
WRITING FOR EACH OTHER: DYNAMIC QUEST GENERATION USING IN

SESSION PLAYER BEHAVIORS IN MMORPG

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Sean Mendonca

June 2020

c© 2020

Sean Mendonca

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Writing For Each Other: Dynamic Quest

Generation Using In Session Player Behav-

iors in MMORPG

AUTHOR: Sean Mendonca

DATE SUBMITTED: June 2020

COMMITTEE CHAIR: Foaad Khosmood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Michael Haungs, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Writing For Each Other: Dynamic Quest Generation Using In Session Player

Behaviors in MMORPG

Sean Mendonca

Role-playing games (RPGs) rely on interesting and varied experiences to maintain

player attention. These experiences are often provided through quests, which give

players tasks that are used to advance stories or events unfolding in the game. Tra-

ditional quests in video games require very specific conditions to be met, and for

participating members to advance them by carrying out pre-defined actions. These

types of quests are generated with perfect knowledge of the game world and are able

to force desired behaviors out of the relevant non-player characters (NPCs). This

becomes a major issue in massive multiplayer online (MMO) when other players can

often disrupt the conditions needed for quests to unfold in a believable and immersive

way, leading to the absence of a genuine multiplayer RPG experience. Our proposed

solution is to dynamically create quests from real-time information on the unscripted

actions of other NPCs and players in a game. This thesis shows that it is possible to

create logical quests without global information knowledge, pre-defined story-trees,

or prescribed player and NPC behavior. This allows players to become involved in

storylines without having to perform any specific actions.

Results are shown through a game scenario created from the Panoptyk Engine,

a game engine in early development designed to test AI reasoning with information

and the removal of the distinction between NPC and human players. We focus on

quests issued by the NPC faction leaders of several in-game groups known as factions.

Our generated quests are created logically from the pre-defined personality of each

NPC leader, their memory of previous events, and information given to them by in-

game sources. Long-spanning conflicts are seen to emerge from factions issuing quests

iv

against each other; these conflicts can be represented in a coherent narrative. A user

study shows that players felt quests were logical, that players were able to recognize

quests were based on events happening in the game, and that players experienced

follow-up consequences from their actions in quests.

v

ACKNOWLEDGMENTS

Thanks to:

• My family for their consistent support and encouragement that made all of this

possible.

• Dr. Khosmood for his advice and assistance that helped this project overcome

many difficult obstacles.

• My friends, especially Chris, Alex, and Hayden, for listening to my venting and

helping me out when they could.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Procedural content generation . 3

2.1.1 Constructive generation methods 4

2.1.2 Search-based approaches . 4

2.1.3 Formal grammars . 4

2.1.4 ASP solvers . 5

2.1.5 Mixed-initiative content creation 5

2.1.6 Machine learning . 5

2.2 Procedural quest generation . 6

2.3 Narrative breakdown/generation . 7

2.4 Believable NPCs/AI . 8

2.5 Massively multiplayer online games 8

2.5.1 Need for content . 9

2.5.2 Boring NPC behavior . 9

2.5.3 Bootstrap problem . 10

2.5.4 Hardware limitations/instancing 10

2.6 Tools . 11

2.6.1 Typescript . 11

2.6.2 Node.js . 12

2.6.3 Phaser . 12

3 Related Works . 13

3.1 Procedural content generation . 13

3.1.1 Emergent narrative . 13

3.1.1.1 SAGA II . 14

vii

3.1.1.2 Grammar-based story generators 14

3.1.1.3 TAIL-SPIN and story generation via planning 15

3.1.1.4 Drama management 15

3.1.1.5 Dwarf Fortress . 17

3.1.2 Quest generation . 17

3.1.2.1 Dwarf Fortress adventure quests 18

3.1.2.2 Quest generation using Petri Nets 18

3.1.2.3 Quest generation in MMORPGs 19

3.1.2.4 Quest generation patents 20

3.1.3 Story generators for authors 20

3.2 Believable NPCs/AI . 21

3.2.1 MKULTRA . 21

3.3 Massively multiplayer online games 22

3.3.1 Neural MMO . 22

3.3.2 SpatialOS . 23

4 Design . 24

4.1 Panoptyk Engine . 24

4.1.1 World representation . 25

4.1.2 Panoptyk agents . 26

4.1.2.1 World perception . 27

4.1.2.2 World interaction . 27

4.1.3 Information driven gameplay 28

4.1.4 Quest support . 29

4.1.5 Human client . 29

4.2 Quest scenario . 31

4.2.1 Quest generation . 31

4.2.2 Town Guard faction . 32

4.2.3 Thieves Guild faction . 32

4.2.4 Player input to determine followup quests 33

4.2.5 NPC agent design . 33

5 Implementation . 35

5.1 Pantoptyk Engine . 35

viii

5.1.1 Server . 36

5.1.2 Gameplay models . 38

5.1.3 Information representation . 39

5.1.4 Client API . 40

5.2 Quest scenario . 41

5.2.1 Structure of AI agents . 41

5.2.2 Knowledgebase of AI agents 43

5.2.3 Quest generation . 44

6 Validation . 46

6.1 Internal review . 46

6.2 User study/survey . 46

6.2.1 First study . 50

6.2.2 Results of first study . 50

6.2.3 Second study . 56

6.2.4 Third study . 57

6.2.5 Results of second and third studies 57

6.2.6 Analysis . 65

6.3 Additional validation through internal testing 67

6.3.1 Validation on quest generation with limited information 67

6.3.2 Validation that relevant quests are generated 68

6.3.3 Validation that quests have consequences 69

7 Conclusion . 72

7.1 Future work . 72

7.1.1 Improved communication between Panoptyk agents 72

7.1.2 Additional gameplay actions in Panoptyk 72

7.1.3 Valuing uncertain information 73

7.1.4 Better sentence converter for human client 74

7.1.5 Additional user testing . 74

7.2 Summary of contributions . 75

BIBLIOGRAPHY . 76

APPENDICES

A Panoptyk Human Client . 84

ix

B Initial Study . 93

C Revised Study . 102

x

LIST OF TABLES

Table Page

5.1 Current list of actions . 39

6.1 Example responses for each classification of the estimated generation
method free-response question . 48

6.2 Example responses for each classification of interesting quest encoun-
ters free-response . 48

6.3 Example responses for each classification of the item knowledge free-
response question . 48

6.4 Example responses for each classification of the advantages of player
input influencing quests free-response 49

6.5 Example responses for each classification of the disadvantages of
player input influencing quests free-response 49

6.6 Example responses for each classification of actions that caused play-
ers to treat each other differently free-response 49

6.7 Example responses for each classification of the gameplay actions
free-response question . 50

xi

LIST OF FIGURES

Figure Page

4.1 Planned design of Panoptyk . 24

4.2 Example world node representation 26

4.3 Panoptyk human client . 30

4.4 Downtown Bentham . 31

5.1 Architecture of Panoptyk . 36

5.2 Example of communication in Panoptyk 37

5.3 Important gameplay models in Panoptyk 38

5.4 Information references example . 40

5.5 Example bot . 42

6.1 First study screening . 51

6.2 First study overall enjoyment . 52

6.3 First study strengths . 52

6.4 First study weaknesses . 53

6.5 First study free-response on quest generation method 53

6.6 First study quests completed . 54

6.7 First study quest questions . 54

6.8 First study faction immersion . 55

6.9 First study multiplayer impact . 55

6.10 First study free-response on actions affecting players 56

6.11 First study free-response on actions making gameplay engaging . . 56

6.12 Second study screening . 58

6.13 Second study overall enjoyment . 59

6.14 Second study strengths . 59

6.15 Second study overall weaknesses . 60

6.16 Second study free-response on quest generation method 61

6.17 Second study quests completed . 61

6.18 Second study quest questions . 62

xii

6.19 Second study free-response on memorable quest encounters 62

6.20 Second study faction immersion . 64

6.21 Second study multiplayer impact 64

6.22 Second study free-response on actions affecting players 65

6.23 Second study free-response on actions making gameplay engaging . 65

6.24 Information known during quest generation using 10 AI agents and
2 humans . 68

6.25 Quest relevance during scenario using 10 AI agents and 2 humans . 69

6.26 Follow-up consequences to quests generated using 10 AI agents and
2 humans . 71

6.27 Impact of follow-up quest consequences to quests generated using 10
AI agents and 2 humans . 71

A.1 Panoptyk Human Client Full Game Window 84

A.2 Panoptyk Human Client Conversation Tab 85

A.3 Panoptyk Human Client Help Window 86

A.4 Panoptyk Human Client Information Tab 87

A.5 Panoptyk Human Client Inspect Tab 88

A.6 Panoptyk Human Client Items Tab 89

A.7 Panoptyk Human Client Quest Tab 90

A.8 Panoptyk Human Client Requests Tab 91

A.9 Panoptyk Human Client Trade Tab 92

B.1 Consent Form of Survey . 94

B.2 First survey instructions . 95

B.3 First survey demographics . 96

B.4 First survey general feedback . 97

B.5 First survey survey general feedback (cont.) 98

B.6 First survey quest feedback . 99

B.7 First survey faction feedback . 100

B.8 First survey impact feedback . 101

B.9 First survey end . 101

C.1 Consent Form of Survey . 103

xiii

C.2 Revised survey demographics 1 . 104

C.3 Revised survey demographics 2 . 105

C.4 Revised survey instructions . 105

C.5 Revised survey survey general feedback 1 106

C.6 Revised survey survey general feedback 2 107

C.7 Revised survey quest feedback 1 . 108

C.8 Revised survey quest feedback 2 . 109

C.9 Revised survey item quest 1 . 110

C.10 Revised survey item quest 2 . 110

C.11 Revised survey player driven quests feedback 111

C.12 Revised survey faction feedback . 112

C.13 Revised survey impact feedback . 113

C.14 Revised survey end . 114

xiv

Chapter 1

INTRODUCTION

Modern video games have become increasingly more complex over the past decade,

with every advancement increasing consumer expectations for future releases. MMO

games are no stranger to this trend, which is an issue as they often require a colossal

amount of development time and require a critical user participation level to succeed.

User participation is an essential component to MMO games, gameplay in these types

of games is largely defined by how players interact with each other and how their

actions affect the overall game-world. These factors make it quite difficult to test

new technologies on the genre without being directly involved in the development of

a commercial MMO game. The creation of the Panoptyk MMO research platform

with other researchers was a key component to the central topic of quest generation.

Panoptyk is an open-source [47, 46] experimental MMORPG where NPCs are

designed to be indistinguishable from human players. NPCs are given the same

information and capabilities as human players, and the game is heavily based around

the creation, possession, and exchange of information around the game world. Players

form or join factions that have conflicting overall goals, and must engage in intrigue

and deception to fulfill their faction’s objectives. There is also a rank system within

factions that allows leaders to give out missions and set priorities. Panoptyk allows

for power struggles within factions, as well as double agents infiltrating opposing

factions. Panoptyk depends on quests and interactions between various players to

create a coherent and engaging story. Some high level concepts of Panoptyk have

been published as a poster in FDG 2019 [39].

Story is the backbone of many games. Writers interested in story immersion must

spend a large amount of time putting a story together in such a way as to make the

1

player feel like their decisions are impacting the game. This type of work traditionally

requires a handcrafted decision tree planned by the developer, with consequences

being specific and hard-coded. Manually creating all possible responses to a player’s

actions is an extremely time consuming and expensive task for games that try to tell

stories. There have been many research and commercial attempts to use procedural

content generation for story and drama related content but they usually are not able

to match the quality of human-created story content [58]. This type of procedural

content is often relegated to side quests or minor content in major commercial games

such as Skyrim, Fallout 4, and Assassin’s Creed Odyssey.

Many games that rely on extensive procedural content generation have been crit-

icized as being “shallow.” The same issue can seen in procedurally generated quests

[20]. To avoid these shortcomings, we propose to dynamically generate quests from a

combination of current events, previous quests, character personalities, and relation-

ships.

This thesis covers work done on the Panoptyk framework to turn it into a vi-

able research system, as well as the experiments conducted on story generation and

analysis of future works.

2

Chapter 2

BACKGROUND

This section provides an overview of research related to AI, video games, and

narrative. It gives an overview on Procedural Content Generation (PCG), narrative

breakdown/generation, and AI methods used for this project. It also discusses the

motivation for Panoptyk, the framework this project was made and tested on.

