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ABSTRACT 

Effect of Polymer Design and Coating Formulation on the Water Uptake and Sensitivity of Acrylic 

Water-Borne Films  

 

William Zachary Thompson 

 

Water-borne latex coatings represent a safer, more user-friendly, and environmentally 

responsible alternative to solvent-borne coatings, and are growing in popularity each year. 

However, these coatings often exhibit unfavorable performance when exposed to water for 

extended periods of time. This prolonged exposure often results in water uptake, which may give 

rise to other detrimental effects such as a decrease in modulus, blushing or water-whitening, 

reduced serviceable life, and softening of the film. In this study, various polymer composition latex 

design spaces are studied to develop an understanding of how water uptake can be modulated 

and minimized using common synthetic approaches. Factors including monomer selection, particle 

size, polymer molecular weight, crosslinking density, surfactant choice and particle stabilization, 

processing variables and Tg are considered. In addition, some formulation modifications including 

PVC, film thickness, and choice of coalescent package are explored to gain a more comprehensive 

understanding of final product performance. In quantifying the total water uptake of the films, 

gravimetric analysis tends to be the preferred method employed in the coatings industry. However, 

other analytical approaches can be used to better understand the effect that water has on the 

properties of the film. These methods may include differential scanning calorimetry, 

electrochemical impedance spectroscopy, immersion testing using dynamic mechanical analysis, 

and others.  

In the work, it has been shown that interparticle crosslinking, surfactant, and monomer 

selection can have an extreme influence on the water uptake of free films. Film samples exhibit a 

range of water uptake values from nearly 200% to less than 5% over a one-week soak in deionized 

water. It is thought that the surfactant may provide hydrophilic channels that allow water to 
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penetrate the film and form heterogenous domains within the coating. These domains then grow 

and scatter light, leading to water-whitening and an increase in mass when compared to the dry 

film. Utilizing monomers with differing relative solubilities in water, such as methyl methacrylate and 

styrene, further allow control of this effect. Interparticle crosslinking via keto-hydrazide crosslinking, 

which is achieved during the film formation process, can also prevent the formation and growth of 

these large water domains, thus resulting in better performing films.  
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1. INTRODUCTION 

1.1 Statement of Problem and Purpose of Study 

 Prior to the mid-20th century, nearly all coatings that were used both at home and 

industrially were solvent-borne. This included paints, lacquers, and other coatings which were used 

in nearly every part of the coatings industry. However, with the development and release of Super 

Kem-Tone latex paint in the 1940s, Sherwin-Williams introduced the homeowner to a water-based 

paint with myriad advantages over its oil-based counterparts. These paints, as their name suggests, 

are based on a chemistry centered around using water rather than oil to produce and form a 

coating.1 The binder that these coatings use are known as latexes or latex resins. The latex is a 

dispersion of polymer particles in water. Most commonly these polymers are synthesized using free 

radical polymerization, also known as chain-growth polymerization. However, step-growth 

polymerization can also be used to synthesize these aqueous dispersions. Polyurethane 

dispersions, also known as PUDs, are created in this way.1 

 These coating systems exhibit some limitations when compared to their solvent-borne 

counterparts. Limitations include but are not limited to film formation, adhesion to certain 

substrates, resistance to mechanical and chemical degradation, and sensitivities to moisture. This 

sensitivity to water can result in coating failures in the form of blistering, delamination, drop in 

modulus, blushing, reduced service-life, and softening.2 One example of the need for water 

resistance in water-based coatings can be seen in industrial roof coatings. These coatings, often 

seen on the roofs of large box stores and commercial buildings, must be able to endure changing 

weather and standing water for prolonged periods of time. Since the roofs are often low sloped and 

may have poor drainage systems, the chance that water will pool and sit until it evaporates is quite 

high. A coating that exhibits poor water resistance will suffer the adverse effects of multiple wet 

weathering cycles and require repeated recoats to maintain and protect the underlying structure 

from water damage. After multiple seasons of wet weather, and a coating that exhibits poor 

resistance to the adverse effects of water, a roof may have to be recoated, water damage to the 
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underlying structure might need to be repaired, and a dissatisfied owner will be on the search for a 

coating from a different manufacturer. 

 The purpose of this work is to develop an understanding of what drives water sensitivity 

and, more specifically, water uptake or absorption in waterborne coatings. Nearly all coatings will 

encounter water at some point throughout their service life and having some resistance to water is 

an important factor for end use applications. Water uptake is of interest to coatings and polymer 

manufacturers for these reasons. Some roofing coatings must meet standards set forth in ASTM 

D6083 and D471 where a coating free film cannot uptake more than 20% of its mass in water. 

Many industrial polymers may be used in roofing coatings; however, this is one very important 

specification that must be met.  

 There are many factors and variables that can be changed during the synthesis and 

production of latex resins, as well as formulation of the coatings themselves. Some of these factors 

are understood, however many are not, and it is the purpose of this study to obtain a more 

comprehensive understanding of how polymer composition and processing affect water uptake. 

Acquiring a better understanding of water uptake in latex coatings will allow future development of 

commercial resins to occur with much more ease and purpose. These conclusions and findings 

should aid in the evolution of resins used in architectural, industrial, and construction applications.  

From a business standpoint the work will serve to advance waterborne acrylic coatings 

performance in numerous commercial applications and in the development of products for EPS 

and the Sherwin-Williams Company. A coating’s interaction with water affects many properties of 

importance to the coatings industry, including corrosion resistance, adhesion, blister resistance, 

blush resistance, and water absorption. Innovative polymers must be able to demonstrate 

advancements in these attributes to be successful in the marketplace. Research into the 

fundamental factors that contribute to water uptake contributes to advancement of these properties. 

Resins that demonstrate water resistance (and other qualities related to water resistance) will 

provide a more profitable and marketable product to the coatings community and coatings 

manufacturers. It is for these reasons that it is important to invest time and resources into 
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developing this technology and gaining a more comprehensive understanding of the water uptake 

phenomenon. 

 The project is separated into three main stages: understanding the effect of coating 

formulation, polymer synthesis and design, and the characterization and understanding of the water 

uptake mechanism and other properties of interest to coatings manufacturers.  

Coating formulation- Polymers are tested primarily in neat “formulation-free” systems. 

However, a series of formulation effects are studied within the scope of roofing formulas, such as 

pigment loading, coalescent, coating thickness, curing conditions, and non-uniformities in the 

finished film.  

Polymer design- Polymer design is the main focus of the study. Polymers are designed, 

manipulated, and synthesized to provide an accurate understanding of how compositional and 

processing parameters affect the performance of the coating. Parameters include Tg, monomer 

selection, hard/soft dual stage polymers, molecular weight, crosslinking, initiation method, 

surfactant level/type, and others. The control polymer used for manipulation and study is an altered, 

simplified version of a current product offered by EPS. 

Characterization- In quantifying the water uptake, a simple gravimetric method is 

employed. However, EIS, AFM, and other techniques are also used to obtain a deeper 

understanding of the uptake phenomenon, and factors that affect it. Other performance attributes 

are measured using current and developing test methods. These methods include surfactant 

leaching testing, blushing tests, contact angle measurements, and water vapor transmission.  
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2. LITERATURE REVIEW AND BACKGROUND INFORMATION 

2.1 Polymer Basics 

Polymer Structure 

Polymers are large molecules composed of small building blocks called monomers. The 

final properties of the polymer are dependent on two things: what the monomeric repeat units are, 

and how they are put together in the larger structure of the polymer. As one might expect, there 

are nearly an infinite number of possible monomer combinations, resulting in a vast array of final 

properties. These polymers are arguably the most important component of coatings and are the 

driving factor behind many coating properties. They can be synthesized in the lab, as well as found 

naturally nearly everywhere we look. The former will be the focus of this work, but it is important to 

understand how abundant these macromolecules are in our day-to-day lives. Oftentimes, polymers 

are thought only to be rubber and plastic materials; people are very familiar with polystyrene and 

polyethylene, but the connection is rarely made between the label of “polymer” and everyday things 

such as cotton, cellulose, protein, and DNA. Some of the most interesting and useful materials 

human civilization has ever created are polymers, and the field of research pertaining to these 

materials is immense and growing. 

An example is presented below of a simple monomer and resulting polymer structure. 

 

 

 

 

 

 

 The repeat unit or monomer in Figure 1 is styrene, and the resulting polymer is polystyrene, 

where n represents the number of repeat units, which can practically range from 100-200 to 

upwards of 100,000. This is a particularly simplified presentation of a polymer, but it serves to show 

Polymerization 

Reaction 

Figure 1. Styrene and polystyrene.  
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that the structure of the final product relies nearly entirely on the structure of the monomer. If the 

monomer is changed, the polymer changes with it.  

One of the most fundamental ways to classify polymers is based on chain design and how 

the chains are oriented in the molecule itself. We can classify most polymers into three categories: 

linear, branched, and crosslinked polymers. Linear polymers, as the name suggests, are linear 

macromolecules. The monomer units are joined one after the other and there are no junctions or 

deviations from the linearity of the chain. The monomer units may be all the same (homopolymers), 

they may be random combinations of two or more chemically different monomers (random or 

statistical copolymers), they might be alternating one after another (alternating copolymers) or they 

may consist of regions of one monomer followed by regions of another, also known as a block 

copolymers. Branched polymers have periodic branching from the main linear chain. These 

molecules may have long linear regions but every so often there exists a “fork in the road” where a 

secondary chain may extend from the primary one. There exist many forms of these polymers, 

such as graft or comb polymers, but the principle of multiple branches of chains from other chains 

remains constant. The third class of polymers are known as crosslinked or network polymers. 

These chains not only have branching, but also covalent bonding of these chains to other molecules 

in the system. In theory, each and every chain in a crosslinked system may be covalently bound to 

each other, resulting in one large interconnected molecule. This last class is of extreme importance 

in coatings applications and is the basis of much research in the field of coatings.  

 These crosslinked polymers are often referred to as thermoset polymers. In theory these 

polymers will not soften or turn rubbery when heated, but instead remain rigid and keep their form. 

Conversely, non-crosslinked polymers are known as thermoplastic polymers, as they will soften 

and lose their form when heated above a certain temperature known as the glass transition 

temperature. The glass transition temperature or Tg will be discussed later, however it is important 

to draw the connection between polymer chain design and Tg early.  
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Molecular Weight 

 One of the most integral and important properties that influence the properties of polymers 

is their molecular weight (MW). The molecular weight is dependent upon two things: the number of 

monomeric repeat units that are part of the polymer chain and the type of repeat unit that is used 

to build the polymer chain. One of the most important characteristics of polymer molecular weights, 

and something that differs drastically from molecular weights of typical small molecules such as 

water (H2O: 18.02 g/mol) or glucose (C6H12O6: 180.16 g/mol), is that since there is a distribution of 

polymer chains in the sample, there is a corresponding distribution of molecular weights.  

Naturally, chemists are used to the understanding that a MW is a discrete value dependent 

upon the number of atoms in the molecule. Each molecule of styrene contains 8 carbon and 8 

hydrogen atoms, each having a mass of 12.01 g/mol and 1.01 g/mol respectively (ignoring the 

effect of isotopes). The sum of these 16 atoms is 104.16 g/mol; the MW of a styrene molecule. 

However, during a typical polymerization process polymer chains don’t all grow at the same rate. 

This results in a distribution of long molecules with varying lengths and MWs, centered around 

some mean value. We refer to this distribution of MWs as a molecular weight distribution. One 

consequence of this MW distribution is the presence of different average values: the number 

average molecular weight and the weight average molecular weight. These are defined below: 

Number average:   𝑀̅𝑛 =
Σ𝑁𝑥𝑀𝑥

Σ𝑁𝑥
 

Weight average:    𝑀̅𝑤 =
Σ𝑁𝑥𝑀𝑥

2

Σ𝑁𝑥𝑀𝑥
 

 Here x represents the degree of polymerization (DPn), Nx equals the number of molecules 

with length x, Mx is the molecular weight of a molecule with degree of polymerization x. The degree 

of polymerization is equal to the number of repeat units in the polymer chain and is, in this case, 

synonymous with chain length. The Mn is the statistical average molecular weight of all the chains 

in the sample, compared to the Mw, which takes into account the molecular weight of the chain in 

determining contributions to the average molecular weight. This means that the presence of a few 

large chains, or a right skewed distribution of polymer MW will have a larger impact on the Mw than 
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on the Mn. Furthermore, the Mw will always be equal to or larger than the Mn for this reason. There 

exists a relationship between these two values which helps us understand this right skewed 

distribution of polymer chains: the polydispersity index.3 

Polydispersity Index (PDI):   𝑃𝐷𝐼 =
𝑀𝑤

𝑀𝑛
 

Notice that since Mw ≥ Mn, the value for PDI will always be greater than 1 in real world 

samples of polymer. The larger the PDI, the broader the distribution of polymer molecular weights 

and the more polydisperse the sample is. True monodisperse samples are rare in synthetic polymer 

chemistry; however, they do exist. A sample of isolated proteins could have a PDI of 1, however 

carefully controlled synthetic polymers might only be able to achieve PDI values of 1.02 to 1.10. 

