disproportionately high 

values for to which no known sources could be linked (Figure 3-16).  Faced with the choice of 

simulating a suspected source of bacteria for which no information was available or of simply 

ignoring the outlier data, the author, with advice of Bruce Wiland, opted for the latter choice.  The 

author also decided to use all data, including outliers, in the model performance measures partly 

to call attention to the fact that there are suspected sources of bacteria needing further investigation, 

a point that was brought to the attention of the Mexican LRGWQI partners during technical 

discussions within the BTWG.      



 

376 
 

 
Figure 3-16. Calibration Curves for Coliforms in the Lower Rio Grande/Río Bravo 

(Synoptic Survey Data from March 2015 and April 2016). 
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The LRGWQI model parameterization and calibration efforts were an important part of the 

development of LRGWQIDSS and involved a prolonged technical effort, as well as significant 

binational interaction between members of the BTWG.  In July 2016, after review and approval 

by the USEPA and USIBWC representatives in the BTWG, the author sent the LA-QUAL input 

files that represented the final calibrated LRGWQI models to the Mexican representatives in the 

BTWG along with all raw and processed input and calibration data and model documentation for 

final Mexican review.  In March 2018, the official CONAGUA representative in the BTWG, Jose 

Alfredo Rojas, approved the models for use in the Declaratoria effort on the Lower Río Bravo and, 

by extension also, the LRGWQI.  Mr. Rojas stated via email “We have reviewed the submitted 

models and we believe they are satisfactory to progress to the next phase.” The official approval, 

by all members of the of the BTWG, of the calibrated LRGWQI model(s), marked a critical step 

in the development of the LRGWQIDSS because it legitimized one of the main analytical tools 

used for decision making in the LRGWQI action arena.  While differences in the interpretation 

of model results are still a possible source of binational disagreement, approval of the LRGWQI 

models by members of the BTWG allows participants of the work group, and ostensibly also 

participants in the LRGWQI’s national Core Groups and Binational Core Group, to leave behind 

technical disputes over the analysis tools used for water quality-based decision making.   

Binational approval of the LRGWQI models by members of the BTWG signifies two 

important accomplishments.  Although each nation’s view of acceptable water quality remains 

based on its own legal standards, the decision-making processes used by the actors to determine 

compliance with their standards is, to a greater extent harmonized, in that the participants have 

agreed on a common model.  This is a condition that brings the LRGWQI action arena closer to 

resembling an archetypical IRC action arena, and CONAGUA’s commitment to use the LRGWQI 

models(s) to develop the Declaratoria for the Lower Río Bravo makes the models part of 

CONAGUA’s regulatory process, effectively institutionalizing the model’s use within the 

Mexican legal/regulatory framework.   

3.1.1.5  LRGWQIDSS System Design Description 

The components of hardware and software, which represent the top-level architecture of 

the LRGWQIDSS, are specified in the system’s Design Description (Appendix E) along with the 
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manual operations for which the system is designed.  The System Design Description also 

identifies system-wide design decisions, concept of execution, interface design, and requirements-

traceability-to-design components. 

FILE MANAGEMENT DESIGN 
The scope of the LRGWQIDSS, as described in the System Design Description, included 

three major functions: (1) development of point and nonpoint source loading scenarios; (2) 

Performing water quality simulations of these scenarios; and (3) visualizing modeling outputs for 

each scenario.  The emphasis on pollutant loading scenarios induced a need for a file management 

system which creates, stores and retrieves DSS files that are based on pollutant loading scenarios.  

However, there is also a need to group pollutant loading scenarios linked by common attributes.  

For example, scenarios simulated under the same [or different] ambient conditions, such as those 

of a specific binational synoptic event.  For this reason, the LRGWQIDSS was designed to create 

and store files at two levels of attribution, individual scenarios and groups of scenarios called 

“projects.”  A LRGWQIDSS project is designed to be composed of all individual scenarios 

created and saved under that project.  The file management design is such that when a project is 

retrieved, all scenarios created under that project are displayed with all the user-defined values 

associated with that project. 

GEOSPATIAL VISUALIZATION OF MODEL INPUTS AND OUTPUTS 
From the start of the design phase for the LRGWQIDSS, the primary role of the system’s 

GUI was described as facilitating and streamlining the preparation of LA-QUAL input files and 

visually displaying LA-QUAL output. While assumed to be somewhat familiar with the functions 

of steady state water quality models, the user was not expected to be versed in the use of LA-

QUAL nor was the user expected to be skilled in water quality modeling.  Conceptually, the look 

and feel of the GUI was intended, early on in the design phase, to resemble that of GIS software, 

with interactive features that obviate the need for any significant knowledge of LA-QUAL.  

Nevertheless, direct access to the LA-QUAL input files is essential to facilitate trouble shooting 

and mitigate unforeseen difficulties arising from the LRGWQIDSS’ creation of input files.   

Visualization of LRGWQIDSS output was originally limited to enhanced plotting capabilities for 
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LA-QUAL model output, but was later expanded to include report-style output to accommodate 

the addition of economics modules. 

MODULAR DESIGN 
The advantages of modular DSS design were described in Sub-section 2.2.1.9 (Best 

Practices in DSS Design).  The design of the LRGWQIDSS incorporates modularity in two ways, 

the inherent modularity of GIS is incorporated into the visualization choices of geographic features 

in the LRGWQIDSS and the functional modularity incorporated in the design of the 

LRGWQIDSS.  Aside from the water quality simulation function, the construction of loading 

scenarios is segregated into modules that are commensurate with the pollutant source type (i.e., 

point sources and nonpoint sources) or other factors affecting water quality, such as reductions in 

instream flow (e.g., headwaters and diversions).  

3.1.1.6 Economics Module 
The System Design Description document for the LRGWQIDSS does not include a design 

consideration for estimating scenario costs.  While considerations of scenario costs were not 

explicitly included in the deliberations of the BTWG, the need for incorporating this function into 

the LRGWQIDSS became apparent, as the transboundary agreement case studies and the results 

of the institutional analysis indicated the importance of cost as a critical element of decision 

making.  Costs are a concern in both the national Core groups and Binational Core group of the 

LRGWQI action arena and costs are particularly important in the Mexican and US wastewater 

treatment action arenas.  The author worked with the UT-BEG development team to design a 

DSS module capable of assessing costs of implementing different loading scenarios simulated 

using the other modules in the LRGWQIDSS.     

3.1.2 DETAILED ARCHITECTURE OF LRGWQIDSS 
The following is a top-level description of the system architecture for the LRGWQIDSS. 

The system-wide design was developed through iterative modification and was influenced by the 

feedback received from the target users within the BTWG.  The LRGWQIDSS is a package of 

individual open source software components assembled under a Python-based script. The Python 

programming language, used to develop the LRGWQIDSS, is platform independent.  However, 
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as previously mentioned, the program is designed to be a stand-alone Microsoft Windows-based 

application, the installation software for which can be downloaded form an ftp site or installed 

manually from disk or USB storage device. 

3.1.2.1 Functional Architectural Design 
The principal feature of the LRGWQIDSS is the Graphical User Interface (GUI), which 

allows the user to create LA-QUAL model input files.  This function is subdivided into two 

principal tasks, which represent the input of pollutants into the river from the two principal sources, 

point sources and nonpoint sources.   Figures 3-17 and 3-18 shows the conceptual LRGWQIDSS 

GUI designs for point source and nonpoint source pollutant inputs, respectively, into the LA-

QUAL input file. 

The LA-QUAL modeling software itself was modified by Bruce Wiland of Wiland 

Consulting Inc., to accommodate the GUI design.  The architectural design of the LRGWQIDSS 

follows an object-oriented approach.  Three top-level system functionality groups were identified 

during the system design conceptualization effort (Figure 3-19).  These functionality groups were 

then differentiated into subsystems and the connection and communication among the subsystems 

was identified and characterized (Figure 3-20). 
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Figure 3-17. Use Case Task for Point Source Pollutant Loading in the LRGWQIDSS 
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Figure 3-18. Use Case Task for Nonpoint Source Pollutant Loading in the LRGWQIDSS GUI. 
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Figure 3-19. Overall System Architecture for the 

LRGWQIDSS. Source: LRGWQIDSS System 
Design Description, 2013 (Appendix E). 

 
Figure 3-20. Structural Design Diagram of the LRGWQIDSS. Source: 

LRGWQIDSS System Design Description, 2013 (Appendix E). 

 

 



 

384 
 

The LRGWQIDSS GUI is composed of four main internal functions (Figure 3-20):  

1. Model File Handling - provides the input-output support needed to 

manipulate LA-QUAL input files 

2. LA-QUAL Management - provides support to generate valid LA-QUAL 

input files 

3. LA-QUAL Exe - is the external LA-QUAL program executable 

4. Visual Manager - loads map files and enables simple GIS operations (e.g., 

displays coordinates) 

The flow of data and information between functions is routed through five main “data ports” 
associated with each functional component (Figure 3-20): 

1. UI_req - provides event handler for GUI inputs 

2. File_req - provides file handler for loading and parsing the LA-QUAL 

input files 

3. LA-QUAL_model_req - populates the DSS GUI with information 

persisted in LA-QUAL model 

4. Data_out - generates a valid LA-QUAL input file 

5. Data_in - reads the LA-QUAL input file and executes LA-QUAL 

Of the components shown in Figure 3-20, the Visual Manager is perhaps the most important 

component for enhancing visualization.  The Visual Manager is GIS-based, allowing the user to 

build scenarios visually, selecting point- or polygon-based control and management actions from 

a menu and specifying where those management actions are to be simulated simply by pointing 

and clicking on a zoomable map of the study area.  The LA-QUAL Management component 

transforms the user-supplied information into commands supplied to the Model File Handling tool, 

which in turn, generates or modifies an LA-QUAL input file.  Options for running the LA-QUAL 

executable file are available in the Visual Manager, which also displays graphs of in-stream 

concentrations of water quality constituents resulting from the user-specified simulations for each 

planning scenario. 
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The GUI Sequence Diagram (Figure 3-21) depicts the navigation hierarchy and sequence 

of events and operations that emanate from the GUI.  The user functions addressed by the GUI 

include four functional categories: 

1. Model File Handlers - This category of functions supports the 

save/create/load activities related to the LA-QUAL model 

2. Map Handlers - This category of functions supports map displays 

3. Scenario Handlers - This category of functions supports specification of 

point and nonpoint sources in a scenario  

4. Run Handlers - This category of functions supports the launch of the LA-

QUAL executable 

As mentioned previously, the LRGWQIDSS was developed using only open source 

software. The LRGWQIDSS GUI was developed by the UT-BEG development team in Python 

code in the ECLIPSE Integrated Development Environment (IDE) with the PyDev Python code 

editor and compiler.  For version control, UT-BEG used the code repository software Apache 

Subversion.  The LRGWQIDSS uses the open source database engine SQLite for database 

storage and management and the open source GIS software QGIS for all geospatial functions.  To 

generate plots from the LA-QUAL output, the LRGWQIDSS uses the open source plotting 

software Matplotlib.  To program the LRGWQIDSS GUI, UT-BEG used the open source 

application programming interphase PyQT. 
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Figure 3-21. Sequence Diagram of the LRGWQIDSS. Source: LRGWQIDSS System 

Design Description, 2013 (Appendix E). 
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3.2  The LRGWQIDSS In 2019 

From a focus-based classification perspective, the LRGWQIDSS is both an EDSS and a 

SDSS with a strong focus on decision making associated with water quality.  Under the DSS 

typology classification described by Holsapple (2008), the LRGWQIDSS is best described as a 

compound DSS, as it incorporates a number of separate tools offered to the user for decision 

making.  Although, the decision-making tools rely on a system of internal databases, the 

LRGWQIDSS does not fit the classification of a database-oriented DSS because it does not offer 

the user functions normally associated with relational databases, such as search and data 

mining/data extraction capabilities.  Instead, the LRGWQIDSS provides functions associated 

mostly with fixed solver-oriented systems.  The set of fixed solvers in the LRGWQIDSS are 

arranged in the form of independent models that carry out functions such as estimation of point 

source and nonpoint source pollutant loadings, regulation of headwater flows in the river and its 

tributaries, simulation of flow diversions along the river, simulation of water quality from 

combined actions included in pollutant loading scenarios, estimation of scenario costs, etc.  

Although the LRGWQIDSS cannot be classified as a MCDSS, because it does not provide a score 

based on an index or other alternative ranking algorithm, the system provides the user at least two 

major criteria for decision making, water quality and cost.  The following sub-section provides a 

description of the features of the LRGWQIDSS as of 2019. 

3.2.1 OVERVIEW OF THE LRGWQIDSS SOFTWARE 

Currently the LRGWQIDSS is designed to run on a Windows 7 or 10 operating system.  

To properly view the graphics output, Windows settings for the display area should be set to a 

resolution of at least 1024x768 for both screen and desktop. 

3.2.1.1 Installation  
The LRGWQIDSS software must be installed through the execution of the installer 

software < LRGWQIDSSsetup.exe> which is a self-extracting executable.  During the 
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installation process, the installer must also be able to access (two) separate installation file(s) < 

LRGWQIDSSsetup-1.bin> and < LRGWQIDSSsetup-2.bin> which are part of the installation 

package.  To mitigate concerns expressed by the Mexican LRGWQI Partners about exposing 

monitoring data gathered during the LRGWQI synoptic surveys prior to the promulgation of the 

Río Bravo Declaratoria, the LRGWQIDSS installation process is password-protected.  The 

LRGWQIDSS executable file can be installed in any directory on the user’s computer.  However, 

the installer recommends the user install the executable in the root directory of user’s computer 

c:/LRGWQIDSS.  The installer will also provide an option to create a shortcut on a Windows® 

desktop. 

 

Figure 3-22. Image of the LRGWQIDSS Desktop Shortcut. 

   
The shortcut icon can also then be dragged to the Taskbar on the user’s Windows desktop.  

The LRGWQIDSS program icon will also appear in the list of programs in the Start Menu.  Total 

installation time varies depending on the storage capacity and random-access memory (RAM) of 

the system onto which the program is being installed, but usually ranges between 10 and 12 

minutes. When the installation setup program has completed the installation, a final window will 

appear alerting the user that the installation setup program has finished installing LRGWQIDSS 

on the computer. Clicking on the “Finish” button exits the installer.  However, before exiting the 

installer, the user is provided the option of launching the LRGWQIDSS program upon exiting the 

installation setup program.  Checking the box next to “Launch LRGWQIDSS” avails the user of 

this option.  
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Figure 3-23. Image of the Final LRGWQIDSS Setup Program Window. 

 

The LA-QUAL software imbedded in the LRGWQIDSS uses external programs to edit the 

input files and view the output files. The default programs that the model uses for editing input 

files and viewing plain-text output files are the Notepad and WordPad utilities that normally come 

pre-installed with most Windows operating systems. The default program used for viewing rich-

text files is Microsoft Word which may or may not be installed on the user’s computer.  If 

Microsoft Word, is not available to the user, the rich-text viewer in the Preferences option of LA-

QUAL can be changed to WordPad which will also read rich-text files.  In order for these external 

programs to work, the program directories must be in the system path specified in LA-QUAL.  

Normally, these directories are already in the system path.  If this is not the case, the user can 

either add them to the system path or provide the full path to the programs in the Preferences 

options of LA-QUAL. 

3.2.1.2 Graphical User Interface (GUI)  
Double clicking on the LRGWQIDSS shortcut or selecting the program from the 

Windows Start menu launches the LRGWQIDSS. 
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Figure 3-24. Computer Monitor Screenshot of the LRGWQIDSS Splash Screen and 

Background Loader Command Scroll. 

A command prompt window will appear displaying background loader commands 

followed by the LRGWQIDSS splash screen and the LRGWQIDSS graphical user interface (GUI). 
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Figure 3-25. Home Window of the LRGWQIDSS Graphical User Interface (GUI). 

The main menu bar at the top of the GUI is comprised of nine components, Project, Edit, Module, 

Scenario, View, Run, CompareScenarios Economics and Help.  Clicking on any component of 

the main menu bar will display a pull down menu containing additional functions specific to each 

main menu bar component. 

 
Figure 3-26. Main Menu Bar of the LRGWQIDSS Graphical User Interface (GUI). 

3.2.1.3 Creating Projects  
In order to access the full capabilities of the LRGWQIDSS the user must create a project.  

Projects are collections of scenarios created under the same project file name.  The map displays 

will not appear on the Project Explorer window unless a project is created and at least one scenario 

is created in that project. 



 

392 
 

PROJECT SETUP WIZARD 
To create a new project, the user must click once on the Project component in the main 

menu bar at the top of the GUI and select “New…” 

 
Figure 3-27. Project Component of the Main Menu Bar of the LRGWQIDSS GUI. 

A dialogue box will appear with a space in which the user can enter a project name. 

 
Figure 3-28. Project Setup Wizard of the LRGWQIDSS. 

After naming the project, and clicking the “Next” button, subsequent windows in the Project Setup 

Wizard will ask for geographic information sytem (GIS) layers to load into the project.  At a 

minimum, the user must specify a watershed layer and an outfall layer.  The wizard will ask the 
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user to specify a file location for each layer.  However, a suggested layer will already appear in 

the “Add Watershed Layer” dialogue box. Clicking the “Next” button will load the GIS layer 

suggested by the LRGWQIDSS in the dialogue box (recommended). 

  
Figure 3-29. The “Add Watershed Layer” Dialogue Box of the Project Setup Wizard of 

the LRGWQIDSS. 

GIS layers come preloaded into the directory ...\LRGWQIDSS\data\gisdata, which is created 

during the program installation.  Clicking on a file in the “choose input file” directory window 

selects the file that will be used in the project.  Clicking the “Open” button in this dialogue box 

chooses the selected file, which will then appear in the “Add…” line of the Project Setup Wizard 

window.  Clicking the “Next” button will input the file into the project and will move the Project 

Setup Wizard to the next file selection dialogue box.  This process is repeated until all project 

GIS and input layers are loaded into the new project.  Once all GIS layers are loaded into the 

project, the “Set the Extent” dialogue box will appear. 
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Figure 3-30. The “Set Extent” Window of the Project Setup 

Wizard of the LRGWQIDSS. 

This dialogue box sets the map display area.  Unless there is an intense area of focus in 

mind, the user is urged to simply accept the default Xmax, Xmin, Ymax and Ymin settings 

prespecified in this dialogue box by clicking the “Next button.  The coordinates are specified as 

cartesian grid coordinates, not latitude and longitude.  Reverting to the recommended view will 

require the specification of the exact coordinates shown above. 

The last dialogue box of the Project Setup Wizard is the “LA-QUAL Input” dialogue box.   
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Figure 3-31. The “LA-QUAL Input” Dialogue Box of 

the Project Setup Wizard of the 
LRGWQIDSS. 

The user can select from one of the LA-QUAL input files currently available in the LRGWQIDSS 

by clicking on the “Browse” button and selecting it from the pull-down menu. 

 
Figure 3-32. Pull-down Menu of the “LA-QUAL Input” Dialogue Box of the Project 

Setup Wizard of the LRGWQIDSS. 
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The input files correspond to the models of the synoptic surveys used to calibrate the LRGWQI 

models.  Clicking on the “Open” button loads the input file into the project.  The pop-up window 

will disappear and the selected LA-QUAL input file will display in the “load LA-QUAL input 

file” line of the “LA-QUAL Input” dialogue box .  In addition to selecting an LA-QUAL input 

file, the user must also select a commensurate nonpoint source file corresponding to the same 

month as that of the LA-QUAL input file selected.  This is done using the pull-down menu next 

to the “Select file” dialogue in the “LA-QUAL Input” dialogue box. 

  
Figure 3-33. Nonpoint Source File Selection in the Project Setup 

Wizard of the LRGWQIDSS.  

Clicking the “Finish” button closes the Project Wizard and loads the Project into the LRGWQIDSS 

GUI. The newly created Project will appear in the Project Explorer window.  
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Figure 3-34. New Project Displayed in the Project Explorer Window of the LRGWQIDSS 

GUI. 

Projects can be saved, closed and reopened much like the files in other commercial software 

programs.  To load a saved project, the user must click once on the Project button in the main 

menu bar at the top of the GUI and select the project from “Load Project” popup window.  

Clicking the “Open” button in this pop-up window loads the selected Project, which will then 

appear in the Project Explorer window of the GUI.   
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Figure 3-35. The “Load Project” Pull-down Menu of the Project Component of the 

Main Menu Bar of the LRGWQIDSS GUI. 

CREATING SCENARIOS 
As previously mentioned, Projects in the LRGWQIDSS are composed of “scenarios.”  In 

order to use the full capabilities of the LRGWQIDSS, the user must create at least one scenario 
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under each Project created using the Project Setup Wizard.  Scenarios are created using the 

“Scenario” component of the main menu bar at the top of the LRGWQIDSS GUI. 

 
Figure 3-36. Creating a New Scenario in the Scenario Component of the Main Menu of 

the LRGWQIDSS GUI.  

Clicking on “New Scenario” from the pull down menu under the Scenario component of the 

main menu bar displays the “Create Scenario” dialogue box. 

 
Figure 3-37. The “Create Scenario” Dialogue Box of the Scenario Component of the 

LRGWQIDSS GUI. 

In addition to providing a name for the newly-created scenario, the user must also specify the 

Project under which the new scenario will be included.  This can be done using the pull down 

menu under the “project name” dialogue.  Not making this specification can result in the new 
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scenario being included under the wrong Project.  Clicking on the “Create” button in the “Create 

Scenario” dialogue box creates the scenario in the Project specified under “project name” dialogue.  

The newly created scenario is displayed automatically in the “Project Explorer” window.  

  
Figure 3-38. New Scenario Displayed in the “Project Explorer” Window of the 

LRGWQIDSS GUI. 

Clicking on the new scenario once makes it active.  The “Module,” “View” and “Run” 

components of the main menu bar will not function unless a scenario is selected (made active).  

