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ABSTRACT 

Solar Energy Generation Forecasting and Power Output Optimization of Utility Scale 

Solar Field 

Byungyu Kim 

 

The optimization of photovoltaic (PV) power generation system requires an 

accurate system performance model capable of validating the PV system optimization 

design. Currently, many commercial PV system modeling programs are available, but 

those programs are not able to model PV systems on a distorted ground level.  Furthermore, 

they were not designed to optimize PV systems that are already installed. To solve these 

types of problems, this thesis proposes an optimization method using model simulations 

and a MATLAB-based PV system performance model. The optimization method is 

particularly designed to address partial shading issues often encountered in PV system 

installed on distorted ground. The MATLAB-based model was validated using the data 

collected from the Cal Poly Gold Tree Solar Field. It was able to predict the system 

performance with 96.4 to 99.6 percent accuracy. The optimization method utilizes the 

backtracking algorithm already installed in the system and the pitch distance to control the 

angle of the tracker and reduces solar panels partial shading on the adjacent row to improve 

system output. With pitch distances reduced in the backtracking algorithm between 2.5 

meters and 3 meters, the inverter with inter-row shading can expect a 10.4 percent to 28.9 

percent increase in power production. The implementation and calibration of this 

optimization method in the field this spring was delayed due to COVID-19. The field 

implementation is now expected to start this summer.  
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Chapter 1 
 

INTRODUCTION 
 

1.1 Background 
 

Due to advances in solar photovoltaic (PV) technology, reduction of cost and 

growing environmental consciousness, deployment of solar energy has increased 

throughout the different types of installations from individual homes to large utility-scale. 

Photovoltaic power plants are being recognized for their great potential, not only in its 

renewable energy production, but also for their benefits to the economy and environment 

[1]. With its increase in popularity, the cost of solar energy has been decreasing due to the 

improvements in the manufacturing process and government policies around the world. It 

is reported that the price of solar energy has fallen by 99 percent over the last four decades 

[2].  

 

Figure 1.1:  Decreasing Cost of Utility Scale PV System from 2010 to 2018 

Figure 1.1 [3] shows the price of utility scale PV system with single-axis tracker decreased 

79.5 percent from 2010 to 2018. Like any electricity generation provider, that the current 
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solar industry has a narrow margin for profit, and any small improvements in energy 

generation can be financially beneficial. 

With the rapidly increasing number of PV system installations, it is important to be 

able to quantify how much energy can be generated and delivered to the grid. By accurately 

forecasting the energy generation of PV systems, grid managements is made easier and 

grid overloading can be prevented. That information can also be used to raise awareness of 

any underperforming system. Furthermore, improvements and optimization in energy 

production can be financially beneficial, especially for utility-scale solar fields. This thesis 

provides a series of analysis tools characterizing the generation-forecasting and 

optimization solutions considered for the Cal Poly Gold Tree Solar Farm. 

 
1.2 Objective  

The purpose of this thesis is to create a computer model of an existing PV system 

experiencing inter-row shading and predict the behavior and performance of the PV system 

with different backtracking inputs. Currently, the utility-scale solar field owned by the 

California Polytechnic State University-San Luis Obispo is underperforming due in large 

part to inter-row shading. Inter-row shading is created by the uneven ground profile of the 

site. That uneven ground can elevate a row of PV modules relative to an adjacent row, 

which can potentially cast a shadow on that adjacent row. To reduce shading on PV 

modules, and improve energy production, pitch distance input needs to be adjusted in the 

backtracking algorithm. With extensive research on system behavior and an accurate 

computer model of the PV array, optimum inputs can be determined to reduce shading, and 

improve system performance. This thesis will provide a contribution towards accurate PV 

system performance prediction for those systems installed on uneven terrain with inter-row 
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shading. This thesis will also serve as a solar system modeling software manual for the 

many students that will be continuing in that line of research in the future. 

 

1.3 Limitations 
 

It is important to note that values from existing commercial PV system modeling 

software is based on theoretical data generated with some assumptions; therefore, the 

results do not always reflect actual data. For example, energy forecasted from software 

such as PVsyst depends on the meteorological data that is designed to represent a typical 

year, and the user-defined losses to the system like soiling or panel’s degradation. It is 

important to note that there is no method to accurately identify different losses, so the 

estimated losses from PVsyst will not always be equal to the real losses. Due to the closure 

of campus during the spring quarter, implementation of the improved parameters and 

verification of the model is delayed to the summer and fall of 2020. 
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Chapter 2 

DESCRIPTION OF GOLD TREE SOLAR FARM 

2.1 System Description 
 

In a partnership with REC Solar and Cal Poly, REC Solar built an18.5-acre single 

axis tracker (SAT) solar field that is projected to generate more than 11 million kWh per 

year with a capacity of 4.5 𝑀𝑊!" or 5.657 𝑀𝑊#". According to REC Solar, the company 

in charge of design, construction, and maintenance of the solar facility, Cal Poly Solar Field 

will generate enough to power more than 1,000 homes, or about 25 percent of Cal Poly’s 

total needs [4]. This project was built under a power-purchase agreement between Cal Poly 

and REC Solar, which permits REC Solar to construct and maintain the solar field on Cal 

Poly’s property, while Cal Poly pays a lower rate for the electricity. In addition to the 

savings on annual utility costs, this project allows a hands-on learning opportunity for 

students interested in renewable energy and in solar fields in particular.  

 
 

Figure 2.1: Aerial Views of Gold Tree Solar Farm  
 

Figure 2.1 [4] displays two different aerial views of the Cal Poly Solar Farm. The view on 

the right shows changing slopes of the field and describes how PV modules are installed 

along the surface of the sloped field. 
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2.2 System Parameters  

2.2.1 PV Modules 

 Cal Poly Solar Farm uses 16,379 ground-mounted PV modules, 8,664 modules are 

produced by Trinia Solar, and 7,733 modules are produced by REC Solar. Trinia Solar 

modules consist of monocrystalline full-cell panels, while REC Solar modules consist of 

polycrystalline half-cut cell modules. Half-cut cell is a full-cut cell that is cut into two equal 

pieces, which reduces the internal resistance, increases overall power, and improves the 

module’s performance in reduced irradiance conditions, e.g., when shaded [5]. Figure 2.2 

represents the PV modules used in the solar farm, and the REC Solar PV module has a 

white line across the panel representing the half-cut cells.  

 

Figure 2.2: Pictures of PV Modules Used in Cal Poly Solar Field: (a) Trinia 
Solar PV Modules with Full-Cut Cells (b) REC Solar PV Module with Half-Cut 

Cells. 
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2.2.2 Tracker 

Both modules are installed on a single axis tracker from Array Technologies, which 

follows the sun across the sky with a tracking angle range of -52° to +52° with the 

possibility of backtracking. The trackers are equipped with a 2 HP motor that can change 

the tracking angle of up to 26 rows, and it is powered by the energy from the grid. There is 

a total of 12 trackers on the solar field; therefore, the solar farm is divided into 12 different 

zones. The location of the zones and the number of PV array rows per zone are specified 

in Appendix A. 

