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ABSTRACT 

Thermal Ecology of the Federally Endangered Blunt-nosed Leopard Lizard (Gambelia 

sila) 

Kathleen Nicole Ivey 

Recognizing how climate change will impact populations can aid in making decisions 
about approaches for conservation of endangered species. The Blunt-nosed Leopard 
Lizard (Gambelia sila) is a federally endangered species that, despite protection, remains 
in extremely arid, hot areas and may be at risk of extirpation due to climate change. We 
collected data on the field-active body temperatures, preferred body temperatures, and 
upper thermal tolerance of G. sila. We then described available thermal habitat using 
biophysical models, which allowed us to (1) describe patterns in lizard body 
temperatures, microhabitat temperatures, and lizard microhabitat use, (2) quantify the 
lizards’ thermoregulatory accuracy, (3) calculate the number of hours they are currently 
thermally restricted in microhabitat use, (4) project how the number of restricted hours 
will change in the future as ambient temperatures rise, and (5) assess the importance of 
Giant Kangaroo Rat burrows and shade-providing shrubs in the current and projected 
future thermal ecology of G. sila. Lizards maintained fairly consistent daytime body 
temperatures over the course of the active season, and use of burrows and shrubs 
increased as the season progressed and ambient temperatures rose. During the hottest part 
of the year, lizards shuttled among kangaroo rat burrows, shrubs, and open habitat to 
maintain body temperatures below their upper thermal tolerance, but occasionally, higher 
than their preferred body temperature range. Lizards are restricted from staying in the 
open habitat for 75% of daylight hours and are forced to seek refuge under shrubs or 
burrows to avoid surpassing their upper thermal threshold. After applying climatic 
projections of 1 and 2˚C increases to 2018 ambient temperatures, G. sila will lose 
additional hours of activity time that could compound stressors faced by this population, 
potentially leading to extirpation. 
 
Finally, temperature-based activity estimation (TBAE) is an automated method for 
predicting surface activity and microhabitat use based on the temperature of an organism 
and its habitat. We assessed continuously logged field active body temperatures as a tool 
to predict the surface activity and microhabitat use of Gambelia sila. We found that 
TBAE accurately predicts whether a lizard is above or below ground 75.7% of the time 
when calculated using air temperature, and 60.5% of the time when calculated using 
biophysical models. While surface activity was correctly predicted about 93% of the time 
using either method, accuracy in predicting below ground (burrow) occupancy was 62% 
for air temperature and 51% for biophysical models. Using biophysical model data, 
TBAE accurately predicts microhabitat use in 79% of observations in which lizards are in 
the sun, 47% in the shade, and 51% in burrows. Heliotherms bask in the sun, and thus 
body temperatures can shift rapidly when the animal moves to a new microhabitat. This 
sensitivity, makes TBAE a promising means of remotely monitoring animal activity, 
particularly for specific variables like emergence time and surface activity. 
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1. Thermal Ecology of the Federally Endangered Blunt-nosed Leopard Lizard 

(Gambelia sila) 

 
1.1 Introduction 

As anthropogenic climate change accelerates, so has the urgency for studies 

examining how rising temperatures will impact sensitive species. By 2050, up to 18% of 

species worldwide will be extinct (Thomas et al., 2004; Urban, 2015), with human-

caused land use changes having the potential to further increased extinction risk (Powers 

& Jetz, 2019). The actions we take now in terms of habitat management may mitigate the 

potential impacts of climate change on endangered species. Because ectotherms depend 

on ambient temperatures for their normal physiological processes (Stevenson, 1985; 

Walther et al., 2002), they are very sensitive to thermal changes in their habitats (Sinervo 

et al., 2010; Buckley et al., 2015). This is especially true for ectotherms living in 

extremely hot environments where they are thermally constrained (Grant & Dunham, 

1988; Bashey & Dunham 1997; Zamora-Camacho et al., 2016) and have limited 

plasticity that would allow them to survive with further warming (Gunderson & Stillman, 

2015). Because of their abundance, ease of study, and diversity in extremely hot 

environments worldwide, lizards have become model organisms for studies of thermal 

tolerance, with important implications for conservation biology. As many as 30% of all 

lizard populations could be extinct by 2080 (Sinervo et al., 2010), and it is unclear 

whether thermoconforming lizards or heliothermic (sun-basking) lizards will fare worse 

(Sinervo et al., 2010).  

Habitat heterogeneity is important to lizards and other ectotherms as it allows 

them to exploit behavioral thermoregulation to maintain a body temperature close to their 
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preferred body temperature (Sears et al., 2011, Carroll et al., 2016). Temperatures on the 

surface of the ground exposed to the sun often exceed the thermal tolerance of lizard 

species (Sunday et al., 2014), and so the availability of shade is important for 

thermoregulation (Kearney et al., 2009). Notably, refugia not only provide refuge from 

predators, but also from thermally unsuitable conditions (Bradshaw & Main, 1968; 

Souter et al., 2007; Pike & Mitchell, 2013; Lortie et al., 2015; Moore et al., 2018; Suggitt 

et al., 2018). Vegetation may assist animals with thermoregulation by providing them 

with a complex mosaic of thermal and radiative properties on the surface of the ground 

(Carroll et al., 2016; Milling et al., 2018). Plants are important to the thermoregulation of 

lizards inhabiting extremely hot environments because they allow lizards to be surface 

active while protecting the lizards from intense solar radiation.  (e.g., Porter et al., 1973; 

Bauwens et al., 1996). This includes, but is not limited to, essential activities like 

territory defense, mate guarding, and feeding.   

 The Blunt-nosed Leopard Lizard (Gambelia sila) is a federally endangered 

species with isolated populations in the San Joaquin Valley and the southeastern Carrizo 

Plain in California (U.S. Fish & Wildlife, 1998; Germano & Rathbun, 2016; IUCN, 

2017), an area with extremely hot and arid conditions. Since the 1960’s, the species’ 

range has decreased by 85% due to agriculture, oil exploration, and invasive grasses 

(Germano et al., 2001; Filazzola et al., 2017). The active season for adults is limited to as 

little as 2.5 months in the spring and early summer (Germano et al., 1994), after which 

time they estivate and then transition directly into hibernation. It is therefore likely that 

G. sila is already clinging to existence in a thermally stressful environment, and 

evaluation of the thermal ecology of this species is likely to provide managers and 
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researchers with valuable information about climate change mitigation efforts for this 

species (Germano, 2019). A significant amount of the remaining habitat occupied by G. 

sila is dominated by the Mormon Tea shrub, Ephedra californica (Stout et al., 2013), 

which creates spotty microhabitats that are cooler and more humid than the open ground 

(Filazzola et al., 2017). Lizards are regularly found in the shade of these shrubs, 

especially in the afternoon when temperatures are highest (Westphal et al., 2018; 

Germano, 2019). Given that the habitats occupied by G. sila tend to be structurally 

simple (i.e. lizard microhabitat choices are limited to the open desert floor, rodent 

burrows, and Ephedra shrubs), modeling the thermal ecology of G. sila provides an 

excellent opportunity to quantify the importance of these microhabitats, both currently 

and as the climate warms. 

 In this study, we describe the thermal ecology of a population of G. sila in the 

southeastern Carrizo Plain over the course of one active season with the goals of (1) 

quantifying the daily and seasonal body temperatures of lizards, (2) describing how 

lizards behaviorally use available microhabitats, (3) determining their thermoregulatory 

accuracy, (4) calculating the number of hours they are currently restricted to shade and/or 

burrows due to extreme heat, and  (5) projecting how these values are likely to be 

impacted by climate change during this century. Given that the only above ground shade 

available to lizards at this site is provided by sparsely distributed Ephedra shrubs, we also 

explicitly test the hypothesis that shrubs currently act as thermal buffers that allow the 

lizards to remain active above ground longer than they would if there were no shrubs.  
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1.2 Materials and Methods 

1.2.1 Field Site 

Our study site is located within the Elkhorn Plain (35.117998° -119.629063°) in 

the Carrizo Plain National Monument, California, USA. This area is characterized by 

extremely harsh, arid summers (average high 30 - 40˚C) and cool winters (average low 5 

- 9˚C, Germano & Williams, 2005; Raws USA Climate Archive, 2019). This site is part 

of the San Joaquin Desert (Germano et al., 2011), which in modern times has been 

frequently misclassified as a grassland prairie, despite early European explorers 

describing the landscape as lacking dominant annual or perennial grasses (D’Antonio et 

al., 2007; Schiffman, 2007; Minnich, 2008). When temperatures rise in this area, the 

vegetation dies off in early May, leaving the ground barren and resembling that of an arid 

desert with occasional small saltbush plants (Minnich, 2008) and in some areas, including 

our site, sparsely distributed Ephedra shrubs. The area is dominated by Giant Kangaroo 

Rat (Dipodomys ingens) precincts with extensive burrow networks. Our study spanned 

one active season of G. sila (May - July 2018). We obtained ambient temperature data 

from a weather station (Cochora Ranch, station ID: CXXC1) 3.7 km due east of the field 

site. 

