
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

van Beest, Nick R.T.P., Dumas, Marlon, García-Bañuelos, Luciano, & La
Rosa, Marcello
(2015)
Log delta analysis: Interpretable differencing of Business process event
logs.

This file was downloaded from: http://eprints.qut.edu.au/83018/

c© Copyright 2015 The Author(s)

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33499495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/van_Beest,_Nick.html
http://eprints.qut.edu.au/view/person/Dumas,_Marlon.html
http://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
http://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
http://eprints.qut.edu.au/83018/

Log Delta Analysis: Interpretable Differencing of
Business Process Event Logs

Nick R.T.P. van Beest1, Marlon Dumas2, Luciano Garćıa-Bañuelos2, and
Marcello La Rosa3,1

1 NICTA, Australia
nick.vanbeest@nicta.com.au
2 University of Tartu, Estonia

{marlon.dumas,luciano.garcia}@ut.ee
3 Queensland University of Technology, Australia

m.larosa@qut.edu.au

Abstract. This paper addresses the problem of identifying and explain-
ing behavioral differences between two business process event logs. The
paper presents a method that, given two event logs, returns a set of state-
ments in natural language capturing behavior that is present or frequent
in one log, while absent or infrequent in the other. This log delta analysis
method allows users to diagnose differences between normal and deviant
executions of a process or between two versions or variants of a process.
The method relies on a novel approach to losslessly encode an event log
as an event structure, combined with a frequency-enhanced technique
for differencing pairs of event structures. A validation of the proposed
method shows that it accurately diagnoses typical change patterns and
can explain differences between normal and deviant cases in a real-life
log, more compactly and precisely than previously proposed methods.

1 Introduction

Process mining is a family of methods to extract insights from logs of business
process executions. One class of problems addressed by process mining is that
of deviance mining [1]: detecting and explaining differences between executions
that lead to a positive outcome vs. those that lead to a negative outcome. This
includes, for example, explaining what differentiates executions of a process that
fulfills a service-level objective vs. those that do not, or what differentiates exe-
cutions of a sales process that lead to a purchase vs. those that do not.

In previous case studies [2, 3], deviance mining has been approached using
model delta analysis. The idea is to apply automated process discovery techniques
to the traces of positive cases and to those traces of negative cases separately.
The discovered process models are visually compared to identify distinguishing
patterns. This approach does not scale up to complex logs. For example, Fig. 1
shows the models discovered by the Disco tool [4] for positive and negative cases
of a patient treatment log at an Australian hospital – where a positive execution
concerns a treatment that completes in less than a given time-frame. Manual
comparison of these models is tedious and error-prone, calling for an automated
method to distill differences that may explain the observed deviance.

448

3

25

1

136

127

132

43

21

11

12

1

8

1

5

285

98

7

186

251

1

3

2

8

102

62

2

58

448

15

31

53

12

68

17

1

42

52

291

5

3

185

1

3

154

1

12

281

11

1

1

284

8

1

28

146

77

43

11

155

9

5

358

1

48

8

9

9

2

826

368

3

8

42

10

428

1

2

1

5

1

4

9

91

71

38

1

31

12

448

433

5

1

7

2

A5 [confidential]

448

A2 [confidential]

448

A11 [confidential]

448

A9 [confidential]

448

A22 [confidential]

444

A24 [confidential]

189

A25 [confidential]

443

A27 [confidential]

496

A7 [confidential]

140

A6 [confidential]

314

A20 [confidential]

227

A21 [confidential]

205

A16 [confidential]

306

A26 [confidential]

1252

A1 [confidential]

390

A18 [confidential]

346

A8 [confidential]

433

A4 [confidential]

51

A3 [confidential]

126

A15 [confidential]

155

A17 [confidential]

5

A23 [confidential]

1

A10 [confidential]

5

A13 [confidential]

7

A19 [confidential]

2

(a) Negative cases

363

49

10

41

235

148

9

4

4

4

136

52

6

235

17

1

24

1

230

9

132

1

1

1

18

274

3

88

3

18

363

1

147

85

159

83

40

7

20

6

230

1417

306

6

26

195

8

18

157

3

18

100

37

17

160

29

8

312

36

5

3

37

5

3

239

3

84

13

352

4

5

33

106

88

32

10

363

13 1349

A5 [confidential]

363

A2 [confidential]

363

A11 [confidential]

363

A14 [confidential]

365

A22 [confidential]

387

A24 [confidential]

236

A25 [confidential]

370

A27 [confidential]

547

A6 [confidential]

394

A20 [confidential]

201

A21 [confidential]

220

A16 [confidential]

298

A26 [confidential]

1773

A1 [confidential]

327

A18 [confidential]

297

A8 [confidential]

349

A15 [confidential]

160

A7 [confidential]

149

A3 [confidential]

254

A13 [confidential]

13

A4 [confidential]

47

A10 [confidential]

19

A12 [confidential]

1

(b) Positive cases

Fig. 1: Model discovered from a hospital log for positive and negative cases

This paper approaches the problem of deviance mining via a log delta anal-
ysis operation defined as follows: Given two event logs L1 and L2, explain the
differences between the behavior observed in L1 and that in L2. As the output
is intended to inform business analysts, it is desirable that it is compact and
interpretable. Accordingly, the paper proposes a log delta analysis method that
produces a set of simple statements, each capturing a behavior observed (fre-
quently) in one log but not observed (or observed less frequently) in the other.

The proposed method relies on a novel approach to losslessly encode an event
log as an event structure [5]: a directed acyclic graph where nodes represent event
occurrences sharing a common “history” (i.e. shared prefix). We enhance this
representation with frequency information to capture how often a given event
occurrence is observed in the log. Given the frequency-enhanced event structures
of two event logs, the method calculates their differences based on an extended
version of a technique for event structure differencing [6]. The latter step leads
to a set of statements capturing behavior that is observed with some frequency
in one log, but observed with lower frequency (or not at all) in the other log.

The proposal has been validated via artificial logs capturing different types
of change patterns [7] as well as combinations thereof. The paper also reports on
an evaluation on the hospital log from which the models in Fig. 1 are generated.

The paper is structured as follows. Section 2 discusses related work and intro-
duces event structures. Section 3 presents the method, while Section 4 discusses
its validation. Finally, Section 5 draws conclusions and discusses future work.

2 Background and related work

This section discusses previous work on deviance mining and introduces the
notions of event structure and their differencing used in the rest of the paper.