 

Figure 2.3: Solar Radiation on PV modules: (a) shading on PV module without 
backtracking (b) PV modules with backtracking reduces shading. 

 

Backtracking is a tracking algorithm implemented on the motion of the arrays, and 

it minimizes the power loss of the system due to shading by considering the ground 

coverage ratio (GCR) and row spacing of the solar arrays [6]. Figure 2.3 [7] shows the 

benefit of backtracking, where SAT can minimize shading on PV modules in the adjacent 

rows by reducing the angle of the tracker. A disadvantage of implementing backtracking is 

that the solar panels are not directly receiving the solar irradiance. Solar panels generate 

the maximum amount of power when the solar irradiance is perpendicular to the surface of 
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the panels. However, with backtracking, solar panels are restricted from facing the sun by 

flattening the tracker angle earlier, which can reduce the amount of generated power due 

to the reduced amount of irradiance reaching the surface of the solar panels through the 

atmosphere.  

 

Figure 2.4: Ground Coverage Ratio is the ratio of module height to the pitch 
distance (L/R).  Inter-row shading is directly related to GCR.  

 

The backtracking algorithm is based on the ground coverage ratio, as mentioned 

previously. As shown in figure 2.4 [8], the ground coverage ratio is the ratio of module 

height to the pitch distance, where L is the module length, and R is the pitch distance of 

the modules. This ratio determines the range of tracker angle, and it is directly related to 

the inter-row shading. When the pitch distance decreases, it makes GCR value higher. 

Higher GCR value will increase the inter-row shading because the panels are closer to each 

other. It is beneficial to have a larger pitch distance to reduce inter-row shading, but it is 

also important to space out the solar panels to optimize the power generation in relation to 

according to the size of land. 
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2.2.3 Inverter 

There are seventy-five Yaskawa Solectria 60TL string inverters used for both full-

cut cell and half-cut cell PV modules on the Cal Poly Solar Farm. Each inverter is linked 

to three maximum power point tracking (MPPT) inputs, where each input consists of 4 

strings that are connected in parallel. Each string consists of 19 modules that are connected 

in series, and the individual rows of PV modules on the Cal Poly Solar Farm represents a 

single MPPT input for the corresponding inverter. Multiple MPPT inputs allows the 

inverter to split the strings of PV modules to maximize the amount of power received from 

different shading conditions [9].  

 

Figure 2.5: Single Line Drawing of an Inverter with 3 MPPT 

Figure 2.5 represents the single line drawing of an inverter with three MPPT inputs similar 

set up as the inverters in the Gold Tree Solar Farm. This figure visually represents the 

relationship between strings of modules and the inverter. This figure visually represents 
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the relationship between strings of modules and the inverter. There are 12 strings connected 

for an inverter with full-cut modules, and 11 strings for an inverter with half-cut modules. 

 

2.2.4 Summary of Parameters 

Currently, Cal Poly Gold Tree Solar Farm’s energy generation is lower than the 

expected amount projected at the time of the construction and stated by REC Solar in 

section 2.1. It is important to note that the program used to generate the expected energy 

generation is not capable of processing the complicated topography of the solar field and 

assumes there is little to no shading on the PV modules. The table below summarizes 

geographical information, components used for the Cal Poly Gold Tree Solar Farm, and 

ground coverage information. More technical information regarding PV modules, inverter, 

and trackers can be found in Appendix B.  

Table 2.1: Detailed Summary of Cal Poly Solar Farm 

Location 
(Latitude, Longitude): (35.32° N, -120.69° W) 

Elevation: 156 m 
San Luis Obispo, California, US 

System Capacity DC: 5.7 MW 
AC: 4.5 MW 

Module Types 
Trina Solar TSM-DE 

14A (II), 345 W 
Amount: 8664 panels 

 REC Solar Twinpeak 2s 
72 Series, 345 W 

Amount: 7733panels 

Mounting, Tracking 
Ground mounting with single axis tracker (E-W) 

Tracker: Array Technologies Inc. Duratrack HZ V3 
Tracker range of motion: -52° to +52° 

Inverter type and Quantity Yaskawa Solectria PVI-60TL 
Amount: 75 inverters 

DC/AC ratio 1.26 
Row Spacing 3.35 m 

Ground Coverage Ratio  58.5 % 
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2.3 Green Power Monitor Portal  
   

The Green Power Monitor (GPM) Portal is a website developed by Green Power 

Monitor for REC Solar, and it is a web based real-time performance monitoring program 

for the Gold Tree Solar Farm. Since the operation of the solar farm began, GPM Portal has 

been collecting and storing data related to different aspects of the solar field. The main data 

used for this project are current, voltage, power and energy generated from the system, 

tracking angle of the arrays, plane of array irradiance (POA), and global horizontal 

irradiance. Instructions on navigating through GPM Portal and downloading data can be 

found in Appendix C.  
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Chapter 3  

PVSYST  

3.1 Program Description 

 PVsyst is a computer software developed by Geneva University in Switzerland for 

the study of photovoltaic systems. This program is commonly used by architects, engineers, 

and researchers in the photovoltaic industry. PVsyst can only operate on Windows, but 

users with Mac or Linux can use Remote Desktop or a virtual running machine to run the 

program [10].  In PVsyst, the user is capable of simulating grid-connected, stand-alone, 

solar-powered pumping systems, and DC grid systems. PVsyst also provides users with a 

large database of meteorological data, and individual system components, which makes 

designing and simulating PV systems convenient. The program’s main operating language 

is English, but the report can be exported in English, French, Italian, Spanish, and German. 

The scope of the program includes feasibility, 3D shading analysis, loss analysis, and 

system yield of the complete PV systems. Detailed instructions on setting up and 

simulating photovoltaic projects on PVsyst can be found in Appendix D. 

 

3.2 Purpose and Importance  

For this study, PVsyst was used to evaluate the changes in the range of tracking 

angle and the annual energy produced concerning different pitch distances. To validate the 

accuracy of PVsyst, simulated energy produced was compared to the actual energy 

produced on October 31st, 2019, found in GPM Portal. This date was chosen after visiting 

the site and speculating the module conditions. On October 31st, the sky was clear 

throughout the day, and modules were recently cleaned, reducing the loss due to soiling. 
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To ensure similar irradiance conditions for simulation in PVsyst, measured global 

horizontal irradiance (GHI) data from the GPM portal was used to compute direct normal 

irradiance (DNI) and direct horizontal irradiance (DHI) using the Perez Model [11]. Then 

those meteorological data were imported to PVsyst as a weather file for simulation. With 

accurate insolation data and surface conditions of modules, PVsyst can accurately predict 

the behavior of the arrays tracking motion and expected energy output of individual 

inverters of the solar farm.  

 

3.3 Strength and Weakness  

After using PVsyst for this study, there were some identifiable strengths and 

weaknesses for this program. One of the strengths of PVsyst is the availability of databases 

for weather and components such as PV modules and inverters. With a variety of options 

for components, building the system for simulation is fast and convenient.  Simulation 

windows are well-organized and displayed for users to easily navigate to any aspect of the 

system including near-shading, orientations, and system configuration.  