2.1 Procedural content generation

PCG is the algorithmic creation of content with limited user input [62]. The main

purpose of PCG is to reduce the human development effort needed to create new

content. This process has been applied to many aspects of game design. Most often

we can see this in the generation of vegetation or other “natural” formations in games

that can be expected to hold a similar pattern. PCG shows itself to be extremely

useful in generating repetitive content with minor differences. Many mainstream

games take advantage of PCG at some level. The Borderlands series and likely other

RPG series make of use of PCG to generate in-game items. Borderlands uses PCG to

create unique combinations of stats, effects, and color layouts. It advertises a “near

endless variety in weapons and item drops.” Minecraft and No Man’s Sky use PCG

on an even larger scale, their entire playable world is generated using PCG. The large

size of the worlds in those games is made possible by PCG, and is a major selling point

in their marketing. The application of PCG to quests or story has been relatively

limited, perhaps due to simple and repetitive applications currently associated with

it. Mainstream games at the time of this paper have yet to make widespread use of

3

procedural content generation in narrative, but have used it in related elements such

as quest generation.

2.1.1 Constructive generation methods

Constructive generation methods cover any form of PCG that is completed after

generating content in a single pass [69]. Any quality control on the generated content

has to occur while the content is being generated. These methods provide very limited

control over their output, but are extremely fast, allowing them to be used during

runtime of a game [62]. This type of PCG is often used for terrain [38] and level

generation [62].

2.1.2 Search-based approaches

The most widely seen form of PCG in current research is the search-based ap-

proach [62][70]. While other techniques exists, search-based methods can be used in

almost every major form of PCG, including level generation, landscape generation,

texture generation, and quest generation [62]. The search-based approach focuses on

representing content in a way that allows the content space to become searchable and

then creating an evaluation function that allows for a effective search. In contrast

to constructive generation methods, search-based methods evaluate the content they

generate and use that information for the next round of content generation.

2.1.3 Formal grammars

Formal grammars list a set of production rules that specify how to turn one string

into another. Each symbol on the left-hand side of a formal grammar is defined as the

possible combinations of symbol(s) on the right-hand side of the grammar. Formal

grammars are well suited to define patterns that can be used for PCG. They have

4

seen extensive use in level and vegetation generation due to the inherent patterns in

those types of content [62].

2.1.4 ASP solvers

Answer set programming (ASP) is logic-based approach where logical relations

are declared in a Prolog-like language [62][66]. This technique is well suited for forms

of content generation that can be expressed as a constraint satisfaction problem. This

form of PCG has been used by researchers in puzzle creation [65] and for placement

of enemies and items in dungeons.

2.1.5 Mixed-initiative content creation

Mixed-initiative content creation uses human input to assist procedural content

generation [62]. This type of content creation takes two forms: computer-aided design,

and interactive evolution. In computer-aided design, computers assist humans in

their creative process. This form of content creation functions more as a tool to assist

humans than a true content generator. In interactive evolution, computers generate

content and rely on human feedback to guide them to produce content that humans

prefer. Interactive evolution can be incorporated in any form of PCG as a way to

improve content generation. The game Galactic Arms Race uses a searched-based

approach to weapon generation that incorporates interactive evolution as a way of

evaluating generated content [19].

2.1.6 Machine learning

Procedural content via machine learning (PCGML) is an emerging form of PCG as

of 2019. PCGML is the generation of content using machine learning models trained

on pre-existing content from previous sessions [68]. Various methods of machine

5

learning have been used, including neural networks, Markov models, and clustering.

This thesis does not make use of any of these methods, but it is possible that future

related research could take advantage of them.

2.2 Procedural quest generation

Quests in video games are tasks that a player-controlled character or party may

complete to obtain a reward [45]. The primary function of quests is to provide players

in-game goals to work towards [11]. However, quests are also often used as a tool to

tell stories in video games; quest objectives and their resulting consequences are well

suited to act as plot devices. The means the ideal quest is able to tell a narrative

as part of its assigned tasks. Like all forms of procedural content generation, pro-

cedural quest generation emerged to reduce the human burden of content creation.

Procedural quest generation dynamically assigns players different tasks at different

in-game locations but usually does not feature a complex or detailed narrative. The

Elder Scrolls V: Skyrim [4] and Fallout 4 [20] make extensive use of procedural quest

generation which they call “Radiant Story.” [5] The use of “Radiant Story” allows for

potentially unlimited quests to be generated, with the downside of being extremely

repetitive. Most Radiant Story quests involved unnamed generic NPCs, a simple goal

(like kill all enemies at x location), and a limited set of dialogue lines. Many play-

ers have criticized certain radiant quests that were repeatedly triggered in Fallout 4,

and at least one common radiant quest became a running joke on the internet [20].

Because of the power of quests to influence a game’s narrative, the topic of quest

generation can overlap significantly with narrative generation.

6

2.3 Narrative breakdown/generation

The idea of breaking down narrative structure and analyzing the underlying pat-

tern in stories predates computers, which is not unexpected considering writing has

existed for thousands of years. Propp’s 1928 Morphology of the tale is a often cited

book in literary theory for the way he is able to break down and find patterns in

Russian fairy tales [51]. The narrative patterns described by Propp, such as a hero

receiving a mission, fulfilling it through various tasks, and getting rewarded in the

end, are also popular in computer games [61].

There has been a variety of approaches to the field of narrative generation in

academia. Content generation through grammars allow many potential options to be

used at a given point and has been used for plot generation [8]. However, they can

also be limiting. Most implementations are unable to handle core variations during

runtime, meaning they will not be able to act on history or provide unique options

to different player types. The related field of quest design focuses on creating specific

tasks for the player to complete in the game. Various planning models have been

used in the field of quest and narrative design [62].

The most common method of representing a branching narrative in the modern

game industry is decision trees [73]. The developer will usually pre-define the exact

structure of all possible options and results that can happen in the story. Using

decision trees always requires a developer to manually write every potential story

event, many of which are never seen by the majority of players. The cost benefit ratio

of this method forces developers to significantly limit either the depth or amount of

storylines that can appear in their narrative.

7

2.4 Believable NPCs/AI

Many games have attempted to create AI agents that behave in a believable way.

This problem often draws parallels to the classic Turing test, but is more focused on

behavior in the context of a game’s environment rather than fully human behavior.

The believability of AI agents is a major component of Player Experience Modeling

(PEM), a study dedicated to creating the desired player experience in a game [74].

The ability to positively affect player experience makes believable AI agents a major

component and selling point of many modern games.

The believability of AI agents in games is highly dependent on the role the AI

plays. In many situations, an AI agent will take the role of a NPC that is expected to

display behavior that fulfills their character’s role in the overall experience. In these

cases, the believability of the AI agent depends on its ability to fulfill its expected

plot role rather than mimic what a human player would do in that situation. NPCs

that are “too smart” are often not fun to play against and hamper overall player

experience [76]. AI agents that take the place of a human player are expected to be

far more intelligent, and play under the same rules as a human. AI players usually

serve as a substitute for humans in Player vs Player (PvP) content, but often display

behavior which makes them easily distinguishable from a real human. These behaviors

include predictable strategies, inhuman precision, and a failure to adapt to unexpected

situations. These flaws make it so that the AI players are often unable to replace

human players, and has been a major topic of research in AI [76].

2.5 Massively multiplayer online games

Massively multiplayer online (MMO) games are a major genre in video games.

Over the past decades, the genre rose in both size and popularity on a global scale.

8

While games in the MMO genre are diverse, they share some key features: large

persistent game worlds, thousands of online players, quests, and lore. These games

often attract and retain their players by emphasizing social interaction and worlds

full of numerous tasks to complete [9]. MMOs face several unique challenges which

can make it difficult and expensive to create a successful MMO game.

2.5.1 Need for content

The creation of content to keep players invested in an MMO game can be a very

costly affair. Content can vary greatly between different types of MMO games and

includes but is not limited to: story expansions, cosmetic additions, new characters

to play, and re-balancing of gameplay. Unlike games based on a single-player ex-

perience, MMOs are usually designed to have a stable player-base for an extended

period of time. This means content creation must continue after release in order to

maintain player interest. Panoptyk attempts to alleviate this burden by supporting

both automatic content generation and third party contributions.

2.5.2 Boring NPC behavior

A common problem for NPCs characters in multiple game genres is their lim-

ited capacity for showing interesting behavior, resulting in them often being seen as

“boring.” This problem is particularly hard to address for MMO games as NPCs are

often designed to be as predictable as possible to guarantee a consistent experience for

human players. For example, NPCs in MMORPGs usually display scripted behavior

that they rarely deviate from. This largely has to do with maintaining expectations

given a game’s setting and plot. While some games outside of the MMO genre, such

as Skyrim, try to allow more variation in NPC behavior, they still struggle to balance

consistency and expression of complex behaviors. Panoptyk addresses this by aban-

9

doning the use of scripted narrative and instead relying on emergent behavior from

characters to create compelling narrative.

2.5.3 Bootstrap problem

The bootstrap problem for MMOs can be defined as the following: MMO games

cannot offer their designed experience without a minimum number of players playing

the game. This is because many gameplay systems are designed with multiplayer

interactions in mind. Without a minimum player-base vital gameplay systems such

as in-game economies, cooperative content, competitive PvP, and guilds cannot ex-

ist. Games that fail to “bootstrap” an audience are often doomed to fail as they are

unable to offer their intended experience. Likewise, MMO games that cannot main-

tain a player-base are often considered “dead.” Panoptyk approaches this issue by

supporting AI bots that act like human players and make up the initial population

of any server.

2.5.4 Hardware limitations/instancing

High numbers of players can pose unique problems to MMOs that allow players to

freely wander the game world. Large player density in a certain area can cause signif-

icant performance and gameplay issues for players in that area. From a performance

perspective, players’ hardware will eventually struggle to render other characters and

actions. From a gameplay perspective, high population in an area will deplete any

resources (such as killable mobs that serve as quest objectives) and leave people wait-

ing for things to respawn. Most MMOs will address this problem through the use of

instancing and alternative servers. While this does solve the hardware and gameplay

issues caused by high population, it also makes each area exist in a different state

depending on its instance and server. This means local actions have no direct con-

10

sequences or impact to players in other instances, servers, or the game world as a

whole.

Instancing can usually be performed fairly seamlessly, but can becoming jarring

when players transition in-and-out of zones or try to meet their friends at a certain

location. The use of instancing also enforces strong limitations in determining overall

world state. For example, if the leader of an important faction dies in one instance

and lives in the other, which reality is carried back to the overall world? Games that

make use of instancing must usually prevent players from doing actions that have a

noticeable impact on the overall world to avoid this problem. In summary, instancing

of a location solves hardware related performance limitations caused by crowds at the

cost of lowering player impact and immersion. Panoptyk solves issues related to high

population locations without resorting to instancing.

2.6 Tools

2.6.1 Typescript

The majority of the code for both Panoptyk and all bots designed for it are written

in Typescript. Typescript is a open-source programming language by Microsoft that

builds upon JavaScript, a programming language commonly used for web applications

[37]. It builds upon JavaScript by allowing static typing in the language. Typescript

was chosen to streamline the development and usage of complex models needed for

both the server and connecting bot agents. Strict typing helped drastically reduce

the amount of run-time errors and incorrect usage of server models.

11

2.6.2 Node.js

Panoptyk makes use of Node.js to handle communication between server and

client. Node.js is an asynchronous even-driven JavaScript runtime designed to be used

for network applications [44]. The developers claim that the asynchronous nature of

Node.js makes it scale very well to large number of connections. This also means that

the Panoptyk server does not have to worry about syncing multiple network threads.

Node.js theoretically allows hundreds or thousands of users to connect to a Panoptyk

server.

2.6.3 Phaser

The Panoptyk client makes use of Phaser to render a game world for human users.

Phaser is a free open-source framework for Canvas and WebGL powered browser

games [48]. While the Panoptyk server has no direct control over the visual aspects

of the human client, we found it was still essential to create an aesthetically pleasing

world for human users to interact with. Phaser was an ideal choice for the visual client

of Panoptyk due to it being designed to make browser based games. Phaser fully

supported Typescript and was easily able to make use of Panoptyk’s client module.

The Phaser client also servers as an example for other users to make Panoptyk-based

games.

12

Chapter 3

RELATED WORKS

The work in this thesis builds on previous research in procedural content genera-

tion, believable artificial intelligence, and massively multiplayer online game research.

Some of the following related works show some degree of overlap between those fields

and are discussed under the field that seems most fitting.

3.1 Procedural content generation

3.1.1 Emergent narrative

The topic of procedurally generating compelling stories has been a difficult re-

search problem for decades. While initially this field only involved the generation of

readable text stories for humans, it has expanded to include the generation of virtual

stories that can be experienced in video games. Work under this field has been called

procedural quest generation, procedural story generation, and narrative generation.