The name of the LA-QUAL input file associated with the Project under which the scenario was 

created is displayed at the bottom left corner of the LRGWQIDSS GUI. 
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3.2.1.4 Selecting and Viewing Project Scenario GIS Layers  
To display the GIS layers selected during the Project setup, the user must select the 

“Settings” option in the pulldown menu under the “View” component of the main menu bar; a 

check mark will be placed on that option following its selection. 

  
Figure 3-39. The “Settings” Option of the View Component of the Main Menu Bar of 

the LRGWQIDSS GUI. 

The “View” component of the main menu bar also controls the display of the tools in the 

LRGWQIDSS tool bar (discussed later in the following sub-section).  

 
Figure 3-40. The LRGWQIDSS Tool Bar in the LRGWQIDSS GUI. 

Checking the “Settings” option in the “View” component of the main menu bar will display the 

“Visibility Settings” window beneath the “Project Explorer” window. 
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Figure 3-41. The “Visibility Settings” Window in the LRGWQIDSS GUI.  

The “Visibility Settings” window consists of seven tabs, “Layers,” “Point,” “Humans,” 

“Animals,” “Ag,” “Headwaters,” and “Diversion.”  The “Layers” tab controls the display of 

layers in the map window.  The rest of the tabs in the “Visibility Settings” window control the 

information displayed in the Module tables which are discussed in  the following sub-section.  

The user can select from a menu of GIS layers offered in the “Layers” tab of the “Visibility 

Settings” window.   The menu of GIS layers in this tab reflects the choices made by the user 

during the Project Setup Wizard. 
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Figure 3-42. The “Layers” Tab of the “Visibility Settings” Window in the 

LRGWQIDSS GUI. 

Clicking on the box next to a GIS layer in the “Layers” tab of the “Visibility Settings” 

window displays the GIS layer in the “Map” window.   The slide bar controls the transparency 

of the sub-basins that form the Lower Rio Grande/Río Bravo watershed.  By checking or 

unchecking the boxes next to the various layers in the “Layers” tab of the “Visibility Settings” 

window, a user can turn the layers on or off in the “Map” window.  The transparency or 

opaqueness of the watershed layer is controlled by the slide bar under the “Sub-basin” layer.  A 

user may also wish to display a more detailed hydrographic layer (i.e., the USGS’ National 

Hydrographic Dataset [NHD]). However, only the hydrography displayed in the layer named 

“Comp Elem (lines)” is associated the LA-QUAL model.  The computational element boundaries 

and midpoints of the LA-QUAL model can also be displayed by checking the boxes next to the 

layers named “Comp Elem (nodes)” and “Midpoints (comp elem).” 
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Figure 3-43. GIS Layers Displayed in the “Map” Window of the LRGWQIDSS 

GUI. 

The “Visibility Settings” window can be hidden by unchecking the box next to “Settings” in the 

pull-down menu of the “View” component of the main menu bar. 

COMPUTATIONAL ELEMENTS, REACHES, AND SUB-BASINS 
The “Comp Elem (lines)” layer, in the “Layers” tab of the “Visibility Settings” is a visual 

(geographic) representation of the LA-QUAL model domain.  In the LA-QUAL model, 

computational elements are grouped into 147 separate reaches which are arranged contiguously 

end-to-end forming a segmented (discretized) hydrography layer; as previously mentioned, each 

river reach is itself composed of computational elements.   

The “Headwaters” point layer shows the nodes that define the upstream boundaries of each 

of the headwater reaches in the LA-QUAL model.  The “River Reach (nodes)” point layer shows 

the nodes that define the upstream boundaries of all other river reaches in the LA-QUAL model.  

The nodes of the “River Reach (nodes)” layer also define the pour points (downstream boundaries) 

of the sub-basins associated with each of the river reaches.  All the point and nonpoint sources 
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contributing pollutants of concern to the computational elements of a particular river reach are 

located within the sub-basin associated with that particular river reach. Therefore, there are 147 

sub-basins corresponding to the 147 river reaches.  The “Comp Elem (nodes)” point layer shows 

the nodes that define the upstream boundaries of the computational elements within each of the 

reaches of the LA-QUAL model.  The “Midpoints (comp elem)” point layer defines the midpoint 

of each of the computational elements of the model. 

3.2.1.5 Map Tools 
The Map Tools allow the user to visually navigate the Map window, as well as select and 

display information about the layers shown in the Map.  The LRGWQIDSS GUI maps tools 

afford the user many of the capabilities available in other commercial GIS software. 

 
Figure 3-44. The Map Tools in the Tool Bar of the 

LRGWQIDSS GUI. 

POINT TOOL    

The Point Tool displays the coordinates of the location, on the map, where the tip of the 

arrow of the Point Tool is pointing.  The longitude and latitude of the location are displayed, in 

decimal degrees, at the lower left corner of the GUI window. 
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Figure 3-45. Using the Point Tool to Determine Latitude and Longitude.  

PAN TOOL  

The Pan Tool allows the user to pan across the map extent.  This tool is most useful when 

used in combination with zoom tools, as the full map extent of the LRGWQI is limited to a 31,725 

km2 quadrant. 

ZOOM TOOLS  

The Zoom tools allow the user to zoom in and out of the map view in the “Map” window.  

Clicking on the “Zoom-In” tool   activates the tool.  Once activated, the tool appears in 

place of the cursor on the “Map” window.  Clicking once on the map will zoom to a view extent 

resulting from a pre-set zoom multiplier (4x).  Dragging a box diagonally over the area of interest 

while pressing and holding the left mouse button zooms into the area defined by the drag box.  

The “Zoom-out” tool  works the same way, but in reverse. 
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Figure 3-46. Using the Zoom Tool to “Zoom in” on an Area in the “Map” Window. 
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CENTER MAP  

Clicking on the “Center Map” button in the Map Tool menu returns the map view to the 

base extent in the Map Window (default 135 km x 235 km). 

INFO TOOL  

The Info tool allows the user to display summary information about certain layers displayed 

in the Map window.  The layers for which information is displayed include Diversions, 

Headwaters, River Reach (nodes), Sub-basin and Outfalls.  Of these, only River Reach is 

common to all projects and scenarios, the rest of the layers for which the Info tool displays 

information are project- and scenario-specific.  Clicking on the Info tool activates the tool.  

Once activated, the “Active Layer” window appears beneath the “Project Explorer” window and 

the cursor on the Map window changes to . 

 
Figure 3-47. Activating a GIS Layer in the “Active Layer” Window of the LRGWQIDSS 

GUI. 
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To display an Info window, the user must first select an active layer from the “Active Layer” 

window by clicking on the radial button next to the desired layer (i.e., Diversions, Headwaters, 

River Reach, Sub-basin or Outfalls).  The layer of interest must already be displayed in the “Map” 

window.  Clicking once on the desired feature on the map will highlight the feature and display 

the “Info” window containing summary information associated with the highlighted feature.   

 
Figure 3-48. Using the Info Tool to Display Information About Features in the “Map” 

Window of the LRGWQIDSS GUI. 

3.2.1.6 Pollutant Loading Modules 
The LRGWQIDSS pollutant loading modules allow the user to build and modify water 

quality simulation scenarios based on the point and nonpoint source inputs specified by the user.  

The inputs can include changes in effluent flow and/or pollutant concentrations from existing point 

source outfalls, such as existing wastewater treatment facilities or other known wastewater 

outfalls.  A user can also create new point sources of water borne pollution, such as proposed or 

suggested new wastewater treatment facility outfalls or predicted untreated wastewater outfalls.  

In addition to point sources, the user can include in the simulation scenarios a number of situations 

involving changes in nonpoint sources of pollutants, such as suggested or predicted changes in 
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riparian populations, new urban and rural sanitation service areas, changes in wild or domesticated 

animal populations and/or implementation of agricultural management practices. 

The modules also allow users to simulate the effects, on water quality in the Lower Rio 

Grande/Río Bravo, of water diversions or of changes in in-stream flows and/or pollutant 

concentrations at the headwaters of the river (i.e., at Falcon Dam) or at the headwaters of tributaries 

and ditches that contribute flow to the Lower Rio Grande/Río Bravo (e.g., El Morillo Drain). 

OVERVIEW OF WATER QUALITY MODULES OF THE LRGWQIDSS 
The pollutant loading modules of the LRGWQIDSS list the various point and nonpoint 

sources of pollutants of concern in each sub-basin along with the properties of these pollutant 

sources.  In the case of point sources, these properties can include the river reach and element 

number to which each facility discharges, the measured effluent flow, effluent pollutant 

concentrations and the populations served by each facility.  In the case of nonpoint sources, the 

properties can include sub-basin ID, country, total riparian population in the sub-basin, estimated 

sewer conveyance losses, riparian population in the sub-basin on septic systems, septic failure rate 

in the sub-basin, and total riparian population in the sub-basin using some other means of sanitation 

(other). 

The Point Sources module and Humans Loadings Sub-module (of the Nonpoint Sources 

Module) of LRGWQIDSS, are interconnected and the changes made in one module may affect the 

other, depending on the change made.  For example, if the user creates a new wastewater 

treatment facility serving a user-specified number of people living in the riparian area of the river 

(i.e., people living with 500 meters of a computational element, including tributaries and ditches), 

this action will increase the loading of point source pollutants to the river from the new outfall at 

a specific reach and computational element, while at the same time reducing the nonpoint source 

pollutant load emanating from the same riparian population served by the new wastewater 

treatment facility, as the sewage from this population is now collected and treated. 

User-defined changes made in the Animal Loadings sub-module of the Nonpoint Sources 

Module are limited to the number of animals of a certain species found in each of the sub-basins.  

User-defined changes made in the Agriculture Loadings Sub-module of the Nonpoint Sources 

Module can include the implementation of up to six agricultural BMPs, 3 irrigation BMPs (i.e., 
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land leveling, use of polypipe, and both of these BMPs together) and 3 water quality BMPs (i.e., 

post-harvest crop residue management, nutrient management, and both of these BMPs together).  

Therefore the changes specified by the user in the Nonpoint Sources Module include total irrigated 

area within a sub-basin, total irrigated area within a sub-basin lacking any recognized irrigation 

best management practices (NoIrrBMP), total irrigated area within a sub-basin that is land-leveled, 

total irrigated area within a sub-basin that is irrigated using polypipe, total irrigated area within a 

sub-basin that is land-leveled and is irrigated using polypipe, total irrigated area within a sub-basin 

with no recognized water quality best management practices (NoWQBMPs), total irrigated area 

within a sub-basin that is managed for nutrients, total irrigated area within a sub-basin that is 

managed for post-harvest crop residue, and total irrigated area within a sub-basin that is managed 

for both nutrients and post-harvest residue. 

The user can access the LRGWQIDSS modules by selecting them from the pull-down menu of the 

Modules component of the main menu bar.  A more detailed explanation of each LRGWQIDSS 

module is provided in the following sub-sections. 

 
Figure 3-49. The Modules Component of the Main Menu Bar of the LRGWQIDSS GUI. 



 

412 
 

Point Sources Module 
The “Point Sources” Module of the LRGWQIDSS allows the user to build scenarios 

involving changes in sanitation and wastewater treatment.  Clicking on the “Point Sources” 

option of the pull-down menu of the Module component in the main menu bar places a check mark 

beside it and opens the “Point Sources Table” window beneath the “Map” window.  The existing 

point sources and associated wastewater outfalls are preloaded with the flows and pollutant 

concentrations measured during the synoptic surveys conducted as part of the LRGWQI. 

The various columns shown in the “Point Sources Table” can be hidden or displayed by 

checking or unchecking the boxes next to the names of the column headers in the “Point” tab of 

the “Visibility Settings” window (displayed by clicking the “Settings” option of the “View” 

component in the main menu bar).  The value in the “Reach” column is the reach number, in the 

LA-QUAL model, into which the outfall flows.  The numbers used to describe river reaches in 

the LA-QUAL model also correspond to the numbers of the sub-basins associated those LA-

QUAL reaches. 

 
Figure 3-50. The “Point” Tab in the “Visibility Settings” Window of the LRGWQIDSS 

GUI. 



 

413 
 

 

Modifying Existing Point Source Outfalls 
The user can change any of the values in the columns of the Point Sources Table.  

However, in order to effect any change in the simulation of water quality, the user must run the 

LA-QUAL model.  Running the LA-QUAL model is explained in more detail in the Sub-section 

3.1.2.8 (Running Scenario Simulations).  Sometimes the design of wastewater treatment systems 

is focused on a particular parameter, but the design often has an effect on other pollutants.  For 

example, a treatment process targeting reductions in biochemical oxygen demand (BOD) or 

ammonia may also change the concentration of organic nitrogen or nitrates in the effluent and the 

user may not know exactly how a particular treatment system may affect all pollutants of concern.  

The LRGWQIDSS includes an option for allowing the DSS to automatically fill in the effluent 

concentrations of certain pollutants based on a change in the BOD concentrations specified by the 

user, ostensibly resulting from a change in an existing treatment process, or from a change in the 

efficiency of the existing treatment process, or resulting from a new treatment system altogether.  

The user can opt to allow the LRGWQIDSS to make these changes in the effluent concentrations 

of inorganic phosphorus, organic phosphorus, ammonia nitrogen, nitrate plus nitrate nitrogen and 

organic nitrogen or the user can decline the option and fill in the concentrations manually. 
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Figure 3-51. Automatic Nutrient Effluent Concentration Estimation Option Dialogue 

Box in the “Point Sources Table” of the LRGWQIDSS GUI.  

If the user wishes to make a change in the riparian population served by a particular 

wastewater treatment facility or wastewater outfall (“TotalRipPopServed” column), the user must 

specify where the change in the sanitation services is to take place.  Changing the value in the 

“TotalRipPopServe” column automatically opens the “Link Riparian Population Served” Window.  

The “Link Riparian Population Served” window can also be opened by right-clicking the record 

of interest in the “TotalRipPopServe” column and selecting “Set Population.”  The current 

riparian population served by the wastewater treatment facility or wastewater outfall for which the 

change in population served is being made will be displayed in the “Set population served” box 

on the right side of the “Link Riparian Population Served” window. 

In the “Link Riparian Population Served” window, the user must enter the new value for 

the riparian population served (RipPopOnSewer) in the box next to the appropriate sub-basin.  

The values entered into this box will also be automatically entered into the “RipPopOnSewer” 
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column of the “Human Loadings Table” in the “Nonpoint Sources” Module.  A complete 

description of the Nonpoint Sources Module is included in later sub-sections. 

  
Figure 3-52. The “Link Riparian Population Served” Window in the “Point Sources 

Table” of the LRGWQIDSS GUI. 

If the new riparian population served is located in more than one sub-basin, the user must 

specify the value of the population served in each sub-basin by adding or removing the appropriate 

sub-basin from the “select sub-basins to link” box located on the left side of the “Link Riparian 

Population Served” window and the user must specify a population served value in the 

RipPopOnSewer box next to the sub-basin added to the “Set Population Served” box. 

To save the changes, the user must click on the “Save” button before closing the “Link 

Riparian Population Served” Window.  However, if the sum of the values in the “Set population 

served” box of the “Link Riparian Population Served” window do not equal the value specified by 

the user in the “TotalRipPopServed” column of the “Point Sources Table,” an error message will 

display alerting the user.  The changes will not be saved until the sum of values in the “Set 
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population served” box of the “Link Riparian Population Served” window equal the value 

specified by the user in the “TotalRipPopServed” column of the” Point Sources Table. 

 
Figure 3-53. Validation Error Message in the “Link Riparian Population Served” 

Window in the “Point Sources Table” of the LRGWQIDSS GUI.  

After the changes made by the user in the “Link Riparian Population Served” window the 

values are saved (using the “Save” button) and the window is closed (using the “Close” button), 

the LRGWQIDSS displays a message alerting the user to specify commensurate changes in the 

“Human Loadings” tab of the “Nonpoint Sources Tables.”  That is, the user must specify the 

riparian populations using septic systems, “other” means of sanitation (or lacking sanitation), as 

well as sewer conveyance losses, in the sub-basins where the modifications in the 

“PopOnSewer” were made in the “Link Riparian Population Served” window of the “Point 

Sources Table.”  A more detailed description of the Nonpoint Sources Module is provided in 

subsequent sub-sections. 

Creating New Point Source Outfalls 
There are two ways a user can create a wastewater outfall and add it to a scenario.  The user can 

create an outfall manually or through point-and-click.  In either case, the user must enter 
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information about the new outfall in the “Point Sources Table” after the outfall is created.  To 

create an outfall using the point-and-click method, the user must use the “Add Outfall” button 

 located in the “Outfall Tools” in the LRGWQIDSS tool bar beneath the main menu bar.  

Clicking on this tool converts the cursor to a hand with a pointing finger  ; clicking again once 

on the “Map” window creates a wastewater outfall in the location on the map where the tip of the 

pointing finger is pointing.  

  
Figure 3-54. Adding a New Point Source Outfall Using the “Add Outfall” Button in the 

Tool Bar of the LRGWQIDSS GUI. 

To increase precision in the placement of new wastewater outfalls created using the point-and-

click method, it is advisable to first use the zoom tool to zoom in on the location of interest prior 

to clicking on the “Add Outfall” button.  The “Add Outfall” function will only create an outfall 

in one of the computational elements of the LA-QUAL model (i.e., Comp Elem [lines]).  It does 

so by snapping the newly created outfall point to the nearest computational element midpoint.  To 

increase the precision of placement further, the user may choose to display the “Midpoints (comp 

elem)” layer in the “Visibility Settings” (displayed by clicking on the “Settings” option in the 

“View” component of the main menu bar). 
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Upon the creation of a new wastewater outfall, a new row is added to the bottom of the 

“Point Source Table.” The LRGWQIDSS places the name “A new outfall” in the new record under 

the “Permittee” column and automatically fills the records under the effluent flow and pollutant 

concentration columns with default values (flow = 0.5 MGD = 0.0219 m3/s).  The value in 

“TotalRipPopServed” is assigned a default value of zero, which the user is expected to change 

with the value of the proposed population served using the “Link Riparian Population Served” 

window.  

An alternative method for creating a new wastewater outfall is to use the “Add Outfall 

Manually” tool .  Using this method, the user can specify the exact location 

where a new wastewater outfall is to be created.  When the user clicks the “Add Outfall 

Manually” button, a dialogue box opens requesting the latitude and longitude of the new outfall. 
 

 
Figure 3-55. Adding a New Point Source Outfall Using the “Add Outfall Manually” 

Tool in the Tool Bar of the LRGWQIDSS GUI. 

The user must then enter the coordinates of the new outfall in decimal degrees in the appropriate 

slots in the “DSS” dialogue box.  As with the point-and-click method, the LRGWQIDSS will 

snap the location of the newly created wastewater outfall to the nearest LA-QUAL computational 
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element midpoint.  Like the “point-and-click” method, creation of a new wastewater outfall using 

the “manual” method will also add a row to the bottom of the “Point Source” Table.  Again, the 

LRGWQIDSS will place the name “A new outfall” in the new record under the “Permittee” 

column and will automatically fill the records under the effluent flow and pollutant concentration 

columns with default values.  The user must then enter specific information, as necessary, about 

the new outfall in the “Point Source Table” after the outfall is created. 

Deleting Wastewater Outfalls 
A new or existing outfall can be deleted by right-clicking on the row in the “Point Source 

Table” where the deletion is to occur.  Another way to delete a newly created wastewater outfall, 

or any wastewater outfall, for that matter, is to use the “Delete Feature” button   of the 

“Outfall Tools.”  Deleting an outfall removes it completely from the LA-QUAL model (in the 

active Scenario).  The point disappears from the “Map” window and the row containing the 

information associated with the deleted outfall is removed from the “Point Source Table.”  Like 

many other actions in the LRGWQIDSS, the action of deleting wastewater outfalls can be reversed 

and the deleted outfalls restored using the “Undo” option in the “Edit” component of the main 

menu bar. 

Nonpoint Sources Module  
The Nonpoint Sources Module (NPS Module) of the LRGWQIDSS is designed to 

incorporate, into simulation scenarios, a number of practices, control actions and management 

measures that affect pollutant loadings emanating from diffuse sources, such as unsewered riparian 

communities, animal sources and agricultural activities.  The user can access the NPS module by 

clicking on the “Nonpoint Point Sources” option of the pull-down menu of the “Module” 

component in the main menu bar.  Doing so places a check mark beside the “Nonpoint Sources” 

option and opens the “Nonpoint Sources Tables” window beneath the “Map” window.  The NPS 

Module consists of three submodules represented as three separate tabs in the “Nonpoint Sources 

Table:” Human Loadings, Animal Loadings and Agricultural loadings. 
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Figure 3-56. The “Nonpoint Point Sources” Option of the Pull-down Menu of the 

Module Component in the Main Menu Bar of the LRGWQIDSS GUI.  

The Human Loadings Submodule 
The “Human Loadings” sub-module of the LRGWQIDSS’ NPS module works in 

combination with the “Point Sources” module to help the user set up simulation scenarios 

involving changes in sanitation to residents living in the riparian areas of the 147 sub-basins 

represented in the “Sub-basin” GIS layer.   In addition to the reduction in pollutant loadings 

resulting from the connection of previously unsewered residents to new or improved treatment 

facilities, the “Human Loadings” sub-module allows the user set up simulation scenarios involving 

improvements in sewage conveyance (i.e., reducing “SewerConveyanceLoss” values in the 

“Human Loadings” table) and improvements in onsite sewage treatment (i.e., reduction in 

“SepticFailure” rates in the “Human Loadings” table). 

