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ABSTRACT

Identification of Users via SSH Timing Attack

Thomas Flucke

Secure Shell, a tool to securely access and run programs on a remote machine, is an

important tool for both system administrators and developers alike. The technology

landscape is becoming increasingly distributed and reliant on tools such as Secure

Shell to protect information as a user works on a system remotely. While Secure

Shell accounts for the abuses the security of older tools such as telnet overlook, it

still has fundamental vulnerabilities which leak information about both the user and

their activities through timing attacks. The OpenSSH client, the implementation

included in all Linux, Mac, and Windows computers, sends each keystroke entered to

the server as soon as it becomes available. As a result, an attacker can observe the

network patterns to know when a user presses a key and draw conclusions based on

that information such as what a user is typing or who they are. In this thesis, we

demonstrate that such an attack allows a malicious observer to identify a user with a

concerning level of accuracy without having direct access to either the client or server

systems.

Using machine learning classifiers, we identify individual users in a crowd based solely

on the size and timing of packets traveling across the network. We find that our

classifiers were able to identify users with 20% accuracy using as little as one hour of

network traffic. Two of them promise to scale well to the number of users.
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Chapter 1

INTRODUCTION

Secure Shell is a core part of the computing landscape. According to one survey, 68%

of respondents said that Secure Shell is important or critical to their organization

[26]. With the internet increasingly moving towards cloud hosting and distributed

computing, there is a distinct need for the ability to perform system maintenance

remotely. Over years, several protocols have existed to remotely launch programs, but

many of them did not account for potential abuses and provided little to no security

[46, 43]. Secure Shell was developed in part as a response to this lack of security and

attempts to protect the confidentiality and authenticity of the transmitted data. In

comparison to the prior iterations of these remote access protocols, Secure Shell does

this job quite well and has come to replace these out-dated tools almost entirely.

But as the computing industry becomes more security conscious, attackers become

more clever. Rather than attacking a system directly, timing attacks become increas-

ingly common [32, 6, 25, 51]. This is an attack surface which is not covered in the

Secure Shell standards, which neglect the implementation details and allow the client

implementation to decide how to control the flow of data for performance reasons [45].

Unfortunately, this allows room of insecure implementations after the authentication

process has completed [43]. In this study we examine one possible implication of this

lack of definition.

In the OpenSSH implementation of Secure Shell, the implementation included in

all Linux, Mac, and current Windows computers by default, the client optimizes

performance by sending each key or signal as soon as it is received [10]. As a result, a

1



malicious attacker who is able to observe the network traffic can identify with varying

levels of precision when a victim presses a key. On first notice, knowing when a user

presses a key may seem harmless, but it reveals private information about both the

user and what they are typing [32, 25, 43, 3, 51, 42, 38, 27]. While other researchers

have demonstrated that information such as what password a user has entered into

the terminal, we examine a more subtly dangerous information leak. In this paper,

we use machine learning demonstrate that an attacker can use the information that

OpenSSH sends over insecure networks to identify the user typing at the terminal.

While less obviously dangerous than obtaining passwords, this breach of confidential-

ity has serious implications. An attacker can combine this attack with the aforemen-

tioned password attack to obtain both an identity and a password. An oppressive

government could use this method to identify citizens over what it intended to be a

confidential channel. Or an organization could use this method to covertly track the

movements of individuals in a direct violation of their privacy.

Studies have already shown that a program can identify a user based on their typ-

ing patterns [42, 38, 27]. Another study has found that software reveals identifying

information about itself over secure tunnels which machine learning algorithms can

reliably detect. [25]. Other studies have already exploited such weaknesses in the

Secure Shell protocol [43]. This study will be the first attempt to combine these

methodologies to identify a human individual without every having direct access to

either the client or server systems.

We find several machine learning classifiers which were able to classify many people in

a crowd of connections with up to 27% accuracy. In addition to this, we find that the

method scales well with the number of potential victims implying this attack could be

used on a large population without significant loss. We also examine the importance
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the amount of data plays in the accuracy of the system, the source from which the

data was gathered, and the comparative effectiveness of several learning algorithms.

1.1 Ethical Implications

Before we begin this study, as is always the case when testing the security of a system,

we must consider the ethics of the study. This in study, we attempt an attack which

thus far has not been demonstrated to be possible. Malicious entities reading this

paper may use the information contained within to use this attack on victims outside

of a laboratory setting.

The risk of an attacker using the information in this paper is not new though. Others

have already presumed that such an attack is possible and a determined attacker

may already attempt it [43, 3]. One of these studies have already been able to pull

password information from the vulnerability. We are not the first to believe that such

an attack is possible nor are we the only ones with the resources to attempt this. All

of the software used in this study are open source and therefore any person with the

technical skill could do what we have done in this research. There are many malicious

actors with more skill and resources than we have who could likely replicate these

results more reliably. We therefore must conclude that without our involvement,

potential attackers might already exploit this breach of confidentiality. We hope that

by publishing this research we can impress the significance of this vulnerability which

has already been proven to be exploitable by other papers [43].
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Chapter 2

BACKGROUND

2.1 Terms and Technologies

This thesis makes reference to a number of networking tools and technologies and

machine learning techniques which are imperative to understanding this research and

its significance. This section will make clear the details of these terms.

2.1.1 Secure Shell

Secure Shell (SSH) is a protocol which provides secure network services over an in-

secure network [44]. The details of what services this protocol accommodates are

flexible, allowing the SSH server to supplement a default set of procedures. On Linux

and most Unix-like systems, the program ssh will use the SSH protocol to open an

interactive command shell on a remote server [49]. The implementation details of

these procedures after requesting a service are not defined in the Request for Com-

ment (RFC) defining the service beyond a few required messages and services which

must be supported by all implementations and a few reserved service names [44].

Secure Shell is possibly one of the most critical tools for system maintenance. SSH is

pervasive in industry with 82% of survey respondents reporting that they use it and

68% said SSH was important or critical to their business [26]. OpenSSH (a specific

implementation of SSH) is used in all Linux, Mac, and latest Windows computers at

the time of writing, as well as many more systems [10]. Because of the wide use of

this tool and the intended use of transporting sensitive information over an insecure
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network, information leaks resulting from implementation details have the potential

to jeopardize the confidentiality of data the user believes to be secure [44, 26].

Secure Shell is built on top of the Transmission Control Protocol to ensure that all

signals sent from the client to the server are delivered correctly.

2.1.1.1 Transmission Control Protocol

The Transmission Control Protocol (TCP) is a network protocol which ensures data

send from one host to another arrives at its destination and are ordered correctly [35].

This is often implemented as a module inside the the operating system kernel. The

module will buffer inputs and outputs separately, sending segments at a time to create

the appearance of a continuous stream of data and saving them on the receiving end.

Important to this study, TCP does not guarantee that data will be sent immediately

when the sending process provides it [35]. Rather, the protocol will wait until the

buffer is filled unless the sending process associates the PUSH flag with the data. In

the case that the PUSH flag is associated with outgoing data, the output buffer will

be sent to the receiving host immediately, regardless of the buffer’s current capacity.

2.1.2 Attack Models and Defenses

This thesis seeks to expose information which SSH should protect. To this end, we

make reference to several models of attack and defense and the counterplay between

them.
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2.1.2.1 Man in the Middle Attacks

A Man in the Middle (MitM) attack is a type of attack that is conditional on the

access of the attacker. Specifically, the attacker places themselves in the path of

communication between two hosts such that all network traffic between them pass

through the attacker’s system [5]. Figure 2.1 visualizes this. This allows the attacker

to observe, modify, replace, or drop packets. This process can be thought of as

similar to a malicious mailman who opens up the letters of the families he delivers

letters to or writes fraudulent letters in the name of a friend or family member.

Protocols which use strong encryption and hashing algorithms are resistant to MitM

attacks attempting to modify or replace the communication because of the difficulty

of creating a new, valid encrypted message without also having the encryption secret

[46]. Observing the communication directly would require breaking the encryption

which is difficult using industry standard encryption methods.

Figure 2.1: Visualization of a Man-in-the-Middle Attack [13]

2.1.2.2 Encryption

Encryption is the process of encoding information using a secret value, often called

a secure key or secret, such that only those who know the secret can read the in-
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formation [1]. This protects against direct manipulation of the data by a MitM as

described above because without knowing the secure key the attacker cannot create

a new message which the secure key will decrypt correctly. Having this protection is

useful when communicating over an untrusted network where bad actors might access

private information. Additionally, encryption provides some defense against altering

the message because without knowing the secret the attacker cannot know how their

changes would translate in the decryption process. More advanced cryptographic

techniques can provide further security against certain types of nuanced attacks.

2.1.2.3 Timing Attacks

Timing attacks seek to use information about the timing of data to infer information

about it [6, 25, 32]. Encryption provides no protection against a timing attack because

timing attacks do not attempt to directly access the data, rather learn about it by

inference. For example, if an attacker knows that a bank statement takes on average

1 second to load, but a money transfer takes 7 seconds, the attacker can measure the

time between when the server receives the request and when it sends a response to

estimate what type of operation the client requested. The attacker never needs to

see the contents of the communication between the client and the server to make this

inference assuming it has a prebuilt lookup table mapping timings to events.

There are many types of timing attacks, but in this thesis we focus on network based

timing attacks.

2.1.3 Machine Learning Classifiers

Machine learning (ML) is a class of algorithms that take data as an input and use

mathematical models to find patterns in the data [31]. These patterns are incor-
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porated into a resulting system which can provide insights into new data. The sig-

nificance of this is that the programmer does not need to tell the algorithm what

patterns to look for as the algorithm will discover these patterns on its own. This is

very useful for discovering patterns in complex, multifaceted data which may not have

an intuitive algorithm to solve. While ML can be either supervised, unsupervised,

or semi-supervised, this thesis only makes use of supervised learning. In this thesis,

several machine learning algorithms are used to interpret the complex data obtained

through the MitM.

2.1.3.1 Supervised Learning

Supervised Learning is the process of training an ML algorithm using known data

[23, 37]. An existing set of data is pre-tagged, usually manually, with the desired

output for the algorithm. The ML system is then feed the data and tags which it uses

to find the patterns, a period known as training. Once the patterns are discovered,

the system can take untagged input and output a predicted tag.

Afterwards, a testing period verifies that the system has trained correctly. This is

done by segregating the pre-tagged data set into a training set and a testing set

[23, 37]. The algorithm is only allowed to train on the training set. Once training

completes, the system is used to predict the tags of the testing set without seeing

the tag. The predicted tags are then compared to the actual tags to determine the

accuracy of the system’s outputs. Figure 2.2 visualizes this whole process.
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(a) Training (b) Testing

Figure 2.2: Visualization of Training and Testing

2.1.3.2 K-Fold Validation

A risk in the tradition ML training/testing split is that due to anomalies or unevenness

in the distribution of data points in the training and testing set, the algorithm will

seem to produce results which do not represent the general population. For example,

if the data points of one tag are disproportionately placed into the testing set it will

artificially weight the accuracy of the final test to algorithm’s ability to identify this

tag. K-Fold Validation mitigates this problem.

Using K-Fold validation, all the samples are divided in K separate divisions [37]. Then

the algorithm is trained and tested K times, each time disregarding the previously

learned patterns and each time using a different division as the testing set as can be

seen in Figure 2.3. After all the runs are complete, the results of each of the testing

phases are averaged into a final accuracy score. This method ensures that each tag

is represented in the final accuracy score in relation to its representation in the data.

9



Figure 2.3: A visualization of 5-fold validation [41].

2.1.3.3 Hypertuning

ML Algorithms are not one-size-fits-all. Most algorithms have configuration param-

eters which determine how the program runs [23]. The exact parameters which yield

the best results are often domain specific and can be hard to determine without ex-

perimentation. The process of hypertuning, also called parameter tuning, involves

running the classifier with each set of parameters to determine whether or not a

particular configuration provides better or worse performance than the others. The

ultimate goal of hypertuning is to find the optimal set of parameters. The developer

can hypertune for any variable they prefer, but in this thesis we hypertune exclusively

to maximize accuracy.

2.1.3.4 Principal Component Analysis

Principal Component Analysis (PCA) is the process of transforming data using linear

analysis into a new dataset which preserves the differences [23]. The important dif-

10



ferences in the new dataset are that each of the components are uncorrelated, which

hence reduces the redundancy of features. Additionally, the analysis orders the prin-

cipal components by their descriptive power such that the components most useful

are first. Means that depending on the dataset, a small handful of features can be

chosen which contain the same power as almost all of the features. This is useful for

reducing the number of features which can help algorithms train more quickly by not

having to discover which features are not useful.

Importantly, it is impossible to both reduce the feature space and retain the full

descriptive power of the original feature space. Therefore, using PCA will require

either losing some descriptive power or transforming the data into a descriptively

identical feature set of the same length.

2.1.3.5 Classifiers

A classifier is an algorithm which takes in input and assigns it to one of several

classifications. The goal of this thesis is to use classifiers to classify SSH connections

according to who is using it. In this section, we will examine several classifiers which

we use.

2.1.3.6 K-Nearest Neighbors Classifier

The K-Nearest Neighbors Classifier (K-NN) is a very simple algorithm. It takes each

of the data points in the training set and plots them in N-dimensional space [23].

When asked to predict a new tag for a sample, the classifier algorithm finds where

the new sample lands in the N-dimensional space and finds the K training points

closest to it. Each of those training points then votes that the new point be classified

according to their own tag. See Figure 2.4 for a visualization of this process.
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Figure 2.4: Visualization of a K-Nearest Neighbors Classifier
This visual uses a 2-dimensional feature space and K = 15 [37]. The dots represent
training samples, the color of the dots represent the training tag, and the colored

space represents the predicted tag for a testing sample at that location.

This method supports many voting schemes, although the most common are uniform

where each point casts one vote and linear distance where the votes of training points

count more the closer it is to the new point [23].

Additionally the K value is flexible, although which is best tends to vary on the type

of data [23].

Finally, the K-Nearest Neighbor has the unique feature of offering a hierarchy of

classifications. Unlike most ML classifiers which output a single tag, K-NN can output

a list of possible tags ordered by percentage of the vote received.

12



2.1.3.7 Random Forest Classifier

A Random Forest (RF) Classifier is a model which uses an array of Random Decision

Trees (RDT). Each tree is composed of nodes, branches and leaves [23]. To classify

data, a sample is fed into the root node. Each node contains a feature to examine

and a set of branches corresponding to each of the possible values or ranges of values.

Each branch leads to either another decision node which repeats this process, or a

leaf which determines the class for the sample. See Figure 2.5 for an example.

Figure 2.5: A sample RDT [47].

The RDT is built up from algorithms which examine training data and decide which

features best characterize the data [23].

RDT are powerful because they provide conditional classification and relate features

together while still being inspectable. One failing is that they can be fickle and small

changes in how the graph is constructed can significantly change the results. To solve

this problem, the Random Forest uses many trees in aggregate. The RF builds a
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large number of RDTs using its training data. When asked to classify a sample, the

RF feeds it to each of the RDTs. Each RDT then votes for a proposed classification

and whichever tag gets the most votes is the output of the RF.

2.1.3.8 Support Vector Machine Classifier

A Support Vector Machine (SVM) is a relatively new ML algorithm [23]. It works

by plotting the training points on an N-dimensional space and drawing divisions to

create a, ’margin’, between the classifications. Untagged data is then plotted in the

N-dimensional space and associated to the class it most closely fits. In order to

force the distinct classes to be non-overlapping, the input space is mapped onto an

N-dimensional feature space.