2.1 Deviance mining

Approaches to deviance mining can be classified into two categories [1]: model
delta analysis and sequence classification. As explained in Section 1, model delta
analysis [2, 3, 8] requires manual comparison of automatically discovered process
models. As such, it is error-prone and does not scale up to complex logs.

Sequence classification methods construct a classifier (e.g. a decision tree)
that can determine with sufficient accuracy whether a given trace belongs to
the positive or the negative class. The crux of these methods is the choice of
features. In this respect, these methods fall into three categories: activity-based
feature encoding, frequent sequence mining and discriminative sequence mining.
In activity-based feature encoding, each trace is encoded as a vector containing
one feature per activity referenced in the event log. The value of the feature
corresponding to activity A is the number of times A appears in the trace.
Frequent sequence mining methods [3, 9, 10] extract frequent patterns from the
set of positive cases and that of negative cases separately. A possible pattern is
that activity A occurs before activity B. Each pattern becomes a feature. The
value of a feature for a trace is the number of times the pattern in question occurs
in the trace. Discriminative sequence mining methods [11] operate similarly but
extract patterns based on their discriminative power: a pattern is selected if it
is a characteristic of positive cases but not of negative ones, or vice-versa.

In [1], we evaluated the above sequence classification methods on real-life
logs. We found that a discriminative sequence mining method outperformed
others (accuracy wise), but in all cases the obtained sets of rules were overly
complex. For the patient treatment log in Section 1, between 106 and 130 rules
are produced – each rule consisting of a conjunction of patterns possibly involving
multiple activities. This observation motivates the development of a method to
produce a compact set of statements explaining the differences between two
groups of traces (e.g. positive vs. negative).

2.2 Event structures

A Prime Event Structure (PES) [5] is a graph of events, where an event e repre-
sents the occurrence of an action (e.g. task) in the modeled system (e.g. business
process). If a task occurs multiple times in a run, each occurrence is represented
by a different event. The order of occurrence of events is defined via binary
relations: i) Causality (e < e′) indicates that event e is a prerequisite for e′;
ii) Conflict (e#e′) implies that e and e′ cannot occur in the same run; iii) Con-
currency (e ‖ e′) indicates that no order can be established between e and e′.

Definition 1 (Labeled Prime Event Structure [5]). A Labeled Prime Event
Structure over the set of event labels L is the tuple E = 〈E,≤,#, λ〉 where
– E is a set of events (e.g. tasks occurrences),
– ≤ ⊆ E × E is a partial order, referred to as causality,
– # ⊆ E × E is an irreflexive, symmetric conflict relation,
– λ : E → L is a labeling function.

We use < to denote the irreflexive causality relation. The concurrency relation of
E is defined as ‖ = E2 \ (< ∪ <−1 ∪ #). Moreover, the conflict relation satisfies
the principle of conflict heredity, i.e. e#e′ ∧ e′ ≤ e′′ ⇒ e#e′′ for e, e′, e′′ ∈ E.

A

B

C

D

E

(a) BPMN

e0:A

e1:B e2:C e3:D

e4:E e5:E e6:E

(b) Prime event structure E1

Fig. 2: Sample process model

For illustration, Fig. 11 presents side-by-side a BPMN process model and a
corresponding PES E1. Nodes are labelled by an event identifier followed by the
label of the represented task, e.g. “e2:C” tells us that event e2 represents an
occurrence of task “C”. The causality relation is depicted by solid arcs whereas
the conflict relation is depicted by dotted edges. For the sake of simplicity, tran-
sitive causal and hereditary conflict relations are not depicted. Every pair of
events that are neither directly nor transitively connected are in a concurrency
relation. Note that three different events refer to the task with label “E”. This
duplication is required to distinguish the different states where task “E” occurs.

A state on an event structure (hereby called a configuration) is characterized
by the set of events that have occurred so far. For instance, set {e0:A, e1:B} –
highlighted in Fig. 2(b) – is the configuration where tasks “A” and “B” have
occurred. In this configuration, event {e3:D} can no longer occur because it is
in conflict with {e1:B}. On the other hand, events {e2:C} and {e4:E} can occur,
but the occurrence of one precludes that of the other. Formally:

Definition 2 (Configuration). Let E = 〈E,≤,#, λ〉 be a prime event struc-
ture. A configuration of E is the set of events C ⊆ E such that
– C is causally closed, i.e. ∀e′ ∈ E, e ∈ C : e′ ≤ e⇒ e′ ∈ C, and
– C is conflict-free, i.e. ∀e, e′ ∈ C ⇒ ¬(e#e′).

The local configuration of an event e ∈ E is the set bec = {e′ | e′ ≤ e}. Similarly,
the (set of) strict causes of an event e ∈ E is defined as be) = bec \ {e}.

Set inclusion forms a partial order on configurations. We denote by Conf(E)
the set of all possible configurations of E and by MaxConf(E) the subset of
maximal configurations with respect to set inclusion. In the running example,
MaxConf(E1) = {{e0, e1, e2, e5}, {e0, e1, e4}, {e0, e3, e6}}.

2.3 Comparison of event structures

In previous work, we presented a technique for differencing pairs of event struc-
tures [6]. This technique operates by performing a Partial Synchronized Product
(PSP) of the event structures, which is in essence a synchronized simulation
starting from the empty configurations. At each step, the events that can oc-
cur given the current configuration in each of the two event structures (i.e. the
enabled events) are matched. If they match, the simulation adds those events
to the current configurations and continues. If an enabled event in the current
configuration of one event structure does not match with an enabled event in the
current configuration in the other event structure, a mismatch is declared and
this mismatch will be reflected in a difference statement that tells us that there

is a pair of matching configurations where an event can occur or a behavioral
relation holds in one event structure, but not in the other. Having diagnosed the
difference, the unmatched event is “hidden” and the simulation jumps to the
next matching configurations.

