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Abstract 
Purpose Neurofibromatosis type 1 (NF1) is a rare monogenic disorder associated with executive function (EF) deficits and 
heightened risk for attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The goal of this paper 
is to understand how EFs provide a common foundation to understand vulnerabilities for ADHD and ASD within NF1. 
Methods A literature review and synthesis was conducted. 
Results EF difficulties in working memory, inhibitory control, cognitive flexibility, and planning are evident in NF1, ADHD, and 
ASD. However, relatively little is known about the heterogeneity of EFs and ADHD and ASD outcomes in NF1. Assessment of 
ADHD and ASD in NF1 is based on behavioral symptoms without understanding neurobiological contributions. Recent efforts 
are promoting the use of dimensional and multidisciplinary methods to better understand normal and abnormal behavior, 
including integrating information from genetics to self-report measures. 
Conclusion NF1 is a monogenic disease with well-developed molecular and phenotypic research as well as complementary 
animal models. NF1 presents an excellent opportunity to advance our understanding of the neurobiological impact of known 
pathogenic variation in normal and abnormal neural pathways implicated in human psychopathology. EFs are core features of 
NF1, ADHD, and ASD, and these neurodevelopmental outcomes are highly prevalent in NF1. We propose a multilevel approach 
for understanding EFs in patients with NF1.This is essential to advance targeted interventions for NF1 patients and to advance the 
exciting field of research in this condition. 
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Introduction to neurofibromatosis 1 
and related neurodevelopmental outcomes 

Neurofibromatosis 1 (or NF1) is a neurocutaneous disorder 
affecting 1 in 2700 live births [1]. Diagnostic criteria for 
NF1 include at least two of the following: 6 or more café-
au-lait macules, two or more neurofibromas or one plexiform 
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neurofibroma, freckling in axillary region, optic glioma, mul-
tiple lisch nodules, distinctive osseous lesion, or a first-degree 
relative with NF1 [2] (see [3] for a review of the clinical 
phenotype). NF1 is caused by a pathogenic NF1 heterozygous 
variant. The NF1 gene encodes for neurofibromin which neg-
atively regulates the Ras pathway [3, 4]. 

NF1 research has grown exponentially in the last 
20 years thanks to the common efforts of researchers, 
funding agencies, private philanthropy, and advocacy 
groups. The result is extensive new knowledge into the 
neurobiology of the disease and further characterization of 
the NF1 phenotype. The result, a recent FDA approved 
treatment [5] for plexiform neurofibroma, brings hope for 
many patients and families. In addition, new animal 
models [6, 7] complement existing well-established NF1 
models to increase opportunities for research and devel-
opment of interventions. Despite this progress, molecular-
and disease-targeted interventions for cognitive deficits 
remain elusive. 
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NF1  increases  r i sk  for  cogni t ive  def ic i t s  and  
neurodevelopmental disorders [8–11]. Research indicates a 
characteristic “downward shift” in intellectual functioning, 
where individuals with NF1 score approximately 1 standard 
deviation below the general population (e.g., [12]) as well as 
their unaffected siblings [13]. A minority of individuals with 
NF1 show more severe intellectual deficits, with about 4–8% 
of individuals with NF1 meeting criteria for an intellectual 
disability [10, 13]. Youth with NF1 are much more likely to 
develop attention deficit/hyperactivity disorder (ADHD) with 
rates ranging from 38 to 67% [13, 14] and autism spectrum 
disorder (ASD) with estimates ranging from 10.0 to 39.2% 
using a broader phenotype [15, 16]. Specific learning disor-
ders, such as dyslexia, are observed in 19 to 61% youth with 
NF1 [13, 17]. Difficulties with motor coordination, planning, 
weakness, and fatigue are also evident in NF1 [18]. 

Taken together, NF1 increases risk for various cognitive 
and neurodevelopmental outcomes. These outcomes are 
closely related to behavioral and social functioning which 
are among the strongest predictors of quality of life in NF1 
[19–22]. Therefore, it is important to understand factors that 
contribute to these difficulties. The purpose of this paper is to 
examine current research on executive function (EF) in the 
NF1 population and how EF deficits may contribute to general 
and specific vulnerability for neurodevelopmental difficulties 
within NF1, with a focus on the clinical diagnoses of ADHD 
and ASD. We will also review the limitations of this approach 
and propose recommendations to advance clinical and trans-
lational research to improve NF1 interventions. 