The term “emergent narrative” can be used to encompass all of these intersecting

fields. Emergent narrative is the creation of stories through the events of a computer

simulation. These simulations are often interactive experiences that let users influ-

ence the simulated world with their actions. The “narrative” part of the simulation

is created through the events that occur as a natural part of characters performing

actions to achieve their goals. The following works represent major contributions to

the field and works that influenced this thesis.

13

3.1.1.1 SAGA II

James Ryan, an AI researcher who wrote his dissertation on procedural narrative

generation, gives SAGA II credit for being the first computer system for story gener-

ation [57]. Unfortunately, there is very little accessible information about SAGA II,

only the original operating notes and a 1960s CBS television episode can be readily

found online. According to SAGA II’s operating manual, scenes have a number of

possible successor scenes that they probabilistically transition into depending on the

world state [42].

3.1.1.2 Grammar-based story generators

Inspired by Propp’s Morphology of the Folktale, Joseph Grimes designed a system

that would use the narrative structures defined by Propp to randomly generate stories

[57]. The system would randomly select several of Propp’s 31 functions (structural

elements that typically occurred within his analyzed tales), correctly order them,

generate appropriate characters to fulfill story roles, and then use natural language

generation to express the story in a readable way for humans. Representing Propp’s

31 functions as rules for story generation makes Grimes’s system the first grammar-

based story generator. Grimes abandoned the project before publishing any work on

it claiming “The thing I never put my finger on was that my computer’s stories had

Propp’s elements and sequences, but they were all boring” [57].

Eventually, after Grimes’s work, other papers detailing grammar based story gen-

erators were published [27]. Unfortunately, while grammar-based story generators

were able to create readable and grammatically correct generations that resembled

stories, they still fell quite far from human-authored stories and were soon attacked

as a flawed approach by other researchers in the field. Black and Wilensky accused

story grammars of being unable to express all types of stories, able to produce “non-

14

stories,” and of not being a useful tool to model stories with complicated plots [6].

Story grammars were defended by some researchers [15, 55], but generally fell out of

favor with the emergence of planning-based story generators.

3.1.1.3 TAIL-SPIN and story generation via planning

One of the most cited early attempts to generate stories with computers is the

TAIL-SPIN program by Meehan [36]. It was able to create simple stories based on

resolving a problem/goal of main character. The program was able to use location,

personality, relationships, and world state to plan out the actions each character

takes. The resulting “stories” were a description of the modeled worlds and logical

actions characters took to fulfill their goals. However, even though characters acted in

a reasonable way to achieve their goals, there was no way for the system to differentiate

a compelling story from a mundane account of facts and actions that characters took

to accomplish simple goals. Nonetheless, TALE-SPIN is considered the first planning-

based approach to story generation and is frequently referenced by other papers in the

field [62]. Other planning based narrative generation programs that followed TAIL-

SPIN include but are not limited to AUTHOR [10], UNIVERSE [29], and Minstrel

[72].

3.1.1.4 Drama management

Drama management describes the process of guiding a narrative based on a char-

acter’s personal choices and preferences. In the researcher paper Drama Manage-

ment and Player Modeling for Interactive Fiction Games, Sharma et al. asserted

that creating an effective player model that influences the occurring drama is key to

success in interactive narratives [63]. Others researchers have agreed or attempted

projects based on that principle. One of the earlier approaches to this was declarative

15

optimization-based drama management by Nelson et al. [43]. Their system would

use a drama manager that decides plot points based on an author-specified evaluation

function. They did not go into the specifics of implantation, and mostly focused on

their design principles and problems dealing with complexity. A 2008 project by Riedl

et al. goes into far more detail than the previous example, outlying the design, im-

plementation, results, and shortcomings of their Interactive Narrative Tacit Adaptive

Leader Experience system [52]. They found their system to be extremely repetitive,

often re-presenting an option the player refused in order to maintain certain story-

lines. This would lead to players being frustrated and feeling like their choices did

not matter. A more recent project in 2014 by Roberts et al. tries to make it easier for

drama managers to influence player choices [54]. Their system presents players with

information related to their current choice, sometimes providing a heavy bias to pick

a certain option. They found that players were more likely to experience the results

the author intended, and that players did not feel a significant difference in control

compared to narratives that lacked the system.

The term “Drama Management” is not always used when describing a system that

controls the story in an interactive narrative. Other projects have focused on the same

aspects as Drama Management with either a different name or smaller scale. In a

2010 project, Li et al. created a system that would alter details of the plot based on a

play model to provide a narrative that fit the player best [32]. Their model required

an pre-defined plot structure, but was designed to have interchangeable events at

each point. Unfortunately, their system was prone to story incoherence or no valid

events existing for certain playthroughs. A separate journal article on interactive

narratives makes the related claim that the greatest hurdle to overcome was to create

evolving relationships between players and aspects of the narrative [61]. These type

of relationships put very specific constraints on procedurally generated narratives.

16

3.1.1.5 Dwarf Fortress

Dwarf Fortress is often seen as one of the most successful and influential practi-

cal applications of emergent narrative and procedural content generation [58]. The

game procedurally generates the entire world from scratch, accounting for tempera-

ture, rainfall, drainage, vegetation, and salinity [2]. It then simulates water erosion

of terrain before the generation suitable life for the newly created world. Lastly, 200

years worth of actions, including the rise and fall of civilizations, is generated through

simulation. It is only at this point that the player is introduced to the game world.

Rather than trying to explicitly generate stories, the game relies on the depth of the

simulation to naturally create interesting events and situations that can be retold as

a story. The comprehensive nature of the simulation allows for many complex nar-

ratives to be constructed from the different interactions with procedurally generated

characters, factions, terrain, and settlements.

3.1.2 Quest generation

As mentioned in Chapter 2, quests serve as both a gameplay and a narrative tool.

There is significant overlap between quest generation and narrative generation if one

attempts to make use of the narrative potential of quests. Some authors, such as

Kybartas and Verbrugge, use “quest” and “narrative” interchangeably in the context

of video games [28]. Many research works use the narrative generated by quests as

one of the main ways to evaluate their research, but some focus on other gameplay

aspects.

17

3.1.2.1 Dwarf Fortress adventure quests

As mentioned in Section 3.1.1.5, Dwarf Fortress is prominent example of nearly

every aspect of PCG. Procedurally generated quests appear in Adventure mode, a

special mode where the player controls a single character rather than an entire fortress.

In this mode, quests can be assigned by various people of authority in the game. These

quests are “kill” quests that task the player with killing a certain number of members

of an opposing faction or assassinating an important target [13]. Completing quests

helps the player build a reputation as a loyal soldier of that faction.

3.1.2.2 Quest generation using Petri Nets

Lee and Cho propose a quest generation method using Petri Nets to represent

game events [30]. Petri Nets are directed bipartite graph where circular nodes rep-

resent places and bar nodes represent transitions. The directed arcs in the graph

describe what places are preconditions or post-conditions for transitions. Overall,

Petri Nets are suited to be used as a planning model. Lee and Cho are able to rep-

resent the events that make up Never Winter Night quests using Petri Nets. Their

system attempts to predict what type of quests a player likes by using a Bayesian

Network on their play history. Each quest type has a number of related events associ-

ated with it. The system then starts a quest with an event associated with the chosen

quest type. The ending result of an event determines the possible successor events.

The authors tested their system on seven graduate students and claimed generally

positive results. In a followup paper, Lee and Cho reiterate their work and propose

using genetic algorithms and a game with more control over gameplay modules. [31]

18

3.1.2.3 Quest generation in MMORPGs

There have been several attempts to use procedural quest generation in MMORPGs.

The “TRUE STORY” system from Pita et al. attempts to generate compelling quests

for MMORPGs by using the past quests and/or history of players [49]. Their system

is able to create “kill,” “steal,” “discover,” and “retrieve” quests based on positive

or negative history with other players or items. The system also takes into accounts

other factors such as the player’s skills when assigning appropriate quest targets. Un-

fortunately, the authors did not discuss any form of user testing or other validation

metrics. They admitted that the system did not have a way to determine the impor-

tance of different pieces of history and therefore struggled to generate a meaningful

chain of quests.

Tomai et al. propose an adaptive quest generation system capable of mitigating

the conflict between the authored narrative of an MMORPG and the changes to the

world caused by player actions [71]. The authors focus on the concept of “kill” quests,

quests where players are tasked to kill mobs that regularly respawn. In their prototype

game, the authors altered spawning so that players could reduce the population of

mobs and eventually cause them to stop spawning. To compensate for the loss of of

“kill” quest targets, the authors altered “kill” quests to dynamically pick new targets

in different zones once mob population had been lowered enough. In an initial user

test, the authors found that the dynamic quests resulted in less competition than

normal quests, even when compared to normal quests that had normal spawning; they

were able to increase player impact without causing negative competition between

players.

Doran and Parberry describe a prototype quest generator based on their analysis

of over 750 quests from Eve Online, World of Warcraft, Everquest, and Vanguard:

Saga of Heroes [11]. Doran and Parberry categorize quests from said games into nine

19

different categories representing the motivation behind the quests. The motivations

were then associated with tasks that they call “strategies” that could be fulfilled with

a sequence of actions. Their final prototype is able to randomly generate quests from

their database of motivations and strategies as well as list out actions that players

would need to do to complete them. In a followup paper, Doran and Parberry describe

the implementation of their quest generator into the MMORPG Everquest [12]. They

are able to run their generated quests on an emulated Everquest sever. However, their

integration still requires a human designer to supply characters and dialog to be used

by the quests.

3.1.2.4 Quest generation patents

There have been several attempts to patent quest generation. Guthridge and

Nahari have a patent on “Dynamic quests in game” which describes the specific quest

generation technique they used in Pioneer Trail [18]. Their quest generation system

used the Pioneer Trail engine to created quests based on one or more template tasks

and one or more template rewards. Moore has a patent on “System for generating or

using quests” which defines a specific implementation of a web app that can generate

or use quests [41]. There are other patents pertaining to quests such as Farone et

al.’s patent on “User created content and quests” [14] and possibly other tangentially

related patents.

3.1.3 Story generators for authors

Wide Ruled is an authoring tool that allows users to plan out and generate a

story hierarchy [64]. The user of the tool is able to define plot points, characters,

environment, and goals/plot fragments. The tool is then able to generate a story using

each of the defined elements. This tool does not explicitly support the generation of

20

procedural stories as the user must pre-define the full goal/plot fragment hierarchy.

However, it does provide a straightforward way of breaking a story down into many

different fragments. Skorupski and Mateas found that students of both technical and

non-technical backgrounds were able to use the tool with some level of success [64].

3.2 Believable NPCs/AI

The Turing test is an extensively researched topic that is also a primary motivation

behind the creation of Panoptyk. However, since this thesis primarily focuses on quest

related applications, only works directly related to Panoptyk and questing are covered

here.

3.2.1 MKULTRA

MKULTRA (possibly named after but unrelated to the CIA mind control project

of the same name) is an experimental game by Ian Horswill designed to explore several

AI-based game mechanics [23]. Game mechanics are designed around interacting

with NPCs that have generative reasoning and natural language capabilities. The

player controls their character by specifying goals and actions through typed natural

language. The game is a “mystery-and-detection” game where the player needs to

solve secrets. Players are able to influence the behavior of NPCs by injecting false

beliefs directly into the NPC’s knowledge base. Characters in the game only complete

requests that do not conflict with any of their beliefs. The game was intended to serve

as a open-source platform for AI and interactive narrative researchers.

In a follow-up paper, Horswill addresses the successes and failures of MKULTRA

[24]. The Unity Prolog interpreter built for the project ended up being utilized for

several projects, including the commercial game Project Highrise. The performance

of a definite clause grammar (DCG) parser turned out to be sufficient according

21

to Horswill. Furthermore, NPCs characters using reactive planning were able to

excel at accomplishing simple tasks typed out by players. Horswill gives the example

that typing “can I have an apple?” would result in the NPC going to the kitchen,

opening the refrigerator, taking an apple, walking back to the player, and finally,

giving it to the player. Unfortunately, many players struggled to correctly interact

with the system. Players would often type incomplete commands and/or explore the

environment without interacting with NPCs. They also struggled to determine what

commands were valid and wasted a lot of time attempting different sentences. The

limited scope of NPC knowledge bases was also a major problem; NPCs were unable

to appropriately respond to prompts or behaviors outside the scope of its limited

understanding of the world. Horswill concluded that attempting to portray NPCs as

lifelike characters directly conflicted with the limited ways in which the game could

actually be solved. This ultimately led to player confusion and inability to solve the

puzzle.

