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Abstract 
An elementary mathematical theory based on a “selectivity-variability” principle is 

proposed to address a question raised by Charles Darwin, namely, how one sex of a sexually 
dimorphic species might tend to evolve with greater variability than the other sex. Two 
mathematical models of the principle are presented: a discrete-time one-step probabilistic 
model of the short-term behavior of the subpopulations of a given sex, with an example 
using normally distributed perceived fitness values; and a continuous-time deterministic 
coupled ODE model for the long-term asymptotic behavior of the expected sizes of the 
subpopulations, with an example using exponentially distributed fitness levels. 
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1. Introduction

In his research on evolution in the 19th century Charles Darwin
observed that throughout the animal kingdom males are generally more 
variable than females of the same species, and he raised the question of 
why this might occur: 

“The cause of the greater general variability in the male sex, than in 
the female is unknown” [7, p. 224]. 

This question has persisted into the 21st century (e.g., see [12, p. 
1-2]). For example, as statistician Howard Wainer phrased it “Why was
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2 T. P. HILL 

our genetic structure built to yield greater variation among males than 
females? And not just among humans, but virtually all mammals” [23, p. 
255]. 

The past quarter century has produced much new research on this 
topic in different contexts, most of which refer to humans, and the great 
majority of which support Darwin’s observation of greater male variability 
(e.g., see Appendix A of [12]). The objective of this paper is to propose 
an elementary mathematical principle to help explain how one sex in a 
given species could naturally evolve toward greater or lesser variability 
depending on the preferences of the opposite sex. Together with two 
additional standard biological tenets, this principle might help provide an 
answer to Darwin’s question. 

2. A Theory for Differences in Variability Between Sexes

In very general terms, the main principle of the theory introduced
here is this: 

A Selectivity-Variability Principle. In a species with two sexes A and B, both 
of which are needed for reproduction, suppose that sex A is relatively selective, 
i.e., will mate only with a top tier (less than half) of B candidates. Then from
one generation to the next, among subpopulations of B with comparable average
attributes, those with greater variability will tend to prevail over those with
lesser variability. Conversely, if A is relatively non-selective, accepting all but
a bottom fraction (more than half) of the opposite sex, then subpopulations of B
with lesser variability will tend to prevail over those with comparable means
and greater variability.

Note that this principle does not make any assumptions about 
inherent differences in means or other attributes between the sexes. For 
instance, it does not require that one sex is selective and the other non-
selective, or even that one sex is more selective than the other, unlike 
Bateman’s principle [2], for example, or other related theories such as 
“the sex that experiences more intense...vetting by the other sex will 
tend to show greater within-sex variation on many traits” [10, p. 176]. If 
both sexes of a species happen to be selective, the selectivity-variability 
principle here predicts that the best evolutionary strategy for each is to 
tend toward greater variability. 

It is also important to note that this principle alone says nothing about 
a priori or a posteriori comparisons of the variabilities across the sexes. For 
example, if sex A is not selective while sex B is selective, this principle 
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says that subpopulations of A with greater variability will prevail over 
subpopulations of A with lesser variability, and that subpopulations of B 
with lesser variability will prevail over subpopulations of sex B with greater 
variability. It says nothing about comparing the resulting variability of sex 
A with the variability of sex B. If all the subpopulations of B were initially 
more variable than all the subpopulations of A, for instance, then the 
next generation of sex B will still exhibit greater variability than the next 

Figure 1 
The three cases of Example 1: The red blocks represent the distribution of the 
more variable subpopulation B1 of sex B, and the blue represent the less vari-

able subpopulation B2. 
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generation of sex A whether either sex is selective or non-selective. Only 
under additional hypotheses, such as “both sexes began with comparable 
mid-range variability”, as will be done in an illustrative example below 
to address Darwin’s question, can this theory be useful to draw any 
conclusions about comparisons of variability between the two sexes. 

In order to make this selectivity-variability theory more precise, of 
course, it is necessary to define formally what is meant by selectivity and 
variability in this context, and that will be done in the next section. First, 
the following simple informal hypothetical example may help convey the 
intuition behind this principle. 

Example 1 : Sex B consists of two subpopulations B1 and B2. Sex A 
considers half of the individuals in B1 very desirable and the other half not 
very desirable, and it considers all of the individuals in subpopulation B2 

of mid-range desirability. Thus B1 is more variable in desirability to sex 
A than B2, with B1 and B2 having comparable average desirability. (See 
Figure 1, where larger numbers reflect greater desirability.) 

