Empowering Villages Community Center Kilimbi, Rwanda

In Partnership With:

Journeyman International

California Polytechnic State University San Luis Obispo

By: Serena Reeves

Advised By: Dr. James, Mwangi

<u>INDEX</u>

PROJECT REPORT	<u>1-5</u>
INTRODUCTION	1
THE TEAM	2
THE PROJECT	2
IMPACTS	3-4
Global	3
Cultural	3
Social	3
Environmental	3
Economic	4
LEARNING ON MY OWN	4
CONCLUSION	5
CALCULATION PACKAGE6	<u>-310</u>
STRUCTURAL DRAWINGS311	<u>-321</u>
PRESENTATION322	-336

INTRODUCTION

For my Senior project I work with Journeyman International and Empowering Villages to provide the structural design for a Community center located in Kilimbi, Rwanda. I collaborated with an Architecture student and a Construction Management student here at CalPoly, so together we could provide a complete picture of the resources necessary for this building to be constructed, as well as to illustrate its potential. The project, as well as the organizations we worked with; have global, cultural, social, environmental and economic impacts; many of which that have been thoroughly considered by the organizations to purposely improve the community. I learned a lot from this project and am grateful to have had the opportunity to be a part of it.

Journeyman International (JI) is a non-profit organization that helps to bridge the gap between people in need and students who want to help. JI was founded by Daniel Weins, a former Construction Management Student here at CalPoly. After being inspired by his own Senior project, building a dental clinic in Belize, he decided to create JI to make it easier for more students to share this experience in the future.

JI empowers students by assembling a design team of ARCE students, a Construction Management student and an Architecture student, and pairs that team with a humanitarian project in need of a design. JI also provides guidance to its students allowing them to understand the context in which their design needs to fit within. JI projects help to provide safe and sustainable buildings for smaller humanitarian organizations that typically rely only on third world contractors, while also enabling students to make a global impact. Once the students have designed the project, the students' work is used to get funding for the project, and the design is eventually finalized by in country professionals and then is built.

I first became interested in JI after hearing their presentation at a SEAOC meeting during my sophomore year. I was inspired by their mission and decided on the spot that I wanted to work with them for my senior project. I thought it was a great opportunity for my project to have meaning and make a difference while also allowing me to gain lots of practical experience. I'm really grateful to JI for empowering and proving me with the opportunity to make a global impact.

For my project, JI teamed up with Empowering Villages which is a humanitarian organization that aims to provide holistic and sustainable community development by empowering, training, and building up the people in rural communities. They are partnered with EMPWR, a collection of multiple renewable energy companies based in East Africa, and together they spread sustainable development practices that allow for ownership of the advances within these communities. By providing energy access, economic development, and environmental sustainability; they provide the social and environmental infrastructure needed for the empowerment of these rural communities. In the case of my project, Empowering villages acted as our client, providing us with their goals and vision for the project.

THE TEAM

My Team included Rebecca Johnson who, as an Architecture student, provided the architectural design; and Chris Audi who, as a Construction management student, assessed and ensured the feasibility of the project. Rebecca's work on the project included cultural studies, providing architectural drawings and details, renderings and presentations that will be used to help get funding for the project. Chris created a cost estimate, hazard risk assessment, material take off, stormwater pollution prevention plan, and phasing plan.

I worked closely with Rebecca meeting every few weeks throughout the process going back and forth to understand each other's constraints and vision for the project to create a design that fit both of our needs. We also met up with Chris periodically so he could guide us in the right direction for cost effective material selection and overall constructability of the project.

THE PROJECT

The project I worked on is a community center located in a rural part of Kilimbi, Rwanda. Through the community center, Empowering Villages aims to promote a healthy community dynamic and sense of place for the members of the community. The community center is meant to provide space for assembly, social programs, skills trainings, and recreation. This includes Classrooms, a library, and outdoor learning areas. This also provides a flexible and unifying place that the community can make their own as they grow. It will be connected to a hydropower plant which will power the facilities, which was completed this past year through the efforts of EMPWR.

The structural design consists of typical wood framing as well as wood framed trusses for the gravity design. A concrete diaphragm, special concrete moment frame with non-participating infill, as well as special concrete cantilevered columns, for the lateral systems. The foundations consisted of concrete grade beams and concrete pad foundations, with a slab on grade.

I utilized Risa for the gravity analysis, Etabs for the lateral analysis, SP Column for the concrete beam and column design, and excel for the gravity design and special moment frame detailing. I then used Revit to create the set of structural drawings and details.

IMPACTS

This project and the organizations involved, have many global, cultural, social, environmental, and economic impacts. In fact, many of the goals of the organizations we worked with was to improve not only the small community but on a global scale.

Global

Through the work of JI, this project was able to have positive global impacts. JI is an international organization that helps connect people and organizations around the world all working towards the same goal of aiding humanitarian efforts in struggling communities. This also facilitates and encourages global interaction and builds connections. By joining the efforts of JI I hope to help spread their cause and spread their global impact.

Cultural

The global impacts of the project lead to cultural impacts. For example, the building of global connections also creates a cross cultural experience and exposure for everyone involved in the project. Additionally, one of Daniels missions is to set an example of a safe structure to the community through JI projects and hopefully, by providing more durable building designs this can improve how these countries build in the future.

Social

By providing safer and more durable buildings this allows the humanitarian organizations to be able to focus on their own efforts to make change in these communities rather than maintaining a poorly designed building or repairing structural damage. Providing an engineered structure provides piece of mind not only to those humanitarian organizations, but also to the community that is utilizing the building. In the case of a natural disaster it could possibly provide shelter to those in need.

The introduction of a community center in this rural community also causes social change. The community center will encourage more social interaction in a scattered community. What is more, it will provide education and self-development opportunities allowing the society to advance.

Environmental

Through the efforts of empowering villages this project not only helps to develop energy resources in communities like this one but utilizes green energy, providing a more sustainable future for these communities, preventing the sacrifice of their environment for their development. Additionally, my project utilizes solar panels as an additional clean energy resource. However, my design utilizes a lot of concrete for the structure, which is not a very sustainable building material. Unfortunately, this does create a negative impact on the local environment, but I believe the positive impacts it will have will outweigh the negative.

Economic

The cheaper we were able to make the project the more likely that it will be built, so this was a driving factor of many design decisions and the availability of materials ultimately drove the cost of the materials. For example, structural sheathing is very hard to come by and very expensive in Rwanda, which is why a concrete diaphragm and lateral system was used instead of a wood diaphragm or wood shear walls. Additionally, after discussing with Rebecca and Chris, we decided to go with non-participating masonry infill, which we thought would be easier and cheaper to construct than replacing mud bricks periodically or ensuring they were appropriately waterproofed. Because steel is not available locally it must be imported making it much more expensive and the largest driving factor of the final cost of the project. We believed that going with the non-participating infill option would also reduce the required reinforcement and decrease the overall cost.

In addition to economics playing a role in how the building was designed, the community center will have economic impacts on the community in which it is built. Training and educational resources of the community center can help stimulate the community and eventually the local economy by providing higher skilled job opportunities that are more profitable.

LEARNING ON MY OWN

This project also provided me with many learning opportunities. First, I gained a lot more experience with programs that I was introduced to at CalPoly. For example, I created excel spreadsheets, which I set up to import Risa and Etabs outputs and automatically update design loads. After re-designing several members a few times, I invested the time to update the spreadsheet to be a bit more automated. I then verified the result obtained from my spreadsheet with hand calculations. I also gained more experience with Etabs. I learned about its different functions and settings to obtain seismic forces and how to apply them appropriately to my project by reading through the help files and watching videos. Additionally, I learned about designing a special concrete MF. I did this by reading through the code and reading articles from Structural Magazine, as well as looking up design examples. I also learned about the detailing and designing considerations of participating and non-participating infill and tie beams by utilizing resources provided by JI. While working remotely during the pandemic, I also ran into many technical difficulties with my computer, most notably the graphics card, and was forced to learn how to fix all these problems on my own through online help files and trial and error.

CONCLUSION

Overall, this project not only created positive impact to the rural community in Kilimbi, Rwanda; but also made an impact on me. I am grateful to those who empowered me with this opportunity, those who worked alongside me, and those who guided me along the way. Thank you all for this unforgettable experience.

Structural Calculation Package

For

Empowering Villages Kilimbi Community Center a Journeyman International Project

By: Serena Reeves

Table of Contents

Gravity	
Load Take-off	G1-G3
Member Summary	G4
Truss Design	G5-13
Design Checks	G13-15
<u>Lateral</u>	
Base Shears	L1-L4
Main Building Lateral	L5-L133
Office/Bathroom Lateral	L134-L169
Beam Design	L170-L213
Column Design	L214-L276
<u>Foundations</u>	
Foundation Design	F1-F12

Dead Load Take-off

Slone	Rise	Run	Factor
Slope.	4.25	12	1.061

TRUSSED ROOF

<u>Element</u>	<u>Calculations</u>	Weight (psf)	Weight (N/m^2)
Solar Panels		3.00	0.060
Steel Roofing		1.00	0.020
Papyrus Roof sheets		1.00	0.020
Roof Battens (3x4 @ 12" OC)	weight of green pine = 61pcf =>61pcf*(2.5in*3.5in)/(144ft^2*1ft oc)	3.71	0.074
Misc	5%	0.44	0.009
Total to Battens	*Slope Factor	9.70	0.194
	U	SE 10	0.200
Beams 3x5	weight of green pine = 61pcf =>61pcf*(2.5in*4.5in)/(144ft^2*6.25ft oc)	0.76	0.015
Misc	5%	0.04	0.001
Total to Beams	*Slope Factor	10.55	0.211
	U	SE 11	0.220
Top & Bottom Chord M9, M10, M13 3x8	69.8 linear ft total =>{61pfs*70'*[(2.5"x7.25")/144]}/(trib area = 4'x24')	5.60	0.112
Web Members 3x3	32.9 linear ft total =>{61pfs*33'*[(2.5"x2.5")/144]}/(trib area = 4'x24')	0.91	0.018
Misc	5%	0.33	0.007
Total to Truss	*Slope Factor	17.80	0.356
	U	SE 18.00	0.360

FRAMED ROOF

Element	Calculations	,	Weight (psf)	Weight (N/m^2)
Solar Panels		-	3.00	0.060
Steel Roofing			1.00	0.020
Papyrus Roof sheets			1.00	0.020
Roof Battens (2x3 @ 12" OC)	weight of green pine = 61pcf =>61pcf*(1.5in*2.5in)/(144ft^2*1ft oc)		1.59	0.032
Misc	5%		0.33	0.007
Total to Battens	*Slope Factor		7.34	0.147
		USE	8	0.160
Girder 6x8	weight of green pine = 61pcf =>61pcf*(5.5in*7.5in)/(144ft^2*4ft oc)		4.37	0.087
Misc	5%		0.22	0.004
Total to Beams	*Slope Factor		12.21	0.244
		USE	13	0.260
Beam 8x10	weight of green pine = 61pcf =>61pcf*(7.5in*9.5in)/(144ft^2*4ft oc)		7.55	
Misc	5%		0.38	0.008
Total to Girders	*Slope Factor		20.61	0.412
		USE	21	0.420
Column 8x8	weight of green pine = 61pcf =>61pcf*(7.5in*7.5in)/(144ft^2*4ft oc)		5.96	
Misc	5%		0.30	0.006
Total to Columns	*Slope Factor		27.25	0.545
		USE	28	0.560

Reduced Live]	
	Battens	Beams
Trib Area (ft^2)	3	18.75
R1	1	1
R2	1	1
Reduced Live Load	20) 20

Member Size Summary

				Imperial		Metric	
	Element		S	Size		Size	Spacing
		Element	Nominal	Actual	Spacing	3126	Spacing
		Battens	2x3	1.5"x2.5"	12" o.c.	3.81cm x 6.35cm	30.48 cm
	Chords	M1 & M2	3x6	2.5"x5.5"	4' o.c.	6.35cm x 13.97cm	121.92 cm
Timber	Webs	M9, M10, M13	3x6	2.5"x5.5"	4' o.c.	6.35cm x 6.35cm	121.92 cm
Timber		M3 M4 M5, M7 M8 M6 M11 M12, M14	3x3	2.5"x2.5"	4' o.c.	6.35cm x 6.35cm	121.92 cm
	Posts	P1, P2	6x6	5.5"x5.5"	-	13.97cm x 13.97cm	-
		P3	8x8	7.5"x7.5"	-	19.05cm x 19.05cm	-
	B1, B2		16	x12	-	40.64cm x 30.48cm	-
	Beams	B3, B4	16	x10	-	40.64cm x 25.4cm	-
Concrete	B5		22x12		-	55.88cm x 30.48cm	-
		C1, C4	16	x16	-	40.64cm x 40.64cm	-
	Columns	C2	22	x16	-	55.88cm x 40.64cm	-
		C3	10	x16	-	25.4cm x 40.64cm	-

Truss Point Loads

	Trib width	P Dead (k) w/o self weight	P Live (k)
N7	1.53125	-0.0674	-0.1225
N8	3.0625	-0.1348	-0.2485
N9	4.59375	-0.2021	-0.3727
N10	6.125	-0.2695	-0.4969
N11	6.125	-0.2695	-0.4969
N12	4.5625	-0.2008	-0.3702
N13	1.5	-0.0660	-0.1217

	Trib area		
Brace	39.0625	-0.7031	-0.7923
C1	35.625	-0.9975	-0.7226
C2	45.5	-1.2740	-0.9229
C3	54.25	-1.5190	-1.1004

	Trib width w	Dead (plf)	w Live (klf)
Lower Roof Beam	4	-0.052	-0.08
Upper Roof Beam	4	-0.052	-0.08
Girder 1	5	-0.065	-0.1
Girder 2	6.5	-0.0845	-0.13
Girder 3	7.5	-0.1575	-0.15

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Temp [F]
1	N1	0	-1	0
2	N2	6.125	-1	0
3	N3	12.25	-1	0
4	N4	18.375	-1	0
5	N5	21.4375	-1	0
6	N6	24.5	-1	0
7	N7	24.5	0	0
8	N8	21.4375	0.510417	0
9	N9	18.375	1.020833	0
10	N10	12.25	2.041667	0
11	N11	6.125	3.0625	0
12	N12	0	4.083333	0
13	N13	-3	4.583333	0
14	N14	0	-5	0
15	N15	10	-5	0
16	N16	12.75	-5	0
17	N17	10	-6	0
18	N18	19.5	-6	0
19	N19	21.5	-6	0
20	N20	0	-6	0
21	N21	0	-7	0
22	N22	6.25	-7	0
23	N23	14.25	-7	0
24	N24	18.25	-7	0
25	N25	7	-8	0
26	N26	0	-8	0
27	N27	21	-8	0
28	N28	35	-8	0
29	N29	42	-8	0

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Rotation[k-ft/rad]
1	N1		Reaction	
2	N6	Reaction	Reaction	
3	N14	Reaction	Reaction	
4	N15	Reaction	Reaction	
5	N20	Reaction	Reaction	
6	N17	Reaction	Reaction	
7	N18	Reaction	Reaction	
8	N21	Reaction	Reaction	
9	N22	Reaction	Reaction	
10	N23	Reaction	Reaction	
11	N26	Reaction	Reaction	
12	N25	Reaction	Reaction	
13	N27	Reaction	Reaction	
14	N28	Reaction	Reaction	
15	N29	Reaction	Reaction	
16	N16			
17	N19			

Joint Loads and Enforced Displacements (BLC 1 : Dead)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	N7	L	Υ	122
2	N8	L	Υ	135
3	N9	L	Υ	202
4	N10	L	Υ	27
5	N11	L	Υ	27
6	N12	L	Υ	201
7	N13	L	Υ	066
8	N7	L	Υ	077

Joint Loads and Enforced Displacements (BLC 2 : Live)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f
1	N7	L	Υ	122
2	N8	L	Υ	248
3	N9	L	Υ	373
4	N10	L	Υ	497
5	N11	L	Υ	497
6	N12	L	Υ	37
7	N13	L	Υ	122

Member Distributed Loads (BLC 1 : Dead)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	Bottom Chord 1	Υ	0001	0001	0	0
2	Bottom Chord 2	Υ	0001	0001	0	0
3	Bottom Chord 3	Υ	0001	0001	0	0
4	Bottom Chord 4	Υ	0001	0001	0	0
5	Bottom Chord 5	Υ	0001	0001	0	0
6	Web 3	Υ	0001	0001	0	0
7	Web 3	Υ	0001	0001	0	0
8	Web 4	Υ	0001	0001	0	0
9	Web 5	Υ	0001	0001	0	0
10	Web 6	Υ	0001	0001	0	0
11	Web7	Υ	0001	0001	0	0
12	Web 8	Υ	0001	0001	0	0
13	Web 9	Υ	0001	0001	0	0
14	Web 10	Υ	0001	0001	0	0
15	Web 11	Υ	0001	0001	0	0
16	Web 12	Υ	0001	0001	0	0
17	Web 13	Υ	0001	0001	0	0
18	Web 14	Υ	0001	0001	0	0
19	Top Chord 1	Υ	0001	0001	0	0
20	Top Chord 2	Υ	0001	0001	0	0
21	Top Chord 3	Υ	0001	0001	0	0
22	Top Chord 4	Υ	0001	0001	0	0
23	Top Chord 5	Υ	0001	0001	0	0
24	Top Chord 6	Υ	0001	0001	0	0
25	Lower Framed Roof Beam	Υ	052	052	0	0
26	Upper Framed Roof Beam	Υ	052	052	0	0
27	Girder 1	Υ	065	065	0	0
28	Girder 2	Υ	085	085	0	0

RISA-2D Version 18.0.0 [C:\...\Gravity\Truss deepened 1' @ 4'oc POINT LOAD MODEL (ASD).r2d] Page 2

Member Distributed Loads (BLC 2 : Live)

		Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
	1	Lower Framed Roof Beam	Υ	08	08	0	0
2	2	Upper Framed Roof Beam	Υ	08	08	0	0
- (3	Girder 1	Υ	1	1	0	0
4	4	Girder 2	Υ	13	13	0	0

Basic Load Cases

		BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
	1	Dead	None			8		28
Ī	2	Live	None			7		4

Load Combinations

	Description	Sol	PD	SR	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact								
1	ASD D+L	Yes			2	1	1	1																
2	D only	Yes			1	1																		
3	L only	Yes			2	1																		

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Moment [k-ft]	LC
1	N1	max	0	3	1.938	1	0	3
2		min	0	1	.686	2	0	1
3	N6	max	0	3	1.645	1	0	3
4		min	0	1	.667	2	0	1
5	N14	max	0	3	.61	1	0	3
6		min	0	1	.24	2	0	1
7	N15	max	0	3	1.073	1	0	3
8		min	0	1	.423	2	0	1
9	N20	max	0	3	.509	1	0	3
10		min	0	1	.201	2	0	1
11	N17	max	0	3	1.568	1	0	3
12		min	0	1	.618	2	0	1
13	N18	max	0	3	.76	1	0	3
14		min	0	1	.3	2	0	1
15	N21	max	0	3	.4	1	0	3
16		min	0	1	.157	2	0	1
17	N22	max	0	3	1.217	1	0	3
18		min	0	1	.48	2	0	1
19	N23	max	0	3	1.394	1	0	3
20		min	0	1	.549	2	0	1
21	N26	max	0	3	.375	11	0	3
22		min	0	1	.148	2	0	1
23	N25	max	0	3	2.534	1	0	3
24		min	0	1	.998	2	0	1
25	N27	max	0	3	3.191	1	0	3
26		min	0	1	1.257	2	0	1
27	N28	max	0	3	2.534	1	0	3
28		min	0	1	.998	2	0	1
29	N29	max	0	3	.375	1	0	3

RISA-2D Version 18.0.0

[C:\...\Gravity\Truss deepened 1' @ 4'oc POINT LOAD MODEL (ASD).r2d] Page 3

Envelope Joint Reactions (Continued)

	Joint		X [k]	LC	Y [k]	LC	Moment [k-ft]	LC
30		min	0	1	.148	2	0	1
31	Totals:	max	0	3	20.124	1		
32		min	0	1	7.869	2		

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Rotation [rad]	LC
1	N1	max	015	2	0	3	0	3
2		min	042	1	0	1	0	1
3	N2	max	012	2	035	2	0	3
4		min	035	1	099	1	0	1
5	N3	max	008	2	057	2	0	3
6		min	021	1	16	1	0	1
7	N4	max	002	2	054	2	0	3
8		min	006	1	152	1	0	1
9	N5	max	0	3	032	2	0	3
10		min	0	1	091	1	0	1
11	N6	max	0	3	0	3	0	3
12		min	0	1	0	1	0	1
13	N7	max	007	2	001	2	0	3
14		min	019	1	004	1	0	1
15	N8	max	01	2	033	2	0	3
16		min	028	1	094	1	0	1
17	N9	max	011	2	054	2	0	3
18		min	03	1	154	1	0	1
19	N10	max	006	2	056	2	0	3
20		min	017	1	159	1	0	1
21	N11	max	.002	1	033	2	0	3
22		min	0	2	094	1	0	1
23	N12	max	.016	1	002	2	0	3
24		min	.006	2	006	1	0	1
25	N13	max	.022	1	.031	1	0	3
26		min	.008	2	.011	2	0	1
27	N14	max	0	3	0	3	0	3
28		min	0	1	0	1	0	1
29	N15	max	0	3	0	3	7.753e-03	1
30		min	0	1	0	1	3.054e-03	2
31	N16	max	0	3	.232	1	0	3
32		min	0	1	.091	2	0	1
33	N17	max	0	3	0	3	9.724e-04	1
34		min	0	1	0	1	3.831e-04	2
35	N18	max	0	3	0	3	3.039e-03	1
36		min	0	1	0	1	1.197e-03	2
37	N19	max	0	3	.066	1	0	3
38		min	0	1	.026	2	0	1
39	N20	max	0	3	0	3	0	3
40		min	0	1	0	1	0	1
41	N21	max	0	3	0	3	0	3
42		min	0	1	0	1	0	1
43	N22	max	0	3	0	3	3.386e-04	1
44		min	0	1	0	1	1.334e-04	2

Envelope Joint Displacements (Continued)

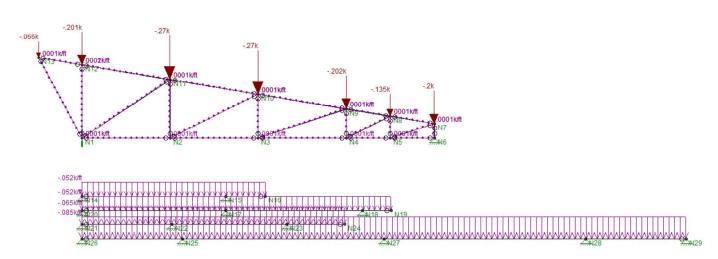
	Joint		X [in]	LC	Y [in]	LC	Rotation [rad]	LC
45	N23	max	0	3	0	3	-7.736e-04	2
46		min	0	1	0	1	-1.964e-03	1
47	N24	max	0	3	088	2	0	3
48		min	0	1	224	1	0	1
49	N25	max	0	3	0	3	-2.446e-03	2
50		min	0	1	0	1	-6.21e-03	1
51	N26	max	0	3	0	3	0	3
52		min	0	1	0	1	0	1
53	N27	max	0	3	0	3	0	3
54		min	0	1	0	1	0	1
55	N28	max	0	3	0	3	6.21e-03	1
56		min	0	1	0	1	2.446e-03	2
57	N29	max	0	3	0	3	0	3
58		min	0	1	0	1	0	1

Envelope Maximum Member Section Forces

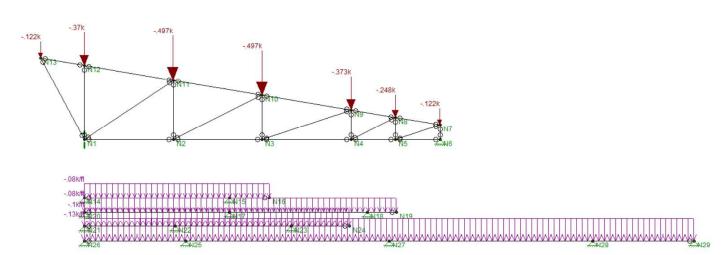
Zivelepe maximum member deciren i erede												
	Member		Axial[k]	Loc[ft]	LC	Shear[k]	Loc[ft]	LC	Moment[k-ft]	Loc[ft]	LC	
1	Bottom Chord 1	max	578	0	2	0	0	1	0	0	1	
2		min	-1.634	0	1	0	6.125	2	0	3.063	1	
3	Top Chord 1	max	04	3.041	2	0	0	1	0	0	1	
4		min	113	0	1	0	3.041	2	0	1.521	1	
5	Web 3	max	.572	5.083	1	0	0	1	0	0	1	
6		min	.201	0	2	0	0	1	0	0	1	
7	Web 4	max	241	4.063	2	0	0	1	0	0	1	
8		min	681	0	1	0	0	1	0	0	1	
9	Web 5	max	05	3.042	2	0	0	1	0	0	1	
10		min	14	0	1	0	0	1	0	0	1	
11	Web 6	max	.366	2.021	1	0	0	1	0	0	1	
12		min	.129	0	2	0	0	1	0	0	1	
13	Web7	max	.875	0	1	0	0	1	0	0	1	
14		min	.309	1.51	2	0	0	1	0	0	1	
15	Web 8	max	1.645	1	1	0	0	1	0	0	1	
16		min	.667	0	2	0	0	1	0	0	1	
17	Web 9	max	2.094	0	1	0	0	2	0	0	1	
18		min	.74	7.35	2	0	7.35	1	0	3.675	2	
19	Web 10	max	1.528	6.839	1	0	6.839	1	0	3.419	2	
20		min	.54	0	2	0	0	2	0	0	1	
21	Web 11	max	.444	6.45	1	0	6.45	2	0	3.225	1	
22		min	.157	0	2	0	0	1	0	0	1	
23	Web 12	max	293	3.415	2	0	3.415	1	0	1.707	2	
24		min	83	0	1	0	0	2	0	0	1	
25	Web 13	max	997	3.222	2	0	3.222	1	0	1.611	2	
26		min	-2.82	0	1	0	0	2	0	0	1	
27	Web 14	max	.235	6.338	1	0	0	1	0	0	1	
28		min	.083	0	2	0	6.338	2	0	3.169	1	
29	Bottom Chord 2	max	-1.062	0	2	0	0	1	0	0	1	
30		min	-3.003	0	1	0	6.125	2	0	3.063	1	
31	Bottom Chord 3	max	-1.211	0	2	0	0	2	0	0	1	
32		min	-3.425	0	1	0	6.125	1	0	3.063	2	
33	Bottom Chord 4	max	948	0	2	0	0	2	0	0	1	
	·					·			·			

RISA-2D Version 18.0.0

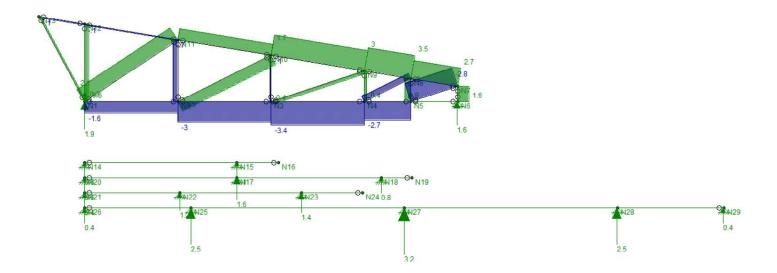
[C:\...\Gravity\Truss deepened 1' @ 4'oc POINT LOAD MODEL (ASD).r2d] Page 5

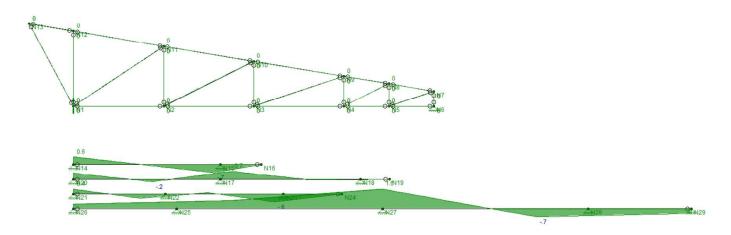


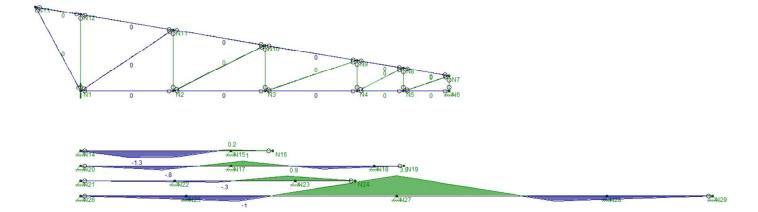
Envelope Maximum Member Section Forces (Continued)


	Member		Axial[k]	Loc[ft]	LC	Shear[k]	Loc[ft]	LC	Moment[k-ft]	Loc[ft]	LC
34		min	-2.681	0	1	0	3.063	1	0	1.531	2
35	Bottom Chord 5	max	0	0	3	0	0	2	0	0	1
36		min	0	0	1	0	3.063	1	0	1.531	2
37	Top Chord 2	max	04	6.209	2	0	0	1	0	0	1
38		min	113	0	1	0	6.209	2	0	3.105	1
39	Top Chord 3	max	1.657	6.209	1	0	0	1	0	0	1
40		min	.586	0	2	0	6.209	2	0	3.105	1
41	Top Chord 4	max	3.044	6.209	1	0	0	1	0	0	1
42		min	1.076	0	2	0	6.209	2	0	3.105	1
43	Top Chord 5	max	3.472	3.105	1	0	0	1	0	0	1
44		min	1.227	0	2	0	3.105	2	0	1.552	1
45	Top Chord 6	max	2.718	3.105	1	0	0	2	0	0	1
46		min	.961	0	2	0	3.105	1	0	1.552	2
47	Lower Framed R	max	0	0	3	.61	0	1	.472	9.961	1
48		min	0	0	1	705	9.961	1	-1.41	4.648	1
49	Upper Framed R	max	0	0	3	.747	10.078	1	1.447	10.078	1
50		min	0	0	1	791	9.854	1	983	3.807	1
51	Girder 1	max	0	0	3	.659	14.258	1	1.315	14.258	1
52		min	0	0	1	704	14.068	1	483	2.471	1
53	Girder 2	max	0	0	3	1.595	21	1	3.94	21	1
54		min	0	0	1	-1.501	20.563	1	-1.992	13.563	1

TRUSS AND OTHER GRAVITY BEAMS


DEAD LOAD


LIVE LOAD


<u>AXIAL</u>

<u>SHEAR</u>

MOMENT

Compression and Tension Checks

G14

OIL	Compression Check														l	
Fc' (psi)		<u>Cp</u>	ଧ	FcE (psi)	Fc* (psi)	ΟI	le (ft)	lu (ft)	ᅬ	<u>d or b (in)</u>	<u>p/əl</u>	Emin' (psi)	fc = C/A (psi)	C max (k)	A (in^2)	fc/Fc′
240.2	1	0.3517	0.39	266.2	682.8	0.8	6.31	6.31	1	2.5	2.524	297000	191.6	3.472	18.13	0.7977 OK
341.7		0.5004	09.0	410.1	682.8	0.8	5.08	5.08	1	2.5	2.033	297000	140.0	0.875	6.25	0.4097 OK
640.8		0.9384	3.80	2594.3	682.8	0.8	2.02	2.02	1	2.5	0.808	297000	58.6	0.366	6.25	0.0914 OK
673.7		0.9866	15.52	10596.1	682.8	0.8	1.00	1.00	1	2.5	0.400	297000	263.2	1.645	6.25	0.3907 OK
182.1		0.2788	0.30	196.1	653.1	0.8	7.35	7.35	1	2.5	2.940	297000	152.3	2.094	13.75	0.8365 OK
208.3		0.3050	0.33	226.5	682.8	0.8	6.84	6.84	1	2.5	2.736	297000	111.1	1.528	13.75	0.5336 OK
231.1		0.3384	0.37	254.7	682.8	0.8	6.45	6.45	_	2.5	2.580	297000	71.0	0.444	6.25	0.3075 OK
238.2		0.3489	0.39	263.8	682.8	0.8	6.34	6.34	1	2.5	2.535	297000	37.6	0.235	6.25	0.1578 OK
125.2		0.1834	0.19	130.8	682.8	0.8	9.00	9.00	П	2.5	3.600	297000	108.8	1.49544271	13.75	0.8687 OK
453.6	9	0.6643	0.93	633.1	682.8	0.8	9.00	9.00	1	5.5	1.636	297000	56.9	1.72009375	30.25	0.1254 OK
274.5		0.4020	0.46	311.4	682.8	0.8	10.50	10.50	1	4.5	2.333	297000	72.6	2.19689167	30.25	0.2646 OK
350.1	_	0.5128	0.62	423.8	682.8	0.8	11.00	11.00	1	5.5	2.000	297000	46.6	46.6 2.61937083	56.25	0.1330 OK

ft/Ft′	0.0277 OK	0.7752 OK	0.3874 OK	0.8414 OK	0.4722 OK
A (in^2)	18.13	18.13	6.25	13.75	6.25
T max (k)	0.113	3.425	0.681	2.820	0.830
ft=T/A (psi)	6.2	189.0	109.0	205.1	132.8
Ft' (psi)	225.0	243.8	281.3	243.8	281.3
Size	3x8 @4'	3x8 @4'	3x3 @4'	3x6@4'	3x3 @4'
Member	Top Chord	Bottom Chorc	Web 4 & 5	Web 13	Web 12
	ft=T/A (psi) T max (k) A (in^2) f	Size Ft'losi ft=T/A losi Tamax (k) A (in^2) ft 3x8 @4' 225.0 6.2 0.113 18.13 0	Size Ft'[DSI] ft=T/A[DSI] Tmax/kl A(in^2) ft 3x8 @4' 225.0 6.2 0.113 18.13 0.00 rd 3x8 @4' 243.8 189.0 3.425 18.13 0.00	Ft (Dsi) ft=T/A (Dsi) T max (k) A (in^2) f 225.0 6.2 0.113 18.13 243.8 189.0 3.425 18.13 281.3 109.0 0.681 6.25	Ft (Dsi) ft=T/A (Dsi) T max (k) A (in^2) f 225.0 6.2 0.113 18.13 243.8 189.0 3.425 18.13 281.3 109.0 0.681 6.25 243.8 205.1 2.820 13.75

G15

Bending, Deflection, and Shear Checks	ection, a	ınd Shear	Checks														
	Bending Check	; Check															
Member	Size	Fb' (psi)	CL	Σ	FbE (psi)	Fb* (psi)	RB K	RB le (distributed)	p/nl	lu (ft)	(in)	d (in)	min' (psi) fb	Emin' (psi) fb = M/ Sxx (psi) $M max$ (k-ft) Sxx (in^3)	M max (k-ft)	Sxx (in^3)	fb/Fb'
Trussed Roof Batten 3x4 @1'	3x4 @1'	651.13	0.9922	7.31	4794	959	8.62	133	21.4	6.25	2.50	3.50	297000	344.7	0.1465	5.10	0.5293 OK
Trussed Roof Beam 3x5 @6.25	3x5 @6.251	609.21	0.9946	10.20	6245	613	7.55	79	10.7	4.00	2.50	4.50	297000	550.9	0.3875	8.44	0.9044 OK
Framed Roof Batten 2x3 @1'	2x3 @1'	649.43	9686:0	5.70	3741	959	9.76	98	19.2	4.00	1.50	2.50	297000	461.5	0.0600	1.56	0.7107 OK
Framed Roof Beam 6x8 @4'	6x8 @4'	435.96	0.9965	15.06	6591	438	7.35	218	16.0	10.00	5.50	7.50	297000	384.0	1.65	51.56	0.8809 OK
Girder 1	8x9	436.25	0.9971	18.36	8032	438	99'9	179	12.8	8.00	5.50	7.50	297000	306.0	1.32	51.56	0.7015 OK
Girder 2	6x10	436.02	9966.0	15.68	0989	438	7.21	165	8.8	7.00	5.50	9.50	297000	381.1	1.3138	41.36	0.8741 OK
Girder 3	8×10	436.73	0.9982	29.16	12757	438	5.29	165	8.8	7.00	7.50	9.50	297000	400.7	1.8834	56.41	0.9175 OK

							cantilever portion	*simply supported portion		
		<u>d/c</u>	0.6212 OK	0.4948 OK	0.4000 0.7447 OK	0.5172 OK	*	0.3290 OK	0.1762 OK	0.1491 OK
ب	20	Aallow (in)	0.6250	0.4000	0.4000	1.0000	0.4000	0.8000	0.7000	0.7000
1+0	1/120	Amax (in) Aallow (in)	0.3882	0.1979	0.2780	0.5172	0.1579	0.2632	0.1234	0.1044
		∆allow (in)	0.4167	0.2667	0.2667	0.6667	0.2667	0.5333	0.4667	0.4667
_	1/180	<u>Amax (in)</u>	0.2588	0.1277	0.1986	0.3134	0.0770	0.1284	0.0602	0.0509
		(山)	6.25	4.00	4.00	10.00	4.00	8.00	7.00	7.00
		pacing (ft)	1	6.25	1	4	4	4	6.5	7.5
		Live (psf) Spacing (ft)	70	20	20	20	20	20	20	20
		D (psf)	10	11	∞	13	21	21	21	21
		l (in^4)	8.93	18.98	1.95	193.36	193.36	193.36	392.96	535.86
	Deflection Check	Emin' (psi)	297000	297000	297000	297000	297000	297000	297000	297000
	Deflection	Element	3x4 @1'	3x5 @6.25'	2x3 @1'	6x8 @4'	ex8	ex8	6×10	8×10
			Trussed Roof Batten 3x4 @1'	Trussed Roof Beam 3x5 @6.25	Framed Roof Batten 2x3 @1'	Framed Roof Beam 6x8 @4'	Girder 1	Girder 1	Girder 2	Girder 3

	Shear Check	<u>neck</u>						
	Member	Fv' (psi)	$\frac{\text{fv}=3\text{V}/2\text{db (psi)}}{\text{V max (k)}}$ $\frac{\text{b (in)}}{\text{b (in)}}$	V max (k)	<u>(in)</u>	<u>d (in)</u>	fv/Fv'	
Trussed Roof Batten 3x4 @1'	3x4 @1'	163.69	12.5	12.5 0.0938	2.50	4.50	4.50 0.0764 OK	¥
Trussed Roof Beam 3x5 @6.25	3x5 @6.25'	163.69	51.7	0.3875	2.50	4.50	4.50 0.3156 OK	X
Framed Roof Batten 2x3 @1'	2x3 @1'	163.69	22.4	0.0560	1.50	2.50	2.50 0.1368 OK	×
Framed Roof Beam	6x8 @4'	163.69	24.0	0.6600	5.50	7.50	7.50 0.1466 OK	¥
Girder 1	8x9	163.69	29.8	0.8200	5.50	7.50	7.50 0.1822 OK	×
Girder 2	6×10	163.69	26.8	0.9328	5.50	9.50	9.50 0.1636 OK	¥
Girder 3	8×10	163.69	22.7	1.0763	7.50	9.50	9.50 0.1384 OK	×

BASE SHEAR FOR MAIN BUILDING (SCMF)

Seismic Design Values are Based on a Global Map showing Seismicity in Different Areas The Seismicity at the Site in Kilimbi Rwanda are comparable to those located at 39.24 lat., -120.3 lon.

The design values for this comparable site are as given by the following OSSHPD Seismic Design Maps

Importance Factor (ASCE7-16 Sec. 1.5)

Occupancy Category: II (Table 1.5-1) Importance Factor, I = 1.0 (Table 1.5-2)

Calculation of Ts (ASCE7-16 Supplement 1 Sec 11.4)

```
Fv = 2.676 	 (Supplement 1 Table 11.4-2)
SM1 = Fv*S1 	 0.5914 	 (Eq. 11.4-2)
SD1 = (2/3)*SM1 = 0.3943 	 (Eq. 11.4-4)
SDS = 0.8580 	 (Seismic Design Maps)
Ts = SD1/SDS = 0.4595 	 (sec. 11.4.6)
```

Period Determination (ASCE7-16 Sec. 12.8.2)

Structure Type: C	oncrete moment-resisting frames	(Table 12.8-2)
Ct =	0.0160	(Table 12.8-2)
x =	0.9	(Table 12.8-2)
hn =	23	(height above the base to the highest level of the structure)
$T = Ta = Ct*hn^x =$	0.2690	(Eq. 12.8-7)
TL =	6	(Seismic Design Maps)

Sec. 11.4.8 Exception 3:

if T \leq Ts and Equivalent Lateral Force Procedure is used

A ground motion hazard analysis is not required for structures other than seismically isolated structures and structures with damping systems

0.2690 ≤ 0.4595 Therefore, OK

Seismic Design Category, SDC (ASCE7-16 Sec. 11.6)

 Based on S1:
 N/A
 (Sec 11.6)

 Based on SDS:
 D
 (Table 11.6-1)

 Based on SD1:
 D
 (Table 11.6-2)

SDC: D

Design Coefficients and Factors for Seismic Force-Resisting System (ASCE7-16 Sec. 12.2)

Seismic Force -Resisting System per ASCE 7 Table 12.2-1: C5. Special reinforced concrete moment frames

 $\begin{array}{ccc} \text{Response Modification Coefficient, R:} & 8 \\ \text{System Overstrength Factor, } \Omega_o \text{:} & 3 \\ \text{Deflection Amplification Factor, Cd:} & 5 1/2 \\ \text{System Limitations:} & \text{NL} \\ \end{array}$

Seismic Response Coefficient (ASCE7-16 Sec. 12.8.1)

rho =	1	(Sec. 12.3.4.2)	***confirm once MF are designed, change a beam to be pinned and confirm strength of remaining cantilevering columns >/= 0.33* initial MF strength
Cs = SDS/(R/I) =	0.1073	(Eq. 12.8-2)	
for T \leq TL, Cs, max = SD1/(T*R/I) =	0.1832	(Eg. 12.8-3)	
for T>TL, Cs, max = $SD1*TL/(T^2*R/I) =$	N/A	(Eq. 12.8-4)	
Cs, min = $0.044*SDS*I \ge 0.01$	0.0378	(Eq. 12.8-5)	
for S1≥0.6, Cs, min =0.5*S1/(R/I) =	N/A	Eq. 12.8-6)	
Cs, control =	0.1073		
V = rho*Cs*W =	0.1073 *W	(Eq.12.8-1)	
<u>Lateral Seismic Forces</u> (ASCE7-16 Sec. 12.8.3)			
Fx = Cvx*V =	0.1073 *W	(Eq. 12.8-11)	
(For Single Story Structure) Cvx =	1	(Eq. 12.8-12)	
<u>Diaphragm Design Forces</u> (ASCE7-16 Sec. 12.1	0.1.1)		
(For Single Story Structure) Fpx = Fx =	0.1073 *W	(Eq. 12.10-1)	
Fpx, min = $0.2*SDS*I*W =$	0.1716 *W	(Eq. 12.10-2)	
Fpx, $max = 0.4*SDS*I*W =$	0.3432 *W	(Eq. 12.10-3)	
Fpx, control =	0.1716 *W		

Horizontal Irregularity Type 3 Requires a 25% Increase in Forces (Table 12.3-1, Sec. 12.3.3.4)

to vertical elements Except when applying Ω_{o}

to: Collectors, their connections and connection from diaphragm

BASE SHEAR FOR OFFICE/BATHROOM (CANTILEVER CONC. COLS.)

Seismic Design Values are Based on a Global Map showing Seismicity in Different Areas The Seismicity at the Site in Kilimbi Rwanda are comparable to those located at 39.24 lat., -120.3 lon.

The design values for this comparable site are as given by the following OSSHPD Seismic Design Maps

Importance Factor (ASCE7-16 Sec. 1.5)

Occupancy Category: II (Table 1.5-1) Importance Factor, I = 1.0 (Table 1.5-2)

Calculation of Ts (ASCE7-16 Supplement 1 Sec 11.4)

Fv =	2.676	(Supplement 1 Table 11.4-2)
SM1 = Fv*S1	0.5914	(Eq. 11.4-2)
SD1 = (2/3)*SM1 =	0.3943	(Eq. 11.4-4)
SDS =	0.8580	(Seismic Design Maps)
Ts = SD1/SDS =	0.4595	(sec. 11.4.6)

Period Determination (ASCE7-16 Sec. 12.8.2)

Structure Type: C	Concrete Cantilevered Columns	(Table 12.8-2)
Ct =	0.0200	(Table 12.8-2)
x =	0.75	(Table 12.8-2)
hn =	12	(height above the base to the highest level of the structure)
$T = Ta = Ct*hn^x =$	0.1289	(Eq. 12.8-7)
TL =	6	(Seismic Design Maps)

Sec. 11.4.8 Exception 3:

if T ≤ Ts and Equivalent Lateral Force Procedure is used

A ground motion hazard analysis is not required for structures other than seismically isolated structures and structures with damping systems

0.1289 ≤ 0.4595 Therefore, OK

Seismic Design Category, SDC (ASCE7-16 Sec. 11.6)

Based on S1:	N/A	(Sec 11.6)
Based on SDS:	D	(Table 11.6-1)
Based on SD1:	D	(Table 11.6-2)

SDC: D

Design Coefficients and Factors for Seismic Force-Resisting System (ASCE7-16 Sec. 12.2)

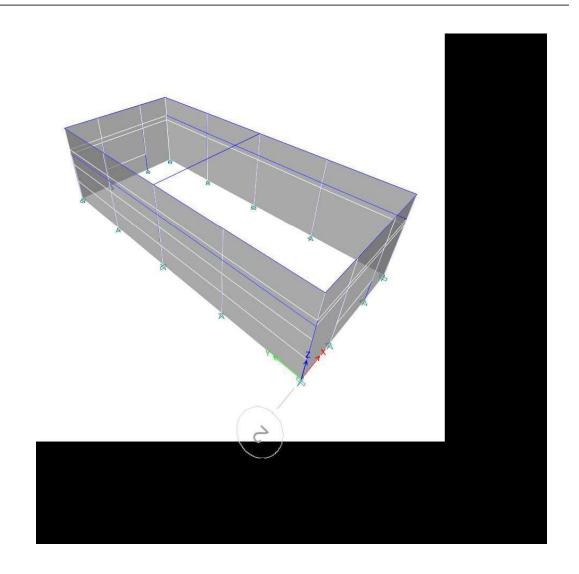
Seismic Force -Resisting System per ASCE 7 Table 12.2-1:

G3. CANTILEVERED COLUMN SYSTEMS DETAIL TO CONFORM TO THE REQUIREMENTS FOR: Special reinforced concrete moment frames

 $\begin{array}{ccc} \text{Response Modification Coefficient, R:} & 2\ 1/2 \\ & \text{System Overstrength Factor, } \Omega_o: & 1\ 1/4 \\ & \text{Deflection Amplification Factor, Cd:} & 2\ 1/2 \\ & & \text{System Limitations:} & 35\ \text{ft} \end{array}$

Seismic Response Coefficient (ASCE7-16 Sec. 12.8.1)

rho =	1	(Sec. 12.3.4.2)
Cs = SDS/(R/I) =	0.3432	(Eq. 12.8-2)
for T≤TL, Cs, max = SD1/(T*R/I) =	1.2230	(Eq. 12.8-3)
for T>TL, Cs, $max = SD1*TL/(T^2*R/I) =$	N/A	(Eq. 12.8-4)
Cs, min = $0.044*SDS*I \ge 0.01$	0.0378	(Eq. 12.8-5)
for S1≥0.6, Cs, min =0.5*S1/(R/I) =	N/A	Eq. 12.8-6)
Cs, control =	0.3432	
V = rho*Cs*W =	0.3432 *W	(Eq.12.8-1)


Lateral Seismic Forces (ASCE7-16 Sec. 12.8.3)

Fx = C	vx*V =	0.3432 *W	(Eq. 12.8-11)
(For Single Story Structure)	Cvx =	1	(Eq. 12.8-12)

Diaphragm Design Forces (ASCE7-16 Sec. 12.10.1.1)

Horizontal Irregularity Type 3 Requires a 25% Increase in Forces (Table 12.3-1, Sec. 12.3.3.4) to: Collectors, their connections and connection from diaphragm to vertical elements Except when applying $\Omega_{\rm o}$

MAIN BUILDING LATERAL

Model File: Moment Frame Beam Forces, Revision 0 6/15/2020

Table of Contents

1.	Structure Data	4
	1.1 Story Data	4
	1.2 Grid Data	4
	1.3 Point Coordinates	4
	1.4 Line Connectivity	5
	1.5 Area Connectivity	6
	1.6 Mass	11
	1.7 Groups	11
2.	Properties	12
	2.1 Materials	12
	2.2 Frame Sections	12
	2.3 Shell Sections	13
	2.4 Links	13
3.	Assignments	14
	3.1 Joint Assignments	14
	3.2 Frame Assignments	15
	3.3 Shell Assignments	18
4.	Loads	20
	4.1 Load Patterns	20
	4.2 Load Sets	20
	4.3 Auto Seismic Loading	20
	4.4 Applied Loads	27
	4.4.1 Point Loads	27
	4.4.2 Line Loads	27
	4.4.3 Area Loads	29
	4.5 Load Cases	30
	4.6 Load Combinations	30
5.	Analysis Results	32
	5.1 Structure Results	32
	5.2 Story Results	32
	5.3 Line Results	32

List of Tables

Table 1.1 Story Definitions	4
Table 1.2 Grid Definitions - General	4
Table 1.3 Grid Definitions - Grid Lines	4
Table 1.4 Point Bays	4
Table 1.5 Column Bays	6
Table 1.6 Beam Bays	6
Table 1.7 Null Area Bays	6
Table 1.8 Mass Source Definition	11
Table 1.9 Mass Summary by Story	11
Table 1.10 Mass Summary by Group	11
Table 1.11 Group Definitions	11
Table 2.1 Material Properties - General	12
Table 2.2 Frame Section Property Definitions - Summary	12
Table 2.3 Area Section Property Definitions - Summary	13
Table 2.4 Link Property Definitions - Summary	13
Table 3.1 Joint Assignments - Summary	14
Table 3.2 Frame Assignments - Summary	15
Table 3.3 Frame Assignments - Section Properties	17
Table 3.4 Area Assignments - Summary	18
Table 4.1 Load Pattern Definitions	20
Table 4.2 Shell Uniform Load Sets	20
Table 4.5 Joint Loads Assignments - Force	27
Table 4.6 Frame Loads Assignments - Distributed	27
Table 4.7 Area Load Assignments - Uniform Load Sets	29
Table 4.8 Load Case Definitions - Summary	30
Table 4.9 Load Combination Definitions	30
Table 5.1 Base Reactions	32
Table 5.2 Story Drifts	32
Table 5.3 Element Forces - Columns	32
Table 5.4. Flement Forces - Beams	66

1 Structure Data

This chapter provides model geometry information, including items such as story levels, point coordinates, and element connectivity.

1.1 Story Data

Table 1.1 - Story Definitions

Tower	Name	Height ft	Master Story	Similar To	Splice Story	Color
T1	Story1	16.5	Yes	None	No	Green

1.2 Grid Data

Table 1.2 - Grid Definitions - General

Tower	Name	Type	Ux ft	Uy ft	Rz deg	Story Range	Bubble Size in	Color
T1	G1	Cartesian	0	0	0	Default	60	Gray6

Table 1.3 - Grid Definitions - Grid Lines

Name	Grid Line Type	Ordinate ft	Bubble Location	Visible
G1	X (Cartesian)	0	End	Yes
G1	X (Cartesian)	7.0833	End	Yes
G1	X (Cartesian)	17.4167	End	Yes
G1	X (Cartesian)	24.5	End	Yes
G1	Y (Cartesian)	0	Start	Yes
G1	Y (Cartesian)	14	Start	Yes
G1	Y (Cartesian)	28	Start	Yes
G1	Y (Cartesian)	42	Start	Yes
G1	Y (Cartesian)	56	Start	Yes

1.3 Point Coordinates

Table 1.4 - Point Bays

Label	Is Auto Point	X ft	Y ft	DZBelow ft
1	No	24.5	14	4.5
2	No	24.5	56	4.5
3	No	24.5	42	4.5
4	No	24.5	28	4.5
5	No	24.5	0	4.5
6	No	0	14	4.5
7	No	0	0	0
8	No	24.5	0	0
9	No	0	0	4.5
10	No	0	28	4.5
11	No	24.5	28	0
12	No	24.5	42	0
13	No	0	42	4.5

Table 1.4 - Point Bays (continued)

Label	Is Auto Point	X ft	Y ft	DZBelow ft
14	No	0	56	4.5
15	No	7.0833	56	4.5
16	No	17.4167	56	4.5
17	No	7.0833	0	4.5
18	No	17.4167	0	4.5
19	No	0	0	5.5
20	No	0	14	5.5
21	No	7.0833	0	0
22	No	17.4167	0	0
23	No	7.0833	56	0
24	No	17.4167	56	0
25	No	24.5	56	0
26	No	0	28	5.5
27	No	0	42	5.5
28	No	0	56	5.5
29	No	24.5	14	5.5
30	No	24.5	0	5.5
31	No	24.5	28	5.5
32	No	24.5	42	5.5
33	No	24.5	14	0
34	No	24.5	56	5.5
35	No	0	14	0
36	No	0	42	0
37	No	0	28	0
38	No	0	56	0
39	No	7.0833	56	5.5
40	No	17.4167	56	5.5
41	No	7.0833	0	5.5
42	No	17.4167	0	5.5
43	No	0	14	8
44	No	0	0	8
45	No	0	28	8
46	No	0	42	8
47	No	0	56	8
48	No	7.0833	56	12
49	No	17.4167	56	12
50	No	7.0833	0	12
51	No	17.4167	0	12
52	No	0	14	12
53	No	0	0	12
54	No	0	28	12
55	No	0	42	12
56	No	0	56	12

1.4 Line Connectivity

Table 1.5 - Column Bays

Label	PointBayl	PointBayJ	IEndStory
C57	33	33	Below
C58	11	11	Be l ow
C59	12	12	Be l ow
C60	35	35	Be l ow
C61	36	36	Below
C62	37	37	Be l ow
C63	7	7	Below
C64	8	8	Below
C65	38	38	Be l ow
C66	25	25	Be l ow
C67	21	21	Be l ow
C68	22	22	Below
C69	23	23	Be l ow
C70	24	24	Below

Table 1.6 - Beam Bays

Label	PointBayl	PointBayJ
B1	1	4
B2	4	3
В3	5	1
B4	3	2
B5	7	8
B6	19	20
B7	20	26
B8	26	27
B9	27	28
B10	37	11
B12	11	12
B30	33	11
B31	35	37
B32	37	36
B33	38	25
B34	8	33
B35	12	25
B36	7	35
B37	36	38

1.5 Area Connectivity

Table 1.7 - Null Area Bays

Label	NumPoints	PointNumber	PointBay	PointStory
A17	4	1	9	Same
A17		2	6	Same
A17		3	35	Same
A17		4	7	Same

Table 1.7 - Null Area Bays (continued)

	Tuble III - Null Area Bays (continued)						
Label	NumPoints	PointNumber	PointBay	PointStory			
A22	4	1	6	Same			
A22		2	10	Same			
A22		3	37	Same			
A22		4	35	Same			
A24	4	1	10	Same			
A24		2	13	Same			
A24		3	36	Same			
A24		4	37	Same			
A26	4	1	13	Same			
A26		2	14	Same			
A26		3	38	Same			
A26		4	36	Same			
A29	4	1	5	Same			
A29		2	1	Same			
A29		3	33	Same			
A29		4	8	Same			
A31	4	1	1	Same			
A31		2	4	Same			
A31		3	11	Same			
A31		4	33	Same			
A32	4	1	4	Same			
A32		2	3	Same			
A32		3	12	Same			
A32		4	11	Same			
A36	4	1	3	Same			
A36		2	2	Same			
A36		3	25	Same			
A36		4	12	Same			
A38	4	1	14	Same			
A38		2	15	Same			
A38		3	23	Same			
A38		4	38	Same			
A44	4	1	15	Same			
A44		2	16	Same			
A44		3	24	Same			
A44		4	23	Same			
A46	4	1	16	Same			
A46		2	2	Same			
A46		3	25	Same			
A46		4	24	Same			
A48	4	1	9	Same			
A48		2	17	Same			
A48		3	21	Same			
A48		4	7	Same			
A50	4	1	17	Same			
A50		2	18	Same			

Table 1.7 - Null Area Bays (continued)

Label NumPoints PointNumber PointBay	PointStory
A50 3 22	Same
A50 4 21	Same
A52 4 1 18	Same
A52 2 5	Same
A52 3 8	Same
A52 4 22	Same
A53 4 1 19	Same
A53 2 20	Same
A53 3 6	Same
A53 4 9	Same
A54 4 1 20	Same
A54 2 26	Same
A54 3 10 A54 4 6	Same
	Same
A55 4 1 26	Same
A55 2 27	Same
A55 3 13	Same
A55 4 10	Same
A56 4 1 27	Same
A56 2 28	Same
A56 3 14	Same
A56 4 13	Same
A58 4 1 30	Same
A58 2 29	Same
A58 3 1	Same
A58 4 5	Same
A60 4 1 29	Same
A60 2 31	Same
A60 3 4	Same
A60 4 1	Same
A62 4 1 31	Same
A62 2 32	Same
A62 3 3	Same
A62 4 4	Same
A64 4 1 32	Same
A64 2 34	Same
A64 3 2	Same
A64 4 3	Same
A66 4 1 28	Same
A66 2 39	Same
A66 3 15	Same
A66 4 14	Same
A67 4 1 39	Same
A67 2 40	Same
A67 2 40 A67 3 16	Same Same

Table 1.7 - Null Area Bays (continued)

Label	NumPoints	PointNumber	PointBay	PointStory
A69	4	1	40	Same
A69		2	34	Same
A69		3	2	Same
A69		4	16	Same
A71	4	1	19	Same
A71		2	41	Same
A71		3	17	Same
A71		4	9	Same
A72	4	1	41	Same
A72		2	42	Same
A72		3	18	Same
A72	_	4	17	Same
A74	4	1	42	Same
A74		2	30	Same
A74 A74		3 4	5 18	Same
	4	1	44	Same Same
A92 A92	4	2	43	Same
A92		3	20	Same
A92		4	19	Same
A94	4	1	43	Same
A94	7	2	45	Same
A94		3	26	Same
A94		4	20	Same
A96	4	1	45	Same
A96		2	46	Same
A96		3	27	Same
A96		4	26	Same
A98	4	1	46	Same
A98		2	47	Same
A98		3	28	Same
A98		4	27	Same
A99	4	1	8	Below
A99		2	33	Below
A99		3	29	Same
A99		4	30	Same
A100	4	1	33	Below
A100		2	11	Below
A100		3	31	Same
A100		4	29	Same
A101	4	1	11	Below
A101		2	12	Below
A101		3	32	Same
A101	4	4	31	Same
A102	4	1	12	Below
A102		2	25	Below

Table 1.7 - Null Area Bays (continued)

	14510 117 -14	un Arca Bays (c		
Label	NumPoints	PointNumber	PointBay	PointStory
A102		3	34	Same
A102		4	32	Same
A103	4	1	38	Below
A103		2	23	Below
A103		3	39	Same
A103		4	28	Same
A104	4	1	24	Below
A104		2	25	Below
A104		3	34	Same
A104		4	40	Same
A105	4	1	7	Below
A105		2	21	Below
A105		3	41	Same
A105		4	19	Same
A106	4	1	22	Below
A106		2	8	Below
A106		3	30	Same
A106		4	42	Same
A107	4	1	48	Same
A107		2	49	Same
A107		3	40	Same
A107		4	39	Same
A108	4	1	23	Below
A108		2	24	Below
A108		3	49	Same
A108		4	48	Same
A109	4	1	50	Same
A109		2	51	Same
A109		3	42	Same
A109		4	41	Same
A110	4	1	21	Below
A110		2	22	Below
A110		3	51	Same
A110		4	50	Same
A111	4	1	7	Below
A111		2	35	Below
A111		3	52	Same
A111		4	53	Same
A112	4	1	53	Same
A112		2	52	Same
A112		3	43	Same
A112		4	44	Same
A113	4	1	35	Below
A113		2	37	Below
A113		3	54	Same
A113		4	52	Same

Table 1.7 - Null Area Bays (continued)

Label	NumPoints	PointNumber	PointBay	PointStory
A114	4	1	52	Same
A114		2	54	Same
A114		3	45	Same
A114		4	43	Same
A115	4	1	37	Below
A115		2	36	Below
A115		3	55	Same
A115		4	54	Same
A116	4	1	54	Same
A116		2	55	Same
A116		3	46	Same
A116		4	45	Same
A117	4	1	36	Below
A117		2	38	Below
A117		3	56	Same
A117		4	55	Same
A118	4	1	55	Same
A118		2	56	Same
A118		3	47	Same
A118		4	46	Same

1.6 Mass

Table 1.8 - Mass Source Definition

Name	ls Default		Include Vertical Mass?	Lumn	Source Self Mass?	Source Added Mass?	Source Load Patterns?	Move Mass Centroid?	Load Pattern	Multiplier
MsSrc1	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Dead	1

Table 1.9 - Mass Summary by Story

Story	UX lb-s2/ft	UY lb-s2/ft	UZ lb-s2/ft
Story1	3620.69	3620.69	3796.15
Base	978.9	978.9	803.44

Table 1.10 - Mass Summary by Group

Group	Self Mass Ib-s2/ft	Self Weight kip		Mass Y lb-s2/ft	
All	3193.18	0	10145.54	10145.54	10145.54

1.7 Groups

Table 1.11 - Group Definitions

Name	Color		Concrete Design?	Composite Design?
All	Yellow	No	No	No

2 Properties

This chapter provides property information for materials, frame sections, shell sections, and links.

2.1 Materials

Table 2.1 - Material Properties - General

Material	Type	SymType	Grade	Color	Notes
3000Psi	Concrete	Isotropic	Unknown	Red	
3000psi weightless	Concrete	Isotropic	Unknown	Red	
4000Psi	Concrete	Isotropic	Unknown	Gray8Dark	
A416Gr270	Tendon	Uniaxia	Unknown	Green	
A615Gr40	Rebar	Uniaxia l	Grade 40	Cyan	
A615Gr60	Rebar	Uniaxia l	Unknown	B l ue	
A992Fy50	Steel	Isotropic	Unknown	Yellow	

2.2 Frame Sections

Table 2.2 - Frame Section Property Definitions - Summary (Part 1 of 3)

Name	Material	Shape	Color	Area in2	J in4	133 in4	122 in4	As2 in2	As3 in2
12x28 Conc Column	3000Psi	Concrete Rectangular	Cyan	336	11785.68	21952	4032	280	280
16x10 Conc Gravity Col	3000Psi	Concrete Rectangular	Cyan	160	3260.04	3413.33	1333.33	133.33	133.33
16x12 Conc MF Beam	3000Psi	Concrete Rectangular	Magenta	192	4976.26	2304	4096	160	160
16x16 Conc MF Col	3000Psi	Concrete Rectangular	Gray8Dark	256	9229.65	5461.33	5461.33	213.33	213.33
16x22 Conc MF Col	3000Psi	Concrete Rectangular	Yellow	352	16595.63	14197.33	7509.33	293.33	293.33
16x8 Conc Gravity Beam	3000Psi	Concrete Rectangular	Magenta	128	1874.99	682.67	2730.67	106.67	106.67
18x18 Conc Col	3000Psi	Concrete Rectangular	Yellow	324	14784.12	8748	8748	270	270
22x12 Conc MF Beam	3000Psi	Concrete Rectangular	Green	264	8349.56	3168	10648	220	220
28x18 Conc MF Beam	3000Psi	Concrete Rectangular	Green	504	32700.79	32928	13608	420	420

Table 2.2 - Frame Section Property Definitions - Summary (Part 2 of 3)

S33Pos in3	S33Neg in3	S22Pos in3	S22Neg in3	Z33 in3	Z22 in3	R33 in	R22 in	CG Offset 3 in	CG Offset 2 in	PNA Offset 3 in	PNA Offset 2 in	Area Modifier
1568	1568	672	672	2352	1008	8.0829	3.4641	0	0	0	0	1
426.67	426.67	266.67	266.67	640	400	4.6188	2.8868	0	0	0	0	1
384	384	512	512	576	768	3.4641	4.6188	0	0	0	0	1
682.67	682.67	682.67	682.67	1024	1024	4.6188	4.6188	0	0	0	0	1
1290.67	1290.67	938.67	938.67	1936	1408	6.3509	4.6188	0	0	0	0	1
170.67	170.67	341.33	341.33	256	512	2.3094	4.6188	0	0	0	0	1
972	972	972	972	1458	1458	5.1962	5.1962	0	0	0	0	1
528	528	968	968	792	1452	3.4641	6.3509	0	0	0	0	1
2352	2352	1512	1512	3528	2268	8.0829	5.1962	0	0	0	0	1

Table 2.2 - Frame Section Property Definitions - Summary (Part 3 of 3)

As3 Modifier	J Modifier	I33 Modifier	I22 Modifier	Mass Modifier	Weight Modifier
1	1	0.7	0.7	1	1
1	1	0.7	0.7	1	1
1	1	0.35	0.35	1	1
1	1	0.7	0.7	1	1
1	1	0.7	0.7	1	1
1	1	0.35	0.35	1	1
1	1	0.7	0.7	1	1
1	1	0.35	0.35	1	1
1	1	0.3	0.3	1	1

2.3 Shell Sections

Table 2.3 - Area Section Property Definitions - Summary

Name	Туре	Element Type	Material	Total Thickness in	Deck Material	Deck Depth in
Deck1	Deck	Membrane	4000Psi	6.5	A992Fy50	3
Plank1	Slab	Membrane	4000Psi	8		
S l ab1	Slab	Shell-Thin	4000Psi	8		
Wall1	Wall	Shell-Thin	4000Psi	12		

2.4 Links

Table 2.4 - Link Property Definitions - Summary

Name	Туре	Degrees of Freedom	Mass lb-s2/ft	Weight kip	Defined Length ft	Defined Area ft2	
Link1	Linear	U1	0	0	1	1	

3 Assignments

This chapter provides a listing of the assignments applied to the model.

3.1 Joint Assignments

Table 3.1 - Joint Assignments - Summary

Table 3.1 - 30litt Assignments - 30lilliary								
Story	Label	UniqueName	Diaphragm	Restraints				
Story1	7	20	From Area					
Story1	8	22	From Area					
Story1	11	4	From Area					
Story1	12	5	From Area					
Story1	25	28	From Area					
Story1	33	3	From Area					
Story1	35	14	From Area					
Story1	36	16	From Area					
Story1	37	17	From Area					
Story1	38	26	From Area					
Story1	21	47	From Area					
Story1	22	48	From Area					
Story1	23	56	From Area					
Story1	24	58	From Area					
Story1	1	10	From Area					
Story1	2	49	From Area					
Story1	3	53	From Area					
Story1	4	55	From Area					
Story1	5	57	From Area					
Story1	6	1	From Area					
Story1	9	2	From Area					
Story1	10	11	From Area					
Story1	13	12	From Area					
Story1	14	13	From Area					
Story1	15	32	From Area					
Story1	16	34	From Area					
Story1	17	41	From Area					
Story1	18	46	From Area					
Story1	19	15	From Area					
Story1	20	23	From Area					
Story1	26	25	From Area					
Story1	27	27	From Area					
Story1	28	29	From Area					
Story1	29	35	From Area					
Story1	30	36	From Area					
Story1	31	37	From Area					
Story1	32	38	From Area					
Story1	34	39	From Area					
Story1	39	31	From Area					
Story1	40	33	From Area					
Story1	41	40	From Area					
Story1	42	44	From Area					

Table 3.1 - Joint Assignments - Summary (continued)

Story	Label	UniqueName	Diaphragm	Restraints
Story1	43	65	From Area	
Story1	44	66	From Area	
Story1	45	68	From Area	
Story1	46	70	From Area	
Story1	47	72	From Area	
Story1	48	54	From Area	
Story1	49	59	From Area	
Story1	50	60	From Area	
Story1	51	61	From Area	
Story1	52	63	From Area	
Story1	53	64	From Area	
Story1	54	67	From Area	
Story1	55	69	From Area	
Story1	56	71	From Area	
Base	7	19	From Area	UX; UY; UZ; RX; RY; RZ
Base	8	24	From Area	UX; UY; UZ; RX; RY; RZ
Base	11	8	From Area	UX; UY; UZ; RX; RY; RZ
Base	12	9	From Area	UX; UY; UZ
Base	25	43	From Area	UX; UY; UZ; RX; RY; RZ
Base	33	7	From Area	UX; UY; UZ
Base	35	18	From Area	UX; UY; UZ
Base	36	21	From Area	UX; UY; UZ
Base	37	6	From Area	UX; UY; UZ; RX; RY; RZ
Base	38	30	From Area	UX; UY; UZ; RX; RY; RZ
Base	21	42	From Area	UX; UY; UZ
Base	22	45	From Area	UX; UY; UZ
Base	23	50	From Area	UX; UY; UZ
Base	24	52	From Area	UX; UY; UZ

3.2 Frame Assignments

Table 3.2 - Frame Assignments - Summary (Part 1 of 2)

Story	Label	UniqueName	Design Type	Length ft	Analysis Section	Design Section	Axis Angle deg	Max Station Spacing ft
Story1	B5	19	Beam	24.5	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B12	9	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B30	8	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B31	14	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B32	15	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B33	25	Beam	24.5	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B34	1	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B35	3	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B36	17	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B37	18	Beam	14	16x12 Conc MF Beam	16x12 Conc MF Beam		2
Story1	B1	10	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2

Table 3.2 - Frame Assignments - Summary (Part 1 of 2, continued)

Story	Label	UniqueName	Design Type	Length ft	Analysis Section	Design Section	Axis Angle deg	Max Station Spacing ft
Story1	B2	11	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2
Story1	В3	2	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2
Story1	B4	4	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2
Story1	В6	29	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2
Story1	B7	30	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2
Story1	B8	31	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2
Story1	B9	32	Beam	14	16x8 Conc Gravity Beam	16x8 Conc Gravity Beam		2
Story1	B10	24	Beam	24.5	22x12 Conc MF Beam	22x12 Conc MF Beam		2
Story1	C57	5	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col		
Story1	C58	6	Column	16.5	16x22 Conc MF Col	16x22 Conc MF Col	90	
Story1	C59	7	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col		
Story1	C60	12	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col		
Story1	C61	13	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col		
Story1	C62	16	Column	16.5	16x22 Conc MF Col	16x22 Conc MF Col	90	
Story1	C63	20	Column	16.5	16x16 Conc MF Col	16x16 Conc MF Col		
Story1	C64	21	Column	16.5	16x16 Conc MF Col	16x16 Conc MF Col		
Story1	C65	22	Column	16.5	16x16 Conc MF Col	16x16 Conc MF Col		
Story1	C66	23	Column	16.5	16x16 Conc MF Col	16x16 Conc MF Col		
Story1	C67	26	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col	90	
Story1	C68	27	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col	90	
Story1	C69	28	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col	90	
Story1	C70	33	Column	16.5	16x10 Conc Gravity Col	16x10 Conc Gravity Col	90	

Table 3.2 - Frame Assignments - Summary (Part 2 of 2)

Min Number Stations	Releases
	Yes

Table 3.2 - Frame Assignments - Summary (Part 2 of 2, continued)

Releases
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Table 3.3 - Frame Assignments - Section Properties

Story	Label	UniqueName	Shape	Auto Select	Section Property
			2334	List	
Story1	B5	19	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B12	9	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B30	8	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B31	14	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B32	15	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B33	25	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B34	1	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B35	3	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B36	17	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B37	18	Concrete Rectangular	N.A.	16x12 Conc MF Beam
Story1	B1	10	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	B2	11	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	В3	2	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	B4	4	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	В6	29	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	В7	30	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	В8	31	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	B9	32	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	B10	24	Concrete Rectangular	N.A.	22x12 Conc MF Beam
Story1	C57	5	Concrete Rectangular	N.A.	16x10 Conc Gravity Col
Story1	C58	6	Concrete Rectangular	N.A.	16x22 Conc MF Col
Story1	C59	7	Concrete Rectangular	N.A.	16x10 Conc Gravity Col
Story1	C60	12	Concrete Rectangular	N.A.	16x10 Conc Gravity Col
Story1	C61	13	Concrete Rectangular	N.A.	16x10 Conc Gravity Col

Table 3.3 - Frame Assignments - Section Properties (continued)

Story	Label	UniqueName	Shape	Auto Select List	Section Property
Story1	C62	16	Concrete Rectangular	N.A.	16x22 Conc MF Col
Story1	C63	20	Concrete Rectangular	N.A.	16x16 Conc MF Col
Story1	C64	21	Concrete Rectangular	N.A.	16x16 Conc MF Col
Story1	C65	22	Concrete Rectangular	N.A.	16x16 Conc MF Col
Story1	C66	23	Concrete Rectangular	N.A.	16x16 Conc MF Col
Story1	C67	26	Concrete Rectangular	N.A.	16x10 Conc Gravity Col
Story1	C68	27	Concrete Rectangular	N.A.	16x10 Conc Gravity Col
Story1	C69	28	Concrete Rectangular	N.A.	16x10 Conc Gravity Col
Story1	C70	33	Concrete Rectangular	N.A.	16x10 Conc Gravity Col

3.3 Shell Assignments

Table 3.4 - Area Assignments - Summary

Story	Label	UniqueName	Section Property	Property Type
Story1	A17	7	None	Null
Story1	A22	10	None	Null
Story1	A24	13	None	Null
Story1	A26	16	None	Null
Story1	A29	24	None	Null
Story1	A31	25	None	Null
Story1	A32	26	None	Null
Story1	A36	33	None	Null
Story1	A38	14	None	Null
Story1	A44	27	None	Null
Story1	A46	36	None	Null
Story1	A48	40	None	Null
Story1	A50	44	None	Null
Story1	A52	48	None	Null
Story1	A53	6	None	Null
Story1	A54	9	None	Null
Story1	A55	12	None	Null
Story1	A56	15	None	Null
Story1	A58	20	None	Null
Story1	A60	23	None	Null
Story1	A62	29	None	Null
Story1	A64	32	None	Null
Story1	A66	11	None	Null
Story1	A67	21	None	Null
Story1	A69	35	None	Null
Story1	A71	39	None	Null
Story1	A72	43	None	Null
Story1	A74	47	None	Null
Story1	A92	58	None	Null
Story1	A94	62	None	Null

Table 3.4 - Area Assignments - Summary (continued)

Story	Label	UniqueName	Section Property	Property Type
Story1	A96	66	None	Null
Story1	A98	70	None	Null
Story1	A99	19	None	Null
Story1	A100	22	None	Null
Story1	A101	28	None	Null
Story1	A102	31	None	Null
Story1	A103	8	None	Null
Story1	A104	34	None	Null
Story1	A105	38	None	Null
Story1	A106	46	None	Null
Story1	A107	50	None	Null
Story1	A108	51	None	Null
Story1	A109	52	None	Null
Story1	A110	53	None	Null
Story1	A111	56	None	Null
Story1	A112	57	None	Null
Story1	A113	60	None	Null
Story1	A114	61	None	Null
Story1	A115	64	None	Null
Story1	A116	65	None	Null
Story1	A117	68	None	Null
Story1	A118	69	None	Null

4 Loads

This chapter provides loading information as applied to the model.

4.1 Load Patterns

Table 4.1 - Load Pattern Definitions

Name	Is Auto Load	Туре	Self Weight Multiplier	Auto Load
~LLRF	Yes	Other	0	
Dead	No	Dead	0	
Lateral (E-W)	No	Seismic	0	ASCE 7-16
Lateral (N-S)	No	Seismic	0	ASCE 7-16
Roof Live	No	Roof Live	0	

4.2 Load Sets

Table 4.2 - Shell Uniform Load Sets

Name	Load Pattern	Load Value lb/ft2
6" Stone Infill	Dead	75
Brick Opening	Dead	105
Doors/Windows	Dead	8

4.3 Auto Seismic Loading

ASCE 7-16 Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern Lateral (N-S) according to ASCE 7-16, as calculated by ETABS.

Direction and Eccentricity

Direction = X

11.4.5]

Structural Period

Period Calculation Method = Program Calculated

Coefficient, C _t [ASCE Table 12.8-2]	$C_t = 0.016ft$
Coefficient, x [ASCE Table 12.8-2]	x = 0.9
Structure Height Above Base, h _n	$h_n = 16.5 \ ft$
Long-Period Transition Period, T _L [ASCE	$T_{\scriptscriptstyle L}$ = 6 sec

Factors and Coefficients

Response Modification Factor, R [ASCE Table 12.2-1]	R = 8

System Overstrength Factor,
$$\Omega_0$$
 [ASCE Table 12.2-1] Ω_0 = 3

Deflection Amplification Factor,
$$C_d$$
 [ASCE Table 12.2-1] $C_d = 5.5$

Ss and S1 Source = 0.9

Mapped MCE Spectral Response	S _s = 0.991q
Acceleration, S _s [ASCE 11.4.2]	3 _s = 0.9919

Mapped MCE Spectral Response
$$S_1$$
 [ASCE 11.4.2] $S_2 = 0.331g$

Site Class [ASCE Table 20.3-1] = E - Soft Clay Soil

Site Coefficient, F _a [ASCE Table 11.4-1]	$F_{a} = 1.3$
Site Coefficient, F _v [ASCE Table 11.4-2]	$F_{v} = 2.676$

Seismic Response

MCE Spectral Response Acceleration, S _{MS} [ASCE 11.4.4, Eq. 11.4-1]	$S_{MS} = F_a S_S$	$S_{MS} = 1.2883g$
MCE Spectral Response Acceleration, S _{M1} [ASCE 11.4.4, Eq. 11.4-2]	$S_{M1} = F_{v} S_{1}$	S _{M1} =0.885756g
Design Spectral Response Acceleration, S DS [ASCE 11.4.5, Eq. 11.4-3]	$S_{DS} = \frac{2}{3} S_{MS}$	$S_{DS} = 0.858867g$

Design Spectral Response Acceleration,
$$S_{D1}$$
 [ASCE 11.4.5, Eq. 11.4-4] $S_{D1} = \frac{2}{3} S_{M1}$ $S_{D1} = 0.590504g$

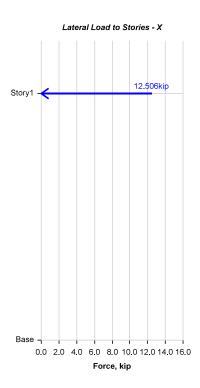
Equivalent Lateral Forces

Seismic Response Coefficient, C_S [ASCE 12.8.1.1, Eq. 12.8-2]

$$C_{\rm S} = \frac{S_{\rm DS}}{(\frac{R}{I})}$$

$$C_{\text{S,max}} = \frac{S_{D1}}{T(\frac{R}{I})}$$

$$C_{s,min} = max (0.044 S_{DS} I, 0.01) = 0.03779$$


$$C_{\text{S,min}} = 0.5 \frac{S_{\text{1}}}{(\frac{R}{I})} \text{ for } S_{\text{1}} = 0.6g$$

$$C_{s,min} \le C_s \le C_{s,max}$$

Calculated Base Shear

Direction	Period Used (sec)	C _s	W (kip)	V (kip)
Х	0.279	0.107358	116.4922	12.5064

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	ft	kip	kip
Story1	16.5	12.506	0
Base	0	0	0

ASCE 7-16 Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern Lateral (E-W) according to ASCE 7-16, as calculated by ETABS.

Direction and Eccentricity

Direction = Y

Structural Period

Period Calculation Method = Program Calculated

Coefficient, C _t [ASCE Table 12.8-2]	$C_t = 0.016ft$
Coefficient, x [ASCE Table 12.8-2]	x = 0.9
Structure Height Above Base, h _n	$h_n = 16.5 \ ft$
Long-Period Transition Period, T _L [ASCE	$T_{\scriptscriptstyle L}$ = 6 sec

11.4.5]

Factors and Coefficients

Response Modification Factor, R [ASCE	5 4
Table 12.2-1]	R = 8

System Overstrength Factor,
$$\Omega_0$$
 [ASCE Table 12.2-1] $\Omega_0 = 3$

Deflection Amplification Factor,
$$C_d$$
 [ASCE Table 12.2-1] $C_d = 5.5$

Ss and S1 Source = 0.9

Mapped MCE Spectral Response	S _s = 0.991g
Acceleration, S _s [ASCE 11.4.2]	S _s = 0.9919

Mapped MCE Spectral Response
$$S_1$$
 [ASCE 11.4.2] $S_2 = 0.331g$

Site Class [ASCE Table 20.3-1] = E - Soft Clay Soil

Site Coefficient, F _a [ASCE Table 11.4-1]	$F_a = 1.3$
Site Coefficient, F _v [ASCE Table 11.4-2]	$F_{v} = 2.676$

Seismic Response

MCE Spectral Response Acceleration, S _{MS} [ASCE 11.4.4, Eq. 11.4-1]	$S_{MS} = F_a S_S$	$S_{MS} = 1.2883g$
MCE Spectral Response Acceleration.		

S_{M1} [ASCE 11.4.4, Eq. 11.4-2]
$$S_{M1} = F_{\nu} S_{1}$$
 $S_{M1} = 0.885756g$

Design Spectral Response Acceleration,	s - ² s	S - 0.959967a
S _{DS} [ASCE 11.4.5, Eq. 11.4-3]	$S_{DS} = \frac{2}{3} S_{MS}$	$S_{DS} = 0.858867g$

Design Spectral Response Acceleration,
$$S_{D1}$$
 = $\frac{2}{3}S_{M1}$ S_{D1} = 0.590504 g

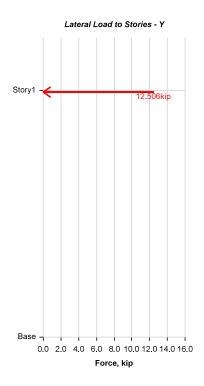
Equivalent Lateral Forces

Seismic Response Coefficient, C_S [ASCE 12.8.1.1, Eq. 12.8-2]

$$C_{\rm S} = \frac{S_{\rm DS}}{(\frac{R}{I})}$$

$$C_{\text{S,max}} = \frac{S_{D1}}{T(\frac{R}{I})}$$

$$C_{s,min} = max (0.044 S_{DS} I, 0.01) = 0.03779$$


$$C_{S,min} = 0.5 \frac{S_{t}}{(\frac{R}{I})}$$
for $S_{t} = 0.6g$

$$C_{S,min} \le C_s \le C_{S,max}$$

Calculated Base Shear

•	Direction	Period Used (sec)	C _s	W (kip)	V (kip)	
	Υ	0.151	0.107358	116.4922	12.5064	

Applied Story Forces

Story **Elevation** X-Dir Y-Dir ft kip kip 16.5 0 12.506 Story1 0 Base 0 0

4.4 Applied Loads

4.4.1 Point Loads

Table 4.5 - Joint Loads Assignments - Force

Story	Label	UniqueName	Load Pattern	FX kip	FY kip	FZ kip	MX kip-ft	MY kip-ft	MZ kip-ft	X Dimension in	Y Dimension in
Story1	7	20	Dead	0	0	-0.46	0	0	0	2.5	2.5
Story1	8	22	Dead	0	0	-0.157	0	0	0	2.5	2.5
Story1	11	4	Dead	0	0	0	0	0	0	0	0
Story1	12	5	Dead	0	0	0	0	0	0	0	0
Story1	25	28	Dead	0	0	-0.157	0	0	0	2.5	2.5
Story1	33	3	Dead	0	0	0	0	0	0	0	0
Story1	35	14	Dead	0	0	0	0	0	0	0	0
Story1	36	16	Dead	0	0	0	0	0	0	0	0
Story1	37	17	Dead	0	0	0	0	0	0	0	0
Story1	38	26	Dead	0	0	-0.46	0	0	0	2.5	2.5
Story1	4	55	Dead	0	0	0	0	0	0	0	0
Base	11	8	Dead	0	0	0	0	0	0	0	0
Story1	7	20	Roof Live	0	0	-0.512	0	0	0	2.5	2.5
Story1	8	22	Roof Live	0	0	-0.242	0	0	0	2.5	2.5
Story1	25	28	Roof Live	0	0	-0.242	0	0	0	2.5	2.5
Story1	38	26	Roof Live	0	0	-0.512	0	0	0	2.5	2.5

4.4.2 Line Loads

Table 4.6 - Frame Loads Assignments - Distributed (Part 1 of 2)

Story	Label	UniqueName	Load Pattern	Load Type	Direction	Distance Type	Relative Distance A	Relative Distance B	Absolute Distance A ft	Absolute Distance B ft
Story1	B5	19	Dead	Force	Gravity	Relative	0	1	0	24.5
Story1	B12	9	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B30	8	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B31	14	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B32	15	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B33	25	Dead	Force	Gravity	Relative	0	1	0	24.5
Story1	B34	1	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B35	3	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B36	17	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B37	18	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B6	29	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B7	30	Dead	Force	Gravity	Relative	0	1	0	14
Story1	В8	31	Dead	Force	Gravity	Relative	0	1	0	14
Story1	В9	32	Dead	Force	Gravity	Relative	0	1	0	14
Story1	B10	24	Dead	Force	Gravity	Relative	0	1	0	24.5
Story1	B5	19	Roof Live	Force	Gravity	Relative	0	1	0	24.5
Story1	B12	9	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B30	8	Roof Live	Force	Gravity	Relative	0	1	0	14

Table 4.6 - Frame Loads Assignments - Distributed (Part 1 of 2, continued)

Story	Label	UniqueName	Load Pattern	Load Type	Direction	Distance Type	Relative Distance A	Relative Distance B	Absolute Distance A ft	Absolute Distance B ft
Story1	B31	14	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B32	15	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B33	25	Roof Live	Force	Gravity	Relative	0	1	0	24.5
Story1	B34	1	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B35	3	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B36	17	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B37	18	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B6	29	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B7	30	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B8	31	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	В9	32	Roof Live	Force	Gravity	Relative	0	1	0	14
Story1	B10	24	Roof Live	Force	Gravity	Relative	0	1	0	24.5

Table 4.6 - Frame Loads Assignments - Distributed (Part 2 of 2)

Force A kip/ft	Force B kip/ft
0.148	0.148
0.292	0.292
0.292	0.292
0.175	0.175
0.175	0.175
0.148	0.148
0.292	0.292
0.292	0.292
0.175	0.175
0.175	0.175
0.06	0.06
0.06	0.06
0.06	0.06
0.06	0.06
0.296	0.296
0.164	0.164
0.325	0.325
0.325	0.325
0.325	0.325
0.325	0.325
0.164	0.164
0.325	0.325
0.325	0.325
0.325	0.325
0.325	0.325
0.093	0.093
0.093	0.093

Loads

Table 4.6 - Frame Loads Assignments - Distributed (Part 2 of 2, continued)

Force A kip/ft	Force B kip/ft
0.093	0.093
0.093	0.093
0.328	0.328

4.4.3 Area Loads

Table 4.7 - Area Load Assignments - Uniform Load Sets

Story	Label	UniqueName	Load Set
Story1	A17	7	6" Stone Infill
Story1	A22	10	6" Stone Infill
Story1	A24	13	6" Stone Infill
Story1	A26	16	6" Stone Infill
Story1	A29	24	Brick Opening
Story1	A31	25	Brick Opening
Story1	A32	26	Brick Opening
Story1	A36	33	Brick Opening
Story1	A38	14	6" Stone Infill
Story1	A44	27	Doors/Windows
Story1	A46	36	6" Stone Infill
Story1	A48	40	6" Stone Infill
Story1	A50	44	Doors/Windows
Story1	A52	48	6" Stone Infill
Story1	A53	6	6" Stone Infill
Story1	A54	9	6" Stone Infill
Story1	A55	12	6" Stone Infill
Story1	A56	15	6" Stone Infill
Story1	A58	20	6" Stone Infill
Story1	A60	23	6" Stone Infill
Story1	A62	29	6" Stone Infill
Story1	A64	32	6" Stone Infill
Story1	A66	11	6" Stone Infill
Story1	A67	21	Doors/Windows
Story1	A69	35	6" Stone Infill
Story1	A71	39	6" Stone Infill
Story1	A72	43	Doors/Windows
Story1	A74	47	6" Stone Infill
Story1	A92	58	Brick Opening
Story1	A94	62	Brick Opening
Story1	A96	66	Brick Opening
Story1	A98	70	Brick Opening
Story1	A99	19	6" Stone Infill
Story1	A100	22	6" Stone Infill
Story1	A101	28	6" Stone Infill
Story1	A102	31	6" Stone Infill
Story1	A103	8	6" Stone Infill

Table 4.7 - Area Load Assignments - Uniform Load Sets (continued)

Story	Label	UniqueName	Load Set
Story1	A104	34	6" Stone Infill
Story1	A105	38	6" Stone Infill
Story1	A106	46	6" Stone Infill
Story1	A107	50	Doors/Windows
Story1	A108	51	6" Stone Infill
Story1	A109	52	Doors/Windows
Story1	A110	53	6" Stone Infill
Story1	A111	56	6" Stone Infill
Story1	A112	57	6" Stone Infill
Story1	A113	60	Doors/Windows
Story1	A114	61	Doors/Windows
Story1	A115	64	Doors/Windows
Story1	A116	65	Doors/Windows
Story1	A117	68	6" Stone Infill
Story1	A118	69	6" Stone Infill

4.5 Load Cases

Table 4.8 - Load Case Definitions - Summary

Name	Туре
Dead	Linear Static
Roof Live	Linear Static
Lateral (N-S)	Linear Static
Lateral (E-W)	Linear Static

4.6 Load Combinations

Table 4.9 - Load Combination Definitions

Name	Type	Is Auto	Load Name	SF	Notes
0.9D-Ev+Eew	Linear Add	No	Dead	0.9	Dead (min) + Static Earthquake [Strength]
0.9D-Ev+Eew			Lateral (E-W)	1	
0.9D-Ev+Eew			Dead	-0.1716	
0.9D-Ev+Ens	Linear Add	No	Dead	0.9	Dead (min) + Static Earthquake [Strength]
0.9D-Ev+Ens			Lateral (N-S)	1	
0.9D-Ev+Ens			Dead	-0.1716	
0.9D-Ev-Eew	Linear Add	No	Dead	0.9	Dead (min) - Static Earthquake [Strength]
0.9D-Ev-Eew			Lateral (E-W)	-1	
0.9D-Ev-Eew			Dead	-0.1716	
0.9D-Ev-Ens	Linear Add	No	Dead	0.9	Dead (min) - Static Earthquake [Strength]
0.9D-Ev-Ens			Lateral (N-S)	-1	
0.9D-Ev-Ens			Dead	-0.1716	
1.2D+1.6L	Linear Add	No	Dead	1.2	Dead + Live [Strength]
1.2D+1.6L+0.5RL	Linear Add	No	Dead	1.2	Dead + Live + Roof Live [Strength]
1.2D+1.6L+0.5RL			Roof Live	0.5	
1.2D+L+1.6RL	Linear Add	No	Dead	1.2	Dead + Live + Roof Live [Strength]
1.2D+L+1.6RL			Roof Live	1.6	
1.2D+L+Ev+Eew	Linear Add	No	Dead	1.2	Dead + Live + Static Earthquake [Strength]

Table 4.9 - Load Combination Definitions (continued)

Name	Туре	Is Auto	Load Name	SF	Notes
1.2D+L+Ev+Eew			Lateral (E-W)	1	
1.2D+L+Ev+Eew			Dead	0.1716	
1.2D+L+Ev+Ens	Linear Add	No	Dead	1.2	Dead + Live + Static Earthquake [Strength]
1.2D+L+Ev+Ens			Lateral (N-S)	1	
1.2D+L+Ev+Ens			Dead	0.1716	
1.2D+L+Ev-Eew	Linear Add	No	Dead	1.2	Dead + Live - Static Earthquake [Strength]
1.2D+L+Ev-Eew			Lateral (E-W)	-1	
1.2D+L+Ev-Eew			Dead	0.1716	
1.2D+L+Ev-Ens	Linear Add	No	Dead	1.2	Dead + Live - Static Earthquake [Strength]
1.2D+L+Ev-Ens			Lateral (N-S)	-1	
1.2D+L+Ev-Ens			Dead	0.1716	
1.4D	Linear Add	No	Dead	1.4	Dead [Strength]
Envelope	Envelope	No	1. 4 D	1	
Envelope			1.2D+1.6L	1	
Envelope			1.2D+1.6L+0.5RL	1	
Envelope			1.2D+L+1.6RL	1	
Envelope			1.2D+L+Ev+Ens	1	
Envelope			1.2D+L+Ev-Ens	1	
Envelope			1.2D+L+Ev+Eew	1	
Envelope			1.2D+L+Ev-Eew	1	
Envelope			0.9D-Ev+Ens	1	
Envelope			0.9D-Ev-Ens	1	
Envelope			0.9D-Ev+Eew	1	
Envelope			0.9D-Ev-Eew	1	

5 Analysis Results

This chapter provides analysis results.