3.3 Massively multiplayer online games

Panoptyk draws inspiration from various researched-based and commercial MMOs

in its aim to serve as a test-bed for addressing issues that MMO developers struggle

with.

3.3.1 Neural MMO

One of Panoptyk’s core goals is to serve as a platform for researching AI Agents.

Similarly, Open AI’s Neural MMO is a game environment tailored for reinforcement

learning agents [67]. Agents are able to join servers containing automatically gener-

ated tile-based maps filled with various obstacles hindering traversal. They spawn

in a random location and must obtain food and water while avoiding attacks from

22

other agents in order to survive. Agents must compete over limited food supplies

that take time to regenerate. AI Agents were trained to maximize survival time

by using reinforcement learning algorithms. The researchers were able to come to

various conclusions regarding agent learning and successful strategies, but made no

mention of testing agent behavior with human players. Ultimately, the core gameplay

of Panoptyk is quite different from Neural MMO and is tailed to test complex social

interactions rather than survival mechanics.

3.3.2 SpatialOS

SpatialOS is a platform designed to manage and run massive online games in

the cloud [26]. Unlike many MMOs that host different copies of a game world on

many different servers, SpatialOS is designed to have a single continuous game world

hosted by multiple servers. This is a dramatically different approach that directly

addresses issues caused by instancing. The engine supports a persistent database

that all servers can access and change. Severs can be written to handle a specific part

of the overall game world; this allows servers to be responsible for specific in-game

regions. The design of Panoptyk draws upon the use of a continuous game world

made up of regions hosted by separate servers.

23

Chapter 4

DESIGN

4.1 Panoptyk Engine

The original Panoptyk Engine required a re-design to function as an effective re-

search platform [47]. Our design is inspired in part by Jeremy Bentham’s Panopticon1

in which anyone may or may not be observed. This notion spurred Panoptyk’s infor-

mation driven world where we establish how all inhabitants naturally generate new

information which is in turn stored and catalogued by the engine and made to be

observed and shared by other game agents.

Figure 4.1: Planned design of Panoptyk

1see: https://en.wikipedia.org/wiki/Panopticon

24

4.1.1 World representation

Panoptyk represents its world as a single reality without instancing or channels

used in other MMOs. Most interaction spaces in a typical game built with the en-

gine will have maximum capacity for occupancy, providing a limitation to address

networking issues grounded in the virtual world itself. While adhering to a loca-

tion’s capacity it is feasible for any number of players to congregate, and for those

meetings to impact agents around them. Our solution draws from the real world,

where human traffic and occupancy have a measurable effect for situations such as

waiting to enter a crowded restaurant, or not being able to secure transportation

for a popular vacation destination. Taking this a step further, different servers are

synonymous with different cities rather than creating a clone of the world with its

own disjoint inhabitants. Traveling between locations means migrating the character

and associated computation to a new server. Following similar occupancy rules, cities

will have points of entry and those points can block off entering agents if a maximum

occupancy is reached in that server/city. Our design decisions strive to create a more

immersive virtual world that is made up of interconnected locations. When expansion

is required, adding a new server by creating a new city allows for organic growth as

more players fill the world.

25

Figure 4.2: Example world node representation

Figure 4.2 shows an example world representation where large circles represent

hubs with many square rooms interconnected. Only the rooms offer a potential for

every agent to observe every action of other agents. The rooms will have a maximum

occupancy to address hardware limitations. A similar network can be constituted on

a new server with transportation links connecting the two localities.

4.1.2 Panoptyk agents

Panoptyk presents a novel way of approaching the bootstrapping issue seen in

MMO games. By treating NPCs and players the same in the world, the initial launch

of an MMO using the Panoptyk Engine can seed its world with an initial population

of believable NPCs, a portion of whom are to be supplemented by eventual human

players. In order to treat human players and NPCs as equivalent agents, the engine

makes no differentiation between human and AI clients that connect to it. The engine

26

also does not support actions that would be obvious indicators that could separate

human behavior from NPC behavior, such as in-game chat and free movement for

agents. The solution we have outlined also assists in creating a platform for believable

AI agents in our engine.

4.1.2.1 World perception

All agents have access to the exact same information in the world; NPCs do not

receive any special map or gameplay information. Much like human players, NPCs

in Panoptyk will be remote clients, connecting to the server and executing all code

client-side. The server informs agents of their surrounding environment and any exits

leading to other locations, as well as all of the other agents in the current room and

any conversations occurring. It also conditionally informs agents of actions/events

caused by other agents in the room if the server determines those events are publicly

observable. For example, all agents in a room can observe when 2 or more agents

start talking to each other, but only those in that conversation or agents with the

ability to eavesdrop can see what they are saying in the conversation.

4.1.2.2 World interaction

In order to prevent obvious human-like behavior or timing-based movement profil-

ing, the server does not support tracking in-room movements of agents. The Panoptyk

server only tracks actions that directly affect other agents or game objects, such as

leaving/entering a room and interactions between other agents or items. The commu-

nication between agents is also limited so that agents can only communicate through

an enumerated list of requests and by asking questions or telling about in-game ac-

tions in the same format they receive them; unrestricted chat is strictly prohibited.

27

4.1.3 Information driven gameplay

All interactions in Panoptyk result in information being exchanged. This creates

an environment where an agent must carefully decide on what actions to take. An

agent asking another agent a question or requesting something from them will result

in new information being gained by the opposing agent. The second agent may then

inform other agents about what the first agent communicated with it. Even more

indirectly, agents with enough perception ability, and within observable range of any

action or conversation that occurs, could gain information about such events which

they could use to achieve their own goals. Information is also used as an in-game

commodity; agents can use information as an item during in-game trades. The use of

information as a commodity gives it a tangible financial value along with its inherent

strategic value. This platform of constant information generation and its use as a

commodity and game mechanic has numerous implications. First, with information

at the core of our engine we can think of it as a knowledge base for AI agents to

greatly enhance their awareness of the world and ability to act in more complex

and robust ways. Secondly, this brings our platform closer to a model of the real

world information economy which we hope allows our engine to be a good platform

for exploring real world phenomena such as logical deduction, critical thinking and

so-called “fake news.” Lastly, by intentionally making agent actions the catalyst

of new information production in our world, we create a chaotic source of content

for story lines, quests and puzzles. This should reduce the recurring maintenance of

MMO content creation, ultimately opening the genre to indies and researchers lacking

resources.

28

4.1.4 Quest support

Quests are not internally generated by the Panoptyk engine, instead they are

represented as information items that are created in standard agent interaction. It is

intended that any agent can assign quests, but that other agents will only take these

tasks seriously if they are assigned from a guild/faction leader or contain a substantial

reward. We envision that future versions of Panoptyk will have human players that

step into managerial roles of their faction and assign quests for newer members.

4.1.5 Human client

The Human Client for Panoptyk was designed to provide a clean user interface

and visual representation of actions happening on the Panoptyk server. All visuals

in the Human Client are independent from the server; the Panoptyk server does not

have a visual representation of any action or object in the game. Human players are

capable of seeing other agents and items within their room, but the actual placement

of everything is randomized and different for every client. The goal of this early

client was to provide humans players with enough tools to play the game without

taking away development time from other aspects of the Panoptyk server or quest

generation.

29

Figure 4.3: Panoptyk human client

The complexity of the game required 7 different tabs in the UI. The “Inspect” tab

provides players information about their faction, rank, and gold, as well as information

about any in-game object they click. The “Items” tab lets players see what items they

have, details about those items, and the ability to drop those items. The “Info” tab

shows every action, question, or command info pieces that the player has witnessed

or been told; it also allows players to filter those info items by type, action, agent,

item, or location. The “Quest” tab shows the player all active and completed quests

related to them as well as extra information about those quests such as rewards

and reasons for why the quest was assigned. All trade and conversation requests

are displayed in the “Requests” tab. The “Conversation” tab is only active when

the player is in a conversation, it lets players turn-in quests, ask questions, and

tell info. Finally, the “Trade” tab allows players to trade by offering or requesting

gold, answers to questions, or items. A “Help” window added after early testers had

difficulty navigating the UI. The “Help” window contains instructions on how to do

various basic tasks within the game, as well as tips for the user’s current quest. See

Appendix A for full examples of the Panoptyk Human Client.

30

4.2 Quest scenario

A complete scenario was created for the purpose of testing quests on the Panoptyk

engine. The scenario takes place in the medieval-esque town of Bentham. The town

is filled with characters that can be part of the Bentham Town Guard, the Thieves

Guild, or no faction. A combination of legal and illegal items are placed throughout

the town to act as a catalyst for conflict and trade.

Figure 4.4: Downtown Bentham

4.2.1 Quest generation

In this early version of Panoptyk, pre-programmed NPC faction leader agents

assign appropriate quests to their faction members in return for rank advancement

and gold. These tasks align with their faction’s goals and are reactive towards current

31

events in the game. Since quests are designed around the agent-generated information,

quests can be dynamically generated as long as new information is being created by

players. It is intended that using players’ actions to determine quests will increase

their personal connection to quests and reduce the repetitiveness often noticed in

other MMO quest systems.

4.2.2 Town Guard faction

The town guard faction leader constantly assigns quests to combat illegal activity

around the city. First it assigns quests to arrest agents that have committed crimes.

After assigning quests to apprehend all active criminals the town guard leader will

assign quests to collect known contraband and deliver it for safekeeping. Finally, if

no crimes or illegal items are detected, it will assign a quest for town guard agents to

report any illegal actions or items.

4.2.3 Thieves Guild faction

The thieves guild leader is primarily concerned with the collection of illegal goods

for itself. The first priority of thieves guild leader is to assign quests to “take revenge”

against members of the town guard who have recently arrested members of the thieves

guild. The “revenge” quest currently just involves attacking the responsible guard,

but would ideally involve more clandestine actions once additional gameplay has been

added to Panoptyk. Once all possible “revenge” quests have been assigned the thieves

guild leader focuses on assigning quests to loot the most valuable items that it knows

about. Occasionally, it may decide to assign a quest to reward an agent that have

been helpful to the faction. Finally, if it cannot create any other valid quest from its

current knowledge it assigns a quest to search for new treasures to acquire.

32

4.2.4 Player input to determine followup quests

When possible, both faction leaders prioritize assigning quests that are based on

information directly relevant to the agent it is talking to. For example, revenge quests

for the thieves factions are always assigned to the agent that has been arrested by

the targeted member of the town guard. The same logic is used when assigning

item retrieval quests; the questing agent is informed it is being asked to retrieve the

item because it is the one that told about the whereabouts of that item. This rule

is not absolute though, factions leaders will assign these followup quests to other

faction members if it has no other available quests and the preferred agent is busy

with another quest or otherwise unavailable. Ideally this system is intended to give

players the impression that quests are based on their personal experiences.

4.2.5 NPC agent design

Since AI agents in Panoptyk must create a cohesive narrative while reasoning

independently, it was considered important they act appropriately given their preas-

signed personality, their goals, and any events occurring around them. This involved

agents determining appropriate behavior for themselves, or in the case of a faction

leader creating appropriate quests for every member of the faction. Originally, we had

AI agents make their decisions based on their previous experiences and information

available to them. Unfortunately, it was quite difficult to apply most of the stored

information into meaningful gameplay. Agents had no way of communicating their

hostility or friendship to other agents. Agents who did not like each other could only

refuse requests from each other but had no way of differentiating a hostile refusal

from an automatic refusal given when an agent was busy. This mostly resulted in the

uninteresting behavior of hostile agents completely ignoring each other. Eventually

it was determined that, for the sake of testing quests, AI agents should only act on

33

information that was directly applicable to their current task/quest. The AI agents

retain behavior that fits their faction’s personality and it is hoped that future versions

of Panoptyk will allow agents to convey emotion through their actions.

34

Chapter 5

IMPLEMENTATION

5.1 Pantoptyk Engine

Significant work was done on the Pantoptyk MMO Engine to make it capable of

running as a platform for AI and games research. The first version of the Panoptyk

Engine was created by Nathan Philliber as a senior project [39], but that version was

abandoned in favour of the current more scalable implementation in typescript. The

current implementation of the Panoptyk Engine was developed by Sean Mendonca and

Mitchell Miller to meet the requirements outlined in the design section. Additionally,

Kaito Trias and John Potz provided some contributions towards the example client.