Fig. 4 presents an excerpt of the PSP for E1 and E2, shown in Fig. 11 and
Fig. 3 respectively. Note that MaxConf(E2) = {{f0, f1, f2, f4}, {f0, f3, f5}}.
Clearly, all maximal configurations of E2 can be matched to configurations of
E1. The right-hand leaf node in the PSP illustrates the matching of configuration
{e0, e1, e2, e5} from E1 and {f0, f1, f2, f4} from E2. There, the set m records the
fact that all the events in both configuration have been matched, lh records
that none of the events from E1 (the one to the left of the “product”) has been
hidden, and rh records that no event from E2 has been hidden. Similarly, the leaf
node at the left-hand side corresponds to the best matching of configurations
{e0, e1, e4} and {f0, f1, f2, f4}, respectively from E1 and E2. The cloud in the top
indicates that some states precedes to the matching of a pair of events sharing the
label “B”. The label on the edge from the cloud to the node just below records
such matching. The configuration {e0, e1} enables the occurrence of e4:E but
that occurrence precludes the occurrence of e2:C. This gives rise to a behavioral
mismatch, that is resolved by hiding f2:C. The red arrow in the PSP captures this
hiding: the event f2:C from E2 (right-hand side model in the product) is hidden.
Note that in the target box, m remains the same, i.e. no additional matching,
whereas rh records now the hiding of f2:C. It is by composing the information
in the states and edges associated to the moves “rhide C” and “match C” on
the PSP that it becomes possible to diagnose that the “Task ’C’ in model 1 can
be skipped, whereas the same task is always executed in model 2”. The reader
is referred to [6] for further details on the technique.

f0:A

f1:B f2:C f3:D

f4:E f5:E

Fig. 3: PES E2

lh = ∅, rh = ∅
m = {(e0, f0)A, (e1, f1)B}

lh = ∅, rh = ∅
m = {(e0, f0)A, (e1, f1)B, (e2, f2)C}

lh = ∅, rh = {f2:C}
m = {(e0, f0)A, (e1, f1)B}

lh = ∅, rh = ∅
m = {(e0, f0)A, (e1, f1)B, (e2, f2)C, (e5, f4)E}

lh = ∅, rh = {f2:C}
m = {(e0, f0)A, (e1, f1)B, (e4, f4)E}

match B

match Crhide C

match Ematch E

Fig. 4: Fragment of PSP of the PESs in Figs. 2(b) and 3

3 Log delta analysis method

In this section, we describe our approach to identify and verbalize differences
between two logs. These logs can concern 2 logs with variance, 2 logs from
different organizations or 1 log with 2 classes: 1 regular, 1 deviant.

First, the log files are categorized into two groups: regular logs and deviant
logs. Subsequently, both the regular and deviant logs are transformed into a

Frequency-enhanced Prime Event Structure (FPES). An FPES represents, in
addition to the Prime Event Structure, the branching frequencies between each
pair of events in the log and a formal definition will be provided in Section 3.2.
Finally, the FPESs are compared and the differences are verbalized into a set of
statements, each indicating a difference between the regular and deviant logs. In
Fig. 5, the approach is presented graphically.

Compare

Log variant 1

Log variant 2

Verbalisation of the

differences

Frequency-enhanced

Prime Event Structure

Log files Frequency-enhanced

Prime Event Structure

Fig. 5: Log delta analysis method

3.1 From logs to event structures

Event logs record the execution of a business process in the form of total or-
ders. That is, tasks are recorded in sequences no matter if some tasks could
have happened simultaneously. In this work, however, we advocate for an ex-
plicit representation of concurrency and, hence, use partial orders instead. We
assume, however, that the concurrency relation observed on the set of tasks from
a business process is given. Interestingly, several approaches to computing the
concurrency relation have already been described in the literature [12, 13]. Here,
we use the well-known alpha relations [13], but other approaches can be equally
considered. Let us now introduce some additional notation.

Definition 3 (Event log, Trace). Let L be an event log over the set of labels
L, i.e. L ∈ B(L∗). Let E be a set of event occurrences and λ : E → L a labelling
function. An event trace σ ∈ L is defined in terms of an order i ∈ [0, n− 1] and
a set of events Eσ ⊆ E with |Eσ| = n such that σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉.

Trace Ref N
A B C E t1 3
A C B E t2 2
A B E t3 2
A D E t4 3

Fig. 6: Sample
event log

To illustrate the concepts, consider the event log presented
in Fig. 6. The event log consists of a total of 10 traces, with 3
instances of trace t1 (as specified in column “N”), 2 instances of
t2, so on and so forth. To capture this fact, we should have
used a notation like e0,1,t1 to denote the first event of the
first instance of trace t1. For the sake of simplicity, however,
we will only use the subscript associated to the order in σ, since the nota-
tion in the following refers only to a single trace. For instance, σ = 〈A,B,C,E〉
would refer to any of the three instances of t1, where Eσ = {e0, e1, e2, e3} and
{(e0,A), (e1,B), (e2,C), (e3,E)} ⊂ λ. Let us now turn our attention to alpha
concurrency.

Definition 4 (Alpha concurrency [13]). Let L be an event log over the set of
event labels L and σ ∈ L be a log trace. A pair of tasks with labels a, b ∈ L are said
to be in alpha directly precedes relation, denoted A ≺α(L) B, iff there exists a
trace σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉 in L, such that A = λ(ei) and B = λ(ei+1).
We say that a pair of tasks A,B ∈ L are alpha concurrent, denoted A ‖α(L) B,
iff A ≺α(L) B ∧B ≺α(L) A.

Note that alpha concurrency is defined over labels and not over event occur-
rences. Coming back to our example, we can see that B ≺α C because of trace
t1 = 〈A,B,C,E〉 and C ≺α B because of trace t2 = 〈A,C,B,E〉. Hence B ‖α C.

In the following, we assume there exists an oracle χ, which provides the
concurrency relation ‖χ. For the purpose of the presentation, we will consider
that ‖χ = {(e, e′) | λ(e) ‖α(L) λ(e′)} for an event log L and its alpha concurrency
relation ‖α(L). The following definition describes how, given a relation ‖χ, a trace
can be transformed into a partially ordered run.

Definition 5 (Transformation of a trace into a partially ordered run).
Let L be an event log over the set of event labels L and ‖χ be the concurrency
relation provided by an oracle χ. Moreover, let E be a set of event occurrences,
λ : E → L a labelling function. We say that event ei directly precedes event ei+1,
denoted ei l ei+1, iff there exists a trace σ = 〈λ(e0), . . . , λ(e1), . . . , λ(en−1)〉 in L
with an order i ∈ [0, n−1]. Therefore, the tuple π = 〈Eπ,≤π, λπ〉 is the partially
ordered run corresponding to trace σ, induced by the concurrency relation ‖χ and
the directly precedes relation l, where:
– Eπ is the set of events occurring in σ,
– ≤π is the causality relation defined as ≤π = E2

π ∩ (l+\ ‖χ)∗, and
– λπ : Eπ → L is a labelling function, i.e. λπ = λ|Eπ .

We write Πχ(L) to denote the set of all partially ordered runs induced by ‖χ
over the set of traces in L.