5.1 Structure Results

Table 5.1 - Base Reactions

Output Case	Case Type	Step Type	FX kip	FY kip	FZ kip	MX kip-ft	MY kip-ft	MZ kip-ft	X ft	Y ft	Z ft
Dead	LinStatic		0	0	45.25	1267	-585.991	0	0	0	0
Roof Live	LinStatic		0	0	59.188	1657.264	-654.64	0	0	0	0
Lateral (N-S)	LinStatic		-12.506	0	0	0	-206.3558	350.1796	0	0	0
Lateral (E-W)	LinStatic		0	-12.506	0	206.3558	0	-158.6726	0	0	0
Envelope	Combination	Max	12.506	12.506	149.001	4172.0224	-220.48	350.1796	0	0	0
Enve l ope	Combination	Min	-12.506	-12.506	32.96	716.527	-1750.6132	-350.1796	0	0	0

5.2 Story Results

Table 5.2 - Story Drifts

Story	Output Case	Case Type	Step Type	Direction	Drift	Label	X ft	Y ft	Z ft
Story1	Dead	LinStatic		Х	1E-06	37	0	28	16.5
Story1	Dead	LinStatic		Υ	3E-06	8	24.5	0	16.5
Story1	Roof Live	LinStatic		Х	1E-06	11	24.5	28	16.5
Story1	Roof Live	LinStatic		Υ	4E-06	8	24.5	0	16.5
Story1	Lateral (N-S)	LinStatic		Х	0.00198	33	24.5	14	16.5
Story1	Lateral (E-W)	LinStatic		Υ	0.001106	22	17.4167	0	16.5
Story1	Envelope	Combination	Max	Х	0.00198	33	24.5	14	16.5
Story1	Envelope	Combination	Max	Υ	0.00111	22	17.4167	0	16.5
Story1	Envelope	Combination	Min	Х	0.001981	12	24.5	42	16.5
Story1	Envelope	Combination	Min	Υ	0.001108	24	17.4167	56	16.5

5.3 Line Results

Table 5.3 - Element Forces - Columns (Part 1 of 2)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C57	5	Dead	LinStatic		0	-4.136	0	-0.005	0
Story1	C57	5	Dead	LinStatic		8.25	-4.136	0	-0.005	0
Story1	C57	5	Dead	LinStatic		11	-4.136	0	-0.005	0
Story1	C57	5	Dead	LinStatic		11	-4.136	0	-0.005	0
Story1	C57	5	Dead	LinStatic		12	-4.136	0	-0.005	0
Story1	C57	5	Dead	LinStatic		12	-4.136	0	0.013	0
Story1	C57	5	Dead	LinStatic		16.5	-4.136	0	0.013	0
Story1	C57	5	Roof Live	LinStatic		0	-4.604	0	-0.005	0
Story1	C57	5	Roof Live	LinStatic		8.25	-4.604	0	-0.005	0
Story1	C57	5	Roof Live	LinStatic		11	-4.604	0	-0.005	0
Story1	C57	5	Roof Live	LinStatic		11	-4.604	0	-0.005	0
Story1	C57	5	Roof Live	LinStatic		12	-4.604	0	-0.005	0
Story1	C57	5	Roof Live	LinStatic		12	-4.604	0	0.014	0
Story1	C57	5	Roof Live	LinStatic		16.5	-4.604	0	0.014	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C57	5	Lateral (N-S)	LinStatic		0	-0.003	0	9.805E-06	0
Story1	C57	5	Lateral (N-S)	LinStatic		8.25	-0.003	0	9.805E-06	0
Story1	C57	5	Lateral (N-S)	LinStatic		11	-0.003	0	9.805E-06	0
Story1	C57	5	Lateral (N-S)	LinStatic		11	-0.003	0	9.805E-06	0
Story1	C57	5	Lateral (N-S)	LinStatic		12	-0.003	0	9.805E-06	0
Story1	C57	5	Lateral (N-S)	LinStatic		12	-0.003	0	-2.615E-05	0
Story1	C57	5	Lateral (N-S)	LinStatic		16.5	-0.003	0	-2.615E-05	0
Story1	C57	5	Lateral (E-W)	LinStatic		0	0.007	0	-0.135	0
Story1	C57	5	Lateral (E-W)	LinStatic		8.25	0.007	0	-0.135	0
Story1	C57	5	Lateral (E-W)	LinStatic		11	0.007	0	-0.135	0
Story1	C57	5	Lateral (E-W)	LinStatic		11	0.007	0	-0.135	0
Story1	C57	5	Lateral (E-W)	LinStatic		12	0.007	0	-0.135	0
Story1	C57	5 5	Lateral (E-W)	LinStatic LinStatic		12 16.5	0.007 0.007	0	0.36 0.36	0
Story1 Story1	C57	5	Envelope	Combination	Max	0	-3.006	0	0.132	0
Story1	C57	5	Envelope	Combination	Max	8.25	-3.006	0	0.132	0
Story1	C57	5	Envelope	Combination	Max	11	-3.006	0	0.132	0
Story1	C57	5	Envelope	Combination	Max	11	-3.006	0	0.132	0
Story1	C57	5	Envelope	Combination	Max	12	-3.006	0	0.132	0
Story1	C57	5	Envelope	Combination	Max	12	-3.006	0	0.378	0
Story1	C57	5	Envelope	Combination	Max	16.5	-3.006	0	0.378	0
Story1	C57	5	Envelope	Combination	Min	0	-12.33	0	-0.142	0
Story1	C57	5	Envelope	Combination	Min	8.25	-12.33	0	-0.142	0
Story1	C57	5	Envelope	Combination	Min	11	-12.33	0	-0.142	0
Story1	C57	5	Envelope	Combination	Min	11	-12.33	0	-0.142	0
Story1	C57	5	Envelope	Combination	Min	12	-12.33	0	-0.142	0
Story1	C57	5	Envelope	Combination	Min	12	-12.33	0	-0.351	0
Story1	C57	5	Envelope	Combination	Min	16.5	-12.33	0	-0.351	0
Story1	C58	6	Dead	LinStatic		0	-7.694	-0.001	-1.136	0
Story1	C58	6	Dead	LinStatic		7.75	-7.694	-0.001	-1.136	0
Story1	C58	6	Dead	LinStatic		11	-7.694	-0.001	-1.136	0
Story1	C58	6	Dead	LinStatic		11	-7.694	-0.001	-1.136	0
Story1	C58	6	Dead	LinStatic		12	-7.694	-0.001	-1.136	0
Story1	C58	6	Dead	LinStatic		12	-7.694	0.007	-1.136	0
Story1	C58	6	Dead	LinStatic		15.5	-7.694	0.007	-1.136	0
Story1	C58	6	Roof Live	LinStatic		0	-8.546	-0.002	-1.258	0
Story1	C58	6	Roof Live	LinStatic		7.75	-8.546	-0.002	-1.258	0
Story1	C58	6	Roof Live	LinStatic		11	-8.546	-0.002	-1.258	0
Story1	C58	6	Roof Live	LinStatic		11	-8.546	-0.002	-1.258	0
Story1	C58	6	Roof Live	LinStatic		12	-8.546	-0.002	-1.258	0
Story1	C58	6	Roof Live	LinStatic		12	-8.546	0.008	-1.258	0
Story1	C58	6	Roof Live	LinStatic		15.5	-8.546	0.008	-1.258	0
Story1	C58	6	Lateral (N-S)	LinStatic		0	-0.798	-4.707E-05	-2.801	0
Story1	C58	6	Lateral (N-S)	LinStatic		7.75	-0.798	-4.707E-05	-2.801	0
Story1	C58	6	Lateral (N-S)	LinStatic		11	-0.798	-4.707E-05	-2.801	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C58	6	Lateral (N-S)	LinStatic		11	-0.798	-4.707E-05	-2.801	0
Story1	C58	6	Lateral (N-S)	LinStatic		12	-0.798	-4.707E-05	-2.801	0
Story1	C58	6	Lateral (N-S)	LinStatic		12	-0.798	0.0001554	-2.801	0
Story1	C58	6	Lateral (N-S)	LinStatic		15.5	-0.798	0.0001554	-2.801	0
Story1	C58	6	Lateral (E-W)	LinStatic		0	0.059	3.907	0	0
Story1	C58	6	Lateral (E-W)	LinStatic		7.75	0.059	3.907	0	0
Story1	C58	6	Lateral (E-W)	LinStatic		11	0.059	3.907	0	0
Story1	C58	6	Lateral (E-W)	LinStatic		11	0.059	3.907	0	0
Story1	C58	6	Lateral (E-W)	LinStatic		12	0.059	3.907	0	0
Story1	C58	6	Lateral (E-W)	LinStatic		12	0.059	2.563	0	0
Story1	C58	6	Lateral (E-W)	LinStatic		15.5	0.059	2.563	0	0
Story1	C58	6	Envelope	Combination	Max	0	-4.806	3.906	1.974	0
Story1	C58	6	Envelope	Combination	Max	7.75	-4.806	3.906	1.974	0
Story1	C58	6	Envelope	Combination	Max	11	-4.806	3.906	1.974	0
Story1	C58	6	Envelope	Combination	Max	11	-4.806	3.906	1.974	0
Story1	C58	6	Envelope	Combination	Max	12	-4.806	3.906	1.974	0
Story1	C58	6	Envelope	Combination	Max	12	-4.806	2.573	1.974	0
Story1	C58	6	Envelope	Combination	Max	15.5	-4.806	2.573	1.974	0
Story1	C58	6	Envelope	Combination	Min	0	-22.906 -22.906	-3.909	-4.358 4.358	0
Story1	C58	6 6	Envelope Envelope	Combination Combination	Min Min	7.75 11	-22.906	-3.909 -3.909	-4.358 -4.358	0
Story1 Story1	C58	6	Envelope	Combination	Min	11	-22.906	-3.909	-4.358 -4.358	0
Story1	C58	6	Envelope	Combination	Min	12	-22.906	-3.909	-4.358 -4.358	0
Story1	C58	6	Envelope	Combination	Min	12	-22.906	-2.558	-4.358	0
Story1	C58	6	Envelope	Combination	Min	15.5	-22.906	-2.558	-4.358	0
Story1	C59	7	Dead	LinStatic		0	-4.136	0	0.007	0
Story1	C59	7	Dead	LinStatic		7.75	-4.136	0	0.007	0
Story1	C59	7	Dead	LinStatic		11	-4.136	0	0.007	0
Story1	C59	7	Dead	LinStatic		11	-4.136	0	0.007	0
Story1	C59	7	Dead	LinStatic		12	-4.136	0	0.007	0
Story1	C59	7	Dead	LinStatic		12	-4.136	0	-0.025	0
Story1	C59	7	Dead	LinStatic		15.5	-4.136	0	-0.025	0
Story1	C59	7	Roof Live	LinStatic		0	-4.604	0	0.008	0
Story1	C59	7	Roof Live	LinStatic		7.75	-4.604	0	0.008	0
Story1	C59	7	Roof Live	LinStatic		11	-4.604	0	0.008	0
Story1	C59	7	Roof Live	LinStatic		11	-4.604	0	0.008	0
Story1	C59	7	Roof Live	LinStatic		12	-4.604	0	0.008	0
Story1	C59	7	Roof Live	LinStatic		12	-4.604	0	-0.029	0
Story1	C59	7	Roof Live	LinStatic		15.5	-4.604	0	-0.029	0
Story1	C59	7	Lateral (N-S)	LinStatic		0	-0.003	0	7.686E-05	0
Story1	C59	7	Lateral (N-S)	LinStatic		7.75	-0.003	0	7.686E-05	0
Story1	C59	7	Lateral (N-S)	LinStatic		11	-0.003	0	7.686E-05	0
Story1	C59	7	Lateral (N-S)	LinStatic		11	-0.003	0	7.686E-05	0
Story1	C59	7	Lateral (N-S)	LinStatic		12	-0.003	0	7.686E-05	0
Story1	C59	7	Lateral (N-S)	LinStatic		12	-0.003	0	-0.0002635	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C59	7	Lateral (N-S)	LinStatic		15.5	-0.003	0	-0.0002635	0
Story1	C59	7	Lateral (E-W)	LinStatic		0	-0.014	0	-0.313	0
Story1	C59	7	Lateral (E-W)	LinStatic		7.75	-0.014	0	-0.313	0
Story1	C59	7	Lateral (E-W)	LinStatic		11	-0.014	0	-0.313	0
Story1	C59	7	Lateral (E-W)	LinStatic		11	-0.014	0	-0.313	0
Story1	C59	7	Lateral (E-W)	LinStatic		12	-0.014	0	-0.313	0
Story1	C59	7	Lateral (E-W)	LinStatic		12	-0.014	0	1.073	0
Story1	C59	7	Lateral (E-W)	LinStatic		15.5	-0.014	0	1.073	0
Story1	C59	7	Envelope	Combination	Max	0	-2.998	0	0.323	0
Story1	C59	7	Envelope	Combination	Max	7.75	-2.998	0	0.323	0
Story1	C59	7	Envelope	Combination	Max	11	-2.998	0	0.323	0
Story1	C59	7	Envelope	Combination	Max	11	-2.998	0	0.323	0
Story1	C59	7	Envelope	Combination	Max	12	-2.998	0	0.323	0
Story1	C59	7	Envelope	Combination	Max	12	-2.998	0	1.055	0
Story1	C59	7	Envelope	Combination	Max	15.5	-2.998	0	1.055	0
Story1	C59	7	Envelope	Combination	Min	0	-12.33	0	-0.308	0
Story1	C59	7	Envelope	Combination	Min	7.75	-12.33	0	-0.308	0
Story1	C59	7	Envelope	Combination	Min	11	-12.33	0	-0.308	0
Story1	C59	7	Envelope	Combination	Min	11	-12.33	0	-0.308	0
Story1	C59	7	Envelope	Combination	Min	12	-12.33	0	-0.308	0
Story1	C59	7	Envelope	Combination	Min	12	-12.33	0	-1.108	0
Story1	C59	7	Envelope	Combination	Min	15.5	-12.33	0	-1.108	0
Story1	C60	12	Dead	LinStatic		0	-3.323	0	-0.004	0
Story1	C60	12	Dead	LinStatic		4.5	-3.323	0	-0.004	0
Story1	C60	12	Dead	LinStatic		4.5	-3.323	0	-0.004	0
Story1	C60	12	Dead	LinStatic		7.75	-3.323	0	-0.004	0
Story1	C60	12	Dead	LinStatic		8.5	-3.323	0	-0.004	0
Story1	C60	12	Dead	LinStatic		8.5	-3.323	0	-0.004	0
Story1	C60	12	Dead	LinStatic		11	-3.323	0	-0.004	0
Story1	C60	12	Dead	LinStatic		11	-2.483	0	0.01	0
Story1	C60	12	Dead	LinStatic		12	-2.483	0	0.01	0
Story1	C60	12	Dead	LinStatic LinStatic		12	-2.483	0	0.01	0
Story1 Story1	C60 C60	12 12	Dead Roof Live	LinStatic		15.5 0	-2.483 -5.908	0	0.01 -0.007	0
Story1	C60	12	Roof Live	LinStatic		4.5	-5.908 -5.908	0	-0.007	0
Story1	C60	12	Roof Live	LinStatic		4.5	-5.908 -5.908	0	-0.007	0
Story1	C60	12	Roof Live	LinStatic		7.75	-5.908 -5.908	0	-0.007	0
Story1	C60	12	Roof Live	LinStatic		8.5	-5.908	0	-0.007	0
Story1	C60	12	Roof Live	LinStatic		8.5	-5.908 -5.908	0	-0.007	0
Story1	C60	12	Roof Live	LinStatic		11	-5.908 -5.908	0	-0.007	0
Story1	C60	12	Roof Live	LinStatic		11	-3.908 -4.606	0	0.018	0
Story1	C60	12	Roof Live	LinStatic		12	-4.606 -4.606	0	0.018	0
Story1	C60	12	Roof Live	LinStatic		12	-4.606 -4.606	0	0.018	0
Story1	C60	12	Roof Live	LinStatic		15.5	-4.606 -4.606	0	0.018	0
Story1	C60	12	Lateral (N-S)	LinStatic		0	0.003	0	7.195E-05	0
Giol y I	000	12	Lateral (IV-3)	LINGIALIC		0	0.003	J	1.1936-03	U

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C60	12	Lateral (N-S)	LinStatic		4.5	0.003	0	7.195E-05	0
Story1	C60	12	Lateral (N-S)	LinStatic		4.5	0.003	0	7.195E-05	0
Story1	C60	12	Lateral (N-S)	LinStatic		7.75	0.003	0	7.195E-05	0
Story1	C60	12	Lateral (N-S)	LinStatic		8.5	0.003	0	7.195E-05	0
Story1	C60	12	Lateral (N-S)	LinStatic		8.5	0.003	0	7.195E-05	0
Story1	C60	12	Lateral (N-S)	LinStatic		11	0.003	0	7.195E-05	0
Story1	C60	12	Lateral (N-S)	LinStatic		11	0.003	0	-0.0001759	0
Story1	C60	12	Lateral (N-S)	LinStatic		12	0.003	0	-0.0001759	0
Story1	C60	12	Lateral (N-S)	LinStatic		12	0.003	0	-0.0001759	0
Story1	C60	12	Lateral (N-S)	LinStatic		15.5	0.003	0	-0.0001759	0
Story1	C60	12	Lateral (E-W)	LinStatic		0	0.01	0	-0.296	0
Story1	C60	12	Lateral (E-W)	LinStatic		4.5	0.01	0	-0.296	0
Story1	C60	12	Lateral (E-W)	LinStatic		4.5	0.01	0	-0.296	0
Story1	C60	12	Lateral (E-W)	LinStatic		7.75	0.01	0	-0.296	0
Story1	C60 C60	12 12	Lateral (E-W)	LinStatic LinStatic		8.5 8.5	0.01 0.01	0	-0.296 -0.296	0
Story1 Story1	C60	12	Lateral (E-W)	LinStatic		11	0.01	0	-0.296	0
Story1	C60	12	Lateral (E-W)	LinStatic		11	0.01	0	0.723	0
Story1	C60	12	Lateral (E-W)	LinStatic		12	0.01	0	0.723	0
Story1	C60	12	Lateral (E-W)	LinStatic		12	0.01	0	0.723	0
Story1	C60	12	Lateral (E-W)	LinStatic		15.5	0.01	0	0.723	0
Story1	C60	12	Envelope	Combination	Max	0	-2.411	0	0.293	0
Story1	C60	12	Envelope	Combination	Max	4.5	-2.411	0	0.293	0
Story1	C60	12	Envelope	Combination	Max	4.5	-2.411	0	0.293	0
Story1	C60	12	Envelope	Combination	Max	7.75	-2.411	0	0.293	0
Story1	C60	12	Envelope	Combination	Max	8.5	-2.411	0	0.293	0
Story1	C60	12	Envelope	Combination	Max	8.5	-2.411	0	0.293	0
Story1	C60	12	Envelope	Combination	Max	11	-2.411	0	0.293	0
Story1	C60	12	Envelope	Combination	Max	11	-1.799	0	0.736	0
Story1	C60	12	Envelope	Combination	Max	12	-1.799	0	0.736	0
Story1	C60	12	Envelope	Combination	Max	12	-1.799	0	0.736	0
Story1	C60	12	Envelope	Combination	Max	15.5	-1.799	0	0.736	0
Story1	C60	12	Envelope	Combination	Min	0	-13.44	0	-0.301	0
Story1	C60	12	Envelope	Combination	Min	4.5	-13.44	0	-0.301	0
Story1	C60	12	Envelope	Combination	Min	4.5	-13.44	0	-0.301	0
Story1	C60	12	Envelope	Combination	Min	7.75	-13.44	0	-0.301	0
Story1	C60	12	Envelope	Combination	Min	8.5	-13.44	0	-0.301	0
Story1	C60	12	Envelope	Combination	Min	8.5	-13.44	0	-0.301	0
Story1	C60	12	Envelope	Combination	Min	11	-13.44	0	-0.301	0
Story1	C60	12	Envelope	Combination	Min	11	-10.348	0	-0.716	0
Story1	C60	12	Envelope	Combination	Min	12	-10.348	0	-0.716	0
Story1	C60	12	Envelope	Combination	Min	12	-10.348	0	-0.716	0
Story1	C60	12	Envelope	Combination	Min	15.5	-10.348	0	-0.716	0
Story1	C61	13	Dead	LinStatic		0	-3.323	0	0.004	0
Story1	C61	13	Dead	LinStatic		4.5	-3.323	0	0.004	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C61	13	Dead	LinStatic		4.5	-3.323	0	0.004	0
Story1	C61	13	Dead	LinStatic		7.75	-3.323	0	0.004	0
Story1	C61	13	Dead	LinStatic		8.5	-3.323	0	0.004	0
Story1	C61	13	Dead	LinStatic		8.5	-3.323	0	0.004	0
Story1	C61	13	Dead	LinStatic		11	-3.323	0	0.004	0
Story1	C61	13	Dead	LinStatic		11	-2.483	0	-0.01	0
Story1	C61	13	Dead	LinStatic		12	-2.483	0	-0.01	0
Story1	C61	13	Dead	LinStatic		12	-2.483	0	-0.01	0
Story1	C61	13	Dead	LinStatic		15.5	-2.483	0	-0.01	0
Story1	C61	13	Roof Live	LinStatic		0	-5.908	0	0.007	0
Story1	C61	13	Roof Live	LinStatic		4.5	-5.908	0	0.007	0
Story1	C61	13	Roof Live	LinStatic		4.5	-5.908	0	0.007	0
Story1	C61	13	Roof Live	LinStatic		7.75	-5.908	0	0.007	0
Story1	C61	13	Roof Live	LinStatic		8.5	-5.908	0	0.007	0
Story1	C61	13	Roof Live	LinStatic		8.5	-5.908	0	0.007	0
Story1	C61	13	Roof Live	LinStatic		11	-5.908	0	0.007	0
Story1	C61	13	Roof Live	LinStatic		11	-4.606	0	-0.018	0
Story1	C61	13	Roof Live	LinStatic		12	-4.606	0	-0.018	0
Story1	C61	13	Roof Live	LinStatic		12	-4.606 4.606	0	-0.018	0
Story1	C61	13 13	Roof Live	LinStatic LinStatic		15.5	-4.606 0.003	0	-0.018	0
Story1		13	Lateral (N-S)	LinStatic		0	0.003	0	-7.339E-05 -7.339E-05	
Story1	C61	13	Lateral (N-S)	LinStatic		4.5 4.5	0.003	0	-7.339E-05	0
Story1 Story1	C61	13	Lateral (N-S)	LinStatic		7.75	0.003	0	-7.339E-05	0
Story1	C61	13	Lateral (N-S)	LinStatic		8.5	0.003	0	-7.339E-05	0
Story1	C61	13	Lateral (N-S)	LinStatic		8.5	0.003	0	-7.339E-05	0
Story1	C61	13	Lateral (N-S)	LinStatic		11	0.003	0	-7.339E-05	0
Story1	C61	13	Lateral (N-S)	LinStatic		11	0.003	0	0.0001794	0
Story1	C61	13	Lateral (N-S)	LinStatic		12	0.003	0	0.0001794	0
Story1	C61	13	Lateral (N-S)	LinStatic		12	0.003	0	0.0001794	0
Story1	C61	13	Lateral (N-S)	LinStatic		15.5	0.003	0	0.0001794	0
Story1	C61	13	Lateral (E-W)	LinStatic		0	-0.01	0	-0.296	0
Story1	C61	13	Lateral (E-W)	LinStatic		4.5	-0.01	0	-0.296	0
Story1	C61	13	Lateral (E-W)	LinStatic		4.5	-0.01	0	-0.296	0
Story1	C61	13	Lateral (E-W)	LinStatic		7.75	-0.01	0	-0.296	0
Story1	C61	13	Lateral (E-W)	LinStatic		8.5	-0.01	0	-0.296	0
Story1	C61	13	Lateral (E-W)	LinStatic		8.5	-0.01	0	-0.296	0
Story1	C61	13	Lateral (E-W)	LinStatic		11	-0.01	0	-0.296	0
Story1	C61	13	Lateral (E-W)	LinStatic		11	-0.01	0	0.723	0
Story1	C61	13	Lateral (E-W)	LinStatic		12	-0.01	0	0.723	0
Story1	C61	13	Lateral (E-W)	LinStatic		12	-0.01	0	0.723	0
Story1	C61	13	Lateral (E-W)	LinStatic		15.5	-0.01	0	0.723	0
Story1	C61	13	Envelope	Combination	Max	0	-2.41	0	0.301	0
Story1	C61	13	Envelope	Combination	Max	4.5	-2.41	0	0.301	0
Story1	C61	13	Envelope	Combination	Max	4.5	-2.41	0	0.301	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C61	13	Envelope	Combination	Max	7.75	-2.41	0	0.301	0
Story1	C61	13	Envelope	Combination	Max	8.5	-2.41	0	0.301	0
Story1	C61	13	Envelope	Combination	Max	8.5	-2.41	0	0.301	0
Story1	C61	13	Envelope	Combination	Max	11	-2.41	0	0.301	0
Story1	C61	13	Envelope	Combination	Max	11	-1.798	0	0.716	0
Story1	C61	13	Envelope	Combination	Max	12	-1.798	0	0.716	0
Story1	C61	13	Envelope	Combination	Max	12	-1.798	0	0.716	0
Story1	C61	13	Envelope	Combination	Max	15.5	-1.798	0	0.716	0
Story1	C61	13	Envelope	Combination	Min	0	-13.44	0	-0.293	0
Story1	C61	13	Envelope	Combination	Min	4.5	-13.44	0	-0.293	0
Story1	C61	13	Envelope	Combination	Min	4.5	-13.44	0	-0.293	0
Story1	C61	13	Envelope	Combination	Min	7.75	-13.44	0	-0.293	0
Story1	C61	13	Envelope	Combination	Min	8.5	-13.44	0	-0.293	0
Story1	C61	13	Envelope	Combination	Min	8.5	-13.44	0	-0.293	0
Story1	C61	13 13	Envelope Envelope	Combination	Min Min	11 11	-13.44 -10.348	0	-0.293 -0.736	0
Story1 Story1	C61	13	Envelope	Combination Combination	Min	12	-10.348	0	-0.736	0
Story1	C61	13	Envelope	Combination	Min	12	-10.348	0	-0.736	0
Story1	C61	13	Envelope	Combination	Min	15.5	-10.348	0	-0.736	0
Story1	C62	16	Dead	LinStatic	IVIIII	0	-6.902	3.833E-05	1.136	0
Story1	C62	16	Dead	LinStatic		4.5	-6.902	3.833E-05	1.136	0
Story1	C62	16	Dead	LinStatic		4.5	-6.902	3.833E-05	1.136	0
Story1	C62	16	Dead	LinStatic		7.75	-6.902	3.833E-05	1.136	0
Story1	C62	16	Dead	LinStatic		8.5	-6.902	3.833E-05	1.136	0
Story1	C62	16	Dead	LinStatic		8.5	-6.902	3.833E-05	1.136	0
Story1	C62	16	Dead	LinStatic		11	-6.902	3.833E-05	1.136	0
Story1	C62	16	Dead	LinStatic		11	-6.062	-1.08E-05	1.136	0
Story1	C62	16	Dead	LinStatic		12	-6.062	-1.08E-05	1.136	0
Story1	C62	16	Dead	LinStatic		12	-6.062	-1.08E-05	1.136	0
Story1	C62	16	Dead	LinStatic		15.5	-6.062	-1.08E-05	1.136	0
Story1	C62	16	Roof Live	LinStatic		0	-9.848	4.344E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		4.5	-9.848	4.344E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		4.5	-9.848	4.344E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		7.75	-9.848	4.344E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		8.5	-9.848	4.344E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		8.5	-9.848	4.344E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		11	-9.848	4.344E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		11	-8.546	-1.224E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		12	-8.546	-1.224E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		12	-8.546	-1.224E-05	1.258	0
Story1	C62	16	Roof Live	LinStatic		15.5	-8.546	-1.224E-05	1.258	0
Story1	C62	16	Lateral (N-S)	LinStatic		0	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		4.5	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		4.5	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		7.75	0.798	0	-2.8	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C62	16	Lateral (N-S)	LinStatic		8.5	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		8.5	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		11	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		11	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		12	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		12	0.798	0	-2.8	0
Story1	C62	16	Lateral (N-S)	LinStatic		15.5	0.798	0	-2.8	0
Story1	C62	16	Lateral (E-W)	LinStatic		0	8.972E-05	3.74	0	0
Story1	C62	16	Lateral (E-W)	LinStatic		4.5	8.972E-05	3.74	0	0
Story1	C62	16	Lateral (E-W)	LinStatic		4.5	8.972E-05	3.74	0	0
Story1	C62	16	Lateral (E-W)	LinStatic		7.75	8.972E-05	3.74	0	0
Story1	C62	16	Lateral (E-W)	LinStatic		8.5	8.972E-05	3.74	0	0
Story1	C62	16	Lateral (E-W)	LinStatic		8.5	8.972E-05	3.74	0	0
Story1	C62	16	Lateral (E-W)	LinStatic		11	8.972E-05	3.74	0	0
Story1	C62	16	Lateral (E-W)	LinStatic		11	8.972E-05	2.387	0	0
Story1	C62 C62	16 16	Lateral (E-W)	LinStatic LinStatic		12 12	8.972E-05 8.972E-05	2.387	0	0
Story1	C62	16	` ′	LinStatic		15.5	8.972E-05	2.387 2.387	0	
Story1	C62	16	Lateral (E-W) Envelope	Combination	Max	0	-4.229	3.74	4.358	0
Story1	C62	16	Envelope	Combination	Max	4.5	-4.229 -4.229	3.74	4.358	0
Story1	C62	16	Envelope	Combination	Max	4.5	-4.229 -4.229	3.74	4.358	0
Story1	C62	16	Envelope	Combination	Max	7.75	-4.229	3.74	4.358	0
Story1	C62	16	Envelope	Combination	Max	8.5	-4.229	3.74	4.358	0
Story1	C62	16	Envelope	Combination	Max	8.5	-4.229	3.74	4.358	0
Story1	C62	16	Envelope	Combination	Max	11	-4.229	3.74	4.358	0
Story1	C62	16	Envelope	Combination	Max	11	-3.617	2.387	4.358	0
Story1	C62	16	Envelope	Combination	Max	12	-3.617	2.387	4.358	0
Story1	C62	16	Envelope	Combination	Max	12	-3.617	2.387	4.358	0
Story1	C62	16	Envelope	Combination	Max	15.5	-3.617	2.387	4.358	0
Story1	C62	16	Envelope	Combination	Min	0	-24.04	-3.74	-1.973	0
Story1	C62	16	Envelope	Combination	Min	4.5	-24.04	-3.74	-1.973	0
Story1	C62	16	Envelope	Combination	Min	4.5	-24.04	-3.74	-1.973	0
Story1	C62	16	Envelope	Combination	Min	7.75	-24.04	-3.74	-1.973	0
Story1	C62	16	Envelope	Combination	Min	8.5	-24.04	-3.74	-1.973	0
Story1	C62	16	Envelope	Combination	Min	8.5	-24.04	-3.74	-1.973	0
Story1	C62	16	Envelope	Combination	Min	11	-24.04	-3.74	-1.973	0
Story1	C62	16	Envelope	Combination	Min	11	-20.949	-2.387	-1.973	0
Story1	C62	16	Envelope	Combination	Min	12	-20.949	-2.387	-1.973	0
Story1	C62	16	Envelope	Combination	Min	12	-20.949	-2.387	-1.973	0
Story1	C62	16	Envelope	Combination	Min	15.5	-20.949	-2.387	-1.973	0
Story1	C63	20	Dead	LinStatic		0	-2.446	-0.067	0.02	0
Story1	C63	20	Dead	LinStatic		4.5	-2.446	-0.067	0.02	0
Story1	C63	20	Dead	LinStatic		4.5	-2.446	-0.067	0.02	0
Story1	C63	20	Dead	LinStatic		7.75	-2.446	-0.067	0.02	0
Story1	C63	20	Dead	LinStatic		8.5	-2.446	-0.067	0.02	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique	Output	Case Type	Step	Station	P	V2	V3	T
		Name	Case		Type	ft	kip	kip	kip	kip-ft
Story1	C63	20	Dead	LinStatic		8.5	-2.446	-0.067	0.02	0
Story1 Story1	C63	20 20	Dead Dead	LinStatic LinStatic		11 11	-2.446 -2.026	-0.067 -0.067	0.02 -0.517	0
Story1	C63	20	Dead	LinStatic		12	-2.026	-0.067	-0.517	0
Story1	C63	20	Dead	LinStatic		12	-2.026	-0.067	-0.517	0
Story1	C63	20	Dead	LinStatic		15.5	-2.026	-0.067	-0.517	0
Story1	C63	20	Roof Live	LinStatic		0	-3.795	-0.073	0.037	0
Story1	C63	20	Roof Live	LinStatic		4.5	-3.795	-0.073	0.037	0
Story1	C63	20	Roof Live	LinStatic		4.5	-3.795	-0.073	0.037	0
Story1	C63	20	Roof Live	LinStatic		7.75	-3.795	-0.073	0.037	0
Story1	C63	20	Roof Live	LinStatic		8.5	-3.795	-0.073	0.037	0
Story1	C63	20	Roof Live	LinStatic		8.5	-3.795	-0.073	0.037	0
Story1	C63	20	Roof Live	LinStatic		11	-3.795	-0.073	0.037	0
Story1	C63	20	Roof Live	LinStatic		11	-3.144	-0.073	-0.938	0
Story1	C63	20	Roof Live	LinStatic		12	-3.144	-0.073	-0.938	0
Story1	C63	20	Roof Live	LinStatic		12	-3.144	-0.073	-0.938	0
Story1	C63	20	Roof Live	LinStatic		15.5	-3.144	-0.073	-0.938	0
Story1	C63	20	Lateral (N-S)	LinStatic		0	1.695	1.726	8.798E-05	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		4.5	1.695	1.726	8.798E-05	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		4.5	1.695	1.726	8.798E-05	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		7.75	1.695	1.726	8.798E-05	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		8.5	1.695	1.726	8.798E-05	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		8.5	1.695	1.726	8.798E-05	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		11	1.695	1.726	8.798E-05	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		11	1.695	1.726	-0.003	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		12	1.695	1.726	-0.003	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		12	1.695	1.726	-0.003	-0.2902
Story1	C63	20	Lateral (N-S)	LinStatic		15.5	1.695	1.726	-0.003	-0.2902
Story1	C63	20	Lateral (E-W)	LinStatic		0	0.349	-0.001	1.441	0.0984
Story1	C63	20	Lateral (E-W)	LinStatic		4.5	0.349	-0.001	1.441	0.0984
Story1	C63	20	Lateral (E-W)	LinStatic		4.5	0.349	-0.001	1.441	0.0984
Story1	C63	20	Lateral (E-W)	LinStatic		7.75	0.349	-0.001	1.441	0.0984
Story1	C63	20 20	Lateral (E-W)	LinStatic		8.5	0.349	-0.001	1.441	0.0984
Story1 Story1	C63	20	Lateral (E-W)	LinStatic LinStatic		8.5 11	0.349 0.349	-0.001 -0.001	1.441 1.441	0.0984 0.0984
Story1	C63	20	Lateral (E-W)	LinStatic		11	0.349	-0.001	1.097	0.0984
Story1	C63	20	Lateral (E-W)	LinStatic		12	0.349	-0.001	1.097	0.0984
Story1	C63	20	Lateral (E-W)	LinStatic		12	0.349	-0.001	1.097	0.0984
Story1	C63	20	Lateral (E-W)	LinStatic		15.5	0.349	-0.001	1.097	0.0984
Story1	C63	20	Envelope	Combination	Max	0	-0.087	1.677	1.469	0.2902
Story1	C63	20	Envelope	Combination	Max	4.5	-0.087	1.677	1.469	0.2902
Story1	C63	20	Envelope	Combination	Max	4.5	-0.087	1.677	1.469	0.2902
Story1	C63	20	Envelope	Combination	Max	7.75	-0.087	1.677	1.469	0.2902
Story1	C63	20	Envelope	Combination	Max	8.5	-0.087	1.677	1.469	0.2902
Story1	C63	20	Envelope	Combination	Max	8.5	-0.087	1.677	1.469	0.2902

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C63	20	Envelope	Combination	Max	11	-0.087	1.677	1.469	0.2902
Story1	C63	20	Envelope	Combination	Max	11	0.219	1.677	0.72	0.2902
Story1	C63	20	Envelope	Combination	Max	12	0.219	1.677	0.72	0.2902
Story1	C63	20	Envelope	Combination	Max	12	0.219	1.677	0.72	0.2902
Story1	C63	20	Envelope	Combination	Max	15.5	0.219	1.677	0.72	0.2902
Story1	C63	20	Envelope	Combination	Min	0	-9.006	-1.818	-1.426	-0.2902
Story1	C63	20	Envelope	Combination	Min	4.5	-9.006	-1.818	-1.426	-0.2902
Story1	C63	20	Envelope	Combination	Min	4.5	-9.006	-1.818	-1.426	-0.2902
Story1	C63	20	Envelope	Combination	Min	7.75	-9.006	-1.818	-1.426	-0.2902
Story1	C63	20	Envelope	Combination	Min	8.5	-9.006	-1.818	-1.426	-0.2902
Story1	C63	20	Envelope	Combination	Min	8.5	-9.006	-1.818	-1.426	-0.2902
Story1	C63	20	Envelope	Combination	Min	11	-9.006	-1.818	-1.426	-0.2902
Story1	C63	20	Envelope	Combination	Min	11	-7.461	-1.818	-2.12	-0.2902
Story1	C63	20	Envelope	Combination	Min	12	-7 .4 61	-1.818	-2.12	-0.2902
Story1	C63	20	Envelope	Combination	Min	12	-7.461 -7.461	-1.818	-2.12	-0.2902
Story1	C63	20	Envelope	Combination	Min	15.5	-7.461	-1.818	-2.12	-0.2902
Story1	C64	21	Dead	LinStatic		0	-2.529	0.067	-0.005	0
Story1	C64 C64	21 21	Dead	LinStatic		8.25	-2.529	0.067	-0.005	0
Story1 Story1	C64	21	Dead Dead	LinStatic LinStatic		11 11	-2.529 -2.529	0.067 0.067	-0.005 -0.005	0
Story1	C64	21	Dead	LinStatic		12	-2.529 -2.529	0.067	-0.005	0
Story1	C64	21	Dead	LinStatic		12	-2.529	0.067	-0.958	0
Story1	C64	21	Dead	LinStatic		16.5	-2.529	0.067	-0.958	0
Story1	C64	21	Roof Live	LinStatic		0	-2.879	0.007	-0.005	0
Story1	C64	21	Roof Live	LinStatic		8.25	-2.879	0.073	-0.005	0
Story1	C64	21	Roof Live	LinStatic		11	-2.879	0.073	-0.005	0
Story1	C64	21	Roof Live	LinStatic		11	-2.879	0.073	-0.005	0
Story1	C64	21	Roof Live	LinStatic		12	-2.879	0.073	-0.005	0
Story1	C64	21	Roof Live	LinStatic		12	-2.879	0.073	-1.083	0
Story1	C64	21	Roof Live	LinStatic		16.5	-2.879	0.073	-1.083	0
Story1	C64	21	Lateral (N-S)	LinStatic		0	-1.695	1.726	0	-0.3325
Story1	C64	21	Lateral (N-S)	LinStatic		8.25	-1.695	1.726	0	-0.3325
Story1	C64	21	Lateral (N-S)	LinStatic		11	-1.695	1.726	0	-0.3325
Story1	C64	21	Lateral (N-S)	LinStatic		11	-1.695	1.726	0	-0.3325
Story1	C64	21	Lateral (N-S)	LinStatic		12	-1.695	1.726	0	-0.3325
Story1	C64	21	Lateral (N-S)	LinStatic		12	-1.695	1.726	0.003	-0.3325
Story1	C64	21	Lateral (N-S)	LinStatic		16.5	-1.695	1.726	0.003	-0.3325
Story1	C64	21	Lateral (E-W)	LinStatic		0	0.338	0.001	1.493	-0.0984
Story1	C64	21	Lateral (E-W)	LinStatic		8.25	0.338	0.001	1.493	-0.0984
Story1	C64	21	Lateral (E-W)	LinStatic		11	0.338	0.001	1.493	-0.0984
Story1	C64	21	Lateral (E-W)	LinStatic		11	0.338	0.001	1.493	-0.0984
Story1	C64	21	Lateral (E-W)	LinStatic		12	0.338	0.001	1.493	-0.0984
Story1	C64	21	Lateral (E-W)	LinStatic		12	0.338	0.001	1.244	-0.0984
Story1	C64	21	Lateral (E-W)	LinStatic		16.5	0.338	0.001	1.244	-0.0984
Story1	C64	21	Envelope	Combination	Max	0	-0.147	1.818	1.49	0.3325

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C64	21	Envelope	Combination	Max	8.25	-0.147	1.818	1.49	0.3325
Story1	C64	21	Envelope	Combination	Max	11	-0.147	1.818	1.49	0.3325
Story1	C64	21	Envelope	Combination	Max	11	-0.147	1.818	1.49	0.3325
Story1	C64	21	Envelope	Combination	Max	12	-0.147	1.818	1.49	0.3325
Story1	C64	21	Envelope	Combination	Max	12	-0.147	1.818	0.547	0.3325
Story1	C64	21	Envelope	Combination	Max	16.5	-0.147	1.818	0.547	0.3325
Story1	C64	21	Envelope	Combination	Min	0	-7.641	-1.678	-1.499	-0.3325
Story1	C64	21	Envelope	Combination	Min	8.25	-7.641	-1.678	-1.499	-0.3325
Story1	C64	21	Envelope	Combination	Min	11	-7.641	-1.678	-1.499	-0.3325
Story1	C64	21	Envelope	Combination	Min	11	-7.641	-1.678	-1.499	-0.3325
Story1	C64	21	Envelope	Combination	Min	12	-7.641	-1.678	-1.499	-0.3325
Story1	C64	21	Envelope	Combination	Min	12	-7.641	-1.678	-2.883	-0.3325
Story1	C64	21	Envelope	Combination	Min	16.5	-7.641	-1.678	-2.883	-0.3325
Story1	C65	22	Dead	LinStatic		0	-2.446	-0.067	-0.02	0
Story1	C65	22	Dead	LinStatic		4.5	-2.446	-0.067	-0.02	0
Story1	C65	22	Dead	LinStatic		4.5	-2.446	-0.067	-0.02	0
Story1	C65	22	Dead	LinStatic		7.75	-2.446	-0.067	-0.02	0
Story1	C65	22	Dead	LinStatic		8.5	-2.446	-0.067	-0.02	0
Story1	C65	22	Dead	LinStatic		8.5	-2.446	-0.067	-0.02	0
Story1	C65	22	Dead	LinStatic		11	-2.446	-0.067	-0.02	0
Story1	C65	22	Dead	LinStatic		11	-2.026	-0.067	0.517	0
Story1	C65	22	Dead	LinStatic		12	-2.026	-0.067	0.517	0
Story1	C65	22	Dead	LinStatic		12	-2.026	-0.067	0.517	0
Story1	C65 C65	22 22	Dead Roof Live	LinStatic LinStatic		15.5	-2.026 -3.795	-0.067 -0.073	0.517 -0.037	0
Story1	C65	22	Roof Live	LinStatic		0 4.5	-3.795 -3.795	-0.073 -0.073	-0.037	0
Story1 Story1	C65	22	Roof Live	LinStatic		4.5	-3.795 -3.795	-0.073 -0.073	-0.037	0
Story1	C65	22	Roof Live	LinStatic		7.75	-3.795 -3.795	-0.073	-0.037	0
Story1	C65	22	Roof Live	LinStatic		8.5	-3.795 -3.795	-0.073	-0.037	0
Story1	C65	22	Roof Live	LinStatic		8.5	-3.795	-0.073	-0.037	0
Story1	C65	22	Roof Live	LinStatic		11	-3.795	-0.073	-0.037	0
Story1	C65	22	Roof Live	LinStatic		11	-3.144	-0.073	0.937	0
Story1	C65	22	Roof Live	LinStatic		12	-3.144	-0.073	0.937	0
Story1	C65	22	Roof Live	LinStatic		12	-3.144	-0.073	0.937	0
Story1	C65	22	Roof Live	LinStatic		15.5	-3.144	-0.073	0.937	0
Story1	C65	22	Lateral (N-S)	LinStatic		0	1.695	1.726	-8.72E-05	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		4.5	1.695	1.726	-8.72E-05	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		4.5	1.695	1.726	-8.72E-05	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		7.75	1.695	1.726	-8.72E-05	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		8.5	1.695	1.726	-8.72E-05	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		8.5	1.695	1.726	-8.72E-05	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		11	1.695	1.726	-8.72E-05	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		11	1.695	1.726	0.003	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		12	1.695	1.726	0.003	0.2902
Story1	C65	22	Lateral (N-S)	LinStatic		12	1.695	1.726	0.003	0.2902

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C65	22	Lateral (N-S)	LinStatic		15.5	1.695	1.726	0.003	0.2902
Story1	C65	22	Lateral (E-W)	LinStatic		0	-0.349	0.001	1.441	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		4.5	-0.349	0.001	1.441	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		4.5	-0.349	0.001	1.441	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		7.75	-0.349	0.001	1.441	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		8.5	-0.349	0.001	1.441	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		8.5	-0.349	0.001	1.441	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		11	-0.349	0.001	1.441	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		11	-0.349	0.001	1.101	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		12	-0.349	0.001	1.101	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		12	-0.349	0.001	1.101	0.0984
Story1	C65	22	Lateral (E-W)	LinStatic		15.5	-0.349	0.001	1.101	0.0984
Story1	C65	22	Envelope	Combination	Max	0	-0.087	1.677	1.426	0.2902
Story1	C65	22	Envelope	Combination	Max	4.5	-0.087	1.677	1.426	0.2902
Story1	C65	22	Envelope	Combination	Max	4.5	-0.087	1.677	1.426	0.2902
Story1	C65	22	Envelope	Combination	Max	7.75	-0.087	1.677	1.426	0.2902
Story1	C65	22	Envelope	Combination	Max	8.5	-0.087	1.677	1.426	0.2902
Story1	C65	22	Envelope	Combination	Max	8.5	-0.087	1.677	1.426	0.2902
Story1	C65	22	Envelope	Combination	Max	11	-0.087	1.677	1.426	0.2902
Story1	C65	22	Envelope	Combination	Max	11	0.219	1.677	2.12	0.2902
Story1	C65	22	Envelope	Combination	Max	12	0.219	1.677	2.12	0.2902
Story1	C65	22	Envelope	Combination	Max	12	0.219	1.677	2.12	0.2902
Story1	C65	22	Envelope	Combination	Max	15.5	0.219	1.677	2.12	0.2902
Story1	C65	22	Envelope	Combination	Min	0	-9.007	-1.818	-1.468	-0.2902
Story1	C65	22	Envelope	Combination	Min	4.5	-9.007	-1.818	-1.468	-0.2902
Story1	C65	22	Envelope	Combination	Min	4.5	-9.007	-1.818	-1.468	-0.2902
Story1	C65	22	Envelope	Combination	Min	7.75	-9.007	-1.818	-1.468	-0.2902
Story1	C65	22	Envelope	Combination	Min	8.5	-9.007	-1.818	-1.468	-0.2902
Story1	C65	22	Envelope	Combination	Min	8.5	-9.007	-1.818	-1.468	-0.2902
Story1	C65	22	Envelope	Combination	Min	11	-9.007	-1.818	-1.468	-0.2902
Story1	C65	22	Envelope	Combination	Min	11	-7.461 -7.461	-1.818	-0.725	-0.2902
Story1	C65	22	Envelope	Combination	Min	12	-7.461 -7.461	-1.818	-0.725	-0.2902
Story1	C65	22	Envelope	Combination	Min	12	-7.461 7.461	-1.818	-0.725	-0.2902
Story1	C65	22	Envelope	Combination LinStatic	Min	15.5	-7.461	-1.818	-0.725	-0.2902
Story1	C66	23	Dead			7.75	-2.528	0.067	0.003	0
Story1	C66 C66	23 23	Dead Dead	LinStatic LinStatic		7.75 11	-2.528 -2.528	0.067 0.067	0.003	0
Story1										
Story1 Story1	C66 C66	23	Dead	LinStatic LinStatic		11	-2.528 2.528	0.067 0.067	0.003	0
		23	Dead			12	-2.528 2.528			
Story1	C66 C66	23	Dead	LinStatic LinStatic		12 15.5	-2.528 2.528	0.067	0.964	0
Story1	C66	23	Dead Roof Live	LinStatic		15.5 0	-2.528 -2.878	0.067 0.073	0.964 0.004	0
Story1	C66	23	Roof Live	LinStatic				0.073	0.004	0
Story1	C66	23 23	Roof Live	LinStatic		7.75 11	-2.878 -2.878	0.073	0.004	0
Story1							-2.878			0
Story1	C66	23	Roof Live	LinStatic		11	-2.878	0.073	0.004	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story1 C66 23 Roof Live LinStatic 12 -2.878 0.073 0.004 0.005 0.	Story	Column	Unique	Output	Case Type	Step	Station	Р	V2	V3	Т
Story1			Name	Case		Type	ft	kip	kip	kip	kip-ft
Story1	-										
Story1											
Story1 C66 23											
Story1 C66 23											
Story1 C66 23											
Story1 C66 23											
Story1											
Story1 C66 23	=										
Story1 C66 23											
Story1 C66 23	•										
Story1 C66 23											
Story1 C66 23											
Story1 C66 23				, ,							
Story1 C66 23											
Story1 C66 23											
Story1 C66 23 Envelope Combination Max 0 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 7.75 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 11 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 11 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 15.5 -0.147 1.818 2.9 0.3325 Story1 C66 23 Envelope Combination Min 7.75 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combinat	•				LinStatic						
Story1 C66 23 Envelope Combination Max 7.75 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 11 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 11 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 2.9 0.3325 Story1 C66 23 Envelope Combination Min 0 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 7.75 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combina	Story1			, ,		Max					
Story1 C66 23 Envelope Combination Max 11 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 2.9 0.3325 Story1 C66 23 Envelope Combination Min 0 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 7.75 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Com	Story1			Envelope		Max	7.75				
Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 1.529 0.3325 Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 2.9 0.3325 Story1 C66 23 Envelope Combination Min 0 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 7.75 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope	Story1	C66	23	Envelope	Combination	Max	11	-0.147	1.818	1.529	0.3325
Story1 C66 23 Envelope Combination Max 12 -0.147 1.818 2.9 0.3325 Story1 C66 23 Envelope Combination Max 15.5 -0.147 1.818 2.9 0.3325 Story1 C66 23 Envelope Combination Min 0 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Co	Story1	C66	23	Envelope	Combination	Max	11	-0.147	1.818	1.529	0.3325
Story1 C66 23 Envelope Combination Max 15.5 -0.147 1.818 2.9 0.3325 Story1 C66 23 Envelope Combination Min 0 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope <	Story1	C66	23	Envelope	Combination	Max	12	-0.147	1.818	1.529	0.3325
Story1 C66 23 Envelope Combination Min 0 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 7.75 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 15.5 -7.638 -1.678 -0.534 -0.3325 Story1 C67 26 Dead	Story1	C66	23	Envelope	Combination	Max	12	-0.147	1.818	2.9	0.3325
Story1 C66 23 Envelope Combination Min 7.75 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -0.534 -0.3325 Story1 C66 23 Envelope Combination Min 15.5 -7.638 -1.678 -0.534 -0.3325 Story1 C67 26 Dead	Story1	C66	23	Envelope	Combination	Max	15.5	-0.147	1.818	2.9	0.3325
Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -0.534 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -0.534 -0.3325 Story1 C66 23 Envelope Combination Min 15.5 -7.638 -1.678 -0.534 -0.3325 Story1 C67 26 Dead LinStatic 0 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11	Story1	C66	23	Envelope	Combination	Min	0	-7.638	-1.678	-1.522	-0.3325
Story1 C66 23 Envelope Combination Min 11 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -0.534 -0.3325 Story1 C66 23 Envelope Combination Min 15.5 -7.638 -1.678 -0.534 -0.3325 Story1 C67 26 Dead LinStatic 0 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 8.25 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 </td <td>Story1</td> <td>C66</td> <td>23</td> <td>Envelope</td> <td>Combination</td> <td>Min</td> <td>7.75</td> <td>-7.638</td> <td>-1.678</td> <td>-1.522</td> <td>-0.3325</td>	Story1	C66	23	Envelope	Combination	Min	7.75	-7.638	-1.678	-1.522	-0.3325
Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -1.522 -0.3325 Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -0.534 -0.3325 Story1 C66 23 Envelope Combination Min 15.5 -7.638 -1.678 -0.534 -0.3325 Story1 C67 26 Dead LinStatic 0 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 8.25 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1	Story1	C66	23	Envelope	Combination	Min	11	-7.638	-1.678	-1.522	-0.3325
Story1 C66 23 Envelope Combination Min 12 -7.638 -1.678 -0.534 -0.3325 Story1 C66 23 Envelope Combination Min 15.5 -7.638 -1.678 -0.534 -0.3325 Story1 C67 26 Dead LinStatic 0 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 8.25 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26	Story1	C66	23	Envelope	Combination	Min	11	-7.638	-1.678	-1.522	-0.3325
Story1 C66 23 Envelope Combination Min 15.5 -7.638 -1.678 -0.534 -0.3325 Story1 C67 26 Dead LinStatic 0 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 8.25 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic	Story1	C66		Envelope	Combination	Min			-1.678	-1.522	
Story1 C67 26 Dead LinStatic 0 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 8.25 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446				·							
Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0						Min					
Story1 C67 26 Dead LinStatic 4.5 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 8.25 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0											
Story1 C67 26 Dead LinStatic 8.25 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0											
Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0											
Story1 C67 26 Dead LinStatic 11 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0	-										
Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0	•										
Story1 C67 26 Dead LinStatic 12 -1.446 0 0 0 Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0											
Story1 C67 26 Dead LinStatic 16.5 -1.446 0 0 0	•										
- 2010 M 201 EVOLUME LUGARUS U = 1700 U U U	•										
Story1 C67 26 Roof Live LinStatic 4.5 -1.608 0 0 0											
Story1 C67 26 Roof Live LinStatic 4.5 -1.608 0 0 0 Story1 C67 26 Roof Live LinStatic 4.5 -1.608 0 0 0											
Story1 C67 26 Roof Live LinStatic 4.3 -1.008 0 0 0 0											
Story1 C67 26 Roof Live LinStatic 0.23 -1.000 0 0 Story1 C67 26 Roof Live LinStatic 11 -1.608 0 0 0											

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C67	26	Roof Live	LinStatic	Type	11	-1.608	0 0	0	0 0
Story1	C67	26	Roof Live	LinStatic		12	-1.608	0	0	0
Story1	C67	26	Roof Live	LinStatic		12	-1.608	0	0	0
Story1	C67	26	Roof Live	LinStatic		16.5	-1.608	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		0	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		4.5	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		4.5	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		8.25	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		11	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		11	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		12	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		12	-2.193	0	0	0
Story1	C67	26	Lateral (N-S)	LinStatic		16.5	-2.193	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		0	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		4.5	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		4.5	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		8.25	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		11	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		11	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		12	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		12	0.001	0	0	0
Story1	C67	26	Lateral (E-W)	LinStatic		16.5	0.001	0	0	0
Story1	C67	26	Envelope	Combination	Max	0	1.139	0	0	0
Story1	C67	26	Envelope	Combination	Max	4.5	1.139	0	0	0
Story1	C67	26	Envelope	Combination	Max	4.5	1.139	0	0	0
Story1	C67	26	Envelope	Combination	Max	8.25	1.139	0	0	0
Story1	C67	26	Envelope	Combination	Max	11	1.139	0	0	0
Story1	C67	26	Envelope	Combination	Max	11	1.139	0	0	0
Story1	C67	26 26	Envelope	Combination Combination	Max Max	12 12	1.139 1.139	0	0	0
Story1 Story1	C67	26	Envelope Envelope	Combination	Max	16.5	1.139	0	0	0
Story1	C67	26	Envelope	Combination	Min	0	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	4.5	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	4.5	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	8.25	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	11	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	11	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	12	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	12	-4.309	0	0	0
Story1	C67	26	Envelope	Combination	Min	16.5	-4.309	0	0	0
Story1	C68	27	Dead	LinStatic		0	-1.448	0	0	0
Story1	C68	27	Dead	LinStatic		4.5	-1.448	0	0	0
Story1	C68	27	Dead	LinStatic		4.5	-1.448	0	0	0
Story1	C68	27	Dead	LinStatic		8.25	-1.448	0	0	0
Story1	C68	27	Dead	LinStatic		11	-1.448	0	0	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C68	27	Dead	LinStatic		11	-1.448	0	0	0
Story1	C68	27	Dead	LinStatic		12	-1.448	0	0	0
Story1	C68	27	Dead	LinStatic		12	-1.448	0	0	0
Story1	C68	27	Dead	LinStatic		16.5	-1.448	0	0	0
Story1	C68	27	Roof Live	LinStatic		0	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		4.5	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		4.5	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		8.25	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		11	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		11	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		12	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		12	-1.603	0	0	0
Story1	C68	27	Roof Live	LinStatic		16.5	-1.603	0	0	0
Story1	C68	27	Lateral (N-S)	LinStatic		0	2.193	0	0	0
Story1	C68	27	Lateral (N-S)	LinStatic		4.5	2.193	0	0	0
Story1	C68 C68	27 27	Lateral (N-S)	LinStatic LinStatic		4.5	2.193	0	0	0
Story1 Story1	C68	27	Lateral (N-S)	LinStatic		8.25 11	2.193 2.193	0	0	
Story1	C68	27	Lateral (N-S)	LinStatic		11	2.193	0	0	0
Story1	C68	27	Lateral (N-S)	LinStatic		12	2.193	0	0	0
Story1	C68	27	Lateral (N-S)	LinStatic		12	2.193	0	0	0
Story1	C68	27	Lateral (N-S)	LinStatic		16.5	2.193	0	0	0
Story1	C68	27	Lateral (R-W)	LinStatic		0	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		4.5	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		4.5	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		8.25	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		11	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		11	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		12	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		12	0.001	0	0	0
Story1	C68	27	Lateral (E-W)	LinStatic		16.5	0.001	0	0	0
Story1	C68	27	Envelope	Combination	Max	0	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	4.5	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	4.5	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	8.25	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	11	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	11	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	12	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	12	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Max	16.5	1.138	0	0	0
Story1	C68	27	Envelope	Combination	Min	0	-4.303	0	0	0
Story1	C68	27	Envelope	Combination	Min	4.5	-4.303	0	0	0
Story1	C68	27	Envelope	Combination	Min	4.5	-4.303	0	0	0
Story1	C68	27	Envelope	Combination	Min	8.25	-4.303	0	0	0
Story1	C68	27	Envelope	Combination	Min	11	-4.303	0	0	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C68	27	Envelope	Combination	Min	11	-4.303	0	0	0
Story1	C68	27	Envelope	Combination	Min	12	-4.303 -4.303	0	0	0
Story1	C68	27	Envelope	Combination	Min	12	-4 .303	0	0	0
Story1	C68	27	Envelope	Combination	Min	16.5	-4.303	0	0	0
Story1	C69	28	Dead	LinStatic		0	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		4.5	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		4.5	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		8.25	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		11	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		11	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		12	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		12	-1.446	0	0	0
Story1	C69	28	Dead	LinStatic		16.5	-1.446	0	0	0
Story1	C69	28	Roof Live	LinStatic		0	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		4.5	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		4.5	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		8.25	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		11	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		11	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		12	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		12	-1.608	0	0	0
Story1	C69	28	Roof Live	LinStatic		16.5	-1.608	0	0	0
Story1	C69	28	Lateral (N-S)	LinStatic		0	-2.193	0	0	0
Story1	C69	28	Lateral (N-S)	LinStatic		4.5	-2.193	0	0	0
Story1	C69	28	Lateral (N-S)	LinStatic		4.5	-2.193	0	0	0
Story1	C69	28	Lateral (N-S)	LinStatic		8.25	-2.193	0	0	0
Story1	C69	28	Lateral (N-S)	LinStatic		11	-2.193	0	0	0
Story1	C69 C69	28 28	Lateral (N-S)	LinStatic LinStatic		11	-2.193 -2.193	0	0	0
Story1 Story1	C69	28	Lateral (N-S) Lateral (N-S)	LinStatic		12 12	-2.193 -2.193	0	0	0
Story1	C69	28	Lateral (N-S)	LinStatic		16.5	-2.193 -2.193	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		0	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		4.5	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		4.5	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		8.25	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		11	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		11	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		12	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		12	-0.001	0	0	0
Story1	C69	28	Lateral (E-W)	LinStatic		16.5	-0.001	0	0	0
Story1	C69	28	Envelope	Combination	Max	0	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Max	4.5	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Max	4.5	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Max	8.25	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Max	11	1.139	0	0	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C69	28	Envelope	Combination	Max	11	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Max	12	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Max	12	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Max	16.5	1.139	0	0	0
Story1	C69	28	Envelope	Combination	Min	0	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	4.5	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	4.5	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	8.25	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	11	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	11	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	12	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	12	-4.309	0	0	0
Story1	C69	28	Envelope	Combination	Min	16.5	-4.309	0	0	0
Story1	C70	33	Dead	LinStatic		0	-1.448	0	0	0
Story1	C70	33	Dead	LinStatic		4.5	-1.448	0	0	0
Story1	C70	33	Dead	LinStatic		4.5	-1.448 -1.448	0	0	0
Story1	C70	33	Dead	LinStatic		8.25		0	0	0
Story1 Story1	C70 C70	33 33	Dead Dead	LinStatic LinStatic		11 11	-1.448 -1.448	0	0	0
Story1	C70	33	Dead	LinStatic		12	-1.448	0	0	0
Story1	C70	33	Dead	LinStatic		12	-1.448	0	0	0
Story1	C70	33	Dead	LinStatic		16.5	-1.448	0	0	0
Story1	C70	33	Roof Live	LinStatic		0	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		4.5	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		4.5	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		8.25	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		11	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		11	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		12	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		12	-1.603	0	0	0
Story1	C70	33	Roof Live	LinStatic		16.5	-1.603	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		0	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		4.5	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		4.5	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		8.25	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		11	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		11	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		12	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		12	2.193	0	0	0
Story1	C70	33	Lateral (N-S)	LinStatic		16.5	2.193	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		0	-0.002	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		4.5	-0.002	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		4.5	-0.002	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		8.25	-0.002	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		11	-0.002	0	0	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft
Story1	C70	33	Lateral (E-W)	LinStatic		11	-0.002	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		12	-0.002	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		12	-0.002	0	0	0
Story1	C70	33	Lateral (E-W)	LinStatic		16.5	-0.002	0	0	0
Story1	C70	33	Envelope	Combination	Max	0	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	4.5	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	4.5	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	8.25	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	11	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	11	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	12	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	12	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Max	16.5	1.138	0	0	0
Story1	C70	33	Envelope	Combination	Min	0	-4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	4.5	-4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	4.5	-4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	8.25	-4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	11	4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	11	-4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	12	-4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	12	-4.303	0	0	0
Story1	C70	33	Envelope	Combination	Min	16.5	-4.303	0	0	0

Table 5.3 - Element Forces - Columns (Part 2 of 2)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
0	0	5-1	0	
0.0393	0	5-1	8.25	
0.0524	0	5-1	11	
0.0524	0	5-2	0	
0.0572	0	5-2	1	
0.0572	0	5-3	0	
0	0	5-3	4.5	
0	0	5-1	0	
0.0445	0	5-1	8.25	
0.0593	0	5-1	11	
0.0593	0	5-2	0	
0.0647	0	5-2	1	
0.0647	0	5-3	0	
0	0	5-3	4.5	
0	0	5-1	0	
-0.0001	0	5-1	8.25	
-0.0001	0	5-1	11	
-0.0001	0	5-2	0	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station	Location
	-		ft	
-0.0001	0	5-2	1	
-0.0001	0	5-3 5-3	0 4.5	
0	0	5-3 5-1	4.5 0	
1.1141	0	5-1	8,25	
1.4855	0	5-1	11	
1.4855	0	5-2	0	
1.6205	0	5-2	1	
1.6205	0	5-3	0	
0	0	5-3	4.5	
0	0	5-1	0	
1,168	0	5-1	8.25	
1.5574	0	5-1	11	
1.5574	0	5-2	0	
1.699	0	5-2	1	
1.699	0	5-3	0	
0	0	5-3	4.5	
0	0	5-1	0	
-1.0855	0	5-1	8.25	
-1.4473	0	5-1	11	
-1.4473	0	5-2	0	
-1.5788	0	5-2	1	
-1.5788	0	5-3	0	
0	0	5-3	4.5	
-6.1921	0.0084	6-1	0	
2.6081	0.0193	6-1	7.75	
6.2986	0.0238	6-1	11	
6.2986	0.0238	6-2	0	
7.4341	0.0252	6-2	1	
7.4341	0.0252	6-3	0	
11.4084	0.0015	6-3	3.5	
-6.8562	0.0095	6-1	0	
2.8945	0.0218	6-1	7.75	
6.9835	0.027	6-1	11	
6.9835	0.027	6-2	0	
8.2416	0.0286	6-2	1	
8.2416	0.0286	6-3	0	
12.6452	0.0017	6-3	3.5	
-34.6495	-3.076E-06	6-1	0	
-12.9435	0.0004	6-1	7.75	
-3.841	0.0005	6-1	11	
-3.841	0.0005	6-2	0	
-1.0402	0.0006	6-2	1	
-1.0402	0.0006	6-3	0	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2	M3	,	Elem	,
kip-ft	kip-ft	Element	Station ft	Location
8.7625	1.806E-05	6-3	3.5	
0.0001	48.2152	6-1	0	
4.973E-05	17.9348	6-1	7.75	
4.05E-05	5.2365	6-1	11	
4.05E-05	5.2365	6-2	0	
3.767E-05	1.3294	6-2	1	
3.767E-05	1.3294	6-3	0	
2.773E-05	-7.6421	6-3	3.5	
30.1391	48.2266	6-1	0	
16.5208	17.9612	6-1	7.75	
18.7318	5.2692	6-1	11	
18.7318	5.2692	6-2	0	
22.1075	1.364	6-2	1	
22.1075	1.364	6-3	0	
33.9223	7.6441	6-3	3.5	
-43.1426	-48.2091	6-1	0	
-11.0437	-17.9207	6-1	7.75	
0.7469	-5.2192	6-1	11	
0.7469	-5.2192	6-2	0	
4.3748	-1.311	6-2	1	
4.3748	-1.311	6-3	0	
-0.4526	-7.641	6-3	3.5	
0	0	7-1	0	
-0.0573	0	7-1	7.75	
-0.0813	0	7-1	11	
-0.0813 -0.0887	0	7-2 7-2	0 1	
-0.0887	0	7-2	0	
-0.0667	0	7-3 7-3	3.5	
0	0	7-3 7-1	0	
-0.0649	0	7-1	7.75	
-0.0921	0	7-1	11	
-0.0921	0	7-1	0	
-0.1004	0	7-2	1	
-0.1004	0	7-3	0	
0	0	7-3	3.5	
0	0	7-1	0	
-0.0006	0	7-1	7.75	
-0.0008	0	7-1	11	
-0.0008	0	7-2	0	
-0.0009	0	7-2	1	
-0.0009	0	7-3	0	
0	0	7-3	3.5	
0	0	7-1	0	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
2.4257	0	7-1	7.75	
3.443	0	7-1	11	
3.443	0	7-2	0	
3.756	0	7-2	1	
3.756	0	7-3	0	
0	0	7-3	3.5	
0	0	7-1	0	
2.384	0	7-1	7.75	
3.3838	0	7-1	11	
3.3838	0	7-2	0	
3.6914 3.6914	0	7-2 7-3	1 0	
0	0	7-3 7-3	3.5	
0	0	7-3 7-1	0	
-2.5043	0	7-1	7.75	
-3.5545	0	7-1	11	
-3.5545	0	7-2	0	
-3.8776	0	7-2	1	
-3.8776	0	7-3	0	
0	0	7-3	3.5	
0	0	12-1	0	
0.0183	0	12-1	4.5	
0.0183	0	12-2	0	
0.0315	0	12-2	3.25	
0.0345	0	12-2	4	
0.0345	0	12-3	0	
0.0446	0	12-3	2.5	
0.0446	0	12-4	0	
0.0347	0	12-4	1	
0.0347	0	12-5	0	
0	0	12-5	3.5	
0	0	12-1	0	
0.0335 0.0335	0	12-1	4.5 0	
0.0535	0	12-2 12-2	3.25	
0.0633	0	12-2	4	
0.0633	0	12-2	0	
0.0819	0	12-3	2.5	
0.0819	0	12-4	0	
0.0637	0	12-4	1	
0.0637	0	12-5	0	
0	0	12-5	3.5	
0	0	12-1	0	
-0.0003	0	12-1	4.5	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

			Elem	•
M2 kip-ft	M3 kip-ft	Element	Station ft	Location
-0.0003	0	12-2	0	
-0.0006	0	12-2	3.25	
-0.0006	0	12-2	4	
-0.0006	0	12-3	0	
-0.0008	0	12-3	2.5	
-0.0008	0	12-4	0	
-0.0006	0	12-4	1	
-0.0006	0	12-5	0	
0	0	12-5	3.5	
0	0	12-1	0	
1.3307	0	12-1	4.5	
1.3307	0	12-2	0	
2.2917	0	12-2	3.25	
2.5135	0	12-2	4	
2.5135	0	12-3	0	
3.2528	0	12-3	2.5	
3.2528	0	12-4	0	
2.53	0	12-4	1	
2.53	0	12-5	0	
0	0	12-5	3.5	
0	0	12-1	0	
1.3557	0	12-1	4.5	
1.3557	0	12-2	0	
2.3349	0	12-2	3.25	
2.5608	0	12-2	4	
2.5608	0	12-3	0	
3.314	0	12-3	2.5	
3.314	0	12-4	0	
2.5776	0	12-4	1	
2.5776	0	12-5	0	
0	0	12-5	3.5	
0	0	12-1	0	
-1.3174	0	12-1	4.5	
-1.3174	0	12-2	0	
-2.2688	0	12-2	3.25	
-2.4884	0	12-2	4	
-2.4884	0	12-3	0	
-3.2203	0	12-3	2.5	
-3.2203	0	12-4	0	
-2.5047	0	12-4	1	
-2.5047	0	12-5	0	
0	0	12-5	3.5	
0	0	13-1	0	
-0.0179	0	13-1	4.5	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

			Elem	•
M2 kip-ft	M3 kip-ft	Element	Station ft	Location
-0.0179	0	13-2	0	
-0.0308	0	13-2	3.25	
-0.0338	0	13-2	4	
-0.0338	0	13-3	0	
-0.0437	0	13-3	2.5	
-0.0437	0	13-4	0	
-0.034	0	13-4	1	
-0.034	0	13-5	0	
0	0	13-5	3.5	
0	0	13-1	0	
-0.0331	0	13-1	4.5	
-0.0331	0	13-2	0	
-0.057	0	13-2	3.25	
-0.0625	0	13-2	4	
-0.0625	0	13-3	0	
-0.0808	0	13-3	2.5	
-0.0808	0	13-4	0	
-0.0629	0	13-4	1	
-0.0629	0	13-5	0	
0	0	13-5	3.5	
0	0	13-1	0	
0.0003	0	13-1	4.5	
0.0003	0	13-2	0	
0.0006	0	13-2	3.25	
0.0006	0	13-2	4	
0.0006	0	13-3	0	
0.0008	0	13-3	2.5	
0.0008	0	13-4	0	
0.0006	0	13-4	1	
0.0006	0	13-5	0	
0	0	13-5	3.5	
0	0	13-1	0	
1.3305	0	13-1	4.5	
1.3305	0	13-2	0	
2.2915	0	13-2	3.25	
2.5132	0	13-2	4	
2.5132	0	13-3	0	
3.2524	0	13-3	2.5	
3.2524	0	13-4	0	
2.5296	0	13-4	1	
2.5296	0	13-5	0	
0	0	13-5	3.5	
1 2175	0	13-1	0	
1.3175	0	13-1	4.5	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
1.3175	0	13-2	0	
2.269	0	13-2	3.25	
2.4886	0	13-2	4	
2.4886	0	13-3	0	
3.2205	0	13-3	2.5	
3.2205	0	13-4	0	
2.5049	0	13-4	1	
2.5049	0	13-5	0	
0	0	13-5	3.5	
0	0	13-1	0	
-1.3551	0	13-1	4.5	
-1.3551	0	13-2	0	
-2.3337	0	13-2	3.25	
-2.5596 -2.5596	0	13-2	4	
-3.3124	0	13-3 13-3	0 2.5	
-3.3124 -3.3124	0	13-3	0	
-2.5763	0	13-4	1	
-2.5763	0	13-5	0	
0	0	13-5	3.5	
6,1881	0.0022	16-1	0	
1.0782	0.0021	16-1	4.5	
1.0782	0.0021	16-2	0	
-2.6122	0.0019	16-2	3.25	
-3.4638	0.0019	16-2	4	
-3.4638	0.0019	16-3	0	
-6.3026	0.0018	16-3	2.5	
-6.3026	0.0018	16-4	0	
-7.4381	0.0018	16-4	1	
-7.4381	0.0018	16-5	0	
-11.4124	0.0019	16-5	3.5	
6.8611	0.0025	16-1	0	
1.1994	0.0024	16-1	4.5	
1.1994	0.0024	16-2	0	
-2.8896	0.0022	16-2	3.25	
-3.8333	0.0022	16-2	4	
-3.8333	0.0022	16-3	0	
-6.9786	0.0021	16-3	2.5	
-6.9786	0.0021	16-4	0	
-8.2368	0.0021	16-4	1	
-8.2368	0.0021	16-5	0	
-12.6403	0.0021	16-5	3.5	
-34.6441	3.93E-05	16-1	0	
-22.0424	3.629E-05	16-1	4.5	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

			1 411 2 01	2, 0011111100	
M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location	
-22.0424	3.629E-05	16-2	0		
-12.9412	3.411E-05	16-2	3.25		
-10.8409	3.361E-05	16-2	4		
-10.8409	3.361E-05	16-3	0		
-3.84	3.193E-05	16-3	2.5		
-3.84	3.193E-05	16-4	0		
-1.0396	3.212E-05	16-4	1		
-1.0396	3.212E-05	16-5	0		
8.7617	3.275E-05	16-5	3.5		
4.078E-05	45.2182	16-1	0		
0.0001	28.3898	16-1	4.5		
0.0001	28.3898	16-2	0		
0.0001	16.2359	16-2	3.25		
0.0001	13.4312	16-2	4		
0.0001	13.4312	16-3	0		
0.0001	4.0821	16-3	2.5		
0.0001	4.0821	16-4	0		
0.0001	1.6955	16-4	1		
0.0001	1.6955	16-5	0		
0.0001	-6.6574	16-5	3.5		
43.1317	45.2213	16-1	0		
23.5214	28.3926	16-1	4.5		
23.5214	28.3926	16-2	0		
11.0385	16.2386	16-2	3.25		
8.3179	13.4338	16-2	4		
8.3179	13.4338	16-3	0		
-0.7509	4.0846	16-3	2.5		
-0.7509	4.0846	16-4	0		
-4.3783	1.6981	16-4	1		
-4.3783	1.6981	16-5	0		
0.4489	6.66	16-5	3.5		
-30.1367	-45.2165	16-1	0		
-21.257	-28.3883	16-1	4.5		
-21.257	-28.3883	16-2	0		
-16.5241	-16.2345	16-2	3.25		
-15.5919	-13.4298	16-2	4		
-15.5919	-13.4298	16-3	0		
-18.729	-4.0808	16-3	2.5		
-18.729	-4.0808	16-4	0		
-22.1046	-1.6942	16-4	1		
-22.1046	-1.6942	16-5	0		
-33.9195	-6.656	16-5	3.5		
0.0231	-0.3645	20-1	0		
-0.0681	-0.0625	20-1	4.5		

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

			Elem	,	
M2 kip-ft	M3 kip-ft	Element	Station ft	Location	
-0.0681	-0.0625	20-2	0		
-0.1339	0.1556	20-2	3.25		
-0.1491	0.2059	20-2	4		
-0.1491	0.2059	20-3	0		
-0.1997	0.3737	20-3	2.5		
-0.1997	0.3737	20-4	0		
0.3171	0.4408	20-4	1		
0.3171	0.4408	20-5	0		
2.1259	0.6756	20-5	3.5		
0.0414	-0.4043	20-1	0		
-0.124	-0.0737	20-1	4.5		
-0.124	-0.0737	20-2	0		
-0.2434	0.165	20-2	3.25		
-0.271	0.2201	20-2	4		
-0.271	0.2201	20-3	0		
-0.3629	0.4038	20-3	2.5		
-0.3629	0.4038	20-4	0		
0.5747	0.4772	20-4	1		
0.5747	0.4772	20-5	0		
3.8563	0.7343	20-5	3.5		
0.0001	19.9024	20-1	0		
-0.0003	12.1343	20-1	4.5		
-0.0003	12.1343	20-2	0		
-0.0006	6.5241	20-2	3.25		
-0.0007	5.2294	20-2	4		
-0.0007	5.2294	20-3	0		
-0.0009	0.9139	20-3	2.5		
-0.0009	0.9139	20-4	0		
0.0016	-0.8124	20-4	1		
0.0016	-0.8124	20-5	0		
0.0104	-6.8542	20-5	3.5		
17.4883	-0.003	20-1	0		
11.0041	-0.0005	20-1	4.5		
11.0041	-0.0005	20-2	0		
6.321	0.0013	20-2	3.25		
5.2403	0.0018	20-2	4		
5.2403	0.0018	20-3	0		
1.6379	0.0032	20-3	2.5		
1.6379	0.0032	20-4	0		
0.5413	0.0037	20-4	1		
0.5413	0.0037	20-5	0		
-3.2968	0.0057	20-5	3.5		
17.52	19.6369	20-1	0		
10.9545	12.0888	20-1	4.5		

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
10.9545	12.0888	20-2	0	
6.2234	6.7375	20-2	3.25	
5.1317	5.5118	20-2	4	
5.1317	5.5118	20-3	0	
1.4924	1.4264	20-3	2.5	
1.4924	1.4264	20-4	0	
1.3	1.4169	20-4	1	
1.3	1.4169	20-5	0	
8.7212	7.7809	20-5	3.5	
-17.4715	-20.4023	20-1	0	
-11.0974	-12.2201	20-1	4.5	
-11.0974	-12.2201	20-2	0	
-6.5046	-6.4108	20-2	3.25	
-5.4447	-5.0794	20-2	4	
-5.4447	-5.0794	20-3	0	
-1.9118	-0.6417	20-3	2.5	
-1.9118	-0.6417	20-4	0	
-0.3103	-0.4913	20-4	1	
-0.3103	-0.4913	20-5	0	
-1.7483	-6.362	20-5	3.5	
-0.0887	0.3671	21-1	0	
-0.0515	-0.1865	21-1	8.25	
-0.039	-0.371	21-1	11	
-0.039	-0.371	21-2	0	
-0.0345	-0.4381	21-2	1	
-0.0345	-0.4381	21-3	0	
4.2759	-0.7401	21-3	4.5	
-0.1003	0.3966	21-1	0	
-0.0582	-0.2094	21-1	8.25	
-0.0441	-0.4114	21-1	11	
-0.0441	-0.4114	21-2	0	
-0.039	-0.4849	21-2	1	
-0.039	-0.4849	21-3	0	
4.8359	-0.8155	21-3	4.5	
0.0003	19.9045	21-1	0	
0.0003	5.6617	21-1	8.25	
0.0003	0.914	21-1	11	
0.0003	0.914	21-2	0	
0.0003	-0.8124	21-2	1	
0.0003	-0.8124	21-3	0	
-0.013	-8.5812	21-3	4.5	
18.5752	0.0031	21-1	0	
6.2559	-0.0015	21-1	8.25	
2.1494	-0.003	21-1	11	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

		,		,	
M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location	
2.1494	-0.003	21-2	0		
0.6562	-0.0036	21-2	1		
0.6562	-0.0036	21-3	0		
-4.9436	-0.0061	21-3	4.5		
18.5106	20.4081	21-1	0		
6.2184	5.5258	21-1	8.25		
2.121	0.6438	21-1	11		
2.121	0.6438	21-2	0		
0.631	0.4932	21-2	1		
0.631	0.4932	21-3	0		
12.8685	8.0421	21-3	4.5		
-18.6969	-19.6371	21-1	0		
-6.3264	-5.9174	21-1	8.25		
-2.203	-1.4229	21-1	11		
-2.203	-1.4229	21-2	0		
-0.7035	-1.4133	21-2	1		
-0.7035	-1.4133	21-3	0		
-1.8291	-9.5963	21-3	4.5		
-0.0213	-0.3645	22-1	0		
0.0696	-0.0625	22-1	4.5		
0.0696	-0.0625	22-2	0		
0.1353	0.1556	22-2	3.25		
0.1505	0.2059	22-2	4		
0.1505	0.2059	22-3	0		
0.201	0.3737	22-3	2.5		
0.201	0.3737	22-4	0		
-0.3156	0.4408	22-4	1		
-0.3156	0.4408	22-5	0		
-2.1238	0.6756	22-5	3.5		
-0.0394	-0.4043	22-1	0		
0.1258	-0.0737	22-1	4.5		
0.1258	-0.0737	22-2	0		
0.2451	0.165	22-2	3.25		
0.2726	0.2201	22-2	4		
0.2726	0.2201	22-3	0		
0.3643	0.4038	22-3	2.5		
0.3643	0.4038	22-4	0		
-0.573	0.4772	22-4	1		
-0.573	0.4772	22-5	0		
-3.8539	0.7343	22-5	3.5		
-4.004E-05	19.9024	22-1	0		
0.0004	12.1343	22-1	4.5		
0.0004	12.1343	22-2	0		
0.0006	6.5241	22-2	3.25		

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
0.0007	5.2294	22-2	4	
0.0007	5.2294	22-3	0	
0.0009	0.9139	22-3	2.5	
0.0009	0.9139	22-4	0	
-0.0016	-0.8124	22-4	1	
-0.0016	-0.8124	22-5	0	
-0.0103	-6.8542	22-5	3.5	
17.4881	0.0035	22-1	0	
11.0047	0.0008	22-1	4.5	
11.0047	0.0008	22-2	0	
6.3222	-0.0012	22-2	3.25	
5.2416	-0.0016	22-2	4	
5.2416	-0.0016	22-3	0	
1.6397	-0.0031	22-3	2.5	
1.6397	-0.0031	22-4	0	
0.5385	-0.0037	22-4	1	
0.5385	-0.0037	22-5	0	
-3.3159	-0.0058	22-5	3.5	
17.4726	19.6369	22-1	0	
11.1002	12.0888	22-1	4.5	
11.1002	12.0888	22-2	0	
6.5078	6.7375	22-2	3.25	
5.448	5.5118	22-2	4	
5.448	5.5118	22-3	0	
1.9154	1.4264	22-3	2.5	
1.9154	1.4264	22-4	0	
0.3086	1.4169	22-4	1	
0.3086	1.4169	22-5	0	
1.7689	7.7809	22-5	3.5	
-17.5174	-20.4023	22-1	0	
-10.954	-12.2201	22-1	4.5	
-10.954	-12.2201	22-2	0	
-6.2236	-6.4108	22-2	3.25	
-5.132	-5.0794	22-2	4	
-5.132	-5.0794	22-3	0	
-1.4933	-0.6417	22-3	2.5	
-1.4933	-0.6417	22-4	0	
-1.2956	-0.4913	22-4	1	
-1.2956	-0.4913	22-5	0	
-8.7147	-6.362	22-5	3.5	
0.0945	0.3671	23-1	0	
0.0689	-0.1529	23-1	7.75	
0.0582	-0.371	23-1	11	
0.0582	-0.371	23-2	0	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station	Location
0.0549	-0.4381	23-2	1	
0.0549	-0.4381	23-3	0	
-3.3181	-0.673	23-3	3.5	
0.1069	0.3966	23-1	0	
0.078	-0.1727	23-1	7.75	
0.0659	-0.4115	23-1	11	
0.0659	-0.4115	23-2	0	
0.0622	-0.4849	23-2	1	
0.0622	-0.4849	23-3	0	
-3.7526	-0.742	23-3	3.5	
-0.0003	19.9045	23-1	0	
-1.935E-05	6.5249	23-1	7.75	
0.0001	0.914	23-1	11	
0.0001	0.914	23-2	0	
0.0001	-0.8124	23-2	1	
0.0001	-0.8124	23-3	0	
0.01	-6.8548	23-3	3.5	
18.7297	-0.0031	23-1	0 7.75	
6.9181 1.9649	0.0016 0.0035	23-1 23-1	11	
1,9649	0.0035	23-1	0	
0.4408	0.0033	23-2	1	
0.4408	0.0041	23-3	0	
-3.8835	0.0062	23-3	3.5	
18.8593	20.4081	23-1	0	
7.0127	6.4135	23-1	7.75	
2.0447	0.6438	23-1	11	
2.0447	0.6438	23-2	0	
0.5161	0.4932	23-2	1	
0.5161	0.4932	23-3	0	
1.4666	6.3646	23-3	3.5	
-18.6609	-19.6371	23-1	0	
-6.8679	-6.7346	23-1	7.75	
-1.9224	-1.423	23-1	11	
-1.9224	-1.423	23-2	0	
-0.4008	-1.4133	23-2	1	
-0.4008	-1.4133	23-3	0	
-9.9859	-7.7779	23-3	3.5	
0	0	26-1	0	
0	0	26-1	4.5	
0	0	26-2	0	
0	0	26-2	3.75	
0	0	26-2	6.5	
0	0	26-3	0	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
0	0	26-3	1	
0	0	26-4	0	
0	0	26-4	4.5	
0	0	26-1	0	
0	0	26-1	4.5	
0	0	26-2	0	
0	0	26-2	3.75	
0	0	26-2	6.5	
0	0	26-3 26-3	0	
0	0	26-3	0	
0	0	26-4	4.5	
0	0	26-1	0	
0	0	26-1	4.5	
0	0	26-2	0	
0	0	26-2	3.75	
0	0	26-2	6.5	
0	0	26-3	0	
0	0	26-3	1	
0	0	26-4	0	
0	0	26-4	4.5	
0	0	26-1	0	
0	0	26-1	4.5	
0	0	26-2	0	
0	0	26-2	3.75	
0	0	26-2	6.5	
0	0	26-3 26-3	0	
0	0	26-4	0	
0	0	26-4	4.5	
0	0	26-1	0	
0	0	26-1	4.5	
0	0	26-2	0	
0	0	26-2	3.75	
0	0	26-2	6.5	
0	0	26-3	0	
0	0	26-3	1	
0	0	26-4	0	
0	0	26-4	4.5	
0	0	26-1	0	
0	0	26-1	4.5	
0	0	26-2	0	
0	0	26-2	3.75	
0	0	26-2	6.5	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
0	0	26-3	0	
0	0	26-3	1	
0	0	26-4	0	
0	0	26-4	4.5	
0	0	27-1	0	
0	0 0	27-1 27-2	4. 5	
0	0	27-2	3.75	
0	0	27-2	6.5	
0	0	27-3	0	
0	0	27-3	1	
0	0	27-4	0	
0	0	27-4	4.5	
0	0	27-1	0	
0	0	27-1	4.5	
0	0	27-2	0	
0	0	27-2	3.75	
0	0	27-2	6.5	
0	0	27-3	0	
0	0	27-3	1	
0	0	27-4 27-4	0 4.5	
0	0	27-4	0	
0	0	27-1	4.5	
0	0	27-2	0	
0	0	27-2	3.75	
0	0	27-2	6.5	
0	0	27-3	0	
0	0	27-3	1	
0	0	27-4	0	
0	0	27-4	4.5	
0	0	27-1	0	
0	0	27-1	4.5	
0	0	27-2	0 3.75	
0	0	27-2 27-2	3.75 6.5	
0	0	27-2	0.5	
0	0	27-3	1	
0	0	27-4	0	
0	0	27-4	4.5	
0	0	27-1	0	
0	0	27-1	4.5	
0	0	27-2	0	
0	0	27-2	3.75	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
0	0	27-2	6.5	
0	0	27-3	0	
0	0	27-3	1	
0	0	27-4	0	
0	0	27-4	4.5	
0	0	27-1	0 4.5	
0	0	27-1 27-2	0	
0	0	27-2	3.75	
0	0	27-2	6.5	
0	0	27-3	0	
0	0	27-3	1	
0	0	27-4	0	
0	0	27-4	4.5	
0	0	28-1	0	
0	0	28-1	4.5	
0	0	28-2	0	
0	0	28-2	3.75	
0	0	28-2	6.5	
0	0	28-3	0	
0	0	28-3 28-4	1 0	
0	0	28-4	4.5	
0	0	28-1	0	
0	0	28-1	4.5	
0	0	28-2	0	
0	0	28-2	3.75	
0	0	28-2	6.5	
0	0	28-3	0	
0	0	28-3	1	
0	0	28-4	0	
0	0	28-4	4.5	
0	0	28-1	0	
0	0	28-1	4.5	
0	0	28-2 28-2	0 3.75	
0	0	28-2	6.5	
0	0	28-3	0	
0	0	28-3	1	
0	0	28-4	0	
0	0	28-4	4.5	
0	0	28-1	0	
0	0	28-1	4.5	
0	0	28-2	0	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
0	0	28-2	3.75	
0	0	28-2	6.5	
0	0	28-3	0	
0	0	28-3	1	
0	0	28-4	0	
0	0	28-4	4.5	
0	0	28-1	0 4.5	
0	0	28-1 28-2	0	
0	0	28-2	3.75	
0	0	28-2	6.5	
0	0	28-3	0	
0	0	28-3	1	
0	0	28-4	0	
0	0	28-4	4.5	
0	0	28-1	0	
0	0	28-1	4.5	
0	0	28-2	0	
0	0	28-2	3.75	
0	0	28-2	6.5	
0	0	28-3	0	
0	0	28-3	1	
0	0	28-4	0	
0	0	28-4	4.5	
0	0	33-1 33-1	0 4.5	
0	0	33-2	0	
0	0	33-2	3.75	
0	0	33-2	6.5	
0	0	33-3	0	
0	0	33-3	1	
0	0	33-4	0	
0	0	33-4	4.5	
0	0	33-1	0	
0	0	33-1	4.5	
0	0	33-2	0	
0	0	33-2	3.75	
0	0	33-2	6.5	
0	0	33-3	0	
0	0	33-3	1	
0	0	33-4 33-4	0 4.5	
0	0	33-4	0	
0	0	33-1	4.5	
3	J	00-1	7.0	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M2 kip-ft	M3 kip-ft	Element	Elem Station ft	Location
0	0	33-2	0	
0	0	33-2	3.75	
0	0	33-2	6.5	
0	0	33-3	0	
0	0	33-3	1	
0	0	33-4	0	
0	0	33-4	4.5	
0	0	33-1	0	
0	0	33-1	4.5	
0	0	33-2	0	
0	0	33-2	3.75	
0	0	33-2	6.5	
0	0	33-3	0	
0	0	33-3	1	
0	0	33-4	0	
0	0	33-4	4.5	
0	0	33-1	0	
0	0	33-1	4.5	
0	0	33-2	0	
0	0	33-2	3.75	
0	0	33-2	6.5	
0	0	33-3	0	
0	0	33-3	1	
0	0	33-4	0	
0	0	33-4	4.5	
0	0	33-1	0	
0	0	33-1	4.5	
0	0	33-2	0	
0	0	33-2	3.75	
0	0	33-2	6.5	
0	0	33-3	0	
0	0	33-3	1	
0	0	33-4	0	
0	0	33-4	4.5	

Table 5.4 - Element Forces - Beams (Part 1 of 2)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B5	19	Dead	LinStatic		0.6667	-0.067	-0.268	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		2.2708	-0.067	-0.03	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		3.875	-0.067	0.207	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		5.4792	-0.067	0.445	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		7.0833	-0.067	0.682	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		7.0833	-0.067	-0.764	0	-0.0677	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B5	19	Dead	LinStatic		8.8056	-0.067	-0.509	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		10.5278	-0.067	-0.255	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		12.25	-0.067	0.0003308	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		13.9722	-0.067	0.255	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		15.6944	-0.067	0.51	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		17.4167	-0.067	0.765	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		17.4167	-0.067	-0.683	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		19.0208	-0.067	-0.445	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		20.625	-0.067	-0.208	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		22.2292	-0.067	0.029	0	-0.0677	0
Story1	B5	19	Dead	LinStatic		23.8333	-0.067	0.267	0	-0.0677	0
Story1	B5	19	Roof Live	LinStatic		0.6667	-0.073	-0.292	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		2.2708	-0.073	-0.029	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		3.875 5.4792	-0.073	0.234	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic			-0.073	0.497	0	0.0102	0
Story1	B5	19	Roof Live Roof Live	LinStatic		7.0833	-0.073	0.76	0	0.0102	0
Story1	B5 B5	19 19	Roof Live	LinStatic LinStatic		7.0833 8.8056	-0.073 -0.073	-0.848 -0.566	0	0.0102 0.0102	0
Story1 Story1	B5	19	Roof Live	LinStatic		10.5278	-0.073	-0.284	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		12.25	-0.073	-0.204	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		13.9722	-0.073	0.281	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		15.6944	-0.073	0.564	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		17.4167	-0.073	0.846	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		17.4167	-0.073	-0.757	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		19.0208	-0.073	-0.494	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		20.625	-0.073	-0.231	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		22.2292	-0.073	0.032	0	0.0102	0
Story1	B5	19	Roof Live	LinStatic		23.8333	-0.073	0.295	0	0.0102	0
Story1	B5	19	Lateral (N-S)	LinStatic		0.6667	0.195	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		2.2708	0.195	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		3.875	0.195	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		5.4792	0.195	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		7.0833	0.195	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		7.0833	0.047	-0.496	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		8.8056	0.047	-0.496	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		10.5278	0.047	-0.496	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		12.25	0.047	-0.496	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		13.9722	0.047	-0.496	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		15.6944	0.047	-0.496	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		17.4167	0.047	-0.496	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		17.4167	-0.1	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		19.0208	-0.1	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		20.625	-0.1	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		22.2292	-0.1	1.697	0	0.0012	0
Story1	B5	19	Lateral (N-S)	LinStatic		23.8333	-0.1	1.697	0	0.0012	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

		Unique	Output		Step	Station	Р	V2	V3	Т	M2
Story	Beam	Name	Case	Case Type	Туре	ft	kip	kip	kip	kip-ft	kip-ft
Story1	B5	19	Lateral (E-W)	LinStatic		0.6667	-0.001	-0.001	-0.148	-0.1799	0
Story1	B5	19	Lateral (E-W)	LinStatic		2.2708	-0.001	-0.001	-0.148	-0.1799	0.2368
Story1	B5	19	Lateral (E-W)	LinStatic		3.875	-0.001	-0.001	-0.148	-0.1799	0.4736
Story1	B5	19	Lateral (E-W)	LinStatic		5.4792	-0.001	-0.001	-0.148	-0.1799	0.7104
Story1	B5	19	Lateral (E-W)	LinStatic		7.0833	-0.001	-0.001	-0.148	-0.1799	0.9472
Story1	B5	19	Lateral (E-W)	LinStatic		7.0833	-0.001	1.835E-05	0	-0.1799	0.9472
Story1	B5	19	Lateral (E-W)	LinStatic		8.8056	-0.001	1.835E-05	0	-0.1799	0.9472
Story1	B5	19	Lateral (E-W)	LinStatic		10.5278	-0.001	1.835E-05	0	-0.1799	0.9472
Story1	B5	19	Lateral (E-W)	LinStatic		12.25	-0.001	1.835E-05	0	-0.1799	0.9472
Story1	B5	19	Lateral (E-W)	LinStatic		13.9722	-0.001	1.835E-05	0	-0.1799	0.9472
Story1	B5	19	Lateral (E-W)	LinStatic		15.6944	-0.001	1.835E-05	0	-0.1799	0.9472
Story1 Story1	B5 B5	19 19	Lateral (E-W)	LinStatic LinStatic		17.4167 17.4167	-0.001 -0.001	1.835E-05 0.001	0 0.148	-0.1799 -0.1799	0.9472 0.9472
Story1	B5	19	Lateral (E-W)	LinStatic		19.0208	-0.001	0.001	0.148	-0.1799	0.7104
Story1	B5	19	Lateral (E-W)	LinStatic		20.625	-0.001	0.001	0.148	-0.1799	0.7104
Story1	B5	19	Lateral (E-W)	LinStatic		22.2292	-0.001	0.001	0.148	-0.1799	0.2368
Story1	B5	19	Lateral (E-W)	LinStatic		23.8333	-0.001	0.001	0.148	-0.1799	0
Story1	B5	19	Envelope	Combination	Max	0.6667	0.146	1.502	0.148	0.1306	0
Story1	B5	19	Envelope	Combination	Max	2.2708	0.146	1.675	0.148	0.1306	0.2368
Story1	B5	19	Envelope	Combination	Max	3.875	0.146	1.981	0.148	0.1306	0.4736
Story1	B5	19	Envelope	Combination	Max	5.4792	0.146	2.306	0.148	0.1306	0.7104
Story1	B5	19	Envelope	Combination	Max	7.0833	0.146	2.632	0.148	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	7.0833	-0.002	-0.061	0	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	8.8056	-0.002	0.125	0	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	10.5278	-0.002	0.311	0	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	12.25	-0.002	0.497	0	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	13.9722	-0.002	0.846	0	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	15.6944	-0.002	1.514	0	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	17.4167	-0.002	2.272	0	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	17.4167	0.051	1.199	0.148	0.1306	0.9472
Story1	B5	19	Envelope	Combination	Max	19.0208	0.051	1.372	0.148	0.1306	0.7104
Story1	B5	19	Envelope	Combination	Max	20.625	0.051	1.545	0.148	0.1306	0.4736
Story1	B5	19	Envelope	Combination	Max	22.2292	0.051	1.737	0.148	0.1306	0.2368
Story1	B5	19	Envelope	Combination	Max	23.8333	0.051	2.063	0.148	0.1306	0
Story1	B5	19	Envelope	Combination	Min	0.6667	-0.287	-2.064	-0.148	-0.2727	0
Story1	B5	19	Envelope	Combination	Min	2.2708	-0.287	-1.738	-0.148	-0.2727	-0.2368
Story1	B5	19	Envelope	Combination	Min	3.875	-0.287	-1.546	-0.148	-0.2727	-0.4736
Story1	B5	19	Envelope	Combination	Min	5.4792	-0.287	-1.373	-0.148	-0.2727	-0.7104
Story1	B5	19	Envelope	Combination	Min	7.0833	-0.287	-1.2	-0.148	-0.2727	-0.9472
Story1	B5	19	Envelope	Combination	Min	7.0833	-0.198	-2.275	0	-0.2727	-0.9472
Story1	B5	19	Envelope	Combination	Min	8.8056	-0.198	-1.517	0	-0.2727	-0.9472
Story1	B5	19	Envelope	Combination	Min Min	10.5278	-0.198	-0.845	0	-0.2727	-0.9472
Story1 Story1	B5 B5	19 19	Envelope Envelope	Combination Combination	Min Min	12.25 13.9722	-0.198 -0.198	-0.496 -0.31	0	-0.2727 -0.2727	-0.9472 -0.9472
		19				15.6944			0		-0.9472
Story1	B5	19	Envelope	Combination	Min	10.0944	-0.198	-0.125	0	-0.2727	-0.9472

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

-	_	Unique	Output		Step	Station	Р	V2	V3	Т	M2
Story	Beam	Name	Case	Case Type	Type	ft	kip	kip	kip	kip-ft	kip-ft
Story1	B5	19	Envelope	Combination	Min	17.4167	-0.198	0.061	0	-0.2727	-0.9472
Story1	B5	19	Envelope	Combination	Min	17.4167	-0.198	-2.633	-0.148	-0.2727	-0.9472
Story1	B5	19	Envelope	Combination	Min	19.0208	-0.198	-2.308	-0.148	-0.2727	-0.7104
Story1	B5	19	Envelope	Combination	Min	20.625	-0.198	-1.982	-0.148	-0.2727	-0.4736
Story1	B5	19	Envelope	Combination	Min	22.2292	-0.198	-1.675	-0.148	-0.2727	-0.2368
Story1	B5	19	Envelope	Combination	Min	23.8333	-0.198	-1.502	-0.148	-0.2727	0
Story1	B12	9	Dead	LinStatic		0.9167	-0.938	-1.767	0	0.6786	0
Story1	B12	9	Dead	LinStatic		2.7262	-0.938	-1.238	0	0.6786 0.6786	0
Story1	B12 B12	9	Dead Dead	LinStatic LinStatic		4.5357 6.3452	-0.938 -0.938	-0.71 -0.182	0	0.6786	0
Story1 Story1	B12	9	Dead	LinStatic		8.1548	-0.938	0.347	0	0.6786	0
Story1	B12	9	Dead	LinStatic		9.9643	-0.938	0.875	0	0.6786	0
Story1	B12	9	Dead	LinStatic		11.7738	-0.938	1.403	0	0.6786	0
Story1	B12	9	Dead	LinStatic		13.5833	-0.938	1.932	0	0.6786	0
Story1	B12	9	Roof Live	LinStatic		0.9167	-1.061	-1.966	0	0.7521	0
Story1	B12	9	Roof Live	LinStatic		2.7262	-1.061	-1.378	0	0.7521	0
Story1	B12	9	Roof Live	LinStatic		4.5357	-1.061	-0.79	0	0.7521	0
Story1	B12	9	Roof Live	LinStatic		6.3452	-1.061	-0.202	0	0.7521	0
Story1	B12	9	Roof Live	LinStatic		8.1548	-1.061	0.386	0	0.7521	0
Story1	B12	9	Roof Live	LinStatic		9.9643	-1.061	0.974	0	0.7521	0
Story1	B12	9	Roof Live	LinStatic		11.7738	-1.061	1.562	0	0.7521	0
Story1	B12	9	Roof Live	LinStatic		13.5833	-1.061	2.15	0	0.7521	0
Story1	B12	9	Lateral (N-S)	LinStatic		0.9167	0.003	0.002	0.508	-0.8736	0
Story1	B12	9	Lateral (N-S)	LinStatic		2.7262	0.003	0.002	0.508	-0.8736	-0.9196
Story1	B12	9	Lateral (N-S)	LinStatic		4.5357	0.003	0.002	0.508	-0.8736	-1.8393
Story1	B12	9	Lateral (N-S)	LinStatic		6.3452	0.003	0.002	0.508	-0.8736	-2.7589
Story1	B12	9	Lateral (N-S)	LinStatic		8.1548	0.003	0.002	0.508	-0.8736	-3.6785
Story1	B12	9	Lateral (N-S)	LinStatic		9.9643	0.003	0.002	0.508	-0.8736	-4.5981
Story1	B12	9	Lateral (N-S)	LinStatic		11.7738	0.003	0.002	0.508	-0.8736	-5.5178
Story1	B12	9	Lateral (N-S)	LinStatic		13.5833	0.003	0.002	0.508	-0.8736	-6.4374
Story1	B12	9	Lateral (E-W)	LinStatic		0.9167	-0.027	0.405	0	0.0006	0
Story1	B12	9	Lateral (E-W)	LinStatic		2.7262	-0.027	0.405	0	0.0006	0
Story1	B12	9	Lateral (E-W)	LinStatic		4.5357	-0.027	0.405	0	0.0006	0
Story1	B12 B12	9	Lateral (E-W)	LinStatic		6.3452	-0.027	0.405	0	0.0006	0
Story1 Story1	B12	9	Lateral (E-W)	LinStatic LinStatic		8.1548 9.9643	-0.027 -0.027	0.405 0.405	0	0.0006	0
Story1	B12	9	Lateral (E-W)	LinStatic		11.7738	-0.027	0.405	0	0.0006	0
Story1	B12	9	Lateral (E-W)	LinStatic		13.5833	-0.027	0.405	0	0.0006	0
Story1	B12	9	Envelope	Combination	Max	0.9167	-0.657	-0.882	0.508	2.0177	0
Story1	B12	9	Envelope	Combination	Max	2.7262	-0.657	-0.497	0.508	2.0177	0.9196
Story1	B12	9	Envelope	Combination	Max	4.5357	-0.657	-0.112	0.508	2.0177	1.8393
Story1	B12	9	Envelope	Combination	Max	6.3452	-0.657	0.273	0.508	2.0177	2.7589
Story1	B12	9	Envelope	Combination	Max	8.1548	-0.657	1.034	0.508	2.0177	3.6785
Story1	B12	9	Envelope	Combination	Max	9.9643	-0.657	2.609	0.508	2.0177	4.5981
Story1	B12	9	Envelope	Combination	Max	11.7738	-0.657	4.184	0.508	2.0177	5.5178

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B12	9	Envelope	Combination	Max	13.5833	-0.657	5.759	0.508	2.0177	6.4374
Story1	B12	9	Envelope	Combination	Min	0.9167	-2.824	-5.266	-0.508	-0.3793	0
Story1	B12	9	Envelope	Combination	Min	2.7262	-2.824	-3.691	-0.508	-0.3793	-0.9196
Story1	B12	9	Envelope	Combination	Min	4.5357	-2.824	-2.116	-0.508	-0.3793	-1.8393
Story1	B12	9	Envelope	Combination	Min	6.3452	-2.824	-0.654	-0.508	-0.3793	-2.7589
Story1	B12	9	Envelope	Combination	Min	8.1548	-2.824	-0.152	-0.508	-0.3793	-3.6785
Story1	B12	9	Envelope	Combination	Min	9.9643	-2.824	0.232	-0.508	-0.3793	-4.5981
Story1	B12	9	Envelope	Combination	Min	11.7738	-2.824	0.617	-0.508	-0.3793	-5.5178
Story1	B12	9	Envelope	Combination	Min	13.5833	-2.824	1.002	-0.508	-0.3793	-6.4374
Story1	B30	8	Dead	LinStatic		0.4167	-0.945	-1.933	0	-0.6786	0
Story1	B30	8	Dead	LinStatic		2.2262	-0.945	-1.404	0	-0.6786	0
Story1	B30	8	Dead	LinStatic		4.0357	-0.945	-0.876	0	-0.6786	0
Story1	B30	8	Dead	LinStatic		5.8452	-0.945	-0.347	0	-0.6786	0
Story1	B30	8	Dead	LinStatic		7.6548	-0.945	0.181	0	-0.6786	0
Story1	B30	8	Dead	LinStatic		9.4643	-0.945	0.709	0	-0.6786	0
Story1	B30	8	Dead	LinStatic		11.2738 13.0833	-0.945 -0.945	1.238	0	-0.6786	0
Story1	B30 B30	8	Dead Roof Live	LinStatic LinStatic		0.4167		1.766 -2.151	0	-0.6786 -0.7521	0
Story1 Story1	B30	8	Roof Live	LinStatic		2.2262	-1.069 -1.069	-2.151 -1.563	0	-0.7521	0
Story1	B30	8	Roof Live	LinStatic		4.0357	-1.069	-0.975	0	-0.7521	0
Story1	B30	8	Roof Live	LinStatic		5.8452	-1.069	-0.387	0	-0.7521	0
Story1	B30	8	Roof Live	LinStatic		7.6548	-1.069	0.201	0	-0.7521	0
Story1	B30	8	Roof Live	LinStatic		9.4643	-1.069	0.789	0	-0.7521	0
Story1	B30	8	Roof Live	LinStatic		11.2738	-1.069	1.377	0	-0.7521	0
Story1	B30	8	Roof Live	LinStatic		13.0833	-1.069	1.965	0	-0.7521	0
Story1	B30	8	Lateral (N-S)	LinStatic		0.4167	0.003	-0.002	-0.508	0.8736	-6.4374
Story1	B30	8	Lateral (N-S)	LinStatic		2.2262	0.003	-0.002	-0.508	0.8736	-5.5178
Story1	B30	8	Lateral (N-S)	LinStatic		4.0357	0.003	-0.002	-0.508	0.8736	-4.5981
Story1	B30	8	Lateral (N-S)	LinStatic		5.8452	0.003	-0.002	-0.508	0.8736	-3.6785
Story1	B30	8	Lateral (N-S)	LinStatic		7.6548	0.003	-0.002	-0.508	0.8736	-2.7589
Story1	B30	8	Lateral (N-S)	LinStatic		9.4643	0.003	-0.002	-0.508	0.8736	-1.8393
Story1	B30	8	Lateral (N-S)	LinStatic		11.2738	0.003	-0.002	-0.508	0.8736	-0.9196
Story1	B30	8	Lateral (N-S)	LinStatic		13.0833	0.003	-0.002	-0.508	0.8736	0
Story1	B30	8	Lateral (E-W)	LinStatic		0.4167	-0.677	0.346	0	0.0005	0
Story1	B30	8	Lateral (E-W)	LinStatic		2.2262	-0.677	0.346	0	0.0005	0
Story1	B30	8	Lateral (E-W)	LinStatic		4.0357	-0.677	0.346	0	0.0005	0
Story1	B30	8	Lateral (E-W)	LinStatic		5.8452	-0.677	0.346	0	0.0005	0
Story1	B30	8	Lateral (E-W)	LinStatic		7.6548	-0.677	0.346	0	0.0005	0
Story1	B30	8	Lateral (E-W)	LinStatic		9.4643	-0.677	0.346	0	0.0005	0
Story1	B30	8	Lateral (E-W)	LinStatic		11.2738	-0.677	0.346	0	0.0005	0
Story1	B30	8	Lateral (E-W)	LinStatic		13.0833	-0.677	0.346	0	0.0005	0
Story1	B30	8	Envelope	Combination	Max	0.4167	-0.011	-1.062	0.508	0.3793	6.4374
Story1	B30	8	Envelope	Combination	Max	2.2262	-0.011	-0.677	0.508	0.3793	5.5178
Story1	B30	8	Envelope	Combination	Max	4.0357	-0.011	-0.292	0.508	0.3793	4.5981
Story1	B30	8	Envelope	Combination	Max	5.8452	-0.011	0.093	0.508	0.3793	3.6785