The transformation allows for a non-linear separation in the input space to become

a linear separation in the feature space as seen in Figure 2.6.

Figure 2.6: Conversion from input space to feature space in a SVM [50]

Because SVMs uses n-dimensional vectors rather than the original input data, the

computations can be faster and the model scales more efficiently [23]. At the same
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time, the algorithm is very sensitive to its configuration making good hypertuning

crucial. Additionally, training an SVM is slow which complicates hypertuning.

2.1.3.9 Perceptron Classifier

A perceptron is a simple model which outputs either a 1 or a 0 according to equation

2.1 where x1..N is an array of inputs, w1..N is an array of weights, and b is a bias

weight. [23].

b+
N∑
i=1

wixi > Threshold (2.1)

A single perceptron or array of perceptrons by themselves can classify according to a

linear combination of features. For more complex classifications, perceptrons can be

arranged into layers. Most commonly, one layer will receive an input, pass it on to a

hidden layer which then can pass it on to more hidden layers until reaching an output

layer which classifies the input based on the previous computations. This model

simulates the processes of the biological brain, with each perceptron representing a

neuron which either fires or does not. Each neuron which fires influences the potential

for further neurons to fire. The result is a system that classifies values according to

non-linear combinations of inputs, as is visualized in Figure 2.7.

Figure 2.7: Visualization of an ANN [39].
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To train the perceptron network, also known as an artificial neural network, neural

network, or ANN, training data is fed through the network as if it was being classified.

Once a result tag is determined, it is deemed either correct or incorrect. If correct, all

perceptrons involved in the computation are, ’rewarded’, and given stronger weights.

If the output is incorrect, the perceptrons involved are, ’punished’, and given weaker

weights.

Perceptrons are very powerful, but are hard to tune properly and take a long time to

train [23].

2.1.4 Statistical Accuracy

Any algorithm has a chance of getting some predictions correct by random chance [9].

In some cases, the algorithm may outperform the statistical average by sheer luck. In

order to be confident that the model is performing according to its merits, we employ

several statistical models.

2.1.4.1 P-Values

When determining whether or not a result is significant, we calculate a p-value. Given

a null hypothesis (H0), a p-value is the probability of observing the provided sample

[9]. This idea is visualized in Figure 2.8
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Figure 2.8: Visualization of a P-Value [48]

A p-value is important because of its use in comparing to the significance level of

results. Before a significance test, a threshold significance level is predetermined for

the p-value. When the p-value is below the significance level, in other words the

sample is a below a certain likelihood of being observed, the results are considered

significant enough to reject the null hypothesis. Common significance levels are 0.05

or 0.01.

2.1.4.2 Confidence Intervals

A confidence interval is a range of values derived from the sample in which the true

value of the measure parameter is expected to be [9]. If a test were repeated 100 times

and a 95%-confidence interval calculated for each one, 95 of the resulting ranges would

be expected to contain the true value. For example, if someone were to measure the

height of 50 men in the United States and calculate a 95%-confidence interval based
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on that sample, there would be a 95% chance that the average height of men in the

U.S. would be within that interval.

2.1.4.3 F1-Score

The F1-Score is a measure of a classifier’s accuracy. The F1-Score works by computing

the harmonic mean of the recall and precision as seen in Equation 2.2 [12].

[!ht]

F1 = 2
pr

p+ r
(2.2)

Figure 2.9: The F1-Score Equation.
p represents precision and r represents recall.

The precision is defined as the ratio of predictions which are accurate to total pre-

dictions. The recall is defined as the ratio of predictions which are accurate to all

the predictions which should have received the tag. For example, a classifier which

always predicts the tag A for a dataset which contains an even split of A, B, and C

will have perfect recall for A but 1/3 precision.

2.2 Related Works

Although some researchers have suggested that studies have proven that an attacker

can identify a user based on their packet timings, they failed to provide a source which

demonstrates this and we could not find any corroborating evidence in scholastic

databases [3].Other researchers have proposed that such an attack is hypothetically

possible, this particular attack has thus far been outside the scope of their research

[43]. Although this attack has not explicitly been tested, there have been several

studies in related areas that indicate its potential.
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2.2.1 Vulnerabilities in Secure Shell

Because Secure Shell is so widely used, there already exists studies which examine

possible vulnerabilities in the protocol or the OpenSSH implementation which we

discuss here.

2.2.1.1 Secure Shell Timing Attacks on Passwords

In a study by study conducted by Song et al. they were able to extract information

about passwords typed on a secure SSH channel using only the timing of packets

[43]. By detecting packets which represent keystrokes, the researchers were able

to accurately measure the timings of key presses and calculate the time between

them. They could then map the timings of the digraphs to a pre-computed statistical

model of digraph timings. From this, they were able to determine on average 1 bit

of information per keystroke in addition to the length of the password. Using this

information, they created a Markov Model which successfully guessed the password

70% of the time within 40 guesses. They only used 4 human participants and found

that testing accuracy was hindered by using training data a different user.

In their paper, they suggest that the inter-keystroke timing could be used to identify

the user but did not attempt to detect this using the Secure Shell traffic.

2.2.1.2 Attacks on Secure Shell Cryptography

Researchers Albrecht et al. published in their paper a vulnerability working around

the cryptography of Secure Shell [1]. By mutating the header of a Secure Shell packet,

replacing it with a block from another message, they can distort the length field in

the header. This will cause the MAC validation at the end of the packet to fail. The
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number of blocks read before the MAC validation fails reveals information about the

substituted header. In this way, the researchers were able to extract 18 to 32 bits

of cleartext, depending on implementation details, without ever accessing the shared

secret.

2.2.2 Timing Attacks

In addition to attacks targeting SSH, there have been studies similar to this in that

they use the timing of network traffic to extrapolate sensitive information. While

these papers do not have the same targets as this thesis, they do use similar methods

and prove some degree of viability.

2.2.2.1 Identifying Encrypted Traffic

Leroux et al. examined the network patterns of several applications to see if they

could be identified over an encrypted network [25]. They were able to identify the

program from which network traffic originated with great accuracy based solely on

the timing and size of packets on the Tor network or a VPN. They were able to

accomplish this by measuring the Inter-Arrival Time (IAT), packet size, and ‘burst’

size (A burst is a grouping of packets in close succession). Feeding these statistics into

several machine learning algorithms, each was able to learn the patterns of different

applications to some degree. This proves that different applications have significant

differences in their network signatures and that the timing differences introduced by

redirection and encryption do not significantly obscure these differences.
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2.2.2.2 Search Engine Auto-Complete

In a recent study, Monaco was able to use the timing of packets to determine what a

user typed into a search engine. [32]. Many search engines now have an auto-complete

feature which attempts to guess what a user is typing before they finish. Whenever

a user begins to type, the browser sends the partial search string to the server which

then sends back a list of possible completed search strings. Using the timing of these

signals and the size of the partial search string, Monaco was able to decipher what

keys were pressed with near perfect accuracy.

Of note, this study did not use live participants but rather a public database of

recordings of participants typing which were replayed into a live web browser.

2.2.2.3 Noise

In a study conducted by Crosby et al., they examined the potential of timing attacks

executed over a network and the levels of precision to the timing of events over a global

network [6]. They found that the round-trip-time for a packet strongly correlated

with the time the server spent processing a request. This would indicate that that

after adjusting for networking delays, the variation in noise delay from a network is

negligible compared to the primary operations. Contrary to this, they also found that

at the lowest quartile for response speed the correlation began to waver significantly.

Notably, neither this paper nor Leroux et al. examined the timing effects of both

encryption and network noise on an encrypted payload [6, 25]. Despite that neither

of these papers tested the impact of these two variables together, neither alone has

a disruptive impact on the timing reliability. This study proceeds with the assump-
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tion that these variables combined will not have a significant disturbance. If such a

disturbance does emerge, it will show in the analysis of this study.

2.2.3 Programmer Identification

Finally, there has been plenty of research done on identifying users based on how they

use the computer. Many of these study focus on identifying intruders or fraudulent

accesses, but these techniques could also be used for more malicious purposes by an

eavesdropping attacker. Additionally, because programmers interact with a computer

differently than those from other fields, some of these studies have focused on this

occupation specifically [27].

2.2.3.1 Typing based Identification

A study from the University of Helsinki in Finland found that they could reliably

identify programmers based on their typing patterns [27]. In their study, they mea-

sured the time between keystrokes, time to press a key, or time to type a specific

digraph. Using this data and a simple nearest-neighbor classifier, they were able to

successfully identify the participant with a high degree of accuracy. In particular,

they found that the time to press a specific key combined with the time to type a

digraph were the most useful for their algorithms.

2.2.3.2 Shell based Identification

In a study conducted by F. Khosmood, P. Nico, and J. Woolery, researchers found

that users are strongly identifiable based solely on their shell usage [22]. Using only

the bash history, they were able to identify users from a large sample with almost
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90% accuracy using natural language processing and machine learning. In particular,

they found that the most useful features for identification were the unique tuples of

3 words, and that the most useful algorithm was the multinomial logistic regression

classifier.
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Chapter 3

METHODS

This study seeks to prove the viability of an attack. Towards that end, we setup up

our recruitment and data collection methods to imitate how such an attack would

occur in the wild. Once data has been collected, our preprocessing system separates

and tags the data for each participant and performs the feature extraction. Finally,

we feed the tagged data into the machine learning classifiers for analysis and compute

the final accuracy and power score pairs.

3.1 Attack Model

The attack we imagine follows the following flow:

1. Attacker obtains a position between the victim and their server.

2. Attacker filters SSH connections based on IP to limit the scope of the attack.

3. The attacker acquires a sample of the victim’s typing patterns.

4. Attacker uses machine learning to identify victim.

The attacker’s system will look like Figure 3.1.
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Figure 3.1: Model of the Attack

Step 3 in this attack can occur at any point before step 4. We will address how any

attacker may achieve each of the first three steps here and we analyze the viability of

step 4 in the results section.

3.1.1 Obtaining MitM Status

Obtaining a privileged position between the victim and their server has challenges

but is possible. An attacker with state level resources could easily obtain such a

position through the Autonomous Systems (AS) which already sit in such a position

[7]. An attacker with fewer resources could position themselves close to the victim

and advertise a false route to the server. This technique is known as a route attraction

attack, in which an attacker advertises a phoney route to a target resulting in the

network routers sending all the data to the target to the attacker [2, 24]. And because

the connection is not disturbed in any way, the attack can be difficult to identifying the

bad actor. In either case, attackers have known methods for achieving this position.
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3.1.2 Filtering IPs

IP addresses are generally not considered sensitive information by virtue of being

publicly registered and advertised as a core part of routing packets [11, 34]. The IP

addresses of companies and organizations can be found by an easy search [4].

3.1.3 Obtaining Typing Record

Finally obtaining a recording of the victim’s typing can be the most difficult of the

three but still possible. Users type into web sites freely and without concern for

the data they generate. Popular web sites like Facebook already record activity

information such as this [16]. If the attacker does not have access to such data already,

they could make a web site with the purpose of extracting typing information from a

victim [19]. Certain patterns such as a victim’s typing speed, propensity to copy and

paste, and activity patterns such as how frequently they switch between tasks could

all be measured by a user’s normal web usage. At the same time, we do not have any

guarantee that patterns identified from one dataset will translate well into another.

Additionally if this attack is viable, it suggests that more autonomous methods of

identification may be possible. In this study we use supervised learning, but future

studies might find success with semi-supervised or unsupervised learning algorithms

which would negate the need for a separate dataset.

3.2 Recruitment

In this paper, we assess the viability of an attacker identifying an victim by the

Secure Shell traffic. To accurately test the attack, we created a test environment
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which reflects an attack in the wild as closely as is possible with our resources. In

particular, we focus on these factors:

• Different people typing

• Different types of tasks

• Real network latency/jitter

To meet the first point, we make sure to recruit at least 25 distinct participants. The

second point is addressed in Section 3.2.1 and the last point is addressed in Section

3.3.

Because this study involves the monitoring of participants and the aggregation of their

data, we made a concerted effort to protect the privacy of participants To this end,

all procedures involving data collection were reviewed and approved by Cal Poly’s

Institutional Review Board prior to the collecting of any data.

3.2.1 Participants

Participants were recruited from the student body of California Polytechnic State

University (Cal Poly). Each student is required to either be enrolled in or have taken

CPE 357, the Systems Programming class which introduces C, Unix, and shell [33].

This requirement was necessary to ensure a baseline level of competency with a Unix

shell. Because it was not strictly relevant to the study and to preserve the privacy of

participants, no other demographic data was collected. We could have asked questions

about what instructors students had and how frequently they used shell terminals,

but this would have added an extra survey and we wanted to minimize the overhead

of participating to attract participants.
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Students performed classwork activities from these courses:

• Systems Programming

• Introduction to Operating Systems

• Introduction to Security

• Programming Languages

• Dynamic Web Development

Because we did not collect demographic information of individual participants, we

do not have a distribution of how many participants came from each course, but the

number of volunteers was not even across all the courses. Additionally, some partic-

ipants may have offered data from multiple courses. Finally, two different professors

taught Systems Programming and two professors taught Introduction to Operating

Systems during the course of this study. Each of these professors had different sets

of assignments and many of these samples were collected at different times during

the course. Therefore, even participants in the same course were often performing

different tasks.

The use of students from a single university rather than directly from industry in-

troduces a potential for bias. The students may or may not have distinct typing

patterns from those with more experience or working in an industry environment.

Additionally, the Cal Poly curriculum may train students to use SSH in ways that

are more or less similar to students from other schools.

These participants were incentivized to participate with entry into raffle for 2 Amazon

gift cards worth $50 each [14].
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3.2.1.1 Consent

All participants were asked to sign a consent form, approved by the Institutional

Review Board, explaining the details of the study before participating. This form

can be found in Appendix B and C. Additionally, participants received a description

of the study and how their data would be used before consenting. As a final measure,

at the end of the Secure Shell session the testing environment would provide a log of

what was recorded and confirmation that the participant wants to submit this data.

If the participant does not accept at the end, no additional data will be sent and any

existing data will be discarded.

3.2.1.2 Anonymization

Once data is collected, the log of the Secure Shell session is tagged with an sha256

hash of the participants id. This allowed for the participant to be uniquely identifiable

without preserving any of their personal information in the tag. Because we needed

to be able to link multiple data collection sessions with the same participant together,

we were unable to randomly salt the hash.

3.3 Collection Environment

As stated before, realistic representation of a wild attacker was a priority for this

study. In particular we wanted to include the real life inconsistencies of a connection

traveling over the internet, including the network latency and jitter. This determined

how we designed our collection environment to capture as much of this as possible.