35

Figure 5.1: Architecture of Panoptyk

5.1.1 Server

A Pantoptyk game server is intended to be light-weight and mostly focused on

enforcing rules and storing information. We decided to implement the server using

Node.js, as it appears suited to support the planned features of Panoptyk. Node.js is

designed to offer strong scalability along with an asynchronous event driven system.

Socket.IO is used to provide bi-directional communication between the server and

clients. On the server side of our engine, there is not really any constant update

routines to run because agents drive the interactions with the world and other agents.

36

Because NPCs are run in a decentralized fashion, the server needs to only service

requests from agents and ensure both the validity of the action and the validity of

the data it holds about the world. This includes all information produced along with

ownership and access of the information. Other world data is also kept coherent,

for example agent locations, agent states, and interactions between agents. All of

the checks on validity are set up to be triggered on a message from any client. The

server then decides if it should follow through with the client’s request. If so, Event

Processing calls the Controller, which adjusts the server’s models and disseminates

updates to the affected clients. Node.js deals with large loads of asynchronous requests

well in our initial testing. Constant updates of the gamestate for every agent can be

ignored because of our limitation on player location and movement. The engine’s only

external task is informing the involved agents when an action occurs. Each client runs

its own update loop in which it asks the server for world updates. The server sends

current state values for the small portion of the world that the agent can perceive.

Figure 5.2: Example of communication in Panoptyk

37

5.1.2 Gameplay models

The models essential for the gameplay of Panoptyk are outlined in Figure 5.3. The

model representation is the same on both the server and client modules of Panoptyk.

All models extend the IDObject class which provides inbuilt functionality for tracking

model instances and serializing model data for storage or transmission. Models refer

to instances of each other by id, but this abstraction is hidden from the user in private

fields; models automatically handle the retrieval of any other models they reference.

Additional functionality for models is present on the server to handle the modification

and storage of data.

Figure 5.3: Important gameplay models in Panoptyk

38

5.1.3 Information representation

In general, information representation in Panoptyk is based on first-order logic

predicates. This representation is designed to make it as easy as possible for NPC

agents to reason about the data they receive. All events that occur in the world

generate an information object. These objects link the action performed with the rel-

evant variables (agent(s), location, time, item(s), etc.). Every possible action (shown

in table 5.1) is codified and new actions specific to other games can be supported

easily.

Table 5.1: Current list of actions

Action Predicate Variables

Move (Time, Agent, Location, Location)
Pickup (Time, Agent, Item, Location, Quantity)
Drop (Time, Agent, Item, Location, Quantity)
Steal (Time, Agent, Agent, Item, Location, Quantity)
Pay (Time, Agent, Agent, Location, Quantity)

Arrest (Time, Agent, Agent, Location, Information)
Assault (Time, Agent, Agent, Location, Information)

Converse (Time, Agent, Agent, Location)
Gave (Time, Agent, Agent, Item, Location, Quantity)
Ask (Time, Agent, Agent, Location, Information)
Tell (Time, Agent, Agent, Location, Information)

Assign Quest (Time, Agent, Agent, Location, Information)
Fail Quest (Time, Agent, Agent, Location, Information)

Complete Quest (Time, Agent, Agent, Location, Information)
Show Possession (Time, Agent, Item, Location, Quantity)

The server keeps a master copy of every piece of generated information, all infor-

mation distributed to clients are a reference to the master server copy. This is done to

both save memory and to allow the server to keep track of information that is based

on the same event. Because of this system, clients are never given duplicate copies

39

of the same piece of information. This is an essential feature for information types

that reference another piece of information, as it would otherwise be computation-

ally expensive to figure out what information pieces are referring to the same thing.

When client attempts to access an information piece the API automatically pulls the

relevant fields from the master copy.

Panoptyk supports the the usage of partial information, information where one or

more fields are masked to its owner. Masked information still references the original

server master copy, but the masked fields are not sent to the client; this prevents

clients from somehow extracting information they should not have from the master

copy. The information system gives AI bot clients sufficient details to function with-

out the server’s intervention, thus maintaining our decentralized system that allows

external agents to shape the game world.

Figure 5.4: Information references example

5.1.4 Client API

The client API provides the means for agents to communicate with the server.

One of the primary goals of Panoptyk is to allow bots to easily interface with the game

40

without having an information or ability advantage over human players. Both human

clients and bot clients communicate with the server using the same client module

API. The client module uses an asynchronous callback system to inform connected

clients about changes in the world as well as results of attempted actions. Like the

server, the Client API uses Socket.IO to handle all communication with the server.

It also stores object information based on the server’s representation of agents, items,

rooms, and information. The server has a validation system to ensure that a doctored

client cannot cheat.

5.2 Quest scenario

The quests for this scenario of Panoptyk are dynamically generated from informa-

tion predicates using previous history, current knowledge of the game world, faction

personality, and the quest giver’s disposition towards other characters. To accomplish

this, the scenario required a strong implementation of AI agents that were able to

react appropriately to any possible situations.

5.2.1 Structure of AI agents

The Panoptyk AI agents used for this scenario were designed as finite-state ma-

chines (FSM). Initially, all agents were coded as a single-layer FSM, but this resulted

in overly complex FSMs that were hard to follow and contained states that could

not be easily be generalized and reused in other agents. Once additional developers

started working on AI agents, it was decided that a multi-layer FSM would reduce

development time for new agents by generalizing complex behaviors that could be

reused. For example, something simple like telling a target agent a piece of informa-

tion is a multi-step chore even if we assume they are in the same room as the bot; the

bot has to submit a request to leave a current conversation (if they are in one and

41

it does not contain the target agent), wait for that action to succeed (repeating it or

giving up on a failure), submit a request to the target agent if they are in the room

(again repeating or giving up on failure), wait for the target to accept their conver-

sation(possibly giving up after a period of time), and finally, submit a request to tell

info to the target (again repeating or giving up on failure). These transitions had

to be present in any state which required the bot to tell a specific agent something.

It was infeasible to generalize behavior like the previous example because multi-step

actions had to be able to transition in reaction to events outside of the context of their

immediate goal. In other words, single-layer FSMs struggled to accomplish multi-step

asynchronous tasks while remembering “the big picture.”

Figure 5.5: Example bot

42

The multi-layer FSM fixed the issues with the single-layer FSM by abstracting

“big picture” strategy into its own layer. An Action State represents a single action

request to the server while a Behavior State represents an FSM of Action States.

By extension, a strategy represents an FSM of Behavior States. This allows us to

successfully separate high-level goals of the AI agents from the monotonous low-level

actions needed to accomplish them. See Figure 5.5 to see how AI Agents use this to

interact with the game.

5.2.2 Knowledgebase of AI agents

The knowledgebase of AI Agent agents is used to store data that is not contained

on any Panoptyk models or only relevant to a specific Behavior State. These knowl-

edgebases include room connections, information processing for quest or personality

related actions, and stored opinions of other agents. As part of each agent’s “person-

ality” the knowledgebase is responsible for processing all incoming agent actions and

deciding how those actions affect their opinion of the agents doing the action.

Agent opinions of actions are constant integers that are coded into each AI agent.

If there is no secondary agent involved in an action, then the change in opinion is

based entirely on the action itself.

∆opinion(agent) = opinion(action) (5.1)

If there is a secondary agent involved in the action then it means that agent has

been targeted by the action. The change in opinion then becomes based on whether

a positive or negative action is being performed on a liked or disliked agent. For

example, an agent performing a negative action on a disliked agent would result in a

43

positive change in opinion.

∆opinion(agent) = opinion(action) ∗ opinion(otherAgent) (5.2)

Default opinions towards other agents are integer values that start negative for agents

of opposing factions, zero for unaligned agents, and positive for agents in the same

faction. The knowledgebase also saves references to actions that cause a significant

change in opinion. This allows AI agents to refer to actions that they especially liked

or hated. Currently the system is only used to select targets for “gift quests,” but

is in place to create more personalized quests and interactions between agents once

Panoptyk supports more ways to communicate and express emotion.

The knowledgebase is also responsible for assisting with navigation through its

memorization of visited locations. The knowledgebase performs an A* search of

room connections to determine the shortest path to a destination. A* search finds an

optimal path by expanding connections that minimize the distance traveled from the

starting room and remaining distance to the destination.

f(n) = g(n) + h(n) (5.3)

Once the destination is found, the algorithm is able to return the shortest possible

path to the destination. When there is not enough room data, AI agents resort to

random movement to reach their destination.

5.2.3 Quest generation

Quests are represented in special information pieces that signify a goal to complete.

Quests are generated based on the current information knowledge of the quest giver

and their unique pre-defined goals. Quest generation for the two playable factions in

44

the scenario differ due to the different goals of the factions. Quest assignment logic

for factions is shown in Algorithm 1 and Algorithm 2.

Data: target agent to give quest

Result: valid quest to give to target agent

if an opposing agent has done an action to harm target agent then

return a revenge quest targeting the opposing agent that refers to the

harmful action done to target agent;

else if some other agent’s action(s) have pleased the faction leader then

return a gift delivery quest targeting the other agent that refers to how

they pleased the faction leader;

else if there is a valuable item that we don’t own then

assign item retrieval quest that refers to last known information about

that item;

else

assign generic quest to discover new items in the world;

end

Algorithm 1: Thieves Guild quest assignment logic

Data: target agent to give quest

Result: valid quest to give to target agent

if there is a crime that has gone unpunished then

return an arrest quest targeting the criminal and referring to the crime

committed;

else if there is an illegal item that is not currently impounded by the Town

Guard then

return an item retrieval quest that refers to last known information about

that item;

else

return a quest to patrol the town and report any illegal actions;

end

Algorithm 2: Bentham Guard quest assignment logic

45

Chapter 6

VALIDATION

In this section the validation of results in the thesis is discussed. The first stage

of validation was a internal review of results generated by the project. After that, a

user-study was conducted to evaluate the public’s perception of quests.

6.1 Internal review

Before user testing began, we ran multiple internal tests to make sure that the

questing system was working as intended and that the AI faction members were acting

in a manner befitting their current situation and pre-programmed faction personality.

Given the unique information system of Panoptyk, the majority of our early testing

was focused on finding ways to have new information flow to faction leaders. This was

essential because unlike most games, quests in Panoptyk have to be created entirely

from an agent’s personal knowledge. Giving faction leaders global knowledge would

have made the discovery and trading of information (the core premise of Panoptyk)

entirely pointless.

6.2 User study/survey

Three user studies were carried out to validate the quality of generated quests.

The questions and format of the study changed slightly between each iteration to

ameliorate issues as they appeared. In all studies, each subject was placed on either

the Bentham City Guard or Thieves Guild factions. Subjects were expected to play

through a few quests and then answer a survey on their experience. All Versions of

the survey consisted of five different sections to evaluate multiple parts of Panoptyk

46

and the scenario. Free-response questions are grouped into categories of expected

answers.

The first section of the survey asked for basic demographic information on the

participant’s chosen major and experience with video games and video game features

related to quests. The questions in this section were designed to correlate any possible

source of bias that could appear in answers to subsequent questions. It particular, this

section focuses on the participant’s experience and opinion of quests and procedurally

generated quests.

The second section of the survey focuses on general feedback towards their ex-

perience with the Panoptyk game itself. Participants are asked about their overall

enjoyment and to list what the game’s strengths and weaknesses were. They are given

the option to input additional feedback to explain their choices. This section is used

to determine if any other parts of the game hampered the participant’s experience

with quests.

The third section covers the essential topic of quests. This section saw moderate

revision between the three studies, but all have the same base questions. Participants

are first asked how many quests they were assigned and how many they completed

to determine the eligibility of the rest of their answers. They are then asked about

how difficult they thought quests were to see if that had an effect on the rest of

their answers. Immediately after, the primary questions of this section ask users to

rate their agreement on statements measuring quests based repetitiveness, clarity,

consequences, meaningfulness, and relatability to in-game events.

47

Table 6.1: Example responses for each classification of the estimated gen-
eration method free-response question

Class Example Response
Based on world events The quests were based on events happening in the world.
Based on personal actions The quests were based on things I did.
Random The quests were randomly generated from a template of

valid quests.
Other The quests were generated based on the items in the

world

Table 6.2: Example responses for each classification of interesting quest
encounters free-response

Class Example Response
Arrest quest I arrested a criminal after finding evidence of a crime

they did.
Revenge quest I took revenge on a Town Guard member for arresting

me.
Other valid quest I had to do a complicated trade to obtain an item for

my quest.
Unintended/Bug I was able to get infinite money by repeatedly stealing

and selling items!