Executive function in youth with NF1 

Executive function (EF) refers to a set of interrelated skills that 
are responsible for purposeful, goal-directed, problem-solving 
behavior [23]. EF includes initiating goal-directed behavior, 
inhibiting competing actions or stimuli, planning and selecting 
relevant task goals, organizing behavior to solve complex 
problems, flexible shifting of problem-solving strategies when 
necessary, and monitoring and evaluating problem-solving 
behavior ([23]; see Fig. 1c]. 

Extensive research has been done to try to understand the 
magnitude of EF deficits in NF1 and the impact such deficits 
have on cognition, behavior, and academic achievement. 
Children with NF1 have deficits in multiple EF domains when 
measured using daily life and laboratory measurement tech-
niques [26]. Children and adults with NF1 exhibit extensive 
EF compromise in working memory capacity, inhibition, cog-
nitive flexibility and planning [26], with effects similar to 
those found in ADHD and ASD samples (see Table 1). 
Fluency or generativity is also lower in NF1 samples [30], 
but it has received less attention in the NF1 literature. These 
EFs are thought to be primarily mediated by the prefrontal 

Fig. 1 A research domain approach to characterizing behavioral and�b 
social phenotypes in NF1 across multiple levels. (a) Functional 
outcomes.  Individuals  with NF1 exhibit  increased functional  
impairment in behavioral, social, emotional, and academic domains 
and, relatedly, lower quality of life. (b) Diagnosis. NF1 greatly 
increases the likelihood for both ADHD and ASD [4]. In the general 
population, genetic and phenotypic correlations between ADHD and 
ASD are substantive [4]. Within NF1, ADHD and ASD diagnostic 
categories and symptom dimensions also overlap [16]. ADHD and 
ASD are predictive of functional outcomes in NF1 (e.g., [24, 25]). (c) 
Executive functions. Working memory, inhibitory control, cognitive 
flexibility, and planning are interrelated executive functions [23] and 
reduced in NF1 [26]. EF difficulties in these domains are also 
associated with ADHD and ASD (Table 1) and likely contribute to 
common and unique risk for diagnostic and functional outcomes. (d) 
Neurobiology. The neurobiological underpinnings of EF and ADHD 
and ASD diagnoses in NF1 are just beginning to be explored. The 
dorsolateral prefrontal cortex, ventromedial prefrontal cortex, and the 
dorsal/ventral anterior cingulate cortex are consistently associated with 
EFs across typically and atypically developing populations. The 
heterogeneity in functional connectivity in NF1 in frontoparietal, 
frontostriatal, and ventral attention networks may alter EF profiles in 
NF1. (e) Genetic/Molecular/Cellular. Pathogenic variants in NF1 alter 
Ras signaling pathways with downstream effects on molecular and 
cellular phenotypes [3, 4]. Differences at this level provide a foundation 
for atypical neurodevelopmental trajectories 

cortex (Fig. 1d; [13, 26, 31] and have been linked with aca-
demic, social and motor outcomes. The severity or variability 
of NF1 also needs to be considered when examining EFs in 
this population. For example, young patients with NF1 and an 
optic pathway glioma or other CNS tumors show increased EF 
difficulties compared to those without CNS tumors [32]. The 
most common EFs affected/studied in NF1 patients are 
discussed subsequently. 

NF1 and working memory 

Working memory capacity plays a fundamental role in active-
ly holding information in the service of problem solving [23]. 
Working memory difficulties are evident across the life span 
in NF1 samples [33–35], with effect sizes in the moderate 
range (Table 1). Differences between working memory skills 
of youth with NF1 compared to controls may increase over-
time [26]. A recent meta-analysis shows that verbal and 
visual-spatial working memory are both negatively affected 
in NF1, but verbal working memory may be relatively more 
affected [26]. However, only two included studies examined 
visual-spatial working memory thus results should be 
interpreted cautiously. In NF1, working memory plays an im-
portant role in academic outcomes [36] and may allow some 
to experience more benefit from educational supports like 
phonics-based reading intervention [37]. 