A diagram of the data collection environment can be seen in Figure 3.2.
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Figure 3.2: Layout of Data Collection Environment

The Physical Client Computer represents the physical computer the participant uses

during the study. This computer used either a 64bit CentOS or 64bit Ubuntu 16.04

as an operating system. The reason it may be either of these two options is because

the lab the participant worked on depended on which room was most convenient to

them for data collection. The physical computer ran a 32bit Ubuntu virtual machine

running in VMware Workstation version 15 [21, 29, 18]. This virtual machine was

the Virtual Observation System (VOS). Next a virtual machine hosted on Amazon

Web Services (AWS) represents our MitM router [15]. The MitM records all traffic

going to TCP port 22, the port dedicated to Secure Shell by IANA, and saves it

to a packet log using tshark for later analysis [36, 20]. We configured the virtual

machine to route through the MitM using OpenVPN, [17]. To minimize the overhead

of OpenVPN and the impact it would have on the network traffic, we disabled all

encryption and hashing OpenVPN provides. The goal of this study is not to asses the

security of OpenVPN and by disabling these features we minimize the overhead of

the connection. Because the MitM records all outgoing TCP connections to port 22,

it will record all the routed traffic from the VOS to any SSH server. We could have

hosted the MitM on the same network or had the VOS record the packets directly,
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but then the packets would not have travelled over the internet before being recorded

and the network noise would not be included. By hosting the MitM in AWS, we force

the connection to travel over the internet before and after the recording point.

On the VOS, there exists a wrapper script which encapsulates the SSH client. The

wrapper script passes all its data directly through to SSH with exceptions at the

beginning and end of the connection and creates a log of the input forwarded to SSH.

At the beginning, it will ask the user to enter which dataset they are participating in,

either guided or free. At the end the VOS filters the log, remove everything except the

start of the connection and the keys sent to the server. This filtering removes useless

and unwanted data such as passwords that may have been entered as part of logging

in to the remote server. The VOS then presents the filtered log of recorded data for

the participant to review and verify contains no sensitive information. Once the user

has finished reviewing the log, the script prompts them to confirm their willingness

to have their data included in the study. If they agree, the filtered log of the inputs to

SSH are tagged with the sha256 hash of their id and response to the dataset prompt

and sent to the MitM for collection by a researcher.

A special thanks to Tedd Akdag for his assitance deploying the VOS and maintaining

the AWS MitM.

It should be noted that on occasion the network device in the VOS would blink out

of and back into existence. Because of the complexity of the university network and

lack of superuser access, we were unable to find the root cause of the problem. This

blinking disrupts the VPN connection to the MitM by resetting the routing rules

in the VOS. We fixed this problem by running a script which detects the broken

connection and promptly repairs it. These blips may have some impact on the timing

of the packets. When such a blip occurs, the packets may be delayed for up to one

second. Because these network blips happen on average less than once per recording
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session and all the features are averages of a sample, the blips will be amortized out.

We therefore do not believe they will significantly compromise the validity of the

data.

3.4 Datasets

Participants were asked to participate in two rounds of data collection which we call

the guided and free dataset. The former provides a common baseline of participants

performing similar actions. The later provides a more realistic look at how partici-

pants work in their daily assignments. Participants were not required to participate

in both.

3.4.1 Guided Dataset

The goal of this dataset is to establish a common baseline of known typing patterns

which could be used for analysis and potential extensions to this study.

The guided dataset involved follow a series of prompts as detailed in Appendix A.

The prompts were divided into these sections:

1. Loose English

2. Strict English

3. Loose shell

4. Strict shell
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3.4.1.1 Loose English

In this section, participants were asked to respond to a series of questions is an

English sentence. This allowed for a baseline of how a person would type under

normal circumstances.

3.4.1.2 Strict English

Because the Loose English data does not guarantee that participants will try a variety

of keys and to establish a comparable set of recordings, we then asked participants to

transcribe a passage from the book A Tale of Two Cities by Charles Dickens [8]. This

section was used in conjunction with the Loose English section because of concerns

that the transcribing text would result in participants typing differently than they

would if they used their own words. This section was presented after the Loose

English to avoid priming the participants to be cognisant of their typing and word

choice.

3.4.1.3 Loose shell

Participants were then asked to execute a number of instructions into a shell prompt.

Each of the tasks provided were chosen to test potential differences in how a user

might interface with a shell prompt such as whether they use a text editor or file

redirection or whether they prefer to change their working directory or use paths.
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3.4.1.4 Strict shell

Finally, subjects were asked to follow a series of provided shell commands. This

section was chosen for similar reasons as the Strict English, to test different character

combinations and establish a common baseline among participants. Similarly, this

section was presented after the Loose shell section.

3.4.2 Free Dataset

The second dataset, named the Free Dataset, is intended to accurately reflect how a

user interacts the system. During this portion, rather than providing a prompt, we

instructed participants to perform their normal classwork activities as they would if

they were not monitored. This went on for at least an hour per participant, although

participants were welcome to work longer if they so desired. This allowed us to cap-

ture the normal patterns of typing and observe differences in work patterns between

participants.

3.5 Preprocessing

After data is collected, the records consist of a series of keylogs tagged with a hash

and dataset (one per ssh connection), and a stream of all the packets observed going

to or from port 22. Before we can make use of this data, we need to transform it into

a set of tagged log of packets. This process takes place in 4 stages:

1. Split each TCP flow into a separate log

2. Match each keylog to a TCP flow log

3. Extract features from each TCP flow

4. Filter the data down and remove unusable data.
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3.5.1 Flow Splitting

Each SSH session forms a single TCP flow between the client and the server. When

the SSH client begins, the operating system randomly assigns it a port and it connects

to the server port 22 through that port. The Secure Shell client will continue to use

this connection until the program terminates. This means that there is a one-to-one

correlation with each keylog of a Secure Shell session and a TCP flow in the logs. A

C program using libpcap reads the packet log and builds a table of packet logs [30].

When a TCP SYN packet is discovered, it creates a new packet log and associates the

source ip, destination ip, source port, and destination port to the it. For each of the

succeeding packet which matches the those four identifiers, the splitter adds it to the

packet log. When the TCP closing handshake of FIN, FIN-ACK, ACK is observed,

it closes the connection and writes the new packet log. This splits a single packet log

into multiple, each of the new logs containing exactly one TCP flow.

3.5.2 Data Matching

After the flows have been separated into files, they need to be tagged with the par-

ticipant hash and the type of data contained. Both of these tags can be found in a

corresponding key log file. For each key log we have in our records, we find a flow

file with a matching timestamp for the start of connection with up to 15 seconds

of padding to allow for network latency. Additionally the number of keys logged is

compared to the number of PUSH packets captured to ensure that two participants

connecting at the same time are not confused. If the number of packets observed is

different from the number of keys pressed, the files are not matched. If no match

can be found, the log file marked as unmatched. This happened for several unrelated

reasons, such as one day when the network latency was unusually high one day. This
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causes a noticeable delay between when the application started and the MitM be-

gan observing traffic. This pushed the difference between the two times outside the

boundaries of what the matching script would normally consider valid.

All of the matches are dumped to a text file for a researcher to review and verify is

accurate. Additionally, the researcher may correct errors such as connections that

should have matched but were disqualified from the automatic system.

Because we only match packet logs to key logs, any packet log for which no corre-

sponding key log is found is ignored. Additionally, since the key logs contain all of

the tagging information, any participant who opts out after recording data will not

have any of their tags available to the researchers and their packets will be ignored.

3.5.3 Feature Extraction

Next the feature extractor pulls information of interest out of the packet logs. In

particular, we focused on the observed inter-packet arrival time (IAT), the number

and size of pastes of data copied from outside the SSH session, and the time spent in

different levels of activity.

First, each packet log is divided into samples of fixed number of packets. We call

the number of packets in each sample the Sample Size. Each sample has it’s features

calculated separately. In the case that a packet log contains a number of packets not

divisible by the sample size, the remainder are disregarded.

Since each keystroke produces a single packet, the IAT of incoming packets measures

the frequency with which a person presses a key.

Additionally, this can indicate the participants typing speed. Unfortunately, people

rarely type at full speed continuously from the moment a shell session opens to when
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it closes. To account for this, we created 4 categories of activity level: low, mid,

high, and none. At any point in time, a participant is determined to be in one of

the four activity levels based on the IAT of a lookback period before the packet. If

the IAT of the lookback period is above the mid activity threshold, it is considered

low activity. If the IAT of the lookback period is below the mid activity threshold

but above the high activity threshold, it is considered mid activity. If the IAT of the

lookback period is below the high activity threshold, it is considered high activity.

If the IAT could not be calculated because there were no packets in the lookback

threshold, that period is retroactively considered low-activity time. Any time which

was not classified into one of the existing three activity states because the IAT was

longer than the lookback period is considered to have no activity.

A graph of the activity states from two participants can be seen in Figure 3.3 and 3.4.

These graphs were created with a lower activity threshold of 1 P/s and high activity

threshold of 2.75 P/s and a looback of 3 seconds.

This allows us to single out the IAT of certain activity states as features of interest.

This also has the additional benefit of allowing us to measure how frequently and for

how long a participant spends time in each of these states.

The sample size, activity thresholds, and lookback time are chosen by hypertuning.

Finally, although each keystroke results in a single packet not all keystrokes result in

a single character. If the user pastes data from their clipboard into the Secure Shell

session, they will produce many characters which will all be encrypted together and

sent to the server as one packet so long as the user does not exceed the maximum

packet size. This means that the size of the packet can reveal information about user

behavior.
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Since all packets are padded to 8-byte blocks, we have limited granularity to identify

and classify pastes. Additionally and data which did not use the client system’s

clipboard, such as yanking and pasting in vi, would not show as a paste because the

data did not cross from the client system to the server.

Table 3.1 lists all of the preprocessor parameters.

Parameter Name Unit Definition
Sample Size Packets Number of packets per sample
Lookback Period Seconds How long to look back to determine current

activity state
Low-Activity Threshold Packets/s Maximum number of packets in the look-

back period to be considered ’Low Activity’
High-Activity Threshold Packets/s Minimum number of packets in the look-

back period to be considered ’High Activ-
ity’

Small-Paste Threshold Blocks Minimum number of blocks beyond the
standard packet size to classify a packet as
a paste

Large-Paste Threshold Blocks Minimum number of blocks beyond the
standard packet size to classify a packet as
a large paste

Table 3.1: List of Preprocessing Parameters

We created the features to count the total number of pastes and the average size of

the packets. Additionally we split packets into a large and small paste category and

calculated these features again for each of these two subdivisions.

A list of all the features which are extracted and their definitions are described in

Table 3.2.
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Feature Name Definition
average iat Average time between packet observations
dead time Time which is not spent in either high, mid, or low ac-

tivity states
total time Total time spent
total pastes Number of pastes
avg paste size Average size of a paste
small pastes Number of pastes in the small category
avg small paste size Average size of a paste in the small category
avg large paste size Average size of a paste in the large category
large pastes Number of pastes in the large category
highaverage iat Average time between packets observations in high ac-

tivity mode
high.burst size Number of packets observed in a single high activity

state.
high.burst count Number of times a user enters a high activity state
high.time spent Number of seconds spent in a high activity state
high.total packets Number of packets observed in a high activity state
mid.average iat Average time between packets observations in mid ac-

tivity mode
mid.burst size Number of packets observed in a single mid activity

state.
mid.burst count Number of times a user enters a mid activity state
mid.time spent Number of seconds spent in a mid activity state
mid.total packets Number of packets observed in a mid activity state
low.average iat Average time between packets observations in low activ-

ity mode
low.burst size Number of packets observed in a single low activity

state.
low.burst count Number of times a user enters a low activity state
low.time spent Number of seconds spent in a low activity state
low.total packets Number of packets observed in a low activity state

Table 3.2: List of Features
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Figure 3.3: Activity Levels for Participants 893

Figure 3.4: Activity Levels for Participants DC9
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3.5.4 Filtering

Finally, not all participants provided equal amounts of data. Some participants only

typed a handful of commands into the terminal and some generous participants pro-

vided dozens of hours of data.

Before performing feature extraction, a data set is specified as either guided, free, or

both. If a packet flow does not have a matching tag, it is removed from the dataset

before feature extraction.

To prevent the algorithms from developing a bias towards users who provided more

data, each users sample set is truncated to the lowest of all the participants.

To prevent the users who provided insufficient data to train from limiting the sample

sets, we set a minimum number of samples required for a participant to be included

in the training and testing.

And ultimately, because the researcher may unwittingly choose a set of preprocessing

configurations which restricts the qualifying participants to an unreasonably small set,

the number of participants remaining in the sample is checked against a minimum

threshold. If the number of participants is below the threshold, the extractor throws

an error and not sample set file is generated.

3.6 Machine Learning

The samples had their features extracted and tagged, they were fed into our machine

learning algorithms. In this study we looked at four in particular: k-nearest neighbors,

random forest, support vector machine, and a perceptron network.
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Each of these models randomly shuffle the data before training and testing. Addi-

tionally, all results of each run of any of the ML algorithms are computed using the

average of a 5-fold validation.

All experiments were run using python version 3.6.5. For the K-NN, RF, and SVM

classifiers, scikit-learn version 0.18 was used. For the Percreptron network Keras

version 2.1.3 and Tenserflow version 1.5.0 were used.

All of these models were developed with the assistance of Ethan Goldfarb.

3.6.1 Hypertuning

Each Machine Learning algorithm has several hyper-parameters which determine how

the algorithm runs. Which configuration is best depends on the type of data being

classified.

For each combination of classifier and pre-processing parameters, some features do

not provide any useful information. These features can prevent the algorithms from

training properly without sufficient data. Since we have a very limited data set

acquired from volunteers, we must prune the features which do not add significant

benefit to classification.

Because some algorithms train slowly and the possible combinations of features is

so great, testing every combination is not possible. For RF and SVM, we instead

use principal component analysis to create a new set of input features which retains

98% of the information of the original feature set. For K-NN, pruning the feature

set is achievable, so we find the optimal feature set and compare its results to the

PCA feature set. Because NNs are resistant to a large feature set, we do not do any

pruning or PCA [40].
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The optimal set of pre-processing parameters can vary based on the algorithm and

chosen features, so these will be hypertuned as well. Since most of these are scalar

values, a set of reasonable values are chosen to start for each parameter. Once hyper-

tuning converges on an value or set of values which out-performs the others, a second

round of hypertuning determines the optimal values with better granularity around

the previous optimal values.

And finally, each algorithm has its own unique parameters listed in Table 3.3.

Algorithm Parameter Function

K-Nearest Neighbors
K Number of neighbor who get a vote

[23]
Weight Fn How each neighbors vote is weighted

[23]

Random Forest
Criterion What measure to use to determine the

best split for a node [37]
Features/Node Number of features to consider in a de-

cision nodes [37]
Samples/Leaf Number of samples required to make

a leaf node [37]

Support Vector Machine
Kernel Fn Function to translate from input space

to feature space [23, 37]
C Regulation parameter [37]

Perceptron Network
Activation Fn Determines whether or not the inputs

are enough to fire
Hidden Layers Number of hidden perceptron layers

Epochs Number of training rounds before test-
ing

Table 3.3: Hypertuning Parameters for each Algorithm

Because a the number of combinations of hyperparameters is very large, some config-

urations are likely achieve above average performance by random chance even with

5-fold validation. This can create misleading results where certain configurations

seem to perform better than they reliably can. To account for this, each configura-

tion is run 7 times and the median accuracy is used as the expected accuracy of this

configuration for the purposes of hypertuning.
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To efficiently test the large combinations of hyper-parameters, hypertuning jobs were

distributed to a set of 672 computers by a system of Secure Shell connection. Each

slave computer, once the connection from the master to the slave is established the

masters sends a job. The slave computes the job, stores the result, and asks for a

new job off the master queue. The master servers new jobs on a first-come-first-serve

basis. Each slave saves the top 100 computation results to conserve space by not

storing sub-optimal results. Because a slave is only assigned a task when it asks for

one, failed connections to slaves will never receive a job. This system has no failure

recovery, so any data lost to an unexpected failure is not tracked. Because jobs are

assigned first-come-first-serve, the jobs assigned to each computer have no distinct

pattern and each slave has a representative sample of the jobs. The loss of a subset

of the data will therefore not distort the distribution of the results.