Commercial chain reaction polymers typically have PDIs in the range of 1.5 to 20.3 For samples 

with exceptionally narrow distributions (and thus small PDI) the Mp value is often reported. This is 

known as the peak molecular weight and is essentially the mode of the molecular weight 

distribution.4 

It should be noted that there are numerous ways of measuring and reporting molecular 

weights, such as Z-average molecular weight, viscosity average molecular weight, and using light 

scattering to measure MW. Some are more accurate, and some are more easily determined 

experimentally, however a true comprehensive understanding of molecular weight is not paramount 

to the understanding and execution of this research. 

Gel permeation chromatography is a type of size exclusion chromatography or SEC. There 

are many intricacies to GPC, but the underlying goal is to separate molecules of differing MW and 

elute them from a column or set of columns. The sample of polymer that is to be analyzed is first 

dissolved in solvent and injected into the instrument column. The sample of polymer chains is 

pumped with a continuous flow of solvent over tiny beads of media. These beads have microscopic 

pores and crevices that allow small molecules to enter, but exclude large molecules based on their 

size. This results in small molecules becoming “captured” along their tortuous path through the 

column, as they are pushed into every nook and cranny along the way. The larger molecules cannot 

enter these tight spaces, and instead flow through the media and through the column much faster. 
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As these molecules flow through the column, the larger ones eventually outpace the smaller ones 

and elute out of the column and onto the detector before than the smaller chains. Hydrodynamic 

volume is the technical factor that drives these elution profiles, and here we correlate this 

hydrodynamic volume to chain length and MW.5 

SEC requires much calibration, elution of standards, understanding of sample preparation, 

and column selection. Branching of the polymer sample will change how the sample behaves and 

elutes, and effectiveness of the media and solvent also affect how the sample will flow through the 

column.6 Highly crosslinked samples tend to be nearly impossible to run using these conventional 

methods due to their low solubility in the solvents used.  

 

2.2 Free Radical Polymerization 

Process  

There are two commonly accepted classifications of polymerization reactions; step-growth 

and chain-growth polymerization. The former will not be discussed at length in this paper, though 

it does account for a large portion of polymers produced and used extensively in our day-to-day 

lives. Many of our clothing products are constructed from nylon polymers, which are synthesized 

using a step-growth polymerization reaction. 

In chain-growth polymerization, the reactions are chain reactions, meaning that one 

reaction leads to another and so on. Here the monomers must have either unsaturated bonds such 

as the case with various olefins, dienes, and acetylene, or they may have certain ring structures 

such as caprolactam and ethylene oxide. The two most commonly used chain-growth 

polymerization processes for coatings polymers are initiated with free radicals and are known as 

solution and emulsion polymerizations. Both systems are initiated with free radicals. Solution 

polymerizations are marked by a reaction in an organic solvent, where all processes occur within 

a homogenous solvent system. In emulsion polymerization, the process occurs in a heterogenous 

system where non-polar monomer/polymer particles are suspended within an aqueous phase.  
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There are three main steps during the free radical polymerization (FRP) process: initiation, 

propagation, and termination. A fourth reaction known as chain transfer also takes place that can 

impact the product of the polymerization. During the initiation phase, the initiating molecule (I) 

reacts to form one or more free radicals (I·). A free radical then reacts with an available monomer 

molecule (M), combining the two and forming a new free radical on the monomer (I-M·). The 

subsequent reactions of this free radical on the monomer molecule with other monomer molecules 

are called propagating reactions. These reactions grow the polymer chain and take place very fast, 

resulting in the growth of polymer chains hundreds of units long in a fraction of a second. At any 

moment during the polymerization process the concentration of monomer and polymer greatly 

exceed the concentration of growing polymer chains, due to the limited solubility of initiator 

molecules into the non-polar phase. Since initiation occurs at independent monomer molecules, it 

is believed that growing polymer particles contain just a few growing chains at any given time. This 

results in high molecular weight chains being produced very quickly with FRP.7 

 

 

Figure 2. Initiation and propagation reactions. First some initiator molecule (such as a peroxide) will 
decompose to form two radical species (either thermally driven or using a redox coupling). This radical can 
then add rapidly to a monomer molecule, resulting in a larger molecule with another radical. This chain reaction 

then continues to add monomers to the growing molecule, eventually resulting in a polymer chain. 
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Figure 3. Termination by combination and disproportionation. Combination occurs when two radical species 
add to one another, resulting in radical consumption. Disproportionation occurs when one hydrogen is 
transferred from one molecule to the other, forming a double bond, and again resulting in radical consumption. 
Radical species that may participate in these termination reactions can include growing polymer chains or 
newly formed initiator radicals.  

 

 The third and final step of the FRP process is termination. Termination reactions are broken 

down into two categories: combination and disproportionation. A combination reaction occurs when 

two free radicals, either from initiator molecules, growing polymer chains, or both react together to 

form a covalent bond. This reaction results in the destruction of two active propagating sites, and 

the formation of a single “dead” polymer chain. Disproportionation is similar and occurs when two 

propagating chains meet. Here, the two chains don’t combine, but rather a proton is transferred, 

and a double bond is formed resulting in the cannibalization of both free radicals. There exists an 

extensive discussion into the kinetics of FRP, however the content of this discussion extends 

beyond the scope of this research.3,4 

 The chain transfer reaction is a side reaction that takes place in nearly all FRP processes. 

These reactions result in a free radical on the end of a propagating chain, abstracting a hydrogen 

atom from some molecule X·, and transferring the propagating radical to Y-H. The result is the 

termination of the first propagating chain, X-H, and the start of propagation reactions off of the 

molecule Y·. X may be another polymer chain, initiator, monomer, solvent or chain transfer agent 

(CTA). These CTAs are purposefully added to the reaction mixture in order to facilitate an increased 
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number of chain transfer reactions. Chain transfer reactions usually result in two outcomes: a higher 

ratio of Mw to Mn (or an increase in PDI), as well as an overall decrease in molecular weight.3 

 

Raw Materials and Processing 

 As was mentioned briefly, monomers must have either unsaturation or ring structures 

containing at least one hetero atom such as oxygen or nitrogen. Most of the monomers used in the 

coatings industry fall into the first category. Most of these monomers which contain unsaturations 

are alkenes with an electron withdrawing group such as a methyl acrylate and methyl methacrylate. 

Polymers composed of predominantly acrylic and methacrylic ester monomers are known as acrylic 

polymers or just acrylics. Styrene is another common monomer used in these reactions.  

 Initiator molecules or initiators are typically used in the 0.1-4.0 wt.% range. Two main 

classes of initiators are used in coatings polymers: azo compounds and peroxides. These initiators 

will decompose to form two radicals when subject to high temperatures or a reducing agent. Initiator 

selection will depend heavily on the polymer processing that is desired, for example in emulsion 

polymerization the initiator should be soluble in water and are oftentimes persulfate salts. Persulfate 

salts such as ammonium persulfate (APS) are very common, and in the case of APS, cleave 

thermally in water to produce sulfate anion radicals, this is known as thermal initiation. 

This initiation requires a high temperature (oftentimes these reactions are run around 80 

°C) to achieve radical production at a substantial rate. For initiation at lower temperatures, a 

reducing agent is often used to help drive the decomposition reaction and radical formation. This 

initiation via the use of a redox reaction is known as redox initiation. Redox initiation can be used 

to initiate polymerization at room temperature. The resulting exotherm and heat production from 

the polymerization process can be removed using a cooling jacket or water bath. In the later stages 

of the polymerization when nearly all of the monomer is reacted, a chaser or clean-up redox feed 

is often added to the reaction vessel.  This redox couple should be more lipophilic to help push the 

conversion of monomer to polymer to near 100%. The peroxide t-butyl-hydroperoxide (tBHP) and 

erythorbic acid (“e-acid”) are a common redox pair used for this chase. This oxidizer is more soluble 
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in the polymer particles and will help react the remaining monomer that is found inside these 

particles. The other advantage to using t-butyl hydroperoxide is that there are no remains of 

persulfate ions following the reaction. It is for this reason that a tBHP redox pair is commonly used 

as the sole initiator for FRP systems.  

 

2.3 Emulsion Polymerization 

Background 

One of the most common polymer synthesis processes that utilizes FRP is emulsion 

polymerization. As one might expect, emulsion polymerization relies on the emulsification of 

monomer droplets into water throughout the process. This polymerization method can be used with 

a variety of chemistries, such as acrylic free radical polymerization and polyurethane synthesis to 

create polyurethane dispersions or PUDs. These systems have many names of varying technical 

accuracies, such as colloidal dispersions, polymer colloids, latexes, aqueous dispersions, latex 

emulsifications, etc. We will use the common terms emulsion or latex for the purposes of this paper.  

One defining characteristic of latex polymers is that they tend to have relatively high MW 

when compared to polymers prepared by other means. Polymers exhibiting 𝑀𝑤̅̅ ̅̅ ̅ values of 

1,000,000 g/mol or higher is quite common. Interestingly enough, the viscosity of the resulting 

emulsion is not highly dependent on the molecular weight of the polymer, but rather by the volume 

fraction of polymer to aqueous media in the sample. This is further influenced by particle packing 

in the emulsion and the size of the individual latex particles. This is key when attempting to create 

polymers with high molecular weight. Solution polymers with the same MW and solids content as 

emulsion polymers would be much more viscous. These high molecular weights can result in an 

increase in durability of the final coating.1 

 

Process 

The process of emulsion polymerization requires water, monomer, surfactant, and a water-

soluble initiator. The FRP reaction process outlined above is the same chemical reaction process 
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in emulsion polymerization, however the physical circumstances of this polymerization are much 

different than the FRP of a solution polymer. There are countless parameters and variables that 

heavily affect both the processing and final product of the polymerization. Temperature, reaction 

time, pH, feed rate, concentration of surfactant/monomer/initiator, type of surfactant, monomer, 

initiator, agitation, and solubility of those compounds are just a few of the many important and 

diverse set of parameters that are variable in this process. The extreme customizability of each 

component means that it is very difficult to predict the final characteristics of the latex, and that 

there are innumerable possibilities for both successful and unsuccessful latex products.3 

There are two common ways of carrying out an emulsion polymerization process: batch 

polymerization and semi-continuous polymerization (it is true that continuous reactions are possible 

as well, but they are not the focus or purpose of this study). Batch polymerization is typically used 

primarily on small-scale situations, such as in the lab. Here, all of the components necessary are 

placed into the reaction vessel simultaneously and reacted at once. This method is rarely used on 

a large scale due to the uncontrollable exotherm and evolution of heat during the reaction. 

Consequentially, semi-continuous reactor setups are usually the first choice for large-scale 

production of latex resin. Miniature versions of these industrial-scale reactors are easy to setup in 

the lab, on a 0.5 to 4-gallon scale, and serve as a good model for eventual production-scale 

processes. In a semi-continuous reactor, the monomers and other components are added or fed 

into the reactor at a controlled rate so as to facilitate expeditious polymerization. This is referred to 

as monomer-starved conditions and allows for very good control of the overall reaction, especially 

heat production. Furthermore, the composition of the polymer product should theoretically reflect 

the composition of the monomer feed, all but negating the influence of varying monomer reactivity 

ratios. This means that the composition of the polymer particle can be influenced by altering the 

composition of the monomer feed throughout the span of the feed process.8 

Traditional emulsion polymerizations are started when an initiator molecule and monomer 

molecule react together. The subsequent propagation reactions occurring on this growing molecule 

eventually yield a small particle which continues to grow into the final product. This is known as in-
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situ seeding. Chemists have used in-situ seeding to produce resins with tight particle size 

distributions and allows them more control over the average particle size.  