Evidence from both NF1 ± mice and humans indicates 
hypoactivation in frontoparietal and frontostriatal networks, 
including the dorsolateral prefrontal cortex (dlPFC), which is 
associated with working memory deficits in humans [38]. In 
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adults with NF1, there is reduced functional connectivity in 
the left dlPFC and the right parietal cortex [35], both impli-
cated in the frontoparietal network. Adults with NF1 exhibit 
increased activation relative to controls in the posterior cingu-
late cortex and temporal regions [35]. Within NF1, increased 
connectivity between the posterior cingulate cortex and frontal 

and parietal cortices is associated with increased working 
memory performance [35]. Additionally, a pilot study found 
that youth with NF1 demonstrated improved performance on 
tasks related to attention and spatial working memory follow-
ing 6–10 weeks of Cogmed—a cognitive training program 
[39]. Improvements in cognitive outcomes were attributed to 
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increased synchrony between the frontoparietal and visual 
cortex [39]. 

NF1 and inhibitory control 

Inhibitory control works in conjunction with working memory 
to maintain progress towards one’s goal, by sustaining focused 
attention and inhibiting behavioral and cognitive responses 
that are inconsistent with one’s goal  [23]. Meta-analysis indi-
cates that individuals with NF1 have small but significant 
reduction in inhibitory control, relative to controls [26]. The 
magnitude of effect of NF1 on types of inhibitory control is 
similar, including interference control/cognitive inhibition, 
selective/focused attention, and response inhibition [26]. 
Inhibitory control deficits in NF1 are found in those with 
and without ADHD comorbidity [40]. The developmental 
course of deficits in inhibitory control in NF1 is not well 
known. 

Difficulty with inhibitory responses in NF1 is associated 
with decreased white matter integrity within the anterior tha-
lamic radiations within the fronto-striatal circuit [41]. In addi-
tion, NF1-related inhibitory control difficulties are associated 
with decreased functioning in the pre-supplementary motor 
area, fusiform gyrus/posterior cerebellum, and the inferior oc-
cipital gyrus [42]. Additionally, in NF1, the ventral attention 
network is linked with attentional control and selective atten-
tion difficulties [43]. Elevated medial frontal GABA is also 
associated with increased response speed in NF1 and de-
creased response speed in controls [44]. Altered GABA/ 
glutamate ratios have also been linked to NF1-related cogni-
tive deficits [4, 45–47], and abnormal frontal GABA physiol-
ogy in NF1 may be of particular importance to inhibitory 
control [44]. Hypofunctioning of mesolimbic dopaminergic 
pathways is associated with GABA/glutamate imbalance in 
NF1 [48]. This may contribute to differences in frontostriatal 
circuit function in NF1 and attentional difficulties within NF1 
animal models [49, 50]. 

NF1 and cognitive flexibility 

Working memory and inhibitory control contribute to cogni-
tive flexibility which promotes switching between tasks, per-
spective taking, and utilizing a range of problem-solving ap-
proaches [23].  Cognitive flexibility  also provides a  
neurocognitive foundation for creativity and theory of mind 
[23]. In youth with NF1, cognitive flexibility skills are lower 
compared to controls and the effect size is small [26]. In par-
ticular, youth with NF1 demonstrate more difficulty with re-
active flexibility—or adapting problem solving behavior in 
the context of inconsistent environmental responses [51]. 
These differences are related to ASD-associated behaviors 
[30]. Deficits in cognitive flexibility remain after controlling 
for IQ [51] and spatial working memory and inhibition [30], 

indicating the deficits in cognitive flexibility in NF1 are not 
merely a function of other related EF weaknesses [30]. To our 
knowledge, no studies have investigated the neurobiological 
origins of cognitive flexibility specifically in NF1. 