The fourth section asked participants questions on their experience with the fac-

tion they were in. This was used to separate user data by faction and to see if quest

experiences were different across the two factions. Participants were also asked if they

thought the quests they received made sense given their faction archetype; quests that

felt out of place could have potentially harmed player immersion and resulted in a

more negative perception of quests.

Table 6.3: Example responses for each classification of the item knowledge
free-response question

Class Example Response
The player’s actions The faction leader knew about the item because I told

him about it.
Another player’s actions Someone probably told him about it.
Other It was programmed into his memory.

48

The final section queries participants about the overall impact they felt their

actions had and if other agents had a significant impact on their experience. Given

the multiplayer dynamics of the game, it was possible for players to greatly affect

the experience of other players. While this section has some overlap with quests, it

allows participants to describe interesting scenarios that emerged independently from

quests. This section also asks if participants had enough in-game options to make

gameplay engaging, something that was judged to be a potential shortcoming of the

current gameplay.

Table 6.4: Example responses for each classification of the advantages of
player input influencing quests free-response

Class Example Response
Personalization I felt like my actions were relevant to the quests.
Replayability I never ran out of interesting quests to do.
Other There were no advantages.

Table 6.5: Example responses for each classification of the disadvantages
of player input influencing quests free-response

Class Example Response
Repetitiveness All the quests felt the same.
Lack of depth The quests were fairly shallow.
Vagueness The objectives were vague and hard to complete
Other I hated having to always search for new information to

get a new quest.

Table 6.6: Example responses for each classification of actions that caused
players to treat each other differently free-response

Class Example Response
Quest interference I picked up an item and Chris wanted to trade me for

it.
Quest consequence I was arrested for picking up skooma.
Other Unknown

49

Table 6.7: Example responses for each classification of the gameplay ac-
tions free-response question

Class Example Response
Sufficient actions The game had enough actions.
Insufficient actions I did not have enough actions to do anything useful.

blah blah blah would have made it 1000% better.
Other I could not figure out how to play.

6.2.1 First study

The first study was offered to a college class of Interactive Entertainment En-

gineering students. The testing environment was chaotic due to multiple groups of

students trying to get their games tested. Subjects were given basic instructions to

follow the quests issued by their assigned faction and attempt to complete them to

the best of their ability. Unfortunately there were several technical and design issues

that hampered the testing session. This was the first attempt to have more than

three humans testers connected to the scenario at the same time. These issues meant

almost all users struggled to play the scenario.

6.2.2 Results of first study

The participants of the first student were all members of a class on Interactive

Entertainment Engineering, and were either computer science or software engineering

majors. All participants agreed they had played games where they have had to com-

plete quests. The majority of participant claimed they enjoy games where quests are

given, with only one participant disagreeing. 5 out of 7 participants agreed that most

games they played had a good quest system while the remaining two were neutral.

On the other hand, only 2 participants disagreed that they had been disappointed

by quests in a game. Regarding experience with procedural quests, two participants

did not have experience with them, one participant was unsure, and the remaining

50

four did have experience with procedural quests. Of the participants that had played

procedural quests, two found them enjoyable and two did not.

Figure 6.1: First study screening

Issues with the UI meant that most users were not able to provide much feedback

on quests. Only 2 of the 7 testers claimed that playing was an enjoyable experience.

6 out of 7 testers claimed that the UI was a weakness of the game. In a more positive

note, 5 out of 7 testers claimed that the information system was a strength of the

game, which is important as the information system is core to the Panoptyk engine.

In terms of quests, only 3 of the 7 testers were able to complete any quests; only one

of them was able to complete more than one quest. Unsurprisingly, 6 out of 7 testers

to describe quests as “a little hard” or “way too hard” and resulted in mostly neutral

or negative responses for most questions related to quests. Fortunately, the player

who was able to complete the most quests had extremely positive feedback for the

quests. Feedback on the faction section showed that only 1 of the 7 testers thought

that assigned quests did not make sense for their faction identity. 5 of the 7 testers

felt that their actions had an impact on other players in the game, multiple players

51

noted that other players could pick up items required for their quest. Three players

felt that there were not enough actions in the game, while another three felt that the

actions were too complicated or hard to use.

Figure 6.2: First study overall enjoyment

Figure 6.3: First study strengths

52

Figure 6.4: First study weaknesses

Figure 6.5: First study free-response on quest generation method

53

Figure 6.6: First study quests completed

Figure 6.7: First study quest questions

54

Figure 6.8: First study faction immersion

Figure 6.9: First study multiplayer impact

55

Figure 6.10: First study free-response on actions affecting players

Figure 6.11: First study free-response on actions making gameplay engag-
ing

6.2.3 Second study

The second study was completed over voice chat with five members of the Cal Poly

Game Development Club. The scenario and human client were significantly refined

to be more streamlined for this version. These changes included more detailed quest

56

reasoning, many bug fixes, and a new “Help” window designed to teach the UI and

give tips to confused players. Despite many hours of bug fixing and informal testing

with other people, this session still suffered from some less severe issues. There

were two servers crashes caused by one or more testers not correctly following given

instructions. Fortunately, once the problem was found the rest of the test was able to

proceed. The results of the second study are discussed with the results of the third

study.

6.2.4 Third study

The final session was designed to address the majority of the issues from the pre-

vious sessions. The invitation to participate was sent out in the Cal Poly Computer

Science newsletter as well as posted to the department’s Facebook page. Six volun-

teers conveyed their interest in participating. Testers were assigned to two separate

online sessions in groups of three in order to minimize the chaos that was present in

other tests. It was also decided that the help interface was enough to quickly educate

players on how to operate the UI, so a guided tutorial over screen-share was made

part of the testing process. Instructions were emailed to subjects multiple days before

their assigned session. Frustratingly, only 1 out of 6 volunteers actually showed up

to their assigned session. While the participation rate was disappointingly low, the

lone tester did not run into any UI or technical glitches during his testing session.

6.2.5 Results of second and third studies

The results of the second and third studies are combined since there were few

participants and only minor changes between the two sessions. 5 of the 6 participants

were members of the Cal Poly Game Development Club. All participants agreed that

they had played and enjoyed games with quests. However, only about half of the

57

participants agreed that most games they played had a good quest system. All but

one participant claimed to have played games with procedurally generated quests, but

only three of them agreed to have enjoyed procedural quests. One tester indicated

that they had participated in a testing session of a different scenario of Panoptyk that

was being used as as Turing test.

Figure 6.12: Second study screening

Enjoyment of the game scenario was far better than in the previous study, 4 out

of 6 participants claimed to have enjoyed playing the game. There was a significant

change in opinion of the game’s strength and weaknesses, no aspect of the game was

universally considered a strength or weakness. The increased perception of weakness

is likely due to the fact that more players were able to experience intended aspects

of gameplay. A higher percentage of participants considered quests, User Interface,

and characters a strength of the game. In the free response one player remarked that

“It was fun trying to find items.” There was still significant complaints about the

UI, especially parts of the UI related to information pieces. One player complained

it was hard to find their targeted agent for the quest he was given.

58

Figure 6.13: Second study overall enjoyment

Figure 6.14: Second study strengths

59

Figure 6.15: Second study overall weaknesses

Results regarding quests were far more meaningful than the previous session. 2

of the 6 players were able to deduce that the quests were based on events happening

on the game. Every participant was able to complete quests, with 4 out of 6 of them

completing 5 or more quests. One player turned in 55 quests due to an exploit that al-

lowed him to turn in the same quest repeatedly. Of the six participants, three of them

found quests “a little hard,” one found quests “way too hard” and one found them “a

little easy.” The participant who found quests “a little easy” was the participant who

played the game without any other testers in spite of the fact that the scenario was

balanced around having 3-6 testers. Every participant agreed that quests were based

on events happening in the game. Unfortunately, due to the limited possible action

space for quests, all but one user found quests repetitive. Participants were divided

whether quests had meaningful objectives or not, 2 of them thought they were not

meaningful, 3 were neutral, and 1 thought they were meaningful. Participants were

extremely polarized on whether they received any positive or negative consequences

from quests, 2 agreed or strongly agreed they did and 2 strongly disagreed they did.

In the free response section asking for participants to describe interesting encounters

they had as a part or result of a quest, one participant mentioned he got stuck getting

60

assigned the same quest for the whole game, another participant noted they did a lot

of “thanking” quests, and the remaining participants talked about an arrest event.

In the feedback section, there was four complaints related to bugs or UI issues. The

remaining participant wanted more detail in the empty areas of the city.

Figure 6.16: Second study free-response on quest generation method

Figure 6.17: Second study quests completed

61

Figure 6.18: Second study quest questions

Figure 6.19: Second study free-response on memorable quest encounters

Only one participant was able to complete the extra questions designed for the

third study. The participant agreed having quests based on player input had a pos-

itive impact on his experience. When asked about the advantages of such quests he

62

wrote “It helps make the story unique (see previous comment about Chris and being

arrested). It can also help the player get more involved in the story if they are having

a direct impact on the direction that it is going, instead of a quest-on-rails storyline.”

which was the exact intention behind the system. When asked about the disadvan-

tages of the system he responded “I went and looked at a lot of different items before

coming back to the faction leader. Since I had done that, I had a lot of options to

choose from for turning in the first quest. The issue was that the information wasn’t

removed from the dropdown menu, so there were times when I would accidentally try

to submit information that I submitted before,” this was a definitely a shortcoming

of the UI.

The feedback towards factions was similar to the first study. No participants

thought that the quests assigned were not appropriate for their faction. For additional

feedback, one participant complained that there was not enough backstory given.

Another participant never ended up interacting with someone from a different faction,

this player was also the player assigned an abnormal number of “thanking” quests.

The feedback on impact towards other players correlated heavily with the question

that asked about quest impact. The only participants who disagreed that their actions

impacted other characters in the game were the players who were not assigned quests

targeting other players. When asking for additional feedback on gameplay actions,

two participants said there were enough actions to make gameplay engaging. Three

participants claimed that they had issues with either the information system or UI.

63

Figure 6.20: Second study faction immersion

Figure 6.21: Second study multiplayer impact

64

Figure 6.22: Second study free-response on actions affecting players

Figure 6.23: Second study free-response on actions making gameplay en-
gaging

6.2.6 Analysis

Overall, the results from user testing show positive trends with room for im-

provement. The majority of users who did not experience crippling bugs were able

to perceive that the generated quests were relevant to the events they were expe-

65

riencing, and that their actions could have consequences that affected them later.

The action/consequence implications of quests shows that our system contains the

foundations needed to generate immersive quests. All players who experienced arrest-

related quests talked about arrest-related encounters when asked about interesting

encounters related to quests. This shows that players associated events around the

central plot point of being arrested.

The mixed feedback regarding the meaningfulness of quest objectives was likely

due to a number of factors. A few players ran into critical bugs that prevented

them from completing quests. Players who were able to experience quests were not

guaranteed to experience all possible types of quests due to the dynamic nature of

their generation. In the second study, a few of the players were able to gather all the

items around the world and deprive the slower players of any chance to complete a

quest. This issue was corrected by restrictions to carry capacity in the third study,

but was not able to be thoroughly tested due to the lack of participants. Another

factor that may have hampered the meaningfulness of quests objectives was the lack

of backstory and context surrounding the scenario. Unfortunately, the creation of an

interesting and immersive game world is complex task that goes beyond the context

of quests.

Complaints about the repetitiveness of quests are unfortunate, but perhaps un-

avoidable given the limited gameplay possible in this early build of Panoptyk. The

main gameplay loop of finding items did not really have any exciting moments as-

sociated with it. The fact that no player commented on the different rewards they

received from completing quests probably means they were uninteresting enough to

go unnoticed. The way quests objectives were displayed could have been another rea-

son for why quests were perceived as repetitive; quest objectives always displayed the

end goal rather than steps that a player needed to take to complete it. For example,

the item quests always required a player to given an item to their faction leader, but

66

did not display any intermediary objectives leading up to the final objective. As-

signing intermediary objectives may have helped players notice that the actions they

were taking to complete quests were unique and dependent on the overall state of

the world. Further discussion on ways to improve upon the system are discussed in

Chapter 7.1.

6.3 Additional validation through internal testing

Due to the low number of participants, additional validation was performed on

the scenario using 12 agents consisting of 10 AI agents and 2 humans familiar with

the system. The purpose of this test run was to empirically show that quests could

be generated with limited information, that relevant quests are generated, and that

quests have consequences. The human testers involved in this internal test completed

quests so that data on generated quests could be collected. Other than the use of

internal testers, the overall scenario remained the same as previously described. A

total of 30 quests were completed.