A seed is oftentimes used at the outset of the polymerization process to further control 

variability in the product from one reactor to another. Industrially, a seed is used to minimize batch 

variability and botched runs, since it is all on the “same” pre-made seed. This seed is essentially a 

previously prepared infant emulsion, where a small amount of monomer had been initiated and 

grown into a resin with very small and controlled particle size. These particles then provide the 

monomer in the main reaction a place to begin the propagation reactions. The utilization of a seed 

helps control particle size and morphology of the final product for subsequent batches.1,9 

 

Surfactants 

Surfactants are molecules not inherently required for FRP, but rather for the physical 

process of emulsion polymerization. Surfactant molecules contain both a polar head group 

(hydrophilic) and a non-polar tail group (hydrophobic), and schematically resemble a tadpole. 

These surfactants are typically non-ionic or anionic, but there exists a vast number of different 

surfactants, depending on what properties the chemist is looking for. A common example of an 

ionic surfactant would be sodium lauryl sulfate. Here we can see the anionic head group SO3
- as 

well as the long hydrophobic hydrocarbon chain.  

Non-ionic surfactants must still provide a polar region without the use of a charged group. 

These surfactants provide water solubility mainly via hydrogen bonding. These also exhibit a 

reduction in water solubility as temperature is increased (driven by a reduction in hydrogen bonding 

effectiveness) but are less sensitive to water hardness or quality. Ionic surfactants can be affected 

greatly due to water chemistry.1 

The emulsion polymerization process begins with the formation of an emulsion. This is 

achieved by mixing water, monomer, and surfactant together. Surfactant molecules will form 

micelles once their concentration reaches the critical micelle concentration or CMC. This orientation 

has the polar head groups associating with the water, and the non-polar tail groups associating 
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with themselves. These micelles typically resemble spheres or rods, with either one or two layers 

of surfactant molecules. When the monomer is added to this system, the non-polar tails of the 

surfactant associate freely with the monomer, placing monomer molecules inside the micellar 

surfactant aggregate. This means that small monomer droplets will be stabilized by the surfactant, 

resulting in a monomer/water emulsion. The size of the monomer droplets is dependent upon 

stirring rate, surfactant concentration, and monomer/water ratio.10 

Once this emulsion is formed, the initiator can be fed into the system. It is very important 

that the initiator be water soluble. The initiator will initiate polymerization as it comes into contact 

with one of the monomer molecules that happens to be in the aqueous phase. Since the monomer 

is very insoluble in water, this process is slightly hindered. As the polymer chain grows, surfactant 

molecules begin to stabilize the chain, and form a small polymer particle. As the process continues, 

monomer will diffuse out of the monomer droplets and into the growing polymer particle, which 

grows with each addition of monomer. Surfactant will also join the growing polymer particle to help 

with stabilization. The monomer droplets shrink until they are gone, at which point all monomer has 

been converted to polymer, and all surfactant is now associated around the polymer particles, 

stabilizing the final emulsion product. Termination occurs when a radical, which typically comes 

from the initiator in the aqueous phase, diffuses into the polymer particle and ends the propagation 

reaction. This is one of the main reasons that the MW can grow to such great values with emulsion 

polymerization. It is also beneficial in polymerizing monomers which tend to be much less reactive 

or terminate too quickly in solution polymerization.8 

The emulsion polymerization process results in polymers with relatively high MW, low 

viscosity, high solids, and advantageous processing considerations. Their 0.1-3.0 micron (typically) 

diameter and ease of handling makes them nearly immediately ready for substrate application, or 

formulation into paints, caulks, adhesives, etc. Unfortunately, the surfactant will always be a part of 

the latex resin, which can have detrimental effects such as a reduction in adhesion, durability, and 

an increase in water sensitivity. Traditionally the surfactant will always be found on the outside of 

the polymer particle, however if a polymerizable surfactant is used, it will be able to participate in 

the FRP process and become part of the polymer backbone.11 The stability of the polymer emulsion 
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relies heavily on the surfactant. With poor stability, the polymer particles will approach each other 

and become held together due to the strong van der Waals forces. This is known as flocculation, 

which raises the viscosity of the resin, changes the flow to shear thinning and reduces the 

effectiveness of the resin to be used in coatings. Some systems can be synthesized with surfactant-

free systems, however this is atypical and not traditionally used in industrial applications.1,12,13,14  

The surfactant stabilizes the particles using two main mechanisms: charge repulsion and 

outer layer repulsion (comprised of steric, osmotic, and entropic repulsion). Anionic surfactants will 

be adsorbed along the surface of the particle and orient their anionic salt group outwards toward 

the aqueous phase. This essentially covers the particle in anions that are then associated with a 

cation. The layer of cations is known as the Stern layer and behaves as if it were part of the particle 

itself. The Stern layer then induces the formation of a second layer of anions surrounding it. This 

double layer of anionic charges causes a repulsive force between any two particles than come near 

each other. As one might imagine, the presence of salts, especially multivalent ions, can heavily 

impact the effectiveness of this electrostatic double layer by screening or dampening electronic 

interactions, which is why water chemistry is more important when anionic surfactants are utilized 

in the emulsion process.15,16 

The hydrophilic nature of the particle surface also results in the adsorption of water, which 

causes the surface to swell. The thicker this swollen layer of water and surfactant is, the more steric 

repulsion there will be between two particles, reducing the chance of flocculation.  

Additionally, when the water swells these hydrophilic domains of the particles, there exists 

a large area for the molecules to adopt varying conformations, as water molecules can adsorb and 

desorb freely. As another particle begins encroaching on this large area, the molecules are limited 

in the number of conformations they can readily assume. This reduction in entropy results in a 

resistance to flocculation and a repulsive force known as entropic repulsion.  

Similarly, as the water is expelled from the space between particles, many argue that there 

is an osmotic driving force that pushes water back into the space between particles. This helps 

return the system to the equilibrium concentration in the outer layer, and hence is why the 
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phenomenon is called osmotic repulsion. The exact contribution of these three phenomena to the 

stabilization of the particles is a topic of debate, however, contribution to varying extents of all three 

is usually accepted.1 

 

2.4 Thermal Properties of Polymers 

Glass Transition Temperature 

The molar ratio of monomers used in a polymer determine one of the most important 

properties of the final polymer: the glass transition temperature or Tg. When the temperature of a 

polymer is raised above its Tg, the polymer transitions from a hard and glassy state to a soft and 

rubbery state. This is a result of long-range motion of the polymer backbone becoming enabled, 

meaning that in addition to small vibrations, portions of the polymer chain can move around or slip 

past one another. The viscosity of thermoplastic polymers falls sub-exponentially as the 

temperature is further increased above this temperature.17 

 When an amorphous (non-crystalline) polymer increases in temperature, there is a steady 

increase in specific volume, however at no point is there an abrupt (non-differentiable) change to 

the volume of the sample. In crystalline polymers there would be a sharp change in volume which 

would be associated with the samples melting temperature. Instead, there is a temperature at which 

the rate of increase of specific volume will change. Above this temperature, the rate of increase of 

thermal expansion is greater than it would be below that temperature. Many refer to this phase 

change as a pseudo second order phase change because the derivative of the volume change as 

a function of temperature is discontinuous at the Tg value. This phenomenon is unique to 

amorphous polymers, as crystalline polymers exhibit the first order phase change: melting at 

temperature Tm. Semi crystalline polymers will exhibit both a Tg as well as a Tm value. Generally 

speaking, polymers that exhibit melting points are known as thermoplastic polymers, and polymers 

that do not melt are known as thermoset polymers.1 
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Fox Equation 

 Being able to estimate the value of a copolymer Tg is of great importance in polymer 

development. It is most common to use the Fox equation to derive these theoretical values. Here, 

w1, w2, w3, etc. are the weight fractions of the monomers present in the copolymer product. 

Similarly, Tg1, Tg2, Tg3, etc. are the Tg values of their high MW homopolymers.1 

1

𝑇𝑔(𝑐𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟)

=
𝑤1
𝑇𝑔1

+
𝑤2
𝑇𝑔2

+
𝑤3
𝑇𝑔3

+⋯ 

 A value derived for a copolymer Tg is a theoretical estimation and will vary based on many 

other factors of the polymerization. It is important to check the actual Tg value following the polymer 

synthesis, in order to be sure of the Tg value for the sample.  

 

2.5 Latex Film Formation and Coalescence 

Film Formation Process 

Film formation of latex-based coatings is a much more complicated process than it seems, 

in fact when paint dries (as exciting as the process may sound), there are many different changes 

taking place in the coating itself that facilitate the formation of a robust and continuous film. This is 

a result of the interaction between insoluble polymer particles and the water phase of the system.  

Film formation takes place in three discrete steps: evaporation, deformation, and finally 

inter-diffusion or coalescence. Beginning immediately after the coating is applied to the substrate, 

the water component (or any volatile compound present in the wet coating) begins to evaporate. 

As the water leaves, the relative solids content in the coating begins to rise, and the polymer 

particles start to become packed together. As this process continues and more of the water leaves 

the system, the particles have nowhere to go and begin to deform as they come into contact with 

each other. This deformation of particles is the second stage in the film formation process and is 

driven by surface tension and capillary forces. Finally, when nearly all the water is gone and the 

particles are neatly packed together, the individual polymer chains begin to diffuse out of one 

particle and into adjacent ones. Additionally, the ionic repulsion is lost as the salt content becomes 
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more concentrated, so the ionic double layer stability fails at some point during this process. This 

interdiffusion of polymer chains is the final step in film formation and arguably the most important. 

If there is poor or no chain diffusion between particles, there is no way for a continuous film to form 

on the substrate and all coating properties will be either compromised or absent. This chain 

diffusion is based heavily on the Tg of the polymer but is also influenced by other factors as well, 

such as the presence of any plasticizer molecules and crosslink density.3,17,18 

A drawback to this film formation by particle coalescence is that very high gloss values are 

typically difficult to achieve, especially when compared to solvent-borne polymers. This is due to 

two things: first, an accumulation of surfactant on the surface of the film post-coalescence, and 

second, a non-uniform surface from the remains of polymer particles left behind after non-complete 

particle flattening. For high gloss values to be achieved, specular reflection is required. Specular 

reflection occurs when light reflects off of a surface at an angle to the surface normal that is equal 

to the angle of incidence. The surface roughness resulting from incomplete particle deformation of 

emulsion-based coatings limits their ability to reach the same level of specular reflection as 

solution-based coatings.17 

 

Minimum Film Formation Temperature 

 Temperature is a tremendously important driving factor for many natural phenomena. In 

the case of film formation, it is arguably the most important variable that controls the effectiveness 

of a coatings ability to form a continuous film. So important is temperature that each waterborne 

coating has a corresponding physical property known as the minimum film formation temperature 

or MFFT. The MFFT is the temperature below which the polymer chains in each individual polymer 

particle cannot diffuse enough to form a continuous film, due to a lack of thermal and kinetic energy 

within the chains of the particle. The MFFT is based heavily on the Tg of the polymer, but not entirely 

on this property. Other factors such as polymer type, surfactant, and the presence of any other 

compounds in the coating can have an influence on the MFFT. As the temperature of the substrate 

and environment that the coating is drying in is increased above the MFFT, formation and complete 
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coalescence of the film will be achieved. However, at temperatures below the MFFT of the coating, 

film formation will not be achieved and after drying, the coating will most likely flake off and provide 

no protection or desired properties due to poor particle interdiffusion.17,1 

 

Coalescent Utilization 

 The film formation paradox is one of the main challenges that chemists and formulators 

face when developing coatings using latex resins. On one hand, the Tg must be low enough to 

achieve good coalescence at room temperature, but on the other hand, these low Tg values result 

in soft films that are often tacky, susceptible to scratches, and suffer additional performance 

requirements. So, the question becomes how does one achieve a film that is hard enough to 

withstand abuse, but will also form a continuous film at room temperature?  

 One of the most effective ways to satisfy both of these requirements is to incorporate a 

plasticizer or coalescing aid to allow the polymer chains to more easily move past one another and 

artificially lower the Tg of the polymer. Typically, these coalescing solvents are volatile so after they 

facilitate coalesce, they evaporate out of the coating leaving behind a hard, durable finished product 

with a Tg that is higher than room temperature. One of the most widely used coalescent solvents in 

both industry as well as literature is 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, or TPM, also 

known as TexanolTM. The pronounced effect of this coalescing solvent on diffusivity of the film has 

been shown to increase diffusivity by nearly 4 orders of magnitude when 12 weight percent 

TexanolTM is added to coatings with MFFT values moderately above room temperature. Three 

weight percent additions increase the diffusivity factor by one order of magnitude.17  

 There are three factors one must take into consideration that are vital to the effectiveness 

of the coalescent. The rate at which the solvent evaporates from the coating is extremely important. 