NF1 and planning and problem solving 

Higher-order EF processes, like planning and problem solv-
ing, are influenced by working memory, inhibitory control, 
and cognitive flexibility [23]. Planning is a complex construct 
and includes the ability to think ahead and consider conse-
quences of actions or the sequencing of steps to accomplish 
a goal  [52]. Planning and problem-solving skills are signifi-
cantly lower in youth with NF1 relative to controls and in the 
moderate range (Table 1), but there is significant heterogene-
ity in effect sizes between studies [26]. It is currently unclear 
which sample or methodological factors are associated with 
variability in effect size. Differences in planning between NF1 
and controls are not solely due to cognitive flexibility, visual-
spatial reasoning, and/or ASD behavioral symptoms [30], 
suggesting deficits in planning skills are independent of other 
factors in NF1. Planning skills in NF1 youth may also be 
related to academic skills [36]. 

Youth with NF1 also experience difficulty with motor 
planning, motor coordination, and reduced muscle strength 
and fatigue [53–55]. EF planning deficits are associated with 
laboratory measures of motor planning [54], thus weaknesses 
in EF planning may contribute to motor difficulties observed 
in this population or vice versa. The impact of how motor 
deficits and cognitive skills influence one another on tasks 
that need a mediated motor output is not well understood in 
NF1. However, motor impact in NF development and cogni-
tion is beyond the scope of this paper. 

Across a range of non-NF1 samples, planning appears to be 
a bilateral process involving the dlPFC, frontal eye fields, 
supplementary motor area, precuneus, caudate and anterior 
insula, and inferior parietal cortex [56],  which  have been im-
plicated in other EFs within NF1 samples. 

Summary of executive functions in NF1 

Taken together, specific EF deficits in NF1 are present across 
the lifespan. Deficits in working memory and planning/ 
problem solving are in the moderate range, whereas deficits 
in inhibitory control and cognitive flexibility are slightly 
smaller (Table 1). Frontoparietal, frontostriatal, and ventral 
attention networks are implicated in the neural pathways me-
diating EF networks in NF1; however, research investigating 
the neural correlates of specific EFs in NF1 has been largely 
limited to the working memory [35, 38] and inhibitory control 
domains [41–43]. EF difficulties in NF1 are associated with 
decreased academic [36], motor [54], and social functioning 



[30]. Comparing EF outcomes between NF1, ADHD, and 
ASD samples may be the first step to increase our understand-
ing of common and unique neurocognitive risk in NF1. 
However, to guide diagnosis and treatment, EFs should be 
integrated in a multi-level phenotypic characterization from 
genomics and circuits to behavior and self-reports, in order 
to explore basic dimensions of functioning. 

Executive functions in ADHD and ASD 
in the general population 

Both ADHD and ASD are considered neurodevelopmental 
disorders with onset in childhood, and although causal links 
are currently unknown, both disorders are highly heritable 
with approximately 64–91% of both phenotypes being 
accounted for by genetics [57, 58]. ADHD and ASD symptom 
dimensions are correlated at both a phenotypic and genetic 
level [4]. Genetic correlations between ADHD and ASD 
symptom dimensions range from 0.33 to 0.56 [59, 60]. 

ADHD is characterized by elevated levels of inattention 
and/or hyperactivity/impulsivity in comparison to same-aged 
peers [61]. EF deficits largely contribute to the ADHD behav-
ioral phenotype [62–64]. Relative to controls, individuals with 
ADHD demonstrate weaknesses in working memory, re-
sponse inhibition, sustained attention, cognitive flexibility, 
planning, and fluency/generativity [27, 65]. However, the se-
verity of EF deficits in ADHD varies by age and type of 
assessment [65, 66]. 

Alterations in the fronto-dorsal striatal network are related 
to disruptions in the mesocortical dopaminergic pathway [67, 
68]. Additionally, altered reward circuitry, which is linked to 
the mesolimbic dopaminergic pathway, is associated with de-
lay aversion contributing to impulsivity, inattention, or hyper-
activity, depending on context [67, 68]. EF deficits in ADHD 
youth are related to hypoactivation in the frontoparietal and 
ventral attention networks, with increased activation also ob-
served in the default, ventral attention, and somatomotor net-
works [69, 70]. 