A A A

B B B

C C C

E E E

(a) (b) (c)

Fig. 7: Transforma-
tion of t1 into π1

The critical issue in the transformation of a trace into a
run is the computation of the causality relation ≤π. Fig. 7
illustrates how this is done for t1 = 〈A,B,C,E〉. First,
Fig. 7(a) presents the direct precedes relation l for t1.
Clearly, the relation is just a transposition of the inherent
sequencing captured in the event trace. Fig. 7(b) presents
the (irreflexive) transitive closure of l, that is, l+. Note
that the blue edges in Fig. 7(b) correspond to the tran-
sitive relations. Just as for event structures, concurrency
can be represented by the absence of edges (i.e. absence of
order). Therefore, the set difference l+\ ‖χ will result in
removing the edge connecting “B” with “C” as shown in Fig. 7(c). For the sake
of readability, we can remove the edge connecting “A” with “E” (shown in grey
color), which would correspond with the transitive reduction of the causality re-
lation. The concurrency relation ‖π for a partially ordered run π can be derived
from ≤π, i.e. ‖π = E2

π \ (<π ∪ <−1
π). Clearly, ‖π coincides with ‖χ.

e0:A

e1:B e2:C

e3:E

f0:A

f1:B

f2:E

g0:A

g1:D

g2:E

(a) π1 (b) π2 (c) π3

Fig. 8: Partially ordered runs
of the event log in Fig. 6

A partially order run resembles a prime event
structure, with the exception of not having any
conflicting events. Clearly, the notion of config-
uration can be straightforwardly transferred to
partially order runs. The absence of conflicts can
be explained by the fact that a trace records the
set of events that have actually been occurred
in a computation. Fig. 8 presents the set of par-
tially ordered runs {π1, π2, π3} that can be de-
rived from the event log shown in Fig. 6 and its

corresponding alpha concurrency. Please note that π1 encodes the traces t1 and
t2 and, therefore, is associated with 10 different cases. Similarly, π2 encodes t3,
π3 encodes t4 and correspond to 2 and 3 cases respectively. Without loss of gen-
erality, the number of cases associated with each event is not explicitly referred
until Section 3.2.

The merging of runs Π(L) to derive a prime event structure, relies on an
equivalence relation ∼. This relation partitions the set of events E = ∪π∈Π(L)Eπ,
in a way that preserves the labelling of events as well as their “computation con-
text”. Labelling preserving implies that all the events in an equivalence class
have the same label. The “computation context” is again related with a configu-
ration. Informally, we require that if two events e, e′ ∈ E are equivalent, written
e ∼ e′, all the events in the local configuration of e have an equivalent event in
the local configuration of e′. As is customary, we will use [e]∼ = {e′ | e ∼ e′}
to denote the equivalence class of event e. With abuse of notation, we will use
[S]∼ = {[e′]∼ | e ∈ S} to denote the set of equivalence classes for all the events
in the set S. The following definition formalizes the intuition above.

Definition 6 (Configuration-based prefix merging equivalence).
Let ei ∈ Eπi and ej ∈ Eπj be event occurrences in two different partially ordered
runs. The configuration-based prefix merging equivalence is an equivalence re-
lation ∼ over E, with the following properties:

(i) ∼ is a reflexive, transitive and symmetric relation,
(ii) ei ∼ ej is label-preserving, i.e. λ(ei) = λ(ej), and

(iii) ei ∼ ej is configuration preserving, i.e. [bei)]∼ = [bej)]∼.

We now formally define a transformation to derive a prime event structure
from an event log.

Definition 7 (Log-based Prime Event Structure). Let L be an augmented
event log. Let Π(L) be its set of partially ordered runs. The prime event structure
induced by equivalence relation ∼ is the tuple E(L)∼ = 〈E∼,≤∼,#∼, λ∼〉 s.t.
– E∼ = { [e]∼ | e ∈ ∪π∈Π(L)Eπ },
– ≤∼ = { ([e]∼, [e

′]∼) | ∃π ∈ Π(L) : e ≤π e′ },
– ‖∼ = { ([e]∼, [e

′]∼) | ∃π ∈ Π(L) : e ‖π e′ },
– #∼ = E2

∼ \ (≤∼ ∪ ≤−1
∼ ∪ ‖∼), and

– λ∼ = { ([e]∼, λ(e)) | [e]∼ ∈ E∼ }

{e0, f0, g0}:A

{e1, f1}:B {e2}:C {g1}:D

{f2}:E {e3}:E {g2}:E

Fig. 9: PES induced by ∼
over the runs in Fig. 8

Let us now illustrate how the prime event struc-
ture for the set of runs in Fig. 8 is built. As usual,
we assume that ∅ ∈ ∼. It should be clear that
{e0, f0, g0} ∈ ∼: all those events share the label “A”;
the events in the strict causes of each of those events form also an equivalence
class (please consider that be0) = bf0) = bg0) = ∅); and the causality relation
is preserved (this result is trivial because only one event has been considered
so far). Note that [e0]∼ = [f0]∼ = [g0]∼ = {e0, f0, g0}. Let us now consider
the set of events sharing the label “B”, namely {e1, f1}. Note that be1) = {e0}
and bf1) = {f0} and since [e0]∼ = [f0]∼, we can conclude that {e1, f1} is con-
figuration preserving. Moreover, the equivalence class {e1, f1} preserves causal
order because e0 ≤π1 e1 and f0 ≤π2 f1. Fig. 9 depicts the entire PES induced

by ∼ over the set of runs in Fig. 8. To further illustrate the concepts, let us
consider the set of events sharing the label “E”, namely {e3, f2, g2}. Please note
that the partition {e3, f2, g2} has to be refined because their corresponding con-
figurations do not coincide, e.g. [be3)]∼ = {[e0]∼, [e1]∼, [e2]∼} is different to
[bf2)]∼ = {[e0]∼, [e1]∼}. Therefore, one equivalence class for each of those events
is required, i.e. {[e3]∼, [f2]∼, [g2]∼} ⊂ ∼. One can easily check that the PES in
Fig. 9 is isomorphic to the PES in Fig. 2(b) and, hence, the sample event log
could have been generated by executing the process model depicted in Fig. 2(a).