6.3.1 Validation on quest generation with limited information

To show that quest generation is possible with limited information, factions leaders

must always be able to assign a quest to a faction member without one. To prove

this, we start a fresh server instance in which no agent has any information given

by default. The faction leader is able to, without knowledge of anything other than

the room it is in, request a conversation with any faction members in its room and

assign a generic quest to gather more information. This generic quest is possible by

creating a type of information predicate without specifying its action. For example,

a quest command of TILQ could be completed with any information that has a time,

item, location, and quantity. AI agents and human clients are able to interpret this

67

as a quest to find any information that has the given properties. Therefore quests are

able to be generated with only basic knowledge of the structure of information. This

was confirmed in the internal validation test where quest givers of the two different

factions were able to immediately assign quests. Figure 6.3.2 shows the total amount

of information known by quest givers for their first 15 assigned quests during the test.

Figure 6.24: Information known during quest generation using 10 AI
agents and 2 humans

6.3.2 Validation that relevant quests are generated

“Relevant” can be a highly subjective term, so we will define relevant as “based

on events happening in the game and related to the overall goals of a quest giver.”

In order for a quest to be based on events happening in the game, the quest must

have been created from an action that occurred during gameplay. From the generic

information gathering quest, quest givers are able to gain information about events

occurring in the world. Quest givers use the logic defined in either Algorithm 2

68

or Algorithm 1 to create a valid quest that aligns with their goals. The generic

information gathering quests themselves do not meet our definition of “relevant” but

allow for quests that do to be generated. Internal testing found that the full range

quests defined in said algorithms were able to be assigned and completed. We can

conclude that, given our definition of “relevant,” the system is able to produce relevant

quests. This was confirmed in the internal validation test, data represented in Figure

6.3.2 shows that the majority of the assigned quests referenced an in-game event.

Figure 6.25: Quest relevance during scenario using 10 AI agents and 2
humans

6.3.3 Validation that quests have consequences

For the purpose of internal validation, we consider quest related “consequences” as

in-game quests assigned because of any actions done as part of a previous quest. We

can show that quests cause consequences that can affect both the questing agent and

other agents in the game. It is straightforward to see how agents experience personal

69

consequences from completing quests, the generic information gathering quest often

has the consequence of a followup quest referencing the information turned in as part

of the information gathering quest. In specific cases, such as when an agent does

an illegal action to complete a quest, another agent can experience the consequence

of having to hunt down and arrest the first questing agent. This in turn can cause

additional consequences for the first quest agent, where they will be directed to take

revenge on the agent that arrested them (another illegal action). There is also the

positive consequence of a gift quest that can be assigned to reward an agent that has

done things to please a quest giver. Internal testing shows that all of the described

quest consequences regularly occur, proving that quests in the system have what we

have defined as “consequences.” To show that quests cause follow-up consequences,

we tracked consequences on the 30 quests generated in the internal test. Figure 6.3.3

shows the resulting follow-up quests from the internal test; a follow-up quest was any

quest that referenced an event turned in to complete a previous quest. The ”Quests

without immediate follow-up” could have resulted in follow-up quests under the right

circumstances (such as someone witnessing a theft), but were either undetected by

the opposing faction or not considered a priority by the quest givers. The net impact

on the original questing agent is shown in Figure 6.3.3, the majority of follow-up

quest consequences were for agents to hand over items involved in previous quests.

70

Figure 6.26: Follow-up consequences to quests generated using 10 AI
agents and 2 humans

Figure 6.27: Impact of follow-up quest consequences to quests generated
using 10 AI agents and 2 humans

71

Chapter 7

CONCLUSION

7.1 Future work

7.1.1 Improved communication between Panoptyk agents

The UI and mechanics that govern communication between agents may have fun-

damental shortcomings that make it difficult to properly communicate with other

agents. The current system did not allow players to easily express their intentions

and was made worse by the fact that they could not say that they did not know or

have something unless they were in a trade. Another fundamental issue is that agents

totally lack avenues to express emotion or personality; there was no ways for trusted

friends or hated enemies to communicate differently to each other. Methods of rep-

resenting emotion or personality in actions and conversations should be investigated

as it would allow for far more varied and unique interactions between agents.

7.1.2 Additional gameplay actions in Panoptyk

Our quest generator would benefit greatly from additional gameplay additions

to the core Panoptyk engine. The relatively basic gameplay offered by the current

iteration of engine made it difficult to offer varied quests that humans player consider

interesting. Gameplay mechanics based on traditional RPGs mechanics, such as

unique abilities that can be leveled up, basic combat between adversaries, and stealth

actions would likely make the game more interesting to the average gamer. Additional

mechanics would also allow for different quest types with specialized requirements

based on each agent’s strengths and weaknesses. The current quest system could

72

dynamically pick new goals based on information, but only had 4 basic actions (2

of which are very situational and rarely assigned) it could assign to players. Having

quests that encourage players to use a variety of different gameplay mechanics would

make gameplay feel far less repetitive. In all, we believe a more exciting gameplay

loop would increase player enjoyment and make it easier for them to find value in

quests they are assigned.

7.1.3 Valuing uncertain information

Despite being a core premise of Panoptyk, the vast majority of generated infor-

mation has no practical value to players. This is largely due to the fact that only the

most recent information pieces offer information that could be helpful. For example,

the information piece “Bob moved from the backyard to the kitchen at 12:30” only

holds value if you are trying to find Bob. However, it does not hold any value if

Bob is continuously moving and has gone to the opposite part of the town by 12:35.

The same conundrum applies to the location and ownership of items; all information

can very quickly become outdated and the player has no way of knowing if they are

receiving something useful when trading for it. This issue was manageable with AI

agents that had relatively static behavior, but became a serious impediment once

human players with erratic behaviors started influencing the world. Given that all

quests in Panoptyk are based on in-game information this quickly had a catastrophic

effect on the entire quest system. It became impossible to assign most types of ac-

tions as quests because those actions could end up being impossible from unexpected

changes. For example, it was originally intended that the thieves guild would tell

its members to trade for a target item if they were friendly with its owner or steal

it if they were not, but either quest became impossible if the owner somehow lost

possession of the targeted item. This inevitably resulted in all item retrieval quests

turning into “Give Target Item to Faction Leader,” a very generic goal lacking any

73

faction personalization. Future work on the Panoptyk engine should investigate ways

of giving some value to the large amounts of mostly useless information. The engine’s

trade system should also be overhauled so that players are able to get an indication

if information offered in a trade is more recent then anything they already know on

the subject.

7.1.4 Better sentence converter for human client

Panoptyk events are not always converted to easily readable English sentences.

For example, a player trying to ask “Who possesses the pizza” would have to ask

the question “??? POSSESS pizza on ???.” This formatting would likely confuse

any users who have not had experience with formal logic as they might not under-

stand that “POSSESS” is a predicate that accepts up to 3 parameters (agent, item,

and time). Enhancements to the sentence converter would ideally make questions

more readable and help users digest information. More robust improvements to the

sentence converter could include a sentence generator capable of naturally including

appropriate adjectives when referring to different items or agents. Some amount of

text variation for quest descriptions could also reduce the feeling of repetitiveness

associated with quests.

7.1.5 Additional user testing

The relatively small number of user-testers made it difficult to come to strong

conclusions. The early tests of Panoptyk were severely hampered by bugs and con-

fusion. Fortunately, the latest iteration of user-tests seemed to have no major bugs

and far less user confusion than previous tests. Unfortunately, participation in the

final round of user-testing was abysmally low due to the COVID-19 Pandemic despite

74

being advertised through multiple school channels. Finding alternate ways to gain

user-testers would be essential for further analysis of quests.

7.2 Summary of contributions

Our first contribution is the described implementation of Panoptyk as a research

framework to solve problems in procedural content generation, believable AI, and

MMO games. Unlike other MMO research platforms, Panoptyk focuses on social

interactions between humans and AI agents. As part of our work on Panoptyk, we

created a playable scenario in which human and AI agents were able to complete

quests together with no handicaps. This contribution also includes the creation of

example AI agents that are able to use the same information as human players to

competently evaluate the world and perform complex actions for their factions.

Our second contribution is a decentralized dynamic quest generation system based

on the observations and inputs of agents in MMORPGs. This system was able to

dynamically generate personalized quests based on the experiences of the agents in-

teracting with it. We show, through a user study, that humans recognized that our

dynamic quests were based off of in-game events rather than procedurally generated

facts. We also show that players noticed positive or negative consequences from ac-

tions they did as part of a quest. The consequences of quest actions show the building

blocks of generated drama and story. The drama of “arrest” quests led to many play-

ers describing their encounters in the context of that central plot point. It is hoped

that additional gameplay in Panoptyk will open up more opportunities to create dra-

matic plot points. As part of this contribution, we describe the experimental design

used to evaluate quests so that others may repeat our experiments.

75

BIBLIOGRAPHY

[1] T. Adams. Dwarf fortress. Game [Windows, Mac, Linux], Bay, 12, 2006.

[2] T. Adams. Simulation principles from dwarf fortress. Game AI Pro, 2:519–521,

2015.

[3] F. Amato and F. Moscato. Formal procedural content generation in games

driven by social analyses. In 2017 31st International Conference on

Advanced Information Networking and Applications Workshops (WAINA),

pages 674–679. IEEE, 2017.

[4] Bethesda. Elder scrolls skyrim, 2011.

[5] Bethesda. Radiant ai, 2011.

[6] J. B. Black and R. Wilensky. An evaluation of story grammars. Cognitive

science, 3(3):213–229, 1979.

[7] S. Boluk and P. LeMieux. Dwarven epitaphs: Procedural histories in dwarf

fortress. Comparative Textual Media: Transforming the Humanities in the

Postprint Era, pages 125–154, 2013.

[8] V. Bui, H. Abbbass, and A. Bender. Evolving stories: Grammar evolution for

automatic plot generation. In Evolutionary Computation (CEC), 2010

IEEE Congress on, pages 1–8. IEEE, 2010.

[9] T. Debeauvais, B. Nardi, D. J. Schiano, N. Ducheneaut, and N. Yee. If you

build it they might stay: retention mechanisms in world of warcraft. In

Proceedings of the 6th International Conference on Foundations of Digital

Games, pages 180–187. ACM, 2011.

76

[10] N. Dehn. Story generation after TALE-SPIN. In IJCAI, volume 81, pages

16–18, 1981.

[11] J. Doran and I. Parberry. A prototype quest generator based on a structural

analysis of quests from four mmorpgs. In Proceedings of the 2nd

international workshop on procedural content generation in games, pages

1–8, 2011.

[12] J. Doran and I. Parberry. A server-side framework for the execution of

procedurally generated quests in an mmorpg. In GAMEON’15-Proceedings

of the 16th Annual European Conference on Simulation and AI in

Computer Games, pages 103–110, 2015.

[13] Df2014:quest.

[14] M. Farone, T. Hicks, J. Benjamin, and C. Cao. User created content and

quests, June 26 2012. US Patent 8,206,224.

[15] A. M. Frisch and D. Perlis. A re-evaluation of story grammars. Cognitive

Science, 5(1):79–86, 1981.

[16] Cal Poly Github. http://www.github.com/CalPoly.

[17] P. Golle and N. Ducheneaut. Preventing bots from playing online games.

Computers in Entertainment (CIE), 3(3):3–3, 2005.

[18] I. Guthridge and E. Nahari. Dynamic quests in game, Nov. 3 2015. US Patent

9,174,128.

[19] E. J. Hastings, R. K. Guha, and K. O. Stanley. Automatic content generation

in the galactic arms race video game. IEEE Transactions on Computational

Intelligence and AI in Games, 1(4):245–263, 2009.

77

http://www.github.com/CalPoly

[20] P. Hernandez. The internet loves making fun of Fallout 4’s Preston Garvey.

Kotaku Australia, Jan 2016.

[21] P. Hingston. A turing test for computer game bots. IEEE Transactions on

Computational Intelligence and AI in Games, 1(3):169–186, 2009.

[22] P. Hingston. A new design for a turing test for bots. In Computational

Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 345–350.

IEEE, 2010.

[23] I. D. Horswill. Mkultra. In Eleventh Artificial Intelligence and Interactive

Digital Entertainment Conference, 2015.

[24] I. D. Horswill. Postmortem: Mkultra, an experimental ai-based game. In

Fourteenth Artificial Intelligence and Interactive Digital Entertainment

Conference, 2018.

[25] I. D. Horswill and L. Foged. Fast procedural level population with playability

constraints. In Eighth Artificial Intelligence and Interactive Digital

Entertainment Conference, 2012.

