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ABSTRACT 

Optimization and Longevity of Functionalized Multi-Walled Carbon Nanotube-Enabled 

Membranes for Water Treatment 

Madeleine M. White 

Water scarcity is a growing concern at the global scale. Large scale water reuse is growing 

both in necessity and popularity. Before water reuse can be performed efficiently on a 

large scale or be used for potable supply, even indirectly, contaminants of emerging 

concern (CECs) will need to be treated at the full scale. Advanced oxidation processes 

(AOPs) are a form of advanced water treatment capable of treating a wide range of CECs. 

This study contributes to the growing field of AOPs and more specifically AOPs using 

ozone combined with functionalized multi-walled carbon nanotubes (MWCNTs). 

Ozonation of MWCNTs has been found to increase hydroxyl radical production and 

improve AOP treatment. Novel MWCNT-enabled membranes were used as catalysts for 

ozonation to degrade the CEC Atrazine. Atrazine is an ozone recalcitrant CEC that is 

commonly found in herbicides. Atrazine removal results, found using a high-performance 

liquid chromatograph (HPLC), were inconsistent between membranes constructed using 

identical procedures. Further analysis using Fourier transform infrared (FTIR) 

spectroscopy, scanning electron microscopes (SEM), and UV-Vis spectrophotometry was 

conducted to explore inconsistencies in construction of the membranes which might 

explain removal inconsistencies and predict membrane longevity. Removal was found to 

be influenced by filtration time and ozone exposure. Ozone exposure and filtration time 

influence percent removal because they both affect hydroxyl formation. The membrane 

test filtration duration, for equal filtered volumes, ranged from under 5 minutes to nearly 

an hour. It is believed that filtration time inconsistency was due to inconsistent MWCNT 

loading on the surface of the membranes. Extended exposure to ozone might change the 

surface chemistry of the MWCNTs on the membrane surface, affecting hydroxyl radical 

production.  Additionally, repeated use of the membrane created surface defects that 

might reduce the membrane strength. This study found that the lifetime of the membrane 

is far past what was simulated in lab and further testing must be performed.   
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1. INTRODUCTION 

Access to potable water is a timeless issue. Growing populations worldwide have further 

increased demand for water resources. Given the high costs of imported water and 

seawater desalination, advanced water treatment (AWT) to recycled water has come to 

the forefront of the conversation about how to sustain populations and ecosystems in 

arid and water-stressed regions. Indirect and direct potable reuse (IPR and DPR), that is 

the treatment of wastewater effluent to drinking water standards with or without the use 

of an environmental buffer, is a new water reuse technique that could decrease demand 

on depleted surface and groundwater.  

One concern for both IPR and DPR is the addition of recalcitrant contaminants of 

emerging concern (CECs) with every cycle of reuse [1]. CECs include pharmaceuticals and 

personal care products (PPCPs), which are currently detectable at the parts per trillion 

(PPT) range in drinking water systems. Wastewater concentrations of PPCPs have been 

recorded between 0.1 and 100,000 PPT prior to treatment, though their effects on human 

health and the environment are not exactly known [15]. DPR would not provide a closed 

loop, because advanced treatment cannot achieve 100% water recovery; the drinking 

water from DPR would need to be supplemented from another source, such as the 

buffering reservoir of IPR. The consequence of using DPR or IPR for any fraction of drinking 

water is the accumulation of PPCPs overtime; treatment for CECs must be included in any 

DPR or IPR application. Technologies designed to treat CECs are growing in numbers and 

feasibility [1]. The present study aims to contribute to the growing field of advanced 

treatment processes aimed at treating CECs.  
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1.1 Research Questions 

Results from previous studies, conducted by Dr. Rebekah Oulton and graduate students 

Kelly Cochran and Emily Miller of Cal Poly, San Luis Obispo, have contributed to the 

growing research into advanced oxidation processes (AOPs). Their research testing 

ozonation of MWCNTS as an AOP in batch or semi-batch reactor systems have produced 

promising results.  However, due to the variability of ozone concentration with respect to 

time and volumetric inefficiencies, a batch reactor is an infeasible form of treatment large 

scale.  

More recent studies have been conducted using a continuous ozonation flow through 

MWCNT-embedded membrane technique [15].The flow through technique has been 

found to be extremely inconsistent with respect to ozone concentration, contaminant 

removal efficiency, and retention time.  

The present study repeats and builds on previous studies using continuous ozonation flow 

through membrane technique in hopes of identifying those variables with greatest effect 

on contaminant removal. In addition, this study explores qualitative differences between 

membranes at different stages of use/ treatment, to determine how membrane efficacy 

changes with repeated use. Qualitative methods included Fourier transform infrared 

spectroscopy (FTIR) to evaluate the surface chemistry of the multi-walled carbon 

nanotube (MWCNT)-enabled membrane after repeated uses. Furthermore, a scanning 

electron microscope (SEM) provided visual imaging of the membrane’s surface. UV-Vis 

spectrophotometry was used to evaluate light transmittance in a functionalized MWCNT 

solution. The results of this study intended to answer the following questions: 
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● What experimental and operational variables affect contaminant removal during 

a single pass through a CNT-enabled membrane during ozonating conditions? 

● How do the CNT-enabled membranes change with repeated uses and extended 

exposure to ozone, specifically regarding surface functionalization of the CNTs and 

integrity of the membrane itself?  

● Can these results explain the variability of results between different membranes 

prepared under identical conditions in prior studies? 

 

1.2 General Approach 

This study was designed to repeat methods performed previously using a MWCNT- 

enabled membrane in an ozonated vacuum filter to treat Atrazine. Furthermore, this 

study intends to discover potential causes for variability between different membranes 

that have been prepared using identical procedure using microscopy, spectroscopy, and 

spectrophotometry. Fourier Transform Infrared Spectroscopy was used to discover what 

functional groups were present on the surface of membranes following repeated use. A 

scanning electron microscope was used to take images of membranes representative of 

different levels of treatment. These images should illustrate surface flaws, preferential 

pathways, and changes to the surface caused by extended exposure to ozone. Lastly, UV-

Vis spectrophotometry was used to identify transmittance of functionalized MWCNT 

solutions. 



  4 

2. LITERATURE REVIEW 

Implementation of direct and indirect potable reuse continues to rise as water scarcity 

remains a growing concern. One concern with DPR is the “closed-loop” nature of the 

water system, leading to higher concentrations of contaminants of emerging concern 

(CECs). The term “contaminants of emerging concern” refers to synthetic or naturally 

occurring chemicals or microorganisms in the environment “that have known or 

suspected adverse ecological and/or human health effects” [1]. Some CECs are more 

reactive to different forms of treatment than others. Atrazine is one of many CECs that 

are resistant to conventional treatment methods, and for this reason it is a useful 

indicator of the efficacy of an advanced treatment process.  

Conventional water treatment includes preliminary, primary, secondary and sometimes 

tertiary or advanced treatment methods. Depending on the required effluent quality 

different treatment techniques can be chosen. To treat most CECs, advanced treatment 

methods are required. Such advanced treatment includes membrane filtration, 

adsorption and or oxidation processes. Ozone coupled with functionalized multiwalled 

carbon nanotubes (MWCNTs) is sufficient in producing oxygen functional groups capable 

of breaking down CECs. Qualitative and quantitative research methods are valuable in 

identifying removal efficiency and longevity of such membranes following repeated 

exposure to an oxidant. 
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2.1 Emerging Contaminants and Breakdown Products  

CECs include pharmaceuticals, pesticides, industrial chemicals, surfactants, gasoline 

additives and personal care products. Emerging contaminant sources vary in rate of 

production and nature of production. Pollutant sources are classified as point and or non-

point sources. Point sources include wastewater treatment plants, drug manufacturing 

industries, hospitals, livestock farms, aquaculture, household outflow etc. Non-Point 

sources are harder to identify; they include storm-water runoff, terrestrial runoff from 

roads, urban areas and agriculture land [2]. In surface waters, concentrations of the CECs 

have been found at a few hundred nanograms per liter or more [3].   

A contaminant’s persistence in the environment correlates with its accumulation in the 

environment over time. Bioaccumulation that occurs in the environment can raise 

concentrations to toxic levels. Emerging contaminant effects on humans are still largely 

unknown. However, their increasing presence poses potential for harm to humans and 

definite risk to aquatic life and amphibians [4]. When studying CECs, it is important to 

identify specific contaminants that are resistant to current treatments and therefore are 

more likely to escape into the environment.  

 

2.2 Atrazine  

Atrazine is a CEC, and more specifically an endocrine disruptor (aka endocrine disrupting 

compound or EDC). Endocrine disruptors alter the normal functions and production of 

hormones. Any part of the body that is affected by hormones can be affected by 
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endocrine disruptors. Endocrine disruptors can increase risk of tumors, birth defects and 

developmental disorders [6].  

Atrazine is an herbicide of the Triazine class. Triazine class herbicides work by inhibiting 

photosynthesis. Specifically, this powerful herbicide interferes with the Hill reaction, a 

water splitting reaction that results in the production of free oxygen by plants. 

Photosynthesis begins with photosystem II, a protein complex that facilitates 

photosynthesis, it is this protein complex that Atrazine inhibits the entire reaction [5].  

 

Figure 1: Photosynthesis and the Hill reaction at the thylakoid membrane [5]. 

Atrazine can be found, at varying concentrations, in Vigoro, Monsanto and Scotts Bonus 

consumer products [6]. In a 2018 U.S. Environmental Protection Agency (EPA) Human 

Health Risk Assessment, it was concluded that Atrazine does not pose any “dietary (food), 

residential handler, non-occupational spray drift, or occupational post-application” risks 

under registered uses [6]. Unlike the United States, many nations in Europe have more 

stringent laws around the use of Atrazine. Atrazine’s “long-term persistence in the 

environment, together with toxicity to wildlife and possible link to human health” 
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ultimately led to a European Union-wide ban in 2004 [30]. While still considering it safe, 

the U.S. EPA warns, outside of registered uses Atrazine can still pose a risk.  