h0:A i0:A

i1:B

{h0, i0}:A

{i1}:B {h1}:>

{i3}:>

(a) π4 (b) π5 (c) E(L̂2)∼

Fig. 10: Runs and PES for L̂2

As formally proved later, Def. 7 ensures
that each input run is represented as a con-
figuration of the resulting PES. Unfortunately,
it does not necessarily warranties that a run
will be represented as a maximal configuration.
To illustrate this issue, consider the event log
L2 = {〈A〉, 〈A,B〉}. L2 gives rise to two runs,
namely π4 and π5, which are shown in Fig. 10.
Moreover, the subgraph presented in Fig. 10 in
red color corresponds to E(L2). One can eas-

ily verify that Conf(E(L2) = {{[i0]∼}, {[i0]∼, [i1]∼}} and MaxConf(E(L2)) =
{{[i0]∼, [i1]∼}}. Since h0 ∼ i0, we have that {[h0]∼} is also a configuration
of E(L2). Somehow, we can say that E(L2) generalizes the behavior observed
in L2. In order to fix this limitation, we append a fresh artificial end event
to each trace in the input log, giving rise to an augmented log. Moreover, we
use a special label, i.e. >, to keep track of the artificial end events. Formally,
for each σ = 〈λ(e0), . . . , λ(en−1)〉 from an event log L, we build a new trace

σ̂ = 〈λ̂(e0), . . . , λ̂(en−1), λ̂(en)〉 where en is a fresh event and λ̂ = λ ◦ {(en,>)}.
We write L̂ to refer to the augmented log of L. Fig. 10(c) presents the PES for

log L̂2. One can easily check that the artificial event h1 preserves the maximality
of the configuration corresponding to the run π4. The following Theorem formal-
izes the intuition above and one of the major contributions of this work: E(L̂) is
a lossless representation of L.

Theorem 1 (Lossless representation). Let Π(L̂) be the set of partially or-

dered runs of the augmented event log L̂, and E = ∪π∈ΠEπ its corresponding set
of events. Moreover, let E(L̂)∼ = 〈E∼,≤∼,#∼, λ∼〉 be the prime event structure
induced by the equivalent relation ∼.

For every run π ∈ Π(L̂) it holds [Eπ]∼ ∈MaxConf(E(L̂)∼).

Proof. We first prove that [Eπ]∼ is a configuration of E(L̂)∼.
– (Causal closedness) Take e ∈ Eπ and f ∈ E \Eπ s.t. e ∼ f . By Def. 6(iii), we

have [be)]∼ = [bf)]∼, that is, all strict causes of event e form also an equiva-
lence class ∼. Therefore, [be)]∼ ⊆ E∼ (cf. Def. 7). Recall be) = {e′ | e′ <π e}.
Hence, [Eπ]∼ is causally closed.

– (Conflict freeness) Take e ∈ Eπ and f ∈ E\Eπ s.t. λ(e) = λ(f) and [bf)]∼ ⊆
[be)]∼. Assume that [f]∼#∼[e]∼. Recall [Eπ]∼ is causally closed and hence
consistent with ≤∼. Since ‖∼ is derived from ‖π, by construction of #∼, we
require [f]∼ 6= [e]∼ or equivalently ¬(f ∼ e). If [bf)]∼ = [be)]∼, by Def. 6(ii)
it holds f ∼ e, reaching contradiction. Conversely, if [bf)]∼ 6= [be)]∼, then it
holds ¬(f ∼ e) and [f]∼ 6∈ [Eπ]∼. Hence, [Eπ]∼ is conflict free.

Next, we prove that [Eπ]∼ is a maximal configuration of E(L̂)∼. Let z ∈ Eπ be
the artificial end event of π. We prove by contradiction. Assume there exists a
run π′ ∈ Π(L̂), with z′ ∈ Eπ′ being the corresponding artificial end event, s.t.
[Eπ]∼ ⊆ [Eπ′]∼, i.e. [Eπ]∼ is not maximal w.r.t. ⊆, and [Eπ′]∼ ∈ Conf(E∼).
Note that [bz)]∼ ⊆ E∼ and also [bz′)]∼ ⊆ E∼. If [bz)]∼ = [bz′)]∼, then z ∼ z′,
which preserves maximality. Conversely, if [bz)]∼ 6= [bz′)]∼ (yet [bz)]∼ ⊂ [bz′)]∼),
then ¬(z ∼ z′) and [z]∼#∼[z′]∼. Moreover, if {[z]∼, [z′]∼} ⊆ [Eπ′]∼, then [Eπ′]∼
is not conflict free and, therefore, not a configuration, reaching contradiction.
Hence, [Eπ]∼ is maximal. ut

3.2 Enhancing event structures with frequencies

In addition to control-flow variance, differences in branching probabilities are
another type of variance that needs to be identified. To this end, we enhance the
PES of a log with the branching frequencies as follows.

Definition 8 (Frequency-enhanced Prime Event Structure (FPES)).
Let E(L)∼ = 〈E∼,≤∼,#∼, λ∼〉 be the prime event structure induced by equiva-
lence relation ∼ on the set of partially ordered runs Π(L) of log L. A frequency-
enhanced prime event structure is a tuple F(L)∼ = 〈E(L)∼,O,P〉 where
– O : E → N is a function that associates an event [e]∼ with the number

of times its event label occurs in the event log, and corresponds with the
cardinality of the equivalence class, i.e. O([e]∼) = |[e]∼|.

– P : E × E → [0, 1] is a function that associates a pair of events [e1]∼ and
[e2]∼ with the probability of occurrence of [e2]∼ given that event [e1]∼ has
occurred. This function is defined as:

P([e1]∼, [e2]∼) =

{
O([e2]∼)/O([e1]∼) if [e1]∼ <

red
∼ [e2]∼

0 Otherwise

{e0, f0, g0}:A

{e1, f1}:B {e2}:C {g1}:D

{f2}:E {e3}:E {g2}:E

0.7 0.5 0.3

0.29 0.71 1 1

10

3

32 5

7

5

Fig. 11: FPES F(L)

Fig. 11 presents the FPES for the log L
that we have used as our running example. For
each event in the graph there is a grey circle
close to the event indicating the corresponding
number of occurrences (i.e. O) on the input
log. For instance, event {e2}:D occurs a total
of 5 times. This value can be tracked back
to the log as follows: e2 comes from run π1,
which in turn comes from traces t1 and t2.
Since t1 and t2 represent 3 and 2 cases each, we have a total of 5 occurrences.
The branching frequency (i.e. P) is also shown Fig. 11, with labels close to
the edge representing a direct causal relation (i.e. <red∼). Note that including
transitive causal relations during the verbalization would result in a large number
of difference statements. Most of them, however, would be most likely redundant.
That is why we only consider direct causal relations.

