

DEVELOPMENT AND CHARACTERIZATION OF AN IOT NETWORK FOR AGRICULTURAL

IMAGING APPLICATIONS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Jacob Wahl

June 2020

ii

© 2020

Jacob Wahl

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Development and Characterization of an IoT Network

for Agricultural Imaging Applications

AUTHOR:

Jacob Wahl

DATE SUBMITTED:

June 2020

COMMITTEE CHAIR:

Jane Zhang, Ph.D.

Professor / Graduate Coordinator

Department of Electrical Engineering

COMMITTEE MEMBER: Vladimir Prodanov, Ph.D.

Associate Professor

Department of Electrical Engineering

COMMITTEE MEMBER:

Bridget Benson, Ph.D.

Associate Professor

Department of Electrical Engineering

iv

ABSTRACT

Development and Characterization of an IoT Network for Agricultural Imaging Applications

Jacob Wahl

Smart agriculture is an increasingly popular field in which the technology of wireless sensor networks

(WSN) has played a large role. Significant research has been done at Cal Poly and elsewhere to develop a

computer vision (CV) and machine learning (ML) pipeline to monitor crops and accurately predict crop

yield numbers. By autonomously providing farmers with this data, both time and money are saved. During

the past development of a prediction pipeline, the primary focuses were CV and ML processing while a

lack of attention was given to the collection of quality image data. This lack of focus in previous research

presented itself as incomplete and inefficient processing models. This thesis work attempts to solve this

image acquisition problem through the initial development and design of an Internet of Things (IoT)

prototype network to collect consistent image data with no human interaction. The system is developed

with the goals of being low-power, low-cost, autonomous, and scalable. The proposed IoT network nodes

are based on the ESP32 SoC and communicate over-the-air with the gateway node via Bluetooth Low

Energy (BLE). In addition to BLE, the gateway node periodically uplinks image data via Wi-Fi to a cloud

server to ensure the accessibility of collected data. This research develops all functionality of the network,

comprehensively characterizes the power consumption of IoT nodes, and provides battery life estimates for

sensor nodes. The sensor node developed consumes a peak current of 150mA in its active state and sleeps

at 162µA in its standby state. Node-to-node BLE data transmission throughput of 220kbps and node-to-

cloud Wi-Fi data transmission throughput of 709.5kbps is achieved. Sensor node device lifetime is

estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day. This network

can be utilized by any application that requires a wireless sensor network (WSN), high data rates, low

power consumption, short range communication, and large amounts of data to be transmitted at low

frequency intervals.

Keywords: Internet of Things (IoT), ESP32, Sensor Node, Gateway Node, Bluetooth Low Energy (BLE)

v

ACKNOWLEDGMENTS

First and foremost, I would like to endlessly thank my parents and sisters for their constant love and for

promoting the importance of education.

I would like to thank my advisor, Dr. Zhang, for offering support throughout this process and suggesting

this topic to me. Thank you to Dr. Prodanov for recommending the development board used in this thesis

and for valuable suggestions throughout my development process. Thank you to Dr. Benson for providing

critical and constructive feedback of my paper.

I would like to thank my close friends Avery, Donald, Elysa, Faye, Jennie, Madi, and Sarah for the

friendship and encouragement over the past five years. You all truly made Cal Poly a home and a

wonderful place to learn, and I cannot thank you enough.

A final thanks goes to my graduate cohort that has persevered through the last five years of school together,

always providing support rather than competition.

vi

TABLE OF CONTENTS

 Page

LIST OF TABLES .. x

LIST OF FIGURES .. xi

1. INTRODUCTION ... 1

1.1 Background and Overview .. 1

1.1.1 Technology in Agriculture ... 1

1.1.2 Motivation .. 1

1.1.3 Significance of Quality Data .. 3

1.2 Statement of Problem .. 4

1.3 IoT Background ... 4

1.4 Scope of Work ... 5

2. LITERATURE REVIEW .. 7

2.1 Vinduino .. 7

2.1.1 Overview .. 7

2.1.2 Analysis .. 9

2.2 Long-range & Self-powered IoT Devices for Agriculture & Aquaponics Based on Multi-hop

Topology ... 10

2.2.1 Overview .. 10

2.2.2 Analysis .. 11

2.3 Smart Agriculture Farming with Image Capturing Module .. 12

2.3.1 Overview .. 12

2.3.2 Analysis .. 13

3. PRELIMINARY SYSTEM DESIGN ... 14

vii

3.1 System Goals ... 14

3.2 Wireless Communication .. 15

3.2.1 LPWAN: LoRa and SigFox .. 16

3.2.2 PAN: ZigBee and Bluetooth Low Energy .. 16

3.2.3 Summary of Wireless Communication Technologies .. 17

3.3 Hardware Case Studies .. 18

3.3.1 Arduino Nano 33 BLE.. 18

3.3.2 Particle Argon... 18

3.3.3 Espressif ESP32 SoC .. 19

3.3.4 Hardware Summary .. 20

3.4 Final Design Summary .. 20

4. HARDWARE OVERVIEW.. 22

4.1 ArduCAM IoTai Development Board ... 22

4.2 Espressif ESP32 SoC ... 24

4.3 OV2640 Image Sensor .. 25

4.4 Other Considerations ... 26

5. DEVELOPMENT ... 27

5.1 Functionality Overview ... 27

5.2 Embedded Development Environment .. 27

5.3 Image Capture – Sensor Node ... 29

5.4 SD Card and Flash Storage Interface .. 33

5.4.1 SanDisk Industrial 8GB Card ... 33

5.4.2 Image File Reading and Writing .. 33

5.4.3 Challenges .. 36

viii

5.5 Bluetooth Low Energy (BLE) Functionality ... 36

5.5.1 BLE Theory and Overview .. 36

5.5.2 Image Transmission via BLE – Sensor Node ... 39

5.5.2.1 General Overview .. 39

5.5.2.2 BLE Device Creation and Advertising on ESP32 ... 40

5.5.2.3 BLE Data Format and Transmission on ESP32 ... 42

5.5.3 Image Reception via BLE – Gateway Node ... 45

5.5.3.1 General Overview .. 45

5.5.3.2 BLE Client Testing with nRF Application .. 46

5.5.3.3 BLE Client on ESP32 .. 47

5.5.4 Server to Client BLE Link Verification.. 52

5.6 Low Power Sleep Modes ... 52

5.7 Wi-Fi and Cloud Server Link .. 55

5.7.1 Firebase Realtime Database.. 55

5.7.2 Firebase Database for the ESP32.. 55

5.8 Functional Summary ... 58

6. SYSTEM CHARACTERIZATION .. 60

6.1 Functional Power and Energy Testing ... 60

6.1.1 Power Draw Test Setup .. 60

6.1.2 System Idle Power .. 62

6.1.3 Image Capture Power ... 63

6.1.4 SD Card and SPIFFS File Write Power .. 64

6.1.5 BLE Server Power .. 66

ix

6.1.6 Sleep Mode Power .. 70

6.2 Sensor Node Power Characterization – Optimal Configuration .. 71

6.3 Battery Life Estimates ... 73

6.4 Gateway Node Power Characterization ... 75

6.4.1 BLE Client Power .. 75

6.4.2 Wi-Fi to Cloud Power .. 77

6.5 Extra Low-Power Design Methods ... 77

6.6 IoT System Comparison .. 78

7. CONCLUSION AND FUTURE WORK .. 80

7.1 Summary and Conclusion.. 80

7.2 Future Considerations and Recommendations .. 81

WORKS CITED .. 84

CODE APPENDICES ... 87

A: Final Sensor and Gateway Node Firmware Files ... 87

B: Python Firebase Scraper Script ... 87

x

LIST OF TABLES

Table Page

Table 1: Wireless IoT Communications Comparison ... 17

Table 2: Hardware Features Summary .. 20

Table 3: Variable Tx Buffer Size Effect on 110kB File Throughput .. 67

Table 4: Sensor Node Active Mode - Optimal .. 72

Table 5: Sensor Node Standby Mode - Optimal .. 72

Table 6: Executions Per Battery for Sensor Node Functions .. 74

Table 7: Sensor Node Conservative Lifetime Estimates with Various LiPo Batteries 75

Table 8: IoT System Specifications Comparison .. 78

xi

LIST OF FIGURES

Figure Page

Figure 1: Handheld Smartphone Image (left) & Drone Image at 3m (right) [2] ... 2

Figure 2: Typical IoT Network Structure .. 5

Figure 3: Vinduino High Level Network Flow [6] .. 7

Figure 4: Vinduino Remote Sensor Node [6] .. 8

Figure 5: ThingSpeak (by MathWorks) Analytics Platform ... 9

Figure 6: IoT System Architecture [7] .. 10

Figure 7: Block Diagram of IoT System Implementation [8] ... 12

Figure 8: Firebase Utilities .. 12

Figure 9: Preliminary High-Level System Design .. 15

Figure 10: Arduino Nano 33 BLE Board [18] ... 18

Figure 11: Particle Argon Development Board [19] ... 19

Figure 12: Espressif ESP32 SoC ... 19

Figure 13: Final High Level IoT System Design .. 21

Figure 14: ArduCAM IoTai Development Board ... 22

Figure 15: ESP32 High Level Functional Block Diagram [20]... 24

Figure 16: OV2640 CMOS Image Sensor Module [22] .. 25

Figure 17: ESP32-DevKitC Breakout Board ... 26

Figure 18: Additional Board Manager URL Field .. 28

Figure 19: ESP32 Platform to Install on Board Manager .. 28

Figure 20: Image Capture Firmware Flow .. 29

Figure 21: API Function Names with Parameters ... 30

Figure 22: Camera Initialization Custom Function ... 31

Figure 23: Image Capture Custom Function ... 32

Figure 24: Image Data File Writing Code ... 34

Figure 25: First through Fifth Image Taken in Series with OV2640 ... 34

xii

Figure 26: Image Captured by OV2640 (rotated 90 degrees), 139KB .. 35

Figure 27: BLE Basic Server and Client Interaction ... 37

Figure 28: Indication / Notification Schemes .. 37

Figure 29: GATT Data Structure for BLE [25] ... 38

Figure 30: BLE Data Transmission Firmware Flow Diagram .. 40

Figure 31: Creation of BLE Device, Server, Service, and Characteristic .. 41

Figure 32: Start BLE Advertising .. 42

Figure 33: Data Formatting and Transmission Firmware Flow .. 43

Figure 34: BLE Characteristic Value Setting and Notification Code .. 44

Figure 35: Case 1 Process in Serial Port ... 44

Figure 36: Case 2 Process in Serial Port ... 45

Figure 37: Nordic nRF BLE Connection Screenshots ... 46

Figure 38: ESP32 BLE Device Information on nRF App ... 47

Figure 39: BLE Data Reception Firmware Flow Diagram .. 48

Figure 40: BLE Device Scan Object Creation ... 49

Figure 41: BLE Scan Interval and Window Diagram ... 49

Figure 42: Set Scan Characteristics Code.. 50

Figure 43: Connect to Server Function Code .. 51

Figure 44: Notification Callback Function .. 51

Figure 45: Sensor Device Cycle Timing Diagram .. 52

Figure 46: Deep Sleep ESP32 Powered Components [28] .. 53

Figure 47: Deep Sleep Functions .. 54

Figure 48: Firebase and Wi-Fi Access Keys ... 55

Figure 49: File Upload to Firebase Process ... 56

Figure 50: Firebase Database Image File View ... 56

Figure 51: Image File to Firebase Function... 57

Figure 52: Functional Summary Reference Diagram .. 58

Figure 53: Simple Power Draw Setup Schematic.. 60

xiii

Figure 54: Power Draw Test Connection Setup .. 61

Figure 55: Development Board Idle Current ... 62

Figure 56: Image Capture Test Script Cycle (Boot to Sleep) .. 63

Figure 57: Five Images Captured Test Script .. 64

Figure 58: Image File Write Test for microSD ... 65

Figure 59: Image File Write Test for SPIFFS ... 65

Figure 60: BLE Advertising and Transmission Current Draw for microSD ... 66

Figure 61: BLE Advertising and Transmission Current Draw for SPIFFS ... 67

Figure 62: BLE Advertising Current Draw Plot .. 68

Figure 63: BLE Transmission Current Draw Plot using microSD .. 69

Figure 64: BLE Transmission Current Draw Plot using SPIFFS .. 69

Figure 65: AlphaLab LNA10 .. 70

Figure 66: Deep Sleep Current Draw without and with MicroSD .. 71

Figure 67: Standby and Active Mode Percentages for One Hour ... 73

Figure 68: BLE Scanning Current Test ... 76

Figure 69: BLE Reception Current Test .. 76

Figure 70: Wi-Fi Image File to Firebase Cloud Current Test .. 77

Figure 71: IoT Mesh Network Topology .. 82

1

Chapter 1

INTRODUCTION

1.1 Background and Overview

1.1.1 Technology in Agriculture

The agricultural industry as a whole is facing significant challenges, from the rising costs of supplies,

labor shortages, a shift in consumer preferences for sustainability, and the surge in global population. These

challenges have led to more innovation and investment capital put into modern agriculture than ever before

[1]. As a result, the use of different complex and connected technologies have been employed to assist the

industry enhance operational efficiency, improve productivity, and reduce costs. Primarily, the use of

Internet of Things (IoT), Computer Vision (CV), and Machine Learning (ML) are being used together to

develop intricate pipelines to keep farmers knowledgeable about their farms, crops, and yields.

One specific application of using the combination of IoT, CV, and ML is to build a remote crop

monitoring and yield prediction system. The crop monitoring system would provide farmers with easy

access to valuable information regarding their plants’ growth conditions, and thus support farmers’

decisions about crop production. Additionally, yield predictions prior to harvest dates is essential for

improving product management and marketing plans. It would help farmers monitor their fields throughout

the year and allow flexibility in hiring an appropriate number of laborers when they will be needed.

Misestimating harvest times and labor requirements result in large fiscal losses as well as crop waste in the

field due to untimely harvests. A system as described is incredibly advantageous for farmers.

1.1.2 Motivation

Significant work has already been done in the computer vision and machine learning sections of the

described pipeline, leaving IoT open to be explored [2], [3]. This section addresses issues brought up in two

previous Cal Poly thesis works focused on CV and ML that became the motivation behind this paper to

develop an IoT system.

The first work, Towards a Strawberry Harvest Prediction System Using Computer Vision and Pattern

Recognition, was written by Andreas Apitz and completed in June 2018. He attempted to develop a data

acquisition, computer vision, and prediction pipeline to reliably predict the data and yield of the field under

2

test. Apitz focused on many different CV techniques to detect and segment red strawberries (the crop of

interest) out of images he had collected in Cal Poly’s crop fields. He tested thresholding in various color

spaces, obstacle masking, and Hough transforms to accomplish this. Apitz also explored three different

methods for data collection: manual handheld camera, mounted camera, and quadcopter drones. For his

work, he primarily used the manual and drone method for his testing, though he noted that the mounted

camera method could be the best option (but failed to test it as it required extensive design). From these

methods, he recorded many shortcomings in image collection. The manual handheld camera method was

time consuming and incredibly inconsistent. Changes in viewing angles, illumination levels, and

acquisition frequencies (ranging from once a day to once a week) all contributed to more difficult computer

vision development. The drone method was quick but was unable to capture images closer than about 10

meters over the ground using autopilot, and this altitude made it impossible to detect strawberries

accurately and reliably. This meant to detect strawberries, the drone had to be piloted manually. Even with

this factor, the drone would have to fly at least 3 meters above the ground, making it difficult still to extract

strawberries from images. A side-by-side view of the handheld camera and piloted drone data acquisition

methods are shown below in Figure 1.

Figure 1: Handheld Smartphone Image (left) & Drone Image at 3m (right) [2]

As mentioned in the previous paragraph, Apitz proposed a mounted camera option and chose this as

the best data acquisition method based on a subjective decision matrix. The matrix considered cost, power,

proximity, ease of use, image quality, time required consistency, and exposure as performance metrics. The

mounted camera idea involved mounting a series of cameras through the field to “automatically and

3

periodically take pictures of the plants and upload them” to a remote server, through “Bluetooth or Wi-Fi.”

Though not stated specifically, Apitz was suggesting an IoT network structure of devices.

The second work, Strawberry Detection Under Various Harvestation Stages, was written by Yavisht

Fitter and completed in March 2019. Fitter analyzed various techniques, both computer vision and machine

learning, to detect strawberries at various stages in their growth cycle. He implemented histogram of

oriented gradients (HOG), local binary patterns (LBP) and convolutional neural networks (CNN) on a

limited custom-built dataset. His data collection method consisted of using a smartphone to take images

“twice a week … at an average height between 4 to 5 feet” [3]. He collected a total of 600 images and used

75% to train and 25% to test his methods. While the testing and development of his three techniques proved

to be useful, Fitter stated that they could be improved, and other methods were not attempted due to a lack

of data.