The maximum contaminant level (MCL) for Atrazine set by the United States EPA for 

drinking water is 3 ppb [7]. Atrazine rarely meets or exceeds EPAs drinking water 

standard, but it is often surpassed in surface water monitoring data, likely due to runoff 

from agricultural application. In 2017 Atrazine monitoring program data, 128 sites met or 

exceeded 3 ppb. The highest exceedances occurred in Ohio, Illinois, Kansas, Tennessee 

and Kentucky [8]. These areas are all known for a large agriculture footprint, which 

suggests a relationship between exceedances and the agriculture industry.  

Due to Atrazine’s low solubility (Ksp of 33,000 ppm), it has a low biodegradation rate and 

tends to persist in the environment. Atrazine contains an oxidized ring of carbon that is a 

poor source of energy for microorganisms (Figure 2). Atrazine degradation typically 

follows a metabolic pathway in which the carbon ring is fully oxidized and is a nitrogen 

source for aerobic microorganisms (Figure 2) [9].  

 

Figure 2: Metabolic pathway followed by Atrazine during degradation [10]. 
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Atrazine’s commercial use, persistence, and potential health risks increase the urgency to 

research removal techniques in drinking water and potable reuse systems. As it stands, 

Atrazine is recalcitrant to breakdown during conventional wastewater treatment. 

Atrazine is one of many persistent CECs that are resistant to conventional treatment.  

Studying impacts of AOPs on atrazine may provide insight into techniques that can be 

used for other CECs. 

 

2.3 Conventional Treatment Processes  

Wastewater treatment processes remove constituents via physical, chemical and 

biological methods. Physical treatment includes processes such as screening, mixing, 

flocculation, sedimentation, flotation, filtration and adsorption [11]. Chemical treatment 

removes constituents with the addition of chemicals or through chemical reactions. 

Examples of chemical treatment include precipitation, gas transfer, adsorption, and 

disinfection [11]. Biological treatment targets colloidal or biodegradable substances 

found in the water using microbes that break down these constituents. Biological 

treatment is typically performed by converting these biodegradable substances into gases 

that can escape, or into biological cell tissue that can be settled or separated physically 

[11]. Understanding the different levels of water treatment and their capability to 

removes CECs is important in designing a reliable system for potable water reuse. 
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2.4 Primary and Secondary Treatment 

Water treatment is divided into preliminary, primary treatment, secondary treatment, 

tertiary treatment, advanced treatment and disinfection. Preliminary treatment is the 

initial treatment performed to remove large constituents that may cause maintenance or 

operational problems to later treatment processes [11]. Primary treatment performs 

initial removal of suspended solids and organic matter from the wastewater [11]. 

Secondary treatment removes biodegradable organics, suspended solids and nutrients. 

Disinfection is often included in the scope of secondary treatment [11]. Emerging 

contaminants are targeted in tertiary and advanced treatment. However, incidental CEC 

removal occurs during earlier stages.  

During secondary treatment, conventional activated sludge (CAS) has been found to 

remove emerging contaminants. Removal efficiency via CAS is thought to be improved by 

modifying temperature and hydraulic and sludge retention time. Surfactant removal 

relies more heavily on sorption when residence time is too short for complete 

degradation. Pharmaceuticals, typically more polar pollutants, are more likely to be 

removed during biological transformation or mineralization induced by microorganisms 

[12]. Trickling filters are also capable of removing emerging contaminants though at a 

lower efficiency than CAS systems [15].  Endocrine disruptors, sunscreens and 

disinfectants, uniquely, have a higher removal rate by trickling filters than CAS systems. 

This is likely due to the trickling filter’s ability to retain bacteria in the system, unlike CAS 

systems [15]. Immobilized bacteria populations in the trickling filter are “capable of 

degrading rather recalcitrant compounds” [15]. Both Primary and secondary treatment 



  10 

processes are capable of degrading some CECs, however they should not be used as the 

primary removal system. 

 

2.5 Advanced Treatment Processes  

Following secondary treatment, effluent water contains a variety of trace constituents 

including both natural and synthetic organic chemicals at low levels. To protect human 

health and the environment, especially in potable reuse applications, additional 

treatment is required.  

2.5.1 Membrane Filtration 

Membrane filtration continues to grow in popularity as a form of advanced treatment. 

Membrane filtration is the process of using a semipermeable or osmotic driven 

membrane to remove particulate, colloidal and dissolved constituents from a liquid.  

Membrane filtration is able to remove a range of particle sizes typically from 0.0001 to 

1.0 μm in diameter depending on the type of membrane[11]. The membrane pore size 

controls the passage of certain constituents and retention of others. From smallest to 

largest pore size, common membrane filtration processes include: microfiltration, 

ultrafiltration, nanofiltration and reverse osmosis. The driving force for the listed 

processes includes low and high-pressure systems [11]. Microfiltration and ultrafiltration 

require a low-pressure hydraulic force or vacuum, and nanofiltration and reverse osmosis 

require a high-pressure driving force [11].  

Membrane technologies can be designed in different configurations out of various 

materials to be most efficient. Membrane units are constructed to account for membrane 
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type, pressure requirements, inlet and outlet feeds as well as overall support structure. 

Each unit design can be made to run water from the inside out or outside in. An outside-

in flow is preferred because of its ability to run a backwash cycle. The membrane material 

depends on the type of membrane process and unit design. Membranes can be made 

from numerous organic or inorganic materials, most commonly polymers, ion exchange 

resin, ceramic or cellulose base [11]. The factors used to determine membrane material 

and unit design are fouling potential, deterioration, target constituents and results from 

pilot plant studies. Membrane filtration processes are typically paired with other 

treatment and pretreatment methods to improve efficiency and reduce fouling [13]. 

Ultra- and nanofiltration and reverse osmosis are capable of removing emerging 

contaminants. Membrane filtration rejects constituents due to pore size, adsorption and 

electrostatic repulsion. Ultrafiltration is the largest pore size capable of achieving some 

emerging contaminant removal. When mechanisms such as adsorption or electrostatic 

repulsion are the main mechanisms, membranes of a larger pore size can be used for 

retention of CECs [28]. Other physical factors relate to the retention achieved by 

membranes including hydrophobicity, surface roughness and relative charge. 

Furthermore, beyond the membrane, attributes of the feed water containing the CECs 

affect the membrane’s ability to prevent pass-through [28]. Attributes that can affect the 

feed water and the membranes effectiveness include concentration of suspended and 

dissolved solids, pH and salinity. When designing a system intended to treat CECs, 

membrane technology can be a valuable asset.  
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2.5.2 Activated Carbon 

Activated carbon is one of the principle materials for adsorption treatment. Activated 

carbon can be distinguished by two size classes: powdered activated carbon which is less 

than 0.074 mm in size and granular activated carbon which has a diameter of 0.1 mm or 

more [11].  

Both sizes perform relatively the same process of adsorption. The adsorption process can 

be broken down into individual steps. The first step is bulk solution transport. During bulk 

solution transport, the organic material moves through the liquid to the boundary layer 

fixed film around the adsorbent, activated carbon. Next, the organic material diffuses 

through the fixed film layer to the pores of the adsorbent. Following, organic material 

moves through the pores via molecular diffusion through the liquid and or by diffusion 

along the surface of the adsorbent. The last step is adsorption of the organic material at 

an available adsorption site. The slowest step also known as the rate limiting step differs 

for physical and chemical adsorption. For physical adsorption the rate limiting step is one 

of the diffusion steps. For chemical adsorption, the rate limiting step is the adsorption 

step [11].  

Both granular and powder activated carbon are capable of removing emerging 

contaminants via adsorption. Powder activated carbon has been found to achieve, in 

general, better results than granular activated carbon [14]. Powder activated carbon has 

achieved better results to granular activated carbon because of its greater surface area 

to volume ratio. Repeated use will reduce the activated carbons removal efficiency as 
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available surface sites for sorption become filled, and will require replacement or 

regeneration.  

2.5.3 Direct Oxidation 

Chemical oxidants are used during water treatment to control odor, control hydrogen 

sulfide, remove color, remove iron and manganese, disinfection, control biofilm growth 

and fouling, as well as oxidizing trace organic constituents including emerging 

contaminants.  The most common oxidants used in water treatment include: ozone, 

hydrogen peroxide, permanganate, chlorine dioxide, and chlorine [11].  Chemical 

oxidants can produce more harmful byproducts than the constituents they target [11]. 

Their use in water treatment should be carefully monitored and limited to maximize 

efficiency and minimize potential toxicity [11]. 

Ozone is an efficient method of disinfection and pollutant removal without a large 

production of disinfection byproducts. However, in special cases, like when bromide is 

present, disinfection byproducts can be formed during ozonation [15]. Some CECs are 

more reactive to oxidation by ozone alone, where others, also known as ozone 

recalcitrant, require additional treatment [15]. advanced oxidation processes (AOPs) 

might effectively treat ozone recalcitrant CECs. 

 

2.6 Advanced Oxidation Processes  

AOPs are processes that form hydroxyl radicals (● OH), the most reactive oxidant. The 

most common AOPs on a commercial scale include ozone/UV, ozone/hydrogen peroxide, 

ozone/UV/hydrogen peroxide and UV/hydrogen peroxide [11]. AOPs are capable of 
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further treatment and destroying trace constituents following tertiary treatment. Some 

AOPs differ from typical oxidants because they do not present the potential formation of 

toxic byproducts [11]. In addition, they are capable of oxidizing compounds that 

conventional oxidants cannot. AOPs provide many benefits other forms of advanced 

treatment do not, including their ability to degrade constituents rather than 

concentrating them or transferring them into a different phase, as seen with physical 

treatment processes. In addition, AOPs can destroy compounds that cannot be adsorbed 

or are semi-adsorbable [11]. Due to the nature of AOPs, unlike many advanced processes, 

neither increased pressure nor increased temperature are necessary. In addition, AOPS 

are capable of chemically treating contaminants that are resistant to direct oxidation. 