 The second strength of the PVsyst is its accuracy and depth of analysis for system 

simulations. Simulations in PVsyst are done in hourly steps for the entire year, given that 

weather data is available in hourly steps. Users can view power and energy generated from 

the PV system in the same resolution as the simulation. Also, PVsyst is known to be 

commonly used in the industry, and reports generated from PVsyst are used for banks and 

financiers for revenue generation. This shows the public dependency on PVsyst for its 

accuracy and detailed analysis of PV systems.  
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One of the weaknesses of PVsyst is that for near shading analysis, PVsyst cannot 

simulate backtracking on an uneven orientation of the PV modules. The PVsyst team is 

currently working on implementing backtracking on a sloped surface, but for now, it is not 

possible to model rough terrain surfaces with tracking modules. This limits the shading 

simulation to flat ground, but it is important to note that fixed-tilt arrays can be simulated 

on uneven terrain. Because PVsyst could not simulate backtracking on uneven terrain, 

accurate shade analysis and simulation of the Cal Poly Solar Farm through PVsyst was not 

possible.  

The second weakness of PVsyst is its lack of current weather data in the database. 

Although recent meteorological data is available, PVsyst requires users to purchase them 

within the program. Most of the available meteorological data are measured in 2014 or 

older. But for this study, current data was required for comparison with simulation results.  

Other weaknesses include PVsyst not allowing users to input more than two decimal points 

for PV array location and various input parameters. Limiting the number of decimal points 

of input parameters results in imprecise simulation results and higher error values between 

modeled and actual energy generated from the system. 
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Chapter 4 

PV_LIB TOOLBOX 

4.1 Program Description 

     PV_LIB Toolbox is a set of well-documented functions for simulating the 

performances of PV projects. This program was developed at Sandia National Laboratory, 

which a group of PV professionals called Photovoltaic Performance Modeling 

Collaborative (PVPMC).  This group’s main goal is to bring traceability and transparency 

to the process of PV system modeling and encourage third party validation of existing 

algorithms [12]. This program is available in both MATLAB and Python for free on their 

website, and the website also includes detailed descriptions of all the built-in functions.  

Examples for users are available to utilize and understand the function’s capabilities. For 

this study, the MATLAB version of the PV_LIB Toolbox was used. 

 

4.2 Built-in Functions 

     There are 7 different categories of built-in functions in PV_LIB: Example Scripts, 

Time & Location Utilities, Irradiance, and Atmospheric Functions, Irradiance Translation 

Functions, Irradiance Analysis Functions, Photovoltaic System Functions, Functions for 

parameter estimation for PV module models, and Numerical Utilities. With multiple 

combinations of built-in functions and a TMY3 file, users can evaluate irradiance, weather, 

and performance of a single-axis tracking PV system. Test Script provided by PV_LIB 

demonstrates how to use the built-in functions to model a PV system. Some of the built-in 

functions used for this study are explained further in the following section. 
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4.2.1 pvl_calcparams_PVsyst 

This built-in function uses PV module modeling used by PVsyst to calculate five 

parameters for current-voltage (IV) curves [13,14,15]. This function was used to find IV 

curve parameters for both Trina 345W TSM DE-14A(II) and REC 345W Twinpeak 2S 72 

panels, which were used in the Cal Poly Solar Farm. Module parameters were found in the 

module database of PVsyst, and the cell temperature and the effective irradiance are 

provided by the user.   

 

Figure 4.1: Inputs and Outputs of pvl_calcparams_PVsyst 

A detailed explanation of the inputs and outputs for pvl_calcparams_PVsyst is provided in 

figure 4.1 [16]. Multiple module parameters are required to accurately find the current and 

voltage behavior of the module. Light-generated current, diode saturation current, series 

resistance, shunt resistance, and modified diode factors are the output of this function, and 
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they are used to calculate the IV curve for solar panels in user-defined cell temperature and 

effective irradiance. 

 

4.2.2 pvl_singlediode  

 This built-in function solves the single diode equation 

𝐼 = 𝐼$ − 𝐼% &exp &
&'()!
*+,&-.

* − 1* − &'()!
)!"

               (4.1) 

for current and voltage using the outputs from pvl_calcparams_PVsyst, mentioned in the 

previous subsection [17]. After specifying the desired number of data points, this function 

outputs a result of current and voltage describing the entire IV curve with MPPT points 

labeled for each irradiance.  

 

Figure 4.2: Example IV Curve Using pvl_singlediode 

An example of an IV curve generated using the pvl_singlediode function is shown in figure 

4.2. Users can either use a single irradiance or multiple irradiance conditions to identify 
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different MPPT points at each irradiance. For this study, this function was to use to identify 

the MPPT current and voltage of panels used in the Cal Poly Solar Farm. 

 

4.2.3 pvl_ephemeris 

 pvl_ephemeris calculates the position of the sun using location and time specified 

by the user. This built-in function outputs suns’ azimuth angle, elevation angle, apparent 

elevation angle, and solar time. The location of the sun’s position changes daily, and 

knowing the exact position is essential for tracking algorithms, so that the PV systems can 

output a maximum amount of power. For more accurate results, atmospheric pressure and 

temperature can be inputted, but if those two values are not defined, the built-in function 

assumes pressure to be 1 atm and temperature to be 12 degrees Celsius.  

 

Figure 4.3: Solar Elevation Angle in San Luis Obispo Using pvl_ephemeris 

Figure 4.3 shows the solar elevation angle in October of 2019 in San Luis Obispo generated 

by using pvl_ephemeris. Knowing the elevation angle of the sun throughout the day is 
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important because it is related to the amount of irradiance on the panel. Lower solar 

elevation results in less irradiance on the panel due to the thicker airmass.   

 

4.2.4 pvl_singleaxis  

     This built-in function utilizes zenith angle, azimuth angle, axis tilt angle, axis 

azimuth angle, and ground coverage ratio to output rotation angle of tracker, angle of 

incidence, surface tilt angle, and surface azimuth angle. Zenith angle and azimuth angle of 

the sun can be found using pvl_ephemeris as mentioned in the previous subsection. Users 

can decide to use backtracking by defining GCR for the system. All the outputs, including 

the tracking angle, is calculated using equations found in “Tracking and Back-Tracking” 

by Lorenzo, E [18].   

 

Figure 4.4: Behavior of Single Axis Tracker in San Luis Obispo Modeled Using 
pvl_singleaxis 

 
Figure 4.4 represents the different output created from pvl_singleaxis for a PV system with 

backtracking on October 31st in San Luis Obispo. Using this built-in function, the behavior 
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of the tracker and an exact rotation angle can be modeled. It is also important to note that 

many trackers used in the industry follow the same backtracking algorithm found in this 

built-in function. 

 

4.3 Strength and Weakness   

 There are many strengths to PV_LIB, but its greatest strength is the well 

documented built-in functions. All the built-in functions have well-explained purpose, 

inputs, outputs, and they also provide examples on how to use them for the users. 