The common theme within both author’s recommendations is the importance of good image collection

needed for complex processing down the line. Some of the problems they encountered with their collection

methods include inconsistencies of acquisition frequency, varying illumination levels, varying viewing

angles and heights, as well as a time-consuming collection process. This serves as the primary motivation

behind this thesis work, to solve these problems and consider the suggestions of these authors.

1.1.3 Significance of Quality Data

Computer vision is the science of acquiring, processing, and analyzing digital images from the real-

world to extract information for decision making. Machine learning provides systems the ability to

automatically learn and improve from experience to make predictions or extrapolations about data. Both

fields completely rely on sample data to perform their functions. The quality, quantity, and consistency of

image data is incredibly significant for the complex processing methods found in computer vision and

machine learning models. Larger datasets used in computer vision and machine learning processes can help

learn model parameters and improve optimization calculations [4]. This significance is why it is useful to

set out to solve the data collection failures documented in previous works. The CV and ML processes must

become more robust, efficient, and reliable to implement an accurate crop detection and yield prediction

system.

4

1.2 Statement of Problem

There is an unreliable source of image data to be properly used within the complex CV and ML

processes that have been developed to predict harvest yields. The motivation of this thesis is to address the

issues described by previous thesis works and to improve the image collection process in order to create a

more robust and useful crop detection and yield prediction model. Solving this problem could assist in

giving farmers an autonomous method of analyzing their crops, reducing time and cost to them, and to

reduce crop waste in the field due to untimely harvests. This thesis proposes the design and development of

a custom IoT system to be used as the sole data collection step in a crop detection and yield prediction

pipeline that addresses and solves the deficiencies of methods used previously.

1.3 IoT Background

The Internet of Things technology is such a broad and commonly used term. This section attempts to

briefly narrow the scope of IoT to this paper and to give enough background to understand basic terms and

systems.

IoT describes a movement towards web-connected devices used to make common or simple tasks

automated. In our case, it describes a network of wireless sensors and devices that collect and share data to

the internet to be utilized elsewhere. Image and analog sensor data could be used as inputs to a computer

vision process or to a machine learning model, for example. Typically, an IoT ecosystem consists of four

major components: IoT devices, communication technology, the internet, and data storage [1]. Figure 2

below shows the basics of a connected network. The key advantage to an IoT system is communication in

remote and inaccessible areas, making it an emerging technology for farms across the world. According to

a 2016 Machina Research report, the number of IoT connected agricultural devices is expected to grow

from 13 million at the end of 2014 to over 225 million in 2024, an increase of 1,785% [5].

5

Figure 2: Typical IoT Network Structure

The general flow of data is: (1) data collection by Sensor Nodes, ranging from temperature data to

image data, (2) data transmission over an RF communication link from Sensor Nodes to Gateway Nodes,

(3) Gateway Nodes store data and upload previously collected data to Cloud Servers via the internet, and

(4) easily accessible storage of data in the Cloud Server to be utilized by the end user from anywhere in the

world with an internet connection.

As a summary of important parts of an IoT network, the following list defines key terms.

• Sensor Node – Performs data collection and storage, has ability to receive and transmit data

over RF communication

• Gateway Node – Ability to receive and transmit data over RF communication, the internet

access point, uploads received data via internet

• Cloud Server – Data storage on the internet, easily accessible via the internet from anywhere,

at any time for the end user

1.4 Scope of Work

This thesis provides design and development decisions in creating a low-cost, low-power IoT system

to be used in agricultural applications. This research will aim to build a standalone prototype system with

the ability to be expanded upon. The main goal for the prototype system is to develop essential

functionalities of a sensor node, a gateway node, a cloud storage site, and the communication links between

6

all three. As the prototype sensor node will be designed to monitor crops, the device lifetime should be at

least 1-year of uninterrupted operation on battery power. Each node in the network should cost no more

than $30 to enable affordable implementation for farmers. The end user of the image data should be able to

access captured pictures at any time via the internet.

Chapter 2 reviews relevant research papers pertaining to similar IoT systems developed. Chapter 3

reviews a preliminary system design for this thesis while providing specific goals and hardware case

studies. Chapter 4 overviews the hardware system chosen for this thesis, the ArduCAM IoTai, and details

features of the development board as well the core SoC, the ESP32. Chapter 5 documents design decisions

and processes while developing key features of the IoT system. Chapter 6 details a comprehensive

characterization of the system including timing constraints, current consumption, battery life estimates, and

a performance evaluation. Chapter 7 concludes the thesis and provides a functional summary while

suggesting future work to be done. The appendix includes references to all code developed for this thesis

work.

7

Chapter 2

LITERATURE REVIEW

This chapter discusses three previous papers or projects that have developed IoT systems in

agricultural settings. The goal of this literature and project review is to gain an understanding of what

designs and decisions were made to develop successful similar systems in the past and learn from them.

While none of the works reviewed here tackled the specific task of capturing and connecting image data to

the internet, they do contain valuable information regarding wireless communication and unique hardware

solutions. In fact, the task of agricultural IoT imaging for the purpose of crop detection and yield prediction

(albeit a very narrow topic) seems to have never been attempted before.

2.1 Vinduino

2.1.1 Overview

The first project was born out of necessity by a California farmer. Vinduino (Vineyard + Arduino), was

created to better manage the irrigation system of a southern California vineyard. The primary goal of the

system was to provide a low-cost and easy to build system with rugged components for optimizing

agricultural irrigation.

Figure 3: Vinduino High Level Network Flow [6]

8

The process of the system developed is depicted in the Figure 3. The sensor nodes are placed out in the

fields where they can collect any needed data from crops. They then send the collected data out to the

gateway node, placed near the edge of the field and close to an internet router. This gateway can then

upload the data via the router to a cloud server, where the data is aggregated into graphs to be easily

analyzed by the farmer. After checking the data, the farmer can then send out simple commands to the

sensor nodes to change irrigation control, if needed.

Figure 4: Vinduino Remote Sensor Node [6]

The project uses multiple soil moisture sensors, located at different depths to prevent overwatering and

control irrigation to not exceed the active root zone. The solar powered remote sensor nodes have three

gypsum soil moisture sensors and several options for temperature or humidity sensors. The designed board,

shown in Figure 4, includes a Globalsat LM-210 LoRa module for long-range wireless communication (up

to 6 miles), a built-in solar battery charger, and a built-in real time clock (RTC) for precise irrigation

timing. This board also has the option to plug in an ESP8266 SoC to provide Wi-Fi connectivity. The

functionality of the sensor node is controlled by an Arduino Pro Mini [6].

The gateway node is based on LoRa (long-range) communication. It collects data that is sent by all the

sensor nodes and is able to transmit that to a cloud server via a nearby internet router. The gateway and its

connection to the internet is separate, adding one more (possibly unnecessary) step in the data flow. The

internet router pipes the data to a ThingSpeak cloud server, a simple analytics platform for IoT projects.

9

This platform service is made by MathWorks, the makers of MATLAB. ThingSpeak allows data to be

aggregated, visualized, and analyzed in real-time in the cloud, shown in Figure 5.

Figure 5: ThingSpeak (by MathWorks) Analytics Platform

Any data that has been uploaded to ThingSpeak can be processed and analyzed in MATLAB. The

farmer can view this data from wherever he wants with an internet connection on his own personal

machine. With these visualizations, he can make decisions about irrigation and send simple commands to

the irrigation valves via the sensor nodes to adapt to any changes.

2.1.2 Analysis

While this previous work was not an academic paper, it provides an incredible amount of information

and documentation on its development, which is why I chose to include it in this thesis. This project saw

real-world success and was completely implemented in this farmer’s vineyard. The success of this project’s

functionality should not shield it from a critical review and analysis, though. This section will briefly

overview what this project did well, and what could possibly be improved.

The data being collected and processed was primarily soil moisture and temperature data. This

translates to a small packet size of actual data being transmitted at a time, usually with a maximum size of

ten bytes. This lends itself nicely to the low bandwidth LoRa communication method. While this is

discussed in more detail in Chapter 3, LoRa is able to travel large distances because of a cut to its data rate,

making transmission of a small amount of data allowable. This small amount of data is easily handled by

the ThingSpeak platform, which is able to be used free of charge with certain data limitations. These

limitations include a yearly message amount of three million “messages.” A “message” is defined as a write

of up to 8 fields of data to a ThingSpeak channel. This limitation is ideally used for data with specific

fields, like temperature or moisture, which is typical for many IoT applications. The decisions to use LoRa

10

and ThingSpeak are intentional and gave me some insight into design tradeoffs including data rate,

transmission distance, data size, and cloud platform limitations.

The sensor and gateway nodes in this project were designed and implemented with discrete modules

on to a custom printed circuit board. In my opinion, the design of the sensor node has a redundancy that

could be fixed, and the physical hardware placement could be given a second look. On the sensor node, the

optional ESP8266 SoC is used only as a Wi-Fi replacement if the LoRa module was deemed unnecessary.

By making the ESP8266 a permanent installment of the node and removing the Arduino Pro Mini, the node

would become a lot easier to modify and just as easy to control. The SoC does indeed include native Wi-Fi,

but also integrates a 32-bit Tensilica microprocessor. This processor has many more capabilities than an

Arduino Atmega328 microcontroller, including lower power consumption, more peripheral interfaces, and

a lower cost. You can even program and upload code to the ESP8266 from the Arduino IDE. In addition to

this hardware replacement, an improvement to the physical layout of the system can be made. Looking at

Figure 3 of the system flow, it would be advantageous to move the location of the gateway node to near the

farmer’s house. The farmer can easily install an internet router in his home (if not installed already) and

completely cut out the internet router on the opposite side of the field. This would reduce cost and time to

the farmer.

2.2 Long-range & Self-powered IoT Devices for Agriculture & Aquaponics Based on Multi-hop Topology

2.2.1 Overview

This paper presented at the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) presents a

prototype design of a long-range, self-powered IoT device for use in precision agriculture [7]. The IoT

system presented is shown in Figure 6.

Figure 6: IoT System Architecture [7]

11

The system is designed to collect temperature, humidity, light, air pressure, soil acidity, and soil

moisture data and transmit it back to an IoT server. The sensor nodes are designed with BMD-340 modules

based on the nRF52480 microcontroller with an on-board antenna. The controller has Bluetooth 5 long-

range support integrated into the chip. They use the bq25570 integrated circuit from Texas Instruments for

energy harvesting, battery charging, and voltage conditioning. The nodes are powered from a Li-Ion battery

with a 120mAh capacity. The sensor nodes are programmed to transmit at 125 kilobits per second in long-

range mode using forward error correction (FEC) scheme to perform error detection and correction on

received data.

To transmit this data collected at the sensor nodes to the gateway node, based on the ESP32 SoC, a

custom developed “multi-hop” network is used. This network allows the system to extend its range to full

coverage of large crop fields. The protocol enabled data transmission distances of 1.8km per hop, extending

sensor coverage of almost any size to be viable. As this system will have many sensor nodes and a few

gateway nodes placed around a large field, this network topology is able to route messages towards a

dedicated gateway, where the closest gateway is chosen after the network has adapted. Once data gets to a

gateway node, the messages are published via MQTT over Wi-Fi to a local network server.

2.2.2 Analysis

This paper focuses on the multi-hop network protocol for a large-scale agricultural IoT system to

produce a low-power architecture. Though the scale of the described system is much larger than what might

be implemented by this thesis, it is useful to see what large scale systems need to function efficiently. It

was useful to read about the multi-hop protocol that extends the range of the sensor nodes to an entire crop

field as well as making it use as little power as possible. This data transmission organization is likely the

biggest obstacle to creating an efficient and scalable IoT system. Some thought should be put into creating

a similar topology for the system described in this thesis work, even though it is a simpler system. The

paper also included a brief discussion of power consumption of a sensor node and recorded a sleeping

mode power of 6.94 microwatts [7].

12

2.3 Smart Agriculture Farming with Image Capturing Module

2.3.1 Overview

This research paper, submitted to the 2019 Global Conference for Advancement in Technology

(GCAT), focuses on the development of building an IoT system with a camera module device to analyze

possible diseased crops [8]. The scope of this paper is similar to this one but aims to solve a different

agricultural problem.

Figure 7: Block Diagram of IoT System Implementation [8]

The architecture of the system is given in Figure 7. An Arduino Mega 2560 acts as the central

processor and initiates all tasks in the process. The model uses temperature, humidity, and water moisture

sensors connected to the analog pins of the Arduino as well as an OV7670 0.3-megapixel camera. Data

collected by the system is received by the Arduino and sent to the cloud using an ESP8266 as a Wi-Fi

module.

Figure 8: Firebase Utilities

13

The team used Firebase (backed by Google) as cloud storage for all data collected by the device.

Firebase is a user-friendly platform to create and use databases for dynamic storage. The data can then be

accessed by anyone with the proper authentication from any internet connected device. Figure 8 shows the

synchronization of data over any connected device.

2.3.2 Analysis

This research demonstrates that it is possible to use an IoT network for image transfers and cloud

storage. The paper shows that low-cost hardware and free software can be used to create a simple but

effective IoT system. In the conclusion, the researchers state that the image capturing module functions

slowly due the Arduino. Unfortunately, the paper does not discuss power requirements as the sensor node

seems to run on a continuous power supply. The focus of the research was proof of concept and did not

result in any optimization of the functionality. Despite this fact, the discussion on the free cloud storage

used to store both sensor data and image data was helpful. Further research into various cloud storage

platforms must be made for my system and Firebase seems like a promising choice.

14

Chapter 3

PRELIMINARY SYSTEM DESIGN

3.1 System Goals

The proposed system will be the sole data collection step in this CV and ML pipeline and focus on

creating a base functionality design that can be its own standalone point-to-point system able to monitor the

growth of a single viewable area in a farm. The goal of this thesis is to develop a low-cost, low-power

image acquisition IoT solution that addresses the common issues seen by previous works.

In order to create a good solution, the development focused on the following areas.

• Low Cost: The designed system should be affordable for the end user and consumer. Each node

should be at most $30.

• Low Power: The system (especially the sensor node) should use as little power as possible. The

nodes must have long lifetimes while running on battery power. The longer the devices can run on

a single battery charge, the less frequent they have to be maintained by a human. The sensor nodes

should last at least 1-year operating on battery power.

• Scalability: While this thesis aims to develop a single sensor node and gateway node pair with

accompanying significant functionality, this network will likely have to expand in size to meet

farmer demands. A focus should be put on scale so that the network is easily able to accommodate

change and improvement down the line, such as a mesh network.

• Autonomy: This system should be primarily autonomous to reduce the amount of effort by

humans to collect and utilize this image data. Once this system is in place, no human input or

maintenance will be needed until the battery is discharged.

Figure 9 displays a preliminary system design before any decisions were made on hardware or wireless

communications. This follows the typical IoT network structure described earlier.

15

Figure 9: Preliminary High-Level System Design

The decisions now must be made on what hardware will be used as the sensor and gateway nodes,

which wireless communication technology will be used to link the nodes, and the best peripherals to be

connected before we start functional development.

The two most significant factors to this design are the hardware/software ecosystem and the wireless

communication technologies chosen. These two things will facilitate data flow and data speeds throughout

the system. The following two sections will describe the needs of the system with respect to each factor and

compare different technologies reviewed.

3.2 Wireless Communication

Choosing the best communication method for sensor to gateway node links as well as the gateway link

to the internet is significant. IoT systems generally have three different categories of wireless

communication technologies: personal area network (PAN), Cellular, and low-power wide area networks

(LPWAN) [9]. Two different PAN technologies and two different LPWAN technologies are reviewed in

the section. Many factors were reviewed in this research including data rates, power consumption,

transmission distances, popularity, and scalability.

16

3.2.1 LPWAN: LoRa and SigFox

The LoRa (Long Range) communication technology is a commonly used IoT protocol. This

technology was the driving link for the Vinduino project, described in Chapter 2. LoRa is a low-power

wide-area network technology. It is based on spread spectrum modulation techniques and uses license-free

sub-gigahertz radio frequency bands like 433MHz or 915MHz. This enables very long-range transmissions

with low power consumption. While LoRa has a line-of-sight range of multiple kilometers, it has incredibly

low bandwidth. This puts significant limitations on the data that is can be sent. The message payload needs

to be as small as possible and encoded as binary data. Most recommendations keep the payload under 12

bytes. Because the data has to be transmitted over such a long distance, the interval between messages

should be in the range of several minutes [10]–[13].