 

1.2.2 Study Species and Field Monitoring 

Adult G. sila (N = 30) were captured by hand-held lasso in early May 2018. 

Snout-vent length (SVL, ± 0.1 cm), mass (Pesola® 50 -100g precision scale, ± 0.5g), and 

sex were recorded upon capture (Table S1). Females were palpated for follicles and 

recorded as gravid or not. Lizards were fitted with VHF temperature-sensitive radio-
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transmitter collars (Holohil model BD-2T, Holohil Systems Ltd., Carp, ON, Canada) 

following the methods of Germano & Rathbun (2016). The transmitters were epoxied to 

nickel-plated ball chain collars, which were fitted around the lizards’ necks, with whip 

antennas (16cm) extending dorsally from the collars. Lizards were released the same day 

of capture. Following release, lizards were tracked 1-3 times per day using a VHF 

receiver and Yagi antenna (R-1000 Telemetry Receiver, Communications Specialists, 

Inc., Orange, CA, USA), resulting in an average of 55 observations on each lizard over 

the active season. Behavioral observations, microhabitat (open desert floor, under shrub, 

or in burrow), GPS location, and time of day were recorded at each tracking event. At the 

end of the study, lizards were recaptured by lasso or excavated from burrows and 

collected for measurement of preferred body temperature and thermal tolerance (see 

below). Collars were then removed, SVL and mass data were recorded again, and lizards 

were released at their sites of capture, at which time they entered estivation for the 

remainder of the summer. 

 

1.2.3 Field Active Body Temperature (Tb) and Microhabitat Use 

We continually recorded the temperatures of the radio-transmitters as the field 

active lizard body temperature (Tb) using a Telonics TR-5 receiver with data acquisition 

system (Telonics Option 320) and 10ft tall omni antenna (Telonics model RA-6B). We 

programmed the system to log the interpulse intervals of the transmitters about every ten 

minutes and used manufacturer-provided calibration equations to convert interpulse 

interval to temperature. This resulted in a total of ~90,000 Tb points for the 30 lizards 

spanning their active season from May-July. Because radio-transmitters were external 
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(collars), it is possible that they could heat more rapidly than the lizard’s core actual Tb, 

especially when lizards are in the sun. This may lead to a slight overestimate of lizard Tb 

than if core Tb had been collected, which is not possible with external radio-transmitters. 

Data were checked manually for aberrant points, which were removed. We used an 

ANCOVA to test whether SVL, mass, sex, or gravidity affected mean Tb, and a repeated 

measures ANOVA with time of day (daytime or nighttime), month, the interaction 

between time of day and month, and lizard ID as a random effect, to analyze how Tb 

changed over the active season (May-July), and Tukey posthoc tests to compare monthly 

nighttime temperatures or monthly daytime temperatures. We also used field-active Tb 

data to calculate the field-active voluntary maximum Tb (VTmax), or the average 

maximum daily Tb, which presumably occurred when the lizard was active above ground 

exposed to solar radiation (Brattstrom, 1965), to use in the activity restriction analysis 

(see below). To test the hypothesis that lizard microhabitat differed by month, we 

calculated an initial Pearson’s chi-square statistic from the observed data. We then ran a 

permutation test by shuffling the observations across months and computing a chi-square 

statistic for each permutation. This analysis was performed in R (R Core Team, 2017), 

and all other analyses were performed in JMP® (v. Pro 14). 

 

1.2.4 Preferred Body Temperature (Tset) and Thermoregulatory Accuracy (db) 

At the end of the study (mid-July), lizards were collected from the field site and 

brought to a field station to collect data on their preferred body temperature range (Tset) in 

a thermal gradient. The gradient consisted of sand substrate divided into three lanes (250 

x 20 x 25 cm each) separated by wood dividers so lizards could not see lizards in 
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neighboring lanes. One end of the gradient was heated to 47 ˚C with a closed circuit 4 

gallon water heater (Stiebel Eltron model no. SHC4, Germany), and the other end was 

cooled to 10 ˚C with a closed circuit 400L water cooler (ActiveAQUA Refrigerateur 

model no. AACH10, Petaluma, CA, USA). Water circulated under the gradient in 

insulated pipes from the heated side to the cold side to create the thermal gradient. 

Thermocouples (model 5SRTC-TT-K-40-72, Omega Engineering, UK) were inserted 

into the lizard’s cloacae and held in place by medical tape wrapped around the base of the 

tail. The thermocouples recorded Tb every ten minutes on a data logger (model 

RDXL4SD, Omega Engineering, Egham, Surrey, UK). Lizards were placed in the center 

of the gradient and left undisturbed for three hours (the first two hours were used as an 

acclimation period, and the final hour was used to determine Tset). We designated Tset as 

the 25-75% interquartile range of the final hour Tb. Data collection for the 30 lizards ran 

continually day and night over several days to minimize the amount of time the lizards 

were kept in captivity before release. We excluded Tset data for three lizards from the 

analysis (10.6, 14.3, 18.2˚C) because they were > 2 SD away from the median and were 

likely from lizards that failed to actively thermoregulate within the gradient in the time 

allotted. We used an ANCOVA to test the effects of sex, SVL, mass, capture method 

(lasso or excavation), and time of day on median Tset. We calculated lizard 

thermoregulatory accuracy (db) by subtracting the mean Tset IQR from each instance of Tb 

(Hertz et al., 1993), then averaged all db values for a single lizard within each 1-hour 

period per day from 0700-1900, then averaged all db by hour of day to create average 

hourly db values. Either very high positive or very low negative values of db represent 

poor accuracy and zero represents perfect accuracy.  
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1.2.5 Upper Thermal Tolerance (Tpant) 

The upper thermal tolerance of lizards is typically measured as a loss of righting response 

or the onset of muscular spasms in response to high temperature, which represents the 

critical thermal maximum (CTmax), or the high temperature at which a lizard loses 

muscular coordination and will die if heated further (Cowles & Bogert, 1944; Larson, 

1961; Prieto & Whitford, 1971; Shea et al., 2016). At Tb slightly below the CTmax, lizards 

begin gaping and panting, presumably to increase evaporative cooling rates (Dawson & 

Templeton, 1963; Heatwole et al., 1973; Tattersall et al., 2006). Given that G. sila is a 

federally endangered species, we chose to use their panting threshold (Tpant) as a 

conservative measure of their upper thermal tolerance so that we did not expose lizards to 

excessively stressful or potentially fatal high temperatures. To measure Tpant, we used a 

Cal Poly-engineered device, the Gas Analysis Temperature Oxygen Regulation System 

(GATORS). Lizards were fitted with cloacal resistance thermometers, heated at 1˚C 

ambient temperature per minute in individual temperature-controlled chambers (18cm 

length, 4cm diameter), observed for panting behavior (open mouth and rapid thoracic 

compression), then promptly removed and cooled. Tpant was recorded immediately 

following collection of Tset data. We used an ANCOVA to test the effects of sex, SVL, 

mass, capture method (lasso or excavation), and time of day on Tpant. 

 

1.2.6 Biophysical Models and Microhabitat Temperatures 

 We used biophysical models to model the ranges of temperatures within 

microhabitats throughout the course of a day a lizard would experience if it were 

behaviorally neutral to, or non-thermoregulating within, the environment. Models (N = 
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18) consisted of 1” (2.5cm) diameter copper pipes, welded with a copper female end on 

one side and a male end on the other. A Thermochron iButton (DS1921G-F5) 

programmed to record temperature every 10 minutes and coated in PlastiDip was 

suspended in the center of each pipe by a 3D-printed plastic insert to avoid contact with 

the pipe walls, then pipes were were filled with water (Dzialowski, 2005), and PVC caps 

were screwed onto the male copper ends. Models were fitted with two 3.8cm “legs” made 

from copper wiring to prop models above ground on one end, mimicking a lizard propped 

up on its front legs. Biophysical model temperatures were validated by comparing 

internal temperatures to those of a preserved lizard over the course of 120 minutes of 

heating in the sun (models were continually within ±1 °C of the lizard). Models were 

deployed from July 1-19 (a very hot period) in three different microhabitats: on the desert 

floor exposed to the sun (open, N = 6), in the shade under Ephedra shrubs (shrub, N = 6), 

and approximately 1 meter inside Giant Kangaroo Rat burrows (burrow, N = 6). Models 

in burrows did not have legs to mimic lizards lying prone on the burrow floor. We 

compared the mean hourly temperatures of the three microhabitats during G. sila activity 

hours (0700-1900) using a two-way ANOVA followed by a Tukey-Kramer post hoc test. 