[26] What is spatialos?

[27] S. Klein, J. D. Oakley, D. I. Suurballe, and R. A. Ziesemer. A program for

generating reports on the status and history of stochastically modifiable

semantic models of arbitrary universes. Technical report, University of

Wisconsin-Madison Department of Computer Sciences, 1971.

[28] B. Kybartas and C. Verbrugge. Analysis of regen as a graph-rewriting system

for quest generation. IEEE Transactions on Computational Intelligence and

AI in Games, 6(2):228–242, 2013.

78

[29] M. Lebowitz. Story-telling as planning and learning. Poetics, 14(6):483–502,

1985.

[30] Y.-S. Lee and S.-B. Cho. Context-aware petri net for dynamic procedural

content generation in role-playing game. IEEE Computational Intelligence

Magazine, 6(2):16–25, 2011.

[31] Y.-S. Lee and S.-B. Cho. Dynamic quest plot generation using petri net

planning. In Proceedings of the Workshop at SIGGRAPH Asia, pages

47–52, 2012.

[32] B. Li and M. O. Riedl. An offline planning approach to game plotline

adaptation. In AIIDE, 2010.

[33] D. Livingstone. Turing’s test and believable ai in games. Computers in

Entertainment (CIE), 4(1):6, 2006.

[34] M. Mateas. Expressive ai: Games and artificial intelligence. In DiGRA

Conference, 2003.

[35] J. McCoy, M. Treanor, B. Samuel, B. Tearse, M. Mateas, and

N. Wardrip-Fruin. Authoring game-based interactive narrative using social

games and comme il faut. Citeseer.

[36] J. R. Meehan. Tale-spin, an interactive program that writes stories. In Ijcai,

volume 77, pages 91–98, 1977.

[37] Javascript for any scale.

[38] G. S. Miller. The definition and rendering of terrain maps. In ACM

SIGGRAPH Computer Graphics, volume 20, pages 39–48. ACM, 1986.

79

[39] M. Miller, S. Mendonca, N. Philliber, and F. Khosmood. Panoptyk:

information driven mmo engine. In Proceedings of the 14th International

Conference on the Foundations of Digital Games, pages 1–4, 2019.

[40] I. Millington and J. Funge. Artificial intelligence for games. CRC Press, 2009.

[41] R. J. Moore. System for generating or using quests, May 23 2013. US Patent

App. 13/304,024.

[42] H. R. Morse. Preliminary operating notes for saga ii. Technical report, MIT

Technical Memorandum 8436-M-29, 1960.

[43] M. Nelson, M. Mateas, D. Roberts, and C. Isbell. Declarative

Optimization-based Drama Management in Interactive Fiction. IEEE

Computer Graphics and Applications, 26(3):32–41, 2006.

[44] Node.js. Node.js.

[45] G. Oh and J. Kim. Effective quest design in mmorpg environment. In Game

Developers Conference, volume 2005, 2005.

[46] Panoptyk. panoptyk/example-game, May 2020.

[47] Panoptyk. panoptyk/panoptyk-engine, Mar 2020.

[48] Phaser - a fast, fun and free open source html5 game framework.

[49] J. Pita, B. Magerko, and S. Brodie. True story: dynamically generated,

contextually linked quests in persistent systems. In Proceedings of the 2007

conference on Future Play, pages 145–151, 2007.

[50] A. Popescu, J. Broekens, and M. Van Someren. Gamygdala: An emotion engine

for games. IEEE Transactions on Affective Computing, 5(1):32–44, 2013.

80

[51] V. Propp. Morphology of the Folktale, volume 9. University of Texas Press,

2010.

[52] M. O. Riedl, A. Stern, D. Dini, and J. Alderman. Dynamic experience

management in virtual worlds for entertainment, education, and training.

International Transactions on Systems Science and Applications, Special

Issue on Agent Based Systems for Human Learning, 4(2):23–42, 2008.

[53] M. O. Riedl and R. M. Young. Narrative planning: Balancing plot and

character. Journal of Artificial Intelligence Research, 39:217–268, 2010.

[54] D. L. Roberts and C. L. Isbell. Lessons on Using Computationally Generated

Influence for Shaping Narrative Experiences. IEEE Transactions on

Computational Intelligence and AI in Games, 6(2):188–202, 2014.

[55] D. E. Rumelhart. On evaluating story grammars. Cognitive Science,

4(3):313–316, 1980.

[56] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

[57] J. Ryan. Grimes’ fairy tales: a 1960s story generator. In International

Conference on Interactive Digital Storytelling, pages 89–103. Springer, 2017.

[58] J. Ryan. Curating simulated storyworlds. PhD thesis, UC Santa Cruz, 2018.

[59] J. Ryan and M. Mateas. Simulating character knowledge phenomena in talk of

the town. Game AI Pro, 3:433–448.

[60] J. O. Ryan, A. Summerville, M. Mateas, and N. Wardrip-Fruin. Toward

characters who observe, tell, misremember, and lie. In Eleventh Artificial

Intelligence and Interactive Digital Entertainment Conference, 2015.

81

[61] M.-L. Ryan. From Narrative Games to Playable Stories: Toward a Poetics of

Interactive Narrative. StoryWorlds: A Journal of Narrative Studies,

1(1):43–59, 2009.

[62] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Generation in

Games: A Textbook and an Overview of Current Research. Springer, 2016.

[63] M. Sharma, S. Ontañón, M. Mehta, and A. Ram. Drama Management and

Player Modeling for Interactive Fiction Games. Computational Intelligence,

26(2):183–211, 2010.

[64] J. Skorupski and M. Mateas. Interactive story generation for writers: Lessons

learned from the wide ruled authoring tool, Jan 2010.

[65] A. M. Smith, E. Butler, and Z. Popovic. Quantifying over play: Constraining

undesirable solutions in puzzle design. In FDG, pages 221–228, 2013.

[66] A. M. Smith and M. Mateas. Answer set programming for procedural content

generation: A design space approach. IEEE Transactions on

Computational Intelligence and AI in Games, 3(3):187–200, 2011.

[67] J. Suarez, Y. Du, P. Isola, and I. Mordatch. Neural mmo: A massively

multiagent game environment for training and evaluating intelligent agents.

arXiv preprint arXiv:1903.00784, 2019.

[68] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmg̊ard, A. K. Hoover,

A. Isaksen, A. Nealen, and J. Togelius. Procedural content generation via

machine learning (pcgml). IEEE Transactions on Games, 10(3):257–270,

2018.

82

[69] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne. Search-based

procedural content generation. In European Conference on the Applications

of Evolutionary Computation, pages 141–150. Springer, 2010.

[70] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne. Search-based

procedural content generation: A taxonomy and survey. IEEE Transactions

on Computational Intelligence and AI in Games, 3(3):172–186, 2011.

[71] E. Tomai, R. Salazar, and D. Salinas. Adaptive quests for dynamic world

change in mmorpgs. In Proceedings of the International Conference on the

Foundations of Digital Games, pages 286–287, 2012.

[72] S. R. Turner. Minstrel: a computer model of creativity and storytelling. 1993.

[73] N. Wardrip-Fruin. Expressive Processing: Digital fictions, computer games, and

software studies. MIT press, 2009.

[74] G. N. Yannakakis. Game ai revisited. In Proceedings of the 9th conference on

Computing Frontiers, pages 285–292, 2012.

[75] G. N. Yannakakis and J. Togelius. Experience-driven procedural content

generation. IEEE Transactions on Affective Computing, 2(3):147–161, 2011.

[76] G. N. Yannakakis and J. Togelius. Artificial intelligence and games, volume 2.

Springer, 2018.

83

APPENDICES

Appendix A

PANOPTYK HUMAN CLIENT

Figure A.1: Panoptyk Human Client Full Game Window

84

Figure A.2: Panoptyk Human Client Conversation Tab

85

Figure A.3: Panoptyk Human Client Help Window

86

Figure A.4: Panoptyk Human Client Information Tab

87

Figure A.5: Panoptyk Human Client Inspect Tab

88

Figure A.6: Panoptyk Human Client Items Tab

89

Figure A.7: Panoptyk Human Client Quest Tab

90

Figure A.8: Panoptyk Human Client Requests Tab

91

Figure A.9: Panoptyk Human Client Trade Tab

92

Appendix B

INITIAL STUDY

93

Figure B.1: Consent Form of Survey

94

Figure B.2: First survey instructions

95

Figure B.3: First survey demographics

96

Figure B.4: First survey general feedback

97

Figure B.5: First survey survey general feedback (cont.)

98

Figure B.6: First survey quest feedback

99

Figure B.7: First survey faction feedback

100

Figure B.8: First survey impact feedback

Figure B.9: First survey end

101

Appendix C

REVISED STUDY

102

Figure C.1: Consent Form of Survey

103

Figure C.2: Revised survey demographics 1

104

Figure C.3: Revised survey demographics 2

Figure C.4: Revised survey instructions

105

Figure C.5: Revised survey survey general feedback 1

106

Figure C.6: Revised survey survey general feedback 2

107

Figure C.7: Revised survey quest feedback 1

108

Figure C.8: Revised survey quest feedback 2

109

Figure C.9: Revised survey item quest 1

Figure C.10: Revised survey item quest 2

110

Figure C.11: Revised survey player driven quests feedback

111

Figure C.12: Revised survey faction feedback

112

Figure C.13: Revised survey impact feedback

113

Figure C.14: Revised survey end

114

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Procedural content generation
	2.1.1 Constructive generation methods
	2.1.2 Search-based approaches
	2.1.3 Formal grammars
	2.1.4 ASP solvers
	2.1.5 Mixed-initiative content creation
	2.1.6 Machine learning

	2.2 Procedural quest generation
	2.3 Narrative breakdown/generation
	2.4 Believable NPCs/AI
	2.5 Massively multiplayer online games
	2.5.1 Need for content
	2.5.2 Boring NPC behavior
	2.5.3 Bootstrap problem
	2.5.4 Hardware limitations/instancing

	2.6 Tools
	2.6.1 Typescript
	2.6.2 Node.js
	2.6.3 Phaser

	3 Related Works
	3.1 Procedural content generation
	3.1.1 Emergent narrative
	3.1.1.1 SAGA II
	3.1.1.2 Grammar-based story generators
	3.1.1.3 TAIL-SPIN and story generation via planning
	3.1.1.4 Drama management
	3.1.1.5 Dwarf Fortress

	3.1.2 Quest generation
	3.1.2.1 Dwarf Fortress adventure quests
	3.1.2.2 Quest generation using Petri Nets
	3.1.2.3 Quest generation in MMORPGs
	3.1.2.4 Quest generation patents

	3.1.3 Story generators for authors

	3.2 Believable NPCs/AI
	3.2.1 MKULTRA

	3.3 Massively multiplayer online games
	3.3.1 Neural MMO
	3.3.2 SpatialOS

	4 Design
	4.1 Panoptyk Engine
	4.1.1 World representation
	4.1.2 Panoptyk agents
	4.1.2.1 World perception
	4.1.2.2 World interaction

	4.1.3 Information driven gameplay
	4.1.4 Quest support
	4.1.5 Human client

	4.2 Quest scenario
	4.2.1 Quest generation
	4.2.2 Town Guard faction
	4.2.3 Thieves Guild faction
	4.2.4 Player input to determine followup quests
	4.2.5 NPC agent design

	5 Implementation
	5.1 Pantoptyk Engine
	5.1.1 Server
	5.1.2 Gameplay models
	5.1.3 Information representation
	5.1.4 Client API

	5.2 Quest scenario
	5.2.1 Structure of AI agents
	5.2.2 Knowledgebase of AI agents
	5.2.3 Quest generation

	6 Validation
	6.1 Internal review
	6.2 User study/survey
	6.2.1 First study
	6.2.2 Results of first study
	6.2.3 Second study
	6.2.4 Third study
	6.2.5 Results of second and third studies
	6.2.6 Analysis

	6.3 Additional validation through internal testing
	6.3.1 Validation on quest generation with limited information
	6.3.2 Validation that relevant quests are generated
	6.3.3 Validation that quests have consequences

	7 Conclusion
	7.1 Future work
	7.1.1 Improved communication between Panoptyk agents
	7.1.2 Additional gameplay actions in Panoptyk
	7.1.3 Valuing uncertain information
	7.1.4 Better sentence converter for human client
	7.1.5 Additional user testing

	7.2 Summary of contributions

	BIBLIOGRAPHY
	A Panoptyk Human Client
	B Initial Study
	C Revised Study