In a typical hypertuning run, approximately 115 computers failed to authenticate

with the SSH server for unknown reasons, 30 computers do not find the host, and

around 5-30 computers fail unexpectedly after having begun to collect data depending

on how long the run takes. This means that each run only 1% to 6% of runs are lost

because of this.

After all this, the top results are aggregated and run 50 times and averaged to get

the most accurate assessment of each configuration’s performance for comparison. In

all of our results, this allowed us to create a 95% confidence interval with less than

±1% margin for error.

3.6.2 Analysis

To calculate the accuracy of a run, we run the ML algorithms 100 times and average

the accuracy to create a final accuracy score. In all of our results, this allowed us to
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create a 95% confidence interval with less than ±0.5% margin for error. Additionally,

we calculate the p-value of each accuracy using a one-sided t-test against the null

hypothesis the the system is guessing randomly. Finally, we compute the F1 score to

determine the predictive power of the system.
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Chapter 4

RESULTS

In this chapter, we review the collected data and the results from the hypertuning.

Each classifier was hypertuned in a number of rounds, each narrowing down the

parameter range until an optimal value is found. Finally, we look at how these

algorithms perform under different conditions and compare their accuracy and power.

4.1 Dataset

Because each participant was allowed to participate in either or both datasets and

some participants volunteered more data than others, we have an uneven distribution

of data. The total distribution can be seen in Table 4.1. The summary statistics for

each dataset in the table exclude any participant who did not submit data for that

dataset. With the guided dataset, we see the an approximately normal distribution

with an average of 2509 packets and a mean of 2463 packets and a range of 2000

packets per user. The free dataset had a much wider range, with some participants

providing very little data (approximately 500 packets) while so provided over 9000

packets. On average, we collected approximately 50% more data from the free dataset

than the guided dataset, with a heavy right skew.
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Id Hash Guided Free
01b 0 3127
192 0 8041
1aa 0 1573
26d 0 5832
2b7 0 4506
2e2 2354 0
31f 1549 0
3c7 3771 0
4ee 2205 0
4f8 2977 0
599 0 9124
5a6 0 3804
5b4 0 1583
67e 2251 7673
69f 0 5502
6df 0 7880
min 1549 442
max 3771 9124

Id Hash Guided Free
749 0 830
893 0 1042
949 1856 3860
ab2 0 3181
aff 2716 5377
b14 2149 2686
bcf 0 987
bf0 0 442
c1b 2463 2682
c71 0 701
c7f 2701 1197
cb5 2606 1928
d77 0 4498
dc9 0 6610
e77 2826 0
e93 2166 0
average 2509.33 3716.77
median 2463 3154

Table 4.1: Amount of data per participant per dataset

4.2 Hypertuning

For the initial round of hypertuning, a range of values was chosen for each of the

preprocesing parameters and ML algorithms. These ranges can be seen in Table 4.2. If

our initial hypertuning shows the performance trends upward beyond the boundaries

of the chosen ranges, we expand the range in the next round. Activity thresholds were

selected according to the average typing speed on a computer (approximately 3.4P/s).

Going significantly above this threshold would not be useful as users would not trigger

it. Increments of 0.5 P/s were chosen as a compromise between granularity and

having too many hypertuning parameters. Further hypertuning rounds can increase

granularity on promising ranges of values.
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Lookbacks were chosen to potentially include the entire range of values for high-

activity threshold.

Paste-size thresholds were chosen based on the average size of packets observed in the

data.

The number of users was restricted to 20 to keep the comparisons fair. Any parameter

combinations which did not allow for 20 users were discarded.

For the first round of hypertuning for the K-NN classifier, the preprocessor and

feature-set were hypertuned together and the other features were delayed for later

rounds.

Because the other algorithms did not have time to hypertune the featureset, their hy-

perparameters were tuned with the preprocessor. For example, 100 runs of the Ran-

dom Forest classifier takes approximately 46 times longer than 100 runs of the Nearest

Neighbor classifier similar configurations. The K-NN classifier took 1.5 months to run,

which implies a similar round of hypertuning would require 5.5 years.
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Parameter Values Unit
Preprocessing

Dataset Free, Guided, Both N/A
Sample Size 50, 100, 150, 200, 300 Packets
L.-Activity Threshold 0.5, 1, 1.5, 2 Packets/Second
H.-Activity Threshold 1.5, 2, 2.5, 3, 3.5, 4 Packets/Second
Lookback 1, 2, 3, 4, 5 Seconds
S.-Paste Threshold 1, 2, 3, 4, 5 Blocks
L.-Paste Threshold 2, 3, 4, 5, 6 Blocks

K-Nearest Neighbors
k 1..20 N/A
Weight Uniform, Distance N/A
Featureset ρ({features}) N/A

K-Nearest Neighbors PCA
k 1, 3, 5, 7, 9, 11 N/A
Weight Uniform, Distance N/A
PCA Kernel linear, poly, rbf, sigmoid, cosine N/A

Random Forest
Criterion Gini, Entropy N/A
Estimator 50, 100, 150, 200 RDTs
Min-Samples/Leaf 1, 5, 10 Samples
Max-Features/Node 1, 3, None Features
PCA Kernel linear, poly, rbf, sigmoid, cosine N/A

Support Vector Machine
C 1/8, 1/4, 1/2, 1, 2, 4, 8 N/A
SVM Kernel Linear, Poly, RBF, Sigmoid, Precom-

puted
N/A

PCA Kernel linear, poly, rbf, sigmoid, cosine N/A
Perceptron

Table 4.2: Range of values for hyper parameters in first round of hyper-
tuning

4.2.1 K-Nearest Neighbors

We begin with the K-NN classifier because it is fast and has shown to be success in

prior studies with similar goals [22]. This allows for more robust testing and may

provide insight into the expected performance of the other classifiers.
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4.2.1.1 Round 1

After hypertuning the K-Nearest Neighbors for around 6 weeks, 492 computers re-

turned results giving 49,200 of the top performing configurations. Of these, the top

10 across all systems are shown in Table 4.3.
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Accuracy Sample Size Low-Act T. High-Act T. Lookback Small-Paste T. Large-Paste T.
0.2409 150 1.0 2.00 2.00 1 2
0.2405 150 0.5 2.50 2.00 1 5
0.2397 150 1.5 3.50 2.00 1 2
0.2395 150 0.5 2.50 2.00 1 2
0.2373 150 1.0 2.50 2.00 3 6
0.2373 150 1.0 2.50 2.00 1 3
0.2371 150 1.0 4.00 2.00 1 6
0.2366 150 1.5 3.50 2.00 1 3
0.2365 150 2.0 3.50 3.00 1 3
0.2363 150 1.5 3.50 2.00 1 4

Features
avg paste size, avg small paste size, high.average iat, low.burst count, mid.burst count
high.time spent, large pastes, mid.average iat, mid.burst count, total pastes
high.time spent, large pastes, low.burst count, mid.burst count, small pastes
high.time spent, large pastes, mid.average iat, mid.burst count, total pastes
average iat, high.time spent, large pastes, mid.burst count, mid.time spent
avg small paste size, high.time spent, mid.average iat, mid.time spent
high.burst count, high.time spent, low.burst count, mid.burst count, total pastes
avg small paste size, high.time spent, low.burst count, mid.average iat, mid.burst count
avg small paste size, high.average iat, mid.burst count, small pastes, total pastes
high.time spent, low.burst count, mid.average iat, mid.burst count, small pastes

Table 4.3: Top 10 Parameter sets for K-NN, Round 1 of hypertuning. Features are defined in Table 3.2
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These results suggests a sample size of 150 packets performs well with the configu-

ration ranged we have tested. Additionally, lower activity thresholds (refer to Table

3.1 for definitions) seem to be most effective when at or below 1packet/second and

high activity threshold at around 3P/s. The Lookback seems to be best somewhere

between 2s and 3s. The small paste size seems to be best at 1 block. Large paste

does not seem to converge from this data.

It’s interesting to note that from the features, the large pastes seem to be significantly

less useful than the small paste. The average small paste size and time spent in a high

activity state seem to be the most useful features, combined with support from other

features from low and mid activity states. Since the high-activity threshold is set just

under or above the average typing speed in our top-performing results (discussed in

more detail later), the time spent in high activity feature effectively measures when

a student would be actively typing. We suspect this feature contrasts participants

who spend more time writing code, an activity which largely involves typing, with

participants who spend more time debugging, and activity which involves little typing

and more examination or other similar activities. Since the large paste statistics are

not performing well, it’s possible that something is causing a large packets that are not

useful for identification (perhaps an overhead type of packet which was mistakenly

identified as a keystroke). In this case, the small paste category would serve as a

proxy for pastes as a whole. Also of note, only the combined datasets made it into

the top results. We look into this more in 4.4.

A graph of the total occurrences of each feature count in the top 49,200 results can

be see in Figure 4.1. Interestingly this graph confirms the high activity time is the

occurred most often in the top results, but average small paste size did not have

the same presence. If we assume that each feature has equal predictive power, we

would expect each feature to be equally represented in the top results. This over-

52



representation of the this feature suggests it adds significantly more predictive power

than the others, causing the featuresets which included it to on average perform better

than those that didn’t. This implies that some of the features might have factors that

combine with other features in non-linear ways.

Also interesting is that after high-activity time, the success of each feature trails

off until it plateaus around average mid-activity burst size. For round 2 of hyper-

tuning, any feature at or below the level of avg paste size is removed from the

feature set because they did not show with the exception of mid.avg burst size

and mid.average iat because of their frequent presence in the top performing con-

figurations.

This excludes dead time, total time, avg large paste size,low.average iat,

low.total packets, low.avg burst size, high.avg burst size, high.total packets,

low.time spent, mid.avg burst size, mid.average iat, and avg paste size.

Figure 4.1: Occurrences of each feature in the top performing feature sets
in K-NN hypertuning, Round 1
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Figure 4.2 shows the relationship between each pair of features. Unfortunately, be-

cause high-activity time spent dominates so significantly, this does not provide sig-

nificant insight.

Figure 4.2: Occurance of each feature pair in the top performing feature
sets in K-NN hypertuning, Round 1

The Figure 4.3 shows the number of occurrences of each sample size in the top results.

This supports the earlier results from the top-10 configurations.
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Figure 4.3: Occurrences of each sample size value in the top performing
feature sets in K-NN hypertuning, Round 1

The number of occurrences of each low-activity threshold are graphed in Figure 4.4.

Judging by this graph, the optimal value would likely be below or at 0.5P/s.

Figure 4.4: Occurrences of each low-activity threshold value in the top
performing feature sets in K-NN hypertuning, Round 1

55



Figure 4.5 shows the occurrences of each high-activity threshold. While 2.5P/s seems

to be the optimal value, the graph continues to trend upward past the range we

examined. In the next test, we will add more resolution to the 2.5-3P/s range and

test values higher than 4.5.

Figure 4.5: Occurrences of each high activity theshold value in the top
performing feature sets in K-NN hypertuning, Round 1

Figure 4.6 shows the occurrences of each lookback range. It seems the optimal value

for this field lies around 2s. We test with more resolution in round 2.
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Figure 4.6: Occurrences of each lookback value in the top performing
feature sets in K-NN hypertuning, Round 1

Figure 4.7 shows the occurrences of each small-paste threshold. Since the value must

be a natural number, 1 block is the confirmed optimal value.

Figure 4.7: Occurrences of each small paste threshold value in the top
performing feature sets in K-NN hypertuning, Round 1
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Figure 4.8 shows the occurrences of each large-paste threshold. Since the graph still

trails upward past the tested range, we continue extending this range in round 2.

Figure 4.8: Occurrences of each large paste threshold value in the top
performing feature sets in K-NN hypertuning, Round 1

4.2.1.2 Round 2

Based on the results from the previous round of hypertuning, we developed a new set

of parameters to test, listed in Table 4.4.
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Parameter Values Unit
Low-Activity Threshold 0.5, 1, 1.5 Packets/Second
High-Activity Threshold 2.5, 2.75, 4, 5, 6 Packets/Second
Lookback 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75 Seconds
Large-Paste Threshold 6, 7, 8, 9 Blocks
Featureset ρ({features}\{dead time,

total time,
avg large paste size,low.average iat,
low.total packets,
low.avg burst size,
high.avg burst size,
high.total packets,
low.time spent,
mid.avg burst size,
mid.average iat, avg paste size})

N/A

Table 4.4: Range of values for hyper parameters in second round of hy-
pertuning

This round of hypertuning ran in 1.5 hours on 400 computers, producing 40,000 top

configurations. The top 10 results are listed in Table 4.5. From this table we can see

a marginal improvement as well as some values converging.
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Accuracy Sample Size Low-Act T. High-Act T. Lookback Small-Paste T. Large-Paste T.
0.2604 150 1.0 2.50 1.75 1 7
0.2593 150 1.0 2.50 1.75 1 7
0.2591 150 1.0 2.75 1.50 1 7
0.2578 150 1.0 2.50 1.75 1 9
0.2577 150 1.5 2.50 1.75 1 8
0.2575 150 1.0 2.75 1.50 1 7
0.2574 150 1.5 2.50 1.75 1 7
0.2567 150 1.5 2.75 1.75 1 7
0.2566 150 1.0 2.50 1.75 1 9
0.2564 150 1.5 2.50 1.75 1 9

Features
avg small paste size, high.burst count, high.time spent, low.burst count, mid.total packets
avg small paste size, high.time spent, low.burst count, mid.time spent, mid.total packets
avg small paste size, high.time spent, low.burst count, mid.time spent, mid.total packets
average iat, avg small paste size, high.time spent, mid.time spent, small pastes
avg small paste size, high.time spent, mid.avg burst size, mid.burst count, small pastes
avg small paste size, high.time spent, low.burst count, mid.average iat, mid.time spent
avg small paste size, high.time spent, mid.average iat, mid.burst count, mid.time spent
avg small paste size, high.time spent, mid.average iat, mid.burst count, mid.time spent
average iat, avg small paste size, high.average iat, high.time spent, mid.time spent, small pastes
avg small paste size, high.time spent, mid.average iat, mid.burst count, small pastes

Table 4.5: Top 10 Parameter sets for K-NN, Round 2 of hypertuning.
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Figure 4.9 shows the occurrences of each feature in the top results. high.time spent

lost some of its significant lead, and a few features shifted order. Some of this may be

attributable to high.time spent and avg small paste size doing enough on there

own to include results from featuresets composed of otherwise ineffective features.

With the ineffective features removed, the graph becomes more balanced.

Also of note, not all of the top performing features were well representing in the top

results. For example, average iat only occurred twice in the top 10 configurations

despite its dominance in the larger dataset. This implies some degree of redundancy

between features.

Figure 4.9: Occurrences of each feature in the top performing feature sets
in K-NN hypertuning, Round 2

Figure 4.10 shows the relationship between each pair of features. It does not seem

like any two features combine in an unpredictable way.
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Figure 4.10: Occurrence of each feature pair in the top performing feature
sets in K-NN hypertuning, Round 2

Figure 4.11: Occurrences of each low-activity threshold value in the top
performing feature sets in K-NN hypertuning, Round 2
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The number of occurrences of each low-activity threshold are graphed in Figure 4.11.

