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Abstract. Business processes are prone to continuous and unexpected
changes. Process workers may start executing a process differently in or-
der to adjust to changes in workload, season, guidelines or regulations
for example. Early detection of business process changes based on their
event logs – also known as business process drift detection – enables
analysts to identify and act upon changes that may otherwise affect pro-
cess performance. Previous methods for business process drift detection
are based on an exploration of a potentially large feature space and in
some cases they require users to manually identify the specific features
that characterize the drift. Depending on the explored feature set, these
methods may miss certain types of changes. This paper proposes a fully
automated and statistically grounded method for detecting process drift.
The core idea is to perform statistical tests over the distributions of runs
observed in two consecutive time windows. By adaptively sizing the win-
dow, the method strikes a trade-off between classification accuracy and
drift detection delay. A validation on synthetic and real-life logs shows
that the method accurately detects typical change patterns and scales
up to the extent it is applicable for online drift detection.

1 Introduction

Business processes are prone to evolution in response to various factors, includ-
ing changes in the regulatory environment, competitive environment, supply,
demand and technology capabilities, as well as seasonal factors. Some process
changes are planned and documented, but others may occur unexpectedly and
remain unnoticed by some process stakeholders. For example, this may be the
case of changes undertaken by the initiative of individual process workers in or-
der to adapt to variations in workload or in resource capacity, changes brought
about by replacement of human resources, changes in the frequency of certain
types of (problematic) cases, or exceptions that in some cases give rise to new
workarounds that over time solidify into norms. Undocumented process changes
like those described above may over time affect process performance.
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In this setting, process analysts and managers require methods and tools that
allow them to detect and pinpoint process changes as early as possible. Business
process drift detection [1–5] is a family of process mining techniques to detect
changes based on observations of business process executions recorded in event
logs consisting of traces, each representing one execution of the business process.

Existing methods for business process drift detection are based on the idea
of extracting features (e.g. patterns) from traces. One possible feature is for
example that task A occurs before task B in the trace, while another type of
feature is for example that B occurs more than once in the trace. To achieve
a suitable level of accuracy, these techniques either explore large feature spaces
automatically or they require the users themselves to identify the specific features
that are likely to characterize the the drift – implying that the user already has an
a priori idea of the characteristics of drift. In all cases, these methods may miss
certain types of changes that are not covered by the types of features employed.
Furthermore, the scalability of these techniques is hindered by the need to extract
and analyze a potentially large set of high-dimensional feature vectors. As a
result, existing techniques are not suitable for real-time drift detection.

This paper proposes a fully automated and scalable method for detecting
concept drift in business process event logs. The core idea is to perform statistical
hypothesis testing over the distributions of runs observed in two consecutive
time windows. The underpinning assumption is that if a change occurs at or
around a given time point, the distribution of runs before and after this time
point will be statistically different, provided that the number of traces in the
time window is sufficiently large for statistical testing. By adaptively sizing the
window, the method strikes a trade-off between classification accuracy (F-score)
and drift detection delay. The proposed method has been empirically evaluated
on synthetic and real-life logs in order to assess its accuracy and scalability.

The paper is structured as follows. Section 2 discusses related work. Section 3
introduces the proposed method while Sections 4 and 5 present its evaluation
on synthetic and real-life logs. Section 6 concludes the paper.

2 Related Work

Bose et al. [1, 3] propose a method to detect process drifts based on statistical
testing over feature vectors. This method is however not automated. Instead, the
user is asked to identify the features to be used for drift detection, implying that
the user has some knowledge of the possible nature of the drift. Furthermore,
given the types of features supported, this method is unable to identify certain
types of drifts such as inserting a conditional branch or a conditional move.
Finally, this method requires the user to set a window size for drift detection.
Depending on how this parameter is set, some drifts may be missed. This latter
limitation is partially addressed in a subsequent extension [4], which introduces
a notion of adaptive window. The idea is to increase the window size until it
reaches a maximum size or until a drift is detected. However, this latter method
requires that the user sets a minimum and the maximum window. If the minimum



window size is too small, minor variations (e.g. noise) may be misinterpreted as
drifts (false positives). Conversely, if the maximum window size is too large, the
execution time is affected and some drifts may go undetected.

