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Statement of Disclaimer 
 

Since this project is a result of a class assignment, it has been graded and accepted as fulfillment 

of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use 

of information in this report is done at the risk of the user. These risks may include catastrophic 

failure of the device or infringement of patent or copyright laws. California Polytechnic State 

University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the 

project. 

 

Due to the effects of COVID-19 

The 2020 SMUD competition was canceled and machine shops were closed. This restricted the 

amount of work that the team as able to complete and the changed the goals for this year’s team.  

Enough of the production was done to piece together a singular unit with slight modifications to 

allow the build to be completed at home while practicing proper social distancing for the safety 

of the team and community at large.  Some of the members of this team as well as some from the 

boat hull team will be returning in Fall 2020 to complete a modified design. Alongside those 

returning members a new senior project team has been created to build the boat for next year’s 

competition.  The two teams from this year will be passing on our designs, models, and data to 

lighten the load for next year’s team, only requiring them to modify a few components to 

potentially increase the boat’s efficiency. 
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Abstract 
This Final Design Review report details the research, analysis, and design conducted by a Cal 

Poly Mechanical Engineering senior project team working on the propulsion system for a solar 

powered boat. Working in coordination with another senior project team responsible for making 

the hull, the two teams comprised the Cal Poly team who entered the Sacramento Municipal 

Utility District (SMUD) 2020 California Solar Regatta Competition. The SMUD Solar Regatta is 

an annual competition for high school and college students to design and build boats powered by 

solar power. The solar panels are provided by SMUD, and the battery storage is limited by 

competition regulations. The scope of this project was to design a propulsion system that would 

efficiently transfer energy, be easily integrated into the hull design and be competitive in the 

three races: endurance, slalom, and sprint.  This document covers research conducted, objectives 

for the design, design concepts considered, the chosen final design, manufacturing and 

verification plans, and project management. 
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1. Introduction 
For the past eight years the Sacramento Municipal Utility District (SMUD) has hosted an annual 

competition called the SMUD California Solar Regatta for both high schools and colleges to 

enter. The program was established to promote renewable energy through solar technology and 

innovation. The competition consists of three races: the sprint race, slalom race, and endurance 

race. Additional points are awarded for a presentation of the design, along with bonus points for 

innovative design, sustainability, and artistry. The slalom race focuses on maneuverability, the 

sprint race prioritizes speed, and the endurance race emphasizes efficiency. The races make up 

half of the total score, while the oral presentation and bonus awards make up the other half.[18] 

For the first time ever, the Cal Poly Mechanical Engineering Department entered this 

competition with a team of students using it as their Senior Project. The team, advised by Dr. 

Brian Self, was comprised of eight Mechanical Engineering students split into two sub-teams 

consisting of four students each. One group designed and built the hull while the other designed 

and implemented the propulsion system. This final design review report is for the Propulsion 

Team and will outline how the propulsion system for the solar powered boat was designed, built, 

and tested. 

 

2. Background 
To prepare for designing a propulsion system for a Solar Regatta, we first conducted research to 

become more informed about the competition and the technology involved. In our research, we 

found information about previous competitors, other solar powered boats, solar panels, and water 

propulsion systems. Our findings are detailed in the following sections. As a tournament project, 

our team and the other senior project team are the main customers. 

 

2.1. Previous Competitions 

Boat designs and their results from previous competitions were examined and will be used as 

benchmarks during the design process. While some benchmarked metrics can be found in 

Appendix A in the Quality Function Deployment (QFD), many of the specific performance 

characteristics of competitors’ boats were unknown or hard to measure.  

In 2018, the City College of San Francisco won the Solar Regatta by taking 1st place in the 

Slalom race, 1st place in the Sprint race, 5th place in the Endurance race, and winning some of the 

bonus prizes. These scores totaled to a winning score of 70. Their winning design was a low-

profile twin hulled boat powered by a single propeller positioned on the centerline of the boat. 

During the same year the UC Davis team finished second place overall with 50 points using a 

single-motor monohulled design, despite placing 6th in Slalom, 6th in Sprint, and 13th in 

Endurance [7,15]. This demonstrates that while a high performing boat is important to the overall 

score, other scoring categories that are independent of performance must be prioritized as well. A 

full list of race data from 2018 can be found in Appendix C. 
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A Solar Regatta design created by high school students in Laguna Creek in 2012 was also used 

as a benchmark for our design. However, some aspects of the competition have changed since 

they competed, so not all statistics are comparable to this year’s competition [14]. See Appendix B 

for pictures of boats from previous years. 

 

2.2. Similar Existing Products 

The first boat to drive under solar power appeared in 1985, with the first commercial marine 

solar vehicle to follow in 1995 [19]. Since then, global attention on climate and pollution has 

prompted groups interested in advancing solar vehicle technology to create competitions that 

involve teams across the globe. A report from the Istanbul Technical University Solar/Electric 

Boat Team details their experiences in 2007 and 2008 at the Solar Splash Event - Intercollegiate 

World Championship of Solar/Electric Boating [6]. At the time of Istanbul’s publication, the 

event was on its 15th year. While the long-running competition has higher limits on battery size, 

many factors are similar. These include a length, width, and freeboard limit of 6m, 2.4m, and 

1.5m respectively, 480W solar input, and 1kW•hr endurance battery. The only major difference 

is that the CA Solar Regatta limits the battery to 180 W•hr (18% of the Solar Splash limit). Even 

the trio of races are of same name and similar structure.  

By studying the history of the vehicles used in these competitions and learning from the design 

progressions and failures they detail, our team will be competitive with the most experienced 

teams, bridging a gap of knowledge and experience.  

 

2.3. Relevant Technical Aspects of Solar Panels  

A large design consideration for maximizing the power transfer from the solar cell to the 

drivetrain is done by reducing losses [2,3]. Another way to increase the efficiency of solar panels 

is to increase the amount of light that hits the panel. This increases the irradiance (Ir, W/m2) on 

the panel, which can then increase the power output. The most common way this is done is to 

place reflective surfaces in strategic positions to redirect light onto the solar panels, as shown in 

Figure 2.1. Using mirrors to reflect light onto the solar panels can increase solar panel output by 

up to 30% [8]. 
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Figure 2.1 Mirror reflection method for increasing irradiance on solar panels. 

However, there are issues with increasing the irradiance on the surface of the panels. The main 

problem is the increased temperature of the panel surface. Solar panels are rated for certain 

ranges of operable temperatures, and heating past their limits will both hurt efficiency of the 

panels and possibly damage components.  

Another way to increase the power output of Photovoltaic (PV) solar panels is to cool them 

down. Solar panel efficiency increases with decreasing temperature, at a rate of roughly 

0.45%/°C for crystalline Silicon modules, like the ones we will be using. Cooling can be 

achieved by a variety of methods, such as water cooling, conduction, or convective air cooling. 

In a study of water cooling by the Raisoni College of Engineering in Nagpur, India, it was 

discovered that cooling the top surface of the panels was the most effective way to decrease 

temperature and increase efficiency [5]. However, if an active cooling system is implemented, it 

must be ensured that the amount of energy being used to cool the panels is not greater than the 

additional energy that is provided by the cooler panels. A passive method may be more 

beneficial, such as connecting the panels to the lake with thermally conductive material. An even 

simpler alternative would be to spray the panels with water directly before the races. 

According to the data sheets for the solar panels provided by SMUD, the panels to be used will 

increase power output by 0.45% for every °C decrease, with T = 25°C considered the 100% 

efficient temperature (where the power output is 235 W). Decreasing the temperature of the cells 

will allow us to get higher than 100% efficiency. These solar panels have operating temperatures 

between -40 and 85°C- this means that the power output can range from 300W to 170W, a swing 

of 56% [18]. However, the specifications were measured at Ir = 1000 W/m2, T = 25°C, and AM = 

1.5, not the conditions we expect for the day of the race [16]. AM stands for Air Mass, which is a 

unitless ratio of the distance sunlight will travel through the atmosphere compared to the 

minimum possible distance it must travel to reach sea level. Based on this, it is safe to assume 

that the standard output of the solar panels as delivered will be less than 235 W. 

 

The specifications for the solar modules provided by SMUD are located in Appendix P. We will 

be using the JKM-235P model. 
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2.4. Electrical Components  

Running solar cells without a battery is not common practice but is required for the sprint and 

slalom races. Since the power coming from the cell is not constant and changes throughout the 

course of a day, PV modules can only be used as a direct power source if they are being used on 

a motor that can handle variable input. We plan to use motors that have this capability. 

 

Solar cell outputs do not only vary at different times of day; there is also considerable signal 

fluctuation every second. This variation in known as solar noise and is caused by the fluctuation 

in the radiation the sun gives off. In order to account for this solar noise, the use of a solar 

regulator is required. A solar regulator is a series of capacitors and inductors that smooths the 

electrical signal that runs through them, eliminating the solar noise. Multiple units can be used to 

reduce the noise even further. These solar regulators are designed to eliminate nearly all the solar 

noise for an average day and can be programmed for your location and time of year to 

adequately utilize this process. These devices are allowed to be used in the competition, as the 

capacitors inside are not designed to store energy.  

 

The use of an electric controller to ensure that the same amount of power is being delivered to 

each one of the motors is also essential to ensure our models match reality. These controllers 

have an input and two outputs with a simple interface that allows the user to determine the 

amount of power going to each of the output terminals.  The controller will need to be slightly 

oversized since it will be essential in the final circuit for the boat to run at its highest efficiency.       

 

2.5. Propulsion Systems 

The most commonly used water propulsion system is a propeller and drivetrain. Originally called 

water screws, propellers were used for water transportation for years before they were used in 

aviation [20] and can been seen in Figure 2.2a. After their incorporation into avionics, the research 

into propeller design took off. Since information gathered on propeller designs through air can be 

translated into usage in water with given fluid properties, research has been conducted by other 

engineers and scientists on both air and water-based propellers. Important variables that go into 

the design of propellers include length to width ratios, pitch, curvature, drag coefficients, and 

number of blades. Each one of these variables can be varied to achieve maximum efficiency of 

power transfer [1]. 

 

Another type of propulsion that arose from research is waterjet propulsion by use of pumps.  

This is an interesting idea that was created out of the desire for higher energy transfer 

efficiencies by the driving mechanical system, a full system is shown in Figure 2.2b. The 

mechanical energy transfer efficiency needs to be maximized for all types of propulsion.[4] This 

propulsion system is beneficial because it utilizes the efficiency of water pumps and is 

commonly used with boats due to the ease of access to a water source. Important things for 

consideration with waterjet propulsion include efficiency of the pump system, inlet and outlet 

diameters, fluid properties of the water going into the system, quality of water source, integration 

into hull design, and system weight. All these parameters can be determined analytically from 

known information, but many of them would have to be tested before being reasonably 

considered for use in this project.  
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https://www.boatus.com/magazine/archives/reasons-to-change-your-prop.asp http://www.marinedieseleurope.com/blog/2015/02/25/water-jet-propulsion-packages/ 

(a) (b) 

Figure 2.2 Motorboat Prop (a) and Water Jet (b) propulsion systems. 

An out-of-the-box propulsion concept discovered through research was a hydrofoil.  This type of 

propulsion system would have to be agreed upon by the propulsion and hull team, since it would 

heavily affect both designs. The main concept that makes this enticing is the drastic decrease in 

drag force on the boat that this system allows. The hydrofoil acts as a “wing” underwater, 

generating lift as the velocity of the boat increases [9]. This causes the main hull to come above 

the water level while the propulsion system remains submerged as shown in Figure 2.3. Raising 

it above the water reduces the amount of surface area that is in contact with the water, and 

therefore reduces drag from the water. Since the drag coefficients of water are significantly 

higher than air, the total amount of force opposing the motion of the boat drops dramatically 
[13,17]. Things to consider when reviewing this idea include initial required thrust for liftoff, speed 

requirements for efficient ascension/descension, complexity of the design, competition limitation 

and rules, storage and stability.  

 
https://wordlesstech.com/hydros-retractable-hydrofoil-boat/ 

Figure 2.3 Motorboat powered by a hydrofoil system. 

After deliberating on each of these design ideas, propellers were chosen for the final boat design 

over hydrofoils or a waterjet system. More information about our decision-making process can 

be found in Section 4.3. Research on propeller design is shown in the following section.  

 

 

2.6. Propeller Design 

2.6.1. Propeller Geometry 
The first step to understanding propeller design is to understand the many different geometric 

dimensions that are used in the design process. A list of common geometric dimensions and their 

symbols is shown for reference in Table 2.1.  
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Table 2.1. Common geometric dimensions of propellers. 

Dimension Symbol Figure(s) Shown 

Diameter " 2.5 

Radius # 2.5 

Hub Diameter "$ - 

Hub Radius #$ - 

Number of Blades % - 

Pitch & 2.5, 2.7 

Pitch Angle ' 2.4, 2.5, 2.7 

Pitch Ratio &/" - 

Max Section Thickness ) 2.4 

Blade Thickness Ratio )/" - 

Chord Length * 2.4 

Radial Blade Coordinate + 2.5, 2.6 

Disk Area ,- - 

Expanded Area  ,. - 

Expanded Area Ratio /,# - 

Skew 01 2.7 

Rake 23 2.7 

Rake Angle 043 - 

 

Propellers blades are designed with airfoil cross sections in order to produce thrust from lift as 

they rotate and interact with the surrounding fluid. Typically, each blade is designed with a 

certain standard airfoil shape and the chord length * and thickness ) are varied along the radial 

axis. Figure 2.4 shows an airfoil section with marked angles used in design. TE is the trailing 

edge point and LE is the leading-edge point.  

 



 7 

 
Figure 2.4. Airfoil shape of blade cross section.[21] 

Pitch and pitch angle are critical to determining a propeller’s performance. Pitch is defined as the 

total axial (x) distance that a blade would travel with no slip and can be determined from the 

pitch angle ', as shown in Figure 2.5. Figure 2.6 shows the coordinate system that is typically 

used with propellers. This system will be used throughout our analysis of propellers as well. 

 

Two other important characteristics of blade geometry are rake 23 (or rake angle 043) and skew 

01 of a blade. Rake angle is the angle at which the blades are bent forward axially, as shown in 

Figure 2.7. A rake angle is commonly used for propellers that sit partially out of the water and 

run at high RPMs, to force water to “stick” better to the blades and produce higher thrust. Skew 

is implemented to help with cavitation issues along the leading edge, as described in section 

2.5.2. Skew is also shown in Figure 2.7.  

 

The disk area ,- of the propeller is defined as the total area that the blades sweep through, while 

the expanded area ,. is the rough estimate of total blade surface area as seen from the front 

(pressure side) of the propeller. These can be calculated using the equations below: 

,- = 6"7/4 ,. = %9 *:+
;

;<

 

where c is the chord length of each radial cross section of the propeller at radius r. Propellers are 

commonly characterized by the expanded area ratio /,#, where /,# = ,./,-. /,# affects 

thrust produced and efficiency of the propeller, with higher /,# values producing more thrust at 

lower RPMs, but also causing a lower efficiency due to more drag on the blades. Typical 

propellers have an EAR between 0.3 and 0.9. 
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Figure 2.5. Definition of pitch: (a) helix definition 
on a cylinder of radius r and (b) development of 
helix on the cylinder.[21] 

 
Figure 2.6. Propeller coordinate 
system.[21] 

 

 

 

Figure 2.7. Visual representation of skew and rake.[22] 

 

2.6.2. Propeller Performance 
 

Propeller performance generally relies on five variables: Thrust (>), inflow speed (?@), rotational 

speed (A), torque (B), and efficiency (C). All of these variables are interrelated to each other in 

complex ways and can change depending on the operating conditions and the blade geometry. To 

design a propeller for a certain operating condition, it is common to use non-dimensional 

versions of each parameter. Dimensioned quantities associated with propeller design are shown 

in Table 2.2 along with their non-dimensional counterparts. 