The “Human Loadings Table” is preloaded with the information collected during the 

LRGWQI study (see Chapter 1).  As with the “Point Sources” table, the user can choose to 

display or hide any of the seventeen columns of the “Human Loadings Table” by checking or 

unchecking the various column headings in the “Humans” tab in the “Visibility Settings” window 

(displayed by checking the “Settings” option in the “View” component of the main menu bar of 
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the LRGWQIDSS GUI).  The column labeled “Sub-basin ID” shows the number of the sub-

basins represented by each row in the table.  The Sub-basin ID number reflects the river reach, in 

the LA-QUAL model input, that is associated with the particular sub-basin (i.e., the model reach 

into which the nonpoint source pollutant loadings emanating from that sub-basin are contributed).   

The existing number of residents living in the riparian zones of each of the 147 sub-basins 

is represented under the column labeled “TotalRiparianPop.”  These populations are further 

subdivided into subcategories according to the type of sanitation used by the residents living in the 

riparian zones of each sub-basin.  Residents in the column labeled “PopOnSewer” are those that 

are currently receiving centralized wastewater collection and treatment services.  Residents in the 

column labeled “PopOnSeptic” are those that use onsite sewage treatment facilities for sanitation.  

Residents in the column labeled “PopOthers” are those that use other means of sanitation.  

Residents under the “PopOthers” column are deemed by the LRGWQIDSS to use inadequate or 

non-existent sanitation.  

The column labeled “SewerConveyanceLoss” contains values between 0 and 1. These 

values represent the fraction (i.e., percentage) of the sewage collected in the riparian zone that is 

lost to the environment in the particular sub-basin represented by each row in the table.  The 

column labeled “SepticFailure” also contains values between 0 and 1 and represents the fraction 

of the onsite treatment systems, in the riparian zones in the particular sub-basin, that are failing.  

The user can only change the values in the columns labeled “PopOnSewer,” 

“SewerConveyanceLoss,” “PopOnSeptic,” “SepticFailure” and “PopOthers.”  The values in the 

“TotalRiparianPop” column are always the sum of the values in the adjacent “PopOnSewer,” 

“PopOnSeptic” and “PopOthers” columns. Although the user cannot change the total riparian 

population living in each sub-basin directly, the value in the “TotalRiparianPop” column can be 

increased or decreased by specifying the number of residents entered under the “PopOnSewer,” 

“PopOnSeptic” and “PopOthers” columns, as “TotalRiparianPop” is the sum of these. 

If the user changes a value in a record under the “PopOnSewer” column, the “Link Riparian 

Population Served Window” will automatically open and the user must specify the number of the 

outfall linked to the change made in the value entered into the record under the “PopOnSewer” 

column.  The outfall number corresponds to the “pointsource ID” number in the “Point Sources 

Table” (“Point Sources” module). 
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Figure 3-57. The “Link Riparian Population Served” Window in the “Human 

Loadings Table” in the “Nonpoint Sources Tables” of the 
LRGWQIDSS GUI. 

The user is responsible for making any changes to the outfall in the “Point Sources Table” 

that are necessary due to the changes made in the “Human Loadings” Table (Nonpoint Sources 

module).  For example, if the delivery of centralized wastewater services to riparian residents 

previously using septic systems or without sanitation services is expected to result in an increase 

in the amount of treated wastewater effluent flow from an existing wastewater treatment facility 

outfall, the user is responsible for modifying the flow value of that outfall in the “Point Sources 

Table” (“Point Sources” module).  The “Link Riparian Population Served Window” will only 

show existing outfalls, so if the delivery of centralized wastewater services to riparian residents 

that were previously using septic systems or were without sanitation services is expected to be 

provided by a new facility, that facility must have already been created in the “Point Sources 

Table” (“Point Sources” module).  The “Link Riparian Population Served” window can also be 

opened by right-clicking the record of interest in the “PopOnSewer” column and selecting “Set 

Population.” 
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Relationship Between Point Source and Nonpoint Source Tables 
The “PopOnSewer” column of the “Nonpoint Source Table” is directly related to the 

“TotalRipPopServed” column of the “Point Source Table.”  As previously explained in the 

description of the “Point Sources” module, any changes specified by the user in the 

RipPopOnSewer box(s) associated with specific sub-basins in the “Set population served” box of 

the “Link Riparian Population Served” window will automatically change the values of the 

commensurate record in the “PopOnSewer” column of the “Human Loadings Table.”  

Accordingly, any changes specified by the user in the “PopOnSewer” column of the “Human 

Loadings Table” will also be reflected in the values in the “Set population served” box of the “Link 

Riparian Population Served” window and in the “TotalRipPopServed” column of the “Point 

Source Table.” 

 
Figure 3-58. Linkage Between Reach ID in the “Point Sources Table” and Subbasin ID 

in the “Human Loadings Table” of the “Nonpoint Sources Tables” in the 
LRGWQIDSS GUI. 

The Animal Loadings Submodule 
 

The “Animal Loadings” submodule allows the user to build scenarios involving changes 

in pollutant loading, to the Lower Rio Grande/Río Bravo and/or one of its tributaries or 



 

424 
 

contributing ditches, resulting from changes in animal populations within each of the Lower Rio 

Grande/Río Bravo watershed sub-basins.  The user can access the “Animal Loadings” submodule 

by clicking on the “Animal Loadings” tab in the “Nonpoint Sources Tables.” The “Animal 

Loadings Table” is preloaded with the animal population information derived from geospatial 

analyses conducted as part of the LRGWQI study (See Chapter 1). 

Estimates of the average populations of four domestic animal species (cattle, horses, goats 

and sheep) found in each sub-basin and three wild (or feral) animal species found in the riparian 

zones and wetland habitats in each sub-basins (deer, feral hogs and waterfowl) are preloaded under 

the column headings bearing the name of each animal species.  The user can modify the nonpoint 

source pollutant loadings generated by each of these animal species in each of the sub-basins by 

changing the population value in the appropriate record in the “Animal Loadings Table.” 

  
Figure 3-59. The “Animal Loadings Table” of the “Nonpoint Sources Tables” of the 

LRGWQIDSS GUI. 

The total loading, by pollutant, generated by all animals in each sub-basin, is shown in 

the last eleven columns on the right side of the table.  Additional pollutants are available for 

display, but the parameter must be checked in the “Visibility Settings” window (displayed by 
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checking the “Settings” option in the “View” component of the main menu bar of the 

LRGWQIDSS GUI). 

Agricultural Loadings Submodule 
The Agricultural Loadings Submodule allows the user to set up simulation scenarios 

involving the implementation of agricultural BMPs, including irrigation methods that minimize 

irrigation return flow to surface water bodies and agronomic practices that reduce pollutant 

loadings to these water bodies.  The user can access the “Agricultural Loadings” submodule by 

clicking on the “Agricultural Loadings” tab in the “Nonpoint Sources Tables,” which activates the 

“Agricultural Loadings Table.” 

The “Agricultural Loadings Table” is preloaded with the information gathered during the 

LRGWQI study (see Chapter 1).  As is the case with all module tables, the user can choose to 

display or hide any of the twenty-seven columns of the “Agricultural Loadings Table” by checking 

or unchecking the various column headings in the “Ag” tab of the “Visibility Settings” (displayed 

by checking the “Settings” option in the “View” component of the main menu bar). 

For each of the 147 Lower Rio Grande/Río Bravo watershed sub-basins, the total amount 

of irrigated land, in hectares, is shown under the column labeled “TotalIrrArea.” The column 

labeled “LndLvldBMP (Ha)” shows the total amount of irrigated land area that has been leveled 

in each sub-basin.  The column labeled “PolyBMP (Ha)” shows the total hectares of irrigated 

land in which polypipe is used for irrigation in each sub-basin. The hectares of irrigated land in 

which both of these irrigation practices are used together is entered under the column named 

“LvldPoly (Ha)” for each sub-basin.  The hectares of irrigated land in which neither of these two 

irrigation practices are used (i.e., not leveled and not using polypipe) is entered under the column 

named “NoIrrBMP (Ha)” for each sub-basin.  The estimated total irrigation return flow, in cubic 

meters per second, generated by all irrigated land in each sub-basin (TotalIrrArea) is shown in the 

column labeled “Returnflow.” 
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Figure 3-60. The “Agriculture Loadings Table” of the “Nonpoint Sources Tables” of 

the LRGWQIDSS GUI.  

For each sub-basin, the user can increase or decrease the values in the columns labeled 

“LndLvldBMP (Ha),” “PolyBMP (Ha),” and/or “LvldPoly (Ha)” to simulate the individual effect, 

on irrigation return flows and pollutant loadings, of land leveling or the use of polypipe for 

irrigation.  But, it is important to remember that the hectares of land in which both of these 

irrigation practices are used together must be entered under the column labeled “LvldPoly (Ha)” 

and not in either of the two other irrigation BMP columns.  

Entering values into the “LndLvldBMP (Ha),” “PolyBMP (Ha),” and/or “LvldPoly (Ha)” 

columns subtracts hectares of land from the column labeled “NoIrrBMP (Ha).”  If the value in 

the column labeled “LndLvldBMP (Ha)” or “PolyBMP (Ha)” or “LvldPolyBMP (Ha)” exceeds 

the value in the column labeled “TotalIrrArea,” the LRGWQIDSS will display a message alerting 

the user that the area of an irrigated BMP must be smaller than or equal to the total irrigated area.  

The user must either decrease the BMP area or increase the amount of irrigated land in the sub-

basin. 

The column labeled “NutMan (Ha)” shows the total amount of irrigated agricultural land 

that is subjected to nutrient management in each sub-basin.  The column labeled “ResMan (Ha)” 
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shows the total amount of irrigated agricultural land that has been subjected to residue management 

in each sub-basin.  The hectares of irrigated land in which both of these water quality protective 

agricultural best management practices are used together (i.e., nutrient management and residue 

management together) is entered under the column named “NutResMan (Ha)” for each sub-basin.  

The hectares of irrigated agricultural land in which neither of these two water quality BMPs are 

used (i.e., no nutrient management and no residue management) is entered under the column 

named “NoWQBMP (Ha).” 

For each sub-basin, the user can increase or decrease the values in the columns labeled 

“NutMan (Ha),” “ResMan (Ha)” and/or “NutResMan (Ha)” to simulate the individual effect, on 

pollutant loadings, of nutrient management or residue management.  The hectares of land in 

which both of these water quality protection practices are used together must be entered under the 

column labeled “NutResMan (Ha).”  

Entering values into the “NutMan (Ha),” “ResMan (Ha)” and/or “NutResMan (Ha)” 

columns subtracts hectares of land from the column labeled “NoWQBMP (Ha).”  If the value in 

the column labeled “NutMan (Ha)” or “ResMan (Ha)” or “NutResMan (Ha)” exceeds the value in 

the column labeled “TotalIrrArea,” the LRGWQIDSS will display a message alerting the user that 

the area of a water quality protection BMP must be smaller than or equal to the total irrigated area.  

The user must either decrease the BMP area or increase the amount of land under the water quality 

protection BMP exceeding the “TotalIrrArea” in the sub-basin.  

Headwaters Module  
The “Headwaters” module of the LRGWQIDSS allows the user to build scenarios 

involving changes in flow and water quality occurring at the headwaters of the Lower Rio 

Grande/Río Bravo or in one of its two major tributaries (Río Álamo and Río San Juan) or in the 

seventeen drains and major ditches that contribute flow and pollutant loads to the river. Clicking 

on the “Headwaters” option of the pull-down menu of the “Module” component of the main menu 

bar places a check mark beside it and opens the “Headwater Table” window beneath the “Map” 

window. 
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Figure 3-61. The “Headwater Table” in the “Headwaters” Module of the LRGWQIDSS 

GUI.  

The twenty headwaters featured in the LA-QUAL models of the Lower Rio Grande/Río 

Bravo along with the pertinent flow and water quality information associated with each (for the 

five synoptic surveys conducted as part of the LRGWQI) are displayed in the “Headwater Table.”  

The various columns shown in the “Headwater Table” can be hidden or displayed by checking or 

unchecking the various column headings in the “Headwaters” tab of the “Visibility Settings” 

(displayed by checking the “Settings” option in the “View” component of the main menu bar).  

The user can change the flow and pollutant concentrations in any of the twenty headwaters by 

entering new values in the appropriate columns.  However, new headwaters cannot be created, 

and existing headwaters cannot be deleted. 

Headwater nodes are depicted, in the “Map” window of the LRGWQIDSS GUI, at the 

midpoint of the first computational element of their corresponding LA-QUAL reach.  

Consequently, the “Comp Elem (lines)” GIS layer will show a small portion of the LA-QUAL 

reach upstream of the associated headwater point.  
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Diversions Module  
The “Diversions Module” of the LRGWQIDSS allows the user to build scenarios involving 

changes in flow diverted, pumped, or otherwise extracted, from the Lower Rio Grande/Río Bravo 

or one of its tributaries, or from a contributing drain or ditch.  Clicking on the “Diversions” option 

of the pull-down menu of the “Module” component in the main menu bar places a check mark 

beside it and opens the “Diversions Table” window beneath the “Map” window. 

  
Figure 3-62. The “Diversions Table” in the “Diversions” Module of the LRGWQIDSS 

GUI. 

The forty-one flow diversions and extractions featured in the LA-QUAL models of the 

Lower Rio Grande/Río Bravo are displayed in the “Diversions Table” along with the flow diverted 

at each diversion point/pumping location.  The various columns shown in the “Diversions Table” 

can be hidden or displayed by checking or unchecking the various column headings in the 

“Diversion” tab of the “Visibility Settings” (displayed by checking the “Settings” option in the 

“View” component of the main menu bar).  The user can change the flow, in cubic meters per 

second, diverted or pumped in any of the existing diversion points/pumps by entering new values 

in the column labeled “Diverted Flow (m^3/s).”  It is important to note that diverted 

flows/extraction pumpage must be entered as negative values.  The user can also add or remove 
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diversions in any of the LA-QUAL model elements using the “Diversion Tools” located beneath 

the main menu bar . 

Creating a New Diversion 
Like the outfalls in the “Point Sources Module,” there are two ways a user can create a new 

diversion and add it to a scenario.  The user can create a diversion/extraction from the Lower Rio 

Grande/Río Bravo, a tributary or contributing drain or ditch, manually or through the point-and-

click method.  In either case, the user must enter information about the new diversion in the 

“Diversion Table” after the diversion is created. 

To create a diversion using the point-and-click method, the user must use the “Add 

Diversion” button .   Clicking on this tool converts the cursor to a hand with a pointing 

finger ; clicking again once on the “Map” window creates a new diversion point in the location 

on the map where the tip of the pointing finger is pointing.  To increase precision in the placement 

of new diversions created using the point-and-click method, it is advisable to first use the “Zoom” 

tool to zoom in on the location of interest prior to clicking on the “Add Diversion” button  . 

The “Add Diversion” function will only create a diversion point on one of the 

computational elements of the LA-QUAL model (i.e., Comp Elem [lines]).  It does so by 

snapping the newly created diversion point to the nearest computational element midpoint.  To 

increase the precision of placement further, the user may choose to display the “Midpoints (comp 

elem)” layer in the “Visibility Settings” (displayed by checking the “Settings” option in the “View” 

component of the main menu bar). 

Upon the creation of a new diversion/extraction, a new row is added to the bottom of the 

“Diversion Table.” The LRGWQIDSS places the name “A new diversion” in the new record under 

the “Diversion Name” column with a default diversion flow rate of zero. 
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Figure 3-63. Adding a New Diversion Using the “Add Diversion” Button in the Tool Bar 

of the LRGWQIDSS GUI. 

As with the creation of outfalls in the “Point Sources Module,” there is also an alternative 

method for creating a new diversion using the “Add Diversion Manually” function 

.  Adding a diversion manually, the user can specify the exact location where a 

diversion is to be created.  When the user clicks the “Add Diversion Manually” button, a dialogue 

box opens requesting the latitude and longitude of the new diversion point.  The user must then 

enter the coordinates of the new diversion in decimal degrees in the appropriate slots in the “DSS” 

dialogue box.  As with the point-and-click method, the LRGWQIDSS will snap the location of 

the newly created diversion to the nearest LA-QUAL computational element midpoint.  A new 

diversion point will be added to the bottom of the “Diversion Table” with a default diversion flow 

rate of zero.   

After the creation of a new diversion using either method, the user must then enter the 

specific information about the new diversion in the Diversion Table, including the desired name 

and flow rate.  The “Undo and “Redo” functions, in the “Edit” component of the main menu bar, 
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can be used with the “Diversions Module” in the same manner as all other actions in the 

LRGWQIDSS GUI. 
 

 
Figure 3-64. Adding a New Diversion Using the “Add Diversion Manually” Tool in the 

Tool Bar of the LRGWQIDSS GUI. 

Deleting Diversions 
Deleting new or existing diversion points is accomplished in the same manner as deleting 

wastewater outfalls in the “Point Sources Module.”  A new or existing diversion can be deleted 

by right-clicking on the row that is to be deleted in the “Diversion Table” and clicking on the 

“Delete Row” box that appears. 

Another way to delete a newly created diversion, or any diversion for that matter, is to use 

the “Delete Feature” button of the “Diversions” tool .  Deleting a diversion removes it 

completely from the LA-QUAL model; the diversion point disappears from the “Map” window 

and the row containing the information associated with the deleted diversion is removed from the 

“Diversion Table.” 
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3.2.1.7  Running Water Quality Simulation Scenarios 
After setting up a scenario using the various LRGWQIDSS modules and associated tools, 

the user can run the LA-QUAL model to simulate the effects of the scenario on water quality.  

The simulations can be run in “standard LA-QUAL mode,” using the standard LA-QUAL GUI or 

the simulations can be run in “silent” mode.  An explanation of these two options is provided in 

the subsequent Sub-sections. 

SIMULATING POLLUTANT LOADING SCENARIOS IN STANDARD LA-QUAL MODE 
Clicking on the Run Component of the Main Manu Bar displays two options, “LA-QUAL” 

and “LA-QUAL (silent).”  Selecting the “LA-QUAL” option will launch the internal (standard) 

LA-QUAL GUI, which gives the user complete access to all the functions and capabilities of the 

LA-QUAL for Windows water quality simulation software.  LRGWQIDSS Project scenarios can 

only be simulated sequentially (i.e., only one at a time).   

 
Figure 3-65. Running LA-QUAL in Standard Mode from the Run Component of the 

Main Menu Bar of the LRGWQIDSS GUI. 
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If the user opts to run a scenario in Standard LA-QUAL mode, they must execute the model 

manually by clicking on the “Xqt Model” command in the LA-QUAL GUI.  Doing so will run 

the LA-QUAL software using the input file corresponding to the scenario selected by the user in 

the “Project Explorer” window of the LRGWQIDSS GUI.  

 
Figure 3-66. The LA-QUAL Model Execution Scroll Script in LA-QUAL GUI Window 

of the LRGWQIDSS GUI. 

Following manual execution of the LA-QUAL model, the LA-QUAL software will 

automatically display the plots upon completion of the simulation, using the internal LA-QUAL 

plotting function.  To return to the LRGWQIDSS GUI, the user must first exit the LA-QUAL 

plotting window by clicking on the “Exit” button on the top left of the window. 
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Figure 3-67. The LA-QUAL Model Plot Window in LA-QUAL GUI Window of the 

LRGWQIDSS GUI.  

This will return the user to the main LA-QUAL GUI.  Within the LA-QUAL GUI, the user can 

display plots of 23 water quality parameters, 6 physical parameters, 4 physico-chemical rates and 

3 sediment parameters in 147 reaches simulated by LA-QUAL, including the main stem of the 

Lower Rio Grande, its two main tributaries and seventeen contributing drains and ditches.  

Clicking on the “Exit” component of the menu bar, or the  symbol in the upper left corner of 

the main LA-QUAL GUI window, will return the user to the LRGWQIDSS GUI, where a message 

window will ask the user if they would like to save the results of the LA-QUAL run. 
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Figure 3-68. LA-QUAL Run Save Message in the LRGWQIDSS GUI. 

The user can run as many simulation scenarios as are shown in the Project Explorer 

window, but scenario simulations can only be run one at a time.  If left open, the LA-QUAL Plot 

window will display the results of the last simulation run performed.  The LA-QUAL Plot 

window is part of the LA-QUAL Plot function, which is described in detail in Sub-section 3.1.2.9.  

Clicking on the “Close” icon  located in the upper right corner of the “LA-QUAL Plot” window 

will close this window. 

Simulating Scenarios in LA-QUAL Silent Mode 
The second option under the “Run” Component of the Main Manu Bar is “LA-QUAL 

(silent).”  Selecting the “LA-QUAL (silent)” option will run the LA-QUAL software executable 

without launching the LA-QUAL GUI.  In this mode, scenario simulations are completed with 

LA-QUAL running in the background. The LA-QUAL GUI will flash briefly and when the 

simulation is complete, the LRGWQIDSS GUI displays the message window asking the user if he 

or she would like to save the results of the LA-QUAL run (see previous figure).  As previously 

mentioned, LRGWQIDSS Project Scenarios can only be simulated sequentially (i.e., only one at 
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a time).  It is advisable that the user ensure the correct scenario is selected in the Project Explorer 

window prior to conducting a simulation. 

3.2.1.8 The LA-QUAL Plot Function 
The “LA-QUAL Plot” window will automatically open after selecting “Yes” in the 

message window that appears after exiting the internal LA-QUAL GUI. 

 
Figure 3-69. The “LA-QUAL Plot” Window of the LRGWQIDSS GUI.  

The “LA-QUAL Plot” window can be maximized or exited using the window icons located 

in the upper right corner of the Plot window .  The “LA-QUAL Plot” window can also be 

resized or stretched by placing the cursor on the left edge of the window, clicking it to obtain the  

  symbol and dragging it to the left.  To restore the “LA-QUAL Plot” window, the user must 

double click on the Scenario name of interest in the “Project Explorer” window and then click on 

the “output” option that appears beneath the Scenario name.  All Scenarios that have been 

simulated will have an output file associated with them. 
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The user can select the water body that is to be plotted from the pull-down menu at the top 

of the “LA-QUAL Plot” window (see next figure).  The default setting is the “Main Stem” (of 

the Lower Rio Grande/Río Bravo), but the user also has the choice of selecting one of the other 

seventeen water bodies to plot from the pull-down menu (i.e., tributaries, drains and ditches).  