If the coalescent evaporates faster than water, then it will have little to no effect on the film 

formation. If the solvent takes a long time to leave the coating, then the film will be softened for the 

duration of the evaporation. Even a small amount of coalescent leftover can soften a film a 

noticeable amount. And if the coalescent is non-volatile (which is important if coating VOCs must 
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remain low), it must still allow the coating to harden enough for it to perform as intended. The glass 

transition temperature of the coalescing aid is also important; the lower the Tg the more effective 

the coalescent will be. Many accept the estimation of coalescent Tg to be 2/3 that of the melting 

temperature, though this is by no means universally true. And finally, the solubility of the coalescent 

is also very important. If the solvent is mainly soluble in water (insoluble in the polymer) then it will 

take much longer for it to diffuse into the particles to effectively encourage coalescence. On the 

other hand, if the solvent is very soluble in the polymer, then it will readily diffuse into the particle 

and aid in coalescence, but may remain in the polymer as a plasticizer.17,1 

 

Water Based Coating Formulation Basics 

 Formulations for water-based coatings can vary greatly, but many of them have very similar 

components in order to achieve the desired final film properties. These coatings will commonly 

include pigment, biocide, rheology modifiers, surfactants, dispersants, defoamers, other small 

additives, and binders. As discussed previously, MFFT and coalescence is a common hurdle for 

latex based coatings and requiring a coalescent is very common for this reason. Surfactant and 

dispersant aid in the stabilization of the coating and incorporation of pigments and other additives. 

Rheology modifiers grant the wet coating desirable flow and leveling properties, pigments provide 

aesthetic and body to the film, biocides reduce the tendency for biological degradation of the 

coating both before and after application, and defoamers help with processing of the product. The 

binder is the polymer which provides many of the final properties of the film, and is the main focus 

of this report.19,1 

 

PVC and CPVC 

 Pigmentation is one of the most important formulation parameters that coatings formulators 

account for when designing targeted systems. Pigments have a profound effect on the final 

properties of both the paint/coating and the performance of the finished film. From viscosity, to 

hiding, to stain resistance, pigments can affect many performance characteristics.  
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 Traditionally, weight relationships are what formulators use when designing paints and 

coatings, but volume relationships with respect to pigments are of more value and fundamental 

importance. One of the most popular and important ways of quantifying a pigment loading in any 

system is using the calculated pigment volume concentration, or PVC. The PVC is merely the 

volume percent of pigment in a dry film. It is important to remember that the PVC should be 

expressed as a percent, not a volume fraction, and that the PVC of a wet coating is of no interest.  

 The development of this understanding is credited to Asbeck and Van Loo20, who go on to 

observe a stark change in film properties above certain PVC values in different coating systems. 

They called this PVC level the critical pigment volume concentration, or CPVC. The CPVC is 

defined as the PVC where there is just sufficient binder to provide a completely adsorbed layer 

around each and every pigment particle. At this PVC, any additional pigment added to the system 

would not have enough binder to surround the particles, and there would be void spaces in the film. 

These void spaces will be composed of air, increasing the porosity and affecting other film 

properties. The CPVC depends on many factors including binder type, pigment type, solids 

percentage, dispersant usage, and others.20,18 

 The hiding effect of coatings relies on two main factors: the dry film thickness (DFT) and 

the refractive index (RI) differences between polymer and pigment. It is easy to understand that the 

larger the DFT, the more difficult it is for light rays to penetrate the film, reach the substrate, and 

reflect back out through the film. Refractive index is also very important, and is the main reason 

hiding of a coating increases sharply above CPVC. The RI of rutile TiO2 is 2.7, the RI of polymer is 

typically around 1.5, and the RI of air is 1.0. As we pass through the CPVC, air-pigment and air-

polymer interfaces are created in addition to the already existing polymer-pigment interfaces. These 

interfaces between regions of differing RI values scatter light with great efficiency, disallowing light 

to be reflected off of the substrate through the coating. Other authors discuss CPVC in more detail, 

and is not the focus of this report.1,21,22  
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2.6 Emulsion Polymer Crosslinking 

 There are many methods and available chemistries that can be used to crosslink polymer 

systems. The decision to use one over the many other options is the prerogative of the chemist or 

formulator doing the work. These decisions can be driven by innumerable reasons, some of which 

may include toxicity, efficacy, performance requirements, cost, regulatory concerns, and most 

importantly, compatibility with the given polymer system. The two crosslinking methods that are 

used in this study are based on techniques that are both industrially and commercially relevant. 

There are other methods that could be explored; however, the following are of most immediate 

interest with respect to the scope of the project.  

 

Interparticle Crosslinking (Keto-Hydrazide Crosslinking) 

The development of many mechanical properties for waterborne coatings can usually be 

enhanced by creating covalent bonds between the polymer chains. We call these bonds between 

chains crosslinks, and they provide both benefits and considerations when it comes to the overall 

performance of the film. For example, the film formation process is known to rely heavily on the 

interdiffusion of polymer chains into adjacent polymer particles. This phenomenon is known as 

coalescence. If the polymer chains are covalently bound together, it profoundly inhibits the chains’ 

ability to diffuse and coalesce into a uniform film. Ideally, the crosslinking reaction would take place 

soon after chain diffusion and coalescence occur, allowing the formation of a film, followed by the 

hardening and final development of properties.22 

 Diacetone acrylamide (DAA) is a monomer commonly used in acrylic emulsion polymers 

that contains a pendant carbonyl group that can undergo a crosslinking reaction with strong 

difunctional nucleophiles such as, adipic dihydrazide (ADH). The reaction between the ketone and 

hydrazide groups results in either an imine, enamine, or more likely a mixture of both. The precise 

mechanism of this reaction has not been reported but is non-essential in understanding the impact 

that the reaction has on the coating properties.  
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Figure 4. Diacetone acrylamide (left) & adipic acid dihydrazide (right) 

 

Polymers containing DAA for the purpose of crosslinking with ADH, are first neutralized to 

slightly basic conditions with ammonium hydroxide before adding ADH and mixing until dissolved. 

ADH is a water-soluble compound and thus should remain in the aqueous phase of the emulsion. 

Upon drying of the film, water evaporates along with ammonium hydroxide resulting in film 

formation/coalescence and a reduction in pH. As the coating turns acidic, the rate of the 

crosslinking reaction between the ketone and hydrazide moieties increases. Since the ADH is water 

soluble and mostly found outside the particle, the vast majority of crosslinking occurs on the outside 

of the particles and between adjacent particles that have outwards facing DAA rich regions. This is 

referred to as interparticle crosslinking. Some ADH will have penetrate into the polymer particle 

and result in intraparticle crosslinking as well, but not on the same scale as interparticle 

crosslinking. The crosslinking reaction, shown below in Figure 5, is acid-catalyzed and produces 

water as a reaction by-product. The water continues to evaporate along with ammonium hydroxide 

as the film finishes curing, and the crosslinking reactions reach completion.22,23 
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Figure 5. During film formation ADH reacts with DAA that has polymerized into the backbone, resulting in a 
crosslink between two polymer chains. This reaction is acid catalyzed and thus occurs upon evaporation of 
volatile base (usually ammonia) during film drying. As the reaction proceeds, water is produced as a byproduct 

and evaporates, further driving the equilibrium to the right.  

 

Intraparticle Crosslinking (Difunctional Monomer Crosslinking) 

 FRP relies on having an acrylic unsaturation, usually an alkene that can undergo radical 

attack and subsequent propagation reactions with similar monomer molecules. These monomers 

are usually monofunctional, meaning that they have only one moiety on the molecule that can 

participate in this reaction. However, multi-functional monomers with two or more of these alkene 

unsaturations exist and are used to create polymers with branches, crosslinks, and higher 

molecular weights. Typically used at very small amounts (1% POM), the addition of these 

monomers can result in huge performance swings of the polymer. However, any benefits offered 

to the film must be balanced with the reduction in chain mobility and poorer film forming capabilities 

of the resin. Since these crosslinks are built into the backbone of the polymer throughout the 

synthesis process, the entire particle will achieve full crosslink density before being applied to the 

substrate and allowed to coalesce. This also results in a lack of crosslinking bonds between 

neighboring particles and can lead to poorer final film qualities. An increase in stiffness and strength 

are commonly seen in these systems, but without chain entanglements will lack cohesion.8 
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2.7 Water Whitening and Blushing 

 Coating plasticization is caused by small molecules such as water intercalating themselves 

between the polymer chains in a coating. These small molecules facilitate the movement of polymer 

chains around one another, aiding in coalescence before and during film formation, but detract from 

beneficial mechanical properties post film formation. Water often plasticizes films, especially after 

having been submerged for extended periods of time. Water will tend to associate with polymer 

films in one of three ways: either as freezing free water, freezing bound water, or as non-freezing 

bound water, the latter being heavily associated with water that contributes to plasticization of a 

polymer sample.24 These three water-polymer interactions can be studied using DSC, and 

developing an understanding of the relationship between the polymers Tg, waters Tg, and the 

plasticized or wet Tg of the polymer with non-freezing bound water. The plasticization of polymer 

films is a direct result of this non-freezing bound water associating with polar moieties along the 

backbone of the polymer chain. This artificially lowers the Tg of the polymer by allowing the chains 

to move past each other with more ease. 25,26,27,28 

 Past this plasticization point, additional water infiltration results in the growth of 

heterogenous domains of water and soluble residues. These domains will locate themselves 

around either polar moieties of the polymer chains, or more likely, in areas of the film that contain 

pockets of increased surfactant concentration. During film formation the adsorbed surfactant 

molecules will tend to migrate toward substrate-film interfaces, film-air interfaces, or localized 

regions within the film.29 Throughout the duration of the films contact with water, it will also tend to 

leach out surfactant molecules that are able to migrate out of the film.30 This phenomenon is 

significantly reduced when polymerizable surfactants are used, as they become part of the polymer 

backbone after having participated in the FRP process.11 Once the water domains grow large 

enough, they begin to scatter light due to the refractive index difference between the polymer binder 

and the water in the film. This results in an effect known as water whitening or blushing. Somewhere 

between hydroplasticization and water whitening of the film, freezing bound water can be detected 

by using DSC.25 Water is driven into the film by a number of forces, namely osmotic pressure and 

surface tension.29,31 
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2.8 Current Mechanistic Understanding of Water Uptake 

 The water uptake mechanism proposed is merely an extension of the same phenomenon 

that drives the blushing effect. This is believed to occur in three stages: first the film is 

hydroplasticized quickly when in contact with water. Hydroplasticization results in a softening of the 

film as water molecules associate along polar moieties in the polymer chain, as well as within 

surfactant rich domains within the film.32 This water is known as non-freezing bound water, as it is 

non-detectable as a water glass transition peak in a DSC thermogram, however a reduction in 

polymer Tg can be observed (this is known as the polymers wet Tg). Following the association of 

water molecules in the film, domains form where heterogenous pockets of water are created. These 

areas are large enough to scatter light due to the RI difference between binder and water, resulting 

in an opaque film. At this point water will be detectable using DSC and will appear as freezable 

water on the thermogram. The polymer will still appear to have been hydroplasticized as its Tg value 

will be artificially lower than if it were dry. Finally, these domains will continue to grow, being driven 

by osmotic pressure and capillary forces, the film may exhibit intense blushing and even the 

formation of micro blisters and large blisters. Eventually the film will reach equilibrium with its 

surrounding aqueous environment and cease to uptake any more water. This water uptake process 

is shown below in Figure 6. As expected, the more water the film absorbs, the worse performance 

is expected to be.33 
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Figure 6. The proposed three step process by which water uptake occurs. The film which is clear and applied 
to a black substrate is initially submersed in DI water. Upon initial contact with water, water molecules 
penetrate into the film where there are more hydrophilic functional groups or areas of the polymer. These may 
include areas where there is a high concentration of surfactant, acid monomer or other polar functional groups. 
Following this hydration, certain areas continue to absorb more water up to and past the point of saturation. 
Finally, as these domains grow large enough, they begin to scatter light and the coating slowly turns opaque 
due to the heterogenous domains of water within the clear coating. Forces acting inside the water “pocket” 
expand the film, swelling it beyond its starting size and shape, this force is opposed by the polymer matrix 
resisting expansion.  