Documentation and examples allow users to utilize the functions with confidence and even 

allow users to manipulate and alter the code. As mentioned in the mission statement for 

PVPMC, they made this program transparent and traceable for users to understand the 

process of modeling PV systems and included their sources for every calculation done in 

each built-in function. PV_LIB also works closely with the National Renewable Energy 

Laboratory (NREL) [19] and acquires module and inverter data from System Advisor 

Model (SAM) [20], which shows a national institution’s support for this program. Other 

strengths include its cost-effectiveness and versatility. Unlike other expensive PV system 

modeling programs, PV_LIB is completely free to use, and it also comes in two 

programming languages, MATLAB and Python.  

A few weaknesses to this program would be in shifting the time of the sunrise and 

sunsets due to the daylight savings time. San Luis Obispo’s highest solar elevation was at 

1 pm on August 27th, but pvl_ephemeris had difficulties when the time was shifted manually. 

Subsequently, any built-in functions that utilize elevation angle and azimuth angle also had 

issues with time shift. These issues were also found in different PV modeling programs 
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and the only assumption for this issue is that the sun’s highest elevation is normalized to 

12 pm for all of these programs. Other than this minor issue, PV_LIB did not have any 

other weaknesses. 
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Chapter 5 

EFFECT OF SHADING 

5.1 Effect on System Performance  

     Small shading on a solar panel can significantly affect the performance and the 

power output of a PV array. Because individual solar cells are connected in series, the 

maximum possible current for the entire panel is limited to the lowest current produced by 

any cell on that solar panel.  

 

Figure 5.1: Partial Shading on Solar Panels 

Figure 5.1 [21] represents three solar panels with different partial shading conditions on 

each panel. It is important to note that all of the panels below are producing exactly half of 

the power that is possible, since the partial shade is covering half of the PV cell on each 

panel. This figure shows the significant effect of a small partial shading on the power 

generation of solar panels.  

 To prevent significant power loss from small amount of shading, bypass diodes are 

installed on every solar panel to redirect the flow of current and minimize power loss. Most 

of the industrial size solar panels are divided into three substrings with one bypass diode 
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per substring. When there is partial shading on one of the substrings, the corresponding 

bypass diode activates to prevent significant loss of overall power. However, when a 

bypass diode is activated, that panel loses a third of the power, since the bypass diode 

redirects the current to avoid the substring with a shaded cell. Instead of producing half of 

the possible power without a bypass diode, that solar panel can produce about 66% of the 

power with an activated bypass diode. 

 

Figure 5.2: Substring and Bypass Diode Layout of a Full-Cut Cell Module (left) and 
a Half-Cut Cell Module (right)  

 
Figure 5.2 [22] represents two types of solar panels, a full-cut cell module on the left and 

a half-cut cell module on the right. Individual substrings are labeled with numbers, and 

bypass diodes are labeled with the alphabet on both modules. It is important to note that 

the half-cut cell module has twice as many substrings as the full-cut cell module, but it has 

the same amount of bypass diodes. Half-cut modules are divided into two groups of PV 

cells, with one group placed on top of the other group. Those groups are connected in 

parallel to create one solar panel, which means current splits when it enters the solar panel 

and recombines when it exits the solar panel. The benefit of having solar panels divided 
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into top and bottom is, when the bottom half of the solar panel is shaded by the adjacent 

row, only the performance of the bottom half is affected [23]. 

 

Figure 5.3: Behavior of a Full-Cut Cell Module (left) and a Half-Cut Cell Module 
(right) Under Different Shading Conditions  

 
Behavior of a full-cut cell module and a half-cut cell module are represented in the 

figure 5.3 [22]. A half-cut cell module can produce at least 50% of the power even when 

the entire bottom half of the panel is shaded. While the full-cut cell module typically loses 

all power due to the horizontal shading from an adjacent row.  
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Figure 5.4: Behavior of a Full-Cut Cell Module (top) and a Half-Cut Cell Module 
(bottom) Under Horizontal Shading  

 
The advantage of the half-cut module is further explained in figure 5.4 [22], where 

the performance of both full-cut modules and half-cut modules in a string is affected by 

the horizontal shading across all the panels. As shown in the figure, the power output of 

full-cut modules in a string is eliminated by activated bypass diodes due to shading, while 

strings of half-cut modules are producing half of the power. It is evident that half-cut 

modules are advantageous during inter-row shading, but the smallest amount of shading 

will have a significant impact on the power output of both types of solar panels [22]. It is 

important to note that the bypass diodes activate when any cell in a corresponding substring 

is covered more than thirty percent of its area by shading [24]. Therefore, a horizontal 

shade that is covering roughly four percent of a solar panel’s surface is enough to activate 

all the bypass diodes and eliminate any power output from a panel.  

 



 

25  

5.2 Shading on the Gold Tree Solar Farm  

5.2.1 Shade Measurements 

Due to uneven ground levels and elevation of the rows, some of the zones in the 

Gold Tree Solar Farm are experiencing inter-row shading. Inter-row shading impacts the 

performance of the solar panels, especially for the full-cut cell modules, as mentioned in 

the previous section. Most of the inter-row shading occurs when the sun's elevation is low, 

such as during sunrise and sunset. Rows installed on zones with a sloped ground experience 

inter-row shading the most. For example, zone Z1 has a slope that faces East, so there isn't 

any adjacent shading during sunrise. However, most of the strings in zone Z1 are affected 

by the inter-row shading during sunset as shown in figure 5.5.  

  

Figure 5.5: Inter-row Shading on Solar Panels Connected to Inverter 55 facing 
North (left) and Inverter 25 facing South (right) taken on 4/23/20 

 

Figure 5.5 shows the inter-row shading on the modules during sunset on April 23rd of 

2020. After visiting the site, the performance of inverter 55 (full-cut cells) and inverter 25 

(half-cut cells) were chosen to be modeled due to the significant amount of shading.  

Height, length, and shift measurements of shade at two separate times were taken 

for the three rows corresponding to inverter 55 and inverter 25. Shade shift represents the 
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distance of the shade from the edge of the first solar panel. It is caused by uneven ground 

levels between two adjacent rows, such as the zone of inverter 25 and the azimuth of the 

sun. Shade measurements are important for modeling PV array’s performances, since they 

can impact the performance of the panels, as explained in the previous section.  

 

Figure 5.6: Defining Height, Length, and Shift Measurements of the Shade. The Red 
Triangle is the inter-row shade.   

 
Figure 5.6 was created to visually represent the height, length, and shift 

measurements of the shade on a row of solar panels. Blue rectangles shown in the figure 

represents the row of solar panels, and the red triangle represents the inter-row shading on 

the panels. Shade height and length are a measurement of the height and length of the 

triangle. The shade shift represents the distance of the shade from the closest edge of the 

panel. All the measurements are in meters, and they are used as inputs for the PV 
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performance model. Shade measurements for both inverter 55 and inverter 25 are 

summarized in table 5.1 and 5.2. 