AOPs are successful because of their ability to produce high levels of hydroxyl radicals. 

Hydroxyl radicals are a strong oxidant capable of complete oxidation of contaminants 

with no restriction to specific groups of compounds [11]. Hydroxyl radicals break down 

organics using different methods, as demonstrated in the reaction equations below: 

radical addition, hydrogen abstraction, electron transfer and radical combination.  

Radical Addition  

R+HO● ⟶ROH● 

Hydrogen Abstraction 

R+HO● ⟶R●+H2O 
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Electron Transfer  

Rn+HO● ⟶Rn-1+OH- 

Radical Combination  

HO●+HO● ⟶H2O2 

Radical addition of compounds with double bonds and hydrogen abstraction are the most 

common methods. In the context of wastewater treatment, hydroxyl radicals can be 

formed as a product of ozone and hydro-peroxides decomposition or UV-based 

treatment. 

Current AOPs share various drawbacks including high cost of operation, production of 

hazardous oxidative byproducts in some cases, and variable removal efficiency [15]. 

Considering these shortcomings, it would be advantageous to develop new treatment 

technologies to optimize or replace current AOPs.  One such alternative AOP currently 

under investigation is catalytic ozonation. 

2.6.1 Carbon Nanotubes and Ozone  

Catalytic ozonation is the process in which metal oxide or activated carbon surfaces 

promote the degradation of ozone into ● OH, resulting in higher ● OH production than 

ozonation alone [15]. Activated carbon is an effective catalyst for ● OH production; 

however, structural failings occur after repeated exposure to ozone [15]. Current studies 

suggest activated carbon is an effective catalyst because of its high surface area and basic 

surface functionalities.  
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Carbon nanotubes (CNTs) are cylindrical molecules formed by rolling up a single sheet or 

multiple sheets of graphene. CNTs share similar properties to activated carbon, however 

CNTs hold other features including high external surface area, tremendous mechanical 

strength and thermal stability [15]. When MWCNTs are exposed to ozone for extended 

periods of time, ozone promotes formation of active oxygen functional groups on the CNT 

surfaces. These functional groups are believed to further promote ozone breakdown into 

● OH in solution.  

Past research on MWCNTs and ozone as a form of water treatment has largely been 

performed as batch reactions [15], [29]. In these systems, MWCNTs have been suspended 

in the solution containing the CEC attempted to be removed. Ozone was added via aliquot 

(batch reactions) or bubbled into the solution (semi-batch reactions), and samples were 

taken from the system to determine contaminant removal [29]. The problem with 

MWCNTs in a batch system as described is the lack of full scale feasibility and potential 

risk to the environment. MWCNTs are a current concern because of the unknown 

environmental and human health risks that they may pose. By its very nature performing 

a batch reaction with freely suspended MWCNTs allows for potential loss of MWCNTs or 

MWCNT products during treatment. Before a full scale CNT system could be implemented 

in a treatment facility, the technology would need to guarantee no CNT leaching into the 

effluent water.  A constant flow system, with a CNT enabled membrane may be a more 

viable choice for a full scale set-up and better contain CNTs from accidental 

environmental exposure.  
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2.7 Nano-Enabled Material 

CNT membranes are a new technology, created less than 20 years ago, that describe 

membranes enhanced with CNTs or fabricated out of CNTs [17]. CNT membranes can be 

distinguished by three different fabrication techniques. The first and more complicated 

fabrication method aligns the CNTs vertically. The vertical alignment allows the 

membrane to achieve a relatively high water flux. The second fabrication technique mixes 

CNTs with a polymer and layered it on a fabric, very similar to how a reverse osmosis 

membrane is fabricated. The third method, called the Bucky paper method is fabricated 

by vacuum filtering MWCNTs dispersed in solution onto a flat sheet membrane [17].  

The vertical alignment method achieves the best flux however it requires a special 

operating system and the membranes themselves are difficult to construct. The polymer 

method and Bucky method achieve similar fluxes and can both be used in simple systems. 

[17] 

2.7.1 Practical Applications 

For MWCNTs coupled with ozone to be a realistic AOP in the field, treatment must evolve 

from a batch reactor system. MWCNT-enabled membranes are a plausible solution to the 

batch treatment problem. By using a membrane, MWCNTs will be contained during 

treatment, while still maintaining sufficient exposure to contaminated water. Lab tests 

performed by Dr. Rebekah Oulton, Stephen Penrose, and Emily Miller found the “Bucky 

Method” (refer to Methods section) to produce the best results in the lab as a MWCNT 

enabled membrane [15]. One theoretical application of the membrane produced from 
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the Bucky Method can be seen below in Figure 3. The schematic illustrates influent water 

being ozonated and pumped to two separate MWCNT enabled membranes. 

 

Figure 3: Schematic of Flow-through system. Schematic created by Jason Haas, Adopted 

from Oulton. [15] 

2.8 Fourier Transform Infrared Spectroscopy  

Fourier Transform Infrared (FTIR) Spectroscopy studies absorbance and emission of 

infrared radiation by matter. As infrared radiation is passed through a sample, some is 

absorbed and some is transmitted. The result is a spectrum representing a molecular 

“fingerprint” of the sample. (Figure 4) 
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Figure 4: FTIR example spectra. [18] 

FTIR Spectroscopy can be used to identify and characterize chemical structures. 

Attenuated Total Reflectance (ATR) FTIR Spectroscopy is a technique used to measure the 

infrared spectra of solids and liquids as well as “probing adsorption on particle surfaces” 

[19]. ATR works by measuring the changes that occur in a reflected infrared beam when 

the beam contacts a sample. After the beam contacts the sample, the transmitted beam 

returns to a crystal in the ATR accessory. This internal reflectance creates an evanescent 

wave that extends from the surface of the crystal to the sample and the detector in the 

spectrometer [20] (Figure 5). 
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Figure 5: FTIR-ATR figure depicting reflectance off a sample [21]. 

The FTIR Spectrometer generates spectra graphs with patterns that can be identified as 

specific functional groups. (Figure 6) One of the main drawbacks of FTIR Spectroscopy is 

that, although it can identify existing functional groups, it cannot determine the number 

or concentration of functional groups present.  

 

Figure 6: Spectra labeling common functional groups [22]. 

2.9 Fourier Transform Infrared Spectroscopy Results for CNTs 

FTIR has had varying levels of success when used to analyze functionalized CNTs. A more 

promising study conducted by Sahebian, S. et al. compared pure MWCNTs with MWCNTs 
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functionalized with 50 mL of concentrated HNO3 for durations of 1, 2 and 4 hours [23]. 

The samples were analyzed using a transmission electron microscope (TEM), FTIR, UV-Vis, 

as well as Raman Spectra. The FTIR spectra for the pure sample (P-MWCNT), 1, 2 and 4 

hour functionalized samples (F-MWCNT-1 h, F-MWCNT-2 h, F-MWCNT-4 h) are displayed 

in Figure 7 [23]. 

 

Figure 7: Functionalized samples, FTIR spectra of P-MWNT, F-MWNT-1 h, F-MWNT-2 h, 

and F-MWNT-4 h, FTIR spectra [23]. 

Low intensity spots at around 3440 and 1711 nm  correspond to functional groups ● OH 

and C=O. Water observed on the surface of the CNTs likely relates to the ● OH peak. The 

functionalized samples contain an additional peak around 1719 nm caused by C=O 

stretching, indicative of a carboxylic group created during oxidation. The intensity of the 

C=O peak implies a greater presence of the carboxylic groups. In addition, the F-MWCNT-

2 h sample contained peaks at 2923 and 2853, representative of a CH2 group. This study  
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found that “when the time of acid treatment increases, the intensity of hydroxyl and 

carboxyl groups in spectrum goes toward a high value“ [23]. Given this study, it is 

expected that with extended ozone exposure hydroxyl and carboxyl groups will be visibly 

present in high values on the FTIR spectra. 

In a separate study, six commonly used oxidants were used on MWCNTs and compared 

using X-ray photoelectron spectroscopy, energy dispersive spectroscopy and FTIR [24]. 

FTIR could not discern any “spectral features.” The study proposed sources of error 

including percent surface loading and likelihood of water present on the exterior surface 

of the CNTs. Vibrational intensity present at 3200 cm-1 is often “swiftly” assigned to 

hydroxyl groups rather than water that might be present on the exterior [24]. This study 

finds FTIR to not be an effective technique for identifying functional groups on the surface 

of MWCNTs. This study suggests that FTIR may not be feasible when MWCNT surface 

loading is >5% [24]. 

 

2.10 Electron Microscopy 

The scanning electron microscope (SEM) is unique compared to other microscopes 

because instead of using light to outline and formulate images it uses electrons. Samples 

are scanned in a vacuum or vacuum like environment using a focused electron beam. The 

focused electron beam interacts with the surface of the sample, producing signals 

composed of “secondary electrons, backscattered electrons and characteristic x-rays” 

representing the surface topography and composition [25]. The image produced is 3-D 

and black and white composed on a computer screen.  
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Transmission electron microscopy (TEM) is another form of electron microscope that 

passes electrons through the sample it is taking an image of. Unlike SEM, TEM is able to 

give details about internal structures. TEM is a less universal form of electron microscopy 

because it requires the samples be thin enough to pass electrons through.  