 

There are two types of performance curves that are commonly used in propeller design, with 

each proving useful for different types of design analysis. An example of a traditional propeller 
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performance chart shows curves for C, DE, and DF as functions of G. Each chart holds multiple 

curves for different &/", and each chart represents a single value of /,#. This plot is useful for 

determining propeller characteristics when G can be calculated directly. An example of this type 

of chart is shown in Figure 2.8.   

 

A different type of performance plot can be used when information about input power is known 

or desired. The power-based performance chart shows curves for C and H as functions of &/" 

and IJ. Like traditional propeller performance charts, these charts are for a single value of /,#. 

An example of this type of chart can be found in Figure 2.9. 

 

Table 2.2. Common performance parameters used in propeller design. 

Variable Symbol Equation 

Diameter " - 

Inflow Velocity ?@ - 

Ship Speed ?1 - 

Resultant Velocity ?; K?@7 + [26O(0.7#)]7 

Rotational Speed A	[+VW], O	[+VY] - 

Thrust > - 

Torque B - 

Delivered Power &Z - 

Fluid Vapor Pressure &[ - 

Reference Pressure &- - 

Fluid Pressure & - 

Fluid Density \ - 
   

Advance Coefficient G 
?@
O"

 

Thrust Coefficient DE 
>

\O7"]
 

Torque Coefficient DF 
B

\O7"^
 

Power Coefficient IJ 
&Z
_/7O

\_/7?@
^/7 

Inverted Advance Coefficient H 1/G 

Alternate Thrust Coefficient aE 
>

0.5\?@7,-
 

Alternate Torque Coefficient aF 
B

0.5\?@7,-#
 

Cavitation Number c 
&- − &[
0.5\?;

7 

Pressure Coefficient aJ 
& − &-
0.5\?;

7 
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Figure 2.8. Traditional propeller performance chart with EAR = 0.300.[26] 

 

 
Figure 2.9. Power-based propeller performance chart with EAR = 0.300.[23] 
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The alternate thrust and torque coefficients aE and aF are also occasionally used for design, 

though they do not show up in traditional performance charts.  

 

Cavitation in propellers occurs when the pressure at the blade surface (&) drops below the vapor 

pressure of the fluid, causing the fluid to vaporize. This leads to a lower efficiency of the 

propeller and over time can damage the blades. To define when cavitation occurs, the cavitation 

number c is used in conjunction with the pressure coefficient aJ. With some algebra, it can be 

shown that cavitation will occur when −aJ c⁄ ≥ 1.[25] 

 

c is calculated using the relative velocity ?;, which is calculated at + = 0.7# where cavitation is 

typically highest. Figure 2.10 shows the velocity diagram for inflow on a propeller. 

 

 
Figure 2.10. Velocity diagram for cavitation.[25] 

Cavitation occurs first on the leading edge of the propeller blades, and can be reduced by adding 

skew to the blades. The skew removes the part of the blade where cavitation occurs, effectively 

removing cavitation altogether. Cavitation can occur again at too high skew angles; there is an 

optimal skew angle for each design condition where no cavitation occurs. This can be seen in 

Figure 2.11.  

 

 
Figure 2.11. Cavitation on propeller blades.[28] 

 

All of this information was used in our propeller design to design a propeller to have a maximum 

efficiency for our given operating conditions. The final propeller design is covered in more detail 

in section 5.5.  

 

2.7. Water Channel Testing 

Our team initially had plans to use a Water Channel to verify the theoretical propeller design and 

confirm assumptions about stress concentrations, cavitation, drag, and other parameters about the 
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propellers. A water channel has a straight test section where uniform flow is reached and is 

similar to a wind tunnel. 

 

The Cal Poly Aerospace Department had a decommissioned water channel that we planned to 

use for our testing of the propellers. However, it hadn’t been operational for over two years and 

required the Variable Frequency Drive (VFD) to be replaced. Electric Motor Wholesaler was 

gracious enough to support this project and sent us a replacement VFD at no cost. The Water 

Channel is the Rolling Hills Research Corporation Model 0710 University Desktop Water 

Tunnel, shown in Figure 2.12. 

 

 
Figure 2.12. Rolling Hills Research Corporation Model 0710 University Desktop Water Channel 

used for propeller design verification. 

Once the water channel has been restored, it can be used for future tests. See section 8.1.4 for 

more details about proposed testing with the water channel. Due to Covid-19 our team was never 

able to conduct testing with the water channel, but hope next year’s team will be able to do so. 

 

3. Objectives 
The SMUD Solar Regatta competition is judged on top speed, maneuverability, and endurance, 

and has awards for subcategories such as aesthetics, sustainability, and innovation. To be 

competitive, our team requires an energy-efficient solar powered drive train for our boat that 

allows it to have a top speed of at least 7 mph. This is necessary because Cal Poly needs to be 

well-represented among other universities and win first place. 
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Figure 3.1 shows our boundary diagram for this project. As the propulsion group, we are 

responsible for the propulsion system and all components that connect it to the solar panels and 

battery. The purple dotted line shows our scope for this project. The solar panels must be 

removable for the endurance race, during which the boat will run completely on battery power.  

 
Figure 3.1 Boundary diagram used for problem definition. The dotted line represents the scope 

of the project for the propulsion team. 

3.1. Quality Function Deployment 

To make sure that our project was planned and executed as efficiently as possible, we performed 

a Quality Function Deployment (QFD) process. This allows us to organize the wants and needs 

for the design based on the tournament specifications, as well as determine our own 

specifications that will ensure that we meet those needs. As a tournament project, the needs and 

wants are well defined and documented in the competition packet. In this process, our design 

was benchmarked against teams that competed previously in the competition in 2018 and one 

that competed in 2012. Initial goals for each specification were set, though they may be changed 

over time as more research is done regarding each specification. The specifications are outlined 

in more detail in the next section. For the full QFD analysis performed, see Appendix A.  

 

3.2. Needs and Wants 

Table 3.1 shows the needs and wants that were determined for the propulsion system for the 

Solar Regatta. Each item was determined from interviews with the boat team and from 

requirements listed in the competition packet [18]. 
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Table 3.1 Design Needs and Wants. 
Needs Wants 

High top speed  Fun to pilot 

Maneuverability Easy to operate 

High endurance Reliable 

Easily integrated with hull Light weight 

Safety Aesthetic design 

Solar powered Original design 

Battery powered Custom drivetrain 

 Sustainable design 

 

Needs were defined as items that were determined to be critical for the competition, including 

characteristics that are awarded points by the judges along with race performance. For the Solar 

Regatta to perform well in competition, it must have a high top speed, good maneuverability, and 

high endurance. The competition requires the design to be safe and for the propulsion system to 

be able to run on solar or battery power. In order to be useful and viable, our design must be able 

to be incorporated with the hull that the boat team designs. 

Wants were defined as anything additional that provide extra non-race points, properties that will 

help achieve needs, or items that will make the design more enjoyable to operate and build. 

 

3.3. Technical Specifications 

Table 3.2 shows the technical specifications that were determined for the propulsion system for 

the Solar Regatta. Each specification was determined based off of performance and 

characteristics of past race competitors, competition rules, and background research. In the Risk 

column, H, M and L stand for high, medium, and low, respectively and refer to the risk level of 

not achieving that objective. In the Compliance column, A, S, and T stand for Analysis, 

Similarity, and Test, respectively. 

 

Table 3.2. Technical specifications for Solar Regatta propulsion system. 

Spec. 
No. Specification Description Target Value Tolerance Risk Compliance 

1 Top speed  7 mph Min H T 

2 Acceleration 0 to max speed in 10s Min M T 

3 Turning Radius 15 ft Max L T 

4 Battery Life 25 min at max power Min L T 

5 Battery Energy 175 W•hr Min L T 

6 PV Energy Conversion 95% ±10% H A, T 

7 Electrical Power Transfer   95% Min M S, T 

8 Motor Efficiency 80% Min M T 

9 Drivetrain Efficiency 95% Min M S, T 

10 Weight 30 lbs Max L A, T 

 

The first four specifications were chosen with regards to the boat’s performance in competition. 

Based on race data from previous years, the fastest average speed during the sprint race was just 

over 5 mph (100 yards in 40 seconds [18]). Based on this, a target of 7 mph top speed was chosen 
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to ensure a faster speed than the best competitor. If the boat is to perform well in the sprint race, 

it must also accelerate quickly enough to get to top speed. A target time to top speed of 10s was 

estimated based on the time for the entire sprint race.  

Turning Radius estimates were determined from the specifications of the slalom race. There are 

five buoys placed over a 150 yard (450ft) distance, as shown in Figure 3.2. From this, the buoys 

were estimated to sit about 70 ft apart. From this, a 15 ft turning radius was set as the target. 

 
Figure 3.2. Slalom race diagram with dimensions added to figure as specified in the race 

packet.[18] 

Target battery life was set solely based on the specifications of the endurance race. The race lasts 

25 minutes or until the battery runs out, and the goal is to have battery power at max power 

output for the entire race. 

Each of the efficiency targets were based off background research into typical efficiencies of 

each system. More information about the solar panel efficiency is located in Section 2.3. The 

total weight of the solar panels alone is 84 lbs (42 lbs each). An estimate for the remaining total 

weight was made based weight estimates of mounting components, motors, and the battery.  

Plans to test each of these specifications can be found in Section 7, Design Verification Plan. 

 

The hardest specifications to meet (highest risk) will likely be top speed and PV energy 

conversion. Top speed depends on factors outside of the scope of the propulsion team, such as 

drag on the hull. The goal is to be the fastest of any team that competes, which could prove to be 

difficult to achieve. However, we believe it to be beneficial to aim for the best performance, even 

if we are unable to achieve it in the end. Additionally, the PV energy conversion goal forces us to 

consider ways to cool the solar panels to increase their relative efficiency. Due to the age and 

condition of the cells we receive from SMUD, this could also be difficult to accomplish.  

 

 

 

150 yds (450 ft) 

70 ft (estimated) 
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4. Concept Design 

4.1. Ideation Process 

The team determined three main functions that would be essential for the development of a final 

product: integration with the hull, steering, and power transfer. Each of these will be critical in 

determining the concept designs that will be integrated into the final design. Different ideation 

processes were used for determining a large list of ideas under each function, which were later 

reduced to include only the more realistic options. Some initial ideas had been thought of in 

previous meetings and meetings after our ideation day, but the bulk of the ideas came from the 

three processes we used in class. 

 

The first process we used was brainstorming, where we thought of as many ideas we could and 

said them out loud as we wrote them on the board. A time limit of 15 minutes was given for the 

process and one team member acted as a moderator to keep the team on track.  We used this 

method to get ideas for the integration with the hull. We came up with a list of 43 ideas that are 

listed in Table D.1 that range from basic fasteners to complex integration techniques. To 

facilitate creative ideas and out of the box solutions we encouraged wild, unrealistic, and 

humorous suggestions throughout the brainstorming process. 

 

The second process the team used is the SCAMPER method (Substitute, Combine, Adapt, 

Modify, Put to other use, Eliminate, and Reverse) to evaluate three types of steering methods.  

The steering methods we looked at were the use of a rudder, differential thrust, and a thrust 

vector. The scamper method allowed us to broaden the view of each one of the processes and 

find overlap between the three design ideas. The results of the SCAMPER process are presented 

in Table D.2. These ideas were later turned into design concepts for testing and selection.  

 

The third and final process used was brainwriting, a method that promotes individual creation 

and ideation. The method has everyone write down ideas on a sheet of paper without saying 

anything to the others before passing on their sheet for other team members to add their ideas.  

This process was used to come up with power transfer methods for electrical-to-mechanical and 

mechanical-to-thrust power.  All ideas that each team member came up with can also be found in 

Appendix D. Each one of the expanded-upon concepts was discussed in the concept prototype 

and selection stages.  

 

4.2. Top Alternatives 

During the ideation process, we came up with multiple design concepts. In one of our class 

periods, we used a combination of Legos, popsicle sticks, foamboard, and other crafting 

materials to create simple concept models of some of the ideas that we came up with. Photos of 

our top 6 concept models can be found in Figures 4.1-4.6.  

 

Figure 4.1 shows a concept model with a single prop attached to the rudder. The steering wheel 

is linked to the angle of the rudder and rotates both the rudder and prop together. Solar panels are 

located on each pontoon in the center for an even weight distribution. 
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Figure 4.2 shows a dual thrust concept with solar panels mounted to a shaft in the center of the 

boat. The solar panels can rotate side to side to maximize the solar irradiance that hits the panels, 

increasing their power output. 

 

 
Figure 4.1. Rudder with attached single prop. 

 

 
Figure 4.2. Dual thrust with adjustable solar 
panel position. 

Figure 4.3 shows a model of a prop inside of a pontoon. There would be no additional drag force 

acting on the motor and rudder because they do not exist outside of the pontoons. Figure 4.4 

shows a model with a height-adjustable prop. The prop is connected to a linkage system that can 

raise or lower the prop height in the water to the optimal position. 

 

Figure 4.5 shows a solar panel with reflective material around the outside at an angle. This would 

reflect more sunlight onto the panels and increase power output. Figure 4.6 shows a model with 

two pontoons with one prop attached to each. Steering would be achieved by adjusting the power 

to each prop to make one faster than the other. 

 

 
Figure 4.3. Prop inside hull pontoons. 

 

 
Figure 4.4. Adjustable prop height through 
linkage system. 
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Figure 4.5. Mirror design for extra sunlight 
on solar panels. 

 

 
Figure 4.6. Dual prop design with pontoons. 

 

4.3. Selection Process 

To decide which design to use for this project, we used a series of different selection processes. 

First, Pugh Matrices were created for our four main functions: steering, integration with the hull, 

and mechanical and electrical power transfer. Each Pugh Matrix evaluated 4-6 different concepts 

that we had come up with and scored them off of a baseline design, the first design in the matrix. 

Each Pugh Matrix can be found in Appendix E. 

 

Next, the results from each Pugh Matrix were consolidated into a morphological matrix. The 

designs were arranged and ranked as they were scored from the Pugh Matrices to see which 

design concepts would perform well in combination. From this, seven full design concepts were 

created and compared against each other in a weighted decision matrix. This decision matrix and 

each design chosen are shown in Figure 4.7.  

 

Based on our weighting and scoring process, three designs performed well enough to be 

considered. These were design 1 (single prop attached to rudder, out boarded), 2 (single prop 

attached to rudder, direct drive), and 6 (dual thrust inside pontoons with props, with additional 

rudder). Because designs 1 and 2 are very similar, we chose to eliminate the lower scoring design 

1. Our final designs that we are choosing between are the single prop attached to a rudder with a 

direct drive, and a dual prop system inside the pontoons with an additional rudder. However, this 

decision matrix will likely change as we conduct more research. For example, we currently have 

no information on how the top speed will vary between the designs, so for now each concept was 

scored a 5 for Top Speed. 
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Figure 4.7 Weighted decision matrix of concepts generated in ideation process. 

After more analysis was conducted, many of these ratings did not match up to what we 

discovered. Our final option ended up being a combination of a couple of these ideas, and is 

described in more detail in section 4.6, and in section 5 on Final Design.  

 

4.4. Preliminary Alternative Concept Ideas  

At the time of the PDR, we decided to research further the second design (single prop attached to 

rudder with a direct drive), and the sixth design (dual thrust inside pontoons with props with a 

normal rudder), both seen in decision matrix in Figure 4.7. The sixth design was rated lower than 

the second design, but until we conducted more research into the true characteristics of each 

model, we did not want to settle on one solution. These two remaining concepts were researched 

and tested more thoroughly before the final decision was made. 

 

The second design combines the steering of a rudder and the propulsion of a prop into one 

design. The entire system would be a ridged body attached to the center platform of the boat.  