 

There have been studies relating to polymer design and its effect on water uptake, but 

these studies tend to be very targeted and less applicable to the products and technology used at 

EPS. Incorporation of increased acrylic acid onto the outside of the polymer particle has been 

shown to increase film porosity, increasing water uptake and water vapor transmission. This is 

attributed to the increase in colloidal surface charge on the particle, as well as the film structure 

itself.34 Other papers attribute an increase in blushing resistance to keto-hydrazide crosslinking in 

fluorinated polymers. This system contains perfluoroethyl groups in the second-stage of the 

polymer, and exhibited increased water-repellency, but poorer resistance to blushing and uptake.35 

The majority of studies into the effect of surfactant on the water uptake, focus their effort on 

developing surfactant free methods of polymer synthesis. These methods include clay stabilized 

systems14, polymers supported by RAFT copolymerization36, fluorinated surfactant37, reactive 
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surfactant29,10,11,15, and other surface active monomers12. Results show increasing evidence to 

support a surfactant free system for use in a water-resistant film. Tg has been correlated to blushing 

where researchers found higher Tg values led to increased resistance to blushing. These results 

fail to take into account the effect of actual polymer composition as the monomer ratios are altered. 

Instead they attribute the blushing to the tendency for surfactant to migrate out of the film due to 

decreased adsorption strength to softer polymer particles.28 
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3. MATERIALS AND METHODS 

3.1 Materials 

All materials and precursors are provided by Engineered Polymer Solutions and The 

Sherwin-Williams Company. All materials are used as provided from the manufacturer without any 

further processing unless noted in the methods or results sections. These materials are sourced 

from many suppliers, all of which are not to be listed in this paper. The films and polymer test 

specimens are all prepared using a semi-continuous emulsion polymerization process. Monomers 

used include styrene, methacrylic acid, acrylic acid, n-butyl acrylate, methyl methacrylate, butyl 

methacrylate, ethyl hexyl acrylate, diacetone acrylamide, 1,6-hexanediol diacrylate, 

acetoacetoxyethyl methacrylate, phosphate adhesion monomers (PAM monomers A and B), and 

other un-disclosed monomers. Crosslinking is facilitated using adipic acid dihydrazide. Initiators 

used include erythorbic acid, t-butyl hydroperoxide, sodium persulfate, and ammonium persulfate. 

A proprietary iron catalyst solution is also used during polymerization. Surfactants include anionic 

phosphate ester, non-ionic alcohol ethoxylate, and a reactive anionic co-polymerizable surfactant. 

Dodecyl mercaptan is the chain transfer agent used. Thickener used is Acrysol RM-12W, a non-

ionic urethane thickener for development of low-shear viscosity. Acticide MV, Acticide MBS, and 

Acticide M 20 S are used as biocide additives. A 30.0 wt.% seed latex of undisclosed composition 

and ammonium hydroxide are also used.  

 

3.2 Methods 

Emulsion Polymerization 

A semi-continuous emulsion polymerization is used to produce polymer resins at 50% 

solids for nearly all samples. The reactor is initially charged with water and a small amount (2.5% 

on monomer solids or POM) of seed latex. This is then placed in a water bath and stirred until 

brought up to temperature as shown in Figure 7. All redox polymerizations are run at 60-65 °C 

using erythorbic acid and TBHP as the redox initiator package. Thermally initiated emulsions are 
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run between 80-85 °C using ammonium persulfate as the charge and co-feed initiator, and 

erythorbic acid and TBHP are used as the chase initiators.  

 

Figure 7. Reactor charged with latex seed and water (left). Reactor hot water bath setup (right). Redox 
initiators are fed from the graduated cylinders located in the rear of the hood in the left-hand picture.  

 

The monomer pre-emulsion shown in Figure 8 is then prepared by adding water, 

surfactant, ammonia, and specialty monomers to a pot and beginning agitation. To this, the bulk 

monomer is added slowly to create a stable oil-in-water emulsion. The more hydrophobic 

monomers are added first to begin the process and create the most stable emulsion. After a few 

minutes of stirring, the pH of the mixture is taken and recorded. If the pH is not within the target 

range, adjustments are made by adding additional ammonium hydroxide. The initiator solutions are 

then prepared by adding a desired amount of reducing and oxidizing agents to beakers and mixing 

with water. The actives of each initiator feed used is kept at about 0.3% for redox batches and 0.1% 

for thermal batches. Initial redox charge is 0.1% POM and the charge for thermal batches is 0.35%.  
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Figure 8. Monomer pre-emulsion building process (left). Monomer pre-emulsion complete and ready for 
reactor feed (right). 

 

After all solutions are prepared, a small charge of initiator is added to the reactor and the 

monomer and initiator feeds are started. Temperature and feed rates are recorded and adjusted 

throughout the duration of the feed process. The initiator feed continues for 1 hour after the 

monomer feed finishes (3-hour monomer feed) to facilitate reaction completion and nearly full 

conversion of monomer. If the polymer is intended to be two-stage, the secondary monomer feed 

will begin immediately after the primary feed ends, and the initiator feed will have been set to ensure 

a 1 hour overrun of the second monomer feed. At the conclusion of each monomer feed, a 30-gram 

rinse of DI water will be added to the pot and fed through the pump to ensure any remaining pre-

emulsion is added.  
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Figure 9. Monomer pre-emulsion, redox co-feed, and redox charge ready for synthesis. Initiator charge (front 
beakers) is added to the reactor, at which point monomer and initiator co-feeds are initiated. This particular 
setup is for a two-stage polymer, where the second larger emulsion will be fed following the completion of the 
first.  

 

After all initiator is added at the end of the fourth hour, the water bath is cooled, and the 

final ammonia/biocide charge is added once the reactor temperature falls below 35 °C. If the 

formulation calls for the addition of ADH, it is added 10 minutes after the ammonia. The ADH is 

mixed for 15 minutes before filtering the product through a 100-micron filter bag into a 0.5-1.0-

gallon jug for storage. 
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Figure 10. A finished emulsion reaction with polymer still in the reactor. At this point the product is filtered 
through a 100-micron filter into the jugs (left). A series of completed polymer resins (0.5 gallons) awaiting 
testing (right).  

 

Film Preparation and Water Uptake Gravimetric Analysis 

 Polymer product is mixed with Acticide MV at 1% (biocide), BYK 024 at 0.5% (defoamer), 

and Acrysol RM-12W at 0.5% (thickener) on polymer solids by mass. This is then mixed for 1 hour 

to ensure uniform and complete incorporation of the thickener. The coating is then drawn down at 

30 wet mils on polypropylene sheets and allowed to dry at room temperature (21 °C) and 50% RH 

for one week, resulting in the films shown in Figure 11. Following the one week dry, the films are 

peeled off the substrate and cut into 1” x 2” sample coupons (in triplicate), weighed on a Sartorius 

Entris 64-1S analytical balance, and put into a jar with 500 mL of DI water at 21 °C. The films are 

periodically pulled out of the water, patted dry to remove any excess water, and weighed before 

being submerged again. They are measured every 3-5 days for 10-14 days in order to develop a 

mass change curve. Figure 12 shows a set of three films during this test. After the final 

measurement the films are discarded, and a new round of data collection is started with the next 

set of polymers. This is a slightly modified and simplified version of the method outlined in ASTM 

D47138, which is an important test method for any roof coatings that must pass ASTM D608339. 

Error between triplicate samples is accepted if below 5%.  
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Figure 11. Resins are formulated and then drawn down on release liner or polypropylene sheets. Following 
the drying of the film, 1” x 2” samples are cut out and tested.  

 

 

Figure 12. After test samples are prepared, they are placed in a jar of DI water and left at room temperature 
for the duration of the testing time. Periodically the samples are pulled out of the water and patted dry before 
being weighed and placed back into the jar (left). Samples may absorb varying amounts of water, resulting in 
variable swelling. 

 

Film Preparation and Permeability Testing 

Polymer product is mixed with Acticide MV at 1%, BYK 024 at 0.5%, and Acrysol RM-12W 

at 0.5% on polymer solids by mass. This is then mixed for 1 hour to ensure uniform and complete 
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incorporation of the thickener. The coating is then drawn down in triplicate on polypropylene sheets 

and allowed to dry at room temperature (21 °C) and 50% RH for one week. Following the one week 

dry, the films are peeled off the substrate and cut into circles the diameter of the BYK permeability 

cups. After filling the cups with 10 mL of DI water, the film is placed on the cup between two gaskets 

and sealed tightly with the threaded cover ring. After weighing the cup, it is placed in a temperature 

humidity-controlled chamber at 20 °C and 50% RH for 24 hours before being reweighed using a 

Sartorius Entris 64-1S analytical balance. From the DFT and 24-hour mass difference the specific 

moisture vapor permeability can be determined.  

 

Figure 13. Films are cut out and placed in the BYK permeability cups. Note that these cups have slightly 
different designs but perform identically.   

 

Electrochemical Impedance Spectroscopy 

 The polymer sample is drawn down in triplicates on 4” x 8” aluminum Q-Panels at a wet 

film thickness of 4 mil. The coatings are 50% solids resulting in a ~2 mil DFT. These samples then 

dry for 7 days at room temperature (21 °C) and 50% RH for one week. All measurements were 

taken on a Gamry Instruments, Reference 6002 Potentiostat / Galvanostat ZRA (Zero Resistance 

Ammeter).  
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Counter 

Electrode

Reference 

Electrode

Working 

ElectrodeFigure 15. Diagram of sample with three electrode setup for EIS. 

 

Figure 14. EIS potentiostat. 

  

The samples are then prepared by placing a small column of 0.5% NaCl solution on the 

coating and connected to working, reference, and counter electrodes. Here a three-electrode setup 

is used for the measurement: the metal substrate to which the coating is applied acts as a working 

electrode, a platinum mesh in the solution is a counter electrode, and a silver/silver chloride 

electrode is used as the reference electrode. The frequency range for the measurements was 

100,000-0.01 HZ, collecting 10 points/decade using 10 mV RMS of AC perturbation potential. 
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A small sinusoidal potential of 5-10 mV is applied to the open circuit potential at varying 

frequencies. Phase lag and the current response for varying applied frequencies is measured by 

the instrument. The data is then modeled using Randles cell circuit to obtain values of coating 

resistance and coating capacitance.  

 

 

 

 

 

 

 

 

 

  

The two parameters of interest are coating resistance (also known as pore resistance) and 

the coating capacitance. Coating resistance is the resistance of the coating to uptake incoming 

water and ions. The magnitude of this resistance is indicative of the coatings state of degradation 

at any given time. The three timepoints used for data collection are 30 minutes, 24 hours, and 1 

week after exposure. Coating capacitance relates to the total amount of water currently in the 

coating. Due to the solution’s increased conductivity than the coating binder, as the water uptake 

increases, the capacitance will increase. The following formula is used to help calculate a value for 

coating capacitance or Cc. 

Cc= ϵϵ0A/d 

 Here, ϵ is the dielectric constant of the coating, and ϵ0 is the permittivity of free vacuum. A 

is the exposed area of the coating to the salt solution and d is the thickness of the coating. Any 

Rs = solution resistance 

Resistance of Electrolyte (saltwater) 

Cc = coating capacitance 

Capacitance of the Intact Coating 

Rc = coating resistance 

Resistance of the Intact Coating 

Cdl = double layer capacitance 

Capacitance at Exposed/Uncoated Metal 

Rct = charge transfer resistance 

Resistance to Charge Transfer 

Figure 16. Three electrode setup for EIS measurements and depiction of Randles cell circuit. 
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step changes or rapid increases in the coating capacitance value indicates that delamination of the 

coating may have occurred.  

 

Contact Angle Measurements 

 The polymer sample is drawn down in triplicates on 4” x 8” aluminum Q-Panels at a wet 

film thickness of 4 mil. The coatings are 50% solids resulting in a ~2 mil DFT. These samples then 

dry for 7 days at room temperature (21 °C) and 50% RH for one week. Following sample 

preparation, the static water contact angle of the coating is measured using a Kruss DSA-30 

instrument.  

 

Differential Scanning Calorimetry 

 One gram of the polymer is put into an aluminum weigh pan and allowed to dry for 24 hours 

at room temperature (21 °C) and 50% RH. Approximately ten milligrams of the polymer sample is 

then cut off and placed into a tared DSC pan. This value is recorded into the TA Instruments Trios 

software. The sample is then run using the following procedure on a TA Instruments Discovery 

DSC25 with an RCS90 cooling system in order to obtain the Tg value of the polymer. 