Table 5.1: Shade Height, Length, and Shift Length on Inverter 55 

Inverter 55 on 4/23/20 
Time 4:37 pm 5:17 pm 
Row 1 2 3 1 2 3 

Shade Height 
(m) 0.127 0.1397 0.1397 0.3048 0.3048 0.2921 

Shade Length 
(m) 26 29 23 33 35 34 

Shade Shift 
(m) 0 0 0 0 0 0 

 

Table 5.2: Shade Height, Length, and Shift Length on Inverter 25 

Inverter 25 on 4/23/20 
Time 5:31 pm 5:38 pm 
Row 1 2 3 1 2 3 

Shade Height 
(m) 0.1778 0.1524 0.1016 0.1905 0.1778 0.127 

Shade Length 
(m) 20 29 23 33 35 34 

Shade Shift 
(m) 0.4953 0.5334 0.4572 0.4445 0.508 0.4318 

 

5.2.2 Performance of Shaded PV Strings  

 After visiting the Gold Tree Solar Farm and taking shade measurements for both 

inverters, MPPT current and voltage of each row for those inverters were found using the 

GPM portal. Although all rows experience a similar cell temperature and irradiance at an 

instance, rows perform differently depending on the amount of shade exposure. It is 

important to note that the inverters used in the Gold Tree Solar Farm have 3 MPPT inputs, 

and each row equals one MPPT input. Because the GPM portal does not track individual 

power produced by each MPPT input, power is calculated by multiplying MPPT current 
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and voltage for each MPPT input. The actual performance data collected from the field was 

compared to the modeled data to validate the result.   

 

Figure 5.7: Per Unit Power of Full-Cut Module and Half-Cut Module from 4 pm to 
6 pm on 4/23/20  

 
Figure 5.7 shows the per-unit output of full-cut module (inverter 55) and full-cut 

module (inverter 25) to represents the photovoltaic system performance during the hours 

when the elevation of the sun is decreasing. Per-unit output is the normalized power output 

of both types of modules. Within an hour, the inverter with full-cut modules experiences a 

50 percent decrease in power output, and the inverter with half-cut modules experiences a 

12 percent decrease in power output due to inter-row shading. Even a slight inter-row 

shading during sunset, as shown in the figure with the photos of inter-row shading, is 

heavily responsible for the reduction in energy generation of the Cal Poly Gold Tree Solar 

Farm. 
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Chapter 6  

PERFOMRANCE MODELING OF INTER-ROW SHADED PANELS 

6.1 Introduction  

This PV system performance modeling tool is written in MATLAB, and it models 

the performance of solar panels with a triangular shading. It is capable of calculating MPPT 

current, voltage, and power output from a single MPPT input of an inverter from the Cal 

Poly Gold Tree Solar Farm. Also, a few assumptions were used while modeling the MPPT 

point of the panels. All working panels were assumed to be operating at the same MPPT 

point and ignoring mismatch caused by uneven soiling and module degradation within a 

string.  

 

6.2 Input  

There are several inputs required for the program: height, width, and shift of the 

triangular shadow, ambient temperature, and effective irradiance. These factors impact the 

MPPT point of the IV curve in different ways. The height, width, and shift of the triangular 

shadow impacts the performance of the solar panels and activation of the bypass diodes by 

restricting the flow of the current. The temperature of the cell is inversely related to the 

open-circuit voltage of the panels, since solar cells are more efficient in colder temperatures. 

The effective irradiance is directly related to the short-circuit current. Measured data from 

table 5.1, table 5.2 and table 6.1 was used as inputs for the system performance model. 
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Table 6.1: Ambient Temperature and POA of Inverter 55 and 25 

Inverter 55 25 
Time (4/23/20) 4:37 pm 5:17 pm 5:31 pm 5:38 pm 

Ambient Temperature 
(C) 18 18 18.1 18.1 

POA Irradiance 
(W/m^2) 832 650 608 600 

 

6.3 Module Characteristics  

Using thermal properties of Trina TSM-DE14A(II) and REC Twinpeak 2S 72 solar 

panels from PVsyst database and PV_LIB built-in functions called pvl_calcparams_PVsyst, 

MPPT current and voltage of the solar panels are determined and used to calculate overall 

power output. Because full-cut cell modules and half-cut cell modules have different 

thermal properties and behave differently to shading, there are separate MATLAB models 

for each type of module. 

  

6.4 Cell Temperature and Direct Irradiance Calculations 

The cell temperature sensor on the Gold Tree Solar Farm was malfunctioning, so 

the ambient temperature was used to estimate the cell temperature. The equation shown 

below was used to calculate the cell temperature from the ambient temperature given as a 

user input. 

 𝑇"/00 =	𝑇!123/*- + &(𝑇+456 − 20) ∗ 	
788/"-39/	(;;!#3!*"/

<%%
*       (6.1) 

It is important to note that this equation is an estimation of cell temperature [25], and it 

does not take wind velocity and other factors that contribute to change in cell temperature 

into account. Ambient temperature and effective irradiance are given as the input for users. 
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Temperature at nominal operating cell temperature (NOCT) for moderately efficient 

modules is considered to 48 degrees [26].  

 Finding the correct effective irradiance required a reverse engineering. The 

measured effected irradiance is not adequate to be used, because the pyranometer is 

installed on a tracker in zone Y4. Each zone has a different backtracking angle and ground 

elevation due to the topography of the field, which results in a different direct irradiance 

from the sun. Therefore, finding the effective irradiance on the modules nearby using the 

reverse engineering method was more accurate than the measured POA from the GPM 

portal. 

 

Figure 6.1: Direct Normal Irradiance on a Solar Panel Relative to the Sun’s 
Elevation and the Tracking Angle 

 

The direct irradiance from the sun was calculated by solving 𝐼=3;/"- in equation 6.2 using 

the POA irradiance and tracking angle of zone Y4 from the GPM portal. Suns elevation 

angle was found using pvl_ephemeris from PV_IB Toolbox.  

𝐷𝑁𝐼 = 	 𝐼=3;/"- ∗ sin &𝜃>?*#,	70/9!-3@* 		+ 	𝑎𝑏𝑠=𝜃5;!"A3*B	C*B0/>*                         (6.2) 
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Then direct normal irradiance of the different zones was found using equation 6.2 with the 

𝐼=3;/"- of the sun and respective 𝜃5;!"A3*B	C*B0/ of each zone. It is important to note that 

distortion in the ground level can also affect the amount of irradiance received by the panel 

at each zone.   

 

6.5 Decimal Place Adjustment for Shifting Shade  

 To accurately represent the effect of the shade shift in the model, a series of 

statements were made to adjust the length of the shade shift. These statements were needed 

because the modeling program separates the panel into three substrings and sets each 

substring as a unit space. Since the shade shift is not aligned with the unit space, the 

program breaks down the shift length to decimal places to find the starting point of the 

shade with respect to the unit space.  

     Shifting shade statements find which substring the shade is starting from and 

detects when the shade is covering more than thirty percent of the substring. If the shade is 

covering more than thirty percent of the substring, the program neglects the unit space. 

Otherwise, the program counts the unit space that the shade is starting from, since it does 

not affect the performance of the string. These statements read up to the thousandth decimal 

place of the shade shift.  