Accorsi et al. [5] propose a process drift detection method based on trace
clustering. The idea is to cluster the traces inside a given time window based
on the average distance between each pair of activities in the traces. Similar to
Bose et al. [1, 3], this method heavily depends on the choice of window size, such
that a low window size leads to false positives while a high window size leads
to false negatives (undetected drifts), as drifts happening inside the window
go undetected. In addition the method is not designed to deal with loops, and
may fail to detect types of changes that do not cause significant changes to the
distances between activity pairs, e.g. changes involving an activity being skipped.

Carmona et al. [2] propose another process drift detection method based on
an abstract representation of the process as a polyhedron. This representation
is computed for prefixes in a random sample of the initial traces in the log. The
method checks the fitness of subsequent prefixes of traces against the constructed
polyhedron. If a significant number of these prefixes do not lie in the polyhedron,
a drift is declared. To find a second drift after the first one, the entire detection
process has to be executed from the start, thus hindering on the scalability of
the method. In experiments we conducted with the logs used in Sections 4 and 5,
the implementation of this method took hours to complete. Another drawback
of this method is its inability to pinpoint the exact moment of the drift.

Burattin et al [6] address the problem of online discovery of process models
from event streams. The goal is to discover a process model from the log and to
update the discovered process model as new events are produced. The authors
adapt an automated process discovery method, namely the Heuristics Miner, so
as to handle incremental updates. Our proposal is complementary as it allows
drifts to be detected accurately and efficiently, and can be used as an oracle to
identify points in time when the process model should be updated.

The problem of drift detection has also been studied in a broader context in
the field of data mining [7], where a widely studied challenge is that of designing
efficient learning algorithms that can adapt to data that evolves over time (a.k.a.
concept drift). This includes for example changes in the distributions of numer-
ical or categorical variables. However, the methods developed in this context
deal with simple structures (e.g. numerical or categorical variables and vectors
thereof), while in business process drift detection we seek to detect changes in
more complex structures, specifically behavioral relations between tasks (concur-
rency, conflict, loops). Thus, methods from the field of concept drift detection
in data mining cannot be readily transposed to business process drift detection.

3 Drift detection method

From a statistical viewpoint, the problem of business process drift detection
can be formulated as follows: identify a time point when there is a statistically
significant difference between the observed process behavior before and after this



point. A key design choice to turn this formulation into a decision procedure is to
define what we mean by a difference in the observed process behavior. If we turn
around this problem, the question becomes when are two processes the same? [8].
A number of equivalence notions have been proposed to address this question,
borrowed from the field of concurrency theory [9]. One widely accepted notion
of process equivalence is trace equivalence: two processes are the same if they
have the same set of traces, thus they are different if their set of traces exhibits
a (statistically significant) difference. However, this trace-based representation
can be over-sensitive in our context because it does not capture concurrency.
Indeed, any significant variation in the frequency of relative ordering of two
activities that are anyways in parallel is treated as a drift. For example, if two
activities b and c are in parallel, any significant variation in the frequency of
occurrence of b followed by c vs. c followed by b gives rise to a drift, even though
the parallel relation between these activities still holds. From this perspective,
a more suitable approach is to reason in terms of runs (a.k.a. configurations)
of a process, where concurrency is explicitly captured. For example, the two
traces abcd and acbd characterize the process where a is followed by b and c in
parallel and these are followed by d. In a run-based representation, only one run is
needed to represent both traces: the run where a is followed by b and c in parallel
and these are followed by d. As business processes typically contain concurrent
activities, we opt for a run-based representation of logs and thus a notion of
run-equivalence, known as configuration equivalence or pomset equivalence [9].