3.3 Comparison of frequency-enhanced prime event structures

The variant logs to be compared are each transformed into an FPES created
according to Definition 8. Subsequently, Algorithm 1 is used to obtain the set of

frequency differences. As FPESs contain all event occurrences, repeated activi-
ties in a trace will occur separately in the FPES, while sharing the same label.
Therefore, we first create a set λ̄ for each FPES, which holds each label along
with the depth of the event occurrence in the respective run, determined based
on the causality relation between each of these events (lines 3 and 25). As such,
labels that are in conflict (and hence occur on different branches) will not be
counted as consecutive occurrences. Function getAverageBranchingProb-
abilitySet (lines 4, 5 and 14) calculates the average branching frequency to
an activity, based on the frequencies of the event occurrences. For instance, the
branching activity may occur in multiple mutually exclusive branches, whereas
the originating activity may also correspond to multiple event occurrences. As
such, the frequencies to the respective event occurrences of a particular label are
summed (line 17) and divided by the number of originating event occurrences
that lead to an event with that label (line 20).

Algorithm 1 Obtain frequency differences

1: function obtainDifferences(F1, F2)
2: diffSet← ∅
3: λ̄F1

← getEventDepthLabelSet(F1); λ̄F2
← getEventDepthLabelSet(F2)

4: BP1 ← getAverageBranchingProbabilitySet(F1, λ̄F1
)

5: BP2 ← getAverageBranchingProbabilitySet(F2, λ̄F2
)

6: for e, e′ ∈ EF1
s.t. (〈λ̄F1

[e], λ̄F1
[e′]〉 7→ p1) ∈ BP1 do

7: for f, f ′ ∈ EF2
s.t. (〈λ̄F2

[f], λ̄F2
[f ′]〉 7→ p2) ∈ BP2 do

8: if λ̄F1
[e] = λ̄F2

[f] ∧ λ̄F1
[e′] = λ̄F2

[f ′] ∧ p1 6= p2 then . Probability mismatch?

9: diffSet ← diffSet ∪ {(λ̄F1
[e], λ̄F1

[e′], λ̄F2
[f], λ̄F2

[f ′], p1, p2)}
10: end if
11: end for
12: end for
13: end function
14: function getAverageBranchingProbabilitySet(F , λ̄F)
15: sums ← ∅; probs ← ∅
16: for e, e′ ∈ EF s.t. e <predF e′ do

17: sums[〈λ̄F [e], λ̄F [e′]〉] ← sums[〈λ̄F [e], λ̄F [e′]〉] + PF (e, e′) . ∅ is interpreted as 0
18: end for
19: for e, e′ ∈ EF s.t. (〈λ̄F [e], λ̄F [e′]〉 7→ p) ∈ sums do
20: probs[〈λ̄F [e], λ̄F [e′]〉]← p / |{e′′ ∈ EF | e′′ < e′ ∧ λ̄F [e′′] = λ̄F [e]}|
21: end for
22: return probs
23: end function
24: function getEventDepthLabelSet(F)
25: return { 〈 e 7→ (λF (e), |{e′ | e′ ≤ e ∧ λF (e) = λF (e′)}|) 〉 | e ∈ EF }
26: end function

Now a set of differences can be created between events using the average
frequency obtained. The differences are verbalized by referring to the frequency
of branching between two activities in one variant, versus the same branching in
the other variant. Consider the two different event structures from Fig. 2(b) and
3, which we refer to as variant 1 and variant 2 respectively. We are interested in
the frequency differences between event A and D. In variant 1, the frequency is
0.5, while in variant 2 the frequency is 0.7. This would result in the following:
(〈e0 7→ [A, 1]〉, 〈e3 7→ [B, 1]〉, 〈f0 7→ [A, 1]〉, 〈f3 7→ [B, 1]〉, 0.5, 0.7) ∈ diffSet. In our
tool, this would be verbalized as follows: “In variant 1, after the execution of A
the frequency of branching to D is 0.5, while in variant 2, after the execution of
A the frequency of branching to D is 0.7”.

Note that some differences between occurrence frequencies in the compared
logs may be insignificant (cf. for example branching frequencies of 43.1% for

variant 1 vs. 43.8% for variant 2). In addition, reported differences may include
activities that only occur very rarely, e.g. in only 0.3% of all process instances.
Accordingly, we apply a filter to the produced set of difference statements that
removes those referring to frequency differences below a user-specified threshold.

4 Evaluation

We implemented the proposed method in the Apromore platform.4 Using this
implementation, we conducted a two-pronged validation. First, using synthetic
datasets we assessed the method’s ability to diagnose variations corresponding to
typical process change patterns and combinations thereof. Second, using a real-
life log, we qualitatively assessed the difference diagnosis produced by the method
and compared it to rules produced using a sequence classification method.

4.1 Evaluation on synthetic logs

We generated synthetic logs by simulating BPMN process models using the
BIMP simulator.5 As a “base model”, we used a textbook example of a loan ap-
plication process [14] that contains a representative set of control-flow patterns:
sequence, choice, “task skipping”, parallelism and repetition (cf. Fig. 12). We
generated 9 variants of this base model by manually introducing 1 of 9 simple
change pattern into it, which are catalogued in [7]. These patterns span across
3 categories: “Insertion”, “Resequentialization” and “Optionalization” as shown
in Table 1. We performed a 1000-traces simulation of the base model and each
of its 9 variants. We then applied the proposed log delta analysis method to
compare the log of the base model against the log of each of the 9 variants.

Assess loan

risk

Check credit

history

Appraise

property

Assess

eligibility

Check if home

insurance quote

is requested

Prepare

acceptance

pack

Reject

application

Send home

insurance

quote
Verify

repayment

agreement

Approve

application

Cancel

application

Applicant

eligible

Applicant

not eligible

Loan application

rejected

Loan application

cancelled

Loan application

accepted

Else

Home insurance

quote requested

Applicant

disagrees

Applicant

agrees

50%

50%

50%

50%

50%

50%

Check

revised form

Return

application to

applicant

Receive

updated

application

Form

incomplete

Check

application form

completeness

Loan application

requested

Form

complete

Fig. 12: Base model (branching probabilities are shown inside circles)

Insertion Resequentialization Optionalization
1. Add / remove 1. Loop 1. Parallel / sequence
2. Duplicate 2. Skip 2. Conditional / sequence
3. Substitute 3. Change branching frequency 3. Synchronize

Table 1: Change patterns applied to the base model to produce the variants.