The system would be able to rotate around the vertical axis and move the direction of the driving 

and opposing forces in the water. This change of force direction would be how the steering was 

accomplished. A basic computer aided design (CAD) drawing of the system is shown in Figure 

4.8a and a functional concept prototype is shown in Figure 4.8b. With the single motor and direct 

drive, electrical and mechanical losses would be reduced as opposed to a model with a longer 

drive train. The rudder and prop dimensions were dependent on the dimensions of the boat, and 

were finalized after the hull was designed. This design would likely require a larger prop 

compared to a model with dual props. The rudder would be made from carbon fiber or fiberglass 

to reduce the weight and the stresses on the mounting system. The system would also have an 

adjustable lowering mechanism to position it in optimal depth in the water to produce the 

necessary thrust. The prop would be made from either carbon fiber, CNC milled aluminum, or 

California Solar Regatta Propulsion

Score Total Score Total Score Total Score Total Score Total Score Total Score Total

Cost 2 5 10 6 12 2 4 6 12 2 4 4 8 5 10

Maneuverability 5 7 35 7 35 4 20 4 20 4 20 5 25 5 25

Ease of Manufacturing 4 5 20 5 20 4 16 6 24 2 8 4 16 5 20

Top Speed 5 5 25 5 25 5 25 5 25 5 25 5 25 5 25

Low Drag 4 4 16 4 16 6 24 5 20 6 24 5 20 4 16

Aesthetic Design 3 5 15 5 15 8 24 3 9 8 24 7 21 3 9

Lightweight 3 5 15 5 15 6 18 6 18 4 12 6 18 5 15

Reliable 3 4 12 5 15 5 15 3 9 2 6 5 15 4 12

Ease of Integration with Hull 4 6 24 6 24 5 20 7 28 2 8 5 20 7 28

Total: -

Designs
1

2

3

4

5

6

7

Normal rudder, dual thrust inside pontoons with props

Normal rudder, dual thrust on sides of pontoons with props

160172 177 166 165 131 168

Single prop attached to rudder, outboarded

Single prop attached to rudder, direct drive

Dual thrust inside pontoons with props, direct drive

Dual thrust outside pontoons with props, strapped

Dual thrust inside pontoons with props, internal driveshafts

Criteria Weight

Options
1 2 3 4 5 6 7
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3D printed material, all of which would be polished to reduce the drag on the blades. After 

testing the prototypes, we planned to manufacture a modified design for competition that was 

optimized for our specific performance. Different prop designs may be used for different races 

depending on the efficiencies and drag created at the different speeds. Testing would be done to 

determine if this is necessary.   

 

  
(a) (b) 

Figure 4.8 The second design integrates the motor and prop into the rudder.  
Shown above are (a) the CAD model and (b) the concept prototype. 

The sixth design from the decision matrix combines the steering and propulsion into one by 

using differential thrust and a rudder. Our team believes that the sprint and endurance races 

would not require the rudder with this design, and therefore we can eliminate the drag losses on 

the rudder. However, the slalom race may require a smaller turning radius, so the incorporation 

of a rudder may be inevitable. The differential thrust allows for a pair of unbalanced thrust forces 

on each pontoon which would create a moment about the center of the boat, causing it to turn. 

The thrust would be created by a hybrid propeller-waterjet design that creates a large mass flow 

out of the end of the pontoons and pushes the boat forward. A CAD design of the system is 

shown in Figure 4.9a and a concept model is shown in Figure 4.9b. In this design, the water 

would be pulled in from beneath the pontoons to not disturb the boundary layer of the flow 

around the boat hull. The diameter of the tubing and internal prop would be determined once the 

final dimensions of the boat are determined. The number of blades required to get the required 

flow for the desired thrust forces would have to be determined through testing and analysis. The 

internal channel required for the waterjet to function would be purchased stock and CNC milled 

to the exact dimensions and features our design requires.  The driving shaft would be stock 

aluminum milled and press fit into the motor, set screws would be used to attach the props, and a 

triple seal bearing would be used to keep water away from motor. The prop would be designed 

and manufactured in the same manner as the prop for the rudder-prop system would be made. 
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(a) (b) 

Figure 4.9 The sixth design utilizes a ducted prop integrated into the hull. 

4.5. Preliminary Risk Analysis 

Risk increases significantly with designs that involve advanced analysis and unproven 

technologies. To determine the risk introduced by each component of the propulsion system, we 

considered the impact and likelihood of component failure. First, we considered the components 

that will be included regardless of which design choices we made from this point forward. A 

major concern in any watercraft drivetrain is water ingress through the shaft bearing where the 

boundary exists between the lake-water and motor housing. Many boats use sealing systems 

based around stern tubes. These long bushing surfaces employ water pressure fed from a tank in 

the boat placed above the surface of the water. The positive differential from inside to outside 

prevents ingress of seawater. This system necessitates another seal between the stern tube and 

motor itself. Additionally, commercially available shaft sealing systems - even the smallest - are 

built for relatively large shafts that transmit hundreds of pounds of thrust. Therefore, we will 

attempt to use a triple sealed bearing to seal our motor components from the propeller. In risk 

reduction testing, we will expose the bearing to a depth of water equal to the depth and loads 

present at operation in the competition.  

The risks in the electrical system are significant as well. Since we are not allowed to use 

capacitors for power storage, the power from the solar panels will travel directly to the motor 

controller. To remove issues with solar noise, we will have to obtain a solar converter that 

maintains as constant of an output as possible. Maintaining a constant voltage output from solar 

panels without the use of capacitors would require changing the current draw rapidly to keep the 

panels at their optimal peak power voltage. In tests, we worked with other Cal Poly students and 

professors researching solar panels (Professor Davol, Cal Poly Microgrid PV Array Senior 

Project, Dr. Dolan, Cal Poly Electrical Engineering professor and Professor Banadaki, Cal Poly 

Electrical Engineering professor) to test our electronic speed controller and electric motor with 

the inverter we select. In the event that our motor controller cannot handle the output current 

variation, and either is destroyed or cannot deliver power efficiently, we may invest in a more 

robust controller that is designed to deal with variations in power delivery. 
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We must also consider personal safety hazards and risks. One of these is the risk of a fast-

spinning propeller with sharp blades. During each race, the team members wade through the 

water to first put boat in the water and then push it out from shore. Mounting the propeller 

externally would require the kill switch to be activated during the pushout. However, using a 

waterjet would contain the propeller inside of a fairing completely, removing the risk of a loose 

propeller becoming a projectile and hitting someone. This would increase safety when deploying 

the boat in the water. 

Exposure to electricity is the final personal risk to discuss. Wet objects normally have a higher 

conductivity, meaning that the threshold for injury from voltage exposure could be lower. 

However, the lake water we will be competing in does not have a significant salt content that 

would require us to lower the threshold of the voltage at the operation point. At most, our system 

will run at 40V DC, and will only be repaired or altered when fully dried to minimize risk. 

Further evaluation of risks and safety hazards can be found in Appendix F.  

 

4.6. Changes to Design Direction After Performance Analysis 

Since the PDR, we have made slight modifications to our design based off of advice from 

various professors and our own performance analysis. We decided to incorporate the best 

elements of the two designs discussed above into our final design. The concept of our final 

design is to have two propulsion subsystems, one mounted to each pontoon. The motor will be 

mounted at the top of the rudder and power is directed to the prop through a reduction 

transmission at the bottom of the rudder. The rudder will be attached to a steering wheel via 

cables, which are connected to a steering column in the center of the boat. The rudders will be 

linked with a rigid bar to keep their turning angles equal, and the motors will be controlled by 

one throttle to keep the props at equal speeds.  

 

These changes were implemented due to two key findings in our analysis; it was discovered that 

two smaller propellers would be more efficient than one single propeller, and each propeller has 

one speed at which it reaches maximum efficiency. Because of this, two propellers were chosen 

for the design, and each had to be kept at a constant speed. To achieve this and allow for the boat 

to turn, each propeller was made to rotate with a rudder on the end of each pontoon. The final 

design is described in more detail in the next section.  

 

5. Final Design 
This section includes a description of the final design, an explanation of its functionality, design 

justification, material choices, safety considerations, and cost analysis. 

 

5.1. Comprehensive Final Design 

Out final design is shown in Figure 5.1 with the full boat assembly created by the hull team. The 

model incorporates all of the ideas that were envisioned in the preliminary analysis and concept 

design and has a simple integration with the hull. The entire boat is designed to be modular, and 

each pontoon can be separated from the overall assembly by removing a few bolts. Each 

propulsion system can be easily removed from the pontoons as well. In addition, the entire 
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bridge assembly can easily be shifted up or down the length of the pontoons to optimize a center 

of mass, and the distance between the pontoons can be adjusted to optimize steering capabilities. 

 

 
Figure 5.1. Comprehensive CAD model of the final design. 

5.2. Propulsion Subsystems 

The boat will utilize two propulsion subsystems, one on the back of each pontoon and linked 

together with a rod to keep them at the same turning angle. A close-up view of the two 

propulsion systems is shown in Figure 5.2. Additionally, Figure 5.3 and Figure 5.4 show more 

detailed views of the propulsion system with components labeled.  

 

 
Figure 5.2. Propulsion units attached to the back of the pontoons. 
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Figure 5.3. Overall components of a single propulsion unit. 

 

 
Figure 5.4. Internal components of the transmission housing. 
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Each Gearbox Housing is to be manufactured from aluminum using a 5-axis CNC mill, and the 

Motor Mounts will be 3D printed. These two components will interface directly with the Rudder 

Downtube. The Rudder is made up of stacked wood panels shaped like airfoils that will be 

wrapped in carbon fiber. The Rudder Downtube is also made of carbon fiber and will go through 

a hole in each wood airfoil in the core. This will provide space to run the Motor Driveshaft from 

the Electric Motor to the Transmission Housing. 

 

The Gearbox Housing can be seen in Figure 5.4 and contains a set of bearings and bevel gears. 

The gears provide a 2:1 speed reduction and are secured by the press fit bearings and the 

Propeller Driveshaft and Motor Driveshaft. The Tail Cone is designed to be 3D printed and will 

insert into the end of the Gearbox Housing to complete the revolved airfoil profile of the gearbox 

up until the base of the propeller. A set screw is threaded through the propeller driveshaft to 

connect it to the propeller. This can be seen more clearly in Figure 5.5. A secondary bearing is 

also located at the end of the tail cone for support for the propeller driveshaft. 

 

 
Figure 5.5. Propeller assembly diagram. 

The propulsion unit is attached to the hull though the Box Tube that interfaces with the hull, as 

can be seen in Figure 5.2. Welded to the Box Tube is the Sheet Metal Bracket, which connects to 

the Rudder Hinge. The other end of the Rudder Hinge is connected to the Rudder Tilt Bracket. 

Through the use of two pins, the Motor Mount/Rudder subassembly is secured to the Rudder Tilt 

Bracket and is able to be tilted up 90 degrees to allow for safe transportation, maintenance, and 

storage. Figure 5.6 shows this mechanism in more detail. 
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Figure 5.6. Demonstration of rudder assembly rotation for inspection and maintenance. 

Unfortunately, because of complications with COVID-19 many of these components were 

unable to be manufactured or assembled into a full propulsion system. Finishing manufacture 

and assembly of the propulsion system and full boat will be passed on to next year’s team.  

 

5.3. Steering Mechanism 

After deciding to use two, rotating propulsion units, the simplest steering method seemed to be 

via a cabling system. The propulsion units on the back of each pontoon are linked together to 

keep them at the same turning angle. A cable will be run along the length of the pontoon from 

each motor mount and wrapped around a steering column to allow the driver to steer. A diagram 

of the steering system is shown in Figure 5.7. 

 

Figure 5.7. Steering diagram. 



 27 

The cables will be tied with extra length at the ends, allowing for the steering system to be 

adjusted for any potential position of the bridge. A more detailed analysis of the steering system 

will be performed to ensure that the driver has adequate control over the positions of each 

propulsion unit.  A fixture made from wood will be used to test the different variables of the 

steering system that can be adjusted such as the lever arm and the diameter of the drive shaft. A 

schematic of the system setup can be found in Appendix T.  

 

5.4. Material Choices 

The rudder will be constructed with a wood core base that is covered in layer of carbon fiber. 

This causes it to have a high strength-to-weight ratio, while still being relatively easy to 

manufacture. Thin, ¼ inch wood airfoil sections with circular holes in the middle and end are to 

be stacked on top each other to form the rudder core. 

 

The hinge flange, box tubing, and box tubing support were all chosen to be aluminum so that the 

aluminum rudder hinge can be welded to both.  

 

The differential housing is to be machined from aluminum for ease of manufacturing and low 

cost. It will not be welded to anything, and therefore does not have to be the same material as 

other components. 

 
The propeller, motor mount, and tail cone are to be 3D printed. The motor mount and tail cone 

can be printed out of PLA at the innovation sandbox at Cal Poly. Prototype propellers made from 

PLA were printed at Cal Poly, though the final propeller will likely be outsourced to a company 

with printers large enough to complete the print as one part. Hard resin is being considered for 

the propeller material because it is light, stiff, and produces one of the best surface finishes of 

any 3D printed material. 

 

5.5. Propeller Design/Specification Descriptions 

To design the propeller for our boat, we used a MATLAB program called OpenProp. OpenProp 

was developed by MIT and Dartmouth college to analyze propeller performance given a number 

of inputs. It computes propeller performance using Lerb’s analysis method in conjunction with a 

lifting-line analysis on the blade surfaces, code similar to what is used in computational fluid 

dynamics (CFD).[27] This method designs based on inputs of diameter, rotational speed, inflow 

velocity, thrust desired, and various geometric inputs. The code then iterates to create a propeller 

to reach the thrust desired at the maximum possible efficiency, and outputs the resulting 

propeller characteristics and full geometry.  

 

Our boat has a limitation of a little less than 230 W of power for each of the two propellers, and 

we want to design for an unknown maximum inflow velocity and maximum efficiency. 

However, OpenProp designs a propeller using a thrust-based method, not power-based method, 

making it difficult to use for our specific needs. To remedy this, additional code was written to 

analyze propellers in a way that makes more sense for our specific requirements.  

 

To obtain a rough idea of what values to plug into OpenProp initially to produce a propeller that 

met our requirements, hand calculations were done using power-based and traditional 
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performance curves for a Wangeningen B-series propeller (see Figure 2.8 and Figure 2.9), 

assuming an input power of 200 W and inflow velocity of 5.5 mph. Initial estimates produced an 

optimal rotational speed of 500 RPM, diameter of 11.03 in, and efficiency of 79.5%. These hand 

calculations are located in Propeller Hand Calculations in Appendix H. 

 

To provide a more robust estimate of diameter, rotational speed, and expanded area ratio (EAR), 

code was developed in OpenProp to iterate over a range of input values to determine which 

produced the highest efficiency. Results of this iteration are shown in Figure 5.8, which shows 

efficiency for lines of various diameters as rotational speed is varied. Code was developed to 

create new plots for different values of EAR; Figure 5.8 shows the value of EAR that produced 

the highest efficiency, equal to roughly 0.325. 

 

 
Figure 5.8. Parametric study varying efficiency and shaft speed 
for a specific EAR. 

Each point on the curves in this plot represents a completely new optimized propeller design. 

Based on the results, we can assume a best possible efficiency of around 84%, with max 

efficiency increasing with larger diameters. However, larger propellers only reach their 

maximum efficiency at a smaller range of RPMs, which would be more difficult to achieve. We 

chose a diameter of 12 in (blue bolded line) for our final design, as it has nearly the same 

maximum efficiency as higher diameter propellers and has a wider range of acceptable RPMs. 

Additionally, 12 in is a much more reasonable size to manufacture.  

 

Another key parameter that affects what our top speed will be is the drag on each hull of the 

pontoons of the boat. The drag coefficient ag, can be used to determine the required thrust to 

achieve a maximum speed by using the following equation: 

>hij = ag, ∗ (0.5\?@,l@m7 ) 

The boat team (Up a Creek) has estimated ag, of each hull to be around 0.05 ft2. However, 

estimates of drag are hard to get exact without testing a hull once it is fully built, so likely the 

final value of ag, will be different than what is predicted. OpenProp code was iterated over 
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different ag, assumed for propeller designs and different actual values of ag, to see how they 

would affect top possible speed; the results of this test can be seen in Figure 5.9. 