SigFox is a very similar communication technology as LoRa. The technology operates in the license-

free frequency bands around 920MHz. It is a lightweight protocol with very little overhead needed to

transmit data which means it consumes very little power. SigFox only supports one-way communication as

opposed to the bidirectionality of LoRa. The pitfalls of SigFox follow those of LoRa. The communication

technology is ultra-narrowband and will only support 140 messages per day per device with 12 byte

payloads [14], [15].

While both LPWAN technologies have their advantages in most classic IoT networks, their biggest

limitation is the largest disadvantage for our system. In order to create low-power sensor nodes for this

imaging system, the transmission time must be minimized. To do this, the communication bandwidth must

be large, and the data rate must be fast enough to transmit kilobyte sized images in a reasonable amount of

time.

3.2.2 PAN: ZigBee and Bluetooth Low Energy

ZigBee is a mesh network protocol designed to carry small packets of data over short distances while

maintaining low power consumption. Mesh networks operate on the principal that the information from a

single sensor node travels on a web of interconnected nodes until the transmission finds its way to the

gateway. It uses a version o the IEEE 802.15.4 standard and is widely used in local area sensor networks. It

has a short range of approximately 10 to 100 meters with a 100 milliwatt transmit power [16], [17].

17

The wireless standard known as Bluetooth should sound familiar to most people. It describes a short-

range wireless communication technology that has penetrated the consumer market faster than any other.

The Bluetooth Special Interest Group introduced Bluetooth Low Energy, a newer standard than the classic

serial port profile (SPP) Bluetooth, and this now has monopoly over the consumer electronic short-range

communication market. It is used in almost every device people use on a day to day basis and has become

synonymous with in-home IoT solutions. BLE has a slightly shorter range than ZigBee, but also has a much

higher data rate at around 1 megabit per second for short bursts. The low energy aspects come when the

device sleeps in between those bursts, which requires less power usage. ZigBee does not have this

functionality [16], [17]. BLE also has the ability to be configured in a mesh or star network topology,

giving it scalability for variable size networks.

As the idea for a large IoT network has potential for the system being developed, these PAN

technologies are an attractive option. The number of sensor nodes will most likely be large and constrained

to a relatively small area, so the distance between these nodes will be small. This enables the use of such

communication technologies.

3.2.3 Summary of Wireless Communication Technologies

Table 1 describes the four communication technologies discussed while comparing certain key

characteristics between them.

Table 1: Wireless IoT Communications Comparison

 BLE (v4) ZigBee LoRa SigFox

Range < 100m 100m > 1km > 1km

Topology

Options

Point-to-point,

Mesh, Star

Point-to-point,

Mesh
Line-of-Sight Line-of-Sight

Data Rate 1Mbps 250 kbps 27 kbps 600 bps

Power

Consumption

Rank

1 (Best) 2 4 (Worst) 3

Frequency 2.4GHz 2.4GHz 433 or 915MHz 920MHz

Based on the characteristics of the table shown and the goals of the system to be developed, the best

option for wireless communication between the sensor nodes and the gateway is Bluetooth Low Energy.

This protocol has the lowest power consumption, the highest theoretical data rate, and the most flexibility

in network topology. These characteristics make BLE a great option for our system.

18

3.3 Hardware Case Studies

This section briefly outlines the core hardware that was assessed to develop this IoT system. Hardware

solutions were researched after deciding that BLE would be the wireless communication to transmit data

from sensors to gateway nodes. Key characteristics in attractive hardware were various low-power modes,

integrated BLE modules, numerous peripheral selections, and cost.

3.3.1 Arduino Nano 33 BLE

The Arduino Nano 33 BLE features a powerful nRF52840 32-bit ARM Cortex M4 processor that runs

at 64 MHz. The board has 1 MB of program memory and 256 kB of SRAM [18]. Figure 10 shows the

physical development board.

Figure 10: Arduino Nano 33 BLE Board [18]

The board also integrates 14 digital GPIO pins and one UART, SPI, and I2C interface each. The

nRF52840 has a fully integrated Bluetooth 5 module with BLE mode. This chip is also able to run in

multiple sleeping modes for low-power consumption in the microamp range.

3.3.2 Particle Argon

The Particle Argon development board is built specifically to be either a sensor or gateway node in an

IoT network. The board integrates both and ESP32 SoC as a Wi-Fi coprocessor and the nRF52840 SoC as a

Bluetooth module. The physical board is shown in Figure 11.

19

Figure 11: Particle Argon Development Board [19]

It has plenty of storage with 1 MB of program memory and 256 kB of RAM for the nRF52840 and 4

MB of program memory for the ESP32. There are 20 mixed signal GPIO lines with UART, I2C, and SPI

interfaces. This system has only one PCB antenna (for BLE) but has two separate U.FL ports to attach

external antennas for Wi-Fi and BLE [19].

3.3.3 Espressif ESP32 SoC

The ESP32 is advertised as a low-cost, low-power SoC with integrated Wi-Fi and Bluetooth 4.2

capabilities. At the core, there is a dual-core Tensilica Xtensa LX6 microprocessor that runs up to 240MHz.

The ESP32 also integrates an ultra-low power co-processor and an RTC for low current consumption with

five different sleep modes [20]. Figure 12 shows the surface mount chip that is soldered on to a variety of

development boards.

Figure 12: Espressif ESP32 SoC

The ESP32 SoC is available as the core of many different development boards as it is widely used by

IoT hobbyists. One of these is of particular interest, the ArduCAM IoTai. This development board ships

with an OV2640 2-megapixel camera sensor with an on-board parallel interface, an on-board microSD card

reader, and a battery pin connector [21].

20

3.3.4 Hardware Summary

Table 2 summarizes key points in the hardware solutions reviewed. The characteristics chosen are of

importance to the specific IoT system being developed in this thesis.

Table 2: Hardware Features Summary

 Arduino Nano 33 BLE Particle Argon ArduCAM IoTai ESP32

SoC nRF52840 nRF52840, ESP32 ESP32

Program Memory 1 MB 1 MB, 4MB 4 MB

RAM 256 kB 256 kB 4 MB

GPIO 14 20 24

Wireless Comm. BT 5.0 BT 5.0, Wi-Fi BT v4.2, Wi-Fi

On-Board Camera? No No Yes

On-Board Expandable

Storage?
No No Yes

PCB Antenna? No Yes (only for BLE) Yes

Battery Connector? No Yes Yes

Cost $20.20 $27.00 $19.99

While all of these platforms have the potential to develop into an IoT system, the cost of the platform

is a major selling point. The Arduino and Argon board are feature-rich solutions but would require external

purchasing of cameras and expandable storage hardware to be used, adding to the prices listed. The

ArduCAM IoTai based on the ESP32 provides a wide array of scalable features and integrates all the

wanted peripherals onto a single development board for under $20. For these reasons, the ESP32 based

ArduCAM IoTai is chosen to be at the heart of the proposed IoT system.

3.4 Final Design Summary

Using these, a point-to-point system will be developed to produce the functionality of an IoT system.

The system will have the goal of being implemented in a crop field as depicted in the following figure. The

sensor node and gateway node will both be based on the ArduCAM IoTai ESP32 but will physically be two

separate devices. The two nodes will communicate with each other using the Bluetooth Low Energy (BLE)

standard. The gateway will upload aggregated image data to a cloud server over Wi-Fi. The sensor node

will be powered by a LiPo battery as it will be deployed in a field far away from a constant power source.

21

Since the gateway node will be assumed to be near a stable internet connection, it will also be assumed it

will be near a constant power source. This description is illustrated in Figure 13 below.

Figure 13: Final High Level IoT System Design

22

Chapter 4

HARDWARE OVERVIEW

This chapter will give an overview of the hardware chosen for the development of this thesis. A

detailed discussion of the features of the ArduCAM development board, ESP32 system on a chip (SoC),

and OV2640 image sensor module will be included, as these are the primary pieces of the IoT system being

developed.

4.1 ArduCAM IoTai Development Board

The device chosen to function as both the sensor node and gateway node in our network is the

ArduCAM IoTai UNO PSRAM development board, shown in Figure 14. This hardware module is an all-

in-one solution with many attractive features for developing a custom IoT system.

Figure 14: ArduCAM IoTai Development Board

This development board is based on the ESP32 SoC and the OV2640 2 Megapixel Camera Module,

which are both described later in this chapter. Apart from these two components, the development board

also features the following useful parts:

• MicroSD Card Slot

• LiPo Batter Connector (2-pin)

• 4MB PSRAM, 32Mbit Flash

• USB-Serial Interface

• PCB Antenna for RF Communication + U.FL Connector for External Antenna

23

The microSD card slot and plentiful on-board flash storage are large factors in making this system a

scalable network. Having the option to be able to variably expand the on-board storage of this board allows

for greater flexibility in its applications. MicroSD cards are sold with a wide range of storage sizes, from

64MB to 512GB, depending on the type of card. The flash storage chips also give a way to organize image

files well due to the fact that a basic tree file system can be implemented on them rather easily. Because our

application will be based around the storage of images that will vary in size, it is important to have plenty

of storage space on these devices as well as a good organization system to easily access the image files in

software.

The development board features a 2-pin battery connector to power the system. The sensor node of the

proposed system will be far away from any power sources, so it must be powered by a battery. This

connector leads to a voltage regulator that will power the ESP32 SoC at 3.3 volts, therefore, we can have

batteries of different nominal voltages plugged in to our development board, expanding our options.

Program memory is incredibly important in this design. Apart from storing images, the board must be

able to store firmware and its overhead. With 32Mbits of flash memory, the board can store a respectable

amount of firmware, and with 4MB of PSRAM (pseudo-static random-access memory) it can create and

manipulate significant amounts of program variables when firmware runs. For a comparison, an Arduino

UNO based on the ATmega328 chip has 32kB of flash memory and 2kB of SRAM (static RAM) memory.

Our system will need a significant amount of memory for programs and variables as the system will be

using Wi-Fi and Bluetooth technologies which include large overhead sizes for controllers and other

needed data.

Though it is not necessarily a requirement for programming, the board features a USB-serial chip that

makes program compilation and uploading very simple. The alternative to this would be to use an FTDI

adapter which allows for many common problems to occur when trying to program the board, like

improper wiring or compatibility issues.

Lastly, the development board includes a PCB antenna for radio frequency (RF) transmissions from

the ESP32, as well as a U.FL connector for the option to attach an external antenna. This feature is

important as the system uses both Wi-Fi and Bluetooth technologies for the transmission of image data and

this allows for flexibility in supplementing the transmission output power of the device.

24

4.2 Espressif ESP32 SoC

The most important part of the development board is the SoC it is built around, the brains of the

system. The ESP32, created by Espressif Systems, is a low-cost, low-power system with both Wi-Fi and

dual-mode Bluetooth capabilities. At its heart, the chip features a dual-core Tensilica Xtensa LX6

microprocessor with a clock frequency of 240MHz. Designed for mobile devices and IoT applications, the

ESP32 achieves ultra-low power consumption through multiple power saving features and relying on its

real-time clock (RTC) and ultra-low power co-processor (ULP). The full functional block diagram is shown

in Figure 15.

Figure 15: ESP32 High Level Functional Block Diagram [20]

The ESP32 also features many interfaces for the addition of peripheral devices. These include standard

I2C (inter-integrated circuit), DAC (digital-to-analog converter), SPI (serial peripheral interface), and SDIO

(secure digital input output). All of these interfaces are incredibly important for designing a scalable IoT

system that can adapt to changes and additions. Though this thesis will not include any external devices

that need to be directly interfaced with (like analog sensors), having the option and bandwidth to do so is a

large advantage for this system.

A more detailed look into the electrical and radio characteristics of the functionalities on this chip will

be discussed later in the Chapter 5, Development. These characteristics and specifications will be addressed

as they are needed in the development process outlined in that chapter.

25

4.3 OV2640 Image Sensor

This system being developed relies on images, so the camera module used is of great importance. The

module must be able to capture quality images and have the ability to control many image processing

functions like white-balancing, saturation, de-noising, and similar processes.

The OV2640 camera module is a low voltage CMOS image sensor that provides full functionality of a

single-chip camera and image processor in a small package. This module is included with purchase of the

ArduCAM development board, though it is possible to replace this camera with another parallel interface

image sensor if necessary. The physical module is depicted in Figure 16.

Figure 16: OV2640 CMOS Image Sensor Module [22]

This 2-megapixel camera module is capable of UXGA (ultra-extended graphics display) image display

mode where the resolution of a captured image is 1600 pixels horizontally by 1200 pixels vertically

(1600x1200). This totals 1.92 million pixels on the display. For our agricultural imaging application, this

image quality is sufficient. If better image quality is needed at later time, a higher quality parallel interface

camera module can be purchased separately and used with this system.

A very important aspect of this module is the fact that it features an on-chip compression engine. This

engine consists of three major blocks: a DCT (discrete cosine transform) block, a quantization block, and

an entropy encoding block (Huffman encoding) [22]. These three blocks perform JPEG compression on

images captured, greatly reducing the size needed to represent and store the image while keeping the image

quality almost unchanged. Reducing the size of these images will decrease the amount of time it takes to

transmit the image data, therefore decreasing the amount of power being used by the system. This will

allow for a longer device lifetime while running on battery power.

Another significant feature of this camera is the ability to control so many image control functions

automatically and manually. These automatic control functions include exposure control, gain control,

26

white-balance, and black-level calibration. Exposure is the amount of time the CMOS sensor array is

exposed to light; gain controls the amplifier gain following sample and hold circuitry; white-balance

control removes unrealistic color casts so that objects that appear white in person are rendered white in the

image; black-level calibration refers to the brightness of the images making sure they do not seem too dark.

This feature-packed camera module includes everything needed to be a robust image capture module for

our IoT system.

4.4 Other Considerations

One important aspect of this system is keeping it affordable to the end user or consumer. All the

hardware described in this chapter was purchased in one package, available from ArduCAM’s website. The

price for both the ArduCAM IoTai development board and OV2640 camera was $20. This price for the

amount of hardware potential is impressive. While the development board with integrated peripherals was

bought for this work to more easily develop primary base functionality of an IoT system, the core pieces of

this can be cheaply bought individually or in smaller packages if simpler sensor nodes without imaging

capabilities are needed.

Figure 17: ESP32-DevKitC Breakout Board

One example of this is the ESP32-DevKitC, by Espressif, shown in Figure 17. It is a breadboard

friendly ESP32 chip with pins broken out, starting at $10. Micro SD card readers and parallel camera

interfaces can be purchased quite cheaply, too.

27

Chapter 5

DEVELOPMENT

5.1 Functionality Overview

This chapter describes the chronological development of significant functions within the IoT system.

Each section discusses how a specific system function was created in code and attempts to explain why

certain decisions were made in reference to the system goals and requirements. The following topics are

presented: the embedded environment used to develop firmware, image capture processes for the sensor

node, two viable storage options and respective interfacing, BLE theory, ESP32 BLE functionality for

sensor and gateway nodes, low-power sleep modes for the sensor node, and Wi-Fi connection to the

Firebase cloud on the ESP32.

5.2 Embedded Development Environment

The firmware developed and tested in this thesis was written in the Arduino Integrated Development

Environment (IDE). This environment was chosen as it has the least number of obstacles to begin using and

understanding. The Espressif ESP-IDE is also a viable choice for the more experienced embedded

developer but has a steeper learning curve than the Arduino IDE. The Arduino IDE is a familiar software

environment for anyone who has tinkered with the open-source hardware platforms Arduino provides. The

environment is incredibly popular around the globe and has a significant developer community behind it.

This means there are many forums, tutorials, and assistance available to get started developing with this

IDE.

The Arduino IDE does not come with the ability to interact with the ESP32 SoC or ArduCAM

development board automatically. Luckily, there is an easy way to install the board and processor

framework to begin writing code on the ESP32. Once the latest version of the Arduino IDE is downloaded

and installed on a local machine, a JSON file can be entered into the “Additional Board Manager URLs”

field, found at Files->Preferences. The specific JSON file for this specific board can be found here:

https://www.arducam.com/downloads/esp32_uno_psram/package_ArduCAM_ESP32_PSRAM_index.json

28

Figure 18: Additional Board Manager URL Field

Enter the file URL into the field shown in Figure 18, separating multiple URL’s with commas. This

file contains all the necessary links and tools to use all the features on the ArduCAM board. After this is

entered, the ESP32 platform package must be installed in the “Boards Manager” menu, found at Tools-

>Boards->Boards Manager.