 

6.6  Maximum Current Calculation 

This MATLAB model detects when the shadow is covering thirty percent of the 

cells on the bottom row and assigns zero to the substring to represent its inactivity due to 

shading. If the shade is covering less than thirty percent of the cell, an estimate of the 
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current is calculated based on the ratio of the shade height. The equation used to calculate 

the current of the shaded panel based on the ratio of the shade height is shown below.  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡>.!#/# =	𝐶𝑢𝑟𝑟𝑒𝑛𝑡1DD- ∗ &1 −	
>.!#/	E/3B.-F%.%HIJ

%.KLMJ
*       (6.3) 

0.0364 m shown in the equation is the summation of the width of aluminum edge guard, 

and the white space between the cells on the bottom, and 0.1524 m represents the total 

length of a full-cut cell. The fraction represents the percentage of the solar cell that is 

shaded. Then one is subtracted by the fraction to calculate the percentage of the cell’s 

maximum current output. That number is multiplied to the MPPT current at specified 

irradiance and cell temperature to calculate the current output of a shaded panel. 

 The same process was used to calculate for the current of half-cut modules using 

equation 6.4. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡>.!#/# = 	 6?;;/*-$%%&
M

∗ &1 − 	 >.!#/	E/3B.-F%.%MLJ
%.%NIM

*      (6.4) 

 Half of the MPPT current is multiplied to the ratio because the current is divided into 

halves for the half-cut modules. The top half of the module is assumed to be operating at 

its full capacity except when the shade is covering the first substring. In this situation, the 

bypass diode is on for both top and bottom substring to reflect the behavior of the panel 

shown in figure 5.3. 

The program individually checks the height of the shade on 228 substrings and 

assigns the current that the substring can produce according to its logic. Then the program 

finds the maximum current produced by worst shaded solar cells for each string and 

considers that current to be the maximum current that the string can produce.     
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6.7 Finding Single MPPT Point  

To find the MPPT point at a specified time, an IV curve depicting the row of PV 

modules is needed. This IV curve represents the behavior of the shaded PV modules, and 

allows the model to predict the MPPT point.  First, the program filters out the shaded panels, 

and counts active panels in each string. Then, the data points of the IV curves are generated 

using the number of active panels in each string and a PV_LIB built-in function called 

pvl_singlediode. The generated current data is multiplied by the ratio between the shaded 

maximum current and MPPT current without shading to adjust the current data. Finally, 

the current data points for each string are added together to make a single IV curve for the 

row. Complete MATLAB models for full-cut cell and half-cut cell can be found in 

Appendix E and Appendix F.  
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Chapter 7 

RESULTS 

7.1 PVsyst Results  

When compared to the annual energy produced by an inverter without shading, an 

inverter with inter-row shading loses about 9.6 MWh per year. Currently, there are many 

inverters in the Cal Poly solar farm that are affected by the inter-row shading, and they are 

largely responsible for the solar farm’s inability to generate the expected energy output. To 

reduce inter-row shading, changing the pitch distance in the tracking system algorithm to 

backtrack earlier is considered. Before implementing this appraoch, loss of energy from 

backtracking earlier as compared to the amount of energy lost from inter-row shading was 

studied.  

 

Figure 7.1: Annual Energy Produced by Different Pitch Distances in PVsyst 

Figure 7.1 represents PVsyst simulated data of annual energy produced by an 

inverter from the Gold Tree Solar Farm on different pitch distances. With a larger pitch 
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distance, the panels can be tracking and facing the sun for a longer period of time and 

generate more power than panels forced to go on backtracking mode due to the proximity 

of the neighboring row. As shown in the figure, this pitch distance can be directly related 

to the energy production, until the pitch distance is between 2.25 meters and 2.5 meters. At 

those pitch distances, the energy production plateaus, because the software assumes that 

the panels are too close together and they would create inter-row shading if they were 

actually tracking the sun. Also, if the pitch distance introduced in the software is longer 

than 2.75 meters, loss due to inter-row shading is greater than the loss due to shorter pitch 

distances. Pitch distances greater than 3.35 meters will result in larger inter-row shading 

and significantly reduce the power production by not backtracking fast enough.  

 It is important to note that, in PVsyst simulations, the rows of PV modules are 

separated by the user-defined pitch distance. On the other hand, the Gold Tree Solar Farm 

was built with a pitch distance of 3.35 meters for every row. To change the backtracking 

behavior of individual zones, the user-defined pitch distance in the tracker control website 

can be updated. For example, by inputting a pitch distances less than 3.35 meters in the 

tracker control website, the rows backtrack earlier than the preselected pitch distance. 

Therefore, selecting a pitch distance between 2.75 meters and 3.35 meters will be helpful 

for efficiently optimizing the backtracking algorithm. 

 

7.2 PV_LIB Results  

 The backtracking algorithm used in the Gold Tree Solar Farm has to be identified 

and studied to decide on an optimum pitch distance and reduce inter-row shading. PV_LIB 

has a built-in MATLAB function called pvl_singleaxis, and one of its outputs is the single-
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axis tracking angle with backtracking capabilities. The algorithm used in pvl_singleaxis is 

an algorithm from a research called “Tracking and Backtracking” [18]. The main input for 

the tracking algorithm is ground coverage ratio, which is the ratio of module length to pitch 

distance. With the module height of 1.956 meter and pitch distance of 3.35 m, Gold Tree 

Solar Farm’s GCR is identified to be 58.5 percent.  

 

Figure 7.2: Actual Panel Tracker Angle Compared to PV_LIB generated 
tracker angle with backtracking.  

 
As shown in figure 7.2, the actual tracker angle was plotted against PV_LIB 

generated tracker angle using GCR of 58.5 percent. The plot of the actual tracker angle is 

represented as a step function, because the tracker at the solar field maintains its position 

for five minutes. The backtracking algorithm used for the solar field appears to be similar 

after reviewing the actual and generated tracker angle. 
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Figure 7.3: Varying Backtracking Angle with Respect to Pitch Distance  
 

After identifying the backtracking algorithm used in the Gold Tree Solar Field, a 

relationship between different pitch distances and tracking angle was identified. As shown 

in figure 7.3, a pitch distance of 2.25 meters, 2.5 meters, 3 meters, 3.25 meters, and 3.35 

meters were tested to verify the behavior of the tracking angle. Only pitch distances of 3.25 

meters and 3.35 meters reached the full range of preset tracking angles, which is defined 

to be -52° to +52°. As pitch distance decreased from 3.25 meters, the tracking angles 

peaked at smaller angles, and the panels were backtracking earlier, allowing the solar 

panels to flatten out faster. Most inter-row shadings occur when the sun's elevation is low, 

and the tracking angle is steep. By allowing the solar panels to reduce its tracking angle 

during the times when the sun's elevation is low, backtracking can significantly reduce 

inter-row shading on the adjacent rows.   
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7.3 MATLAB System Model Results   

The MATLAB system model outputs two figures for each row of solar panels; a 

visual representation of triangular shade on the panels and current-voltage (IV) and power-

voltage (PV) curves for visualization of system performance. As shown in figure 7.4, each 

blue rectangle represents one string of PV modules, and it consists of 19 solar panels. There 

is a total of 4 strings, connected in parallel, in each row. The red triangle on the blue 

rectangles represents the measured shading created by the adjacent row of solar panels. 