Given the above, we map the problem of process drift detection to that of
finding a time point such that the set of runs before this point is statistically
different from the set of runs after (for a given time window size). This formu-
lation leads to a two-staged approach. First, we calculate a set of runs from a
given sub-log, and then we apply statistical testing to find significant differences
between the adjacent sets of runs. The next two sub-sections discuss these two
stages in turn, while the third sub-section discusses the window size.

3.1 From event logs to partial order runs

An event log consists of a set of traces, each capturing the sequence of events
produced by a given case of the process ordered by timestamp.

Definition 1 (Event log, Trace [10]). Let L be an event log over the set of
labels L, i.e. L ∈ B(L∗). Let E be a set of event occurrences and λ : E → L
a labeling function. An event trace σ ∈ L is defined in terms of an order
i ∈ [0, n − 1] and a set of events Eσ ⊆ E with |Eσ| = n such that σ =
〈λ(e0), λ(e1), . . . , λ(en−1)〉.

For example, the following represents a log with a total of seven traces, with

two distinct traces: L =
[
〈a, b, c, d〉2 , 〈a, c, b, d〉3

]
.

A trace is a total order of events, i.e. events are represented in a sequence
even if they might occur in parallel. In order to compress traces into runs, we
need to identify the concurrency relation. This can be done using the alpha direct
follows relation [11].



Definition 2 (Alpha concurrency [11]). Let L be an event log over the set
of event labels L and σ ∈ L be a log trace. A pair of activities with labels a, b ∈ L
are said to be in alpha direct follows relation, denoted a ≺ b, iff there exists a
trace σ = 〈λ(e0), λ(e1), . . . , λ(en−1)〉 in L, such that a = λ(ei) and b = λ(ei+1).
We say that a pair of activities a, b ∈ L are alpha concurrent, denoted a ‖ b, iff
a ≺ b ∧ b ≺ a.

From this definition, and with regard to our example, we can identify that
b ≺ c because of trace 〈a, b, c, d〉 and c ≺ b because of trace 〈a, c, b, d〉. Therefore,
b and c are considered to be parallel, noted as b ‖ c.

In the next step, we use the structure of a run to losslessly compress traces
over their concurrency relation. A run is a partial order representation of events
belonging to the same trace.

Definition 3 (Transformation of a trace into a run). Let L be an event
log over the set of event labels L, ≺ is the alpha direct follows relation, and ‖ is
the alpha concurrent relation. Let E be the set of event occurrences, λ : E → L
a labeling function. The tuple π = 〈Eπ,≤π, λπ〉 is the partially ordered run
corresponding to trace σ, induced by the concurrency relation ‖ and the direct
follows relation ≺, where:
– Eπ is the set of events occurring in σ,
– ≤π is the causality relation defined as ≤π = E2

π ∩ (≺ \ ‖)∗, and
– λπ : Eπ → L is a labeling function, i.e. λ|Eπ

.
We write Π(L) to denote the set of all partially ordered runs over the set of
traces in L.

a

b

c

d

Fig. 1: Example
of a run π

Coming back to our example, for the specific trace σ =
〈a, c, b, d〉 and the discovered alpha-relationships a ≺ c, b ≺
d and b ‖ c (due to the existence of trace 〈a, b, c, d〉), the
result π is shown in Figure 1. Consequently, the result of
transforming the event log L from a set of traces to a set of
runs is Π(L) =

[
π5
]
, i.e. a run with a frequency of five, as

all traces result in the same run.
Armed with this definition of run, we treat an event log

as a continuous stream of traces. For each new trace, we
dynamically update the alpha-relationships from the traces
observed so far, and through these, we compress the traces
into runs, so as to obtain a stream of runs.

3.2 Statistical testing over runs

In order to detect a drift in a stream of runs, we monitor any statistically sig-
nificant change in the distribution of the most recent runs. This test is done on
two populations of the same size built from the most recent runs in the stream.
Basically the most recent runs are divided into a reference (less recent) and a
detection (more recent) populations. Then, we evaluate the statistical hypothesis
of whether or not the reference and detection populations are similar.