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B30	8	Envelope	Combination	Max	7.6548	-0.011	0.594	0.508	0.3793	2.7589
Story1	B30	8	Envelope	Combination	Max	9.4643	-0.011	2.114	0.508	0.3793	1.8393
Story1	B30	8	Envelope	Combination	Max	11.2738	-0.011	3.689	0.508	0.3793	0.9196
Story1	B30	8	Envelope	Combination	Max	13.0833	-0.011	5.264	0.508	0.3793	0
Story1	B30	8	Envelope	Combination	Min	0.4167	-2.844	-5.761	-0.508	-2.0177	-6.4374
Story1	B30	8	Envelope	Combination	Min	2.2262	-2.844	-4.186	-0.508	-2.0177	-5.5178
Story1	B30	8	Envelope	Combination	Min	4.0357	-2.844	-2.611	-0.508	-2.0177	-4.5981
Story1	B30	8	Envelope	Combination	Min	5.8452	-2.844	-1.036	-0.508	-2.0177	-3.6785
Story1	B30	8	Envelope	Combination	Min	7.6548	-2.844	-0.214	-0.508	-2.0177	-2.7589
Story1	B30	8	Envelope	Combination	Min	9.4643	-2.844	0.171	-0.508	-2.0177	-1.8393
Story1	B30	8	Envelope	Combination	Min	11.2738	-2.844	0.556	-0.508	-2.0177	-0.9196
Story1	B30	8	Envelope	Combination	Min	13.0833	-2.844	0.941	-0.508	-2.0177	0
Story1	B31	14	Dead	LinStatic		0.4167	-0.507	-1.159	0	0.6787	0
Story1	B31	14	Dead	LinStatic		2.2262	-0.507	-0.842	0	0.6787	0
Story1	B31	14	Dead	LinStatic		4.0357	-0.507	-0.526	0	0.6787	
Story1	B31	14 14	Dead	LinStatic LinStatic		5.8452	-0.507	-0.209	0	0.6787	0
Story1	B31 B31	14	Dead Dead	LinStatic		7.6548 9.4643	-0.507 -0.507	0.108 0.424	0	0.6787 0.6787	0
•	B31	14	Dead	LinStatic		11.2738	-0.507	0.424	0	0.6787	0
Story1	B31	14	Dead	LinStatic		13.0833	-0.507	1.058	0	0.6787	0
Story1 Story1	B31	14	Roof Live	LinStatic		0.4167	-0.919	-2.15	0	0.7534	0
Story1	B31	14	Roof Live	LinStatic		2.2262	-0.919	-1.562	0	0.7534	0
Story1	B31	14	Roof Live	LinStatic		4.0357	-0.919	-0.974	0	0.7534	0
Story1	B31	14	Roof Live	LinStatic		5.8452	-0.919	-0.386	0	0.7534	0
Story1	B31	14	Roof Live	LinStatic		7.6548	-0.919	0.202	0	0.7534	0
Story1	B31	14	Roof Live	LinStatic		9.4643	-0.919	0.79	0	0.7534	0
Story1	B31	14	Roof Live	LinStatic		11.2738	-0.919	1,378	0	0.7534	0
Story1	B31	14	Roof Live	LinStatic		13.0833	-0.919	1.966	0	0.7534	0
Story1	B31	14	Lateral (N-S)	LinStatic		0.4167	-0.003	0.002	-0.444	0.8733	-5.6199
Story1	B31	14	Lateral (N-S)	LinStatic		2.2262	-0.003	0.002	-0.444	0.8733	-4.817
Story1	B31	14	Lateral (N-S)	LinStatic		4.0357	-0.003	0.002	-0.444	0.8733	-4.0142
Story1	B31	14	Lateral (N-S)	LinStatic		5.8452	-0.003	0.002	-0.444	0.8733	-3.2113
Story1	B31	14	Lateral (N-S)	LinStatic		7.6548	-0.003	0.002	-0.444	0.8733	-2.4085
Story1	B31	14	Lateral (N-S)	LinStatic		9.4643	-0.003	0.002	-0.444	0.8733	-1.6057
Story1	B31	14	Lateral (N-S)	LinStatic		11.2738	-0.003	0.002	-0.444	0.8733	-0.8028
Story1	B31	14	Lateral (N-S)	LinStatic		13.0833	-0.003	0.002	-0.444	0.8733	0
Story1	B31	14	Lateral (E-W)	LinStatic		0.4167	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Lateral (E-W)	LinStatic		2.2262	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Lateral (E-W)	LinStatic		4.0357	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Lateral (E-W)	LinStatic		5.8452	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Lateral (E-W)	LinStatic		7.6548	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Lateral (E-W)	LinStatic		9.4643	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Lateral (E-W)	LinStatic		11.2738	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Lateral (E-W)	LinStatic		13.0833	-0.303	0.361	0	-0.0005	0
Story1	B31	14	Envelope	Combination	Max	0.4167	-0.066	-0.484	0.444	2.0199	5.6199

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B31	14	Enve l ope	Combination	Max	2.2262	-0.066	-0.253	0.444	2.0199	4.817
Story1	B31	14	Envelope	Combination	Max	4.0357	-0.066	-0.022	0.444	2.0199	4.0142
Story1	B31	14	Envelope	Combination	Max	5.8452	-0.066	0.208	0.444	2.0199	3.2113
Story1	B31	14	Envelope	Combination	Max	7.6548	-0.066	0.508	0.444	2.0199	2.4085
Story1	B31	14	Envelope	Combination	Max	9.4643	-0.066	1.773	0.444	2.0199	1.6057
Story1	B31	14	Envelope	Combination	Max	11.2738	-0.066	3.094	0.444	2.0199	0.8028
Story1	B31	14	Envelope	Combination	Max	13.0833	-0.066	4.415	0.444	2.0199	0
Story1	B31	14	Envelope	Combination	Min	0.4167	-2.079	-4.831	-0.444	-0.379	-5.6199
Story1	B31	14	Envelope	Combination	Min	2.2262	-2.079	-3.51	-0.444	-0.379	-4.817
Story1	B31	14	Envelope	Combination	Min	4.0357	-2.079	-2.19	-0.444	-0.379	-4.0142
Story1	B31	14	Envelope	Combination	Min	5.8452	-2.079	-0.869	-0.444	-0.379	-3.2113
Story1	B31	14	Envelope	Combination	Min	7.6548	-2.079	-0.282	-0.444	-0.379	-2.4085
Story1	B31 B31	14 14	Envelope	Combination Combination	Min Min	9.4643 11.2738	-2.079 -2.079	-0.052 0.179	-0.444 -0.444	-0.379 -0.379	-1.6057 -0.8028
Story1 Story1	B31	14	Envelope Envelope	Combination	Min	13.0833	-2.079	0.179	-0.444	-0.379	0
Story1	B32	15	Dead	LinStatic	IVIIII	0.9167	-0.507	-1.057	0.444	-0.6787	0
Story1	B32	15	Dead	LinStatic		2.7262	-0.507	-0.741	0	-0.6787	0
Story1	B32	15	Dead	LinStatic		4.5357	-0.507	-0.424	0	-0.6787	0
Story1	B32	15	Dead	LinStatic		6.3452	-0.507	-0.107	0	-0.6787	0
Story1	B32	15	Dead	LinStatic		8.1548	-0.507	0.209	0	-0.6787	0
Story1	B32	15	Dead	LinStatic		9.9643	-0.507	0.526	0	-0.6787	0
Story1	B32	15	Dead	LinStatic		11.7738	-0.507	0.843	0	-0.6787	0
Story1	B32	15	Dead	LinStatic		13.5833	-0.507	1.159	0	-0.6787	0
Story1	B32	15	Roof Live	LinStatic		0.9167	-0.919	-1.966	0	-0.7534	0
Story1	B32	15	Roof Live	LinStatic		2.7262	-0.919	-1.378	0	-0.7534	0
Story1	B32	15	Roof Live	LinStatic		4.5357	-0.919	-0.79	0	-0.7534	0
Story1	B32	15	Roof Live	LinStatic		6.3452	-0.919	-0.202	0	-0.7534	0
Story1	B32	15	Roof Live	LinStatic		8.1548	-0.919	0.386	0	-0.7534	0
Story1	B32	15	Roof Live	LinStatic		9.9643	-0.919	0.974	0	-0.7534	0
Story1	B32	15	Roof Live	LinStatic		11.7738	-0.919	1.562	0	-0.7534	0
Story1	B32	15	Roof Live	LinStatic		13.5833	-0.919	2.15	0	-0.7534	0
Story1	B32	15	Lateral (N-S)	LinStatic		0.9167	-0.003	-0.002	0.444	-0.8733	0
Story1	B32	15	Lateral (N-S)	LinStatic		2.7262	-0.003	-0.002	0.444	-0.8733	-0.8028
Story1	B32	15	Lateral (N-S)	LinStatic		4.5357	-0.003	-0.002	0.444	-0.8733	-1.6057
Story1	B32	15	Lateral (N-S)	LinStatic		6.3452	-0.003	-0.002	0.444	-0.8733	-2.4085
Story1	B32	15	Lateral (N-S)	LinStatic		8.1548	-0.003	-0.002	0.444	-0.8733	-3.2113
Story1	B32	15	Lateral (N-S)	LinStatic		9.9643	-0.003	-0.002	0.444	-0.8733	-4.0142
Story1	B32	15	Lateral (N-S)	LinStatic		11.7738	-0.003	-0.002	0.444	-0.8733	-4.817
Story1	B32	15	Lateral (N-S)	LinStatic		13.5833	-0.003	-0.002	0.444	-0.8733	-5.6199
Story1	B32	15	Lateral (E-W)	LinStatic		0.9167	0.299	0.361	0	-0.0005	0
Story1	B32	15	Lateral (E-W)	LinStatic		2.7262	0.299	0.361	0	-0.0005	0
Story1	B32	15	Lateral (E-W)	LinStatic		4.5357	0.299	0.361	0	-0.0005	0
Story1	B32	15	Lateral (E-W)	LinStatic		6.3452	0.299	0.361	0	-0.0005	0
Story1	B32 B32	15	Lateral (E-W)	LinStatic		8.1548 9.9643	0.299 0.299	0.361	0	-0.0005	0
Story1	D32	15	Lateral (E-W)	LinStatic		9.9043	0.299	0.361	0	-0.0005	l O

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B32	15	Lateral (E-W)	LinStatic		11.7738	0.299	0.361	0	-0.0005	0
Story1	B32	15	Lateral (E-W)	LinStatic		13.5833	0.299	0.361	0	-0.0005	0
Story1	B32	15	Envelope	Combination	Max	0.9167	-0.071	-0.41	0.444	0.379	0
Story1	B32	15	Envelope	Combination	Max	2.7262	-0.071	-0.179	0.444	0.379	0.8028
Story1	B32	15	Envelope	Combination	Max	4.5357	-0.071	0.052	0.444	0.379	1.6057
Story1	B32	15	Envelope	Combination	Max	6.3452	-0.071	0.282	0.444	0.379	2.4085
Story1	B32	15	Envelope	Combination	Max	8.1548	-0.071	0.869	0.444	0.379	3.2113
Story1	B32	15	Envelope	Combination	Max	9.9643	-0.071	2.19	0.444	0.379	4.0142
Story1	B32	15	Envelope	Combination	Max	11.7738	-0.071	3.511	0.444	0.379	4.817
Story1	B32	15	Envelope	Combination	Max	13.5833	-0.071	4.832	0.444	0.379	5.6199
Story1	B32	15	Envelope	Combination	Min	0.9167	-2.079	-4.415	-0.444	-2.0199	0
Story1	B32	15	Envelope	Combination	Min	2.7262	-2.079	-3.094	-0.444	-2.0199	-0.8028
Story1	B32 B32	15 15	Envelope	Combination Combination	Min Min	4.5357 6.3452	-2.079 -2.079	-1.773 -0.508	-0.444 -0.444	-2.0199 -2.0199	-1.6057 -2.4085
Story1 Story1	B32	15	Envelope Envelope	Combination	Min	8.1548	-2.079	-0.208	-0.444	-2.0199	-3.2113
Story1	B32	15	Envelope	Combination	Min	9.9643	-2.079	0.022	-0.444	-2.0199	-4.0142
Story1	B32	15	Envelope	Combination	Min	11.7738	-2.079	0.022	-0.444	-2.0199	-4.817
Story1	B32	15	Envelope	Combination	Min	13.5833	-2.079	0.484	-0.444	-2.0199	-5.6199
Story1	B33	25	Dead	LinStatic		0.6667	-0.067	-0.268	0	0.0641	0
Story1	B33	25	Dead	LinStatic		2.2708	-0.067	-0.03	0	0.0641	0
Story1	B33	25	Dead	LinStatic		3.875	-0.067	0.207	0	0.0641	0
Story1	B33	25	Dead	LinStatic		5.4792	-0.067	0.445	0	0.0641	0
Story1	B33	25	Dead	LinStatic		7.0833	-0.067	0.682	0	0.0641	0
Story1	B33	25	Dead	LinStatic		7.0833	-0.067	-0.764	0	0.0641	0
Story1	B33	25	Dead	LinStatic		8.8056	-0.067	-0.509	0	0.0641	0
Story1	B33	25	Dead	LinStatic		10.5278	-0.067	-0.255	0	0.0641	0
Story1	B33	25	Dead	LinStatic		12.25	-0.067	0.0003295	0	0.0641	0
Story1	B33	25	Dead	LinStatic		13.9722	-0.067	0.255	0	0.0641	0
Story1	B33	25	Dead	LinStatic		15.6944	-0.067	0.51	0	0.0641	0
Story1	B33	25	Dead	LinStatic		17.4167	-0.067	0.765	0	0.0641	0
Story1	B33	25	Dead	LinStatic		17.4167	-0.067	-0.683	0	0.0641	0
Story1	B33	25	Dead	LinStatic		19.0208	-0.067	-0.445	0	0.0641	0
Story1	B33	25	Dead	LinStatic		20.625	-0.067	-0.208	0	0.0641	0
Story1	B33	25	Dead	LinStatic		22.2292	-0.067	0.029	0	0.0641	0
Story1	B33	25	Dead	LinStatic		23.8333	-0.067	0.267	0	0.0641	0
Story1	B33	25	Roof Live	LinStatic		0.6667	-0.073	-0.292	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		2.2708	-0.073	-0.029	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		3.875	-0.073	0.234	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		5.4792	-0.073	0.497	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		7.0833	-0.073	0.76	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		7.0833	-0.073	-0.848	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		8.8056	-0.073	-0.566	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		10.5278	-0.073	-0.284	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		12.25	-0.073	-0.001	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		13.9722	-0.073	0.281	0	-0.0143	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B33	25	Roof Live	LinStatic		15.6944	-0.073	0.564	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		17.4167	-0.073	0.846	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		17.4167	-0.073	-0.757	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		19.0208	-0.073	-0.494	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		20.625	-0.073	-0.231	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		22.2292	-0.073	0.032	0	-0.0143	0
Story1	B33	25	Roof Live	LinStatic		23.8333	-0.073	0.295	0	-0.0143	0
Story1	B33	25	Lateral (N-S)	LinStatic		0.6667	0.195	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		2.2708	0.195	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		3.875	0.195	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		5.4792	0.195	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		7.0833	0.195	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		7.0833	0.047	-0.496	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		8.8056	0.047	-0.496	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		10.5278	0.047	-0.496	0	-0.0012	0
Story1	B33	25 25	Lateral (N-S)	LinStatic		12.25	0.047 0.047	-0.496 -0.496	0	-0.0012	0
Story1	B33 B33	25	Lateral (N-S) Lateral (N-S)	LinStatic LinStatic		13.9722 15.6944	0.047	-0.496	0	-0.0012 -0.0012	0
Story1 Story1	B33	25	Lateral (N-S)	LinStatic		17.4167	0.047	-0.496	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		17.4167	-0.1	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		19.0208	-0.1	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		20.625	-0.1	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		22.2292	-0.1	1.697	0	-0.0012	0
Story1	B33	25	Lateral (N-S)	LinStatic		23.8333	-0.1	1.697	0	-0.0012	0
Story1	B33	25	Lateral (E-W)	LinStatic		0.6667	0.001	0.001	-0.148	-0.1535	0
Story1	B33	25	Lateral (E-W)	LinStatic		2.2708	0.001	0.001	-0.148	-0.1535	0.2368
Story1	B33	25	Lateral (E-W)	LinStatic		3.875	0.001	0.001	-0.148	-0.1535	0.4736
Story1	B33	25	Lateral (E-W)	LinStatic		5.4792	0.001	0.001	-0.148	-0.1535	0.7104
Story1	B33	25	Lateral (E-W)	LinStatic		7.0833	0.001	0.001	-0.148	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		7.0833	0.001	6.194E-05	0	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		8.8056	0.001	6.194E-05	0	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		10.5278	0.001	6.194E-05	0	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		12.25	0.001	6.194E-05	0	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		13.9722	0.001	6.194E-05	0	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		15.6944	0.001	6.194E-05	0	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		17.4167	0.001	6.194E-05	0	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		17.4167	0.001	-0.002	0.148	-0.1535	0.9472
Story1	B33	25	Lateral (E-W)	LinStatic		19.0208	0.001	-0.002	0.148	-0.1535	0.7104
Story1	B33	25	Lateral (E-W)	LinStatic		20.625	0.001	-0.002	0.148	-0.1535	0.4736
Story1	B33	25	Lateral (E-W)	LinStatic		22.2292	0.001	-0.002	0.148	-0.1535	0.2368
Story1	B33	25	Lateral (E-W)	LinStatic		23.8333	0.001	-0.002	0.148	-0.1535	0
Story1	B33	25	Envelope	Combination	Max	0.6667	0.146	1.502	0.148	0.2413	0
Story1	B33	25	Envelope	Combination	Max	2.2708	0.146	1.675	0.148	0.2413	0.2368
Story1	B33	25	Envelope	Combination	Max	3.875	0.146	1.981	0.148	0.2413	0.4736
Story1	B33	25	Envelope	Combination	Max	5.4792	0.146	2.306	0.148	0.2413	0.7104

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B33	25	Envelope	Combination	Max	7.0833	0.146	2.632	0.148	0.2413	0.9472
Story1	B33	25	Enve l ope	Combination	Max	7.0833	-0.002	-0.061	0	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	8.8056	-0.002	0.125	0	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	10.5278	-0.002	0.311	0	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	12.25	-0.002	0.497	0	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	13.9722	-0.002	0.846	0	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	15.6944	-0.002	1.514	0	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	17.4167	-0.002	2.272	0	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	17.4167	0.051	1.199	0.148	0.2413	0.9472
Story1	B33	25	Envelope	Combination	Max	19.0208	0.051	1.372	0.148	0.2413	0.7104
Story1	B33	25	Enve l ope	Combination	Max	20.625	0.051	1.545	0.148	0.2413	0.4736
Story1	B33	25	Envelope	Combination	Max	22.2292	0.051	1.737	0.148	0.2413	0.2368
Story1	B33	25	Envelope	Combination	Max	23.8333	0.051	2.063	0.148	0.2413	0
Story1	B33	25	Envelope	Combination	Min	0.6667	-0.287	-2.064	-0.148	-0.1068	0
Story1	B33	25	Envelope	Combination	Min	2.2708	-0.287	-1.738	-0.148	-0.1068	-0.2368
Story1	B33	25	Envelope	Combination	Min	3.875	-0.287	-1.546	-0.148	-0.1068	-0.4736
Story1	B33	25	Envelope	Combination	Min	5.4792	-0.287	-1.373	-0.148	-0.1068	-0.7104
Story1	B33	25	Envelope	Combination	Min	7.0833	-0.287	-1.2	-0.148	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	7.0833	-0.198	-2.275	0	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	8.8056	-0.198	-1.517	0	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	10.5278	-0.198	-0.845	0	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	12.25	-0.198	-0.496	0	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	13.9722	-0.198	-0.31	0	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	15.6944	-0.198	-0.125	0	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	17.4167	-0.198	0.061	0	-0.1068	-0.9472
Story1	B33	25	Envelope	Combination	Min	17.4167	-0.198	-2.633	-0.148	-0.1068	-0.9472
Story1	B33	25	Enve l ope	Combination	Min	19.0208	-0.198	-2.308	-0.148	-0.1068	-0.7104
Story1	B33	25	Envelope	Combination	Min	20.625	-0.198	-1.982	-0.148	-0.1068	-0.4736
Story1	B33	25	Enve l ope	Combination	Min	22.2292	-0.198	-1.675	-0.148	-0.1068	-0.2368
Story1	B33	25	Envelope	Combination	Min	23.8333	-0.198	-1.502	-0.148	-0.1068	0
Story1	B34	1	Dead	LinStatic		0.6667	-0.958	-1.812	0	-0.6786	0
Story1	B34	1	Dead	LinStatic		2.5119	-0.958	-1.273	0	-0.6786	0
Story1	B34	1	Dead	LinStatic		4.3571	-0.958	-0.734	0	-0.6786	0
Story1	B34	1	Dead	LinStatic		6.2024	-0.958	-0.195	0	-0.6786	0
Story1	B34	1	Dead	LinStatic		8.0476	-0.958	0.344	0	-0.6786	0
Story1	B34	1	Dead	LinStatic		9.8929	-0.958	0.882	0	-0.6786	0
Story1	B34	1	Dead	LinStatic		11.7381	-0.958	1.421	0	-0.6786	0
Story1	B34	1	Dead	LinStatic		13.5833	-0.958	1.96	0	-0.6786	0
Story1	B34	1	Roof Live	LinStatic		0.6667	-1.083	-2.016	0	-0.7521	0
Story1	B34	1	Roof Live	LinStatic		2.5119	-1.083	-1.416	0	-0.7521	0
Story1	B34	1	Roof Live	LinStatic		4.3571	-1.083	-0.816	0	-0.7521	0
Story1	B34	1	Roof Live	LinStatic		6.2024	-1.083	-0.216	0	-0.7521	0
Story1	B34	1	Roof Live	LinStatic		8.0476	-1.083	0.383	0	-0.7521	0
Story1	B34	1	Roof Live	LinStatic		9.8929	-1.083	0.983	0	-0.7521	0
Story1	B34	1	Roof Live	LinStatic		11.7381	-1.083	1.583	0	-0.7521	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

	University Outside State Office										
Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B34	1	Roof Live	LinStatic		13.5833	-1.083	2.182	0	-0.7521	0
Story1	B34	1	Lateral (N-S)	LinStatic		0.6667	0.003	0.002	0.499	0.8736	0
Story1	B34	1	Lateral (N-S)	LinStatic		2.5119	0.003	0.002	0.499	0.8736	-0.9202
Story1	B34	1	Lateral (N-S)	LinStatic		4.3571	0.003	0.002	0.499	0.8736	-1.8404
Story1	B34	1	Lateral (N-S)	LinStatic		6.2024	0.003	0.002	0.499	0.8736	-2.7606
Story1	B34	1	Lateral (N-S)	LinStatic		8.0476	0.003	0.002	0.499	0.8736	-3.6808
Story1	B34	1	Lateral (N-S)	LinStatic		9.8929	0.003	0.002	0.499	0.8736	-4. 601
Story1	B34	1	Lateral (N-S)	LinStatic		11.7381	0.003	0.002	0.499	0.8736	-5.5212
Story1	B34	1	Lateral (N-S)	LinStatic		13.5833	0.003	0.002	0.499	0.8736	-6.4414
Story1	B34	1	Lateral (E-W)	LinStatic		0.6667	-0.031	0.339	0	0.0005	0
Story1	B34	1	Lateral (E-W)	LinStatic		2.5119	-0.031	0.339	0	0.0005	0
Story1	B34	1	Lateral (E-W)	LinStatic		4.3571	-0.031	0.339	0	0.0005	0
Story1	B34	1	Lateral (E-W)	LinStatic		6.2024	-0.031	0.339	0	0.0005	0
Story1	B34	1	Lateral (E-W)	LinStatic		8.0476	-0.031	0.339	0	0.0005	0
Story1	B34	1	Lateral (E-W)	LinStatic		9.8929	-0.031	0.339	0	0.0005	0
Story1	B34	1	Lateral (E-W)	LinStatic		11.7381	-0.031	0.339	0	0.0005	0
Story1	B34	1	Lateral (E-W)	LinStatic		13.5833	-0.031	0.339	0	0.0005	0
Story1	B34	1	Enve l ope	Combination	Max	0.6667	-0.667	-0.98	0.499	0.3793	0
Story1	B34	1	Envelope	Combination	Max	2.5119	-0.667	-0.588	0.499	0.3793	0.9202
Story1	B34	1	Envelope	Combination	Max	4.3571	-0.667	-0.196	0.499	0.3793	1.8404
Story1	B34	1	Envelope	Combination	Max	6.2024	-0.667	0.197	0.499	0.3793	2.7606
Story1	B34	1	Envelope	Combination	Max	8.0476	-0.667	1.026	0.499	0.3793	3.6808
Story1	B34	1	Envelope	Combination	Max	9.8929	-0.667	2.632	0.499	0.3793	4.601
Story1	B34	1	Envelope	Combination	Max	11.7381	-0.667	4.238	0.499	0.3793	5.5212
Story1	B34	1	Envelope	Combination	Max	13.5833	-0.667	5.844	0.499	0.3793	6.4414
Story1	B34	1	Enve l ope	Combination	Min	0.6667	-2.883	-5.399	-0.499	-2.0177	0
Story1	B34	1	Enve l ope	Combination	Min	2.5119	-2.883	-3.793	-0.499	-2.0177	-0.9202
Story1	B34	1	Envelope	Combination	Min	4.3571	-2.883	-2.187	-0.499	-2.0177	-1.8404
Story1	B34	1	Envelope	Combination	Min	6.2024	-2.883	-0.607	-0.499	-2.0177	-2.7606
Story1	B34	1	Envelope	Combination	Min	8.0476	-2.883	-0.089	-0.499	-2.0177	-3.6808
Story1	B34	1	Enve l ope	Combination	Min	9.8929	-2.883	0.304	-0.499	-2.0177	-4.601
Story1	B34	1	Envelope	Combination	Min	11.7381	-2.883	0.696	-0.499	-2.0177	-5.5212
Story1	B34	1	Envelope	Combination	Min	13.5833	-2.883	1.089	-0.499	-2.0177	-6.4414
Story1	B35	3	Dead	LinStatic		0.4167	-0.964	-1.961	0	0.6786	0
Story1	B35	3	Dead	LinStatic		2.2619	-0.964	-1.422	0	0.6786	0
Story1	B35	3	Dead	LinStatic		4.1071	-0.964	-0.883	0	0.6786	0
Story1	B35	3	Dead	LinStatic		5.9524	-0.964	-0.344	0	0.6786	0
Story1	B35	3	Dead	LinStatic		7.7976	-0.964	0.194	0	0.6786	0
Story1	B35	3	Dead	LinStatic		9.6429	-0.964	0.733	0	0.6786	0
Story1	B35	3	Dead	LinStatic		11.4881	-0.964	1.272	0	0.6786	0
Story1	B35	3	Dead	LinStatic		13.3333	-0.964	1.811	0	0.6786	0
Story1	B35	3	Roof Live	LinStatic		0.4167	-1.09	-2.183	0	0.7521	0
Story1	B35	3	Roof Live	LinStatic		2.2619	-1.09	-1.583	0	0.7521	0
Story1	B35	3	Roof Live	LinStatic		4.1071	-1.09	-0.984	0	0.7521	0
Story1	B35	3	Roof Live	LinStatic		5.9524	-1.09	-0.384	0	0.7521	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B35	3	Roof Live	LinStatic		7.7976	-1.09	0.216	0	0.7521	0
Story1	B35	3	Roof Live	LinStatic		9.6429	-1.09	0.815	0	0.7521	0
Story1	B35	3	Roof Live	LinStatic		11.4881	-1.09	1.415	0	0.7521	0
Story1	B35	3	Roof Live	LinStatic		13.3333	-1.09	2.015	0	0.7521	0
Story1	B35	3	Lateral (N-S)	LinStatic		0.4167	0.003	-0.002	-0.499	-0.8736	-6.4414
Story1	B35	3	Lateral (N-S)	LinStatic		2.2619	0.003	-0.002	-0.499	-0.8736	-5.5212
Story1	B35	3	Lateral (N-S)	LinStatic		4.1071	0.003	-0.002	-0.499	-0.8736	-4.601
Story1	B35	3	Lateral (N-S)	LinStatic		5.9524	0.003	-0.002	-0.499	-0.8736	-3.6808
Story1	B35	3	Lateral (N-S)	LinStatic		7.7976	0.003	-0.002	-0.499	-0.8736	-2.7606
Story1	B35	3	Lateral (N-S)	LinStatic		9.6429	0.003	-0.002	-0.499	-0.8736	-1.8404
Story1	B35	3	Lateral (N-S)	LinStatic		11.4881	0.003	-0.002	-0.499	-0.8736	-0.9202
Story1	B35	3	Lateral (N-S)	LinStatic		13.3333	0.003	-0.002	-0.499	-0.8736	0
Story1	B35	3	Lateral (E-W)	LinStatic		0.4167	0.039	0.391	0	0.0006	0
Story1	B35	3	Lateral (E-W)	LinStatic		2.2619	0.039	0.391	0	0.0006	0
Story1	B35	3	Lateral (E-W)	LinStatic		4.1071	0.039	0.391	0	0.0006	0
Story1 Story1	B35 B35	3	Lateral (E-W)	LinStatic		5.9524 7.7976	0.039	0.391	0	0.0006	0
•	B35	3	Lateral (E-W)	LinStatic LinStatic		9.6429	0.039	0.391 0.391	0	0.0006	0
Story1 Story1	B35	3	Lateral (E-W) Lateral (E-W)	LinStatic		11.4881	0.039	0.391	0	0.0006	0
Story1	B35	3	Lateral (E-W)	LinStatic		13.3333	0.039	0.391	0	0.0006	0
Story1	B35	3	Envelope	Combination	Max	0.4167	-0.662	-1.038	0.499	2.0177	6.4414
Story1	B35	3	Envelope	Combination	Max	2.2619	-0.662	-0.645	0.499	2.0177	5.5212
Story1	B35	3	Envelope	Combination	Max	4.1071	-0.662	-0.253	0.499	2.0177	4.601
Story1	B35	3	Envelope	Combination	Max	5.9524	-0.662	0.14	0.499	2.0177	3.6808
Story1	B35	3	Envelope	Combination	Max	7.7976	-0.662	0.657	0.499	2.0177	2.7606
Story1	B35	3	Envelope	Combination	Max	9.6429	-0.662	2.184	0.499	2.0177	1.8404
Story1	B35	3	Envelope	Combination	Max	11.4881	-0.662	3.791	0.499	2.0177	0.9202
Story1	B35	3	Envelope	Combination	Max	13.3333	-0.662	5.397	0.499	2.0177	0
Story1	B35	3	Envelope	Combination	Min	0.4167	-2.9	-5.846	-0.499	-0.3793	-6.4414
Story1	B35	3	Envelope	Combination	Min	2.2619	-2.9	-4.24	-0.499	-0.3793	-5.5212
Story1	B35	3	Envelope	Combination	Min	4.1071	-2.9	-2.634	-0.499	-0.3793	-4.601
Story1	B35	3	Envelope	Combination	Min	5.9524	-2.9	-1.028	-0.499	-0.3793	-3.6808
Story1	B35	3	Envelope	Combination	Min	7.7976	-2.9	-0.249	-0.499	-0.3793	-2.7606
Story1	B35	3	Envelope	Combination	Min	9.6429	-2.9	0.144	-0.499	-0.3793	-1.8404
Story1	B35	3	Envelope	Combination	Min	11.4881	-2.9	0.536	-0.499	-0.3793	-0.9202
Story1	B35	3	Envelope	Combination	Min	13.3333	-2.9	0.928	-0.499	-0.3793	0
Story1	B36	17	Dead	LinStatic		0.6667	-0.517	-1.083	0	0.6787	0
Story1	B36	17	Dead	LinStatic		2.5119	-0.517	-0.76	0	0.6787	0
Story1	B36	17	Dead	LinStatic		4.3571	-0.517	-0.437	0	0.6787	0
Story1	B36	17	Dead	LinStatic		6.2024	-0.517	-0.114	0	0.6787	0
Story1	B36	17	Dead	LinStatic		8.0476	-0.517	0.209	0	0.6787	0
Story1	B36	17	Dead	LinStatic		9.8929	-0.517	0.532	0	0.6787	0
Story1	B36	17	Dead	LinStatic		11.7381	-0.517	0.855	0	0.6787	0
Story1	B36	17	Dead	LinStatic		13.5833	-0.517	1.178	0	0.6787	0
Story1	B36	17	Roof Live	LinStatic		0.6667	-0.938	-2.013	0	0.7534	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

		Haiama	Outnut		Ctom	Ctation	D	V/2	\/2	-	Ma
Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B36	17	Roof Live	LinStatic		2.5119	-0.938	-1.414	0	0.7534	0
Story1	B36	17	Roof Live	LinStatic		4.3571	-0.938	-0.814	0	0.7534	0
Story1	B36	17	Roof Live	LinStatic		6.2024	-0.938	-0.214	0	0.7534	0
Story1	B36	17	Roof Live	LinStatic		8.0476	-0.938	0.385	0	0.7534	0
Story1	B36	17	Roof Live	LinStatic		9.8929	-0.938	0.985	0	0.7534	0
Story1	B36	17	Roof Live	LinStatic		11.7381	-0.938	1.585	0	0.7534	0
Story1	B36	17	Roof Live	LinStatic		13.5833	-0.938	2.185	0	0.7534	0
Story1	B36	17	Lateral (N-S)	LinStatic		0.6667	-0.003	-0.002	0.435	0.8733	0
Story1	B36	17	Lateral (N-S)	LinStatic		2.5119	-0.003	-0.002	0.435	0.8733	-0.8033
Story1	B36	17	Lateral (N-S)	LinStatic		4.3571	-0.003	-0.002	0.435	0.8733	-1.6067
Story1	B36	17	Lateral (N-S)	LinStatic		6.2024	-0.003	-0.002	0.435	0.8733	-2.41
Story1	B36	17	Lateral (N-S)	LinStatic		8.0476	-0.003	-0.002 -0.002	0.435	0.8733	-3.2133
Story1	B36	17	Lateral (N-S)	LinStatic		9.8929	-0.003		0.435	0.8733	-4.0167
Story1 Story1	B36 B36	17 17	Lateral (N-S) Lateral (N-S)	LinStatic LinStatic		11.7381 13.5833	-0.003 -0.003	-0.002 -0.002	0.435 0.435	0.8733 0.8733	-4.82 -5.6233
Story1	B36	17	Lateral (N-S)	LinStatic		0.6667	-0.147	0.351	0.433	-0.0005	0
Story1	B36	17	Lateral (E-W)	LinStatic		2.5119	-0.147	0.351	0	-0.0005	0
Story1	B36	17	Lateral (E-W)	LinStatic		4.3571	-0.147	0.351	0	-0.0005	0
Story1	B36	17	Lateral (E-W)	LinStatic		6.2024	-0.147	0.351	0	-0.0005	0
Story1	B36	17	Lateral (E-W)	LinStatic		8.0476	-0.147	0.351	0	-0.0005	0
Story1	B36	17	Lateral (E-W)	LinStatic		9.8929	-0.147	0.351	0	-0.0005	0
Story1	B36	17	Lateral (E-W)	LinStatic		11.7381	-0.147	0.351	0	-0.0005	0
Story1	B36	17	Lateral (E-W)	LinStatic		13.5833	-0.147	0.351	0	-0.0005	0
Story1	B36	17	Envelope	Combination	Max	0.6667	-0.229	-0.438	0.435	2.0199	0
Story1	B36	17	Envelope	Combination	Max	2.5119	-0.229	-0.203	0.435	2.0199	0.8033
Story1	B36	17	Envelope	Combination	Max	4.3571	-0.229	0.033	0.435	2.0199	1.6067
Story1	B36	17	Envelope	Combination	Max	6.2024	-0.229	0.268	0.435	2.0199	2.41
Story1	B36	17	Envelope	Combination	Max	8.0476	-0.229	0.868	0.435	2.0199	3.2133
Story1	B36	17	Envelope	Combination	Max	9.8929	-0.229	2.215	0.435	2.0199	4.0167
Story1	B36	17	Envelope	Combination	Max	11.7381	-0.229	3.562	0.435	2.0199	4.82
Story1	B36	17	Envelope	Combination	Max	13.5833	-0.229	4.909	0.435	2.0199	5.6233
Story1	B36	17	Envelope	Combination	Min	0.6667	-2.12	-4.521	-0.435	-0.379	0
Story1	B36	17	Envelope	Combination	Min	2.5119	-2.12	-3.173	-0.435	-0.379	-0.8033
Story1	B36	17	Envelope	Combination	Min	4.3571	-2.12	-1.826	-0.435	-0.379	-1.6067
Story1	B36	17	Envelope	Combination	Min	6.2024	-2.12	-0.507	-0.435	-0.379	-2.41
Story1	B36	17	Envelope	Combination	Min	8.0476	-2.12	-0.199	-0.435	-0.379	-3.2133
Story1	B36	17	Envelope	Combination	Min	9.8929	-2.12	0.037	-0.435	-0.379	-4.0167
Story1	B36	17	Envelope	Combination	Min	11.7381	-2.12	0.272	-0.435	-0.379	-4.82
Story1	B36	17	Envelope	Combination	Min	13.5833	-2.12	0.507	-0.435	-0.379	-5.6233
Story1	B37	18	Dead	LinStatic		0.4167	-0.517	-1.178	0	-0.6787	0
Story1	B37	18	Dead	LinStatic		2.2619	-0.517	-0.855	0	-0.6787	0
Story1	B37	18	Dead	LinStatic		4.1071	-0.517	-0.532	0	-0.6787	0
Story1	B37	18	Dead	LinStatic		5.9524	-0.517	-0.209	0	-0.6787	0
Story1	B37	18	Dead	LinStatic		7.7976	-0.517	0.114	0	-0.6787	0
Story1	B37	18	Dead	LinStatic		9.6429	-0.517	0.437	0	-0.6787	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B37	18	Dead	LinStatic		11.4881	-0.517	0.76	0	-0.6787	0
Story1	B37	18	Dead	LinStatic		13.3333	-0.517	1.083	0	-0.6787	0
Story1	B37	18	Roof Live	LinStatic		0.4167	-0.937	-2.184	0	-0.7534	0
Story1	B37	18	Roof Live	LinStatic		2.2619	-0.937	-1.585	0	-0.7534	0
Story1	B37	18	Roof Live	LinStatic		4.1071	-0.937	-0.985	0	-0.7534	0
Story1	B37	18	Roof Live	LinStatic		5.9524	-0.937	-0.385	0	-0.7534	0
Story1	B37	18	Roof Live	LinStatic		7.7976	-0.937	0.214	0	-0.7534	0
Story1	B37	18	Roof Live	LinStatic		9.6429	-0.937	0.814	0	-0.7534	0
Story1	B37	18	Roof Live	LinStatic		11.4881	-0.937	1.414	0	-0.7534	0
Story1	B37	18	Roof Live	LinStatic		13.3333	-0.937	2.013	0	-0.7534	0
Story1	B37	18	Lateral (N-S)	LinStatic		0.4167	-0.003	0.002	-0.435	-0.8733	-5.6233
Story1	B37	18	Lateral (N-S)	LinStatic		2.2619	-0.003	0.002	-0.435	-0.8733	-4.82
Story1	B37	18	Lateral (N-S)	LinStatic		4.1071	-0.003	0.002	-0.435	-0.8733	-4.0167
Story1	B37	18	Lateral (N-S)	LinStatic		5.9524	-0.003	0.002	-0.435	-0.8733	-3.2133
Story1	B37	18	Lateral (N-S)	LinStatic		7.7976	-0.003	0.002	-0.435	-0.8733	-2.41
Story1	B37	18	Lateral (N-S)	LinStatic		9.6429	-0.003	0.002	-0.435	-0.8733	-1.6067
Story1	B37	18	Lateral (N-S)	LinStatic		11.4881	-0.003	0.002	-0.435	-0.8733	-0.8033
Story1	B37	18	Lateral (N-S)	LinStatic		13.3333	-0.003	0.002	-0.435	-0.8733	0
Story1	B37	18	Lateral (E-W)	LinStatic		0.4167	0.142	0.351	0	-0.0005	0
Story1	B37	18	Lateral (E-W)	LinStatic		2.2619	0.142	0.351	0	-0.0005	0
Story1	B37	18	Lateral (E-W)	LinStatic		4.1071	0.142	0.351	0	-0.0005	0
Story1	B37	18	Lateral (E-W)	LinStatic		5.9524	0.142	0.351	0	-0.0005	0
Story1	B37	18	Lateral (E-W)	LinStatic		7.7976	0.142	0.351	0	-0.0005	0
Story1	B37	18	Lateral (E-W)	LinStatic		9.6429	0.142	0.351	0	-0.0005	0
Story1	B37	18	Lateral (E-W)	LinStatic		11.4881	0.142	0.351	0	-0.0005	0
Story1	B37	18	Lateral (E-W)	LinStatic		13.3333	0.142	0.351	0	-0.0005	0
Story1	B37	18	Envelope	Combination	Max	0.4167	-0.234	-0.507	0.435	0.379	5.6233
Story1	B37	18	Envelope	Combination	Max	2.2619	-0.234	-0.272	0.435	0.379	4.82
Story1	B37	18	Envelope	Combination	Max	4.1071	-0.234	-0.037	0.435	0.379	4.0167
Story1	B37	18	Envelope	Combination	Max	5.9524	-0.234	0.198	0.435	0.379	3.2133
Story1	B37	18	Envelope	Combination	Max	7.7976	-0.234	0.507	0.435	0.379	2.41
Story1	B37	18	Envelope	Combination	Max	9.6429	-0.234	1.827	0.435	0.379	1.6067
Story1	B37	18	Envelope	Combination	Max	11.4881	-0.234	3.174	0.435	0.379	0.8033
Story1	B37	18	Envelope	Combination	Max	13.3333	-0.234	4.521	0.435	0.379	0
Story1	B37	18	Envelope	Combination	Min	0.4167	-2.12	-4.908	-0.435	-2.0199	-5.6233
Story1	B37	18	Envelope	Combination	Min	2.2619	-2.12	-3.561	-0.435	-2.0199	-4.82
Story1	B37	18	Envelope	Combination	Min	4.1071	-2.12	-2.214	-0.435	-2.0199	-4.0167
Story1	B37	18	Envelope	Combination	Min	5.9524	-2.12	-0.867	-0.435	-2.0199	-3.2133
Story1	B37	18	Envelope	Combination	Min	7.7976	-2.12	-0.268	-0.435	-2.0199	-2.41
Story1	B37	18	Envelope	Combination	Min	9.6429	-2.12	-0.032	-0.435	-2.0199	-1.6067
Story1	B37	18	Envelope	Combination	Min	11.4881	-2.12	0.203	-0.435	-2.0199	-0.8033
Story1	B37	18	Envelope	Combination	Min	13.3333	-2.12	0.438	-0.435	-2.0199	0
Story1	B1	10	Dead	LinStatic		0	0.936	0	0	0	0
Story1	B1	10	Dead	LinStatic		2	0.936	0	0	0	0
Story1	B1	10	Dead	LinStatic		4	0.936	0	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B1	10	Dead	LinStatic		6	0.936	0	0	0	0
Story1	B1	10	Dead	LinStatic		8	0.936	0	0	0	0
Story1	B1	10	Dead	LinStatic		10	0.936	0	0	0	0
Story1	B1	10	Dead	LinStatic		12	0.936	0	0	0	0
Story1	B1	10	Dead	LinStatic		14	0.936	0	0	0	0
Story1	B1	10	Roof Live	LinStatic		0	1.058	0	0	0	0
Story1	B1	10	Roof Live	LinStatic		2	1.058	0	0	0	0
Story1	B1	10	Roof Live	LinStatic		4	1.058	0	0	0	0
Story1	B1	10	Roof Live	LinStatic		6	1.058	0	0	0	0
Story1	B1	10	Roof Live	LinStatic		8	1.058	0	0	0	0
Story1	B1	10	Roof Live	LinStatic		10	1.058	0	0	0	0
Story1	B1	10	Roof Live	LinStatic		12	1.058	0	0	0	0
Story1	B1 B1	10 10	Roof Live	LinStatic LinStatic		14 0	1.058 -0.003	0	0	0	0
Story1 Story1	B1	10	Lateral (N-S) Lateral (N-S)	LinStatic		2	-0.003	0	0	0	0
Story1	B1	10	Lateral (N-S)	LinStatic		4	-0.003	0	0	0	0
Story1	B1	10	Lateral (N-S)	LinStatic		6	-0.003	0	0	0	0
Story1	B1	10	Lateral (N-S)	LinStatic		8	-0.003	0	0	0	0
Story1	B1	10	Lateral (N-S)	LinStatic		10	-0.003	0	0	0	0
Story1	B1	10	Lateral (N-S)	LinStatic		12	-0.003	0	0	0	0
Story1	B1	10	Lateral (N-S)	LinStatic		14	-0.003	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		0	-0.246	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		2	-0.246	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		4	-0.246	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		6	-0.246	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		8	-0.246	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		10	-0.246	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		12	-0.246	0	0	0	0
Story1	B1	10	Lateral (E-W)	LinStatic		14	-0.246	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	0	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	2	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	4	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	6	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	8	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	10	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	12	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Max	14	2.817	0	0	0	0
Story1	B1	10	Envelope	Combination	Min	0	0.435	0	0	0	0
Story1	B1	10	Envelope	Combination	Min	2	0.435	0	0	0	0
Story1	B1	10	Envelope	Combination	Min	4	0.435	0	0	0	0
Story1	B1	10	Envelope	Combination	Min	6	0.435	0	0	0	0
Story1	B1	10	Envelope	Combination	Min	8	0.435	0	0	0	0
Story1	B1	10	Envelope	Combination	Min	10	0.435	0	0	0	0
Story1	B1	10	Envelope	Combination	Min Min	12	0.435	0	0	0	0
Story1	B1	10	Envelope	Combination	Min	14	0.435	0	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique	Output	Case Type	Step	Station	Р	V2	V3	Т	M2
		Name	Case		Type	ft	kip	kip	kip	kip-ft	kip-ft
Story1	B2	11	Dead	LinStatic		0	0.928	0	0	0	0
Story1	B2	11	Dead	LinStatic		2	0.928	0	0	0	0
Story1	B2	11	Dead	LinStatic		4	0.928	0	0	0	0
Story1	B2	11	Dead	LinStatic		6	0.928	0	0	0	0
Story1	B2 B2	11 11	Dead	LinStatic		8 10	0.928	0	0	0	0
Story1 Story1	B2	11	Dead Dead	LinStatic LinStatic		12	0.928 0.928	0	0	0	0
Story1	B2	11	Dead	LinStatic		14	0.928	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		0	1.049	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		2	1.049	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		4	1.049	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		6	1.049	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		8	1.049	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		10	1.049	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		12	1.049	0	0	0	0
Story1	B2	11	Roof Live	LinStatic		14	1.049	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		0	-0.003	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		2	-0.003	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		4	-0.003	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		6	-0.003	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		8	-0.003	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		10	-0.003	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		12	-0.003	0	0	0	0
Story1	B2	11	Lateral (N-S)	LinStatic		14	-0.003	0	0	0	0
Story1	B2	11	Lateral (E-W)	LinStatic		0	1.098	0	0	0	0
Story1	B2	11	Lateral (E-W)	LinStatic		2	1.098	0	0	0	0
Story1	B2	11	Lateral (E-W)	LinStatic		4	1.098	0	0	0	0
Story1	B2	11	Lateral (E-W)	LinStatic		6	1.098	0	0	0	0
Story1	B2	11	Lateral (E-W)	LinStatic		8	1.098	0	0	0	0
Story1	B2 B2	11	Lateral (E-W)	LinStatic		10 12	1.098	0	0	0	0
Story1 Story1	B2	11 11	Lateral (E-W)	LinStatic LinStatic		14	1.098 1.098	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	0	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	2	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	4	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	6	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	8	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	10	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	12	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Max	14	2.792	0	0	0	0
Story1	B2	11	Envelope	Combination	Min	0	-0.422	0	0	0	0
Story1	B2	11	Envelope	Combination	Min	2	-0.422	0	0	0	0
Story1	B2	11	Envelope	Combination	Min	4	-0.422	0	0	0	0
Story1	B2	11	Envelope	Combination	Min	6	-0.422	0	0	0	0
Story1	B2	11	Envelope	Combination	Min	8	-0.422	0	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B2	11	Envelope	Combination	Min	10	-0.422	0	0	0	0
Story1	B2	11	Envelope	Combination	Min	12	-0.422	0	0	0	0
Story1	B2	11	Envelope	Combination	Min	14	-0.422	0	0	0	0
Story1	B3	2	Dead	LinStatic		0	0.953	0	0	0	0
Story1	B3	2	Dead	LinStatic		2	0.953	0	0	0	0
Story1	B3	2	Dead	LinStatic		4	0.953	0	0	0	0
Story1	B3	2	Dead	LinStatic		6	0.953	0	0	0	0
Story1	B3	2	Dead	LinStatic		8	0.953	0	0	0	0
Story1	B3	2	Dead	LinStatic		10	0.953	0	0	0	0
Story1	B3	2	Dead	LinStatic		12	0.953	0	0	0	0
Story1	B3	2	Dead Roof Live	LinStatic LinStatic		14	0.953	0	0	0	0
Story1	B3 B3	2	Roof Live	LinStatic		0	1.078 1.078	0	0	0	0
Story1 Story1	B3	2	Roof Live	LinStatic		2	1.078	0	0	0	0
Story1	B3	2	Roof Live	LinStatic		6	1.078	0	0	0	0
Story1	B3	2	Roof Live	LinStatic		8	1.078	0	0	0	0
Story1	B3	2	Roof Live	LinStatic		10	1.078	0	0	0	0
Story1	B3	2	Roof Live	LinStatic		12	1.078	0	0	0	0
Story1	B3	2	Roof Live	LinStatic		14	1.078	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		0	-0.003	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		2	-0.003	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		4	-0.003	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		6	-0.003	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		8	-0.003	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		10	-0.003	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		12	-0.003	0	0	0	0
Story1	В3	2	Lateral (N-S)	LinStatic		14	-0.003	0	0	0	0
Story1	В3	2	Lateral (E-W)	LinStatic		0	0.249	0	0	0	0
Story1	В3	2	Lateral (E-W)	LinStatic		2	0.249	0	0	0	0
Story1	В3	2	Lateral (E-W)	LinStatic		4	0.249	0	0	0	0
Story1	B3	2	Lateral (E-W)	LinStatic		6	0.249	0	0	0	0
Story1	B3	2	Lateral (E-W)	LinStatic		8	0.249	0	0	0	0
Story1	B3	2	Lateral (E-W)	LinStatic		10	0.249	0	0	0	0
Story1	B3	2	Lateral (E-W)	LinStatic		12	0.249	0	0	0	0
Story1	B3	2	Lateral (E-W)	LinStatic		14	0.249	0	0	0	0
Story1	B3	2	Envelope	Combination	Max	0	2.869	0	0	0	0
Story1	B3	2	Envelope	Combination	Max	2	2.869	0	0	0	0
Story1	B3	2	Envelope	Combination	Max	4	2.869	0	0	0	0
Story1	B3	2	Envelope	Combination	Max	6	2.869	0	0	0	0
Story1	B3	2	Envelope	Combination	Max	8	2.869	0	0	0	0
Story1	B3	2	Envelope Envelope	Combination	Max	10	2.869	0	0	0	0
Story1	B3 B3	2	Envelope	Combination Combination	Max Max	12 14	2.869 2.869	0	0	0	0
Story1	B3	2	Envelope	Combination	Min	0	0.446	0	0	0	0
Story1	B3	2	Envelope	Combination	Min	2	0.446	0	0	0	0
Sidiyi	് ലാ	2	Envelope	Combination	IVIIII	2	0.440	U	l O	0	U

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	В3	2	Envelope	Combination	Min	4	0.446	0	0	0	0
Story1	B3	2	Envelope	Combination	Min	6	0.446	0	0	0	0
Story1	B3	2	Envelope	Combination	Min	8	0.446	0	0	0	0
Story1	B3	2	Envelope	Combination	Min	10	0.446	0	0	0	0
Story1	В3	2	Envelope	Combination	Min	12	0.446	0	0	0	0
Story1	B3	2	Envelope	Combination	Min	14	0.446	0	0	0	0
Story1	B4	4	Dead	LinStatic		0	0.96	0	0	0	0
Story1	B4	4	Dead	LinStatic		2	0.96	0	0	0	0
Story1	B4	4	Dead	LinStatic		4	0.96	0	0	0	0
Story1	B4	4	Dead	LinStatic		6	0.96	0	0	0	0
Story1	B4 B4	4	Dead	LinStatic LinStatic		8	0.96	0	0	0	0
Story1	B4	4	Dead Dead	LinStatic		10 12	0.96 0.96	0	0	0	0
Story1 Story1	B4	4	Dead	LinStatic		14	0.96	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		0	1.086	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		2	1.086	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		4	1.086	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		6	1.086	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		8	1.086	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		10	1.086	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		12	1.086	0	0	0	0
Story1	B4	4	Roof Live	LinStatic		14	1.086	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		0	-0.003	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		2	-0.003	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		4	-0.003	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		6	-0.003	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		8	-0.003	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		10	-0.003	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		12	-0.003	0	0	0	0
Story1	B4	4	Lateral (N-S)	LinStatic		14	-0.003	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic		0	-0.289	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic		2	-0.289	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic		4	-0.289	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic		6	-0.289	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic		8	-0.289	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic		10	-0.289	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic		12	-0.289	0	0	0	0
Story1	B4	4	Lateral (E-W)	LinStatic	N 4 -	14	-0.289	0	0	0	0
Story1	B4	4	Envelope	Combination	Max	0	2.89	0	0	0	0
Story1	B4	4	Envelope	Combination	Max	2	2.89	0	0	0	0
Story1	B4	4	Envelope Envelope	Combination	Max	4	2.89	0	0	0	0
Story1	B4 B4	4	Envelope	Combination Combination	Max Max	6 g	2.89 2.89	0	0	0	0
Story1 Story1	B4	4	Envelope	Combination	Max	8 10	2.89	0	0	0	0
Story1	B4	4	Envelope	Combination	Max	12	2.89	0	0	0	0
Sidiyi	D4	4	Envelope	Combination	ividX	12	2.09	U	l O	0	U

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B4	4	Envelope	Combination	Max	14	2.89	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	0	0.411	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	2	0.411	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	4	0.411	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	6	0.411	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	8	0.411	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	10	0.411	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	12	0.411	0	0	0	0
Story1	B4	4	Envelope	Combination	Min	14	0.411	0	0	0	0
Story1	B6	29	Dead	LinStatic		0	0.537	-0.42	0	0	0
Story1	B6	29	Dead	LinStatic		2	0.537	-0.3	0	0	0
Story1	B6	29	Dead	LinStatic		4	0.537	-0.18	0	0	0
Story1	B6	29	Dead	LinStatic		6	0.537	-0.06	0	0	0
Story1	В6	29	Dead	LinStatic		8	0.537	0.06	0	0	0
Story1	B6	29	Dead	LinStatic		10	0.537	0.18	0	0	0
Story1	B6	29	Dead	LinStatic		12	0.537	0.3	0	0	0
Story1	B6	29	Dead	LinStatic		14	0.537	0.42	0	0	0
Story1	B6	29	Roof Live	LinStatic		0	0.974	-0.651	0	0	0
Story1	B6	29	Roof Live	LinStatic		2	0.974	-0.465	0	0	0
Story1	B6	29	Roof Live	LinStatic		4	0.974	-0.279	0	0	0
Story1	B6	29	Roof Live	LinStatic		6	0.974	-0.093	0	0	0
Story1	B6	29	Roof Live	LinStatic		8	0.974	0.093	0	0	0
Story1	B6	29	Roof Live	LinStatic		10	0.974	0.279	0	0	0
Story1	B6	29	Roof Live	LinStatic		12	0.974	0.465	0	0	0
Story1	B6	29	Roof Live	LinStatic		14	0.974	0.651	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		0	0.003	0	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		2	0.003	0	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		4	0.003	0	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		6	0.003	0	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		8	0.003	0	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		10	0.003	0	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		12	0.003	0	0	0	0
Story1	B6	29	Lateral (N-S)	LinStatic		14	0.003	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		0	0.344	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		2	0.344	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		4	0.344	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		6	0.344	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		8	0.344	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		10	0.344	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		12	0.344	0	0	0	0
Story1	B6	29	Lateral (E-W)	LinStatic		14	0.344	0	0	0	0
Story1	B6	29	Envelope	Combination	Max	0	2.203	-0.306	0	0	0
Story1	B6	29	Envelope	Combination	Max	2	2.203	-0.219	0	0	0
Story1	B6	29	Envelope	Combination	Max	4	2.203	-0.131	0	0	0
Story1	B6	29	Envelope	Combination	Max	6	2.203	-0.044	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B6	29	Envelope	Combination	Max	8	2.203	0.221	0	0	0
Story1	В6	29	Envelope	Combination	Max	10	2.203	0.662	0	0	0
Story1	B6	29	Envelope	Combination	Max	12	2.203	1.104	0	0	0
Story1	B6	29	Envelope	Combination	Max	14	2.203	1.546	0	0	0
Story1	B6	29	Envelope	Combination	Min	0	0.047	-1.546	0	0	0
Story1	B6	29	Envelope	Combination	Min	2	0.047	-1.104	0	0	0
Story1	B6	29	Envelope	Combination	Min	4	0.047	-0.662	0	0	0
Story1	B6	29	Envelope	Combination	Min	6	0.047	-0.221	0	0	0
Story1	В6	29	Envelope	Combination	Min	8	0.047	0.044	0	0	0
Story1	В6	29	Envelope	Combination	Min	10	0.047	0.131	0	0	0
Story1	B6	29	Envelope	Combination	Min	12	0.047	0.219	0	0	0
Story1	B6	29	Envelope	Combination	Min	14	0.047	0.306	0	0	0
Story1	B7	30	Dead	LinStatic		0	0.523	-0.42	0	0	0
Story1	B7	30	Dead	LinStatic		2	0.523	-0.3	0	0	0
Story1	B7	30	Dead	LinStatic		4	0.523	-0.18	0	0	0
Story1	B7	30	Dead	LinStatic		6	0.523	-0.06	0	0	0
Story1	B7	30	Dead	LinStatic		8	0.523	0.06	0	0	0
Story1	B7	30	Dead	LinStatic		10	0.523	0.18	0	0	0
Story1	B7	30	Dead	LinStatic		12	0.523	0.3	0	0	0
Story1	B7	30	Dead	LinStatic		14	0.523	0.42	0	0	0
Story1	B7	30	Roof Live	LinStatic		0	0.949	-0.651	0	0	0
Story1	B7	30	Roof Live	LinStatic		2	0.949	-0.465	0	0	0
Story1	B7	30	Roof Live	LinStatic		4	0.949	-0.279	0	0	0
Story1	B7	30	Roof Live	LinStatic		6	0.949	-0.093	0	0	0
Story1	B7	30	Roof Live	LinStatic		8	0.949	0.093	0	0	0
Story1	B7	30	Roof Live	LinStatic		10	0.949	0.279	0	0	0
Story1	B7	30	Roof Live	LinStatic		12	0.949	0.465	0	0	0
Story1	B7	30	Roof Live	LinStatic		14	0.949	0.651	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		0	0.003	0	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		2	0.003	0	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		4	0.003	0	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		6	0.003	0	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		8	0.003	0	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		10	0.003	0	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		12	0.003	0	0	0	0
Story1	B7	30	Lateral (N-S)	LinStatic		14	0.003	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		0	-0.674	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		2	-0.674	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		4	-0.674	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		6	-0.674	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		8	-0.674	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		10	-0.674	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		12	-0.674	0	0	0	0
Story1	B7	30	Lateral (E-W)	LinStatic		14	-0.674	0	0	0	0
Story1	B7	30	Envelope	Combination	Max	0	2.146	-0.306	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B7	30	Envelope	Combination	Max	2	2.146	-0.219	0	0	0
Story1	B7	30	Envelope	Combination	Max	4	2.146	-0.131	0	0	0
Story1	B7	30	Envelope	Combination	Max	6	2.146	-0.044	0	0	0
Story1	B7	30	Envelope	Combination	Max	8	2.146	0.221	0	0	0
Story1	B7	30	Envelope	Combination	Max	10	2.146	0.662	0	0	0
Story1	B7	30	Envelope	Combination	Max	12	2.146	1.104	0	0	0
Story1	B7	30	Envelope	Combination	Max	14	2.146	1.546	0	0	0
Story1	B7	30	Envelope	Combination	Min	0	-0.293	-1.546	0	0	0
Story1	B7	30	Envelope	Combination	Min	2	-0.293	-1.104	0	0	0
Story1	B7	30	Envelope	Combination	Min	4	-0.293	-0.662	0	0	0
Story1	B7	30	Envelope	Combination	Min	6	-0.293	-0.221	0	0	0
Story1	B7	30	Envelope	Combination	Min	8	-0.293	0.044	0	0	0
Story1	B7	30	Envelope	Combination	Min	10	-0.293	0.131	0	0	0
Story1	B7	30	Envelope	Combination	Min	12	-0.293	0.219	0	0	0
Story1	B7	30	Envelope	Combination	Min	14	-0.293	0.306	0	0	0
Story1	B8	31	Dead	LinStatic		0	0.523	-0.42	0	0	0
Story1	B8	31	Dead	LinStatic		2	0.523	-0.3	0	0	0
Story1	B8	31	Dead	LinStatic		4	0.523	-0.18	0	0	0
Story1	B8	31	Dead	LinStatic		6	0.523	-0.06	0	0	0
Story1	B8	31	Dead	LinStatic		8	0.523	0.06	0	0	0
Story1	B8	31	Dead	LinStatic		10	0.523	0.18	0	0	0
Story1	B8	31	Dead	LinStatic		12	0.523	0.3	0	0	0
Story1	B8	31	Dead	LinStatic		14	0.523	0.42	0	0	0
Story1	B8	31	Roof Live	LinStatic		0	0.949	-0.651	0	0	0
Story1	B8	31	Roof Live	LinStatic		2	0.949	-0.465	0	0	0
Story1	B8	31	Roof Live	LinStatic		4	0.949	-0.279	0	0	0
Story1	B8	31	Roof Live	LinStatic		6	0.949	-0.093	0	0	0
Story1	B8	31	Roof Live	LinStatic		8	0.949	0.093	0	0	0
Story1	B8	31	Roof Live	LinStatic		10	0.949	0.279	0	0	0
Story1	B8	31	Roof Live	LinStatic		12	0.949	0.465	0	0	0
Story1	B8	31	Roof Live	LinStatic		14	0.949	0.651	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		0	0.003	0	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		2	0.003	0	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		4	0.003	0	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		6	0.003	0	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		8	0.003	0	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		10	0.003	0	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		12	0.003	0	0	0	0
Story1	B8	31	Lateral (N-S)	LinStatic		14	0.003	0	0	0	0
Story1	B8	31	Lateral (E-W)	LinStatic		0	0.679	0	0	0	0
Story1	B8	31	Lateral (E-W)	LinStatic		2	0.679	0	0	0	0
Story1	B8	31	Lateral (E-W)	LinStatic		4	0.679	0	0	0	0
Story1	B8	31	Lateral (E-W)	LinStatic		6	0.679	0	0	0	0
Story1	B8	31	Lateral (E-W)	LinStatic		8	0.679	0	0	0	0
Story1	B8	31	Lateral (E-W)	LinStatic		10	0.679	0	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	В8	31	Lateral (E-W)	LinStatic		12	0.679	0	0	0	0
Story1	B8	31	Lateral (E-W)	LinStatic		14	0.679	0	0	0	0
Story1	B8	31	Envelope	Combination	Max	0	2.146	-0.306	0	0	0
Story1	B8	31	Envelope	Combination	Max	2	2.146	-0.219	0	0	0
Story1	B8	31	Envelope	Combination	Max	4	2.146	-0.131	0	0	0
Story1	B8	31	Envelope	Combination	Max	6	2.146	-0.044	0	0	0
Story1	B8	31	Envelope	Combination	Max	8	2.146	0.221	0	0	0
Story1	B8	31	Envelope	Combination	Max	10	2.146	0.662	0	0	0
Story1	B8	31	Envelope	Combination	Max	12	2.146	1.104	0	0	0
Story1	B8	31	Envelope	Combination	Max	14	2.146	1.546	0	0	0
Story1	B8	31	Envelope	Combination	Min	0	-0.298	-1.546	0	0	0
Story1	B8	31	Envelope	Combination	Min	2	-0.298	-1.104	0	0	0
Story1	B8	31	Envelope	Combination	Min	4	-0.298	-0.662	0	0	0
Story1	B8	31	Envelope	Combination	Min	6	-0.298	-0.221	0	0	0
Story1	B8	31	Envelope	Combination	Min	8	-0.298	0.044	0	0	0
Story1	B8	31	Envelope	Combination	Min	10	-0.298	0.131	0	0	0
Story1	B8	31	Envelope	Combination	Min	12	-0.298	0.219	0	0	0
Story1	B8	31	Envelope	Combination	Min	14	-0.298	0.306	0	0	0
Story1	B9	32	Dead	LinStatic		0	0.537	-0.42	0	0	0
Story1	B9	32	Dead	LinStatic		2	0.537	-0.3	0	0	0
Story1	B9	32	Dead	LinStatic		4	0.537	-0.18	0	0	0
Story1	B9	32	Dead	LinStatic		6	0.537	-0.06	0	0	0
Story1	B9	32	Dead	LinStatic		8	0.537	0.06	0	0	0
Story1	B9	32	Dead	LinStatic		10	0.537	0.18	0	0	0
Story1	B9	32	Dead	LinStatic		12	0.537	0.3	0	0	0
Story1	B9	32	Dead	LinStatic		14	0.537	0.42	0	0	0
Story1	B9	32	Roof Live	LinStatic		0	0.974	-0.651	0	0	0
Story1	B9	32	Roof Live	LinStatic		2	0.974	-0.465	0	0	0
Story1	B9	32	Roof Live	LinStatic		4	0.974	-0.279	0	0	0
Story1	B9	32	Roof Live	LinStatic		6	0.974	-0.093	0	0	0
Story1	B9 B9	32 32	Roof Live Roof Live	LinStatic LinStatic		8 10	0.974 0.974	0.093 0.279	0	0	0
Story1	B9	32	Roof Live	LinStatic		12	0.974	0.279	0	0	0
Story1	B9	32	Roof Live	LinStatic		14	0.974	0.465	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		0	0.003	0.031	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		2	0.003	0	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		4	0.003	0	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		6	0.003	0	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		8	0.003	0	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		10	0.003	0	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		12	0.003	0	0	0	0
Story1	B9	32	Lateral (N-S)	LinStatic		14	0.003	0	0	0	0
Story1	B9	32	Lateral (R-W)	LinStatic		0	-0.34	0	0	0	0
Story1	B9	32	Lateral (E-W)	LinStatic		2	-0.34	0	0	0	0
Story1	B9	32	Lateral (E-W)	LinStatic		4	-0.34	0	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	В9	32	Lateral (E-W)	LinStatic		6	-0.34	0	0	0	0
Story1	В9	32	Lateral (E-W)	LinStatic		8	-0.34	0	0	0	0
Story1	В9	32	Lateral (E-W)	LinStatic		10	-0.34	0	0	0	0
Story1	B9	32	Lateral (E-W)	LinStatic		12	-0.34	0	0	0	0
Story1	В9	32	Lateral (E-W)	LinStatic		14	-0.34	0	0	0	0
Story1	В9	32	Envelope	Combination	Max	0	2.203	-0.306	0	0	0
Story1	В9	32	Envelope	Combination	Max	2	2.203	-0.219	0	0	0
Story1	В9	32	Envelope	Combination	Max	4	2.203	-0.131	0	0	0
Story1	B9	32	Envelope	Combination	Max	6	2.203	-0.044	0	0	0
Story1	B9	32	Envelope	Combination	Max	8	2.203	0.221	0	0	0
Story1	B9	32	Envelope	Combination	Max	10	2.203	0.662	0	0	0
Story1	B9	32	Envelope	Combination	Max	12	2.203	1.104	0	0	0
Story1	B9	32	Envelope	Combination	Max	14	2.203	1.546	0	0	0
Story1	B9	32	Envelope	Combination	Min	0	0.051	-1.546	0	0	0
Story1	B9	32	Envelope	Combination	Min	2	0.051	-1.104	0	0	0
Story1	B9	32	Envelope	Combination	Min	4	0.051	-0.662	0	0	0
Story1	B9	32	Envelope	Combination	Min	6	0.051	-0.221	0	0	0
Story1	B9	32	Envelope	Combination	Min	8	0.051	0.044	0	0	0
Story1	B9	32	Envelope	Combination	Min	10	0.051	0.131	0	0	0
Story1	B9	32	Envelope	Combination	Min	12	0.051	0.219	0	0	0
Story1	B9	32	Envelope	Combination	Min	14	0.051	0.306	0	0	0
Story1	B10	24	Dead	LinStatic		0.6667	-1.136	-3.429	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		2.5972	-1.136	-2.857	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		4.5278	-1.136	-2.286	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		6.4583	-1.136	-1.715	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		8.3889	-1.136	-1.143	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		10.3194	-1.136	-0.572	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		12.25	-1.136	-0.0001741	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		14.1806	-1.136	0.571	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		16.1111	-1.136	1.143	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		18.0417	-1.136	1.714	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		19.9722	-1.136	2.286	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		21.9028	-1.136	2.857	0	-0.0031	0
Story1	B10	24	Dead	LinStatic		23.8333	-1.136	3.428	0	-0.0031	0
Story1	B10	24	Roof Live	LinStatic		0.6667	-1.258	-3.799	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		2.5972	-1.258	-3.166	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		4.5278	-1.258	-2.533	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		6.4583	-1.258	-1.9	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		8.3889	-1.258	-1.266	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		10.3194	-1.258	-0.633	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		12.25	-1.258	8.8E-05	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		14.1806	-1.258	0.633	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		16.1111	-1.258	1.267	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		18.0417	-1.258	1.9	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		19.9722	-1.258	2.533	0	-0.0035	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B10	24	Roof Live	LinStatic		21.9028	-1.258	3.166	0	-0.0035	0
Story1	B10	24	Roof Live	LinStatic		23.8333	-1.258	3.799	0	-0.0035	0
Story1	B10	24	Lateral (N-S)	LinStatic		0.6667	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		2.5972	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		4.5278	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		6.4583	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		8.3889	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		10.3194	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		12.25	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		14.1806	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		16.1111	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		18.0417	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		19.9722	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		21.9028	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (N-S)	LinStatic		23.8333	0.128	0.801	0	-0.0001	0
Story1	B10	24	Lateral (E-W)	LinStatic		0.6667	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		2.5972	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		4.5278	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		6.4583	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		8.3889	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		10.3194	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		12.25	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		14.1806	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		16.1111	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		18.0417	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		19.9722	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		21.9028	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Lateral (E-W)	LinStatic		23.8333	0	1.351E-05	0	-0.2828	0
Story1	B10	24	Envelope	Combination	Max	0.6667	-0.699	-1.696	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	2.5972	-0.699	-1.28	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	4.5278	-0.699	-0.864	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	6.4583	-0.699	-0.448	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	8.3889	-0.699	-0.031	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	10.3194	-0.699	0.385	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	12.25	-0.699	0.801	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	14.1806	-0.699	1.699	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	16.1111	-0.699	3.398	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	18.0417	-0.699	5.097	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	19.9722	-0.699	6.795	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	21.9028	-0.699	8.494	0	0.2805	0
Story1	B10	24	Envelope	Combination	Max	23.8333	-0.699	10.193	0	0.2805	0
Story1	B10	24	Envelope	Combination	Min	0.6667	-3.376	-10.193	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	2.5972	-3.376	-8.495	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	4.5278	-3.376	-6.796	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	6.4583	-3.376	-5.097	0	-0.287	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B10	24	Envelope	Combination	Min	8.3889	-3.376	-3.398	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	10.3194	-3.376	-1.699	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	12.25	-3.376	-0.802	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	14.1806	-3.376	-0.385	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	16.1111	-3.376	0.031	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	18.0417	-3.376	0.447	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	19.9722	-3.376	0.864	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	21.9028	-3.376	1.28	0	-0.287	0
Story1	B10	24	Envelope	Combination	Min	23.8333	-3.376	1.696	0	-0.287	0

Table 5.4 - Element Forces - Beams (Part 2 of 2)

M3 kip-ft	Element	Elem Station ft	Location
0.1473	19-1	0.6667	
0.3861	19-1	2.2708	
0.2442	19-1	3.875	
-0.2787	19-1	5.4792	
-1.1824	19-1	7.0833	
-1.1824	19-2	0	
-0.0855	19-2	1.7222	
0.5724	19-2	3.4444	
0.7913	19-2	5.1667	
0.5712	19-2	6.8889	
-0.0878	19-2	8.6111	
-1.1858	19-2	10.3333	
-1.1858	19-3	0	
-0.2807	19-3	1.6042	
0.2434	19-3	3.2083	
0.3868	19-3	4.8125	
0.1492	19-3	6.4167	
0.177	19-1	0.6667	
0.4351	19-1	2.2708	
0.2711	19-1	3.875	
-0.3149	19-1	5.4792	
-1.3229	19-1	7.0833	
-1.3229	19-2	0	
-0.105	19-2	1.7222	
0.6265	19-2	3.4444	
0.8715	19-2	5.1667	
0.6301	19-2	6.8889	
-0.0977	19-2	8.6111	
-1.3119	19-2	10.3333	
-1.3119	19-3	0	
-0.3084	19-3	1.6042	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0.273	19-3	3.2083	
0.4325	19-3	4.8125	
0.1699	19-3	6.4167	
8.3227	19-1	0.6667	
5.6012	19-1	2.2708	
2.8797	19-1	3.875	
0.1583	19-1	5.4792	
-2.5632	19-1	7.0833	
-2.5632	19-2	0	
-1.7088	19-2	1.7222	
-0.8544	19-2	3.4444	
0.0001	19-2	5.1667	
0.8545	19-2	6.8889	
1.709	19-2	8.6111	
2.5634	19-2	10.3333	
2.5634 -0.1584	19-3 19-3	1.6042	
-2.8801	19-3	3 2083	
-5.6019	19-3	4.8125	
-8.3237	19-3	6.4167	
-0.0058	19-1	0.6667	
-0.0035	19-1	2.2708	
-0.0012	19-1	3,875	
0.0011	19-1	5.4792	
0.0034	19-1	7.0833	
0.0034	19-2	0	
0.0034	19-2	1.7222	
0.0034	19-2	3.4444	
0.0033	19-2	5.1667	
0.0033	19-2	6.8889	
0.0033	19-2	8.6111	
0.0032	19-2	10.3333	
0.0032	19-3	0	
0.001	19-3	1.6042	
-0.0012	19-3	3.2083	
-0.0034	19-3	4.8125	
-0.0057	19-3	6.4167	
8.5247	19-1	0.6667	
6.1309	19-1	2.2708	
3.2146	19-1	3.875	
-0.0447	19-1	5.4792	
1.702	19-1	7.0833	
1.702	19-2	1 7222	
1.6465	19-2	1.7222	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
1.6892	19-2	3.4444	
2.344	19-2	5.1667	
1.6937	19-2	6.8889	
1.645	19-2	8.6111	
1.6997	19-2	10.3333	
1.6997	19-3	0	
-0.0461	19-3	1.6042	
3.214	19-3	3.2083	
6.1324	19-3	4.8125	
8.5284	19-3	6.4167	
-8.2154	19-1	0.6667	
-5.32	19-1	2.2708	
-2.7019	19-1	3.875	
-0.8383	19-1	5.4792	
-4.185	19-1	7.0833	
-4.185	19-2	0	
-1.8261	19-2	1.7222	
-0.4374	19-2	3.4444	
0.573	19-2	5.1667	
-0.4384	19-2	6.8889	
-1.8294	19-2	8.6111	
-4.1898	19-2	10.3333	
-4.1898	19-3	0	
-0.8304	19-3	1.6042	
-2.7028	19-3	3.2083	
-5.3202	19-3	4.8125	
-8.215	19-3	6.4167	
-2.9838	9	0.9167	
-0.2647	9	2.7262	
1.4983	9	4.5357	
2.3052	9	6.3452	
2.1559	9	8.1548	
1.0506	9	9.9643	
-1.0109 -4.0285	9	11.7738 13.5833	
-3.3201	9	0.9167	
-0.2942	9	2,7262	
1.6676	9	4.5357	
2.5652	9	6.3452	
2.3987	9	8.1548	
1.1679	9	9.9643	
-1.127	9	11.7738	
-4.486	9	13.5833	
0.0078	9	0.9167	
0.0070	9	0.0107	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0.0051	9	2.7262	
0.0023	9	4.5357	
-0.0004	9	6.3452	
-0.0031	9	8.1548	
-0.0058	9	9.9643	
-0.0086	9	11.7738	
-0.0113	9	13.5833	
4.728	9	0.9167	
3.9951	9	2.7262	
3.2623	9	4.5357	
2.5294	9	6.3452	
1.7966	9	8.1548	
1.0637	9	9.9643	
0.3309	9	11.7738	
-0.4019	9	13.5833	
2.5545	9	0.9167	
3.8023	9	2.7262	
5.3173	9	4.5357	
6.8706	9	6.3452	
6.425	9	8.1548	
3.1294	9	9.9643	
-0.4054	9	11.7738	
-2.5324	9	13.5833	
-8.8928	9	0.9167	
-4.3582	9	2.7262	
-2.1709	9	4.5357	
-0.8504	9	6.3452	
-0.2262	9	8.1548	
-0.2985	9	9.9643	
-3.0162	9	11.7738	
-12.0119	9	13.5833	
-4.0409	8	0.4167	
-1.0219	8	2.2262	
1.0409	8	4.0357	
2.1476	8	5.8452	
2.2982	8	7.6548	
1.4926	8	9.4643	
-0.269	8	11.2738	
-2.9868	8	13.0833	
-4.5	8	0.4167	
-1.1394	8	2.2262	
1.157	8	4.0357	
2.3893	8	5.8452	
2.5573	8	7.6548	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
1.6613	8	9.4643	
-0.299	8	11.2738	
-3.3234	8	13.0833	
-0.0114	8	0.4167	
-0.0087	8	2.2262	
-0.006	8	4.0357	
-0.0032	8	5.8452	
-0.0005	8	7.6548	
0.0022	8	9.4643	
0.005	8	11.2738	
0.0077	8	13.0833	
-0.1282	8	0.4167	
-0.7537	8	2.2262	
-1.3791	8	4.0357	
-2.0046 -2.6301	8	5.8452	
-3.2556	8	7.6548 9.4643	
-3.2556	8	11.2738	
-4.5065	8	13.0833	
-2.8152	8	0.4167	
0.0093	8	2.2262	
3.1003	8	4.0357	
6.3999	8	5.8452	
6.8496	8	7.6548	
5.3029	8	9.4643	
3.6851	8	11.2738	
2.331	8	13.0833	
-12.0491	8	0.4167	
-3.0494	8	2.2262	
-0.621	8	4.0357	
-0.4403	8	5.8452	
-0.9561	8	7.6548	
-2.1683	8	9.4643	
-4.25	8	11.2738	
-8.9016	8	13.0833	
-2.4266	14	0.4167	
-0.6156	14	2.2262	
0.6223	14	4.0357	
1.2873	14	5.8452	
1.3792	14	7.6548	
0.8981	14	9.4643	
-0.156	14	11.2738	
-1.7832	14	13.0833	
-4.4916	14	0.4167	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
-1.1327	14	2.2262	
1.162	14	4.0357	
2.3926	14	5.8452	
2.5589	14	7.6548	
1.6612	14	9.4643	
-0.3008	14	11.2738	
-3.3269	14	13.0833	
0.0113	14	0.4167	
0.0086	14	2.2262	
0.0059	14	4.0357	
0.0031	14	5.8452	
0.0004	14	7.6548	
-0.0023	14	9.4643	
-0.005	14	11.2738	
-0.0077	14	13.0833	
0.2345	14	0.4167	
-0.418	14	2.2262	
-1.0704	14	4.0357	
-1.7229	14	5.8452	
-2.3753	14	7.6548	
-3.0278	14	9.4643	
-3.6802	14	11.2738	
-4.3327	14	13.0833	
-1.5331	14	0.4167	
-0.0304	14	2.2262	
2.606	14	4.0357	
5.3728	14	5.8452	
5.7493	14	7.6548	
4.2596	14	9.4643	
3.5666	14	11.2738	
3.0338	14	13.0833	
-10.0985	14	0.4167	
-2.5511	14	2.2262	
-0.6171	14	4.0357	
-0.7852	14	5.8452	
-1.3707	14	7.6548	
-2.3736	14	9.4643	
-3.8943	14	11.2738	
-7.4629	14	13.0833	
-1.7821	15	0.9167	
-0.1551	15	2.7262	
0.8988	15	4.5357	
1.3798	15	6.3452	
1.2877	15	8.1548	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0.6226	15	9.9643	
-0.6155	15	11.7738	
-2.4266	15	13.5833	
-3.3257	15	0.9167	
-0.2997	15	2.7262	
1.662	15	4.5357	
2.5596	15	6.3452	
2.3931	15	8.1548	
1.1623	15	9.9643	
-1.1326	15	11.7738	
-4.4917	15	13.5833	
-0.0077	15	0.9167	
-0.005	15	2.7262	
-0.0023	15	4.5357	
0.0004	15	6.3452	
0.0031	15	8.1548	
0.0059	15	9.9643	
0.0086	15	11.7738	
0.0113	15	13.5833	
4.3329	15	0.9167	
3.6804	15	2.7262	
3.0278	15	4.5357	
2.3752	15	6.3452	
1.7226	15	8.1548	
1.07	15	9.9643	
0.4174	15	11.7738	
-0.2351	15	13.5833	
3.0349	15	0.9167	
3.5674	15	2.7262	
4.2606	15	4.5357	
5.7511	15	6.3452	
5.3741	15	8.1548	
2.6069	15	9.9643	
-0.0309	15	11.7738	
-1.5324	15	13.5833	
-7.4596	15	0.9167	
-3.8931	15	2.7262	
-2.3731	15	4.5357	
-1.3702	15	6.3452	
-0.7846	15	8.1548	
-0.6165	15	9.9643	
-2.5507	15	11.7738	
-10.0986	15	13.5833	
0.1473	25-1	0.6667	

M3 kip-ft	Element	Elem Station ft	Location
0.3861	25-1	2.2708	
0.2442	25-1	3.875	
-0.2787	25-1	5.4792	
-1.1824	25-1	7.0833	
-1.1824	25-2	0	
-0.0855	25-2	1.7222	
0.5724	25-2	3.4444	
0.7913	25-2	5.1667	
0.5713	25-2	6.8889	
-0.0878	25-2	8.6111	
-1.1858	25-2	10.3333	
-1.1858	25-3	0	
-0.2807	25-3	1.6042	
0.2434	25-3	3.2083	
0.3868	25-3	4.8125	
0.1492	25-3	6.4167	
0.177	25-1	0.6667	
0.4351	25-1	2.2708	
0.2711	25-1	3.875	
-0.3149	25-1	5.4792	
-1.3229	25-1	7.0833	
-1.3229	25-2	0	
-0.105	25-2	1.7222	
0.6265	25-2	3.4444	
0.8715	25-2	5.1667	
0.6301	25-2	6.8889	
-0.0977	25-2	8.6111	
-1.3119	25-2	10.3333	
-1.3119	25-3	0	
-0.3084	25-3	1.6042	
0.273	25-3	3.2083	
0.4325	25-3	4.8125	
0.1699	25-3	6.4167	
8.3227	25-1	0.6667	
5.6012	25-1	2.2708	
2.8797	25-1	3.875	
0.1583	25-1	5.4792	
-2.5632	25-1	7.0833	
-2.5632	25-2	0	
-1.7088	25-2	1.7222	
-0.8544	25-2	3.4444	
0.0001	25-2	5.1667	
0.8545	25-2	6.8889	
1.709	25-2	8.6111	

124

Elem **M**3 **Element Station Location** kip-ft ft 2.5634 25-2 10.3333 2.5634 25-3 0 -0.1584 25-3 1.6042 -2.8801 25-3 3.2083 -5.6019 25-3 4.8125 -8.3237 25-3 6.4167 0.0059 0.6667 25-1 0.0036 25-1 2.2708 0.0013 25-1 3.875 -0.001 25-1 5.4792 -0.0033 25-1 7.0833 0 -0.0033 25-2 -0.0034 25-2 1.7222 25-2 -0.0035 3.4444 -0.0036 25-2 5.1667 25-2 -0.0037 6.8889 -0.0038 25-2 8.6111 -0.0039 25-2 10.3333 -0.0039 25-3 0 -0.0013 25-3 1.6042 0.0012 25-3 3.2083 0.0038 25-3 4.8125 0.0064 25-3 6.4167 8.5247 25-1 0.6667 6.1309 25-1 2.2708 3.2146 25-1 3.875 -0.0447 25-1 5.4792 1.702 25-1 7.0833 1.702 25-2 0 1.6465 25-2 1.7222 1.6892 25-2 3.4444 2.344 25-2 5.1667 1.6937 25-2 6.8889 1.645 25-2 8.6111 1.6997 25-2 10.3333 0 1.6997 25-3 -0.0461 25-3 1.6042 25-3 3.214 3.2083 6.1324 25-3 4.8125 8.5284 25-3 6.4167

25-1

25-1

25-1

25-1

0.6667

2.2708

3.875

5.4792

-8.2154

-5.32

-2.7019

-0.8383

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
-4.185	25-1	7.0833	
-4.185	25-2	0	
-1.8261	25-2	1.7222	
-0.4374	25-2	3.4444	
0.5728	25-2	5.1667	
-0.4384	25-2	6.8889	
-1.8294	25-2	8.6111	
-4.1898	25-2	10.3333	
-4.1898	25-3	0	
-0.8304	25-3	1.6042	
-2.7028	25-3	3.2083	
-5.3202	25-3	4.8125	
-8.215	25-3	6.4167	
-3.071	1	0.6667	
-0.2252	1	2.5119	
1.6264	1	4.3571	
2.4837	1	6.2024	
2.3467	1	8.0476	
1.2156	1	9.8929	
-0.9098	1	11.7381	
-4.0294	1	13.5833	
-3.4098	1	0.6667	
-0.2439	1	2.5119	
1.8154	1	4.3571	
2.7681 2.6142	1	6.2024 8.0476	
1.3537	1	9.8929	
-1.0134	1	11.7381	
-4.4871	1	13.5833	
0.0129	1	0.6667	
0.0095	1	2.5119	
0.006	1	4.3571	
0.0026	1	6.2024	
-0.0009	1	8.0476	
-0.0043	1	9.8929	
-0.0078	1	11.7381	
-0.0113	1	13.5833	
4.5377	1	0.6667	
3.9119	1	2.5119	
3.2861	1	4.3571	
2.6603	1	6.2024	
2.0345	1	8.0476	
1.4087	1	9.8929	
0.7829	1	11.7381	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0.1571	1	13.5833	
2.3008	1	0.6667	
3.7479	1	2.5119	
5.5168	1	4.3571	
7.4093	1	6.2024	
6.9988	1	8.0476	
3.6246	1	9.8929	
0.1202	1	11.7381	
-2.7779	1	13.5833	
-9.1408	1	0.6667	
-4.2208	1	2.5119	
-2.1015	1	4.3571	
-0.8512	1	6.2024	
-0.3252	1	8.0476	
-0.5233	1	9.8929	
-2.7132	1	11.7381	
-12.0146	1	13.5833	
-4.0418	3	0.4167	
-0.9208	3	2.2619	
1.206	3	4.1071	
2.3385	3	5.9524	
2.4768	3	7.7976	
1.6208	3	9.6429	
-0.2293 -3.0737	3	11.4881 13.3333	
-3.0737 -4.5011	3	0.4167	
-4.5011	3	2.2619	
1.3428	3	4,1071	
2.6049	3	5.9524	
2.7603	3	7.7976	
1.8092	3	9.6429	
-0.2486	3	11.4881	
-3.4129	3	13.3333	
-0.0114	3	0.4167	
-0.0079	3	2.2619	
-0.0045	3	4.1071	
-0.001	3	5.9524	
0.0025	3	7.7976	
0.0059	3	9.6429	
0.0094	3	11.4881	
0.0129	3	13.3333	
0.3397	3	0.4167	
-0.381	3	2.2619	
-1.1017	3	4.1071	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
-1.8224	3	5.9524	
-2.5431	3	7.7976	
-3.2638	3	9.6429	
-3.9845	3	11.4881	
-4.7051	3	13.3333	
-2.6043	3	0.4167	
-0.2897	3	2.2619	
3.5957	3	4.1071	
6.974	3	5.9524	
7.3886	3	7.7976	
5.4869	3	9.6429	
3.8174	3	11.4881	
2.4662	3	13.3333	
-12.0518	3	0.4167	
-2.7463	3	2.2619	
-0.2232 -0.119	3	4.1071	
-0.119	3	5.9524	
-0.739	3	7.7976 9.6429	
-4.299	3	11.4881	
-4.299 -9.1491	3	13.3333	
-1.8144	17	0.6667	
-0.1146	17	2.5119	
0.9894	17	4.3571	
1.4975	17	6.2024	
1.4097	17	8.0476	
0.7261	17	9.8929	
-0.5534	17	11.7381	
-2.4287	17	13.5833	
-3.3896	17	0.6667	
-0.2278	17	2.5119	
1.8274	17	4.3571	
2.776	17	6.2024	
2.618	17	8.0476	
1.3534	17	9.8929	
-1.0178	17	11.7381	
-4.4955	17	13.5833	
-0.0128	17	0.6667	
-0.0094	17	2.5119	
-0.0059	17	4.3571	
-0.0025	17	6.2024	
0.001	17	8.0476	
0.0044	17	9.8929	
0.0079	17	11.7381	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0.0113	17	13.5833	
4.3394	17	0.6667	
3,6921	17	2.5119	
3.0447	17	4.3571	
2.3974	17	6.2024	
1.75	17	8.0476	
1.1027	17	9.8929	
0.4554	17	11.7381	
-0.192	17	13.5833	
3.0178	17	0.6667	
3.6086	17	2.5119	
4.4018	17	4.3571	
6.2385	17	6.2024	
5.8804	17	8.0476	
3.0368	17	9.8929	
0.0523	17	11.7381	
-1.5771	17	13.5833	
-7.6007	17	0.6667	
-3.8492	17	2.5119	
-2.324	17	4.3571	
-1.3066	17	6.2024	
-0.7232	17	8.0476	
-0.5738	17	9.8929	
-2.2925	17	11.7381	
-10.1073 -2.4286	17 18	13.5833 0.4167	
-0.5535	18	2.2619	
0.7258	18	4,1071	
1.4092	18	5.9524	
1.4968	18	7.7976	
0.9885	18	9.6429	
-0.1156	18	11.4881	
-1.8156	18	13.3333	
-4.4954	18	0.4167	
-1.0179	18	2.2619	
1.3531	18	4.1071	
2.6175	18	5.9524	
2.7752	18	7.7976	
1.8264	18	9.6429	
-0.229	18	11.4881	
-3.391	18	13.3333	
0.0113	18	0.4167	
0.0079	18	2.2619	
0.0044	18	4.1071	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0.001	18	5.9524	
-0.0025	18	7.7976	
-0.0059	18	9.6429	
-0.0094	18	11.4881	
-0.0128	18	13.3333	
0.1913	18	0.4167	
-0.4556	18	2.2619	
-1.1025	18	4.1071	
-1.7493	18	5.9524	
-2.3962	18	7.7976	
-3.0431	18	9.6429	
-3.69	18	11.4881	
-4.3368	18	13.3333	
-1.5777	18	0.4167	
0.0524	18	2.2619	
3.0359	18	4.1071	
5.879	18	5.9524	
6.2366	18	7.7976	
4.399	18	9.6429	
3.6058	18	11.4881	
3.0144	18	13.3333	
-10.1071	18	0.4167	
-2.2928	18	2.2619	
-0.5738	18	4.1071	
-0.7229	18 18	5.9524	
-1.3059 -2.323	18	7.7976 9.6429	
-2.323 -3.8485	18	11,4881	
-7.6043	18	13.3333	
0	10	0	
0	10	2	
0	10	4	
0	10	6	
0	10	8	
0	10	10	
0	10	12	
0	10	14	
0	10	0	
0	10	2	
0	10	4	
0	10	6	
0	10	8	
0	10	10	
0	10	12	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0	10	14	
0	10	0	
0	10	2	
0	10	4	
0	10	6	
0	10	8	
0	10	10	
0	10	12 14	
0	10 10	0	
0	10	2	
0	10	4	
0	10	6	
0	10	8	
0	10	10	
0	10	12	
0	10	14	
0	10	0	
0	10	2	
0	10	4	
0	10	6	
0	10	8	
0	10	10	
0	10	12	
0	10 10	14 0	
0	10	2	
0	10	4	
0	10	6	
0	10	8	
0	10	10	
0	10	12	
0	10	14	
0	11	0	
0	11	2	
0	11	4	
0	11	6	
0	11	8	
0	11	10	
0	11 11	12 14	
0	11	0	
0	11	2	
0	11	4	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0	11	6	
0	11	8	
0	11	10	
0	11	12	
0	11	14	
0	11	0	
0	11	2	
0	11 11	4	
0	11	6 8	
0	11	10	
0	11	12	
0	11	14	
0	11	0	
0	11	2	
0	11	4	
0	11	6	
0	11	8	
0	11	10	
0	11	12	
0	11	14	
0	11	0	
0	11	2	
0	11	4	
0	11 11	6 8	
0	11	10	
0	11	12	
0	11	14	
0	11	0	
0	11	2	
0	11	4	
0	11	6	
0	11	8	
0	11	10	
0	11	12	
0	11	14	
0	2	0	
0	2	2	
0	2	4 6	
0	2	8	
0	2	10	
0	2	12	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0	2	14	
0	2	0	
0	2	2	
0	2	4	
0	2	6	
0	2	8	
0	2 2	10 12	
0	2	14	
0	2	0	
0	2	2	
0	2	4	
0	2	6	
0	2	8	
0	2	10	
0	2	12	
0	2	14	
0	2	0	
0	2	2	
0	2	4	
0	2	6 8	
0	2	10	
0	2	12	
0	2	14	
0	2	0	
0	2	2	
0	2	4	
0	2	6	
0	2	8	
0	2	10	
0	2	12	
0	2	14	
0	2	0	
0	2	2	
0	2	6	
0	2	8	
0	2	10	
0	2	12	
0	2	14	
0	4	0	
0	4	2	
0	4	4	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0	4	6	
0	4	8	
0	4	10	
0	4	12	
0	4	14	
0	4	0	
0	4	2	
0	4	4	
0	4	6	
0	4	8	
0	4	10	
0	4	12	
0	4	14	
0	4	0	
0	4	2	
0	4	4	
0	4	6	
0	4	8	
0	4	10	
0	4	12 14	
0	4	0	
0	4	2	
0	4	4	
0	4	6	
0	4	8	
0	4	10	
0	4	12	
0	4	14	
0	4	0	
0	4	2	
0	4	4	
0	4	6	
0	4	8	
0	4	10	
0	4	12	
0	4	14	
0	4	0	
0	4	2	
0	4	4	
0	4	6	
0	4	8	
0	4	10	
0	4	12	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0	4	14	
0	29	0	
0.72	29	2	
1.2	29	4	
1.44	29	6	
1.44	29	8	
1.2	29	10	
0.72	29	12	
0	29	14	
0	29	0	
1.116	29	2	
1.86	29	4	
2.232	29	6	
2.232	29	8	
1.86	29	10	
1.116	29	12	
0	29	14	
0	29	0	
0	29 29	2	
0	29	6	
0	29	8	
0	29	10	
0	29	12	
0	29	14	
0	29	0	
0	29	2	
0	29	4	
0	29	6	
0	29	8	
0	29	10	
0	29	12	
0	29	14	
0	29	0	
2.6496	29	2	
4.416	29	4	
5.2992	29	6	
5.2992	29	8	
4.416	29	10	
2.6496	29	12	
0	29	14	
0	29	0	
0.5244	29	2	
0.8741	29	4	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
1.0489	29	6	
1.0489	29	8	
0.8741	29	10	
0.5244	29	12	
0	29	14	
0	30	0	
0.72	30	2	
1.2	30	4	
1.44	30	6	
1.44	30	8	
1.2	30	10	
0.72	30	12	
0	30	14	
0	30	0	
1.116	30	2	
1.86	30	4	
2.232	30	6	
2.232	30	8	
1.86	30	10	
1.116	30	12	
0	30	14	
0	30	0	
0	30	2	
0	30	4	
0	30	6	
0	30	8	
0	30	10 12	
0	30 30	14	
0	30	0	
0	30	2	
0	30	4	
0	30	6	
0	30	8	
0	30	10	
0	30	12	
0	30	14	
0	30	0	
2,6496	30	2	
4.416	30	4	
5.2992	30	6	
5.2992	30	8	
4.416	30	10	
2.6496	30	12	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

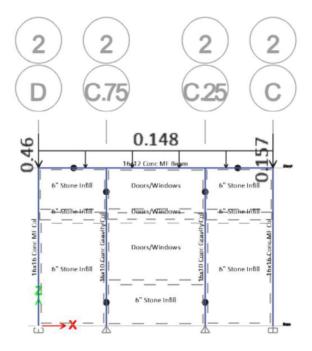
M3 kip-ft	Element	Elem Station ft	Location
0	30	14	
0	30	0	
0.5244	30	2	
0.8741	30	4	
1.0489	30	6	
1.0489	30	8	
0.8741	30	10	
0.5244	30	12	
0	30	14	
0	31	0	
0.72	31	2	
1.2	31	4	
1.44	31	6	
1.44	31	8	
1.2	31	10	
0.72	31	12	
0	31	14	
0	31	0	
1.116	31	2	
1.86	31	4	
2.232	31	6	
2.232	31	8	
1.86	31	10	
1.116	31	12	
0	31	14	
0	31	0	
0	31	2	
0	31	4	
0	31	6	
0	31	8	
0	31	10	
0	31	12	
0	31	14	
0	31	0	
0	31	2	
0	31	4	
0	31	6	
0	31	8	
0	31	10	
0	31	12	
0	31	14	
0	31	0	
2.6496	31	2	
4.416	31	4	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

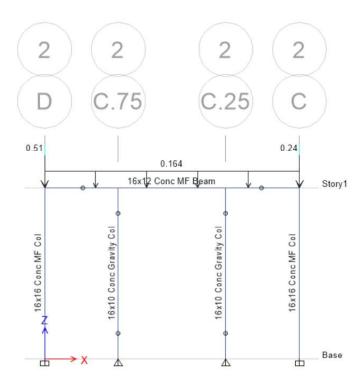
M3 kip-ft	Element	Elem Station ft	Location
5.2992	31	6	
5.2992	31	8	
4.416	31	10	
2.6496	31	12	
0	31	14	
0	31	0	
0.5244	31	2	
0.8741	31	4	
1.0489	31	6	
1.0489	31	8	
0.8741	31	10	
0.5244	31	12	
0	31 32	14	
0 0.72	32	0 2	
1.2	32	4	
1.44	32	6	
1.44	32	8	
1.2	32	10	
0.72	32	12	
0	32	14	
0	32	0	
1.116	32	2	
1.86	32	4	
2.232	32	6	
2.232	32	8	
1.86	32	10	
1.116	32	12	
0	32	14	
0	32	0	
0	32	2	
0	32	4	
0	32	6	
0	32	8	
0	32	10	
0	32	12	
0	32	14	
0	32	0	
0	32	2	
0	32	4	
0	32	6	
0	32 32	8 10	
0	32	12	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

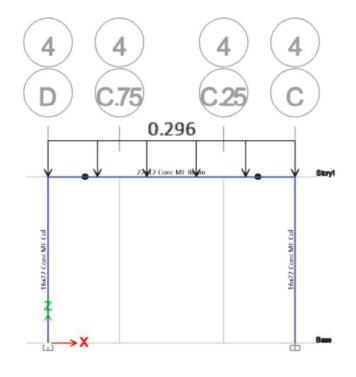
M3 kip-ft	Element	Elem Station ft	Location
0	32	14	
0	32	0	
2.6496	32	2	
4.416	32	4	
5.2992	32	6	
5.2992	32	8	
4.416	32	10	
2.6496	32	12	
0	32	14	
0	32	0	
0.5244	32	2	
0.8741	32	4	
1.0489	32	6	
1.0489	32	8	
0.8741 0.5244	32	10	
	32 32	12 14	
0 -11.5537	24	0.6667	
-5.4858	24	2.5972	
-0.521	24	4.5278	
3.3406	24	6.4583	
6.0989	24	8.3889	
7,7541	24	10.3194	
8.306	24	12.25	
7.7547	24	14.1806	
6.1003	24	16.1111	
3.3426	24	18.0417	
-0.5183	24	19.9722	
-5.4824	24	21.9028	
-11.5497	24	23.8333	
-12.7996	24	0.6667	
-6.0762	24	2.5972	
-0.5752	24	4.5278	
3.7032	24	6.4583	
6.7592	24	8.3889	
8.5928	24	10.3194	
9.2038	24	12.25	
8.5924	24	14.1806	
6.7586	24	16.1111	
3.7022	24	18.0417	
-0.5766	24	19.9722	
-6.0779	24	21.9028	
-12.8017	24	23.8333	
9.2813	24	0.6667	

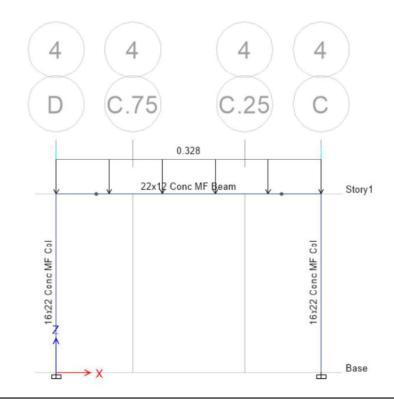

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

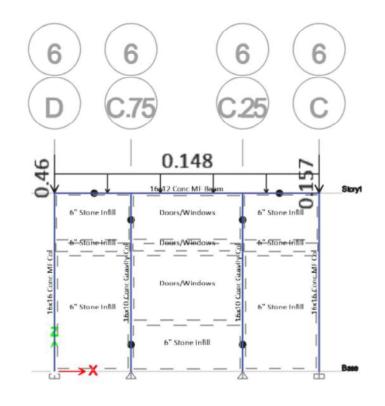
M3 kip-ft	Element	Elem Station ft	Location
7.7343	24	2.5972	
6.1874	24	4.5278	
4.6405	24	6.4583	
3.0936	24	8.3889	
1.5466	24	10.3194	
-0.0003	24	12.25	
-1.5472	24	14.1806	
-3.0941	24	16.1111	
-4.6411	24	18.0417	
-6.188	24	19.9722	
-7.7349	24	21.9028	
-9.2819	24	23.8333	
0.0002	24	0.6667	
0.0001	24	2.5972	
0.0001	24	4.5278	
0.0001	24	6.4583	
4.99E-05	24	8.3889	
2.382E-05	24	10.3194	
-2.257E-06	24	12.25	
-2.833E-05	24	14.1806	
-0.0001	24	16.1111	
-0.0001 -0.0001	24 24	18.0417 19.9722	
-0.0001	24	21.9028	
-0.0001	24	23.8333	
0.8655	24	0.6667	
3.7385	24	2.5972	
5,8079	24	4.5278	
9.9338	24	6.4583	
18.1335	24	8.3889	
23.0533	24	10.3194	
24.6933	24	12.25	
23.0536	24	14.1806	
18.134	24	16.1111	
9.9346	24	18.0417	
5.8105	24	19.9722	
3.7416	24	21.9028	
0.8691	24	23.8333	
-34.3438	24	0.6667	
-16.3048	24	2.5972	
-6.902	24	4.5278	
-2.2072	24	6.4583	
1.3489	24	8.3889	
4.1014	24	10.3194	

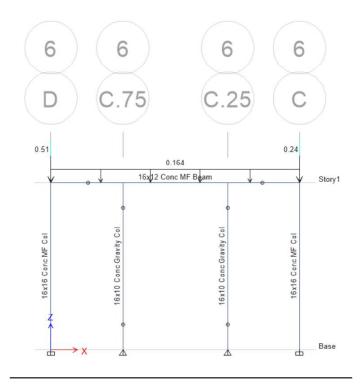

M3 kip-ft	Element	Elem Station ft	Location
6.0498	24	12.25	
4.1013	24	14.1806	
1.3493	24	16.1111	
-2.2063	24	18.0417	
-6.8989	24	19.9722	
-16.3035	24	21.9028	
-34.3423	24	23.8333	