The measured shading is assumed to be perfectly triangular for faster computation, but it 

is important to note that the slope of the ground can distort the shape of the shade. 

 

 

Figure 7.4: Visual Representation of Triangular Shade on Panels  

The power output and the MPPT operating point is marked on the IV and PV curve 

for each row. IV curves for each string are compiled to form a complete IV curve of a row. 

Instead of using an MPPT tracking algorithm, the MPPT point is determined by finding 
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the maximum power point on the PV plot. The inter-row shading creates a local maxima 

and a global maxima in the PV curve, and the model assumes that the inverter is operating 

at global maxima at all times. The amount of peak power generated by the defined row is 

labeled in the PV curve, and the MPPT operating point for the row is accordingly labeled 

in the IV curve, as shown in figure 7.5.   

 

Figure 7.5: Example IV and PV Curve of a Row from the MATLAB model 

Current, voltage, and power values calculated from MATLAB Model were 

compared against the actual data from the GPM portal. As mentioned in the previous 

chapter, both inverter 25 and inverter 55 had shade measurements taken at two separate 

times, and the model was validated using those data. The MATLAB model predicted the 

power output with a range of accuracy between 93.73 and 99.98 percent. Factors such as 
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inaccurate estimations of irradiance and cell temperature, and assumptions mentioned in 

section 6.1 contribute to the error in the accuracy. Appendix G summarizes the percent 

error between calculated values and actual values of current, voltage, and power for both 

inverter 55 and inverter 25.  

 

7.4 Case Study Results  

 The optimization method by decreasing pitch distance to retract the tracker angle 

earlier and reduce inter-row shading on the adjacent rows was validated using six different 

test cases. These cases have been studied between 2 pm and 7 pm to find the relationship 

between power output and the backtracking algorithm with different pitch distances as a 

parameter for the full-cut modules of inverter 55. Then the power outputs from the case 

study are compared with the actual power output from the Gold Tree Solar Farm with a 

pitch distance of 3.35 m with inter-row shading. The power outputs generated from the 

different pitch distances are assumed to be free of inter-row shading. The direct normal 

irradiance for each pitch distance is calculated using the same process as described in 

Section 6.4. 

As shown in figure 7.6, the power output of an inverter with pitch distances of 2.25 

meters, 2.5 meters, 2.75 meters, 3 meters, and 3.35 meters are compared against the actual 

power output of inverter 55 (Full-Cut Modules) with shading on April 23rd of 2020. All of 

the test cases were performed without taking consideration of inter-row shading because 

the PV_LIB Toolbox assumes that the PV modules are installed on a flat surface. With 

pitch distance of 2.25m and 2.5m, the modules backtracked too early, reducing the amount 

of power we can collect when the sun’s elevation was still high. 
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Figure 7.6: Per Unit Power of Inverter 55 (Full-Cut Cell) during sunset with 
different pitch distances for backtracking algorithm vs. actual output on 4/23/20 

 

 With these assumptions, the test cases showed -0.83 percent, 12.47 percent, 23.19 

percent, 30.87 percent, and 39.27 percent difference in power production compared to the 

actual power output of the current PV system, respectively. The improvement in power 

production of pitch distances between 2.5 meters and 3 meters showed the validation of 

this optimization method. It is important to note that with inter-row shading, the power 

production of the inverter could potentially decrease depending on the size of the shade. 

But using shorter pitch distances in the backtracking algorithm will minimize the inter-row 

shading and provide improved power output overall. 
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Chapter 8  

CONCLUSION AND FUTURE WORK  

8.1 Conclusion 

This thesis examined two PV system modeling software called PVsyst and PV_LIB 

Toolbox to identify the backtracking algorithm used in the Cal Poly Gold Tree Solar Farm 

and validated the approach of using optimum pitch distance to improve the system 

performance. This thesis also presented a PV system modeling tool for predicting system 

performance under inter-row shading in section 7.3. The performance modeling tool was 

validated against the real data collected from the Gold Tree Solar Farm with an accuracy 

between 93 to 99 percent. If cell temperature sensor and pyranometer was installed on the 

zones with inter-row shading, accuracy of the MATLAB PV performance model can be 

improved.  

The case study of using different pitch distances as a parameter for the backtracking 

algorithm to retract the tracker angle earlier and reduce inter-row shading on the adjacent 

rows validated the proposed optimization method. This case study showed that the pitch 

distance of 2.25 m as a parameter is inadequate to use since the panels backtracked too 

early and reduced the power output. Also, pitch distances between 2.5 m and 3 m showed 

12.47 to 30.86 percent improvements in the power generation in the afternoon, as explained 

in section 7.4. With the results from this thesis, the inter-row shading model can be 

incorporated to find the partial shading size related to the tracking angle and ground 

elevation to precisely model the performance of the PV system. 
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8.2 Next Step 

The next step for this performance modeling tool is to improve the accuracy of the 

performance output generated. Furthermore, the accuracy of the model could greatly 

improve by acquiring an accurate direct irradiance and cell temperature readings by 

installing a pyranometer and a temperature sensor on zones that are heavily affected by 

inter-row shading. After some improvements in the accuracy of the model, it needs to be 

integrated with a 3D inter-row shading model of the PV modules. Due to the recent 

pandemic, acquiring the height of the tracker axis and the ground elevation from scanning 

the solar field with a lidar scanner has been delayed.  After finding these exact positions of 

the tracker axis, the 3D shading model will need to be integrated with the system 

performance model to find the optimum pitch distance as a parameter for the backtracking 

algorithm. This pitch distance will be implemented into the actual backtracking algorithm 

in the Gold Tree Solar Field to reduce inter-row shading and improve the energy production. 
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APPENDICIES 
 
Appendix A: Cal Poly Solar Field Layout  
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Table A.1: Zone and Corresponding Tracker Name    

Zone Number Tracker Name Number of Rows 
1 X1 21 
2 X2 19 
3 X3 20 
4 X4 13 
5 Y1 18 
6 Y2 18 
7 Y3 19 
8 Y4 20 
9 Z1 26 
10 Z2 14 
11 Z3 21 
12 Z4 15 
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Appendix B: System Component Data Sheet 
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Appendix C: GPM Portal Instructions 

Following figures explain how to obtain Cal Poly Solar Farm data from GPM Portal.   

 

Figure C.1: GPM Portal Main Page  

 

Figure C.2: Navigating to Quick Query  

 In the Quick Query page, user can choose which information to view in the element 

type dropdown menu box. Some of the available information include; inverter performance, 
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plant parameter, tracking, and weather data. Within each element type, there is a selection 

of individual element and parameters to view. For example, to find POA and GHI of the 

plant, user must select Plant Parameters in the element dropdown menu and choose Plant 

Irradiance (Tilted) and Plant Irradiance (Horizontal) in parameter menu. Figure 2.7 

displays an example plot of GHI and POA, but user can change element types by using the 

dropdown menu located in the orange box shown in the same figure. A table or a chart will 

be displayed according to the designated time chosen by the user. GPM Portal displays the 

real-time values if desired time is not defined. Previous data from different dates can be 

accessed by choosing desired date and time in the box labeled in red in figure 2.7.  