 

1.2.7 Activity Restriction 

We used data from the biophysical models along with Tpant, VTmax, and Tset data 

to calculate the activity constraint or hours of restriction (hr), or the number of hours that 

a lizard could not be active in a given microhabitat because its Tb would be too high, in 

several ways:  
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1. Basking restriction: the average number of hours per day that lizards are currently 

restricted from continually basking in the open and are confined to burrows or 

shade because temperatures of biophysical models in the open exceed Tpant, 

VTmax, or Tset (we calculated hours of restriction separately for each variable). 

2. Above ground restriction: the average number of hours per day that lizards are 

currently restricted from remaining active above ground and are confined to 

burrows because temperatures of biophysical models in the open or in the shade 

exceed Tpant, VTmax, or Tset. 

3. Total restriction: the average number of hours per day that temperatures of 

biophysical models in all microhabitats exceed Tpant, VTmax, or Tset. 

 

1.2.8 Climatic Projections 

To assess how hr might change in the future due to consequences of 

anthropogenic climate change, we used Cal-Adapt’s representative concentration 

pathway (RCP) climate scenario 4.5 and 8.5 (Cal-Adapt, 2019). RCP 4.5 is a 

conservative scenario which predicts a steady decline following peak carbon emissions in 

2040. RCP 8.5 is a worst-case scenario in which carbon emissions continue throughout 

the 21st century, peaking in 2050 and plateauing around 2100. Using the “modeled 

projected annual mean” tool, we identified the years where the annual average 

temperatures in the Elkhorn Plain are projected to increase 1 and 2 ˚C from the 2018 

average. To make our predictions, we added a 1˚C increase unilaterally across the 2018 

biophysical model data. We projected how each hr variable would be affected by climate 

change by adding 1 and 2 ˚C to current biophysical model temperatures (+1 ˚C hr and +2 
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˚C hr). Note that temperatures inside burrows, under shrubs, and out in the open are 

unlikely to actually increase at the same rates, but this method provides us with a coarse 

estimate as to how hr might change with warming climates (Brusch et al., 2016).  

 

1.3 Results 

1.3.1Field Active Body Temperature (Tb) and Microhabitat Use 

Mean Tb was not impacted by sex (F1 = 0.91, p = 0.35) or by initial SVL (F1 = 

0.10, p = 0.75), mass (F1 = 0.29, p = 0.59). Within female lizards, Tb did not differ 

between gravid and non-gravid lizards (F1 = 0.16, p = 0.70). Monthly mean daytime and 

nighttime ambient temperatures increased from May to June to July, as expected, with 

daytime average temperatures consistently about 6-8 ˚C higher than nighttime 

temperatures (Figure 1.1a). Despite the dramatic increase in ambient temperatures over 

the course of the active season, lizard Tb did not vary across each month (F123.6 = 2.0, p = 

0.14), and there was no interaction between month and time of day (F122.9 = 1.26, p = 

0.29). As expected, average monthly mean daytime Tb of lizards was significantly higher 

than nighttime Tb (F122.9 = 38.6, p < 0.001). Tukey post-hoc tests showed that nighttime 

Tb increased significantly in July compared to May and June, presumably because burrow 

temperatures increased. The calculated VTmax of G. sila was 40.4 ± 0.8˚C. 

As ambient temperatures increased, we observed a concomitant increase in 

burrow use and decrease in time spent in the open microhabitat during daylight hours 

(Figure 1.1b). In the permutation independence test, the chi-square test statistic computed 

from the original data was 250. Of the 5,000 independent permutations performed, our 
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initial statistic was only exceeded 3 times, resulting in a permutation p-value of 0.0006, 

showing that microhabitat selection significantly differed by month. 

Average daily Tb of G. sila during an extremely hot part of their active season (1-

19 July 2019) is shown in Figure 1.3, along with Tset range, Tpant, and Te in the three 

microhabitats (results below). 

 

 
Figure 1.1: Monthly body and ambient temperatures and microhabitat selection by 
Gambelia sila (N=30) over the course of their active season (May - July 2018). (a) 
Both daytime and nighttime ambient temperatures (Tair) increased as the season 
progressed, but lizard Tb remained constant during daytime hours as they 
thermoregulated. Nighttime Tb increased in July. Values shown are means ±1 SEM. (b) 
As ambient temperatures increased, lizards increased the proportion of time spent in 
burrows and decreased the proportion of time spent in the open during daylight hours. 
Shrubs therefore represented an increasing proportion of the above-ground microhabitat 
use as temperatures increased over the season. 
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1.3.2 Preferred Body Temperature (Tset) and Thermoregulatory Accuracy (db) 

The median preferred body temperature of G. sila is 34.1 ± 1.2˚C, with a Tset 

range of 32.3 ± 1.2˚C  – 37.5 ± 1.1 ˚C (Figure 1.3). There was no significant effect of sex 

(F1 = 3.93, p = 0.08), SVL (F1 = 0.02, p = 0.90), mass (F1 = 0.26, p = 0.62), capture 

method (F1 = 0.55, p = 0.47), or time of day (F4 = 1.10, p = 0.41) on Tset. Before 9am, db 

values were negative because lizard Tb was lower than Tset, as even burrows are too cool 

for lizards to achieve Tset at night and early morning (Figure 1.2). After about 1100, db 

values become positive as lizard Tb often exceeded Tset, especially from about 1400 to 

1900 (see Figure 1.2). 

 
Figure 1.2: Average thermoregulatory accuracy (db) of Gambelia sila (N=30) over 
the course of the active season (May - July 2018) plotted against time of day from 
0700-1900. Error bars represent ±1 SEM. Values at zero (dashed line) indicate that the 
lizard is thermoregulating within the Tset range. As values move away from zero in either 
direction, the accuracy of thermoregulation decreases. 
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1.3.3 Upper Thermal Tolerance (Tpant) 

There was no effect of sex (F1 = 2.81, p = 0.11), SVL (F1 = 0.01, p = 0.92), mass 

(F1 = 2.27, p = 0.15), or capture method (F1 = 1.39, p = 0.26) on Tpant. Mean Tpant was 

41.4 ± 0.2˚C (Figure 1.3). Given that the true upper thermal threshold (CTmax) is usually 

several degrees higher than Tpant (e.g., Heatwole et al., 1973; Shea et al., 2016), the CTmax 

of G. sila is probably in the mid 40 ˚C range. 

 

1.3.4 Biophysical Models 

Based on data from biophysical models, hourly daytime (0700-1900) temperature 

from 1-19 July 2019 varied significantly among microhabitats (F14,38 = 11.07, p < 

0.0001), with temperatures in the open highest, under shrubs intermediate, and in burrows 

lowest (Figure 1.3). 
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Figure 1.3: Average daily temperatures of biophysical models in three microhabitats 
(N=6 each) and Gambelia sila body (Tb) temperatures (N=30) during an  
extremely hot part of their active season (1-19 July 2019). Temperatures above ground 
(open and shrub) regularly exceeded the upper thermal tolerance (Tpant), whereas 
temperatures in burrows were most often within lizard preferred body temperature (Tset) 
range. Average maximum voluntary body temperature (VTmax) did not exceed Tpant. Lizards 
maintained Tb within Tset for most of the daylight hours, and lizard Tb never exceeded Tpant. 
Error bars represent ±1 SEM. 
 