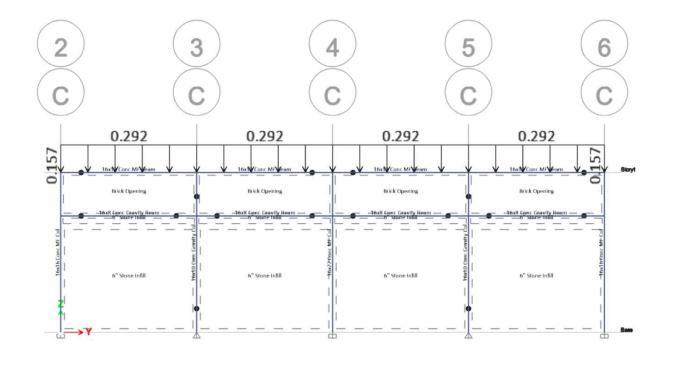
MAIN BUILDING

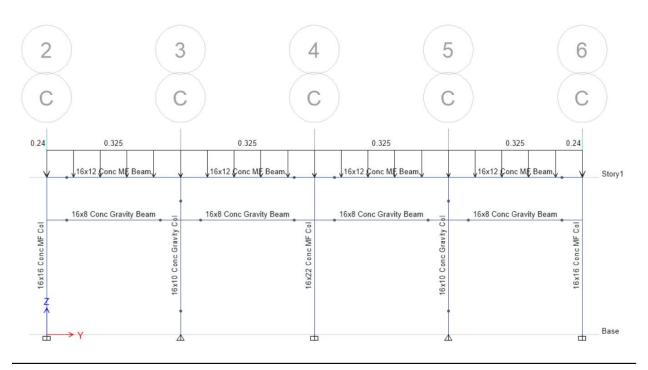

DEAD LOAD (GL. 2)

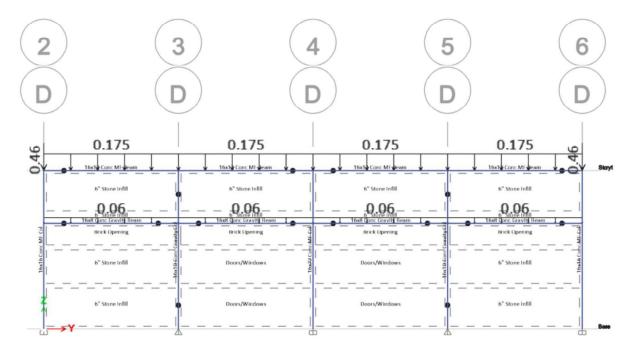

LIVE LOAD (GL. 2)


DEAD LOAD (GL. 4)

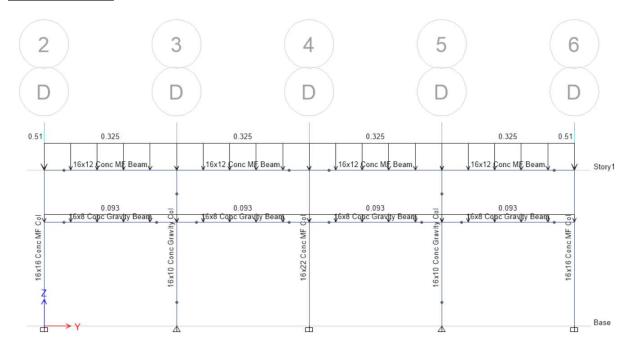

LIVE LOAD (GL. 4)


DEAD LOAD (GL. 6)

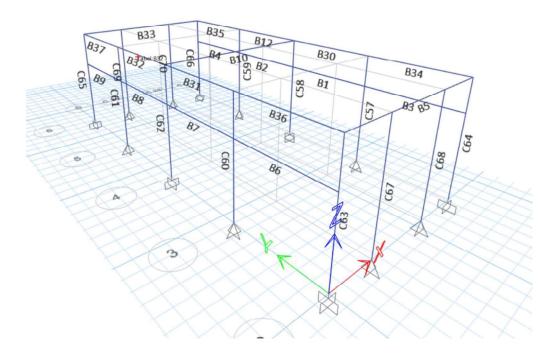

LIVE LOAD (GL. 6)

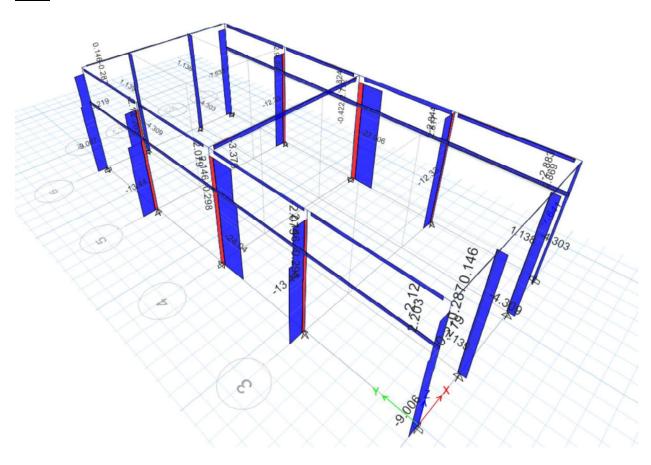


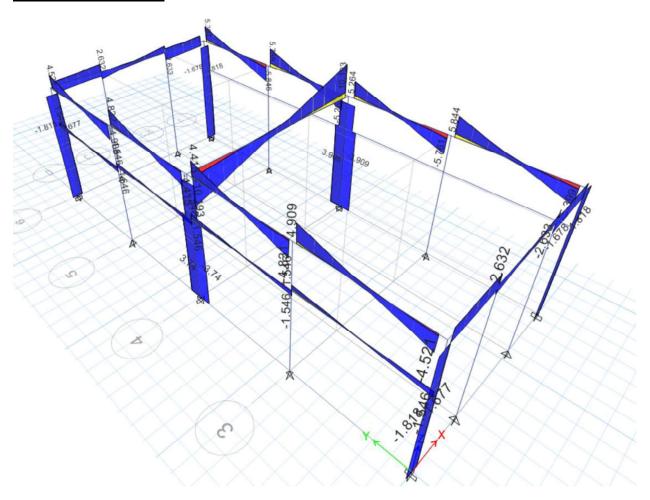
DEAD LOAD (GL. C)

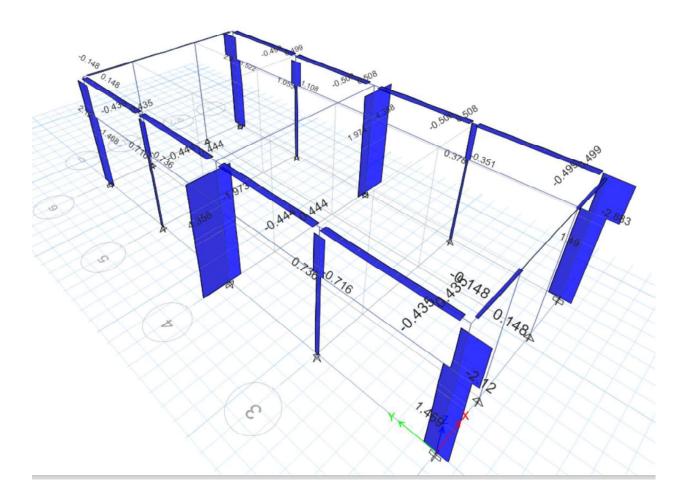


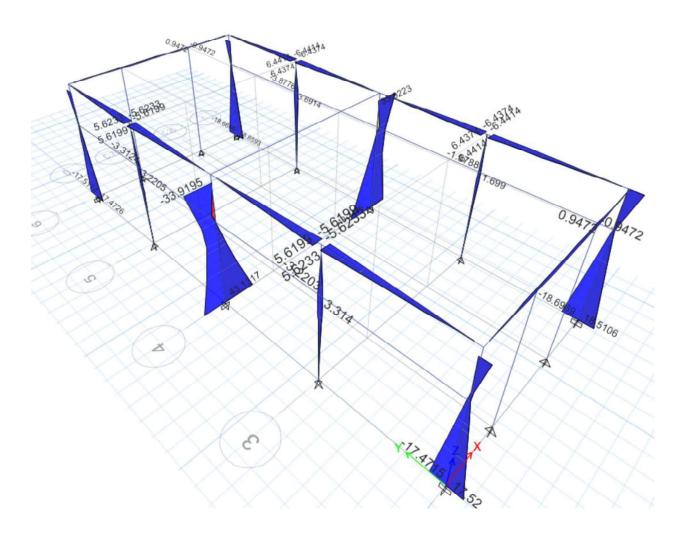
LIVE LOAD (GL. C)

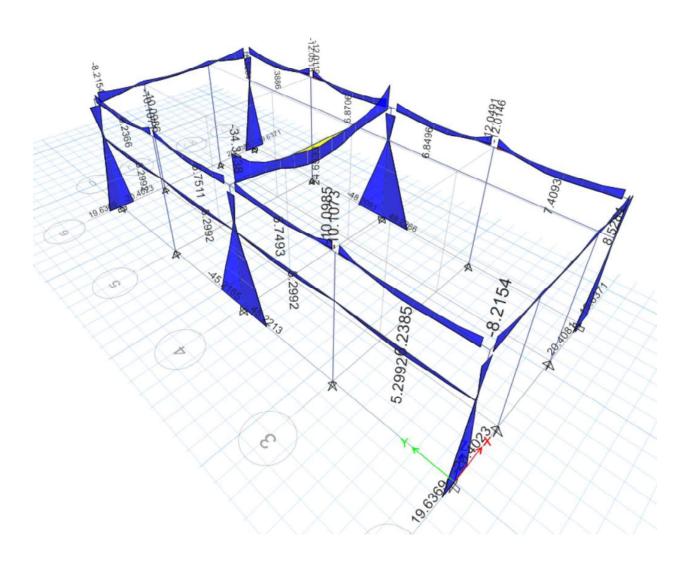



LIVE LOAD (GL. D)

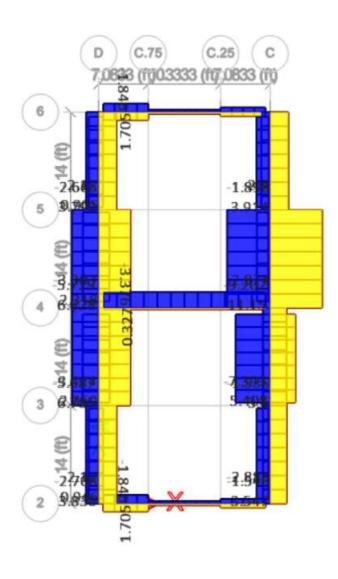

146


<u>AXIAL</u>

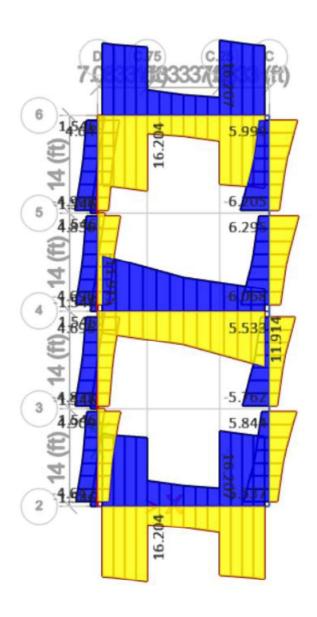

STRONG AXIS SHEAR (V2)


WEAK AXIS SHEAR (V3)

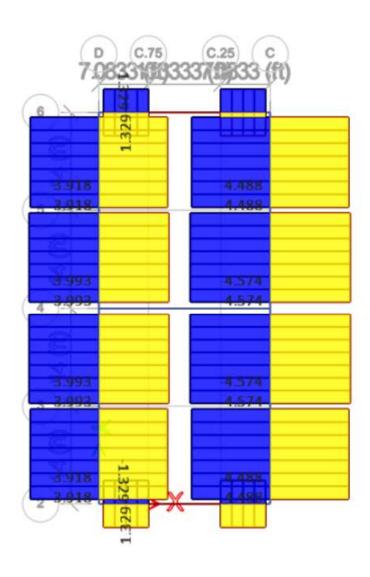
WEAK AXIS MOMENT (M2)

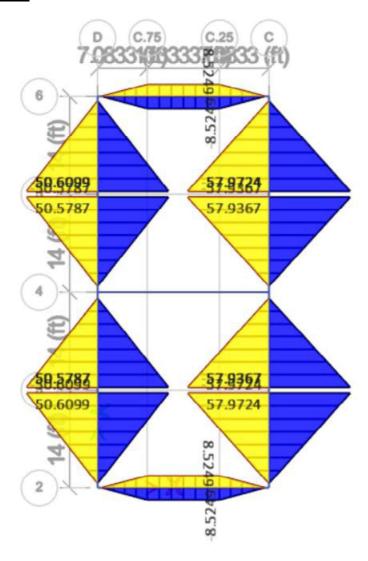


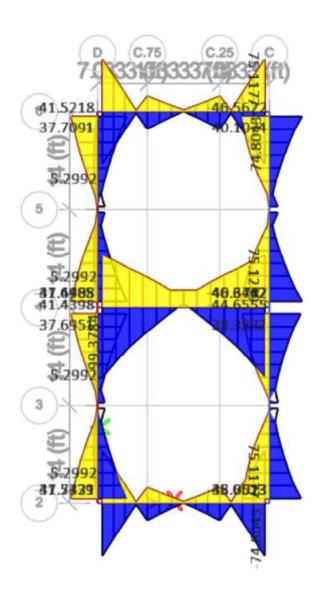
STRONG AXIS MOMENT (M3)

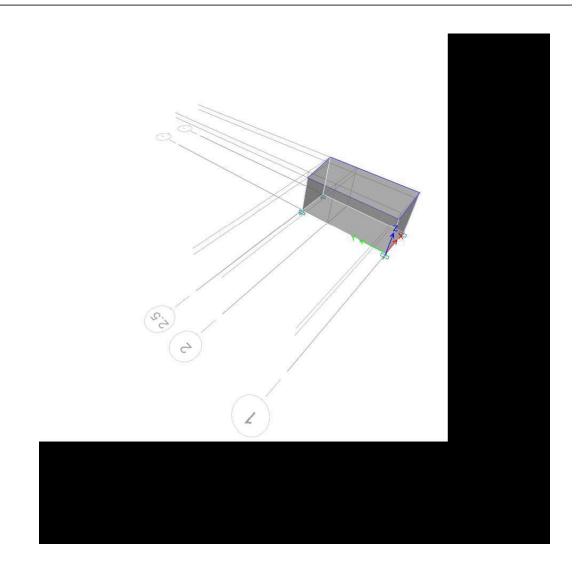


MAIN BUILDING (WITH OVERSTRENGTH)


<u>AXIAL</u>


STRONG AXIS SHEAR (V2)


WEAK AXIS SHEAR (V3)


WEAK AXIS MOMENT (M2)

STRONG AXIS MOMENT (M3)

OFFICE/BATHROOM LATERAL

Model File: Moment Frame Beam Forces, Revision 0 6/15/2020

Table of Contents

1.	Structure Data	4
	1.1 Story Data	4
	1.2 Grid Data	4
	1.3 Point Coordinates	4
	1.4 Line Connectivity	4
	1.5 Area Connectivity	5
	1.6 Mass	5
	1.7 Groups	6
2.	Properties	7
	2.1 Materials	7
	2.2 Frame Sections	7
	2.3 Shell Sections	8
	2.4 Links	8
3.	Assignments	9
	3.1 Joint Assignments	9
	3.2 Frame Assignments	9
	3.3 Shell Assignments	9
4.	Loads	11
	4.1 Load Patterns	11
	4.2 Load Sets	11
	4.3 Auto Seismic Loading	11
	4.4 Applied Loads	18
	4.4.1 Point Loads	18
	4.4.2 Line Loads	18
	4.4.3 Area Loads	18
	4.5 Load Cases	18
	4.6 Load Combinations	19
5.	Analysis Results	21
	5.1 Structure Results	21
	5.2 Story Results	21
	5.3 Line Results	21

List of Tables

Table 1.1 Story Definitions	4
Table 1.2 Grid Definitions - General	4
Table 1.3 Grid Definitions - Grid Lines	4
Table 1.4 Point Bays	4
Table 1.5 Column Bays	5
Table 1.6 Beam Bays	5
Table 1.7 Null Area Bays	5
Table 1.8 Mass Source Definition	5
Table 1.9 Mass Summary by Story	5
Table 1.10 Mass Summary by Group	6
Table 1.11 Group Definitions	6
Table 2.1 Material Properties - General	7
Table 2.2 Frame Section Property Definitions - Summary	7
Table 2.3 Area Section Property Definitions - Summary	8
Table 2.4 Link Property Definitions - Summary	8
Table 3.1 Joint Assignments - Summary	9
Table 3.2 Frame Assignments - Summary	9
Table 3.3 Frame Assignments - Section Properties	9
Table 3.4 Area Assignments - Summary	9
Table 4.1 Load Pattern Definitions	11
Table 4.2 Shell Uniform Load Sets	11
Table 4.5 Joint Loads Assignments - Force	18
Table 4.6 Frame Loads Assignments - Distributed	18
Table 4.7 Area Load Assignments - Uniform Load Sets	18
Table 4.8 Load Case Definitions - Summary	19
Table 4.9 Load Combination Definitions	19
Table 5.1 Base Reactions	21
Table 5.2 Story Drifts	21
Table 5.3 Element Forces - Columns	21
Table 5.4 Flement Forces - Beams	25

1 Structure Data

This chapter provides model geometry information, including items such as story levels, point coordinates, and element connectivity.

1.1 Story Data

Table 1.1 - Story Definitions

Tower	Name	Height ft	Master Story	Similar To	Splice Story	Color
T1	Story2	1.5834	Yes	None	No	Green
T1	Story1	9.5833	Yes	None	No	Green

1.2 Grid Data

Table 1.2 - Grid Definitions - General

Tower	Name	Туре	Ux ft	Uy ft	Rz deg	Story Range	Bubble Size in	Color	
T1	G1	Cartesian	-34.5	14	0	Default	60	Gray6	

Table 1.3 - Grid Definitions - Grid Lines

Name	Grid Line Type	Ordinate ft	Bubble Location	Visible
G1	X (Cartesian)	0	End	No
G1	X (Cartesian)	7.0833	End	No
G1	X (Cartesian)	17.4167	End	No
G1	X (Cartesian)	24.5	End	No
G1	X (Cartesian)	34.5	End	Yes
G1	X (Cartesian)	44	End	Yes
G1	Y (Cartesian)	-14	Start	Yes
G1	Y (Cartesian)	0	Start	Yes
G1	Y (Cartesian)	7	Start	Yes
G1	Y (Cartesian)	14	Start	No
G1	Y (Cartesian)	28	Start	No
G1	Y (Cartesian)	42	Start	No
G1	Y (Cartesian)	56	Start	No

1.3 Point Coordinates

Table 1.4 - Point Bays

Label	Is Auto Point	X ft	Y ft	DZBelow ft
1	No	0	0	0
2	No	9.5	0	0
3	No	0	21	0
4	No	9.5	21	0

1.4 Line Connectivity

Table 1.5 - Column Bays

Label	PointBayl	PointBayJ	IEndStory
C1	1	1	Be l ow
C2	2	2	Same
C3	3	3	Below
C4	4	4	Same

Table 1.6 - Beam Bays

Label	PointBayl	PointBayJ
B1	1	2
B2	1	3
В3	2	4
B4	3	4

1.5 Area Connectivity

Table 1.7 - Null Area Bays

Label	NumPoints	PointNumber	PointBay	PointStory
A1	4	1	1	Same
A1		2	2	Same
A1		3	2	Same
A1		4	1	Below
A2	4	1	1	Below
A2		2	3	Below
A2		3	3	Same
A2		4	1	Same
А3	4	1	2	Same
A3		2	4	Same
A3		3	4	Same
A3		4	2	Same
A4	4	1	4	Same
A4		2	3	Same
A4		3	3	Below
A4		4	4	Same

1.6 Mass

Table 1.8 - Mass Source Definition

Name	ls Default		Include Vertical Mass?	Lumn	Source Self Mass?	Source Added Mass?	Source Load Patterns?	Move Mass Centroid?	Load Pattern	Multiplier
MsSrc1	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Dead	1

Table 1.9 - Mass Summary by Story

Story	UX lb-s2/ft	UY lb-s2/ft	UZ lb-s2/ft
Story2	272	272	272
Story1	290.89	290.89	290.89
Base	171.98	171.98	171.98

Table 1.10 - Mass Summary by Group

Group	Self Mass Ib-s2/ft	Self Weight kip		Mass Y lb-s2/ft	Mass Z lb-s2/ft
All	576.33	0	2210.15	2210.15	2210.15

1.7 Groups

Table 1.11 - Group Definitions

Name	Color		Concrete Design?	Composite Design?	
All	Yellow	No	No	No	

2 Properties

This chapter provides property information for materials, frame sections, shell sections, and links.

2.1 Materials

Table 2.1 - Material Properties - General

Material	Туре	SymType	Grade	Color	Notes
3000Psi	Concrete	Isotropic	Unknown	Red	
3000psi weightless	Concrete	Isotropic	Unknown	Red	
4000Psi	Concrete	I sotropic	Unknown	Gray8Dark	
A416Gr270	Tendon	Uniaxia l	Unknown	Green	
A615Gr40	Rebar	Uniaxia l	Grade 40	Cyan	
A615Gr60	Rebar	Uniaxia l	Unknown	Blue	
A992Fy50	Steel	Isotropic	Unknown	Yellow	

2.2 Frame Sections

Table 2.2 - Frame Section Property Definitions - Summary (Part 1 of 3)

Name	Material	Shape	Color	Area in2	J in4	133 in4	122 in4	As2 in2	As3 in2
12x28 Conc Column	3000Psi	Concrete Rectangular	Cyan	336	11785.68	21952	4032	280	280
16x16 Conc Cant. Col	3000Psi	Concrete Rectangular	Gray8Dark	256	9229.65	5461.33	5461.33	213.33	213.33
16x8 Conc Gravity Beam	3000Psi	Concrete Rectangular	Magenta	128	1874.99	682.67	2730.67	106.67	106.67
18x10 Conc Gravity Col	3000Psi	Concrete Rectangular	Cyan	180	3916.67	4860	1500	150	150
18x12 Conc MF Beam	3000Psi	Concrete Rectangular	Magenta	216	6085.12	2592	5832	180	180
18x18 Conc Col	3000Psi	Concrete Rectangular	Yellow	324	14784.12	8748	8748	270	270
18x20 Conc MF Col	3000Psi	Concrete Rectangular	Yellow	360	18040.35	12000	9720	300	300
20x12 Conc MF Beam	3000Psi	Concrete Rectangular	Green	240	7212.47	2880	8000	200	200
28x18 Conc MF Beam	3000Psi	Concrete Rectangular	Green	504	32700.79	32928	13608	420	420

Table 2.2 - Frame Section Property Definitions - Summary (Part 2 of 3)

S33Pos in3	S33Neg in3	S22Pos in3	S22Neg in3	Z33 in3	Z22 in3	R33 in	R22 in	CG Offset 3 in	CG Offset 2 in	PNA Offset 3 in	PNA Offset 2 in	Area Modifier
1568	1568	672	672	2352	1008	8.0829	3.4641	0	0	0	0	1
682.67	682.67	682.67	682.67	1024	1024	4.6188	4.6188	0	0	0	0	1
170.67	170.67	341.33	341.33	256	512	2.3094	4.6188	0	0	0	0	1
540	540	300	300	810	450	5.1962	2.8868	0	0	0	0	1
432	432	648	648	648	972	3.4641	5.1962	0	0	0	0	1
972	972	972	972	1458	1458	5.1962	5.1962	0	0	0	0	1
1200	1200	1080	1080	1800	1620	5.7735	5.1962	0	0	0	0	1
480	480	800	800	720	1200	3.4641	5.7735	0	0	0	0	1
2352	2352	1512	1512	3528	2268	8.0829	5.1962	0	0	0	0	1

Table 2.2 - Frame Section Property Definitions - Summary (Part 3 of 3)

As3 Modifier	J Modifier	I33 Modifier	I22 Modifier	Mass Modifier	Weight Modifier
1	1	0.7	0.7	1	1
1	1	0.7	0.7	1	1
1	1	0.35	0.35	1	1
1	1	0.7	0.7	1	1
1	1	0.35	0.35	1	1
1	1	0.7	0.7	1	1
1	1	0.7	0.7	1	1
1	1	0.35	0.35	1	1
1	1	0.3	0.3	1	1

2.3 Shell Sections

Table 2.3 - Area Section Property Definitions - Summary

Name	Туре	Element Type	Material	Total Thickness in	Deck Material	Deck Depth in
Deck1	Deck	Membrane	4000Psi	6.5	A992Fy50	3
Plank1	Slab	Membrane	4000Psi	8		
S l ab1	Slab	Shell-Thin	4000Psi	8		
Wall1	Wall	Shell-Thin	4000Psi	12		

2.4 Links

Table 2.4 - Link Property Definitions - Summary

Name	Туре	Degrees of Freedom	Mass lb-s2/ft	Weight kip	Defined Length ft	Defined Area ft2	
Link1	Linear	U1	0	0	1	1	

3 Assignments

This chapter provides a listing of the assignments applied to the model.

3.1 Joint Assignments

Table 3.1 - Joint Assignments - Summary

Story	Label	UniqueName	Diaphragm	Restraints
Story2	2	8	From Area	
Story2	4	10	From Area	
Story1	1	14	From Area	
Story1	3	16	From Area	
Base	1	13	From Area	UX; UY; UZ; RX; RY; RZ
Base	2	7	From Area	UX; UY; UZ; RX; RY; RZ
Base	3	15	From Area	UX; UY; UZ; RX; RY; RZ
Base	4	9	From Area	UX; UY; UZ; RX; RY; RZ

3.2 Frame Assignments

Table 3.2 - Frame Assignments - Summary

Story	Label	UniqueName	Design Type	Length ft	Analysis Section	Design Section	Max Station Spacing ft	Min Number Stations	Releases
Story2	B1	10	Beam	9.6311	16x8 Conc Gravity Beam	N/A		3	Yes
Story2	В3	12	Beam	21	16x8 Conc Gravity Beam	N/A	2		Yes
Story2	B4	13	Beam	9.6311	16x8 Conc Gravity Beam	N/A		3	Yes
Story2	C2	5	Column	11.1667	16x16 Conc Cant. Col	N/A		3	
Story2	C4	6	Column	11.1667	16x16 Conc Cant. Col	N/A		3	
Story1	B2	14	Beam	21	16x8 Conc Gravity Beam	N/A	2		Yes
Story1	C1	8	Column	9.5833	16x16 Conc Cant. Col	N/A		3	
Story1	C3	9	Column	9.5833	16x16 Conc Cant. Col	N/A		3	

Table 3.3 - Frame Assignments - Section Properties

Story	Label	UniqueName	Shape	Auto Select List	Section Property
Story2	B1	10	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story2	В3	12	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story2	B4	13	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story2	C2	5	Concrete Rectangular	N.A.	16x16 Conc Cant. Col
Story2	C4	6	Concrete Rectangular	N.A.	16x16 Conc Cant. Col
Story1	B2	14	Concrete Rectangular	N.A.	16x8 Conc Gravity Beam
Story1	C1	8	Concrete Rectangular	N.A.	16x16 Conc Cant. Col
Story1	C3	9	Concrete Rectangular	N.A.	16x16 Conc Cant. Col

3.3 Shell Assignments

Table 3.4 - Area Assignments - Summary

Story	Label	UniqueName	Section Property	Property Type
Story2	A1	53	None	Null
Story2	А3	54	None	Null
Story2	A4	48	None	Null
Story1	A2	50	None	Null

4 Loads

This chapter provides loading information as applied to the model.

4.1 Load Patterns

Table 4.1 - Load Pattern Definitions

Name	Is Auto Load	Туре	Self Weight Multiplier	Auto Load
~LLRF	Yes	Other	0	
Dead	No	Dead	0	
Lateral (E-W)	No	Seismic	0	ASCE 7-16
Lateral (N-S)	No	Seismic	0	ASCE 7-16
Roof Live	No	Roof Live	0	

4.2 Load Sets

Table 4.2 - Shell Uniform Load Sets

Name	Load Pattern	Load Value lb/ft2
6" Stone Infill	Dead	75
Brick Opening	Dead	105
Doors/Windows	Dead	8

4.3 Auto Seismic Loading

ASCE 7-16 Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern Lateral (N-S) according to ASCE 7-16, as calculated by ETABS.

Direction and Eccentricity

Direction = X

Structural Period

Period Calculation Method = Program Calculated

Coefficient, C _t [ASCE Table 12.8-2]	$C_t = 0.02ft$
Coefficient, x [ASCE Table 12.8-2]	x = 0.75
Structure Height Above Base, h _n	$h_n = 11.17 \text{ ft}$
L DILLE W DILLE MOOF	

Long-Period Transition Period, T_L [ASCE $T_L = 6 \text{ sec}$ 11.4.5]

Factors and Coefficients

Response Modification Factor, R [ASCE	R = 2.5
Table 12 2-11	K - 2.5

System Overstrength Factor,
$$\Omega_0$$
 [ASCE Table 12.2-1] $\Omega_0 = 1.25$

Deflection Amplification Factor, C _d [ASCE	$C_{d} = 2.5$
Table 12.2-1]	$C_d = 2.5$

Ss and S1 Source = 0.75

Mapped MCE Spectral Response	S _s = 0.991q
Acceleration, S _s [ASCE 11.4.2]	S _s = 0.9919

Mapped MCE Spectral Response
$$S_1$$
 [ASCE 11.4.2] $S_2 = 0.331g$

Site Class [ASCE Table 20.3-1] = E - Soft Clay Soil

Site Coefficient, F _a [ASCE Table 11.4-1]	$F_a = 1.3$
Site Coefficient, F _v [ASCE Table 11.4-2]	$F_{v} = 2.676$

Seismic Response

MCE Spectral Response Acceleration, S MS [ASCE 11.4.4, Eq. 11.4-1]	$S_{MS} = F_a S_S$	$S_{MS} = 1.2883g$
MCE Spectral Response Acceleration, S _{M1} [ASCE 11.4.4, Eq. 11.4-2]	$S_{M1} = F_{v} S_{1}$	S _{M1} =0.885756g
Design Spectral Beanance Assoluration	2	

Design Spectral Response Acceleration,

$$S_{DS}$$
 [ASCE 11.4.5, Eq. 11.4-3] $S_{DS} = \frac{2}{3} S_{MS}$ $S_{DS} = 0.858867g$

Design Spectral Response Acceleration,
$$S_{D1}$$
 [ASCE 11.4.5, Eq. 11.4-4] $S_{D1} = \frac{2}{3} S_{M1}$ $S_{D1} = 0.590504g$

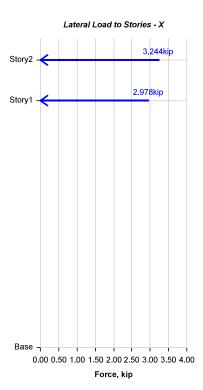
Equivalent Lateral Forces

Seismic Response Coefficient, C_S [ASCE 12.8.1.1, Eq. 12.8-2]

$$C_{\rm S} = \frac{S_{\rm DS}}{(\frac{R}{I})}$$

$$C_{\text{S,max}} = \frac{S_{D1}}{T(\frac{R}{I})}$$

$$C_{\text{\tiny S,min}} = max \ (0.044 \ S_{\text{\tiny DS}} \, I, 0.01 \) = 0.03779$$


$$C_{S,min} = 0.5 \frac{S_{t}}{(\frac{R}{I})}$$
for $S_{t} = 0.6g$

$$C_{s,min} \le C_s \le C_{s,max}$$

Calculated Base Shear

Direction	Period Used (sec)	C _s	W (kip)	V (kip)
Х	0.171	0.343547	18.1103	6.2217

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	ft	kip	kip
Story2	11.1667	3.244	0
Story1	9.5833	2.978	0
Base	0	0	0

ASCE 7-16 Auto Seismic Load Calculation

This calculation presents the automatically generated lateral seismic loads for load pattern Lateral (E-W) according to ASCE 7-16, as calculated by ETABS.

Direction and Eccentricity

Direction = Y

Structural Period

Period Calculation	Mothed - Program	Calculated
Period Calculation	Method - Program	i Calculated

Coefficient, C _t [ASCE Table 12.8-2]	$C_t = 0.02ft$
Coefficient, x [ASCE Table 12.8-2]	x = 0.75
Structure Height Above Base, h _n	$h_n = 11.17 \text{ ft}$
Long-Period Transition Period, T _L [ASCE 11.4.5]	$T_{\scriptscriptstyle L}$ = 6 sec

Factors and Coefficients

Response Modification Factor, R [ASCE	R = 2.5
Table 12.2-1]	K - 2.5

System Overstrength Factor, Ω_0 [ASCE	$\Omega_0 = 1.25$
Table 12.2-1]	120 - 1.25

Deflection Amplification Factor, C _d [ASCE	$C_{d} = 2.5$
Table 12.2-1]	$C_d = 2.5$

Ss and S1 Source = 0.75

Mapped MCE Spectral Response	S _s = 0.991q
Acceleration, S _s [ASCE 11.4.2]	S _s = 0.9919

Mapped MCE Spectral Response
$$S_1$$
 [ASCE 11.4.2] $S_2 = 0.331g$

Site Class [ASCE Table 20.3-1] = E - Soft Clay Soil

Site Coefficient, F _a [ASCE Table 11.4-1]	$F_a = 1.3$
Site Coefficient, F _v [ASCE Table 11.4-2]	$F_{v} = 2.676$

Seismic Response

MCE Spectral Response Acceleration, S MS [ASCE 11.4.4, Eq. 11.4-1]	$S_{MS} = F_a S_S$	$S_{MS} = 1.2883g$
MCE Spectral Response Acceleration, S _{M1} [ASCE 11.4.4, Eq. 11.4-2]	$S_{M1} = F_{\nu} S_{\tau}$	S _{M1} =0.885756g
Design Spectral Response Acceleration, S _{DS} [ASCE 11.4.5, Eq. 11.4-3]	$S_{DS} = \frac{2}{3} S_{MS}$	$S_{DS} = 0.858867g$

Design Spectral Response Acceleration,
$$S_{D1}$$
 [ASCE 11.4.5, Eq. 11.4-4] $S_{D1} = \frac{2}{3} S_{M1}$ $S_{D2} = 0.590504g$

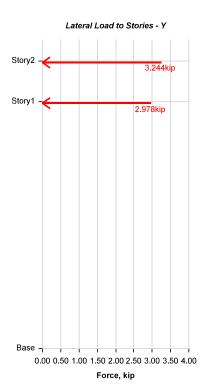
Equivalent Lateral Forces

Seismic Response Coefficient, C_s [ASCE 12.8.1.1, Eq. 12.8-2]

$$C_{\rm S} = \frac{S_{\rm DS}}{(\frac{R}{I})}$$

$$C_{\text{S,max}} = \frac{S_{\text{D1}}}{T(\frac{R}{I})}$$

$$C_{s,min} = max (0.044 S_{DS} I, 0.01) = 0.03779$$


$$C_{\text{S,min}} = 0.5 \frac{S_{\text{1}}}{\left(\frac{R}{I}\right)} \text{ for } S_{\text{1}} = 0.6g$$

$$C_{s,min} \le C_s \le C_{s,max}$$

Calculated Base Shear

Direction	Period Used (sec)	C _s	W (kip)	V (kip)
Υ	0.151	0.343547	18.1103	6.2217

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	ft	kip	kip
Story2	11.1667	0	3.244
Story1	9.5833	0	2.978
Base	0	0	0

4.4 Applied Loads

4.4.1 Point Loads

Table 4.5 - Joint Loads Assignments - Force

Story	Label	UniqueName	Load Pattern	FX kip	FY kip	FZ kip	MX kip-ft	MY kip-ft	MZ kip-ft	X Dimension in	Y Dimension in
Story1	3	16	Dead	0	0	-0.148	0	0	0	0	0
Story1	3	16	Roof Live	0	0	-0.228	0	0	0	0	0

4.4.2 Line Loads

Table 4.6 - Frame Loads Assignments - Distributed (Part 1 of 2)

Story	Label	UniqueName	Load Pattern	Load Type	Direction	Distance Type	Relative Distance A	Relative Distance B	Absolute Distance A ft	Absolute Distance B ft
Story2	B1	10	Dead	Force	Gravity	Relative	0	1	0	9.6311
Story2	В3	12	Dead	Force	Gravity	Relative	0	1	0	21
Story2	B4	13	Dead	Force	Gravity	Relative	0	1	0	9.6311
Story1	B2	14	Dead	Force	Gravity	Relative	0	1	0	21
Story2	B1	10	Roof Live	Force	Gravity	Relative	0	1	0	9.6311
Story2	В3	12	Roof Live	Force	Gravity	Relative	0	1	0	21
Story2	B4	13	Roof Live	Force	Gravity	Relative	0	1	0	9.6311
Story1	B2	14	Roof Live	Force	Gravity	Relative	0	1	0	21

Table 4.6 - Frame Loads Assignments - Distributed (Part 2 of 2)

Force B kip/ft
0.026
0.085
0.026
0.127
0.04
0.13
0.04
0.195

4.4.3 Area Loads

Table 4.7 - Area Load Assignments - Uniform Load Sets

Story	Label	UniqueName	Load Set
Story2	A1	53	6" Stone Infill
Story2	A3	54	6" Stone Infill
Story2	A4	48	6" Stone Infill
Story1	A2	50	6" Stone Infill

4.5 Load Cases

Table 4.8 - Load Case Definitions - Summary

Name	Type
Dead	Linear Static
Roof Live	Linear Static
Lateral (N-S)	Linear Static
Lateral (E-W)	Linear Static

4.6 Load Combinations

Table 4.9 - Load Combination Definitions

Name	Туре	Is Auto	Load Name	SF	Notes
0.9D-Ev+Eew	Linear Add	No	Dead	0.9	Dead (min) + Static Earthquake [Strength]
0.9D-Ev+Eew			Lateral (E-W)	1	
0.9D-Ev+Eew			Dead	-0.1716	
0.9D-Ev+Ens	Linear Add	No	Dead	0.9	Dead (min) + Static Earthquake [Strength]
0.9D-Ev+Ens			Lateral (N-S)	1	
0.9D-Ev+Ens			Dead	-0.1716	
0.9D-Ev-Eew	Linear Add	No	Dead	0.9	Dead (min) - Static Earthquake [Strength]
0.9D-Ev-Eew			Lateral (E-W)	-1	
0.9D-Ev-Eew			Dead	-0.1716	
0.9D-Ev-Ens	Linear Add	No	Dead	0.9	Dead (min) - Static Earthquake [Strength]
0.9D-Ev-Ens			Lateral (N-S)	-1	
0.9D-Ev-Ens			Dead	-0.1716	
1.2D+1.6L	Linear Add	No	Dead	1.2	Dead + Live [Strength]
1.2D+1.6L+0.5RL	Linear Add	No	Dead	1.2	Dead + Live + Roof Live [Strength]
1.2D+1.6L+0.5RL			Roof Live	0.5	
1.2D+L+1.6RL	Linear Add	No	Dead	1.2	Dead + Live + Roof Live [Strength]
1.2D+L+1.6RL			Roof Live	1.6	
1.2D+L+Ev+Eew	Linear Add	No	Dead	1.2	Dead + Live + Static Earthquake [Strength]
1.2D+L+Ev+Eew			Lateral (E-W)	1	
1.2D+L+Ev+Eew			Dead	0.1716	
1.2D+L+Ev+Ens	Linear Add	No	Dead	1.2	Dead + Live + Static Earthquake [Strength]
1.2D+L+Ev+Ens			Lateral (N-S)	1	
1.2D+L+Ev+Ens			Dead	0.1716	
1.2D+L+Ev-Eew	Linear Add	No	Dead	1.2	Dead + Live - Static Earthquake [Strength]
1.2D+L+Ev-Eew			Latera l (E-W)	-1	
1.2D+L+Ev-Eew			Dead	0.1716	
1.2D+L+Ev-Ens	Linear Add	No	Dead	1.2	Dead + Live - Static Earthquake [Strength]
1.2D+L+Ev-Ens			Lateral (N-S)	-1	
1.2D+L+Ev-Ens			Dead	0.1716	
1.4D	Linear Add	No	Dead	1.4	Dead [Strength]
Envelope	Envelope	No	1.4D	1	
Envelope			1.2D+1.6L	1	
Envelope			1.2D+1.6L+0.5RL	1	
Envelope			1.2D+L+1.6RL	1	
Envelope			1.2D+L+Ev+Ens	1	
Envelope			1.2D+L+Ev-Ens	1	

Table 4.9 - Load Combination Definitions (continued)

Name	Туре	Is Auto	Load Name	SF	Notes
Envelope			1.2D+L+Ev+Eew	1	
Envelope			1.2D+L+Ev-Eew	1	
Envelope			0.9D-Ev+Ens	1	
Envelope			0.9D-Ev-Ens	1	
Envelope			0.9D-Ev+Eew	1	
Envelope			0.9D-Ev-Eew	1	

5 Analysis Results

This chapter provides analysis results.

5.1 Structure Results

Table 5.1 - Base Reactions

Output Case	Case Type	Step Type	FX kip	FY kip	FZ kip	MX kip-ft	MY kip-ft	MZ kip-ft	X ft	Y ft	Z ft
Dead	LinStatic		0	0	5.101	55.1126	-19.3364	0	0	0	0
Roof Live	LinStatic		0	0	7.823	84.5406	-29.5948	0	0	0	0
Lateral (N-S)	LinStatic		-18.665	0	0	0	-194.2854	197.4677	0	0	0
Lateral (E-W)	LinStatic		0	-18.665	0	194.2854	0	-92.4596	0	0	0
Envelope	Combination	Max	18.665	18.665	18.639	269.8777	180.2007	197.4677	0	0	0
Envelope	Combination	Min	-18.665	-18.665	3.715	-154.1414	-220.8071	-197.4677	0	0	0

5.2 Story Results

Table 5.2 - Story Drifts

Story	Output Case	Case Type	Step Type	Direction	Drift	Label	X ft	Y ft	Z ft
Story2	Dead	LinStatic		Х	2.646E-07	2	9.5	0	11.1667
Story2	Roof Live	LinStatic		Х	4.065E-07	2	9.5	0	11.1667
Story2	Lateral (N-S)	LinStatic		Х	0.001844	4	9.5	21	11.1667
Story2	Lateral (E-W)	LinStatic		Y	0.002458	4	9.5	21	11.1667
Story2	Envelope	Combination	Max	Х	0.001844	4	9.5	21	11.1667
Story2	Envelope	Combination	Max	Y	0.002458	2	9.5	0	11.1667
Story2	Envelope	Combination	Min	Х	0.001844	4	9.5	21	11.1667
Story2	Envelope	Combination	Min	Υ	0.002458	4	9.5	21	11.1667
Story1	Dead	LinStatic		Х	4.044E-07	3	0	21	9.5833
Story1	Roof Live	LinStatic		Х	1E-06	3	0	21	9.5833
Story1	Lateral (N-S)	LinStatic		Х	0.002145	3	0	21	9.5833
Story1	Lateral (E-W)	LinStatic		Υ	0.001666	3	0	21	9.5833
Story1	Envelope	Combination	Max	Х	0.002146	3	0	21	9.5833
Story1	Envelope	Combination	Max	Υ	0.001666	1	0	0	9.5833
Story1	Envelope	Combination	Min	Х	0.002145	3	0	21	9.5833
Story1	Envelope	Combination	Min	Υ	0.001666	3	0	21	9.5833

5.3 Line Results

Table 5.3 - Element Forces - Columns (Part 1 of 2)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story2	C2	5	Dead	LinStatic		0	-1.016	0.01	-0.076	0	-0.2779
Story2	C2	5	Dead	LinStatic		5.25	-1.016	0.01	-0.076	0	0.1236
Story2	C2	5	Dead	LinStatic		10.5001	-1.016	0.01	-0.076	0	0.5251
Story2	C2	5	Roof Live	LinStatic		0	-1.555	0.016	-0.117	0	-0.425
Story2	C2	5	Roof Live	LinStatic		5.25	-1.555	0.016	-0.117	0	0.189
Story2	C2	5	Roof Live	LinStatic		10.5001	-1.555	0.016	-0.117	0	0.8031
Story2	C2	5	Lateral (N-S)	LinStatic		0	-0.212	3.596	0	0	0
Story2	C2	5	Lateral (N-S)	LinStatic		5.25	-0.212	3.596	0	0	0

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story2	C2	5	Lateral (N-S)	LinStatic		10.5001	-0.212	3.596	0	0	0
Story2	C2	5	Lateral (E-W)	LinStatic		0	0	0	4.866	0	54.3406
Story2	C2	5	Lateral (E-W)	LinStatic		5.25	0	0	4.866	0	28.7924
Story2	C2	5	Lateral (E-W)	LinStatic		10.5001	0	0	4.866	0	3.2442
Story2	C2	5	Envelope	Combination	Max	0	-0.528	3.61	4.811	0	54.1382
Story2	C2	5	Envelope	Combination	Max	5.25	-0.528	3.61	4.811	0	28.9619
Story2	C2	5	Envelope	Combination	Max	10.5001	-0.528	3.61	4.811	0	3.9645
Story2	C2	5	Envelope	Combination	Min	0	-3.707	-3.589	-4.971	0	-54.7218
Story2	C2	5	Envelope	Combination	Min	5.25	-3.707	-3.589	-4.971	0	-28.7024
Story2	C2	5	Envelope	Combination	Min	10.5001	-3.707	-3.589	-4.971	0	-2.8617
Story2	C4	6	Dead	LinStatic		0	-1.016	0.01	0.076	0	0.2779
Story2	C4	6	Dead	LinStatic		5.25	-1.016	0.01	0.076	0	-0.1236
Story2	C4	6	Dead	LinStatic		10.5001	-1.016	0.01	0.076	0	-0.5251
Story2	C4	6	Roof Live	LinStatic		0	-1.555	0.016	0.117	0	0.425
Story2	C4	6	Roof Live	LinStatic		5.25	-1.555	0.016	0.117	0	-0.189
Story2	C4	6	Roof Live	LinStatic		10.5001	-1.555	0.016	0.117	0	-0.8031
Story2	C4	6	Lateral (N-S)	LinStatic		0	-0.203	3.651	0	0	0
Story2	C4	6	Lateral (N-S)	LinStatic		5.25	-0.203	3.651	0	0	0
Story2	C4	6	Lateral (N-S)	LinStatic		10.5001	-0.203	3.651	0	0	0
Story2	C4	6	Lateral (E-W)	LinStatic		0	0	0	4.866	0	54.3406
Story2	C4	6	Lateral (E-W)	LinStatic		5.25	0	0	4.866	0	28.7924
Story2	C4	6	Lateral (E-W)	LinStatic		10.5001	0	0	4.866	0	3.2442
Story2	C4	6	Envelope	Combination	Max	0	-0.537	3.665	4.971	0	54.7218
Story2	C4	6	Envelope -	Combination	Max	5.25	-0.537	3.665	4.971	0	28.7024
Story2	C4	6	Envelope	Combination	Max	10.5001	-0.537	3.665	4.971	0	2.8617
Story2	C4	6	Envelope	Combination	Min	0	-3.707	-3.643	-4.811	0	-54.1382
Story2	C4	6	Envelope	Combination	Min	5.25	-3.707	-3.643	-4.811	0	-28.9619
Story2	C4 C1	6	Envelope	Combination	Min	10.5001	-3.707	-3.643	-4.811	0	-3.9645
Story1		8	Dead	LinStatic		0	-1.46 1.46	-0.01	-0.132	0	-0.4086
Story1	C1 C1	8	Dead	LinStatic LinStatic		4.4583	-1.46	-0.01	-0.132	0	0.1819 0.7725
Story1 Story1	C1	8	Dead Roof Live	LinStatic		8.9167 0	-1.46 -2.243	-0.01 -0.016	-0.132 -0.203	0	-0.6274
Story1	C1	8	Roof Live	LinStatic		4.4583	-2.243	-0.016	-0.203	0	0.2794
Story1	C1	8	Roof Live	LinStatic		8.9167	-2.243	-0.016	-0.203	0	1.1861
Story1	C1	8	Lateral (N-S)	LinStatic		0.5107	0.212	5.666	0	0	0
Story1	C1	8	Lateral (N-S)	LinStatic		4.4583	0.212	5.666	0	0	0
Story1	C1	8	Lateral (N-S)	LinStatic		8.9167	0.212	5.666	0	0	0
Story1	C1	8	Lateral (E-W)	LinStatic		0	0	0	4.466	0	42.7972
Story1	C1	8	Lateral (E-W)	LinStatic		4.4583	0	0	4.466	0	22.8872
Story1	C1	8	Lateral (E-W)	LinStatic		8.9167	0	0	4.466	0	2.9772
Story1	C1	8	Envelope	Combination	Max	0	-0.852	5.658	4.369	0	42.4995
Story1	C1	8	Envelope	Combination	Max	4.4583	-0.852	5.658	4.369	0	23.1367
Story1	C1	8	Envelope	Combination	Max	8.9167	-0.852	5.658	4.369	0	4.0367
Story1	C1	8	Envelope	Combination	Min	0	-5.341	-5.68	-4.647	0	-43.3576
Story1	C1	8	Envelope	Combination	Min	4.4583	-5.341	-5.68	-4.647	0	-22.7546
- · · · · · ·	1	1									

Table 5.3 - Element Forces - Columns (Part 1 of 2, continued)

Story	Column	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	C1	8	Envelope	Combination	Min	8.9167	-5.341	-5.68	-4.647	0	-2.4145
Story1	C3	9	Dead	LinStatic		0	-1.608	-0.01	0.132	0	0.4086
Story1	C3	9	Dead	LinStatic		4.4583	-1.608	-0.01	0.132	0	-0.1819
Story1	C3	9	Dead	LinStatic		8.9167	-1.608	-0.01	0.132	0	-0.7725
Story1	C3	9	Roof Live	LinStatic		0	-2.471	-0.016	0.203	0	0.6274
Story1	C3	9	Roof Live	LinStatic		4.4583	-2.471	-0.016	0.203	0	-0.2794
Story1	C3	9	Roof Live	LinStatic		8.9167	-2.471	-0.016	0.203	0	-1.1861
Story1	C3	9	Lateral (N-S)	LinStatic		0	0.203	5.752	0	0	0
Story1	C3	9	Lateral (N-S)	LinStatic		4.4583	0.203	5.752	0	0	0
Story1	C3	9	Lateral (N-S)	LinStatic		8.9167	0.203	5.752	0	0	0
Story1	C3	9	Lateral (E-W)	LinStatic		0	0	0	4.467	0	42.807
Story1	C3	9	Lateral (E-W)	LinStatic		4.4583	0	0	4.467	0	22.8925
Story1	C3	9	Lateral (E-W)	LinStatic		8.9167	0	0	4.467	0	2.9779
Story1	C3	9	Envelope	Combination	Max	0	-0.969	5.745	4.648	0	43.3674
Story1	C3	9	Envelope	Combination	Max	4.4583	-0.969	5.745	4.648	0	22.7599
Story1	C3	9	Envelope	Combination	Max	8.9167	-0.969	5.745	4.648	0	2.4152
Story1	C3	9	Envelope	Combination	Min	0	-5.883	-5.766	-4.37	0	-42.5094
Story1	C3	9	Envelope	Combination	Min	4.4583	-5.883	-5.766	-4. 37	0	-23.142
Story1	C3	9	Envelope	Combination	Min	8.9167	-5.883	-5.766	-4. 37	0	-4.0374

Table 5.3 - Element Forces - Columns (Part 2 of 2)

M3 kip-ft	Element	Elem Station ft	Location
0.0415	5	0	
-0.0123	5	5.25	
-0.066	5	10.5001	
0.0638	5	0	
-0.0189	5	5.25	
-0.1016	5	10.5001	
40.1571	5	0	
21.2773	5	5.25	
2.3974	5	10.5001	
0	5	0	
0	5	5.25	
0	5	10.5001	
40.214	5	0	
21.2683	5	5.25	
2.3493	5	10.5001	
-40.1269	5	0	
-21.2941	5	5.25	
-2.488	5	10.5001	
0.0411	6	0	
-0.0125	6	5.25	
-0.066	6	10.5001	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0.0633	6	0	
-0.0192	6	5.25	
-0.1016	6	10.5001	
40.7672	6	0	
21.6005	6	5.25	
2.4339	6	10.5001	
0	6	0	
0	6	5.25	
0	6	10.5001	
40.8237	6	0	
21.5915	6	5.25	
2.3858	6	10.5001	
-40.7373	6	0	
-21.6176	6	5.25	
-2.5244	6	10.5001	
-0.0253	8	0	
0.0204	8	4.4583	
0.066	8	8.9167	
-0.0389	8	0	
0.0313	8	4.4583	
0.1016	8	8.9167	
54.2976	8	0	
29.0374	8	4.4583	
3.7772	8	8.9167	
0	8	0	
0	8	4.4583	
54.2792	8	8.9167 0	
29.0653	8	4.4583	
3.8678	8	8.9167	
-54.3322	8	0.9107	
-29.0226	8	4.4583	
-3.7291	8	8.9167	
-0.025	9	0.9107	
0.0205	9	4.4583	
0.066	9	8.9167	
-0.0384	9	0.5107	
0.0316	9	4.4583	
0.1016	9	8,9167	
55.1276	9	0.5107	
29.4813	9	4.4583	
3.835	9	8.9167	
0	9	0	
0	9	4,4583	

Table 5.3 - Element Forces - Columns (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0	9	8.9167	
55.1095	9	0	
29.5095	9	4.4583	
3.9255	9	8.9167	
-55.1619	9	0	
-29.4664	9	4.4583	
-3.7869	9	8.9167	

Table 5.4 - Element Forces - Beams (Part 1 of 2)

	· · · · · · · · · · · · · · · · · · ·										
Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story2	B1	10	Dead	LinStatic		0.6311	-0.028	-0.107	0	0	0
Story2	B1	10	Dead	LinStatic		4.8155	-0.01	0	0	0	0
Story2	B1	10	Dead	LinStatic		8.9999	0.008	0.107	0	0	0
Story2	B1	10	Roof Live	LinStatic		0.6311	-0.043	-0.165	0	0	0
Story2	B1	10	Roof Live	LinStatic		4.8155	-0.016	0	0	0	0
Story2	B1	10	Roof Live	LinStatic		8.9999	0.012	0.165	0	0	0
Story2	B1	10	Lateral (N-S)	LinStatic		0.6311	1.288	0	0	0	0
Story2	B1	10	Lateral (N-S)	LinStatic		4.8155	1.288	0	0	0	0
Story2	B1	10	Lateral (N-S)	LinStatic		8.9999	1.288	0	0	0	0
Story2	B1	10	Lateral (E-W)	LinStatic		0.6311	0	0	0	0	0
Story2	B1	10	Lateral (E-W)	LinStatic		4.8155	0	0	0	0	0
Story2	B1	10	Lateral (E-W)	LinStatic		8.9999	0	0	0	0	0
Story2	B1	10	Envelope	Combination	Max	0.6311	1.267	-0.078	0	0	0
Story2	B1	10	Enve l ope	Combination	Max	4.8155	1.28	0	0	0	0
Story2	B1	10	Envelope	Combination	Max	8.9999	1.298	0.393	0	0	0
Story2	B1	10	Envelope	Combination	Min	0.6311	-1.326	-0.393	0	0	0
Story2	B1	10	Envelope	Combination	Min	4.8155	-1.302	0	0	0	0
Story2	B1	10	Envelope	Combination	Min	8.9999	-1.282	0.078	0	0	0
Story2	В3	12	Dead	LinStatic		0.6667	-0.076	-0.836	0	0	0
Story2	В3	12	Dead	LinStatic		2.6333	-0.076	-0.669	0	0	0
Story2	В3	12	Dead	LinStatic		4.6	-0.076	-0.502	0	0	0
Story2	В3	12	Dead	LinStatic		6.5667	-0.076	-0.334	0	0	0
Story2	В3	12	Dead	LinStatic		8.5333	-0.076	-0.167	0	0	0
Story2	В3	12	Dead	LinStatic		10.5	-0.076	0	0	0	0
Story2	В3	12	Dead	LinStatic		12.4667	-0.076	0.167	0	0	0
Story2	В3	12	Dead	LinStatic		14.4333	-0.076	0.334	0	0	0
Story2	В3	12	Dead	LinStatic		16.4	-0.076	0.502	0	0	0
Story2	В3	12	Dead	LinStatic		18.3667	-0.076	0.669	0	0	0
Story2	В3	12	Dead	LinStatic		20.3333	-0.076	0.836	0	0	0
Story2	В3	12	Roof Live	LinStatic		0.6667	-0.117	-1.278	0	0	0
Story2	В3	12	Roof Live	LinStatic		2.6333	-0.117	-1.023	0	0	0
Story2	В3	12	Roof Live	LinStatic		4.6	-0.117	-0.767	0	0	0
Story2	В3	12	Roof Live	LinStatic		6.5667	-0.117	-0.511	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story2	В3	12	Roof Live	LinStatic		8.5333	-0.117	-0.256	0	0	0
Story2	В3	12	Roof Live	LinStatic		10.5	-0.117	0	0	0	0
Story2	В3	12	Roof Live	LinStatic		12.4667	-0.117	0.256	0	0	0
Story2	В3	12	Roof Live	LinStatic		14.4333	-0.117	0.511	0	0	0
Story2	В3	12	Roof Live	LinStatic		16.4	-0.117	0.767	0	0	0
Story2	В3	12	Roof Live	LinStatic		18.3667	-0.117	1.023	0	0	0
Story2	В3	12	Roof Live	LinStatic		20.3333	-0.117	1.278	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		0.6667	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		2.6333	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		4.6	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		6.5667	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		8.5333	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		10.5	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		12.4667	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		14.4333	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		16.4	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		18.3667	0	0	0	0	0
Story2	В3	12	Lateral (N-S)	LinStatic		20.3333	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		0.6667	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		2.6333	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		4.6	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		6.5667	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		8.5333	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		10.5	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		12.4667	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		14.4333	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		16.4	0	0	0	0	0
Story2	В3	12	Lateral (E-W)	LinStatic		18.3667	0	0	0	0	0
Story2	B3	12	Lateral (E-W)	LinStatic		20.3333	0	0	0	0	0
Story2	В3	12	Enve l ope	Combination	Max	0.6667	-0.056	-0.609	0	0	0
Story2	B3	12	Envelope	Combination	Max	2.6333	-0.056	-0.487	0	0	0
Story2	В3	12	Envelope	Combination	Max	4.6	-0.056	-0.365	0	0	0
Story2	В3	12	Enve l ope	Combination	Max	6.5667	-0.056	-0.244	0	0	0
Story2	В3	12	Envelope	Combination	Max	8.5333	-0.056	-0.122	0	0	0
Story2	В3	12	Envelope	Combination	Max	10.5	-0.056	0	0	0	0
Story2	В3	12	Enve l ope	Combination	Max	12.4667	-0.056	0.61	0	0	0
Story2	В3	12	Envelope	Combination	Max	14.4333	-0.056	1.219	0	0	0
Story2	В3	12	Envelope	Combination	Max	16.4	-0.056	1.829	0	0	0
Story2	В3	12	Envelope	Combination	Max	18.3667	-0.056	2.439	0	0	0
Story2	В3	12	Envelope	Combination	Max	20.3333	-0.056	3.048	0	0	0
Story2	В3	12	Envelope	Combination	Min	0.6667	-0.279	-3.048	0	0	0
Story2	В3	12	Envelope	Combination	Min	2.6333	-0.279	-2.439	0	0	0
Story2	В3	12	Envelope	Combination	Min	4.6	-0.279	-1.829	0	0	0
Story2	В3	12	Envelope	Combination	Min	6.5667	-0.279	-1.219	0	0	0
Story2	B3	12	Envelope	Combination	Min	8.5333	-0.279	-0.61	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story2	В3	12	Envelope	Combination	Min	10.5	-0.279	0	0	0	0
Story2	В3	12	Enve l ope	Combination	Min	12.4667	-0.279	0.122	0	0	0
Story2	В3	12	Envelope	Combination	Min	14.4333	-0.279	0.244	0	0	0
Story2	В3	12	Envelope	Combination	Min	16.4	-0.279	0.365	0	0	0
Story2	В3	12	Envelope	Combination	Min	18.3667	-0.279	0.487	0	0	0
Story2	B3	12	Enve l ope	Combination	Min	20.3333	-0.279	0.609	0	0	0
Story2	B4	13	Dead	LinStatic		0.6311	-0.028	-0.107	0	0	0
Story2	B4	13	Dead	LinStatic		4.8155	-0.01	0	0	0	0
Story2	B4	13	Dead	LinStatic		8.9999	0.008	0.107	0	0	0
Story2	B4	13	Roof Live	LinStatic		0.6311	-0.043	-0.165	0	0	0
Story2	B4	13	Roof Live	LinStatic		4.8155	-0.016	0	0	0	0
Story2	B4	13	Roof Live	LinStatic		8.9999	0.012	0.165	0	0	0
Story2	B4	13	Lateral (N-S)	LinStatic		0.6311	1.232	0	0	0	0
Story2	B4	13	Lateral (N-S)	LinStatic		4.8155	1.232	0	0	0	0
Story2	B4	13	Lateral (N-S)	LinStatic		8.9999	1.232	0	0	0	0
Story2	B4	13	Lateral (E-W)	LinStatic		0.6311	0	0	0	0	0
Story2	B4	13	Lateral (E-W)	LinStatic		4.8155	0	0	0	0	0
Story2	B4 B4	13 13	Lateral (E-W)	LinStatic Combination	Max	8.9999	0	0 -0.078	0	0	0
Story2	B4	13	Envelope	Combination		0.6311 4.8155	1.212	-0.078	0	0	0
Story2 Story2	B4	13	Envelope Envelope	Combination	Max Max	8.9999	1.225 1.243	0.393	0	0	0
Story2	B4	13	Envelope	Combination	Min	0.6311	-1.271	-0.393	0	0	0
Story2	B4	13	Envelope	Combination	Min	4.8155	-1.246	0	0	0	0
Story2	B4	13	Envelope	Combination	Min	8.9999	-1.227	0.078	0	0	0
Story1	B2	14	Dead	LinStatic	IVIIII	0.6667	-0.132	-1.249	0	0	0
Story1	B2	14	Dead	LinStatic		2.6333	-0.132	-0.999	0	0	0
Story1	B2	14	Dead	LinStatic		4.6	-0.132	-0.749	0	0	0
Story1	B2	14	Dead	LinStatic		6.5667	-0.132	-0.5	0	0	0
Story1	B2	14	Dead	LinStatic		8.5333	-0.132	-0.25	0	0	0
Story1	B2	14	Dead	LinStatic		10.5	-0.132	0	0	0	0
Story1	B2	14	Dead	LinStatic		12.4667	-0.132	0.25	0	0	0
Story1	B2	14	Dead	LinStatic		14.4333	-0.132	0.5	0	0	0
Story1	B2	14	Dead	LinStatic		16.4	-0.132	0.749	0	0	0
Story1	B2	14	Dead	LinStatic		18.3667	-0.132	0.999	0	0	0
Story1	B2	14	Dead	LinStatic		20.3333	-0.132	1.249	0	0	0
Story1	B2	14	Roof Live	LinStatic		0.6667	-0.203	-1.918	0	0	0
Story1	B2	14	Roof Live	LinStatic		2.6333	-0.203	-1.534	0	0	0
Story1	B2	14	Roof Live	LinStatic		4.6	-0.203	-1.151	0	0	0
Story1	B2	14	Roof Live	LinStatic		6.5667	-0.203	-0.767	0	0	0
Story1	B2	14	Roof Live	LinStatic		8.5333	-0.203	-0.384	0	0	0
Story1	B2	14	Roof Live	LinStatic		10.5	-0.203	0	0	0	0
Story1	B2	14	Roof Live	LinStatic		12.4667	-0.203	0.383	0	0	0
Story1	B2	14	Roof Live	LinStatic		14.4333	-0.203	0.767	0	0	0
Story1	B2	14	Roof Live	LinStatic		16.4	-0.203	1.151	0	0	0
Story1	B2	14	Roof Live	LinStatic		18.3667	-0.203	1.534	0	0	0

Table 5.4 - Element Forces - Beams (Part 1 of 2, continued)

Story	Beam	Unique Name	Output Case	Case Type	Step Type	Station ft	P kip	V2 kip	V3 kip	T kip-ft	M2 kip-ft
Story1	B2	14	Roof Live	LinStatic		20.3333	-0.203	1.918	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		0.6667	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		2.6333	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		4.6	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		6.5667	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		8.5333	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		10.5	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		12.4667	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		14.4333	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		16.4	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		18.3667	0	0	0	0	0
Story1	B2	14	Lateral (N-S)	LinStatic		20.3333	0	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		0.6667	0.07	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		2.6333	0.07	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		4.6	0.07	0	0	0	0
Story1	B2 B2	14 14	Lateral (E-W)	LinStatic LinStatic		6.5667	0.07	0	0	0	0
Story1	B2	14	, ,	LinStatic		8.5333 10.5	0.07 0.07	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		12.4667	0.07	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		14.4333	0.07	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		16.4	0.07	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		18.3667	0.07	0	0	0	0
Story1	B2	14	Lateral (E-W)	LinStatic		20.3333	0.07	0	0	0	0
Story1	B2	14	Envelope	Combination	Max	0.6667	-0.026	-0.91	0	0	0
Story1	B2	14	Envelope	Combination	Max	2.6333	-0.026	-0.728	0	0	0
Story1	B2	14	Envelope	Combination	Max	4.6	-0.026	-0.546	0	0	0
Story1	B2	14	Envelope	Combination	Max	6.5667	-0.026	-0.364	0	0	0
Story1	B2	14	Envelope	Combination	Max	8.5333	-0.026	-0.182	0	0	0
Story1	B2	14	Envelope	Combination	Max	10.5	-0.026	0	0	0	0
Story1	B2	14	Envelope	Combination	Max	12.4667	-0.026	0.913	0	0	0
Story1	B2	14	Envelope	Combination	Max	14.4333	-0.026	1.827	0	0	0
Story1	B2	14	Envelope	Combination	Max	16.4	-0.026	2.74	0	0	0
Story1	B2	14	Envelope	Combination	Max	18.3667	-0.026	3.653	0	0	0
Story1	B2	14	Enve l ope	Combination	Max	20.3333	-0.026	4.567	0	0	0
Story1	B2	14	Envelope	Combination	Min	0.6667	-0.484	-4.567	0	0	0
Story1	B2	14	Enve l ope	Combination	Min	2.6333	-0.484	-3.653	0	0	0
Story1	B2	14	Envelope	Combination	Min	4.6	-0.484	-2.74	0	0	0
Story1	B2	14	Envelope	Combination	Min	6.5667	-0.484	-1.827	0	0	0
Story1	B2	14	Envelope	Combination	Min	8.5333	-0.484	-0.913	0	0	0
Story1	B2	14	Envelope	Combination	Min	10.5	-0.484	0	0	0	0
Story1	B2	14	Envelope	Combination	Min	12.4667	-0.484	0.182	0	0	0
Story1	B2	14	Enve l ope	Combination	Min	14.4333	-0.484	0.364	0	0	0
Story1	B2	14	Envelope	Combination	Min	16.4	-0.484	0.546	0	0	0
Story1	B2	14	Enve l ope	Combination	Min	18.3667	-0.484	0.728	0	0	0
Story1	B2	14	Enve l ope	Combination	Min	20.3333	-0.484	0.91	0	0	0

Table 5.4 - Element Forces - Beams (Part 2 of 2)

M3 kip-ft	Element	Elem Station	Location
_		ft	
0	10	0.6311	
0.2245	10	4.8155	
0	10	8.9999	
0	10	0.6311	
0.3454	10	4.8155	
0	10	8.9999	
0	10	0.6311	
0	10	4.8155	
0	10	8.9999	
0	10	0.6311	
0	10	4.8155	
0	10	8.9999	
0	10	0.6311	
0.8221	10	4.8155	
0	10	8.9999	
0	10	0.6311	
0.1635	10	4.8155	
0	10	8.9999	
0	12	0.6667	
1.4794	12	2.6333	
2.6301	12	4.6	
3.452	12	6.5667	
3.9451	12	8.5333	
4.1095	12	10.5	
3.9451	12	12.4667	
3.452	12	14.4333	
2.6301	12	16.4	
1.4794	12	18.3667	
0	12	20.3333	
0	12	0.6667	
2,2627	12	2.6333	
4.0225	12	4.6	
5.2795	12	6.5667	
6.0337	12	8.5333	
6.2851	12	10.5	
6.0337	12	12.4667	
5.2795	12	14,4333	
4.0225	12	16.4	
2.2627	12	18.3667	
0	12	20.3333	
0	12	0.6667	
0	12	2.6333	
0	12	4.6	
0	12	6.5667	
U	12	0.5007	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

M3 kip-ft	Element	Elem Station ft	Location
0	12	8.5333	
0	12	10.5	
0	12	12.4667	
0	12	14.4333	
0	12	16.4	
0	12	18.3667	
0	12	20.3333	
0	12	0.6667	
0	12	2.6333	
0	12	4.6	
0	12	6.5667	
0	12	8.5333	
0	12	10.5	
0	12	12.4667	
0	12	14.4333	
0	12	16.4	
0	12	18.3667	
0	12	20.3333	
0	12	0.6667	
5.3956	12	2.6333	
9.5921	12	4.6	
12.5896	12	6.5667	
14.3881	12	8.5333	
14.9876	12	10.5	
14.3881	12	12.4667	
12.5896	12	14.4333	
9.5921	12	16.4	
5.3956	12	18.3667	
0	12	20.3333	
0	12	0.6667	
1.0776	12	2.6333	
1.9158	12	4.6	
2.5144	12	6.5667	_
2.8736	12	8.5333	
2.9934	12	10.5	
2.8736	12	12.4667	
2.5144	12	14.4333	
1.9158	12	16.4	
1.0776	12	18.3667	
0	12	20.3333	
0	13	0.6311	
0.2245	13	4.8155	
0	13	8.9999	

Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

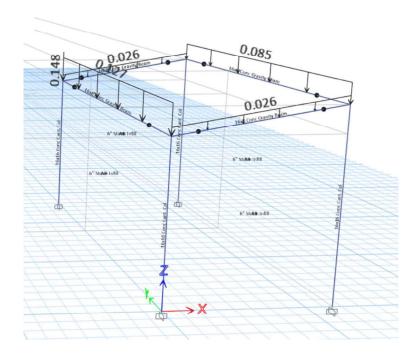
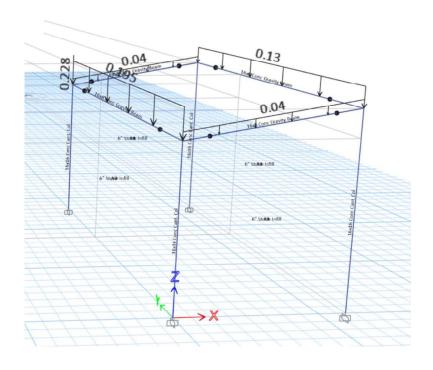
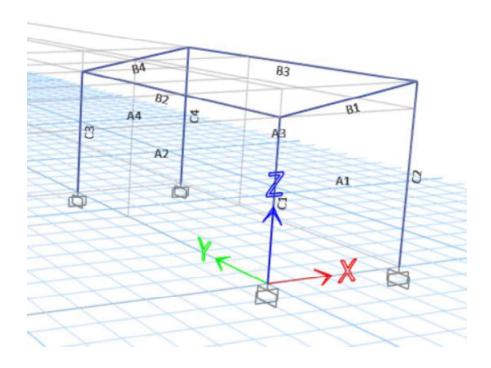
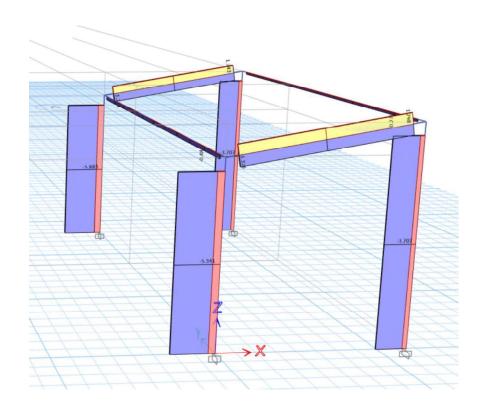

M3 kip-ft	Element	Elem Station ft	Location
0	13	0.6311	
0.3454	13	4.8155	
0	13	8.9999	
0	13	0.6311	
0	13	4.8155	
0	13	8.9999	
0	13	0.6311	
0	13	4.8155	
0	13	8.9999	
0	13	0.6311	
0.8221	13	4.8155	
0	13	8.9999	
0	13	0.6311	
0.1635	13	4.8155	
0	13	8.9999	
0	14	0.6667	
2.2104	14	2.6333	
3.9297	14	4.6	
5.1577	14	6.5667	
5.8945	14	8.5333	
6.1401	14	10.5	
5.8945	14	12.4667	
5.1577	14	14.4333	
3.9297	14	16.4	
2.2104	14	18.3667	
0	14	20.3333	
0	14	0.6667	
3.394	14	2.6333	
6.0337	14	4.6	
7.9193	14	6.5667	
9.0506	14	8.5333	
9.4277	14	10.5	
9.0506	14	12.4667	
7.9193	14	14.4333	
6.0337	14	16.4	
3.394	14	18.3667	
0	14	20.3333	
0	14	0.6667	
0	14	2.6333	
0	14	4.6	
0	14	6.5667	
0	14	8.5333	
0	14	10.5	

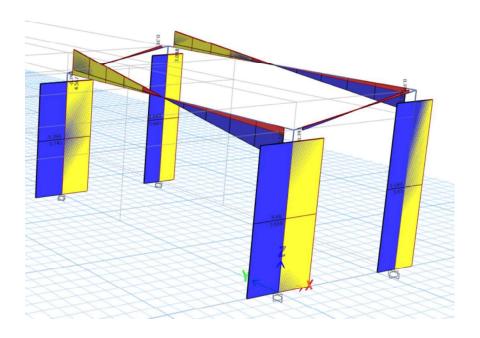
Table 5.4 - Element Forces - Beams (Part 2 of 2, continued)

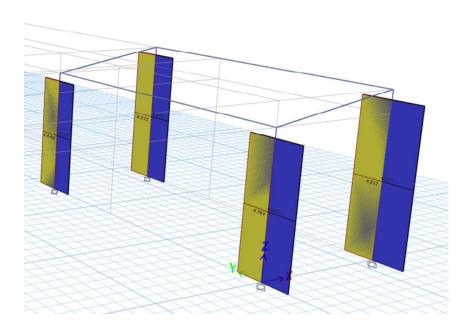

M3 kip-ft	Element	Elem Station ft	Location
0	14	12.4667	
0	14	14.4333	
0	14	16.4	
0	14	18.3667	
0	14	20.3333	
0	14	0.6667	
0	14	2.6333	
0	14	4.6	
0	14	6.5667	
0	14	8.5333	
0	14	10.5	
0	14	12.4667	
0	14	14.4333	
0	14	16.4	
0	14	18.3667	
0	14	20.3333	
0	14	0.6667	
8.0829	14	2.6333	
14.3696	14	4.6	
18.8601	14	6.5667	
21.5544	14	8.5333	
22.4525	14	10.5	
21.5544	14	12.4667	
18.8601	14	14.4333	
14.3696	14	16.4	
8.0829	14	18.3667	
0	14	20.3333	
0	14	0.6667	
1.6101	14	2.6333	
2.8624	14	4.6	
3.7569	14	6.5667	
4.2935	14	8.5333	
4.4724	14	10.5	
4.2935	14	12.4667	
3.7569	14	14.4333	
2.8624	14	16.4	
1.6101	14	18.3667	
0	14	20.3333	

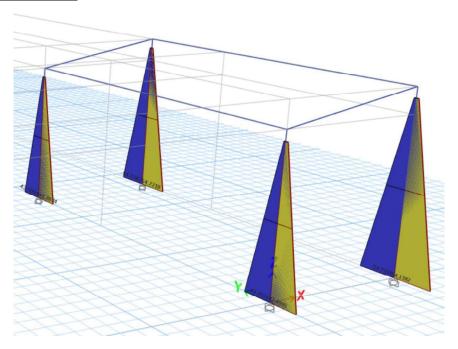
ADMIN/BATHROOM

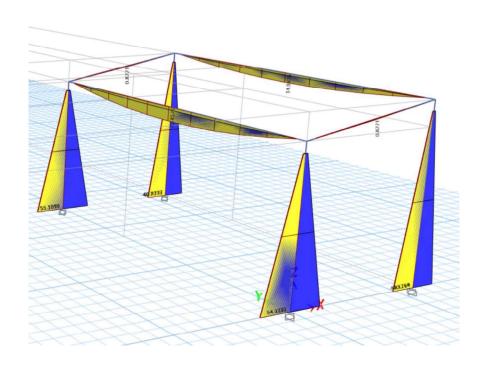

DEAD LOAD


LIVE LOAD

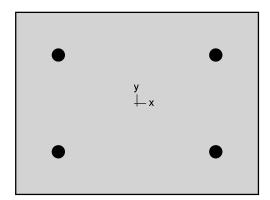

LABELS


<u>AXIAL</u>


STRONG AXIS SHEAR (V2)


WEAK AXIS SHEAR (V3)

WEAK AXIS MOMENT (M2)



STRONG AXIS MOMENT (M3)

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Contents

1. General Information	3
2. Material Properties	3
2.1. Concrete	
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2. Section Figure	4
4. Reinforcement	4
4.1. Bar Set: ASTM A615	4
4.2. Design Criteria	4
4.3. Confinement and Factors	4
4.4. Arrangement	5
5. Factored Loads and Moments with Corresponding Capacity Ratios	5
6. Diagrams	6
6.1. PM at θ=43 [deg]	6
6.2. MM at P=-4 [kip]	7
List of Figures	
Figure 1: Column section	4

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\b1.col Page | 3 6/21/2020 7:36 PM

1. General Information

File Name	c:\senior project\lateral\beam design\b1.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	Biaxial
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Critical capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f'c	3 ksi
Ec	3122.02 ksi
f _c	2.55 ksi
f_c ϵ_u β_1	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
ϵ_{yt}	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	16	in
Depth	12	in
A_g	192	in ²
l _x	2304	in ⁴
l _y	4096	in ⁴
r _x	3.4641	in
r _y	4.6188	in
Y _o	0	in
Y _o	0	in

3.2. Section Figure

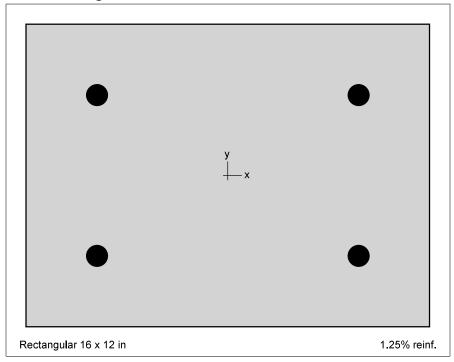


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	1.92 in ²
$A_{s,max} = 0.08 \times A_g$	15.36 in ²
Allowable Capacity Ratio (<1 is safe)	1.00

4.3. Confinement and Factors

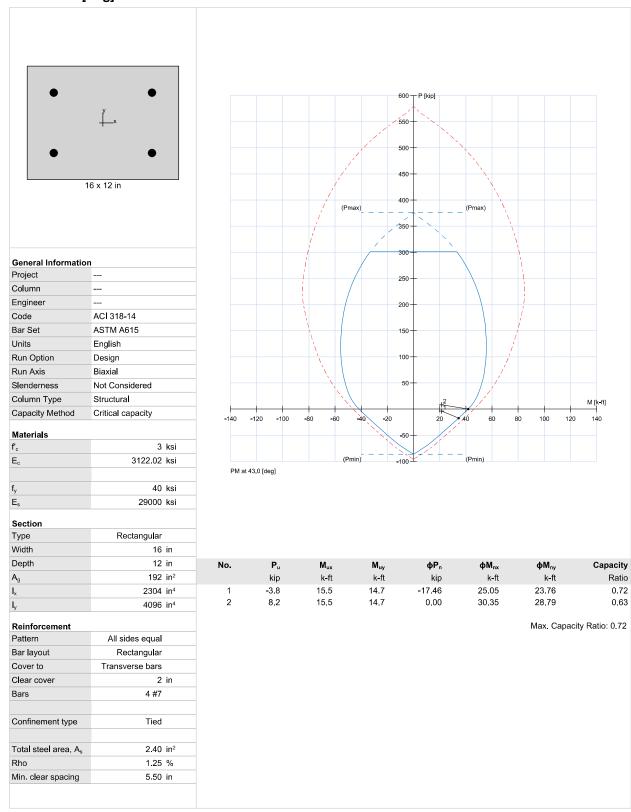
Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\b1.col

Page | 5 6/21/2020 7:36 PM

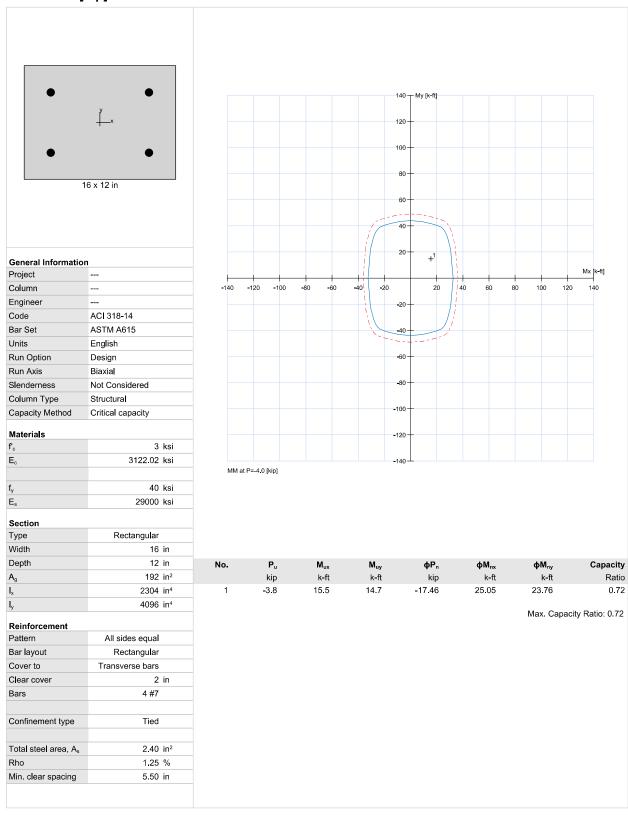
4.4. Arrangement

Pattern	All sides equal
Bar layout	Rectangular
Cover to	Transverse bars
Clear cover	2 in
Bars	4 #7
Total steel area, A _s	2.40 in ²
Rho	1.25 %
Minimum clear spacing	5.50 in


5. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Critical Capacity" Method. Allowable Capacity (Ratio) <= 1.00

N	lo.		Demand			Capacity		Param	neters at Capa	city	Capacity
		P_{u}	M_{ux}	M_{uy}	φP _n	ϕM_{nx}	ϕM_{ny}	NA Depth	$\epsilon_{\rm t}$	ф	Ratio
		kip	k-ft	k - ft	kip	k-ft	k-ft	in			
	1	-3.83	15.54	14.74	-17.46	25.05	23.76	3.57	0.00728	0.900	0.72
	2	8.16	15.54	14.74	0.00	30.35	28.79	4.25	0.00590	0.900	0.63

Page | **6** 6/21/2020 7:36 PM


6. Diagrams

6.1. PM at θ=43 [deg]

Page | **7** 6/21/2020 7:36 PM

6.2. MM at P=-4 [kip]

B1 - Special Moment Frame Beam Beam Design

ACI 318-14 (T. 24.3.2)

ACI 318-14 (T. 24.3.2)

IN PLANE BENDING						
	Bending Axis	Shear Axis				
	X-X/3-3	Y-Y/2-2				
	lu (out of plane span) (in) =	336				
	lu (out of plane span) (in) = In (in plane span) (in) =	168				
	b (in) =	16				
		12				
	h (in) =	7				
	long bar size =					
	Tie size =	3				
	number of longitudinal bars =	4				
	Area of long bars =	0.601				
	d' =	2.375				
	f'c (psi) =	3000				
	fy (psi) =	40000				
	Pu Compression (k) =	5.8				
	Pu Tension (k) =	3.830				
	Tu (k-ft) =	4.52				
	Max NA depth (in) =	3.6 1 layer in t				
	Min NA depth (in) =	3.1 1 layer in t	tension			
	Mu Strong (k-ft) =	15.54				
	Mu Weak (k-ft) =	14.74				
	Beam Design Requirements					
Stability	beam besign requirements					
ACI 318-14 (Sec. 9.2.3.1a)	lu ≤ 50*b					
ACI 310 14 (300. 3.2.3.14)	lu (in) =	336 ≤	50*b (in) =	800	, Therefore OK	
Minimum Beam Depth	ia (iii) –	330 3	30 b (III) =	800	, merelore ok	
ACI 318-14 (T. 9.3.1.1)	hmin (one end continuous) = In/18.5*(0.4+fy/100	000)				
ACI 516-14 (1. 9.5.1.1)		•	h-	12	Therefore OV	
A.4	hmin =	7.26 ≤	h=	12	, Therefore OK	
Moment	A - * 51 - /4 O / 1-)	FC 00 >	D. (1)		TI	and the filter and and the different
ACI 318-14 (Sec. 9.5.2.1)	Ag*f'c/10 (k) =	56.88 ≥	Pu (k) =	5.8		n shall be calculated in
						Section 22.3, and design
						xural and axial strength is
					n	ot required
Reinforcement Strain Limit in Nonprest						
ACI 318-14 (Sec. 9.3.3.1)	εt ≥ 0.004					
SP Column Results	et (compression) =	0.00681 ≥	0.00	4 , Therefore OK		
SP Column Results	εt (tension) =	0.00811 ≥	0.00	4 , Therefore OK		
Dimensional Limits	Special Moment Frame Beam Design Requirement	iits				
	la S. A.J.					
ACI 318-14 (Sec. 18.6.2.1a)	In ≥ 4d In (in) =	168 ≥	4-1 (:)	45.50	Th 6 OV	
A CL 240 44 (Co 40 C 2 4b)	1 7	108 2	4d (in) =	45.59	, Therefore OK	
ACI 318-14 (Sec. 18.6.2.1b)	b ≥ min (0.3*h, 10in)	46.5	0.0*1- (:-)	2.6	0	10. Thurston OK
101010 11/0 10 00 11	b (in) =	16 ≥	0.3*h (in) =	3.6	&	10 , Therefore OK
ACI 318-14 (Sec. 18.6.2.1c)	Beam width is to equal to column width	, Therefore OK				
Longitudinal Reinforcement	A ! ! A W . ! !! ! !! . !!	0.740 : 45			2 405 : : :	TI (0)
ACI 318-14 (Eq. 9.6.1.2a)	As min = $(3*Vf'c*b*d)/fy =$		≤	As provided =	2.405 in^2	, Therefore OK
ACI 318-14 (Eq. 9.6.1.2b)	As min = (200*b*d)/fy =	0.399 in^2	≤	As provided =	2.405 in^2	, Therefore OK
Longitudinal Reinforcement						
ACI 318-14 (Sec. 18.6.3.1)	ρ max =	0.025 in^2/in^2		ρ provided =	0.013 , Then	etore OK
ACI 318-14 (Sec. 18.6.3.2)	Beam is symmetric about x axis and flexural desi	gn is uniform , Therefore	e OK			
ACI 240 44/0 - 42 5 5 5 3	throughout section			Thursday 615		
ACI 318-14 (Sec. 18.6.4.2)	spacing between longitudinal bars with ties ≤ 14		- :	, Therefore OK		
	in	provided = 11.25	11)			

provided =

16.6 ≥

18.0 ≥

in

Smax, H (in) = 15*(40,000/0.66*fy) - 2.5*Cc =

Smax, H (in) = 12*(40,000/0.66*fy) =

Distribution of Flexural Reinforcement in one-way Slabs and Beams

11.25 in

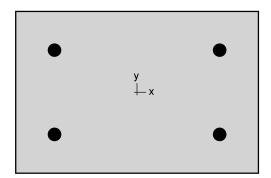
spacing

spacing provided =

provided =

12 in

12 in


OUT OF PLANE BENDING

OUT OF PLANE BENDING					
	Bending Axis	Shear Axis			
	Y-Y/2-2	X-X/3-3			
	lu (out of plane span) (in) =	168			
	In (in plane span) (in) =	336			
	b (in) =	12			
	h (in) =	16			
	long bar size =	7			
	Tie size =	3			
	d bar long. =	0.875			
	d tie =	0.375			
	number of longitudinal bars =	4			
	Area of long bars =	0.601			
	f'c (psi) =	3000			
	fy (psi) =	40000			
	Pu Compression (k) =	5.8			
	Pu Tension (k) =	3.83			
	Tu (k) =	4.52			
	εγ =	0.00138			
	Ag (in^2) =	189.6			
	Beam Design Requirements				
Stability					
ACI 318-14 (Sec. 9.2.3.1a)	lu ≤ 50*b				
	lu (in) =	168 ≤	50*b (in) =	600	, Therefore OK
Minimum Beam Depth					
ACI 318-14 (T. 9.3.1.1)	hmin (one end continuous) = $ln/18.5*(0.4+fy/100)$,000)			
	hmin =	7.26 ≤	h=	16	, Therefore OK
Moment					
ACI 318-14 (Sec. 9.5.2.1)	Ag*f'c/10 (k) =	56.88 ≥	Pu (k) =	5.8	, Therefore slenderness can be neglected,
•					Mn shall be calculated in accordance with
					Section 22.3, and design of combined
					flexural and axial strength is not required
Reinforcement Strain Limit in Nonpres	traccad Reams				
ACI 318-14 (Sec. 9.3.3.1)	et ≥ 0.004				
SP Column Results	et (compression) =	0.00681 ≥	0.004 , The	oroforo OV	
SP Column Results	et (tension) =	0.00811 ≥	0.004 , The		
or Column Results	et (tension) –	0.00811 2	0.004 , 1116	erelore OK	
	Diaphragm Design Requirements				
Reinforcement	Diapinagin Design Requirements				
	ct (tancian) -	0.00811 ≥	cv =	0.00138	, Therefore Tension Steel has Yielded
ACI 318-14 (Sec. 18.12.7.3)	εt (tension) =	0.00811 2	εy =	0.00156	, Therefore relision steer has fielded
IN PLANE SHEAR					
	Beam Design Requirements				
	Vu (k) =	5.82 +/-			
Nonprestressed Members with Axial C					
ACI 318-14 (Eq.22.5.6.1)	Vc Compression (k) =				
	2*(1+(Pu/2000*Ag))*λ*Vf'c*b*d =	20.28			
Nonprestressed Members with Signific	ant Axial Tension				
ACI 318-14 (Eq.22.5.7.1)	Vc Tension (k) = $2*(1+(Pu/500*Ag))*\lambda*vf'c*b*d =$	12712 ≥	Vc Compression	5.82	, Therefore Vc compression controls
			(k) =		
Minimum Shear Reinforcement					
ACI 318-14 (Sec. 9.6.3.1)	0.5*φv*Vc compression (k) =	7.607 ≥	Vu (k) =	5.82	, Therefore Av, min Not Required
	φv*Vc compression (k) =	15.213 ≥	Vu (k) =	5.82	, Therefore No Additional Shear
					Reinforcement Required
ACI 318-14 (T. 9.6.3.3a)	Av, min/s (in^2/in) = $(0.75*Vf'c*b)/fyt =$	0.016			
ACI 318-14 (T. 9.6.3.3b)	Av,min/s (in^2/in) = (50*b)/fyt) =	0.020 Controls			
2 2 . (Av, provided =	0.221			
One-way Shear Strength Provided by 1		0.221			
ACI 318-14 (Eq. 22.5.10.5.3)	Vs (lbs) = (Av/s)*fyt*d =	25179			
Shear	15 (185) - (174/5) Tye W.	231/3			
ACI 318-14 (T. 9.7.6.2.2)	4*vf'c*b*d (lbs) =	39957 ≥	Vs =	25170	, Therefore sv max = Min (d/2 , 24)
ACI 310-14 (1. 3.7.0.2.2)					, mererore sv max = IVIIII (u/2 , 24)
	sv max (in) = Min (d/2 , 24) =	5.7 , Inereto	re use ties spaced @ 3" o	O.C.	

Transverse Reinforcement	Special Moment Frame Beam Design Requirements			
ACI 318-14 (Sec. 18.6.4.1a & 18.6.4.4)	Ties to be provided at least	32.0 in from	each side of support	t starting ≤ 2in from face of column
ACI 318-14 (Sec. 18.6.4.1b)	Ties to be provided where flexural reinforcement is anticipated to yield out-of-plane = center	64.0 in withi	n the beam	
ACI 318-14 (Sec. 18.6.4.4)	sv, max (in) where hoops required = Min(d/4, 6df, 6) =	2.8 in	, Therefore use s	spacing of 2.5" at locations required by 18.6.4.1
ACI 318-14 (Sec. 18.6.4.6)	sv, max (in) where hoops not required = d/2 =	5.7 in	, Therefore use	e spacing of 5.5" at all locations other than those required by 18.6.4.1
ACI 318-14 (Sec. 18.6.4.7)	Ag*f'c/10 (k) =	56.88 ≥	Pu (k) =	5.8 , Therefore Additional Shear Reinforcement Not Required
Shear Strength				
ACI 318-14 (Sec. 18.6.5.2)	Ve (k) = Max Seismic Shear =	10.07 ≥	Vu/2 (k) =	2.91
	Ag*f'c/20 (k) =	28.44 ≥	Pu (k) =	5.8 , Therefore Shear Reinforcement Shall be designed assuming Vc=0 for locations specified in Sec. 18.6.4.1
ACI 318-14 (Eq. 22.5.10.5.3)	$\phi v^*Vn(k) = \phi v^*Vs = \phi v^*(Av/s)^*fyt^*d =$	64 ≥	Vu (k) =	5.82 , Therefore #3 ties spaced @ 2.5" o.c. are adequate
OUT OF PLANE SHEAR	Beam Design Requirements Vu out-of-plane ≤	Vu min	in-plane	, Therefore No Additional Shear Reinforcement Required
	Diaphragm Design Requirements			
Shear				
ACI 318-14 (Eq. 12.5.3.3, Eq.18.12.9.1)	$Vn (k) = Acv*(2* \lambda*Vf'c + \rho t*fy) =$	22.95		
	φVn (k) =	17.21 ≥	Vu (k) =	5.82 , Therefore Ok
ACI 318-14 (Eq. 12.5.3.4) Reinforcement	φ8*Acv*Vf'c (k) =	62 ≥	Vn (k) =	22.95 , Therefore Ok
ACI 318-14 (Sec. 18.12.7.5)	(Pu/A)/f'c =	0.010 ≤	0.4	, Therefore Additional Transverse Reinforcement Not Required
Shear Strength ACI 318-14 (Sec.18.12.9.2)	Vn, max (k) = 8*Acv*vf'c =	83 ≥	22.95	5 , Therefore Ok
TORSION				
Threshold Torsion	Torsional Strength			
ACI 318-14 (Sec. 22.7.4.1a & 22.7.1.1)	$\Phi T_{th} \text{ compression (k)} = (\lambda^* V f' c^* A_{cp}^2) / p_{cp}^* V (1 + (Nu/4^* A g^* \lambda^* V f' c)) =$	28.87 ≥	Tu (k) =	4.52 , Therefore Torsional Effects may be Neglected
	ϕT_{th} tension (k) = $(\lambda^* V f^t c^* A_{cp}^2)/p_{cp} * V(1+ (Nu/4*Ag*\lambda^* V f^t c)) =$	25.77 ≥	Tu (k) =	4.52 , Therefore Torsional Effects may be Neglected

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Contents

1. General Information	
2. Material Properties	3
2.1. Concrete	
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2. Section Figure	4
4. Reinforcement	4
4.1. Bar Set: ASTM A615	4
4.2. Design Criteria	4
4.3. Confinement and Factors	4
4.4. Arrangement	5
5. Factored Loads and Moments with Corresponding Capacity Ratios	5
6. Diagrams	ô
6.1. PM at θ=0 [deq]	6
6.2. MM at P=0 [kip]	7
List of Figures	
Figure 1: Column section	4

Page | 3 6/21/2020 7:38 PM

1. General Information

File Name	c:\senior project\lateral\beam design\b2.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	Biaxial
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Critical capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f'c	3 ksi
f_c E_c f_c ε_u	3122.02 ksi
f _c	2.55 ksi
ϵ_{u}	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
ε _{yt}	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular
Width	18 in
Depth	12 in
A_g	216 in ²
A _g	2592 in⁴
l _y	5832 in ⁴
r _x	3.4641 in
r _y	5.19615 in
Y _o	0 in
Yo	0 in

Page | **4** 6/21/2020 7:38 PM

3.2. Section Figure

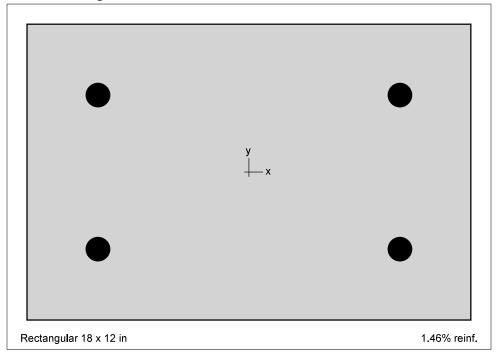


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in ²		in	in²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	2.16 in ²
$A_{s,max} = 0.08 \times A_g$	17.28 in ²
Allowable Capacity Ratio (<1 is safe)	1.00

4.3. Confinement and Factors

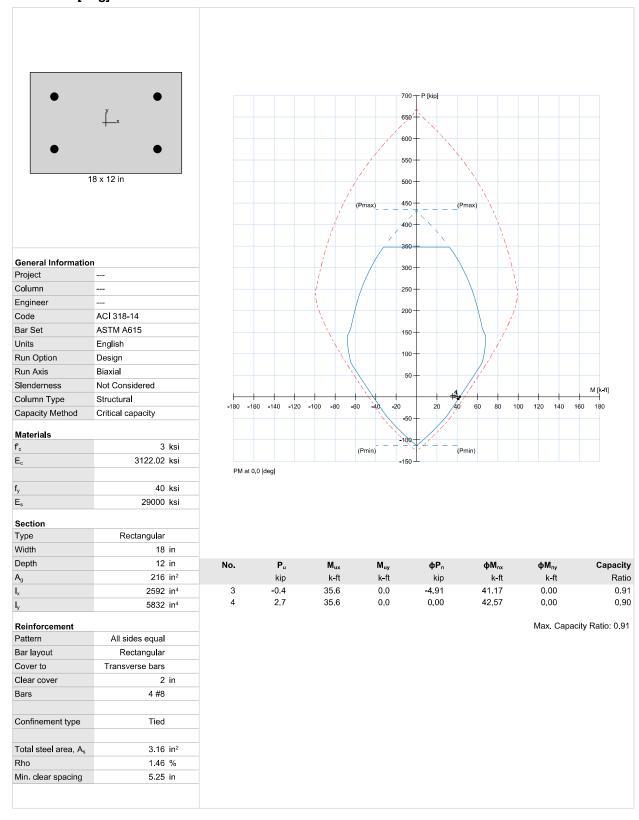
Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\b2.col

Page | 5 6/21/2020 7:38 PM

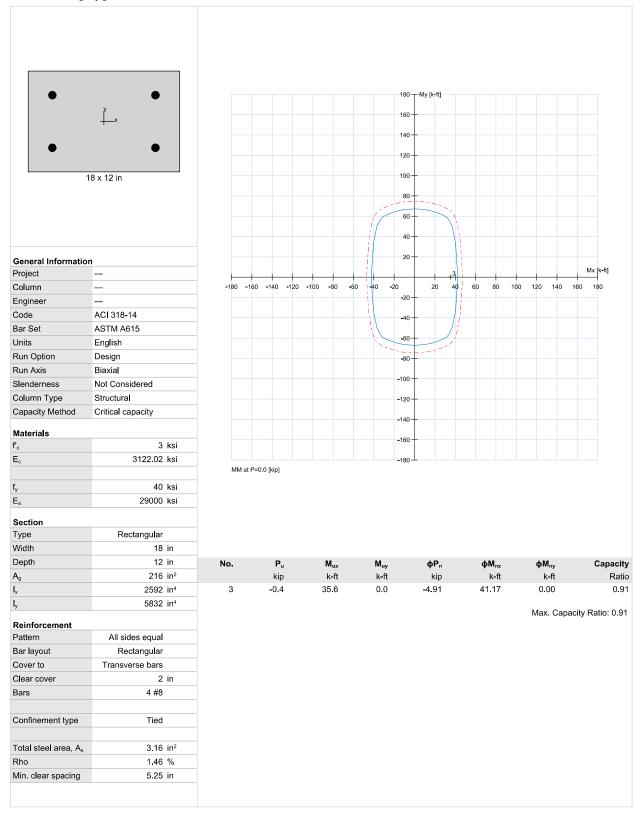
4.4. Arrangement

Pattern	All sides equal
Bar layout	Rectangular
Cover to	Transverse bars
Clear cover	2 in
Bars	4 #8
Total steel area, A _s	3.16 in ²
Rho	1.46 %
Minimum clear spacing	5.25 in


5. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Critical Capacity" Method. Allowable Capacity (Ratio) <= 1.00

No.		Demand		Capacity		Paran	Capacity			
	P_{u}	M_{ux}	\mathbf{M}_{uy}	φP _n	ϕM_{nx}	ϕM_{ny}	NA Depth	ε _t	ф	Ratio
	kip	k-ft	k-ft	kip	k-ft	k-ft	in			
1	1.49	17.36	2.24	0.00	42.21	5.45	2.62	0.00813	0.900	0.62
2	-1.31	17.36	2.24	-18.68	36.80	4.75	2.39	0.00910	0.900	0.67
3	-0.45	35.60	0.00	-4.91	41.17	0.00	2.32	0.00879	0.900	0.91
4	2.65	35.60	0.00	0.00	42.57	0.00	2.37	0.00855	0.900	0.90

Page | **6** 6/21/2020 7:38 PM


6. Diagrams

6.1. PM at θ=0 [deg]

Page | **7** 6/21/2020 7:38 PM

6.2. MM at P=0 [kip]

B2 - Special Moment Frame Beam Beam Design

Smax, H (in) = 12*(40,000/0.66*fy) =

ACI 318-14 (T. 24.3.2)

IN PLANE BENDING							
IN FLANE BENDING	Bending Axis	Shear Axis					
	X-X/3-3	Y-Y/2-2					
	X 74 5 5	,					
	lu (out of plane span) (in) =	2:	94				
	In (in plane span) (in) =	2:	94				
	b (in) =		16				
	h (in) =		12				
	long bar size =		8				
	Tie size =		3				
	number of longitudinal bars =		4				
	d' =	2.3	75				
	f'c (psi) =	30					
	fy (psi) =	400	00				
	Pu Compression (k) =	1	49				
	Pu Tension (k) =	1.3	10				
	Tu (k-ft) =	0.					
	Max NA depth (in) =	2	.6 1 layer in t	ension			
	Min NA depth (in) =	2	.3 2 layers in	tension			
	Mu Strong (k-ft) =	17.	36				
	Mu Weak (k-ft) =	2.:	24				
	Beam Design Requirements						
Stability							
ACI 318-14 (Sec. 9.2.3.1a)	lu ≤ 50*b						
	lu (in) =	2:	94 ≤	50*b (in) =	800	, Therefore OK	
Minimum Beam Depth							
ACI 318-14 (T. 9.3.1.1)	hmin (one end continuous) = $ln/18.5*(0.4+fy/100)$						
	hmin =	7.:	26 ≤	h=	12	, Therefore OK	
Moment							
ACI 318-14 (Sec. 9.5.2.1)	Ag*f'c/10 (k) =	56.	56 ≥	Pu (k) =	1.49		lerness can be Neglected,
							ulated in accordance with
							and design of combined
						tiexural and axia	I strength is not required
Reinforcement Strain Limit in Nonpre							
ACI 318-14 (Sec. 9.3.3.1)	εt ≥ 0.004						
SP Column Results	et (compression) =	0.008			0.004 , Therefore OK		
SP Column Results	εt (tension) =	0.00	91 ≥		0.004 , Therefore OK		
	Special Moment Frame Beam Design Requireme	onto					
Dimensional Limits	Special Woment Frame Beam Design Requireme	<u> </u>					
ACI 318-14 (Sec. 18.6.2.1a)	ln ≥ 4d						
ACI 310 14 (300. 10.0.2.14)	In (in) =	21	94 ≥	4d (in) =	11 86	, Therefore OK	
ACI 318-14 (Sec. 18.6.2.1b)	b ≥ min (0.3*h, 10in)	2.	77 5	44 (III) =	44.00	, merelore ok	
Act 310-14 (3cc. 10.0.2.1b)	b (in) =		16 ≥	0.3*h (in) =	= 3.6	. &	10 , Therefore OK
ACI 318-14 (Sec. 18.6.2.1c)	Beam width is to be less than or equal to column			0.5 11 (111)	3.0	, α	10 , mererore on
7.0.510 17 (500.15.5.2.10)	width	. ,	J.,				
Longitudinal Reinforcement	Widen						
ACI 318-14 (Eq. 9.6.1.2a)	As min = $(3*Vf'c*b*d)/fy$ =	= 0.7	37 in^2	≤	As provided =	3.142 in^2	, Therefore OK
ACI 318-14 (Eq. 9.6.1.2b)	As min = $(200*b*d)/fy$ =		49 in^2	_	As provided =	3.142 in^2	, Therefore OK
Longitudinal Reinforcement	, , , , , , , , , , , , , , , , , , , ,	0.1	-	_			,
ACI 318-14 (Sec. 18.6.3.1)	ρ max =	0.0	25 in^2/in^2	>	ρ provided =	0.016 , There	efore OK
ACI 318-14 (Sec. 18.6.3.2)	Beam is symmetric about x axis and flexural des				L L	, , , , , ,	
	throughout section	J	,				
ACI 318-14 (Sec. 18.6.4.2)	spacing between longitudinal bars with ties ≤ 14	spacing					
	in	provided =	11.25	in .	, Therefore OK		
Distribution of Flexural Reinforcemen	t in one-way Slabs and Beams						
ACI 318-14 (T. 24.3.2)	Smax, H (in) = 15*(40,000/0.66*fy) - 2.5*Cc =	16	.6 ≥	spacing			
•	• • • • • • • • • • • • • • • • • • • •			nrovided =	: 12	in	

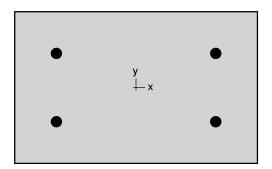
provided =

spacing provided =

18.0 ≥

12 in

12 in


OUT OF PLANE BENDING

OUT OF PLANE BENDING					
	Bending Axis	Shear Axis			
	Y-Y/2-2	X-X/3-3			
	lu (out of plane span) (in) =	294			
	In (in plane span) (in) =	294			
	b (in) =	12			
	h (in) =	16			
	long bar size =	6			
	Tie size =	3			
	d bar long. =	0.75			
	d Tie =	0.375			
	number of longitudinal bars =	4			
	Area of long bars =	0.442			
	f'c (psi) =	3000			
	fy (psi) =	40000			
	Pu Compression (k) =	1.49			
	Pu Tension (k) =	1.31			
	Tu (k) =	0.47			
	εy =	0.00138			
	Ag (in^2) =	190.2			
	Beam Design Requirements				
Stability	· · · · · · · · · · · · · · · · · · ·				
ACI 318-14 (Sec. 9.2.3.1a)	lu ≤ 50*b				
,	lu (in) =	294 ≤	50*b (in) =	600 , There	fore OK
Minimum Beam Depth				, , , , , , , , , , , , , , , , , , , ,	
ACI 318-14 (T. 9.3.1.1)	hmin (one end continuous) = $\ln/18.5*(0.4+fy/100)$	000)			
,	hmin =	7.26 ≤	h=	16 , There	fore OK
Moment				,,	
ACI 318-14 (Sec. 9.5.2.1)	Ag*f'c/10(k) =	57.07 ≥	Pu (k) =	1.49 . There	efore Slenderness can be Neglected,
,			1,		all be calculated in accordance with
					ion 22.3, and design of combined
					al and axial strength is not required
0.0				Hexure	arana axiar strengtir is not required
Reinforcement Strain Limit in Nonpres					
ACI 318-14 (Sec. 9.3.3.1)	εt ≥ 0.004				
SP Column Results	et (compression) =	0.00837 ≥	0.004 , The		
SP Column Results	εt (tension) =	0.00909 ≥	0.004 , The	erefore OK	
	<u>Diaphragm Design Requirements</u>				
Reinforcement					
ACI 318-14 (Sec. 18.12.7.3)	εt (tension) =	0.00910 ≥	εy =	0.00138 , There	fore Tension Steel has Yielded
IN PLANE SHEAR					
	Beam Design Requirements				
	Vu (k) =	4.5 +/-			
Nonprestressed Members with Axial C	•				
ACI 318-14 (Eq.22.5.6.1)	Vc Compression (k) =	10.56			
	$2*(1+(Pu/2000*Ag))*\lambda*Vf'c*b*d =$				
Nonprestressed Members with Signific	cant Axial Tension				
ACI 318-14 (Eq.22.5.7.1)	Vc Tension (k) = $2*(1+(Pu/500*Ag))*\lambda*vf'c*b*d =$	14251 ≥	Vc Compression		
			(k) =	4.5 , There	fore Vc compression controls
Minimum Shear Reinforcement					
ACI 318-14 (Sec. 9.6.3.1)	0.5* ϕ v*Vc compression (k) =	3.959 ≤	Vu (k) =	4.5 , There	fore Av, min Required
	φv*Vc compression (k) =	7.918 ≥	Vu (k) =	4.50 ,	Therefore No Additional Shear
					Reinforcement Required
ACI 318-14 (T. 9.6.3.3a)	Av, min/s $(in^2/in) = (0.75*vf'c*b)/fyt =$	0.016			
ACI 318-14 (T. 9.6.3.3b)	$Av,min/s (in^2/in) = (50*b)/fyt) =$	0.020 Controls			
, ,	Av, provided =	0.221			
One-way Shear Strength Provided by T	• •				
ACI 318-14 (Eq. 22.5.10.5.3)	Vs (lbs) = (Av/s)*fyt*d =	13254			
Shear	V =1 V (-1 - 1				
ACI 318-14 (T. 9.7.6.2.2)	4*vf'c*b*d (lbs) =	21033 ≥	Vs =	13254 There	fore sv max = Min (d/2 , 24)
	sv max (in) = Min (d/2 , 24) =		re use ties spaced @ 5.5		(w/ £ / £ 1/
	5	5.0 , merelo	. c ase the spaced @ J.J	0.0.	