In this regard, we define two juxtaposed sliding windows, namely the refer-
ence and detection windows of length w, forming together the composite window
of 2w most recent runs. Figure 2 depicts the two sliding windows over a stream
of runs with a drift point. Basically, every time a new run is observed in the
stream, we slide both the reference and detection windows to the right in order
to read the new run and perform a new statistical test. We keep iterating this
process as long there are new runs observed in the stream.

Reference window 

Point of the 
hypothesis test 

Stream of runs 

Detection window 

𝜋𝑖+2𝑤 𝜋𝑖+1 𝜋𝑖+𝑤 𝜋𝑖+𝑤+1 

Actual drift 

d 

Fig. 2: Statistical test over two sliding windows

Since there is no a-priori knowledge of the run distributions (and their pa-
rameters) within the reference and detection windows population, we apply a
non-parametric hypothesis statistical test. Moreover, given that an observation
of the statistical variable is a run, the statistical test has to be applicable to a
categorical variable. For these reasons, we selected the Chi-square test of inde-
pendence between two variables.

The goal of a two-variable Chi-square test is to determine whether the refer-
ence variable and detection variable are similar. The reference variable (resp., the
detection variable) is represented by the observations from the reference window
(resp., the detection window). A contingency matrix is built to report the fre-
quencies of each distinct run in each window. The Chi-square test is performed
on this contingency matrix. The result of the test is the significance probability
(the P–value). A drift is detected when the P–value is less than the significance
level α (the threshold), and localized at the point of juxtaposition of the refer-
ence and detection windows. The value of α is set to the typical value of the
Chi-square statistical test, which is 0.05 [12].

The delay d shown in Figure 2 is a notion from concept drift in data mining
[14]. It is not the distance between the actual drift and the location where the
drift is detected. Rather, it indicates how long it takes for the statistical test to
detect the drift after it has occurred, and is measured as the number of runs
between the drift and the end of the detection window.

Since any statistical test is subject to sporadic stochastic oscillations, we
introduced an additional filter to discard abrupt drops in the P–value. An abrupt
stochastic oscillation is caused by the noise present in the event log, e.g. in the
form of infrequent events or data gaps. Accordingly, we detect a drift only if
a given number φ of successive statistical tests have a P–value < α. In other
terms, a persistent P–value under the threshold is much more reliable than a
sparse value happening abruptly. Our tests showed that a value of φ equal to w/3
provides the best results in terms of accuracy. More sophisticated approaches to



filter out stochastic oscillations are however available, e.g. from the financial
domain [13], and could be used instead.

The only independent parameter that needs to be manually set is the window
size w. Below we discuss a technique to automatically modify this parameter as
new runs are observed at runtime.

3.3 Adaptive window

As discussed in Section 2, the choice of window size is critical in any drift de-
tection method as a small window size may lead to false positives while a large
one may lead to false negatives as well difficulty in locating the exact point of
the drift. Our method strikes this trade-off by adapting the window size in order
to have more a reliable statistical test. This is motivated by the fact that a low
variation does not need too many data points to remain statistical representa-
tive, whereas a higher variation would need more data points to be statistically
representative. In other words, if a high (resp. low) variation is captured within
the composite window then we will need more (resp. less) observations to statis-
tically express this distribution, and this is done by increasing (resp. decreasing)
the window size.

Our method is based on the observed variation of the number of distinct runs
within the composite window of the statistical test, as it defines a dimension
(number of columns in the contingency matrix) of the Chi-square test. Basically,
as the input stream of runs is being processed, if the number of distinct runs
varies from a statistical test to the next one, then the sliding composite window
size needs to be adjusted accordingly. The evolution of the distinct number of
runs over two consecutive statistical tests is captured by the variation ratio.