1.3.5 Activity Restriction Time 

Currently, during the hottest time of the active season, G. sila are restricted from 

continually basking in the sun for 8-9 hours a day (Figure 1.4), forcing them into burrows 

or under shrubs because temperatures of biophysical models in the direct sun exceed all 

three thermal variables (Tpant, VTmax, and Tset). Even the ground beneath shrubs is above 

Tpant for 5 hours a day, where lizards are restricted to using burrows only. Currently, 

mean burrow temperatures do not exceed lizard Tset even in the hottest part of the 

summer.  
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1.3.6 Climatic Projections 

In the RCP 4.5 scenario, our field site will have increased from its 23.5 ˚C 2018 

annual average to 24.5 ˚C by 2079, and to 25.5 ˚C at some point beyond 2099. For the 

RCP 8.5 scenario, our field site will have increased 1 ˚C to 24.5 ˚C by 2059 and to 25.5 

˚C by 2097. Assuming that equal warming occurs across all microhabitats, the hours 

restricted to shade or burrows will not be impacted with a 1 ˚C increase, but there will be 

an additional hour above Tset with a 2 ˚C increase (Figure 1.4). The number of hours 

restricted to burrows because Tb would exceed thermal variables will increase by 1-2 

hours. Currently, burrow temperatures do not exceed Tpant, VTmax, or Tset, and a 1 ˚C 

increase in temperatures will not change this. However, with a 2˚C increase, burrows will 

exceed Tset for 1 hour per day. 

 
Figure 1.4: The number of daytime hours (0700 to 1900) that Gambelia sila are 
restricted from being in the open (basking restriction), from being in the open or 
shade (above ground restriction), or from being inside burrows (total restriction) 
calculated as hours above Tpant, VTmax, and Tset, at the current climate and with 1 and 
2˚C increase in temperature. These data encompass a very hot portion of the active 
season (1-19 July), so there will be fewer restricted hours earlier in the season when 
daytime ambient temperatures are lower.  
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1.4 Discussion 

In this study on the thermal ecology of G. sila, we have shown that these lizards 

exist in a very hot environment by taking refuge from extreme midday heat under 

Ephedra shrubs and inside Dipodomys burrows. Our analysis of monthly changes in 

lizard Tb reveals that daytime Tb does not significantly change over the course of their 

active season (Figure 1.1a), indicating that despite mean monthly increases in ambient 

temperatures in this extremely hot environment, lizards are thermoregulating to keep their 

Tb consistent. This finding is consistent with other studies on diurnal lizards; for example, 

the skink Tiliqua rugosa thermoregulates at a relatively consistent 33-35 ˚C from spring 

through autumn by changing their thermoregulatory behaviors (Firth & Belan, 1998). In 

addition to shuttling among various microhabitats, thermoregulatory behaviors include 

changes in posture (Cowles & Bogert, 1944; Muth, 1977), lying flat on the ground when 

temperatures are low, and raising limbs and tail off the ground when temperatures are 

high (Losos, 1987). In G. sila, nighttime Tb was lower than daytime Tb  and nighttime Tb 

increased in July, most likely because the temperatures of the burrows they inhabit at 

night also increased. Over the course of the active season from May to July, lizards 

increased burrow use and decreased time spent in the open. At the beginning of the 

season, milder ambient temperatures allowed the lizards to stay above ground longer and 

utilized the open to defend territories, forage, and mate (Buckley et al., 2015; Grimm-

Seyfarth et al., 2017; Germano, 2019). As temperatures in each of these microhabitats 

increased, we observed an increased reliance on burrows and, to a lesser extent, shade 

plants when temperatures in the open are too high for these lizards to stay active for 

extended periods of time because they exceed the lizards’ Tset and Tpant.  
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Analysis of the biophysical models we placed out in the three major microhabitats 

available to lizards at our field site during an extremely hot window of their active season 

in July revealed the following patterns relevant to lizard thermoregulatory behavior: (1) 

temperatures in the open are highest during midday and lowest at night, with the greatest 

daily fluctuation, (2) temperatures in burrows are the most stable, providing the lowest 

temperatures available during midday and the highest at night across all three 

microhabitats, and (3) temperatures under shrubs tend to be intermediate between the 

open and burrows, suggesting that the shade from shrubs should provide a buffer from 

solar radiation to lizards during midday. Lizard Tb was lowest in the early morning hours 

when inside burrows, and increased rapidly upon emergence from burrows in the 

morning. In the morning, Tb is actually slightly elevated above Te in the sun, which may 

be an artifact of the faster heating rates of the externally attached radio-transmitters than 

the biophysical models. However, this difference between lizard Tb and sun Te is 

negligible until about 0900 hours, when Te in the sun dramatically exceeds lizard Tb. As a 

result of shuttling thermoregulatory behavior, lizard Tb during the hottest part of the year 

tends to lie between that of the biophysical models in the shade of shrubs and those in 

burrows. Thermoregulation allowed lizards to maintain a fairly stable Tb during midday, 

and to remain within their Tset for a small portion of the day. Lizard Tb tended to exceed 

Tset during the hours of 1400-1900, probably because lizards traded off their Tset with the 

need to be above ground to defend territory and forage (Martín & Lopez, 1999; Polo et 

al., 2005; Medina et al., 2016). It is fairly common for diurnal lizards to allow their Tb to 

exceed their lab-measured Tset (e.g., Light et al., 1966), sometimes even panting in order 

to evaporatively cool while active in extreme heat (reviewed in Tattersall et al., 2006). 
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During the latter portion of the day, lizard Tb started to slowly decline as they entered 

burrows. 

Collecting data on Tset and field active Tb allowed us to examine the lizards’ 

thermoregulatory accuracy (db) during daylight hours, when they can actively 

thermoregulate. Early in the morning, db is low because all three microhabitats are too 

cold for the lizards to achieve their preferred body temperatures. Interestingly, average Tb 

in the early morning is actually higher than all three microhabitats (Figure 1.1), which 

may be result in part from solar radiation heating up the external radio-transmitter more 

rapidly than the biophysical models. In addition, lizards may be thermoregulating by 

positioning their bodies perpendicular to the sun to absorb more solar radiation (Muth, 

1977; Waldschmidt, 1980), standing on all four legs to avoid conductive heat loss to the 

ground (Cowles & Bogert, 1944), darkening their skin via melanophore dispersion to 

absorb more radiation (Sherbrooke et al., 1994; Sherbrooke, 1997), and other 

mechanisms. Thermoregulatory accuracy is best at around 9am, when lizard Tb matches 

their Tset. As the day progresses, db becomes worse as available temperatures are higher 

and therefore further from Tset. They shuttle between burrows (where there is good 

thermal quality but no opportunity to forage, defend territories, etc.) and the open desert 

floor (poor thermal quality but facilitates the above behaviors). During the heat of the 

day, lizards can either seek refuge in burrows or continue above ground activity, at least 

for a time, by using Ephedra shrubs (Westphal et al., 2018). Our data support the 

hypothesis that shrubs are valuable and aid in the thermoregulation of G. sila because on 

a hot day, they are currently able to spend four more hours above ground than if there 

were no shrubs and they were forced to enter burrows to avoid exceeding Tpant. 
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Furthermore, light can penetrate shrub canopies, resulting in a mosaic of thermal and 

radiative properties, so the thermal microhabitat under shrubs may be even more complex 

and variable than our biophysical models could measure. All biophysical models under 

shrubs were placed on the ground; in hindsight, after we realized that lizards sometimes 

climbed several inches off the ground into shrubs, we realized that placing models on 

shrub branches would have been an informative way of analyzing microhabitat 

heterogeneity underneath shrubs, as lizards could thermoregulate more accurately during 

the heat of the day by climbing in shrubs (Germano, 2019). Shrubs may therefore provide 

a valuable source of thermal heterogeneity in this relatively simple environment, a pattern 

that has been observed in many other studies (Bauwens et al., 1999; Bauwens et al., 

1996; Stout et al., 2013; Sears et al., 2016; Filazzola et al., 2017). For example, Egyptian 

tortoises (Testudo kleinmanni) in the deserts of Egypt depend on large shrubs to 

thermoregulate and survive; if loss of vegetation occurred, the species would not persist 

(Attum et al., 2013). In general, thermal resources like shade may be important buffers 

for the effects of climate change, especially for organisms inhabiting areas experiencing 

rapid warming (Suggitt et al., 2018). Given that G. sila do occur in sites without shrubs 

(Germano & Rathbun, 2016), we recommend future studies comparing the 

thermoregulatory accuracy and activity patterns of G. sila populations with and without 

shrubs would be informative.  