 

2.11 SEM & TEM Results for CNTs 

Exposure to oxidants can cause changes to the surface of MWCNTs resulting in variations 

in  size, porosity, length, and curvature. Imaging using an electron microscope can help 

show both changes to the CNTs themselves as well as changes to the membrane’s surface. 

One study compares the qualitative properties of MWCNTs following oxidation using 

various oxidants. Figure 8 shows SEM microphotographs of both pristine (P) and 

functionalized (f) MWCNTs. Following oxidation, smaller aggregates and tangled clusters 

are present in all samples. In addition, MWCNT length is notably shorter following 

oxidation [26]. 

 

Figure 8: SEM of MWCNTs: (a) pristine A-type MWCNTs, (b) A-type f-MWCNTs (HNO3), 

(c) A-type fMWCNTs (NH4OH + H2O2), (d) pristine P-type MWCNTs, (e) P-type f-MWCNTs 

(HNO3), (f) P-type fMWCNTs (NH4OH + H2O2) [26]. 
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SEM is valuable for looking at large groups of CNTs; to further investigate the quality of 

the surface on specific CNTs, TEM is a better fit. TEM is capable of producing images of 

such magnification that diameter, number of walls, presence of adsorbed amorphous 

carbon, and concentration of defect sites on the side-walls of CNTS can be seen [24]. 

Similar to the Figure 8 above, the following figure shows TEM images of MWCNTs after 

exposure to various oxidants. (Figure 9) 

 

 

Figure 9: Representative TEM Micrographs (left to right): pristine MWCNTs (0.9% O), 

H2O2 treated MWCNTs (4.5% O), H2SO4/HNO3 treated MWCNTs (5.1% O), KMnO4 treated 

MWCNTs (5.3% O). Amorphous carbon is indicated with arrows, sidewall defects 

highlighted by circles [24]. 

TEM images show the presence of free reactive carbon, otherwise known as amorphous 

carbon, around the pristine MWCNTs. In addition, the pristine MWCNTs appear long and 

straight with uniform and primarily defect-free sidewalls. H2O2- and KMnO4-treated 

MWCNTs showed few defect sites on the outermost sidewall of the MWCNTs as well as 

reduced presence of amorphous carbon. HNO3- and H2SO4-treated MWCNTs experienced 

extreme structural damage with defects reaching past the outermost wall as well as a 

change in general linearity [24]. 
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2.12 UV-Vis Spectroscopy 

UV-Vis Spectroscopy (UV-Vis) is a quantitative technique that measures the intensity of 

light passing through a sample compared to the intensity of light passing through a 

reference blank. It provides a measurement of adsorption/transmission vs wavelength. 

This technique can be used on solid and liquid samples. UV-Vis can be used to determine 

the concentration of a specific substance.  The Lambert-Beer Law states that the higher 

the absorbance at a specific wavelength, the higher concentration of a known substance 

[27]. The Lambert-Beer Law equation calculates absorbance (A) given absorptivity  at a 

specific wavelength (𝜀𝜆), concentration (c) and optical path length (b). (Equation 1) 

𝐴 = 𝜀𝜆 ∗ 𝑐 ∗ 𝑏     (Equation 1) 

2.12.1 UV-Vis Results for CNTs 

In the study conducted by Sahebian, P-MWCNTs and F-MWCNTs-2 h were sonicated for 

5 minutes and left to stand for half an hour and 20 days. The samples were then measured 

using UV-Vis, across a UV-Vis spectrum of 190 to 800 nm. The P-MWCNT sample achieved 

maximum absorbance around 209.5 nm, a wavelength associated with the C–C aromatic 

bond of CNT structure” [23]. Comparing the 30-minute sample to the 20-day sample 

showed that the absorbance value decreased with time.  This result indicates the 

hydrophobic behavior and low dispersion of non-functionalized MWCNTs in water. 

Sample F-MWCNT-2h achieved maximum absorbance around 209.5, indicative of the C-C 

bond, and also a second peak at 293.5 nm indicating the C=O bond expected with 

functionalization. The absorbance for the functionalized MWCNTs is significantly higher 

than that of the non-functionalized MWCNTs and is consistent across the two delay 
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periods. The formation of carboxyl and hydroxyl groups on the surface of the MWCNTs 

improves hydrophobicity and consequently improves solution stability [23]. 

 

Figure 10: The UV–Vis spectrum of P-MWNTs and F-MWNT-2 h in water after half an 

hour and 20 days of 5 min ultrasonic mixing [23] 
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3. METHODS 

New AOPs are required to target ozone recalcitrant CECs, like Atrazine. Ozonated 

MWCNTs show promise as a method of treatment but require a fabrication method 

capable of retaining the MWCNTs. MWCNT enabled membranes are one solution 

however their removal efficiency and longevity are still unknown. Ozone is a strong 

oxidant that may change the surface chemistry and strength of MWCNTs over extended 

exposure. Analytical techniques including FTIR, SEM and UV-Vis may provide insight into 

these chemistry and surface integrity changes, and thus the longevity of MWCNT enabled 

membranes. 

 

3.1 CNT Functionalization Procedure 

Following a procedure developed by others, a solution of 40 mg CNTs (NanoLabs) in 100 

ml 70% nitric acid was sonicated in a Branson 2800 Sonicator for 1 hour [15]. After 

sonication, the solution was refluxed at 140 degrees Celsius for 1.5 hours, from the start 

of boiling. Afterwards, the solution was allowed to cool to room temperature overnight. 

A vacuum filtration system, equipped with a 47-mm nylon membrane, was used to filter 

the CNT solution with DI water until the effluent solution reached pH greater than 5. The 

CNT embedded membrane was completely dried overnight in an oven with T> 100°C. 

Using a metal spatula, dried CNTs were removed from the membrane and pulverized into 

a fine powder using a ball mill. CNTs were then mixed with DI to form a 1 g/L solution and 

sonicated for at least 20 hours. Prior to subsequent uses, this CNT solution was re-

sonicated for at least 30 minutes [15]. 
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3.2 Bucky Method 

What will be referred to as the “Bucky Method” is a technique to prepare CNT-enabled 

membranes [17]. A 47-mm nylon membrane was restricted in a vacuum functioned 

filtration system. To pre-rinse, approximately 25 mL of deionized (DI) water was filtered 

through the membrane. 15 mL of DI water followed by 3.47 mL of 1 g/L CNT solution was 

measured into the vacuum filtration funnel. The resulting solution had a solid loading of 

0.2 mg CNTs/ cm2 membrane. The vacuum pump was powered on, and kept running, until 

solution had passed completely indicating CNTs had been embedded. Using a flat edge 

tweezer, the membrane was removed and placed faceup in a petri-dish. The membrane 

was left to dry at room temperature for a minimum of 18 hours before use [15]. 

 

3.3 CNT Membrane Lab Testing Procedure 

3.3.1 Atrazine Solution 

A 1 g/L Atrazine (Chem Services) solution was prepared using HPLC-grade methanol due 

to Atrazine’s hydrophobic nature. 

3.3.2 Phosphate Buffer  

A 680 mg/L phosphate buffer solution was prepared using DI water and potassium 

phosphate monobasic (Fischer Scientific). The phosphate buffer solution was adjusted to 

7.0 pH. Afterwards, the phosphate buffer solution was bubbled with ozone using a 

ClearWater Tech LLC CD1500P ozone generator fed with oxygen gas for approximately 20 

minutes, to remove any ozone-reactive compounds that might be present in the buffer 
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solution prior to use. The phosphate buffer solution was deozonated for several hours 

prior to use. 

3.3.3 Sodium Sulfite Solution  

Sodium sulfite serves as an ozone quencher.  A sodium sulfite solution was prepared to 

ensure the reaction in each sample was terminated prior to analysis.  A 50 mg/L sodium 

sulfite solution was made in 25 mL of DI water. Due to potential for reaction with air, the 

solution was prepared daily prior to each experiment and kept sealed in between uses 

[15].  25 uL of Sodium Sulfite was used in the sample collection vials to immediately 

quench the reaction upon collection of the sample, and 2.5mL was used in the collection 

flask of the vacuum apparatus during experimental runs.   

3.3.4 Ozone  

For testing, 93 mL of the prepared phosphate buffer solution was measured into a 200mL 

Erlenmeyer flask. Prior to use the Erlenmeyer flask was filled with glass beads and stored 

in a freezer to promote a cold environment. The Erlenmeyer flask with the phosphate 

buffer solution was placed in an ice bath and bubbled with ozone using a ClearWater Tech 

LLC. Ozone Generator (CD1500P) for approximately 30 minutes, or until dissolved ozone 

absorbance stabilized around 0.8-1.2 A. The dissolved ozone absorbance was measured 

using a Thermo Scientific Genysys 10S UV-Spectrometer (ε258 = 2,900 M-1cm-1) [15]. The 

constant concentration calculated using Beer’s Law was within 190 𝞵M and 330 𝞵M for 

all experiments.  Once a steady absorbance was achieved, the solution was transferred 

from the Erlenmeyer flask to the upper portion of the vacuum filter apparatus. The 

phosphate buffer solution was ozonated in the apparatus for an additional 5 minutes, and 
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the final stable ozone absorbance was measured.  Note that ozone bubbling continued 

throughout the experiment. For each experimental run, this final stable ozone 

concertation was assumed to be maintained throughout the duration of the experiment 

[15]. 