ASD is characterized by social communication difficulties 
and restricted interests/repetitive behaviors. ASD is a highly 
heterogeneous disorder in symptom presentation and severity 
level. However, EF deficits in ASD are common and include 
weaknesses in working memory, inhibitory control, cognitive 
flexibility, planning, fluency, and concept formation [28], 
with effects in the moderate range across EF domains 
(Table 1). EF deficits in ASD appear to be largely stable 
across development [28], observed in individuals with ASD 
without intellectual disability [29, 71, 72], and are negatively 
associated with quality of life [73]. Additionally, variation in 
EF skills account for some phenotypic heterogeneity within 
ASD, including in social functioning [74], restricted interests/ 
repetitive behaviors [75], disruptive behavior [71], and theory 

of mind [76]. Approximately 28% of individuals with ASD 
also experience comorbid ADHD, among other comorbid dis-
orders which are associated with EF impairments [77]. 

Data from a pooled resting-state fMRI analysis indicates 
that individuals with ASD exhibit corticocortical and inter-
hemispheric functional hypoconnectivity,  as  well  as  
hyperconnectivity in local subcortical circuits [78]. This indi-
cates that during EF tasks individuals with ASD may prioritize 
the engagement of subcortical local circuits over long-range 
circuits [79]. Increased hyperconnectivity in ASD is associat-
ed  wi th  g rea te r  impai rment  [80] .  Addi t iona l ly ,  
hypoconnectivity within frontoparietal and ventral attention 
networks is associated with ADHD symptoms in ASD [81]. 

ADHD and ASD in NF1: the role of executive 
function 

From a clinical perspective, it is clear that EF deficits are 
c e n t r a l  t o  t h e  c omo rb i d i t y  b e tween  NF1  a nd  
neurodevelopmental outcomes that affect quality of life. EF 
impact is not specific to academic performance but spans mul-
tiple domains of functioning (Fig. 1), from social interaction to 
economic independence. Traditional clinical assessments of-
ten measure EF functioning to inform diagnostic clarification, 
often related to ADHD, ASD or learning disabilities. While 
this categorical approach helps patients and families to access 
services and remediation interventions, it provides very little 
information about neuroscience and the neurobiological un-
derpinnings of these manifestations. However, as this ap-
proach is the one that is currently used, we will summarize 
the findings from the limited studies examining EF deficits in 
patients with NF1 and ADHD and or ASD symptomatology. 

NF1 and ADHD 

In the NF1 population, ADHD diagnosis has been reported to 
be between 38 and 67% [13, 14]. Those individuals are ex-
pected to have a more complex profile of EF and attention 
deficits than do the NF1 patients without an ADHD diagnosis. 
In addition, the presence of ADHD has been found to be a 
major risk factor for poor social functioning [11, 25, 82], as 
well as poor general intellectual functioning [14, 83]. 
Although there is evidence that cognitive control deficits are 
not limited to NF1 patients with comorbid ADHD [40, 84], 
children with both disorders are acknowledged as among the 
most severely affected in terms of academic performance, so-
cial interactions, and behavioral problems [11, 14, 25]. 

Children with NF1 with concomitant diagnosis of ADHD 
experience significant deficits in visual and verbal working 
memory [85]. Working memory is a particularly compelling 
target for intervention, given its critical role in the develop-
ment of most cognitive and academic outcomes. In healthy 



children, it has been suggested that developmental increases in 
IQ are associated with age-related improvements in working 
memory and processing speed [86]. Because working memo-
ry capacity increases two- to three-fold from age 4 to 16 [87], 
disruption of the development of these processes can signifi-
cantly curtail a wide range of the child’s abilities over time. 
This may take the form of diminished IQ or difficulty with 
other aspects of EF and academic performance. For example, 
children with reading difficulties frequently have deficits in 
working memory that appear to contribute to problems with 
phonological memory [88, 89]. Math skills are also strongly 
linked to working memory capacity in typically developing 
children accounting for 20–57% of the variance in math per-
formance [88, 90]. 