 

 

Figure 5.9. Hull drag coefficient analysis for propeller design. 

From these plots, it is clear that assuming different ag, values for the propeller design does not 

affect the top possible speed at all; the only difference is the rotational speed that the propeller 

must be run at to achieve this top speed. This is very useful to know for our propeller design, as it 

shows that even if we see a drag coefficient that is different than what is expected, our propeller 

can still be run to achieve the same top speed as if we had seen exactly what we expected. After 

seeing this, we decided to use a value of ag, = 0.1	ft7 as an input into OpenProp, as a conservative 

estimate. This value would lead to a predicted top speed of about 7.7 mph, above our goal of 7 

mph. Higher speeds are also achievable if ag, is reduced. 

 

The number of blades (%) was chosen with a similar iteration process. In general, efficiency 

decreases with increasing number of blades, while thrust increases. We chose to use three blades 

for our design; two would be more efficient, but also had the possibility of adding more vibrational 

issues if the blades were not manufactured to be perfectly balanced.  

 

Once values for	/,#, ", %, and ag, were 

chosen, setting an input power of &4p = 230W 

allowed for all design constraints to be 

established for the code to run. The propeller 

was designed using a NACA66 series 

airfoil[29] thickness with NACA a=0.8 

meanline, which are typical airfoil shapes of 

propellers. Figure 5.10 shows the traditional 

performance curve for the designed propeller, 

and Figure 5.11 shows a version of the same 

information with dimensioned instead of non-

dimensional variables for a better 

understanding of what the performance chart 

shows.  
 
Figure 5.10. Traditional performance chart 
for our propeller design created by OpenProp. 
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Figure 5.11. Performance chart with dimensioned variables. 

Using Figure 5.11, we can see what our predicted performance of the propeller will be more 

clearly. The color background represents efficiency, with the green line representing the 

maximum possible efficiency. From this chart, we can see that our input power limits the top 

propeller speed to about 350 rpm when the boat is at rest, but as the boat gains speed the 

propeller speed can increase. The blue dot represents the best performance point, where all input 

power is being used to overcome drag. Points above the purple line represent states where there 

is excess force that can be used to accelerate, but below the line drag dominates and causes a 

deceleration. With our current input estimates, a maximum speed is predicted to be 7.73 mph.  

 

All key design characteristics from this analysis are shown in Table 5.1. Propeller design was 

done for a single propeller at a time, using half of the total power and hull drag that the entire 

boat will see in operation. 

 

Table 5.1. Propeller design characteristics. 

Geometric Variables Value 
 

Performance Variables Value 

Diameter " 12 in 
 

Ship Speed ?1 7.73 mph 

Hub Diameter "$ 1 in 
 

Rotational Speed A 500 RPM 

Number of Blades % 3 
 

Thrust > 12.4 lbf 

Expanded Area Ratio /,# 0.325 
 

Torque B 38.9 lbf•in 

Meanline NACA a=0.8 
 

Input Power &4p 230 W 

Thickness NACA 66 
 

Efficiency C 83.1% 

Pitch Ratio &/"	 1.49 
 

Hull Drag (ag,)$qrr 0.1 ft2 
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After calculating the geometric dimensions, OpenProp creates a 3D image of the full propeller in 

a 3D MATLAB plot. However, to convert this into a usable CAD file, it was necessary to turn 

this 3D data into the correct file format. A function was written in MATLAB to convert the 3D 

data points that make up the propeller into an STL file, which could then be imported into 

SolidWorks or Fusion 360 to edit the features of the hub. 

 

OpenProp also contains a function that checks the blades for cavitation. This code was used with 

our design conditions, and the results from this test are shown in Figure 5.12. Cavitation occurs 

when −aJ c⁄ ≥ 1; for our parameters, this value never exceeded 0.06, signifying that we will 

not have a problem with propeller cavitation. 

 

 
Figure 5.12. Blade cavitation diagrams from OpenProp. 

To ensure that our blades would not break under stresses when in operation, a stress analysis was 

done in OpenProp as well. The results of this test can be seen in Figure 5.13. With our design 

conditions, the maximum blade stress is only about 3.4 MPa, much lower than the yield strength 

of any material that we would use to make it. We will 3D print our propellers either out of PLA 

or epoxy resin, which have estimated yield strengths of 26 MPa and 75MPa, respectively; this 

would give us a factor of safety between 7 and 22, signifying almost no possible risk of blade 

yield. 

 

This stress analysis does not take into account the full propeller and does not account for stress 

concentrations where the blade connects to the hub. However, according to Carlton,[21] a fillet 

that is equal to the maximum thickness of the blade at r=0.25R will be sufficient to support the 

blade. For our propellers, this fillet will have a radius of 0.4 in.  
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Figure 5.13. Blade stress analysis using OpenProp. 

 

5.6. Electrical System 

The electrical system is made up of nearly all off the shelf components that are wired together 

for our system to operate.  The solar cells are wired to a solar regulator, which are wired to a kill 

switch, which are wired to the two ESC motor controllers, which are wired to the motors. A 

diagram of this system can be found in Appendix I. With the desire to reduce losses in the 

electrical system as much as possible the desire to use off the shelf parts arose.  These parts have 

been designed and re-designed to be as efficient as possible and that is why they were chosen for 

our design.  The regulator and controllers are kept in a sealed plastic box on the boat during 

operation to eliminate the chance of water interaction with the components.  

 

5.7. Safety, Maintenance, and Repair Considerations 

Since the boat will be used just for the competition this year the maintenance and repair 

considerations are going to be specific to getting the boat to compete.  The safety considerations 

will include safe practices for manufacturing, transportation, and operation of the boat. 

 

5.7.1. Safety 
Since a majority of the manufacturing is going to be done with some type of CNC tool center 

there are already a lot of safety measures in place to protect the operator of the machines when in 

use.  These protections include safety walls and glass surrounding the part while it is being made.  

When transporting the boat to Northern California the sections of the boat must be properly 

secured to the bed of a truck.  In order to accomplish this, custom mounts will be manufactured 

to ensure the boat is attached to the truck bed and cannot fall off.  The motors and propellers are 

going to be easily removed and will be transported inside the vehicle.  When operating the boat 

safety paint will denote moving parts that need to be kept clear of.  Electrical components will be 
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a sealed plastic container so people cannot interact with live wires.  Life vests, safety flags, 

airhorns, and a paddle will be on the boat during usage, in case of emergency.   

 

5.7.2. Maintenance  
Since the system is designed to be used for a single day of competition there is not much planned 

for maintenance.  All rotating and sliding parts will be oiled or greased to prevent frictional ware.  

Cleaning after practice runs and testing will reduce the chance of any buildup on the system. 

 

5.7.3. Repair Considerations 
All major components will have spares made in case of failure on the day of competition.  This 

includes driveshafts, rudders, props, controllers, and motors.  The modular design makes 

replacements for these parts easier to do on the beach the day of competition.  Additional carbon 

fiber patch kits, electrical wire, and tools will be on site as well. In case of failure in the 

transmission box an additional premanufactured unit used to change direction without reduction 

will be brought in case there are major issues on the day of the race   

 

5.8. Cost Analysis 

The four subsystems to be cost-analyzed in this section are: powertrain, hull-mounting, 

electronics, and steering. 

 

The powertrain makes up most of the cost due to the expense of highly efficient motors. The 

desired T-motor U8II is $319.99, with the associated motor controller costing $60.00. Other 

high-cost components in the powertrain are the gearing housing and motor-mount due to their 

complexity that necessitates a 5-axis CNC to produce them. Due to a sponsorship by a local 

company with donated machine time and materials, these manufacturing costs have been reduced 

to zero. Finally, the propeller would be expensive to manufacture if 3D printing was not as 

mature and reliable as it is now, and if the powertrain had an input power of more than 3kW, 

which would exceed the yield strength of inexpensive materials.   

 

The hull mounting subsystem components are manufactured from stainless steel donated by 

Stainless Steve Fabrications. Because the size of these components is small, the cost would not 

be above $50.00 for materials.  

 

SMUD provided the solar panels, which otherwise would have cost a total of $500.00. The other 

electronic components include a power optimizer, costing $109.67, and wiring, which will cost 

between $25-$40.  

 

The cables, eyebolts, column, and wheel that make up the steering system will cost less than 

$50.00 because none of the components are uncommon or made of expensive materials. 

Since funding for the selected motors and the matched controllers is not guaranteed through 

MESFAC, inexpensive alternatives have been selected that will enable race-worthy functionality 

– but fall between 10 and 20% short of the targeted performance. This would reduce the total 

required funding to fit within the $1000 budget supplied.  This was not needed since MESFAC 

did fun the motors and controllers.  A full budget sheet can be located in Appendix N. 



 34 

6. Manufacturing Plan 
This section of the report will outline the steps needed to get all raw materials, how to process 

those materials into parts, how to assemble the parts together, and what will be outsourced. 

Materials that were donated and services donated do not have associated cost and are called out 

as donated throughout this section. Drawings of parts to be manufactured are located in 

Appendix M, and links to parts that we are buying off the shelf are located in Appendix O. 

6.1.  Procuring Materials 

The most used material for this product is aluminum and is likely to be the costliest material 

used. The team was able to find local vendors that were willing to donate the aluminum and 

reduce the cost of the system. Wooden plywood or MDF sheets will be used for the 

rudder/water-foil, they will be purchased from Home Depot. Along with the wood core, Carbon 

Fiber will be used for the exterior and interior supports. The interior supports will be purchased 

online from a yet to be determined source, while the exterior carbon has been donated by the 

SAMPE club on campus. The Motors were purchased online from Arrow Motors. The bearings, 

gears, ball joints, steering rods, housing, and related parts will be purchased from McMaster. The 

box tubing, sheet metal, eyebolts, solid aluminum rods, bolts, nuts, and washers will be 

purchased from Home Depot. The Solar Panels are provided by SMUD and have been brought 

down to San Luis Obispo. The Solar Regulator and ESC will be purchased from T-motors 

online. Any additional parts needed for fabrication will primarily be donated from local vendors 

or purchased from them. 

6.2. Manufacturing and Assembly  

This section describes a step-by-step process for creating each part of the propulsion assembly. 

Any parts that are planned to be outsourced will have a comment in this section before 

describing how the part will be integrated with the other components of the system. The timeline 

for manufacturing, assembly, and testing can be seen in the Gantt Chart found in Appendix F. 

6.2.1. Mechanical Drive Steps 
1. Convert CAD models into CAD/CAM and product G-Code script to produce the 

differential housing, motor mounts, and shaft adapter. 

2. Machine differential housing with 5-axis CNC (outsourced) 

3. Machine motor mount with 5-axis CNC (outsourced) 

4. Machine motor-shaft adapter 5-axis CNC (outsourced) 

5. Press pinion into small bearing with a bearing driver 

6. Press gear into large bearing with press and vice 

7. Press small bearing into housing with a bearing driver 

8. Press pinion-shaft into pinion with press and vice 

9. Press gear into housing with a bearing driver 

10. Press prop-shaft into gear with press and vice 

11. Bond differential into rudder/water-foil with epoxy and two through bolts 

a. This step and following to be done once other parts have been manufactured, 

specifically the water-foil, motor mount, and differential housing 
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12. Bond motor mount into rudder/water-foil with bolt through down-shaft and epoxy to 

connect bottom surface of the mount and the top of the water-foil 

13. Run long shaft through carbon tube with bearing supports on top and bottom to ensure 

alignment  

14. Install motor adapter onto motor with bolts and hand wrench  

15. Mount motor onto motor mount over long shaft 

16. Tighten the set screw on the motor adapter onto the shaft 

17. Install 0.5-13 Helicoil into prop hub 

a. This step and the next are to be completed once props are ready to be attached 

18. Screw prop onto prop shaft 

6.2.2. Propeller Steps 
1. Produce STL file with OpenProp through MATLAB given design conditions of water 

and boat 

2. Convert STL to solid and 3D Print out of Resin (Outsourced) 

3. Tap hole on rear or prop for mounting 

4. Attach shaft with duel sided threads onto prop and then to differential  

6.2.3. Rudder/Water-foil Steps 
1. Using NACA airfoil generator software create an airfoil with around a 1” maximum 

height.  Make sure the length to height ratio is at least five. (NACA 0018 was used) with 

a 0.75” diameter hole at the center of the tallest length 

a. Drawings shown in Appendix L-9 

2. Make cutting pattern for 2’ by 4’ wood panels out of the airfoil generated in the previous 

step with a depth of 1” (may use different depth depending on the tools available) in 

CAD/CAM software and export for laser cutters 

3. Cut out enough airfoils to create a height of 36” (2x18”) with the laser cutter in Mustang 

60 

4. Slide the wood pieces onto the purchased carbon fiber tubes with an exterior diameter of 

0.75” one at a time adding epoxy to the top of each piece before adding next, except for 

the last one  

a. Let it dry 

5. Cut prepreg carbon fiber rectangles with a height of 18” and a width of the perimeter 

length of the airfoil 

a. A string wrapped around the airfoil can produce an accurate perimeter reading. 

6. Wrap the airfoils in the cut carbon fiber sheets and cure at manufactures recommended 

cure cycle 

7. After cure cover end of airfoil with an additional epoxy treatment to ensure the end is 

sealed  

8. Sand and water seal the entire carbon fiber section to ensure no water ingress  

9. Drill holes through carbon fiber and wood with drill press and proper drill bits (be sure to 

wear proper PPE’s) 

a. A wooden fixture is suggested for drilling accurate holes in curved carbon fiber 

walls 
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10. Apply rubber gasket around holes before putting bolts through to ensure no water ingress 

11. Bolt on motor mount and differential 

a. Use epoxy to seal and secure these to the rudder  

6.2.4. Steering Steps 
1. Cut half inch aluminum linkage tube to distance between pontoons 

a. If this distance is to be variable, cut at largest possible width 

2. Drill 0.25” holes through aluminum tube at both ends and, in the center with a center tap 

and drill press 

3. Slide low profile bushings between the tube and rudder mounting points 

a. This and all following steps are to be completed once motor mounts are complete  

4. Run bolt through both the mounting holes and the tube holes 

5. Tighten nuts onto the free end of the bolts and apply Loctite 

6. Use reciprocating saw to cut a slot in the steering tube of 0.625” 

7. Slide low profile bearings between the slot and the middle of the linkage tube 

8. Bolt together the linkage and steering tubes and apply Loctite 

9. Slide ball joint pivot over the free end of the steering tube 

10. Bolt pivot down to the aft cross member of the bridge 

11. Confirm both motor mounts are attached and bolt assembly to hull 

 

6.2.5. Motor Tilt Out of Water Steps 
1. Cut 0.1” thick sheet metal to height of the combined length of all the sides of the flange 

with a width of 4” with sheet metal cutter 

a. Drawings shown in Appendix L-5 

2. Cut with an angle of 225-degrees and 3” from each end.  Will create section 2” height in 

the center of the sheet where the width is still 4” 

3. With template printed out from drawing mark and drill all holes (3 sets to line up, or a 

total of 6) with drill press 

4. Mark off 3” from the top and bottom of the sheet (where the previous cuts were) and the 

2” high portion of the sheet score the exterior for alignment on the brake (there should be 

4 lines) 

5. With the brake in one of the shops on campus bend along each of the scores 45-degrees 

so that the holes align up across from each other 

6. Bolt together to keep shape prior to installing and to ensure proper alignment when 

attaching motor 

7. Weld bracket to box tubing and support 

8. Once water-foil is prepared attach with two bolts, one permanent and one removable 

a. Rubber spacers are placed between the holes in the hinge and the ones in the 

motor mount to ensure proper centering of water-foil 

9. Bolt box tubing and support to hull with carbon spacer between the stainless steel and 

aluminum  
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6.2.6. Motor to Hull Steps 
1. Cut 1.5” Square stainless-steel tubing with a wall thickness of 0.1” to a length of 15” with 

metal bandsaw 

2. Cut tube at an angle such that the resulting side length is 13.65” with metal bandsaw. 

a. Drawings shown in Appendix M 

3. Cut 0.125” thick piece of stainless-steel to a length of 6.725” and a width of 1.4” with 

metal band saw 

4. Mark 3” from one side for bending 

5. Bend plate 140-degrees, or until one side is 40-degrees from itself with “big-boy” brake 

a. Drawings shown in Appendix M 

6. MIG weld plate onto tube with a resulting 90-degree angle from face of tube to longer 

bend of plate (wooden fixture with clamps to ensure proper angle) 

7. Attach to motor tilt as stated in previous section and then to boat hull 

6.2.7. Electrical System 
1. Mount solar panels on to boat hull 

a. This step is being done by the hull team and is outlined more completely there 

2. Run wire from the anode and cathode hookup on the bottom of each panel and run to the 

solar regulator input 

a. They will be attached to the same input, so they are run in parallel 

3. Run wire from solar regulator output directly battery bank and kill switch 

4. Run wires from both battery bank and kill switch toto ESC input 

5. Wires are then run from the two outputs of the ESC to each of the electric motors 

Note: The solar regulator and ESC will be in a sealed plastic container with wires 

running in one side from the panels and out the other to the motors 

6. Test by charging batteries with trickle charger and running motors without drive shafts 

hooked up  

 

6.2.8. Outsourced Parts 
As mentioned throughout the manufacturing and assembly section, there are four parts that we 

plan to outsource. Each part will be designed by the team, but due to complexities in the parts we 

will not be manufacturing them ourselves. These parts are the motor mount, differential, motor 

shaft adaptors, and the propellers. 