	Special Moment Frame Beam Design Requirements				
Transverse Reinforcement					
ACI 318-14 (Sec. 18.6.4.1a & 18.6.4.4)	Ties to be provided at least		t starting ≤ 2in from face of column		
ACI 318-14 (Sec. 18.6.4.1b)	Ties to be provided where flexural reinforcement is anticipated to yield out-of-plane = center	64.0 in with	in the beam		
ACI 318-14 (Sec. 18.6.4.4)	sv, max (in) where hoops required = Min(d/4,				
	6df, 6) =	1.5 in	, Therefore use	spacing of 1.5" at locations required by 18.6.4.1	
ACI 318-14 (Sec. 18.6.4.6)	sv, max (in) where hoops not required = d/2 =	3.0 in	, Therefore u	ise spacing of 3" at all locations other than those required by $18.6.4.1$	′
ACI 318-14 (Sec. 18.6.4.7)	Ag*f'c/10 (k) =	56.66 ≥	Pu (k) =	1.49 , Therefore Additional Shear Reinforcement Not Required	
Shear Strength					
ACI 318-14 (Sec. 18.6.5.2)	Ve (k) = Max Seismic Shear =	8.73 ≥	Vu/2 (k) =	2.25	
	Ag*f'c/20 (k) =	28.33 ≥	Pu (k) =	1.49 , Therefore Shear Reinforcement Shall I designed assuming Vc=0 for locations specified in Sec. 18.6.4.1	
ACI 318-14 (Eq. 22.5.10.5.3)	$\phi v^*Vn(k) = \phi v^*Vs = \phi v^*(Av/s)^*fyt^*d =$	64 ≥	Vu (k) =	4.50 , Therefore #3 ties spaced @ 1.5" o.c. a adequate	re
OUT OF PLANE SHEAR	Beam Design Requirements				
	Vu out-of-plane ≤	Vu min	in-plane	, Therefore No Additional Shear Reinforcement Required	
	,		•		
	Diaphragm Design Requirements				
Shear					
ACI 318-14 (Eq. 12.5.3.3, Eq.18.12.9.1)		23.03			
	ϕ Vn (k) =	17.27 ≥	Vu (k) =	4.5 , Therefore Ok	
ACI 318-14 (Eq. 12.5.3.4) Reinforcement	φ8*Acv*vf'c (k) =	63 ≥	Vn (k) =	23.03 , Therefore Ok	
ACI 318-14 (Sec. 18.12.7.5)	$(Pu/A)/f^{t}c =$	0.003 ≤	0.4	4 , Therefore Additional Transverse Reinforcement Not Required	
Shear Strength				·	
ACI 318-14 (Sec.18.12.9.2)	$Vn, \max (k) = 8*Acv*vf'c =$	83 ≥	23.03	3 , Therefore Ok	
TORSION					
	Torsional Strength				
Threshold Torsion					
ACI 318-14 (Sec. 22.7.4.1a & 22.7.1.1)	ϕT_{th} compression (k) = $(\lambda * V f' c * A_{cp}^2)/p_{cp} * V(1+$, Therefore Torsional Effects may be	
	$(Nu/4*Ag*\lambda*vf'c)) =$	27.52 ≥	Tu (k) =	0.47 Neglected	
	ϕT_{th} tension (k) = $(\lambda * V f' c * A_{cp}^2)/p_{cp} * V(1+$, Therefore Torsional Effects may be	
	$(Nu/4*Ag*\lambda*vf'c)) =$	26.61 ≥	Tu (k) =	0.47 Neglected	

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Contents

Contents	
General Information Material Properties	3
2. Material Properties	3
2.1. Concrete	3
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2. Section Figure 4. Reinforcement	4
4. Reinforcement	4
4.1. Bar Set: ASTM A615	4
4.2. Design Criteria	4
4.3. Confinement and Factors	
4.4. Arrangement	
5. Factored Loads and Moments with Corresponding Capacity Ratios	5
6. Diagrams	6
6.1. PM at θ=0 [deg]	6
List of Figures	
Figure 1: Column section	4
1 19410 1. 001411111 0004011	

Page | 3 6/21/2020 7:44 PM

1. General Information

File Name	c:\senior project\lateral\beam design\b3.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	X - axis
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Critical capacity

2. Material Properties 2.1. Concrete

Туре	Standard
f'c	3 ksi
Ec	3122.02 ksi
f _c	2.55 ksi
f_c ε_u β_1	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
ε _{yt}	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	16	in
Depth	10	in
A_g	160	in ²
l _x	1333.33	in ⁴
l _y	3413.33	in ⁴
r _x	2.88675	in
r _y	4.6188	in
X _o	0	in
Y _o	0	in

3.2. Section Figure

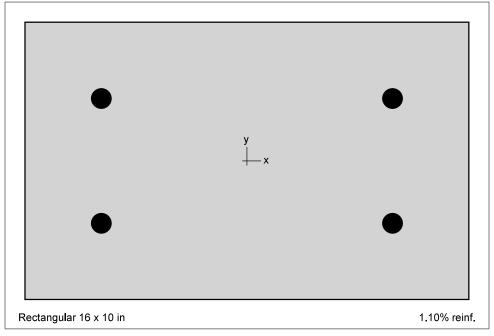


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	1.6 in ²
$A_{s,max} = 0.08 \times A_g$	12.8 in ²
Allowable Capacity Ratio (<1 is safe)	1.00

4.3. Confinement and Factors

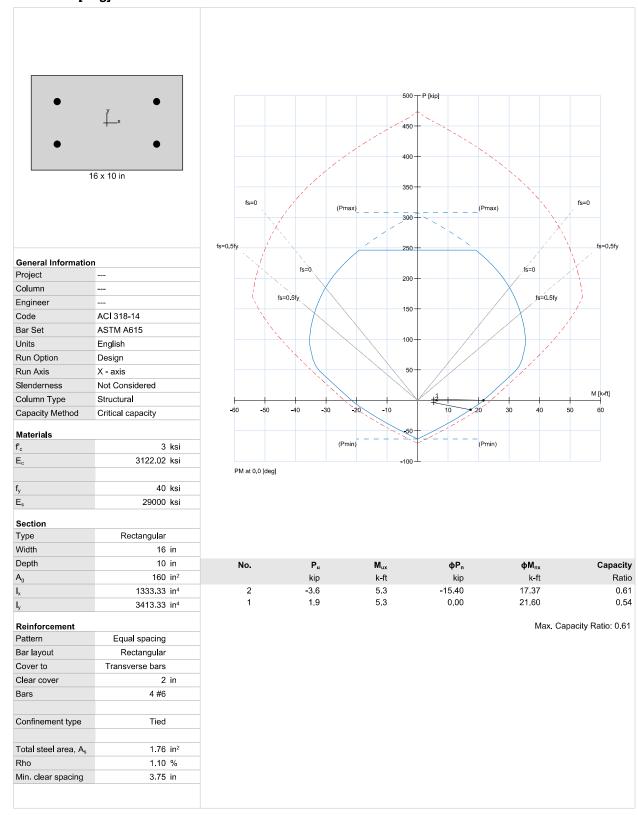
Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

4.4. Arrangement

Pattern	Equal spacing

Page | 5 6/21/2020 7:44 PM

Bar layout	Rectangular
Cover to	Transverse bars
Clear cover	2 in
Bars	4 #6
Total steel area, A _s	1.76 in ²
Rho	1.10 %
Minimum clear spacing	3.75 in


5. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Critical Capacity" Method. Allowable Capacity (Ratio) <= 1.00

No.	Demand		Capacity		Parameters at Capacity			Capacity
	Pu	M _{ux}	ϕP_n	фМ _{пх}	NA Depth	ε _t	ф	Ratio
	kip	k-ft	kip	k-ft	in			
1	1.91	5.30	0.00	21.60	1.94	0.00822	0.900	0.54
2	-3.62	5.30	-15.40	17.37	1.54	0.01116	0.900	0.61

Page | **6** 6/21/2020 7:44 PM

6. Diagrams

6.1. PM at θ=0 [deg]

Beam Design B3 - Gravity Beam

IN PLANE BENDING

Bending Axis Shear Axis X-X/3-3 Y-Y/2-2 lu (out of plane span) (in) = 168 In (in plane span) (in) = 168 b (in) = 16 h (in) = 10 long bar size = 6 Stirrup size = 3 number of longitudinal bars = 4 2 375 d' = f'c (psi) = 3000 fy (psi) = 40000 Pu Compression (k) = 1.91 Pu Tension (k) = 3.620 Tu (k-ft) = 0.00 Max NA depth (in) = 1.8 2 lavers in tension Min NA depth (in) = 1.3 2 layers in tension Mu Strong (k-ft) = 5.30 Mu Weak (k-ft) = 0.00

Beam Design Requirements

Stability

lu ≤ 50*b ACI 318-14 (Sec. 9.2.3.1a)

50*b (in) = 800 , Therefore OK lu (in) = 168 ≤

Minimum Beam Depth

ACI 318-14 (T. 9.3.1.1) hmin (one end continuous) = ln/18.5*(0.4+fy/100,000)

10 , Therefore OK 7.26 ≤

Reinforcement Strain Limit in Nonprestressed Beams ACI 318-14 (Sec. 9.3.3.1) $\epsilon t > 0.004$

0.00573 ≥ 0.004 , Therefore OK SP Column Results εt (compression) = SP Column Results εt (tension) = 0.00924 > 0.004 , Therefore OK

Minimum Flexural Reinforcement in Nonprestressed Beams

ACI 318-14 (Sec. 9.6.1.2) As, min= max((3*Vf'c*b*d)/fy, (200*b*d)/fy) = 0.4 in^2 As, provided = 0.88 , Therefore OK

Longitudinal Reinforcement

0.025 in^2/in^2 ≥ 0.011 , Therefore OK ACI 318-14 (Sec. 18.6.3.1) ρ max = ρ, provided =

IN PLANE SHEAR

Beam Design Requirements

1.55 +/-

Nonprestressed Members with Axial Compression

ACI 318-14 (Eq.22.5.6.1) Vc Compression (k) =

 $2*(1+(Pu/2000*Ag))*\lambda*vf'c*b*d =$ 8.82

Nonprestressed Members with Significant Axial Tension

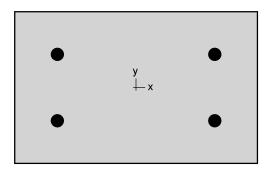
ACI 318-14 (Eq.22.5.7.1) Vc Tension (k) = $2*(1+(Pu/500*Ag))*\lambda*vf'c*b*d =$

Vc Compression 12000 ≥

(k) = 1.55 , Therefore Vc compression controls Minimum Shear Reinforcement

ACI 318-14 (Sec. 9.6.3.1) 0.5*φv*Vc compression (k) = 3.306 ≥ Vu (k) = 1.55 , Therefore Av, min Not Required Members not designated as part of the seismic-force-resisting system

ACI 318-14 (Sec. 18.14.3.1) $Members\ have\ been\ designed\ for\ controlling\ values\ in\ ETABS\ model\ including\ \delta u\ effects,\ Therefore\ Section\ 18.14.3.2\ applies$


Ag*f'c/10(k) =ACI 318-14 (Sec. 18.14.3.2a) 47.47 ≥ Pu (k) = 3.62 , Therefore transverse reinforcejment is to be provided at smax = d/2

smax = d/2= 2.5 , Therefore Av,min to be provided at a maxmum spacing of 2.5" o.c.

ACI 318-14 (Sec. 25.7.2.2) Minimum Stirrup Size = 3 ,Therefore use #3 Stirrups at 2.5" o.c. Throughout Beam

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Page | **2** 6/21/2020 7:40 PM

Contents

Contents	
General Information Material Properties	3
2. Material Properties	3
2.1. Concrete	3
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2 Section Figure	4
4. Reinforcement	4
4.1. Bar Set: ASTM A615	4
4.2. Design Criteria	4
4.3. Confinement and Factors	4
4.4. Arrangement	
5. Factored Loads and Moments with Corresponding Capacity Ratios	5
6. Diagrams	6
6.1. PM at θ=0 [deg]	6
List of Figures	
Figure 1: Column section	4

Page | 3 6/21/2020 7:40 PM

1. General Information

File Name	c:\senior project\lateral\beam design\b4.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	X - axis
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Critical capacity

2. Material Properties 2.1. Concrete

Туре	Standard
f'c	3 ksi
Ec	3122.02 ksi
f _c	2.55 ksi
f_c ε_u β_1	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
ϵ_{yt}	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	16 in	
Depth	10 in	
A_g	160 in ²	
l _x	1333.33 in⁴	
l _y	3413.33 in⁴	
r _x	2.88675 in	
r _y	4.6188 in	
X _o	0 in	
Yo	0 in	

Page | **4** 6/21/2020 7:40 PM

3.2. Section Figure

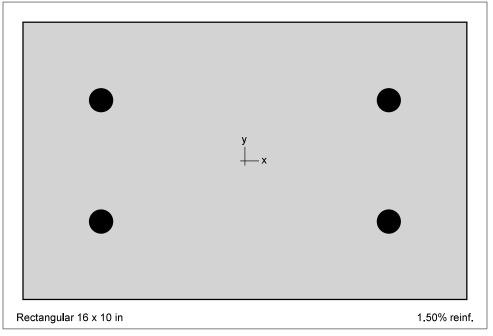


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	1.6 in ²
$A_{s,max} = 0.08 \times A_g$	12.8 in ²
Allowable Capacity Ratio (<1 is safe)	1.00

4.3. Confinement and Factors

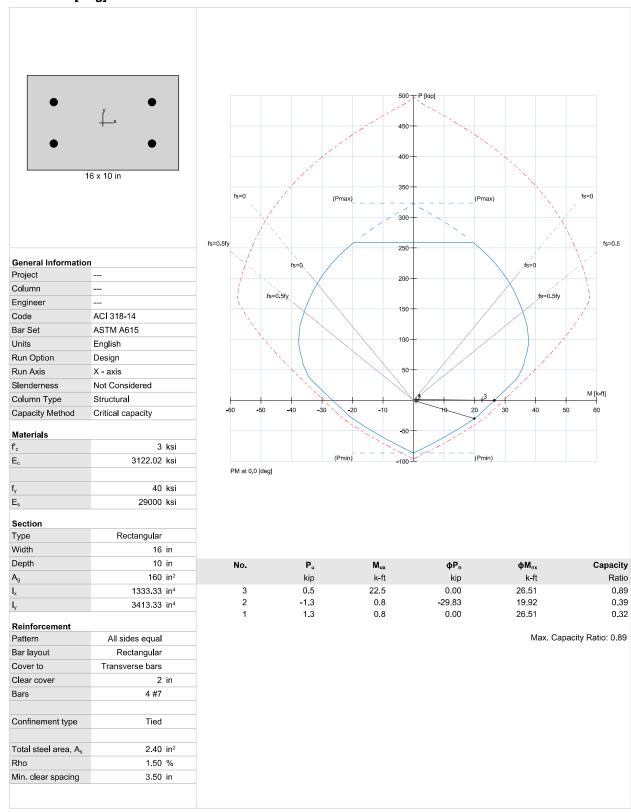
Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

4.4. Arrangement

- ··	A.11 . 1
Pattern	All sides equal

Page | 5 6/21/2020 7:40 PM

Bar layout	Rectangular			
Cover to	Transverse bars			
Clear cover	2 in			
Bars	4 #7			
Total steel area, A _s	2.40 in ²			
Rho	1.50 %			
Minimum clear spacing	3.50 in			


5. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Critical Capacity" Method. Allowable Capacity (Ratio) <= 1.00

No.	No. Demand		Demand Capacity		Parameters at Capacity			Capacity
	P_{u}	M_{ux}	ϕP_n	фМ _{пх}	NA Depth	$\mathbf{\epsilon}_{t}$	Ф	Ratio
	kip	k-ft	kip	k - ft	in			
1	1.33	0.82	0.00	26.51	2.21	0.00677	0.900	0.32
2	-1.33	0.82	- 29.83	19.92	1.81	0.00891	0.900	0.39
3	0.48	22.45	0.00	26.51	2.21	0.00677	0.900	0.89

Page | **6** 6/21/2020 7:40 PM

6. Diagrams

6.1. PM at θ=0 [deg]

Beam Design B4 - Gravity Beam

				NΠ	

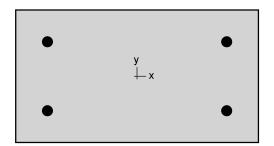
IN PLANE BENDING					
	Bending Axis	Shear Axis			
	X-X/3-3	Y-Y/2-2			
	lu (out of plane span) (in) =	252			
	In (in plane span) (in) =	252			
	b (in) =	16			
	h (in) =	10			
	long bar size =	7			
	Stirrup size =	3			
	d bar long. =	0.875			
	d stirrup =	0.375			
	number of longitudinal bars =	4			
	d' =	2.375			
	u = f'c (psi) =	3000			
	fy (psi) =	40000			
	Pu Compression (k) =	1.33			
	Pu Tension (k) =	1.330			
	Tu (k-ft) =	0.00			
	Max NA depth (in) =	1.8 2 layers			
	Min NA depth (in) =	1.3 2 layers	in tension		
	Mu Strong (k-ft) =	22.45			
	Mu Weak (k-ft) =	0.00			
	Beam Design Requirements				
Stability					
ACI 318-14 (Sec. 9.2.3.1a)	lu ≤ 50*b				
710/310 17 (300/3/2/3/14)	lu (in) =	252 ≤	50*b (in) =	800 , Therefo	ore OK
Minimum Beam Depth	()	202 -	50 5 (11)	ooo , meren	5.0 GK
ACI 318-14 (T. 9.3.1.1)	hmin (one end continuous) = In/18.5*(0.4+fy/10	000)			
7101310 17 (11.3.3.1.1.)	hmin =	7.26 ≤	h=	10 , Therefo	ore OK
Reinforcement Strain Limit in Nonpres		7.20 _		10) meren	510 GIV
ACI 318-14 (Sec. 9.3.3.1)	εt ≥ 0.004				
SP Column Results	et (compression) =	0.00677 ≥	0.004 , The	erefore OK	
SP Column Results	et (tension) =	0.00891 ≥	0.004 , The		
Minimum Flexural Reinforcement in N		0.00031 2	0.004 , 111	CICIOIC OK	
ACI 318-14 (Sec. 9.6.1.2)	As, min= max($(3*Vf'c*b*d)/fy$, $(200*b*d)/fy$) =	0.44 in^2	≤ As, ı	provided =	1.20 , Therefore OK
Longitudinal Reinforcement	As, IIIII- IIIAX((3 VIC b d)/IV, (200 b d)/IV) -	0.44 111-2	2 A3,	provided –	1.20 , Merelore OR
ACI 318-14 (Sec. 18.6.3.1)	ρ max =	0.025 in^2/in^:	2 > 0.00	rovided =	0.015 , Therefore OK
ACI 310-14 (3ec. 10.0.3.1)	p max –	0.025 111-2/111-	z	Tovided –	0.013 , Melelole Ok
IN PLANE SHEAR					
	Beam Design Requirements				
	Vu (k) =	4.57 +/-			
Nonprestressed Members with Axial (Compression				
ACI 318-14 (Eq.22.5.6.1)	Vc Compression (k) =				
, , ,	$2*(1+(Pu/2000*Ag))*\lambda*Vf'c*b*d =$	8.80			
Nonprestressed Members with Signifi					
ACI 318-14 (Eq.22.5.7.1)					
	Vc Tension (k) = 2*(1+(Pu/500*Ag))*λ*Vf'c*b*d =	= 12000 ≥	Vc Compression (4.57 . Therefo	ore Vc compression controls
Minimum Shear Reinforcement	(, (, , , , , , , , , , , , , , , , , ,		,	,	,
ACI 318-14 (Sec. 9.6.3.1)	0.5*\psi v*Vc compression (k) =	3.300 ≥	Vu (k) =	4.57 , Therefo	ore Av, min Not Required

IN PLANE SHEAR

ACI 318-14 (Sec. 9.6.3.1) 0.5*φv*Vc compression (k) = 3.300 ≥ Vu (k) = 4.57 , Therefore Av, min Not Required

Members not designated as part of the seismic-force-resisting system

Members have been designed for controling values in ETABS model including δu effects, Therefore Section 18.14.3.2 applies ACI 318-14 (Sec. 18.14.3.1)


ACI 318-14 (Sec. 18.14.3.2a) Ag*f'c/10 (k) =47.28 ≥ Pu (k) = 1.33 , Therefore transverse reinforcejment is to be provided at smax = d/2

smax = d/2= 2.75 , Therefore Av,min to be provided at a maxmum spacing of 2.5" o.c.

ACI 318-14 (Sec. 25.7.2.2) 3 Therefore use #3 Stirrups at 2.5" o.c. Throughout Beam Minimum Stirrup Size =

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Contents

1.	General Information	. 3
2.	Material Properties	. 3
	2.1. Concrete	. 3
	2.2. Steel	
3.	Section	. 3
	3.1. Shape and Properties	. 3
	3.2. Section Figure	. 4
4.	Reinforcement	. 4
	Reinforcement 4.1. Bar Set: ASTM A615	. 4
	4.2. Design Criteria	. 4
	4.3. Confinement and Factors	. 4
	4.4. Arrangement	
5.	Factored Loads and Moments with Corresponding Capacity Ratios	
6.	Diagrams	6
	6.1. PM at θ=0 [deg]	. 6
	6.2. MM at P=0 [kip]	. 7
	₋ist of Figures	
Fi	gure 1: Column section	4

Page | **3** 6/21/2020 7:45 PM

1. General Information

File Name	c:\senior project\lateral\beam d\b2 middle.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	Biaxial
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Critical capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f'c	3 ksi
Ec	3122.02 ksi
f _c	2.55 ksi
f_c ε_u β_1	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
$\epsilon_{ ext{yt}}$	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	22	in
Depth	12	in
A_g	264	in ²
l _x	3168	in ⁴
l _y	10648	in ⁴
r _x	3.4641	in
r _y	6.35085	in
Γ _y Χ _o Υ _o	0	in
Yo	0	in

Page | **4** 6/21/2020 7:45 PM

3.2. Section Figure

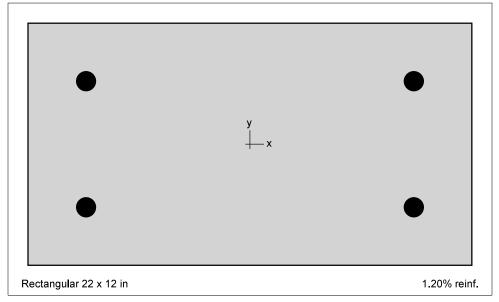


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in ²		in	in²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	2.64 in ²
$A_{s,max} = 0.08 \times A_g$	21.12 in ²
Allowable Capacity Ratio (<1 is safe)	0.98

4.3. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

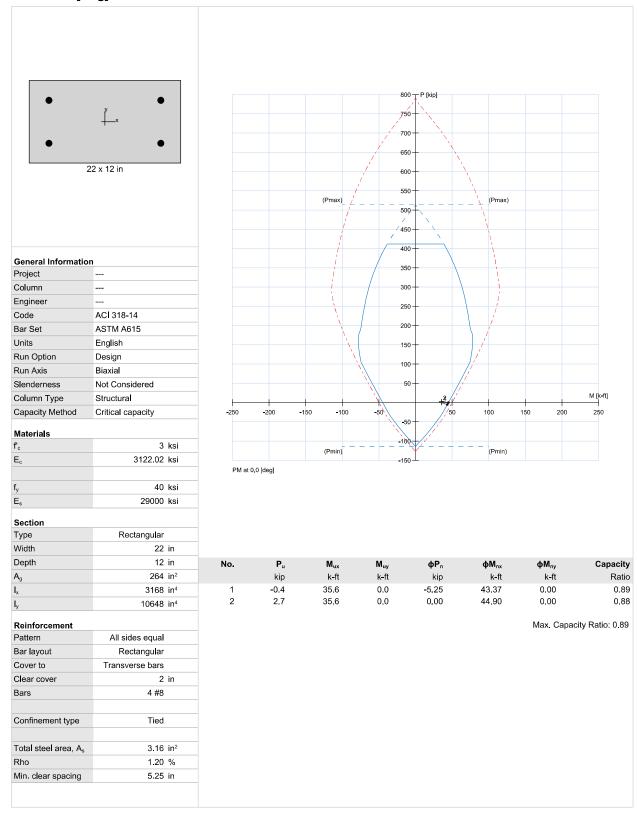
4.4. Arrangement

Pattern	All sides equal
Bar layout	Rectangular
Cover to	Transverse bars

Page | **5** 6/21/2020 7:45 PM

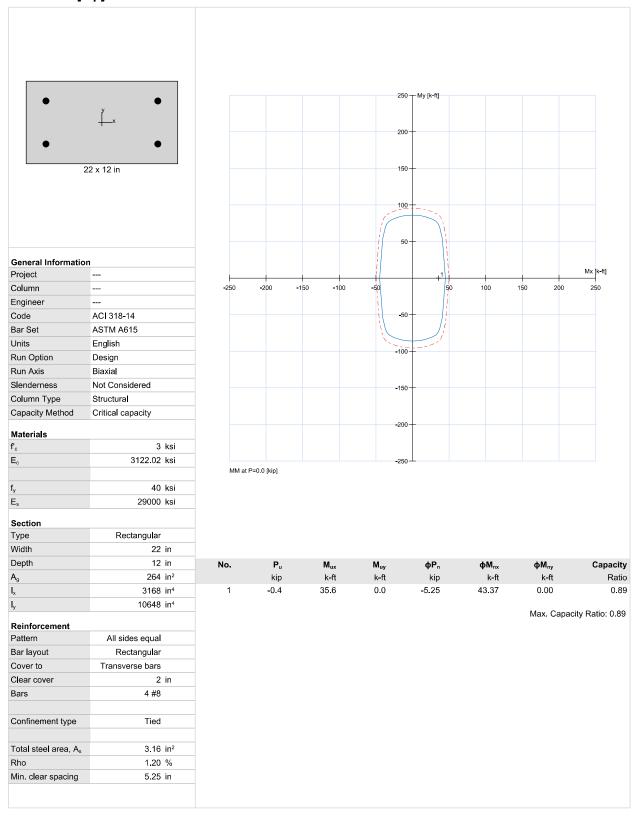
Clear cover	2 in
Bars	4 #8
Total steel area, A _s	3.16 in ²
Rho	1.20 %
Minimum clear spacing	5.25 in

5. Factored Loads and Moments with Corresponding Capacity Ratios


NOTE: Calculations are based on "Critical Capacity" Method. Allowable Capacity (Ratio) <= 0.98

No.	Demand			Capacity		Parameters at Capacity			Capacity	
	Pu	M_{ux}	M _{uy}	φP _n	ϕM_{nx}	ϕM_{ny}	NA Depth	ε _t	ф	Ratio
	kip	k-ft	k-ft	kip	k-ft	k-ft	in			
1	-0.44	35.60	0.00	-5.25	43.37	0.00	2.16	0.00968	0.900	0.89
2	2.70	35.60	0.00	0.00	44.90	0.00	2.20	0.00942	0.900	0.88

Page | **6** 6/21/2020 7:45 PM


6. Diagrams

6.1. PM at θ=0 [deg]

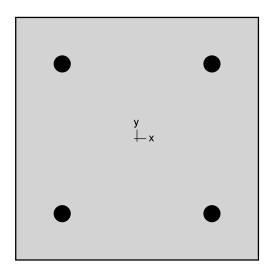
Page | **7** 6/21/2020 7:45 PM

6.2. MM at P=0 [kip]

Beam Design B5 - Special Moment Frame Beam

IN PLANE BENDING

IN PLANE BENDING						
	Bending Axis	Shear Axis				
	X-X/3-3	Y-Y/2-2				
	lu (out of plane span) (in) =	294				
	In (in plane span) (in) =	294				
	b (in) =	22				
	h (in) =	12				
	long bar size =	8				
	Tie size =	3				
	number of longitudinal bars =	4				
	d' =	2.375				
	f'c (psi) =	3000				
	** *					
	fy (psi) =	40000				
	Pu Compression (k) =	2.7				
	Pu Tension (k) =	0.440				
	Tu (k-ft) =	0.48				
	Max NA depth (in) =	2.3 2 lay	ers in tension			
	Min NA depth (in) =	2.2 2 lay	ers in tension			
	Mu Strong (k-ft) =	35.60				
	Mu Weak (k-ft) =	0.00				
	Beam Design Requirements					
Stability	· · · · · · · · · · · · · · · · · · ·					
ACI 318-14 (Sec. 9.2.3.1a)	lu ≤ 50*b					
,	lu (in) =	294 <	50*b (in) =	1100	Therefore OK	
Minimum Beam Depth	ia (iii) –	254 =	50 b (m) -	1100 ,	THETETOTE OR	
ACI 318-14 (T. 9.3.1.1)	hmin (one end continuous) = $\ln/18.5*(0.4+fy/100)$	0001				
ACI 318-14 (1. 3.3.1.1)	hmin =	7.26 ≤	h=	42	Therefore OK	
	nmin =	7.26 ≤	n=	12 ,	Therefore OK	
Moment	A - #51 - /A O /L-)	70.00	B., (IA)	2.7	Th	
ACI 318-14 (Sec. 9.5.2.1)	Ag*f'c/10 (k) =	78.26 ≥	Pu (k) =			erness can be neglected,
						lated in accordance with
						nd design of combined
					flexural and axial	strength is not required
Reinforcement Strain Limit in Nonpre	stressed Beams					
ACI 318-14 (Sec. 9.3.3.1)	εt ≥ 0.004					
SP Column Results	et (compression) =	0.009 ≥	0.00	04 , Therefore OK		
SP Column Results	et (tension) =	0.00925 ≥		04 , Therefore OK		
		0.00020 =	0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Special Moment Frame Beam Design Requireme	ents				
Dimensional Limits	openia moment rame beam besign neganieme					
ACI 318-14 (Sec. 18.6.2.1a)	In ≥ 4d					
ACI 318-14 (3ec. 16.0.2.1a)	In (in) =	294 ≥	4-1 /: \	24.00	Th 6 OV	
10,010,11/0, 10,00,11		294 2	4d (in) =	24.00 ,	Therefore OK	
ACI 318-14 (Sec. 18.6.2.1b)	b ≥ min (0.3*h, 10in)				_	
	b (in) =	22 ≥	0.3*h (in) =	3.6 8	š.	10 , Therefore OK
ACI 318-14 (Sec. 18.6.2.1c)	Beam width is to be equal to column width	, Therefore OK				
Longitudinal Reinforcement						
ACI 318-14 (Eq. 9.6.1.2a)	As min = (3*vf'c*b*d)/fy =	0.542 in^2	≤	As provided =	3.142 in^2	, Therefore OK
ACI 318-14 (Eq. 9.6.1.2b)	As min = (200*b*d)/fy =	0.240 in^2	≤	As provided =	3.142 in^2	, Therefore OK
Longitudinal Reinforcement						
ACI 318-14 (Sec. 18.6.3.1)	ρ max =	0.025 in^2/	/in^2 ≥	ρ provided =	0.012 , There	fore OK
ACI 318-14 (Sec. 18.6.3.2)	Beam is symmetric about x axis and flexural des			F F 1	, , , , , , ,	
	throughout section	, 1110				
ACI 319 14 (Sec. 19 6 4 3)	= = = = = = = = = = = = = = = = = = = =	anasina				
ACI 318-14 (Sec. 18.6.4.2)	spacing between longitudinal bars with ties ≤ 14		17.75 in	Thorofore OV		
Distribution of Florida	in	provided =	17.25 in	, Therefore OK		
Distribution of Flexural Reinforcemen						
ACI 318-14 (T. 24.3.2)	Smax, H (in) = 15*(40,000/0.66*fy) - 2.5*Cc =	16.6 ≥	spacing			
			provided =	18 i	n	
ACI 318-14 (T. 24.3.2)	Smax, H (in) = 12*(40,000/0.66*fy) =	18.0 ≥	spacing			
			provided =	18 i	n	


OUT OF PLANE BENDING

OUT OF PLANE BENDING					
	-	Shear Axis			
	Y-Y/2-2	X-X/3-3			
	lu (out of plane span) (in) =	294			
	In (in plane span) (in) =	294			
	b (in) =	12			
	h (in) =	22			
	long bar size =	7			
	Tie size =	3			
	d bar long. =	0.875			
	d Tie =	0.375			
	number of longitudinal bars =	4			
	Area of long bars =	0.601			
	f'c (psi) =	3000			
	fy (psi) =	40000			
	Pu Compression (k) =	2.7			
	Pu Tension (k) =	0.44			
	Tu (k) =	0.48			
	εγ =	0.00138			
	Ag (in^2) =	261.6			
	Beam Design Requirements				
Stability	- · · · - ·				
ACI 318-14 (Sec. 9.2.3.1a)	lu ≤ 50*b				
	lu (in) =	294 ≤	50*b (in) =	600 ,	Therefore OK
Minimum Beam Depth					
ACI 318-14 (T. 9.3.1.1)	hmin (one end continuous) = $ln/18.5*(0.4+fy/100,0)$	000)			
,	hmin =	7.26 ≤	h=	22 ,	Therefore OK
Moment				,	
ACI 318-14 (Sec. 9.5.2.1)	Ag*f'c/10 (k) =	78.48 ≥	Pu (k) =	2.7	, Therefore Slenderness can be Neglected,
,			, ,		Mn shall be calculated in accordance with
					Section 22.3, and design of combined
					flexural and axial strength is not required
Reinforcement Strain Limit in Nonpres					
ACI 318-14 (Sec. 9.3.3.1)	εt ≥ 0.004				
ACI 310-14 (36C. 3.3.3.1)	Ct 2 0.004				
SP Column Results	et (compression) =	0.009 ≥	0.004 , Therefo	re OK	
		0.009 ≥ 0.00925 ≥	0.004 , Therefo 0.004 , Therefo		
SP Column Results	εt (compression) =				
SP Column Results	εt (compression) =				
SP Column Results	εt (compression) = εt (tension) =				
SP Column Results SP Column Results	εt (compression) = εt (tension) =		0.004 , Therefo		, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement	et (compression) = et (tension) = Diaphragm Design Requirements	0.00925 ≥	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement	et (compression) = et (tension) = Diaphragm Design Requirements	0.00925 ≥	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement	et (compression) = et (tension) = Diaphragm Design Requirements	0.00925 ≥	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) =	0.00925 ≥	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements	0.00925 ≥ 0.00925 ≥	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) =	0.00925 ≥	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression	0.00925 ≥ 0.00925 ≥ 10.25 +/-	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) =	0.00925 ≥ 0.00925 ≥	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\(\lambda\)yf'c*b*d =	0.00925 ≥ 0.00925 ≥ 10.25 +/-	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = mupression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda\tau'rc*b*d = ant Axial Tension	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53	0.004 , Therefo	ore OK	
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\(\lambda\)yf'c*b*d =	0.00925 ≥ 0.00925 ≥ 10.25 +/-	0.004 , Therefo	ore OK	, Therefore Tension Steel has Yielded Therefore Vc compression controls
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = mupression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda\tau'rc*b*d = ant Axial Tension	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53	0.004 , Therefo	ore OK	
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = mupression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda\tau'rc*b*d = ant Axial Tension	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53	0.004 , Therefo	ore OK	
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda*\text{Vf'c*b*d} = cont Axial Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\text{Vf'c*b*d} =	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥	0.004 , Therefore Ey = Vc Compression (k) =	0.00138	Therefore Vc compression controls
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda*\vf'c*b*d = ant Axial Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\vf'c*b*d = 0.5*\phiv*Vc compression (k) =	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤	0.004 , Therefore εy = Vc Compression (k) = Vu (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda*\text{Vf'c*b*d} = cont Axial Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\text{Vf'c*b*d} =	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥	0.004 , Therefore Ey = Vc Compression (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signification ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\darkq'c*b*d = ant Axial Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\darkq'c*b*d = 0.5*\psiv*Vc compression (k) = \psiv*Vc compression (k) =	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤	0.004 , Therefore εy = Vc Compression (k) = Vu (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1) ACI 318-14 (T. 9.6.3.3a)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements \[\nu (k) = \text{Design Nequirements} \\ \nu (k) = \text{Design Person} \\ \nu (compression \\ \n	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023	0.004 , Therefore εy = Vc Compression (k) = Vu (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signification ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements \text{Vu (k)} = Diaphragm Design Requirements \text{Vu (k)} = Diaphragm Design Requirements \text{Vu (k)} = Diaphragm Pesign Requirements \text{Vu (k)} = Diaphragm Design Requirements \text{Vu (k)}	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls	0.004 , Therefore εy = Vc Compression (k) = Vu (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\%\footnote{c*}b*d = cont Axial Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\%\footnote{c*}b*d = 0.5*\psi\psi\psi\psi\psi\psi\psi\psi\psi\psi	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023	0.004 , Therefore εy = Vc Compression (k) = Vu (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signification ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda*\text{Vf'c*b*d} = ent Axial Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\text{Vf'c*b*d} = 0.5*\phi*\text{Vc compression (k)} = \phi*\text{Vc compression (k)} = \text{Av, min/s (in^2/in) = (0.75*\text{Vf'c*b})/fyt} = \text{Av, min/s (in^2/in) = (50*b)/fyt} = \text{Av, provided} = \text{Provided} = Provide	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221	0.004 , Therefore εy = Vc Compression (k) = Vu (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Significal ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\%\footnote{c*}b*d = cont Axial Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\%\footnote{c*}b*d = 0.5*\psi\psi\psi\psi\psi\psi\psi\psi\psi\psi	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls	0.004 , Therefore εy = Vc Compression (k) = Vu (k) =	10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3) Shear	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements \text{Vu (k)} = \text{Design Requirements} \text{Vu (k)} = Design Period	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254	0.004 , Therefore Ey = Vc Compression (k) = Vu (k) = Vu (k) =	10.25 , 10.25 ,	. Therefore Vc compression controls . Therefore Av, min Required . Therefore Additional Shear Reinforcement Required
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Significal ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements \text{Vu (k)} = Diaphragm Design Requirements \text{Vu (k)} = Diaphragm Pesign Requirements \text{Vu (k)} = Diaphragm Design Requirements \text{Vu (k)}	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254 28920 ≥	O.004 , Therefore Ey = Vc Compression (k) = Vu (k) = Vu (k) =	10.25 , 10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1) ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3) Shear ACI 318-14 (T. 9.7.6.2.2)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda*\lambda*\lambda*c*\lambda*b\lambda*d Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\lambda*\lambda*c*\lambda*b\lambda*d Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\lambda*\lambda*\lambda*l'c*\lambda*b\lambda*d Tension Vc Tension (k) = 0.5*\lambda*\lambda*\lambda*\lambda*l'c*\lambda*b\lambda*b\lambda*l'fc*\lambda*b\lambda*d = ant \(\lambda*\lamb	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254 28920 ≥ 3.0 , Therefore	O.004 , Thereform of the control of	10.25 , 10.25 , 10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear Reinforcement Required
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3) Shear	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements \text{Vu (k)} = Diaphragm Design Requirements \text{Vu (k)} = Diaphragm Pesign Requirements \text{Vu (k)} = Diaphragm Design Requirements \text{Vu (k)}	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254 28920 ≥	O.004 , Therefore Ey = Vc Compression (k) = Vu (k) = Vu (k) =	10.25 , 10.25 , 10.25 , 10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear Reinforcement Required Therefore sv max = Min (d/2, 24) , Therefore Additional Shear
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1) ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3) Shear ACI 318-14 (T. 9.7.6.2.2)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda*\lambda*\lambda*c*\lambda*b\lambda*d Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\lambda*\lambda*c*\lambda*b\lambda*d Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\lambda*\lambda*\lambda*l'c*\lambda*b\lambda*d Tension Vc Tension (k) = 0.5*\lambda*\lambda*\lambda*\lambda*l'c*\lambda*b\lambda*b\lambda*l'fc*\lambda*b\lambda*d = ant \(\lambda*\lamb	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254 28920 ≥ 3.0 , Therefore	O.004 , Thereform of the control of	10.25 , 10.25 , 10.25 , 10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear Reinforcement Required Therefore sv max = Min (d/2, 24) , Therefore Additional Shear Reinforcement Required, decrease spacing
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1) ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3) Shear ACI 318-14 (T. 9.7.6.2.2)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements \[\text{Vu}(k) = Design Period of the second of the seco	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254 28920 ≥ 3.0 , Therefor 7.23 ≤	Vc Compression (k) = Vu (k) = Vu (k) = Vu (k) = Vs = re use ties spaced @ 5.5" o.c. Vu (k) =	10.25 , 10.25 , 10.25 , 10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear Reinforcement Required Therefore sv max = Min (d/2, 24) , Therefore Additional Shear Reinforcement Required, decrease spacing to 3.5" o.c.
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1) ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3) Shear ACI 318-14 (T. 9.7.6.2.2)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements Vu (k) = compression Vc Compression (k) = 2*(1+(Pu/2000*Ag))*\lambda*\lambda*\lambda*c*\lambda*b\lambda*d Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\lambda*\lambda*c*\lambda*b\lambda*d Tension Vc Tension (k) = 2*(1+(Pu/500*Ag))*\lambda*\lambda*\lambda*\lambda*l'c*\lambda*b\lambda*d Tension Vc Tension (k) = 0.5*\lambda*\lambda*\lambda*\lambda*l'c*\lambda*b\lambda*b\lambda*l'fc*\lambda*b\lambda*d = ant \(\lambda*\lamb	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254 28920 ≥ 3.0 , Therefore	O.004 , Thereform of the control of	10.25 , 10.25 , 10.25 , 10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear Reinforcement Required Therefore sv max = Min (d/2, 24) , Therefore Additional Shear Reinforcement Required, decrease spacing to 3.5" o.c. , Therefore Ok, Use #3 Ties Spaced @ 3.5"
SP Column Results SP Column Results Reinforcement ACI 318-14 (Sec. 18.12.7.3) IN PLANE SHEAR Nonprestressed Members with Axial C ACI 318-14 (Eq.22.5.6.1) Nonprestressed Members with Signific ACI 318-14 (Eq.22.5.7.1) Minimum Shear Reinforcement ACI 318-14 (Sec. 9.6.3.1) ACI 318-14 (T. 9.6.3.3a) ACI 318-14 (T. 9.6.3.3b) One-way Shear Strength Provided by T ACI 318-14 (Eq. 22.5.10.5.3) Shear ACI 318-14 (T. 9.7.6.2.2)	et (compression) = et (tension) = Diaphragm Design Requirements et (tension) = Beam Design Requirements \[\text{Vu}(k) = Design Period of the second of the seco	0.00925 ≥ 0.00925 ≥ 10.25 +/- 14.53 14250 ≥ 5.451 ≤ 10.901 ≤ 0.023 0.028 Controls 0.221 13254 28920 ≥ 3.0 , Therefor 7.23 ≤	Vc Compression (k) = Vu (k) = Vu (k) = Vu (k) = Vs = re use ties spaced @ 5.5" o.c. Vu (k) =	10.25 , 10.25 , 10.25 , 10.25 ,	Therefore Vc compression controls Therefore Av, min Required Therefore Additional Shear Reinforcement Required Therefore sv max = Min (d/2, 24) , Therefore Additional Shear Reinforcement Required, decrease spacing to 3.5" o.c.

Towns and Deinfers and	Special Moment Frame Beam Design Requirements			
Transverse Reinforcement ACI 318-14 (Sec. 18.6.4.1a & 18.6.4.4)	Ties to be provided at least	44.0 in from	each side of support	starting ≤ 2in from face of column
ACI 318-14 (Sec. 18.6.4.1b)	Ties to be provided where flexural reinforcement is anticipated to yield out-of-plane = center	88.0 in with	in the beam	
ACI 318-14 (Sec. 18.6.4.4)	sv, max (in) where hoops required = $Min(d/4, 6df, 6) =$	1.5 in	Therefore use st	pacing of 1.5" at locations required by 18.6.4.1
ACI 318-14 (Sec. 18.6.4.6)	sv, max (in) where hoops not required = d/2 =	3.0 in		e spacing of 3" at all locations other than those required by 18.6.4.1
ACI 318-14 (Sec. 18.6.4.7)	Ag*f'c/10(k) =	78.26 ≥	Pu (k) =	2.7 , Therefore Additional Shear Reinforcement Not Required
Shear Strength ACI 318-14 (Sec. 18.6.5.2)	Ve (k) = Max Seismic Shear =	14.29 ≥	Vu/2 (k) =	5.13
,	Ag*f'c/20 (k) =	39.13 ≥	Pu (k) =	 7. Therefore Shear Reinforcement Shall be designed assuming Vc=0 for locations specified in Sec. 18.6.4.1
ACI 318-14 (Eq. 22.5.10.5.3)	$\phi v^* Vn (k) = \phi v^* Vs = \phi v^* (Av/s)^* fyt^* d =$	64 ≥	Vu (k) =	10.25 , Therefore #3 ties spaced @ 1.5" o.c. are adequate
OUT OF PLANE SHEAR				
	Beam Design Requirements Vu out-of-plane ≤	Vu min	in-plane	, Therefore No Additional Shear Reinforcement Required
	Diaphragm Design Requirements			
Shear				
ACI 318-14 (Eq. 12.5.3.3, Eq.18.12.9.1)		30.85	113	
ACI 219 14/E~ 12 E 2 4\	φVn (k) = φ8*Acv*vf'c (k) =	23.13 ≥ 86 ≥	Vu (k) = Vn (k) =	10.25 , Therefore Ok 30.85 , Therefore Ok
ACI 318-14 (Eq. 12.5.3.4) Reinforcement	ψο·Αυν·νι ε (κ) –	00 ≥	VII (K) =	50.65 , Merelore Ok
ACI 318-14 (Sec. 18.12.7.5)	(Pu/A)/f'c =	0.003 ≤	0.4	, Therefore Additional Transverse Reinforcement Not Required
Shear Strength				
ACI 318-14 (Sec.18.12.9.2)	Vn, max (k) = 8*Acv*Vf'c =	115 ≥	30.85	, Therefore Ok
TORSION				
Thursday Id Taurian	Torsional Strength			
Threshold Torsion ACI 318-14 (Sec. 22.7.4.1a & 22.7.1.1)	ϕT_{th} compression (k) = $(\lambda^* V f' c^* A_{cp}^2)/p_{cp}^* V(1+$			Therefore Tensional Effects
ποι 310-14 (3ευ. 22.7.4.1α & 22.7.1.1)	ΦT_{th} compression (k) = $(\Lambda^* V T C^* A_{cp})/P_{cp}^* V (1 + (Nu/4^* Ag^* \lambda^* V f' c)) = $ ΦT_{th} tension (k) = $(\Lambda^* V f' C^* A_{cp}^2)/P_{cp}^* V (1 + (Nu/4)^* Ag^* \lambda^* V f' c)$	43.09 ≥	Tu (k) =	, Therefore Torsional Effects may be 0.48 Neglected , Therefore Torsional Effects may be
	$(Nu/4*Ag*\lambda*Vf'c)) =$	41.94 ≥	Tu (k) =	0.48 Neglected

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Contents

•	Sometics and the second		
1.	General Information	3	
2.	Material Properties	3	
	2.1. Concrete	3	
	2.2. Steel	3	
3.	Section	. 3	
	3.1. Shape and Properties	3	
	3.2. Section Figure		
4.	Reinforcement		
	4.1. Bar Set: ASTM A615		
	4.2. Design Criteria		
	4.3. Confinement and Factors		
	4.4. Arrangement		
5.	Loading		
	5.1. Load Combinations		
	5.2. Service Loads		
	5.3. Sustained Load Factors		
6.	Slenderness		
	6.1. Sway Criteria		
	6.2. Columns		
	6.3. X - Beams	6	
	6.4. Y - Beams	. 7	
7.	Moment Magnification		
	7.1. General Parameters		
	7.2. Effective Length Factors		
	7.3. Magnification Factors: X - axis		
	7.4. Magnification Factors: Y - axis		
8.	Factored Moments		
	8.1. X - axis		
	8.2. Y - axis	13	
9.	Factored Loads and Moments with Corresponding Capacity Ratios		
). Diagrams		
	10.1. PM at θ=57 [deg]		
	10.2. MM at P=1 [kip]		
Į	∟ist of Figures		
L	-ist of Figures		

Page | 3 6/21/2020 7:43 PM

1. General Information

File Name	c:\senior project\lateral\beam design\c1.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	Biaxial
Slenderness	Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f'c	3 ksi
f_c E_c f_c ε_u	3122.02 ksi
f _c	2.55 ksi
ϵ_{u}	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
$\epsilon_{ ext{yt}}$	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	16	in
Depth	16	in
A_g	256	in ²
l _x	5461.33	in ⁴
l _y	5461.33	in ⁴
r _x	4.6188	in
r _y	4.6188	in
X _o	0	in
Y _o	0	in

3.2. Section Figure

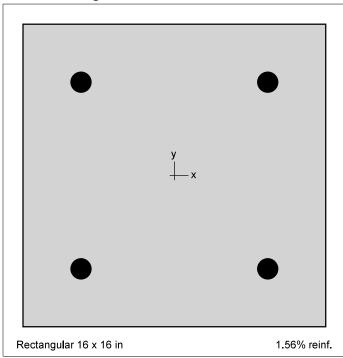


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	2.56 in ²
$A_{s,max} = 0.08 \times A_g$	20.48 in ²
Allowable Capacity Ratio (<1 is safe)	0.98

4.3. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#4 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

Page | **5** 6/21/2020 7:43 PM

4.4. Arrangement

Pattern	All sides equal
Bar layout	Rectangular
Cover to	Transverse bars
Clear cover	2 in
Bars	4 #9
Total steel area, A _s	4.00 in ²
Rho	1.56 %
Minimum clear spacing	8.74 in

5. Loading

5.1. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.400	0.000	0.000	0.000	1.000
U2	1.200	1.600	0.000	0.000	1.000
U3	1.200	0.500	0.000	0.000	1.000
U4	1.200	0.000	0.000	1.000	1.000
U5	0.900	0.000	0.000	1.000	1.000
U6	1.200	0.000	0.000	-1.000	1.000
U7	0.900	0.000	0.000	-1.000	1.000

5.2. Service Loads

No.	Load Case	Axial Load	Мх @ Тор	Mx @ Bottom	Му @ Тор	My @ Bottom
		kip	k-ft	k-ft	k-ft	k-ft
1	Dead	2.59	4.38	0.00	1.00	0.00
1	Live	3.82	4.94	0.00	0.89	0.00
1	Wind	0.00	0.00	0.00	0.00	0.00
1	EQ	1.62	0.01	0.00	23.40	0.00
1	Snow	0.00	0.00	0.00	0.00	0.00
2	Dead	2.59	0.00	0.00	0.00	0.00
2	Live	3.82	0.00	0.00	0.00	0.00
2	Wind	0.00	0.00	0.00	0.00	0.00
2	EQ	1.62	0.00	0.00	0.00	0.00
2	Snow	0.00	43.00	0.00	66.00	0.00
3	Dead	2.59	0.00	0.00	0.00	0.00
3	Live	3.82	0.00	0.00	0.00	0.00
3	Wind	0.00	0.00	0.00	0.00	0.00
3	EQ	-1.62	0.00	0.00	0.00	0.00
3	Snow	0.00	43.00	0.00	66.00	0.00
4	Dead	2.59	4.38	0.00	1.00	0.00
4	Live	3.82	4.94	0.00	0.89	0.00
4	Wind	0.00	0.00	0.00	0.00	0.00
4	EQ	-1.62	0.01	0.00	23.40	0.00
4	Snow	0.00	0.00	0.00	0.00	0.00
5	Dead	2.59	4.38	0.00	1.00	0.00
5	Live	3.82	4.94	0.00	0.89	0.00
5	Wind	0.00	0.00	0.00	0.00	0.00
5	EQ	0.42	27.40	0.00	0.01	0.00
5	Snow	0.00	0.00	0.00	0.00	0.00
6	Dead	2.59	0.00	0.00	0.00	0.00
6	Live	3.82	0.00	0.00	0.00	0.00
6	Wind	0.00	0.00	0.00	0.00	0.00
6	EQ	0.42	0.00	0.00	0.00	0.00

Page | 6 6/21/2020 7:43 PM

No.	Load Case	Axial Load	Мх @ Тор	Mx @ Bottom	Му @ Тор	My @ Bottom
		kip	k-ft	k-ft	k-ft	k - ft
6	Snow	0.00	43.00	0.00	66.00	0.00
7	Dead	2.59	0.00	0.00	0.00	0.00
7	Live	3.82	0.00	0.00	0.00	0.00
7	Wind	0.00	0.00	0.00	0.00	0.00
7	EQ	-0.42	0.00	0.00	0.00	0.00
7	Snow	0.00	43.00	0.00	66.00	0.00
8	Dead	2.59	4.38	0.00	1.00	0.00
8	Live	3.82	4.94	0.00	0.89	0.00
8	Wind	0.00	0.00	0.00	0.00	0.00
8	EQ	-0.42	27.40	0.00	0.01	0.00
8	Snow	0.00	0.00	0.00	0.00	0.00

5.3. Sustained Load Factors

Load Case	Factor
	%
Dead	0
Live	0
Wind	0
EQ	0
Snow	0

6. Slenderness

6.1. Sway Criteria

X-Axis	Sway column
2 nd order effects along length	Considered
ΣP_c	6.74 x P _c
ΣP_u	9.61 x P _u
Y-Axis	Sway column
2 nd order effects along length	Considered
ΣP_c	6.74 x P _c
ΣP_u	9.61 x P _u

6.2. Columns

Column	Axis	Height	Width	Depth	I	f'c	E _c
		ft	in	in	in⁴	ksi	ksi
Design	Χ	16.5	16	16	5461.33	3	3122.02
Design	Υ	16.5	16	16	5461.33	3	3122.02
Above	Χ	(no column specified)					
Above	Υ	(no column specified)					
Below	Χ	(no column specified)					
Below	Υ	(no column specified)					

6.3. X - Beams

Beam	Length	Width	Depth	İ	f'c	Ec
	ft	in	in	in⁴	ksi	ksi
Above Left	14	18	12	2592	3	3122.02
Above Right	(no beam specified)					
Below Left	(no beam specified)					
Below Right	(no beam specified)					

Page | **7** 6/21/2020 7:43 PM

6.4. Y - Beams

Beam	Length	Width	Depth	ı	f'c	Ec
	ft	in	in	in ⁴	ksi	ksi
Above Left	(no beam specified)					
Above Right	24.5	18	12	2592	3	3122.02
Below Left	(no beam specified)					
Below Right	(no beam specified)					

7. Moment Magnification

7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, ϕ_K	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
0.2 E _c I _g + E _s I _{se} (X-axis)	6.24e+006 kip-in ²
0.2 E _c I _g + E _s I _{se} (Y-axis)	6.24e+006 kip-in ²
Minimum eccentricity, e _{x min}	1.08 in
Minimum eccentricity, e _{y min}	1.08 in

7.2. Effective Length Factors

Axis	Ψ_{top}	Ψ_{bottom}	k (Nonsway)	k (Sway)	kl _u /r
Х	3.470	999.000	0.950	3.031	129.93
Υ	6.073	999.000	0.969	3.649	156.42

Notes:

Slenderness kI_u/r is greater than 100.

A second-order frame analysis is recommended to account for slenderness.

7.3. Magnification Factors: X - axis

Load			А	t Ends					Along Leng	gth		
Combo)	$\sum P_u$	P_c	$\sum P_c$	β_{ds}	δ_{s}	P_{u}	k'l _u /r	P_c	β_{dns}	C _m	δ
		kip	kip	kip			kip		kip			
1	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
1	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
1	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
1	U4	45.44	170.91	1152.60	0.000	1.055	4.73	(N/A)	1738.98	0.000	0.600	1.000
1	U5	37.98	170.91	1152.60	0.000	1.046	3.95	(N/A)	1738.98	0.000	0.600	1.000
1	U6	14.23	170.91	1152.60	0.000	1.017	1.48	(N/A)	1738.98	0.000	0.600	1.000
1	U7	6.77	170.91	1152.60	0.000	1.008	0.71	(N/A)	1738.98	0.000	0.600	1.000
2	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
2	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
2	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
2	U4	45.44	170.91	1152.60	0.000	1.055	4.73	(N/A)	1738.98	0.000	0.600	1.000
2	U5	37.98	170.91	1152.60	0.000	1.046	3.95	(N/A)	1738.98	0.000	0.600	1.000
2	U6	14.23	170.91	1152.60	0.000	1.017	1.48	(N/A)	1738.98	0.000	0.600	1.000
2	U7	6.77	170.91	1152.60	0.000	1.008	0.71	(N/A)	1738.98	0.000	0.600	1.000
3	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
3	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
3	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
3	U4	14.23	170.91	1152.60	0.000	1.017	1.48	(N/A)	1738.98	0.000	0.600	1.000
3	U5	6.77	170.91	1152.60	0.000	1.008	0.71	(N/A)	1738.98	0.000	0.600	1.000
3	U6	45.44	170.91	1152.60	0.000	1.055	4.73	(N/A)	1738.98	0.000	0.600	1.000
3	U7	37.98	170.91	1152.60	0.000	1.046	3.95	(N/A)	1738.98	0.000	0.600	1.000

Load			A	t Ends					Along Len	gth		
Combo	,	$\sum P_u$	Pc	∑Pc	β_{ds}	$\delta_{\rm s}$	P_{u}	k'l _u /r	Pc	β_{dns}	C _m	δ
		kip	kip	kip			kip	_	kip	•		
4	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
4	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
4	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
4	U4	14.23	170.91	1152.60	0.000	1.017	1.48	(N/A)	1738.98	0.000	0.600	1.000
4	U5	6.77	170.91	1152.60	0.000	1.008	0.71	(N/A)	1738.98	0.000	0.600	1.000
4	U6	45.44	170.91	1152.60	0.000	1.055	4.73	(N/A)	1738.98	0.000	0.600	1.000
4	U7	37.98	170.91	1152.60	0.000	1.046	3.95	(N/A)	1738.98	0.000	0.600	1.000
5	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
5	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
5	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
5	U4	33.88	170.91	1152.60	0.000	1.041	3.53	(N/A)	1738.98	0.000	0.600	1.000
5	U5	26.42	170.91	1152.60	0.000	1.032	2.75	(N/A)	1738.98	0.000	0.600	1.000
5	U6	25.79	170.91	1152.60	0.000	1.031	2.68	(N/A)	1738.98	0.000	0.600	1.000
5	U7	18.33	170.91	1152.60	0.000	1.022	1.91	(N/A)	1738.98	0.000	0.600	1.000
6	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
6	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
6	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
6	U4	33.88	170.91	1152.60	0.000	1.041	3.53	(N/A)	1738.98	0.000	0.600	1.000
6	U5	26.42	170.91	1152.60	0.000	1.032	2.75	(N/A)	1738.98	0.000	0.600	1.000
6	U6	25.79	170.91	1152.60	0.000	1.031	2.68	(N/A)	1738.98	0.000	0.600	1.000
6	U7	18.33	170.91	1152.60	0.000	1.022	1.91	(N/A)	1738.98	0.000	0.600	1.000
7	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
7	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
7	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
7	U4	25.79	170.91	1152.60	0.000	1.031	2.68	(N/A)	1738.98	0.000	0.600	1.000
7	U5	18.33	170.91	1152.60	0.000	1.022	1.91	(N/A)	1738.98	0.000	0.600	1.000
7	U6	33.88	170.91	1152.60	0.000	1.041	3.53	(N/A)	1738.98	0.000	0.600	1.000
7	U7	26.42	170.91	1152.60	0.000	1.032	2.75	(N/A)	1738.98	0.000	0.600	1.000
8	U1	34.81	170.91	1152.60	0.000	1.042	3.62	(N/A)	1738.98	0.000	0.600	1.000
8	U2	88.55	170.91	1152.60	0.000	1.114	9.22	(N/A)	1738.98	0.000	0.600	1.000
8	U3	48.18	170.91	1152.60	0.000	1.059	5.02	(N/A)	1738.98	0.000	0.600	1.000
8	U4	25.79	170.91	1152.60	0.000	1.031	2.68	(N/A)	1738.98	0.000	0.600	1.000
8	U5	18.33	170.91	1152.60	0.000	1.022	1.91	(N/A)	1738.98	0.000	0.600	1.000
8	U6	33.88	170.91	1152.60	0.000	1.041	3.53	(N/A)	1738.98	0.000	0.600	1.000
8	U7	26.42	170.91	1152.60	0.000	1.032	2.75	(N/A)	1738.98	0.000	0.600	1.000

7.4. Magnification Factors: Y - axis

Load			At	Ends					Along Leng	gth		
Combo	•	$\sum P_u$	P_c	$\sum P_c$	β_{ds}	δ _s	P_{u}	k'l _u /r	P_c	β_{dns}	C _m	δ
		kip	kip	kip			kip		kip			
1	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
1	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
1	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
1	U4	45.44	117.91	795.21	0.000	1.082	4.73	(N/A)	1670.37	0.000	0.600	1.000
1	U5	37.98	117.91	795.21	0.000	1.068	3.95	(N/A)	1670.37	0.000	0.600	1.000
1	U6	14.23	117.91	795.21	0.000	1.024	1.48	(N/A)	1670.37	0.000	0.600	1.000
1	U7	6.77	117.91	795.21	0.000	1.011	0.71	(N/A)	1670.37	0.000	0.600	1.000
2	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
2	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
2	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
2	U4	45.44	117.91	795.21	0.000	1.082	4.73	(N/A)	1670.37	0.000	0.600	1.000
2	U5	37.98	117.91	795.21	0.000	1.068	3.95	(N/A)	1670.37	0.000	0.600	1.000
2	U6	14.23	117.91	795.21	0.000	1.024	1.48	(N/A)	1670.37	0.000	0.600	1.000

Page | 9 6/21/2020 7:43 PM

Load			At	: Ends					Along Leng	gth		
Combo	,	$\sum P_u$	Pc	$\sum P_c$	β_{ds}	δ _s	P_{u}	k'l _u /r	P _c	β_{dns}	C _m	δ
		kip	kip	kip	•		kip	_	kip	•		
2	U7	6.77	117.91	795.21	0.000	1.011	0.71	(N/A)	1670.37	0.000	0.600	1.000
3	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
3	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
3	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
3	U4	14.23	117.91	795.21	0.000	1.024	1.48	(N/A)	1670.37	0.000	0.600	1.000
3	U5	6.77	117.91	795.21	0.000	1.011	0.71	(N/A)	1670.37	0.000	0.600	1.000
3	U6	45.44	117.91	795.21	0.000	1.082	4.73	(N/A)	1670.37	0.000	0.600	1.000
3	U7	37.98	117.91	795.21	0.000	1.068	3.95	(N/A)	1670.37	0.000	0.600	1.000
4	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
4	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
4	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
4	U4	14.23	117.91	795.21	0.000	1.024	1.48	(N/A)	1670.37	0.000	0.600	1.000
4	U5	6.77	117.91	795.21	0.000	1.011	0.71	(N/A)	1670.37	0.000	0.600	1.000
4	U6	45.44	117.91	795.21	0.000	1.082	4.73	(N/A)	1670.37	0.000	0.600	1.000
4	U7	37.98	117.91	795.21	0.000	1.068	3.95	(N/A)	1670.37	0.000	0.600	1.000
5	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
5	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
5	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
5	U4	33.88	117.91	795.21	0.000	1.060	3.53	(N/A)	1670.37	0.000	0.600	1.000
5	U5	26.42	117.91	795.21	0.000	1.046	2.75	(N/A)	1670.37	0.000	0.600	1.000
5	U6	25.79	117.91	795.21	0.000	1.045	2.68	(N/A)	1670.37	0.000	0.600	1.000
5	U7	18.33	117.91	795.21	0.000	1.032	1.91	(N/A)	1670.37	0.000	0.600	1.000
6	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
6	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
6	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
6	U4	33.88	117.91	795.21	0.000	1.060	3.53	(N/A)	1670.37	0.000	0.600	1.000
6	U5	26.42	117.91	795.21	0.000	1.046	2.75	(N/A)	1670.37	0.000	0.600	1.000
6	U6	25.79	117.91	795.21	0.000	1.045	2.68	(N/A)	1670.37	0.000	0.600	1.000
6	U7	18.33	117.91	795.21	0.000	1.032	1.91	(N/A)	1670.37	0.000	0.600	1.000
7	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
7	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
7	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
7	U4	25.79	117.91	795.21	0.000	1.045	2.68	(N/A)	1670.37	0.000	0.600	1.000
7	U5	18.33	117.91	795.21	0.000	1.032	1.91	(N/A)	1670.37	0.000	0.600	1.000
7	U6	33.88	117.91	795.21	0.000	1.060	3.53	(N/A)	1670.37	0.000	0.600	1.000
7	U7	26.42	117.91	795.21	0.000	1.046	2.75	(N/A)	1670.37	0.000	0.600	1.000
8	U1	34.81	117.91	795.21	0.000	1.062	3.62	(N/A)	1670.37	0.000	0.600	1.000
8	U2	88.55	117.91	795.21	0.000	1.174	9.22	(N/A)	1670.37	0.000	0.600	1.000
8	U3	48.18	117.91	795.21	0.000	1.088	5.02	(N/A)	1670.37	0.000	0.600	1.000
8	U4	25.79	117.91	795.21	0.000	1.045	2.68	(N/A)	1670.37	0.000	0.600	1.000
8	U5	18.33	117.91	795.21	0.000	1.032	1.91	(N/A)	1670.37	0.000	0.600	1.000
8	U6	33.88	117.91	795.21	0.000	1.060	3.53	(N/A)	1670.37	0.000	0.600	1.000
8	U7	26.42	117.91	795.21	0.000	1.046	2.75	(N/A)	1670.37	0.000	0.600	1.000

8. Factored Moments

NOTE: Each loading combination includes the following cases:

Top - At column top Bot - At column bottom

8.1. X - axis

Load				1st Order			2 nd Orde	er	Ratio
Comb	0		M _{ns}	M_s	Mu	M _{min}	Mi	M _c	2 nd /1 st
			k-ft	k-ft	k-ft	k-ft	k-ft	k-ft	
1	U1	Тор	6.13	0.00	6.13	0.33	M_2 = 6.13	6.13	1.000

Page | **10** 6/21/2020 7:43 PM

Load			1	st Order				2 nd Order		Ratio	
Comb	0		M _{ns}	M_s	Mu	M _{min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
1	U1	Bot	0.00	0.00	0.00	0.33	M ₁ =	0.00	0.33	1.000	#
1	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	13.16	0.00	13.16	0.83	$M_2=$	13.16	13.16	1.000	
1	U2	Тор	0.00	0.00	0.00	0.83	$M_1=$	0.00	0.83	1.000	#
1	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
1	U3	Тор	7.72	0.00	7.72	0.45	$M_2=$	7.72	7.72	1.000	
1	U3	Bot	0.00	0.00	0.00	0.45	$M_1=$	0.00	0.45	1.000	#
1	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	5.25	0.01	5.27	0.43	$M_2=$	5.27	5.27	1.000	
1	U4	Тор	0.00	0.00	0.00	0.43	$M_1=$	0.00	0.43	1.000	#
1	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U5	Тор	3.94	0.01	3.95	0.36	M ₂ =	3.95	3.95	1.000	
1	U5	Bot	0.00	0.00	0.00	0.36	M ₁ =	0.00	0.36	1.000	#
1	U5	Bot	E 25	0.01	E 24	(N/A)	$M_1 =$	0.00	0.00	1.000	
1	U U6	Bot	5.25 0.00	-0.01 0.00	5.24 0.00	0.13 0.13	M ₂ =	5.24 0.00	5.24 0.13	1.000 1.000	#
1	U6	Top	0.00	0.00	0.00	(N/A)	M ₁ =	0.00	0.00	1.000	#
1	U7	Bot Top	3.94	-0.01	3.93	0.06	$M_1=$ $M_2=$	3.93	3.93	1.000	
1	U7	Bot	0.00	0.00	0.00	0.06	$M_1=$	0.00	0.06	1.000	#
1	U7	Bot	0.00	0.00	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	π
'	U	Bot	43.00	0.00	43.00	0.33	$M_2=$	43.00	43.00	1.000	
2	U1	Top	0.00	0.00	0.00	0.33	$M_1=$	0.00	0.33	1.000	#
2	U1	Bot	0,00	0.00	5.55	(N/A)	M₁=	0.00	0.00	1.000	
2	U2	Top	43.00	0.00	43.00	0.83	$M_2=$	43.00	43.00	1.000	
2	U2	Bot	0.00	0.00	0.00	0.83	M ₁ =	0.00	0.83	1.000	#
2	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	43.00	0.00	43.00	0.45	M ₂ =	43.00	43.00	1.000	
2	U3	Тор	0.00	0.00	0.00	0.45	$M_1=$	0.00	0.45	1.000	#
2	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
2	U4	Тор	43.00	0.00	43.00	0.43	$M_2=$	43.00	43.00	1.000	
2	U4	Bot	0.00	0.00	0.00	0.43	$M_1=$	0.00	0.43	1.000	#
2	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	43.00	0.00	43.00	0.36	$M_2=$	43.00	43.00	1.000	
2	U5	Тор	0.00	0.00	0.00	0.36	$M_1=$	0.00	0.36	1.000	#
2	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
2	U6	Тор	43.00	0.00	43.00	0.13		43.00	43.00	1.000	
2	U6	Bot	0.00	0.00	0.00	0.13		0.00	0.13	1.000	#
2	U6	Bot	40.00	0.00	40.00	(N/A)	M ₁ =	0.00	0.00	1.000	
•	U	Bot	43.00	0.00	43.00	0.06	$M_2=$	43.00	43.00	1.000	ш
2	U7	Top	0.00	0.00	0.00	0.06	M ₁ =	0.00	0.06	1.000	#
2 3	U7 U1	Bot	43.00	0.00	43.00	(N/A) 0.33	M ₁ = M ₂ =	0.00 43.00	0.00 43.00	1.000 1.000	
3	U1	Top Bot	0.00	0.00	0.00	0.33	$M_1=$	0.00	0.33	1.000	#
3	U1	Bot	0.00	0.00	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	#
3	U	Bot	43.00	0.00	43.00	0.83	$M_2=$	43.00	43.00	1.000	
3	U2	Тор	0.00	0.00	0.00	0.83	$M_1=$	0.00	0.83	1.000	#
3	U2	Bot	3.00	0.00	3.55	(N/A)	$M_1=$	0.00	0.00	1.000	,,
3	U3	Тор	43.00	0.00	43.00	0.45	$M_2=$	43.00	43.00	1.000	
3	U3	Bot	0.00	0.00	0.00	0.45	M ₁ =	0.00	0.45	1.000	#
3	U3	Bot		-		(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	43.00	0.00	43.00	0.13	$M_2=$	43.00	43.00	1.000	
3	U4	Тор	0.00	0.00	0.00	0.13	$M_1=$	0.00	0.13	1.000	#
3	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U5	Тор	43.00	0.00	43.00	0.06	$M_2=$	43.00	43.00	1.000	

Page | **11** 6/21/2020 7:43 PM

Load			1	st Order				2 nd Order		Ratio	
Combo)		M_{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
3	U5	Bot	0.00	0.00	0.00	0.06	M ₁ =	0.00	0.06	1.000	#
3	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	43.00	0.00	43.00	0.43	$M_2=$	43.00	43.00	1.000	
3	U6	Тор	0.00	0.00	0.00	0.43	$M_1=$	0.00	0.43	1.000	#
3	U6	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
3	U7	Тор	43.00	0.00	43.00	0.36	$M_2=$	43.00	43.00	1.000	
3	U7	Bot	0.00	0.00	0.00	0.36	$M_1=$	0.00	0.36	1.000	#
3	U7	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	6.13	0.00	6.13	0.33	$M_2=$	6.13	6.13	1.000	
4	U1	Тор	0.00	0.00	0.00	0.33	$M_1=$	0.00	0.33	1.000	#
4	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
4	U2	Тор	13.16	0.00	13.16	0.83	$M_2=$	13.16	13.16	1.000	
4	U2	Bot	0.00	0.00	0.00	0.83	$M_1=$	0.00	0.83	1.000	#
4	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	7.72	0.00	7.72	0.45	$M_2=$	7.72	7.72	1.000	
4	U3	Тор	0.00	0.00	0.00	0.45	$M_1=$	0.00	0.45	1.000	#
4	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
4	U4	Тор	5.25	0.01	5.27	0.13	$M_2=$	5.27	5.27	1.000	
4	U4	Bot	0.00	0.00	0.00	0.13	$M_1=$	0.00	0.13	1.000	#
4	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	3.94	0.01	3.95	0.06	M ₂ =	3.95	3.95	1.000	
4	U5	Тор	0.00	0.00	0.00	0.06	$M_1=$	0.00	0.06	1.000	#
4	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
4	U6	Тор	5.25	-0.01	5.24	0.43	$M_2=$	5.24	5.24	1.000	
4	U6	Bot	0.00	0.00	0.00	0.43	$M_1=$	0.00	0.43	1.000	#
4	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	3.94	-0.01	3.93	0.36	M ₂ =	3.93	3.93	1.000	
4	U7	Тор	0.00	0.00	0.00	0.36	$M_1 =$	0.00	0.36	1.000	#
4	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
5	U1	Тор	6.13	0.00	6.13	0.33	M ₂ =	6.13	6.13	1.000	
5	U1	Bot	0.00	0.00	0.00	0.33	$M_1=$	0.00	0.33	1.000	#
5	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	13.16	0.00	13.16	0.83	$M_2=$	13.16	13.16	1.000	
5	U2	Тор	0.00	0.00	0.00	0.83	$M_1=$	0.00	0.83	1.000	#
5	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
5	U3	Тор	7.72	0.00	7.72	0.45	M ₂ =	7.72	7.72	1.000	
5	U3	Bot	0.00	0.00	0.00	0.45		0.00	0.45	1.000	#
5	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	5.25	27.40	32.65	0.32	$M_2=$	33.77	33.77	1.034	
5	U4	Тор	0.00	0.00	0.00	0.32	$M_1=$	0.00	0.32	1.000	#
5	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
5	U5	Тор	3.94	27.40	31.34	0.25	$M_2=$	32.20	32.20	1.028	
5	U5	Bot	0.00	0.00	0.00	0.25	$M_1=$	0.00	0.25	1.000	#
5	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	5.25	-27.40	-22.15	-0.24	$M_2=$	-22.99	-22.99	1.038	
5	U6	Тор	0.00	0.00	0.00	0.24	$M_1=$	0.00	0.24	1.000	#
5	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
5	U7	Тор	3.94	-27.40	-23.46	-0.17	$M_2=$	-24.05	-24.05	1.025	
5	U7	Bot	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
5	U7	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	43.00	0.00	43.00	0.33	$M_2=$	43.00	43.00	1.000	
6	U1	Тор	0.00	0.00	0.00	0.33	$M_1 =$	0.00	0.33	1.000	#
6	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
6	U2	Тор	43.00	0.00	43.00	0.83		43.00	43.00	1.000	

Page | **12** 6/21/2020 7:43 PM

Load			1	st Order				2 nd Order		Ratio	
Combo)		M_{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
6	U2	Bot	0.00	0.00	0.00	0.83	M ₁ =	0.00	0.83	1.000	#
6	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	43.00	0.00	43.00	0.45	$M_2=$	43.00	43.00	1.000	
6	U3	Тор	0.00	0.00	0.00	0.45	$M_1=$	0.00	0.45	1.000	#
6	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
6	U4	Тор	43.00	0.00	43.00	0.32	M ₂ =	43.00	43.00	1.000	
6	U4	Bot	0.00	0.00	0.00	0.32	M ₁ =	0.00	0.32	1.000	#
6	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
-	U	Bot	43.00	0.00	43.00	0.25	M ₂ =	43.00	43.00	1.000	
6	U5	Тор	0.00	0.00	0.00	0.25	$M_1=$	0.00	0.25	1.000	#
6	U5	Bot	0.00	5.55	5.65	(N/A)	M ₁ =	0.00	0.00	1.000	
6	U6	Top	43.00	0.00	43.00	0.24	$M_2=$	43.00	43.00	1.000	
6	U6	Bot	0.00	0.00	0.00	0.24	$M_1=$	0.00	0.24	1.000	#
6	U6	Bot	0.00	0.00	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	"
0	U	Bot	43.00	0.00	43.00	0.17	$M_2=$	43.00	43.00	1.000	
6	U7	Top	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
6	U7	Bot	0.00	0.00	0.00	(N/A)		0.00	0.00	1.000	#
7	U1		43.00	0.00	43.00	0.33	M ₁ =	43.00	43.00	1.000	
7	U1	Top	0.00		0.00	0.33	M ₂ =		0.33		#
7		Bot	0.00	0.00	0.00		M ₁ =	0.00	I	1.000	#
,	U1	Bot	42.00	0.00	42.00	(N/A)	$M_1=$	0.00	0.00	1.000	
7	U	Bot	43.00	0.00	43.00	0.83	M ₂ =	43.00	43.00	1.000	ш
7	U2	Тор	0.00	0.00	0.00	0.83	M ₁ =	0.00	0.83	1.000	#
7	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
7	U3	Тор	43.00	0.00	43.00	0.45	M ₂ =	43.00	43.00	1.000	
7	U3	Bot	0.00	0.00	0.00	0.45	M ₁ =	0.00	0.45	1.000	#
7	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
_	U	Bot	43.00	0.00	43.00	0.24	M ₂ =	43.00	43.00	1.000	
7	U4	Тор	0.00	0.00	0.00	0.24	$M_1=$	0.00	0.24	1.000	#
7	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
7	U5	Тор	43.00	0.00	43.00	0.17	$M_2=$	43.00	43.00	1.000	
7	U5	Bot	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
7	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	43.00	0.00	43.00	0.32	$M_2=$	43.00	43.00	1.000	
7	U6	Тор	0.00	0.00	0.00	0.32	$M_1=$	0.00	0.32	1.000	#
7	U6	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
7	U7	Тор	43.00	0.00	43.00	0.25	$M_2=$	43.00	43.00	1.000	
7	U7	Bot	0.00	0.00	0.00	0.25		0.00	0.25	1.000	#
7	U7	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	6.13	0.00	6.13	0.33	$M_2=$	6.13	6.13	1.000	
8	U1	Тор	0.00	0.00	0.00	0.33	$M_1=$	0.00	0.33	1.000	#
8	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
8	U2	Тор	13.16	0.00	13.16	0.83	$M_2=$	13.16	13.16	1.000	
8	U2	Bot	0.00	0.00	0.00	0.83	$M_1=$	0.00	0.83	1.000	#
8	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	7.72	0.00	7.72	0.45	$M_2=$	7.72	7.72	1.000	
8	U3	Тор	0.00	0.00	0.00	0.45	$M_1=$	0.00	0.45	1.000	#
8	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
8	U4	Тор	5.25	27.40	32.65	0.24	$M_2=$	33.50	33.50	1.026	
8	U4	Bot	0.00	0.00	0.00	0.24	$M_1=$	0.00	0.24	1.000	#
8	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	3.94	27.40	31.34	0.17	M ₂ =	31.93	31.93	1.019	
8	U5	Тор	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
8	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
8	U6	Тор	5.25	- 27.40	- 22.15	-0.32		- 23.26	-23.26	1.050	
-		. 56	5.20		•	0.02	2	_55	_5.25		

Page | **13** 6/21/2020 7:43 PM

Load			1st Order				2 nd Order			Ratio	
Combo			M _{ns}	Ms	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
8	U6	Bot	0.00	0.00	0.00	0.32	M ₁ =	0.00	0.32	1.000	#
8	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	3.94	-27.40	- 23.46	- 0.25	M ₂ =	-24.32	-24.32	1.037	
8	U7	Top	0.00	0.00	0.00	0.25	M ₁ =	0.00	0.25	1.000	#
8	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	

[#] M_{min} exceeds M_i for X and Y - axis bending but shall be applied to each axis separately for capacity check.

8.2. Y - axis

Load			1	st Order				2 nd Order		Ratio	
Comb	0		M _{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
1	U1	Тор	1.40	0.00	1.40	0.33	M ₂ =	1.40	1.40	1.000	_
1	U1	Bot	0.00	0.00	0.00	0.33	M₁=	0.00	0.33	1.000	
1	U1	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	2.62	0.00	2.62	0.83	M ₂ =	2.62	2.62	1.000	
1	U2	Тор	0.00	0.00	0.00	0.83	M ₁ =	0.00	0.83	1.000	
1	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U3	Тор	1.64	0.00	1.64	0.45	M ₂ =	1.64	1.64	1.000	
1	U3	Bot	0.00	0.00	0.00	0.45	M ₁ =	0.00	0.45	1.000	
1	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.20	23.40	24.60	0.43	M ₂ =	26.53	26.53	1.078	
1	U4	Тор	0.00	0.00	0.00	0.43	M ₁ =	0.00	0.43	1.000	
1	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U5	Тор	0.90	23.40	24.30	0.36	M ₂ =	25.89	25.89	1.065	
1	U5	Bot	0.00	0.00	0.00	0.36	M ₁ =	0.00	0.36	1.000	
1	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.20	-23.40	-22.20	- 0.13	M ₂ =	- 22.77	- 22.77	1.026	
1	U6	Тор	0.00	0.00	0.00	0.13	M ₁ =	0.00	0.13	1.000	
1	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U7	Тор	0.90	-23.40	-22.50	- 0.06	M ₂ =	-22.77	- 22.77	1.012	
1	U7	Bot	0.00	0.00	0.00	0.06	M ₁ =	0.00	0.06	1.000	
1	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.33	M ₂ =	66.00	66.00	1.000	
2	U1	Тор	0.00	0.00	0.00	0.33	M ₁ =	0.00	0.33	1.000	
2	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
2	U2	Тор	66.00	0.00	66.00	0.83	M ₂ =	66.00	66.00	1.000	
2	U2	Bot	0.00	0.00	0.00	0.83	M₁=	0.00	0.83	1.000	
2	U2	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.45	M ₂ =	66.00	66.00	1.000	
2	U3	Тор	0.00	0.00	0.00	0.45	M₁=	0.00	0.45	1.000	
2	U3	Bot				(N/A)	M₁=	0.00	0.00	1.000	
2	U4	Тор	66.00	0.00	66.00	0.43	M ₂ =	66.00	66.00	1.000	
2	U4	Bot	0.00	0.00	0.00	0.43	M₁=	0.00	0.43	1.000	
2	U4	Bot				(N/A)	M₁=	0.00	0.00	1.000	
_	U	Bot	66.00	0.00	66.00	0.36	M ₂ =	66.00	66.00	1.000	
2	U5	Тор	0.00	0.00	0.00	0.36	M₁=	0.00	0.36	1.000	
2	U5	Bot				(N/A)	M₁=	0.00	0.00	1.000	
2	U6	Тор	66.00	0.00	66.00	0.13	M ₂ =	66.00	66.00	1.000	
2	U6	Bot	0.00	0.00	0.00	0.13	M ₁ =	0.00	0.13	1.000	
2	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
_	U	Bot	66.00	0.00	66.00	0.06	M ₂ =	66.00	66.00	1.000	
2	U7	Тор	0.00	0.00	0.00	0.06	M₁=	0.00	0.06	1.000	
2	U7	Bot				(N/A)	M₁=	0.00	0.00	1.000	

Page | **14** 6/21/2020 7:43 PM

Load				1st Order				2 nd Order		Ratio	
Combo)		M_{ns}	Ms	Mu	M_{min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
3	U1	Тор	66.00	0.00	66.00	0.33	M ₂ =	66.00	66.00	1.000	
3	U1	Bot	0.00	0.00	0.00	0.33	M ₁ =	0.00	0.33	1.000	#
3	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.83	M ₂ =	66.00	66.00	1.000	
3	U2	Тор	0.00	0.00	0.00	0.83	M₁=	0.00	0.83	1.000	#
3	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U3	Тор	66.00	0.00	66.00	0.45	M ₂ =	66.00	66.00	1.000	
3	U3	Bot	0.00	0.00	0.00	0.45	M₁=	0.00	0.45	1.000	#
3	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.13	M ₂ =	66.00	66.00	1.000	
3	U4	Тор	0.00	0.00	0.00	0.13	M₁=	0.00	0.13	1.000	#
3	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U5	Тор	66.00	0.00	66.00	0.06	M ₂ =	66.00	66.00	1.000	
3	U5	Bot	0.00	0.00	0.00	0.06	M ₁ =	0.00	0.06	1.000	#
3	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.43	M ₂ =	66.00	66.00	1.000	
3	U6	Тор	0.00	0.00	0.00	0.43	M₁=	0.00	0.43	1.000	#
3	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
3	U7	Тор	66.00	0.00	66.00	0.36	M ₂ =	66.00	66.00	1.000	
3	U7	Bot	0.00	0.00	0.00	0.36	M ₁ =	0.00	0.36	1.000	#
3	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.40	0.00	1.40	0.33	M ₂ =	1.40	1.40	1.000	
4	U1	Тор	0.00	0.00	0.00	0.33	M ₁ =	0.00	0.33	1.000	#
4	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
4	U2	Тор	2.62	0.00	2.62	0.83	M ₂ =	2.62	2.62	1.000	
4	U2	Bot	0.00	0.00	0.00	0.83	M ₁ =	0.00	0.83	1.000	#
4	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.64	0.00	1.64	0.45	M ₂ =	1.64	1.64	1.000	
4	U3	Тор	0.00	0.00	0.00	0.45	M ₁ =	0.00	0.45	1.000	#
4	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
4	U4	Тор	1.20	23.40	24.60	0.13	M ₂ =	25.17	25.17	1.023	
4	U4	Bot	0.00	0.00	0.00	0.13	M₁=	0.00	0.13	1.000	#
4	U4	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	0.90	23.40	24.30	0.06	M ₂ =	24.57	24.57	1.011	
4	U5	Тор	0.00	0.00	0.00	0.06	M ₁ =	0.00	0.06	1.000	#
4	U5	Bot				(N/A)		0.00	0.00	1.000	
4	U6	Тор	1.20	-23.40	-22.20	-0.43		- 24.13	- 24.13	1.087	
4	U6	Bot	0.00	0.00	0.00	0.43		0.00	0.43	1.000	#
4	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	0.90	-23.40	-22.50	-0.36	M ₂ =	- 24.09	- 24.09	1.071	
4	U7	Тор	0.00	0.00	0.00	0.36		0.00	0.36	1.000	#
4	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
5	U1	Тор	1.40	0.00	1.40	0.33	M ₂ =	1.40	1.40	1.000	
5	U1	Bot	0.00	0.00	0.00	0.33	M₁=	0.00	0.33	1.000	#
5	U1	Bot				(N/A)	M₁=	0.00	0.00	1.000	
_	U	Bot	2.62	0.00	2.62	0.83	M ₂ =	2.62	2.62	1.000	
5	U2	Тор	0.00	0.00	0.00	0.83	M₁=	0.00	0.83	1.000	#
5	U2	Bot		2.22	, , ,	(N/A)	M₁=	0.00	0.00	1.000	
5	U3	Top	1.64	0.00	1.64	0.45	M ₂ =	1.64	1.64	1.000	
5	U3	Bot	0.00	0.00	0.00	0.45	M ₁ =	0.00	0.45	1.000	#
5	U3	Bot	4.00	2.21	4.64	(N/A)		0.00	0.00	1.000	
-	U	Bot	1.20	0.01	1.21	0.32	M ₂ =	1.21	1.21	1.000	,,
5	U4	Top	0.00	0.00	0.00		M ₁ =	0.00	0.32	1.000	#
5	U4	Bot				(N/A)	IVI ₁ =	0.00	0.00	1.000	

Page | **15** 6/21/2020 7:43 PM

Load			15	t Order				2 nd Order		Ratio	
Combo	5		M _{ns}	Ms	Mu	M _{min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
5	U5	Тор	0.90	0.01	0.91	0.25	M ₂ =	0.91	0.91	1.000	
5	U5	Bot	0.00	0.00	0.00	0.25	M ₁ =	0.00	0.25	1.000	#
5	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.20	-0.01	1.19	0.24	M ₂ =	1.19	1.19	1.000	
5	U6	Тор	0.00	0.00	0.00	0.24	$M_1=$	0.00	0.24	1.000	#
5	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
5	U7	Тор	0.90	-0.01	0.89	0.17	M ₂ =	0.89	0.89	1.000	
5	U7	Bot	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
5	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.33	M ₂ =	66.00	66.00	1.000	
6	U1	Тор	0.00	0.00	0.00	0.33	$M_1=$	0.00	0.33	1.000	#
6	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
6	U2	Тор	66.00	0.00	66.00	0.83	$M_2=$	66.00	66.00	1.000	
6	U2	Bot	0.00	0.00	0.00	0.83	$M_1=$	0.00	0.83	1.000	#
6	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.45	M ₂ =	66.00	66.00	1.000	
6	U3	Тор	0.00	0.00	0.00	0.45	M ₁ =	0.00	0.45	1.000	#
6	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
6	U4	Тор	66.00	0.00	66.00	0.32	$M_2=$	66.00	66.00	1.000	
6	U4	Bot	0.00	0.00	0.00	0.32	$M_1=$	0.00	0.32	1.000	#
6	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.25	$M_2=$	66.00	66.00	1.000	
6	U5	Тор	0.00	0.00	0.00	0.25	$M_1=$	0.00	0.25	1.000	#
6	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
6	U6	Тор	66.00	0.00	66.00	0.24	$M_2=$	66.00	66.00	1.000	
6	U6	Bot	0.00	0.00	0.00	0.24	$M_1=$	0.00	0.24	1.000	#
6	U6	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.17	$M_2=$	66.00	66.00	1.000	
6	U7	Тор	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
6	U7	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
7	U1	Тор	66.00	0.00	66.00	0.33	$M_2=$	66.00	66.00	1.000	
7	U1	Bot	0.00	0.00	0.00	0.33	$M_1=$	0.00	0.33	1.000	#
7	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.83	$M_2=$	66.00	66.00	1.000	
7	U2	Тор	0.00	0.00	0.00	0.83	$M_1=$	0.00	0.83	1.000	#
7	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
7	U3	Тор	66.00	0.00	66.00	0.45	$M_2=$	66.00	66.00	1.000	
7	U3	Bot	0.00	0.00	0.00	0.45	$M_1=$	0.00	0.45	1.000	#
7	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.24	$M_2=$	66.00	66.00	1.000	
7	U4	Тор	0.00	0.00	0.00	0.24	$M_1=$	0.00	0.24	1.000	#
7	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
7	U5	Тор	66.00	0.00	66.00	0.17	$M_2=$	66.00	66.00	1.000	
7	U5	Bot	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
7	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	66.00	0.00	66.00	0.32	M ₂ =	66.00	66.00	1.000	
7	U6	Тор	0.00	0.00	0.00	0.32	M ₁ =	0.00	0.32	1.000	#
7	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
7	U7	Тор	66.00	0.00	66.00	0.25	M ₂ =	66.00	66.00	1.000	
7	U7	Bot	0.00	0.00	0.00	0.25	M ₁ =	0.00	0.25	1.000	#
7	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
-	U	Bot	1.40	0.00	1.40	0.33	M ₂ =	1.40	1.40	1.000	
8	U1	Тор	0.00	0.00	0.00	0.33	M ₁ =	0.00	0.33	1.000	#
8	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c1.col

Page | **16** 6/21/2020 7:43 PM

Load			1	st Order				2 nd Order		Ratio	
Comb	0		M _{ns}	$M_{\rm s}$	Mu	M _{min}		M_{i}	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
8	U2	Тор	2.62	0.00	2.62	0.83	M ₂ =	2.62	2.62	1.000	
8	U2	Bot	0.00	0.00	0.00	0.83	M ₁ =	0.00	0.83	1.000	#
8	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.64	0.00	1.64	0.45	M ₂ =	1.64	1.64	1.000	
8	U3	Тор	0.00	0.00	0.00	0.45	$M_1=$	0.00	0.45	1.000	#
8	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
8	U4	Тор	1.20	0.01	1.21	0.24	M ₂ =	1.21	1.21	1.000	
8	U4	Bot	0.00	0.00	0.00	0.24	M ₁ =	0.00	0.24	1.000	#
8	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.90	0.01	0.91	0.17	M ₂ =	0.91	0.91	1.000	
8	U5	Тор	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
8	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
8	U6	Тор	1.20	-0.01	1.19	0.32	M ₂ =	1.19	1.19	1.000	
8	U6	Bot	0.00	0.00	0.00	0.32	$M_1=$	0.00	0.32	1.000	#
8	U6	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	0.90	-0.01	0.89	0.25	M ₂ =	0.89	0.89	1.000	
8	U7	Тор	0.00	0.00	0.00	0.25	M ₁ =	0.00	0.25	1.000	#
8	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	

[#] M_{min} exceeds M_i for X and Y - axis bending but shall be applied to each axis separately for capacity check.

9. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method. Allowable Capacity (Ratio) <= 0.98

Each loading combination includes the following cases:

Top - At column top

Bot - At column bottom

No.	Loa	ıd			Demand		C	apacity		Parame	ters at Capad	ity	Capacity
	Cor	nbo		P_{u}	M_{ux}	M _{uy}	ϕP_n	ϕM_{nx}	ϕM_{ny}	NA Depth	ε _t	Ф	Ratio
				kip	k-ft	k-ft	kip	k-ft	k-ft	in			
1	1	U1	Тор	3.62	6.13	1.40	3.62	73.49	16.80	3.85	0.00845	0.900	0.08
2	1	U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2.83	0.01070	0.900	0.00
3	1	U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
4	1	U2	Top	9.22	13.16	2.62	9.22	76.01	15.13	3.84	0.00842	0.900	0.17
5	1	U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
6	1	U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
7	1	U3	Top	5.02	7.72	1.64	5.02	74.16	15.79	3.81	0.00852	0.900	0.10
8	1	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
9	1	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
10	1	U4	Top	4.73	5.27	26.53	4.73	14.71	74.09	3.74	0.00868	0.900	0.36
11	1	U4	Bot	4.73	0.43	0.00	4.73	74.90	0.00	2.84	0.01064	0.900	0.01
12	1	U4	Bot	4.73	0.00	0.43	4.73	0.00	74.90	2.84	0.01064	0.900	0.01
13	1	U5	Top	3.95	3.95	25.89	3.95	11.29	73.94	3.52	0.00917	0.900	0.35
14	1	U5	Bot	3.95	0.36	0.00	3.95	74.57	0.00	2.84	0.01068	0.900	0.00
15	1	U5	Bot	3.95	0.00	0.36	3.95	0.00	74.57	2.84	0.01068	0.900	0.00
16	1	U6	Top	1.48	5.24	-22.77	1.48	16.71	-72.55	3.81	0.00856	0.900	0.31
17	1	U6	Bot	1.48	0.13	0.00	1.48	73.51	0.00	2.81	0.01081	0.900	0.00
18	1	U6	Bot	1.48	0.00	0.13	1.48	0.00	73.51	2.81	0.01081	0.900	0.00
19	1	U7	Top	0.71	3.93	-22.77	0.71	12.50	-72.45	3.55	0.00916	0.900	0.31
20	1	U7	Bot	0.71	0.06	0.00	0.71	73.17	0.00	2.80	0.01086	0.900	0.00
21	1	U7	Bot	0.71	0.00	0.06	0.71	0.00	73.17	2.80	0.01086	0.900	0.00
22	2	U1	Top	3.62	43.00	66.00	3.62	44.95	68.99	5.87	0.00568	0.900	0.96
23	2	U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2.83	0.01070	0.900	0.00
24	2	U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
25	2	U2	Top	9.22	43.00	66.00	9.22	46.27	71.01	6.09	0.00544	0.900	0.93

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c1.col

Page | **17** 6/21/2020 7:43 PM

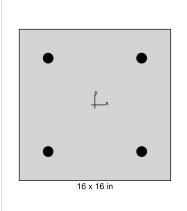
No.	Loa	d			Demand			Capacity		Parame	ters at Capac	itv	Capacity
	Con			$P_{\rm u}$	M_{ux}	M _{uy}	φP _n	φM _{nx}	фМոν	NA Depth	ε _t	ф	Ratio
				kip	k-ft	k-ft	kip	k-ft	k-ft	in		- 1	
26	2	U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
27	2	U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
28	2	U3	Тор	5.02	43.00	66.00	5.02	45.28	69.49	5.92	0.00562	0.900	0.95
29	2	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
30	2	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
31	2	U4	Тор	4.73	43.00	66.00	4.73	45.21	69.39	5.91	0.00564	0.900	0.95
32	2	U4	Bot	4.73	0.43	0.00	4.73	74.90	0.00	2 84	0.01064	0.900	0.01
33	2	U4	Bot	4.73	0.00	0.43	4.73	0.00	74.90	2.84	0.01064	0.900	0.01
34	2	U5	Тор	3.95	43.00	66.00	3.95	45.02	69.11	5.88	0.00567	0.900	0.96
35	2	U5	Bot	3.95	0.36	0.00	3.95	74.57	0.00	2.84	0.01068	0.900	0.00
36	2	U5	Bot	3.95	0.00	0.36	3.95	0.00	74.57	2.84	0.01068	0.900	0.00
37	2	U6	Тор	1.48	43.00	66.00	1.48	44.43	68.20	5.79	0.00578	0.900	0.97
38	2	U6	Bot	1.48	0.13	0.00	1.48	73.51	0.00	2.81	0.01081	0.900	0.00
39	2	U6	Bot	1.48	0.00	0.13	1.48	0.00	73.51	2.81	0.01081	0.900	0.00
40	2	U7	Тор	0.71	43.00	66.00	0.71	44.25	67.92	5.76	0.00582	0.900	0.97
41	2	U7	Bot	0.71	0.06	0.00	0.71	73.17	0.00	2.80	0.01086	0.900	0.00
42	2	U7	Bot	0.71	0.00	0.06	0.71	0.00	73.17	2.80	0.01086	0.900	0.00
43	3	U1	Тор	3.62	43.00	66.00	3.62	44.95	68.99	5.87	0.00568	0.900	0.96
44	3	U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2.83	0.01070	0.900	0.00
45	3	U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
46	3	U2	Тор	9.22	43.00	66.00	9.22	46.27	71.01	6.09	0.00544	0.900	0.93
47	3	U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
48	3	U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
49	3	U3	Тор	5.02	43.00	66.00	5.02	45.28	69.49	5.92	0.00562	0.900	0.95
50	3	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
51	3	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
52	3	U4	Тор	1.48	43.00	66.00	1.48	44.43	68.20	5.79	0.00578	0.900	0.97
53	3	U4	Bot	1.48	0.13	0.00	1.48	73.51	0.00	2.81	0.01081	0.900	0.00
54	3	U4	Bot	1.48	0.00	0.13	1.48	0.00	73.51	2.81	0.01081	0.900	0.00
55	3	U5	Тор	0.71	43.00	66.00	0.71	44.25	67.92	5.76	0.00582	0.900	0.97
56	3	U5	Bot	0.71	0.06	0.00	0.71	73.17	0.00	2.80	0.01086	0.900	0.00
57	3	U5	Bot	0.71	0.00	0.06	0.71	0.00	73.17	2.80	0.01086	0.900	0.00
58	3	U6	Тор	4.73	43.00	66.00	4.73	45.21	69.39	5.91	0.00564	0.900	0.95
59	3	U6	Bot	4.73	0.43	0.00	4.73	74.90	0.00	2.84	0.01064	0.900	0.01
60	3	U6	Bot	4.73	0.00	0.43	4.73	0.00	74.90	2.84	0.01064	0.900	0.01
61	3	U7	Тор	3.95	43.00	66.00	3.95	45.02	69.11	5.88	0.00567	0.900	0.96
62	3	U7	Bot	3.95	0.36	0.00	3.95	74.57	0.00	2.84	0.01068	0.900	0.00
63	3	U7	Bot	3.95	0.00	0.36	3.95	0.00	74.57	2.84	0.01068	0.900	0.00
64		U1	Тор	3.62	6.13	1.40	3.62	73.49	16.80	3.85	0.00845	0.900	0.08
65	4	U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2.83	0.01070	0.900	0.00
66	4	U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
67	4	U2	Тор	9.22	13.16	2.62	9.22	76.01	15.13	3.84	0.00842	0.900	0.17
68	4	U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
69	4	U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
70	4	U3	Тор	5.02	7.72	1.64	5.02	74.16	15.79	3.81	0.00852	0.900	0.10
71	4	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
72	4	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
73	4	U4	Тор	1.48	5.27	25.17	1.48	15.20	72.64	3.72	0.00876	0.900	0.35
74	4	U4	Bot	1.48	0.13	0.00	1.48	73.51	0.00	2.81	0.01081	0.900	0.00
75	4	U4	Bot	1.48	0.00	0.13	1.48	0.00	73.51	2.81	0.01081	0.900	0.00
76	4	U5	Тор	0.71	3.95	24.57	0.71	11.66	72.50	3.50	0.00928	0.900	0.34
77		U5	Bot	0.71	0.06	0.00	0.71	73.17	0.00	2.80	0.01086	0.900	0.00
78	4	U5	Bot	0.71	0.00	0.06	0.71	0.00	73.17	2.80	0.01086	0.900	0.00
79	4	U6	Top	4.73	5.24	-24.13	4.73	16.08	- 74.02		0.00850	0.900	0.33
						'				'		'	

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c1.col

Page | **18** 6/21/2020 7:43 PM

No.	Loa	ıd			Demand			Capacity		Parame	ters at Capac	itv	Capacity
		nbo		P_{u}	M _{ux}	Muy	φP _n	φM _{nx}	фМ _{пу}	NA Depth	ε _t	ф	Ratio
	00.			kip	k-ft	k-ft	φ. n kip	k-ft	k-ft	in	~	Ψ	Rutio
80	4	U6	Bot	4.73	0.43	0.00	4.73	74.90	0.00	2.84	0.01064	0.900	0.01
81	4	U6	Bot	4.73	0.00	0.43	4.73	0.00	74.90	2.84	0.01064	0.900	0.01
82	4	U7	Top	3.95	3.93	-24.09	3.95	12.05	-73.90	3.57	0.00907	0.900	0.33
83	4	U7	Bot	3.95	0.36	0.00	3.95	74.57	0.00	2.84	0.01068	0.900	0.00
84	4	U7	Bot	3.95	0.00	0.36	3.95	0.00	74.57	2.84	0.01068	0.900	0.00
85	5	U1	Top	3.62	6.13	1.40	3.62	73.49	16.80	3.85	0.00845	0.900	0.08
86	5	U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2,83	0.01070	0.900	0.00
87	5	U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
88	5	U2	Top	9.22	13.16	2.62	9.22	76.01	15.13	3.84	0.00842	0.900	0.17
89	5	U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
90	5	U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
91	5	U3	Top	5.02	7.72	1.64	5.02	74.16	15.79	3.81	0.00852	0.900	0.10
92	5	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
93	5	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
94	5	U4	Тор	3.53	33.77	1.21	3.53	74.24	2.66	2.99	0.01035	0.900	0.45
95	5	U4	Bot	3.53	0.32	0.00	3.53	74.39	0.00	2.83	0.01071	0.900	0.00
96	5	U4	Bot	3.53	0.00	0.32	3.53	0.00	74.39	2.83	0.01071	0.900	0.00
97	5	U5	Top	2.75	32.20	0.91	2.75	73.95	2.08	2.95	0.01046	0.900	0.44
98	5	U5	Bot	2.75	0.25	0.00	2.75	74.07	0.00	2.82	0.01074	0.900	0.00
99	5	U5	Bot	2.75	0.00	0.25	2.75	0.00	74.07	2.82	0.01074	0.900	0.00
100	5	U6	Top	2.68	-22.99	1.19	2.68	-73.82	3.84	3.05	0.01023	0.900	0.31
101	5	U6	Bot	2.68	0.24	0.00	2.68	74.04	0.00	2.82	0.01075	0.900	0.00
102	5	U6	Bot	2.68	0.00	0.24	2.68	0.00	74.04	2.82	0.01075	0.900	0.00
103	5	U7	Top	1.91	-24.05	0.89	1.91	-73.54	2.73	2.98	0.01042	0.900	0.33
104	5	U7	Bot	1.91	0.17	0.00	1.91	73.70	0.00	2.81	0.01079	0.900	0.00
105	5	U7	Bot	1.91	0.00	0.17	1.91	0.00	73.70	2.81	0.01079	0.900	0.00
106	6	U1	Тор	3.62	43.00	66.00	3.62	44.95	68.99	5.87	0.00568	0.900	0.96
107	6	U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2.83	0.01070	0.900	0.00
108	6	U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
109	6	U2	Тор	9.22	43.00	66.00	9.22	46.27	71.01	6.09	0.00544	0.900	0.93
110	6	U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
111	6	U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
112	6	U3	Тор	5.02	43.00	66.00	5.02	45.28	69.49	5.92	0.00562	0.900	0.95
113	6	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
114	6	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
115	6	U4	Top	3.53	43.00	66.00	3.53	44.92	68.95	5.87	0.00569	0.900	0.96
116	6	U4	Bot	3.53	0.32	0.00	3.53	74.39	0.00	2.83	0.01071	0.900	0.00
117		U4	Bot	3.53	0.00	0.32	3.53	0.00	74.39	2.83	0.01071	0.900	0.00
118		U5	Тор	2.75	43.00	66.00	2.75	44.74	68.67	5.84	0.00572	0.900	0.96
119		U5	Bot	2.75	0.25	0.00	2.75	74.07	0.00	2.82	0.01074	0.900	0.00
120		U5	Bot	2.75	0.00	0.25	2.75	0.00	74.07	2.82	0.01074	0.900	0.00
121		U6	Тор	2.68	43.00	66.00	2.68	44.72	68.64	5.83	0.00573	0.900	0.96
122		U6	Bot	2.68	0.24	0.00	2.68	74.04	0.00	2.82	0.01075	0.900	0.00
123		U6	Bot	2.68	0.00	0.24	2.68	0.00	74.04	2.82	0.01075	0.900	0.00
124		U7	Тор	1.91	43.00	66.00	1.91	44.54	68.36	5.81	0.00576	0.900	0.97
125		U7	Bot	1.91	0.17	0.00	1.91	73.70	0.00	2.81	0.01079	0.900	0.00
126		U7	Bot	1.91	0.00	0.17	1.91	0.00	73.70	2.81	0.01079	0.900	0.00
127		U1	Тор	3.62	43.00	66.00	3.62	44.95	68.99	5.87	0.00568	0.900	0.96
128		U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2.83	0.01070	0.900	0.00
129		U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
130		U2	Тор	9.22	43.00	66.00	9.22	46.27	71.01	6.09	0.00544	0.900	0.93
131		U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
132		U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
133		U3	Тор	5.02	43.00	66.00	5.02	45.28	69.49		0.00562	0.900	0.95
			- 1						'				

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c1.col

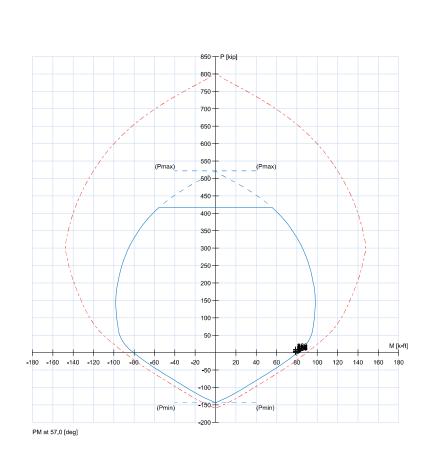

Page | **19** 6/21/2020 7:43 PM

No.	Loa	ıd			Demand		(Capacity		Parame	ters at Capad	city	Capacity
	Cor	nbo		P_{u}	M_{ux}	M _{uy}	ϕP_n	ϕM_{nx}	φМпу	NA Depth	ε _t	ф	Ratio
				kip	k-ft	k-ft	kip	k-ft	k-ft	in			
134	7	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
135	7	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
136	7	U4	Top	2.68	43.00	66.00	2.68	44.72	68.64	5.83	0.00573	0.900	0.96
137	7	U4	Bot	2.68	0.24	0.00	2.68	74.04	0.00	2.82	0.01075	0.900	0.00
138	7	U4	Bot	2.68	0.00	0.24	2.68	0.00	74.04	2.82	0.01075	0.900	0.00
139	7	U5	Тор	1.91	43.00	66.00	1.91	44.54	68.36	5.81	0.00576	0.900	0.97
140	7	U5	Bot	1.91	0.17	0.00	1.91	73.70	0.00	2.81	0.01079	0.900	0.00
141	7	U5	Bot	1.91	0.00	0.17	1.91	0.00	73.70	2.81	0.01079	0.900	0.00
142	7	U6	Top	3.53	43.00	66.00	3.53	44.92	68.95	5.87	0.00569	0.900	0.96
143	7	U6	Bot	3.53	0.32	0.00	3.53	74.39	0.00	2.83	0.01071	0.900	0.00
144	7	U6	Bot	3.53	0.00	0.32	3.53	0.00	74.39	2.83	0.01071	0.900	0.00
145	7	U7	Top	2.75	43.00	66.00	2.75	44.74	68.67	5.84	0.00572	0.900	0.96
146	7	U7	Bot	2.75	0.25	0.00	2.75	74.07	0.00	2.82	0.01074	0.900	0.00
147	7	U7	Bot	2.75	0.00	0.25	2.75	0.00	74.07	2.82	0.01074	0.900	0.00
148	8	U1	Top	3.62	6.13	1.40	3.62	73.49	16.80	3.85	0.00845	0.900	0.08
149	8	U1	Bot	3.62	0.33	0.00	3.62	74.43	0.00	2.83	0.01070	0.900	0.00
150	8	U1	Bot	3.62	0.00	0.33	3.62	0.00	74.43	2.83	0.01070	0.900	0.00
151	8	U2	Top	9.22	13.16	2.62	9.22	76.01	15.13	3.84	0.00842	0.900	0.17
152	8	U2	Bot	9.22	0.83	0.00	9.22	76.83	0.00	2.90	0.01040	0.900	0.01
153	8	U2	Bot	9.22	0.00	0.83	9.22	0.00	76.83	2.90	0.01040	0.900	0.01
154	8	U3	Top	5.02	7.72	1.64	5.02	74.16	15.79	3.81	0.00852	0.900	0.10
155	8	U3	Bot	5.02	0.45	0.00	5.02	75.03	0.00	2.85	0.01063	0.900	0.01
156	8	U3	Bot	5.02	0.00	0.45	5.02	0.00	75.03	2.85	0.01063	0.900	0.01
157	8	U4	Top	2.68	33.50	1.21	2.68	73.89	2.66	2.98	0.01039	0.900	0.45
158	8	U4	Bot	2.68	0.24	0.00	2.68	74.04	0.00	2.82	0.01075	0.900	0.00
159	8	U4	Bot	2.68	0.00	0.24	2.68	0.00	74.04	2.82	0.01075	0.900	0.00
160	8	U5	Top	1.91	31.93	0.91	1.91	73.58	2.09	2.94	0.01051	0.900	0.43
161	8	U5	Bot	1.91	0.17	0.00	1.91	73.70	0.00	2.81	0.01079	0.900	0.00
162	8	U5	Bot	1.91	0.00	0.17	1.91	0.00	73.70	2.81	0.01079	0.900	0.00
163	8	U6	Top	3.53	-23.26	1.19	3.53	-74.17	3.81	3.06	0.01020	0.900	0.31
164	8	U6	Bot	3.53	0.32	0.00	3.53	74.39	0.00	2.83	0.01071	0.900	0.00
165	8	U6	Bot	3.53	0.00	0.32	3.53	0.00	74.39	2.83	0.01071	0.900	0.00
166	8	U7	Тор	2.75	-24.32	0.89	2.75	-73.91	2.72	2.99	0.01038	0.900	0.33
167	8	U7	Bot	2.75	0.25	0.00	2.75	74.07	0.00	2.82	0.01074	0.900	0.00
168	8	U7	Bot	2.75	0.00	0.25	2.75	0.00	74.07	2.82	0.01074	0.900	0.00

Page | **20** 6/21/2020 7:43 PM

10. Diagrams

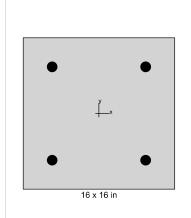
10.1. PM at θ=57 [deg]



General Information	General Information								
Project									
Column									
Engineer									
Code	ACI 318-14								
Bar Set	ASTM A615								
Units	English								
Run Option	Design								
Run Axis	Biaxial								
Slenderness	Considered								
Column Type	Structural								
Capacity Method	Moment capacity								

Materials	
f'c	3 ksi
Ec	3122.02 ksi
f _y	40 ksi
Es	29000 ksi

Section		
Туре	Rectangular	
Width	16	in
Depth	16	in
A_g	256	in ²
I _x	5461.33	in ⁴
l _y	5461.33	in ⁴


Reinforcement		
Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Transverse bars	
Clear cover	2	in
Bars	4 #9	
Confinement type	Tied	
Total steel area, A _s	4.00	in ²
Rho	1.56	%
Min. clear spacing	8.74	in

No.	Loa	d Com	bo	P.,	M_{ux}	M_{uy}	φPn	ϕM_{nx}	ϕM_{ny}	Capacity
				kip	k-ft	k-ft	kip	k-ft	k-ft	Ratio
37	2	U6	Top	1.5	43.0	66.0	1.48	44.43	68.20	0.97
40	2	U7	Top	0.7	43.0	66.0	0.71	44.25	67.92	0.97
52	3	U4	Top	1.5	43.0	66.0	1.48	44.43	68.20	0.97
55	3	U5	Top	0.7	43.0	66.0	0.71	44.25	67.92	0.97
124	6	U7	Top	1.9	43.0	66.0	1.91	44.54	68.36	0.97
139	7	U5	Top	1.9	43.0	66.0	1.91	44.54	68.36	0.97
22	2	U1	Top	3.6	43.0	66.0	3.62	44.95	68.99	0.96
34	2	U5	Top	4.0	43.0	66.0	3.95	45.02	69.11	0.96
43	3	U1	Top	3.6	43.0	66.0	3.62	44.95	68.99	0.96
61	3	U7	Top	4.0	43.0	66.0	3.95	45.02	69.11	0.96
106	6	U1	Top	3.6	43.0	66.0	3.62	44.95	68.99	0.96
115	6	U4	Top	3.5	43.0	66.0	3.53	44.92	68.95	0.96
118	6	U5	Top	2.8	43.0	66.0	2.75	44.74	68.67	0.96
121	6	U6	Top	2.7	43.0	66.0	2,68	44.72	68.64	0.96
127	7	U1	Тор	3.6	43.0	66.0	3.62	44.95	68.99	0.96
On	ly 15 p	oints o	ut of 28 a	re listed.					Max. Capacit	y Ratio: 0.97

Page | **21** 6/21/2020 7:43 PM

10.2. MM at P=1 [kip]

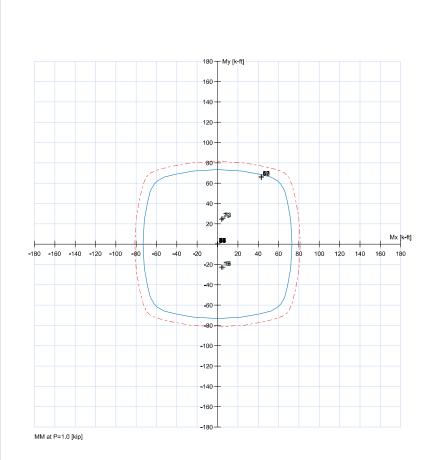
General Information								
Project								
Column								
Engineer								
Code	ACI 318-14							
Bar Set	ASTM A615							
Units	English							
Run Option	Design							
Run Axis	Biaxial							
Slenderness	Considered							
Column Type	Structural							
Capacity Method	Moment capacity							

Materials		
f'c	3	ksi
Ec	3122.02	ksi
f _y	40	ksi
Es	29000	ksi

Rectangular

4.00 in²

1.56 %


8.74 in

Section Type

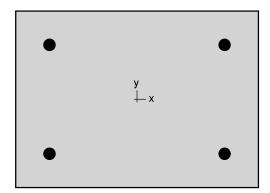
Total steel area, A_s

Min. clear spacing

	•	
Width	16	in
Depth	16	in
A_g	256	in²
l _x	5461.33	in ⁴
l _y	5461.33	in ⁴
Reinforcement		
Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Transverse bars	
Clear cover	2	in
Bars	4 #9	
Confinement type	Tied	

No.	Loa	d Com	bo	P_{u}	M _{ux}	M_{uy}	φPn	ϕM_{nx}	ϕM_{ny}	Capacity
				kip	k-ft	k-ft	kip	k-ft	k-ft	Ratio
37	2	U6	Тор	1.5	43.0	66.0	1.48	44.43	68.20	0.97
40	2	U7	Top	0.7	43.0	66.0	0.71	44.25	67.92	0.97
52	3	U4	Top	1.5	43.0	66.0	1.48	44.43	68.20	0.97
55	3	U5	Top	0.7	43.0	66.0	0.71	44.25	67.92	0.97
73	4	U4	Top	1.5	5.3	25.2	1.48	15.20	72.64	0.35
76	4	U5	Top	0.7	4.0	24.6	0.71	11.66	72.50	0.34
16	1	U6	Top	1.5	5.2	-22.8	1.48	16.71	-72.55	0.31
19	1	U7	Top	0.7	3.9	-22.8	0.71	12.50	-72.45	0.31
17	1	U6	Bot	1.5	0.1	0.0	1.48	73.51	0.00	0.00
18	1	U6	Bot	1.5	0.0	0.1	1.48	0.00	73.51	0.00
20	1	U7	Bot	0.7	0.1	0.0	0.71	73.17	0.00	0.00
21	1	U7	Bot	0.7	0.0	0.1	0.71	0.00	73.17	0.00
38	2	U6	Bot	1.5	0.1	0.0	1.48	73.51	0.00	0.00
39	2	U6	Bot	1.5	0.0	0.1	1.48	0.00	73.51	0.00
41	2	U7	Bot	0.7	0.1	0.0	0.71	73.17	0.00	0.00

Max. Capacity Ratio: 0.97


Only 15 points out of 24 are listed.

<u>Column Design</u> <u>C1 - Special Moment Frame Column</u>

	Bending Axis X-X/3-3	Shear Axis Y-Y/2-2			
	lux (out of plane span) (in) = luy (in plane span) (in) = b (in) =	198 198 16			
	h (in) =	16			
	long bar size = Tie size =	9 4			
	number of longitudinal bars =	4			
	d' = f'c (psi) =	2.500 3000			
	fy (psi) =	40000			
	Pu Compression (k) =	9.002			
	Pu Tension (k) = Tu (k-ft) =	2.045 0.86			
	Max NA depth (in) =	3.7 6 bars in t			
	Min NA depth (in) = Mu Strong x (k-ft) =	2.2 3 layers in 51.00	tension		
	Mu Weak y (k-ft) =	64.32			
BENDING DESIGN					
	Slenderness				
ACI 318-14 (Sec. 6.2.5 & 6.2.6)	(k*I)/0.3*b =	41.25 ≥	22	Therefore,	, slenderness effects must be accounted for in SP Column Analysis
					,
Discount of the its	Special Moment Frame Column Design Requirements				
Dimensional Limits ACI 318-14 (Sec. 18.7.2.1a)	bmin = 12"	≤ 1€	, Therefore	e OK	
	hmin = 12"	≤ 16	, Therefore	OK	
ACI 318-14 (Sec. 18.6.2.1b) Minimum Flexural Strength of Columns	Min(b,h)/Max(b,h) =	1 ≥	0.4	, Therefore	ОК
ACI 318-14 (Eq. 18.7.3.2)	$\Sigma Mnc \ge (6/5)\Sigma Mnb$				
	(6/5)ΣMnb x (k-ft) =	66.00 ≥	Mu =	51.00	, Therefore (5/6)ΣMnb controls column demand
	(6/5)ΣMnb y (k-ft) =	43.20 ≤	Mu =	64.32	, Therefore Mu controls column demand
Longitudinal Reinforcement	0.014				
ACI 318-14 (Sec. 18.7.4.1)	0.01Ag ≤ Ast ≤ 0.06Ag Ast (in^2) =		0.01Ag =	2.520239	, Therefore OK
	Ast (in^2) =	3.976 ≤	0.06Ag =	15.12144	, Therefore OK
SHEAR DESIGN	Caraial Manager France Caluma Basina Bassina and				
Transverse Reinforcement	Special Moment Frame Column Design Requirements				
ACI 318-14 (Sec. 18.7.5.1a)	l _o (in) =	16.0			
ACI 318-14 (Sec. 18.7.5.1b) ACI 318-14 (Sec. 18.7.5.1c)	l _o (in) = l _o (in) =	33.0 Controls 18.0			
ACI 318-14 (Sec. 18.7.5.2e)	hx (in) =	11.0 ≤	14 in	, Therefore	
ACI 318-14 (Sec. 18.7.5.2f)	0.03Ag*f'c (k) =	22.7 ≥	Pu (k) =	9.002	, Therefore hx is notrequired to be reduced
ACI 318-14 (Sec. 18.7.5.2f)	f'c (psi) =	3000 ≤	10000	, Therefore	hx is notrequired to be reduced
ACI 318-14 (Sec. 18.7.5.3a)	s ₀ (in) =	4 Controls 7	, Therefore	Use #4 Tie	s @ 4" o.c. in I _o regions
ACI 318-14 (Sec. 18.7.5.3b) ACI 318-14 (Sec. 18.7.5.3c)	s ₀ (in) = s ₀ (in) = 4 +(14-hx / 3) =	5			
ACI 318-14 (Sec. 18.7.5.3)	s _o ,max (in) =	6.0 ≥		, Therefore	
ACI 318-14 (Sec. 18.7.5.3) ACI 318-14 (Table. 18.7.5.4a)	s _o ,min (in) = Ash/sbh = 0.3*(Ag/Ach - 1)*(f'c/fyt) =	4.0 ≤ 0.0244 Controls	5	, Therefore	OK
ACI 318-14 (Table. 18.7.5.4b)	Ash/sbh = 0.09*(f'c/fyt) =	0.0068 0.0227 ≤	A = /=		Therefore #4 Tipe @ 4" a a is not
	Ash/sbh, provided =	0.0227 S	Ash/sbh, control =	0.0244	, Therefore #4 Ties @ 4" o.c. is not Adequate, Try #4 Ties @ 3.5" o.c.
	Ash/sbh, provided =	0.0260 ≥	Ash/sbh,		, Therefore OK, Use #4 Ties @ 3.5" o.c. in $\rm I_{\rm 0}$
ACI 318-14 (Table. 18.7.5.5)	sv, max (in) beyond I ₀ regions = Min(6*db, 6) =	6 Controls	control = . Therefore	0.0244 Use #4 Tie	regions s @ 6" o.c. beyond la regions
Joints of Special Moment Frames			·		
ACI 318-14 (Sec. 18.3.3.1) ACI 318-14 (Table 18.8.4.1)	Use Tie Reinforcement as Required in Lo regions φν*Vn (k) = φν*12*vf'c*Aj (conservative) =	, Therefore use #4 Ties @ 124 ≥	3.5" o.c. in a Vu=	nt SMF Joint 5.331	S
Ties					
ACI 318-14 (Sec. 25.7.2.1a)	sv, min (in) beyond lo regions = (4/3)*dagg+ds =	1.5 ≤	3.5		efore Minimum Tie Spacing is Adequate
ACI 318-14 (Sec. 25.7.2.1b)	sv, max (in) beyond lo regions = Min(16db, 48ds, dc,min)	16 ≥	6	, inere	fore Maximum Tie Spacing is Adequate
ACI 318-14 (Sec. 25.7.2.2)	Tie Size =	4 ≥	3	, Therefore	Tie Size is Adequate
Transverse Reinforcement	Ma (II) Man Calanda Chara	2.62.5	16.72.71	2.67	
ACI 318-14 (Sec. 18.7.6.2.1a) ACI 318-14 (Sec. 18.7.6.2.1b)	Ve (k) = Max Seismic Shear = Ag*f'c/20 (k) =	3.62 ≥ 37.80 ≥	Vu/2 (k) = Pu (k) =	2.67 9.002	, Therefore Shear Reinforcement Shall be
					designed assuming Vc=0 for locations
ACI 318-14 (Eq. 22.5.2.2)	For Calculaton of Vc an Vs, d is to be taken as 0.8*h =	12.80 in			specified in Sec. 18.7.5.1
ACI 318-14 (Eq. 22.5.10.5.3)	$\phi v^*Vn(k) = \phi v^*Vs = \phi v^*(Av/s)^*fyt^*d =$	109.7 ≥	Vu (k) =	5.33	, Therefore #4 ties spaced @ 3.5" o.c. are
					adequate
TORSION					
Threshold Torsion	<u>Torsional Strength</u>				
Threshold Torsion ACI 318-14 (Sec. 22.7.4.1a & 22.7.1.1)	ϕT_{th} compression (k) = $(\lambda^* \forall f' c^* A_{cp}^2)/p_{cp}^* \forall (1+1)$	45.36 ≤	Tu (k) =	0.86	, Therefore Torsional Effects may be
•	$(Nu/4*Ag*\lambda*vf'c)) =$.			Neglected
	$\phi T_{th} \text{ tension (k)} = (\lambda^* V f' c^* A_{cp}^2) / p_{cp}^* V (1 - (Nu/4^* Ag^* \lambda^* V f' c)) =$		Tu (k) =	0.86	, Therefore Torsional Effects may be Neglected
	(MU/T AS A VIC))-				-

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Contents

4	General Information	2
۷.	Material Properties	
	2.1. Concrete	
_	2.2. Steel	
3.	Section	
	3.1. Shape and Properties	
	3.2. Section Figure	
4.	Reinforcement	
	4.1. Bar Set: ASTM A615	
	4.2. Design Criteria	. 4
	4.3. Confinement and Factors	. 4
	4.4. Arrangement	. 5
5.	Loading	. 5
	5.1. Load Combinations	. 5
	5.2. Service Loads	. 5
	5.3. Sustained Load Factors	6
6.	Slenderness	. 6
	6.1. Sway Criteria	. 6
	6.2. Columns	. 6
	6.3. X - Beams	. 6
	6.4. Y - Beams	. 6
7.	Moment Magnification	
	7.1. General Parameters	
	7.2. Effective Length Factors	
	7.3. Magnification Factors: X - axis	
	7.4. Magnification Factors: Y - axis	
8.	Factored Moments	
	8.1. X - axis	
	8.2. Y - axis	
9.	Factored Loads and Moments with Corresponding Capacity Ratios	
). Diagrams	
	10.1. PM at θ=57 [deg]	
	10.2. MM at P=6 [kip]	
	₋ist of Figures	
		,
ΗI	gure 1: Column section	. 4

Page | 3 6/21/2020 7:43 PM

1. General Information

File Name	c:\senior project\lateral\beam design\c2.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	Biaxial
Slenderness	Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f'c	3 ksi
Ec	3122.02 ksi
f _c	2.55 ksi
f_c E_c f_c ε_u	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
ϵ_{yt}	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	22	in
Depth	16	in
A_g	352	in ²
l _x	7509.33	in ⁴
l _y	14197.3	in ⁴
r _x	4.6188	in
r _y	6.35085	in
X _o	0	in
Yo	0	in

Page | **4** 6/21/2020 7:43 PM

3.2. Section Figure

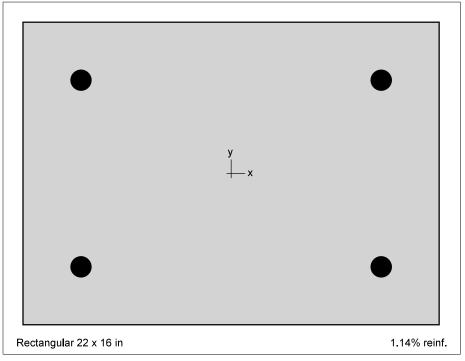


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	3.52 in ²
$A_{s,max} = 0.08 \times A_g$	28.16 in ²
Allowable Capacity Ratio (<1 is safe)	0.98

4.3. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#4 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col

Page | **5** 6/21/2020 7:43 PM

4.4. Arrangement

Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Transverse bars	
Clear cover	2	in
Bars	4 #9	
Total steel area, A _s	4.00	in ²
Rho	1.14	%
Minimum clear spacing	8.74	in

5. Loading

5.1. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.400	0.000	0.000	0.000	1.000
U2	1.200	1.600	0.000	0.000	1.000
U3	1.200	0.500	0.000	0.000	1.000
U4	1.200	0.000	0.000	1.000	1.000
U5	0.900	0.000	0.000	1.000	1.000
U6	1.200	0.000	0.000	-1.000	1.000
U7	0.900	0.000	0.000	-1.000	1.000

5.2. Service Loads

No.	Load Case	Axial Load	Мх @ Тор	Mx @ Bottom	My @ Top	My @ Bottom
		kip	k-ft	k-ft	k-ft	k-ft
1	Dead	7.81	18.07	0.00	0.02	0.00
1	Live	9.85	12.93	0.00	0.02	0.00
1	Wind	0.00	0.00	0.00	0.00	0.00
1	EQ	0.66	37.44	0.00	0.00	0.00
1	Snow	0.00	0.00	0.00	0.00	0.00
2	Dead	7.81	18.07	0.00	0.02	0.00
2	Live	9.85	12.93	0.00	0.02	0.00
2	Wind	0.00	0.00	0.00	0.00	0.00
2	EQ	-0.66	37.44	0.00	0.00	0.00
2	Snow	0.00	0.00	0.00	0.00	0.00
3	Dead	7.81	0.00	0.00	0.00	0.00
3	Live	9.85	0.00	0.00	0.00	0.00
3	Wind	0.00	0.00	0.00	0.00	0.00
3	EQ	-0.66	0.00	0.00	0.00	0.00
3	Snow	0.00	52.90	0.00	96.40	0.00
4	Dead	7.81	0.00	0.00	0.00	0.00
4	Live	9.85	0.00	0.00	0.00	0.00
4	Wind	0.00	0.00	0.00	0.00	0.00
4	EQ	0.66	0.00	0.00	0.00	0.00
4	Snow	0.00	62.90	0.00	96.40	0.00
5	Dead	7.81	18.07	0.00	0.02	0.00
5	Live	9.85	12.93	0.00	0.02	0.00
5	Wind	0.00	0.00	0.00	0.00	0.00
5	EQ	-0.06	0.00	0.00	37.37	0.00
5	Snow	0.00	0.00	0.00	0.00	0.00
6	Dead	7.81	0.00	0.00	0.00	0.00
6	Live	9.85	0.00	0.00	0.00	0.00
6	Wind	0.00	0.00	0.00	0.00	0.00
6	EQ	-0.06	0.00	0.00	0.00	0.00

Page | 6 6/21/2020 7:43 PM

No.	Load Case	Axial Load	Mx @ Top	Mx @ Bottom	Му @ Тор	My @ Bottom
		kip	k-ft	k-ft	k-ft	k-ft
6	Snow	0.00	62.90	0.00	96.40	0.00

5.3. Sustained Load Factors

Load Case	Factor
	%
Dead	0
Live	0
Wind	0
EQ	0
Snow	0

6. Slenderness

6.1. Sway Criteria

X-Axis	Sway column
2 nd order effects along length	Considered
ΣPc	4.92 x P _c
ΣP_u	3.51 x P _u
Y-Axis	Sway column
2 nd order effects along length	Considered
ΣPc	4.92 x P _c
ΣP_u	3.51 x P _u

6.2. Columns

Column	Axis	Height	Width	Depth	1	f'c	Ec
		ft	in	in	in ⁴	ksi	ksi
Design	Х	16.5	22	16	7509.33	3	3122.02
Design	Υ	16.5	22	16	14197.3	3	3122.02
Above	Χ	(no column specified)					
Above	Υ	(no column specified)					
Below	Χ	(no column specified)					
Below	Υ	(no column specified)					

6.3. X - Beams

Beam	Length	Width	Depth		f'c	Ec
	ft	in	in	in⁴	ksi	ksi
Above Left	14	18	12	2592	3	3122.02
Above Right	14	18	12	2592	3	3122.02
Below Left	(no beam specified)					
Below Right	(no beam specified)					

6.4. Y - Beams

Beam	Length	Width	Depth	I	f'c	Ec
	ft	in	in	in⁴	ksi	ksi
Above Left	(no beam specified)					
Above Right	24.5	20	12	2880	3	3122.02
Below Left	(no beam specified)					
Below Right	(no beam specified)					

Page | **7** 6/21/2020 7:43 PM

7. Moment Magnification

7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, ϕ_K	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
$0.2 E_c I_g + E_s I_{se}$ (X-axis)	7.52e+006 kip-in ²
0.2 E _c I _g + E _s I _{se} (Y-axis)	1.62e+007 kip-in ²
Minimum eccentricity, e _{x min}	1.08 in
Minimum eccentricity, e _{y min}	1.26 in

7.2. Effective Length Factors

Axis	Ψ_{top}	Ψ_{bottom}	k (Nonsway)	k (Sway)	kl _u /r
X	2.386	999.000	0.932	2.737	117.33
Υ	14.209	999.000	0.986	5.125	159.78

Notes:

Slenderness kl_u/r is greater than 100.

A second-order frame analysis is recommended to account for slenderness.

7.3. Magnification Factors: X - axis

7.3. IVI	ayııı	rication Fa	Clors. A -	ax15								
Load			Α	t Ends					Along Leng	jth		
Combo)	\sum $\mathbf{P}_{\mathbf{u}}$	P_c	$\sum P_c$	β_{ds}	δs	P_{u}	k'l _u /r	P_c	$oldsymbol{eta}_{ ext{dns}}$	C _m	δ
		kip	kip	kip			kip		kip			
1	U1	38.30	252.56	1242.59	0.000	1.043	10.93	(N/A)	2176.91	0.000	0.600	1.000
1	U2	88.10	252.56	1242.59	0.000	1.104	25.14	(N/A)	2176.91	0.000	0.600	1.000
1	U3	50.10	252.56	1242.59	0.000	1.057	14.29	(N/A)	2176.91	0.000	0.600	1.000
1	U4	35.15	252.56	1242.59	0.000	1.039	10.03	(N/A)	2176.91	0.000	0.600	1.000
1	U5	26.94	252.56	1242.59	0.000	1.030	7.69	(N/A)	2176.91	0.000	0.600	1.000
1	U6	30.52	252.56	1242.59	0.000	1.034	8.71	(N/A)	2176.91	0.000	0.600	1.000
1	U7	22.31	252.56	1242.59	0.000	1.025	6.37	(N/A)	2176.91	0.000	0.600	1.000
2	U1	38.30	252.56	1242.59	0.000	1.043	10.93	(N/A)	2176.91	0.000	0.600	1.000
2	U2	88.10	252.56	1242.59	0.000	1.104	25.14	(N/A)	2176.91	0.000	0.600	1.000
2	U3	50.10	252.56	1242.59	0.000	1.057	14.29	(N/A)	2176.91	0.000	0.600	1.000
2	U4	30.52	252.56	1242.59	0.000	1.034	8.71	(N/A)	2176.91	0.000	0.600	1.000
2	U5	22.31	252.56	1242.59	0.000	1.025	6.37	(N/A)	2176.91	0.000	0.600	1.000
2	U6	35.15	252.56	1242.59	0.000	1.039	10.03	(N/A)	2176.91	0.000	0.600	1.000
2	U7	26.94	252.56	1242.59	0.000	1.030	7.69	(N/A)	2176.91	0.000	0.600	1.000
3	U1	38.30	252.56	1242.59	0.000	1.043	10.93	(N/A)	2176.91	0.000	0.600	1.000
3	U2	88.10	252.56	1242.59	0.000	1.104	25.14	(N/A)	2176.91	0.000	0.600	1.000
3	U3	50.10	252.56	1242.59	0.000	1.057	14.29	(N/A)	2176.91	0.000	0.600	1.000
3	U4	30.52	252.56	1242.59	0.000	1.034	8.71	(N/A)	2176.91	0.000	0.600	1.000
3	U5	22.31	252.56	1242.59	0.000	1.025	6.37	(N/A)	2176.91	0.000	0.600	1.000
3	U6	35.15	252.56	1242.59	0.000	1.039	10.03	(N/A)	2176.91	0.000	0.600	1.000
3	U7	26.94	252.56	1242.59	0.000	1.030	7.69	(N/A)	2176.91	0.000	0.600	1.000
4	U1	38.30	252.56	1242.59	0.000	1.043	10.93	(N/A)	2176.91	0.000	0.600	1.000
4	U2	88.10	252.56	1242.59	0.000	1.104	25.14	(N/A)	2176.91	0.000	0.600	1.000
4	U3	50.10	252.56	1242.59	0.000	1.057	14.29	(N/A)	2176.91	0.000	0.600	1.000
4	U4	35.15	252.56	1242.59	0.000	1.039	10.03	(N/A)	2176.91	0.000	0.600	1.000
4	U5	26.94	252.56	1242.59	0.000	1.030	7.69	(N/A)	2176.91	0.000	0.600	1.000
4	U6	30.52	252.56	1242.59	0.000	1.034	8.71	(N/A)	2176.91	0.000	0.600	1.000
4	U7	22.31	252.56	1242.59	0.000	1.025	6.37	(N/A)	2176.91	0.000	0.600	1.000
5	U1	38.30	252.56	1242.59	0.000	1.043	10.93	(N/A)	2176.91	0.000	0.600	1.000
5	U2	88.10	252.56	1242.59	0.000	1.104	25.14	(N/A)	2176.91	0.000	0.600	1.000

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col

Page | **8** 6/21/2020 7:43 PM

Load			Α	t Ends					Along Leng	jth		
Combo	0	$\sum P_u$	P_c	∑Pc	β_{ds}	δ _s	P_{u}	k'l _u /r	P_c	β_{dns}	C _m	δ
		kip	kip	kip			kip		kip			
5	U3	50.10	252.56	1242.59	0.000	1.057	14.29	(N/A)	2176.91	0.000	0.600	1.000
5	U4	32.61	252.56	1242.59	0.000	1.036	9.31	(N/A)	2176.91	0.000	0.600	1.000
5	U5	24.41	252.56	1242.59	0.000	1.027	6.96	(N/A)	2176.91	0.000	0.600	1.000
5	U6	33.05	252.56	1242.59	0.000	1.037	9.43	(N/A)	2176.91	0.000	0.600	1.000
5	U7	24.84	252.56	1242.59	0.000	1.027	7.09	(N/A)	2176.91	0.000	0.600	1.000
6	U1	38.30	252.56	1242.59	0.000	1.043	10.93	(N/A)	2176.91	0.000	0.600	1.000
6	U2	88.10	252.56	1242.59	0.000	1.104	25.14	(N/A)	2176.91	0.000	0.600	1.000
6	U3	50.10	252.56	1242.59	0.000	1.057	14.29	(N/A)	2176.91	0.000	0.600	1.000
6	U4	32.61	252.56	1242.59	0.000	1.036	9.31	(N/A)	2176.91	0.000	0.600	1.000
6	U5	24.41	252.56	1242.59	0.000	1.027	6.96	(N/A)	2176.91	0.000	0.600	1.000
6	U6	33.05	252.56	1242.59	0.000	1.037	9.43	(N/A)	2176.91	0.000	0.600	1.000
6	U7	24.84	252.56	1242.59	0.000	1.027	7.09	(N/A)	2176.91	0.000	0.600	1.000

7.4. Magnification Factors: Y - axis

Load			At	: Ends					Along Leng	th		
Combo)	∑Pu	Pc	ΣPc	β_{ds}	δ_{s}	P_{u}	k'l _u /r	P _c	β_{dns}	C _m	δ
		kip	kip	kip	Į-us	- 5	kip		kip	Pulls		
1	U1	38.30	155.00	762.58	0.000	1.072	10.93	(N/A)	4186.29	0.000	0.600	1.000
1	U2	88.10	155.00	762.58	0.000	1.182	25.14	(N/A)	4186.29	0.000	0.600	1.000
1	U3	50.10	155.00	762.58	0.000	1.096	14.29	(N/A)	4186.29	0.000	0.600	1.000
1	U4	35.15	155.00	762.58	0.000	1.065	10.03	(N/A)	4186.29	0.000	0.600	1.000
1	U5	26.94	155.00	762.58	0.000	1.049	7.69	(N/A)	4186.29	0.000	0.600	1.000
1	U6	30.52	155.00	762.58	0.000	1.056	8.71	(N/A)	4186.29	0.000	0.600	1.000
1	U7	22.31	155.00	762.58	0.000	1.041	6.37	(N/A)	4186.29	0.000	0.600	1.000
2	U1	38.30	155.00	762.58	0.000	1.072	10.93	(N/A)	4186.29	0.000	0.600	1.000
2	U2	88.10	155.00	762.58	0.000	1.182	25.14	(N/A)	4186.29	0.000	0.600	1.000
2	U3	50.10	155.00	762.58	0.000	1.096	14.29	(N/A)	4186.29	0.000	0.600	1.000
2	U4	30.52	155.00	762.58	0.000	1.056	8.71	(N/A)	4186.29	0.000	0.600	1.000
2	U5	22.31	155.00	762.58	0.000	1.041	6.37	(N/A)	4186.29	0.000	0.600	1.000
2	U6	35.15	155.00	762.58	0.000	1.065	10.03	(N/A)	4186.29	0.000	0.600	1.000
2	U7	26.94	155.00	762.58	0.000	1.049	7.69	(N/A)	4186.29	0.000	0.600	1.000
3	U1	38.30	155.00	762.58	0.000	1.072	10.93	(N/A)	4186.29	0.000	0.600	1.000
3	U2	88.10	155.00	762.58	0.000	1.182	25.14	(N/A)	4186.29	0.000	0.600	1.000
3	U3	50.10	155.00	762.58	0.000	1.096	14.29	(N/A)	4186.29	0.000	0.600	1.000
3	U4	30.52	155.00	762.58	0.000	1.056	8.71	(N/A)	4186.29	0.000	0.600	1.000
3	U5	22.31	155.00	762.58	0.000	1.041	6.37	(N/A)	4186.29	0.000	0.600	1.000
3	U6	35.15	155.00	762.58	0.000	1.065	10.03	(N/A)	4186.29	0.000	0.600	1.000
3	U7	26.94	155.00	762.58	0.000	1.049	7.69	(N/A)	4186.29	0.000	0.600	1.000
4	U1	38.30	155.00	762.58	0.000	1.072	10.93	(N/A)	4186.29	0.000	0.600	1.000
4	U2	88.10	155.00	762.58	0.000	1.182	25.14	(N/A)	4186.29	0.000	0.600	1.000
4	U3	50.10	155.00	762.58	0.000	1.096	14.29	(N/A)	4186.29	0.000	0.600	1.000
4	U4	35.15	155.00	762.58	0.000	1.065	10.03	(N/A)	4186.29	0.000	0.600	1.000
4	U5	26.94	155.00	762.58	0.000	1.049	7.69	(N/A)	4186.29	0.000	0.600	1.000
4	U6	30.52	155.00	762.58	0.000	1.056	8.71	(N/A)	4186.29	0.000	0.600	1.000
4	U7	22.31	155.00	762.58	0.000	1.041	6.37	(N/A)	4186.29	0.000	0.600	1.000
5	U1	38.30	155.00	762.58	0.000	1.072	10.93	(N/A)	4186.29	0.000	0.600	1.000
5	U2	88.10	155.00	762.58	0.000	1.182	25.14	(N/A)	4186.29	0.000	0.600	1.000
5	U3	50.10	155.00	762.58	0.000	1.096	14.29	(N/A)	4186.29	0.000	0.600	1.000
5	U4	32.61	155.00	762.58	0.000	1.060	9.31	(N/A)	4186.29	0.000	0.600	1.000
5	U5	24.41	155.00	762.58	0.000	1.045	6.96	(N/A)	4186.29	0.000	0.600	1.000
5	U6	33.05	155.00	762.58	0.000	1.061	9.43	(N/A)	4186.29	0.000	0.600	1.000
5	U7	24.84	155.00	762.58	0.000	1.045	7.09	(N/A)	4186.29	0.000	0.600	1.000
6	U1	38.30	155.00	762.58	0.000	1.072	10.93	(N/A)	4186.29	0.000	0.600	1.000

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col Page | 9 6/21/2020 7:43 PM

Load			At	t Ends					Along Leng	ıth		
Combo	0	$\sum P_u$	P_c	$\sum P_c$	β_{ds}	δ_{s}	P_u	k'l _u /r	P_c	β_{dns}	C _m	δ
		kip	kip	kip			kip		kip			
6	U2	88.10	155.00	762.58	0.000	1.182	25.14	(N/A)	4186.29	0.000	0.600	1.000
6	U3	50.10	155.00	762.58	0.000	1.096	14.29	(N/A)	4186.29	0.000	0.600	1.000
6	U4	32.61	155.00	762.58	0.000	1.060	9.31	(N/A)	4186.29	0.000	0.600	1.000
6	U5	24.41	155.00	762.58	0.000	1.045	6.96	(N/A)	4186.29	0.000	0.600	1.000
6	U6	33.05	155.00	762.58	0.000	1.061	9.43	(N/A)	4186.29	0.000	0.600	1.000
6	U7	24.84	155.00	762.58	0.000	1.045	7.09	(N/A)	4186.29	0.000	0.600	1.000

8. Factored Moments

NOTE: Each loading combination includes the following cases:

Top - At column top Bot - At column bottom

8.1. X - axis

Load			1	st Order				2 nd Order		Ratio	
Combo	o		M_{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
1	U1	Тор	25.29	0.00	25.29	0.98	M ₂ =	25.29	25.29	1.000	
1	U1	Bot	0.00	0.00	0.00	0.98	M₁=	0.00	0.98	1.000	#
1	U1	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	42.37	0.00	42.37	2.26	M ₂ =	42.37	42.37	1.000	
1	U2	Тор	0.00	0.00	0.00	2.26	M ₁ =	0.00	2.26	1.000	#
1	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U3	Тор	28.14	0.00	28.14	1.29	M ₂ =	28.14	28.14	1.000	
1	U3	Bot	0.00	0.00	0.00	1.29	M₁=	0.00	1.29	1.000	#
1	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	21.68	37.44	59.11	0.90	M ₂ =	60.58	60.58	1.025	
1	U4	Тор	0.00	0.00	0.00	0.90	M ₁ =	0.00	0.90	1.000	#
1	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U5	Тор	16.26	37.44	53.69	0.69	M ₂ =	54.81	54.81	1.021	
1	U5	Bot	0.00	0.00	0.00	0.69	M ₁ =	0.00	0.69	1.000	#
1	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	21.68	-37.44	- 15.76	-0.78	M ₂ =	- 17.02	-17.02	1.080	
1	U6	Тор	0.00	0.00	0.00	0.78	M ₁ =	0.00	0.78	1.000	#
1	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U7	Тор	16.26	-37.44	- 21.18	- 0.57	M ₂ =	- 22.09	- 22.09	1.043	
1	U7	Bot	0.00	0.00	0.00	0.57	M ₁ =	0.00	0.57	1.000	#
1	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	25.29	0.00	25.29	0.98	M ₂ =	25.29	25.29	1.000	
2	U1	Тор	0.00	0.00	0.00	0.98	M ₁ =	0.00	0.98	1.000	#
2	U1	Bot				(N/A)	M₁=	0.00	0.00	1.000	
2	U2	Тор	42.37	0.00	42.37	2.26	M ₂ =	42.37	42.37	1.000	
2	U2	Bot	0.00	0.00	0.00	2.26	M₁=	0.00	2.26	1.000	#
2	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	28.14	0.00	28.14	1.29	M ₂ =	28.14	28.14	1.000	
2	U3	Тор	0.00	0.00	0.00	1.29	M₁=	0.00	1.29	1.000	#
2	U3	Bot				(N/A)	M₁=	0.00	0.00	1.000	
2	U4	Тор	21.68	37.44	59.11	0.78	M ₂ =	60.38	60.38	1.021	
2	U4	Bot	0.00	0.00	0.00	0.78	M ₁ =	0.00	0.78	1.000	#
2	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	16.26	37.44	53.69	0.57	M ₂ =	54.61	54.61	1.017	
2	U5	Тор	0.00	0.00	0.00	0.57	M ₁ =	0.00	0.57	1.000	#
2	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
2	U6	Тор	21.68	-37.44	-15.76	-0.90	M ₂ =	-17.22	-17.22	1.093	
2	U6	Bot	0.00	0.00	0.00		M ₁ =	0.00	0.90	1.000	#

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col

Page | **10** 6/21/2020 7:43 PM

Load				1st Order				2 nd Order		Ratio	
Combo	o		M _{ns}	M_s	Mu	M _{min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
2	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	16.26	-37.44	-21.18	-0.69	M ₂ =	-22.29	-22.29	1.053	
2	U7	Тор	0.00	0.00	0.00	0.69	$M_1=$	0.00	0.69	1.000	#
2	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U1	Тор	52.90	0.00	52.90	0.98	$M_2=$	52.90	52.90	1.000	
3	U1	Bot	0.00	0.00	0.00	0.98	$M_1=$	0.00	0.98	1.000	#
3	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	52.90	0.00	52.90	2.26	M ₂ =	52.90	52.90	1.000	
3	U2	Тор	0.00	0.00	0.00	2.26	M ₁ =	0.00	2.26	1.000	#
3	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U3	Тор	52.90	0.00	52.90	1.29	M ₂ =	52.90	52.90	1.000	
3	U3	Bot	0.00	0.00	0.00	1.29	M ₁ =	0.00	1.29	1.000	#
3	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	52.90	0.00	52.90	0.78	M ₂ =	52.90	52.90	1.000	
3	U4	Тор	0.00	0.00	0.00	0.78	M ₁ =	0.00	0.78	1.000	#
3	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U5	Тор	52.90	0.00	52.90	0.57	M ₂ =	52.90	52.90	1.000	
3	U5	Bot	0.00	0.00	0.00	0.57	$M_1=$	0.00	0.57	1.000	#
3	U5	Bot	5.55	5.55	5.55	(N/A)	M ₁ =	0.00	0.00	1.000	
•	U	Bot	52.90	0.00	52.90	0.90	M ₂ =	52.90	52.90	1.000	
3	U6	Top	0.00	0.00	0.00	0.90	M ₁ =	0.00	0.90	1.000	#
3	U6	Bot	0.00	0.00	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	"
3	U7	Top	52.90	0.00	52.90	0.69	$M_2=$	52.90	52.90	1.000	
3	U7	Bot	0.00	0.00	0.00	0.69	$M_1=$	0.00	0.69	1.000	#
3	U7	Bot	0.00	0.00	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	"
Ŭ	U	Bot	62.90	0.00	62.90	0.98	$M_2=$	62.90	62.90	1.000	
4	U1	Тор	0.00	0.00	0.00	0.98	$M_1=$	0.00	0.98	1.000	#
4	U1	Bot	0.00	0.00	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	"
4	U2	Тор	62.90	0.00	62.90	2.26	$M_2=$	62.90	62.90	1.000	
4	U2	Bot	0.00	0.00	0.00	2.26	M ₁ =	0.00	2.26	1.000	#
4	U2	Bot	0.00	0.00	0.00	(N/A)	M ₁ =	0.00	0.00	1.000	.,
•	U	Bot	62.90	0.00	62.90	1.29	$M_2=$	62.90	62.90	1.000	
4	U3	Тор	0.00	0.00	0.00	1.29	M ₁ =	0.00	1.29	1.000	#
4	U3	Bot	0.00	0.00	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	"
4	U4	Тор	62.90	0.00	62.90	0.90	$M_2=$	62.90	62.90	1.000	
4	U4	Bot	0.00	0.00	0.00	0.90	M ₁ =	0.00	0.90	1.000	#
4	U4	Bot	0.00	0.00	0.00	(N/A)	M ₁ =	0.00	0.00	1.000	
•	U	Bot	62.90	0.00	62.90	0.69	$M_2=$	62.90	62.90	1.000	
4	U5	Тор	0.00	0.00	0.00	0.69	$M_1=$	0.00	0.69	1.000	#
4	U5	Bot	3.55	5.55	5.55	(N/A)	$M_1=$	0.00	0.00	1.000	••
4	U6	Тор	62.90	0.00	62.90	0.78	$M_2=$	62.90	62.90	1.000	
4	U6	Bot	0.00	0.00	0.00	0.78	$M_1=$	0.00	0.78	1.000	#
4	U6	Bot	3.55	5.55	5.55	(N/A)	$M_1=$	0.00	0.00	1.000	.,
•	U	Bot	62.90	0.00	62.90	0.57	$M_2=$	62.90	62.90	1.000	
4	U7	Тор	0.00	0.00	0.00	0.57	$M_1=$	0.00	0.57	1.000	#
4	U7	Bot	0.00	5.00	5.55	(N/A)	M ₁ =	0.00	0.00	1.000	••
5	U1	Тор	25.29	0.00	25.29	0.98	$M_2=$	25.29	25.29	1.000	
5	U1	Bot	0.00	0.00	0.00	0.98	$M_1=$	0.00	0.98	1.000	#
5	U1	Bot	0.00	5.55	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	"
J	U	Bot	42.37	0.00	42.37	2.26	$M_2=$	42.37	42.37	1.000	
5	U2	Тор	0.00	0.00	0.00	2.26	$M_1=$	0.00	2.26	1.000	#
5	U2	Bot	0.00	5.55	0.00	(N/A)	$M_1=$	0.00	0.00	1.000	Tr.
5	U3	Top	28.14	0.00	28.14	1.29		28.14	28.14	1.000	
5	U3	Bot	0.00	0.00	0.00		$M_1=$	0.00	1.29	1.000	#
5	00	ויסכו	0.00	3.00	0.00	1.29	ivi ₁ —	5.00	1.23	1.000	π

Load			1s	^t Order				2 nd Order		Ratio	
Comb	0		M_{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
5	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	21.68	0.00	21.68	0.84	M ₂ =	21.68	21.68	1.000	
5	U4	Тор	0.00	0.00	0.00	0.84	M ₁ =	0.00	0.84	1.000	#
5	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
5	U5	Тор	16.26	0.00	16.26	0.63	M ₂ =	16.26	16.26	1.000	
5	U5	Bot	0.00	0.00	0.00	0.63	M ₁ =	0.00	0.63	1.000	#
5	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	21.68	0.00	21.68	0.85	M ₂ =	21.68	21.68	1.000	
5	U6	Тор	0.00	0.00	0.00	0.85	M ₁ =	0.00	0.85	1.000	#
5	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
5	U7	Тор	16.26	0.00	16.26	0.64	M ₂ =	16.26	16.26	1.000	
5	U7	Bot	0.00	0.00	0.00	0.64	M₁=	0.00	0.64	1.000	#
5	U7	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	62.90	0.00	62.90	0.98	M ₂ =	62.90	62.90	1.000	
6	U1	Тор	0.00	0.00	0.00	0.98	M ₁ =	0.00	0.98	1.000	#
6	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
6	U2	Тор	62.90	0.00	62.90	2.26	M ₂ =	62.90	62.90	1.000	
6	U2	Bot	0.00	0.00	0.00	2.26	M₁=	0.00	2.26	1.000	#
6	U2	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	62.90	0.00	62.90	1.29	M ₂ =	62.90	62.90	1.000	
6	U3	Тор	0.00	0.00	0.00	1.29	M₁=	0.00	1.29	1.000	#
6	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
6	U4	Тор	62.90	0.00	62.90	0.84	M ₂ =	62.90	62.90	1.000	
6	U4	Bot	0.00	0.00	0.00	0.84	M ₁ =	0.00	0.84	1.000	#
6	U4	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	62.90	0.00	62.90	0.63	M ₂ =	62.90	62.90	1.000	
6	U5	Тор	0.00	0.00	0.00	0.63	M₁=	0.00	0.63	1.000	#
6	U5	Bot				(N/A)	M₁=	0.00	0.00	1.000	
6	U6	Тор	62.90	0.00	62.90	0.85	M ₂ =	62.90	62.90	1.000	
6	U6	Bot	0.00	0.00	0.00	0.85	M₁=	0.00	0.85	1.000	#
6	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	62.90	0.00	62.90	0.64	M ₂ =	62.90	62.90	1.000	
6	U7	Тор	0.00	0.00	0.00	0.64	M₁=	0.00	0.64	1.000	#
6	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	

M_{min} exceeds M_i for X and Y - axis bending but shall be applied to each axis separately for capacity check.

8.2. Y - axis

Load			1	st Order				2 nd Order		Ratio	
Comb	0		M _{ns}	M_s	Mu	M _{min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
1	U1	Тор	0.02	0.00	0.02	1.15	M ₂ =	0.02	1.15	1.000	
1	U1	Bot	0.00	0.00	0.00	1.15	M ₁ =	0.00	1.15	1.000	#
1	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.05	0.00	0.05	2.64	$M_2=$	0.05	2.64	1.000	
1	U2	Тор	0.00	0.00	0.00	2.64	M ₁ =	0.00	2.64	1.000	#
1	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U3	Тор	0.03	0.00	0.03	1.50	$M_2=$	0.03	1.50	1.000	
1	U3	Bot	0.00	0.00	0.00	1.50	M ₁ =	0.00	1.50	1.000	#
1	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.02	0.00	0.02	1.05	M ₂ =	0.02	1.05	1.000	
1	U4	Тор	0.00	0.00	0.00	1.05	$M_1=$	0.00	1.05	1.000	#
1	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U5	Тор	0.01	0.00	0.02	0.81	M ₂ =	0.02	0.81	1.000	

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col

Page | **12** 6/21/2020 7:43 PM

Load			1	st Order				2 nd Order		Ratio	
Comb	0		M _{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
1	U5	Bot	0.00	0.00	0.00	0.81	M ₁ =	0.00	0.81	1.000	#
1	U5	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	0.02	0.00	0.02	0.91	M ₂ =	0.02	0.91	1.000	
1	U6	Тор	0.00	0.00	0.00	0.91	M₁=	0.00	0.91	1.000	#
1	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
1	U7	Тор	0.01	0.00	0.01	0.67	M ₂ =	0.01	0.67	1.000	
1	U7	Bot	0.00	0.00	0.00	0.67	M ₁ =	0.00	0.67	1.000	#
1	U7	Bot	0,00	0.00	3.33	(N/A)	M₁=	0.00	0.00	1.000	
·	U	Bot	0.02	0.00	0.02	1.15	M ₂ =	0.02	1.15	1.000	
2	U1	Top	0.00	0.00	0.00	1.15	M₁=	0.00	1.15	1.000	#
2	U1	Bot	0.00	0.00	0.00	(N/A)	M ₁ =	0.00	0.00	1.000	"
2	U2	Top	0.05	0.00	0.05	2.64	$M_2=$	0.05	2.64	1.000	
2	U2	Bot	0.00	0.00	0.00	2.64	M ₁ =	0.00	2.64	1.000	#
2	U2	Bot	0.00	0.00	0.00	(N/A)	M ₁ =	0.00	0.00	1.000	π
2	U		0.03	0.00	0.03	1.50		0.03	1.50	1.000	
2	U3	Bot					M ₂ =				#
2		Top	0.00	0.00	0.00	1.50	M ₁ =	0.00	1.50	1.000	#
2	U3	Bot	0.00	0.00	0.00	(N/A)	M₁=	0.00	0.00	1.000	
2	U4	Top	0.02	0.00	0.02	0.91	M ₂ =	0.02	0.91	1.000	ш
2	U4	Bot	0.00	0.00	0.00	0.91	M₁=	0.00	0.91	1.000	#
2	U4	Bot	0.04	0.00	0.00	(N/A)	M₁=	0.00	0.00	1.000	
_	U	Bot	0.01	0.00	0.02	0.67	M ₂ =	0.02	0.67	1.000	
2	U5	Тор	0.00	0.00	0.00	0.67	M ₁ =	0.00	0.67	1.000	#
2	U5	Bot				(N/A)	M₁=	0.00	0.00	1.000	
2	U6	Тор	0.02	0.00	0.02	1.05	M ₂ =	0.02	1.05	1.000	
2	U6	Bot	0.00	0.00	0.00	1.05	M ₁ =	0.00	1.05	1.000	#
2	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.01	0.00	0.01	0.81	M ₂ =	0.01	0.81	1.000	
2	U7	Тор	0.00	0.00	0.00	0.81	M ₁ =	0.00	0.81	1.000	#
2	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U1	Тор	96.40	0.00	96.40	1.15	M ₂ =	96.40	96.40	1.000	
3	U1	Bot	0.00	0.00	0.00	1.15	M₁=	0.00	1.15	1.000	#
3	U1	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	2.64	M ₂ =	96.40	96.40	1.000	
3	U2	Тор	0.00	0.00	0.00	2.64	M ₁ =	0.00	2.64	1.000	#
3	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U3	Тор	96.40	0.00	96.40	1.50		96.40	96.40	1.000	
3	U3	Bot	0.00	0.00	0.00	1.50		0.00	1.50	1.000	#
3	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	0.91	M ₂ =	96.40	96.40	1.000	
3	U4	Тор	0.00	0.00	0.00	0.91	M ₁ =	0.00	0.91	1.000	#
3	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U5	Тор	96.40	0.00	96.40	0.67	M ₂ =	96.40	96.40	1.000	
3	U5	Bot	0.00	0.00	0.00	0.67	M ₁ =	0.00	0.67	1.000	#
3	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	1.05	M ₂ =	96.40	96.40	1.000	
3	U6	Top	0.00	0.00	0.00	1.05	M ₁ =	0.00	1.05	1.000	#
3	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
3	U7	Тор	96.40	0.00	96.40	0.81	M ₂ =	96.40	96.40	1.000	
3	U7	Bot	0.00	0.00	0.00	0.81	M ₁ =	0.00	0.81	1.000	#
3	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	1.15	M ₂ =	96.40	96.40	1.000	
4	U1	Тор	0.00	0.00	0.00	1.15	M ₁ =	0.00	1.15	1.000	#
4	U1	Bot				(N/A)	M₁=	0.00	0.00	1.000	
4	U2	Тор	96.40	0.00	96.40		M ₂ =	96.40	96.40	1.000	
4	U2	ıop	90.40	0.00	90.40	2.04	IVI2-	90.40	90.40	1.000	

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col

Page | **13** 6/21/2020 7:43 PM

Load			1	st Order				2 nd Order		Ratio	
Combo	0		M_{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
4	U2	Bot	0.00	0.00	0.00	2.64	M ₁ =	0.00	2.64	1.000	#
4	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	1.50	$M_2=$	96.40	96.40	1.000	
4	U3	Тор	0.00	0.00	0.00	1.50	$M_1=$	0.00	1.50	1.000	#
4	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
4	U4	Тор	96.40	0.00	96.40	1.05	$M_2=$	96.40	96.40	1.000	
4	U4	Bot	0.00	0.00	0.00	1.05	$M_1=$	0.00	1.05	1.000	#
4	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	0.81	$M_2=$	96.40	96.40	1.000	
4	U5	Тор	0.00	0.00	0.00	0.81	$M_1=$	0.00	0.81	1.000	#
4	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
4	U6	Тор	96.40	0.00	96.40	0.91	$M_2=$	96.40	96.40	1.000	
4	U6	Bot	0.00	0.00	0.00	0.91	$M_1=$	0.00	0.91	1.000	#
4	U6	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	0.67	$M_2=$	96.40	96.40	1.000	
4	U7	Тор	0.00	0.00	0.00	0.67	$M_1=$	0.00	0.67	1.000	#
4	U7	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
5	U1	Тор	0.02	0.00	0.02	1.15	$M_2=$	0.02	1.15	1.000	
5	U1	Bot	0.00	0.00	0.00	1.15	$M_1=$	0.00	1.15	1.000	#
5	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	0.05	0.00	0.05	2.64	$M_2=$	0.05	2.64	1.000	
5	U2	Тор	0.00	0.00	0.00	2.64	$M_1=$	0.00	2.64	1.000	#
5	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
5	U3	Тор	0.03	0.00	0.03	1.50	$M_2=$	0.03	1.50	1.000	
5	U3	Bot	0.00	0.00	0.00	1.50	$M_1=$	0.00	1.50	1.000	#
5	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	0.02	37.37	37.39	0.98	$M_2=$	39.65	39.65	1.060	
5	U4	Тор	0.00	0.00	0.00	0.98	$M_1 =$	0.00	0.98	1.000	#
5	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
5	U5	Тор	0.01	37.37	37.38	0.73	M ₂ =	39.05	39.05	1.045	
5	U5	Bot	0.00	0.00	0.00	0.73	$M_1 =$	0.00	0.73	1.000	#
5	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.02	-37.37	-37.35	-0.99	$M_2=$	-39.64	-39.64	1.061	
5	U6	Тор	0.00	0.00	0.00	0.99	$M_1=$	0.00	0.99	1.000	#
5	U6	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
5	U7	Тор	0.01	- 37.37	-37.36	-0.74	$M_2=$	-39.05	-39.05	1.045	
5	U7	Bot	0.00	0.00	0.00	0.74	$M_1=$	0.00	0.74	1.000	#
5	U7	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	1.15	$M_2=$	96.40	96.40	1.000	
6	U1	Тор	0.00	0.00	0.00	1.15	$M_1=$	0.00	1.15	1.000	#
6	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
6	U2	Тор	96.40	0.00	96.40	2.64	$M_2=$	96.40	96.40	1.000	
6	U2	Bot	0.00	0.00	0.00	2.64	$M_1=$	0.00	2.64	1.000	#
6	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	1.50	$M_2=$	96.40	96.40	1.000	
6	U3	Тор	0.00	0.00	0.00	1.50	$M_1=$	0.00	1.50	1.000	#
6	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
6	U4	Тор	96.40	0.00	96.40	0.98	$M_2=$	96.40	96.40	1.000	
6	U4	Bot	0.00	0.00	0.00	0.98	$M_1=$	0.00	0.98	1.000	#
6	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	0.73	$M_2=$	96.40	96.40	1.000	
6	U5	Тор	0.00	0.00	0.00	0.73	$M_1=$	0.00	0.73	1.000	#
6	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
6	U6	Тор	96.40	0.00	96.40		M ₂ =	96.40	96.40	1.000	

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col Page | **14** 6/21/2020 7:43 PM

Load				1st Order				2 nd Order		Ratio	
Comb	0		\mathbf{M}_{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
6	U6	Bot	0.00	0.00	0.00	0.99	M ₁ =	0.00	0.99	1.000	#
6	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	96.40	0.00	96.40	0.74	M ₂ =	96.40	96.40	1.000	
6	U7	Top	0.00	0.00	0.00	0.74	M ₁ =	0.00	0.74	1.000	#
6	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	

 $^{\#} M_{min}$ exceeds M_i for X and Y - axis bending but shall be applied to each axis separately for capacity check.

9. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method.

Allowable Capacity (Ratio) <= 0.98

Each loading combination includes the following cases:

Top - At column top Bot - At column bottom

Bot - At column bottom

No.	Loa	ad			Demand			Capacity		Parame	ters at Capa	city	Capacity
	Co	mbo		P _u	M_{ux}	M _{uy}	φP _n	ϕM_{nx}	фМ _{пу}	NA Depth	ε _t	ф	Ratio
				kip	k-ft	k-ft	kip	k-ft	k-ft	in			
1	1	U1	Тор	10.93	25.29	1.15	10.93	81.70	3.71	2.71	0.01169	0.900	0.31
2	1	U1	Bot	10.93	0.98	0.00	10.93	81.93	0.00	2.59	0.01196	0.900	0.01
3	1	U1	Bot	10.93	0.00	1.15	10.93	0.00	116.31	2.91	0.01649	0.900	0.01
4	1	U2	Тор	25.14	42.37	2.64	25.14	87.83	5.47	2.91	0.01088	0.900	0.48
5	1	U2	Bot	25.14	2.26	0.00	25.14	88.14	0.00	2.72	0.01126	0.900	0.03
6	1	U2	Bot	25.14	0.00	2.64	25.14	0.00	125.93	3.08	0.01543	0.900	0.02
7	1	U3	Top	14.29	28.14	1.50	14.29	83.14	4.43	2.77	0.01148	0.900	0.34
8	1	U3	Bot	14.29	1.29	0.00	14.29	83.41	0.00	2.62	0.01179	0.900	0.02
9	1	U3	Bot	14.29	0.00	1.50	14.29	0.00	118.60	2.95	0.01623	0.900	0.01
10	1	U4	Тор	10.03	60.58	1.05	10.03	81.45	1.42	2.63	0.01190	0.900	0.74
11	1	U4	Bot	10.03	0.90	0.00	10.03	81.53	0.00	2.59	0.01201	0.900	0.01
12	1	U4	Bot	10.03	0.00	1.05	10.03	0.00	115.69	2.90	0.01656	0.900	0.01
13	1	U5	Тор	7.69	54.81	0.81	7.69	80.43	1.18	2.60	0.01204	0.900	0.68
14	1	U5	Bot	7.69	0.69	0.00	7.69	80.50	0.00	2.57	0.01213	0.900	0.01
15	1	U5	Bot	7.69	0.00	0.81	7.69	0.00	114.10	2.88	0.01674	0.900	0.01
16	1	U6	Тор	8.71	-17.02	0.91	8.71	-80.69	4.33	2.71	0.01176	0.900	0.21
17		U6	Bot	8.71	0.78	0.00	8.71	80.95	0.00	2.57	0.01207	0.900	0.01
18		U6	Bot	8.71	0.00	0.91	8.71	0.00	114.79	2.89	0.01666	0.900	0.01
19	1	U7	Тор	6.37	- 22.09	0.67	6.37	-79.78	2.41	2.63	0.01202	0.900	0.28
20	1	U7	Bot	6.37	0.57	0.00	6.37	79.92	0.00	2.55	0.01219	0.900	0.01
21	1	U7	Bot	6.37	0.00	0.67	6.37	0.00	113.20	2.86	0.01684	0.900	0.01
	2	U1	Тор	10.93	25.29	1.15	10.93	81.70	3.71	2.71	0.01169	0.900	0.31
23		U1	Bot	10.93	0.98	0.00	10.93	81.93	0.00	2.59	0.01196	0.900	0.01
24		U1	Bot	10.93	0.00	1.15	10.93	0.00	116.31	2.91	0.01649	0.900	0.01
25		U2	Тор	25.14	42.37	2.64	25.14	87.83	5.47	2.91	0.01088	0.900	0.48
26		U2	Bot	25.14	2.26	0.00	25.14	88.14	0.00	2.72	0.01126	0.900	0.03
27		U2	Bot	25.14	0.00	2.64	25.14	0.00	125.93	3.08	0.01543	0.900	0.02
28		U3	Тор	14.29	28.14	1.50	14.29	83.14	4.43	2.77	0.01148	0.900	0.34
29		U3	Bot	14.29	1.29	0.00	14.29	83.41	0.00	2.62	0.01179	0.900	0.02
30	2	U3	Bot	14.29	0.00	1.50	14.29	0.00	118.60	2.95	0.01623	0.900	0.01
31	2	U4	Тор	8.71	60.38	0.91	8.71	80.88	1.22	2.61	0.01198	0.900	0.75
32		U4	Bot	8.71	0.78	0.00	8.71	80.95	0.00	2.57	0.01207	0.900	0.01
33		U4	Bot	8.71	0.00	0.91	8.71	0.00	114.79	2.89	0.01666	0.900	0.01
34		U5	Тор	6.37	54.61	0.67	6.37	79.86	0.98	2.59	0.01212	0.900	0.68
	2	U5	Bot	6.37	0.57	0.00	6.37	79.92	0.00	2.55	0.01219	0.900	0.01
36		U5	Bot	6.37	0.00	0.67	6.37	0.00	113.20	2.86	0.01684	0.900	0.01
37		U6	Тор	10.03	- 17.22	1.05	10.03	-81.23	4.97	2.75	0.01165	0.900	0.21
38	2	U6	Bot	10.03	0.90	0.00	10.03	81.53	0.00	2.59	0.01201	0.900	0.01

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col

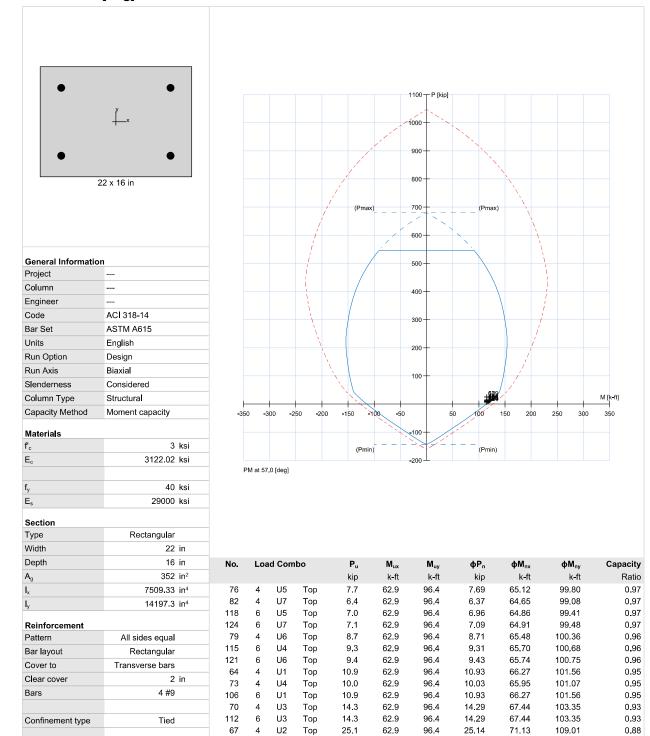
Page | **15** 6/21/2020 7:43 PM

No.	Loa	ıd			Demand			Capacity		Parame	eters at Capa	citv	Capacity
		nbo		Pu	M _{ux}	M_{uy}	φP _n	φM _{nx}	фМ _{пу}		ε _t	ф	Ratio
				kip	k-ft	k-ft	kip	k-ft	k-ft	in	-,		
39	2	U6	Bot	10.03	0.00	1.05	10.03	0.00	115.69	2.90	0.01656	0.900	0.01
40	2	U7	Тор	7.69	-22.29	0.81	7.69	-80.33	2.91	2.66	0.01191	0.900	0.28
41	2	U7	Bot	7.69	0.69	0.00	7.69	80.50	0.00	2.57	0.01213	0.900	0.01
42	2	U7	Bot	7.69	0.00	0.81	7.69	0.00	114.10	2.88	0.01674	0.900	0.01
43	3	U1	Тор	10.93	52.90	96.40	10.93	58.55	106.69	7.02	0.00677	0.900	0.90
44	3	U1	Bot	10.93	0.98	0.00	10.93	81.93	0.00	2.59	0.01196	0.900	0.01
45	3	U1	Bot	10.93	0.00	1.15	10.93	0.00	116.31	2.91	0.01649	0.900	0.01
46	3	U2	Тор	25.14	52.90	96.40	25.14	62.71	114.27	7.54	0.00609	0.900	0.84
47	3	U2	Bot	25.14	2.26	0.00	25.14	88.14	0.00	2.72	0.01126	0.900	0.03
48	3	U2	Bot	25.14	0.00	2.64	25.14	0.00	125.93	3.08	0.01543	0.900	0.02
49	3	U3	Тор	14.29	52.90	96.40	14.29	59.55	108.52	7.15	0.00660	0.900	0.89
50	3	U3	Bot	14.29	1.29	0.00	14.29	83.41	0.00	2.62	0.01179	0.900	0.02
51	3	U3	Bot	14.29	0.00	1.50	14.29	0.00	118.60	2.95	0.01623	0.900	0.01
52	3	U4	Тор	8.71	52.90	96.40	8.71	57.84	105.41	6.95	0.00688	0.900	0.91
53	3	U4	Bot	8.71	0.78	0.00	8.71	80.95	0.00	2.57	0.01207	0.900	0.01
54	3	U4	Bot	8.71	0.00	0.91	8.71	0.00	114.79	2.89	0.01666	0.900	0.01
55	3	U5	Top	6.37	52.90	96.40	6.37	57.11	104.07	6.86	0.00701	0.900	0.93
56	3	U5	Bot	6.37	0.57	0.00	6.37	79.92	0.00	2.55	0.01219	0.900	0.01
57	3	U5	Bot	6.37	0.00	0.67	6.37	0.00	113.20	2.86	0.01684	0.900	0.01
58	3	U6	Тор	10.03	52.90	96.40	10.03	58.26	106.17	6.99	0.00682	0.900	0.91
59	3	U6	Bot	10.03	0.90	0.00	10.03	81.53	0.00	2.59	0.01201	0.900	0.01
60	3	U6	Bot	10.03	0.00	1.05	10.03	0.00	115.69	2.90	0.01656	0.900	0.01
61	3	U7	Тор	7.69	52.90	96.40	7.69	57.52	104.82	6.91	0.00694	0.900	0.92
62	3	U7	Bot	7.69	0.69	0.00	7.69	80.50	0.00	2.57	0.01213	0.900	0.01
63	3	U7	Bot	7.69	0.00	0.81	7.69	0.00	114.10	2.88	0.01674	0.900	0.01
64	4	U1	Тор	10.93	62.90	96.40	10.93	66.27	101.56	7.28	0.00611	0.900	0.95
65	4	U1	Bot	10.93	0.98	0.00	10.93	81.93	0.00	2.59	0.01196	0.900	0.01
66	4	U1	Bot	10.93	0.00	1.15	10.93	0.00	116.31	2.91	0.01649	0.900	0.01
67	4	U2	Тор	25.14	62.90	96.40	25.14	71.13	109.01	7.73	0.00557	0.900	0.88
68	4	U2	Bot	25.14	2.26	0.00	25.14	88.14	0.00	2.72	0.01126	0.900	0.03
69	4	U2	Bot	25.14	0.00	2.64	25.14	0.00	125.93	3.08	0.01543	0.900	0.02
70	4	U3	Тор	14.29	62.90	96.40	14.29	67.44	103.35	7.39	0.00598	0.900	0.93
71	4	U3	Bot	14.29	1.29	0.00	14.29	83.41	0.00	2.62	0.01179	0.900	0.02
72		U3	Bot	14.29	0.00	1.50	14.29	0.00	118.60	2.95	0.01623	0.900	0.01
73	4	U4 U4	Top	10.03	62.90	96.40	10.03	65.95	101.07	7.25	0.00615	0.900	0.95
74 75	4 4	U4	Bot Bot	10.03 10.03	0.90 0.00	0.00 1.05	10.03 10.03	81.53 0.00	0.00 115.69	2.59	0.01201 0.01656	0.900 0.900	0.01 0.01
75 76		U5	Тор	7.69	62.90	96.40	7.69	65.12	99.80	2.90 7.18	0.01636	0.900	0.01
77		U5	Bot	7.69	0.69	0.00	7.69	80.50	0.00	2.57	0.00023	0.900	0.97
78		U5	Bot	7.69	0.09	0.81	7.69	0.00	114.10	2.88	0.01213	0.900	0.01
79		U6	Тор	8.71	62.90	96.40		65.48	100.36	7.21	0.00620	0.900	0.96
80		U6	Bot	8.71	0.78	0.00		80.95	0.00	2.57	0.01207	0.900	0.01
81		U6	Bot	8.71	0.00	0.91	8.71	0.00	114.79	2.89	0.01267	0.900	0.01
82		U7	Top	6.37	62.90	96.40	l	64.65	99.08	7.14	0.00630	0.900	0.97
83		U7	Bot	6.37	0.57	0.00	6.37	79.92	0.00	2.55	0.01219	0.900	0.01
84		U7	Bot	6.37	0.00	0.67	6.37	0.00	113.20	2.86	0.01684	0.900	0.01
85		U1	Top	10.93	25.29	1.15	10.93	81.70	3.71	2.71	0.01169	0.900	0.31
86		U1	Bot	10.93	0.98	0.00		81.93	0.00	2.59	0.01196	0.900	0.01
87		U1	Bot	10.93	0.00	1.15		0.00	116.31	2.91	0.01649	0.900	0.01
88		U2	Тор	25.14	42.37	2.64	25.14	87.83	5.47	2.91	0.01088	0.900	0.48
89		U2	Bot	25.14	2.26	0.00	25.14	88.14	0.00	2.72	0.01126	0.900	0.03
90		U2	Bot	25.14	0.00	2.64	25.14	0.00	125.93	3.08	0.01543	0.900	0.02
91		U3	Тор	14.29	28.14	1.50		83.14	4.43	2.77	0.01148	0.900	0.34
92		U3	Bot		1.29	0.00		83.41	0.00		0.01179	0.900	0.02
			-	'						•		1	

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\c2.col

Page | **16** 6/21/2020 7:43 PM

No.	Loa	ad			Demand		C	apacity		Parame	ters at Capa	city	Capacity
	Cor	nbo		P_{u}	\mathbf{M}_{ux}	M _{uy}	ϕP_n	ϕM_{nx}	ϕM_{ny}	NA Depth	ε _t	ф	Ratio
				kip	k-ft	k-ft	kip	k-ft	k-ft	in			
93	5	U3	Bot	14.29	0.00	1.50	14.29	0.00	118.60	2.95	0.01623	0.900	0.01
94	5	U4	Тор	9.31	21.68	39.65	9.31	57.86	105.82	6.96	0.00687	0.900	0.37
95	5	U4	Bot	9.31	0.84	0.00	9.31	81.22	0.00	2.58	0.01204	0.900	0.01
96	5	U4	Bot	9.31	0.00	0.98	9.31	0.00	115.20	2.90	0.01662	0.900	0.01
97	5	U5	Тор	6.96	16.26	39.05	6.96	45.02	108.14	5.94	0.00838	0.900	0.36
98	5	U5	Bot	6.96	0.63	0.00	6.96	80.19	0.00	2.56	0.01216	0.900	0.01
99	5	U5	Bot	6.96	0.00	0.73	6.96	0.00	113.61	2.87	0.01680	0.900	0.01
100	5	U6	Тор	9.43	21.68	-39.64	9.43	57.90	-105.89	6.96	0.00686	0.900	0.37
101	5	U6	Bot	9.43	0.85	0.00	9.43	81.27	0.00	2.58	0.01204	0.900	0.01
102	5	U6	Bot	9.43	0.00	0.99	9.43	0.00	115.29	2.90	0.01661	0.900	0.01
103	5	U7	Top	7.09	16.26	-39.05	7.09	45.05	- 108.21	5.94	0.00838	0.900	0.36
104	5	U7	Bot	7.09	0.64	0.00	7.09	80.24	0.00	2.56	0.01216	0.900	0.01
105	5	U7	Bot	7.09	0.00	0.74	7.09	0.00	113.69	2.87	0.01679	0.900	0.01
106	6	U1	Тор	10.93	62.90	96.40	10.93	66.27	101.56	7.28	0.00611	0.900	0.95
107	6	U1	Bot	10.93	0.98	0.00	10.93	81.93	0.00	2.59	0.01196	0.900	0.01
108	6	U1	Bot	10.93	0.00	1.15	10.93	0.00	116.31	2.91	0.01649	0.900	0.01
109	6	U2	Top	25.14	62.90	96.40	25.14	71.13	109.01	7.73	0.00557	0.900	0.88
110	6	U2	Bot	25.14	2.26	0.00	25.14	88.14	0.00	2.72	0.01126	0.900	0.03
111	6	U2	Bot	25.14	0.00	2.64	25.14	0.00	125.93	3.08	0.01543	0.900	0.02
112	6	U3	Тор	14.29	62.90	96.40	14.29	67.44	103.35	7.39	0.00598	0.900	0.93
113	6	U3	Bot	14.29	1.29	0.00	14.29	83.41	0.00	2.62	0.01179	0.900	0.02
114	6	U3	Bot	14.29	0.00	1.50	14.29	0.00	118.60	2.95	0.01623	0.900	0.01
115	6	U4	Тор	9.31	62.90	96.40	9.31	65.70	100.68	7.23	0.00618	0.900	0.96
116	6	U4	Bot	9.31	0.84	0.00	9.31	81.22	0.00	2.58	0.01204	0.900	0.01
117	6	U4	Bot	9.31	0.00	0.98	9.31	0.00	115.20	2.90	0.01662	0.900	0.01
118	6	U5	Тор	6.96	62.90	96.40	6.96	64.86	99.41	7.15	0.00628	0.900	0.97
119	6	U5	Bot	6.96	0.63	0.00	6.96	80.19	0.00	2.56	0.01216	0.900	0.01
120	6	U5	Bot	6.96	0.00	0.73	6.96	0.00	113.61	2.87	0.01680	0.900	0.01
121	6	U6	Тор	9.43	62.90	96.40	9.43	65.74	100.75	7.23	0.00617	0.900	0.96
122		U6	Bot	9.43	0.85	0.00	9.43	81.27	0.00	2.58	0.01204	0.900	0.01
123	6	U6	Bot	9.43	0.00	0.99	9.43	0.00	115.29	2.90	0.01661	0.900	0.01
124	6	U7	Тор	7.09	62.90	96.40	7.09	64.91	99.48	7.16	0.00627	0.900	0.97
125	6	U7	Bot	7.09	0.64	0.00	7.09	80.24	0.00	2.56	0.01216	0.900	0.01
126	6	U7	Bot	7.09	0.00	0.74	7.09	0.00	113.69	2.87	0.01679	0.900	0.01


10. Diagrams

10.1. PM at θ=57 [deg]

Total steel area, As

Min. clear spacing

Rho

109 6 U2

 $4.00\ in^2$

1.14 %

8.74 in

Top

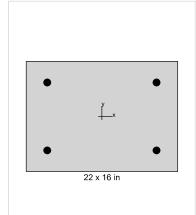
25.1

62.9

96.4

25.14

71.13


109.01

Max. Capacity Ratio: 0.97

0.88

Page | **18** 6/21/2020 7:43 PM

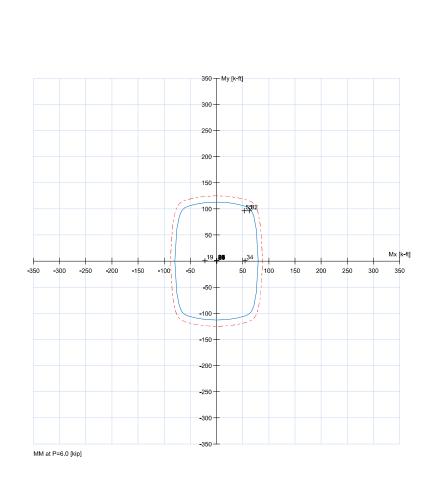
10.2. MM at P=6 [kip]

General Information			
Project			
Column			
Engineer			
Code	ACI 318-14		
Bar Set	ASTM A615		
Units	English		
Run Option	Design		
Run Axis	Biaxial		
Slenderness	Considered		
Column Type	Structural		
Capacity Method	Moment capacity		

Materials	
f'c	3 ksi
Ec	3122.02 ksi
f _y	40 ksi
$\frac{f_y}{E_s}$	29000 ksi
Section	

Rectangular

22 in


16 in

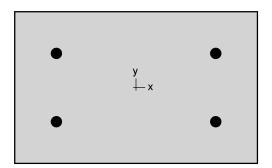
Туре

Width

Depth

A_g	352	in ²
l _x	7509.33	in ⁴
l _y	14197.3	in ⁴
Reinforcement		
Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Transverse bars	
Clear cover	2	in
Bars	4 #9	
Confinement type	Tied	
Total steel area, A _s	4.00	in ²
Rho	1.14	%
Min. clear spacing	8.74	in

k-ft	k-ft	kip	k-ft	k-ft	- ··
1 62.0				N-II	Ratio
+ 02.9	96.4	6.37	64.65	99.08	0.97
52.9	96.4	6.37	57.11	104.07	0.93
4 54.6	0.7	6.37	79.86	0.98	0.68
4 -22.1	0.7	6.37	-79.78	2.41	0.28
4 0.6	0.0	6.37	79.92	0.00	0.01
4 0.0	0.7	6.37	0.00	113.20	0.01
4 0.6	0.0	6,37	79,92	0.00	0,01
4 0.0	0.7	6.37	0.00	113.20	0.01
4 0.6	0.0	6.37	79.92	0.00	0.01
4 0.0	0.7	6.37	0.00	113.20	0.01
4 0.6	0.0	6.37	79.92	0.00	0.01
4 0.0	0.7	6.37	0.00	113.20	0.01
	4 52.9 4 54.6 4 -22.1 4 0.6 4 0.0 4 0.6 4 0.0 4 0.6 4 0.0 4 0.6 4 0.0	4 54.6 0.7 4 -22.1 0.7 4 0.6 0.0 4 0.0 0.7 4 0.6 0.0 4 0.0 0.7 4 0.6 0.0 4 0.0 0.7 4 0.6 0.0	4 52.9 96.4 6.37 4 54.6 0.7 6.37 4 -22.1 0.7 6.37 4 0.6 0.0 6.37 4 0.6 0.0 6.37 4 0.6 0.0 6.37 4 0.0 0.7 6.37 4 0.6 0.0 6.37 4 0.6 0.0 6.37 4 0.6 0.0 6.37 4 0.6 0.0 6.37	4 52.9 96.4 6.37 57.11 4 54.6 0.7 6.37 79.86 4 -22.1 0.7 6.37 -79.78 4 0.6 0.0 6.37 79.92 4 0.0 0.7 6.37 0.00 4 0.0 0.7 6.37 79.92 4 0.0 0.7 6.37 79.92 4 0.6 0.0 6.37 79.92 4 0.6 0.0 6.37 79.92 4 0.6 0.0 6.37 79.92	4 52.9 96.4 6.37 57.11 104.07 4 54.6 0.7 6.37 79.86 0.98 4 -22.1 0.7 6.37 -79.78 2.41 4 0.6 0.0 6.37 79.92 0.00 4 0.6 0.0 6.37 79.92 0.00 4 0.0 0.7 6.37 79.92 0.00 4 0.6 0.0 6.37 79.92 0.00 4 0.6 0.0 6.37 79.92 0.00 4 0.6 0.0 6.37 79.92 0.00 4 0.6 0.0 6.37 79.92 0.00 4 0.6 0.0 6.37 79.92 0.00 4 0.6 0.0 6.37 79.92 0.00


Max. Capacity Ratio: 0.97

<u>Column Design</u> <u>C2 - Special Moment Frame Column</u>

	Bending Axis X-X/3-3	Shear Axis Y-Y/2-2	
	lux (out of plane span) (in) = luy (in plane span) (in) = b (in) = h (in) =	198 198 22 16	
	long bar size = Tie size =	9 4	
	number of longitudinal bars = d' = f'c (psi) =	4 2.500 3000	
	fy (psi) = Pu Compression (k) =	40000 23.93	
	Pu Tension (k) = Tu (k-ft) =	-3.550 0.00	
	Max NA depth (in) = Min NA depth (in) = Mu Strong x (k-ft) = Mu Weak y (k-ft) =	7.5 6 bars in t 2.6 3 layers ir 104.50 79.57	
BENDING DESIGN			
ACI 318-14 (Sec. 6.2.5 & 6.2.6)	Slenderness $ (k*1)/0.3*b = $	30.00 ≥	22 Therefore, slenderness effects must be accounted for in SP Column Analysis
	Special Moment Frame Column Design Requirements		
Dimensional Limits ACI 318-14 (Sec. 18.7.2.1a)	bmin = 12" hmin = 12"		2 , Therefore OK 5 , Therefore OK
ACI 318-14 (Sec. 18.6.2.1b) Minimum Flexural Strength of Columns	Min(b,h)/Max(b,h) =	0.7273 ≥	0.4 , Therefore OK
ACI 318-14 (Eq. 18.7.3.2)	$\Sigma Mnc \geq (6/5)\Sigma Mnb$ $(6/5)\Sigma Mnb \times (k\text{-}ft) =$ $(6/5)\Sigma Mnb \times (k\text{-}ft) =$	60.00 ≤ 86.40 ≥	Mu = 104.50 , Therefore Mu controls column demand $Mu = 79.57$, Therefore (5/6)ΣMnb controls column demand
Longitudinal Reinforcement ACI 318-14 (Sec. 18.7.4.1)	$0.01 Ag \le Ast \le 0.06 Ag$ $Ast (in^2) =$		0.01Ag = 3.480239 , Therefore OK
	Ast (in^2) =	3.976 ≤	0.06Ag = 20.88144 , Therefore OK
SHEAR DESIGN	Special Moment Frame Column Design Requirements		
Transverse Reinforcement ACI 318-14 (Sec. 18.7.5.1a)	l _o (in) =	22.0	
ACI 318-14 (Sec. 18.7.5.1b) ACI 318-14 (Sec. 18.7.5.1c)	l _o (in) = l _o (in) =	33.0 Controls 18.0	
ACI 318-14 (Sec. 18.7.5.2e) ACI 318-14 (Sec. 18.7.5.2f)	hx (in) = 0.03Ag*f'c (k) =	17.0 ≤ 31.3 ≥	14 in $$, Therefore OK Pu (k) = $$ 23.93 $$, Therefore hx is notrequired to be reduced
ACI 318-14 (Sec. 18.7.5.2f) ACI 318-14 (Sec. 18.7.5.3a)	f'c (psi) = s _o (in) =	3000 ≤ 4	10000 , Therefore hx is notrequired to be reduced
ACI 318-14 (Sec. 18.7.5.3b)	s _o (in) =	7	
ACI 318-14 (Sec. 18.7.5.3c) ACI 318-14 (Sec. 18.7.5.3)	s _o (in) = 4 +(14-hx / 3) = s _o ,max (in) =	3 Controls 6.0 ≥	3 , Therefore OK
ACI 318-14 (Sec. 18.7.5.3) ACI 318-14 (Table. 18.7.5.4a)	c ,min (in) =	4.0 ≥ 0.0046	3 , Therefore Use #4 Ties @ 4" o.c. in Io regions
ACI 318-14 (Table: 18.7.5.4a) ACI 318-14 (Table: 18.7.5.4b)	Ash/sbh = 0.3*(Ag/Ach - 1)*(f'c/fyt) = $Ash/sbh = 0.09*(f'c/fyt) =$ $Ash/sbh, provided =$	0.0046 0.0068 Controls 0.0147 ≥	Ash/sbh,
ACI 318-14 (Table. 18.7.5.5)	sv, max (in) beyond lo regions = Min(6*db, 6) =	6 Controls	control = 0.0068 , Therefore #4 Ties @ 4" o.c. is Adequate , Therefore Use #4 Ties @ 6" o.c. beyond I_0 regions
Joints of Special Moment Frames ACI 318-14 (Sec. 18.3.3.1) ACI 318-14 (Table 18.8.4.1)	Use Tie Reinforcement as Required in Lo regions φν*Vn (k) = φν*12*(Av/s)*fyt*d (conservative) =	, Therefore use #4 Ties @ 172 ≥	4" o.c. in at SMF Joints Vu= 9.63
Ties ACI 318-14 (Sec. 25.7.2.1a)	sv, min (in) beyond I_0 regions = $(4/3)$ *dagg+ds =	1.5 ≥	4 , Therefore Minimum Tie Spacing is Adequate
ACI 318-14 (Sec. 25.7.2.1b)	sv, max (in) beyond lo regions = Min(16db, 48ds, dc,min)	16 ≥	6 , Therefore Maximum Tie Spacing is Adequate
ACI 318-14 (Sec. 25.7.2.2) Transverse Reinforcement	Tie Size =	4 ≥	3 , Therefore Tie Size is Adequate
ACI 318-14 (Sec. 18.7.6.2.1a) ACI 318-14 (Sec. 18.7.6.2.1b)	Ve (k) = Max Seismic Shear = Ag*f'c/20 (k) =	5.22 ≥ 52.20 ≥	Vu/2 (k) = 4.82 Pu (k) = 23.93 , Therefore Shear Reinforcement Shall be designed assuming Vc=0 for locations
ACI 318-14 (Eq. 22.5.2.2)	For Calculaton of Vc an Vs, d is to be taken as 0.8*h =	12.80 in	specified in Sec. 18.7.5.1
ACI 318-14 (Eq. 22.5.2.2) ACI 318-14 (Eq. 22.5.10.5.3)	$\phi v^* Vn (k) = \phi v^* Vs = \phi v^* (Av/s)^* fyt^* d =$	96 ≥	Vu (k) = 9.63 , Therefore #4 ties spaced @ 4" o.c. are adequate
TORSION	Torsional Strength		
Threshold Torsion ACI 318-14 (Sec. 22.7.4.1a & 22.7.1.1)	$\phi T_{th} \text{ compression (k)} = (\lambda^* \forall f c^* A_{cp}^2)/p_{cp} * \forall (1 + (Nu/4^* Ag^* \lambda^* \forall f c)) = (Nu/4^* Ag^* \lambda^* \forall f c)$		Tu (k) = 0.00 , Therefore Torsional Effects may be Neglected
		68.51 ≤	Tu (k) = 0.00 , Therefore Torsional Effects may be Neglected

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Page | **2** 6/21/2020 7:42 PM