Formally, given two consecutive statistics tests T1 and T2, the variation ratio
between T2 and T1 is defined as the ratio between the numbers of distinct runs
in the composite window of T2 over the number of distinct runs in the composite
window of T1. If the variation ratio is equal to 1, this means that there was
no evolution in the variation between T1 and T2. However, a variation ratio
less than 1 means that there is less variation in the T2 composite window as
compared to T1, whereas a variation ratio greater than 1 means the opposite.

The composite window size is adjusted according to the variation ratio,
specifically the new window size is equal to the current size multiplied by the
ratio, i.e. nextWindowSize = currentWindowSize ·variationRatio. In order to
initialize the procedure, we start with a given window size, which can be provided
by the user or set empirically. The method will start adjusting the window from
this initial size.

4 Evaluation on synthetic logs

We implemented the proposed method on top of the Apromore platform4 and
used this tool to assess the goodness of our method in terms of accuracy and
scalability in a variety of settings.

4 Available at http://apromore.org/platoform/tools



This tool can read a complete event log or a continuous stream of event
traces. Each new trace is used to dynamically update the alpha-relationships for
each pair of events, and then transformed to a partial order run, resulting in a
stream of runs. This stream of runs is then used as input for the statistical test.

4.1 Setup

To assess accuracy we used two established measures in concept-drift detection
in data mining [14], namely the F-score, measured as the harmonic mean of
recall and precision, and the mean delay. The latter, computed as the average
number of log traces after which a drift is detected, not only measures how late
we detect the drift with regard to where it actually happens, but it also indicates
how far in the log traces are read to be able to detect a drift.

To simulate the presence of a drift in a log, we generated a benchmark of 72
event logs by varying different parameters as follows. First, we used a textbook
example of a business process for assessing loan applications [15] as the “base”
model. This model, illustrated in Figure 3, has 15 activities, one start event and
three end events, and exhibits different control-flow structures including loops,
parallel and alternative branches.
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Fig. 3: Base BPMN model of the loan application process

Next, in order to assess the ability of our method to detect drifts determined
by different types of control-flow changes, we systematically altered the base
model by applying in turn one out of twelve simple change patterns described in
[16].5 These patterns, summarized in Table 1, describe different change opera-
tions commonly identified in business process models, such as adding, removing
or looping a model fragment, swapping two fragments, or parallelizing two se-
quential fragments.

Further, in order to emulate more complex drifts, we organized the simple
changes into three categories: Insertion (“I”), Resequentialization (“R”) and
Optionalization (“O”) as shown in Table 1, so as to give rise to six possible
composite change patterns by randomly applying one pattern from each category

5 Non-applicable patterns such as inlining or extracting a subprocess were excluded.



Code Simple change pattern Category

re Add/remove fragment I
cf Make two fragments conditional/sequential R
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
cb Make fragment skippable/non-skippable O
cm Move fragment into/out of conditional branch I
cd Synchronize two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I
fr Change branching frequency O

Table 1: Simple control-flow change patterns

in a nested way (“IOR”, “IRO”, “OIR”, “ORI”, “RIO”, “ROI”). For example,
the composite pattern “IRO” could be obtained by first adding a new activity
(“I”), then making this activity in parallel with an existing activity (“R”) and
finally skipping the latter activity (“O”).

Finally, in order to vary the distance between drifts in the log, we generated
five logs of 250, 500, 750 and 1,000 traces for the “base” model as well as for
each of the 18 “altered” models, using the BIMP simulator,6 and combined each
group of 5 base logs with each group of 5 altered logs by alternating base and
altered logs, in order to obtain four logs of sizes 2,500, 5,000, 7,500 and 10,000
traces for each of the 18 change patterns, leading to a total of 72 logs.7 Figure
4 depicts an application of this operation to generate a log of 5,000 traces. Each
log has 9 drifts located at multiples of 10% of the log size, thus with an inter-drift
distance ranging from 250 to 1,000 traces (500 in the example). Knowing the
number and position of each drift in the logs provides a gold standard against
which we can evaluate the accuracy of our method.