From a developmental perspective, it is reasonable to hy-
pothesize that improving working memory in children with 
NF1 may help to offset problems with IQ, EF, and academic 
performance over time. Computerized working memory train-
ing interventions that have been tested on multiple neurolog-
ical conditions to increase working memory are currently be-
ing tested on patients with NF1 [91]. If proven beneficial, 
these interventions may be used during the developmental 
periods to improve working memory, and have downstream 
effects on cognitive domains and functioning across domains. 
Assessment and interventions targeting improvements in EF 
should include patients from pre-school age to early adulthood 
given findings that EF deficits persist into adulthood in NF1 
[25, 34, 82]. 

NF1 and ASD 

Parent and teacher report indicate that children with NF1 ex-
hibit significant social functioning difficulties. They are per-
ceived as socially isolated or sensitive as well as displaying 
less leadership behaviors [11, 16, 92]. Youth with NF1 show 
higher levels of autistic traits or meet full diagnostic criteria of 
ASD [15, 16]. For example, 44% of an NF1 sample demon-
strated restricted and repetitive behaviors at least one standard 
deviation above the mean [11]. Additionally, problems with 
flexibility, transitions, and manifestations [92]. Impairment in 
social communication and lack of motivation in social inter-
actions are reported in at least 30% of these children. From a 
neuropsychological perspective, these symptoms may be due 
to the complex dysfunction of frontal lobe pathways and EF 
alterations [93]. It is clear that ASD diagnosis in NF1 is not a 
homogenous profile and may differ significantly from ASD 
expression in non-NF1 samples. 

The International NF1-ASD Consortium Team (INFACT) 
was created to further understand the significantly elevated 
rates of ASD symptomatology seen in NF1 samples. A 
multi-site analysis of 531 individuals with NF1 found that 
patients exhibited a significant burden of autistic traits and 
symptoms along a continuous distribution that encompassed 

the full range of severity, from mild (subclinical) to severe 
(clinical) [16]. The consortium sample confirmed that more 
than 13.2% presented with severe symptoms of ASD and 
more than 43.2% were above the threshold scores for an 
ASD diagnosis. When NF1 was inherited, there was a high 
degree of within family association for the severity of autistic 
traits. Research into the biological mechanisms impacting 
these social deficits is currently on-going [47, 94]. 

The characterization of the behavioral and cognitive phe-
notype, genetic correlations and potential translation into ther-
apeutics is an essential next step for the NF1 population. Of 
special interest is improving our understanding of cognitive 
flexibility—a key EF component. Difficulty with cognitive 
flexibility is also observed in NF1-related comorbidities, like 
ASD [95, 96] and anxiety [97, 98]. Difficulties with cognitive 
flexibility may contribute to increased externalizing and inter-
nalizing behavior [99, 100], especially in the context of paren-
tal inconsistency [101]. Thus, the interaction between cogni-
tive flexibility and inconsistent contingency management in 
the environment may be one pathway to increased behavioral 
or emotional dysregulation in the NF1 population. 

In summary, current advances in our understanding of in-
creased rates of ASD symptomatology in patients with NF1 
have demonstrated that the association between the syn-
dromes is real and most likely associated at the genetic level. 
However, we have only taken the first steps into a completely 
novel field that has the potential to yield an abundance of 
research possibilities. By analyzing phenotypes and genetic 
correlations and weighing potential pharmacological and 
non-pharmacological interventions, we can continue to ex-
plore this relationship and the correlations with other genetic 
conditions as well. 

Discussion 

The goal of this paper is to examine the impact that EFs have 
on the profile of neurodevelopmental outcomes in patients 
with NF1. At a group level, EF difficulties in NF1 are diffuse 
across EF domains, with moderate deficits in working mem-
ory and planning/problem solving domains and smaller defi-
cits in inhibitory control and cognitive flexibility domains 
[26]. Evidence from NF1 human and animal studies impli-
cates frontoparietal and frontostriatal circuitry working mem-
ory functioning [35, 38, 39] and frontostriatal and ventral at-
tention circuits in inhibitory control functioning [41–43]. EFs 
serve as a putative mechanism underlying the relationship 
between NF1 and ADHD and NF1 and ASD and allow us 
to understand variability in ADHD and ASD within the NF1 
population. 