Field-active lizards thermoregulate to achieve and maintain Tb within their Tset 

range, which is optimal for peak performance (e.g., sprint speed, reproduction, or 

digestion, Xiang et al., 1996). While lizards by definition prefer to thermoregulate within 

their Tset range, they regularly exceed Tset to perform essential activities like feeding and 
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mating (Porter et al., 1973; Adolph & Porter, 1993; Bauwens et al., 1996), so examining 

their VTmax in the field is ecologically relevant. Similarly, measures of upper thermal 

tolerance like the CTmax are important because lizards cannot exceed these temperatures 

because they would lose motor function and die (Cowles & Bogert, 1944). If habitats 

become hot enough that lizards will exceed their CTmax for significant portions of the day, 

extirpation is likely to occur because the lizards will lack sufficient activity time, as G. 

sila is already restricted from basking in the open or even being above ground at all for 

large portions of the day. Clearly, shuttling behavior mitigates these restrictions; lizards 

can still move through hot, open areas in the middle of the day as long as they 

consistently seek refuge under shrubs or in burrows to cool off. However, the current 

hours of restriction (ranging from 5-10 hours per day depending on the metric used, 

Figure 1.4) are extremely high (Sinervo et al., 2010), suggesting that these lizards may 

already be dramatically restricted by high temperatures. The number of restriction hours 

may be slightly overestimated because we used external radio-transmitters, which may 

read higher Tb than the actual internal Tb, especially when they are basking in the sun. 

However, lizards spend a small quantity of time in the sun during this hot time of year 

(Figure 1.1b), so our overestimates are likely to be minor. The high number of restriction 

hours, along with factors like extreme aridity, might explain why G. sila enter aestivation 

and why they have such a short active season (Germano et al., 1994). Clearly, G. sila is 

adapted to hot, arid environments, as evidenced by its ability to be active at high ambient 

temperatures (Germano, 2019), its high thermal tolerance, and its persistence in desert 

ecosystems. However, how long will it be before ambient temperatures become high 

enough that lizards cannot physiologically and behaviorally mitigate them?  
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Unsurprisingly, anthropogenic climate change is likely to exacerbate the already 

hot climate in the San Joaquin Desert and impact G. sila. Our models predict that as 

temperatures increase, G. sila will continue to lose hours of activity because of 

microhabitat temperatures surpassing Tpant (and theoretically also their CTmax), VTmax, 

and Tset. The restriction hours for Tpant and VTmax were similar because the temperatures 

for Tpant and VTmax were similar (Figure 1.3, Camacho et al., 2018). As global 

temperatures continue to rise, there will be a resulting shift in the distribution of local 

species populations and changes in timing of activity (Parmesan & Yohe, 2003; Root et 

al., 2003; Sinervo et al., 2017). However, at the rate of climate change occurring, lizards 

may not be capable of responding to increasing temperatures. On the one hand, having 

shade-providing shrubs in this heterogeneous habitat may aid in the resilience of this 

species to a rising climate (Germano, 2019). On the other hand, behavioral 

thermoregulation (for example, use of shrub shade) can actually prevent lizards from 

adapting to climate change because higher thermal tolerance is not being selected for 

(Huey et al., 2003; Buckley et al., 2015). Furthermore, the projected changes in 

biophysical models by 1 and 2˚C ignore the spatial heterogeneity of the environment 

(Sears et al., 2011), and actual changes could be very different because microhabitat 

temperatures will increase at different rates than ambient temperatures. Our data show 

that conditions inside burrows, which have the lowest temperatures during midday, will 

exceed the Tset of G. sila with a 2 ˚C increase in temperatures by the end of the century. 

Notably, this relies on temperatures of biophysical models placed 1 m into a burrow, and 

it is possible that lizards could move deeper into burrow systems to maintain preferred 

temperatures. Future studies will examine depth and complexity of kangaroo rat burrow 
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systems. If burrows cannot provide an adequate thermal buffer to lizards in the future, 

then lizards will experience an increase in energy expenditure throughout the day without 

the available time to forage. This additional energy expenditure in the face of climate 

change will exacerbate the potential for decreased energy for reproduction and growth 

(Sears et al., 2011; Sinervo et al., 2017). Clearly, evidence-based and proactive 

management of kangaroo rat burrows and shade-providing shrubs are essential to the 

persistence of G. sila in the Carrizo Plain in the future. If nothing is done to mitigate the 

effects of climate change and make important decisions about the management of this 

habitat, the extirpation of this population and potentially extinction of the entire species is 

a distinct possibility.  
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2. Using Temperature-Based Activity Estimation to Predict Surface Activity and 

Microhabitat Use of an Endangered Heliothermic Lizard 

 

2.1 Introduction 

Refugia constitute a major resource for terrestrial organisms because they provide 

protection from predators (Martín & López, 2004; Manicom et al., 2008), provide escape 

from extreme temperatures (Schwarzkopf & Alford, 1996; Polo & López, 2005), and can 

buffer animals from extreme aridity and precipitation events (Bulova, 2002; Burda et al. 

2007; Ivey et al., in press). However, essential activities like mate-searching and feeding 

typically require surface activity in xerophilic animals (Krause et al., 2000; Martín & 

Pilar, 1999; Amo et al. 2007; Munguia et al. 2017), and consequently these animals can 

experience trade-offs between refugia use and surface activity when conditions are harsh 

(Webb & Whiting, 2005; Davis et al. 2008). Animals inhabiting arid environments face 

risk of extinction due to the increased temperatures and longer periods without 

precipitation induced by climate change (Archer & Predick, 2008; Barrows, 2011) force 

these animals to seek refuge more frequently and potentially reduce their ability to obtain 

resources (Buckley et al., 2015; Grimm-Seyfarth et al., 2017). Heliothermic (sun-

basking) lizards are a group that is particularly at-risk (Sinervo et al., 2010) because they 

already thermoregulate at high temperatures (Cowles & Bogert, 1944; Huey, 1982) and 

further increases in ambient temperatures will force them into refugia. These species also 

have very little plasticity in thermal tolerance because they are adept at behaviorally 

thermoregulating by shuttling among the sun, shade, and refugia (Gunderson & Stillman, 

2015) and therefore have a low potential for adapting to higher temperatures (Huey, 
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1982; Huey et al., 2003; Angilletta, 2009; Muñoz & Losos, 2018). These species are thus 

excellent candidates to use in order to examine and understand how shifts in climatic 

events will impact organisms that rely on their thermal environment and aid us in 

understanding how we can use temperature to model their activity. 

Studying how climate change influences vulnerable ectotherms relies on robust 

methods for collecting continuous data on body temperature and microhabitat use. 

However, small, heliothermic lizards provide a logistical challenge in terms of 

continuous sampling. Most studies employ the “grab and jab” technique, in which a 

lizard is captured, and a point sample of its body temperature is collected via a cloacal 

thermometer. Point-sampling of body temperature is highly biased in that it provides a 

small number of data points reflecting only those time periods in which animals are 

active and researchers can access them (Taylor et al., 2004). Furthermore, tracking small 

individuals over time is difficult due to limitations in radio-transmitter size and battery 

life. Even if telemetry is possible, tracking these animals on a regular basis over time 

presents financial and logistical challenges. Researchers might be able to accurately 

predict activity and microhabitat use based on body temperature data for small, 

heliothermic lizards in arid, hot environments if those data were collected continuously 

and subjected to robust validation. This method, known as temperature-based activity 

estimation (TBAE), has been tested in a large-bodied lizard and snake (Davis et al. 

2008). TBAE predicted surface activity 96% of the time in the lizard (Gila monster, 

Heloderma suspectum), which forages actively on the surface, but only 66% of the time 

in the snake (Western Diamond-backed Rattlesnake, Crotalus atrox), which tends to hide 

in shade and therefore thermoconforms more than the Gila monster. In this study, we 
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investigated whether TBAE would successfully predict not just surface activity, but also 

microhabitat use, in a smaller, heliothermic lizard. 

We evaluated the efficacy of TBAE in estimating surface activity and 

microhabitat use in the blunt-nosed leopard lizard Gambelia sila, a federally endangered 

lizard found in a few isolated populations in the hot and arid San Joaquin Valley and 

Carrizo Plain in California, USA (IUCN 2019; Germano et al., 2005; Germano & 

Rathbun, 2016; Stewart et al., 2019). Substantial financial resources are invested 

annually in studying this species, in efforts to inform management plans for its protection 

and recovery. Gambelia sila may be dramatically impacted by climate change in the 

coming years (Ivey et al., 2020), although they may be able to shift activity patterns to 

mitigate warming (Germano, 2019). Nevertheless, documenting its thermal ecology and 

activity patterns represents an essential component of its continued assessment and 

management strategy. Here we tested the hypothesis that TBAE can accurately predict 

surface activity and microhabitat use in blunt-nosed leopard lizards. In doing so, we 

evaluated the following three key predictions: (1) TBAE predicts whether a lizard is 

underground or surface active, (2) TBAE predicts microhabitat use such as sun, shade, or 

burrow, and (3) TBAE predicts the time of day that a lizard first emerges from its 

overnight refugium. This study also assesses continuous body temperature data as a less 

intrusive and cost-effective means to monitor sensitive species. 