Judging by this graph and the results from the top-10 configurations, 1P/s seems to

be the best option.

Figure 4.12: Occurrences of each high-activity threshold value in the top
performing feature sets in K-NN hypertuning, Round 2
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The number of occurrences of each low-activity threshold are graphed in Figure 4.12.

From here we can see the spike in values from 3-4P/s has disappeared and 2.75P/s

dominates. This seems interesting that there was such a strong effect in the last

round that is non-existent here. We speculate that some of high.avg burst size,

high.total packets, low.time spent, mid.avg burst size, or mid.average iat

combined with a high threshold for high activity gave interesting results. When these

features were removed from the featureset, the power of the higher threshold dis-

appeared. To examine this, we listed the features which were most prevalent in

Round 1 of hypertuning when the high-activity threshold was set to 4.0, see in Fig-

ure 4.13. Unfortunately, none of the suspect features occurred very prominently.

mid.avg burst size is the first to appear in the list, but even it shows little more

power than half the other features. It’s possible some combination of variables helped

to produce this result, but further analysis would require time beyond what was avail-

able.

While 2.75s and 2.5s did comparably in this graph with 2.75s having a slight lead,

this was contradicted by the top-10 configurations which show a similar bias towards

2.5s. It also seems that 2.5s high activity thresholds often paired with 1.75s lookback

periods in the top results, while 2.75s thresholds paired with 1.5s lookback periods.

Since both lowering the lookback period and increasing the activity thresholds have

a similar effect of stabilizing the activity state, it seems one of these two pairs is

the best chosen together. Since Figure 4.15 shows that a lookback period of 1.75s

out-performs 1.5s more than a high activity threshold out performs a high activity

threshold od 2.75s a threshold of 2.5s, this suggests the lookback and high activity

threshold pair of 2.75 and 1.5 is the best option This is also supported by the top-10

configurations, of which this pairing composed 70%.
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Figure 4.13: Occurrences of each feature in the top performing feature
sets in K-NN hypertuning, Round 1 when High-Activity threshold is 4P/s

Figure 4.14: Occurrences of each lookback value in the top performing
feature sets in K-NN hypertuning, Round 2
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Figure 4.15: Occurrences of each large-paste threshold value in the top
performing feature sets in K-NN hypertuning, Round 2

The number of occurrences of each large-paste threshold are graphed in Figure 4.15.

Here we see that all the values performed roughly equally, with 7 blocks having a

slight lead.

Since all of the top performing preprocessing parameters match that of the top per-

forming configuration, this will be the one we use. This does exclude some of the

higher performing features, but their lack of representation in the top performing

configuration implies that the information is superfluous to the other features al-

ready includes. The final configuration for the preprocessor and features for the

K-NN algorithm is show on Table 4.6.
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Parameter Value Unit
Dataset Both N/A
Sample Size 150 Packets
Low-Activity Threshold 1 Packets/Second
High-Activity Threshold 2.5 Packets/Second
Lookback 1.75 Seconds
Small-Paste Threshold 1 Blocks
Large-Paste Threshold 7 Blocks
Featureset {avg small paste size,

high.burst count,
high.time spent,
low.burst count,
mid.total packets}

N/A

Table 4.6: Values for hyper parameters determined by the second round
of hypertuning the K-NN

4.2.1.3 Final Round

With the preprocessing parameters thoroughly tested and a configuration decided,

we more to the K-NN specific parameters, namely K and the weight function.

We test each combination of the values in Table 4.7 by running them 100-times and

graphing the mean with a 95% confidence interval.

Parameter Values Unit
Weight Distance, Uniform N/A
K [1, 25] N/A

Table 4.7: Range of values for hyper parameters For the last round of
K-NN

Figure 4.16 shows all the combinations with their results. From this graph, we can see

that uniform and distance functions perform equally up until K = 6. Afterwards the

uniform function drops while distance plateaus. This implies that after 6, the addi-

tional nodes do not provide value and that the distance function maintains accuracy

by weighting those further nodes lower. Therefore, it does not matter which function
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is used so long as K = 6, the optimal point for both functions. Since uniform weights

is easier to compute, we use this for the rest of the paper.

Figure 4.16: Graph of all possible K and weight functions with the optimal
preprocessing parameters.

4.2.2 K-Nearest Neighbors PCA

Next, we hypertune the K-NN algorithm with PCA for comparison. Because PCA

reduces the feature space, we can afford to hypertune the preprocessing parameters

with the k and weight functions.
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4.2.2.1 Round 1

Hypertuning the K-Nearest Neighbors with PCA took a about 2 hours, with 649

computers returning results giving 64,900 of the top performing configurations. Of

these, the top 10 across all systems are shown in Table 4.8.

Accuracy Sample S. Low-Act High-Act Lookback Small-Paste Large-Paste
= 0.2636 200 0.50 3.50 1.00 1 3
0.2636 200 0.50 3.50 1.00 1 2
0.2591 200 0.50 4.00 1.00 1 3
0.2591 200 0.50 4.00 1.00 1 3
0.2591 200 0.50 4.00 1.00 1 3
0.2591 200 0.50 4.00 1.00 1 2
0.2591 200 0.50 3.50 1.00 1 4
0.2591 200 0.50 3.50 1.00 1 3
0.2591 200 0.50 3.50 1.00 1 3
0.2591 200 0.50 3.50 1.00 1 2

PCA Kernel K Weight Fn
linear 11 distance
linear 9 distance
linear 9 uniform
linear 9 distance
linear 11 distance
linear 11 distance
linear 11 uniform
linear 9 uniform
linear 11 uniform
cosine 9 uniform

Table 4.8: Top 10 Parameter sets for K-NN with PCA, Round 1 of hyper-
tuning. Features are defined in Table 3.2

These results suggest a sample size of 200 packets performs well with the configura-

tion ranged we have tested. Additionally, lower activity thresholds seem to be most

effective when at or below 0.5 packet/second, high activity threshold at around 3.5-

4P/s, lookback at 1 second, and small-paste at 1 block. Large paste does not seem

to converge from these results.
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The linear kernel seems to have perform better than the other kernels according to

these results, and a high k-value seems to perform better than low. The weight

function also shows a slight bias towards distance over uniform based on these top-10

results.

The Figure 4.17 shows the number of occurrences of each sample size in the all of the

top results. Contrary to what we saw in the top-10 results, 150 packets/sample occur

most often despite 200 dominating the top results. For round two, we test both of

these values again.

Figure 4.17: Occurrences of each sample size value in the top performing
configurations in K-NN hypertuning with PCA, Round 1

The number of occurrences of each low-activity threshold are graphed in Figure 4.18.

This confirms the results from the top-1o results. From this we can guess that the

optimal low-activity threshold is at most 0.5 seconds, but may be lower. In the next

round, we test 0.25, 0.5, and 0.75P/s.
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Figure 4.18: Occurrences of each low-activity threshold value in the top
performing configurations in K-NN hypertuning with PCA, Round 1

Figure 4.19 shows the occurrences of each high-activity threshold. Similar to the

sample size, we see 2.5P/s occurs most frequently here despite 4.0P/s obtaining higher

results. In the next round of hypertuning, we test both these values again, as well as

the intermediate values.
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Figure 4.19: Occurrences of each high activity threshold value in the top
performing configurations in K-NN hypertuning with PCA, Round 1

Figure 4.20 shows the occurrences of each lookback range. Again, despite 1s perform-

ing the best of top results, 2s occured most frequently. We test both of these values

as well as 1.25s, 1.5s, and 1.75s in the next round.

Figure 4.20: Occurrences of each lookback value in the top performing
configurations in K-NN hypertuning with PCA, Round 1
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Figure 4.21 shows the occurrences of each small-paste threshold. Since the value must

be a natural number and both the top-10 results and the occurrences graph agree, 1

block is used for K-NN with PCA from here on in this paper.

Figure 4.21: Occurrences of each small paste threshold value in the top
performing configurations in K-NN hypertuning with PCA, Round 1

Figure 4.22 shows the occurrences of each large-paste threshold. While the top-10

results did not converge, the occurrences graph shows a clear favoritism towards 6

blocks. Since this graph shows an upward trend continuing past the range of values

we tested, we expand the range for the next round.
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Figure 4.22: Occurrences of each large paste threshold value in the top
performing configurations in K-NN hypertuning with PCA, Round 1

Figure 4.23 shows the occurrences of each kernel function in the top results. We can

see linear and cosine both performing significantly stronger than the other functions.

For the next round, we keep both of these values.

Figure 4.23: Occurrences of each kernel function in the top configurations
in K-NN hypertuning with PCA, Round 1
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Figure 4.24 shows the occurrences of each weight function in the top results. Distance

seems to perform better than a uniform weight function in this graph, but this may

be because the distance function is compensating for high K values by de-weighting

the distant nodes. For the next round, we test both of these again to be sure.

Figure 4.24: Occurrences of each weight function in the top configurations
in K-NN hypertuning with PCA, Round 1

Figure 4.25 shows the occurrences of each weight function in the top results. We see

the K values tending upward, but also beginning to level out around the upper end

of our tested range. For the next round, we test 8, 9, 10, 11, and 12 to both increase

our granularity and ensure the tend continues to level out.
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Figure 4.25: Occurrences of each K value in the top configurations in
K-NN hypertuning with PCA, Round 1

4.2.2.2 Round 2

Based on the results from the previous round of hypertuning, we developed a new set

of parameters to test, listed in Table 4.9.

Parameter Values Unit
Sample Size 150, 200 Packets
Low-Activity Threshold 0.25, 0.5, 0.75 Packets/Second
High-Activity Threshold 2.5, 3, 3.5, 4 Packets/Second
Lookback 1, 1.25, 1.5, 1.75, 2 Seconds
Large-Paste Threshold 6, 7, 8, 9 Blocks
Kernel Fn. Linear, Cosine N/A
Weight Fn. Distance, Uniform N/A
K 8, 9, 10, 11, 12 N/A

Table 4.9: Range of values for hyper parameters in second round of hy-
pertuning K-NN with PCA
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This round of hypertuning ran in 0.5 hours on 527 computers, returning 9574 results.

Because almost all of the configurations were run and stored, all parameters were

equally represented in the top results. Therefore, we will only analyze the top-10

results, listed in Table 4.10.

Sample Size of 200 packets dominates the top results, as does a lookback of 1.75s. The

Low-activity threshold seems to need to be at its peak somewhere between 0.25P/s

and 0.5P/s. Similarly, the high activity threshold seems to be at its peak somewhere

between 3.5P/s and 4P/s. Since there does not seem to be a significant gain from

further narrowing this range, we will continue to use 0.25P/s for the low threshold

and 3.5P/s for the high threshold. Similarly, the large paste size threshold seems to

work well as 7 or 8 blocks. We use 8 blocks for the remainder of this study.

Cosine dominates the top-10 results, so we use this for the PCA kernel for K-NN

for the remainder of the study, and the same goes for the uniform weight function.

The K values have many values represented, but 8 neighbors seems to be the most

common and occurs in the configuration which produced the best result. We therefore

continue with K as 8.
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Accuracy Sample S. Low-Act High-Act Lookback Small-Paste Large-Paste
0.2705 200 0.25 3.50 1.75 1 8
0.2682 200 0.50 4.00 1.75 1 8
0.2682 200 0.25 3.50 1.75 1 8
0.2659 200 0.50 4.00 1.75 1 7
0.2636 200 0.50 4.00 1.00 1 8
0.2636 200 0.50 3.50 1.75 1 8
0.2636 200 0.50 3.50 1.75 1 7
0.2636 200 0.50 3.50 1.75 1 7
0.2636 200 0.25 4.00 1.75 1 8
0.2636 200 0.25 4.00 1.75 1 7

PCA Kernel K Weight Fn
cosine 8 uniform
cosine 8 uniform
cosine 10 uniform
cosine 8 uniform
linear 11 uniform
cosine 10 uniform
cosine 9 uniform
cosine 8 uniform
cosine 8 uniform
cosine 10 uniform

Table 4.10: Top 10 Parameter sets for K-NN with PCA, Round 2 of hy-
pertuning.

4.2.3 Random Forest

Because the RF classifier has a significantly more CPU intensive training period than

K-NN, we use PCA to reduce the feature space rather than directly manipulating

features. We use the top 5 PCA features because this maintains 98% of the variance

and helps the RF converge more quickly.
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4.2.3.1 Round 1

Round 1 of hypertuning completed in approximately 24 hours with 523 computers

returning 52,300 results.

Table 4.11 shows the results from the first round of hypertuning. The results are

slightly better than the first round of K-NN, but we can attribute that to the PCA

reducing the feature space. Most of the parameters seem to have converged nicely.

Accuracy Sample S. Low-Act High-Act Lookback Small-Paste Large-Paste
0.2600 150 0.5 2.50 1.00 2 6
0.2533 150 0.5 4.00 1.00 2 6
0.2533 150 0.5 3.50 1.00 2 6
0.2533 150 0.5 3.00 1.00 2 6
0.2533 150 0.5 3.00 1.00 2 5
0.2533 150 0.5 3.00 1.00 2 3
0.2533 150 0.5 2.50 1.00 2 6
0.2533 150 0.5 2.50 1.00 2 5
0.2533 150 0.5 2.50 1.00 2 5
0.2533 150 0.5 2.50 1.00 2 5

Estimators Max Features Min Samples/Leaf Criterion PCA Kernel
200 None 5 Entropy Cosine
150 3 5 Entropy Linear
150 3 5 Entropy Linear
200 3 5 Gini Cosine
200 3 5 Gini Cosine
200 None 1 Gini Cosine
200 3 5 Entropy Cosine
200 3 1 Entropy Cosine
150 None 5 Gini Cosine
100 None 5 Entropy Cosine

Table 4.11: Top 10 Parameter sets for RF, Round 1 of hypertuning.

The graphs of sample sizes, low activity thresholds both show a strong bias for 150

samples, 0.5P/s respectively as shown in Figure 4.26 and Figure 4.27. For the next
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round of hypertuning, we will increase the resolution on the low-activity threshold to

include 0.25P/s and 0.75P/s.

Figure 4.26: Occurrences of each sample size in the top performing feature
sets in RF hypertuning, Round 1

Figure 4.27: Occurrences of each low activity threshold in the top per-
forming feature sets in RF hypertuning, Round 1
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Figure 4.28 show the high-activity threshold does not converge as strongly as the

previous values. All the values above 2.5P/s seem to perform approximately equally

well ad this is reflected in the top-10 results. From this, we can conclude that the

RF is adaptable to any of these thresholds, but seems to have a slight preference for

2.5P/s. Hence we will use this value in future tests.

Figure 4.28: Occurrences of each high activity threshold in the top per-
forming feature sets in RF hypertuning, Round 1

Figure 4.29 show that there are two values for the lookback time which performed

comparably. For the next round, we will increase the resolution around the values to

include 0.5s, 1s, 1.5s, and 2s.
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Figure 4.29: Occurrences of each lookback period in the top performing
feature sets in RF hypertuning, Round 1

Figures 4.30 and 4.31 show the distribution of paste thresholds in the top results.