base model altered model

(e.g. task removal)

simulation

merging

5,000-trace log with 9 concept drifts

500 500 500 500

Fig. 4: Event log generation with embedded concept drift

6 http://bimp.cs.ut.ee
7 All the BPMN models used for simulation, the synthetic logs and the detailed eval-

uation results are available with the software distribution



4.2 Impact of window size on accuracy

First, we evaluated the impact of the window size on accuracy. For this, we
executed our method with different fixed window sizes ranging from 25 to 150
traces in increments of 25, against each of the 72 logs. Figure 5.a reports the
F-score obtained with the four log sizes (2,500 to 10,000 traces), where for each
log the F-score was averaged over the logs produced by the 18 change patterns.
We observe that the F-score increases as the window size grows and eventually
plateaus at a window size of 150. As expected, the more data points are included
in the reference and detection windows, the more reliable is the statistical distri-
bution, and thus the more accurate is the statistical test, leading to the detection
of all concept drifts (recall of 1), with few or no false positives (precision of 0.9
or above).

Not surprisingly, for a window size of 25 traces, the F-score is low (around
0.45). This is because the Chi-square does not converge if more than 20% of the
data points have frequency below 5 [17], which is often the case with a window
size of 25 traces, where the distinct runs might be as low as 5-10. This results in
both low recall and precision.

The drop in F-score at a window size of 150 for logs of 2,500 traces is not an
inherent limitation of our method, but is due to having set a drift every 10% of
the log, which equates to 250 traces for a log of 2,500 traces. Given that with a
window size of 150 traces reference and detection windows aggregate 300 traces,
in certain cases two drifts will be included within this set of traces. As a result,
the method will treat the two drifts as one leading to a low recall.
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Fig. 5: F-score (a) and mean delay (b) obtained with different fixed window sizes.

Figure 5.b plots how the mean delay varies based on different window sizes,
where the mean delay is averaged over the logs produced by the 18 different
change patterns, according to the four log sizes. Interestingly, after an initial
high mean delay, due to the unreliability of the statistical test with low numbers
of data points, the mean delay grows very slowly as the window size increases.
This shows that the method is very resilient in terms of mean delay to increases
in windows size, having a relatively low delay of around 40 traces when the
window size is 50 or above. Similar to the results for F-score, we observe a drop
in the mean delay at a window size of 150, for logs of 2,500 traces. This positive



effect is due to the second drift in the composite window of 300 traces being
discovered before it happened with regards to the gold standard.

In summary, our method achieves high levels of accuracy both in terms of
F-score (above 0.9) and mean delay (below 40 traces) in the presence of different
types of drift and for different log sizes. This happens when employing a fixed
window size that is at least 75 traces long, with the best trade off between F-score
and mean delay being achieved with windows of 100 traces.

We also conducted experiments using the trace-based representation of logs
(instead of the run-based one). We observed that the obtained accuracy with the
trace-based representation was consistently lower than the one with runs. This
observation confirms the intuition discussed in Section 3.

4.3 Impact of adaptive window size on accuracy

Next, we assessed the impact of the adaptive window method on F-score and
mean delay. For this, we compared the results obtained with the fixed window
size shown in Figure 5, averaged over the three log sizes of 5,000, 7,500 and
10,000 traces, with the results obtained using an adaptive window. For example,
we compared the results obtained with a fixed window size of 25, with those
obtained with an adaptive window initialized to 25 traces. We did not use the
log size of 2,500 traces to avoid the effects of the interplay between window size
and number of drifts observed in logs of this size in the previous tests.
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Fig. 6: F-score (a) and mean delay (b) obtained with different fixed window sizes
(FWIN) vs. adaptive window sizes (AWIN).