The gearbox (differential) housing was outsourced due to the complexities of their designs and 

need of a 5-Axis CNC to produce accurate parts within tolerances. The first prototype was 

manufactured at Zone 5 Tech with the assistance of team member Eric Rinell.   

The propellers are planned to be outsourced so they could be made from a stronger material then 

the 3D printers on campus are able to print (PLA).  The off-campus printing would also allow for 

a better surface finish, reducing the amount of sanding required to keep the drag coefficient low 

while reducing post process material removal that would change the shape of the prop. However, 

it was also found that after fine-tuning the printer settings and optimizing the prop design for a 
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nine-inch diameter, that printing on campus could work as well. These options will be weighed 

more by the team next year. 

7. Design Verification Plan 
Our team planned to do extensive testing of the propulsion system and its components to ensure 

that all our design specifications were met before the regatta. A list of the design specifications 

can be found in Table 3.2, and a breakdown of the full design verification plan can be found in 

Appendix I. Each of the specifications are listed in order below along with a description of the 

planned testing. 

1. Top speed 

Test out the boat and its capabilities in Laguna Lake once it is completed. Top speed can 

be measured during these tests using a free phone application, and we can also time the 

boat as it does laps to get an estimate of speed during a slalom or endurance race.  

2. Acceleration 

Acceleration will also be tested with the full boat once it is completed. We planned to 

obtain an accelerometer device to measure the acceleration from the boat directly as well 

as conducting a timed test of the boat’s acceleration in the water. 

3. Turning Radius 

Like acceleration and top speed, turning radius would be tested with the full boat. A 

rough estimate can be used by turning between buoys in the water that are spaced a 

certain distance apart. 

4. Battery life at max power draw 

The battery life at max draw can be measured by conducting a timed test of the 

propulsion system when it is hooked up to the battery. This test should also be completed 

with the full boat assembly by running it as long as possible until the battery runs out of 

power. Additionally, the batteries can be tested beforehand by simply hooking them up to 

a similar load. 

5. PV panel efficiency 

The solar panel output and efficiency can be tested using the equipment stored near the 

solar balcony in building 13. We planned to run multiple tests of the panels for a couple 

hours in both sunny and cloudy conditions to see what output we should expect. A full 

uncertainty analysis would be performed using the data collected. 

6. Electrical Power Transfer 

Electrical power transfer through the wires and solar converter can be tested by 

measuring the power loss through the system when it is powered separately and together 

with the full propulsion system. This can be done using a simple wattmeter.  

7. Drivetrain (Propeller, driveshaft, and transmission) efficiency 

Originally, we had planned to use the water channel described in section 2.7 to complete 

extensive testing of smaller scale models of the propellers that we intend to use for our 
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final design. However, due to schedule pressure, we postponed the tests until after the 

competition.   

To test the efficiency of the driveshaft and transmission, we would have hooked the sub-

assembly up to a motor and measure the speed and torque outputs without the propeller 

attached. This test can be done using a dynamometer that is in the electrical power labs 

on campus.  

8. Weight of propulsion assembly 

The weight of the entire assembly can be simply measured using a scale once the 

assembly has been completed. It can also be estimated by adding the weights of each 

different component.  

8. Testing Plan 
This section contains the procedures for tests on both components of the propulsion system and 

on the full boat. Some of these tests were completed, but others had to be postponed due to 

complications with COVID-19. Test procedures for each test listed can be found in Appendix S. 

 

8.1. Component Tests 

8.1.1. Motor Tests 
 

For the propulsion system to be efficient, the propellers and motors must both operate at their 

maximum efficiency at the same time. To determine what loading conditions this will occur at, it 

was necessary to use the torque-speed curves for the motors. However, the motors that were 

chosen, T-motor U8II-KV85, did not have a torque-speed curve specified in their specifications. 

Therefore, the motors had to tested using a dynamometer in the EE power lab at Cal Poly to find 

their torque-speed curves. Once the torque speed curves of the motors were found, the propellers 

could be designed to reach maximum efficiency at the same torque and speed that the motors 

reach maximum efficiency.  

 

For each test, the motor was connected to the dynamometer with a test jig, shown in Figure 8.1 

and Figure 8.2. Once the motor was aligned to the dynamometer shaft, it was connected to the 

battery and run up to full power. The torque on the motor from the dynamometer was raised until 

the motor stalled out, taking speed data at certain intervals to produce the torque-speed curve.  
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Figure 8.1. Motor test jig for dynamometer test. 

 
Figure 8.2. Motor test jig setup with dynamometer. 

One test was conducted for the T-motor U8II-KV85 motors. The torque-speed curve determined 

for the motor is shown below in Figure 8.3, and the tabulated data is shown in Table 8.1. 

 



 41 

 

Table 8.1. Raw data taken from dynamometer test of T-motor U8II-KV150. 
Torque Speed Voltage Current Input Power Efficiency 
[lbf•in] [RPM] [V] [A] [W] % 

0 0 23.1 0.0307 0.6 0 
0.69 1842 23.06 0.661 14.35 104.5% 
1.98 1769 22.97 1.931 44.17 93.6% 
4.04 1688 22.84 3.853 87.90 91.5% 
5.99 1613 22.71 5.65 128.2 88.9% 
8.05 1535 22.58 7.55 170.2 85.7% 

10.01 1416 22.47 9.16 205.2 81.5% 
 

 
Figure 8.3. Torque-speed curve for T-motor U8II-KV85 motor. 

From this test, it was discovered that the motors would stall out at around 10 lbf•in of torque, 

which did not meet the requirements for top speed as determined from propeller calculations.  

The 9-inch propeller requires 19.0 lbf•in of torque to reach top speed, and the 12-inch propeller 

requires 33.6 lbf•in to reach top speed. With a 2:1 gear reduction in the gearbox, the 

requirements come to be 9.5 lbf•in for the 9-inch propeller and 16.8 lbf•in for the 12-in propeller. 

While this motor could barely reach the requirements for the 9-inch propeller, fluctuations in 

water current would likely cause variations in torque that could raise above the stall for the 

motor.  

 

Based on these results, we determined that the motors that we had were not adequate to power 

the propulsion system and new motors were purchased for testing. These motors were T-motor 

U8II-KV150, which would produce more torque at a lower speed. These motors were ordered 

and arrived just before the end of winter quarter; however, due to COVID-19, the EE power lab 

was shut down before the motors could be tested to determine their torque-speed curves. This is 

one of the first things that must be completed once the project picks up again next year.  
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8.1.2. Solar Panel Tests 
 

For the competition, two JKM235P-60 solar modules that were provided to us by SMUD. Before 

using them, we wanted to test the panels against their provided specifications to see if they 

would perform as expected. To conduct this test, we received help from Professor Dale Dolan 

from the Cal Poly Electrical Engineering department. He provided the equipment necessary to 

test the panels and helped us run the tests and compile the results. Figure 8.4 shows the test setup 

for one of our tests.  

 

 
Figure 8.4. Solar module testing setup. 

To test the panels, we connected a solar measuring device provided by professor Dolan to the 

leads from one of the panels. The panel was oriented towards the sun using chairs that were in 

the courtyard where the tests were conducted. For each trial, the solar measuring device 

measured the power and current coming from the panel and sent the data to a computer. More 

details about the test procedure can be found in Appendix S. 

 

In total, five tests were conducted on one of the solar panels. These tests covered various angles 

between the panel normal and the sun and different shading levels. More details about each test 

can be found in Table 8.2. 
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Table 8.2. Solar Panel Test Results. 

 
 

Two of the tests conducted, tests 2 and 5, tested different amounts of shading on the panels. 

Figure 8.5 and Figure 8.6 show the shading that was used in each test. In test 2, one full square 

cell was shaded, and in test 5 only a small portion of two cells were shaded.  

 

The power-current plots from each of these tests can be found in Figure 8.7.  

 

  

Figure 8.5. Shading (≈9 in2) used in test 2 
(Panel normal to the sun). 

Figure 8.6. Shading from test 5 (Panels flat on 
ground) 

 

The results from these tests provided some very important insights into the design the mounting 

for each solar panel on the boat. While the solar module met specifications almost exactly in 

conditions without shading, the conditions with shading caused very catastrophic drop-offs in 

power. In test 2, the maximum power was cut by nearly a third from test 1, which was identical 

but without shading. This, we came to realize, was because of the way that the individual cells 

are connected in the panels. There are three sections of the panel, three parallel groups of cells 

that are individually wired in series. When a single cell is shaded, current cannot be passed 

through it without causing damage to the cell. Therefore, an electrical safety system is built into 

the panel to cut off any cell that is not in the sunlight. If one cell is blocked, then the entire third 

of the panel is cut off to prevent damage.  

 

Test 5 included a much smaller amount of shading for comparison. While there was not nearly a 

one-third power loss as in test 2, there was still a noticeable drop in current and power past 17 V 

as seen in Figure 8.7(e). This drop was not nearly as harmful to the overall output, but it is still 

desired to be avoided.  

 

Temperature Tilt Angle Solar Angle Shading Irradience Max power
°C ° ° - W/m^2 W

1 10:35:20 AM 46.15 62.27 2.77 N 1024.6 222.37 Normal to sun
2 10:39:53 AM #N/A 62.57 3.07 Y 1066.3 142.23 Normal to sun with 9 in^2 shading
3 10:46:43 AM 47.29 18.20 -41.30 N 910.0 189.32 flatter
4 10:50:09 AM 47.32 1.44 -58.06 N 705.8 147.01 flat on ground
5 10:59:25 AM #N/A 1.44 -58.06 Y 702.4 154.69 flat on ground shaded

NOTESTest no Time
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Because of these results, it was clear that shading was an extremely important thing to avoid in 

our final design. Previously, there had been a small risk of the pilot shading the one of the panels 

as he/she sat in between them. This issue would be resolved by having the pilot ride prone during 

races that required solar power. 

 

 
(a) Normal to Sun (b) Normal to sun with ≈9 in2 shading 

(see Figure 8.5) 

 

 

(c) ≈45° offset from Sun (d) Panel flat on ground 

 

 

 

 

  
(e) Flat on ground with slight shading (see 

Figure 8.6) 

(f) Power-current curves from 

specifications sheet (see Appendix P) 

 

Figure 8.7. Power-current plots for each of the 5 tests conducted on the JKM235P-60 Solar 
module.  
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Engineering Drawings

SPECIFICATIONS

Mechanical Characteristics

Module Type 

Maximum Power at STC(Pmax)

Maximum Power Voltage (Vmp)

Maximum Power Current (Imp)

Open-circuit Voltage (Voc)

Short-circuit Current (Isc)

Cell Efficiency(%)

Module Efficiency(%)

Operating Temperature(℃)

Maximum system voltage

Maximum series fuse rating

Power tolerance

Temperature coefficients of Pmax

Temperature coefficients of Voc

Temperature coefficients of Isc

Nominal operating cell temperature  (NOCT)

JKM225P

225Wp

29.4V

7.65A

36.7V

8.25A

15.75%

13.74%

JKM230P

230Wp

29.6V

7.78A

36.8V

8.35A

16.00%

14.05%

JKM235P

235Wp

29.8V

7.89A

36.9V

8.47A

16.50%

14.35%

JKM240P

240Wp

30V

8.01A

37.2V

8.56A

17.00%

14.66%

-40℃~+85℃

600V (UL) /1000V (IEC)  DC

15A

±3%

 -0.45%/℃

 -0.27%/℃

0.05%/℃

45±2℃

JKM245P

245Wp

30.2V

8.12A

37.4V

8.69A

17.25%

14.97%

Cell Type

No.of cells

Dimensions

Weight

Front Glass

Frame

Junction Box

Output Cables

Poly-crystalline  156×156mm (6 inch)

60 (6×10)

1650×992×45mm (64.97×39.06×1.77 inch)

19.0kg (41.9 lbs.)

3.2mm, High Transmission, Low Iron, Tempered Glass

Anodized Aluminium Alloy

IP65 Rated

TÜV 1×4.0mm / UL 12AWG, Length:900mm²

Electrical Performance & Temperature Dependence

23 pcs/box, 50 pcs/pallet, 700 pcs/40'HQ Container  

Irradiance 1000W/m2 Module Temperature 25°C AM=1.5STC:

Isc

Voc

Pmax
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The other factor changed between tests was the angle between the panel normal and the sun. 

Changing this angle changes the irradiance that is incident on the panel’s surface, which drops 

off following a cosine function of the angle between the sun and the panel normal. Initially, we 

had planned on keeping the panels flat on the boat and not angling them towards the sun; 

however, from these tests we determined that that could cause us to lose up to 30% of our total 

power output. Therefore, we decided to change our design to include pivots for the panels to 

rotate around so they could be aimed directly at the sun.  

 

Unfortunately, due to COVID-19 we were not able to finalize the design for the panel mounting. 

This task has been assigned to the team that will finish the project next year.  

  

8.1.3. Battery Life Tests 
To ensure that each battery will perform as desired, each one will be tested for lifetime at max 

power draw. This test will be conducted both with the propulsion system as a separate unit, and 

with the full boat. As a goal, the batteries should be able to last 25 minutes at max power draw, 

the amount of time for the endurance race.  

 

Unfortunately, due to COVID-19 this test was not completed this year. It is planned to be 

completed when the boat and propulsion systems are finished in Fall or Winter quarter of next 

year.  

 

8.1.4. Propeller Efficiency Tests 
Each propeller was designed using software to determine the contours necessary for the most 

efficient propulsion at the given conditions of speed, torque, and power that the boat will 

experience. To verify these calculations, a test was originally planned to be conducted with a 

scale model of the propellers in a water channel at Cal Poly. Due to time constraints, this test was 

reduced to a simple flow visualization of the water moving around the propeller using dyes; 

however, since the test was unable to be completed this quarter anyway due to COVID-19, it is 

possible that the original full efficiency test may be able to be conducted before competition next 

year.  

 

8.1.5. Additional component Tests 
Other planned tests include testing wires for low resistance at the given electrical loads, 

measuring the weight of each propulsion system, and evaluating the efficiency of the gear train 

assembly. These tests are outlined more in Appendix S. Each of these tests is planned to be 

completed before next year’s competition.  