It is essential that we advance our understanding of the 
neurobiological variability of neural pathways, molecular 
and genetic factors that impact NF1. This will improve our 



ability to develop targeted molecular interventions for cogni-
tive deficits in this population. However, doing so requires a 
shift away from using a categorical framework for ASD and 
ADHD diagnosis and towards a detailed phenotypic evalua-
tion (neuropsychological testing plus behavioral scales) in 
conjunction with objective neuro-biological assessments 
(i.e., fMRI, resting state fMRI, and genetic pathways; [102]). 

Limitations and future directions for research First, differ-
ences in EF measurement between studies and limited reliabil-
ity of single EF domain measures limit our ability to compare 
and replicate findings. The neurocognitive committee of the 
Response  Eva lua t ion  in  Neurof ibromatos is  and  
Schwannomatosis (REiNS) International Collaboration has 
provided guidance on measurement within the domain of at-
tention [103] which should support measurement consistency 
between studies. Additionally, a latent factor approach with 
multiple indicators of EF domains will aid in the reduction of 
measurement error and improve replicability across studies 
[104]. Second, the majority of EF and cognitive research in 
NF1 is from case-control designs and analyses within NF1 
samples are limited by sample size. These group-based EF 
differences may not apply to individual-level data, which limit 
their utility in understanding how to tailor intervention to in-
dividual NF1 cases. More analysis examining EF profiles or 
clusters within NF1 and linking these across multiple levels 
(e.g., neurofunctional and behavioral) are needed [24, 105]. 
Larger sample sizes and multidimensional and multidisciplin-
ary  research approaches need be strongly supported  [8]. Third, 
neurobiological studies of EF in NF1 are limited to working 
memory and inhibitory control/attentional domains. The field 
would benefit from studies to extend our understanding of 
which neural circuits underpin EF cognitive flexibility, plan-
ning, and fluency/generativity domains. Important efforts are 
being made to improve our understanding of the neurobiolog-
ical underpinnings of psychiatric and cognitive conditions 
[102, 106]. 

Implications of multilevel phenotyping A multi-level charac-
terization of EF in NF1 (see Fig. 1)  will  help to provide  an  
understanding of targets for interventions and ways to tailor 
intervention to individual cases. EFs may provide a general 
target to improve behavioral, social and academic functioning 
in the NF1 population. Given high prevalence rates of multi-
ple neurodevelopmental disorders in NF1 and their comorbid-
ity, EF provides a common or shared vulnerability target, 
which may help to maximize improvement across multiple 
domains of functioning. 

Significant advances in the understanding of functional 
neural circuits implicated in brain function in patients with 
NF1 have been made. Using resting state fMRI, small studies 
have shown an overall decrease of the short and long-distance 
connectivity in the default network in patients with NF1 

compared with typically developing controls [107]. In addi-
tion, changes in brain connectivity were observed after 
12 weeks of treatment with lovastatin [107] and after comput-
er training intervention for working memory [39]. A recent 
translational research study comparing brain functional con-
nectivity in animal models of NF1 and patients with diagnosis 
of NF1 showed that decreased connectivity using resting state 
fMRI is a feature that is present in animals and patients carry-
ing the NF1 mutations [108]. Additionally, the biological cor-
relation between NF1 animal models and humans can be used 
to advance testing for medications and other interventions into 
clinical trials. However, correlations with high order cognitive 
function may require better phenotyping into complex models 
that allow understanding from the molecular pathway to the 
clinical manifestations. 

Taken together, EF difficulties play an important role in the 
overall cognitive difficulties in NF1 and a core role in the 
social and behavioral profiles in this population; however, 
they are not fully understood [30]. We need to better under-
stand the impact of EF deficits on these neurodevelopmental 
outcomes in individuals with NF1 beyond current DSM cate-
gorical diagnosis. As we better understand the neurobiology 
of EFs in individuals who are typically developing and those 
with developmental and neurodevelopmental disorders, we 
can better translate our knowledge to specific neurogenetic 
disorders like NF1. 
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