 
Figure C.3: GHI and POA data from GPM Portal 

 
List of data used in this thesis and chosen element type, element and plant 

parameters to find the data is given in the table below. For this study, inverter 50 was 

chosen as an ideal inverter, because strings of PV modules connected to inverter 50 are not 

shaded throughout the day, providing optimum power and energy generation on a clear day. 

Tracker Z1was chosen because angle of this tracker represents the actual position of PV 
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modules in inverter 50. These data were gathered and compared with results from different 

simulation tools to validate the programs used in this thesis.  

Table C.1: Quick Query Guidance to Useful Data 

 POA / GHI Power / Energy Backtracking Angle 
Element Type Plant Parameters Inverter Tracker 

Element N/A Inverter 50 Tracker Z1 

Plant 
Parameters 

Plant Irradiance (Titled)/ 
Plant Irradiance 

(Horizontal) 

Active power/ 
Daily Active 

Energy 

Tracker – Actual 
Position 

 

 To download data from GPM Portal, user must select an option to view the data in 

a tabulated form and click on the download button to begin the download. It is important 

to note that data are recorded per minute, so user must expect some lag while loading the 

data. Both options to view the data in tabulated form and the download button is 

highlighted with a red box shown in a figure below. GHI data was downloaded from GPM 

Portal to be used in the simulation tool to mimic similar irradiance condition.  

 
Figure C.4: Downloading Data from GPM Portal 
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Appendix D: PVsyst Instructions 
 
Following figures and explanation demonstrate how to run simulations and view data in 

PVsyst.  

 
 

 

Figure D.1: PVsyst Start Menu  

 

After selecting project design from the start menu, user can choose from four 

different systems as seen in figure D.1. All of the analysis and study is done on grid-

connected option, because Cal Poly Solar Farm is a grid-connected system.  
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Figure D.2: Project Design Menu 

 

In order to obtain accurate result from simulation, user needs to define both type 

and amount of PV module, Inverter, and tracking system, and select meteorological data 

of the system location in Typical Meteorological Year 3 format. TMY 3 are data sets 

containing solar radiation and meteorological information for a 1-year period given in 

hourly values. Main purpose of TMY 3 is to be used as a solar radiation resource to perform 

computer simulations of PV systems, and compare the simulated energy generation to the 

actual system energy generation [28].   

 PVsyst database includes a wide compilation of photovoltaic system components 

including modules, inverters and batteries, but users can also import or create their own 

technical components to be used in the simulation. Built-in meteorological data, such as 
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global irradiation, diffuse irradiation, and average external temperature is also provided by 

Meteonorm in PVsyst. User can also look up details of existing components or import 

meteorological data file when selecting Databases option in figure D.2. Figure below 

represents the Databases menu with meteorological data on the left side and system 

components on the right side.  

 

Figure D.3: System Database 

 

Although satellite data from the NASA-SSE project and data from NSRDB PSM 

are available in the PV Syst database, those two options doesn’t provide a meteorological 

data for a specific location. Also, data provided by PV Syst range from 1998 to 2014, so it 

will be inaccurate to compare the current power and energy generation with a computer 
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simulation using data from 2014. So, choosing to import current meteorological data 

corresponding to the location of solar farm helps with accuracy of power and energy 

generation simulation. Figure below shows the importing weather data window from PV 

Syst, and it is important to note that data from Solar Anywhere is used for this thesis as 

shown in a dropdown menu labeled with a red box.  

 

 

Figure D.4: Importing Meteorological Data Window 

 

Simulations of energy generated in PVsyst are calculated in hourly intervals over a 

year. PV Syst takes the meteorological data system parameters provided by a user and 

performs the simulation. Before running the simulation, it is important to check to see if 
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site file and meteorological file corresponds to site of interest. Those informations can be 

verified by looking in the Project’s description box shaded in blue shown in figure D.5.  

 

 

Figure D.5: Project Description Window  

 

 After verifying the description of the project, main parameters of the simulation 

need to reflect the parameters of the actual system being modeled. For this study, PV 

modules are ground mounted with a single axis tracking capability. Trackers are equipped 

with backtracking, with tracking angles ranging from -52° to +52°. Pitch distance, the 

distance between each pole supporting the PV modules, is set to 3.35 meters. There are 

total of 12 trackers in Cal Poly Solar Field that are set to the same setting. These 
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informations are reflected in the Orientation window from simulation input parameters 

shown in figure D.6.  

 

 

Figure D.6: Orientation Setting Window  

 

 Next input parameter is defining system configuration such as PV module and 

inverter. PV Syst database contains large quantity of different PV modules and inverter, 

where most of the existing products can be found in the database. For this study, Trina 

Solar 345-Watt monocrystalline module and Yaskawa Solectria Solar 60TL inverter were 

selected in the dropdown menu provided in the corresponding section shown in figure 3.9. 

Each inverter has three mppt input and it is connected to 12 strings of PV modules, where 



 

67  

each string has 19 PV modules connected in series. Amount of string and PV module can 

be inputted in the red box labeled on figure D.7. Figure D.7 represents a simulation model 

of a single inverter connected to 12 strings of modules to compare the performance of 

inverter #50 from Cal Poly Solar Field.  

 

 

Figure D.7: Grid System Definition Window  
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Appendix E: MATLAB Model of Inter-row Shaded Panels (Full-Cut Cell) 
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Appendix F: MATLAB Model of Inter-row Shaded Panels (Half-Cut Cell) 
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Appendix G: Percent Error of Current, Voltage, and Power 

 

Tables shown below summarizes the percent error of modeled values and actual values of 
current, voltage, and power of inverter 55 and inverter 25.  

 

Table G.1: Percent Error of Modeled Values and Actual Values of Current, Voltage, 
and Power of Inverter 55  

 
Inverter 55 on 4/23/20 

Time 4:37 pm 5:17 pm 
Row 1 2 3 1 2 3 

Current -3.0491 0.9443 3.0997 0.5266 2.1844 6.8423 
Voltage  -0.7009 -0.9662 -0.9957 -0.1196 -0.0627 -3.4471 
Power 3.7921 0.0127 2.1348 0.4076 2.1301 3.6311 

 

Table G.2: Percent Error of Modeled Values and Actual Values of Current, Voltage, 
and Power of Inverter 25  

 
Inverter 25 on 4/23/20 

Time 5:31 pm 5:38 pm 
Row 1 2 3 1 2 3 

Current 1.1414 0.1632 1.0453 0.1256 -4.0635 0.6540 
Voltage  -2.4785 0.4568 -1.8218 -2.0594 -2.1188 -2.2825 
Power 1.3096 0.6192 -0.7575 -1.9312 -6.2684 -1.6136 

 