2.2 Materials and Methods 

2.2.1 Study Species and Sites 

The study took place in the Elkhorn Plain in the Carrizo Plain National 

Monument, California, USA at two different sites. The first site (a “shrubbed” site) has 
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sparsely distributed Ephedra shrubs throughout the terrain (35.117998° -119.629063°). 

The second site (a “shrubless” site) lacks Ephedra shrubs or any other ground cover and 

is located 6.1 km SW of the shrubbed site (35.117998° -119.629063°). The Elkhorn Plain 

experiences arid summers (average high 30 - 40 ˚C) and cool winters (average low 5 - 9 

˚C, Germano et al., 2005, Raws; USA Climate Archive, 2019). Both sites are dominated 

by Giant Kangaroo Rat (Dipodomys ingens) precincts with extensive burrow networks 

that provide important refugia for Gambelia sila (Ivey et al., 2020). TBAE analyses of 

surface activity and microhabitat use were performed using data from the shrubbed site in 

2018. Analyses of the timing of morning emergence were performed using data from 

both sites in 2019 (see Predicting Emergence Time below).  

Adult blunt-nosed leopard lizards were captured by hand-held lasso in early May 

2018 at the shrubbed site (N = 30), and in late April/early May 2019 at the shrubbed (N = 

20) and shrubless (N = 20) sites. Lizards were fitted with VHF temperature-sensitive 

radio-transmitter collars (Holohil model BD-2T, Holohil Systems Ltd., Carp, ON, 

Canada) following the methods of Germano and Rathbun (2016). We recorded standard 

morphometrics (mass, SVL, sex, gravidity, tail length, and tail status), released lizards at 

their sites of capture, and subsequently tracked lizards 1-3 times per day using a VHF 

receiver and Yagi antenna (R-1000 Telemetry Receiver, Communications Specialists, 

Inc., Orange, CA, USA). During each tracking event, behavioral observations, 

microhabitat description, GPS coordinates, and a timestamp were recorded. In July (the 

end of their active period), lizards were recaptured, radio-transmitters were removed, and 

lizards were released at their location of capture to estivate for the remainder of the 

summer. 
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2.2.2 Body Temperature (Tb) 

 Body temperatures (Tb) of lizards were continually recorded (~ every 5-10 min) 

as the temperature of the radio-collar via relay to a Telonics TR-5 receiver with data 

acquisition system (Telonics Option 320) and 10ft tall omni antenna (Telonics model 

RA-6B). Since transmitters record surface temperature and not core Tb, it is important to 

acknowledge that our Tb measurements are estimates of actual Tb. We programmed the 

system to log the interpulse intervals for each radio-transmitter about every ten minutes, 

and used manufacturer-provided calibration equations to convert interpulse intervals to 

Tb. Data were checked by visual inspection for any clearly skewed temperatures, which 

were consequently removed from the set. 

 
2.2.3 Characterizing the Thermal Habitat: Air Temperature and Biophysical Models 

We characterized the thermal habitat at the shrubbed site in 2018 using two 

methods: air temperatures and temperatures of biophysical models. First, we downloaded 

data from the RAWS weather station at Cochora Ranch (station ID: CXXC1), 3.7 km due 

east of the shrubbed site, to use as a proxy for air temperature (Tair). Second, we deployed 

biophysical models from July 1-19 (N = 6 in the sun, N = 6 in the shade of Ephedra 

shrubs, N = 6 in burrows) following the methods of Ivey et al. (2020). Briefly, the 

models consisted of 1” (2.5cm) diameter copper pipes fitted with a Thermochron iButton 

(DS1921G-F5), filled with water, and secured with PVC caps screwed onto the male 

copper ends. Total length of the models was 15.3 cm. Models placed above ground were 

fitted with “legs” made from copper wiring to prop models on one end, mimicking a 

lizard basking. Models placed in burrows did not have legs.  



 29 

 
2.2.4 Temperature-Based Activity Estimation (TBAE) 

First, we used the difference between Tair and Tb to predict when a lizard was 

surface active or below ground. When lizards are above ground, their Tb often exceeds 

Tair as they bask in the sun (= positive temperature differential). We tested positive 

temperature differentials of 2, 4, 6, 8, 10, 12, and 14 ˚C to determine which differential 

best predicted when lizards were surface active. One researcher created a spreadsheet 

with the Tb of each lizard at each of its radio-telemetry fixes, plus data on its activity 

(above or below ground). We used the “IF THEN” function in Microsoft Excel to predict 

whether the animal was above or below ground based on the positive temperature 

differential. For example, if Tb was above Tair by 2 ˚C, then the lizard was predicted to be 

above ground; if not, it was predicted to be below ground. After making the predictions, 

we merged predicted and actual data to examine how the various positive temperature 

differentials impacted accuracy of our predictions. 

Next, we used the temperatures of biophysical models to estimate microhabitat 

use and surface activity. The average hourly temperatures of each biophysical model 

(sun, shade, burrow) during blunt-nosed leopard lizard’s active hours (700 - 1900) were 

plotted against each lizard’s Tb the same day, and a researcher blind to the lizard lizard’s 

actual microhabitat predicted its microhabitat based on the following criteria (modified 

from Davis et al., 2008): (1) Lizards were predicted to be in the open if their Tb was equal 

to or higher than the temperature of the models in the open; (2) lizards were predicted to 

be under shrubs if their Tb was equal to or higher than the temperature halfway between 

those of the models in burrows and under shrubs, but lower than models in the open; (3) 

lizards were predicted to be in burrows if their Tb was lower than the temperature 



 30 

halfway between the models in burrows and under shrubs. Predictions of lizards in the 

open and under shrubs were combined to constitute above-ground predicted activity, and 

predictions of lizards in burrows constituted below-ground predicted activity. Next, the 

blind predictions were compared to actual observations, and the proportions correctly 

predicted were calculated. We used a two-proportion Z-test in JMP® (v. Pro 14) to 

compare the efficacy of the two methods of TBAE (Tair versus biophysical models) for 

predicting above and below ground activity. 

 
2.2.5 Predicting Emergence Time 

In 2019, a new set of biophysical models were deployed (N = 4 in the sun, N = 4 

in burrows) at both the shrubbed and shrubless sites. We used blunt-nosed leopard lizard 

Tb and biophysical model temperatures to estimate morning emergence time of lizards at 

each site. Each day from June 23 to July 14, 2019, we haphazardly selected two lizards as 

focal animals. Before dawn, two researchers each radio-tracked one focal animal and 

waited at least 4 meters away from the lizard’s burrow with binoculars posed on the 

burrow entrance. We recorded the emergence time in two ways: (1) the time of day when 

the lizard’s head was first visible emerging from the burrow, and (2) the time of day 

when the lizard’s entire body and tail had emerged from the burrow. June and July 

conditions are extremely hot and arid, and sometimes lizards do not emerge from burrows 

at all. If lizards did not emerge by the time Tair reached 29.5 oC, the observation was 

abandoned and that lizard was not included as a data point. Observations took place at 

both the shrubbed (N = 10 lizards) and shrubless (N = 10 lizards) sites. Two lizards 

observed at the shrubbed site were too far from the receiver for associated Tb data to be 
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collected, so the final sample for TBAE was 18 individual lizards (no repeat 

observations).  

To predict emergence time using TBAE, a researcher blind to a lizard’s actual 

emergence time plotted the lizard’s Tb data and the biophysical model temperatures from 

that site for the duration of an emergence observation and predicted the lizard’s 

emergence time as the time point immediately preceding a distinct increase in the slope 

of Tb (Figure 2.1). Predicted emergence times were then compared with observed 

emergence times, and the absolute value of the difference in predicted and observed 

emergence times (for both emergence criteria: head and entire body) was calculated; this 

value (in minutes) represents how close our predicted emergence time was to the actual 

emergence time. We compared observed emergence times (minutes after sunrise) of all 

lizards observed (N = 20, head only and full body) between the shrubbed and shrubless 

sites using Student’s t-tests; all data were normally distributed and had homogenous 

variances. The sample size for head emergence was 20 and for full emergence was 18 

(two lizards failed to fully emerge from their burrows after one hour). 
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Figure 2.1: Methodology used to predict morning emergence time of Gambelia sila. 
Emergence was predicted as the time of day immediately preceding a distinct upward 
slope in the lizard’s Tb (triangles and solid line) based on the reasoning that it would take 
several minutes for the radio-transmitter to heat in the sun. The rising Tb was also 
typically associated with departure from burrow biophysical model temperatures (circles 
and dotted line) and approach of open (sun) biophysical model temperatures (squares and 
dashed line). This was then compared to the observed emergence time, where the lizard’s 
head first appeared outside its burrow. The average difference between observed and 
predicted emergence time was 11 minutes and 37 seconds. 
 