The user can also select the parameter(s) to be plotted by placing a check mark next to the desired 

parameter in the “Parameter Selection” window (see next figure).  The user can select any or all 

of the 25 parameters shown in the “Parameter Selection” window.  To avoid crowding in the 

“LA-QUAL Plot” window, the user should limit the number of selections. 

Clicking on the” Plot” button below the “Parameter Selection” window displays the 

individual graphs of the parameters selected.  All twenty-five parameters available in the 

“Parameter Selection” window can be plotted simultaneously and will appear as individual plots 

in the “Plot View” window.  To avoid crowding in the “LA-QUAL Plot” window, the user should 

limit the number of selections.   

 
Figure 3-70. Selecting Water Bodies and Parameters to Plot in the “Plot View” Window 

of the “LA-QUAL Plot” Window of the LRGWQIDSS GUI. 
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The user also has the option of displaying the names of each LA-QUAL model reaches by 

clicking on the box next to “Show reach name” prior to clicking on the “Plot” button.  The “Plot 

View” window is equipped with tools that allow the user to customize the various parameter plots. 

These tools are located in the menu bar at the top of the “Plot View” window. 

 
Figure 3-71. The “Plot View” Window Tools of the “LA-QUAL Plot” Window of the 

LRGWQIDSS GUI.  

The user can use these tools to: (1) change the title of the plot; (2) specify the minimum and 

maximum values in the x-axis and y-axis; (3) change the axis labels; and (4) define the scale of 

each axis (i.e., linear or log-scale). 
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Figure 3-72. The “Figure Options” in the “Plot View” Window of the “LA-QUAL 

Plot” Window of the LRGWQIDSS GUI. 

In the “Curves” tab of the “Figure options” window, the user can change the style, width and color 

of the line in the selected plot.  The user can also add markers to the plot and can customize these 

markers.   

The user can use the “Pan Plot” tool  to move the plot within the “Plot View” 

window.  The scale of the plot is preserved during and after moving the plot using the “Pan Plot” 

tool.  The user can use the “Zoom to Rectangle” plot tool    to decrease the scale of the 

axes, effectively zooming-in on portions of the plot.  The “LA-QUAL Plot” function offers 

several other tools for manipulating LA-QUAL output plots; these are described in the 

LRGWQIDSS User’s Manual.  

Criteria Threshold Lines 
The plots for nine of the parameters available from the pull-down menu in the “Parameter 

Selection” window contain pre-plotted criteria threshold lines.  These lines represent the water 
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quality criteria used by the TCEQ and CONAGUA to assess the achievement of standards 

associated with the uses designated, by each country, for the surface water bodies modeled in the 

LRGWQIDSS.  

3.2.1.9 Comparing Water Quality Simulation Scenarios 
The effects on water quality of the various scenarios simulated in LRGWQIDSS Projects 

can be compared using the “Compare Scenarios” function.  The LA-QUAL software must have 

been executed on all scenarios before the “Compare Scenarios” function can be used to compare 

them.  The function can be accessed by clicking on the “CompareScenario” component of the 

main menu bar.  Clicking on the “Compare” option button displayed when doing so will open the 

“DSS” compare window.   

 
Figure 3-73. The CompareScenario Component of the Main Menu Bar of the 

LRGWQIDSS GUI. 
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Pull-down menus located in the top left of the “DSS” compare window allow the user to 

choose the water body for which the comparison is to be made and the water quality constituent 

of interest. 

 

 
Figure 3-74. Selecting Water Bodies and Parameters to Plot in the “DSS” Compare 

Window of the LRGWQIDSS GUI. 

 
The main stem of the Lower Rio Grande/Río Bravo (RG) is the default water body used 

for the comparison and CBOD5 (BOD1) is the default parameter that is compared.  These choices 

can be changed by the user by selecting another water body and/or water quality constituent from 

pull down menus.  To choose the scenarios to be compared, the user must click on the “Select 

scenarios” line of the “DSS” compare window and check the boxes next to the scenarios displayed 

when the line is clicked. 

Clicking the “Compare” button draws the plots of the parameter being used to compare the 

scenarios in the water body chosen for the comparison. 
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Figure 3-75. Comparing Scenario Plots Using the Compare Button in the “DSS” 

Compare Window of the LRGWQIDSS GUI. 

 
The “DSS” compare window offers that same plotting tools found in the “LA-QUAL Plot” 

window.  Scenarios are automatically color-coded and a legend indicating the color code is 

automatically displayed in the upper right corner of the “Compare” plot.  The “Compare 

Scenarios” function can compare as many scenarios as are created under a given LRGWQIDSS 

Project. 

3.1.2.10 Economics Functions 
The LRGWQIDSS’ economics functions allow the user to make preliminary estimates of 

the costs of implementing the specific control actions and management measures included in the 

scenarios in each LRGWQIDSS Project.  The functions are designed to provide only a cursory 

estimate of the initial costs of implementation of these individual control actions and management 

measures and do not include operation, maintenance and depreciation costs over time.  Unlike 

other functions of the LRGWQIDSS, the “Economics” functions do not require the user to run the 

LA-QUAL model on scenarios prior to estimating the costs of the control actions and/or 

management measures included in the scenarios.  
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The economics functions are available under the Economics component of the main menu 

bar and include the “Outfalls,” “Agricultural BMPs” and “Diversions” options.  

 
Figure 3-76. The Economics Component of the Main Menu Bar of the LRGWQIDSS 

GUI. 

THE OUTFALLS ECONOMICS FUNCTION 
The “Outfalls” economics function can calculate the costs associated with expanding the 

capacity of an existing wastewater treatment facility, building a new wastewater treatment facility, 

expanding an existing sewage collection system, or improving the efficiency of an existing sewage 

collection system.  Selecting the “Outfalls” option in the “Economics” component of the main 

menu bar opens the “Outfall Cost Estimator” window. 
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Figure 3-77. The “Outfall Cost Estimator” Window of the Outfalls Economics Function 

of the LRGWQIDSS GUI. 

The user must specify a base scenario (i.e., a starting point) from which the estimates are 

to be calculated, as well as the target scenario for which the cost estimates are intended to reflect.  

The user must specify the outfalls (i.e., existing sewage treatment facility outfall or new sewage 

treatment facility outfall) that are to be assessed, as well as the length of sewer pipe associated 

with expanded sewer collection services or collection system rehabilitations.  The user must also 

specify the number of lift stations that will be needed for control actions involving expanded sewer 

collection services or collection system rehabilitations. 

The default treatment level for all new facilities or facility expansions is primary treatment.  

However, the user has the option of changing the proposed treatment level by checking the box 

next to the question “Is this an upgrade?” 

If the control actions associated with the scenario being compared to the base scenario 

involve changes in a sewage collection system, the user must specify the length of sewage pipe 

that will be needed to implement the actions by entering the value, in meters, in the box next to 

the dialogue that reads “20 in Pipe Length (m).”  Similarly, if the control actions associated with 

the scenario being compared to the base scenario involve installation of new lift stations, the user 
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must specify the number of lift stations that will be needed to implement the actions by entering 

the value in the box next to the dialogue that reads “No. Lift Stations.” 

The user must then specify the year in which the expenditures, associated with construction 

of the control actions, are anticipated to occur.  This can be done by entering the year in the box 

next to the dialogue that reads “Year for cost basis.”  The default year for cost basis is 2019. 

Clicking on the “Submit” button produces a cost estimate based on the information 

submitted by the user and the information available in the “Point Sources” table (Point Sources 

Module) for the base and target scenarios specified in the “Outfall Cost Estimator.”  The estimate 

produced reflects the difference in cost between the base and target scenarios.  The “Outfall Cost 

Estimator” window will display the name of the target scenario, the name of the Permittee (i.e., 

name of outfall), the final effluent flow rate, the final effluent BOD concentration in mg/L, final 

ammonia concentration (NH4) in mg/L, the treatment process and wastewater pipeline costs. 

 
Figure 3-78. Cost Estimate Output in the “Outfall Cost Estimator” Window of the 

Outfalls Economics Function of the LRGWQIDSS GUI. 
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AGRICULTURAL BEST MANAGEMENT PRACTICES (BMPS) ECONOMICS FUNCTION 
The “Agricultural BMPs” economics function allows the user to estimate the costs of 

implementing irrigation and agronomic management practices that reduce the loading of pollutants 

to the Lower Rio Grande/Río Bravo and/or its tributaries and contributing drains/ditches (i.e., 

Agricultural Best Management Practices [BMPs]).  Selecting the “Agricultural BMP” option in 

the “Economics” component of the main menu bar opens the “Nonpoint Source BMP Cost 

Estimator” window. 

As with the “Outfall Cost Estimator,” the user must specify the base scenario (i.e., starting 

point) from which the estimates are to be calculated, as well as the target scenario for which the 

cost estimates are intended to reflect.  The “Nonpoint Source BMP Cost Estimator” compares the 

information available in the “Agriculture Loadings Table” (Nonpoint Sources Module) for the base 

and target scenarios and uses it to produce a cost estimate.  Clicking on the “Submit” button 

produces the cost estimate.   

 
Figure 3-79. Cost Estimate Output in the “Nonpoint Source BMP Cost Estimator” 

Window of the LRGWQIDSS GUI. 

The “Nonpoint Source BMP Cost Estimator” window will display the name of the base 

scenario and the costs associated with implementing agricultural irrigation BMPs (Land Leveling, 

Polypipe and combined Land Leveling and Polypipe) and agronomic BMPs (Residue 
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Management, Nutrient Management and combined Residue and Nutrient Management) under the 

base scenario.  Below this information, the “Nonpoint Source BMP Cost Estimator” will display 

the name of the target scenario along with the cost of implementing the agricultural irrigation 

BMPs and agronomic BMPs specified by the user under the target scenario.  The last line 

displayed in the “Nonpoint Source BMP Cost Estimator” window is the difference in cost between 

the base and target scenarios.   

THE DIVERSIONS ECONOMICS FUNCTION 
The Diversion Economics function allows the user to estimate the costs of installing 

additional flow diversion structures on any of the river reaches included in the LA-QUAL models 

that undergird the LRGWQIDSS, including the costs associated with building lined canals to 

convey the diverted flow. 

The reason for diverting flow is usually related to the extraction of water for beneficial uses 

such municipal water supplies or agricultural irrigation.  However, within the context of the 

LRGWQI, a second motivation for including the ability to add or remove flow diversion points in 

the LRGWQIDSS is to simulate their effect on water quality.  

One of the most effective ways to mitigate the loading of dissolved solids and nutrients to 

the river is to divert irrigation return flows away from it.  This can be accomplished by installing 

pumps or other diversion structures on the tributaries and ditches that drain large irrigated 

agricultural areas.  The El Morillo Drain pump and conveyance system is a current example of 

an existing diversion pump system for diverting saline irrigation return flows away from the main 

stem of the Lower Rio Grande. 

Selecting the “Diversions” option in the “Economics” component of the main menu bar 

opens the “Diversion Cost Estimator” window.  As with the other cost estimation windows 

associated with the economics functions of the LRGWQIDSS, the user must specify the base 

scenario (i.e., starting point) from which the estimates are to be calculated, as well as the target 

scenario for which the cost estimates are intended to reflect.  The “Diversion Cost Estimator” 

compares the information available in the “Diversion Table” (Diversions Module) for the base and 

target scenarios and uses it to produce a cost estimate. 
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Clicking on the “Submit” button produces a cost estimate for diversions included in the 

target scenario.  In addition to the itemized cost information, the estimate also reports the total 

amount of flow diverted from all reaches of the LA-QUAL model under the target scenario.  The 

“Diversion Cost Estimator” window displays the assumptions used to calculate construction costs 

(e.g., concrete lining of canals). 

 
Figure 3-80. Cost Estimate Output in the “Diversions Cost Estimator” Window of the 

Diversions Economics Function of the LRGWQIDSS GUI. 

3.1.2.11 The LRGWQIDSS Help Feature 
The “Help” feature of the LRGWQIDSS provides information that can aid the user in 

operating and troubleshooting the decision support system.  Clicking on the Help Component of 

the Main Menu Bar displays three options, “About…” “User’s Manual” and “LA-QUAL User’s 

Manual.”  Clicking on the “About” option displays the LRGWQIDSS version number as well as 

the University of Texas at Austin Logo.  Clicking on the “User’s Manual” option of the Help 

Component brings up the LRGWQIDSS User’s manual document, in PDF format.  Clicking on 

the “LA-QUAL User’s Manual” option brings up the LA-QUAL User’s Manual in PDF format. 
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Figure 3-81. The Help Component of the Main Menu Bar of the LRGWQIDSS GUI. 

 

 
Figure 3-82. The “About” Display of the Help 

Component of the Main Menu Bar 
of the LRGWQIDSS GUI. 

 

Version1.0.0 



 

451 
 

 
Figure 3-83. The LRGWQIDSS User’s Manual in PDF Format from the “User’s 

Manual” Option of the Help Component of the LRGWQIDSS GUI. 

 
Figure 3-84. The LA-QUAL User’s Manual in PDF Format from the “LA-QUAL User’s 

Manual” Option of the Help Component of the LRGWQIDSS GUI. 
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CHAPTER 4:  RESULTS AND DISCUSSION 

4.1  Application of LRGWQIDSS 

4.1.1 APPLICATION OF THE LRGWQIDSS IN THE LRGWQI ACTION ARENA 
Following approval of the LA-QUAL model calibrations by the members of the 

LRGWQI’s BTWG in March 2018, the Mexican and US representatives of the BTWG worked 

jointly to identify the pollutant loading scenarios for water quality simulation to support decision 

making in the LRGWQI action arena.  The first scenarios identified by members of the BTWG 

involved the simulation of alternative point source loadings under the ambient conditions used to 

calibrate the five LA-QUAL models of the binational synoptic surveys.   

The Mexican representatives proposed using the calibrated LA-QUAL models to assess 

how changes in wastewater effluent flows and pollutant concentrations for Mexican dischargers 

would affect water quality as part of CONAGUA’s Declaratoria effort.  The scenarios proposed 

by CONAGUA were designed to set water quality-based effluent flow and pollutant 

concentrations limits for Mexican dischargers, but also to assess water quality and water body use 

attainment based on alternative Mexican instream water quality criteria.  Recall that routine 

assessments of water quality conducted by CONAGUA rely on indices of water quality that serve 

as overall measures of the health of the water body being assessed.  The indices are based on four 

individual water quality constituents, BOD (DBO5), chemical oxygen demand (DQO), TSS (SST), 

and fecal coliform.   

Absent a promulgated Declaratoria, permit limits for Mexican wastewater dischargers are 

set by CONAGUA using the Mexican regulatory criteria found in NOM-001-SEMARNAT-1996, 

which is based on BPT.  As part of the Declaratoria effort, IMTA and CONAGUA proposed to 

set effluent flows and pollutant concentration limits for Mexican dischargers based on the 

simulated effects of these discharges on ambient water quality, instead of BPT.  The Declaratoria-

based assessment would include water quality constituents in addition to those used in the four-

constituent indices used for routine assessment (e.g., values of DO, nitrates, ammonia nitrogen, 

phosphates and TSS included in the Mexican Ecological Criteria CE-CCA-001/1986).  IMTA 

developed a preliminary “guide” of wastewater effluent concentrations to simulate for the 
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Declaratoria effort with the intention of modifying these values as part of the pollutant loading 

scenarios.   

The US representatives agreed with the Mexican representatives’ proposal for model use 

(i.e., the Declaratoria effort), but proposed that the simulations be run using full TPDES-permitted 

effluent flows and pollutant concentrations for all US dischargers, rather than the effluent flows 

and pollutant concentrations measured during the synoptic surveys.  Under the TPDES program, 

US permittees are legally entitled to discharge treated wastewater at their full-permitted flow 

capacity and pollutant concentration limits.  The US members of the BTWG proposed running 

the simulations at “critical conditions” rather than the conditions observed during the synoptic 

surveys.   Simulation of water quality at critical conditions is standard practice for TPDES 

discharge permit evaluations and usually involves adjusting the flow and temperature values in the 

initial conditions of calibrated models to reflect critical low flow, usually the lowest average in-

stream flow over a 7-day period with a recurrence interval of 2 years (7Q2), and the ninetieth 

percentile of water temperature recorded over the previous 10 years.  

While the Mexican BTWG representatives agreed with the US members’ proposal to run 

the scenario simulations using full-permitted US wastewater discharges, they expressed 

reservations over the prospect of running the simulations at the US-proposed critical conditions.  

The Mexican BTWG representatives’ first concern was that, since the models represented seasonal 

conditions exemplified by the synoptic surveys used to calibrate the models, it would not be 

appropriate to adjust the flow of every model to the same 7Q2 value calculated from the periods 

of record at each of the IBWC flow gage stations.  The Mexican BTWG representatives 

expressed a similar concern for the adjustment of temperature (i.e., it would not be appropriate to 

adjust the temperature of every model to the same the ninetieth percentile of water temperature 

recorded over the previous 10 years).  After some deliberation, the members of the BTWG agreed 

to run simulations at both observed in-stream flows and temperatures, and at critical in-stream 

flows and temperatures calculated using the 10th percentile of flow and 90th percentile of 

temperature for each of the months in which the synoptic surveys were conducted (i.e., July, 

August, November, March, and April) over the period of record 2000-2015. 

The water quality simulations of the wastewater flows and effluent pollutant concentrations 

included in IMTA’s preliminary Declaratoria “Guide” were also run using wastewater flows and 
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effluent limits associated with a modified version of the Declaratoria “Guide” in which values in 

the original “Guide” were substituted for effluent pollutant concentrations in discharges measured 

during the synoptic surveys if these were lower than those proposed in the original Declaratoria 

“Guide.”  IMTA and CONAGUA’s apparent reasons for running these simulations were 

commensurate with the philosophy behind setting effluent limits at BPT.  That is, if a permittee 

is already demonstrating the ability to meet effluent limits more stringent than those proposed in 

IMTA’s original Declaratoria “Guide,” CONAGUA could opt to hold that permittee to the 

pollutant concentrations currently observed in the discharge from its wastewater treatment facility.       

4.1.1.1 Preliminary Point Source Loading Scenarios 

Based on the binational deliberations described above, five separate point source loading 

scenarios were simulated as part of the preliminary effort to support decision making in the 

LRGWQI action arena.  The scenarios included: 

1. Scenario A – NOM-001 and Full Permitted US Effluents at Critical Conditions 

The purpose of this scenario was to investigate the effect on water quality in the Lower 

Rio Grande/Río Bravo if all dischargers, US and Mexican, limited their effluent flows 

and pollutant concentrations to their currently permitted values.  The run was 

conducted under critical temperatures and flows (10th percentile of flow and 90th 

percentile of water temperatures for the synoptic months calculated over the period of 

record 2000-2015). 

   

2. Scenario A1 – Declaratoria Guide and Full Permitted US effluents at Critical 

Conditions  

The purpose of this scenario was to investigate the effect on water quality in the Lower 

Rio Grande/Río Bravo resulting from the implementation of the Declaratoria “Guide” 

effluent values at critical conditions.  US wastewater discharges were set at full US-

permitted flow limits and concentrations. 
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3. Scenario A2 – Declaratoria Guide and Full Permitted US effluents at Observed 

Conditions 

The purpose of this scenario was to investigate the effect on water quality in the Lower 

Rio Grande/Río Bravo resulting from the implementation of the Declaratoria Guide 

effluent values at the ambient conditions observed during the synoptic surveys.  

Declaratoria Guide values were used to represent Mexican Discharges and full 

permitted US effluent limits and concentrations were used to represent US discharges.  

This simulation was set up the same as that of Scenario A1, except at ambient 

conditions observed during the binational synoptic surveys. 

 

4. Scenario A3 – Modified Declaratoria Run and Full Permitted US effluents at Observed 

Conditions 

The purpose of this scenario was to investigate the effect on water quality in the Lower 

Rio Grande resulting from the implementation of the modified Declaratoria Guide 

effluent values (where IMTA substituted the observed synoptic values that were lower 

than the Declaratoria Guide values originally proposed) at the ambient conditions 

observed during the synoptic surveys.  US discharges were set at the US full-

permitted effluent flow limits and pollutant concentrations. 

 

   

5. Scenario A4 – Modified Declaratoria Guide and Full Permitted US effluents at Critical 

Conditions 

The purpose of this scenario was to investigate the effect on water quality in the Lower 

Rio Grande resulting from the implementation of the modified Declaratoria Guide 

effluent values at critical temperatures and flows.  US discharges were set at the US 

full-permitted effluent flow limits and pollutant concentrations.  This simulation was 

set up the same as that of Scenario A3, except at critical conditions of flow and 

temperature for each of the synoptic months. 
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RESULTS OF PRELIMINARY POINT SOURCE POLLUTANT LOADING SCENARIOS 

The water quality simulations of Scenarios A-A4, showed mixed results in terms of water 

quality improvement.  In general, the results showed that implementation of the Modified 

Declaratoria effluent limits reduced the concentrations of pollutants in the portions of the river 

most affected by Mexican point source discharges.  For example, the portion of the Rio 

Grande/Río Bravo downstream of the confluence with the Anhelo Drain, into which City of 

Reynosa’s Wastewater Treatment Facility No. 1 discharges, saw a marked improvement during 

seasons of higher flow in the river (e.g., April and July), However, in portions of the river where 

steady state nonpoint sources of pollution are abundant, the Modified Declaratoria Guide effluent 

limits did not seem to have much effect.  Simulations of the scenarios that included these effluent 

limits and were run at critical ambient conditions showed higher instream pollutant concentrations, 

as expected, in portions of the river where steady state nonpoint sources of pollution are most 

abundant.  Figure 4-1 shows an example of this for fecal coliforms.   