Special Case 1 : B1 and B2 are of equal size. Then sex A considers one 
quarter of sex B (the lower half of B1) of relatively low desirability, half of 
B (all of B2) of medium desirability, and one quarter of B (the upper half 
of B1) of above-average desirablity (see Figure 1a). If sex A is relatively 
selective and will mate only with the top most desirable quarter of sex 
B, then all of the next generation will be offspring of the more variable 
subpopulation B1 (Figure 1b). On the other hand, if sex A is relatively non-
selective and will mate with any but the lower quarter of B, then all of the 
less variable B2 will mate, but only half of the more variable B1 will mate 
(Figure 1c). 

Similar conclusions follow if the initial subpopulations are not of 
equal size. 

Special Case 2 : One third of sex B is the more variable B1 and two 
thirds is the less variable B2 (Figure 1d). If sex A only mates with the most 
desirable quarter of B, a short calculation shows that two thirds of the next 
generation will be offspring of B1 and one third will be offspring of B2, 
so based on the initial distribution, the more variable subpopulation will 
be overrepresented (Figure 1e). If sex A will mate with any but the least 
desirable quarter of B, then only two ninths of the next generation will be 
offspring of B1 and seven ninths will be offspring of B2, so the less variable 
subpopulation of sex B will be overrepresented (Figure 1f). 

Special Case 3 : Two thirds of sex B is the more variable B1 and only one 
third is the less variable B2 (Figure 1g). If sex A only mates with the most 



 

 

 

 

 

5 DIFFERENCES IN VARIABILITY BETWEEN SEXES 

desirable quarter of B, then all of the next generation will be offspring of B1 

(Figure 1h), and if sex A will mate with any but the least desirable quarter 
of B, then only five ninths of the next generation will be offspring of B1 and 
the rest will be offspring of B2, so again the less variable subpopulation of 
sex B will be overrepresented (Figure 1i). 

Note the asymmetry in the mating probabilities in this example. 
Some intuition behind why this occurs may perhaps be gained from 
the observation that the most desirable individuals in the more variable 
population will always be able to mate, whether the opposite sex is 
selective or non-selective. 

3. Desirability and Selectivity 

In order to begin to try to interpret these ideas analytically, it is of 
course necessary to identify concrete definitions of “desirable”, “selective” 
and “more variable”. There are clearly many different candidates to 
capture the essence of each of these terms; the following assumptions and 
definitions are simply intended as a starting point to facilitate proposal of 
several models and analysis of the above selectivity-variability principle. 

To begin with, the informal notion of desirability introduced in 
Example 1 above will be extended as follows. 

Desirability Assumption : Each individual (or phenotype) in each sex is 
assigned a real number which reflects its desirability to the opposite sex, with 
higher values indicating greater desirability. 

As a concrete example, one interpretation of the desirability value of 
an individual might be the opposite sex’s perception or estimation of its 
Darwinian fitness (e.g., [5]). The actual magnitudes of these desirability 
values are not assumed to have intrinsic significance in general, but 
are used only to make comparisons between individuals. Here and 
throughout, it will also be assumed that the same desirability value is 
assigned to each individual by every member of the opposite sex. In real 
life scenarios, of course, the desirability of an individual varies from one 
member of the opposite sex to another, and is not quantifiable in a single 
one-parameter value. 

Next, the informal notion of selectivity introduced in Example 1 
above will be formalized. 
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Selectivity Assumption : For each sex in a given sexually dimorphic species 
there is an upper proportion p Œ (0, 1) of the opposite sex that is acceptable for 
mating. 

For example, if pA is that proportion for sex A, then members of sex 
A will mate with individual b of the opposite sex B if and only if b is in 
the most desirable pA fraction of individuals in B. If pA < 0.5, then sex A 
is said to be (relatively) selective, and if pA > 0.5, then A is said to be non-
selective. For instance, if pA = 0.25, then sex A is selective, since it will mate 
only with the most desirable quarter of sex B, and if pA = 0.75, then sex A 
is non-selective, since it will mate with any but the least desirable quarter 
of sex B. 

N.B. Of course these assumptions about desirability values and 
selectivity are clearly not satisfied in most real life scenarios, and are 
simply intended here as a starting point for discussion of the general 
ideas. For example, the acceptability fractions pA may reflect not only 
desirability, but also availability or proximity. In this simple model it is 
therefore assumed that the populations are large and mobile so there are 
always available potential mates of the opposite sex above the threshold 
desirability cutoff. Similarly, for simplicity it will be assumed throughout 
that the offspring of any coupling consist of equal numbers of each sex. 