2.3 Results 

2.3.1 Temperature Based Activity Estimation (TBAE) 

The proportion of observations of blunt-nosed leopard lizards correctly predicted 

to be above ground based on the criteria that Tb is at least X ˚C (where X = 2, 4, 6, 8, 10, 

12, or 14 ˚C) above Tair ranged from 0.64 (2 ˚C) to 0.76 (6 ˚C). Thus, we correctly 

predicted surface versus below ground activity 76% of the time when using the criterion 

that they are above ground if Tb exceeds Tair by at least 6 ˚C (Figure 2.2). 
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Figure 2.2: Using air temperature to predict surface activity versus below ground 
refuge use of Gambelia sila resulted in accurate predictions 64-76% of the time 
overall. Predictions were maximized (76% correct) using the criterion that lizards are 
above ground when their body temperatures (Tb) are at least 6 ˚C above the air 
temperature (Tair). 
 

Using TBAE to predict surface activity versus burrow occupancy, we found that 

calculation using Tair (75.7% correct overall) was superior to calculation using 

biophysical models (60.5% correct overall, Z = 3.43, p = 0.0003; Figure 2.3). We did not 

find a significant difference in accuracy of above-ground predictions using the two 

methods; with both methods, observations predicted to be above ground were correct 

about 93% of the time (Z < 0.001, p = 1.00). We found a significant difference in 

proportion of successful predictions for below-ground observations, with Tair (62% 

correct) significantly outperforming biophysical models (51% correct, Z = 1.78, p = 

0.037). Predicting activity using biophysical models overestimated the time above ground 

specifically by misidentifying many lizards as being in the open when they were actually 

in burrows. 
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Figure 2.3: Temperature-based activity estimation resulted in accurate prediction of 
above-ground activity by Gambelia sila more often than accurate prediction of 
below ground (burrow) occupation. Using air temperature (Tair) to predict below-ground 
occupation was superior to using biophysical model temperatures when predicting below 
ground occupation. For both methods, ~93% of observations predicted to be above 
ground were correct, whereas 62% (using Tair) and 51% (using biophysical models) were 
correct for below-ground predictions. 
 

Of the 147 radio-telemetry fixes in 2018, 114 (77.6%) were in burrows, 19 

(12.9%) were under shrubs, and 14 (9.5%) were in the open in the sun. Figure 4 shows 

the relative success predicted based on biophysical model data. When lizards were found 

in a given microhabitat, TBAE correctly predicted they were in that habitat with varying 

accuracy (79% correct when in the open, 47% when under shrubs, and 51% when inside 

burrows). 
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Figure 2.4: Proportion of correctly predicted observations of microhabitat use of 
Gambelia sila using temperature-based activity estimation based on biophysical 
model temperatures. Lizard microhabitat use was predicted correctly most often when 
they were in the open. 
 
 
2.3.2 Predicting Emergence Time 

In summer 2019, lizards began emerging (head out of burrow) at about 0745 (no 

difference between shrubbed and shrubless sites in emergence time as minutes after 

sunrise: t18 = 1.28, p = 0.22), and were fully emerged (body and tail out of burrow) by 

about 0813 (lizards at the shrubless site tended to emerge later than lizards at the shrub 

site: t16 = 2.11, p = 0.051, Figure 5). The difference between the predicted emergence and 

observed emergence (head out of burrow) was 11:37 ± 01:57 (mm:ss). Of the 18 

observations, 8 were an underestimation of predicted emergence and 10 were an 

overestimation. The difference between the predicted emergence and observed full 

emergence was 27:00 ± 02:31 (mm:ss). Of the 18 observations, all predictions 

underestimated the time of lizards full emergence. 
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Figure 2.5: Gambelia sila emergence times (minutes after sunrise) at two sites 
(shrubless and shrubbed). Initial emergence (head out of burrow) time did not differ 
between shrubbed and shrubbless sites. Lizards at the shrubless site tended to fully 
emerge (whole body and tail) earlier than lizards at the shrubbed site. 

2.4 Discussion 

In this study, we found partial support for the hypothesis that TBAE can be used 

to describe and model activity for a small, heliothermic, endangered lizard. First, TBAE 

accurately predicted surface activity in blunt-nosed leopard lizards about 93% of the time 

when either Tair from a nearby weather station or biophysical model temperatures are 

used. However, accuracy in predicting below ground (burrow) occupancy is much lower 

(51-62% using biophysical models and Tair, respectively). Second, using biophysical 

model data, TBAE accurately predicts microhabitat use in 79% of observations in which 

lizards are in the sun, 47% of those in the shade, and 51% of those in burrows. Finally, 

the temperature-based prediction of the time of day that a lizard first emerges from its 

overnight refugium was only about 11 minutes away from the actual time it began 
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emerging, and about 30 minutes from when it fully emerged. The heliothermic nature of 

these lizards combined with the use of external, temperature-sensitive radio-transmitters 

that rapidly heat when exposed to solar radiation is thus a viable tool to remotely monitor 

lizard activity with far less investment in labor force than is typically used.  

A central goal of radio-telemetry monitoring studies is to quantify surface activity 

and microhabitat use in sensitive species like blunt-nosed leopard lizards (i.e., Westphal 

et al., 2018), and how they may be impacted by abiotic conditions such as weather and 

biotic variables such as prey abundance, predator behavior, and others. We have shown 

that TBAE correctly estimates surface activity 93% of the time for blunt-nosed leopard 

lizards, a value very similar to the 96% accuracy rate obtained for TBAE of gila monsters 

by Davis et al. (2008). Both blunt-nosed leopard lizards and gila monsters are active 

foragers and are therefore likely to be exposed to a range of environmental temperatures 

as they forage, which can alter their Tb enough in comparison to their underground 

refugia to facilitate TBAE. Furthermore, since blunt-nosed leopard lizards are 

heliothermic lizards, their exposure to solar radiation should further help distinguish their 

surface-active Tb from their Tb when inside burrows (Stevenson, 1985; Xiang et al., 

1996). In contrast, TBAE failed to predict surface activity as accurately in an ambush-

foraging rattlesnake (66% accuracy, Davis et al., 2008) because its body temperature in 

the shade of its ambush site was not sufficiently distinguishable from its body 

temperature inside a refugium. TBAE is therefore a potentially valuable method for 

researchers interested in estimating activity of actively foraging species that are expected 

to be exposed to relatively high temperature variation in their environment. 
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The value of TBAE lies in its use of Tb data that are collected by an automated 

system and therefore do not require direct researcher sampling. In other words, 

researchers could deploy radio-transmitters on lizards, radio-track them as needed for the 

goals of their particular study, but allow TBAE to collect the data necessary for 

estimating surface activity. This could significantly save on time and resources by 

reducing personnel investment in radio-telemetry. An alternate method for collecting data 

on animal surface activity uses light level geolocators, which record the intensity of blue 

light (Wilmers et al., 2015) primarily as a means of tracking migration in birds (Lisovski 

et al., 2019); but can also be externally attached to lizards or other terrestrial wildlife to 

log diel exposure to light. Choosing TBAE versus light level geolocators will depend on 

the goals and budget of the study, the secrecy and recapture rate of individuals of the 

species, and other factors. One advantage of TBAE over light level geolocators is that Tb 

data are collected continually by an automated receiver, whereas geolocator tags must be 

retrieved from animals to be downloaded (Lisovski et al., 2019). Any animals lost (e.g., 

to predation) represent lost data. Furthermore, in most studies on rare species like blunt-

nosed leopard lizards, we would expect that researchers would already be using radio-

telemetry to facilitate repeated observations of known individuals, so it is typically 

simpler and far less expensive to choose temperature-sensitive radio-telemetry over light 

level geolocators. On the other hand, light level geolocators would work very well in 

recording surface activity in systems where it is feasible to attach them to a large sample 

of animals with a high recapture rate.  