Figure 19: ESP32 Platform to Install on Board Manager

The package to install is shown in Figure 19, titled “ArduCAM ESP32S Boards”. Once these steps are

done and the Arduino IDE is restarted, code development can commence. To develop code for this system,

many hours were spent digging into and reading the library files within the ArduCAM GitHub site found at

29

https://github.com/ArduCAM/ArduCAM_ESP32S_UNO_PSRAM. The site has many C and C++ source

and header files for drivers and API’s to make interacting with the development board electronics a little

easier.

5.3 Image Capture – Sensor Node

The first function to test and implement is to capture an image using the OV2640 camera module, as

the entire IoT system revolves around this visual sensing functionality. The goal is to efficiently capture

quality images to be used in computer vision processes down-the-line. To develop this, a few files are

especially helpful: esp_camera.h, arducam_esp32s_camera.h, sensor.h. The first file provides a camera

configuration structure as well as a data structure for the camera frame buffer. The second defines specific

API function calls for camera initialization and other key actions. The third provides structure of the

OV2640 driver and different settings available to the image sensor.

The basic idea of the function flow is depicted in Figure 20 below. After powering up and booting the

processor, we must detect and initialize the camera module to be sure it is ready and capable to capture an

image. Once the image is captured, we must provide pointers to the image frame buffer and the image

frame length (or size). The buffer will hold the entirety of the image data while the frame length holds the

size of the image, in bytes. These two pieces of information will be necessary in storing the imagen in

either flash storage or a microSD card. A boolean flag “ESP_OK” is also returned to represent the success

or failure of capturing an image.

Figure 20: Image Capture Firmware Flow

There are three useful already built API functions that will help. The camera initialization function in

Figure 21 is housed within arducam_esp32s_camera.h and configures the camera over the I2C interface and

allocates frame and direct memory access (DMA) buffers. It takes a configuration data structure as input

30

holding GPIO pin numbers for camera lines, clock frequency and timing channels, pixel format, and frame

size information. This function returns a success flag if the initialization operations are completed.

Figure 21: API Function Names with Parameters

The camera sensor has a control structure defined in sensor.h that can be obtained by using the second

function in Figure 21. With this structure, we gain the ability to vary and set different sensor actions while

the camera is already initialized. These include brightness, contrast, frame size, gain controls, and many

more.

The third function captures an image by obtaining a pointer to the frame buffer that holds the entirety

of the image data. The frame buffer data structure contains five variables: a buffer, length, width, height,

and format. The combination of these fully describe the image.

The following two custom functions seen in Figure 22 and Figure 23 were developed using the

knowledge and API functions described in this section. One is for camera initialization and the other is to

capture an actual image. As a note, the print statements are for serial debugging purposes and to make the

code easier to read but will not be present in the final distribution of code to save memory and speed up

code execution. All serial debugging was done using the Arduino Serial COM port and PuTTY.

31

Figure 22: Camera Initialization Custom Function

Within the function shown in Figure 22, we initialize the image sensor with PIXFORMAT_JPEG

parameter to indicate that we want compressed output image data in the JPEG format. This function returns

an ESP_OK flag if the process is completed successfully. If anything other than ESP_OK is returned, the

specific error is printed to the serial port so the developer can view the reason for failure, then exits the

function. Upon successful initialization, we obtain the sensor control structure values and use this to set all

camera settings. First the frame size is set to UXGA: 1660 by 1200 pixels. This size is the maximum frame

the OV2640 can produce (2MP). At this point all other settings can be manually set. All of the settings

32

shown in the function are done entirely on the OV2640 image processor. The effects and the chosen values

are what produced the best images, but the comments describe possible input options. Most image effects

are set to be automatic.

Figure 23: Image Capture Custom Function

An image capture function was developed around the API functions for our specific purposes, seen in

Figure 23. Appropriately sized variables are initialized as null or zero valued for the frame buffer

characteristics and timing, seen in the first five lines of the function in the figure above. The variable

“time_dur” holds the difference of “fr_end” and “fr_start”. These start and end variables hold the number

of microseconds since the ESP32 has booted up both directly before and after the image frame is captured.

This allows for the collection of important functionality timing information for power analysis of the

system later on. If the function is unable to capture an image, an ESP_FAIL flag is returned. Otherwise, the

function will return ESP_OK. Now, we have a camera frame buffer data structure with important attributes

we need: the buffer data and the image length. We save these two attributes to our variables “fb_len” and

“fb_buf” using the arrow operator.

33

At this point the image capture function is almost complete. The length and buffer data attributes must

be either stored on the device for transmission later on or immediately transmitted off the device. The

decision to store the image data on the device for future transmission is made for a few reasons. First, the

system being developed must be as scalable as possible. As more imaging nodes are added to the system, a

device may not be able to immediately transmit, or the recipient may not be ready to receive data, so

organized immediate storage is the best option. This is where either flash or microSD storage can be used.

The development of the remaining camera functionality is done without a final decision between these two

storage options. The code needed to interact with both storage options is essentially the same with the use

of the serial peripheral interface flash file system (SPIFFS) and the SD card file system libraries. The

implementation of both is shown in the following section. A more in-depth comparison of the two storage

types can be found in Chapter 6.

5.4 SD Card and Flash Storage Interface

5.4.1 SanDisk Industrial 8GB Card

The microSD card chosen for this work is the SanDisk Industrial 8GB card. This is a popular card

chosen primarily for its low price and industrial specifications. Commercial microSD cards (regardless of

manufacturer) have an operating temperature range of about 0 to 70°C (or 32 to 158°F for us Americans).

The limiting factor is the low end of the temperature range as our application of this device is in crop fields

where it can easily get below freezing, especially in the winter. The industrial grade cards produced by

SanDisk are ideal for this application. The operating temperature range of the card being used is -25 to

85°C [25]. This range includes any temperature we would expect to see crop fields to possibly exist in.

Unfortunately, this industrial grade card comes at a higher price tag. An 8GB Industrial card can be bought

for around $9 while the commercial counterpart is priced around $5.

5.4.2 Image File Reading and Writing

In order to read and write data as files into storage, the free file system wrapper FS.h developed by

Espressif for the ESP32 was used in conjunction with the SD_MMC.h file (for SD) and SPIFFS.h file (for

flash). The file system wrapper defines common file functions like mkdir, rmdir, open, close, read, and

write. This wrapper is what will help us keep these image files organized and easy to access. The two

34

header files are drivers for the ESP32 to interact with the on-board microSD card reader and the on-board

flash storage.

Figure 24: Image Data File Writing Code

The code in Figure 24 shows the basic idea of taking the previously gathered image data and writing it

to a file on the microSD card. The PATH_NAME will include the path directory with the wanted file name

(for example: /ArduCAM/image_number.jpg). Directories on the card can be made manually with a file

explorer on a PC or in code using the SD_MMC.mkdir(). Directories can only be made in flash memory

using the SPIFFS.mkdir() call.

Using this functionality, the image data can be stored on the microSD card or in flash. Initially, a

single capture was taken and sent to the SD card in order to easily view the image on a PC. The resulting

image was surprising. It was dark and had bad white balance showing a green tint. Originally, the thought

was that the automatic settings would do a better job at correcting the image. After some testing, it was

found that the images would look best if they were taken in series of around five at a time, where the

quality of the image increased until image three. After the third image, the pictures would look balanced

and well corrected. This increase in quality of images from the first to the last image in one series of five is

shown in the Figure 25.

Figure 25: First through Fifth Image Taken in Series with OV2640

These five images were taken with no change in code or settings, just within a series of images taken

on the same board boot and camera initialization. This is important because we need to be able to

35

consistently save and transmit the best image available. Therefore, it is best to take image captures in series

of at least five and save the last one to storage for transmission.

Figure 26: Image Captured by OV2640 (rotated 90 degrees), 139KB

Figure 26 shows an image captured with a textbook in view. This shows the color saturation,

brightness, and balance are all sufficient using the automatic settings. It is an impressive image for a 2-

megapixel simple camera module. The 1600 by 1200 pixel image file is compressed to 139KB by the JPEG

engine, a compression ratio of almost 14.

Theoretically, the 8GB microSD card could hold over 57,000 equivalent images. While this seems like

an impractical metric for the point-to-point system being developed for this work, the system needs to be

scalable. This large storage space would allow for many sensor nodes to save and share image data between

themselves frequently before finally routing the image to the gateway. This also allows space for other

types of data along with images to be saved. Prediction systems in the future will likely need more than just

image data to be robust. The ability to save other data types like temperature, soil moisture, and airflow

data could prove useful.

The 4MB chip of flash storage on the development board would be able to hold around 28 equivalent

images. While the flash storage provides much less space to store image data, it could still be effectively

used in this system. The idea for the sensor nodes is to not keep an image file for very long. Once the image

36

has been transferred off the device, the file can be removed as it is no longer needed. By constantly

transmitting and subsequently removing image files, flash storage is still a viable storage option.

Though the microSD storage seems much better for our system at this point due to its easily

expandable memory, a disadvantage is mentioned in the following section. The use of flash storage also has

a major advantage compared to a microSD card in terms of power, discussed in chapter 6.

5.4.3 Challenges

Using the microSD card for storing images on this development board poses an interesting problem

that came up while monitoring system current draw. Surprisingly, microSD cards are actually very power-

hungry devices. They require large currents to read and write data, up to 100mA for the SanDisk being

used [23]. These read and write times are relatively short compared to the amount of time the card will sit

idle and unused. Unfortunately, the idle current draw for this type of storage device is around 500µA,

constantly pulled when unused. While this current value sounds small, the sensor node will spend the vast

majority of its operational lifetime trying to use as little current as possible to extend battery life. The

development board has a dedicated voltage regulator for the microSD card reader, meaning the card will

continuously be powered even when the ESP32 is in a low-power mode. This problem is addressed in more

detail in Chapter 6.

5.5 Bluetooth Low Energy (BLE) Functionality

5.5.1 BLE Theory and Overview

In order to develop firmware that follows the Bluetooth Low Energy standard, one must understand

basic theory and operation of the wireless communication. BLE is often the ideal choice for devices that

want to send small amounts of sensor data while using minimal power over short distances. Our use-case of

BLE is slightly unusual, as we want to transmit relatively large image files in infrequent bursts. The

primary reason we are using BLE rather than classic Bluetooth is because of the flexibility in network

topologies. BLE supports point-to-point, broadcast, and mesh topologies while the classic only supports the

first. BLE is chosen to make this system as scalable and adaptable as possible for the future.

With BLE, there are two types of devices: the server and the client. The ESP32 SoC can act as either of

these roles. In general terms, server is the device that is holding data it wants to share while the client is the

37

device that wants to receive this data. Figure 27 below depicts the two types of devices within BLE and the

connections between them.

Figure 27: BLE Basic Server and Client Interaction

When the server has control of the data it wants to share over the air, it can “advertise” its existence to

clients that happen to be in the general vicinity. A client can “scan” the area and attempt to find a

connection to a server in order to receive data. Once a verified connection is made, the server can proceed

in one of two directions. One is to send data without letting the client know, forcing the client to poll for

data. The other is for the server to immediately update the client when it sends data using either

“notifications” or “indications,” both of which are shown in Figure 28.

Figure 28: Indication / Notification Schemes

Notifications from the server transmit data continuously with no expectation of a reply from the client.

This means the server can send data to the client without the client’s acknowledgment. An indication on the

other hand, must wait for an acknowledgement from the client that it received the transmitted data before it

can send the next data packet. The notification scheme is faster (but possibly more error prone) than the

indication scheme. This describes the behavior of a point-to-point BLE topology. In a mesh network, all

devices would be connected, making it a many-to-many connection.

38

Now, how does each device know which other devices it should connect to? And what is the data

format for packets that are being transmitted? Both of these questions can be answered by studying the

Generic Attribute (GATT) hierarchical data structure that sits on top of the BLE layers, depicted in Figure

29. This structure defines basic models and procedures to allow devices to discover, read, write, and push

data elements between them [24]. This is important to understand as it will help us use BLE and write our

firmware.

Figure 29: GATT Data Structure for BLE [25]

The topmost layer of this data structure is the Profile, which technically does not exist on the actual

BLE peripheral itself, the ESP32 in this case. The Profile is a pre-defined collection of Services that have

been compiled by either the Bluetooth SIG or by other designers.

BLE Services are used to break up data being held into logic entities. They hold specific chunks of

data called Characteristics (Services can contain more than one). Each Service is able to distinguish itself

from others by using a unique numeric identification number, called a UUID. These identification numbers

can either be officially adopted 16-bit values or completely custom 128-bit values. An example of this is

the officially adopted Heart Rate Service (UUID: 0x180D) which contains three Characteristics: Heart Rate

Measurement, Body Sensor Location, and Heart Rate Control Point. These are commonly used in medical

or fitness wearable devices, like Fitbit watches.

The lowest level concept of a GATT structure is the Characteristic. The Characteristics encapsulates a

single data point or array of data from the server device in its “value” field. Like Services, Characteristics

identify themselves through the use of UUID’s, also either 16-bit (officially adopted) or 128-bit (custom).

The custom UUID’s are used in this thesis to ensure that only the devices within our network can

39

understand this data. The Characteristic value is the main field that will interact with the BLE client and

server; it is able to be written to and read from. The value has no restrictions on the type of data it can

contain but is limited to 23 bytes of payload data, defined by the GATT structure maximum transmission

unit (MTU) [26].

While this background does not make up all the theory or information that goes into BLE procedures

and protocols, it is enough to understand the development procedure used in this thesis. New terms and

concepts that are used and not mentioned above will be explained as they are brought up.

5.5.2 Image Transmission via BLE – Sensor Node

The development of a custom BLE image transmission process for the ESP32 involved reading and

understanding many source and header C files within the BLE library in GitHub, in addition to the theory

described in the previous section. The library source files can be located at:

https://github.com/espressif/arduino-esp32/tree/master/libraries/BLE/src. The Espressif API online manual

also provides documentation of functions used within the library files for the Arduino ESP32 core.

5.5.2.1 General Overview

The firmware flow diagram in the Figure 30 depicts the high-level process of BLE image data

transmission from the time of boot up and assumes there exists a specific image file we want to transmit.

After capturing an image and saving it to storage, the process starts by defining the custom Service and

Characteristic UUID values. Then the server is initialized as a BLE device, creates the Service and

Characteristic properties, then begins to advertise itself over-the-air. It continues advertising until a stable

connection is made to the correct client. Once this occurs, the storage file system is checked to see if the

file we want to transmit exists. If it does, we open the file for reading. While we can still read new data

from the file, we enter a custom algorithm that fills a buffer of any size (MTU less than or equal to 23

bytes) for any size image captured. Each time the buffer is completely filled, the Characteristic value is set

before a BLE notification is sent, until the end of the file is reached. The process ends with the de-

initialization of the file system and the BLE hardware. By doing this as soon as the transfer is complete, we

can save as much valuable power as possible.

40

Figure 30: BLE Data Transmission Firmware Flow Diagram

5.5.2.2 BLE Device Creation and Advertising on ESP32

To define the UUID’s for both the Service and Characteristic, we use a custom UUID generator from

https://www.uuidgenerator.net. The values generated by this site for the Service and Characteristic UUID

values respectively are:

4fafc201-1fb5-459e-8fcc-c5c9c331914b AND beb5483e-36e1-4688-b7f5-ea07361b26a8

41

Next, the actual BLE device instance is created with a name of our choice; “ESP32” is chosen for

simplicity. This is the name that will be displayed for other devices to view it. The BLE server, Service,

and Characteristic with all properties are then created. Figure 31 shows the code to instantiate these. The

properties chosen to be included with the Characteristic are READ, WRITE, NOTIFY, and INDICATE.

These are all properties that can be enabled but do not necessarily all have to be used for a specific case.

Figure 31: Creation of BLE Device, Server, Service, and Characteristic

To start advertising our newly created BLE device and its properties, we use the BLEDevice and

BLEAdvertising header and source code files. We can use the function call getAdvertising(), a device file

method, to retrieve an advertising object. Advertising has many different settings we can manually change,

but for now we can get by with using the basics. First, we add the service UUID to the advertising object to

be sure other devices are able to recognize it. Then we can start the act of wirelessly advertising our device

for BLE clients to see and attempt to connect to. The code to start advertising is shown in Figure 32. It is

important to note that once advertising starts, the power consumption of the ESP32 will drastically

increase. This action must only be initiated if the device is completely ready to communicate with a

potential client.

42

Figure 32: Start BLE Advertising

Once advertising has started, we must determine when our specific client has found our server and

when it has made a complete connection. In order to do this, we use a callback function. After the creation

of the Server, we can add in a line of code to set its callback as a custom function we name

MyServerCallbacks(). This callback function is only triggered or entered when the Server connects to a

client successfully. So, when the Server and Client make that stable connection (or disconnection), we are

able to write any code to run as soon as this happens. To separate the connection and disconnection alert

actions, we define two different custom functions within the MyServerCallbacks, OnDisconnect() and

OnConnect(). Inside the connection function, we set a Boolean flag called deviceConnected to true. This

flag enables code to run that will format and transmit chunks of image data.