 

8.2. Full Boat Tests 

8.2.1. Speed and Acceleration Tests 
Once the boat and propulsion systems are completed, we plan to test the boat’s capabilities on 

the water. Two of the crucial tests will be top speed and acceleration, which will directly affect 

how the boat performs in competition. Unfortunately, because of COVID-19, the boat will not be 

completed by spring and these tests will have to be postponed until the boat is finished sometime 

next year.  
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The speed test will determine the average speed of the boat for 100m (the length of the sprint 

race) and top speed. Measurements will be taken by a phone GPS application, with the phone 

located onboard the boat. The phone will be in a plastic bag/box to ensure that it does not get wet 

during the tests. Each speed test will be run three times to ensure that the results accurately 

depict the capabilities of the boat.  

 

The acceleration test will determine how quickly the boat can get to top speed. For each test, the 

time it takes for the boat to go from 0mph to top speed will be measured. As a target, this time 

should be less than 10 seconds. Each test will be recorded using the same phone GPS application 

that will be used in the speed test. Additionally, each test will be run three times to ensure 

accuracy of results.  

 

8.2.2. Turning Radius Tests 
Three different tests were designed to determine the turning ratio from steering wheel to rudder, 

the turning ratio from the steering wheel to the turning radius of the boat in the water, and the 

required torque for maximum turning. These tests require the use of a protractor, rope, and a 

torque gauge. Unfortunately, these tests were not able to be performed due to the inability to 

finish building the boat due to limited access to machine shops and raw materials. 

 

The first test to determine how much the propulsion units rotate from the steering wheel will 

need to be completed twice: once out of the water and once inside the water to ensure the results 

do not change with the interactions between the boat and water. First remove the steering wheel 

from the steering wheel column and mark a straight line radiating from the center of the column.  

For the propulsion units attach a protractor to the end of the mounting tubing with the center of 

rotation above the pin attaching the propulsion unit perpendicular to the mounting bar and mark 

a straight line on the propulsion unit that can rotate ±90°. Rotate the steering column in fixed 

intervals and record the angle change of the propulsion unit.  There should be a linear 

relationship between the two angles, though the constant will change depending on which of the 

adjustment holes the steering cable is attached to on the propulsion unit.  

 

The second test will be completed in the water and like the last test will have different results 

depending on which adjustment hole the steering cable is attached to. With the boat in the water, 

tie one side of a rope to the approximate center of the boat and have the other end extend to 

another individual standing in the water.  Have the driver of the boat turn to different angles and 

lock the steering column in place. As the boat moves it will extend the distance between the 

driver and the stationary individual unit it reaches a constant length: The radius of curvature, ρ.  

This test may result in variation due to different speeds and the forces on the rudders varying 

non-linearly so a recommendation of testing at 25%, 50% and 100% throttle should be done for 

quality results.  

 

The final test can be completed at the extreme of the second test with a torque bar attached to the 

steering column.  Max rotation of the steering column should be applied at varying throttle with 

an expected max torque at max speed.  This torque would be the maximum expected required 

torque to operate the boat.  This also varies depending on which adjustment hole is used and can 

be adjusted for ease of use by the driver if needed. 
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9. Tasks Left for Next Year 
Due to complications with COVID-19 pandemic, we were unable to finish manufacturing the full 

boat design this year, and the SMUD competition for 2020 was cancelled. This section contains 

all items that we had planned to do but were unable to complete this year as a reference for 

future teams that pick up this project for later competitions. 

 

9.1. Motor Testing 

Since our first motor test with T-motor U8II-KV85 motors did not produce the results that we 

had hoped for, a second test of a different type of motor, T-motor U8II-KV150, was originally 

scheduled for finals week of winter quarter. However, the test was unable to be completed, as the 

EE power lab where we had been conducting out tests was shut down that week in response to 

COVID-19. The test would have been conducted to determine the torque-speed curves of the 

new motors to determine the maximum torque before stall.  

 

This test is currently planned to be conducted as soon as possible, which as of now appears to be 

the first week of fall quarter 2020, pandemic permitting. The data from this test will allow us to 

finalize the design of the propellers before we send for them to be manufactured, as it will allow 

us to design the propellers to operate with the same conditions for maximum efficiency as the 

motors.  

 

See section 8.1.1 for more details on the motor tests. 

 

9.2. Manufacture and Assemble Full Propulsion Systems 

We will accomplish a variety of small tasks during summer quarter 2020 to bring the rotating 

parts of the assembly to a functional state by the start of fall. These tasks include drilling and 

tapping set-screw holes in the bevel gear, installing shafts into gears with set screws, and 

pressing the large bearing into the gearbox housing. If the gears mesh smoothly, we can 

accomplish a torque holding test with a torque wrench and combination wrench – holding the 

input still while torquing the output. This is a prerequisite to assembling the rest of the system 

around the gear box because disassembling after this stage would damage the rudder. With 

torque and gear mesh smoothness verified, the rudder, motor mount, and gearbox housing can all 

be bonded together in the carbon layup. After this stage of bonding, we will be able to perform a 

static thrust test in water under our maximum expected power output of 250W. Next, the team 

will duplicate the unit and await installation into the pontoons.  

 

 

9.3. Assemble Full Boat 

Once the pontoon sections are put together each one will need to be covered in fiberglass with an 

epoxy wet layup.  They will then need to attach the bridge, the solar panels, and batteries along 

with all the electrical components required to operate the boat. Wires will be run to the motors 

along each pontoon.  Prior to giving power to the motors the steering system should be installed 

and tested.  Instructions for attaching the propulsion units and steering system are included in the 

User’s Manual in Appendix T and should be followed to properly integrate system to the hull. 
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Once the propulsion units are attached and hooked up to the electrical system the entire boat 

should go through the full boat tests listed under the Testing Plan section. 

 

9.4. Test Boat Performance 

Most of the tests that were planned to be performed this quarter were unable to be completed due 

to COVID-19 and will be pushed back to Fall 2020. Descriptions of each test can be found in 

Section 8 of this report, and detailed test procedures can be found in Appendix S. The only test 

fully completed was the solar panel test; each other test listed must be finished before 

competition next year. 

10. Project Management 
The project was managed using a Gantt Chart, featured in Appendix F. The team had weekly 

status reports with their advisor, Dr. Brian Self, to ensure they stayed on schedule. 

 

10.1. Design Process 

The design process started with background research on existing designs and solutions to 

perceived challenges related to solar powered boats. Defining the customer as a combination of 

the pilot, Hull Team, and the competition rules and regulations, we attempted to understand their 

wants and needs. We began the design with conceptual ideation and developed and discussed 

those ideas throughout the ideation phase. After building conceptual models, we tested the 

models. After testing we moved forward with the most promising ideas and built a functional 

concept prototype. The prototype was benchmarked against the design specifications and was 

improved accordingly. The Preliminary Design Review was completed and reviewed by our 

peers and advisor to check our progress and make sure we were heading in the right direction. 

The Critical Design Review was used to present our final design and seek advice from faculty 

and peers before starting the manufacturing of a verification prototype. We used the verification 

prototype as a fully functional model to prove out manufacturing techniques and gather 

preliminary test data before completing the final design. 

 

10.2. Special Techniques 

According to the Solar Panel specifications found in the Competition Packet, the solar panels are 

more efficient at lower temperatures [18]. If we were to cool the panels to zero degrees Celsius, 

the panels would produce 256W compared to 230W at room temperature, good for an eleven 

percent power increase. A potential method being discussed uses dry ice to cool the panels. This 

method will be tested on our prototype. More details are specified in section 2.3. 

 

To design our propellers, we used the open source MATLAB software OpenProp developed by 

MIT to optimize propeller geometry for our specific design conditions to achieve a maximum 

possible efficiency. We plan to 3D print the propellers.  
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10.3. Timeline and Key Activities 

Table 10.1 contains all of the critical deliverables and their due dates, both for our senior project 

class and the competition. SP signifies a senior project deliverable and CSR signifies a 

deliverable for the Solar Regatta competition. 

 

Table 10.1 Key Deliverables. 

Deliverable Date Due Category 
Scope of Work 10/19/19 SP 

CSR Application Form + Equipment Waiver 10/31/19 CSR 

Preliminary Design Review (PDR) 11/12/19 SP 

Interim Design Review 1/16/20 SP 

SMUD CSR Orientation in Sacramento 1/17/20 CSR 

Critical Design Review (CDR) 2/4/20 SP 

Video of Progress Check  2/14/20 CSR 

Manufacturing and Test Review 3/12/20 SP 

SMUD Liability Waiver & Media Release 3/13/20 CSR 

Proof of Boating Safety Attendance 3/13/20 CSR 

Competition Day* 5/2/20 CSR 

Final Design Review  5/26/20 SP 

Senior Project Expo* 5/29/20 SP 

*These events were cancelled due to COVID-19. 

 

10.4. Future Application 

The design and manufacturing processes developed this year will be used by the 2021 Cal Poly 

Solar Regatta team. The prototype unit will be used for testing and optimization before 

completing two final units to be used in competition next year. This design could also be 

modified for personal use for boats with low speed requirements such as fishing trawlers and 

water taxis. 

11. Conclusion 
Competing against experienced collegiate teams in such a unique event presented both the 

propulsion and hull teams with unique opportunities and challenges. By following a process 

designed to account for factors that make or break any project, the team represented Cal Poly in 

the development of an ultra-efficient electric watercraft. While the team was eager to 

demonstrate the unique experiences and skills a polytechnic university fosters, they were also 

excited to create novel solutions to challenges surrounding efficiency that will push other 

competitors to innovate in the future. Due to COVID-19 the competition was cancelled and our 

manufacturing was halted. While we were disappointed we couldn’t fully assemble and compete 

with our designs this year, we are excited to support next year’s team as they take Cal Poly to its 

first Solar Regatta in 2021! 
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Appendix A. Quality Function Deployment House of Quality 
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Appendix B. Competitors From Previous Years 
 

 

 
https://sites.google.com/a/mail.ccsf.edu/ccsf-engineering-club/spring-2017/smud-solar-regatta-2017 

 

Figure B.1. City College of San Francisco’s 2017 Design. 

 
https://sites.google.com/a/mail.ccsf.edu/ccsf-engineering-club/spring-2018/smud-solar-regatta-2018 

 Figure B.2. City College of San Francisco’s winning 2018 design. 
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https://engineering.ucdavis.edu/blog/uc-davis-solar-boat-team-places-second-in-2018-solar-regatta/ 

 Figure B.3. UC Davis’ second place design from 2018 with solar panels removed. 

 

 

 
https://www.clcboats.com/life-of-boats-blog/high-school-wins-solar-regatta.html 

 Figure B.4. Laguna Creek High School’s winning design in 2012. 
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Appendix C. Race Data From 2018 SMUD Solar Regatta 
 

 
 

Team # Team Name
Overall Score

(x/54)
Rank Point Total

1 Delta 1:57 2 0:40 4 14 5 43 4 10 # Name
2 Santa Clara 2:57 8 1:19 14 11.5 7 25 8 0 13 CRC
3 Chico 2:26 6 0:45 6 12.25 6 36 6 0
4 Sonoma 3:54 11 0:57 8 8.5 11 24 9 0
5 SF 2:14 5 0:29 1 14.25 4 44 3 15 Each race: Points
6 ARC DNF 18 2:45 16 4 16 4 16 0 1st 15
7 Ohlone DNF 18 DNF 18 DNF 18 0 18 0 2nd 10
8 Butte 9:15 15 1:04 10 11.25 9 20 13 0 3rd 5
9 Skyline 2:50 7 1:10 12 11.5 7 28 7 0

10 Contra Costa 4:23 12 1:32 15 4.75 14 13 14 0
11 Humboldt 4:56 13 0:54 7 7.5 12 22 12 0
12 Bakersfield 3:12 9 0:58 9 7.5 12 24 9 0
13 CRC 1:55 1 0:30 2 18 1 50 1 40
14 Davis DNF 18 DNF 18 4.25 15 3 17 0
15 Chabot 8:40 14 1:15 13 0.5 17 10 15 0
16 Maritime 3:28 10 1:08 11 9.75 10 23 11 0
17 Sequoias 2:11 4 0:43 5 15.75 3 42 5 5
18 HS 2:05 3 0:36 3 18 1 47 2 25

SMUD 2019 Race Times

Race Start Time Team # Team Name Time Team # Team Name Time Team # Team Name Time Race Start Time Team # Team Name Score
1 10:00 8 Butte 9:15 2 Santa Clara 1:47 12 Bakersfield 1:06 1 10:00 15 Chabot 0.5
2 10:15 17 Sequoias 2:11 18 HS 0:42 5 SF 0:32 1 Delta 14
3 10:30 4 Sonoma 3:54 7 Ohlone DNF 8 Butte 2:23 2 10:30 10 Contra Costa 4.75
4 10:45 14 Davis DNF 3 Chico 0:45 17 Sequoias 0:43 13 CRC 18
5 11:00 6 ARC DNF 9 Skyline 2:52 4 Sonoma 1:41 3 11:00 2 Santa Clara 11.5
6 11:15 11 Humboldt 4:56 16 Maritime 1:08 14 Davis DNF 18 HS 18
7 11:30 15 Chabot 8:40 12 Bakersfield 0:58 6 ARC DNF 4 11:30 7 Ohlone DNF
8 11:45 1 Delta 1:57 5 SF 0:29 11 Humboldt 0:54 3 Chico 12.25

9 1:00 10 Contra Costa 4:23 8 Butte 1:04 15 Chabot 1:15 5 1:00 9 Skyline 11.5
10 1:15 13 CRC 1:55 17 Sequoias 0:45 1 Delta 0:40 16 Maritime 9.75
11 1:30 2 Santa Clara 2:57 4 Sonoma 0:57 10 Contra Costa 1:33 6 1:30 12 Bakersfield 7.5
12 1:45 18 HS 2:05 15 Chabot 1:20 13 CRC 0:37 5 SF 14.25
13 2:00 7 Ohlone DNF 6 ARC 2:45 2 Santa Clara 1:19 7 2:00 8 Butte 11.25
14 2:15 3 Chico 2:26 11 Humboldt 0:57 18 HS 0:36 17 Sequoias 15.75
15 2:30 9 Skyline 2:50 15 Chabot DNF 7 Ohlone DNF 8 2:30 4 Sonoma 8.5
16 2:45 16 Maritime 3:28 1 Delta 0:43 3 Chico 0:57 14 Davis 4.25
17 3:00 12 Bakersfield 3:12 10 Contra Costa 1:32 9 Skyline 1:10 9 3:00 6 ARC 4
18 3:15 5 SF 2:14 13 CRC 0:30 16 Maritime 1:12 11 Humboldt 7.5

Lunch Break

Endurance

SLALOM: Approximately 
150 yards in each 
direction, 5 buoys; hitting 
or missing a buoy is a 20 
second penalty

Slalom Sprint Endurance

Slalom Sprint A Sprint B

Summary

ENDURANCE: 1 point per 
lap to nearest quarter lap, 
1/2 lap penalty for 
hitting/missing buoy

SPRINT: Length is 
between 70 to 100 yards 
depending on vegitation 
at time of competition

Scoring

Highlighted Team:
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Appendix D. Brainwriting and Brainstorming 
Table D.1. List of 43 ideas generated in brainstorming process for different methods of attaching 
components to the hull. 

Zip ties Static attraction Tin foil 
Nuts and bolts Super glue Folded over metal plating 

Welding Woven in Built in 
Duct tape Rivets Plastic wrap 

rope Staples Shrink wrap 
Velcro Brazed Expanding foam 

Single cast part Rubber bands Tacky tape 
Nails Mount included in hull mold Wires 
Clips Epoxy C-clamps 

Hot Glue Friction and Gravity Framing/Caging 
Screws Press fit Hose clamps 

Magnets Zippers Pressure vessel 
Clamps Gum Clam goo 

Tiedowns Melted together Crushing gaskets 
Human strength   

 
 Table D.2. Concepts for steering generated from using the SCAMPER method. 