We can see that although 1 and 2 blocks perform similarly, two block small-paste

threshold has a slight lead which is reflected in the top 10. The large paste threshold

again has a significant preference for the maximum value. In the next round, we

extend the range as we have with K-NN.
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Figure 4.30: Occurrences of each small paste threshold in the top perform-
ing feature sets in RF hypertuning, Round 1

Figure 4.31: Occurrences of each large paste threshold in the top perform-
ing feature sets in RF hypertuning, Round 1
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Not surprisingly, more estimators seems to improve performance, as shown in figure

4.32. We can also see the diminishing returns from ore estimators in this graph

implying that more estimators won’t add significant benefits. In light of that, we will

use 200 estimators from here on.

Figure 4.32: Occurrences of each estimator count in the top performing
feature sets in RF hypertuning, Round 1

Figure 4.33 shows the occurrences of each limit to the number of features per node.

We can see that 3 features and no limit are the top performers (recall that we used

PCA to reduce the feature space to 5 features in total). For the next round, we will

test 3, 4, and no limit.
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Figure 4.33: Occurrences of each maximum features/node in the top per-
forming feature sets in RF hypertuning, Round 1

Figure 4.34 shows that 5 samples/leaf outperforms the others. For the next round,

we increase the resolution on these values to include 3, 5, and 7 samples/leaf.

Figure 4.34: Occurrences of each minimum samples/leaf in the top per-
forming feature sets in RF hypertuning, Round 1
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Figure 4.35 shows that both the gini and entropy functions perform almost identically.

From here on, we use the gini function.

Figure 4.35: Occurrences of each split criterion in the top performing
feature sets in RF hypertuning, Round 1

Figure 4.36 shows the number of occurrences of each PCA kernel function. Inter-

estingly, there seems to be a clear hierarchy among all the kernels. Although linear

outperforms all the other kernels overall, the cosine kernel dominates the top 10

results. For this reason, linear and cosine will both be used in round two.
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Figure 4.36: Occurrences of each PCA kernel in the top performing feature
sets in RF hypertuning, Round 1

The final set of parameters for round two are listed in table 4.12.

Parameter Values Unit
Dataset Both N/A

Sample Size 150 Packets
Low-Activity Threshold 0.25 0.5, 0.75 Packets/Second
High-Activity Threshold 2.5 Packets/Second

Lookback 0.5, 1.0, 1.5, 2 Seconds
Small-Paste Threshold 2 Blocks
Large-Paste Threshold 6, 7, 8, 9 Blocks

Criterion Gini N/A
Estimator 200 RDTs

Min-Samples/Leaf 3, 5, 7 Samples
Max-Features/Node 3, 4, None Features

PCA Kernel linear, cosine N/A

Table 4.12: Range of values for hyper parameters in second round of
hypertuning for the Random Forest
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4.2.3.2 Round 2

Round 2 completed in a few seconds with all 792 results stored. Because there were

not enough runs to create a large distribution we only examine the top 10 results, seen

in Table 4.13. While some of the values fail to converge on a best set of configurations,

we can see from the accuracies all being within half of a percentage point from each

other that the classifier will perform comparably with any of the configurations in

these top 10.

Lookback, minimum samples/leaf, and PCA kernel all show a strong convergence to

a single value. For the rest of the paper, we will use 1s, 3 samples, and cosine function

respectively for Random Forest.

All three low-activity thresholds are represented in the top ten results suggesting that

this may be too fine of a granularity to have significant impact on the RF classifier.

We use 0.75P/s for the rest of this paper since it occurred the most in the top 10.

All of the large-paste thresholds are represented in roughly equal ratios, similar to

what was seen with K-NN. This again suggests that the RF is robust to any of these

values. We will use 7 blocks for the rest of this paper since it occurred the most.
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Accuracy Sample S. Low-Act High-Act Lookback Small-Paste Large-Paste
0.2566 150 0.25 2.50 1.00 2 9
0.2563 150 0.75 2.50 1.00 2 7
0.2561 150 0.75 2.50 1.00 2 6
0.2554 150 0.50 2.50 1.00 2 9
0.2549 150 0.75 2.50 1.00 2 7
0.2547 150 0.75 2.50 1.00 2 8
0.2535 150 0.50 2.50 1.00 2 7
0.2533 150 0.25 2.50 1.00 2 6
0.2531 150 0.25 2.50 1.00 2 6
0.2530 150 0.75 2.50 1.00 2 7

Estimators Max Features Min Samples/Leaf Criterion PCA Kernel
200 3 3 gini cosine
200 None 5 gini cosine
200 3 5 gini cosine
200 None 3 gini cosine
200 4 3 gini cosine
200 3 3 gini cosine
200 4 3 gini cosine
200 4 3 gini cosine
200 3 3 gini cosine
200 None 3 gini cosine

Table 4.13: Top 10 Parameter sets for RF, Round 2 of hypertuning.

4.2.4 Support Vector Machine

As we did with RF, we use the top 5 PCA features while tuning the SVM.

4.2.4.1 Round 1

Round 1 of hypertuning completed in approximately 3 hours with 524 computers

returning 52,200 results.

Table 4.14 shows the results from the first round of hypertuning. While the pre-

processing parameters seem to converge strongly, the SVM Kernel and Regulation

Parameter still have a wide variance.
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Accuracy Sample S. Low-Act High-Act Lookback Small-Paste Large-Paste
0.2700 150 0.50 4.00 1.00 1 2
0.2633 150 0.50 4.00 1.00 1 2
0.2633 150 0.50 3.50 1.00 1 2
0.2633 150 0.50 3.50 1.00 1 2
0.2633 150 0.50 3.50 1.00 1 2
0.2617 150 0.50 4.00 1.00 1 2
0.2600 150 0.50 3.50 1.00 2 3
0.2600 150 0.50 3.50 1.00 1 2
0.2600 150 0.50 3.50 1.00 1 2
0.2583 150 0.50 4.00 1.00 1 2

SVM Kernel Regulation Paramater PCA Kernel
rbf 4.0 cosine
rbf 8.0 cosine
rbf 8.0 cosine
rbf 4.0 cosine

poly 4.0 cosine
poly 8.0 cosine
rbf 8.0 cosine

poly 8.0 cosine
poly 2.0 cosine
poly 4.0 cosine

Table 4.14: Top 10 Parameter sets for SVM, Round 1 of hypertuning.

Figures 4.37, 4.38, 4.39, and 4.40 all confirm the consistency of the results from the

top 10 in the Sample Size, low-activity threshold, small-paste threshold, and PCA

kernel respectively. For the next round, we increase the resolution on the low-activity

threshold and lookback period. We test cosine and linear PCA kernels since they

performed comparably.
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Figure 4.37: Occurrences of each sample size in the top performing feature
sets in SVM hypertuning, Round 1

Figure 4.38: Occurrences of low activity thresholds in the top performing
feature sets in SVM hypertuning, Round 1
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Figure 4.39: Occurrences of small paste thresholds in the top performing
feature sets in SVM hypertuning, Round 1

Figure 4.40: Occurrences of each PCA kernel in the top performing feature
sets in SVM hypertuning, Round 1
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Figure 4.41 shows a strong bias toward a longer lookback period, despite the top

10 results being composed of entirely 1s lookbacks. Ironically, 1s seems to be the

least represented in the top results overall. Indicates that the lower lookback period

performs bimodally depending on the other configurations, a situation that had not

come up in the other results. To test this further, we will increase the maximum

period and increase resolution around 1s.

Figure 4.41: Occurrences of lookback periods in the top performing feature
sets in SVM hypertuning, Round 1

Oddly, despite Figure 4.42 show a strong bias towards a high large-paste threshold,

lower thresholds dominate the top 10 results. For the next round, we will extend the

testing range and include a threshold of 2.
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Figure 4.42: Occurrences of large paste thresholds in the top performing
feature sets in SVM hypertuning, Round 1

Figure 4.43 shows that the high-activity threshold has a bi-modal distribution for this

run. For the next round, we will test again with just the values 2.5P/s and 3.5P/s.

Figure 4.43: Occurrences of high activity thresholds in the top performing
feature sets in SVM hypertuning, Round 1
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Figure 4.44 shows the occurrences of each regulation constant in the top results.

The graph makes clear that higher values perform much better but it seems to have

diminishing returns. For the next round, we will use 4, 8, and 12.

Figure 4.44: Occurrences of each regulation parameter in the top perform-
ing feature sets in SVM hypertuning, Round 1

Figure 4.45 shows the occurrences of each SVM kernel in the top results. RBF and

Linear clearly perform better than poly and sigmoid, so we will keep the former and

discard the later in the next round of hypertuning.
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Figure 4.45: Occurrences of each kernel in the top performing feature sets
in SVM hypertuning, Round 1

The final set of parameters for round two are listed in table 4.15.

Parameter Values Unit
Dataset Both N/A

Sample Size 150 Packets
Low-Activity Threshold 0.25 0.5, 0.75 Packets/Second
High-Activity Threshold 2.5, 3.5, 3.75, 4.0 Packets/Second

Lookback 0.5, 1.0, 1.5, 4, 4.5, 5, 5.5 Seconds
Small-Paste Threshold 1 Blocks
Large-Paste Threshold 2, 6, 7, 8, 9 Blocks

SVM Kernel Linear, RBF N/A
Regulation Constant 4, 6, 8, 10, 12 N/A

PCA Kernel Linear, Cosine N/A

Table 4.15: Range of values for hyper parameters in second round of
hypertuning for the Support Vector Machine
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4.2.4.2 Round 2

Round 2 completed in a few seconds with all 5040 results stored. Because there were

not enough runs to create a large distribution we only examine the top 10 results,

seen in Table 4.16. While some of the values fail to converge, we can see from the

accuracies all being within half of a percentage point from each other suggesting that

the classifier will perform comparably with any of the value combinations in the top

10.

The low-activity threshold seems to perform its best at 0.75P/s, the lookback period

at 1s, and the large-paste threshold at 2 blocks. The high activity threshold seems to

be robust to any of values tested, but has a slightly better preference with 3.75P/s.

The classifier performed clearly best with RBF as the SVM kernel, Cosine as the

PCA kernel and a regulation parameter of 6.
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Accuracy Sample S. Low-Act High-Act Lookback Small-Paste Large-Paste
0.2700 150 0.75 3.75 1.00 1 2
0.2700 150 0.50 3.75 1.00 1 2
0.2700 150 0.25 3.75 1.00 1 2
0.2683 150 0.75 4.00 1.00 1 2
0.2683 150 0.50 3.75 1.00 1 2
0.2683 150 0.25 3.75 1.00 1 2
0.2667 150 0.75 4.00 1.00 1 2
0.2667 150 0.75 3.50 1.00 1 2
0.2667 150 0.75 2.50 1.25 1 2
0.2667 150 0.50 3.75 1.00 1 2

SVM Kernel Regulation Paramater PCA Kernel
rbf 6.0 cosine
rbf 6.0 cosine
rbf 6.0 cosine
rbf 6.0 cosine
rbf 8.0 cosine
rbf 4.0 cosine
rbf 4.0 cosine
rbf 6.0 cosine
rbf 4.0 cosine
rbf 4.0 cosine

Table 4.16: Top 10 Parameter sets for SVM, Round 1 of hypertuning.

4.2.5 Perceptron Network

Due to issues hypertuning the Perceptron Network, we were not able to properly train

the algorithm.

4.3 Accuracy

The final results for each classifier are listed in Table 4.17 These results were calculated

using the combined dataset with the 25 participants who provided the most data.
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Classifier Accuracy F1-Score
K-NN Feature Sets 0.150286 0.140029

K-NN PCA 0.21136 0.181862
RF 0.195943 0.180032

SVM 0.213543 0.200641

Table 4.17: Accuracy and power of each classifier

All of the methods we developed performed comparably, with only slight differences

in accuracy and power with the exception of K-NN without PCA.

Figures 4.46, 4.47, 4.48, 4.49 show the confusion matrices for each of the classifiers.

Each of them shows a similar ability to classify some participants and a similar in-

ability to classify others. For example, each classifier struggled to distinguish between

participant 5A6 and 599.

Figure 4.46: Confusion matrix for the K-NN classifier without PCA
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Figure 4.47: Confusion matrix for the K-NN classifier with PCA

Figure 4.48: Confusion matrix for the RF classifier
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Figure 4.49: Confusion matrix for the SVM classifier

As mentioned before, one of the unique features of the K-NN classifier is that it can

rank each of the possible outputs by votes. Figure 4.50 shows the accuracy of the

the K-NN classifier without PCA when it is allowed to have up to N guesses per

sample. We see the graph shows a strong upward tend up to 5 guesses, after which

the graph levels out and eventually parallels the probability of guessing randomly.

While this suggests that an attacker cannot obtain the user identity with a high

degree of accuracy, they can reduce the search space by around 80% and still have a

50% chance of correctly identifying the user.
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Figure 4.50: Accuracy of NN classifier without PCA by number of guesses

Figure 4.51 shows the accuracy of the the K-NN classifier with PCA when it is

allowed to have up to N guesses per sample. Interestingly, it seems that while with

PCA performs better with fewer guesses than without PCA, both curves seem to

closely resemble each other and by 5 guesses the two have comparable accuracies. It’s

possible that this difference could be increased by hypertuning with multiple guesses,

but this is outside the scope of our research.
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Figure 4.51: Accuracy of NN classifier with PCA by number of guesses

4.4 Guided versus Free

During research thus far we used a mix of our guided and free datasets. This was

necessary given the limited amount of data we had to be able to have an adequate

number of users to draw meaningful results. In this section, we discuss the impact of

this mixing as well as the usefulness of each of the datasets for identification purposes.

Figure 4.52 shows the performance of each classifier trained on each dataset. These

results were gathered with 10 different users and 10 samples per user for each classifier
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which used 150 packet samples and 7 samples per user for K-NN PCA to keep an

even comparison.

The results show a strong consistency across each of the classifiers. Using exclusively

the free dataset provided the best results for any of the classifiers. Using exclusively

the guided dataset provided the second best accuracy. And finally, the combined

dataset performed the worst across the board, in come cases such as the NN classifier

by a significant margin.

These results show that using data from one type of activity gives the best per-

formance. Additionally, this indicates that our earlier results were using the worst

dataset available, and had we had enough data in the free dataset, we could have

achieved better results.

Figure 4.52: Accuracy by dataset
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Interestingly, the K-NN classifier with PCA seems to have performed equally well

with all three categories. Because it was the only dataset which used 200 packets

per sample and thus had fewer samples per user, we suspect the number of samples

may have played a factor. Table 4.18 compares the performance of each dataset with

either 7 or 10 samples. We can see that the benefit from adding more data is much

more powerful in the free dataset than the guided dataset. The combine dataset,

unsurprisingly, seems to have the average of the improvements seen in the guided and

free datasets.

# Samples 7 10
Both 0.2407 0.2613
Free 0.2431 0.2873

Guided 0.2392 0.2447

Table 4.18: Accuracy of each dataset with the K-NN classifier with PCA
by number of samples

4.5 Scalability

Because we have such a wide number of users and variable amounts of data on each

user, we have an opportunity to explore the scalability of the techniques discussed

in this paper. In particular, we will discuss how the system accuracy scales as we

introduce new users and how the accuracy scales as we introduce more data per user.