5.5.2.3 BLE Data Format and Transmission on ESP32

The code developed to format and transmit the data sits within an adaptive buffer filling process.

Figure 33 shows a detailed flow of the firmware developed to format and transmit image data. As a

reminder, the chunkSize variable can be changed to any size from 1 to 23 bytes. This limitation comes from

the GATT maximum transmission unit (MTU) in the BLE standard protocol, mentioned in the BLE theory

section. Because it may be useful to have a flexible MTU size, the code is written in a way to adapt to this

as the image file size will most likely not be perfectly divisible by the chosen buffer size. The size of the

image to transmit will also never be the same size.

43

Figure 33: Data Formatting and Transmission Firmware Flow

First, the device must decide it is ready to transmit to a client by checking the connection status. If the

deviceConnected flag is true and the Tx_DONE flag is false, we enter our first statement. Once inside this

conditional, we initialize the storage file system and check to see if a file exists that is ready to be

transmitted, and open that file for reading. Following this, a calculation is done to determine whether a new

buffer should be created for the last data packet transmission. The size of this buffer is equal to the

44

remainder of the file size divided by the MTU, chunkSize. This operation is done using the modulo

operator. If the result is not zero, that means the final buffer transmission will be unequal to the MTU size.

This result will vary between every image capture and is stored in a variable called remSize. Next, we want

to continually read the image data and format buffers until the end of the file. To do this, we use a file

system method called “available.” This method checks to see how many bytes are available for reading

from the file and returns zero when it is at the last byte of data in the file. Depending on the result of

remSize, we enter one of two case statements to continuously fill buffers, write Characteristic values, and

send notifications to the client device so it is aware of new data. To set BLE data values and send a

notification, Figure 34 shows the two lines of code that are used.

Figure 34: BLE Characteristic Value Setting and Notification Code

The only time the new buffer size determined by remSize is utilized is just before the last notification

is sent for the last data packet transmission. Once the image file has been transmitted, we set the Tx_DONE

flag, close the file, de-initialize the storage system, and de-initialize the Bluetooth controller on the ESP32.

This stops all processes required to operate these functions on the CPU and most importantly stops the

power-hungry BLE RF hardware.

This entire described process is best illustrated through an example. Figure 35 and Figure 36 display

the serial port while the device is running, and the printed statements show what is taking place. During this

example, the chunkSize was set to 4 bytes of image data.

Figure 35: Case 1 Process in Serial Port

45

In Figure 35, a series of five images are captured and the advertising period is started. Once a

connection is made to the client, the sizes are printed of the file to be transmitted, the current MTU size,

and the remSize. Because the file size (61600 Bytes) was perfectly divisible by the MTU (4 Bytes), case 1

is entered, and the image file is transmitted using a single size buffer.

Figure 36: Case 2 Process in Serial Port

In Figure 36, a different series of five images are captured. This time, however, the file size (61017

Bytes) is not divisible by the MTU (4 Bytes). There is one byte of data remaining, so the buffer structure

must be of a different size and case 2 is entered. This process adjusts to any appropriately size MTU and

any size image file to ensure full file transmission.

By changing the value of the MTU (chunkSize), we can enable higher data throughput for our system.

When this code was initially tested with using a minimum chunkSize of one-byte, full image transmission

typically took around one minute. This time duration must be minimized as wireless transmission has the

highest power consumption out of all the CPU functions, so the MTU should be near or at the limit of 23

bytes. Chapter 6 discusses the optimization and analysis of this image data throughput.

5.5.3 Image Reception via BLE – Gateway Node

5.5.3.1 General Overview

Code must be developed to create a BLE client on the gateway node to receive this image data being

transmitted. This functionality was first done using an app called nRF to confirm operation of the BLE

server. Then, a BLE client is configured on the ESP32 gateway node. This section describes both

processes.

46

5.5.3.2 BLE Client Testing with nRF Application

Initially, to test the functionality of the BLE server, the Nordic nRF android application was used on a

smartphone. Instead of developing a client device on another ArduCAM development board and having to

debug both sides at the same time, one can use this application to have their smartphone act as a client to

view necessary BLE information. This method reduces the amount of debugging needed and provides a

quick and efficient way of testing the server-side functionality. Once the nRF is installed and opened,

navigate to the “Devices” section by tapping the 3 bars in the upper left-hand corner, shown on the left of

Figure 37.

Figure 37: Nordic nRF BLE Connection Screenshots

This will take the user to the scanning page, where all BLE devices currently advertising within range

will be listed, shown on the right of Figure 37. Each device will have a name (we called ours “ESP32” in

our code) and if applicable, an option to connect to it. By connecting to our ESP32 device, we trigger our

board to transmit image data, as written in our server code. nRF allows us to see the Service and

Characteristic UUID values and the current Characteristic value in real-time.

47

Figure 38: ESP32 BLE Device Information on nRF App

As shown in Figure 38, our device is “Unknown” because we have defined our device with custom

UUID values. The values in both the Characteristic and Service UUID fields both match the values we

configured in code. The Characteristic value shown (0x76-0x13-0x6E-0xDC) is a four-byte chunk of image

data being transmitted at that instant in time.

This application allowed for easy debugging of BLE code being developed. The app was used

incrementally during all steps of the Sensor Node development to ensure proper operation of code. nRF

also gives a few other pieces of information that is useful to a developer, like the transmit power level and

advertising interval. Using this method, the operation of the server side BLE firmware is confirmed.

5.5.3.3 BLE Client on ESP32

Now the nRF app must be replaced with an actual client device. By using another ArduCAM ESP32

development board, we can create a client device to receive the server’s data. To create a client device, we

only need to reference the BLEDevice.h header file from GitHub. The high level flow of creating a BLE

client device and wirelessly retrieving data on the ESP32 is described in Figure 39 below.

48

Figure 39: BLE Data Reception Firmware Flow Diagram

First, we define variables that will be needed throughout the client creation process.

• serviceUUID and charUUID: These will hold the Service and Characteristic UUID values of the

server we wish to connect to

• Data: This will hold the Characteristic value image data as an unsigned integer

• doConnect: This Boolean flag will determine if we should connect to a found BLE device

• connected: This Boolean flag states if the client is connected to the server

• doScan: This Boolean flag determines if the client should scan for devices

49

In the setup code, a BLE device is initialized in the same way as with the server. This time, the device

does not need to be named as there is no need to connect with it, so the argument is left empty. From this

device, we retrieve a scanner object and set the callback function name we want to inform us when we have

detected a new BLE device by using the code shown Figure 40.

Figure 40: BLE Device Scan Object Creation

In order to specify scanning characteristics for the client device like the interval and window times, we

have to understand what these terms mean. The scan interval is defined as the time interval from when the

Bluetooth controller started its last low-energy scan until it begins the subsequent scan. The scan window is

the duration of the low-energy scan, meaning it must be less than or equal to the scan interval. After every

scan interval, the device changes frequency to the next advertisement channel. An illustration of this is

shown in Figure 41. It scans on a different advertising channel after each interval.

Figure 41: BLE Scan Interval and Window Diagram

Both of these values can be manually set in code. The functions take in integer values with millisecond

units. These values were varied and tested but for our application do not need to be at specific intervals or

times to find our server. The device actively transmits during the scan window, so the lower the ratio

between window and interval, the lower the power consumption by the device. Next, the decision to use

either active or passive scanning is debated.

Active scanners respond to every device they hear from, asking if they have more data to send. The

devices then respond with any “scan response” data they have been configured to send. When passively

scanning, a device will only listen to Bluetooth devices, quietly collecting data about its surroundings. Our

server has been configured to not send any scan response, as seen in Figure 32. We will use passive

scanning as we can receive all necessary data and use less power than active scans [27].

50

Figure 42: Set Scan Characteristics Code

With these three settings configured as set in Figure 42, the client can begin to scan for BLE devices

nearby. As there are only three channels that BLE devices can advertise at, connection is typically very

fast. Our scan duration is set to five seconds, shown in the figure above.

After scanning is started, every BLE device that the scanner finds triggers the

MyAdvertisedDeviceCallbacks() function. Within this function, the device checks to see if the acquired

device contains the Service UUID that we are searching for. If the device is a match, the BLE device stops

scanning and creates a new advertised device object with the found device information.

After this, the code is funneled into a custom connectToServer() function, seen in Figure 43, where an

actual client device is created with a unique callback function called MyClientCallback(). This callback can

be entered on connection or disconnection from the server. The client connects to the advertised device

object and obtains references to the Service and Characteristic UUID’s. Lastly the device registers for

notifications (rather than indications) by defining a notifyCallback() function to trigger when the server has

new data within its Characteristic value. The connection flag is then set to true.

51

Figure 43: Connect to Server Function Code

Every time the server sends out a notification of new data being written to its Characteristic value, the

client enters the notifyCallback() function, as Figure 44 depicts. Within this code, we use the reference to

the Characteristic to obtain its value and size. Once the data and its length are stored on the client side, the

data is written to a new file in the storage file system being used.

Figure 44: Notification Callback Function

The client side of the system is able to write to the file within the callback function without worrying

about the server sending another notification because of the time it takes to format the buffer data on the

server side. The time required to read the image data and fill a buffer of any size (greater than one byte)

52

will always be larger than the time to only write that data to storage. Finally, once the server and client

disconnect, the received image file is closed, and the client can continue scanning for other BLE devices.

5.5.4 Server to Client BLE Link Verification

After the code was developed for receiving data on the client side of the system, verification was done

to confirm the operation of the entire server-to-client BLE link. This was done both qualitatively and

quantitatively. First, the image file written to the client’s microSD card was opened on a PC to be sure that

all the JPEG formatting data was intact and was able to be opened and viewed by an end user. Next, the

server and client image files were opened side-by-side in an online Hex editor to compare raw JPEG image

data. The notable areas of concern when comparing raw data files were the first and last two bytes. Every

single JPEG image starts with 0xFFD8 and ends with 0xFFD9 to signify the beginning and end of the file.

These two points helped determine if the entire image was being transmitted.

5.6 Low Power Sleep Modes

The most important part of the sensor node’s operation is how it manages itself while not capturing,

processing, and transmitting data. The sensor device will spend the majority of its time doing nothing, then

have short bursts of large power consumption to capture and store images then transmit them over

Bluetooth Low Energy. For this application, the time between bursts of activity is the frequency at which

images are captured. Whether that is once an hour or once a week, this down time in-between will be a

significant percentage of each period. The diagram in Figure 45 below describes this timing.

Figure 45: Sensor Device Cycle Timing Diagram

The amount of time that the processor is doing nothing for this application will be quite high as our

frequency of image acquisition will be quite low. The computer vision and machine learning pipelines will

53

not need images taken every minute of every day. The frequency will be more along the lines of a few

times per day. This means the duty cycle of processor “on” time will be very low, much less than 1% of the

time. In order to save as much power during the other 99% of down time, we take advantage of processor

sleep modes.

The term “sleep mode” refers to a condition in which an embedded system enters a low-power

hardware mode. Typically, the microcontroller ceases to perform any computations and shuts down any

peripheral functions. While in sleep mode, the processor may still retain some stored data and will power

specific timers and interrupts so it can wake up again.

In our system, the ESP32 SoC offers a variety of configurable power modes, each of which has its own

distinct set of power saving features and capabilities. Under normal operation, the chip runs in “Active

Mode.” This mode keeps everything powered at all times (unless specifically turned off in code). This

includes the Wi-Fi module, the processing cores, and the Bluetooth module. In this application, it is wise to

save as much power as possible during the down time, so we look to enter the “Deep Sleep” mode.

Figure 46: Deep Sleep ESP32 Powered Components [28]

In deep sleep mode, the CPU, most of the RAM, and all of the digital peripherals are powered off,

depicted as gray boxes in Figure 46. The only parts of the chip that remain powered on are the real-time

clock (RTC) controller, the RTC peripherals, the ultra-low-power (ULP) co-processor, and the RTC

memory, depicted as colored boxes in Figure 46. During this mode, the ULP processor is capable of taking

54

simple measurements and can wake up the main system based on the measured data. Along with the CPU,

the main memory of the chip is disabled so everything that is stored in memory is wiped and cannot be

accessed. However, RTC memory is kept on, so any variable or data that needs to be preserved between

boots can be stored here.

As this system will not need any processing to be done while in sleep mode, the ULP processor can be

powered off while in deep sleep. The ESP32 datasheet claims that the chip will run at around 10µA in this

configuration. It must be kept in mind that this value is ideal for just the ESP32 SoC and does not account

for the other electronics on the ArduCAM development board. Many other developers were unable to

realize this current, even with just the SoC. The observed current consumption value of this sensor device

will be higher than that of this claim during deep sleep in practice.

To enter deep sleep mode in code, a few things must be done. First, a sleep mode time duration is

defined in microsecond resolution in an unsigned 64-bit integer. In theory, this value’s maximum quantity

would be able to enter the ESP32 into sleep for over 500,000 years, giving us extreme flexibility in

choosing a sleep time duration. For our purposes, a conversion factor is multiplied by our time variable, so

it represents a number of seconds to sleep instead of microseconds.

Figure 47: Deep Sleep Functions

The code snippet in Figure 47 above shows the conversion factor and time to sleep variables. In this

figure, the time to sleep is set to 86,400 seconds and would sleep for an entire day before waking up. The

first function enables this timer used to wake the chip from sleep and should be called in the setup code.

The last function will immediately enter the device into deep sleep and wake up in the predetermined

amount of time with a full reboot of the device. The sensor node enters deep sleep in the server callback

function that triggers when the server and client disconnect from each other.

55

5.7 Wi-Fi and Cloud Server Link

As the final action in the system, the gateway node will upload aggregated image files to a cloud

service. This service will act as an accessible storage space for any end user. The cloud server can be

accessed by anyone with an internet connection, on any device, that has the account information.

5.7.1 Firebase Realtime Database

The service chosen to act as the cloud server for this system is Firebase, by Google. While a few

different services were researched, including Thingspeak, Microsoft Azure, and Amazon Web Services,

Firebase was deemed to be the most favorable. Firebase has a free subscription of 1GB of storage and

10GB of downloads per month. This is more than enough for our use, especially if images being stored are

downloaded to a local machine and deleted from Firebase once they are used.

Firebase is an open-source cloud server and because of that, many developers have created custom

libraries for popular IoT hardware to interact directly with the storage. A very well-documented Firebase

Realtime Database Arduino Library for ESP32 is available for installation on GitHub. It supports many

common database functions and most importantly, enables direct file pushing from a device’s SD or flash

storage.

5.7.2 Firebase Database for the ESP32

In order to start uploading files and data to the Firebase database using the ESP32, a few things must

be set-up. First, a Firebase account (can be linked to your Google account) must be made. Next, a database

can be created with a custom host name. Once this is made, the Firebase automatically generates an

authorization key to limit database usage to only secure users. This key is called the database “secret.”

Next, the Firebase ESP32 library from GitHub can be downloaded as a zip file and directly included into

the Arduino IDE. Once this is done, we can define names and passwords for Firebase and our local Wi-Fi

connection in code.

Figure 48: Firebase and Wi-Fi Access Keys

56

The database name, “secret”, and local Wi-Fi credentials are shown in Figure 48. This Firebase

database is called “wahl-thesis” and I use my phone’s Wi-Fi hotspot credentials to connect. To start

uploading image file data via a local Wi-Fi signal, the following process must be completed.

Figure 49: File Upload to Firebase Process

The process described in Figure 49 was followed to test this functionality on a single image stored in

flash memory on the gateway node. The database path defined for the data to be stored at is under a folder

called “Gateway-Node”. Firebase stores file data on its database by encoding the data stream into base-64.

This is a prevalent scheme on the World Wide Web, where it can be used to embed image files or other

binary assets inside textual assets (like HTML). Encoding binary data this way makes it more reliable to be

stored in databases. This encoded data string stored can then be entered into any web browser to be viewed

and downloaded locally, if needed.

Figure 50: Firebase Database Image File View

57

In the Figure 50, the result of the test on the database side is shown. The file is uploaded as a string of

base-64 text. This string can be copied and entered into a web browser, replacing “file,” with

“data:image/jpeg;”, and the image can be viewed and subsequently downloaded. While this process is

simple enough to be done manually for every image, it would be even easier to automate it. A python script

is developed to automatically scrape the database contents, decode the image file strings, download them to

a local folder, then delete the file data from Firebase. This script can be found in Appendix B.