The top image in Figure 4-1 shows a plot of the calibration run for the July 2014 synoptic 

with a marked spike in fecal coliforms in the main stem of the Lower Rio Grande/Río Bravo 

downstream of the confluence with the El Anhelo Drain. 
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Figure 4-1. Plots of Fecal Coliform Simulation for the Base Scenario (Top) and 

Scenario A4 (Bottom) for the July 2014 Synoptic Case. 
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The bottom image shows a plot of Scenario A4 (Modified Declaratoria Guide and Full 

Permitted US effluents at Critical Conditions) showing improved overall fecal coliform 

concentrations in the river, but higher fecal coliform concentrations in the upper portion, where 

steady state nonpoint sources of bacteria are most abundant.  Scenario A3 (Modified Declaratoria 

Guide and Full Permitted US effluents at Observed Conditions) does not show an increase in fecal 

coliform concentrations in the upper portion. 

Based on the results of preliminary point source loading scenarios A-A4, the BTWG agreed 

to continue running scenarios using the Modified Declaratoria effluent limits for Mexican 

Wastewater dischargers and full-permitted flows and pollutant concentrations for US dischargers.  

No joint decision was not reached on whether to simulate scenarios at the ambient conditions 

observed during the binational synoptic surveys or to simulate scenarios under critical flow and 

temperature conditions. 

4.1.1.2 Preliminary Nonpoint Source Loading Scenarios 

In addition to the preliminary point source loading scenarios, the Mexican and US 

representatives of the BTWG worked jointly to identify preliminary nonpoint source pollutant 

loading scenarios for water quality simulation to support decision making in the LRGWQI action 

arena.  The first set of nonpoint pollutant source loading scenarios identified by the BTWG were 

associated with “no action scenarios,” in which the effects of population growth without additional 

sanitation infrastructure were to be simulated. 

PRELIMINARY NONPOINT SOURCE POLLUTANT LOADING SCENARIOS ASSOCIATED WITH 
PROJECTED POPULATION INCREASES 

  The US members of the BTWG proposed a method for estimating population growth in 

the riparian communities of the Rio Grande/Río Bravo watershed by extrapolating existing 

population growth projections published by the TWDB (TWDB 2017a; TWDB 2017b) and 

Mexico’s Consejo Nacional de Población (CONAPO), 2017a and CONAPO, 2017b.   

The proposed method consisted of applying the percent population increase/decrease 

calculated from the TWDB’s population growth projections for 17 cities with TWDB population 
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projection values and ETJs included in the 500-meter riparian buffer.  For US riparian 

populations outside of the ETJs of the 17 cities, the percent increase/decrease estimated from 

county population projections were used.  A similar process was used for the Mexican riparian 

populations using CONAPO population projections for localidades (using localidad boundaries) 

and municipios.  The preliminary nonpoint source modeling scenarios included two scenarios:  

  
1. Scenario A5 – Modified Declaratoria Guide and Full Permitted US effluent limits at 

Observed Conditions with Riparian Populations Increased to the Projected 2020 Level 

The purpose of this scenario was to investigate the effect on water quality in the Lower 

Rio Grande/Río Bravo resulting from an increase in nonpoint source pollutant 

loadings commensurate with an increase in the riparian populations to the projected 

2020 level.  The simulation assumes implementation of the modified Declaratoria 

Guide effluent values for Mexican Discharges, full permitted US effluent limits and 

pollutant concentrations, and the ambient conditions observed during the binational 

synoptic surveys. 

2. Scenario A6 – Modified Declaratoria Guide and Full Permitted US effluent limits at 

Critical Conditions with Riparian Populations Increased to the Projected 2020 Level 

The purpose of this scenario was to investigate the effect on water quality in the Lower 

Rio Grande/Río Bravo resulting from an increase in nonpoint source pollutant 

loadings commensurate with an increase in the riparian populations to the projected 

2020 level.  The simulation was conducted under critical flows and water 

temperatures (10th percentile of flow and 90th percentile of water temperatures for the 

synoptic months calculated over the period of record 2000-2015) and assumes 

implementation of the modified Declaratoria Guide effluent values for Mexican 

Discharges and full permitted US effluent limits and pollutant concentrations. 

The BTWG conducted ten additional scenarios using the same point source inputs and ambient 

conditions described in scenarios A5 and A6 with nonpoint source inputs commensurate with 
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increases in riparian populations equivalent to the values projected for the years 2030, 2040, 2050, 

2060 and 2070. 

PRELIMINARY NONPOINT SOURCE POLLUTANT LOADING SCENARIOS ASSOCIATED WITH 
AGRICULTURAL BMPS 

In addition to the preliminary nonpoint source simulation scenarios associated with 

population growth, the US representatives of the BTWG proposed conducting a series of 

preliminary simulations to estimate the effects, on water quality in Lower Rio Grande/Río Bravo, 

of implementing irrigation BMPs on agricultural land in the Lower Rio Grande/Río Bravo 

watershed.  The preliminary agricultural nonpoint source scenarios included two scenarios: 

1. Scenario B3Irr1 – Modified Declaratoria Guide and Full Permitted US effluents and 

Applying Irrigation BMPs to the Agricultural Land in the Sub-basins of Mexican 

Agricultural Drains under Observed Conditions  

The purpose of this scenario was to investigate the effect on flow and water quality in the 

Lower Rio Grande/Río Bravo resulting from the implementation of irrigation BMPs on 

agricultural land in the watershed under the ambient conditions observed during the 

binational synoptic surveys.  In this scenario three BMPs (land leveling, use of polypipe 

and land leveling plus polypipe in combination) are applied in equal measure (one third of 

the total agricultural land each) to LRGWQIDSS sub-basins draining the major Mexican 

Agricultural Drains.  All US agricultural land is assumed to be land-leveled.   

2. Scenario B3Irr2 – Modified Declaratoria Guide and Full Permitted US effluents and 

Applying Irrigation BMPs to all Mexican Agricultural Land in the Lower Rio Grande/Río 

Bravo Watershed under Observed Conditions  

The purpose of this scenario was to investigate the effect on flow and water quality in the 

Lower Rio Grande/Río Bravo resulting from the implementation of irrigation BMPs on 

agricultural land in the watershed under the ambient conditions observed during the 

binational synoptic surveys.  In this scenario three BMPs (land leveling, use of polypipe 
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and land leveling plus polypipe in combination) are applied in equal measure (one third of 

the total agricultural land each) to the agricultural land in all Mexican LRGWQIDSS sub-

basins.  All US agricultural land is assumed to be land-leveled. 

The US representatives in the BTWG also ran these two simulations scenarios under critical 

conditions.  For these simulations, adjustments were needed in the agricultural diversions, as well 

as incremental inflows and outflow to keep flow from going negative in the tributaries and, in 

some cases also, in the main stem of the river. 

RESULTS OF PRELIMINARY POINT SOURCE POLLUTANT LOADING SCENARIOS 

The results of the of the preliminary nonpoint source pollutant loading scenarios associated 

with population increases showed increased pollutant concentrations in portions of the Lower Rio 

Grande/Río Bravo where steady state nonpoint source pollution emanating from riparian 

populations is most prevalent.  However the magnitude of the effects on water quality yielded by 

Scenarios A5-A16 call into question somewhat the LRGWQIDSS’ ability to accurately predict 

these effects.  Water quality constituent concentrations, and in particular fecal coliform, appear 

higher than would be expected from moderate increases in riparian populations.  An example of 

this concern is shown in Figure 4-2 which shows the simulation results of Scenario A5 (Modified 

Declaratoria Guide and full permitted US effluent limits at observed conditions with riparian 

populations increased to the projected 2020 level) for the April synoptic model.   
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 Figure 4-2. Plot of Fecal Coliform Simulation for Scenario A5 for the April 2016 

Synoptic Case. 

The results show fecal coliform concentrations peaking at approximately 5000 MPN, which is at 

least an order of magnitude higher than TCEQ water quality monitoring data show for samples 

collected in that portion of the river in 2018, only two years prior to the year of the population 

projection simulated in Scenario A5.  Nevertheless, the simulation identifies the portion of the 

river where in-stream pollutant concentrations have the potential to become problematic from 

unsewered riparian populations under a no action scenario. 

Based on these results the US representatives of the BTWG recommended adjustments to 

the LRGWQDSS’ human NPS loading algorithm.  These adjustments are likely to improve the 

LA-QUAL model calibration for fecal coliform simulations. 
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The results of the preliminary nonpoint source simulation scenarios associated with the 

implementation of agricultural BMPs revealed important insights into the potential effects of the 

measures simulated in these scenarios.  Implementation of irrigation BMPs on agricultural land 

in the watershed reduced flow in the river and also reduced the loading of dissolved solids to the 

river.  In some scenarios, the balance of these two effects resulted in an improvement of TDS and 

chlorides in the river.  However, in some simulation scenarios conducted under critical 

conditions, the implementation of irrigation BMPs had the opposite effect, raising TDS and 

chloride concentrations in the river above those currently observed.  Figure 4-3 shows an example 

of this result for Scenario B4Irr2 (Modified Declaratoria Guide and full permitted US effluent 

limits and applying irrigation BMPs to all Mexican agricultural in the Lower Rio Grande/Río 

Bravo watershed under critical conditions) for the July 2014 synoptic case. 

While the preliminary point source loading scenarios discussed in Subsection 4.1.1.1 were 

conducted jointly by the members of the BTWG, the preliminary nonpoint source simulation 

scenarios discussed in this sub-section were conducted by the US representatives of the BTWG. 
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Figure 4-3. Plot of TDS Simulation for Scenario B4Irr2 for the July 2014 Synoptic 

Case; LRGWQIDSS plot (Top) and a Portion of the Same Plot as 
Displayed in the Internal LA-QUAL GUI Showing Synoptic Calibration 
Data (Bottom). 
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 All scenarios discussed in Sub-section 4.1.1 were simulated while the LRGWQIDSS was still in 

development, with several modules not yet operational (e.g., the economics module).  The 

experience gained from simulation of the scenarios discussed in this sub-section was instrumental 

in the development of Version 1.0 of the LRGWQIDSS.    

Version 1.0 of the LRGWQIDSS, considered the beta version of the software was 

completed in April 2019.  On March 8, 2019, the author posted a zip file containing the 

installation executable file as well as the two accompanying installation data files on the TCEQ 

secure ftp site and sent an email to the lead IMTA and CONAGUA BTWG representatives letting 

them know the software was ready for final testing.  On March 10, 2019, the author received an 

email response from the Mexican BTWG representatives letting the author know that they had 

successfully downloaded and installed the LRGWQIDSS on their computers and that they had 

begun final testing of the software.  As of this writing, the final testing of Version 1.0 of the 

LRGWQI is still ongoing. 

4.1.2 UNCERTAINTY 
Addressing uncertainty is an important aspect of modeling and of EDSS development.  

The level of acceptance of a model or EDSS is dependent on the degree of error the users and 

decision makers are willing to accept (Jakeman et al., 2006; McIntosh et al., 2011; Voinov et al., 

2016).  As part of model development, and in keeping with best modeling practices, the 

LRGWQI’s BTWG agreed to establish model performance measures for the LA-QUAL model(s) 

developed as part of the LRGWQI.  The author documented these model performance measures 

along with the source and quality requirements for input and calibration data in a quality assurance 

project plan (QAPP) titled “A Steady State, One Dimensional Model of Water Quality in the 

Lower Rio Grande/Río Bravo (Segments 2301 and 2302) Addressing Total Dissolved Solids, 

Indicator Bacteria, Nutrients, Dissolved Oxygen and Total Suspended Solids” (TCEQ, 2018).  

Acceptance of the LA-QUAL models by USEPA and CONAGUA is based on the criteria specified 

in the QAPP.   

As of this writing, there have been no substantive efforts to quantify uncertainty in 

LRGWQIDSS results.  However, the author and the LRGWQIDSS development team advocate 
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including such efforts in future work.  The following sub-sections identify the main sources of 

uncertainty in LRGWQIDSS development and provide a set of options to quantify uncertainty.   

4.1.2.1 Uncertainty Associated with the Use of Steady State Models 
Steady state deterministic models are essentially snapshots in time.  Whereas inputs and 

outputs of dynamic deterministic models are time series values which can represent a variety of 

simulation conditions, the inputs and outputs of steady state models are single values which 

represent a particular simulation condition.  Since the accuracy of steady state models is confined 

to the simulation conditions they represent, using steady state models to predict water quality 

creates uncertainty about simulations conducted under conditions other than those in which the 

model(s) are calibrated.  To reduce uncertainty, modelers sometimes develop and calibrate 

multiple steady state models representing a number of simulation conditions.  However, it is not 

always practical to develop a sufficient number of “snapshots” to reduce uncertainty to the level 

associated with dynamic models.  Modelers sometimes use measures of centrality of historical 

data for input and calibration of steady state models to represent “average conditions” over a 

specified period of time. 

Another source of uncertainty associated with steady state models is their limited ability to 

model nonpoint sources of pollution.  Nonpoint sources are typically associated with rainfall 

runoff.  Although some steady state models, such as LA-QUAL, allow input of nonpoint source 

pollutant loadings, steady state models are not designed to model rainfall runoff.  The mechanism 

by which nonpoint sources enter a water body under steady state conditions is not well understood 

and is difficult to represent accurately using steady state models.  For example, a source of 

uncertainty in the LRGWQI LA-QUAL models is steady state nonpoint source loading from 

unsewered human populations.  Even though unsewered human populations can be quantified 

using geospatial methods, it is unclear exactly how, or to what extent, untreated sewage from 

riparian populations enters a water body under steady state conditions.   

To reduce uncertainty associated with steady state loading of pollutants from unsewered 

human populations, the representatives of the BTWG opted to limit the population estimates to 

residents living within 500 meters of the Rio Grande/Río Bravo, one of its tributaries, or a 

contributing drain or ditch.  However, the buffer distance was chosen by consensus of the BTWG 
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participants and is based on collective professional judgement.  The BTWG chose to apply 

attenuation factors to the estimates of steady state nonpoint source pollution.  These factors can 

be adjusted during the water quality calibration process.  One option to reduce uncertainty in the 

LRGWQIDSS results is to adjust these factors further to improve model calibration.        

4.1.2.2 Uncertainty Associated with Estimates of Steady State Nonpoint Sources 
Another source of uncertainty associated with the LRGWQIDSS emanates from the 

geospatial methods used to estimate steady state nonpoint sources.  In addition to measurement 

error inherent in the base data, including human and animal census figures and GIS data layers, 

the methods and assumptions made to disaggregate, re-aggregate. and categorize census data into 

final population values introduces error into the estimates.  For example, when disaggregating 

US Census block data and re-aggregating it into LRGWQI watershed sub-basins, the author 

estimated populations living in census blocks intersected by sub-basin boundaries using area ratios 

of the portions of the census blocks bisected by the sub-basin boundaries.  This method assumes 

there is an even distribution of the population in each census block.  This assumption introduces 

error into the estimate.  The error was amplified when the author intersected the resulting human 

sub-basin populations using the 500-meter riparian buffer polygon layer, colonia polygon layer, 

and utility service area polygon layer to determine the riparian populations and categorize them by 

sanitation type.  Error was introduced into the geospatial analysis of Mexican human populations 

when the author and his Mexican collaborators categorized localidad residents by sanitation type 

applying the municipio proportions of residents using each type of sanitation category. 

The geospatial analysis of animal populations introduced error into the model input by: (1) 

assuming even distributions of animal populations within counties and wildlife management areas; 

(2) using estimates of the amount of time animals spend in the water; and (3) using population 

density reduction factors based on distance from the coast (i.e. waterfowl estimates).  

Measurement error in the land use layer used to identify animal habitats in the geospatial analysis 

of animal populations also introduces error into the resulting animal population values.   

The estimates of pollutant loading from both human and animal populations may contain 

measurement error in the base data.  The assumptions made of per-person feces and per-animal 

manure (feces and urine combined) production rates and pollutant composition also introduce error 
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into the LRGWQIDSS output.  As authorized by the BTWG, the author applied attenuation 

factors to the estimates of animal-based steady state nonpoint pollution.  As with human-based 

loadings, these factors can be readjusted to improve model calibration, thus reducing uncertainty.        

4.1.2.3 Uncertainty Associated with the LA-QUAL Model 
A lack of data and information about the physical attributes of the Lower Rio Grande/Rio 

Bravo contributes to the uncertainty associated with the LA-QUAL model(s) included in the 

LRGWQIDSS.  The absence of information regarding base flow contributions to in-stream flow 

relegated the author to adjusting irrigation return flow yields to achieve a water balance in some 

reaches of the models.  A lack of information regarding phreatophytes in the river led the author 

to addressed water deficits in some reaches of the river by assigning withdrawals to small 

ungagged diverters.  An inability to link poor in-stream water quality value observed during the 

synoptic surveys to sources of pollution (e.g., high in-stream bacteria values upstream and 

downstream of Reynosa) made it difficult to calibrate the model for certain water quality 

constituents and contributed to lapses in model performance. 

Error contributes to overall uncertainty in the output of the LRGWQIDSS.  Measurement 

error inherent in the data used for model input and calibration contribute to lapses in model 

performance.  This includes error in estimates of channel geometry data (i.e., cross-section data), 

flow gage data, diversions data, synoptic and historical field measurements (e.g., instantaneous 

flow, stream velocity, temperature, specific conductivity, pH, dissolved oxygen, etc.), and synoptic 

and historical water quality data.  Error inherent in the GIS layers used to characterize the 

watershed and hydrography of the Lowe Rio Grande/Río Bravo (e.g., digital elevation models and 

USGS and INEGI hydrography layers) and to estimate channel widths (satellite images) also 

contribute to lapses in model performance.   

Measurement error inherent in model input and calibration data can be identified and 

investigated by examining associated quality assurance information and metadata.  In some 

cases, the source of such error can be identified, and additional data can be collected if funding is 

available.  This is more difficult to do for GIS data. 

Measurements of channel geometry used to characterize hydraulics are important 

component of water quality modeling.  As LA-QUAL uses depth-discharge and width-discharge 
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relationships to calibrate hydraulics (Equations 4 and 5), more detailed channel geometry data 

would improve model calibration in general.  Travel time studies could also provide data useful 

for improving hydraulic model calibration. 

Synoptic data can provide modelers: (1) a characterization of current pollutant loading and 

ambient conditions; and (2) a dataset of parameters measured within a short period time.  While 

ideal for input and calibration of steady state models that represent snapshots in time, the predictive 

ability of models calibrated using synoptic data is limited to the conditions existing during the time 

of data collection.  Steady state models that use measures of centrality of historical data for input 

and calibration can produce simulations of average and/or median conditions.  In certain cases, 

steady state models that reflect average conditions may be better suited for planning purposes as 

they take into account the range of pollutant loadings and ambient conditions.  Developing LA-

QUAL models using historical data and incorporating these models into the LRGWQIDSS could 

help reduce uncertainty in the system’s output. 

Model calibration involves the adjustment of certain variables, such as pollutant 

attenuation/decay rates, suspended constituent settling rates, oxygen reaeration coefficients, 

temperature constants, etc.  Model performance depends, in part on a modelers ability to select 

appropriate values for these variables.  Sensitivity analysis can help modelers focus on the 

variables that most influence model calibration and select values for those variables that result in 

optimal model calibration. 

4.1.2.4 Communicating Uncertainty 
Communication with EDSS users, stakeholders and decision makers about uncertainty is 

an important aspect of participatory modeling (Voinov et al., 2016) and is included in the set of 

best practices for modeling (Jakeman et al., 2006) and EDSS development (McIntosh et al., 2011).  

Doing so in an effective manner fosters trust and increases the chances of EDSS adoption.  To 

communicate uncertainty effectively, EDSS developers should seek to quantify and contextualize 

uncertainty to the fullest extent possible (Jakeman et al., 2006).  Because uncertainty associated 

with the LRGWQIDSS has not been quantified, future work should focus on this topic.   

Even though the LA-QUAL models have been used by IMTA and CONAGUA to develop 

the Declaratoria for the Lower Río Bravo, LA-QUAL model performance can and should be 
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improved to lower the current level of uncertainty in LRGWQIDSS output.  Future work 

associated with the LRGWQIDSS should include work associated with improving the accuracy of 

LA-QUAL model simulations, reducing overall uncertainty in the system’s output, and 

communicating uncertainty to users, stakeholders and decision makers. A more detailed 

description of the future work proposed for the LRGWQIDSS is included in Chapter 5.       

4.1.3 POTENTIAL IMPLICATIONS OF LRGWQIDSS DEVELOPMENT AND USE 
In Chapter 2, the author identified potential users of the LRGWQIDSS in three different, 

but related, institutional action arenas.  Development of the LRGWQIDSS was discussed in 

detail in Chapter 3.  Subsection 4.1.1 of this chapter discussed the initial uses of the 

LRGWQIDSS.  An important consideration regarding the development of the LRGWQIDSS, 

and perhaps also other EDSSs, is the evolutionary nature of the DSS development process in 

general.  In essence, developers of EDSSs can never truly count on producing a “final” version 

of the system they are developing, even if the system is successfully used for prolonged periods of 

time because continuous improvement is part of the software development process in general.  

With this in mind, and viewing the development and use of the LRGWQIDSS from an institutional 

perspective, it is helpful to examine the potential implications of the use of the LRGWQIDSS at 

different operational levels. 