4.5.1 Number of Distinct Users

For testing the impact of the number of users, we fix our number of samples per user

to 13 (or 10 in the case of K-NN with PCA) from the combined dataset and vary the

number of users between 4 and 20. Because we wanted to maximize the upper bound

for the number of users to test, we mix both guided and unguided datasets. Figure

4.53 shows the results from this testing.
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Figure 4.53: Accuracy by number of users

We plotted each of the classifiers separately, as well as included a line for randomly

guessing. As expected, each of the classifiers mostly parallels the curve of the guessing

line, but as random chance asymptotically approaches 0, the classifiers remain rela-

tively consistent or actually increasing in accuracy in the case of NN and SVM. In

particular it seems that the 10th and 14th users were particularly hard to idenity and

dragged the averages down. As more users are introduced, the difficulty in identifying

these users amortizes out.

The first 10 users still show a strong downward tend indicating that initially, number

of potential users is the limiting factor. But afterwards, the graph quickly levels

out which indicates that the patterns of individual users becomes the dominating
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factors. We can conclude from this that homogeneity is the primary concern for this

attack, rather than the potential search space. Additionally, while more data would

be needed to confirm this the current findings indicate this solution should maintain

its viability with a large number of users.

4.5.2 Amount of Data Per User

For this section, we decided to focus on the 10 users who provided the most data.

Since each sample is 150 packets (for this test, we reduced K-NN PCA’s sample

size to match the others), we found that we could vary the amount of data from 10

samples/user to 24 samples/user. Additionally, we drew exclusively from the free

dataset because we did not need a large number of users to test how this scales. We

did not test below 10 samples because this would increase the likelihood that some

folds would not have any samples for a user in either the training or testing set.

Figure 4.54
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Figure 4.54: Accuracy by number of samples

The results show a modest improvement in overall accuracy. SVM in particular

benefited the most from the additional data, while RF suffered. Why RF had worse

performance despite more data is unclear. How far this slight upward tend extends

is also unclear from the amount of data we have gathered. Because of this, future

research would almost certainly obtain better results with a well-trained perceptron

network.
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Chapter 5

CONCLUSION

With our limited data set, we were able to prove this MitM attack is a viable threat to

organizations who have Secure Shell connections traveling over an untrusted network.

While the accuracy was likely to identify an individual user, it demonstrated a rea-

sonable threat that a particular user could be identified and a near certainty that one

of many users could be identified reliably.

In particular, the K-NN method would allow an attacker to have over 50% accuracy

within 20% of the search space. If an attacker could achieve their goals by identifying

any one of a large number of possible victims, they could most likely achieve this.

We found that the K-Nearest Neighbors and Support Vector Machine classifiers were

able to classify users with significant accuracy and that the Random Forest classifier

could perform comparably. The amount of data available to an attacker makes a

difference in their ability to identify the user but even small numbers of samples

could provide meaningful results. The data also show that the attack can scale well

with the number of users, and in our data set the classifiers were impacted more

strongly by the diversity of the participants than the number.

Additionally, we find that it is significantly easier to identify a user based on a single

type of activity rather than a mix.

Recall that all of the data collected in this study was performed with a live user at

the keyboard and all network signals were measured at a route between the victim

and server thus capturing real network noise. Given the conceit that the attacker
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has placed themselves as a MitM and acquired an existing dataset, we believe this

accurately represents the realistic complications of such an attack. While the ability

of the attacker to inject themselves in the routing path is well proven, existing dataset

about typing patterns are less accessible [24]. While some organizations could collect

such a dataset, future works may be able to expand on this research to include

unsupervised and semi-supervised learning to eliminate the necessity this conceit.

5.1 Limitations

Several key factors limited the ability to extrapolate these results.

One key factor was a lack of data. A tradeoff of our recruitment methods was to

prioritize diversity of users over control of how much data was provided by being

flexible in our minimum requirements. Although we were able to acquire recordings

from many different users, if we wanted to use all of them, we had to limit the amount

of data available per user. As shown in the previous section, we cannot know how

much impact this had on our study without further research.

Additionally, this study drew its participants from Cal Poly Computer Science and

Computer Engineering students. It is unclear whether or not the results from these

student who all come from the same educational background sufficiently represent the

diversity of a real work environment. Not only this, but students having less expe-

rience with shell terminals may have different habits and behaviors than a seasoned

expert. Such experts would be the more valuable targets in an attempt to glean useful

information.
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5.2 Countermeasures

This attack is difficult to prevent because it relies exclusively on the metadata of the

packets travelling over the network.

One potential solution is to introduce a random delay before sending the packet to

obfuscate when a key is pressed. Unfortunately since all of the timing statistics

were amortized, this would most likely in the best case make such an attack harder

rather than fully prevent it. In the worst case, this may be completely ineffective.

Additionally, any significant delay will likely impact the user’s experience using Secure

Shell.

On the other hand, the paste size statistics can be easily countered by padding the

packets to a larger size. This does consume more bandwidth as each packet must

contain extra overhead.

A compromise between these two solutions may be to buffer keystrokes and flush

the buffer at a fixed time interval. This could significantly reduce the load on the

network as at the time of writing each packet is padded to an 8-byte block despite

most packets containing only one meaningful byte. This would reduce the resolution

of an attacker’s information as they would now only receive a range for number of keys

pressed within a certain time span. Unfortunately, without testing this it is unclear

if such restrictions would prevent an attacker from classifying users. Additionally

depending on the length of the time interval, users may become impatient. A shorter

time interval would minimize this problem but would also minimize the benefits.

The best countermeasure would be to only send packets when the server has a mean-

ingful response rather than naively sending every keystroke. By default, the shell

operates in canonical mode, only receiving data after new lines and other events
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which have been configured to trigger a response such as signals [28]. Until the end

of line is triggered or a new line entered, the input sits in a buffer. The current im-

plementation of Secure Shell has the client operate in noncanonical mode and lets the

remote terminal handle buffering. If the Secure Shell client was modified to operate in

canonical mode matching the remote virtual terminal, then the buffered data would

not be vulnerable to attacks. But this countermeasure would be a significant change

to the current model. For example, this would require the remote server to detect

changes to the terminal settings and notify the client so that it can mirror the new

settings. Additionally, this model would not protect programs which naturally run

in noncanonical mode such as emacs or vi. On the other hand, both of these pro-

grams currently have integrated Secure Shell support which minimizes network usage

already. A Smart Secure Shell could take advantage of this integration to launch the

editor locally, but this does not help for the wide variety of programs which operate

in noncanonical mode and do not have integrated Secure Shell support. Finally, this

too would leak a certain amount of information, as an attacker could still know how

frequently the victim types a line and the length of the line to the nearest block. This

research does not make clear whether or not such an attack would be still be viable

with this type of integration.

5.3 Future Work

We do not believe we have achieved the best results we can with the data we have

gathered. Our initial findings show that more data would likely help to improve model

accuracy. Additionally, it would be beneficial to use data from more seasoned experts

in industry.
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Although we were not able to train the perceptron network, we suspect that it should

be able to outperform the K-NN classifier when properly hypertuned. Because of

this, future research would almost certainly obtain better results with a well-trained

perceptron network.

In addition to this, there is an opening to research the potential countermeasures

discussed in the prior section, to what extent they hinder an attacker’s ability to

identify a victim, and the impact to usability.

On the other hand, an attack like this could work and would be much more useful

if the model could train on an untagged data set. Unsupervised or semi-supervised

versions of this attack is another area which we did not have the time to examine

in this study. Such models would more realistically represent an attacker’s limited

access to an existing pool of data.

Finally, we believe it may be possible that a convolutional neural network could

learn to identify a user without preprocessing it. This would allow the classifier to

identify features the developer did not anticipate. But such an approach would require

significantly more data than was available to us for this research, and so we leave it

to future works.
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APPENDICES

Appendix A

INSTRUCTIONS FOR PARTICIPANTS (DATASET 1)

A.1 Protocol

1. Provide the informed consent form and describe the nature of the study.

2. Provide the Loose-Instructed English prompts

3. Provide the Strict-Instructed English prompts

4. Provide the Loose-Instructed Unix Shell prompts

5. Provide the Strict-Instructed Unix Shell prompts

6. Tag data with sha256 hash of Cal Poly username

A.2 Loose-Instructed English Language

Please answer the following prompts with a complete, English sentence.

1. Describe a T.V. show character.

2. What is the weather outside today?

3. Describe the inside of a restaurant.

4. Who is the current president of the United States?
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5. Describe to an extra terrestrial how to use a microwave oven.

6. Describe the time without using a clock.

7. What is the name of a sport team and what sport do they play?

8. Choose an animal and give a brief description of it.

A.3 Strict-Instructed English Language

Write the following paragraph:

It was the best of times, it was the worst of times, it was the age of

wisdom, it was the age of foolishness, it was the epoch of belief, it was

the epoch of incredulity, it was the season of Light, it was the season of

Darkness, it was the spring of hope, it was the winter of despair, we had

everything before us, we had nothing before us, we were all going direct

to Heaven, we were all going direct the other way–in short, the period was

so far like the present period, that some of its noisiest authorities insisted

on its being received, for good or for evil, in the superlative degree of

comparison only.

A.4 Loose-Instructed Shell

Perform the following tasks over an SSH session

1. Create a directory named ’foo’

2. Create an empty file in foo named ’bar’
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3. Write a C program in foo which prints ”Hello World” to the terminal

4. Compile the program to an executable named, ”greet”

5. Run greet

6. Run greet and redirect the output to a file in foo

7. Check that the output from greet and foo/bar are different

8. Delete foo/bar

9. Print your current directory

10. Make a subdirectory of foo named bar/biz/boo

11. Print your current directory

12. Change your current directory to boo

13. Write ”Hello World” to a file

14. Compare that file with the output of greet

15. Print the contents of the foo directory

16. Change your current directory to foo

A.5 Strict-Instructed Shell

Enter the following commands over an SSH session

1. mkdir testsess1

2. whoami
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3. touch testsess1/file.txt

4. echo Hello World > testsess1/file.txt

5. cp --verbose testsess1/file.txt testsess1/copy.txt

6. diff -q testsess1/file.txt testsess1/copy.txt

7. basename testsess1/copy.txt

8. egrep -i wo testsess1/copy.txt

9. cat > source.c

int main() {

int a = 7;

int b = 2;

return a - b;

}

10. gcc -g source.c

11. ./a.out

12. echo $?

13. mv a.out testprog

14. zip -j out.zip testsess1 source.c

15. which vim

16. wc --help

17. wc -c source.c

18. quit
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Appendix B

INVESTIGATING SSH INFORMATION LEAKS (DATASET 1)

This form asks for your agreement to participate in a research project for SecureShell.

Your participation involves using the SecureShell program over a monitored network

to type sentences and run commands from the attached document.

These tasks are expected to take approximately 30 minutes. If you stop early your

data may not be used. There are no risks anticipated with your participation. Those

in the cybersecurity, system administration and software development industries may

benefit from your participation. If you are interested in participating, please review

the following information:

The purpose of the study is to examine if the pattern of network traffic from Se-

cureShell is unique to a user such that an outside party can identify them. Addi-

tionally, this study will examine if the timing of publicly visible network traffic can

be used to identify keystrokes. Potential benefits associated with the study include

improvements in secure internet communications.

If you agree to participate, you will be asked to complete the attached set of instruc-

tions. This research involves finding vulnerabilities in the SecureShell protocol and

as such anything you type in the SecureShell application as part of this study will

be recorded for validation purposes. You are advised to not type any passwords or

otherwise sensitive information into a terminal being used as part of this study.

Please be aware that you are not required to participate in this research, refusal to

participate will not involve any penalty or loss of benefits to which you are otherwise

entitled, and you may discontinue your participation at any time. Your participation
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or refusal will not contribute or impact your grade in any of your classes. The focus

of this study is on the behavior of the SecureShell system and thus your responses to

prompts and inputs to the terminal are only incidentally involved in the study. There

are no risks anticipated with your participation in this study, as your data will be

maintained confidentially.

As compensation for your participation in this study, you may opt-in to be automati-

cally enrolled in a raffle for an Amazon gift card redeemable for $50 on Amazon.com.

In accordance with California Law, an individuals may also enter the raffle by re-

questing a URL from an investigator and entering an email into the online prompt.

The winner of the raffle will be contacted through the email address provided below

or through the online interface. Upon completion of the study, each participant is

expected to have a 1 in 30 chance of winning the raffle. The winner will have 7 days

to accept or be removed from the pool of applicants.

This research is being conducted by Dr. Bruce DeBruhl and graduate student Thomas

Flucke in the Department of Computer Science and Software Engineering at Cal Poly,

San Luis Obispo. If you have questions regarding this study or would like to be

informed of the results when the study is completed, please contact Dr. DeBruhl

at bdebruhl@calpoly.edu. If you have concerns regarding the manner in which

the study is conducted, you may contact Dr. Michael Black, Chair of the Cal Poly

Institutional Review Board, at (805) 756-2894, mblack@calpoly.edu, or Ms. Debbie

Hart, Compliance Officer, at (805) 756-1508, dahart@calpoly.edu.

If you agree to voluntarily participate in this research project as described, please

indicate your agreement by performing one or more tasks from above when the re-

searcher tells you. Please keep a copy of this form for your reference, and thank you

for your participation in this research.
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Appendix C

INVESTIGATING SSH INFORMATION LEAKS (DATASET 2)

This form asks for your agreement to participate in a research project for SecureShell.

Your participation involves completing your class work using the SecureShell program

over a monitored network from a virtual machine.

The experiment is not expected to hinder your ability to complete your assignments

and will not require more than a negligible amount of time to participate beyond

that you would normally take to do your class work. If you stop early your data

may not be used. There are no risks anticipated with your participation. Those in

the cybersecurity, system administration and software development industries may

benefit from your participation. If you are interested in participating, please review

the following information:

The purpose of the study is to examine if the pattern of network traffic from Se-

cureShell is unique to a user such that an outside party can identify them. Addi-

tionally, this study will examine if the timing of publicly visible network traffic can

be used to identify keystrokes. Potential benefits associated with the study include

improvements in secure internet communications.

If you agree to participate, you will be asked to use the provided virtual machine

to complete your classwork. This research involves finding vulnerabilities in the Se-

cureShell protocol and as such anything you type in the SecureShell application as

part of this study will be recorded for validation purposes. You are advised to not

type any passwords or otherwise sensitive information into a terminal being used as

part of this study.

127



Please be aware that you are not required to participate in this research, refusal to

participate will not involve any penalty or loss of benefits to which you are otherwise

entitled, and you may discontinue your participation at any time. Your participation

or refusal will not contribute or impact your grade in any of your classes. The focus

of this study is on the behavior of the SecureShell system and thus your inputs to the

terminal are only incidentally involved in the study. There are no risks anticipated

with your participation in this study, as your data will be maintained confidentially.

As compensation for your participation in this study, you may opt-in to be automat-

ically enrolled in a raffle for an Amazon gift card redeemable for $50 on amazon.com.

In accordance with California Law, an individuals may also enter the raffle by re-

questing a URL from an investigator and entering an email into the online prompt.

The winner of the raffle will be contacted through the email address provided below

or through the online interface. Upon completion of the study, each participant is

expected to have a 1 in 30 chance of winning the raffle. The winner will have 7 days

to accept or be removed from the pool of applicants.