3.3.5 Vacuum Filter Process 

The beaker containing 0.5 mL Atrazine and 13 mL tert-butanol was poured into the 

ozonated phosphate buffer solution in the vacuum filter apparatus (Figure 11). Two initial 

samples were taken before powering the vacuum pump. A timer was set to measure the 

time required for the solution to completely filter to the collection flask of the vacuum 

apparatus. Two final samples were taken from the collection flask. All four samples were 

filtered through 2 um filters to remove any CNTS that may have detached from the CNT 

membrane [15]. After filtration, samples were transferred to HPLC vials and labelled 

appropriately with date and description of sample. Note: Beginning January 13th 

temperature and relative humidity measurements were recorded during testing as well 

[15]. 
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Figure 11: Vacuum filtration process under fume hood. 

3.3.6 Analysis for CNT Membrane Lab Testing  

Samples were analyzed using Thermo Scientific UltiMate 3000 Ultra High Performance 

Liquid Chromatography (HPLC) system with an Acclaim 120 C18 column (4.6x 100 mm, 

5𝞵m internal diameter. An eluent solution of 60% acetonitrile and 40% DI water was used, 

with an  injection volume of 1 𝞵L and a flow rate of 1 mL/min. The absorbance was 

measured at 226 nm [15]. 

3.3.7 Quality Assurance and Analysis of Filtration  and HPLC Procedure 

A calibration curve for Atrazine was created with samples ranging from 0.1 𝞵M to 10 𝞵M. 

This was repeated periodically throughout experimental trials. 

As a daily control, an un-ozonated sample was run through a blank membrane and a 

functionalized MWCNT membrane to ensure sorption was not occurring. Lastly, duplicate 

samples were taken to assure consistency. 
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3.4 FTIR Procedure 

Samples were analyzed using JASCO FT/IR-4600 with ATR accessory. For a full description 

of the FTIR procedure refer to the appendix a. Before testing samples, the sample tray 

was rinsed with isopropyl alcohol and dried with chem-wipe. The membrane was placed 

CNT side down onto the sample tray. The mount was aligned and lowered using the hand 

knob until gently applying pressure on the sample. The pectrometer software was used 

to produce an image of absorbance with respect to wavenumber. Once the image was 

saved, the membrane was removed and the mount was cleaned with isopropyl alcohol.  

3.4.1 Quality Assurance and Analysis of FTIR Procedure 

Blanks were performed after starting the program and turning on the machine to confirm 

proper calibration. A blank membrane was used as a control to determine efficacy of 

spectra. Measurements were taken in triplicate for each sample, producing three spectra 

for each membrane. Measurements were taken in triplicate on different spots of the 

membrane to determine outlier peaks, as well as general trends for the surface of the 

membrane.  

 

3.5 Scanning Electron Microscope Procedure 

Samples were viewed using a FEI Quanta 200 Environmental Scanning Electron 

Microscope (ESEM) with an Everhart-Thornley Detector. Chosen membranes were 

carefully cut into 0.75 cm by 0.75 cm squares. Due to the nature of the SEM procedure 

samples chosen to be viewed can no longer be used for future filtration, i.e. lab testing.  

Membranes were mounted onto 12 mm aluminum stubs using double sided graphite tape 
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(Figure 12). ESEM was run at High Vacuum Mode. The spot size was set at 1.5, with a 

working distance of 7.0mm. The acceleration voltage was set at 30,000V. Samples were 

viewed using a slow scan speed with image integration.  

 

 

Figure 12: Membrane 3B (on left) and Membrane 5 adhered to 12 mm aluminum stubs. 

3.5.1 Quality Assurance and Analysis of SEM Procedure 

Ideal conditions for using the SEM must be met prior to testing.  These conditions include 

an ambient temperature below 68 degrees Fahrenheit and a relative humidity below 20%. 

Membrane samples were left to dry in a fume hood for 24 hours prior to imaging to 

prevent damage of the instrument or reduced image quality. When choosing ideal sample 

areas on the membrane, spots were chosen with no visible holes, foreign objects, or 

discoloration. Five images were taken for each membrane, excluding membrane 2B due 

to technical difficulties. Each image was taken of a different area on the membrane to 

provide a more inclusive representation of the membranes surface. 
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3.6 UV- Vis Procedure 

A  1 g/L CNT solution was sonicated for 30 minutes. Next, 15 mL of DI water followed by 

3.47 mL of 1 g/L CNT solution was measured into a sealable glass bottle. The glass vial was 

sonicated for 5 minutes. Using a pipet, the MWCNT solution was transferred into a 

cuvette. Using Thermo Scientific Genysys 10S UV-Spectrometer, absorbance 

measurements were taken every 0.2 nm from 190-745 nm [23]. 

3.6.1 Quality Assurance and Analysis of UV-Vis Procedure 

Measurements were taken in triplicate to identify any outliers and to observe probable 

peaks.  
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4. RESULTS AND DISCUSSION 

The goal of experimentation was to collect sufficient data so that comparisons could be 

made between different membranes regarding efficacy of pollutant removal and 

continued efficacy over repeated uses.  

 

4.1 Percent Removal 

Percent removal was found by measuring the concentration of Atrazine in the influent 

solution and effluent solution using a HPLC. Environmental and operational factors were 

tracked to determine what effect they might have on removal for the target contaminant.  

These factors included: percent relative humidity, ambient temperature, filtration time, 

ozone absorbance, ozone exposure, number of samples filtered and percent removal of 

the target constituent were measured.  

Note that membrane 6 experienced three unusual runs. Runs 4, 7 and 9 accomplished 

either negative percent removal which is impossible or unrealistically high percent 

removal. For the sake of discussion membrane 6 has not been included in discussion 

figures. To see graphs that contain membrane 6 please refer to the appendix. 

4.1.1 Relative humidity and ambient temperature 

Percent relative humidity and ambient temperature were recorded after the fact using 

historical data for the date testing was performed. Tests were performed between 

September 2019 and March 2020. Ambient temperature in the lab ranged from 52 

degrees Fahrenheit to 83 degrees Fahrenheit. Similarly, percent humidity held a broad 

range from 25% to 83%. Temperature and relative humidity are important factors to 
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ozone concentration for two main reasons. Lower temperatures improve dissolution of 

ozone in water [15]. In addition, relative humidity has been found to deplete ozone in air 

which would suggest ozone dissolution in water.  

Percent humidity and temperature seem to have no effect on either ozone absorbance 

(which correlates to ozone concentration) (Figures 13 & 14) or percent removal of the 

contaminant (Figures 15 & 16). Due to the nature of testing, humidity and temperature 

of the experimental system were relatively controlled using a fume hood and ice bath. 

The results are representative of lab testing with a controlled environment which is not 

an accurate representation of what a similar system would experience in the field. 

 

Figure 13: Percent relative humidity compared to ozone absorbance. 
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Figure 14: Ambient temperature compared to ozone absorbance. 

 

Figure 15: Relative humidity compared to percent contaminant removal. 
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Figure 16: Ambient temperature compared to percent contaminant removal. 

4.1.2 Filtration Time  

Filtration time was measured in minutes from when Atrazine was added and the vacuum 

process began until no liquid was observed on the surface of the membrane. Different 

membranes required different lengths of time to complete filtration, ranging from under 

5 minutes to nearly an hour (Figure 16). Percent removal tended to increase with filtration 

time. Membranes 2 and 3 required the longest filtration time and achieved a high percent 

removal. In contrast, membranes 4 and 5 had the lowest filtration time and achieved the 

lowest percent removal. The coefficient of determination (R2) was roughly 43%. 
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Figure 17: Filtration time compared to percent contaminant removal. 

4.1.3 Steady-State Ozone Concentration 

As discussed above, ozone absorbance measured immediately before filtration was 

assumed to be indicative of steady-state ozone concentration during filtration. There 

appears to be a slight trend between ozone absorbance and  percent removal, though the 

R2 value of 0.310  indicates this trend is not significant (Figure 18).  

 

Figure 18: Ozone absorbance in solution compared to percent contaminant removal. 
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4.1.4 Ozone Exposure 

Due to the apparent trend between percent removal and filtration time, and possible 

relationship between percent removal and ozone concentration during filtration, a 

correlation between ozone exposure and percent removal was also examined.  Ozone 

exposure is a value used in ozone chemistry studies to indicate the total amount of ozone 

available for utilization during a reaction.  In this case, since ozone concentration was held 

constant, ozone exposure was determined using the measured ozone absorbance and 

filtration time. (Equation 2)  

𝑂𝑧𝑜𝑛𝑒 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = [𝑂3] ∫ 𝑑𝑡
𝑡

0
   (Equation 2) 

Recall that the solution is actually exposed to ozone for 10-15 minutes prior to filtration 

to achieve steady-state, transferred to the filtration apparatus prepared with the 

membrane and further ozonated until the ozone concentration returned to  steady-state, 

before filtration was initiated.  Exposure to ozone prior to filtration could not be found 

and is recommended as a variable to be measured in future testing. This method assumes 

that the majority of contaminant removal occurred during passage through the CNT-

enable membrane, where exposure to ● OH would be the greatest, rather than during 

the ozonation process itself.  Solutions filtered by membranes 2 and 3 had higher ozone 

exposure and achieved greater percent removal (Figure 19).  The R2 value for the trend 

between ozone exposure and percent removal is approximately 42%. 
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Figure 19: Ozone exposure in solution compared to percent contaminant removal. 

4.1.5 Repeated Uses of Filter 

Between 5-10 runs were performed on each membrane. The goal of running multiple runs 

was to determine if performance changed between runs. Figure 20, illustrating percent 

removal in terms of number of samples filtered, shows improved removal for all filters 

between run number two and three and a decrease in removal for three filters between 

runs nine and ten. There are no significant trends between one to ten runs; more runs 

should be considered for future testing.  
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Figure 20: Number of samples filtered compared to percent contaminant removal. 

4.1.6 Total Ozone Exposure 

Similarly, ozone exposure for the membrane over the course of its life was calculated. 