To combine this code into the gateway node, the cloud uploading process will take place directly after

receiving and storing an image file from the sensor node. A custom function is written so the functionality

of uploading an image in storage to the database is concise and can fit anywhere in the system.

Figure 51: Image File to Firebase Function

This function shown in Figure 51 takes in the storage path for the image file to be uploaded and returns

a boolean value of whether the file is successfully uploaded or not. The code starts by creating a Firebase

data object and a database path to store the uploaded file. A boolean value UPLOADED is set to false and

continuously attempts to connect to a local Wi-Fi network. Then, the database within Firebase is connected

and the flash file system is started. The specific image file is then “set” to the database and if successful,

the image file is removed from device storage and the return value is set to true. To have the image files

58

ready for use as soon as possible, the im2Firebase() function can be called immediately after the data is

transferred from the sensor node to the gateway node via BLE.

5.8 Functional Summary

This chapter has discussed all of the individual functions that make up the IoT system created. This

section will summarize how these functions interact, how nodes will cooperate, and how data will flow

through this single sensor node, single gateway node, and cloud storage system. Figure 52 can be

referenced while reading each node’s summary.

Figure 52: Functional Summary Reference Diagram

SENSOR NODE:

The sensor node gathers bursts of image data using an OV2640 2MP camera module and stores the

best quality captured image frame to on-board memory. The node then advertises itself over Bluetooth Low

Energy communication channels, hoping to find a suitable client. Once a connection is made, image data

chunks are transmitted as BLE notifications to the client. After an entire image frame is sent successfully,

the node removes the image file from memory as it is no longer needed. The sensor node now enters deep

sleep mode to consume significantly less power until new image data is required. The process is repeated

once the node wakes from sleep. A sensor node is assumed to be operating remotely in a crop field on

battery power.

59

GATEWAY NODE:

The gateway node periodically scans its local area checking if there are any BLE devices looking to

transfer data. If no such device is found after 20 seconds, the gateway node will enter light sleep for five

seconds, then try again. If a device is found, a connection is made, and the gateway receives notifications

while storing image data chunks into a file in on-board memory. Once the data transfer is complete and the

BLE connection is severed, the BLE controller is disabled before the Wi-Fi hardware is powered on. The

gateway then attempts to connect to a known Wi-Fi signal supplied by a nearby router. After Wi-Fi and

Firebase Cloud connections are made, a base-64 encoded image file is pushed to the cloud database. The

original image file is removed from on-board memory after a successful upload. In case of a failed Wi-Fi

connection or unsuccessful file upload, the gateway node is programmed to push all existing files in its

memory to Firebase when and while a successful connection is maintained.

FIREBASE STORAGE:

Firebase will securely hold images pushed from the gateway node. Each file push from the gateway is

stored as its own base-64 string entry in the database. While possible to manually take this string and

download a JPEG image file, a Python Firebase scraper script was developed to automate this. Each time

the script is run, all existing image entries on Firebase are saved as JPEG files into a local directory on the

user’s computer while removing the files from the database. This enables quick cloud file downloads at the

press of a button so the images can be used as soon as possible.

60

Chapter 6

SYSTEM CHARACTERIZATION

This chapter attempts to characterize the system as a whole focusing on power consumption and timing

of the functionalities developed in the previous chapter. By collecting this power and timing data, every

aspect of the system can be judged based on these two characteristics. Bottlenecks in the system can be

identified and potentially fixed while battery lifetime can be extrapolated.

6.1 Functional Power and Energy Testing

This section will analyze the power consumption and timing of each major function described in

chapter 5. First, the test setup will be described. Then, the image capture, SD card and SPIFFS file writing,

BLE advertising, BLE transmission, and deep sleep will be examined. Following the individual

assessments, the sensor node system as a whole will be analyzed with power calculations and battery life

estimates. The gateway node’s current consumption will be characterized in less detail as it is assumed to

be running on a constant power source.

6.1.1 Power Draw Test Setup

The basic idea of measuring power consumption of a system comes down to the simplicity of Ohm’s

law. The relationship between voltage, current, and resistance is utilized to monitor the voltage drop across

a resistor in line with the device. This translates to a system current being drawn and a final delivered

voltage to the development board. Figure 53 is a simple diagram depicting these relationships.

Figure 53: Simple Power Draw Setup Schematic

The system current, Isys, is the ratio of the voltage drop (Vdrop) across the series resistance to the series

resistance itself, Rs. The delivered voltage to the system, VDelivered, is the difference between the supply

61

voltage and the resistor voltage drop. The following equations allow the current draw and the power

consumption of the system to be calculated and monitored.

𝑬𝒒. 𝟏 𝐼𝑆𝑦𝑠 =
𝑉𝐷𝑟𝑜𝑝

𝑅𝑠

𝑬𝒒. 𝟐 𝑉𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = 𝐷𝐶𝑆𝑢𝑝𝑝𝑙𝑦 − 𝑉𝐷𝑟𝑜𝑝

𝑬𝒒. 𝟑 𝑃𝑆𝑦𝑠 = 𝐼𝑆𝑦𝑠 ∗ 𝑉𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

In order to make the calculations easy and to make sure the voltage delivered to the development board

is enough, the series resistance chosen is 1Ω. This means the system current will ideally be directly

proportional to the voltage drop across the resistor; a 100mV drop is equivalent to 100mA drawn by the

development board. To obtain time-domain plots of the system current being pulled, an oscilloscope is used

to measure the voltage at the high and low sides of the series resistor with one channel each. The math

function is used to display the difference of these channels. Figure 54 shows the connections used.

Figure 54: Power Draw Test Connection Setup

The test setup described for measuring current draw of the system is acceptable for all the

functionalities other than the deep sleep mode. This is because the oscilloscope being used has voltage

resolution down to 1 millivolt per division, which is perfectly fine for any current above a few milliamps

and applies to the majority of functions in this system. To accurately measure and plot a current in the

62

microamp range, an oscilloscope low-noise preamplifier is used. A description of the module and

respective test setup is shown in section 6.1.5.

The current draw plots in the following sections were obtained by exporting CSV files from the

oscilloscope in the configuration discussed. The files were opened in Excel and the voltage data was

converted into current data using Eq.1 shown above. The true value for the series resistor was measured at

the time of data collection using a benchtop multimeter: 1.143Ω.

6.1.2 System Idle Power

It is first useful to gauge the system idle current draw, or the current consumed by the development

board while not doing anything. A completely void test script was uploaded to the development board and

allowed to reach its idle state after booting up. Figure 55 shows this steady-state idle current draw over an

elapsed time of one second.

Figure 55: Development Board Idle Current

The average current consumption of the entire development board while doing nothing is 52mA. This

allows us to better determine the power usage of significant actions developed for the sensor node. These

functions will be “added” onto the existing 52mA idle draw as additional processor tasks are run. The idle

current considers powering all electronic components on the development board. This includes the ESP32

chip, OV2640 camera, USB-serial chip, microSD card, and any LEDs or regulators.

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (s)

System Idle Current Draw

63

This idle current shows the benefit of entering a low-power sleep mode in between processor-heavy

tasks. As an example, suppose a typical 2500mAh 3.7V Lithium Ion Polymer battery (20% discharge

safety) is powering the board in its idle state shown above. The device would be able to run for

approximately only 38 hours before shut-down.

6.1.3 Image Capture Power

The first function developed was image capture using the OV2640. A test script was uploaded to the

board to capture a series of five images without storing them. Figure 56 shows the entire script process:

booting up, initializing the camera, taking the images, and entering sleep.

Figure 56: Image Capture Test Script Cycle (Boot to Sleep)

The highlighted portion of the plot shows the system current associated with the series of five images

being taken. The time scale on the x-axis is time in seconds taken from the oscilloscope. The highlighted

section of Figure 56 is shown in more detail below in Figure 57.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Sy
st

em
 C

u
rr

en
t

D
ra

w
n

 (
m

A
)

Time (s)

Image Capture Test Script Cycle

64

Figure 57: Five Images Captured Test Script

It is easy to discern the periodic nature of the waveform as each image is captured. This plot illustrates

both the current drawn and the time taken to capture the series of five 2-megapixel images. From the data

captured, the average system current draw over the entire process of images taken is 105mA and takes

660ms to complete. This translates to a time of 132ms per image capture.

6.1.4 SD Card and SPIFFS File Write Power

Next, the current consumed while writing the best image file to storage is analyzed. First, a test script

that captures an image, delays for a second, writes the image data to storage (SD or SPIFFS), then delays

for another second is uploaded to the board. This test is intended isolate the file writing process and

compare the current consumption of each storage type. Figure 58 and Figure 59 show the isolated current

draw waveform during both file writes.

80.0

85.0

90.0

95.0

100.0

105.0

110.0

115.0

120.0

125.0

130.0

200.00 300.00 400.00 500.00 600.00 700.00 800.00

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (ms)

Five Image Capture Current Draw

65

Figure 58: Image File Write Test for microSD

The average system current draw for writing a large file to the SanDisk Industrial microSD card is

146mA. Figure 58 shows a 146kB image file being written in about 0.32s.

A smaller storage alternative to SD cards is the serial peripheral interface flash file system (SPIFFS).

The development board being used has 4MB of flash storage. SPIFFS can be used to read and write data

files to this chip. While this alternative has much less flexibility in terms of storage size, it uses less idle

current than the microSD card and enables a much lower sensor node sleep current. Figure 59 shows the

result of the same test as Figure 58, but now writing to flash storage instead.

Figure 59: Image File Write Test for SPIFFS

85.0

95.0

105.0

115.0

125.0

135.0

145.0

155.0

165.0

0.00 100.00 200.00 300.00 400.00 500.00

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (ms)

microSD Card File Write

80.0

90.0

100.0

110.0

120.0

130.0

140.0

150.0

160.0

0 500 1000 1500 2000

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (ms)

SPIFFS File Write

66

Writing a large image file to flash storage consumes an average current of 134mA but takes about

800ms. To write image files, the microSD card takes less time but consumes more power. At this point, the

differences in timing and power consumption are seemingly negligible in choosing between the two storage

types.

6.1.5 BLE Server Power

The BLE aspect of the system is the most power hungry and the transmission of the image file is the

single most time-intensive process of the sensor node. This section takes a look at the current draw of BLE

advertising and BLE transmission current consumption. The energy expended during transmission changes

significantly based on the size of the BLE transmit buffer.

The final version of the sensor node code was uploaded to the board as we want to see the BLE current

draw as it will happen in our actual system. The sensor node starts advertising its information just after all

BLE initialization occurs. Figure 60 and Figure 61 below shows advertising, client connection, and

transmission during a test. As a note, the transmission period in the plot also includes the current draw of a

continuous storage read (microSD or SPIFFS) while filling the transmit buffer. This combination of

processes leads to the largest current draw of the sensor node throughout the image transmission.

Figure 60: BLE Advertising and Transmission Current Draw for microSD

Figure 60 above shows the timing and current draw of the sensor node during BLE functions using a

23-byte buffer for the Characteristic value. The buffer is filled by reading data from the microSD card. If

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

2.5 3.5 4.5 5.5 6.5 7.5 8.5

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (s)

microSD - BLE Advertise, Connect, Transmit

67

the client is already scanning, a BLE connection to the client after the start of advertising typically takes

less than 5 seconds, shown in the green and orange section of the figure. The purple section of the figure

shows the transmission of a 73kB image, taking approximately 3.5 seconds.

Figure 61: BLE Advertising and Transmission Current Draw for SPIFFS

Figure 61 shows the same information as the previous figure, now while filling the buffer from flash

storage. The process shows the transmission of a larger 120kB image file in about 5 seconds.

As the size of the buffer used is the biggest factor of image file transmission throughput, testing was

done using different sized buffers to illustrate this significant effect while transmitting the same 110kB

image file using both storage types. Table 3 summarizes the findings.

Table 3: Variable Tx Buffer Size Effect on 110kB File Throughput

BLE Buffer Size 1 Byte 4 Bytes 8 Bytes 16 Bytes 23 Bytes

File Tx Time

(microSD)
~81s ~20s ~11s ~6s ~4s

File Tx Time

(SPIFFS)
~120s ~30s ~16s ~7s ~4s

As the transmit buffer size increases to its limit of 23 bytes, the transmission time decreases

considerably for the same image file. From this table, we can conclude that using the 23-byte buffer will

minimize the image file transmission time. When the buffer is at its optimal size, the transmission time of

each storage type becomes similar. By minimizing the transmission completion time, the sensor node saves

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (s)

SPIFFS - BLE Advertise, Connect, Transmit

68

valuable energy. At the optimal size, the data transmission throughput of a sensor node is about 27.5kBps,

or 220kbps.

Next, we can characterize both the advertising and transmission current consumption individually by

isolating the data. First, the advertising is analyzed as it is independent from the storage type used. Figure

62 shows BLE advertising over a 115ms time span.

Figure 62: BLE Advertising Current Draw Plot

The advertising current consumption over this time period hovers around 83mA. The BLE protocol

saves energy by periodically advertising itself in bursts while turning off RF hardware in between. This

advertising scheme is the default on the ESP32 and has a period of 45ms with an advertising window of

5ms.

Next, the BLE transmission current consumption using both SPIFFS and microSD card reading to fill

buffers is characterized. The test script uploaded to the board for Figure 63 and Figure 64 continually read

data from the same image file into the optimal 23-byte buffer and send BLE notifications until the end of

the file. The test image file used was 73kB.

0.0

50.0

100.0

150.0

200.0

250.0

0.0 20.0 40.0 60.0 80.0 100.0

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (ms)

BLE Advertising

69

Figure 63: BLE Transmission Current Draw Plot using microSD

Figure 63 shows a typical transmission current waveform over the span of 100ms while reading from

the microSD to fill the transmit buffer. Over the entire file transmission, the average current draw is

162mA. Figure 64 shows an identical test but while using SPIFFS to store images and to fill the transmit

buffer.

Figure 64: BLE Transmission Current Draw Plot using SPIFFS

The waveform in Figure 64 shows that SPIFFS consumes an average of 150mA to continuously read

and transmit data. As seen in Table 3, the time it takes to transmit an image file using the optimal buffer

70.0

90.0

110.0

130.0

150.0

170.0

190.0

210.0

230.0

250.0

0 20 40 60 80 100

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (ms)

microSD - BLE Transmission/Notification

100.0

120.0

140.0

160.0

180.0

200.0

220.0

0 20 40 60 80 100

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (ms)

SPIFFS - BLE Transmission/Notification

70

size is about the same for either storage type. Both Figure 63 and Figure 64show that using SPIFFS versus

the microSD card uses a slightly smaller amount of current. While the two storage methods compared in

this work have varied slightly in speed and current consumption, the most dramatic effect of using one over

the other comes while the sensor node is in deep sleep.

6.1.6 Sleep Mode Power

To obtain accurate measurements for sleep mode, an oscilloscope preamplifier was used to achieve

large differential signal gain. The preamplifier used was the LNA10 by AlphaLab, shown in Figure 65. By

using this, sub-microvolt signals can be displayed on scopes which typically only go down to 1mV/division

on the vertical axis [29]. The tool included a differential input with a tunable analog low-pass filter, so my

testing configuration was identical. The LNA10 was used with a gain of 1000.

Figure 65: AlphaLab LNA10

A test script is configured so the ESP32 goes into deep sleep for 10 seconds, reboots, and repeats. This

will illustrate the low-power current for the SoC on this particular development board. The test is first run

on a development board with a microSD card inserted and then run again with no card inserted. These two

test runs show how the storage type used can have a drastic effect on the standby current draw of this

system. As mentioned in chapter 5, the microSD card draws a considerable amount of current while in idle.

71

Figure 66: Deep Sleep Current Draw without and with MicroSD

Using flash storage with no SD card inserted, the development board draws an average current of

162µA. With the SD card inserted, the current rises to an average of 700µA. Figure 66 shows that the idle

current draw of the microSD consumes about 77% of the deep sleep power of the development board at

538µA. As standby current is the most important low-power aspect of the system in question, and therefore

it is recommended that the on-board flash storage be used for maximum sensor device lifetime.

6.2 Sensor Node Power Characterization – Optimal Configuration

To characterize the sensor node system’s power, the data collected from the Section 6.1 is gathered.

This section aims to characterize the most power-efficient version of the sensor node, so the buffer size is

set to 23-bytes and flash storage is used. Two node states are defined: active and standby. The active state

is where the CPU is running; the standby state is where the CPU is put to sleep.