TBAE was not as accurate when predicting below-ground activity. This limitation 

was primarily because TBAE misidentified certain observations as being in the open 
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when they were actually in burrows. Heliothermic lizards like blunt-nosed leopard lizards 

maintain their Tb within a narrow range, typically within or near their laboratory-

measured preferred Tb range, by shuttling between sun and shade (Lortie et al., 2015; 

Westphal et al., 2018; Germano, 2019; Ivey et al., 2020). When a lizard moves from the 

sun into a burrow, its measured Tb could remain more than 6 ˚C above Tair or biophysical 

model temperature for a short period of time; if lizards are tracked within that period of 

time, then TBAE would incorrectly assign them as being above ground. TBAE correctly 

predicted below-ground activity 62% of the time when using Tair and 51% of the time 

when using biophysical models. We expected that biophysical models would be more 

accurate than Tair because models are in the exact same field sites and mimic the size and 

shape of lizards to facilitate realistic heat exchange with the environment, whereas Tair 

data merely represent air temperatures from a nearby weather station. The fact that Tair 

was a better estimate could be the result of several factors. First, when making 

predictions using Tair, we had two categories to choose from: above or below ground. In 

contrast, when making predictions using biophysical model temperatures, we had three 

categories (open, shrub, and burrow, with open and shrub predictions then combined into 

above-ground predictions). In the latter case, predicting “shrub” use for a lizard that was 

actually underground because its temperature was intermediate between the two could 

result in overprediction of above-ground activity; if we only had the options of assigning 

it to above or below ground, we may have accurately assigned it as below ground. In 

other words, if we had assigned only above or below ground categories using biophysical 

models like we did for Tair, then the two methods may have provided more comparable 

predictions. Alternatively, the lower accuracy of biophysical models may reflect model 
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design and radio-transmitter construction. Our radio-transmitters are on collars and 

therefore measure external temperature, not deep Tb of lizards, and the temperatures 

should change rapidly when exposed to sun. In contrast, our biophysical models are 

constructed with internal data loggers immersed in water, which may introduce lag time 

for temperature changes due to high thermal inertia. Additionally, Giant Kangaroo Rat 

burrows are complicated in terms of depth, chamber size, and soil type, likely creating a 

labyrinth of thermal heterogeneity underground (Kay & Whitford, 1978) that is not 

captured by our biophysical models placed one meter inside burrows. The superior 

performance of Tair is good news because it means that researchers could simply 

download data from a nearby weather station rather than constructing biophysical 

models. Tair data collected from a mini weather station deployed at the actual field site 

could provide even more accurate data. In summary, TBAE using Tair as a reference is a 

highly accurate means of estimating surface activity, but its ability to predict when lizards 

are underground during daytime hours is more limited.  

To predict microhabitat (burrow, shade, or open) use, TBAE using biophysical 

models accurately predicted microhabitat use for 79% of the observations when the lizard 

was in the open (sun), 47% of the observations in the shade, and 51% of the observations 

inside the burrows. Of the observations for blunt-nosed leopard lizards in the open, 100% 

of all predictions were above ground (79% correctly predicted in the sun and 21% 

wrongly predicted to be under the shade of a shrub) and in no cases were lizards 

predicted to be underground. Accuracy of predictions for shade and burrows were lower, 

probably for several reasons. First, as described above, blunt-nosed leopard lizards shuttle 

among these three microhabitats regularly (Ivey et al., 2020), and an animal’s 
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temperature at a given radio-telemetry fix could be impacted by the microhabitat it 

occupied shortly before being observed. Second, the temperatures of biophysical models 

in the shade and in burrows are necessarily more similar to one another than either is to 

the temperature of models in the open that are exposed to solar radiation, so error in 

assigning shade or burrow microhabitat in TBAE (Figure 2.4) is expected.  

The beginning of lizard emergence in the morning was predictable to within 

roughly 11 minutes, which supports the utility of TBAE as a means of remotely 

collecting data on morning emergence. Lizards at the shrubbed and shrubless sites began 

to emerge at approximately the same time, and lizards at the shrubbed site fully emerged 

slightly earlier in the day than lizards at the shrubless site. In the absence of shade-

providing plants, lizards at the shrubless site may be more reliant on the protection 

offered by their overnight burrows than lizards at the shrubbed site, which can take 

advantage of shrubs for thermoregulation and protection from avian predators. Lizards 

began emerging from burrows at about 0745 hours and were fully emerged by 0830. 

These times agree with those reported by Germano (2019), who compiled times at which 

lizards are active throughout the active season. These data are informative for practical 

use by managers; for example, California Department of Fish and Wildlife recently 

revised its guidelines for blunt-nosed leopard lizard survey protocols based on these 

emergence times (CDFW, 2019). As midday temperatures increase due to climate 

change, we may see lizards begin to emerge earlier in the morning, retreat to burrows 

earlier in the afternoon, and rely more heavily on plants for shade (Germano, 2019), 

which could potentially buffer blunt-nosed leopard lizards from experiencing the rising 
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temperatures. TBAE conducted annually would allow this prediction to be tested with 

reliability and with less effort than that required to radio-track lizards at dawn each day.  

While animals must and should still be radio-tracked to obtain data relevant to the 

particular question being asked and to validate TBAE and delineate its limitations (as we 

have done here), adding TBAE to a radio-telemetry project could substantially improve 

inference about animal activity patterns and microhabitat use while minimizing 

researcher effort and expense. For examples, researchers could radio-track every other 

day or every third day rather than 2-3 times per day as is typical in studies of blunt-nosed 

leopard lizards. We urge researchers to consider how adopting TBAE might augment 

their studies. TBAE has been used for a variety of applications ranging from studying 

maternal thermoregulation (Stahlschmidt et al., 2012) to examining usage of artificial 

refugia versus natural refugia in sympatric species (Lelièvre et al., 2010). TBAE can 

reduce the stress that endangered species experience by limiting interactions with 

researchers in the field. Harnessing the power of temperature to predict animal activity 

proves to be a useful resource to augment surveys and radio-telemetry studies, and it will 

aid managers and researchers in determining how to improve protocols for surveying and 

studying these species in the future while minimizing the stress placed on these sensitive 

species. 
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Appendices 

A. Supplementary Figures and Tables 

Table S1. Morphometric data of the G.sila individuals in this study, during initial 
capture, and where applicable, upon final capture. 

Lizard 
ID 

SVL 
(cm) 

Sex  Initial 
Gravidity  

Final 
Gravidity 

Initial Mass 
(g)  

Final Mass 
(g) 

Mode of 
Final 

Capture 

4 10.5 f yes no 34 30.43 excavated 

9 9.4 f yes no 35.5 26.85 lasso 

12 9.3 m N/A N/A 24.5 22.65 excavated 

12B* 9.4 f yes N/A 37 28.76 excavated 

13† 11.3 m N/A N/A 44.5 36.69 excavated 

16 10.3 f no no 33 27.52 excavated 

19† 10.5 m N/A N/A 46.5 36.65 excavated 

20† 10.8 f yes no 41.5 33.69 excavated 

22 9.7 f yes no 40 28.94 excavated 

23*† 10.8 f yes no 32.5 14.20 lasso 

25 10.5 m N/A N/A 46.5 35.50 excavated 

26† 10.5 m N/A N/A 45.5 37.34 excavated 

30 10.3 m N/A N/A 46 33.79 lasso 

31 10.1 m N/A N/A 43.5 32.73 excavated 

39 10.2 f yes no 40.5 32.24 lasso 

40 9.5 f no no 35.5 27.54 excavated 

44* 9.8 m N/A N/A 36 32.70 excavated 

56 10 m N/A N/A 41.5 33.73 excavated 

64* 10.4 m N/A N/A 40.5 32.48 excavated 

73 10.2 m N/A N/A 44 32.90 excavated 
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80 10.6 f no no 35 31.75 excavated 

93 11.2 m N/A N/A 48 38.95 excavated 

99 9.2 f no no 25 22.79 excavated 

100* 9.8 f yes no 34 29.00 excavated 

130 10.1 m N/A N/A 38.5 24.83 lasso 

200† 10.3 m N/A N/A 41 32.86 lasso 

1337* 10.7 m N/A N/A 50 41.79 excavated 

Note: Asterisks (*) indicate lizards that were not used in Tset trials. Daggers (†) indicate lizards not used in Tpant 
trials. 

 

 