Contents

1.	General Information	3
2.	Material Properties	3
	2.1. Concrete	3
	2.2. Steel	3
3.	Section	3
	3.1 Shape and Properties	3
	3.2. Section Figure	4
4.	Reinforcement	4
	4.1. Bar Set: ASTM A615	4
	4.2. Design Criteria	4
	4.3. Confinement and Factors	4
	4.4. Arrangement	4
5.	Factored Loads and Moments with Corresponding Capacity Ratios	. 5
6.	Diagrams	6
	6.1. PM at θ=0 [deg]	6
L	ist of Figures	
Fid	gure 1: Column section	4
	jaro 1. oolariin ooolori	

Page | 3 6/21/2020 7:42 PM

1. General Information

File Name	c:\senior project\lateral\beam design\cg.col
	design/cg.coi
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	X - axis
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Critical capacity

2. Material Properties 2.1. Concrete

Туре	Standard
f'c	3 ksi
Ec	3122.02 ksi
f _c	2.55 ksi
f_c ε_u β_1	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
ε _{yt}	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular
Width	16 in
Depth	10 in
A_g	160 in ²
I _x	1333.33 in⁴
l y	3413.33 in ⁴
r _x	2.88675 in
r _y	4.6188 in
r _y X _o Y _o	0 in
Yo	0 in

Page | **4** 6/21/2020 7:42 PM

3.2. Section Figure

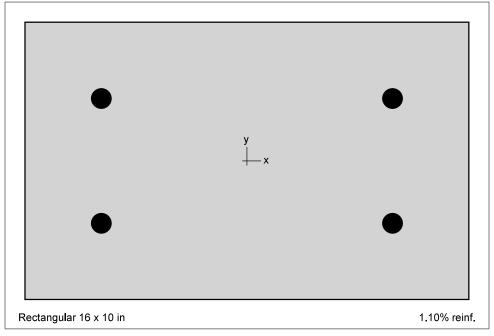


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	1.6 in ²
$A_{s,max} = 0.08 \times A_g$	12.8 in ²
Allowable Capacity Ratio (<1 is safe)	1.00

4.3. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

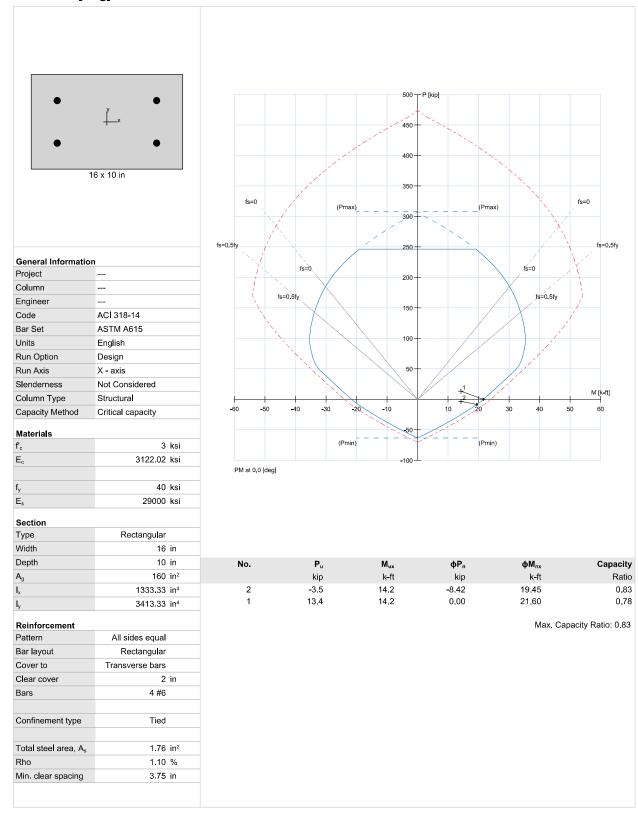
4.4. Arrangement

Pattern	All sides equal
---------	-----------------

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\cg.col

Page | 5 6/21/2020 7:42 PM

Bar layout	Rectangular
Cover to	Transverse bars
Clear cover	2 in
Bars	4 #6
Total steel area, A _s	1.76 in ²
Rho	1.10 %
Minimum clear spacing	3.75 in


5. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Critical Capacity" Method. Allowable Capacity (Ratio) <= 1.00

No.	Demand		Capacity		Param	eters at Capacity		Capacity
	Pu	M_{ux}	ΦP_n	фМ _{пх}	NA Depth	$\mathbf{\epsilon}_{t}$	ф	Ratio
	kip	k-ft	kip	k-ft	in			
1	13.41	14.21	0.00	21.60	1.94	0.00822	0.900	0.78
2	-3.50	14.21	-8.42	19.45	1.76	0.00936	0.900	0.83

Page | **6** 6/21/2020 7:42 PM

6. Diagrams

6.1. PM at θ=0 [deg]

C3 - Gravity Column Column Design

Bending Axis	Shear Axis	
X-X/3-3	Y-Y/2-2	
lux (out of plane span) (in) =	198	
luy (in plane span) (in) =	198	
b (in) =	10	
h (in) =	16	
long bar size =	6	
Tie size =	3	
number of longitudinal bars =	4	
Area of long bars =	0.442	
d' =	2.375	
f'c (psi) =	3000	
fy (psi) =	40000	
Pu Compression (k) =	13.41	
Pu Tension (k) =	3.52	
Tu (k-ft) =	0.00	
Max NA depth (in) =	3.7 6	bars in tension
Min NA depth (in) =	2.2 3	layers in tension
Mu Strong x (k-ft) =	8.90	
Mu Weak y (k-ft) =	0.00	

BENDING DESIGN

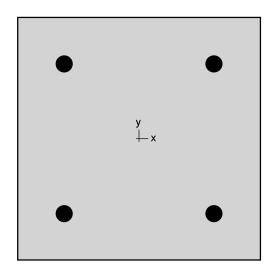
<u>Slenderness</u>

ACI 318-14 (Sec. 6.2.5 & 6.2.6) (k*I)/0.3*b =66.00 ≥ 22 Therefore, slenderness effects must be accounted for in SP Column Analysis

Column Design Requirements

Longitudinal Reinforcement ACI 318-14 (Sec. 18.7.4.1) $0.01 Ag \le Ast \le 0.06 Ag$

0.01Ag = 1.582329 , Therefore OK 0.06Ag = 9.493971 , Therefore OK Ast (in^2) = 1.767 ≥ Ast (in^2) = 1.767 ≤


SHEAR DESIGN

Column Design Requirements

Members not designated as part of	f the seismic-force-resisting system				
ACI 318-14 (Sec. 18.14.3.1)	Members have been designed for controling values in	ETABS model including δu e	ffects. Therefore	Section 18	3.14.3.2 applies
ACI 318-14 (Sec. 18.14.3.2b)	s _o ,max (in) = min(d-long*6, 6) =	-	fore use Tie Spaci		
ACI 318-14 (Sec. 18.14.3.2c)	0.35*Po (k) =	158 ≥	Pu (k) =	13.41	, Therefore no additional requirements need to be satisfied
Transverse Reinforcement					
ACI 318-14 (Sec. 18.7.5.2e)	hx (in) =	5.3 ≤	14 in , ⁻	Therefore	OK
ACI 318-14 (Sec. 18.7.5.2f)	0.03Ag*f'c(k) =	14.2 ≥	Pu (k) =	13.41	, Therefore hx is notrequired to be reduced
ACI 318-14 (Sec. 18.7.5.2f)	f'c (psi) =	3000 ≤	10000 ,	Therefore	hx is notrequired to be reduced
ACI 318-14 (Sec. 25.7.2.2)	Tie Size =	3 ≥	3,	Therefore	Tie Size is Adequate
Shear Strength Design Forces					
ACI 318-14 (Sec. 18.7.6.1.1)	Ve (k) = Max Seismic Shear =	0.736	This Colu		ned on Both Ends, Therefore No Shear is sferred by Seismic Activity
ACI 318-14 (Eq. 22.7.5.4b)	$\phi v^*Vn(k) = \phi v^*Vs = \phi v^*(Av/s)^*fyt^*d =$	52.02 ≥	Ve (k) =	0.74	, Therefore #3 Ties @ 5" o.c. are adequate beyond l₀ regions
Transverse Reinforcement					
ACI 318-14 (Sec. 18.7.6.2.1a)	Ve (k) = Max Seismic Shear =	0.736 ≤	Vu/2 (k) =	1.27	, Therefore Section 18.7.6.2.1 does not apply

spColumn v6.50
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2020, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Contents

1. General Information 3 2. Material Properties 3 2.1. Concrete 3 2.2. Steel 3 3. Section 3 3.1. Shape and Properties 3 3.2. Section Figure 4 4. Reinforcement 4 4.1. Bar Set ASTM A615 4 4.2. Design Criteria 4 4.3. Confinement and Factors 4 4.4. Arrangement 5 5. Loading 5 5. 1. Load Combinations 5 5. 2. Service Loads 5 5. 3. Sustained Load Factors 5 6. Slenderness 5 6. 1. Sway Criteria 6 6. 2. Columns 6 6. 3. X - Beams 6 6. 4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors: Y - axis 7 7. 4. Magnification Factors: Y - axis 7 7. 4. Magnification Factors: Y - axis 7 8. 1. X - axis 8 8. 2. Y - axis 9	_		
2.1 Concrete 3 2.2 Steel 3 3. Section 3 3.1. Shape and Properties 3 3.2. Section Figure 4 4. Reinforcement 4 4.1. Bar Set: ASTM A615 4 4.2. Design Criteria 4 4.3. Confinement and Factors 4 4.4. Arrangement 5 5. Loading 5 5. 1. Load Combinations 5 5. 2. Service Loads 5 5. 3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 6.2. Effective Length Factors 7 7.3. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10			
2.2. Steel 3 3. Section 3 3.1. Shape and Properties 3 3.2. Section Figure 4 4. Reinforcement 4 4.1. Bar Set ASTM A615 4 4.2. Design Criteria 4 4.3. Confinement and Factors 4 4.4. Arrangement 5 5. Loading 5 5.1. Load Combinations 5 5.2. Service Loads 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 6. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: Y - axis 7 7.4. Magnification Factors: Y - axis 7 7.5. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13			
3 3.1. Shape and Properties 3 3 3.1. Shape and Properties 4 4 4. Reinforcement 4 4 1. Bar Set: ASTM A615 4 4.2. Design Criteria 4 4 3.2. Confinement and Factors 4 4 4.4. Arrangement 5 5 Loading 5 5 5.1. Load Combinations 5 5 5.2. Service Loads 5 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6 6.3. X - Beams 6 6 6.4. Y - Beams 6 6 6.4. Y - Beams 7 7.4. Magnification Factors: X - axis 7 7.4. Magnification Factors: X - axis 7 7 7.4. Magnification Factors: Y - axis 7 7 8. Factored Moments with Corresponding Capacity Ratios 10. Diagrams 13 10.1. PM at θ=0 [deg] 13. List of Figures 14. List of Figures			
3.1. Shape and Properties			
3.2. Section Figure 4 4. Reinforcement 4 4.1. Bar Set: ASTM A615 4 4.2. Design Criteria 4 4.3. Confinement and Factors 4 4.4. Arrangement 5 5. Loading 5 5.1. Load Combinations 5 5.2. Service Loads 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 7 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip]			
4. Reinforcement 4 4.1. Bar Set: ASTM A615 4 4.2. Design Criteria 4 4.3. Confinement and Factors 4 4.4. Arrangement 5 5. Loading 5 5.1. Load Combinations 5 5.2. Service Loads 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14			
4.1. Bar Set: ASTM A615			
4.2. Design Criteria			
4.3. Confinement and Factors 4 4.4. Arrangement. 5 5. Loading. 5 5.1. Load Combinations 5 5.2. Service Loads 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Eactored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14			
4.4. Arrangement. 5 5. Loading. 5 5.1. Load Combinations 5 5.2. Service Loads. 5 5.3. Sustained Load Factors 5 6. Slenderness. 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors: 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Eactored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at 0=0 [deg] 13 10.2. MM at P=2 [kip] 14			
5. Loading 5 5.1. Load Combinations 5 5.2. Service Loads 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14			
5.1. Load Combinations 5 5.2. Service Loads 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14			
5.2. Service Loads 5 5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.2. A. Feams 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at 0=0 [deg] 13 10.2. MM at P=2 [kip] 14			
5.3. Sustained Load Factors 5 6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14			
6. Slenderness 6 6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7. Moment Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
6.1. Sway Criteria 6 6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14			
6.2. Columns 6 6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14			
6.3. X - Beams 6 6.4. Y - Beams 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
6.4. Y - Beams. 6 7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
7. Moment Magnification 6 7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
7.1. General Parameters 6 7.2. Effective Length Factors 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
7.2. Effective Length Factors. 7 7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
7.3. Magnification Factors: X - axis 7 7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
7.4. Magnification Factors: Y - axis 7 8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
8. Factored Moments 8 8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
8.1. X - axis 8 8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
8.2. Y - axis 9 9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
9. Factored Loads and Moments with Corresponding Capacity Ratios 10 10. Diagrams 13 10.1. PM at θ=0 [deg] 13 10.2. MM at P=2 [kip] 14 List of Figures			
10. Diagrams	8	.2. Y - axis	. 9
10.1. PM at θ=0 [deg]	9. F	actored Loads and Moments with Corresponding Capacity Ratios	10
10.2. MM at P=2 [kip]			
List of Figures		• ••	
List of Figures	1	0.2. MM at P=2 [kip]	14
List of Figures			
List of Figures			
	Li	ist of Figures	
Figure 1: Column section	Fia	ure 1: Column section	. 4

Page | **3** 6/21/2020 7:41 PM

1. General Information

File Name	c:\senior project\lateral\beam design\cc.col
Project	
Column	
Engineer	
Code	ACI 318-14
Bar Set	ASTM A615
Units	English
Run Option	Design
Run Axis	Biaxial
Slenderness	Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f'c	3 ksi
Ec	3122.02 ksi
f _c	2.55 ksi
$\epsilon_{\rm u}$	0.003 in/in
β ₁	0.85

2.2. Steel

Туре	Standard	
f _y	40	ksi
Es	29000	ksi
$\epsilon_{ ext{yt}}$	0.00137931	in/in

3. Section

3.1. Shape and Properties

Туре	Rectangular
Width	16 in
Depth	16 in
A_g	256 in ²
I _x	5461.33 in⁴
l y	5461.33 in⁴
r _x	4.6188 in
r _y	4.6188 in
X _o	0 in
Y _o	0 in

3.2. Section Figure

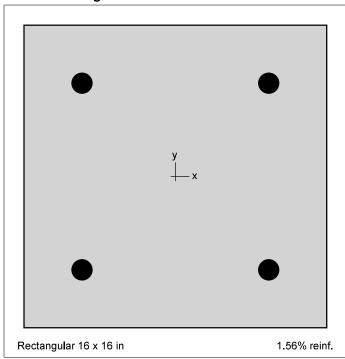


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	2.56 in ²
$A_{s,max} = 0.08 \times A_g$	20.48 in ²
Allowable Capacity Ratio (<1 is safe)	0.98

4.3. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#4 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

Page | 5 6/21/2020 7:41 PM

4.4. Arrangement

Pattern	All sides equal
Bar layout	Rectangular
Cover to	Transverse bars
Clear cover	2 in
Bars	4 #9
Total steel area, A _s	4.00 in ²
Rho	1.56 %
Minimum clear spacing	8.74 in

5. Loading 5.1. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.400	0.000	0.000	0.000	1.000
U2	1.200	1.600	0.000	0.000	1.000
U3	1.200	0.500	0.000	0.000	1.000
U4	1.200	0.000	0.000	1.000	1.000
U5	0.900	0.000	0.000	1.000	1.000
U6	1.200	0.000	0.000	-1.000	1.000
U7	0.900	0.000	0.000	- 1.000	1.000

5.2. Service Loads

No.	Load Case	Axial Load	Мх @ Тор	Mx @ Bottom	My @ Top	My @ Bottom
		kip	k-ft	k-ft	k-ft	k-ft
1	Dead	1.61	0.87	0.00	0.07	0.00
1	Live	2.47	1.33	0.00	0.11	0.00
1	Wind	0.00	0.00	0.00	0.00	0.00
1	EQ	0.00	61.81	0.00	0.00	0.00
1	Snow	0.00	0.00	0.00	0.00	0.00
2	Dead	1.61	0.87	0.00	0.07	0.00
2	Live	2.47	1.33	0.00	0.11	0.00
2	Wind	0.00	0.00	0.00	0.00	0.00
2	EQ	0.25	0.00	0.00	62.10	0.00
2	Snow	0.00	0.00	0.00	0.00	0.00
3	Dead	1.61	0.87	0.00	0.07	0.00
3	Live	2.47	1.33	0.00	0.11	0.00
3	Wind	0.00	0.00	0.00	0.00	0.00
3	EQ	-0.25	0.00	0.00	62.10	0.00
3	Snow	0.00	0.00	0.00	0.00	0.00

5.3. Sustained Load Factors

Load Case	Factor
	%
Dead	0
Live	0
Wind	0
EQ	0
Snow	0

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\cc.col Page | 6 6/21/2020 7:41 PM

6. Slenderness

6.1. Sway Criteria

X-Axis	Sway column
2 nd order effects along length	Considered
ΣPc	4.00 x P _c
ΣP_u	4.00 x P _u
Y-Axis	Sway column
2 nd order effects along length	Considered
ΣPc	4.00 x P _c
ΣP_u	4.00 x P _u

6.2. Columns

Column	Axis	Height	Width	Depth	I	f'c	Ec
		ft	in	in	in⁴	ksi	ksi
Design	Χ	11.188	16	16	5461.33	3	3122.02
Design	Υ	11.1888	16	16	5461.33	3	3122.02
Above	Χ	(no column specified)	(no column specified)				
Above	Υ	(no column specified)	(no column specified)				
Below	Χ	(no column specified)					
Below	Υ	(no column specified)					

6.3. X - Beams

Beam	Length	Width	Depth	Ī	f'c	Ec
	ft	in	in	in⁴	ksi	ksi
Above Left	21	16	8	682.667	3	3122.02
Above Right	(no beam specified)					
Below Left	(no beam specified)					
Below Right	(no beam specified)					

6.4. Y - Beams

Beam	Length	Width	Depth	ı	f'c	Ec
	ft	in	in	in⁴	ksi	ksi
Above Left	(no beam specified)					
Above Right	9.5	16	8	682.667	3	3122.02
Below Left	(no beam specified)					
Below Right	(no beam specified)					

7. Moment Magnification

7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, ϕ_K	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
0.2 E _c I _g + E _s I _{se} (X-axis)	6.24e+006 kip-in ²
0.2 E _c I _g + E _s I _{se} (Y-axis)	6.24e+006 kip-in ²
Minimum eccentricity, e _{x min}	1.08 in
Minimum eccentricity, e _{y min}	1.08 in

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\cc.col Page | **7** 6/21/2020 7:41 PM

7.2. Effective Length Factors

Axis	Ψ_{top}	$\Psi_{ ext{bottom}}$	k (Nonsway)	k (Sway)	kl _u /r
Х	29.163	999.000	0.993	7.047	204.83
Υ	13.192	999.000	0.985	4.965	144.33

Notes:

Slenderness kI_u/r is greater than 100.

A second-order frame analysis is recommended to account for slenderness.

7.3. Magnification Factors: X - axis

Load			Α	t Ends			Along Length						
Combo	,	$\sum P_u$	P_c	$\sum P_c$	β_{ds}	δ_{s}	P_{u}	k'l _u /r	Pc	β_{dns}	C _m	δ	
		kip	kip	kip			kip		kip				
1	U1	9.01	68.77	275.07	0.000	1.046	2.25	(N/A)	3463.12	0.000	0.600	1.000	
1	U2	23.54	68.77	275.07	0.000	1.129	5.88	(N/A)	3463.12	0.000	0.600	1.000	
1	U3	12.67	68.77	275.07	0.000	1.065	3.17	(N/A)	3463.12	0.000	0.600	1.000	
1	U4	7.72	68.77	275.07	0.000	1.039	1.93	(N/A)	3463.12	0.000	0.600	1.000	
1	U5	5.79	68.77	275.07	0.000	1.029	1.45	(N/A)	3463.12	0.000	0.600	1.000	
1	U6	7.72	68.77	275.07	0.000	1.039	1.93	(N/A)	3463.12	0.000	0.600	1.000	
1	U7	5.79	68.77	275.07	0.000	1.029	1.45	(N/A)	3463.12	0.000	0.600	1.000	
2	U1	9.01	68.77	275.07	0.000	1.046	2.25	(N/A)	3463.12	0.000	0.600	1.000	
2	U2	23.54	68.77	275.07	0.000	1.129	5.88	(N/A)	3463.12	0.000	0.600	1.000	
2	U3	12.67	68.77	275.07	0.000	1.065	3.17	(N/A)	3463.12	0.000	0.600	1.000	
2	U4	8.71	68.77	275.07	0.000	1.044	2.18	(N/A)	3463.12	0.000	0.600	1.000	
2	U5	6.78	68.77	275.07	0.000	1.034	1.69	(N/A)	3463.12	0.000	0.600	1.000	
2	U6	6.74	68.77	275.07	0.000	1.034	1.68	(N/A)	3463.12	0.000	0.600	1.000	
2	U7	4.81	68.77	275.07	0.000	1.024	1.20	(N/A)	3463.12	0.000	0.600	1.000	
3	U1	9.01	68.77	275.07	0.000	1.046	2.25	(N/A)	3463.12	0.000	0.600	1.000	
3	U2	23.54	68.77	275.07	0.000	1.129	5.88	(N/A)	3463.12	0.000	0.600	1.000	
3	U3	12.67	68.77	275.07	0.000	1.065	3.17	(N/A)	3463.12	0.000	0.600	1.000	
3	U4	6.74	68.77	275.07	0.000	1.034	1.68	(N/A)	3463.12	0.000	0.600	1.000	
3	U5	4.81	68.77	275.07	0.000	1.024	1.20	(N/A)	3463.12	0.000	0.600	1.000	
3	U6	8.71	68.77	275.07	0.000	1.044	2.18	(N/A)	3463.12	0.000	0.600	1.000	
3	U7	6.78	68.77	275.07	0.000	1.034	1.69	(N/A)	3463.12	0.000	0.600	1.000	

7.4. Magnification Factors: Y - axis

		roution r ut											
Load			At	Ends			Along Length						
Combo)	$\sum P_u$	Pc	$\sum P_c$	β_{ds}	δs	P_{u}	k'l _u /r	P_c	$oldsymbol{eta}_{ extsf{dns}}$	C_{m}	δ	
		kip	kip	kip			kip		kip				
1	U1	9.01	138.50	553.99	0.000	1.022	2.25	(N/A)	3518.20	0.000	0.600	1.000	
1	U2	23.54	138.50	553.99	0.000	1.060	5.88	(N/A)	3518.20	0.000	0.600	1.000	
1	U3	12.67	138.50	553.99	0.000	1.031	3.17	(N/A)	3518.20	0.000	0.600	1.000	
1	U4	7.72	138.50	553.99	0.000	1.019	1.93	(N/A)	3518.20	0.000	0.600	1.000	
1	U5	5.79	138.50	553.99	0.000	1.014	1.45	(N/A)	3518.20	0.000	0.600	1.000	
1	U6	7.72	138.50	553.99	0.000	1.019	1.93	(N/A)	3518.20	0.000	0.600	1.000	
1	U7	5.79	138.50	553.99	0.000	1.014	1.45	(N/A)	3518.20	0.000	0.600	1.000	
2	U1	9.01	138.50	553.99	0.000	1.022	2.25	(N/A)	3518.20	0.000	0.600	1.000	
2	U2	23.54	138.50	553.99	0.000	1.060	5.88	(N/A)	3518.20	0.000	0.600	1.000	
2	U3	12.67	138.50	553.99	0.000	1.031	3.17	(N/A)	3518.20	0.000	0.600	1.000	
2	U4	8.71	138.50	553.99	0.000	1.021	2.18	(N/A)	3518.20	0.000	0.600	1.000	
2	U5	6.78	138.50	553.99	0.000	1.017	1.69	(N/A)	3518.20	0.000	0.600	1.000	
2	U6	6.74	138.50	553.99	0.000	1.016	1.68	(N/A)	3518.20	0.000	0.600	1.000	
2	U7	4.81	138.50	553.99	0.000	1.012	1.20	(N/A)	3518.20	0.000	0.600	1.000	
3	U1	9.01	138.50	553.99	0.000	1.022	2.25	(N/A)	3518.20	0.000	0.600	1.000	
3	U2	23.54	138.50	553.99	0.000	1.060	5.88	(N/A)	3518.20	0.000	0.600	1.000	
3	U3	12.67	138.50	553.99	0.000	1.031	3.17	(N/A)	3518.20	0.000	0.600	1.000	
3	U4	6.74	138.50	553.99	0.000	1.016	1.68	(N/A)	3518.20	0.000	0.600	1.000	

Page | **8** 6/21/2020 7:41 PM

Load			P	t Ends			Along Length						
Combo)	∑Pu	P_c	ΣP_c	β_{ds}	δ_{s}	$P_{\rm u}$	k'l _u /r	P_c	β_{dns}	C _m	δ	
		kip	kip	kip			kip		kip				
3	U5	4.81	138.50	553.99	0.000	1.012	1.20	(N/A)	3518.20	0.000	0.600	1.000	
3	U6	8.71	138.50	553.99	0.000	1.021	2.18	(N/A)	3518.20	0.000	0.600	1.000	
3	U7	6.78	138.50	553.99	0.000	1.017	1.69	(N/A)	3518.20	0.000	0.600	1.000	

8. Factored Moments

NOTE: Each loading combination includes the following cases:

Top - At column top
Bot - At column bottom

8.1. X - axis

Load				1 st Order				2 nd Order		Ratio	
Comb	0		M _{ns}	M_s	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
1	U1	Тор	1.21	0.00	1.21	0.20	M ₂ =	1.21	1.21	1.000	
1	U1	Bot	0.00	0.00	0.00	0.20	M ₁ =	0.00	0.20	1.000	
1	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	3.17	0.00	3.17	0.53	M ₂ =	3.17	3.17	1.000	
1	U2	Тор	0.00	0.00	0.00	0.53	M ₁ =	0.00	0.53	1.000	
1	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U3	Top	1.70	0.00	1.70	0.28	M ₂ =	1.70	1.70	1.000	
1	U3	Bot	0.00	0.00	0.00	0.28	M ₁ =	0.00	0.28	1.000	
1	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.04	61.81	62.85	0.17	M ₂ =	65.25	65.25	1.038	
1	U4	Top	0.00	0.00	0.00	0.17	M₁=	0.00	0.17	1.000	
1	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
1	U5	Top	0.78	61.81	62.59	0.13	M ₂ =	64.37	64.37	1.029	
1	U5	Bot	0.00	0.00	0.00	0.13	M ₁ =	0.00	0.13	1.000	
1	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.04	-61.81	-60.77	-0.17	M ₂ =	-63.17	-63.17	1.040	
1	U6	Top	0.00	0.00	0.00	0.17	M₁=	0.00	0.17	1.000	
1	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
1	U7	Тор	0.78	-61.81	-61.03	-0.13	M ₂ =	- 62.82	- 62.82	1.029	
1	U7	Bot	0.00	0.00	0.00	0.13	M ₁ =	0.00	0.13	1.000	
1	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.21	0.00	1.21	0.20	M ₂ =	1.21	1.21	1.000	
2	U1	Тор	0.00	0.00	0.00	0.20	M ₁ =	0.00	0.20	1.000	
2	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
2	U2	Тор	3.17	0.00	3.17	0.53	M ₂ =	3.17	3.17	1.000	
2	U2	Bot	0.00	0.00	0.00	0.53	M ₁ =	0.00	0.53	1.000	
2	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.70	0.00	1.70	0.28	M ₂ =	1.70	1.70	1.000	
2	U3	Тор	0.00	0.00	0.00	0.28	M ₁ =	0.00	0.28	1.000	
2	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
2	U4	Top	1.04	0.00	1.04	0.20	M ₂ =	1.04	1.04	1.000	
2	U4	Bot	0.00	0.00	0.00	0.20	M₁=	0.00	0.20	1.000	
2	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.78	0.00	0.78	0.15	M ₂ =	0.78	0.78	1.000	
2	U5	Тор	0.00	0.00	0.00	0.15	M ₁ =	0.00	0.15	1.000	
2	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
2	U6	Тор	1.04	0.00	1.04	0.15	M ₂ =	1.04	1.04	1.000	
2	U6	Bot	0.00	0.00	0.00	0.15	M ₁ =	0.00	0.15	1.000	
2	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.78	0.00	0.78	0.11	M ₂ =	0.78	0.78	1.000	
2	U7	Тор	0.00	0.00	0.00		M ₁ =	0.00	0.11	1.000	

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\cc.col Page | 9 6/21/2020 7:41 PM

Load		1				Ratio					
Combo	o		M _{ns}	$M_{\rm s}$	Mu	M_{\min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
2	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U1	Top	1.21	0.00	1.21	0.20	M ₂ =	1.21	1.21	1.000	
3	U1	Bot	0.00	0.00	0.00	0.20	M ₁ =	0.00	0.20	1.000	#
3	U1	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	3.17	0.00	3.17	0.53	M ₂ =	3.17	3.17	1.000	
3	U2	Top	0.00	0.00	0.00	0.53	M ₁ =	0.00	0.53	1.000	#
3	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U3	Тор	1.70	0.00	1.70	0.28	M ₂ =	1.70	1.70	1.000	
3	U3	Bot	0.00	0.00	0.00	0.28	M ₁ =	0.00	0.28	1.000	#
3	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.04	0.00	1.04	0.15	M ₂ =	1.04	1.04	1.000	
3	U4	Тор	0.00	0.00	0.00	0.15	M ₁ =	0.00	0.15	1.000	#
3	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U5	Тор	0.78	0.00	0.78	0.11	M ₂ =	0.78	0.78	1.000	
3	U5	Bot	0.00	0.00	0.00	0.11	M ₁ =	0.00	0.11	1.000	#
3	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	1.04	0.00	1.04	0.20	M ₂ =	1.04	1.04	1.000	
3	U6	Тор	0.00	0.00	0.00	0.20	M ₁ =	0.00	0.20	1.000	#
3	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U7	Тор	0.78	0.00	0.78	0.15	M ₂ =	0.78	0.78	1.000	
3	U7	Bot	0.00	0.00	0.00	0.15	M ₁ =	0.00	0.15	1.000	#
3	U7	Bot				(N/A)		0.00	0.00	1.000	

M_{min} exceeds M_i for X and Y - axis bending but shall be applied to each axis separately for capacity check.

8.2. Y - axis

Load			1	st Order				2 nd Order		Ratio	
Combo)		M _{ns}	Ms	Mu	M _{min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
1	U1	Тор	0.10	0.00	0.10	0.20	M ₂ =	0.10	0.20	1.000	-
1	U1	Bot	0.00	0.00	0.00	0.20	$M_1=$	0.00	0.20	1.000	#
1	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	0.27	0.00	0.27	0.53	$M_2=$	0.27	0.53	1.000	
1	U2	Top	0.00	0.00	0.00	0.53	$M_1=$	0.00	0.53	1.000	#
1	U2	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
1	U3	Top	0.15	0.00	0.15	0.28	$M_2=$	0.15	0.28	1.000	
1	U3	Bot	0.00	0.00	0.00	0.28	$M_1=$	0.00	0.28	1.000	#
1	U3	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	0.09	0.00	0.09	0.17	$M_2=$	0.09	0.17	1.000	
1	U4	Тор	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
1	U4	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
1	U5	Top	0.07	0.00	0.07	0.13	$M_2=$	0.07	0.13	1.000	
1	U5	Bot	0.00	0.00	0.00	0.13	$M_1=$	0.00	0.13	1.000	#
1	U5	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	0.09	0.00	0.09	0.17	$M_2=$	0.09	0.17	1.000	
1	U6	Тор	0.00	0.00	0.00	0.17	$M_1=$	0.00	0.17	1.000	#
1	U6	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
1	U7	Top	0.07	0.00	0.07	0.13	$M_2=$	0.07	0.13	1.000	
1	U7	Bot	0.00	0.00	0.00	0.13	$M_1=$	0.00	0.13	1.000	#
1	U7	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
	U	Bot	0.10	0.00	0.10	0.20	$M_2=$	0.10	0.20	1.000	
2	U1	Тор	0.00	0.00	0.00	0.20	$M_1=$	0.00	0.20	1.000	#
2	U1	Bot				(N/A)	$M_1=$	0.00	0.00	1.000	
2	U2	Тор	0.27	0.00	0.27	0.53	$M_2=$	0.27	0.53	1.000	

Load				1st Order				2 nd Order		Ratio	
Comb	0		M _{ns}	M_s	Mu	M _{min}		Mi	Mc	2 nd /1 st	
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft		
2	U2	Bot	0.00	0.00	0.00	0.53	M ₁ =	0.00	0.53	1.000	#
2	U2	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.15	0.00	0.15	0.28	M ₂ =	0.15	0.28	1.000	
2	U3	Top	0.00	0.00	0.00	0.28	M ₁ =	0.00	0.28	1.000	#
2	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
2	U4	Top	0.09	62.10	62.19	0.20	M ₂ =	63.52	63.52	1.021	
2	U4	Bot	0.00	0.00	0.00	0.20	M ₁ =	0.00	0.20	1.000	#
2	U4	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	0.07	62.10	62.17	0.15	M ₂ =	63.20	63.20	1.017	
2	U5	Top	0.00	0.00	0.00	0.15	M ₁ =	0.00	0.15	1.000	#
2	U5	Bot				(N/A)	M₁=	0.00	0.00	1.000	
2	U6	Тор	0.09	- 62.10	- 62.01	-0.15	M ₂ =	- 63.04	-63.04	1.017	
2	U6	Bot	0.00	0.00	0.00	0.15	M₁=	0.00	0.15	1.000	#
2	U6	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	0.07	- 62.10	- 62.03	-0.11	M ₂ =	- 62.76	-62.76	1.012	
2	U7	Top	0.00	0.00	0.00	0.11	M ₁ =	0.00	0.11	1.000	#
2	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U1	Top	0.10	0.00	0.10	0.20	M ₂ =	0.10	0.20	1.000	
3	U1	Bot	0.00	0.00	0.00	0.20	M ₁ =	0.00	0.20	1.000	#
3	U1	Bot				(N/A)	M₁=	0.00	0.00	1.000	
	U	Bot	0.27	0.00	0.27	0.53	M ₂ =	0.27	0.53	1.000	
3	U2	Top	0.00	0.00	0.00	0.53	M₁=	0.00	0.53	1.000	#
3	U2	Bot				(N/A)	M₁=	0.00	0.00	1.000	
3	U3	Top	0.15	0.00	0.15	0.28	M ₂ =	0.15	0.28	1.000	
3	U3	Bot	0.00	0.00	0.00	0.28	M ₁ =	0.00	0.28	1.000	#
3	U3	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.09	62.10	62.19	0.15	M ₂ =	63.21	63.21	1.016	
3	U4	Top	0.00	0.00	0.00	0.15	M ₁ =	0.00	0.15	1.000	#
3	U4	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U5	Top	0.07	62.10	62.17	0.11	M ₂ =	62.89	62.89	1.012	
3	U5	Bot	0.00	0.00	0.00	0.11	M ₁ =	0.00	0.11	1.000	#
3	U5	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
	U	Bot	0.09	- 62.10	- 62.01	-0.20	M ₂ =	-63.34	-63.34	1.021	
3	U6	Тор	0.00	0.00	0.00	0.20	M ₁ =	0.00	0.20	1.000	#
3	U6	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	
3	U7	Тор	0.07	- 62.10	- 62.03	- 0.15	M ₂ =	- 63.06	-63.06	1.017	
3	U7	Bot	0.00	0.00	0.00	0.15	M ₁ =	0.00	0.15	1.000	#
3	U7	Bot				(N/A)	M ₁ =	0.00	0.00	1.000	

M_{min} exceeds M_i for X and Y - axis bending but shall be applied to each axis separately for capacity check.

9. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method.

Allowable Capacity (Ratio) <= 0.98

Each loading combination includes the following cases:

Top - At column top
Bot - At column bottom

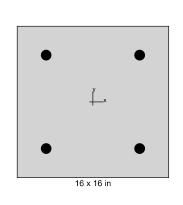
No. Load Demand			Demand		C	apacity		Parame	city	Capacity		
Cor	nbo		P_{u}	M_{ux}	Muy	ϕP_n	ϕM_{nx}	ϕM_{ny}	NA Depth	ε _t	ф	Ratio
			kip	k-ft	k-ft	kip	k - ft	k-ft	in			
1 1	U1	Тор	2.25	1.21	0.20	2.25	73.15	12.23	3.56	0.00913	0.900	0.02
2 1	U1	Bot	2.25	0.20	0.00	2.25	73.85	0.00	2.82	0.01077	0.900	0.00
3 1	U1	Bot	2.25	0.00	0.20	2.25	0.00	73.85	2.82	0.01077	0.900	0.00
4 1	U2	Top	5.88	3.17	0.53	5.88	74.71	12.49	3.62	0.00892	0.900	0.04
5 1	U2	Bot	5.88	0.53	0.00	5.88	75.40	0.00	2.86	0.01058	0.900	0.01

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\cc.col

Page | **11** 6/21/2020 7:41 PM

No. Load Pu	Capacity
kip k-ft k-ft kip k-ft k-ft in 6 1 U2 Bot 5.88 0.00 0.53 5.88 0.00 75.40 2.86 0.01058 0.900 7 1 U3 Top 3.17 1.70 0.28 3.17 73.55 12.30 3.57 0.00907 0.900 8 1 U3 Bot 3.17 0.28 0.00 3.17 74.25 0.00 2.83 0.01072 0.900 9 1 U3 Bot 3.17 0.00 0.28 3.17 0.00 74.25 2.83 0.01072 0.900 10 1 U4 Top 1.93 65.25 0.17 1.93 73.70 0.20 2.83 0.01076 0.900 11 1 U4 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 12 1 U4 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 13 1 U5 Top 1.45 64.37 0.13 1.4	Ratio
6 1 U2 Bot 5.88 0.00 0.53 5.88 0.00 75.40 2.86 0.01058 0.900 7 1 U3 Top 3.17 1.70 0.28 3.17 73.55 12.30 3.57 0.00907 0.900 8 1 U3 Bot 3.17 0.28 0.00 3.17 74.25 0.00 2.83 0.01072 0.900 9 1 U3 Bot 3.17 0.00 0.28 3.17 0.00 74.25 2.83 0.01072 0.900 10 1 U4 Top 1.93 65.25 0.17 1.93 73.70 0.20 2.83 0.01072 0.900 11 1 U4 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 12 1 U4 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 13 1 U5 Top 1.45 64.37 0.13 1.45 73.49 0.15 2.82 0.01080 0.900 14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 Top 1.93 -63.17 0.17 1.93 73.71 0.00 2.81 0.01079 0.900 17 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01082 0.900 18 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01082 0.900 18 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01082 0.900 18 1 U6 Bot 1.93 0.07 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.07 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.01 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15 2.82 0.01080 0.900 2.00 19 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01079 0.900 2.00 2.00 2.00 2.00 2.00 2.00 2.	Ratio
7 1 U3 Top 3.17 1.70 0.28 3.17 73.55 12.30 3.57 0.00907 0.900 8 1 U3 Bot 3.17 0.28 0.00 3.17 74.25 0.00 2.83 0.01072 0.900 9 1 U3 Bot 3.17 0.00 0.28 3.17 0.00 74.25 2.83 0.01072 0.900 10 1 U4 Top 1.93 65.25 0.17 1.93 73.70 0.20 2.83 0.01076 0.900 11 1 U4 Bot 1.93 0.017 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 13 1 U5 Top 1.45 64.37 0.13 1.45 73.49 0.15 2.82 0.01080 0.900 14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 <	0.01
8 1 U3 Bot 3.17 0.28 0.00 3.17 74.25 0.00 2.83 0.01072 0.900 9 1 U3 Bot 3.17 0.00 0.28 3.17 0.00 74.25 2.83 0.01072 0.900 10 1 U4 Top 1.93 65.25 0.17 1.93 73.70 0.20 2.83 0.01076 0.900 11 1 U4 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 13 1 U5 Top 1.45 64.37 0.13 1.45 73.49 0.15 2.82 0.01080 0.900 14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 <td>0.01</td>	0.01
9 1 U3 Bot	0.02
10 1 U4 Top 1.93 65.25 0.17 1.93 73.70 0.20 2.83 0.01076 0.900 11 1 U4 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 12 1 U4 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 13 1 U5 Top 1.45 64.37 0.13 1.45 73.49 0.15 2.82 0.01080 0.900 14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 Top 1.93 0.17 0.00 1.93 73.71 0.00	0.00
11 1 U4 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 12 1 U4 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 13 1 U5 Top 1.45 64.37 0.13 1.45 73.49 0.15 2.82 0.01080 0.900 14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 Top 1.93 -63.17 0.17 1.93 -73.69 0.20 2.83 0.01076 0.900 17 1 U6 Bot 1.93 0.17 0.90 1.93 73.71 0.00	0.89
12 1 U4 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 13 1 U5 Top 1.45 64.37 0.13 1.45 73.49 0.15 2.82 0.01080 0.900 14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 Top 1.93 -63.17 0.17 1.93 -73.69 0.20 2.83 0.01076 0.900 17 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.00 0.17 1.93 0.00 73.71	0.00
13 1 U5 Top 1.45 64.37 0.13 1.45 73.49 0.15 2.82 0.01080 0.900 14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 Top 1.93 -63.17 0.17 1.93 -73.69 0.20 2.83 0.01076 0.900 17 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15	0.00
14 1 U5 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 Top 1.93 -63.17 0.17 1.93 -73.69 0.20 2.83 0.01076 0.900 17 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15 2.82 0.01080 0.900 20 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00	0.88
15 1 U5 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 16 1 U6 Top 1.93 -63.17 0.17 1.93 -73.69 0.20 2.83 0.01076 0.900 17 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15 2.82 0.01080 0.900 20 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 21 1 U7 Bot 1.45 0.00 0.13 1.45 0.00 73.50	0.00
16 1 U6 Top 1.93 -63.17 0.17 1.93 -73.69 0.20 2.83 0.01076 0.900 17 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15 2.82 0.01080 0.900 20 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 21 1 U7 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 22 2 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23	0.00
17 1 U6 Bot 1.93 0.17 0.00 1.93 73.71 0.00 2.81 0.01079 0.900 18 1 U6 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15 2.82 0.01080 0.900 20 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 21 1 U7 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 22 2 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23 3.56 0.00913 0.900 23 2 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00	0.86
18 1 U6 Bot 1.93 0.00 0.17 1.93 0.00 73.71 2.81 0.01079 0.900 19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15 2.82 0.01080 0.900 20 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 21 1 U7 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 22 2 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23 3.56 0.00913 0.900 23 2 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00 2.82 0.01077 0.900 24 2 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85	0.00
19 1 U7 Top 1.45 -62.82 0.13 1.45 -73.49 0.15 2.82 0.01080 0.900 20 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 21 1 U7 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 22 2 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23 3.56 0.00913 0.900 23 2 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00 2.82 0.01077 0.900 24 2 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85 2.82 0.01077 0.900	0.00
20 1 U7 Bot 1.45 0.13 0.00 1.45 73.50 0.00 2.81 0.01082 0.900 21 1 U7 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 22 2 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23 3.56 0.00913 0.900 23 2 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00 2.82 0.01077 0.900 24 2 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85 2.82 0.01077 0.900	0.85
21 1 U7 Bot 1.45 0.00 0.13 1.45 0.00 73.50 2.81 0.01082 0.900 22 2 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23 3.56 0.00913 0.900 23 2 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00 2.82 0.01077 0.900 24 2 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85 2.82 0.01077 0.900	0.00
22 2 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23 3.56 0.00913 0.900 23 2 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00 2.82 0.01077 0.900 24 2 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85 2.82 0.01077 0.900	0.00
23 2 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00 2.82 0.01077 0.900 24 2 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85 2.82 0.01077 0.900	0.02
24 2 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85 2.82 0.01077 0.900	0.00
	0.00
	0.04
26 2 U2 Bot 5.88 0.53 0.00 5.88 75.40 0.00 2.86 0.01058 0.900	0.01
27 2 U2 Bot 5.88 0.00 0.53 5.88 0.00 75.40 2.86 0.01058 0.900	0.01
28 2 U3 Top 3.17 1.70 0.28 3.17 73.55 12.30 3.57 0.00907 0.900	0.02
29 2 U3 Bot 3.17 0.28 0.00 3.17 74.25 0.00 2.83 0.01072 0.900	0.00
30 2 U3 Bot 3.17 0.00 0.28 3.17 0.00 74.25 2.83 0.01072 0.900	0.00
31 2 U4 Top 2.18 1.04 63.52 2.18 1.21 73.75 2.89 0.01061 0.900	0.86
32 2 U4 Bot 2.18 0.20 0.00 2.18 73.81 0.00 2.82 0.01078 0.900	0.00
33 2 U4 Bot 2.18 0.00 0.20 2.18 0.00 73.81 2.82 0.01078 0.900	0.00
34 2 U5 Top 1.69 0.78 63.20 1.69 0.91 73.55 2.87 0.01068 0.900	0.86
35 2 U5 Bot 1.69 0.15 0.00 1.69 73.60 0.00 2.81 0.01080 0.900	0.00
36 2 U5 Bot 1.69 0.00 0.15 1.69 0.00 73.60 2.81 0.01080 0.900	0.00
37 2 U6 Top 1.68 1.04 -63.04 1.68 1.21 -73.53 2.88 0.01064 0.900	0.86
38 2 U6 Bot 1.68 0.15 0.00 1.68 73.60 0.00 2.81 0.01080 0.900	0.00
39 2 U6 Bot 1.68 0.00 0.15 1.68 0.00 73.60 2.81 0.01080 0.900	0.00
40 2 U7 Top 1.20 0.78 -62.76 1.20 0.91 -73.34 2.86 0.01071 0.900	0.86
41 2 U7 Bot 1.20 0.11 0.00 1.20 73.39 0.00 2.81 0.01083 0.900	0.00
42 2 U7 Bot 1.20 0.00 0.11 1.20 0.00 73.39 2.81 0.01083 0.900	0.00
43 3 U1 Top 2.25 1.21 0.20 2.25 73.15 12.23 3.56 0.00913 0.900	0.02
44 3 U1 Bot 2.25 0.20 0.00 2.25 73.85 0.00 2.82 0.01077 0.900	0.00
45 3 U1 Bot 2.25 0.00 0.20 2.25 0.00 73.85 2.82 0.01077 0.900	0.00
46 3 U2 Top 5.88 3.17 0.53 5.88 74.71 12.49 3.62 0.00892 0.900	0.04
47 3 U2 Bot 5.88 0.53 0.00 5.88 75.40 0.00 2.86 0.01058 0.900	0.01
48 3 U2 Bot 5.88 0.00 0.53 5.88 0.00 75.40 2.86 0.01058 0.900	0.01
49 3 U3 Top 3.17 1.70 0.28 3.17 73.55 12.30 3.57 0.00907 0.900	0.02
50 3 U3 Bot 3.17 0.28 0.00 3.17 74.25 0.00 2.83 0.01072 0.900	0.00
51 3 U3 Bot 3.17 0.00 0.28 3.17 0.00 74.25 2.83 0.01072 0.900	0.00
52 3 U4 Top 1.68 1.04 63.21 1.68 1.21 73.53 2.88 0.01064 0.900	0.86
53 3 U4 Bot 1.68 0.15 0.00 1.68 73.60 0.00 2.81 0.01080 0.900	0.00
54 3 U4 Bot 1.68 0.00 0.15 1.68 0.00 73.60 2.81 0.01080 0.900	0.00
55 3 U5 Top 1.20 0.78 62.89 1.20 0.91 73.34 2.86 0.01071 0.900	0.86
56 3 U5 Bot 1.20 0.11 0.00 1.20 73.39 0.00 2.81 0.01083 0.900	0.00
57 3 U5 Bot 1.20 0.00 0.11 1.20 0.00 73.39 2.81 0.01083 0.900	0.00
58 3 U6 Top 2.18 1.04 -63.34 2.18 1.21 -73.75 2.89 0.01061 0.900	0.86
59 3 U6 Bot 2.18 0.20 0.00 2.18 73.81 0.00 2.82 0.01078 0.900	0.00

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint, License ID: 65550-111111-4-215C1-XXXXX c:\senior project\lateral\beam design\cc.col

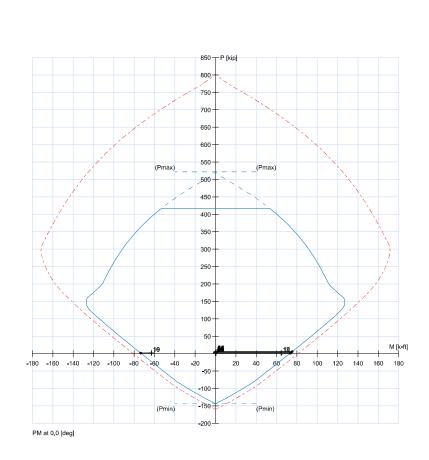

Page | **12** 6/21/2020 7:41 PM

No.	Loa	d			Demand		C	Capacity		Parame	ters at Capac	city	Capacity
	Cor	nbo		P_u	M_{ux}	M_{uy}	ϕP_n	ϕM_{nx}	ϕM_{ny}	NA Depth	$\mathbf{\epsilon}_{t}$	ф	Ratio
				kip	k-ft	k-ft	kip	k-ft	k-ft	in			
60	3	U6	Bot	2.18	0.00	0.20	2.18	0.00	73.81	2.82	0.01078	0.900	0.00
61	3	U7	Тор	1.69	0.78	-63.06	1.69	0.91	-73.55	2.87	0.01068	0.900	0.86
62	3	U7	Bot	1.69	0.15	0.00	1.69	73.60	0.00	2.81	0.01080	0.900	0.00
63	3	U7	Bot	1.69	0.00	0.15	1.69	0.00	73.60	2.81	0.01080	0.900	0.00

Page | **13** 6/21/2020 7:41 PM

10. Diagrams

10.1. PM at θ =0 [deg]

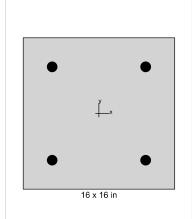

General Information							
Project							
Column							
Engineer							
Code	ACI 318-14						
Bar Set	ASTM A615						
Units	English						
Run Option	Design						
Run Axis	Biaxial						
Slenderness	Considered						
Column Type	Structural						
Capacity Method	Moment capacity						

Materials	
f' _c	3 ksi
E _c	3122.02 ksi
f _y	40 ksi
Es	29000 ksi

Section

Туре	Rectangular
Width	16 in
Depth	16 in
A_g	256 in ²
l _x	5461.33 in ⁴
l _y	5461.33 in ⁴
Reinforcement	

Reinforcement		
Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Transverse bars	
Clear cover	2	in
Bars	4 #9	
Confinement type	Tied	
Total steel area, A _s	4.00	in ²
Rho	1.56	%
Min. clear spacing	8.74	in


No.	Loa	ıd Com	bo	Pu	M _{ux}	M _{uv}	φP _n	φМ _{пх}	ϕM_{nv}	Capacity
				kip	k-ft	k-ft	kip	k-ft	k-ft	Ratio
10	1	U4	Тор	1.9	65.3	0.2	1.93	73.70	0.20	0.89
13	1	U5	Top	1.4	64.4	0.1	1.45	73.49	0.15	0.88
16	1	U6	Top	1.9	-63.2	0.2	1.93	- 73.69	0.20	0.86
19	1	U7	Top	1.4	-62.8	0.1	1.45	-73.49	0.15	0.85
5	1	U2	Bot	5.9	0.5	0.0	5.88	75.40	0.00	0.01
26	2	U2	Bot	5.9	0.5	0.0	5.88	75.40	0.00	0.01
47	3	U2	Bot	5.9	0.5	0.0	5.88	75.40	0.00	0.01
2	1	U1	Bot	2.3	0.2	0.0	2.25	73.85	0.00	0.00
8	1	U3	Bot	3.2	0.3	0.0	3.17	74.25	0.00	0.00
11	1	U4	Bot	1.9	0.2	0.0	1.93	73.71	0.00	0.00
14	1	U5	Bot	1.4	0.1	0.0	1.45	73.50	0.00	0.00
17	1	U6	Bot	1.9	0.2	0.0	1.93	73.71	0.00	0.00
20	1	U7	Bot	1.4	0.1	0.0	1.45	73.50	0.00	0.00
23	2	U1	Bot	2.3	0.2	0.0	2,25	73,85	0.00	0.00
29	2	U3	Bot	3.2	0.3	0.0	3.17	74.25	0.00	0.00

Max. Capacity Ratio: 0.89

Only 15 points out of 25 are listed.

Page | **14** 6/21/2020 7:41 PM

10.2. MM at P=2 [kip]

General Information					
Project					
Column					
Engineer					
Code	ACI 318-14				
Bar Set	ASTM A615				
Units	English				
Run Option	Design				
Run Axis	Biaxial				
Slenderness	Considered				
Column Type	Structural				
Capacity Method	Moment capacity				

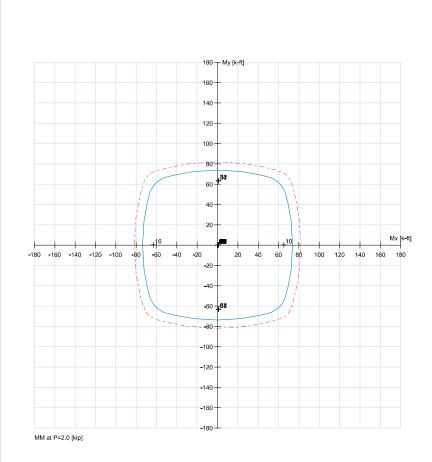
Materials		
f'c	3	ksi
Ec	3122.02	ksi
f _y	40	ksi
Es	29000	ksi

Rectangular

16 in

4.00 in² 1.56 %

8.74 in


Section Type

Width

Total steel area, A_s

Min. clear spacing

Depth	16	in
\mathbf{A}_{g}	256	in²
l _x	5461.33	in ⁴
l _y	5461.33	in ⁴
Reinforcement		
Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Transverse bars	
Clear cover	2	in
Bars	4 #9	
Confinement type	Tied	

No.	Loa	ad Com	bo	P _u	M _{ux}	M _{uv}	φPn	фМ _{пх}	φМпν	Capacity
				kip	k-ft	k-ft	kip	k-ft	k-ft	Ratio
10	1	U4	Тор	1.9	65.3	0.2	1.93	73.70	0.20	0.89
16	1	U6	Top	1.9	-63.2	0.2	1.93	-73.69	0.20	0.86
31	2	U4	Top	2.2	1.0	63.5	2.18	1.21	73.75	0.86
34	2	U5	Top	1.7	8.0	63.2	1.69	0.91	73.55	0.86
37	2	U6	Top	1.7	1.0	-63.0	1.68	1.21	-73.53	0.86
52	3	U4	Top	1.7	1.0	63.2	1.68	1.21	73.53	0.86
58	3	U6	Top	2,2	1.0	-63.3	2.18	1.21	-73.75	0.86
61	3	U7	Top	1.7	8.0	-63.1	1.69	0.91	-73.55	0.86
1	1	U1	Top	2.3	1.2	0.2	2.25	73.15	12.23	0.02
22	2	U1	Top	2.3	1.2	0.2	2.25	73.15	12.23	0.02
43	3	U1	Top	2.3	1.2	0.2	2.25	73.15	12.23	0.02
2	1	U1	Bot	2.3	0.2	0.0	2.25	73.85	0.00	0.00
3	1	U1	Bot	2.3	0.0	0.2	2.25	0.00	73.85	0.00
11	1	U4	Bot	1.9	0.2	0.0	1.93	73.71	0.00	0.00
12	1	U4	Bot	1.9	0.0	0.2	1.93	0.00	73.71	0.00

Max. Capacity Ratio: 0.89

Only 15 points out of 33 are listed.

<u>Column Design</u> <u>C4 - Cantilevered Column</u>

Column Design	<u>C4 - Cantilevered Column</u>		
	Bending Axis X-X/3-3	Shear Axis -Y/2-2	
	lux (out of plane span) (in) =	134	
	luy (in plane span) (in) =	134	
	b (in) = h (in) =	16 16	
	long bar size =	9	
	Tie size =	4	
	number of longitudinal bars = d' =	4 2.500	
	f'c (psi) =	3000	
	fy (psi) = Pu Compression (k) =	40000 5.89	
	Pu Tension (k) =	-0.500	
	Tu (k-ft) =	0.00	
	Max NA depth (in) = Min NA depth (in) =	3.7 6 bars in tension 2.2 3 layers in tension	
	Mu Strong x (k-ft) =	62.23	
	Mu Weak y (k-ft) =	62.10	
BENDING DESIGN	Chardenase		
ACI 318-14 (Sec. 6.2.5 & 6.2.6)	$\frac{\text{Slenderness}}{(k^*)/0.3^*b} =$	27.92 ≥ 22 Therefore, slenderness effering in SP Columbia.	
Dimensional Limits	Special Moment Frame Column Design Requirements		
ACI 318-14 (Sec. 18.7.2.1a)	bmin = 12"	16 , Therefore OK	
ACI 240 44 (C 40 C 2 4b)	hmin = 12"	16 , Therefore OK	
ACI 318-14 (Sec. 18.6.2.1b) Minimum Flexural Strength of Columns	Min(b,h)/Max(b,h) =	1 ≥ 0.4 , Therefore OK	
ACI 318-14 (Eq. 18.7.3.2)	ΣMnc ≥ $(6/5)$ ΣMnb $(6/5)$ ΣMnb x $(k-ft)$ =	66.00 ≥ Mu = 62.23 , Therefore (5,	/6)ΣMnb controls column demand
	(6/5)ΣMnb y (k-ft) =	43.20 ≤ Mu = 62.10 , Therefore Mu	controls column demand
Longitudinal Reinforcement			
ACI 318-14 (Sec. 18.7.4.1)	0.01Ag ≤ Ast ≤ 0.06Ag Ast (in^2) =	3.976 ≥ 0.01Ag = 2.520239 , Therefore OK	
	Ast (in^2) =	3.976 ≤ 0.06Ag = 15.12144 , Therefore OK	
SHEAR DESIGN			
Transverse Reinforcement	Special Moment Frame Column Design Requirements		
ACI 318-14 (Sec. 18.7.5.1a)	l _o (in) =	16.0	
ACI 318-14 (Sec. 18.7.5.1b) ACI 318-14 (Sec. 18.7.5.1c)	l _o (in) = l _o (in) =	22.3 Controls 18.0	
ACI 318-14 (Sec. 18.7.5.1e)	hx (in) =	11.0 ≤ 14 in , Therefore OK	
ACI 318-14 (Sec. 18.7.5.2f)	0.03Ag*f'c (k) =	22.7 ≥ Pu (k) = 5.89 , Therefore hx is	notrequired to be reduced
ACI 318-14 (Sec. 18.7.5.2f)	f'c (psi) =	3000 ≤ 10000 , Therefore hx is not require	d to be reduced
ACI 318-14 (Sec. 18.7.5.3a)	s _o (in) =	4 Controls , Therefore Use #4 Ties @ 4" o.c. in lo	regions
ACI 318-14 (Sec. 18.7.5.3b) ACI 318-14 (Sec. 18.7.5.3c)	s _o (in) = s _o (in) = 4 +(14-hx / 3) =	7 5	
ACI 318-14 (Sec. 18.7.5.3)	s _o ,max (in) =	6.0 ≥ 4 , Therefore OK	
ACI 318-14 (Sec. 18.7.5.3) ACI 318-14 (Table. 18.7.5.4a)	s _o ,min (in) = Ash/sbh = 0.3*(Ag/Ach - 1)*(f'c/fyt) =	4.0 ≤ 4 , Therefore OK 0.0244 Controls	
ACI 318-14 (Table. 18.7.5.4b)	Ash/sbh = 0.09*(f'c/fyt) =	0.0068	
	Ash/sbh, provided =		#4 Ties @ 4" o.c. is not
	Ash/sbh, provided =	0.0244	Use #4 Ties @ 3.5" o.c. Use #4 Ties @ 3.5" o.c. in Io
	Asilysuli, provided –	control = 0.0244	regions
ACI 318-14 (Table. 18.7.5.5) Joints of Special Moment Frames	sv, max (in) beyond I _o regions = Min(6*db, 6) =	6 Controls , Therefore Use #4 Ties @ 6" o.c. beyo	nd I _o regions
ACI 318-14 (Sec. 18.3.3.1) ACI 318-14 (Table 18.8.4.1)	Use Tie Reinforcement as Required in Lo regions ϕv^*Vn (k) = $\phi v^*12^*(Av/s)^*fyt^*d$ (conservative) =	Therefore use #4 Ties @ 3.5" o.c. in at SMF Joints 124 ≥ Vu= 5.33	
<i>Ties</i> ACI 318-14 (Sec. 25.7.2.1a) ACI 318-14 (Sec. 25.7.2.1b)	sv, min (in) beyond I_0 regions = $(4/3)$ *dagg+ds = sv, max (in) beyond I_0 regions = Min(16db, 48ds, dc,min)	1.5 ≤ 3.5 , Therefore Minimum Tie S 16 ≥ 6 , Therefore Maximum Tie S	
ACI 318-14 (Sec. 25.7.2.2) Transverse Reinforcement	Tie Size =	4 ≥ 3 , Therefore Tie Size is Adeq	uate
ACI 318-14 (Sec. 18.7.6.2.1a) ACI 318-14 (Sec. 18.7.6.2.1b)	Ve (k) = Max Seismic Shear = Ag*f'c/20 (k) =	3.06 ≥ Vu/2 (k) = 2.67 37.80 ≥ Pu (k) = 5.89 , Therefore She	ar Reinforcement Shall be
ACI 310-14 (SEC. 10.7.0.2.1D)	76 14/20 NJ -		ar Reinforcement Shall be uming Vc=0 for locations
ACI 318-14 (Eq. 22.5.2.2)	For Calculaton of Vc an Vs, d is to be taken as 0.8*h =	specifi 12.80 in	ed in Sec. 18.7.5.1
ACI 318-14 (Eq. 22.5.2.2) ACI 318-14 (Eq. 22.5.10.5.3)	ϕ v*Vn (k) = ϕ v*Vs = ϕ v*(Av/s)*fyt*d =		ties spaced @ 3" o.c. are
			adequate
TORSION			
	<u>Torsional Strength</u>		
Threshold Torsion ACI 318-14 (Sec. 22.7.4.1a & 22.7.1.1)	ϕT_{th} compression (k) = $(\lambda^* V f^c \epsilon^* A_{cp}^2)/p_{cp} * V(1+\epsilon^* V f^c \epsilon^* A_{cp}^2)$	44.25 ≤ Tu (k) = 0.00 , Therefore T	orsional Effects may be
	(Nu/4*Ag*λ*Vf'c)) =	,,	Neglected
	$\phi T_{th} \text{ tension (k)} = (\lambda^* V f' c^* A_{cp}^2) / p_{cp}^* V (1 + \lambda^* V f$	42.26 ≤ Tu (k) = 0.00 , Therefore T	orsional Effects may be Neglected
	(Nu/4*Ag*λ*νfc)) =		

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

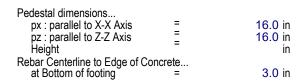
DESCRIPTION: C1

File = C:\Users\NROBER~1\Desktop\14681-~1\NEWFOL~1\newer.ec6 . Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .

HOHBACH-LEWIN

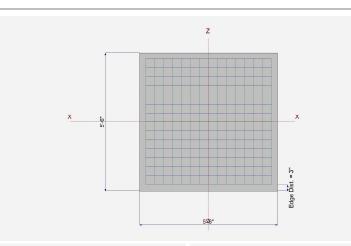
Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

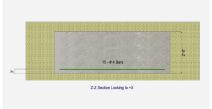

Load Combinations Used: IBC 2018

General Information

Material Properties fc: Concrete 28 day strength fy: Rebar Yield Ec: Concrete Elastic Modulus	= = =	3.0 ksi 60.0 ksi 3.122.0 ksi	Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding)	= = =	1.50 ksf No 100.0 pcf
Concrete Density	=	150.0 pcf	Soil/Concrete Friction Coeff.	=	100.0 poi
Values Flexure	=	0.90			
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0.750 = = 0.00180 = 1.0	:1	= = =	2.50 ft ksf ft
Min. Sliding Safety Factor		= 1.0			
Add Ftg Wt for Soil Pressure		: Yes	Allowable pressure increase per foot of depth		
Use ftg wt for stability, moments & shears		: Yes	when max. length or width is greater than	=	ksf
Add Pedestal Wt for Soil Pressure		: No	when max. length of width is greater than	=	ft
Use Pedestal wt for stability, mom & shear		: No			I.
Bt t					


Dimensions

Width parallel to X-X Axis	=	5.50 ft
Length parallel to Z-Z Axis	=	5.50 ft
Footing Thickness	=	24.0 in



Reinforcing

=	#	15.0 4
=		15.0
=	#	4
heck (ACI 15.4.4.2)		
r Separation		
		n/a
е		n/a
de of zone		n/a
	, ,	= # heck (ACI 15.4.4.2) Separation

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =	2.50	3.80				1.70	k ksf
M-xx M-zz	= =	0.10 0.40	0.10 0.40				18.70 19.90	k-ft k-ft
V-x V-z	= =						1.820 1.520	k k

300

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

DESCRIPTION: C1

File = C:\Users\NROBER~1\Desktop\14681~~1\NEWFOL~1\newer.ec6 .
Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

DESIGN SUMMARY				Design OK
Min. Ratio	Item	Applied	Capacity	Governing Load Combination

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.8942	Soil Bearing	1.784 ksf	1.995 ksf	+0.730D-0.710E about Z-Z axis
PASS	1.464	Overturning - X-X	15.278 k-ft	22.371 k-ft	+0.60D+0.70E
PASS	1.338	Overturning - Z-Z	16.718 k-ft	22.371 k-ft	+0.60D+0.70E
PASS	1.295	Sliding - X-X	1.274 k	1.650 k	+D+0.70E
PASS	1.551	Sliding - Z-Z	1.064 k	1.650 k	+D+0.70E
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.05235	Z Flexure (+X)	2.630 k-ft/ft	50.233 k-ft/ft	+0.7284D+E
PASS	0.01166	Z Flexure (-X)	0.5859 k-ft/ft	50.233 k-ft/ft	+1.20D+1.60Lr
PASS	0.04505	X Flexure (+Z)	2.263 k-ft/ft	50.233 k-ft/ft	+0.7284D+E
PASS	0.01264	X Flexure (-Z)	0.6350 k-ft/ft	50.233 k-ft/ft	+1.20D+1.60Lr
PASS	0.03892	1-way Shear (+X)	3.198 psi	82.158 psi	+0.7284D+E
PASS	0.004179	1-way Shear (-X)	0.3434 psi	82.158 psi	+1.20D+1.60Lr
PASS	0.02628	1-way Shear (+Z)	2.159 psi	82.158 psi	+0.7284D+E
PASS	0.004633	1-way Shear (-Z)	0.3806 psi	82.158 psi	+1.20D+1.60Lr
PASS	0.01220	2-way Punching	2.005 psi	164.317 psi	+1.20D+1.60Lr

Detailed Results

Soil	l Bear	ing

Rotation Axis &		Xecc	Zecc	Actua	Soil Bearing S	tress @ Locat	tion	Actual / Allow
Load Combination	Gross Allowable		(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.1037	0.3791	0.3862	n/a	n/a	0.258
X-X, +D+Lr	1.50	n/a	0.1561	0.5011	0.5154	n/a	n/a	0.344
X-X, +D+0.750Lr	1.50	n/a	0.1456	0.4706	0.4831	n/a	n/a	0.322
X-X, +1.180D+Lr+0.710E	2.0	n/a	10.064	0.05818	1.176	n/a	n/a	0.588
X-X, +1.180D+Lr-0.710E	2.0	n/a	-11.236	1.081	0.0	n/a	n/a	0.541
X-X, +0.730D+0.710E	1.995	n/a	19.272	0.0	1.015	n/a	n/a	0.509
X-X, +0.730D-0.710E	1.995	n/a	-25.453	1.376	0.0	n/a	n/a	0.690
Z-Z, D Only	1.50	0.4147	n/a	n/a	n/a	0.3684	0.3969	0.265
Z-Z, +D+Lr	1.50	0.6244	n/a	n/a	n/a	0.4797	0.5368	0.358
Z-Z, +D+0.750Lr	1.50	0.5823	n/a	n/a	n/a	0.4519	0.5019	0.335
Z-Z, +1.180D+Lr+0.710E	2.0	11.306	n/a	n/a	n/a	0.0	1.245	0.623
Z-Z, +1.180D+Lr-0.710E	2.0	-11.697	n/a	n/a	n/a	1.104	0.0	0.552
Z-Z, +0.730D+0.710E	1.995	21.132	n/a	n/a	n/a	0.0	1.173	0.588
Z-Z, +0.730D-0.710E	1.995	-27.207	n/a	n/a	n/a	1.784	0.0	0.894

Overturning Stability

Rotation Axis &				
Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	0.10 k-ft	31.831 k-ft	318.313	OK
X-X. +D+Lr	0.20 k-ft	42.281 k-ft	211.406	OK
X-X. +D+0.750Lr	0.1750 k-ft	39.669 k-ft	226.679	OK
X-X. +D+0.70E	15.318 k-ft	35.104 k-ft	2.292	OK
X-X. +D+0.5250E	11.514 k-ft	34.286 k-ft	2.978	OK
X-X, +0.60D+0.70E	15.278 k-ft	22.371 k-ft	1.464	OK
Z-Z, D Only	0.40 k-ft	31.831 k-ft	79.578	OK
Z-Z, +D+Lr	0.80 k-ft	42.281 k-ft	52.852	ŎK
Z-Z, +D+0.750Lr	0.70 k-ft	39.669 k-ft	56.670	OK
Z-Z, +D+0.70E	16.878 k-ft	35.104 k-ft	2.080	OK
Z-Z. +D+0.5250E	12.759 k-ft	34.286 k-ft	2.687	OK
Z-Z, +0.60D+0.70E	16.718 k-ft	22.371 k-ft	1.338	OK
Sliding Stability				All units k

Sliding Stability

Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X, D Only	0.0 k	1.650 k	No Sliding	OK
X-X, +D+Lr	0.0 k	1.650 k	No Sliding	OK
X-X, +D+0.750Lr	0.0 k	1.650 k	No Sliding	OK
X-X, +D+0.70E	1.274 k	1.650 k	1.295	OK
X-X, +D+0.5250E	0.9555 k	1.650 k	1.727	OK

301

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

DESCRIPTION: C1

File = C:\Users\NROBER~1\Desktop\14681~~1\NEWFOL~1\newer.ec6 .
Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

All units k **Sliding Stability**

Force Application Axis Load Combination		S	liding Force		Resisting	g Force	Stability Rat	io Sta	atus
X-X, +0.60D+0.70E Z-Z, D Only Z-Z, +D+Lr Z-Z, +D+0.750Lr Z-Z, +D+0.70E Z-Z, +D+0.5250E Z-Z, +0.60D+0.70E Footing Flexure			1.274 0.0 0.0 0.0 1.064 0.7980 1.064	k k k k		1.650 k 1.650 k 1.650 k 1.650 k 1.650 k 1.650 k 1.650 k	1.2 No Slidi No Slidi No Slidi 1.5 2.0	ng ng ng 51 68	OK OK OK OK OK OK
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual A		ni*Mn k-ft	Status
X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D X-X, +1.20D X-X, +1.20D X-X, +1.20D+1.60Lr X-X, +0.90D X-X, +0.90D X-X, +0.7284D+E X-X, +0.7284D+E Z-Z, +1.40D Z-Z, +1.40D Z-Z, +1.20D+0.50Lr Z-Z, +1.20D+0.50Lr Z-Z, +1.20D Z-Z, +0.90D Z-Z, +0.7284D+E Z-Z, +0.7284D+E One Way Shear	0.2593 0.2429 0.3615 0.3416 0.2222 0.2082 0.6678 0.6350 0.1667 0.1561 2.263 0.4742 0.2183 0.2838 0.3117 0.3913 0.1871 0.2433 0.5859 0.7169 0.1404 0.1825 0.4742 2.630	+Z -Z +Z -Z +Z -Z +Z -Z +Z -Z +Z -X +X -X +X -X +X -X +X -X +X -X +X	Bottom Bo	0.5184 0.5184	Min Temp %	0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545: 0.545:		50.233 50.233	OK OK OK OK OK OK OK OK OK OK OK OK OK O
Load Combination	Vu @ -X	Vu @ -	+X Vu (@ -Z V	u @ +Z V	'u:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D +1.20D+0.50Lr +1.20D +1.20D+1.60Lr +0.90D +0.7284D+E Two-Way "Punching" Shear	0.13 ps 0.18 ps 0.11 ps 0.34 ps 0.08 ps 0.29 ps	i i i	0.18 psi 0.24 psi 0.15 psi 0.44 psi 0.11 psi 3.20 psi	0.15 psi 0.20 psi 0.12 psi 0.38 psi 0.09 psi 0.29 psi	0.16 psi 0.22 psi 0.14 psi 0.41 psi 0.10 psi 2.16 psi	0.18 psi 0.24 psi 0.15 psi 0.44 psi 0.11 psi 3.20 psi	82.16 ps 82.16 ps 82.16 ps 82.16 ps 82.16 ps 82.16 ps	ii 0.00 ii 0.00 ii 0.01 ii 0.00	OK OK OK OK OK
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D +1.20D+0.50Lr +1.20D +1.20D+1.60Lr +0.90D +0.7284D+E		1.08 0.66 2.0 0.50	7 psi 3 psi 6 psi 1 psi) psi) psi	164.3 164.3 164.3 164.3 164.3	2psi 2psi 2psi 2psi	0.004704 0.006586 0.004032 0.0122 0.003024 0.01095			OK OK OK OK OK

Project Title: Engineer: Project ID: Project Descr:

General Footing

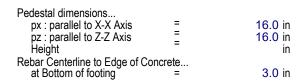
Lic. # : KW-06003493

File = C:\Users\NROBER~1\Desktop\14681-~1\NEWFOL~1\newer.ec6 .

DESCRIPTION: C2

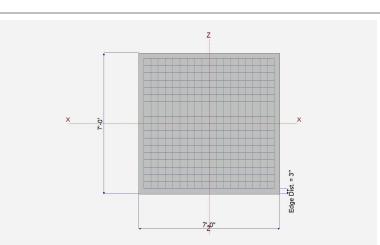
Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

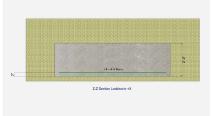

Load Combinations Used: IBC 2018

General Information

Material Properties fc: Concrete 28 day strength fy: Rebar Yield	=		3.0 ksi 60.0 ksi	Soil Design Values Allowable Soil Bearing	=	1.50 ksf No
Ec : Concrete Elastic Modulus	=		22.0 ksi	Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding)	=	100.0 pcf
Concrete Density	=		50.0 pcf	Soil/Concrete Friction Coeff.	=	100.0 pci
Values Flexure	=	(0.90			
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0 = = =	0.00180 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	3.50 ft ksf ft
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension		
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of depth		
Use ftg wt for stability, moments & shears		:	Yes	unican many legentle an width in manufaction	=	ksf
Add Pedestal Wt for Soil Pressure		:	No	when max. length or width is greater than	_	ft
Use Pedestal wt for stability, mom & shear		:	No		_	it.


Dimensions

Width parallel to X-X Axis	=	7.0 ft
Length parallel to Z-Z Axis	=	7.0 ft
Footing Thickness	=	24.0 in



Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	19.0 # 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Che Direction Requiring Closer S		19.0 # 4
# Bars required within zone # Bars required on each side	of zone	n/a n/a n/a

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =	7.70	9.90				0.80	k ksf
M-xx M-zz	= =	6.20	6.90				48.20 34.70	k-ft k-ft
V-x V-z	= =	1.20	1.30				2.80 3.90	k k

303

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

DESCRIPTION: C2

File = C:\Users\NROBER~1\Desktop\14681-~1\NEWFOL~1\newer.ec6 .

Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .

HOHBACH-LEWIN

DESIGN SUMMARY	Design OK

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.7977	Soil Bearing	1.595 ksf	2.0 ksf	+1.180D+Lr+0.710E about Z-Z axis
PASS	1.250	Overturning - X-X	39.20 k-ft	49.0 k-ft	+0.60D+0.70E
PASS	1.468	Overturning - Z-Z	33.370 k-ft	49.0 k-ft	+0.60D+0.70E
PASS	1.108	Sliding - X-X	3.160 k	3.50 k	+D+0.70E
PASS	1.282	Sliding - Z-Z	2.730 k	3.50 k	+D+0.70E
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.08288	Z Flexure (+X)	4.144 k-ft/ft	50.0 k-ft/ft	+0.7284D+E
PASS	0.03049	Z Flexure (-X)	1.524 k-ft/ft	50.0 k-ft/ft	+1.372D+E
PASS	0.1097	X Flexure (+Z)	5.487 k-ft/ft	50.0 k-ft/ft	+0.7284D+E
PASS	0.04108	X Flexure (-Z)	2.054 k-ft/ft	50.0 k-ft/ft	+1.20D+1.60Lr
PASS	0.07116	1-way Shear (+X)	5.847 psi	82.158 psi	+0.7284D+E
PASS	0.02087	1-way Shear (-X)	1.715 psi	82.158 psi	+1.372D+E
PASS	0.1070	1-way Shear (+Z)	8.788 psi	82.158 psi	+0.7284D+E
PASS	0.02596	1-way Shear (-Z)	2.133 psi	82.158 psi	+1.20D+1.60Lr
PASS	0.03960	2-way Punching	6.507 psi	164.317 psi	+1.20D+1.60Lr

Detailed Results

•	_		
SOI	l Ra	aring	N
JUII	ם בו	allill	ч

Rotation Axis &		Xecc	Zecc	Actua	Actual Soil Bearing Stress @ Location			
Load Combination	Gross Allowable	((in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.4571	0.4571	n/a	n/a	0.305
X-X, +1.180D+Lr+0.710E	2.0	n/a	12.930	0.06451	1.442	n/a	n/a	0.721
X-X, +0.730D+0.710E	2.0	n/a	28.199	0.0	1.387	n/a	n/a	0.694
X-X, +D+Lr	1.50	n/a	0.0	0.6592	0.6592	n/a	n/a	0.440
X-X, +D+0.750Lr	1.50	n/a	0.0	0.6087	0.6087	n/a	n/a	0.406
Z-Z, D Only	1.50	4.607	n/a	n/a	n/a	0.3082	0.6061	0.404
Z-Z, +1.180D+Lr+0.710E	2.0	15.695	n/a	n/a	n/a	0.0	1.595	0.798
Z-Z, +0.730D+0.710E	2.0	24.745	n/a	n/a	n/a	0.0	1.112	0.556
Z-Z, +D+Lr	1.50	6.724	n/a	n/a	n/a	0.3457	0.9726	0.648
Z-Z, +D+0.750Lr	1.50	6.327	n/a	n/a	n/a	0.3364	0.8810	0.587

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	0.0 k-ft	Infinity	OK
X-X, +D+Lr	None	0.0 k-ft	Infinity	ŎK
X-X, +D+0.750Lr	None	0.0 k-ft	Infinity	ŎK
X-X, +D+0.70E	39.20 k-ft	80.360 k-ft	2.050	OK
X-X, +D+0.5250E	29.40 k-ft	79.870 k-ft	2.717	ŎK
X-X, +0.60D	None	0.0 k-ft	Infinity	OK
X-X, +0.60D+0.70E	39.20 k-ft	49.0 k-ft	1.250	OK
Z-Z. D Only	8.60 k-ft	78.40 k-ft	9.116	OK
Z-Z, +D+Lr	18.10 k-ft	113.050 k-ft	6.246	OK
Z-Z. +D+0.750Lr	15.725 k-ft	104.388 k-ft	6.638	OK
Z-Z, +D+0.70E	36.810 k-ft	80.360 k-ft	2.183	OK
Z-Z. +D+0.5250E	29.758 k-ft	79.870 k-ft	2.684	OK
Z-Z, +0.60D	5.160 k-ft	47.040 k-ft	9.116	ŎK
Z-Z, +0.60D+0.70E	33.370 k-ft	49.0 k-ft	1.468	OK
Sliding Stability				All units k

Sliding Stability

Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X. D Only	1.20 k	3.50 k	2.917	OK
X-X. +D+Lr	2.50 k	3.50 k	1.40	ŎK
X-X. +D+0.750Lr	2.175 k	3.50 k	1.609	OK
X-X, +D+0.70E	3.160 k	3.50 k	1.108	OK
X-X, +D+0.5250E	2.670 k	3.50 k	1.311	OK
X-X, +0.60D	0.720 k	3.50 k	4.861	ŎK
X-X, +0.60D+0.70E	2.680 k	3.50 k	1.306	OK

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

File = C:\Users\NROBER~1\Desktop\14681~~1\NEWFOL~1\newer.ec6 .
Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

DESCRIPTION: C2

All units k **Sliding Stability**

Oliding Otability									
Force Application Axis Load Combination		S	liding Force	e	Resistii	ng Force	Stability Ratio	o Sta	
Z-Z, D Only Z-Z, +D+Lr Z-Z, +D+0.750Lr Z-Z, +D+0.70E			0. 0. 2.73	0 k 0 k 0 k 0 k		3.50 k 3.50 k 3.50 k 3.50 k	No Slidin No Slidin No Slidin 1.28	g g 2	OK OK OK
Z-Z, +D+0.5250E Z-Z, +0.60D Z-Z, +0.60D+0.70E Footing Flexure			2.04 0. 2.73	.0 k		3.50 k 3.50 k 3.50 k	1.70 No Slidin 1.28	q	OK OK OK
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'o	Gvrn. As in^2	Actual A		* Mn -ft	Status
X-X, +1.40D	0.8829	+Z	Bottom	0.5184	Min Temp %	0.5429	9	50.0	ОК
X-X, +1.40D	0.8829	-Z	Bottom	0.5184	Min Temp %		9	50.0	OK
X-X, +1.20D+0.50Lr	1.162	+Z	Bottom	0.5184	Min Temp %	0.5429	9	50.0	OK
X-X, +1.20D+0.50Lr X-X, +1.20D	1.162 0.7568	- <u>L</u>	Bottom Bottom	0.5184 0.5184	Min Temp % Min Temp %		9	50.0 50.0	OK OK
X-X, +1.20D X-X, +1.20D	0.7568	-7	Bottom	0.5184	Min Temp %		9	50.0	OK
X-X, +1.20D+1.60Lr	2.054	+Z	Bottom	0.5184	Min Temp %		ğ	50.0	OK
X-X, +1.20D+1.60Lr	2.054	-Z	Bottom	0.5184	Min Temp %	6 0.5429	9	50.0	OK
X-X, +1.372D+E	4.062	-Z +Z -Z +Z -Z +Z -Z +Z -Z	Bottom	0.5184	Min Temp %	0.5429	9	50.0	OK
X-X, +1.372D+E	1.595	- <u>Z</u>	Top	0.5184	Min Temp %	0.5429	9	50.0	OK
X-X, +0.90D	0.5676	+Z	Bottom	0.5184	Min Temp %	0.5429	9	50.0	OK
X-X, +0.90D	0.5676 5.487	-Z	Bottom Bottom	0.5184 0.5184	Min Temp %		9	50.0 50.0	OK
X-X, +0.7284D+E X-X, +0.7284D+E	0.8770	+Z -Z	Top	0.5184	Min Temp % Min Temp %		3	50.0	OK OK
Z-Z, +1.40D	0.2658	-X	Bottom	0.5184	Min Temp %		9	50.0	OK
Z-Z, +1.40D	1.50	+X	Bottom	0.5184	Min Temp %	6 0.5429	9	50.0	OK
Z-Z, +1.20D+0.50Lr	0.3897	-X	Bottom	0.5184	Min Temp %	6 0.5429	9	50.0	OK
Z-Z, +1.20D+0.50Lr	1.935	+X	Bottom	0.5184	Min Temp %	6 0.5429	9	50.0	OK
Z-Z, +1.20D	0.2278	-X	Bottom	0.5184	Min Temp %	0.5429	9	50.0	OK
Z-Z, +1.20D	1.286	+X	Bottom	0.5184	Min Temp %	0.5429	9	50.0	OK
Z-Z, +1.20D+1.60Lr	0.7460 3.362	-X +X	Bottom Bottom	0.5184 0.5184	Min Temp %		9	50.0 50.0	OK OK
Z-Z, +1.20D+1.60Lr Z-Z, +1.372D+E	3.302 1.524	-X	Top	0.5184	Min Temp % Min Temp %		9	50.0	OK OK
Z-Z, +1.372D+E	3.759	+X	Bottom	0.5184	Min Temp %		9	50.0	OK
Z-Z, +0.90D	0.1709	-X	Bottom	0.5184	Min Temp %		9	50.0	OK
Z-Z, +0.90D	0.9643	+X	Bottom	0.5184	Min Temp %	6 0.5429	9	50.0	OK
Z-Z, +0.7284D+E	0.8770	-X	Top	0.5184	Min Temp %	6 0.5429		50.0	OK
Z-Z, +0.7284D+E	4.144	+X	Bottom	0.5184	Min Temp %	6 0.5429	9	50.0	OK
One Way Shear Load Combination	Vu @ -X	Vu @ -	+X Vı	ı @ -Z \	/u @ +Z	Vu:Max	Phi Vn \	/u / Phi*Vn	Status
+1.40D	0.17 psi		1.66 psi	0.92 psi	0.92 psi	1.66 psi	82.16 psi	0.02	OK
+1.20D+0.50Lr	0.27 psi		2.14 psi	1.21 psi	1.21 psi	2.14 psi	82.16 psi	0.03	OK
+1.20D	0.15 psi		1.43 psi	0.79 psi	0.79 psi	1.43 psi	82.16 psi	0.02	OK
+1.20D+1.60Lr	0.55 psi		3.71 psi	2.13 psi	2.13 psi	3.71 psi	82.16 psi	0.05	OK
+1.372D+E	1.72 psi		4.42 psi	1.72 psi	4.81 psi	4.81 psi	82.16 psi	0.06	OK
+0.90D	0.11 psi		1.07 psi	0.59 psi	0.59 psi	1.07 psi	82.16 psi	0.01	OK
+0.7284D+E	0.91 psi		5.85 psi	0.91 psi	8.79 psi	8.79 psi	82.16 psi	0.11	OK
Two-Way "Punching" Shear								All units	; k
Load Combination		Vu		Phi*Vr	l	Vu / Phi*Vn			Status
+1.40D		2.8	0 psi	164.3	2psi	0.01702			OK
+1.20D+0.50Lr		3.6	8 psi	164.3	2psi	0.02241			OK
+1.20D			0 psi	164.3	2psi	0.01459			OK
+1.20D+1.60Lr		6.5	1 psi	164.3	Zpsi	0.0396			OK
+1.372D+E +0.90D			9 psi 0 psi	164.3 164.3		0.01944 0.01094			OK OK
+0.7284D+E			3 psi	164.3	2nsi	0.01094			OK
· 0.1 207D · L		2.1	O POI	104.0	- poi	0.01000			O.C

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

DESCRIPTION: C3

File = C:\Users\NROBER~1\Desktop\14681-~1\NEWFOL~1\newer.ec6 . Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

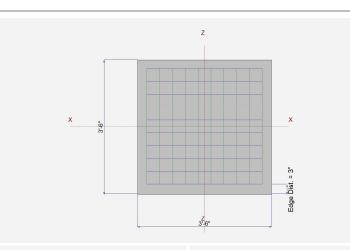
Code References

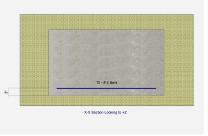
Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

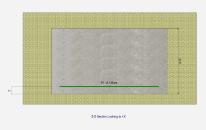
Load Combinations Used : IBC 2018

General Information

Material Properties				Soil Design Values		
f'c : Concrete 28 day strength	=		3.0 ksi	Allowable Soil Bearing	=	1.50 ksf
fy : Rebar Yield	=	(60.0 ksi	Increase Bearing By Footing Weight	=	No
Éc : Concrete Elastic Modulus	=	3,12	22.0 ksi	Soil Passive Resistance (for Sliding)	=	100.0 pcf
Concrete Density	=	1	50.0 pcf	Soil/Concrete Friction Coeff.	=	•
Φ Values Flexure	=	(0.90			
Shear	=	0.	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	2.50 ft
Min Steel % Bending Reinf.		=		Allow press. increase per foot of depth	=	ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	ŭ		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension		
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of depth		
Use ftg wt for stability, moments & shears		:	Yes	where were breath as width is supplied their	=	ksf
Add Pedestal Wt for Soil Pressure		:	No	when max. length or width is greater than	=	ft
Use Pedestal wt for stability, mom & shear		:	No		_	10


Dimensions


Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	24.0 in


Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height	= = =	16.0 in 16.0 in
Rebar Centerline to Edge of (Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	10.0 # 4
Bars parallel to Z-Z Axis		
Number of Bars	=	10.0
Reinforcing Bar Size	=	# 4
Bandwidth Distribution Check (ACI 15.4.4.2)	
Direction Requiring Closer Separa	,	
		n/a
# Bars required within zone		n/a
'		-/-
# Bars required on each side of zo	one	n/a
A 11 1 1 1		

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =	4.20	5.90				2.20	k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	= =						0.30	k k

306

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

DESCRIPTION: C3

File = C:\Users\NROBER~1\Desktop\14681~~1\NEWFOL~1\newer.ec6 .
Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

DESIGN SUMMARY Design OK

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.7493	Soil Bearing	1.124 ksf	1.50 ksf	+D+Lr about Z-Z axis
PASS	26.104	Overturning - X-X	0.420 k-ft	10.964 k-ft	+0.60D+0.70E
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	5.0	Sliding - Z-Z	0.210 k	1.050 k	+D+0.70E
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.01320	Z Flexure (+X)	0.6936 k-ft/ft	52.559 k-ft/ft	+1.20D+1.60Lr
PASS	0.01320	Z Flexure (-X)	0.6936 k-ft/ft	52.559 k-ft/ft	+1.20D+1.60Lr
PASS	0.01320	X Flexure (+Z)	0.6936 k-ft/ft	52.559 k-ft/ft	+1.20D+1.60Lr
PASS	0.01320	X Flexure (-Z)	0.6936 k-ft/ft	52.559 k-ft/ft	+1.20D+1.60Lr
PASS	n/a	1-way Shear (+X)	0.0 psi	82.158 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	82.158 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	82.158 psi	n/a
PASS	n/a	2-way Punching	1.051 psi	82.158 psi	+1.20D+1.60Lr

Detailed Results

Soil Bearing

Rotation Axis &		Xecc	Zecc	Actua	Soil Bearing S	tress @ Locat	tion	Actual / Allow
Load Combination	Gross Allowable	((in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.6429	0.6429	n/a	n/a	0.429
X-X, +D+Lr	1.50	n/a	0.0	1.124	1.124	n/a	n/a	0.749
X-X, +D+0.750Lr	1.50	n/a	0.0	1.004	1.004	n/a	n/a	0.669
X-X, +D+0.70E	1.50	n/a	0.5353	0.7104	0.8268	n/a	n/a	0.551
X-X, +1.180D+Lr+0.710E	1.995	n/a	0.3051	1.309	1.427	n/a	n/a	0.715
X-X, +0.730D+0.710E	2.0	n/a	0.6992	0.5378	0.6558	n/a	n/a	0.328
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.6429	0.6429	0.429
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	1.124	1.124	0.749
Z-Z, +D+0.750Lr	1.50	0.0	n/a	n/a	n/a	1.004	1.004	0.669
Z-Z, +D+0.70E	1.50	0.0	n/a	n/a	n/a	0.7686	0.7686	0.512
Z-Z, +1.180D+Lr+0.710E	1.995	0.0	n/a	n/a	n/a	1.368	1.368	0.686
Z-Z, +0.730D+0.710E	2.0	0.0	n/a	n/a	n/a	0.5968	0.5968	0.299

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	None	0.0 k-ft	Infinity	OK
X-X, +D+Lr	None	0.0 k-ft	Infinity	OK
X-X, +D+0.750Lr	None	0.0 k-ft	Infinity	OK
X-X, +D+0.70E	0.420 k-ft	16.476 k-ft	39.229	OK
X-X, +D+0.5250E	0.3150 k-ft	15.803 k-ft	50.167	OK
X-X, +0.60D	None	0.0 k-ft	Infinity	ŎK
X-X, +0.60D+0.70E	0.420 k-ft	10.964 k-ft	26.104	OK
Z-Z, D Only	None	0.0 k-ft	Infinity	OK
Z-Z, +D+Lr	None	0.0 k-ft	Infinity	OK
Z-Z, +D+0.750Lr	None	0.0 k-ft	Infinity	ŎK
Z-Z, +D+0.70E	None	0.0 k-ft	Infinity	OK
Z-Z, +D+0.5250E	None	0.0 k-ft	Infinity	OK
Z-Z, +0.60D	None	0.0 k-ft	Infinity	OK
Z-Z, +0.60D+0.70E	None	0.0 k-ft	Infinity	OK
011-11 041-114			•	All units k

Sliding Stability

Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X, D Only	0.0 k	1.050 k	No Sliding	OK
X-X, +D+Lr	0.0 k	1.050 k	No Sliding	OK
X-X, +D+0.750Lr	0.0 k	1.050 k	No Sliding	OK
X-X, +D+0.70E	0.0 k	1.050 k	No Sliding	ŎK
X-X, +D+0.5250E	0.0 k	1.050 k	No Sliding	ŎK

307

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

File = C:\Users\NROBER~1\Desktop\14681~~1\NEWFOL~1\newer.ec6 .
Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

DESCRIPTION: C3

All units k **Sliding Stability**

Force Application Axis Load Combination		Sli	ding Force		Resistin	g Force	Stability Ratio	Sta	tus
X-X, +0.60D X-X, +0.60D+0.70E Z-Z, D Only Z-Z, +D+Lr Z-Z, +D+0.750Lr Z-Z, +D+0.70E Z-Z, +D+0.5250E Z-Z, +0.60D Z-Z, +0.60D+0.70E Footing Flexure			0.0 0.0 0.0 0.0 0.2 0.210 0.1575 0.0 0.210	k k k k k k		1.050 k 1.050 k 1.050 k 1.050 k 1.050 k 1.050 k 1.050 k 1.050 k 1.050 k	No Slidin No Slidin No Slidin No Slidin No Slidin 5. 6.66 No Slidin 5.	9 9 9 9 9 9 9 7	OK OK OK OK OK OK OK OK
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual A		Mn ft	Status
X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D X-X, +1.20D X-X, +1.20D X-X, +1.20D X-X, +1.20D+1.60Lr X-X, +0.90D X-X, +0.90D X-X, +0.7284D+E X-X, +0.7284D+E Z-Z, +1.40D Z-Z, +1.40D Z-Z, +1.20D+0.50Lr Z-Z, +1.20D 1.60Lr Z-Z, +0.90D Z-Z, +0.90D Z-Z, +0.90D Z-Z, +0.7284D+E Cone Way Shear	0.2817 0.2817 0.3827 0.3827 0.2414 0.6936 0.6936 0.1811 0.1811 0.2910 0.2128 0.2817 0.3827 0.3827 0.3827 0.2414 0.6936 0.6936 0.1811 0.1811 0.1811	+Z -Z -Z +Z -Z +Z -Z +Z -Z +Z -Z -X +X -X +X -X +X -X +X -X +X	Bottom	0.5184 0.5184	Min Temp %	0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714		2.559 2.559	OK OK OK OK OK OK OK OK OK OK OK OK OK
Load Combination	Vu @ -X	Vu @ +2	K Vu (@ -Z Vu		/u:Max	Phi Vn V	u / Phi*Vn	Status
+1.40D +1.20D+0.50Lr +1.20D +1.20D+1.60Lr +0.90D +0.7284D+E Two-Way "Punching" Shear	0.00 ps 0.00 ps 0.00 ps 0.00 ps 0.00 ps 0.00 ps	i i i	0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi	0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi	0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi	0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi	82.16 psi 82.16 psi 82.16 psi 82.16 psi 82.16 psi 82.16 psi	0.00 0.00 0.00 0.00 0.00 0.00 All units	OI OI OI OI OI
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D +1.20D+0.50Lr +1.20D +1.20D+1.60Lr +0.90D +0.7284D+E		0.43 0.58 0.37 1.05 0.27 0.38	psi psi psi psi	164.32 164.32 164.32 164.32 164.32	psi psi psi psi	0.002597 0.00353 0.002226 0.006397 0.00167 0.002323			OK OK OK OK OK

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

DESCRIPTION: C4

File = C:\Users\NROBER~1\Desktop\14681-~1\NEWFOL~1\newer.ec6 . Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

Code References

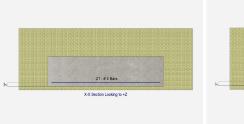
Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

Load Combinations Used: IBC 2018

General Information

Material Properties				Soil Design Values		
fc: Concrete 28 day strength	=		3.0 ksi	Allowable Soil Bearing	=	1.50 ksf
fy : Rebar Yield	=	6	0.0 ksi	Increase Bearing By Footing Weight	=	No
Éc : Concrete Elastic Modulus	=	3,12	22.0 ksi	Soil Passive Resistance (for Sliding)	=	100.0 pcf
Concrete Density	=	15	50.0 pcf	Soil/Concrete Friction Coeff.	=	•
φ Values Flexure	=	(0.90			
Shear	=	0.	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	4.0 ft
Min Steel % Bending Reinf.		=		Allow press. increase per foot of depth	=	ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	ŭ		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension		
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of depth		
Use ftg wt for stability, moments & shears		:	Yes		=	ksf
Add Pedestal Wt for Soil Pressure		:	No	when max. length or width is greater than	_	ft
Use Pedestal wt for stability, mom & shear		:	No		_	п

Dimensions


Width parallel to X-X Axis	=	8.0 ft
Length parallel to Z-Z Axis	=	8.0 ft
Footing Thickness	=	24.0 in

Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height	= = =	16.0 in 16.0 in in
Rebar Centerline to Edge of C	Concrete	
at Bottom of footing	=	3.0 in

Edge Dist. = 3"

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	21.0 # 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Che Direction Requiring Closer So		21.0 # 4
# Bars required within zone # Bars required on each side	of zone	n/a n/a n/a

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =	1.60	2.50				0.20	k ksf
M-xx M-zz	= =	0.40 0.050	0.60 0.060				54.40 55.10	k-ft k-ft
V-x V-z	= =						5.80 4.90	k k

Project Title: Engineer: Project ID: Project Descr:

General Footing

Lic. # : KW-06003493

DESCRIPTION: C4

DESIGN SUMMARY

File = C:\Users\NROBER~1\Desktop\14681~~1\NEWFOL~1\newer.ec6 .
Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

Design OK

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.6947	Soil Bearing	1.386 ksf	1.995 ksf	+0.730D+0.710E about Z-Z axis
PASS	1.117	Overturning - X-X	45.180 k-ft	50.480 k-ft	+0.60D+0.70E
PASS	1.080	Overturning - Z-Z	46.720 k-ft	50.480 k-ft	+0.60D+0.70E
PASS	1.182	Sliding - X-X	4.060 k	4.80 k	+D+0.70E
PASS	1.399	Sliding - Z-Z	3.430 k	4.80 k	+D+0.70E
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.02508	Z Flexure (+X)	1.214 k-ft/ft	48.397 k-ft/ft	+0.7284D+E
PASS	0.02508	Z Flexure (-X)	1.214 k-ft/ft	48.397 k-ft/ft	+0.7284D+E
PASS	0.02508	X Flexure (+Ź)	1.214 k-ft/ft	48.397 k-ft/ft	+0.7284D+E
PASS	0.02508	X Flexure (-Z)	1.214 k-ft/ft	48.397 k-ft/ft	+0.7284D+E
PASS	0.01689	1-way Shear (+X)	1.387 psi	82.158 psi	+0.7284D+E
PASS	0.01689	1-way Shear (-X)	1.387 psi	82.158 psi	+0.7284D+E
PASS	0.01689	1-way Shear (+Z)	1.387 psi	82.158 psi	+0.7284D+E
PASS	0.01689	1-way Shear (-Z)	1.387 psi	82.158 psi	+0.7284D+E
PASS	0.02343	2-way Punching	3.850 psi	164.317 psi	+0.7284D+E

Detailed Results

Soi		

Rotation Axis &		Xecc	Zecc	Actua	Actual / Allow			
Load Combination	Gross Allowable	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.2308	0.3204	0.3296	n/a	n/a	0.220
X-X, +D+Lr	1.50	n/a	0.5150	0.3525	0.3757	n/a	n/a	0.251
X-X, +D+0.750Lr	1.50	n/a	0.4498	0.3444	0.3642	n/a	n/a	0.243
X-X, +0.60D	1.50	n/a	0.2308	0.1922	0.1978	n/a	n/a	0.132
X-X, +1.180D+Lr+0.710E	2.0	n/a	20.593	0.0	0.9862	n/a	n/a	0.493
X-X, +0.730D+0.710E	1.995	n/a	35.919	0.0	1.252	n/a	n/a	0.628
Z-Z, D Only	1.50	0.02885	n/a	n/a	n/a	0.3244	0.3256	0.217
Z-Z, +D+Lr	1.50	0.05665	n/a	n/a	n/a	0.3628	0.3653	0.244
Z-Z, +D+0.750Lr	1.50	0.05028	n/a	n/a	n/a	0.3532	0.3554	0.237
Z-Z, +0.60D	1.50	0.02885	n/a	n/a	n/a	0.1947	0.1953	0.130
Z-Z, +1.180D+Lr+0.710E	2.0	20.956	n/a	n/a	n/a	0.0	0.9993	0.500
Z-Z, +0.730D+0.710E	1.995	37.108	n/a	n/a	n/a	0.0	1.386	0.695

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	0.40 k-ft	83.20 k-ft	208.0	ОК
X-X, +D+Lr	1.0 k-ft	93.20 k-ft	93.20	OK
X-X, +D+0.750Lr	0.850 k-ft	90.70 k-ft	106.706	OK
X-X, +D+0.70E	45.340 k-ft	83.760 k-ft	1.847	OK
X-X, +D+0.5250E	34.105 k-ft	83.620 k-ft	2.452	OK
X-X, +0.60D	0.240 k-ft	49.920 k-ft	208.0	OK
X-X, +0.60D+0.70E	45.180 k-ft	50.480 k-ft	1.117	OK
Z-Z, D Only	0.050 k-ft	83.20 k-ft	1,664.0	OK
Z-Z, +D+Lr	0.110 k-ft	93.20 k-ft	847.27	OK
Z-Z, +D+0.750Lr	0.0950 k-ft	90.70 k-ft	954.74	OK
Z-Z, +D+0.70E	46.740 k-ft	83.760 k-ft	1.792	OK
Z-Z, +D+0.5250E	35.068 k-ft	83.620 k-ft	2.385	OK
Z-Z, +0.60D	0.030 k-ft	49.920 k-ft	1,664.0	OK
Z-Z, +0.60D+0.70E	46.720 k-ft	50.480 k-ft	1.080	OK
01.11.01.1111				All units k

Sliding Stability

Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X, D Only	0.0 k	4.80 k	No Sliding	OK
X-X, +D+Lr	0.0 k	4.80 k	No Sliding	OK
X-X, +D+0.750Lr	0.0 k	4.80 k	No Sliding	OK
X-X, +D+0.70E	4.060 k	4.80 k	1.182	OK
X-X, +D+0.5250E	3.045 k	4.80 k	1.576	OK

310

Project Title: Engineer: Project ID: Project Descr:

General Footing

File = C:\Users\NROBER~1\Desktop\14681~~1\NEWFOL~1\newer.ec6 .
Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 .
HOHBACH-LEWIN

Lic. # : KW-06003493 DESCRIPTION: C4

All units k **Sliding Stability**

Force Application Axis Load Combination		SI	iding Force		Resistin	g Force	Stability Ratio	Sta	tus
X-X, +0.60D X-X, +0.60D+0.70E Z-Z, D Only Z-Z, +D+Lr Z-Z, +D+0.750Lr Z-Z, +D+0.70E Z-Z, +D+0.5250E Z-Z, +0.60D Z-Z, +0.60D +0.70E Footing Flexure			0.0 4.060 0.0 0.0 0.0 3.430 2.573 0.0 3.430	k k k k k k		4.80 k 4.80 k 4.80 k 4.80 k 4.80 k 4.80 k 4.80 k 4.80 k 4.80 k	No Sliding 1.182 No Sliding No Sliding No Sliding 1.399 1.866 No Sliding 1.399		OK OK OK OK OK OK OK
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual A in^2	s Phi* k-1		Status
X-X, +1.40D X-X, +1.40D X-X, +1.20D+0.50Lr X-X, +1.20D+0.50Lr X-X, +1.20D X-X, +1.20D X-X, +1.20D X-X, +1.20D+1.60Lr X-X, +0.90D X-X, +0.90D X-X, +0.7284D+E X-X, +0.7284D+E Z-Z, +1.40D Z-Z, +1.20D+0.50Lr Z-Z, +1.20D 1.60Lr Z-Z, +0.90D Z-Z, +0.90D Z-Z, +0.7284D+E Z-Z, +0.7284D+E One Way Shear	0.2208 0.1681 0.3118 0.2385 0.1892 0.1441 0.5816 0.4462 0.1419 0.1081 1.214 0.1911 0.1977 0.2709 0.2794 0.1638 0.1695 0.5065 0.5212 0.1229 0.1271 1.214 1.214	+Z -Z +Z -Z +Z -Z +Z -Z +Z -Z -Z -X +X -X +X -X +X -X +X -X +X -X +X	Bottom Bo	0.5184 0.5184	Min Temp %	0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250 0.5250	44 44 44 44 44 44 44 44 44 44 44 44 44	8.397 8.397	OK OK OK OK OK OK OK OK OK OK OK OK OK O
Load Combination	Vu @ -X	Vu @ +	X Vu (@ -Z Vu	@+Z \	/u:Max	Phi Vn V	u / Phi*Vn	Status
+1.40D +1.20D+0.50Lr +1.20D +1.20D+1.60Lr +0.90D +0.7284D+E Two-Way "Punching" Shear	0.22 psi 0.31 psi 0.19 psi 0.58 psi 0.14 psi 1.39 psi		0.23 psi 0.32 psi 0.19 psi 0.60 psi 0.15 psi 1.39 psi	0.19 psi 0.27 psi 0.16 psi 0.50 psi 0.12 psi 1.39 psi	0.26 psi 0.36 psi 0.22 psi 0.67 psi 0.16 psi 1.39 psi	0.26 psi 0.36 psi 0.22 psi 0.67 psi 0.16 psi 1.39 psi	82.16 psi 82.16 psi 82.16 psi 82.16 psi 82.16 psi 82.16 psi	0.00 0.00 0.00 0.01 0.00 0.02 All units	OK OK OK OK OK
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D +1.20D+0.50Lr +1.20D +1.20D+1.60Lr +0.90D +0.7284D+E		0.62 0.87 0.53 1.63 0.40 3.85	psi psi psi psi	164.32 164.32 164.32 164.32 164.32	psi psi psi psi	0.003753 0.005311 0.003217 0.009918 0.002413 0.02343			OK OK OK OK OK

- 1. ALL NEW CONSTRUCTION SHALL COMPLY WITH THE CONTRACT DOCUMENTS AND THE CURRENT EDITION OF THE LOCAL BUILDING CODE. THESE DRAWINGS ARE COPY RIGHTED INSTRUMENTS OF SERVICE FOR USE ONLY ON THIS PROJECT.
- 2. THESE GENERAL NOTES SUPERSEDE THE REQUIREMENTS OF THE PROJECT SPECIFICATIONS. IN CASE OF CONFLICT BETWEEN THE PLANS AND SPECIFICATIONS, CONTACT THE OWNER'S REPRESENTATIVE.
- 3. REFERENCE TO CODES, RULES, REGULATIONS, STANDARDS, MANUFACTURER'S INSTRUCTIONS OR REQUIREMENTS OF REGULATORY AGENCIES IS TO THE LATEST PRINTED EDITION OF EACH IN EFFECT AT THE DATE OF SUBMISSION OF BID UNLESS THE DOCUMENT DATE IS SHOWN.
- 4. TYPICAL DETAILS AND GENERAL NOTES APPLY TO ALL PARTS OF THE WORK EXCEPT WHERE SPECIFICALLY DETAILED OR UNLESS NOTED OTHERWISE (U.N.O.)
- 5. THE STRUCTURAL DRAWINGS ILLUSTRATE THE NEW STRUCTURAL MEMBERS. REFER TO ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS FOR NON-STRUCTURAL ITEMS WHICH REQUIRE SPECIAL PROVISIONS DURING THE CONSTRUCTION OF THE STRUCTURAL MEMBERS.
- 6. REFER TO ARCHITECTURAL DRAWINGS FOR FLOOR DEPRESSIONS, EDGE OF SLAB, OPENINGS, SLOPES, DRAINS, CURBS, PADS, EMBEDDED ITEMS, NON-BEARING PARTITIONS, ETC. REFER TO MECHANICAL AND ELECTRICAL DRAWINGS FOR SLEEVES, OPENINGS, AND HANGERS FOR PIPES, DUCTS AND EQUIPMENT.
- 7. THE CONTRACTOR SHALL VERIFY AND BE RESPONSIBLE FOR COORDINATING THE WORK OF ALL TRADES AND SHALL VERIFY ALL DIMENSIONS AND CONDITIONS WHICH IMPACT THE WORK. FIELD VERIFY SIZES, ELEVATIONS, HOLE LOCATIONS, ETC. PRIOR TO FABRICATION.
- 8. DRAWING DIMENSIONS ARE TO FACE OF FINISH, JOINT CENTERLINE OR COLUMN GRID CENTERLINE UNLESS NOTED OTHERWISE. DO NOT SCALE THE DRAWINGS.
- 9. CONTRACTOR SHALL CAREFULLY REVIEW THE DRAWINGS TO IDENTIFY THE SCOPE OF WORK REQUIRED. VISIT THE SITE TO RELATE THE SCOPE OF WORK TO EXISTING CONDITIONS AND DETERMINE THE EXTENT TO WHICH THOSE CONDITIONS AND PHYSICAL SURROUNDINGS WILL IMPACT THE WORK.
- 10. EXISTING CONDITIONS AS SHOWN ON THESE PLANS ARE FOR REFERENCE ONLY. CONTRACTOR IS REQUIRED TO FIELD VERIFY ALL EXISTING CONDITIONS PRIOR TO CONSTRUCTION. CONTRACTOR SHALL REPORT CONDITIONS THAT CONFLICT WITH THE CONTRACT DOCUMENTS TO THE OWNER'S REPRESENTATIVE. DO NOT DEVIATE FROM THE CONTRACT DOCUMENTS WITHOUT WRITTEN DIRECTON FROM THE OWNER'S REPRESENTATIVE.
- 11. THE CONTRACTOR SHALL RESOLVE ANY CONFLICTS ON THE DRAWINGS OR IN THE SPECIFICATIONS WITH THE OWNER'S REPRESENTATIVE BEFORE PROCEEDING WITH THE WORK. NO CHANGE IN SIZE OR DIMENSION OF A STRUCTURAL MEMBER, NOR SHALL ANY OPENINGS BE MADE IN ANY STRUCTURAL MEMBER, WITHOUT THE WRITTEN APPROVAL OF THE ENGINEER.
- 12. ANY DEVIATION, MODIFICATION & SUBSTITUTION FROM THE APPROVED SET OF STRUCTURAL DRAWINGS SHALL BE SUBMITTED TO THE OWNER'S REPRESENTATIVE FOR REVIEW/APPROVAL PRIOR TO ITS USE OR INCLUSION ON THE SHOP DRAWINGS & PRIOR TO PROCEEDING WITH THE WORK.
- 13. THE CONTRACTOR SHALL PROVIDE ALL NECESSARY SHORES, BRACES AND GUYS REQUIRED TO SUPPORT ALL LOADS TO WHICH THE BUILDING STRUCTURE AND COMPONENTS, SOILS, OTHER STRUCTURES AND UTILITIES MAY BE SUBJECTED DURING CONSTRUCTION. SHORING SYSTEMS SHALL BE DESIGNED AND STAMPED BY A LOCALLY LISCENSED CIVIL ENGINEER. VISITS TO THE SITE BY THE OWNER'S REPRESENTATIVE WILL NOT INCLUDE OBSERVATION OF THE ABOVE NOTED ITEMS.
- 14. THE CONTRACTOR SHALL PROVIDE MEANS, METHOD, TECHNIQUES, SEQUENCE AND PROCEDURE OF CONSTRUCTION AS REQUIRED. SITE VISITS PERFORMED BY THE OWNER'S REPRESENTATIVE DO NOT INCLUDE INSPECTIONS OF MEANS AND METHODS OF CONSTRUCTION PERFORMED BY CONTRACTOR.
- 15. THE CONTRACTOR SHALL PROTECT ALL WORK, MATERIALS AND EQUIPMENT FROM DAMAGE AND SHALL PROVIDE PROPER STORAGE FACILITIES FOR MATERIALS AND EQUIPMENT DURING CONSTRUCTION.
- 16. STRUCTURAL OBSERVATIONS PERFORMED BY ENGINEER DURING CONSTRUCTION ARE NOT THE CONTINUOUS AND SPECIAL INSPECTION SERVICES AND DO NOT WAIVE THE RESPONSIBILITY FOR THE INSPECTIONS REQUIRED OF THE BUILDING INSPECTOR OR THE DEPUTY INSPECTOR. OBSERVATIONS ALSO DO NOT GUARANTEE CONTRACTOR'S PERFORMANCE AND SHALL NOT BE CONSIDERED AS SUPERVISION OF CONSTRUCTION.
- 17. CONTRACTORS SHALL REVIEW SHOP DRAWINGS FOR COMPLETENESS AND COMPLIANCE WITH CONTRACT DOCUMENTS. CONTRACTOR SHALL STAMP SHOP DRAWINGS PRIOR TO SUBMISSION TO OWNER'S REPRESENTATIVE.
- 18. REVIEW OF THE SHOP DRAWINGS SHALL NOT BE CONSTRUED AS AN AUTHORIZATION TO DEVIATE FROM CONTRACT DOCUMENTS.
- 19. SHOP DRAWINGS WILL NOT BE PROCESSED DUE TO INCOMPLETENESS. LACK OF CO-ORDINATION WITH RELEVANT PORTION OF CONTRACT DOCUMENTS, LACK OF CALCULATIONS IF REQUIRED AND WHERE DEVIATIONS, MODIFICATIONS AND SUBSTITUTIONS ARE INDICATED WITHOUT PRIOR WRITTEN APPROVAL FROM OWNER'S REPRESENTATIVE.ALLOW FOURTEEN WORKING DAYS FOR PROCESSING SHOP DRAWINGS AFTER RECEIPT.