Table 4 shows the power and time consumption of the most major actions in the system while in its

active state. The buffer size is set to the optimal 23 bytes during transmission and measured time shows a

conservative estimate of the action’s duration. The power column is based on the fact that the system runs

on a battery voltage of 3.7 volts. The BLE transmission time will vary based on image file size but the

largest files captured (~200kB) were successfully transmitted in about 10 seconds. The maximum duration

is set to 10 seconds to be ultra-conservative, even though the majority of images were compressed to a size

less than 200kB.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0 0.5 1 1.5 2

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

µ
A

)

Time (s)

Deep Sleep Current

No MicroSD

MicroSD

72

Table 4: Sensor Node Active Mode - Optimal

State
Duration

(Max)

Avg. Current

(SPIFFS)
Power Percent ON

Boot Initialization 2.5s 60mA 222mW 13.5%

Image Capture 1.0s 90.13mA 333mW 5.4%

BLE Advertising 5.0s 83.0mA 307mW 27.0%

BLE Transmission 10.0s 150mA 555mW 54.1%

The table shows the sensor node functions and the corresponding durations, average currents, and the

percent of time each function is on during the active state. The conservative estimate of the total duration of

the active state is 18.5 seconds. This active state will be turned on every time a new image acquisition takes

place.

In between active states, the sensor node will go into sleep, or its standby state. The power consumed

in this state is more important to overall device lifetime than the active state power as the sensor node will

spend the overwhelming majority of its time here. The standby state is summarized in Table 5.

Table 5: Sensor Node Standby Mode - Optimal

State Duration
Avg. Current

(SPIFFS)
Power

Deep Sleep Varies 162µA 599µW

Based on the analysis done in section 6.1.6, the deep sleep current for the sensor node using flash

storage is about 162µA. The duration of time the node spends in its standby state will vary but will always

be well above 99% of the total standby plus active time. The image acquisition frequency will be very low,

likely multiple time a day. Figure 67 below shows the percentage of time on for active and standby

functions over a duration of one hour as a pie chart. This helps visualize the importance of standby current.

73

Figure 67: Standby and Active Mode Percentages for One Hour

Figure 67 illustrates that over one hour, the sensor node would spend 99.486% of its time in standby

mode. The entire active mode accounts for 0.514% of time. If the image capture frequency stays at

anything less than 24 captures per day, the sensor node will easily stay in standby mode over 99% of the

time. Using this data, the next section will estimate battery life for various image acquisition frequencies

and battery capacities.

6.3 Battery Life Estimates

First, the sensor node’s active state functions are characterized by how many individual executions per

battery they could maintain. Table 6 summarizes these findings. The battery options chosen are all Lithium

Ion Polymer (LiPo) battery packs with sizeable capacities and manageable dimensions for this application.

LiPo batteries are lightweight, have impressive capacities, and high discharge rates to supply more current

to their load [30]. All are 3.7-volt batteries with 2-pin JST-PH connectors and built-in protection circuitry.

The connectors fit with the development board and the voltage is perfect to power the ESP32.

Init
0.0694%

Image Capture
0.0278%

BLE Adv.
0.1389%

BLE Tx
0.2778%

Standby
99.4861%

Active
0.5139%

STANDBY + ACTIVE PERCENTAGES - 1 HOUR

74

Table 6: Executions Per Battery for Sensor Node Functions

Function Time Avg. Current

Executions

per 2500mAh

Battery

Executions

per 4400mAh

Battery

Executions

per 6600mAh

Battery

Boot Init 2.5s 60mA 60,000 105,600 158,400

Image Capture 1s 90.13mA 99,855 175,746 263,619

BLE Adv. 5s 83mA 21,686 38,168 57,253

BLE Tx <10s 150mA 6,000 10,560 15,840

Deep Sleep N/A 162µA
643 Days

Continuous

1131 Days

Continuous

1697 Days

Continuous

Three realistic acquisition frequency scenarios are considered with three different battery capacity

options to extrapolate measured current consumption data into battery lifetimes for the sensor node.

Scenarios will be very conservative and will use a current of 150mA for the entirety of its active state and a

current of 162µA during its standby state. The conservative active estimate is meant to be an absolute

worst-case scenario. Example scenarios are listed below.

Scenario 1: Image Acquired One Time per Day

Scenario 2: Images Acquired Five Times per Day

Scenario 3: Images Acquired Every Other Day

Table 7 gives conservative battery life estimates based on battery capacity and each scenario. The

calculations in Table 7 were done using a 20% battery discharge. Batteries are seldom fully discharged, so

manufacturers often use the 80% depth-of-discharge formula to rate a battery. This means that only 80% of

the available energy is delivered and 20% remains in reserve. Manufacturers argue that this is closer to a

field representation than using a full cycle [31].

75

Table 7: Sensor Node Conservative Lifetime Estimates with Various LiPo Batteries

LiPo Battery Capacity

(20% Discharge)

Scenario 1

1 Image/Day

Scenario 2

5 Images/Day

Scenario 3

0.5 Images/Day

2500mAh

47 x 61 x 6.7 (mm)

43g

$15

429 days 258 days 468 days

4400mAh

69 x 37 x 18 (mm)

95g

$20

755 days 454 days 824 days

6600mAh

69 x 54 x 18 (mm)

155g

$30

1133 days 682 days 1236 days

Table 7 shows the minimum amount of time the sensor node will last on a specific battery capacity

using three realistic acquisition frequencies. In 8 out of the 9 scenarios, the sensor node will last well over a

year on a single battery charge. The application does not strictly limit the size or weight of the battery used,

but this information is included in the table for reference, as well as approximate costs.

The sensor node with an optimal configuration as described in this section achieves an BLE

transmission data-rate of 220kbps. The node spends well over 99% of its life in standby mode consuming

162µA of current. The active period of the node takes 18.5 seconds at a maximum, drawing a peak current

of 150mA during transmission. Using a 6600mAh battery while capturing and transmitting 5 images per

day, the sensor node will last at least 682 days.

6.4 Gateway Node Power Characterization

This section shows the gateway node’s current draw during its primary functions: BLE scanning, BLE

reception, and Wi-Fi transmission to the cloud. As this node is not assumed to be running on battery power,

the discussion is brief.

6.4.1 BLE Client Power

The gateway node performs two functions that the sensor node does not. BLE scanning and BLE data

reception. This section shows the current consumption of the development board during these two actions

individually.

76

Figure 68: BLE Scanning Current Test

The test results in Figure 68 show BLE scanning over five seconds draws an average of 40.7mA. The

scanning interval is 1.35 seconds long and the scanning window is 0.45 seconds, as set in the code. Over

the scanning window, the system consumes a maximum current of about 84mA.

Figure 69: BLE Reception Current Test

As the gateway node receives data sent from the sensor node, the current drawn averages 120mA, seen

in Figure 69. This number is slightly lower than the BLE transmission current of 150mA.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0.0 1.0 2.0 3.0 4.0 5.0

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (s)

BLE Scanning Current

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0.0 0.2 0.4 0.6 0.8 1.0

Sy
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (s)

BLE Reception Current

77

6.4.2 Wi-Fi to Cloud Power

Figure 70: Wi-Fi Image File to Firebase Cloud Current Test

While uploading the image file to Firebase, the development board consumes an average of 112mA of

current. In the test shown in Figure 70, an 84.5kB JPEG image is first encoded into base-64, resulting in a

115.3kB file. This file is uploaded to Firebase in 1.3 seconds. This upload data rate sits at 709.5kbps.

6.5 Extra Low-Power Design Methods

As with any development board used for prototyping, there are certain electrical components that are

not needed during actual deployment but have high quiescent or idle currents. These could include

indication LED’s, USB-to-UART transceivers, or high quiescent current linear voltage regulators.

This development board has four LED’s to indicate power, charge, and programming, while the last is

software controllable. In a deployed system, none of these are used but may contribute to system current

draw in active and standby states. If these surface-mount LED’s are turned on, they can pull around 10mA

for each LED. If all are on, this could contribute 40mA to the system’s current. Even when these LED’s are

turned off (like in deep sleep mode), they can leak current in the microamp range. This is especially true

when the LED is controlled by a CMOS GPIO line that can rest at anywhere less than 0.4V in its off state.

Even single microamps of current being leaked can affect the device lifetime duration significantly, so it is

best to completely remove these LED’s from the board altogether.

0.0

50.0

100.0

150.0

200.0

250.0

0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65

SY
st

em
 C

u
rr

en
t

D
ra

w
 (

m
A

)

Time (s)

Wi-Fi Image File to Firebase Current

78

USB-to-UART transceivers used on development boards help to upload program data easily and

quickly to memory via a USB port. This functionality is not needed after the board has been programmed

and deployed. The development board in this thesis uses the classic Silicon Labs CP2102 USB to UART

bridge IC. When this particular chip is suspended (not in use), the typical supply current draw is 80µA [32].

If this chip is powered on a development board when using battery power, removing it could significantly

elongate device lifetime. The ArduCAM development board fortunately switches the USB signal chain

completely off when powered by a battery, so this does not add to its sleep current when in standby.

The majority of this development board’s sleep current comes from a high quiescent current low-

dropout regulator (LDO). This board specifically uses the NCP500 low-noise, low-dropout voltage

regulator to power all 3.3V systems, including the microSD card reader and the ESP32. According to the

datasheet, this chip has a typical quiescent current of 195µA in its specific configuration [33]. As this

sleeping system pulls a total of 162µA, the quiescent current of this chip is less than its typical value but is

likely responsible for the majority of the sleeping current of the system. It is entirely possible to replace this

TSOP-5 chip with another that has an ultra-low quiescent current but similar current sourcing abilities. For

example, the NCP703 is an ultra-low noise LDO able to source a maximum of 750mA with an ultra-low

quiescent current of 12µA [34]. By changing out the voltage regulator, the sleeping current of this system

could be reduced drastically, enabling many-year battery lifetimes.

6.6 IoT System Comparison

A comparison of power information is provided in this section. The system developed in this thesis is

not directly comparable to the systems reviewed in Chapter 2, but the data is useful, nonetheless. Table 8

shows a comparison of aspects of the systems reviewed that were able to be found. The third paper

reviewed in Chapter 2 was not included in the table as the report did not include any power information.

Table 8: IoT System Specifications Comparison

System

Sensor Node

SoC
Tx

Current

Sleep

Current
Tx Data Size Data Rate

IoTai Dev.
ESP32 150mA

(BLE 4.2)

162µA

(Dev.)
50-250 kB 220kbps

Vinduino
LM-210 120mA

(LoRa)
Unknown 10-20 Bytes 810bps

Multi-Hop
BMD-340 32.6mA

(BLE 5.0)

3.65µA

(PCB)
21-29 Bytes 7.2kbps

79

It is likely that significant differences in transmission and sleep currents are associated with hardware

variations. The Vinduino and Multi-Hop systems were developed on optimized custom PCB’s with surface

mount SoC’s. This system was characterized by monitoring power of the entire development board.

The Multi-Hop IoT system was optimized for isolated monitoring of short sensor data values. The

system is incredibly efficient as their custom sensor node PCB consumed 32.6mA while transmitting

packets and 3.65µA while sleeping. The node is able to achieve such low power consumption by operating

at 1.8V and only transmitting very small data messages less than 30 bytes. The maximum data rate

achieved by this system is 7.2kbps. The Vinduino system uses LoRa to transmit small data packets long

distances. Even though the data throughput achieved is a lowly 810bps, the system still achieves a low

energy consumption as the packets are 10 to 20 bytes. These systems can be classified as isolated, small-

data, low-throughput IoT networks. By having loose requirements for data rate and data packet size, the

systems are able to sacrifice these metrics for lower power.

The system developed in this thesis qualifies as an isolated, big-data, high-throughput IoT network.

The requirement for low power still exists while the requirements for data rate and data size are much more

restricted, needing to be maximized. While these systems compared do not have the same objective, the

system designed in this work helps show that IoT systems do not have to be contained to the periodic

collection and dissemination of small amounts of data. Isolated networks can still operate on batteries and

last for years while sensing and collecting large quantities of very diverse data and transmit at high data

rates.

80

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Summary and Conclusion

This thesis proposed, developed, and characterized an IoT prototype system to be used as the data

acquisition step in a computer vision and machine learning pipeline for predicting the timing and yield of

crop harvests. The parts of the network developed were the sensor node, the gateway node, the cloud

server, and the wireless link between all three. The nodes are based on the ESP32 SoC and tested with the

ArduCAM IoTai development board. The sensor node and gateway node communicate between each other

using Bluetooth Low Energy technology. Full colored 2-megapixel images are captured and compressed

using JPEG by the sensor node. These compressed image files are kept in flash storage until a connection is

made between the sensor and gateway. Once image data has been received, the gateway node uses Wi-Fi to

push data files to a real time database using Firebase cloud storage. Once in the cloud, the images are easily

able to be downloaded and used by a computer vision and machine learning pipeline.

This prototype system was developed to remedy specific shortcomings from previous methods,

namely: inconsistencies of acquisition frequency, varying illumination levels, varying viewing angles and

heights, as well as a time-consuming collection process. An IoT system as proposed can be programmed to

acquire crop images at any set frequency, even at specific times of day (morning, midday, and evening for

example). This eliminates time inconsistencies from manual image collection caused by human error or

forgetfulness and creates a uniform dataset for complex processing models to analyze. By fixing exact

times to capture crop images, the problem of varying illumination levels caused by time of day is mitigated.

When the sensor node is physically deployed, it will stay in a single stationary location to monitor a

specific area of crops. This alleviates irregularity produced by varying viewing angles and heights caused

by human image collection. The sensor node is designed to be as low power as possible to extend battery

lifetime. This extension makes this system almost fully autonomous and only requires human input every

year or more to change batteries. Compared to manual human image capture, this system could easily save

an estimated few hours in time per day for a farmer.

The IoT system characterized meets the goals and requirements for the agriculture-specific network but

is not limited to this industry. This network can be utilized by any application that requires a wireless

81

sensor network (WSN), high data rates, low power consumption, short range communication, and large

amounts of data to be transmitted at low frequency intervals. As IoT trends towards the inclusion of edge

computing and computer vision or machine learning and away from being their own standalone systems,

these characteristics will become increasingly desirable. Crop monitoring and yield prediction systems are

a prime example of this class of system, drifting further away from the typical low data rate, low bandwidth

IoT systems of the past.

Important specifications measured with the prototype system on a development board are now

summarized. The IoT network achieves preliminary goals initially set for this work: gateway nodes cost

less than $30 and sensor nodes will last at least a year on battery power. The sensor nodes will cost closer

to $45 with the inclusion of LiPo batteries chosen. With the use of a fully integrated low-cost hardware

development board, a free software development environment, and a free cloud storage, each node’s cost is

minimized. During its active state, the sensor node consumes a maximum average current of 150mA while

transmitting over BLE. The node spends over 99% of its time in standby mode consuming 162µA. In a

scenario of capturing and transmitting five images per day, a sensor node could be powered from a single

6600mAh LiPo battery for an impressive 682 days. Over this lifetime the sensor node could capture and

upload 3,410 images to Firebase. The system also achieves impressive WSN data throughput. Node-to-

node BLE communication reaches 220kbps and node-to-cloud Wi-Fi communication reaches 709.5kbps.

The system underwent multiple end-to-end system tests to verify complete process operation. The system

functions performed perfectly in tests up to 20 meters between sensor and gateway; no tests exceeding this

distance were done.

7.2 Future Considerations and Recommendations

This system contains many attractive elements and serves as a well-performing standalone IoT

network to monitor a single crop area. This thesis was developed with scalability in mind and also serves as

an excellent starting point to create a many-node IoT mesh network to have full coverage of a large area of

interest. The following ideas are presented in chronological order of future development.

An idea to provide a wider reach for the two-node, point-to-point system developed in this thesis is to

make the single sensor node mobile. If a single sensor node were mounted on a rover, for example, the

rover could be programmed to drive to designated spots in a crop field where the sensor node would carry

82

out its image collection process as developed in this thesis. Instead of immediately transmitting data off-

board, the device would store it to memory. Once the rover had driven to all designated locations, it would

make its way back to within range of the gateway node, enabling the sensor node to dump its collected

data. The gateway would proceed with its functionality and upload the image files to Firebase. This is a less

intensive method than a small-area mesh network and could produce similar results. The gateway node’s

firmware would be unaltered, and the sensor node’s firmware would only need slight modification. This

same idea could be applied to a sort of long railway with a moving part holding the sensor node. There are

adapter boards available that can hold up to four equivalent cameras at once, extending the utility of this

idea.

Next, it would be beneficial to design and manufacture a custom sensor node PCB with an emphasis on

the inclusion of power efficient supporting electronics. A board that integrated a barebones SoC with a low

quiescent current LDO and clever software (GPIO) controlled peripheral power chains for a camera and

memory card could result in an ultra-low power node with the same WSN capabilities described in this

thesis. If the design of an entire PCB is too complicated or time-intensive, modifying the existing

development board would be simple and very effective, too. Removing any LED’s and replacing the old

LDO with one that has the same pin-out, package size, and current sourcing ability but much lower

quiescent current could drastically improve the system sleeping current.