1. Equilibrate to -75 °C 

2. Ramp to 150 °C at 10 °C/min (serves to reset any thermal history of the polymer) 

3. Equilibrate to -75 °C 

4. Ramp to 150 °C at 10 °C/min 

The software is then used to determine the Tg of the sample on the second heating cycle, 

following thermal history reset of the polymer.  
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4. RESULTS AND DISCUSSION 

4.1 Effects of Coating Formulation and Formation 

PVC 

 The same control polymer was used to prepare 7 coatings with the same formulation but 

varying PVC levels. The coatings all used a 1/7 ratio of TiPure R-960 (titanium dioxide pigment) 

and Drikalite (calcium carbonate pigment). The 7 coating samples had PVC levels of 0, 10, 20, 30, 

40, 50, and 60 PVC, with all formulation factors remaining constant. A master grind paste was 

made and added to 7 letdowns in different amounts before being drawn down at 40 wet mils. It was 

seen that water uptake decreased uniformly as the PVC was increased, and these results are 

plotted in Figure 17.  

 

Figure 17. PVC effect on the water uptake of a roof coating. Samples are cut out into 1” x 2” coupons, weighed, 
and submerged in 500mL DI water at room temperature (21 °C) for the duration of the experiment. At each 
data point the films are removed from the jar, patted dry to remove excess surface moisture, weighed, and 
returned to the jar.  

  

The decrease in water uptake here is attributed to the decreased volume fraction of 

polymer in each sample with higher pigment loading levels. The pigment particle is not able to 

expand and absorb water in the same way that the polymer matrix in the coating can. Water 

molecules instead adsorb onto the surface of the pigment particle, where polymer adsorption is 
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less favorable. Since the polymer matrix is the only domain in the film that can expand and uptake 

water, increased PVCs displace polymer that could otherwise uptake water. This effect is seen in 

all samples that were assessed and remains constant even above the CPVC of the coating which 

is estimated to be below 60 PVC.  

 

Coalescent Level 

 In studying the effect of coalescent, the same roof coating formula as above was used. 

Here, a single polymer formulation was used to prepare 8 samples using two different coalescent 

solvents at 4 different levels, plotted in Figures 18 and 19. EPS 9147 which is a low VOC coalescent 

designed for acrylic emulsions was loaded at 0%, 2.5%, 5.0%, and 10.0% based on polymer solids. 

These formulations were then used in a water uptake assessment as described in the methods. 

The same procedure was employed to prepare and study the effect of a volatile coalescing aid, 

dipropylene Glycol n-Butyl Ether (DPnB) at the same loading levels.  

 

Figure 18. The effect of a low VOC coalescing aid on the water uptake of a roof coating. 
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Figure 19. The effect of a VOC coalescing aid on the water uptake of a roof coating. 

  

The same trend was observed using both types of coalescing solvents. The addition of 

coalescing solvents to a coating resulted in slightly elevated water uptake values. This may be due 

to the plasticization that the coalescent causes in the polymer, allowing water to migrate into the 

film with more ease. The presence of the coalescent should also increase the osmotic pressure 

within the coating as well. This would force water into the coating. The increased rate of water 

uptake at the outset of the experiment may be attributed to the improved film formation of the film. 

The coalescent should enhance film formation and particle coalescence, lowering the rate of water 

ingress, however this does not result in lower overall water uptake values.  

 

Ratio of ADH to DAA 

 The reaction between ADH and DAA during film formation and coalescence of particles 

results in crosslinks between polymer chains both within the same particles, and between adjacent 

particles. A polymer with 4% DAA by polymer mass was loaded with varying levels of ADH. These 

levels correspond to stoichiometric ratios encompassing an excess of ADH or DAA. A more detailed 

description of their composition is outlined in Table 1, with results shown in Figure 20. 
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Table 1. Sample composition including molar and stoichiometric ratios of DAA and ADH. Note that 2.0% ADH 
results in a 1:1 stoichiometric ratio of ADH to DAA based on molecular weight and functionality.  

% ADH % DAA ketone/hydrazide mol DAA/ADH 

0.0% 4.0% - - 

0.5% 4.0% 4.1 8.2 

1.0% 4.0% 2.1 4.1 

1.5% 4.0% 1.4 2.7 

2.0% 4.0% 1.0 2.1 

2.5% 4.0% 0.8 1.6 

3.0% 4.0% 0.7 1.4 

4.0% 4.0% 0.5 1.0 
 

 

Figure 20. Water uptake of samples with varying molar ratios of ADH and DAA. 

  

A stoichiometric equivalent of ADH and DAA in these formulations corresponds to 2.0% 

ADH. The data shows that a slight excess of ADH provides the polymer with optimal water uptake 

properties. During the crosslinking reaction, the bifunctional ADH molecules must react with two 

different DAA moieties of the polymer. When the ratio of ADH/DAA is lower than this ideal 

proportion, there are free DAA functional groups not participating in any crosslinking. This leads to 

a decrease in performance due to the hydrophilic nature of that monomer. When a large excess of 

ADH is used in the coating, there will be free ADH in the coating, which leads to a sharp decrease 
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in coating properties. A slight excess of ADH ensures that crosslinking density is maximized, and 

that the coating system has been optimized.  

 

Film Thickness 

 Film thickness is an easily controlled parameter, and one that has many effects on the final 

coating performance. In preparation for this experiment, the same control coating formulation that 

was used previously was drawn down at 20, 40, and 60 wet mils. These coatings were then 

assessed using the same method outlined above. Dry film thicknesses were half that of the wet 

film thickness, due to the coatings volume solids being 50%. 

 

Figure 21. The effect of coating thickness on the water uptake of a roof coating. 

  

It appears from Figure 21 that the film thickness has little to no impact on the water uptake 

of the coating. The film is porous and susceptible to water penetration, meaning that the film in its 

entirety will become saturated relatively quickly. The samples will swell an amount that is 

proportional to their starting size and will gain mass in this same proportion.  
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Film Curing Conditions 

 The degree of film formation has always been something that coatings chemists believe to 

be important to the final properties of the film. In order to qualitatively study the effect of water 

uptake, films with varying compositions shown in Table 2 were cured both at room temperature and 

at an elevated temperature in an oven for 7 days. These samples were then tested and compared 

against each other.  

Table 2. These polymers are compositionally identical and were processed using the same methods. Unless 
otherwise noted, the polymers were prepared using redox initiation, grown on a seed, and are all acrylic.  

 

 

 

 

 

 

Figure 22. Water uptake values after a one-week soak at 21 °C. Low temperature film formation was done at 
21 °C, slightly above the polymer Tg, and high temperature film formation was done at 50 °C, well above the 

Tg of the polymer.  
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 The results in Figure 22 indicate that film forming the coating at an elevated temperature 

has a positive impact on the water uptake performance. As the temperature is raised the particles 

are able to deform and coalesce more effectively. Some samples showed greater variation between 

high/low temperatures depending on their composition. Table 2 is included to highlight the key 

differences between each sample, which are otherwise identical in composition and processing. 

Interestingly, sample B shows very little improvement. This may be due to the non-ionic surfactant 

having less of a barrier effect on film formation during coalescence than anionic surfactant, even at 

ambient temperatures.  

 

4.2 Effects of Polymer Design  

Tg Effect 

 Tg is an important and easily controlled parameter of a polymer. Reduced Tg values are 

commonly associated with better film formation but at the cost of reduced durability. Here, 5 

polymers were prepared with a range of Tg values. The Tgs were manipulated by changing the ratio 

of styrene and EHA monomer. For polymers with higher Tgs, more styrene was used in the 

polymerization. The difficulty with associating Tg values and performance parameters, is that the 

value as well as the polymer composition changes simultaneously.  

 

Table 3. Polymer samples with Tg values and required coalescent loading. Tg was measured using a TA 
instruments DSC of neat polymer.  

Measured Polymer Tg Coalescent Loading for RTFF 

5.4 °C 0% 

14.8 °C 4% 

24.4 °C 8% 

30.7 °C 12% 

35.1 °C 16% 
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Figure 23. The effect of polymer Tg on the water uptake of a coating. 

  

Figure 23 shows a trend opposite to what was initially hypothesized. As the Tg values 

increase, the water uptake of the polymers is seen to increase as well. One explanation is that this 

result was driven by coalescent loading, rather than the Tg itself. As seen in a previous result, 

coalescent tends to have a negative impact on water uptake. In addition, this result could be driven 

by a change in polymer composition.  

  

Polymer Synthesis DOE #1 

 To efficiently assess the effects of various polymer compositions, a DOE was designed to 

study how molecular weight, glass transition temperature, hydrophobicity of bulk monomer, and 

crosslinking density alter the water uptake of the resulting polymer. The DOE is a half fractional 

factorial with a midpoint and four factors, resulting in an experiment with 9 runs. These polymers 

were synthesized in the following run order and tested at the same time, using identical 

methodology as outlined in the methods. Table 4 outlines the factors, their levels and other physical  
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Table 4. DOE #1 designed to assess the effect of crosslinking, molecular weight, monomer hydrophobicity, 
and Tg on water uptake. Crosslinking is achieved with DAA monomer and ADH, molecular weight is decreased 
by addition of 0.5% DDM chain transfer agent, the hydrophobicity is altered by using either styrene or methyl 
methacrylate as the bulk monomers, and finally the Tg is controlled by changing the ratio of EHA & BA to 
Styrene or MMA.  

Crosslinking % 0% 4% 2% 

Molecular Weight High Low High Low Mid 

Hydrophobicity MMA Sty MMA Sty MMA Sty MMA Sty Blend 

Tg (Fox) (°C) -5 20 20 -5 20 -5 -5 20 7.5 

Page #, Book 266 24 19 17 22 21 23 18 20 16 

Std. Order 1 2 3 4 5 6 7 8 9 

Run Order 9 4 2 7 6 8 3 5 1 

Tg (DSC) (°C) 12 41 35 13 31 15 6 35 22 

MFFT (°C) 17 44 38 16 28 18 17 37 19 

pH 8.4 8.6 8.6 8.8 8.6 8.7 8.6 8.7 8.4 

Particle Size (nm) 120 107 122 109 121 111 113 109 109 

Solids % 50% 50% 49% 51% 48% 51% 50% 50% 50% 

1-week uptake 126% 63% 71% 30% 5% 32% 60% 87% 18% 

 

 Unless noted above, the polymers in the experiment are processed using the same method 

and compositional variables. These are redox initiated at 60 °C and reacted over 3 hours with a 1 

hour clean up. EHA and BA amounts are kept the same (ex. 20% EHA and 20% BA), and the ratio 

of these two monomers to the high Tg monomer (styrene or MMA) adjusted to achieve the target 

Fox Tg. Styrene and MMA were compared to determine the effect of hydrophobicity, as MMA is 

~10 times more water soluble and therefor more hydrophilic than styrene. These monomers also 

result in polymers with similar Tg values, meaning that swapping MMA for styrene (and vice versa) 

will have minimal effect on Tg and eliminate any unwanted variation in composition. Chain transfer 

agent was added at 0.5% to the monomer emulsion to reduce the molecular weight of certain 

samples: high molecular weight refers to samples with no chain transfer.  

The results were then analyzed to identify the main effects and any 2-way interactions. The 

analysis is included in the figures and discussion below.  
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Table 5. DOE data overview. The samples provide a large response range, allowing for easy identification of 
important factors. The min/max/mean indicate a broad range of performance was achieved. The large variation 
should permit good differentiation between sample conditions. 

  % Water Uptake at 1 week 

Mean 51% 

Min 5% 

Max 128% 

Range 123% 

Std Dev 36% 
 

 

Figure 24. Xbar-R chart for one-week water uptake values of DOE polymers. Evaluating the range data (lower 
graph), where the within subgroup is replicate soak test, outliers have already been removed (n=2 or 3) the 
measurement system is in control (no points outside the control limits). The mean within-subgroup range is 
2.5% which is historically the expected replicate variation. The X-bar graph (upper) shows the ability for the 
measurement system to detect the between subgroup variation (polymer treatment). Because there is a large 
range in responses (122%), and a small range in replicate (avg 2.5%) there is a very strong ability to detect 
performance differences in the samples tested. 
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Figure 25. Polymers were synthesized in the run order shown here. There does not appear to be any run 
order dependence. Films were prepared and measured simultaneously and run order dependence could not 

be assessed. 

 

Figure 26. Pareto chart identifying that crosslinking and monomer choice are the main effects of interest. Two-
way interactions between monomer choice/crosslinking and crosslinking/molecular weight are also of interest. 
The plot identifies the other two main effects and two-way interactions as being statistically significant, 
however they are not nearly as influential, and definitive conclusions relating to them could not be confidently 

drawn.  
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Figure 27. The effect of monomer polarity (MMA vs Styrene) is shown in this main effect plot. As the 
samples become more non-polar and heavily styrenated, they tend to uptake less water.   