4. Variability 

The desirability of individuals in one sex by the opposite sex varies 
from individual to individual, and its normalized distribution is a 
probability distribution. Thus to address the notion of differences between 
two subpopulations of the same sex in the variability of their desirability 
to the opposite sex, the notion of one probability distribution being more 
(or less) variable than another must be specified. As will be seen in the 
next example, for instance, if by “more variable” is meant “larger standard 
deviation” (or statistical variance), then the above selectivity-variability 
principle is not true without additional assumptions on the underlying 
distributions. 

Example 2 : Sex B consists of two subpopulations B1 and B2, with six 
individuals each: B1 has one individual of desirability value 1 (to sex A), 
one of desirability 5, and four individuals of desirability 3; B2 has three 
individuals of desirability value 2 and three of desirability 4. Thus both B1 
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and B2 have mean desirability 3, the variance of B1 is 4/3 and the variance 
of B2 is 1. 

If sex A is selective with pA = 0.25, then two of the three individuals 
that sex A selects from sex B will be from B , the subpopulation with 
smaller variance. Conversely, if sex A is non-selective with pA = 0.75, then 
five of the nine individuals that sex A selects from sex B will be from B1, 
the subpopulation with larger variance. Thus for these distributions and 
a standard deviation definition of variability, both directions of the above 
selectivity-variability principle fail . 

There are many other possibilities for definitions of variability, such 
as comparisons of ranges or Gini mean differences, but those can be very 
misleading in this setting since a single outlier can dramatically alter the 
values of such statistics. On the other hand, basic comparisons of the tails 
of distributions leads to a natural notion of greater or lesser variability. 

To that end, for a real Borel probability measure P let SP denote the 
complementary cumulative distribution function of P, i.e., SP : R Æ [0, 
1] is defined by SP(x) = P(x, ∞) for all x Œ R. That is, SP(x) is simply the 
proportion of a population with distribution P that is above the threshold 
x; see Figure 2 for three examples. For brevity, the term survival function 
will be used here; in this context SP(x) may be thought of as the proportion 
of a given sex with desirability (by the opposite sex) distribution function 
P that “survives” the cut when the opposite sex only accepts individuals 
with desirability value x or larger. 

Definition 3 : For two probability measures P1 and P2 on the real line R 
with identical medians m, P1 is more variable than P2, written P1  P2, if for 
all x with 0 < S x( ) < 1,P1

( )  > S ( )  for  all  x > m and  ( )  < S x x < m.S x x  S x  ( )  for  all  P P P P1 2 1 2 

In other words, P1 is more variable than P2 if the proportions of P1 both 
above every upper (larger than median) threshold and the proportions 
below every lower threshold level are greater than those for P2. That is, 
both upper and lower tails of the P1 distribution are heavier than those of 
the P2 distribution, for all thresholds. 

In Example 1 above, where the selectivity-variability principle 
was illustrated informally, the distribution of subpopulation B1 is more 
variable than the distribution of subpopulation B2 both in the sense of 
standard deviation and in the sense of Definition 3 (see Figure 2a), and 
it is this latter definition that will be seen below to lead to settings where 
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Figure 2 
The survival functions and comparative variability of three pairs of distribu-
tions: (a) the uniform distributions in Example 1 above; (b) the normal distri-

butions in Example 7 below; and (c) the Laplace distributions in Example 9. In 
each case, the red curves denote the more variable distribution. 

the principle is valid. As was seen in Example 2, the selectivity-variability 
principle may fail for arbitrary distributions if variability is defined in 
terms of standard deviation, but the next proposition identifies several 
common and important classes of distributions where greater standard 
deviation or scale factor (when standard deviation is infinite) coincide 
with the notion of greater variability in Definition 3, and thus these 
distributions are applicable to the models below. The conclusions are 
perhaps well-known, but as no reference is known to the author, a short 
proof is included. 

Proposition 4 : Let P1 and P2 be (real Borel) probability measures with 
identical medians. 

(i) If both P1 and P2 are uniform, symmetric triangular, Laplace, or 
Gaussian, then 

P  P if andonly if variance (P ) > variance(P ). 1 2 1 2 
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(ii) If both P1 and P1 are Cauchy, then 
P1  P2 if andonly if scale factorof P1 > scale factorof P2 . 

Proof : Since the cumulative distribution functions for uniform, symmetric 
triangular, Laplace, and Cauchy distributions are known in closed form, 
the conclusions regarding those distributions follow from Definition 3 and 
routine calculations by comparisons of the respective piecewise linear, 
quadratic, exponential, and arcsin distribution functions. 