Next, we generated 6 logs by combining the 9 simple change patterns into a
composite (nested) changes. Specifically, we applied a randomly chosen change

4 Available at http://www.apromore.org/platform/tools
5 http://bimp.cs.ut.ee

I1

Assess

loan risk

Appraise

property

Assess

eligibility

Assess

loan risk

Appraise

property

In variant 2, “Assess eligibility” occurs after “Assess loan risk” and “Appraise property”, while in variant 1 it does
not occur.

I2

Assess loan

risk

Assess loan

risk

Assess loan

risk

In variant 2, “Assess loan risk” is repeated before “Approve application”, while in variant 1 it is not.

I3

Replaced

activity

Verify

repayment

agreement

In variant 2, “Verify repayment agreement” is substituted by “Replaced activity”.

R1

Assess loan

risk

Check credit

history

Appraise

property

Assess loan

risk

Check credit

history

Appraise

property

In variant 2, “Check credit history” is repeated multiple times, while in variant 1 it is not.

In variant 2, “Assess loan risk” is repeated multiple times, while in variant 1 it is not.

In variant 2, “Appraise property” is repeated multiple times, while in variant 1 it is not.

R2

Check if home

insurance quote

is requested

Prepare

acceptance

pack

Check if home

insurance quote

is requested

Prepare

acceptance

pack

In variant 2, “Prepare acceptance pack” can be skipped, while in variant 1 it cannot.

In variant 2, “Check if home insurance quote is requested” can be skipped, while in variant 1 it cannot.

R3

Send home

insurance

quote
50%

50%

Send home

insurance

quote
25%

75%

In variant 1, the branching frequency to “Send home insurance quote” is 50.2%, while in variant 2, the branching
frequency to “Send home insurance quote” is 24.7%.

O1

Assess loan

risk

Check credit

history

Appraise

property

Assess loan

risk

Check credit

history

Appraise

property

In variant 1, “Assess loan risk” and “Appraise property” are in parallel, while in variant 2, “Assess loan risk”
precedes “Appraise property”.

O2

Assess loan

risk

Check credit

history

Check credit

history

Assess loan

risk

New

customer

Existing

customer

In variant 1, “Check credit history” precedes “Assess loan risk”, while in variant 2, “Check credit history” and
“Assess loan risk” are mutually exclusive.

O3

Assess loan

risk

Check credit

history

Appraise

property

Assess loan

risk

Check credit

history

Appraise

property

In variant 1, “Appraise property” is in parallel with “Check credit history” and “Assess loan risk”, while in variant
2, “Appraise property” is in parallel with “Check credit history”.

Table 2: Simple changes and their verbalization.

pattern from one of the three categories (say “I”), then nested a second pattern
randomly chosen from another category (say “O”) inside the fragment modified
by the first pattern, and again a third pattern randomly chosen from the last cat-
egory (“R”). This led to one composite change (and corresponding log) for each
permutation of the three categories. For example, a variant “IRO” was obtained
by adding a new activity (“Insert”) then putting it in parallel with an existing
activity (“Resequencing’) and then skipping the latter (“Optionalization”).

Results: Table 2 shows the diagnosis produced by the tool for each of the 9 vari-
ants corresponding to the simple changes. In all cases, the difference diagnosis
matches the corresponding change pattern. Each diagnosis contains one state-

IRO

Approve

application

Verify

repayment

agreement

Prepare

acceptance

pack

Approve

application

Added

activity

In variant 2, “Verify repayment agreement” is repeated after “Approve application”, while in variant 1 it is not.

In variant 2, “Prepare acceptance pack” is repeated after “Approve application”, while in variant 1 it is not.

In variant 2, “Added activity” occurs after “Verify repayment agreement” and “Prepare acceptance pack”, while
in variant 1 it does not occur.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency to the 1st occurrence
of “Approve application” is 48.1%; while in variant 2, after the 1st occurrence of “Verify repayment agreement”
the branching frequency to the 1st occurrence of “Approve application” is 13.6%

ORI

Send home

insurance

quote
Verify

repayment

agreement

Check if home

insurance quote

is requested

Send home

insurance

quote

Verify

repayment

agreement

Check if home

insurance quote

is requested

Added

activity

In variant 2 “Check if home insurance quote is requested” is repeated multiple times, while in variant 1 it is always
executed.

In variant 1 “Send home insurance quote” can be skipped, while in variant 1 it is always executed.

In variant 2 “Send home insurance quote” is repeated multiple times, while in variant 1 it is always executed.

In variant 2 “Verify payment agreement” is repeated multiple times, while in variant 1 it is always executed.

In variant 2 “Added activity” occurs after “Send home insurance quote”, while in variant 1 it does not occur.

In variant 1, after the execution of “Check if home insurance quote is requested” the branching frequency to “Send
home insurance quote” is 47.7%; while in variant 2, after the execution of “Check if home insurance quote is
requested” the branching frequency to “Send home insurance quote” is 15.9%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency to the 1st occurrence
of “Approve application” is 48.1%; while in variant 2, after the 1st occurrence of “Verify repayment agreement”
the branching frequency to the 1st occurrence of “Approve application” is 32.0%.

In variant 1, after the execution of “Send home insurance quote” the branching frequency to the 1st occurrence of
“Verify repayment agreement” is 100.0%; while in variant 2, after the execution of “Send home insurance quote”
the branching frequency to the 1st occurrence of “Verify repayment agreement” is 42.8%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency to the 1st occurrence
of “Cancel application” is 51.9%; while in variant 2, after the 1st occurrence of “Verify repayment agreement” the
branching frequency to the 1st occurrence of “Cancel application” is 23.2%.

RIO

Check if home

insurance quote

is requested

Prepare

acceptance

pack

Send home

insurance

quote

25%

75%

Prepare

acceptance

pack
Check if home

insurance quote

is requested

Prepare

acceptance

pack

Send home

insurance

quote

50%

50%

In variant 2, “Prepare acceptance pack” is repeated after “Send home insurance quote”, while in variant 1 it is
not.

In variant 1, after the execution of “Check if home insurance quote is requested” the branching frequency to the
1st occurrence of “Verify repayment agreement” is 52.3%; while in variant 2, after the execution of “Check if home
insurance quote is requested” the branching frequency to the 1st occurrence of “Verify repayment agreement” is
71.5%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency to the 1st occurrence
of “Approve application” is 48.1%; while in variant 2, after the 1st occurrence of “Verify repayment agreement”
the branching frequency to the 1st occurrence of “Approve application” is 49.2%.

In variant 1, after the 1st occurrence of “Verify repayment agreement” the branching frequency to the 1st occurrence
of “Cancel application” is 51.9%; while in variant 2, after the 1st occurrence of “Verify repayment agreement” the
branching frequency to the 1st occurrence of “Cancel application” is 50.8%.