 

 

Figure 28. The effect of crosslinking is shown in this main effect plot. As the samples are crosslinked, they 
tend to uptake less water than their non-crosslinked counterparts 
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Figure 29. The effect of molecular weight is shown in this main effect plot. DDM is shown to have very little 
impact on the water uptake of these samples.  

 

Figure 30. The effect of Tg is shown in this main effect plot, where samples with higher Tg values tended to 
perform worse.  
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Figure 31. The predicted DDM*XL interaction does not seem to be active in the way predicted, where lower 
MW was predicted to facilitate better crosslinking, and uptake resistance. MW data would need to be collected 
to confirm that this conclusion can be drawn. 

 

 

Figure 32. An interaction between monomer polarity and crosslinking was not predicted, however may be 
justified due to more similar solubilities of MMA and DAA monomer, resulting in more uniform incorporation of 
crosslinkable moieties.  
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 The results show that monomer selection and crosslinking are of utmost importance, and 

definitively have large impacts on the water uptake of resulting polymers. However, MW and Tg are 

not shown in this experiment to have a large influence on the performance. The interactions 

between monomer-crosslinking and MW-crosslinking do appear to have a significant effect on the 

performance, though further analysis and experiments should be performed to develop a more 

confident conclusion. 

 

Surfactant Type and Concentration (Anionic vs. Non-Ionic vs. Reactive Anionic vs. Dialysis) & PAM 

Monomer 

 Surfactant is one of the most important factors in traditional emulsion polymerizations. Here 

the effect of both surfactant type and concentration is assessed in multiple ways. First a series of 

polymers were prepared using 0%, 2%, and 4% anionic surfactant, and a separate sample with 2% 

non-ionic surfactant. Surfactant-free polymers rely on ionic monomer and methacrylic acid 

monomer to help stabilize the emulsion. 

 

 

Figure 33. Effect of surfactant amount and type. Non-ionic surfactants resulted in an increase in performance, 
similar performance increases were seen when the overall level of surfactant was decreased.  
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 The data in Figure 33 support the hypothesis that less surfactant yields more favorable 

performance with respect to water uptake. Furthermore, anionic surfactant performed worse than 

non-ionic surfactant at the same levels, presumably due to increased hydrophilicity of the ionic 

head group. The surfactant free polymer was extremely unstable and processed in the reactor 

poorly. The polymer could not be produced on an industrial scale, but this does confirm the 

association between water uptake and surfactant type.  

 Next, the 2% anionic sample was added to dialysis tubing and dialyzed for 1 week in DI 

water, the water was changed daily in order to aid in the removal of surfactant from the resin. 

Following the dialysis, the polymers solids were measured, and the control was adjusted to reflect 

the same solids. These two samples were tested for water uptake using the same procedure. 

 

 

Figure 34. Polymer before and after dialysis. This serves to further support our conclusion that higher amounts 
of surfactant are detrimental to performance.  

  

The significant difference between these two samples shown in Figure 34 highlights the 

importance of surfactant with respect to water uptake performance. Other water-soluble 
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components may have also been able to leave the resin; however, none could be justified as having 

such a large impact on the performance of the film. As the surfactant leaves the polymer, the resin 

becomes more unstable, as the double layer is diminished. During the subsequent film formation 

process, particle coalescence and interdiffusion of polymer chains can occur with less hinderance.  

 

 

Figure 35. Effect of surfactant type and PAM monomer. Non-ionic surfactants performed the best, followed 
by reactive anionic, and finally anionic surfactants. And polymers that lack PAM monomers also perform much 

better than those that contain them.  

 

 The data presented in Figure 35 confirms the hypothesis that charge-free surfactants 

perform better than anionic ones, however giving the surfactant reactivity allowing it to polymerize 

into the backbone results in enhanced performance as well. These surfactants are not allowed to 

leach out of the film during its soak in water, reducing the formation of channels that water can use 

to penetrate into the film. This reduces both the rate and ultimate value of water uptake. These 

surfactants retain their anionic qualities, meaning that there is still a very hydrophilic component 

surrounding the polymer particles and causing them to perform worse than their non-ionic 

counterparts.  
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Phosphate Adhesion Monomer (PAM A vs. PAM B) 

 It was determined in the previous experiment that PAM monomer contributed to poor water 

uptake performance. Each of the previous polymers with these PAM monomers contained 0.75% 

of each PAM A and PAM B. Four polymers were prepared with either 0% PAM, 1.5% PAM A, 1.5% 

PAM B, or 1.5% of a 50/50 blend.  

 

 

Figure 36. Polymer samples with varying loadings of PAM A and PAM B to determine their contribution to 

water uptake performance in waterborne resins.  

 

 It seems from Figure 36 that neither PAM A nor PAM B has a more dominant impact on 

the polymers performance with respect to water uptake. Both samples with identical loadings of 

these monomers performed nearly identically, though when a 50/50 blend of the two were used, 

performance decreased further, perhaps due to increased packing efficiency on the surface of the 

particle. The phosphate functionality of these monomers contributes to the overall hydrophilicity of 

the polymer particle and enhances the ability of the polymer chains themselves to associate with 

water. This drives colloidal stability of the system, while decreasing water uptake performance.  
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pH of Monomer Emulsion 

 Adjusting the pH of the monomer pre-emulsion is a critical step in emulsion polymer 

synthesis. This is known to influence both the surfactant effectivity and the polymerization of the 

acidic monomers into the polymer. Ionic surfactants rely heavily on pH selection to work properly, 

as their ionic characteristics can dissipate rapidly at low pH. Similarly, it is hypothesized that 

monomer such as methacrylic acid (MAA), which has a pKa of 4.7 will exist primarily in its anionic 

form under typical reaction conditions (ph 5-7).40 As the pH of the reactor and emulsion is brought 

below this pKa value, MAA can become neutralized and less water soluble, encouraging 

polymerization with the growing non-polar chain. If these polar monomers are stimulated to 

polymerize more readily and found deeper within the polymer particle of the resulting resin, then 

their interaction with water molecules on the surface of the particle will be reduced.  

 

Figure 37. pH of the monomer pre-emulsion was changed before the polymerization begun. pH values of 7.0, 
5.5, and 4.0 were used respectively as high, mid, and low pH levels. Below pH of 4.0 the monomer emulsion 
loses stability due to the reduced effectiveness of the anionic surfactant.  

 

 Though more acidic monomer pre-emulsions ultimately produced better performing 

polymers, the improvements were not sizable according to data plotted in Figure 37. A ~5% 

improvement on the standard resin is good, but ultimately not worth the reduction in stability of the 

emulsion. However, the results do support the hypothesis that more hydrophilic monomer (MAA) 
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may be expressed less on the surface of the particle during these conditions. Additionally, at these 

conditions the surfactant will have less anionic characteristics, thus reducing the double layer 

surrounding the particles and enhancing film formation.  

 

Initiation Method 

 Emulsion polymerizations are initiated using either a redox coupled reaction, or by using a 

thermal system in which an oxidizer is thermally decomposed to form the reactive radical species. 

Redox initiators used are TBHP and e-acid. In thermal systems APS is used and the reaction is 

carried out at 85 °C. Upon completion of the monomer and APS feeds, a “chase” or “clean-up” 

redox pair (TBHP & e-acid) are fed for 30 minutes to ensure near full conversion of monomer.  

 

Figure 38. Effect of initiation method on water uptake after 1-week soak in DI water. The 6 samples differ in 
their mode of initiation, type of surfactant used, and the loading of phosphate adhesion monomer (PAM). 
Besides these variables all other compositional and processing variables are kept constant.  

 

 The results in Figure 38 are striking, however difficult to rationalize. In the system using a 

polymerizable surfactant, a thermal initiation results in decreased performance. Similarly, anionic 
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surfactant with 1.5% PAM monomer exhibits the same behavior. When PAM monomer is excluded 

from this reaction, the thermal system performs vastly better. To gain further insight and develop a 

more confident understanding of the way that initiation affects water uptake, additional work should 

be done.  

 

Crosslinking (Keto-Hydrazide, Di-Functional Monomer) 

 Four polymer samples were prepared, using either 2% DAA, 1% HDODA, or both. It is 

thought that the DAA molecules crosslink along the surface of the particle, reducing the water 

uptake where there is a higher concentration of water sensitive moieties. The polymers are 

compositionally identical besides the crosslinking monomers and added ADH. Processing variable 

are also kept the same between samples.  

 

Figure 39. Effect of crosslinking chemistry on water uptake. A difunctional monomer HDODA was assessed 
alongside DAA, an intramolecular crosslinking agent that utilizes ADH to form covalent bonds between 
polymer chains of adjacent particles during the coalescence process.  
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 In this experiment, the polymer with HDODA performed much better than samples with 

DAA. Although all crosslinked samples were better performing than the control, the result is 

unexpected. The sample with both DAA and HDODA performed worse than the sample without 

DAA. Previous studies suggested that DAA would have a larger impact on the water uptake of 

these films than is presented here. HDODA performing this well is an indication that further 

investigation should be completed into this method of crosslinking. Crosslinking seems to be a 

primary element that chemists can use to drive the water uptake of polymers towards an acceptable 

level.  

 

Core/Shell Designs 

Synthesis of core/shell or dual stage polymers is simple, though the effect on properties 

can be pronounced. The second stage monomer is fed into the reactor after the first stage, 

theoretically resulting in a polymer particle with a core composition reflective of the first monomer 

feed, and the shell composition reflective of the second. Here, a “hard” stage is referring to a 

compositional Fox Tg of 20 °C and a “soft” stage refers to a composition with a Tg of -26 °C. Each 

stage is 50% (resin solids) of the final composition, resulting in a polymer with an “overall” Fox Tg 

of -5 °C, the same as all other samples in this project. These Tg values are varied by changing the 

ratio of hard and soft monomer (styrene, and EHA/BA respectively). 
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Figure 40. Effect of core/shell polymer design on water uptake. Due to its inability to film form, the hard 
core/soft shell sample was only able to be assessed with a 5% loading of DPnB coalescent. The other two 
samples were then loaded and assessed with the same level of DPnB. 

 

 According to Figure 40, there is minimal difference between the samples with 5% 

coalescent. This indicates that the two-stage design has little impact on the water uptake 

performance of these polymers. However, we do see a slight improvement with the soft/hard 

sample when 5% coalescent is added, which is attributed to improved film formation.  

 

Polymer Synthesis DOE #2 

 Upon developing an understanding around how some of these factors influence water 

uptake, a second DOE was prepared to confirm how surfactant choice, crosslinking, monomer 

selection, and PAM monomer work together to impact the polymer performance. The purpose of 

this experiment is primarily to confirm our understanding of these main factors, but to also see how 

they work together. The following data was obtained from samples that were soaked for 384 hours, 

or just over two weeks.  
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Figure 41. This result is identical to those found previously that PAM is detrimental to performance. 

 

 

Figure 42. This result is identical to those found previously that anionic surfactant is worse for performance 
than non-ionic surfactant.  
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Figure 43. This result is identical to those found previously that styrene drives improved water uptake 
performance. 

 

 

Figure 44. This result is identical to those found previously that higher degrees of crosslinking drive improved 
performance.  
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 EIS measurements performed offsite by Niteen Jadhav were collected to support 

gravimetric analysis. These results are shown in Table 6, and Figures 45 and 46.  

 

Table 6. DOE samples used for EIS testing. PAM is a 50/50 mixture of PAM A and PAM B 

Sample Surfactant Type Monomer PAM DAA 

84 Non-Ionic MMA  0% 2.0% 

85 Anionic Styrene 0% 2.0% 

86 Mix Mix 0.75% 1.0% 

87 Anionic MMA 0% 0% 

88 Anionic Styrene 1.50%  0% 

89 Non-Ionic Styrene 1.50% 0% 

90 Anionic MMA  0%  0% 

91 Anionic MMA 1.50% 2.0% 

92 Non-Ionic MMA 0%  0%  
 

 

 

Figure 45. Higher capacitance values here correspond to higher water uptake values. Sample 86 was not 
recorded as the sample failed upon initialization of the test.  
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Figure 46. Increased resistance values correlate to increased barrier properties of the coating. The 
commercial product samples are fully formulated paint coatings and are not ideal candidates for sample 
comparison. 

 

The expected correlation between gravimetric analysis and EIS measurements was 

absent, as results from EIS are not supportive of the conclusions drawn from the DOE. In order to 

draw more conclusive and reliable results using this technique, more time needs to be spent 

understanding the nuances of the technique in a hands-on manner. From there, a more targeted 

experiment may be designed and used to further understand water uptake.  

 

As a part of the above DOE, contact angle measurements were taken of the polymers and 

plotted against water uptake values to assess any correlation between the two.  