4.1.3.1 Binational Implications 
The LRGWQIDSS was originally conceived as a tool to aid in binational decision making 

in the institutional action arena produced by the creation of the LRGWQI through the official 

exchange of letters between the USIBWC and CILA.  The general objective of the LRGWQI, as 

described in the initiative’s TOR, is to “establish, under the auspices of the IBWC, a group of 

representatives from the United States and Mexico to explore border sanitation issues and water 

quality management with potential binational benefits.”  In addition to this general objective, the 

LRGWQI TOR describes six specific objectives which charge the “group of [binational] 

representatives” with tasks of problem evaluation and program implementation.  Notably, the 

first of these specific objectives charges the group with addressing, not only current but also, 

“future water quality issues of the Lower Rio Grande/Rio Bravo.”  One implication is that the 

LRGWQI may be viewed as an institutional mechanism for addressing binational water quality 
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issues over time.  This interpretation is bolstered by statements in the Annex to the TOR, such 

as: “The effort, the Lower Rio Grande/Rio Bravo Water Quality Initiative (LRGWQI), is intended 

to serve as a pilot project to develop the binational mechanisms necessary to improve water quality 

throughout the Rio Grande/Río Bravo” (Appendix B). 

As discussed in Chapter 2 the LRGWQIDSS has the potential to become a tool that helps 

institutional actors overcome the barriers to cooperative decision-making in transboundary water 

resource management by bringing the parties closer to developing a common understanding of the 

state of the shared resource.  Harmonization of the legal standards and regulatory procedures used 

by each nation to assess and protect the Lower Rio Grande/Río Bravo may not be within reach at 

this time.  However, use of a common helps stakeholders: (1) visualize pollutant sources; (2) 

relate pollutant loads to their effect on water quality; and (3) visualize these effects. This is is an 

important step towards achieving effective transboundary water quality management.  In 

providing a common platform for decision making, the LRGWQIDSS has the potential to 

transform water quality management in the Lower Rio Grande/Río Bravo into a more coordinated 

and, perhaps more effective binational water quality planning and management process.  The first 

manifestation of binational water quality planning facilitated by the LRGWQIDSS may be the 

development of a binational watershed-based plan, which is an objective explicitly stated in the 

TOR Annex. 

Despite the statements in the TOR inferring sustained, long-term planning efforts, use of 

the LRGWQIDSS is currently focused on the immediate, high-level planning objectives of the 

LRGWQI participants.  CONAGUA’s goal is the development of the Declaratoria for the Lower 

Río Bravo.  The TCEQ’s and USEPA’s goal, is development of a binational watershed-based 

plan to improve water quality in the Lower Rio Grande.  Beyond these goals, there is no well-

defined long-term use of the LRGWQIDSS.  The LRGWQIDSS, could be institutionalized 

further by defining its use beyond the promulgation of the Declaratoria and the development of a 

binational watershed-based plan.  For this to happen, the tool, as well as the forum in which it is 

used, must also evolve. 
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4.1.3.2 National Implications 
The development and use of the LRGWQIDSS have different implications for Mexico and 

the United States.  As previously mentioned, the LRGWQI’s facilitation of the Declaratoria on 

the Lower Río Bravo implies Mexican institutionalization, at least, of the LA-QUAL models 

contained within the LRGWQIDSS.  As the point and nonpoint source loadings input into the 

LA-QUAL synoptic models used in the Declaratoria are exactly those currently in the 

LRGWQIDSS and these can be changed through the LRGWQIDSS GUI, use of the LRGWQIDSS 

could also facilitate CONAGUA’s and CEAT’s assessment of the effect, on water quality in the 

Lower Rio Grande/Río Bravo, of proposed changes in wastewater effluent flows and pollutant 

concentrations, effectively incorporating the LRGWQIDSS into CONAGUA’s operational 

procedures.  This implication, however, hinges on successful testing of the LRGWQIDSS by 

CONAGUA and CEAT.  Unilateral modification of one or more of the LA-QUAL models by 

CONAGUA would effectively decouple the models from the LRGWQIDSS, unless commensurate 

changes were made in the LA-QUAL models in the LRGWQIDSS. 

The primary use of the LRGWQIDSS by the TCEQ and USEPA is related to decision 

making associated with the development of a binational watershed-based plan.  The TCEQ and 

USEPA have already used the results of simulations of pollutant loading scenarios conducted using 

the LRGWQIDSS to assess the effect on water quality in the Lower Rio Grande/Río Bravo of 

control actions and management measures proposed for inclusion in the binational watershed-

based plan (e.g., Scenarios B3Irr1, B3Irr2, B4Irr1 and B4Irr2).  Approval of a final binational 

plan by the USEPA could result in the facilitation of federal funding sources for implementing 

some of the measures in the plan, primarily those implemented on the US side.  USEPA approval 

of the plan may also consign the TCEQ-listed water quality impairments and concerns being 

addressed by the plan to a regulatory status that obviates the need for a TMDL and could lead to 

the de-listing of Segment 2302 from Texas’ list of impaired water bodies, a goal shared by TCEQ 

and USEPA.   

The well-established wastewater permitting system developed through the years by the 

TCEQ (i.e., TPDES), as well as the current regulatory oversight arrangements between USEPA 

and TCEQ (i.e., Texas’ State-wide Water Quality Management Plan and the 1998 MOA between 

TCEQ and EPA regarding the permitting of Texas wastewater discharges to the Rio Grande), make 
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it unlikely that the TCEQ would begin using the LRGWQIDSS as an internal tool for the 

assessment of TPDES wastewater permit actions.  However, it is not unreasonable to assume that 

TCEQ would accept and review scenarios involving changes in TPDES-permitted effluent flows 

and pollutant concentrations for Texas utilities along the Lower Rio Grande/Río Bravo simulated 

using the LRGWQIDSS (e.g., Environmental Information Documents prepared by NADB).  To 

be successful, entities submitting permit applications backed by LRGWQIDSS simulation 

scenarios would have to ensure that all model inputs include current discharges to the river and 

that all nonpoint source inputs reflect current riparian population values.  For its part, the TCEQ 

would need to verify that the information used to simulate the scenarios in the LRGWQIDSS is 

current and accurate.  While the TCEQ currently can verify information on Texas dischargers 

and riparian populations, it cannot verify the commensurate information from the Mexican side of 

the river. 

4.1.3.3 Local Implications 
Participants in the US and Mexican wastewater treatment action arenas could benefit from 

using the LRGWQIDSS to simulate water quality scenarios involving proposed changes to their 

wastewater infrastructure systems.  Texas utilities and Mexican OOs providing wastewater 

collection and treatment services to communities in the Lower Rio Grande/Río Bravo Watershed 

could use the LRGWQIDSS for planning purposes.  These entities could use the system to 

simulate scenarios involving expansions and upgrades to existing wastewater treatment facilities 

or for locating, sizing, exploring treatment options, and developing preliminarily costs estimates 

for new treatment facilities and for facility upgrades and expansions.  Use of the LRGWQIDSS 

would be especially beneficial for small utilities and OOs, as use of the system by these entities 

could potentially reduce the costs of planning, which would disproportionately benefit small-

budget operators. 

As with users of the LRGWQI at the national level, local users of the LRGWQIDSS would 

need to verify that the information used to simulate scenarios in the LRGWQIDSS is current and 

accurate.  To do this, local users would have to download the latest version of the LRGWQIDSS 

prior to using it to simulate their wastewater infrastructure scenarios and the users must be aware 

that the scenarios they run would have a limited “shelf-life.”  That is, the scenarios will become 
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obsolete after a certain amount of time.  Nevertheless, the LRGWQIDSS is designed to be used 

by non-modelers, which makes the capability of water quality simulation accessible to non-

technical users on both sides of the US-Mexico border.  Obviously, web-based access to the 

system would increase the convenience and usability of the LRGWQIDSS at all levels.         

4.1.4 POTENTIAL EFFECT OF LRGWQIDSS ON EXISTING INSTITUTIONAL ARRANGEMENTS 
At the binational level, existing institutional arrangements associated with the Rio 

Grande/Río Bravo emanate from two bilateral agreements signed between the United States and 

Mexico, the 1944 US-Mexico Water Treaty and the 1983 La Paz Agreement.  Through the 1944 

US-Mexico Water Treaty and subsequent treaty Minutes, the IBWC has developed protocols and 

procedures for sharing boundary waters between the two nations.  Together these procedures 

define a system for managing and distributing boundary waters, including those of the Lower Rio 

Grande/Río Bravo.  Using a series of jointly-operated hydrometric and meteorological stations, 

and external data accessible to both sections of the IBWC, the system is capable of assessing 

available water volumes and forecasting the availability of future volumes.  Through a common 

water accounting system, water is apportioned to users along the river according treaty provisions 

and mutually-agreed upon operational procedures.   Beyond the involvement of the US and 

Mexican Sections of the IBWC, the water distribution system used to apportion water from the 

Lower Rio Grande/Río Bravo also involves the State of Texas (i.e., the TCEQ Rio Grande Water 

Master) and CONAGUA, which regulate water usage on a regional and local basis through a 

system of water rights. 

Several Minutes to the 1944 US-Mexico Water Treaty also compel the USIBWC and CILA 

to jointly address sanitation problems and other problems affecting water quality along the US-

Mexico border (e.g., Minutes 261 and 289).  However, while the USIBWC and CILA have 

worked together to address specific sanitation and water quality problems along the border, their 

cooperative efforts on these issues has been on a case-by-case basis.  Thus, unlike water quantity, 

the IBWC lacks an established system to ensure the effective and efficient protection of water 

quality in the Rio Grande/Río Bravo. 

The stated goal of the La Paz Agreement is to protect and conserve the environment along 

the US-Mexico border.  The Agreement describes the responsibilities of both nations to prevent 
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and control pollution in air, water, and land in the border region, which it defines as a 100-

kilometer buffer straddling the US-Mexico border.  Building on the unilateral environmental 

protection efforts associated each country's regulatory systems, the agreement imparts the 

responsibility of coordinating the creation of national pollution prevention and mitigation 

programs and cooperating on scientific and educational exchanges, environmental monitoring, 

environmental impact assessments, and periodic exchanges of information on pollution sources in 

their respective territories.  Information exchanges between the two nations occur yearly during 

annual meetings of high-level delegates.  The USEPA’s Border 2020 Program is an example of 

a national program created to support the goals of the La Paz Agreement.  Border 2020 is 

essentially a small grants program that funds pollution mitigation and prevention projects on both 

sides of the border. 

Although not yet the case, Minutes 261 and 289 of the 1944 US-Mexico Water Treaty and 

the La Paz Agreement both provide the legal foundation to create a systematic binational 

arrangement or system to manage and protect water quality in the Lower Rio Grande/Río Bravo.  

Either or both, could provide the basis to establish a system of water quality protection and 

management based on a shared understanding of the pollutant assimilative capacity of the river.  

Just as the IBWC developed a system by which the United States and Mexico jointly assess the 

volume(s) of water available for distribution and jointly forecast the availability of future volumes, 

the LRGWQI can serve as a pilot for the development of a system by which the United States and 

Mexico jointly and systematically assess the capacity of the Lower Rio Grande/Rio Bravo to 

assimilate pollutants, identify potential risks to water quality, and develop strategies to mitigate 

these risks.  The LRGWQIDSS could play a role in the creation of such a binational system by 

providing a common tool that could be used by Mexico and the United States for identification, 

assessment, and mitigation of these risks. 

There remain many barriers to institutional change and transboundary cooperation, such as 

past practices, agency turf battles, the influence of other action arenas connected to the LRGWQI, 

divergence of interests among participants, issues of sovereignty, etc.  The author is under no 

illusion that the creation of a binational system of water quality management is feasible in the near 

future.  Such a system could evolve from a simpler binational association, such as a forum for 

regular information exchange among participants of the LRGWQI. 
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4.2  Lessons Learned 

The development and preliminary use of the LRGWQIDSS provided the author with some 

lessons learned.  With the caveat of potentially containing case study bias, the author offers the 

following set of lessons learned from his experience collaboratively developing and using the 

LRGWQIDSS. 

4.2.1 TRANSBOUNDARY DSS DEVELOPMENT BY AFFILIATED PARTIES 
Within the context of participatory modeling, Voinov et al. (2016) recommend the use of 

trusted intermediaries when intrinsic levels of trust are low among the participants.  This notion 

can be extended to the development of transboundary EDSSs.  Even under the best of 

circumstances trust levels among participants of transboundary action arenas are influenced by 

sovereignty.  Although it could be argued that LRGWQIDSS development, including software 

development by UT-BEG and the supporting qualitative research effort conducted by the UT LBJ 

School, was conducted ostensibly by an uninterested, unaffiliated party (i.e., UT), the TCEQ 

provide 100% of the funding for the LRGWQIDSS development effort.  Most importantly, as 

lead designer and member of the LRGWQIDSS development team, the author’s work on the 

LRGWQIDSS was hampered by his own affiliation with one of the participants in the LRGWQI 

action arena (i.e., the TCEQ).    

Despite the recommendation to EDSS developers by McIntosh et al. (2011) to foster 

representatives or “champions” embedded within targeted organizations to promote the use of the 

EDSS being developed, the funding and development of a transboundary EDSS by one of the 

parties participating in the transboundary action arena presents barriers to the system’s 

development.  In the case of the LRGWQIDSS, a significant barrier to EDSS development was 

related to the problems presented by the developer’s lack of access to potential Mexican users of 

the system.  As discussed in Chapter 2 (Sub-section 2.2.1.9, Best Practices in DSS Design), 

stakeholder involvement is essential in EDSS development.  The LRGWQI’s operational policy 

of limiting access to foreign stakeholders limited the LRGWQIDSS development team’s ability to 

gather important input thereby weakening the system’s range of usability.     
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4.2.2 TRADEOFFS IN TRANSBOUNDARY EDSS DEVELOPMENT 
Some of the most important lessons learned during the development of the LRGWQIDSS 

related to tradeoffs made to ensure its completion and usage.  These tradeoffs affected the design 

and functionality of the EDSS.  They also enhanced the usage of the software by members of the 

transboundary LRGWQI action arena at the potential expense of usage by a broader user group. 

4.2.2.1 Sovereignty, Institutionalization and Accuracy 
Several initial challenges to the development of LRGWQIDSS involved issues of 

sovereignty.  For example, the challenge of dealing with two sets of water quality criteria and of 

deciding what input and calibration data to use when developing the models of water quality in the 

Lower Rio Grande/Río Bravo were two subjects of significant deliberation among members of the 

BTWG.  Although these challenges were eventually overcome, their resolution came at a cost.  

The US partners agreed to use, as primary model inputs and calibration data sets, the physical and 

water quality data collected during a series of binational synoptic water quality surveys conducted 

jointly by the members of the BTWG.  The US representatives of the BTWG agreed to the 

Mexican representative’s request, even though they believed the 16 years of data in the TCEQ’s 

Surface Water Quality Monitoring database represented a better input and calibration dataset for 

the development of the LRGWQI water quality models because the measures of centrality that 

could be derived from the TCEQ dataset would produce more accurate models.  While the 

BTWG’s final consensus decision to collect and use synoptic data for the LRGWQI modeling 

effort eliminated a technical impasse, ostensibly related to issues of sovereignty and path 

dependency, the snap shots in time that the synoptic data represents adds to the uncertainty of the 

output produced by the LA_QUAL models in the LRGWQIDSS.  However, the collaboration of 

US and Mexican representatives in the collection of synoptic data for the project helped to build 

trust, not only in the data collected, but also mutually among the participants in the surveys. 

Another example of a tradeoff made in the development of the LRGWQIDSS is the choice 

of water quality modeling software incorporated into the LRGWQIDSS (LA-QUAL).  From a 

usability perspective, the choice of LA-QUAL was important because it fit well into the decision 

strategies of all LRGWQI participants.  The choice of LA-QUAL also increased the chances of 

institutionalization of LRGWQIDSS by an important participant in the LRGWQI action arena, 

CONAGUA.  By incorporating a tool used as part of the regulatory process of the participants in 
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the LRGWQI action arena (including the TCEQ), the developers increased the chances for 

prolonged use of the LRGWQIDSS.  However, as is apparent from some of the initial scenario 

simulation results, use of a steady state model to represent nonpoint sources of pollution to the 

river increases the level of uncertainty in the simulation results.  Some of this uncertainty can be 

mitigated by making adjustments to the LRGWQIDSS as the system is used further and additional 

information is incorporated into the system.  However, there was a tradeoff in accepting higher 

initial levels of uncertainty to construct a tool that would be used by the participants in the 

LRGWQI action arena. 

4.2.2.2 Technical and Administrative Aspects of DSS Development 

Overcoming some of the technical and administrative challenges associated with the 

development of the LRGWQIDSS also involved tradeoffs.  The development team’s choice to 

use open source software for the development of the LRGWQIDSS accomplished several 

objectives.  This choice kept development costs within the TCEQ’s project budget; development 

of the LRGWQIDSS using customized proprietary software owned by commercial software 

firm(s) would have increased development costs.  The choice of open source software avoided 

the potential problems associated with product licensing.  Restrictive licensing agreements have 

the potential to hamper distribution of software, hindering usage of the software by users.  On the 

other hand, use of public domain software left the responsibility of training and technical support 

on the developer and promoter of the LRGWQIDSS (i.e., the TCEQ).  While this responsibility 

is currently being met, there is no long-term commitment on the part of the TCEQ to continue 

training and technical support for the LRGWQIDSS.    

Product accessibility was another tradeoff.  A web-based decision-support tool would be 

more accessible to users.  However, some stakeholders did not want to share data outside of the 

LRGWQI action arena.  Also, any web-based tool would have required additional development 

and maintenance costs.  To limit development costs and in the interest of time, the LRGWQIDSS 
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was developed as a downloadable, self-contained executable, installed through a self-extracting 

installer. 

Users of the LRGWQIDSS in its current form may not be able to verify all information in 

simulation scenarios, such as the location and nature of current wastewater outfalls or changes in 

riparian populations.  This would not be necessary if a master version of the LRGWQIDSS, 

consistently updated by the host organization, could be available over the world wide web.    

4.2.3 IMPORTANCE OF BOUNDARY RULES AND INFORMATION RULES 

While the examination of all working rules under which the identified action arenas 

function was important for the design of the LRGWQIDSS, the implications of the boundary rules 

and information rules of the LRGWQI action arena had the biggest effect on the development of 

the LRGWQIDSS.  It may be the case in other water resources management forums, or even 

other transboundary settings, that other working rules have as significant a consequence for EDSS 

design as boundary and information rules did in the development of the LRGWQIDSS.  

However, given the consensus, among EDSS developers and practitioners, regarding the 

importance of stakeholder involvement in EDSS development and the crucial role information 

plays in decision making and EDSS development, it is likely that these two action-arena working 

rules warrant special attention in similar settings. 

Boundary rules not only define the actors of an action arena, they also point to the potential 

users of an EDSS.  After identification of the pertinent action arenas, examination of the 

boundary rules of the arena(s) identified is the first step in determining who the stakeholders and 

users of the EDSS are likely to be. 

As exemplified by the development of the LRGWQIDSS, information rules played a 

fundamental role in the development of a transboundary EDSS.  Beyond affecting the 

developer’s ability to acquire input from stakeholders, information rules can limit access to an 

EDSS by potentially important stakeholders, a situation which IWRM and IRC theory suggest 
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perpetuates inadequate water resources management.  The constraints placed on information 

sharing and binational stakeholder involvement also limited the choices available to the 

LRGWQIDSS developers during tool development.  It is beyond the scope of this dissertation to 

make recommendations about ways to mitigate or lessen the effect of an action arena’s information 

rules on the development of a transboundary EDSS. However, the experience gained from the 

development of the LRGWQIDSS highlights the value of closely examining the information rules 

of the action arena(s) in which the transboundary EDSS is likely to be used for decision making. 

4.2.4 TRANSBOUNDARY EDSS DEVELOPMENT AS A PERPETUAL TASK   

As discussed in Sub-section 4.1.2.1, current use of the LRGWQIDSS is focused on the 

immediate, high-level planning objectives of the LRGWQI participants.  This despite statements 

in the TOR and TOR Annex suggesting an active role for the LRGWQI action arena in long-term 

water quality planning efforts for the Lower Rio Grande/Río Bravo.  These suggestions imply 

decision making, within the LRGWQI action arena, beyond that which addresses current water 

quality impairments and concerns.  The modular structure of the LRGWQIDSS is designed to 

accommodate modifications commensurate with shifts in the focus of management and/or 

planning efforts within the LRGWQI action arena and in the US and Mexican wastewater 

treatment action arenas.  While these changes in focus are difficult to predict, the establishment 

of an ongoing process by which the LRGWQIDSS is maintained and modified, as needed, would 

guarantee the availability, to participants of these action arenas (and perhaps other action arenas), 

of a common binational decision support tool to manage and protect water quality in the Lower 

Rio Grande/Río Bravo.  Beyond changes in the focus of management and planning efforts 

changes to the LRGWQIDSS will likely involve increasing its accessibility and information 

content commensurate with changes in inclusivity of LRGWQI decision making process.   
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The larger lesson learned regarding the evolution of needs associated with water resources 

management, planning, and decision making in general is that it is helpful to view development of 

transboundary EDSSs as an evolutionary process designed for continuous improvement. 
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4.3  Applicability of this Research to Other Transboundary Settings 

As noted in Chapter 2 (Sub-section 2.1.2, Review of Transboundary Water Resource 

Management Agreements), the physical, political and economic conditions and institutional 

arrangements associated with transboundary water resource management efforts can vary greatly 

from one situation to another.  In the case studies presented in Chapter 2, a variety of physical 

settings were examined, most of which involved multiple riparian countries and a variety of 

economic conditions.  In at least one example, the Nile River Basin, the author documented a 

power asymmetry similar to that existing between the United States and Mexico, with other case 

studies also containing examples of power asymmetries of various degrees. 

While each transboundary situation is unique, there are certain attributes that all water 

resources management forums have in common.  Those attributes are related to the institutional 

nature of the arrangements under which the participants interact.  Applicable aspects of the 

research conducted as part of the development the LRGWQIDSS include: (1) the usefulness of 

identifying and analyzing the action arenas involved in decision making; (2) the benefits of efforts 

by the developers to institutionalize the use of the transboundary EDSSs; and (3) the 

conceptualization of transboundary EDSS development as efforts to establish a sustainable 

program of decision support, rather than efforts to develop individual tools to support decision 

making. 