Table 3: Composite changes and their verbalization.

ment per task affected by the change, e.g. in the case of R1 where 3 tasks are put
in a loop, the diagnosis contains 3 statements. Note that in R3, the branching fre-
quencies in the diagnosis do not exactly match the ones in the BPMN diagrams.
This is due to the stochastic nature of the simulation (the actual frequencies in
the logs do not match exactly the branching probabilities in the model).

Table 3 shows the difference statements for three of the six composite changes.
For space reasons, we omit the other composite changes (all results are pack-
aged with the software tool). As expected, the composite changes lead to more
difference statements than the simple changes (cf. Table 2), but in every case
the diagnosis matches the corresponding change. We observe that some differ-
ence statements refer to minor variations in frequencies (e.g. one branch is taken
48.1% of times in one variant and 49.2% in the other). This again comes from
the stochastic nature of the simulation. Such spurious statements can be filtered
by setting the frequency delta threshold to e.g. 10% (cf. Section 3.3).

Execution times: Each log comparison took between 10.06 and 11.18 seconds on
a laptop with Intel i7 2.5GHz, running JVM 8 with 16GB of allocated memory.

4.2 Evaluation on real-life logs

We evaluated the method on the sub-logs of positive and negative cases of the
patient treatment process discussed in Sect. 1 (Fig. 1). Variant 1 (448 cases, 7329
events) corresponds to the negative (slow) cases, while variant 2 (363 cases, 7496
events) corresponds to the positive cases. The logs cover a period of 1.5 years.

An evaluation of sequence classification methods using this log is presented
in [1], where it is shown that sequence classification methods require between
106 and 130 statements to explain the differences between these sub-logs. In
contrast, our method requires 48 statements to explain all differences (without
filtering) and 42 statements with a frequency delta threshold of 20%.

Moreover, the statements produced by sequence classification approaches
produce rules referring to the number of occurrences of a given event or event
pattern in a variant, without specifying where exactly the difference occurs. For
example, using the approach in [9], the following statements are produced –
where “Nursing Progress Notes”, “Nursing Primary Assessment”, etc. refer to
the number of occurrences of the corresponding tasks6:

– IF “Nursing Progress Notes” > 7.5 THEN variant 1.
– IF “Nursing Progress Notes” ≤ 7.5 AND “Nursing Primary Assessment” > 1.5

THEN variant 2.
– IF “Nursing Progress Notes” ≤ 5.5 AND “Pre Arrival Note” ≤ 0.5 AND “Blood

tests” ≤ 1.5 THEN variant 2.

Our method, on the other hand, produces statements that point to the exact
state in the process where a behavioral difference occurs. For example:

– In variant 1, “Nursing Primary Assessment” is repeated after “Medical Assign
Start” and “Triage Request”, while in variant 2 it is not.

– In variant 2, “Blood tests” occurs after “Triage Request”, while in variant 1 it does
not occur.

– In variant 1, after the 1st occurrence of “Pathology” the branching frequency to the
2nd occurrence of “Nursing Primary Assessment” is 15.0%, while in variant 2, after
the 1st occurrence of “Pathology” the branching frequency to the 2nd occurrence
of “Nursing Primary Assessment” is 33.3%.

Execution time: The comparison of the two variants of the hospital log took 7.82
seconds, which is in the same order of magnitude as in the synthetic logs.

5 Conclusion

The paper presented a method for diagnosing the differences between two event
logs in the form of natural language statements capturing behavior present in
one log but not in the other. This difference diagnostics is built on top of a
lossless encoding of logs in the form of frequency-enhanced event structures.
Based on this encoding, the method detects and diagnoses mismatching behavior,
specifically: (i) events that occur in one log but not in the other; (ii) events
occurring with different frequencies; (iii) events repeated in one log but not in
the other; and (iv) behavioral relations that hold in one log but not in the other.

The validation on synthetic logs shows that the method accurately diagnoses
typical change patterns, while the validation on a real-life log shows that it can

6 Even though the number of occurrences is always an integer, some rules contain
decimals because the decision tree algorithm may use decimals as split thresholds.

explain differences between normal and deviant executions more compactly and
precisely than using sequence mining techniques as proposed in previous work.

One limitation of the method is that it does not fully recognize cyclic behav-
ior. Indeed, while the method detects that an activity occurs multiple times in
traces of one log but not in those of the other, it does not identify the boundaries
of cycles. This leads to multiple difference statements being produced when cy-
cles are at stake (cf. change R1 in Table 2). Another limitation is that the method
treats the input log as consisting of sequences of event labels, ignoring times-
tamps and event payloads. Hence, directions for future work include designing
cycle-aware, temporal and data-aware extensions of the method.

References

1. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business
process deviance: A quest for accuracy. In: OTM 2014, Springer (2014) 436–445

2. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Un-
derstanding process behaviours in a large insurance company in Australia: A case
study. In: CAISE 2013, Springer (2013) 449–464

3. Lakshmanan, G.T., Rozsnyai, S., Wang, F.: Investigating clinical care pathways
correlated with outcomes. In: BPM 2013, Springer (2013) 323–338

4. Günther, C.W., Rozinat, A.: Disco: Discover your processes. In: BPM 2012 Demos,
CEUR (2012) 40–44

5. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains,
Part I. TCS 13 (1981) 85–108

6. Armas, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.: Behavioral comparison
of process models based on canonically reduced event structures. In: BPM 2014,
Springer (2014) 267–282

7. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features: Enhancing flexibility in process-aware information systems. DKE 66(3)
(2008) 438–466

8. Partington, A., Wynn, M.T., Suriadi, S., Ouyang, C., Karnon, J.: Process mining
of clinical processes: Comparative analysis of four australian hospitals. ACM TMIS
(2014) In press.

9. Bose, R.P.J.C., van der Aalst, W.M.P.: Abstractions in process mining: A taxon-
omy of patterns. In: BPM 2009. Springer (2009) 159–175

10. Swinnen, J., Depaire, B., Jans, M.J., Vanhoof, K.: A process deviation analysis –
a case study. In: BPM 2012 Workshops, Springer (2012) 87–98

11. Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors
for failure detection: A discriminative pattern mining approach. In: KDD 2009,
ACM (2009) 557–566

12. Cook, J.E., Wolf, A.L.: Event-base detection of concurrency. In: FSE’1998, ACM
(1998) 35–45

13. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE TKDE 16(9) (2004) 1128–1142

14. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer (2013)