Figure 6 reports the results of this comparison for F-score (a) and mean delay
(b). The adaptive window method outperforms the fixed window method both
in terms of F-score and mean delay. Indeed, the ability to dynamically change
the window size based on the variation observed in the log (measured as the
ratio between number of distinct runs and total number of runs in the combined
window), allows us to obtain an adequate number of runs (not too small, not
too large) in the reference and detection windows to perform the statistical test.
This leads to a higher F-score, since more data points are automatically added
to the window when the variation is high. At the same time, it leads to a lower
mean delay as the window size is shrank when the variation is low, since in



these cases a low number of runs is sufficient to perform the statistical test. As
an advantage, the adaptive window method overcomes the low accuracy (both
in terms of F-score and mean delay) obtained when fixing the window size to
values as low as 25 traces (F-score of 0.85 instead of 0.45, and mean delay of
28 instead of 110). This enables the method to be employed in those scenarios
where the distance between drifts in the log is expected to be very low (i.e. in
the presence of very frequent drifts) and thus keeping the mean delay as low as
possible becomes essential to identify as many drifts as possible.

4.4 Accuracy per change pattern

As a further test on accuracy, we evaluated the relative levels of F-score and
mean delay for each of the twelve simple change patterns and the six composite
change patterns. For this we fixed the window size to 100 traces, which proved to
provide the best trade off in terms of F-score and mean delay, and averaged the
results obtained with the fixed window, and with the adaptive window initialized
to 100 traces, over the three log sizes of 5,000, 7,500 and 10,000 traces.
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Fig. 7: F-score (a) and mean delay (b) per change pattern, obtained with fixed
window size of 100 (FWIN) vs. adaptive window size initialized to 100 (AWIN).

Figure 7 shows the results. From these we can draw the following observa-
tions. First, the adaptive window method enhances F-score and mean delay for
the majority of patterns (16 out of 18 for F-score and 13 out of 18 for mean
delay), with the F-score often being 1. Second, the method experiences a sensi-
bly lower F-score both for fixed and adaptive windows for the frequency change
pattern (“fr”). This pattern modifies the frequency of certain event relations in
the log. The low F-score is due to a low precision (lots of false positives). This
is because our method is sensitive to frequency changes caused by the stochas-
tic interference present in an event log. For example, even if the probabilities
of taking two alternative branches in a process are observed to be 50% each in
the entire log, when looking at an individual window, which is a small extract
of the log, these probabilities are likely to be slightly different (e.g. they could
be 40%-60% instead of 50%-50%). This interference tricks the detection of a
frequency-based drift, but can be resolved by choosing a larger window size. For



example, using a fixed window of 200 traces, we obtain an F-score of 0.98 (1 if
using the adaptive window) for the “fr” pattern.

4.5 Execution times

We conducted all tests on an Intel i7 2.20GHz with 16GB RAM (64 bit), run-
ning Windows 7 and JVM 8 with standard heap space of 512MB. The time
required to update the alpha-relationships, extract the runs, and perform the
Chi-square test, ranges from a minimum of 0.26 milliseconds to a maximum of
2.3 milliseconds with an average of 0.5 milliseconds. These results show that the
method is suited for online concept drift detection, including scenarios where
the inter-arrival time between completed traces is in the order of milliseconds.

4.6 Comparison with baseline

Lastly, we compared the results obtained by our adaptive window method shown
in Figure 7, with those obtained by the method of Bose et al. [1, 3], since this
is the most mature method for process drift detection available at the time of
writing. Thus, we used the synthetic logs that we had previously generated for
each of the 18 change patterns, set the window size to 100 and averaged the
results over the three different log sizes of 5,000, 7,500 and 10,000 traces.

As discussed in Section 2, the method in [1, 3] has the disadvantage that it
requires to manually select the order relations between event labels to be used as
features to build the feature space which in turn is required to detect the drifts.
Thus, knowing the specific changes made in the altered models, we manually
selected the most appropriate features for each log.
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Fig. 8: F-score (a) and mean delay (b) per change pattern, obtained with our
adaptive window method with size initialized to 100 (ADWIN) vs. [1, 3] with
fixed window size of 100 (BOSE).