To see the conclusion for Gaussian distributions, for which the 
distribution functions are not known in closed form, suppose X1 ~ N(m, 
s 1

2) and X2 ~ N(m, s 2
2) , where N(m, s 2) denotes a normal distribution with 

mean m and standard deviation s. Without loss of generality suppose that 
s 1

2 > s 2
2. Then for all c > m, 

( > c) = P(σ (X − µ) >σ (c − µ))P X1 2 1 2 

= P(σ (X − µ) >σ (c − µ))1 2 2 

> P(σ (X − µ) >σ (c − µ))1 2 1 

= P X( 2 > c), 

where the second equality follows since, by the rescaling and translation 
properties of normal distributions, 

σ (X − µ) and σ (X − µ) are both N(0,σ 2σ 2 ). 2 1 1 2 1 2 

The case c < m follows similarly, and since the mean of every normal 
distribution is the same as the median, this completes the proof.  

It should also be noted that distributions sufficiently close to 
the distributions in Proposition 4 will also obey the same variability 
conclusions. (E.g., no real-life data is ever exactly Gaussian, but in many 
applications Gaussian distributions are good approximations and very 
useful in practice.) Note that the above definition of greater variability does 
not require finite standard deviations or symmetry of the distributions, 
although the examples provided below have both. Some assumption on 
two distributions (of the same sex) having comparable average attributes 
is clearly necessary to be able to draw any useful conclusions in this 
selectivity context; the assumption of identical medians used here is 
one natural candidate. Similar conclusions may be drawn about weak-
inequality versions of this definition and about one-sided variability, and 
these are left to the interested reader. For example, if both the median and 
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upper tails of one distribution are larger than those of another, then that 
distribution will also prevail if the opposite sex is selective. 

Using the above definitions of variability and selectivity, the main 
objective of this paper is to present two mathematical models for the 
selectivity-variability principle above. 

5. A Discrete-Time Probabilistic Model 

Suppose that sex B of a given hypothetical species consists of two 
distinct subpopulations B1 and B2, of which a proportion bŒ(0, 1) is of type 
B1 (and 1 – b is of type B2). Let P1 and P2 denote the desirability distributions 
of B1 and B2, respectively, and assume that P1 is more variable than P2, 
i.e., P1  P2. It will now be shown that, for all b, if sex A is selective, then 
subpopulation B1 will be overrepresented in the subsequent generation, 
and if sex A is non-selective, then subpopulation B2 will be overrepresented 
in the subsequent generation. These are direct analogs and extensions of 
the informal observations in Example 1 above. 

To that end, note that if b is the proportion of sex B that is from 
subpopulation B1, then letting S1 and S2 denote the survival functions of B1 

and B2, respectively, the number 
βS c( )1 

β 1 (1  β 2 ( )S c( )+ − )S c  

represents the proportion of sex B that is from subpopulation B1 when A 
accepts only individuals in B with desirability value above cutoff level c. 
This motivates the following definition. 

Definition 5 : If sex B consists of two subpopulations B1 and B2 and if 
b Œ(0, 1) is the proportion of sex B that is B1, then subpopulation B1 will be 
overrepresented in the subsequent generation if and only if 

βS c( * )1 
* * 

> β ,
( )+ − β )S c )βS c  (1  (1 2 

where S1 and S2 are the survival functions of the desirability distributions 
of B1 and B2, respectively, and c * is the desirability cutoff of sex A for mating 
with individuals in sex B, i.e., 

βS c( * ) + − β ) ( * ) = p(1  S c  .1 2 A 

Note that this definition does not assume that the offspring of B1 

will have desirability distributions identical to that of B1 but simply that 



 

 

  
  

 

  

  

 
 
  

 

11 DIFFERENCES IN VARIABILITY BETWEEN SEXES 

a larger proportion of the subsequent generation will be offspring of B1 

than the proportion of B1 in the original population. With this notion of 
overrepresentation, one elementary formalized version of the selectivity-
variability principle for short-term behavior is as follows. 

Theorem 6 : Let sex B consist of two distinct subpopulations B1 and B2 with 
desirability distributions P1 and P2, respectively, with identical medians m, and 
with desirability survival functions S1 and S2 which are continuous and strictly 
decreasing. Suppose subpopulation B1 is more variable than B2, i.e., P1  P2. Then 

(i) If pA < 0.5, i.e., if sex A is selective, then the more variable subpopulation B1 

will be overrepresented in the subsequent generation. 
(ii) If pA > 0.5, i.e., if sex A is non-selective, then the less variable subpopulation 

B2 will be overrepresented in the subsequent generation. 