Since ozone itself is an oxidant, extended exposure to ozone may change the surface 

chemistry of the CNTs, or the surface integrity of the membranes.   Total ozone exposure 

was found for each membrane to determine if this extended oxidation may affect the 

efficacy of contaminant removal over continued use of the same membrane.  (Figure 21) 
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Figure 21: Ozone exposure over the life of the membrane compared to percent 

contaminant removal. 

Membrane 2 experienced a sharp drop in percent removal when total ozone exposure 

reached 345 A * min. No other membrane reached this level of exposure so it is not 

possible to determine whether membrane 2 had exceeded its life or if this result was an 

anomaly. The R2 value for the trend between ozone exposure and percent removal over 

the lifetime of the membrane is approximately 43%. 

Figure 22 is a compilation of the three variables; solution ozone exposure, filtration time, 

and number of samples filtered on the horizontal axis and percent contaminant removal 

on the vertical access. Individual membrane responses are color-coded on the left hand 

graph, and results are graded to indicate magnitude. The larger the value, the darker the 

shading; the smaller the value, the lighter the color. Using this color-scheme, it is possible 

to see if trends exist for multiple variables with respect to percent removal. Figure 22 

illustrates a general trend of higher ozone exposure and longer filtration time generally 

correlates with higher percent removal. Furthermore, it shows greater percent removal 
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by membranes 2 and 3. Membranes 4 and 5 had a wide distribution from the top to 

bottom of the figure.  

 

Figure 22: Compilation of notable results from filtration tests. 
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4.2 Membrane Longevity 

Membrane longevity refers to the length of time or number of passes a membrane can 

be effective at providing contaminant reduction.  In a full-scale application, membrane 

longevity would relate to the total volume of water able to pass through that membrane 

before treatment starts to decline. Results from testing found no significant change in 

filter time as a result of number of samples filtered. This result suggests that membrane 

longevity exceeds ten runs in a lab setting (Figure 23). Results suggest the membrane 

surface is not developing preferential pathways through repeated use.  

 

Figure 23: Number of samples filtered compared to filtration time. 

 

4.2.1 Scanning Electron Microscopy 

SEM was used to compare the surface of membranes at different stages in testing. SEM 

images illustrate changes on the surface of the membranes through different extents of 

lab testing. Three membranes were chosen to show surface affects at different stages in 

testing. Figure 23 shows the naked eye image of the three membranes imaged, with the 
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cut-out indicating the portion of the membrane removed for SEM analysis.  Membrane 

3B is functionalized and never used, membrane 5 is functionalized and used 5 times and 

membrane 2B is functionalized and used 12 times.  Visually, there is very little difference 

between the three membranes, though 2B may show reduced density of CNTs across its 

surface compared to the others.  Note that membranes 5 and 2B have scratches on their 

surface. These scratches were made after the last round of testing using either forceps or 

a glass pipet. They were chosen to be viewed using SEM because they were no longer 

suitable for testing due to these scratches. 

 

   

Figure 24: Picture of membranes chosen for SEM imaging. 

For SEM analysis, five images were taken for membranes 3B and 5, and two were taken 

for membrane 2B,  at different spots on the membrane's surface to provide enough visual 

data to be representative of the membrane as a whole (12 pictures total). Note that the 

SEM used for testing was experiencing difficulties when taking images of membrane 2B, 
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so there are fewer images and they are of lower visual quality. Images from membrane 

3B and 5 will primarily be used as a comparison due to their visual quality.  

The MWCNTs embedded on membranes 3B, 2B and 5 are approximately 35nm in 

diameter and most are between 0.5 and 3 𝛍m in length. The MWCNTs on membrane 3B 

range from straight to curly across the image. The MWCNTs on membrane 3B are opaque 

and densely packed together. (Figure 25 & 26)  

 

Figure 25: SEM image of membrane 3B, photo 2 of 5. 
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Figure 26: SEM image of membrane 3B, photo 1 of 5. 

MWCNTs on membrane 5 and 2B range from straight to curly to jagged. There are various 

foreign objects on the right side of Figure 27. In addition, large spaces in-between the 

MWCNTs can be seen.  The MWCNTs appear to be lighter, more translucent, which may 

indicate interior defects. With repeated use the surface of the membrane sees many 

changes, some of which improve treatment ability by creating more available active sites 

at surface defects. With extended filtration unidentifiable particulate matter appear on 

the surface and with extended use could potentially cause fouling. (Figure 27, 28 & 29) 

Further comparisons were not made between membrane 2B and 5 due to lack of 

representative images for membrane 2B. 
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Figure 27: SEM image of membrane 5, photo 1 of 5. 

 

Figure 28: SEM image of membrane 5, photo 2 of 5. 
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Figure 29: SEM image of membrane 2B. 

 
SEM images can be used to see changes to the surface of the membrane and some 

changes to the MWCNTs themselves. TEM is an excellent tool to see internal changes to 

the MWCNTs. The surface of the MWCNTs on membrane 3B appear sleek and uniform, 

unlike 5 and 2B, “indicative of a uniform and largely defect-free sidewall structure” similar 

to the most far right image in Figure 30 [24].  All three membranes contain dense clusters 

of MWCNTs on-top and webbed into its surroundings, similar to those in the middle image 

of Figure 30. Densely packed structures will help decrease flow-through time and increase 

exposure time to both ozone and hydroxyl radicals. As discussed above, increased 

exposure time suggests higher percent removal. The surface of the MWCNTs on 

membrane 5 appear to be more uneven and irregular, similar to the middle image in 
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Figure 30. Defects on the surface of the MWCNTs are indicative of reductions in 

amorphous carbon as well as defects, “breaks,” on the outer surface of the MWCNTs [24]. 

 

Figure 30: Low magnification TEM micrographs (left to right): pristine MWCNTs (0.9% 

O), O3 treated MWCNTs (4.7% O), H2SO4/HNO3 treated MWCNTs (10.2% O) [24]. 

It is difficult to see the surface irregularities with the limited magnification used for 

membranes 3B, 5 and 2B. Figure 31, copied from literature review, illustrates highly 

magnified MWCNTs after different levels of oxidation. The MWCNTs present on 

membrane 5 and 2B would most likely compare to the images on the right in Figure 31. 

Membrane 3 likely has fewer sidewall defects. Membranes 5 and 2B have received 

extended ozone exposure and will likely have developed extensive sidewall defects. 
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Figure 31:  Representative TEM Micrographs (left to right): pristine MWCNTs (0.9% O), 

H2O2 treated MWCNTs (4.5% O), H2SO4/HNO3 treated MWCNTs (5.1% O), KMnO treated 

MWCNTs  (5.3% O). Amorphous carbon is indicated with arrows, sidewall defects 

highlighted by circles [24]. 

4.2.2 Filtration Time 

Results from lab testing found a correlation between filtration time and percent removal. 

Two theories as to why filtration time may vary between membranes are differences in 

percent CNT loading on the membrane surface and or development of preferential 

pathways on the membrane surface.  

Originally, running experiments using UV-Vis was motivated by the desire to analyze peak 

location as compared to those seen in the study conducted by Sahebian. The peaks were 

similar to those achieved by Sahebian but not definitive.  More interestingly, UV-Vis 

results suggest a potential discrepancy in CNT loading across different membranes, which 

may explain the variation in filtration time.  Figure 32 shows four tests, each performed 

using the same sonication and pipetting procedure described in the “Bucky Membrane” 

fabrication section above. There are two distinct clusters of data, both with similar trends 

across the wavelength spectrum measured, but with different levels of absorbance. These 

two clusters suggest that the samples had different CNT percent loading in solution; the 
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sample with higher absorbance likely had a higher percent loading. These results suggest 

that CNT loading is highly variable when pipetted following the fabrication procedure 

used in this study.   

 

Figure 32: UV-Vis spectra from functionalized MWCNTs in solution. 

Images from SEM illustrate possible preferential pathways on the surface of the 

membranes. Membrane 5 was used for five filtration tests (Figure 35 & 36) and 

membrane 2B was used for 12 filtration tests (Figure 33 & 34). Possible holes and cracks 

in the CNT layer on both surfaces have been circled.  These CNT gaps might provide 

preferential pathways for water flow, allowing some of the water to pass through the 

filter with minimal CNT exposure.  As preferential pathways form with repeated use of 

... Trial 1 

... Trial 2 

... Trial 3 

... Trial 4 
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the same filter, it would be expected that percent removal would decrease because of 

reduced oxidation time because water can pass more quickly through the membrane via 

the preferential pathways. Results from testing showed no strong correlation between 

number of tests performed and percent removal or flow through time. It is likely that the 

preferential pathways present on the membrane were made during membrane 

fabrication.  Alternatively, the preferential pathways may have formed during treatment, 

however they comprised a small enough percentage of total surface area that they did 

not have a noticeable effect. 

  

Figure 33: SEM image of membrane 2B, photo 1 of 2. 
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Figure 34: SEM image of membrane 2B, photo 2 of 2. 

 

Figure 35: SEM image of membrane 5, photo 3 of 5. 
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Figure 36: SEM image of membrane 5, photo 2 of 5. 

4.2.3 Total Ozone Exposure 

Results from filtration lab testing indicate an increase in removal efficiency with extended 

ozone exposure. Extended ozone exposure is calculated using ozone absorbance and 

filtration time. The total ozone exposure is equal to the sum of absorbance with respect 

to time during each test. Figure 37 compares filtration time with ozone exposure; there 

is a general trend that as filtration time increases so does total ozone exposure.  This 

makes sense since filtration time is a factor in ozone exposure and steady state ozone 

concentration was held within a specific range (list range) for all experiments. 
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Figure 37: Membrane ozone exposure compared to filtration time. 