Commercial Product 
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Figure 47. Static water contact angles have a loose correlation with uptake values, where larger contact 
angles drive higher water uptake values. Presumably this is due to waters unfavorable interaction with more 
hydrophobic polymers as they exhibit higher contact angles.  

 

 The DOE confirms our previous conclusions that MMA, anionic surfactant, and PAM 

monomer result in reduced performance. Samples that utilize styrene, non-ionic surfactant, and 

that lack PAM monomer tend to perform much better. Surprisingly, the experiment appears to 

suggest that diacetone acrylamide/ADH crosslinked systems reduce polymer performance. This is 

contrary to previous results found. It is possible that full crosslinking density was not attained in the 

samples, and that the hydrophilicity of the DAA monomer negatively impacted the performance. 

Confirmation of this hypothesis could be achieved by measuring the gel fraction of the samples. 

   

 

4.3 Effects of Testing Methods  

Water Temperature 

 Nearly all testing for the project was done at ambient lab temperature. To assess the effect 

of environmental temperature samples were prepared and tested at 4 °C, 20 °C, and 40 °C.  
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Figure 48. Variable water temperature of test samples. 

  

As the temperature of the water increases, the samples absorb much more water. This 

trend followed a nearly linear relationship and is expected to remain constant at increasing 

temperatures. When the temperature of the sample is increased, the polymer chains gain more 

thermal and kinetic energy allowing them to move and create free volume. The chains movement 

allows water to enter the film more easily, and more importantly, allows the films to swell. This 

swelling means that they can accommodate more trapped water resulting in higher uptake values.  

 

Caustic Solution 

 As part of another industry testing procedure, a films resistance to water uptake when 

exposed to a caustic 5% NaOH solution is of interest. This test is done at lab temperature using 

the same procedure as previously noted.  
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Figure 49. 5% NaOH caustic water uptake testing. 

  

The extreme difference between samples assessed is hypothesized to be due to polymer 

degradation. As the film is soaked in the NaOH solution the chains are broken down and the film 

loses mass. This can also be seen as a decrease in sample mass over the course of the 144-hour 

soak.  

 

4.4 Effects on Blushing and Surfactant Leaching 

Blushing 

 Blushing is a phenomenon related to water sensitivity and is very important to avoid in clear 

coatings. A select few of the polymers that were prepared for this research were chosen, and their 

ability to resist blushing or water whitening was assessed. Here, the polymers were drawn down at 
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6 wet mils, and allowed to dry for one week. They were then submerged in water for 120 hours and 

pictures were taken after 24 and 120 hours. All coatings were clear before the test began.   

 

 

Table 7. Samples chosen for water whitening (blushing) tests. 

Sample Surfactant [Surfactant] PAM Particle Initiation 

A Anionic 2% 1.5% Seeded 

B None None 1.5% Seeded 

C Anionic 4% 1.5% Seeded 

D Non-Ionic 2% 1.5% Seeded 

E Reactive Anionic 2% None Seeded 

F Reactive Anionic 2% 1.5% Seeded 

G Anionic 2% None Seeded 

H Anionic 2% 1.5% In-Situ 

J Reactive Anionic 2% 1.5% In-Situ 
 

 

Figure 50. Films at 6 wet mils after 24 hours.  

 

Figure 51. Films at 6 wet mils after 120 hours. 
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 Sample B performed exceptionally well, followed by sample D. These contained either no 

surfactant or a standard amount of non-ionic surfactant respectively. The results mirror those 

established previously with the water uptake testing.  

The following polymers were drawn down at 6 and 7 wet mils and allowed to dry for one 

week. They were then submerged in water for 120 hours and pictures were taken after 24 and 120 

hours. All coatings were clear before the test began.   

 

 

Figure 52. Films at 6 and 7 wet mils after 24 hours. 
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Figure 53. Films at 6 and 7 wet mils after 120 hours. 

 

 Again, the surfactant free films performed exceptionally well, however (sample E) the 

polymer with reactive anionic surfactant and no PAM monomer did better. This serves to support 

the idea that the PAM monomer may have more influence on water sensitivity than the surfactant 

in some cases.  
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Figure 54. Films at 6 and 7 wet mils after 24 hours. 

 

 Blush testing confirmed that surfactant choice is very important when developing polymers 

with low water sensitivity. PAM monomer was found to be just as important and possibly a more 

influential factor. The phosphate groups that these monomers contain must interact with water 

penetrating the film, and aid in the formation of water domains large enough to scatter light. This is 

hypothesized to be the same mechanism by which water uptake occurs.  

 

Surfactant Leaching 

 Surfactant leaching is another area of interest to coatings formulators, as such these 

experimental polymers were tested alongside two commercially available polymers in a test to 

benchmark their performance. The polymers are formulated into the same flat paint base and tinted 

to a weathered brown color. The paint is drawn down on a Leneta chart at 7 wet mils and allowed 

to dry for 24 hours before being wrapped around a small can or bucket. The bucket is then filled 
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with ice water and placed into a high humidity chamber for 30 minutes. The condensation and paint 

exudate is collected in a small pan and the residual solids of this exudate is measured. The weight 

percent of the solids is then compared between samples. During this test, surfactant and other 

water-soluble components within the paint are drawn out of the film leaving streaks down the paint.  

  

Table 8. Surfactant leaching results from experimental polymers. 

Sample Surfactant Type [Surfactant] 
Test Time 
Interval 

Color 
Exudate 

Weight % 

E Reactive & No PAM 2% 30 W. Brown 1.35% 

B N/A 0% 30 W. Brown 1.61% 

F Reactive 2% 30 W. Brown 1.86% 

D Non-Ionic 2% 30 W. Brown 2.08% 

A Anionic 2% 30 W. Brown 2.08% 

Commercial Unknown Unknown 30 W. Brown 2.59% 

G Anionic & No PAM 2% 30 W. Brown 2.65% 

Commercial FES27/BS715 Unknown 30 W. Brown 2.85% 

C Anionic 4% 30 W. Brown 3.05% 

 

 The lower exudate weight % values in Table 8 correspond to better performing polymers, 

and values below 2% are considered satisfactory. The composition of all experimental polymers is 

identical unless otherwise noted. Samples with no PAM monomer and reactive or non-ionic 

surfactant outperform all other samples, including commercially available polymers.  

 

4.5 Considerations and Future Work 

Mechanical Stability  

 Though improvements in water uptake performance and a better understanding of latex 

coatings was attained, marketable products must exhibit satisfactory abilities in a wide array of 

performance standards. One of these important abilities a polymer must include is mechanical 

stability. To test mechanical stability of waterborne resins, they are placed in a Waring blender and 

blended on low for 15 minutes. Any difference in particle size distribution, gelling of the polymer or 
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other adverse results can disqualify the polymer from being selected as a candidate for production 

scale. During production of polymer as well as subsequent formulation at coatings plants, the resin 

is subjected to extreme shear forces, which can disrupt the colloidal stability of the emulsion 

resulting in agglomeration and even gelling of the system. Designing a robust polymer with the 

ability to withstand extreme conditions of shear and heat, results in a more durable product which 

can better handle any conditions it may encounter during its service life.  

 As discussed previously, colloidal stabilization produced by both the steric and electrostatic 

double layer, are a direct result of what charges and molecules are found on the outside of the 

particle. These include surfactant molecules, ionic monomers, and any other moiety that 

contributes to charge repulsion. This means that when polymers have surfactant removed, or the 

level of PAM monomer reduced, the resin becomes very unstable when subject to adverse 

conditions such as high heat, shear, and other pumping conditions. This has been observed both 

during synthesis as well as during blender stability testing of the samples. If a polymer is unstable 

during processing, large aggregates will form on the reactor walls and stirring blade. This reduces 

yield, takes time to clean out, and often derails reactions. Polymers that process poorly such as 

these must be reworked and reformulated to build in stability, not only for lab scale production, but 

also for production scale where batch size can grow upwards of 10,000lbs.  

 Instability was worst when all or most of the ionic characteristics were taken out of the 

formula. Components such as anionic surfactant, PAM monomers, and acid monomers contribute 

immensely to stability of both the processing, and the final product.  

 

Alternative Stabilization 

 Many papers discuss alternative, non-conventional methods to stabilize these emulsions. 

Methods include the use of partially exfoliated clays of differing compositions, non-conventional 

surfactants namely reactive surfactants, and using other monomers with surfactant like 

characteristics. Many methods would be deemed commercially non-viable, but it is important to 

understand that there exist other ways to stabilize waterborne emulsions. It may be of interest to 
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explore other stabilizing techniques in conjunction with factors discussed in this work, to develop 

novel ways to provide resins with stability and reduced water sensitivity.  

 

Additional Crosslinking Methods 

 Crosslinking chemistry can vary widely, and there are many ways to functionalize these 

polymers to allow for crosslinking reactions to occur. Keto-hydrazide and difunctional monomer 

crosslinking were explored here, though tri-functional monomers, epoxy reactions, and other 

methods are available to chemists. Developing technology that allows polymer particles to film form 

and fully coalesce while simultaneously creating a dense network of crosslinked chains, would be 

an ideal way to enhance performance qualities of these polymers, one of those being water uptake.  

 

Permeability 

 Water vapor permeability was not a focus of this study; however, it is reasonable to 

hypothesize a connection between permeability and water sensitivity. Future work can utilize 

samples already prepared for these experiments, in order to draw conclusions on the similarities 

between uptake and permeability. For many applications such as concrete coatings and in some 

cases wood coatings, having a film that is reasonably permeable to moisture is beneficial and even 

required to allow breathability of the substrate. Without it films can delaminate, blister, crack, and 

otherwise degrade, eliminating the effectivity of the product.  

 

Effect on Other Properties 

 Development of acrylic emulsion polymers is a difficult process, balancing many different 

processing and compositional factors. It is usually nearly impossible to make single changes to a 

formula while keeping all other parameters constant. As one change is made to a polymer, others 

will consequentially occur further complicating any cause-effect relationship that is to be made. 

These complex systems are increasingly difficult to study and fully understand with limited time and 
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resources available in a commercial setting, where product development and customer needs are 

of utmost importance.  

 This study not only produced meaningful strides toward understanding a latex polymers 

interaction with water, it also led to the synthesis of many resins with unique and carefully designed 

compositions. The sole purpose of these polymers is understanding how individual changes to a 

formula affect final properties of the resulting film. In future work, whether related to water uptake 

or not, these samples can provide a starting point to quickly and easily assess how single variable 

changes might impact other qualities of interest such as adhesion, bleed-block, stain resistance 

and more.  
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5. CONCLUSION 

Water uptake phenomena of acrylic waterborne films were studied. It was demonstrated 

that many controllable factors studied had an influence on water uptake rate and final values. Of 

these factors, the most important were surfactant choice and concentration, monomer selection, 

crosslinking density, and test parameters. Other parameters such as polymer Tg and molecular 

weight controlled with chain transfer agent, had little effect on the water uptake behavior of the 

films.  

Overall, systems that were not crosslinked, contained anionic surfactant, and hydrophilic 

monomers tended to perform worse than other polymers. As the film is soaked in water, osmotic 

pressure draws free water-soluble components out of the film, forming small channels in the film 

that allow water to penetrate and associate between poorly coalesced polymer particles. Over time 

these domains grow and expand eventually becoming large enough to scatter light due to the 

refractive index difference between the water and binder. It is at this point in the absorption process 

the film begins to appear white, eventually becoming completely opaque if enough water is 

absorbed.  

By disallowing surfactant, especially ionic types, and ionic monomers, the outside of the 

polymer particle is able to coalesce more effectively, and the polymer will be less hydrophilic. This 

deters water from initially associating with these susceptible domains within the film, as well as 

slowing the growth of these water pockets as the film continues to absorb water. Crosslinking aids 

by reducing the films capacity to swell and uptake more water, though crosslinkable monomer such 

as DAA is often water soluble and hydrophilic. This may lead to poorer performance depending on 

the effectivity of the crosslink density.  

These samples were also tested for their resistance to surfactant leaching and blushing. 

The same trends that appeared to drive water uptake performance also influenced surfactant 

leaching and blushing as well. The analysis of these last two phenomena was not as exhaustive 

as uptake studies, and further work should be done in order to draw more comprehensive 

conclusions.  
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Future work may include a pursuit to understand two-way interactions within these systems 

more precisely. It seems that interactions between monomer selection and crosslinking is important 

and may have more influence over performance than is presented in this study. Furthermore, 

polymers developed from this body of work can be used in current and future projects to better 

understand other polymer & coatings properties.  
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