This research is being conducted by Dr. Bruce DeBruhl and graduate student Thomas

Flucke in the Department of Computer Science and Software Engineering at Cal Poly,

San Luis Obispo. If you have questions regarding this study or would like to be

informed of the results when the study is completed, please contact Dr. DeBruhl

at bdebruhl@calpoly.edu. If you have concerns regarding the manner in which

the study is conducted, you may contact Dr. Michael Black, Chair of the Cal Poly

Institutional Review Board, at (805) 756-2894, mblack@calpoly.edu, or Ms. Debbie

Hart, Compliance Officer, at (805) 756-1508, dahart@calpoly.edu.

If you agree to voluntarily participate in this research project as described, please

indicate your agreement by performing one or more tasks from above when the re-
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searcher tells you. Please keep a copy of this form for your reference, and thank you

for your participation in this research.

129



Appendix D

VOS SSH WRAPPER SCRIPT

readonly SERVER="keylog@tf2.cscaws.com"

readonly PROG_NAME=$(basename $0)

readonly ORIG_PROG=$(which -a $PROG_NAME | tail -n-1)

readonly LOG_DIR="/var/log/thesis"

readonly KEY_FILE =~/. ssh/keylog_rsa

readonly DATE="$(date ’+%Y%m%d%H%M%S’)"

readonly OUT_FILE="$LOG_DIR/$PROG_NAME -log -$DATE.log"

for arg in $@; do

uid="$(echo $arg | cut -d@ -f1 -s)"

if [ "$uid" = "" ]; then

break;

fi

done

uid=$(echo "$uid" | sha256sum | cut -d’ ’ -f1)

$ORIG_PROG "$SERVER" "$uid" 2> /dev/null &

promptSubmit () {

echo "Do you aprove this data to be submitted for

this study? [y|n]"

read REPLY

if [ $REPLY = "y" ]; then
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scp -i "$KEY_FILE" "$OUT_FILE" "$SERVER":"$uid"

elif [ $REPLY != "n" ]; then

echo "Invalid response"

promptSubmit

fi

}

mkdir -p $LOG_DIR

echo "Reminder not to enter passwords into this SSH

session."

strace -ttt -e trace=read -e read=0 -s200 -o $OUT_FILE

\

$ORIG_PROG $@

sed -i ’2,${ /read([0-9], ".*", 16384) /!d }’ "

$OUT_FILE"

less "$OUT_FILE"

promptSubmit
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Appendix E

VOS OPENVPN CONFIGURATION FILE

##############################################

# Sample client -side OpenVPN 2.0 config file #

# for connecting to multi -client server. #

# #

# This configuration can be used by multiple #

# clients , however each client should have #

# its own cert and key files. #

# #

# On Windows , you might want to rename this #

# file so it has a .ovpn extension #

##############################################

# Specify that we are a client and that we

# will be pulling certain config file directives

# from the server.

client

# Use the same setting as you are using on

# the server.

# On most systems , the VPN will not function

# unless you partially or fully disable

# the firewall for the TUN/TAP interface.

;dev tap
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dev tun

# Windows needs the TAP -Win32 adapter name

# from the Network Connections panel

# if you have more than one. On XP SP2 ,

# you may need to disable the firewall

# for the TAP adapter.

;dev -node MyTap

# Are we connecting to a TCP or

# UDP server? Use the same setting as

# on the server.

;proto tcp

proto udp

# The hostname/IP and port of the server.

# You can have multiple remote entries

# to load balance between the servers.

remote tf2.cscaws.com 1194

;remote my -server -2 1194

# Choose a random host from the remote

# list for load -balancing. Otherwise

# try hosts in the order specified.

;remote -random

# Keep trying indefinitely to resolve the
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# host name of the OpenVPN server. Very useful

# on machines which are not permanently connected

# to the internet such as laptops.

resolv -retry infinite

# Most clients don ’t need to bind to

# a specific local port number.

nobind

# Downgrade privileges after initialization (non -Windows only)

user nobody

group nogroup

# Try to preserve some state across restarts.

persist -key

persist -tun

# If you are connecting through an

# HTTP proxy to reach the actual OpenVPN

# server , put the proxy server/IP and

# port number here. See the man page

# if your proxy server requires

# authentication.

;http -proxy -retry # retry on connection failures

;http -proxy [proxy server] [proxy port #]

# Wireless networks often produce a lot
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# of duplicate packets. Set this flag

# to silence duplicate packet warnings.

;mute -replay -warnings

# SSL/TLS parms.

# See the server config file for more

# description. It’s best to use

# a separate .crt/.key file pair

# for each client. A single ca

# file can be used for all clients.

ca ca.crt

cert client1.crt

key client1.key

script -security 1

# Verify server certificate by checking that the

# certicate has the correct key usage set.

# This is an important precaution to protect against

# a potential attack discussed here:

# http :// openvpn.net/howto.html#mitm

#

# To use this feature , you will need to generate

# your server certificates with the keyUsage set to

# digitalSignature , keyEncipherment

# and the extendedKeyUsage to

# serverAuth
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# EasyRSA can do this for you.

remote -cert -tls server

# If a tls -auth key is used on the server

# then every client must also have the key.

;tls -auth ta.key 1

# Select a cryptographic cipher.

# If the cipher option is used on the server

# then you must also specify it here.

cipher none

auth none

# Enable compression on the VPN link.

# Don ’t enable this unless it is also

# enabled in the server config file.

;comp -lzo

# Set log file verbosity.

verb 3

# Silence repeating messages

;mute 20
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Appendix F

MITM OPENVPN CONFIGURATION FILE

#################################################

# Sample OpenVPN 2.0 config file for #

# multi -client server. #

# #

# This file is for the server side #

# of a many -clients <-> one -server #

# OpenVPN configuration. #

# #

# OpenVPN also supports #

# single -machine <-> single -machine #

# configurations (See the Examples page #

# on the web site for more info). #

# #

# This config should work on Windows #

# or Linux/BSD systems. Remember on #

# Windows to quote pathnames and use #

# double backslashes , e.g.: #

# "C:\ Program Files\OpenVPN\config\foo.key" #

# #

# Comments are preceded with ’#’ or ’;’ #

#################################################

# Which local IP address should OpenVPN use
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;local a.b.c.d

# Which TCP/UDP port should OpenVPN listen on?

# If you want to run multiple OpenVPN instances

# on the same machine , use a different port

# number for each one. You will need to

# open up this port on your firewall.

port 1194

# TCP or UDP server?

;proto tcp

proto udp

# "dev tun" will create a routed IP tunnel ,

# "dev tap" will create an ethernet tunnel.

# Use "dev tap0" if you are ethernet bridging

# and have precreated a tap0 virtual interface

# and bridged it with your ethernet interface.

# If you want to control access policies

# over the VPN , you must create firewall

# rules for the the TUN/TAP interface.

# On non -Windows systems , you can give

# an explicit unit number , such as tun0.

# On Windows , use "dev -node" for this.

# On most systems , the VPN will not function

# unless you partially or fully disable

# the firewall for the TUN/TAP interface.
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;dev tap

dev tun

# Windows needs the TAP -Win32 adapter name

# from the Network Connections panel if you

# have more than one. On XP SP2 or higher ,

# you may need to selectively disable the

# Windows firewall for the TAP adapter.

# Non -Windows systems usually don ’t need this.

;dev -node MyTap

# SSL/TLS root certificate (ca), certificate

# (cert), and private key (key). Each client

# and the server must have their own cert and

# key file. The server and all clients will

# use the same ca file.

#

# See the "easy -rsa" directory for a series

# of scripts for generating RSA certificates

# and private keys. Remember to use

# a unique Common Name for the server

# and each of the client certificates.

#

# Any X509 key management system can be used.

# OpenVPN can also use a PKCS #12 formatted key file

# (see "pkcs12" directive in man page).

ca ca.crt
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cert ThesisVPN.crt

key ThesisVPN.key # This file should be kept secret

# Diffie hellman parameters.

# Generate your own with:

# openssl dhparam -out dh2048.pem 2048

dh dh2048.pem

# Network topology

# Should be subnet (addressing via IP)

# unless Windows clients v2.0.9 and lower have to

# be supported (then net30 , i.e. a /30 per client)

# Defaults to net30 (not recommended)

topology subnet

# Configure server mode and supply a VPN subnet

# for OpenVPN to draw client addresses from.

# The server will take 10.8.0.1 for itself ,

# the rest will be made available to clients.

# Each client will be able to reach the server

# on 10.8.0.1. Comment this line out if you are

# ethernet bridging. See the man page for more info.

server 10.8.0.0 255.255.255.0

# Maintain a record of client <-> virtual IP address

# associations in this file. If OpenVPN goes down or

# is restarted , reconnecting clients can be assigned
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# the same virtual IP address from the pool that was

# previously assigned.

ifconfig -pool -persist /var/log/openvpn/ipp.txt

# Configure server mode for ethernet bridging.

# You must first use your OS’s bridging capability

# to bridge the TAP interface with the ethernet

# NIC interface. Then you must manually set the

# IP/netmask on the bridge interface , here we

# assume 10.8.0.4/255.255.255.0. Finally we

# must set aside an IP range in this subnet

# (start =10.8.0.50 end =10.8.0.100) to allocate

# to connecting clients. Leave this line commented

# out unless you are ethernet bridging.

;server -bridge 10.8.0.4 255.255.255.0 10.8.0.50 10.8.0.100

# Configure server mode for ethernet bridging

# using a DHCP -proxy , where clients talk

# to the OpenVPN server -side DHCP server

# to receive their IP address allocation

# and DNS server addresses. You must first use

# your OS’s bridging capability to bridge the TAP

# interface with the ethernet NIC interface.

# Note: this mode only works on clients (such as

# Windows), where the client -side TAP adapter is

# bound to a DHCP client.

;server -bridge
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# Push routes to the client to allow it

# to reach other private subnets behind

# the server. Remember that these

# private subnets will also need

# to know to route the OpenVPN client

# address pool (10.8.0.0/255.255.255.0)

# back to the OpenVPN server.

;push "route 192.168.10.0 255.255.255.0"

;push "route 192.168.20.0 255.255.255.0"

# To assign specific IP addresses to specific

# clients or if a connecting client has a private

# subnet behind it that should also have VPN access ,

# use the subdirectory "ccd" for client -specific

# configuration files (see man page for more info).

# EXAMPLE: Suppose the client

# having the certificate common name "Thelonious"

# also has a small subnet behind his connecting

# machine , such as 192.168.40.128/255.255.255.248.

# First , uncomment out these lines:

;client -config -dir ccd

;route 192.168.40.128 255.255.255.248

# Then create a file ccd/Thelonious with this line:

# iroute 192.168.40.128 255.255.255.248

# This will allow Thelonious ’ private subnet to
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# access the VPN. This example will only work

# if you are routing , not bridging , i.e. you are

# using "dev tun" and "server" directives.

# EXAMPLE: Suppose you want to give

# Thelonious a fixed VPN IP address of 10.9.0.1.

# First uncomment out these lines:

;client -config -dir ccd

;route 10.9.0.0 255.255.255.252

# Then add this line to ccd/Thelonious:

# ifconfig -push 10.9.0.1 10.9.0.2

# Suppose that you want to enable different

# firewall access policies for different groups

# of clients. There are two methods:

# (1) Run multiple OpenVPN daemons , one for each

# group , and firewall the TUN/TAP interface

# for each group/daemon appropriately.

# (2) (Advanced) Create a script to dynamically

# modify the firewall in response to access

# from different clients. See man

# page for more info on learn -address script.

;learn -address ./ script

# If enabled , this directive will configure

# all clients to redirect their default

# network gateway through the VPN , causing
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# all IP traffic such as web browsing and

# and DNS lookups to go through the VPN

# (The OpenVPN server machine may need to NAT

# or bridge the TUN/TAP interface to the internet

# in order for this to work properly ).

push "redirect -gateway def1 bypass -dhcp"

# Certain Windows -specific network settings

# can be pushed to clients , such as DNS

# or WINS server addresses. CAVEAT:

# http :// openvpn.net/faq.html#dhcpcaveats

# The addresses below refer to the public

# DNS servers provided by opendns.com.

;push "dhcp -option DNS 208.67.222.222"

;push "dhcp -option DNS 208.67.220.220"

# Uncomment this directive to allow different

# clients to be able to "see" each other.

# By default , clients will only see the server.

# To force clients to only see the server , you

# will also need to appropriately firewall the

# server ’s TUN/TAP interface.

;client -to-client

# Uncomment this directive if multiple clients

# might connect with the same certificate/key

# files or common names. This is recommended
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# only for testing purposes. For production use ,

# each client should have its own certificate/key

# pair.

#

# IF YOU HAVE NOT GENERATED INDIVIDUAL

# CERTIFICATE/KEY PAIRS FOR EACH CLIENT ,

# EACH HAVING ITS OWN UNIQUE "COMMON NAME",

# UNCOMMENT THIS LINE OUT.

duplicate -cn

# The keepalive directive causes ping -like

# messages to be sent back and forth over

# the link so that each side knows when

# the other side has gone down.

# Ping every 10 seconds , assume that remote

# peer is down if no ping received during

# a 120 second time period.

keepalive 10 120

# For extra security beyond that provided

# by SSL/TLS , create an "HMAC firewall"

# to help block DoS attacks and UDP port flooding.

#

# Generate with:

# openvpn --genkey --secret ta.key

#

# The server and each client must have
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# a copy of this key.

# The second parameter should be ’0’

# on the server and ’1’ on the clients.

;tls -auth ta.key 0 # This file is secret

# Select a cryptographic cipher.

# This config item must be copied to

# the client config file as well.

# Note that v2.4 client/server will automatically

# negotiate AES -256-GCM in TLS mode.

# See also the ncp -cipher option in the manpage

;cipher AES -256-CBC

# Disables all encryption/authentification

# We don ’t actually want to add extra protections ,

# we just want to reroute the packets.

# Disabling encryption reduces overhead/variables.

auth none

cipher none

# Enable compression on the VPN link and push the

# option to the client (v2.4+ only , for earlier

# versions see below)

;compress lz4 -v2

;push "compress lz4 -v2"

# For compression compatible with older clients use comp -lzo

# If you enable it here , you must also
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# enable it in the client config file.

;comp -lzo

# The maximum number of concurrently connected

# clients we want to allow.

;max -clients 100

# It’s a good idea to reduce the OpenVPN

# daemon ’s privileges after initialization.

#

# You can uncomment this out on

# non -Windows systems.

user nobody

group nogroup

# The persist options will try to avoid

# accessing certain resources on restart

# that may no longer be accessible because

# of the privilege downgrade.

persist -key

persist -tun

# Output a short status file showing

# current connections , truncated

# and rewritten every minute.

status /var/log/openvpn/openvpn -status.log
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# By default , log messages will go to the syslog (or

# on Windows , if running as a service , they will go to

# the "\ Program Files\OpenVPN\log" directory ).

# Use log or log -append to override this default.

# "log" will truncate the log file on OpenVPN startup ,

# while "log -append" will append to it. Use one

# or the other (but not both).

;log /var/log/openvpn/openvpn.log

;log -append /var/log/openvpn/openvpn.log

# Set the appropriate level of log

# file verbosity.

#

# 0 is silent , except for fatal errors

# 4 is reasonable for general usage

# 5 and 6 can help to debug connection problems

# 9 is extremely verbose

verb 3

# Silence repeating messages. At most 20

# sequential messages of the same message

# category will be output to the log.

;mute 20

# Notify the client that when the server restarts so it

# can automatically reconnect.

explicit -exit -notify 1
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