 Rudder Differential Thrust Thrust Vector 

Substitute: Material - Rubber Type of propulsion - prop, screw, 
waterjet 

Material of vector 
boundary  

Combine: With Motor Boat Hull With rudder / Prop guard 

Adapt: Extra Propulsion - 
Flap/Rip stick Regenerative braking Differential thrust with 

thrust vector 

Modify: Air rudder, Differential 
Drag 

More than two propulsion systems, 
thrust array Variable pitch 

Put to other use: Alternate Paddle Rotate down to produce lift Braking changes direction 
of flow 

Eliminate: Use hands Controlled, Purely mechanical Controlled purely 
mechanically 

Reverse: Put on front of boat Each propulsion system can rotate 
360 degrees 

Location - front, back, or 
center 
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Figure D.1. Brainwriting page 1, focusing on the 

use of mirrors to increase efficiency. 

 

 
Figure D.2. Brainwriting page 2 focusing on power transfer. 

Scanned with CamScanner

Scanned with CamScanner
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 Figure D.3 Brainwriting page 3 focusing on the power transfer between the solar cells and 

water. 

Scanned with CamScanner



 D-4 

  
 Figure D.4 Brainwriting page 4 focusing on power transfer and heat management. 

  

Scanned with CamScanner
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 Figure D.5 Brainwriting page 5 focusing on power transfer. 

 

Scanned with CamScanner
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Appendix E. Pugh and Morphological Decision Matrices 
 

 
           0       +1    0    -2 

 Figure E.1 Steering Pugh Matrix. 

 
          0      +2        0         -1   -1 

 Figure E.2 Integration with hull Pugh Matrix. 

 
 
 
 
 

Scanned with CamScanner
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    0  +1      -2          -3 +1 

 Figure E.3 Mechanical power transfer Pugh Matrix. 

 

 
            0      +1            +4    +1 

Figure E.4. Electrical power transfer Pugh Matrix. 
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Figure E.5. Morphological Matrix of ideas discussed in Pugh Matrices.* 

 *Capacitors were eliminated after checking with SMUD organizers, who informed us that they would be allowed. 
 

.
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Appendix F. Gantt Chart 
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Appendix G. Design Hazard Checklist 

 
  

 DESIGN HAZARD CHECKLIST 
 
Team:  Solar Regatta Propulsion    Advisor: Self     Date:  11/7/19 
 
Y N 
F�� F�� 1. Will the system include hazardous revolving, running, rolling, or mixing actions? 

F�� F�� 2. Will the system include hazardous reciprocating, shearing, punching, pressing, squeezing, 
drawing, or cutting actions? 

F�� F�� 3. Will any part of the design undergo high accelerations/decelerations? 

F�� F�� 4. Will the system have any large (>5 kg) moving masses or large (>250 N) forces? 

F�� F�� 5. Could the system produce a projectile? 

F�� F�� 6. Could the system fall (due to gravity), creating injury? 

F�� F�� 7. Will a user be exposed to overhanging weights as part of the design? 

F�� F�� 8. Will the system have any burrs, sharp edges, shear points, or pinch points? 

F�� F�� 9. Will any part of the electrical systems not be grounded? 

F�� F�� 10. Will there be any large batteries (over 30 V)? 

F�� F�� 11. Will there be any exposed electrical connections in the system (over 40 V)? 

F�� F�� 12. Will there be any stored energy in the system such as flywheels, hanging weights or pressurized 
fluids/gases? 

F�� F�� 13. Will there be any explosive or flammable liquids, gases, or small particle fuel as part of the 
system? 

F�� F�� 14. Will the user be required to exert any abnormal effort or experience any abnormal physical 
posture during the use of the design? 

F�� F�� 15. Will there be any materials known to be hazardous to humans involved in either the design or its 
manufacturing? 

F�� F�� 16. Could the system generate high levels (>90 dBA) of noise? 

F�� F�� 17. Will the device/system be exposed to extreme environmental conditions such as fog, humidity, 
or cold/high temperatures, during normal use? 

F�� F�� 18. Is it possible for the system to be used in an unsafe manner? 

F�� F�� 19. For powered systems, is there an emergency stop button? 

F�� F�� 20. Will there be any other potential hazards not listed above? If yes, please explain on reverse. 

 
For any “Y” responses, add (1) a complete description, (2) a list of corrective actions to be taken, and (3) date to 
be completed on the reverse side. 
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Description of Hazard Planned Corrective Action Planned 
Date 

Actual 
Date 

Rotating blades have sharp edges, 
could cut someone while spinning 

Tips of props will be painted yellow 
and will have guards placed around 
them when boat is not in the water.  

4/15/20 
N/A*  

Long rotating parts throughout 
the boat system.  

All drivetrain components will be 
covered and not able to be accessed 
unless not in use.  

4/15/20 
N/A*  

Rudder could have pinch points 
when turned to an extreme in 
either direction  

Stops will be installed to prevent 
rudder from reaching the required 
amount of motion to cause the pinch 
point.  

4/15/20 
 

N/A*  

Large kinetic energy of boat 
could cause damage if crashed 

The boat will be painted in a way to 
be very visible, along with safety 
flags on board during usage.  

4/15/20 
N/A*  

Rotating pieces could potentially 
detach during operation, create 
projectile 

All people conducting tests will use 
proper PPE. Additional housings 
will be used to create redundancies 
in projectile prevention.  

4/15/20 

All 
times  

Solar cells used in series have a 
total voltage of up to 40V- shock 
hazard with water  

Proper wires and insulation will be 
used to reduce the amount of 
potential exposure. Potentially live 
wires will be denoted with red 
warning signs.  

4/15/20 

N/A*  

Boat’s steering or motors get 
stuck and are unable to be 
controlled with onboard 
controller 

The kill switch will be easily 
accessed while boat is in usage; a 
paddle will be on board in case of 
emergency. 

4/15/20 

N/A*  

Drowning possibility 

All boat operators will have life 
vests, and everyone in the water will 
have completed through a boat 
safety course to be a licensed driver. 

2/7/20 

N/A*  

Travel Safety  Only licensed drivers will operate 
vehicles. 

All 
times 

N/A*  

Tools could break during 
manufacturing processes or when 
components are being assembled 

Proper PPE will be used when 
working on or operating any piece of 
equipment related to this project. 

All 
times 

All 
times  

The boat will be operated in 
water with low visibility to 
submerged moving parts 

The motor and drive will be able to 
rotate 90-degees out of the water for 
inspection if necessary. 

4/15/20 
N/A*  

*could not be completed due to Covid-19 
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Appendix H. Propeller Hand Calculations 
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Appendix I. Design Verification Plan (DVP) 
 

Table I.1. Design Verification Plan and Report as of 2/3/20. 

 

 

Team: Without a Paddle

Quantity Type Start date Finish date Test Result Quantity Pass Quantity Fail
1 1 Top speed test Vmax ≥ 7 mph Alex FP 1 Sys 4/6/20 N/A - - -
2 2 Acceleration test 0 to max in ≤ 10s Niko FP 1 Sys 4/6/20 N/A - - -
3 3 Steering mechanism test Turn Radius ≤ 15ft Alex FP 1 Sys 4/6/20 N/A - - -
4 N/A Water channel prop flow visualization N/A Nathan FP 6 C 5/19/20 N/A - - -
5 4,5 Battery life and power 25 min, 175 W•hr Eric FP 2 C 3/12/20 N/A - - -

6 6 PV panel energy conversion 95% Niko FP 10 C 2/25/20 2/25/20
Solar Angle more 
critical than 
anticipated

7 7 Electrical power transfer (Wires) ! ≥ 95% Alex FP 2 Sub 3/12/20 N/A - - -

8 8 Electrical power transfer (Motors) ! ≥ 80% Niko FP 4 C 3/4/20 3/4/20 FAIL 0 1
Motor does not reach 
adequate torque

9 9 Shaft and geartrain efficiency ! ≥ 95% Eric FP 1 Sub 3/12/20 N/A - - -
10 10 Weight of full propulsion assembly ≤ 30 lbs Nathan FP 1 Sys 4/6/20 N/A - - -

DVP&R Engineer: Niko Banks, Nathan 
Carlson, Eric Rinell, Alex Larson

Description of System: Propulsion system for Solar-Powered Boat
Senior Project DVP&R

TEST PLAN TEST REPORT

Date: 6/02/2020 Sponsor: Sacramento Municipal Utility District

Item
No

Specification # Test Description Acceptance Criteria Test 
Responsibility

Test 
Stage

SAMPLES  TIMING TEST RESULTS NOTES
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Appendix J. Electrical Wiring Diagrams 

 
Figure J.1. Conceptual solar module wiring diagram. 

 

 
 Figure J.2. Solar module wiring diagram made using Virtual Instrument software.
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Appendix K. Design Failure Modes and Effects Analysis 

Product: Solar Regatta Propulsion System

Team: Solar Regatta Propulsion

Design Failure Mode and Effects Analysis
Prepared by: Whole Team

Date: 1/23/20

Design FMEA Full.xlsx Page 1 of 1 Revision Date:  2/7/20

System / 
Function

Potential Failure 
Mode

Potential Effects of the 
Failure Mode

Se
ve

rit
y

Potential Causes of 
the Failure Mode

Current Preventative 
Activities

O
cc

ur
en

ce

Current Detection 
Activities

D
et

ec
tio

n

R
PN Recommended 

Action(s)

Responsibility & 
Target Completion 

Date
Actions Taken

Se
ve

rit
y

O
cc

ur
en

ce

C
rit

ic
al

ity

R
PN

Energy Efficient
Not enough energy 
converted from PV 
panels to Mech. Power

a) Boat cannot move
b) Boat is not fast enough
c) Boat heats up

8

1) PV panels blocked
2) Cooling ineffective
3) Wire resistance high
4) Motors not efficient

1) Calculate heat transfer
2) Reduce wire resistance
3) Calculate ideal motor 
characteristics

8

1) Test PV panels- power 
and heat
2) Measure wire resistance
3) Test cooling
4) Test motors

3 192 1) Test panels earlier Entire Team
2/13/19 8 8 2 128

High Friction a) Boat cannot move
b) Boat is not fast enough 8 1) Bad bearings

2) High motor friction
1) Get low friction bearings
2) Grease/oil motor 2 1) Test bearings

2) Test drivetrain 4 64 0

Inefficient Prop Slower boat speed and 
acceleration 6

1) Non-optimal blade pitch
2) Non-optimal rpm
3) Non-optimal torque
4) Rough surface finish

1) Calculate optimal pitch
2) Calculate optimal rpm
3) Calculate optimal torque

5 1) Test multiple props 3 90 0

Ease of Use Difficult to Steer a) Slower race time
b) Crash boat 9

1) Handle hard to turn
2) Too much drag on 
rudder
3) Too little drag on rudder
4) Hull too streamlined
5) Bad tuning on electrical 
thrust variation

1) Calculate required 
rudder size 6 1) Test steering on full 

model 4 216 1) Test scaled model 
prototype

Entire Team
2/13/19 9 3 2 54

Difficult to Control 
Speed

a) Slower race time
b) Crash boat
c) Jerky motion

9

1) Controls slow to 
respond
2) Transmission ratios too 
far apart

1) Calculate optimal torque 2 1) Test controls on full 
model 2 36 0

Aesthetics / 
Appearance Clashing Colors a) Poor score in aesthetics 2 1) Unpaintable surfaces none 3 1) Visual 3 18 0

Mishapen or 
mismatching parts

a) increase drag b) glue and 
fasteners showing 6

1) Composite structures 
don't match machined 
parts

1) Establish tolerances 
and use CAD models for 
accurate matching.

6
1) Double check 
measurements before 
fabrication

3 108

Mismanaged Wiring
a) Poor score in aesthetics 
b) Electrical problems difficult 
to diagnose

5
1) Cannot quickly separate 
wires to diagnose each 
system component

1) Create wiring block 
diagram to organize wires 
for easy location 
2) Use tiedowns for wiring

5
1) solve issues in final 
design by moving wires if 
necessary

3 75

Aero / 
Hydrodynamic

Upstream flow to prop 
unstable a) Prop has low thrust 7 1) Flow analysis does not 

portray prop accurately
1) Test multiple props in 
water channel 3 1) Water channel test 3 63 0

Exposed underwater 
rotating compenents

a) induce high friction losses b) 
disturb flow of water before 
propeller

6 1) rotating components 
swirl the water

1) seal off rotating 
components besides 
propeller.

3 1) bearing seal test 5 90

Maneuverability Lack of displaced water a) lack of steering authority 9 1) Poor rudder 
placement/attachment

1) observe classical 
rudder designs 2 1) test on scaled model 3 54 0

lack of responsiveness a) unpleasent user experience 6 1) props cannot provide 
accleration response

1) find classical prop 
designs that provide good 
acceleration performance

4 1) Water channel test 4 96

Top Speed
solar energy cannot be 
efficiently transfered 
into thrust

a) boat moves slowly
b) boat cannot steer using 
differencial thrust

8

1) props are inefficient at 
high speeds
2) props don't provide 
enough thrust

1) use OpenProp and CFD 
to analyze prop 
performance
2) check with hand calcs 
with classical designs

7 1) Water channel test 2 112 0

Max Acceleration Not competitive in the 
sprint race

Boat cannot speed up fast 
enough 8

1) Props cannot provide 
enough thrust force
2) High amount of drag 
forces

1) Designing props for max 
thrust transfer through 
startup
2) Streamlinging the boat 
design

5 1) Accelerometer test of 
final design 2 80 0

Max Power Not enought energy 
Collecteed

a) boat moves slowly 
b) Motors run at ineffecient 
speeds

7
1) electrical effeciencies 
are low 
2)  Not enought sunlight

1) minimized electrical 
components of loss 4 1) Check PV outuput with 

Multimeter 2 56 0

Integration with 
Hull

Propulsion system is 
unstable

a) Propulsion system 
moves/rotates 
b) Propulsion system falls off 

8 1) Insufficient mounting
1) FEA analysis of 
structural attachment to 
hull

2
1) Test structure stability 
by looking at deflection on 
final model

2 32 0

Action Results
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Appendix L. Indented Bill of Materials 

 
 

Assembly Part
Level Number Lvl0 Lvl1 Lvl2 Lvl3 Lvl4

0 100000 Full System ------

1 101000 Propulsion Assembly ------

2 102001 U8II-KV150 Motor T-motor 2 319.00$        638.00$        

2 102002 Motor Mount Cal Poly 2 -$                 -$                 

2 91290A148 M4x0.7mm Socket Screw McMaster 8 1.15$              9.22$              

2 102003 Connection Pin McMaster 4 0.08$              0.32$              

2 102004 Rudder Tilt Bracket CoastAl 2 10.00$           20.00$           

2 3636A220 Hinge McMaster 2 8.50$              17.00$           

2 102005 ESC T-motor 2 85.00$           170.00$        

2 102006 Gearbox ------

3 5972K46 Large Bearing McMaster 2 10.90$           21.80$           

3 6153K25 Small Bearing McMaster 2 12.42$           24.84$           

3 103001 Housing CoastAl 2 -$                 -$                 

3 2515N11 Bevel Gear McMaster 2 56.24$           112.48$        

3 2515N12 Bevel Gear Pinion McMaster 2 33.80$           67.60$           

2 102007 Main Downshaft McMaster 2 8.00$              16.00$           

2 102008 Carbon Downtube Dragon Plate 2 57.10$           114.20$        

2 102009 Box Tube CoastAl 2 15.00$           30.00$           

2 102010 Sheet Metal Bracket CoastAl 2 10.00$           20.00$           

2 102011 Rudder -----

3 103002 Airfoil Sections Home Depot 136 0.74$              100.00$        

3 103003 Carbon Wrap Cal Poly 2 -$                 -$                 

2 102012 Steering ------

3 103004 Rods McMaster 4 8.00$              32.00$           

3 103005 Pivot Mcmaster 1 2.00$              2.00$              

4 104001 Eyebolts McMaster 2 1.00$              2.00$              

4 104002 Pivot Ball McMaster 1 10.00$           10.00$           

2 102013 Propeller Cal Poly 2 -$                 -$                 

2 92029A158 M4 Set Screw McMaster 2 4.29$              8.57$              

2 102014 Tail Cone Cal Poly 2 -$                 -$                 

2 102015 Propeller Shaft McMaster 2 8.00$              16.00$           

2 5972K222 Tail Cone Bearing McMaster 2 5.35$              10.70$           

1 101001 Solar Panels SMUD 2 -$                 -$                 

1 101002 Wiring HobbyKing 1 40.00$           40.00$           

1 101003 MPPT Solar Inverter (Renegy Rover) Amazon 2 110.00$        220.00$        

Total Parts 201 1,702.73$  

Indented Bill of Material (BOM)
Solar Regatta - Propulsion

Total CostCostQtyVendor
Description
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Appendix M. Drawing Package 
 
The following pages contain drawings for all parts to be manufactured. 
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Appendix N. Budget 
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Appendix O. Purchased Part Website Links 
Part Link 
10 Gauge Wiring https://hobbyking.com/en_us/turnigy-high-quality-

10awg-silicone-wire-5m-
black.html?queryID=&objectID=60264&indexName=
hbk_live_magento_en_us_products 

T-Motor U8II https://www.foxtechfpv.com/t-motor-u8-ii.html 
T-Motor T 60A ESC https://www.foxtechfpv.com/t-motor-t-60a-esc.html 
Lift-off Hinge https://www.mcmaster.com/catalog/126/3127 
Bearings https://www.mcmaster.com/standard-ball-and-roller-

bearings 
Solar MPPT Optimizer https://www.solar-electric.com/solaredge-p700-solar-

optimizer.html 
Eyebolts https://www.mcmaster.com/eyebolts 
Threaded stud with cotter pin https://www.mcmaster.com/threaded-pins 
CNHL 8000MAH 22.2V 6S 
30C LIPO BATTERY 

https://chinahobbyline.com/index.php?route=product/p
roduct&product_id=87 
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Appendix P. Solar Module Specifications 

Module provided by SMUD: JKM235P-60 

 

�

Industry leading power output warranty 

(12 years/90%, 25 years/80%)

5-year warranty on product materials and processing technology

ISO 9001:2008 (Quality Management System) certified factory

IEC61215、IEC61730 certified products 

Jinko Solar introduces a brand-new line of 

high performance modules in wide application.