Figure 8 shows the results of the comparison. Our method outperforms the
method in [1, 3] both in terms of F-score and mean delay, achieving substan-
tial F-score differences for ten change patterns, including “lp” (make fragment
loopable/non-loopable), “cp” (duplicate fragment), “pm” (move fragment in-
to/out of parallel branch) and composite patterns such as “IOR” and “RIO”.
This is due to the large number of false positives identified by method in [1, 3].



Further, this method fails to identify drifts based on the following changes: “cb”
(make fragment skippable/not skippable) and “cm” (move fragment into/out of
conditional branch), even if appropriate features are chosen.

As a final test, we selected all features available from each log in order to
simulate a fully-automated application of this method. However in this case the
method fails to identify any drift due to a high level of false negatives, and
construction of the feature space becomes an expensive task (over 15 minutes
with window size of 100 traces).

5 Evaluation on real-life log

We employed our method to detect concept drifts in an event log originated from
the claims management system of a large Australian insurance company. The log
consists of 4,509 traces with 29,108 total events of which 12 are distinct events. It
records claim handling processes for motor insurance that were performed over
a period of 13 months between 2011 and 2012.

We initialized the adaptive window to 100 traces. The method took 4.51
seconds to check the whole log and returned three drifts at 1,769, 1,911 and
3,763 traces, as shown by the results of the Chi-square test in Figure 9.a. In this
plot we can also see a number of stochastic oscillations that were automatically
filtered out by our method, as described in Section 3.2.
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Fig. 9: Plot of the Chi-square test results (a) and adaptive window size (b).

We then validated the results with a business analyst from the insurance
company, who confirmed that the three drifts correspond to a new major release
(Drift 1) and two minor releases (Drifts 2 and 3) of the claims management
system. These releases led to various changes in the claim handling process
supported by the system, e.g. the removal of a manual task for reviewing the
claim correspondence and the replacement of a manual task for checking the
invoice with an automated one, with the purpose of reducing the total number
of open claims. The effects of these changes are confirmed by the distribution of
the number of active cases over the log timeline, shown in Figure 10, which we
have annotated with the position of the drifts identified by our method and the
delays in reporting these drifts. We can see that each drift is associated with a



Drift 1

Drift 2

Drift 3

Fig. 10: The position and delay of the three drifts identified by our method, noted
on active cases over log timeline

drop in the number of active cases, which confirms the effectiveness of the new
releases on process performance.

The delay in detecting the first two drifts is longer than the delay in detecting
the last drift. This is due to a higher level of variation in the first part of the log
(due to the more manual nature of the business process), which led our method
to increase the size of the adaptive window. This is confirmed by Figure 9.b,
which shows how the window size varies according to the number of completed
traces. Here we can see that the detection of Drift 1 and 2 is associated with a
larger window size (131 and 143) than the size used to detect Drift 3 (size 109).

6 Conclusion

The paper proposed a fully automated method for business process drift detec-
tion based on statistical testing of distributions of runs. The proposed method
– especially in its “adaptive window” variant – accurately discovers typical pro-
cess changes and combinations thereof, consistently outperforming a state-of-the
art baseline. The evaluation results on a complex real-life log demonstrate the
method’s ability to detect drifts that correspond to user-recognizable process
changes, as well as its scalability. The execution times in the order of millisec-
onds make the method applicable for online drift detection.

In its present form, the proposed method treats event logs as consisting of
sequences of event labels. In doing so, it does not take into account process
execution data and resource allocations – usually encoded as event payloads. An
avenue for future work is to make the method data-aware.

Another avenue for future research is to enhance the method in order to
provide input to the user to understand the process change(s) underpinning a
detected drift. One possibility to explain a drift is to present to the user the runs
with the highest frequency differentials between the reference and the detection
windows. This input may help the user to gain a partial and initial understanding
of the process change(s), but it is unlikely to provide a comprehensive picture in
the case of complex business processes. A possible direction to tackle this problem
is to apply automated process discovery before and after the drift, and to use a
process model comparison technique [18] in order to derive a diagnostics of the
differences between the discovered pre-drift and the post-drift process models.
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