4.3.1 USEFULNESS OF IDENTIFYING AND ANALYZING ACTION ARENAS INVOLVED IN 
DECISION MAKING 
Given the importance of stakeholder involvement in environmental modeling and EDSS 

development, researchers and practitioners have employed a variety of methods for fostering and 

maintaining stakeholder participation in EDSS development, including stakeholder analysis and 

“stakeholder mapping.”  Identifying and analyzing the actors involved in transboundary water 

resources management forums from an institutional perspective provides a clearer picture of the 

context and the internal and external elements that influence the decision space, including the 

working rules under which the participants function.  The knowledge gained through institutional 
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analysis extends beyond that of stakeholder characterization and it can be applied to any water 

resources management situation in which action arenas can be identified.  The IAD framework 

provides a systematic method for identifying and analyzing the components of the decision 

situation and the variables that influence decision making within a given decision making forum 

(i.e., the action arena).  

4.3.2 BENEFITS OF EFFORTS TO INSTITUTIONALIZE THE USE OF TRANSBOUNDARY EDSSS 
Several of the best practices for EDSS design listed in Sub-section 2.2.1.9 discuss the 

advantages of designing EDSSs for organizational adoption.  For example, considering the use 

of the system at different organizational levels, striving for broader organizational adoption, and 

cultivating organizational commitment to long term support.  Viewing transboundary water 

resources management forums from an institutional perspective is instrumental in identifying 

opportunities for EDSS developers to design systems better suited for organizational adoption and 

extended use.  Identifying and analyzing the rules (working and hierarchical) that enable and 

constrain the actions of the participants of water resources management action arenas provides 

EDSS developers with knowledge useful in designing systems that fit well with established 

processes and procedures, thereby enhancing the chances of adoption and prolonged use by 

decision makers, or at least by users of the system.  Understanding these rules, and the processes 

and procedures developed to implement them, helps the EDSS designer make choices that can 

satisfy multiple organizational requirements.  This knowledge can also help the developer find 

commonalities and compromises that can guide a design based on negotiated analytical choices.  

Incorporating as many elements of existing processes and procedures as possible into an 

EDSS reduces resistance to its adoption and increases the likelihood of prolonged use of the 

system.  The developer should, however, be aware of the tradeoffs that may occur as a result of 

these efforts, such as reduction in analytical accuracy and an increase in uncertainty of results. 

4.3.3 CONCEPTUALIZING TRANSBOUNDARY EDSS DEVELOPMENT AS A DECISION SUPPORT 
PROGRAM DEVELOPMENT EFFORT 

  One challenge for EDSS design is developing a strategy for transitioning from 

development to support.  Regardless of the transboundary water resource management situation, 
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shifts in the focus of management and/or planning efforts are likely to occur over time.  The 

establishment of an ongoing process not just for maintaining, but also for adjusting and modifying 

existing decision support tools, guarantees the availability of these tools for decision making in 

the future.  As is the case in the LRGWQI, potential changes in the decision-making process itself 

would necessitate changes in the tools needed to accommodate these modifications; for example, 

changes in accessibility and information content. 
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CHAPTER 5:  CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The first research question posed at the end of Chapter 1 was “How does the insight gained 

form institutional analysis inform the development of decision support tools designed to facilitate 

and enhance transboundary water quality planning and management efforts such as the Lower Rio 

Grande/Río Bravo Water Quality Initiative?”  Systematically analyzing institutional 

arrangements to protect water quality in the Lower Rio Grande/Río Bravo gives the EDSS 

developer insight not only into the nature of the decision situation, the decision makers and the 

potential users of the EDSS, but also into the individual components of the context of the decision 

space that affects the patterns of stakeholder interaction.   

Adoption and sustained use of EDSSs are often cited by developers as major challenges to 

system design.  Researchers have developed comprehensive lists of best practices aimed at 

overcoming the difficulties associated with user adoption and prolonged use of decision support 

tools.  Institutional analysis provides the EDSS designer a systematic means to customize best 

practices to particular decision situations, thereby increasing the likelihood of user adoption and 

sustained system use.  Viewing transboundary EDSS development from an institutional 

perspective exposes the factors that coalesce to form barriers to system adoption and use, such past 

practices, organizational turf battles, etc.  An institutional perspective can enable an EDSS 

developer to overcome these barriers.  Knowledge of the components of the context of the 

decision space (i.e., the participant’s perception of the physical and material conditions of the 

resource, stakeholder community attributes, historic antecedents/precipitating events, the working 

rules of the action arena, etc.) provides the EDSS designer the means to increase the usefulness of 

the tools that are eventually incorporated into the system.  The knowledge gained from 

institutional analysis can also equip the developers of transboundary EDSSs to negotiate across 

established organizational processes and procedures weaving through the tortuous path of 

institutional structures already established by the participating riparian nations.   

The IAD framework’s focus on identifying the pertinent action arenas and analyzing the 

working rules of these action arenas provides a systematic method of identifying and overcoming 

barriers to system adoption and use.  In transboundary water resources management arenas, such 
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as the LRGWQI, the participant’s evaluation of the physical and material conditions of the 

resource is framed by the processes each actor uses to assess the resource.  These processes are 

based on the legal standards and regulatory procedures under which the participants operate (i.e., 

their operational rules).  Consequently, each participant’s notion of acceptable water quality is 

based on their own operating rules.   

By identifying and analyzing these rules the author and the LRGWQIDSS development 

team successfully negotiated and incorporated decision-making tools into the LRGWQIDSS that 

can be used for decision making by all participants of the pertinent action arenas.  In doing so, 

the LRGWQIDSS contributes to the creation of a common understanding among transboundary 

stakeholders of the physical and material conditions of the resource, which according to IRC theory 

is an important step towards managing the resource sustainably.  In terms of system adoption and 

use, incorporating decision-making tools that are based on, or are at least compatible with, 

established operational rules, helps to institutionalize the EDSS, minimizing the effects of adoption 

barriers and increasing the likelihood of prolonged system use. 

In addition to enhancing efforts to develop more useful decision support tools, the AID 

framework’s focus on analyzing the working rules of an action arena also exposes potential pitfalls 

in EDSS development.  In Sub-section 4.2.3, the author describes the importance of boundary 

and information rules in identifying and characterizing decision makers and EDSS users and in 

identifying and overcoming barriers to stakeholder participation in EDSS development.  In water 

resources management forums such as the LRGWQI, stakeholder involvement in EDSS 

development is affected by the action arena’s working rules.  These rules are in turn affected by 

contextual factors such as sovereignty and the influence of associated action arenas operating at 

different hierarchical rule levels.  In-depth knowledge of the working rules of the action arenas 

pertinent to EDSS development can help developers navigate through these barriers.  Systematic 

institutional analysis can be helpful in transboundary settings, where issues of sovereignty, 

political and economic asymmetries, and general lack of trust may affect working rules to such 

degree that they affect the EDSS developer’s ability to follow recommended best practices.  

Knowledge of other contextual factors (e.g., position, choice, aggregation, and payoff rules, 

historical antecedents, stakeholder community attributes, etc.) can be used to partially compensate 

for boundary rules and information rules that may present barriers to effective EDSS development. 
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In summary Institutional analysis: 

• Helps define who the decision makers are and who the DSS users are and describes their 

relationship within the decision space 

• Helps identify action arenas for analysis (e.g., analysis of rules-in-use, the context of the 

decision situation, etc.) 

• Helps identify institutional barriers and constraints that affect the efficacy of the DSS (e.g., 

information rules, action arenas at different hierarchical levels that affect decision making, 

etc.) 

• Identifies opportunities for ‘institutionalization’ of the DSS 

Table 5-1 summarizes attributes and features of the LRGWQIDSS that were informed by 

the institutional analysis performed by the author using the IAD framework.  Table 5-2 

summarizes the attributes and features of the LRGWQIDSS that were informed by the case studies 

of transboundary water resource management agreements. 

Table 5-1. Attributes and Features of the LRGWQIDSS Informed by the 
Institutional Analysis Conducted Using the IAD Framework 

Institutional Analysis Finding  LRGWQI Attribute/Feature 

Contextual focus on recurring drought conditions  Headwater module for simulation at variable flow 
conditions other than synoptic surveys 
 

Contextual manifestation of operational inefficiency Incorporation of percent conveyance system losses in 
point source module  

Financial consideration of management measures 
revealed through actor analysis and analysis of rules-
in-use  

Expansion of point and source economics modules to 
include additional costs (e.g., collection system costs) 

Analysis of operational-level rules-in-use for US and 
Mexican Wastewater treatment action arenas 

Optional base scenarios at critical conditions, full 
permitted limits for US wastewater treatment facilities, 
and Declaratoria de Clasificación limits for Mexican 
wastewater treatment facilities 

Contextual manifestation of barriers associated with 
protection and preservation of sovereignty 

Use of binational synoptic data for model 
parameterization and calibration 

Analysis of operational-level rules-in-use Selection of LA-QUAL modeling software 
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Table 5-2. Attributes and Features of the LRGWQIDSS Informed by the Case 
Studies of Transboundary Water Resources Management Agreements  

Case Study Finding  LRGWQI Attribute/Feature 

Need for framework for spatially aided infrastructure 
planning for use by non-modelers 

GIS-based interface; detailed information on existing 
infrastructure; standard functionalities such as pan, zoom 
and point-and-click features 

Need for a means to evaluate economic viability of 
proposed pollution mitigation measures 

Point and nonpoint source economics modules 

Need for incorporation of multiple endpoint criteria US and Mexican instream water quality criteria threshold 
lines in water quality output plots 

 

 To answer the second research question, the author offers the following premise: All water 

resources management forums have one common attribute, the institutional nature of the 

arrangements under which the participants interact.  If this premise is accepted, the author 

provides an answer to the second research question in Sub-section 4.3: “What aspects of a decision 

support system (DSS) developed using the insight gained from an analysis of existing institutional 

arrangements to protect water quality in the Lower Rio Grande/Río Bravo can be identified as 

transferable to other transboundary settings?”: (1) the usefulness of identifying and analyzing the 

action arenas involved in decision making; (2) the benefits of efforts by the developers to 

institutionalize the use of the transboundary EDSSs; and (3) the conceptualization of 

transboundary EDSS development as efforts to establish a sustainable program of decision support, 

rather than efforts to develop individual tools to support decision making. 
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5.2 Future Work 

As of this writing, the LRGWQIDSS has been used by US and Mexican LRGWQI 

participants to produce preliminary point source pollutant loading scenario simulations and by US 

participants of the LRGWQI to produce preliminary nonpoint source pollutant loading scenario 

simulations.  The LRGWQIDSS software is still in “beta version.”  As with most beta version 

software, adjustments and modifications of the LRGWQIDSS are likely.   Based on the results 

of the preliminary nonpoint source pollutant scenario simulations, adjustments are warranted to 

the nonpoint source loading modules to increase the accuracy of population growth simulations.  

This may also entail adjustment to the calibrations of the synoptic LRGWQI models.  These 

adjustments would have to be conducted under a binational consensus as part of the LRGWQI.   

Another area of LRGWQIDSS improvement identified during the preliminary scenario 

simulations is the economics module.  Currently this module provides general cost information 

about the scenarios simulated in the LRGWQIDSS, which appears to be adequate at the LRGWQI 

action arena level but does not provide the type of detail useful for wastewater treatment action 

arena participants.  Adjustments to the LRGWQIDSS’ economics module will also require 

participation and consensus approval of the members of the LRGWQI action arena groups and US 

and Mexican wastewater treatment action arena participants.  This would entail a change, at least, 

in the current information rules of the LRGWQI.  

Communication of uncertainty to users, stakeholders and decision makers is needed in all 

action arenas analyzed in this dissertation.  This includes honest and open discussion about the 

sources of uncertainty discussed in Subsection 4.1.2 as well as the performance and presentation 

of sensitivity and uncertainty analysis on the LA-QUAL models and other features of the 

LRGWQIDSS.  The communication should be two-way, with developers soliciting input, 

answering questions, and gathering information from users, stakeholders and decision makers. 

A change in the information rules of the LRGWQI could also open the door to conversion 

of the LRGWQIDSS into a web-based tool.  If funded by the participants of the LRGWQI, this 

conversion would be an important step towards increasing the usefulness of the LRGWQIDSS.  

It would also be a complicated task due to the technical difficulties involved, as well as questions 

of where the system would be hosted and what entity would pay the long-term costs of 
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administration and maintenance of the databases and website.  A dedicated LRGWQIDSS 

website could increase the usefulness of the LRGWQIDSS beyond updating and enhancing the 

software’s current capabilities to include decision making related to other areas commensurate 

with shifting water resources management needs, such as emerging contaminants, flood 

mitigation, habitat protection, etc.  A decision support system containing interactive maps, 

monitoring information, news items, professional reports, and links to other websites with 

pertinent information, all accessible via the internet, would transform the value of the 

LRGWQIDSS.     

Perhaps the most important recommendation for future work on the LRGWQIDSS 

emanates from the third lesson learned as a result of the research presented in this dissertation: 

conceptualization of transboundary EDSS development as efforts to establish a sustainable 

program of decision support.  In Sub-section 4.2.4, the author mentioned the likely change in the 

focus of water quality planning and management efforts in the Lower Rio Grande/Río Bravo in 

the near future.  The author states that the establishment of an ongoing process by which the 

LRGWQIDSS is maintained and modified, as needed, would guarantee the availability, of a 

binational decision support tool to manage and protect water quality in the river in the future.  

These changes to the LRGWQIDSS will likely involve increasing its accessibility and information 

content. 
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APPENDIX A: TERMS OF REFERENCE FOR THE LOWER 
RIO GRANDE WATER QUALITY INITIATIVE 
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APPENDIX B: ANNEX TO THE TERMS OF REFERENCE FOR 
THE LOWER RIO GRANDE WATER QUALITY INITIATIVE 
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APPENDIX C: LOWER RIO GRANDE WATER QUALITY INITIATIVE 
SURVEY OF WATER QUALITY PREFERENCES 
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Section 1. Introduction 
1.1  Purpose 

The purpose of this project is to develop a computer-based Decision Support System (the 
DSS hereafter) for the Lower Rio Grande/Río Bravo Water Quality Initiative (LRGWQI), 
which is a binational effort to restore and protect water quality in the Lower Rio 
Grande/Río Bravo downstream of Falcon Reservoir to the Gulf of Mexico.  

Texas Commission on Environmental Quality (TCEQ) is currently working with other US 
and Mexican partner agencies to develop a steady-state water quality model that will aid 
this effort. The DSS will improve partner access to critical data and facilitate use of the 
water quality model developed by the partner agencies.  

The DSS will address the following segments and assessment units in the Lower Rio 
Grande/Río Bravo watershed: 

• Rio Grande Tidal, Segment 2301 – Assessment Units 2301_01, 2301_02 

• Rio Grande below Falcon Reservoir, Segment 2302 – Assessment Units 
2302_01, 2302_02, 2302_03, 2302_04, 2302_05, 2302_06, 2302_07 

• Arroyo Los Olmos, Segment 2302A (unclassified water body) – 2302A_01 

• Various Mexican tributaries, arroyos and drains that contribute flow to Segments 
2301 and 2302, including (but not limited to), Rio San Juan, Rio Alamo, 
Puertecitos Drain, Rancherías Drain, El Morillo Drain, and Anhelo Drain – None 
of these water bodies are classified segments under Appendix C of TAC §307.10 
(Texas Surface Water Quality Standards), as they emanate in Mexico. 

The intended audience of the system will be binational stakeholders involved in the 
LRGWQI. 

1.2  Business Context 
Development of the DSS is funded by the TCEQ/LRGWQI project which in turn is funded 
by US Fish & Wild Life Service through the Texas General Land Office. TCEQ is the 
environmental agency for the state of Texas. The TCEQ business unit funding this project 
is in charge of Total Maximum Daily Load (TMDL) program in the state of Texas. The 
DSS will help stakeholders examine options for improving instream water quality. 
Examples of such options may include (a) emplacement of infrastructures (e.g.,  
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installation of collection lines and lift stations, repair of existing collection system 
components such as broken collection lines and leaking lift stations); (b) non-urban best 
management practices (e.g., keeping livestock and wildlife away from ditches, tributaries, 
or the river itself). 

1.3  Scope 
The main scope of the DSS is to provide necessary software tools with graphic user 
interface (GUI) for LRGWQI partners to  

(a) Develop nonpoint source loading scenarios  

(b) Perform computer simulations of water quality 

(b)  Visualize modeling outputs for each scenario.  

Here a scenario may be created to model the effect of improvements in urban collection 
instrastructures such as the installment of wastewater treatment facilities or other 
infrastructures along Rio Grande/Río Bravo that can potentially improve water quality in 
the Lower Rio Grande/Río Bravo. Other examples may include installation of collection 
lines and lift stations, repair of existing collection system components, such as broken 
collection lines and leaking lift stations. Scenarios can also be created to model the effect 
of non-urban best management practices, such as keeping livestock and wildlife away 
from ditches, tributaries or the river itself.  

The net effect of the scenarios described herein is to affect point and nonpoint source 
loading rate of a certain constituents at a particular location on the river or within a 
subbasin of the subject watershed. The DSS does not calculate the affected loading 
rates;instead, as part of the inputs, it asks the user to provide the expected change in the 
pollutant loading rate expected from each control action or management measure outside 
the DSS and then enter these values for the affected regions included in the model 
through the DSS GUI.The water quality modeling software underlying the DSS will be LA-
QUAL, which is a steady-state, one-dimensional water quality computer program that 
was developed by the Watershed Support Division of the Louisiana Department of 
Environmental Quality.   

The role of the DSS GUI will be facilitating and streamlining the preparation of LA-QUAL 
model input files. The user is assumed to be familiar with the type of steady-state water 
quality modeling performed by the LA-QUAL program and is expected to have relevant 
information ready before starting the DSS. The LA-QUAL program itself will not be 
modified as part of this project.  
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In particular, the following information may be needed when creating a scenario: 

(d) Pollutant loading rate (or changes in loading rate) due to each individual control 
action or management measure), for example, 

Ammonia, nitrate, organic nitrogen  

Phosphorous loading rate  

Bacteria (mainly fecal coliform) loading rate 

Dissolved and suspended sediments rate 

(e) Pollutant Sources: 
Irrigation return flow volume 

Population served by public sewage system 

Population incompletely served by public sewage system 

(f) Subbasin-specific collection system infrastructure failure rate 
Detailed functional requirements are provided in Section 3 of this document.  

The LA-QUAL calibration effort is separate from DSS code development. 

The DSS will be designed to be a standalone application to be downloaded (ftp site to be 
specified by TCEQ) and deployed on a Microsoft Windows-based operating system. The 
final product will be a self-contained installation file with all necessary components 
included. The development team will adopt a Python-based package for developing the 
DSS GUI. Although the Python programming language is platform independent, the 
development team will mainly test the functionalities of the DSS on a Microsoft Windows 
Operating System under the scope of this project. This is because the DSS will call an 
external Windows-based program LA-QUAL.   

1.4  User Characteristics 
The intended users of this DSS will include a diverse binational group of stakeholders 
involved with LRGWQI project. The potential users will be from: 

• TCEQ, 

• Comisión Estatal del Agua de Tamaulipas (CEAT),  

• International Boundary and Water Commission – US Section (IBWC), 
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• Comisión Internacional de Limites y Agua (CILA),  

• Border Environmental Cooperation Commission (BECC), 

• US Environmental Protection Agency (EPA), 

• Local US and Mexican municipal and county governments  

The users will use the DSS to examine the effect of different water and wastewater 
management scenarios on instream water quality. 

 

Section 2. General System Description 
2.1  System Context 

This System Requirement document will be illustrated using UML (unified modeling 
language) diagrams extensively. Rational Rhapsody Modeler v7.5, which is an open-
source UML tool developed by IBM®, was used to generate all the UML diagrams used 
in this document. 

An overview of DSS functionalities is provided in Figure 1, which is presented in the form 
of a use case diagram.  

 

 

 

 

 

 

 

 

 

Figure 1. Function overview of the LRGWQIDSS. 
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The use case diagram in Figure 1 depicts six use cases that are needed to enable user 
interactions with LA-QUAL program. The use cases can be classified into three functional 
groups: 

(a) Group I: Functions related to LA-QUAL model file handling, including creating, 
saving, and loading a scenario 

(b) Group II: Functions related to LA-QUAL handling, including providing GUI for 
soliciting user inputs and for setting up LA-QUAL and subsequently running a model 
file 

(c) Group III: Functions related to shapefile handling and visualization. Shapefiles are 
GIS files that spatially describe vector features (e.g., points, lines, and polygons). 

The DSS is designed to be a standalone software product. The main cross-boundary 
interaction is to call the LA-QUAL program, which is a windows-based executable file. 
The interactions will be done in two steps: first, the DSS creates and places a functional 
LA-QUAL input file in a working directory; second, the DSS calls the LA-QUAL 
executable. 

2.2  System Modes and States 
The DSS will have a single operating mode, in which a user launches the program, 
performs LA-QUAL modeling by specifying nonpoint source loading parameters and 
infrastructure component types and locations, and the rest of the post-processing is 
shifted outside the system domain to the LA-QUAL program. 

2.3  Major System Capabilities 
Major capability groups of the DSS include: 

(a) Group I: Model file handling: creating, saving, and loading a scenario 

(b) Group II:  LA-QUAL handling: setup LA-QUAL and run a model file 

(c) Group III: Visualization: manipulation of GIS files 

Several UML diagrams are provided in the sequel to better illustrate the major system 
capabilities. 

Figure 2 shows a use case diagram for Group I, which include functionalities related to 
model file handling. When a user launches the DSS, he/she enters a work session with  
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the GUI. The functionalities described here are used to record and restore a user’s work 
session. Details are provided in Section 3 of this documentation. 