Our solar cells offer high conversion efficiency to ensure 

the highest quality

Our high performing modules have an industry low 

tolerance of +/- 3%

The modules can withstand high wind-pressure, snow 

loads and extreme temperatures

Passed IEC 5400 Pa mechanical loading test

On-grid residential roof-tops On-grid commercial/ 
industrial roof-tops

Solar power plants Off-grid systems

JKM245P-60
225-245 Watt

POLY CRYSTALLINE MODULE

POLY

www.jinkosolar.com | sales@jinkosolar.com
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Appendix Q. Motor Specifications 
 

T-Motor U8II-KV150 
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Additional specifications, including test data under different temperature conditions with 
standard T-motor propellers attached, can be found here. 
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Appendix R. Battery Specifications 
 
CNHL 8000MAH 22.2V 6S 30C LIPO BATTERY 

 
 

 
 
 
More information about the battery can be found here.
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Appendix S. Test Procedures 
 
The specifications for each test can be found in Table 3.2. 

BULLET POINT KEY:  
• General Procedures 
+ Safety Related Procedures 

Test #1: Top speed of the boat 
Description of Test: 
There will be one test to determine the top speed of the boat in operation.  

When the boat has the solar panels attached there will be a maximum speed that the boat 
can achieve and when the boat is hooked up to the battery there will be a max speed the 
boat can go.  The max speed will determine how the boat does in competition. 

Acceptance Criteria: 
Target top speed is 7 mph. 

Required Materials: 

• Boat with propulsion system 
• Two solar panels 
• Battery 
• GPS tracking app 

o Phone to run app 

Testing Protocol: 
• Put boat in water  
• Have boat captain get on boat 
• Turn on GPS tracking app 
+ Place GPS device in wire component box  
• Run boat at full throttle  
• Record position data over time to determine top speed 

Data: 
Panel Battery 

Time Position Time Position 
  

 
 
 

 
 

 
 

  

Top Speed:  Top Speed:  
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Test #2: Maximum acceleration of the boat 
Description of Test: 
Run full boat and measure the acceleration from 0 to max speed (time measurement). 

Test will be conducted for the boat with solar panels and with battery to get a 
measurement for both systems. Acceleration will be measured with the same GPS 
tracking setup as in the top speed test. 

Acceptance Criteria: 
Target time for 0 to max speed in less than 10 seconds. 

Required Materials: 
• Boat with propulsion system 
• Two solar panels 
• Battery 
• GPS tracking app 

o Phone to run app 

Testing Protocol: 
• Put boat in water  
• Pilot boards boat 
• Turn on GPS tracking app 
+ Place GPS device in wire component box  
• Start boat from rest and accelerate to max speed at full throttle 
• Record position data over time to determine acceleration 

Data: 
Panel Battery 

Time Position Time Position 
  

 
 
 
 
 
 
 
 
 
 
 
 

  

Acceleration Time:  Acceleration Time:  
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Test #3: Steering capability tests for shaft rotation and turning radius 
Description of Test: 
There will be two tests to see how the steering apparatus operates: 

A) How much the steering column has to rotate 
• To ensure the driver can easily turn the boat 

 B)  How well the boat turns under maximum turning input 
• To ensure the boat will be able to run in the slalom race  

Acceptance Criteria: 

• Full rotation of propulsion systems achievable in two full rotations of steering wheel 
• Turning radius is less than 15 ft 

Required Materials: 

• Boat fully assembled 
• Rope 
• Stake or buoy 
• Protractor   
• Sawhorses (4) 
• Drone? 

Testing Protocol: 

Rotation of steering column: 

• Have boat resting on sawhorses   
• Rotate steering column full rotation 
• Measure angle change of rudder  

Turning radius of boat 

• Put boat in water 
• Have buoy or stake in lake with rope attached 

o Another person in the water can also operate  
• Attach other side of rope to center of boat 
• Run boat with turning apparatus to the extreme point 
• After length of rope between boat and buoy stops changing measure length of rope 
• Record turning radius 

Data: 
Number or column rotations Degrees of turning 

  
  
  

 
Number or column rotations Turning Radius 
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Test #4: Water Channel Flow Visualization 
Description of Test: 
Spin prototype propellers while in water channel to get a flow visualization 

Required Materials: 

• Water Channel 
• Propellers 
• Propeller mount 
• Dye 
• High-Speed Camera 

Acceptance Criteria: 
Propeller design is acceptable if no flow separation or cavitation is observed. 
Testing Protocol: 
Setup: 

+ Clear space around the Water Channel 
• Fill Channel with water 
+ Check for leaks and fix if present, check the area for water where it shouldn’t be  
• Check safety equipment around/on Channel 
• Turn on Channel pump 
• Insert propeller system  
+ Check filter to ensure that it is clean and that water can pass through it without 

obstruction 

Performance Test: 

• Activate motor to spin propeller and observe, take notes on behavior (quick sketch too) 
+ Wear hearing protection if pump is too loud 
• Use a high-speed camera to take slow-motion video to capture footage of the water 

flowing around the propeller 
• Repeat flow visualization with different propeller designs 

Clean up: 

• Power down and remove propeller system from channel 
• Turn off Channel pump 
+ Check safety equipment around/on Channel 
+ Check for leaks/stray water 
• Drain and stow channel 

Data: 
No quantitative data will be produced from this test. The only results will be the flow 
visualization videos that will be used for better understanding of the propeller and for our Final 
Design Review report. 
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Test #5: Battery life at max draw  
Description of Test: 
Battery life test to ensure that batteries will deplete completely in 25 minutes, and produce the 
rated energy (180 Watt-hours) 

Required Materials: 
• Balance charger 
• 180 Watt-hour Batteries (2) 
• 24V halogen light bulb 

Acceptance Criteria: 
Battery produces rated energy (180 Watt-hours) and depletes completely in 25 minutes 

Testing Protocol: 

+ Put up tape around area so no-one touches the hot lights 
+ Keep cables on table to avoid trip hazards 
• Attach XT90 and balance leads between battery and smart charger  
• Charge battery fully and record voltage 
• Attach the battery to five 100-watt lights in parallel. 
• Discharge battery with five 100-watt lights until it reaches a voltage of 18V.  
• Recharge the battery slowly to the starting voltage. Record from the smart charger screen, 

the amount of mAh transferred into the battery. 
• Repeat test 2 times for continuity check 

Data: 
Total battery capacity when discharged at 500 watts, duration of discharge at 500 watts 
 

Test No Battery Capacity (W-h) Batter Life Time (min) 

1 

 
 
 
 
 

 

2 

 
 
 
 
 

 

 

  



 S-6 

Test #6: PV Panel Energy Conversion Test 
Description of Test: 
This is a test of the solar panels provided by SMUD to ensure that they are producing the power 
that they are rated for.  

Required Materials: 
• Solar Panels (2) 
• EE solar panel measuring kit (From Dr. Dale Dolan, EE professor) 
• Supports to hold solar panels at different angles 
• Sunlight 

Acceptance Criteria: 
Panels produce rated max power under specified conditions 
Testing Protocol: 

• Connect solar panels to measuring devices from solar measuring kit 
• Set solar panel angle to desired position 
+ Ensure that panels are stable and will not fall over if blown by wind 
• Run measurement and record power at different voltage and current 
• Export data into .csv 
• Save .csv file of data for future use 
• Test at multiple angles, shading % 

Data: 
Full output data will be saved to .csv file. Record test conditions and max power here. 

Test Specifications Max Power 
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Test #7: Electrical power transfer (wires) 
Description of Test: 
There will be one test to determine the power loss per unit length in the wires used to transfer 
power. 

Required Materials: 

• Multimeter 
• Power source 
• Wire 
• Tape measure 

Acceptance Criteria: 
Power loss must be less than 3% of the total passing through wires. 

Testing Protocol: 
• Measure length of wire being tested 
• Hook wire up to power source with load on opposite end 
+ Ensure wire does not reach excessive temperatures and does not break 
• Measure voltage and current at beginning and end of wire length 
• Difference in above measurements will determine power loss 

Data: 
Length of wire Power at start Power at end 
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Test #8: Motor Power and Efficiency Testing 
Description of Test: 
This test is to check efficiency of the motor under conditions that it will experience during 
operation. Multiple tests will be run to determine optimal throttle for efficient operation. An 
uncertainty analysis will be conducted with data from this test as well. 

Required Materials: 

• Dynamometer (inside EE power laboratory) 
• Yokogawa wattmeter (EE power lab) 
• Motor 
• Battery/power source 

Acceptance Criteria: 
Motor efficiency under design conditions must be greater than 80%. 

Testing Protocol: 
+ Wear safety glasses near spinning components 
+ Keep cables/wires on table to avoid trip hazards 
• Connect motor to support fixture 
• Connect motor adaptor part to dynamometer shaft 

+ Spin shaft by hand a few times to ensure that all components are concentric 
• Connect motor to power source 
• Connect leads from battery to Yokogawa to record voltage, current, and power 
• Power up system at no load and record power, voltage, current, and speed 
• Check to make sure motor does not overheat after each test 
• Repeat test three times for each torque load to get statistical data 
• Repeat test for multiple torque loads 
• Shut off power to motor 
• Compile and analyze data 

Data: 
Torque (lbf•in) Speed (RPM) Power (W) Voltage (V) Current (A) 
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Test #9: Shaft and Gearset Efficiency Test 
Description of Test: 
This test is to check the mechanical efficiency of the gearbox and shaft systems. The motor 
efficiency must already have been determined so the effects of loading on the motor can be 
accounted for.  

Required Materials: 

• Dynamometer (inside EE power laboratory) 
• Yokogawa wattmeter (EE power lab) 
• Motor 
• Battery/power source 
• Gearbox 

Acceptance Criteria: 
Shaft and gearbox efficiency must be greater than 90%. 

Testing Protocol: 
+ Wear safety glasses near spinning components 
+ Keep cables/wires on table to avoid trip hazards 
• Attach gearbox output to dynamometer 

+ Spin shaft by hand a few times to ensure that all components are concentric 
• Connect motor to power source 
• Connect leads from battery to Yokogawa to record voltage, current, and power 
• Power up system at no load and record power, voltage, current, and speed 
• Check to make sure motor does not overheat after each test 
• Repeat test for multiple torque loads 
• Shut off power to motor 
• Compile and compare data to motor data without gearbox attached 

Data: 
Torque (lbf•in) Speed (RPM) Power (W) Voltage (V) Current (A) 
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Test #10: Weight test of full propulsion system 
Description of Test: 
This is a weigh test of the entire propulsion system to get an accurate measurement of its weight. 
The test will likely be conducted in the Mustang 60 machine shop. 

Required Materials: 
• Scale 
• Propulsion System 

Acceptance Criteria: 
One full propulsion system must weigh less than 30 lbs. 

Testing Protocol: 

+ Wear close-toed shoes 
+ Put on Safety glasses (due to environment) 
• Place scale on ground 
• Turn on scale 
• Tare scale 
• Have a person stand on scale 
• Record weight of person 
• Hand fully assembled propulsion system to person standing on scale 
• Record weight of person and propulsion system 
• Repeat test three times for continuity 
• Step off scale carefully and safely 
• Turn off scale 
• Record weight in in Excel data sheet  
• Take “behind the scenes” photos, record findings in logbook and keep data in Excel file 

Data: 
Propulsion System Weight (lbf) 
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Appendix T. User’s Manual 

Solar Regatta Propulsion Operators 
Manual: Set-up of Propulsion system on 
Boat  

Mounting Propulsion Units to the Hull  
Follow these directions to integrate two Propulsion Units with the Hull:   

1. Slide square tubing from propulsion unit over the smaller square tube protruding from the 
hull. Secure with two bolts.   

  
  
  

2. Use bolts to attach each propulsion unit to the steering-rod.  
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3. Congrats! The propulsion units are secured to the hull and connected to each other. They 
are now ready to be connected to the steering system and the motors are ready to be wired.  

  
  

After the propulsion units have been mounted on the boat 
 Align and fix the distance between the two units by attaching the alignment rod:  

1. Set rod width to match with width of the boat by putting a bolt through the solid and 
sleeve rods   

  
  

 

2. Attach rod to each unit on the motor mount with U-pin and lock to itself   
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Attach hardware for steering system  

1. Attach adjustment panels to motor mounts with bolts (panel is metal plate with holes 
equally spaced to attach eyebolts)  
2. Attach cable tightening mounts to the eyebolts on the adjustment panels   

  
3. Attach eyebolts to desired location, ensuring distance from mount is the same for each 
side by winding two nuts in opposite directions to ensure proper height  

  

  
  

4. Attach eyebolts to boat frame in mirrored locations through the center of the boat (CAD 
image with circles showing where to mount) by winding two nuts in opposite directions to 
ensure proper height   
5. Mount steering column guide: Two wooden boards with 6-12in between and holes in 
both for the column to go through both at the same downward angle  
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Running the cable through the system  
1. Mark center of the cable with marker  
2. Run cable through the hole in the steering column with equal distance on each side of the 
hole  

  

  
  

3. Rotate one side the cable 8 times around the column in a clockwise direction below the 
hole and the other side 8 times counterclockwise above the hole   

  
  

a. Use vice-grips to keep the one side from unwinding when you wind the other  
4. Run the cable coming from the bottom of the hole to the starboard side of the boat and 
the cable from the top of the hole to the port side of the boat and through the respective 
eyebolts on each side   
5. Run the cable through the eyebolts along the boat until it reaches the eyebolt on the 
adjustment panel  
6. Run the cable around the cable tightening mounts through the eyebolts on the adjustment 
panel   

a. Use vice-grips to keep cable tight through eyebolts  
7. Tighten provided cable fasteners to each cable attaching it to itself   
8. Use zip ties to attach excess cable to itself   
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