Proof : Let b Œ(0, 1) be the proportion of B that is B1, and let S1 and S2 

denote the desirability survival functions for B1 and B2, respectively. First, 
it will be shown that there exists a unique “threshold” desirability cutoff 
c* Œ R such that 

βS c( * )  (1  β )S ( *+ −  c ) = p1 2 A 

and (1) 
* m if pA < 0.5 and c * < m pA > 0.5.c > if 

To see (1), let g : R Æ (0, 1) be given by ( )  = βS1 c (1  β S2 ( ).  g c  ( )  + − ) c  Then 
g is continuous and strictly decreasing with g(−∞) = 1, g m  = 0.5, g(∞) = 0, ( ) 
so c * satisfying (1) exists and is unique, and since S m  = S (m)1( ) 2 = 0.5, 
c * > m if pA < 0.5 and c * < m if pA > 0.5. 

To see (i), first note by (1) that c * > m, so since P1  P2, 

S c( * ) > S (c * ).  1 2 

Thus, 

β (1− β )S c( * ) > β (1− β )S (c * ), 1 2 

which implies 
2 * * 2 * *β S c( ) + β (1− β )S c( ) > β S c( ) + β (1− β )S (c )1 1 1 2 

so 

βS c( * )1 > β . 
β 1( * )+ − )S2 (c * )S c  (1  β 
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By Definition 5, this completes the proof of (i); the proof of (ii) follows 
similarly. 

Thus, in this discrete-time setting, if one sex remains non-selective 
from each generation to the next, for example, then in each successive 
generation less variable subpopulations of the opposite sex will tend 
to prevail over more variable subpopulations of comparable average 
desirability. Although those successive generations and their desirability 
distributions are evolving over time, if less variable subpopulations in 
the opposite sex prevail over more variable subpopulations from each 
generation to the next, that suggests that over time the opposite sex will 
tend toward lesser variability. A key assumption here, of course, is the 
inheritability of variability itself. 

That variability per se may be a heritable trait has recently been 
established in several different contexts (e.g., [8], [16], and [17]). For 
instance, theories of inherited variability have been developed and 
applied by animal husbandry scientists and geneticists who are interested 
in breeding livestock, not only for high averages of desirable traits, but 
also for uniformity (i.e., low variability; see [15], [18], [19]). Application of 
the above probabilistic model to the evolution of differences in variability 
only uses the premise that variability is inheritable; identification of 
the precise genetic, chromosomal, and epigenetic (including societal) 
mechanisms for how variability is inherited is beyond the scope of this 
paper, and the interested reader is referred, e.g., to [11], [14], and [20]. 

The next example is an application of Theorem 6 and Proposition 4 
in a case where the desirability values have gaussian distributions. Note 
that the exact magnitudes of over- and underrepresentation, even in this 
standard setting, are not attainable in closed form, but must be estimated 
numerically. 

Example 7 : Suppose that the desirability values (to sex A) of sex B are 
normally distributed, i.e., if X1 and X2 are the desirability values of two 
random individuals chosen from B1 and B2, respectively, then X1 has 
distribution N(m, s 1

2) and B2 has distribution N(m, s 2
2). (The assumption of 

normality for the underlying distributions of desirability is not essential; 
this is merely an illustrative example, and chosen because of the ubiquity 
of the normal distribution in many population studies. Note the key 
assumption that the average values, i.e. the medians, are the same.) 
By Proposition 4, N(m, s 1

2) is more variable than N(m, s 2
2) if and only if 

s 1
2 > s 2

2. 
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In particular, suppose X1 ~ N(100, 4), X2 ~ N(100, 1), so B1 is more 
variable than B2. Suppose that B1 and B2 are of equal size, and again 
consider the two illustrative cases above, namely, where sex A is selective 
with pA = 0.25, and where sex A is non-selective with pA = 0.75 (see 
Figure 3). 

Suppose first that pA = 0.25. Using a special function calculator (since 
the survival functions of normal distributions are not known in closed 
form), it can be determined numerically that sex A’s threshold desirability 

* * *value cutoff for sex B is c ≅ 100.92, S c( ) ≅ 0.323,  and S c( ) ≅ 0.179.1 2 
Thus a random individual from subpopulation B1 has nearly twice the 
probability of mating than one from the less variable subpopulation B2, as 
is illustrated in Figure 3 with the areas to the right of the green desirability 
cutoff. Hence B1 will be overrepresented in the subsequent generation. 

Next suppose that pA = 0.75. Then it can be determined that the 
threshold desirability value cutoff is c * ≅ 99.08, S c( * ) ≅ 0.677,  and1 
S c( * ) ≅ 0.821,  i.e., a random individual from subpopulation B is about2 2 

one-fifth more likely to be able to mate than one from the more variable 
subpopulation B1. This is illustrated in Figure 3 with the areas to the 
right of the purple cutoff. Here again, note the asymmetry in that the 
selective case is more extreme than the non-selective case, as was seen in 
Example 1. 