DESIGN BASIS

- INTERNATIONAL BUILDING CODE (IBC), 2019 EDITION. 1. APPLICABLE CODE:
- 2. VERTICAL LOADS $-ROOF\ LIVE\ LOAD\ -\ :\ 125PSF(2ND\ FLOOR),\ 50PSF(3RD\ FLOOR)$ -ROOF LIVE LOAD:

3. LATERAL LOADS DESIGN WIND CRITERIA: PER ASCE 7-16 BASIC WIND SPEED: 110 mph WIND EXPOSURE: C

DESIGN SEISMIC CRITERIA:

SITE CLASS: D $S_{DS} = 0.8580g$ $S_{D1} = 0.3943q$ IMPORTANCE FACTOR, I = 1SEISMIC DESIGN CATEGORY= D

OCCUPANCY CATEGORY = 11 RESPONSE MODIFICATION COEFF., R = 8 (SPECIAL REINFORCED CONCRETE MOMENT FRAMES)

4. GEOTECHNICAL CRITERIA: -DESIGN OF FOUNDATION IS BASED ON TABLE 1806.2 (IBC) -ALLOWABLE SOIL BEARING PRESSURE: DEAD + LIVE: 1500 psf

DESIGN SEISMIC COEFF., V= 0.1073*W (ASD)

DEAD + LIVE + WIND OR SEISMIC: 2000 psf

CONCRETE

- 1. CONCRETE SHALL BE SUPPLIED AND PLACED IN ACCORDANCE WITH ACI 318.
- 2. CONCRETE SHALL BE AS FOLLOWS:

CONCRETE USE	STRENGTH AT 28 DAYS U.O.N.	W/C RATIO	AGGREGATE SIZE	WEIGHT	SHRINKAGE
SLAB ON GRADE	* 3000 psi	0.45 MAX.	3/4" (LS)	145pcf	.045%
FOUNDATIONS	* 3000 psi	0.50 MAX.	3/4"	145pcf	_

(LS) CRUSHED LOW SHRINKAGE ROCK

* SPECIAL INSPECTION FOR 3000 PSI CONCRETE IS NOT REQUIRED (2010 CRC R404.1.2.3 PAMC 16.04.180)

- 3. STRENGTH: COMPRESSIVE STRENGTH IN PSI WHEN TESTED IN ACCORDANCE WITH ASTM C39
- 4. PORTLAND CEMENT SHALL CONFORM TO ASTM C-150, TYPE II.
- 5. AGGREGATE FOR STONE CONCRETE SHALL CONFORM TO ASTM C-33. FOR LOW SHRINKAGE AGGREGATE; USE LIMESTONE OR GRANITE. AGGREGATE FOR LIGHTWEIGHT CONCRETE SHALL CONFORM TO ASTM C-330.
- 6. FLY ASH: ASTM C 618, CLASS F OR CLASS C. MINIMUM RECOMMENDED FLY ASH CONTENT BY MASS OF CEMENTITIOUS MATERIAL IS 20%. MAXIMUM RECOMMENDATION IS 25%.
- 7. ADMIXTURES: MIX SHALL CONTAIN POLYMER BASED, WATER REDUCING ADMIXTURE. THE FOLLOWING TYPES OF ADMIXTURES ARE ALLOWED AS PLASTICIZERS AND / OR SET ACCELERATORS TO IMPROVE WORKABILITY.
- ASTM C494, TYPES A. C. E. G. HIGH RANGE WATER REDUCERS SHALL ALSO MEET REQUIREMENTS OF ASTM C 1017.
- THE INITIAL SLUMP OF THE CONCRETE BEFORE INTRODUCING ADMIXTURES SHOULD BE MINIMUM 2" INCHES
- 8. SHRINKAGE CONTRACTOR TO PROVIDE CONCRETE MIX HISTORY DATA OR PROVIDE TESTING REPORT

9. MINIMUM REINF. COVER FOR CAST-IN-PLACE CONCRETE:
- CONC. CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH
- CONC. FORMED BELOW GRADE OR EXPOSED TO WEATHER:
NO. 6 AND GREATER
NO. 5 AND SMALLER
 CONC. NOT EXPOSED TO WEATHER NOR IN CONTACT WITH GROUND:
SLABS, WALLS, AND JOISTS: NO. 11 AND SMALLER
BEAMS AND COL: PRIMARY REINF., TIES, STIRRUPS, SPIRALS 1 1/2"

INTERIOR SLAB ON GRADE:

1. DO NOT ALLOW WATER TO COLLECT ON OR AROUND BUILDING PAD. 2. INITIAL CURING: INITIAL CURING SHALL IMMEDIATELY FOLLOW THE FINISHING OPERATION. CONCRETE SHALL BE KEPT CONTINUOUSLY MOIST AT LEAST OVERNIGHT. 3. FINAL CURING: IMMEDIATELY FOLLOWING THE INITIAL CURING AND BEFORE THE CONCRETE HAS DRIED. SLABS TO RECEIVE MOISTURE SENSITIVE FLOORING MATERIALS TO BE CONTINUOUSLY CURED FOR 7 DAYS BY WET COVERING OR MOISTURE RETAINING COVERING. LIQUID MEMBRANE CURING COMPOUNDS SHALL NOT BE PERMITTED.

4. INTERIOR SLABS SHALL RECEIVE A LIGHT BROOM FINISH U.O.N. TOLERANCE SHALL BE 1/8" IN 10'-0". EDGES SHALL BE SMOOTH TROWELED.

5. ALL CONC. TO BE REINFORCED UNLESS SPECIFICALLY MARKED "NOT REINFORCED"

VAPOR BARRIER:

1. 15 MIL ASTM E-1745 CLASS A, TYP. U.O.N. IN DET. 8/S5.1

PLACEMENT

- 1. ALL REINFORCING BARS, ANCHOR BOLTS, AND ALL OTHER CONC. INSERTS SHALL BE WELL SECURED IN POSITION PRIOR TO PLACING CONCRETE.
- 2. CHAMFER ALL CORNERS OF CONCRETE TO PREVENT DAMAGE.
- 3. CONSTRUCTION TOLERANCE SHALL COMPLY TO ACI 117.
- 4. CONCRETE SHALL BE PLACED IN A CONTINUOUS OPERATION BETWEEN PREDETERMINED CONSTRUCTION JOINTS.
- 5. USE VIBRATORS TO CONSOLIDATE CONCRETE. DO NOT USE VIBRATORS PLACEMENT IN ANY APPROVED MANNER. FOOTINGS ARE EXEMPTED FROM THIS REQUIREMENT. 6. PATCHING OF CONCRETE: ALL INSERT HOLES AND OTHER IMPERFECTIONS ON THE
- SURFACES OF THE CONCRETE SHALL BE FILLED WITH GROUT, BRUSHED AND SACKED TO A UNIFORM FINISH. 7. BARS SHALL BE FIRMLY SUPPORTED AND ACCURATELY PLACED AS REQUIRED BY
- THE A.C.I. STANDARDS, USING TIE AND SUPPORT BARS IN ADDITION TO REINFORCEMENT SHOWN WHERE NECESSARY FOR FIRM AND ACCURATE PLACING. ALL DOWELS SHALL BE ACCURATELY SET IN PLACE BEFORE PLACING CONCRETE. 8.. #5 AND LARGER REINFORCING BARS SHALL NOT BE SPLICED EXCEPT AS LOCATED AND DETAILED ON THE DRAWINGS. #4 AND SMALLER BARS WITH LENGTH NOT SHOWN SHALL BE CONTINUOUS, LAPPING 1'-6" MINIMUM IN CONCRETE (SEE TYPICAL DETAILS). HORIZONTAL WALL SPLICES SHALL BE STAGGERED. VERTICAL BARS SHALL NOT BE SPLICED EXCEPT AT HORIZONTAL SUPPORT, SUCH AS FLOOR OR ROOF,
- UNLESS DETAILED OTHERWISE. ALL BARS ENDING AT THE FACE OF A WALL, COLUMN, OR BEAM SHALL EXTEND TO WITHIN 2" OF THE FAR FACE AND HAVE A 90 DEGREE HOOK UNLESS OTHERWISE SHOWN. 9. DRAWINGS SHOW TYPICAL REINFORCING CONDITIONS. CONTRACTOR SHALL
- PREPARE DETAILED PLACEMENT DRAWINGS OF ALL CONDITIONS SHOWING QUANTITY, SPACING, SIZE, CLEARANCES, LAPS, INTERSECTIONS AND COVERAGE REQUIRED BY STRUCTURAL DETAILS, APPLICABLE CODE AND TRADE STANDARDS. CONTRACTOR SHALL NOTIFY REINFORCING INSPECTOR OF ANY ADJUSTMENTS FROM TYPICAL CONDITIONS THAT ARE PROPOSED IN PLACEMENT DRAWINGS TO FACILITATE FIELD PLACEMENT OF REINFORCING STEEL AND CONCRETE.
- 10. NO WELDING OF REINFORCEMENT (INCLUDING TACK WELDING) SHALL BE DONE UNLESS SHOWN ON THE DRAWINGS. WHERE SHOWN ON THE DRAWINGS, WELDING OF REINFORCING STEEL SHALL BE PERFORMED BY WELDERS SPECIFICALLY CERTIFIED FOR REINFORCING STEEL. USE E90XX ELECTRODES.

FOUNDATIONS

- 1. REMOVE LOOSE SOIL AND STANDING WATER FROM FOUNDATION EXCAVATIONS PRIOR TO PLACING CONCRETE.
- 2. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR EXCAVATION PROCEDURES INCLUDING LAGGING, SHORING, UNDERPINNING AND PROTECTION OF EXISTING CONSTRUCTION.
- 3. PLACE BACKFILL BEHIND RETAINING WALLS AFTER CONCRETE HAS ATTAINED FULL DESIGN STRENGTH. BRACE BUILDING AND PIT WALLS BELOW GRADE FROM LATERAL LOADS UNTIL ATTACHED FLOORS AND SLABS ON GRADE ARE COMPLETE AND HAVE ATTAINED FULL DESIGN STRENGTH.

FORMWORK

- 1. BEFORE STARTING CONSTRUCTION, THE CONTRACTOR SHALL DEVELOP A PROCEDURE AND SCHEDULE FOR REMOVAL OF CONCRETE FORMS AND SHORES. CONCRETE FORMS AND SHORES SHALL BE REMOVED IN SUCH A MANNER AS TO NOT IMPAIR THE SAFETY AND SERVICEABILITY OF THE STRUCTURE. IN ADDITION TO THE ABOVE REQUIREMENTS, REMOVAL OF FORMS SHALL BE NO SOONER THAN THE FOLLOWING
- 2. PROVIDE CURING WHERE FORMS ARE REMOVED IN LESS THAN 7 DAYS, INCLUDING BUT NOT LIMITED TO WALLS, COLUMNS, AND UNDERSIDE OF ELEVATED SLABS.

WOOD

- 1. FRAMING LUMBER EASTERN WHITE PINE;
- JOISTS AND RAFTERS: NO. 3 U.N.O.
- POSTS AND BEAMS: NO. 3 U.N.O.
- TRUSS MEMBERS AND BRACING: NO. 3 U.N.O.
- ALL LUMBER IN CONTACT WITH CONCRETE OR MASONRY TO BE PRESERVATIVE TREATED. - ALL LUMBER SHALL HAVE A MAXIMUM MOISTURE CONTENT OF 19% PRIOR TO FINAL FRAMING INSPECTION.
- 2. FRAMING HARDWARE: AS MANUFACTURED BY SIMPSON CO. OR APPROVED EQUAL.SIMPSON DESIGNATIONS USED.
- 3. NAILS: COMMON WIRE GAGE U.O.N. NAILING TO CONFORM TO CBC TABLE 2304.9.1 U.O.N.
- 4. BOLTS: ASTM A307. PROVIDE WASHER UNDER HEADS AND NUTS.
- 5. PROVIDE LATERAL SUPPORT FOR BEAMS, JOISTS AND RAFTERS AT ENDS AND POINTS OF BEARING.
- 6. LAG SCREWS PER ANSI/ ASME STANDARD B18.2.1 PROVIDE LEAD HOLE SAME DIAMETER AND DEPTH AS SHANK AND THEN DRILL HOLE 60% - 70% OF SHANK DIAMETER FOR THREADED PORTIONS.
- 7. PRESSURE TREATED LUMBER:
- PRESSURE TREATED D.F. SHALL BE AWPB STAMPED. AMMONIACAL COPPERQUAT (ACQ). COPPER BORON AZOLE (CBA), OR BORATE TREATED AWPASTANDARD C2, MINIMUM 0.40 INCH. PENETRATION INCISED.
- ALL PRESERVATIVE TREATED LUMBER SHALL BE FIELD-APPLIED WITH PRESERVATIVE WHERE CUT AND DRILLED ON SITE WITH COPPER NAPHATHENATE (2% COPPER AS METAL). - USE HOT DIPPED GALVANIZED HARDWARE, IE. BOLTS, NAIL, ETC. FOR ALL ATTACHMENT TO ACQ OR CBA TREATED MEMBERS.

service and are the property of Journeyman International. The design and information represented on these drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright

ALL DRAWINGS TO BE REVIEWED BY IN COUNTRY ARCHITECT/ENGINEER

2020.

DRAWINGS NOT FOR CONSTRUCTION

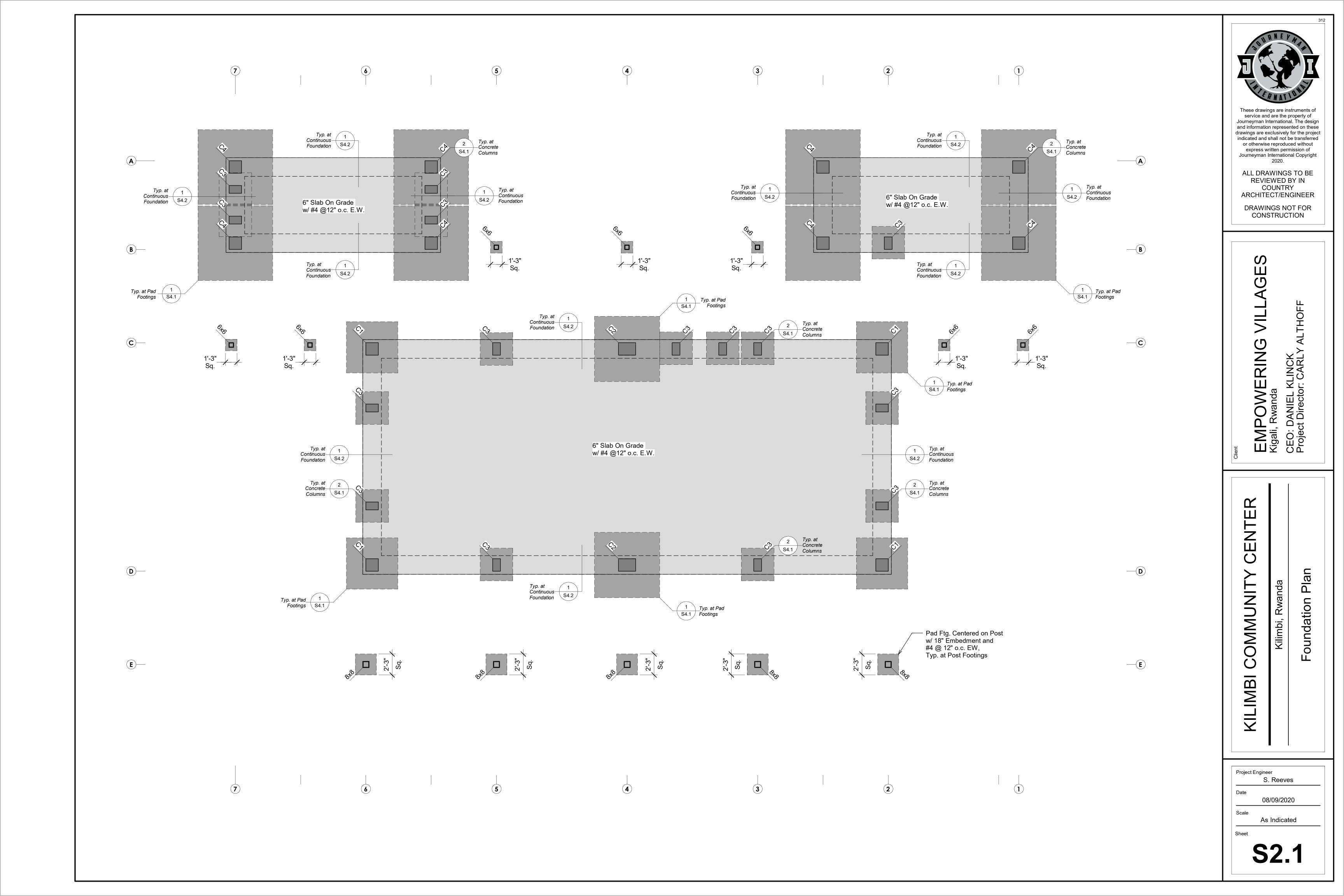
Ŋ

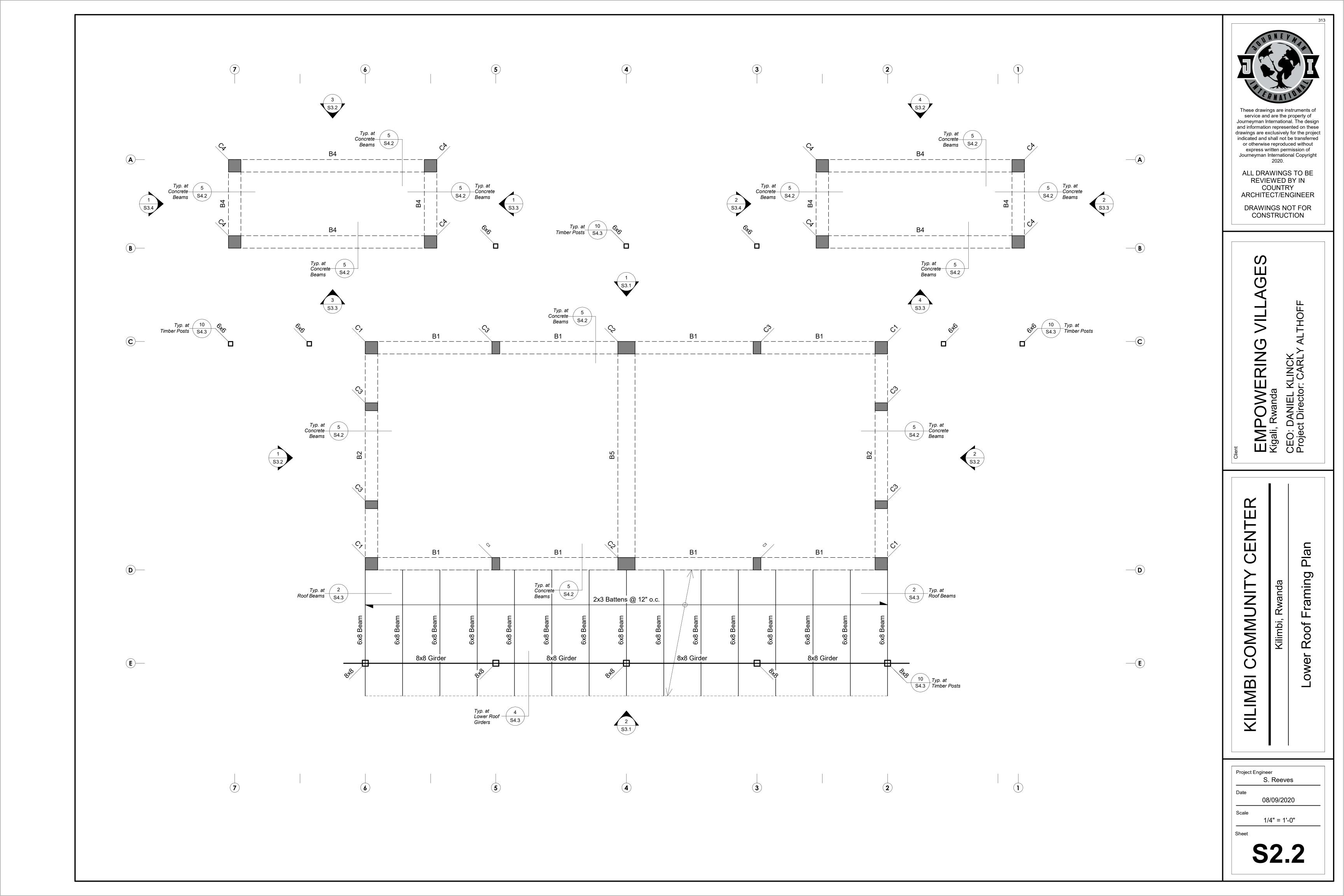
RING DANIEL KL ct Director: (

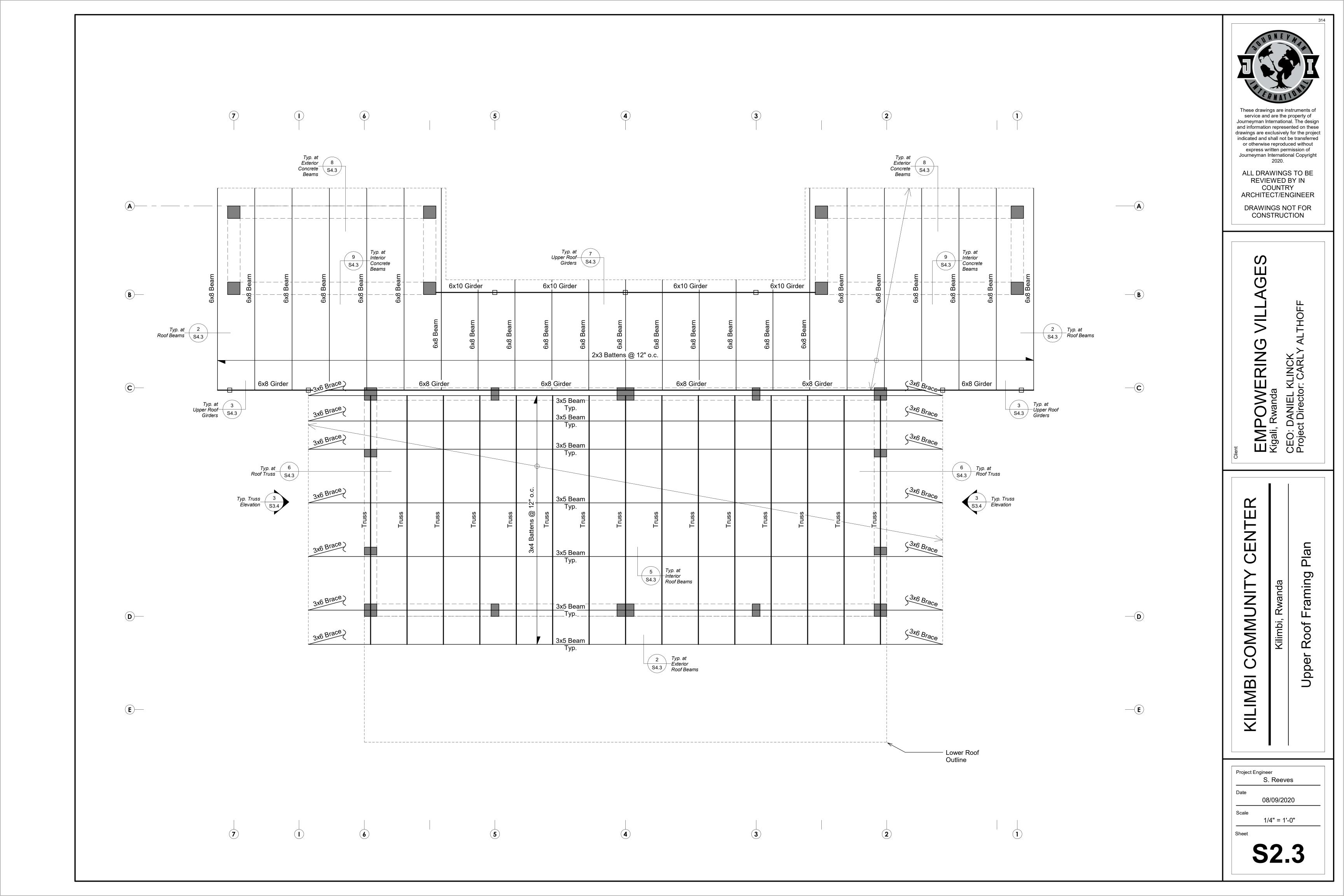
Ш

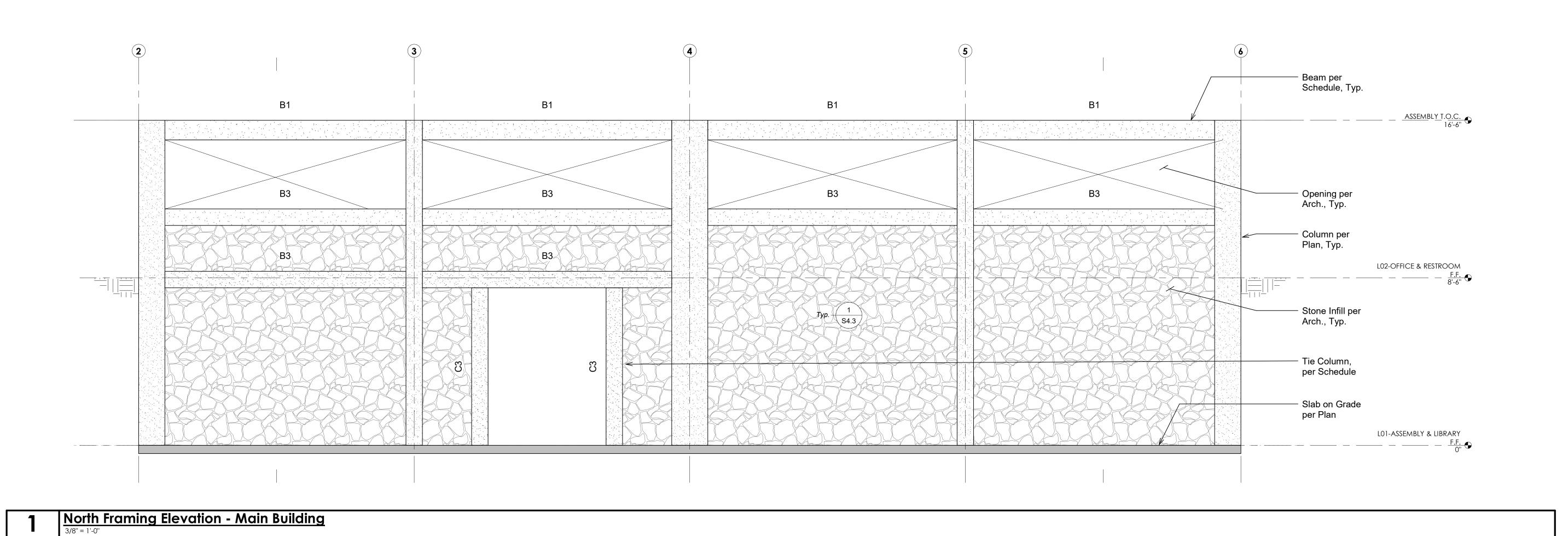
Specifications

Structural


LINOMIMO


.IMBI


Project Engineer S. Reeves


08/09/2020

As Indicated

Beam per Schedule, Typ. B1 B1 B1 Column per Plan, Typ. Opening per Arch., Typ. Stone Infill per Arch., Typ. - Slab on Grade per Plan L01-ASSEMBLY & LIBRARY

Project Engineer S. Reeves 08/09/2020 3/8" = 1'-0" **S3.1**

Structural Elevations

These drawings are instruments of service and are the property of Journeyman International. The design and information represented on these drawings are exclusively for the project indicated and shall not be transferred

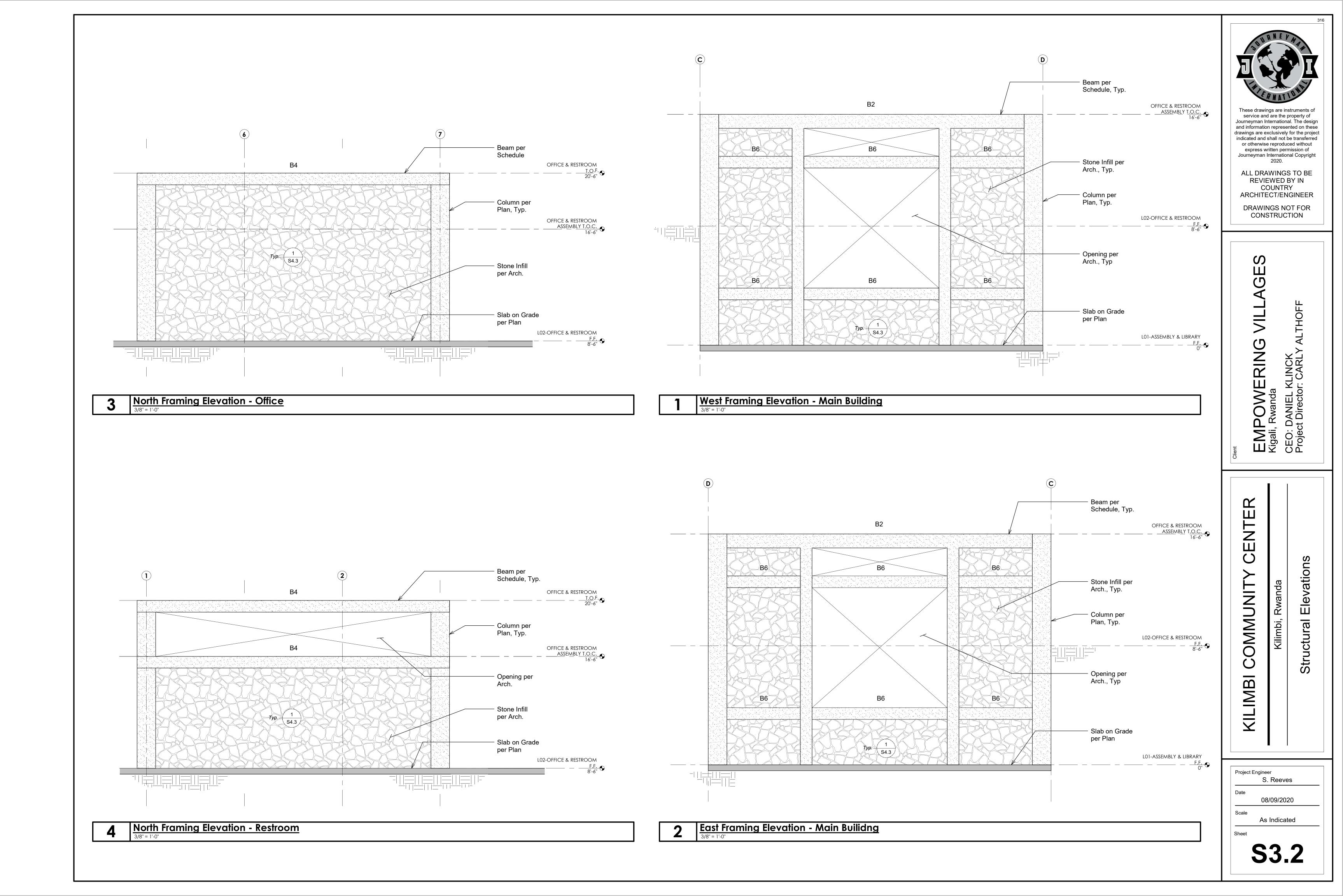
or otherwise reproduced without express written permission of Journeyman International Copyright 2020.

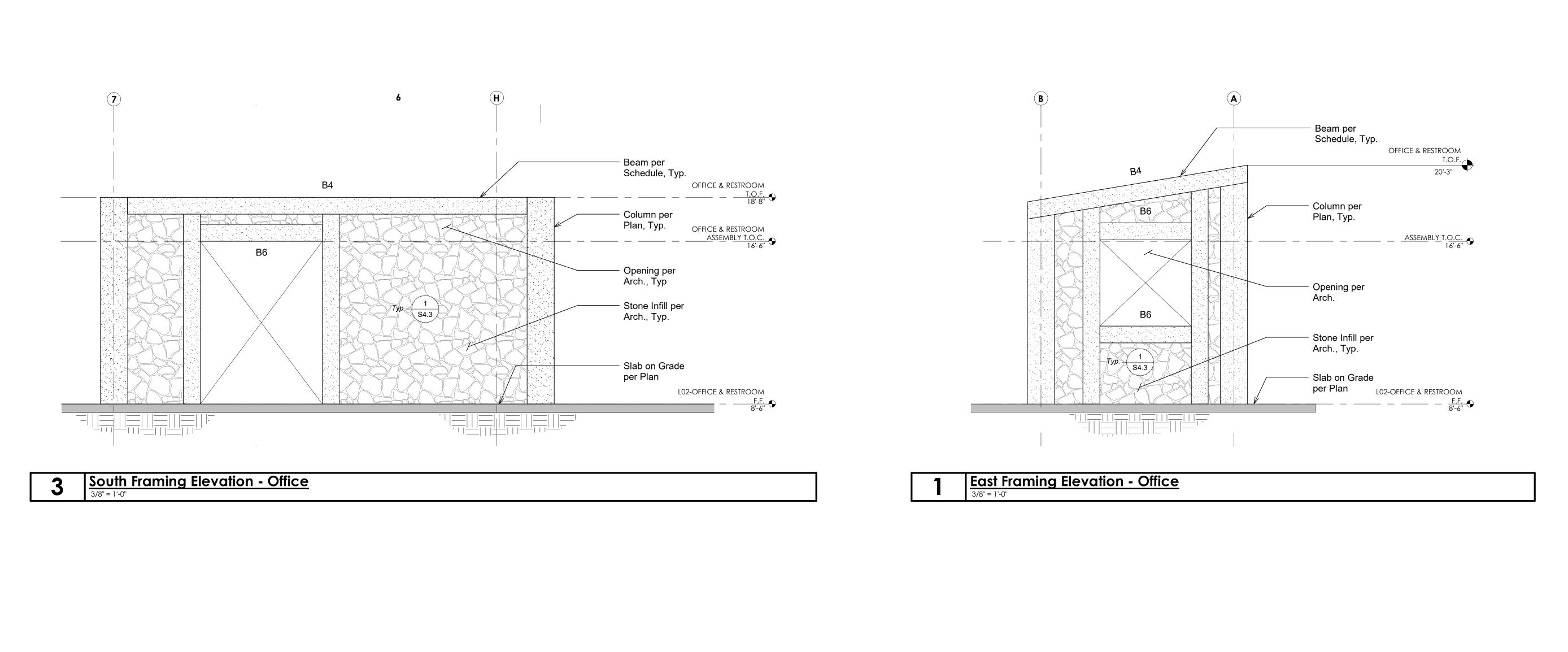
ALL DRAWINGS TO BE

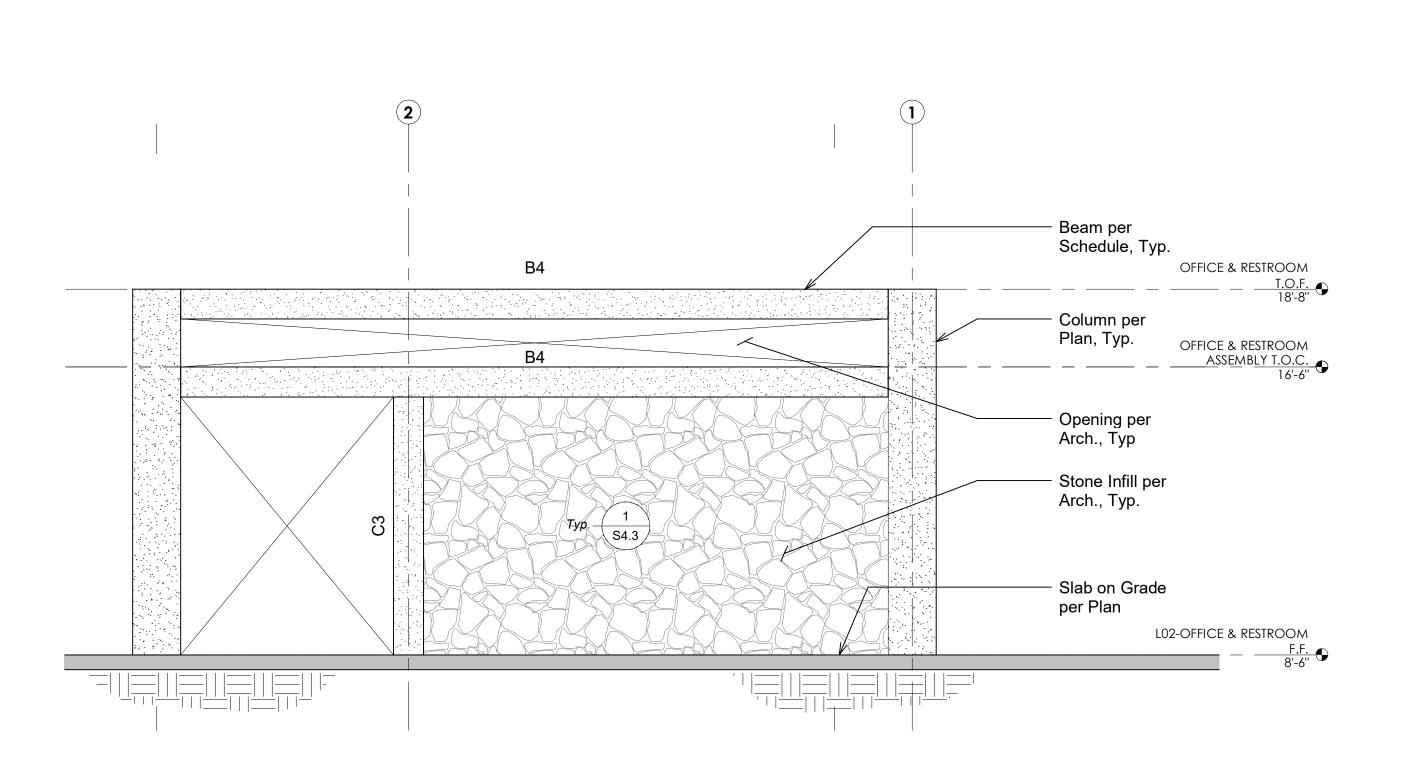
REVIEWED BY IN COUNTRY ARCHITECT/ENGINEER

DRAWINGS NOT FOR CONSTRUCTION

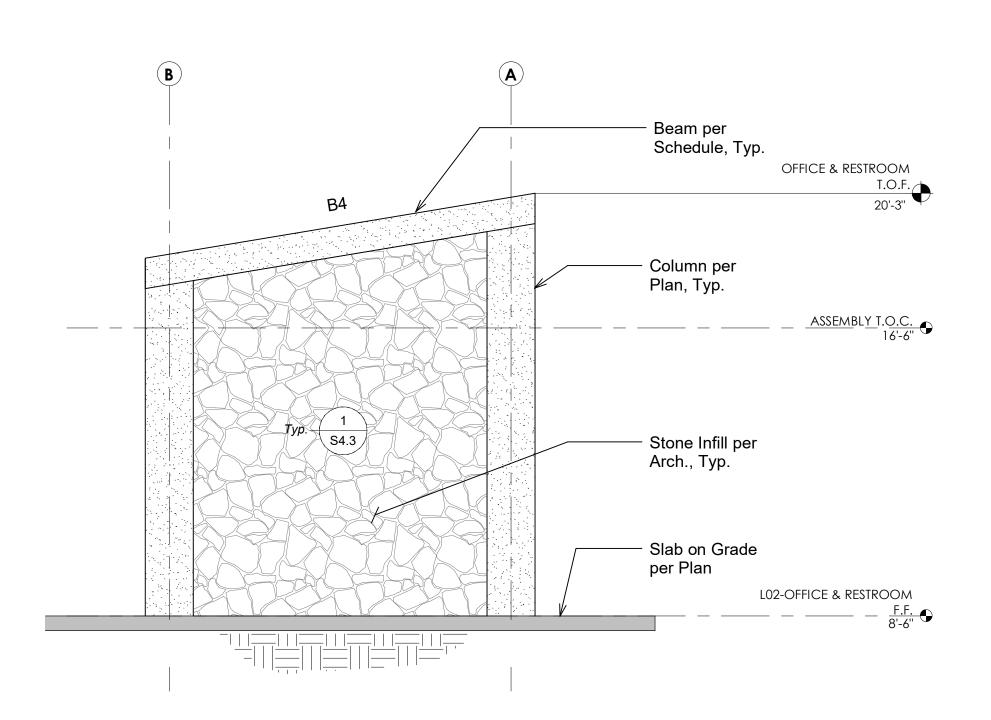
VILLAGE


CENTER


COMMUNITY


KILIMBI

EMPOWERING VILLA Kigali, Rwanda
CEO: DANIEL KLINCK
Project Director: CARLY ALTHOFF


South Framing Elevation - Main Building
3/8" = 1'-0"

South Framing Elevation - Restroom
3/8" = 1'-0"

East Framing Elevation - Restroom
3/8" = 1'-0"

CENTER COMMUNITY KILIMBI

Structural Elevations

service and are the property of Journeyman International. The design and information represented on these drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright

2020.

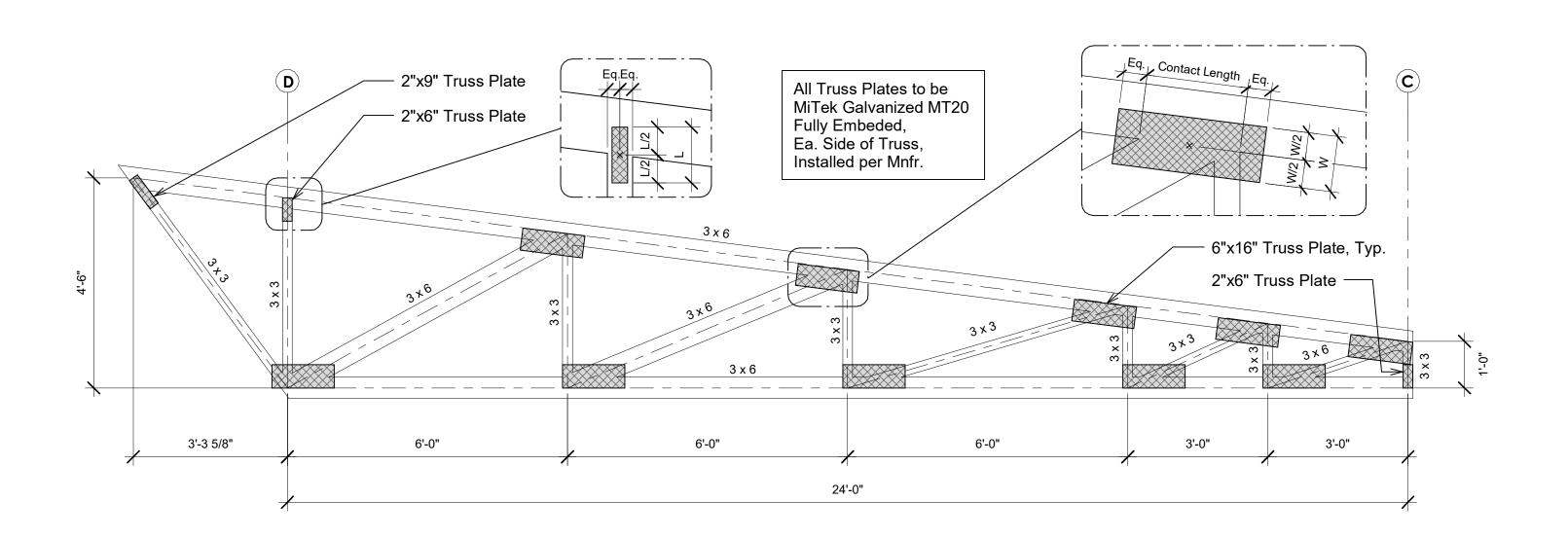
ALL DRAWINGS TO BE **REVIEWED BY IN**

COUNTRY ARCHITECT/ENGINEER

DRAWINGS NOT FOR

CONSTRUCTION

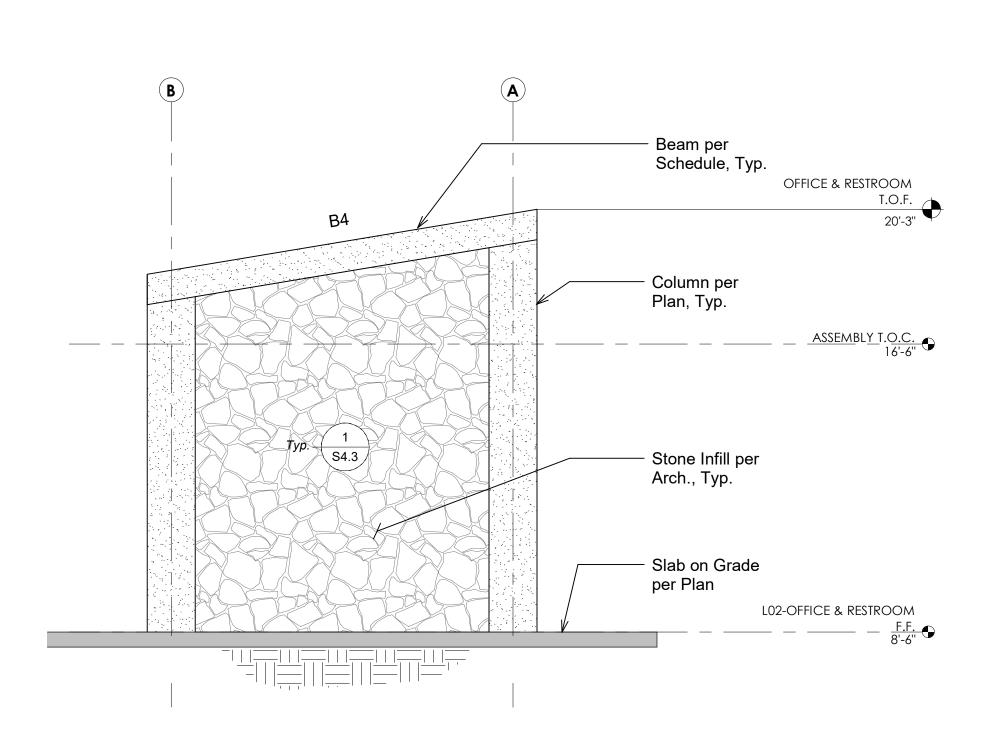
VILLAGE


EMPOWERING VILLA Kigali, Rwanda
CEO: DANIEL KLINCK
Project Director: CARLY ALTHOFF

Project Engineer S. Reeves

08/09/2020

3/8" = 1'-0"


S3.3

A Typ. Truss Elevation

Beam per Schedule, Typ. OFFICE & RESTROOM
T.O.F.
20'-3" Column per Plan, Typ. ASSEMBLY T.O.C. Opening per Arch. Stone Infill per Arch., Typ. - Slab on Grade per Plan LO2-OFFICE & RESTROOM

West Framing Elevation - Office
3/8" = 1'-0"

West Framing Elevation - Restroom
3/8" = 1'-0"

ALL DRAWINGS TO BE REVIEWED BY IN COUNTRY ARCHITECT/ENGINEER DRAWINGS NOT FOR CONSTRUCTION

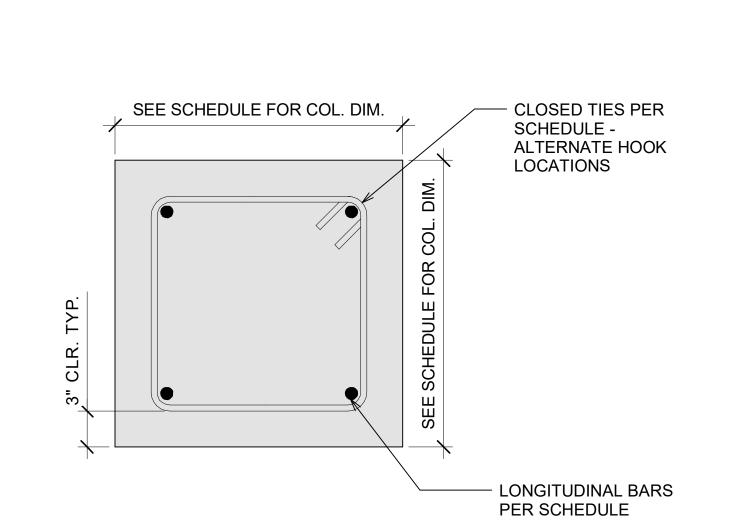
These drawings are instruments of

service and are the property of Journeyman International. The design and information represented on these

drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright

2020.

VILLAGES EMPOWERING VILLA Kigali, Rwanda
CEO: DANIEL KLINCK
Project Director: CARLY ALTHOFF


CENTER

KILIMBI COMMUNITY

Structural Elevations

Project Engineer S. Reeves 08/09/2020

As Indicated

Column Section
1 1/2" = 1'-0"

- ADD 2 TIES @ 2" O.C.

BELOW OFFSET BAR

☐ INTERMEDIATE BEAM AND REINFORCEMENT PER

- AT DISCONTINUOUS COLUMN PROVIDE STANDARD 90 DEG.

HOOKS

ELEVATION, WHERE OCCURS

- SLAB ON GRADE PER

- FOOTING PER PLAN AND OTHER DETAILS

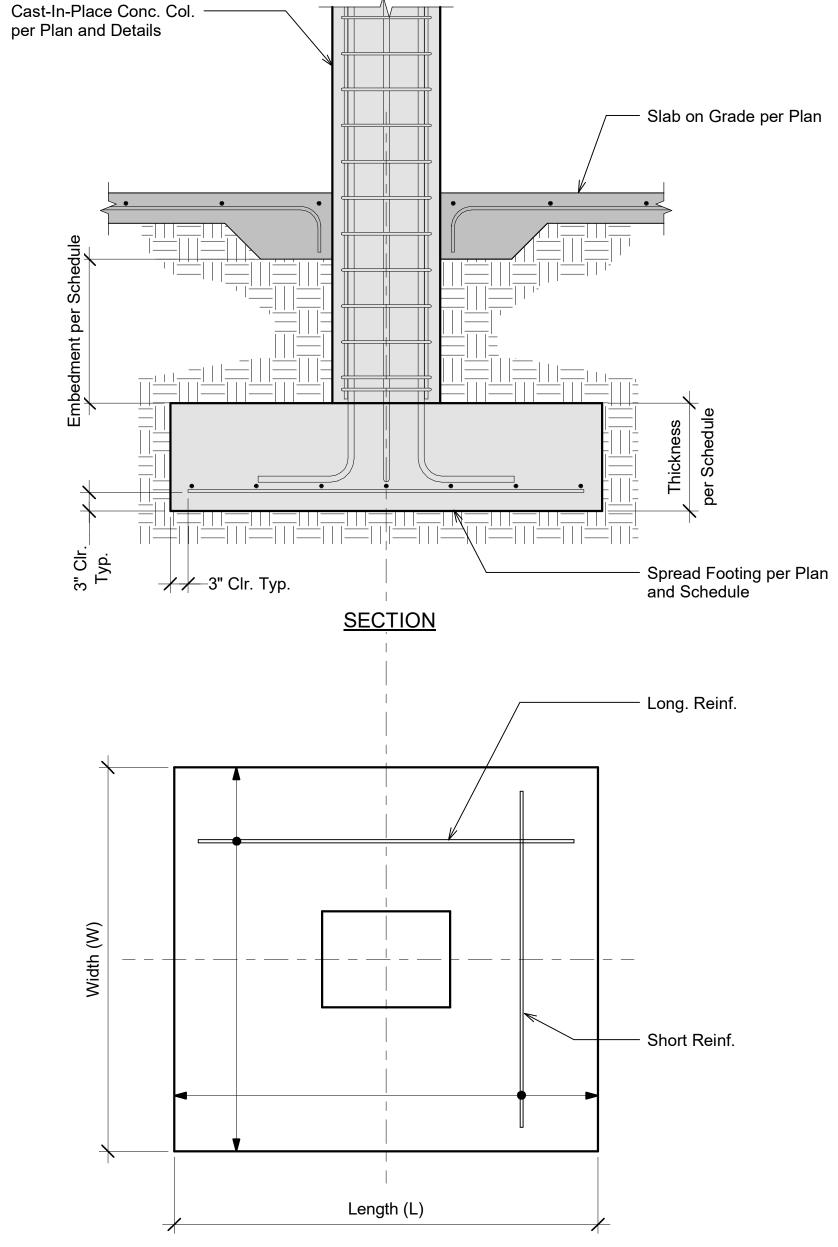
3.5" O.C.

IN Lo REGIONS

4" O.C.

IN Lo REGIONS

OTHER DETAILS


- TYP. ADD 2 TIES @ 2" O.C.

@ TOP OF COL.

COI	NCRE	TE C	OLU	MN S	CHEI	DULE							
	COLUMN MARK												
	<u>C1</u>			<u>C2</u>			<u>C3</u>			<u>C4</u>			
REINFORCING	SIZE	TIES	REINFORCING	SIZE	TIES	REINFORCING	SIZE	TIES	REINFORCING	SIZE	TIES		
(4) # 6	16" x 16"	.4 @ 6" o.c.	(4) # 6	22" × 16"	4 @ 6" o.c.	(4) # 6	10" × 16"	@ 4.5" o.c.	(4) # 9	16" x 16"	.4 @ 6" o.c.	ARCH'L	ROOF INTERMEDIATE BEAM LINE
6	©	# 0.c.	6#	9	# 0.c.	9#		5" o.c. #3	6#		# 0.c.	SEE AF	INTERMEDIATE BEAM LINE
4,	16" × 1	# 4 @ 6"	— (4)	22" × 1	# 4 @ 6"	-4	10" × 1	#3 @ 4.	(4)	16" × 1	# 4 @ 6'	CH.I.	L02 OFFICE & RESTROOM F.F.
(4) # 9	16" x 16"	@ 6" o.c.	(4) # 9	22" x 16"	@ 6" o.c.	(4) # 6	10" x 16"	@ 4.5" o.c.	(4) # 9	16" x 16"	@ 6" o.c.	SEE AR	
<u> </u>		# 4			#			# #	 		# 4-		L01 ASSEMBLY & LIBRARY F.F.
	NOTES												
DECR	GIONS EASE TI NG TO		DECR	GIONS EASE TI					DECR	EGIONS EASE T ING TO			

3.5" O.C.

IN Lo REGIONS

FOOTING SCHEDULE							
Column	Size	Thickness	Reinforcing	Embedment			
C1	5'-6" x 5'-6"	24"	#4 @ 4" o.c. E.W.	2'-6"			
C2	7'-0" x 7'-0"	24"	#4 @ 4" o.c. E.W.	3'-6"			
C3	3'-6" x 3'-6"	24"	#4 @ 4" o.c. E.W.	2'-6"			
C4	8'-0" x 8'-0"	24"	#4 @ 5.5" o.c. E.W.	4'-0"			

Pad Footing

DMMUNIT <u>PLAN</u> IMB **X**

> Project Engineer S. Reeves 08/09/2020 As Indicated

> > **S4.1**

These drawings are instruments of

service and are the property of Journeyman International. The design and information represented on these

drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright 2020.

ALL DRAWINGS TO BE

REVIEWED BY IN

COUNTRY

ARCHITECT/ENGINEER

DRAWINGS NOT FOR CONSTRUCTION

AGE

AILL VI

EMPOWERING N Kigali, Rwanda CEO: DANIEL KLINCK Project Director: CARLY ALT

Details

Structural

Concrete Column Elevation

PROVIDE STANDARD 90 DEG.

ON BOTTOM REINFORCING OR 3"

HOOKS - PLACE HOOK

CLEAR FROM

BOTTOM OF CONC.

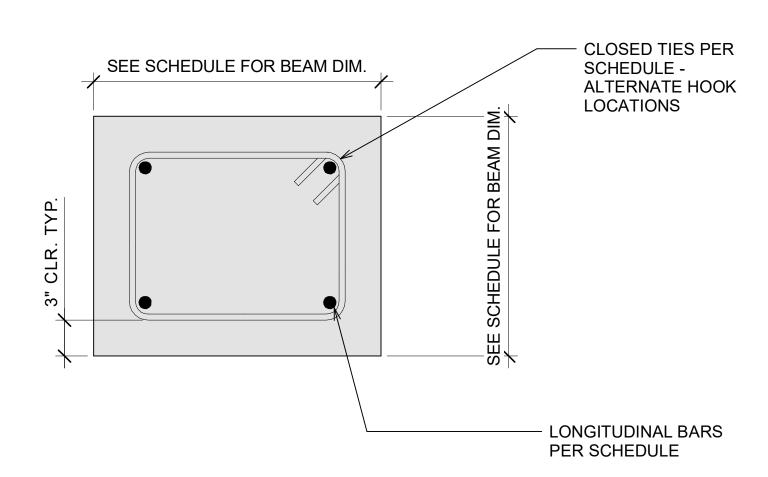
TOP OF — FOUNDATION

ADD 2 SETS OF — TIES @ 2" O.C. AT COLUMN BASE

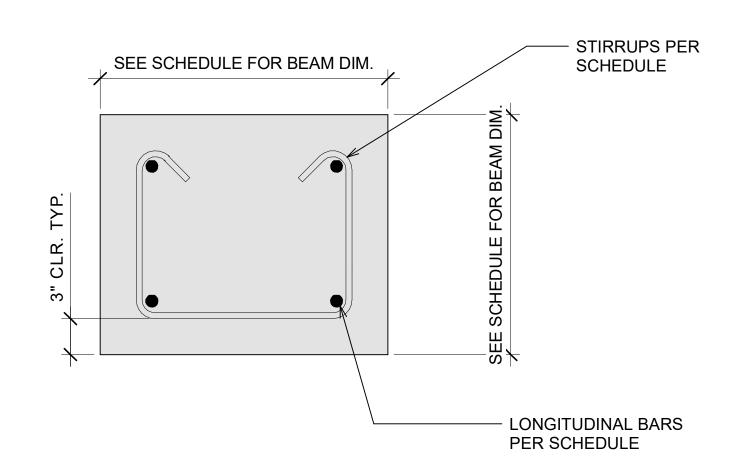
ROOF LEVEL BEAM —— AND REINFORCEMENT

PER SCHEDULE

ACI STANDARD 90 DEG. HOOK

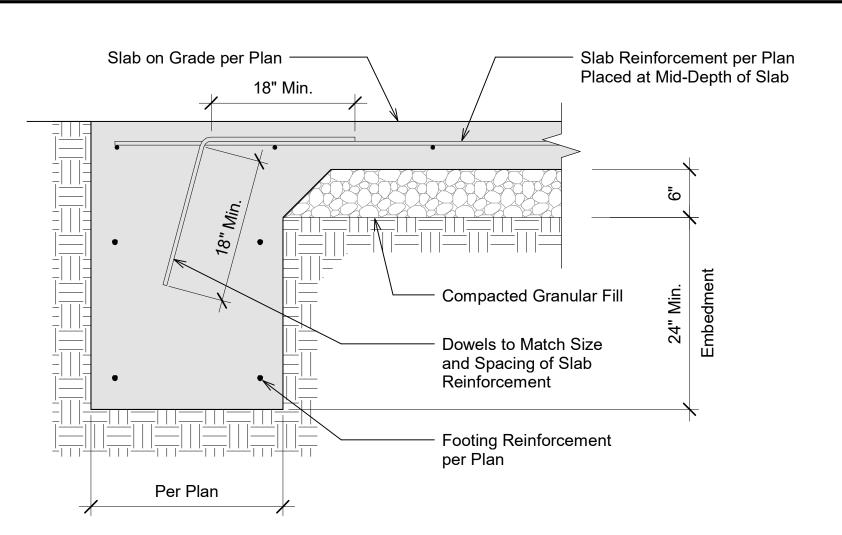

SEE BELOW FOR

DOWELS TO MATCH -VERTICAL REINFORCING

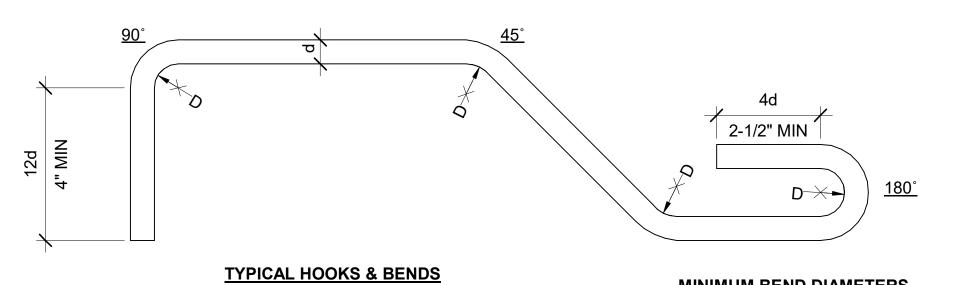

(TYP.)

SPLICE

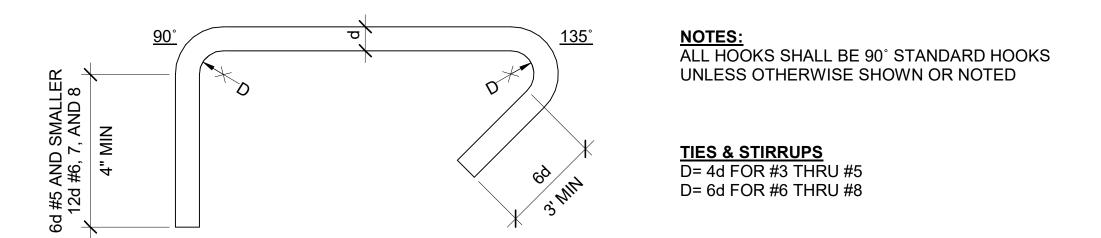
U.N.O

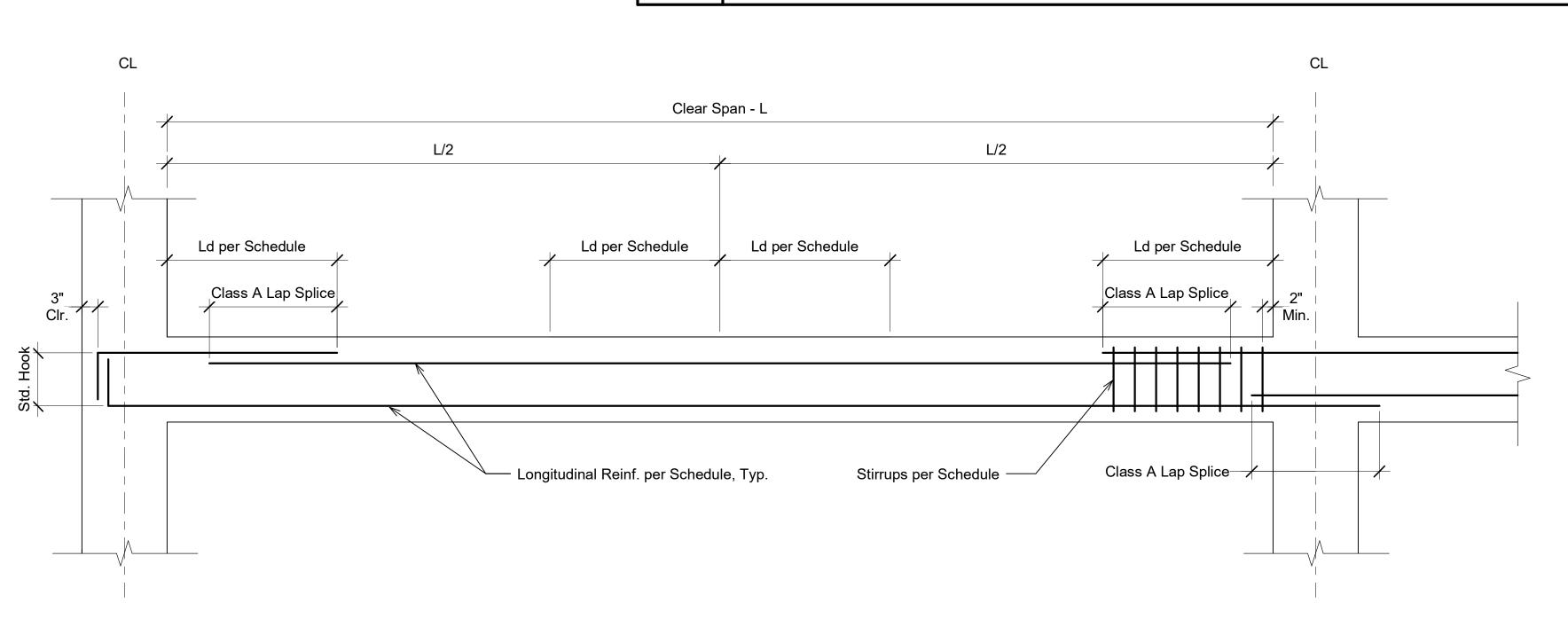


 $\frac{\text{Typ. Beam Section}}{1.1/2" = 1"-0"}$



4 Gravity Beam Section
1 1/2" = 1'-0"


	CONCRETE BEAM SCHEDULE										
MARK	WIDTH	DEPTH	LONG. REINF.	SHEAR REINF.	Ld REGIONS	DETAIL					
B1	16"	12"	(4) - #7	#3 @ 5.5" o.c.	Ld = 32" Use #3 @ 2.5" o.c.	3/\$4.3					
B2	16"	12"	(4) - #8	#3 @ 3" o.c.	Ld = 32" Use #3 @ 2.5" o.c.	3/S4.3					
В3	16"	10"	(4) - #6	#3 @ 2.5" o.c.	None	4/\$4.3					
B4	16"	10"	(4) - #7	#3 @ 2.5" o.c.	None	4/\$4.3					
B5	22"	12"	(4) - #8	#3 @ 3" o.c.	Ld = 44" Use #3 @ 1.5" o.c.	3/S4.3					
B6	16"	10"	(4) - #3	#3 @ 8" o.c.	None	4/\$4.3					



MINIMUM BEND DIAMETERS
D= 6d FOR #3 THRU #8
D= 8d FOR #9 THRU #11
D= 10d FOR #14 THRU #18

2 Typ. Rebar Hooks

IMBI COMMUNITY CENTER

목 목 Structural Details

These drawings are instruments of service and are the property of Journeyman International. The design

and information represented on these

drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without

express written permission of Journeyman International Copyright

2020.

ALL DRAWINGS TO BE REVIEWED BY IN

COUNTRY

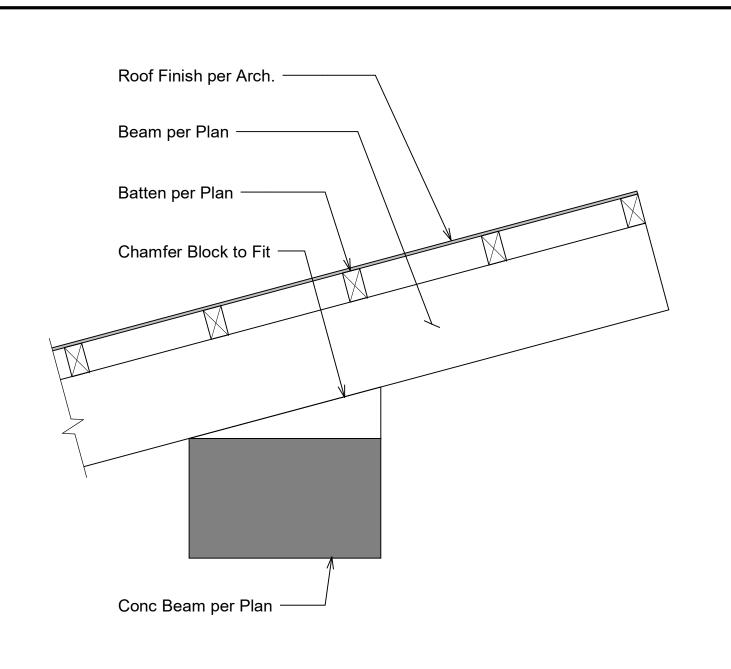
ARCHITECT/ENGINEER

DRAWINGS NOT FOR

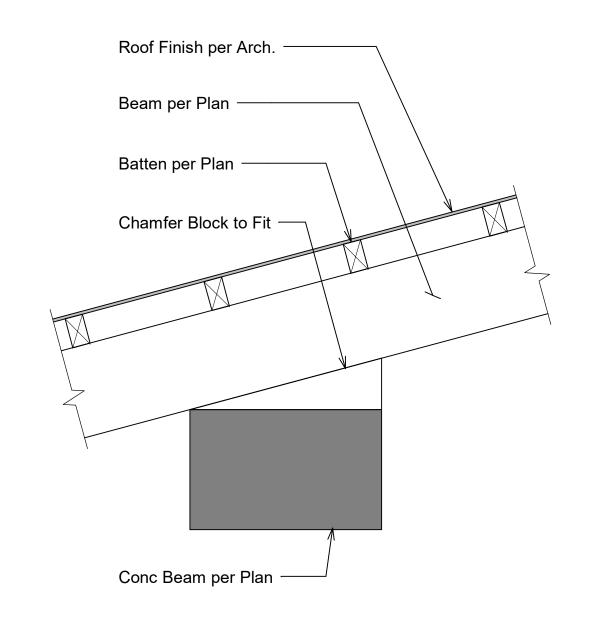
CONSTRUCTION

AGE

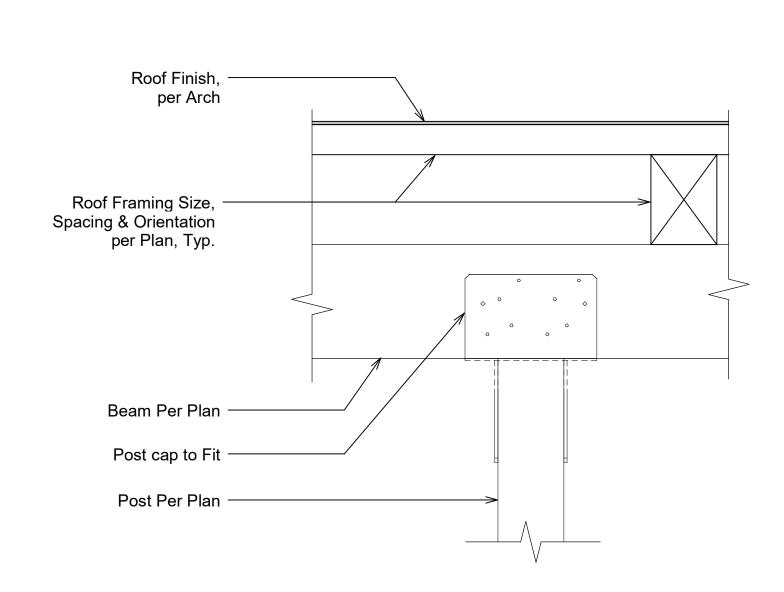
MILL

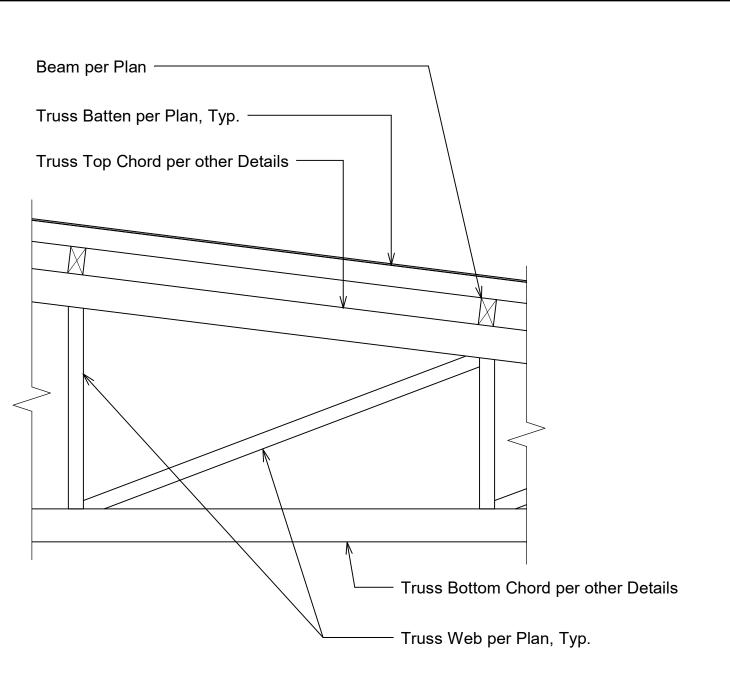

EMPOWERING \
Kigali, Rwanda
CEO: DANIEL KLINCK
Project Director: CARLY ALT

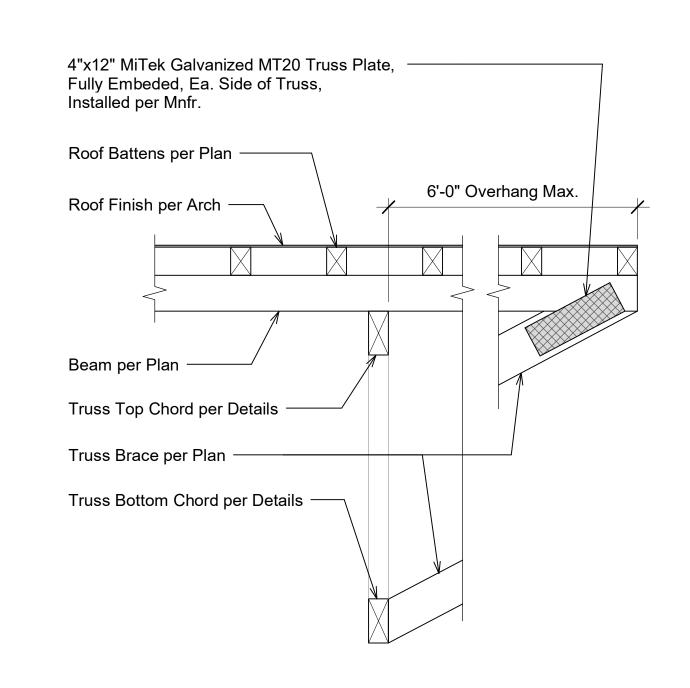
Project Engineer
S. Reeves

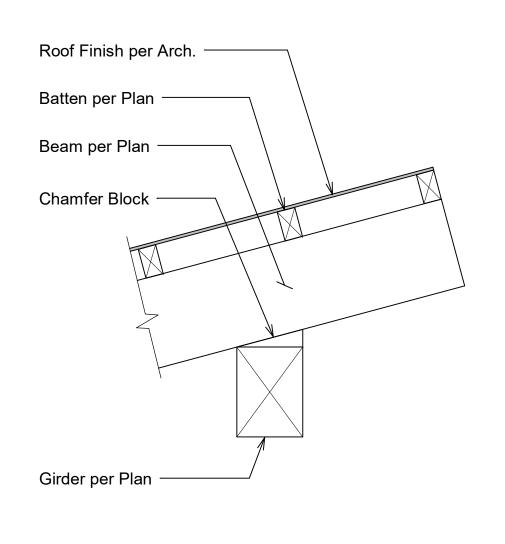

Date
08/09/2020

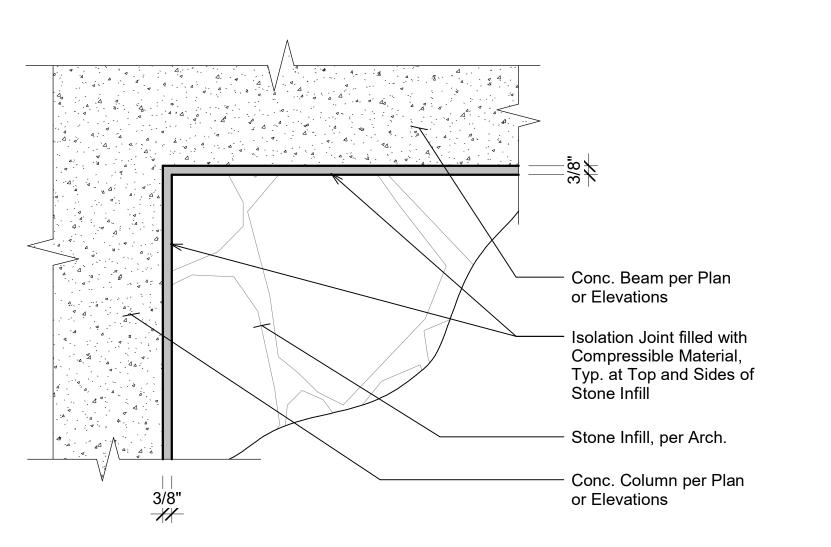
Scale
As indicated

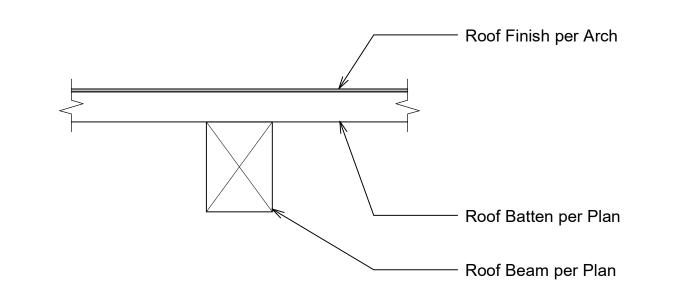

S4.2

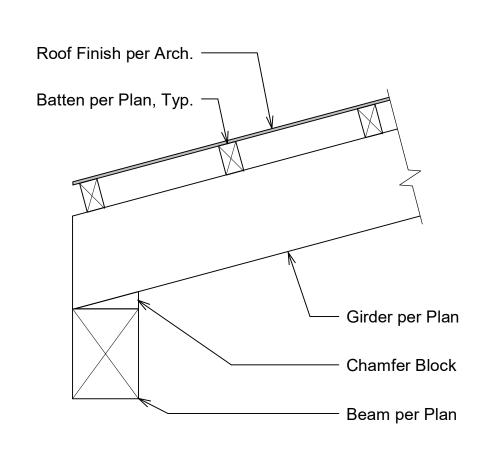

8 Roof Framing at Exterior Concrete Beam

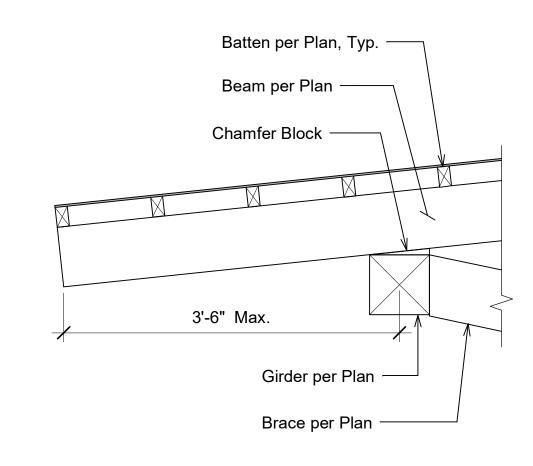

Roof framing at Interior Concrete Beam 1 1/2" = 1'-0"

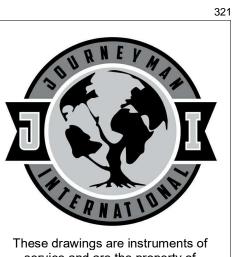

10 <u>Beam to Post</u>


Roof Framing Parallel to Truss


Roof Framing Perpendicular to Truss


Roof Framing at Upper Roof Overhang


Typical Wall Infill 3" = 1'-0"


2 Batten to Roof Beam

Roof Framing at Upper Roof 1 1/2" = 1'-0"

Roof Framing at Lower Roof

These drawings are instruments of service and are the property of Journeyman International. The design and information represented on these drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright 2020.

ALL DRAWINGS TO BE REVIEWED BY IN COUNTRY ARCHITECT/ENGINEER

DRAWINGS NOT FOR CONSTRUCTION

S

EMPOWERING VILLAGE
Kigali, Rwanda
CEO: DANIEL KLINCK
Project Director: CARLY ALTHOFF

EMPC Kigali, Rw

CENTE

COMMUNIT

KILIMBI

Structural Details

Kilimbi, Rwa

Project Engineer
S. Reeves

Date
08/09/2020

Scale
As Indicated

Sheet

S4.3

Who is Journeyman International?

-CalPoly alumni Daniel Weins

-Connecting students to causes

-Positive global impact while learning

What is Empowering Villages?

-Humanitarian organization based in Kigali, Rwanda

-Focuses on inspiring, training, and educating

-Partnered with EMPWR for renewable energy access

The Team

<u>Architect</u>

Rebecca Johnson

Construction Manager

Chris Audi

Architectural Engineer

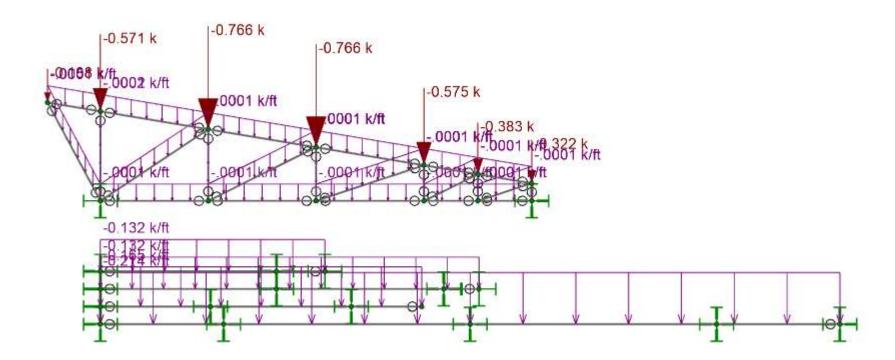
Serena Reeves

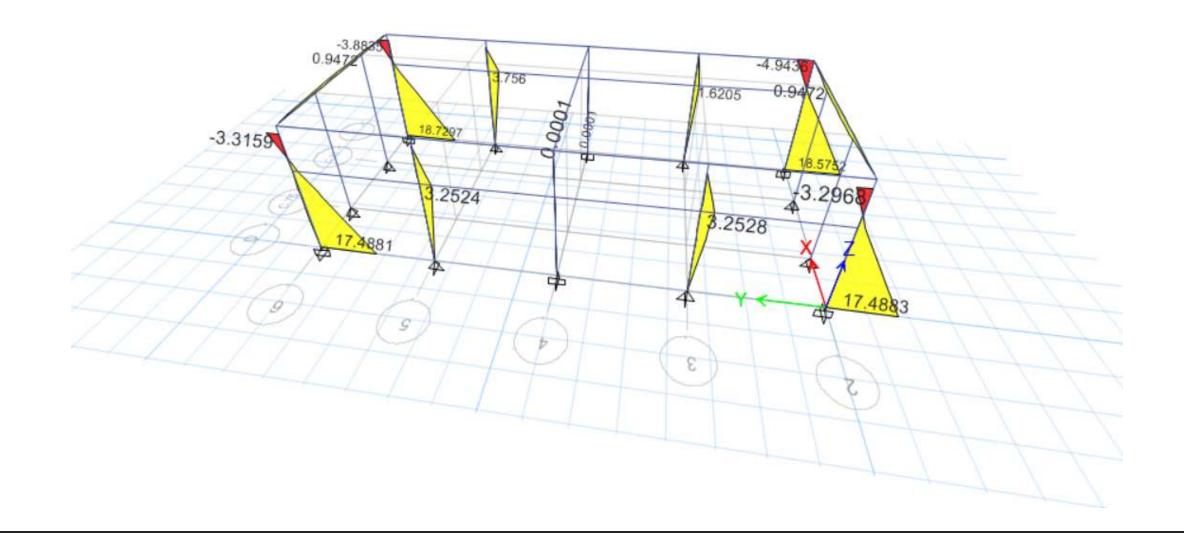
The Project

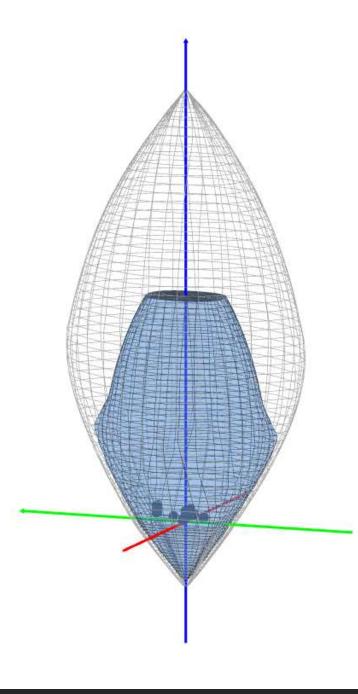
<u>Timber</u>

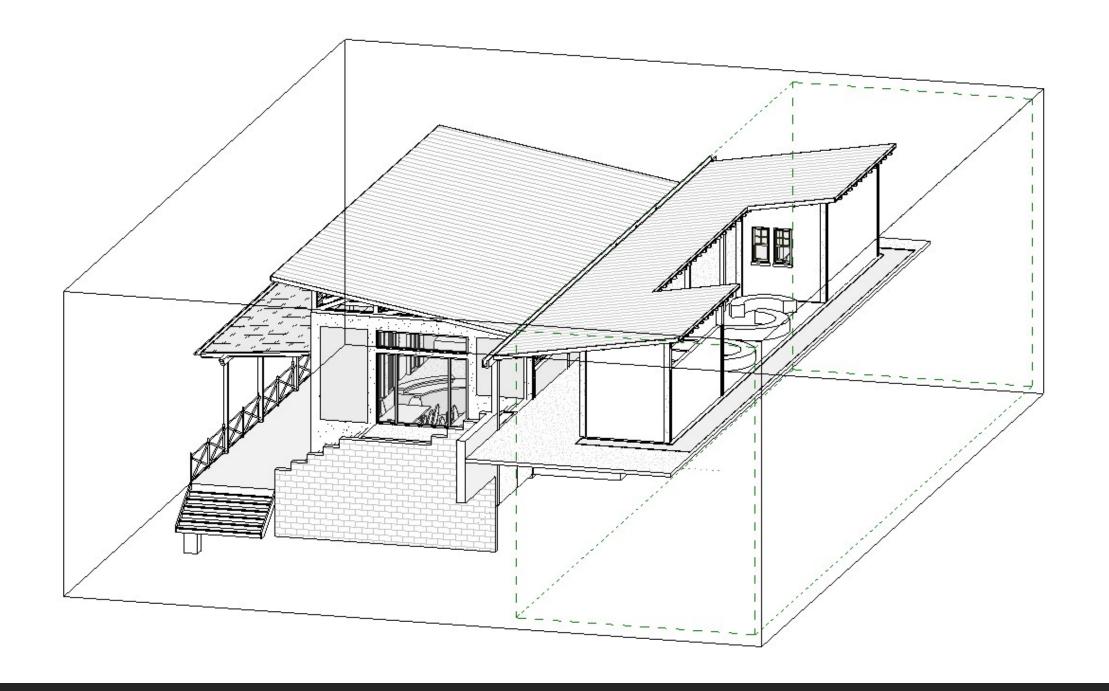
Trusses and other Gravity Framing

Concrete


Diaphragm, Special Moment Frames, Cantilevered Columns, Slab On Grade, Retaining Walls, and Foundations




THE SITE



Structural Analysis

Global

Cultural and Social

-Exposure to different cultures

-Sets example and promotes well engineered structures

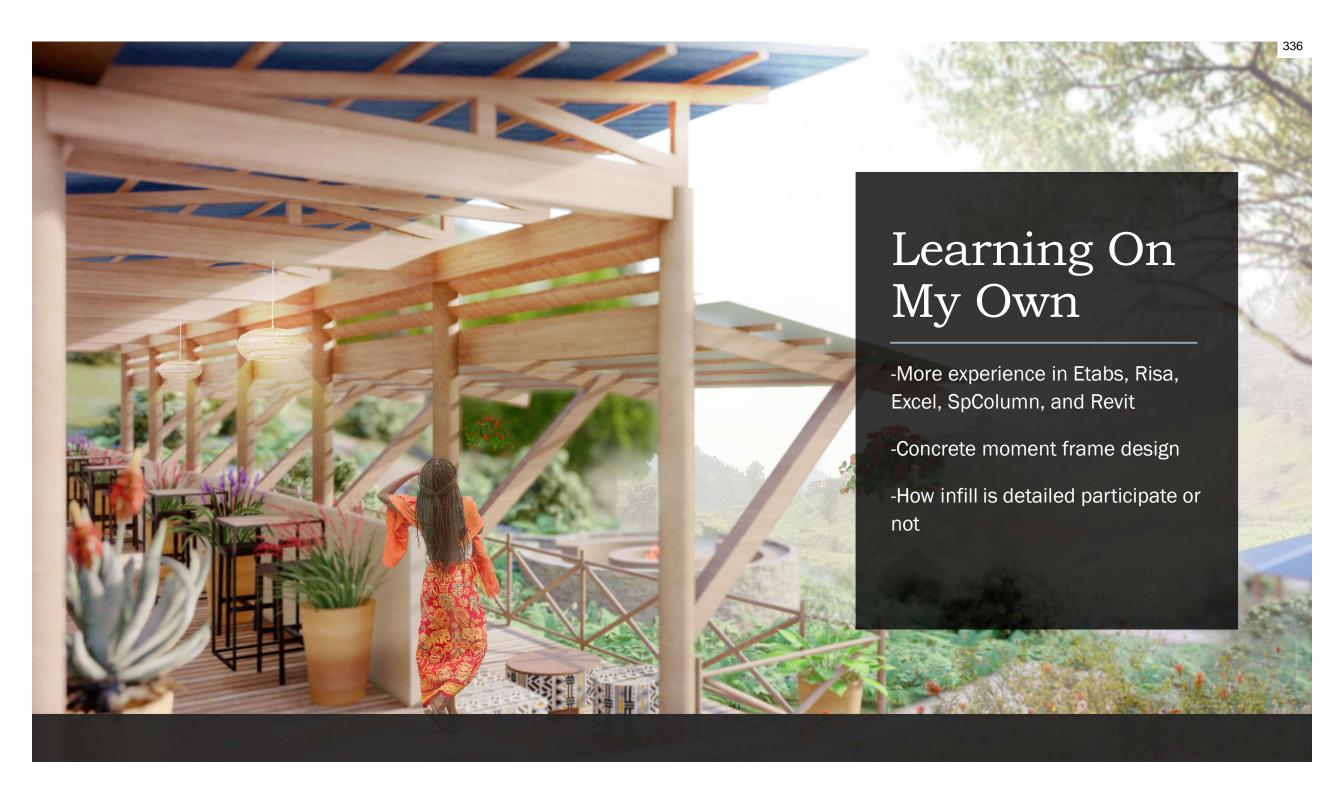
-Mitigate disruption of daily life in the case of natural disasters or at least a shelter

-Empowering Villages can focus on empowering villages, rather than constantly repairing them

-Community Center encourages people to come together and learn together in a scattered community

Environmental

Pro-


Creates green energy sources, both hydro and solar

Con-

Mainly concrete structure