To ensure this system could cover a large area, the number of sensor nodes must increase. This could

enable the network to reach further distances because all sensor nodes could act both as collectors and

repeaters. The data could hop from one node to the next, eventually reaching the gateway. This idea is

known as a mesh network, illustrated in Figure 71. Sensors are depicted as orange and the gateway as grey.

Figure 71: IoT Mesh Network Topology

83

In this topology, each node has at least two ways to send and receive information. This ensures the

whole system does not rely on one node only. Creating a network routing and scheduling scheme for a BLE

mesh network using the hardware and software functionality developed in this work could act as an entire

thesis topic. The network scheme could use Shortest Path Bridging (SPB) that allows information to be

transferred by the shortest available path of nodes. SPB is specified in the IEEE 802.1aq standard. The BLE

communication range depends on many things including transmit power, physical environment, and

receiver sensitivity. Typically, the realizable range for BLE is between 10 and 100 meters for outdoor

applications. A mesh network with sensor nodes that are within this range of each other could span the area

of an entire crop field. The ESP32 SoC contains a BLE Mesh core optimized for creating large-scale device

networks to get started with this application. A correctly implemented mesh network using the developed

sensor and gateway nodes would efficiently enable constant monitoring and imaging of entire farms.

84

WORKS CITED

[1] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. H. D. N. Hindia, “An Overview of Internet

of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J.,

vol. 5, no. 5, pp. 3758–3773, Oct. 2018, doi: 10.1109/JIOT.2018.2844296.

[2] A. M. Apitz, “Towards a Strawberry Harvest Prediction System Using Computer Vision and Pattern

Recognition,” California Polytechnic State University, San Luis Obispo, California, 2018.

[3] Y. Fitter, “Strawberry Detection Under Various Harvest Stages,” California Polytechnic State

University, San Luis Obispo, California, 2019.

[4] “Breaking the curse of small data sets in Machine Learning: Part 2.”

https://towardsdatascience.com/breaking-the-curse-of-small-data-sets-in-machine-learning-part-2-

894aa45277f4 (accessed May 03, 2020).

[5] “Agricultural IoT will see a very rapid growth over the next 10 years.”

https://machinaresearch.com/news/agricultural-iot-will-see-a-very-rapid-growth-over-the-next-10-

years/ (accessed Apr. 18, 2020).

[6] R. van der Lee, “Vinduino, a wine grower’s water saving project.” https://hackaday.io/project/6444-

vinduino-a-wine-growers-water-saving-project (accessed Mar. 25, 2020).

[7] R. A. Kjellby, L. R. Cenkeramaddi, A. Froytlog, B. B. Lozano, J. Soumya, and M. Bhange, “Long-

range & Self-powered IoT Devices for Agriculture & Aquaponics Based on Multi-hop Topology,” in

2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, Apr. 2019, pp. 545–

549, doi: 10.1109/WF-IoT.2019.8767196.

[8] M. Manideep, R. Thukaram, and S. M, “Smart Agriculture Farming with Image Capturing Module,” in

2019 Global Conference for Advancement in Technology (GCAT), Oct. 2019, pp. 1–5, doi:

10.1109/GCAT47503.2019.8978368.

[9] F. Lutz and M. Korsloot, “Introduction Alcom Electronics,” p. 18.

[10] A. H. Jebril, A. Sali, A. Ismail, and M. F. A. Rasid, “Overcoming Limitations of LoRa Physical Layer

in Image Transmission,” Sensors, vol. 18, no. 10, Sep. 2018, doi: 10.3390/s18103257.

[11] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia, and T. Watteyne, “Understanding

the limits of LoRaWAN,” ArXiv160708011 Cs, Feb. 2017, Accessed: Jan. 16, 2020. [Online].

Available: http://arxiv.org/abs/1607.08011.

[12] “Develop with LoRa for low-rate, long-range IoT applications,” www.mwee.com, Jan. 10, 2018.

https://www.mwee.com/design-center/develop-lora-low-rate-long-range-iot-applications (accessed

Mar. 25, 2020).

[13] “LoRa Gateway.” https://www.vinduino.com/portfolio-view/lora-gateway/ (accessed Mar. 25, 2020).

[14] B. Ray, “What Is SigFox?” https://www.link-labs.com/blog/what-is-sigfox (accessed Jan. 16, 2020).

85

[15] “Advantages of SigFox | Disadvantages of SigFox.” https://www.rfwireless-

world.com/Tutorials/advantages-and-disadvantages-of-Sigfox-wireless-technology.html (accessed

Apr. 18, 2020).

[16] B. Ray, “A Bluetooth & ZigBee Comparison For IoT Applications.” https://www.link-

labs.com/blog/bluetooth-zigbee-comparison (accessed Apr. 18, 2020).

[17] B. Ray, “ZigBee Vs. Bluetooth: A Use Case With Range Calculations.” https://www.link-

labs.com/blog/zigbee-vs-bluetooth (accessed Apr. 18, 2020).

[18] “Arduino Nano 33 BLE | Arduino Official Store.” https://store.arduino.cc/usa/nano-33-ble (accessed

Apr. 18, 2020).

[19] “Particle.” https://docs.particle.io/argon/ (accessed Apr. 29, 2020).

[20] “esp32_datasheet_en.pdf.” Accessed: Feb. 01, 2020. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

[21] L. Jackson, “Introducing Arducam IoTai - The Ultimate IoT (Internet of Things) Board with Camera

Support, Based on ESP32 and in the Shape of Arduino UNO,” Arducam, Aug. 09, 2019.

https://www.arducam.com/arducam-iotai-esp32-camera-module-arduino-uno-r3-board/ (accessed Apr.

29, 2020).

[22] “OV2640DS.pdf.” Accessed: May 03, 2020. [Online]. Available:

https://www.uctronics.com/download/cam_module/OV2640DS.pdf.

[23] B. Chung, “SanDisk Industrial microSD card Datasheet,” p. 29, 2016.

[24] M. Afaneh, “Bluetooth Low Energy: A Primer,” Interrupt, Jul. 30, 2019.

https://interrupt.memfault.com/blog/bluetooth-low-energy-a-primer (accessed May 09, 2020).

[25] “ESP32 Bluetooth Low Energy (BLE) on Arduino IDE,” Random Nerd Tutorials, May 16, 2019.

https://randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-ide/ (accessed May 09,

2020).

[26] C. Coleman, “A Practical Guide to BLE Throughput,” Interrupt, Sep. 24, 2019.

https://interrupt.memfault.com/blog/ble-throughput-primer (accessed May 09, 2020).

[27] “Core Specifications,” Bluetooth® Technology Website.

https://www.bluetooth.com/specifications/bluetooth-core-specification/ (accessed May 09, 2020).

[28] “Insight Into ESP32 Sleep Modes & Their Power Consumption,” Last Minute Engineers, Dec. 23,

2018. https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/ (accessed Feb. 01,

2020).

[29] “Oscilloscope Preamplifier LNA10,” AlphaLab, Inc. https://www.alphalabinc.com/product/lna10/

(accessed May 11, 2020).

86

[30] “A Guide to Understanding LiPo Batteries,” Roger’s Hobby Center.

https://rogershobbycenter.com/lipoguide (accessed May 10, 2020).

[31] “Battery Discharge Methods – Battery University.”

https://batteryuniversity.com/learn/article/discharge_methods (accessed May 10, 2020).

[32] “CP2102-9.pdf.” Accessed: May 11, 2020. [Online]. Available:

https://www.silabs.com/documents/public/data-sheets/CP2102-9.pdf.

[33] “Voltage Regulator - CMOS, Low Noise, Low-Dropout 1.pdf.” Accessed: May 13, 2020. [Online].

Available: https://www.onsemi.com/pub/Collateral/NCP500-D.PDF.

[34] “NCP703-D.pdf.” Accessed: May 13, 2020. [Online]. Available:

https://www.onsemi.com/pub/Collateral/NCP703-D.PDF.

87

CODE APPENDICES

A: Final Sensor and Gateway Node Firmware Files

https://github.com/jawahl/Thesis_Firmware/tree/master/FINAL_FIRMWARE_FILES

B: Python Firebase Scraper Script

https://github.com/jawahl/Thesis_Firmware/tree/master/FINAL_FIRMWARE_FILES/firebaseScrape.py

https://github.com/jawahl/Thesis_Firmware/tree/master/FINAL_FIRMWARE_FILES
https://github.com/jawahl/Thesis_Firmware/tree/master/FINAL_FIRMWARE_FILES

	TABLE OF CONTENTS
	LIST OF TABLES x
	LIST OF FIGURES xi
	1. INTRODUCTION 1
	2. LITERATURE REVIEW 7
	3. PRELIMINARY SYSTEM DESIGN 14
	4. HARDWARE OVERVIEW 22
	5. DEVELOPMENT 27
	6. SYSTEM CHARACTERIZATION 60
	7. CONCLUSION AND FUTURE WORK 80
	WORKS CITED 84
	CODE APPENDICES 87
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 Background and Overview
	1.1.1 Technology in Agriculture
	1.1.2 Motivation
	Figure 1: Handheld Smartphone Image (left) & Drone Image at 3m (right) [2]

	1.1.3 Significance of Quality Data

	1.2 Statement of Problem
	1.3 IoT Background
	Figure 2: Typical IoT Network Structure

	1.4 Scope of Work

	LITERATURE REVIEW
	2
	2.1 Vinduino
	2.1.1 Overview
	Figure 3: Vinduino High Level Network Flow [6]
	Figure 4: Vinduino Remote Sensor Node [6]
	Figure 5: ThingSpeak (by MathWorks) Analytics Platform

	2.1.2 Analysis

	2.2 Long-range & Self-powered IoT Devices for Agriculture & Aquaponics Based on Multi-hop Topology
	2.2.1 Overview
	Figure 6: IoT System Architecture [7]

	2.2.2 Analysis

	2.3 Smart Agriculture Farming with Image Capturing Module
	2.3.1 Overview
	Figure 7: Block Diagram of IoT System Implementation [8]
	Figure 8: Firebase Utilities

	2.3.2 Analysis

	PRELIMINARY SYSTEM DESIGN
	3
	3.1 System Goals
	Figure 9: Preliminary High-Level System Design

	3.2 Wireless Communication
	3.2.1 LPWAN: LoRa and SigFox
	3.2.2 PAN: ZigBee and Bluetooth Low Energy
	3.2.3 Summary of Wireless Communication Technologies
	Table 1: Wireless IoT Communications Comparison

	3.3 Hardware Case Studies
	3.3.1 Arduino Nano 33 BLE
	Figure 10: Arduino Nano 33 BLE Board [18]

	3.3.2 Particle Argon
	Figure 11: Particle Argon Development Board [19]

	3.3.3 Espressif ESP32 SoC
	Figure 12: Espressif ESP32 SoC

	3.3.4 Hardware Summary
	Table 2: Hardware Features Summary

	3.4 Final Design Summary
	Figure 13: Final High Level IoT System Design

	HARDWARE OVERVIEW
	4
	4.1 ArduCAM IoTai Development Board
	Figure 14: ArduCAM IoTai Development Board

	4.2 Espressif ESP32 SoC
	Figure 15: ESP32 High Level Functional Block Diagram [20]

	4.3 OV2640 Image Sensor
	Figure 16: OV2640 CMOS Image Sensor Module [22]

	4.4 Other Considerations
	Figure 17: ESP32-DevKitC Breakout Board

	DEVELOPMENT
	5
	5.1 Functionality Overview
	5.2 Embedded Development Environment
	Figure 18: Additional Board Manager URL Field
	Figure 19: ESP32 Platform to Install on Board Manager

	5.3 Image Capture – Sensor Node
	Figure 20: Image Capture Firmware Flow
	Figure 21: API Function Names with Parameters
	Figure 22: Camera Initialization Custom Function
	Figure 23: Image Capture Custom Function

	5.4 SD Card and Flash Storage Interface
	5.4.1 SanDisk Industrial 8GB Card
	5.4.2 Image File Reading and Writing
	Figure 24: Image Data File Writing Code
	Figure 25: First through Fifth Image Taken in Series with OV2640
	Figure 26: Image Captured by OV2640 (rotated 90 degrees), 139KB

	5.4.3 Challenges

	5.5 Bluetooth Low Energy (BLE) Functionality
	5.5.1 BLE Theory and Overview
	Figure 27: BLE Basic Server and Client Interaction
	Figure 28: Indication / Notification Schemes
	Figure 29: GATT Data Structure for BLE [25]

	5.5.2 Image Transmission via BLE – Sensor Node
	Figure 30: BLE Data Transmission Firmware Flow Diagram
	Figure 31: Creation of BLE Device, Server, Service, and Characteristic
	Figure 32: Start BLE Advertising
	Figure 33: Data Formatting and Transmission Firmware Flow
	Figure 34: BLE Characteristic Value Setting and Notification Code
	Figure 35: Case 1 Process in Serial Port
	Figure 36: Case 2 Process in Serial Port

	5.5.3 Image Reception via BLE – Gateway Node
	Figure 37: Nordic nRF BLE Connection Screenshots
	Figure 38: ESP32 BLE Device Information on nRF App
	Figure 39: BLE Data Reception Firmware Flow Diagram
	Figure 40: BLE Device Scan Object Creation
	Figure 41: BLE Scan Interval and Window Diagram
	Figure 42: Set Scan Characteristics Code
	Figure 43: Connect to Server Function Code
	Figure 44: Notification Callback Function

	5.5.4 Server to Client BLE Link Verification

	5.6 Low Power Sleep Modes
	Figure 45: Sensor Device Cycle Timing Diagram
	Figure 46: Deep Sleep ESP32 Powered Components [28]
	Figure 47: Deep Sleep Functions

	5.7 Wi-Fi and Cloud Server Link
	5.7.1 Firebase Realtime Database
	5.7.2 Firebase Database for the ESP32
	Figure 48: Firebase and Wi-Fi Access Keys
	Figure 49: File Upload to Firebase Process
	Figure 50: Firebase Database Image File View
	Figure 51: Image File to Firebase Function

	5.8 Functional Summary
	Figure 52: Functional Summary Reference Diagram

	SYSTEM CHARACTERIZATION
	6
	6.1 Functional Power and Energy Testing
	6.1.1 Power Draw Test Setup
	Figure 53: Simple Power Draw Setup Schematic
	Figure 54: Power Draw Test Connection Setup

	6.1.2 System Idle Power
	Figure 55: Development Board Idle Current

	6.1.3 Image Capture Power
	Figure 56: Image Capture Test Script Cycle (Boot to Sleep)
	Figure 57: Five Images Captured Test Script

	6.1.4 SD Card and SPIFFS File Write Power
	Figure 58: Image File Write Test for microSD
	Figure 59: Image File Write Test for SPIFFS

	6.1.5 BLE Server Power
	Figure 60: BLE Advertising and Transmission Current Draw for microSD
	Figure 61: BLE Advertising and Transmission Current Draw for SPIFFS
	Table 3: Variable Tx Buffer Size Effect on 110kB File Throughput
	Figure 62: BLE Advertising Current Draw Plot
	Figure 63: BLE Transmission Current Draw Plot using microSD
	Figure 64: BLE Transmission Current Draw Plot using SPIFFS

	6.1.6 Sleep Mode Power
	Figure 65: AlphaLab LNA10
	Figure 66: Deep Sleep Current Draw without and with MicroSD

	6.2 Sensor Node Power Characterization – Optimal Configuration
	Table 4: Sensor Node Active Mode - Optimal
	Table 5: Sensor Node Standby Mode - Optimal
	Figure 67: Standby and Active Mode Percentages for One Hour

	6.3 Battery Life Estimates
	Table 6: Executions Per Battery for Sensor Node Functions
	Table 7: Sensor Node Conservative Lifetime Estimates with Various LiPo Batteries

	6.4 Gateway Node Power Characterization
	6.4.1 BLE Client Power
	Figure 68: BLE Scanning Current Test
	Figure 69: BLE Reception Current Test

	6.4.2 Wi-Fi to Cloud Power
	Figure 70: Wi-Fi Image File to Firebase Cloud Current Test

	6.5 Extra Low-Power Design Methods
	6.6 IoT System Comparison
	Table 8: IoT System Specifications Comparison

	CONCLUSION AND FUTURE WORK
	7
	7.1 Summary and Conclusion
	7.2 Future Considerations and Recommendations
	Figure 71: IoT Mesh Network Topology

	WORKS CITED
	CODE APPENDICES
	A: Final Sensor and Gateway Node Firmware Files
	B: Python Firebase Scraper Script