Figure 3 
The red curve is the desirability distribution of the more variable normal sub-
population B1 in Example 7 and the blue curve is the desirability distribution 
of the less variable subpopulation B2. The vertical green line is the threshold 

cutoff for the opposite sex A so that exactly 25% of the composite B population 
has desirability value above (to the right of) that point. The vertical purple 

line is the value so that exactly 75% of the B2 population has desirability value 
above that point. 
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6. A Continuous-Time Deterministic Model 

In this section, comparisons of the long-term asymptotic behavior of 
the sizes of competing subpopulations of the same sex and species are 
modeled using the general structure and logic of classical evolutionary 
game theory as applied to population dynamics (cf. [4], [24], [25]). 

Here, sex B consists of two distinct subpopulations B1 and B2, growing 
in time, whose sizes at time t are given by the continuous stochastic 
processes X (t) and X (t), respectively. Letting x (t) = E[X (t)] and x (t) =1 2 1 1 2 

E[X2(t)] denote the expected values of the subpopulation sizes at time t, 
the objective here will be to derive a coupled system of ODE’s, directly 
analogous to the coupled systems of ODE’s in classical evolutionary game 
theory, to model the growth rates of the expected values of the sizes of the 
two subpopulations (cf. [21]). 

In contrast to the discrete-time model above, here there is no clear 
delineation between generations, and it will be assumed that the pace of 
evolution is negligible compared to the pace of reproduction, so the two 
subpopulations remain distinct, with offspring distributed the same way 
as the parent subpopulation. In this setting, it will now be seen that if 
one subpopulation is more variable than the other, then the more variable 
subpopulation will eventually eclipse the less variable subpopulation 
if the opposite sex is selective, and the less variable subpopulation will 
eclipse the more variable one if the opposite sex is non-selective. 

Assume that the desirability distributions of B1 and B2 (to sex A) are 
given by probabilities P1 and P1, respectively, that do not change with the 
sizes of the subpopulations, i.e., the survival and desirability distribution 
functions do not change with t. For further ease of analysis, assume that 
the expected population sizes x1(t) and x2(t) are strictly increasing and 
differentiable and that the survival functions S1 and S2 for P1 and P2 are both 
continuous and strictly decreasing, with identical (unique) medians m. In 
particular, exactly half of each subpopulation B1 and B2 has desirability 
value above m to sex A at all times t > 0, and exactly half of each has 
desirability values below m. 

In this deterministic framework, the composite population of sex B 
is growing at an instantaneous rate that is proportional to the fraction pA 

of its members that is acceptable to the opposite sex A. That is, with the 
constant of proportionality taken to be 1, 

d x( 1 + x2 ) 
A( 1 + x2 ).= p x  (2) 

dt 
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Similarly, the expected values of the sizes of both subpopulations 
B1 and B2 are growing at rates proportional to the fractions Si(c

*) of each 
subpopulation that are acceptable to sex A at that time, i.e., which satisfy 
the coupled system of ordinary differential equations 

dxi * = x S  (c ), i = 1, 2, (3) 
dt i i  

* *where c = c x( ,1 x2 )  is the cutoff value so that the expected proportion of 
sex B that is above desirability level c * at time t is exactly pA. Since P1 and 
P2, and hence S1 and S2 are assumed to be constant in time, c * satisfies 

x S  (c * ) + x S (c * )1 1  2 2  = pA . (4) 
x + x1 2 

The coupled system of ODE’s (3) is very closely related to the 
classical replicator equation (cf.[3], [6]), which also captures the essence 
of selection via acceptability for mating but through rates proportional 
to deviation from the mean desirability (or fitness), rather than through 
rates proportional to fractions above selectivity cutoffs. Analogous to 
the discrete probabilistic model above, solutions of (3) are not generally 
available in closed form, and must be approximated numerically, as will 
be seen in Example 9 below. 

Qualitative comparisons of the rates of growth of competing 
subpopulations satisfying (4) are possible, however, and the next theorem 
shows that the selectivity-variability principle above is also valid in this 
setting, in the following sense. If P1 is more variable than P2, and if pA < 0.5, 
i.e., if sex A is selective, then the relative instantaneous rate of growth of B1 

exceeds that of B2, and the proportion of sex B that is from B1 approaches 
1 in the limit as time goes to infinity. Conversely, if pA > 0.5, i.e., if sex A is 
non-selective, then the relative instantaneous rate of growth of B2 exceeds 
that of B1, and the less variable subpopulation B2 prevails in the limit. This 
same conclusion can be extended to more general settings, such as time-
dependent acceptability fractions pA(t), and these generalizations are left 
to the interested reader. 