Figure 3 to 5 show use case diagrams for Group II, which implements core logics of the 
DSS that are needed to create a LA-QUAL model input file. Most of the Group II 
capabilities are designed to solicit the necessary data from the user to generate a valid 
LA-QUAL model input file. 

Figure 6 shows a use case diagram for Group III. These include functionalities to load 
background image and to enable simple GIS shapefile handling capabilities, such as 
displaying the watershed delineation file and river reach shape file. Most of the GIS tasks 
will be implemented using an open-source GIS library. Technical details are provided in 
Section 3 of this documentation. 

  

 

 

 

 

 

 

 

 

 

 
Figure 2. Use case diagram for Functional Group I, handling of DSS model files. The 

functional requirement is documented under Section 3.2.1. 
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Figure 3. Overview of nonpoint source loading estimation. The functional requirements are 
documented under Section 3.2.3.1 and 3.2.3.2. 
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Figure 4. Estimation of dissolved solid loading. 
 

 

  

Dissolved solids

requirement_3.2.3.1

Identify Irrigation return
flow volume per reach

Waste water
treatment facilities

UserUser



 
 
     

 [TCEQ] SYSTEM REQUIREMENTS SPECIFICATION  
[DSS for Lower Rio Grande/Río Bravo Water Quality Initiative] [1.0] [12/27/2013] 

Based on 
DIR Document 25SY-T1-2 531  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. LA-QUAL simulation. 
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Figure 6. Use case diagram for shapefile visualization. The functional requirement is 
documented under Section 3.2.2. 
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2.4 Major System Conditions 

The DSS is designed for nontechnical users to use LA-QUAL interactively. The user is 
not required to know technical details of LA-QUAL. However, familiarity with general 
nonpoint source pollution concepts will be helpful. 

The DSS uses a pre-defined discretization for the LA-QUAL river reaches. It is assumed 
the grid resolution is fine enough to handle all scenarios to be input by the user. 

The DSS assumes that watershed and subbasin delineation files already exist. 

The DSS assumes that the user is comfortable with LA-QUAL’s own visualization tool for 
displaying simulation results. 

The DSS assumes that the user has information on all required data/constants, including 
but not limited to, waste water produced per day per capita, population in each county, 
population served by public sewage, population served incompletely, land use, time 
animals spend in stream, and etc. 

Unless specified by the project manager, the DSS will use information from Lynch (2012). 

2.5  Major System Constraints 
The DSS is designed to be a standalone software running on a Microsoft Windows 7 
operating system. The system uses a pre-defined discretization for the LA-QUAL reaches 
and pre-defined watershed delineation, which will be provided by the TCEQ project 
manager. The system calls an external windows executable to perform simulation.  

The DSS does not intend to be fully featured GIS software and, thus, the use of spatial 
graphics is mainly intended for visualization of watershed delineation and hydrography, 
rather than for direct GIS shapefile manipulation. 

2.6  Assumptions 
The calibration of LA-QUAL is done separately. 

The number of Lower Rio Grande/Rio Bravo reaches is fixed for the scope of this study. 

The pre-defined reach discretization level is assumed suitable for all LA-QUAL modeling 
activities to be conducted through the DSS. 

2.7  Dependencies 
Main dependencies of the DSS include: 

• Windows-based LA-QUAL executable 
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• An open-source Python library (PyQt) for developing GUI 

• An open-source Python GIS library (QGIS) for visualizing shapefiles 

• Python interpreter (v 2.7 or greater), needed for running Python-based programs 

2.8  Operational Scenarios 
In most cases, the operation involves a user specifying the installation of new wastewater 
treatment plant(s) at (a) certain location(s), or adding of a new collection system(s) to (a) 
subbasin(s). The core functionalities of the DSS will be facilitating the creation, saving, 
and loading of scenarios as represented by a LA-QUAL input file. In the course of doing 
so, the GUI will solicit user inputs and will perform internal calculations to process and 
prepare user inputs for simulation in LA-QUAL. 

Offline, the user may need to estimate the change of loading rates due to implementation 
of certain load reduction measures.  
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Section 3. System Capabilities, Conditions, and 
Constraints 
3.1 Business Requirements 

LRGWQIDSS will serve as a GUI to facilitate pre-processing activities for LA-QUAL, 
including defining loading rates (or changes in loading rates) for subbasins associated 
with LA-QUAL stream reaches, and creating and loading modeling scenarios. 

3.2 Functional Requirements 
This subsection defines the fundamental actions that must take place within the DSS 
system to accept and process the inputs and to process and generate the outputs. 

3.2.1  Model File Handling 
The user can create a new scenario, open an existing scenario and save a valid LA-
QUAL file. The DSS GUI responds to user actions. Internally, the DSS performs the 
following events triggered by the GUI: 

• On Open, the DSS populates the GUI with LA-QUAL parameters parsed from a 
valid input file. 

• On New, the DSS loads default parameters from an underlying database and 
opens the GUI with default LA-QUAL values. 

• On Save, the DSS performs validation and saves a model input file to disk. 
The DSS will use an underlying database to organize different user inputs. The database 
can be text-based because of the relatively small size of data records. A database 
schema will be designed to encapsulate main data objects and relationships among them 
(Figure 7). The data objects (or tables) include subbasins, pollutants, reaches, pollutant 
loading rates (or changes) per subbasin. 
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Figure 7. Data schema proposed. 

 
3.2.2 Visualization Handling 
Visualization focuses on GIS file handling.   

On Launch, the DSS loads a watershed delineation shape file for the background. The 
DSS loads a reach file to be used for LA-QUAL modeling. 
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3.2.3 LA-QUAL Handling 
The LA-QUAL GUI facilitates pre- and post-processing activities for LA-QUAL by creating 
a LA-QUAL input file using more user-friendly input screens than would normally be 
required for simulation using LA-QUAL. 

  3.2.3.1 LA-QUAL Inputs 
Documentation of LA-QUAL inputs is provided in the LA-QUAL user’s manual. 

Methodology for bacteria nonpoint source loading is based on the master thesis of R. 
Lynch (Lynch, 2012) and is briefly summarized below: 

Loading due to human waste is divided into four types of waste treatment (treated 
sewage, partially treated sewage, untreated sewage, and other) and two types of 
communities (rural and urban). In theory, a household that has access to a public sewer 
system does not pollute rivers or stream beyond what is permitted by the regulating 
entity. Households with septic systems are assumed to pollute only when the septic 
system fails; only septic systems near rivers or streams or their tributaries are assumed 
to pollute (a riparian corridor or buffer around pertinent rivers or streams or their 
tributaries will be used). Populations lacking any sewage treatment are assumed to 
contribute waste directly to the river if they live within the riparian corridor of a relevant 
river, stream or tributary. 

Dissolved solids loading will be estimated based on user specified irrigation return flow 
volumes. 

Loadings due to livestock and wild animal wastes will be estimated on user specified 
rates and riparian corridor affected.  

  3.2.3.2 LA-QUAL Operations 
LA-QUAL provides the following major operations:  

(a) Enable user interactions for inputting parameters required for estimation of the effects 
of point and nonpoint source pollutant loading on water quality in the Lower Rio Grande. 

(b) Interact with LA-QUAL executable 

  3.2.3.3 LA-QUAL GUI Outputs 
LA-QUAL GUI output will be a valid LA-QUAL input file. 

On Run, the DSS does error checking, saves the DSS model file, generates an input file 
in LA-QUAL format, and calls the LA-QUAL executable. The actual simulation and 
graphing of model output is handled by LA-QUAL. 
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3.3  Physical Requirements 

3.3.1 Construction 
Windows 7, 32-bit operating system 

3.3.2 Durability 
The DSS is designed to be compatible with Windows 7 32-bit; Python version 2.7 or 
higher.  

3.3.3 Adaptability 
The DSS is designed to be standalone software. Growth and expansion of the DSS will 
be determined by the TCEQ project manager under a separate effort. 

3.3.4 Environmental Conditions 
The DSS will be used on any PC running Windows operating system specified in Section 
3.3. 

3.4  Logical Data Requirements 

The DSS assumes that the user is knowledgeable of the methods used to estimate 
pollutant contributions, to surface waters, from point and nonpoint sources of pollution, 
and it will provide limited error checking of inputs.  

3.5  User Requirements 

The user needs some familiarity with the methods used to estimate pollutant 
contributions, to surface waters, from point and nonpoint sources of pollution and LA-
QUAL modeling. 

3.6  Information Management Requirements 

The LRGWQIDSS is designed to facilitate the creation and of LA-QUAL input files and 
evaluation of (LA-QUAL) modeling scenarios, mechanisms for the storage and retrieval of 
modeling scenarios and associated LA-QUAL input and output files, outside of those 
currently available in the Windows 7 operating system, are beyond the scope of this 
project.  

3.7  Systems Requirements 

3.7.1 Performance Requirements 
The DSS will be designed to run on Windows 7 operating system, 32-bit. 
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3.7.2 Quality Requirements 
The DSS will be tested using a list of test scenarios supplied as part of this project. 

3.8  Policy and Regulation Requirements 

University of Texas will own the copyright of the developed DSS but will give a royalty-
free, nonexclusive, and irrevocable license to reproduce, publish or otherwise use, and to 
authorize others to use for Federal and State Government purposes: 

1) The copyright 

2) Any rights of the copyright. 

TCEQ can authorize others to reproduce/publish/use the DSS, but only for 
noncommercial (government) purposes. Therefore, TCEQ would only authorize a third 
party to use the DSS if they were using it for TCEQ purposes. This could include another 
government agency or a contractor working on behalf of government, but TCEQ would 
not be releasing the software to anyone and everyone. 

3.9  System Life Cycle Sustainment Requirements 

The subcontractor (UT-BEG) will support bug-fixing during the span of the project 
contract term and provide limited technical support after the contract ends. The DSS 
distribution will contain all Python library files required for a working installation. Thus, the 
DSS is expected to self-sustain beyond the project life. 

Section 4. System Interfaces 

The DSS will be designed to be a standalone software tool and will only interact with LA-
QUAL. Although not covered by the current work scope, future modifications may include 
a web-hosted executable with similar or expanded capabilities.  
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Section 5. Requirements Traceability Matrix 

A list of functional requirements is summarized below for traceability purposes. 

1. The DSS calls LA-QUAL to perform loading calculations 
2. The system uses an internal database to organize information, data, and tables 
3. The DSS enables creation/modification/storage of load reduction scenarios 
4. The DSS provides a GUI to facilitate collection of information on  

• Proposed infrastructure/control type 
• Loading rate changes,  
• The reach/subbasin that a scenario will affect 
• Pollutant source affected 
• Pollutant type affected 

5. The system provides simple GIS display capabilities 
6. The major system output is a valid LA-QUAL input file 
7. The system runs on a Windows 7, 32-bit operation system 

 

Section 6.  References 
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Section 7. Glossary 

BECC: Border Environmental Cooperation Commission 

CEAT: Comisión Estatal del Agua de Tamaulipas 

CILA: Comisión Internacional de Limites y Agua 

Data object: An instance of a data structure or class 

DSS: Decision support system 

EPA: US Environmental Protection Agency 

GIS: Geographic information system. 

GUI: Graphic user interface 

IBM Rational Rhapsody Modeler: An open-source, unified modeling language software 
for defining system requirement and software design  

IBWC: International Boundary and Water Commission 

LA-QUAL: A one-dimensional steady-state water quality modeling software package 
developed by the Watershed Support Division of the Louisiana Department of 
Environmental Quality  

LRGWQI: Lower Rio Grande/Río Bravo Water Quality Initiative 

PyQt: A python library for programming interactive software. 

Python: A platform-independent, high-level programming language 

Qgis: An open-source python-based GIS library. 

TCEQ: Texas Commission on Environmental Quality 

UML: Unified modeling language 

UT-BEG: Bureau of Economic Geology at the University of Texas  
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Watershed: A surface area that drains into a river. 

XML: Extensible Markup Language 
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Section 8. Revision History 

Changes made to the Texas Project Delivery Framework SyRS template for this 
document. 

Version Date Name Description 
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Section 1. Introduction 
1.1 Purpose 

The purpose of this System Design Description (SyDD) is to present the top-level system 
architecture for the Decision Support System (the DSS hereafter) for Lower Rio 
Grande/Río Bravo Water Quality Initiative (LRGWQI). This SyDD identifies all 
components of hardware, software, and manual operations. In addition, it identifies 
system-wide design decisions, concept of execution, interface design, and requirements 
traceability to design components.  

The intended audience is the TCEQ project manager. 

1.2  Scope 
The main scope of the DSS is to provide necessary software tools with graphic user 
interface (GUI) for LRGWQI partners to  

(c) Develop point and nonpoint source loading scenarios  

(d) Perform computer simulations 

(b)  Visualize modeling outputs for each scenario.  

Here, a scenario may include the installment of wastewater treatment facilities or other 
sanitary infrastructures along Rio Grande/Río Bravo that can potentially improve water 
quality in river. Other examples include installation of collection lines and lift stations, 
repair of existing collection system components such as broken collection lines and 
leaking lift stations. Scenarios can also be created to model the effect of non-urban best 
management practices, such as keeping livestock and wildlife away from ditches, 
tributaries or the river itself.  

The net effect of the scenarios described herein is to affect nonpoint source loading rate 
of a certain constituents at particular subbasins associated with river reaches to be 
modeled. The DSS does not directly calculate the effect some of the measures being 
modeled have on pollutant loading rates (e.g. improvements in wastewater collection 
systems). For these measures, it is a user’s responsibility to supply the loading reduction 
factors expected from each measure. 

The water quality modeling software underlying the DSS will be LA-QUAL, which is a 
steady-state, one-dimensional water quality simulation program that was developed by 
the Watershed Support Division of the Louisiana Department of Environmental Quality.   
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The role of the DSS GUI will be to facilitate and streamline the preparation of LA-QUAL 
input files. The user is assumed to be somewhat familiar with the LA-QUAL program and 
is expected to have relevant information available (see Section 2.6 in this document) 
before using the DSS. The LA-QUAL program itself will not be modified as part of this 
project.  

Detailed functional requirements are provided in Section 3 of this document. 

The LA-QUAL calibration effort is separate from DSS code development. 

The DSS will be designed to be a standalone application to be downloaded (ftp site to be 
specified by TCEQ) and deployed on a Microsoft Windows-based system. The final 
product will be a self-contained installation file with all necessary components included. 
The development team will adopt a Python-based package for developing the GUI. 
Although the Python programming language, to be used for developing the DSS, is 
platform dependent, the development team will only test the functionality of the DSS on a 
Windows-based operating system (Windows 7, 32-bit) under the scope of this project. 
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Section 2. System Architecture 
2.1  Architectural Design Approach 

The DSS architectural design follows an object-oriented approach. First, the top-level 
system functionality groups identified under System Requirements Specification (SyRS) 
are translated into different subsystems. In the next step, the connection or 
communication among these subsystems are identified. The results are condensed in the 
form of a structural diagram. 

2.2  Architecture Design 
Figure 1 depicts the overall system architecture, which provides three subsystems. 

Section 3. Data Dictionary 

A data dictionary is discrete information describing the contents, format, and structure of a 
database or data system and the relationship between its elements. Within the context of this 
project, the data dictionary for the LRGWQIDSS is shown below.  

DSS Components 

GUI - provides an interface for the user to interact with the LA-QUAL program. 

ModelFileHandling - provides the input-output support needed to manipulate LA-QUAL input files 

LAQUAL Management - provides support to generate valid LA-QUAL input files 

LAQUAL Exe - is the external LA-QUAL program executable 

VisualManager - loads map files and enables simple GIS operations (i.e., displays lat/long) 

Data Ports 

UI_req - provides event handler for GUI inputs 

File_req - provides file handler for loading and parsing the LA-QUAL input files 

LAQUAL_model_req - populates the DSS GUI with information persisted in LA-QUAL model 

Data_out - generates a valid LA-QUAL input file 

Data_in - reads the LA-QUAL input file and executes LA-QUAL 
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Figure 1(a) Overall system architectural diagram; (b) structure diagram of system 
components. 
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Section 4. System Domain Design 
4.1 System Domain Chart 

The system domain chart is provided in the structural diagram given in Figure 1. Only one 
system domain is involved in this DSS. 

4.2 System Domains 
The system domains associated with the LRGWQIDSS are described below.  

4.2.1 Domain DSS 
Figure 2, below, provides a graphical representation of the overall LRGWQIDSS domain.  

 

 

 

 

 

 

 

Figure 2. Overall system domain picture. 

 
 
4.2.1.1 The GUI of LRGWQIDSS 
The GUI for the LRGWQIDSS provides an interface for the user to interact with 
the DSS. 

4.2.1.2 Model File Handling of the LRGWQIDSS 
Model file handling - provides input-output support needed to manipulate LA-
QUAL models 

4.2.1.3 LA-QUAL Management of DSS 
LA-QUAL Management - provides support to generate valid LA-QUAL input files 

4.2.1.4 LA-QUAL Caller 
Launches the external LA-QUAL program to run a user-generated LA-QUAL 
input file 
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Section 5. Data Design 

This section describes the data contained in the data structures shared between design 
elements of the system design, including persistent/static data, transient/dynamic data, 
external interface data, and transformation of data.  

5.1 Persistent/Static Data 

5.1.1 Persistent/Static Data Store 

Persistent or static data mean information that needs to be stored from disk or 
information that remain constants in a program. The persistent/static data store used by 
the DSS will be an XML file that maps the structure of the input to LA-QUAL. Internally, 
the data store will be an instance of LA-QUAL class, which is a data model encapsulating 
information content and structure of LA-QUAL input file. The watershed delineation file is 
an example of static data. 

5.2 Transient/Dynamic Data 

Transient data will be an in-memory data object that synchronizes with the user inputs 
from the GUI and is in a valid state at all times. The data object is an instance of the LA-
QUAL class. This will be made possible by enforcing an error check each time a user 
changes parameter values through the GUI.                               

5.3 External Interface Data 

The external interface’s data design will reflect the modifiable portion of the LA-QUAL 
input. Examples include infrastructure features encapsulated in a scenario 

5.4 Transformation of Data 

Data transformation will be performed from GUI the form to the format required by the 
LA-QUAL input. 
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Section 6. User Interface Design 
6.1  User Interface Design Overview 

The GUI of the DSS orchestrates all user interactions associated with LA-QUAL modeling 

6.2  User Interface Navigation Hierarchy 

 The diagram shown in Figure 3 depicts the navigation hierarchy and sequence of 
events/operations that originate from the GUI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Sequence diagram of the DSS 
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6.3  User Function Categories (or Use Cases) 

This section documents each category of user function or use case addressed by the 
DSS GUI.  

6.3.1 Function (or Use Case): Model File handlers 

This group of functions supports the save/create/load activities associated with the LA-
QUAL model.  

6.3.2 Function (or Use Case): Map handlers 

This group of functions supports the map display. 

6.3.3 Function (or Use Case): Scenario handlers 

This group of functions supports specification of point and nonpoint sources in a 
scenario. 

 6.3.4 Function (or Use Case): Run handlers 
This group of functions supports launch of the external LA-QUAL executable. 

 
Section 7. Other Interfaces 
The DSS will be stand-alone software. The DSS interacts with LA-QUAL through the 
input file for LA-QUAL. 

 
Section 8. Other Design Features 
N/A 
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Section 9. Requirements Traceability Matrix 

A Requirements Traceability Matrix indicates the traceability of the requirements 
documented in the SyRS document to the design elements documented in the SyDD. 
Table 1 provides a Requirements Traceability Matrix for major requirements listed in the 
SyRS document. A detailed functional requirement traceability list is given in SyRS 
document.  

 

Table 1. Requirements traceability matrix between SyRS and SyDD (only the top-level 
requirements are listed). 

Requirements Design Elements 

3.2.1 Model file handling ModelFileHandler 

3.2.2 GIS file handling VisualManager 

3.2.3 LA-QUAL handling LA-QUAL Management 
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Section 10. References 

 

Document No. Document Title Date Author 

 LA-QUAL User’s manual 2010 B. Wiland 

 R. Lynch’s Master’s Thesis 2012 R. Lynch 

 LRGWQI Terms of Reference 2013 IBWC 

    

    

 

IBWC, 2013. Terms of reference. United States-Mexico Joint Cooperative Actions in the Lower 
Rio Grande/Río Bravo River Basin. 

Lynch, R.S., 2012. A GIS-based estimation of steady-state non-point source bacteria pollution in 
the Lower Rio Grande below Falcón Reservoir. 

Wiland, B., 2010. LA-QUAL User's manual, prepared for Louisiana Department of Environmental 
Quality, Watershed Support Division. 

 

Section 11. Glossary 
Data Dictionary:  provides discrete information describing the contents, format, and structure of a 
database or data system and the relationship between its elements 

Data Object: An instance of a data structure or class 

DSS: Decision support system 

Event Handler: In computer programming, an event handler is a callback subroutine that handles 
inputs received in a program (e.g., GUI). Each event is a piece of application-level information 
from the underlying framework, typically a GUI. 

GUI: Graphic user interface 

LA-QUAL: A one-dimensional steady-state water quality modeling software package developed 
by the Watershed Support Division of the Louisiana Department of Environmental Quality 
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LA-QUAL Class: A class that encapsulates necessary data structures for LA-QUAL input file  

LRGWQI:  Lower Rio Grande/Río Bravo Water Quality Initiative 

Python: A platform-independent, high-level programming language 

SyDD: System design document 

SyRS: System requirement document 

System Domain: A group of modules/functions that collectively define and implement attributes 
and behaviors of a system. A system domain can interface with other domains and may consist of 
subdomains. 

XML: Extensible Markup Language 

TCEQ: Texas Commission on Environmental Quality  

 
Section 12. Revision History 

Identify changes to the System Design Description. 

Version Date Name Description 

    

    

    

    

    

    

 

Section 13. Appendices 
NA
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