Extended ozone exposure increases ● OH production as well as the production of other 

functional groups including C=O by the CNTs and thus achieves greater contaminant 

removal [15]. SEM Images do show changes to the CNTs with extended exposure to 

ozone; however, they do not prove the presence of hydroxyl and carboxyl groups. 

Validating the presence of these functional groups on the CNTs was attempted using FTIR. 

FTIR was used to produce spectra for all membranes including: blank, functionalized, non-

functionalized, 5, 10 and 12 run membranes.  The blank membrane is illustrated in Figure 

38, it was used as a means of calibration and comparison for the other membranes.  
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Figure 38: FTIR spectra of nylon membrane blank. 

FTIR spectra between functionalized and non-functionalized membranes as well as those 

used for extended testing did not produce spectra with unique characteristics. Figure 39a  

was developed using membrane 4, fabricated with functionalized MWCNTs then used for 

ten filtration tests, and Figure 39b was of a non-functionalized membrane, however the 

peaks match. Peaks present on all other spectra seem to match despite their physical 

differences. Results suggest a similar outcome as was found in the Wespasnic study [24]. 

CNT loading was likely too high on the membranes to be measured using FTIR. Other 

forms of spectroscopy are recommended in the future to produce useable spectra. 
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Figure 39: a) FTIR spectra of functionalized membrane 4 (top). b) FTIR spectra of non-

functionalized membrane (bottom). 
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5. CONCLUSIONS AND FUTURE WORK 

This thesis aimed to answer three questions regarding efficacy of ozonated CNT-enabled 

membranes for emerging contaminant removal.  

The three questions motivating this study were: 

● What experimental and operational variables affect percent contaminant 

removal during a single pass through a CNT-enable membrane during ozonating 

conditions? 

● How do the CNT-enabled membranes change with repeated uses and extended 

exposure to ozone, specifically regarding surface functionalization of the CNTs 

and integrity of the membrane itself?  

● Can these results explain the variability of results between different membranes 

prepared under identical conditions? 

These questions were explored using HPLC analysis of Atrazine degradation after 

passing through a CNT-enabled membrane during ozonating conditions.  Membranes 

were used for multiple passes to explore effective longevity.  HPLC analysis was 

supplemented with scanning electron imagery (SEM), Fourier Transform Infrared 

Spectroscopy (FTIR), Ultraviolet Spectrometer (UV-Vis) and comparison to published 

literature to provide additional insight into the experimental findings. 

 

5.1 Percent Removal 

Filtration tests were performed to determine the removal efficiency of MWCNT-

embedded nylon membranes fabricated using the “Bucky Method”. Variables including 
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ambient temperature, ambient relative humidity, ozone absorbance in solution, filtration 

time, and number of samples filtered were measured to identify each membrane’s 

performance, variability between membranes, and membrane longevity. Five 

membranes were used for testing;  three performed ten rounds of tests, one performed 

12 rounds of tests and one performed five rounds of tests. Ambient temperature and 

relative humidity did not seem to have any effect on ozone absorbance or percent 

removal. Tests were performed in an ice bath under a fume hood; in a full scale system 

operated outside of a lab, ambient temperature and relative humidity may have some 

effect on dissolved ozone concentration and consequently on percent contaminant 

removal.  Results from testing suggest a relationship between ozone exposure and 

filtration time with percent removal. Ozone exposure was calculated for each solution 

filtered as well as total ozone exposure for each membrane. Percent removal was found 

to increase with extended exposure to ozone. Filtration times varied from 5 minutes to 

just under an hour. Results showed increased percent removal with increased filtration 

times. These results illustrate that as filtration time increases Atrazine has increased 

exposure to ● OH, extended exposure will achieve greater removal. 

 

5.2 Membrane Longevity 

Results are somewhat inconclusive regarding the reactive longevity of MWCNT enabled 

membranes used as a catalysis for oxidation. Results indicate percent removal generally 

increases as total membrane ozone exposure increases.  They showed that effective 

membranes remain effective for at least 10 passes, 26 mL treated per pass. Only one 
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membrane was used for more than 10 passes and showed a decline at the 12th pass. 

However, since only one membrane experienced that many repetitions the decline in 

productivity for the twelfth use does not constitute a conclusive finding. 

SEM imaging was used to visually compare membranes after zero, five and twelve rounds 

of filtration. Results conducted using SEM identified holes in the surface of some 

membranes but not others. Preferential pathways created by the holes on the surface of 

the membrane would promote faster filtration times and reduced percent removal.  

However, findings did not indicate that these preferential pathways, if they did indeed 

exist, were causing significant changes in filtration time over repeated uses of the same 

filter.  Filtration times showed no downward trends through each round of testing despite 

the presence of holes found on the filtered membranes.  The holes found on the surface 

of the membranes may have been created during fabrication or over time during testing; 

either way, the holes showed no effect on membrane performance. In addition, SEM 

imaging illustrated changes in the shape and density of CNTs on the surface of the 

membrane, but these changes did not seem to affect membrane efficacy. Results show 

no sign of reduced performance with extended use. In the future, more tests, both 

experimental runs and spectroscopic analysis as described below, should be performed 

on the membranes to determine what the expected lifetime is of the membrane. 

FTIR was used to compare the presence of functional groups on the surface of the 

membranes. Since ozone is an oxidant, it was expected the extended ozone exposure 

would increase surface functionality of the MWCNTs [15]. Results developed using FTIR 

spectra were inconclusive. Peaks present on spectra for non-functionalized and 
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functionalized membranes matched despite their different surface chemistries. Similar 

results were produced in a study performed by Wepsanik [24]. CNT loading was likely too 

high to use FTIR, future tests are recommended using a lower CNT surface loading. 

 

5.3 Membrane Variability 

Further testing was performed to try to determine why there was such a large variance 

between filters prepared using the same procedure. Unexpected findings while 

performing UV-Vis tests suggested a flaw in the procedure for preparing the membranes. 

Despite the use of sonication to evenly disperse the CNTs in solution, percent loading of 

CNTs in the pipette and onto the surface of the membranes is likely inconsistent. Percent 

loading is an important variable because it controls filtration time, ozone exposure and 

thus ● OH production for each membrane. 

 

5.4 Future Work 

The successful design of a CNT-enabled membrane advanced oxidation process would 

open the door for new methods of CEC treatment. Further development and testing of 

the proposed design must occur before it can feasibly be implemented full scale. 

5.4.1 Improved Membrane Fabrication Procedure 

As discussed above, UV-Vis analysis highlighted a potential flaw in the procedure used to 

create membranes following the “Bucky Method.” Sonication was used as a means to 

break up aggregate clusters and evenly distribute the MWCNTs in solution prior to 

pipetting. However, CNT loading appears to have been inconsistent across the different 



  64 

membranes, despite a consistency in fabrication procedure.  To solve this problem, new 

methods of fabrication should be tested. A high sensitivity scale can be used before and 

after embedding the membranes with CNT to determine percent loading by weight for 

each membrane and ensure consistent CNT application on each membrane.   

5.4.2 Further Membrane Longevity Testing 

Once a more consistent method of fabrication is developed, all of the above experimental 

procedures should be repeated. Theoretically, filtration times and percent removal 

should be more consistent from one membrane to another once fabrication is improved. 

To learn more about membrane longevity, tests should be performed until percent 

removal shows consistent decline. The point of decline will be indicative of the effective 

life of the membrane.  Once a point of decline has been reached, SEM and TEM imaging 

should be used to identify changes to the surface of the membrane. SEM is well suited to 

indicate issues with membrane integrity, and TEM can be used to look at the surface of 

individual CNTs to determine effects of extended ozone exposure. 

As discussed above, results from FTIR were inconclusive, possibly because of high CNT 

loading on the surface of the membranes. In a study that experienced similar problems 

with FTIR, X-ray photoelectron spectroscopy (XPS) was recommended as another 

spectroscopy method [24]. Spectra taken using XPS should identify peaks indicative of 

oxygen groups expected to be present on the functionalized membranes.  

5.4.3 Safety Concerns 

One of the main safety concerns present when using MWCNTs is their potential threat to 

human and ecological health. MWCNTs are a known carcinogen shown to have 
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detrimental effects when inhaled [15]. Using a membrane fabrication process that 

embeds the CNTs into the membrane is meant to prevent MWCNTs from escaping as well 

as improve feasibility of implementation in a flow through system. While handling the 

membranes, MWCNTs have been removed via abrasives or contact with sharp objects. 

Once scraped off, MWCNTs become an additional contaminant. In addition, it is unknown 

CNTs are lost when water passes through the membrane, or if there are byproducts of 

the MWCNTs in the effluent solution. Research should be performed to determine if 

membrane degradation may be occurring or if the membrane-ozonation process may 

pose any substantial health risk to the environment. 

5.4.4 The Future of Advanced Water Treatment  

The goal of this study was to contribute to our understanding of MWCNT enabled AOPs. 

The use of MWCNTs as a catalysis for advanced oxidation has already been tested and 

proven as a viable treatment method. In order for this method to be suitable for full scale 

treatment, implementation in a flow-through system such as one with MWCNT-enabled 

membranes, must be tested and proven viable. As knowledge in the field of AOPs grows 

so does the ability to perform advanced water treatment and increase reuse of limited 

water resources. 
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 APPENDICES 

Appendix A: FTIR ATR Software Instructions 

  

ATR protocol (JASCO FTIR-4100) 

 

1.  Introduction to ATR technique (Attenuated Total Reflectance) 

 

While traditional IR spectrometers have been used to analyze solids, liquids and gases by 

means of transmitting the infrared beam directly through the sample, ATR uses the 

reflectance of the sample instead. An attenuated total reflection measures the change that 

occurs in a totally internally reflected infrared beam when the beam comes in contact 

with the sample. The infrared beam hits an optically dense crystal (i.e. diamond, zinc 

selenide or germanium) which then creates an evanescent wave that subsequently 

protrudes the sample (0.5-5 m). The regions where sample absorbs energy, the 

evanescent wave will be altered, which will be detected. 