Recall that P1 and P2, respectively, are the desirability distributions 
(to sex A) of subpopulations B1 and B2 of sex B. 

Theorem 8 : Suppose subpopulation B1 is more variable than B2, i.e., P1  P2. 
(i) If pA < 0.5, i.e., if sex A is selective, then the relative rate of growth of B1 

exceeds that of B2, 
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dx dx1 1 1 2> . (5) 
x1 dt x2 dt 

x1Moreover, → 1 as t Æ ∞. x x1 + 2 

(ii) If pA > 0.5, i.e., if sex A is non-selective, then the relative rate of growth of 
B2 exceeds that of B1, 

1 dx 1 dx2 > 1 . (6) 
x2 dt x1 dt 

x1Moreover, → 0  as t Æ ∞. 
x x1 + 2 

Proof of (i) : Analogous to the argument for Theorem 6, define g : R Æ 

(0, 1) by 

1 1( )c + x2S2 ( )cx S  
g c( )  = , 

x + x1 2 

where S1 and S2 are the desirability survival functions for P1 and P2, 
respectively. Recall that S1 and S2 are both continuous and strictly 
decreasing with identical medians m > 0, and fix t > 0. Since g is continuous 
and strictly decreasing with g(–∞) = 1, g(m) = 0.5, and g(∞) = 0, there exists 
a unique threshold desirability cutoff c * = c *(t) satisfying (4), where, as 
before, pA is the most desirable fraction of sex B that is acceptable to sex A, 
and c * = c *(t) is the threshold desirability cutoff for sex A for the combined 
populations of sex B = B1 » B2 at time t. 

Note that 1( ) = S2 (m) = 0.5, S m  so since pA < 0.5, c * > m. Since P1 is more 
variable than B2 this implies that S1(c

*) > S2(c
*). Since S1(c

*) and S2(c
*) are the 

proportions of B1 and B2, respectively, that are above the threshold cutoff 
at time t > 0, (3) implies (5). 

x1To see that → 1 as t Æ ∞, note that since P1 is more variable than x x1 + 2 

−1 −1 * −1 −1P2, m < S p( )  < S p( )  for pA < 0.5. Clearly c ∈[S p( ),S p( )]  for all 2 A 1 A 2 A 1 A 

t > 0, so since S2(x) < S1(x) for all x > m, the continuity of S1 and S2 implies 
the existence of d > 0 so that 

* * * −1 −1S (c ) > S (c ) +δ for all c ∈[S p( ),S p( )] and for all t > 0. 1 2 2 A 1 A 

Thus by (3), 
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1 dx1 1 dx2> +δ for all t > 0, 
x1 dt x2 dt 

x1so ln x1 − ln x2 ≥ δ t +α ,  which implies that → 1 as t Æ ∞, completingx x1 + 2the proof of (i). 
The proof of (ii) is analogous. 

The next example is a numerical application of Theorem 8 and 
Proposition 4 where the desirability values decrease exponentially from 
the common median. Note that, as was the case in Example 7 above, the 
solution, in this case of the underlying coupled system of ODE’s, is not 
available in closed form, but must be approximated numerically. 

Example 9 : Let the survival functions S1 and S2 for subpopulations B1 and 
B2 be Laplace distributions with S1(x) = e–x/2 for x ≥ 0 and S2(x) = e–2x/2 for x 
≥ 0 (see Figure 4). (For ease of exposition, the common median desirability 
of both subpopulations here is taken to be 0; translation to a different 
median value is trivial.) By Proposition 4, P1  P2, so subpopulation B1 is 
more variable than B2. 

Figure 4 
The red curve is the density of the desirability value of the more variable 

subpopulation B1 in Example 9, and the blue curve is the density of the less 
variable subpopulation B2. If B1 and B2 are of equal size, then the vertical green 

line is the threshold cutoff for the opposite sex A so that exactly 25% of the 
composite B population has desirability value above that point. The vertical 

purple line is the value so that exactly 75% of the B population has desirability 
value above that point. Note that the desirability values of both drop off expo-

nentially fast from the mean in both directions. 
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Suppose first that sex A is selective and accepts only the most 
desirable quarter of individuals in sex B, i.e., pA = 0.25. Using (2) and 
(3), and noting that S x( )  = 2S2 ( )x  for x ≥ 0 yields the following coupled2 1 

system of ordinary differential equations: 

 2 2 dx x + 2x x  + 2x − x
1 1 1 2 2 1  

dt 
= x1  4x 

 2  (7) 
 2 2 dx  x + x  x + 2x x  + 2x − x

2 1 2  1  1 2  2 1  =   − x1 . 
dt 4  4x   2  

No closed-form solution of (7) is known, and Figure 5 illustrates a 
numerical solution with the initial condition x1(0) = x2(0) = 1. Note that 
in this case where sex A is selective, the more variable subpopulation B1 

eventually eclipses the less variable B2. 