 

It is important that the sample has good contact with the ATR crystal because the small 

extension of the evanescent wave beyond the crystal. This is accomplished by applying a 

moderate pressure to the sample during the measurement. Full and intimate contact of the 

sample onto the ATR crystal is essential to achieve high quality results. The refractive 

index of the crystal has to be significantly greater than the one of the sample.  

 

 

 

 

 

 

 

 

 
 

While the analysis of samples by ATR is widely used, there are several factors that affect 
the quality of the final spectrum such as the refractive indices of the ATR crystal and the 

sample (ncrystal > nsample), angle of incident IR beam, depth of penetration, wavelength of 

the IR beam, number of reflections, quality of the sample contact with ATR crystal, etc. 

The critical angle is given by 

crystal

sample

c
n

n
1

sin  

 
For instance, a diamond/ZnSe system possesses a refractive index of ncrystal =2.4 and        

a critical angle of θc=38.7
o
. If the refractive index of the sample is higher than the 

refractive index of the crystal, derivative shaped absorbance bands are observed (see 

below) since the critical angle requirement was not met. The resulting spectrum is a mix 

of the ATR and external reflectance. The penetration depth is directly proportional to the 

wavelength of the incident beam, which means that photons with higher wavenumbers 

penetrate the sample less than photons with lower wavenumbers. Consequently, peaks on 

the left hand side often appear a little smaller than expected i.e. OH peaks, etc. It is 

important to correct this effect by applying the ATR correction to the raw spectrum. 

Sample  

ATR crystal 

Incident  

IR beam 

Attenuated IR beam 

to detector 
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General Pointers  

i. The FTIR instruments and the software located in YH1096, YH1111 and YH6076 

are identical. The type and size of the crystals (first floor is ZnSe (~$1200), sixth 

floor is a diamond crystal (~$5000!!)) used in the ATR setup and the way the 

pressure is applied to the sample are a little different.  

ii. For 30BL, the first section of instruction period should consider any change to the 

micro-screw setting: 1.0 for powdery, 2.0 for smaller crystals and 3.0 for large 

crystals. Settings outside of this range will not improve the quality of the spectrum. 

Sample quantity (~10-20 mg) will be the most important and highly variable 

parameter.  

iii. For 30CL, no press screw adjustment is needed. The applied pressure has to be 

adjusted to the quantity and nature of the sample: the thicker the sample is the 

higher pressure should be in order to have better reflectance. Generally 20 mg of 

sample are sufficient. The high pressure clamp should be turned to its slip-clutch 

limit to achieve maximum pressure. In Chem 30CL, the pressure has to be released 

in order to be able to remove the clamp. If this is not done, the pin will hit the 

diamond crystal the next time it is placed on the sample and break it. You will 

receive a bill for the damaged crystal ($5000+) due to the fact that you handled 

grossly negligent!  

iv. The setup should be cleaned using FisherBrand moist-wipe (lint-free wipes). The 

used wipes can be rinsed with acetone and save them in a box labeled “used wipes”.  

v. The ATR has to be cleaned after each measurement. Keep in mind the film left over 

is often more reflective than the samples applied due to better contact, which can 

lead to false spectra. If unsure about the quality of the cleaning, a new background 

spectrum should be acquired prior to applying the sample to the crystal.  

FTIR initialization (only necessary if you are the first one to measure the sample or the 

program has to be restarted)  

i. Turn on LCD monitor power (press any key on the keyboard usually). All 

programs/windows now open must be closed.  

ii. Turn on FTIR (switch on top). Double-click “FTIR 4100” icon.  

iii. Double-click “Spectra Measurement”. This program manages several other 

programs, including for your purposes, “Spectra measurement” and “Spectra 

Analysis”.  

Cleaning the ATR module  

i. Scratching the crystal surface must be avoided at all cost!! It is expected some 

residual sample will be left. The TA will remove most of the remaining residual 

film before and after each meeting.  

ii. Much of the formed pellet can be dislodged with a wooden boiling stick. A metal 

spatula will be potentially too abrasive and damaging to the crystal. Students are 

not allowed to use them.  
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iii. With the remaining solid at the edges, apply some acetone, dab the top with a 

FisherBrand wipe, and repeat this 4-5 times.  

iv. With acetone, moisten lint-free cloth provided by TA, and use this to scrub the 

general area in and around the crystal surface. It is not necessary to do this for more 

than a second or two. The solvent should not be applied in a way that the setup is 

soaked since it will leak into the optics as well.  

v. Remember to wipe the surface of the screw above.  

vi. The next background scan will subtract any remaining residue.  

 

Acquiring the background spectrum  

i. Click “B” icon to acquire current background spectrum. The information window 

(see below) will pop-up. For the background spectrum, skip this by clicking “OK”. 

This will initiate the Spectra measurement program to acquire scans for background 

spectrum. This data will be sent automatically to the “Spectra Analysis” program.  

ii. The background spectrum should look like the ones below which only contains the 

CO2 and the water peaks for the FTIR setup in the 1
st 

floor (left side below). The 

right hand side shows the background spectrum for a diamond ATR setup, which 

shows additional peaks mainly in 1800-2300 cm
-1 

range and at 1140 cm
-1 

which are 

due to the diamond crystal.  

H2O  

H2O CO2  

Sample setup on the ATR module  

i. Apply one drop or a small micro-spatula portion (15-20 mg) to fill the dwell 60-

80% full (in Chem 30BL). Make sure not to scratch the crystal with the spatula.  

ii. Apply the press to the sample. The screw setting should usually not be changed.  
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iii. In the “Spectra measurement” program click “S”. Enter your name and the name of 

your sample in the “Information” popup window.  

 

artifacts from diamond  

 

iv. Clicking OK will initiate data acquisition, Fourier transformation of the data, and 

transfer of the data to a new “View” window in the “Spectra Analysis” program.  
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v. If the signal is not appearing well enough above the noise, apply 5-10 mg more and 

try pressing the sample again.  

vi. A low amount of sample also gives rise to artifacts in the FTIR spectrum (~1100 

(as strong peak) and 1740 cm
-1 

(often as inverted peak)).  

Data Processing  

Here are the buttons that are going to be used for the data processing:  

i. In Spectra Analysis, click the “ATR” button (3
rd 

button), click OK, and a 2
nd 

“View” 

window pops up. Note that the peaks on the left side increased in size.  

 

ii. Click the “CO2” button (4
th 

button), click OK, and a 3
rd 

“View” window pops up. 

Note that the peaks in the CO2 window disappeared.  

iii. Click the “H2O” button (5
th 

button), click OK, and a 4
th 

“View” window pops up.  
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Note: This step might have to be performed twice in order to remove the water peaks from 

both ranges.  

 

iv. Click “Automatic Baseline Correction” . Click OK, and a 5
th 

“View” window 

pops up.  

v. Click the “Peak Find” icon . The noise level can be adjusted by either choosing 

the upper and lower limit numerically or by dragging the appropriate horizontal 

lines in place. Click “Apply.” Additional peaks can be added by dragging the 

vertical line to the peak and then clicking the “Add” button. Click OK, and a 6
th 

“View” window pops up. (Do not print from this screen!)  

vi. Click the “print” icon. The attached printer will print the spectrum with the user 

name, entered sample information and the numbers right at the peaks.  

vii. Close all “View” windows, clicking “no” when prompted to save the data.  
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e. General remarks  

Independent from the technique that is used, the IR spectra should be obtained in the range 

from 500-4000 cm
-1 

(for organic compounds). The background should be checked first 

before the spectrum of the compound is acquired. The new generation of FTIR 

spectrometer allows processing the data electronically, which usually leads to an improved 

quality of a spectrum using background correction techniques.  

The laboratory course uses IR plates made from AgCl. Keep in mind that these plates are 

very expensive (~$150). The compound should not react with them (strong oxidizing or 

reducing reagent?). If you check them out from the TA (in exchange for your ID card), it 

is your responsibility to return them in proper condition (clean and complete!). They are 

cleaned with dry acetone and Kim wipes, and not with water, alcohol and the brown or 

white paper towels! (Why?) AgCl plates have to be stored a closed box, protected from 

light, because they are light sensitive.  
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The IR samples should be prepared at the workbench, and not at or on top of the IR 

instrument. We encountered problems in past, because students spilled chemicals inside 

the instrument, which caused ‘wrong’ spectra and serious damage to the instrument, which 

cost $$$$.  

 

Appendix B: Percent Removal Results Including all Membrane 6 Values 

 

 

Figure B-1: Percent relative humidity compared to ozone absorbance. 
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Figure B-2: Ambient temperature compared to ozone absorbance. 

 

Figure B-3: Ambient temperature compared to percent contaminant removal. 

 

 

Figure B-4: Percent relative humidity compared to percent contaminant removal. 
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Figure B-5: Filtration time compared to percent contaminant removal. 

 

Figure B-6: Ozone absorbance in solution compared to percent contaminant removal. 
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Figure B-7: Ozone exposure in solution compared to percent contaminant removal. 

 

Figure B-8: Ozone exposure over the life of the membrane compared to percent 

contaminant removal. 
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Figure B-10: Number of samples filtered compared to percent contaminant removal. 

Appendix C: Additional SEM Images of Membrane 3B and 5. 

 

Figure C-1: SEM image of membrane 5, image 4 of 5. 
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Figure C-2: SEM image of membrane 5, image 5 of 5. 

 

Figure C-3: SEM image of membrane 3B, image 3 of 5. 
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Figure C-4: SEM image of membrane 3B, image 4 of 5. 

 

Figure C-5: SEM image of membrane 3B, image 5 of 5. 
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