Figure 5 
Selective case–Population sizes and ratio. The graphs (a) of the more variable 
x1(t) in red and x2(t) in blue, and (b) the ratio x1(t)/(x1(t) + x2(t)) satisfying (7). 
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Suppose next that sex A is non-selective and accepts only individuals 
in the most desirable three-quarters of sex B, i.e., pA = 0.75. Using (2) and 
(3) again, and noting that S ( )x = 4S x( )− 2S2 ( )x − 1  for x £ 0 yields the2 1 1 
following system: 

 2 2 dx x + 4x − x + 2x x  + 2x
1 1 2  1 1 2 2  

dt 
= x1  4x 

 2  (9) 
 2 2 dx  3x + 3x  x + 4x − x + 2x x  + 2x

2 1 2  1 2  1 1 2 2  =   − x1 . 
dt 4  4x   2  

Figure 6 illustrates a numerical solution of the coupled system of 
ODE’s (8) with the same initial condition x1(0) = x2(0) = 1. Note that in this 
situation where sex A is non-selective, the less variable subpopulation B2 

eventually eclipses the more variable B1. 

Figure 6 
Non-selective case–Population sizes and ratio. The graphs (a) of the more 

variable subpopulation size x1(t) in red and less variable x2(t) in blue, and (b) 
the ratio x1(t)/(x1(t) + x2(t)) satisfying (8). 
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Note also that the birth process model above also implicitly includes 
simple birth-death processes, via the simple observation that a population 
growing, for example, at a rate of eight per cent and dying at a rate of 
three percent, can be viewed as a pure birth process growing at a rate of 
five per cent. 

7. Darwin’s Question, Selectivity and Parenting 

The selectivity-variability principle introduced above is neutral with 
respect to the two sexes, and by itself does not explain any differences 
in variability between them - either that there should be a difference 
in variability between the sexes, or which sex might be expected to be 
more variable. But together with two other basic biological tenets, 
the selectivity-variability principle can perhaps help provide a theory 
for Darwin’s observation and the empirical evidence of greater male 
variability reported in many subsequent studies. 

One of these two additional biological tenets is parenting-selectivity, 
which posits that a “basic cross-species pattern is that the sex with the slower 
potential rate of reproduction invests more in parenting, [and] is selective 
in mate choices [and the] sex with the faster potential rate of reproduction 
invests less in parenting, [and] is less selective in mate choices’’ [9, p. 
273]. Although the genetic mechanisms of pre- and postcopulatory sexual 
selection are still far from being fully understood, molecular genetic and 
genomic tools now enable their detailed experimental testing [1]. 

The second additional biological tenet is gender-parenting, which 
says that typical species have less parental investment by males than 
females, which occurs, for example, in more than ninety-five percent of 
mammalian species [10]. Combining these two biological maxims with the 
selectivity-variability principle suggests an answer to Darwin’s question. 
By the gender-parenting tenet, females in typical species invest more in 
parenting than males, so by the parenting-selectivity tenet females will 
typically be relatively selective and males relatively non-selective. Then 
the selectivity-variability principle implies that females in such species 
will tend toward less variability and the males toward greater variability. 

If both sexes in a certain species began with comparable mid-range 
variability, for example, and if either its females were generally selective 
(pF < 0.5) or its males were generally non-selective (pM < 0.5), or both, 
this would have led to the relatively greater male variability observed 
by Darwin. In the constraints of this cross-species model, therefore, this 
would offer two independent explanations for the appearance of greater 
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male variability in many species. Unlike other species, of course, in 
humans, cultural factors may also play a role in the perceived differences 
in variability between the sexes. 

8. Conclusions 

The goal here has been neither to challenge nor to confirm Darwin’s 
and other researchers’ observations of greater male variability for any 
given species or any given trait, but rather to propose an elementary 
mathematical theory based on biological/evolutionary mechanisms that 
might serve as a starting point to help explain how one sex of a species 
might tend to evolve with greater variability than the other sex. As such, 
the contribution here is primarily intended to open the discussion and 
stimulate further mathematical and statistical modeling and analysis. 
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